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Abstract

The frequency analysis is highly demanded to process the industrial or medical data for fault

detection and diagnosis, especially when the investigated machine or human tissues are stim-

ulated by the periodic signals. The PhD research work aims to develop the new methods

for system frequency feature extraction and selection of features for machine learning ori-

ented classification and to apply these methods in the fault detection and medical diagnosis.

To analyse the system characteristics with input-output data, novel modelling and model

frequency feature extraction method is proposed. The method is effective in revealing the

physically meaningful characteristics of systems. To select the useful features for machine

learning oriented classification, an orthogonal least squares based feature selection method is

proposed. Compared to traditional methods, the proposed method has a faster computation

speed and higher accuracy. These novel methods are then applied to two real-world prob-

lems, which are wind turbine fault detection and preterm birth prediction. In the wind turbine

fault detection application, the results show that the modelling and model feature extraction

method is powerful in the damage sensitive feature extraction, while traditional methods do

not work well. In the preterm birth prediction, the proposed methods can extract and se-

lect features from the magnetic impedance spectroscopy data of the pregnant women’s cervix

tissue. The results demonstrate that the magnetic impedance spectroscopy data have the capa-

bility to predict the spontaneous preterm birth. These application studies demonstrate that the

proposed methods have great potential to be used in many engineering system fault detection

and medical diagnosis related applications.
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Chapter 1

Introduction

1.1 Background and motivation

For economic, safety, and health considerations, maintenance is necessary in many sys-

tems. The traditional maintenance technique is the reactive maintenance, which takes place

at breakdowns. A better maintenance technique is the preventative maintenance, in which the

system is maintained based on the time or usage. However, the cost of the preventive main-

tenance is usually high [1]; in addition, the preventative maintenance cannot be carried out

in the some areas, such as health care, without the insight of the system’s health conditions.

To this end, the condition-based maintenance has been proposed. The condition-based main-

tenance requires the technologies to quantify the health conditions of a system. Based on the

health conditions, the specific and targeted maintenance can be applied. Therefore, the suc-

cess of the condition-based maintenance highly relies on technologies those can accurately

evaluate the health condition of systems.

The frequency analysis has been widely used in many fields in the fault detection and di-

agnosis, especially after the fast Fourier transform (FFT) was developed by Cooley and Tukey

[2]. The vibration and acoustic emission signals are frequently used in frequency analysis for

the fault detection of the mechanical elements or systems, such as bearings, gearboxes, and

bridges. The the electronic signals, such as current and impedance spectroscopy, are popu-

lar in the frequency analysis for the fault detection of motors or medical applications such

as cancer diagnosis. This PhD project is motivated by the need to develop the methods for
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the wind turbines generator fault detection and the preterm birth prediction for the pregnant

women using electronic impedance spectroscopy data.

For the wind turbine generator fault detection, the traditional frequency analysis usually

requires expensive additional equipments. In fact, most MW-scale wind turbines have in-

stalled supervisory control and data acquisition (SCADA) systems, which collect important

signals from the wind turbines for fault detection, such as the generator temperature, tower

vibration, and power output. However, as the SCADA data are recorded every 10 minutes,

whose sampling frequency is too low to capture the most of the dynamics of wind turbines,

the researchers mainly focus on the static relationship between the SCADA parameters, and

these relationships cannot be used to conduct frequency analysis. For example, the power

curve which describes the static relationship between the wind speed and the power output

is applied for the wind turbine fault detection [3]. The static relationships contain less infor-

mation than the dynamic relationship. In our case, the static relationship cannot detect the

generator fault at all. Fortunately, it is found that the generator temperature changes periodi-

cally at a lower frequency (i.e. one day period), so the 10 minutes sampling period is enough

to capture the dynamic characteristics of the generator temperature. Therefore, in Chapter

6, the dynamic relationship between the generator temperature, wind speed, and the ambient

temperature has been studied, and the frequency analysis has been carried out for the wind

turbine generator fault detection.

For the preterm birth prediction, the traditional methods adopt two risk factors, i.e. cervix

length and fetal fibronectin (fFN), to predict the risk of preterm birth, but the accuracy of

the prediction is low [4]. The recent research has identified cumulative changes in hydration

as a sign of the ripening process which precedes labour [5]. The changes in hydration can

be assessed by the cervix electrical impedance, which is a type of frequency features. The

challenge to use the impedance features is the number of features is large, and the features are

highly redundant. In Chapter 5, the orthogonal least squares based feature selection method

with efficient redundancy control has been applied to select useful impedance features, and

it has been investigated whether the impedance features are feasible for the preterm birth

prediction.
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1.2 Key contributions and outline

The relationship between each chapter is shown in Figure 1.1. Two novel methods are devel-

oped in Chapter 4 and Chapter 6, respectively, which are followed by the two applications in

Chapter 5 and Chapter 7.

Ch4 Ch6

Ch5 Ch7

Ch2

Ch3

Frequency
Analysis

M
od

ell
ing

Feature
Selection

Classification, Model Validation

Methods ApplicationsBackground
Techniques

Figure 1.1: The relationship between different chapters in the thesis.

The overview of each chapter and the main contributions are as follows:

• Chapter 2:

This chapter reviews the existing methods for the frequency analysis and their appli-

cation in fault detection and diagnosis. The methods are divided into signal based and

model based. In the model based frequency analysis, the review will focus on the fre-

quency responses function (FRF) analysis and the nonlinear output frequency response

functions (NOFRFs) analysis. The applications of frequency analysis in the bearing de-

fects, gear defects, beam cracks, and cancer detection are reviewed. The most common

methods in each field are presented.

• Chapter 3:

This chapter introduces a range of topics covering modelling, feature selection, classi-

fication, and model validation. The preliminary knowledge is reviewed. As the model
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structure adopted in the thesis is the nonlinear autoregressive with exogenous inputs

(NARX) model, the modelling techniques for NARX models are reviewed. The idea

of filter feature selection is introduced. Two feature selection methods with different

redundancy control techniques are reviewed. For the classification, the review focuses

on the logistic regression model. Three performance evaluation methods for logistic

regression model are reviewed. As the data for the preterm birth medical diagnosis are

imbalanced and small in size, the special cross-validation techniques are required. Four

typical cross-validation techniques have been introduced.

• Chapter 4:

In this chapter, the NARX modelling techniques are first applied to a linear system

with a signal equilibrium and then to a nonlinear system with dual equilibria. The

frequency features (i.e. FRF and NOFRFs features) of the system are then extracted

from the system models. The simulation results demonstrate the effectiveness of mod-

elling and model feature extraction method in monitoring the changes of the system

characteristics.

• Chapter 6:

In Chapter 6, the modelling and model feature extraction method proposed in Chapter

4 is applied in the wind turbine generator fault detection. As the model performs as a

sensor, which keeps updating to provide real-time features of the generator, the model

is called the model sensor of the wind turbine generator, and the fault detection method

based on the model sensor is referred to as the model sensor method. The SCADA

data of three wind turbines are used for this study. The NOFRFs features are used

as the damage sensitive indicator and extracted using the model sensor method. The

effectiveness of the model sensor method and the NOFRFs features is verified by real

data analysis. The main contributions in this chapter are given as follows:

– the structure of the model describing the dynamic relationship between the gen-

erator temperature, wind speed, and ambient temperature is determined from the

first principles;

– the model sensor method is applied to update the parameter of the dynamic model
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monthly;

– the NOFRFs feature extraction under different operating point is proposed and

applied;

– the strategy about how to deploy model sensors on the wind turbines for the early

fault alarm is developed;

– the fault detection performance of the linear and nonlinear model sensor is com-

pared.

• Chapter 5:

In this chapter, an orthogonal least squares (OLS) based feature selection method is

proposed for both binomial and multinomial classification. The squared orthogonal

correlation coefficients are defined analysed as the feature ranking criterion. The equiv-

alence between the canonical correlation coefficient, Fisher’s criterion, and the sum of

the squared orthogonal correlation coefficients are proved to demonstrate the statisti-

cal implication of the proposed method. It is also shown that the OLS based feature

selection method has speed advantages in a greedy search. The simulation tests of

continuous feature selection are designed to compare the proposed method with other

popular feature selection methods, and the proposed method achieves the best results.

The main contributions in this chapter are given as follows:

– The new statistics based on squared orthogonal correlation coefficients are de-

fined.

– The equivalence between the squared orthogonal correlation coefficients, the canon-

ical correlation coefficient, and Fisher’s criterion are proved.

– The speed advantage of OLS based method in a greedy search is analysed by

evaluating computational complexity.

– The OLS based feature selection algorithm for both binomial and multinomial

classification cases are developed.

• Chapter 7:

In this chapter, the modelling and model analysis method and the OLS based feature
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selection methods are applied to preterm birth prediction. The data used for analysis

is the magnetic impedance spectroscopy (MIS). The MIS is measured in a non-contact

manner, and the time domain data are provided for this study. The traditional MIS

analysis is based on the frequency domain measurement. The modelling and model

analysis method is to extract the impedance spectra from the time series models which

are trained with the time domain data. The features are selected from the impedance

spectra by the OLS based feature selection method. The results demonstrated that the

effectiveness of the MIS and the proposed methods in sPTB prediction. The main

contributions in this chapter are given as follows:

– the new idea of extracting MIS from time series model is proposed;

– the traditional features are compared with the model based features;

– the calibrated features are compared with the non-calibrated features;

– the efficient MIS features are identified in the study that can potentially be applied

in future studies.
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Chapter 2

Frequency Features of Signals and

Systems and Application in Fault

Detection

2.1 Introduction

Frequency analysis can extract useful features from signals and systems. The fault detection

and diagnosis can be realised using the features by simply setting a threshold or applying

more complicated machine learning methods [6]. Most systems investigated by frequency

analysis are the machines or the elements working in a periodic environment. For example,

the gearboxes or the bearings in a rotating machine, and the circuit under the alternating

current. The signals sampled from such systems have periods with certain frequencies. Nat-

urally, the characteristics of the signals in the frequency domain are extracted to represent the

system operating conditions. Actually, frequency analysis can also be used in the areas with-

out periodic behaviours. In these cases, the frequency features are regarded as the synthesis

characteristics of the systems. For example, the natural frequency of a beam is a common fea-

ture for crack detection, where the beams are not necessary to work in the periodic behaviour

[7].

From a system’s perspective, the signals can be divided into system inputs and system

outputs. The input signals are the external environmental conditions, such as load and ambi-
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ent temperature, which are independent from the system. The output signals are the physical

variables affected by the system operation, such as power output of a generator and vibra-

tion of gearbox, which are dependent on the characteristics of the system. If the frequency

features are extracted from outputs only without considering the effect of the system inputs,

the frequency analysis is signal based. The signal based frequency analysis has spectrum

analysis, power spectrum analysis, cepstrum analysis, etc. The advantage of the signal based

frequency analysis is its simplicity. However, as the system outputs are influenced not only

by the system characteristics but also system inputs, signal based methods are not sensitive

to small change of the system characteristics [8]. To remove the effect of inputs, the relation-

ship between the inputs and the outputs can be found first, and then the frequency analysis is

carried out. The relationship is the model of the system, so such methods are called model

based frequency analysis. Based on different model assumptions, the frequency analysis

methods can be categorised. For a linear model, the frequency analysis can be carried out by

studying the transfer function or the frequency response function (FRF) of the system. For

a nonlinear model, the frequency analysis requires more advanced techniques, such as the

generalised frequency response functions (GFRFs) [9], and the nonlinear output frequency

response functions (NOFRFs) [10].

This review gives a general background of the frequency analysis for fault detection. As

the foundation of the model based frequency analysis, the signal based frequency analysis

methods are introduced first. Then, the model based frequency analysis methods for linear

and nonlinear systems are reviewed, respectively. The fault detection application examples

are given for both the signal and model based frequency analysis.

2.2 Signal based frequency analysis

2.2.1 Spectrum analysis

Consider a general sequence {y(k)}Ns−1
−Ns+1 is sampled at sampling frequency fs in Hz, and

the corresponding sampling period is T = 1/fs, where Ns ∈ Z+, y ∈ R, and fs ∈ R+. The

sequence {y(k)}Ns−1
−Ns+1 can be interpreted as the summation of 2Ns − 1 cosine signals with
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different frequency, amplitudes and phases, which is given by [11]

y(k) =
1

2Ns − 1

Ns−1∑
i=−Ns+1

|Y (ejωiT )| cos
(
ωiTk + ∠Y (ejωiT )

)
(2.1)

where | · | is the operator to compute the amplitude of the spectrum, ∠· is the operator to

compute the phase angle of the spectrum,

ωi =
2πfs

2Ns − 1
i i = −Ns + 1,−Ns + 2, . . . , Ns − 1 (2.2)

and

Y (ejωiT ) = F {y} (ejωiT ) =
Ns−1∑

k=−Ns+1

y(k)e−jωiTk (2.3)

is the discrete Fourier transform (DFT) of the sequence {y(k)}Ns−1
−Ns+1. The inverse process

(2.1), which reconstructs y(k) from Y (ejωiT ), is referred to inverse discrete Fourier transform

(IDFT). By Euler rule, the formula of IDFT can be rewritten as

y(k) = F−1 {Y } (k) =
1

2Ns − 1

Ns−1∑
i=−Ns+1

Y (ejωiT )ejωiTk,

k = −Ns + 1,−Ns, . . . , Ns − 1.

(2.4)

Y (ejωiT ) is a function of the discrete frequency ωi in rad/s. The frequency resolution,

which is the interval between ωi−1 and ωi, is 2πfs/(2Ns− 1) in rad/s. We define the discrete

variable ω ∈ {ω−Ns+1, . . . , ωNs−1}. The frequency domain function Y (ejωT ) is called the

spectrum of the sequence {y(k)}Ns−1
−Ns+1. The analysis on Y (ejωT ) is the spectrum analysis or

Fourier analysis.

2.2.2 Power spectrum analysis

Power spectrum analysis is also frequently used in frequency analysis. Firstly, the cross-

correlation function between the sequence {y(k)}Ns−1
−Ns+1 and {u(k)}Ns−1

−Ns+1 is obtained by [12]

Ruy(τ) = u(k) ∗ y(k) =
1

Ns

Ns−1∑
k=0

[u(k)− ū0] [y(k − τ)− ȳτ ] (2.5)

where τ = 0, 1, . . . , Ns− 1, ū0 is the sample mean of the sequence {u(k)}Ns−1
0 , and ȳτ is the

sample mean of the sequence {y(k)}Ns−1−τ
−τ . When u(k) = y(k), the cross-correlation func-

tion Ryy is referred as the auto-correlation function of the sequence {y(k)}Ns−1
−Ns+1. Secondly,

11
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the cross spectral density, which is the DFT of the cross-correlation, is given by

Suy(e
jωT ) = F {Ruy} (ejωT ) =

Ns−1∑
τ=0

Ruy(τ)e−jωTτ . (2.6)

When u(k) = y(k), the cross spectral density Syy is referred as the power spectral density

(or power spectrum), which is the DFT of the auto-correlation. The analysis on Syy(ejωT ) is

the power spectrum analysis.

2.2.3 Cepstrum analysis

In spectrum analysis, the frequency components are composed of the positive integer mul-

tiples of a frequency called fundamental frequency. The frequency components constitute a

harmonic family, in which any frequency component is a harmonic.

This kind of spectra are common in gearboxes [13]. The different harmonic families of

a gearbox originate from the different elements, such as the shafts, the ball-bearings, and the

gearmesh frequencies. Through analysing each harmonic family, the health condition of the

individual elements can be monitored. However, the harmonic families in some cases are

difficult to separate by the traditional spectrum analysis. For example, when the speeds of

the high speed shaft and the low speed shaft are close, the sidebands of the harmonics of the

gearmesh frequency are overlapped to make it difficult to distinguish in the spectrum [14].

To address this issue, the cepstrum analysis is introduced. The (power) cepstrum is de-

fined as the IDFT of the logarithmic power spectrum, which is given by [14]

Cp(τ) = F−1 {log (Syy)} (τ). (2.7)

It is known that the power spectrum Syy is the DFT of the auto-correlation function Ryy(τ).

Thus, the only difference between the cepstrum Cp(τ) and the auto-correlation function

Ryy(τ) is that the IDFT is performed on the logarithm of the power spectrum rather than

the power spectrum itself. The logarithm emphasises the small value harmonics, which leads

that the cepstrum is more suitable for harmonics family separation than the auto-correlation.

The independent variable of the cepstrum τ , referred to as quefrency, is a measure of time as

in the case of the auto-correlation. A peak at a certain quefrency corresponds to the period
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of the fundamental frequency of a harmonic family, by which the harmonic families can be

separated.

2.2.4 High-frequency resonance technique

The high-frequency resonance technique is consider as the benchmark method for the fault

detection and diagnosis in rolling element bearings [15]. The feasibility of the high-frequency

resonance technique is based on the fact that an impulse vibration is generated at each time

a defect in a rolling element bearing makes contact with another surface in the bearing [16].

The impulse vibration has a wide range of frequencies. However, when the bearing under the

load, the spectrum of the bearing vibration is strongly masked by the vibration of gears or

other machine elements. Accordingly, the wide distributed energy from the impulse vibration

is difficult to detect by traditional spectrum analysis. Fortunately, as the system usually has

higher natural frequencies than the frequency generated by the other machine elements, the

impulse vibration excites high frequency resonances fr, which can be used for the fault detec-

tion and diagnosis. Figure 2.1 gives an example of the spectrum of an inner race fault bearing.

The radial vibration data were measured on the bearing housing at 51200 Hz sampling fre-

quency. The record takes 10 seconds. The rotation speed is 29 Hz. The high frequency

resonances can be observed in the figure.
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Figure 2.1: The resonance in the spectrum of an inner race fault bearing.

The impulse generated by the defect are periodic. The frequency of occurrence of the

impulse is referred as to characteristic defect frequency, which is denoted as fc. The char-
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acteristic defect frequency is at relative low frequency range comparing with the resonance

frequencies. The resonances as carrier signal is considered as being amplitude modulated at

the characteristic defect frequency. Therefore, the spectrum of the defected bearing around

the resonance has the frequency components at fr±fc. As the characteristic defect frequency

is transformed to high frequency range, the transformed characteristic defect frequency is

not influenced by the low frequency vibration of the other machine elements. Through de-

modulating the resonances, the characteristic defect frequency can be recovered for the fault

detection.

The characteristic defect frequency is dependent on the location of the defect, which

makes it possible to diagnose in which elements of the bearing the defect appears. For a

bearing with a stationary outer race, the characteristic defect frequencies in different locations

are given by [17]

• cage frequency:

ωcg =
ωs
2

(
1− d

D
cosφ

)
(2.8)

• ball spinning frequency:

ωbl =
Dωs
2d

(
1− d2

D2
cos2 φ

)
(2.9)

• outer race defect frequency:

ωod = Zωcg =
Zωs

2

(
1− d

D
cosφ

)
(2.10)

• inner race defect frequency:

ωid = Z(ωs − ωcg) =
Zωs

2

(
1 +

d

D
cosφ

)
(2.11)

• rolling element defect frequency

ωre = 2ωbl =
Dωs
d

(
1− d2

D2
cos2 φ

)
(2.12)

where ωs is the shaft rotation frequency in rad/s, d is the diameter of the rolling element, D

is the pitch diameter, Z is the number of rolling elements and φ is the contact angle.
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The whole procedural can be illustrated by Figure 2.2. First, the sampled signal y(k)

is filtered by a bandpass filter. The centre frequency of the bandpass filter should be the

resonance to be studied. The bandwidth of the bandpass filter is at least double the highest

characteristic defect frequency, so that the filter can pass the carrier frequency (i.e. resonance)

with one pair of modulation sidebands [16]. Second, the filtered signal is demodulated by an

envelope detector. The envelope detector can be constructed by a half-wave and a peak holder.

Figure 2.2 gives an example that the half-wave rectifier only keeps the values of the bandpass

filtered signal which are higher than the threshold, and then the signal is smoothed by the

peak holder. Finally, the signal is transformed into frequency domain by DFT.

Bandpass
Filter

Envelope Detector

Half-
Wave

Rectifier
Peak

Holder DFT
y(k) Y (ejωT )

Figure 2.2: The procedure of high-frequency resonance technique.

2.3 Model based frequency analysis

The signal based frequency analysis, which does not take the system inputs into consid-

eration, cannot reflect the system characteristics when the system inputs affect the output

significantly. For example, when the system works under the varied loads, such as long-term

health monitoring of large structures like bridges and wind turbines, the system outputs such

as the structural vibrations are strongly depended on the ambient loads [18]. To take away the

influence of the input, the mathematical model, which describes the relationship between the

input and the output, is derived first. The model based frequency analysis is used to extract

frequency features from the model.

In this section, both the linear and the nonlinear model based frequency analysis methods

are reviewed. The system input and output are sampled in time domain. The sampling
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frequency is fs in Hz, and the corresponding sampling period is T = 1/fs. The sampled

input is {u(k)}Ns−1
−Ns+1 and the sampled output is {y(k)}Ns−1

−Ns+1. The following methods are

applied on the two sequences.

2.3.1 Frequency response function

When the system is linear, the input and the output of the system satisfy the properties of

superposition and homogeneity [19]. Under a sinusoidal input, e.g. u(k) = sin(ωTk), the

steady state output of a linear system is a sinusoidal signal at the same frequency as the

input. However, the amplitude and the phase of the output is different from the input. The

difference of the amplitude and the phase can be described by two functions of the input

frequency, which are |H(ejωT )| and ∠H(ejωT ), respectively. Then the output of the linear

system under sinusoidal input is given by

y(k) = |H(ejωT )| sin
(
ωTk + ∠H(ejωT )

)
. (2.13)

The function H(ejωT ) is referred as frequency response function (FRF) of the linear system.

To apply DFT on both side of (2.13), the relationship between the spectrum of the input

U(ejωT ) and the spectrum of the output Y (ejωT ) can be obtained. It is observed that (2.13)

is time shifted by 1
ωT

∠H(ejωT ) from the input. To use the time-shift property [11], the

relationship of the input and output spectra can be written as

Y (ejωT ) =|H(ejωT )|ejωT ·
1

ωT
∠H(ejωT )U(ejωT )

=|H(ejωT )|ej∠H(ejωT )U(ejωT )

=H(ejωT )U(ejωT ).

(2.14)

In other word, FRF is the ratio of the input and the output spectra. Through FRF, the ratio of

the input and output under different frequencies can be analysed. FRF as a frequency feature

can be used to reflect the system characteristics for fault detection.

FRF can be obtained from the time domain model. First, the time domain model can be

derived either by the first principle or the black-box modelling. Then, the linear time domain

model is converted into the transfer function H(z) by z-transform in discrete time. Finally,

the FRF of the system is attained by replacing z by ejωT in the transfer function H(z) [20].
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It is also uncomplicated to obtain the FRF from the frequency domain directly. The test

sinusoidal signals are reliably generated and commonly used in experimental instruments

[19]. One direct way is to compute FRF through the spectrum of the test input and the

measured output by (2.14). However, the output usually contains the immeasurable noise. To

remove the noise, the cross-correlation between the input {u(k)}Ns−1
−Ns+1 and the noisy output

{y(k) + e(k)}Ns−1
−Ns+1, where e(k) represents noise, are computed first by

Ruyn(τ) = u(k) ∗ (y(k) + e(k))

= u(k) ∗ y(k) + u(k) ∗ e(k)

= Ruy(τ) +Rue(τ) τ = 0, 1, . . . , Ns − 1.

(2.15)

When the noise e(k) is uncorrelated with the input u(k), i.e. Rue(τ) = 0, we have Ruyn(τ) =

Ruy(τ). Then, the cross-spectrum Suy and power spectrum Suu can be computed by (2.6).

Finally, through the convolution property of DFT, the noise free FRF of the linear system can

be obtained by [21, 11]

H(ejωT ) =
Suy(e

jωT )

Suu(ejωT )

=
U(ejωT )Y (ejωT )

U(ejωT )U(ejωT )

=
Y (ejωT )

U(ejωT )
.

(2.16)

2.3.2 Nonlinear output frequency response functions

The concept of the nonlinear output frequency response functions (NOFRFs) [10] is an ex-

tension of linear FRF concept to nonlinear systems. Based on NOFRFs, the spectrum of the

system output can generally be considered as the summation of the N + 1 spectra shown in

Figure 2.3, where N is the order of the system nonlinearity. Each spectrum member Yi(ejωT )

is generated by

Yi(e
jωT ) = Gi(e

jωT )Ui(e
jωT ) (2.17)

where Ui(ejωT ) is the spectrum of ui(k) and Gi(e
jωT ) is ith order NOFRF.
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DFT H(ejωT )
u(k) U(ejωT ) Y (ejωT )

(a) The frequency response of linear system constructed by FRF.

DFT

DFT

DFT
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uN(k)
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U1(ejωT )
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Y1(ejωT )
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(b) The frequency response of nonlinear system constructed by NOFRFs.

Figure 2.3: Comparison between FRF and NOFRFs.

Definition of NOFRFs

The NOFRFs are proposed based on the Volterra series representation of a nonlinear system

as follows

y(k) = h0 +
N∑
n=1

Ns−1∑
τ1=0

· · ·
Ns−1∑
τn=0

hn(τ1, . . . , τn)
n∏
i=1

u(k − τi)

k = 0, · · · , Ns − 1.

(2.18)

where hn(τ1, . . . , τn) ∈ R is the nth order Volterra kernel, and N is the order of the system

nonlinearity. The nonlinear system (2.18) is stable, and the equilibrium is h0. The spectra of

the system input {u(k)}Ns−1
−Ns+1 and output {y(k)}Ns−1

0 are denoted as U(ejωT ) and Y (ejωT ),

respectively. The output frequency response of the system (2.18) can be described as [10]

Y (ejωT ) =
N∑
n=0

Yn(ejωT ), (2.19)
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where

Y0(ejωT ) =

h0 for ω = 0

0 for ω 6= 0

Yn(ejωT ) =
1

(2Ns − 1)n−1

∑
ω1+···+ωn=ω

Hn(jω1, . . . , jωn)
n∏
i=1

U(ejωiT ).

(2.20)

Hn(jω1, . . . , jωn) =
Ns−1∑

τ1=−Ns+1

· · ·
Ns−1∑

τn=−Ns+1

hn(τ1, . . . , τn)e−jT (ω1τ1+,··· ,+ωnτn) (2.21)

is known as the nth order Generalised Frequency Response Function (GFRF), which is a

description of the characteristics of nonlinear systems in the frequency domain, and∑
ω1+···+ωn=ω

Hn(jω1, . . . , jωn)
n∏
i=1

U(ejωiT ) (2.22)

denotes the summation of Hn(jω1, . . . , jωn)
n∏
i=1

U(ejωiT ) over the n-dimensional hyperplane

ω1 + · · ·+ ωn = ω.

For n = 0, 1, . . . , N , the spectrum of the un(k) at the frequency ω is given by

U0(ejωT ) =

1 for ω = 0

0 for ω 6= 0

Un(ejωT ) =
1

(2Ns − 1)n−1

∑
ω1+···+ωn=ω

n∏
i=1

U(ejωiT ).

(2.23)

Thus, we can define the nth order NOFRF at frequency ω as

Gn(ejωT ) =
Yn(ejωT )

Un(ejωT )
(2.24)

under the condition

Un(ejωT ) 6= 0 for n = 0, 1, . . . , N. (2.25)

Therefore, Yn(ejωT ) in (2.19) can be expressed as

Yn(ejωT ) = Gn(ejωT )Un(ejωT ). (2.26)

Consequently, the output frequency response of system (2.18) can be represensted using the

NOFRFs as

Y (ejωT ) =
N∑
n=0

Gn(ejωT )Un(ejωT ). (2.27)
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2.3. Model based frequency analysis

The condition (2.25) implies that the NOFRF Gn(ejωT ) only exists when Un(ejωT ) 6= 0.

AsU0(ejωT ) is non-zero only at 0 frequency, we can useG0 to stand forG0(ejωT ). In addition,

based on the definition (2.24), G0 is identical to the system’s stable equilibrium h0.

Evaluation of the NOFRFs under Harmonic Inputs

In this research, harmonic signals with frequency ωc (ωc 6= 0) will be used as the system

inputs for NOFRFs evaluation. In this case, the possible nonnegative frequency components

in the system output are {pωc|p = 0, 1, . . . , N}, and according to [22], the output frequency

response of system (2.27) can now be described as

Y (jpωc) =

q∑
i=0

Gp+2i(jpωc)Up+2i(jpωc) (2.28)

where q = b(N − p)/2c. When a nonlinear system is subject to a harmonic input, the exis-

tence of the NOFRFs over different frequencies is shown in Table 2.1.

Table 2.1: The existence of NOFRFs over different frequencies when a nonlinear system is

subject to harmonic input with 1 representing existence and 0 nonexistence.

Ω

G
G0(ejΩT ) G1(ejΩT ) G2(ejΩT ) G3(ejΩT ) G4(ejΩT ) G5(ejΩT ) · · ·

0 1 0 1 0 1 0 · · ·

ωc 0 1 0 1 0 1 · · ·

2ωc 0 0 1 0 1 0 · · ·

3ωc 0 0 0 1 0 1 · · ·
... 0 0 0 0

...
...

...

The NOFRFGn(ejωT ) is insensitive to the change of the input by a constant factor α (α 6=

0) [10], that is,

Gn(ejωT )
∣∣
u(t)=u∗(t)

= Gn(ejωT )
∣∣
u(t)=αu∗(t)

. (2.29)

Thus, if the model is excited by the harmonic input u∗(t) scaled by N̄ different constants

α1, α2, · · · , αN̄ , respectively, to produce N̄ different system frequency responses Y i(ejωT ), i =
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1, . . . , N̄ , the following equation can be obtained.

Y(ejpωcT ) = AU(ejpωcT )G(ejpωcT ) (2.30)

where

Y(ejpωcT ) =
[
Y 1(ejpωcT ), Y 1(ejpωcT ), . . . , Y N̄(ejpωcT )

]T

AU(ejpωcT ) =


U1
p (ejpωcT ) U1

p+2(ejpωcT ) · · · U1
p+2q(e

jpωcT )

U2
p (ejpωcT ) U2

p+2(ejpωcT ) · · · U2
p+2q(e

jpωcT )
...

... . . . ...

UN
p (ejpωcT ) UN

p+2(ejpωcT ) · · · UN
p+2q(e

jpωcT )


G(ejpωcT ) =

[
Gp(e

jpωcT ), Gp+2(ejpωcT ), . . . , Gp+2q(e
jpωcT )

]T
(2.31)

and U i
n(ejpωcT ), i = 1, . . . , N̄ , n = 0, . . . , N is the spectrum of the input (αiu

∗(k))n at

the frequency pωcT . To avoid Equation (2.30) to be underdetermined, it is required that

N̄ ≥ N . Consequently, the NOFRFs of nonlinear systems subject to a harmonic input can be

determined by the least squares method, that is

G(ejpωcT ) =
[
AU(ejpωcT )

T
AU(ejpωcT )

]−1

AU(ejpωcT )TY(ejpωcT )

p = 0, 1, . . . N.

(2.32)

2.4 Applications

2.4.1 Frequency feature measurements

For the fault detection by the frequency analysis, the different types of the time domain data

can be measured. In mechanical systems, the vibration and acoustic emission (AE) are the

most frequently used measurements [17, 18]. The vibration is measured by accelerometers,

in which piezoelectric transducers are the most common [23]. The acoustic emission is mea-

sured by AE transducers, which are designed to detect the very high frequency stress wave

[24]. The high frequency wave can be caused by the generation and propagation of cracks.

This makes the acoustic emission be able to detect the growth of the cracks before they ap-

pear on the surface, while the vibration can only detect the cracks after they appear [17]. In
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addition, the noise from neighbouring components, e.g. the gearbox or shaft around a bear-

ing which is under study, are usually lower than 50 kHz [17]. These noises do not effect the

acoustic emission which can reach to 2 MHz [24].

Impedance spectroscopy (IS) is another powerful frequency data used for determining the

coatings on metals [25, 26], detecting corrosion cracking [27, 28, 29], analysing the biome-

chanical change of human tissues [5, 30], etc. The measurements, for generating impedance

spectroscopy, are current and potential for electrochemical or electronic systems [31]. The

general measurement approach is to apply an alternating voltage or current stimulus with

certain frequencies ω to the electrodes and observe the response, i.e. the resulting current or

voltage. Let V (ejωT ) denote the spectrum of the voltage and I(ejωT ) denote the spectrum of

the current, and the impedance spectroscopy is given by

Z(ejωT ) =
V (ejωT )

I(ejωT )
(2.33)

Compared to the FRF given in (2.14), the impedance spectroscopy Z(ejωT ) is the FRF of a

linear system whose input is current and output is voltage. The impedance spectroscopy of

the system is effected by the physical properties, such as diffusivity, rate constants, viscosity,

and moisture, which can be used for the system fault detection [32].

2.4.2 Rolling element bearing

The rolling element bearing is a critical components in the rotating machines. The early alarm

for the bearing defects helps the system maintenance, so that the more severe consequent

failure can be prevented. The typical defect mode of rolling element bearing is the scratched

crack, which is a result of surface fatigue caused by the repeated loading of the shaft [33].

Therefore, the main issue of rolling element bearing fault detection is to examine whether

there is surface defect on the bearing.

The high-frequency resonance technique (or envelope analysis) is the benchmark method

for the rolling element bearing fault detection [15]. It is known that bearings have some

characteristic defect frequencies which are sensitive to the bearing fault. However, the char-

acteristic defect frequencies are at the low frequency range, which is overlapped with the

frequency range of the noise signals generated by the gearbox or other machine elements. To
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solve this issue, the high-frequency resonance technique extracts the characteristic defect fre-

quencies by demodulating high frequency resonances, which are not influenced by the noise.

The high frequency resonances is excited by the impulse signal, which is generated whenever

a defect of the bearing makes contact with another surface under the load [34]. These high

frequency resonances are amplitude modulated at the characteristic defect frequencies.

The bearing fault can also be detected by the model based frequency analysis. The fre-

quency response of the defected bearing vibration can be modelled by the first principles.

Consider the inner-race-defect-induced impulse train as the input u(t) = d(t)w(t), where

w(t) is a weighting function indicating the contact energy, and d(t) is a unit impulse train

defined by

d(t) =
∞∑

k=−∞

δ(t− kTd) (2.34)

where Td is the reciprocal of the inner race element passing frequency. The bearing vibration

at the outer race or bearing housing as the output y(t), the white-box model is given by [33]

y(t) =
n∑

m=1

∫ t

−∞
d(τ)w(τ)am(τ)e−αm(t−τ) cos (ωm(t− τ)) dτ. (2.35)

For the mode m, the system characteristics αm and ωm are independent of the location of the

input and the output, while the characteristics of the input-output transmission path am are

effected by the locations of both the input and the output. The frequency response for the

mode m is given by [33]

Ym(jω) = [D(jω) ∗W (jω) ∗ Am(jω)]Hm(jω) (2.36)

where Ym(jω), D(jω), W (jω) and Am(jω) are the spectrum of y(t), d(t), w(t) and am(t),

respectively, and Hm is the spectrum of e−αmt cos (ωmt).

Acoustic emission are also applied in the fault detection of bearings as complementary

diagnostic tool for the vibration based methods [35]. Similar frequency analysis methods for

the vibration measurement can be used for acoustic emission which is at high frequency level.

It has been reported that acoustic emission offers earlier fault detection than the vibration

[17, 35].
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2.4.3 Gear

Gearboxes, which are widely used in heavy rotating machine such as wind turbines and heli-

copters, generally operate under tough environmental conditions. Gears as the key component

of the gearbox are subject to pitting and fatigue cracks [36]. The accurate gear fault detection

is critical to both the safety and the economic aspects.

Similar to the fault detection of bearing, the common techniques of gear fault detection

is based on the vibration signals. The typical spectrum of the defected gear vibration is

composed of the tooth meshing frequency and its harmonics, along with sidebands due to

modulation. The modulation is caused by the impulse signals generated by the gear fault.

The impulsive modulation leads to large numbers of sidebands spaced at the speed of the

defected gear [14]. Therefore, the increment of the number or amplitude of the sidebands can

be used for indicating the gear fault. The group of the sidebands with the equal spacing in the

spectrum is a sideband family. The sidebands in the same family are generated from the same

source [37]. However, the sideband families are mixed in the spectrum of the gear vibration,

which are difficult to be separated. To address this issue, the cepstrum is introduced to detect

and quantify the periodically spaced spectral components [14], which is illustrated in Section

2.2.3.

Time synchronous averaging (TSA) signal based frequency analysis techniques are also

used in the gear fault detection. TSA is a noise removal technique, which is suit to analyse

the the signal measured from the periodic rotating machine. The algorithm to compute TSA

of the signal is provided by [38], and discussed in [39, 40].

Based on TSA signal y(k), FM0 index is used for detect major tooth faults, such as break-

age, which results in an increase in peak-to-peak level but no significant change in the ampli-

tude at the meshing frequency. FM0 is defined as [41]

FM0 =
ypp

n∑
i=1

|Y (jωi)|
(2.37)

where ypp is the peak-to-peak amplitude of the TSA, Y (jωi) is the spectrum of y(k) at the ith

harmonic of the gear mesh frequency.
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2.4.4 Beam crack

The crack of beams can also be detected by analysing their vibration characteristics in fre-

quency domain. For small cracks, the natural frequency of the beam is a sensitive index to

indicate the crack [7]. It is found that the natural frequency of the cracked beam is lower than

the normal beam. The reduction in natural frequency of the cracked beam can be explained

through the linear white-box model introduced by [7]. First, the stiffness of the cracked beam

is given by

K =
1

C
=

1

c+ ∆c
(2.38)

where C is the flexibility of the cracked beam, c is the flexibility of the uncracked beam, and

∆c is the local flexibility caused by the crack. For small crack depth the local flexibility ∆c

is proportional to (a/h)2, where a is the crack depth and h is the height of the rectangular

cross-section of the beam. Thus, the local flexibility can be expressed by

∆c = λ
(a
h

)2

(2.39)

where λ is a constant. The natural frequency square of the beam with small crack can be

obtained by

(ωn + ∆ωn)2 =
K

m
=

1

cm

(
1 +

∆c

c

)
(2.40)

where m is the mass of the beam and ωn is the nature frequency of the normal beam. Due to

ωn = 1/cm, the change of the nature frequency of the cracked beam is given by

∆ωn ≈ −
λ

2ωnc

(a
h

)2

. (2.41)

This explains that, for a small crack depth, the reduction in natural frequency is proportional

to the square of the crack depth ratio a/h.

However, the numerical and experimental results show the nonlinear effects are more sen-

sitive to the crack than the feature of the linear model such as natural frequency and mode

shapes [42]. For nonlinear frequency analysis of the beam, NOFRFs have been reported to

be sensitive to the crack. In [22], frequency domain modelling was applied to obtain the

NOFRFs directly from the input-output data of the beams. On the experimental test rig, two

different harmonic inputs with the same waveform but different intensities were generated
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by a shaker to excite three beams; one is crack-free, one is with a slight crack defect, and

one is with a deep crack. The response vibration data were measured from an accelerome-

ter at 8 kHz sampling frequency. The results showed that the NOFRFs successfully indicate

the crack size. The larger NOFRFs values normally indicate larger crack sizes. In [43], the

NOFRFs analysis was implemented through nonlinear white-box modelling of the beam. A

finite element model for the relationship between the beam bending vibration and the external

force was built by the first principles. According to the requirement of NOFRFs computation

[10], two groups of harmonic inputs with same frequencies but different amplitudes were

used. In each group, the frequencies of the harmonic inputs are from 1 to 200 Hz in step of

5Hz. The numerical responses of the model were computed by the Runge-Kutta method. The

NOFRFs analysis shows that the high order NOFRFs are extremely sensitive to the crack on

the beam. In [44], the NOFRFs of computed through the nonlinear black-box modelling for

the structural damage detection. The method was introduced for the general structural dam-

age including the beam crack, while the example given by the paper is the plates with a hole

damage. The input-output data were obtained from the experimental set-up with three plates;

one is undamaged, one is with a small hole, and the other one is with a large hole. However,

only one pair of the input-output data was measured for each plate, which is not enough for

computing NOFRFs directly through frequency domain modelling like the method given in

[22]. This situation is common in practice. To solve this problem, the NARX models were

built through the input-output data first. Then, more input-output data pairs were generated

from the prediction of the NARX model. Finally, the NOFRFs were computed from the data

pairs. The results showed that the NARX modelling and NOFRFs analysis are effective to

detect the structural damages and distinguish the damage sizes.

2.4.5 Cancer

The same signal based and model based frequency analysis can be applied in the medical

diagnosis such as cancer detection, and preterm birth prediction. The early diagnosis of can-

cer at a curable stage is crucial for the successful treatment of the disease. Electrochemical

impedance spectroscopy (EIS), which is the frequency characteristics of the human tissue,

has been considered as a label-free, mediator-free strategy for extracting precancerous fea-
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tures in a fast, simple, and low cost fashion [45]. Some researchers have reported that the

EIS is sensitive to the cancer cells [46, 47, 48]. However, the traditional EIS measurement

devices can only record frequency domain data, which are measured when the output is in

the steady state. Sufficient exploitation of EIS data over both steady and transient states have

the potential to better reveal the electrical properties of tissues under investigation.

2.5 Summaries

This chapter reviews the frequency analysis techniques for fault detection. The damage sen-

sitive features can be extracted through signal or model based frequency analysis. For the

signal based frequency analysis, the features are extracted from the system output only. For

the model based frequency analysis, the features are extracted through analysing the relation-

ship between the input and output data. In the end, some application examples about machine

fault detection and medical diagnosis using frequency analysis are provided.
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Chapter 3

Techniques for Modelling, Feature

Selection, Classification, and Model

Validation

3.1 Introduction

This chapter is concerned with the introduction of the preliminaries for the following chapters

and is divided into 4 parts. First the NARX modelling techniques are reviewed, which are

used for the model based frequency feature extraction in Chapter 4 and 7. The filter feature

selection techniques are reviewed as the background of our proposed feature selection method

in Chapter 5. Finally, as the logistic regression model is used for the preterm birth prediction

in Chapter 7, the related model evaluation and validation techniques are reviewed.

3.2 NARX modelling

When the real system which is unknown and only the input-output data of the system is

known, the data can be used to build a NARX model through system identification methods,

e.g. Forward Regression with Orthogonal Least-Squares (FROLS), to represent the real sys-

tem. Here, the polynomial type NARX model is applied. Consider two general sequences

{u(k)}Ns−1
−Ns+1 and {y(k)}Ns−1

−Ns+1 are sampled from the input and the output signals of a system
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in the time domain, and the sampling period is T . The following methods can be applied to

determine a NARX model of the underlying system.

3.2.1 Orthogonal least-squares (OLS) for polynomial NARX model

The polynomial type of the NARX model given by

y(k) = θ0 +

q∑
i1=1

θi1si1(k) +

q∑
i1=1

q∑
i2=i1

θi1i2si1(k)si2(k) + · · ·

+

q∑
i1=1

· · ·
q∑

i`=i`−1

θi1i2···i`si1(k)si2(k) · · · si`(k) + e(k)

(3.1)

where ` is the degree of polynomial nonlinearity, θi1i2···i` are model parameters, and

sn(k) =

 y(k − n), 1 ≤ n ≤ ny

u(k − n+ ny + 1), ny + 1 ≤ n ≤ q = ny + nu + 1
(3.2)

where ny < Ns and nu < Ns are the maximum lags for the system output and input, and q is

the number of all possible terms for sn given k.

Consider (3.1) as a generic linear-in-the-parameters representation

y(k) =
M∑
i=1

θixi(k) + e(k) (3.3)

where {y(k)} with k = 0, 1, . . . , Ns − 1 is the system output sequence, xi(k) with i =

1, 2, . . . ,M is the regressor formed by the product of some sn(k). In this case, the number of

the data is Ns, and the number of the term of the polynomial NARX model is M .

Rewrite (3.3) into a matrix representation

y = XΘ + e (3.4)
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where

y = [y(0), y(1), . . . , y(Ns − 1)]>

Θ = [θ1, θ2, . . . , θM ]>

e = [e(0), e(1), . . . , e(Ns − 1)]>

X = [x1,x2, . . . ,xM ] =


x1(0) x2(0) · · · xM(0)

x1(1) x2(1) · · · xM(1)
...

... . . . ...

x1(Ns − 1) x2(Ns − 1) · · · xM(Ns − 1)



(3.5)

In this linear model, X is called the regressor matrix and y is called the target vector. If the

regressor matrix X is full rank in columns, the matrix can decomposed as

X = WA (3.6)

where A is an M × M unit upper triangular matrix and W is an Ns × M matrix with

orthogonal columns w1,w2, . . . ,wM . There are several ways to obtain A and W in (3.6),

such as Gram-Schmidt, modified Gram-Schmidt, and Householder transformation [49]. Then

(3.4) can be rewritten as

y = WAΘ + e = Wg + e (3.7)

where g = [g1, g2, . . . , gM ]>. Thanks to the orthogonal property of W, the inner product of

the target vector y can be written into

y>y = g>W>Wg + e>e

=
M∑
i=1

g2
iw
>
i wi + e>e

(3.8)

where gi is computed by orthogonal least-squares (OLS) [49]

gi =
y>wi

w>i wi

, for all i = 1, 2, . . . ,M. (3.9)

Divide both sides by y>y, Equation (3.8) can be written as

1 =

M∑
i=1

g2
iw
>
i wi

y>y
+

e>e

y>y

=
M∑
i=1

ERRi + ESR

(3.10)
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where ERRi refers to the error reduction ratio and ESR refers to the error-to-signal ratio.

It can be found that the sum of the error reduction ratio (SERR =
M∑
i=1

ERRi) is higher, the

fitting error reflected by ESR is lower. Therefore, the SERR provides a effective means of

determining the goodness of data fitting.

3.2.2 Forward Regression with OLS (FROLS)

When the q and ` are known, the number of the terms of the polynomail NARX (3.1) is

M =

 q + `

`

 =
(q + `)!

q!`!
. (3.11)

To use excessive terms in the model may lead to the overfitting issue [21]. Therefore, only

the most significant terms should be selected from X into the regressor matrix Xs through

feature selection methods. The feature selection method used in this paper is the forward

regression, which means the regressor matrix Xs is empty before the feature selection, and

the most significant terms are add into Xs [50]. On the contrary, the backward regression

has the regressor matrix Xs including all the terms of X in the beginning, and then the less

significant terms are removed from Xs [50].

In the forward regression, a criteria is usually required to compare the different candidate

terms. The criteria value is computed for each candidate term to determine which term is the

most significant. When the criteria is SERR which is computed by OLS, the feature selection

algorithm is called FROLS. SERR can be used as the criteria based on the assumption that

the better fitting performance implies the better regressor matrix Xs. FROLS algorithm is

given in Algorithm 1. The set Ws stores the orthogonal terms wi which are selected by

FROLS. The orthogonal terms wi can be obtained by different methods, e.g. Gram-Schmidt

orthogonalisation which is given by

ui = xi −
ms∑
r=1

w>r xi
w>r wr

wr, for all i = 1, 2, . . . ,mc

wi =
ui
‖ui‖

(3.12)

where ‖·‖ is the Euclidean length, mc is the number of candidates in the term library X, and

ms is the number of the terms in Ws. The orthogonal term wi is normalised into unit length.
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When Ws is empty, wi simply normalises xi to unit length, i.e. wi = xi

‖xi‖ . After the or-

thogonalised term wi is obtained, the corresponding ERRi computed. The FROLS algorithm

tries to find a term which maximises the SERR, but in practice, we try to find maximum

ERR rather than SERR. As the orthogonalisation makes each term contribute to SERR inde-

pendently, the new selected term does not change the SERR of the previous selected terms.

Thus, the maximum of SERR is reached when the new selected term has the maximum of

ERR. The stop criteria here is the number of the selected terms reach to Ms, which leads

the polynomial NARX models always contain Ms terms. Another often used stop criteria is

“ESR = 1−SERR ≤ ρ”, where ρ is a small number (say ρ = 10−2). Under this stop criteria,

the number of the terms of the polynomial NARX models is flexible.
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Algorithm 1 Forward regression with OLS algorithm
1: function FROLS(X,y) . Select the most significance terms from X

2: Xs ← empty array . Store selected terms

3: Ws ← ∅ . Orthogonalise terms in Xs, and store in Ws

4: SERR← 0

5: mc ←M

6: while do not meet stop criteria do

7: for xi ← each column of X do

8: wi ← make xi to be orthogonal to the each feature in Ws

9: gi ←
y>wi

w>i wi

10: ERRi ←
g2
iw
>
i wi

y>y
11: end for

12: ERRmax ← maximum among {ERR1,ERR2, . . . ,ERRmc}

13: SERR← SERR + ERRmax . Maximise ERR is equivalent to maximise SERR

14: Xs ← add xmax into Xs

15: Ws ← add wmax into Ws

16: X← remove xmax from X

17: mc ← mc − 1

18: end while

19: return Xs . The selected terms are in Xs

20: end function
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3.2.3 Term refinement

When the criteria of feature selection is SERR, the optimal subset of terms should have the

maximum SERR in the all possible subsets, whose total number is Ms-combination of M

elements. It is normally computational expensive to exhaustively compares SERR of all

possible subsets. However, the algorithm like FROLS, which is called non-exhaustive search

or greedy search, cannot guarantee to find the optimal subset (the detailed discussion is given

in Section 3.3.1). Therefore, based on the terms selected by FROLS, term refinement can be

applied to replace certain terms for increasing the SERR.

Iterative orthogonal forward regression

Guo et al. [51] find FROLS selecting suboptimal terms (or wrong term) often happens at the

first term selection. The reason is when FROLS selects the first term, the candidate terms

can not be orthogonalised to any selected terms. Therefore, a wrong term which carries the

information from linear combination of more than one correct terms is likely be selected

as the first term. The iterative orthogonal forward regression (iOFR) is developed to find a

better first term than FROLS, which can eventually give larger SERR. First, FROLS selects

Ms terms to construct a candidate library for the first term. Using FROLS to construct the

candidate library is due to the expectation that FROLS selects a majority of correct terms and

a few incorrect terms. Then, each term of the candidate library is adopted as the first term.

Finally, for each first term, the rest of Ms − 1 terms are searched by FROLS. Thus, iOFR

gives Ms subsets, one of which is the previous selection result of FROLS. The subset which

has maximum SERR is selected, so iOFR can guarantee the SERR of the selected subset is

no less than the SERR of the subset selected by FROLS.

Two-stage orthogonal least-squares

Zhang et al. in [52] introduce a two-stage OLS (TSOLS) method to refine the terms selected

by FROLS. In the first stage, the terms are selected by the ordinary FROLS method. In the

second stage (called the refinement stage), each selected term is reviewed to check whether a

better term exists to replace that term.
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The TSOLS method is illustrated in Algorithm 2. After the first stage, the term library

X is divided into the selected term library Xs and the rest term library Xr. In each time, the

first selected term of Xs is removed from Xs, and put into Xr. Then, a new term is selected

from the rest term library Xr by the FROLS method in the line 9. The new term is added

behind the last place in Xs. The term in Xs move in cycle to find whether the term in the first

position of Xs can be replaced. The removed term is possible to be selected again, which

is equivalent to switch the positions of the first and the last terms in Xs. The variable muc

counts when the term does not change. If term-unchanged happens consecutively Ms times,

no term can be changed. Then the refinement process stops.

Algorithm 2 TSOLS
1: function TSOLS(X,y,Ms) . Select the most significance Ms terms from X

2: Xs ← FROLS(X,y,Ms) . Select Ms terms by the FROLS method

3: Xr ← The rest terms of X except for Xs

4: muc ← 0 . Number of the unchanged terms

5: while muc = Ms do . The process stops when no term can be changed

6: Xs = [xs1, . . . ,xsMs
] . Define the column index

7: Xr ← [Xr,xs1] . The first term in Xs returns to the rest term library Xr

8: Xs ← [xs2,xs3, . . . ,xsMs
]

9: xs
′
Ms
← FROLS(Xr,y, 1) . Select a new term from Xr

10: Xr ← Remove xs
′
Ms

from Xr

11: Xs ←
[
Xs,xs

′
Ms

]
. Add the new term at the end Xs

12: if xs
′
Ms

= Xs1 then

13: muc ← muc + 1 . The term Xs1 is unchanged

14: else

15: muc ← 0 . The term Xs1 change to the new term

16: end if

17: end while

18: return Xs . The selected terms are in Xs

19: end function
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3.2.4 Sampling frequency issues in system modelling

In practice, the sampling frequency has a significant effect on the system modelling. A rough

rule of thumb is choose the sampling frequency so that the data are sampled 10 times during

the settling time of a step response [53, 12]. The variance of the model parameters will

increase rapidly with the increase of the sampling frequency, when the parameter estimation

is sensitive to the noise. The high sampling frequency will also lead to the nearly linearly

dependent columns in the regressor matrix X, and introduce high frequent noise in the data.

On the other hand, the slow sampling makes the essential dynamics of the system can not be

captured.

Aliasing will occur when the half of sampling frequency is lower than the highest fre-

quency component of the signal according to the Nyquist–Shannon sampling theorem. To

solve this issue, after the sampling frequency has been determined, the data should be con-

sidered for prefiltering by a low pass filter. The bandwidth of the filter should be smaller than

the half of the sampling frequency. To avoid the signal distortion, the filter should have a

constant gain and zero phase for its passband. In addition, as the high frequency noise in the

data can be filtered out by the low pass filter, the signal-to-noise ratio is increased.

3.3 Filter feature selection

Feature selection techniques are widely used in machine learning to select a subset of features

which are useful to classification models. Given a feature library X = {xi|1 ≤ i ≤ M}, the

objective of the feature selection is to select a subsetXs = {xi|1 ≤ i ≤Ms}whereMs ≤M .

For Ns samples, the corresponding feature matrix is X := (xi,j)Ns×M , and the target vector

is y = [y1, . . . , yNs ]
>. The filter feature selection is to rank each feature with a criteria, such

as correlation coefficient and mutual information, and then to select the features according to

the rank. The core problem of the filter feature selection is to maximise the relevance between

the selected features and the target, while to minimise the redundancy between the selected

features. The following subsections provide two ideas to solve the problem.
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3.3.1 Maximal relevance and minimal redundancy (mRMR)

The dependency between the features and the target is referred as relevance, while the de-

pendency between the features themselves is redundancy. Peng et al. [54] propose a straight

forward algorithm to maximise relevance while minimising redundancy. Both relevance and

redundancy are evaluated by mutual information. The mutual information between feature

xk and the target y is given by

I(xk; y) =
Ns∑
i=1

Ns∑
j=1

Pxky(xi,k, yj) log
Pxky(xi,k, yj)

Pxk
(xi,k)Py(yj)

(3.13)

where Pxky is joint probability distribution, and Pxk
, Py are marginal distributions. The

relevance is summation of mutual information between individual feature and target, which

is given by

D(Xs,y) =
1

Ms

∑
xi∈Xs

I(xi; y). (3.14)

The redundancy is summation of mutual information between two features, i.e.

R(Xs) =
1

M2
s

∑
xi,xj∈Xs

I(xi; xj). (3.15)

The maximal relevance and minimal redundancy (mRMR) can be realised by maximising

Φ(D,R) = D −R. (3.16)

To find the optimal subset maximising Φ, there are
(
M
Ms

)
possible subsets to be compared,

which is called exhaustive search. A realistic approach is to select only one feature in one

step. In each step, the previously selected features will not be changed. When ms features

have been selected into Xs, the next feature xi will be selected if it maximises the criterion

function

I(xi; y)− 1

ms

∑
xj∈Xs

I(xi; xj). (3.17)

Therefore, the selected feature xi maximises the relevance with the target, while minimising

the redundancy to the previously selected features in Xs. As each step selects the feature

maximising the criterion function without reconsidering previously selected features, the ap-

proach is called greedy search. However, greedy search can not guarantee to find the optimal

subset. Actually, no non-exhaustive search can guarantee to find the optimal subset [55].
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3.3.2 Orthogonal point-biserial correlation coefficient

Another approach to control redundancy is based on feature orthogonalisation. Before the

feature selection, the features in X are orthogonalised to each other. Then, the feature selec-

tion is applied on the orthogonalised features.

According to this idea, Solares et al. [56] introduce a feature selection method for bi-

nary classification which is called orthogonal point-biserial correlation coefficient (OBCC)

method. The relevance between the feature xi and the target y is evaluated by Pearson corre-

lation, which is given by

r(xi,y) =

∑Ns

k=1 (xk,i − x̄i)(yk − ȳ)√∑Ns

k=1 (xk,i − x̄i)2∑Ns

k=1 (yk − ȳ)2
(3.18)

where x̄i and ȳ are sample means. When the target y is dichotomy (say group A and group B),

the estimate of Pearson correlation coefficient (3.18) is simplified to point-biserial correlation

coefficient (BCC) [57] given by

rb(xi,y) =
x̄Ai − x̄Bi√∑Ns

k=1 (xk,i − x̄i)2

√
NA
s N

B
s

Ns

(3.19)

where x̄Ai and x̄Bi are the mean values on the vector xi in the two groups, while NA
s and NB

s

are the number of the samples in the two groups.

Similar to mRMR, the OBCC method also adopts greedy search, where only one feature

is selected from X at one time. In each time, a candidate feature xi is orthogonalised with

the previously selected features in Xs to obtained the orthogonalised feature wi. Then, the

BCC rb(wi,y), which is defined as OBCC between feature xi and the target y, is computed.

The feature which has the highest OBCC with the dichotomous target y will be selected.

The pseudo-code of the OBCC method is described in Algorithm 3. The set Ws stores

the orthogonal features wi which are selected by orthogonal BCC. The orthogonal features

wi can be obtained by different methods, e.g. when the elements of Ws and xi are linearly

independent, Gram-Schmidt orthogonalisation which is given by

ui = xi −
ms∑
j=1

w>j xi

w>j wj

wj, for all i = 1, 2, . . . ,mc

wi =
ui
‖ui‖

(3.20)
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where mc is the number of candidates in the feature library X , and ms is the number of the

features inWs. The orthogonal term wi normalises into unit length. WhenWs is empty, wi is

simply normalising xi to unit length, i.e. wi = xi

‖xi‖ . The OBCC between xi and y computed

in the line 8. The main process in the lines 5-15 is repeated until the number of the selected

features reaches Ms.

Algorithm 3 Orthogonal BCC
1: function OBCC(X,y,Ms) . Select the most significance Ms features from X

2: Xs ← ∅ . Store selected features

3: Ws ← ∅ . Store orthogonalised features

4: mc ←M . Number of the candidate features

5: for ms = 1 to Ms do . Ms is the maximum number of features can be selected

6: for xi ← each element of X do

7: wi ← make xi to be orthogonal to all elements in Ws

8: rb(wi,y)← Equation (3.19)

9: end for

10: rb(wmax,y)← maximum among
{
rb(w1,y), rb(w2,y), . . . , rb(wmc ,y)

}
11: Xs ← add xmax into Xs

12: Ws ← add wmax into Ws

13: X ← remove xmax from X

14: mc ← mc − 1

15: end for

16: return Xs . The selected features are in Xs

17: end function

3.4 Performance evaluation for logistic regression

The logistic regression model is adopted as the classifier in this thesis. After Ms features are

selected, the features are used as the regressor in a logistic regression model. The regressor
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3.4. Performance evaluation for logistic regression

is given by

Xs =


x1,1 x1,2 · · · x1,Ms

x2,1 x2,2 · · · x2,Ms

...
... . . . ...

xNs,1 xNs,2 · · · xNs,Ms

 (3.21)

where Ns is the number of the instances. The probability is predicted by the logistic regres-

sion model

π =
1

1 + e−(β0+Xsβ)
. (3.22)

where π = [π1, π2, . . . , πNs ]
> and the parameter vector is β = [β1, β2, . . . , βMs ]

>. The target

is given by y = [y1, y2, . . . , yNs ]
>. The target is a binary vector, which only takes values of 0

and 1. Assume the target follows the binomial distribution. Thus, the likelihood with respect

to the parameters β0 and β is given by

l(β0,β) =
Ns∏
i=1

πyii (1− πi)1−yi =
Ns∏
i=1

eyi(β0+Xsβ)

1 + eβ0+Xsβ
. (3.23)

The corresponding log-likelihood is defined as

L(β0,β) = ln [l(β0,β)]

=
Ns∑
i=1

[yi ln (πi) + (1− yi) ln (1− πi)]

=
Ns∑
i=1

yi

(
β0 +

Ms∑
j=1

xi,jβj

)
− ln

(
1 + eβ0+Xsβ

)
.

(3.24)

The optimal parameters of β0 and β are obtained by the maximum-likelihood estimate (MLE).

The MLE of β0 and β are β̂0 and β̂ that maximise L(β0,β). As no closed-form solution ex-

ists, β̂0 and β̂ are obtained by iterative algorithms such as Newton-Raphson method and

Fisher scoring method [58].

This section briefly introduces three commonly used statistic indexes to evaluate the per-

formance of logistic regression models.

3.4.1 Receiver operating characteristic

The predicted probability from the logistic regression model is given by

π̂ =
1

1 + e−(β̂0+Xβ̂)
(3.25)
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where π̂ = [π̂1, π̂2, . . . , π̂Ns ]
>. The predicted probability range from 0 to 1. A threshold

value π∗ in the range for determining whether a instance belongs to class 1 or class 0. The

threshold value π∗ gives four probabilities:

• P (π̂i > π∗|yi = 1): true positive rate (TPR) or sensitivity. The predicted probability

higher than the threshold, and the target agrees with the prediction.

• P (π̂i > π∗|yi = 0): false positive rate (FPR). The predicted probability higher than the

threshold, but the target disagrees with the prediction.

• P (π̂i < π∗|yi = 1): false negative rate (FNR). The predicted probability lower than the

threshold, but the target disagrees with the prediction.

• P (π̂i < π∗|yi = 0): true negative rate (TNR) or specificity. The predicted probability

lower than the threshold, but the target agrees with the prediction.

The point (FPR, TPR) with the threshold π∗ can be plotted. When the π∗ changes from 0 to 1,

the point (FPR, TPR) will move along a curve which is called receiver operating characteristic

(ROC) curve (Figure 3.1). The aggregated classification performance can be measured by the

area under the curve (AUC) [59].
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Figure 3.1: An example of ROC curve whose AUC = 0.7771.
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3.4.2 Likelihood-ratio test

Different from ROC curve which used for evaluating classification performance, likelihood-

ratio test is used for determining the significance of the features in the classification model.

The fitted model (or unrestricted model) (3.22) is compared with the null model (or restricted

model). The null model should be nested within the fitted model, which means the fitted

model can be transformed into the null model by imposing constraints on its parameters. The

null model normally used is given by

π0 =
1

1 + e−β0
, (3.26)

which is the unrestricted model with the constrain β = 0. The significance test isH0 : β = 0,

the hypothesis is the independence between Xs and y. The null hypothesis is true means

the given model is not better than the null model which only has the intercept term. The

likelihood-ratio test statistic is given by [60]

G2 = −2
L(β0,0)

L(β0,β)
. (3.27)

The statistic G2 has an asymptotic χ2 distribution with Ms degree of freedom. For a signifi-

cance level α (e.g. 0.05), the null hypothesis is rejected when p-value is less than α.

3.4.3 Wald test

The Wald test is another common method to determine whether the regressor Xs is significant

in the logistic regression model. An advantage of the Wald test over the likelihood-ratio test

is that the Wald test does not require a null model. For the null hypothesis H0 : β = 0, the

Wald test statistic is given by

W 2 = β̂
>

Σ−1

β̂
β̂ (3.28)

where Σβ̂ is the covariance matrix of the parameter β̂. The matrix Σβ̂ is the inverse of the

information matrix I(β̂) which has elements [61]

− E

(
∂2L(β̂)

∂β̂i∂β̂j

)
=

Ns∑
k=1

xk,ixk,jπ̂k(1− π̂k). (3.29)
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Thus, for the log-likelihood of the logistic regression, the information matrix is computed by

I(β̂) =



∑Ns

k=1 x
2
k,1π̂k(1− π̂k) . . .

∑Ns

k=1 xk,1xk,Ms π̂k(1− π̂k)∑Ns

k=1 xk,2xk,1π̂k(1− π̂k) . . .
∑Ns

k=1 xk,2xk,Ms π̂k(1− π̂k)
... . . . ...∑Ns

k=1 xk,Msxk,1π̂k(1− π̂k) . . .
∑Ns

k=1 x
2
k,Ms

π̂k(1− π̂k)

 . (3.30)

The Wald statisticW 2 is asymptotically distributed as χ2 withMs degree of freedom. Similar

to the likelihood-ratio test, the null hypothesis is rejected when p-value less than the signifi-

cance level α. The rejection of null hypothesis means the selected features Xs are statistically

significant for the logistic regression model.

3.5 Cross-validation

The sampled data can be divided into two disjoint subsets, one is for the model training

and another for the testing. The cross-validation is a statistical method to assess the model

generalisation ability, which is the prediction performance of the model in the testing datasets.

The model with high generalisation ability is insusceptible to the over-fitting, and has low

variance in the bias-variance trade-off [62]. Therefore, the model is often evaluated and

compared in cross-validation, where the prediction performance under the testing data rather

than the training data is checked. The prediction performance under the testing dataset can

be evaluated by the statistics, such as AUC and mean square error (MSE), which is called

cross-validation criterion [63].

The cross-validation is best known in the model selection. The machine learning model

normally is defined by a set of parameters which are derived in training and a set of hyper-

parameters which are set before training [64]. In the logistic regression example, β0 and β

are parameters and Ms is the hyper-parameter. A set of models can be get by setting hyper-

parameter as different values. The models can be evaluated by the cross-validation criterion,

and the model selection is to choose a model which has the best criterion value.

Based on the different ways to divide the data into training and test datasets, several

cross-validation methods are distinguished. Four cross-validation techniques are reviewed

and compared.
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3.5.1 k-fold cross-validation

The whole dataset is divided into k roughly identical size subsets. The k-fold cross-validation

picks one subset as the testing data, and the rest k−1 subsets as the training data. The process

is repeated k times, and each subset will be as the testing data once. The trained model can

be assessed in the testing data by the statistic like MSE, so there are k statistic values are

obtained. The cross-validation criterion is the averaged statistic values.

Leave one out cross-validation (LOOCV) is a special case when k = Ns, so the subset

only contain 1 sample data. Since only one sample is held-out at a time, the cross-validation

criterion is calculated from the averaged k individual held-out predictions. For the k-fold

cross-validation, there are actually CNs
k possible ways to split the data into k subsets, but

only one of them is used. In LOOCV, as CNs
Ns

= 1, all possible splitting ways have been used.

Therefore, LOOCV is one of the exhaustive cross-validation methods [65].

3.5.2 Monte Carlo cross-validation

Monte Carlo cross-validation repeatedly splits the original dataset into two subsets, i.e. train-

ing dataset and testing dataset. The rule of thumb for the percentage of the training subset in

the original data is about 75%− 80% [66]. For Nt data used in the training subset, there are

CNs
Nt

possible repetitions to splits the data for Monte Carlo cross-validation. If Nr repetitions

are used for the validation, the cross-validation criterion is computed by the average of Nr

test data prediction performance. To choose a proper number of the repetitions for the model

validation, the general rule can be followed [66]:

• The more proportion of data is in the training subset, the less bias is introduced in the

validation.

• The more repetitions are used, the less uncertainty is introduced in the validation.

• The more proportion of data is in the training subset, the more repetitions are required

to reduce the uncertainty.

Here, the bias in the cross-validation is the difference between the average of the testing

prediction performance (i.e. cross-validation criterion) and the true value. The uncertainty is
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3.5. Cross-validation

the variance of the testing prediction performance.

The difference between Monte Carlo cross-validation and k-fold cross-validation is the

testing datasets for the k-fold cross-validation are disjoint. For the small sample size, Monte

Carlo cross-validation has the advantage to have larger size but overlapped testing datasets.

3.5.3 Stratified-holdout

It is likely that the splitting of the training and testing datasets is not representative, which

means the proportions of each class in training and testing datasets are largely different. For

the two classes example, an extreme splitting is that all the data of class 0 assign to the training

dataset, and all the data of class 1 assign to the testing dataset. To solve this problem, the

proportions of each class are preset for the training and the testing subsets. This procedure is

called stratified-holdout [67, p. 149]. The stratification is especially important when the data

are imbalanced [68].

3.5.4 Bootstrap

Bootstrap (or bagging) constructs the training dataset by sampling the original data with

replacement. This means after a sample is selected into the training dataset, that sample is still

available in the next selection. Thus, a training dataset may contain the duplicated data points.

The unselected data are assign into the testing dataset, where the data is unduplicated. Similar

to Monte Carlo cross-validation, the process repeated several times. In each repetition, the

size of the testing dataset is varied.

A variant is called 0.632 bootstrap [69], when the size of the training dataset is same as

the original dataset. In other word, the original dataset is sampledNs times with replacement.

The name is due to the fact that the opportunity of the data point is picked in the training data

is a figure of

1−
(

1− 1

Ns

)Ns

= 1− e−1 ≈ 0.632. (3.31)

Therefore, in 0.632 bootstrap, there are about 63.2% of the original data in the training dataset

and 36.8% in the testing dataset.
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3.6 Summaries

This chapter is mainly about modelling, feature selection, classification, and model validation

techniques. For modelling, the FROLS algorithm is introduced for the NARX modelling.

Some topics related to FROLS are also covered in this chapter, such as term refinement, and

sampling frequency issues. For feature selection, the two ideas to develop the filter feature

selection are reviewed. For classification, the logistic regression and its evaluation methods

are introduced. For model validation, the techniques, especially those used for the small size

and imbalanced data, are reviewed.

In Chapter 2, compared to FRF, NOFRFs are more difficult to be applied in the indus-

trial areas. The reason is the computation of NOFRFs in (2.32) requires the system under

investigation is stimulated by a group of the harmonic inputs which have the same frequency

but different amplitudes. The condition for the system inputs is too strict to realisation in

many industries, especially when the stimulation of the machines is from the natural environ-

ment, e.g. wind and sea wave. In addition, directly extracting the NOFRFs feature through

the definition in Section 2.3.2 only utilises the steady-state of the system output, while the

transient-state is wasted. To solve the two issues, this thesis will develop a novel method,

which can utilise both the steady-state and transient-state data, to extract the NOFRFs under

arbitrary inputs.

Inspired by the mRMR and the OBCC methods in Section 3.3, a novel filter feature

selection method is developed. The proposed method gives better statistical meaning than

OBCC, and achieves the better results than mRMR in linear classification using continuous

features.
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Chapter 4

Modelling and Model Feature Extraction

for Nonlinear Systems with Multiple

Stable Equilibria

4.1 Introduction

In the fault detection and condition monitoring, the critical parameters of a machine or its

components are normally required to be monitored by sensors. However, it is not always

feasible to measure the system parameters directly. To solve this issue, a model can be built

from the system input-output data to represent the real system. Then, the features can be

extracted from the data driven model to reveal the properties of the original machine sys-

tem indirectly. The method is referred to as the modelling and model feature extraction

method. The model structure used can be the NARX model and the modelling technique can

be the FROLS, which has been introduced in Chapter 3. The model features can be extracted

through frequency analysis as described in Chapter 2.

For a nonlinear system which has multiple stable equilibria, the model features around

one equilibrium is different from another equilibrium. The aim of this study is to demonstrate

the capability of the modelling and model feature extraction method to reflect the features of

nonlinear systems around different stable equilibria. The demonstration starts with a simple

linear system, which has a stable equilibrium A. An ARX model is built to represent the sys-
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tem. Then, an example of the nonlinear system with two stable equilibria A and B are given.

The NARX models are built in three scenarios to monitor the nonlinear system. First, the

data for model training are collected when the system working around equilibrium A. Sec-

ond, the data for model training are collected when the system working around equilibrium

B. Third, the data for model training are collected when the system status switching between

equilibrium A and B. The performance of the models is checked by examining whether the

frequency features obtained from the models match the frequency features of the real system.

Tests are also set for both the linear and nonlinear examples to examine, when a parameter

of the real system changes gradually, whether the proposed method can track this change.

It is found that in both examples the modelling and model feature extraction method effec-

tively reflects the real system features and tracks the parameter change. The results imply the

great application potential of the proposed method in multiple stable equilibria system fault

detection and condition monitoring.

4.2 Methodology

4.2.1 Stability analysis of nonlinear systems with multiple equilibria

Suppose a general n-dimensional system is

ẏ1 =f1(y1, . . . , yn)

...

ẏn =fn(y1, . . . , yn).

(4.1)

An equilibrium is give by (y∗1, . . . , y
∗
n), so

0 =f1(y∗1, . . . , y
∗
n)

...

0 =fn(y∗1, . . . , y
∗
n).

(4.2)
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4.2. Methodology

If we denote

v1 =y1 − y∗1
...

vn =yn − y∗n,

(4.3)

the original system can be linearised as

v̇ ≈ J(y∗1 ,...,y
∗
n)v, (4.4)

where v = (v1, . . . , vn)> and J(y∗1 ,...,y
∗
n) is the Jacobian matrix given by

Ji,j =
∂fi
∂yj

(y∗1, . . . , y
∗
n). (4.5)

When all eigenvalues of J(y∗1 ,...,y
∗
n) have strictly negative real parts, the system is asymptoti-

cally stable at the equilibrium (y∗1, . . . , y
∗
n) [70].

The example of a two-dimensional nonautonomous nonlinear system is given by

ÿ + dẏ + cy + by2 + ay3 = u, (4.6)

where y is the system output and u is the system input. When b = 0, the nonlinear system

becomes Duffing’s equation, which has two equilibria symmetrical about zero [71]. To make

the location of equilibria be more general, the nonlinear system (4.6) is adopted to demon-

strate how to describe the dynamics around the equilibria.

Let y1 = y, y2 = ẏ and equation (4.6) can be described as

ẏ1 = f1(y1, y2) = y2

ẏ2 = f2(y1, y2) = −ay3
1 − by2

1 − cy1 − dy2,
(4.7)

when u = 0. The equilibria can be obtained when ẏ1 = 0 and ẏ2 = 0. If b2 − 4ac ≥ 0 the

equilibria are (0, 0) and
(
−b±
√
b2−4ac

2a
, 0
)

.

The stability of the equilibria can be analysed by linearisation. Suppose that (y∗1, y
∗
2) is an

equilibrium. Let

v1 = y1 − y∗1
v2 = y2 − y∗2.

(4.8)
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4.2. Methodology

When v1 and v2 are small, the system can be linearised into v̇1

v̇2

 ≈
 ∂f1

∂y1

∂f1
∂y2

∂f2
∂y1

∂f2
∂y2

 v1

v2

 . (4.9)

The matrix

J(y∗1 ,y∗2)
=

 ∂f1
∂y1

∂f1
∂y2

∂f2
∂y1

∂f2
∂y2


(y∗1 ,y∗2)

=

 0 1

−3ay∗21 − 2by∗1 − c −d

 (4.10)

is Jacobian matrix at equilibrium (y∗1, y
∗
2). When the equilibrium is (0, 0), the Jacobian is

J(0,0) =

 0 1

−c −d

 . (4.11)

When the equilibrium is
((
−b±

√
b2 − 4ac

)/
2a, 0

)
denoted as (y′1, 0), the Jacobian is

J(y′1,0)
=

 0 1

by′1 + 2c −d

 . (4.12)

The determinant ∆, the trace τ and the discriminant D = τ 2 − 4∆ of the Jacobian matrix is

shown in the Table 4.1, where y+
1 = −b+

√
b2−4ac

2a
and y−1 = −b−

√
b2−4ac

2a
. The type and stability

of the equilibrium can be determined according to Figure 4.1 [72]. When ∆ = 0, τ = 0 or

D = 0, the determination of the type and stability of the equilibrium through the linearisation

may be incorrect [72, p. 152]. It can be found that the equilibrium (y+
1 , 0) is always saddle

point when y+
1 < 0, and the equilibrium (y−1 , 0) is always saddle point when y−1 > 0.

Table 4.1: Characteristics of the Jacobian matrix for the equilibrium of the nonlinear system.

(0, 0) (y+
1 , 0) (y−1 , 0)

∆ c y+
1

√
b2 − 4ac −y−1

√
b2 − 4ac

τ −d −d −d

D d2 − 4c d2 + 4by+
1 + 8c d2 + 4by−1 + 8c
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4.3. Case study 1: a linear system

∆ < 0

saddle point

∆ > 0

τ < 0

D < 0

stable spiral

D > 0

stable node

τ > 0

D < 0

unstable spiral

D > 0

unstable node

Figure 4.1: Classification of the equilibrium of the nonlinear system.

4.2.2 NARX model and NOFRFs model features

If the real system is unknown and only the input sequence {u(k)}Ns−1
−Ns+1 output sequence

{y(k)}Ns−1
−Ns+1 are known, which are sampled at the sampling period T , the data can be used

to build a NARX model (3.1) to represent the real system. The NARX model can be built by

FROLS Algorithm 1. After the polynomial NARX models are obtained, the model features

can be extracted for the system analysis. However, since the terms selected by FROLS may

be different in the different polynomial models, the NARX model representation may not

be unique. To solve this issue, the NOFRFs of the identified NARX model will be used to

represent the model features and perform system analysis. In the following, two case studies

will be used to demonstrated the ideas.

4.3 Case study 1: a linear system

Consider a special case when b and a of system (4.6) are 0. Thus, the system becomes linear,

and an example is given by

ÿ + ẏ + y = u. (4.13)

Equation (4.13) can be written into the second order systemẏ1

ẏ2

 =

 0 1

−1 −1

y1

y2

 (4.14)
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4.3. Case study 1: a linear system

where y1 = y and y2 = ẏ. Obviously, this system only has one equilibrium A(0, 0). The

eigenvalues of the linear system are −0.5 ± 0.8660i. As the real parts are less than 0, the

system is stable. The phase portrait of the system is shown in Figure 4.2, where all trajectories

are attracted into the equilibrium A.
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Figure 4.2: The phase portrait of the linear system (4.13).

The training data for modelling are collected under the harmonic input u(k) = 0.1 cos (ωckT )

where ωc = 0.2π and T = 0.01s. The corresponding output y(k) is shown in Figure 4.3. The

input-output data set A are used to train model MA.

Table 4.3: Terms of ARX models through FROLS

Model term Parameter ERR

y(k − 1) 1.9900 9.9995× 10−1

y(k − 2) −9.9005× 10−1 5.4615× 10−5

u(k − 1) 9.9500× 10−5 1.5819× 10−9

The term library for modelling is constructed by linear terms with maximum 3 time delays

for both input and output. Through FROLS, the 3 model terms can be found and shown in

Table 4.3. Thus, an autoregressive with exogenous input (ARX) model [53] is obtained,
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4.3. Case study 1: a linear system
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Figure 4.3: The harmonic responses in A for model training.

which is written as

ŷ(k) = 1.99ŷ(k − 1)− 0.99ŷ(k − 2) + 9.95× 10−5u(k − 1) (4.15)

where ŷ is the model simulated output. Therefore, the simulated output at arbitrary time

k = 1, . . . , Ns can be computed when u(k − 1) and the initial conditions y(−1), y(0) are

known. In Figure 4.4, it can be seen that the simulated output matches the measured output.

The free oscillation trajectories can be observed in Figure 4.5. All trajectories are attracted

to 0, which correctly reflect the location of the equilibrium of the real system. The frequency

features of the real system and the ARX model are compared using FRF, which is shown in

Figure 4.4. As FRF can be regarded as NOFRFs when the nonlinearity order is 1 (N = 1),

the FRF under the frequency ωc = 0.2π is computed by the approach for NOFRFs evaluation

in Section 2.3.2. G0 is also provided to compare with G0 of the original system. Through

the definition in Section 2.3.2, G0 represent the equilibrium of the system. In Table 4.4, it is

found that the model MA correctly reflects the frequency features of the real system.

To show the frequency analysis can present the change in the system characteristics, the

stiffness of the system is changed from 1 to 2. The data from the system are measured to

update the the structure and parameters of the model MA by the FROLS. It can be observed
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4.3. Case study 1: a linear system

from 4.6 that MA can well track the change of the FRF of the original system. As the stiffness

does not change the location of the equilibrium, G0 is always 0.

Table 4.4: The NOFRFs around the equilibrium A(0, 0)

(a) The NOFRFs of the real system (4.13)

Ω

|G|
|G0(ejΩT )| |G1(ejΩT )|

0 1.8556× 10−18

ωc 1.1463

(b) The NOFRFs of MA

Ω

|G|
|G0(ejΩT )| |G1(ejΩT )|

0 9.2738× 10−17

ωc 1.1463
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Figure 4.4: The harmonic responses of MA.
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4.3. Case study 1: a linear system
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Figure 4.5: The free oscillation trajectories of MA.
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Figure 4.6: FRF of the real and identified system MA.
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4.4. Case study 2: a dual stable equilibria system

4.4 Case study 2: a dual stable equilibria system

Consider the nonautonomous nonlinear system under the harmonic input which is given by

ÿ + ẏ − y + y2 + y3 = u (4.16)

where u(t) = 0.1 cos(ωct) and ωc = 0.2π. Rewrite the system (4.16) into the autonomous

second-order system

ẏ1 = y2

ẏ2 = −y3
1 − y2

1 + y1 − y2.
(4.17)

System (4.17) has three equilibria (0, 0), (0.618, 0), and (−1.618, 0). According to Subsec-

tion 4.2.1, the Jacobian characteristics of the equilibria are given by Table 4.5. Then, the

Table 4.5: Characteristics of the nonlinear system (4.17) for each equilibrium.

(0, 0) (0.618, 0) (−1.618, 0)

∆ −1 1.3820 3.6180

τ −1 −1 −1

D 5 −4.5279 −13.4721

stability of the equilibria can be determined by Figure 4.1, which is shown in Table 4.6. The

phase portrait of the nonlinear system is shown in Figure 4.7. Three red circles indicate the

three equilibria, and all the trajectories are attracted to the two stable spirals. The following

study is carried out on the two stable equilibria A(0.618, 0) and B(−1.618, 0).

Table 4.6: Classification of the equilibria of the nonlinear system (4.17).

y ẏ

saddle 0 0

A stable spiral 0.618 0

B stable spiral -1.618 0
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4.4. Case study 2: a dual stable equilibria system
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Figure 4.7: The phase portrait of the nonlinear system (4.16).

4.4.1 The model for single equilibrium

Two pairs of the input-output data sets A and B are sampled. The inputs in both sets are the

same, i.e. u(t) = 0.1 cos(ωct) and ωc = 0.2π. The output in A is the harmonic response

under the initial condition (y, ẏ) = (0, 1), while the output in B is under the initial condition

(y, ẏ) = (0,−1). The data are sampled for 200 seconds, and the sampling period is 0.01

second, i.e. T = 0.01s. The outputs of the two data sets are shown in Figure 4.8. The

output in A is attracted to the equilibrium A(0.618, 0), while B is attracted to B(−1.618, 0).

It can also be observed that the outputs in both sets contain transient-state and steady-state.

The transient-state data cannot be used for NOFRFs features extraction, but is important for

NARX modelling.

After the data are sampled, A and B are used as training data for the modelling of two

NARX models MA and MB, respectively. The terms of the NARX models are determined

by the FROLS algorithm. In this cases, the nonlinearity of the model is 3 (` = 3), and the

maximum delay is 3 for input and output (nu = ny = 3). The FROLS algorithm selects one

term a time, until 5 terms are selected. The two models trained with A and B are given in

Table 4.7.
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(a) The output in A.
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(b) The output in B.

Figure 4.8: The harmonic responses used for model training.

To check whether the dynamics of the real system is reflected by the model correctly, the

simulated output of the model is compared with the output of the real system. The simulated

output ŷ of the model can be easily computed using the models in Table 4.7. For example,

MA can be written into the form of the difference equation as

ŷ(k)−1.9901ŷ(k − 1) + 9.8998× 10−1ŷ(k − 2)

+1.0122× 10−4ŷ3(k − 2) + 9.5678× 10−5ŷ2(k − 1) = 9.8608× 10−5u(k).
(4.18)

Then, the simulated output ŷ(k) can be computed recursively when the input u(k) and the

initial condition
(
(y(−2), y(−1)

)
are known. It should be noticed that ŷ(k) is not one-step-

ahead prediction [21, p. 124], as no measured output y involving in (4.18). The comparison

Table 4.7: Terms of NARX models through FROLS

(a) The terms of MA

Model term Parameter ERR

y(k − 1) 1.9901 1.0000

y(k − 2) −9.8998× 10−1 1.2483× 10−6

y3(k − 2) −1.0122× 10−4 4.2825× 10−11

u(k) 9.8608× 10−5 3.1661× 10−11

y2(k − 1) −9.5678× 10−5 1.5930× 10−13

(b) The terms of MB

Model term Parameter ERR

y(k − 1) 1.9898 1.0000

y(k − 2) −9.8966× 10−1 2.6863× 10−7

y3(k − 2) −9.4838× 10−5 1.3510× 10−11

u(k) 9.9477× 10−5 9.1010× 10−12

y2(k − 2) −8.4296× 10−5 2.1262× 10−13
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4.4. Case study 2: a dual stable equilibria system

of the system harmonic responses from the simulated models and the real system models is

shown in Figure 4.9 and Figure 4.10. It is known the dynamics of the nonlinear system (4.16)

is dominated by the two equilibria A(0.618, 0) and B(−1.618, 0). Due to different initial

conditions, the harmonic responses of the real system and the models are attracted to different

equilibria. In Figure 4.9, it is found that MA which are trained withA can correctly match the

response around equilibrium A, but has bias in the response around B. In Figure 4.10, MB

can correctly match the response around equilibrium B, but has bias in the response around

A. The equilibria of MA and MB can also be observed in the free oscillations (i.e. u(k) = 0)

shown in Figure 4.11. The free oscillations start from the different initial conditions, and then

the trajectories are attracted to the two stable equilibria. The trajectory stays at the unstable

equilibrium y = 0 only when the initial condition is
(
(y(−2), y(−1)

)
= (0, 0). It can be seen

that the locations of the equilibria for MA and MB are different.
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(a) The responses around equilibrium A.
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(b) The responses around equilibrium B.

Figure 4.9: The harmonic responses of MA and the system (4.16).
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(a) The responses around equilibrium A.
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(b) The responses around equilibrium B.

Figure 4.10: The harmonic responses of MB and the system (4.16).
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(a) The trajectories of MA.
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(b) The trajectories of MB .

Figure 4.11: The free oscillation trajectories of the models.
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4.4. Case study 2: a dual stable equilibria system

To quantitatively evaluate how the models describe the dynamics around the equilibria,

the NOFRFs are adopted as the features of the nonlinear models. The dynamics around one

stable equilibrium can be described by one set of NOFRFs. Therefore, each model or real

system has two sets of NOFRFs.

To compute the NOFRFs, the harmonic inputs αi cos(ωct) are given into the real system

and models, where αi = 0.01, 0.02, . . . , 0.1. The responses are generated, and the steady-

state of the responses are used for the NOFRFs computation. It should be noticed that all

the responses should be attracted around one equilibrium, so the NOFRFs can describe the

dynamics around that equilibrium. Through choosing specific initial conditions, we can make

the responses of the system or models to oscillate around a certain equilibrium. For the

real system, the initial condition (y, ẏ) = (0, 1) makes the responses to oscillate around

A(0.618, 0), and the initial condition (0,−1) makes them around B(−1.618, 0). For the

models, the initial conditions are
(
y(−2), y(−1)

)
= (0, 0.01) for A and (0,−0.01) for B.

The NOFRFs for equilibrium A is given in Table 4.8. The nonlinearity of NOFRFs is

infinity when the system or the NARX model is converted into Volterra series (2.18). The

nonlinear terms higher than 4th order are insignificance in this case, so the nonlinearity for

the NOFRFs of is set as N = 4. Compare Table 4.8a and Table 4.8b, it is found that the

NOFRFs of MA match the real system, which implies that MA can represent the dynamics of

the real system around the equilibrium A. However, the NOFRFs of MB cannot match the

real system. In Table 4.9, the NOFRFs for the equilibrium B are computed. The NOFRFs

of MB match the real system, which implies MB correctly reflects the dynamics around B.

However, the NOFRFs of MA cannot match the real system.
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4.4. Case study 2: a dual stable equilibria system

Table 4.8: The NOFRFs around the equilibrium A(0.618, 0)

(a) The NOFRFs of the real system (4.16)

Ω

|G|
|G0(ejΩT )| |G1(ejΩT )| |G2(ejΩT )| |G3(ejΩT )| |G4(ejΩT )|

0 6.1803× 10−1 1.5063 9.7888

ωc 8.5460× 10−1 4.1949

2ωc 1.6406 1.3076× 101

(b) The NOFRFs of MA

Ω

|G|
|G0(ejΩT )| |G1(ejΩT )| |G2(ejΩT )| |G3(ejΩT )| |G4(ejΩT )|

0 6.1808× 10−1 1.5142 9.7185

ωc 8.5454× 10−1 4.1921

2ωc 1.6425 1.3058× 101

(c) The NOFRFs of MB

Ω

|G|
|G0(ejΩT )| |G1(ejΩT )| |G2(ejΩT )| |G3(ejΩT )| |G4(ejΩT )|

0 7.2918× 10−1 9.2907× 10−1 3.8296

ωc 7.1912× 10−1 2.1123

2ωc 1.1927 5.5321
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4.4. Case study 2: a dual stable equilibria system

Table 4.9: The NOFRFs around the equilibrium B(−1.618, 0)

(a) The NOFRFs of the real system (4.16)

Ω

|G|
|G0(ejΩT )| |G1(ejΩT )| |G2(ejΩT )| |G3(ejΩT )| |G4(ejΩT )|

0 1.6180 9.8778× 10−2 4.8289× 10−2

ωc 3.0451× 10−1 7.1560× 10−2

2ωc 1.4922× 10−1 7.4213× 10−2

(b) The NOFRFs of MA

Ω

|G|
|G0(ejΩT )| |G1(ejΩT )| |G2(ejΩT )| |G3(ejΩT )| |G4(ejΩT )|

0 1.5633 1.1011× 10−1 6.3083× 10−2

ωc 3.1667× 10−1 8.7226× 10−2

2ωc 1.7183× 10−1 9.6568× 10−2

(c) The NOFRFs of MB

Ω

|G|
|G0(ejΩT )| |G1(ejΩT )| |G2(ejΩT )| |G3(ejΩT )| |G4(ejΩT )|

0 1.6180 9.6726× 10−2 4.5351× 10−2

ωc 3.0437× 10−1 6.8709× 10−2

2ωc 1.4645× 10−1 6.9748× 10−2
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4.4. Case study 2: a dual stable equilibria system

4.4.2 The model for dual equilibria

The third input-output data set C is composed of dynamics around both the equilibrium A

and B, which are shown in Figure 4.12. The system responses is firstly attracted around the

equilibrium A(0.618, 0). After 98 seconds, the large negative input is given to the system for

4 seconds. The system response is dragged to another equilibrium B(−1.618, 0). After the

transient process, the system response reaches steady-state at equilibrium B.

With the same FROLS configuration used in the last section, the NARX model MC trained

with C is given in Table 4.10. The free oscillation trajectories of MC is shown in Figure 4.13.

It is found the trajectories of the model MC are attracted to the two stable equilibria around

0.618 and -1.618, except for one trajectory whose initial condition is 0 stays at the unstable

equilibrium 0. Therefore, the positions of the equilibria match the equilibrium A(0.618, 0)

andB(−1.618, 0) of the real system (4.17). The simulated harmonic responses of MC around

the two equilibria also match the responses of the real system, which are shown in Figure

4.14. To quantitatively evaluate the dynamics of MC , the NOFRFs are computed with the

same configuration as in the last section, which are shown in Table 4.11. By comparing Table

4.11 with the NOFRFs of the real system in Table 4.8a and Table 4.9a, it is found that MC

can reflect the system dynamics around both equilibria.
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(a) The input in C.
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(b) The output in C.

Figure 4.12: The input and the response used for model training.
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Figure 4.13: The free oscillation trajectories of MC .

Table 4.10: Terms of NARX models MC through FROLS

Model term Parameter ERR

y(k − 1) 1.9902 9.9999× 10−1

y(k − 2) −9.9007× 10−1 1.0319× 10−5

y3(k − 1) −9.9400× 10−5 4.1953× 10−9

u(k − 1) 9.9306× 10−5 4.3337× 10−9

y2(k − 1) −9.9416× 10−5 2.3879× 10−9
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(a) The responses around equilibrium A.
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(b) The responses around equilibrium B.

Figure 4.14: The harmonic responses of MC and the system (4.16).

Table 4.11: The NOFRFs of MC for the two equilibria

(a) The NOFRFs around the equilibrium A(0.618, 0)

Ω

|G|
|G0(ejΩT )| |G1(ejΩT )| |G2(ejΩT )| |G3(ejΩT )| |G4(ejΩT )|

0 6.1796× 10−1 1.5054 9.7726

ωc 8.5430× 10−1 4.1902

2ωc 1.6402 1.3063× 101

(b) The NOFRFs around the equilibrium B(−1.618, 0)

Ω

|G|
|G0(ejΩT )| |G1(ejΩT )| |G2(ejΩT )| |G3(ejΩT )| |G4(ejΩT )|

0 1.6181 9.8603× 10−2 4.8147× 10−2

ωc 3.0425× 10−1 7.1404× 10−2

2ωc 1.4907× 10−1 7.4010× 10−2
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4.4.3 Evaluation of the changes in system parameters

Consider the stiffness of the system (4.16) varying gradually from -1 to -2, the investigation is

carried out to examine whether the proposed modelling and model feature extraction method

can track the parameter variation. When the stiffness changes, the input-output data are

sampled to update the structure and parameters of the NARX model. The models are updated

under three scenarios. For MA, only the data around the equilibrium A are used for updating.

For MB, only the data around the equilibrium B are used for updating. For MC , both of

the data around the equilibrium A and B are used for updating. The three types of models

are then used to monitor the variation in the system stiffness. Four NOFRFs features are

extracted from each updated model. They are Gc
0, |Gc

2(ej0T )|, |Gc
1(ejωcT )|, and |Gc

2(ej2ωcT )|,

where c stands for the stiffness parameter given in the order c = −1,−1.1, . . . ,−2. Thus,

the models are updated 11 times.

In Figure 4.15, the stiffness parameter change of the system modifies the system features

around both the equilibrium A and B. For equilibrium A, the four NOFRF features of MA

and MC all match that of the real system. Although the NOFRFs of MB shows the trend

of the stiffness change, the NOFRFs features given by the MB gives significant bias. For

equilibrium B, again the NOFRFs of MB and MC match that of the real system well. The

error with the NOFRFs of MA implies that MA cannot reflect the real situation of the stiffness

change about the equilibrium B. In addition, the NOFRFs of model MC can be used to

represent the system stiffness changes when the system works about either equilibrium A or

B.
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Figure 4.15: NOFRFs features of the system (4.16) when its stiffness changes.

4.5 Conclusions

This chapter demonstrates the capability of the modelling and model feature extraction method

in the analysis of nonlinear systems around different stable equilibria. For modelling, three

NARX models are build by the FROLS under different scenarios. For model feature extrac-

tion, the NOFRFs are adopted as the nonlinear model features. To check whether the model

can reflect the situation of the real system, the harmonic responses of models and the real sys-

tem are compared first. Then trajectories of the models in free oscillation are given to check

the locations of the equilibria. Finally, the features of the models and the real system are

compared quantitatively by evaluating the NOFRFs of both the identified models and the real

system. Generally, the model built by the data dominated by one equilibrium cannot reflect

the features of another equilibrium. When the data cover the dynamics of both equilibria,
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the model have the ability to reflect the features of the two equilibria. In the evaluation of

system parameter change, the results show that the system parameter change can be reflected

by the system NOFRFs features in both equilibria. This study shows that the proposed mod-

elling and model feature extraction can effectively reveal the features of linear and nonlinear

systems and can, therefore, be a useful technique when applied in engineering system fault

detection, where the NOFRF based system feature extraction can be exploited to reveal the

system faulty conditions.
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Chapter 5

Orthogonal Least Squares Based Fast

Feature Selection for Classification

5.1 Introduction

The aim of the feature selection for classification is to select an optimal subset of features

given the candidate features, which are continuous or categorical, and the response, which is

categorical. The feature selection methods can be divided into three types: filter, wrapper,

and embedded methods [50]. The filter methods rank the individual candidate features based

on certain statistics, such as the correlation coefficient and the mutual information [54]. The

wrapper methods train classifier by ranking the subsets of candidate features based on their

classification performance. The embedded methods, e.g. Lasso [73] and CART [74], select

optimal features during the training process of a specific classifier.

Comparing with the other two methods, a filter method is not based on a specific type

of classifiers, so a filter method is more suitable to be used in the stage where the type of

classifiers has not been decided. To rank the features by a filter method, it is desired that

the features in the subset have the high relevance to the response, while the low redundancy

between themselves. A straightforward way is to optimise the objective function constructed

by the difference or the quotient between the relevance and the redundancy. For example,

the well-known minimal-redundancy-maximal-relevance (mRMR) method adopt this idea,

in which the relevance and redundancy are quantified by the mutual information [75]. The
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second idea is to control the redundancy by orthogonalising the candidate features, and to

find the maximum relevance between the orthogonalised features and the response. The

second idea has been used in the term selection of time series models by Orthogonal Least

Squares (OLS), where the relevance is defined by the error reduction ratio (ERR) [49]. The

previous two ideas evaluate the relevance between the single feature and the response, and

the relevance is analysed separately with the redundancy. The third idea uses the overall

relevance between the subset features and the response. The definition of the overall relevance

has taken the redundancy into consideration, e.g. the multiple correlation coefficient and the

canonical correlation coefficient [76].

In this chapter, the third idea is adopted but based on a novel revelation and exploitation of

a close relationship between the second and third idea. Based on OLS, the squared orthogonal

correlation coefficients are defined and used to proposed a novel feature selection approach

that can significantly improve the computational speed of the evaluation of the overall rele-

vance. It is shown that the squared orthogonal correlation coefficients are especially useful in

the greedy search for the best features. The relationship between the squared orthogonal cor-

relation coefficients, the multiple correlation coefficient, the canonical correlation coefficient,

and Fisher’s criterion of the linear discriminant analysis are analysed showing the proposed

OLS based feature selection method has following three advantages:

• fast in the greedy search;

• equivalent to the Canonical Correlation Analysis (CCA) and the Linear Discriminant

Analysis (LDA);

• applicable to both continuous and categorical features.

The rest of the chapter is organised as follows. In Section 2, the definition of the squared

orthogonal correlation coefficients is given. The relationships of the squared orthogonal cor-

relation coefficients with the multiple correlation coefficient and the canonical correlation

coefficient are analysed. Based on the two relationships, an OLS based feature selection

method is developed for binomial classification (Section 3) and multinomial classification

(Section 4), respectively. The speed advantage of the method in the greedy search is analysed

for both binomial and multinomial classification cases, and the relationship of the proposed
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5.2. Squared orthogonal correlation coefficients

method with LDA is studied in Section 4. In Section Section 5, a detailed example is provided

to illustrate the procedure of the proposed method, and its relationship with CCA and LDA.

In addition, a comparison of the proposed method with the mutual information based meth-

ods is carried out on two synthetic and two real world datasets. Conclusions are summarised

in Section 6.

5.2 Squared orthogonal correlation coefficients

5.2.1 Definition

In the ordinary least-squares problem, the linear regression model with N observations is

given by

y = (1,X)

β0

β

+ e, (5.1)

where the response vector is

y = (y1, . . . , yN)> , (5.2)

the design matrix of n independent variables with a constant term is

(1,X) = (1,x1, . . . ,xn) =


1 x1,1 . . . x1,n

...
... . . . ...

1 xN,1 . . . xN,n

 , (5.3)

the estimated parameter vector isβ0

β

 = (β0, β1, . . . , βn)> , (5.4)

the error term is

e = (e1, . . . , eN)> . (5.5)

The intercept β0 satisfies the equation

β0 = ȳ − X̄β

= ȳ − (x̄1, . . . , x̄n)β,
(5.6)
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5.2. Squared orthogonal correlation coefficients

where ȳ is the sample mean of y, and x̄i is the sample mean of xi. Substituting (5.6) into

(5.1), the linear model (5.1) is simplified to

yC = XCβ + e, (5.7)

where yC is the centred response variable given by

yC =


y1 − ȳ

...

yn − ȳ

 , (5.8)

and XC is the matrix of the centred independent variables given by

XC =
(
xC1, . . . ,xCn

)

=


x1,1 − x̄1 . . . x1,n − x̄n

... . . . ...

xN,1 − x̄1 . . . xN,n − x̄n

 .
(5.9)

As the parameter vector β satisfies the normal equation(
X>C XC

)
β = X>C yC, (5.10)

the least-squares problem with the intercept is transformed into the least-squares problem

without the intercept.

When XC has full column rank, the reduced QR decomposition is performed on XC as

XC = WCA, (5.11)

where A is a n × n invertible upper triangular matrix and WC is a N × n matrix with the

orthogonal columns wC1, . . . ,wCn. As WC = XCA−1, it can be seen that wCi, which is the

linear transformation of xC1, . . . ,xCn, has zero mean. Substituting (5.11) into (5.7), the linear

regression model with the same error term e is given by

yC = WCg + e, (5.12)

where g = Aβ = (g1, . . . , gn)>. The parameter vector g satisfies the normal equation

W>
C WCg = W>

C yC, (5.13)
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5.2. Squared orthogonal correlation coefficients

which can be obtained by substituting (5.11) into (5.10). Thus, the ordinary least-squares

problem (5.10) about XC and yC is transformed into the OLS problem (5.13) about WC and

yC.

The residual sum of squares for OLS is given by

e>e = (yC −WCg)> (yC −WCg)

= y>C yC − 2g>W>
C y + g>W>

C WCg.
(5.14)

Because of (5.13), this equation becomes

e>e = y>C yC − g>W>
C WCg. (5.15)

As WC is orthogonal, the inner product W>
C WC is the diagonal matrix diag (w>C1wC1, . . . ,w

>
CnwCn).

Thus, (5.15) can be rewritten to

e>e = yC
>yC −

n∑
i=0

g2
iw
>
CiwCi. (5.16)

To obtain ERRs, both sides of (5.16) are divided by yC
>yC, that is

e>e

yC
>yC

= 1−
n∑
i=1

g2
iw
>
CiwCi

yC
>yC

. (5.17)

Due to the orthogonality of WC, the computation of the parameter vector g can be simplified

as

gi =
w>CiyC

w>CiwCi
. (5.18)

Substituting (5.18) into (5.17),

e>e

yC
>yC

= 1−
n∑
i=1

y>C wCiw
>
CiyC

w>CiwCiy>C yC

= 1−
n∑
i=1

hi,

(5.19)

where hi is the ERR of wCi given by

hi =
y>C wCiw

>
CiyC

w>CiwCiy>C yC
, i = 1, . . . , n. (5.20)

which is the same as the squared Pearson correlation coefficient between y and wCi [57,

p. 29], i.e.

r2(y,wCi) = hi. (5.21)

In the following, we refer to hi for i = 1, . . . , n as the squared orthogonal correlation coeffi-

cients between X and y.

77



5.2. Squared orthogonal correlation coefficients

5.2.2 Relationship with multiple correlation coefficient

The multiple correlation coefficient is the measure of linear association between two or more

independent variables and a dependent variable. If the n columns in the design matrix X are

the samples of n independent variables and the response vector y is the samples of a depen-

dent variable, the association between X and y can be measured by the multiple correlation

coefficient R(X,y) or R(y,X). The multiple correlation analysis of X and y is to find a

projection direction, so that the Pearson correlation coefficient between yC and the projected

XC is maximised. The optimal projection direction is exactly the solution β of the normal

equation (5.10). Then, the multiple correlation coefficient R(X,y) or R(y,X) is defined as

R(X,y) = R(y,X) = r(ŷC,yC) =
ŷ>C yC√

ŷ>C ŷC

√
y>C yC

, (5.22)

where

ŷC = XCβ. (5.23)

It can be seen that the definition of the multiple correlation coefficient is based on the centred

linear regression model (5.7). The squared multiple correlation coefficient (or called coeffi-

cient of determination) has the following relationship with the total sum of squares SST and

the residual sum of squares SSR of the model (5.7)

R2(X,y) = 1− SSR(XC,yC)

SST (XC,yC)
, (5.24)

where

SST (XC,yC) = y>C yC

SSR(XC,yC) = (yC − ŷC)> (yC − ŷC) = e>e.
(5.25)

Comparing (5.19) and (5.24), it is found

R2(X,y) =
n∑
i=1

hi. (5.26)

Therefore, the sum of the squared orthogonal correlation coefficients between X and y is

equal to the squared multiple correlation coefficient between X and y.
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5.2.3 Relationship with canonical correlation coefficient

The canonical correlation coefficient is the measure of linear association between two or more

independent variables and two or more dependent variables. Given a response matrix as

Y = (y1, . . . ,ym) =


y1,1 . . . y1,m

... . . . ...

yN,1 . . . yN,m

 , (5.27)

if the n columns in the design matrix X are the samples of n independent variables and the

m columns in the response matrix Y are the samples of m dependent variables, the associ-

ation between X and Y can be measured by the canonical correlation coefficient R(X,Y).

The Canonical Correlation Analysis (CCA) for X and Y is to find a pair of the projection

directions a and b, so that the Pearson correlation coefficient between XCa and YCb is max-

imised, that is

arg max
a,b

r(XCa,YCb), (5.28)

where

YC =
(
yC1, . . . ,yCm

)

=


y1,1 − ȳ1 . . . y1,m − ȳm

... . . . ...

yN,1 − ȳ1 . . . yN,m − ȳm

 ,
(5.29)

and ȳi is the sample mean of yi. The canonical correlation coefficient between X and Y can

be computed by

R(X,Y) = r(XCa,YCb) =
a>RX,Yb√

a>RX,Xa
√

b>RY,Yb
, (5.30)
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where the correlation matrices are given by

RX,Y =


rx1,y1 . . . rx1,ym

... . . . ...

rxn,y1 . . . rxn,ym



RX,X =


rx1,x1 . . . rx1,xn

... . . . ...

rxn,x1 . . . rxn,xn



RY,Y =


ry1,y1 . . . ry1,ym

... . . . ...

rym,y1 . . . rym,ym

 .

(5.31)

The multiple correlation coefficient R(X,y) is a special case of the canonical correlation

coefficient R(X,Y), when Y is a column vector y. The CCA can be transformed to the

eigenvalue problem given by [76, p. 173]

R−1
X,XRX,YR−1

Y,YRY,Xa = R2(X,Y)a (5.32a)

R−1
Y,YRY,XR−1

X,XRX,Yb = R2(X,Y)b. (5.32b)

The two projection directions a and b are the eigenvectors, and the eigenvalue is the square of

the canonical correlation coefficient. If XC and YC have full column rank, the number of the

non-zero solutions of (5.32) is not more than n∧m, where the operator∧ returns the minimum

of two values on both sides. Thus, in contrast with the multiple correlation coefficient which

only has one value, there are n ∧ m canonical correlation coefficients (which may contain

zeros) for X and Y, which are denoted as R1(X,Y), . . . , Rn∧m(X,Y).

It is known that the multiple correlation between Y and each xi can be evaluated by [76,

p. 174] 
R2(x1,Y)

...

R2(xn,Y)

 = diag
(
RX,YR−1

Y,YRY,X

)
, (5.33)

where the operator diag obtains the main diagonal of the matrix. According to (5.32a), the

sum of the squared canonical correlation coefficients, i.e. the sum of the eigenvalues, are
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given by
n∧m∑
k=1

R2
k(X,Y) = tr

(
R−1

X,XRX,YR−1
Y,YRY,X

)
, (5.34)

where the operator tr obtains the trace of the matrix. If the columns of X are zero mean and

orthogonal, the correlation matrix of X is identity matrix, so R−1
X,X = I. Therefore, according

to (5.33) and (5.34), the following equation holds when the columns of X are centred and

orthogonal.
n∧m∑
k=1

R2
k(X,Y) =

n∑
i=1

R2(xi,Y). (5.35)

Through the reduced QR decomposition,

XC = WCA

YC = VCB
(5.36)

where WC is a N × n matrix with the centred orthogonal columns given by

WC = (wC1, . . . ,wCn), (5.37)

VC is a N ×m matrix with the centred orthogonal columns given by

VC = (vC1, . . . ,vCm), (5.38)

A is a n× n invertible upper triangular matrix, and B is a m×m invertible upper triangular

matrix. It is noticed that the transformation from X (or Y) to WC (or VC) is affine. As the

canonical correlation coefficient is invariant under affine transformations,

Rk(X,Y) = Rk(WC,VC) k = 1, . . . , n ∧m. (5.39)

As the columns of WC are centred and orthogonal, the following equation holds according

to (5.35) and (5.39).
n∧m∑
k=1

R2
k(X,Y) =

n∧m∑
k=1

R2
k(WC,VC) =

n∑
i=1

R2(wCi,VC). (5.40)

Define squared orthogonal correlation matrix as

H =


h1,1 . . . h1,m

... . . . ...

hn,1 . . . hn,m

 , (5.41)
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where

hi,j =
v>CjwCiw

>
CivCj

w>CiwCiv>CjvCj
. (5.42)

Due to (5.26), the multiple correlation coefficient between VC and each wC can be evaluated

by

R2(wC1,VC) =
m∑
j=1

h1,j

...

R2(wCn,VC) =
m∑
j=1

hn,j .

(5.43)

Substituting (5.43) into (5.40), it is found that the sum of the squared canonical correlation

coefficients between X and Y is equal to the sum of all entries of the squared orthogonal

correlation matrix H, that is

n∧m∑
k=1

R2
k(X,Y) =

n∑
i=1

m∑
j=1

hi,j , (5.44)

which is a natural extension of (5.26) to the case where the response vector y becomes the

response matrix Y.

5.3 OLS based fast feature selection for binomial classifica-

tion

If theN observations of X belong to two classes and the n variables in X represent n features,

the feature selection problem for the binomial classification is to find the t features from the

n features of X, which is optimal to classify the N observations into the two classes. The

two classes can be assigned values 0 and 1 to form a dummy response vector y for the N

observations. Thus, the goodness of the features for the classification can be evaluated by

the multiple correlation coefficient between the features of interest and the dummy response

vector. In fact, the two classes can be assigned to any distinct values to form the response

vector, which has no effect on the value of the multiple correlation coefficient. However, to

be consistent to the multinomial classification case, the dummy encoding is adopted. The
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optimal t features can be searched by comparing all
(
n
t

)
feature combinations exhaustively,

where (
n

t

)
=

n!

t!(n− t)!
. (5.45)

In some cases, the exhaustive search is too expensive in computation. A realistic approach is

to select only one feature in one step. In each step, the previously selected features will not

be changed. For example, the three ‘optimal’ features can be selected in three steps as shown

in Table 5.1. As each step selects the feature which maximises the multiple correlation, the

search is referred to the greedy search [50].

Table 5.1: An example for selecting three features from n features by the greedy search

for binomial classification, where i = 1, . . . , n for step 1, i = 1, 2, 4, 5, . . . , n for step 2,

i = 1, 2, 4, 6, 7, . . . , n for step 3.

Multiple Correlation Selected Feature

Step 1 R(x3,y) ≥ R(xi,y) x3

Step 2 R((x3,x5),y) ≥ R((x3,xi),y) x3,x5

Step 3 R((x3,x5,x1),y) ≥ R((x3,x5,xi),y) x3,x5,x1

The multiple correlation coefficient can be obtained either using the definition (5.22)

or the sum of the squared orthogonal correlation coefficients (5.26). In the greedy search,

the OLS based feature selection method has the computational speed advantage over the

definition based feature selection method. The computation complexity of the two feature

selection methods can be explicitly compared by the asymptotic upper bound notation O

[77, p. 47]. At Step k of the greedy search, the k − 1 optimal features have been selected,

and the rest of the n − k + 1 features are the candidates of the kth optimal feature. The

candidate feature matrix is a N × k matrix composed of the k − 1 selected features and

a candidate feature. According to the normal equation (5.10), the definition based feature

selection method is dominated by computing the inner product of theN×k centred candidate

feature matrix. The computational complexity of the inner product of one centred candidate

matrix is O(k2N). There are n− k + 1 candidate features, so the complexity for Step k is

(n− k + 1)O(k2N) = O(k2nN). (5.46)
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Thus, the overall complexity for t features selection is given by

t∑
k=1

O(k2nN) = O

(
t∑

k=1

k2nN

)
= O(t3nN). (5.47)

For OLS based feature selection, as the squared orthogonal correlation coefficients of the

selected features (h1 to hk−1) have been computed in Step 1 to Step k − 1, only the squared

orthogonal correlation coefficients of the candidate feature (hk) is required to compute. Thus,

OLS based feature selection is dominated by the classical Gram-Schmidt orthogonalisation

process. At Step k of the greedy search, the computational complexity of the orthogonali-

sation of one candidate feature is O(kN). There are n − k + 1 candidate features, so the

complexity for Step k is

(n− k + 1)O(kN) = O(knN). (5.48)

Thus, the overall complexity for t features selection is given by

t∑
k=1

O(knN) = O

(
t∑

k=1

knN

)
= O(t2nN). (5.49)

Consequently, compared to the definition based feature selection method, the OLS based fea-

ture selection method has a significant computational speed advantage in the greedy search.

5.4 OLS based fast feature selection for multinomial classi-

fication

If the N observations of X belong to c classes, where c ≤ N , and the n columns in X

represent n features, the feature selection problem for the multinomial classification is to find

the t features from the n features of X, which is optimal to classify the N observations into

the c classes. Similar to the last section, the c classes can be encoded to certain values to

form a response variable. The ordinal encoding is to assign 1, . . . , c to the c labels to form

a vector y. Then, the multiple correlation coefficient between the features and y can be

adopted to indicate the goodness of the features for the classification. The c labels can also

be encoded to form a matrix Y, e.g. c-label dummy encoding (or called one-hot encoding),

c− 1-label dummy encoding, effects encoding, and contrast encoding [57, Chapter 5]. When
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the response is encoded as a matrix Y, the canonical correlation coefficients between X and

Y can be used as the feature selection criterion. Similar to the last section, an example of

the greed search for multinomial classification is illustrated in Table 5.2, where the response

is encoded as an N × c − 1 matrix Y and the ranking criterion is the sum of the squared

canonical correlation coefficients.

Table 5.2: An example for selecting three features from n features by the greedy search for

multinomial classification, where i = 1, . . . , n for step 1, i = 1, 2, 4, 5, . . . , n for step 2,

i = 1, 2, 4, 6, 7, . . . , n for step 3.

Ranking

Criterion

Selected

Feature

1
1∧c−1∑
k=1

R2
k(x3,Y) ≥

1∧c−1∑
k=1

R2
k(xi,Y) x3

2
2∧c−1∑
k=1

Rk((x3,x5),Y) ≥
2∧c−1∑
k=1

Rk((x3,xi),Y) x3,x5

3
3∧c−1∑
k=1

Rk((x3,x5,x1),Y) ≥
3∧c−1∑
k=1

Rk((x3,x5,xi),Y) x3,x5,x1

In the following, the equivalence between CCA and a classical classifier linear discrimi-

nant analysis will first be demonstrated to reveal the implication of the canonical correlation

coefficient in a classification problem. Then, the algorithm of the OLS based feature se-

lection for multinomial classification is developed where the sum of the squared canonical

correlation coefficients will be used as the feature ranking criterion. After that a version of

the algorithm that can be used to deal with categorical features is presented.

5.4.1 Relationship with linear discriminant analysis

As the feature selection is used for the multinomial classification, it is reasonable to know

the performance of the features in the Linear Discriminant Analysis (LDA), where the label

encoding is not required. For the convenience of LDA, the feature matrix X is decomposed

into X(1), . . . ,X(c), where the Ni× n matrix X(i) represents the Ni observations belonged to
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the ith class. The within-class scatter matrix of the samples is

Sw =
c∑
i=1

(
X(i) − 1(i)X̄(i)

)> (
X(i) − 1(i)X̄(i)

)
, (5.50)

where X̄(i) is the sample mean of each feature in X(i) given by

X̄(i) =
(
x̄

(i)
1 , . . . , x̄

(i)
n

)
(5.51)

and 1i is Ni × 1 vector of ones. The between-class scatter matrix of the samples is

Sb =
c∑
i=1

Ni

(
X̄(i) − X̄

)> (
X̄(i) − X̄

)
, (5.52)

where X̄ is the overall sample mean of each feature. The aim of LDA is to find a projection

direction d for X, so that the ratio between the projected between-class scatter and the pro-

jected within-class scatter is maximised. The ratio is called Fisher’s criterion, which is given

by

J =
d>Sbd

d>Swd
. (5.53)

The larger Fisher’s criterion J implies the better the separation of the c classes. The LDA can

be transformed to the eigenvalue problem given by [76, p. 246]

S−1
w Sbd = Jd, (5.54)

where the eigenvector is the optimal projection direction d and the eigenvalue is the max-

imised Fisher’s criterion J .

The relationship between LDA and CCA can be found when Y is formed by c or c − 1-

label dummy encoding. Under the two encoding schemes, the eigenvalue problem (5.32a)

can be rewritten as [78]

(Sb + Sw)−1 Sba = R2(X,Y)a, (5.55)

or in the form of

S−1
w Sba =

R2(X,Y)

1−R2(X,Y)
a. (5.56)

Comparing (5.54) and (5.56), it is found that LDA and CCA are equivalent, and Fisher’s

criterion of LDA can be evaluated by

J =
R2(X,Y)

1−R2(X,Y)
. (5.57)
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To connect the feature selection criteria with LDA, the c− 1-label dummy encoding and

the canonical correlation coefficients are adopted, instead of the ordinal encoding and the

multiple correlation coefficient. The c − 1-label dummy encoding constructs a N × c − 1

matrix Y = (yi,j), where

yi,j =

1 ith observation is belonged to j th class

0 otherwise.
(5.58)

Thus, the dummy response in the last section is a special case of c−1-label dummy encoding

where c = 2.

5.4.2 OLS based feature selection algorithm

The algorithm of OLS based feature selection for multinomial classification can be sum-

marised in 5 steps as follows.

Input:

X: N × n matrix containing N observations and n features.

Y: N × c− 1 matrix formed by c− 1-label dummy encoding.

t: The number of features is to be selected.

Step 1. First, centre Y into YC. Second, orthogonalise YC into VC. Third, centre X into

XC.

Step 2. Divide X into (Xs,Xr), where the selected feature matrix is given by

Xs = (xs1, . . . ,xsp) , (5.59)

and the rest feature matrix is given by

Xr = (xr1, . . . ,xrq) , (5.60)

p is the number of the selected features, and q is the number of the rest features. Correspond-

ingly, divide XC into (XCs,XCr), where

XCs = (xCs1, . . . ,xCsp)

XCr = (xCr1, . . . ,xCrq) .
(5.61)
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Step 3. If no feature has been selected (i.e. p = 0), let

WCr = XCr

wCri = xCri, i = 1, . . . , q.
(5.62)

If p 6= 0, first, orthogonalise XCs into WCs, where

WCs = (wCs1, . . . ,wCsp) , (5.63)

and w>CsiwCsj = 0 for i 6= j. Second, orthogonalise each feature in XCr to WCs to form the

matrix WCr, where

WCr = (wCr1, . . . ,wCrq) , (5.64)

and wCri is obtained through the classical Gram-Schmidt process, which is given by

wCri = xCri −
p∑
j=1

x>CriwCsj

w>CsjwCsj
wCsj , i = 1, . . . , q. (5.65)

It should be noticed that wCri is orthogonal to WCs but not to WCr, that is w>CriwCsj = 0 but

w>CriwCrj 6= 0.

Step 4. Compute R2(wCri,VC) by

R2(wCri,VC) =
c−1∑
j=1

hi,j , i = 1, . . . , q, (5.66)

where

hi,j =
v>CjwCriw

>
CrivCj

w>CriwCriv>CjvCj
. (5.67)

Step 5. First, find an i which maximises R2(wCri,VC), that is

imax = arg max
i

R2(wCri,VC). (5.68)

Second, remove ximax from Xr and add it into Xs. Correspondingly, q reduces by 1 and p

increases by 1. Repeat Step 2 to Step 5, until p = t.

Output Xs to complete the feature selection.
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The speed advantage of the OLS based feature selection method is shown in Step 4. To

evaluate the goodness of the candidate feature xri, CCA requires to compute the canonical

correlation coefficient R((Xs,xri),Y), while OLS only needs to compute the multiple corre-

lation coefficient R(wCri,VC), because

p+1∧c−1∑
k=1

R2
k((Xs,xri),Y) =

p+1∧c−1∑
k=1

R2
k((WCs,wCri),VC)

=

p∧c−1∑
k=1

R2
k(WCs,VC) +R2(wCri,VC).

(5.69)

For each candidate feature xri,R(WCs,VC) is the same. Thus, to find the maximalR((Xs,xri),Y),

only R(wCri,VC) is required to compute. In addition, although the multiple correlation co-

efficient R(wCi,Y), which is equal to R(wCi,VC), can be computed through the definition

(5.22), OLS provides a faster way of computation. Equation (5.22) requires to solve the nor-

mal equation which is dominated by the inner product of theN×c−1 matrix YC, whose com-

putational complexity is O (c2N). For OLS, as the orthogonalisation of Y is only required

once in Step 1, the dominant part is from the computation of (5.66) whose computational

complexity is only O (cN).

As the above introduction of the OLS based algorithm is conceptual, some speed optimi-

sation steps have been omitted. For example, in Step 3, WCs computed for selecting the ith

optimal feature can be reused for selecting the i + 1th optimal feature. The further optimisa-

tion of the OLS speed can be found in the original paper of OLS based model term selection

[49].

5.4.3 Dealing with categorical features

When the features are categorical, the feature encoding is required for OLS based feature

selection. In the previous analysis, n features are represented by n column vectors in X, but

some encoding methods may encode the categorical features into matrices. In that case, the

feature matrix is composed of n submatrices, that is

X = (X1, . . . ,Xn) , (5.70)
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where the matrix Xi is the encoded ith feature. An OLS based feature selection algorithm

similar to the algorithm in Section 5.4.2 can be applied to the matrix encoded features. In

this case, the candidate orthogonal feature matrix in Step 3 of Section 5.4.2 is given by

WCr = (WCr1, . . . ,WCrq) , (5.71)

where WCri is a N × zi matrix given by

WCri =
(
w

[1]
Cri, . . . ,w

[zi]
Cri

)
. (5.72)

Besides being orthogonal to the selected orthogonal feature matrix WCs, the submatrix WCri

should be column-wise orthogonal via an additional orthogonalisation process. In Step 4, the

sum of the squared canonical correlation coefficients can be computed by
zi∧c−1∑
k=1

R2
k(WCri,VC) =

c−1∑
j=1

zi∑
g=1

h
[g]
i,j , i = 1, . . . , q, (5.73)

where

h
[g]
i,j =

v>Cjw
[g]
Criw

[g]>
Cri vCj

w
[g]>
Cri w

[g]
Criv

>
CjvCj

. (5.74)

Finally, the sum of the squared canonical correlation coefficients are used to rank the features

for Step 5.

5.5 Empirical study

In this section, firstly, a simple example is used to illustrate the procedure of the OLS based

feature selection method when applied to the Fisher’s iris data [79]. The equivalence between

the squared orthogonal correlation coefficients, canonical correlation coefficient, and Fisher’s

criterion is also demonstrated via this case study. Then, the OLS based feature selection

methods are compared with mutual information based feature selection methods using both

synthetic and real world datasets (i.e. Dexter and Gisette). The OLS method takes 401 ms

for Dexter and 5109 ms for Gisette to select 20 features on a 2.6 GHz personal laptop, while

the traditional definition based method takes 13200 ms and 134922 ms, respectively. The

empirical studies are implemented in MATLAB R2019b, and the code will be published in

GitHub1.
1https://github.com/MatthewSZhang/fs_ols
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5.5.1 An illustration of the OLS based feature selection

Table 5.3: Fisher’s Iris Dataset.

Sepal

Length

Sepal

Width

Petal

Length

Petal

Width
Species

5.1 3.5 1.4 0.2 setosa

4.9 3 1.4 0.2 setosa

7 3.2 4.7 1.4 versicolor

6.4 3.2 4.5 1.5 versicolor

6.3 3.3 6 2.5 virginica

5.8 2.7 5.1 1.9 virginica

7.1 3 5.9 2.1 virginica

The Fisher’s iris data are given in Table 5.3. The 7 observations have 4 features and 3

classes, so N = 7, n = 4, and c = 3. The objective of the feature selection is to find 3

optimal features for the 3 species classification.

The feature matrix is given by

X =



5.1 3.5 1.4 0.2

4.9 3 1.4 0.2

7 3.2 4.7 1.4

6.4 3.2 4.5 1.5

6.3 3.3 6 2.5

5.8 2.7 5.1 1.9

7.1 3 5.9 2.1


, (5.75)
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and the c− 1-label dummy encoded response is

Y =



1 0

1 0

0 1

0 1

0 0

0 0

0 0


, (5.76)

where (1, 0) represents setosa, (0, 1) represents versicolor, and (0, 0) represents virginica.

Following the algorithm introduced in Section 5.4.2, the procedure of the OLS based feature

selection method is shown below.

Step 1. First, centre Y into YC, which is given by

YC =



0.7143 −0.2857

0.7143 −0.2857

−0.2857 0.7143

−0.2857 0.7143

−0.2857 −0.2857

−0.2857 −0.2857

−0.2857 −0.2857


. (5.77)

Second, orthogonalise YC into VC. Through the classical Gram-Schmidt process, use the

first column of YC as vC1, then orthogonalise the second column to the first column. Thus,

the centred orthogonalised response matrix is given by

VC =



0.7143 0.0000

0.7143 0.0000

−0.2857 0.6000

−0.2857 0.6000

−0.2857 −0.4000

−0.2857 −0.4000

−0.2857 −0.4000


. (5.78)
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Third, centre X into XC, which is given by

XC =



−0.9857 0.3714 −2.7429 −1.2000

−1.1857 −0.1286 −2.7429 −1.2000

0.9143 0.0714 0.5571 0.0000

0.3143 0.0714 0.3571 0.1000

0.2143 0.1714 1.8571 1.1000

−0.2857 −0.4286 0.9571 0.5000

1.0143 −0.1286 1.7571 0.7000


. (5.79)

Step 2. As no feature has been selected, Xs is empty and Xr is the same as X. Corre-

spondingly, XCs is empty and XCr is the same as XC.

Step 3. In this step, the centred features in XCr are required to be orthogonalised to WCs.

As no feature has been selected, let WCr equal to XCr.

Step 4. The multiple correlation coefficients between wCri and VC are given by

R2(wCr1,VC) = h1,1 + h1,2 = 0.7386 + 0.0242 = 0.7628

R2(wCr2,VC) = h2,1 + h2,2 = 0.1047 + 0.1217 = 0.2264

R2(wCr3,VC) = h3,1 + h3,2 = 0.9184 + 0.0595 = 0.9779

R2(wCr4,VC) = h4,1 + h4,2 = 0.8331 + 0.1273 = 0.9604.

(5.80)

Step 5. The third feature (i.e. petal length) has the highest multiple correlation. Thus,

the petal length is selected into Xs, and the features contained in Xr in order are sepal length,

sepal width, and petal width.

Step 2. According to the new Xs and Xr, the centred matrix XC is divided into (XCs,XCr).

Step 3. As only one feature is in XCs, let the orthogonalised feature WCs equal to XCs.

Through the classical Gram-Schmidt process, the features in XCr are orthogonalised to WCs,
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which is given by

WCr =



0.0288 0.2616 0.0401

−0.1712 −0.2384 0.0401

0.7082 0.0937 −0.2519

0.1822 0.0857 −0.0615

−0.4727 0.2458 0.2604

−0.6398 −0.3902 0.0673

0.3643 −0.0582 −0.0944


. (5.81)

Step 4. The multiple correlation coefficients between wCri and VC are given by

R2(wCr1,VC) = h1,1 + h1,2 = 0.0107 + 0.4352 = 0.4458

R2(wCr2,VC) = h2,1 + h2,2 = 0.0011 + 0.0830 = 0.0841

R2(wCr3,VC) = h3,1 + h3,2 = 0.0296 + 0.4348 = 0.4644.

(5.82)

Step 5. The third feature (i.e. petal width) has the highest multiple correlation. Thus, the

features contained in Xs in order are petal length and petal width, and the features contained

in Xr in order are sepal length and sepal width.

Step 2. According to the new Xs and Xr, the centred matrix XC is divided into (XCs,XCr).

Step 3. Keep the first column of XCs unchanged, and orthogonalise the second column to

the first column through the classical Gram-Schmidt process. The orthogonalised matrix is

given by

WCs =



−2.7429 0.0288

−2.7429 −0.1712

0.5571 0.7082

0.3571 0.1822

1.8571 −0.4727

0.9571 −0.6398

1.7571 0.3643


. (5.83)
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Each feature in XCr is orthogonalised to WCs, respectively, to obtain WCr, which is given by

WCr =



0.2563 0.0486

−0.2072 −0.0109

−0.0354 −0.0412

0.0525 −0.0073

0.3320 0.1198

−0.2736 −0.1231

−0.1247 0.0140


. (5.84)

Step 4. The multiple correlation coefficients between wCri and VC are given by

R2(wCr1,VC) = h1,1 + h1,2 = 0.0105 + 0.0277 = 0.0382

R2(wCr2,VC) = h2,1 + h2,2 = 0.0004 + 0.1103 = 0.1108.
(5.85)

Step 5. The second feature (i.e. sepal width), which has the highest multiple correlation,

is selected into Xs. Therefore, the 3 selected features are petal length, petal width, and sepal

width.

The squared canonical correlation coefficients between the 3 features and Y are given by

R2
1((x3,x4,x2),Y) = 0.9905

R2
2((x3,x4,x2),Y) = 0.5626.

(5.86)

In LDA, the within-class scatter matrix is given by

Sw =


0.5067 0.2367 0.2700

0.2367 0.1917 0.1800

0.2700 0.1800 0.3050

 , (5.87)

and the between-class scatter matrix is given by

Sb =


22.4305 10.1333 −1.1886

10.1333 4.6483 −0.5800

−1.1886 −0.5800 0.0893

 . (5.88)

Through solving the eigenvalue problem (5.54), the Fisher’s criteria of LDA are given by

J1 = 104.1481

J2 = 1.2864.
(5.89)
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Comparing (5.86) and (5.89), it is verified that the relationship between the squared canonical

correlation coefficients and Fisher’s criterion of LDA is as described by (5.57). According

to (5.44), the sum of the squared canonical correlation coefficients is equal to the sum of the

multiple correlation coefficients of the selected features which are computed by hs, that is

R2
1((x3,x4,x2),Y) +R2

2((x3,x4,x2),Y) = 0.9905 + 0.5626

= 0.9779 + 0.4644 + 0.1108

= 1.5531.

(5.90)

5.5.2 Application to synthetic data for binomial classification

In this case study, the proposed feature selection method for a binomial classification is in-

vestigated. The N × n feature matrix is sampled from the multivariate normal distribution,

which is given by

X ∼M(µ,ΣN ), (5.91)

where the mean values in the n × 1 vector µ is sampled from the normal distribution with

mean 0 and standard deviation 0.1. The n × n covariance matrix ΣN is sampled from the

Wishart distribution, which is given by

ΣN ∼
1

N
W(ΣW , N), (5.92)

where ΣW is a n × n diagonal matrix whose main diagonal is uniformly distributed on the

interval (0, 1). Let the number of the observations is 600, i.e. N = 600, and the number

of the candidate features are 100, i.e. n = 100. The 5th, 10th, and 15th features are used to

construct the dummy response vector y, which is sampled from the Bernoulli distribution

(i.e. 1 trial binomial distribution) given by

y ∼ B(π), (5.93)

where the probability vector π = (π1, . . . , πN)> is generated by the binomial logistic regres-

sion model, that is

πi =
1

1 + exp (−(−2xi,5 − 3xi,10 + 4xi,15))
, i = 1, . . . , N . (5.94)
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Given X and y, the aim of the feature selection study is to find the 3 correct feature indices

(i.e. 5, 10, and 15).

The proposed OLS based feature selection methods are compared with the mutual infor-

mation based feature selection methods. All the feature selection approaches in the com-

parison are filter methods with different ranking criteria, and the features are selected via

greedy search. The mutual information based feature selection methods in the compari-

son are summarised in [80]. The ranking criteria are the difference and quotient schemes

minimal-Redundancy-Maximal-Relevance (mRMRd and mRMRq) [75], Mutual Informa-

tion Maximisation (MIM) [81], Joint Mutual Information (JMI) [82], Conditional Mutual

Info Maximisation (CMIM) [83], Conditional Infomax Feature Extraction (CIFE) [84], In-

teraction Capping (ICAP) [85], Double Input Symmetrical Relevance (DISR) [86].

For the mutual information based features selection methods, the continuous features

are discretised into four categories by the mean values and 1 standard deviation. For the

OLS based feature selection, the continuous features are treated in two ways. One (denoted

by OLS) implements the algorithm in subsection 5.4.2 to use continuous features directly.

Another one (denoted by OLSd) implements the algorithm in subsection 5.4.3, where the

continuous features are discretised into four categories by the mean values and 1 standard

deviation, and then encoded into matrices by c− 1 dummy encoding.

The simulation study is repeated 100 times to check how many times the feature selec-

tion methods choose the correct 3 features, and the results are given by Table 5.4. In this

comparison, two OLS based feature selection methods chooses the right features 95 times

and 88 times in the 100 tests, which are the higher than the mutual information based feature

selection methods.

5.5.3 Application to synthetic data for multinomial classification

In this case study, the feature selection for a 3-class multinomial classification is investigated.

The N ×n feature matrix is generated in the same way as in the last subsection. The number

of the observations is 900, i.e. N = 900, and the number of the candidate features are 100,

i.e. n = 100. We use the 5th, 10th, and 15th features to construct the N × 3 response matrix

Y′, which is c-label dummy encoded. Y′ is sampled from the categorical distribution (i.e. 1
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Table 5.4: The number of the right times for the different feature selection methods in the

binomial classification simulation.

Method Times Method Times

OLS 95 JMI 79

OLSd 88 CMIM 74

mRMRd 76 CIFE 76

mRMRq 77 ICAP 74

MIM 73 DISR 79

trial multinomial distribution) given by

Y′ ∼ C(Π), (5.95)

where the N ×3 probability matrix Π = (πi,j) is composed of the probability vector for each

class, that is

Π = (π1,π2,π3) . (5.96)

The probability vectors are generated by the multinomial logistic regression model [60,

p. 270]. First, the probability ratios are given by

πi,1
πi,3

= exp (−xi,5 − xi,10 + xi,15)

πi,2
πi,3

= exp (xi,5 − xi,10 − xi,15), i = 1, . . . , N .
(5.97)

Second, the probability of π3 is given by

πi,3 =
1

1 +
πi,1
πi,3

+
πi,2
πi,3

, i = 1, . . . , N . (5.98)

Finally, π1 and π2 can be computed by substituting (5.98) into (5.97). To make the response

matrix become c − 1-label dummy encoded, the first column of Y′ is removed to form Y.

Given X and Y, the aim of the feature selection simulation is to find the 3 correct feature

indices (i.e. 5, 10, and 15).

The task is repeated 100 times, and the number of times when a correct feature selection

is achieved is shown in Table 5.5. Two OLS based methods still give the competitive results,

especially OLS which uses the continuous features.
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Table 5.5: The number of the right times for the different feature selection methods in the

multinomial classification simulation.

Method Times Method Times

OLS 92 JMI 80

OLSd 84 CMIM 82

mRMRd 83 CIFE 67

mRMRq 84 ICAP 82

MIM 82 DISR 80

5.5.4 Application to the datasets of NIPS feature selection challenge

Two datasets from the NIPS feature selection challenge 2 are used for the feature selection

methods evaluation. The detail of the datasets are illustrated in Table 5.6. Dexter dataset is

from Reuters text categorisation task and Gisette dataset is from a handwriting recoginition

task. Both of the datasets have 2 classes. The features of the datasets are composed of real

features and artificial features (called probes). As the probes do not carry information of

the class labels, the desirable feature selection methods should avoid selecting them. The

datasets are divided into training, validation, and testing data. The labels of the testing data

are withheld by the data providers, and the performance on the testing data are obtained by

uploading the results to the challenge website.

Table 5.6: Summary of the NIPS feature selection challenge datasets.

Name Feature (Real/Probe) Train/Validation/Test

Dexter 20000 (9947/10053) 300/300/2000

Gisette 5000 (2500/2500) 6000/1000/6500

The feature values in both datasets are quantised to 1000 levels, and the features are

treated as continuous. For the mutual information based methods, the 1000 levels are discre-

tised into 10 equal width bins. For OLSd, the discretised features are encoded into matrices

2https://competitions.codalab.org/competitions/3931
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5.5. Empirical study

by c− 1 dummy encoding. For OLS, the continuous features are used directly.

The experiment is implemented in the following steps. First, the optimal features are

selected using the training data. Then, a linear Support Vector Machine (SVM) is trained

with the training data. Finally, the prediction results are generated by the SVM model on the

training, validation, and testing data, respectively. The classification performance is evaluated

by the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve.

Each method selects 20 optimal features. The AUC results on the training and validation data

are shown in Fig. 5.1 and Fig. 5.2. Generally, OLS which uses the continuous features gives

the best classification performance. In Dexter dataset, OLS shows strikingly better results

than other methods. The results on testing data are given in Table 5.7. Although OLS method

selects 1 probe in Dexter dataset, the rest of 19 real features (especially the first 8 features

according to Fig. 5.1b) selected by OLS are more informative for classification than 20 real

features selected by other methods, showing that OLS method can achieve the best AUC

results. In conclusion, the OLS based feature selection method shows better performance in

linear classification when compared with the mutual information based methods and using

continuous features.
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Figure 5.1: AUC results of the feature selection methods on (a) training and (b) validation

Dexter dataset.
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Figure 5.2: AUC results of the feature selection methods on (a) training and (b) validation

Gisette dataset.

Table 5.7: Results of the NIPS feature selection challenge using linear SVM with 20 features.

Method
Dexter Gisette

AUC Probe AUC Probe

OLS 0.9551 1 0.9873 0

OLSd 0.8413 4 0.9824 0

mRMRd 0.9246 0 0.9662 0

mRMRq 0.9355 1 0.9776 0

MIM 0.8774 0 0.9324 0

JMI 0.8917 0 0.9352 0

CMIM 0.9444 1 0.9667 0

CIFE 0.8367 14 0.9605 0

ICAP 0.8848 2 0.9580 0

DISR 0.8908 0 0.9490 0
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5.6 Conclusions

This chapter proposes a novel OLS based feature selection method for classification. The

squared orthogonal correlation coefficients are defined and their relationship with the multi-

ple correlation coefficient and the canonical correlation coefficient have been revealed. Util-

ising the relationships, the OLS based feature selection method is developed where either

the multiple correlation coefficient (for binomial classification) or the canonical correlation

coefficient (for multinomial classification) is used as the feature ranking criterion. The equiv-

alence between CCA and LDA is analysed to demonstrate the statistical implication of the

canonical correlation coefficient in classification problem. The speed advantage of the OLS

based feature selection method in the greedy search has been analysed conceptually. In em-

pirical studies, a simple example has been used to illustrate the procedure of the OLS based

feature selection method, and to demonstrate the equivalence between the squared orthogonal

correlation coefficients, canonical correlation coefficient, and Fisher’s criteria. The synthetic

and real world datasets have been used to compare the mutual information based methods

with new OLS based methods, showing that the OLS method can achieve the best AUC

results in both the synthetic and real data analysis. It is concluded that, when continuous fea-

tures are used, compared with the mutual information based methods, the OLS based feature

selection method can produce a better performance for linear classification.

5.7 Summaries

The proposed frequency feature extraction method in Chapter 4 and the OLS based feature

selection method in Chapter 5 are applied into two applications, which is shown in Figure

5.3. For wind turbine fault detection, the nonlinear models are trained by SCADA data, and

NOFRFs features are extracted from the models for fault detection. For spontaneous pre-term

birth (sPTB) diagnosis, the linear models are trained by the magnetic impedance spectroscopy

(MIS) data. After the FRF features are extracted from the models, the optimal features for

sPTB diagnosis are selected by the proposed OLS based feature selection method.
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SCADA

Frequency Feature Extraction

Nonlinear
Model NOFRFs

Wind
Turbine

Fault
Detection

MIS

Frequency Feature Extraction

Linear
Model FRF Features

Feature Selection

sPTB
Diagnosis

Figure 5.3: Applications of the novel frequency feature extraction and feature selection meth-

ods.
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Chapter 6

Dynamic Model Sensor and Its

Application to Wind Turbine Fault

Detection

6.1 Introduction

The wind power generation, as a mainstream option for sustainable energy, requires timely

fault detection for reducing the cost of operation and maintenance (O&M) [87, 88, 89]. How-

ever, many advanced fault detection approaches are difficult to be implemented in practice

due to the need of additional equipment that may incur considerable costs [90]. Therefore,

fault detection based on data from supervisory control and data acquisition (SCADA) sys-

tems, which have been installed in most MW-scale wind turbines, has attracted extensive

research attention [91, 92, 93, 94, 95].

From the raw data of traditional hardware sensor measurements, simple signal process-

ing techniques are often used to detect wind turbine faults by checking whether the values

of some measurements have exceeded a threshold [96], or whether the trend of the measure-

ments with a particular wind turbine is significantly different from that with the neighboring

wind turbines [97]. However, hardware sensors cannot directly measure some physical vari-

ables such as bedding moments and drive-train torques, which are important indicators for

wind turbine failures. Consequently, the techniques of soft sensors have been applied to esti-
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mate the immeasurable information from the measurable physical variables [98, 99]. A soft

sensor is basically a predictive model that is used to infer critical but difficult-to-measure

physical variables [100, 101]. For example, the wind turbine shaft torque is vital for bear-

ing fatigue life prognostic but difficult to measure directly; thus, soft sensors were used to

estimate shaft torque from the measured generator power output and shaft rotational speed

[92, 99]. Principle component analysis (PCA) techniques can also be used as soft sensors to

estimate the damage sensitive latent variables. Jia et al. [102] used the standard deviation of

the secondary principle component (PC2) derived from measurable SCADA parameters as

the indicator of wind turbine failures.

However, many damage sensitive features cannot be revealed by individual measurements

but are embedded in the relationship between these measurements. For example, the power

curve which shows the relationship between the wind speed and wind turbine power output

has been used for wind turbine fault detections [103, 104, 105, 3]. Hereafter, we will refer to

such a relationship as the model sensor where the features of the relationship between mea-

surements rather than the measurements themselves are used to evaluate the health conditions

of underlying systems.

An illustration of the traditional hardware sensors, soft sensors, and model sensors is

shown in Figure 6.1. The system in Figure 6.1 can be a whole wind turbine or a subsystem of

the wind turbine such as the generator and gearbox. The inputs are the external environmental

conditions such as wind speed and ambient temperature, and the outputs are the physical vari-

ables affected by wind turbines operation such as power output and generator temperature.

Traditional soft sensors are often built off-line using first principles or data-driven methods

[106, 107], while model sensors are required to be built on-line to reveal the changes of the

relationship between the input and output measurements in real time.

The sensor measurements are used to represent health conditions of underlying systems

or components and damage sensitive features need to be extracted from the measurements

for fault diagnosis. The outputs of hardware and soft sensors are individual signals where the

features are extracted by signal processing techniques, e.g., Fourier Transform and wavelet

analysis [89]. Instead, model sensors use the models to represent system health conditions,

and exploit the model analysis techniques to extract the damage sensitive features [91, 22].
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Some researchers have already adopted the idea of the model sensor method for SCADA-

data-based wind turbine fault detection. For example, Gill et al. [108] used the SCADA

data in a normal wind turbine to generate a baseline copula-power curve, which is the power

curve transformed by the copula estimation; then the similarity between the copula-power

curves in the actual turbine operating condition and the baseline case is evaluated for the

purpose of wind turbine fault diagnosis. Yang et al. [91] trained 4th degree polynomial models

to describe the relationship between the SCADA parameters under both healthy and faulty

conditions. As this relationship varies with turbine health conditions, the model coefficients

can be used as indicators for wind turbine fault diagnosis. In these cases, the copula-power

curves and polynomial models can both be regards as model sensors for monitoring the health

conditions of wind turbines. The damage sensitive model features (the characteristics of the

copula-power curves and the coefficients of the polynomial models) rather than individual

signals are used for the purpose of fault diagnosis.

However, these existing model sensors are all static model-based, which cannot be used

to reveal the damage related changes in dynamic characteristics of wind turbine systems and

components. The present study aims to develop a dynamic model sensor which is based on

SCADA data and able to detect incipient wind turbine generator faults providing wind farm

operators an early alarm when a failure is about to take place. The idea is to establish a

dynamic model representation for the relationship between the wind speed, turbine ambient

temperature, and generator temperature. It is expected that some changes in this relationship

will be able to indicate the development of damage and the occurrence of failure. For these

objectives, it is proposed that the structure of the dynamic relationship between wind speed,

turbine ambient temperature, and generator temperature is first derived using first principles.

Then, the parameters in the dynamic relationship are updated every month using a parameter

estimation procedure to produce a model that can reflect the changes in this dynamic relation-

ship. After that, damage sensitive features are extracted monthly from the updated dynamic

model to perform fault diagnosis using a novel nonlinear system frequency analysis known as

NOFRFs (Nonlinear Output Frequency Response Functions) approach. This novel approach

is then applied to process the SCADA data from an operating wind turbine over 5 years when

a generator failure had taken place once. The results show that the new approach can not
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only detect the occurrence of the failure but also reveal incipient fault occurring well before

the failure, demonstrating significant potential of the new dynamic model sensor approach in

SCADA-data-based wind turbine fault detection.

Figure 6.1: Schematic diagram showing a comparison of hardware sensor, soft sensor and

model sensor.

6.2 Dynamic model sensor for wind turbine fault detection

Figure 6.2 illustrates the principle of the dynamic model sensor for the SCADA data-based

wind turbine fault detection. Here, the time series data are the data of the wind speed, ambient

temperature and generator temperature. These data are regularly collected from the SCADA

system and used to update the parameters of a model sensor. The model sensor represents

the dynamic relationship between the wind speed, ambient temperature, and generator tem-

perature over the time when the data are collected. Therefore, from the analysis of the model

sensor characteristics, the operational status of a wind turbine can be evaluated, and poten-

tial faults with the turbine system and components can be detected from a damage sensitive

index as illustrated at the bottom of Figure 6.2. The implementation of these ideas requires

to address three issues which are the model sensor design, model sensor parameter updating,

and model sensor analysis, respectively. The model sensor design and parameter updating
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are concerned with the determination of the model structure and parameters while the model

sensor analysis is to extract model features and evaluate an index which is sensitive to wind

turbine system and component damage for potential fault detection.

time

SCADA DATA
Data Data Data Data......

Updating Model Sensor Parameters

updated
model
sensor

Model Feature Extraction

model
sensor
feature

Evaluation of Damage Index

value of
damage
index

...... Indication of
damage/failure

Figure 6.2: Procedural of the model sensor method to detect the system changes.

6.3 Design and updating of model sensors for SCADA-data-

based wind turbine generator fault detection

6.3.1 Model sensor design

First principles will be applied in the following to find the relationship between generator

winding temperature, wind speed and ambient temperature to determine the model sensor

structure. According to [109], the relationship between the temperature change of the wind
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turbine generator winding ∆Tg(
◦C) and associated energy Q(J) is given by

Q = Cg∆Tg = Cg(Tg(k)− Tg(k − 1)) (6.1)

where Cg is the thermal capacitance (J/◦C), k ∈ Z+ denotes the discrete time, and Tg(k) is

the generator winding temperature at the kth time instant.

The energy Q can be determined by the “energy in” Qin caused by copper loss [110], and

the “energy out” Qout caused by cooling, that is

Q = Qin −Qout. (6.2)

Copper loss is the heat produced by the current in generator windings, and Qin generally has

a nonlinear relationship with the wind speed denoted as Vw. It is found that a third-degree

polynomial is sufficient to approximate this relationship [111]. as there is no copper loss

when wind speed is 0, the constant term in the polynomial is 0; therefore, the polynomial is

given by

Qin = f(Vw) = f3Vw
3 + f2Vw

2 + f1Vw. (6.3)

For Qout, we only consider the conduction effect between the external environment and the

generator, and the thermal resistance (◦C/W) between them is denoted as Rga. The equation

of the heat conduction is given by [109]

Qout = Tsqout = Ts
Tg − Ta
Rga

(6.4)

where qout is the heat flow rate (W), Ts = 600s is the time interval of the SCADA data

collection, and Ta is the ambient temperature (◦C).

The generators often have two cooling systems. One is the passive cooling system which

is composed of the blades directly mounted onto the generator rotor shaft. Another is the

active cooling system, which is composed of two electrical fans; the two fans work with a

constant power (say 3 kW in our case study) when a certain trigger temperature (40◦C in

the case study) is surpassed. To simplify the analysis, in this study, only the passive control

system is taken into consideration. Therefore, the thermal resistance Rga is determined by

generator rotor speed. The fan speed is generally proportional to 1/Rga, and the relationship
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between the rotor speed and the wind speed can be approximated by a third-degree poly-

nomial [112]. Thus, the relationship between the thermal resistance and the wind speed is

described by
1

Rga

= h(Vw) = h3Vw
3 + h2Vw

2 + h1Vw + h0. (6.5)

According to (6.1)-(6.5), the dynamic model representing the generator winding temperature

can be written as

Tg(k) =
C−1
g f(Vw(k)) + Tg(k − 1)− Ta(k)

1 + C−1
g Tsh(Vw(k))

+ Ta(k). (6.6)

6.3.2 Model sensor parameter updating

In order to apply the dynamic model (6.6) to SCADA data for wind turbine fault detection

in real time, the parameters of the model need to be updated regularly. In this study, the

parameters are updated every month.

The prediction error minimization (PEM) method [53] is applied to update the parameters

of model (6.6). The use of the PEM method is based on the relationship

T ∗g (k) =
C−1
g f(V ∗w(k)) + T ∗g (k − 1)− T ∗a (k)

1 + C−1
g Tsh(V ∗w(k))

+ T ∗a (k) + e(k)

, T̂g(k) + e(k)

(6.7)

where T ∗g (k), V ∗w(k) and T ∗a (k) are the generator temperature, wind speed and ambient tem-

perature measured by the SCADA system, e(k) is the modelling error. Considering (6.3) and

(6.5), T̂g(k) can be written as

T̂g(k) =
C−1
g (f3V

∗
w

3(k) + f2V
∗
w

2(k) + f1V
∗
w(k)) + T ∗g (k − 1)− T ∗a (k)

1 + C−1
g Ts(h3V ∗w

3(k) + h2V ∗w
2(k) + h1V ∗w(k) + h0)

+ T ∗a (k). (6.8)

In order to estimate the parameters of the model sensor, PEM minimizes the square of the

prediction error such that

min
θ

Ns∑
k=1

F 2
k (θ) (6.9)

where Ns is the sample size,

Fk(θ) =T̂g(k)− T ∗g (k)

=
C−1
g (f3V

∗
w

3(k) + f2V
∗
w

2(k) + f1V
∗
w(k)) + T ∗g (k − 1)− T ∗a (k)

1 + C−1
g Ts(h3V ∗w

3(k) + h2V ∗w
2(k) + h1V ∗w(k) + h0)

−
(
T ∗g (k)− T ∗a (k)

)
(6.10)
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and

θ =[θ1, . . . , θ7]T

=C−1
g

[
f3, f2, f1, Tsh3, Tsh2, Tsh1, 1/C

−1
g + Tsh0

]T (6.11)

is the vector of model sensor parameters to be updated every month for the purpose of wind

turbine fault detection. After the parameter vector θ has been obtained, the dynamic model

sensor, according to (6.8), is given by

y(k) =
θ1u1

3(k) + θ2u1
2(k) + θ3u1(k) + y(k − 1)− u2(k)

θ4u1
3(k) + θ5u1

2(k) + θ6u1(k) + θ7

+ u2(k) (6.12)

where u1 = V ∗w and u2 = T ∗a are model inputs and y = T̂g is the model output.

6.4 Extraction of damage sensitive model sensor features

using NOFRFs

To quantitatively evaluate the characteristics of the model sensors for fault detection, the

damage sensitive features should be extracted from each updated model sensor. The model

parameters can be the features in some cases, but the number of the parameters involved in

model sensor (6.12) implies the parameters are hard to be used to produce a simple index

for the fault detection objective. The frequency features of a system model are often very

effective features for the representation of system properties [113]. When a model is nonlin-

ear, the NOFRFs have been demonstrated to be effective for the frequency feature extraction

and analysis [44, 22]. Therefore, the NOFRFs will be exploited here for the extraction of the

model sensor features for wind turbine fault detection.

6.4.1 The effects of the system operating point

For model sensor (6.12), when wind speed varies around V 0
w and turbine ambient temperature

varies around T 0
a , the model sensor is known as being working around the operating point

(V 0
w , T

0
a ). If the variation of the turbine ambient temperature about T 0

a is negligible, the

extraction of the NOFRFs features of model sensor (6.12) can be achieved by considering the
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case where system (6.12) is subject to inputs

u1(k) = u(k) + V 0
w

u2(k) = T 0
a .

(6.13)

As one input has been set a constant, system (6.12) can be regarded as a single input and

single output system which has input u(k) and output y(k) and can be represented by the

Volterra series (2.18) where hn(τ1, . . . , τn), n = 0, . . . , N are dependent on (V 0
w , T

0
a ). Figure

6.3 illustrates this representation of model sensor system (6.12). Because hn(τ1, . . . , τn),

n = 0, . . . , N , are now the functions of (V 0
w , T

0
a ), the NOFRFs evaluated using the method in

Section 2.3.2 above will be affected by (V 0
w , T

0
a ). Therefore, the evaluated NOFRFs should be

compared with the baseline NOFRFs at the same operating point as (V 0
w , T

0
a ) for the purpose

of wind turbine fault diagnosis.

System (6.12)

+ +

+

+

u(k)

0

u1(k)

u2(k) y(k)

V 0
w

T 0
a

hn(τ1, . . . , τn), n = 0, . . . , Nu(k) y(k)

Figure 6.3: The effects of the operating points on the Volterra series expansions of model

sensor.

6.4.2 Damage sensitive indices

Denote the NOFRFs of model sensor (6.12) and their baseline that represent the current and

normal conditions of a wind turbine working about the operating point (V 0
w , T

0
a ) as Gn(jω)

and Gb
n(jω), n = 0, . . . , N , respectively. Then, the NOFRFs based damage sensitive indices

for the wind turbine can be defined as

In(jω) = |Gn(jω)| −
∣∣Gb

n(jω)
∣∣ . (6.14)
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In principle, Gb
n(jω), n = 0, . . . , N are the NOFRFs determined from a benchmark wind

turbine which is similar to the evaluated turbine system and is working normally in a similar

environment.

In practical applications, M(M ≥ 2) wind turbines in the same wind farm and located

near the wind turbine of concern can be used as the benchmark and, each time, sets of the

values of indices (6.14) are evaluated. Obviously, in most cases, when an alarm is raised from

the evaluated values of (6.14), there are two possible situations. One is the benchmark is

normal, so the alarm correctly indicated there exists a fault with the wind turbine of concern.

Another is the benchmark turbine is of fault so the alarm may be wrong. However, it is

reasonable to assume that at the same time lower than 50% of the benchmark wind turbines

can be in fault. Therefore, if less than 50% of the evaluated sets of the values of index (6.14)

indicate there exists a fault, the turbine of concern can be considered to be normal. Otherwise,

the turbine can be of fault. Thus, the SCADA data based wind turbine fault detection can be

achieved.

6.5 Application to fault detection of three operating wind

turbines

6.5.1 The SCADA data from operating wind turbines

The data used in the present study were collected from the SCADA of three operating wind

turbines which are referred to as A101, A102 and A103, respectively. The three wind turbines

are of the same model and located close to each other in a wind farm in Spain. The data

were collected from 08/2009 to 12/2014. Every 10 minutes, 40 measurements were obtained

from each turbine. These measurements include the wind speed, the temperature of various

components, the vibration of the tower, and the power output, etc. The maximum, minimum,

standard deviation and average of the measurements over the 10 minutes were recorded.

In 01/2013, the generator of turbine A103 was replaced for a serious rotor winding failure,

which is shown in Figure 6.4 This generator failure was detected by the SCADA system on

21/01/2013 after the generator had totally broke down. Then the wind turbine was recovered

114



6.5. Application to fault detection of three operating wind turbines

after a new generator was installed on 22/01/2013.

In this application study, the model senor technique proposed in Sections 6.2 to 6.4 will

be applied to process the SCADA data in order to demonstrate how to use the proposed

technique to detect the generator failure in advance. For this purpose, the SCADA data were

first pre-processed to clean the data by 1) Removing the data sets which have missing data

and outliers, and 2) setting wind speed as 0 when wind turbine stopped.

A considerable proportion of missing values were found from the SCADA data. For

example, 2.15% power data during 08/2009 to 12/2014 from wind turbine A103 are missing.

Data set with missing data cannot be used for model sensor parameter updating, so have to be

removed. The data set with outliers may interfere the accuracy of model parameter estimation

so should also be removed. The data measured when wind turbines stopped have been kept,

since the data can help to model the cooling processes. Wind turbines may shut down due to

wind speed is outside the cut-in (3 m/s) and cut-off (25 m/s) wind speed or curtailment. In

both cases, no power will be produced, and the generator will cool down. As the wind speed

has no effect on power output or generator temperature when a wind turbine stops, the wind

speed is treated as 0 in the data analysis.

6.5.2 Power curve analysis

The traditional power curve analysis is applied to the SCADA data of wind turbine A103,

which is shown in Fig. 6.5. Through comparing the power curves of the three years before

the failure happened, no significant change is found when the time approaches the failure.

6.5.3 Comparison with the constant thermal resistance model in the

cooling process

The similar thermal dynamic model structure can also be found in [114], where the thermal

resistant is assumed as a constant. The model fitting performance of the constant thermal

resistance model in [114] and the varying thermal resistance model (6.6) is compared in Fig.

6.6. There are two cooling processes shown in the two rows of the figure. In both processes,

the wind turbine is shut down from about 1300 minutes, and then the generator starts cooling
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6.5. Application to fault detection of three operating wind turbines

Figure 6.4: Rotor winding short circuit causing the generator failure of wind turbine A103 in

01/2013.

down. It is found for the model with the constant thermal resistance, the model predicted

cooling process is slower than the real system at the beginning, but faster at the end. The

reason of the mismatch is because that the cooling system still works at the beginning of the

cooling process, until the generator rotor shaft is totally stopped. The thermal resistance of the

real system unceasingly increases with the rotor speed slowdown in the cooling process. The

proposed model (6.6) successfully describes the varying thermal resistance, and the fitting

performance is improved significantly.

6.5.4 Application of the model sensor method to the wind turbine fault

detection

In this application, model sensor (6.12) was adopted. From SCADA data collected from

08/2009 to 12/2014, after cleansing, about 4000 data were used each month for updating
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Figure 6.5: Comparison of the power curve of 01/2013 with the power curves of 01/2010,

01/2011, and 01/2012.

the parameters of model sensor (6.12) for turbine A101, A102, and A103, respectively. For

A103, as it was broken down on about 21/01/2013, the data used for updating its model

sensor in January 2013 were collected during the period from 01/01/2013 to 19/01/2013.

From the data collected from the three turbines every month, three model sensors of the form

of equation (6.12) are determined and used to represent the operating conditions of the three

wind turbines, respectively. For example, the model sensor for A102 in 09/2009 was obtained

as follows.

y(k) =
0.0068u1

3(k)− 0.0714u1
2(k) + 0.7190u1(k) + y(k − 1)− u2(k)

1.7943× 10−4u1
3(k)− 0.0042u1

2(k) + 0.0348u1(k) + 1.0059
+ u2(k). (6.15)

In order to evaluate the NOFRFs of the model sensors, the operating point of
(
6.3, T̄a

)
was

used where T̄a is the average ambient temperature in each month and 6.3 m/s is the average

wind speed over 08/2009 to 12/2014. So, the inputs of model sensor (6.12) that were used
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Figure 6.6: Model fitting performance of the constant and varying thermal resistance models

in the cooling processes.

for the evaluation of the NOFRFs are given by

u1(k) = u(k) + 6.3

u2(k) = T̄a

(6.16)

where

u(k) = αu∗(k) (6.17)

u∗(k) = cos(ωckTs), and ωc = 7.27× 10−5rad/s, which corresponds to the period of one day

and is an important frequency component in the spectra of wind turbine SCADA measure-

ments.

The NOFRFs of model sensor (6.12) determined from every month’s SCADA data from

a wind turbine were evaluated using (2.32) from u(k) given by (6.17) and corresponding

output y(k) of the model sensor. The NOFRFs up to the 2nd order, i.e. G0, G2(0), G1(jωc)

and G2(j2ωc)) were used to assess the wind turbine operating conditions.

For example, in order to evaluate G1(jωc), the maximum order of system nonlinearity

was taken as N = 6 which implies the input u∗(k) should be scaled by at least 3 different

α (i.e. N̄ ≥ 3). In this case, following the procedure in Section 2.3.2, three responses of

model sensor (6.12) to u(k) = α1u
∗(k) = 0.25u∗(k), u(k) = α2u

∗(k) = 0.35u∗(k) and
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6.5. Application to fault detection of three operating wind turbines

u(k) = α3u
∗(k) = 0.5u∗(k), respectively, were used to determine G1(jωc) as

G1(jωc) = [1, 0, 0]


G1(jωc)

G3(jωc)

G5(jωc)


= [1, 0, 0]

[
AU(jωc)

TAU(jωc)
]−1

AU(jωc)
TY(jωc)

(6.18)

where

Y(jωc) =


Y 1(jωc)

Y 2(jωc)

Y 3(jωc)



AU(jωc) =


U1

1 (jωc) U1
3 (jωc) U1

5 (jωc)

U2
1 (jωc) U2

3 (jωc) U2
5 (jωc)

U3
1 (jωc) U3

3 (jωc) U3
5 (jωc)


(6.19)

Similarly, G0, G2(0), and G2(j2ωc)) can also be obtained.

In this study, A101 and A102 were used as the benchmark turbines. Therefore M = 2,

and the M sets of damage sensitive indices for A103 are given by

IA101
0 =

∣∣GA103
0

∣∣− ∣∣GA101
0

∣∣
IA101

1 (jωc) =
∣∣GA103

1 (jωc)
∣∣− ∣∣GA101

1 (jωc)
∣∣

IA101
2 (0) =

∣∣GA103
2 (0)

∣∣− ∣∣GA101
2 (0)

∣∣
IA101

2 (j2ωc) =
∣∣GA103

2 (j2ωc)
∣∣− ∣∣GA101

2 (j2ωc)
∣∣

(6.20)

and 

IA102
0 =

∣∣GA103
0

∣∣− ∣∣GA102
0

∣∣
IA102

1 (jωc) =
∣∣GA103

1 (jωc)
∣∣− ∣∣GA102

1 (jωc)
∣∣

IA102
2 (0) =

∣∣GA103
2 (0)

∣∣− ∣∣GA102
2 (0)

∣∣
IA102

2 (j2ωc) =
∣∣GA103

2 (j2ωc)
∣∣− ∣∣GA102

2 (j2ωc)
∣∣

(6.21)

The values of the two sets of indices evaluated by applying the proposed model sensor

technique to the SCADA data of A101, A102, and A103 over the period from 08/2009 to

12/2014 are shown in Figure 6.7.

It can be observed from Figure 6.7 that both IA101
0 and IA102

0 start from a point higher

than 0, and then follow a trend which slowly increases with time until the generator failure of
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6.5. Application to fault detection of three operating wind turbines

A103 takes place in January 2013. After the time point when A103 generator was replaced,

both IA101
0 and IA102

0 reduce back to about zero. These exactly reflect the actual operating

conditions of wind turbine A103 and indicate that I0 can be used as an excellent index for the

SCADA data based wind turbine fault diagnosis.

In addition, Figure 6.7 shows that I1(jωc) can also be a good index for the purpose of

SCADA data based wind turbine fault diagnosis. However, the trend with I0, which slowly

increases with time until the point when A103’s failure took place, cannot be very obviously

observed from I1(jωc).

Also it is worth pointing out that although G2(0) and G2(j2ωc) cannot, as clearly as I0,

indicate the trend of change of the wind turbine operating status, it is still necessary to take

the effect of system nonlinearity into account in the proposed analysis. If (6.3) and (6.5) are

simplified as

f(Vw) = f1Vw

g(Vw) = g0

(6.22)

the dynamic model (6.6) become linear, which is given by

Tg(k) =
C−1
g f1Vw(k) + Tg(k − 1)− Ta(k)

1 + C−1
g Tsh0

+ Ta(k). (6.23)

Fig. 6.8 shows the results of I0 and I1(jωc) determined when assuming the linear model

structure (6.23) so N = 1. It can be observed from Fig. 6.8 that I0 thus obtained is not able

to clearly show the trend of turbine winding ageing so as to properly issue an alarm before

the winding failure takes place. In addition, I1(jωc) obtained in this way is also obviously no

longer a good index for the turbine operating conditions.
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Figure 6.7: The values of A103 damage sensitive indices I0, I2(0), I1(jωc) and I2(j2ωc))

and of the model sensor (6.12) evaluated from the SCADA data collected from 08/2009 to

12/2014 with * indicating when the generator failure took place.
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Figure 6.8: The values of A103 damage sensitive indices I0 and I1(jωc) extracted from a

linear approximation of model sensor (6.12).
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6.6 Conclusions

In this chapter, a novel dynamic model sensor method is proposed for the detection of faults in

wind turbines from the SCADA data. The model sensor represents the dynamic relationship

between the generator temperature, wind speed, and ambient temperature with the model

structure derived from first principles. When applied to SCADA data to conduct turbine

fault detection, the parameters of the model sensor are updated every month by a parameter

estimation process so that the model can timely represent the turbine operating conditions.

Then, a NOFRFs based frequency analysis for the model sensor characteristics is carried out

to extract damage sensitive indices and to perform fault detection based on the values of these

indices. The application of the new model sensor method to 5 years’ SCADA data of three

operating wind turbines in Spain has shown that the new method can not only correctly detect

a generator failure with one of the three turbines but also reveal the trend of ageing with the

turbine’s winding insulations. The key idea with the proposed method is to use the changes in

the properties of inspected systems to conduct system fault detection. The field data analysis

in the present study has demonstrated the effectiveness of this novel idea and its potential

applications in wind energy industry.
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Chapter 7

Spontaneous Preterm Birth Prediction

and Diagnosis Based on Magnetic

Impedance Spectroscopy

7.1 Introduction

Infants are born at less than 37 weeks of gestational age are preterm births, in which about 65-

75% are spontaneous preterm births (sPTB) [115, 116]. Preterm birth is the leading cause of

the perinatal mortality in developed countries, and many of the surviving preterm infants suf-

fer serious morbidity [117, 118, 119]. Accurate prediction of spontaneous preterm birth helps

the perinatal health care, which is effective to reduce the associated complications [116].

The most effective risk factors for sPTB so far are cervical length (CL) and quantitative

fetal fibronectin (fFN) [115, 120, 121, 122]. However, the recent research showed that CL

and fFN had low predictive accuracy for sPTB among nulliparous women with singleton

pregnancies [4]. In addition, the risk factor like fFN is only feasible in predicting the sPTB

within 7-14 days [123, 124]. The short prediction time horizon makes the perinatal health

care be difficult. Therefore, other risk factors are necessary to be discovered to combine with

CL and fFN to improve the sPTB prediction accuracy.

In this chapter, Magnetic impedance spectroscopy (MIS) features are used as the new risk

factors for sPTB prediction. MIS is used to describe the relationship between the induced
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7.2. MIS measurement and data description

magnetic field and the excitation magnetic field under different frequency. The induced mag-

netic field is related to the dielectric properties of the environment around the induction coil

[125]. Thus, if the coil for producing induced magnetic field is surrounded by the investi-

gated object, the change of the induced magnetic field can be used to indicate the change

of the characteristics of the object. The MIS technique has been used in many areas, such

as food quality assessment [126], nonferrous metal classification [127], and conductive fluid

imaging [128].

The traditional MIS measurement device converts the raw time domain data to frequency

domain data by the Field-Programmable Gate Array (FPGA) at several discrete frequencies,

and only provide frequency domain data. However, only the steady-state data are utilised to

generate frequency domain data, while the transient-state data between the frequency switch-

ing are discarded. To make better use of the transient-state data, the time series model is

trained by both transient and steady-state data, and the frequency domain features are gener-

ated from the model indirectly. Compared to the traditional frequency domain measurements,

the proposed method can obtain the frequency features over a continuous range rather than a

few discrete points.

After the features have been obtained, the feature selection method introduced in Chapter

5 are applied to select the most useful features, which are then used in logistic regression

models for sPTB prediction. The results demonstrate the feasibility of the MIS in sPTB

prediction, and show the potential of the proposed time domain data modelling method in

carrying out the MIS measurement.

7.2 MIS measurement and data description

The data are collected measured by MIS2 device which is designed to safely take measure-

ments of the impedance of the cervix tissue in pregnant women. The impedance is defined

by (2.33), where the input of the system is the alternating current (AC) and the output is the

induced voltage which is affected by the cervix tissue. The AC is applied at 15 different fre-

quencies sweeping from 21 kHz to 1.013 MHz. Each frequency takes 12 ms, and the highest

frequency (i.e. 1.013 MHz) will repeat once. Therefore, the total time of a frame, i.e. a sweep
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7.2. MIS measurement and data description

of 15 frequencies, is 192 ms. As the sampling frequency is 40 MHz, 480,000 data (in 12 ms)

are sampled at each frequency. Figure 7.1 shows an example of the input and the output of a

frame. Generally, the amplitude of AC decreases with the increase of the frequency to control

the induced voltage within a safe range to pregnant women.
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Figure 7.1: The time history of a frame.

After the nurse switches on the probe, the measurement for a pregnant woman is taken in

the following order.

• Ferrite target: the nurse puts the probe into ferrite solution and press the footswitch.

• Air: the nurse takes out the probe and presses the footswitch. Then the probe is wiped.

• Cervix 1: the probe is put on the cervix and the footswitch is pressed.

• Vaginal 1: the probe leave the cervix a short distance but still in the vagina. Then the

nurse presses the footswitch.

• Cervix 2: repeat Cervix 1.
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7.2. MIS measurement and data description

• Vaginal 2: repeat Vaginal 1.

• Cervix 3: repeat Cervix 1.

In this process, the MIS2 continuously generate the data in frames. The whole measurement

for a woman needs 2000 to 5000 frames. In each time the nurse presses the footswitch, an

event flag is generated and the following 4 data frames are stored. There are 7 events in

total for a woman’s measurement and 28 raw data frames are stored. Except the 28 raw data

frames, all other frames are converted into frequency domain by FPGA and stored. For each

frame, both of the input AC and the output induced voltage will be converted to 16 complex

numbers by Fourier transform to represent the amplitude and phase at 16 frequencies. Taking

21 kHz as an example, the first frequency in a frame is 21 kHz, which takes 12 ms. The

leading 1 ms and ending 1 ms is transient process which is shown in Figure 7.2. Only take

the middle of 10 ms (i.e. 40,000 samples) to do Fourier transform. Then take the complex

number at the 21 kHz as results. The same procedure is repeated in other frequencies, so

16 complex numbers are generated in one frame. In the end, the frequency domain data (or

FPGA data) for all frames are given and time domain data (or raw data) for only 28 frames

are generated. Figure 7.3 shows the whole measurement of the imaginary part at 1.013 MHz

for a woman. There are 5174 frames for both the input and the output in this measurements.

The 7 events are marked as the red triangles in order. The raw data are collected from each

red triangle to the following 4 consecutive frames.
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Figure 7.2: The time history of the 21 kHz measurement. The two red dash lines split the

time history into 3 parts. The head and end parts are the transient states, and the middle part

is the steady state.
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Figure 7.3: The imaginary part of the output spectrum at 1.013 MHz in a measurement. The

7 events are marked by the red triangle.
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7.3 System identification using MIS data

The relationship between the input current u and the induced output voltage y is represented

by an ARX model. The model terms are determined by FROLS algorithm shown in Algo-

rithm 1. It is found that the sampling frequency is too high, which leads to the neighbour

terms such as y(k − 1) and y(k − 2) are nearly linearly dependent. Thus, after the orthog-

onalisation, the FROLS algorithm tends to reject the terms which are close, but select the

terms which have large time delay difference. The large time delay terms lead to a high order

ARX model which is overly complicated for this study. Therefore, the original MIS data are

down sampled to 5 MHz.

Generally, the FROLS algorithm selects similar terms for different women’s MIS mea-

surement, so the ARX model structure is fixed as

y(k) =θ0 + θ1y(k − 1) + θ2y(k − 2)

+ θ3u(k) + θ4u(k − 1) + θ5u(k − 5) + e(k),
(7.1)

where θ0, . . . , θ5 are the model parameters and e is the noise. The parameters are trained

by a frame of the MIS data, so each frame corresponds to a set of parameters. It is noticed

that both u and y vary around 32800. If we centre u and y to make them vary around 0, the

constant term θ0 can be eliminated. Thus, the ARX model structure change to

yc(k) =θ1yc(k − 1) + θ2yc(k − 2)

+ θ3uc(k) + θ4uc(k − 1) + θ5uc(k − 5) + e(k),
(7.2)

where yc and uc are the centred u and y.

The parameters θ1, . . . , θ5 are determined by least-squares which minimises the cost func-

tion

R(θ) =
1

Ns − 5

Ns∑
k=6

[(yc(k)− xcθ]2 , (7.3)

where

θ = [θ1, . . . , θ5]>

xc(k) = [yc(k − 1), yc(k − 2), uc(k), uc(k − 1), uc(k − 5)] ,
(7.4)

and Ns is the number of samples. It is found the value of the parameters are effected by all

samples. However, the most of the data are in the steady states which are sinusoidal wave at

128



7.3. System identification using MIS data

a specific frequency, while the transient states which cover more frequency information only

account for a small part. Therefore, the least squares make the model intend to fit the steady

states but ignore the transient states. To make the least squares focus on fitting transient

states, the steady states in the data are removed. Thus, the cost function becomes

R(θ) =
1

|S|
∑
k∈S

[(yc(k)− xc(k)θ]2 , (7.5)

where S = {k|y(k − 1), y(k − 2), u(k), u(k − 1), u(k − 5) /∈ steady states} and |S| is the

cardinality of the set S.

After the parameters are evaluated, which are denoted as θ̂, the model fitting performance

should be validated. In time domain, as xc(k)θ̂ is the model predicted output, R(θ̂) is the

mean square error (MSE) of the model, which can used for model validation. MSE ranges

from 0 (perfect fitting) to infinity (bad fitting). The models in this study can also be validated

in frequency domain. Firstly, the frequency response of the ARX model is obtained. The

ARX model is trained by a frame of the raw data. Secondly, the frequency responses obtained

from the steady state of the raw data. The impedance spectrum or the frequency response is

computed by

Z(ejωiT ) =
Ys(e

jωiT )

Us(ejωiT )
, i = 1, . . . , 15, (7.6)

where Ys(ejωiT ) and Us(ejωiT ) are the spectra of the input and output in steady state at fre-

quency ωi. The subscript 1 stands for lowest frequency (i.e. 21 kHz) and 15 stands for highest

frequency (i.e. 1.013 MHz). Thirdly, the impedance spectrum or the frequency response from

the FPGA is obtained. An example is shown in Figure 7.4, where 2.5×106 Hz is the Nyquist

frequency. The frequency responses obtained in the three approaches generally match each

other, so the model is validated.
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Figure 7.4: The comparison of the impedance computed from the ARX model, the spectrum

of raw data, and the FPGA direct results.

7.4 Impedance calibration

To remove the effect of the ambient conditions and the device itself, the impedance obtained

in the last section should be calibrated. Three references, i.e. Air1, Air2, and Ferrite1, are

used for the calibration. In Figure 7.5, the 3 references and the 7 events are shown using

the impedance provided by FPGA. The 10 consecutive frames started from Air event are

used as Air1, and the 10 consecutive frames started from Ferrite target event are used as

Ferrite1. There is no event flag triggered for Air2. We simply use the 10 consecutive frames

which are 100 frames before Cervix 1 event triggering. The two air references are used for

zeroing the device, where Air1 is for the zeroing of Ferrite1 and Air2 is for the zeroing of the

following events, like Cervix 1, Virginal 1, etc. The Ferrite1 is used for phase reference, as

the ferrite target generates a known phase shift (−π/2). The calibration procedure is listed as

the following.
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7.4. Impedance calibration

• Calibrate the impedance of Ferrite1 Zf1 to Air1 Za1 by

Zfa = Zf1 − Za1. (7.7)

• As the real phase for Zp is −π/2, the impedance measured by this device should shift

phase by ∆θ.

∆θ = −π
2
− ∠Zfa. (7.8)

• The phase adjusted impedance is given by

Zθ = cos ∆θ + i sin ∆θ. (7.9)

• Calibrate the impedance of other events Ze to Air2 Za2 by

Zea = Ze − Za2. (7.10)

• Shift the phase of the calibrated impedance Zea by −π/2.

Zeaθ = ZeaZθ. (7.11)

It is noticed that the 3 references from FPGA measurements are only available at the

15 frequencies. However, the impedance obtained by the ARX model is continuous over

a frequency range (i.s. from 0 to Nyquist frequency). To solve this problem, a 3rd degree

polynomial curve is fitted into the 15 frequencies, and the 3 references over the frequency

range is approximated. The real part and the imaginary part are fitted separately, which are

shown in Figure 7.6. Through the 3rd degree polynomial models of Air1, Air2, and Ferrite1,

the continuous references are obtained.
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Figure 7.5: The frames used for calibration. The blue line is the imaginary part of the

impedance at 1.013 MHz given by FPGA. The 3 green areas from left to right are Ferrite1,

Air1, and Air2. Each green area has 10 consecutive frames.
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Figure 7.6: The impedance of Ferrite1 reference from 0 to 1.1 MHz.
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7.5 Feature extraction

After the impedance calibration, we average the 4 consecutive frames of Cervix 1, Cervix

2, and Cervix 3, and the three averaged impedance spectra are used for the sPTB prediction.

For the FPGA measured impedance, there are only 15 discrete points on the spectra. For the

ARX model predicted impedance, the completed spectrum from 0 to 2.5 MHz (i.e. Nyquist

frequency) is obtained. However, in Figure 7.7, we notice that the frequency range for the

training data is rather narrow, although the transient states are used in the training. The 15

transient states used as training data are shown in Figure 7.8. The highest frequency last 24

ms, while the other frequencies occupy 12 ms each. Except the first transient state is 1 ms,

the rest transient state is 2 ms. Therefore, instead of using the completed spectrum, the model

predicted impedance from 0 to 1.1 MHz is used for sPTB prediction.
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Figure 7.7: The spectra of the training input u.
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Figure 7.8: The transient and steady states of a frame.

It is found that the impedance in the low frequencies cannot effectively reflect the charac-

teristics of the cervix tissue. An example of 21 kHz impedance is shown in Figure 7.9. It is

hard to distinguish the difference among the air event, the cervix events, and virginal events.
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Therefore, it is suggested that only use the impedance at the high frequencies (i.e. from 502.1

kHz to 1.1 MHz) for sPTB.
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Figure 7.9: The imaginary part of the impedance at 21 kHz.

The absolute value of the impedance is effected by the device, so the gradient value

computed by (7.12) is used as the feature.

F (ω2) = 2π
Z(ejω2T )− Z(ejω1T )

ω2 − ω1

, (7.12)

where ω1 and ω2 are neighboured frequencies, and ω2 > ω1. From 502.1 kHz to 1.013

MHz, only 6 impedance points are measured by FPGA impedance, so 5 gradient impedance

can be computed. Thus, there are 10 features including real parts and imaginary parts of

the 5 impedance gradients. The difference ω2 − ω1 used for the FPGA impedance gradient

evaluation is about 100 kHz. For the ARX model predicted impedance, the difference ω2−ω1

can be smaller to obtain more accurate gradient, and 100 Hz difference is used in this study.

If the frequency interval of F (ω) is 10 kHz, 60 impedance from 502.1 kHz to 1.1 MHz can be

used for sPTB prediction. Therefore, there are 120 features from the ARX model including

real parts and imaginary parts.

7.6 Results and discussion

The MIS data are measured from 39 pregnant women, of which 25 are full term birth and 14

are sPTB. In the measurement, each woman has 7 events flagged, in which the impedance
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spectra of Cervix 1, Cervix 2, and Cervix 3 are used for sPTB prediction. The impedance

spectra are obtained from both the FPGA and the ARX model. After the calibration and

gradient impedance extraction, 10 features are obtained from the FPGA measurements, and

120 features are obtained from the ARX model prediction. The OBCC method introduced in

Section 3.3.2 and OLS method proposed in the last section are applied to select the significant

features. Then, the selected features are given into the logistic regression model. The AUC of

the ROC is used to evaluate the classification performance of the logistic regression models.

In this analysis, the features are categorised in three ways and compared.

1. The FPGA features and the ARX model features.

2. The calibrated features and the non-calibrated features.

3. Cervix 1 features, Cervix 2 features, and Cervix 3 features.

The results are given in the following figures, where Mc denotes the calibrated ARX model

features, Mn denotes the non-calibrated ARX model features, Fc denotes the calibrated

FPGA features, and Fn denotes the non-calibrated FPGA features. The mean value of the

AUC over 2 to 5 features are shown in the legends. Through comparing the results in the

figures, the following conclusions can be obtained.

1. The number of features are from 2 to 5. Generally, more features gives better (higher)

AUC.

2. The ARX model features are generally better than the FPGA features. The reason could

be that the gradient features obtained from the ARX model features are more accurate

due to the smaller ω2 − ω1 in (7.12). Another obvious reason is that the feature pool

for the ARX model features (120 features) are much more that the FPGA features (10

features).

3. The calibrated features are generally better than the non-calibrated features. This result

confirms the effectiveness of the impedance calibration.

4. Generally, the classification performance becomes worse when the features move from

Cervix 1 to Cervix 3. The reason could be that the Cervix 3 are effected more by the

temperature drift than the Cervix 1 [129].
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Figure 7.10: The AUC of the logistic regression model for Cervix 1 features.
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Figure 7.11: The AUC of the logistic regression model for Cervix 2 features.
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Figure 7.12: The AUC of the logistic regression model for Cervix 3 features.

7.7 Conclusions

In this chapter, the MIS data are analysed for the sPTB prediction. Compared to the tra-

ditional method which only makes use of the frequency domain measurement, this chapter

provides a new idea of obtaining the impedance spectra from the time domain measurement.

The transient part of the time domain data are applied to train the ARX models. Then, the

impedance spectra are evaluated by the frequency responses of the models. The new method

provides the entire continue impedance spectra rather than discrete impedance points on the

spectra obtained from the traditional method. Through the results of this chapter, it is demon-

strated that the impedance calibration is necessary. In addition, we also suggest that the future

study can focus on the impedance from Cervix 1 event, which is affected less by the tempera-

ture drift. The analysis in this chapter shows the potential capability of the MIS data in sPTB

prediction, and provides a guidance for the future study.
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Chapter 8

Conclusions and Future Works

This chapter lists the main contributions in Chapters 4 to 7 and the direction of the future

works.

8.1 Contributions

The PhD research work aims to develop the new methods for system frequency feature ex-

traction and selection of features for machine learning oriented classification and to apply

these methods in the fault detection and medical diagnosis. The four contribution chapters

are Chapters 4 to 7. The key contributions are as follows.

• In Chapter 4, a new modelling and model feature extraction method is introduced for

the system characteristics monitoring. The NARX models are built with the system

input-output data, and then the NOFRF features are extracted from both the data driven

and real system models. As the NOFRFs of the data driven and real system models

match each other, it is verified that the proposed method effectively can reflect the

characteristics of the real system and tracks the characteristics change of the real sys-

tem. Specifically, the proposed method is examined in a nonlinear system with two

stable equilibria A and B, and three NARX models are built to represent the system

dynamics around A, B, and both A and B. It is found that the NARX model built for

A (or B) can only reveal the characteristics around A (or B), while the NARX model

139



8.1. Contributions

built for both A and B can effectively reflect the characteristics over both equilibria of

the original system.

• Motivated by the work in Chapter 4, the model sensor method is proposed in Chapter

6 to detect the wind turbine rotor winding failure with SCADA data. The model sensor

is expected to monitor the change of the relationship between the generator tempera-

ture, the wind speed, and the ambient temperature. The structure of the model sensor

is designed by the first principles. The parameters of the model sensor is updated

monthly by the PEM method. After the model sensor is built, the NOFRFs features are

extracted from each model sensor. The method to evaluate NOFRFs under different

operating points is provided. Based on the proposed model sensor method, the strategy

of the alarm system which can be applied in the real wind farms is developed. The

results show the proposed model sensor method and NOFRFs analysis can not only in-

dicate the time of the failure happen, but also reveal the ageing process of the winding

insulation.

• In Chapter 5, a OLS based feature selection method for classification is proposed. The

properties of the squared orthogonal correlation coefficients are analysed, and the rela-

tionship with canonical correlation coefficient and Fisher’s criterion is revealed. For a

greedy search, it has been demonstrated that computing the multiple correlation coeffi-

cient or the canonical correlation coefficient using the OLS based method is faster than

that directly using the definitions. Besides the fast speed and the statistical meaning,

the proposed method can also be used to deal with both continuous and categorical

features. In addition, as no requirement of tuning hyperparameters and discretising

features, the proposed method is more convenient to be applied in the preprocessing

stage of classification.

• In Chapter 7, the MIS data and the feature selection technique proposed in Chapter 5

are used for sPTB prediction. The new idea of extracting the impedance spectra from

the time series model is proposed. It is found that the new model features generally

give better prediction performance than the traditional FPGA features. This chapter

also compares the calibrated features with the non-calibrated features. The results show
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that the impedance calibration improves the sPTB prediction performance significantly.

These application studies demonstrate that the proposed methods have great potential to

be used in many engineering system fault detection and medical diagnosis related applica-

tions.

8.2 Future works

The future work of this thesis can be carried out in the following aspects.

• The NOFRFs and FRF analysis proposed in the thesis highly rely on the model sensor

method. The core of the model sensor method is system identification. However, the

stability of the nonlinear system identification is still an open problem. The stability

of the model sensors directly affects the success of the NOFRFs or FRF extraction. To

overcome this issue, using simulation error minimisation (SEM) method rather than

PEM method for model parameter estimation might be more likely to generate stable

models [130]. In addition, the constraints on the parameters, which is often used to

guarantee the stability of linear system identification, might help to ensure the stability

of nonlinear model identification [53].

• The accuracy of the NOFRFs and FRF features extracted from model sensors depends

on the prediction error of the model sensors. The uncertainty of the NOFRFs and FRF

features are important for the fault detection and diagnosis. Through the prediction

error, the uncertainty of the NOFRFs and FRF features might be estimated by error

propagation law [131] or Bayesian estimation [132].

• The NOFRFs can be estimated under general inputs rather than harmonic inputs only

[10]. The fault sensitivity of the NOFRFs under different inputs, such as impulse, step,

harmonic inputs, should be investigated.

• Volterra series based nonlinear frequency response functions mentioned in this thesis

can not describe sub-harmonic phenomena, which in some fields are key features for
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fault detection [133]. It will be investigated whether the idea of GFRF and NOFRF can

be extended to depict the sub-harmonic of nonlinear systems.

• In Chapter 5, the correlation based criteria are used for ranking the features. However,

the correlation can only describe the linear association between the features and the

responses. The feature selection method for the nonlinear features is necessary to be

developed in the future.

• Based on the results in Chapter 7, the future MIS analysis can focus on the Cervix 1

event. In addition, the feature used in Chapter 7 is only impedance gradient. With the

help of the time series model, the more advanced techniques, such as the bin method

[134, 135] and the curve kurtosis [136], can be applied for the feature extraction in the

future.

These future works will further develop the proposed methods and help to explore wider

application scenarios.
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