
   

 

 

Analysis and design of nonlinear systems in the 

frequency domain 
 

 

By: 

Yun-Peng Zhu 

 

 

 

 

 

 

A thesis submitted in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy 

 

 

 

 

 

The University of Sheffield 

Faculty of Engineering 

Department of Automatic Control and Systems Engineering 

 

 

 

August 2019 



ABSTRACT  I 

Abstract 

Nonlinear system analyses have been widely applied in engineering practice, where the frequency domain 

approaches have been developed to satisfy the requirement of the analysis and design of nonlinear systems. 

However, there exist many problems with current techniques including the challenges with the nonlinear 

system representation using physically meaningful models, and difficulties with the evaluation of the 

frequency properties of nonlinear systems. In the present work, some new approaches, that have potential to 

be used to systematically address these problems, are developed based on the NDE (Nonlinear Differential 

Equation) model and the NARX (Nonlinear Auto Regressive with eXegenous input) model of nonlinear 

systems.  

In this thesis, the background of the frequency domain analysis and design of nonlinear systems is 

introduced in Chapter 1, and the existing approaches are reviewed in Chapter 2. In general, the frequency 

analysis of nonlinear systems is conducted based on the Volterra series representation of nonlinear systems, 

and as basic issues, the evaluation of the Volterra series representation and its convergence are discussed in 

Chapters 3 and 4, respectively. An extension of the existing frequecncy analysis and design techniques is 

discussed in Chapter 5 to facilitate the analysis of the effects of both linear and nonlinear characteristic 

parameters on the output frequency responses of nonlinear systems. An experimental study is conducted in 

Chapter 6 to show how a nonlinear component can benefit the engineering system, such to empahasis the 

significance of developing the analysis and design approaches of nonlinear systems. The main contributions 

are summarized as below. 

(1) The GALEs is proposed that can accurately evaluate the system Volterra series representation. By 

using the GALEs, the solution to the NDE model or the NARX model of nonlinear systems can be 

obtained by simply dealing with a series of linear differential or difference equations, which can 

facilitate a wide range of nonlinear system analyses and associated practical applications.   

(2) A new criterion is derived to determine the convergence of the Volterra series representation of 

nonlinear systems described by a NARX model. The analysis is performed based on a new function 

known as Generalized Output Bound Characteristic Function (GOBCF), which is defined in terms of 

the input, output and parameters of the NARX model of nonlinear systems. Compared to the existing 

results, the new criterion provides a much more rigorous and effective approach to the analysis of the 

convergence conditions and properties of the Volterra series representation of nonlinear systems. 
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(3) The Output Frequency Response Function (OFRF) in terms of physical parameters of concern is 

introduced for the NARX Model with parameters of interest for Design (NARX-M-for-D). Moreover, 

a new concept known as the Associated Output Frequency Response Function (AOFRF) is introduced 

to facilitate the analysis of the effects of both linear and nonlinear characteristic parameters on the 

output frequency responses of nonlinear systems. 

(4) Nonlinear damping can achieve desired isolation performance of a system over both low and high 

frequency regions and the optimal nonlinear damping force can be realized by closed loop controlled 

semi-active dampers. Both simulation and laboratory experiments are studied, demonstrating the 

advantages of the proposed nonlinear damping technologies over both traditional linear damping and 

more advanced Linear-Quadratic Gaussian (LQG) feedback control which have been used in practice 

to address building isolation system design and implementation problems. 
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CHAPTER 1  1 

Chapter 1. Introduction 

1.1 Background 

  In engineering practice, the analysis and design of a nonlinear system is often conducted in both the time 

and frequency domain, including, for example, identifying a mathematic model to represent the system [1-3], 

and studying and designing the system’s output frequency response [4-6].   

Compared with the time domain analyses and design methods for nonlinear systems such as, e.g., the 

harmonic balance method and the multi-scale method [7,8], etc., the nonlinear system design in the frequency 

domain does not need a specific model description and can therefore deal with a more general class of 

nonlinear systems [9,10]. 

  In this Chapter, the frequency domain analysis and design of nonlinear systems are reviewed, both the 

development and existing issues are covered in deteils. 

1.1.1 Modelling of nonlinear systems 

  Basically, the modelling of nonlinear systems is to determine a mathematical model in order to describe 

the behaviour of the systems under certain input or working conditions [11]. There are varies model 

structures that have been studied to describe a wide class of nonlinear systems, i.e., the NDE (Nonlinear 

Differential Equation) model [12], the NARX (Nonlinear Auto Regressive with eXegenous input) model 

[13,14], the W-H (Wiener-Hammerstein) [15,16], etc.. The analysis and design of nonlinear systems are 

usually studied based on the NDE model due to its clear physical meanings [17-20]. For example, Hwang 

and Lin [18] studied the sliding mode control of NDE systems by the application of fuzzy set theory; Barton 

et al. [19] investigated the nonlinear energy harvester represented by an NDE model.  

However, in most cases of engineering designs, such as, e.g., vibration isolators made of viscoelastic and 

composite materials [21] and bladed disks of aero-engines [22], it is difficult or impossible to find such a 

physical model for the systems. But, it is possible to find, via a nonlinear system identification approach 

[23-26], a data driven model, i.e. the NARX model and the W-H model, representing the relationship 

between the input excitation and corresponding system response. For example, by using the FROLS 

(Forward Regression Orthogonal Least Squares) algorithm, the NARX model can be identified by using the 

input and output data of a system [23]. Many algorithms have been proposed for this purpose, which include, 
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for example, the PRESS (Predicted REsidual Sums of Squares) algorithm [24], the iterative FROLS 

algorithm [25], and block-oriented nonlinear system identification approaches [26]. 

  These data driven models are basically data fitting solutions and their physical meanings are often not 

transparent to engineers [11]. Considering the discretization relationship between a system NDE model and 

its corresponding NARX model, it is possible to identify a NARX model such that the physically meaningful 

parameters appear explicitly as coefficients in the model. For example, Wei et al. [27] identified the NARX 

models with coefficients explicitly representing the design parameters for particle dampers and thermoplastic 

auxetic foams. Liu et al. [28] developed an identification algorithm that can produce the parametrical NARX 

model of a cantilever beam. 

In the present study, the NDE and the polynomial NARX models of nonlinear systems will be used for the 

analysis and design of nonlinear systems in the frequency domain. 

1.1.2 Frequency domain analysis and design of nonlinear systems 

The frequency domain design of linear systems [29-31] based on the traditional concept of Frequency 

Response Function (FRF) has been widely applied in engineering system designs such as, e.g., the design of 

the dynamic properties of vibration absorbers [32], vehicle suspensions [33], and aero engine blades [34]. 

However, many systems in practice cannot be simply described by a linear model [35]. In this case, nonlinear 

system analysis and design methods in either the time or the frequency domain have to be applied to study 

these systems.  

(A) The GFRFs of nonlinear systems 

The frequency domain analyses of nonlinear systems were originally studied by using the Generalized 

Frequency Response Functions (GFRFs) [36], which is developed based on the Volterra series representation 

of nonlinear systems. The characteristics of the GFRFs have been studied by researchers. For example, Han 

et al. [37] discussed the non-parametric identification of GFRFs for Multiple-Input-Multiple-Output (MIMO) 

systems. Zhang and Billings [38] investigated the gain bound properties of the GFRFs. Yue et al. [39,40] 

studied the properties of GFRFs by using a graphic method, where only lower order GFRFs can be displayed 

but higher order GFRFs are difficult to investigate due to the multi-dimensional nature of the GFRFs. 

Moreover, based on the NDE and NARX model, recursive algorithms were proposed to evaluate the GFRFs 

by using the probing method [13,41,42].  

  The GFRFs have played an important role in nonlinear system analyses [43-51]. For example, the output 

frequency combination characteristics were theoretically explained using GFRFs [43], and algorithms have 
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been proposed to determine the nonlinear output frequency components [44-46]. The NDE model was 

reconstructed from a NARX model of a nonlinear system, based on the observation that the GFRFs of the 

NDE and NARX model of the same system are invariant [47-49]. Chatterjee et al. [50,51] studied the 

parameter estimation approaches of nonlinear systems using the high order GFRFs, where both single and 

multi-tone harmonic excitations were applied for the parameter estimation. The parameter characteristics of 

nonlinear systems were also discussed by Jing et al. using the GFRFs in [52-54]. 

However, the higher order GFRFs are very complex due to the multi-dimensional nature, and difficult to 

be used in practice. To address this and related issues, many new concepts such as Nonlinear Output 

Frequency Response Functions (NOFRFs) [55], Output Frequency Response Function (OFRF) [56], and 

Higher Order Sinusoidal Input Describing Functions (HOSIDF) [57] have been proposed. 

(B) The NOFRFs based analysis of nonlinear systems 

The concept of NOFRFs [55] is a new extension of the FRF to the nonlinear case. One of its most 

attractive features is its one-dimensional nature, which has many advantages, as has been demonstrated by a 

wide range of studies [58-64]. For example, The NOFRFs have been used for the damage detection and fault 

diagnosis in many engineering systems. Peng et al. [58] studied the NOFRFs based fault detection of cracked 

beams. The concept of transmissibility of nonlinear systems was introduced using the NOFRFs concept and 

applied to find the location of fault in a MDOF system [61]. Chu et al. [62] applied the NOFRFs approach in 

the condition monitoring of rotor systems. Moreover, the NOFRFs have also been applied for system 

identification, where both the linear and nonlinear parameters of a MDOF structure have been determined 

[63,64]. 

However, current applications of the NOFRFs use a Least Squares (LS) based evaluation method [55,58]. 

This requires an appropriate selection of the maximum order of the system nonlinearity, which is sometimes 

difficult and may suffer from numerical issues. In addition, the method requires the system response data 

from several simulation or experimental tests, which may not be convenient for implementation. This issue is 

partly addressed by using the Associated Linear Equations (ALEs) of nonlinear systems [65-68], but the 

existing methods can only deal with systems represented by simple NDE models such as Duffing systems 

[65], etc.. More effective approaches are required to systematically address the issues associated with more 

general NDE/NARX models of nonlinear systems. 

(C) The OFRF based design of nonlinear systems 

The OFRF reveals an analytical relationship between the output frequency response of nonlinear systems 
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and the parameters which define the system nonlinearities and can be used to facilitate both the analysis and 

design of nonlinear systems in the frequency domain [69,70]. The HOSIDF can be considered to be a special 

case of the OFRF of a static polynomial nonlinear system [71,72] and has been applied to the detection and 

optimal compensation of degrading nonlinear effects in Lur’e-type systems [73]. 

Since the introduction of the OFRF in 2007 [56], many studies on the application of this concept to the 

nonlinear system analysis and design have been conducted. For example, Peng and Lang [74] have derived a 

recursive algorithm to determine the structure of the OFRF for the system described by a nonlinear 

differential equation model. More recently, the OFRF based approach has been applied in the analysis and 

design of nonlinear vibration isolators [75-77]. For example, by using the OFRF, Lang et al. [75] and Peng et 

al. [76] have rigorously proved significant beneficial effects of nonlinear damping on vibration isolation 

systems. Recently, Lv and Yao [77] have applied the OFRF to study the effect of damping coefficients on 

both the force and displacement transmissibility, showing that the nonlinear isolators can perform better than 

linear isolators over certain frequency ranges. 

It is well known that the output frequency responses of nonlinear systems are affected by both the linear 

and nonlinear characteristic parameters of the system. The OFRF shows an analytical relationship between 

the output spectra of nonlinear systems and the system’s nonlinear characteristic parameters, but this 

relationship is only valid under the condition that the system linear characteristic parameters are fixed. Very 

recently, the issue associated with the effect of linear characteristic parameters on the nonlinear system output 

frequency responses have been studied [78-80]. However, the result is, so far, only a conceptual polynomial 

approximation for the system output spectrum, and there are still no results that can systematically relate the 

output frequency response of nonlinear systems to both system linear and nonlinear characteristic parameters 

so as to facilitate the system analysis and design. 

1.1.3 LS methods in nonlinear system analyses 

It can be seen from the above discussion that, Least Squares (LS) methods including the ordinary LS 

algorithm, FROLS algorithm, PRESS algorithm, etc. are widely applied in the identification of system 

models and the evaluation of NOFRFs and OFRF. On the other hand, algorithms based on other 

approximation criteria such as the Orthogonal Matching Pursuit (OMP) , convex optimization ,  [81-83]  [84-86]

etc. can also be applied to solve these issues. Basically, LS methods are used to solve over-determined 

problems, where the number of the unknown parameters to be evaluated is less than the functions to be 

solved, while OMP and convex optimization are developed for the aim of solving under-determination 
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problems, where the number of the unknown parameters to be evaluated is more than the functions to be 

solved . For example, in order to solve the signal recovery issue, Herzet et al.  conducted the [86] [82]

evaluation of frequency components of periodical signals by using the OMP. Needell and Tropp  [85]

developed the CoSaMP algorithm and related toolbox to solve the under-determination problem by using the 

convex optimization. 

Both OMP and convex optimization can also be applied to solve over-determined problems, but compared 

to LS methods, convex optimization is much more complex , and although OMP has less computational [86]

cost, the accuracy is worse than the LS methods . Consequently, in the analysis and design of nonlinear  [83]

systems, the LS methods are used to solve related problems. 

1.1.4 Convergence issues with the frequency analysis of nonlinear systems 

Because of having a structure similar to the power series, the Volterra series based nonlinear system 

representation has played an important role in the system identification [87,88], nonlinear circuits [89,90] and 

nonlinear signal processing [91,92]. The frequency analysis of nonlinear systems including the analysis using 

GFRF, NOFRFs and OFRFs, etc. was all developed based on the Volterra series representation of nonlinear 

systems. 

However, all of these existing approaches require that the Volterra series representation for a nonlinear 

system is convergent. Generally, the condition of convergence is complicated and the assessment can often 

only be done via numerical analyses to see whether the higher order terms of the Volterra series are 

degressive or not [93]. In addition, some analytical methods have been derived to study the convergence 

problem of the Volterra series representation of relatively simple nonlinear systems [94,95]. For example, 

Barrett [90] proposed a simple convergence criterion that can be used for the convergence analysis of the 

Volterra series representation of the Duffing oscillator. The convergence of the Volterra type output of the 

Duffing oscillator and quadratic nonlinear systems were discussed by using the convergence ratio 

1 1n n   , where n  represents the magnitude of the n th order nonlinear output spectrum [97-99]. 

The convergence ratio of the Duffing oscillator under harmonic input was investigated by studying the 

convergence ratio of a power series in [100].  

Recently, by using the mathematical tools of analytic combinatorics, the Singular Inversion Theorem was 

introduced to compute the convergence ratio of a general Volterra series in the time domain [101,102]. The 

Analytic Inversion Theorem was also employed to solve the parameter convergence bound of a NARX 

model’s Volterra series representation in the frequency domain [103,104].  
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However, by using these available methods, the convergence criteria can either only consider specific 

nonlinear systems [97-100] and harmonic input signals [97-102] or produce an over estimated bound on the 

system input which can ensure the convergence of the system’s Volterra series representation [99,101-104]. 

In addition, although some approaches such as, for example, the Hélie’s and Xiao’s criteria [101-104] can be 

used for the convergent analysis of general nonlinear systems, complex mathematical operations are required 

to obtain the analysis results. Therefore, it is necessary to develop a simpler and more efficient criterion for 

the analysis of the convergence of the Volterra series representation of a general class of nonlinear systems 

subject to either harmonic or general input excitations. 

1.2 Aim, objectives and Contributions 

  This research aims to resolve the existing issues in the frequency domain analyses and design of nonlinear 

systems. The main achievements are listed as follows. 

(1) A general representation of the NARX model with physically meaningful parameters appear explicitly 

as coefficients in the model is introduced, referred to as the NARX Model with parameters of interest 

for Design (NARX-M-for-D). The NARX-M-for-D is significant especially for the design of nonlinear 

systems. 

(2) A new concept known as the Generalized Associated Linear Equations (GALEs) is proposed to 

evaluate the output components in the Volterra series representation of a wide class of nonlinear 

systems up to an arbitrary order of nonlinearity of interest. The GALEs and associated techniques can 

significantly facilitate the analysis of nonlinear systems in both the time and frequency domain, and 

enable the development of a more effective technique for the identification of the NDE model of 

nonlinear systems, producing a physically meaningful representation for nonlinear systems. 

(3) A new convergence criterion for the Volterra series representation of the NARX model of nonlinear 

systems is derived to address the problems with existing methods. The derivation is based on the 

frequency domain representation of the NARX model. The new criterion has the advantages of being 

independent of sampling frequency with the NARX model, applicable to nonlinear systems under 

general inputs, and having no need of carrying out complex mathematical computations.  

(4) An OFRF representation that takes the effect of both the system linear and nonlinear characteristic 

parameters on the system output response into account is proposed based on the NARX-M-for-D. A 

recursive algorithm for the determination of the structure of the OFRF for a class of nonlinear systems 

described by a NARX-M-for-D is derived, which can directly produce the OFRF representation 
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without involving any complicated mathematical derivations/operations. 

(5) A new concept known as Associated Output Frequency Response Function (AOFRF) is introduced for 

the NARX model of nonlinear systems and, based on the AOFRF, it is rigorously shown that the 

output frequency response of nonlinear systems can be represented by a polynomial function of both 

the system linear and non-linear characteristic parameters. Effective algorithms are derived to 

determine the structure and coefficients of the AOFRF based representation of the output frequency 

response of nonlinear systems. 

(6) The practical application of nonlinear system designs in the frequency domain is investigated by 

studying a nonlinear building base-isolation system, where a nonlinear damper is implemented by 

using a semi-active control method. The laboratory experimental studies on a two storey physical 

building model are also conducted. The experimental results confirm the results of the analysis and 

numerical simulation studies and demonstrate the advantages of the proposed nonlinear damping 

technologies over traditional linear damping as well as currently used LQG feedback control. 

1.3 Thesis layout  

This thesis includes seven chapters covering background introduction, literature review, development of 

new frequency domain analysis approaches, and the experimental study of a nonlinear damping based 

building base-isolation system. The flow of the thesis contents are illustrated in Fig.1.1. 

Modelling

Analysis

Decision

NDE model

NARX model

Continuous time

Discrete time

Volterra series

GFRFs

Time domian

Frequency domain

NOFRFs

OFRF

Non-parametric

Parametric

Chapter 6 Experimental study of the nonlinear building isolation system

NARX-M-for-D

Chapter 2

Convergence of Volterra series

GALEs

Chapter 3

Chapter 4

AOFRF

Fault detection and design 

Chapter 5

Chapters 3, 5

System analysis Current approaches Development

 

Fig.1.1 The flow of the thesis contents  

  In the analysis of dynamic systems, basically there are three levels which are the modelling of the system, 
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the analysis of the system and the decision of the system. For each level in the frequency analysis of 

nonlinear systems, the current thesis proposed some novel approaches to solve the existing issues of the 

current methods, which are discussed in Chapaters 2-5. A practical experiment was discussed in Chapter 6, 

demonstrating why the current study on nonlinear systems is significant and how nonlinearities can affect the 

system dynamics in engineering practice. The contents of each chapter are summarised as follows: 

Chapter 1 is concerned with the introduction of the frequency analyses of nonlinear systems. 

 Chapter 2 reviews the state of the art of the current frequency domain analysis and design approaches, 

such as the GFRFs, the NOFRFs and the OFRF. 

  Chapter 3 introduces the concept of GALEs, and proposed a recursive algorithm for determining the 

GALEs. Three case studies on the application of the GALEs for nonlinear system analyses are provided to 

demonstrate the significance of the new GALEs concept. These include the application of the GALEs for the 

evaluation of the time domain output response of a nonlinear system, the determination of the NOFRFs using 

the GALEs for nonlinear system frequency analyses, and the use of the GALEs in the identification of the 

NDE model of a nonlinear system. 

  Chapter 4 introduces a new approach of analysing the convergence of the system Volterra series 

representation. The Generalized Output Bound Characteristic Function (GOBCF) is derived based on the 

NARX model of nonlinear systems, and the new convergence criterion of Volterra series is derived based on 

the GOBCF. Two Case studies are used to demonstrate the efficiency and advantages of the new criterion. 

  Chapter 5 provides a systematic nonlinear system design approach based on the OFRF of the NARX-M- 

for-D. Moreover, the AOFRF representation of nonlinear systems is determined by a newly derived algorithm, 

where both the linear and nonlinear parameters of the systems are taken into account.  

  In Chapter 6, a nonlinear building base isolation system is investigated, where a nonlinear damping is 

implemented by using a semi-active control method. Both the simulation and experimental studies are 

conducted, showing the significance and promising advantages of application of nonlinear systems frequency 

design in engineering practice.  

Finally, conclusions are summarized in Chapter 7. 
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Chapter 2. Nonlinear systems and the frequency domain 

representations 

2.1 Introduction 

  It is well known that a large class of nonlinear systems can be represented by a NDE model, or in discrete 

time, a NARX. Frequency domain analysis and design of these nonlinear systems are usually conducted 

based on the Volterra series representation, where many effective approaches such as the GFRFs, the 

NOFRFs, the OFRF, etc. have been developed and applied in engineering practice. 

  In this Chapter, different nonlinear models and the approaches for the frequency domain analysis of these 

nonlinear models are reviewed. Then a NARX model of nonlinear systems, where the physical parameters of 

interest for the system design appear explicitly as coefficients in the model, is introduced. The model is 

referred to as the NARX-M-for-D, which has the potential to be applied to represent a wide range of 

engineering systems and structures. The frequency domain representation of the NARX-M-for-D is then 

studied, and the application of this representation will be discussed in details in Chapter 5. The contents of 

this chapter are illustrated as below in Fig.2.1. 

 

Fig.2.1 The contents of Chapter 2 

2.2 Polynomial models of nonlinear systems 

2.2.1 The NDE model of nonlinear systems 

  Many nonlinear systems can be described by differential equations, known as the NDE model, according 

to the study of their physical characteristics. The NDE model of a nonlinear system can be expressed as [41] 
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     
1

, 1

1 0 , 0 1 1

, , 0i i

p q

p p qM m L
l l

p q p q

m p l l i i p

c l l D y t D u t






     

 
 

 
                     (2.1) 

where  y t  and  u t  are the system output and input, respectively; p q m  , 
1 1, 0 0 0p q p q

L L L

l l l l   

   , M  

and L  are integers;  , 1, ,p q p qc l l   are coefficients of the nonlinear model; The operator D  in (2.1) is 

defined by 

  
 d

d

l

l

l

x t
D x t

t
                                   (2.2) 

  In order to illustrate the NDE model (2.1), a Duffing equation 

         
3

3l l ny t c y t k y t k y t u t                             (2.3) 

is considered where 
lc  and 

lk  represent the linear damping and stiffness of the system, respectively; 
3nk  

is the nonlinear stiffness of the system. 

  In (2.3), by referring to the general form of the NDE model (2.1), it is known that 

 1,0 2 1c  ;  1,0 1 lc c ;  1,0 0 lc k ;  3,0 30,0,0 nc k  and  0,1 0 1c            (2.4) 

  However, in most practical cases, such as, e.g., vibration isolators made of viscoelastic and composite 

materials [105] and bladed disks of aero-engines [106], it is difficult or impossible to find such a physical 

model for the systems. But, it is possible to find, via a nonlinear system identification approach, a data driven 

NARX model representing the relationship between the input excitation and corresponding system response 

[107]. The general structure of the polynomial type NARX model is introduced in the next section. 

2.2.2 The polynomial NARX model of nonlinear systems 

  In the discrete time domain, a nonlinear system output can always be represented by a relationship 

between the system input and output as 

          1 , , , 1 , ,y uy t f y t y t n u t u t n                       (2.5) 

where yn  and un  are the maximum time delay of the output and input, respectively;  .f  is a nonlinear 

function. Equation (2.9) is defined as the NARX model of the system. 

When  .f  is a polynomial type function, the NARX model can be written in a polynomial form as [13] 

 
1

, 1

1 0 , 1 1 1

( , , ) ( ) ( )
p q

p p qM m K

p q p q i i

m p k k i i p

y k c k k y k k u k k






     

 
   

 
                  (2.6) 

where k  represents the discrete time;  , 1, ,p q p qc k k 
 with p q m   represents the model coefficients 

of the NARX model; M  and K  are integers. 
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  A polynomial NARX model can usually be determined by using NARMAX modelling method proposed in 

[11], or directly discretized from an NDE model [8]. For example, consider the first and the second 

derivatives in (2.3) that can be approximated by: 

 
   

 
     

2

1 1 2 1
,

y k y k y k y k y k
y t y t

t t

     
 

                  
(2.7) 

respectively, where t  is the sampling period, the NDE model (2.3) can be discretized as 

             
32 2 2

31 2 1 1 2 1l l l ny k t u k c t k t y k c t y k k t y k                     (2.8) 

which can be obtained from the general polynomial NARX model by choosing 

 1,0 2 1lc c t   ;   2

1,0 1 2 l lc c t k t     ;   2

3,0 31,1,1 nc k t    and   2

0,1 1c t      (2.9) 

and zeros for other coefficients 

It is worth pointing out that in order to obtain an effective discretized model, the sampling frequency 

1sf t   is required to be large enough to cover all system behaviors of interest to ensure the discretized 

model can sufficiently represent the original nonlinear system.  

The NARX model is usually applied to study complex nonlinear systems where the NDE model cannot be 

obtained. However, an identified NARX model by using the NARMAX method doesn’t have any physical 

meaning so that the model is difficult to be applied for the analysis and design of practical nonlinear systems. 

Ideally, an NARX model like (2.8) where that the physically meaningful parameters, i.e. lc  and 3nk  

appear explicitly as coefficients in the model should be produced to facilitate the system design. Such an 

NARX model is referred to as the NARX Model with parameters of interest for Design (NARX-M-for-D), 

which will be introduced next. 

2.2.3 The NARX-M-for-D of nonlinear systems 

The NARX-M-for-D is a NARX model where the physical parameters of interest for the system design 

appear explicitly as model coefficients. A general form of the single input single output NARX-M-for-D of 

nonlinear systems can be given as: 

            1 , , , 1 , , ,y uy t f y t y t n u t u t n     θ ξ                (2.10) 

where  θ ξ  is a vector representing a set of functions of the parameter vector  1, , S ξ , where 

1, , S   are the physical parameters of interest for the system design, and S  is the number of these design 

parameters. 
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Considering  .f  can be approximated by a polynomial function of the delayed system input and output 

as in model (2.10), the NARX-M-for-D can further be expressed as: 

   1 2

1

( , , , )

,

1 0 , 1 1 1

( ) ( )p q

p q

p p qM m K
k k k

p q i i

m p k k i i p

y k y k k u k k 





     

 
   

 
   ξ

               

(2.11) 

where  1( , , )

,
p qk k

p q  ξ  with p q m   representing the coefficients of the NARX-M-for-D (2.11) belongs to 

vector  θ ξ . 

  For example, the NARX model (2.8) is also a NARX-M-for-D, where  3, ,l l nc k kξ  and 

   2

1,0 1lc t   ξ ; 
   1 2

1,0 2 l lc t k t     ξ ;    1,1,1 2

3,0 3nk t   ξ  and    1 2

0,1 t  ξ      (2.12) 

The design of the parameters ,l lk c  and 
3nk  of the Duffing system (2.3) can therefore be transformed to 

the design of the same parameters but for the NARX-M-for-D (2.8). 

It can be concluded from the above discussion that, the analysis and design of a nonlinear NDE model is 

covered by the study of a NARX model or a NARX-M-for-D. Consequently, in the following studies, most of 

the results are proposed based on the NARX model or NARX-M-for-D of nonlinear systems. 

2.3 The frequency domain representations of nonlinear systems 

2.3.1 The Volterra series representation 

The output of continuous time nonlinear systems, such as the NDE model (2.1), when it is stable at the 

zero equilibrium, can be represented by using a Volterra series as [36]: 

       1

1 1 1

, , d
nN

n n n i i

n n i

y t y t h u t   
  

 
  

                     (2.13) 

where the order of the Volterra series is usually truncated at order N , which represents the maximum order 

of the series expansion,  1, ,n nh    is known as the n th order kernel of the system output.  

The output of discrete time nonlinear systems, such as the NARX model (2.6), when it is stable at the zero 

equilibrium, can be described by the discrete time Volterra series as [108] 

       
1

1

1 1 1

, ,
n

nN

n n n i

n n i

y k y k h u k
 

  
  

    

                       (2.14) 

In the frequency domain, the output spectrum of the system  jY   can be represented as [43] 

   
 

   
1

11
1 1 1

1
j j , , j d

2 n

nN N

n n n in
n n i

Y Y H U
n


  

     


   
  

            (2.15) 
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where  jU   and  jY   are the spectra of the system input and output, respectively;   and 1, , n   

are physical frequencies, and for discrete time Volterra series (2.14), s sf f     ;  1, ,n nH    is the 

n th order GFRFs of the nonlinear system defined as 

      1 1 1 1 1, , , , exp j d dn n n n n n nH h        
 

 
            (2.16a) 

for continuous time systems and as 

      
1

1 1 1 1, , , , exp j
n

n n n n n nH t h t
 

      
 

 

                 (2.16b) 

for discrete time systems. 

  It is worth noting that when the system is linear,  1H   is the Frequency Response Function (FRF) of 

the system. There are many approaches to determine the GFRFs [36-38], and the most commonly used 

method is the recursive algorithm proposed in [13,41] as introduced below. 

2.3.2 The Generalised Frequency Response Functions (GFRFs) of nonlinear systems 

  The recursive algorithm of determining the n th order GFRFs  1, ,n nH    was derived by using the 

probing method [13,41,109]. The n th order GFRFs
 
of the system NDE model (2.1) can be calculated by 

using the following recursive algorithm [41,42]: 
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     (2.17) 

  Similarly, the n th order GFRFs
 

of the system NARX model (2.6) can be calculated by using the 

following recursive algorithm [13]: 

        
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   (2.18) 
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  It can be observed that the recursive algorithms of the n th order GFRFs for the continuous and discrete 

time models have a similar structure.  

For example, the first three orders’ GFRFs of the Duffing equation (2.3) can be determined as follows 

  For 1n  ,  

 1 1 2

1 1

1

j l l

H
c k


 




 
                            (2.19) 

  For 2n  , 

 2 1 2, 0H                                    (2.20) 

For 3n  , 
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              (2.21) 

  It can be seen that, the GFRFs are a series of multi-dimensional functions which, although the graphic 

presentation approaches have been introduced in [39,40] for low order GFRFs, it is are often difficult to 

measure, display and interpret higher order GFRFs in practice. 

To address this issue, many new concepts such as the NOFRF [55], the OFRF [56] etc. have been proposed 

to replace the GFRFs with one dimensional functions of frequencies. For example, the NOFRF is a 

significant extension of the FRF for linear systems to the nonlinear case, which are one-dimensional 

functions that enable an exploration of the system frequency domain characteristics by means of a series of 

Bode diagram like plots; The OFRF represents the polynomial relationship between the system output and 

nonlinear characteristic parameters which have been widely applied in the analysis and design of nonlinear 

systems. The details of the NOFRFs and OFRF are introduced as follows. 

2.3.3 The Nonlinear Output Frequency Response Funtions (NOFRFs) of nonlinear 

systems 

The n th order NOFRF is defined as 

 
 

 

j
j ;

j

n

n

n

Y
G

U


  


                             (2.22) 

where  jnY   and  jnU   are the n th order output spectrum and the n th order generalized input 

spectrum that obtained by the Fourier Transform of  ny t  and  nu t , respectively, for continuous time 

system where 
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    
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                  (2.23) 

,n   represents the hyperplane 1 n     , .F  denotes the Fourier Transform,   is the 

frequency support of  jnU  , which can be determined using the results about the output frequencies of 

nonlinear systems [43]. 

  For discrete time nonlinear systems, the NOFRFs defined by  jnY   and  jnU   in (2.22) are 

determined by using the normalised Discrete Time Fourier Transform (the Discrete Time Fourier Transform 

times t ) of  ny k  and  nu k , respectively, where 
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                   (2.24) 

where .DF  denotes the Discrete Time Fourier Transform and  ,s sf f    . 

  Therefore, the output spectrum of nonlinear systems can be represented as 

       
1 1

j j j j
N N

n n n

n n

Y Y G U   
 

                          (2.25) 

which is illustrated in Fig.2.2, where  .u
 

represents either the continuous or discrete time input signal. 

 

Fig.2.2 The NOFRFs based analysis of a nonlinear system 

Fig.2.2 indicates that, when 1n N  ,    1j jnG G   reduceing to the FRF of a linear system.  

Notice that when the input signal is zoomed by a factor   as    ˆ . .u u , where the corresponding 

output and input spectrum are denoted as  ˆ jnY   and  ˆ jnU  , respectively, the NOFRFs will have no 

change according to (2.15) and (2.24), 
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and the output spectrum can be represented as 
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  Consequently, the following properties of the NOFRFs can be concluded 

Property 1. [55] Let   be an arbitrary constant and  jnG   the n th order NOFRF evaluated for 

 jU  . Then, the NOFRF corresponding to  jU   are also  jnG  . 

Property 2. [55] The frequency support of  jnG  ,  jnY   and  jnU  , i.e., the frequency range 

where these functions of frequency are well defined, are the same. 

The NOFRFs can be evaluated by using the Least Squares (LS) method as [55] 
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where 
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and 1, ,
N

   are N N  numbers of testing input magnitude for the LS evaluation, 

       1
j j

N
Y Y , ,  are the N  output spectra under N  different inputs, respectively. 

  The example of Duffing equation (2.3) is discussed here to illustrate the LS evaluation of the NOFRFs. 

Given 140 N/mslc   and 41 10 N/mlk    and 8 3

3 5 10 N/mnk   , the input of the system (2.3) is 

assumed as 

   cos Fu t A t                               (2.29) 

where the A  is the input magnitude, and  0, 300 rad/sF  . 

  The NOFRFs up to the 5th order    1 3j , jF FG G   and  5 j FG   are shown in Fig.2.3 which were 

obtained by using the LS method and the system output responses to the testing inputs (2.29) with 5 different 

magnitudes of  0.8, 0.9,1.0,1.1,1.2A  . 

The output spectra subject to    2cos Fu t t  are predicted by using the NOFRFs based representation 

             1 1 3 3j j j j j j jF F F F F N F N FY G U G U G U                  (2.30) 

with results shown in Fig.2.4 for the cases of 1, 3, 5, 7N  , respectvely. The results show that a higher order 

NOFRFs based representation can provide a more accurate output prediction, where the true output spectra in 
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Fig.2.4 are obtained by using the Runge-Kutta numerical method. 

             

        Fig.2.3 The GALEs evaluated NOFRFs            Fig.2.4 Outputs under the NOFRFs based representation 

The NOFRFs represent the frequency domain properties of nonlinear systems. In the next section, the 

OFRF of nonlinear systems is introduced, which shows the relationship between the system output frequency 

response and the nonlinear parameters of interest. It is worth noting that, the peaks of the NOFRFs 

representations in Fig.2.4 are not reached. The results are only aproximations of the truncated Volterra series 

representation of the system. When the Volterra series is convergent, higher truncation order N  can provide 

more accurate approximation results. 

2.3.4 The Output Frequency Response Function (OFRF) of nonlinear systems 

  The OFRF of nonlinear systems can be represented by a polynomial function in terms of system nonlinear 

characteristic parameters as [56] 

     
 

1

1

1

1, ,
, ,

j j s

s

s

jj

sj j
j j

Y x x  


 
J

CΛ                    (2.31) 

where J  is the set of all available index 1, , sj j ; C  is the monomial vector consisting of nonlinear 

characteristic parameters  , .p qc , 2p q   represented by 1, , sx x ; Λ  is the column vector with 

elements  
1 , , j

sj j  , which are determined the frequency variable   and system linear parameters 

 1,0 .c  and  0,1 .c . 

In order to use the OFRF to perform the system analysis and design, it is very important that the “structure” 

and “coefficients” of the OFRF representation have to be determined. The OFRF “structure” basically refers 

to the monomials that need to be included in the OFRF representation, whilst the “coefficients” are the value 

of    
1 , ,

j
Sj j

   associated with each monomial in the OFRF.  

  Given the order N  of the system Volterra series representation, the structure of the OFRF of the NDE 

model (2.1) defined by the vector C  in (2.31) can be determined by using the recursive algorithm as [74] 
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with  1 1C , where   is the Kronecker product, and  

1
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n p

n p i n i p

i

 

 



 C C C  and ,1n nC C                       (2.34) 

For a NARX model (2.6), the OFRF structure can be determined by using the same algorithm by replacing 

 , 1, ,p q p qc l l 
 with  , 1, ,p q p qc k k 

.  

The evaluation of the OFRF coefficients can be conducted by using the LS algorithm. It can be seen that 

the OFRF (2.31) is a polynomial function, where assuming there are N  terms in the OFRF representation, 

and N N  sets of testing parameter values are used for the LS evaluation.        1
j j

N
Y Y , ,  are the 

N  output spectra under N  different sets of parameter values, respectively. Consequently, the OFRF 

coefficients can be evaluated as 
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where  
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and    i
jC  represents the j th element of the monomial vector C  under the i th set of nonlinear 

parameter values. 

  For example, the monomials of the OFRF of the Duffing equation (2.3) can be determined as 
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and the OFRF of the system (2.3) is written as 

              2

3 30 1 2
j j j jn nY k k                            (2.37) 
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Given 140 N/mslc   and 41 10 N/mlk   , the OFRF up to 7N   of the system (2.3) can be 

evaluated as follows. 

 

The structure of the OFRF representation up to 7N   of the system (2.3) can be obtained as 
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Under harmonic input (2.29) with 2A   and 80 rad/sF   by testing the system over 8 parameter 

values of   9 3

3 0 : 0.5 : 3.5 10 N/mnk   , there is  
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where 3, , 1, ,8n ik i   are the 8 different parameter values. 

  Therefore, the cofficients of the OFRF representation can be evaluated by using (2.35) with 
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The OFRF results are shown in Fig.2.5. The results indicate that the OFRF can be used to represent and 

predict the output response of a nonlinear system under different nonlinear characteristic parameters.  

 

Fig.2.5 The OFRF representation of the Duffing system (2.3) 

  It is worth noting that, the OFRF of a NDE/NARX model is unique when the order of system nonlinearity 
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that has been taken into account is sufficiently high [56]. The increase of the system design parameters may 

increase the complexity of the OFRF. But, different from numerical approximation or curve fitting, there is 

no overfitting issue because of the OFRF’s uniqueness. 

2.4 Conclusions 

  This chapter prepare presents the basic results about the frequency domain analysis and design of 

nonlinear systems. In general, the discrete or continuous time model of the system can be established by 

using either data driven modelling or physical analyses. After that, the frequency domain analysis and design 

can be conducted by using the NOFRFs and OFRF approaches of nonlinear systems, respectively. 

  However, there are many fundamental issues need to be solved in order to widely apply the frequency 

domain analysis and design in engineering practice. For example, an appropriate expansion order for the 

NOFRFs and the OFRF based results are difficult to determine, and the LS based evaluation for both 

NOFRFs and OFRF may suffer significant numerical errors due to an inappropriate choice of order N . In 

existing studies, the order N  is often empirically chosen as 3 or 5 [74]. On the other hand, before using the 

NOFRFs and OFRF, the convergence of the system Volterra series representation should be guaranteed, but 

in the previous studies, the convergent condition is only an assumption. Moreover, the system OFRF 

representation only shows an analytical relationship between the output spectra of nonlinear systems and the 

system’s nonlinear characteristic parameters, but this relationship is only valid under the condition that the 

system linear characteristic parameters are fixed. 

  In the following Chapters, these issues are fundamentally addressed by using a series of new concepts 

known as the Generalized Associated Linear Equations (GLAEs), the Generalized Output Bound 

Characteristic Function (GOBCF), and the Associated Output Frequency Response Function (AOFRF), 

respectively. Finally, an experimental study is conducted to demonstrate the application of the newly 

proposed nonlinear ystem frequency analysis and designs in engineering practice. 
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Chapter 3. Generalized Associated Linear Equations (GALEs) 

with applications to nonlinear system analyses 

3.1 Introduction 

The Volterra series theory is the fundamental basis of the frequency domain analysis of nonlinear systems. 

According to this theory, the output of a wide class of nonlinear systems can be represented by a truncated 

functional series consisting of a summation of the system output components contributed by the first, second, 

and higher order system nonlinearities. An effective determination of these system output components has 

significant implications for further development and practical application of nonlinear system frequency 

domain theories and methods. Available approaches that could be applied to address this issue is known as 

Associated Linear Equations (ALEs) which, however, can only resolve this significant problem for a very 

special class of nonlinear systems [65,66,111]. 

In this Chapter, motivated by the need of addressing these problems, the ALEs are extended to polynomial 

type NARX models such that the Volterra series representation of a NARX model can be determined up to an 

arbitrary order of interest by solving a series of linear difference equations. Moreover, a new concept known 

as the Generalized Associated Linear Equations (GALEs) is proposed to systematically determine the 

structure of these linear equations for both the NARX and NDE models of nonlinear systems.  

The GALEs and associated techniques can significantly facilitate the analysis of nonlinear systems in the 

time and frequency domain. The GALEs can also enable the development of a more effective technique for 

the identification of the NDE model of nonlinear systems, producing a physically meaningful representation 

for nonlinear systems. Four case studies on the application of the GALEs for nonlinear system analyses are 

provided to demonstrate the significance of the new GALEs concept. These include the application of the 

GALEs for the evaluation of the time domain output response of a nonlinear system, the determination of the 

NOFRFs and OFRFs using the GALEs for nonlinear system frequency analyses, and the use of the GALEs in 

the identification of the NDE model of a nonlinear system. The structure of this chapter is illustrated as 

below 
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Fig.3.1 The contents of Chapter 3 

3.2 The Associated Linear Equations (ALEs) of nonlinear systems 

3.2.1 The ALEs of Duffing equations 

  Consider the Duffing equation (2.3) where the output can be represented by a Volterra series as 
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Substituting (3.1) into (2.3), yields 
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which can be rearrange the equation (3.2) as 
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  Therefore, it is known that  
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which is known as the ALEs of the Duffing equation (2.3). 

The ALEs of a general Duffing type equation have been proposed by Feijoo et al [111], but there is still no 

a systematic approach that can be applied to determine the ALEs for much more general nonlinear systems. 

In the following sections, the ALEs of the NARX model (2.6) for nonlinear systems [108] are derived. 

Moreover, a recursive algorithm is proposed for the determination of ALEs of the NDE model (2.1) of 

nonlinear systems. These general ALEs are known as the GALEs of nonlinear systems. 

3.2.2 The ALEs of the NARX model  

  For the convenience of discussion, the polynomial NARX model (2.6) is rearranged as  
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     
1

M

m m

m

Ay k Bu k c F k


                               (3.5) 

where 
mc  are coefficients 
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 ,p m l  and  ,q m l  represent the non-negative integers such that    , , 1q m l p m l  , and A  and B  

denote linear time shifting operators such that 
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where la  and lb  are coefficients. 

The ALEs of system (3.5)-(3.8) can be obtained as described in Proposition 3.1 below. 

Proposition 3.1: The ALEs of the NARX model (3.5)-(3.8) are a series of linear difference equations 

described by: 
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and mS  is the set of all non-negative integer solutions of the linear Diophantine system 

   
1

, , ,
mJ

j

r m l j p m l l


                               (3.16) 
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   
1 2

1 , , 1
mJL

m

l j

j r m l j J
 

                              (3.17) 

Proof of Proposition 3.1: Substituting the Volterra series representation (2.14) of the NARX model into 

(3.6)-(3.8), yields: 

     
1 1

M

j m m

j m

Ay k Bu k c F k


 

                             (3.18) 

where 

     m m mF k k k                                 (3.19) 

   
 ,

1

L
q m l

m

l

k u k l


                               (3.20) 

   
 ,

11

p m l
L

m j

jl

k y k l




 
  

 
                           (3.21) 

In order to determine the n th order ALE, it is necessary to expand (3.19), identify all n th order terms 

and equate them to those of the same order on the left-hand side of (3.18). The n th order terms on the left 

hand side of (3.18) can be found by noticing that the linear operator A  does not change the order of any 

functional component. Therefore, the n th order component on the left-hand side of (3.18) is  nAy k . 

On the other hand, the products in (3.19) produce an expansion in terms of each  ny k , spanning 

functionals of many different orders. The order of  m n  is found as: 

 
1

,
L

l

q m l


                                   (3.22) 

Therefore, the n th order terms in (3.19) can be found by identifying terms of  m k  of order 

 
1

,
L

l

n q m l


                                  (3.23) 

Consider the multinomial expansion with respect to   , 1ny k n  : 

   
 

   
 

,

, ,

1 1

, ,

p m l

r m l j

j j

j j

m l y k l m l y k l 


 

 
    
 
                   (3.24) 

where 

 
 

 
1

, !
,

, , !
j

p m l
m l

r m l j









                                (3.25) 
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and the sum in (3,24) is computed over all nonnegative integers  , ,r m l j  that satisfy 

   
1

, , ,
j

r m l j p m l




                                 (3.26) 

Using (3.24),  m k  can be expanded as: 

     
 , ,

1 1

,
L

r m l j

m j

l j

k m l y k l 


 

                           (3.27) 

where the order of the general term of (3.27) is 

 
1 1

, ,
L

l j

jr m l j


 

                                  (3.28) 

Therefore, for finding terms of order (3.23), it is necessary to find all integers  , ,r m l j  that 

simultaneously satisfy: 

   
1

, , , ;1
j

r m l j p m l l L




                              (3.29) 

and 

   
1 1 1

, , ,
L L

l j l

jr m l j n q m l


  

                              (3.30) 

System (3.29)-(3.30) is known as a Diophantine system, because all unknowns are integers. The particular 

form of these equations allow them to be further simplified by subtracting (3.30) from (3.29), for every 

possible l , yielding: 

   
1 2

1 , , 1
L

m

l j

j r m l j J


 

                               (3.31) 

where 

   
1

1 , ,
L

m

l

J n q m l p m l


                               (3.32) 

Notice that, since  , , 0r m l j  , we must have mj J , so that 
mJ  can be used as upper limit to all 

summations and products in j , allowing system (3.29)-(3.30) to be rewritten as (3.16)-(3.17). 

Let mS  denote the set of all nonnegative solutions of (3.16)-(3.17). By taking only the n th order terms 

from the expansion of (3.19), the n th order ALE can be written as: 

     
1

M

n m m m

m

Ay k c k k 


                             (3.33) 
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     
 , ,

1 1

,
m

m

JL
r m l j

m j

S l j

k m l y k l 
 

                          (3.34) 

Finally, by splitting the products in  m k  with respect to l  and defining 

 
 

 
1

1
1 1

, !
,

, , !
m

L
L

l

m L J
l

l j

p m l
m l

r m l j
  


 

 



 

                       (3.35) 

   
 , ,

1 1

mJL
r m l j

m j

l j

k y k l
 

                             (3.36) 

we obtain the n th order ALE, equation (3.10). 

A simple example is given below to illustrate how to obtain the ALEs of the NARX model using 

Proposition 3.1. 

Consider a identified NARX model under the sampling frequency of 1024 Hzsf   

       2 4

1 21 1Ay k Bu k c y k c y k                            (3.37) 

with 

   

 
1 2

1

( 1) ( 2)

( 1)

Ay k y k a y k a y k

Bu k b u k

    


 

                        (3.38) 

The ALEs of the system up to the 4th order are obtained as follows. For 1n  : 

 1 1 ( 1)Ay k b u k                                  (3.39) 

For 2n  , 1 2 2 1 1J      and 2 2 4 1 1J      , yielding the Diophantine system: 

 1,1,1 2

0 0

r 



 and 

0 4

0 2




 
                             (3.40) 

The first Diophantine system has only one solution which is  1,1,1 2r  , and the second Diophantine 

system is inconsistent so that can be ignored. Consequently, the second order ALE can be obtained as 

   2

2 1 1 1Ay k c y k                                (3.41) 

For 3, 4n  , a similar procedure can be followed to produce the 3rd and 4th order ALEs as 

     3 1 1 22 1 1Ay k c y k y k                              (3.42) 

and 

         2 4

4 1 2 1 1 3 2 11 2 1 1 1Ay k c y k c y k y k c y k                       (3.43) 

respectively. 

  It can be seen that, although the ALEs of a NARX model can be determined by solving a series of 

Diophantine equations as illustrated above, the procedure is generally still very complicated. In the next 

section, a more effective recursive algorithm is derived to determine the ALEs for the NARX or NDE model 
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of nonlinear systems, which is known as the GALEs. 

3.3 The Generalized Associated Linear Equations (GALEs) 

3.3.1 The concept of the GALEs 

By multiplying each side of equations (2.17)/(2.18) with  
1

j
n

i

i

U 


  and evaluating the integration of the 

result over the hyperplane 
1 n     , it can be shown that 

     j j j ; 1, ,n nY H V n N                             (3.44) 

where for the NDE model,  

    

 
 

   

1

1

1

1

1,0 1

0

, , ,1
1

j j

1
j j d

2 n

L
l

l

n

n n u n uy n y in
i

H c l

V U
n


  

 

     






   


  
    
  
   







            (3.45) 

with 

    

      

   

1

1

1

1

1

, 0, 1 1

, 0

1

, , 1 , 1 1

1 1 , 0

, ,0 1 , 1

2 , 0

, , j j

, , , , j j

, , , ,

n

n

p p q

p q

p

L
l l

n u n n n

l l

n qn L
l l

n uy p q p q n q p n q n q n

q p l l

n L

n y p p n p n

p l l

c l l

c l l H

c l l H

  

    

  

 







    

  

 





   



   




 

 

        (3.46) 

and for the NARX model, 

   

 
 

   

1

1

1

1,0 1 1

1

, , ,1
1

j 1 ( )exp j

1
j j d

2 n

K

k

n

n n u n uy n y in
i

H c k k t

V U
n


  

 

     






   


  
     
  
   







            (3.47) 

with 

    

      

   

1

1

1

, 0, 1 1 1

, 1

1

, , 1 , 1 1 1

1 1 , 1

, ,0 1 , 1

2 , 1

, , exp j

, , , , exp j

, , , ,

n

p q

p

K

n u n n n n

k k

n qn K

n uy p q p q n q p n q n q p n p q

q p k k

n K

n y p p n p n

p k k

c k k k k t

c k k H k k t

c k k H

  

    

  







      

  

 


    


        



   




 

 

 (3.48) 

It is obvious that (3.44) is the frequency domain representation of a linear system, where  jH   is the 

frequency response function and  jnV   is the input spectrum of this linear system. By applying the 
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inverse Fourier Transform/ inverse Discrete Time Fourier Transform on both sides of equation (3.44), this 

linear system can be described in the time domain as 

   lin , 1, ,n nf y t v t n N                              (3.49) 

for the continuous time case and 

   lin , 1, ,n nf y k v k n N                             (3.50) 

for the discrete time case, respectively, where  nv t  is the inverse Fourier Transform of  jnV  ,  nv k  

is the inverse Discrete Time Fourier Transform of  jnV  , and  lin .f  denotes a linear differential or 

difference operator. 

Equations (3.49) and (3,50) are referred to as the Generalized Associated Linear Equations (GALEs) of the 

system NDE model (2.1) and NARX model (2.6), respectively, where  ny t  and  ny k  are the n th 

order output in the continuous and discrete time Volterra series representations of a nonlinear system, 

respectively, with 1, ,n N . Based on GALEs,  ny t  and  ny k , 1, ,n N , can be readily be 

determined by solving N  simple linear differential and difference equations, respectively. This can 

significantly facilitate the analysis of nonlinear systems in many applications. 

  It can be seen that for a Duffing equation, the GALEs are the same as the ALEs (3.3) that can also be 

obtained by using the perturbation method [111]. In the next section, an effective approach will be derived to 

determine the GALEs for the NARX model (2.6) of nonlinear systems. The approach will then be extended 

to continuous time nonlinear systems to derive an approach for the determination of the GALEs of the NDE 

model (2.1) of nonlinear systems. 

3.3.2 Determination of the GALEs 

For the convenience of derivation, an integration operator is first introduced as 

 
 

 
11

1

1
. . d

2 nn
n

n


    



     

                        (3.51) 

In order to determine the GALEs of nonlinear systems, two Lemmas are proposed as follows. 

Lemma 3.1. The derivative property of the Discrete Time Fourier Transform is given as 

     j j
nnDF D w t W                                (3.52) 

where  .DF  represents the normalised Discrete Time Fourier Transform, s sf f      and  jW   is 

the spectrum of the time domain signal  w t . 
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Proof of Lemma 3.1. The result can be obtained by referring to Section 2.2 in [112]. 

Lemma 3.2. The Fourier Transform of the production of n  time domain signals   , 1,..,iw t i n  can be 

calculated as 

   
11 1

j
n

n n

i i i

i i

DF w t W
  


  

 

   
    

   
                        (3.53) 

where    j
i

i i iW DF w t
 




     is the spectrum of the time domain signal  iw t .  

Proof of Lemma 3.2. The result can be obtained by referring to Section 2.4 in [112]. 

From Lemmas 3.1 and 3.2 and using the operators defined in (3.51), it can be shown that the GALEs of the 

NARX model (2.6) of nonlinear systems can be obtained by using Proposition 3.2 as follows. 

Proposition 3.2. The GALEs of the NARX model (2.6) of nonlinear systems can be determined as 

         

     

   

1 1

1

1

1,0 1 1 0, 1

1 , 1 1

1

, 1 ,

1 1 , 1 1

,0 1 ,

2 , 1

, ,

, ,

, ,

n

p q

p

nK K

n n n n i

k k k i

p qn qn K

p q p q n q p i

q p k k i p

n K

p p n p

p k k

y k c k y k k c k k u k k

c k k y k u k k

c k k y k



  



 

    

 

   

 



  

  

 

              (3.54) 

where 1n   and 

     
( 1)

, , 1

1

n p

n p i p n i p

i

y k y k k y k
 

 



    and    ,1 1n ny k y k k               (3.55) 

Proof of Proposition 3.2: The n th order GFRFs (2.18) can symbolically be represented as 

, , ,n n u n uy n y                                    (3.56) 

where , ,,n u n uy   and ,n y  are shown in (3.48) and 

      
1

1,0 1 1 1 1

1

1 exp j , ,
K

n n n n

k

c k k t H    


 
      
 
                (3.57) 

Consider the hyperplane integration 

   

   

1 1

1 1

,

1 1

, ,

1 1

j j

j j

n n

n n

n n

n i n u i

i i

n n

n uy i n y i

i i

U U

U U

     

     

   

   

     
 

     
 

   
     

   

   
      

   

 

 

               (3.58) 

The left hand side of (3.58) can be arranged as 
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   

         

1
1

1
1

1,0 1 1

11

1 1,0 1 1

11

j 1 ( )exp j

, , j

n

n

n K

n i

ki

n K

n n i n n

ki

U c k k t

H U DF y k c k DF y k k

  

  

  

  

  


  


  
      

   

 
            

 





       (3.59) 

and the right hand side of (3.58) are separately discussed as below. 

(A) Hyperplane integration of ,n u  

The first term on the right hand side of (3.58) can be arranged as 

       

   

1 1
1

1

, 0, 1

, 11 1

0, 1

, 1 1

j , , j exp j

, ,

n n
n

n

n nK

n u i n n i i i

k ki i

nK

n n i

k k i

U c k k U k t

c k k DF u k k

     
   

     
 

 

   
       

   

 
  

 

 

 

   (3.60) 

(B) Hyperplane integration of ,n y  

Denote 

       
1

, 1 , ,

1

, , j j
n

n

n p n i n p n p

i

H U Y DF y k
  

   
  



 
      

 
            (3.61) 

where 2, ,p n , and according to (2.14) and (2.18), it is known that 

     

       

1

1

,1 1 ,1

1

1 1 1

1

, , j

, , exp j j

n

n

n

n n i n

i

n

n n i n

i

H U DF y k

H k t U DF y k k

  

  

  

   

  


  


 
     

 

 
         

 





        (3.62) 

Therefore, the third term on the right hand side of (3.58) can be arranged as 

       

   

1 1
1

1

, ,0 1 , 1

2 , 11 1

,0 1 ,

2 , 1

j , , , , j

, ,

n n
p

p

n nn K

n y i p p n p n i

p k ki i

n K

p p n p

p k k

U c k k H U

c k k DF y k

     
    

     
  

 

   
     

   

   

  

 
  (3.63) 

Substituting the n th order GFRF (2.18) into (3.63), yields 

         

       

1 1

( 1)

, 1 1

11 1

( 1)

, 1 1 , 1

11

, , j , , exp j j

, , j

n n

n pn i

n p n i i i p j

ii j

n pn

n i p i n j i p n i p

ij i

H U H k t U

H U DF y k k y k

     
      

  

 

     
 

 

    

 

  
      

   

 
       

 

 



(3.64) 

with 1 i      and 1i n        . 

  Consequently,  

         
1 1

( 1)

,0 1 , ,0 1 , 1

2 , 1 2 , 1 1

, , , ,
p p

n pn K n K

p p n p p p i p n i p

p k k p k k i

c k k DF y k c k k DF y k k y k
 

 

    

 
      

 
      (3.65) 



CHAPTER 3  31 

(C) Hyperplane integration of ,n uy  

The second term on the right hand side of (3.58) can be arranged as 

   

       

     

1
1

1

1

, , 1

1 1 , 11

, 1

1 1

, 1 ,

1

j , ,

, , j j exp j

, ,

n
p q

n

n qn n K

n uy i p q p q

q p k ki

n q p q

n q p n q i n q i p n q i p i

i i p

p q

p q p q n q p i

i p

U c k k

H U U k t

c k k DF y k u k k

  

  

 

    






  

  

 

       
  

  



 

 

 
  

 

   
      

   


 



 

 


1

1

1 1 , 1p q

n qn K

q p k k 



  


 


 

   (3.66) 

Consequently, by substituting (3.59), (3.60), (3.63) and (3.66) into (3.58), yields 

       

     

   

1

1 1

1

1

1,0 1 0, 1

0 , 0 1

1

, 1 ,

1 1 , 0 1

,0 1 ,

2 , 0

, ,

, ,

, ,

i

n

i

p q

p

nL L
ll

n n n

l l l i

p qn qn L
l

p q p q n q p

q p l l i p

n L

p p n p

p l l

c l F D y t c l l F D u t

c l l F y t D u t

c l l F y t



  



 

    

 

 
     

 

 
  

 

   

  

  

 

                (3.67) 

where according to (3.65) 

     
( 1)

, , 1

1

n p

n p i p n i p

i

DF y k DF y k k y k
 

 



 
      

 
  and    1

,1

l

n nDF y k DF D y k            (3.68) 

Proposition 3.2 can then be proven by applying the inverse Discrete Time Fourier Transform on both sides 

of (3.67) and (3.68). 

  For example, for the NARX model: 

                 3

0,1 1,0 1,0 3,01 1 1 1 2 2 + 1,1,1 1y k c u k c y k c y k c y k               (3.69) 

the GALEs can be determined using proposition 3.2 as follows 

For 1n     

             1 0,1 1,0 1 1,0 11 1 1 1 2 2y k c u k c y k c y k                     (3.70) 

  For 2n   

         2 1,0 2 1,0 21 1 2 2 0y k c y k c y k                         (3.71) 

For 3n     

             3

3 1,0 3 1,0 3 3,0 11 1 2 2 + 1,1,1 1y k c y k c y k c y k                 (3.72a) 

where 

           2 3

3,3 1 2,2 1 1,1 11 1 1 1 1 1y k y k y k y k y k y k                    (3.72b) 

  For 4n   
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         4 1,0 4 1,0 41 1 2 2 0y k c y k c y k                       (3.73a) 

where 

             2

4,3 1 3,2 2 2,2 1 21 1 1 1 1 2 1 1 0y k y k y k y k y k y k y k              (3.73b) 

For 5n   

               2

5 1,0 5 1,0 5 3,0 1 31 1 2 2 +3 1,1,1 1 1y k c y k c y k c y k y k             (3.74a) 

where  

         

         

         

5,3 1 4,2 3 2,2

2

1 3,1 1 3 1,1

2

3 1 1,1 1 3

1 1 1 1 1

1 1 1 1 1

1 1 1 3 1 1

y k y k y k y k y k

y k y k y k y k y k

y k y k y k y k y k

      

      

      

             (3.74b) 

Clearly, by following Proposition 3.2, one can proceed to produce the GALEs associated with a NARX 

model of nonlinear systems up to any order n  of system nonlinearity of interest. The GALEs of the NDE 

model (2.1) can be obtained in a similar way in Proposition 3.3 as below. 

Proposition 3.3. The GALEs of the NDE model (2.1) of nonlinear systems can be obtained as 

       

     

   

1

1 1

1

1

1,0 1 0, 1

0 , 0 1

1

, 1 ,

1 1 , 0 1

,0 1 ,

2 , 0

, ,

, ,

, ,

i

n

i

p q

p

nL L
ll

n n n

l l l i

p qn qn L
l

p q p q n q p

q p l l i p

n L

p p n p

p l l

c l D y t c l l D u t

c l l y t D u t

c l l y t



  



 

    

 

 





  

  

 

                 (3.75) 

where 1n   and 

     
( 1)

, , 1

1

p

n p
l

n q p i n i p

i

y t D y t y t
 

  



   and    1

,1

l

n ny t D y t               (3.76) 

Proof of Proposition 3.3. The proof can be done in a way similar to the proof of Proposition 3.2. 

  For example, the GALEs of the Duffing model (2.3) can be determined using Proposition 3.3 as follows. 

  For 1n    

       1 1 1my t cy t ky t u t                            (3.77) 

  For 2n   

     2 2 2 0my t cy t ky t                             (3.78) 

For 3n   

       3 3 3 3 3,3nmy t cy t ky t k y t                         (3.79a) 

where 
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           2 3

3,3 1 2,2 1 1,1 1y t y t y t y t y t y t                      (3.79b) 

  For 4n   

     4 4 4 0my t cy t ky t                            (3.80a) 

where 

             2

4,3 1 3,2 2 2,2 1 22 0y t y t y t y t y t y t y t                 (3.80b) 

For 5n   

       5 5 5 3 5,3nmy t cy t ky t k y t                        (3.81a) 

where  

             

               

2

5,3 1 4,2 3 2,2 1 3,1

2

1 3 1,1 3 1 1,1 1 33

y t y t y t y t y t y t y t

y t y t y t y t y t y t y t y t

  

  
             (3.81b) 

 The GALEs that can readily be determined using Propositions 3.2 and 3.3 from the NARX and NDE 

models of nonlinear systems, respectively, are a group of linear difference equations with regard to the n th 

order nonlinear output   , 1, ,ny k n N , and a group of linear differential equations with regard to the n

th order discrete time nonlinear output   , 1, ,ny t n N . From the GALEs, the output components 

contributed by any order of system nonlinearity in the Volterra series representation of nonlinear systems can 

easily be evaluated, and this has never been achieved before. Different applications of the GALEs to the 

analysis of nonlinear systems will be studied in the next section to demonstrate the practical significance of 

these new results. 

3.4 System analyses using the GALEs 

3.4.1 Evaluation of the output response of nonlinear systems 

  It is a common practice to evaluate the output response for the analysis of the behaviours of nonlinear 

systems in the time domain, and this is frequently conducted by numerical simulations using numerical 

integration techniques such as Runge-Kutta method. But, for systems which are described by more 

complicated NDEs, the numerical solutions can be inaccurate and even unstable [113]. In these cases, the 

GALEs have potential to be used to produce more accurate and stable solutions. This is because the GALEs 

enable the numerical simulation to be conducted by only dealing with a series of linear differential equations. 

This potential application of the GALEs will be demonstrated in a case study in the following. 
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Consider the NDE model of a nonlinear system 

       y t u t y t u t                               (3.82) 

where    10cosu t t
 

and 100 rad s  .  

  The output response of system (3.82) can be analytically determined as 

            
 

exp d exp d exp d d

sin 100
1 exp

10

y t u t t u t t u t u t t t

t

     

 
   

 

   
           (3.83) 

when  0 0y  . 

According to Proposition 3.3, the GALEs of system (3.82) can be obtained as 

   

     
1

1 , 2n n

y t u t

y t u t y t n




  

                            (3.84) 

Therefore, the output response of system (3.82) can also be obtained by numerically solving N
 

simple 

linear differential equations as given by (3.84) to produce the components in the system’s Volterra series 

representation    1 , , Ny t y t  up to an arbitrary order N  of interest, and then find 

     1 5y t y t y t                                (3.85) 

The output response of system (3.82) obtained by solving the GALEs with 5N   using a Runge-Kutta 

method (ode45 in MATLAB) under the sampling frequency 512 Hzsf   and 1024 Hzsf  , respectively, 

is shown in Fig.1. It is worth pointing out that both sampling frequencies are generally applied in engineering 

practice for either simulation analysis or experiments due to the requirement of conducting Fast Fourier 

Transform (FFT) . The analytic result of (3.83) as well as the result obtained by directly solving [11, 35]

nonlinear differential equation (3.84) using the Runge-Kutta method are also provided for a comparison in 

Fig.3.2.  

   

Fig.3.2 The output response of system (3.82) obtained by using different methods 
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It can be observed from the results in Fig.3.2 that the solution obtained by using the GALEs is much more 

accurate than the result obtained by directly solving nonlinear differential equation (3.84) using the 

Runge-Kutta method based numerical integration. 

3.4.2 Evaluation of the NOFRFs of nonlinear systems 

The NOFRFs is a significant extension of the FRF for linear systems to the nonlinear case as defined in 

(2.22). Although the NOFRFs have been proposed for many years, currently, the determination of NOFRFs 

can only be done by using a LS based algorithm [55]. This algorithm requires an appropriate selection of the 

maximum order N  of the system nonlinearity, needs the system response data from several simulation or 

experimental tests, and sometimes suffer from numerical problems. 

  Motivated by the need of solving this issue, the GALEs proposed in Propositions 3.2 and 3.3 are applied to 

accurately determine the NOFRFs. The idea of the GALEs based method is simply summarized in two steps: 

(i) Determine the n th order system output  ny t  by solving the GALEs of the system model; (ii) Evaluate 

the n th order NOFRF by computing the ratio of  jnY   and  jnU  . A case study will be used in 

following to demonstrate the application of the GALEs to the determination of the NOFRFs. 

Duffing system with nonlinear damping described by the NDE model 

           3 3

3 3l l n ny t c y t k y t k y t c y t u t                        (3.86) 

will be used to demonstrate the novel GALEs based method for the evaluation of the NOFRFs. 

 

Fig.3.3 The band width input signal 

Consider the case where system (34) is subject to the band limited input 

 
     

 
sin 200 3 sin 50 30.6

; 0, 6 sec
3

t t
u t t

t

  
 


                (3.87) 

as shown in Fig.3.3 in both the time and the frequency domain. 

  The NOFRFs of system (3.86) can be evaluated by using the GALEs based approach following three steps 

as below. 

Step 1: Determine the GALEs. 

According to Proposition 3.3, the GALEs of the system associated with the system nonlinear outputs up to 

the 5th order can be formulated as 
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       

         

             

1 1 1

3 3

3 3 3 3 1 3 1

2 2

5 5 5 3 1 3 3 1 33 3

l l

l l n n

l l n n

my t c y t k y t u t

my t c y t k y t k y t c y t

my t c y t k y t k y t y t c y t y t

  


    


    

             (3.88) 

Step 2: Solve the GALEs numerically and find the spectrum of the solution. 

This is to determine  ny t
 

for 1,3,5n   by numerically solving differential equations (3.88) and then 

evaluate the Fourier Transform of the results to get  jnY  , 1,3,5n  . 

Step 3: Evaluate the NOFRFs 

Compute the system NOFRFs as 

 
 

 

j
j , 1,3,5

j

n

n

n

Y
G n

U





                             (3.89) 

using  jnY   obtained in Step 2 and  jnU  , the Fourier Transform of  nu t , for 1,3,5n  . 

  Fig.3.4 shows the NOFRFs    1 3j , jG G   and  5 jG 
 

evaluated for the case where the values of 

the parameters in the NDE model (3.86) are 
140 N/mslc  , 

41 10 N/mlk   , 
3 3 3

3 3 10 Ns /mnc   and 

8 3

3 5 10 N/mnk   , showing three Bode diagram like plots representing the first, third and fifth order 

nonlinear characteristics of the system, respectively.  

         

Fig.3.4 The NOFRFs evaluated using the GALEs based 

method 

Fig.3.5 The changes of the NOFRFs with the changes in 

the nonlinear stiffness parameter 3nk  of system (34) 

  One practical significance of the NOFRFs is that the concept can be exploited to not only represent the 

system characteristics associated with different order system nonlinearities but also indicate how these 

system properties change with the changes in the system characteristic parameters. 

Fig.3.5 shows how the NOFRFs of system (3.87) evaluated using the GALEs based method can be used to 

represent the changes of the nonlinear stiffness parameter 3nk  in system (3.87). This observation is the basis 

of the application of the NOFRFs based analysis to the condition monitoring and fault diagnosis of 
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engineering systems and structures. In this application, the NDE model of the engineering system under 

study is often not available. Therefore, a data driven NARX model of the system needs to be established first 

using a nonlinear system identification method. Then, Proposition 3.2 can be applied to evaluate the NOFRFs 

of the system. After that, a comparison of the obtained NOFRFs with a base line can be used to monitor any 

changes in the system characteristic parameters for the purpose of the system condition monitoring and fault 

diagnosis. 

3.4.3 Evaluation of the OFRF of nonlinear systems 

  The OFRF of nonlinear systems reveals a significant link between the system output frequency response 

and the parameters as defined in (2.31), and can therefore facilitate a systematic design of nonlinear systems. 

It has been introduced in Section 2 that, in order to determine the OFRF represention of nonlinear systems, 

the structure of the OFRF representation should be first determined by using the recursive algorithm in (2.32), 

then the LS method (2.35) is applied to evaluate the coefficients of the OFRF representation. However, such 

method requires an appropriate selection of the maximum order N  of the OFRF representation, and a 

significant number of numerical simulations are needed to generate the system responses under different 

values of the system design parameters. 

  Noticing that by using the GALEs of nonlinear systems, the n th order nonlinearity of nonlienar systems 

can be separately discussed, it is then applied in the evaluation of the system OFRF representation, where the 

number of numerical simulations for determining the OFRF is significantly reduced. Moreover, the OFRF 

representation can be accurately determined from the low order to an arbitrary high order to avoid the 

truncation error in the traditional evaluation method in Section 2. The case study in 3.4.2 above is used in this 

section to illustrate the evaluation of the OFRF using the GALEs. 

System (3.86) is considered under the harmonic input  

   cos Fu t A t                                (3.90) 

where the 1A   is the input magnitude, and 100 rad/sF  . 

The OFRF of the system (3.86) up to 5N   are determined by using GALEs with following steps. 

Step 1: Determine the structure of the OFRF 

  The monomial vectors of each order’s OFRF representation nC  can be determined by using (2.33) as 

    2 2

1 3 3 3 5 3 3 3 31 , , , , ,n n n n n nc k c c k k     C C C                     (3.91) 

such that the OFRF of the system (3.86) up to 5N   can be written as 



CHAPTER 3  38 

       1 3 5j j j jF F F FY Y Y Y                             (3.92) 

where 

     

         

             

1 0,0

3 3 31,0 0,1

2 2

5 3 3 3 32,0 1,1 0,2

j j

j j j

j j j j

F F

F F n F n

F F n F n n F n

Y

Y c k

Y c c k k

  

    

      

 



 


  

             (3.93) 

and    
1 2

1 2,
j , , 0,1,Fj j

j j    are OFRF coefficients with respect to the frequency variable 
F . 

  Step 2: Solve the GALEs of the nonlinear system 

Solve the GALEs (3.75) of the system (3.86) under 3 pairs of different nonlinear characteristic parameters 

   3 8

3,1 3,1, 0.1 10 ,1 10n nc k    ,    3 8

3,2 3,2, 1.5 10 , 2 10n nc k    , and    3 8

3,3 3,3, 2 10 , 3 10n nc k    (3.94) 

yield 3 sets of    1 3,y t y t  and  5y t  and their spectra, which are combined in vectors 

 

       

1 1

T

, 1 , 3

j

j , , j , 3,5

F

n F Fn n

Y

Y Y n



 

    


    

Y

Y
                   (3.95) 

Step 3: Compute the OFRF coefficients by using the LS method 

Compute the third and the fifth order coefficients by using the LS method as 

 
1

T T

, , , , 1,3,5n n v n v n v n n


 Λ C C C Y                           (3.96) 

where 

 

2 2

3,1 3,1 3,1 3,1

2 23,1 3,1

1, 3, 5, 3,2 3,2 3,2 3,2
3,2 3,2 2 2

3,3 3,2 3,3 3,3

1 , ,

n n n n

n n

v v v n n n n
n n

n n n n

c c k k
c k

c c k k
c k

c c k k

 
   

     
   

 

C C C                (3.97) 

  The output spectra predicted by the evaluated OFRF are plotted in Fig.3.6, comparing with the true output 

spectrum obtained by using the Runge-Kutta simulation. 

 

Fig.3.6 The GALEs evaluated OFRF 

  Fig.3.6 indicates that the GALEs base evaluation of the system OFRF is accurate. More important, only 3 

pairs of testing parameters (3.94) are needed to determine the OFRF by using the GALEs, comparing with 
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that at least the 7 pairs testing parameters are required in the traditional LS evaluation method. Moreover, the 

LS algorithm used for each order’s GALEs can evaluate the OFRF coefficients accurately because the 

structure of the GALEs is unique without truncation errors.  

Tab.3.1 provides a comprehensive comparison of the newly proposed GALEs based system analysis with 

the existing techniques. The conclusions are reached based on the discussion above, indicating the GALEs 

analysis has significant advantages over the existing methods. 

Tab.3.1 Comparison of the GALEs and existing techniques 

Nonlienar system simulation 

GALEs Runge-Kutta 

Stable Unstable under certain conditions 

NOFRF based condition monitoring 

GALEs LS 

Conducted online/ offline Conducted offline only 

OFRF based design 

GALEs LS 

Less training parameters required More training parameters required 

 

In the next section, the application of the GALEs to nonlinear system modelling, fault diagnosis, and 

design will be further discussed. 

3.5 Application of the GALEs to nonlinear system modelling, fault 

diagnosis, and design 

3.5.1 Application to the identification of the NDE model of a nonlinear system 

  The GALEs based NDE model identification basically exploits the equivalence of the nonlinear output 

spectra of the NDE and NARX models of the same system, known as Nonlinear Spectrum Invariance 

Method (NSIM). The NARX model can be identified by using a nonlinear system identification method from 

the input and output data of the system under study, thus, the nonlinear output spectra up to an arbitrary order 

of system nonlinearity can be obtained by determining and solving the GALEs for the NARX model 

following Proposition 3.2. Then, from the GALEs formulation of the NDE model of the same system, and the 

having obtained nonlinear output spectra, the physically meaningful parameters in the NDE model of the 

system can be obtained so as to find the NDE model of the system. Compared to available techniques which 
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are based on the equivalence of the GFRFs of the NDE and NARX models of the same system, known as the 

Kernel Invariant Method (KIM) [48,114], the new NSIM based approach only deals with one-dimensional 

functions and can fundamentally resolve the difficulties associated with the KIM when dealing with higher 

order system nonlinearities. In the following, a case study will be provided to demonstrate how to apply the 

GALEs and NSIM to the identification of the NDE model of a nonlinear system. 

Consider the unplugged van der Pol system [115]: 

           2

l l Emy t c y t k y t c y t y t u t                        (3.98) 

where 1 Kgm  , 50 Ns mlc  , 
410 N mlk   and 

6 33 10 Ns mEc   . 

Assume that parameters , ,l lm c k  and Ec  with the system are unknown but the structure of the NDE 

model is known a priori. Consequently, the identification of the NDE model (3.98) becomes the problem of 

the estimation of parameters , ,m c k  and Ec
 

of the system, which can be addressed by using the following 

4 steps. 

Step 1: Identify the NARX model of the system. 

From the sampled data of the response of system (3.98) to the random input 

   20 rand Nu t t                                 (3.99) 

under the sampling frequency of 512 Hzsf  , where  rand t  is a random signal uniformly distributed in 

 1,1 , a NARX model of the system was identified using the NARMAX approach [11] as 

       

     

6

3 2 3 3

1.871 1 0.907 2 3.590 10 1

5.271 10 1 2 5.202 10 1

y k y k y k u k

y k y k y k

      

      
             (3.100) 

 

Fig.3.7 The NARX model of the system  

Fig.3.7 shows a comparison between the real and the NARX model predicted outputs of the system, 

indicating an excellent performance of the identified NARX model (3.100). 
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Step 2: Determine the GALEs of the nonlinear NDE model 

The GALEs of the unplugged van der Pol system (3.98) up to the third order was obtained using 

Proposition 3.3 as 

       

         

1 1 1

2

3 3 3 1 1

l l

l l E

my t c y t k y t u t

my t c y t k y t c y t y t

  


   

                   (3.101) 

Step 3: Estimate the unknown parameters , ,l lm c k  in the NDE model 

(a): Taking the Fourier Transform on both sides of the first order GALE, yields 

         
2

1 1 1

1
j j j j j jl

l l l

c m
Y Y U Y

k k k
                        (3.102) 

where  

T

1

1
, ,l

l l l

c m

k k k

 
  
 

C                                (3.103) 

are normalized linear parameters to be estimated. 

Evaluating the first order output  1y k  and its spectrum  1 jY   under the band limited input (3.87) 

using the GALEs of the NARX model (3.54)-(3.55) at the frequencies of 
1 50 rad s  , 

2 100 rad s   

and 3 200 rad s  , repectively, yields the results shown in Tab.3.2. 

Tab.3.2 The first order nonlinear output spectrum at three frequencies evaluated using the GALEs of NARX model 

(3.55) 

 1 50 rad s   2 100 rad s   3 200 rad s   

 1 j iY   5 60.1389 10 0.3969 10 i     
5 40.4489 10 0.3978 10 i      

5 50.6088 10 0.3427 10 i      

 

(b): Estimate the values of the three parameters in (3.103) by using the LS method as  

 
1

T T

1 1 1 1 1



C P P P Y                              (3.104) 

where 

 

 

1

1

1

Re

Im

 
 
 
 

Y
Y

Y
 and 

 

 

1

1

1

Re

Im

 
 
 
 

P
P

P
                       (3.105) 

with 

     
T

1 1 1 1 2 1 3j , j , jY Y Y     Y                       (3.106) 

and 
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       

       

       

2

1 1 1 1 1 1 1

2

1 1 2 2 1 2 2 2

2

1 3 3 1 3 3 3

j j j j j

j j j j j

j j j j j

Y Y U

Y Y U

Y Y U

    

    

    

 
 
 
 
 
 

P                     (3.107) 

yielding 

  4

1 49.1012, 0.9826, 0.9901 10   C                      (3.108) 

Step 4: Estimate the unknown parameter Ec  in the NDE model 

(a): Taking the Fourier Transform on both sides of the third order GALE in (3.101) yields 

           
2 2

3 3 3 1 1

1
j j j j jl E

l l l l

c cm
Y Y Y F y t y t

k k k k
                      (3.109) 

where  

3

Ec

k

 
  
 

C                                   (3.110) 

are normalized nonlinear parameters to be estimated. 

Evaluating the third order output  3y k  and then its spectrum  3 jY   under the band limited input 

(3.87) using the GALEs of the NARX model (3.54)-(3.55) at the frequency 2 100 rad s   yields 

  6 5

3 2j 0.2572 10 0.3277 10 iY                            (3.111) 

  Moreover, using  1y t  obtained in Step 3 (a),    2

1 1F y t y t    is evaluated producing 

   
2

2 9 9

1 1 5.6466 10 1.1824 10 iF y t y t
 

 


                         (3.112) 

(b): Substituting  3 2jY   and    
2

2

1 1F y t y t
 

    into (3.109), the value of parameter 
Ec  can be 

found as 

 6

3 2.8105 10E lc k     C                            (3.113) 

Consequently, the estimated model of system (3.98) is 

           6 2 40.9924 49.5922 2.8105 10 1.0100 10y t y t y t y t y t u t                 (3.114) 

  A comparison of the output frequency responses of the estimated model (3.114) under the harmonic input 

     10cos , 0,300 rad su t t                         (3.115) 

and the band limited random input 

       10 rand , rand 1,1u t t t                           (3.116) 

respectively with the corresponding responses of the real system (3.98) is shown in Fig.3.8, indicating a very 

good match of the estimated model’s frequency response to the accurate result. 
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Fig.3.8 Validation of the estimated NDE model 

3.5.2 Application to the NOFRFs based fault diagnosis 

Beam like structures are widely applied in engineering practice and the fault detection of such structures 

has been widely studied by researchers [58,116]. A simple cantilever beam with crack is illustrated in Fig.3.9.  

 

Fig.3.9 The NOFRFs based fault detection of cracked beams 

Cracks in beam like structures can often be detected by analyzing the output spectra under a harmonic 

excitation [116], and the higher order super-harmonic output spectrum is expected to be monotonously 

increase/ decrease along the increase of the severity of a crack. However, there are many cracks that can 

generate more complex output responses, making the output spectrum analysis based detection of cracks not 

applicable in these situations [117,118]. 

This issue will now be addressed by using the NOFRFs which are more sensitive to variations in nonlinear 

characteristics in structural systems [58]. The basic idea of the NOFRFs based fault detection is illustrated in 

Fig.3.9 and the details will be explained below. 

Step 1: The NARX model of cracked cantilever beams 

In practice, the dynamic properties of a cantilever beam with cracks can often be investigated by using a 

nonlinear differential equation model with second and forth order nonlinearities such as [117,118] 

           2 4

2 4l l n ny t c y t k y t k y t k y t u t                      (3.117) 

In this case study, 
120 N mslc  , 

31 10 N mlk   , 2nk  and 4nk  are the model nonlinear parameters 
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determined by crack characteristics.  

According to the NOFRFs based approach for nonlinear system analysis introduced above, the NARX 

models of the cracked cantilever beam, under different values of nonlinear parameter 4nk , are identified 

using the input and the output data generated using model (3.117) and the nonlinear system identification 

method in [11].  

For the specific cases of  

5 2

2 1 10 N mnk   ,   10 4

4 0, 2, 3.5, 5, 7 10 N mnk   , 

and the sampling frequency of 1024 Hzsf 
 

the identified NARX model are 

       2 4

1 2 1 1 2( 1) ( 2) 1 1 1y k a y k a y k b u k c y k c y k                      (3.118) 

where the model coefficients are shown in Tab.3.3. 

Tab.3.3 NARX model coefficients under 
5 2

2 1 10 N mk    

10

4
4

10

N m

k 
 6

1 10a   2a  
1b  

1c  4

2 10c   

0  -0.9436 -1.9797 -0.9807 -0.0938 - 

2.0 -0.9438 -1.9797 -0.9807 -0.0935 1.7690 

3.5 -0.9437 -1.9797 -0.9807 -0.0935 3.1558 

5.0 -0.9436 -1.9797 -0.9807 -0.0930 4.3261 

7.0 -0.9435 -1.9797 -0.9807 -0.0940 6.4804 

 

In the next, the newly proposed GALEs based NOFRFs analysis will be applied to the NARX models 

(3.118) to demonstrate how the novel analysis can reveal the changes of the system nonlinear parameter 4nk  

so as to enable the detection and quantification of cracks in cantilever beams. 

Step 2: Determination of the GALEs 

Given the NARX model (3.118), the GALEs of the system up to 4th order are obtained as 

       

       

         

       

     

1 1 1 2 1 1

2

2 1 2 2 2 1 1

3 1 3 2 3 1 1 2

2

4 1 43 2 4 1 2

4

1 1 3 2 1

1 2 1

1 2 1

1 2 2 1 1

1 2 1

2 1 1 1

y k a y k a y k b u k

y k a y k a y k c y k

y k a y k a y k c y k y k

y k a y k a y k c y k

c y k y k c y k

      


     


      


     
     

            (3.119) 

Step 3: Evaluation of the NOFRFs 

Consider the case where system (3.118) is subject to the sinusoidal input    sin Fu t A t . From the 

GALEs of system (3.118) determined above, the nonlinear output responses    1 , , Ny k y k  of the system 
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are obtained. Then, the system output spectra contributed by up to the 4th order system nonlinearity, namely, 

 1 j FY  ,  2 j2 FY  ,  3 j FY  ,  3 j3 FY  ,  4 j2 FY  ,  4 j4 FY   are obtained by evaluating the 

normalised Discrete Time Fourier Transform of    1 4, ,y k y k . Consequently, the NOFRFs  1 j FG  , 

 2 j2 FG  ,  3 j FG   and  4 j2 FG   are evaluated as 

 
 

 
 

 

 
 

 

 
 

 

 
1 3 2 4

1 3 2 4

3 2 4

j j j2 j2
j ; j ; j2 ; j2

j j j2 j2

F F F F

F F F F

F F F F

Y Y Y Y
G G G G

U U U U

   
   

   
       (3.120) 

where  j FU  ,  2 j2 FU  ,  3 j FU  ,  4 j2 FU   are obtained from evaluating the normalised Discrete 

Time Fourier Transform of   2 3, ( ), ( )u k u k u k  and 
4 ( )u k , respectively.  

Moreover, for a specific F , the NOFRFs in (3.120) are evaluated, which is expected to produce an 

effective index whose value increases/decreases monotonically with the severity of cracks so as to be able to 

be used to detect and quantify the cracks in beam structures. 

Step 4: The NOFRF based crack detection 

The sinusoidal input with the magnitude of 1 NA   and the frequency of 30 rad/sF  , which is close 

to the resonant frequency of the system, is applied to the NARX model of (3.118) to evaluate  2 j2 FG  , 

 3 j FG   and  4 j2 FG   under the five different values of   10 4

4 0, 2, 3.5, 5, 7 10 N mnk   . 

The results are given in Fig.3.10, showing that  4 j2 FG   monotonously increases with the increase of 

4nk , while   2 j2 FG   and  3 j FG    have no change with the increase of 4nk , indicating that  the 

severity of cracks in the beam can be detected and quantified using the NOFRF  4 j2 FG  . 

       

Fig.3.10 The change of the NOFRFs with respect to 4nk  

at 30 rad sF   

Fig.3.11 The change of  j2 FY   with respect to 4nk  

at 30 rad sF   

For a comparison, the traditional frequency response method introduced in Zhang et al. [118] is also 

applied to quantify the increase of parameter 4nk . The results are illustrated in Fig.3.11, indicating the 
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second order super-harmonic magnitudes  j2 FY   of the system varies non-monotonically with the 

increase of the value of 4nk and is therefore not suitable for use to detect cracks in this case. 

3.5.3 Application to the OFRFs based design of nonlinear energy harvester systems 

Consider a SDOF vibration-based energy (VBE) harvester as illustrated in Fig. 3.12 having an isolated 

mass m  and a vibrating base with displacement  y t . The mass is isolated from the base by an isolation 

system modeled as a nonlinear (electromagnetic) damper connected in parallel to a nonlinear spring. The 

linear and cubic stiffness coefficients are lk  and 
3nk  respectively while the linear and cubic damping 

coefficients are 
lc and 

3nc
 

respectively. 

 

Fig.3.12. SDOF base excited VBE harvester with nonlinear cubic damping 

The model of the SDOF VBE harvester is an NDE and the equation of motion of the mass with respect to 

the relative displacement  y t  is given as [119] 

           
3 3

3 3l n l nmy t c y t c y t k y t k y t mu t                       (3.121) 

For a harmonic base displacement with amplitude A , frequency 
F  

and zero phase shift, the base 

displacement is given by 

    sin Fu t A t                               (3.122) 

Therefore, 

           
3 3 2

3 3 sinl n l n Fmy t c y t c y t k y t k y t m A t                    (3.123) 

The nonlinear damping device absorbs an instantaneous power equal to the product of the instantaneous 

damper force and the relative velocity of the VBE harvester [119]. producing an average power given by 

    
3

3
0

1
d

T

av nP c y t y t t
T

                              (3.124) 

For a single-frequency harmonic oscillation where    sin Fy t Y t , this yields,  
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4 4

3

3

8
av n FP c Y                                  (3.125) 

It should be noted that while the cubic damping term in (3.123) is considered to provide harvested energy, 

lc  is considered a loss. In addition, it can be deduced that since the output frequency response, Y  of model 

(3.123) is a function of 
F  and the nonlinear parameters, 

3nc
 

and 
3nk . Therefore 

avP
 

in (3.125) is a 

function of 
3nc , 

3nk  and F . The frequency of interest here is the resonance frequency which is the 

frequency where maximum power absorption occurs. 

  The OFRF of the system (3.123) up to 7N   can be determined by using the GALEs based evaluation 

process in 3.4.3. 

  The design of the VBE harvester can be conducted following the steps as below. 

Step 1: Determine the structure of the OFRF 

  The monomial vectors of each order’s OFRF representation 
nC  can be determined as 

    2 2 3 2 2 3

1 3 3 3 5 3 3 3 3 7 3 3 3 3 3 31 , , , , , , , , ,n n n n n n n n n n n nc k c c k k c c k c k k         C C C C       (3.126) 

such that the OFRF of the system up to 7N   can be written as 

         1 3 5 7j j j j jF F F F FY Y Y Y Y                           (3.127) 

where 
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      

        




 


  


   

   (3.128) 

and    
1 2

1 2,
j , , 0,1,Fj j

j j    are the OFRF coefficients with respect to the frequency variable F . 

  Step 2: Solve the GALEs of the nonlinear system 

Subsequent analysis in this study has been done using the following model parameter values; 1kgm  , 

25 N mlk  , 2 Ns mlc  , 0.05 mA  , 5 rad sn  , / n   .  

To obtain the OFRF coefficients up to the 7th order, four simulations are required using four different 

values of 3,n rc and 3,n rk  (where 1,2,3,4r ) as given in Tab.3.4. 
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Tab.3.4. Simulation (Training) values of model parameters 

Model 

nonlinear parameter 
Sim1 value Sim2 value Sim3 value Sim4 value 

 3 3

3 Ns mnc  0.300 0.325 0.350 0.375 

 3

3 N mnk  0 55 110 165 

 

Four sets of spectra are combined in vectors as 

       
T

, 1 , 4
j , , j , 1,3,5,7n F Fn n

Y Y n   
 

Y                    (3.129) 

Step 3: Compute the OFRF coefficients by using the LS method 

The OFRF coefficients are obtained for all frequencies by solving 

     
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             (3.130) 

The OFRF generated output spectrum is obtained as 

                 

               
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        (3.128) 

To obtain the OFRF of the average power absorbed by the VBE harvester through the nonlinear cubic 

damper, the OFRF approximation of the output spectrum in (3.128) is substituted in (3.125) which yields 

   
44

3

3
j j

8
av F n F FP c Y                           (3.129) 

Consequently, the average power absorbed by the electromagnetic damper for a combination of the 

nonlinear parameter values ( 3nc  and 3nk ), within and beyond the training range, is estimated and shown in 

Figs.3.13 and 3.14, respectively, where the relative frequency is defined as the ratio of the output frequency 

over the natural frequeny of the system 0 lk m  . The results shown that the GALEs generated OFRF 

(GALEs-OFRF) can estimate, accurately, the output spectrum of the VBE harvester system and the average 
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power it absorbs when the damper parameter values are either within or outside the training range. 

           

(a)                                                  (b) 

Fig.3.13. GALEs-OFRF evaluated against ODE45 result within the training range of damper parameters 

          

(a)                                                 (b) 

Fig.3.14. GALEs-OFRF evaluated against ODE45 result outside the training range of damper parameters 

The effect of the hardening stiffness, 
3nk  can be observed in Fig.3.15 as it clearly extends the operational 

bandwidth of the VBE harvester system by increasing the resonance frequency (frequency of interest). The 

GALE-OFRF approximation will then be used for the system analysis/design to determine the appropriate 

nonlinear parameter 3nk  of the VBE harvester. 

Fig.3.16 shows the relationship between the VBE harvester system nonlinear design parameters against (a) 

the output spectrum and (b) the average power absorbable by the VBE harvester system at the resonant 

frequency, which are obtained from the OFRF representation (3.128). Therefore, the desired output 

performance of the VBE harvester can be designed according to the Fig.3.16.  

           

(a)                                                  (b) 

Fig.3.15. Effect of hardening stiffness on the output spectrum and average power absorbed by the vibration-based energy 

harvester system 
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(a)                                                   (b) 

Fig.3.16. Relationship between nonlinear parameters 

3.6 Conclusions 

Nonlinear system analyses have been studied for decades and widely applied in engineering practice. 

Nonlinear systems can be investigated by using either analytical or numerical approaches in both the time 

and the frequency domain, if the mathematical model of the systems is available, and if not, the system 

identification can be conducted to produce a data driven model to facilitate the system analysis.  

  In this chapter, a new concept known as the GALEs is proposed for nonlinear system analyses based on the 

Volterra series representation of the system’s NARX/NDE model. The output of nonlinear systems can be 

determined by solving a series of linear equations derived from the system’s GALEs. This can facilitate a 

more efficient evaluation of the output response of nonlinear systems as well as the determination of the 

NOFRFs and OFRF of nonlinear systems up to an arbitrarily high order of nonlinearity of interest that has 

never been able to be achieved before. 

Three case studies are used to demonstrate the application of the GALEs to the nonlinear system modelling, 

analyses and designs including the NOFRFs based nonlinear structural system fault diagnosis, nonlinear 

structural system fault diagnosis, nonlinear vibration energy harvester design, and the identification of the 

NDE model of nonlinear systems 
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Chapter 4. The convergence of the Volterra series 

representation of nonlinear systems 

4.1 Introduction 

The Volterra series based frequency domain analysis has been investigated in the previous chapters. It has 

been notated that two important issues are required to be resolved. One of these issues is how to accurately 

evaluate the nonlinear outputs up to an arbitrarily high order, which has been addressed in Chapter 3 by using 

the GALEs. The other is to guarantee the convergence of the Volterra series. 

Many approaches have been developed for the convergence analysis of Volterra series, which has been 

reviewed in Chapter 1. However, available approaches only consider specific nonlinear systems or system 

subject to harmonic input signals and are often difficult to apply in practice. Therefore, it is necessary to 

develop a simpler and more efficient criterion for the analysis of the convergence of the Volterra series 

representation of a general class of nonlinear systems subject to either harmonic or general input excitations. 

In this chapter, a new convergence criterion for the Volterra series representation of the NARX model of 

nonlinear systems is derived to address the problems with existing methods. The derivation is based on the 

frequency domain representation of the NARX model. A new bound characterisation function known as the 

Generalized Output Bound Characteristic Function (GOBCF) is proposed to determine a new criterion for the 

convergence analysis. The new criterion has the advantages of being independent of sampling frequency with 

the NARX model, applicable to nonlinear systems under general inputs, and having no need of carrying out 

complex mathematical computations. Two case studies including the unplugged Van der Pol equation, and 

the Duffing equation with nonlinear damping are used to demonstrate the effectiveness of the new criterion 

and its advantages over existing methods. This Chapter is organized as below 

 

Fig.4.1 The contents of Chapter 4 
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4.2 The NARX model in the frequency domain: Nonlinear Output 

Characteristic Spectra (NOCS) model 

According to the condition of the existence of the Volterra series representation of a nonlinear system, it 

has been shown that if the system output spectrum is bounded and this bound is continuous and smoothly 

changes against the input magnitude over the whole frequency range, then the system is stable at the zero 

equilibrium and can be represented by a Volterra series [101,102]. In order to obtain the output bound for a 

nonlinear system, the NARX model (2.6) will be transformed into the frequency domain as described in 

Proposition 4.1 below using Lemma 3.2 in Chapter 3.  

Proposition 4.1: The NARX model (2.6) can be described in the frequency domain as 

   
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j j
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m
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                                (4.1) 

where  

       

 
 

 
 

   

1

1 0,1

, 11
0

1 1

j j j 1

j
j , ,

2
2

j j d

m

m

m p m p mm
p

p m

i i

i i p

Y L C U m

L
Y C

m
m

Y U

  



   


  



  

   


  

  







 




 

               (4.2) 

and 
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Proof of Proposition 4.1: Let p q m   and rearrange the NARX model (2.6) as 
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              (4.5) 

Applying the normalized Discrete Time Fourier Transform to (4.5) yields: 
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where  
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Denote 
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According to Lemma 3.2, (4.6) can be written as 
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where  , , , 1, ,i t t i n        , thus Proposition 4.1 is proven. 

The new decomposition of the output frequency response of nonlinear systems given by (4.1) will, 

hereafter, be referred to as the Nonlinear Output Characteristic Spectra (NOCS) model with  jmY   being 

called the m th order NOCS function.  

For example, consider the NARX model 
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The NOCS model with 3M   is obtained from Proposition 4.1 as 
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 

 
 

1 3

3

3 3,0 2
1

j
j 1, 1,1 exp j j d

3 2
i

i

L
Y c t Y 

  


   

   


                (4.13) 

and          
1

1,0 1,0j 1 1 exp j 2 exp j2L c t c t  


         . 

The NOCS model of nonlinear system (2.6) introduced in Proposition 4.1 is an important basis for the 

derivation of a new criterion for the analysis of the convergence of the Volterra series representation of 

nonlinear systems. 
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4.3 The Generalized Output Bound Characteristic Function (GOBCF) 

based convergence analysis 

4.3.1 A sufficient condition of the convergence 

In order to evaluate the convergence of the Volterra series representation of a nonlinear system, a sufficient 

condition as described in the following Lemma can be applied. 

Lemma 4.1: If there exists an integer 
*N  such that for all  , 

   1j jn nY Y                              (4.14) 

for all 
*n N , then the Volterra series representation of a nonlinear system is convergent [97]. 

  In practice, the use of Lemma 4.1 can be implemented by introducing a pre-specified threshold   and 

evaluating whether there exists a 
*N  such that when *N N  

   

 
1

j j

100%
j

N

n

n

N

Y Y

Y

 

 






  


 for all                   (4.15) 

This approach will be applied later on to validate the new convergence criterion proposed in the present 

study. 

In order to study the issue of convergence using equation (4.14),  j , 1,2,...nY n   can be evaluated by 

using the GALEs for the NARX model of nonlinear systems proposed in Chapter 3. In the following studies, 

a new convergence criterion will be derived and the results will be validated using (4.14). 

4.3.2 The determination of the GOBCF 

The new convergence criterion will be formulated from the NOCS model (4.1) of a NARX system. As the 

first step of the derivation, the Generalized Output Bound Characteristic Function (GOBCF) is defined and 

an important property of the GOBCF relevant to the bound on the output spectrum of the NARX model of 

nonlinear systems is revealed in Proposition 4.2 below. 

Proposition 4.2: The GOBCF of the NARX model (2.6) is defined as  

 
lin 0,1 ,

2 0

M m
p m p

BC w w p m p

m p

f x x L C u L C x u 



 

                      (4.16) 

where x  is the variable of the GOBCF, 
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 
1

1 0

, , 1
, ,

, ,

sup , ,
p

p m

sym

p m p p m p mC C
 

 

 



 





W

W

                         (4.17) 

with 

   , 1
, 1

1
, ,, , !

i

sym
p m p m

p m p m all possible
permutation of

CC m


   
                    (4.18) 

   
lin

0

sup j , sup jw wL L L L
 

 
 

 
W W

                         (4.19) 

0W  represents the input frequency range,  ,t t    W , and 

    
0

1

,
max j , j

k
u DF U U


 

  

   W

                     (4.20) 

where  1 .DF 
 represents the invers normalised Discrete Time Fourier Transform. 

One of the solutions to equation   0BCf x   is 

1

1

n n

n n

n

y H u H u H u




                          (4.21) 

where 

lin

1

1 0,1

1

0, ,

2 1 1, , 1,
i

p i

w

pM m n m

n w n p m p r

m p ir r r n m p

H L C

H L C C H
 



     

 
   

         

  
                (4.22) 

and y  is a bound on the output spectrum of the NARX model such that   max jy Y






W

. 

Proof of Proposition 4.2: Introduce the symmetric function 

   , 1 , 1

1
, , , ,

!
i

sym

p m p m p m p m

all possible
permutation of

C C
m



                        (4.23) 

with respect to 
1, , m   and denote  

   
1 1

1 0 1 0

, , 1 , 1
, , , ,

, , , ,

sup , , sup , ,
p p

p m p m

sym

p m p p m p m p m p mC C C
   

   

   

 

  
 

 

 
W W

W W

            (4.24) 

and 

   
lin

0

sup j , sup jw wL L L L
 

 
 

 
W W

                         (4.25) 

where  ,s s   W , s  represents the maximum output frequency satisfying s t   . It is known 

from (2.15) that 
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 
 

   

     

1
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1

-
1 1 1

1
j j d

2

exp j d j

n

n
n

n i nn
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t
n n n

n n n
t

n n n

Y H U H DF u k t
n

H t u k t k t H u U H u y


  





  


  

 

   
 

  



  

    

       

 

  

      (4.26) 

where    1 j iu k DF U      . 

From the description of the m th order NOCS function  jmY 
 
given in (4.2), it is known that 

 
lin1 0,1j wY L C u                               (4.27) 

and 

 
 

   
1

1

, 1
0 11 1

, ,

0 1 01

1
j j j d

2 m

p mm
n

m w p m p n i im
p ni i p

pm m
n m p p m p

w p m p n w p m p

p n pi

Y L C H u U U
m

L C H u u L C y u


  

   





    
   


 

 

  

 
  

 

 
  

 

  

  

  (4.28) 

Consequently, 

 

   
lin lin

1

0,1 , 0,1

1 2 0

1

,
0, , , 1, 1

2 2 1

j j

i

p

i

M M m
p m p

m w w p m p w

m m p

pn m
n m

np m p r
w n r r i

n m p
r n m p

Y Y L C u L C y u L C u

C H
L C u

  



  

 




 
  

  

   

  
   
     

 

  

         (4.29) 

  Considering that 

lin

1

1 0,1

1

,
0, , , 1, 1

2 1

i

p

i

w

pn m
n m

p m p r
n w n r r i

m p
r n m p

H L C

C H
H L C

 



 
 

  

 

   
           

 
                     (4.30) 

are the bound on the system GFRFs over all possible frequency ranges [13,103] such that 

 
1

1
, ,

sup , ,
n

n n nH H
 

 



W

                            (4.31) 

It is known that the right hand side of (4.29) equals to the right hand side of (4.26). Therefore 

lin 0,1 ,

2 0 1

M m
p m p n

w w p m p n

m p n

L C u L C y u H u y






  

                     (4.32) 

that is, y  is a solution to   0BCf y  . Thus Proposition 4.2 is proven. 

Remark 4.1: Theoretically, the frequency range W  contains all possible output frequencies, which can 

be obtained using the algorithm in [43] provided the sampling frequency 1 t  with the NARX model is 

sufficiently high. However, in practice, if only the system nonlinearity up to N th order needs to be taken 
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into account considering the higher frequencies are neglectable, then  

max max,N N    W                              (4.33) 

where max  represents the maximum frequency of the system input, and max2 2N t   . 

Remark 4.2: The value of 
wL  can be obtained from (4.19). ,p m pC   is the supreme value of a 

multi-variable symmetric function which can be determined using many numerical optimization approaches 

[120]. However, in many cases as shown in the case studies, the determination of ,p m pC   can be reduced to 

an optimization problem for a single variable function.  

In the following, the GOBCF will be used for the analysis of the convergence with the Volterra series 

representation of the NARX model of nonlinear systems.  

4.3.3 Convergence analysis of the Volterra series representation of nonlinear systems 

Proposition 4.2 implies that if there exist real positive solutions to equation   0BCf x  , then the output 

spectrum of the NARX model (2.6) is bounded by one of such solutions which satisfies (4.21). Consequently, 

the NARX model (2.6) can be described, around zero equilibrium, by a convergent Volterra series 

representation. In the following, Lemma 4.2 is introduced to discuss the cases where   0BCf x   has or has 

no real positive solutions.  

Lemma 4.2: Depending on u  and the values of 
wL , 0,1C  and , , 0, ,p m pC p m   and 

2, ,m M , which are associated with the NARX model parameters, there exist only three cases for the 

solutions to the equation  

 
lin 0,1 ,

2 0

0
M m

p m p

BC w w p m p

m p

f x x L C u L C x u 



 

                     (4.34) 

which are 

(1) There are two real positive solutions minx  and 
maxx  with 

max minx x  or 

(2) There is one real positive solution onex  or 

(3) There is no real positive solution. 

Proof of Lemma 4.2: Evaluating the first and second derivative of the GOBCF  BCf x  yields 

  1

,

2 1

1
M m

p m p

BC w p m p

m p

f x pL C x u 



 

                         (4.35a) 
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    2

,

2 2

1
M m

p m p

BC w p m p

m p

f x p p L C x u 



 

                        (4.35b) 

 
Fig.4.2 Illustration of the different situations of GOBCF with and without real positive solutions 

It is known from (4.35b) that   0BCf x   when 0x  . Considering  0 0BCf   is always satisfied 

since ,, ,w p m pL C   x  and u  are all positive, it is known that 

(i) When    0 0, <0BC BCf f x  , for 0x  ,  BCf x  will increase first and then decrease. Therefore, there 

exist cases (1)-(3) about the solutions to equation (4.34) which are illustrated in Fig.4.2 (a)-(d). 

(ii) When    0 0, =0BC BCf f x  , for 0x  ,  BCf x  will monotonically increase. Therefore, cases (2) and 

(3) exist about the solutions to equation (4.32) as illustrated in Fig.4.2 (f)-(g). 

(iii) When  0 0BCf   , for 0x  , equation (4.34) has no real positive solution. This is case (3) but in a 

different situation as shown in Fig.4.2 (e), (h) and (i). 

By combining (i), (ii) and (iii), the conclusions of Lemma 4.1 are reached. 

Based on Lemma 4.2 and Proposition 4.2, a sufficient condition on the convergence of the Volterra series 

representation of nonlinear systems can be derived. For the purpose of more quantitatively evaluating the 

convergence issue, under the condition of    0 0, <0BC BCf f x   for 0x  , the extreme point of the 

GOBCF where   0BCf x  , is denoted as   ,ex BC exE x f x  and   0 , 0 0, BC uE x f x
 for the two cases of 

0u   and 0u  , respectively as shown in Fig.4.2 where 
exx  is the solution to 

  1

,

2 1

1 0
M m

p m p

BC w p m p

m p

f x pL C x u 



 

                         (4.36) 

in which 0u   while 
0x  is the solution to  

  1

, 0 ,0

2

1 0
M

m

BC u w m

m

f x mL C x 





                            (4.37) 

A sufficient criterion for the NARX model to be described by a convergent Volterra series model can, 
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consequently, be obtained as given in Proposition 4.3 below. 

Proposition 4.3: If GOBCF   0BCf x   has real positive solutions, then, around zero equilibrium, the 

output response of the NARX model (2.6) can be described by a convergent Volterra series representation. In 

addition, the extent to which this representation is convergent can be quantified by 

 

 
   

     
, 0 0

0 0, <0, 0

0 0 0, =0, 0

1 Otherwise

BC ex

BC BC

BC u

BC BC BC

f x
f f x x

f x

f f f x x





  


 

   
 

                    (4.38) 

such that when u , wL , or ,p m pC   in the GOBCF decreases, 1  , the convergence is enhanced; and 

when  u , wL , or ,p m pC   increases, 0  , the convergence is weaken.  

Proof of Proposition 4.3: If equation   0BCf x   has real positive solutions, according to Proposition 

4.2, the output bound y  in (4.21) exists, which indicates the output response of the NARX model can be 

represented by a convergent Volterra series. This proves the first part of Proposition 4.3. 

In order to quantify the extent of convergence, denote the GOBCF in the case of 0u   as  , 0BC uf x , 

which is case (a) and (f) in Fig.4.2. Then it can be observed that   defined in (4.38) has the following 

properties: 

(i)  0,1   indicates the extreme point E  is located in the first quadrant which is the cases of (1) and 

(2) in Lemma 4.1, or the GOBCF monotonically increases which is the case of (2) in Lemma 4.1.  

(ii) 0   indicates the extreme point E  is located in the fourth quadrant, or the GOBCF monotonically 

decreases, which is case (3) in Lemma 4.1 

(iii) When 1  , the extreme point E  or  0BCf   moves upwards and away from case (c) and (h) 

respectively in Fig.4.2, the boundary of the condition of convergency, so the convergence is enhanced. When 

0  , point E  or  0BCf  moves downwards and towards case (c) and (h), respectively, so the 

convergence is weaken. 

These properties can be further analysed as follows. 

For    0 0, <0, 0BC BCf f x x   , the extreme point   ,ex BC exE x f x  of the GOBCF can be obtained by 

solving equation (4.36) to find exx  and then  BC exf x  as 

 
lin 0,1 ,

2 0

M m
p m p

BC ex ex w w p m p ex

m p

f x x L C u L C x u 



 

                   (4.39) 
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Evaluating the first derivative with respect to u  on both sides of (4.39) yields 

 
 

lin

1

0,1 ,

2 1

1

,

2 1

d ,

d

d
1

d
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w p m p ex

m p
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L C m p L C x u

u

x
pL C x u

u

 



 

 



 

   

 
  
 


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             (4.40) 

Considering (4.36), (4.40) can be rewritten as 

 
 

lin

1

0,1 ,

2 1

d ,
0

d

M m
BC ex p m p

w w p m p ex

m p

f x u
L C m p L C x u

u

 



 

                 (4.41) 

So  ,BC exf x u  monotonically decreases with the increase of u , that is, 0   when u  

increases and 1   when u  decreases.  

For    0 0, =0, 0BC BCf f x x   , the first derivate of the GOBCF is  

   1

1, 1

2

1 0
M

m

BC w m BC

m

f x L C u f





                            (4.42) 

which is the slope of the GOBCF independent of variable x , and  0BCf   monotonically decreases with the 

increase of u , that is, 0   when u  increases and 1   when u  decreases. 

Considering that when the input bound u  increases, the convergence of the Volterra series 

representation is weaken and when the input bound u  decreases, the convergence is enhance, one can 

reach to the conclusion of the second part of Proposition 4.3 with regard to the effect of u  on the 

convergence of the system Volterra series representation.  

The analysis can readily be extended to reveal the similar effects of the system linear and nonlinear 

characteristic parameters 
wL  and ,p m pC   

on the issue of convergency and indicate that   can be used to 

quantify the extent of convergence in the same way. Thus Proposition 4.3 is proven. 

Corollary 4.1: The Volterra series representation of the NARX model (2.6) under harmonic input 

   cos Fu k A k t                               (4.43) 

is convergent if  0,1  , where   is obtained from (4.38) using  BC exf x  and  , 0 0BC uf x  or 

 0BCf   obtained by solving equations (4.34) and (4.35) with u A , 

 
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, 1
,

, ,

, ,

1
, ,sup !

p H
i
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p m p m
p m p all possible

permutation of
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
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 
W

                  (4.44) 
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   
1

1

1,0 1 1

1

sup 1 exp j
H

K

w

k

L c k k t






 

   
W

                      (4.45) 

where  ,H F Ht Z N        W  represents all possible output frequencies and 

 H FN t   . 

Proof of Corollary 4.1: The Corollary can be proven by using Proposition 4.3. 

Proposition 4.3 provides an efficient criterion to assess the convergence of the Volterra series 

representation, which can also be applied to determine the convergence bound of a nonlinear system in terms 

of its parameters or inputs. The results are shown in Proposition 4.4 below. 

Proposition 4.4: The convergence bound on the characteristic parameters or input of the NARX model 

(2.6) can be obtained by solving the simultaneous equations 

 

 

lin 0,1 ,

2 0

1

,

2 1

, 0

, 1 0

M m
p m p

BC w w p m p

m p
M m

p m p

BC w p m p

m p

f x x L C u L C x u

f x L pC x u









 

 



 


   


    





            (4.46a) 

under the condition of  <0, 0BCf x x   and 

  1

1, 1

2

1 0
M

m

BC w m

m

f L C u 





                            (4.46b) 

under the condition of  =0, 0BCf x x   for x  and   where  , dependending on the need of analysis, 

can be ,,w p m pL C   or u  representing the convergence bound on the system linear characteristic 

parameters, nonlinear characteristic parameters, or input. 

Proof of Proposition 4.4: Proposition 4.4 can be obtained from Fig.4.2 by evaluating the conditions under 

which function  BCf x  is in situation (c) and (h). 

In (4.44), 
linwL , wL  and ,p m pC   are dependent on the system linear characteristic parameters  1,0 1c k  

and nonlinear characteristic parameters  , 1, , , 2p m p mc k k m   while u  is determined by the magnitude 

of the system input.  

4.3.4 The procedure for the new convergence analysis 

A general procedure for analyzing the convergence of the Volterra series representation of the NARX 

model (2.6) is summarized in the following, where Propositions 4.3 and 4.4 are applied to assess the 

convergence and evaluate a convergence bound, respectively. 
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(A) The procedure for the analysis when the system is subject to a general input 

If the system subject to a general input with spectrum  jU   given by 

 
 

   

   

j1
exp j d

2

1
j exp j d

2

t

t

t

t

U
u k k t t

t

U k t










 



  




 



 

  


 





                     (4.47) 

the procedure of analysis can be summarised as follows: 

 

Procedure of the convergence analysis 

1: Produce the system’s NARX model: Describe the system by a NARX model (2.6), such that all linear 

and nonlinear coefficients  , .p qc  can be determined. This can be achieved by using a data driven 

nonlinear system identification approach [11] or discretising a continuous time model of the system 

under study. 

2: Determine the system’s output frequency range: From the maximum input frequency 
max  and the 

maximum order N  of the system nonlinearity being taken into account, find the output frequency 

range of interest 
max max,N N    W  or  ,t t    W . 

3 Evaluate the input bound: Compute the inverse normalised Discrete Time Fourier Transform 

 1 jDF U   
  , then calculate the input bound      

0

1

,
max j , j
k

u DF U U


 

  

   W
. 

4 Compute the coefficients bound: Calculate 
linwL  and 

wL  according to (19) over the frequency range 

of W  and determine the value of ,p m pC   from (4.8), (4.17), and the NARX model coefficients in 

these equations. 

5: Calculate the extreme point or slope of the GOBCF: Compute the second derivative of the GOBCF 

 BCf x  using equation (4.35b) where 

5.1: If    0 0, <0, 0BC BCf f x x   , solve equations (4.36) and (4.37) to obtain the extreme point 

  ,ex BC exE x f x  and   0 , 0 0, BC uE x f x
 of the GOBCF in the cases of 0u   and 0u  , 

respectively. 

5.2: If    0 0, =0, 0BC BCf f x x   , solve equation (4.35a) to obtain  0BCf   of the GOBCF. 

6: Convergence assessment: Determine   from (4.38) by using  BC exf x  and  , 0 0BC uf x  or 
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 0BCf   obtained in Step 5. If  0,1  , then it can be concluded that the Volterra series representation 

of the nonlinear system is convergent. 

7: Evaluation of the parameter bound: Determine the convergence bound on the system characteristic 

parameters or input by solving equation (3.42). 

 

(B) The procedure for the analysis when the system is subject to a harmonic input 

If the input signal of the system is the harmonic input (4.39), the convergence of the system’s Volterra 

series representation can be analysed following Steps 1 to 7 above but, a H s FN f  is selected to 

determine the frequency range of  ,F Ht Z N        in Step 2, and the input bound u A  

in Step 3. In Steps 4 and 5, 
linwL , wL  and ,p m pC   are determined over the frequency range of

HW . 

Steps 6 and 7 are the same as in the general input case. 

In comparison with the convergence criteria recently proposed in [101-104], the newly proposed 

convergent analysis has the following advantages: 

(i) Because of the introduction of the GOBCF, the complex mathematical operations needed for evaluating 

both the Hélie’s and Xiao’s criterion [101-103] are avoided. In addition, Proposition 4.3 can provide a more 

rigorous and less conservative analysis than the analysis in Xiao’s study [102,103]. 

(ii) In the Xiao’s criterion [102,103], the coefficient bound ,p m pC   in (4.40) is given as the summation of 

all absolute values of the model coefficients, producing over estimated results. In addition, the result is 

dependent on the sampling frequency of the NARX model, so the analysis may fail if the sampling frequency 

is inappropriately selected. On the contrary, the new criterion is independent of the sampling frequency as 

explained in Appendix A. 

(iii) It is worth pointing out that the convergence criterion under harmonic input proposed in previous 

works [97,98,100,102,103] cannot be directly used for general inputs [104]. By using the new convergence 

criterion, however, the convergence analysis problems can be resolved for both harmonic and general input 

cases, and the analysis result is also more rigorous and much easier to be obtained than the analysis in [104].  

Tab.4.1 provides a comprehensive comparison of the newly proposed convergent analysis with the existing 

techniques. The conclusions are reached based on the case study results above and some studies in [103], 

indicating the new analysis has advantages over all existing methods and, therefore, has potential to be more 

widely used in the convergent analysis of the Volterra series representation of nonlinear systems. 
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Tab.4.1 Comparison of different criteria 

Criterions A B C D E 

New criterion + + + + + 

Jing’s criterion [104] - - + + + 

Xiao’s criterion [102,103] - - + + - 

Hélie’s criterion [101] + - - + - 

Peng’s criterion [100] + + - - - 

Li’s criterion [99] + - + - - 

Chatterjee’s criterion [98] + + - - - 

Tomlinson’s criterion [97] + + - - - 

Note: A: Independent (+) or dependent (-) of the sampling frequency; B: The convergence bound is less conservative 

(+) or more conservative (-); C: Can (+) or cannot (-) be used to compute the parameter convergence bound; D: Can (+) 

or cannot (-) deal with a general nonlinear system; E: Can (+) or cannot (-) deal with a general input signal. 

In the next section, the Unplugged Van der Pol equation and a damped Duffing oscillator will be used in 

two case studies, respectively, to demonstrate the application of the newly proposed criterion to the analysis 

of the convergence of the Volterra series representation of nonlinear systems. 

4.4 Case studies 

4.4.1 Case 1- Unplugged Van der Pol equation 

Consider the unplugged Van der Pol equation [115,121] 

         2 ( )ey t cy t ky t c y t y t u t                         (4.48) 

under harmonic input    cos Fu t A t  with the parameters 

4 6 350 Ns m, 10 N m, 2 10 Ns mec k c                       (4.49) 

Model (4.48) can be discretized under a sampling frequency 1 512 Hzt   to produce a NARX model 

       

   

0,1 1,0 1,0

3 2

3,0 3,0

1 ( 1) 1 ( 1) 2 ( 2)

1, 1, 1 ( 1) 1, 1, 2 ( 1) ( 2)

y k c u k c y k c y k

c y k c y k y k

     

    
                  (4.50) 

where 

     

   

2 6 2

0,1 1,0 1,0

3 3

3,0 3,0

1 3.8147 10 ; 1 2 1.8642; 2 1 0.9023;

1, 1, 1 5.8594 10 ; 1, 1, 2 5.8594 10e e

c t c tc t k c tc

c tc c tc

            

        
     (4.51) 

To analyse the convergence of the Volterra series representation of system (4.48), Step 1-6 proposed in 
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Section 4.3.4 are followed as follows. 

Step 1: The NARX model is derived and given in (4.50); 

Step 2: Choose 5HN   so the frequency range of interest is given as  , 3 , 5H F F F     W ; 

Step 3: Let u A ; 

Step 4:
 linwL  and wL  is obtained over 

HW . For the NARX model (4.50), 3M   and 

 , 1, , 0p m p mc k k   except  3,0 1,1,1c  and  3,0 1, 1, 2c  as shown in (4.51). Therefore, in this case, 

, 3,0p m pC C   is a single variable function such that 

         

   

3,0 1 2 3 3,0 1 2 3

3,0
;

1, ,

3

; 1
1, ,

1
1,1,1 exp j 1,1,2 exp j 2

sup 6

1
sup 1 exp j sup 1 exp j

3

i H

i

i H H

all possible
permutation

i m of

e i e

i
i m

c t c t
C

tc t tc t




 

     

 




 


        


           





W

W W

  (4.52) 

Step 5: Substituting u , 
wL  and 

,p m pC 
 in this specific case into (4.36) and (4,37) yields 

    2

, 0 3,01 3 0BC BC u wf x f x L C x
                           (4.53) 

producing   ,ex BC exE x f x  and   0 , 0 0, BC uE x f x
. In this case, 0exx x  but the value of  BC exf x  

and  , 0 0BC uf x  are different, as illustrated in Fig.4.2. 

Step 6: Determine   from (4.36) by using  BC exf x  and  , 0 0BC uf x  obtained in Step 5. 

Following Steps 1-6 above, the new criterion   was evaluated over the frequency range of 

 0, 300 rad/sF   for 4 NA  . The results are shown in Fig.4.3 where the results evaluated using the 

Xiao’s criterion [102,103] are also provided for comparison. It can be observed in Fig.4.3 that at frequencies 

,1 50 rad/sF   and 
,3 150 rad/sF  , the new and Xiao’s criterion all show the Volterra series 

representation is convergent. However, at the frequency of 
,2 100 rad/sF  , the new criterion indicates that 

the Volterra representation is convergent, while the Xiao’s criterion claim it is divergent.  

In order to validate the conclusion of the new criterion, the nonlinear output spectra up to the 5th order 

were calculated by using the ALEs over the frequency range of  0, 300F  rad/s . The results are shown in 

Fig.4.4, indicating that      1 ,2 3 ,2 5 ,2j j jF F FY Y Y     where
,2 100 rad/sF  . This observation from 

Fig.4.4 confirms that the conclusion from the new criterion is correct.  
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Fig.4.3 Convergence analysis for nonlinear system (4.50) 

 

Fig.4.4 The nonlinear output spectra of system (4.50) 

In addition, the values of the nonlinear output spectra up to 5th order at frequency 
,2 100 rad/sF   are 

shown in Tab.4.2. It is known from the convergence analysis using Lemma 1 that if the threshold   is 

taken as 310  , then Tab.4.2 implies the output frequency response can be convergent from 5N   as 

     1 ,2 3 ,2 5 ,2j j jF F FY Y Y                          (4.52) 

and 3 3

5 0.1738 10 10     . 

Tab.4.2 Evaluated nonlinear output spectra 

 ,2 100 rad sF   relative error 
N  

 1 ,2j FY   45.8533 10 m  
2

1 0.9767 10    

 3 ,2j FY   63.8892 10 m  
3

3 0.2815 10    

 5 ,2j FY   88.6722 10 m  
3

5 0.1738 10    

 

It is worth noting that, by using the GALEs, the validation can be conducted by evaluating the output 

spectra up to an arbitrarily high order. For example, it has also been observed that 

     1 ,2 3 ,2 13 ,2j j jF F FY Y Y      but the details are omitted here. 
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In the following, the effects of input magnitude and nonlinear parameters on the convergence of the 

Volterra series representation will be discussed; the effect of sampling frequency on the convergence analysis 

will be evaluated; and the convergence boundary of the parameter and input amplitude of the unplugged Van 

der Pol system (4.50) will be investigated. 

(A) Effect of the input magnitude and nonlinear parameters 

It is obvious that if all system parameters are fixed, the output bound y  will increase with the input 

magnitude. The criterion   is expected to decrease with the increase of the input magnitude, weakening the 

convergence of the system’s Volterra series representation. The convergence criterion   under different 

input magnitudes of  2, 4, 6 NA   is shown in Fig.4.5. Clearly, the results are consistent with the 

expectation. 

Moreover, the effects of different nonlinear parameter of 6 6 6 31 10 , 2 10 , 3 10 Ns mec        on the 

results of the new criterion   are shown in Fig.4.6, which is again as expected.  

      

Fig.4.5 The effect of input magnitude on Volterra series 

convergence 

Fig.4.6 The effect of nonlinear parameter on Volterra series 

convergence 

In Figs.4.5 and 4.6, the thick red line represents the Volterra series may not convergent with 0   and 

the two red squares represent 0   where the Volterra series is convergent according to the new criterion. 

(B) Effect of the sampling frequency 

The new convergence criterion   under three different sampling frequencies of 

 1 512,1024, 2048 Hzt   is evaluated. The results are shown in Fig.4.7. Fig.4.8 shows the results 

evaluated by using the Xiao’s criterion [102,103]. These results are all obtained when 4 NA   and using 

5HN  . 

A comparison of Fig.4.7 and Fig.4.8 indicates that the new criterion is not sensitive to the sampling 
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frequency while the Xiao’s criterion [102,103] is, and may therefore fail to determine the convergence of the 

Volterra series representation of a NARX model if an inappropriate sampling frequency is used. 

 (C) The convergence boundary 

In the case of the NARX model (4.48), equation (4.44) in Proposition 4.4 becomes 

 

 
lin

3

0,1 3,0

2

3,0

, 0

, 1 3 0

BC w w

BC w

f x x L C A L C x

f x L C x





    


   

                      (4.55) 

        

Fig.4.7 The effect of sampling frequency on new criterion Fig.4.8 The effect of sampling frequency on Xiao’s criterion 

By taking A   in (4.55), the convergence boundary of the input magnitude is calculated for 

 0, 300 rad/sF   when
6 32 10 Ns mec   . The results are shown in Fig.4.9. Moreover, by taking ec   

in (4.55), the convergence boundary of the nonlinear parameter ec  is also evaluated for  0, 300F  rad/s  

in the case of 4A  . The results are shown in Fig.4.10. 

     

Fig.4.9 The convergence boundary of the input magnitude Fig.4.10 The convergence boundary of nonlinear parameter 

In Figs.4.9 and 4.10, a numerical boundary is also provided and referred to as the “true” convergence 

boundary to justify the accuracy of the boundary determined using the new criterion. The numerical 

boundary is obtained based on Lemma 4.1 in Section 4.3.1, by finding a boundary for A  or ec  such that 

when A  or ec  is below this boundary. 
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     1 3 13j j jF F FY Y Y                           (4.56) 

with 
6

13 10  , and  j , 1, ,13n FY n   are calculated by using the GALEs of system (4.50). 

The results in Figs.4.9 and 4.10 indicate that the new criterion provides a more accurate convergence 

boundary than the Xiao’s criterion [102,103].  

4.4.2 Case 2- Duffing oscillator with cubic damping 

The Duffing oscillator with cubic damping can be described as 

         3 3

3 3 ( )y t cy t ky t k y t c y t u t                         (4.57) 

When 

4

8 3 3 2 3 3 3

3 3

50 Ns m, 10 N m,

5 10 N m , 3 10 N s m

c k

k c

 

   
                      (4.58) 

and the sampling frequency is 1 512 Hzt  , system (4.57) can be discretized as 

                 

               

3

0,1 1,0 1,0 3,0

2 2 3

3,0 3,0 3,0

1 1 1 1 2 2 1, 1, 1 1

1, 1, 2 1 2 1, 2, 2 1 2 2, 2, 2 2

y k c u k c y k c y k c y k

c y k y k c y k y k c y k

       

       
     (4.59) 

where 

   

   

   

 

2 6 2

0,1 1,0

2 5

1,0 3,0 3 3

5 5

3,0 3 3,0 3

5

3,0 3

1 3.8147 10 ; 1 2 1.8642;

2 1 0.9023; 1,1,1 1.555 10 ;

1,1, 2 3 4.608 10 ; 1, 2, 2 3 4.608 10 ;

2, 2, 2 1.536 10

c t c tc t k

c tc c k t c t

c c t c c t

c c t

       

            

         

   

            (4.60) 

In this case study, the signal 

 
       0 0 0

0 0

sin 150 sin 50 0, 2
;

3sec

k k kA
u k

k t

  

  

    
 

  
                (4.61)

 

is applied as the system input. Fig.4.11 shows the signal in two cases of 0.06A   and 0.18A   in the 

time and the frequency domain, respectively. 

The input frequency range is  50,150 rad/s . In Step 2 of the analysis procedure, the output frequency 

range of interest is taken as 
max max,N N    W  where 2N  . In Step 3, it is determined that 

1.9316u   and 5.7947u   in the two cases of 0.06A   and 0.18A  , respectively. 

In Step 4, 0.0188wL   and in this case study, only  3,0 .c  in the NARX model (4.59) is involved, so 

that , 3,0p m pC C   is calculated as 
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  
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      (4.62) 

        

(a) Input signal in the time domain (b) Input signal in the frequency domain 

Fig.4.11 The input signal used in case study 2 

Then in Steps 5 and 6, the criterion   is calculated as 

 0.06 0.5177 0,1A     and 0.18 0.4468 0A                          (4.63) 

indicating that the Volterra series representation of system (4.57) is convergent when 0.06A   while 

divergent when 0.18A  .  

The nonlinear output spectra up to the 13th order were calculated by using the GALEs over the frequency 

range of  50,150 rad/s  and the results up to the fifth order of nonlinearity are provided in Fig.4.12.  

The results show that the Volterra series representation of system (4.59) can be convergent at 0.06A   as 

     1 3 13j j jY Y Y                             (4.64) 

while divergent at 0.18A   because, in this case 

         1 9 7 5 3j j j j jY Y Y Y Y                      (4.65) 

Moreover, the convergence boundary of the system input can be obtained by solving equation (4.46) in the 

specific case of system (4.57), which is,  

 

 
lin

3

0,1 3,0

2

3,0

, 0

, 1 3 0

BC w w

BC w

f x x L C u L C x

f x L C x

    


   

ξ

ξ
                      (4.66) 

for u , yielding 3.992u   and the corresponding boundary on parameter A  of the input signal (4.61) 
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is 0.124. This boundary is between 0.06A   and 0.18A  , which further confirms the effectiveness of the 

proposed new convergence analysis. 

      

                                            (a) Input magnitude 0.06A          (b) Input magnitude 0.18A   

Fig.4.12 The nonlinear output spectra up to the 5th order 

4.5 Conclusions 

Based on the Volterra series representation of nonlinear systems, many theories and methods including 

e.g., the GFRFs, the NOFRFs and the OFRF, have been developed for the analysis and design of nonlinear 

systems in the frequency domain, and some of these theories and methods have been successfully applied to 

address the nonlinear system analysis and design problems in engineering practice. The fundamental 

assumption with these nonlinear system theories and methods is that the system under study can be 

represented by a convergent Volterra series. Generally, the assessment of the convergence issue with a 

general nonlinear system can only be conducted via numerical analyses to see whether the higher order terms 

of the Volterra series are degressive. In addition, some analytical methods are available, which can be used to 

study the convergence problem of the Volterra series representation of relatively simple nonlinear systems. 

In the present study, a new convergence analysis for the Volterra series representation of nonlinear 

systems has been studied. In the analysis, a frequency domain representation of the NARX model, known as 

the Nonlinear Output Characteristic Spectra (NOCS) model, has been proposed. The Generalized Output 

Bound Characteristic Function (GOBCF) of NARX models is then defined to represent the bound 

characteristics of the NARX models. Moreover, a new criterion for the analysis of the convergence of the 

Volterra series representation is derived based on the GOBCF, producing a novel sufficient condition for a 

convergent Volterra series representation of the NARX model of nonlinear systems. Compared to existing 

approaches, the new criterion can provide a more rigorous and less conservative analysis result and is 
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applicable to nonlinear systems subject to both harmonic and general input excitations. Two case studies have 

been used to demonstrate the effectiveness of the new analysis and its advantages over available methods. 

The results achieved have provided an important basis for the application of the frequency domain theories 

and methods of nonlinear systems to address the analysis and design problems with a wide range of 

engineering systems. Similar results of the present study can be derived for the convergence analysis of the 

Volterra series representation of NDE models. 



CHAPTER 5  73 

Chapter 5. The effects of both linear and nonlinear 

characteristic parameters on the output response of nonlinear 

systems 

5.1 Introduction 

It has been shown in previous chapters, that the NOFRFs and OFRF of nonlinear systems can be 

accurately evaluated by using the GALEs, under the convergence condition determined by the GOBCF of the 

system. However, in the OFRF based analysis and design of nonlinear systems, almost all currently available 

results require that a nonlinear differential equation-based physical model of the system is available in which 

the physical parameters that can be used for the system analysis and design are the coefficients in the 

differential equation model. In order to address this issue, the NARX-M-for-D of nonlinear systems has been 

proposed in Chapter 2. On the other hand, it is well known that the output frequency responses of nonlinear 

systems are affected by both the linear and nonlinear characteristic parameters of the system. The OFRF 

shows an analytical relationship between the output spectra of nonlinear systems and the system’s nonlinear 

characteristic parameters and this relationship is only valid under the condition that the system linear 

characteristic parameters are fixed. There are still no results that can systematically relate the output 

frequency response of nonlinear systems to both the system linear and nonlinear characteristic parameters so 

as to facilitate the analysis and design of the effects of all parameters on the systen output frequency 

responses. 

  In this chapter, the OFRF of the NARX-M-for-D in terms of all parameters of concern is defined. A 

general OFRF-based approach to the frequency domain design of nonlinear systems described by the 

NARX-M-for-D is then proposed, which allows a systematic OFRF-based design that, for the first time, can 

take the effect of both the system linear and nonlinear characteristics on the design into account. Moreover, a 

new concept known as the Associated Output Frequency Response Function (AOFRF) is introduced based on 

the NARX model of nonlinear systems, which indicates that the output frequency response of nonlinear 

systems can be represented by a polynomial function of both the system linear and nonlinear characteristic 

parameters. Effective algorithms are then derived to determine the structure and coefficients of the AOFRF 
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based representation for the system output frequency response. 

Finally, the case studies are used to demonstrate the effectiveness of the proposed new design approach in 

addressing the challenges with the design of both the linear and nonlinear characteristic parameters of a wide 

class of nonlinear systems. The structure of this chapter is illustrated as below. 

 

Fig.5.1 The contents of Chapter 5 

5.2 The OFRF based design of NARX-M-for-D 

5.2.1 The OFRF of the NARX-M-for-D 

The OFRF of nonlinear systems is determined based on a nonlinear differential equation model [56], 

where a polynomial relationship between the system output frequency response and system parameters which 

defines the system nonlinearities is derived. In this relationship, the coefficients of the polynomial are 

dependent on the system linear characteristic parameters, and the order of the polynomial is determined by 

the highest order in the system's Volterra series representation.  

For the NARX-M-for-D (2.11), the OFRF concept can be introduced as described in Proposition 5.1 

below. 

Proposition 5.1. Assume    1( , , )

,
p qk k

p q  ξ θ ξ  can be represented by a polynomial function of the 

system design parameters 1, , S   up to the n th order such that 

   
 

1 1

1

1

( , , )

, 1, ,
, ,

p q S

S

S S

k k rr

p q Sr r
r r

   



 
R

ξ                       (5.1) 

where 
SR  is a set of S -dimensional nonnegative integer vectors which contains the exponents of 

1 2

1 2
Srr r

S   , and 
1, , Sr r n ,  1 , , Sr r

  are constants.  

    The output frequency response  jY   of the NARX-M-for-D can be written into a poynomial function 

of  1, , S ξ  as 

     
 

1

1

1

1, ,
, ,

j j S

S

S

jj

Sj j
j j

Y     


 
J

                       (5.2) 
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where    
1 , ,

j
Sj j

   are the functions of frequency variable   and are dependent on  1( )

1,0

k ξ  and 

 1( )

0,1

k ξ  which are the linear characteristic parameters of system (2.11). J  denotes the integer vectors. 

(5.2) is the OFRF of the NARX-M-for-D (2.11). 

Proof of Proposition 5.1. Equation (5.2) can be directly achieved by substituting (5.1) into the OFRF 

representation (2.31) of the corresponding NARX model. 

For example, the OFRF of the NARX-M-for-D (2.8) with coefficients of (2.11) can be written as 

              2

3 30 1 2
j j j jn nY k k                              (5.3) 

where    j
j

  , 0,1,j   are the functions of   and dependent on the system linear parameters 
lc  

and 
lk .  

Also, it can be shown that the OFRF of the NARX-M-for-D (2.8) given by (5.3) is the same as the OFRF 

that can be determined from the differential equation model (2.3) of the system given by (2.37). This implies 

that, instead of using a physically meaningful differential equation model, the NARX-M-for-D of a nonlinear 

system can equally be used to perform the OFRF-based system analysis and design.  

It is worth noting that, given an appropriate order of the system nonlinearity that needs to be taken into 

account, the OFRF of the NARX-M-for-D is a unique polynomial form representation for the system’s output 

spectrum [56]. The increase of the system design parameters may increase the complexity of the OFRF. But, 

different from numerical approximation or curve fitting, there is no overfitting issue because of the OFRF’s 

uniqueness.  

5.2.2 The determination of the OFRF of NARX-M-for-D 

Assume that the coefficients of system (2.11) can be expressed as a polynomial function of the system 

design parameters, these coefficients can be written into a matrix form as: 

 1 1 1( , , ) ( , , ) ( , , )

, , ,
p q p q p qk k k k k k

p q p q p q   ξ ξ β                         (5.4) 

where 0p q  , 
1( , , )

,
p qk k

p q
ξ  is the vector composed of the monomials of the form of 1

1
Srr

S   and 

1( , , )

,
p qk k

p q
β  is a constant vector of a corresponding dimension. 

Based on the results in Chapter 2, Section 2.3.4, a recursive algorithm for determining the structure of the 

OFRFs of system (2.11) can be derived and described in the following proposition. 

Proposition 5.2. For system (2.11), given  1 jH   and the input spectrum  jU  , the n th order 

output spectra of nonlinear system (2.11) can be expressed as: 
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   j jn n nY   Ξ Y                               (5.5) 

and the output spectra of system (2.11) can be expressed as: 

   
1

j j
N

n n

n

Y  


Ξ Y                              (5.6) 

In (5.5) and (5.6), 
nΞ  is the vector whose components are the monomials of the system design 

parameters of interest that have contribution to the n th order nonlinear output of the system,  jn Y  is 

the vector with corresponding dimensions whose components are dependent only on  1 jH   and the 

frequency variable  . 

Proof of Proposition 5.2. The GFRFs of system (2.11) can be determined recursively from the parameters 

of the system time domain model (2.11) as: 

           
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12 , 0p

n K

p k k 

 
  

(5.7) 

with 

     

      

( 1)

, 1 1 , 1 1

1 1

,1 1 1 1 1

, , , , , , exp j

, , , , exp j

n p i

n p n i i n i p i n l p

i l

n n n n n

H H H k t

H H k t

      
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 

  

 

   
     

   
     

   

It can be seen that given linear coefficients 
   .

0,1 ξ  and 
   .

1,0 ξ , the n th order GFRFs of the system 

(2.11) can be written as [56]: 

 
 

1

1

1

1 1 1, ,
, ,

( , , ) ( , , )sN

sN

sN

vv

n n sN n n nv v
v v

H h     


 
V

Θ h               (5.8) 

where V  represents a sN -dimensional nonnegative integer vectors which contains the exponents of 

1

1
sNvv

sN   and 
 1 , , sNv v

h  are constants, and  1( , , )

1 ,, , 2nk k

sN p q p q     
 

ξ . 

Substituting (5.4) into (5.7), yields: 

   1 : 1 1: :
1

( , , ) ( , , ) ( , , )
N

n n n i n n n nn i n i
i

H h     




  ξ β Ξ H               (5.9) 

where 
: 1( , , )n i nh    are the i th element of 1( , , )n n h , nΞ  is composed of  :n i

ξ , 1, ,i N  , and 

N   is the maximum dimension of vector 
nΘ . 
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Substituting (5.9) into (5.7), yields: 

   
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(5.10) 

where  

 
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2 n
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    

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

 Y H               (5.11) 

Therefore, Proposition 5.2 is proven. 

Proposition 5.3. The vector nΞ  introduced in Proposition 5.2 can be determined recursively using an 

algorithm as follows: 

   1 11

1 1 1

1
( , , ) ( , , )( , , )

0, , , ,0 ,

, , 1 1 1 , , 1 2 , , 1
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where the symbol “” is the Kronecker product with  1 1Ξ  
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 Ξ Ξ Ξ  and 
,1n nΞ Ξ                     (5.13) 

Proof of Proposition 5.3. In (5.7), the n th order GFRFs’ coefficient vector nΘ  can be determined by 

using the algorithm proposed in Peng et al [74]: 
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1 1 1
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   (5.14) 

where  
1

, , 1

1

n p

n p i n i p

i

 

 



 Θ Θ Θ  and 
,1n nΘ Θ . 

By substituting (5.4) into (5.14), 2Ξ  can be obtained and satisfies Proposition 5.3. Moreover, by using 

the mathematical induction and assuming Proposition 5.3 holds for nΞ , it can be obtained that 

   1 11 1

1 1 1 1 1 1

1 1
( , , ) ( , , )( , , )

1 0, 1 , 1 , ,0 1,
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Ξ ξ ξ Ξ ξ Ξ     (5.15) 

where, according to (5.7), 1,n pΞ  can be obtained as: 

 
1 1

1, 1 , 1
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1,1 1

n p

n p i n i p
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n n

  
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 
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Ξ Ξ Ξ
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                      (5.16) 

Therefore, Proposition 5.3 is proven.  
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Proposition 5.3 provides an efficient algorithm for the determination of the monomials that need to be 

included in the OFRF representation for the output spectrum  jY   of the more general NARX-M-for-D 

(2.11). Although the OFRF structure is theoretically related to the system model and can be determined in an 

analytical way, Proposition 5.3 provides an algorithm which can readily be implemented using computer 

codes to automatically produce all the monomials in the OFRF. 

According to Proposition 5.3, the OFRF of the output spectra of the NARX-M-for-D (2.11) can, like (2.31), 

be represented by polynomial function of the design parameters 
1, , S  .  

The coefficients of the OFRF of the NARX-M- for-D (2.11) are generally dependent on the frequency 

variable  , the system input, as well as the system linear characteristic parameters. When all of these are 

fixed, these coefficients are constants and can be numerically evaluated as described in Proposition 5.3 

below. 

Proposition 5.4. Assume that the coefficients    
1 , ,

j
Sj j

   in the OFRF (5.2) are independent of the 

system design parameters 1, , S  ξ . Given the monomial vector  

   
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1 1

1

2 1 1 1

0 0

1, , , , ,
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mm
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 

 
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  
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where im  is the maximum power of , 1, ,i i S   that has been determined by using Proposition 5.2, 

denote  

             2, ,
1, , , 1 , ,

j j N j j j
M    

   
Ξ Ξ Ξ Ξ Ξ                      (5.18) 

as the vector Ξ  evaluated at the j th set of the system design parameters   , 1, ,i j i S  , M  as the 

total number of designs that have been initially tried. Then the OFRF representation of the system output 

spectrum under the j th set of initial design can be written as 

                   11 1
j 1 , , 1 , , Mj j j j jM M

Y M l M l
 

      
   
Ξ Ξ Λ Ξ Ξ Λ         (5.19) 

where 
1M 

Λ  is a M  dimensional vector whose components are the coefficients of the OFRF (5.2) and 

1, , ; 0, 1, ,iM
l l l i M    L                           (5.20) 

is a constant vector, and  

   
T

11 1 1
1 , ,

M M M M
l l M

  
   Λ Λ Λ                          (5.21) 

are the coefficients in the representation of (5.19). Moreover, the coefficients in (5.19) can be determined as 
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 
1

T T

1 1M N M N M N M N



    
Λ P P P X                          (5.22) 

where 

       

       

11 1

1

1

1

M

N M

MN N
N M

l M l

l M l





 
 
 
 
  

Ξ Ξ

P

Ξ Ξ

                     (5.23) 

and  

       
T

11
j , , j

N N
X X 


 
 

X                           (5.24) 

is a vector the components of which are the system output frequency responses under N M  different pilot 

designs. 

Proof of Proposition 5.4. Proposition 5.4 can be proved by using the traditional Least Square (LS) 

algorithm. 

Remark 5.1: The LS algorithm is a very basic method that can be applied as shown in Proposition 5.3 to 

determine coefficients of the OFRF using the system response data generated from a number of prototype 

designs. The introduction of the constant vector L  in (25) is to ensure the numerical stability of the LS 

solution (5.22). When  1, ,1L , (5.22) produces the coefficients of the OFRF (5.2), that is 

1 1M M 
Λ Λ                                 (5.25) 

Otherwise, the coefficient vector 
1M 

Λ  evaluated from (5.22) is different from the coefficient vector of the 

original OFRF (5.2). This is needed in many practical cases to circumvent the problems numerically induced 

by significant difference between the values of different design parameters. 

Remark 5.2: In general, the maximum order N  of the system nonlinearity is pre-determined. The error 

of a nonlinear system’s OFRF representation is induced by the truncation error associated with the Nth order 

Volterra series representation of the system. The increase of the order N will reduce the error of the 

representation. In practice, up to 3th or 5th order system nonlinearity is often sufficient to use in an OFRF 

representation for the output frequency response of nonlinear systems [56,93]. 

5.2.3 The OFRF based design of nonlinear systems 

The OFRF provides an analytical representation of the output spectrum of nonlinear systems. When the 

OFRF of a NARX-M-for-D has been determined using the algorithm derived above. The problem of the 

system design can be described as a constrained optimization problem and formulated as follows. 
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Find the values of the system physical parameters of interest for the design: 

 0 1, , S ξ                               (5.26a) 

to solve the optimization problem 

 
   

 

 1

1

11

1 0, ,
, ,, ,

j jMIN ;
S

S

SS

jj

Sj j
j j

Y
 

      


 
J

              (5.26b) 

under the constraint: 

 1, , 0; 1, ,i Sg i m                             (5.26c) 

  In (5.26),   is the frequency range over which the design is considered,  0 jY  is a desired system 

output spectrum and  1, ,i Sg   , 1, ,i m  are the functions associated with the design constraints. 

The approach to the solution to the design problem (5.26) can be summarized in a procedure of five steps 

as follows. 

Procedure of the OFRF based Design  

1: System modelling: Establish a NARX-M-for-D for the nonlinear system by either discretizing an 

available differential equation model of the system or using a nonlinear system identification 

method. 

2: Identify model coefficients: 

 (i) Nonlinear coefficients: Identify the NARX-N-for-D coefficients which define the system 

nonlinearity and find the relationship between the coefficients and system design parameters 

   1( , , )

,
p qk k

p q  ξ θ ξ  where 1p q  . 

 (ii) Linear coefficients: Identify the coefficients of the NARX-M-for-D which define the system 

linear characteristics and the relationship between these coefficients and system design parameters 

 1( )

1,0

k ξ  and  1( )

0,1

k ξ  

3: Determine the design constraints: Determine the system linear characteristic parameters  1( )

1,0

k ξ  

and  1( )

0,1

k ξ  as required by the design for the FRF of the linear part of the system 

 

     

   

1

1

1

1

0,1 1

1

1
( )

1,0 1

1

exp j

j

1 exp j

K
k

k

K
k

k

k t

H

k t

 



 





 



  





ξ

ξ

                       (5.27) 

and establish a constraint for the design given by (5.26c) such that  1 jH   is independent from the 
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variation of the system design parameters 
1, , S  .  

4: Formulation of the design problem: Determine the OFRF of the NARX-M-for-D using the 

algorithm in Section III and formulate the optimization design problem (5.26). 

5: Optimal design: Solve the optimization design problem (5.26) to find a solution to the design. 

 

A case study of the OFRF based design of the NARX-M-for-D will be shown in details in Section 5.4. 

Remark 5.3: The specific form of the design constraint (5.26c) is determined by the practical 

requirements for the design. However, it is worth pointing out that the design constraint (5.26c) also has to 

make sure that the OFRF coefficients    
1 , ,

j
Sj j

   are independent of the design parameters
1, , S  ξ . 

This is required by the method used to evaluate the OFRF coefficients in Section 5.2.2. 

In the following studies, the issue mentioned in Remark 5.3 is resolved based on a newly proposed concept 

known as the Associated Output Frequency Response Function (AOFRF) of nonlinear systems, which allows 

both the system linear and the nonlinear characteristic parameters to be taken into account in the system 

analysis and design. 

5.3 The Associated Output Frequency Response Function (AOFRF) 

5.3.1 Explicit relationships between the GFRFs and the parameters of the NARX model 

In order to facilitate derivations, the combination operator “ ” of matrix manipulations are firstly defined 

as bellow: 

Considering a m  dimensional vector 
1B  and a n  dimensional vector 

2B , the operation of 

combination is defined as 

       
 1 2 1 1 2 2 1

1 , , , 1 , ,
m n

m n
 

    B B B B B B                  (5.28) 

and 
1 2

1

N

i N
i
    B B B B . 

Denote, in equation (2.18), 

      
1

1 1,0 1 1 1

1

, , 1 exp j
K

n n n

k

L c k k t   


                     (5.29) 

     1 1 1 1 1, ,n

n nH H H                           (5.30) 

Then, the first order GFRF of system (2.6) can be determined by taking 1n   in (2.18) as 
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 

   

   

1

1

0,1 1 1

1

1

1,0 1 1

1

exp j

1 exp j

K

k

K

k

c k k t

H

c k k t











 



  




                          (5.31) 

The second order GFRF of the system can be obtained by taking 2n   in (2.18) to yield 

      

 

 

 

1 2

1 2 1 2

2 1 2 2 1 2 0,2 1 2 1 1 2 2

, 1

1,1 1 2 1,1 1 2 2 2,0 1 2 2,2 1 2

, 1 , 1

2,2 1 2 1 1 1,1 2 1 2

1,1 2 1 2 2 1

, , ( , ) exp j

( , ) ( ) exp j ( , ) ( , )

( , ) ( ) ( ) exp j

( ) ( ) exp j

K

k k
K K

k k k k

L H c k k k k t

c k k H k t c k k H

H H H k t

H H k t

     

   

    

  



 


   


    



  


  



          (5.32) 

and consequently, 

           

         

           

T

2 1 2 1 2 1 22:0 2:0 2:0

T

1 1 1 2 1 22:1 2:1 2:1

2 T

1 1 2 1 2 1 22:2 2:2 2:2

, , ,

( ) , ,

, , ,

H

H

H

H

H

H

     

    

     

 
 

 
 

 
 

L Φ C

L Φ C

L Φ C                 

(5.33) 

where “ ” represents the Hadamard product;    1 22:
,H r

 Φ  for 0,1,2r   are the vectors of the functions 

of frequency variables 
1 2,   

     

          

          

1 2

1 2

1 2

1

1 2 2 1 22:0
, 1

1

1 2 2 1 2 12:1 1,1 :1, 1

1

1 2 2 1 2 1 22:2 2,2 :2, 1

, , 1

, ,

, , ,

K

k k

K

k k

K

k k

L

L

L

   

    

     













  
    


  

    
  

    

L

L L

L L

                  (5.34) 

with 

             

        

     

         

1 2 1 21:2,2 : 1,1 : 1:1

2 21: 1:0 1:1,1 :

, . 1
;

. . NULL 1

Rr r R

r rr
for r

   

 


    

 
    

L L L L

L L L L
    (5.35) 

and 

     

   

   

1 2

1 2

1 2

1 2 0,2 1 22:0
, 1

1 2 1,1 1 22:1
, 1

1 2 2,0 1 22:2
, 1

, ,

, ( , )

, ( , )

K

k k

K

k k

K

k k

k k c k k

k k c k k

k k c k k







  
    


  

    
  

    

C

C

C

                        (5.36) 

where “ ” represents the Kronecker product. 

By following the same procedure, the explicit relationship between the n th order GFRF of system (2.6) 

and the system parameters can be obtained. The results are summarized in Proposition 5.4 as follows. 
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Proposition 5.5. The n th order GFRF of the NARX model (2.6) with 1n   can be described, in terms of 

the system first order GFRF and linear and nonlinear characteristic parameters, as 

             
T

1 1 1 1 1: : :
0

, , , , , , , ,
n

r

n n r n H nn r n r n r
r

H H       


 
  L Φ C       (5.37) 

where    1:
, , , 0, ,H nn r

r n  Φ  are the functions of frequency variables 
1, , n  ; 

          

    

 
 

1 1

1

1
1

1 1 1: , :, , 1 1 1 , , 1

1, :2 , , 1

, , , , , ,

, ,

1 0

NULL 0

n p q

p

n qK n K

n n n n qn r n q p rk k q p k k

n K

nn p rp k k

L

r

r

     

 






   

 

 
      


 

   
 

  

L δ L

L

δ

    (5.38) 

with  

             

        

     

         

1

1 1 1:, : , 1 :1 0

1 1:,1 :

11:1

11:0 :

, , , , , ,

, , , ,

1

. NULL

n p r

n i i ni Rn p r n i p r Ri R

n nn rn r

n r
for r n

     

   





 

   


   


 

 

   

L L L

L L

L

L L

        (5.39) 

are only related to the system linear characteristic parameters and 

 

       

     
1 1

1

1

0, 1 , 1 , :, , 1 1 1 , , 1

:

,0 1 , :2 , , 1

, , , ,

, ,

n p q

p

n qK n K

n n p q p q n q p rk k q p k k

n r n K

p p n p rp k k

c k k c k k

c k k





    

 

 
      

  
    
  

δ C

C

C

        (5.40) 

with 

       

    

   

     

1

1:1:, : , 1 :1 0

1:0 ::,1 :

1
;

NULL

n p r

i Rn p r n i p r Ri R

n rn rn r
for r n

 

   

      
 

   

CC C C

C CC C
         (5.41) 

are determined by the system nonlinear characteristic parameters. 

Proof of Proposition 5.5. In the GFRF algorithm (2.18), , 1( , , )n p nH    can be rewritten as [52] 

  
1

( 1)

, 1 1 1 1

, , 1 1

( , , ) ( , , ) exp j
i i i

p

i

pn p

n p n r X X r X X r p i

r r i

r n

H H k t     
 

     

 



    



        (5.42) 

where 
1

1

i

x

x

X r




  and 
1

p

i i

i

r r n


   , 1sf t   is the smpling frequency. 

It can be proven that Proposition 5.5 holds for 1,2n  . Assuming this holds for the 1n  th order GFRF, 

1 ( 1)

1, 1 1 1 1 , 1 1 1

1 1

( , , ) ( , , ) ( , , )exp j
n p i

n p n i i n i p i n l p

i l

H H H k t      
  

      

 

  
    

  
     (5.43) 
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can be rearranged by substituting (5.42) into (5.43) as 

           

              

1

1 ( 1)
T

1, 1 1 1 1 1 1: : :
, , 1 01

1

1
T

1 1 1 1 1 11, : 1, : 1, :
0

( , , ) , , , , , ,

, , , , , ,

i

i

i i ii i i i i i

p i

i

rpn p
R

n p n R r H rr R r R r R
r r Ri

r n

n
r

n n H nn p r n p r n p r
r

H H

H

       

     

  

 

 

 



   


 
 



 
 

 



L Φ C

L Φ C

(5.44) 

where 
    1 11, :

, , nn p r
  

L  and 
  1, :n p r

C  can be calculated using algorithms (5.39) and (5.40) as 

Proposition 5.5 holds for 1n  th order GFRF. 

Substituting (5.44) into the recursive algorithm (2.18), the n th order GFRFs can be obtained as: 

    

      

          

1

1

1 1 0, 1 1 1

, 1

1

, 1 1 1 1 1, :
1 1 , 1 0

T

1 1 1 1, : 1, :

, , ( , , ) ( , , ) exp j

( , , ) , , , ,

, , exp j

n

p q

K

n n n n n n n n

k k

n q n qn K
r
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where 
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with 1 2r R R  , 
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         (5.47) 

Equation (5.45) can be easily rearranged as: 

             
T

1 1 1 1 1: : :
0

, , , , , , , ,
n

r

n n r n H nn r n r n r
r

H H       


 
  L Φ C        (5.48) 

so Proposition 5.5 is proved. 

Equation (5.37) reveals an important relationship between the GFRFs and the system linear and nonlinear 

characteristic parameters. Compared with the algorithm (2.18) for calculating GFRFs, the relationship (5.37) 

explicitly decouples the effects of the system linear and nonlinear characteristic parameters on the GFRFs, 

which can facilitate a separate analysis and design of the system linear and nonlinear characteristic 

parameters. Moreover, the order of the first order GFRF  1 .H  that affects the GFRF is also explicit in 
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(5.37), making the effect of the system linear characteristic parameters on the GFRFs more easily be 

investigated. 

Remark 5.4. When the system linear characteristic parameters are fixed in (5.37), the n th order GFRF 

can be directly written as a polynomial function of the nonlinear characteristic parameters [74]: 

       
T

1 1: :
0

, , , ,
n

L

n n nn r n r
r

H    
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Ψ C                     (5.49) 

where  
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 
Ψ L Φ          (5.50) 

is a function of the frequency variables. 

When the system nonlinear characteristic parameters are fixed, equation (5.37) can be written as 

           1 1 1 1 1: :
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, , , , , , , ,
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r NL
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r
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 L Ψ           (5.51) 

where 

         
T T

1 1: : :
, , , ,NL

n H nn r n r n r
   Ψ Φ C                    (5.52) 

is again a function of the frequency variables. Clearly, the two cases of equation (5.37) given by (5.49) and 

(5.51) can be used to separately study the effects of the system linear and nonlinear characteristic parameters 

on the GFRFs. 

5.3.2 Two special cases 

In the following, two special NARX models with the pure input and pure output nonlinearity, respectively, 

are used to illustrate the results of Proposition 5.5.  

The NARX model with pure input nonlinearity can be written as: 

 
1

0, 1

1 , 1 1

( , , ) ( )
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y t c k k u t k
  

 
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                        (5.53) 

The GFRFs of the system are given by 

  
1

1 0, 1 1 1

, 1

( , , ) ( , , ) exp j , 1,2,
n

K

n n n n n n

k k

H c k k k k t n   


              (5.54) 

From Proposition 5.5, it can readily be shown that 

Corollary 5.1. The n th order GFRF of nonlinear systems with pure input nonlinearity can be described 

as: 

       
T

1 1:0 :0
, , , ,n n H nn n

H    Φ C                     (5.55) 
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where  
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c k k


 
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C                           (5.56) 

The NARX model of pure output nonlinearity can be expressed as: 

 
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The GFRFs of the system are given by: 
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Again, following Proposition 5.5, it can be shown that 

Corollary 5.2. The n th order GFRF of pure output nonlinear systems can be expressed as: 
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where  
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for 1n  , and 
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                    (5.63) 

Corollaries 5.1 and 5.2 are two special cases but also important in practice. This is because many nonlinear 

systems in practice can be described by a pure input nonlinearity system such as a Volterra model [122,123] 

or a pure output nonlinearity system [75,124]. In these cases, the simpler results in Corollaries 5.1 and 5.2 

can be used to study the GFRFs of corresponding nonlinear systems. 

5.3.3 The concept of the Associated Output Frequency Response Function (AOFRF) 

The AOFRF concept is introduced from the derivation of a new representation for the output spectrum of 

nonlinear systems as described in Proposition 5.5 bellow. The objective is to facilitate the derivation of an 
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analytical relationship between the output frequency response and both the linear and nonlinear characteristic 

parameters of the NARX model of nonlinear systems 

Proposition 5.6. The output spectrum of nonlinear system (2.6) can be described as 
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where 
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    (5.65) 

is referred to as the r th order Associated Output Response Function (AOFRF) and 
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Proof of Proposition 5.6. Considering (5.37), the n th order output frequency response  jnY   can be 

written as: 
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           (5.67) 

Substituting (5.67) into (2.14) for  jnY   yields: 
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            (5.68) 

Denote    1:
, , nn r

 Φ  as given by (5.66) and define  jrY   as giben by (5.65), then (5.68) can be 

rearranged as (5.64), so Proposition 5.6 is proven. 

Given the system linear characteristic parameters and input spectrum, the AOFRF (5.67) can be written as 
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where 

             
1

1 1 1 1 1: : :
, , , , , , , , d

n

r

n r n nn r n r n r
H 

  
        

  

 
 Γ L Φ     (5.70) 

is only dependent on the system linear characteristic parameters. Therefore, 
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which is just the OFRF of the system (2.6), a polynomial function of the system nonlinear characteristic 

parameters. 

The introduction of the AOFRF concept is to facilitate the derivation of the relationship between  jY   

and both the system linear and nonlinear characteristic parameters when the system linear and nonlinear 

characteristic parameters are all of interests for the system analysis and design. More details will be discussed 

in the next section. 

5.3.4 The AOFRF in terms of the system linear and nonlinear characteristic parameters 

In this section, the AOFRF of system (2.6) is expanded as a polynomial function in terms of both the 

system linear and nonlinear characteristic parameters. In order to achieve this, a polynomial expansion of 

 1 1, ,r

rH    and    1:
, , nn r

 L  in terms of the system linear characteristic parameters is first 

considered. Then, based on the polynomial expansion, a polynomial representation of the AOFRF in terms of 

the system linear and nonlinear characteristic parameters is obtained.  
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the terms relevant to the system linear characteristic parameters in the AOFRF,  1 1, ,r

rH    and 

elements in    1:
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where  .EL  is defined as an operator for extracting the element of a vector. For example, in (5.75), 

 :n r
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 and 
1 , , K   are the frequency 

related coefficients, and ,i i   for 1, ,i K  are positive integers. 

Proof of Lemma 5.1. See Appendix B 

It is worth noticing that the first order GFRF  1 iH   and  1

1, ,i iL    for 1, ,i n  can be 

expanded into a polynomial of the same order 
Ln . It is known from (5.65) and the definition of 

 :n r
C  in 

(5.40) that, the AOFRF is a polynomial function of the system nonlinear characteristic parameters if 

 1 1, ,r

rH    and 
   1:

, , nn r
 L  are fixed. Lemma 5.1 shows both  1 1, ,r

rH    and 

   1:
, , nn r

 L  can be represented by a polynomial function of the system linear characteristic parameters. 

These imply that the AOFRF can be expanded as a polynomial function of both the system linear and 

nonlinear characteristic parameters as shown in Proposition 5.7.  

Proposition 5.7. The r th order AOFRF (5.65) of the NARX model (2.6) can be expressed as a polynomial 

function in terms of both system linear and nonlinear characteristic parameters 

   
 

1

1

1

T

, , 1

, ,

j j rN

rN

rN rN

jj

r j j rN r r

j j

Y     


 
J

ΛΘ                   (5.76) 

under the convergence condition (5.73), where rΛ  is the vector of the coefficients  
1 , , j

rNj j  , 
rΘ  is the 

vector of the monomials of (5.76), 
rNJ  is the set of all available index 1, , rNj j ;  

1 , , j
rNj j   is the 

function only related to the frequency variables, and 1, , rN   belongs to 

1

r r r

r r r NC C C C                             (5.77) 

where, for r n N  , 1n   

 

0, 1

, 1 0,0

,0 1

1, , ; 1, ,
( , , )

0

1, , ; 1, ,
( , , ) , . 0

1, , ; ; 1

1, , ; 1, ,
( , , )

1, , ; 1

i

n n

ir

n p q p q

i

p p

k K i n
c k k

r

k K i p q
c k k c

q n r p q n r

k K i p
c k k

p n r



   
 

 
    

   
     

  
 

   

C            (5.78) 
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Proof of Proposition 5.7. For any r n N  , when 0r  , it is obvious that  

 0

0, 1( , , ) 1, , ; 1, ,n n n ic k k k K i n  C                    (5.79) 

When 1r  , according to Proposition 5.5, it is also known that  1

1 .H  can be extracted from all 

 , .n q pH   for 1n q   and p q n  , which means 

, 1

1

,0 1

1, , ; 1, ,
( , , )

1, , 1;

1, , ; 1, ,
( , , )

1, ,

i

p q p q

n

i

p p

k K i p q
c k k

q n p q n

k K i p
c k k

p n



    
 

     
  

  
  

C                  (5.80) 

Similarly, for the r th order, 1r  ,  1 .rH  can be extracted from all  , .n q pH   for n q r   and 

p q n  , 

, 1

,0 1

1, , ; 1, ,
( , , )

1, , ;

1, , ; 1, ,
( , , )

1, ,

i

p q p q

r

n

i

p p

k K i p q
c k k

q n r p q n

k K i p
c k k

p n



    
 

     
  

  
  

C                  (5.81) 

Therefore, (5.77) and (5.78) can be obtained according to Proposition 5.6 and then the Proposition 5.7 is 

proven. 

Substituting (5.76) into (5.64) for  jrY   yields the AOFRF based representation of the output frequency 

response of nonlinear systems which will be discussed in details next. 

5.3.5 The AOFRF based representation of the output frequency response of nonlinear 

systems 

(A) The structure of the representation 

According to Propositions 5.6 and 5.7, an AOFRF based representation for the output frequency response 

of nonlinear system (2.6) can be obtained as 

    T

0 0

j j
N N

r r r

r r

Y Y 
 

  ΛΘ                           (5.82) 

The determination of the structure of (5.82) is concerned with determining the components in 
T

rΘ  for 

0, ,r N , which are the monomials in the polynomial representation of the r th order AOFRF. This can 

be achieved by using the algorithm in Proposition 5.8 as follows. 

Proposition 5.8. The monomials in the r th order AOFRF can be determined as 
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   : :

N
L NL

r n r n r

n r

  
 

Θ Θ Θ                             (5.83) 

where  

 1

1 1, ,rNjj

r rN rN rNj j   
 

Θ J                       (5.84) 

and  :

L

n r
Θ  represents a vector only consisting of system linear characteristic parameters and  :

NL

n r
Θ  is a 

vector only consisting of system nonlinear characteristic parameters.  :

L

n r
Θ  and  :

NL

n r
Θ  can be obtained as 

bellow. 

Denote 
Hθ  and 

Lθ  are the vectors of the monomials in the Taylor series representation of  1 iH   and 

 1

1, ,i iL  
 for 1, ,i n , respectively. Then, 

     
1

:

1

n
r iL

H Ln r

i





 Θ θ θ                             (5.85) 

where  
r

H H H

r

  θ θ θ  and  
i

L L L

i

  θ θ θ . 

         

     

1 1

1

1

0, 1 , 1: , :
, , 1 1 1 , , 1

,0 1 , :
2 , , 1

, , , ,

, ,

n n

n

n qK n K
NL NL

n n p q p qn r n q p r
k k q p k k

n K
NL

p p n p r
p k k

c k k c k k

c k k



 
   

 

   
    
      

 
 

  

Θ Θ

Θ

      (5.86) 

where  

       

    

   

     

1

1:1:, : , 1 :
1 0

1:0 :
:,1 :

1
;

NULL

n p r
NLNL NL NL

i Rn p r n i p r R
i R

NL NL
NL NL n r

n rn r

for r n

 

  
 


   

 
   



ΘΘ Θ Θ

Θ Θ
Θ Θ

         (5.87) 

Proof of Proposition 5.8. Omitted as (5.85) can be directly obtained according to Proposition 5.7, and 

(5.86) can be derived from Proposition 5.5 and Proposition 5.6. 

When 
T , 0, ,r r NΘ  have been obtained, the system output frequency response can further be described 

as  

      
 

1

1

1

TT T

0 0 , , 1

0 , ,

j , , , , j S

S

S S

N
jj

r r N N j j S

r j j J

Y     
 

    ΛΘ Λ Λ Θ Θ ΛΘ

 

   (5.88) 

where SJ  is the set of all available indices 1, , Sj j . The vector 

   1

0 1 1, , , ,Sjj

N S S Sj j    
 

Θ Θ Θ J                   (5.89) 

consists of all the monomials in the polynomial form representation of the system output frequency response, 
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and vector 

     
10 , , 1, , j , ,

SN j j S Sj j     Λ Λ Λ J                   (5.90) 

consists of all the coefficients in the polynomial representation. 

Proposition 5.8 exploits the fact that the AOFRF enables a separate consideration of the effect of linear and 

nonlinear characteristic parameters on the system output frequency response and provides an algorithm that 

can be implemented by using computer codes to automatically produce all the monomials in the polynomial 

form representation of the system output spectrum (5.88). 

 (B) Determination of the coefficients 

The coefficients in the AOFRF based representation of the output spectrum (5.88) can be evaluated by 

using a LS method [74] as described in Proposition 5.9. 

Proposition 5.9. Denote Θ  in (5.88) evaluated at the j th set of the system parameters 

  , 1, ,i j i S   as 

         1 , ,
j j j

M 
 

Θ Θ Θ                            (5.91) 

where M  is the dimension of vector Θ  and the output spectrum of the system when the system parameters 

take the values of   , 1, ,i j i S   as    j
j

Y  . Then    j
j

Y   can be represented as 

                    *

1j 1 , , 1 , ,
j j j j j M

Y M l M l     
   
Θ Θ Λ Θ Θ Λ           (5.92) 

where 

1, , ; 0, 1, ,iM
l l l i M     L                        (5.93) 

is a constant vector and  

   
T

*

1 1 , ,
M

l l M   Λ Λ Λ                           (5.94) 

Consequently, 
*
Λ  can be determined as 

 
1

* T T


Λ P P P Y                               (5.95) 

where 

       

       

11 1

1

1

1

M

MN N
N M

l M l

l M l


 
 
 
 
  

Θ Θ

P

Θ Θ

                     (5.96) 
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       
T

1
j , , j

N
Y Y  
 

Y                           (5.97) 

and N M . 

Proof of Proposition 5.9. Proposition 5.9 can be proved by using the traditional Least Square (LS) 

algorithm [56]. 

The introduction of L  in (5.93) is to address possible numerical problems arising from a possibly 

significant difference between the magnitudes of the system parameters [125] so that more reliable values of 

the coefficients in the polynomial representation of the system output spectrum can be determined. 

It is worth noting that the AOFRF based representation of the output spectra of system (2.6) is a 

polynomial function of both the system linear and nonlinear characteristic parameters. However, these 

parameters often do not have a clear physical meaning because the NARX model is either obtained from the 

input and output data of a practical system using a nonlinear system identification method or by discretising a 

nonlinear differential equation. In order to relate these parameters to the physical meaningful parameters of 

the system represented by the NARX model, the NARX-M-for-D can be applied.  

5.4 Case studies 

5.4.1 Case study 1 - The OFRF based design of the vibration isolation system 

In this case study, the design of the vibration isolation system shown in Fig.5.2 is considered where 

0 1 kgM  . 1 1k   and 1 2c   are the parameters of the spring and damper in the system. The isolator in 

the system is a piece of damping material which cannot be described by an analytical physical model but 

whose NARX-M-for-D has been determined under the sampling frequency 512 Hzsf   as 

       3 3

1 3 2 3 3 3 1isof k a y k a y k a y k                           (5.98) 

by using nonlinear system identification techniques described in [27].  

In (5.98),  isof k  is the damping force produced by the isolator in the system, 
3  is the parameter of the 

isolator to be used for the system design, and  

3 4 4

1 2 34 10 , 10 , 0.75 10a a a                             (5.99) 

are constants.  
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Fig.5.2 The vibration isolation system to design in Case study 1 

According to the basic physical principle, the system in Fig.5.2 can be described as: 

         

       
0 1 1

1 1

iso

out iso

u t M y t c y t k y t f t

f t c y t k y t f t

   


  

                     (5.100) 

From (5.98) to (5.100), the NARX-M-for-D of the isolation system can be obtained as: 

                       
           

1 2 1 1,1,1 3

0,1 1,0 1,0 3,0

2,2,2 03

3,0 1,0

1 2 1 1

2 0

u k y k y k y k

y k y k

   

 

      

   

ξ ξ ξ ξ

ξ ξ
           (5.101) 

where 

                         1 2 1,1,1 2,2,23 3

1,0 1,0 3,0 3,01 1 2 1 2outf k y k y k y k y k           ξ ξ ξ ξ     (5.102) 

with  1 2 3, ,  ξ , and the details of the coefficients are given as follows 

       
   
       
     1 2

1 05

0,1 1,0

1 2 5 9

1,0 2 1 3

2 1,1,12

1,0 2 3,0 3

( , , , )2,2,2

3,0 3 ,

0.381 10 ; 1;

2 0.195 10 0.381 10 0.153 10 ;

0.195 10 1; 0.038 ;

0.029 ; else 0p qk k k

p q

 

   

   

   



  



   

      
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 

ξ ξ

ξ

ξ ξ

ξ ξ

 

and 

   
       
     1 2

1 3 3

1,0 2 1 3

2 1,1,13 4

1,0 2 3,0 3

( , , , )3,3,3 4

3,0 3 ,

0.512 10 4 10 ;

0.512 10 ; 10 ;

0.75 10 ; else 0p qk k k

p q

   

   

   

    

   

  

ξ

ξ ξ

ξ ξ

 

In the following, the design of parameters ξ  of the vibration isolation system when the system is subject 

to the multi-tone input  

     36cos 4cosF Fu t t t                           (5.103) 

where 100 rad/sF   is considered. The design objective is to achieve a desired force transmissibility at 

the frequency F  as defined by 

 
 

 

j
j

j

outF
T

U





                                (5.104) 
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where  jU   and  joutF   is the spectrum of the input and output forces of the system, respectively. 

From the NARX-M-for-D (5.101), the results in Steps 1 and 2 of the proposed general design approach in 

Section 5.2.3 are obtained, which are the NARX-M-for-D (5.101) and the relationship between the system 

design parameters ξ  and the linear and nonlinear characteristic parameters of the system. In Step 3, three 

constraints on the design parameters ξ  are introduced as 

 
 
 

3 4

1 1 3

2 2

4

3 1

: 4 10 10 0

: 30 0

: 6 10 0

g
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 
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

    


 
   

ξ

ξ

ξ

                        (5.105) 

to ensure that the FRF of the system at the driving frequency 100 rad/sF   is as specified in the following 

 
     

           

1

0,1

1 1 2

1,0 1,0

5 4

exp j
j

1 exp j exp 2j

3.469 10 3.320 10 i

F
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F F

t
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t t

 


   

 

 


     

   

ξ

ξ ξ                 (5.106) 

and  3g ξ  is a constraint on the maximum value of the stiffiness of the spring. 

Moreover, in Step 4, the OFRF representation of the force transmissibility  j FT   of the system is 

determined. In this case, 11N   

2 3 4 5

3 3 3 3 3

1

1, , , , ,
N

n

n

    


    Ξ Ξ                      (5.107) 

and the OFRF was determined from the system output responses to input (5.102) when the design parameters 

3  changes over the range of  0.01, 0.8, 2, 3, 4, 5  as 

       

     

1 2 2

3 3

3 3 4 4 3 5 5

3 3 3

j 2.456 1.443i 1.383 4.098i 0.846 3.293i

0.285 1.244i 0.047 0.220i 0.306 10 0.015i

FT l l

l l l

 

  

  

  

 

   

       

       
    (5.108) 

where 610l   

Based on the results of Steps 1-4 above, in Step 5, the design issue in this case study can be described as 

an optimal design probem as follows. 

Find  

 0 1 2 3, ,  ξ                             (5.109a) 

to solve the optimization problem 

 
 

1 2 3, ,
MIN j 1.5FT
  

                            (5.109b) 

under the constraint 
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 
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                     (5.109c) 

where 

     2 2j Re j Im jF F FT T T                              (5.110) 

and 
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1 2 2 3 3

3 3 3

4 4 3 5 5

3 3

1 2 2 3 3

3 3 3

4 4 5 5

3 3

Re j 2.456 1.383 0.846 0.285

0.047 0.306 10

Im j 1.443 4.098 3.293 1.244

0.220 0.015

F

F

T l l l

l l

T l l l

l l

  
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   

 

   

 

  

  

  

 

       


  


     
  

          (5.111) 

Considering the constraints of  1g ξ  and  3g ξ , it can be obtained that 

4

61

3 3

10
12.5 10

4 10







  


                           (5.112) 

Under the constraint of (5.112), inequality (5.109c) can be solved to yield 

6 6

32.3 10 12.5 10                               (5.113) 

Consequently, from (5.112) and (5.113), it can be obtained that 

4 4

11.92 10 6 10                                (5.114) 

Therefore, the feasible solutions to the design problem in the case study are: 

6 6

3

2
4 4

1

2.3 10 12.5 10

30

1.92 10 6 10







    



    

                           (5.115) 

If 3  is designed as 
6

3 2.3 10   , the corresponding 1 1k   and 2 1c   can be obtained as 

4

1 1 1.92 10k    N/m , 
1

2 1 30 N/msc   . The time history of the output force and the corresponding 

transmissibility are shown in Fig.5.3, where a comparison with the result in the case of 

4

1 1 1.92 10 N/mk    , 
1

2 1 30 N/msc    and 3 0   can also be observed. 

         

(a) Time history of the output force                      (b) The force transmissibility 

Fig.5.3 A comparison of the system performances under the linear and nonlinear designs 



CHAPTER 5  97 

From Fig.5.3, it can be observed that under the design, the transmissibility at the base frequency of 

100 rad/sF   has reached 1.5 as required. But, compared to the case of 
3 0   where no material-based 

nonlinear isolator is introduced, the optimal design induces additional components at super harmonic 

frequencies, 3 F   and 5 F  . However, the time history of the system response shown in Fig.5.3 (a) 

indicates that the optimal design has an overall better performance in vibration isolation. In order to confirm 

this observation, the concept of power transmissibility  FE   introduced in [126]  

 
 

 
 

0

0

2

2
0

2
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0

d
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d
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T
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F T p
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f t t
E T

u t t
 

 





 





, 0

2

F

T



                    (5.116) 

was used to evaluate the vibration isolation performance of the system in the two cases. The results are  

  8.457FE                                  (5.117) 

when no material-based isolator is used and 

  2.559FE                                   (5.118) 

when the isolator is applied. Clearly, the optimal nonlinear design has achieved an overall better performance 

than the linear solution. 

  It is worth pointing out that because the optimisation problem is formulated using the OFRF which is a 

polynomial function of the design parameters, the numerical costs associated with the new design are 

normally less than the costs associated with a completely numerical simulation based method. In the case 

study above, for example, the overall computation on a standard PC running MATLAB codes only took 30 

sec to complete.    

5.4.2 Case study 2 - The AOFRF based representation of the output spectrum of a 

Duffing nonlinear system 

Consider the Duffing equation with nonlinear damping 

           
3 3

3 3l l n ny t c y t k y t k y t c y t u t                       (5.119) 

where 
1

1 80 N msnc   and 
3 3

3 200 N m snc  . 

Approximating the first and the second derivatives in (5.119) as: 

 
   

 
     

2

1 1 2 1
,

y k y k y k y k y k
y t y t

t t

     
 

 
               (5.120) 

and substituting (5.120) into (5.119) with t  1 256 s  yields an NARX model of system (5.119) as 
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                 

               

3

0,1 1,0 1,0 3,0

2 2 3

3,0 3,0 3,0

1 1 1 1 2 2 1,1,1 1

1,1,2 1 2 1,2,2 1 2 2,2,2 2

y k c u k c y k c y k c y k

c y k y k c y k y k c y k

       

       
    (5.121) 

where  

     

   

5 5

0,1 1,0 3,0

5 5

3,0 3,0

1 1.526 10 ; 2 0.687; 1,1,2 1.024 10 ;

1,2,2 1.024 10 ; 2,2,2 0.512 10 ;

c c c

c c

     

    
             (5.122a) 

   5 5

3,0 31,1,1 1.526 10 0.512 10 ;nc k        5

1,0 1 1.526 10 1.687 ;lc k     ,else . 0p qc   (5.122b) 

The objective now is to investigate how the physical parameters 
3,l nk k  of system (5.119) affect the 

system output frequency response when the values of the two parameters vary over the range of 

  40.5,1.4 10 N mlk    and   9 3

3 0,1 10 N mnk  
 

                (5.123) 

Denote  1,0 1Lc c  and  3,0 1,1,1NLc c . It is known from the relationship between lk  and 
3nk  and 

 1,0 1c  and  3,0 1,1,1c  that 

   
   

1,0

5

3,0

1 1.473,1.611

1,1,1 0.512, 0.665 10

L

NL

c c

c c

  


  
                    (5.124) 

Take 5N  , then the AOFRF based representation for the output spectrum of the system can be 

determined by the following steps. 

Step 1: Determine a polynomial representation of  1 iH   and  1

1, ,i iL  
 for 1, ,i n  in terms 

of the system linear characteristic parameter of concern, which is  1,0 1Lc c , in this case.  

For NARX model (5.121), over the range of values of parameters  1,0 1c  and  3,0 1,1,1c  given by (123), 

it can be shown that the convergent condition (5.73) is satisfied by chosen, for example, 

   1 1.473 1.611 2 1.542zc     and  2zc   1,0 2 0.687c   . Therefore,  1H   can be expanded into 

a convergent polynomial function of 
Lc  whose second order approximation can be written as 

        2

1 0 1 2j j jL LH c c                            (5.125) 

Moreover,  1 .iL   for 1, ,i n  can also be approximately expanded into a polynomial function of Lc  

of the same form as (5.125). 

Step 2: Determine the structure of the AOFRF based representation of the system output frequency 

response. 

According to Proposition 3, the monomial vector associated with the AOFRF based representation can be 

written as 
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               : : 1:1 1:1 3:3 3:3 5:5 5:5

1

N
L NL L NL L NL L NL

r r r r

r

            
       

Θ Θ Θ Θ Θ Θ Θ Θ Θ           (5.126) 

In this case, it is known from Step 1 that H L θ θ  21, ,L Lc c   and, from Proposition 5.8, it is known 

that  

 

   

2

1:1

1:1

1, ,

1

L

H L L

NL

c c     




Θ θ

Θ
                         (5.127a) 
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                  (5.127b) 

and 

     

 

4
5 2 18

5:5

1

2

5:5

1, , , ,
iL

H L L L L

i

NL

NL

c c c

c




     


    

Θ θ θ

Θ

                  (5.127c) 

Consequently, substituting (5.127) into (5.126) yields the structure of the AOFRF based representation of 

the output spectrum of system (5.121) as: 

           1 2

1 2

1 2

10 18
2 2

0,0 1,0 2,0 ,1 ,1

0 0

j j j j j j
I I

L L NL I L NL I L

I I

Y c c c c c c          
 

        (5.128) 

Step 3: Determination of the coefficients in the poly-nomial representation of  jY  . 

Equation (5.128) can be rewritten as  

           
1 2

1 21 2

1 2

22 10 18

0,0 1,0 2,0 ,1 ,12 2
0 0

j j j j j j
I I

NL NLL L L L

I II I
I IL NLL NLL L

c cc c c c
Y

l ll ll l
          

 

         (5.129) 

where    , ,j j i j

i j i j L NLl l    , , 0, 1,i j   with 1Ll   and 
410NLl   are introduced as weights to 

transform the frequency dependent polynomial coefficients from  , ji j   in (5.128) to  , ji j   in 

(5.129). The objective is to circumvent possible numerical issues with evaluation of these coefficients [127]. 

Now consider the situation where the system input is    3cosu t t  with 110 rad/s  . The 

coefficients  , j , , 0, 1,i j i j    in (5.129) were evaluated from the system output frequency responses to 

this input when the system linear and nonlinear characteristic parameters Lc  and NLc  vary over the 

following range of values 

 
 

1.54 : 0.003 :1.57

5.80 : 0.05 : 6.30
L L

NL NL

c l

c l

 



                          (5.130) 
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The result is a specific case of (5.129), which is a polynomial function of the system parameters 
Lc  and 

NLc  containing 33 terms which are omitted here due to space limitation. A comparison of the system output 

spectrum evaluated using (5.129) thus determined and the result determined from the simulated system 

output response is shown in Fig.5.4. 

 

Fig.5.4. A comparison of the simulated system output spectrum with the result evaluated using the AOFRF based 

representation. 

Circle: Simulated results; Surface: Results evaluated using the AOFRF based representation; Cross: Data of the output 

spectra used to determine the AOFRF based representation. 

It is worth noting that, if the system linear characteristic parameters are fixed, then the AOFRF based 

representation (5.129) will become the OFRF of the system, which is a 2nd order polynomial function of the 

system nonlinear characteristic parameter NLc . If the system nonlinear characteristic parameters are fixed, 

the AOFRF based representation (5.129) becomes a 18th order polynomial function of the system linear 

characteristic parameter 
Lc . These results are also illustrated in Fig.5.4.  

Fig.5.4 clearly indicates that the AOFRF based representation for the system output spectrum is valid over 

a wide range of values of the system linear and nonlinear characteristic parameters, including the values 

which are outside the parameter ranges (5.130), over which the polynomial representation was determined. 

This is because the AOFRF based representation is capable to capture inherent system dynamics rather than 

simply fit the data.  

Now consider another case where a random band limited signal over the frequency range of 

 50,200 rad s with magnitude varying over  30,30 N  is applied as input to system (5.121). The 

AOFRF based representation for the system output spectrum was determined over the same range of the 

values of the system parameters Lc  and NLc  as in (5.130). Fig.5.5 shows a comparison of simulated output 

spectra of system (5.121) to this random input with the results evaluated using the AOFRF based 

representation under three different sets of values of Lc  and NLc , indicating that the AOFRF based 
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representation can also accurately describe the system output spectra to a random input. 

 

Fig.5.5. The output spectrum and its AOFRF based representation under a random input 

Line: Simulation results; Cross: The AOFRF based representation. 

It is worth noting that many terms in the AOFRF based representation of nonlinear system output spectra 

as determined in the case study above are often redundant. An optimal selection of the terms (monomials) in 

the polynomial representation will be investigated in future studies. 

5.5 Conclusions 

Traditional nonlinear system designs are basically based on the time domain response analysis, which is 

often difficult to reveal the relationship between the system performance and the parameters that can be used 

to perform the design. Motivated by the wide engineering applications of the FRF-based linear system 

frequency domain analysis and design, the OFRF concept was proposed in order to extend the effective linear 

system approach to the nonlinear case. However, the method requires to know a differential equation-based 

physical model of the system where the physical parameters that can be used for the analysis and design are 

the coefficients in the model. 

Considering that it is difficult even impossible to find a differential equation model for complex 

engineering systems and the need to extend the physical model-based system design approach to address 

more complicated complex system designs. The NARX-M-for-D is introduced to resolve this problem, and a 

new OFRF-based methodology is developed that can be applied to the design of nonlinear systems described 

by a NARX-M-for-D. The methodology consists of a five step procedure including novel algorithm and 

technique for determining the structure and evaluating the coefficients of the OFRF of a NARX-M-for-D and 

can be applied to design a general class of nonlinear systems in the frequency domain.  

Moreover, noting the OFRF only shows a polynomial relationship between the system’s output spectrum 

and nonlinear characteristic parameters, and it can’t explicitly reveal the effect of system linear characteristic 

parameters on output spectra, a new concept known as the AOFRF of nonlinear systems, has been proposed. 
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The AOFRF enables an explicit separation of the system linear and nonlinear characteristic parameters in the 

representation of the system output spectrum and, consequently, facilitates the derivation of a polynomial 

representation in terms of both the system linear and nonlinear characteristic parameters. 

Two case studies have been used to demonstrate how to determine the OFRF for aa` NARX-M-for-D and 

how to derive an AOFRF based representation for the output spectrum of an nonlinear system, respectively. 

The results show that the new design method, for the first time, transforms a complicated dynamic loading 

oriented engineering design into a much simpler polynomial-based optimal design problem, and the new 

AOFRF based representation has potential to be used for the analysis and design of nonlinear systems in a 

wide range of applications. 
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Chapter 6. Nonlinear damping based semi-active building 

isolation system 

6.1 Introduction 

Many buildings in Japan currently have a base-isolation system with a low stiffness that is designed to 

shift the natural frequency of the buildings below the frequencies of the ground motion due to earthquakes. 

However, the ground motion observed during the 2011 Tohoku earthquake contained strong long-period 

waves that lasted for a record length of three minutes. To provide a novel and better solution against the 

long-period waves while maintaining the performance of the standard isolation range, the exploitation of the 

characteristics of nonlinear damping is proposed in this chapter. This is motivated by previous studies at 

Sheffield, which have demonstrated that nonlinear damping can achieve desired performance over both low 

and high frequency regions and the optimal nonlinear damping force can be realized by closed loop 

controlled semi-active dampers. Simulation results have shown a very good vibration isolation performance 

on a building model with identified parameters and have indicated that nonlinear damping can achieve low 

acceleration transmissibilities around the structural natural frequency as well as the higher ground motion 

frequencies that have been frequently observed during most earthquakes in Japan. In addition, physical 

building model based laboratory experiments are also conducted, The results demonstrate the advantages of 

the proposed nonlinear damping technologies over both traditional linear damping and more advanced 

Linear-Quadratic Gaussian (LQG) feedback control which have been used in practice to address building 

isolation system design and implementation problems. In comparison with the tuned-mass damper and other 

active control methods, the proposed solution offers a more pragmatic, low-cost, robust and effective 

alternative that can be readily installed into the base-isolation system of most buildings. The studies can be 

summarized in a diagram as follows. 

 

Fig.6.1 The contents of Chapter 6 
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6.2 Semi-active Damping System for the Sosokan Building 

6.2.1 The Sosokan Building and its model representation  

Sosokan, a symbolic nine-storey tower located in the Yagami campus of Keio University, was completed in 

2000. Its isolation layer under B2F floor, is composed of sixty-five laminated rubber bearings, one set of 

twelve passive hydraulic dampers and four semi-active dampers oriented horizontally in the east-west 

direction, and another identical set of passive and semi-active dampers in the north-south direction. The 

lateral dynamics of the building subject to the horizontal ground acceleration as shown in Fig. 6.2 can be 

modelled by a system of mass-spring-damper in series given by 

u z   Mx Cx Kx E F                               (6.1) 

where u  represents the force of the semi-active damper, 

 
T

1 2 3 10, , , ,x x x xx                                (6.2) 

 1 2 3 10diag , , , ,m m m mM                              (6.3) 
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2 2 3
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C                           (6.4) 
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 


 

  
  

K                          (6.5) 

 
T

1, 0, 0, , 0E                                 (6.6) 

and 

 
T

1 2 3 10, , , ,m m m m    F                             (6.7) 

ix  for 1,2, ,10i   are the horizontal displacement of each floor relative to ground while 
im , 

ic  and 
ik  

for 1,2, ,10i   are the mass, damping constant and spring stiffness respectively with values given in 

Tab.6.1. 
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Fig.6.2. A model of a multi-storey building with built-in semi-active dampers in the isolation layer 

Tab.6.1. Parameters of the Sosokan Building in the east-west direction [128] 

Floor Mass 610 kg  Stiffness 6 -110 Nm  Damping 6 -110 Nsm  

B2F 1 4.9814m   1 66.836k   1 9.996c   

B1F 2 3.4382m   2 2273.6k   2 18.306c   

1F 3 2.4906m   3 2763.6k   3 22.252c   

2F 4 1.8264m   4 1979.6k   4 15.940c   

3F 5 2.0331m   5 1803.2k   5 14.520c   

4F 6 2.0500m   6 1813.0k   6 14.598c   

5F 7 2.0369m   7 1568.0k   7 12.625c   

6F 8 2.0371m   8 1381.8k   8 11.126c   

7F 9 2.0664m   9 1156.4k   9 9.3110c   

RF 10 2.4999m   10 999.60k   10 8.0487c   

 

Under the influence of the horizontal ground acceleration z , the performance of the base-isolation system 

is determined by the total stiffness of the laminated rubber bearings 
1k , the linear damping provided by the 

passive dampers 
1c  and the force provided by all of the semi-active dampers u . 

Assuming that the building is at a large distance from the epicenter, the ground input z  can be modelled 

by a sinusoidal signal given by 

 sin 2z A ft                                  (6.8) 

where A  and f  are excitation magnitude and frequency in 2ms  and Hz respectively [129]. The 

vibration isolation performance can then be measured by the ratio of the magnitude of the output spectrum 

evaluated at the excitation frequency f  to the excitation magnitude A  known as the absolute acceleration 
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transmissibility 

 
    

2
i

f
F x t z t

T f
A

 


                              (6.9) 

where .F  is the Fourier transform operation and  ix t , 1,2, ,10i   are the acceleration response of 

each floor of the building. With all system parameters held constants,  T f is dependent on the semi-active 

damper force u . Their relationship will be further explored below. 

6.2.2 Semi-active damping system for the Sosokan Building 

Semi-active dampers are gaining popularity in vibration control as they could offer some benefits of active 

control systems [130], without consuming a high level of energy or compromising the structural stability 

[131]. Controlled by electromagnetic valves which could move to several different positions, semi-active 

dampers are currently used in the isolation layer of the Sosokan Building with an output force 

lu C v                                     (6.10) 

where 
1v x  and the linear damping coefficient can have four choices which are  1

1 3.33 MNsml pC C  , 

 1

2 6.68 MNsmpC  ,  1

3 31.4 MNsmpC   or  1

4 58.8 MNsmpC  . These linear relationships between the 

output force u  and the velocity v  are depicted in Fig.6.2 (a). To alter the damping coefficient, an 

electronic signal is sent to the electromagnetic valves to modify their positions. The relationship between the 

actual values of the damping coefficient  oC t  and the electrical signal  sC t  can be modelled by a first 

order system given by 

 

 

1

1

o

s

L C t

TsL C t

  


  

                                (6.11) 

where 0.1sT  , an empirically-determined parameter based on tests on the semi-active dampers and  .L  

is the Laplace operation [112]. 

Substituting Eqs. (6.8) and (6.10) into (6.1), the building model becomes a purely linear system when lC  

is kept constant at one of the four values. The acceleration transmissibility curves from the ground input to 

the isolation layer for different lC  are presented by the black lines in Fig.6.3 with the effect of an increasing 

lC  indicated by blue arrows. The first mode of vibration occurs at about 0.25 Hz where a higher damping 

coefficient 4l pC C  provides a much lower transmissibility, which would be essential for tackling the 



CHAPTER 6  107 

long-period waves. On the contrary, when the frequency is higher, the transmissibility curve of the system 

where 4l pC C  indicated by the black dash-dotted line is well above that of a system with 1l pC C  

indicated by the black solid line. It is clear that none of a single semi-active damper setting could produce 

satisfactory isolation over the whole frequency range. 

 

Fig.6.3. Force-velocity relationship of semi-active damper. 

(a) Four linear damping settings where lu C v  , 1l pC C  (solid), 
2pC  (dashed), 

3pC  (dotted) and 
4pC  

(dot-dashed). (b) Desired nonlinear damping (thick grey) where 3

nu C v   and that implemented by semi-active 

dampers under closed-loop control (red solid) 

If only one damper setting is chosen for each excitation frequency, the lowest possible transmissibility, 

referred to as the optimal transmissibility line hereafter, can be achieved by selecting 4l pC C  when 

0.35 Hzf   and 1l pC C  when 0.35 Hzf  , as shown in Fig.6.4. Fig.6.4 shows the transmissibility in 

both the linear and log scale. In order to more clearly reveal the transmissibility over the whole range of 

frequency, the magnitude will be presented in dB (   1010log T f ) in figures hereafter. 

       

(a) The linear scale transmissibility                    (b) The DB scale transmissibility 

Fig.6.4. Acceleration transmissibility from ground input to the isolation layer where  lu C v  , 1l pC C  (solid), 2pC  

(dashed), 3pC  (dotted) and 4pC  (dot-dashed). The optimal transmissibility line is notated by the thick pale blue line. 

Although it is not practical to implement an adaptive semi-active control system that switches between the 



CHAPTER 6  108 

two damping coefficients purely depending on the excitation frequency, this optimal transmissibility line, 

indicated by the thick pale blue line in Fig.6.4 (b), sets a benchmark for other types of control methods based 

on this particular fluid viscous damper. 

6.3 Nonlinear Damping Based Semi-active Building Vibration Isolation 

The semi-active damper is considered as passive components that form an integral part of the system, 

where the semi-active damper together with its controller described in [132] relies on the local measurements 

without depending on signals from other parts of the building as illustrated in Fig.6.5.  

As discussed in [75], a nonlinear viscous damper has significant advantages over a conventional passive 

viscous damper, especially in the high frequency region. The focus of this study is to realize such a cubic 

damping force in the base-isolation system of the Sosokan Building using controlled semi-active fluid 

viscous dampers as depicted in Fig.6.5. 

The idea of implementing a closed-loop controller to reshape the force-velocity relationship of a 

semi-active damper was first developed for electrorheological dampers [133,134]. This simple yet effective 

closed-loop control approach is now applied to the Sosokan Building aiming to transform the output force of 

the semi-active dampers from four possible linear functions as shown in Fig.6.3 (a) into a cubic function 

3

d nu C v                                    (6.12) 

as depicted by the thick grey line in Fig.6.3 (b), where 
nC  is the cubic damping coefficient. 

 

Fig.6.5. Nonlinear damping implementation using semi-active dampers 

The PI controller given by 

     
0

d
t

p ir t K e t K e                                 (6.13) 

is used to control the damping force to achieve the designed cubic damping characteristics in Eq. (6.12) 

where 
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    sgn m d me t u u u                                (6.14) 

 r t  is the control signal of the same unit as 1 2 3, ,p p pC C C , 4pC  and 
du v  ( 1MNsm ), 

mu  is the 

measured damping force, and pK  and  
iK  are the proportional and integral gain ( 1sm ) of the PI 

controller, respectively. 

As the semi-active dampers are resistive devices, the sign adjustment in Eq. (6.14) is required to ensure 

that the output force is minimized when 
du  and 

mu  have opposite signs and the sign of 
d mu u  does not 

agree with 
du . See [133] for more details. 

Unlike electrorheological dampers, which accept a continuous current or a voltage signal, the fluid viscous 

dampers in the Sosokan Building may only have one of four settings. The control signal  r t  is therefore 

discretized as  

 

   

     

     

   

1 1 2

2 1 2 2 3
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4 3 4
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, for 2

p p p

p p p p p

s

p p p p p

p p p

C r t C C

C C C r t C C
C t

C C C r t C C

C r t C C

  

    

 
   


 

                   (6.15) 

The combination of this controller and the semi-active damper, as shown in Fig.6.6, becomes one integral 

unit that exhibits passive damping behaviour illustrated by the red line in Fig.6.3 (b) which resembles the 

nonlinear damping function described by (6.12).  

 

Fig.6.6. Closed-loop semi-active damper control 

Unlike any active design approach, the semi-active dampers remain as passive components during the 

design process. The closed-loop control method only requires local force and velocity measurements, which 

offers significant practical advantages over other control strategies that rely on feedback signals from sensors 

located on different floors of the building.  
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6.4 Simulation Studies 

A nonlinearly damped base-isolation system implemented by semi-active fluid viscous dampers as 

proposed in Section 6.3 has been incorporated into the Sosokan Building modelled in MATLAB/Simulink. 

The performances of the nonlinear vibration isolation system under harmonic loading are provided in 

Figs.6.7–6.10. 

6.4.1 Objectives of Nonlinear damping design 

In the Sosokan Building, the vibration isolation performance is limited by the four available linear settings 

of the semi-active dampers. As discussed in Section 6.2, the best possible isolation results when the building 

is under a single-tone sinusoidal excitation can be achieved by selecting 4l pC C  in the low frequency 

range and 1l pC C  in the high frequency range. This produces the optimal transmissibility line that the 

implementation of nonlinear damping aims to achieve. For the purpose of comparison, this optimal line as 

well as the transmissibilities given by the semi-active damper at its highest damping setting 4l pC C  is 

included in Figs. 6.7–6.10. 

6.4.2 Effects of nonlinear damping coefficient 

In Fig.6.7, the system is excited by ground acceleration  sin 2z A ft  with 21 msA  , the amplitude 

of which is almost the same as the amplitude recorded in an actual earthquake [128]. 

Two values for nonlinear damping coefficients are chosen to show their effects on the isolation 

performance between the ground and the isolation layer. In order to enable the cubic damper to achieve the 

same transmissibility as the linear damper with coefficient 4l pC C  at the resonant frequency, the cubic 

damping coefficient is designed as 9 3 30.588 10 Ns mnC    to produce the nonlinear damping force 

3

nu C v  . In this case, the system produces a transmissibility curve, shown by the black solid line, that is 

almost identical to the optimal transmissibility line indicated by the thick pale blue line. When the nonlinear 

damping coefficient is increased to a higher value such as 9 3 32.94 10 Ns m , a small increase in the 

acceleration transmissibilities around mid-frequency range from about 0.5 Hz to 3 Hz is observed. This 

implies an optimal solution to the damping coefficient nC  can achieve the desired damping characteristics 

as indicated by the pale blue line in Figs.6.7–6.10. 
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Fig. 6.7. Acceleration transmissibility from ground input 

21 msA   to the isolation layer where 3

nu C v  , 

9 3 30.588 10 Ns mnC    (black solid), 

9 3 32.94 10 Ns mnC    (black dotted) are implemented by 

semi-active dampers and 4pu C v   (red dotted). 

Fig. 6.8. Acceleration transmissibility from ground input 

22 msA   to the isolation layer where 3

nu C v  , 

9 3 30.588 10 Ns mnC    (black solid), 

9 3 32.94 10 Ns mnC    (black dotted) are implemented by 

semi-active dampers and 4pu C v   (red dotted). 

6.4.3 Effects of ground excitation magnitude 

As the system contains nonlinear elements, the relationships between the ground input and the acceleration 

outputs are dependent on the excitation magnitude. Fig.6.8 shows the transmissibility curves resulting from a 

larger input magnitude of 22 msA  . When the nonlinear damping coefficient is 9 3 30.588 10 Ns m , the 

transmissibility curve still lies very close to the optimal line. Even when nC  is raised to 9 3 32.94 10 Ns m , 

the transmissibilities are well below the result generated with a linear system where 4l pC C  over high 

frequencies. Therefore, the optimal solution has a sufficient robustness with respect to the changes in loading 

conditions. It is worth noting that the different magnitudes of  21 msA   and 22 msA   are two cases 

recorded in an earthquake [128,135], demonstrating the nonlinear damping based semi-active damper has a 

sufficient robustness with respect to the changes in loading conditions. 

6.4.4 Isolation performance on higher floors 

The base-isolation system is designed to reduce acceleration on all floors during earthquakes. Figs.6.9 and 

6.10 show the performance of the implemented nonlinearly damper on 3F and 7F for two excitation 

amplitudes. For both floors, the transmissibilities of the proposed system almost coincide with the optimal 

lines over the whole frequency range when 21 msA  . However, the performance is less ideal in the 

mid-frequency region when 22 msA  .  
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Fig. 6.9. Acceleration transmissibility from ground input 

21 msA    (black solid) and 22 msA   (black dotted) 

to 3F where 3

nu C v  , 9 3 30.588 10 Ns mnC    (black 

solid) is implemented by semi-active dampers and 

4pu C v   (red dotted). 

Fig. 6.10. Acceleration transmissibility from ground input 

21 msA    (black solid) and 22 msA   (black dotted) 

to 7F where 3

nu C v  , 9 3 30.588 10 Ns mnC    (black 

solid) is implemented by semi-active dampers and 

4pu C v   (red dotted). 

To resolve this issue, it is possible to design 
nC  for a specific range of A  to achieve the optimal line 

over the required frequency range by using the nonlinear design method described in [56,126]. 

6.4.5 Isolation performance in terms of the roof drift 

The roof drift of the building is also an important criterion to assess the building isolation performance 

[136]. Denote the roof drift as  

      
2

r
f

R f F x t z t
 

                           (6.16) 

where  rx t  represents the displacement of the roof floor of the building, and  z t  is the ground 

displacement. 

The roof drifts of the Sosokan Building in different cases were simulated and the results are shown in 

Fig.6.11. The results indicate that when the same isolation performance at the resonant frequency is achieved, 

the cubic damper 
9 3 30.588 10 Ns mnC    can produce a better performance in terms of roof drift than a 

linear damper with 4l pC C  in both the cases of 
21 msA   and 

22 msA  . 

6.4.6 Isolation performance in terms of harmonics and a comparison with the 

performance under LQG control 

The presence of harmonics is inevitable in a system containing any kinds of nonlinearities. The 

introduction of cubic damping creates odd harmonics in the output signals. Using the concept of energy 
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transmissibility to include the effects of all super-harmonics in previous studies at Sheffield [137], it has been 

analytically shown that the magnitudes of these harmonics are small compare to the size of the fundamental 

harmonic. Additionally, the study has also shown that nonlinear damping can suppress the undesired 

harmonics and jumps caused by stiffness nonlinearity. As the building itself may already contain some 

stiffness nonlinearities, the introduction of nonlinear damping would therefore enhance the overall system 

stability.  

     

Fig. 6.11. Roof drifts under the ground displacement amplitude 

21 msA   (black solid) and 22 msA   (black dotted), 

respectively when the nonlinear damping 3

nu C v  , 

9 3 30.588 10 Ns mnC    is implemented by the semi-active 

dampers and the linear damping 4pu C v   (red dotted) is 

applied. 

Fig. 6.12. Acceleration transmissibility from 

ground input 21 msA   to 3F, where the 

semi-active dampers are controlled by the passive 

nonlinearly damping method (black solid) and the 

LQG method (red dashed). 

Fig.6.12 shows a comparison of the acceleration transmissibility to 3F of the proposed nonlinear damped 

system against the LQG design in [128]. It can be observed from Fig.6.12 that the nonlinear damped system 

delivers better performance over both the resonant higher frequency regions hence offers a more effective 

alternative to the LQG design approach. It is worth pointing out that although an optimal solution can be 

found by minimizing the cost function provided by [128], the dampers often cannot deliver the designed 

optimal performance in reality [138,139]. Moreover, it is noticeable that the nonlinear damping design only 

relies on local sensors in the isolation layer whereas any implementation based on an active control law (such 

as the LQG approach) would require sensors on other floors. When considering the practical aspects of the 

design, the reliability and quality of the sensor communication, be it wired or wireless, must also be taken 

into account. 

In summary, the simulation results above have demonstrated the advantages of a nonlinearly damped 
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semi-active base-isolation system. First, the acceleration transmissibilities achieved by the proposed system 

is very close to the optimal lines where only one damping coefficient can be chosen for each excitation 

frequency. Second, although the performance of a nonlinear design is dependent on the input magnitude, the 

results have shown sufficient robustness to the loading. Third, instead of optimizing the acceleration of one 

particular floor, the results indicate strong isolation performance across all floors. 

In order to confirm some important points reached by the numerical simulation, laboratory experimental 

work has been conducted. The details are introduced in the next section. 

6.5 Experimental Validation 

To validate the performance of the proposed passive nonlinearly damped building isolation system, a 

scaled physical model of the Sosokan Building has been built, as shown in Fig.6.13, in a laboratory at Keio 

University. The schematic of the semi-active damper in Fig.6.14 shows two solenoid valves (with orifice 

diameters of 3 and 5 mm, respectively) which can be controlled to create four different damping coefficients 

that could facilitate the implementation of the power law nonlinear damping.  

     

Semi-active

damper

The first floor

The second floor

Ground
Shaker

             

Fig. 6.13. The laboratory physical model of Sosokan Building Fig. 6.14. Schematic illustration of a semi-active damper 

For base-isolated buildings, a 2-DOF model is often used to model the dynamic properties [140,141]. 

 

Fig.6.15. The 2-DOF representation of the physical model 

The equation of motion for the 2-DOF system in Fig. 6.15 can be described as follows. 
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conf z   Mx Cx Kx E F                              (6.17) 

where 
conf  represents the controlled damping force. 
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with 

1 3.264 kgm  ; 
2 1.589 kgm  ; 

1 249.9 N mk  ; 

2 1968 N mk  ; 
1 0.1294 Ns mc   and 2 1.019 Ns mc   

The first and second natural frequencies of the building model system are 1.134 Hz and 6.877 Hz, 

respectively. 

A semi-active linear damper with the damping coefficient being able to be switched over four different 

values is fitted on the ground floor of the test rig, which is the same as the situation with the Sosokan 

Building.  

The four damping coefficients are  

1 2 3 430.8 Ns m; 40.1 Ns m; 44.5 Ns m; 84.8 Ns mp p p pC C C C               (6.18) 

The experiments were conducted when the sweep sine wave 

    20.6sin 2 m sz t ft                             (6.19) 

with  0, 15 Hzf   was applied as the loadings to the model. 

In the experiments, the cubic damping coefficient was chosen as 3 33000 Ns mnC  . In this case, the 

cubic damping characteristic and the force-velocity relationships of the semi-active damper under the four 

damping coefficients given in (6.18) are shown in Fig.6.16 where the maximum velocity across the damper is 

0.2 m s . In order to compare the performance of the proposed nonlinearly damped system with the 

performance that can be achieved by the LQG based feedback control and traditional linear damping, an 

equivalent linear damping was chosen as 4 84.8 Ns mpC   such that the three different techniques can 

achieve a similar transmissibility over the resonant frequency range as shown in Fig.6.16.  
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Fig.6.16. Force-velocity relationship of 3 33000 Ns mnC   and the real damping force (thick grey line) 

With respect to the LQG clipped semi-active control, the adopted cost functional is chosen following the 

standard requirement in earthquake engineering [142]. The functional is the sum of squared floor 

accelerations and squared control force with an empirically-tuned weight coefficient of 10 kg−2 as given by  

           
2 2 2

0 1 0 2
0

dJ E x t x t x t x t Ru t t
                            (6.20) 

where .E  denotes the mathematical expectation,    0 1,x t x t  and  2x t  are the accelerations on the 

ground, the first, and the second floor, respectively, 210kgR  , and  u t  is the semi-active control force.    

In (6.20), the term          
2 2

0 1 0 2
0

dE x t x t x t x t t
          in the cost functional is introduced to 

minimise the absolute accelerations on each floor so as to reduce possible damage to contents and 

non-structural components in a building structure. The additional term   2

0
dE Ru t t



  is used to penalise 

the excessive control action that could take by the semi-active controller. The weighting value 210kgR 

was empirically tuned in order for the LQG clipped semi-active control to achieve the same transmissibility 

at the first resonant frequency as the transmissibility that can be achieved by the proposed cubic damping 

with coefficient 
3 33000 Ns m and its equivalent linear damping with coefficient 84.8 Ns m .  This is to 

facilitate an effective comparison between the three different building isolation techniques. 

In determination of a Kalman filter gain, noise intensities are assigned 
4 2 22.6 10 m s  for system noise 

and
4 2 42.99 10 m s , 

4 2 41.62 10 m s , and 
4 2 49.30 10 m s  for noise of accelerometers at the table, 

lower floor, and upper floor, respectively. 

In the laboratory studies, due to the limitation of the software system and also for the simplicity of 

implementation, instead of using the PI control in (6.15), a straightforward look-up table-based feedforward 
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control was applied to determine the damping coefficient from its four available choices based on the 

measured velocity across the damper as follows: 
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                                    m su C t v                                    (6.22) 

where 
du  and 

mu  are the desired and measured damping force, respectively, and v  is the velocity across 

the damper. In the experiments, v  is estimated by a Kalman filter using the measured acceleration data 

1,z x  and 
2x . The implemented cubic damping characteristic is shown by the grey line in Fig.6.16. 

Consequently, a qualitative demonstration of the performance of the proposed nonlinearly damped system is 

expected from the experimental studies. 

Remark 6.1: Eq. (6.15) shows how a PI feedback control can be implemented by using the semi-active 

damping system currently used in the Sosokan Building to achieve a desired damping characteristic. Eq. 

(6.21) shows a simpler feed forward control solution used in the experimental study. Both implementations 

are based on traditional control system designs. Generally speaking, Eq. (6.15) is an ideal solution if the 

implementation is not constrained by hardware and software limitations. This is because a PI based close 

loop control can achieve the desired damping force better than an open loop method. 

        

(a) The transmissibility of the 1st floor                   (b) The transmissibility of the 2nd floor 

Fig.6.17. Comparison of the transmissibilities: Cubic damper (Blue dot line); LQG (Red line); Linear damper (Green 

dash line); No damper (Purple dash-dot line) 

Fig.6.17 shows the main results from the experimental studies. The results indicate that the proposed 

nonlinear damping always gives the best performance. Over both the resonant frequency and the high 

frequency ranges, the nonlinear damping produces a lower transmissibility compared to that with the LQG 
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method; while the transmissibility with the equivalent linear damping increases significantly beyond the 

resonant frequency range of the system. All of these are consistent with the conclusions reached in Section 

6.4 from simulation studies. 

 

Fig. 6.18. Comparison of the roof drifts: Cubic damper (Blue dot line); LQG (Red line); Linear damper (Green dash line); 

No damper (Purple dash-dot line) 

The roof drifts of the 2DOF physical building model controlled by the three different methods are shown 

in Fig.6.18, which further confirms the conclusion reached by simulation that the nonlinear damping method 

outperforms the other two approaches.  

 

(a) Cubic damping                     (b) LQG 

Fig.6.19. Situations with switching over four damping coefficients at 1.0 Hzf   

 

(a) Cubic damping                     (b) LQG 

Fig.6.20. Situations with switching over four damping coefficients at 13.0 Hzf   



CHAPTER 6  119 

In order to explain the superior performance of nonlinear damping over LQG, the situations with switching 

over the four different damping coefficients under the nonlinear damping and LQG are shown in Figs.6.19 

and 6.20 for the cases when the system is working at the resonant frequency ( 1.0 Hzf  ) and high 

frequency ( 13 Hzf  ), respectively. 

From Figs.6.19 and 6.20, it can be observed that over the resonant frequency range, the nonlinear damping 

approach select, the maximum damping coefficient for most of the time while the LQG method only 

occasionally use the maximum damping coefficient. On the other hand, over the higher frequency, the 

nonlinear damping method uses smaller damping coefficients while LQG still opts for the maximum 

damping intermittently.  

It is worth noting that the minimum damping coefficient that both nonlinear damping and LQG approach 

can use in the experiment is 1 30.8 Ns mpC  . If the minimum realisable damping coefficient is very small, 

it is expected that the nonlinear damping would achieve almost the same transmissibility as that shown in 

purple dash-dot line in Fig. 6.17 over the range of higher frequencies while still suppressing the vibration 

well over the resonance, showing an ideal performance over almost all ranges of frequencies. 

 

Fig.6.21. An experimental comparison of the base isolation performances when the building model (Fig.6.12) is subject 

to a simulated near-fault ground motion in the four cases of  (i) No Damping (ND), (ii) Linear Damping (LD), (iii) LQG, 

(iv) Two different cubic damping (denoted as PLD1 and PLD2, respectively) 

In the present study, the great potential of a base-isolation system with nonlinear damping implemented by 

using a semi-active damper has been demonstrated when the ground motion can be assumed to be a 

single-tone sinusoidal wave, which is often the case when the building is located far away from the epicenter. 

The scenarios considered in this study are the earthquake ground motions which have either dominant 

frequency in the isolated range or a dominant frequency in the non-isolated range of the system. The results 

indicate the proposed nonlinear damping solution guarantees that the base isolation system works well in 

both cases. For the cases of near-fault ground motions as well as the cases where the ground motion contains 
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energy in both frequency ranges, the proposed cubic damping solution is also expected to perform better than 

linear solutions according to the analyses and results in [143-145]. One of these results is, for example, 

shown in Fig.6.21 [145]. However, a more comprehensive principle needs to be followed to perform the 

nonlinear damping design, which will be investigated in a future study. 

6.6 Conclusions 

In March 2011, the most powerful earthquake ever recorded in Japan occurred approximately 70 

kilometres east of the Oshika Peninsula. The measured ground motion contained long-period waves with 

unprecedented intensity and duration. However, the building regulations in Japan currently do not cover the 

profile of the long-period waves observed in 2011. Engineers are therefore motivated to improve the current 

seismic protection technologies.  

Ideally, dampers used for system isolation should have high damping coefficients when the excitation 

frequency is low and have low damping coefficients when the excitation frequency is high. As it is 

impossible to predict the frequency spectrum of future earthquakes, changing dampers according to the input 

frequency is not a practical solution. 

The idea of applying nonlinear damping to vibration isolation problem has been explored in previous 

studies. It has been proven that nonlinear damping in a vibration isolation system can offer sufficient 

isolation around the resonance without affecting the high frequency performance. In this Chapter, the 

realization of the desired nonlinear damping force has been implemented using a semi-active damper, which 

can be readily achieved in practice. The Sosokan Building model based numerical simulation studies and 

experimental studies on a scaled physical model have demonstrated the performance of the new technique 

and the advantages of the technique over traditional solutions 

The proposed nonlinear damping isolation system provides a good isolation against long-period waves as 

well as ground motions in the frequency spectrum which have been observed during most earthquakes. The 

controller only requires force and velocity measurements that are local to the semi-active dampers. This is a 

major practical advantage over other solutions as local measurements are much less susceptible to noise and 

interference. Instead of treating the semi-active dampers as actuators during the design process, the proposed 

approach guarantees robustness and stability, which is essential during earthquakes. 

Other advantages of the proposed method can be highlighted by comparing with some existing solutions. 

The nonlinear damping based semi-active dampers can be easily installed in the isolation layer of most 

buildings without requiring a major redesign. Active actuators can be readily installed but the requirement of 
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a large power supply may have more safety implications. Therefore, in terms of costs, practicality and 

performance, the proposed nonlinearly damping solution is a better all-round alternative. 



CHAPTER 7  122 

Chapter 7. Conclusions 

Traditional nonlinear system designs are basically based on the time domain response analysis, which is 

often difficult to reveal the relationship between the system performance and the parameters that can be used 

to perform the design. Motivated by the wide engineering applications of the FRF-based linear system 

frequency domain analysis and design, the frequency analysis approaches, i.e. the GFRFs, the NOFRFs and 

OFRF, etc., were proposed in order to extend the effective linear system approaches to the nonlinear case. 

However, there are many issues need to be addressed to facilitate the engineering application of these 

approaches. 

In order to address the problems with many existing nonlinear system analyses, the present research work 

has first proposed a new concept known as the GALEs and developed effective methods for the 

determination of the GALEs of the NDE and NARX models of nonlinear systems, respectively. The GALEs 

can transform the analysis of the NDE or NARX model of nonlinear systems to the analysis of a series of 

linear differential or linear difference equations so as to significantly facilitate nonlinear system analyses 

including, for example, the evaluation of time domain responses of complicated nonlinear systems, the 

determination of the NOFRFs for nonlinear system frequency analysis, and the identification of the 

physically meaningful differential equation model of nonlinear systems. 

  Considering that the convergence of the Volterra series representation of nonlinear systems is the basis of 

the frequency domain analysis and design of nonlinear systems, in the present study, a new convergence 

analysis for the Volterra series representation of nonlinear systems has been proposed. A frequency domain 

representation of the NARX model of nonlinear systems, known as the Nonlinear Output Characteristic 

Spectra (NOCS) model, has been derived. The Generalized Output Bound Characteristic Function (GOBCF) 

is then defined to represent the bound characteristics of the NARX models. Moreover, a new criterion for the 

analysis of the convergence of the Volterra series representation of nonlinear systems is derived based on the 

GOBCF, producing a novel sufficient condition for a convergent Volterra series representation of the NARX 

model of nonlinear systems. Compared to existing approaches, the new criterion provides a more rigorous 

and less conservative analysis result and is applicable to nonlinear systems subject to either harmonic or 

general inputs.  

  Moreover, consider that it is difficult even impossible to find a differential equation model for complex 

engineering systems and the need to extend the physical model-based nonlinear system analysis and design 
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approach to more complicated systems, a new model known as the NARX-M-for-D is proposed, which can 

be derived from a nonlinear differential equation model of a system but, more importantly, can also be 

determined from the system input output data through a nonlinear system identification process. A new 

OFRF-based methodology is then developed that can be applied to the design of nonlinear systems described 

by a NARX-M-for-D. Further, in order to address the issue that the OFRF only shows a polynomial 

relationship between the system’s output spectrum and nonlinear characteristic parameters, but can’t 

explicitly reveal the effect of system linear characteristic parameters on output spectra, a concept known as 

the AOFRF of nonlinear systems has been proposed. The AOFRF enables an explicit separation of the system 

linear and nonlinear characteristic parameters in the representation of the system output spectrum and, 

consequently, facilitates the derivation of a polynomial representation in terms of both the system linear and 

nonlinear characteristic parameters. 

  Finally, the idea of applying nonlinear damping to vibration isolation problems is explored, where the 

realization of the desired nonlinear damping force has been implemented using a semi-active damper, which 

can be readily achieved in practice. The Sosokan Building model based numerical simulation studies and 

experimental studies on a scaled physical building model have demonstrated the performance of the new 

technique and the advantages of the technique over traditional solutions. The significance and advantages of 

the nonlinear base-isolation systems have been discussed, which are expected to have potential to be applied 

in many engineering practices in the near future. 

7.1 Main contributions of the present research 

This research study has made many significant contributions in the field of nonlinear system frequency 

analysis and design. The main points of these contributions are summarized as below. 

(1) A new method that can accurately evaluate the system Volterra series representation, known as the 

GALEs, was proposed. By using an efficient algorithm, the system GALEs can be automatically 

determined, such that the Volterra series representation of the nonlinear system output can be 

evaluated up to an arbitrarily high order by solving a series of linear equations. 

(2) A new convergence criterion for the Volterra series representation of nonlinear systems was derived 

based on the GOBCF of the system NARX model. The new convergence criterion is independent of 

sampling frequency with the NARX model, applicable to nonlinear systems under general inputs, and 

does not require carrying out complex mathematical computations.  

(3) The OFRF of NARX-M-for-D of nonlinear systems was determined. The AOFRF concept is proposed 
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and the AOFRF based representation of the output spectrum of nonlinear systems was defined as an 

extension of the OFRF. Based on the AOFRF, the system output spectrum can represented by a 

polynomial function of both the system linear and nonlinear characteristic parameters. By using the 

AOFRF representation, it is possible to design a nonlinear system in a systematical way by 

considering the effects of both the system linear and nonlinear parameters on the system performance. 

(4) A desired nonlinear damping is implemented by using a semi-active control method for the base 

isolation of buildings. The results indicate that it is possible to apply the newly proposed nonlinear 

system design in practice to address challenges in earthquake engineering. 

7.2 Future works 

  Although, in the present study, significant progress has been made and many results have been achieved in 

the analysis and design of nonlinear systems in the frequency domain, there are still many further works to 

develop. These works include the identification of physically meaningful data driven models of nonlinear 

systems, determination of a reduced order OFRF/AOFRF representation of the system output frequency 

response, application of the GALEs in the system analysis, identification and design, convergence analyses 

of the Volterra series representation of continuous time nonlinear systems, and the extension of what has been 

achieved to MIMO nonlinear systems, etc.. More detailed discussion of these possible future works are as 

follows: 

(1) The techniques for the determination of the NARX-M-for-D for nonlinear systems needs to be further 

developed by taking into account the physical relationship in a data driven NARX model. The NDE 

model is a “white box model” while a data driven NARX model is a “black box model”. The 

NARX-M-for-D is a “gray box model” making it possible to describe, in a physically meaningful way, 

a large class of nonlinear systems. The frequency analysis and design of nonlinear systems can then be 

applied based on the NARX-M-for-D. In developing the NARX-M-for-D identification, design of the 

experiments for training data collection is important and more efficient identification algorithm will be 

developed in the future works. 

(2) It has been observed that, can be seen that, although a polynomial representation of the output 

frequency response in terms of the system linear and nonlinear parameters provides a convenient way 

for the analysis and design of nonlinear systems, the order of the OFRF/AOFRF polynomial can be 

significantly high. This may induce numerical errors and limit the application of the OFRF/AOFRF 

based approaches in practice. Therefore, it is significant to developmore effective algorithm to 
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produce the OFRF/AOFRF of a reduced order to address possible numerical error issues with current 

techniques. 

(3) The GALEs provides an efficient approach to the analysis of nonlinear systems by using linear system 

methods. The method has great potential for a much wider range of nonlinear system studies. It is 

therefore necessary to further explore the application of the GALEs and associated methods. 

(4) In the present study, a new convergence analysis of the NARX model of nonlinear systems has been 

established. How to apply the same idea to extend the convergence analysis to the NDE models of 

nonlinear systems can be a related research topic in the next step. 

(5) All the results obtained in this study are based on SISO nonlinear systems while in practice, many 

systems, for example, the building system discussed in Chapter 6, are MIMO systems. The newly 

proposed frequency domain analysis and design approaches will be extended to MIMO cases in future 

works to address more general and complex engineering problems. 

  The aforementioned are a only a few possible future works that could be conducted based on the present 

state of this research. More opportunities and innovative developments include engineering system condition 

monitoring, optimal design, identification and control, etc., which could all be addressed under the 

framework that has been established in the present study.  
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Appendices 

Appendix A. Sampling frequency independence 

The normalized convergence criterion in Proposition 4.3 is independent of sampling frequency. This is 

because when the sampling frequency 1 t  is sufficiently large, the GOBCF of the nonlinear system can be 

written as 

   
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2 0
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M m

p m p

BC w t w p m p

m p

f x x L C u x u L C

  

 

                    (A1) 

Noting that for any physical system, the NARX model with 0t   is in fact the NDE model of the 

system due to the relationship of 
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Therefore, 0 ,lim t w p m pL C    is a constant and independent of the sampling time t , when all frequency 

variables are bounded. 

Consequently, the GOBCF of the NARX model is independent of sampling frequency, indicating that the 

new convergence criterion in Proposition 4.3 is also independent of sampling frequency. 

Appendix B. Proof of Lemma 5.1 

The linear frequency response function  1 , 1, ,iH i n   is 
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and 
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with the convergence radius of    j j 1c zC C     , where 
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f  is the i th order derivation of the 

function  .f . 

Based on the Euler's formula, notice that 
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which indicates that  1 .H  and  1

1, ,n nL    can be expressed by a convergent Taylor series when  
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and obviously, (B6) is a sufficient condition for that  1 .H  and  1

1, ,n nL    can be written into a 

convergent Taylor series. 

Assuming the expansion order of (B3) is e Ln n  and (B6) is satisfied, (B1) can be written as: 
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where , 0, ,i La i n  are constants. 

Noticing that the sufficient convergence condition (B6) is independent to frequency variables, it is easy to 

know that there exists an integer Ln , let  1 iH   for 1, ,i n  be expressed by the same order Taylor 

series of e Ln n , therefore,  
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Considering the order of the Taylor expansion is only related to    1,0 zc k c k , and according to (B1) 

and (B2),  1

1, ,n nL  
 can be expressed as: 
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where 
 1 , , K 

  represents the function of frequecy variables. 

According to (5.34),  
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Assuming (5.75) holds for  1:n r th term, for the  :n r th term,  
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where 
1

p

i

i

r R


 . 

Substituting (B12) into (B11), yields: 
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Then Lemma 5.1 is proven. 
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