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Abstract 

 

Peripheral pain pathway plays a crucial role in how pain is perceived and felt. The 

dorsal root ganglia (DRG) which house the primary sensory neurons have become 

the focus of many emerging pain studies due to its potential as a functional structure 

in controlling pain transmission, and not only for producing proteins and providing 

nutrients essential for neuron survival. The major inhibitory neurotransmitter in the 

nervous system, GABA has been shown to play a significant role in this regard.  

Within the present study, the mechanism of GABA release within DRG neurons was 

investigated by studying the expression of vesicular GABA transporter (VGAT) in the 

DRG neurons. VGAT was highly expressed in the DRG neuron somata. The VGAT-

positive neurons also expressed markers of subpopulations of DRG neurons, 

including those involved in nociception. The availability of VGAT luminal (VGAT-C) 

and cytoplasmic (VGAT-N) domains were utilised to investigate the mechanism of 

GABA release in a live DRG neuron culture. This mechanism involves the recycling 

process of vesicles following their exocytosis. Imaging of the internalization of VGAT-

C domain during vesicle recycling indicates GABA is released via exocytosis and has 

both, tonic and activity-dependent components. Using the in vivo electrophysiological 

recordings, neuronal firing in the spinal nerve and dorsal branches of the peripheral 

nerve (before and after the DRG, respectively), was investigated. These data 

revealed existence of a ‘filter’ in the DRG that decreased the frequency of the 

neuronal firing passing through the DRG. This filtering effect was overcome by 

bicuculline, a GABAA receptor antagonist indicating the role of GABAA receptor in 

peripheral pain pathway. This role of GABAA receptor was also supported by the 

decrease in GABAA receptor activation in the presence of bicuculline in DRG neurons 

co-cultured with HEK293 cells.  
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In sum, in the DRG, GABA is liberated into the interneuronal space via Ca2+-

dependent vesicular exocytosis, which in turn acts on GABAA receptors. This 

GABAergic signalling is responsible for filtering the action potentials from the 

periphery to the central terminals in the spinal cord. These findings identify and 

further characterize peripheral ‘gate’ within the somatosensory system. 
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Chapter 1  Introduction 

1.1 Pain- why is it so important? 

Humans are blessed with the ability to enjoy and ‘sense’ the beauty of the world 

via five sensory systems; ears (hearing), olfactory organ (smell), eyes (vision), tongue 

(taste) and the skin (somatosensation). Of these five, somatosensation is multimodal 

and able to detect different sensations: proprioception, pain, temperature and touch 

via their own receptors namely, proprioceptors, nociceptors, thermoreceptors and 

mechanoceptors respectively. Touch can further be subdivided into detection of 

curvature, hardness, shape, texture, pruriception (itch detection) and pleasurable 

touch (Johnson et al., 2000, McGlone and Reilly, 2010, Woolf and Ma, 2007). As 

alluded to above, these sensations can be gratifying but obversely, one sensation, in 

particular, can cause various degrees of displeasure and discomfort to the body; this 

is the very familiar sensation known as pain. 

The International Association for the Study of Pain has defined pain as ‘an unpleasant 

emotional and sensory experience that is related to actual or potential tissue damage 

or described in terms of such damage’ (IASP). For most individuals, pain is a 

subjective experience with each individual especially of different ethnicity and race, 

perceiving pain differently when given the same noxious stimuli (Kim et al., 2017a, 

Larsson et al., 2017, Rahavard et al., 2017). The resulting experience is influenced 

by cognitive and contextual factors (Lee and Tracey, 2013); for some, pain can be 

felt without an identifiable nociceptive input and conversely activation of nociceptors 

may not cause pain at all (Lee and Tracey, 2010). Regardless of the aetiology, pain 

is indeed associated with many pathological conditions that has become one of the 

common reasons for people to seek treatment. Approximately 28 million adults 

(approximately a third of the population) are affected by chronic pain (see below) in 
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the UK alone (Fayaz et al., 2016). This places both an economic and social burden 

on the country as it affects the quality of life of those suffering. 

However, looking past the emotional and behavioural aspects of pain that we are all 

accustomed to, this sensation plays a crucial role in allowing us to function properly 

and more importantly, ensuring the survival of the body (Karos et al., 2017, Leknes 

et al., 2006). When one thinks of pain, an unpleasant sensation is almost always 

pictured but biologically, pain is indeed a very important defence mechanism that 

protects the body from injury. Of critical importance is that pain aversiveness 

facilitates learning that could affect decision making preventing potential future injury 

(Wiech and Tracey, 2013). Examples of such mechanisms include moving a hand 

away from a flame without physically touching it and hitting on a fractured bone which 

results in pain– the former protects the body from pain whereas the latter reminds 

the body to stop further injury and therefore allow healing to occur. Interestingly, 

some defects occurring along the nociceptive pathway may render the sufferer 

painless to any noxious stimuli, which may seem to be the holy grail of pain 

management. However, as mentioned, the protective nature of pain means that 

inability to feel pain exposes such individuals to more harm. It has been reported that 

spontaneous and unconscious behaviours such as biting lips and/or the tongue, as 

well as injuries such as bone fractures may occur unnoticed in people insensitive to 

pain (Nahorski et al., 2015). The genetic basis of patients suffering from insensitivity 

to pain usually inherit this disability and suffer from birth; this condition has been 

termed congenital insensitivity to pain (CIP) Ultimately, the lack of awareness to pain 

can lead to accumulation of injuries which in many cases can unfortunately affect the 

life expectancy of these people.  

CIP may occur due to mutations involving voltage-gated sodium channels (Cox et al., 

2006) or through congenital absence or progressive degeneration of sensory and 

autonomic neurons (Rotthier et al., 2012). To date, there are a few conditions 

reported that have been associated with CIP in which several gene mutations were 
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present. In 2006, an article published in Nature reported a group of six Pakistani 

children (aged 6 to 14 years) who suffered from a complete insensitivity to pain and 

due to this, these children endured physical injuries such as burns and fractures. 

Genetic investigations revealed all six Pakistani children had a nonsense mutation in 

SCN9A which encodes the α subunit of the voltage-gated sodium channel Nav1.7, 

making them unable to sense thermal and mechanical pain due to inability to transmit 

signals through axons (Cox et al., 2006). A less common type of mutation, which was 

found in 4 families worldwide, is the gain of function mutation in the Nav1.9 channel 

which results in nerve dysfunction and loss of pain perception (Leipold et al., 2013, 

Phatarakijnirund et al., 2016, Woods et al., 2015). In 2008, another type of CIP was 

reported in Italy, affecting six individuals across three generations (a mother, her two 

daughters and their children, two boys and one girl aged 24, 21 and 16 respectively) 

(Habib et al., 2018). Further investigations by a group of scientists discovered that 

this family had a defect in the ZFHX2 gene, a nociceptor-expressed transcriptional 

regulator (Habib et al., 2018). 

However, not all characteristics of pain are in favour of the body. In certain conditions, 

pain ceases to be protective and occurring only when required. Instead, it becomes 

persistent and constantly present without any need hence transforming into a 

nuisance to the body– this is known as chronic pain (Treede et al., 2019). In 

pathological conditions such as in an individual with a spine injury, the nerve may get 

affected and the pain becomes chronic in nature tormenting (instead of protecting) 

the individual.  
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1.1.1.1 Nociception 

The perception of pain from noxious stimuli requires an intact communication 

between peripheral and central nervous system (CNS). Noxious stimuli trigger 

generation of action potentials that are propagated via the primary afferent fibres to 

the spinal cord and finally reach the brain where pain is perceived. Within the spinal 

cord, these action potentials also activate excitatory interneurons which in turn excite 

the α and γ motor neurons, leading to subsequent motor responses such as 

contraction of flexor muscles of the stimulated limb. The ability of the peripheral fibres 

to detect noxious stimuli and integrate the signals at the level of the spinal cord and 

the brain is essential for the organism’s wellbeing.  

Pain and nociception are two distinct terms which are often confused. The distinction 

was first clarified by Charles Sherrington, a neurophysiologist, in 1906 (Sherrington, 

1906), who stated that ‘nociceptors’ (neurons) were the neural apparatus for noxious 

signal-sensing. The IASP defines nociception as the neural process encoding the 

noxious stimuli while pain is the physical and emotional experience resulting from 

such process (IASP). 

Acute pain serves a biological purpose where it warns the body of any disease or 

injury and is time-limited– once the injury has recovered, the pain subsides as it is no 

longer required. The peripheral nerve terminals are responsible for sensing the initial 

noxious stimulus and transmitting this to higher centres for processing. The molecular 

process of sensing the initial stimulus through receptors and proteins is known as 

nociception, hence neurons involved in nociception are known as nociceptors. 

Nociceptors detect painful sensation from the skin, muscle and viscera and are first-

order neurons with cell bodies located in the dorsal root ganglia (DRG). Nociception 

for the orofacial region occurs via the trigeminal nerve whose cell bodies are housed 

in the trigeminal ganglia.  



5 
 

The process of nociception involves detection of stimuli by the peripheral nerve 

endings, which convey information through axons and neuronal cell bodies before 

synapsing at the first-order neurons located in the dorsal horn of the spinal cord. The 

first-order neurons, also known as primary sensory neurons, are distinguished from 

each other by their conduction velocity, size or the somatosensory sensation they 

carry (Dubin and Patapoutian, 2010)- into Aα, Aβ, Aδ and C fibres (Table 1). 

Table 1 Classification of Sensory Fibres in Peripheral Nerves. (Kandel et al., 
2012).  

Fibre type Fibre 

group 

Fibre 

diameter 

(µm) 

Conduction 

velocity (m/s) 

Receptor type modality 

Myelinated Aα (Large 

diameter) 

12 - 20 72 - 120 Proprioceptors 

- Meissner corpuscle 

- Merkel disc receptor 

- Pacinian corpuscle 

- Ruffini ending 

- Hair-tylotrich  

- Field 

Touch 

 

- Stroking, flutter 

- Pressure, texture 

- Vibration 

- Skin stretch 

- Stroking, flutter 

- Skin stretch 

Aβ 

(Medium 

diameter) 

6 - 12 36 - 72 

Aδ (Small 

diameter) 1 - 6 4 - 36 Thermal 

- Cool receptors 

 

-  Heat nociceptors 

 

- Skin cooling 

(<25˚C/77˚F) 

- Hot temperature 

>45˚C/113˚F 

Nociceptors 

- Mechanical 

- Thermal mechanical 

(heat) 

 

 

- Sharp, pricking pain 

- Burning pain 

Unmyelinated C 0.2 – 1.5 0.4 – 2.0 Thermal  

- Warm receptors 

- Cold receptors 

 

 

- Skin warming 

>35˚C/95˚F 

- Cold temperature 

<5˚C/41˚F 

Nociceptors 

- Thermal 

mechanical (cold) 

- Polymodal 

 

 

- Freezing pain 

 

- Slow, burning pain 
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Nociceptors are defined as having a high threshold for activation. Thus, they are 

activated by noxious but not innocuous stimuli. Most literature reports two major 

classes of nociceptors; the medium diameter myelinated (Aδ) afferent fibres and the 

small-diameter unmyelinated C afferent fibres (Meyer et al., 2006). Aδ fibres mediate 

acute, localised fast pain, while C fibres are responsible for the poorly localised, slow 

pain. C-fibres are also involved in the detection of innocuous, low temperatures 

(Meyer et al., 2006, Samour et al., 2015).  

The Aα/β fibres are considered as low-threshold mechanoreceptors. These fibres 

have often been overlooked as playing a role in nociception however, a few studies 

have shown evidence of their involvement. Studies in different species (guinea pig, 

rat and mouse) have reported that 18% – 65% of A-fibre nociceptors indeed conduct 

action potentials in Aβ conduction velocity range (Djouhri and Lawson, 2004). The 

non-nociceptive Aβ fibres respond to innocuous mechanical stimuli such as light 

touch. In a chronic constriction injury rat model, most of the Aβ fibres did not conduct 

action potentials upon stimulation, however, these fibres showed the highest 

percentage of spontaneous discharge as compared to Aδ and C fibres (Kajander and 

Bennett, 1992). Consistent with this, Truini and colleagues studied neuropathic pain 

in carpal tunnel syndrome and found that paroxysmal pain was related to high-

frequency bursts from the demyelinated Aβ fibres. However, whether the high-

frequency bursts are sufficient to provoke pain or require the ephaptic transmission 

to the neighbouring C-fibres is yet to be investigated (Truini et al., 2009).  

The different fibres of the first-order neurons; Aα, Aβ, Aδ and C fibres enter the spinal 

cord and terminate on second-order neurons and local interneurons at different layers 

of the dorsal horn. These layers, termed laminae are organized in ten laminae 

according to their cytoarchitectonic characteristics within the gray matter of the spinal 

cord (Rexed, 1952). Nociception carried by the C and Aδ fibres predominantly 

arborize and terminate in laminae I and II with some fibres arborizing deeper into 

lamina V. Figure 1.1 (Todd, 2010). 
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From these laminae, the second-order neurons project to medulla, mesencephalon, 

and thalamus via the spinothalamic tract before synapsing on the third-order neurons 

within the somatosensory and anterior cingulate cortices where the sensory-

discriminative and affective-cognitive aspects of pain is perceived (Millan, 1999). 
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Figure 1.1 The terminations of A and C fibres in different laminae in the rexed 
dorsal horn of the spinal cord. Aδ nociceptors end mainly in lamina I, peptidergic 
primary afferents (which also include some Aδ nociceptors) arborize mainly in lamina 
I and lamina IIo, with some fibres penetrating more deeply, whereas most non-
peptidergic C fibres form a band that occupies the central part of lamina II. Aδ hair 
follicle afferents arborize on either side of the border between lamina II and lamina 
III, whereas Aβ tactile and hair afferents end mainly in lamina III–V [Adapted from 
(Todd, 2010)]. 
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1.1.2 The Gate Control Theory of Pain 

During the Middle Ages, pain was perceived as a punishment from gods or 

demons for sins committed, however, this perception was later challenged. In the 17th 

century, René Descartes' tried to embody the transmission of pain by producing 

illustrations reflecting how pain occurred (Illustration of the pain pathway in René 

Descartes' Traite de l'homme (Treatise of Man) 1664 (Figure 1.2). Descartes stated 

that pain was a sensation that came from the body itself following exposure to 

noxious external stimuli such as fire that caused burning of the skin. The information 

of the burnt skin was conveyed from the site of injury to the brain where the individual 

experiencing it would respond to the sensation by removing the burnt part of the body 

from the flame body. This theory gave rise to specificity theory which maintained that 

the free nerve endings were pain receptors before being refuted and superseded by 

pattern theory in the late 19th century. Unlike specificity theory which agreed with 

Descartes (that free nerve endings were pain receptors), pattern theory proposed 

that stimulus intensity and central summation were the critical determinants of pain 

(Perl, 2007). Despite being able to explain many of the clinical phenomena in pain, 

pattern theory was lack of substantial experimental verifications and failed to 

comprise a satisfactory general theory of pain which lead to the emergence of Gate 

Control Theory of Pain (Melzack and Wall, 1965). Using the Gate Control Theory of 

Pain, Melzack and Wall suggested a clearer pathway of how pain transmission works 

(Melzack and Wall, 1965). According to this theory, the brain receives information 

about an injury by way of a gate control system which is influenced by: i) an injury 

signal that is transmitted via the small C and Aδ fibres, ii) cells that are excited by the 

injury signal which also receive facilitation or inhibitory inputs from other peripheral 

nerve fibres which carry innocuous information, and iii) descending control systems 

that project from the brain and modulate the excitability of cells which transmit the 

information about the injury. This gate control system involves the interaction of these 

components within the dorsal horn of the spinal cord; it controls the input from the 
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peripheral fibres (that carry injury signal) onto the projecting T cells that travel via the 

ascending pathway to the brain where pain is perceived (Melzack and Wall, 1965). 

 

 

Figure 1.2 Descartes’ concept of the pain pathway. He writes: If for example fire 
(A) comes near the foot (B), the minute the particles of this fire, which as you know 
move with great velocity, have the power to set in motion the spot of the skin of the 
foot which they touch, and by this means pulling upon the delicate thread CC, which 
is attached to the spot of the skin, they open up at the same instant the pore, i.e., 
against which the delicate thread end, just as by pulling at one end of a rope one 
makes to strike at the same instant a bell which hangs at the other end (Descartes, 
1901). 
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The main postulate of the Gate Control Theory of Pain can be exemplified by what 

happens when one experiences a mosquito bite: it feels itchy when a person is first 

bitten, however after rubbing the affected area, the urge to itch recedes- even if this 

is temporary. The mosquito bite serves to sensitize the itch receptor carried by C and 

Aδ fibres. Upon one rubbing the affected skin in response to the mosquito bite, 

stimulation of Aβ fibres which are non-nociceptive fibres involved in detecting 

mechanical sensation such as touch, overwhelms the firing coming from the C fibres, 

hence ‘closing’ the gate to resist transmission from the C fibres to the spinal cord and 

CNS. Ultimately, this renders our perception of the skin as less itchy. More 

specifically, Gate Control Theory postulates that the stimulation of non-nociceptive 

fibres gates the nociceptive signals from being transmitted to the brain at the level of 

the spinal cord resulting in less pain perception.  

Pain is indeed a complex condition which intrigues scientists to explore further 

avenues to gain a better understanding of the mechanisms behind the sensation. 

Fascinatingly, recent work from our group has proposed a new addition to the Gate 

Control Theory (Du et al., 2017) whereby in addition to ‘classical’ spinal gate, an 

earlier gate exists at the level of peripheral ganglia (see below).   
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1.1.3 Acute and chronic pain  

Depending on its mechanism and duration, pain can be categorised into acute 

or chronic. Acute pain is a short, self-limited condition that involves sensitisation of 

nociceptors followed by the perception of pain. Acute pain occurs following tissue 

injury, surgical procedures or a brief disease process. These conditions produce 

either thermal, chemical or mechanical stimuli that sensitise the nociceptors. These 

stimuli are converted into electrical potentials by means of ion channels and G 

protein-coupled receptors. These potentials are then transduced to the CNS where 

pain is integrated and modulated. Thus these three components, the stimulus, 

transduction and central integration and modulation are the important components in 

the nociceptive pathways. 

On the other hand, chronic pain is defined as pain which lasts longer than three 

months (Treede et al., 2019). Chronic pain is caused by an underlying pathology or 

pain which healing goes beyond the normal duration. Different types of chronic pain 

have been described which include conditions such as chronic widespread pain 

(CWP), fibromyalgia, complex regional pain syndrome, type 1 (CRPS1), 

temporomandibular disorder (TMD), irritable bowel syndrome (IBS) and most back 

pain and neck pain conditions (Nicholas et al., 2019). Unlike heart disease or lung 

cancer, chronic pain is not the most common cause of death but individuals suffering 

from chronic pain will have limited ability to perform daily activities and depression 

that may sometimes lead to suicidal thought (Rizvi et al., 2017). Chronic pain affects 

the sufferers physically and emotionally and inevitably incur a financial burden not 

only to the individuals but employers, healthcare systems and society in general 

(Breivik et al., 2006, Breivik et al., 2013).  

The aetiology and pathophysiology of chronic pain are sometimes obscure and not 

well understood, however, three contributing components exist and interplay with 

each other; biological, psychological and social factors (Fillingim et al., 2014, Gatchel 

et al., 2007). Biologically, chronic pain is viewed as direct results of disease 
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processes, while psychological problem such as depression can be a risk factor for 

chronic pain and vice versa (Fishbain et al., 1997, Lepine and Briley, 2004). The 

psychosocial factors such as fear-avoidance behaviour, social support and physical 

environment contribute to the limitation of activities and pain-related disability (Zale 

et al., 2013, WHO, 2015).  

 As psychological presentations in patients with chronic pain can be related to the 

underlying pain mechanisms, a group of researchers in Brazil conducted a clinical 

study among female human immunodeficiency virus (Chivet et al., 2014) patients 

suffering from chronic pain. This study identified patients with chronic pain with two 

different mechanisms, nociceptive and neuropathic, by using Leeds Assessment for 

Neuropathic Symptoms and Signs (LANSS) (Bennett, 2001). Their results showed 

that females with chronic neuropathic pain suffered more compared to females living 

with chronic nociceptive pain. Female HIV patients suffering from chronic neuropathic 

pain presented with catastrophizing and higher depression scores, more sleep 

disturbances and less resilience. Meanwhile, females living with chronic nociceptive 

pain lead a life similar to pain-free females and only differed in having a higher level 

of anxiety (de Souza et al., 2018). These findings, albeit the first on this subject, may 

give an insight for better management of HIV patients with chronic pain. 
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1.1.3.1 Nociceptor sensitisation 

Pain alerts the body of the presence of a harm that has the potential to cause 

injuries to the body. The ability of the nociceptors to undergo sensitisation allows an 

increase in the pain signal occurring (Woolf and Ma, 2007). There are two main 

manifestations of sensitisation - hyperalgesia (peripheral sensitisation) and allodynia 

(central sensitisation) (Woolf, 2011). After injury, nociceptors are exposed to the 

‘inflammatory soup’ consisting of the various inflammatory mediators which are able 

to exert their effects on the array of receptors present to produce an enhancement of 

the pain response. This is known as ‘hyperalgesia’, where there is an exaggerated 

pain sensation towards standard pain signals (Loeser and Treede, 2008). Meanwhile, 

allodynia is a mechanism of central sensitisation where innocuous touch stimuli elicit 

pain responses when normally this would not be the case (Loeser and Treede, 2008). 

This mechanism requires rearrangement of neuronal connections in the dorsal horn, 

which are part of the mechanoreceptive Aβ-fibers, into the nociceptive pathway 

(Woolf, 2011). Differential nerve fibre blocks by compression suggested that 

allodynia is mediated by low-threshold Aβ fibres (Koltzenburg et al., 1994). Some 

studies suggested a phenotypic change of Aβ fibres contributes to the spontaneous 

firing during peripheral nerve injury (Jensen and Finnerup, 2014). The de novo 

expression of neuropeptides such as calcitonin gene-related peptide (CGRP), 

substance P and brain-derived neurotrophic factor (BDNF) particularly at the level of 

DRG may influence the neuropathy-induced hypersensitivity. Both of these 

mechanisms are also hallmarks of chronic pain syndromes; conditions such as 

fibromyalgia manifests hypersensitivity and allodynia (Henriksson, 2003).  
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1.1.4 Gender bias in pain study 

To gain a better understanding of both the physiology and pathology of pain 

and potential strategies of pain management, scientists across the globe have 

conducted many studies involving both sexes in humans and animals. As males and 

females may show differences in physiological responses towards any physical 

trauma or insult to the body, scientists are rightly concerned about the consequence 

of conducting such studies on a single sex. A review by Mogil and Chanda reported 

79% of animal studies published in Pain involved male subjects only compared to 8% 

involving female subjects only and only 4% focussing on the differences between 

both sexes (Mogil and Chanda, 2005). Most research focuses on males as hormonal 

changes during the oestrous cycle in females may affect nociceptive responses 

during experiments. Despite this, Mogil and Chanda showed that variability and pain 

responses between female and male subjects were not significantly different. Thus, 

they suggested that despite the concerns regarding hormonal changes that may 

occur in females, they should still be included in studies of pain (Mogil and Chanda, 

2005). Another recent review by Bartley and Fillingim on sex differences in pain 

further suggested that more factors may contribute to variation in pain responses 

between the two sexes (Bartley and Fillingim, 2013). Their review included both 

epidemiological and clinical studies which demonstrated that women are subject to 

an increased risk of chronic pain and may experience a more severe clinical pain 

compared to men. Females also exhibit more pain sensitivity, enhanced pain 

facilitation and reduced pain inhibition in experimentally-induced pain studies. Sex-

related differences in responses to pharmacological and non-pharmacological pain 

treatments also exist although they seem to depend on specific pain treatment and 

management. Surprisingly, gender biases appear to exist and are influenced by the 

characteristics of both patient and provider. These variations in pain responses in 

both males and females are attributed to multiple biological mechanisms such as 

gonadal hormones, endogenous opioid function and genetic factors and 
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psychosocial factors such as pain coping, catastrophizing and gender roles. Apart 

from hormonal changes, immunocompetent cells are also important in the 

pathophysiology of pain. Pain in males is related to microglial activation during injury 

(Sorge et al., 2015) whilst females are more dependent on the activation of the 

adaptive immune system, most likely T lymphocytes. However, despite the increasing 

reports on sex-related differences towards responses to pain, more robust evidence 

is required before sex-specific tailoring of treatment can be implemented. 

1.2 Dorsal root ganglia 

1.2.1 Anatomy, physiology and clinical significance 

The DRG is a ganglionic organ harbouring a collection of primary sensory 

neurons that lie between the spinal nerve and the dorsal root. Anatomically, DRG are 

located on the pedicle of the vertebra body, at the upper third of the intervertebral 

foramina. The primary sensory neurons are pseudounipolar fibres with one branch 

extending from the T-junction to the peripheral nerve ending and another branch 

extends towards the spinal cord Figure 1.3. While the estimated number of neurons 

in the brain is 86 billion (Azevedo et al., 2009), one DRG on average contains 

approximately 6,000 neuronal somata (Arvidsson et al., 1986). Unlike the brain which 

permits only small molecules to get through due to the presence of blood-brain-

barrier (BBB), DRG are an intensely vascularised structure with high permeability 

between blood and nervous tissues (Jimenez-Andrade et al., 2008, Hirakawa et al., 

2004). Compared to spinal nerves, DRG have a significantly increased permeability 

to molecules as large as albumin (Olsson, 1968), especially at the cell body-rich area 

(Godel et al., 2016).  
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Figure 1.3 Schematic of dorsal root ganglia neuron with its axon bifurcating 
peripherally to the skin and centrally to the dorsal horn of spinal cord. 
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DRG neurons convey various somatosensory information from the receptive fields of 

the skin, visceral organs and joints, to the CNS through the spinal cord. These 

different sensations are carried by the different nerve fibres running close to each 

other, enclosed by the insubstantial pia mater. Apart from this very crucial function, 

DRG have been shown to play an important role in axonal degeneration and the 

synthesis of proteins and organelles which are transported via its peripheral and 

central axons [reviewed in (Nascimento et al., 2018)]. 

Disruption to DRG neurons due to mechanical injury or inflammation may render 

them more sensitive to nociceptive signalling and thereby increase neuronal 

excitability and generation of ectopic discharges (Chen et al., 2019, Zhang et al., 

2018, Chang et al., 2017). Evidence is present to suggest that various channels are 

upregulated after nerve injury; Nav1.7 channels have been shown to be upregulated 

in DRG neurons of rats in Paclitaxel-induced neuropathy and more relevantly in 

humans with neuropathic pain (Li et al., 2016).  

As mentioned above, due to the lack of blood-DRG barrier, DRG have become a 

viable option for the application of local anaesthesia and drugs of larger molecular 

size. However this could also be a disadvantage; the permeability unselectively 

allows the passage of the low and high molecular weight of toxic substances (Cho, 

1977, Le and McLeod, 1977, London and Albers, 2007, Viaene et al., 1999, 

Cavanagh and Barnes, 1973). 

Recent years have witnessed more studies on drug delivery via DRG (Berta et al., 

2017, Krames, 2015, Sapunar et al., 2012). Gene therapy-based approaches use a 

different method in delivering the viruses of interest to DRG. In animal studies 

involving rodents, microneurosurgical injection (Glatzel et al., 2000) and 

subcutaneous inoculation (Liu et al., 2008) of the selected viral vectors have been 

shown to be successful in delivering target genes into DRGs. This novel approach of 

drug delivery may have the potential for future clinical use in the treatment of chronic 
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pain which could be a potential therapeutic method in drug delivery (Beutler, 2010, 

Glorioso and Fink, 2009, Goins et al., 2012). 

Despite the success of studies on direct injection of drugs onto DRG, access to DRG 

neurons remains a challenge. DRG are an isolated organ and access is difficult due 

to overlying structures such as bone. In animal studies, three different approaches 

have been used for drug delivery to DRG; percutaneous injection, intraganglionic 

injection after soft tissue removal with advancement of the needle into intervertebral 

foramen and intraganglionic injection after laminar bone removal and exposure of 

caudal pole of the DRG (Puljak et al., 2009). Amongst these three methods, partial 

laminar bone removal (laminectomy) and exposure of caudal pole of the DRG was 

shown to be the most successful despite the trauma that was caused by the removal 

of bone– Figure 1.4. The accuracy of the injection into the DRG has been validated 

with dye injections (Du et al., 2017, Puljak et al., 2009). 

Direct local administration of drugs into nerves is not a new method. This method of 

drug delivery has a long history tracing back to the early 19th century. In 1845, Sir 

Frances Rynd had injected morphine solution via a cannula to relieve intractable 

neuralgia which became the first ever documented regional nerve block (Rynd, 

1845). Targeting drug delivery via injection into nerves has since evolved 

significantly. Peripheral nerve blocks (Ilfeld, 2011), perineural approaches (Sundara 

Rajan et al., 2017, Thor et al., 2017, Gharaei and Whizar-Lugo, 2015), sympathetic 

block (Alexander and Dulebohn, 2017, Cheng et al., 2012, Menon and Swanepoel, 

2010), epidural and intrathecal pathways (Kedlaya et al., 2002) have been discovered 

and developed over time. As ectopic nerve firing generated from the soma of the 

DRG neurons is believed to be a major contributor to neuropathic pain (Devor, 2009, 

Han et al., 2000, Koplovitch and Devor, 2018, Nassar et al., 2006), it is imperative to 

overcome the ectopic nerve firing that comes from the DRG. Thus, a local approach 

of drug delivery direct into DRG would be a very useful mode of drug delivery and 
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effective in minimising the unwanted systemic effect of the centrally- or non-locally 

administered drug.  

 

 

Figure 1.4 Schematic drawings (A and B) and photo (C) of a rat spine depicting 
the position of dorsal root ganglia and surgical approach used for DRG 
injection. Reliably precise injection can be performed using minimal laminectomy, 
while blind needle-insertion approach requires a lot of skill and experience. The 
dorsal root ganglion is covered by laminar bone. (B) Removal of laminar bone 
superior to the foramen and the L4 accessory process reveals the distal dorsal root 
ganglion, recognised by its broader diameter. Abbreviations: red arrows, dorsal root 
ganglion (L5 and L6); sap, superior articular processes; sp, spinous processes; tp, 
transverse processes; lam, laminar bone. (Sapunar et al., 2012). 

  



21 
 

The majority of targets would involve using therapeutic blocks of pro-nociceptive 

receptors to reduce pain however, inhibitory channels and receptors also exist that 

function to reduce the firing (Waxman and Zamponi, 2014). One of the examples of 

these are the chloride ion channels that will be discussed in the next section. 

DRG neurogenic modulation was approved almost a decade ago in Europe and 

Australia. In 2016, the Food and Drug Administration (FDA) in the USA has also 

approved this new therapeutic advance in treating neuropathic pain (Deer and Pope, 

2016). This relatively new therapy is similar to spinal cord stimulation (SCS). Both 

therapies involve a lead inserted into the epidural space of the spine, but instead of 

leaving the lead in the spinal cord, it is steered to lie along DRG. The lead is attached 

to a device that produces electrical impulses to reduce the excessive neuronal firing 

in neuropathic pain. This therapy has been proven to be effective in the treatment of 

complex regional pain syndrome (CRPS), phantom pain and postsurgical pain and is 

superior to SCS (Harrison et al., 2018, Deer et al., 2013, Rowland et al., 2016). 

The different techniques for pain management discussed above involve disruption of 

the electrical signalling from the receptive nerve endings to the higher centres. The 

electrical signalling is controlled partly by different types of ion channels. In this 

thesis, I explored the role of one of the ion channels activated by gamma-

aminobutyric acid (GABA)– the GABAA receptor, in the GABAergic signalling in the 

DRG. Thus the following section will discuss the GABAA receptor as a chloride ion 

channel in the mammalian GABAergic system. 

  



22 
 

1.3 Chloride channels 

Cl- channels are a functionally and structurally diverse group of anion-selective 

channels involved in wide variety of processes including the regulation of the 

excitability of neurones, skeletal, cardiac and smooth muscle, cell volume regulation, 

trans-epithelial salt transport, the acidification of internal and extracellular 

compartments, the cell cycle and apoptosis (Nilius and Droogmans, 2003). Based on 

their regulation, mammalian chloride ion channels are classified into several 

subtypes including cystic fibrosis transmembrane conductance regulator (CFTR), 

cyclic adenosine monophosphate (cAMP)-dependent phosphorylation-activated 

chloride channels; calcium-activated chloride channels (CaCCs); voltage-gated 

chloride channels (VGCCs); ligand-gated chloride channels (GABA and glycine); and 

volume-regulated chloride channels (Verkman and Galietta, 2009). There is no 

official recommendation exists regarding the classification of chloride channels 

although IUPHAR classifies chloride channels as CIC1 through CIC7 with two 

additional groups, CIC-Ka and CIC-Kb (Alexander et al., 2017). However, this thesis 

will focus on ligand-gated GABA channels which will be discussed in more detail in 

the coming sections. 

1.4 GABA as inhibitory neurotransmitters 

1.4.1 GABA neurotransmitter 

GABA was first discovered in plants in 1883 as a by-product during plant 

metabolism. In plants, GABA accumulation occurs as a result of stress such as 

hypoxia, heat and cold, drought, mechanical wounding and infection (Shelp et al., 

2012). Bown and Shelp reported GABA involvement in defending plants from insect 

herbivory and drought by maintaining root growth via regulation of a malate-

transporting plasma membrane channel and inducing stromal closure, respectively 

(Bown and Shelp, 2016). 
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In 1950 Awapara and colleagues discovered that GABA was also present in the 

mammalian CNS when they successfully isolated, identified, and estimated the level 

of GABA in the different parts of human brain tissue and a few other animal species 

(Awapara et al., 1950). However, it was not until several years later that the discovery 

of the GABA as an inhibitory neurotransmitter was made by Florey and Bazemore 

whom initially referred GABA as factor I (I for inhibitory action on neuronal activity) 

(Bazemore et al., 1957). A few years later, the same group discovered that factor ‘I’, 

extracted from mammalian brain contained GABA, which they suggested to be a type 

of neurotransmitter (Florey and McLennan, 1959).  

Almost a decade later, the exact action of GABA was confirmed by Krnjevic and 

Schwartz who studied the effect of GABA on cat cerebral cortical neurones and found 

unequivocal evidence for GABA as an inhibitory neurotransmitter (Krnjević and 

Schwartz, 1967). Their findings showed that GABA application had similar actions to 

a physiological neurotransmitter in cortical neurons on membrane potential and 

resistance and produced inhibitory postsynaptic potentials (IPSPs). Krnjevic and 

Schwartz also showed that similar to the reversal of IPSP demonstrated by 

physiological transmitter upon increase in the membrane potential or changes in local 

ion concentration, GABA was also able to reverse IPSP in these two conditions 

(Krnjević and Schwartz, 1967).  

GABA concentrations have been reported in the literature, in the brain and spinal 

cord; extracellular [GABA] in the brain has been reported to be 0.1 – 0.8 µM (Cavelier 

et al., 2005, Hagberg et al., 1985, Lerma et al., 1986), whilst cytosolic [GABA] ranges 

from 1 to 6 mM (Otsuka et al., 1971) and 0.7 to 1.3 mM in the brain and spinal cord, 

respectively (Van der Heyden et al., 1979). 
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1.4.1.1 GABA Synthesis 

A neuron which synthesises and releases GABA is termed a GABAergic 

neuron. In the mammalian system, GABA synthesis takes place in neurons via 

decarboxylation of glutamate by the enzyme glutamic acid decarboxylase (GAD). 

Two isoforms of GAD have been identified, which were named according to its 

different molecular weights; GAD65 and GAD67 (Soghomonian and Martin, 1998). 

GABA is then transported into vesicles, and upon generation of an action potential at 

the nerve terminal, influx of Ca2+ into the presynaptic terminals causing the release 

of GABA into the synaptic cleft. Interestingly, GABA can also be released non-

vesicularly via the reversal of GABA transporter-1 (GAT1) (Wu et al., 2007). Using 

Chinese hamster ovary (CHO) cells, Wu and colleagues showed that the action of 

GAT1 could be reversed in situations where there is strong depolarisation or altered 

homeostasis, and that this could also occur in physiological conditions (Wu et al., 

2007).  

Figure 1.5 summarises the synthesis, packaging, release, transport, and metabolism 

of GABA (Roth and Draguhn, 2012). The released GABA can be recycled via three 

pathways; 1) reuptake by GABA transporter back into the cell, 2) via neuronal 

glutamate pathway, where extracellular glutamate is transported into GABAergic 

neuron by neuronal glutamate transporters, or 3) via glutamate-glutamine pathways 

which involve supporting glial cells (see chapter 3) and neurons. In glutamate-

glutamine pathways, glutamate is converted to glutamine by glutamine synthetase 

and is then transported out of astrocytes, which are specialised glial cells in the spinal 

cord and brain, and into GABAergic neurons. In these neurons, glutamine is 

converted to glutamate and ultimately to GABA by glutaminase and GAD, 

respectively. 
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Figure 1.5 Summary on the neurotransmitter glutamate and GABA synthesis, 
packaging, release, transport, and metabolism in astrocyte, glutamatergic and 
GABAergic neurons. In GABAergic neuron, glutamine is converted to glutamate 
then to GABA by glutaminase and GAD respectively. Subsequently GABA is 
transported into the vesicle by VGAT before it is released into the synaptic cleft. Upon 
release, GABA is taken up into neurons and glia by GAT where they can be recycled 
or metabolised via several enzymatic processes. Abbreviations: 2-OG, 2-
oxoglutarate; AAT, aspartate aminotransferase; Aralar, aspartate-glutamate carrier; 
Asp, aspartate; EAAT, excitatory amino acid transporter; GABA-T, GABA 
transaminase; GAD, glutamic acid decarboxylase; GAT, GABA transporter; GDH, 
glutamate dehydrogenase; SSA, succinic semialdehyde; TCA, tricarboxylic acid 
cycle; VGAT, vesicular GABA transporter; vGlut, vesicular glutamate transporter 
[adapted from (Rowley et al., 2012)]. 
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1.4.1.2 Functions of GABA 

GABA has piqued the interest of many researchers decades ago with regards 

to its involvement in pain transmission. Such involvement has been reported as early 

as in 1981 by Krogsgaard in his perspective on the design of GABA agonists, 

antagonists and uptake inhibitors, with relation to their respective therapeutic uses 

particularly in pain and other conditions such as neurological and psychiatric 

disorders, anxiety and epilepsy (Krogsgaard-Larsen, 1981). Enhancement of 

GABAergic neuronal signalling has been the therapeutic target for treatment of 

anxiety, panic disorders, epilepsy, sleep disturbances, muscle spasms and for 

improving learning and memory (Krogsgaard-Larsen et al., 2004, Rowlett et al., 2005, 

Rudolph and Knoflach, 2011, Rudolph and Möhler, 2006). In the spinal cord, GABA 

plays an important role as an inhibitory neurotransmitter released by both local 

interneurons and inhibitory descending fibres. Studies on the presence of GABA in 

DRG has been reported as early as in the 1970s (Minchin and Iversen, 1974). 

However, the role this inhibitory neurotransmitter may play in sensory signalling is 

only beginning to emerge. 

1.4.2 Types of GABA receptors 

The presence of the GABAergic system including GABA receptors are not 

unique only to the human nervous system. Other than neurons, GABA receptors are 

also found in glia (Bernareggi et al., 2011), in the immune system (T cells, glia and 

dendritic cells) (Barragan et al., 2015) and human pancreatic beta cells (Korol et al., 

2018). In the immune system, GABA upregulates cell motility and chemotactic 

responses during infection and inflammation (Barragan et al., 2015) while in human 

pancreatic cells GABA stimulates insulin release controlling blood glucose levels 

(Korol et al., 2018).  
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There are two main types of GABA receptors present in the body- GABAA, which are 

ligand-gated ion channels and GABAB which are G-Protein coupled receptors 

(GPCRs). 

1.4.2.1 GABAA receptor 

GABAA receptors belong to the Cys-loop superfamily types of ion channels, 

which includes cation-selective nicotinic acetylcholine receptors (nAChRs), serotonin 

type 3 receptors (5HT3Rs) and anion-selective glycine receptors (GlyRs) 

(Grenningloh et al., 1987). GABAA receptors are heteropentameric ionotropic 

receptors that form a ligand-gated Cl- channel; 19 protein subunits (α1-6, β1-3, γ1-3, 

δ, ε, θ, π and any ρ1-3) are known to exist and any five of these different subunits 

can form the functional Cl- channel (Olsen and Sieghart, 2008). In the brain, the α1β2γ2 

subunit combination is the most common heteromer that forms the GABAA receptor 

(Sieghart and Sperk, 2002). GABAA receptors have three different domains: an 

extracellular domain (ECD), a transmembrane domain, and an intracellular domain 

(Karlin and Akabas, 1995). 

GABAA receptor function is modulated by agents that interact with sites on the 

receptor subunits other than the GABA ligand-binding domain (Möhler et al., 1997). 

Benzodiazepine, barbiturates, ethanol, and anaesthetics are examples of exogenous 

positive allosteric modulators (Olsen, 2018, Sieghart, 1995). Figure 1.6 depicts 

heteropentameric structure of GABAA receptor subunits with ligands binding to its 

transmembrane and ECD domain. GABA neurotransmitter/ligand binds with high 

affinity to its binding site which lies on the ECD between α1 and β2 subunits (Cromer 

et al., 2002, Ernst et al., 2005). The benzodiazepine binding pocket that lies between 

α1 and γ2 can be bound by three different types of ligand; positive allosteric 

modulators (PAMs) (Haefely, 1989), negative allosteric modulators (NAMs) 

(Braestrup et al., 1982), and antagonists (Hunkeler et al., 1981) There is indeed major 

heterogeneity of benzodiazepine sensitivity to GABAA receptors, but considering the 



28 
 

γ2 subunit is most abundant in all GABAA subtypes, it reflects benzodiazepine 

sensitivity to the majority of GABAA subtypes (Lüddens et al., 1995).  

Anaesthetics, such as barbiturates and propofol, bind to GABAA receptors at α and β 

interface at the transmembrane domain and not within ECD. Ethanol also binds to 

GABAA receptors at α and β interface within the ECD and this binding has been 

shown to mediate the anxiolytic, mood-enhancing alcohol effects (Kumar et al., 2004, 

Olsen et al., 2007, Wallner et al., 2006).  

The endogenous modulators of GABAA receptors are neurosteroids (Belelli and 

Lambert, 2005, Sigel et al., 2011) and a more recently identified endogenous GABAA 

receptor modulator, endocannabinoid 2-arachidonoyl glycerol (2-AG) (Sigel et al., 

2011). Neurosteroids allosterically bind to GABAA receptors enhancing GABA-

evoked responses (Belelli et al., 2002). Meanwhile, 2-AG potentiates GABA 

responses by binding selectively to β2 and δ subunits of GABAA receptors (Sigel et 

al., 2011). Interestingly, elevated 2-AG showed super-additive effect when co-

administered with exogenous 3α, 21-dihydroxy-5α-pregnant-20-one (THDOC) 

suggesting 2-AG can modulate the actions of neurosteroid at GABAA receptors (Sigel 

et al., 2011). A recent study on mutant mice revealed that an endogenous 

benzodiazepine-site ligand, diazepam binding inhibitor (DBI) demonstrated actions 

that mimic benzodiazepine actions as a PAM on GABAA receptors (Christian et al., 

2013). 

Orthosteric modulators are compounds that interact directly with the receptor 

recognition site. GABAA orthosteric modulators include muscimol and bicuculline, 

GABAA receptor agonist and antagonist, respectively.  
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1.4.2.2 GABAB receptor 

Earlier during its discovery, GABA receptors were found to be sensitive to 

bicuculline which later, as mentioned above, was identified as an orthosteric 

antagonist of GABAA. However later in 1980, it was also found that another type of 

GABA receptor, which differed from the bicuculline-sensitive receptor, also existed 

(Bowery and Hudson, 1979). This receptor was not sensitive to bicuculline but rather 

to baclofen (Bowery et al., 1979). Following the discovery of this second type of 

GABA receptor, Hill and Bowery suggested that these two different GABA receptors 

be referred to as GABAA– bicuculline-sensitive receptor, and GABAB– baclofen-

sensitive receptor (Hill and Bowery, 1981). Unlike the GABAA receptor, GABAB 

receptor is a metabotropic receptor. It is a heterodimeric receptor composed of B1 

and B2 subunits (Kaupmann et al., 1998). The discovery of these two distinct 

subunits of GABAB receptor made it the first, identified GPCR that exists as a 

heteromer. Through the activation of Gi/o types of G protein, GABAB receptors 

regulate the activity of K+ and Ca2+ channels which reduces neuronal activity via G 

proteins and secondary messenger systems causing an action similar to that of 

GABAA receptor activation (Bettler et al., 2004, Kornau, 2006, Ulrich and Bettler, 

2007). 
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Figure 1.6 GABAA receptor ligand sites at subunit interfaces identified by 
mutagenesis and/or affinity labelling. The left panel shows the transmembrane 
binding sites, while the right panel shows the ECD binding sites. The protein 
structures are taken from the X-ray crystallography-derived structure of the 
recombinant mammalian homomeric β3 GABAA receptor (Miller and Aricescu, 2014), 
on which is displayed a homologous native GABAA receptor comprised an α-β-α-β-
γ/δ heteropentamer (actual subunits arbitrary, no specific sequence implied although 
they are all homologous to β3). The protein is viewed looking from the extracellular 
face, perpendicular to the cell membrane/synapse. Thus the ECD pentamer on right 
would actually be positioned directly on top of the TMD pentamer at left. Both portions 
indicate locations of ligand binding sites found in the β3 homomer structure. The two 
α subunits are indicated by the green (or dark grey) shaded oval, the two β subunits 
by the pink (or light grey) shaded ovals, and the one γ/δ subunit indicated by the clear 
(white) oval. An example C-terminus is indicated by a small red circled“C” at the 
bottom of the TMD of the γ/δ subunit; the M1,2,3,4 domains are also labelled in this 
example subunit, and the N-terminus of the TMD of each subunit would attach to its 
ECD at the position indicated by the small blue (or black) oval “ECD”. Ligand binding 
sites for the compounds listed (in shorthand) are indicated by arrows. The ligands 
named are BZ (benzodiazepines) and GABA, EtOH,and Pyr (pyrazoloquinolines), in 
the ECD. In the TMD, Eto (etomidate), Pro(propofol), octanol, volatiles (volatile 
anaesthetics), and barbs (barbiturates) binding sites are located (Olsen, 2018).  
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Bornmann and Feigespan reported another GABA receptor which is 

pharmacologically distinct from GABAA and GABAB receptors being insensitive to 

bicuculline (GABAA antagonist) and baclofen (GABAB agonist). This GABA receptor, 

referred to as GABAC receptor incorporates another subunit, ρ, and is inhibited by 

picrotoxin (Bormann and Feigenspan, 1995). GABAA and GABAc receptors share a 

few similar characteristics in structure and function. The difference to the ionotropic 

GABA receptor properties introduced by ρ subunit is comparable to the degree of 

difference between GABAA receptors of different subunit composition, thus, the 

Nomenclature Committee of IUPHAR has designated that the GABAc as part of the 

GABAA receptor family and discouraged the use of the term GABAC receptor (Olsen 

and Sieghart, 2008). 

1.4.3 Synaptic and extrasynaptic GABA receptors 

There is a differential GABA receptor subunit distribution dominating different 

areas of the brain (Pirker et al., 2000). Depending on the actual location in neurons, 

GABA receptors can be classified as either synaptic or extrasynaptic.  

GABAA receptor subunit composition is very important in determining the type of 

inhibition generated upon GABA binding. The composition determines the 

localization of the receptors and, in turn, the type of effects these confer, specifically, 

presynaptic, transient postsynaptic or tonic GABAergic inhibition is distinguished 

(Farrant and Nusser, 2005). GABA neurotransmitters that are released via phasic 

mechanism activate the synaptic GABA receptors (Carver and Reddy, 2013, Farrant 

and Nusser, 2005, McKernan and Whiting, 1996, Mody, 2001). The most common 

subunit composition for this activity is α1β2γ2 (Sieghart and Sperk, 2002). Meanwhile, 

extrasynaptic GABA receptors are activated by tonic GABA release (Glykys and 

Mody, 2007a). Tonic GABA release which happens at a slower rate is responsible 

for maintaining the ambient GABA concentration at rest (Farrant and Nusser, 2005). 
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GABAA receptors that populate extrasynaptic regions are mostly made up by δ and 

specific alpha subunits: α4 and α6 (Belelli et al., 2009, Mortensen et al., 2012). 

1.4.4 GABA in central pain 

The dorsal horn of the spinal cord is an essential CNS sensory processing 

region connecting the periphery to the brain. Studies have shown that pain 

transmission mediated by myelinated Aδ and unmyelinated C fibres can be inhibited 

by innocuous stimulation (such as rubbing) that activates Aβ fibres– a phenomenon 

that has been explained earlier, in the section 1.1.2. According to the Gate Control 

Theory, the nociceptive ‘gate’ in the substantia gelatinosa (lamina II) of the spinal 

cord is controlled by the balance between the inputs from the nociceptive and non-

nociceptive primary fibres. The balance between these two inputs determines 

whether nociceptive transmission will occur. It also determines the strength of 

transmission, via nociceptive-specific projections to higher centres– Figure 1.7. In 

simple words, an increased innocuous input will push the balance into the favour of 

less pain sensation. To a lesser extent, this gating theory also emphasizes the 

influence of descending efferent fibres originating from the brain on these two 

sensory inputs. 

As mentioned above, the descending fibres also contribute to the Gate Control 

Theory of Pain. Despite the claim that these fibres control nociceptive signalling by 

both presynaptic and postsynaptic inhibitions (Millan, 2002, Zeilhofer et al., 2012), 

few other studies suggest that the descending pathways have control only via the 

postsynaptic inhibition of the nociceptive pathway (Aicher et al., 2012, Antal et al., 

1996, Light and Kavookjian, 1985). Presynaptic inhibition involves the following: i) 

activation of local GABAergic interneurons by the input from either myelinated A 

fibres or from the descending inhibitory pathways (see below); ii) release of GABA 

from interneurons; iii) binding of GABA to the GABAA receptors on primary afferent 

terminals causing depolarisation, termed primary afferent depolarisation (PAD) 
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(Carlton et al., 1999, Cattaert and El Manira, 1999, Kennedy et al., 1974) and iv) 

depolarization-induced block of conductance due to sodium channel inactivation.   
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Figure 1.7 A schematic diagram illustrating presynaptic and postsynaptic 
inhibitions in primary afferent inhibitory and excitatory interneurons in the 
spinal cord dorsal horn. Excitation of neuron 1 by non-nociceptive Aβ releases 
GABA which binds to the GABAA receptor on the C and Aδ fibre nociceptors, leads 
to PAD and inhibition of glutamate release onto nociceptive specific (NS) projection 
neuron (presynaptic inhibition). GABA release from neuron 2 directly inhibits NS 
projection neuron reducing its excitation (postsynaptic inhibition). Non-nociceptive Aβ 
also stimulates PKCγ + cell and the excitatory neuron which in turn is inhibited by the 
neuron 3, the glycinergic inhibitory interneuron upon stimulation by the same type of 
non-nociceptive fibres. During nerve injury, there are various mechanisms that 
interrupt the linkages of neuron 2 and neuron 3 which enable the innocuous input to 
access the nociceptive pathway leading to activation of NS projection neuron and 
consequently tactile allodynia. While in C and Aδ fibre nociceptors, the [Cl-]i is 
increased, accompanied by reduced GABAA  receptor conductance causing a loss of 
presynaptic inhibition and heat hyperalgesia. Inputs from non-nociceptive Aβ fibres 
will stimulate the GABAergic interneuron 1 to generate action potentials in the 
nociceptive afferents. The excitation from the action potential could produce DRR 
and evoke touch-induced pain and neurogenic inflammation. Abbreviations: PAD, 
primary afferent depolarization; PKCγ, protein kinase C; DRR, dorsal root reflex (Guo 
and Hu, 2014). 
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As mentioned above, the postsynaptic inhibition occurs via the descending pathways. 

These pathways are primarily modulated by the fibres originating within the 

periaqueductal grey (Miranda et al., 2002) situated in the midbrain which project to 

the rostral ventromedial medulla (RVM) before descending to the spinal dorsal horn. 

Indeed, descending pathways play a complex and crucial role in nociceptive 

signalling with the involvement of the multiplicity of neurotransmitters and modulators 

such as GABA (Millan, 2002), serotonin (Zhao et al., 2007), noradrenalin (Pertovaara, 

2006), opioid peptides (Watkins and Mayer, 1982) and endocannabinoids (Hohmann 

et al., 2005). GABAergic postsynaptic inhibition occurs when GABAergic neurons 

projecting from the RVM act on GABAA receptors and suppress the nociceptive 

transmission projecting from the spinal cord as shown in the studies by (Aicher et al., 

2012) and (Kato et al., 2006). Kato and colleagues characterised the descending 

pathways from the RVM by electrically stimulating this area and subsequently 

recording the IPSCs of the substantia gelatinosa neurons via in vivo patch-clamp 

technique. Their results revealed that the electrical stimulation of the RVM evoked 

>50% of monosynaptic GABAergic and glycinergic responses and that the action 

potentials elicited from noxious stimuli applied onto the skin were blocked by the 

facilitation of the inhibitory inputs on substantia gelatinosa neurons (Kato et al., 2006). 

These findings were supported by Aicher and colleagues; their anatomical and 

neurochemical tracing of projections from the RVM to the lumbar spinal cord showed 

that more than two-thirds of RVM projections are GABAergic which was deduced by 

measuring the expression of GAD 67 (Aicher et al., 2012). 

Knabl and colleagues demonstrated that α2 and α3 subunits of GABAA receptors were 

abundantly expressed in mouse dorsal horn neurons (Knabl et al., 2008), especially 

in layer II of both the inner and outer lamina (Paul et al., 2012). In a model of 

inflammatory pain tested with diazepam, mice lacking α2-GABAA receptor showed 

reduced potentiation of dorsal root potentials with impaired anti-hyperalgesia effects 

upon thermal and mechanical stimulations (Witschi et al., 2011). Studies in a variety 
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of pain models have shown that point mutations in the α1-subunit of the GABAA 

receptor, which is responsible for the sedative action of benzodiazepines, did not 

reduce its analgesic actions (Knabl et al., 2008, Knabl et al., 2009). Analgesia was 

completely retained in α1 point-mutated mice, whereas wild type mice developed 

sedation and analgesia with almost the same dose dependence (Knabl et al., 2009). 

However, further studies showed that the doses of benzodiazepines that were 

sufficient to produce hypnosis and anxiety (Guerrini et al., 2011, Rudolph and 

Knoflach, 2011) might not be adequate to produce analgesic effects (Zeilhofer et al., 

2009). Studies on mice with altered α2- and α3-subunits containing GABAA receptors 

showed a significant reduction in analgesia effects of diazepam (Löw et al., 2000, 

Zheng et al., 2003) which suggested that these subunits contribute to the analgesic 

effects. Similar findings were also seen in mutant mice lacking the GABAA α2-subunit 

in peripheral nociceptors which failed to show analgesia to spinally-administered 

diazepam (Witschi et al., 2011).  

1.4.5 GABA in peripheral pain  

In the 1970s, emerging data on the presence of GABA neurotransmitter in 

DRG have been reported. Calcium-dependent GABA release from glial cells 

following potassium-induced depolarisation was observed in one of the earliest 

studies by Minchin and Iverson (Minchin and Iversen, 1974). This GABA release was 

inhibited with raised extracellular Mg2+ and the presence of chelating agent 

ethylenediaminetetraacetic acid (EDTA). Within the same decade, Feltz and 

Rasminky performed intracellular recordings on adult rat DRG neurons; application 

of GABA led to depolarisation of the cells and increase in amplitude of the after-

potential hyperpolarisation. With these findings, they proposed that GABA could 

mediate the presynaptic inhibition on the primary afferent terminals (Feltz and 

Rasminsky, 1974).  
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After the discovery of GABA in DRG in the 1970s, more studies have been carried 

out to explore the potential effects GABA may have on DRG. As discussed above, 

the study by Feltz and Rasminky in 1974 led to the emergence of the theory that 

GABA may be involved in controlling nociceptive inputs at the level of the DRG. 

Although their results demonstrated a lack of definite evidence for direct involvement 

of GABA receptors (i.e. GABA receptor antagonist was not used to confirm the 

involvement of GABA receptor), they postulated that the receptors on spinal ganglion 

neurones and those involved in the presynaptic inhibition were identical (Feltz and 

Rasminsky, 1974). Indeed this was the case; the involvement of GABA receptors was 

reaffirmed by other studies that followed suit. These studies were carried out focusing 

on different mechanisms of GABAergic transmission in DRG looking at the 

involvement of ion channels (Gallagher et al., 1983, Nishio and Narahashi, 1990) and 

transporters (Price et al., 2006), as well as monitoring mRNA expression levels 

(Fukuoka et al., 1998, Maddox et al., 2004, Obata et al., 2003) of such proteins. A 

study by Hanack and colleagues suggested that GABA was endogenously present 

at the peripheral nerve endings and was able to inhibit TRPV1 sensitisation in 

cultured DRG neurons of affinity-tagged TRPV1 transgenic mice (Hanack et al., 

2015). More recently, Du and colleagues reported functional GABAergic signalling 

within DRG which may play an important role in peripheral nociception which will be 

discussed in more detail later (Du et al., 2017). 

Despite many recent data suggesting that post-synaptic inhibition may play an 

important role in the modulation of nociception, earlier studies support the 

mechanism of pre-synaptic inhibition as the more powerful pathway on inhibition of 

the somatosensory input into the CNS (Eccles, 1964). However, the precise 

contribution of these two modes of inhibition (presynaptic vs postsynaptic) still 

remains elusive due to difficulties to manipulate the pre- and postsynaptic inhibitions 

in experimental models (Guo and Hu, 2014). The underlying physiological 

mechanism responsible for presynaptic  inhibition is the depolarisation of primary 
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afferent fibres made by axo-axonal contact, which is mediated by GABAergic 

interneurons (Carlton, 2014). The release of GABA from one interneuron and its 

binding to GABAA receptors on primary afferent terminal leads to GABAA receptor 

activation and due to the greater Cl- concentration present in these neurons (see 

below), Cl- efflux from the primary afferent terminal. These events result in PAD as 

shown in Figure 1.8 (Szallasi and Sheta, 2012).  

Different mechanisms have been proposed to explain GABA-mediated PAD in 

presynaptic inhibition including: 1) the inactivation of voltage-gated sodium channels 

on primary afferent neurons, hence interrupting propagation of the action potential; 

2) attenuation of the amplitude of propagated action potential due to shunting effect; 

and 3) inactivation of voltage-gated calcium channels thus reducing Ca2+ influx and 

consequently excitatory transmitter release (Price et al., 2009, Zeilhofer et al., 2012, 

Rudomin and Schmidt, 1999). 
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Figure 1.8 Primary afferent depolarisation in central terminals of sensory 
fibres. Cl- concentration in primary afferent fibres is controlled by NKCC in the 
membrane of the afferent. GABA release and activation of GABAA receptors leads to 
Cl- efflux resulting in depolarisation of primary afferent terminal [Based on a concept 
reported in (Carlton, 2014)].  
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1.4.5.1 Biophysics of Cl- 

The Cl- reversal potential (ECl) plays an important role in determining the effect 

of GABA on cell excitability. Indeed, GABAA and glycine receptors are permeable to 

Cl- and other common anions, such as HCO3
- (Kaila, 1994, Staley and Proctor, 1999). 

Depending on the ECl, Cl- movement can cause hyperpolarisation, depolarisation or 

shunting effect (Price et al., 2009). The direction of Cl- movement is determined by 

the electrochemical gradient for each ion which constitutes the driving force. Driving 

force, in this case, is the difference between membrane potential and anion reversal 

potential. The reversal potential in turn, is determined by the anions’ intra- and 

extracellular concentrations which is calculated using the Nernst equation.  

Shunting effect is a feature of GABAA receptor activation. Shunting occurs when a 

neuron’s ECl is near to its resting potential and in this state, the electrochemical 

gradient of Cl- is quite small. Thus, the activation and opening of GABA channels will 

cause small depolarisation and shunting effect due to a very low driving force (Price 

et al., 2009).  

The activity of GABA depends on the electrochemical Cl- gradient present in cells; 

this is set and maintained by Cl- cotransporters. Two cotransporters regulate Cl- 

concentrations in cells; the sodium-potassium-chloride cotransporter (NKCC1) and 

potassium-chloride cotransporter (KCC2) (Delpire, 2000, Payne et al., 2003). NKCC1 

moves Cl- into the cell together with Na+ and K+ while KCC2 moves Cl- out of the cell 

together with K+ (transmembrane gradients of both ions are tightly controlled by the 

Na+/K+ ATPase) (Price et al., 2009). In rodent brain, neuronal NKCC1 protein was 

shown to be present at birth and its expression increased during P14 – 28 however, 

decreased towards adulthood (He et al., 2014, Zhang et al., 2006). Meanwhile, KCC2 

expression peaked at P14 and persists in the adult brain. Therefore, immature 

cortical neurons accumulate high intracellular Cl- concentrations, [Cl-]i and the 

primary synaptic action of GABA in these neurons is depolarising. However, due to 

developmental changes, activation of GABAA receptors in healthy mature principle 



41 
 

cortical neurons leads to hyperpolarisation (Glickfeld et al., 2009). Thus, changes in 

the levels of NKCC1:KCC2 contribute to the changes in intracellular Cl- concentration 

(Frederikse and Kasinathan, 2015) and is the mechanism which leads to shifting from 

neuronal depolarisation in immature cortical neurons to hyperpolarisation in the adult 

mammalian brain. Figure 1.9 depicts the schematic diagram of the developmental 

alterations of [Cl-]i levels and the polarity of the actions of GABA and the actions of 

chloride transporters. 

In most of the mature CNS neurons, the intracellular [Cl-]i is ~5 mM whereas the 

extracellular [Cl-] is ~150 mM, thus the Nernst potential for Cl- (ECl) is lower than that 

of the resting membrane potential (resting membrane potential is ~-70 mV). In this 

condition, activation of a Cl- channel will move Cl- ions into the cell leading to 

hyperpolarisation of the cell membrane causing inhibitory effects. When the 

concentration of Cl- inside the cell is greater (i.e. due to mechanisms of Cl- 

accumulation- see below), the ECl is also greater than the resting membrane potential 

and in this scenario, Cl- moves out of the cells, thereby causing depolarisation 

(Delpire, 2000). A shift in ECl by as minimal as 10 mV to a less negative value can 

cause a shift in GABA-induced currents from inhibitory to excitatory (Prescott et al., 

2006).  
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Figure 1.9 Schematic diagram of the developmental alterations of [Cl-]i levels 
and the polarity of the actions of GABA and the actions of chloride co-
transporters. GABA depolarises and excites immature neurons and inhibits adult 
ones. The chloride exporter KCC2 is poorly active initially whereas the NKCC1 is 
highly active in immature neurons leading to different chloride gradients and actions 
of GABA [Based on a concept reported in (Ben-Ari, 2014)].  
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1.4.5.2 Cl- signalling in pain 

Interestingly however, the hyperpolarisation shift mentioned above does not 

occur in the primary sensory neuron. Instead, activation of GABAA receptors in these 

neurons results in depolarisation due to the persistence in NKCC1 expression which 

causes an accumulation of Cl-; a higher intracellular [Cl-] is present (Price et al., 

2006). Studies have tried to measure the [Cl-]i in DRG neurons and have suggested 

values in the range of ~40 mM (Rocha-Gonzalez et al., 2008). This is considerably 

higher than that of ‘normal’ CNS neurons. During inflammation, NKCC1 is further 

upregulated and accumulates up to three times more Cl- compared to control 

conditions (Funk et al., 2008).  

This begs the question; could this be involved in chronic pain conditions? A study on 

neuropathic pain-induced rodents showed that the increase in NKCC1 was 

responsible for the increased accumulation of Cl- and the ensuing depolarising shift 

in the GABAA  receptor-mediated current (EGABA) in both large (putative 

mechanoreceptors) and small (putative nociceptors) neurons (Chen et al., 2014). 

Interestingly, this depolarising shift returned to control levels 21 days after injury albeit 

neuropathic pain symptoms persisted, thus this was only considered a transient shift 

(Chen et al., 2014). This transient shift may result in enhanced PAD, sufficient to 

evoke an action potential, suggesting that a transient reduction in GABAA  receptor-

mediated presynaptic inhibition or even a switch to excitation (Chen et al., 2014). 

Consistently, a study by Modol and colleagues also showed a significant increase in 

pNKCC1 (phosphorylated NKCC1) along with down-regulation of KCC2 in the main 

relay centers [dorsal horn of spinal cord, posterolateral nucleus (VPL) of the thalamus 

and somatosensory cortex]. The increased level of pNKCC1 was observed 3 - 16 

days after injury, after which it returned to control levels, fascinatingly coinciding with 

regeneration of axons (Modol et al., 2014). Enhanced [Cl-]i due to pNKCC1 activity 

may contribute to the regenerative growth of axotomized nerve as reported by 

(Pieraut et al., 2007) and (Pieraut et al., 2011) which may be the reason the level of 
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NKCC1 return to control level. In humans, fluctuation in the expression of these 

cotransporters leads to derangement of Cl- regulation responsible for the 

development of GABA disinhibition implicated in chronic pain and other neurological 

disorders (Kahle et al., 2008, Yousuf et al., 2017). 

1.4.5.3 Other Cl- channels in pain 

The GABAB receptor also plays a role in inflammatory pain signalling (Brewer 

and Baccei, 2018, Patel et al., 2001, Potes et al., 2006). GABAB receptor has been 

shown to form a complex with the TRPV1 receptor to counteract inflammatory pain 

(Hanack et al., 2015). Fascinatingly, this complex isolated from rat DRG was able to 

block the pathological aspect of pain whilst leaving the acute TRPV1 pain signals 

intact (Hanack et al., 2015) Interestingly, it was observed that the effect of GABAB on 

TRPV1 relied on the close juxtaposition of GABAB and TRPV1 and was independent 

on the more common and established G protein signalling (Hanack et al., 2015). 

Another Cl- channel, the Ca2+ activated Cl- channel, anoctamin 1 (ANO1) also known 

as TMEM16A, produces excitation of DRG neurons. ANO1 has been shown to be 

activated by an increase in intracellular Ca2+ released from internal Ca2+ stores and 

not through the influx of Ca2+ through the voltage-gated Ca2+ channels (Jin et al., 

2013). Activation of inflammatory mediator-activated Gq-coupled protein receptors 

(such as bradykinin-activated B2 receptors) leads to IP3 production and subsequent 

activation of endoplasmic reticulum (ER) -resident IP3 receptor (IP3R), which has 

been shown to physically interact with ANO1 itself (Jin et al., 2013). The hypothesis 

regarding this close proximity between ANO1 and its Ca2+ source is that the local 

high concentration of Ca2+ reached at the mouth of the channel (which can reach 50 

µM) (Bauer, 2001, Bootman et al., 2001, Neher, 1998) is able to activate the poorly-

Ca2+ sensitive ANO1 channel and induce depolarisation in primary afferent neurons 

(Jin et al., 2013).  
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1.5 GABA in the current treatment for chronic pain 

Treatment for chronic pain is a significant clinical challenge and requires a 

multidisciplinary approach. Current strategies include pharmacological treatments, 

physiotherapy, medication, surgery and counselling. One of the most common 

medications prescribed for chronic pain are opioids which have caused contentious 

controversies with regard to its adverse effects for patients, including overdose, 

dependence and subsequent withdrawal, addiction, and negative impacts on 

functioning (Vowles et al., 2015). A better medication option with more localised 

administration (and hence the localised effect) indeed would lead to better pain 

management.  

Increasing the inhibitory signalling in the nociceptive pathway would make sense in 

terms of targeting for pain relief. Several organic compounds have been found to 

have activities related to GABA. One of the earliest compounds reported to show 

structural similarity to GABA was muscimol, found in Amanita muscaria and the 

related mushroom (Eugster and Takemoto, 1967) which is later proven to have the 

same action as GABA and classified as an ionotropic GABAA receptor agonist 

(Johnston, 2014). More compounds were discovered in subsequent years which 

were related to GABA including THIP, a GABA agonist (Krogsgaard-Larsen et al., 

1977), bicuculline, a GABA antagonist (Curtis et al., 1970), and baclofen, a GABAB 

receptor agonist (Bowery et al., 1980). These compounds are used until the present 

day in the study of GABA pharmacology and its potential as a therapeutic agent in 

central nervous system disorders as well as in the pain management at the spinal 

cord level.  

Recent results from our lab revealed a hitherto unknown GABAergic mechanism 

within the DRG. We found that delivery of GABA or GABA mimetics to DRG in vivo 

was able to attenuate pain in both chronic neuropathic and chronic inflammatory rat 

models. Similar results were obtained when endogenous GABA levels in DRG were 

elevated by focal DRG application of GABA reuptake inhibitor. These actions of 
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GABA were blocked by bicuculline suggesting the involvement of GABAA receptors 

in this signalling pathway. Stimulating GABAergic DRG neurons via optogenetic and 

designer receptor exclusively activating designed drugs (DREADD) approaches also 

showed similar results. These and other experiments (Du et al., 2017) suggest that 

the peripheral nociceptive stimulation triggers activity-dependent somatic release of 

GABA from DRG neurons and activation of somatic/perisomatic GABAA receptors. 

This, in turn, depolarise the stem axons and the T-junctions, resulting in block of 

throughput conduction due to sodium channel inactivation and shunting, similar to 

PAD. This action potential filtering reduces excitatory input into the spinal cord, 

playing the role as another ‘gate’ in the peripheral nociceptive transmission Figure 

1.10. 
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Figure 1.10 Schematic for peripheral somatosensory integration in DRG (Du et 

al., 2017). 

 

Hypothesis 

In this thesis, I hypothesised that DRGs are populated by GABAergic neurons. These 

neurons release GABA via both tonic and phasic mechanisms and that the released 

GABA filters the nociceptive signals from the periphery to the spinal cord at the T-

junction of the DRG.  

Aims 

To answer the hypothesis, I investigated the expression of vesicular GABA 

transporter (VGAT) and its mechanisms of release in the DRG. Specifically, the aims 

of this study were: 

1. To determine the VGAT expression and distribution in DRG neurons 

2. To characterize the subpopulations of GABAergic DRG neurons  

3. To investigate the mechanisms of GABA release via: 

i. investigating the exposure of luminal domain of VGAT 

ii. all-optical Cl- channel activity assay  

iii. in vivo electrophysiological recording on spinal nerves and dorsal roots  
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Chapter 2  Materials and methods 

2.1 Immunohistochemical staining of Dorsal Root Ganglion 

2.1.1 DRG isolation 

Ethical implication 

Animal handling and humane schedule 1 euthanasia were performed in accordance 

with the regulations of Animal (Scientific Procedures) Act 1986, under the personal 

license no. IF8F7648C and project license no. PPL 70/7928.  

DRG used in this experiment were isolated from male adult wistar rats weighing 250 

– 300 gm obtained from the Central Biological Services (CBS) unit, Faculty of 

Biological Sciences, University of Leeds. Male rats were used as the hormonal 

changes during menstrual cycle in females can influence the results of the study. 

Despite the arguments on the use of male over females rats (Chapter 1, section 

1.1.4), a meta-analysis of neuroscience studies showed that data from female rats 

are not more variable than that of male rats (Becker et al., 2016). The authors 

reported no sex differences were evident when data from males were compared to 

either females at random or at specific oestrous cycle, supporting the use for male 

rats only in this study.  

A total number of four rats were used to study the expression of VGAT in DRG and 

its co-localisation with neuronal markers TRPV1, IB4, NF200, trkC and SV2 as well 

as the glial marker S100B. Rats were housed in pairs with ad libitum access to water 

and chow in a 12:12 light-dark cycle. Out of four rats sacrificed, one was not included 

for immunohistochemical (IHC) staining due to poor quality of gelatin used to embed 

the DRG (gelatin became brittle and difficult to cut). Briefly, rats were anaesthetised 

with isofluorane (inhalation) before they were sacrificed via decapitation. Following 

decapitation, the cervical, thoracic and lumbar segments of vertebral column were 

dissected and longitudinally divided into two halves along the median lines on both 

dorsal and ventral sides. DRGs were taken out from the inner side of each half of the 
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dissected vertebrae and transferred into Dulbecco’s Modified Eagle Medium (DMEM) 

and Glutamax (Invitrogen) containing 10% fetal bovine serum (FBS) and 50 U/ml of 

penicillin and 50 U/ml of streptomycin, immediately.  

2.1.2 VGAT immunoreactivity 

Immunohistochemical investigation was performed using an antibody against 

N-terminal epitope of VGAT antibody raised in rabbit (VGATrab) (#131 002; Synaptic 

Systems). The distribution of VGAT protein expression in the DRG was determined 

by analysing the total number of neurons per rat (total number of rats, N=3) in 

sections processed for IHC staining. Following sacrifice, DRG were immediately 

isolated and washed three times with phosphate buffer saline (PBS). Immersion 

fixation method was used to fix the DRG for one hour using 4% paraformaldehyde 

(PFA). This fixation method also known as immersion fixation method, was used over 

transcardiac perfusion as small tissue such as DRG can be adequately fixed with this 

method; a simpler method with equal quality of images compared to transcardiac 

perfusion (Kasukurthi et al., 2009) and is less time-consuming. Fixed tissues were 

washed three times for 10 min each with PBS. Tissues were embedded in 10% 

gelatin and cut at 35 μm thickness using microtome (Leica VT1000S Leica 

Biosciences, UK). The thickness of the sections cut is usually determined by the 

technique used to store the tissue. DRG tissues in this experiment were embedded 

in gelatin after PFA fixation, thus thicker section was required to prevent section 

breakage during cutting. Also, free-floating technique was used for antibody staining, 

thus in case of thinner tissue section, the tissue may fall off and break during 

mounting on slides. Most importantly, the thickness chosen was able to detect the 

expression of the proteins investigated in this study, as shown in the Chapter 3.  

Following DRG tissue sectioning, IHC staining protocol for VGAT antibody 

commenced using the free-floating technique. The slices were permeabilised and 

blocked with blocking buffer for one - two hours with 0.05% Tween 20, 0.25% Triton 
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X-100 and 5% normal donkey serum diluted in PBS. Blocking buffer was removed 

prior to addition of primary antibody. The anti-VGAT antibody was diluted in antibody 

dilution buffer [PBS and 5% bovine serum albumin (BSA)] using three different 

dilutions (1:500, 1:1000, and 1:2000); slices were then incubated overnight at 4˚C. 

Following day, slices were washed three times for 5 min each with PBS and 

incubated for 2 hours with fluorescent dye-conjugated secondary antibody, Donkey 

anti-rabbit Alexa Fluor 555 (Invitrogen, Eugene, Oregon, USA) (1:1000 in antibody 

dilution buffer). Slices were then washed three times with PBS before mounting on 

glass microscope slides. DAPI was used to stain the nuclei. The imaging was done 

using inverted confocal microscope LSM700 (Zeiss). Following optimisation, we 

found that DRG stained in anti-VGAT antibody with 1:2000 dilution gave the best 

image with the least background noise under confocal imaging. Thus, further 

experiments were done using this optimised method for IHC.  

Optimisation of VGAT antibody raised in guinea pig (VGATgp) (131 004, Synaptic 

Systems) were done adopting the method used to optimise VGATrab. The dilutions 

used for optimisation were 1:200, 1:500 and 1:1000. Imaging done under inverted 

confocal microscope LSM700 suggested that dilution of 1:1000 VGATgp gave the 

best image with the least background noise. Further experiments were conducted 

using this dilution. 
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2.2 Double immunofluorescence staining of VGAT with NF200, 
trkC, TRPV1, IB4, SV2 and S100B 

Using the same protocol, we also performed double IHC staining of VGAT 

antibody with the following markers: synaptic vesicle antibody (SV2), isolectin B4 

(IB4) conjugates, transient receptor potential subfamily V1 (TRPV1), neurofilament 

200 (NF200), tyrosine kinase C (trkC) and S100B. Details of all antibodies used in 

this study are listed in Table 2. Analysis of co-localisation of VGAT with each 

neurochemical marker was done by summing up the total number of neurons per rat 

expressing VGAT and any one of the markers studied (total number of rats, N=3). 

Means per rat were calculated and reported as mean ±SEM. 

2.2.1 Assessment of positively labelled DRG cells 

Antibody labelling on DRG sections observed was compared with that 

observed from experiment-matched negative controls (omission of primary 

antibodies). Neurons were considered as positively labelled by a given antibody if the 

mean fluorescence intensity was greater by two-fold than that of the background 

level. However, as some antibodies were relatively weakly stained, the determination 

of positively labelled neurons was also facilitated by visual assessment together with 

the intensity value of the background level of two-to threefold. 

2.2.2 Image analysis 

DRG sections were imaged using Confocal Microscopes LSM700 and 

LSM880 Airyscan (Carl Zeiss, AG, Germany). For neuron quantification, at least two 

sections were obtained from each of three male adult rats used in this study. 

Measurements were done by drawing region of interest (ROI) of all visible neurons 

on the Zen 2 software (blue edition). To quantify the neurons according to their sizes, 

only neurons with visible nuclei were included. This measurement provides 

information on the fluorescent intensity of each fluorophore used to label the studied 

antibodies and the cross-sectional area. Values of fluorescence intensity were used 

to distinguish the positive and negatively labelled cell bodies while the cross-sectional 
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area was used to calculate the cell body diameter. Neuronal cross-sectional areas 

were determined by drawing the clearly defined neuronal cell bodies. According to 

their size, neurons were classified as small (<32 µm), medium (32 – 40 µm) and large 

(>40 µm) (Ramachandra et al., 2013). VGAT was co-labelled with either of these five 

neuronal markers, NF200, trkC, IB4, TRPV1 and SV2. VGAT was also co-labelled 

with a glial marker, S100B. To determine the co-localisation of VGAT with each of 

the neuronal markers, the total number of neurons expressing VGAT and the total 

number of neurons expressing each of the neuronal markers were quantified. The 

total number of neurons expressing both VGAT and the neuronal markers were also 

quantified. The percentage of co-localisation was then determined using these 

values. Data for quantification were obtained from at least two sections of three 

independent rats.  
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2.3 Electron microscopy 

2.3.1 3,3 diaminobenzidine (DAB) staining 

3,3′-Diaminobenzidine (DAB) staining protocol was performed before 

commencing electron microscopy (EM) protocol. DRG tissue embedded in 10% 

gelatin was sectioned at 35 µm using microtome (Leica VT1000S, Leica Biosciences, 

UK). Sections were then permeabilised with 50% alcohol for 30 min and washed with 

PBS. Blocking buffer with 10% normal donkey serum was then added followed by 

3% peroxidase solution for 30 min. Sections were washed 3 times for 5 min with PBS 

followed by addition of VGATrab (1:2000). Sections were incubated overnight at 4˚C. 

The following day, sections were washed 3 times with PBS before addition of 

biotinylated secondary antibody (1:250) and incubated for four hours at room 

temperature. Avidin peroxidase was added at a concentration of 1:1500 followed by 

DAB (Vector Lab #SK-4100) staining.  

DAB solution was prepared by adding in two drops (84 µl) of DAB buffer, four drops 

(100 µl) of DAB and two drops (80 µl) of hydrogen peroxide (H2O2) in 5 ml of distilled 

water.  

2.3.2 Fluoronanogold (FNG) staining 

DRG sections were permeabilised with 50% ethanol followed by blocking with 

10% donkey serum, each for 30 min. Tissues were incubated with VGATrab (1:2000) 

overnight at 4˚C. The following day, DRG tissues were washed with PBS 3x5 min 

before incubated in secondary biotinylated antibody (anti-rabbit) (1:250) for four 

hours. DRG sections were washed with PBS 3x5 min, followed by overnight 

incubation in streptavidin fluoronanogold (anti-rabbit) (1:100). Next day, sections 

underwent three PBS washes and one gold buffer wash, each for 5 min. Tissues 

were post-fixed with 2% glutaraldehyde in 0.1M PB, washed with PBS 2x5 min. A 

final wash was done with distilled water to remove all traces of PBS. During the 
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washes, sections were transferred to clean wells of a filter plate (Acroprep™ 96-well 

filter plates, 350 µl).  

Silver enhancement 

HQ silver enhancement kit (#2012 Nanoprobe) was used to enhance the gold 

immunolabelling. The reagents were supplied in dropping bottles for easier 

dispensing of small amount of reagent volumes. In brief, one drop of initiator (solution 

A) was mixed with one drop of moderator (solution B). Following that, DRG sections 

were added into the mixed solution followed by addition of activator (solution C). The 

reaction usually took 4 – 10 min to be completed (appeared dark). The reaction was 

stopped with distilled water before transferred to 0.1M phosphate buffer ready for 

osmium fixation.  

2.3.3 Tissue preparation for transmission electron microscopy 

DRG tissue sections were washed 5 times (3 min each in 0.1M phosphate 

buffer. A solution containing 3% potassium ferrocyanide in 0.1M PB with 4 mM 

calcium chloride was combined with an equal volume of 4% aqueous osmium 

tetroxide (EMS). The tissues were then incubated in this solution for one hour on ice. 

The tissues were further washed 5 times (3 min each) before placing in the 0.22 µm 

Millipore filtered thiocarbohydrazide (TCH) solution for 20 min at room temperature. 

Tissues were rinsed 5 times again and placed in 2% osmium tetroxide in double 

distilled water for 30 min. Following the second exposure to osmium tetroxide, the 

tissues were washed again and placed in 1% uranyl acetate and left in the refrigerator 

overnight at 4˚C. The next day, en bloc Walton’s lead aspartate staining was 

performed. Prior to staining, 0.066 g of lead aspartate was dissolved in 10 ml 0.03M 

aspartic acid solution and pH was adjusted to 5.5 with 1N potassium hydroxide 

(KOH). This solution was placed in a 60˚C oven for 30 min. Then, the tissues were 

washed and dehydrated for 5 min each, using ice-cold solutions of freshly prepared 

20%, 50%, 70%, 90%, and 100% ethanol. Next, the tissues were placed on ice-cold 
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acetone and left at room temperature for 10 min. Tissues were then placed in 25%, 

50%, and 75% durcupan:acetone sequentially for two hours each. Tissues were 

placed in 100% durcupan overnight, followed by fresh 100% durcupan for two hours. 

Tissue sections were then mounted on a glass slide with an aclar coverslip and 

placed in a 60˚C oven for 48 hours. Tissue sections were then cut off from the 

coverslip and mounted onto a block before they were cut using ultramicrotome (Leica 

Ultracut UCT, Germany). Mounted tissues underwent semithin (500 nm) and ultrathin 

(70 nm) cutting and collected onto a nickel grid for imaging with the transmission 

electron microscope (Tecnai T12 G2).  
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Figure 2.1 The flowchart diagram of antibody labelling for electron microscopy. 
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Table 2 List of antibodies used in this study  

Primary antibody Secondary antibody 

Antibody Target 
protein 

Dilution Dilution 
determination 

Company Antibody Dilution Company 

NF160/200 
(mouse) 

Myelinated 
neurons 

1:2000 Established 
protocol 

Sigma-
Aldrich 

Alexa-Flour 488 
conjugated IgG 
Donkey anti-mouse 

1:1000 Life Techno-
logies the 
USA 

SV2 (mouse) Synaptic 
vesicles 

1:250 (Hüsken et al., 
2014) 

Develop-
mental 
Studies 
Hybridoma 
Bank 
(DSHB) 

Alexa-Flour 488 
conjugated IgG 
Donkey anti-mouse 

1:1000 

Isolectin IB4 dye 
conjugate 488 
(IB4) Griffonia 
simplicifolia 

Non-
peptidergic 
small 
neurons 

1:50 (Bangaru et 
al., 2013) 

Invitrogen -  - 

Anti-VR1 
antibody 
ab10296 (rabbit) 

TRPV1 
receptor 

1:1000 (Boisvert et al., 
2015) 

Abcam Alexa-Flour 488 
conjugated IgG 
Donkey anti-rabbit 

1:1000 Invitrogen, 
Eugene, 
Oregon, 
USA 

TrkC AF1404 
(goat) 

Tyrosine 
kinase 
receptor 
marker, 
marker for 
large 
neurons 

1:100, 
1:200, 
1:1000 

optimization R&D 
Systems 

Alexa-Flour 488 
conjugated IgG 
Donkey anti-goat 

1:1000 Invitrogen, 
Eugene, 
Oregon, 
USA 

S100B (rabbit) 
(ab52642, 
EP1576Y) 

Glial cell 
marker 

1:1000  Abcam Alexa-Flour 488 
conjugated IgG 
Donkey anti-rabbit 

  

CD63 (rabbit) Exosomal 
marker 

1:200 optimisation Genetex Alexa-Flour 488 
conjugated IgG 
Donkey anti-rabbit 

1:1000 Invitrogen, 
Eugene, 
Oregon, 
USA 

     Alexa Flour™488 
streptavidin, 10 nm 
colloidal gold 
conjugate 

1:100 Thermo-
fisher 
Scientific 

Anti-VGAT 
131002 (rabbit) 

 1:2000 optimisation Synaptic 
Systems 

Alexa-Flour 555 
conjugated IgG 
Donkey anti-rabbit 

1:1000 Invitrogen, 
Eugene, 
Oregon, 
USA 

     Biotin-SP-conjugate 
Donkey anti-rabbit 
711-065-152  

1;250 Jackson 
Immuno-
Research, 
Pennsylvani
a, USA 

Anti-VGAT 
131004 (guinea 
pig) 

 1:1000 optimisation Synaptic 
Systems 

Alexa-Flour 555 
conjugated IgG Goat 
anti-guinea pig 

1:1000 Invitrogen, 
Eugene, 
Oregon, 
USA 

VGAT polyclonal 
AB-N44 (VGAT-
C) (rabbit) 

Vesicular 
GABA 
transporter, 
marker for 
VGAT 
vesicular 
domain  

1:200 Optimisation, 
(Martens et al., 
2008) 

Atsbio, 
Advanced 
Targetting 
System 

Alexa-Flour 555 
conjugated IgG 
Donkey anti-rabbit 

1:1000 Invitrogen, 
Eugene, 
Oregon, 
USA 
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2.4 Live VGAT antibody uptake by DRG neurons in culture 

2.4.1 DRG preparation 

DRG were isolated from preweaner rats according to the protocol used for 

immunohistochemical labelling of fixed DRG tissue sections (section 2.1.1). In this 

experiment, five preweaner wistar rats (6 – 9 days old) were obtained from the 

Central Biological Services (CBS) unit, Faculty of Biological Sciences, University of 

Leeds. Out of five rats sacrificed, two were not utilised for IHC staining as the cultured 

DRG neurons were washed off during the initial steps of the experiment. The 

collected ganglia were enzymatically digested for 15 min with dissociation solution 

containing prewarmed HBSS, 10 mg/ml dispase and 1 mg/ml collagenase type 1A 

(1mg/ml) (Sigma). The dissociation solution-containing DRG was incubated for 

approximately 13 min at 37˚C to allow dissociation of cells. These dissociated cells 

were then gently triturated (5 times) to help the dissociation process before being 

replaced into the incubator for a further 2 min. DRG homogenates were then 

centrifuged at 800 rpm for 5 min, triturated briefly using 1 ml-Gilson pipette and 

recentrifuged. The pellet was then suspended in the culture media containing DMEM 

1% penicillin-streptomycin and 10% FBS. The homogenates were plated on a 

coverslip coated with poly-D-lysine placed in a 48-well plate at 85 μl per slip. These 

homogenates were then incubated at 37˚C for 4 hours to allow cell attachment before 

adding in another 500 µl fresh media into each DRG homogenates-containing well. 

DRG cultures were incubated for 48 hours followed by 2 times wash using phosphate 

buffer saline (PBS) free from the culture media.  

2.4.2 Depolarisation of neurons with high KCl (100 mM) 

DRG neurons were incubated in either of the following solutions: (i) standard 

extracellular solution (EC), (in mM): 144 NaCl, 5.8 KCl, 1.3 CaCl2, 5.6 D-glucose, 0.7 

NaH2PO4, 0.9 MgCl2 and 10 HEPES; (ii) the ‘high K+’ (high KCl) EC solution (standard 

EC solution but with NaCl concentration reduced to 49.8 mM and KCl concentration 
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increased to 100 mM); (iii) Ca2+-free standard EC; (iv) Ca2+-free high K+ EC. 

Antibodies against either the luminal (C-terminal) VGAT epitope (‘VGAT-C’) or the 

cytosolic (N-terminal) VGAT epitope (‘VGAT-N’) were used. Details on the protocol 

for this VGAT antibody uptake experiments are schematically presented in Figure 

4.3. This protocol was adopted from Martens et. al 2008 with slight changes; following 

optimisation, I found that incubating DRG neurons with 100 mM KCl concentration 

for 15 min at 25˚C produced better DRG neurons depolarisation compared to 55 mM 

KCl for 5 min used to depolarise primary hippocampal neurons of adult wistar rat 

reported in Martens and colleagues (Martens et al., 2008). This difference could be 

contributed by the different temperature setting; Martens and colleagues incubated 

their cells at 37˚C while in my experiment, DRG neurons were incubated at ambient 

temperature ~25˚C. Indeed, higher temperature has been shown to increase neuron 

activity in hippocampal neurons (Shibasaki et al., 2007). Thus 100 mM KCl with 15 

mins incubation time were used in this experiment protocol. In brief, high KCl EC 

solution was used to depolarise DRG neurons leading to Ca2+ influx and ultimately 

release of neurotransmitter from synaptic vesicle via exocytosis. N-terminus of 

VGAT, inserted in the neurotransmitter vesicle membrane, faces the cytoplasm while 

the C terminus resides in the synaptic vesicle lumen (Martens et al., 2008). During 

exocytosis and subsequent recycling of a synaptic vesicle, luminal VGAT epitopes 

are temporarily exposed to the extracellular milieu. During such an exposure, 

antibodies that recognize these epitopes can bind to these and become trapped and 

subsequently internalized by endocytosis (Martens et al., 2008). On the other hand, 

antibodies against the N-terminus of VGAT should not be entrapped in this way as 

VGAT’s N-termini remain cytosolic at all times throughout the exocytosis. The VGAT-

C antibodies were labelled with secondary antibody alexaflour donkey anti-rabbit 

(DAR) 488 and VGAT-N antibodies were labelled with donkey anti-rabbit (DAR) 555 

following DRG neurons’ fixation using 4% paraformaldehyde (PFA). The DRG 

neurons (on coverslips) were mounted on cover slides with DAPI to stain the nucleus. 
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For immunochemical labelling of VGAT-C terminal (#AB-N44, Advance Targeting 

System), 1:200 dilution was used as described by (Martens et al., 2008). Figure 2.2 

shows the workflow of the aforementioned experiment which included the time for 

incubation for each of the buffer, PFA and antibodies used.  
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Figure 2.2 Workflow for VGAT-C antibody uptake in DRG neuron culture. 
[Modified from (Martens et al., 2008)]. 
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2.4.3 Image analysis 

Data were obtained from DRG neuron cultures (total number of cultures, 

N=3). Analysis was performed by quantifying the total number of VGAT-C-positive 

neurons from three coverslips per rat. Neurons were identified by their morphology 

(spherical structure) and size (>15 µm). Neurons were considered as positive for 

VGAT-C if the whole neuron displayed green fluorescence. Imaging was done using 

Confocal Microscope LSM880 Airyscan (Carl Zeiss, AG, Germany).  

2.5 GABAA receptor activation by GABA released from DRG 
neurons 

2.5.1 Transfection of HEK293 cells with GABAA receptor subunits (α1, β2 

and γ2) and EYFP 

HEK293 cells were transiently transfected with cDNA encoding human α1, β2 

and γ2 subunits of GABAA receptors (a kind gift from Prof David Weiss, Department 

of Physiology, University of Texas Health Science Center, San Antonio, Texas, USA). 

These HEK293 cells were also co-transfected with halide-sensitive EYFP mutant 

(H148Q/I152L; EYFP-QL) a fluorescence protein used to study the influx of iodide 

via GABAA receptors. The individual plasmids of GABAA receptor subunits together 

with EYFP were added into a transfection mixture with the following ratio: 

α1 subunit, β2 subunit, γ2 subunit and EYFP-QL 1:1:1:2  

For a total volume of transfection mixture solution 25 µl, FuGENE® HD Transfection 

Reagent 1.7 µl (Promega, USA) and HyPure™ Cell Culture Graded Water (GE 

Healthcare Life Science, Utah) 18.3 µl. HEK293 cells media was replaced with 500 

ml fresh DMEM followed by addition of 25 µl of transfection mixture. Transfection 

mixture was left at room temperature for 15 – 20 min before 25 µl were added into 

each of the two wells of HEK293 cells (80 – 90% confluency), cultured in a 24-well 

plate. Transfected HEK293 cells were then incubated at 37˚C with 5% CO2 for 24 

hours before being co-cultured with DRG neurons. 
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2.5.2 Co-culture of DRG with HEK293 cells transfected with GABAA 
receptor subunits (α1, β2 and γ2) and EYFP H148Q/l152L 

Extraction and isolation of DRG neurons were performed as described in 

section 2.4.1. In this experiment, a total number of six preweaner wistar rats (6 – 9 

days old) were obtained from the Central Biological Services (CBS) unit, Faculty of 

Biological Sciences, University of Leeds. Out of six rats sacrificed, three rats were 

used for optimisation of transfection of HEK cells with GABAA receptor subunits (α1, 

β2 and γ2) and EYFP H148Q/I152L while the other three were used for HEK cells-

DRG neurons co-culture experiment.  After the second centrifugation, 80 µl of DRG 

suspension were suspended onto a 10 mm coverslips coated with poly-D-lysine and 

laminin placed in a 24-well plate 15 min prior to the addition of 500 µl of culture media 

into each DRG neurons-containing well. In the meantime, transfected HEK293 cells 

were prepared for co-culture. After a 24-hour incubation period, old culture media 

were removed and new media was added in. The cells were scraped and together 

with the culture media, they were centrifuged for 5 min at 800 rpm at 25˚C (room 

temperature). New media (1.5 ml) was added to the HEK293 cell pellet, cells were 

resuspended by trituration and added into each DRG neuron-containing well, 250 µl 

for each well. The HEK293 cells-DRG neuron co-cultures were incubated for 24 

hours at 37˚C with 5% CO2 for 24 hours before imaging could be performed. Figure 

2.3 summarises the workflow for HEK293 cells culture and HEK293 cell-DRG neuron 

co-culture. 

2.5.3 Iodide imaging 

For iodide imaging, HEK293 cells-DRG neuron co-cultures were grown onto 

10 mm glass coverslips as described above. Cells were perfused with standard 

extracellular solution. An imaging system comprising a Nikon TE-2000 E microscope 

with a CCD camera was used for iodide imaging. Cells were located using brightfield 

and epi-fluorescence (488 nm excitation) before being imaged for iodide quenching: 

the fluorescence of EYFP H148Q/l152L is quenched by iodide and most anion 
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channels are permeable to this halide anion, hence, EYFP H148Q/l152L 

fluorescence quenching by I- has been used to monitor activation of anion channels, 

including GABAA channels (Galietta et al., 2001, Jin et al., 2013, Johansson et al., 

2013) HEK293 cells-DRG neuron co-culture was imaged using a 20x objective using 

whole 10 mm coverslip. For each coverslip, the laser intensity and exposure were 

optimised to achieve the highest possible fluorescence while avoiding both 

photobleaching and saturation (Laser auto exposure 400 – 700 ms; aperture 35 µM). 

HEK293 cells-DRG neuron co-cultures were perfused with a different solutions using 

the protocols detailed in Table 3. Fluorescence quenching of the HEK293 cells 

during the sequential application of these solutions was recorded using a Nikon 

Swept Field confocal microscope equipped with a 488 nm argon laser and images 

were taken using EM-CCD camera. Data were analysed using NIS Elements 3.2 

software (Nikon). 

2.5.4 Data analysis 

Following iodide imaging, the EYFP H148Q/I152L fluorescence intensity data 

were transferred to Microsoft Excel for analysis. Data were normalised to t=0 (F/F0) 

for each cell. Cells with unstable baseline or oscillations during recording were 

excluded from analysis. EYFP quenching was determined at the point when the 

EYFP fluorescence intensity was consistently decreasing from t=0 (quenching 

started) until the value reached plateau at the end 200-second protocol for each cell. 

The amount of EYFP quenching for each cell was calculated by subtracting the 

fluorescence intensity value at the point where quenching started with the value at 

which the quenching plateaued. Data were analysed by calculating the mean EYFP 

H148Q/I152L fluorescence intensity of HEK293 cells per transfection (one 

transfection represents one biological replicate) and per rat and transfection for HEK 

cell-DRG neuron co-cultures.  
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Figure 2.3 Workflow for the study of somatic GABA release by DRG neurons. 
On day 1, HEK293 cells were transfected with α1, β2 and γ2 GABAA receptor subunits 
and EYFP and incubated for ~24 hours. On day 2, rat was sacrificed and DRG were 
isolated followed by DRG incubation for ~5 hours. At the end of 5 hour-DRG 
incubation, HEK293 cells were co-cultured with DRG neurons and further incubated 
for 24 hours before imaging of the HEK293 cells was performed on Day 3.  
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HEK293 cells 
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Table 3 Application protocols for iodide imaging. Muscimol was perfused to HEK 

cells and HEKGABAA indicator cells single culture as negative and positive control, 
respectively; KCl was perfused to HEKGABAA-DRG co-culture to induce DRG neuron 
depolarisation; HEKGABAA-DRG co-culture was perfused only with NaI to confirm the 
presence of ambient (tonic) GABA; and bicuculline was perfused to HEKGABAA-DRG 
co-culture to determine the involvement of GABAA receptor in EYFP quenching of 
HEKGABAA indicator cells.  
HEK cells: Human Embryonic Kidney 293 cells; HEKGABAA indicator cells: HEK cells 
transfected with EYFP H148Q/l152L and α1, β2, and γ2 GABAA receptor subunits; 
HEKGABAA-DRG co-culture: HEKGABAA indicator cells co-cultured with DRG neurons. 
 

Compound Application protocol 

Muscimol 

(agonist) 

Standard EC (50 sec)  5 mM NaI (30 sec)  5 mM NaI + 10 µM 

muscimol 

50 mM KCl Standard EC (50 sec)  5 mM NaI (30 sec)  5 mM NaI + 50 mM 

KCl 

Ambient 

GABA 

(agonist) 

Standard EC (30 sec)  5 mM NaI (3-5 min)  

Bicuculline 

(antagonist) 

Standard EC (30 sec)  50 µM bicuculline in standard EC solution 

(60 sec)  50 µM bicuculline in 5 mM NaI solution  
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2.6 In vivo electrophysiological recording of L5 dorsal root and 
its corresponding spinal nerve 

This experiment was conducted at the Hebei Medical University, China. Here, 

animal handling and humane schedule 1 euthanasia were performed in accordance 

with the Animal Care and Ethical Committee of Hebei Medical University under the 

project license no. SYXK(Ji)2018-005. A total number of 15 wistar rats were used in 

this experiment, of which only 13 contributed to the data. Two rats did not survive 

the surgery thus recordings could not be obtained from them. Four rats were housed 

per cage with sawdust flooring and ad libitum water and chow access at 23 - 25˚C.  

*With the permission from the Head of Department of Pharmacology, Hebei Medical 

University, Professor Xiaona Du, I performed four surgeries and recordings (out of 

the total 13) under the supervision of a trained PhD student from Hebei Medical 

University, while the remaining were performed by the student himself. Data analysis 

and interpretation for all 13 recordings were performed by me. 

2.6.1 DRG and spinal nerve exposure 

All surgical procedures were performed under deep anaesthesia using 

intraperitoneal injection of sodium pentobarbital (60-80 mg/kg). The depth of the 

anaesthesia was confirmed and monitored with toe pinch while the body temperature 

was maintained using a plate placed under the rats. At the end of the experiment, 

rats were euthanized via cervical dislocation.  

To get access to the dorsal root and spinal nerve of L5, a longitudinal incision was 

made in the middle dorsal part of the skin. Two incisions (on the right and left side of 

the spinous processes) parallel to the spinous processes were made from T4 - L6. 

The spinous processes of the T4 - L6 were removed using small scissors. The L5 

and L6 vertebrae were identified by locating the midpoint of the line linking the right 

and left iliac crest of the pelvic bone. The two transverse processes of the L5 were 

removed to locate the corresponding L5 DRG that lies underneath these transverse 

processes. Once the L5 DRG was located, the corresponding L5 spinal nerve was 
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traced down and exposed by removing the overlying bone and muscles. The thin 

membrane covering the spinal nerve was also removed to get a direct contact 

between the spinal nerve and the recording electrode. The L5 spinal nerve was 

isolated from the surrounding structures and lifted by using a thin glass capillary. The 

dorsal root was identified by locating the L5 DRG and tracing the nerve fibre proximal 

to it. This fibre lies amongst the dorsal roots of DRGs from other levels, and thus it 

was isolated using another thin glass capillary. Each of these two nerve branches 

(the L5 spinal nerve and dorsal root) was suspended on a stainless-steel electrode 

attached to an amplifier. Paraffin ointment was applied onto the exposed soft tissues 

to prevent dehydration. The recording of the L5 dorsal root and spinal nerve allowed 

simultaneous registration of activity in the nerve at two points – before and after the 

DRG, while the ganglion was accessible for drug application. Recording of the nerve 

activities was done using BL-420F biological data acquisition and analysis system 

(Chengdu Techman Software Co., Ltd. China), an instrument integrated with 

amplifier and analogue to digital conversion. The recording was filtered using low-

pass filter which was set at 500 Hz. The activity of both spinal nerve and dorsal root 

was recorded at rest (no stimulus), upon subcutaneous injection of capsaicin (10 µM, 

50 µl) on the plantar surface of the rat’s hind paw (to induce acute inflammation) (Du 

et al., 2017), and upon local application (direct drug application onto L5 DRG) of 

GABA (200 µM, 3 µl) and bicuculline (200 µM, 3 µl) consecutively. Data were 

analysed by calculating the mean neuronal firing frequency from recordings of all the 

six rats (GABA and capsaicin) and seven rats (bicuculline). 
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Figure 2.4 Surgical exposure of L5 DRG, dorsal root and spinal nerve.Following 
identification and exposure of both dorsal root and spinal nerve (A) and (B), dorsal 
root and spinal nerve are suspended onto stainless steel electrodes for recording of 
their neuronal firings (C) and (D).  
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2.7 Sample size estimation  

Sample size for each experiment was estimated using resource equation 

approach (Arifin and Zahiruddin, 2017). Although power analysis approach is 

recommended for sample size calculation (Festing and Altman, 2002), in some 

experiments with no reference to standard deviation and effect size, resource 

equation approach can be an alternative. Using the resource equation approach, the 

sample size estimation was 3, 4, 6, and 6 rats for VGAT expression and co-

localisation with neuronal markers, VGAT-C uptake, in vivo electrophysiological 

recording and HEK cells-DRG neurons culture, respectively. However, due to time 

limitation and cost restriction, only 3 animals were used for each experiment except 

for the in vivo recording (where 6 – 7 rats were used). However, to increase the 

possibility of getting the real effect of the experiment despite the small sample size, 

technical repetitions were done for each animal used, which yielded high number of 

cells per rat. For all figures presented in this thesis, the number of rat used and the 

total number of neurons analysed to generate the data are represented, where 

appropriate, by “N” and “n”, respectively.  

2.8 Statistical analysis 

Data for VGAT expression and co-localisation with neuronal markers were 

analysed using IBM SPSS Statistics software 21 (IBM, UK). Data are presented as 

frequencies and percentage for the quantification of the total DRG neuronal cell 

bodies, localisation of VGAT, and co-localisation of VGAT with NF200, IB4, TRPV1, 

and SV2. Association of VGAT positive neurons with the different sizes of neurons 

(small, medium, and large or sizes at 5 μm interval) were analysed using Fisher’s 

exact test with Bonferroni correction. The P value was set at 0.05. The potential 

significant differences in VGAT-C uptake between different groups (control, high-K+, 

high-K+/Ca2+-free, and high-K+/N term ab) were analysed using one way ANOVA with 

Bonferroni correction. P value was also at 0.05.  
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For experiment on iodide imaging, the time taken to reduce EYFP H148Q/I152L 

fluorescence in EYFP H148Q/I152L, GABAA receptors-transfected HEK293 cells by 

sodium iodide (NaI) and NaI+bicuculline was evaluated by generating the time 

constant (Ƭ) from individual response-curves recorded using Origin 2018 software. 

The mean Ƭ for both NaI and NaI+bicuculline response curves for 100 seconds each 

were determined and tested for significance using Mann-Whitney U test (P<0.05). 

The significant difference of the EYFP fluorescence intensity quenching in three 

different groups- indicator cells (HEKGABAA indicator cells: HEK cells transfected with 

EYFP H148Q/l152L and α1, β2, and γ2 GABAA receptor subunits), indicator cell+DRG 

and indicator cell+DRG+BIC was tested using Kruskal wallis ANOVA (P<0.05). Data 

on the in vivo electrophysiological recordings of L5 spinal nerve and dorsal root were 

analysed using one-way ANOVA followed by Bonferroni correction for analysis of 

firing frequency before and after application of GABA, and Wilcoxon signed rank test 

for analysis of firing frequency before and after application of bicuculline. Statistical 

significance was accepted at P<0.05.  
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Chapter 3 Quantification and characterisation of expression 
of vesicular GABA transporter (VGAT) dorsal root 

ganglion neuron somata 

3.1 Introduction 

DRG house somata of the diverse subpopulations of sensory neuron. These 

afferent neuronal cells differ from each other in a number of ways, including functional 

diversity (different sensory modalities), as well as different morphological and 

biophysical parameters such as diameter, myelination, conduction velocity, presence 

of certain neurochemical markers etc. (see Chapter 1: Introduction).  

Since this study focuses on pain, nociceptive neurons will be of particular importance 

in this and subsequent experimental chapters. Nociceptive C-fibres express 

receptors which allow the fibre to detect more than one type of sensation and are 

hence known as polymodal C fibres. However, despite the ability of these polymodal 

receptors to detect a wide range of thermal, chemical and mechanical stimuli, some 

of them have preference towards a specific stimulus. For example, Wooten and 

colleagues have reported three different stimulus-specific polymodal receptors in 

primates: the capsaicin-sensitive, histamine-sensitive and β-alanine-sensitive 

receptors (Wooten et al., 2014).  

Recent studies from our lab (Du et al., 2017) and from others (Hanack et al., 2015) 

suggested that some DRG neurons, particularly those among the nociceptive range, 

are able to produce and release GABA. Yet, in order to be able to release a 

neurotransmitter, DRG neuron somata must express appropriate machinery. In 

neurons, GABA is mainly released via activity-dependent exocytosis (Gao and van 

den Pol, 2000, Missler et al., 2003) and in order to be able to pack GABA into the 

releasable vesicles, a vesicular GABA transporter (VGAT) is necessary (Chaudhry 

et al., 1998, Martens et al., 2008, McIntire et al., 1997). In this chapter I investigated 

the expression of VGAT in dorsal root ganglion neuron somata. I hypothesised that 

VGAT was expressed in DRG neurons of all sizes–small, medium and large neurons.  
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3.1.1 Methods for neuronal characterisation 

Traditionally, DRG neurons are characterised by size, conduction velocity, 

degree of myelination, somatosensation modality and the presence of specific 

neurochemical markers (see below). These parameters are very useful to identify 

and understand the physiology of a neuron. To determine the type of neurons, more 

than one method of classifications are usually performed to enable a defined and 

confirmative neuron types. For example, results from our previous study integrated 

results from the morphological analysis (size determination), somatosensory profiling 

(behavioural experiments) and expression of neurochemical markers to understand 

the role of GABA in the peripheral nociceptive pathway (Du et al., 2017). For this 

reason, these traditional methods are still widely used nowadays for neuronal 

characterisation. Today, thanks to the evolving knowledge in science, particularly 

genetics, more specific methods of DRG neuron classification had been developed, 

including single-cell RNA sequencing (RNA-Seq). This method involves deep 

sequencing methods which provide a transcriptome analysis of a cell. It gives high 

coverage and higher resolution compared with other sequencing methods such as 

Sanger sequencing and microarray-based method (Kukurba and Montgomery, 

2015).  

RNA-Seq was recently used by two groups to classify mouse DRG neurons (Li et al., 

2016, Usoskin et al., 2015, Zheng et al., 2019). Using this method, Usoskin and 

colleagues revealed eleven types of sensory neurons: three distinct low-threshold 

mechanoreceptive neurons, two proprioceptive, and six principle types of neurons. 

The later include thermosensitive, itch sensitive, type C-low threshold 

mechanosensitive and nociceptive neurons with distinguished molecular properties 

(Usoskin et al., 2015). This work also provided markers for new and functionally 

distinct neuron subtypes. However, as this study performed low-coverage single-cell 

RNA-Seq, it resulted in transcriptional variations due to a limited number of genes 

detected in each neuron (Usoskin et al., 2015). By using higher-coverage RNA-Seq, 
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Li and colleagues were able to classify mouse DRG neurons more specifically by 

linking transcriptome-based neuron typing with sensory phenotype using in vivo 

recordings. This allowed them to classify mouse DRG neurons into ten types and 14 

subordinates with distinct transcriptional patterns, molecular markers and functional 

annotations providing a new catalogue for somatosensory receptors (Li et al., 2016). 

Figure 3.1 and Table 4 summarise the types of DRG neurons investigated in these 

two studies. 

 

 

Figure 3.1 Ten types of primary sensory neurons.A schematic showing the 
proposed framework of DRG neuron types and their proportions based on both 
transcriptomic analysis and ISH, as well as functional annotations suggested by 
electrophysiological analysis results and published data. C8 and C10 are predicted 
to be mechanoreceptors or/and proprioceptors (Li et al., 2016).  

MHN: mechanoheat 
receptor 

MI: mechanically insensitive 

MS: mechanically sensitive 

IS: itch-sensitive 

C-LTMR: c-fibre low-
threshold mechanoreceptor 

MN: mechanical nociceptor 

MR: mechanoreceptor 
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Table 4 Sub-classifications of primary sensory neurons(Usoskin et al., 2015). 

Neuron 
subclassification 

Type of neurons Degree of myelination 

NF1 LTMRs Myelinated 

NF2 

NF3 

NF4 Proprioceptors 

NF5 

NP1 Nonpeptidergic Unmyelinated 

NP2 

NP3 

PEP1 Peptidergic 

PEP2 Myelinated 

TH C-LTMRs Unmyelinated 
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3.1.2 Neurochemical markers for DRG neuron characterisation 

Neurochemical markers have been used to identify DRG somatosensory 

modalities and determine the functional connotation of the fibres studied. For 

example, distinct markers are used to label large, medium and small neurons, for 

example, NF200 labels myelinated Aβ and Aδ fibres while IB4 labels a subset of 

small neurons respectively (Dirajlal et al., 2003, Perry et al., 1991, Stucky and Lewin, 

1999). This size-labelling, in turn, helps to determine the likely somatosensation of 

each of the neurons labelled by these markers as, for example, the small neurons 

are highly likely to be nociceptive C fibres (Woolf and Ma, 2007) while the large, 

myelinated neurons are more abundantly represented by low threshold 

mechanoreceptors-A fibres (Djouhri and Lawson, 2004). Results obtained from other 

methods such as electrophysiology and behavioural studies can also be correlated 

with immunohistochemical labelling to enhance conclusiveness (Zheng et al., 2019). 

In this study, I labelled DRG neurons using a number of sensory modality-specific 

markers in order to identify the type of neurons expressing GABA-related protein.  

3.1.3 Markers for large neurons  

The presence of neurofibrils (NFs) in neuron cytoplasm were first discovered 

by Ramon Cajal, Golgi and others (López-Muñoz et al., 2006). In 1950, via electron 

microscopy, Schmidt and Geren observed these neurofibrils as 10 nm filaments 

hence the designated term ‘neurofilament’ that is used today (Schmitt and Geren, 

1950). NFs are a member of intermediate filaments (IFs) with diameter ~10 nm, which 

lies between the diameter of actin filaments (5 nm) and myosin filaments (15 nm) 

found in muscle cells. Under the IFs classification, NFs are classified as class IV 

which also include the neurofilament light (NF-L), neurofilament middle (NF-M), 

neurofilament heavy (NF-H) and α-internexin (Yuan et al., 2017). Other IFs are acidic 

keratins (class I), basic keratins (class II), vimentin, desmin, peripherin, glial fibrillary 

acidic protein (GFAP) (class III), nuclear lamina (class V), and nestin (class VI). NFs 

are very important in radial growth and structural stability of myelinated neurons. For 
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this reason, NF antibodies have been used as markers for myelinated neurons which 

are the medium- and large-size neurons in the DRG. The molecular size for NF-L, 

NF-M and NF-H are 68, 160 and 200 kDa respectively (Yuan et al., 2017). To date, 

antibodies against NF-M (NF160) and NF-H (NF200) or a combination of NF-M and 

H (NF160/200) have been used most widely as markers of myelinated neurons in 

both CNS and peripheral nervous system (PNS). As an example, in the dental 

primary afferent neurons, NF200 was shown to be highly co-expressed with Piezo2, 

a recently discovered mechanosensitive ion channel (Won et al., 2017). This result 

further confirmed the role of Piezo2 in transducing mechanosensitive nociception, in 

this particular study. 

Another set of markers widely used in somatosensory physiology belongs to the 

family of tropomycin-related tyrosine kinase (trk) receptors, which are a family of 

growth factor receptors. These are present in different tissues in the body including 

the CNS and PNS. Trk receptors have been shown to influence neuronal 

differentiation, neurite outgrowth and synaptic plasticity (Huang and Reichardt, 2001, 

McAllister et al., 1999, Park and Poo, 2013). To date, three subtypes of trks have 

been identified, trkA, trkB and trkC. These Trk receptors bind to different ligands 

(neutrophins) and activate different pathways related to neuronal growth. TrkA 

receptors bind nerve growth factor (Fayaz et al., 2016), trkB binds BDNF and 

neurotrophin 4 (NT4), while trkC binds neurotrophin 3 (NT3) (Dechant, 2001, Kaplan 

et al., 1991, Klein et al., 1991, Nikoletopoulou et al., 2010). TrkA-NGF signalling plays 

an important role both during the prenatal period (Indo et al., 1996, Miranda et al., 

2002) and in adulthood (Lewin et al., 1993, Petty et al., 1994). Individuals born with 

a mutation in the trkA gene suffer from a form of CIP together with anhidrosis, both 

caused by defective trkA activity. A mutation in NGF also causes CIP due to the 

inability of nerve growth factor (Fayaz et al., 2016) to perform its physiological action 

at the receptors (Hirose et al., 2016). 
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In adulthood, NGF is one of the proteins released during inflammation. The binding 

of NGF to trkA, located on the cell membrane of the sensory neurons, phosphorylates 

other proteins involved in the Rap1/Erk1/2, p38MAPK and PI3K pathways (Delcroix 

et al., 2003). Ultimately, increased expression of these proteins, in turn, induces 

peripheral and central sensitisation leading to hyperalgesia and allodynia, 

respectively (Sousa-Valente et al., 2018). Additionally, a loss-of-function mutation in 

trkA was shown to abolish heat-hyperalgesia in African dark mole rat (Omerbasic et 

al., 2016).  

Meanwhile, trkB-BDNF signalling was shown to be involved in heat-hyperalgesia 

inflammatory pain mediated by cyclin-dependent kinase 5 (cdk5) (Zhang et al., 2014). 

Immunoprecipitation and kinase assay revealed that Cdk5 mediates carrageenan-

induced heat-hyperalgesia by phosphorylating TRPV1 receptors in DRG of mice and 

rats (Pareek et al., 2007, Pareek et al., 2006, Xing et al., 2012). Unlike trkA and trkB, 

trkC along with its ligand, NT3, are involved more in proprioception than nociception 

(Patel et al., 2003, Ramer et al., 2002). However, trkC and NT3 have also been 

shown to modulate aspects of neuropathic pain (Tender et al., 2011). In a nerve injury 

rat model, intrathecal NT3 injection has been shown to attenuate TRPV1 expression 

in sensory neurons resulting in inhibition of thermal hyperalgesia (Wilson-Gerwing et 

al., 2005). NT3 and trkC were found to be expressed in medium- and large-diameter 

DRG neurons (McMahon et al., 1994) but interestingly, their expression levels were 

upregulated in small-diameter neurons during neuropathic pain (sciatic nerve injury) 

rat model (Tender et al., 2011). More importantly, the increase in NT3 and trkC 

expression decreased in a neuropathic rat model treated with a TRPV1 inhibitor, 

Resiniferatoxin (RTX), hence supporting the role of trkC and NT3 in modulating 

neuropathic pain (Tender et al., 2011). Recently, an interaction between trkC and 

pre-synaptic type-IIa receptor-type protein tyrosine phosphatase sigma (PTPσ) has 

been reported (Naito et al., 2017). PTPσ is another ligand that binds at different 

extracellular domains of trkC and this interaction induced excitatory synapses to fire, 
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this was also enhanced by NT3 (Naito et al., 2017). This finding reveals a novel role 

of trkC as a synapse organising protein (Naito et al., 2017).  

3.1.4 Markers for nociceptive neurons 

Most nociceptors are small diameter unmyelinated C fibre neurons (Woolf and 

Ma, 2007). The C fibre neurons can be further divided into peptidergic and non-

peptidergic neurons (Basbaum et al., 2009). The peptidergic small-diameter neurons 

express neuropeptides such as CGRP and Substance P (Basbaum et al., 2009). 

These markers have been used to study the distribution of peptidergic neurons. 

Meanwhile, non-peptidergic neurons express surface carbohydrates (α-galactose 

group) which bind to lectin molecule, IB4, of the Griffonia simplicifolia (Goldstein and 

Winter, 1999), thus referred to as IB4-positive neurons. The central projections of 

peptidergic neurons terminate in lamina I and outer lamina II (IIo) of the spinal dorsal 

horn while the non-peptidergic terminate in lamina I and inner lamina II (IIi) (Bradbury 

et al., 1998, Seal et al., 2009). Non-peptidergic neuron fibres that terminate in lamina 

IIi activate the central pathway to the hypothalamus and amygdala, which are mostly 

involved in the emotional and affective aspect of pain (Bernard et al., 1996). Other 

markers for non-peptidergic neurons include Mas-related G-coupled protein 

receptors (Mrgprd) (Rau et al., 2009, Zylka et al., 2005) and the P2X3 receptors (Luo 

et al., 2007, Staikopoulos et al., 2007). Sensory neurons that express Mrgprd are 

known to innervate the outermost layer of the epidermis, the stratum granulosum. 

Activation of Mrgprd has been associated with not only nociception but also itch 

sensation (Bader et al., 2014). Meanwhile, purinergic receptors are known to be 

involved in nociception in different parts of the body, including skin and viscera; 

reviewed in (Burnstock, 2009). In particular, the P2X3 is a purinergic receptor which 

was cloned in 1995 and found to be expressed in small nociceptive sensory neurons 

in DRG (Chen et al., 1995). 
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TRPV1 is another protein used as a neurochemical marker in categorizing small-

diameter neurons. TRPV1 is a non-selective cation channel within the superfamily of 

transient receptor potential (TRP) ion channels. TRP superfamily comprises TRPC 

(canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML 

(mucolipin), and the TRPA (ankyrin) groups; TRPV, TRPM and TRPA subfamily 

members are expressed in subpopulations of sensory neurons and responsible for a 

wide range of sensations such as thermal, mechanical and chemical stimuli and bind 

to different noxious ligands (Nilius et al., 2007). TRPV1 can be activated by noxious 

heat (>42°C) as well as by chemicals such as capsaicin (Caterina et al., 1997) which 

can be found in hot chili peppers. TRPV1 can also be activated by low extracellular 

pH (Tominaga et al., 1998), divalent cations such as Mg2+ and Ba2+ (Cao et al., 2014) 

and animal toxins (Bohlen et al., 2010, Yang et al., 2015). TRPV1 receptors act as 

polymodal sensors for a diverse physical and chemical stimuli, from extra- as well as 

intracellular environment. Another member of TRP channel family, TRPA1, is 

activated by a different set of painful of potentially harming stimuli including natural 

and exogenous electrophilic compounds such as wasabi and mustard oil, extreme 

temperatures and endogenous inflammatory mediators (Jordt et al., 2004, Laursen 

et al., 2014, Viana, 2016). Both TRPV1 and TRPA1 channels are often found in the 

same, small- and medium-sized neurons (Story et al., 2003, Kobayashi et al., 2005). 

Another protein that is commonly used to label small neuron is peripherin. Peripherin 

is a 57 kDa type III neuronal intermediate filament that is widely expressed in the 

PNS. For this reason, investigations on peripherin expression has been used to 

define a specific population of small neurons in rat DRG (Deshmukh et al., 2016, 

Goldstein et al., 1991). 
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3.1.5 Glial markers 

For centuries, neurons have been the focus of science of the nervous system, 

while glia were seen as only supporting structures of these vital cells. It was only in 

1950s, when studies on glia began to discover scientific breakthroughs and 

conceptual shifts of its important role in the function and behaviour of the nervous 

system (Fan and Agid, 2018). According to current understanding, the number of glial 

cells in nervous system is comparable to that of neurons (Herculano‐Houzel, 2014, 

von Bartheld et al., 2016).  

Similarly to neurons, glial cells originate from neural tube stem cells during 

development (Rowitch and Kriegstein, 2010). There are many subtypes of glial cells; 

astrocytes, oligodendrocytes, microglia and radial glia mostly found in the brain 

(Zuchero and Barres, 2015), while Schwann cells and satellite cells are mostly found 

in the PNS (Jessen and Mirsky, 2005).  

Anatomically, glia wrap around neurons in both CNS and PNS like a glue sticking on 

a structure; accordingly, the term “glia” is a Greek word meaning glue. 

Physiologically, glial cell functions are indispensable in neuronal development and 

for normal function of the nervous system. Glia also play an essential role during 

disease and injury to the nervous system (Barres, 2008, Fields et al., 2015).  

In the PNS, DRG cell bodies are tightly wrapped by the satellite glia cells (SGC) 

(Pannese, 2010). Few changes in SGC have been reported following peripheral 

nerve injury; SGC divide, the number of its gap junction increases and glial fibrillary 

acidic protein (GFAP) expression increases (Ohara et al., 2009). Due to their 

anatomical structure, primary sensory neurons are more prone to injury compared 

with SGC, indeed their long axons are more likely to be injured if peripheral tissues 

are subjected to trauma. Thus the changes in SGC following trauma to the peripheral 

nerve can be secondary to and as an adaptation to the injured neurons which occurs 

via neuron SGC signalling. In response to trauma, sensory neurons release 
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inflammatory substances such as Substance P, nitric oxide and adenosine 

triphosphate (ATP). ATP released from DRG neuron somata has been shown to 

activate purinergic receptor P2X7 expressed in SGC, which could contribute to 

increased nociceptive neuron excitability (Zhang et al., 2007).  

Realising the importance of glial cells in the studies of biological systems, several 

glial markers have been developed to substantiate the identification of these cells 

such as S100B, GFAP and glutathione synthase (GS) (Regan, 1988, Roots, 1981). 

The identification may help to further understand the contribution and their role in 

especially, pathological conditions.  

3.1.6 Synaptic vesicular markers  

Synaptic vesicles are small vesicles that are pooled at the presynaptic 

terminals. The number of synaptic vesicles determines the strength of the 

communication that occurs between cells. This communication occurs via 

neurotransmitters that are released by the synaptic vesicles. Thus synaptic vesicle 

markers have been used to study the activity of neurotransmitter release. 

There are several markers for synaptic vesicles available for scientific 

research. Most of these markers are developed against the specific proteins present 

on the synaptic vesicle membrane. Synaptic vesicle 2 (SV2), synaptotagmin and 

synaptophysin antibodies are examples of markers that have been developed to 

identify the respective protein. Each of these proteins have their own important role 

during neurotransmitter release (some are explained in Chapter 4, section 4.1). In 

particular, SV2 is a synaptic vesicle protein which is found in all synaptic vesicles 

regardless of the neurotransmitter content (Feany et al., 1992). Three isoforms of 

SV2 exist, SV2A, SV2B and SV2C . SV2A is the most common isoform found in 

mouse brain (Crowder et al., 1999). Earlier during its discovery, SV2 was proposed 

to function as a universal transmembrane transporter of all types of neurotransmitters 

achieved by sodium-dependent membrane transporter (Feany et al., 1992). Decades 
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after its discovery, more specific functions of SV2 have been revealed including its 

role in transporting cytosolic Ca2+ into secretory vesicles that leads to 

neurotransmitter release (Wan et al., 2010). SV2 proteins are found ubiquitously in 

all synaptic vesicles, which justifies the use of SV2 antibody to study the presence of 

this neurotransmitter-releasing vesicles in DRG, paving the way to understanding the 

possible mechanism of GABA release therein. 
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3.2 Results 

3.2.1 Optimisation of VGAT antibodies raised in rabbit and guinea pig 

Immunohistochemical protocols for vesicular GABA transporter (VGAT) 

antibody raised in rabbit (VGATrab) and in guinea pig (VGATgp) were developed 

using DRG tissue sections fixed with 4% PFA. For optimisation, three different 

dilutions were used for VGATrab antibody; 1:500, 1:1000 and 1:2000 while for 

VGATgp two dilutions were used, 1:1000 and 1:2000. Via visual assessment, it was 

concluded that 1:2000 VGATrab and 1:1000 VGATgp dilution gave the best signal-

to-noise ratio of immunofluorescence [(Figure 3.2 (A) and (B)]. The assessment was 

done by standardising the laser intensity and gain when imaging sections stained 

with the different dilutions. The 1:2000 and 1:1000 dilution of VGATrab and VGATgp 

respectively, showed clear VGAT staining on the DRG cell bodies with well-

demarcated nuclei (Figure 3.4). It also showed the least background noise under 

confocal imaging. Thus, the successive immunofluorescence investigation of VGAT 

expression using VGATrab and VGATgp was done with 1:2000 and 1:1000 dilutions, 

respectively. Co-staining of DRG sections with VGATrab and VGATgp antibodies 

showed a very similar pattern of staining (Figure 3.3), validating the use of VGAT 

raised in two different species for further co-localisation experiments with other 

neurochemical markers.  
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Figure 3.2 Optimisation of VGAT antibodies.(A) The expression of VGAT antibody 
raised in rabbit (VGATrab) in DRG neurons incubated in antibody dilutions 1:200, 
1:500 and 1:1000 and (B) the expression of VGAT antibody raised in guinea pig 
(VGATgp) in DRG neurons incubated in antibody dilutions 1:1000 and 1:2000.  

 

 

Figure 3.3 Co-localisation of VGATrab and VGATgp. Co-localisation of VGAT 
antibodies raised in two different species, rabbit and guinea pig (VGATrab and 
VGATgp) showing a similar pattern of staining.   

(B)   

(A) 
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3.2.2 Soma size analysis of the VGAT-positive DRG neurons 

 

Figure 3.4 Examples of DRG neurons included for quantification. showing clear 
margins with visible nucleus. Neurons in green circle are examples of medium- and 
large-sized VGAT-positive neurons with visible nuclei, while the neuron in yellow 
circle is an example of those VGAT-positive neurons but with no visible nucleus. 

 

Since DRG neuron somatic diameter correlates with somatosensory modality 

of the fibre, DRG neurons were categorised according to the diameter of the neuronal 

somata and characterised for VGAT expression. Generally, the soma or cell bodies 

of DRG neurons had pale cytoplasmic staining with centrally located nuclei and darkly 

stained nucleoli; darker colour of nuclei being produced by DAPI staining. Of note, 

neuronal nuclei showed noticeably a weaker DAPI staining compared to the glial cell 

nuclei. In some neurons nuclei were not seen, presumably because sections were 

cut above or below their mid-levels. A typical neuron has its nucleus located at the 

centre of the spherical cell body (Lee et al., 1986) thus the size of a neuron is best 

presented at its widest diameter where the nucleus is likely to be present. For this 

reason, measuring the diameter of a neuron with no visible nucleus present maybe 

an underestimation of its actual size. Thus, in this present study, I performed two 

different methods of analyses for the size distribution of DRG neurons and VGAT 

expression from the same dataset according to the presence or absence of nucleus 

in a neuron. One method is more accurate for the VGAT distribution in the DRG while 

another method is more truthful for DRG neuron size analysis. Accordingly, the 
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results of these analyses are presented in two different sections: i) analysis of ‘all 

neurons’ and ii) analysis of ‘neurons with visible nucleus’.  

3.2.2.1 Analysis of ‘all neurons’ 

The total number of DRG neurons counted (regardless of the visibility of the 

nucleus) was 515. The size distribution of DRG neurons is skewed to the right 

indicating that most of the DRG neurons analysed were smaller in size while the 

distribution of the VGAT-positive neurons was more evenly distributed across the 

scales. The number of neurons was highest in the 25 – 30 µm diameter category, 

while the lowest was in the >50 µm diameter category [Figure 3.5 (A)]. When analysis 

was done according to small-medium-large cell size category, the percentage of DRG 

neurons was highest in the <32 µm category (51.8%) followed by medium- and large-

sized neurons which were 25% and 23.1% respectively. Out of the total 515 sensory 

neurons imaged, 102 were stained positive with VGAT (19.8%). Within the population 

of VGAT-positive neurons, the highest expression was found in the small-sized 

neurons (44%) followed by medium- and large-sized neurons, 31% and 25% 

respectively [Table 5 (A)]. For ease of reference, this method will be referred to as 

‘method (i)’ in the following discussion. 

3.2.2.2 Analysis of ‘neurons with visible nuclei only’ 

This analysis showed similar size distribution of DRG neurons to that of method 

(i); most of the neurons were of the smaller size. However, the size distribution of the 

VGAT-positive neurons has a slight preference towards smaller size neurons [Figure 

3.5 (B)]. As only neurons with visible nuclei were considered for this analysis, the 

total number of neurons dropped to 127. When analysis was done according to small-

medium-large cell size category, the percentage of DRG neurons was highest in the 

<32 µm category (43%), followed by medium- and large-sized neurons which was 

29% and 28%, respectively [Table 5 (B)]. Out of 127 neurons included in the 

analysis, 84 cells were stained positive with VGAT (66.14%). Most of the small- and 
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medium-sized DRG neurons expressed VGAT (67% and 74%, respectively) and a 

slightly lesser proportion of large-size neurons (57%). Out of all DRG neurons 

labelled with VGAT, 44% were small-sized neurons followed by medium-sized (31%) 

and large-sized neurons (25%) [Table 5 (B)]. For ease of reference, this method will 

be referred to as ‘method (ii)’ in the following discussion.  

These two different methods showed that regardless of the presence of a nucleus, 

the size distribution of DRG neurons demonstrated a similar pattern, that DRG 

neurons were mostly populated by small diameter neurons which results are 

consistent with findings from literatures (Deshmukh et al., 2016, Lawson et al., 1984, 

Lee et al., 1986).   
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Figure 3.5 The distribution of VGAT in rat DRG neurons. Frequency distribution 
of the somatic diameter showing the total number of DRG neurons (black bars) 
alongside with the VGAT-positive neurons (gray bars). Data were obtained from 
analysis of neurons from six DRG tissue sections (2 sections per rat, N=3), neuronal 
numbers were summed, means per rat calculated, shown as mean ± SEM. (A) and 
(B) represent data from method (i)– all neurons’ and method (ii)–‘neurons with visible 
nuclei only’, respectively.  

  

 

(A) 

(B) 
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Table 5 VGAT distribution in DRG neurons according to size classification. 

Neurons are classified into three size categories, the small (<32 μm); medium (32 – 
40 μm) and large (>40), (A) and (B) represent data from method (i)– all neurons’ and 
method (ii)–‘neurons with visible nuclei only’, respectively. 

 

Cell body 
size 

Total 
number of 
neurons 

% of total 
neurons 

Number of 
VGAT-
positive 
neurons 

% of VGAT-
positive 
neurons 
within the 
size band 

% of 
neurons of 
the given 
size within 
the 
population 
of VGAT-
positive 
neurons  

<32 µm 267 51.8 46 17.2 45.1 

32-40 µm 129 25 19 14.7 18.6 

>40 µm 119 23.1 37 31.1 36.3 

Total 
number of 
neurons 

515  102  
 

 

Cell body 
size 

Total 
number of 
neurons 

% of total 
neurons 

Number of 
VGAT-
positive 
neurons 

% of VGAT-
positive 
neurons 
within the 
size band 

% of 
neurons of 
the given 
size within 
the 
population 
of VGAT-
positive 
neurons  

<32 µm 55 43 37 67 44 

32-40 µm 35 29 26 74 31 

>40 µm 37 28 21 57 25 

Total 
number of 
neurons 

127  84  
 

 

  

(A) 

(B) 
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3.2.3 VGAT co-localisation with neurochemical markers 

Double immunofluorescence labelling was performed to investigate the co-

localisation of VGAT with markers known to be expressed in specific subpopulations 

of DRG neurons. IB4 and TRPV1 were used to label small-size neurons (Figure 3.6) 

while NF200 and trkC were used to label larger-size neurons (Figure 3.7). Co-

localisation incidence was analysed using two methods; i) as the proportion of the 

total number of neurons displaying co-localisation of VGAT with each of the neuronal 

markers over the total number of VGAT-positive neurons, and ii) as the proportion of 

the total number of neurons displaying co-localisation of VGAT with each of the 

neuronal markers over the total number of each of the neurons expressing a given 

marker. Accordingly, the analysis was performed using two different denominators 

(the total number of VGAT-positive neurons and the total number of marker-positive 

neurons) to determine the distribution of VGAT within the subpopulations of the DRG 

neurons. When VGAT was used as the denominator, the proportions of co-

localisation of VGAT with NF200, trkC, IB4, TRPV1 and SV2 were: 25.67%, 32%, 

55.33%, 54.54% and 68.61% respectively. When neuronal markers were used as the 

denominators, the percentage of their co-localisations with VGAT were 18.67% 

(NF200), 63.33% (TrkC), 45% (IB4), 92.43% (TRPV1) and 93.03% (SV2) (Table 6). 

Regardless of the denominators, the co-localisation of VGAT with NF200 was 

significantly lower than the co-localisation of VGAT with TRPV1 and IB4 (Fisher’s 

exact test with Bonferroni correction, P<0.001) (Figure 3.6). VGAT was also co-

expressed with SV2, a synaptic vesicle marker with the highest level of co-localisation 

(Figure 3.9), suggesting a possible role of VGAT in exocytic GABA release 

mechanism into the extracellular space within the DRG. Fluorescence microscopy 

for the double immunolabelling of VGAT with S100B showed no co-localisation of 

these two antibodies (Figure 3.10). In summary, these experiments of the present 

study revealed that DRG neurons of any modality expresses VGAT with higher 

expression in small-diameter, TRPV1-positive DRG neurons and less with larger 
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neurons. Among the antibodies tested, the highest degree of co-localization was 

found between the VGAT and SV2. 

Interestingly, EM imaging of VGAT stained with DAB and silver-enhancing FNG 

revealed what could be a VGAT presence, not only in DRG neurons, but more 

interestingly in SGC and intercellular space in exosome-like extracellular vesicles 

(Figure 3.11); this was not seen in our immunostainings. This discrepancy could 

arise from higher sensitivity of the EM. We used DAB and Nanogold-silver 

enhancement technique for the EM imaging, these methods are known to improve 

immunolabelling and hence also referred to as signal amplifiers (Hainfeld and Furuya, 

1992, Weipoltshammer et al., 2000, Werner et al., 1996). Figure 3.13 depicts the 

typical immunogold silver enhancement-based immunolabelling. A combination of 

these signal amplifiers has been shown to enable a use of ten-fold lower 

concentration of primary antibody (Köhler et al., 2000). Together, these studies show 

that using signal amplifiers, the antibody expression could be detected at a lower 

antibody concentration (than that used for IHC), this stands to reason the lack of 

VGAT expression in IHC (where VGAT expression was not seen in EC and SGC) 

compared to EM. On the other hand, this discrepancy between IHC and EM could 

also be contributed by the non-specific binding due to autonucleation (Thanh et al., 

2014). In addition, gold-enhanced particles (gold grain) that undergo crystallisation 

and enlargement responsible for the signal amplification could cluster with the 

neighbouring gold grain; this leads to formation of larger gold particles 

(Weipoltshammer et al., 2000) which could be observed in Figure 3.12. Thus, 

further experiments are needed to test the presence of VGAT in SGC and 

extracellular vesicles. 

 



93 
 

Table 6 Percentage of VGAT co-localisation with five different neuronal 
markers. VGAT was co-localised with NF200 and TrkC (markers for large neurons), 
IB4 and VR1 (markers for small neurons) and SV2 (a marker for synaptic vesicles).  

 

Antibody 
Number of 

neurons with 
positive staining 

% of co-
localisation (per 

marker)  

% of co-
localisation (per 

VGAT) 

TRPV1 

TRPV1 positive 71 

92.43 54.54 VGAT positive 130 

Co-localisation 66 

IB4 

IB4 positive 127 

45 55.33 VGAT positive 105 

Co-localisation 59 

NF200 

NF200 positive 146 

18.67 25.67 VGAT positive 122 

Co-localisation 24 

TrkC 

TrkC positive 33 

63.33 32 VGAT positive 124 

Co-localisation 20 

SV2 

SV2 positive 138 

93.03 68.61 VGAT positive 204 

Co-localisation 129 
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Figure 3.6 Percentage of VGAT co-localisation with NF200, trkC, IB4, TRPV1 
and SV2. (A) Percentage of co-localisation when VGAT was used as the 
denominator and (B) neuronal markers were the denominators. VGAT was co-
localised with NF200 and trkC (markers for large neurons), IB4 and TRPV1 (markers 
for small neurons) and SV2 (a marker for synaptic vesicles). Asterisks indicate 
statistical significance (P<0.001 as determined by Fisher exact test with Bonferroni 
correction) of percentage co-localisation among the five neuronal markers. The 
percentage of co-localisation was analysed with two different denominators: the total 
number of VGAT-positive neurons or the total number of marker-positive neurons. 
Data were obtained from analysis of neurons from three DRG tissue sections (1 
section per rat, N=3), for each neuronal marker investigated. Percentage of co-
localisation of VGAT with each of the neuronal marker determined, means per 
neuronal marker calculated, shown as mean ± SEM. 
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Figure 3.7 Co-localisation of VGAT with a non-peptidergic small neuron 
marker, IB4 and a nociceptive neuron marker, TRPV1. Scale bar 50 µm  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Co-localisation of VGAT with large neuron markers, NF200 and trkC. 

Scale bar 20 µm. 

 
 
 
 
 
 

IB4 VGAT  MERGE 

TRPV1 VGAT  MERGE 

VGAT  MERGE 

VGAT  MERGE NF200 

TrkC 
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Figure 3.9 Co-localisation of VGAT with synaptic vesicle marker (SV2). Scale 

bar 50 µm. 

 

 

 

 

 

 

Figure 3.10 Co-localisation of VGAT with a glial marker, S100B. Scale bar 20 

µm. 

 

 Small (<32 µm) Medium (32–40 µm)  Large (>40 µm) 

NF200 26.53 44.90 28.57 

TrkC 27.27 27.27 45.45 

IB4 82.25 11.24 6.51 

TRPV1 71.54 18.46 10 

Table 7 Distribution of NF200-, trkC-, IB4- and TRPV1-positive neurons 
according to small-medium-large cell size category. TrkC are expressed mainly 
in large neurons. IB4 and TRPV1 are expressed in small neurons. Data were 
obtained from analysis of neurons from three DRG tissue sections (1 section per rat, 
N=3) for each of the neuronal marker studied. Numbers of neuronal marker-positive 
neurons for each small, medium and large neurons were summed over the total 
number of neurochemical marker-positive neurons in all sections to get the 
percentage of their distributions in different sizes of neurons.  

  

VGAT  MERGE S100B 

VGAT MERGE SV2 
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Figure 3.11 Electron microscopy of VGAT expression in rat DRG neurons 
stained with DAB. (A) VGAT expression in spinal cord (positive control); (B) DAB 
staining without VGAT antibody (negative control) in DRG neurons, (Cii) VGAT 
expression in DRG (magnified view from (Ci)), (Dii) VGAT expression in SGC and in 
exosome-like structure within the extracellular space (magnified view from (Di)). 
VGAT-positive labelling is shown with red arrowheads. Vesicles with no VGAT 
staining are shown with a red arrow. Rib: ribosomes; MVB: multivesicular bodies. 
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Figure 3.12 Electron microscopy of VGAT expression in rat DRG neurons 
stained with FNG. VGAT immunoreactivity in SGC and extracellular space (A) and 
DRG neuron (B). Red circles in (A) and (B) indicate examples of larger gold particles 
formed by clusters of neighbouring gold grains.  

 

  

 

 

Figure 3.13 Typical immunogold silver enhancement-based immunolabelling. 

[Based on concept reported in (Liu et al., 2010)]. 
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3.3 Discussion  

3.3.1 DRG quantification  

DRG house heterogeneous populations of somatosensory neurons. As 

mentioned earlier, there are many different classifications of somatosensory neurons 

including classification by size. In this study, the method for quantification of DRG 

neurons (cervical – lumbar) of the adult male rats were adopted from the classification 

method used by Ramachandra and colleagues in their study on the expression of 

NaV1.8 channels in sensory neurons of adult male rats (Ramachandra et al., 2013). 

Similar to the data presented here, Ramachandra and colleagues categorised the 

cell body diameter into small (<32 µm), medium (32 – 40 µm diameter), and large 

neurons (>40 µm). Although the boundaries of this classification are right shifted 

compared to the earlier DRG morphology studies by Lawson and colleagues, who 

used DRG neurons from female adult rats (Lawson et al., 1984, Lawson et al., 1993), 

this classification is strongly supported by Deshmukh and colleagues who 

determined the classification of DRG neuron diameter using peripherin, a marker for 

small and medium neurons (Deshmukh et al., 2016). Similar to the present study, 

Deshmukh and colleagues also measured the entire DRG neurons of the adult male 

rats. They found that the maximum diameter of neurons which were peripherin-

positive was 40 µm. Thus in this present study, neurons with diameter >40 µm were 

considered as large neurons. According to the classification by Deshmukh and 

colleagues, the small neurons are suggestive of unmyelinated C fibre neurons while 

the medium and large neurons are the myelinated Aδ and Aβ fibres, respectively. 

The difference of classification by Lawson and colleagues with the present study 

could be due to the different sex of animal used, Lawson and colleagues used female 

while the present study used male rats which morphologically can have a significantly 

bigger DRG neurons compared to females (Shen et al., 2006). 

The results from the small, medium and large neurons were also consistent with the 

classification used for the neuronal diameter classification in the present study. Within 
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the population of IB4-positive neurons, >80% of neurons were small neurons. 

Similarly, the majority of TRPV1-positive neurons (~70%) were also small neurons. 

However, a small proportion of TRPV1-positive neurons were medium neurons which 

is in agreement with other literature (Kobayashi et al., 2005, Story et al., 2003). The 

percentages of NF200- and trkC-positive neurons which were mainly expressed in 

medium and large neurons, also correspond to this classification. The majority of 

NF200- and trkC-positive neurons were of the medium and large neurons (Table 7).  

Results from the neuron quantification showed that the highest proportion of the DRG 

neurons were of the small-sized (51.8% and 43% for ‘method (i) all neurons’ and 

‘method (ii) neurons with only visible nuclei’ respectively). Albeit a slight 

underestimation, this result is in agreement with other studies reporting that the most 

abundant type of DRG neurons are the small neurons which constitute more than 50-

60% of the total number of primary afferent neurons (Deshmukh et al., 2016, Jardí et 

al., 2014). The lesser proportion of small DRG neurons found in this present study 

compared with those from literature could be due to the methods for DRG neurons 

quantification used; method (ii) considered only neurons with visible nuclei (which 

limits the number of neurons counted). Also, inconsistent distribution of different sizes 

of DRG neurons was sometimes observed in different DRG sections during this 

study, which could cause an underestimation of the total number of small neurons 

quantified. 

3.3.2 VGAT expression in DRG neurons  

In this thesis, the size distribution of DRG neurons, VGAT distribution in DRG 

neurons and the co-localisation of VGAT with small and large neuronal markers as 

well as with SV2 are broadly consistent with these presented in our previous work 

(Du et al., 2017), albeit with some quantitative differences. The proportion of VGAT-

positive neurons was higher in method (ii) than that of method (i). In method (i), 

regardless of the nuclei visibility, all neurons were counted for analysis which 



101 
 

reflected the higher total number of neurons in the whole DRG population. Also, 

VGAT labelling in method (i) was done via visual assessment compared to method 

(ii) which used mean fluorescence intensity. Visual assessment is more subjective 

and has the tendency to underestimate the VGAT labelling in the DRG neurons. 

Together, the higher total number of neurons and lower VGAT-positive neurons 

(identified via visual assessment) have led to lower percentage of VGAT positive 

neurons in DRG in method (i) compare to method (ii). 

Table 8 Reasons for discrepancies in VGAT distribution in DRG neurons 
between results from ‘method (i) all neurons, and ‘method (ii) neurons with visible 
nuclei only’.  

 Method (i) Method (ii) 

Method of assessment 
for VGAT-positive 
neurons 

Visual assessment Mean fluorescence intensity 

Nucleus visibility All neurons were counted for 
analysis regardless of the 
presence or absence of nuclei 

Only neurons with visible 
nuclei were counted for 
analysis 

 

Reasons for the differences in the results obtained from method (i) than that from 

method (ii) are presented in Table 8. The data presented in method (i) considered all 

neurons present including the ones without visible nucleus, in the six DRG sections 

used for the analysis (two sections from each of the three adult rats). Although this 

method is able to show a more precise number of neurons in the whole DRG, it may 

not be accurate for the measurement of size distribution of all neurons counted. As 

neuron somata are of spheroidal shape, and that the nucleus lies at the centre of the 

cell where the diameter is measured (as here it gives the maximum diameter), the 

absence of a visible nucleus in a neuron indicates that the section was cut below or 

above the centre level thus the size could be an underestimation from the true 

measurement. Thus in this thesis, another method of analysis was performed; only 

the neurons with visible nuclei were counted and analysed to determine the size 

distribution of the DRG neurons.  
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The VGAT distribution in this present study was analysed using two different methods 

depending on nuclei visibility. Nucleus visibility is an important consideration for 

determination of neuron size, however as mentioned above, it tends to underestimate 

the proportion of neurons which are positively stained with VGAT. Thus the following 

discussion will focus on the results from method (i) (where nuclei visibility was not 

considered). 

In the present study, IHC investigation showed that VGAT was expressed in ~20% 

of the whole DRG neurons. This figure is somewhat higher than the expression of 

VGAT detected using the single cell reverse-transcriptase polymerase chain reaction 

(RT-PCR) ( ~7-8% of DRG neurons) reported by us earlier (Du et al., 2017). However, 

due to the non-specific binding of antibody in IHC (which can overestimate VGAT 

expression) and high false-negative in single-cell RNA analysis (which underestimate 

VGAT expression), the discrepancy between these two results is fairly justified.  

The proportion of VGAT-positive neurons was highest in the large neurons. However, 

due to the lower proportion of large neurons compared to small and medium neurons 

(Deshmukh et al., 2016, Jardí et al., 2014), the total number of small, medium and 

large neurons were comparable and indeed the absolute number of VGAT-positive 

large-diameter neurons was lower than that of the VGAT-positive neurons of smaller 

diameters.  

In this current study, VGAT expression was found in a subset of DRG somatosensory 

neurons of male adult rats. VGAT has been reported to have similar affinity towards 

GABA and glycine (Burger et al., 1991, Chaudhry et al., 1998, Gammelsaeter et al., 

2004, Wang et al., 2009) and that these two neurotransmitters are also co-released 

via exocytosis (Wojcik et al., 2006). Although our current study did not include 

characterisation of these two neurotransmitters involved in VGAT activity, our 

previous electrophysiological findings have shown that capsaicin, bradykinin, 

elevated extracellular K+- or ATP-induced depolarisation of DRG produced a robust 
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release of GABA into the extracellular space (Du et al., 2017). These findings suggest 

that GABA can be produced and released by several subtypes of DRG neurons (Du 

et al., 2017). Additionally, we and others have shown that the majority of neurons can 

respond to GABA (Du et al., 2017).  These results are also in agreement 

with Hanack and colleagues who reported that nociceptive DRG neurons can 

produce GABA and release it from the peripheral terminals (Hanack et al., 2015). In 

their experiments, GABA was found in a blister obtained from human skin and 

extracted mouse corneal fluid at a concentration which was sufficient to produce 

physiological action (in that case – inhibition of TRPV1 sensitisation).    

3.3.3 VGAT co-localisation with other neuronal markers  

VGAT-positive neurons had a wide distribution amongst IB4-, TRPV1-, trkC- 

and NF200-positive cells which were the markers for non-peptidergic, capsaicin-

sensitive, NT3-sensitive and myelinated fibres, respectively.  

We defined small neurons as those having cell bodies with diameters <32 µm 

(Khasabova et al., 2004, Ramachandra et al., 2013). These are unmyelinated fibres 

which respond to temperature, tissue damage, chemical irritants and mechanical 

stimuli (Dubin and Patapoutian, 2010). Small neurons can be further divided 

into peptidergic (IB4-negative) and non-peptidergic (IB4-positive) neurons. IB4 is a 

neuronal marker for small, non-peptidergic neurons (Fang et al., 2006). The co-

localisation analysis showed that approximately half of the VGAT-positive DRG 

neurons were also positive for IB4. To my knowledge, no other studies have reported 

the co-localisation of VGAT with IB4, however similar distribution of IB4-positive 

neurons has been reported for the whole DRG neuron population (where it was 

expressed in small- and medium-sized neurons) (Fang et al., 2006, Silverman and 

Kruger, 1990). In the present study, DRG neurons were not labelled with any of the 

peptidergic markers. However, considering that VGAT expression was found in all 

sizes of neurons, and that IB4-negative neurons include those neurons of small-, 
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medium- and large-sized (Fang et al., 2006, Lawson et al., 1984, Lawson and 

Waddell, 1991), it stands to reason that the remaining of the VGAT-positive neurons 

(which include all sizes of neurons) were populated by the IB4-negative neurons.  

Both IB4-positive and IB4-negative neurons express TRPV1 receptors with higher 

expression on the former (Liu et al., 2004). TRPV1, a receptor which responds to 

noxious heat and capsaicin is known to be expressed in small DRG neuron cell 

bodies (Aoki et al., 2005).  Thus I used both IB4 and TRPV1 antibodies to investigate 

and determine the distribution of VGAT expression in different subpopulations of 

primary sensory neurons. The results showed that more than 50% of VGAT was co-

localised with both IB4- and TRPV1-positive neurons albeit slightly lower TRPV1 co-

localisation than that of IB4-positive neurons. These data suggest that VGAT is 

widely expressed in non-peptidergic and capsaicin-sensitive small size neurons, 

supporting the role of VGAT-positive neurons in carrying the specific sensory 

modalities within the peripheral nociception system.  

In this study, NF200 and trkC antibodies were used to label medium to large DRG 

neurons. Both of these markers showed less than 30% co-localisation with VGAT. 

NF200 is the marker for myelinated neurons expressed in Aδ, Aβ and Aα responsible 

for nociception, mechanoreception and proprioception respectively, while trkC 

receptors are highly expressed in proprioceptors (Kramer et al., 2006).  

Together, these results demonstrate a higher co-localisation of VGAT-positive 

neurons with small-sized neurons and lower co-localisation with larger neurons. 

These findings suggest a more important role of VGAT-positive neurons in 

nociception.  

3.3.4 Co-localisation of VGAT with glial marker 

In the brain, presence of GABA receptors in glia has been well documented. 

GAD and monoamine oxidase B (MAOB) are among the key enzymes within the glia 

that are important for GABA synthesis (Yoon and Lee, 2014). Indeed, glia have been 
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shown to have GABAergic and GABA-ceptive activities (Yoon et al., 

2012).  Astrocytic GABA release (Barakat and Bordey, 2002, Lee et al., 2010, Yoon 

et al., 2011) and GABA receptors (Bovolin et al., 1992, Fraser et al., 1995, Riquelme 

et al., 2002) have been reported in rodents and human; astrocytic GABA receptor 

activation caused efflux of Cl- (Hoppe and Kettenmann, 1989, MacVicar et al., 1989) 

leading to depolarisation (Backus et al., 1988, Hösli et al., 1990, Kettenmann and 

Schachner, 1985) which was mimicked by muscimol, GABA agonist and blocked by 

bicuculline, a GABA antagonist (Fraser et al., 1995). 

When the glial marker S100B was co-stained with VGAT in DRG neuron somata, no 

co-localisation of these two antibodies was observed. However, images from EM 

analysis showed contradicting results. EM labelling performed with DAB staining and 

FNG showed a potential presence of VGAT in both SGC and more interestingly, in 

the extracellular space. These contradicting results could be due to the ability of the 

electron microscope to detect more detailed biological structures and proteins than 

that can be viewed via confocal microscopy. However, these EM data require further 

verification with an independent method. For instance, future experiments could test 

if GABA release from purified population of SGCs can be detected by HPLC. 

S100B antibody is one of the antibodies used to label SGC. However, Albuerne and 

colleagues investigated the expression of S100B in several species including rat and 

human and found that S100B immunoreactivity was found not only on SGC, but was 

also clearly seen in all sizes of DRG neurons (Albuerne et al., 1998). In my 

experiments however, S100B staining was very clearly glial, with minimal presence 

in neuronal cell bodies.  

VGAT is responsible for transporting synthesised GABA into the synaptic vesicle 

leading to GABA release via exocytosis. Although the investigation regarding the 

presence of GABA in the SGC was not performed in this study, its presence in DRG 

had long been reported back in the 1970s (Minchin and Iversen, 1974, Schon and 
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Kelly, 1974). Thus, the presence of VGAT in SGC from EM data could suggest a 

potential mechanism of GABA release in the SGC. Yet, further research is required 

to confirm this finding.  

Glial cells have been known to be involved in signalling pathways of many cell types. 

Interestingly, in DRG, Rozanski and colleagues reported a transglial transmission 

between the DRG somata, which they referred to as ‘sandwich synapses’ (Rozanski 

et al., 2013). In a sandwich synapse, a single SGC (which wraps the neuron somata) 

is ‘sandwiched’ between two neuron somata to form a neuron somata-glial cell-

neuron somata trimer and that communication occurs within these two junctions 

(Rozanski et al., 2013).  

Indeed the study of GABAergic signalling in DRG is still lacking the mechanistic 

detail. However, studies on GABA release from glial cells in the brain have been 

emerging for the past few decades. Most of the studies reported a reversal of GABA 

transporters (GAT1/2/3) as the mechanism involved for GABA release in the glial 

cells of the brain (Barakat and Bordey, 2002, Lee et al., 2011, Wu et al., 2007). 

Barakat and Bordey studied the Bergmann glial cells of rat cerebellar slices and 

reported reversal of GAT-1 activity resulting in tonic GABA release into the 

extracellular space and activation of GABAA receptors of the same cells (Barakat and 

Bordey, 2002). The reversal of a transporter as a mechanism of GABA release was 

also supported by Richerson and Wu in their review on neurotransmitter transporters 

(Richerson and Wu, 2003). In human astrocytic cell culture, the reversal of the GABA 

transporter has also been reported by Lee and colleagues involving GAT1, GAT2 

and GAT3 (Lee et al., 2011). Another mechanism of tonic GABA release has also 

been demonstrated by the same group (Lee et al., 2010). This mechanism involves 

Ca2+-activated anion channel, referred to as Best1; GABA permeates through the 

plasma membrane via Best1 channels, allowing for tonic inhibition and causing 

reduction in neuronal excitability, synaptic transmission and motor performance in 
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mice (Woo et al., 2018). Future experiments are deemed necessary to test how (and 

if) the SGCs in the DRG also release GABA. 

3.3.5 VGAT expression in DRG neurons via electron microscopy   

EM is a method which uses electron density to detect protein expression in 

biological tissues (Harris, 2015). It is a remarkable tool to explore the microstructures 

of biological and physical properties that are difficult to be visualised via light or even 

the advanced fluorescence microscopes. Unlike immunofluorescence investigations 

in which resolution is not able to localise structures smaller than ~20 nm (Huang et 

al., 2009, Schermelleh et al., 2010), EM is capable of imaging structures up to 

approximately ~0.5 nm (Nellist et al., 1995).  

To investigate the localisation of VGAT in DRG neurons in more detail, DAB staining 

was performed on rat DRG neurons. Labelling of VGAT by DAB was further 

confirmed by FNG labelling. Nanogold (NG), the electron-dense particle in FNG is an 

excellent tool for antibody labelling. With a particle size of ~1.4 nm, it penetrates cells 

readily, labelling antibodies at a higher density by conjugating the antibodies’ Fab 

fragments rather than the whole IgG molecules. The high labelling density is achieved 

by the silver enhancement (Takizawa et al., 2015). DAB staining indeed is a specific 

method of antibody labelling, however the staining is more diffuse, and if left for too 

long in peroxidase, brown precipitation could form in the solution giving unwanted 

background staining.  

Despite performing FNG labelling to support and confirm DAB staining of VGAT, the 

sections could not be imaged to the best of quality; the microstructures of DRG 

neurons could not be distinctly seen (Figure 3.11). During tissue fixation, DRG 

neurons were fixed with 4% PFA without glutaraldehyde. While glutaraldehyde is 

commonly used for its ability to preserve the proteins well, it interferes with VGAT 

binding to its epitope, hence fixation was performed only with 4% PFA, a fixative 

known to preserve antigenicity of proteins (Cheville and Stasko, 2014).  
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Regardless of the compromised quality of images, results from both DAB staining 

and FNG labelling showed VGAT immunoreactivity in DRG neurons which were 

consistent with the immunofluorescence labelling. Surprisingly and yet interestingly, 

VGAT labelling using both DAB and FNG was seen not only within the DRG neuron 

cell bodies (where it expectedly localised to vesicle-like cytosolic structures) but also 

in the extracellular space and within the SGC, a finding which was not seen in 

fluorescence labelling. Previously, VGAT expression on SGC or extracellular space 

within DRG has not been reported however, VGAT expression has been shown in 

astrocytes of the pineal gland of adult rats (Echigo and Moriyama, 2004). In this 

experiment, Moriyama and Echigo investigated the expression of VIAAT (another 

term for VGAT) in astrocytes, microglia and pinealocytes. Results from RT-PCR and 

immunoblotting showed molecular weight of 684bp and 53 kDa, respectively, which 

correspond to that of VIAAT’s. VIAAT expression was also investigated via IHC 

labelling in astrocytes, microglia and pinealocytes in pineal gland section (Echigo and 

Moriyama, 2004). VIAAT expression was found in both astrocytes and microglia but 

not in pinealocytes. VIAAT expression on pineal gland culture also showed similar 

results, supporting the expression of VIAAT in glial cells. VIAAT was co-expressed 

with GABA, GFAP (a glial marker) and synapsin I (a marker for synaptic vesicle), and 

this was also not observed in pinealocytes. These co-expressions support the idea 

that astrocytes are the site for the vesicular GABA storage in pineal glands (Echigo 

and Moriyama, 2004).  

The presence of multi-vesicular bodies (MVBs) and exosome-like structures 

observed under EM in the present study also suggests a possible mode of 

transmission or communication between neurons within the DRG. Exosomes are 

extracellular nanovesicles released from cells upon internal vesicle fusion with the 

plasma membrane. The internal vesicles known as the MVBs, are the endosomal 

precursor for the lysosomal degradation pathway (Klumperman and Raposo, 2014). 

Exosomes contain the molecular fingerprint of the cell they are released from. When 
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exosomes are taken up by a distant cell, they could induce a cellular response 

following the release of their content such as proteins, mRNAs and microRNAs into 

the intracellular environment (Raposo and Stoorvogel, 2013). Results from EM 

investigation also suggest the presence of VGAT within the external milieu. Thus, 

these exosomes could possibly contain VGAT and hypothetically could transport 

VGAT to a distant neuron. This indeed could be another possible mode of 

communication between neurons in the DRG.  

Despite this inconsistency between IHC and EM in regard to the VGAT presence in 

satellite glia and the extracellular space, both methods report presence of VGAT in 

DRG neuron somata, and in SV2-positive vesicles specifically. Hence, the next step 

was to investigate the mechanism of GABA release from DRG neurons by utilising C 

terminal VGAT antibody in cultured neurons. 
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Chapter 4 Mechanism of GABA release from primary sensory 
neurons 

4.1 Introduction  

4.1.1 Vesicular GABA transporter and synaptic vesicle  

Neurotransmitters are mostly synthesised in the cytoplasm. In particular, the 

peptide neurotransmitters are synthesised in the endoplasmic reticulum and are 

transported into synaptic vesicles by vesicular synaptic transporters before synaptic 

release can take place via a process known as exocytosis (Rizo and Xu, 2015). The 

VGAT, also known as vesicular inhibitory amino acid transporter (VIAAT), was 

discovered in 1997 via genetic and morphological studies of Caenorhabditis elegens 

orthologue with a mutant gene unc-47. The gene unc-47 was found to be expressed 

in GABAergic neurons and protein encoded by unc-47 co-localizes with synaptic 

vesicles (McIntire et al., 1997). C-terminus of VGAT folds into the synaptic vesicle 

lumen, while N-terminus extends into the cytosol (Martens et al., 2008). This 

discovery of VGAT-C terminus can help to elucidate the mechanism of GABA release 

via exocytosis during which the VGAT-C epitope is exposed to the extracellular 

environment, allowing its labelling by the VGAT-C specific antibody. 

VGAT level in the somatosensory cortex of rat brain is low during the first week of 

life, slowly increased in the second week and reaches its adult level during the third 

week (Minelli et al., 2003). VGAT has been reported to be present in 16% of all 

synaptic vesicles isolated from rat brain (Takamori et al., 2000). IHC investigation of 

the rat cerebellum showed the highest VGAT expression in the basket cells followed 

by the granular cells and the least expression was found in the molecular cell layers 

(Takamori et al., 2000). Consistently, an interesting investigation on the differential 

expression of VGAT throughout the development of the mouse auditory forebrain via 

multimodal profiling approach [RNA seq, in situ hybridisation (ISH) and IHC] also 

reported similar findings to that of (Minelli et al., 2003): GABA expression during 

postnatal period increased towards adulthood. Hacketts and colleagues found that 



111 
 

the maturation trajectory of VGAT in the primary auditory cortex area 1 (A1) and 

medial geniculate body (MGB) was parallel to that of postsynaptic changes such as 

the inhibitory strength and GABAA receptor expression; VGAT immunoreactivity was 

observed to increase from seven days postnatal (P7) and reached a steady-state by 

P21 (Hackett et al., 2016).  

In DRG neurons, VGAT expression investigated via IHC and RT-PCR has also been 

reported by our group (Du et al., 2017). VGAT has been shown to co-localise with 

subpopulations of DRG neurons of all sizes; the high co-localisation of VGAT with 

markers for small neurons (TRPV1 and IB4) suggests the involvement of VGAT in 

the peripheral GABAergic signalling pathway. 

4.1.2 The life cycle of a synaptic vesicle  

The nature of synaptic vesicles varies for different types of transmitters. 

Small-molecule neurotransmitters such as acetylcholine and amino acid transmitters 

such as GABA are packaged in small clear vesicles, 40 - 60 nm in diameter. The 

centre of these vesicles appears clear in electron micrograph, hence the name clear 

vesicle. Neuropeptides are packaged in larger vesicles, with a diameter of 90 – 250 

nm. These vesicles are electron-dense in the electron micrograph, thus they are 

referred to as the large dense-core vesicles. Biogenic amines are also packaged in 

dense-core vesicles, but the vesicle size can be either small (40 – 60 nm) or 

irregularly-shaped and larger (60 -120 nm), depending on the type of a neuron 

(Purves et al., 2001). Regardless of its classification, synaptic vesicle functions are 

to take up and release neurotransmitters. For this reason, synaptic vesicles are 

usually present in largest densities at synaptic terminals. Action potentials arriving at 

a nerve terminal triggers release of synaptic vesicle contents via exocytosis. During 

action potential, depolarisation of the synaptic membrane opens the voltage-gated 

Ca2+ channels causing Ca2+ transient and exocytosis of the GABA-containing 

synaptic vesicles. Vesicular release is usually stimulated by Ca2+ via P/Q-(Cav2.1) or 



112 
 

N-type Ca2+ channels and rarely via the Cav2.3 or R-type Ca2+ channels (Dietrich et 

al., 2003). In order for vesicular release to occur, synaptic vesicles cluster at the 

active zone, an event also known as docking. Subsequently, the synaptic vesicles 

undergo priming where the assembly of the fusion machine occurs. The fusion 

machines are composed of a synaptic vesicular protein synaptobrevin, and two of the 

plasma membrane proteins, the soluble N-ethylmaleimide-sensitive fusion protein 

attachment protein receptors (SNARE) complex and Munc18 (Hata et al., 1993). 

Following this fusion, Ca2+ binds to synaptotagmin (Syt), a Ca2+ sensor expressed on 

synaptic vesicle involved in neurotransmitter release. Ca2+ binding to Syt C2 domain 

triggers a fast simultaneous interaction of Syt with SNARE complex resulting in fusion 

pore opening (Südhof and Rothman, 2009).  

Despite a complex molecular machine involved in the neurotransmitter vesicular 

release, it takes only ~50 µs following Ca2+  transient, for phasic synchronous 

neurotransmitter release to occur (Sabatini and Regehr, 1996) while a slower 

asynchronous release can last more than 1 sec (Atluri and Regehr, 1998). After 

exocytosis, the vesicles are endocytosed, recycled before undergoing exocytosis 

again. Vesicles can be recycled via three possible pathways; i) kiss and run, ii) kiss 

and stay, and iii) endosomal recycling (Südhof, 2004). “Kiss and run” and “kiss and 

stay” are fast pathways while the endosomal recycling, which is a clathrin-mediated 

endocytosis, is slower. Figure 4.1 and Figure 4.2 show the schematics of the 

synaptic vesicle release mechanism and synaptic vesicle recycle pathways, 

respectively.  
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Figure 4.1 Neurotransmitter vesicular release mechanism. During docking, 
Synaptic vesicle (SV) is recruited to the active zone by RIMs protein and Munc 13. 
Following this, priming of the synaptic vesicle occurs where SNARE proteins (SNAP 
25 and syntaxin-1) assemble with synaptobrevin and Munc 18. Ca2+ binding to C2 
domains of the synaptotagmin 1 (during Ca2+ transient) results in binding of 
synaptotagmin 1 to the SNARE complex assembly. Synaptotagmin is a Ca2+ sensor 
for vesicular release. Upon depolarisation which leads to Ca2+ transient, Ca2+-
activated synaptotagmin binds to SNARE complex thereby triggering fusion pore 
opening [based on a concept reported in (Südhof, 2013)]. 
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Figure 4.2 Synaptic vesicle recycling pathways. Vesicles can be recycled via 
three possible pathways; i) kiss and run, ii) kiss and stay, and iii) endosomal 
recycling. Kiss and run” and “kiss and stay” are fast pathways while the endosomal 
recycling, which is a clathrin-mediated endocytosis, is slower. (Südhof, 2004).  
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4.1.3 Mechanism of GABA release 

Classically, GABA release occurs upon depolarisation of a presynaptic 

neuron which allows Ca2+ influx via VGCCs. Ca2+-dependent secretion (CDS) is a 

well-established theory which secretion of neurotransmitters from synaptic vesicles 

occurs following Ca2+ influx through VGCCs. The Ca2+ influx in turn, is triggered by 

the action potentials following membrane depolarisation. In DRG neurons, Huang 

and Neher demonstrated robust Ca2+-dependent exocytosis of synaptic vesicles 

upon depolarisation of DRG neuron somata (Huang and Neher, 1996). In their 

experiments, the involvement of Ca2+ in exocytosis was indicated by the increase in 

the membrane capacitance (Cm) (presumably reflecting fusion and exocytosis) with 

transient rise in intracellular Ca2+ in DRG neurons and the reduced exocytosis activity 

in Ca2+-depleted conditions (Huang and Neher, 1996). Interestingly, this CDS theory 

has been extended by a group of researchers from Zhuan Zhou’s laboratory who 

initially found a new type of action potential-mediated secretion, Ca2+-independent 

but voltage-dependent-secretion (CiVDS) in primary DRG neurons. In CiVDS, the 

arrival of action potentials opens the voltage-gated N-type Ca2+ channel (Cav2.2) 

triggering a conformational change of Cav2.2-SNARE complex which in turn 

promotes CiVDS-vesicle fusion and ATP release even without a rise in intracellular 

[Ca2+]. Here, ATP acts as a release cargo of CiVDS as evident by EM imaging and 

total internal reflection fluorescence imaging (TIRF) (Chai et al., 2017). These 

findings were supported by the earlier findings from the same group showing that the 

CiVDS exocytosis, measured by Cm recording was readily triggered by a brief 

membrane depolarisation in the absence of internal and external Ca2+ (Zhang and 

Zhou, 2002). This new mechanism of exocytosis was further confirmed by Cm 

recording, total TIRF and luciferase fluorescence assays; they found that blocking 

CiVDS using Cav2.2 specific blocker, ω-conotoxin GVIA inhibited CiVDS which was 

rescued by overexpression of Cav2.2 (Chai et al., 2017). 
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Alternatively, GABA can also be released non-vesicularly via the activity of GABA 

transporter 1 (GAT1). GABA transporters can be classified into six groups: A1/GAT1, 

A13/GAT2, A11/GAT3, A12/BGT1, A8/CT1, and A6/TauT (Scimemi, 2014). GAT1, 

GAT2, and GAT3 (particularly GAT1) are the most extensively characterized GABA 

transporters, all of these were found in DRG neurons (Du et al., 2017, Novak et al., 

2011). Wu and colleagues studied the activity of GAT1 in mediating GABA release 

using CHO cells and cultured hippocampal neurons and demonstrated that if enough 

stimulation is given to a neuron, GAT1 activity can be reversed. This reversal occurs 

during high-frequency firing due to depolarisation and a rise in intracellular [Na+] 

within presynaptic terminals. The reversal activity of GAT1 depends on the ambient 

extracellular [GABA] which determines the driving force of GAT1 (Wu et al., 2007). 

During reversal of GAT1, GABA flux remained coupled to two Na+ and one Cl-, thus 

the GAT1 reversal potential (GAT1 is at equilibrium) was measured at variable 

concentrations of Na+, Cl- or GABA in whole-cell patch-clamp electrode solutions. 

The lower the ambient (extracellular) [GABA], the lower the driving force which 

eventually becomes zero when extracellular [GABA] falls to the level at which GAT1 

is at equilibrium (Wu et al., 2007). A fall in ambient GABA concentration below this 

equilibrium will cause GAT1 to reverse the direction of GABA transport. Instead of 

transporting GABA back into the cells, GAT1 will release GABA into the synaptic cleft, 

maintaining tonic postsynaptic inhibition by GABA (Wu et al., 2007).  
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4.1.4 Mechanisms of intersomatic communication within DRG  

Neurons communicate with each other via various methods. The transfer of 

molecules from one neuron to another is important to ensure a continuous and 

sustained functional biological system. In the CNS the main type of neuron-to-neuron 

communication is by means of synapses (both chemical and electrical).  

However, recent studies have suggested the possible mechanisms of how these 

neurons communicate with each other within the ganglia. In 2011 Braz, Ackerman 

and Basbaum used a neuronal tracer wheat germ agglutinin (WGA) to investigate the 

cell-cell communication within DRG in vivo and revealed that the WGA tracer from 

injured neurons was found on the neighbouring uninjured neurons. This tracer was 

also found in the SGC (Bráz et al., 2011). Although there were no experiments done 

to support the mechanism of the transfer, they also proposed that this transfer 

occurred via exocytosis and endocytosis of the injured and the non-injured neurons 

respectively. In another study, Rozanski, Li and Stanley reported similar cell-cell 

communication within DRG albeit in vitro (Rozanski et al., 2013). These authors 

showed that there were communications took place between two neuron somata 

mediated by SGC capsule wrapping each neuron. This phenomenon was referred to 

as a sandwich synapse. Together, these studies revealed that primary sensory 

neurons are not an anatomically isolated structure as previously assumed.  

The ultrastructural investigation has demonstrated no detectable synapses in healthy 

DRG neuron (Zenker and Högl, 1976). Nonetheless, a recent study has reported the 

presence of an interesting feature in DRG neurons; sprouting neurites of IB4-, CGRP- 

and Kv4.3-positive nociceptors surrounding large DRG somata together with the 

sprouting neurites of tyrosine hydroxylase-positive neurons (a marker for sympathetic 

axons) in spinal nerve injury rat model (Cheng et al., 2015). These sprouting axons 

were positive for synaptic proteins’ markers, PSD95 and synaptophysin suggesting 

established synapse-like structures formed during spinal nerve injury (Cheng et al., 

2015). The sprouting axons, also known as Dogiel’s nest first described in the 
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nineteenth century, are endings of sympathetic axons that resemble a nest 

enveloping individual DRG neurons (Garcia-Poblete et al., 2003). The axons with 

Dogiel’s nest feature are positive for tyrosine hydroxylase; a marker used to label 

sympathetic axons and subpopulation of small DRG neurons (Brumovsky et al., 

2006). Earlier studies support that sympathetic fibre only form nests around DRG 

neurons during conditions of neuropathic pain (Cheng et al., 2015, Chien et al., 2005, 

McLachlan et al., 1993, Xie et al., 2011). Sympathetic fibres are likely to enhance 

DRG neurons’ excitability and drive DRG neurons spontaneous activity, a hallmark 

of neuropathic pain.  

Another interesting finding on neuron-to-neuron communication within DRG was also 

reported by (Kim et al., 2016). Using imaging technique which allowed recordings of 

>1600 neurons/DRG, these researchers discovered a striking neuronal coupling 

phenomenon between adjacent neurons by means of gap junction following 

inflammation or nerve injury. This coupled activation involved both small-diameter 

nociceptive and large-diameter low-threshold mechanoreceptors (LTMRs). By 

blocking the gap junctions, there were reductions in neuronal coupling activation and 

mechanical hyperalgesia induced by complete Freund adjuvant (CFA) injection (Kim 

et al., 2016).  

Previous findings from our lab showed that the inhibitory neurotransmitter GABA 

played an important role in controlling the peripheral nociceptive transmission (Du et 

al., 2017). Our previous behavioural studies clearly showed that GABA applied locally 

at the level of DRG attenuated pain stimuli in both acute as well as chronic 

constriction injury neuron which were not seen in control groups when GABA was 

replaced with saline (Du et al., 2017). Similarly, stimulation of GABA release in DRG 

via optogenetic and chemogenetic approaches also reduces pain transduction in 

transgenic mice (Du et al., 2017). Thus, our previous experiments have established 

that 1) GABA is released within the DRG in response to stimulation; and 2) GABA 

applied exogenously produces an analgesic effect. However, the mechanism of how 
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GABA released from one neuron gets across to another neuron, which responds to 

its release still remains elusive. Here, we used antibodies accessing either cytosolic 

(N-terminal) or vesicular (C-terminal) VGAT epitopes, to investigate further the 

possible mechanisms of GABAergic transmission in the peripheral primary sensory 

neurons.  

As my IHC finding shows a high co-localisation of VGAT (N-terminal) antibody with a 

synaptic vesicular marker (SV2) in DRG neurons, synaptic vesicles could play a role 

in the storage and release of GABA into the intersomatic junction in the DRG. Thus I 

hypothesized that in DRG neurons, synaptic vesicular-like exocytosis could be at 

least, one of the mechanisms of GABA release. 

To test this hypothesis, I utilised the vesicular domain of VGAT (VGAT-C) epitope 

located on the luminal side of the synaptic vesicle membrane. We incubated live DRG 

neuron cultures with VGAT-C antibody and depolarised them using a high 

concentration of extracellular KCl to induce membrane depolarisation that would lead 

to synaptic vesicle exocytosis. During synaptic vesicle exocytosis, the VGAT-C 

epitope would be exposed to the extracellular environment while the VGAT-N epitope 

would still be enclosed within the neuronal cytoplasm (Figure 4.3). Thus, exocytosis 

would allow VGAT-C antibody uptake while keeping VGAT-N antibody away from 

being able to bind to the cytosolic part of the VGAT. The subsequent labelling of 

VGAT-C antibody with fluorescence marker enabled its visualisation via fluorescence 

microscopy.  
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Figure 4.3 Schematic illustration for VGAT-C antibody uptake by DRG neuron 
during exocytosis.  Live DRG neuron cultures were incubated with VGAT-C 

antibody and depolarised using a high concentration of extracellular KCl to induce 

membrane depolarisation that led to synaptic vesicle exocytosis (ii). During synaptic 

vesicle exocytosis, the VGAT-C epitopes were exposed to the extracellular 

environment while the VGAT-N epitopes were still be enclosed within the neuronal 

cytoplasm. Exocytosis allowed VGAT-C antibody uptake while keeping VGAT-N 

antibody away from being able to bind to the cytosolic part of the VGAT (iii).  
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4.2 Results 

4.2.1 Optimisation of VGAT-C and KCl concentrations for incubation of 
live DRG neurons.  

 

 

Figure 4.4 Optimisation of VGAT-C antibody concentration used for labelling live 
DRG neurons incubated in 100 mM KCl. (A) VGAT-C antibody uptake by live DRG 
neurons incubated with 1:500 VGAT-C antibody showed less marked 
immunofluorescence of DRG neurons compared to (B) VGAT-C antibody 
concentration 1:200. Scale bar 20 µm 

 

Before performing VGAT-C antibody uptake experiment, the working dilution for 

VGAT-C antibody was determined. The DRG neuron cultures were incubated using 

1:500 and 1:200 dilutions. Dilution 1:200 was used by Marten in their experiment on 

cortical GABAergic synapses (Martens et al., 2008). Indeed, clearer cytoplasmic 

staining of VGAT-C was seen using the dilution 1:200 than that using 1:500 (Figure 

4.4), thus the following experiments were performed using 1:200 dilution.  

  

1:500 1:200 

(A) (B) 
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4.2.2 Depolarization-induced uptake of luminal VGAT antibody (VGAT-
C) by live DRG neurons 

 

Figure 4.5 Uptake of VGAT-C and VGAT-N antibodies by live DRG neurons in 
culture. (A) Tonic VGAT-C antibody uptake by non-depolarised neurons; (B) VGAT-
C antibody uptake via high K+ (KCl) (100mM)-induced exocytosis. Incorporated 
antibodies were visualised after fixation and permeabilisation by indirect 
immunofluorescence; (C) VGAT-C antibody uptake by neurons stimulated with high 
KCl in Ca2+-free extracellular solution and (D) absence of VGAT-N (cytoplasmic 
terminal) antibody uptake by depolarised DRG neurons. Scale bar 20 µm. 
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Figure 4.6 Proportion of VGAT-C-positive DRG neurons in VGAT-C antibody 
uptake experiment. The proportion of VGAT-C positive neurons were determined 
for each rat, means per rat were calculated and data presented as mean ± SEM. One 
way ANOVA with Bonferroni correction shows a significant difference in the 
proportion of VGAT-C positive neurons between the depolarized (High-K+) and any 
of the other groups– the non-depolarized (control), depolarized in the absence of 
extracellular Ca2+ (High-K+/Ca2+-free) and the High-K+/N term ab (P<0.0001). N=3, 
n(Control)=98, n(High-K+)=170, n(High-K+/Ca2+-free)=107, and n(High-K+/N term 
ab)=181.  
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Figure 4.5 shows the immunoreactivity of VGAT-C antibody in DRG neurons 

incubated in three different conditions: high KCl extracellular solution, normal 

extracellular solution, and high KCl solution in which extracellular Ca2+ has been 

excluded. We also incubated DRG neurons with the VGAT-N antibody in high KCl 

solution as a negative control group. The cultures were then fixed and subjected to 

secondary antibody staining (Alexaflour 488; see Methods). Almost 80% of DRG 

neurons incubated with VGAT-C antibody in high KCl extracellular solution showed 

VGAT-C antibody immunoreactivity (Figure 4.5 B). Meanwhile DRG neurons 

incubated in both normal extracellular solution and high KCl in Ca2+-free extracellular 

solution showed a much lower proportion of VGAT-C antibody positive neurons 

(Figure 4.5 A and C respectively). Indeed the immunoreactivity of VGAT-C antibody 

in these two groups was significantly lower compared to high KCl group (41 ± 9% and 

23 ± 5% respectively) (Figure 4.6). DRG neurons incubated in anti-VGAT-N antibody 

did not show any immunoreactivity at all (Figure 4.5 D).  
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4.2.3 GABA controls peripheral nociception at the level of DRG–an in 
vivo study 

With help from Mr Hao Han, a PhD student in Xiaona Du’s laboratory (Gamper 

Lab collaborator), I sought to investigate further the GABAergic signalling in DRG by 

performing an extracellular in vivo electrophysiological recording on the spinal nerve 

and the dorsal root of L5 of adult rats with surgically exposed L5 DRG (Figure 4.7). 

This experiment  

Our previous biophysical modelling (Du et al., 2017) and simulations from others (Du 

et al., 2014, Sundt et al., 2015) suggest that the axonal bifurcation (T-junction) within 

sensory ganglia influences the transmission of passing spikes where it filters the 

depolarizing GABAA currents at the somatic/perisomatic level. This filtering effect 

results in AP failure to propagate past the T-junction. Thus this experiment 

hypothesised that GABA released within the DRG contributes to this filtering function 

and inhibits the propagation of action potential from the periphery (spinal nerve) to 

the dorsal root. As action potential propagates from the spinal nerve to the dorsal root 

via DRG, any filtering effect exerted by DRG would be manifested in the difference 

of neuronal firings between the spinal nerve and the dorsal root. This experiment was 

designed to also support the phasic and tonic GABA release observed in the VGAT-

C antibody internalisation (section 4.2.2). In the presence of tonic GABA activity, the 

neuron firing would show lower frequency in the spinal nerve than that in the dorsal 

root. Meanwhile, similar results observed after stimulating the peripheral nerve via 

intraplantar capsaicin injection would support the phasic GABA release and activity. 

We recorded the baseline firing of both dorsal root and spinal nerve which act as 

controls for this experiment. Interestingly, there was a lower nerve firing in the dorsal 

root than that of spinal nerve even before the injection of capsaicin (which acts as 

the baseline) (10.21 ± 5.93 and 17.91 ± 7.80 Hz for dorsal root and spinal nerve, 

respectively) suggesting an inhibitory mechanism that may take place within the DRG 

even at resting conditions. An injection of 10 µM 50 µl capsaicin (a ligand for TRPV1 
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receptor whose activation leads to nerve firing) onto the right hindleg increased the 

neuronal firing rate in the L5 spinal nerve from 17.91 ± 7.80 Hz to 30.12 ± 7.37 Hz 

(n=6, p<0.05) and L5 dorsal root from 10.21 ± 5.93 Hz to 20.38 ± 7.02 Hz (n=6, 

p<0.05) Figure 4.8 (A). The increase in neuronal firing rate of the spinal nerve was 

slightly higher than that of the dorsal root however they were not significantly different 

from each other. Local GABA application 200 µM directly onto exposed L5 DRG 

decreased the frequency of nerve firing of dorsal root fibres from 20.38 ± 7.02 Hz to 

10.61 ± 3.59 Hz (n=6, p<0.05) Figure 4.8 (A). Strikingly, there was no decrease of 

nerve firing on the spinal nerve from 30.12 ± 7.37 Hz to 31.49 ± 7.20 Hz (n=6). This 

result strongly suggests that DRG-applied GABA acts specifically by inhibiting 

propagation of action potential through the ganglion.  

Consistently, when GABAA receptor antagonist, bicuculline 200 µM was applied 

locally onto L5 DRG, the firing frequency increased significantly in the dorsal root 

from 12.89 ± 7.2 Hz to 24.13 ± 9.84 Hz (n=7, p<0.05). Similar to the local application 

of GABA, local application of bicuculline caused no significant changes in spinal 

nerve firing frequency from 27.77 ± 9.17 Hz to 30.71 ± 10.60 Hz (n=7, p<0.05). Figure 

4.8 (B). Taken together, these experiments established that i) tonic activity is present 

in the L5 (sciatic nerve) even in the absence of the peripheral stimulation; ii) this tonic 

activity is filtered at the DRG; and iii) this activity can be increased and decreased via 

GABAA receptor stimulation and inhibition, respectively.  
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Figure 4.7 Surgical exposure of the L5 spinal nerve (left), L5 DRG and the dorsal 
root (right) in an anaesthetized rat (A). Schematic of the electrode placement 
on dorsal root and spinal nerve (B).  
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Figure 4.8 GABA filters peripheral nociception in DRG. Representative data of in 
vivo recordings of L5 spinal nerve and dorsal root: (A-i), at baseline (control) and 
upon application of capsaicin (10 µM, 50 µl); (A-ii) upon application of capsaicin 
followed by GABA (200 µM, 3 µl) and (A-iii) upon application of bicuculline (200 µM, 
3 µl). Hindpaw injection of capsaicin increased firing frequency in both spinal nerve 
and dorsal root branches of the nerve (compared with the basal activity in the upper 
traces). Application of GABA to DRG reduced capsaicin-induced firing frequency in 
the dorsal root but not in the spinal nerve (A-ii). (B) Summary of the recordings shown 
in A. Data were extracted from frequency of neuronal firing recorded on anesthesised 
adult rats at baseline and during applications of 10 µM, 50 µl capsaicin, 200 µM, 3 µl 
GABA and 200 µM, 3 µl bicuculline. Mean neuron firing frequency for each condition; 
control, capsaicin, GABA and bicuculline application was calculated, shown as mean 
± SEM. Intraplantar injection of capsaicin increased neuronal firing on both the spinal 
nerve and dorsal root, while application of GABA on L5 DRG caused significant 
decrease in neuronal firing on L5 dorsal root. Bicuculline application on DRG caused 
significant increase of neuronal firing on dorsal root. Data on application of capsaicin 
and GABA were analysed using one-way ANOVA followed by Bonferroni correction. 
Data on bicuculline application were analysed using Wilcoxon signed rank test. 
(Capsaicin and GABA)=6, N(Bicuculline)=7.  

(B)

A 
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4.3 Discussion 

4.3.1 Tonic and induced GABA release in DRG  

The results from this study suggest several important conclusions. i) There is 

a significant exocytosis of VGAT-positive vesicles, even in the absence of stimulation. 

This ties along well with the results presented in the previous chapter and with 

previously published data (Du et al., 2017). ii) Significantly lower VGAT-C antibody 

uptake in non-depolarised neurons and in neurons pre-treated with Ca2+-free 

solution, as compared to the depolarization in Ca2+-containing solution suggest that 

a significant fraction of vesicular exocytosis indeed was dependant on depolarisation 

and Ca2+ influx into the neurons. iii) Lack of the anti-VGAT-N antibody uptake 

demonstrates the robustness of the assay (note that this antibody stains 

permeabilised DRG neurons well, as evidenced in Chapter 3). 

The present study reveals a potential mechanism of GABA release from the 

primary sensory neuron and its possible physiological significance. Primary sensory 

neurons were previously known to conduct action potentials from the sensory 

receptive field to central terminals without interruption. There was no known 

significant information processing occur therein. However, our recent data show that 

there is a functional GABAergic signalling pathway that is suggested to play a 

significant role in peripheral pain transmission (Du et al., 2017). Here, we investigated 

the mechanisms that may be involved in GABA neurotransmitter transfer within the 

DRG. Our previous results revealed that action potentials from peripheral nerve 

terminals could be attenuated within the DRG. In this chapter I demonstrate that i) 

there is significant somatic exocytosis of VGAT-positive vesicles in cultured DRG 

neurons, which has both spontaneous and induced components; ii) exogenous 

application of GABA to the DRG in vivo specifically reduces firing in the dorsal root 

aspect of the peripheral nerve, having no effect on the spinal nerve aspect; iii) 

inhibition of the endogenous GABAA receptors in DRG in vivo results in the increase 

in the tonic firing rate within the dorsal root, but not in the spinal nerve. This 
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phenomenon could be explained by the action of GABA present within DRG as 

shown by previous results from our lab (Du et al., 2017). The excitatory action of 

bicuculline is especially significant, as it strongly suggests the presence of the GABA 

tone within the DRG. Such GABA tone would explain lower basal firing frequency in 

the dorsal root as compared to the spinal nerve Figure 4.8 (A-i). This is also in 

excellent agreement with the excitatory action of bicuculline in the dorsal root. In 

addition, GABA tone also agrees well with the results of the VGAT-C antibody uptake 

presented earlier in this Chapter. Figure 4.9 shows a summary of the mechanism of 

GABA communication and release within DRG which was responsible for ‘filtering’ 

effect seen as reduced frequency of neuronal firing from the spinal nerve to the dorsal 

root.  

 

Figure 4.9 GABA communication method within DRG. Action potentials are 
propagated from the spinal nerve to the dorsal root via DRG. Within DRG, GABA is 
released via either autocrine (1) and/or paracrine (2) communication, filtering the 
signals from the spinal nerve by reducing the frequency of the neuronal firing on the 
dorsal root. 

 

A significant proportion of cultured DRG neurons showed uptake of VGAT-C antibody 

without being stimulated with high KCl solution, demonstrating that some level of tonic 

exocytosis of potentially GABA-containing vesicles indeed take place. 



132 
 

An additional source of tonic GABA release could be the reversal of GAT1-mediated 

GABA transport, as discussed earlier in this chapter. There are several other proteins 

that could be responsible for the tonic GABA release such as Best1 (Lee et al., 2010) 

and LRRC8 (Lutter et al., 2017). Best1 is an anion channel that is activated by the 

intracellular Ca2+. Lee and colleagues showed that in the Bergmann glial cells, Best1 

was permeable to GABA and that its permeability was independent of intracellular 

Ca2+ concentration as observed in the identical reversal potential of GABA at different 

intracellular Ca2+ concentration measured at -80 mV (Lee et al 2010). In DRG 

neurons, expression of Best1 has been reported, whose expression was upregulated 

during nerve injury which in turn promoted the expression of CaCC (Boudes et al., 

2009). 

Another interesting channel that has been recently reported and associated with the 

flux of GABA is the volume-regulated anion channel (VRAC) (Lutter et al., 2017). 

VRAC is composed of LRRC8 heteromers; the obligatory subunit LRRC8A and at 

least one other LRRC8 isoform (LRRC8B, LRRC8C, LRRC8D or LRRC8E) (Voss et 

al., 2014). Recent evidence demonstrated a significant role of VRAC for transporting 

GABA; VRAC-dependent GABA transport was almost abolished in HEK cells lacking 

single LRRC8 subunits i.e. LRRC8A-/- and LRRC8D-/- (Lutter et al 2017). Preliminary 

immunohistochemical findings from our lab showed a high LRRC8A and LRRC8D 

immunoreactivity in small DRG neurons (unpublished data) which could suggest the 

role of VRAC in transporting GABA therein. 

Despite the presence of spontaneous release possibly responsible for tonic inhibition 

within the DRG, the experiments with the VGAT-C antibody uptake revealed a 

significant activity-dependent component, which is in line with the ‘classical’ synaptic-

like mechanism. These data are also in good agreement with findings previously 

published by us on the activity-dependent release of GABA from DRG detected by 

HPLC and ‘sniffing patch’ experiments (Du et al., 2017). This result is also consistent 
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with earlier studies which showed that the majority of vesicular release in DRG 

neuron somata occurs via CDS (Liu et al., 2011, Zhang and Zhou, 2002). 

Yet, a small proportion of DRG neurons in my experiments took up VGAT-C antibody 

when the DRG culture was depolarized in the absence of extracellular Ca2+. I 

hypothesize that this uptake may correspond to the CiVDS described by Zhuan 

Zhou’s group (Chai et al., 2017). These authors reported that not only the action 

potential opens the voltage-gated Ca2+ channels causing CDS but in addition, it also 

opens voltage-gated N-type Ca2+ channel (Cav2.2) triggering a different pathway of 

transmitter secretion, the CiVDS. They further demonstrated that the Cav2.2 binds 

with SNARE proteins through synprint region on the plasma membrane of DRG 

neurons. Cav2.2 acts as the voltage sensor, SNARE proteins form the vesicle fusion 

pore while synprint works as the linker between the two. Further investigation into the 

contribution of CDS and CiVDS could shed light on the mechanisms of GABA release 

in DRG neurons that play an important role in controlling the peripheral nociceptive 

signalling. 

4.3.2 GABA from DRG neuron modulates pain transmission 

Following experiments on VGAT-C antibody uptake, we sought to investigate 

the role of GABA via extracellular in vivo electrophysiological recording of L5 dorsal 

root and spinal nerve. The L5 DRG was chosen due to its large size and the fact that 

the majority of the sciatic DRG neurons reside in the L4 and L5 DRG despite the 

components of the sciatic nerve in rats reported to range from L3 – L6 (Asato et al., 

2000). During the electrophysiological recording, there was an increase in neuronal 

firing in the dorsal root following capsaicin injection to the rat’s right hindpaw. 

Meanwhile, local GABA application onto the L5 DRG attenuated neuronal firings. 

Local application of GABAA receptor antagonist bicuculline was able to overcome the 

tonic activity of GABA in the DRG resulting in increased neuronal firings from the 

dorsal root. Indeed, the expression of GABAA receptors have been reported not only 
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in DRG but also in the dorsal root and peripheral nerves (Carr et al., 2010, Kingery 

et al., 1988, Liske and Morris, 1994) Thus, the local application of GABA and 

bicuculline on the DRG could dissipate to both the dorsal root and peripheral nerve, 

acting on its receptors. Indeed, the technique used in the present experiment could 

not rule out this possibility. However, only small amount of drugs were used for local 

application which would minimize the dissipation of these drugs to both nerve/root 

fibres and hence minimising the effect of extrasynaptic GABAA receptor activation. 

For future experiments, substituting local application with intra-DRG injection of 

GABA could overcome these biases in the results obtained, confirming (or otherwise) 

the antinociceptive effect of GABA on DRG. 

Based on our previous results and modelling (Du et al., 2017) we hypothesized that 

the action potentials produced at the peripheral nerve endings and travelled within 

the spinal nerve towards DRG are filtered at the T-junctions within the DRG, where 

axons bifurcate to peripheral and central directions. As axonal bifurcation represents 

a low safety point for action potential propagation, some of these action potentials 

may fail to cross over the bifurcation and do not reach the dorsal root and, 

subsequently, the spinal cord. Our in vivo data support these findings, indeed, basal 

firing rates in the dorsal root were consistently lower than those in the spinal nerve. 

We further hypothesize that GABAergic system controls the filtering at the DRG, as 

was suggested by us earlier (Du et al., 2017). Indeed, inhibition of GABAA receptors 

in the DRG equalised the firing rates in spinal nerve and the dorsal root [Figure 4.8 

(A-iii)], an effect equivalent to scaling down the filtering. Moreover, capsaicin-induced 

firing was specifically diminished by the injection of GABA into the DRG in the central, 

but not peripheral aspect of the nerve [Figure 4.8 (A-ii)], an effect equivalent to 

scaling the filtering up.  

These data agree well with our earlier findings, that in vivo DRG application of GABA 

produced antinociceptive effect in acute and chronic pain conditions. Our data are 

also consistent with findings from Obradovic and colleagues (Obradovic et al., 2015). 
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These authors found that DRG neurons of the adult rats preferentially express α2β3γ2 

GABAA subunits (Ma et al., 1993). As the α2 subunit is an important functional subunit, 

Obradovic and colleagues looked into the role of α2 in nociception. In their 

experiment, α2 expression was significantly decreased during nerve injury (2 days 

post-injury) compared to the baseline on the ipsilateral side of the injury. They 

demonstrated that silencing the α2 subunit of GABAA receptors in rat DRG enhanced 

nociception in sciatic nerve crush injury rat model (Obradovic et al., 2015) suggesting 

a major role of this subunit in anti-nociception post-traumatic injury. These authors 

also showed that DRG application of GABA is antinociceptive. 

Data presented in this chapter strongly support the hypotheses that i) GABA is being 

produced and released by the DRG neurons and ii) that endogenous and/or 

exogenous GABA facilitate filtering of the throughput nociceptive conduction through 

the DRG. Yet, we are still largely in the dark in regard to the understanding of how 

neuron-to-neuron communication occurs within the spinal ganglia.  

Studies have shown that there is indeed a degree of information transfer that occurs 

in DRG and that it can be modulated therapeutically, in particular for the treatment of 

chronic pain (Berta et al., 2017). However, the mechanisms that underlie these 

signalling pathways within the DRG still remain elusive. The presence of sandwich 

synapse within DRG has been reported by Rozanski and colleagues which involved 

a communication complex formed by a trimer structure– neuron somata-glial cell-

neuron somata (Rozanski et al., 2013). Yet, even if such a dedicated communication 

device does exist in the DRG, there are still more questions than answers. How does 

GABA cross the glial septum? Could there be a more sophisticated process, whereby 

a ‘presynaptic’ neuron soma releases transmitter-1 to stimulate the glial septum, 

which then releases a transmitter-2 to act on the ‘postsynaptic’ soma? Does phasic 

GABA release play the major role in signal (especially nociceptive) transmission, or 

does it mostly involve tonic release and the subsequent activation of different 

composition of GABAA receptors located at extrasynaptic/perisomatic receptors? 
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These intriguing questions require future research, which should help to better 

understand and hopefully support the new ‘peripheral gating’ phenomena that our 

group has proposed and in the long run, contribute to chronic pain treatment.  

In this chapter, the in vivo electrophysiological recordings have shown that GABAA 

receptors could be the receptor involved in the peripheral GABAergic signalling 

during tonic activity. To support this finding, the next chapter investigates the 

activation of GABAA receptors by GABA released from DRG neurons using a halide 

biosensor. 
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Chapter 5 Tonic GABA release from DRG neuron somata 
activates GABAA receptor on HEK293 cells transfected 

with α1, β2 and γ2 GABAA receptor subunits 

5.1 Introduction 

5.1.1 Tonic and extrasynaptic GABA release by the nervous system 

Phasic release of neurotransmitter in CNS produces rapid transmission of 

information from presynaptic terminals to postsynaptic cells and is the main 

mechanism for neuron-to-neuron communication (Farrant and Nusser, 2005). 

However, neurotransmitters such as GABA that are involved in this rapid 

transmission has also been shown to participate in a slower form of signalling (Mody, 

2001). This slower form of signalling could, therefore, involve tonic activation of 

receptors and may also reach extra-synaptic sites. Tonic current produced by GABA 

has been shown to be directly correlated with phasic current (Glykys and Mody, 

2007b). In CNS, apart from GABAergic synapses, there is another role for GABA in 

neuron-to-neuron communication; termed spillover or volume transmission. These 

terms generally describe phenomena, where GABA escapes from the synaptic cleft 

and activates receptors in extrasynaptic membranes (Brickley et al., 2001), acts 

presynaptically (Trigo et al., 2008), or acts on adjacent synapses (Wei et al., 2003).  

In rat cerebellar granule cells, tonic GABA release has been shown to be important 

to ensure persistent GABA receptor activation (Brickley et al., 1996). These GABA 

receptors were present in the somatic, dendritic and axonal regions of the neuronal 

membrane that were distant from sites of synaptic release (Kullmann et al., 2005). A 

variation of ambient GABA concentration from tens of nanomolar to few micromolar 

has been reported in different regions of the rat brain (Attwell et al., 1993, Kennedy 

et al., 2002, Lerma et al., 1986, Tossman et al., 1986). The different values could be 

due to the different methods used, also regional and temporal variations in 

extracellular GABA concentration in these different studies.  
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It is known that tonic GABA release activates GABAA receptors of different 

compositions than that of phasic release (Mody, 2001). A review on the phasic and 

tonic inhibition of GABAA receptors published in Nature reported that the predominant 

receptor subtypes involved in the phasic synaptic inhibition were the γ2 subunit in 

association with α1, α2 or α3 subunits. Receptors containing α4, α5 and α6 subunits 

were predominantly extrasynaptic which mediate the tonic inhibition (Farrant and 

Nusser, 2005). Of particular importance, the different composition of GABAA receptor 

subunits exhibits different pharmacological characteristics (Luscher et al., 2011). 

Mortensen and colleagues looked into the potency of GABA at different GABAA 

receptor subunits, α1 – α6, by determining the EC50 values from the concentration-

response curve established by measuring whole-cell currents (Mortensen et al., 

2012). Of these six isoforms, GABA displayed the lowest potency at receptors 

containing α2 and α3, followed by α1-, α4- and α5-containing receptors with 

intermediate potency; while the α6 subunit-containing receptors exhibited the highest 

sensitivity to GABA. The sensitivity difference between α2/α3 and α6-subunit-

containing receptors was approximately 80-fold (Mortensen et al., 2012). Meanwhile, 

the sensitivity for β1, β2 and β3 subunits was examined in receptors co-expressing α1 

and γ2 subunits. There was a significant difference in the sensitivity among the three 

isoforms, with 3-containing isoform being the most sensitive to GABA. Of interest, 

the extrasynaptic type GABAA receptors, the α4 and α6-subunit-containing receptors, 

higher potency was exhibited by the α6 consistent with results from earlier studies 

(Brickley et al., 2001, Nusser et al., 1998). 
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5.1.1.1 The extrasynaptic GABA receptors in DRG neurons 

In DRG, studies have shown that GABA-mediated currents in neuron somata 

are dominated by currents from the low-affinity receptors i.e. synaptic receptors, in 

acutely dissociated DRG neurons in vitro (Lee and Gold, 2012, Oyelese et al., 1997, 

Sung et al., 2000). Results from our previous work support these findings. Different 

low affinity receptor subunits– α, β and γ subunits of GABAA receptor were detected 

via RT-PCR, the most abundant subunits found were the α1-2 and γ1-2 (Du et al., 2017), 

in agreement with findings from the literature (Ma et al., 1993, Obradovic et al., 2015, 

Klinger et al., 2015).  Despite the dominance of the low affinity currents in acutely 

dissociated neurons, Lee and colleagues revealed that increase in culture time (24 

hours) caused an upregulation of the high-affinity GABAA receptors in cultured DRG 

neurons, partly mediated by the extrasynaptic δ subunit-containing receptors (Lee et 

al., 2012). In this experiment, also detected in a subpopulation of neurons were the 

increase of ρ2 and ε-subunit mRNA in association with these high-affinity currents 

(Lee et al., 2012). Another study reported the involvement of δ -containing GABAA 

receptors in the analgesic effect of flupirtine in DRG neurons (Klinger et al., 2015). 

Klinger and colleagues investigated the effects of flupirtine, a centrally acting 

analgesic drug, on the native synaptic and extrasynaptic GABAA receptors, and 

revealed that flupirtine was more sensitive to δ-containing GABAA receptors than that 

of γ2, with higher preference for δ subunit in the DRG than that of hippocampus 

(Klinger et al., 2015). Inflammatory mediators such as bradykinin and prostaglandin 

E2 have also been reported to potentiate the high affinity GABAA currents in rat DRG 

neurons (Lee and Gold, 2012). Together, these studies suggest that extrasynaptic 

GABAA receptors are more dominant than that of the synaptic in prolonged culture 

and pathological conditions in DRG neurons.  
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5.1.2 HEK293 cells 

Human Embryonic Kidney 293 cells (HEK cells) are widely used in cell biology 

research to study protein and gene expression including ion channels such as 

GABAA. HEK cells were generated from human embryonic kidney cells which 

underwent transformation with sheared fragments of human adenovirus 5 DNA 

(Ad5); an important technique of transforming human cells using adenovirus made 

by Frank Graham in the early 70s (Graham et al., 1977). HEK cells are widely used 

among electrophysiologists due to several advantages; HEK cells are easy to 

maintain and grow with high reproducibility (Graham et al., 1977), they are also very 

efficient for protein production and are accessible for transfection (Lin et al., 2014, 

Thomas and Smart, 2005). Plasmid vectors introduced into HEK cells effectively take 

control of HEK cells’ protein machineries and force translation of the gene artificially 

incorporated into the plasmid. There are several other advantages of using HEK cells 

in the expression of recombinant neuronal proteins such as recombinant hetero-

oligomeric ion channels; the subunit compositions can be studied in isolation from 

other receptors of the same or different family as being non-neuronal in origin, HEK 

cells do not normally express native neuronal proteins and receptors at high levels.  

HEK cells are theoretically of endothelial, epithelial or fibroblast in origin. However, 

despite showing a low level of expression of native neuronal proteins and receptors, 

several studies have shown the expression of neurophysiological receptors and 

protein subunits detected as protein or mRNA endogenous to HEK cells which could 

interfere with the results of studies conducted. Channels like VGCCs, acid-sensing 

ion channel (ASIC1a), ligand-gated ion channels, GPCR and intracellular regulatory 

receptors have been detected in HEK cells [a review by (Thomas and Smart, 2005)]. 

Few studies have reported the endogenously expressed proteins in HEK cells which 

are summarised in Table 9. Depending on the relative amount of endogenous-

expressed and transiently transfected proteins of the same family and action, these 

endogenously expressed proteins may or may not affect the outcome of the 
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investigation. For example, Schachter and colleagues reported the expression of 

endogenous P2Y1 and P2Y2 receptors in HEK cells (Schachter et al., 1997) which, 

similar to P2X receptors, are activated by ATP, thus using HEK cells is not a suitable 

vehicle to study P2X-receptor-mediated Ca2+ influx (He et al., 2003). Of particular 

interest is the endogenous expression of the β3 subunit of GABAA receptor observed 

in non-transfected WSS-1 cells (HEK cells transformed to stably express α1 and γ2 

GABAA receptor subunits) reported by Davis and colleagues (Davies et al., 2000). 

Using RT-PCR technique, they found that the β3 mRNA was endogenously 

expressed in both WSS and HEK293 cells. As α1 and γ2 subunits do not form 

functional receptor, the GABA-induced currents in both WSS and HEKs-transiently 

transfected with α1 and γ2 subunits was highly suggestive of the presence of β3 

subunits that renders the α1/γ2/β3 subunits assembly functional (Davies et al., 2000). 

However, other studies had not been able to detect the expression of the β3 subunit 

in HEK cells (Taylor et al., 1999, Wooltorton et al., 1997) which could be attributable 

to the specific clone of HEK cells or culture conditions (Fuchs et al., 1995).  
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Table 9 Important neurophysiological receptors or protein subunits detected 
in HEK293 cells.(Thomas and Smart, 2005) 

Ligand-gated G-protein coupled Voltage-gated and othera 

Muscle acetylcholine 
(AChR) δ 

Muscarinic AChR (M3) Potassium channels: 
voltage-gated (Kv(α) 1.1, 
1.2, 1.3, 1.4, 1.6, 3.1, 3.3, 
3.4, 4.1, and Kvβ) and 
calcium-activated SK1 

Nicotinic acetylcholine 
(nAChR): α7 and α5 

Metabotropic (m) GluR: 1β 
and 4 

Sodium channel: BNaC2 
and β1A 

Glutamate (GluR) 3 GABAB R1A Voltage-gated calcium 
channel: α2β, α2δ isoforms I 
and β  

γ-Aminobutyric acid (GABAA 
R): β3, γ3 and ε 

5-Hydroxytryptamine: (5-HT) 
1D, 6, and 7B 

Protein synthesis kinase 

Glycine (GlyR) β Dopamine D2 PKA: catalytic and 
regulatory (R) II subunits 

Acid Sensing Ion Channel Ia  Corticotropin-releasing 
factor 1 (CRF1) 

PKC: α and δ 

Somatostatin type 2 Clathrin light chain α and β 

Bradykinin Synaptotagmin 

Sphingosine-1-phosphate Huntington interacting 
protein (HIP2) 

β2 adrenoceptor 

 

Trp1, 3, 4,6 (mediators of 
store-operated calcium 
entry) 

Purinergic (ATP/ADP) 
receptor P2Y1 and 2 

Ryanodine receptor 

Adenosine A2B  MKα (neurite outgrowth 
promoter) 

 

R: receptor 

a Includes mRNAs usually exclusive to neuronal cells 
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5.1.3 Cl- ion in living cells 

Cl- is the most abundant intracellular anion in living animal cells (Berend et 

al., 2012). The homeostasis of [Cl-]i is crucial for sodium secretion, neurosynaptic 

transmission and cell volume regulation (Powers, 1999). Cl- channel dysfunction has 

been implicated in many diseases such as dystrophia myotonica; a muscular disorder 

caused by DMPK gene mutation (inhibition of the Cl- conductance due to loss of CIC 

1 channel activity), cystic fibrosis; a disorder caused by CFTR gene mutation 

affecting mostly the lungs (defective Cl- transport into the epithelial cells) (Puljak and 

Kilic, 2006) and epilepsy (Cl- accumulation due to intense GABAA receptor activation) 

(Raimondo et al., 2015). The measurement of [Cl-]i could facilitate the diagnosis of 

diseases implicated by its imbalance. Of particular importance, neuronal Cl- 

regulation has been demonstrated to play an important role in pain pathways (Price 

et al., 2009); a depolarising shift of ECl- can contribute to hyperexcitability and an 

increase in nociceptive signalling. Thus, the measurement of neuronal [Cl-]i is 

imperative in understanding the pathophysiology of pain.  

Recent decades have seen the development of different tools used to measure [Cl-]i 

in living cells. Various chemical and genetically encoded biosensors have been 

reported to probe intracellular Cl- levels; of particular interest, fluorescent optical 

sensors have been engineered. Indeed, the fluorescence quenching-based optical 

sensors such as the green fluorescent mutant protein– YFP-H148Q/I152L offer a 

powerful tool for non-invasive monitoring of the anionic conductance via an opened 

channel.  
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5.1.4 Halide biosensor based on the green fluorescent protein 

The green fluorescent protein (GFP) has become a widely used protein in 

biological and medical research. GFP was derived from the jellyfish Aequorea 

Victoria and has the ability to emit green fluorescence when exposed to light in blue 

to ultraviolet range (Remington, 2011). GFP and its variants have been used in a 

wide range of experimental applications as markers for gene expression (Chalfie et 

al., 1994), protein localisation and folding (Feilmeier et al., 2000) and as biosensors 

(Ibraheem and Campbell, 2010).  

The GFP fluorescence is produced by chromophores that undergo covalent 

modifications of three of its amino acids: Ser 65-Tyr 66-Gly 67 (Cody et al., 1993). 

Chromophore is formed via four distinct processes: folding, cyclisation, oxidation and 

dehydration (Craggs, 2009). The building block of chromophore is made up of 11 β-

strands that fold to form a β-barrel. The β-barrel resembles a cylinder of 42 A by 42 

A (Figure 5.1), which is bound at either end by α-helix with chromophore located in 

the central (Craggs, 2009). 

The opportunity to evaluate Cl- fluxes using GFP-based indicators was brought to 

attention when it was discovered that the fluorescence of a mutant GFP; the yellow 

fluorescent protein (YFP) depends on the environment concentration of halogens; 

the higher the halide concentration, the dimmer is YFP fluorescence observed 

(Wachter and Remington, 1999). YFP was engineered via four-point mutations of 

GFP: S65G, V68L, S72A, T203Y. YFP sensitivity towards halides was further 

improved by mutations at H148Q and I152L (Galietta et al., 2001). Mutations at 

H148Q and I152L yield highly fluorescent protein with higher binding affinity to 

halides (Wachter et al., 2000). Activation of anion channels allows flux of halides such 

as I-,NO3
-, Br- and Cl- into cells transiently transfected with EYFP H148Q/I152L 

protein, which quench and reduce the EYFP fluorescence. A simultaneous 

transfection of YFP H148Q/I152L with anion-permeable ion channels yields a high 

degree of co-expression thus enabling optical measurement of anion channel 
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activation (Kruger et al., 2005). The high co-expression of the mutant YFP 

H148Q/I152L with ion channels is a major advantage; when used as a biosensor for 

GABAA receptor activation, the need to use a stable cell line which requires a longer 

time to be produced can be overcome.  

In this experiment, I hypothesised that GABA released from DRG neurons bind to 

GABAA receptors leading to activation and opening of this Cl- channel. As GABAA 

receptor is permeable to l- (Robertson, 1989), I investigated the activation of GABAA 

receptor by studying the movement of I- that goes through it. In this experiment, I 

utilised the genetically modified green fluorescence mutant protein EYFP 

H148Q/I152L which has the ability to bind to small anions leading to its fluorescence 

quenching. I transiently co-expressed EYFP H148Q/l152L with α1, β2 and γ2 subunits 

of GABAA receptors into HEK cells to study GABAA receptor channel activity through 

l- influx. As the binding affinity of anions to EYFP-H148Q/I152L showed anion 

sensitivity sequence I->NO3
->Br->Cl- (Galietta et al., 2001), and that the I- 

concentration in mammalian cells is negligible thus I used extracellular NaI to study 

the activity of GABAA ion channel. The movement of I- was observed by measuring 

the quenching of EYFP H148Q/l152L in HEK cells transiently transfected with EYFP 

H148Q/I152L and α1, β2 and γ2 subunits of GABAA receptors after exposure to NaI 

bath solution. The aim of the experiments discussed in this chapter was to use HEK 

cells transfected with GABAA receptors and EYFP-H148Q/I152L as ‘indicator cells’ 

for detection of GABA release from the cultured DRG neurons. 
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Figure 5.1 The tertiary structure of avGFP: Carbon atoms are shown in white, 
nitrogen in blue and oxygen in red. The N- and C- termini are coloured red and blue, 
respectively. (a) The β-barrel fold with the chromophore depicted as space-filled 
spheres. (b) The view from the top of the barrel, showing the chromophore and the 
catalytically important residues R96 and E222 (Craggs, 2009).  
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5.2 Results 

5.2.1 GABA is released tonically by DRG neuron somata in culture 

Previous results from our group showed that GABA was released by DRG 

neuron somata upon exposure to depolarising agents i.e. elevated K+ level, 

bradykinin, capsaicin, ATP (Du et al., 2017). Sniffer patch-clamp recordings from 

HEKGABAA cells which were juxtaposed with small DRG neurons in co-culture 

showed robust inward current from HEKGABAA indicator cells in response to 

stimulation of the adjacent DRG neurons with capsaicin. While patch-clamp 

electrophysiology is considered the ‘gold standard’ for studying ion channels, it is 

often limited in throughput. Thus we employed an EYFP H148Q/l152L fluorescence 

assay to study GABAA receptor activity. The rationale for the experiment was as 

follows: if DRG neurons release GABA, then such GABA release can produce the 

opening of GABAA channels in co-cultured ‘indicator’ HEK cells. If the measurement 

is performed in the presence of extracellular NaI, then I- influx through the activated 

GABAA channels would produce quenching of the EYFP H148Q/l152L fluorescence 

in the indicator cells, hence, the quenching of the fluorescence in the indicator cells 

could be used as a measure of the GABA release from DRG.  
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Figure 5.2 A schematic of EYFP H148Q/l152L quenching in HEKGABAA-DRG co-culture 

system.GABA released from DRG neuron binds to GABAA receptor on HEKGABAA cell. 
This binding leads to activation and opening of GABAA receptor allowing I- and Cl- to 
enter the HEKGABAA cell, quenching the EYFP fluorescence. (HEKGABAA indicator cell: 
HEK cells transiently transfected with EYFP H148Q/I152L and GABAA receptor 
subunits α1, β2 and γ2).  



149 
 

Prior to performing HEK cells – DRG neurons co-culture, we first transfected HEK 

cells with an I--sensitive EYFP mutant (H148Q/l152L) and the α1, β2, and γ2 GABAA 

receptor subunits (these transfected HEK cells will be referred to hereafter as 

‘HEKGABAA indicator cells’). I- has been reported to be the most potent halide for EYFP 

quenching (Galietta et al., 2001), thus we used extracellular solution supplemented 

with 5 mM NaI to study the GABAA receptor activity. Using the appropriate I- 

concentration is very important in determining the activity of agonist studied as high 

I- concentration can produce agonist-independent quenching of the EYFP 

(Johansson et al., 2013, Jin et al., 2013). While establishing YFP-based assay to 

measure GABAA ion channel activity, Johansson and colleagues showed that 5 mM 

and 10 mM NaI generated minimal basal quench while 20 mM and 40 mM NaI 

showed a significant agonist-independent YFP fluorescence quench (Johansson et 

al., 2013). Thus 5 mM NaI was chosen as the I- concentration used in this study. 

Application of 5 mM NaI to HEK cells transfected with EYFP H148Q/l152L but not 

the α1, β2, and γ2 GABAA receptor subunits (these transfected HEK cells will be 

referred to hereafter as ‘HEK indicator cells’), produced a small rundown of EYFP 

H148Q/l152L fluorescence, amounting to 0.8 ± 0.16% quenching over 100 sec 

(Figure 5.3); we consider this value as agonist–independent quenching due to 

background anion conductance. Application of a potent and selective GABAA agonist 

muscimol to HEK indicator cells resulted in EYFP H148Q/l152L fluorescence 

quenching, indistinguishable from the agonist-independent quenching (1.8 ± 0.2% 

over 100 sec; Figure 5.4). In contrast, application of muscimol to HEKGABAA indicator 

cells resulted in significantly stronger quenching (14 ± 2.4% over 100 sec; Figure 

5.5). This experiment validated the optical detection of GABAA receptor activation in 

HEKGABAA indicator cells; additionally, it also confirmed the absence of measurable 

endogenous GABAA conductance in HEK indicator cells. Based on our previous 

experiments with Ca2+-activated Cl- channels (Jin et al., 2013), quenching of EYFP 
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upon 10 µM muscimol perfusion by ≥10% was regarded as the benchmark for 

successful transfection.  

In the next experiment, we co-cultured HEKGABAA indicator cells with DRG neurons 

(hereafter will be referred to as ‘HEKGABAA-DRG co-culture’) from preweaner rats (5-

11 days old). We then attempted to induce GABA release from DRG using 

depolarizing extracellular solution containing 50 mM KCl (50 mM KCl). In these 

experiments, 5 mM NaI was perfused for 30 sec prior to perfusion of 50 mM KCl in 

the presence of 5 mM extracellular NaI to enable I- to reach optimum concentration 

upon GABAA receptor activation. During this experiment, indeed, a robust EYFP 

fluorescence quenching was observed suggesting the presence of GABA in this co-

culture system (quenching by 26 ± 3.8% over 100 sec; Figure 5.6). However 

interestingly, we also observed that the robust EYFP fluorescence quenching in 

HEKGABAA-DRG co-culture started immediately with the onset of the 5 mM NaI 

perfusion. To confirm whether the presence of NaI alone could cause EYFP 

fluorescence quenching in these conditions, we perfused the HEKGABAA-DRG co-

culture with only 5 mM NaI and surprisingly, a robust EYFP fluorescence quenching 

was produced (quenching by 36.63 ± 2% over 100 sec; Figure 5.7). The EYFP 

fluorescence quenching in the HEKGABAA-DRG co-culture in the presence of 5 mM 

NaI and 50 mM KCl was similar to that in the presence of 5 mM NaI only. These 

results hint at the presence of ambient GABA in the HEKGABAA-DRG co-culture. 

Indeed, a tonically released GABA could induce ‘leak’ of I- into the HEKGABAA indicator 

cells even in the absence of stimulation. 
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Figure 5.3 Mean EYFP H148Q/l152L quenching of HEK cells transfected with 
EYFP H148Q/l152L only but not GABAA receptors, in response to 5 mM NaI. 
Data are shown as mean ± SEM (3 biological replicates, n=19).*Where error bars are 
not seen, they are shorter than the symbols used to plot the EYFP fluorescence.  
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Figure 5.4 Mean EYFP H148Q/l152L quenching of HEK cells transfected with 
EYFP H148Q/l152L only but not GABAA receptors, in response to 10 µM 
muscimol. Data are shown as mean ± SEM (3 biological replicates, n=17).*Where 
error bars are not seen, they are shorter than the symbols used to plot the EYFP 
fluorescence.  
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Figure 5.5 Mean EYFP H148Q/l152L quenching of HEKGABAA indicator cells in 
response to 10 µM muscimol.Data are shown as mean ± SEM (3 biological 
replicates, n=16).*Where error bars are not seen, they are shorter than the symbols 
used to plot the EYFP fluorescence. 
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Figure 5.6 Mean EYFP H148Q/l152L quenching in response to 50 mM KCl in 
HEKGABAA-DRG co-culture. EYFP quenching was observed during NaI 5 mM-only 
perfusion, before perfusion of 50 mM KCl to induce GABA release. Data are shown 
as mean ± SEM (3 biological replicates, N=3, n=8).*Where error bars are not seen, 
they are shorter than the symbols used to plot the EYFP fluorescence. 
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Figure 5.7 Representative trace of EYFP H148Q/l152L quenching in HEKGABAA-
DRG co-culture perfused with 5 mM NaI. (3 independent experiments, N=3, n=23). 

 

 

                              

            Before 5 mM NaI perfusion     After 2-min of 5 mM NaI perfusion 

Figure 5.8 Images of EYFP quenching upon perfusion of 5 mM NaI in HEKGABAA-
DRG co-culture.   
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5.2.2 Spontaneous quenching of EYFP-transfected HEKGABAA 
indicator cells in the presence of DRG neurons was blocked by 
GABA antagonist.  

As strong EYFP fluorescence quenching was observed in HEKGABAA-DRG co-

culture even in the absence of stimulation of the latter, we sought to confirm that 

GABAA receptors were indeed involved in the l- influx that led to EYFP fluorescence 

quenching. To achieve this objective, HEKGABAA-DRG co-cultures were perfused with 

either 5 mM NaI solution or in 5 mM NaI + 50 µM bicuculline, a competitive GABAA 

receptor antagonist. Perfusing the HEKGABAA-DRG co-cultures with bicuculline should 

block GABAA receptor producing lower EYFP fluorescence quenching compared with 

the control group. Indeed that was the case; when the co-cultures were perfused with 

5 mM NaI + 50 µM bicuculline, the EYFP fluorescence quenching was halved 

(compared to that in the presence of NaI alone; Figure 5.7). We also analysed the 

kinetics of EYFP fluorescence quenching in the presence and in the absence of 

bicuculline. We analysed the time constants (tau, Ƭ) generated from exponential 

decay of the EYFP fluorescence quenching in HEKGABAA-DRG co-cultures after 

perfusion with 5 mM NaI without or with bicuculline; these Ƭ values were 62.42 ± 5.86 

sec (5 mM NaI alone; n=23) vs. 98.47 ± 8.24 sec (5 mM NaI + 50 mM bicuculline; 

n=52; P<0.05, Mann Whitney U test). These results strongly suggest that the GABAA 

receptors in the HEKGABAA indicator cells are indeed tonically active in the presence 

of DRG neuron culture.  

Figure 5.10 summarises the mean EYFP fluorescence quenching from three 

different conditions: i) the HEKGABAA indicator cells alone perfused with 5 mM NaI 

only; ii) HEKGABAA-DRG co-culture perfused with 5 mM NaI only and iii) HEKGABAA-

DRG co-culture perfused with 5 mM NaI and 50 µM bicuculline. Kruskal Wallis 

ANOVA demonstrated a significant difference of EYFP fluorescence quenching 

between all groups. Data obtained from these experiments suggest that DRG 

neurons release GABA via tonic activity which in turn is able to activate α1β2γ2 
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subunits of GABAA receptors as indicated by the EYFP fluorescence quenching in 

HEKGABAA indicator cells.  
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Figure 5.9 EYFP quenching of HEKGABAA indicator cells in the presence or 
absence of GABAA antagonist bicuculline. (A) Representative traces of EYFP 
(H148/152L) in HEKGABAA indicator cells after exposure to either 5 mM NaI or 5 mM 
NaI+50 µM bicuculline. (B) Mean time constant (Ƭ) of EYFP quenching in the 
presence of NaI alone (n=23) or NaI+bicuculline (n=52). Data were analysed by 
calculating the mean EYFP H148Q/I152L fluorescence decay (Ƭ) of HEK cells per 
rat and per transfection for HEK cell-DRG neuron co-cultures (one transfection 
represents one biological replicate). Data are shown as mean ± SEM. Data were 
analysed using Mann-Whitney U test (P<0.05). (N=3, biological replicate=3). 

(B) 

(A) 
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Figure 5.10 Summary of EYFP quenching in three different groups. (A) 
Representative traces from three group of cells tested: i) HEKGABAA indicator cells in 
monoculture perfused with 5 mM NaI only; ii) HEKGABAA indicator cells-DRG co-
culture perfused with 5 mM NaI only; iii) HEKGABAA cells-DRG co-culture perfused with 
5 mM NaI + 50 µM bicuculline. (B) EYFP fluorescence intensity were analysed by 
calculating the mean EYFP H148Q/I152L fluorescence intensity of HEK cells per 
transfection (one transfection represents one biological replicate) and per rat and 
transfection for HEK cell-DRG neuron co-cultures. Data are presented as mean ± 
SEM. EYFP fluorescence intensity was significantly different among the three groups 
(Kruskal wallis ANOVA, p<0.05), [N=3, biological replicate=3, n(control)=37, 
n(NaI)=23, n(NaI+Bic)=52]. 
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5.3 Discussion 

5.3.1 Endogenous Cl- ion channel expressed in HEK cells 

As mentioned in a previous chapter, there are other anion channels that serve 

as a passage for Cl- to move into and out of the cells. These anion channels could 

be responsible for the minimal EYFP quenching observed in HEKGABAA indicator cells 

single culture, where DRG neurons being the source for GABA were absent. Of 

particular interest are the ion channels that were reported to be endogenously 

expressed in HEK cells, glycine receptors (Thomas and Smart, 2005). However, 

without its specific ligand, the glycine neurotransmitter binding to the receptor to open 

the ion channel, it is very unlikely that Cl- flux could occur in the co-culture system in 

this experiment. NKCC1 co-transporters which mediate the coupled movement of 

Na+, K+ and Cl- into most mammalian cells are also endogenously expressed in HEK 

cells (Isenring et al., 1998). However, they demonstrate a significantly lower affinity 

for the cations than that expressed in other mammalian cells. Despite the low affinity 

to cations, they could also contribute to the minimal EYFP quenching of HEKGABAA 

indicator cells (Isenring et al., 1998). 

Nonetheless, spontaneous openings in the absence of agonist have been observed 

in a few cases with native receptors (Jackson, 1994), although it is more commonly 

seen in some mutants. Indeed spontaneous opening of glycine receptor has been 

reported in D97R α1 glycine receptor mutant in the presence of ethanol and volatile 

anaesthetics (enflurane and chloroform). Other endogenous HEK cells’ Cl- channels 

have also been indicated by Zhu and colleagues (Zhu et al., 1998). Via patch-clamp, 

they found five outward Cl- currents that were all voltage-dependent, Ca2+-

independent but otherwise were distinct from each other in terms of channel 

properties and voltage sensitivities (Zhu et al., 1998). Volume-regulated anion 

channels (VRACs), another class of Cl- channels have also been reported to be 

endogenous to HEK cells (Helix et al., 2003) and thus, may contribute to background 

activity in this experiment.  
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5.3.2 Spontaneous activation of GABAA receptor  

GABA is a major inhibitory neurotransmitter in the CNS. Many studies of 

GABAA channels have been conducted on the primary sensory neurons, however, 

whether GABA could also be an inhibitory neurotransmitter therein still remains 

poorly understood with few recent studies pointing to such a possibility (Du et al., 

2017, Hanack et al., 2015, Obradovic et al., 2015). In this study, we report a robust 

iodide uptake by the HEKGABAA indicator cells in the presence but not in the absence 

of co-cultured DRG cells; this uptake was sensitive to GABAA inhibitor, bicuculline. 

These results suggest the presence of ambient GABA within the co-culture 

environment. Indeed, GABA is the most common agonist to activate GABAA 

receptors on HEKGABAA cells. However, it is worth to note that GABA receptors can 

also undergo spontaneous activation as shown by (Birnir et al., 2000) and (O’Neill 

and Sylantyev, 2018). Birnir and colleagues found that 48% of the cell-attached 

patches on pyramidal neurons in the CA1 region of rat hippocampus were the 

spontaneously opening Cl- channels; whose opening was inhibited by bicuculline and 

enhanced by diazepine; these results further concluded that these spontaneously 

opening Cl- channels were GABAA receptors (Birnir et al., 2000). O’Neill and 

Sylantyev demonstrated that in the dentate gyrus when the extracellular 

concentration of GABA was matched to the ambient levels measured in vivo, the 

majority (~90%) of tonic inhibition occurred due to spontaneously opening GABAA 

receptors (s-GABAARs) (O’Neill and Sylantyev, 2018). They distinguished the 

spontaneously-opening GABAA receptors from the conventional GABAA receptors as 

having shorter average open-time and lower opening probability albeit similar in their 

conductance. As s-GABAARs do not require binding of GABA to enter an active state, 

they are resistant to block by GABA competitive antagonist [SR-95531 (SR)] but can 

be inhibited by an open-channel blocker, picrotoxin. These authors used the 

differences in the mechanism of action of SR [a GABA competitive antagonist 

(McCartney et al., 2007)] and picrotoxin (open-channel blocker) to distinguish 
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between GABA-dependent and GABA-independent effects of GABAA receptors 

activation (O’Neill and Sylantyev, 2018). Briefly, SR abolished GABAA receptor 

activity induced by GABA binding i.e blocking the conventional GABA-dependent 

GABAA receptor activation while picrotoxin bound to the inside (intracellular region) 

of the GABAA receptor channel blocking all GABAA receptor channels that entered 

active state; thus applying SR+picrotoxin blocked both the activation of conventional 

GABAA receptors and spontaneously-opening GABAA receptors as demonstrated in 

their study (O’Neill and Sylantyev, 2018). While spontaneous activity of GABAA 

receptors in the HEKGABAA indicator cells cannot be excluded, the notion that the I- 

uptake was dramatically enhanced in the presence of HEKGABAA-DRG co-culture still 

indicates that it is the presence of the DRG-derived cells, that stimulates the 

exogenous GABAA channel activity in the HEKGABAA indicator cells with the release of 

GABA from DRG neurons being the most simple explanation. 

5.3.3 DBI as potential endogenous GABAA receptor activator 

It is also worth to note that GABA is not the only endogenous compound that 

can activate GABAA receptors. The endogenous GABAA positive and negative 

modulators have been described in a previous chapter. Of particular interest, the 

diazepam binding inhibitor (DBI), is a small protein of 10 kD that binds to the 

benzodiazepine binding site of the GABAA receptor. DBI has been reported to be 

endogenously expressed in both central and peripheral nervous system; of particular 

interest is the expression of DBI in the satellite glia in the DRG (Karchewski et al., 

2004). Expression of DBI has also been reported in the brain and spinal cord.  

A more recent report on DBI expression and effects on neural stem cells showed that 

DBI interacts with GABA by inhibiting GABA feedback signalling in subventricular 

zone (SVZ) thereby promoting neurogenesis in the niche (Dumitru et al., 2017). Even 

though the exact mechanism of DBI action on GABAA channels is currently poorly 

understood, the release of DBI from satellite glia could also be considered as a 
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mechanism for GABAA receptor activation in this HEKGABAA-DRG co-culture system. 

Immunohistochemical findings from our lab demonstrated that DBI was expressed in 

SGC but not in DRG neurons (unpublished data), which could suggest the 

involvement of this protein in modulating nociception at the level of DRG. Thus, 

targeting DBI for future experiment could help to confirm or to rule out the involvement 

of this protein in this DRG GABAergic signalling system.  

5.3.4 Use of preweaner rat in co-culture system 

5.3.4.1 Chloride homeostasis during development 

As mentioned in the previous chapter, [Cl-]i changes from developmental 

period to adulthood. In neonatal rat brain, it has been demonstrated that [Cl-]i  was 

high and only decreased significantly at the end of the first month of life (Frederikse 

and Kasinathan, 2015, He et al., 2014, Zhang et al., 2006). However, [Cl-]i in the PNS 

is maintained above electrochemical gradient irrespective of their phenotypes and 

postnatal ages (Mao et al., 2012). The persistence of NKCC1 expression with the 

lack of expression of KCC2 in DRG neurons irrespective of postnatal age, explain 

why, unlike CNS neurons, DRG neurons do not exhibit [Cl-]i  shift (Mao et al., 2012). 

Thus, studying Cl- flux using preweaner rats should demonstrate similar results to 

that using adult rats. In this experiment, DRG neurons were extracted from 

preweaner rats (5 – 11 days old) for the HEK cell-DRG neuron co-culture. However, 

it is worth to note that this experiment looked into the activity of GABAA receptors 

transiently transfected in HEK293 cells, where DRG neurons served as the source 

for GABA. Thus, the influx of Cl- into HEKGABAA indicator cells was independent of the 

ECl
- of the DRG neurons. The absence of [Cl-]i changes during development (in 

rodents) could be useful for future potential experiments when investigating the 

activity of GABAA receptors in DRG neurons.  

Understanding GABAergic signalling within DRG neurons would be more interesting 

and affirmative if recording the activity of GABAA receptors on DRG neuron could be 
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performed with overexpressed EYFP H148Q/I152L. This indeed was our initial 

aspiration, however, due to a very low transfection efficiency of post-mitotic neurons 

in culture (Ohki et al., 2001) including DRG, these experiments were unsuccessful. 

5.3.4.2 Use of preweaner rats 

Prewener rats were chosen over adult rats as they provide a better quality of 

DRG culture, and that culturing adult neuron requires trophic factors for neuron 

survival (Brewer, 1997). Although the use of growth factors such as NGF and BDNF 

in neuron culture enhance axonal regeneration growth of adult sensory neuron 

(Gnavi et al., 2018, Santos et al., 2016, Yasuda et al., 1990), these trophic factors 

such as BDNF interferes with GABAergic signalling pathway (Kim et al., 2017b, Xiao 

and Le, 2016); BDNF acts via trkB receptor which inhibits phosphorylation of GABA 

receptor (Jovanovic et al., 2004) reducing its conductance (Rivera et al., 2002). Thus, 

only preweaner rats were used for experiments involving DRG neuron culture.  
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Chapter 6 General Discussion  

6.1 The role GABAergic mechanisms in peripheral nociceptive 
signalling  

The discovery of GABA and its signalling mechanisms was made more than 

half a century ago. However, despite being a major inhibitory neurotransmitter in the 

CNS where it balances and controls the temporal fidelity of excitatory transmissions, 

its inhibitory role in PNS is only beginning to emerge. Our recent findings (including 

these presented in this thesis) demonstrate that GABA and its production, packaging 

and release machineries (i.e. GAD65 and GAD67, GABA transporters and VGAT) 

are present in the DRG. Moreover, we found a hitherto underappreciated role of 

GABA in controlling peripheral nociception; this was demonstrated by both in vivo 

and in vitro experiments conducted in rodents and HEK cells respectively. Together, 

our previous results (Du et al., 2017) showed that the nociceptive transmission could 

be gated more peripherally at the level of DRG before it reached the spinal cord. 

Thus, this thesis continued to explore the GABAergic signalling at the level of DRG. 

In Chapter 3 I explored the nature of GABAergic neurons in DRG using 

immunohistochemistry, I then focused on the mechanisms of GABA release that 

might be responsible for the resulting inhibition of the nociceptive transmission to the 

spinal cord and the higher centres together with a more direct in vivo evidence for 

the GABAergic gating at the DRG. I also sought after the involvement and activation 

of GABAA receptor by the released GABA from DRG neurons. The first objective was 

achieved via investigating the VGAT expression and its co-localisation with several 

neuronal markers in the DRG neurons (Chapter 3).The second objective was 

achieved via the investigation of the VGAT-positive vesicle exocytosis and by 

extracellular in vivo sensory nerve fibre recordings in adult rats (Chapter 4); and the 
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third objective was achieved via the fluorescence biosensor imaging of HEKGABAA 

indicator cells (Chapter 5).  

In summary, we found that i) the intracellular GABA transporter VGAT was expressed 

in more than half of the small and medium diameter, nociceptive DRG neurons, ii) 

VGAT was highly co-expressed with SV2, iii) Ca2+-dependant vesicular release 

played a major role in GABA release in DRG neurons, iv) both tonic and phasic GABA 

release occurred in DRG neurons and, v) inhibition of the propagation of action 

potentials by both ambient and stimulated release of GABA was mediated by GABAA 

receptors. Figure 6.1 depicts the schematics of protocols and findings from the 

immunohistochemistry, vesicular VGAT antibody uptake, halide sensor imaging and 

extracellular in vivo sensory nerve fibre recordings in adult rats from the present study 

supporting the findings from our previous published work.  
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 Figure 6.1 Mechanisms of GABA release and signalling in DRG neurons. 
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6.2 Synaptic-like vesicular release plays a crucial role in the 
mechanism of GABA release in DRG neurons 

Neurons communicate with each other via electrical and chemical release of 

neurotransmitters into synaptic junction. Most neurotransmitters are released into the 

extracellular milieu via synaptic vesicular exocytosis. In agreement with Chaudhry 

and colleagues who investigated the expression of VGAT in association with synaptic 

vesicles in adult rat CNS (Chaudhry et al., 1998), the co-localisation of VGAT-N with 

the synaptic vesicle marker SV2 in the present study showed high co-expression of 

these two proteins in the DRG neuron somata. This finding suggests the important 

role of synaptic vesicles-like structure in the mechanism of GABA release in DRG 

neurons. It is assumed that the main neurotransmitter produced and released by the 

DRG neurons is glutamate (Wanaka et al., 1987), some subpopulations of DRG 

neurons also release peptide neurotransmitters, such as substance P and CGRP 

(Keast and Stephensen, 2000). The main site of the release of these 

neurotransmitters is the first synapse within the dorsal spinal cord. Neuropeptides 

are also released peripherally at the nerve ending areas in the skin and viscera in 

response to depolarization during a phenomenon called ‘neurogenic inflammation’ 

(Richardson and Vasko, 2002). Some DRG neurons also release ATP and this could 

happen both at the spinal synapses (Sawynok and Liu, 2003) and at the somatic level 

(Matsuka et al., 2008). All the above mentioned neurotransmitters are excitatory. Yet, 

accumulating evidence suggests that inhibitory neurotransmitters, such as GABA 

and glycine are also being produced by the DRG (Du et al., 2017, Rozanski et al., 

2013, Schlösser et al., 2015). However how and where these are released by the 

peripheral neurons remain poorly understood. 

The uptake of VGAT-C antibody by the live DRG neuron somata revealed that both 

phasic (activity-dependent) and tonic exocytosis of VGAT-positive vesicles can be 

detected; the exocytosis of VGAT-positive vesicles could be responsible for liberating 
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GABA into the extracellular milieu. Previous experiments that utilised VGAT-C were 

performed on different cellular targets in the brain (Chaudhry et al., 1998, Martens et 

al., 2008). This experiment is, to my knowledge, the first study to utilise VGAT-C to 

investigate the neurotransmitter vesicle exocytosis in DRG neuron somata. Our 

previous work has demonstrated that GABA was released from DRG neurons with a 

functional role in controlling the peripheral nociceptive signalling. Thus the current 

method suggests that GABA is released, at least partly via vesicular mechanism, 

similar to synaptic release.  

Synaptic vesicular release of neurotransmitter requires calcium transient which in 

turn is dependent on the arrival of action potential and depolarisation of the neuronal 

membrane. However, results from the present study also found a subpopulation of 

DRG neurons that showed VGAT-C antibody uptake in the absence of Ca2+. 

Electrophysiological investigations on adult rats by Zhuan Zhou group also revealed 

that Ca2+-independent neurotransmitter secretion occurred in subpopulations of DRG 

neurons and that this bona fide release mechanism involved three major 

components: the Cav2.2 channel that functions as the voltage sensor, SNARE 

complex as the fusion pore and synprint as the linker that links voltage sensor with 

the fusion pore (Chai et al., 2017).  

6.3 Potential non-vesicular release of GABA via channel-like 
mechanism  

Neurotransmitters can be liberated from neurons not only via exocytic release 

from synaptic vesicle but also through channel-like mechanisms including connexin 

hemichannels and pannexins (Montero and Orellana, 2015), P2X7 receptors (Duan 

et al., 2003), bestrophins (Lee et al., 2010) and the volume-regulated anion channels 

(VRAC) (Kimelberg et al., 1990, Pasantes-Morales et al., 1994). Of particular interest 

is the VRAC which comprises heteromers with LRRC8A being the obligatory subunit, 

and any of at least one of the other isoforms (LRRC8B, LRRC8C, LRRC8D and 
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LRRC8E) (Voss et al., 2014). Although an earlier study showed no clear evidence for 

VRAC-dependent transport of GABA (Franco et al., 2001), a recent finding by Lutter 

and colleagues who investigated properties of VRAC subunits in HEK293 cells 

revealed that LRRC8 was involved in the transport of both inhibitory and excitatory 

neurotransmitters including GABA, with LRRC8D being the most permeable to GABA 

amongst the LRRC8 family (Lutter et al., 2017). Interestingly, preliminary results from 

our lab showed that VRAC isomers LRRC8A and LRRC8D are expressed in rat DRG 

neurons, with more than 50% co-localisation of LRRC8D with TRPV1. This co-

localisation suggests that LRRC8D is expressed in subpopulation of TRPV1-positive 

nociceptors of primary sensory neurons which although is not directly indicative of its 

involvement in releasing GABA from DRG, could shed light to its role in nociception. 

This hypothesis requires further investigation. 

6.4 Potential other GABAergic mechanisms in DRG neurons 

The released GABA neurotransmitter binds to GABAA receptors which in turn 

can be modulated by positive and negative modulators. Benzodiazepine is one of the 

positive modulators that bind to extracellular domain of the GABAA receptor, between 

α and γ subunits. DBI, a 10 kD endogenous polypeptide that was discovered in the 

80s, but physiological function of which remains largely unknown, has the ability to 

displace diazepam from its binding domain on the GABAA receptors and was 

suggested to play a role of ‘endogenous benzodiazepine’ in CNS (Christian et al., 

2013). DBI has been shown to have a role in modulating nociception in both the 

peripheral (spinal cord) and CNS– an intrathecal injection and intracerebroventricular 

administration of DBI have been shown to increase hindpaw withdrawal latency 

(HWL) in adult rats (Wang et al., 2002). However, co-administration of DBI with GABA 

did not influence the increase in HWL in both spinal cord and brain (Wang et al., 

2002) which suggests a non-GABA related antinociceptive effect of DBI in the CNS. 
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The function of DBI in PNS is currently unknown, but DBI mRNA has been shown to 

be highly expressed in the non-neuronal cells of the DRG (Karchewski et al., 2004). 

Recent findings from our lab (unpublished) are also in agreement with this; DBI is 

highly expressed in SGC surrounding DRG neuronal somata thus could be a 

candidate for GABAA receptor activator or modulator.  

In the present study, GABAA receptor activation was observed during a co-culture of 

indicator HEKGABAA cells and DRG cells (neurons and glia). The activation was 

registered by a bicuculine-sensitive iodide influx, via the quenching of halide-

sensitive EYFP fluorescence. We interpreted this signal as evidence of GABAA 

receptor activation, presumably by a release of GABA from the DRG neurons present 

in co-culture, which is a logical assumption, given the wealth of other evidence 

pointing to GABA release from DRG. Yet, activation of GABAA receptors could have 

been produced by other neuromodulators existing in the co-culture system, e.g. by 

DBI released from the satellite glia.  

The role of GABAB receptors in peripheral nociceptive signalling is also worth 

mention. Although in the CNS, the discovery of GABAB receptor was made decades 

after the discovery of GABAA receptors, the use of GABAB receptor agonists as 

therapeutic agents in the treatment of nervous system disorders preceded the use of 

GABAA-related compounds. The GABAB receptor agonist baclofen, is used to treat 

plasticity in the multiple sclerosis (Smail et al., 2006) and spinal cord injury (Loubser 

et al., 1991), as well as chronic pain associated with spinal cord injury (Cardenas and 

Jensen, 2006) and trigeminal neuralgia (Chole et al., 2007). In light of the use of 

baclofen in the treatment for chronic pain, our previous study also tested the effect of 

local application of baclofen on bradykinin-induced nocifensive behaviour in rat DRG. 

Our findings showed that baclofen did reduce the nocifensive behaviour however, it 

was significantly less than that of GABA (Du et al., 2017). A study on the interaction 

of GABAB and TRPV1 receptors in transgenic mice also revealed that under 
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physiological condition, GABA limited TRPV1 mediated hyperalgesia (Hanack et al., 

2015). Results from the present study are in agreement with these findings; neuronal 

firings caused by injection of capsaicin, a ligand for TRPV1 receptor, into the hindpaw 

of adult rat was attenuated by a local GABA application onto DRG.  

6.5 The role of GABA in the progress of pain 

Results from our previous study revealed that stimulation of GABA system in 

rat DRG relieved both acute and chronic pain (Du et al., 2017). In the mature CNS 

GABA acts as an inhibitory neurotransmitter, where activation of GABAA receptor 

results in inhibition of the generation of action potentials due to Cl- influx-mediated 

hyperpolarization. Due to the different expression of Cl- transporters NKCC1 and 

KCC2 in the brain than that in DRG, activation of GABAA receptor in DRG causes Cl- 

efflux and depolarisation of the neuronal membrane. Moreover, release of 

inflammatory mediators such as NGF, bradykinin and PGE2 further increased 

intracellular Cl- concentration corresponded to the increase in NKCC1 

phosphorylation (Funk et al., 2008). Thus activation of GABAA receptors during 

inflammation is likely to cause even greater Cl- efflux and depolarisation.  

How can we reconcile GABA-induced depolarization of the neuronal membrane with 

antinociceptive (hence inhibitory) action of GABA in the periphery? Studies in rat 

sensory neurons suggested that GABA-induced depolarisation promoted the 

inactivation of voltage-gated Na+ channels (Price et al., 2009), activation of K+ 

channels (Zhu et al., 2012) and neuronal membrane shunting (Price et al., 2009) 

resulting in decreased glutamate release hampering the nociceptive signalling to the 

second order neuron within the dorsal horn of the spinal cord.  

Our recent study (Du et al. 2017) suggests that similar mechanism of GABAergic 

inhibition could exist in the DRG, but with a twist: we have suggested that in the DRG, 

the main inhibitory action of GABA occurs at the site of axonal bifurcation (T-junction), 
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a point where neurite emanating from the DRG somata splits into the peripheral and 

central branches. This T-junction has intrinsically low safety factor for action potential 

propagation (Sundt et al., 2015) due to reduced impedance at the branching point 

and, thus, naturally lands itself into a filtering mechanism for the action potential 

passing from the periphery to the dorsal root. Here, DRG somata is likely to provide 

a voluminous source of GABA while the T-junction is likely to be responsible for the 

AP failure which occurs upon activation of GABAA receptor. In the presence of painful 

stimulation, AP is generated and propagated from the periphery towards the spinal 

cord. Our previous findings showed that this AP gets filtered at the T-junction 

resulting in AP failure. 

During chronic pain conditions, several mechanisms of reduced GABAergic 

signalling have been reported in rodent’s peripheral sensory neuron (Moore et al., 

2002, Obradovic et al., 2015) and human thalamus (Henderson et al., 2013). In nerve 

injury rat models, the loss of inhibition could be due to the down-regulation of GAD65 

and GAD67 enzymes, essential for the synthesis of GABA (Kami et al., 2016, Moore 

et al., 2002) or a decrease in the expression of the α2 subunit (Obradovic et al., 2015) 

which is abundantly present in DRG neurons (Ma et al., 1993). Together, findings 

from these studies highlighted the important role GABAergic machinery plays during 

acute and chronic pain conditions, providing new avenues for the treatment of chronic 

pain.  

6.6 GABAergic signalling in peripheral nociceptive pathway: 
future hope for pain management 

Our pioneer publication on the functional GABAergic nociceptive signalling in 

primary sensory neurons has shed light on the nociception gating system that could 

be modulated more locally and peripherally at the level of DRG. Over the years, the 

treatment for chronic pain has evolved from general administration of drugs to a more 

localised drug application. The focus on more localised drug delivery ensures a more 
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precise management of chronic pain which minimises the side effects of generally 

administered drugs.  

The management of chronic pain requires a multidisciplinary approach. This includes 

psychological, physiological, pharmacological as well as non-pharmacological 

treatment that will ensure a holistic management and better prognosis of pain 

improvement. The pharmacological component by itself is crucial especially in giving 

an immediate relief or at least lessening the pain a patient is suffering from. Thus it 

is imperative to develop drugs that could target and give therapeutic relief more 

locally for a more immediate pain relief. Due to the increasing number of individuals 

suffering from chronic pain worldwide, and the multifaceted problems it poses 

specifically to the patient and generally to the society and the government, it is of 

urgent need that a better treatment is developed and made accessible.  

Pharmacological treatment targeting DRG is not new, a review by Krames (Krames, 

2015) on targeting DRG for pain relief reported different techniques that have been 

targeted on the DRG to treat chronic pain: transforaminal epidural steroid injection 

for the treatment of lumbosacral neuropathy, pulse radiofrequency for spinal pain, 

ganglionectomy for occipital neuralgia and neuromodulation for chronic neuropathic 

pain (Krames, 2015). Except for the pain that comes from the orofacial region (which 

information relays in the trigeminal ganglion), DRG is the relay centre for almost all 

sources of pain: the cutaneous, visceral, muscular and the joint-related pains. Thus 

targeting DRG for the treatment of chronic pain would be of utmost relevance for this 

purpose. Providing more evidences via further investigations involving species of 

higher taxonomic hierarchy would further confirm this promising potential of GABA in 

the treatment of chronic pain.  

Several GABA-related targets could be considered for therapeutic interventions at 

the DRG level. Thus, GAT1 inhibitor (tiagabine) which is used to treat epilepsy, has 

been shown to inhibit excitatory neurotransmitter release in the spinal cord via a 
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GABAergic mechanisms exerting antinociceptive effect at the spinal cord level 

(Daemen et al., 2008, Smith et al., 2007). Another GABAergic machinery that could 

be targeted to treat chronic pain is VGAT. In the present study, VGAT has been 

shown to be expressed in DRG neurons suggesting its role in GABAergic signalling 

in the peripheral nociceptive pathway. In our previous and the present studies, VGAT 

level was not assessed during acute and chronic pain conditions. However, VGAT 

has been shown to decrease in different animal models of epilepsy. Investigating 

VGAT level in different pain conditions could be useful in determining its significance 

in chronic pain which if proven, could be a candidate for therapeutic target for this 

condition. Different targets within the GABAergic signalling pathway with potential 

therapeutic benefit are shown in Figure 6.2.  
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Figure 6.2 Three potential therapeutic targets within GABAergic signalling 
pathway in DRG neuron. The inhibitory action of GABA in DRG could be potentially 
enhanced by increasing GABA concentration in the extracellular environment, which 
could be achieved in three ways; (1) by increasing the activities of GAD65 and 
GAD67, the enzymes for GABA synthesis, (2) by increasing the activity of VGAT, the 
transporter that transports synthesised GABA into the synaptic vesicle, or (3) by 
inhibiting GAT1, a GABA transporter which removes GABA from the extracellular 
environment.  
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6.7 Experimental problems, alternative strategies and future 
directions 

6.7.1 Iodide binding assay to evaluate GABA release and binding 

The result for the somatic GABA release were conducted on a culture system 

with GABAA receptor subunits (α1, β2 and γ2) transfected into HEK cells to simulate 

the in vivo DRG environment. The results of these study could be made more 

accurate by accessing and recording responses directly from the DRG neurons. 

Attempts to transfect DRG neurons with fluorescent protein using different methods; 

nucleofection method using Amaxa™ Rat Neuron Nucleofector™ Kit and BacMam 

system (transforming Premo™ Halide Sensor into DRG using baculovirus) had come 

to no avail. The failure could be due to the vulnerability of DRG neurons; when 

transfecting the DRG neurons using electroporation method, very few cells survived 

(less than 3/coverslips) and even those neurons with successful transfection were 

only weakly fluorescent and displayed significant rundown of fluorescence, making 

them unsuitable for accurate measurements. Similar difficulties were experienced 

with BacMam delivery system albeit to a lesser degree. BacMam-mediated gene 

delivery system reported by Levin and colleagues (Levin et al., 2016) was reported 

to produce high transduction efficiency (~80%) in both juvenile and adult rat neurons, 

however our lab could not obtain similar results using a similar gene delivery system 

(Premo™ Halide Sensor #P10229, Thermo Fisher Scientific, Life technologies 

Corporation, Oregon, USA). Our low transduction efficiency could be due to the 

different BacMam preparation used. Levin and colleagues generated the 

recombinant baculovirus, and its titres were determined before transducing it into 

DRG neurons (Levin et al., 2016). In my experiment, a readymade BacMam gene 

delivery system was used; thus the baculovirus titre could not be determined before 

performing the transduction. Thus, my failure of obtaining high transduction efficiency 

could be attributed to low baculovirus titre used for the gene delivery into the DRG 

neurons. The fact that the DRG neurons are post-mitotic cells also imposes a 
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challenge during the transfection as even if a neuron is successfully transfected with 

an exogenous cDNA, the number of transfected cells will not increase during 

incubation. Increasing the number of DRG neurons for every transfection could be 

one of the ways that could be considered when using this transfection method.  

6.7.2 Different composition of GABAA receptor subunits 

In iodide binding assay, α1β2γ2 combination of GABAA receptor subunits was 

chosen to study the GABAA receptor activation. This combination is indeed the most 

common GABAA receptor subunit composition found in the brain (Sieghart and Sperk, 

2002). As our previous work on sniffer patch-clamp used this combination, we used 

the same subunit combination to ensure the data obtained was comparable to the 

findings from previous work. However it has been reported that the α2β3γ2 subunit 

composition is preferentially expressed in rat DRG neurons (Ma et al., 1993), thus, in 

order to better mimic the DRG responses, different indicator HEK cells 

overexpressing α2β3γ2 subunits can be used in the future. A study comparing kinetics 

between the α1 and α2 subunits on HEK cells demonstrated that α2-containing 

receptors open twice as fast, with the current decay six to seven times slower than 

that of α1-containing receptors (Lavoie et al., 1997). Silencing α2 subunit of GABAA 

receptors in rat DRG has also been shown to effectively ameliorate neuropathic pain 

in sciatic-crush-pain model (Obradovic et al., 2015). Thus, comparing the kinetics of 

these α1 and α2 subunits in DRG neurons could be helpful and important in targeting 

a potent GABAA subunit with promising therapeutic benefit. 

  



177 
 

 

6.7.3 In vivo electrophysiological recordings 

In this thesis, the in vivo recording involved anaesthetising the rat with 

pentobarbital via intraperitoneal injection to allow for the humane surgical exposure 

to be carried out on the rats. While this method provides ‘no or less pain’ to the rats, 

it could also affect the GABAergic signalling. As mentioned in a previous chapter, 

depending on its concentration, pentobarbital can potentiate, activate or block GABAA 

receptors (Muroi et al., 2009). Thus, the responses elicited from the in vivo recordings 

could be contributed by the pentobarbital injected intraperitoneally to achieve 

anaesthesia. To avoid the use of anaesthesia, the electrophysiological recordings 

could be carried out on a decerebrate animal. In decerebrate animal, the cerebrum 

is removed thus the animal is free from pain and distress (Silverman et al., 2005) 

avoiding the use of anaesthesia.  

6.7.4 Single fibre recording using microneurography  

The electrophysiological in vivo recordings conducted in the current project 

were obtained from the whole dorsal root and spinal nerve fibres. Thus the neuronal 

firings recorded were a combination of currents travelling via different types of 

somatosensory fibres; both A and C fibres. In this respect, microneurography allows 

an in vivo recordings of single-unit action potentials from different types of myelinated 

and unmyelinated nerve fibres. Using this method, prolonged simultaneous 

recordings can be performed on several functional fibres such as the C fibres (Serra 

et al., 2010). Data obtained from those recordings could be used to evaluate the 

effect of drug treatments in physiological and pathophysiological conditions.  

6.7.5 GABAergic signalling in chronic pain conditions 

In this thesis, experiments on GABA were done on acute inflammatory pain 

conditions. While acute pain is a physiological body response to noxious stimuli and 

gradually resolves within several days as the injured tissue heals, chronic pain goes 
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beyond the normally expected course relative to the stimulus. Thus it is imperative to 

also evaluate the effect of GABA on chronic pain conditions. Performing the in vivo 

electrophysiological recording on a chronic pain model such as chronic constriction 

injury and CFA could determine and support our previous work and results in the 

current thesis on the role of GABA in chronic pain.  

6.7.6 Potential therapeutic targeting 

The current thesis only focuses on the nociceptive fibres in DRG. Yet it is well 

known that DRG contain not only nociceptive fibres, but also others carrying 

sensations for noxious heat and noxious cold, innocuous mechanical and 

proprioception. Whilst the results in this thesis further support the role of GABA in 

controlling nociception at the DRG level, the effect of GABA on fibres carrying the 

other sensory modalities still remains elusive. As mentioned earlier in Chapter 1, the 

different sensory modalities such as touch and proprioception carried by primary 

afferent fibres can be gratifying and help the body to ‘communicate’ with the external 

environment. Thus, it is crucial to ensure that the action of GABA is nociception-

specific and not compromising the other sensory modalities carried by their 

respective sensory fibres that are present in the DRG. Further investigations are 

deemed important to determine and rule out the effect of GABA on other sensory 

modalities before its antinociceptive action can therapeutically be benefited.  
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