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Thesis Abstract: 

 
Singlet fission is the process by which a singlet exciton splits into two ‘free’ triplet excitons. 

This was the definition of singlet fission up to the last few years when advances in the 

understanding of singlet fission in acene and heteroacene materials sparked a change in 

nomenclature in the field. Techniques such as electron paramagnetic resonance 

spectroscopy have allowed researchers to improve the understanding of singlet fission by 

visualizing the intermediate states in the singlet fission process. Currently in acene 

literature, it is common for the initial step of a singlet exciton converting to a singlet 

character triplet-pair state to be considered singlet fission. This change has interesting 

ramifications when it is applied to polyenes, another class of singlet fission material, where 

internal conversion from the absorbing state is thought to occur to a singlet state of triplet-

pair character. We contribute to the above discussion by investigating the intermediate 

triplet-pair states in three systems using innovative techniques.  

We start by investigating the well-studied TIPS-tetracene system using strong light-matter 

coupling to manipulate the character of the intermediate states. The results here point to a 

whole field of research, manipulating state energies and radiative character to enhance 

triplet-fed emission. In Chapters 5 and 6 we investigate the question posed above by 

studying two polyene systems. First, we measure a series of oligo(thienylene-vinylenes) 

which allow us to study the conjugation length dependence of singlet fission. Then in the 

final chapter we use an exciting new design philosophy of man-made proteins to form 

carotenoid aggregates. Through this chapter we are able to show experimental evidence for 

the triplet-pair nature of the 2Ag
- singlet state in polyenes. Furthermore, we find the 
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surprising result that singlet fission is incredibly robust in carotenoid aggregates being 

invariant with protein environment and intramolecular structure. We finish by discussing 

the implications of the results presented here and point to possible future avenues to 

further demystify the decay processes of singlet fission materials. 
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1. Introduction 
 

As energy consumption continues to rise year on year (2.3% in 2018), we still produce nearly 80% of 

our energy from fossil fuels1. Without significant change, global temperatures are reaching 

dangerous highs. Already some parts of the world have experienced a temperature rise of 1.5oC 

from 1880 to 2019, with significant environmental changes such as draughts and floods2. Clearly it is 

of huge importance for us to create clean and sustainable energy in the near future to avoid 

catastrophe2. While renewable energy production grew by 4.4% last year1, it’s a slow process, with a 

small proportion of the produced energy each year coming from renewable energies (~10%1). It has 

been argued that the most promising renewable technology is solar cells3.  

Silicon solar cell technology is the most prominent, with a substantial drop in cost, 8-1$/Watt4, and 

rise in power conversion efficiency, 5-23%4, over the last 25 years. To continue to improve, new 

design philosophies are emerging to overcome the intrinsic Shockley-Queisser limit on power 

conversion efficiency defined as ୭୲ୟ୪ ୭୮୲୧ୡୟ୪ ୮୭୵ୣ୰ ୧୬

ୌୟ୰୴ୣୱ୲ୣୢ ୮୭୵ୣ୰ ୭୳୲
 of 33%5. The major limiting factor in the 

harvesting process is the thermalisation of energy absorbed above the band gap. As a result, 

methods to sensitise silicon cells to improve the range of absorbed wavelengths are being 

investigated. One possible route for improving light harvesting is the inclusion of a singlet fission 

active layer on top of a silicon cell6–8. Singlet fission converts a spin-0 singlet electron-hole excitation 

to two spin-1 triplet electron-hole excitations9,10. Sharing the energy between two lower energy 

excitations reduces loss from thermalisation. Calculations suggest the increased light harvesting 

could lead to a new maximum power conversion efficiency of ~44%11.  

Since including singlet fission materials in solar cells was proposed, there have been many studies 

into the process. The majority of these studies have revolved around two polyacenes materials, 

tetracene12–14 and pentacene15–17. Using these molecules singlet fission has been successfully 

incorporated in a device with over a 100% external quantum efficiency (୬୭.  ୡ୦ୟ୰ୣ ୡୟ୰୰୧ୣ୰ୱ ୡ୭୪୪ୣୡ୲ୣୢ

୬୭.  ୧୬ୡ୧ୢୣ୬୲ ୮୦୭୲୭୬ୱ
)8. 
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Despite this success there are still significant gaps in the knowledge base, which require further 

investigation.  

The first issue concerns the harvesting of the triplets created via singlet fission. As the triplets are 

produced on adjacent molecules, and in an overall singlet character triplet-pair state, recombination 

back to the parent singlet state can be efficient14,18,19. Interestingly, recently it was reported that 

despite this recombination channel, both triplets can be harvested sequentially without 

recombination20. However, the mechanism that allows sequential transfer of the triplets without 

recombination is unclear20. Another possibility for triplet harvesting is 2-electron transfer which 

could potentially allow both triplets of the pair to be extracted simultaneously21. Regardless of the 

progress made in harvesting triplets, a more fundamental issue in the field is the lack of ideal singlet 

fission materials. 

As we stated above, singlet fission studies have mostly concerned only two molecules. While 

pentacene undergoes fast and efficient singlet fission (~80fs, 200%)17, the yield and rate vary over 

orders of magnitude between different sample structures22. As such, we must widen the range of 

material systems being investigated. In recent years alternative systems have begun to be studied 

including carotenoid aggregates23–26, polyene-like polymers27–30 and the zethrenes31. Throughout 

these systems a common thread is the importance of the intermediate triplet-pair states. New 

techniques such as electron paramagnetic resonance have allowed for a clearer picture than has 

ever been attainable before.  The prominence and importance of this topic is evidenced by 5 review 

articles, all discussing triplet-pair character states in singlet fission materials, which have been 

published in the last year32–36. Herein we investigate these triplet-pair states in three molecular 

systems. 

We start by discussing the background required to understand the studies in Chapter 4, 5 and 6. 

Chapter 2 addresses organic semiconductors, their interaction with light and eventually the singlet 

fission process. In Chapter 3 we discuss the sample preparation and measurement techniques used 
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throughout the remaining chapters. As each chapter addresses different molecular systems and 

sample structures, we postpone discussion of chapter-specific techniques and molecules till the 

individual chapters. 

In Chapter 4 we investigate how triplet-pair states behave in a microcavity in which a photon 

trapped within the cavity strong-couples to the singlet exciton. In order to probe the behaviour of 

these states, we measure delayed (triplet-fed) polariton emission from the microcavities. In so-

doing, we study the properties and dynamics of (TT) states in a variety of small-molecule systems 

(TIPS-tetracene, DPA: PtPOEP, DPP, INDP). We demonstrate that long-lived high-spin states can 

populate the lower polariton branch, resulting in long-lived delayed emission. 

In Chapter 5 we investigate a series of oligomers (oligo(thienylene-vinylene)) originally synthesised 

for solar cell applications. There is continued debate as to the electronic nature of these 

molecules27,37,38, including to which class of molecules they belong. In the dimer it has been shown 

that intersystem crossing produces triplets, with no sign of ‘dark’ symmetry forbidden states. 

Meanwhile for the polymer, it has been shown that singlet fission occurs with clear evidence of the 

symmetry forbidden 2Ag
- state of polyenes. We investigate a series of oligomers from dimer to 

octamer forming a conjugation length dependence that bridges the gap between the dimer and the 

polymer. We confirm that the OTVs can be described as polyenes before investigating the 

conjugation length dependence of triplet production. 

In Chapter 6 we turn to carotenoids, a polyene molecular class, known for their photo-protective 

role in photosynthetic proteins. While the polyacenes are well studied, relatively few studies have 

investigated singlet fission in these molecules. We start by addressing a long-standing debate32,36,39 

in the literature surrounding which states are relevant to the photophysics of carotenoids. We then 

confirm the triplet-pair nature of the 2Ag
- state, before moving to carotenoid aggregates bound to 

synthetic proteins to establish the effect of protein environment and intramolecular structure on the 

singlet fission process. 
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Finally, in Chapter 7 we discuss the current nomenclature surrounding triplet-pair states and the 

singlet fission process. We summarise the contribution this thesis gives to this debate before 

concluding with some possible avenues for further research. 
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2. Theory and Background 

2.1 π-Conjugated Organic Molecules 

The topic of this chapter is π-conjugated molecules, also known as organic semiconductors, and their 

interaction with light. Organic semiconductors are defined as molecules containing carbon, that 

absorb light in the visible wavelength region40. We start the chapter with molecular orbitals and 

their interaction with light. We then move to the experimental and theoretical background of singlet 

fission. The aim is to build all the necessary knowledge to understand the investigations into singlet 

fission in Chapters 4,5 and 6. A full treatment of the underlying concepts within this chapter is out of 

the scope of this text but for those interested we recommend Barford for a physics viewpoint and 

Turro for a chemistry representation41,42.    

2.1.1 Molecular Orbitals 

In the following section we wish to build a picture of the molecular orbitals within a conjugated 

organic semiconductor. We start by considering the electron configurations of a single carbon 

atom40. The carbon atom has 6 electrons associated with s and p atomic orbitals40. In orbital 

notation; 1s22s22px
12py

12pz
0 meaning 2 electrons in the 1s and 2s orbitals, 1 electron in the px and py 

and none in the pz
40. If an electron is promoted from the 2s to the pz orbital, there are four unpaired 

electrons available to form covalent bonds40. For carbon the binding energy gained for creating 

these bonds is larger than the energy required to populate the pz orbital40. Thus, when a carbon 

atom is incorporated into a molecule the occupation of the atomic orbitals changes to 

1s22s12px
12py

12pz
1, minimizing the energy of the system40–42.  

When another atom such as hydrogen or carbon binds with the carbon atom the 2s orbital 

hybridizes with the p orbitals forming one of three hybridisation states: 2sp (as in linear molecules, 

such as acetylene), 2sp2 (as in planar molecules, such as those discussed here) or 2sp3 (as in 3D 

molecules, such as methane)42. It should be noted that the superscript corresponds to the number of 
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p orbitals involved in the hybridisation with the 2s orbital, not the number of electrons40. Here, we 

are interested in 2sp2 hybridisation as is found in the molecules studied within this thesis. In the 2sp2 

orbital the three constituent orbitals separate by 120 degrees due to electrostatic repulsion with the 

remaining orbital (pz) being perpendicular to the molecular plane40 (Figure 2.1a). To illustrate the 

result of 2sp2 hybridisation we consider a simple molecule, butadiene, which is formed of 4 carbon 

atoms and 6 hydrogen atoms, shown in Figure 2.1b40–42.  

 

 

Figure 2.1: Atomic orbitals of carbon and the molecular orbitals of butadiene. (a) 2sp2 hybridized carbon 
atom, for each orbital only the large lobe is shown for simplicity. (b) Black dots are carbon atoms while grey 
dots represent hydrogen atoms (H). The molecular orbtials/bonds are presented by ovals between the dots. 
Blue shading represents σ orbitals which are in the plane of the molecule, while red shading represents π 
orbitals that are perpendicular to the molecule (out of/into the page), and delocalised over the whole carbon 
chain. 

 

When the carbon/hydrogen atoms of butadiene are brought into close approach the atomic orbitals 

of the individual atoms combine to form new shared orbitals called molecular orbitals. In order to 

understand the newly formed molecular orbitals we employ the approximation that they can be 

described by a linear combination of the atomic orbitals (ψଵ ± ψଶ)40–42 (LCAO-method). The addition 

of the atomic orbitals can be seen as a constructive interference of the charge densities of the 

atomic orbitals, while the subtraction is a destructive interference40. For addition of the orbitals, the 

increased electron density screens the coulomb repulsion between the positive nuclei, stabilising the 

system and forming bonds (bonding orbitals). For subtraction, the electron density between the 

atoms is reduced, increasing coulomb repulsion between the positive nuclei40,41. The stronger 
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coulomb repulsion destabilises the system, weakening the inter-atom bonds, hence the name anti-

bonding orbitals. In a simple view, the energy difference in the system between population of the 

bonding or anti-bonding orbitals is proportional to the overlap of the two atomic orbitals. This leads 

to a profound effect when we consider the different combinations of atomic orbitals in butadiene40–

42. 

First, we consider the 3 2sp2 hybrid orbitals of the carbon atoms which form molecular orbitals with 

s orbital-like electron density, in a cylinder around the molecular axis. As the charge density is found 

in between the carbon atoms, an addition of the atomic orbitals leads to a large stabilisation energy. 

Thus, the so called σ orbitals are responsible for the strong bonds that hold the molecule together. 

In symmetry with the bonding orbitals, the anti-bonding σ* orbitals cause a large de-stabilisation of 

the molecular framework. To populate the anti-bonding orbital, and break the strong σ bonds a large 

perturbation is required on the order of 10eV40–42.  

With the 2sp2 orbitals paired, only the unpaired electrons in the pz orbitals of each carbon atom 

remain. The electrons in the pz orbitals delocalise, no longer belonging to a single carbon atom. 

Instead the electrons delocalise over n carbon atoms, which is referred to as the effective 

conjugation length. The delocalised electrons are known as π orbitals (or π-conjugation) and have p 

orbital-like electron density only above and below the molecular axis40. Formation of π bonds 

hinders rotation around the molecular axis causing the molecule to be more planar. The charge 

density overlap for π bonds is low and they contribute relatively little to the bonding of the carbon 

atoms. This results in only a small perturbation being required to change the occupation of these 

orbitals (2-3eV) 40–42.  

With the orbitals identified we now turn to the occupation of these orbitals, still in the butadiene 

molecule. While the method of combining the atomic orbitals yields a good approximation for 

understanding chemical bonding, for large molecules, calculations become computationally 

demanding. To reduce the complexity of calculations, while retaining accuracy, we treat the π and σ 
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orbitals separately; this is known as the Hückel approximation40. The convenient separation of 

energy scales for π and σ bonds makes this and other π-electron models accurate approximations. 

As with the π-electron models discussed later, we now omit σ orbitals from our state diagrams40–42. 

In Figure 2.2 we show a schematic of the chemical structure of butadiene. Butadiene is comprised of 

4 carbon atoms and so has 4 electrons that delocalise over the carbon chain. In a simple view the 

conjugation can be considered a sum of the individual π orbitals, with one orbital and electron per 

carbon atom (Figure 2.2b). The total energy of these orbitals is proportional to the spatial second 

derivative of the molecular wavefunction, thus the energy ordering of the orbitals is proportional to 

the number of nodes in the wavefunction42. Here a node refers to a point in the chain where the 

spatial wavefunction changes phase from positive to negative40,41. The number of nodes also 

changes the wavefunction’s parity, that being an even or odd number of nodes. An even or odd 

number of nodes leads to a symmetric or antisymmetric wave function respectively40,41. Symmetry 

has a profound effect when light is introduced to the system, discussed later in Section 2.2. 

With the relevant orbitals placed in energy order we now occupy these orbitals with the 4 

delocalised π electrons. The Aufbau principle states that in the ground state, low energy orbitals 

must be filled before the high energy orbitals are occupied41. Each orbital can contain two paired 

electrons, meaning the two lowest energy orbitals are populated (bonding) leaving the anti-bonding 

orbitals (higher energy) empty. As stated above, for π orbitals the charge overlap is low and so only a 

small perturbation is required to promote an electron from the highest occupied molecular orbital 

(HOMO), to the lowest unoccupied molecular orbital (LUMO). As these orbitals are responsible for 

the light absorption characteristics of the molecule, they are known as frontier orbitals40–42. We will 

return to the interaction of molecular systems with light in Section 2.2. 
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Figure 2.2: Atomic orbitals of butadiene. (a) Chemical structure of butadiene, H = hydrogen, C = carbon, Black 
lines = bonds (b) Approximate relative energy levels of the π orbitals. To the right are representations of the 
orbital wavefunction of the π-electrons for each π orbital. Red dotted lines indicate a node in the wave 
functon. As the energy is increased so is the number of nodes causing an alternation in symmetry. The shaded 
and unshaded orbitals represent the phase of the wavefunction with a switch from positive to negative for 
each node.  

 

It is important to make the distinction between the orbitals discussed above and states, which we 

probe experimentally40–42. In order to describe the full energy states of a molecule we must include 

the kinetic energy of the π electrons, along with the potential energy from electron-electron 

interactions, electron-nuclear interactions, and nuclear-nuclear interactions. To solve this 

analytically is almost impossible for all but the simplest one electron systems. As such to build states, 

researchers construct one-electron wavefunctions, taking account of the other factors as a collective 

background field. However, this omits electron-electron interactions and in some systems can cause 

large deviations from experimental observations. We will see later the effect electron-electron 

interactions have on highly electron correlated molecules such as polyenes in Section 2.4.540. 
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2.1.2 Excitons 

 

There are several conventions on how to describe the change in orbital occupation however the 

most common is the exciton40. In a simplistic view, when the electron is promoted from the HOMO 

to the LUMO, a hole is left were the electron once was40. A hole is thought of as having the same 

characteristics as an electron but with a positive charge40,41. This creates a coulombic attraction 

between the electron and hole, the two together make a neutral quasi-particle termed an 

exciton40,41. To fully describe an exciton in a medium we must include two components of the 

wavefunction42,43. In short, the exciton is described by two length scales and associated 

wavefunctions with the total wavefunction equal to ψ୬(r)ψ(R). ψ(R) represents the centre of 

mass wavefunction which is related to the delocalisation of the exciton. Delocalisation can be 

thought of as the distance over which you may find the exciton within a lattice of sites, and so is 

related to the probability density of finding the particle on a lattice site. The second term, 𝜓(r), is 

the electron-hole separation wavefunction which describes the relative motion and distance 

between the electron and hole of the exciton. To illustrate this model we consider two generalised 

cases of high dielectric constant (inorganic materials) and low dielectric constant (organics 

materials)42. 

The dielectric constant represents the ratio of the permittivity of a medium and the permittivity of 

free space. As a result, a large dielectric constant leads to a smaller electric flux for a given charge 

than a small dielectric constant40. For inorganic molecules their large dielectric constants (𝜀~10) 

screen the coulomb attraction between the electron and hole. Thus, there is a relatively small 

binding energy between the electron and hole on the order of 10s of meV40. In this regime, coulomb 

interactions between molecules allow electrons and holes to move freely between sites. As such, 

excitation entails a transition of an electron from the valence band, to the conduction band and is 

not associated with any individual site/atom. However, at low temperature and in some inorganic 

materials exciting below the valence to conduction band transition yields an electron-hole 
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excitation. The electron and hole are loosely bound but sit far apart (large exciton radius) and move 

freely in the material40, these excitons are termed Wannier-Mott excitons (Shown in Figure 2.3a). 

In organic materials the dielectric constants are low (𝜀~2-4), leading to a large coulombic attraction 

between the electron and hole. The large coulombic attraction leads to large binding energies from 

0.1-1eV40,42. Additionally, intermolecular interactions between sites are through weak van der waals 

forces not coulombic force (discussed further in Section 2.3). The higher binding energies and lower 

intermolecular interactions lead to a small exciton radius with electron hole separation on the scale 

of one molecule. However, despite the small exciton radius, it is possible for Frenkel excitons to 

delocalise with delocalisation lengths on the scale of 10 sites in some molecules44. This type of 

exciton is called a Frenkel exciton, shown in Figure 2.3b40,42.  

A third type of exciton commonly encountered is also localised but has the electron and hole on 

separate molecules. These are known as charge-transfer excitons, shown in Figure 2.3c. Throughout 

this thesis we use the term excitons when discussing organic molecules. For simplicity, unless 

explicitly named, we are referring to Frenkel excitons40,42.  

 

Figure 2.3: Toy model of exciton excitations. Cartoon depiction of the three types of exciton discussed in the 
text. Each black point represents a site. (a) Wannier-Mott exciton with electron and hole separated by many 
sites. (b) Frenkel exciton with electron hole separation on the order of a single molecule (c) Charge-transfer 
Frenkel exciton with the electron and hole sitting on adjacent molecules. 
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2.1.3 Spin States 
 

A final consideration for this model is the spin state of the excitation. As the excitation is 

fundamentally a two particle state, interactions between the spins of these particles must be taken 

into account, known as exchange coupling40,41. The spins of these two particles can either be aligned 

anti-parallel or parallel giving singlet and triplet spin states respectively. There are several possible 

combinations that yield these states defined by their Ms value, which is the projection of their 

absolute spin (S) in the Z axis41. When the spins are aligned anti-parallel there is a single combination 

with overall spin S=0, Ms = 0, labelled a singlet (multiplicity of one) 40,41. For parallel there are three 

possible combinations yielding an overall spin of 1 with Ms = 1, 0, -1, labelled triplets (multiplicity of 

three) 40,41. These are represented in a vector diagram form in Figure 2.4. While the vector diagram is 

instructive, these are not eigenstates of the spin Hamiltonian. Instead the spin angular momentum 

operator Sଶ = (Sଵ + Sଶ)ଶ must be diagonalised resulting in the wavefunctions shown below, 

Equations 2.1-2.4 (ψୗ ,ୱ).  

 

ψ , =  |S⟩ =
ଵ

√ଶ
(↑ଵ↓ଶ−↓ଵ↑ଶ)              (2.1) 

 

ψଵ ,ଵ = |Tଵ⟩ = (↑ଵ↑ଶ)      (2.2) 

 

ψଵ , = |T⟩ =
ଵ

√ଶ
(↑ଵ↓ଶ+↓ଵ↑ଶ)        (2.3) 

 

ψଵ ,ିଵ = |Tି ଵ⟩ = (↓ଵ↓ଶ)      (2.4) 
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Figure 2.4: Vector diagram representation of 2 electron spin states. The vertical axis represents the chosen Z 
axis upon which the measured spin or Ms is projected. The horizontal axis represents the total spin taking on 
the value of either 0 for singlet or 1 for triplets. The electrons are differentiated by colour and solid versus 
dashed for clarity. 

 

The Pauli exclusion principle states that the overall wavefunction must be anti-symmetric upon 

exchange of electrons40,41. The total wavefunction is the product of the spin component (relative 

orientation of the spins) and the spatial component (relative position of the spins). In the case of 

singlet states, the spin component is antisymmetric meaning the spatial component must be 

symmetric40,41. For the triplet configuration the spin component is symmetric so the spatial 

component must be antisymmetric40,41. Described in another way; the electrons are able to 

approach each other in the singlet as they have opposite spin and so can be distinguished, the 

opposite is true for the triplet state40,41. As singlet states are able to approach each other the 

electron-electron repulsion is large, whereas for triplets they are unable to approach and as such will 

have much lower electrostatic repulsion40–42.  

The reduced repulsion leads to triplet states having lower energy than singlet states constructed 

from the same orbital configurations40,41. The difference between the singlet and triplet state 

energies is given in Equation 2.5, where 𝑒 is the charge of the electron, 𝑟ଵଶ is the distance between 

the electrons, 𝜋 is the orbital of the nth π electron and EK is the exchange energy (Equation 2.5).  
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∆Eୗ =  
ଶୣ

୰భమ
 ⟨πଵπଶ|πଶπଵ⟩ = 2E    (2.5) 

From inspection of the equation we can see that the exchange energy depends on the overlap of the 

occupied orbitals40,41. For Wannier-Mott excitons, their large electron-hole separation causes the 

relative orientation of the spins to be ill-defined40,45. However in organics, Frenkel excitons are 

tightly bound and have significant exchange interaction41 separating the spin states in energy40–42.  

For singlet excitons dipole coupled to the ground state a coulombic dipole-dipole coupling between 

the neighbouring molecules, allows the energy to transfer via a virtual photon. No absorption or 

emission event occurs during the energy transfer however the efficiency of the process is related to 

the overlap of the absorption and emission spectrum. The probability of energy transfer occurring is 

also related to the dipole moments of these transitions. This energy transfer mechanism, known as 

Förster transfer, can occur relatively fast, and over distances of up to ~3nm.  

A second mechanism of energy transfer is known as Dexter energy transfer. The rate of Dexter 

transfer is still related to the spectral overlap of the absorption and emission spectrum of the two 

molecules, however here there is no dependence on transition dipole moment. The lack of 

dependence on dipole moment originates in the different physical mechanisms of the two transfer 

processes. In Dexter transfer there is no virtual photon and instead the transfer requires a direct 

transfer of electron and hole. As a result, this process requires wavefunction overlap (exchange 

interaction) to occur which lowers its effective radius to ~1nm. While singlet states can transfer via 

either mechanism, triplets are not dipole-coupled to the ground state and so can only hop via Dexter 

transfer40–42,46. As triplet excitons are only able to transfer by this mechanism, triplet excitons diffuse 

much slower than singlet excitons40–42,46. Having described a general background to excitons in 

conjugated organic molecules, we will now move to the interaction of molecules with external 

perturbations (light). 
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2.2 Optical Excitation of Organic Semiconductors 
 

The interaction of light with the electronic dipoles of a material can be described by applying first-

order perturbation theory to the time-dependent Hamiltonian42. Applying perturbation theory yields 

Fermi’s golden rule for state transitions shown below in Equation 2.6. The rate of transitions (k) 

between the initial ψ୧ and final state ψ depends on the density of states in ψ (ρ) and the 

perturbation to the Hamiltonian H ᇱ. We continue from here and insert the perturbation which 

contains the transition dipole moment (μ) and the perturbing electric field (E) respectively.  

k୧ ∝  
ଶ

ℏ
 |⟨ψ|μ ∙ eොE|ψ୧⟩|ଶρ                (2.6) 

Fermi’s golden rule shows us that the transition rate depends on the density of available states in 

the final state and the perturbation of the applied electromagnetic field. However, the most 

important factor is the transition dipole moment (μො) which couples the initial and final states. 

Evaluating the matrix elements of the transition dipole moment is extremely complex for almost all 

systems however a qualitative understanding can shed light on the spectroscopic properties of a 

system.  

The first simplification, the Born-Oppenheimer approximation, states that for visible light 

absorption, the nuclear and electron motion can be separated. Due to the large mass difference 

between electrons and nuclei, the absorption of visible frequencies causes an instantaneous 

response in the electrons, with no change in the nuclear component. A limitation of the Born-

Oppenheimer approximation is that within the approximation two potential energy surfaces can 

never cross, meaning transitions between electronic states cannot occur due to nuclear motion 

alone40,41. As we will see later, transitions of this type are possible, leading to a break-down of the 

Born-Oppenheimer approximation in these situations40,41.  

In addition to applying the Born-Oppenheimer approximation (separation of nuclear and electronic 

components), we can also separate out the spin component. As the oscillating electric field does not 
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affect the electron spins, only the relatively small magnetic field does, the effect is negligible. These 

considerations allow us split the wavefunction (ψ୬) into the electronic (ψୣ୪), vibrational (ψ୴୧ୠ), and 

spin (ψୱ୮୧୬) components (Equation 2.7)47. In equations below the rotational component (ψ୰୭୲) has 

been neglected, due to the small energies of rotational modes which have little effect on the 

experimental observables discussed here47.  

ψ୬ =  ψୣ୪ψ୴୧ୠψୱ୮୧୬                                                                        (2.7) 

Separation of the wavefunction into vibrational, spin, and electronic components allows us to 

rewrite an approximate expression for the transition dipole moment, shown in Equation 2.848. The 

formulation shows that the transition dipole moment relies on three factors, the spin component, 

the vibrational component and the electronic component. As we will see in the following sections 

these terms have a profound effect on the available transitions and their spectroscopic properties. 

As such an understanding of these terms is required for the analysis of spectroscopic measurements 

in Chapters 4, 5 and 6.  

μො୧ି =  ൻψ୨หμ ∙ eොหψ ୧ൿ  ≈  หൻψୣ୪,୨หμ ∙ eොหψୣ୪,୧ൿห หൻψ୴୧ୠ,୨หψ୴୧ୠ,୧ൿห หൻψୱ୮୧୬,୨หψୱ୮୧୬,୧ൿห         (2.8) 

 

2.2.1 The Electronic Component 
 

The electronic component (หൻψୣ୪,หμොหψୣ୪,୧ൿห
ଶ

) governs the spatial symmetry requirements for state 

transitions. If the value of this component is zero, the transition is considered dipole-forbidden and 

formally cannot occur. However, if the states are of opposite spatial symmetry the electronic 

component is non-zero and the transition can occur. To understand the origin of this spatial 

symmetry requirement we return to considering the spatial symmetry of the molecular 

wavefunction40,42. 

 When constructing molecular orbitals in Section 2.1.1, we saw an alternation of symmetry as the 

orbitals increased in energy40,41. We have now moved to states, however in the limit of no electron-
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electron interactions the symmetry considerations are roughly preserved40,42. However, we now 

have to consider a larger range of possible symmetries represented by a point group40,41.  To 

illustrate we choose polyenes as an example, starting with their point group, C2h.  

In the C2h point group we have to consider two forms of symmetry, rotation and inversion40–42. 

Molecular states that are symmetric or antisymmetric about a 180 degree rotation of the molecular 

plane are labelled A and B respectively. In addition, upon horizontal spatial inversion, states that are 

symmetric and antisymmetric are labelled g (gerade) and u (ungerade)40–42. It can be shown that 

some of these representations are equivalent leaving either Ag or Bu state symmetries as the 

irreducible representations42. The eigenvalues upon application of a spatial inversion operator to the 

Ag and Bu states yields a value of +1 and -1 respectively.  

Molecules with a centre of inversion are known to have a ground state of Ag symmetry42. For the 

majority of molecules the symmetry alternates in the ladder of states as was the case for the 

molecular orbitals above40. This becomes important when we consider that the dipole operator is 

odd under spatial inversion42. In Equation 2.9 we apply the inversion operator to the transition 

dipole moment yielding: ı̂றμො୧ି ı̂ =  −μො୧ି. Furthermore, ı̂|j⟩ =  i୨|j⟩ where i୨ is the spatial symmetry 

eigenvalue for the j state, a similar formulation can be made for the initial state i. By applying these 

relationships, we arrive at the result in Equation 2.9. In quantum mechanics parity conservation 

requires the parity to be equal before and after the transition42. By inspection we can see that this 

conversation law will only be held, and as such the transition dipole moment will only be non-zero, 

for i୧i୨ =  −1 (Equation 2.9). In order for i୧i୨ =  −1 we require a change of symmetry between the 

initial and final states42.  

μො୧ି =  ⟨i|μො୧ି|j⟩ = ൻiหı̂ı̂றμො ୧ିı̂
றıห̂jൿ =  −i୧i⟨i|μො୧ି|j⟩   (2.9) 

While the above symmetry groups are enough when neglecting electron-electron interactions, for 

real polyene molecules it is insufficient. When considering electron correlations, a third symmetry 

known as electron-hole symmetry or Pariser alternancy symmetry is required. There are two 
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requirements for a material to possess electron-hole symmetry. The first is that the material must be 

constructed of two interpenetrating sub-lattices with nearest neighbour hybridization. For polyenes 

the two sub-lattices represent the weak and strong bonds which alternate and hybridize into a 

conjugated backbone. The weak bonds are longer (single bonds) as a result, while the strong are 

shorter (double bonds). This bond length alternation leads to a repeat unit of single and double bond 

pairs known as a dimerised ground state. These materials are sometimes known as alternant 

materials (discussed further in Section 2.4.5).  

The second criterion for electron-hole symmetry is that all sites in the chain are equivalent. For a 

finite chain, electrons occupying sites at the centre of the chain feel a stronger attractive potential 

due to the nuclei than electrons occupying sites at the edge of the chain. Additionally, the electron-

electron repulsion felt at the centre of the chain is larger than at the edge of the chain. When these 

two competing forces cancel all sites feel the same coulomb potentials and become equivalent42. In 

the majority of literature electron-hole symmetry is indicated with a + (non-covalent) or a – 

(covalent) if they are symmetric or anti-symmetric respectively upon exchange of electrons and 

holes49. It should be noted that while this is an exact symmetry in models of conjugated systems, in 

real molecules this is only an approximate symmetry42. 

Non-covalent or sometimes named ionic states are generally the first optically allowed state carrying 

high oscillator strength. Inversely, covalent states are generally forbidden from the ground state and 

have energies heavily reliant on electron correlations. For polyenes (highly electron correlated) the 

lowest energy excited covalent state sits below the lowest energy ionic state (discussed further in 

Section 2.4.5). By including particle-hole symmetry and C2h group symmetry we have a picture of the 

possible symmetries of states for polyenes, summarized in Table 2.1. 
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Table 2.1: Irreducible state symmetries for the polyene class of organic molecules42. 

Representation Rotation (A or B) Inversion (g or u) Particle Hole (+ or -) 

Ag
- +1 +1 -1 

Ag
+ +1 +1 +1 

Bu
- -1 -1 -1 

Bu
+ -1 -1 +1 

 

 

2.2.2 The Vibrational Component 
 

The vibrational component of the transition dipole moment (หൻψ୴୧ୠ,หψ୴୧ୠ,୧ൿห
ଶ

) can be thought to 

dictate the shape of the absorption and emission spectrum40. In addition to the electronic states 

there are also many vibrational modes active within a molecule. As described above, the Born-

Oppenheimer approximation states that nuclear movement (vibrations) can be considered separate 

from the electronic change. The electrons are modelled as moving in a stabilisation force produced 

by the static nuclear configuration. Afterwards the nuclear movement occurs in a potential defined 

by the electron configuration41. Nuclear movement does not change the electronic energy and 

instead changes the potential energy of the state as the positive nuclei move in the negative 

potential41. By calculating the potential energy at each of these nuclear configurations it is possible 

to build up a potential energy surface (energy against nuclear configuration (Q)) 41. The potential 

energy surface picture allows an intuitive representation of nuclear motion, as vibrations create 

cyclical movement up and down the potential energy surface akin to a harmonic oscillator40,41.  

However, an energy versus Q plot is only an approximation. In real molecules many vibrations 

contribute to the spectra, each with their own set of Q coordinates. As such, when constructing a 

potential energy surface diagram, we must choose a vibration or set of vibrations termed the 

effective vibrational modes, to restrict the multi-dimensional plot, to a 2D plane. In most molecules 
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this is a large energy mode such as the carbon-carbon stretching modes (~2000cm-1). While this 

approximation is not technically accurate for real molecules, it allows for a relatively simple analysis 

of the spectra of real molecules. As a result, in the proceeding discussion we are applying the 

approximation of a single vibrational mode40,41. 

The high energy of the effective vibrational mode implies that at room temperature only the zeroth 

vibrational level will be populated in the initial state. Furthermore, the Kasha-Vavilov rule states that 

emission occurs from the lowest energy excited state and has efficiency independent of excitation 

wavelength40,41. This enforces that emission occurs from the zeroth vibrational level of the initial 

state. However, it is possible for transitions to occur to all levels of the final state, resulting in the 

highest energy emission peak and the lowest energy absorption peak being equivalent in energy40–42. 

The series of peaks formed from the transitions to each vibrational level is known as a Franck-

Condon progression40,41. The intensity of these peaks is governed by the Franck-Condon factor, 

which is the square of the Franck-Condon overlap integral shown in Equation 2.12. The Franck-

Condon factor gives a measure of the overlap of vibrational levels as a function of nuclear 

coordinate, Q, with a larger intensity for greater overlap40. If a molecule is stiff, when an electron is 

excited, and the negative electronic distribution changes, the geometric reorganisation is minimal. 

This leads to a small change in Q between the excited and ground state geometries. As a result the 

minima of the excited and ground state potential energy surfaces are at similar Q values41. States of 

this kind are known as ‘nested’ states (Figure 2.5). For nested states the overlap between vibrational 

wavefunctions is largest for the 0-0 transition, that being between the ground vibrational level of 

both the initial and final state40. As such the 0-0 peak is the most intense, with a drop off moving to 

the 0-1 and 0-2 peaks. 
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Figure 2.5: Potential energy surface diagrams for nested and shifted states. In both diagrams the shaded 
sections correspond to the wavefunction, and S is the Huang-Rhys Factor. On the left, the potential energy 
surfaces of the initial and final state are nested, meaning there is a small shift between the surface minima. In 
this case the ground vibrational levels of each state have the largest overlap causing the 0-0 peak to be the 
largest. On the right is the opposite case where the states are shifted in Q, causing large overlap between the 
ground vibrational level in the initial state and the first excited level of the final. This leads to the largest peak 
being the 0-1 transition as shown in the spectrum. 

 

If the molecule is flexible, large changes in Q are possible and the state minima can become 

displaced. Now in Figure 2.5 the first vibrational level (0-1 peak) overlaps well with the minima of the 

ground state potential energy surface, making it the largest peak40,41. The influence the Franck-

Condon factor has on peak intensities is why the vibrational component is thought to dictate the 

absorption and emission spectral shape40. By analysing the overlap integral, it can be shown that the 

peak intensity can be related only to the Huang-Rhys parameter (S), shown in Equation 2.10.  

𝐼ି = หൻ𝜓,ห𝜓,ൿห
ଶ

=
ௌషೄ

!
                                                        (2.10) 
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The Huang-Rhys parameter (S) is the ratio of the energy absorbed above the state minima (E୰ୣ୪) and 

the active vibrational mode (ℏω). As such, it is proportional to the displacement between the 

minima of the ground and excited state potential energy surfaces (∆Q). 

    S =  
౨ౢ

ℏω
             (2.11)  

S ∝  ∆Qଶ           (2.12) 

Before moving on we wish to take a moment to consider the actual measured spectral shape. The 

above discussion implies that the vibrational component dictates the spectral shape entirely. 

However, while vibrational overlap dictates the intensity and position of the absorption peaks, the 

above discussion suggests there should be lines of intensity at each of the vibrational peaks. In real 

systems this is not what we see40,41, instead we observe broad peaks that overlap as shown in Figure 

2.5. The experimentally measured broadening comes in two categories homogeneous and 

inhomogeneous.  

Homogeneous broadening occurs when all emitters are affected equally. An example of this comes 

from the uncertainty principle which gives an uncertainty in the energy of a state dependent on its 

lifetime50. As a result the linewidths with only homogeneous broadening are sometimes referred to 

as “natural linewidths” and take on a lorentzian shape50. The second, inhomogeneous broadening, 

occurs when each emitter is affected differently. Inhomogeneous broadening comes from a 

combination of disorder and interaction of the molecules with the surrounding medium 40,41. As an 

example, we consider a single chromophore in a solvent solution. The electronic dipole of a 

chromophore induces an electric dipole in the surrounding solvent molecules. The more readily the 

induced dipoles align with the dipoles of the molecules, the higher its polarizability (α) and hence 

the larger the induced dipole (μ୧୬ୢ୳ୡୣୢ = αE) 41. It is possible to show that the interaction energy (V) 

of dipole-dipole coupling between the solvent and molecule under test is proportional to the 

expression shown below (Equation 2.13).  

V ∝  
ஜమ

୰ల                                                                               (2.13) 
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The interaction energy depends on three quantities, the strength of the transition dipole moment, 

the polarizability of the solvent and the distance between the interacting dipoles41. The dipole-dipole 

interactions stabilise the state relative to free molecules lowering state energies. As the dipole in the 

excited state is large, so is the interaction and as such the state is stabilised significantly. In the 

ground state the only dipoles are small oscillating dipoles caused by zero-point fluctuations. As such 

the stabilisation of the ground state is much smaller than it is in the excited state. This produces a 

red-shift in the transitions between the ground and excited states known as solvation. Taking into 

account disorder we see that this shift will be different for each individual chromophore in solution 

(different r)41. Building up these lines of intensity at slightly different energies (summing over all 

interactions) creates the spectral broadening we see experimentally with a gaussian distribution41.  

2.2.3 Non-Radiative Transitions 
 

Thus far we have only considered radiative transitions, which require the absorption or emission of a 

photon. However, after absorption of light, transitions between potential energy surfaces by nuclear 

motion alone is possible. These transitions are important when considering emission dynamics 

through the Kasha-Vavilov rule40,41. The Kasha-Vavilov rule states that emission occurs from the 

lowest energy excited state and has efficiency independent of excitation wavelength40,41. The 

consequence of this rule is that after excitation to a high lying excited state Sn, non-radiative 

deactivation to the lowest excited state must occur before emission40,41. These non-radiative 

transitions can be described by a variant of Fermi’s golden rule shown in Equation 2.1440,41. 

k୧ =
ଶ

ℏ
ρJଶF   ,                                                                  (2.14) 

where J is the electronic coupling between states, F is the Franck-Condon overlap factor and 𝜌 is 

once again the density of states in the final state40,41. To evaluate the non-radiative transition rate 

we must account for coupling of many vibrational modes, which quickly becomes unsolvable40,41. To 

simplify the model, we treat the non-radiative transition as a two-step process. The first step is an 

electronic transition from the initial state to the final state’s potential energy surface40. Transitions 
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of this kind are explicitly forbidden by the Born-Oppenheimer approximation as they involve a 

change in nuclear and electron configurations simultaneously40,41. As no energy is lost through 

emission of a photon, there must be no overall change in energy hence the transitions are horizontal 

on an Energy-Q plot40,41. A transition between electronic states with no change in energy requires 

population of high-lying vibrational levels within the final state40,41.  

From inspection of Equation 2.14, we can see that the transition rate relies on the electronic 

coupling of the states as for radiative transitions. The state transition should then follow the same 

selection rules as the radiative process40,41. However as the transition occurs to a high lying 

vibrational level in the final state it is possible for vibrations to distort the molecular structure and in 

doing so change the symmetry of the molecule causing the transition to become partially 

allowed40,41. As a result rigidity of the molecule has an effect on the available non-radiative 

transitions and the non-radiative transition rate40,41. This is important when we consider that non-

radiative transitions can also occur between the first excited state and the ground state. As a rule of 

thumb, rigid molecules are able to access a small number of configurations (Q) meaning non-

radiative transitions are unlikely, leading to strong emission40,41. However, the opposite is true for 

flexible molecules that are able to achieve the desired geometry for a given non-radiative transition, 

increasing non-radiative transition rates and creating a competing route for decay to the ground 

state, reducing emission efficiency40,41. 

Following the initial change of the electronic states, high energy vibrations are populated requiring 

energy be dissipated to return to the equilibrium of the state’s potential energy surface40,41. As the 

density of states is known to increase with energy, the energy spacing between high energy 

vibrational levels reduces, meaning redistribution of energy between the various vibrational modes 

can be efficient41,51. The process of sharing energy to all vibrations in a molecule is known as 

intramolecular vibrational redistribution which occurs in 0.1-10ps41. Afterwards the energy is 

dissipated to the environment by emission of phonons40. For a solution samples this involves 
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transfer of energy to the surrounding solvent molecules which become vibrationally excited40,41. 

Transfer to the solvent usually occurs within 10-100ps in the majority of systems41. The consequence 

of these simplifications is the experimentally verified energy gap law for non-radiative transitions 

(Equation 2.15)40,41,52.  

k୧ ∝ e
(ିஓ

ు

ℏಡ
)
                                                                       (2.15) 

In this expression 𝛾 represents various molecular properties, such as the vibrational coupling and the 

displacement between the initial and final state potential energy surfaces52. 𝜔ெ is the highest 

energy vibrational mode available and ∆𝐸 is the energy gap between the initial and final state40,41,52. 

While the energy gap law is relevant for many transitions it relies on approximations and should be 

used with caution40,41.  One such approximation is that the transitions occur between nested states 

(Figure 2.5)53. In the shifted case it is possible for the shift to cause an intersection of the potential 

energy surfaces41,53. This point can form a conical intersection which no longer abides by the energy 

gap law41,53.  

Conical intersections are points where two potential energy surfaces intersect with a linear 

dependence between energy and nuclear co-ordinate (Q)41. A linear dependence creates a cone 

shape above and below the intersection in a particular nuclear coordinate or group of coordinates 

(Qୡ୧) hence the name conical intersection41. At the point of intersection both states are isoenergetic 

and at the same position in the given reaction coordinate or set of reaction coordinates (Q) 41. The 

point of intersection leads to a breakdown of the Born-Oppenheimer approximation, and coupling 

becomes non-adiabatic, meaning states are no longer separate and defined41,54. A molecule is in a 

superposition of the two states and no nuclear motion or change in energy is required to transfer 

population between these states41,54. The transition can be viewed as an electronic transition 

between states with 0eV energy gap41. This results in very fast interconversion with the rate limiting 

factor being the movement down the initial state’s potential energy surface to reach the intersection 

point, depending on specific vibrations known as tuning modes41,54. Conical intersections have been 
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shown to occur in carotenoids both between the S2-S1 states experimentally54,55 and the S1-S0 state 

theoretically56,57.   

 

Figure 2.6: Diagram showing the intersection of two potential energy surfaces. The vibrational modes which 
move the electron to the intersection point are known as the tuning modes while those that form the 
intersection Qci are coupling modes. Coupling modes mix the potential energy surfaces and drive the 
population transfer between the states. 

 

2.2.4 The Spin Component  
 

In a simple model, the spin component of the selection rules, (หൻψୱ୮୧୬,୨หψୱ୮୧୬,୧ൿห
ଶ

) can take a value of 

either 1 or 0 depending on whether the initial and final states have the same or different spin 

quantum number respectively40–42. As transitions between states of different spin are formally 

forbidden (value of 0), this forms the selection rule of spin conservation40–42. Thus, a direct 

absorption event from the ground singlet state to the excited triplet state is formally forbidden. 

However, it has been shown that transitions can occur between triplet and singlet states through a 

non-radiative process, termed intersystem crossing58. In order for the spin component to be non-

zero we must induce mixing of the singlet and triplet state wavefunctions40–42. We can once again 

apply Fermi’s golden rule to intersystem crossing, now with a new perturbation which mixes the 

singlet and triplet wavefunctions, shown in Equation 2.16. 
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K୧ୱୡ ≈ หൻψหHୗหψ୧ൿห
ଶ

[FCWD]                    where Hୗ =
ర

(୬య(୪ାଵ)(୪ା.ହ)୪)
      (2.16) 

Here [FCWD] is a Franck-Condon weighted density of states, 𝜓 and 𝜓 are the wavefunctions of the 

initial and final state respectively and n/l represent orbital and angular quantum numbers40. This 

perturbation is known as spin-orbit coupling and as the name suggests it involves the coupling of the 

spin and orbital angular momenta. The motion of the negatively charged electrons orbiting the 

positively charged nucleus induces an orbital magnetic dipole moment41. This magnetic dipole 

moment is then able to interact with the intrinsic spin magnetic dipole moment of the electron40–42. 

Total angular momentum is then S+L and a change in the spin state (S) can be compensated by a 

change in orbital angular momentum (l)40–42. From inspection we can see that the rate of non-

radiative transfer (intersystem crossing) is related to the strength of the perturbation and the 

overlap of the initial and final state. As with absorption we require the perturbation to be large 

enough to transfer population from the initial to the final state. In other words, for efficient 

intersystem crossing we require either a small singlet-triplet energy gap or a large spin-orbit 

coupling perturbation.  

From inspection of the perturbation (Equation 2.16) we can see that the strength of the spin-orbit 

coupling goes with atomic number (𝑍) to the power 4. This result can be rationalised by considering 

the effect Z has on the molecule40–42. First, we consider a simple model of an atom with a single 

electron orbiting the nucleus. If the electron can approach the nucleus in its orbital, the electron 

accelerates due to the increased attractive force. As the magnetic dipole moment is proportional to 

the electron’s velocity, for a larger Z there is a larger attractive force and the electron has a larger 

magnetic dipole moment41. The coupling between the spin and angular momenta is related to the 

magnitude of the dipoles, increasing the spin-orbit coupling term. As such, for larger Z the 

perturbation is larger, and the intersystem crossing process is more efficient. This is the so called 

‘Heavy’ atom effect (High Z)40,59,60. In real systems with many electrons, shielding must be 
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considered, however this simple model gives us insights into the factors that affect spin-orbit 

coupling.  

In a zero order approximation only transitions which involve compensation in orbital angular 

momentum are able to occur41 regardless of the magnitude of the heavy atom effect. These usually 

take the form of a transition between a π and n (non-bonding) orbital as these require a 90 degree 

rotation to interconvert41. A 90 degree orbital rotation causes a change of angular momentum that 

can compensate for the change in spin (as in nitro-naphthalenes)41,61. This type of spin orbit coupling 

is described by the El-Sayed rules41,62,63. 

While the above mechanisms are formally the only allowed singlet-triplet transitions, the El-Sayed 

rules are relaxed when vibrations are considered which introduce distortions to the molecular 

geometry. For example the benzene molecule is planar and has no orbital transitions (such as n-π*) 

that can compensate, meaning spin interconversion is formally forbidden41. However by including 

out of plane vibrations that distort the molecule’s planar geometry, mixing of the π and σ* orbitals is 

made possible41. The σ* orbital is spatially and energetically separate from the π orbital causing the 

mixing to be small41. Therefore transitions are only partially ‘allowed’ with transition times on the 

order of microseconds41. In other systems large scale distortions can lead to efficient intersystem 

crossing, in fact for oligo-thiophenes moving from the singlet to the triplet state involves a torsional 

rotation of the molecule compensating for the change in spin64. In real systems each of these factors 

interact giving a set of requirements summarised below that affects the efficiency of singlet-triplet 

interconversion. 

1/ The transition must occur between singlet and triplet states that are of a similar energy. As the 

non-radiative transition occurs with no overall change in energy, the overlap factor reduces quickly 

with energy gap41,62,63. 
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2/ The spin and orbital angular momentum must be coupled by the spin-orbital coupling factor. This 

can be enhanced by inclusion of heavy atoms either in the structure or in the vicinity of the 

molecule40 (external heavy atom effect59,60). 

3/ The singlet-triplet transition must cause a change in orbital angular momentum that compensates 

for the change in spin angular momentum. This usually takes the form of a transition between π and 

non-bonding orbitals41,62,63.  

4/ In the absence of large spin-orbit coupling and n-π transitions, compensation is possible through 

vibrations. In some cases torsional rotations cause a similar effect to n-π transitions allowing very 

efficient intersystem crossing41,64. 

Now we have considered all components and transitions, to conclude we build a diagram in Figure 

2.7 detailing the most common transitions in organic molecules40,41.  

 

Figure 2.7: Example Jablonski diagram. Jablonski diagrams summarise the basic decay channels in organic 
molecules. Solid lines represent electronic ground and excited states of either singlet (S0, S1, S2) or triplet (T1, 
T2) spin. For each of these states there is also a ladder of vibrational sub levels represented by dashed lines. 
Transitions between these states have been grouped into two categories radiative (solid arrow) and non-
radiative (oscillating arrow). Energy levels here are only an example and so are arbitrary. 
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2.3 Intermolecular Interactions  

 

In the previous sections we discussed the processes that can occur on a single molecule. Before 

discussing singlet exciton fission, we first address the interaction between multiple molecules 

(intermolecular interactions). We start by considering two molecules in close proximity in the ground 

state. For simplicity we start by ignoring the vibrational and spin components of the wavefunction 

and presume the wavefunction overlap between the molecules is small (negligible exchange 

interaction). As such, we presume the molecules do not share conjugation and concentrate only on 

the electronic component (Kasha treatment65,66). As was discussed above, while in the ground state 

the only contributions to the molecule’s electric dipole is from random oscillations in the ground 

state electron density. However at small enough distances, the small dipoles in the ground states of 

the two molecules can interact, yielding a ground state energy for the two molecules collectively 

shown in Equation 2.1940. 

 E = Eଵ + Eଶ + D      (2.19) 

Here E1 and E2 are the ground state energies of the two molecules and D is the negative polarisation 

energy (stabilising) analogous to solvation interactions with the surrounding solvent discussed 

above. As with solvation, the extent of the stabilisation is related to the magnitude of the dipoles 

and their separation. The reduction in the ground state energy for a smaller dipole separation is the 

origin of molecules condensing from gas to liquid, or as we will see here from monomer to 

aggregates. This is the so called Van de Waals or dispersion force that forms weak intermolecular 

bonds between molecules in the ground state40. 

We now include an excitation on one of the two molecules leaving the other in the ground state. If 

both molecules are identical (aggregate rather than a complex), the wavefunction is a combination 

of the two equivalent situations: ψୟ =
ଵ

√ଶ
(ψଵψଶ

∗ ± ψଵ
∗ψଶ), where ψ୬ is the wavefunction of 
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molecule n and a * indicates the molecule is in the excited state. Inserting this into the Schrodinger 

equation yields the equation given in Equation 2.2040.  

Eୣ୶ୡ = Eଵ
∗ + Eଶ + D + k୫୬β       (2.20) 

In Equation 2.20 Eଵ
∗ is the energy of the excited molecule, Eଶ is the energy of the ground state 

molecule, and D is the polarisation energy as for the ground state. The final term on the right is the 

resonance integral, related to the overlap of charge densities between the molecules. Within this 

term β is the magnitude of the interaction, related to the distance between the molecules. In real 

systems β is a combination of dipole-dipole interactions and exchange interactions. However, for 

simplicity here we presume negligible wavefunction overlap and as such remove exchange 

interactions from our treatment. Thus, β represents the dipole-dipole interactions between the two 

molecules. The second term 𝑘 is an orientation factor (Equation 2.21), which changes sign based 

on the relative orientation of the molecules. It should be noted that the derivation of the orientation 

factor requires the assumption of the point-dipole approximation40. 

k୫୬ = (rො୫ ∙ rො୬) − 3(R୫୬ ∙ rො୫)(R୫୬ ∙ rො୬)   (2.21) 

In Equation 2.21, �̂� is the unit vector of the dipole of molecule j, and 𝑅 is the unit vector of the 

intermolecular interaction. The second term on the right is related to the relative orientation of the 

intermolecular interaction and the dipoles of the molecules.  As a result, the interaction is heavily 

dependent on the relative orientation of the molecules. The first term, (rො୫ ∙ rො୬), is then the relative 

alignment of the dipoles involved in the interaction, which can take two extreme values for 

alignment (1) and anti-alignment (-1) of the dipoles. As such two states are produced above and 

below the monomer energy level split by 2β (Shown in Figure 2.8). Likewise, the transition dipole 

moment is a linear combination of the individual molecule’s transition dipole moment giving 2μ for 

alignment and 0 for anti-alignment, where μ is the transition dipole moment of the monomer. The 

energy in Equation 2.20 is the total energy of the system, to find an expression for the observed 
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absorption/emission we must subtract the ground state energy (Equation 2.19), yielding Equation 

2.2240. 

E± = (Eଵ
∗ + Eଶ + D ± β) − (Eଵ + Eଶ + D) =  ΔEଵ + ΔD + k୫୬β    (2.22) 

The absorption of the two molecules is the monomer excitation energy (Δ𝐸ଵ), shifted by the 

difference between the dispersion force in the ground and excited states (Δ𝐷) and the resonance 

integral. To relate this model to real molecules it is instructive to consider the limiting cases of weak, 

strong and intermediate wavefunction overlap40.  

The first limit of β approaching 0 is met for large intermolecular distances where charge density 

overlap is minimal. In this regime the two molecules act as individual chromophores with an energy 

equal to the monomer state. Next we consider the opposite limit of large β. In this regime the 

coulomb overlap is strong enough to cause the molecules to reorient to an optimal configuration. 

Due to the reorientation of the molecules the excited state potential energy surface is shifted 

relative to the ground state. Emission from these intermolecular states is generally red-shifted and 

broad compared to the monomer emission. As the molecules are closer in the excited state than the 

ground state, absorption takes place at larger intermolecular distances between the molecules than 

emission. As such it is possible for there to be minimal interaction in the ground state as in the weak 

resonance integral limit. In this case an intermolecular state is only distinct in the excited state, 

hence the name Excimer or ‘excited dimer’40.  

The first report of excimer formation was by Forster et al. in 1955, who showed that increasing the 

concentration of pyrene in solution caused the appearance of a broad red-shifted emission67,68. This 

proves that excimers can form upon random diffusional motion within solution, with an increased 

chance of a collision at higher concentration. After emission, the excimer returns to the ground state 

at the geometry of the excited state. If the stabilisation energy of dimerising in the ground state is 

lower than the stabilisation from solvation (surrounding itself with solvent molecules) the molecules 

move apart.  
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For intermediate values of β in the range of 1000s cm-1, the molecules form an aggregate in the 

ground state held together by Van de Waals forces, sometimes termed a physical dimer (Covalently 

bound dimers are then known as chemical dimers). As discussed above the relative orientation of 

the molecules has a profound effect on the absorption characteristics of the dimer. To illustrate this, 

we take three examples in Figure 2.9, co-planar, head-to-tail and arbitrary. 

We first consider two molecules arranged in a co-planar geometry, known as H-aggregates, shown in 

Figure 2.8a40. In the co-planar geometry, the angle between the dipole moments of the molecules 

and the intermolecular interaction is 90 degrees. Thus, the orientation factor takes on a positive 

value for aligned dipoles and a negative value for anti-aligned dipoles. In other words, the low 

energy state has anti-aligned electric dipoles, while for the high energy state the dipoles are aligned. 

The low energy state carries no transition dipole moment while the high energy state has double the 

transition dipole moment of the monomer. Absorption then only occurs into the high energy state 

causing a blue-shift in the absorption spectrum. As we saw previously, the Kasha-Valivov rule states 

that emission can only occur from the lowest energy excited state. As such emission from H-

aggregates is explicitly forbidden and population instead decays non-radiatively40.  

 

 

Figure 2.8: Summary of Kasha’s model of intermolecular interactions. Jablonski diagrams for a H-aggregate 
(a), J-aggregate (b) and an arbitrary alignment (c). Next to the aggregate energy levels we show two molecules 
with their dipole moments aligned to the molecular axis and with a relative parallel and anti-parallel 
alignment. An arrow is included labelled 𝑅 which represents the unit vector of the intermolecular dipole-
dipole interaction for each pair of molecules.  
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At the other extreme, the molecules are in a head-to-tail arrangement, known as a J-aggregate, 

shown in Figure 2.8b. Here the angle between the intermolecular interaction and the molecules 

dipoles is either 0 or 180 degrees depending on the orientation of the dipole moments. As a result, 

the orientation factor is positive for anti-alignment of the dipoles and negative for alignment, 

opposite to H-aggregates. In the low energy state, the transition dipole moments are aligned giving a 

transition dipole moment twice that of the monomer. Thus, the absorption of J-aggregates is red-

shifted and produces strong emission. A third and final geometry is an arbitrary orientation 

somewhere between a H- and J-aggregate, shown in Figure 2.8c. In this geometry, the arbitrarily 

aligned transition dipole moments form a double peak in absorption, with both H- and J-aggregate 

energy levels being partially allowed40.  

 This distinction implies we should be able to identify structure from the absorption and emission 

spectrum of the aggregates. However, in real systems the distinction is not so clear69–71. While the 

above model is instructive it fails to capture the real behaviour in aggregate samples. For example, in 

the case of weakly coupled H-aggregates (small blue-shift) solvation can overwhelm the aggregate 

shift. To extend and improve on the model by Kasha we must also include the influence of vibrations 

on the system. By incorporating the effect of vibrations into an aggregate model, the structure and 

interaction strength can be attained from the vibrational progression in the absorption spectrum69–

71. This was achieved in a model constructed by Spano and co-workers. This model is used in Chapter 

6 to model aggregates of carotenoids. The model will be briefly discussed below.    

The model constructed by Spano and co-workers involves solving the Holstein Hamiltonian using a 

two-particle state basis set. First the monomer spectrum is fit with a Franck-Condon progression 

presuming equal full-width-half-maximum (FWHM) of all the peaks and a single dominant vibrational 

mode. Then we construct the one-particle basis states, those being; one molecule in the 

electronically and vibrationally excited (vibronic) state with surrounding vibrationless ground state 

molecules69–71. The Hamiltonian is then solved for two-particle basis states which in addition to the 
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vibronic excitation also include a neighbouring vibrationally excited molecule in the ground state. 

Spano et al. found that truncating the basis set at two-particle states gives a good agreement with 

experimental results. This can be conducted for a series of aggregate sizes (number of molecules), 

with relative angles and nearest neighbour coupling strengths used as fitting parameters69–71.  

A consequence of taking vibrations into account is that the spectral shape can be related to the 

coupling strength within the aggregate. For the weak regime transfer from the monomer to 

surrounding sites is slow compared to relaxation causing a spectra similar to that of the isolated 

monomer69–71. In other words, two particle excitations have little effect on the spectral shape 

indicating the excitations are still localised on the single molecule. When we increase coupling to the 

intermediate regime and the strong regime we see an increased effect of two-particle states leading 

to large deviations from the monomer spectral shape69–71. The higher energy vibronic replica are 

more intense relative to 0-0 in H and vice-versa in J type aggregates, providing a powerful method 

for characterising aggregates40,71,72.  

We now briefly consider the interaction of two excited molecules, the most relevant cases being 

interaction of two singlet excitons and the interaction of two triplet excitons. For two singlets 

meeting in solution, energy transfer occurs from one to the other forming a ground state molecule 

and a high lying singlet state (Sn)40. This process is known as singlet-singlet annihilation40. As singlet 

states are relatively short lived, this process is only relevant at high laser intensities where excitation 

densities are large (as is discussed briefly in Section 2.5). In the case of two triplets meeting in 

solution the situation is much more complicated. Due to the long lifetimes of the triplet states, 

triplet-triplet interactions are much more likely to occur at lower power and lower concentration 

than singlet-singlet interactions. We discuss triplet-triplet interactions in the following section. 
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2.4 Singlet Fission and Fusion 

2.4.1 Fission and Fusion 

In the previous section we established that at high power and high concentration intermolecular 

interactions become important. One of these, the interaction of two triplets, leads to a wealth of 

new physics. As we saw in Section 2.2.4 when two ½ spin electrons interact they may form one of 

four spin states, 1 singlet and 3 triplets. The same is true when 2 triplets meet (4 electron state), 

leading to an even larger set of possible states. In a naïve view the four spins are able to combine 

into one of 9 combinations, one singlet of spin 0, three triplets of spin 1 and 5 quintets of spin 2 

(singlet and quintet states shown pictorially in Figure 2.9)40,47,73.  

 

Figure 2.9: Vector diagram representations of Singlet and Quintet 4 electron states. The vertical axis is set to 
the Z axis and is representative of the Ms value or projected spin. The horizontal axis then represents the 
phase of the spins relative to each other. The colour and dashed versus solid lines are to differentiate the 4 
electrons involved in the state. In diagrams where all four electrons overlap, we offset the arrows for clarity. 

 

Of particular interest is the possibility of forming a singlet state (spin-0) from two triplets which 

could lead to singlet emission after the decay of the initial singlet population. Indeed, it has been 

shown that emission with the same line shape as prompt singlet emission is observed on the time 

scale of triplet decay, this is termed delayed fluorescence10,40. Further interest was sparked in the 

1960’s when it was shown by Johnson et al. that the delayed fluorescence of anthracene crystals is 

sensitive to a magnetic field74. In a later paper the authors extended the study and explained the 

observed magnetic field effects through the model shown in Equation 2.2375.  

TଵTଵ

kଵ

↔
kିଵ

[TT]
kଶ

↔
kିଵ

SଵS      (2.23) 
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The intermediate state between the pair of individual triplets and the pair of individual singlets is 

known as a triplet-pair state. While in the triplet-pair state, the spin character of the coupled triplets 

is a superposition, formed of the 9 possible spin states. The triplet-pair is formed when two triplets 

collide occurring with a rate 𝑘ଵ , the triplet-pair can also separate to free triplets once again with the 

rate 𝑘ିଵ. As discussed above the triplet pair can also form a singlet state with rate 𝑘ଶ reliant on the 

spin state of the triplet-pair75. The picture described above suggests 1/9 triplet-pair states form 

singlets i.e. 1[TT], however these are not true eigenstates of the system.  

Describing the true eigenstates of the system analytically is very complex and as such we must use a 

model Hamiltonian to simplify. This is achieved by pairing up electrons and considering the 

interaction between the constituent 2 electron states, which can be in any of the three triplets or 

one singlet states discussed in Section 2.1.376–79. The four states can then form 16 possible 

combinations (for example S0S0, T0T0, T-T+ etc.). These states formed of a combination of 2-electron 

states are not eigenstates of the spin Hamiltonian either. The model Hamiltonian must be 

diagonalized yielding true eigenstates76–79. The wavefunctions of a selection of these spin states are 

shown below in Equation 2.24-2.2634,80. Here A and B represent the two interacting triplet states, 

and the subscript 0, -1 and +1 represent the Ms level of the state. 

Singlet 1: S = SS                                                                    (2.24) 

Singlet 2: [TT] =  
ଵ

√ଷ
(TT − Tି Tା − TାTି ).

ଵ                                         (2.25) 

Quintet (Mୱ = 0): [TT] =  
ଵ

√ଷ
(2TT − Tି Tା − TାTି ).

ହ                                (2.26) 

In addition to spin character, we must also consider the coupling strength between the triplets in the 

triplet-pair. For triplets spaced by many molecules the orbital overlap is negligible (weak coupling)77. 

Scholes et al. showed that in this regime the singlet and quintet states are isoenergetic77. This 

regime is described by the Merrifield model where singlet and quintet states mix, causing a 

superposition of Ms=0 singlet and quintet states80. The opposite is true of large orbital overlap 

(strong exchange coupling) where mixing with charge-transfer character configurations splits the 
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singlet and quintet energy levels77. When strongly exchange coupled, the states become pure spin 

states with no mixing between singlet and quintet states expected (Merrifield’s model no longer 

holds)77,80, while in the weak coupling regime (superposition of spin states), the rate of singlet 

formation from the triplet-pair state is related to the number of possible singlet spin configurations 

that are accessible. As a result Merrifield suggests that the application of a magnetic field changes 

the relative number of singlet pathways and so modulates the delayed fluorescence of the 

anthracene crystals75. Despite its simplifications this model proves useful in explaining experimental 

observations77,80. 

Returning to the model presented in Equation 2.23, we have not yet discussed 𝑘ିଶ. In addition to 

the forward process of two triplets forming a singlet (triplet-triplet annihilation), the reverse process 

of forming a triplet-pair from a singlet state could be possible. By considering the two possible 4-

electron singlet character states this becomes clear. Singlet 1 (Equation 2.24) is formed of two 

singlet states, for example S1S0 , that being one molecule in the excited state and the second in the 

ground state34,80. Singlet 2 (Equation 2.25) is formed of three combinations of two triplets in an 

overall singlet character state34,80. Due to the pure spin character of strongly exchange coupled 

triplet-pair states, interconversion between a singlet state and a strongly exchange coupled triplet-

pair of singlet character is possible without a spin flip78. This process is known as singlet fission and is 

defined as the conversion of a singlet exciton into two free triplets through a bound triplet-pair 

intermediate. After its discovery in the 1960s, singlet fission received relatively little attention in the 

following years75,81–83. 

This was until the early 2000s when interest was renewed by possible applications in solar cell 

technology. The majority of the energy absorbed from high energy photons is lost to heat as the 

excitation relaxes to the band gap, analogous to Kasha’s rule for organics41. The singlet fission 

material converts high energy photons into two lower energy excitons reducing losses11. It was 

shown in 2006 that this could increase the maximum possible efficiency from 34% to 44%11.  
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Following this prediction, further computational studies investigated possible materials for singlet 

fission studies84–86. In these studies authors investigated materials using two basic energy criteria. 

The first criterion is that the parent state energy must be above 2 times the triplet to ensure that 

singlet fission is exoergic and efficient84–86. The second criterion is that there are no higher lying 

triplet states or a lower energy singlet state to facilitate triplet decay. By ensuring neither of these 

states are at energies accessible to the triplet-pair it is possible to maximize the number of triplets 

harvested84–86.  

Several studies since have reported inclusion in a solar cell with Congreve et al. even reaching more 

than one electron per photon absorbed (over 100% external quantum efficiency)7,8,87–92. However, all 

of these are with a single class of molecule, which form the majority of singlet fission literature. In 

fact only two materials and their derivatives are widely used, pentacene and tetracene11–14,16,19,93–96. 

In the following sections we will first discuss the physical mechanism connecting the singlet and 

triplet-pair states before discussing two classes of singlet fission materials, the acenes and the lesser 

studied polyenes. 

2.4.2 Direct Versus Mediated Mechanism 

 

In the field of singlet fission there has been much debate as to the mechanism for the conversion of 

a singlet excitation into a multi-exciton (triplet-pair) state. Several studies have put forward 

mechanisms, which we briefly discuss below9,10. The first is the direct mechanism which proposes 

the initial and final state couple with no intermediates in the process (Figure 2.10). The direct 

mechanism thus requires a transfer of 2 electrons simultaneously. The rate of the 2-electron process 

is related to the coupling between the initial and final state under the perturbation of a 2 electron 

transfer (ൻSଵหHଶୣห [TT].
ଵ ൿ)9,10. Modelling of these coupling terms is incredibly complex, leading to few 

studies on the topic. Zimmerman et al. conducted ab initio quantum chemical calculations as 

opposed to using a model Hamiltonian, to describe pentacene and tetracene singlet fission. The 

authors found that the direct coupling terms between the singlet and 1[TT] states were surprisingly 
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low (5meV)97–99, however their model was capable of adequately describing experimental findings. In 

agreement with the above results, Renaud et al. found a correlation between the direct coupling 

term and the singlet fission yield measured experimentally for a series of perylenediimide 

derivatives100.  

 

Figure 2.10: Mediated verus Direct mechanism for singlet fission. (a) The direct mechanism requires a two-
electron transfer moving directly to the [TT] state. (b) The mediated mechanism requires two one electron 
transfers reaching the [TT] state via a charge-transfer state. 

 

The second proposed mechanism involves an intermediate charge-transfer (CT) state called the 

mediated mechanism (Figure 2.10). The excited singlet state first undergoes a single electron 

transfer to an intermolecular charge-transfer state, followed by a second electron transfer event 

forming the 1[TT] state. Instead of a single coupling element, there are now two describing each step 

of the process (ൻSଵหHଵୣหCTൿ ൻCTหHଵୣห [TT].
ଵ ൿ)85,97,101. In ground breaking work, Berkelbach and co-

workers confirmed that for an energy ordering Eୗ > Eେ > E and both singlet fission mechanisms 

available the mediated mechanism dominates102. The authors used a system-bath Hamiltonian 

which describes both the electronic and vibrational components, including coupling to the 

environment (bath) via phonons102. As we will see in the following section, it has been shown that CT 

states form as observable intermediate states16. 
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In recent years a modified version of the mediated model has been proposed in which the CT state 

never forms, instead mediating as a virtual state. Berkelbach and co-workers also tested the 

mediated mechanism by removing the direct mechanism and moving the charge-transfer state to 

above the singlet state energy to mimic previous studies. They found that singlet fission occurs 

efficiently even for charge-transfer state energies 1eV above the singlet state102. Despite the charge-

transfer state being inaccessible it is able to mediate in a mechanism termed super exchange103. In 

the super exchange mechanism both the singlet and the triplet-pair mix with a virtual charge-

transfer state, increasing the overall effective coupling of the states which is given by; 

ൻୗభหୌ భหେൿ ൻେหୌ భห [].
భ ൿ

ిି
.103 As this route forms with no intermediate states it is kinetically a direct 

process from singlet to triplet-pair, making it difficult to distinguish between this and the direct 

mechanism experimentally103. However, as we will see in the next section a distinction can be made 

through indirect observations16.  

Before moving on we wish to discuss a recent addition to the proposed mechanisms of triplet-pair 

formation. The quantum coherent mechanism was introduced to explain time resolved two electron 

photoemission spectroscopy measurements101. In this technique, the sample is ionised, and the 

kinetic energy of the ejected electrons is collected. The difference in kinetic energy between 

electrons that originate from the ground and excited states then gives a relative measure of the 

state energies. Chan et al. found that a signal around the energy of the triplet transition appears 

instantaneously along with the singlet signal101. The authors suggest that this is a signal of the triplet-

pair state and that both the singlet and triplet-pair are formed together in a superposition state. The 

formation of the triplet-pair state seen in optical measurements is then characteristic of these states 

dephasing first to the triplet-pair and then to individual triplets101. While it is not clear if one 

mechanism dominates, as we will see in the following sections, there is growing experimental 

evidence for the mediated model. In fact even the quantum coherent model attains its coupling 

through an intermediate virtual charge-transfer state104. 
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2.4.3 Polyacene Singlet Fission 
 

Most singlet fission studies revolve around polyacenes materials, specifically tetracene and 

pentacene and their more soluble derivatives that include TIPs groups (Figure 2.11). These two 

molecules also represent two archetypal cases for relative singlet and 1[TT] state energies. In 

pentacene the singlet state is above 2 times the triplet (1[TT] below parent singlet state) making 

singlet fission exoergic. In pentacene, singlet fission has been shown to occur with 200% efficiency in 

~80fs, expected for the energetically favourable process17,105.  

 

Figure 2.11: Summary of singlet fission in tetracene and pentacene. Chemical structures of tetracene (a) and 
pentacene (b), TIPS-tetracene (c), TIPS-pentacene (d).  

 

A study conducted by Lukman et al. looked to change the charge-transfer state energies through end 

groups and choice of solvent to investigate its effect on the singlet fission process in pentacene 

derivatives16. They found that in some of the pentacene derivatives they were able to directly 

measure population of the intermediate charge-transfer state confirming the mediated 

mechanism16. In addition, for some derivatives, while a charge-transfer state was not directly 

formed, a dependence on solvent was found for the singlet fission rate/yield16. This confirms a 
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charge-transfer state has an influence on the singlet fission process even for systems where it is not 

directly formed, suggestive of the super exchange mechanism16.  

The energy landscape of tetracene is thought to give endoergic singlet fission (1[TT] above parent 

singlet state). This assertion originates from temperature dependent studies of the singlet fission 

triplet yield that puts the activation energy at 200meV83,106, and direct measurements of the triplet 

energy of tetracene107. Recently, transient absorption measurements taken by Wilson et al. tracked 

the singlet and triplet population at temperatures from 4-300K19. Wilson and co-workers found that 

the rate of formation of the triplet-pair is independent of temperature down to 4K. However, the 

authors found that there is a temperature dependence in the separation to free triplets. At low 

temperatures there is reduced triplet diffusion which leads to higher geminate recombination, 

reducing free triplet population19. Through this observation it is possible to explain the observed 

temperature dependence from the 1960’s without singlet fission being endothermic. 

Further evidence came from a study by Yong et al. who identified quantum beating in the emission 

kinetics of tetracene and other related singlet fission materials. Using 300fs resolution 

photoluminescence measurements the authors identified oscillations in the emission kinetics after 

subtracting the exponential decay. As was discussed above when in the weak exchange coupling 

regime, the spin character of the triplet-pair state is a superposition of singlet and quintet states. As 

the triplet-pair state is more emissive when of dominant singlet character, an oscillation in the 

emission kinetics can be assigned to oscillation in the spin character of the superposition state. As 

the emission is directly related to the triplet-pair population and cannot be through delayed 

fluorescence (different spectral shape to the singlet) the emission can be linked to the triplet-pair 

state directly. This surprising observation is still debated however the authors suggest the triplet-

pair emits through coupling to nearby bright states, in a mechanism known as Herzberg-Teller 

coupling. Herzberg-Teller coupling will be discussed further in Chapter 5.  
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The fact that the triplet-pair emits allows Yong and co-workers to measure the triplet-pair energy 

directly. The authors are then able to confirm that the absorbing state and triplet pair states are 

approximately isoenergetic, and singlet fission is not a strongly exoergic process as was originally 

thought94. A complication in polyacene singlet fission comes from the drastic range of singlet fission 

rates and yields that have been reported for different sample structures. For example, it has been 

shown that triplet separation to independent triplets can be a very slow process in polycrystalline 

TIPS-tetracene films (μs) 14.  

A study by Stern and co-workers found that in polycrystalline TIPS-tetracene separate triplets never 

form and instead the triplet-pair state lives for microseconds decaying non-radiatively14. The 

explanation for this is that the TIPS-tetracene molecules pack with very little orbital overlap 

(evidenced by lack of change in ground state absorption upon entering the solid state)14. As such 

triplet mobility is very low and triplets are not able to separate and reduce exchange coupling14. 

Indeed, Korovina et al. have shown that in a covalently linked dimer of 5-ethynyl-tetracene, 

separation of triplets occurs through triplet hopping18.  

The authors measure emission and transient absorption of the dimer in the solid state and solution. 

In the solid state, triplet-pairs form within 1ps and separate to form free triplets with an efficiency of 

154%. However, in solution where hopping is not possible, the triplet-pair state forms within 2ps but 

never separates to free triplets. Korovina et al. then form heterogeneous films of the dimers with 

diphenyl-tetracene, in which they observe separation to both 5-ethynyl-tetracene and diphenyl-

tetracene triplets from the triplet-pair state of the 5-ethynyl-tetracene dimer18. It should be noted 

that while this model is consistent with results discussed here, there are some studies reporting 

separation to free triplets within a single dimer. Tayebjee et al. measure a pentacene dimer in 

solution and find triplet lifetimes equivalent to those of individual triplets on a single pentacene 

unit15. The exact dynamics of the triplet-pair state are still under debate and will be discussed further 

in Chapter 4. 
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2.4.5 Polyene Singlet Fission 
 

A second class of materials known to undergo singlet fission are polyenes9,10. Owing to their complex 

photophysics we first take a moment to discuss the models for describing polyenes, and how they 

lead to the suggested route for singlet fission in these materials.  

As discussed above, polyenes are formed of double and single bonds in an alternating pattern, a 

dimerised ground state42. In a dimerised chain two phases coexist and are degenerate, those being 

A-phase (short-long-short) and B-phase (long-short-long) 42. For chains with odd site numbers (even 

number of bonds) it can be shown that there must be a change in phase in the chain to allow double 

bonds at the chain ends favoured due to edge effects. At the point of conversion of A to B phase 

conjugation, a defect forms known as a soliton42. For a chain with an even number of sites both ends 

of the chains can be double bonds without the inclusion of a soliton (Figure 2.12)42. In order to 

correctly predict the low energy physics of polyenes it is necessary to include electron-electron 

interactions. Below we briefly discuss the low energy states of conjugated polymers as a function of 

the degree of electron correlations42. 

Firstly we define the ground state (1Ag
-) as having one π-electron associated with each site of the 

conjugated backbone42. The spacing between each of these sites (or the length of the bond between 

them) alternates from short to long leading to the double and single bond alternating structure 

shown in Figure 2.1242. For many molecules, the first excited state is 1Bu
+, an ionic state indicated by 

the + sign. Following excitation, an electron transfers to a neighbouring orbital leading to a doubly 

occupied orbital and a corresponding empty orbital surrounded by singly occupied orbtials42. The 

doubly occupied orbital forms a negatively charged soliton, while the empty (or occupied by holes) 

orbital forms a positively charged antisoliton42. The pair then form a bound soliton-antisoliton pair 

that localise in the centre of the chain. In the weak interaction limit the soliton pair are only weakly 

bound, forming a charge-transfer Wannier-Mott exciton. At the intermediate to strong interaction 
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limit the state becomes a strongly bound Frenkel exciton42. Excitation energies of the 1Bu
+ state 

increase linearly as a function of increasing electron correlations in the system.  

 

Figure 2.12: Diagram representing the soliton structures of polyene states. (a) Represents the ground state in 
which each orbital contains a single π-electron. (b) Soliton structure of the 1Bu

+ excited state. The double 
occupied and empty orbitals form positive and negative spinless solitons which are bound by their coulomb 
attraction and self-localise to the centre of the chain. (c) Soliton structure of the 2Ag

- state. In the intermediate 
regime, two spin-1 negative soliton-antisoliton pairs form which are bound into an overall spin-0 state. At 
strong coupling the two spin-1 objects become unbound forming two triplets. 

 

The second commonly considered excited state (2Ag
-) is a covalent state meaning all orbitals are 

singly occupied after excitation42. Unlike the 1Bu
+ state, 2Ag

- changes character significantly as a 

function of electron correlations. At the weak interaction limit the 2Ag
- state is a bound Frenkel 

exciton whose energy scales linearly with interaction energy42. However, as the interaction strength 

increases the character of the state changes from Frenkel exciton to bi-magnon. A magnon is a spin-

density wave and can be thought to represent the movement of energy between the spin degrees of 

freedom. In the strong coupling limit the 2Ag
- state becomes explicitly a bi-magnon or triplet-pair 

state formed of two spin 1 objects42. At any non-zero interaction strength the description of the 

state as being formed of two spin 1 objects is relevant, with an increased prominence at the strong 
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coupling limit. In Figure 2.12 we show the structure of the 2Ag
- state in the intermediate coupling 

regime. Each of the spin 1 objects that form the state are constructed of two singly occupied solitons 

(spin ½), in a soliton-anti-soliton pair of spin 1 with negative charge. The two negatively charged 

soliton pairs then repel each other causing a reorganisation with the soliton pairs at the ends of the 

chain.  

The bi-magnon character inverts the dependence of the 2Ag
- state energy on electron correlations 

reducing its energy42. Another factor that effects the energy/character of the 2Ag
- state is the 

dimerization constant δ. δ is related to the hybridization integrals of the single (tୱ) and double bonds 

(𝑡ௗ) by Equation 2.27 and 2.28 where 𝑡 is the transfer integral in the non-dimerised case (tୢ = tୱ =

t)42.  

tୢ = t(1 + δ)        (2.27) 

tୱ = t(1 − δ)        (2.28) 

As the dimerization becomes more pronounced (δ -> 1) electrons become localised on the short 

(double) bonds (𝑡ௗ = 2𝑡), isolated by the much longer (single) bounds (𝑡௦ = 0) 42. In Figure 2.13 we 

reproduce the phase diagram from a book by Barford showing interaction energy versus 

dimerization constant42. In the intermediate regime (10-15eV ) for δ~0.1 as for polyenes the 2Ag
- 

state actually drops below the 1Bu
+ state and has significant bi-magnon character42. A strikingly 

simple test for this theory is to compare the 2Ag
- state energy with double the triplet energy of the 

molecule.  

Interestingly, while the 2Ag
- state does sit below the 1Bu

+ state, this is only true of its relaxed energy 

(at the excited state geometry). In contrast, at the ground state geometry (vertical excitation), the 

2Ag
- state is slightly above the 1Bu

+ state. This curious relationship between the state energies of the 

first and second excited states in polyenes is due to the structures of the excited states. For the 1Bu
+ 

state, after excitation, self-localisation leads to a polaron-exciton with minimal distortion of the 
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nuclei. As such the state requires very little reorganisation to minimise the energy of the state 

(0.2eV). Whereas the 2Ag
- state is formed of 4 solitons, which due to their negative charge, impart a 

repulsive coulombic force at short range, separating the two soliton-anti-soliton pairs. This leads to a 

large geometric reorganisation of excitation density to the ends of the polyene chains. The large 

reorganisation leads to a large change in energy from vertical to relaxed (1.2eV)42,43,108. 

 

Figure 2.13: The phase diagram of the Pariser-Parr-Pople model at half-filling. t = 2.5eV. Figure reproduced 
from the book by Barford42. 

 

In their seminal paper Tavan and Schulten proposed separation of the 2Ag
- state into two triplets as 

the mechanism for singlet fission in polyenes9,10. Tavan et al. suggested a small perturbation could 

lead to separation and localisation of the 2Ag
- state into separate triplets49. This was based on the 

observation that the 2Ag
- state energy is approximately the sum of 2 triplets implying the binding 

energy is small49. Tavan et al. found that localisation is preferred as the conjugation length is 

increased implying that at a given critical length the triplets will localise and separate49. We 

postpone further discussion of polyene intramolecular singlet fission for Chapter 5. 

Of these polyene materials, carotenoids are of particular interest. They are a widely studied set of 

molecules which have been shown to undergo singlet fission in light harvesting complexes and 
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solution based aggregates23–25,109 (discussed further in Chapter 6). Over 600 carotenoids exist in 

nature 110–112, covering a wide variety of functions from photo-protection in human vision to energy 

harvesting in photosynthesis 113–120. The complex energy landscape in carotenoids has led to 

decades of controversy in the assignment of the excited-state processes39. As a result, clarifying 

which states are present and relevant is of importance. We present below a brief discussion of the 

current understanding of carotenoid excited-state energies and photophysics. For more in-depth 

discussion, we refer the reader to references 39,112.  
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2.4.6 Energy Landscape of Carotenoids 
 

Tavan and Schulten and later Schmidt and Tavan calculated the optically accessible states for 

polyenes 49,121. Their calculated energies match experimentally determined gas-phase energies 

remarkably well121 and we plot their collated experimental vertical gas-phase 2Ag
- and 1Bu

+ 

energies121 in Figure 2.14.  

In addition to 2Ag
- and 1Bu

+ states, calculations reveal several other low lying excited-states39,49. The 

most relevant of these is the 1Bu
- state that is optically inaccessible from the ground-state (similar to 

2Ag
-). As shown in Figure 2.14, calculations of the vertical gas-phase energy of 1Bu

- indicate that at 

conjugation lengths below N=6, the 1Bu
+ state lies below the 1Bu

- state 121, while at longer 

conjugation lengths (N>6), these states switch order so that the 1Bu
- state is lower in energy than 

1Bu
+. This state ordering suggests that – in the gas phase – both the 1Bu+ and the 1Bu

- states must be 

considered when describing excited-state decay pathways in carotenoids with N>6 39,122.  

Experimentally, the 1Bu
- state was first invoked to explain the dependence of transition rate on 

energy gap for the 1Bu
+ to 2Ag

- internal conversion, which doesn’t follow the expected exponential 

energy gap law 123,124. Since then a raft of literature has suggested the involvement of 1Bu
- in energy 

transfer 112, internal conversion 39,125, triplet generation 126,127, and charge-transfer128 both in solution 

and embedded within a protein 32,39,49,112.  
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Figure 2.14: A summary of published, experimentally determined or calculated carotenoid energy levels. (a) 
The measured solution phase energies of excited states in carotenoids with varying degrees of conjugation. 
1Bu

+ (S2) energies (blue) were measured through ground state absorption while 2Ag
- (S1) energies (pink) were 

measured through emission 112,129–135. In addition, experimentally determined vertical gas phase energies 
(open markers) have been included for the 1Bu

+ (S2) and 2Ag
- (S1) excited state 121,136–139. Finally, the calculated 

values of the vertical 1Bu- state energies are shown in open triangles121. (b) The energy levels of β-carotene 
taken from literature, including the ‘controversial’ S* state (Dashed Line) 39.  

 

However, in condensed-phase environments such as solution or protein, the 1Bu
+ state should be 

stabilised more than the covalent states (1Bu
-, 2Ag

-) because of its large oscillator strength (suggested 

to be up to an order of magnitude larger121), see Figure 2.14 112,121,137–139,129–136. This stabilisation 

suggests that 1Bu
- should play no role in condensed-phase carotenoid photophysics. In other words, 

for all-trans carotenoids excited into the lowest-energy absorption band in solution or protein, 
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calculations and empirical evidence of solvation suggest the photophysics should depend on only 

three states: 1Ag
- (S0), 2Ag

- (S1) and 1Bu
+ (S2).  

 

This 3-state model is supported by recently published work from Liebel et al. who used vibrational 

coherence spectroscopy to measure β-carotene in solution, suggesting that internal conversion 

occurs via a conical intersection which implies it does not involve any other electronic states 54.  

Indeed, at the ground-state geometry, 2Ag
- is calculated to lie higher in energy than 1Bu

+43. On 

reorganisation to the relaxed 2Ag
- geometry, it lies > 1eV below 1Bu

+43,108. This large geometric 

reorganisation is reflected in the large Huang-Rhys parameter required to fit the weak 2Ag
- emission 

spectra at low temperature 140,141. These are both indicators of large geometric reorganisation which 

implies a shift in the potential energy minima of the 1Bu
+ and 2Ag

- states. A large displacement 

between the potential energy surfaces of the 1Bu
+ and 2Ag

- states would result in an internal 

conversion rate between S2 and S1 that does not depend exponentially on energetic gap, as is 

observed 123,142 and discussed in Section 2.2.3. Further evidence for a conical intersection comes 

from two dimensional electronic and vibrational spectroscopy (2DEV) by Oliver et al. who measure 

trans-β-apo-8′-carotenal (similar in structure to β-carotene). By resolving both the excitation 

(electronic) and probe (vibrational) information, 2DEV spectroscopy can follow the wave packet as it 

interacts with each electronic potential energy surface. The authors found that backbone vibrations 

remain correlated with the initially excited S2 state after transfer of population to the S1 state. As a 

result, this points to a direct transfer of energy with no vibrational redistribution, indicative of a 

conical intersection near the vertical excitation of the potential energy surface of the S2 state55.  

 

One problem with the 3-state model comes from transient absorption measurements where a 

photo-induced absorption, to the blue wavelength side of the S1-Sn absorption spectrum, has been 

observed with lifetimes longer than the 2Ag
- state (S1). In order to explain this feature, a new state 

called ‘S*’ has been proposed (Figure 2.15b).  S* was first observed in light harvesting complex 1 
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containing sprillioxanthin 143,144, and was later suggested to be a precursor to triplet formation via 

singlet fission in these complexes 126,127. A similar photo-induced absorption, with a pronounced 

excitation-energy dependence, was also measured in dilute solutions of β-carotene by Larsen et al. 

122 and assigned to S*.  

 
There is, however, growing evidence, both in solution and in protein, that S* is not a separate 

excited state. In light-harvesting protein complexes, for example, the presence of energy donors and 

acceptors near the carotenoids (e.g. bacteriochlorophyll or other carotenoid pigments) can 

complicate analysis of the carotenoid photophysics. Recent work by Niedzwiedszki et al. 

demonstrates that the S* feature in LH2 can be attributed to radical pair formation, and the 

consequent Stark shift induced by the electric field, rather than a pure neutral carotenoid excited 

state145.  

 
In solution, several studies have investigated the origin of the S* feature. For example, Wohlleben et 

al., investigated several carotenoids using pump-deplete-probe spectroscopy and concluded that the 

S* feature is a vibrationally excited ground state 125. The pump-deplete-probe technique uses a third 

pulse between pump and probe to selectively depopulate the 1Bu
+ state. It was shown that S* is not 

depleted by the pulse while the 2Ag
- state is. As a result, the authors suggested that the S* feature is 

due to population of an excited vibrational level of the ground state 125. To explain this, they suggest 

that the ground state is populated by either impulsive stimulated Raman scattering or non-radiative 

decay from the 2Ag
- state.  

 
The notion of S* as a hot ground state was later disproved by Jailaubekov et al. 146 who compared 

narrowband and broadband excitation conditions. Impulsive stimulated Raman scattering efficiency 

is expected to scale with bandwidth of the pump 146. The authors demonstrate that S* is not 

populated sequentially from S1 and that, crucially, population of S* does not depend on pump 

spectral breadth 146. The latter implies that impulsive stimulated Raman scattering does not populate 
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S* 146. Weerd et al. and others 144,147–149 instead suggest that a sub-population of carotenoids 

undergo a photo-induced change in conformation during relaxation from 1Bu
+ (S2) 144,147–149 yielding 

the S* feature. 

 
Recently Ostroumov et al. reported transient absorption measurements before and after purification 

of all-trans-β-carotene 150. The long-lived component in the transient absorption spectra is entirely 

absent in the pure all-trans sample regardless of excitation conditions 150. This suggests that the so-

called S* feature is due to a population of impurities in the sample 150. The authors also collected 

spectra from each isolated impurity, finding similar ground-state absorption spectra to all-trans-β-

carotene 150, suggesting the impurities are isomers that don’t adopt a pure all-trans conformation 151. 

Isomers are known to form over time in solution at room temperature, with a 20% population of a 

central carbon-carbon double bond cis isomer at equilibrium 152. With the isomers removed, the 

entire transient absorption spectrum after 1ps can be described by a single transition (S1-Sn). This is 

supported by work from Balevicius et al., who were able to model the whole transient absorption 

spectrum of β-carotene (after purification) including only three states: 1Ag
- (S0), 2Ag

- (S1) and 1Bu
+ (S2) 

150,153. We confirm the above model in several carotenoids before exploring the singlet fission 

process in these molecules in Chapter 6. 
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2.5 Polaritons and Strong Light-Matter Coupling 
 

In Chapter 4 we use strong light-matter coupling to investigate triplet dynamics in several systems. 

Here we wish to give the basic background required to understand the methods used during this 

study. We start with a description of strong-light matter coupling and the structures used to produce 

it. Strong light-matter coupling has applications in optoelectronics, such as polariton lasers which 

emit coherently by forming a Bose-Einstein condensate. As such polariton lasing does not require 

population inversion and can be prompted at much lower input powers154,155. 

2.5.1 Exciton-Polaritons 
 

We start by considering the interaction between light and the exciton of an active medium. After 

excitation the exciton can relax via emission of a photon, which travels away from the active 

material. As there is a very low chance of the same exciton reabsorbing the photon the emission 

process is considered irreversible156. However, when the active material is placed in a Fabry-Perot 

resonator, the light and matter are confined together. A Fabry-Perot resonator is a microcavity 

constructed of two mirrors around the active medium156. As light enters the cavity, it becomes 

trapped and bounces back and forth interfering with itself, which forms standing waves (Figure 2.15) 

156. At non-normal incidence the total wave vector (K) is a combination of the perpendicular (𝐾ୄ) and 

parallel (𝐾∥) wave vector components (Figure 2.15), given by Equation 2.29156,157. This can be 

modified to give the relation between the cavity thickness (𝐿) and the wavelength of the cavity (𝜆) 

photon mode it produces given in Equation 2.30156, where N is the order of the standing wave. As a 

result the photon mode energy is reliant on the angle of incidence (𝜃௫௧) and gains an angular 

dispersion156. 

K =  Kୄ
ଶ + K∥

ଶ                 (2.29) 

Lୡ =  
ୡ୭ୱ (ు౮౪)

఼
            (2.30) 
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Figure 2.15: Diagram of a microcavity. The top mirror is thin to allow partial penetration of the incident light. 
The standing waves formed, and wave vector components are labelled. 

 

Once the cavity mode is tuned to the energy of the exciton the two can interact, until the photon 

escapes the cavity156. The time the cavity traps the photon for is known as the cavity lifetime which it 

is related to the cavity quality factor (Q= 
େୟ୴୧୲୷ ୫୭ୢୣ ୡୣ୬୲୰ୟ୪ ୵ୟ୴ୣ୪ୣ୬୲୦

ୌ ୭ ୲୦ୣ ୡୟ୴୧୲୷ ୫୭ୢୣ
) 156,157. The Q factor is governed 

by the reflectivity of the mirrors, with the probability of finding an excited electron in the cavity 

given by Equation 2.31, where 𝛾
𝑐
 is the cavity linewidth and t is time156.  

PExc =  −eγct              (2.31) 

At low Q, i.e. poor confinement, we do not change the photophysics of the active material 

significantly; this is called the weak coupling regime. In the weak coupling regime, the emission 

process is still irreversible however the presence of the photon mode changes the density of 

available states. As the photon mode must be aligned to the peak of the material’s absorption to 

prompt coupling this increases the density of states around the absorbing state. As we saw in 

Section 2.2 the probability of a transition occurring is related to the density of available states40,41,157. 

As a result, the increase in the density of available states enhances the emission from the cavity. The 
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enhancement of spontaneous emission in the weak coupling regime is known as the Purcell effect157. 

As the quality factor is increased, we improve the confinement of the electromagnetic wave. This 

increases the chance of reabsorption before the photon escapes the cavity. At a high enough 

reabsorption rate, emission becomes a reversible process156.  

Once emission is a reversible process, the system is said to be in the strong coupling regime. The 

exciton and the photon form a superposition state, a new quasi-particle known as a polariton156. The 

polariton contains both light (boson) and matter qualities, splitting the excitonic state into an upper 

and lower polariton state156. It is possible to model this splitting in energy with a two level coupled 

oscillator model described by Equation 2.32158. If we consider two classical coupled oscillators such 

as two masses attached by springs, the total system oscillates with a frequency that is a 

superposition of the two masses. In analogy, the exciton and photon are the coupled oscillators 

while the polariton is the superposition state which yields a new frequency (or energy)159. By 

expanding the matrix in Equation 2.32, we arrive at Equation 2.33, and then solving using the 

quadratic formula gives Equation 2.34 156, where 𝐸 is the angle dependent photon energy, 𝐸௫ is 

the exciton energy, 𝐸 is the polariton energy, A is the interaction potential (ℏஐ౨ౘ

ଶ
) in which Ω  is 

the Rabi splitting defined below158. aୡ and aୣ୶ୡ represent the contribution of the cavity mode and 

exciton to the polariton state respectively and are known as the Hopfield coefficients discussed 

below156.  


Eୡ A
A Eୣ୶ୡ

൨ ቂ
aୡ

aୣ୶ୡ
ቃ = E ቂ

aୡ

aୣ୶ୡ
ቃ     (2.32) 

E = (Eୡ − E)(Eୣ୶ୡ − E) − ℏΩ = 0      (2.33) 

E± =
ౙା౮ౙ

ଶ
±

ଵ

ଶ
ඥ(Eୡ − Eୣ୶ୡ)ଶ + 4(ℏΩୖୟୠ୧)

ଶ                (2.34) 

As the equation for the polariton state energies contain the photon mode energy, the polariton 

gains an angular dispersion while the exciton does not. At normal incidence the energetic difference 

between the photon and exciton is defined as the detuning of the cavity (δ) 156. By changing the 
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angle of incidence of the light we change the relative energies of the modes156. When the photon 

and exciton modes approach and cross each other, they overlap. At this point while the individual 

modes overlap the polariton branches form an anti-crossing156. An anti-crossing, or an avoided-

crossing, is a point which two eigenvalues (photon and exciton contributions) of a Hermitian matrix 

(representing the polariton) cannot have the same value. This can be rationalised with a simple 

calculation of the energy gap between the upper and lower polariton branch (Eା − Eି). We apply 

the criteria 𝐸 − 𝐸௫ = 0 and simplify Equation 2.34 arriving at 2ℏΩ. The energetic split at point of 

closest approach is known as the Rabi splitting (Ωୖୟୠ୧). Simply put, when the photon and exciton 

modes meet in energy, the gap between the upper and lower polariton branch is governed by the 

coupling strength between them. At zero coupling the two are able to meet and cross over each 

other (Ωୖୟୠ୧ = 0), while at non-zero coupling we find an energetic split. At strong coupling the Rabi-

splitting becomes larger than the absorption linewidth of the exciton and an anti-crossing forms 

(Ωୖୟୠ୧ > 0)156,158. Scanning a wide range of angles, we produce a range of relative exciton and 

photon mode energies allowing us to visualise the anti-crossing (example given in Figure 2.16). An 

anti-crossing in the angle dependent reflectivity of a cavity is a proof of the presence of strong 

coupling156. 
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Figure 2.16: Diagram of an anti-crossing. Interaction of the Exciton (blue, dashed) and photon mode (green, 
dashed) produces an anti-crossing between the upper and lower polariton branch. We represent the dominant 
character of the polariton states through colour gradient. At the bottom of the lower polariton branch the 
character is mostly photonic (green) while at the top it is mostly excitonic (blue). The point of closest approach 
here shown at normal incidence then gives the energetic spacing between the branches (Rabi splitting) 
denoted as Ω . 

 

The detuning not only affects the energy of the polariton branches but also the contributions from 

the exciton and photon components156. As the detuning is varied we change the relative contribution 

of the photon and the exciton to the polariton states, known as the mixing fraction156. This 

information is contained in the so-called Hopfield coefficients found in the eigenvector in Equation 

2.32. The square of the Hopfield coefficients (aୡ and aୣ୶ୡ) give the relative contribution of photon 

and exciton to the polariton with the sum always equal to 1156.  

In Figure 2.17 we show a summary of the modes and their angular dependent energies for the 

photon, exciton and polariton156. By inspection we can see how the photon and exciton fraction 

changes with angle. At normal incidence the polariton branch is the furthest from the exciton and 

has the largest photonic character156, while states close in energy to the bare exciton show 

enhanced excitonic character. These highly excitonic states are sometimes known as the exciton 

reservoir; however, this is a hotly debated topic in the field of polariton research. Below we discuss 

the concept of the exciton reservoir and the currently competing theories. 
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Figure 2.17: Angular dispersion of the polariton, photon and exciton states. Interaction of the Exciton (blue, 
dashed) and photon mode (green, dashed) produces the upper and lower polariton branch. We represent the 
dominant character of the polariton states through colour gradient. At the bottom of the lower polariton 
branch the character is mostly photonic (green) while at the top it is mostly excitonic (blue). The energetic 
spacing between the photon and exciton at normal incidence (detuning) is labelled, denoted with δ. The 
exciton reservoir defined as a pool of incoherent exciton states, is usually labelled at the top of the lower 
polariton branch. 

 

The exciton reservoir and how it relates to the coupled exciton-polaritons is still a topic of discussion 

in the field of organic polaritonics. Some suggest that the majority of the excited molecules are not 

coupled and coherent in the delocalised polariton state158,160, while others suggest the majority are 

coupled161. However, it should be noted that these studies are investigating molecules in different 

strong coupling regimes. The studies indicating most of the excited states are coupled and coherent 

are in the ultra-strong coupling regime defined as having a Rabi-splitting a significant fractions of the 

absorption energy 161,162.  

In either case, in addition to the lower and upper polariton branches, a proportion of the excited 

states are localised and incoherent, with population thought to be mostly around the exciton at the 

top of the branch163–167. Studies have investigated the interplay between these three states. Virgili et 

al. used transient absorption with 15fs pulses to track the population of the UPB. After population, 

the UPB depopulates through emission of phonons to the exciton reservoir with a decay constant on 

the 100’s fs time scale168. This is consistent with many polariton studies that find only weak emission 

from the UPB158,169,170, unless measuring at low temperature where vibrations are supressed171.  
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Afterwards, the lower polariton branch is the sole source of emission, with emission from the 

exciton reservoir only able to escape the cavity via some form of population mechanism into the 

polariton state156,157. In several systems it has been shown that the LPB emits with a lifetime similar 

to that of the bare film158,172–174. In these systems despite emission occurring through the polariton 

the relaxation dynamics of the exciton reservoir is unchanged from those of a bare film173. The 

similarity between the lifetime of the bare film and micro-cavity is related to the drastically different 

radiative rates of the polariton and the bare exciton. As the polariton lifetime is dictated by the 

cavity (~50fs)174, they emit practically instantly compared to population of the polariton from the 

reservoir. As such the population of the LPB from the reservoir becomes a limiting factor in the 

lifetime of the system175. If the population from the reservoir is much slower than the intrinsic decay 

of the active material, we would expect the predominant population decay time to equal that of the 

bare exciton. However, it should be noted that it has been shown in some systems that the polariton 

can have decay constants nearly twice as long as the bare film176. Here authors compare their 

measured lifetimes to measured PL yields confirming the longer lifetime is consistent with their 

observations176. Once again this is in the ultra-strong coupling regime, so applicability to the other 

system discussed here is not clear. To understand the possible population mechanisms from the 

exciton reservoir it is instructive to compare two extreme cases of BODIPY-Br158 (emissive) and a 

squaraine dye177 (non-emissive).  

For the BODIPY-Br, authors report efficient emission from the bare film with a PLQY of 15% (3ns 

lifetime)158. Moving to the strongly coupled geometry they measure approximately the same 

radiative lifetime and PLQY for the cavity158. Grant and co-workers suggest that after excitation there 

is a substantial population of excimers which are only weakly coupled to the light modes. These 

weakly coupled sites are able to emit and pump the polariton directly termed radiative pumping. As 

this is the dominant decay channel we expect similar lifetimes and PLQY for the cavity and the bare 

film158, as is observed.  
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In the squaraine dye system, authors instead report an increase in the radiative lifetime and PLQY 

when moving from bare film (<0.01%) to microcavity (0.03%)177. As the radiative lifetime of the bare 

film is slower than that of the micro-cavity (and the PLQY is smaller) the radiative pumping 

mechanism cannot explain these observations. Ballarini and co-workers instead assign a vibrational 

scattering model in which population transfers from the exciton reservoir to the LPB via emission of 

phonons177. This model gained further evidence from Coles et al. who measured the emission from a 

series of cyanine J-aggregate filled microcavities160. The authors found that there was an 

enhancement in the emission intensity at four specific energy spacings between the LPB and the 

exciton reservoir. The authors found that the energy gaps which caused the enhancements aligned 

with Raman modes of the active material. As such the enhancement occurred when the energy 

difference between the reservoir and the polariton was at a phonon mode energy, suggesting a 

vibrational contribution to the population of the lower polariton branch160. 

The significant deviation between these two material systems can be explained via an interplay 

between the two mechanisms of population transfer. In the BODIPY-Br which undergoes efficient 

emission, the emission is channelled through the polariton in a radiative pumping mechanism. As 

such the high radiative rate of the polariton does not increase the emission lifetime of the system. 

However, in the squaraine dye where the radiative rate of the bare film is low, scattering to the 

polariton causes an increase in the population able to undergo radiative decay increasing the PLQY. 

The emission lifetime is then dictated by the population of the radiative states via vibrational 

scattering, increasing the time over which they measure emission.   

The exact nature and interplay of these population mechanisms is still in debate, however, in all 

cases the dynamics of the polariton are dominated by the exciton reservoir, which is not thought to 

be affected by strong coupling158,172–174,177. Through this chapter we have introduced all the concepts 

required to understand the studies into singlet fission in Chapters 4,5 and 6. We now address the 

materials and methods used in these investigations in Chapter 3. 
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3. Materials and Methods: 
 

3.1 Materials 
 

Materials listed below were stored in an ambient atmosphere in the dark unless specified otherwise. 

Excluding anhydrous solvents which were kept in a nitrogen atmosphere, all solvents, polystyrene 

and bathocuproine (BCP) were communal and exposed to oxygen. Throughout this thesis solvents 

and molecules were either purchased at spectroscopy grade from Sigma-Aldrich or were synthesised 

by collaborators where stated. In general, solutions are made in oxygen and held in a quartz 1mm 

path cuvette with stopper and parafilm. Solutions were used on the day of creation where possible. 

If stored for longer periods, UV-Vis absorption of the sample was checked for degradation before 

measurements were taken, in addition to after the measurements. Below details of each molecule 

are given along with details of sample preparations. 

 

3.1.1 Carotenoids  
 

Carotenoids used for monomer and solution aggregate measurements where either purchased from 

Sigma Aldrich at 97% purity and used without further purification (β-carotene, astaxanthin, 

echinenone) or isolated from Rhodobacter sphaeroides as described in Chi et al.(Spheroidenone)178 

by Jack Chidgey (University of Sheffield). Structures for each carotenoid are shown in Figure 3.1, β-

carotene (a), astaxanthin (b), echinenone (c), spheroidenone (d). 

3.1.2 Oligo(thienylene-vinylene) 
 

OTVs (or oligo(thienylene-vinylenes)) are an oligomer variant of the PTVs (or poly(thienylene-

vinylenes)). These molecules were synthesised for possible use in solar cell technology27,179–183. 

Oligomers of different lengths used here were synthesised by Iain Andrews in the Heeney group 

(Imperial College London). The structure of the repeat unit in the OTVs is shown in Figure 3.1e. 
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3.1.3 Diphenyl-anthracene 
 

Diphenyl-anthracene (or DPA) is an anthracene derivative commonly used in up-conversion studies 

in conjunction with Pt-porphyrin184,185. DPA was purchased from Sigma-Aldrich at 97% purity and 

were used without further purification. The chemical structure of DPA is shown in Figure 3.1f. 

3.1.4 Platinum-Porphryin 
 

Pt-porphryin is commonly used as a triplet sensitizer and to enhance emission through the heavy 

atom effect. Pt-Porphyrin was purchased from Sigma Aldrich at 98% purity and were used without 

further purification. The structure of Pt-Porphryin is shown in Figure 3.1g. 

3.1.5 DPPT 

DPPT (or diketopyrrolopyrrole-thiophene), was synthesised by Kealan Fallon (Columbia University). 

For details of the synthesis process we refer the reader to Ref186. The structure of DPPT is shown in 

Figure 3.1h. 

3.1.6 INDB 

INDB (or 3,10-dibromo-7,14-bis(4-((2-octyldodecyl)oxy)phenyl)diindolo[3,2,1-de:3',2',1'-

ij][1,5]naphthyridine-6,13-dione), was synthesised by Kealan Fallon (Columbia University). For details 

of the synthesis process we refer the reader to Ref186. The structure of INDB is shown in Figure 3.1i. 

3.1.7 TIPS-tetracene 
 

TIPS-tetracene (or 5, 12-bis((trilsopropylsilyl)ethynyl)-tetracene), was synthesised and provided by 

John Anthony (University of Kentucky). Due to the oxygen sensitivity of this molecule it was always 

kept in a nitrogen atmosphere. For details of the synthesis process we refer the reader to Ref186,187. 

The structure of TIPS-tetracene is shown in Figure 3.1j. 
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Figure 3.1: Chemical structures of materials. The chemical structure of the molecules used during this thesis 
are shown. (a) β-carotene, (b) echinenone, (c) astaxanthin, (d) spheroidenone, (e) OTVs (oligo(thienylene-
vinylene)), (f) diphenyl-anthracene, (g) platinum-porphryin (h) DPPT, (i) INDB, (j) TIPS-tetracene.  
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3.1.8 Polariton Film and Cavity Samples: 
 

In Chapter 4 we investigate the effect of strong light-matter coupling on triplet production pathways 

in a series of systems. The sensitisation up-conversion system of diphenyl-anthracene blend 

solutions were prepared in a nitrogen-filled glovebox with anhydrous toluene, at a diphenyl-

anthracene concentration of 30 mg/mL and a diphenyl-anthracene:Pt-porphyrin:polystyrene ratio of 

50:1:15 (wt/wt). Solutions were heated at 90°C for 1 day and then filtered with a 

polytetrafluoroethylene filter (400 µm). Films were spin-coated from hot solution.  

Solutions of DPPT and INDB were prepared in air, at a concentration of 6.25 mg/ml in toluene with 

an additional 25 mg/ml of polystyrene. To control for the effects of oxygen, DPPT solutions were also 

prepared in a nitrogen-filled glovebox with anhydrous toluene. TIPS-tetracene solutions were 

prepared in a nitrogen-filled glovebox with anhydrous toluene, at a concentration of 50 mg/ml. Thin 

films of all materials were spun on quartz-coated glass substrates for reference measurements. For 

oxygen sensitive samples we used the additional encapsulation protocol. Within a nitrogen-filled 

glovebox, films were covered with a glass microscope coverslip of larger dimension than the 

substrate, using strips of 100 µm-thick carbon tape to prevent the surfaces from touching. We mixed 

a two-part fast-drying epoxy (araldite) within the glovebox and applied this liberally around all four 

edges of the sample substrate, ensuring a complete seal with the coverslip. A second coverslip was 

applied to the reverse of the substrate to create a full encapsulation and a flat surface on either side 

of the sample. 

To prepare microcavities, we first deposited a thick (150-200 nm, 0.1nm/s deposition rate) Ag mirror 

on quartz-coated glass substrates with a thermal evaporator. Substrates were first cleaned before 

use by sonication in Hellmanex lll, Acetone and then IPA for 10 minutes each. Films of the desired 

thickness (~200 nm, aiming for λ-mode microcavities) were spin-coated on top, within a glovebox in 

the case of oxygen-sensitive systems. To determine film thickness for a given spin speed we 

deposited a test film of each material at 2000 and 4000rpm (50 seconds) and measured the film 
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thickness with a stylus profilometer (Dektak 150 surface profiler). Using this calibration, a series of 

spin speeds (1000-6000rpm, 50 seconds spin) were used to create cavities at different thicknesses. 

We then evaporated the semi-transparent top Ag mirror (25-30 nm, 0.01nm/s deposition rate) to 

complete the microcavities. Because of the high sensitivity of triplet-related dynamics to 

atmospheric oxygen, all samples were encapsulated prior to removal from the glovebox, except for 

select DPPT films and microcavities used to study the oxygen dependence of our observations. We 

used the same protocol as for the spin cast films described above.  

Some reference samples were also prepared entirely within the thermal evaporator used for mirror 

deposition. These were prepared with either a ‘thick’ (73 nm) or ‘thin’ (20 nm) layer of TIPS-

tetracene. For thick samples the organic layer consisted of a 20-nm layer of bathocuproine (BCP, 

Sigma Alrich), the layer of TIPS-tetracene and a final 20-nm capping layer of BCP. BCP was 

evaporated at a rate of 0.3 Å/s, and TIPS-tetracene at a rate of 0.3 Å/s. For the ‘thin’ samples the 

organic layer consisted of a 90-nm layer of BCP, a layer of TIPS-tetracene of 20 nm and a final 90 nm 

capping layer of BCP. BCP was evaporated at a rate of 1 Å/s for these samples, and TIPS-tetracene at 

a rate of 0.3 Å/s. Mirror deposition and encapsulation were performed identically to the other 

samples. To ensure accuracy in the organic deposition layers, a film of approximate thickness is 

deposited and measured with a Dektak system as above. This calibration is used to tune the tooling 

factor which is a measure of the speed at which the material evaporates. Once again samples were 

encapsulated with the same method described above. 

In Chapter 4 we also include a series of control measurements, details of these preparations are 

summarised in Appendix C. 
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3.1.9 Maquette Proteins 
 

Protein-bound carotenoid aggregates studied in Chapter 6 were produced and characterised in 

collaboration with Dr. George Sutherland (University of Sheffield). Previous studies of carotenoid 

aggregates have found production of aggregates time consuming and unreliable23–25. Aggregates 

form different structures depending on a variety of factors, such as relative concentration, 

temperature and PH25,188,189. Furthermore, aggregates tend to continue to grow, eventually growing 

large enough to fall out of solution. To circumvent this issue, we use simplified man-made proteins 

known as Maquettes. 

Maquette proteins consist of 4 α-helical structures which when exposed to water fold into a pocket-

like structure. This is achieved by engineering the binding of amino acids, and placing hydrophobic 

and hydrophilic acids on specific binding sites190–192. The overall structure of the maquette protein is 

a single chain of 4 α-helices joined by linkers (shown in Figure 3.2)193. As the carotenoids are 

hydrophobic they preferentially enter the pocket causing aggregation193. As the protein pocket is 

small, we expect a consistent aggregate structure and size with an increase in stability due to the 

lack of continued growth. In the current study we use the single chain protein variant to greatly 

increase the stability, reproducibility and practicality of carotenoid singlet fission studies. The 

method of protein bound aggregate production is discussed in detail in Ref194 and in brief below.   
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Figure 3.2: Protein and aggregate structure. (a) Comparison between monomer, solution based aggregate and 
protein-bound aggregate ground state absorption spectra for astaxanthin. (b) Protein structure with single 
chain design (unfolded structure shown in (c)). In (b) the white sections represent hydrophilic amino acids, 
while the coloured inner sections representing hydrophobic amino acids. 

 

Plasmid DNA was prepared from JM109 cultures using FastGene™ (Nippon Genetics) plasmid 

purification kit, according to the manufacturer’s instructions. Specific changes to plasmids were 

achieved with the QuikChange II Site-Directed Mutagenesis kit (Agilent), according to the 

manufacturer’s instructions. For all samples the desired strains of Escherichia coli were grown as 

single colonies in agar media containing the produced plasmids and expressed the desired protein. 

Afterwards the protein was purified by immobilised metal affinity chromatography195. Immobilised 

metal affinity chromatography involves washing the protein sample with a metal (Nickle Sulfate) 

that binds selectively with the protein of interest (Histidine in the maquette). The solution is then 

washed through a column of resin pellets removing anything that doesn’t bind. Afterwards the 

column is rinsed with buffer containing 5mM imidazole that breaks these bonds, allowing separation 

and so purification of protein types195.  

The purified protein is suspended in buffer (causing it to fold) and mixed with a solvent solution of 

carotenoid monomer and DMSO (1 carotenoid: 10 protein). Due to hydrophobic forces the 

carotenoids form aggregates and sequester themselves within the protein, creating molecular 

clusters of a stable size. Excess pigment found outside of the protein pocket is then removed using 

ion exchange chromatography leaving only protein bound aggregates. It is well known that proteins 
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have a charge state dependent on the pH of their surroundings. This is due to the ionisable 

structures within the protein causing a charge enhancement at given pH values196. Anion exchange 

chromatography uses this protein specific net charge to bind the desired protein as it is passed 

through a column of charged resin197. Afterwards the column is washed with buffers of progressively 

higher salt content (0-1M NaCl), as the salt concentration increases (brings the pH closer to 7 

reducing the charge of the protein) more of the proteins unbind leaving pure samples at high salt 

content197.  

 

 

Figure 3.3: Protein aggregate stability measurements. Absorption comparisons for solution-based aggregates 
(a) and protein bound aggregates (b) after 0, 4 and 16 hours of light exposure, normalised to time zero. Also 
included is a normalised change in peak absorption against exposure time for both samples (c). Measurements 
carried out by George Sutherland (University of Sheffield). 

 

To characterise the influence of the protein environment we expose both solution and protein-

bound samples to light to investigate their stability (measurements performed by George Sutherland 

(University of Sheffield)). Figure 3.3 shows normalised absorption spectra at 0, 4 and 16 hours 

exposure for both samples, normalised to time zero. While the solution aggregates decay to zero 

absorption by 40 hours, the protein samples survive for almost 100 hours. Furthermore, aggregates 

formed in solution continue to grow over time causing a significant change to the ground state 

absorption spectrum within 4 hours of production. Measurements then sample the aggregates as 

they change in structure causing potential artefacts. However, for protein-bound samples we see the 

same line shape for the entirety of the decay suggesting the samples remain the same size and 

viable for over 50 hours, long enough for measurements to be completed.  
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In addition to stability measurements, reconstitutions were repeated to ensure factors such as 

freeze thawing during storage don’t degrade the proteins. In Figure 3.4 we present ground state 

absorption, transient absorption spectra and transient absorption kinetics for each reconstitution 

method. We find no change in any of these measurements with the different preparation methods 

(summarised in Table 3.1). These measurements confirm that the maquette sample preparation 

creates reproducible and stable carotenoid aggregates. 

 

Figure 3.4: Comparison of storage and preparation techniques. (a) Ground state absorption of all samples 
prepared, we find no change in the ground state absorption suggesting we have minimal degradation or 
change between the samples. (b) Transient absorption spectra taken following 400nm excitation (3mW power) 
at 1-3ps and 30-40ps delay. (c) Transient absorption kinetics averaged over 600-610nm following 400nm 
excitation (3mW power). Sample preparation methods are detailed in Table 3.1. 

 

Table 3.1: Summary of sample preparation methods. 

Sample name Preparation Storage Conditions 
Fridge Alanine maquette1 Stored for ~1 week in a fridge 

Glycerol Alanine Maquette reconstituted in a 
~50% Glycerol solution 

Made on day of measurement 

Frozen Alanine maquette Stored for ~1 month at -80 degrees 
Fresh Alanine maquette Made on day of measurement 

Phenyl-Alanine Phenyl-alanine Made on day of measurement 
1 Alanine maquette is used throughout chapter 6. 
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3.2 Methods 
 

Here we discuss the experimental methods used throughout this body of work. Specifics of 

measurements are given in each chapter where necessary, in the following section we given a more 

general insight into the methods used. 

3.2.1 Ground State Absorption 
 

Ground state absorption is a steady state technique which measures the optically allowed 

transitions from the ground state to higher-lying states. As such it is a measure of the energy of the 

lowest optically accessible states with relative intensities governed by the transition dipole moment 

of the transition40. Throughout this thesis ground state absorption measurements were taken using 

a fluoromax spectrofluorometer (Horiba Jobin Yvon) in the 200-800nm spectral range. Light is 

directed at the sample from a lamp and the transmitted light is measured (𝐼்). We also measure a 

reference sample of solvent in a cuvette to find light transmitted without the molecules (𝐼). The 

absorbance (OD) is then given by the below Equation (3.1), which can be related to the parameters 

of the molecule under test through the Beer-Lambert law40. 

A (OD) =  −logଵ ቀ
୍

୍బ
ቁ =  εcl            (3.1) 
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Figure 3.5: Example absorption and emission spectra. Absorption and emission are a mirror image with a 
stokes shift between the energies of the 0-0 peaks. In real samples, geometric reorganisation leads to changes 
in the absorption and emission spectra which reduces the mirror image relationship. 

 

3.2.3 Photoluminescence Spectroscopy 
 

Photoluminescence spectroscopy can be thought of as the inverse of ground state absorption as it 

involves the deactivation of an excited molecule to the ground state by emission of a photon. These 

photons are then collected. Photoluminescence gives an estimate of the emissive state energies. 

According to Kasha’s rule, emission occurs from the lowest excited state, meaning 

photoluminescence describes the lowest energy optically allowed transition. If the emitting state 

and absorbing state are the same, with only minor geometric reorganisation, the absorption and 

emission are a mirror image of each other198. Emission occurs from the bottom vibrational level of 

the excited state to all vibrational levels of the ground state. This is the reverse for ground state 

absorption causing a reverse in the peak intensity pattern shown in Figure 3.5. The above 

consideration suggests the 0-0 peaks of emission and absorption should be isoenergetic. However, if 

there is a difference between the excited and ground state geometries, relaxation occurs after light 

absorption. As a result, the vertical transition (absorption, at the ground state geometry) and relaxed 

(emission, at the excited state geometry) energies differ causing a Stokes shift between the 0-0 

peaks. 
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Time-resolved photoluminescence measurements were acquired with an Andor iStar ICCD 

(Intensified charge coupled device), coupled to a Shamrock 303i spectrograph. Excitation was 

provided by an Nd:YAG Q-switched laser (Innolas Picolo) tuned for second-harmonic (532 nm) or 

third-harmonic (355 nm) output and synchronized with the ICCD. Nominal pulse duration is 600 ps, 

at a typical repetition rate of 5 kHz. Excitation and collection were through the same aspheric 

condenser lens (focal length=3.2 mm, Numerical Aperture=0.76), with the excitation incident on the 

sample at 40°.  

 

Figure 3.6: Diagram of the photoluminescence spectroscopy setup. The setup is used throughout Chapter 4 
and 5. Letters correspond to optical components as stated in the legend, ICCD refers to the intensified charge 
coupled device detector. 
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3.2.3 Transient Absorption Spectroscopy 
 

The basic components of a transient absorption setup are summarised in Figure 3.7. In short, a 

pump pulse excites the sample creating a significant excited state population. The pump is followed 

by a second pulse, which probes the absorption spectrum of the excited states. Pump and probe 

pulses are spatially overlapped in the sample with pump much larger than probe to ensure the 

probe only measures the excited region of the sample. A mechanical chopper is used to block half of 

the pump pulses, effectively collecting a probe spectrum with (T୭୬) and without (T୭)  the pump. 

The two are then processed using Equation 3.2, which gives the measured differential transmission 

signal. The transmission is then normalised by T୭ to allow a comparison between different 

excitation conditions and experimental setups. By varying the delay between the two pulses we can 

probe the population of the excited states over time.  




=  

ି 

                                                                            (3.2) 

As the technique measures a differential signal it becomes sensitive to small changes in population 

(10-5). In addition to differential transmission it is also common to present data in differential 

absorption. The derivation of differential absorption is shown below.  

Starting with Equation 3.1 and setting transmittance before hitting the sample (𝐼) to 1 we arrive at 

the relation A = −logଵ(T), where A is the absorption and T is the transmission. Rearranging and 

making the distinction between pump on and off we arrive at Equation 3.3 and 3.4. 

T୭୬ = −10ି                                                                        (3.3) 

T୭ = −10ି                                                                       (3.4) 

Putting these into the expression for 


 and rearranging we arrive at the expression for differential 

absorbance (∆𝐴) (Equation 3.5). For small intensities (


 ~ 10ିଷ) the conversion can be 

approximated as Equation 3.6. 

∆A = −logଵ ቀ1 +
∆


ቁ = −൫(−A୭୬) − (−A୭)൯                                        (3.5) 
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ΔA =  −



÷ 2.3                                                                     (3.6) 

An additional component that can be included is a reference beam which reduces noise in the 

measurements. The probe beam is split into probe and reference with reference passing through the 

unexcited volume of the sample for both pump on and off. Each acquisition is divided by the 

reference which reduces noise from shot-to-shot fluctuations in the laser and allows lower powers 

to be used and as such reduces the artefacts we discuss below199.  

 

 

Figure 3.7: General components of a transient absorption setup. 

 

During a transient absorption measurement there are generally three categories of signal, ground 

state bleach, stimulated emission, and photo-induced absorption200. The first, ground state bleach, is 

a measure of the depletion of the ground state population200. After excitation (pump) some 

molecules are excited, leaving less population in the ground state, meaning fewer probe photons are 

absorbed compared to pump off200. In differential transmittance this is represented by an increase in 

transmission with the pump compared to probing without the pump, as such it is a positive signal200. 

Likewise, when plotting differential absorption, ground state bleach results in a reduced absorption 

and is a negative signal (Figure 3.8) 200. As the ground state bleach is directly due to a depletion of 

the ground state, the TA feature matches the ground state absorption of the excited molecule200. 

The rise of the ground state bleach describes the instantaneous event of photon absorption and as 

such will be instrument-limited. However It is also possible for ground state bleach signals to form 

dynamically by processes that excite molecules after the initial pulse200. An example of this is 

heterogeneous combinations of materials such as in sensitization. By exciting one of the molecules, 
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only the ground state bleach of that molecule is visible. After some time, transfer of energy to the 

second molecule occurs, exciting them from their ground state to an excited state, resulting in a 

ground state bleach signal after time zero at the ground state absorption wavelengths of the second 

molecule200. 

 

 

Figure 3.8: Example signals collected in a transient absorption experiment. (a) shows the expected signal for 
pump off with only the ground state absorption visible. (b) shows (a) represented by state population. The 
only transitions are from the ground state to the first optically active state. (c) shows the signal with pump on. 
Here due to depopulation of the ground state the overall ground state absorption is lower. Additionally, there 
are signals from stimulated emission and excited state absorptions. (d) shows (c) represented by state 
populations. A reduced ground state absorption, emission from first excited state to ground and absorption 
from the first excited state to a higher lying state. Panel (e) and (f) represent the combination of pump on and 
off in both differential absorption (e) and differential transmission (f) units. Through we use GSB, PIA and SE to 
stand for ground state bleach, photoinduced absorption and stimulated emission respectively. 

 

The second category of signal is due to emission stimulated by the probe. After excitation the probe 

pulse interacts with the excited state population causing photons of the correct energy to stimulate 

a transition from the excited state to the ground state200.  
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Stimulated emission is observed as a positive signal in differential transmission (negative in 

differential absorption, Figure 3.8) 200. The third signal, photo-induced absorption, represents the 

absorption of an excited state200. Photo-induced absorption results in a negative signal in differential 

transmission (positive in differential absorption, Figure 3.8) 200. 

In addition to the signals described above there are also several sources of artefacts that complicate 

the spectra. These are broadly characterised as thermal effects and coherent artefacts. The first only 

occurs in materials which exhibit a temperature dependant absorption spectrum such as P3HT201. In 

P3HT it has been shown that the ground state absorption, and therefore the ground state bleach, 

exhibit a blue-shift at high temperatures201. When the pump pulse hits the sample, the temperature 

rises locally causing a different response upon probing201. The shift will then cause a residual signal 

when comparing pump on and off that adds an artefact to the measurement. By measuring 

temperature dependant ground state absorption it is possible to model the features and correct 

them27,201. Another method is to take transient absorption measurements on substrates with 

different thermal conductivities. The substrates then remove heat from the sample at different rates 

identifying thermal artefacts by the change in their kinetics202. 

The second source of artefacts are grouped under the name coherent artefacts. Signals relevant to 

the electronic states of the molecule only exist when the probe pulse is incident after the pump. 

During the pump-probe overlap the signals are no longer sequential and instead excitation and 

measurement occur simultaneously. As a result, these signals do not represent the true population 

dynamics of the system and signals within the overlap should be carefully analysed200. During pump-

probe overlap cross phase modulation occurs which is a change in the refractive index of the cuvette 

or surrounding medium as a result of the strong pump pulse203. This modulation causes a change in 

phase of the weak probe pulse which modulates its spectral response200,203,204. It is possible to 

characterise this signal and remove it from the data however for most measurements it is enough to 

discount the pump-probe overlap region from data analysis. 
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A final consideration is the effect molecular geometry has on the signal. The response of the 

molecule to the incident electromagnetic field depends on the orientation of the molecules 

transition dipole moment relative to the field. A distribution of dipole orientations in the solid state 

can affect the measurement depending on the relative polarisation direction of the pump. As a 

result the polarisation of the pump and probe are set to the ‘magic angle’ of 54.7o which cancels out 

the effect200,205.  

 

3.2.4 Transient Absorption Systems 
 

The pump pulses were created by non-colinear optical parametric amplification (NOPA) or in a 

commercial OPO (Spectra Physics). The probe pulses were created via white light supercontinuum. 

White light generation occurs when a weak seed pulse (800nm) is focused onto a sapphire crystal. As 

the pulse travels through the non-linear medium, the refractive index varies with the pulse 

intensity206. The phase of the pulse is then modulated by the oscillating refractive index of the 

medium206. As a result, the pulse itself modulates its own phase known as self-phase modulation. As 

the wave front of the pulse has a spatial intensity profile, so does the magnitude of the phase 

modulation206. This spatial component of the modulation distorts the wave front causing the well-

studied phenomenon of self-focusing and self-defocusing. For pulsed lasers there is a temporal 

change in laser intensity giving a temporal phase modulation206. As the time derivative of the wave is 

the angular frequency, a change in the phase also modulates the frequency. Thus self-phase 

modulation causes a self-broadening effect, which in conjunction with self-focusing provides an 

intense and broad probe spectrum206.  

The majority of the experimental data was taken using a modified version of a commercial Helios 

Fire system (Ultrafast Systems). The Helios is pumped by a Ti:Sapphire regenerative amplifier 

(Spitfire, Spectra-Physics) providing 800 nm pulses (~40fs, 10kHz, 1.2mJ). The pump was produced 
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by a commercial OPA (TOPAS prime, Light Conversion) pumped by the 800nm pulses from the 

Ti:Sapphire laser. The probe was produced by white light generation in a sapphire crystal. The Helios 

setup does not include a reference beam and uses magic angle before the sample.  

The second setup, from the University of Cambridge, is a homebuilt system pumped by a Ti:Sapphire 

laser (Solstice, SpectraPhysics) producing 3.5W, of 1kHz repetition rate, ~90fs pulses at 800nm. The 

home-built system includes a reference beam and uses a NOPA for the probe and pump pulses. This 

setup was operated and maintained by Andrew Musser (University of Cambridge). The high 

resolution (<30fs pulse) data was taken in collaboration with Giulio Cerullo and Frederico Branchi at 

the Politecnico di Milano. The system is the same as the home-built system at the University of 

Cambridge, however the pump pulses are optimized to the broadest possible range (~100nm). As 

the time resolution is limited by the time-bandwidth product200, the larger bandwidth allows a 

shorter pulse. The pulses are compressed with chirp mirrors to achieve near transform limited pulses 

(~no chirp).  

The following chapter describes an investigation of singlet fission, intersystem crossing and triplet 

up-conversion in the presence of strong light-matter coupling. I produced and measured all samples 

within the work, however, the project was a collaboration across several universities with molecules 

synthesised by Kealan Fallon (Columbia University) and John Anthony (University of Kentucky), and 

code provided by Rahul Jayaprakash (University of Sheffield). Where these aspects are discussed in 

the text, credit is given to the appropriate researchers. 
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4. Manipulating Matter with Strong Coupling: Harvesting 
Triplet Excitons in Organic Exciton Micro-cavities 

 

4.1 Summary 
 

Exciton-polaritons are quasiparticles with mixed photon and exciton character that demonstrate rich 

quantum phenomena, novel optoelectronic devices and the potential to modify chemical properties 

of materials. Organic semiconductors are of current interest for their room-temperature polariton 

formation. However, within organic optoelectronic devices, it is often the ‘dark’ spin-1 triplet 

excitons. These triplets have been largely ignored in treatments of polariton physics. Here we 

demonstrate polariton population from the triplet manifold via triplet-triplet annihilation, leading to 

polariton emission that is longer-lived (>μs) even than exciton emission in bare films. This 

enhancement arises from spin-2 triplet-pair states, formed by singlet fission or triplet-triplet 

annihilation, feeding the polariton. This is possible due to state mixing, which – in the strong 

coupling regime – leads to sharing of photonic character with states that are formally non-emissive. 

Such ‘photonic sharing’ offers the enticing possibility of harvesting or manipulating even states that 

are formally dark. 
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4.2 Background 
 

The exploration of new material properties typically faces significant practical constraints from 

cumbersome synthesis and morphological control. In recent years, however, it has been shown that 

many materials properties can be non-synthetically tuned with confined light to form exciton-

polaritons161,207,208, pointing the way to an entirely new field of microcavity-controlled 

materials176,209–212. These exciton-polaritons are quasi-particles mixing light (photon) and matter 

(exciton) components, leading to rich quantum effects213–217 and potential optoelectronic 

applications154,207–209,218–221. Exciton-polaritons are formed by placing a semiconductor between two 

metal mirrors to create a Fabry-Perot microcavity in which light of the correct angle and wavelength 

can be trapped (Figure 4.1a). If the material within the cavity has a strong exciton absorption, in 

resonance with the trapped photon mode, the exciton and photon can couple and form hybrid 

polariton states (Figure 4.1b). As a consequence of the mixed exciton-photonic character of these 

states, a measurement of reflected light as a function of incident angle demonstrates the typical 

dispersion shown in Figure 4.1c, with the upper polariton branch (UPB) and lower polariton branch 

(LPB) split around the excitonic energy, as discussed in Chapter 2. 

Most studies of exciton-polariton physics have focussed on inorganic semiconductor 

systems154,213,214,217,218. However, organic semiconductors have the advantage of high oscillator 

strengths222, which leads to Rabi splittings in the range 0.1-1eV161,162,207,222–224. Organic 

semiconductors also have low dielectric constants (εr typically 2-4)40. Consequently, photoexcitation 

results in bound electron-hole pairs known as Frenkel excitons. Such high binding energies allow for 

room temperature polariton formation observed now in several organic semiconductor 

microcavities170,215,225. The tightly bound Frenkel excitons also exhibit complex photophysics, with 

numerous radiative and non-radiative decay pathways possible following initial photoexcitation 

(Figure 4.1d)226. These pathways are rarely treated in detail in organic exciton-polariton studies, 

where the focus is primarily on ‘bright’ singlet (spin-0) excitons. However, intermolecular relaxation 
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to form weakly emissive excimers can significantly influence microcavity emission dynamics158, and 

theoretical attention increasingly has started to focus on the impact of other non-radiative 

photophysical processes210–212. We focus here on the role in these systems of triplet (spin-1) 

excitons. Triplet excitons and their management are critical in organic semiconductor devices such 

as solar cells8,73,227,228. For example, 75% of excitons formed by electron-hole recombination in 

optoelectronic devices are triplets due to spin statistics.  

 

 

Fig 4.1: Strong light-matter coupling in optical microcavities. (a) Microcavity structure. A thin film of organic 
semiconductor or dye dispersed in neutral polymer matrix is deposited between two mirrors, here Ag. The 
thickness determines the energy of the confined photonic mode and thus the profile of the electric field inside 
the cavity, shown here for the λ-mode. Reflection and emission from the cavity are measured as a function of 
angle θ, with 0° defined as normal to the cavity surface. (b) When the cavity mode and the excitonic transition 
of the semiconductor are near resonance, these two states can couple, forming hybrid upper and lower 
polariton states. (c) Unlike the exciton (blue), the cavity mode (gold) exhibits distinct angular dispersion. 
Coupling between the two yields dispersed polariton branches, with characteristic anti-crossing at the exciton 
energy. Shading indicates the degree of photonic (gold) vs excitonic (blue) character in the state. (d) Typical 
excitonic processes possible within organic semiconductor films. IR: intermolecular relaxation, (R)ISC: (reverse) 
intersystem crossing, TTA: triplet-triplet annihilation, DF: delayed fluorescence. Solid arrows indicate processes 
known to modify exciton-polariton emission dynamics, while dashed arrows show processes not explored 
within microcavities. 

 

 



 94 

It is generally thought that only states with large oscillator strength couple to the photon in a 

microcavity, with triplet states considered a loss channel in organic exciton-polariton systems224. 

Because of progress in electrically injected polariton devices154,219,220, however, it is important to 

consider in more detail the fate of these states and how they interact with polaritons. Similar to 

electrical injection, a very large reservoir of triplets can be generated by photoexcitation in some 

materials. Large triplet populations can be optically generated by using systems with strong spin-

orbit coupling resulting in fast intersystem crossing224 or in singlet fission active materials10,226.  

Herein we use both intersystem crossing and singlet fission to optically generate triplets to show 

how triplet excitons interact with polariton states and find that strong coupling creates new 

radiative channels that are unavailable in the film. This results in ultra-long-lived polariton emission 

and the potential for harvesting triplets in devices. We propose a mechanism based on the 

widespread phenomenon of excited-state mixing, which could open the way to using strong light-

matter coupling to manipulate dipole-forbidden, formally dark states. 
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4.3 Up-Conversion - Diphenylanthracene 
 

A common way to study triplet excitons is through delayed fluorescence, which occurs through the 

spin-allowed conversion of two triplets into a singlet exciton, known as ‘triplet-triplet 

annihilation’226,229.  One of the best-characterised triplet-triplet annihilation systems is the diphenyl-

anthracene/metal-porphyrin blend used for up-conversion184,185, the chemical structure of the 

molecules are shown in Figure 4.2a. We depict the photophysics of this system schematically in 

Figure 4.2b: directly exciting the Pt-porphyrin at 532nm initiates efficient intersystem crossing 

(<100fs)184, producing triplets that can transfer to diphenyl-anthracene where triplet-triplet 

annihilation produces delayed fluorescence. 

In order to understand how triplets behave in microcavities, we need to study delayed fluorescence 

in the solid state, rather than solution. We therefore prepared films of diphenyl-anthracene/Pt-

porphyrin/polystryene blends with a ratio of 50:1:15. The polystyrene is used to aid mixing between 

the two active materials and reduce film roughness. Films and microcavites were encapsulated in 

inert atmosphere to protect against oxygen quenching. 
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Fig 4.2: Sensitised photon up-conversion system. (a) Molecular structures of active components used in 
photon up-conversion system. (b) Simplified schematic of photon up-conversion. ISC: intersystem crossing, 
TET: triplet energy transfer, TTA: triplet-triplet annihilation. (c) Reflectivity map of photon up-conversion blend 
within an Ag-Ag microcavity. Comparison with absorption spectrum (right) and transfer matrix modelling 
(lines, circles) confirms strong coupling, characterised by anti-crossings at the 0-0 and 0-1 energies (dashed). 
Details of transfer matrix model in Section 4.8.1. All emission comes from the lower polariton branch (LPB), 
whether excitation is resonant with diphenyl-anthracene (355nm, dashed) or PtOEP (532nm, shaded). 
Emission is collected with a NA=0.76 lens and thus effectively integrates along the entire dispersion (±45°). (d) 
Decay kinetics of diphenyl-anthracene/exciton-polariton emission following excitation of PtOEP at 532nm 
reveal enhanced lifetime in microcavity (dark) vs bare film (light). All emission on these timescales arises from 
triplet-triplet annihilation. Incident power (film: 50µW, microcavity: 150µW) was chosen to give similar 
absorbed power in both samples, details in the main text. Photoluminescence spectra of diphenyl-anthracene 
blends in neat films (e) and microcavities (f), revealing no change in emission profile over time. (g) Absorption 
spectrum (dashed) of blend film, and photoluminescence spectra (solid) following excitation at 355nm and at 
532nm. As indicated, the diphenyl-anthracene emission following excitation at 532nm is scaled 100x. (h) 
Integrated diphenyl-anthracene emission spectra measured continuously over 50 s reveal clear signal 
degradation in films and microcavities. The strength of Pt-phorphyrin phosphorescence during this period does 
not decrease. 
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Figure 4.2g shows the steady-state absorption and emission from the blend film. The vibronic 

progression of diphenyl-anthracene can be clearly distinguished, while the absorption 500-550 nm of 

the porphyrin dopant is markedly weaker. At this low loading the porphyrin is too weakly absorbing 

to enter the strong-coupling regime itself. Following excitation at 355 nm (Exciting diphenyl-

anthracene directly), we measure diphenyl-anthracene fluorescence 400-500 nm, as well as 

substantial Pt-porphyrin phosphorescence due to rapid energy transfer from dipyhenyl-anthracene 

followed by intersystem crossing184,230. Following 532nm excitation (Pt-PEOP excitation) we measure 

up-converted emission at 400-450nm from diphenyl-anthracene, shown in Figure 4.2g. As this is a 

solid-state blend, phosphorescence at 650nm dominates the spectrum due to significant phase-

separation, which prevents Pt-PEOP triplets from reaching the diphenyl-anthracene regions of the 

film184,230. The spectra in Figure 4.2 reveal there is no evolution in the spectral emission profile from 

early times (< 100 ns) to the longest timescales, ~2.5 µs, in either bare films (Figure 4.2e) or 

microcavities (Figure 4.2f). In both cases the emission is mediated by the same state over all time 

delays: either S1 for DPA in the film, or the lower polariton branch in the microcavity. During the 

measurement, the film and microcavity show a non-reversible change in emission intensity, shown 

in Figure 4.2h. The effect is more pronounced in the film. Interestingly, the energetic position of the 

polariton emission does not change over the same measurement time (Figure 4.2f). The lower 

polariton branch emission energy is governed by the cavity thickness (expected to be constant) and 

Rabi splitting. The latter is governed by the optical density in the film. Hence, we conclude that there 

is no change in optical density of the film over the measurement time.  

We therefore attribute the apparent degradation in Figure 4.2h to laser-induced phase separation, 

causing a reduction in diphenyl-anthracene delayed fluorescence. This observation is consistent with 

the typical observation of reduced photon up-conversion efficiency in such blend films relative to 

solutions, due to the separation of Pt-porphyrin and diphenyl-anthracene into relatively pure 

domains184,230. To ensure that this does not affect our observations, the kinetics in Figure 4.2 were 
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measured during the saturation regime when laser-induced phase-separation reaches a steady state, 

i.e. after 50s. Overall the emission behaviour of the films is consistent with literature184,185. 

Figure 4.2c shows a reflectivity map of a microcavity containing the diphenyl-anthracene blend, as a 

function of incident angle and wavelength. The dips in microcavity reflectivity never cross the bare 

exciton energy (blue dashed). This 'anti-crossing' is a signature of strong light-matter coupling and 

polariton formation, and the absorbing states are thus split into polariton branches. Transfer-matrix 

modelling based on measured optical parameters confirms strong coupling in this structure (Figure 

4.2c, lines and circles). Microcavity emission originates from the lower polariton branch (Figure 4.2c, 

right), whether we excite the diphenyl-anthracene directly (355 nm, dashed) or the Pt-porphyrin 

(532nm, shaded). In the latter case emission is due to up-conversion through triplet-triplet 

annihilation.      

We explore how this triplet harvesting process is affected by strong coupling using time-resolved 

measurements. To correctly compare the film and cavity kinetics, the incident excitation power was 

scaled to ensure similar absorbed power in both cases. To do this, we considered multiple passes of 

light through the microcavity due to internal reflections, accounting for transmission through the 

semi-transparent top mirror (~25%, due to the presence of a nearby cavity mode) and attenuation 

by the Pt-porphyrin absorption. This yields a 1.6% absorption of incident light at 532 nm within the 

microcavity, compared with 5% by the film. Therefore, we compared measurements taken with 50 

μW incident laser power for the film samples with 150 μW for the microcavities in Figure 4.2d.  The 

lifetime of emission in the microcavity is distinctly longer than in the film (Figure 4.2d). The 

predominant species on these timescales are triplet excitons, so we conclude that additional long-

lived triplets are harvested in the microcavity. This change in lifetime is surprising and requires 

further investigation. However, the two-molecule nature of the system combined with laser-induced 

phase separation, makes a detailed study on this system difficult. We therefore apply the same 

approach to a simpler system with a single active component. 



 99 

4.4 Triplet-Triplet Annihilation - DPPT 
 

Diketopyrrolopyrrole thiophene (DPPT, Figure 4.3a) is the base unit for polymers exhibiting high 

charge-carrier mobility in thin-film transistors, recently used in electrical-injection polariton 

OLEDs220. DPPT monomers are also known to undergo intersystem crossing in the solid state231, 

shown schematically in Figure 4.3b. Films were prepared containing DPPT dispersed in polystyrene 

matrix (1:4 DPPT:polystyrene). Figure 4.4c shows the steady-state absorption and PL spectra of a 

DPPT:polystyrene blend (1:4) in solution (<1mg/ml) and in the thin film. The solution 

photoluminescence spectra are representative of singlet emission from isolated molecules. Within 

the films, we observe a distinct red-shift and increase in intensity beyond 600 nm, which we 

attribute to excimer emission232. The slight increase in absorption at the 0-1 peak (~510 nm) within 

the films is likewise consistent with a sub-population of H-aggregated sites within the film71, which 

can lead to excimer emission232. It is likely these are the primary sites of triplet-triplet annihilation, 

as this process requires two DPPT molecules to be in proximity. 



 100 

  

Figure 4.3: Steady state characterisation of DPPT. (a) Molecular structure of DPPT. (b) Simplified schematic of 
DPPT film photophysics, details in main text. ISC: intersystem crossing, TTA: triplet-triplet annihilation. (c) 
Absorption (solid) and photoluminescence (dashed) spectra of DPPT in toluene solution (red) and embedded in 
polystyrene matrix (purple). Excitation for photoluminescence spectra was at 532nm. 

 

Figure 4.4 shows time-resolved emission data of DPPT:polystyrene blend films and microcavities. 

Within the instrument response (0-2 ns), the spectrum resembles emission in dilute solution (Figure 

4.4a), so we assign it to prompt singlet emission. By 15 ns the spectrum is dominated by a red-

shifted species which decays in tandem with the initially excited singlet and can be attributed to 

excimer emission. We observe no time-dependence in the polariton emission in microcavities 

(Figure 4.4b), indicating that all emission is from the lower polariton branch.  

Figure 4.4c shows a comparison of the normalised bare film emission spectra at 15 ns after 

photoexcitation, in the presence and absence of oxygen. We see a much smaller relative population 

of the excimer state in the oxygen-rich samples, compared to oxygen-free. It is well known that 
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triplets are quenched in the presence of oxygen, making oxygen dependence a standard test for 

triplet states233. The quenching of excimer emission suggests that the excimer is populated by triplet 

states. Previous reports of DPPT and similar chromophores are ambiguous about the presence of 

triplets and mechanism of their formation. Some DPP derivatives are claimed to be capable of singlet 

fission, which would suggest rapid and efficient triplet formation234. An analogue of DPPT with 

slightly different side-chain structure, however, yielded no long-lived triplet signal in time-resolved 

EPR measurements on a pure film231, suggesting singlet fission does not occur. The latter 

measurement indicates that any triplet formed by intersystem crossing must be short-lived and/or in 

low yield. To verify that our delayed fluorescence is from triplet-triplet annihilation, we performed 

intensity-dependent measurements. Figure 4.4d shows the intensity dependence of 

DPPT:polystyrene film emission within the instrument response and between 500-600 ns. The non-

linear scaling is consistent with triplet-triplet annihilation to reform both the singlet and the excimer, 

and closely follows the dependence in a diphenyl-anthracene solid-state system235. All subsequent 

measurements were performed on films or microcavities encapsulated in an oxygen-free 

environment. 
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Figure 4.4: Oxygen dependent time resolved photoluminescence of the DPPT samples. (a) Spectra of 
DPPT:polystyrene film following excitation at 532 nm, collected within the instrument response (dashed) and 
at 14-16 ns (solid) after excitation. b Equivalent spectra for microcavity, within the IRF (dashed) and at 80-90 
ns (solid) after excitation. (c) Time-resolved emission spectra of DPPT:polystyrene film at 14-16 ns, in the 
presence (solid) and absence (dashed) of oxygen. The oxygen-free film was prepared and encapsulated within 
a nitrogen-filled glovebox. (d) Laser intensity dependence of emission from DPPT:polystyrene films at short 
(squares) and long (circles) time delays, revealing similar dependence whether the emission is dominated by S1 
(IRF) or excimers (500 ns). (e) Bare film (red) and microcavity (pink) emission kinetics integrated over full 
emission band, in the presence of oxygen. 

 

Within DPPT-based microcavities, Figure 4.6a, we observe a clear anti-crossing at the 0-0 peak, while 

the second peak in the absorption appears to be in the weak/intermediate-coupling regime. Similar 

to the diphenyl-anthracene cavities, we attribute the anti-crossing states to polariton branches, and 

emission is again entirely from the lower polariton branch. Comparison of the film and microcavity 



 103 

emission kinetics in Figure 4.5b reveals that the prompt fluorescence dynamics remain unchanged. 

However, delayed fluorescence from triplet-triplet annihilation is once again longer-lived in the 

microcavity. By contrast, in a reference material INDB in which we observe no contribution to 

emission in the bare film from triplet-triplet annihilation, we observe no enhancement of long-lived 

emission in microcavities (Appendix A). Likewise, when we quench the triplets in DPPT through 

exposure to oxygen, the enhancement observed in Figure 4.5b disappears (Figure 4.4e). 

 

Figure 4.5: Delayed emission in single-component DPPT film. (a) Reflectivity map of DPPT:polystyrene film 
within a Ag-Ag microcavity. Comparison with absorption spectrum (right) and transfer matrix modelling (lines, 
circles) confirms strong coupling to the 0-0 transition. All emission arises from the lower polariton branch 
(LPB). Emission is collected with a NA=0.76 lens and thus effectively integrates along the entire dispersion 
(±45°).  (b) Integrated photoluminescence kinetics over full emission band for bare film (light) and microcavity 
(dark) following excitation at 532nm. Enhanced microcavity emission matches the ‘delayed’ regime, in which 
contributions from triplet-triplet annihilation are significant. 
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To understand the possible origin of this longer-lived emission, we consider the mechanism and spin 

physics of triplet-triplet annihilation. Emission in this process comes from the encounter of two 

triplets as they diffuse through the film, forming an ‘encounter complex’ called a triplet-pair state 

(TT)80. As discussed in Chapter 2, spin conservation means 1(TT) is the only spin state enabling 

transfer from the dark triplet-pair manifold to emissive S1. We note that the same pair states that 

make up 1(TT) also compose two of the five 5(TT) configurations80, such that the spin states are a 

mixture of singlet and quintet. The rate of transfer from the (TT) encounter complex to S1 is 

weighted by its overlap with 1(TT), e.g. หൻ 𝑇𝑇ଵ ห𝜑ൿห
ଶ

, where 𝜑 is the mixture of spin states in the 

encounter complex. Simple spin considerations (9 combinations of 4 electrons in the triplet-pair) 

would imply a maximum quantum efficiency of ~ 11% (1 of 9). In practice, up-conversion efficiencies 

of >11% have been observed in solution systems, suggested to be due to the higher spin-states such 

as 5(TT) dissociating back to free triplets without significant loss, later reforming 1(TT)229,236. We 

propose that the enhanced long-lived emission in our microcavities can also be explained by 

considering these high-spin states. 

The quintet triplet-pair states have only recently been observed in organic solid-state 

systems12,15,237,238, both in ‘pure’ configurations and in a complex mixture with 1(TT) governed by 

dynamics of the exchange interaction (see discussion below). These states have been shown to have 

a lifetime of a few microseconds, presumably because any relaxation to the ground state from 5(TT) 

or the 1(TT)-5(TT) mixture would be spin-forbidden. On the other hand, 1(TT) has a typical lifetime on 

the order of only 10ns in the absence of fast dissociation into ‘free’ triplets31,94. Moreover, it can 

directly recombine into S1 in a spin-allowed process. Given this significant difference in pair-state 

lifetimes, a channel to harvest the quintet states for delayed fluorescence would significantly 

increase the emission lifetime. To more directly probe this possibility, we study a material system 

capable of singlet fission, the inverse of triplet-triplet annihilation in which a singlet exciton forms 

two triplet excitons via 1(TT)10,13,31,94,226. We use polycrystalline films of TIPS-tetracene, a system 

which has been very well studied with a range of complementary time-resolved techniques (optically 
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detected magnetic resonance, transient and/or magnetic field-dependent absorption, 

photoluminescence and EPR)12,13,96,239. These measurements have established a detailed picture of 

the excited-states and, importantly, spin-dependent dynamics of TIPS-tetracene. The triplet-pair 

state produced via singlet fission is initially a pure singlet 1(TT) which can then evolve into 5(TT) and 

1(TT)-5(TT) on sub-microsecond timescales12,15,237,238. This evolution does not depend on exciton 

diffusion, allowing us to isolate the contribution of high-spin states in microcavities.  
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4.5 Singlet Fission - TIPS-tetracene 
 

To investigate singlet fission, we use TIPS-tetracene, a well-studied singlet fission material, structure 

shown in Figure 4.6a. In polycrystalline TIPS-tetracene films, singlet fission occurs within 50 ps13, well 

within our instrument response of 4 ns. The singlet and 1(TT) states are very similar in energy 

resulting in a dynamic equilibrium and delayed fluorescence, schematic shown in Figure 4.6b. Over 

time, spin evolution of the bound triplet-pair state forms 5(TT)12 and the films become non-emissive. 

On very long timescales (>µs), spin dephasing yields independent triplets12. We note that even on 

these long timescales, the predominant triplet-triplet annihilation processes in TIPS-tetracene are  

geminate13 because annihilation occurs between triplets formed from the same parent singlet state. 

As a result, the delayed fluorescence kinetics show no dependence on excitation density. 

Within microcavities we observe strong coupling throughout the TIPS-tetracene absorption band 

and clear polariton branches, Figure 4.6e. As above, emission is entirely from the lower polariton 

branch. Relative to the bare film, the prompt microcavity emission is only weakly perturbed, Figure 

4.7f. However, beyond 100ns the microcavity shows a significantly enhanced long-lived tail. As in 

previous systems, the film and microcavity spectral shapes exhibit negligible evolution over this 

decay (Figure 4.6c-d). In the film this is because all emission we detect is from S1, populated by 

triplet-triplet annihilation from 1(TT). Likewise, in the microcavity the constant spectral shape 

indicates that the emission is mediated by the lower polariton state, also populated by triplet-triplet 

annihilation. However, the clear delineation into two kinetic regimes in Figure 4.6 suggests that on 

long times (>100ns) this process follows a distinct pathway unavailable in the film. 
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Figure 4.6: Singlet fission into bound TT within a microcavity. (a) Molecular structure of TIPS-tetracene. (b) 
Simplified schematic of TIPS-tetracene photophysics. All processes are potentially reversible, leading to 
delayed fluorescence from triplet-triplet annihilation. (c) Emission spectra of pure TIPS-tetracene film following 
excitation at 532 nm, collected within the instrument response (IRF) and at 500-600 ns after excitation. (d) 
Equivalent spectra to (c) but for the microcavity. (e) Reflectivity map of a pure TIPS-tetracene film within an 
Ag-Ag microcavity. Comparison with absorption spectrum (right) and transfer matrix modelling (lines, circles) 
confirms strong coupling to multiple transitions. On the left the emission spectra of the microcavity is shown 
consistent with emission from the lower polariton branch (LPB). Emission is collected with a NA=0.76 lens and 
thus effectively integrates along the entire dispersion (±45°).  (f) Integrated photoluminescence kinetics over 
full emission band for bare film (light) and microcavity (dark) following excitation at 532 nm. All emission on 
these timescales arises from triplet-triplet annihilation. 
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Initially we wish to rule out changes in film morphology due to the various sample preparation 

methods. A summary of the control sample measurements is given in Appendix B, but in brief. Spin-

cast control films were prepared from chloroform solutions with the same parameters as toluene in 

Figure 4.7, to determine if the slight changes in morphology that result13 have any effect on the 

delayed emission dynamics. Films identical to those in Figure 4.6 were subjected to thermal 

annealing or ultrahigh vacuum in the evaporation chamber. These measurements allowed control 

for whether any incidental effects of microcavity preparation (e.g. changes in morphology under 

vacuum or higher temperatures) could be the origin of the enhanced delayed emission reported in 

the main text. Finally, a film was produced on top of a mirror to investigate if organic-metal 

interactions could cause the effects we measure. All samples were encapsulated and measured 

following the same procedures used for all other samples. We observe no systematic change in the 

photoluminescence decay kinetics following these solution-based processing steps. We observe 

slight variation in the PL lifetime across all samples including those without additional treatments 

(Figure 4.7). Similar variation can be obtained by scanning across the same film, which can be 

attributed to slight changes in the film crystallinity. Following annealing, vacuum treatment or 

position on a mirror we observe variation on a similar scale (Figure 4.7), in some cases with 

increased prominence of the ‘kink’ as the kinetics transition from cleanly exponential behaviour to a 

less-defined power-law-type decay weakly detectable above the noise floor. In no instance do we 

detect changes in the film behaviour on the same scale as the effects of microcavity formation, 

confirming that the effect we report does not arise from our processing or metal-organic 

interactions. 
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Figure 4.7: Control measurements on TIPS-tetracene films. (a) Films prepared from different batches of 
solution or different solvents at the same TIPS-tetracene concentration exhibit the same qualitative behaviour. 
The slight spread of lifetimes indicates slight variations in film crystallinity; similar variation can be obtained 
scanning within the same film. (b) Exposure of the films to heat or ultra-high vacuum does not significantly 
change the kinetics beyond the standard film-to-film variability. Similarly, deposition on an Ag mirror does not 
result in a major change in lifetime due to metal-organic interactions. No processing steps result in an 
enhancement that can explain the behaviour observed in full microcavities. In each kinetic only every third 
data point is shown for clarity.  

 

We additionally prepared fully evaporated sample structures to ensure that direct contact between 

TIPS-tetracene and Ag is not responsible for the observed delayed emission. We first confirmed that 

evaporation of TIPS-tetracene does not yield films with significantly different emission properties 

(Figure 4.8). Multilayer BCP:TIPS-tetracene:BCP films on glass exhibit a redshift of the overall PL 

spectral weight, consistent with a minor contribution from excimer-type sites previously reported to 

exist in disordered samples14. These features do not dominate the emission and are presumably a 

minority species in the film, and we expect they are formed at the TIPS-tetracene:BCP interface 

where disorder will be greater. There is no accompanying change in the PL decay dynamics: 

evaporated and spin-coated samples are fully equivalent (Figure 4.8). Likewise, subsequent coating 

with an evaporated Ag mirror does not significantly enhance the delayed emission and results in 

changes comparable with film-to-film variation. We then complete a full microcavity structure, with 

a sufficiently thin layer of TIPS-tetracene and a sufficiently large negative detuning that no strong 

light-matter coupling is possible. This sample exhibits effectively identical dynamics to other 
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reference films, demonstrating that the full microcavity processing steps are insufficient to induce 

major enhancement to the delayed emission if polariton formation is not possible. 

 

Figure 4.8: Fully evaporated TIPS-tetracene samples. (a) Emission spectra and (b) integrated kinetics of each 
sample. Data is acquired and processed as above. Comparison of samples produced by evaporation and spin 
casting shows little variance. A strongly detuned microcavity with low oscillator strength (‘Uncoupled cavity’) 
also exhibits no enhancement in the delayed emission. (c) Angle-dependent reflectivity of the ‘thick’ TIPS-
tetracene evaporated cavity shows strong coupling as in solution-processed cavities. (d) No strong coupling is 
evident in the ‘thin’ TIPS-tetracene evaporated cavity. 

 

However, when we prepare full microcavities with a thick evaporated layer of TIPS-tetracene we 

observe clear strong light-matter coupling in the angle-dependent reflectivity (Figure 4.8c), with 

well-defined polariton emission and the same substantial enhancement to delayed emission for 

spin-cast microcavities (Figure 4.8b). The enhancement is clearly independent of physical contact 

between the TIPS-tetracene and metal mirrors or any of the sample processing steps but is instead 

uniquely caused by strong light-matter coupling (Figure 4.7/4.8). 
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To identify the new pathway available in the microcavity, in Figure 4.9 we compare our results with 

published data from TIPS-tetracene polycrystalline films that show identical absorption spectra and 

fluorescence lifetimes and are thus equivalent12,13. Transient absorption spectroscopy (solid line, 

dark red) has shown that triplet photo-induced absorption signatures generated by singlet fission 

appear well within our instrument response and do not decay significantly until >10µs13. The same 

sample shows emission with 10ns lifetime, attributed to delayed fluorescence during the initial S1–

1(TT) equilibrium13. This decay (open circles) closely matches our pre-100ns emission decay. 

Importantly, the combination of these two data sets shows that the pre-100ns decay in delayed 

fluorescence is caused by the change in the emissive character of the triplet-pair states, rather than 

a loss in population. This change in character is attributed to spin evolution12,13. Indeed, time-

resolved electronic paramagnetic resonance spectroscopy shows the presence of quintet states12, 

reproduced by the dashed line in Figure 4.9. Interestingly, the bulk of our microcavity-enhanced 

emission coincides with this time frame. Finally, on still longer timescales, it has been observed that 

the triplets within the bound pairs become spin-independent. In this regime, we detect no emission 

from the microcavity, presumably due to a reduction in triplet-triplet annihilation. As a result, we 

assign the enhanced delayed emission to quintet states populated on the microsecond time scale. 

 

Figure 4.9: Identification of the 5TT contribution. Reproduction of the TIPS-tetracene film and microcavity 
emission kinetics from Fig 4.7, compared with time-correlated single photon counting44 (circles), transient 
absorption44 (solid) and electron paramagnetic resonance38 (dashed) kinetics previously reported for similar 
polycrystalline films. The long-time enhancement in microcavities coincides with observations of high-spin 5TT . 
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We have also measured the dependence of the observed enhancement on the energy offset 

between cavity mode and S1 (the ‘detuning’). Figure 4.10 shows that across the entire detuning 

series we observe the same qualitative effect, though the magnitude and lifetime of the 

enhancement appear to vary. There is no systematic dependence on energy offset. Interestingly, the 

least and most negatively detuned cavities (-71 and -545 meV) exhibit nearly the same long-time 

kinetic. The extremes of dynamic behaviour are instead obtained with two similar ‘intermediate’ 

negative detunings, -342 and -418 meV. The fairly short energy scale for such changes in behaviour is 

consistent with earlier studies of squaraine microcavities177, where the detuning scans the LPB over 

relatively sharp energetic resonances within the exciton reservoir. The complex structure observed 

here suggests the presence of multiple resonances, likely related to the more complex vibronic 

structure of TIPS-tetracene. With all the data assigned, we now discuss the results presented herein. 
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Figure 4.10: Detuning dependence in TIPS-tetracene microcavities. Integrated PL kinetics acquired and 
processed as in previous Figures. The same qualitative behaviour is observed over the full range, but there is 
no systematic dependence of the relative magnitude or lifetime of the enhanced emission. In each kinetic only 
every fifth data point is shown for clarity. 
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4.6 Interpretation of the Enhanced Emission 
 

In all the systems we have studied in which triplets are formed, triplet-triplet annihilation leads to 

longer-lived emission in the microcavity compared with the bare film. Because of the long timescales 

involved, this is a significant effect even though the instantaneous emission from these states is 

weak. To illustrate this point, in Figure 4.11 we integrate the emission decay kinetics from the main 

text, normalising both curves for each material to the ‘film’ value for ease of comparison. Based on 

this simple metric, the degree of enhancement due to strong coupling (shaded) is 21% for DPPT, 64% 

for TIPS-tetracene and 133% for DPA. If we extend the integration in TIPS-tetracene and DPA cavities 

to longer delays, beyond the measurable lifetime of their reference films, the enhancement rises to 

72% and 152%, respectively. Based on the model system, TIPS-tetracene, and the fact that in all 

systems in which we observe microcavity-enhanced emission on these timescales the primary 

species are uncoupled triplet excitons, we suggest that the enhanced emission comes from 

harvesting 5(TT) into the lower polariton.  

 

 

Figure 4.11: Time-integrated emission kinetics. Integral of emission kinetics presented in the text above. For 
each material, both curves are normalised to the final value of the film integral, as a proxy for total film 
emission. Shaded region corresponds to the enhancement achieved through strong coupling. Dashed lines 
show continuation of microcavity emission beyond the range when film emission falls into noise. 

 

 



 115 

This result is entirely unprecedented: direct interaction between the quintet and the polariton 

should be spin- and symmetry-forbidden. Our observation shows that strong coupling can alter the 

photophysics even of states that cannot interact with light. We start the discussion by returning to 

our model system TIPS-tetracene. Polycrystalline films of this material have been very well studied 

and understanding its photophysics in detail is important for the results reported here. The process 

of singlet fission is generally described in simplistic terms, where a singlet exciton splits into a pair of 

triplet excitons which are initially coupled into a triplet pair. These excited states are not pure 

diabatic states but rather mixed adiabatic states. Thus the nominal S1 state is often substantially 

mixed with higher-lying charge-transfer excitons (CT)240 and even attains some TT character. The 

1(TT) state is also substantially mixed with CT and S1, resulting in significant binding with respect to 

two free triplets31,94,241,242 (essential for fission to even be possible in TIPS-tetracene13) and providing 

a channel for this formally dark state to emit directly13,31,94. The mixed character of both states 

enables ultrafast singlet fission13,94,243,244 and efficient equilibration between (adiabatic) S1 and 

1(TT)13. Once formed, the adiabatic 1(TT) state can exhibit significant further evolution. The 

constituent triplets within the pair can interact through exchange coupling. In the regime of weak 

exchange coupling, the initially created 1(TT) state mixes with other spin configurations via dipolar 

coupling, resulting in a triplet-pair with mixed singlet and quintet character80. This regime has been 

detected in TIPS-tetracene using magnetic resonance techniques96, and it is likely that the formation 

of this dark 1(TT)-5(TT) mixed state is responsible for the ~10ns loss of delayed fluorescence13. The 

recent observation in the same and other materials of strongly exchange-coupled triplet pairs after 

loss of emission suggests that the exchange interaction must fluctuate over time, as described in 

other systems by Troisi et al12,15,237,238,245. The coexistence of these two regimes on similar timescales 

indicates that the weakly and strongly exchange-coupled triplet-pairs are in dynamic equilibrium245. 

Importantly, the physical mechanism behind the fluctuating exchange coupling is not linked to 

singlet fission but is an intrinsic property of organic materials, and we can thus expect the same 

processes to occur on formation of TT encounter complexes in triplet-triplet annihilation. 
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To understand the mechanism of ultra-long-lived polariton emission, we have constructed a basic 

toy rate model for the TIPS-tetracene data. The model, shown in Figure 4.12a, is based on the 

current photophysical model of polycrystalline films of TIPS-tetracene presented in Weiss et al.12 and 

Stern et al.13 In this model singlet fission from S1 (kSF) creates a population of spin-entangled triplet-

pairs 1(TT), given by Equation 4.1. 

ห TT 
ଵ ⟩ = 3ିଵ ଶ⁄ (|xx⟩ + |yy⟩ + |zz⟩)     (4.1) 

 where |xx⟩, |yy⟩ and |zz⟩ are the zero-field triplet-pair basis states. 1(TT) is not an eigenstate of the 

spin-Hamiltonian in the regime of weak exchange coupling. In our model we term 1(TT) ‘TTbright’ as 

this population is in equilibrium with S1 through k-SF and is observed through delayed emission from 

S1. Over ~10ns, the 1(TT) states lose their spin-entanglement, and probably some S1 character, and 

evolve into dark triplet-pair states, ‘TTdark’. As there have been no spin-flips, the triplet-pairs are still 

made up of |xx⟩, |yy⟩ and |zz⟩, and are initially weakly exchange coupled with mixed singlet 

(ห TT 
ଵ ⟩ = 3ିଵ ଶ⁄ (|xx⟩ + |yy⟩ + |zz⟩)) and quintet [ห TTୟ 

ହ ൿ = 2ିଵ ଶ⁄ (|xx⟩ − |yy⟩) or ห TTୠ 
ହ ൿ =

6ିଵ ଶ⁄ (|xx⟩ + |yy⟩ − 2|zz⟩)] character.  

These weakly-coupled TT states are thought to co-exist with a population of strongly exchange 

coupled triplet-pairs12. With strong exchange coupling, the triplet-pair states are pure singlet (S=0) 

or quintet (S=2) states as S becomes a good quantum number in the strong-exchange coupling 

regime. The latter has been observed in TIPS-tetracene films using transient EPR12. The evolution 

between the initially created weakly exchange-coupled and the observable strongly exchange-

coupled triplet-pair states most likely occurs via thermal fluctuations that alter the relative spacing 

between molecules and thus the wavefunction overlap between them12. This has been described in 

similar systems by Troisi et al.245  

If these fluctuations are responsible for generating strongly exchange-coupled triplet pairs, we can 

assume an equilibrium exists between weakly and strongly exchange-coupled TT states. Therefore, 

the dark triplet-pair population TTdark (taken to be the equilibrium combination of weakly- and 
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strongly-coupled singlet/quintet TT states) should follow the observed EPR quintet dynamics. We 

note that EPR lifetimes do not necessarily represent the natural lifetime of the system, which is 

perturbed by the EPR measurement itself. The natural ‘TTdark’ lifetime could be longer than the EPR-

measured quintet lifetime. Nevertheless, we take the EPR-measured quintet lifetime as a reasonable 

estimate of the TTdark lifetime. 

Eventually spin-flips can occur, probably through spin-orbit coupling, effectively scrambling the spins 

within the triplet-pairs. At this point the zero-field basis states include combinations such as |𝑥𝑦⟩, 

|𝑥𝑧⟩, etc. In this form, instead of all states (in the weakly exchange-coupled regime) showing some 

singlet character (i.e. containing |xx⟩, |yy⟩ or |zz⟩), only 3/9 now have any singlet character. In this 

regime the triplets, although possibly still spatially bound in TIPS-tetracene as suggested by transient 

absorption measurements13, are no longer correlated (‘T1+T1’). There is no signature of quintet pairs 

in transient EPR at this point, but their excited-state absorption can still be measured using transient 

absorption spectroscopy13. It is likely that some of the triplet pairs have fully dissociated on this 

timescale, forming spatially separated uncorrelated triplets, but we assume this is a negligible 

process in TIPS-tetracene. 

In TIPS-tetracene-based microcavities we assume that the lower polariton branch dynamics are 

governed by the exciton reservoir photophysics. Therefore, we use photophysical data from the 

literature to parameterise our model. The rate constants from our model are shown in Appendix C 

and comparison of our model to literature data is shown in Figure 4.12b.  Our basic model – in the 

absence of strong light-matter coupling – fits both delayed fluorescence and transient absorption 

(TA) data. We have attempted to constrain the model by using the fewest free parameters per 

population, fixing the radiative, singlet fission and fusion rates from literature values and the 

intrinsic non-radiative rates for S1 and TTbright from estimates based on the gap-law of non-radiative 

decay. The gap-law has been shown to be a good predictor of non-radiative rates for acene and 

hetero-acene-type materials246. The free parameters are: kdark, which is fixed by fitting to the S1 
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delayed emission; knr and kspin of TTdark, are fixed by fitting to the tr-EPR and TA data; and knr of T1+T1, 

fixed by fitting to the terminal decay in the transient absorption data. Only knr and kspin of TTdark are 

not independently varying parameters. These are difficult to decouple as not enough is known about 

the intrinsic non-radiative decay of unentangled triplet-pairs or the time-constant for the formation 

of uncorrelated triplet pairs. 

 

Figure 4.12: Basic rate model used to model TIPS-Tetracene film and microcavity emission. (a) schematic of 
rate model of bare films, all rates are reproduced in Appendix C. Parameters are set from literature or fit to 
literature data12,13,78. (b) Comparison of our basic rate model with published optical data (TA and PL)13. Circles 
indicate delayed emission from S1, which tracks TTbright population (red, dashed) as S1 and TTbright are in 
equilibrium. Solid brown line shows transient absorption of triplet-pair states which is proportional to the sum 
of all triplet-pair populations. In our model (TT) = TTbright + TTdark + T1+T1 (grey, dashed). We fit the T1+T1 lifetime 
to the decay of the transient absorption signal.   

 

Having parameterised the model using reference data, we turn to modelling our own data. The basic 

model reproduces the initial exponential decay of the film, as expected, but does not reproduce the 

power-law-like tail we see after 10ns. To account for this tail, we require a distribution of 

exponential rates to produce a power law decay (kdark<(30ns)-1). To model the microcavity we use 
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our model for the exciton reservoir and include a new emissive state representing the lower 

polariton branch. The only new rates that appear, kpol_s, kpol_b, kpol_d, describe the transfer of 

population from the singlet, bright TT and dark TT to the LPB (Figure 4.13a). We find that the rate of 

population of the lower polariton branch from S1 and TTbright (kpol_s and kpol_b) must be on the order of 

(100ns)-1 to avoid rapid depopulation of the S1 and TTbright populations. A faster rate would result in a 

significant shortening of the LPB emission lifetime compared with the bare film S1 emission, which 

we do not observe. To fit the correct relative intensity of the microcavity-enhanced portion of the 

delayed emission we used kpol_d = 0.005 kpol_s. Using the same model but varying the ratio of 

kpol_s/kpol_d, we were able to fit microcavity emission from the different detunings. 
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Figure 4.13: Basic rate model used to model TIPS-Tetracene film and microcavity emission. (a) schematic of 
rate model including polariton states, all rates are reproduced in Appendix C. Parameters are set from 
literature or fit to literature data12,13,78. (b) Comparison of our basic rate model with microcavity data13. 
Squares show emission from the lower polariton branch. We present two models presuming population of the 
lower polariton branch directly from quintet states and indirectly through TTbright.   

 

This good fit of the model to our data and that of the literature suggests that the LPB emission 

beyond 100ns originates primarily from TTdark, the equilibrium population of weakly exchange 

coupled singlet/quintet states and strongly exchange coupled pure quintet states. These states do 

not significantly contribute to emission in the pure film but are able to populate the LPB. We suggest 

the reason for this is the enhanced photonic mixing within TTdark.  

Finally, we ran the model to determine whether population of the LPB from TTdark was direct or 

indirect. For this we assumed no distribution of k-dark (and therefore a poor fit to the film S1 emission 

tail). In Figure 4.13b we show results for direct population of the LPB from TTdark with, as above, kpol_d 
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= (20μs)-1 and kdark = (0ns)-1 , and indirect population via TTbright (assuming a microcavity-induced 

enhancement of k-dark from 0 to (1000ns)-1 and kpol_d = (0ns)-1). While both routes are very surprising, 

we consider the kpol_d pathway to be more probable, and it provides a better fit to the full dataset 

(Figure 4.13b). 

In order to explain the existence of this pathway, we return to the concept of excited-state mixing. 

Mixed adiabatic states are a critical driver in photophysical processes such as ultrafast intersystem 

crossing53, thermally activated delayed fluorescence247, singlet fission13,94 and its reverse, triplet-

triplet annihilation.  This property is a critical distinction from inorganic semiconductors, but in the 

exciton-polariton field it remains far more common to treat strong coupling in terms of diabatic 

states.  

The potential implications of mixed states for strong coupling are profound. We postulate that when 

the photon couples to S1 to form polaritons, it in fact interacts with all the states that mix with S1. 

Consequently, all states that mix with S1 may acquire some photonic character. In polaritonic 

systems in which triplet-triplet annihilation occurs, this admixture of photon into the triplet-pair 

states creates a pathway to populate the radiative lower polariton branch and thus a route to 

harvest light from nominally dark diabatic states. While the above explains any increased 

microcavity emission from 1(TT), it does not on its own explain our observation of 5(TT) harvesting. 

Our kinetics reveal a correlation with the strongly exchange-coupled, pure 5(TT) state. This state 

exists in equilibrium with the weakly exchange-coupled 1(TT)-5(TT) mixed state12,80,96,245, which itself 

acquires photon character through its 1(TT) component. Hence, in the strong exciton-photon 

coupling regime, mixed states gain weak but non-zero photon character which creates a channel to 

populate the emissive lower polariton branch. Thanks to dynamic fluctuations in the exchange 

coupling, this allows even completely dark states like 5(TT) to serve as a reservoir for polariton 

emission. The strong light-matter coupling then opens a new route for the 5(TT) states to emit 

increasing emission of the system overall. 
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4.6 Conclusions 
 

Here we incorporated a series of molecules into micro-cavity systems to investigate the effect of 

strong light-matter coupling on triplet production. We find that for all triplet production processes 

the long-lived emission of the system is enhanced compared to a bare film sample. This behaviour 

was observed not only for singlet fission active materials but also for systems undergoing 

intersystem followed by TTA. When triplets meet an encounter complex forms and a distribution of 

triplet-pair states are produced with spin of 0, 1 or 2. As the singlet character states are coupled and 

share character with quintet character states, we suggest the photon character gained by the singlet 

state is also shared with the 1(TT) and 5(TT) states. While the photonic character gained is small the 

long lifetimes of the quintet character states allow for a significant enhancement in the emissive 

character of the quintet state. 

Interestingly, this behaviour could allow for an improvement in solid-state up-conversion.  In an 

optimised fluorescence up-conversion system, the ability to directly harvest 5(TT) encounter 

complexes in the weak spin-interaction regime should boost the maximum efficiency. At the same 

time, the resulting up-converted polariton emission would be well-directed, thereby simplifying 

collection. A similar mechanism could be used in electrically-injected polariton LEDs and lasers, 

where triplet excitons constitute 75% of the population and triplet-triplet annihilation could be used 

to harvest them. Because these states are very long-lived, they can make a substantial contribution 

to the total emission even if the instantaneous probability to emit is always low248. The ability of 

these very long-lived states to populate the lower polariton can also enable new applications in 

polaritonic physics176,209–212. For example, it may be possible to use such a reservoir of non-coupled 

states to feed a polariton condensate, greatly increasing its effective lifetime. This may be equivalent 

to the continuous pumping of exciton reservoir states in GaAs microcavities to continually 

repopulate the polariton condensate214. Such long-lived condensates would be important for 

practical applications of room-temperature polariton condensation. This concept also vastly expands 
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the scope of microcavity-controlled matter, which seeks to alter material properties and light-

induced dynamics through strong light-matter coupling161,176,207–212. The interactions implicit in the 

adiabatic picture mean that strong coupling may perturb not only the state that dominates the 

absorption spectrum, but also any states that mix with it.  

 

4.7 Methods 
 

Below we include details of the transfer matrix simulations provided by Rahul Jayaprakash 

(University of Sheffield). Steady state absorption and emission, Reflectivity and time-resolved 

photoluminescence measurements were acquired as described in Chapter 3. 

 

4.8.1 Transfer Matrix Simulations 
 

Microcavity reflectivity data was modelled using transfer matrix simulations as previously 

reported169, based on the measured absorption of the organic films. The absorption spectra were 

fitted to a series of Lorentzian peaks, with the oscillator strength of each individually tuned to 

correctly reproduce the extinction of the measured film. A uniform film of these absorbers was then 

modelled between two Ag mirrors (200 nm and 30 nm), using the tabulated value for the Ag index of 

refraction. The optical properties of the entire system (transmission, absorption, reflectivity) were 

calculated as a function of angle for comparison to the measured reflectivity maps. For these 

purposes, the index of the refraction of the organic layer inside the microcavity was treated as a free 

parameter, and it was adjusted to provide the correct dispersion for uncoupled cavity modes 

observable at shorter and longer wavelengths than the exciton-polariton bands of interest. Good fits 

were obtained with typical values ~1.6. The oscillator strength of the organic film was also adjusted 

slightly compared to the bare-film reference, to allow for slight variation in dye concentration from 

batch to batch, spatial inhomogeneity (reflectivity measurements are taken over a ~0.5 mm spot, 

versus 8 mm aperture for absorption) and inevitable partial sample degradation in air for reference 
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film measurements (due to the need to subsequently measure film thickness). In all materials, an 

adequately parametrized model which closely describes the film absorption can also closely 

reproduce the measured reflectivity maps, confirming that all samples are within the strong exciton-

photon coupling regime. In addition to the peak positions of the polariton branches which are 

output by the transfer matrix model, we also include the input exciton peak positions and cavity 

photon mode dispersions as dashed lines in the Figures. Code and modelling provided by Dr. Rahul 

Jayaprakash (University of Sheffield).  

 

4.8.2 Micro-cavity Refelctivity 
 

Microcavity reflectivity maps were obtained on a home-built goniometer system, using motorised 

arms for excitation and collection that allow the angle of incidence to be swept from 10° to 60°. 

White light was provided by a fibre-coupled lamp with deuterium and halogen sources. Collected 

light was sent via fibre to an Andor Shamrock CCD spectrometer. Steady-state photoluminescence 

spectra were obtained with the time-resolved photoluminescence system (Chapter 3), using 

sufficiently long gate windows to capture the full microcavity or film dynamics. 

In the following chapter we discuss the singlet fission process in a series of polyene oligomers. 

Throughout the work I produced and measured the samples, and carried out analysis on the data. 

However, the molecules were synthesised by a collaborator in the Heeney group (Imperial college 

London) and some additional measurements were performed by collaborators.  Where these results 

are discussed, credit is given to the appropriate researchers. 
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5. Conjugation Length Dependence of Intramolecular Singlet 
Fission in a Series of Thienylene-Vinylene Oligomers. 

 

 

5.1 Summary 
 

The OTVs (oligo(theinylene-vinylenes)) were originally synthesised for solar cell applications due to 

their high hole diffusion rates and low energy band gaps. In 2013 Musser et al. observed activated 

intramolecular singlet fission in the polymer variant, PTV, providing a new system for the study of 

polyene intramolecular singlet fission27. However, across two studies by Datko et al.37,38, the 

assignment of OTVs as singlet fission active polyenes was called into question. The authors 

investigated an OTV dimer, finding efficient intersystem crossing and no evidence for the dark 

symmetry forbidden 2Ag
- state of polyenes. A difficulty in comparing these studies is the vastly 

different effective conjugation lengths of the dimer and the polymer, which in polyenes is known to 

produce vastly different photophysics. Here we investigate a series of oligomers running from dimer 

to octamer, covering the conjugation length gap between the dimer and polymer. We start by 

confirming the polyene nature of OTVs, explaining the lack of 2Ag
- in the dimer via a switching in the 

state order at short conjugation lengths. Afterwards we confirm that the polymer and longer 

oligomers undergo activated singlet fission which switches to efficient intersystem crossing at a 

length of 3 units. 
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5.2 Background 

In Chapter 2 we discussed polyenes, a class of materials whose conjugated backbone is constructed 

of alternating single and double bonds. A defining characteristic of polyenes is that the first excited 

state (2Ag
-, S1) has the same symmetry as the ground state32,112. This means that one-photon 

transitions between S1 and the ground state are symmetry forbidden. The presence of the S1 state 

has been used to explain the lack of emission and fast non-radiative decay in polyenes such as 

carotenoids. S1 can also be described as having significant triplet-pair character 49,121. In 1987 Tavan 

and Schulten predicted that the triplets within this pair could separate and become isolated with a 

small energetic push, at a critical conjugation length49,121. This implies the possibility of activated 

singlet fission in long-chain polyenes. Activated intramolecular singlet fission was initially observed 

in the polyene-like polymer, polydiacetylene28–30,249. However, it is notable that the S1 state was not 

observed before the formation of triplets in these studies28–30,249.  

A difficulty in the study of polydiacetylene is its propensity to form either blue or red phases 

depending on its environment28–30,250. Kraabel et al. for example, measured isolated polydiacetylene 

chains in a matrix that forces the molecules into a planar geometry (‘blue phase’)28–30. They reported 

formation of a triplet-pair state within a few ps of excitation30 that was only formed after excitation 

above 2eV, as expected for activated singlet fission30,49,121. After formation, the triplet pairs all 

decayed within 30ps, much too fast for non-radiative decay of isolated triplets, as isolated triplets in 

polydiacetylene have been shown to have a lifetime of ~ 50μs251. The authors assign the fast decay 

to triplet-triplet annihilation, sped up by confinement of triplets on a single chain causing continued 

interaction between the triplets30. However, this behaviour is not universal; in two studies by 

Lanzani and co-workers, the authors measured a twisted conformation of polydiacetylene known as 

the red phase28,29. In this phase, they observed a long lived triplet population (>400ps) representing 

at most 50% of the initial transient absorption triplet signal28,29. In their report they apply the model 

by Zozulenko252 which argues that traps in the one dimensional backbone isolate one of the 
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constituent triplets reducing their ability to recombine28,29. However in these studies no kinetics are 

presented past 400ps making assignment to isolated triplets, which are expected to have lifetimes 

on the order of microseconds in the absence of oxygen, difficult to verify28,29.   

Another polymer described as a polyene , PTV (poly(thienylene-vinylene)), has received attention 

due to its possible use in semiconductor devices253,254.  PTV was first described as a polyene to 

explain the observation of fast non-radiative decay (~2ps) and low emission quantum yield 

(PLQY)255,256 compared to similar polymers such as PPV (poly(p-phenylene-vinylene))257,258. PPV, in 

common with most other conjugated polymers, does not fit the polyene model as it has lower 

electron-electron correlations which lead to the first excited state being the bright 1Bu
+ state. 

Further evidence that PTV can be described as a polyene was provided by Olejnik and co-workers 

who measured PTV excited state absorptions in the mid-infrared region259 and Apperloo et al. who 

measured a series of OTVs (oligo(thienylene-vinylene))179. Olejnik et al. measure a population which 

decays with a sub-ps time constant aligning with the rise of a feature in the visible region259. As such, 

the authors assign the mid-infrared feature to the absorbing state and the visible feature to a dark 

intermediate, the S1 state of Ag character259. This is consistent with previously reported spectra of 

other polyenes25. 

Apperloo et al. characterise a set of oligomers running from 2 units (Dimer) to 12 units (Polymer)179. 

They investigated the series of oligomers for their ability to undergo electron transfer to MP-C60 for 

possible solar cell applications179. Throughout, Apperloo et al. characterise the conjugation length 

dependence of absorption energy, triplet energy and excited state transition energies finding a 

linear dependence with 1/conjugation length as in carotenoids (a polyene) 179. In all of the above 

polymer studies253–256,259, the PTV ground state absorption is broad (FWHM ~2eV). By comparison to 

the conjugation length dependence by Apperloo et al. this suggests a wide range of conjugation 

lengths are present within the polymer samples37,179,253–256,259,260. Recently Musser et al. reported a 

sample of PTV with narrow ground state absorption (FWHM ~1eV), which shows no change with 
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concentration in solution. The authors of this study suggest they are able to measure an 

aggregation-free sample with average chain lengths around 12 units long. 

In their study, Musser et al. extended the model of PTV by investigating its ability to undergo 

intramolecular singlet fission27. Musser and co-workers found that intramolecular singlet fission has 

a distinct excitation energy dependence27, similar to blue phase polydiacetylene30. The yield of 

intramolecular singlet fission increases with higher energy excitation suggesting the triplet pair state 

formed during singlet fission sits above the absorbing state27. The authors report no transient 

absorption signals on the microsecond time scale, indicating a lack of isolated triplet formation27. 

Furthermore, the authors use transient absorption spectroscopy with 18fs pulses to show that both 

the triplet-pair and S1 states form in parallel27. As a result, the S1 state cannot be the parent state of 

singlet fission, a divergence from the proposed mechanism by Tavan and Schulten27,49,121. Despite the 

above work, the assignment of PTV and OTV (oligo(thienylene-vinylene)) molecules as polyenes has 

been called in to question, most recently by Datko and co-workers, who imply that OTVs should be 

described with a non-polyene model in which the lowest-lying excited state is of Bu
 symmetry 38. 

Datko et al. suggest the current polyene-model of PTVs is incorrect in two papers studying PTVs and 

an OTV dimer. In the first of these papers, the authors suggest the model presented by Musser et al. 

and others is incorrect due to the reappearance of strong emission when polymer chains are isolated 

in dilute solution 37. Similar results have been reported in studies of PTV embedded in PMMA films 

by Hu et al260. Polyenes are expected to be non-emissive at all concentrations and so Datko et al. 

explain this concentration dependent reduction in emission as aggregation induced quenching37. We 

reproduce the Figure from the study by Hu et al. showing absorption, emission and excitation 

spectra for a pure PTV film and PTV embedded in a PMMA matrix (Figure 5.1)260. For the chains 

embedded in PMMA matrix (panel b) Hu et al. measured a large blue shift in the emission and 

excitation spectra compared to the absorption spectrum260. Datko et al. explain this via selective 

excitation of the isolated chains in the film which have a blue shifted absorption spectrum compared 
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to aggregated chains37. As the concentration is increased to a pure PTV film, data in panel (a), 

energy-transfer to the non-emissive aggregated chains reduces emission yield. An alternative 

explanation, which we demonstrate below explains all available data, is that only short (high energy) 

chain segments are emissive. 

This is because, as we demonstrate In this chapter, the emission characteristics of the OTV materials 

are highly conjugation length dependent; the shorter oligomers are emissive while the longer chains 

are not. This is similar to behaviour observed in polyenes, in which the shortest conjugation length 

molecules have emission yields as high as 80%261. As such, we find that the observations by Hu et al. 

and Datko et al. can be fully explained by the polyene framework. Within this framework, dilute PTV 

samples can emit from short conjugation length segments (blue-shifted), while at high 

concentrations, energy can transfer from short to long chain lengths which efficiently dissipates 

energy non-radiatively. 

 

Figure 5.1: Normalised absorption (black solid), emission (gray solid), and fluorescence excitation spectra 
(bblack dashed) for A) pure rra-P3HTV film and B) highly concentrated rra-P3HTV embedded in PMM. The 

emission spectra were detected at 488nm excitation. The excitation spectra in (A) and (B) were detected for 
the emission maxima at 680nm ad 560nm, respectively. Figure reproduced from Ref260. 
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The increased emission in shorter oligomers is in agreement with the second paper by Datko et al. 

which describes how an OTV dimer undergoes rapid (100ps) intersystem crossing via a twisting 

motion38. Critically, the intersystem crossing model of triplet production in the dimer does not 

require singlet fission. Datko et al. implies that this model can be applied to the longer oligomers 

and the polymer, contradicting the established model for PTV27. 

The difficulty in assessing which model is correct stems from the fundamental differences when 

comparing a short-chain oligomer with a long-chain polymer. The oligomer series characterised by 

Apperloo et al. bridge this gap, with chain lengths ranging from 2 to 12 units. Indeed, they observe 

triplets in short oligomers with no sign of triplet production in longer chain oligomers. However due 

to the limited time resolved data presented in their study they were unable to assign triplet 

production pathways.  

Herein, with the use of excitation dependent fs-transient absorption on a series of OTVs, we can 

confirm that the OTVs are polyenes, and that they undergo activated singlet fission above a critical 

conjugation length. 
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5.3 Steady State Spectroscopy 

 

Figure 5.2: Steady state absorption of oligo(thienylene-vinylenes): (a) Chemical structure of the 
oligo(thienylene-vinylenes), the n represents the number of units in the molecule. (b) Ground state absorption 
of the 2-8 unit oligomers scaled to their extinction coefficients. (c) Franck-Condon fit of the 2-8 unit oligomer 
scaled to their extinction coefficients. Parameters used for the fit are given in Table 5.1. 
 

Figure 5.2 presents the structure (a) and the ground state absorption spectrum (b) of each oligomer. 

We fit the absorption spectrum of each oligomer with a Franck-Condon progression presuming the 

same FWHM for each peak and a single vibrational mode, as in refs40,262. The spectral fits are 

presented in Figure 5.2c, while the parameters used to fit the spectra are summarised in Table 5.1. 

Most of the parameters do not scale systematically with number of units. However, from the dimer 

through to the octamer, we observe a red-shift in absorption spectrum along with a rise in extinction 

coefficient as the conjugation length increases, consistent with previously studied molecules179,263,264. 
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We find that our extinction coefficients and 0-0 Energies follow the trends calculated for polyenes111 

and DPP based oligomers263.  

Table 5.1: Fitting parameters for the absorption spectrum of the OTV molecules. Conjugation lengths quoted 
are effective lengths based on comparison to the dependence presented previously for carotenoids. 

Name Conjugation 
Length 

Extinction 
Coefficient 
(M-1cm-1)  

Huang-Rhys 
Parameter 

FWHM 
(meV) 

Vibrational 
spacing 
(meV) 

0-0 Peak 
Energy (eV) 

Dimer 4.3 22240 1.53 228 180 3.35 

Trimer 7.5 43100 1.41 174 176 2.75 

Tetramer 11.5 55860 1.36 165 171 2.45 

Pentamer 17 69140 1.41 175 175 2.27 

Hexamer 22 75380 1.46 190 162 2.17 

Heptamer 28 81520 1.28 207 170 2.15 

Octamer 33 97080 1.41 181 167 2.11 

 

We observe negligible (~0%) photoluminescence from oligomers with 5-8 units, when exciting at 

their absorption peak. This is expected behaviour for polyene-like materials where absorption is into 

S2, and S1 is non-emissive32,39,112. This is consistent with previous studies of OTV molecules27,179. 

However, in the shorter oligomers (tetramer, trimer and dimer), emission is observed, shown in 

Figure 5.3a. The tetramer has an emission quantum yield under 0.1% making measurement of the 

emission difficult. However, we note the similarity between the emission spectrum of the tetramer 

and the spectrum from dual fluorescence in dipheyl-polyenes265. The dimer shows a slightly 

increased quantum yield of 3.6% and the trimer has the highest quantum yield of 10%.  

To assign the emitting state of the dimer and trimer, we present emission spectra taken at 77K in 

Figure 5.3b/c. To understand the data, we attempted to fit a Franck-Condon model to the emission 

spectrum. We assume equal FWHM for each vibronic peak and one effective vibrational mode. We 

use the refractive index of the solvent in the formula which has no dispersion in this spectral region. 

For the dimer we are unable to fit the emission with a Franck-Condon progression, finding a red shift 

and suppression of the 0-0 peak. These are changes expected for self-absorption of the emission; 
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indeed, we find the absorption and emission spectra of the dimer overlap. In order to simulate the 

self-absorption effect, we multiply our Franck-Condon fit by 1-Absorption (OD), red dashed line in 

Figure 5.3b. We find an agreement between the Franck-Condon fit and the measured spectra after 

correction for self-absorption. Interestingly, we find a distinct change in spectral shape (narrowing, 

change in vibronic structure) between the absorption and emission with a shift of 0.14eV between 

the 0-0 peak energies. This indicates a substantial geometric reorganisation consistent with a torsion 

rotation in the excited state266 in agreement with the study by Darko et al38. As we can satisfactorily 

fit the emission with a Franck-Condon progression, we suggest the emission originates from the 

absorbing state of Bu symmetry. 

 

Figure 5.4 Emission of short-chain OTVs and DPH: (a) Steady state emission spectra for the 2,3 and 4 unit 
oligomers, normalised to peak intensity. (b) Low temperature (77K) emission spectrum of the dimer, in a 
solvent blend (diethylether:ethanol - 1:1). A Frank-Condon fit to the 77K emission is also included with the 
following parameters: Huang-Rhys Parameter = 1.1, 0-0 energy = 3.20eV, Vib Spacing = 0.18eV, FWHM = 
141meV (blue dashed line). We simulate the effect of self-absorption on the Franck-Condon fit by multiplying 
the fit by 1-Absorption (OD) (red dashed line) (c) Low temperature (77K) emission spectra of the trimer in a 
solvent blend (toluene:diethylether:ethanol - 1:1:2). A Frank-Condon fit to the 77K emission is also included 
with the following parameters: Huang-Rhys Parameter = 1.4, 0-0 energy = 2.59eV, Vib Spacing = 0.17eV, 
FWHM = 139meV (blue dashed line). (d) Emission spectrum of diphenylhexatriene in a PVA film at 87K 
reproduced from Ref267 to which we have fit a Franck-Condon progression. Parameters of the fit: Huang-Rhys 
Parameter = 1.69, 0-0 energy = 3.08eV, Vib Spacing = 0.17eV, Broadening = 136meV (blue dashed line).  
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For the trimer we find that we cannot fit the spectrum in its entirety, however, we can fit the 0-1, 0-

2, and 0-3 peaks. Compared to the Franck-Condon fit, the measured 0-0 vibronic replica is reduced in 

intensity and appears blue-shifted. In Figure 5.3d we show the emission spectrum of diphenyl-

hexatriene (DPH). DPH has been very well characterised and is described as a polyene. We fit the 

DPH spectrum with a Franck-Condon progression as described above. As with the trimer, DPH has a 

suppressed 0-0 vibronic transition with an apparent blue-shift. Unlike the dimer here we measure a 

blue-shift in the 0-0 peak rather than a red-shift. As such it is not possible to explain the observed 

behaviour via self-absorption. The similarity between the two spectra suggests emission originates 

from similar electronic states. 

A reduced 0-0 emission peak is consistent with emission from a forbidden transition (e.g H-

aggregates, S1 in carotenoids, triplet-pair states34,70,268,269). In carotenoids, a class of polyene 

materials, S1 emission has been explained by intensity borrowing via a Herzberg-Teller 

mechanism270–275. The Herzberg-Teller mechanism allows states with symmetry forbidden transitions 

(i.e. dark states) to emit via vibrational coupling to symmetry allowed states (i.e. bright states)270–275. 

As such, the pure electronic symmetry forbidden 0-0 transition is supressed or even entirely lost in 

some materials270–275. An apparent slight blue-shift in the 0-0 peak emission is also consistent with 

previous reports of emission from S1 states in polyenes34,269. We explain the apparent blue-shift in 

the 0-0 peak via coupling to vibrational modes required for Herzberg-Teller coupling (Figure 5.4). 

Emission occurs from the zeroth vibrational level of the forbidden state to all levels of the ground 

state. As the 0-0 transition is explicitly disallowed, instead emission occurs from above the zeroth 

level of the forbidden state via coupling to vibrations. As this state is coupled to a vibration it occurs 

from slightly above the forbidden state, to the ground state and thus appears blue-shifted, as shown 

schematically in Figure 5.4.  
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Figure 5.4: Mechanism of the blue-shift in 0-0 emission peak due to H-T coupling. (a) Schematic of symmetry 
allowed emission, in which emission occurs from the zeroth vibrational level of the emitting state to all 
vibrational levels of the final state. (b) Schematic of emission from a symmetry forbidden state, allowed via 
Herzberg-Teller coupling. Emission occurs from the ground vibrational level of the mixed character state to all 
vibrational levels of the final state. As the 0-0 electronic transition is forbidden, the observed 0-0 emission 
peak represents a transition from the zeroth level + a vibration of Bu symmetry (Indicated by the blue dashed 
line) to the zeroth level of the final state. This causes a blue shift in the observed 0-0 emission compared to 
that of the expected transition. 

 

In two studies by Noguchi et al. and Werncle et al. the authors investigated state mixing by 

measuring the carbon-carbon double bond stretching mode of β-carotene and DPH in a variety of 

solvents276. As the S2 state energy is strongly solvent dependent, while the S1 state is not, each 

solvent gives a different S2-S1 energy gap276. The study found that as the S2-S1 gap decreased, the 

carbon-carbon double bond stretching mode is shifted lower in energy, a signature of strong 

vibrational coupling276. The authors found that the S1 state gains significant S2 character when the 

gap drops below 4,000cm-1 (0.48eV) 276. As we see significant emission from the trimer, the S2-S1 gap 

must be below 0.48eV. Indeed, comparing absorption and emission 0-0 energies gives an energy gap 

of 0.16eV.  

In a similar vein, the radiative rate is likely to be affected by the coupling of the S2 and S1 states. 

Andrews et al. investigated this for DPH and found that mixing between the S2 and S1 states leads to 
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a faster radiative rate277. To compare with literature on polyenes we calculate the (୬మିଵ)

(୬మାଶ)
 

(proportional to polarizability) value for the solvent used (toluene) and the radiative rate (𝐾) of the 

trimer (K୰ =
மౌై

த
 where τ୭ is the measured lifetime of the state and 𝜙 is the PL quantum 

yield40,277). We find a value of (13±2.4ns)-1 with (୬మିଵ)

(୬మାଶ)
 = 0.29, which is similar to the value for DPH at 

this polarizability (16ns)-1 277. The above observations suggest that the emission we observe is from a 

symmetry-forbidden state, which borrows intensity from a nearby bright state. Following previous 

work on carotenoids and PTVs discussed above, we assign the emission in the trimer to the S1 state. 

 

5.4 Time Resolved Spectroscopy - Tetramer to Octamer 
 

 

In the previous section we confirmed that OTVs (and PTVs) are polyene-like. In polyenes almost all of 

the excited-state processes occur non-radiatively32,39,112. Therefore, we now turn to transient 

absorption spectroscopy. Previous transient absorption spectroscopy on OTV/PTVs has focussed on 

polymers27,259 and therefore we begin by studying the polymer-like oligomers (i.e. long chain). Figure 

5.5 presents transient absorption spectra and kinetics for the tetramer, hexamer and octamer 

excited at 500nm and 400nm (pentamer and heptamer in Appendix D). All three oligomers show 

broadly similar features after 500nm excitation. We measure a ground state bleach (positive feature) 

and a photo-induced absorption (negative feature) red-shifted relative to the ground state bleach 

(Figure 5.5).  

In Figure 5.5 we also present kinetics taken at the peak intensity of the photo-induced absorptions 

(PIA) of each molecule. For each oligomer, in addition to an initial decay of 55±5ps (tetramer), 

4.2±0.3ps (hexamer), and 2±0.2ps (octamer), we detect a small population with a longer decay 

constant. We return to this longer-lived population when we discuss high energy excitation below. In 

all molecules we are unable to resolve the rise of the PIA features as the rise occurs within the 
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instrument response. As a result, we cannot rule out assignment of the PIA to the absorbing singlet 

state, although we observe no stimulated emission.  

 

Figure 5.5: Excitation energy dependent transient absorption of 4-8 unit OTVs: (a,c,e) Transient absorption 
spectra of the tetramer (a), hexamer (c) and octamer (e) excited at 500nm and 400nm (1mW power). Spectral 
slices are averaged over times marked in the legend.  Included are the sensitised triplet spectra taken from 
Apperloo et al.179, blue-shifted by an energy indicated in the panel. The 500nm spectra have been scaled so 
that the 0-0 peak of the ground state bleach matches the 400nm excitation data. (b,d,f) Transient absorption 
kinetics of the tetramer (b), hexamer (d) and octamer (f) at the central wavelengths marked in the legend 
(10nm window). For the tetramer kinetics were taken in the triplet and singlet PIA regions. Due to a 
broadening of features in the hexamer and octamer data, we also show a kinetic at the peak of the triplet 
region. Dashed lines show mono/bi exponential fits. Fit parameters are detailed in Appendix E and in the text. 

 

In their study of PTV, Musser and co-workers demonstrated that intramolecular singlet fission only 

occurs when activated by excess energy excitation27, as previously observed in polydiacetylene30. In 
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Figure 5.5 we therefore compare transient absorption data with high- (400nm) and low-energy 

(500nm) excitation for all three molecules. Starting with the tetramer, after 400nm excitation (high 

energy) we find an enhancement in the 550-650nm region of the spectrum (shaded). After 200ps 

most of the spectrum decays revealing a weak long-lived feature which was barely visible after 

500nm excitation (low energy). To assign this feature we compare to a sensitised triplet spectrum by 

Apperloo et al. shifted by 80meV (Figure 5.5)179. We find a clear resemblance between the shifted 

sensitised triplet spectrum and the enhancement/long-lived feature (Figure 5.5). We therefore 

assign this enhanced long-lived feature to triplet-pairs generated via activated singlet fission, similar 

to the polymer27. Recent studies of zethrenes31 and heteroacene films34 that undergo singlet fission 

observe a similar blue-shift between sensitised triplets and singlet fission generated triplets. This 

shift quantitatively correlates with the binding energy (𝐸 = 𝐸ଶ భ்
− 𝐸 (்்).

భ ) of the triplet pair (1(TT)) 

generated by singlet fission (binding energy defined in Figure 5.6). 

 

Figure 5.6: Definition of binding energy. We show a schematic with arbitrary energy levels to demonstrate the 
definition of the binding energy between triplets in the triplet-pair state. 

 

The above evidence allows us to assign the long-lived feature to singlet fission generated triplet-pair 

states with Ebinding= 80-180meV. As we do not observe a long-lived (μs) population, we suggest that 

1(TT) decays without ever separating to free triplets. Figure 5.5 shows equivalent data for the 
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hexamer and octamer, along with sensitised triplet spectra for each molecule from ref179. We also 

include equivalent data for the pentamer and heptamer molecules in Appendix D. For all oligomers 

we find that with excess energy excitation we observe an enhancement of the longer-lived kinetic 

component (Figure 5.5). Considering the similarity between the kinetic and spectral features we 

suggest the same model can be used to describe the 4-8 unit oligomers. To summarise, with band-

edge excitation only a singlet state is formed with a single decay constant which is dependent on 

conjugation length. At high energy excitation, the weakly coupled 1(TT) states which sit above the 

energy of the absorbing state are also formed, which introduce a slower decay component. We find 

no evidence of separation to isolated triplets. All these findings are in agreement with previous 

studies of the polymer27. In Figure 5.7 we show a scheme of the potential energy surfaces and their 

energy ordering for the 4-8 unit oligomers.  
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Figure 5.7: Summary of energy level scheme proposed for 4-8 unit oligomers: (a) Estimated relative energies and 
potential energy surfaces of the 4-8 unit oligomers. Positions and energies are arbitrary and do not represent measured or 
calculated values. The binding energy of the S1 and triplet pair 1(TT) states are shown relative to double the energy of 
sensitised triplets. (b) Decay rate of the 1(TT) state accessed after high energy excitation, plotted against energy gap A (b) 
and energy gap B (c). Error bars are based on the range of decay constants able to adequately describe the decay kinetics. 
The dependence of decay rate on S1 energy for a series of carotenoids in literature is given as a red dashed line52. The same 
dependence blue-shifted by 200meV is shown to fit our triplet decay constants (blue-dashed line). 

 

It is interesting that the triplet features here decay with such a short lifetime of 10-100ps (details in 

Appendix E). Similar short 1(TT) lifetimes have been observed in polymers27,30 and carotenoid 

aggregates23–25 and have been attributed to rapid geminate triplet-triplet annihilation. However, the 

1(TT) state here shows some similarities with the S1 state in polyenes. In fact, in their review Musser 

and Clark34 show that strongly bound triplet-pairs decay following an energy-gap-law-like 

dependence on conjugation length similarly to the S1 state. In Figure 5.7 we apply this model to the 

1(TT) state for the 4-8 unit oligomers. We fit kinetics for each of the oligomers after high energy 
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excitation with a bi-exponential, locking the first decay component to that of the S1 state at band 

edge excitation. From this we collect a decay component for the new feature which appears only 

after high energy excitation. We then compare this rate to two different energy gaps shown in 

Figure 5.7. In panel b we compare the decay rate to the energy gap between the triplet pair and S1 

states (𝐸்் − 𝐸ௌభ
) (for details of S1 state energy estimates see Section 5.7). We find no clear 

dependence of rate on this energy gap, with at most an ‘inverted’ dependence, a slower rate for 

smaller energy gap. As such we suggest it is unlikely that the dominant decay channel of the 1(TT) 

state is through the S1 state.  

In panel c we compare the decay rate to the energy of the 1(TT) state (Estimated as 𝐸ଶ భ்
, triplet 

energies taken from the study by Apperloo et al.179). We find an energy-gap-law-like dependence 

with a slower rate for a larger energy gap. In fact, the slope of the fitted dependence (blue dashed 

line) quantitatively matches the slope of the same dependence for the S1 state of carotenoids 

(shown in Figure 5.7, red dashed line), but shifted by 200meV to higher energy. This suggests we 

over estimated ETT by ~200meV. This is possibly due to inaccuracies in the estimates of triplet 

energies in the paper by Apperloo et al.179, or could be due to the binding energy between the 

triplets in the 1(TT) state which we previously estimated to be (80-180meV). 

Here we have shown that the triplet-pair state generated via activated singlet fission has triplet-like 

excited state spectra but decays with a lifetime similar to S1 (an energy-gap-law-like dependence).  

Additionally, according to Tavan and Schulten, the S1 state has triplet-pair character (discussed 

further in chapter 6)49,121. As a result, the 1(TT) state and the S1 state appear to have triplet and 

singlet character. We now move to the shorter oligomers that are of a similar conjugation length to 

the dimer measured by Datko et al.38 
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5.5 Time Resolved Spectroscopy - Trimer 
 

In Section 5.3 we established the energy landscape for the trimer, finding a small gap between the S2 

(Absorption) and S1 (emission) state energies. We assigned emission to a dark singlet state via 

Hertzberg-Teller coupling, evidenced by the emission spectral shape. Due to the strong vibrational 

coupling involved in the Herzberg-Teller mechanism and the small energy gap (0.16eV) between the 

S2 and S1 states we expect the two to be strongly mixed. To investigate the mixed adiabatic state 

further we turn to excited state dynamics. We first conducted concentration dependent DOSY NMR 

(measurements by Iain Andrews) and ground state absorption to check for aggregation (Appendix 

G). We find no change in diffusion coefficient or spectral shape with concentration suggesting we are 

always measuring isolated molecules. In Figure 5.8 we present transient absorption and fluorescence 

up-conversion spectra and kinetics taken after 400nm excitation (high energy excitation).    

In Figure 5.8a (top panel) we present transient absorption spectra taken in the first 1ps after 

excitation. At 50fs delay we measure a small stimulated emission (SE) feature at 500-530nm, and a 

weak PIA in the NIR that decays over the first picosecond. As we only see loss of intensity at the edge 

of the measurement window this suggests we are measuring the decay of a feature in the IR, with a 

tail in the NIR. This is similar to previous measurements of astaxanthin25 (a polyene) and previous 

studies of PTV259. In both studies the authors find a strong PIA in the IR region from the S2 

(absorbing) state25,259. Due to the short lifetime and similarity to previous measurements of polyenes 

we suggest the NIR tail originates from S2. Over the same time scale (1ps), three features at 550nm, 

775nm and 1100nm rise to cover the whole measurement window (Figure 5.8a, bottom panel). 

In Figure 5.8b we present fluorescence up-conversion photoluminescence spectra (FLUPS) for the 

trimer excited at 400nm (taken by George Farrow at the University of Sheffield). This spectrum is 

similar to the steady state spectrum in Figure 5.3. Over the first 1ps we observe a loss in intensity 

accompanied by a red-shift (Figure 5.8b, bottom panel). To further investigate, we present kinetics 

of each feature in the transient absorption and FLUPS measurements. In Figure 5.8c we compare the 
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rise of the 505nm and 775nm PIA features, the decay of the NIR tail at 1100nm, and the decay of the 

emission spectrum at 475nm. The initial decay of the NIR PIA feature and the emission dynamics at 

475nm are identical (420±100fs), suggesting they originate from the same excited state. This decay 

approximately matches the rise of the PIA features at 505nm/775nm (280±100fs). Therefore, we 

suggest the initially excited population evolves from showing stimulated emission and a NIR PIA, to 

visible PIA features at 505 and 775nm. Interestingly, on the same time scale the emission spectrum 

barely changes shape. 

 

 

Figure 5.8: Transient absorption and fluorescence up-conversion of the trimer. (a) Transient absorption spectra of the 
trimer excited at 400nm averaged over times shown in the legend (1mW power) and a 1-3μs delay trace taken with 355nm 
excitation (ns-TA, 0.5mW). We include the sensitised triplet spectrum from Apperloo et al.179. (b) Fluorescence up-
conversion (FLUPS) spectra excited at 400nm averaged over times shown in legend. The bottom panel shows spectra 
normalised to their maximum intensity. (c)  Transient absorption and FLUPS kinetics averaging a 10nm window around the 
wavelengths displayed in the panel (excitation at 400nm). We also include a ns-TA kinetic at the triplet peak excited at 
355nm (0.5mW power). We show in Appendix H that excitation energy doesn’t change dynamics or spectral shapes. Note 
the overlap of the ps-TA and ns-TA kinetics allowing accurate scaling. The FLUPS kinetic has been scaled to the same 
intensity at 10ps for comparison to the transient absorption kinetics. Throughout the kinetic panels fits of exponential 
decays are indicated with a blue dashed line, parameters given in Appendix E. 

 

In Figure 5.8e (bottom panel), we present kinetics taken at the peak of the 550nm, 775nm and 

1100nm transient absorption features along with a kinetic taken at the peak of the emission 
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spectrum. We find identical decay components (1.3±0.2ns) for the three transient absorption 

features suggesting they originate from the same state. As the decay kinetics of these features 

match the decay of emission which we previously assigned to the S1 state, we suggest all three PIA 

features represent population of the S1 state. Interestingly, the 550nm S1 feature appears very 

similar to the sensitised triplet spectrum found by Apperloo et al. (red squares, Figure 5.8a) but red-

shifted by 6meV179, while the 775nm and 1100nm peaks do not. Mazumdar and co-workers studied 

the 1(TT) state theoretically for a series of acene dimers. The authors solve the Pariser-Parr-Pople 

(PPP) Hamiltonian including intermolecular 1e-1h to 4e-4h states to calculate the excited state 

absorption spectrum of 1(TT)278,279. They found that in addition to a triplet character transition in the 

visible, there are also 2 smaller peaks related to 1e-1h CT configurations278,279. These observations 

qualitatively match the S1 PIA features measured here for the trimer. We tentatively assign the 

775nm and 1100nm features to CT character excited-state absorptions from the S1 state. 

The triplet-like peak at 550nm is qualitatively similar to the observations of triplet-pair states in the 

longer oligomers but shifted in the opposite direction. To confirm this feature does not represent a 

triplet-pair state formed via singlet fission as in the longer oligomers we perform excitation 

dependent transient absorption spectroscopy (Appendix H). We find no excitation dependence 

confirming the triplet character feature is not representative of activated singlet fission. Instead the 

three peaks are indeed related to the S1 state of triplet-pair character.  

It is interesting that the emission spectral shape does not change despite considerable change in the 

PIA features over the first 3ps. We suggest this is due to the mixed character of the adiabatic S1/S2 

state, see schematic in Figure 5.10. The excited state population moves from a 1e-1h configuration 

to a predominantly triplet-pair configuration, as such, the PIA line shape changes from ‘singlet-like’ 

to ‘triplet-like’ while the emission only dims and red shifts (Figure 5.8f).  

Over the first 2ns we find a decay of the features assigned to the S1 state, revealing a spectrum 

which matches the sensitised triplet spectrum taken from the paper by Apperloo et al. After 2ns we 
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see no emission and find no further evolution of the triplet spectrum with a mono-exponential decay 

with a 125±20ns decay constant. As our measurements were conducted in the presence of oxygen 

we expect a triplet lifetime on the order of 100ns38. This is due to the well documented quenching of 

triplets by oxygen233. In the longer oligomers (Section 5.4) we found higher 1(TT) population for 

higher excitation energy, indicative of activated singlet fission.  The 1(TT) states generated via 

activated singlet fission then decayed rapidly (100ps). Here we observe no activated processes and 

the triplets we observe are long-lived (100ns). To investigate whether these are formed via singlet 

fission or not we turn to time-resolved electron paramagnetic resonance spectroscopy. 

Time-Resolved Electron Paramagnetic Resonance (TR-EPR) is a technique that is sensitive to 

paramagnetic intermediates such as triplets and charges12,15 . The time resolution of our TR-EPR 

experiment is of the order of 100-150ns and allows only detection of species that are long lived on 

the time scale of transient absorption experiments12,15. As a result TR-EPR preferentially probes the 

long-lived triplets and not the bound 1(TT) state. Importantly the polarization of the spectrum 

collected provides valuable information on the mechanism responsible for the formation of the 

triplets. Indeed, all the processes leading to the formation of transient paramagnetic species are 

anisotropic and selective towards spin sublevels leaving a signature on the polarization of the TR-EPR 

spectrum. For example it has been shown that singlet fission preferentially populates the Ms=0 

triplet sublevel93. This leads to a distinctive polarisation pattern of AEEAAE (A = enhanced 

absorption, E = emission) as seen in pentacene and tetracene12,15. However for intersystem crossing 

we expect no preferential population of the Ms=0 level leading to a EEEAAA polarisation pattern as 

seen in anthracene and polythiophene280,281. In Figure 5.9 we show the TR-EPR spectrum of the 

trimer along with a simulation with parameters D = -1500 MHz, E = 90 MHz and triplet sublevel 

populations PX:PY:PZ=0.39:0.44:0.17. Experimental measurements and simulation of resulting spectra 

were completed by Dr. Enrico Salvadori (Queen Mary University). We see a clear polarization pattern 

AAAEEE which along with the fit parameters implies a preferential population of the X and Y zero-

field triplet sublevels. This polarisation pattern allows us to exclude that the measured spectrum 



 146 

results directly from a singlet fission event, however we find a pattern reversed to those in literature 

(A instead of E and vice versa). A similar effect was found for anthracene and several porphyrins with 

a flipped polarisation pattern for a sub set of the materials measured280,282,283. Throughout these 

studies it was shown that an increased population of the Tz sub level was found for the molecules 

with a flipped polarisation pattern280,282,283. The preferential population of the Tz sub level can point 

to the involvement of out-of-plane spin-orbit coupling283. This would be consistent with the model of 

spin-orbit coupling presented by Kolle et al. for thiophenes in which a torsional rotation causes much 

faster than expected intersystem crossing64, in agreement with the dimer study by Datko et al38. 

Overall, while the exact cause of the polarisation pattern inversion cannot be assigned, we can 

unambiguously assign the triplets to those formed by intersystem crossing and not singlet fission. 

 

Figure 5.9: Time-Resolved-Electron-Paramagnetic-Resonance spectroscopy of the trimer. EPR measurements 
were conducted at 9.6GHz after 410nm excitation. Samples were prepared at 77K in a mixture of 
ethanol:toluene:diethylether in a  1:1:2 ratio. The solution was degassed to remove oxygen. For further details 
see Methods. 
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In Figure 5.10 we present the proposed scheme for the trimer with rates and yields (details of 

calculations in Appendix I). To summarise, excitation occurs into the S2-character section of the 

mixed S2-S1 state potential energy surface. Following excitation, population relaxes to the S1 

character geometry, with a ~350fs decay constant. The S1 state is then able to undergo both 

emission and intersystem crossing forming a population of isolated triplets which decay non-

radiatively.  

 

Figure 5.10: Proposed energy level scheme for the trimer. Energy levels and available photo-physical 
processes for the trimer, energy levels are arbitrary approximations and do not represent exact values. The 
rate constants and yields presented in the Figure were calculated using equations discussed in Appendix I. 
Following excitation (Exc) the S2 (Bu) state interconverts to the S1 (Ag) state. We measure photo-induced 
absorption features (PIA) from both states to higher lying singlet states (Sn, Sm) and triplet states (TT*). Here 
Knr, Kr and KISC are the rates of non-radiative decay, radiative decay and intersystem crossing respectively. ϕPL 
and ϕISC are the emission and intersystem crossing yields respectively. 
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5.6 Time Resolved Spectroscopy - Dimer 
 

In Figure 5.11 we present transient absorption spectra and kinetics for the dimer excited at 320nm. 

We find two clear areas of intensity at 625nm (PIA) and 400-450nm which is a combination of both 

positive and negative features. At 2ps delay the 400-450nm feature has a line shape similar to that 

of the dimer emission suggesting the spectra is dominated by stimulated emission. By 200ps we 

measure a decay of the positive feature revealing a PIA underneath the stimulated emission. After 

2ns we find no further evolution with the 420nm PIA showing minimal decay within the 

measurement window, indicating a ns-μs decay constant. To further assign these states, in Figure 

5.11a we show the expected T1-Tn energy for the dimer extrapolated from the T1-Tn energy versus 

conjugation length dependence by Apperloo et al.179. We find an agreement between this energy 

and the PIA which, combined with the long decay constant, suggests the 420nm feature is related to 

triplets. 

In Figure 5.11b we present kinetics taken at 625nm (PIA), 450nm (SE) and at the peak of the feature 

underneath the stimulated emission (420nm). In order to fit the kinetic for the 625nm feature we 

must use two exponentials with decay constants 109±5ps and 1.9±0.2ns. These components are 

consistent with those found by Datko et al. who assign the feature to the absorbing state of Bu 

symmetry38. In Section 5.3 we assigned emission to the absorbing state, as such we compare the 

decay kinetics of the stimulated emission and 625nm PIA. We find similar decay kinetics, requiring a 

bi-exponential fit with 110±15ps and 1.5±1ns components. Due to the similarity of the decay of the 

emission and 625nm features we assign the PIA to the absorbing state in agreement with Datko et 

al38. 
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Figure 5.11: Transient absorption spectra and kinetics of the dimer: (a) Transient absorption spectra of the 
dimer excited at 320nm, shown averaged over 2-3ps, 200-300ps, 1000-2000ps, 4000-6000ps. An estimate of 
the dimer triplet energy is provided by extrapolating the dependence of T1-Tn energy against conjugation 
length in the paper by Apperloo et al.179. (b) Transient absorption kinetics of the dimer excited at 320nm, the 
kinetics are averaged over 5nm around the peak of the PIAs (625, 420nm) and the stimulated emission 
(450nm). (c) Transient absorption kinetics of the dimer after 320nm excitation. The 625nm kinetic is 
reproduced from panel b and compared to the subtraction of the 450nm kinetic away from the 420nm kinetic. 
The difference kinetic was then normalised for comparison. Throughout all transient absorption data were 
taken at 1mW power. 

 

In Section 5.5 we showed that the S1 state can have features with triplet-like spectral shapes 

consistent with its description as a bound pair of triplets. As such, the triplet feature in the dimer 

could be a signature of the dark S1 state for the dimer. Two open questions remain: (1) What is the 

nature of the triplet-like state at 420nm? And (2) What causes the initial 100ps decay in the 

absorbing state which quenches emission?  

While we cannot resolve directly the rise of the triplet features, we see a faster decay at 420nm than 

450nm (Figure 5.11b). This is caused by the combination of the stimulated emission decay and the 

rise of the triplet PIA. To pull these apart we subtract the 450nm kinetic from the faster decay of the 

420nm kinetic, in order to isolate the rise of the triplet. Figure 5.11c presents a comparison of the 

rise of the 420nm feature and the decay of the 625nm singlet feature normalised to the maximum 

value. We find a similarity between the two, with the rise being mono-exponential with rise constant 

of 106±5ps, very similar to the first decay constant of the singlet state (109±5ps). This suggests there 

is an interconversion of the absorbing state and the triplet-like state, explaining the quenching of 

emission. While this is fast for intersystem crossing, it is much too slow for formation of the S1 state 

(usually on the order of fs25,27,32,112). Combined with the long lifetime of the triplets, we suggest the 
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feature is not representative of the S1 state. Additionally, to rule out singlet fission we measure the 

dimer at 320nm and 370nm excitation (Appendix J). We find no excitation dependence, ruling out 

activated singlet fission occurring through the same mechanism as the longer oligomers. 

We find our measurements agree with the model by Datko et al. who assign the triplet population to 

intersystem crossing, possibly enhanced by a torsional rotation38,64. Interestingly, efficient 

intersystem crossing has been reported previously for dipheyl-hexatriene with a similar 

mechanism284. Here we find no evidence for a dark intermediate state (S1) between the absorbing 

and the ground state of the dimer in agreement with Datko et al.38. However, unlike Datko we 

suggest the lack of the S1 state in the dimer is a consequence of its short conjugation length and find 

the behaviour in agreement with the OTV/PTV family of molecules being polyene-like molecules. A 

summary of the scheme presented for the dimer including rates and approximate yields are given in 

Figure 5.12. Now that we have characterised the full oligomer series, we return to the questions 

posed at the beginning of the chapter. 

 

Figure 5.12: Proposed energy level scheme for the dimer. Energy levels and available photo-physical 
processes for the dimer, energy levels are arbitrary approximations and do not represent exact values. The 
rate constants and yields presented in the Figure were calculated using equations discussed in Appendix I. 
Following excitation, the S1 (Bu) state undergoes intersystem crossing to the triplet manifold. For the dimer, 
the dark Ag state is then the S2 state. Here Knr, Kr and KISC are the rates of non-radiative decay, radiative decay 
and intersystem crossing, respectively. ϕPL and ϕISC are the emission and intersystem crossing yields 
respectively. 
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5.7 Conjugation Length Dependence of OTVs 
 

In the preceding sections we characterised a set of oligomers running from 2 to 8 thienylene-

vinylene units. We resolved the apparent contradiction in the models presented by Musser et al and 

Datko et al. to describe the photophysics of OTV/PTVs. In the long-chain oligomers we observe 

polymer-like behaviour in agreement with Musser et al. i.e. activated singlet fission27, while in the 

short-chain oligomers we observe emission and intersystem crossing similar to the findings by Datko 

et al38. We are now able to describe the photophysics of OTV/PTV molecules thoroughly with the 

polyene framework.  

  

Figure 5.13: Dependence of singlet state lifetime on conjugation length. Series of decay rates for polyene 
molecules previously found by Chywat et al.52. Lifetimes are plot as a function of the energy gap between the 
initial and final state in the transition (S1-S0). Kinetics shown in Figure 5.5 and 5.8 were fit with a mono-
exponential decay yielding a single decay constant. These Knr values are then fit to the carotenoids dependence 
to estimate the S1 energies of the oligomers. Details of kinetic fits and decay constants given in the text and 
Appendix E and I. 

 

In Section 5.5 we investigated the emission characteristics of the trimer, assigning emission to the 

symmetry forbidden S1 state, allowed via mixing with S2. In Figure 5.4f we suggested that the trimer 

has a smaller S2-S1 energy gap compared with carotenoids of a similar S2 energy. Interestingly, the Knr 

of the trimer is similar to Knr of a carotenoid with the same S1 energy. We can use this fact to 

estimate the energies of the non-emissive oligomers (2, 4-8 units), if we assume that the OTVs follow 

an energy-gap law for non-radiative decay with the same slope as carotenoids. In Figure 5.13 we plot 
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the carotenoid Knr versus S1 energy (dashed line). We then plot Knr for the oligomers so that they sit 

on this line and thus estimate the S1 energies. Having estimated the S1 energies of the OTVs we now 

compare these energies to those of carotenoids, a well characterised class of polyenes.  

 

Figure 5.14: State energies for the series of OTVs and carotneoids. (a) Collection of carotenoid state energies 
taken from various literature sources112,129–135. We include a fit for each state based on the relationship 
discovered by Kohler for polyene molecules285. For the 1Bu state: 1.8 +

.଼

ே
, and for the 2Ag state: 0.76 +

ଵ.ଷଶ

ே
, 

where N is the conjugation length.(b) We reproduce the literature trend for the 1Bu
+ state presented in panel a 

along with the absorption and emission energies of the OTVs. We include the S1 state energies estimated by 
application of the gap law to the measured lifetimes of the oligomers (Figure 5.13). The same slope can 
describe the estimated 2Ag energies of the carotenoids and the OTVs with an altered y intercept for the OTVs 
(1.1eV).  

 

In Figure 5.14a we show S2 and S1 state energies against 1/conjugation length for a series of 

carotenoids from literature 112,129–135. We then fit them using the empirical relationship identified 

previously by Kohler in 1988 for polyenes (E =  Eஶ +



), where 𝐸ே is the state energy for N double 

bonds, 𝐸ஶ is the state energy at an infinite conjugation length and N is the number of double bonds. 

Kohler measured a series of oligomers finding a relationship for the 2Ag and 1Bu states of 

poly(acetylene) (Equation 5.1-5.2)42,285. We find an agreement in the slope of the dependence with 

this relationship however to fit the carotenoid data we require a reduction in the y intercept (energy 

of the state at an infinite conjugation length) of ~200meV for both the 2Ag and 1Bu state 42,285. While 
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experimental data has been shown to diverge from this relationship at long and short conjugation 

lengths, in the region of interest here the simple relationship is surprisingly accurate42,285.  

Eଵ୳
ି = 2.01 +  

.଼


         (5.1) 

Eଶ
ି = 0.96 +  

ଵ.ଷଶ


              (5.2) 

We then use this quantitative relationship to assign effective conjugation lengths to the OTVs by 

comparison of carotenoid and OTV S2 energies. This method for assigning effective conjugation 

lengths from absorption energies is common in literature on polyenes and other 

polymer/oligomers111,286,287. By assigning conjugation lengths to our oligomers we can compare with 

literature on carotenoids. In Figure 5.14b, we plot the estimated S1 and S2 energies as a function of 

conjugation length. The blue dashed line has the same slope as the carotenoid S1 conjugation length 

dependence, but blue-shifted by 500meV.  

Interestingly while the S1 state has the same conjugation length dependences as carotenoids, the 

magnitude of the S1-S2 energy gap is smaller for the OTVs, 0.16eV for the trimer compared to 0.62eV 

in a similar length carotenoid. This suggests there are lower electron correlations in the OTVs 

compared to carotenoids, raising the energy of triplet and triplet-pair states. This is consistent with 

theoretical work which finds electron correlations are dependent on geometry of the molecules42,288. 

In Figure 5.15 we show the structure of 3 conjugated polymers. Despite the similar structures PTV is 

a polyene and non-emissive while PPV is emissive with no low-lying 2Ag state. The lower electron 

correlations are directly a result of the rings in the structures of PTV and PPV. The rings allow 

electrons to avoid each other which reduces electron-electron repulsion. Further the ring causes an 

increase in the alternation (difference in double and single bond lengths) which in turn localises 

electrons and reduces correlations. 
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Figure 5.15: Structures of materials with high and low electron correlations. (a) Chemical structure of a 
generic linear polyene known to possess high electron correlations. (b) Chemical structure of PTV 
(poly(thienylene-vinylene)), a polyene-like polymer which has intermediate electron correlations, with the 
polyene energetic structure for long-chains and an inverted energy ordering at short-chain lengths. (c) 
Chemical structure of PPV, a emissive polymer which shows low electron correlations causing the lowest 
excited state to be of Bu symmetry. 

  

For polyenes the dark intermediate states are dominated by the triplet-pair or 2e - 2h character 

pushing the S1 state to low energies. While in the emissive polymers/oligomers the 1e-1h character 

is much more prominent, raising the energy of the S1 state, even pushing it above the absorbing 

state for low electron correlations288,289. As such, the polyene state ordering of Bu>2Ag>1Ag is a 

consequence of strong electron correlations288,289. Here we find an intermediate case where the S1 

energy is higher than carotenoids but still well below the absorbing state for oligomers with 

conjugation length above 7, consistent with polyene molecules 288,289. 

Here we take a moment to discuss the definition of intramolecular singlet fission before continuing. 

Singlet fission is defined as a singlet state converting to two triplets10. However in acene literature 

due to the prominence and importance of intermediate states, a new terminology has been adopted 

(discussed in Chapter 4)34. In this new language singlet fission is sometimes defined as the process of 

a singlet state converting to the 1(TT) state. In the original description of singlet fission, the polymer 

and longer oligomers are not undergoing singlet fission due to the lack of separation to free triplets. 

However, the new language leads to interesting questions for the OTV/PTV materials and polyenes 

in general. This is due to the predicted triplet-pair nature of the S1 state49,121, which causes the S2-S1 

internal conversion to be defined as a form of intramolecular singlet fission43,108. In this model, the 

longest oligomers undergo singlet fission to two states, where neither separate to free triplets. 

Afterwards both states decay in parallel to the ground state with decay rates consistent with the 
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energy gap law for singlet states in polyenes. This model implies that S2-S1 internal conversion and 

intramolecular singlet fission events described above are equivalent but occur to states of different 

energy.  

Interestingly, we find another distinction between these two states for the tetramer where spectral 

features are narrow enough to distinguish differences between the states. In the tetramer we can 

resolve both the S1 and 1(TT) states, finding a triplet-like spectral shape for them both. However for 

the triplet-pair of singlet fission we find a blue-shift compared to free triplets, as in the longer 

oligomers and many other singlet fission materials31,34. A blue-shift in the transient absorption 

spectrum of the triplet-pair compared to isolated triplets indicates a bound triplet-pair with a 

binding energy given by the blue-shift31. Whereas for the S1 state we find a red shift from isolated 

triplets, similar to the S1 state of carotenoids (see Chapter 6) and S1 of the trimer. We postpone 

discussion of this red-shift until Chapter 6. 
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5.8 Conclusions 
 

The results presented here form a clear view of OTV molecules, assigning them to the polyene class 

of materials. In the longer oligomers (>4 units) we find evidence for a symmetry forbidden 2Ag state 

and activated intramolecular singlet fission, as in the polymer27. For the trimer we find a clear 

separation from the longer oligomers with intersystem crossing to form isolated long-lived (μs) 

triplets. The small S2-S1 energy gap (0.16eV) for the trimer leads to significant mixing of the 

absorbing (Bu) and symmetry forbidden (Ag) states allowing the symmetry forbidden state to emit. 

Finally, for the dimer we find our data agrees with previous studies by Datko et al38. with efficient 

intersystem crossing and no symmetry forbidden 2Ag state. However, here we find this is in 

agreement with the polyene model in which the 2Ag state energy rises faster than the absorbing 1Bu 

state as a function of conjugation length, causing them to switch order at very short (<5) conjugation 

lengths. 

5.9 Materials and Methods 
 

5.9.1 Sample Preparation 
 

OTV molecules were synthesised by Iain Andrews in the Heeney group (Imperial College London). 

The solutions were prepared in toluene with ~40μM for an OD of ~0.4-0.6 in 1mm path length 

cuvette unless stated otherwise in the Figures. For the low temperature measurements, a solvent 

mixture was used to ensure a clear glass formed (details in figure captions). 

5.9.2 Spectroscopy 
 

Steady state absorption, steady state emission, and time-resolved emission measurements were 

taken as described in Chapter 3, Section 3.2. Low temperature emission measurements were 

conducted as described in Chapter 3 with the addition of a liquid nitrogen Cryostat (Oxford 

Instruments). After submerging the sample in liquid nitrogen, measurements were only conducted 
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after the initial cool down was complete. All transient absorption measurements were taken at room 

temperature with the Helios setup described in Chapter 3. A series of narrow band (~10nm, ~100fs) 

pumps (under 1mW power) between 300 and 600nm and a visible probe pulse running from 350 – 

700nm and 800-1200nm were supplied by a commercial TOPAS (Light Conversion Ltd) and white 

light generation respectively.  

5.9.3 Franck-Condon Modelling 
 

Within this chapter we perform a Franck-Condon analysis on both steady state absorption and 

emission spectra. To carry out the analysis we applied the below equations (5.1-5.2) as in Refs40,262. 

To fit we presume a Gaussian line shape with a single broadening constant (𝜎) for all peaks which 

represents the Gaussian variance and is related to the FWHM via 𝐹𝑊𝐻𝑀 = 2.354𝜎 40. We also 

presume a single active vibrational mode (𝜔௩). In Equations 5.1-5.2 below, x represents a given 

absorption or emission wavelength, 𝑛௫ is the refractive index of the solvent at wavelength x, m is the 

number of the given vibrational replica and 𝑆 is the Huang-Rhys factor. To fit organic molecules we 

use a gaussian rather than Lorentzian line shape function, consistent with inhomogeneous 

broadening known to occur for organic molecules40,41. 
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5.9.4 Time-Resolved Electron-Paramagnetic-Resonance Spectroscopy 

Time-Resolved EPR (TR-EPR) experiments at X-band frequency (~9.6 GHz) were recorded on a Bruker 

E580 pulsed EPR spectrometer and equipped with a Bruker ER4118X-MD5 dielectric resonator. TR-

EPR spectra were recorded in direct detection mode without magnetic field modulation, therefore 

they show characteristic enhanced absorptive (A) and emissive (E) features, as indicated in the 

reported spectra. A Surelite broadband OPO system within the operating range 410–680 nm, 

pumped by a Surelite I-20 Q-switched Nd:YAG laser with 2nd and 3rd harmonic generators (10 Hz, 

pulse length of 5 ns) was used to achieve a pulsed laser excitation at an appropriate wavelength 

optimized on the signal intensity, with the energy at the sample approximately 5 mJ per pulse. A 

cryogen-free cryostat from Cryogenic ltd and a Lake Shore temperature controller (model 350) were 

used to cool the sample and maintain the temperature at 77 K. EPR samples were prepared at a 

concentration of 0.05mg mL-1 in a mixture of ethanol:toluene:diethyl ether in a 1:1:2 ratio (v/v). The 

solvent mixture was degassed by sonication prior to use.  TR-EPR measurements carried out by 

Enrico Salvadori (Queen Mary University of London). 

5.9.5 TR-EPR simulations 

TR-EPR spectra were simulated using the EasySpin toolbox in MATLAB™ to extract ZFS parameters – 

D and E – and sublevel populations (Px, Py, Pz). The simulation of the OTV timer considered the ZFS 

parameters D negative as expected for polyenes. An isotropic g value equal to the free electron g 

value (gx = gy = gz = 2.0023) was used in all simulations. Simulations carried out by Enrico Salvadori 

(Queen Mary University of London). 

5.9.6 Fluorescence Up-conversion Photoluminescence Spectroscopy (FLUPS) 
 

Broadband femtosecond fluorescence spectroscopy experiments were performed on an 

experimental setup as described in detail in ref290 by George Farrow at the University of Sheffield. A 

Ti:Sapphire regenerative amplifier (Spitfire, Spectra-Physics) provided 800nm pulses (40fs FWHM, 
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10kHz, 1.2mJ). Doubling of the 800nm output pulse in a β-barium borate (BBO) crystal generates the 

400nm pump pulses. The pump pulses were passed through a computer-controlled optical delay line 

(M-IMS400LM, Newport), translation of which gave control of time delay between pump and gate 

pulses, within a 4 ns window with a temporal resolution of 1.67fs. Polarization was set to magic 

angle, with respect to vertical, with a half-wave plate. Pump pulses were then focused by a lens 

(focal length = 200mm) onto the sample cell, to a spot diameter of <0.1mm. The 1320nm gate pulses 

were the signal pulses generated by an OPA (TOPAS prime, Light Conversion) pumped by the 800nm 

output of the Ti:Sapphire regenerative amplifier. Fluorescence from the sample was directed onto a 

100μm thick β-barium borate crystal (BBO crystal, EKSMA OPTICS) where it was up-converted by 

sum-frequency generation with the 1320nm gate pulses. In doing so a given time delay can be 

sampled by altering the delay between excitation and gate pulses. The fluorescence and gate beams 

met at an angle of   ̴21° at the crystal. Type II phasematching was used in order to provide the 

broadest up-conversion spectral window. The upconverted fluorescence was spatially filtered and 

then focused on the entrance of a fibre bundle (Ceram Optek) with a concave mirror. A homebuilt 

spectrograph was used to disperse the upconverted fluorescence onto a CCD detector (iDus 420 

DU440A-BU2, Andor). The detectable spectral range was 286-500nm, this corresponding to original 

fluorescence of 360-780nm. 

In the following chapter we clarify the photophysics of carotenoids, before discussing the factors 

that affect the singlet fission process in these molecules. I once again produced and measured all the 

samples, and carried out the analysis of the data. Throughout the chapter we present several 

computational models that support the conclusions we present for the data. When these are 

discussed, credit is given to the appropriate researcher that carried out the modelling. 

 



 160 

6. Characterisation of Singlet Fission in Protein-Bound 
Carotenoid Aggregates: Revealing the Triplet Contributions to 

the 2Ag
- State. 

 

 

6.1 Summary 
 

The nature of the low-lying electronic states and their decay processes in carotenoids has been 

debated for decades. To clarify we use excitation-dependent transient absorption spectroscopy to 

investigate carotenoid monomer, solution based aggregates and protein-bound aggregates. We start 

by characterising the pertinent states to the low energy physics of the monomer. By comparison 

with published results on β-carotene we demonstrate that the so-called S* feature in astaxanthin, 

echinenone and spheroidenone spectra is due to an isomer impurity in the sample. Excitation at the 

absorption band-edge results in a transient absorption spectrum dominated by the pure S1 photo-

induced absorption, with no contribution from impurities (‘S*’). We find that this S1 absorption 

resembles the triplet excited-state absorption spectrum, shifted by ~200meV. To explain this, we 

suggest that the individual triplets that make up the dominant triplet-pair (TT) configuration of 2Ag
- 

contribute strongly to the S1 absorption band. Comparison with recent literature on molecular 

polycrystalline films which undergo singlet fission suggests the shift could be related to the binding 

energy of the triplet-pair state. Afterwards we investigate both solution-based and protein-bound 

carotenoid aggregates using the emerging technology of man-made maquette proteins. We show 

that surprisingly, intramolecular structure and protein environment has little effect on the singlet 

fission process. These findings have implications for understanding triplet-pair states in organic 

semiconductors and singlet fission in carotenoid aggregates and wider biological systems.  

 

 



 161 

6.2 Background 
 

Over 600 carotenoids exist in nature 110–112, covering a wide variety of functions from photo-

protection in human vision, to energy harvesting in photosynthesis 113–120. These roles are enabled 

by the complex properties of carotenoids where – assuming C2h symmetry – the lowest-lying singlet 

excited-state (S1) is highly electron-correlated, described as a pair of triplets (TT) with overall Ag 

symmetry (the 2Ag
- state) 43,49,295,296,54,108,146,153,291–294. This state carries the same symmetry as the 

ground-state (1Ag
-), therefore 2Ag

- (S1) has negligible oscillator strength. One-photon absorption is 

instead predominantly into the 1Bu
+ singlet state, which is typically assumed to be the second singlet 

excited-state, S2 
49,54,153,291–296. Internal conversion from 1Bu

+ to 2Ag
- occurs in <200fs 295,297, followed 

by non-radiative decay to the ground-state (1Ag
-) within 20ps 49,54,153,291–296. This rapid non-radiative 

decay makes carotenoids perfect photo-protective materials for rapidly dissipating electronic energy 

into heat 113–118.  

Interestingly, despite calculations showing the 2Ag
- state to have dominant 1(TT) character, to our 

knowledge no experimental comparison between triplet (T1) and 2Ag
- excited-state absorption 

spectra have been presented for carotenoids. Similar (TT) states have been observed in acene12–15,95 

and heteroacene polycrystalline films298, and are of current interest in the field of organic 

electronics. Such interest stems from the fact that triplet-pair states can transfer charge or energy 

independently, either to an electron acceptor8 or a triplet acceptor89,92. Thus, a single photon 

produces two excitations that could be harvested in solar cells, potentially increasing solar energy 

generation efficiency by up to 33%6 and overcoming the Shockley-Queisser limit11. Despite this, very 

few studies of singlet fission in carotenoids have been conducted, with the majority concerning 

carotenoids bound to proteins in photosynthetic materials. 

The first assignment of singlet fission in photosynthetic materials came from observations of 

changes in reaction centre emission when the protein complex was exposed to a magnetic field109. In 
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a comprehensive study, Kingma and co-workers investigated the effect of magnetic fields on the 

triplet yields of several protein strains299,300. The authors discovered two distinct regimes related to 

the reaction centres and antenna complexes299,300. The first, associated with the reaction centre, 

shows an overall reduction in triplet yield, with no dependence on excitation energy or the presence 

of carotenoids299,300; this is assigned to charge recombination in the reaction centre of the complex.  

The second regime of magnetic field effects is associated with the antenna complexes and only 

occur for direct excitation of the carotenoids299,300. Here the magnetic field effect takes on the 

distinctive shape (initial negative change before increasing to a positive plateau) previously 

measured for acene crystals undergoing singlet fission83,299–301. This magnetic field effect has been 

assigned to a change in the triplet-pair configurations that contain singlet character, which mediates 

the singlet fission rate and its reverse process83,301. As the response is identical to that of singlet 

fission in acenes and is only observed following direct excitation of carotenoids, the authors assign 

the observed effect to singlet fission involving two carotenoid molecules299,300.  

The assignment to singlet fission gained additional evidence from Klenina et al. who investigated 

pure carotenoid films and light harvesting complex samples with time resolved electron 

paramagnetic resonance spectroscopy (TR-EPR)302,303. The authors found the singlet fission process 

was identical in the light harvesting complex 2 of Allochromatium minutissimum303 and a pure 

carotenoid film, but did not occur in solution. The authors suggest this is due to the larger 

intermolecular distances in solution compared to the film303. However, it has been shown that the 

average distance between carotenoid molecules in these complexes is 16Å145. We therefore expect 

small nearest neighbour intermolecular coupling between the carotenoids (~meVs)304 inconsistent 

with the assignment of efficient intermolecular singlet fission102,103.  

In a later paper the same authors found that the singlet fission yield is reduced if 

bacteriochlorophylls are photo-bleached, suggesting bacteriochlorophyll plays a role in carotenoid 

singlet fission302. The authors suggest that bacteriochlorophyll molecules mediate the coupling 
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between the carotenoids in a super exchange mechanism, increasing the overall coupling between 

carotenoids302,303. However, in their study Klenina et al. found that even at a full bleaching of 

bacteriochlorophyll, the measured EPR signal only drops by ~60%302,303. As a result, a singlet fission 

process not involving bacteriochlorophyll must also be occurring within the protein. Since it was 

previously shown that singlet fission does not occur in monomer samples in solution302,303, this 

suggests binding with the protein environment plays a role. 

An explanation comes from a twisting of the carotenoid molecule induced by the differing protein 

interactions for different segments of the polyene chain126,143. The twisting is then proposed to 

isolate the triplets possibly by causing a break in the conjugation of the carotenoid backbone, 

consistent with the measured μs triplet lifetime126,143. A recent paper by Yu et al.305 measured 

carotenoid triplets produced by both singlet fission and through sensitisation (excitation of 

bacteriochlorophyll). Yu et al. show that the peak intensity ratio of the ground state bleach to the 

triplet PIA for singlet fission is half of the same ratio measured after sensitisation305. As the authors 

know there is one triplet per molecule for sensitisation they interpret this as indicating two triplets 

per bleached molecule following singlet fission305. As a result they suggest singlet fission in light 

harvesting complex 1 of Thermochromatium tepidum and Rhodobacter sphaeroides is an 

intramolecular process305. However within the study, the authors also measure other light harvesting 

complexes with ambiguous results305. 

The above discussion serves to point out the complexity of investigating these protein 

systems178,306,307. The interaction of carotenoids with bacteriochlorophyll and the protein 

environment combined with the presence of multiple carotenoids (most proteins contain a 

distribution of carotenoid structures178,306,307) causes ambiguity in these studies. To simplify the 

sample under test we must separate the carotenoids from the protein environment, forming a well 

characterised sample structure. However it has been shown that carotenoid monomers in solution 

do not undergo singlet fission; instead aggregates must be formed25,32,39,112.  
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The first study of carotenoid aggregates for singlet fission was published in 2010 by Wang et al. who 

investigated a J-aggregate of zeaxanthin using picosecond raman spectroscopy23,24. Using this 

technique they measured triplet formation with a 90% yield within 4ps, much too fast and at too 

high yield for intersystem crossing in carotenoid systems23,24. Due to their limited resolution 

(picoseconds) they were unable to assign the parent state of singlet fission, suggesting it was 

possible a hot S1 plays a role23,24. In 2015 Musser et al. extended this study and measured a wide 

range of packing structures of astaxanthin aggregates25. 

 Across aggregate structures the energy of the absorbing state shifts over 1.2eV, from well above to 

around the expected energy of the intermediate triplet-pair state (2xET) 25. Despite the large shifts in 

energy, and changes in coupling strength between the molecules, the rate of singlet fission remains 

under 100fs25. This rate competes with the fastest singlet fission materials for all aggregate 

structures and confirms the process is independent of intermolecular structure, a rather surprising 

result25. The authors also use ultrafast (<30fs) transient absorption spectroscopy to detail the 

dynamics of singlet fission in the aggregates.  

The authors found no sign of the S1 (2Ag
-) state, with the triplet-pair forming directly from S2 (1Bu

+)25. 

The intermediate triplet-pair then decays with two distinct decay regimes, the first on the 10-100s ps 

time scale is assigned to geminate recombination of the triplet-pair25. The second, post-1ns, in which 

the authors measure a much longer decay constant for the remaining 10% of the triplet population 

(μs)25 is assigned to localised triplets. The lack of dependence on intermolecular structure is 

surprising and points to the need for further study of the singlet fission process in carotenoid 

aggregates. However, a difficulty with these studies is the inability to form reproducible stable 

samples, leading to large studies being time consuming. To reduce complexity, a new simplified 

sample preparation method is required. A possible route for reliable aggregate creation are 

maquette proteins which were recently shown to produce stable and reliable carotenoids aggregate 

samples194 (details in Chapter 3). 
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Dutton and co-workers pioneered the new concept of entirely artificial, de novo-designed 

‘maquette’ proteins, which have been shown to replicate and even enhance biological function190–

192. The maquette proteins are based around a simple structural motif consisting of 4 α-helical 

structures, connected by short peptide linkers193. Through engineering of the amino acids bound to 

the helix structures, the inner segments are hydrophobic while the outer segments are hydrophilic. 

When suspended in water the proteins fold to protect the hydrophobic sections creating a water-

excluding cavity193. As carotenoids are hydrophobic, they preferentially populate the pocket forming 

consistent carotenoid aggregate structures within the protein. 

Herein we use excitation dependent transient absorption to measure carotenoid monomer, 

solution-formed aggregates and aggregates bound to maquette proteins. We start by studying the 

photophysics of carotenoid monomers. We find a clear excitation dependence in all four 

carotenoids: β-carotene, astaxanthin, echinenone and spheroidenone. We assign the observed 

excitation dependence to the presence of non-all-trans-isomers. We then show experimental 

evidence for the triplet-pair character of the S1 state for β-carotene, astaxanthin and echinenone. 

Finally, we present measurements of protein-bound aggregates finding intramolecular structure and 

protein environment has no effect on the singlet fission process. 

6.3 Triplet-Pair Contributions to the S1 PIA 

 
We start by examining the monomer photophysics of a selection of carotenoid structures. In Figure 

6.1 we present ground state absorption spectra, energy levels and structures of β-carotene, 

astaxanthin, echinenone and spheroidenone. Each carotenoid has a strong absorption in the visible 

region due to the S0-S2 (1Bu
+) transition, with a series of red shifts between molecules 308 as the 

effective conjugation length increases from β-carotene (9.6) to astaxanthin (10.5) 110,112. Comparing 

the absorption line shape of β-carotene and astaxanthin we observe a pronounced loss of vibronic 

structure. This is due to the presence of carbonyl groups that adopt a range of conformations in 
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polar environments 308.  The small absorption peaks around 375-425nm in spheroidenone are 

commonly assigned to cis isomers 148,308.  

 

Figure 6.1: Carotenoids studied in this work. (a) Chemical structures of β-carotene, astaxanthin, echinenone 
and spheroidenone. (b) Measured state energies relative to the ground state. S2 and S1 energies are taken from 
literature by Bachilo et al. 309, Musser et al. 25, Polivka et al.112 and  Cong et al. 148 for β-carotene, astaxanthin, 
echinenone and spheroidenone, respectively. (c) Ground state absorption spectrum of each molecule in dilute 
(~40μM) toluene solution. 
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Figure 6.2 shows transient absorption spectra and kinetics for β-carotene and astaxanthin excited 

low (520nm) and high (400nm) in the absorption band. The photo-induced absorption peaked at 

590nm (β-carotene) and 630nm (astaxanthin) is due to the S1-Sn transition 25,310. This feature decays 

with a time constant of 9.6±2ps and 5.3±1ps for β-carotene and astaxanthin respectively, in 

agreement with literature 25,150. A summary of the parameters used to fit kinetics throughout this 

chapter is given in Appendix L. With high excitation energy (400nm), a shoulder on the blue side of 

the S1-Sn peak, consistent with features assigned to S* in β-carotene, appears at 560nm and 540nm 

for β-carotene and astaxanthin, respectively 150,153.  

This S* peak decays slower than the rest of the spectrum, with time constants of 95±25ps (β-

carotene) and 45±15ps (astaxanthin) shown in Figure 6.2. The presence of a decay component much 

longer than the S2 or S1 states is usually used as proof for the assignment of S* 122,125,146–149,311. 

However, as discussed in Chapter 2, Ostroumov et al. discovered that a series of impurities (cis 

isomers) form in solution that are responsible for this feature in β-carotene 150. In Appendix K we 

conduct excitation energy dependent transient absorption confirming this assignment for both β-

carotene and astaxanthin. 
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Figure 6.2: Excitation photon energy dependent transient absorption (β-carotene and astaxanthin). (a, b) 
Transient absorption spectra of β-carotene (a), astaxanthin (b) excited at 400nm and 520nm (<1mW power). 
Spectral slices are averaged over 1-3ps and 30-40ps. The 520nm spectra have been scaled so that the peak of 
the photo-induced absorption at 1ps matches after both 400nm and 520nm excitation. (c, d) Transient 
absorption kinetics of β-carotene (c), astaxanthin (d) taken after 400nm and 520nm excitation. Kinetics were 
taken in the S1 and proposed S* PIA regions (averaged of a 10nm window).  

 

Figure 6.3 presents equivalent data for echinenone and spheroidenone, excited above and below 

the onset energy for isomer absorption (480nm).  A peak at 610nm (6.4±1ps lifetime) is measured 

for echinenone and a peak at 585nm (7.2±0.4ps lifetime) is measured for spheroidenone matching 

values for the S1-Sn transition from literature 307,308,312. The small side peak visible at ~670nm for 

spheroidenone has been suggested to be due to the charge-transfer state character of the S1 state, 

although this is contested 308,312.  
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Figure 6.3: Excitation photon energy dependent transient absorption (spheroidenone and echinenone). (a, b) 
Transient absorption spectra of spheroidenone (a), echinenone (b) excited at 400nm and 500nm (1mW 
power). Spectral slices are averaged over 1-3ps and 40-50ps in (a) and 1-3ps and 30-40ps in (b). The 520nm 
spectra have been scaled so that the peak of the photo-induced absorption at 1ps matches after both 400nm 
and 520nm excitation. (c, d) Transient absorption kinetics of spheroidenone (c), echinenone (d) taken after 
400nm and 500nm excitation. Kinetics were taken in the S1 and proposed S* PIA regions (averaged over a 
10nm window). 

 

When comparing spectra excited above and below the onset absorption energy of the isomer 

identified above, we see a new feature appear with a lifetime of 41±10ps and 80±20ps in 

echinenone and spheroidenone respectively (Figure 6.3). The relatively small change in 

spheroidenone compared to the other carotenoids is due to overlap of the supposed S* feature and 

the ground state bleach (Figure 6.3). In analogy with β-carotene and astaxanthin above we suggest 

that the longer-lifetime component is produced by a separate population of non-all-trans isomers 

and is not a sign of a new electronic state. Indeed, with low-energy excitation the entire spectrum 

decays with the same dynamics, requiring no need to invoke S*. We conclude that the S1-Sn 
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transition is the only feature present in the transient absorption spectra in this spectral window with 

band-edge excitation of β-carotene, astaxanthin, echinenone and spheroidenone presented above.  

We now turn to examine the spectral shape of the S1 (2Ag
-) state following band-edge excitation 

presented in Figures 6.2 and 6.3. To understand the spectrum in more detail, we note that the 

dominant configuration in the wavefunction of 2Ag
- is a pair of triplets 1(TT), with other contributions 

from charge-transfer and electron-hole particle excitations 49,121,293. Recent work by Khan and 

Mazumdar 279 suggests that a triplet-pair 1(TT) should absorb with a similar spectral shape to a triplet 

exciton (T1). Barford et al. likewise suggest that the visible photo-induced absorption in linear 

polyenes is a T-T* transition43. More recently, empirical work by Lukman et al., 31 suggests that the 

1(TT) absorption should be blue-shifted compared with the isolated triplet T1-Tn photo-induced 

absorption spectrum by an energy proportional to the triplet-pair binding energy 𝐸 = 2𝐸் − 𝐸்்  31.  

 

Figure 6.4: S1 absorption is similar to T1-Tn. S1-Sn and T1-Tn transitions for (a) β-carotene, (b) astaxanthin and 
(c) echinenone, dashed lines show the S1-Sn photo-induced absorption spectrum shifted by (a) 190meV, (b) 
100meV and (c) 220meV to higher energies. T1-Tn spectra were acquired via sensitisation by Fullerene-C60 
(200:800μMol Carotenoid:C60). Details of the sensitisation measurements are given in Section 6.8.3, 
measurements were conducted with Jose Marin Beloqui (Univeristy College London).  

 

In carotenoids, as the triplets which make up 2Ag
- are on the same chain, they should be strongly 

exchange-coupled and bound 9. We estimate the binding energy for the β-carotene 1(TT) state (i.e. 

2Ag
-) from the difference between the energies of 2Ag

- (1.75eV ± 25meV 140) and 2xT1 (1.88eV ± 

80meV 112,140,313) to be 130 ± 105meV. With such strong binding between triplets, 1(TT) is expected to 
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be a pure spin-singlet state 78–80. As a singlet state, it does not require a spin flip to return to the 

ground state, with its lifetime dominated by the standard gap-law for non-radiative singlet 

transitions 52.  

In Figure 6.4 we present a comparison between the transient absorption features of the S1 state and 

a sensitized triplet spectrum (T1-Tn). Shifting the S1-Sn absorption spectrum by 190meV to higher 

energies for β-carotene (dashed) demonstrates a striking similarity between the spectral line shapes 

of S1 and T1. This suggests that, as expected, the 2Ag
- state can be described as a bound triplet-pair 

with triplet-like photo-induced absorption49. A similar shift is visible in astaxanthin and echinenone, 

however the spectral shape diverges on the high-energy edge due to overlap with the ground state 

bleach. We have omitted spheroidenone from the remaining experiments due to lack of access to 

the molecule. 

To investigate if the comparison of T -> T* and the 2Ag
- photo-induced absorption features is valid 

we calculate state energies by solving the Pariser-Parr-Pople-Peierls Hamiltonian for an 18 site chain 

(9 double bonds)42,43. The model was constructed by William Barford (Oxford University), the results 

of which are shown in Figure 6.5. The model includes the relaxed (at 2Ag
- geometry) and vertical (at 

ground state geometry) energies for the S0, S1 (2Ag), S2 (1Bu), and T1 (Bu) states along with the final 

states for the observed photo-induced absorptions (X, T* and nBu). We have labelled three state 

transitions: (1) the initial absorption event, (2) the S1-Sn photo-induced absorption, here labelled 2Ag
r 

to Xr, and (3) the T1-Tn photo-induced absorption, here labelled Tr to T*r. For the S0-S2 transition the 

model gives energies approximately 650meV larger than the transitions measured for β-carotene 

above. The discrepancies in the measured and modelled S0-S2 state absorption energies are 

consistent with solvation calculated by Schmidt and Tavan. The 2Ag
r-Xr and Tr-T*r transitions also 

have similar solvation values (520meV and 510meV respectively). As a result, we find that this model 

is appropriate for describing the photophysics of β-carotene. 
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Figure 6.5: Energy level scheme of an 18 site polyene chain. Energy levels and oscillator strengths calculated 
by solving the PPPP Hamiltonian are presented (calculated by William Barford (Oxford University), details in 
ref42,43). States with the designation r are the relaxed energies (2Ag

- state geometry). States with the 
designation v are the vertical energies (ground state geometry).  

 

In Figure 6.6 we present the spin-spin correlations for the 4 lowest energy singlet states in the PPPP 

model. The spin-spin correlation maps are symmetric about the diagonal, hence only half of the map 

has been calculated. For both the 2Ag
- and X (3Bu) states we find a large negative value in the bottom 

left corner (indicating spin correlation between the ends of the chain) which is not present in the 

maps of the ground (1Ag) and first optically allowed state (1Bu). This indicates both states are of 

triplet-triplet character and that the assignment of triplet character to the 2Ag
r-Xr state transition 

above is valid. Interestingly, we also find that the 2Ag
r-Xr and Tr-T*r transitions have the same 

transition dipole moment, as expected if they are both due to T to T* type transitions. Even though 

both (2) and (3) are due to T-T* transitions, they have different energies ΔE=187meV. This is similar 

to the experimentally observed shift between the two transitions (190meV). 
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Figure 6.6: Spin-Spin correlations of the 4 lowest energy singlet states of an 18 site polyene chain. (a) spin-
spin correlations of the 1Ag

- state which corresponds to the ground state (S0). (b) spin-spin correlations of the 
1Bu

+ state which corresponds to the first optically allowed state (S2). (c) spin-spin correlations of the 2Ag
- state 

which corresponds to the first excited state (S1) which is optically forbidden from the ground state. (d) spin-
spin correlations of the 3Bu state which corresponds to the X or Sn state. For all 4 maps I and J represent sites 
on the chain that are considered in the spin-spin correlation calculation. The negative signal in the bottom left 
of the 2Ag

- and 3Bu maps is indicative of triplet-pair character. As a result, we can confirm that the X state 
(labelled Sn) is the 3Bu state which contains triplet-pair character. The above PPPP model was constructed and 
the figure was provided by William Barford (Oxford University), details in ref42,43. 

 

Now that we have established that S1-Sn is a triplet-like transition we return to the discussion of 

triplet-pair binding energies. In their study of zethrene molecules Lukman et al. found that the 

triplet-pair PIA shift (ΔPIA) has an approximate 1:1 relationship to the inter-triplet binding energy in 

the triplet-pair31 (𝐸 = 𝐸ଶ் − 𝐸ଶ). Although the magnitude of the photo-induced absorption shift 

here is similar to the empirical relationship demonstrated in Ref.31 (130meV compared to 190meV), 

the shift is in the opposite direction. In other words, for carotenoids, the 2Ag
- photo-induced 

absorption is shifted to lower energies compared with the T1 photo-induced absorption. Assuming 

interaction between triplets does not change the Tn energy (ETn), we would expect the 2Ag
- photo-

induced absorption to be shifted by 130 ± 105meV to higher energy (as estimated above), instead of 

lower energy as we observe. This suggests the assumption of a constant Tn energy is not valid.  
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To explain this, we return to our model, now only considering relevant states to the PIA shift in 

Figure 6.7. By comparing the energy of the triplet-pair character 2Ag
- state and double the triplet 

energy we can find the predicted binding energy for the state. Our model predicts a binding energy 

in the 2Ag
- state of 50meV. This is within our experimentally determined range of 130±105meV from 

𝐸 = 𝐸ଶ் − 𝐸ଶ. However, if we compare the Sn state (X) to T+T* (the energy of the triplet-pair 

after one triplet has been excited by an absorption event) the model also estimates a binding energy 

in the final state of 237meV. As a result, the PIA red-shifts by 187meV in agreement with the 

experimentally measured shift (190meV), explaining our observations. The above model provides a 

quantitative explanation for the observed shifts in the 2Ag
- state and confirms the triplet-pair nature 

of the 2Ag
- state experimentally.  

Thus far we have considered only isolated monomer in which the triplet-pair never separates to free 

triplets. We now move to carotenoid aggregates to compare intra and intermolecular singlet fission 

in polyene systems. 

 

Figure 6.7: Model for the measured triplet-pair PIA blue-shift. (a) We reproduce the energy levels modelled 
by William Barford (Oxford University) from Figure 6.5. Here we only include the energy levels pertinent to the 
blue-shift in the PIA. The model predicts a overall blue shift of the triplet-pair PIA of 187meV compared to the 
triplet transition.  
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6.4 Characterising Protein bound aggregates 
 

Before continuing we wish to establish the structure of the aggregates embedded in the proteins. 

Details of sample production and characterisation carried out in collaboration with George 

Sutherland (University of Sheffield) are given in Chapter 3. Below, we carry out modelling to assess 

the specific structure of the carotenoids within the protein (model provided by Frank Spano (Temple 

University, USA)). The simulations of aggregate absorption spectra are based on methods described 

in Chapter 2, Section 2.3 and in a 2010 study71. In short, the Holstein Hamiltonian is solved for one 

and two particle states. One particle states have an electronic + vibrational (vibronic) excited state 

on one molecule surrounded by molecules with no vibrational or electronic excitations. Two particle 

states have a vibronic excited state on one molecule and a vibration in the ground state on a 

neighbouring molecule. Spano has found that truncating the basis at two particle states is a good 

approximation for most systems70. 

 

To obtain the parameters for the model, the monomer ground state absorption spectrum is fit with 

a Franck-Condon progression (Appendix M) presuming equal FWHM for each peak and one 

vibrational mode (details of the Franck-Condon fit given in Section 5.9.3). The parameters of the 

Franck-Condon fit are fed into the Hamiltonian along with nearest neighbour coupling strength (V) 

and the relative angle (φ) between the transition dipole moments of the molecules included. In 

Appendix M we show predicted spectra when considering 2,3 and 4 molecules for β-carotene. When 

considering a dimer, the parameter space is sufficiently small that we are able to rule out the 

possibility of a dimer being responsible for the spectral shape we measure. For any combination of 

parameters, we find a two peak structure inconsistent with the ground state absorption 

measurements. For larger collections of molecules, the parameter space becomes intractable and 

we are unable to explore every possibility. Nevertheless, it is possible to simulate the measured 

absorption spectrum with a trimer with nearest neighbour coupling of 1200cm-1, spacing of 3.5�̇� and 
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a relative angle of 0.3π (Figure 6.8). However, we have been unable to do so for the tetramer and 

larger. We note that the restricted space within the protein pocket and the excellent agreement 

between theory and experiment suggest we have a trimer within the maquette. This is supported by 

stoichiometry measurements which find an average of 2.5 carotenoid molecules per protein 

(measurements by George Sutherland (University of Sheffield)).  

 

The absorption spectrum of all three carotenoid aggregates can be described with the same model 

and parameters but with slightly varied FWHM and 0-0 energies. For echinenone we must broaden 

the peaks (FWHMୠୡ =
ୌౙ

ଵ.ହ
) and for astaxanthin we must apply both the broadening and a 

170meV red-shift. Therefore, all three carotenoids have the same aggregate structure. This is the 

same structure as aggregate 2 in the study by Musser and co-workers25: a weakly interacting H 

aggregate. 

 

Figure 6.8: Simulation of aggregate structures of each carotenoid. (a) Ground state absorption spectrum of β-
carotene (β-C), astaxanthin (Ast) and echinenone (Ech) in maquette protein. We find a similar line shape 
suggesting the same aggregate structure is formed in all 3 carotenoids. (b) Model developed by Frank Spano71 
(Temple University, USA) applied to the β-carotene aggregate ground state absorption. More extensive results 
of the model are shown in Appendix M. Here we present results of modelling a trimer of carotenoid molecules 
with nearest neighbour coupling of 1200cm-1 and a relative angle of 0.3π. (c) The same model applied to β-
carotene is applied to echinenone with the FWHM of the peaks increased by a factor of 1.5. (d) Model 
developed by Frank Spano71 applied to the β-carotene and echinenone aggregate broadened as for 
echinenone and red-shifted by 170meV. 
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Having shown that all three carotenoids have the same aggregate structure we now wish to 

establish whether the protein environment has a significant effect on the decay processes of the 

aggregates. In Figure 6.9 we show a comparison between monomer, protein bound aggregate and 

solution-based aggregate ground state absorption for β-carotene and astaxanthin. For both 

carotenoids we observe very similar line shapes comparing the protein and solution based 

aggregate, suggestive of a similar intermolecular structure. In Figure 6.9 we also show transient 

absorption data for carotenoid aggregates in both solution and protein environments. We see no 

significant difference between the spectra or kinetics of aggregates in solution and protein.  As the 

protein does not perturb the sample dynamics, while increasing stability (see Chapter 3), maquettes 

present a valuable route to allow fundamental studies of small clusters of molecules. We now move 

on to examine the effect of intramolecular structure on singlet fission dynamics. 

 

Figure 6.9: A comparison of transient absorption data for aggregates in solution and protein. Ground state 
absorption spectra of monomer, solution based aggregates and protein bound aggregates of β-carotene (a) 
and astaxanthin (b). Transient absorption spectra for solution based and protein bound aggregates of β-
carotene (c) and astaxanthin (d). Astaxanthin samples where excited at 400nm (<1mW Power), while β-
carotene samples were excited at 450nm (<1mW Power). As the stability of solution based aggregates of β-
carotene is low, we include the excitation energy over which we see the least degradation. Transient 
absorption kinetics averaged over a 10nm window for β-carotene at 575nm (e) and astaxanthin at 600nm (f). 
Kinetics are identical in both cases indicating a similar decay pathway for the aggregates. Through the Figure 
we designate monomer carotenoids in solution as Monomer, protein bound aggregates as protein and 
solution based aggregates as Soln . 
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6.5 Effects of Intramolecular structure 
 

In Figure 6.10 we present a comparison of transient absorption spectra for protein-bound 

aggregates of all three carotenoids excited at 400nm. We find a broad photo-induced absorption for 

all three carotenoids which in each case narrows over time to leave a long-lived feature. Kinetics 

averaged over the whole PIA feature for each carotenoid is plotted in Figure 6.10b. There is a 

remarkable similarity between the protein-bound aggregate kinetics of all three carotenoids. For all 

three carotenoids the PIA rises within the instrument response, in agreement with previous 

measurements of astaxanthin aggregates25. The kinetics for all three protein-bound aggregate 

samples can be fitted with a bi-exponential.  

 

Figure 6.10: Transient absorption data for the protein bound aggregates. (a) Transient absorption spectra of 
β-carotene, astaxanthin and echinenone protein-bound aggregates excited at 400nm (1mW power). Spectral 
slices are averaged over 2-3ps and 30-40ps. The spectra have been normalised to the peak of the photo-
induced absorption at 1ps for comparison. (b) Transient absorption kinetics of the three carotenoid protein 
bound aggregates, and carotenoids monomer taken following 400nm excitation. Kinetics were averaged over 
the whole PIA spectrum for each protein-bound aggregate. For carotenoid monomer samples kinetics are 
shown following band-edge excitation averaged over a 10nm window around 575nm (β-carotene), 625nm 
(astaxanthin) and 610nm (echinenone). For astaxanthin we also include a ns-TA kinetic (red circles past 103 ps 
delay) averaged over a 10nm window around 600nm excited at 355nm (0.1mW power). We include fits for the 
protein-bound aggregate kinetics indicated with a dark grey dashed line, parameters of the fits are discussed in 
the main text and Appendix L.  

 

The first decay component is invariant with carotenoid structure with a value of 15±5ps. It should be 

noted that the 15±5ps decay component is similar to the decay constant for the S1 state in 

carotenoid monomer. However, it is not possible to fit the aggregate data with the monomer decay 
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constants which vary from 5-10ps between the carotenoids (shown in Figure 6.10b). As a result, we 

rule out the low energy peak originating from a sub-population of monomer within the sample. 

Previously this component has been assigned to vibrational cooling in the triplet-pair state25. 

The second component of 125±50ps describes most of the high energy peaks decay for all three 

carotenoids, with only a small (10%) population surviving beyond 1ns. We include a ns-TA kinetic of 

this long-lived population for astaxanthin which decays with a majority time constant of 1. 4±0.2μs. 

The latter time-constant is too long for a strongly exchange coupled (TT) state, which should decay 

with similar decay constant to singlet states34. However, triplet lifetimes in solution for carotenoids 

range from 2-30μs, consistent with the measured lifetime here314,315.  

The observed behaviour in the protein-bound carotenoid aggregates shows a strong resemblance to 

the previous studies of carotenoid aggregates24,25,316. In these studies the authors assign the 

dynamics to singlet fission, with the two time constants representing the distribution of triplet-pair 

lifetimes within a given sample25. We find our observations agree with these studies confirming 

singlet fission is occurring within these protein-bound aggregates. Before we discuss the photo-

induced absorption spectral shapes in detail we return to the spectra and kinetics in Figure 6.10. It is 

surprising that protein-bound aggregates of all three carotenoids show identical kinetics, given 

differences in their energetics and monomer photophysics. This suggests that singlet fission in 

carotenoids is an incredibly robust process. Combined with the work by Musser et al.25 we are able 

to say that carotenoid aggregate singlet fission is invariant with intramolecular structure, 

intermolecular structure and protein environment. 
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6.6 Assigning the Photo-Induced Absorption Spectra 
 

In the previous section we established that there are two distinct decay kinetics within the broad 

photo-induced absorption (PIA), neither of which match the decay of the monomer. To assign the 

two photo-induced absorption peaks for each carotenoid we decompose the initial spectrum into 

two separate features. We suggest one photo-induced absorption matches the longer-lived feature 

(30ps spectrum in Figure 6.10). The other (short-lived) component can be obtained by subtracting 

the 30ps spectrum from the 1-10ps spectra (Scaled to the blue-edge of the PIA). These results are 

presented for each carotenoid in Figure 6.11.  

 

Figure 6.11: Decomposition of the carotenoid aggregate photo-induced absorption. Transient absorption 
spectra of β-carotene (a) astaxanthin (b) and echinenone (c) aggregates bound to maquette proteins excited at 
400nm (1mW power). Spectral slices are averaged over 1-3ps and 30-40ps. We also include difference plots: 
1ps-30ps delay, 5ps-30ps delay, and 10ps-30ps delay. For each difference spectra the 30ps delay spectrum was 
scaled to match the blue edge of the PIA. Spectra were normalised for comparison. The same plots are 
reproduced for β-carotene (d), astaxanthin (e) and echinenone (f) but arbitrarily shifted for comparison of 
spectral shapes with sensitised triplet spectra reproduced from figure 6.4, details of triplet sensitisation in 
Section 6.8.3. 

 

We find an identical spectral shape at all delays with no shift or narrowing over time. The apparent 

narrowing of the overall spectrum over the first 30ps was measured previously for astaxanthin 

aggregates and was assigned to ‘cooling’ of the triplet-pair state25. However, we find here that the 
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two spectral features identified in Figure 6.11 are identical and appear to decay in parallel with no 

interconversion (no continued rise of the long lived feature). As such, we suggest the more likely 

explanation is the existence of two distinct triplet-pair states with differing energies and decay 

kinetics. 

In Figure 6.11 we compare the two spectra to an isolated triplet spectrum taken via sensitization by 

Fullerene-C60. Both photo-induced absorption features are similar in shape to an isolated triplet 

spectrum. This suggests that both of these transitions are triplet-like (T-T*) in nature, but shifted in 

energy from isolated triplets, indicative of triplet-pair states31. This implies we have triplet-pair 

states with two different binding energies represented by spectra shifted by two different energies. 

The lower energy state (larger binding energy) decays with a 15±5ps decay constant, while the 

higher energy transition (smaller binding energy) decays with a 125±50ps decay constant. It should 

be noted that we are comparing triplets of isolated molecules to triplet-pairs in an aggregated 

sample in a protein environment. It is unclear if the triplet state energy will shift with aggregation 

making quantitative assessments of shifts relative to isolated triplets difficult. However, as we find 

no further evolution of the long-lived feature, we suggest the spectrum responsible for the μs delay 

is the isolated/localised triplet spectrum with the triplets on different molecules. 

The interpretation described above is qualitatively similar to that of PTV molecules in Chapter 5. In 

PTV molecules, activated singlet fission occurs from the S2 state in parallel with formation of the S1 

state. To investigate whether singlet fission in carotenoids is activated, we excite protein-bound 

aggregates of β-carotene in 10nm steps across the whole absorption spectrum. For each excitation 

energy, the transient absorption spectrum at 1ps delay is fit with two gaussians to collect 

approximate peak intensities for the two photo-induced absorption features.  

In Figure 6.12 we plot the ratio of these two peak intensities (ୌ୧୦ ୣ୬ୣ୰୷ ୮ୣୟ୩

୭୵ ୣ୬ୣ୰୷ ୮ୣୟ୩
) as a function of 

excitation energy (black squares).We observe an increase in the relative intensity of the high energy 

peak when exciting with higher energy photons. However, we observe a quantitatively similar 
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increase in relative intensity of the blue-shifted long-lived feature in isolated monomer (Figure 6.2). 

The similarity of the excitation dependence between monomer (no singlet fission) and protein-

bound aggregates (singlet fission) suggests that the excitation dependence in the aggregate has the 

same origin as the monomers. This was assigned to the presence of non-all-trans isomers in the 

sample (Section 6.3). As a result, we can say that singlet fission is not activated in carotenoids 

aggregates. Instead our results suggest we have a sub-population of β-carotene isomers within our 

sample. However, as the isomer impurity lifetime is similar to that of the triplet-pair state (95ps 

compared to 125ps) we are unable to confirm if the isomer is the origin of the excitation energy 

dependence of the aggregate sample.  

 

Figure 6.12: Excitation energy dependence of the monomer and aggregates. Protein-bound aggregates of β-
carotene were excited in 10nm steps across the ground state absorption spectrum (<1mW Power). For each of 
the excitation energies the transient absorption spectra averaged over 1-3ps delay were fit with two gaussian 
functions. From this fit we are able to estimate the peak intensities of the low and high energy PIA peaks. The 

ratio of these peaks (
୍ౄౝ ు౨ౝ౯

୍ై౭ ు౨ౝ౯
) are plotted as a function of excitation energy (black squares). The same 

procedure was completed for a monomer sample of β-carotene at each of the excitation energies. For the 
monomer the two gaussians represent the S1 excited state absorption for the all-trans and non-all-trans 

populations of the sample. We plot the ratio (ୗ∗

ୗభ
) of these intensities as a function of excitation energy (red 

circles). 
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6.7 Conclusion 
 

Here we have used excitation-energy dependent transient absorption spectroscopy of β-carotene, 

astaxanthin, echinenone and spheroidenone in comparison with published data on β-carotene150 to 

show that the so-called S* feature in all four carotenoids is due to  impurities in the sample. 

Fortunately, with band-edge excitation the S* feature vanishes leaving a pure S1 photo-induced 

absorption spectrum. The shape of this spectrum in the visible spectral range can be explained as 

due to a coupled pair of triplets (TT), which is known to be the dominant configuration of 2Ag
- 

43,49,108,121. The excited-state absorption spectrum of 2Ag
- shifts by ~200meV for β-carotene, ~100meV 

for astaxanthin and ~200meV for echinenone compared with the absorption spectrum of T1. We 

then move to aggregates to prompt intermolecular singlet fission. We find protein environment and 

intramolecular structure has little effect on the singlet fission process.  

6.8 Materials and Methods 
6.8.1 Sample Preparation 
 

β-carotene, astaxanthin and echinenone were purchased from Sigma-Aldrich at 95-97% purity and 

used as received. Spheroidenone was isolated from Rhodobacter sphaeroides as described in Chi et 

al. 178. All carotenoids were dissolved in toluene at ~40μM for an OD of ~0.4-0.6 in 1mm path length 

cuvette. Protein samples were produced as described in Chapter 3 by George Sutherland (University 

of Sheffield) as in Ref194.  

6.8.2 Spectroscopy 
 

Steady state absorption and emission measurements were taken as described in Chapter 3. 

Transient absorption measurements of β-carotene and astaxanthin monomer were taken at room 

temperature with a setup similar to that described by Cerullo et al. 200,317. A series of narrow band 

(~10nm) pumps (under 1mW power) from 400 to 560nm and a visible probe pulse running from 500 

– 700nm were supplied by home-built non-collinear optical parametric amplifiers (NOPA) (Setup 
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operated by Andrew Musser (University of Cambridge)). For most results pump pulses were 100fs 

long, while for ‘fast’ TA a broadband (50nm) pump pulse centred at 505nm with 10-fs duration was 

used (Operated by Frederico Branchi (Politecnico di Milano)). Finally, all other transient absorption 

measurements (other monomer and aggregate samples) were taken on the Helios setup as 

described in Chapter 3. Throughout the power was kept as low as possible to avoid degradation, in 

all cases being below 1mW. 

6.8.3 Triplet Sensitisation 
 

μs-ms transient absorption kinetics was measured at a given probe wavelength, each kinetic was fit 

to attain a peak intensity at a given time to build a full spectrum. Excitation was provided by a 

Nd:YAG laser (6 ns, 10Hz, Spectra-Physics), which pumped a versa-Scan L-532 OPO , providing pump 

wavelengths in the visible region. The excitation density of the laser was controlled with neutral 

density filters from 3 to 200 mJ/cm2, and was measured with an ES111C power meter (Thorlabs). 

Probe light was supplied by a IL1 (Bentham) quartz tungsten halogen lamp. The probe was recorded 

with Silicon and Indium Gallium Arsenide photodiodes coupled to a preamplifier and an electronic 

filter (Costronic Electronics) which sent signals to a Tektronix DPO4034B oscilloscope. A Cornerstone 

130 monochromator (Oriel Instruments) was used to select the probe wavelength for a given 

acquisition. μs-ms transient absorption were conducted in collaboration with Jose Marin Beloqui 

(University College London). Solutions were flushed with nitrogen gas in a quartz glass cuvette prior 

the measurements. Samples of each carotenoid (β-carotene, astaxanthin, echinenone) where mixed 

with Fullerene-C60 as a sensitizer at a concentration of 200:800μMol, Carotenoid:C60. 
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7. Conclusions and Further Work 
 

Throughout this thesis we have investigated the intermediate triplet-pair states in the singlet fission 

process. In Chapter 4 we used strong-light matter coupling to investigate the high spin triplet-pair 

states in TIPS-tetracene. Due to the coupling between triplet-pair states of differing spin character, 

the photon character provided to the singlet state is also mixed with the quintet character triplet-

pair states. Through this mechanism we were able to prompt emission from the dark quintet triplet-

pair state via the emissive lower polariton branch. The coupling of light and matter then not only 

provides a new method for triplet harvesting but also for investigating these elusive dark states. 

In Chapter 5 we investigated a series of oligo(thienylene-vinylenes) whose assignment as polyenes 

has been up for debate. We first confirm that these molecules do belong to the polyene class of 

materials before investigating the conjugation length dependence of triplet production from the 

dimer to the octomer (approximately equivalent to a polymer). We found efficient intersystem 

crossing in the shortest molecules, which for molecules longer than 4 units switched to energy 

activated intramolecular singlet fission. Throughout the singlet fission active oligomers, we found 

decay constants consistent with an energy gap law, suggesting the triplet-pair formed of singlet 

fission in these materials is relatively strongly bound. 

In Chapter 6 we started by clearing up which states are relevant to the low energy physics of 

carotenoids, a class of polyene materials. We found that at band-edge excitation only three states 

are required to describe the observed data, those being the ground state, the bright absorbing state 

(1Bu
+) and the dark symmetry forbidden triplet-pair character state (2Ag

-). We then compare the 2Ag
- 

photo-induced absorption spectrum (S1-Sn) to a sensitised triplet spectrum (T-T*), red-shifted by 

~200meV. We find a striking resemblance, providing experimental evidence for the triplet-pair 

character of the 2Ag
- state. Interestingly, here we find a red-shift between the singlet state PIA and 

isolated triplet PIA as opposed to a blue-shift for the triplet-pair of singlet fission in OTVs (Chapter 5) 

and zethrenes31. However, the red-shift is in agreement with the S1 state of the trimer in Chapter 5. 
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Solving the PPPP π-electron model for polyenes we find that the designation of S1-Sn as a T-T* 

transition is supported by the calculations and that the shift is consistent with the expected state 

energies for a polyene chain of a similar length to the trimer and β-carotene. We then continue to 

investigate singlet fission in protein bound carotenoid aggregates. We find the surprising result that 

combined with the study by Musser et al.25 we are able to conclude that intramolecular structure, 

intermolecular structure and protein environment have little effect on the singlet fission process. 

This points to an incredibly consistent singlet fission process, as opposed to polyacenes which have a 

very different singlet fission process depending on the structure of the sample12,15,17,19,77,93,96. 

With the contributions of this thesis outlined we would like to conclude by discussing an interesting 

question that arises when applying the current language surrounding polyacene singlet fission to 

polyene materials. Originally singlet fission was defined as the formation of two ‘free’ triplets9,10. 

However, recent studies of acene and heteroacene materials12–14,77,94–96,239 show that singlet fission 

creates a strongly exchange coupled (bound) pair of triplets which can either separate to form 

individual triplets17, evolve to other spin states (quintets)12,95 or decay with no further evolution14. 

This has caused the nomenclature in the field of singlet fission concerning acenes to evolve. It is now 

common for the initial step of forming a bound triplet-pair to be referred to as “singlet fission”, with 

the following steps being “separation” or “spin evolution”12,15,95. In order for singlet fission to occur 

efficiently i.e. without a spin flip, the bound triplet-pair state must be of pure singlet character34,77. 

Therefore, in acene literature singlet fission is defined as the conversion of a singlet state into a 

strongly exchange coupled singlet character triplet-pair state. When we apply this language to 

polyenes, an interesting equivalency becomes clear. 

 As discussed in Chapter 5 and 6, the 2Ag
- state can be described as having significant triplet-pair 

character, with the excited state absorption spectrum resembling a triplet transition. On the other 

hand it has been shown that the triplet-pair of singlet fission has significant singlet character 34,77, 

with strongly bound triplet-pairs being shown to following the well-known energy gap law, which 
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has been previously applied to the decay of singlet states such as the 2Ag
- state34,52. It is therefore 

reasonable to suggest there are significant similarities between the bound triplet-pair state of singlet 

character and the symmetry forbidden 2Ag
- state in polyenes which possesses significant triplet-pair 

configuration. Both states form within 1ps of excitation, can decay following an energy gap law with 

no formation of free triplets, and both have excited state absorption signatures that have a similar 

line shape to sensitised triplet absorption signatures. 

Considering this similarity, the classification of the transition from the bright singlet (1Bu
+) state to 

the dark triplet-pair character (2Ag
-) state in polyenes comes into question. To date this transition 

has been considered ‘internal conversion’ as it involves the transition between two singlet states. 

However, as the final singlet state is considered a strongly exchange coupled triplet-pair of singlet 

character; this clearly matches the definition of singlet fission outlined above. As a result, the 

transition between 1Bu
+ and 2Ag

- could also be described as ‘intramolecular singlet fission’ using the 

new definition of singlet fission in the acene literature. Indeed a similar suggestion has been made 

by two separate theoretical studies of polyene systems43,108. In Figure 7.1 we show a generalised 

decay scheme for polyacene solid state samples and a single polyene chain. The two show significant 

similarities with behaviour dependent on the specific structure of the sample. However, there are 

some differences that as of yet remain unexplained, these are discussed below. 
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Figure 7.1: Comparison of acene and polyene decay schemes. (a) Following excitation to the first optically 
allowed state (1Bu) singlet fission occurs to a triplet-pair of singlet character with a time constant dependent 
on the sample structure. In some material systems such as pentacene this can occur on the 100s fs time scale. 
After singlet fission the triplet-pair states are then able to separate to free triplets, evolve to other spin states 
(quintets) or remain bound and decay to the ground state depending on the sample structure. (b) Following 
excitation to the first optically allowed state (1Bu) internal conversion occurs with a 100s fs time constant to 
the singlet state of triplet-pair character. Afterwards the 2Ag

- state either decays to the ground state or 
separates to free triplets dependent on the conformation of the carotenoid molecule. 

 

While in some situations free triplets are not formed from the triplet-pair of polyacene materials, in 

the majority of cases separation to free triplets occurs to some extent13,14,17,19,77,96. On the other 

hand, free triplets have not been confirmed for intramolecular singlet fission of a single polyene 

chain. Despite increasing the chain length to the maximum attainable conjugation length, there have 

been no confirmed observations of individual triplets produced via singlet fission in polyene 

polymers27–30. In their seminal work, Tavan and Schulten proposed that a small energetic push could 

separate the two triplets that comprise the 2Ag
- state49,121. To our knowledge there has been little 

evidence found for this mechanism. Hashimoto et al. identified a small triplet population (10-3 yield) 

in β-carotene following 355nm excitation that decay within 5ns318, much faster than is expected for 

isolated triplets in β-carotene (30μs)314. While this is an increase from the intersystem crossing yield 

at band-edge excitation (~10-6)39,112, the yield is still very low. Furthermore in a later study, Billsten et 
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al. found that for zeaxanthin there was no measurable triplet population despite conducting an 

excitation energy dependence up to 266nm excitation147.  

While no free triplets have been reported for polyenes in solution, there have been studies 

indicating the production of individual triplets on a single carotenoid in light harvesting 

complexes126,143,305. It is suggested a twisted conformation of the conjugated backbone could cause a 

localisation of the individual triplets305. While this has gained evidence from studies of light 

harvesting complexes no simplified solution based study has observed the mechanism directly. In 

Chapter 6, we used maquette proteins to produce aggregates of carotenoids bound and stabilised by 

the protein environment. Recent work on man-made proteins has shown potential for creating 

specific binding motifs, which enforce a particular conformation of the molecule contained within 

the protein319. In theory it may be possible to design a protein able to bind a twisted carotenoid to 

provide a simple solution based sample to test. Investigation of these protein bound samples could 

shed light onto the mechanism of triplet formation in light harvesting complexes. If it is indeed 

possible for the triplet-pair to separate, this points to yet another similarity between the 2Ag
- state 

and triplet-pairs in acene materials. 

Regardless of free triplet production in twisted conformations, a more fundamental open question 

remains. As a strongly exchange coupled triplet-pair and 2Ag
- can decay with the same rate for a 

given energy gap and have similar spectral features a distinction experimentally may not be possible.  

In order to investigate further we must first establish if there are any spectroscopic differences 

between the triplet-pair state and 2Ag
- state. A possible route for this is through vibrational 

spectroscopy, due to the distinctive signatures of the states involved. It has been shown that the 2Ag
- 

state has several distinctive vibrational modes112, while triplets also have distinctive signatures320. 

However, a recent study of pentacene derivatives in the solid state suggests the strongly bound 

triplet-pair state has no vibrational signature in the first 10ps following excitation320. Instead the 

authors measure vibrational signatures of triplets rising on the 10-50ps time scale consistent with 
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separation of the correlated strongly exchange coupled triplet-pair to a weakly bound triplet-

pair77,320–322. Similar results have been shown for carotenoid aggregates measured via impulsive 

vibrational spectroscopy (as in Ref54) suggesting a wider applicability of the lack of measurable 

vibrational signatures in the strongly bound triplet-pair state [Musser et al, private communication]. 

These preliminary results point towards a possible route for distinguishing the two triplet-pair 

character states.  

In competition with these initial studies, vibrational signatures of triplet-pair states have been 

reported. Chen and co-workers report on a femtosecond mid-IR transient absorption study of a 

series of terrylenediimide (TDI) dimers323. Chen et al. found that in solutions of TDI dimers the 

triplet-pair state forms via mixing with an intermediate charge-transfer state with no separation to 

free triplets during their 8ns measurement window. Despite the lack of isolated triplet formation, 

authors report the vibrational signatures of free triplets, which they assign to the triplet-pair state. 

Further, the authors measure a shift in the C=O stretching mode (1579cm-1) over the first 5ps, 

coinciding with formation of the mixed charge transfer and triplet-pair character state323. A similar 

observation of a shift in a ring stretching vibrational mode (1620cm-1) upon formation of the triplet-

pair state (over 5ps) was reported for crystals of hexacene this year324. Clearly, further work is 

required to pick apart the vibrational signatures and possible differences between states of triplet-

pair character. 
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8. Appendix 
 

Appendix A - Indolonaphthyridine benzene (INDB)  
 

Figure 8.1 shows steady-state absorption and PL spectra of INDB:polystyrene blends (1:4 ratio) in 

solution (<1mg/ml) and thin film. Compared with solution, the film absorption spectrum blue-shifts, 

showing a reduction in the 0-0 peak intensity, suggesting formation of weakly-coupled H-aggregates 

within the film71. The film PL spectrum likewise shows a red-shifted component, consistent with 

aggregation and/or excimer emission232, with more extreme effects than observed with DPPT.  

 

 

Figure 8.1. Steady-state characterisation of INDB. Absorption (solid) and emission (dashed) spectra of INDB in 
toluene solution (red) and embedded in polystyrene matrix (green). Excitation for photoluminescence spectra 
was at 532 nm. 

 

Figure 8.2 shows a reflectivity map of an Ag-Ag microcavity containing an INDB blend film. The clear 

anti-crossing at the 0-0 absorption energy and transfer matrix modelling (lines) confirm that this 

microcavity is in the strong-coupling regime. Following photoexcitation of the microcavity, all 

emission is from the lower polariton branch. 
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Figure 8.2. Reflectivity map of INDB microcavity. Ag-Ag microcavity containing INDB:polystyrene (1:4 by 
weight) film. Comparison with absorption spectrum (right) and transfer matrix modelling (lines, circles) 
confirms strong coupling. All emission arises from the lower polariton branch (LPB). 

 

Time-resolved emission spectra of the film and microcavity are shown in Fig 8.3 within the 

instrument response (IRF) and between 15-25 ns after photoexcitation. In the film, the prompt 

emission is from singlet excitons while at later times the broad, featureless, red-shifted emission 

suggests formation of excimers. Microcavity emission spectra do not change over this timescale, 

suggesting that emission is from the lower polariton branch. It is noteworthy that we observe 

microcavity emission even on timescales when the singlet has been fully depleted, and the only 

excited-state population is that of excimers. The simplest explanation for this observation is that the 

excimer is able to populate the lower polariton branch, as observed in other systems158. INDB film 

and microcavity emission dynamics are shown in Figure 8.3, integrated over the entire spectral 

range (i.e. both singlet and excimer bands in the film). Kinetics for the two samples are similar, 

confirming the excimer can also populate the lower polariton branch. When this excimer-population 

mechanism (known as ‘radiative pumping’) is active, the delayed emission lifetime has been shown 

to increase between film and microcavity158. However, the change in emission lifetime between 

cavity and film measured here on these timescales is negligible. This result confirms that the large 
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changes in lifetime reported in Chapter 4 are not an artefact of our measurement conditions, and in 

the absence of triplet-triplet annihilation, we observe no significant lifetime enhancement between 

film and microcavity. 

 

 

Figure 8.3. Time-resolved INDB photoluminescence. (a) Spectra of INDB:polystyrene film following excitation 
at 532 nm, collected within the instrument response (IRF) and at 15-25 ns after excitation. (b) Equivalent 
spectra for microcavity. (c) Emission kinetics integrated over full spectral bandwidth of bare film (circles) and 
microcavity (squares) of INDB. 
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Appendix B - TIPS-Tetracene Control Samples 
 

Table 8.1: Summary of sample types and observed behaviour. 

Prep. 
no. 

Sample type 
Strong 

coupling? 

Strong 
delayed 

PL? 
Notes 

1 
Spin-cast thin film (~200 nm) 
on glass, toluene solution no no reproduces literature behaviour 

2 
Spin-cast thin film (~200 nm) 
on glass, chloroform 
solution 

no no 
change in morphology does not alter dominant PL 
dynamics 

3 
Spin-cast thin film (~200 nm) 
on glass, toluene solution, 
thermally annealed 

no no 
improves morphology and reduces disorder but only 
slightly enhances delayed emission  

4 

Spin-cast thin film (~200 nm) 
on glass, toluene solution, 
exposed to ultrahigh 
vacuum 

no no 
removes residual solvent and possible quenching sites, 
improves morphology but dynamic effects are within 
sample to sample fluctuation 

5 
Spin-cast thin film (~200 nm) 
on Ag, toluene solution 

no no 
no effect, reproduces reference film within sample-to -
sample variance. Ag promixity does not result in any 
enhancement 

6 Evaporated TIPS-tetracene 
film on glass 

no no reproduces spin-cast film behaviour 

7 
Evaporated BCP:TIPS-
tetracene:BCP film (20 
nm:73 nm:20 nm) on glass 

no no 
slight change in spectral shape due to increased disorder 
at TIPS-tetracene:BCP interface, but evaporation with 
BCP does not significantly alter photophysical properties 

8 

Evaporated BCP:TIPS-
tetracene:BCP film (20 
nm:73 nm:20 nm) on glass, 
capped with 25 nm Ag 

no no 

minor effect, similar to thermal annealing or ultrahigh 
vacuum treatment. Microcavity processing procedures 
are insufficient to cause enhanced delayed emission in 
the absence of strong coupling 

9 
Evaporated BCP:TIPS-
tetracene:BCP film (90 
nm:20 nm:90 nm) on glass 

no no 
no effect, photophysics of thin film are identical to thick 
films 

10 

Evaporated BCP:TIPS-
tetracene:BCP film (90 
nm:20 nm:90 nm) on Ag, 
capped with 25 nm Ag 

no no no effect, encapsulation within a non-coupled 
microcavity does not enhance the delayed emission 

11 

Spin-cast thin film (variable 
thickness) on Ag, toluene 
solution, capped with 25 nm 
Ag 

yes yes 
polariton formation results in substantially enhanced 
delayed emission 

12 

Evaporated BCP:TIPS-
tetracene:BCP film (20 
nm:73 nm:20 nm) on Ag, 
capped with 25 nm Ag 

yes yes 
polariton formation results in substantially enhanced 
delayed emission, even when there is no physical 
contact between active layer and Ag 
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Appendix C - Rate Model Parameters 
 

Table 8.2: Summary of rates used in the rate model 

Rate constant Value  Reference or rationale 

G 1/(0.5ns) Generation of excitons: estimated from instrument response. 

LPB kr 1/(0.1ns) Radiative decay of the lower polariton branch: Should be roughly 
equal to the photon lifetime (here we make it longer to speed up 
computation time, noting that it is markedly faster than other rates 
on our measurement timescales). 

S1 kr 1/(15ns) Singlet radiative lifetime: in solution14  

S1 knr 1/(30ns) Singlet non-radiative lifetime: Assuming the non-radiative decay is 
dominated by the gap-law, as for other acenes, with ES1 = 2.3 eV 246 

TTbright kr 1/40 x S1 kr Singlet character TT state radiative decay: Relationship previously 
determined for a similar heteroacene94 

TTBright knr 1/15 Singlet character TT state non-radiative decay: Assuming 1(TT) decays 
via the same non-radiative gap-law as S1, as demonstrated by the 
authors in an up-coming review. Energy = 2xT1 = 2.2.eV. 

TTDark knr 1/5000 TT states not coupled to the emissive singlet non-raditive decay: Fit to 
the published 5(TT) data12. Note this constant is not unique but is 
correlated with kspin below. 

TTuncorr knr 1/30,000 Non-radiative decay of individual triplets: Fit to the transient 
absorption data13. 

kSF 1/0.05 Singlet fission: 50ps13 

k-SF 1/1 Geminate triplet recombination: Taken from a previous 
determination for tetracene78 

kpol_s 1/100 Emissive singlet state to lower polariton branch: Fit to data (this is a 
maximum rate, any faster and the LPB emission would decay faster 
than we observe. Smaller values are possible but do not change the 
dynamics, only the relative LPB population). 

kpol_b 1/100 Singelt character TT state to lower polariton branch: Fit to data (as 
above) 

kpol_d x * kpol_s Quintet character TT state to lower polariton branch: Fit to data. For 
data in the main text x = 0.005. 

kdark 1/30 Spin evolution from TT states that can couple to the emissive singlet 
to those that cannot: Fit to delayed emission13 

k –dark 0 Reverse of the above process: In simplest model. Otherwise we used 
a distribution of rates to model the non-exponential tail of S1 
emission 

kspin 1/10,000 Conversion to isolated triplets from all triplet pair states: Fit to 5(TT) 
EPR data12 (see note for KNR TTdark above). 
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Appendix D - Pentamer and Heptamer Transient absorption data 

 

Figure 8.4: Excitation energy dependant transient absorption of 5 and 7 unit OTVs: (a,c) Transient absorption 
spectra of the pentamer (a), heptamer (c) excited at 500nm and 400nm (1mW power). Spectral slices are 
averaged over times marked in the legend. The 500nm spectra have been scaled so that the 0-0 peak of the 
ground state bleach are match the 400nm excitation data. (b,d) Transient absorption kinetics of the pentamer 
(b), heptamer (d) at the central wavelengths marked in the legend (10nm window). Due to a broadening of 
features in the hexamer and octamer data, we show a kinetic at the peak of the triplet region. Dashed lines 
show mono/bi exponential fits with constants in Appendix L and described in the Chapter 5 main text. 
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Appendix E - Summary of Kinetic fit parameters (OTV) 
 

Kinetic parameters used to fit the kinetics throughout Chapter 5. In each case the range of possible 

values for the decay constant are given that return a reasonable fit to the data. For the longer 

oligomers we observe no emission or intersystem crossing suggesting we are able to approximate 

that non-radiative decay dominates. For the trimer and dimer, calculation of Kr, Knr and KISC are 

shown in Appendix I. 

Sample 2A1 (%) τ1 (ps) 2A2 (%) τ2 (ps) 3Zero Offset (%) 
Octamer (600nm Exc) 100 1-1.4 -------- -------- 0 
Octamer (500nm Exc) 98.6 1.8-2.2 -------- -------- 1.4 
Octamer (400nm Exc) 92 1.8-2.2 8 16-33 0 

Heptamer (600nm Exc) 100 1-1.4 -------- -------- 0 
Heptamer (500nm Exc) 98.3 2.2-2.7 -------- -------- 1.7 
Heptamer (400nm Exc) 91.6 2.2-2.7 8.3 18-41 0 
Hexamer (500nm Exc) 98.3 3.8-4.5 -------- -------- 1.7 
Hexamer (400nm Exc) 86 3.8-4.5 14 50-172 0 
Pentamer (500nm Exc) 96.2 11.2-13.1 -------- -------- 3.7 
Pentamer (400nm Exc) 61.4 11.2-13.1 38.5 33-100 0 
Tetramer (500nm Exc) 100 50-62.5 -------- -------- 0 
Tetramer (400nm Exc) 80.3 50-62.5 19.7 100-526 0 
Trimer (505nm rise)1  100 0.18-0.38 ------- ------- ------- 

Trimer (505nm decay)1 63 1.1-1.5ns 37 115-135ns 0 
Trimer (1100nm decay)1 50 0.32-0.52 50 1.1-1.5ns 0 

Trimer (FLUPS) 56 0.32-0.52 44 1.1-1.5ns 0 
Dimer (420nm rise)1 100 101-111 -------- -------- -------- 

Dimer (625nm decay)1 99.9 95-130 0.1 0.5-2.5ns 0 
 

1 Fits of kinetics for the dimer and trimer are only presented after one excitation energy as we show 
there is no excitation energy dependence for these oligomers. The wavelengths listed in the table for 
the trimer and dimer are instead the wavelengths at which kinetics were taken. 

2 Kinetic fits were locked to start at time zero, however, convolution with the IRF causes the decay to 
begin after time zero (~0.5ps). As such amplitudes are given as percentages of the total intensity, as 
described in Ref325. This produces a source of error however the same procedure has been used to 
fit all oligomer kinetics.  

3 Zero offset is given as a percent of the maximum intensity 
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Appendix F - Octamer and Heptamer 600nm Excitation Kinetics 
 

 

Figure 8.5: Kinetics following 600nm excitation of the octamer and heptamer: Transient absorption kinetics 
of the octamer and heptamer at the central wavelengths marked in the legend (10nm window). Due to a 
broadening of features in the heptamer and octamer data, we show a kinetic at the peak of the triplet region. 
Dashed lines show mono exponential fits with fir parameters in Appendix L. 
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Appendix G - Trimer Aggregation Check 
 

 

Figure 8.6: Ruling out aggregation in trimer samples with absorption and DOSY NMR. (a) Diffusion coefficient 
of trimer sampled over a large range of concentrations measured using DOSY NMR (by Iain Andrews, Imperial 
College London). The lack of change with concentrations rules out large scale aggregation. (b) Ground state 
absorption of trimer in the concentration range used for measurements (Abs saturation 0.5mM), showing no 
signs of aggregation. 
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Appendix H - Trimer Excitation Dependence 
 

 

Figure 8.7: Excitation energy dependant transient absorption of the trimer: (a) Transient absorption spectra 
of the trimer excited at 475nm and 400nm (1mW power). Spectral slices are averaged over times marked in 
the legend.  Included is the sensitised triplet spectra taken from Apperloo et al.179. The 500nm spectra have 
been scaled so that the 0-0 peak of the ground state bleach match the 400nm excitation data. (b) Transient 
absorption kinetics of the trimer at the central wavelengths marked in the legend (10nm window) excited at 
475nm and 400nm (1mW power). 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 



 201 

Appendix I - Calculation of Rate Constants 
 

Parameter Dimer Trimer 
Natural Lifetime (τ)5 106±5ps 1.1±0.2ns 
Radiative rate (kr)1 3±0.14ns-1 13±2.4ns-1 

Non-radiative rate (knr)2 1.2±0.45ns-1 3±0.5ns-1 
Intersystem crossing rate (kisc)3 108±27ps-1 2±0.5ns-1 
Emission quantum yield (φPL) 3.6+±0.05% 10±.05% 

Triplet yield (φTriplet)4 98±10% 53±10% 
 

1 Radiative rate was calculated using: k୰ =  
மౌై

த
 

2Non-Radiative rate was calculated using: k୬୰ =  
୩౨ିமౌై୩౨ିமౌై୩౩ౙ

மౌై
 

3Intersystem crossing rate was calculated using: k୧ୱୡ =  
ம౨౦ౢ౪

த
 

4 We estimate the triplet yield using the equation shown below. Here we estimate the relative 
extinction coefficient of the triplet-triplet and ground state absorption transitions to be 𝜀ௌିௌଶ =

1.1 𝜀்ି்∗. We base this estimate in calculations carried out by William Barford (Oxford University), 
who found this relationship for a 18 site polyene chain (Chapter 6). This relationship is an estimate 
presuming no change with conjugation length, i.e. presuming both extinction coefficients change 
equally with conjugation length. We estimate a large error to account for possible limitations in this 
extinction coefficient relationship of 10%. 

Popୗିୗଶ

Popି∗
=  

Signalୗିୗଶ

Signalି∗
 ×  

εୗିୗଶ

εି∗
=>  

1

Popି∗
=

Signalୗିୗ

Signalି∗
 × 0.9 

5Error in the measured natural lifetime of the state is estimated by varying the fit parameters to 
assess the range of values that still give a reasonable fit to the data. This range then gives the error 
range in the fitting parameters. Errors in calculated parameters were calculated using standard error 
propagation equations. 
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Appendix J - Dimer Excitation Energy Dependence 

 

Figure 8.8: Transient absorption of the trimer. (a) Transient absorption spectra of the dimer excited at 320nm 
and 370nm averaged over time frames given in the legend (1mW power). We find no effect of excess energy 
excitation on the spectra of the dimer. 
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Appendix K - Assignment of S* impurity to cis isomers 
 

We measured the transient absorption spectra of β-carotene and astaxanthin excited across their 

absorption band (400-520nm) (Figure 8.9). We compare the excitation  energy dependence of the 

peak intensity of the transient absorption feature usually assigned as S* to the absorption of the 

isomers identified by Ostroumov et al. 150. The impurity absorption spectrum (Figure 8.9, blue circles) 

was obtained by subtracting the all-trans absorption spectrum from the total sample spectrum from 

Ref 150, leaving only the collective absorption of the isomers 150. For both β-carotene (Figure 8.9a) 

and astaxanthin (Figure 8.9b) we find a striking similarity between the two plots, with a complete 

loss of the impurity signal for excitation below 2.6eV (480nm). The lower-energy onset of S* 

absorption in astaxanthin is a result of a red-shift in absorption compared to β-carotene. We 

conclude that in both β-carotene and astaxanthin the long-lived feature assigned by others to S* is 

the impurity feature observed in Ref 150. Interestingly, there is significantly less isomer population in 

astaxanthin (
∆


 ୟ୲ ହ୬୫ ୟ୬ୢ ଵ୮ୱ (ୗ∗)

∆


 ୟ୲ ଷ୬୫ ୟ୬ୢ ଵ୮ୱ (ୗଵ)

= 0.045) as compared to β-carotene (
∆


 ୟ୲ ହସ୬୫ ୟ୬ୢ ଵ୮ୱ (ୗ∗)

∆


 ୟ୲ ହଽ୬୫ ୟ୬ୢ ଵ୮ୱ (ୗଵ)

 =

0.25) following 400nm excitation. A possible explanation for this is that astaxanthin has a much 

higher activation energy of isomer formation, found experimentally to be 101kJ/mol compared to 

14kJ/mol for β-carotene 326,327.   
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Figure 8.9: Excitation energy dependence of the so called S* feature. (a) and (b) show the peak intensity of 
the S* absorption feature in β-carotene (a) and astaxanthin (b) as a function of excitation energy (Open 
markers). For comparison we include the ground state absorption of the impurity identified by Ostroumov et 
al. 150 for β-carotene in both panels (closed markers). The absorption spectra were attained by subtracting the 
absorption spectrum of the purified (all-trans) β-carotene sample from the overall absorption of the sample. 

 

Figure 8.10 presents high time resolution transient absorption data for β-carotene and astaxanthin 

excited with broadband ~10-fs pulses (490-570nm) versus narrowband (490-510nm) pulses. The 

broadband and narrowband pumps overlap with the carotenoid absorption spectrum without 

exciting above the 480nm threshold for isomer absorption (see Figure 8.9). Jailaubekov et al. 

demonstrated that narrowband (392-400nm) versus broadband excitation (389-416nm) has little 

effect on the proposed S* state in β-carotene 146. As the hot ground state model (described in 

Chapter 2) requires population via impulsive raman scattering, this rules out a hot ground state 

population146. We likewise find no evidence of S* in the β-carotene and astaxanthin spectra, 

independent of pump pulse bandwidth (Figure 8.10), confirming that a hot ground state is not 

required to explain the transient absorption data. In fact, the dynamics in Figure 8.10 show an 

identical rise and decay at the wavelengths traditionally assigned to S* and S1-Sn, suggesting that a 

single transition can fully explain the transient absorption spectra of β-carotene and astaxanthin. In 

Figure 8.10 we also show to result of a Franck-Condon analysis of the photo-induced absorption for 

both carotenoids. We presume equal FWHM for each peak and a single dominant vibrational mode. 
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In both cases the spectrum can be describe by the 0-0 and 0-1 of a Franck-Condon progression 

(details of Franck-Condon fit in Section 5.9.3). In agreement with this assignment, Balevicius et al., 

have shown that the transient absorption spectrum is consistent with a vibronic progression from a 

single electronic state 153. We assign this to S1-Sn.  

 

Figure 8.10: Narrowband versus broadband excitation transient absorption of carotenoids. (a, b) Transient absorption 
spectra of β-carotene (a), astaxanthin (b) averaged over 1-3ps after narrow and broadband excitation. The spectra have 
been normalised to the peak of the photo-induced absorption. Also included are Franck-Condon fits (blue dashed line) to 
the photo-induced absorption spectrum. Parameters of the fit are S = 0.32, 0-0 Energy = 2.145eV, Vibration = 130meV and 
σ = 55meV for β-carotene (a) and S = 0.342, 0-0 Energy = 1.945eV, Vibration = 160meV and σ = 55meV for astaxanthin (b). 
(c, d) Transient absorption kinetics of β-carotene (c), astaxanthin (d) taken after broadband excitation (480-530nm). 
Kinetics were taken in the S1 and proposed S* PIA regions (10nm window around the peak averaged), and normalised for 
comparison. 
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Appendix L - Summary of Kinetic fit parameters (Carotenoids) 
 

Kinetic parameters used to fit the kinetics throughout Chapter 6. In each case the range of possible values for 

the decay constant are given that return a reasonable fit to the data. We observe no emission or intersystem 

crossing suggesting we can approximate Knr ~ τ.  

 

Sample 1A1 (%) τ1 (ps) 1A2 (%) τ2 (ps) 2Zero 
Offset (%) 

Monomer 
β-carotene (Band-Edge) 100 9.6±2 -------- -------- 0 

β-carotene (High-Energy) 52.8 9.6±2 47.2 95±25 0 
Astaxanthin (Band-Edge) 100 5.3±1 -------- -------- 0 

Astaxanthin (High-Energy) 73.6 5.3±1 36.4 45±15 0 
Echinenone (Band-Edge) 100 6.4±1 -------- -------- 0 

Echinenone (High-Energy) 83.5 6.4±1 16.5 41±10 0 
Spheroidenone (Band-Edge) 100 7.2±0.4 -------- -------- 0 

Spheroidenone (High-Energy) 66.9 7.2±0.4 70.1 80±20 0 
Protein-bound aggregates  

β-carotene 52.1 15±5 36.3 125±50 11.5 
Astaxanthin 52.1 15±5 36.3 125±50 11.5 
Echinenone 52.1 15±5 36.3 125±50 11.5 

ns-TA 
Astaxanthin  28.5 1.7±0.7ns 71.4 1.4±0.2μs 0 

 

1 Kinetic fits were locked to start at peak intensity as convolution with the IRF causes the decay to begin after time zero 
(~0.5ps). As such Amplitude values are given as percentages of the total intensity, as described in Ref325. This produces a 
source of error however the same procedure has been used to fit all oligomer kinetics.  

2 Zero offset is given as a percent of the maximum intensity 
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Appendix M - Simulation of Aggregate Structures 

 

 

Figure 8.11: Simulation of β-carotene aggregate absorption spectrum. (a) Comparison between monomer 
and aggregate ground state absorption spectra. We include a Franck-Condon fit to the monomer absorption 
spectrum with the following parameters: ω0-0=20,204cm-1, Vibration spacing (Vib) = 1400cm-1, Huang-Rhys = 
1.09, Broadening = 0.57Vib. Details of the fit are given in Section 5.9.3. (b,c,d) Results of the model constructed 
by Frank Spano (Temple University, USA), compared to the ground state absorption spectrum of a protein-
bound aggregate of β-carotene. Details of the model are given in Chapter 2 and Chapter 6. (b) Model 
considering a dimer of carotenoids molecules, with nearest neighbour coupling of 1200cm-1 and a varied 
relative angle of 0-0.5π. (c) Model considering a tetramer of carotenoid molecules, with nearest neighbour 
coupling of 900cm-1 and a varied relative angle of 0.25-0.375π. (d) Model considering 10 carotenoid molecules, 
with nearest neighbour coupling of 1400cm-1 and a varied relative angle of 0.3-0.5π. 
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