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ABSTRACT 

 

Driving is a complex task and several factors influence drivers’ decisions and 

performance including traffic conditions, attributes of vehicles, network and 

environmental characteristics, and last but not least characteristics of the drivers 

themselves. in an effort to better explain and represent driving behaviour, several 

driving behaviour models have been suggested over the years. In the existing 

literature, there are two main streams of driving behaviour models that can be found. 

The first is approaching driving behaviour from a human factors and cognitive 

perspective while the second is engineering-based. Driving behaviour models of the 

latter category are mathematical representations of drivers’ behaviour at the individual 

level, mostly focussing on acceleration/deceleration, lane-change and gap-acceptance 

decisions. Many of these factors are captured by existing driving behaviour models 

used in microscopic simulation tools. However, while the vast majority of existing 

models is approximating driving behaviour, primarily focusing on the effects of traffic 

conditions, little attention has been given to the impact of drivers’ characteristics. 

The aim of the current thesis is to investigate the effects of stress on driving behaviour 

and quantify its impact using an econometric modelling framework. This main 

research question emerged as a result of a widely acknowledged research gap in 

existing engineering-based driving behaviour models related to the incorporation of 

human factors and drivers’ characteristics within the model specification. The 

research was based on data collected using the University of Leeds Driving Simulator. 

Two main scenarios were presented to participants, while they were also deliberately 

subjected to stress induced by time pressure and various scenarios. At the same time, 

stress levels were measured via physiological indicators. Sociodemographic and trait 

data was also collected in the form of surveys. 

The data has been initially analysed for each main scenario and several statistics are 

extracted. The results show a clear effect of time pressure in favour of speeding, 

however relations related to physiological responses are not always clear. Moreover, 

two driving behaviour models are developed, a gap-acceptance and a car-following 

model. In the former model, increase in physiological responses is related to higher 

probability of accepting a gap and time pressure has a positive effect of gap-

acceptance probability as well. In the car-following model, stress is associated with 

increased acceleration and potentially a more aggressive driving style. 
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The aforementioned analysis is based on data collected in a driving simulator. Given 

the potential differences in driving behaviour between real and simulated driving, the 

transferability of a model based on the latter data to field traffic setting is also 

investigated. Results indicate significant differences in parameters estimated from a 

video and the simulator dataset, however these differences can be significantly 

reduced after applying parameter updating techniques. 

The findings in this thesis show that stress and drivers’ characteristics can influence 

driving behaviour and thus should be considered in the driving behaviour models for 

microscopic simulation applications. However, for real life applications, it is 

suggested that the extent of these effects should be treated with caution and ideally 

rescaled based on real traffic observations.
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CHAPTER 1: INTRODUCTION 

 

 

1.1 Background 

Driving behaviour models refer to the representation of drivers’ tactical manoeuvring 

decisions in different traffic conditions, based on mathematical approaches. These 

models mostly include acceleration-deceleration, lane-change and gap-acceptance 

decisions of each driver as a response to the surrounding traffic. Acceleration and 

lane-changing are related to the longitudinal and lateral interactions on the road, 

respectively. Gap-acceptance is related to intersection crossing but it is also a part of 

the lane-change process. These driving behaviour models are a core component of 

traffic microsimulation tools and are extensively used to investigate phenomena such 

as traffic breakdown, hysteresis, stop-and-go traffic etc. through explicit 

representation of drivers’ behaviour at the individual level. Driving behaviour models 

can be also used to test network performance under situations of different geometric 

designs, traffic controls and a variety of traffic management measures (Venter et al., 

2001). Thus, the accuracy of driving behaviour models in these applications is of 

substantial importance in order to accurately represent driving behaviour and its 

effects.  

Over time, several driving behaviour models have been proposed and calibrated. Most 

of these models approach the issue of driving behaviour as a function of variables 

related to the surrounding traffic e.g. speed, relative speed, headway available gaps 

etc. A main drawback of these approaches is the limited incorporation of 

heterogeneity in behaviour across drivers (e.g. via desired speed) and absence of 

within driver heterogeneity. However, driving is a complex task and research from 

other fields as traffic psychology has shown that driving behaviour is influenced by 

factors such as drivers’ individual characteristics, vehicle attributes, network 

characteristics, and environmental characteristics. Among the limitations of existing 

driving behaviour models, the impact of drivers’ characteristics has already been 

reported in the existing literature (e.g. Saifuzzaman and Zheng, 2014; Zheng, 2014). 

Lancaster and Ward (2002) listed a series of factors that affect driving behaviour: 

gender, age, education, nationality, personality, aggression, driving confidence, 

thoroughness in decision-making, attitudes, risk perception, social deviance, previous 
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accident experience, live events, stress, fatigue and physiology. These factors indicate 

that apart from the heterogeneity across drivers (e.g. sociodemographic 

characteristics), differences in driving behaviour may occur also within the same 

individual (e.g. stress, fatigue etc.). Drivers’ imperfect behaviour can also arise as a 

result of their misjudgement in their own performance. For instance, Rolim and 

Baptista (2018) observed drivers for a given period of time and concluded that they 

failed to evaluate their observed behaviour, in terms of aggressiveness. 

From all the above, it emerges that there is an imperative need for further research 

regarding the effect of individual characteristics within a driving behaviour modelling 

context. Thorough investigation of driving behaviour would require extended data 

collection approaches, the ability to capture driving behaviour in a variety of situations 

while at the same time, detailed information about drivers themselves is being 

collected. This is not easily possible in field traffic settings. The answer to this 

challenge may have been provided already in the field of safety research and the use 

of driving simulators. Amongst their advantages, driving simulators offer a 

controllable and repeatable environment where subjects can be tested under the same 

traffic conditions and scenarios in a safe manner. Also, data is collected with high 

accuracy such that any deficiencies of real traffic observations with respect to 

measurement errors are eliminated in a driving simulator environment. Moreover, it 

is easy to collect a plethora of information regarding drivers, such as 

sociodemographic characteristics, psychological and physiological indicators, 

amongst others. To the aforementioned benefits, it should be also added the longer 

observation period compared to the very short periods typically covered by field 

traffic data (Toledo, 2007). These benefits do not come without a price however since 

the behavioural validity of driving simulators has been, in some cases, criticised while 

other unexpected inconveniences such as simulator-related sickness have been 

reported. 

A potential solution to the problems reported in the previous paragraph could be 

merging driving simulator with video data. This combination could result in model 

estimations that would have all the benefits from simulator data (e.g. identifying and 

quantifying the effects of sociodemographic characteristics, stress etc.) while at the 

same time acknowledging and capturing any potential realism-related deviation in 

observed behaviour by rescaling with real traffic data. An approximation of driving 

behaviour models similar to the suggested one could potentially lead to new directions 

in driving behaviour modelling and more behaviourally representative models. Thus, 

the scope of the current PhD study has been to investigate some of the aforementioned 

aspects, with a particular focus on: (a) The effects of drivers’ stress levels and 
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attributes on driving behaviour, (b) The estimation of driving behaviour models with 

specifications that incorporate drivers’ characteristics , and (c) testing approaches to 

close the gap (if any) between models estimated with driving simulator and real traffic 

data.  

The current chapter has been organised to present the existing driving behaviour 

models and highlight their limitations. Moreover, findings from the literature are 

reported, in order to underline the importance of drivers’ characteristics that are 

usually omitted from these models. Finally, the research questions, and how they have 

been addressed via the undertaken research, are presented. 

 

1.2 Driving behaviour models 

1.2.1 Acceleration models 

Acceleration models, refer to the longitudinal component of driving behaviour. They 

are divided in car-following and free-flow models. The former category is the most 

common among all types of driving behaviour models. Car-following (CF) behaviour 

has been extensively investigated and several approaches have been proposed. Car-

following models focus on the investigation of longitudinal interactions of vehicles 

on the road, when moving at close headways. This concept has been initially 

introduced by Pipes and Reuschel (Pipes, 1953; Reuschel, 1950). Pipes assumed that 

the follower aims in maintaining a safe time headway of 1.02s from the leader. This 

value was derived from a recommendation in the California Vehicle Code. Using 

Laplace transformations, he developed theoretical expressions for the subject’s 

acceleration given a mathematical function that describes the leader’s behaviour. 

The GM model and its extensions 

The concept of CF behaviour was further elaborated and the GM Research 

Laboratories contextualised it into the stimulus-response framework (Chandler et al. 

1958, Gazis et al. 1961). This approach considered CF behaviour as a set of reactions 

to the stimuli presented to the drivers. The response (acceleration) to a specific 

stimulus was lagged to capture the effect of reaction time as shown in Equation 1.1. 

 

 responsen (t) = sensitivityn (t) ✕ stimulusn (t - τn) (1.1) 
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where, t corresponds to the time of a specific acceleration observation of driver n, and 

τ is the reaction time. In this concept, reaction time includes both perception reaction 

time and foot movement time. The GM model specification had several stages of 

development but the most common (Gazis et al, 1961), is given by the Equation 1.2: 

 

 an(t) = α
 Vn(t)

β

ΔXn( t- τn)
γ  ΔVn(t - τn) (1.2) 

 

where α, β, γ are parameters to be estimated, Vn is the current speed of driver n, ΔVn 

is the relative speed with the lead vehicle and ΔXn is the space headway. In this 

specification, the stimulus was represented by relative speed while sensitivity was a 

function of speed and space headway. The model was validated using real observed 

traffic data. In this form of the GM model, the sensitivity term is formed by the speed 

of the follower and the spacing between the follower and the leader. Some of the most 

acknowledged limitations of this specification (Saifuzzaman and Zheng, 2014) 

include identical reaction for all drivers, the ability of drivers to perceive very small 

changes in driving conditions and generic parameters that did not capture differences 

in between acceleration and deceleration regimes. 

The GM model was further revisited and several alternative specifications were 

suggested. For instance, Lee (1966) introduced a memory function in the model 

specification to capture the reactions of drivers to the relative stimulus over a period 

rather than an instantaneous moment. However, one of the most significant 

contributions has been by Ahmed (1999). In his research, Ahmed suggested a general 

acceleration framework consisted of two main parts, (a) the car-following component 

and (b) the free-flow component. The former, was based on the GM model 

considering however different sets of parameters to capture acceleration-deceleration 

asymmetry and also accounted for the effects of traffic density. Another main 

contribution was the treatment of reaction time as a random variable that follows a 

specific distribution, rather than having an identical and fixed value for all drivers. 

The concept of a general acceleration model was also discussed some years earlier by 

Subramanian (1996). The general acceleration model of Ahmed can be summarised, 

as shown in Equations 1.3 and 1.4: 

 

 an
cf,g(t) = αg  

Vn(t - ξτ
n
)

β
g

ΔXn(t - ξτn)γg  kn(t - ξτn)
ρg

 ΔVn(t - ξτn)
λ

g

 (1.3) 
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an

ff,g(t) = λ
ff [Vn

*(t - τn) - Vn(t - τn)] 

 
(1.4) 

where, Vn is subject speed, Vn
* is the desired speed, ΔVn is relative speed, τn is the 

reaction time, ΔXn is the space headway, kn is the density of the traffic ahead, ξ is a 

parameter that indicates the update of drivers’ perception during the driving process, 

and αg, βg
, γg, ρg, λg

, λff
 are parameters to be estimated. The model was later extended 

by Toledo (2003) in an integrated framework to combine acceleration and lane-change 

decisions. 

One of the main drawbacks in the CF component of Ahmed’s specification is the 

assumption that drivers accelerate when the relative speed is positive and decelerate 

when negative. In order to address this limitation, Koutsopoulos and Farah (2012) 

suggested a new model specification where the desire to accelerate, decelerate or do-

nothing was treated as a latent variable based on utility functions. The model 

component however that was capturing the probability of the acceleration 

observations was based on Ahmed’s specification. Another variation of this model 

has been used to model CF behaviour on roads with weak lane discipline (Choudhury 

and Islam, 2016). 

Alternative car-following model specifications 

A further inspection of the GM model shows that if two vehicles move at the same 

speed, any spacing between the follower-leader pair is accepted. This assumption is 

not realistic however, since at short headways this is not likely to be the case. Thus, 

alternative CF specifications have been suggested across time. One of the most well-

known approaches is the introduction of desired measures. For instance, Helly (1959) 

proposed the concept of desired following distance; a driver attempts to minimise both 

relative speed and the difference between the actual and desired space headway. 

Another example of a desired measures CF model is the Intelligent Driver Model 

(IDM) proposed by Treiber et al. (2000) where desired speed and space headway were 

considered. 

Another category of CF models is the safety-distance models where the main 

assumption is that drivers consider spacing distance and not relative speed as stimulus. 

One of the first safety-distance models was Newell’s (1961) but the most popular 

specification was suggested by Gipps (1981). Another also commonly known type of 

CF models is the Optimal Velocity (OV) models. The first OV model was proposed 

by Bando et al. (1995) and assumes that each vehicle has an optimal speed which 

depends on the distance from the preceding vehicle. The model was later updated by 

Bando et al. (1998) suggesting a specification that accounted for the effects of reaction 
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time. The OV model was extended to other forms as the Full Velocity Difference 

(FVD) model (Jiang et al., 2001), that also accounted for the effect of relative speed 

or the Asymmetric Full Velocity Difference (AFVD) model (Gong et al., 2008) that 

also incorporated acceleration-deceleration asymmetry. The OV model and its 

variants have received considerable attention in the physics community. Several 

models have been developed to investigate hypothetical cases on simulated data. 

Although this approach has been widely applied in this field, owing to its feasibility 

in theory analysis, only few studies established their findings based on observed data 

(Zheng et al., 2012). 

Some less common CF modelling approaches include cellular automata models (e.g. 

Nagel and Schreckenberg, 1992) and fuzzy-logic models (McDonalnd et al., 1997). 

However, the latter approach involves the definition of fuzzy sets, to capture 

perceptual uncertainties of drivers, which is a challenging process that makes difficult 

the estimation and validation process (Saifuzzaman and Zheng, 2014) 

Despite any differences in specification, the models presented in the previous 

paragraphs share in common a specific characteristic; in all cases acceleration is 

approximated as a function of variables related only to traffic conditions while the 

major focus has been in examining the adequacy of these models to represent real 

traffic phenomena as oscillations capacity drop etc. The effects of traffic conditions 

on acceleration are usually examined with parameters estimated from observed data, 

but in other cases arbitrary but reasonable values are used (based on existing) and also 

some completely data driven approaches have been adopted that do not investigate 

any associations among variables (Papathanasopoulou and Antoniou, 2015; 

Kendziorra, 2016). However, the engineering based approach of the aforementioned 

models does not necessarily reflect driving behaviour accurately. As discussed in the 

next sections of this chapter, it is well established that driving behaviour is influenced 

by additional factors related to drivers’ characteristics and does not follow the optimal 

patterns that most of the engineering-based models indicate. For instance, Laval et al. 

(2014) calibrated a desired acceleration CF model including a “white noise” term and 

found that human errors can be responsible for traffic instabilities. The potential 

impacts of human factors and their incorporation in CF model specifications has been 

discussed in several studies in the existing literature. 

The human factors approach in car-following models 

In their extensive literature paper, Saifuzzaman and Zheng (2014) mention that the 

behavioural representativeness of CF models was criticised after the historical review 

of Brackstone and McDonald (1999). Following this paper, Hancock (1999) published 
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a work to highlight the deficiencies of CF models in capturing in a psychological way 

the human way of thinking. Some additional notable papers from this period, 

regarding the same issue, were also those of van Winsum (1999), Boer (1999) and 

Ranney (1999) while Brackstone and McDonald (2003) published a paper, a few years 

later, where they explicitly investigated potential drawbacks of microscopic 

simulation models in terms of the safety constraints imposed, data accuracy and time 

step. However, some of the first attempts to address specific limitations of CF models 

were originated more than two decades before the aforementioned studies. For 

instance, Wiedemann (1974) introduced the concept of perceptual thresholds, within 

an effort to relax the assumption of many previous CF models and establish minimum 

values of change in the stimulus that drivers can perceive. Each threshold was defined 

based on spacing distance and/or relative speed and was a part of a zone where the 

driver would either react or not to the stimulus. A similar model was proposed by 

Fritzsche (1994). However, as reported by Saifuzzaman and Zheng (2014) the 

calibration approaches to the perceptual threshold models are based either through 

existing commercial microsimulation software or the results are not reported in the 

studies at all. 

The incorporation of human factors in CF models continued to be a considerably 

studied topic and several various model specifications were suggested to capture the 

impacts of human factors. Hamdar et al. (2008) and Hamdar et al. (2014) suggested a 

car-following model, based on the prospect theory of Kahneman and Tversky’s 

(1979). The model considered car-following as a sequential risk-taking process and 

allowed for risk-taking manoeuvres based on a probability of being involved in a rear-

end collision. The probability was estimated as a function of variables such as 

acceleration, spacing and relative speed. In another approach, Saifuzzaman et al. 

(2015) incorporated an additional term in their model, in order to represent task 

difficulty (TD) as expressed by the Task-Capability Interface (TCI) model (Fuller, 

2005). This term was specified as a function of time headway, spacing and speed of 

the driver. In a rather different approach, Hoogendoorn et al. (2010) conducted a 

driving simulator experiment to investigate the relationships between mental 

workload and car-following without however incorporating the former in the model 

specification. Finally, Farah and Koutsopoulos (2014) modified the GM model and 

expressed the stimulus part as a series of socio-demographic variables. In a more 

recent study, Micó et al. (2018) questioned the assumptions of most CF models 

regarding safe following distance and conducted a driving simulator study to 

investigate differences between different types of following behaviour i.e. driving to 
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keep distance and driving to keep inertia. However, no modelling approaches were 

implemented in this study. 

 

1.2.2 Lane-change and gap-acceptance models 

Lane-change (LC) is also an important driving behaviour that impacts safety and 

network performance. In his extensive literature review, Zheng (2014) grouped lane-

change in two main categories: (a) models that investigate the decision making 

process behind a LC manoeuvre and (b) models that investigate the impact of LC 

manoeuvre on traffic. The latter group however, is beyond of the scope of the current 

research work. 

Rule-based lane-change models 

One of the first LC models was introduced by Gipps (1986). This model assumes that 

a driver focuses on balancing between two conflicting goals namely, keeping a 

desirable speed and desirable safety. Gipps’ model is rule-based and a driver decides 

to execute or not a lane-change considering the possibility, necessity and desirability 

of it. The main factors that influence this decision are safety, obstructions on road, 

transit lanes, distance from turning point, presence of heavy vehicles and lane speed. 

The model applies a set of deterministic rules to predict lane-change behaviour based 

on the aforementioned variables. This rule-based approach can be also considered as 

the main limitation of Gipps model as every decision is deterministic. For instance, 

some lane-changes occur only when they are safe and the heterogeneity among 

drivers’ preferences is not considered. 

Some of the deficiencies in Gipps model were considered in other rule-based lane-

change models. Hidas developed the SITRAS (2002) and the ARTEMis (2005) 

models. One of the main differences with Gipps model is that lane-change 

manoeuvres are categorised in free, cooperative and forced. This addition allows for 

LC manoeuvres also when the available gaps are below the safe margins as a driver 

“sends” a message of courtesy which is evaluated by the follower of the adjacent lane. 

If the following vehicle decides to provide courtesy, it decelerates in order to increase 

the available gap. Another rule-based model was developed by Kesting et al. (2007) 

under the name of MOBIL. The model is mainly defined by two rules, a safety 

constrain and a desirability rule. 

Probabilistic lane-change models 

Following the rule-based approach of the Gipps’ model (1986), Yang & Koutsopoulos 

(1996) suggested a new LC modelling approach and applied it in the MITSIM 
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microsimulation software. The main difference of this model is that instead of a 

deterministic decision making approach, a lane-change probability is introduced, in 

order to add stochasticity to the model. The decision making for lane-change in 

MITSIM is applied, similarly to Gipps’ lane-change model, in terms of necessity, 

desire and gap-acceptance. The lane-change is divided in mandatory (MLC) and 

discretionary (DLC). 

The probabilistic approach of Yang and Koutsopoulos (1996) was followed by Ahmed 

(1999) where lane-change probability was based on Random Utility Theory. The 

concept of mandatory (MLC) and discretionary (DLC) lane-changes was also applied 

in this model. The model specification also included a gap-acceptance model 

component where the available gap was compared with a latent critical gap to evaluate 

whether the LC manoeuvre will be completed. The model of Ahmed (1999) examined 

separately the cases of MLC and DLC. However, the distinction between MLC and 

DLC is not always clear and the MLC situations are not always perceived by drivers. 

In order to overcome this limitation, Toledo (2003) developed an integrated lane-

change model where both cases were included in the same utility function. The model 

also incorporated acceleration decisions within the same framework. The lane-change 

decisions in Toledo’s model considered only the adjacent lanes as potential target 

lanes. However, a LC manoeuvre to a specific lane does not necessary indicate that 

the latter is also the target lane. To address this limitation Choudhury (2007) proposed 

a latent plans framework where each lane had a specific probability to be the target 

lane. The model also used the gap-acceptance model previously used by Ahmed 

(1999) and Toledo (2003). The latent plans framework also introduced state-

dependence via a Hidden Markov Model. Choudhury (2007) examined lane change 

behaviour in merging sections, considering three different states of merging 

behaviour: normal, courtesy and forced. The model was estimated using video 

trajectory data. Later, Choudhury et al. (2009) extended the framework of merging 

behaviour, by incorporating acceleration behaviour based on the model of Ahmed 

(1999). Another example of state dependence implementation in a LC model was 

presented by Toledo and Katz (2009). 

Gap-acceptance and other driving behaviour models 

A main component in some lane-change model is the gap-acceptance model. As 

mentioned by Toledo (2007), in his literature review paper, gap-acceptance models 

were initially developed to approximate intersection crossings. These models are 

presented more detailed in Chapter 3 of the thesis. Moreover, gap-acceptance models 

have been also used to represent overtaking behaviour (Farah and Toledo, 2010; 

Toledo and Farah, 2011). Ghods & Saccomanno (2011) divided the overtaking 
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manoeuvre in five stages: catch-up, desire to overtake, gap acceptance, passing, and 

returning to lane and also cited a series of variables (e.g. speed of overtaken vehicle, 

vehicles’ lengths, reaction time, available gaps etc.) which affect overtaking 

behaviour. In a rather different modelling approach, Danaf et al. (2015) estimated a 

series of models to predict the effect of driving anger in drivers’ choices in specific 

situations, developed in a driving simulator. The modelled choices were drivers 

violations. Their modelling approach was based on the trait-state driving anger theory 

(Deffenbacher et al., 1994). In a similar recent work, Tarabay (2018) presented a red-

light violation model, based on driving simulator data, incorporating drivers’ 

physiological responses as indicators of stress. 

 

1.3 Key limitations of driving behaviour models 

The issue of accurately reproducing driving behaviour has been a major topic of 

discussion and several approximations have been proposed. Going back to Equation 

1.2, it is evident that for given values of speed, headway and relative speed, the model 

would predict identical acceleration for all drivers. However, this would not be the 

case in real life as response would vary across individuals. Thus, in many cases, the 

research focus shifts from the traditional traffic flow theory and revolves around the 

effect of drivers’ characteristics. In their literature papers, Saifuzzaman and Zheng 

(2014) and Zheng (2014) already highlighted this issue, regarding the traditional 

engineering driving behaviour models for car-following and lane-changing 

respectively. This has also been the case in some of the existing commercial 

microsimulation packages. Lützenberger and Albayrak (2014) reviewed a series of 

available commercially available software in terms of their capability to capture 

human factors. The most common approach in microsimulation tools is to implement 

a basic driving behaviour model and then establish variations of it (e.g. cautious, 

aggressive etc.) that use different parameters to represent driving behaviour. However, 

it is not clear how the different ranges in specific behaviours (e.g. speeding) of these 

groups are decided while in Bonsall et al. (2005) it is reported that in many cases they 

are derived from theory rather than observed data. The same study also questions the 

approach of most traffic simulation models to constrain driving behaviour in favour 

of safe representations and suggests that “unsafe” but more realistic parameters in 

these models would be more appropriate. In a quite similar study, Laagland (2005) 

has approached the issue of aggressive behaviour in traffic simulation. He concluded 

that this aspect of driving behaviour is considered only in a few packages while he 

also proposed a methodological approximation to deal with this issue. 
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As discussed also in Chapter 4 of the thesis, some engineering-based models have 

attempted to capture some of the drivers’ characteristics (via e.g. more elaborated 

model specifications based on prospect theory or the task capability concepts) 

however, in these cases these additional terms are expressed as a function of traffic 

variables ignoring the drivers’ actual individual characteristics. Another practice has 

been the use of random disturbance terms but, despite the increase in the performance 

of models, the added value regarding the effects of human factors can be considered 

limited as the source of variance in driving behaviour is not explained by the 

disturbance terms. However, there are also a few examples of modelling approaches 

incorporating human factors in the existing literature. For instance, Farah and 

Koutsopoulos (2014) have estimated a car-following model expressing the stimulus 

part as a series of variables including drivers’ age. Moreover, although not strictly 

related to traditional forms of driving behaviour models (e.g. car-following or lane-

change), the effects of human factors have been investigated in overtaking models 

(e.g. Farah and Toledo, 2011) and in alternative modelling approaches related to 

driving anger (Danaf et al. 2015) and red-light violation (Tarabay, 2018). Further to 

the aforementioned approaches, additional work still needs to be undertaken in order 

to thoroughly investigate and incorporate drivers’ characteristics in traditional driving 

behaviour models. 

It should be mentioned that apart from the engineering-focused models discussed 

previously, there is also another category of driving behaviour models that attempts 

to approximate driving behaviour from a more cognitive perspective. Vaa (2001) 

presented a literature review of these models that included among others, Näätänen 

and Summala’s (1974) “Zero-Risk” model, Wilde’s (1982) “Risk Homeostasis” 

model and Fuller’s (2000) “Task-Capability Interface” model. The main concept of 

the latter has been adopted as a mathematical modelling approach by Saifuzzaman et 

al. (2015) in car-following while Varotto et al. (2018) used a later adaptation of 

Fuller’s model (Fuller, 2011: Risk Allostasis Theory) to model control transitions and 

target speed of drivers using Adaptive Cruise Control systems. However, apart from 

the aforementioned cases, the driving behaviour models described in Vaa’s (2001) 

work are mostly theoretical frameworks and thus not appropriate for predictions in 

microsimulation tools. 

The inclination of researchers towards integrated approaches to approximate driving 

behaviour also appears in other studies. Toledo et al. (2007) stressed the need for the 

development of a general driving behaviour model and suggested a theoretical 

framework that captures both aspects of drivers’ characteristics and surrounding 

environment data. Although this approach was not strictly related to modelling 
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approaches, as defined in the previous sections, it still indicates that drivers’ 

characteristics can have a significant impact. A similar holistic framework was also 

proposed by Rakotonirainy and Maire (2005) including variables related to 

environment, vehicle dynamics, drivers’ psychological and physiological state. 

Although the use of Dynamic Bayesian Networks was suggested as a modelling tool, 

the whole framework was a theoretical approach and the authors did not present any 

application on data. A driving behaviour framework incorporating variables as 

personality, attitudes etc. was also suggested by Sidoumou et al. (2013) with the 

application of machine learning techniques. The aforementioned examples are 

indications that the research community has acknowledged the importance of human 

factors in modelling frameworks. However, in very few cases human factors have 

been actually considered in mathematical driving behaviour models. As discussed in 

Section 1.1, an obstacle to this approach is data related. In many cases models are 

calibrated with video trajectory, GPS or simulated data. As discussed in Section 1.6, 

a potential solution to this issue can be suggested driving simulator or naturalistic 

driving data. Also, Sections 1.4 and 1.5, focus on the effects of drivers’ characteristics 

on driving behaviour, to provide a better understanding regarding the importance of 

this aspect. 

 

1.4 The effects of human factors on driving behaviour 

The previous section highlighted the lack of human factors in most of the existing 

driving behaviour models as one of their limitations. Their effects have been 

confirmed in several studies, especially in the field of traffic psychology. Some of the 

most studied human factors, are sociodemographic characteristics with a main 

emphasis on gender and age. In general, male drivers have been linked to a higher 

likelihood of risky driving behaviour (Oltedal & Rundmo, 2006; Lonczak et al., 2007; 

Rhodes & Pivik, 2011; Taubman & Yehel, 2012; Jiménez-Mejías, 2014) and 

violations (Blockey & Hartley, 1995; Westerman & Haigney, 2000; González-

Iglesias et al., 2012; Varet et al. 2018) while it has been also the case that no gender-

related differences occurred in terms of errors, lapses or violations (Özkan, & 

Lajunen, 2005). Further to the outcomes of the aforementioned studies that rely on 

self-reported surveys, Papantoniou et al. (2019) conducted a driving simulator 

experiment and found that female and older drivers have been more prone to errors. 

This finding was consistent with Westerman & Haigney (2000) where a similar 

gender effect was found. Regarding issues more related to driving behaviour 

modelling, Lyu et al. (2018) analysed naturalistic data collected at an expressway in 



1.4 The effects of human factors on driving behaviour 

13 

 

China, that also included driving on a deceleration lane in order to take a specific exit 

ramp. The authors concluded that male drivers are more aggressive in overtaking 

behaviour as they performed an overtaking manoeuvre at very short distance before 

entering in the deceleration lane. Moreover, more experienced and professional 

drivers, performed the lane-change to the deceleration lane earlier, indicating higher 

risk awareness of those drivers. The effects of age have been also investigated in a 

similar way and younger drivers have been generally associated to a higher propensity 

to risky or aggressive behaviour (Jonah, 1990; Krahé & Fenske, 2002; Iversen, & 

Rundmo, 2004; Rhodes & Pivik, 2011; Taubman & Yehel, 2012), violations and 

errors (Blockey & Hartley, 1995; Westerman & Haigney, 2000; Oppenheim et al., 

2016), speeding behaviour (Quimby et al., 1999), crash rate (Ryan et al., 1998) and 

distracted driving (Pope et al., 2017).  

Apart from the more traditional sociodemographic characteristics, the effects of 

individual traits have also received significant attention, where personality and 

attitudes have been considered the most. A common approach related to the former is 

based on the big five traits, else five factor model (FFM) approach (Goldberg, 1990; 

Goldberg, 1993) or variants of it. The various aspects of drivers’ personality have 

been linked to different types of driving behaviour. A more detailed list of the findings 

related to the effects of personality is outlined in Table 1.1.  

Apart from the personality traits, also the effects of attitudes on driving behaviour 

have been investigated. More particularly, Ulleberg & Rundmo (2002) and Ulleberg 

& Rundmo (2003) developed an attitudinal questionnaire scale and found that risk 

perception and attitudes towards traffic safety influence risky driving behaviour. The 

same outcome was also derived by Iversen (2004) and Musselwhite (2006). 

Except for the aforementioned factors, the focus of research community has been also 

put on the effects of emotions, mostly anxiety and anger. It is worth mentioning that 

not only negative emotions have been examined, with respect to impaired driving 

behaviour, since also positive emotions can influence driving behaviour in a negative 

way e.g. slower responses in hazard detection (Zimasa et al., 2017). With respect to 

the latter, Jones & Jonsson (2005) reported that happier drivers are also better drivers. 

However, Jeon et al. (2014) compared the effect of neutral, fear, anger and happiness 

states in driving behaviour and found that happiness impairs driving behaviour more 

than fear in cases of lane keeping task and respect of traffic rules. Another outcome 

was that happier drivers were more confident despite their low performance. Towards 

the same direction, Pêcher et al. (2009) found in a driving experiment that happy 

distracted drivers resulting in a sharp decrease of their mean speed and impairment of 

vehicle control while sad music made drivers to drive more carefully. Finally, 
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Eherenfreund-Hager et al. (2017) concluded that both positive and negative emotions 

increase risk-taking in a driving simulator experiment. 

 

Table 1.1: The effects of personality traits on driving behaviour 

Study Personality trait Effect on driving behaviour 

Taubman-Ben-Ari 
& Yehiel, 2012 

High Extraversion 
Reckless behaviour Low Agreeableness 

Low Conscientiousness 

High Neuroticism 
Anxious behaviour 

Low Conscientiousness 

Ulleberg & 

Rundmo, 2003 

Altruism Increased risk perception, positive attitudes towards traffic safety 

Anxiety Increased risk perception, more positive attitudes towards traffic safety 
Normlessness Decreased risk perception, less positive attitudes towards traffic safety 

Sensation-seeking Less positive attitudes towards traffic safety 

Aggression Less positive attitudes towards traffic safety 

Arnett et al., 1997 
Sensation-seeking 

Reckless driving behaviour in young drivers 
Aggression 

Oltedal & Rundmo, 
2006 

Irritability 
Positive correlation with risky driving behaviour and accident 

involvement 

Normlessness Positive correlation with risky behaviour 

Aggression 
Positive correlation with risky driving behaviour and accident 

involvement 

Anxiety Negative correlation with risky driving behaviour 

Excitement-seeking 
Positive correlation with risky driving behaviour and accident 

involvement 

Machin & Sankey, 

2008 

Excitement-seeking 
Increased likelihood of accident involvement, increased tendency in 

speeding, increased risk-taking behaviour 

Altruism 
Decreased likelihood of accident involvement, decreased tendency in 

speeding, aversion to risk-taking 

Dahlen et al., 2012 

Emotional stability Negative effect on aggressive driving 

Extraversion Positive effect on aggressive driving 
Openness Positive effect on aggressive driving 

Agreeableness Negative effect on aggressive driving 

Conscientiousness Negative effect on aggressive driving 

Ge et al., 2014 

Sensation-seeking 
Positive effect on aggressive driving, risky driving, drunk driving and 

negative emotional driving 

Anger 
Positive effect on aggressive driving, risky driving, drunk driving and 

negative emotional driving 

Altruism 
Negative effect on aggressive driving, risky driving, drunk driving and 

negative emotional driving 

Jovanović et al., 

2011 

Agreeableness Driving-related anger and aggression 
Conscientiousness Driving-related anger but negative effect on driving aggression 

Altruism Prosocial driving behaviour 

Măirean and 
Havârneanu (2018) 

Better-than-average Risky behaviour 

Riendeau at al. 

(2018) 

Conscientiousness Lower risky and unsafe behaviour among middle-aged drivers 

Sensation-seeking Risky and unsafe behaviour among young drivers 

Extraversion 
Unsafe driving behaviour 

Neuroticism 

Oppenheim et al. 

(2016) 
Sensation-seeking Increase in violations 

Stephens et al. 
(2018) 

Mindfulness Decrease in driving aggressiveness 

 

Regarding the effects of negative emotions, Steinhauser et al. (2018) related anger 

with increased speeding and reduced following distance in a driving simulator study. 

Similarly, Zhang et al. (2018) deduced similar conclusions with respect to anger and 

aggressive driving behaviour. Hu et al. (2013) concluded that both negative emotions 

and mood may decrease drivers’ judgement ability and make them consider driving 

situations less risky. In a study based on driving simulator, Roidl et al., (2014) found 
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that people who experienced anger drove faster after a frustrating event, but for a short 

period, while drivers who experienced more anxiety were influenced for a longer time 

after a frustrating event. Moreover, they concluded that drivers with higher levels of 

anger violated the speed limit for longer periods. Shahar (2009) found a positive 

relation between the self-reported level of anxiety and driving errors and lapses. They 

also reported that higher levels of anxiety are related to more distraction and 

violations. Similarly, Dula et al. (2010) found a correlation between anxiety and 

dangerous driving. Taylor et al. (2007) used on-road observations in order to 

investigate the effects of anxiety to driving performance. Their results indicated that 

fearful drivers had the same type of errors, compared to not fearful however, they did 

more errors than the latter. Also, fearful drivers reported increased levels of perceived 

anxiety and also rated lower their driving skills. 

This section briefly presented some commonly examined individual factors that have 

been found to influence driving behaviour. In an extensive literature review related to 

this issue, Lancaster and Ward (2002) listed in more details a series of individual 

characteristics and their effects. Amongst these, stress was also included in a 

prominent position. However, the latter has not been presented in the current section. 

As one of the main aims of the current thesis had been to investigate the effects of 

stress on driving behaviour, it is presented separately in the next section. 

 

1.5 Stress and driving behaviour 

1.5.1 Defining stress in the driving context 

A popular approach relating stress to the driving task was attempted by Gulian et al. 

(1989) based on Lazarus’s transactional framework about stress (Lazarus and Launier, 

1978). That framework suggested that stress, as a part of the driving task, can emerge 

in situations that test drivers’ abilities, reduce their perceived control or threatens their 

mental or physical health. In that work, the authors distinguished two different types 

of stress, namely, driving stress, which is exclusively related to stress that is derived 

from the driving task and drivers’ stress, which is a more comprehensive definition 

that also includes life-related stress. Moreover, they determined two types of driving-

related stress. The first referred to specific situations that may be interpreted as 

dangerous or demanding by the drivers while the second can arise as a result of the 

prolonged exposure of drivers to stressful situations i.e. daily commuting or long-

distance journeys. As a highlight of that work, Gulian et al. (1989) developed a 

questionnaire survey named Driving Behaviour Inventory (DBI). In their study they 
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combined the DBI with other existing personality tests and derived five different 

dimensions of drivers’ stress vulnerabilities namely, driving aggression, irritation 

when overtaken, alertness, dislike of driving and frustration after a failed overtaking. 

The DBI questionnaire was further reviewed and its new form was named Driving 

Stress Inventory (DSI: Matthews et al. 1997). Later, Matthews (2002), further 

elaborated on the aforementioned approach of driving related stress and suggested 

that the environmental stimuli (stressors) are assessed by some personal factors, 

related to drivers’ characteristics and both factors influence their cognitive stress 

process. The cognitive stress process results in two different types of consequences 

namely, subjective (e.g. anger, anxiety, tiredness) and performance changes (e.g. 

changes in speed, reduced control of the vehicle etc.). Based on his previous work he 

suggested three different aspects of drivers’ stress namely, anxiety, aggression and 

fatigue. Each of these aspects was related to the environmental stimuli that causes 

them, the personality traits of drivers, the consequences to subjective stress, the 

changes in drivers’ behaviour and the effects on safety. The basic elements of the 

aforementioned approach are outlined in Table 1.2. 

 

 Table 1.2: Transactional analysis of driver’s stress 

 [Source: Matthews, 2002] 

Drivers’ stress is a multidimensional issue influenced by several different factors, both 

related to the demands of the driving task but also irrelevant to it. Each person has an 

initial tendency to get stressed while driving, which can be considered as a basic level 

of stress that is caused as a result of this task. That tendency is also reported as trait 

driver stress (Hennessy & Wiesenthal, 1997; Hennessy & Wiesenthal, 1999; Wickens 

et al., 2015). This type of stress is chronic and positively related to the overall 

perceived stress that arises during driving task (state driver stress). State driver stress 

 Anxiety Anger/ Aggression Fatigue 

Situational stressors 
Threats to control (e.g. 

poor visibility) 
Impedance, other traffic 

Prolonged, high-

workload traffic 

Personality traits Dislike of driving Aggression Fatigue-proneness 

Key cognitions 

Negative self-appraisal, 

low perceived control, 

emotion-focused coping 

Negative other-appraisal, 

confrontive coping 
Reduced effortful coping 

Subjective stress Distress, worry Anger 
Task disengagement, 

distress 

Behavioural change 

Loss of functional 

attention, behavioural 

caution 

Risk-taking Reduced control activity 

Safety implications Mixed Impaired Impaired 
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arises owing to stressful factors (stressors) that occur during the driving task. 

However, each driver’s background is different and thus the same stressors may have 

different impact on strain. In other words, for a given stressful situation, drivers have 

different reactions. Some of the most common components of drivers’ background 

examined are the socio-demographic characteristics, experience, personality, mood, 

life stress etc. In most studies, the aforementioned characteristics are also examined 

in relation to the aggressive driving behaviour. 

 

1.5.2 Driving-related stress occurrence 

Stress as a part of the driving task can be directly related to its demands (e.g. lateral 

and longitudinal controls when following a road or another vehicle respectively), the 

environmental conditions (e.g. fog occurrence can reduce visibility and thus the 

cognitive ability of drivers), network characteristics as surface characteristics, 

junction frequency, and speed and flow per lane (Highways Agency, 1993; Van 

Treese et al., 2018) and/or potential secondary tasks e.g. use of navigation system, 

texting etc. (Schießl, 2007). Moreover, time urgency and the level of congestion also 

consist two important factors that influence state drivers’ stress (Hennessy & 

Wiesenthal, 1997; Hennessy & Wiesenthal, 1999; Hennessy et al., 2000). In 

particular, time urgency can increase the perceived state stress, even in low congestion 

conditions, while in heavy congestion, drivers’ stress is associated with aggressive 

behaviour. Some similar findings were found in a driving simulator study of Emo et 

al. (2016) regarding the effects of slow traffic on aggressive drivers. Finally, Hill and 

Boyle (2007) suggested four different situations which can induce stress namely, 

weather-related conditions, the interactions with other drivers (e.g. slow moving 

vehicles, drivers that brake constantly), conditions related to the driving task (e.g. 

crossing unprotected intersections, merging into heavy traffic, moving across exit 

lanes etc.) and limited visibility conditions (e.g. driving during the night, blocked 

vision by a heavy truck). 

Apart from the situational induced stress, the latter can also occur from stressors not 

related to the driving task. For example, Rowden et al. (2011) found that the stress 

levels related to the work of each person have an effect on drivers’ stress as well. Also, 

Clapp et al. (2011) mentioned that driving performance is affected by the level of life 

stress. A similar outcome was also derived by Ge et al. (2014). More specifically, they 

found some correlations between driver’s and life (global) stress. The interpretation 

of this outcome indicates that someone who is stressed as a person in general, has also 

a higher tendency for increased driver’s stress. In the same study it is reported that 
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some aspects of personality (sensation-seeking) also influence the levels of perceived 

driver’s stress. Finally, Matthews et al. (1991) found an effect of mood state to drivers’ 

stress. 

 

1.5.3 The effects of stress on drivers’ behaviour 

The role of stress has been mostly investigated regarding its impact to drivers’ 

decision-making process and aberrant driving behaviours. Drivers under stress are 

more likely to get involved in hazardous situations (Ge et al., 2014). With reference 

to Kontogiannis (2006), aberrant driving behaviour can be grouped in two main 

classes, namely errors and violations. Both classes are related to road accidents and 

incidents, therefore stress is considered as an issue related also to traffic safety. 

Similar findings regarding perceived stress are also reported by Westerman and 

Haigney (2000), Useche et al. (2015), Qu et al. (2016). Moreover, Ge et al., (2014) 

found that perceived stress is linked to aggressive and risky driving behaviour. 

Finally, Öz et al. (2010) found that the dimensions of stress related to anger and 

anxiety and hazard monitoring are related to accident involvement while excitement-

seeking had a positive association with speeding behaviour. 

It should be highlighted that although some studies imply a causal effect of stress on 

driving behaviour, the relationship between the two is not that straightforward, as a 

correlation of stress and driving behaviour does not necessarily imply that a specific 

driving action is an outcome of stress (Verma et al., 2019). In the same study, although 

the authors attempt to specify a model that captures this causality, they also 

acknowledge that stress can be caused as an outcome of driving behaviour. 

 

1.5.4 The relation between stress and human physiology 

The occurrence of stressors is followed by the activation of several human 

physiological responses. After the stressor passes however, the body relaxes and 

returns to a normal state (Bakker et al., 2011). The mechanism that leads the body into 

the state of alertness is called acute stress. Several studies have worked on this 

direction and tried to investigate drivers’ stress through physiological responses. 

Some of the most commonly used physiological responses are heart rate (HR), heart 

rate variability (HRV), electrodermal activity (EDA), blood volume pulse (BVP), 

blood pressure (BP), respiration rate (RR), skin temperature (ST), electromyography 

(EMG) and brain-related activity via electroencephalogram (EEG). There are also 

eye-related measurements as pupil dilation and blinking frequency. It should be 
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mentioned that heart-related measurements are obtained through electrocardiogram 

(ECG) or photoplethysmogram (PPG). A summary of some studies used such 

indicators is listed in Table 1.3. Although stress occurrence has been found to affect 

the physiological indicators, in most cases, this source of data is mainly being used to 

predict or detect stress, rather than investigating how these responses are linked to 

observed driving behaviour. 

 

Table 1.3: Studies investigating driving-related issues using physiological data 

Study Study purpose Data Physiological responses 

Cai et al. (2007) Drivers' emotions Driving simulator 
HR, HRV, EDA, ST, RR, 

eye-related 

Wang and Gong (2008) Drivers' emotions Driving simulator RR, ST, BVP, EDA 

Rimini et al. (2001) 
Drivers' stress and 

fatigue 
Driving simulator ECG, EEG, ST, RR 

Sun et al. (2011) Driver fatigue Driving simulator 
HR, HRV, RR, blink 

frequency 

Liang et al. (2007) Driver distraction Driving simulator Eye-related measures 

Yamaguchi et al. (2006) Driver stress Driving simulator 
Salivary amylase activity 

(SAMY) 

Haak et al. (2009) Driver stress Driving simulator EEG, blink frequency 

Johnson et al. (2011) 

Comparison of 

physiological 

responses in simulator 

and on-road driving 

Driving simulator, 

naturalistic 
HR 

Herrero-Fernández (2016) 

Anger and 

physiological 

repsonses 

Driving simulator HR, EMG 

Rebolledo-Mendez et al. 

(2014) 
Drivers' emotions Driving simulator ECG, EDA, EEG 

Pradhan et al. (2005) Risk perception Driving simulator Eye-related measures 

Shamsul et al. (2014) 
Drivers' stress and 

fatigue 
Driving simulator EEG, salivary cortisol 

Yamakoshi et al. (2008) Drivers' stress Driving simulator BVP, ST 

Thi-Hai-Ha Dang (2014) Cognitive workload Driving simulator HR, EDA 

Rendon-Velez et al. (2016) Time pressure effects Driving simulator 
HR, HRV, RR, blink 

frequency 

Chen (2013) Drivers' stress Driving simulator ECG, EDA 

Li et al. (2013) Driving behaviour Naturalistic Eye-related measures 

Singh and Queyam (2013) Drivers' stress Naturalistic HR, EDA, RR, EMG 

Healey and Picard (2005) Drivers' stress Naturalistic HR, EDA, RR, EMG 

Rigas et al. (2012) Drivers' stress Naturalistic HRV, EDA 

Sena et al. (2014) Drivers' stress 
Driving simulator, 

naturalistic 
HRV 

Miller and Boyle (2013) Drivers' stress Naturalistic HRV 

Wang et al. (2013) Drivers' stress Naturalistic HRV 

Singh et al. (2013) Drivers' stress Naturalistic EDA, HRV 

Malta et al. (2011) Drivers' frustraation Naturalistic EDA 

Hamaoka et al. (2005) Drivers' stress Naturalistic HR 

Schneegass et al. (2013) Cognitive workload Naturalistic HR, HRV, EDA 

Leng et al. (2007) Drivers' emotions Naturalistic 
BVP, ST, EDA, RR, 

facial recognition 

Healey et al. (1999) Drivers' stress Naturalistic HR, EDA, RR, EMG 

Mesken et al. (2007) Drivers' emotions Naturalistic HR 

Tarabay and Abou-Zeid 

(2018) 
Cognitive workload Driving simulator HR, EDA 

Tarabay (2018) Driving behaviour Driving simulator HR, EDA 
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1.6 Data requirements for the development of driving behaviour 

models 

1.6.1 Driving behaviour data 

As described in Section 1.1, traditional driving behaviour models mostly focus on car-

following and lane-change behaviour while also other forms of models have been 

proposed in the existing literature (e.g. gap-acceptance). The development and 

calibration of this type of models requires the availability of specific details e.g. speed, 

relative speed, headway etc. A common source is video trajectory data while the latest 

years, in many studies, models have been estimated using the NGSIM database 

(Alexiadis et al., 2004). The data was collected within an effort to assist in the 

development of microscopic traffic models. This data was recorded in two motorways 

(Interstate 80 Freeway and US Highway 101) and two urban roads (Lankershim 

Boulevard and Peachtree Streets). The main databases are semi-processed providing 

information regarding the position, speed, vehicle type, vehicle size, lane index, lead 

vehicle index etc. Moreover, additional information, related to the trajectories of the 

vehicles, such as photos, geographical data, AutoCAD-diagrams, orthocertified 

photos etc. are available. However, some studies (e.g. Punzo et al., 2011; Coifman 

and Li, 2017) showed that the NGSIM data suffer from several measurement errors 

while this is likely to be the case in most of the video trajectory data since the accuracy 

of position extraction is subject to factors as quality of videos, software used etc. 

Moreover, video trajectory data are limited to traffic-related variables only. The 

estimation of models that include additional details e.g. any information related to 

drivers’ characteristics would require alternative sources. 

A solution could be naturalistic driving data (i.e. instrumented vehicle) however, this 

data could have the same limitations to video trajectory data concerning accuracy. 

Driving simulator data can be considered as an alternative as information is collected 

in high accuracy and also it is possible to acquire details regarding drivers’ 

characteristics. Moreover, the simulator environment is completely controllable, and 

drivers’ can be tested in very similar of not exactly the same driving conditions. Thus, 

the current work was based on data collected at the University of Leeds Driving 

Simulator (UoLDS). The attributes of UoLDS are presented in more details in 

Chapters 2 to 5 of the current thesis, therefore, it is not included in the current chapter. 

Driving simulators have been extensively used in road safety research however their 

behavioural validity has been questioned and investigated in several studies. The 

validity of driving simulators is distinguished in absolute and relative validity (Fisher 

et al., 2011). The former is achieved when the numerical values, related to driving 
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behaviour, between real and simulated driving are similar, while in the latter the 

numerical values in the two cases are different but they follow similar patterns. The 

issue of validity is further discussed for modelling purposes in Chapter 4. 

 

1.6.2 Drivers’ characteristics data 

In section 1.6.1 it has been briefly mentioned that the estimation of driving behaviour 

models augmented with drivers’ characteristics would require some additional 

information. In the preceded literature review, a series of individual characteristics 

has been listed that could have an impact on driving behaviour. Among them, the 

present research has mostly focused on acute stress, as expressed through 

physiological responses. Some of the most common physiological responses used in 

the driving context have been reported in Section 1.3.4. For the current study, a 

wristband device was used to capture HR, EDA, BVP and ST. The device is presented 

more detailed in Chapters 2, 3 and 4. 

Findings from the existing literature also indicate that individual traits can have 

substatial impact on driving behaviour (e.g. aggressive or risk-taking driving style). 

These traits are usually collected through self-report surveys. Given their latent nature, 

each trait is “measured” through questions-indicators related to it. For instance, in 

psychological research several scales have been developed regarding personality traits 

while similar approaches have been applied also within the driving context, related to 

driving stress, anger, driving styles etc. Latest advances in modelling allow these 

measures to be incorporated in models as latent variables and have been collected also 

within the context of the current thesis. Finally, sociodemographic characteristics 

have an important contribution in driving behaviour and it is considered useful to be 

collected as well.  

 

1.7 Research objectives 

The main objective of the thesis has been to suggest methodological approaches to 

incorporate drivers’ characteristics in driving behaviour models with an explicit 

consideration of drivers’ stress. To accomplish this aim, a driving simulator 

experiment has been conducted at the University of Leeds Driving Simulator 

(UoLDS), composed by two main scenarios, where drivers have been tested in a series 

of stressful simulator scenarios inducing stress with time pressure and traffic events. 

The thesis has been structured around chapters that investigate a series of research 



Chapter 1: Introduction 

22 

 

objectives that are ultimately all linked to the main aim of the thesis. The 

aforementioned objectives can be summarised as follows: 

 

O.1: Investigate in which way and to what extent individual character traits and 

stress affect driving behaviour. 

There are several indications in the existing literature that sociodemographic 

characteristics, together with traits and emotional state can have a considerable 

impact on driving behaviour. However, in many cases these findings are not 

based on observed drivers’ behaviour or objective metrics but they are relying on 

subjective measures as self-report questionnaires and thus may suffer from 

measurement errors. At the same time, there are even fewer attempts to 

incorporate these variables within mathematical modelling frameworks that can 

be used for prediction. The initial objective, aims in identifying which individual 

characteristics, and in what manner, are influencing driving behaviour.  

To answer this question, an exploratory analysis has been conducted and 

presented in Chapter 2. The findings are used to guide the mathematical models 

developed in Chapters 3 and 4.  

 

O.2: Investigate how traffic conditions and contextual factors such as time 

pressure affect driving behaviour and how they are linked to stress levels. 

As reported in Section 1.5.2 there is evidence that traffic environment and driving 

conditions as well as contextual factors (e.g. time pressure) can have an impact 

on perceived stress and consequently on driving behaviour. But the effect of 

contextual factors have not been incorporated in mathematical models of driving 

behaviour. The second objective of the thesis is to address this research gap.  

Chapter 2 presents an initial exploratory analysis that further justifies this 

objective. Chapters 3 and 4 then extends it and mathematically model the effects 

of time pressure and traffic conditions respectively.  

 

O.3: Investigate approaches to incorporate stress levels in driving behaviour 

models in order to obtain more behaviourally representative results.  

This key objective, linked with O.2 and justified in Chapter 2, focuses on 

developing a modelling framework to incorporate the effect of stress induced 
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from time pressure and driving environment factors in mainstream diving 

behaviour models. 

This objective shapes the models developed in Chapters 3 and 4. The former 

presents a gap-acceptance model for intersection crossing while the latter is a car-

following model.  

 

O.4: Investigate in which way behaviour in the simulator environment compares 

to a real life and whether models estimated with simulator data are transferable 

to the field traffic context. 

Driving simulators can be considered more advantageous compared to the 

conventional data sources for the estimation of driving behaviour models as they 

provide additional flexibility in terms of driving environment controllability and 

information related to drivers’ individual characteristics. However, the issue of 

behavioural realism still remains, as already mentioned in the introduction of this 

chapter. The fourth objective of the thesis is to investigate this issue in the context 

of mathematical models of driving behaviour with special focus on how the 

driving behaviour models developed using the simulator data can be made more 

transferable to the field traffic context. 

Chapter 5 focuses on this issue in a car-following modelling framework and 

investigates competing methods for improving the tarnsferability.  

 

1.8 Thesis outline 

The remainder of the thesis is organised in five chapters. Chapters 2 to 5 present 

papers that investigate the research objectives outlined in Section 1.7 while Chapter 6 

is a conclusion of the thesis. 

Chapter 2, presents a paper entitled “Investigating the effects of traits, stress and 

situational factors on driving performance”. The paper presents the driving simulator 

experiment on which the analysis of the thesis is based. This involves the description 

of the experimental design, and the main outcomes derived from the analysis of the 

observed driving behaviour, physiological responses and survey responses via 

descriptives and inferential statistics analysis. The results show that time pressure has 

a significant impact on speeding behaviour in the urban setting of the experiment 

while overall they completed those scenarios faster. With respect to the motorway 

setting, time pressure and traffic conditions had a significant impact on speed, 
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acceleration and lane-change behaviour of drivers. Moreover, several mild 

correlations with self-reported statements were found, supporting the existing 

literature. Finally, although no significant correlations were found between 

physiological responses and behaviour in the urban setting, the former correlated with 

higher speeds and standard deviation of acceleration in the motorway setting 

indicating a relationship between stress levels and risky driving behaviour. 

Chapter 3, presents a paper entitled “Modelling the effects of stress on gap-acceptance 

decisions combining data from driving simulator and physiological sensors”. The 

paper is focusing on the estimation of a gap-acceptance model starting only with 

traffic-related explanatory variables and gradually adding variables related to socio-

demographic characteristics, time pressure and physiological responses. The latter 

have been incorporated as direct explanatory variables in the model specifications 

using normalisations on the raw physiological signals. The results indicate that each 

newly added set of exaplanatory variables significantly improves model fit. This 

finding shows the importance of incorporating drivers’ characteristics and contextual 

factors on driving behaviour, on top of traffic-related variables. Finally, increase of 

physiological responses has been linked to higher probability of gap-acceptance, 

suggesting a positive correlation of aggressive driving behaviour and physiological 

activity. 

Chapter 4 presents a paper entitled “Combining driving simulator and physiological 

sensor data in a latent variable model to incorporate the effect of stress in car-

following behaviour”. In this paper, an adaptation of the GM car-following model is 

presented that also accounts for the effects of stress, as expressed through 

physiological responses. Stress is represented as a latent variable linked to the 

sensitivity component of the car-following model. The model accounts for inter-driver 

heterogeneity via reaction time and intra-heterogeneity via the stress latent variable. 

Moreover, the effects of socio-demographic characteristics are considered as part of 

the stimulus component of the model. The results show a positive correlation of the 

latent variable with acceleration behaviour while no significant results occurred with 

respect to deceleration. The findings of the paper are consistent with the results of 

Chapter 3 and further support the need for considering the effect of drivers’ 

characteristics and physiological activity in driving behaviour models. 

Chapter 5 presents a paper entitled “From driving simulators experiments to field 

traffic application: improving the transferability of car-following models”. The paper 

investigates transferability of driving simulator data in a car-following model context. 

Given that transferability is not validated, the paper makes use of techniques for its 

improvement including parameter updating (Bayesian updating and Combined 
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Transfer Estimation) and joint model estimation. The results show that after the 

application of Combined Transfer Estimation, transferability between the two 

contexts is feasible. 

Finally, Chapter 6 provides an overall summary of the thesis, highlighting the findings 

from each chapter. Contributions and future research directions are also discussed.  

The research outcomes presented in the current thesis are based on data collected in 

the context of the Next Generation Driving Behaviour Model (NG-DBM) project 

funded by FP7Marie Curie Career Integration Grant of the European Union (PCIG14-

GA-2013-631782) and the Economic and Social Research Council, UK.  
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CHAPTER 2: INVESTIGATING THE EFFECTS OF 

TRAITS, STRESS AND SITUATIONAL FACTORS ON 

DRIVING PERFORMANCE  

 

ABSTRACT Driving behaviour is an inherently complex process affected by various 

factors ranging from individual characteristics to network attributes and situational 

factors. The current study attempts to thoroughly investigate driving behaviour under 

different traffic conditions and time pressure levels particularly focusing on the 

correlations between the behaviour and the characteristics of the driver. In terms of 

driver characteristics, both static (e.g. socio-demographics, personality and driving 

style) and dynamic (level of stress) are considered. The analysis is based on a 

comprehensive driving simulator experiment that included two main scenarios, 

namely, an urban road and a motorway setting. Participants have been subjected to 

carefully designed stressful scenarios induced by time pressure and traffic conditions. 

The physiological responses (e.g. skin conductance, heart rate and blood pressure) 

have been recorded alongside the driving manoeuvres, as an indication of stress levels. 

The analysis of the data collected from the urban task indicates that under time 

pressure, participants significantly increase their speed and completed specific 

scenarios much faster. Moreover, significant associations are found between observed 

behaviour and sociodemographic characteristics and traits. The analysis of the data 

collected from the motorway setting indicate that participants change their behaviour 

depending on the traffic conditions and time pressure. Moreover, physiological 

responses are found to be significantly correlated with observed behaviour as 

speeding, braking etc. though the correlations with the traits are less significant. The 

insights from the results can be used for designing appropriate intervention strategies 

to improve safety. 
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2. 1 Introduction 

Driving behaviour is an inherently complex process affected by the driver 

characteristics, traffic and vehicle factors. The former corresponds to static (e.g. socio-

demographics, personality, driving style) as well as dynamic (e.g. alertness, stress, 

etc.) characteristics of the driver. The variables related to traffic conditions include 

level of congestion, behaviour of the neighboring drivers, visibility, etc. The key 

vehicle factors include the acceleration-deceleration and braking capability of 

vehicles. All these factors influence drivers’ performance to a varying extent.  

There is a significant body of literature that has investigated the effects of 

sociodemographic characteristics where gender and age are the most common 

variables to be investigated. For instance, Westerman & Haigney, (2000) found that 

men reported more violations, but fewer lapses, than women and they also reported a 

negative correlation between age and violations. Rhodes & Pivik (2011) reported that 

male drivers are more likely to get involved in risky situations while a similar outcome 

was also found by Jiménez-Mejías et al. (2014). Also, Lonczak et al. (2007) reported 

male drivers as more risk takers. Regarding age, differences in risk-taking behaviour 

have been found between teen male and adult female drivers (Iversen and Rundmo, 

2004; Taubman-Ben-Ari & Yehiel, 2012) Also, Jonah (1990) reported that younger 

drivers are more likely to show risky driving behaviour and also commit more 

violations. 

The effects of individual characteristics have been also investigated in terms of traits, 

attitudes and emotional states. Taubman-Ben-Ari & Yehiel (2012) associated 

personality traits with different driving styles (e.g. anxious, aggressive, cautious etc.) 

while Ulleberg & Rundmo (2003) found relationships between personality, risky 

driving and attitudes towards driving risk and safety. The effects of personality on 

driving aggression and risk-taking were also examined in other studies (e.g. Dahlen 

et al., 2012; Ge et al., 2014). The concept of drivers’ stress has been conceptualised 

by Gulian et al. (1989) and Matthews (2002) where it was defined as a situation that 

challenges drivers’ abilities, reduces their perceived control or threatens their 

mental/physical health. 

Driver stress can arise as a result of environmental conditions (e.g. foggy, icy, etc.), 

network characteristics (e.g. surface characteristics), junction frequency, speed and 

flow per lane and/or potential secondary tasks, such as use of navigation system, 

texting, etc. (Hill and Boyle, 2007). Moreover, time urgency and the level of 

congestion have been identified as two important factors influencing drivers’ stress 

(Hennessy and Wiesenthal, 1999). Self-reported stress has been linked to aberrant 
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driving behaviour, namely errors and violations (Kontogiannis, 2006). These types of 

impaired behaviour can lead to road crashes and incidents, therefore stress is 

considered as a key issue related to traffic safety (Westerman and Haigney, 2000; 

Useche et al., 2015, Qu et al., 2016). Moreover, Ge et al. (2014) found that perceived 

stress is linked to aggressive and risky driving behaviour. 

The existing findings provide compelling evidence regarding the effects of stress on 

driving, however, they are mostly based on self-reported surveys and therefore prone 

to response bias and reporting/measurement errors. Further, they are primarily based 

on point measurements at the end of the task. An alternative, and potentially more 

reliable, approach to detect drivers’ level of stress and study its effects, is through its 

implications on human physiology. Recent advances in sensor technologies and 

affective computing have made it possible to measure drivers’ stress levels through 

physiological responses, e.g. changes in heart rate, Electrodermal Activity (EDA), 

blood volume pulse, etc. There are several existing studies related to driving stress 

that use this type of data (some examples Healey and Picard, 2005; Singh and 

Queyam, 2013; Rigas et al., 2012). However, the aforementioned studies have 

primarily focused on detecting stress rather than investigating its effects on observed 

driving behaviour. 

The current study focuses on a thorough investigation of drivers’ behaviour where the 

latter is examined in different network environments with various driving conditions 

and time pressure states. Moreover, drivers’ individual characteristics are considered 

in terms of socio-demographics, traits and stress levels. To accomplish this aim, a 

comprehensive driving simulator study has been conducted where participants have 

been subjected to a series of stressful scenarios, including time pressure, while at the 

same time their physiological responses have been observed. Sociodemographic 

characteristics and traits have been also collected in the form of surveys. Ultimately, 

the study has attempted to examine how drivers’ behaviour can change under different 

traffic conditions and time pressure, and how different factors affect speed and risk-

taking behaviour. 

2.2 Driving simulator experiment 

2.2.1 Apparatus 

The University of Leeds Driving Simulator (UoLDS) 
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The data used in this study was collected as part of a comprehensive driving simulator 

study (Next Generation Driving Behaviour Models – NG-DBM) for investigating the 

effect of stress in different driving decisions (e.g. acceleration-deceleration, 

overtaking, red light violation, gap acceptance, etc.). The experiments have been 

conducted using the University of Leeds Driving Simulator (UoLDS). The UoLDS 

(Figure 2.1) is a high fidelity, dynamic simulator. The vehicle cab is a 2005 Jaguar S-

type with all driver controls available and fully operational. This includes the steering 

wheel and braking pedal, and there is also a fully operational dashboard. The vehicle 

is placed in a 4m diameter spherical projection dome. The dome provides fully 

textured 3-D graphical scene with a horizontal field of view of 250o and 45o vertical 

and it is placed on an 8 degrees of freedom motion system. The model of vehicle 

dynamics has been extensively validated to capture accurate vehicle behaviour on 

high-friction surfaces (Markkula et al., 2018). The raw data output consists of 

observations of 60Hz frequency. 

 

The E4 wristband 

Drivers’ physiological data, across the whole experiment, has been collected using the 

Empatica E4 wristband which is a non-intrusive device that provides information 

about heart rate (HR), Electrodermal Activity (EDA), blood volume pulse (BVP) and 

temperature (TEMP). Each of the physiological indicators has been collected with a 

different frequency, depending on the attributes of the wristband. EDA and 

temperature have a 4Hz frequency, blood volume pulse 64Hz and heart rate 1Hz. 

The Empatica E4 wristband has been used in several studies. With respect to the 

reliability of the obtained signal, it has been mentioned an issue of missing IBI (intra-

beat interval) data for studies that involve strong movement (Enewoldsen, 2016; 

Koskimäki et al., 2017; Lam et al., 2018). This issue poses a challenge in conducting 

heart rate variability analysis (Ollander et al., 2016), however, when IBI values are 

missing or unrealistic, the wristband is using an algorithm and is able to provide HR 

values (Enewoldsen, 2016). These values are considered acceptable to be used for 

analysis (Ollander et al., 2016). Moreover, a very small proportion of the EDA signal 

Figure 2.1: The University of Leeds Driving Simulator (UoLDS) 
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is identified as noise (Enewoldsen, 2016; Lam et al., 2018) however open and humid 

environment can have a severe effect on the quality of the signals (Lam et al., 2018).  

Within the context of the NG-DBM study, it was also aimed to obtain participants’ 

physiological data in real life, outside the context of driving simulator (however, this 

analysis extends the scope of the current paper). Thus, the wristband was selected for 

its flexibility as it would be easier to be provided to participants for use several days 

before the actual simulator study. The device was used within the members of the 

research group to test for changes in physiological responses during daily activities 

(travelling on train, working, relaxing at home etc.) and after some basic visual 

analysis of the outputs, it was decided to proceed with its use. 

Questionnaires and participants’ paperwork 

Participants were provided with a series of documents, some days before participating 

in the driving simulator experiment. The documents included: 

 a) A participant’s information sheet where details about the driving simulator and the 

experiment itself were provided  

b) The multidimensional driving style inventory (MDSI; Taubman-Ben-Ari, 2004) 

that is a 44-item scale developed to identify driving styles. Each item has been 

evaluated with a 6-point Likert scale of agreement that extends from “Not at all” (1) 

to “Very much” (6). In the original study, the authors derived 8 different driving 

styles, namely:  

Dissociative driving style: This style represents easily distracted drivers who commit 

errors or show cognitive gaps. 

Anxious driving style: This style is related to drivers that feel distress or anxiety during 

driving or have lack of confidence with respect to their driving skills. 

Risky driving style: This style refers to drivers who seek for sensation or show risk 

taking behaviour 

Angry driving style: This style represents driver that show hostile or aggressive 

driving behaviour and feel anger while driving. 

High-velocity driving style: This style represents drivers that tend to drive fast or show 

signs of feeling time pressure. 

Distress-reduction driving style: This style is about drivers that engage in relaxing 

activities to reduce distress while driving. 

Patient driving style: This driving style is about drivers that are polite towards other 

drivers, feel no time pressure and are patient. 
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Careful driving style: This style represents drivers that drive careful, planning their 

trajectory in advance and adopt a problem-solving attitude towards driving task-

related issues. 

c) A personality survey based on items derived from the International Personality Item 

Pool – IPIP (Goldberg, 1999: http://ipip.ori.org), that participants completed before 

arriving at the simulator. In particular, the Anger, Anxiety, Vulnerability and 

Excitement seeking components were derived from the NEO-PI-R of Costa & McCrae 

(1992). The first three are parts of the Neuroticism component while the latter is part 

of the Extraversion component of the 5-factor personality model. Those components 

have been selected because existing literature has mentioned the relationship between 

Neuroticism, Extraversion and Conscientiousnes with driving related outcomes 

(Dahlen and White, 2006). 

In related literature where similar subscales of the NEO-PI-R have been used 

(Ulleberg & Rundmo, 2003; Chen, 2009; Lucidi et al., 2010; Mallia et al., 2015), the 

items were evaluated with a 5-point Likert scale. In the present paper, a 6-point Likert 

scale has been used, not only for consistency with the MDSI questionnaire but also to 

avoid reported issues of odd-numbered Likert response scales. Kulas et al. (2008) used 

items from the NEO-PI-R scale and found that preference of the mid-point can be 

actually used as “dumping ground” or instead of non-applicable responses. Moreover, 

Garland (1991) reported that mid-point use can be evidence of social desirability bias 

while Grondin & Blais (2010) also mentioned that the mid-point choice can be result 

of a satisficing strategy i.e. a quick response. In order to avoid the aforementioned 

issues of potential extensive use of the mid-point, that could also cause issues in future 

analysis, because of less variance in the responses and small sample size (e.g. 

modelling driver behaviour including latent variables), an even number of points was 

decided. Moreover, responses could be later merged in less categories, following 

approaches in literature (e.g. Grondin & Blais, 2010). The personality items used in 

the analysis range from Strongly disagree (1) to Strongly agree (6). 

d) A survey of perceived stress that was completed after each driving simulator task. 

The documents mentioned in b, c, and d can be found in Appendix A. 

 

2.2.2 Driving simulator scenarios 

Procedure 

The whole experiment has included approximately 90 minutes of total driving in the 

simulator for each individual. Participants initially have had a short briefing session 
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about the simulator and its operation followed by a practice session around 15 minutes 

to familiarise themselves with the simulated environment and vehicle dynamics (i.e. 

motion system). For safety reasons, participants have been accompanied by a 

researcher during the practice run, positioned in the back seat. After the practice 

session, participants started the main driving scenarios, composed of two different 

settings: an urban and a motorway. After completing the urban setting, participants 

have had a short break during which they completed a feedback form. They have also 

completed a similar feedback form after finishing the second setting. 

General details of the driving simulator scenarios 

The driving simulator settings have been designed in order to investigate driving 

behaviour, and the effects of traits and stress on it, under a variety of traffic conditions, 

events and situational factors. To this end, two different main scenarios have been 

developed, an urban setting and a motorway setting. Given the different nature of the 

main settings, different scenarios have been designed and tested in each of them. It 

should be mentioned that both of the main settings, and the scenarios within, have 

been presented to participants with the same order and have not been randomised as 

a counterbalancing approach. The rationale behind this design have been mostly 

related to the recording of the physiological observations; the induction of stressful 

events at the very early stages of the experiment could possibly increase physiological 

responses and then it might not be possible for these indicators to return to baseline 

levels. Thus, it has been preferred to steadily increase the stressors during the 

experiment. 

Apart from the stress induced by the traffic conditions or the events that took place in 

each setting, time pressure has been also applied as a stressor. Time pressure have had 

the following form: During their briefing session, participants have been instructed 

that they have had to reach their destination within 35 minutes (in each setting 

separately) and they could see an emoji placed on the dashboard (Figure 2.2) as an 

indicator of their performance. Moreover, they have been informed that the emoji 

displayed to them has been determined based on expected arrival time which was 

computed and constantly updated using a sophisticated algorithm running in the 

background and uses variables such as current speed, speed limit, distance to the end, 

an average estimated delay that will be caused by the events ahead etc. as inputs. This 

has been then used to determine which of the three emoji to show.  Participants have 

been instructed that the green state indicated they have been doing well, in terms of 

remaining time, while the red would have meant that they have been late. The 

intermediate amber emoji would have meant that they have been marginally fine in 

terms of time. That is, they would have received a red emoji if they had further delay 
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in the remaining driving tasks. The introduction of an amber state has been decided to 

make the shift from green to red emoji more convincing to the participants. 

 

In point of fact, the state of the time pressure emoji has not been related to participants’ 

actual performance but has been pre-decided in order to induce time pressure in 

specific road segments. It may be noted that the choice of 3 different emoji to indicate 

time pressure, has been preferred to a conventional countdown timer since it would 

have been easier to manipulate. In order to increase the likelihood that participants 

would consider time pressure indications, they have been instructed that a penalty 

would be imposed on the monetary reward for their participation in case they have 

been late at the end of the motorway (red emoji). However, this has never been the 

case since both main scenarios of the experiment have been programmed to end in the 

amber time pressure state. The piloting stage of the study was mainly used to get 

feedback with respect to the experimental design and scenarios; driving behaviour 

was not analysed with respect to the emoji state changes. The potential monetary 

penalty together with literature findings regarding stress occurrence under time 

pressure (Hennessy and Wiesenthal, 1999) and changes in driving behaviour 

(Rendon-Velez et al., 2016) were considered as indications that the various emoji 

would affect and change driving behaviour. The next sections present a more detailed 

description of the two main motorway settings. 

Excluded participants 

The UoLDS is a dynamic driving simulator and thus there is always some risk to affect 

people with motion sickness. This has been the case for three participants that reported 

motion sickness during the practice session or at the very early stages of the urban 

setting and have been completely removed from the analysis. Moreover, the E4 device 

has failed to record any physiological data from one participant which has also been 

removed from the analysis. The remaining participants are in total 42. However, 

because of a software failure, the urban setting was interrupted for one participant and 

therefore the total sample size was 41. Finally, some participants normally started the 

motorway setting however they dropped out without finishing it mostly owing to 

Figure 2.2: Time pressure emoji 
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dizziness. Regardless their progress in this setting, these participants have been 

completely removed from the sample and 36 were finally considered in the analysis. 

The required sample size was not determined by any sample size calculation approach 

rather motivated by literature review of similar studies. In particular, some examples 

as Jamson et al., 2015 (22 participants), Li et al., 2018 (35 participants), Xue et al., 

2018 (46 participants) and Zimasa et al., 2019 (40 participants) motivated us that a 

sample size of 36 or 41 participants would be sufficient to proceed with the analysis. 

The urban setting 

As shown in Figure 2.3, the urban setting has been composed of a two-lane road (one 

lane per direction) where the driving has been interrupted by a series of intersections 

(signalised or unsignalised). The main concept is based on observing drivers’ 

behaviour at the intersections, where particular events have been taking place. These 

have been presented in the following sequence: an encounter with a slow-moving lead 

vehicle that participants could have decided to overtake or not, a traffic light with a 

red indication of long duration that has aimed to cause frustration, an amber dilemma 

scenario where participants could have decided to accelerate or brake and a gap-

acceptance scenario where participants have had to cross a junction. These scenarios 

have been repeated twice (initially without and then under the presence of time 

pressure) while at the end of the setting there has also been a right-turn manoeuvre 

scenario which has been the last task of the urban road. Moreover, in the first sequence 

of the scenarios there has been also presented an additional intersection where a 

vehicle has been violating priority and crossing in front of the participant, however, 

this scenario has not been analysed in the current study. Within an effort to minimize 

Figure 2.3: The urban setting 
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any potential residual effects from the previous tasks, some straight road segments 

without any critical events have been inserted, in between the main tasks. The average 

duration of these segments has been 2-3 minutes and participants have not met any 

traffic in these (only occasionally from the opposite direction), however, at the second 

half of the urban setting they have been deliberately subjected to time pressure. The 

main scenarios are presented more detailed in Section 2.4. 

The motorway setting 

The motorway setting has had a 3-lane road (where the right-most lane has been the 

fastest) composed by several scenarios that have been distributed along the different 

segments (Figure 2.4). These have been based on variations of the traffic conditions 

and time pressure. In the initial road section, no specific events have been taking place 

and the time pressure indicator has been green. This has been followed by a road 

section with “aggressive” surrounding traffic. This scenario has been implemented by 

allowing the driving simulator drones (vehicles controlled by the simulator software) 

to accept shorter gaps while performing a lane change. This has resulted in the 

occurrence of lane change manoeuvres at short headways with respect to participants’ 

position. The scenario has been repeated at the next main road segment as well, but 

this time under the presence of time pressure (amber or red). In the next scenario 

participants have faced traffic at slow speeds which aimed to create a sense of 

congestion. This scenario has been time based (as opposed to all the rest which have 

been position based) with an approximate duration of 5.5 minutes. During this 

scenario, participants have faced all possible time pressure states. The last two 

segments of the motorway have not included any specific events apart from changes 

in the emoji states. As an exception, at the last segment a hard-braking scenario has 

been programmed but it has not been initiated for all participants as specific 

requirements with the lead vehicles should have been met, with respect to distance 

and headway. It should be mentioned that for purposes of convenience, each 

motorway segment has been given a specific code that is used in the analysis presented 

in the next paragraphs. The main details of the motorway setting are summarised in 

Table 2.1 while a visual representation is provided in Figure 2.5. 

Table 2.1: The motorway setting sections. 

Code Scenario Time pressure state 

M1 No events Green 

M2 Aggressive traffic Green 

M3 Aggressive traffic Amber – Red 

M4 Slow traffic Green – Amber – Red 

M5 No events Amber – Red 

M6 No events – Hard braking Green – Amber – Red 
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Figure 2.5: The motorway setting sections. 

 

2.3 Sample characteristics 

2.3.1 Descriptive statistics 

Before proceeding further into the analysis of the simulator settings and scenarios, the 

sample has been analysed, in order to obtain some initial insights. The total sample 

consists of 42 participants that successfully completed the full or at least one of the 

two settings of the experiment. Participants has been excluded from each setting as 

described in Section 2.2. Table 2.2 presents the overall descriptive statistics. In total, 

22 male and 20 female participants took part in the study with average age 34 years 

old approximately. The driving experience of the sample is almost 13.5 years while 

half of the participants stated driving on a daily basis. The effects of age have been 

investigated in the analysis using a dummy variable for drivers below 40 or 40 and 

above years old. The age groups have been split based on literature that has considered 

drivers above and below 40 years as different groups (Yee, 2010; Shanmugaratnam 

Figure 2.4: The motorway setting 
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et al., 2010; Reimer et al., 2013). It should be mentioned that elder drivers may be 

considered as a different age group but give the small sample size, only two age groups 

were considered in the current study. Similarly, drivers with 10 years of experience 

and above, were considered as a different driving experience group (Chisholm et al., 

2006; Wallis & Horswill, 2007). Also, two-thirds have reported 10,000 miles per year 

and below while only a minority of the sample have reported accident involvement 

and tickets for speeding. 

As per the approach used by the original study of the MDSI, which linked driving 

style with socio-demographic characteristics, for each participant, the responses 

belonging to the same factor have been averaged to get a certain driving style score. 

The same approach has been also applied for the personality trait items. The average 

scores of each factor are presented in Table 2.3 and have also been used to the rest of 

the analysis.  

Table 2.2: Descriptive statistics of the sample 

Variable Intervals Frequency % 

Gender 
Male 22 52.4 

Female 20 47.6 

Age 
Below 40 28 66.7 

40 and above 14 33.3 

Driving experience 
Below 10 years 22 52.4 

10 years and above 20 47.6 

Frequency of driving 

Everyday 22 52.4 

2-3 days a week 12 28.6 

About once a week 4 9.5 

Less often 4 9.5 

Miles per year 

Less than 5000 14 33.3 

5000 - 10,000 14 33.3 

10,000 - 15,000 9 21.4 

15,000 - 20,000 3 7.1 

Over 20,000 2 4.8 

Minor accident involvement 
No 36 85.7 

Yes 6 14.3 

Major accident involvement 
No 38 90.5 

Yes 4 9.5 

Ticket for speeding 
No 35 83.3 

Yes 7 16.7 

Life stress 

Moderately stressed 15 35.7 

A little stressed 21 50.0 

Not at all 6 14.3 

 

Similarly to the original paper that introduced the MDSI (Taubman-Ben-Ari, 2004), 

the highest average values occurred for the Patient and Careful styles while the lowest 

for the Risky style. Similar outcomes have been found in other studies that used this 
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scale (Holland et al., 2010; Bellem et al., 2016). Given the change of scale, the values 

of personality subscales can only be compared relatively with existing literature 

examples (Ulleberg & Rundmo, 2003; Chen, 2009; Lucidi et al., 2010; Mallia et al., 

2015). The values of the Anxiety component in the current study are slightly lower, 

compared to the aforementioned examples. Moreover, the Anger component is also 

at lower levels, with respect to existing findings as in most of the aforementioned 

studies it has been slightly above the average value of 2.5 (2.38-2.88). Finally, 

Excitement seeking follows the trend of previous studies with a higher score, 

compared to the other personality subscales, although it is smaller, in a relative sense, 

compared to other literature.   

 

Table 2.3: Descriptive statistics of the survey responses 

Variable Mean Std. deviation 
   

MDSI scores   

Dissociative 2.1 0.7 

Anxious 2.6 0.8 

Risky 1.7 0.7 

Angry 2.4 0.8 

High-velocity 2.6 0.6 

Distress-reduction 2.6 0.6 

Patient 4.5 0.7 

Careful 4.8 0.6 
   

Personality scores   

Anxiety 3.1 0.8 

Anger 3.0 0.7 

Vulnerability 2.6 0.7 

Excitement seeking 3.4 0.9 

 

2.3.2 Inferential statistics 

A further analysis of the sample statistics has indicated some additional relationships 

between participants’ characteristics and the survey responses. First, a correlation 

analysis has been conducted to examine the latter in more detail. Table 2.4 shows the 

correlation analysis of the personality factors (significant correlations marked with 

bold). Anxiety, Anger and Vulnerability factors have been all positively correlated 

while no significant associations have occurred with respect to Excitement seeking. 

The same pairwise comparison approach has been also applied for the MDSI factors, 

as shown in Table 2.5. Dissociative driving style has been positively correlated with 

the Distress-reduction driving style and as expected negatively correlated with the 

Careful driving style. Anxious driving style has been negatively correlated with the 
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Risky driving style while the latter has been also positively associated with the High-

velocity driving style and negatively with the Patient and the Careful styles. 

Moreover, a positive correlation has occurred between the Angry and the High-

velocity driving styles while the former was negatively correlated with the Patient 

style. As expected, High-velocity factor is negatively correlated with Patient and 

Careful driving styles while one final positive correlation occurred between the latter 

driving styles as well. The correlation has been found to be the highest for the 

Dissociative-Distress reduction pair, followed by the negative correlation between the 

Risky and Anxious driving styles. 

 

Table 2.4: Personality factors correlations 

  Anxiety Anger Vulnerability 
Excitement 

seeking 

Anxiety 
r 1    

p-value     

Anger 
r .568 1   

p-value 0.000    

Vulnerability 
r .770 .504 1  

p-value 0.000 0.001   

Excitement-

seeking 

r -0.251 0.053 -0.056 1 

p-value 0.109 0.739 0.724  

 

One final investigation related to the survey items focuses on the relationship the 

personality and the MDSI items as presented in Table 2.6. Anxiety has been positively 

correlated with the Anxious driving style and negatively with the Risky driving style. 

Moreover, Anger has been positively associated with Angry and High-velocity 

driving styles while a negative correlation has occurred with the Patient driving style. 

The Vulnerability personality factor has been positively correlated only with the 

Anxious driving style. Finally, Excitement-seeking has been positively correlated 

with Risky, High-velocity and Distress-reduction driving styles while negative 

correlations arose with the Patient and Careful driving styles. Out of the 

aforementioned correlations, only the Excitement-seeking and Distress-reduction pair 

has been not anticipated while all the rest are consistent with expectations. Overall, 

the relationships found within and between scales provide some useful insights with 

respect to personality and driving styles, showing that personality traits can play an 

important role shaping up the driving style. The next sections further investigate the 

survey responses and their relationship with the observed behaviour to the various 

driving simulator tasks.  
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Table 2.5: MDSI factors correlations 

 Dissociative Anxious Risky Angry High-velocity 
Distress-

reduction 
Patient Careful 

Dissociative  
r 1        

p-value         

Anxious 
r 0.177 1       

p-value 0.263        

Risky  
r 0.121 -.500 1      

p-value 0.444 0.001       

Angry  
r -0.161 -0.236 0.202 1     

p-value 0.308 0.132 0.199      

High-velocity  
r 0.297 -0.208 .493 .462 1    

p-value 0.057 0.185 0.001 0.002     

Distress-

reduction  

r .503 0.116 0.189 -0.066 0.208 1   

p-value 0.001 0.464 0.232 0.679 0.187    

Patient  
r -0.265 -0.035 -.313 -.344 -.470 -0.082 1  

p-value 0.090 0.825 0.044 0.026 0.002 0.607   

Careful 
r -.375 0.167 -.461 0.004 -.414 -0.289 .473 1 

p-value 0.014 0.290 0.002 0.979 0.006 0.063 0.002  
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Table 2.6: Personality-MDSI factors correlations 

 

As a last step, the differences in personality and MDSI factors have been examined 

with respect to the sociodemographic characteristics presented in Table 2.7. Given the 

small sample size of each sub-group that derived from each sociodemographic 

attribute, nonparametric tests have been preferred to ANOVA. In particular the Mann-

Whitney U test has been used for grouping variables with two categories while the 

Kruskal-Wallis H test was preferred for three or more categories. Significant 

outcomes with respect to gender have been found with respect to Anxiety (Z=-1.829,  
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Table 2.7: Personality-MDSI factors correlations with sociodemographics 

 Anxiety Anger Vulnerability Excitement-seeking Dissociative Anxious Risky Angry 
High-

velocity 

Distress-

reduction 
Patient Careful 

Gender (+)  +    (+) (+)     

Age     (+)  (+)      

Driving experience           (+)  

Frequency of 

driving 
(+) (+)           

Miles per year             

Minor accident 

involvement 
            

Major accident 

involvement 
 +           

Ticket for speeding (+)   ++   ++      

Life stress ++  ++          

(+) Association at the 0.1 level 

+ Association at the 0.05 level 

++ Association at the 0.01 level 
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p=0.067) and Vulnerability (Z=-2.308, p=0.021) personality items with female 

participants having higher average scores. Moreover, some outcomes of weak 

significance have arised concerning Risky (Z=-1.777, p=0.076) and Angry (Z=-1.865, 

p=0.062) driving styles and male drivers. Age has been examined as a dummy variable 

for participants below and above 40 years old. The latter reported in general lower 

scores in the Dissociative (Z=-1.874, p=0.061) and Risky (Z=-1.691, p=0.091) driving 

styles. 

In a similar way to age, driving experience has been also treated as a dummy variable 

for participants driving for less or more than 10 years and only a weak negative 

relationship has occurred between this variable and the Patient driving style (Z=-

1.653, p=0.098). With respect to driving frequency, significant results have been 

found with Anxiety (KW=7.719, p=0.052) and Anger (KW=6.707, p=0.082). In 

particular, participants driving 2-3 days a week have in general lower scores in these 

factors compared to the rest. Another interesting finding that has been found regarding 

major accident involvement and higher scores in the Anger personality factor (Z=-

2.275, p=0.023). Moreover, reported ticket for speeding is related to lower scores in 

the Anxiety personality factor and higher scores in Excitement-seeking and the Risky 

driving style. Finally, participants that reported higher levels of life stress also have 

higher scores in the Anxiety and Vulnerability personality factors. Following the 

relationships found within and between personality and MDSI scales, 

sociodemographic characteristics have provided some further initial insights 

regarding their effects of driving style behaviour. 

 

 2.4. Urban setting 

The current section presents the analysis of the urban setting. The analysis is revolving 

around the main scenarios described in Section 2.2.2. Driving behaviour in these 

scenarios is initially investigated with respect to the effects of time pressure. Then, 

the relationship of the observed driving behaviour in these scenarios is examined 

compared to stress levels, socio-demographic characteristics, personality traits and 

driving style. 

 

2.4.1 Effect of time pressure 

This section presents the analysis of the urban setting of the driving simulator 

experiment. Given the repetition of the urban scenarios, the differences in behaviour 
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and choices of drivers have been examined via comparing the effects of time pressure 

on a series of observed outcomes. The repeated measures ANOVA has been initially 

applied but when the normality assumption of the residuals has not been met, 

Wilcoxon Signed Ranks Test has been ultimately preferred, that can be considered as 

a non-prametric alternative for paired populations (Washington et al., 2010). 

Normality has been tested with the Shapiro-Wilk (1965) test. 

The overtaking task 

The overtaking task has been the first that participants faced in the urban setting. 

Drivers encountered a lead vehicle moving at 20mph-8.94m/s (speed limit 40mph-

17.88m/s) and they could have decided to either overtake or not. The slow vehicle has 

been programmed to take a left turn at a specific intersection after approximately 

500m, in case participants have decided not to overtake.  

The variables considered with respect to the overtaking task are a dummy variable 

indicating if participants have performed an overtaking manoeuvre or not, time taken 

to overtake, minimum headways on the left and right (opposite direction) lanes and 

maximum speed during overtaking. The average values of the aforementioned 

variables are presented in Table 2.8 without (NTP) and under time pressure (TP) 

cases. It is worth mentioning that only 14 participants accomplished an overtaking 

manoeuvre in both cases, thus, most of the examined variables refer to this subgroup 

only. 

Table 2.8: The overtaking scenario variables 

Descriptive Statistics Wilcoxon Signed Ranks Test 

 Mean 
Std. 

Deviation 
N Test Statistics 

All drivers      

Overtaking manoeuvre NTP 0.34 0.480 41 Z -3.000 

Overtaking manoeuvre TP 0.56 0.502 41 p-value 0.003 

      

Overtaking drivers      

Time to overtake NTP (s) 65.60 38.575 14 Z -2.417 

Time to overtake TP (s) 47.27 32.236 14 p-value 0.016 

Left lane min headway NTP 

(s) 
0.508 0.190 14 Z -2.291 

Left lane min headway TP 

(s) 
0.400 0.151 14 p-value 0.022 

Right lane min headway 

NTP (s) 
2.680 0.747 14 Z -2.668 

Right lane min headway TP 

(s) 
3.263 0.801 14 p-value 0.008 

Max speed during overtake 

NTP (m/s) 
18.639 1.623 14 Z -2.354 

Max speed during overtake 

TP (m/s) 
19.657 2.060 14 p-value 0.019 
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The red traffic light task 

This task involves a traffic light that has remained in the red phase approximately 45-

50 seconds, depending when the participants have arrived at a specific location that 

triggers the activation of the scenario. The purpose of the scenario has been to 

investigate whether the combination of waiting time and time pressure would have an 

impact of the speeding behaviour of participants. The variables considered are 

scenario mean speed, maximum and end speed, as well as mean and maximum 

acceleration. All variables have been calculated excluding stationary time. The 

scenario area has included the intersection where the traffic light was placed and an 

area approximately 100m before and 350m after. These distances have been defined 

based on the approach that the road environment has been constructed. The road 

segments have been either single carriageway tiles approximately 250m long or 

segments coded as intersection where the total length varies. With respect to the red 

traffic light task, the intersection area started approximately 100m before the traffic 

light. Moreover, for the end of the scenario, one additional tile after the intersection 

was considered. These distances have been selected for a more straightforward data 

processing however, their impact needs to be further investigated with additional 

analysis. The average values of the considered variables are presented in Table 2.9. In 

all cases, participants adopted higher speed and acceleration under time pressure and 

apart from the mean acceleration, all differences are statistically significant. 

Table 2.9: The red traffic light scenario variables 

Descriptive Statistics Repeated measures ANOVA 

 Mean 
Std. 

Deviation 
N   

Scenario mean speed NTP 

(m/s) 
13.659 1.056 41 F 55.257 

Scenario mean speed TP (m/s) 14.919 1.528 41 p-value 0.000 
    η2 0.580 

Max acceleration NTP (m/s2) 2.004 0.597 41 F 30.906 

Max acceleration TP (m/s2) 2.479 0.690 41 p-value 0.000 
    η2 0.436 
    Wilcoxon Signed Ranks Test 

Scenario max speed NTP (m/s) 18.490 1.549 41 Z -4.749 

Scenario max speed TP (m/s) 20.209 2.493 41 p-value 0.000 

Scenario end speed NTP (m/s) 18.180 1.498 41 Z -4.283 

Scenario end speed TP (m/s) 19.827 2.573 41 p-value 0.000 

Scenario mean acceleration 

NTP (m/s2) 
0.115 0.066 41 Z -1.678 

Scenario mean acceleration TP 

(m/s2) 
0.143 0.084 41 p-value 0.093 
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The amber dilemma scenario 

In the amber dilemma scenario, a traffic light that has been switching to the amber 

indication 3 seconds before they have arrived at the junction area has been presented 

to participants. Drivers could have decided whether to accelerate or brake. As the 

mean values in Table 2.10 indicate, only 7 participants have stopped without time 

pressure and 4 under time pressure, this difference has not been significantly different. 

However, after crossing the junction (whether stopped or not) participants have 

adopted significantly higher speeds under time pressure. 

Table 2.10: The amber dilemma scenario variables 

Descriptive Statistics 
Wilcoxon Signed Ranks 

Test 
 Mean Std. Deviation N Test Statistics 

Stopped NTP 0.171 0.381 41 Z -1.134 

Stopped TP 0.098 0.300 41 p-value 0.257 

End speed NTP (m/s) 17.010 3.674 41 Z -3.79 

End speed TP (m/s) 19.381 4.783 41 p-value 0.000 

 

The gap-acceptance scenario 

In the gap-acceptance task, participants have faced a junction where they have had to 

stop while vehicles have been crossing from the priority perpendicular stream. They 

could have decided to either accept one of the gaps and cross or wait until all vehicles 

had passed. Ten gaps of varying lengths have been presented at both intersections. 

The task has been analysed considering an area covering from approximately 100m 

before the intersection to 500m after. The variables related to speed have been 

generated considering only the area after the junction while several other time-related 

variables were calculated. In particular, the latter include time from stopping to 

crossing the junction (time to clear), the time from crossing to the end of the scenario 

(junction to finish) area and the total scenario time. As shown in Table 2.11, 

participants adopted significantly higher speeds and completed the task faster under 

time pressure. 

Free driving 

The previous sections have presented some basic findings with respect to the main 

scenarios of the urban setting. The performance of participants has been also 

examined in one additional road segment, without any specific scenarios, between the 

long duration traffic light and the amber dilemma task. Similarly to the previous 

analysis, two different cases have been tested, without and under time pressure. Four 
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variables related to speed have been calculated and the results are presented in Table 

2.12. The values under time pressure were in all cases significantly higher. 

 

Table 2.11: The gap-acceptance scenario variables. 

Descriptive Statistics 
Wilcoxon Signed Ranks 

Test 

 Mean 
Std. 

Deviation 
N Test Statistics 

Time to clear NTP (s) 34.674 14.021 41 Z -4.101 

Time to clear TP (s) 26.539 17.397 41 p-value 0.000 

Junction to finish NTP (s) 27.802 2.945 41 Z -3.726 

Junction to finish TP (s) 26.192 3.602 41 p-value 0.000 

Mean speed after junction 

NTP (m/s) 
22.453 2.367 41 Z -3.816 

Mean speed after junction 

TP (m/s) 
23.972 3.166 41 p-value 0.000 

Max speed after junction 

NTP (m/s) 
27.848 3.756 41 Z -4.62 

Max speed after junction 

TP (m/s) 
30.623 4.573 41 p-value 0.000 

Total scenario time NTP 

(s) 
76.022 15.398 41 Z -4.788 

Total scenario time TP (s) 64.665 20.677 41 p-value 0.000 

 

Table 2.12: The free driving scenario variables 

Descriptive Statistics Wilcoxon Signed Ranks Test 

  Mean 
Std. 

Deviation 
N Test Statistics 

Mean speed NTP (m/s) 18.439 1.365 41 Z -4.529 

Mean speed TP (m/s) 19.861 2.699 41 p-value 0.000 

Max speed NTP (m/s) 20.105 1.578 41 Z -3.751 

Max speed TP (m/s) 21.709 3.587 41 p-value 0.000 

% above 40mph NTP 64.008 34.015 41 Z -2.844 

% above 40mph TP 77.738 31.294 41 p-value 0.004 

% above 60mph NTP 0.048 0.309 41 Z -2.023 

% above 60mph TP 4.127 13.486 41 p-value 0.043 

 

2.4.2 The effects of stress/arousal levels as measured by the physiological 

responses 

Following the same methodological approach, each scenario described in the previous 

section has been also investigated in terms of the physiological responses of 

participants. For this analysis, heart rate (HR) and skin conductance (SC) have been 

considered. Regarding the former, average values have been calculated for each 

scenario from the original observations and also their z-scores that were calculated 
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following the example of Picard et al. (2001). The SC signals have been processed 

using the Matlab package Ledalab (Karenbach, 2005) to extract the skin conductance 

responses. Based on findings in existing literature (Sano et al., 2014), a critical value 

equal to 0.01μS has been selected as the minimum critical SCR. The skin conductance 

responses (SCRs) have been obtained applying trough-to-peak (TTP) and continuous 

decomposition analysis (CDA). Thereafter, the frequency and the mean amplitude of 

responses have been calculated for each scenario. A mean value has been also 

calculated for the z-scores of the responses’ amplitude. However, before this 

calculation, the signal has been transformed from a standard normal variable N[0,1] 

to a random variable with mean equal to 5 and standard deviation 1, as N[5,1]. This 

transformation has been applied owing to the approach that the means have been 

calculated. For instance, if no SCRs have been detected in an area, it would result in 

a zero value, concerning the original signal. However, for the normalised signal, the 

absence of any responses could not be replaced with zero since this value corresponds 

to the mean of a standard normal variable. Thus, after transforming the original z-

scores into a normal random variable N[5,1] all values have been positive, and it has 

been more reasonable to replace with zero the cases where no SCRs have been 

detected. 

The results of this analysis are presented detailed in Appendix A (Tables A.1-A.3). A 

main finding has been that almost in all cases HR has been higher in the first half of 

the urban setting, without the induction of time pressure. Although this finding is not 

consistent with expectations, it can be ascribed to learning effects and also 

familiarisation of participants with the simulator environment. As explained in 

Section 2.2.2, participants had a practice session before starting the main experiment, 

however, familiarisation effects might have significantly influenced also the urban 

driving session. The findings from the TTP and CDA analysis of the SC signal also 

resulted in ambiguous results as no clear conclusions could be drawn. Overall, 

physiological responses have not provided any clear insights regarding drivers’ 

behaviour in the urban setting while the majority of significant differences occurred 

in favour of the area without time pressure. 

 

2.4.3 Interaction with sociodemographic characteristics 

The effects of the sociodemographic characteristics have been investigated with the 

nonparametric Mann-Whitney U and Kruskal-Wallis H tests. The tests have been 

applied to all variables of the urban scenarios. Given the high number of all 

combinations, the detailed tables are provided in Appendix A.2, (Tables A.4-A.8) 
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while only some important associations are mentioned in the current section. The 

results are reported up to 0.1 level of significance. 

With respect to gender, males have been more likely to attempt an overtaking 

manoeuvre both without and under time pressure. Moreover, under time pressure 

males have accomplished the manoeuvre in less time while they also had higher 

maximum speed during the passing. Finally, female participants have had higher 

values of minimum headway on the right lane which indicates that they have been 

withdrawing faster from the opposite lane after completing their manoeuvre. Age has 

been investigated as a dummy variable with 40 years as critical value. Participants 

below 40 have been in general more likely to accomplish an overtaking manoeuvre 

while without time pressure, they have attempted the passing earlier. Additionally, 

their minimum following distance have been also smaller, compared to older drivers. 

Participants with driving experience less than 10 years have been also more likely to 

do a passing under time pressure and adopted shorter following headway however, 

regarding this finding there might be some confound with age. It is worth mentioning 

that under time pressure, participants that reported major accident involvement, had 

smaller maximum speed while overtaking however, given that this sample consisted 

only by three people this outcome should be treated with some caution. The same 

applies for participants that reported a ticket for speeding. For the latter, the time to 

overtake has been shorter but they also had shorter minimum time headway on the 

opposite lane which indicates that they completed the manoeuvre faster.  

Regarding the red traffic light scenario, males have had higher mean, maximum and 

end speed under time pressure. Moreover, male participants have had higher values 

of maximum acceleration both without and under time pressure. Age has also a 

significant effect since for all variables related to speed, both without and under time 

pressure, drivers below 40 years had significantly higher values. Participants that 

reported involvement in major accident and a ticket for speeding have had higher 

average speed without time pressure. The latter also had higher maximum acceleration 

without time pressure. One last interesting outcome regarding this scenario has been 

that participants reported the highest life stress also had higher maximum acceleration 

under time pressure. 

In the amber dilemma scenario, male drivers have applied higher scenario end speed 

under time pressure. Moreover, drivers below 40 years have had higher scenario end 

speed both without and under time pressure. Also, participants with driving 

experience above 10 years, are more likely to stop at the intersection under time 

pressure and also have smaller maximum scenario end speed. Finally, participants 

with major accident involvement have been more likely to stop at the intersection 
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without under time pressure, although this outcome should be treated again with 

caution because of the small sample size. 

The amber dilemma scenario has been followed by the gap-acceptance task. In the 

latter, males have had shorter junction to finish times while they also have applied 

higher mean and maximum speeds. Moreover, participants below 40 years have 

shorter junction to finish times and higher mean speeds in the same area both without 

and under time pressure. Also, participants that reported daily driving have crossed 

the junction faster in both cases while they have completed the total scenario faster 

without time pressure. Regarding drivers that reported involvement in minor accident, 

they have higher maximum speed after crossing the junction. Additionally, 

participants having being fined for speeding have crossed the junction and completed 

the total scenario significantly faster under time pressure. 

Finally, with respect to the free driving segment, males have had higher mean and 

maximum speed and proportion spent above 40mph. Some similar findings have 

occurred for participants below 40 years. In particular, they have had higher mean 

speed and proportion above 40mph both without and under time pressure. The miles 

driven per year also have a significant effect on this scenario as, without time pressure, 

participants that reported 10,000 and above had higher values of mean, maximum and 

proportion spend above 40mph. Moreover, participants that reported major accident 

involvement have higher mean speed without time pressure while as expected, those 

who reported a ticket for speeding, have had a significantly higher proportion spent 

above 60mph. The same applies also for participants that reported the lowest levels of 

life stress. 

 

2.4.4 Interaction with personality traits 

Following the same approach with the previous section, also the effects of personality 

have been investigated for each scenario. Pearson correlation analysis has been 

applied to compare the mean scores of each personality factor with observed 

behaviour. All the significant correlations are presented in detail in Appendix A.2 

(Tables A.9-A.13) 

With respect to the overtaking scenario, only one significant and positive correlation 

has been found between Anxiety and minimum headway on the right lane without 

time pressure. This might indicate that more anxious participants have attempted to 

complete the manoeuvre faster. 
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More correlations have been found between personality items and the variables of the 

red-light scenario. Most of them are related to the Excitement-seeking and the Anxiety 

factors. In particular, the former was related to higher mean speed both without and 

under time pressure. Also, Excitement-seeking has been positively related to 

maximum acceleration under time pressure. On other hand, Anxiety has been 

negatively correlated with the maximum speed without and under time pressure and 

also speed at the end of the scenario. Finally, Vulnerability has been negatively 

associated with the scenario maximum speed under time pressure. 

With respect to the amber dilemma scenario under time pressure, Excitement-seeking 

has been negatively related to stop at the intersection and positively related to the 

speed at the end of the junction. No other significant correlations have been found 

regarding the rest of the personality factors. 

Excitement-seeking also has had a significant effect on most variables of both gap-

acceptance tasks. In particular, participants with higher scores in this personality 

factor completed the task faster, after crossing, while they also have had higher mean 

and maximum speeds. A non-expected outcome has been related to the total time of 

scenario as it has been positively correlated with Excitement-seeking. This finding 

implies that these participants waited more time at the intersection to accept a gap. 

However, Anxiety has been negatively related to the total scenario time which 

indicates that the effect of this factor has had a positive effect on accepting a gap 

faster. 

Excitement-seeking and Anxiety have had a major role also in the free driving task. 

More specifically, the former has been related to higher mean speed, maximum speed 

and proportion spent above 60mph. On the other hand, Anxiety has been negatively 

correlated with mean and maximum speed under time pressure and proportion spent 

above 60mph for both time pressure states. 

Overall, the most influential personality factor has been Excitement-seeking which 

was in general related to increased speed and acceleration. The opposite effect has 

occurred with respect to Anxiety and this factor seems to be related with more 

cautious behaviour. 

 

2.4.5 Interaction with the driving style 

The same approach of Pearson correlations has been also adopted between the 

variables of each scenario and the driving style factors of the MDSI scale. All 

significant correlations are reported in Appendix A.2 (Tables A.14-A.18)  
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Regarding the overtaking scenario, Patient driving style has been negatively 

associated with accomplishing a passing manoeuvre without time pressure. Moreover, 

another significant and negative correlation have occurred between time to overtake 

without time pressure and the High-velocity driving style. 

Multiple significant correlations have occurred between the red traffic light scenario 

and various reported driving styles. In brief, the Risky driving style has been related 

to higher speeds both without and under time pressure and also with maximum 

acceleration. Some similar positive and significant effects have been found with 

respect to the Angry driving style while also the High-velocity driving style has been 

positively related to mean speed under time pressure. On the other hand, the Patient 

driving style has been negatively correlated with speed and acceleration variables. It 

is worth mentioning that some non-expected outcomes have occurred regarding the 

Distress-reduction driving style since it has been found to have a positive effect on 

some variables related to speed and acceleration. 

Regarding the amber dilemma scenario, the Dissociative driving style has been 

negatively related to stopping at the intersection under time pressure while on the 

other hand Careful driving style has been positively correlated with the same variable. 

Moreover, the Dissociative and Risky styles have been positively correlated with 

speed at the end of the junction, under time pressure, while Patient and Careful styles 

have had a significantly negative effect. 

The various reported driving styles also have had some significant effects on the gap-

acceptance tasks variables. More specifically, risky drivers have completed the task 

faster in both cases and also have had significantly higher speeds. Some similar 

findings have also occurred for the High-velocity and Angry driving styles while the 

opposite effects were found regarding the Patient and Careful styles. Finally, Distress-

reduction driving styles have exhibited some findings closer to the more risk-taking 

styles as, without time pressure, a positive correlation occurred regarding maximum 

speed after junction and a negative with the junction to scenario end time. 

 

2.5. The motorway setting 

The current section is organised similarly to Section 2.4. The analysis revolves around 

a series of driving behaviour-related variables, as calculated for each of the six main 

motorway sections. Differences in behaviour are initially examined with respect to 

time pressure and stress levels while the interaction with socio-demographic 

characteristics, personality traits and self-reported driving style are also investigated. 
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2.5.1 The effects of time pressure 

As explained in Section 2.2.2, the motorway scenario has been composed of several 

segments with various traffic conditions and time pressure levels. These differences 

have been expected to influence drivers’ behaviour, thus some basic variables have 

been calculated and compared among the various motorway sections. The variables 

have been related to speeding and acceleration behaviour, lane-changes, car-following 

and pedal depression. A series of repeated ANOVA tests have been applied, in order 

to investigate variations in driving behaviour across the various motorway segments. 

When the assumption of normality has not been met, it has been replaced by Wilcoxon 

Signed Ranks Test. It should be mentioned that only the main areas have been 

considered in the analysis and the intermediate intersection sections have been 

excluded. 

 Speeding and acceleration behaviour 

The main variables considered, with respect to speeding and acceleration behaviour, 

have been mean speed, maximum speed, percentage spent above the speed limit, 

standard deviation of acceleration, mean and standard deviation of positive and 

negative acceleration. All results are summarised in Appendix A.2, (Tables A.19-

A.22) 

The observed patterns regarding speed, have showed a series of relatively consistent 

outcomes with respect to the expected effects of each scenario on driving behaviour. 

In particular, the lowest average speed has been observed in the M4 motorway 

segment while the highest have occurred in the M1 segment. Although no time 

pressure has been applied in the latter area, the traffic environment has been still being 

formulated and thus participants have experienced more free-flow conditions. The 

average speed in M1 has been significantly higher compared to all the rest segments, 

apart from M5. Interestingly, although time pressure has been applied also in M6, 

participants adopted lower speeds in that area. Although this might seem as an 

unexpected outcome at first glance, it should be considered that participants have been 

aware that they have been driving at the final segment and have had to pull over at the 

next intersection. Participants have not been familiar with the exact location of the 

next intersection thus, they possibly have adapted their speed accordingly. This 

finding may imply that path-plan has a stronger effect on driving behaviour compared 

to time pressure. Another outcome regarding the effects of time pressure has been 

observed between segments M2 and M3. The average speed has been higher in the 

latter however, the difference was not statistically significant. Similar patterns have 



2.5. The motorway setting 

69 

 

been also observed in the rest of the variables related to speed. A notable mention 

regards the difference in the percentage above the speed limit between segments M3 

and M5. Although time pressure has been applied in both cases, the average value has 

been smaller in M3 are indicating safety concerns owing to the differences in the 

behaviour of the surrounding traffic. However, this difference has not been 

statistically significant. 

The next indicator of drivers’ performance across the various motorway segments has 

been the standard deviation of acceleration. As expected, a significantly higher 

variation in acceleration have been noticed for areas M2 and M3, given the nature of 

the scenarios there. A high value has also occurred in section M6. Considering that 

the average acceleration is always expected to be around zero (e.g. the typical example 

of the NGSIM trajectory data; Alexiadis et al., 2004), and thus not very instructive, 

the differences in acceleration patterns have been investigated more explicitly in terms 

of positive and negative values. This latter distinction has been also applied in traffic 

microsimulation studies (e.g. Ahmed, 1999). With regards to the average values of 

both positive and negative acceleration, the patterns have been close to those 

presented for the standard deviation. The higher rates took place in areas M2 and M3 

indicating that drivers have had more disturbed behaviour there. The smallest average 

value of positive acceleration has been noticed in the M1 area where no time pressure 

was applied and traffic conditions were milder.  

Similar outcomes have been also derived from the standard deviation of positive and 

negative acceleration. The higher values were observed in sections M2, M3 and M6. 

The implications of these findings are further investigated in the next sections 

combined with additional variables considered. 

Lane choice and lane change behaviour 

The various motorway segments have yielded different lane-change behaviour. This 

has been investigated with the frequency of lane-changes and lane choice. It should 

be mentioned that another variable to be considered could have been the total number 

of lane-changes, but the lane-change frequency has been preferred given the 

differences in the duration spent on each segment. 

An interesting outcome has been that on average, lane changes have occurred more 

frequently in section M4. This finding has been potentially a result of drivers’ efforts 

to take advantage of potential breakthroughs and manoeuvre through slow traffic. The 

lane-change rate has also remained high in segments M5 and M6, compared to the 

three first ones. The rationale behind this behaviour could be related to the presence 

of time pressure in these areas; drivers attempted to avoid following slower moving 
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vehicles. Interestingly, the lowest lane-change frequency has taken place in area M2 

where the presence of aggressive neighbouring traffic increased cautiousness. 

However, under the same traffic conditions, participants carried out lane-changes 

more frequently in section M3.  

A more detailed investigation of the lane choice behaviour is presented in Appendix 

A.2, Tables A.23-A.24 where the proportion spent in each lane is outlined. The use of 

the leftmost lane has been significantly higher in the last motorway segment. As 

discussed previously, path-plan effects could have driven the participants towards this 

behaviour as the exit lane to pull over at the end of the experiment was at that side of 

the motorway. The use of the leftmost lane has been also significantly higher in 

section M4, compared to most of the other segments. This could be a result of the 

higher lane-change rate in this area since, as already explained, drivers attempted to 

manoeuvre more to avoid slow traffic. 

Following behaviour 

Following behaviour has been investigated with variables related to mean time and 

space headway and also the proportion of time headway spent below 1.5 seconds. As 

expected, the highest mean time headway occurred in section M4, given the slow 

speeds of the traffic. Moreover, high time headways have been observed in the M1 

segment while as expected, the shortest headways have been found in section M3, 

given the aggressive nature of the traffic and the time pressure. Similar trends have 

been also noticed regarding the proportion spent under 1.5 seconds and also space 

headway. With respect to the latter, short space headways have been also observed in 

the last motorway segment. A potential interpretation could be that, given 

participants’ awareness that they were driving on the last section, and the presence of 

time pressure, willingness to adopt shorter following distances might have been 

increased, in order to avoid finishing the motorway task late. 

 Pedal depression 

The last indicators of participants’ performance have been related to pedal depression. 

The variables considered are standard deviation of accelerating and braking 

(Appendix A.2, Table A.26). In sections M1 and M4 participants have had 

significantly smaller values compared to M2 and M3 while the same applied also 

regarding braking. The latter has been potentially a result of the aggressive traffic in 

these areas which forced participants to accelerate and brake more frequently. The 

high braking value in braking at section M6 could be a result of the braking scenario. 

This finding could be also supported by the high value of standard deviation observed 

regarding the negative acceleration of the same section.  
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2.5.2 The effects of stress or arousal as measured by the physiological responses 

Physiological responses at the scenario level 

Physiological responses have been initially investigated similarly to the urban setting 

through pairwise comparisons between motorway segments. The tested variables have 

been extracted the same way described in Section 2.4.2. Moreover, the sum of 

amplitudes has been also calculated but, given the differences in the duration of each 

motorway area, the mean values were preferred at this stage of the analysis. The 

detailed results are presented in Appendix A (Tables A.27-A.29). The patterns of 

physiological responses have been different, depending on which variable was being 

examined. For instance, both HR variables (raw and normalised) have had higher 

values at the first two segments and gradually decreasing until section M4 (slow 

traffic). After this section, HR patterns have started increasing again. Similar 

outcomes also occurred regarding the mean values of SCRs both with TTP and CDA 

analysis. However, the frequency of responses has had a slightly different pattern as 

it started from lower values and has an increasing trend across the motorway. 

Moreover, the normalised mean amplitudes have been highest during M4 area which 

is not consistent with the previous findings. Overall, there has been some ambiguity 

regarding physiological responses in each road segment while almost all associations 

were not significantly different.  

Physiological responses and driving behaviour 

The differences in physiological responses have not been insightful at the scenario 

level however, given the duration of the motorway setting and the constant interaction 

of participants with traffic, they have been also compared to the variables presented 

in section 2.5.1 with Pearson correlation analysis. This analysis refers to all the areas 

e.g. mean speed in each of the six main areas for each participant was compared with 

the respective physiological responses. The detailed findings of the significant results 

are presented in Appendix A.2, Table A.30. 

Significance levels might be different, whether raw or normalised responses are 

considered. With respect to HR, some positive correlations have occurred with the 

mean and the maximum speed and also with the standard deviation of acceleration. 

Moreover, some additional positive associations have been found with the proportion 

spent on the right-most lane, the standard deviation of negative acceleration and 

braking and finally, a negative correlation with the mean negative acceleration. These 

findings indicate that increase of HR can possibly lead to a more agitated driving style. 

The same approach has been also applied to the SC analysis but in this case, also the 

sum of responses has been considered. The CDA analysis shows a number of positive 
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correlations regarding some of the SC variables with the proportion spend above the 

speed limit and the standard deviation of acceleration. Moreover, a positive 

association has been found with the total number of lane changes and the proportion 

of time spent on the left-most and right-most lane while a negative relationship 

occurred regarding the use of the middle lane. This finding might imply that increased 

SC activity could have resulted to either more aggressive or more cautious behaviour. 

Additionally, a series of relationships have been found with the mean values and 

standard deviation of positive and negative acceleration. In particular, increase in SC 

amplitude has associated with higher acceleration, smaller deceleration and increase 

of both standard deviations. Also, a positive correlation has occurred with the standard 

deviation of the gas pedal depression. 

The TTP analysis of the SC signal has resulted on very similar significant outcomes. 

The main difference has been a positive correlation also with brake pedal depression. 

In general, increase of SC variables has been also correlated with less steady driving 

style supporting to some extent the findings from HR. Finally, it might be worth 

mentioning that the frequency of responses has resulted only in one significant 

correlation and thus, at this level of aggregation, it might not be an informative 

indicator. 

 

2.5.3 Interactions with sociodemographic characteristics 

The effects of the sociodemographic characteristics have been investigated with the 

nonparametric Mann-Whitney U and Kruskal-Wallis H tests. Although different 

relationships could be found at the various sections, given that the whole motorway 

was continuous and there has not been any clear indication to participants regarding 

the changes in traffic conditions, it was decided to investigate the relationship of 

sociodemographic characteristics and the motorway as a whole. The reported results 

refer to significance either at the 0.05 or 0.1 level. 

Some significant gender effects have occurred on the average speed (Z=-2.012, 

p=0.024) and percentage above speed limit (Z=-2.297, p=0.022). In both cases, the 

values for male drivers are higher. It is worth mentioning that regarding the latter, the 

average value for male participants has been almost twice as high as the one for 

females (18.56% and 9.38% respectively). Moreover, males have had significantly 

higher mean (Z=-2.012, p=0.044) and standard deviation (Z=-2.329, p=0.020), 

regarding positive acceleration, and also higher standard deviation in the gas pedal 

depression (Z=-2.646, p=0.008). Moreover, some additional relationships have been 

found between minor accident involvement and higher mean headway (Z=-1.740, 



2.5. The motorway setting 

73 

 

p=0.082) and lane-change frequency (Z=-1.783, p=0.075). This finding could indicate 

that these participants preferred to change lanes more frequently in order to avoid 

following vehicle at closer time headways. No other significant relationships have 

been found regarding the effects of sociodemographic characteristics. However, as 

already mentioned, it is likely that an investigation of sociodemographic 

characteristics at scenario-motorway segment level would result in more significant 

relationships and would be something to be considered. 

 

2.5.4 Interactions with personality traits 

The relationship of personality factors with the various variables has been investigated 

for the whole length of the motorway experiment with Pearson correlation analysis. 

The significant results are presented in Table 2.13.  

Regarding speeding behaviour, Anxiety has been related to smaller maximum speed 

and proportion above the speed limit. Another interesting outcome has been that 

Angry personality trait is also related to a steadier driving style in terms of 

acceleration while, as expected, Excitement-seeking is positively correlated with the 

percentage spent above the speed limit. 

Regarding lane-change behaviour, Anxiety has been negatively correlated with lane-

change number and frequency while Vulnerability has been positively associated with 

more time spent in the middle lane. With respect to following behaviour, Excitement-

seeking has resulted in associations with shorter headways and higher proportion 

spend below 1.5 seconds. The same factor has been also associated with higher rates 

of gas and brake pedal depression while on the other hand, some negative correlations 

occurred, regarding Anxiety and Anger and some pedal depression variables. 

 

2.5.5 Interactions with driving style 

The same approach as personality traits has been also applied for the driving style 

factors of the MDSI scale, however, fewer significant correlations were found in this 

case. The significant results are included in Table 2.14. In particular, Risky driving 

style has been associated positively with mean speed, maximum speed and proportion 

spent above the speed limit. On the other hand, Patient driving style has been 

negatively correlated with mean speed and Careful style with maximum speed. Also, 

Patient style is positively correlated with higher proportion spent on the left-most lane 

and negatively correlated with the right-most lane. The proportion spend on the 

middle lane has been positively associated with the Anxious and the Distress-
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reduction styles. Finally, Risky driving style has been positively correlated with the 

standard deviation of gas pedal depression. 

 

Table 2.13: Correlation matrix of personality factors with the motorway setting 

variables 

 Anxiety Anger Vulnerability Excitement 

Maximum speed 
r -.396 -0.141 -0.149 0.161 

p-value 0.017 0.411 0.387 0.347 

% above speed limit 
r -.350 -0.228 -0.152 .404 

p-value 0.036 0.181 0.377 0.015 

Std. deviation of 

acceleration 

r -0.265 -0.288 -0.124 0.184 

p-value 0.118 0.089 0.471 0.282 

Mean of negative 

acceleration 

r 0.285 0.263 0.129 -0.139 

p-value 0.092 0.121 0.452 0.418 

Std. Dev. of positive 

acceleration 

r -.359 -0.287 -0.280 0.231 

p-value 0.032 0.090 0.098 0.175 

Std. Dev. of negative 

acceleration 

r -0.245 -0.289 -0.083 0.133 

p-value 0.149 0.087 0.630 0.438 

Total lane-changes 
r -0.293 -0.230 -0.027 -0.065 

p-value 0.083 0.178 0.875 0.705 

Lane-change frequency 
r -0.305 -0.241 -0.029 -0.009 

p-value 0.070 0.156 0.867 0.959 

% spent on the middle lane 
r 0.180 0.021 .341 -0.101 

p-value 0.293 0.902 0.042 0.557 

Mean time headway 
r 0.232 0.146 0.174 -.408 

p-value 0.173 0.395 0.309 0.013 

% spent at time headway < 

1.5 secs 

r -0.159 -0.201 -0.150 0.317 

p-value 0.353 0.239 0.383 0.059 

Std. deviation acceleration 

pedal depression 

r -0.296 -0.172 -0.156 .382 

p-value 0.079 0.316 0.365 0.021 

Std. deviation of braking 
r -0.248 -0.168 0.014 0.320 

p-value 0.145 0.326 0.935 0.057 

 

2.6. Summary of findings 

The current analysis has been based on an extensive driving simulator experiment that 

presented to participants two different settings, in terms or road characteristics, an 

urban road and a motorway. Given the differences in the nature of the two settings, 

different outcomes were extracted about driving behaviour (as presented more 

detailed in Sections 2.4 and 2.5) which can have useful practical applications. 

In the urban scenario, driving behaviour has been tested with respect to specific events 

that have been taking place along the road. Interestingly, participants’ behaviour have 

been almost in all cases significantly different under time pressure. This difference 

has been expressed, under time pressure, via higher speeds and acceleration rates, 

while in other cases participants completed the scenarios faster. For instance, under 
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time pressure, more participants have accomplished a passing manoeuvre and they 

have started overtaking earlier at the overtaking scenario. Moreover, less participants 

have stopped at the amber dilemma scenario while the time to complete to gap- 

acceptance task was shorter under time pressure. Findings in existing literature 

(Cœugnet et al., 2013; Naveteur et al., 2013) have showed that drivers perceive speed 

differently under time pressure and become more impatient. The outcomes from the 

urban setting have supported the results of the aforementioned studies. Regarding 

sociodemographic characteristics, the results have been expected with respect to 

gender and age. Moreover, some additional significant findings have been found 

regarding involvement in minor accident and having received a fine for speeding, 

showing that these can also be indicators of risky driving behaviour. An interesting 

finding has been that several traits as e.g. excitement-seeking and anxiety or other 

self-reported driving styles have been correlated with observed behaviour. In recent 

literature (van Huysduynen et al., 2018) some modest correlations have been also 

found between the MDSI scale and driving simulator behaviour indicating that self-

reported scales can be insightful about the actual driving behaviour. However, in the 

urban scenario no significant correlations have occurred between time pressure and 

stress levels. Although this could have been a result of familiarisation with the 

simulated environment and learning effects, it could have also been the case that stress 

levels have not been affected by time pressure in the urban setting. 

The motorway setting has been investigated in terms of speeding, lane choice and 

lane-change behaviour, following behaviour and pedal depression. Most of the 

differences across the various segments have been expected while also significant 

correlations have been found with some traits. However, the most interesting finding 

regarding this scenario has been that some of the physiological responses have been 

correlated with the examined traffic variables. In particular, increase of physiological 

variables has been positively correlated with higher speeds and standard deviation of 

acceleration. This might be an indication for a bidirectional relationship between 

stress levels and agitated or risky driving behaviour which may also have safety 

implications. 
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Table 2.14: Correlation matrix of MDSI factors with the motorway setting variables 

 Dissociative Anxious Risky Angry High-velocity Distress-reduction Patient Careful 

Mean speed 
r 0.037 -0.034 .379 -0.024 0.101 0.034 -0.298 -0.247 

p-value 0.831 0.845 0.023 0.888 0.557 0.846 0.077 0.146 

Maximum speed 
r -0.033 -0.186 0.284 0.063 0.050 0.081 -0.206 -.422 

p-value 0.850 0.276 0.093 0.717 0.773 0.639 0.229 0.010 

% above speed limit 
r -0.013 -0.085 .451 -0.019 0.097 0.091 -0.190 -0.244 

p-value 0.938 0.620 0.006 0.913 0.573 0.597 0.267 0.152 

% spent on the left-

most lane 

r 0.005 -0.119 -0.133 0.044 -0.111 -0.041 0.285 0.066 

p-value 0.976 0.489 0.439 0.797 0.518 0.810 0.093 0.701 

% spent on the 

middle lane 

r 0.198 .349 -0.228 -0.233 0.016 0.281 0.041 0.242 

p-value 0.246 0.037 0.181 0.172 0.926 0.097 0.814 0.154 

% spent on the right-

most lane 

r -0.144 -0.137 0.277 0.124 0.088 -0.161 -0.282 -0.228 

p-value 0.401 0.424 0.102 0.472 0.611 0.348 0.096 0.181 

Std. deviation 

acceleration pedal 

depression 

r 0.085 -0.095 0.329 0.014 0.021 0.152 -0.085 -0.198 

p-value 0.621 0.582 0.050 0.935 0.902 0.377 0.621 0.248 
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2.7. Conclusion 

The current study has attempted to investigate driving behaviour and the effects of 

traffic conditions, time pressure and individual characteristics (both static and 

dynamic). Driving behaviour has been observed within a driving simulator 

environment while at the same time, also physiological responses of drivers were 

collected. 

Driving behaviour was studied over a series of various situations and significant 

differences have been found with regarding the effects of time pressure and traffic 

conditions. These outcomes highlight the potential and significance of the use of 

driving simulators to investigate several aspects of driving behaviour. Moving a step 

forward, driving simulators can be used for the estimation of typical microscopic 

traffic simulation models (see Toledo, 2007 for an extended review), augmented with 

drivers’ attributes or situational factors that are usually omitted. This may lead to the 

improvement in the representation of driving behaviour since, as found in the existing 

literature, and also in the current study, individual characteristics, traits and stress may 

significantly influence driving behaviour. Thus, the incorporation of these variables 

in the existing models could increase their behavioural representativeness and 

accuracy. 

Another focus of the current work has been to invstigate the relationship of driving 

behavior with physiological responses. Considering the latest developments in the 

field of artificial emotional intelligence (Emotion AI), it is possible to device 

interventions to reduce stress (Hernandez et al., 2016) and significantly increase road 

safety. For instance, advances in vehicle operation technologies offer the opportunity 

for designing interventions to warn/advise drivers, limit acceleration- deceleration 

capabilities, introduce calming measures and even take over full control of the vehicle. 

Despite the promising nature of the results, the study has a series of limitations that 

should be acknowledged. First, the data has been collected in a simulated environment 

and thus may be behaviourally incongruent due the experimental nature. Moreover, it 

should be noted that in the urban-rural scenario, time pressure has been always 

induced at the second half of the road without counterbalancing between the two tasks. 

Though this approach has been also applied in other stress-related research (see 

Rendon-Velez et al., 2016 for example) and the learning effect is likely to be minimal 

given the experimental design, this is yet to be tested. Similarly, the order of scenarios 

and time pressure in the motorway setting has been always fixed for all participants. 

This experimental design might has influenced driving behaviour, especially in the 
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last segments (e.g. owing to fatigue or impatience). Moreover, the emoji has been 

always green during the first part of the motorway for purposes of realism, as the 

drivers would not have expected to see an amber or red indication at the very early 

stages. For the same reason, there was some type of time pressure at the last motorway 

segments. In terms of each individual scenario, it has been decided to present to 

participants a green to red sequence of time pressure indicators within an effort to 

minimise the risk of increasing their physiological responses at the beginning of a 

specific scenario that would potentially influence and prevent them from returning to 

the baseline levels. Also, it should be mentioned that no baseline levels of 

physiological responses were collected. This practice is advised for signal 

normalisation to reduce inter-individual differences (Healey & Picard, 2005; Singh & 

Queyam, 2013) or to compare changes across different emotional states (e.g. Yin et 

al., 2018). However, baseline measurements are not essential as there are several 

examples in literature that signal normalisation has been applied using the whole 

range of the signal, rather than comparing with values during rest (Picard et al., 2001; 

Wang et al., 2013; Handouzi et al., 2014). Given that the most important has been the 

detection of relative changes in physiological responses for different driving 

conditions in the simulator environment, the main trends and findings are not expected 

to be affected by the lack of comparison with baseline levels. To the aforementioned 

limitations, it should be added a potential bias from the rescaling of the NEO-PI-R 

scale. 

The results presented in the current paper encourage us for a deeper analysis of driving 

behaviour. Driving behaviour can be separately examined in terms of e.g. overtaking 

behaviour, gap-acceptance behaviour, car-following and lane-change. For each 

component of driving behaviour, it is e.g. possible to estimate models based on 

existing microscopic simulation approaches. At the same time, drivers’ characteristics 

as socio-demographics and stress levels can be incorporated, extending this way the 

traditional model specifications. This approach, is possible to provide further insights 

and a better understanding on driving behaviour and how it is influenced by individual 

and contextual factors. 
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CHAPTER 3: MODELLING THE EFFECTS OF STRESS 

ON GAP-ACCEPTANCE DECISIONS COMBINING 

DATA FROM DRIVING SIMULATOR AND 

PHYSIOLOGICAL SENSORS  

 

ABSTRACT Driving behaviour is an inherently complex process affected by various 

factors ranging from network topography, traffic conditions and vehicle features to 

driver characteristics like age, experience, aggressiveness and emotional state. Among 

these, the effects of emotional state and stress have received considerable attention in 

the context of crash analysis and safety research where driving behaviour has been 

found to be affected by drivers’ mental state/stress, cognitive workload and 

distraction. However, these studies are mostly based on questionnaire surveys and 

self-reports which can be prone to response bias and reporting/measurement errors. 

The analyses are also often descriptive in nature. In a parallel stream of research, 

advances in sensor technologies have made it possible to observe drivers’ stress 

through human physiological responses, e.g. heart rate, electro-dermal activity etc. 

However, these studies have primarily focused on detecting stress rather than 

quantifying or modelling its effects on driving decisions. The present paper combines 

these two approaches in a single framework and investigates the gap-acceptance 

behaviour of drivers during an intersection crossing, using data collected using a 

driving simulator. The participants are deliberately subjected to stress induced by time 

pressure, and their stress levels are measured using two physiological indicators, 

namely Electrodermal Activity (skin conductance) and heart rate. In addition to 

statistical analyses, discrete choice models are developed to link the accept-reject 

choices of a driver with the driver demographics, traffic conditions and stress levels. 

The results of the models indicate that increased stress levels significantly increase 

the probabilities of accepting a gap. The improvement in model fit and safety 

implications derived from model estimates are also discussed. The insights from the 

results can be used for designing appropriate intervention strategies to improve safety.  

 

 



Chapter 3: Modelling the effects of stress on gap-acceptance decisions combining 

data from driving simulator and physiological sensors 

86 

 

3.1 Introduction 

Road safety continues to be an important issue with road crashes among the leading 

causes of death - accounting for more than 1.2 million fatalities and 50 million injuries 

globally each year (World Health Organization, 2015). Driver behaviour is a factor in 

over 90% of crashes, with speeding as one of the major contributors (World Health 

Organization, 2015). Driving behaviour models, which provide mathematical 

representations of drivers’ decisions involving acceleration-deceleration, lane-

changing, overtaking, etc., are increasingly being used for evaluation and prediction 

of road safety parameters and formulating remedial measures (e.g. Farah et al., 2009; 

Barceló, 2010; Hoogendoorn at el., 2010; Farah & Koutsopoulos, 2014). Reliable 

driving behaviour models are also critical for accurate prediction of congestion levels 

in microscopic traffic simulation tools) and analyses of emissions.  

Driving decisions are affected by various factors, including network topography, 

traffic conditions and driver characteristics - which include, among others, 

demographics, personality traits and emotional state. Existing driving behaviour 

models address many of these factors, either fully or partially, where the effects of 

surrounding traffic conditions have received considerable attention (Ossen and 

Hoogendoorn, 2005; Toledo, 2007; Choudhury, 2007; Marczak et al., 2013 to name a 

few). However, in most cases, the models do not adequately capture the sophistication 

of driver behaviour and the causal mechanism behind their observed decisions. In 

particular, research in other realms, in the context of crash analysis and safety 

research, has confirmed that driving behaviour is significantly affected by drivers’ 

mental state/mood (e.g. anger) (Garrity and Demick, 2001), cognitive workload 

(Hoogendoorn et al., 2010), distraction (Young et al., 2007) and fatigue (Thiffault and 

Bergeron, 2003). Existing work on drivers’ stress has mainly focused on the 

investigation of the relationship between stress and aberrant behaviour and its impact 

on safety (Ge et al., 2014; Westerman and Haigney, 2000; Hill and Boyle, 2007). 

However, these studies primarily examined the effects of stress based on self-reported 

surveys which can be prone to response bias and reporting errors. Indeed, at best, a 

driver can report an indication of stress levels, but not an objective measure of a 

physiological state. In addition, many of these studies are largely descriptive rather 

than relying on detailed modelling work. 

In a parallel stream of research, recent advances in sensor technologies have made it 

possible to measure drivers’ stress levels through human physiological responses, e.g. 

changes in heart rate, electrodermal activity etc. (Healey and Picard, 2005; Ahmed et 
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al., 2015). However, these studies have primarily focused on detecting stress rather 

than quantifying or modelling its effects on driving decisions in detail. 

This paper aims to fill in this research gap by developing gap acceptance models with 

explicit consideration of the effect of stress on driving behaviour. The gap-acceptance 

models developed in this research are based on an extensive experimental study in the 

University of Leeds Driving Simulator (UoLDS) where the drivers have been 

intentionally subjected to stressful driving conditions caused by time pressure and 

surrounding traffic conditions.  Their choices of accepted gaps have been recorded 

alongside physiological measurements of stress indicators (Electrodermal Activity 

and heart rate) and socio-demographic characteristics (age, gender, experience). A 

series of gap acceptance models are developed and augmented by continuous 

physiological measurements.  

The remainder of the paper is organised as follows. We first present a review of the 

literature, followed by the experimental setting and the data analyses. This is followed 

by a description of the methodological approach of the study. We then present 

estimation results followed by concluding remarks where insights from the models 

are discussed.  

 

3.2 Literature review 

3.2.1. Stress and driving context 

‘Driver stress’ has been defined as a situation that challenges drivers’ abilities, reduces 

their perceived control or threatens their mental/physical health (Gulian et al., 1989). 

Driver stress can be a consequence of several factors including the direct demands of 

the driving task, the environmental conditions (e.g. foggy, icy, etc.), network 

characteristics (e.g. surface characteristics), junction frequency, speed and flow per 

lane and/or potential secondary tasks, such as use of navigation system, texting, etc. 

(Hill and Boyle, 2007). Moreover, time urgency and the level of congestion have been 

identified as two important factors influencing drivers’ stress (Hennessy and 

Wiesenthal, 1999). 

There is a substantial body of literature that investigates the effects of stress on driving 

behaviour. Drivers under stress may be overwhelmed by negative emotions and thus 

are more likely to get involved in hazardous situations (Ge et al., 2014). Self-reported 

stress has been linked to aberrant driving behaviour, namely errors and violations 
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(Kontogiannis, 2006). These types of impaired behaviour are related to road crashes 

and incidents, therefore stress is considered as an issue related to traffic safety 

(Westerman and Haigney, 2000; Useche et al., 2015, Qu et al., 2014). Moreover, Ge 

et al. (2014) found that perceived stress is linked to aggressive and risky driving 

behaviour. Also, Clapp et al. (2011), grouped reactions under stressful situations in 

three main categories which are the extremely cautious driving behaviour, aberrant 

behaviour and aggressive (or hostile) behaviour. The aforementioned findings provide 

compelling evidence regarding the effects of stress on driving, however, they are 

based on self-reported survey results and therefore prone to response bias and 

reporting/measurement errors.  

An alternative, and potentially more reliable, approach to detect drivers’ level of stress 

and study its effects, is through its implications on human physiology. Recent 

advances in sensor technologies and affective computing have made it possible to 

measure drivers’ stress levels through physiological responses, e.g. changes in heart 

rate, Electrodermal Activity (EDA), blood volume pulse, etc. There are several 

existing studies related to driving stress that use this type of data (some examples 

Healey and Picard, 2005; Singh and Queyam, 2013; Rigas et al., 2012). However, the 

aforementioned studies mostly focused on detecting stress rather than investigating 

its effects on observed driving behaviour. 

Two of the most widespread physiological indicators - also used in the present study 

- are heart rate and Electrodermal Activity (EDA). Heart rate represents the observed 

heartbeats per minute. Lower heart rate is generally linked to a relaxed state while it 

increases under the presence of emotional stimuli or mental effort (Katsis et al., 2011). 

EDA is related to the sweat gland activity and it is an indicator that increases or 

decreases proportionally to stress effort (Katsis et al., 2011). EDA is composed of two 

different parts, namely the skin conductance level (SCL – tonic part) and skin 

conductance response (SCR – phasic part). While SCL is slowly varying and related 

to individual characteristics, SCRs are expressed as a sudden and fast increase of skin 

conductance owing to the presence of a specific stimulus and thus have been linked 

to acute stress. SCRs are identified if the increase in skin conductance activity exceeds 

specific critical values. 

Before proceeding, let us just expand on the argument of why such physiological 

measurements are superior to self-reported measures. The two most apparent issues 

with self-reported data are perception bias and measurement error. For the former, a 

respondent to a questionnaire may perceive to be more or less stressed than he/she 

actually is, and this can be amplified in the case of recall surveys. For the latter, it is 

difficult for a survey respondent to quantify the level of stress in an objective manner. 



3.2 Literature review 

89 

 

 

An additional reason, which is mentioned less often, is that of strategic bias. A 

respondent in a survey may purposefully overstate or understate his/her actual stress 

levels for example to make an experienced situation seem more stressful or play down 

the effect of his/her own mental state. None of these issues should in theory arise with 

physiological measurements as they are driven by subconscious factors that cannot be 

easily biased by the respondent and are also measured objectively.  

 

3.2.2 Gap-acceptance behaviour and models 

Driving behaviour models primarily include car-following, lane-change and gap-

acceptance (Toledo, 2007). The latter of the aforementioned concepts focuses on two 

different aspects; the decision of drivers to change lane and the attempt of a turning 

or crossing manoeuvre at an intersection. In the literature, several methodological 

approaches have been developed in order to predict the intersection crossing decisions 

of drivers. This type of gap acceptance behaviour is of prime importance when 

studying issues such as network capacity, delays and road safety (Ashton, 1971; 

Fitzpatrick, 1991). The majority of these methodologies are based on the critical gap 

concept, which is defined as the minimum time gap in the priority stream which a 

driver moving on the minor road is willing to accept in order to cross through the 

conflict zone. According to Brilon et al., (1999), there are at least 20-30 different 

methods related to gap-acceptance decisions. Some of the most cited are the Raff 

method (Raff and Hart, 1950), the Greenshields method (Greenshields et al., 1946), 

the lag method (see Brilon et al., 1999), the logit method (Maze, 1981) - which is a 

method based on traditional choice modelling techniques (see Ben-Akiva and 

Lerman, 1985), the Ashworth’s method (Ashworth, 1969), and the maximum 

likelihood method (Miller and Pretty, 1968). The main limitations regarding some of 

the existing methodologies in the context of unsignalised intersections are the 

assumptions of consistency and homogeneity (Bottom and Ashworth, 1978; 

Pollatschek et al., 2002). The former indicates that a driver, in all similar situations, 

would have a specific critical gap value tc and accept all gaps with a value greater than 

this (and reject the rest). Based on this assumption, a driver waiting to cross a junction, 

cannot reject a specific gap and later accept a shorter one. The assumption of 

consistency is not however accurate since e.g. risk tolerance of an individual might 

change during waiting time leading to acceptance of a shorter gap compared to the 

ones rejected earlier (Pollatschek et al., 2002). Moreover, the various tc values of 

different consistent drivers are treated as a random variable that follows a specific 
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distribution φ(tc) and cumulative distribution Φ(tc) (Brilon et al., 1999). Sub-groups 

of drivers are assumed to follow the same density and cumulative distribution 

functions resulting within-group homogeneity of the driver population.  

The assumptions of homogeneity and consistency of gap-acceptance methodologies 

raise limitations in the representation of drivers’ behaviour since they both ignore their 

sophisticated decision-making process. For instance, critical gap varies among and 

within drivers, in different situations, and should be treated as a random variable (Guo 

et al., 2014). The drawbacks imposed by these assumptions have been relaxed in gap-

acceptance models developed in the context of lane-changing, where critical gaps are 

assumed to follow statistical distributions with means being functions of influencing 

variables like speed of the lead and lag vehicles (e.g. Ahmed 1999, Toledo 2003, 

Choudhury 2007). These models are also extended to incorporate the effect of driver 

demographics (age, gender) and driving style (e.g. Farah et al. 2009). Another 

competing approach is to model the gap accept-reject decisions based on ‘Utility 

maximization theory’ – logit models for example. In Logit models, the probability of 

accepting or rejecting a gap is a function of different variables (e.g. gap size, the speed 

of the approaching vehicles, waiting time, etc.) and captures the trade-off among 

different influencing factors (e.g. Amin and Maurya, 2015). 

A review of the gap-acceptance literature showed that drivers’ behaviour is influenced 

by various factors. Most of the variables are related to traffic conditions such as gap 

size (Bottom & Ashworth, 1978; Nabaee et al., 2011), waiting time in the queue 

(Pollatschek et al., 2002) or at the stop line (Mahmassani and Sheffi, 1981) and the 

queue behind the driver while waiting at the stop line (Nabaee et al., 2011; Tupper et 

al., 2011). Apart from the aforementioned factors, Bottom & Ashworth (1978) 

mention that inter-individual variance is worth being investigated in terms of variables 

as extroversion (personality), age, annual mileage and vehicle type. 

Despite the advances in gap-acceptance model structures, the full range of variables 

influencing the decisions of the drivers has not yet been fully investigated. Some of 

the aspects which are not yet addressed include drivers’ strategies when deciding to 

cross an intersection or not, the motivation behind an observed “inconsistent” action 

and finally the effects of individual traits and characteristics (e.g. personality, 

attitudes, state of mind, level of stress etc.). The aim of the present study is to provide 

an extended gap-acceptance framework, through the development of a model that 

accounts for variables related to driver’s individual characteristics, with explicit 

consideration of drivers’ acute stress levels, and contribute to filling in this gap of 

driving behaviour modelling research.  
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3.3 Data collection 

3.3.1 Driving simulator experiment 

The data used in this research is based on primary data collected as part of a 

comprehensive driving simulator study (Next Generation Driving Behaviour Models 

– NG-DBM) for investigating the effect of stress in different driving decisions (e.g. 

acceleration-deceleration, overtaking, red light violation, gap acceptance, etc.). The 

experiments have been conducted using the University of Leeds Driving Simulator 

(UoLDS). The UoLDS (Figure 3.1) is a high fidelity, dynamic simulator. The vehicle 

cab is a 2005 Jaguar S-type with all driver controls available and fully operational. 

This includes the steering wheel and braking pedal, and there is also a fully operational 

dashboard. The vehicle is positioned in a 4m diameter spherical projection dome. The 

dome provides fully textured 3-D graphical scene with a horizontal field of view of 

250o and 45o vertical and it is placed on an 8 degrees of freedom motion system. The 

model of vehicle dynamics has been extensively validated to capture accurate vehicle 

behaviour on high-friction surfaces (Markkula et al., 2018). The raw data output 

consists of observations of 60Hz frequency. The relative validity of UoLDS has been 

confirmed in several studies (e.g. Jamson et al., 2010; Markkula et al., 2018). While 

driving simulator data, given its ‘experimental’ flavour, has the risk to be prone to 

behavioural incongruence, it offers the flexibility to fully control the surrounding 

traffic and driving contexts (e.g. inducing time pressure and stressful scenarios) which 

are crucial for this particular study.   

 

 

Figure 3.1: The University of Leeds Driving Simulator 

 [sources: University of Leeds, University of Leeds Driving Simulator] 

 

The full data collection process involved around 90 minutes of total driving in the 

simulator for each individual. Participants initially had a short briefing session about 

the simulator and its operation followed by a practice session of approximately 15 

minutes duration to familiarise themselves with the simulated environment and 
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vehicle dynamics (i.e. motion system). For safety reasons, participants were 

accompanied by a researcher during the practice run, positioned in the back seat. After 

the practice session, participants started the main driving sessions, composed of two 

different environments, using an urban setting and a motorway setting, with a short 

break in between.  

The urban setting was composed by several tasks. These included an encounter with 

a slow-moving lead vehicle that participants could decide to overtake or not, a traffic 

light with a red indication of long duration that aimed to cause frustration, an amber 

dilemma scenario where participants could decide to accelerate or brake and the gap-

acceptance scenario presented in the current analysis. These scenarios were repeated 

twice (without and under the presence of time pressure) while in the end there was 

also a right-turn manoeuvre scenario which was the last task of the urban setting. 

Within an effort to minimize any potential residual effects from the previous tasks, 

some straight road segments without any critical events were included, in between the 

main tasks. The average duration of these dummy segments was 2-3 minutes and 

participants did not meet any traffic in these, however, at the second half of the urban 

setting they were deliberately subjected to time pressure. The latter needs some more 

explanation. As mentioned above, the majority of the scenarios had two variants - one 

without and one with time pressure. Before each of the two main driving simulator 

settings, participants were instructed that they had to reach the destination within 35 

minutes and they could see an emoji placed on the dashboard (Figure 3.2) denoting 

their performance with respect to time. Participants were told that the emoji displayed 

to them was determined based on expected arrival time which is computed and 

constantly updated using a sophisticated algorithm running in the background and 

uses variables such as current speed, speed limit, distance to the end, an average 

estimated delay that will be caused by the events ahead etc. as inputs. This was then 

used to determine which of the three emoji to show.  Participants were instructed that 

the green state would indicate they were doing well, in terms of time, while the red 

would mean that they were late. The intermediate amber emoji meant that they were 

marginally fine in terms of time. That is, they will receive a red emoji if they have 

further delay in the remaining driving tasks. An amber state was introduced to make 

the shift from green to red emoji (and vice versa) more convincing to the participants. 

In reality, the state of the time pressure emoji was not related to their actual 

performance but was pre-decided in order to induce time pressure in specific road 

segments. It should be mentioned that the amber was always shown before/after the 

critical sections (e.g. in straight segments) as opposed to near intersections. Therefore, 

the data used for gap-acceptance model development only include red and green 
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phases. It may be noted that the choice of 3 different emoji to indicate time pressure, 

was preferred to a conventional countdown timer since it would be easier to 

manipulate. In order to increase the likelihood that participants would consider time 

pressure indications, they were instructed that a penalty would be imposed on the 

monetary reward they received for their participation in case they were late at the end 

of a scenario (red emoji). Again, this was never the case since both main scenarios 

were programmed to end in the amber time pressure state. 

 

 

Figure 3.2: Time pressure indications 

Drivers’ physiological data, across the whole experiment, was collected using the 

Empatica E4 wristband which is a non-intrusive device that provides information 

about heart rate (HR), Electrodermal Activity (EDA), blood volume pulse (BVP) and 

temperature (TEMP). Each of the physiological indicators was collected with a 

different frequency, depending on the attributes of the wristband. EDA and 

temperature have a 4Hz frequency, blood volume pulse 64Hz and heart rate 1Hz. The 

device can be automatically synchronised with the clock of any computer when 

plugged in. 

 

3.3.2 The gap-acceptance task 

In the present study, the gap-acceptance task was presented twice, as a part of the 

urban driving scenario. Drivers faced the first gap-acceptance task without time 

pressure (green emoji) followed by the same scenario with time pressure (red emoji). 

The scenario itself consisted of two groups of vehicles. At first, six blocking vehicles 

were shown to participants, moving at short headway distances. These vehicles were 

used to force drivers to stop before the main gap acceptance task. This first group of 

vehicles was followed by eleven vehicles that created 10 gaps. The gaps had an 

increasing trend in general. The increasing trend of gaps was chosen in order to secure 

that drivers would not face a large gap at the beginning of the scenario and miss 
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information related to their willingness to accept a shorter one. However, to increase 

realism, some shorter gaps were also introduced in between (as 3rd, 5th, 7th and 8th 

gaps). The full set of available gaps were identical for both intersections and across 

participants. For each gap-acceptance task, the drivers could choose to accept the 

available gap and cross or reject the immediate gap and wait for a better one or even 

reject them all (i.e. wait till all 11 vehicles had crossed). The drivers, however, had no 

a priori knowledge regarding the number of the oncoming vehicles or the waiting time 

required. For the sake of simplicity, it was decided to constrain the gap-acceptance 

scenario by developing a case where cars were shown only coming from the left side 

of the driver.  It may be noted that the time pressure was always applied at the second 

intersection albeit the fact that there might be confounding with learning1 and fatigue 

effects. The main reason for this design was related to drivers’ physiology, since we 

aimed to minimise the risk of increasing their responses at the beginning of the driving 

task by inducing additional stressors (e.g. time pressure) that would potentially 

influence and prevent them from returning to the baseline levels. Also, it would be 

more realistic for the participants to receive a red face indication closer to the end of 

the driving task, rather than during the first part. A general outline of the gap-

acceptance scenario setting is illustrated in Figure 3.3, while the presented gap sizes 

are shown in Table 3.1.  

 

 

Figure 3.3: Illustration of the intersection 

 

Table 3.1: The available gaps and gaps’ sizes 

Gap ID 1 2 3 4 5 6 7 8 9 10 

Gap size (s) 2.8 3.45 3.4 4.4 4 5.4 5 4.7 6 6.8 

 

1 Since the two scenarios occurred with a time gap of approximately 15 minutes in between where the 

drivers had to tackle other difficult situations, the learning effect is not expected to be significant. 
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3.3.3. Exploratory analysis 

Sample analysis 

The sample of the current analysis consists of 41 (22 male, 19 female) staff members 

or students at the University of Leeds, holding a valid driving licence, that 

successfully completed the urban task. Three participants were removed from the 

analysis, since they reported motion sickness during the practice session while also an 

additional participant was removed because the wristband device failed to collect 

physiological data. The mean age of participants is approximately 34 years and the 

corresponding standard deviation is 11 years. Almost half of the participants stated 

that they are driving on a daily basis. The average driving experience of participants 

is almost 14 years. Regarding accident involvement, 6 participants have reported 

involvement in minor accidents while 4 have reported involvement in serious 

accidents. It is worth mentioning that a serious (or major) accident is defined as one 

where at least one person required medical treatment and/or there was property 

damage above £500. Finally, 7 participants stated that they had at least once received 

a ticket penalty for speeding behaviour. The descriptive statistics of the sample are 

also outlined in Table 3.2. 

Table 3.2: Descriptive statistics of the sample 

Variable Intervals Frequency % mean std. dev. min max 

Gender 
Female 19 0.46 - - - - 

Male 22 0.54 - - - - 

Age - - - 34.39 10.86 19 57 

Driving experience - - - 13.63 11.48 1 39 

Frequency of driving 

Everyday 21 0.51 - - - - 

2-3 

times/week 
12 0.29 - - - - 

Once/ week 4 0.10 - - - - 

Less often 4 0.10 - - - - 

Minor accident 

involvement 

No 35 0.85 - - - - 

Yes 6 0.15 - - - - 

Major accident 

involvement 

No 37 0.90 - - - - 

Yes 4 0.10 - - - - 

Ticket for speeding 
No 34 0.83 - - - - 

Yes 7 0.17 - - - - 

Gap-acceptance task analysis 

Before the development of the model, participants’ gap-acceptance behaviour has 

been examined with respect to the effects of time pressure. Table 3.3 presents the 

accepted gaps of each individual, and their respective size (a value n/a is given if no 

gap is accepted). A similar illustration is also provided in Figure 3.4. It should be 

mentioned that 12 out of 41 participants did not accept any of the gaps presented to 
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them (i.e. waited for all vehicles to pass), in both cases. On the other hand, six 

participants accepted a gap only under the time pressure conditions while they had not 

done so without time pressure. The remaining 23 participants accepted a gap at both 

intersections. The latter group of participants always accepted the same gap in the 

second run or a gap that was shown earlier, compared to the one accepted without the 

external stressor. To further investigate this outcome, a paired samples t-test is applied 

to compare the significance of the difference of the accepted gap sizes at the two 

intersections. Given the small sample size, this difference has been also investigated 

with the non-parametric Wilcoxon test (De Winter 2013). The results (Table 4) show 

that the mean size of the accepted gaps is smaller at the second intersection, and this 

difference is statistically significant. As mentioned in the data collection section, 

participants faced a series of additional tasks involving at least 15min of driving in 

between the two intersections, thus the learning effect is not likely to be a major 

influencing factor behind these choices. A similar approach related to the impact of 

learning effects is found in a study conducted by Ali et al. (2018). The authors 

investigate behaviour in a mandatory lane-changing scenario in drives of 10-12min 

long. With respect to learning effects, they mention that because of the occurrence of 

multiple events, participants are less likely to remember the details of a specific event 

as time passes. We, therefore, conclude that time pressure had a major influence on 

acceptance of smaller gaps, which we further test empirically in Section 3.5, although 

it is still likely to have carryover effects at the second intersection. The mean values 

in Table 3.4 are smaller than some reported in the existing literature (e.g. Bottom & 

Ashworth, 1978; Fitzpatrick, 1991) however, they are very close to the median values 

reported by Ashton (1971) and Amin and Maurya (2015). It may be noted that given 

the simulated nature of our experiment and the scope to show a limited number of 

gaps to each participant, the presented gaps were on the shorter range on purpose. 

Otherwise, there would have been risk of missing the minimum acceptable gap. 

Furthermore, with reference to Table 3.3, under the time pressure conditions, three of 

the participants accepted the first gap they faced. These drivers did not actually behave 

as expected during the task (stop at the intersection and wait for a gap, or not, to cross) 

but drove through the streaming of oncoming vehicles without stopping. This 

indicates that external stressors could increase risk-taking – however, such extreme 

behaviour may not be frequently observed in real life. Moreover, it is worth 

mentioning that the 10th gap was never accepted in the current experiment, although  
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Table 3.3: Accepted gap(s) of each participant at the two intersections 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

First 

intersection 

(without 

time 

pressure) 

Gap 

ID 
8 9 11 11 5 11 11 6 6 9 6 9 11 11 5 5 11 11 6 6 9 

Gap 

size 

(s) 

4.7 6 n/a n/a 4 n/a n/a 5.4 5.4 6 5.4 6 n/a n/a 4 4 n/a n/a 5.4 5.4 6 

Second 

intersection 

(under time 

pressure) 

Gap 

ID 
1 5 9 11 4 11 11 4 6 9 4 6 11 7 1 1 11 11 4 4 9 

Gap 

size 

(s) 

2.8 4 6 n/a 4.4 n/a n/a 4.4 5.4 6 4.4 5.4 n/a 5 2.8 2.8 n/a n/a 4.4 4.4 6 

                       

ID 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41  

First 

intersection 

(without 

time 

pressure) 

Gap 

ID 
8 6 11 6 11 6 11 11 11 8 9 11 5 9 9 11 11 11 5 11  

Gap 

size 

(s) 

4.7 5.4 n/a 5.4 n/a 5.4 n/a n/a n/a 4.7 6 n/a 4 6 6 n/a n/a n/a 4 n/a  

Second 

intersection 

(under time 

pressure) 

Gap 

ID 
4 3 11 6 6 6 11 11 11 4 9 11 4 5 6 9 9 11 4 6  

Gap 

size 

(s) 

4.4 3.4 n/a 5.4 5.4 5.4 n/a n/a n/a 4.4 6 n/a 4.4 4 5.4 6 6 n/a 4.4 5.4  
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Figure 3.4 Accepted gaps and sizes without and with time pressure  
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it is the largest one in terms of headway size. This behaviour maybe shows 

anticipation effects in gap-acceptance behaviour; drivers that wait until the last 

available gap also prefer to wait the additional time need until being able to cross 

when the intersection is clear rather than engaging in crossing under the presence of 

oncoming traffic. As mentioned above, almost one-third of participants follow this 

behaviour, without being influenced by time pressure in the second task.  

 

3.4. Methodology 

3.4.1 The gap acceptance model 

The gap-acceptance approach of the current paper has been formulated as a binary 

choice model, where each gap is considered as a different accept/reject decision. This 

approach is a modification of the Logit method mentioned in the literature section. 

The model assumes that the probability of accepting a gap increases with the increase 

in the utility.  The utility associated with a particular gap is a function of the attributes 

of the gap (e.g. gap size, order, etc.), characteristics of the driver (e.g. socio-

demographics) and their state. The utility 𝑈𝑛𝑡 associated with the decision of a driver 

n to accept/reject a gap t can therefore be expressed as follows:  

 

 𝑈𝑛𝑡 = 𝛽𝑋𝑛𝑡 + 𝛾𝑍𝑛 + 𝜃𝑊𝑛𝑡 + 𝛼𝜈𝑛 + 𝜀𝑛𝑡 (3.1) 

 

where 𝑋𝑛𝑡 is a vector of gap-specific variables, 𝑍𝑛 are individual-specific and 

situation-independent variables (e.g. socio-demographics), 𝑊𝑛𝑡 is a vector of 

physiological variables that are used to capture drivers’ mental state, 𝜈𝑛 represents the 

effect of unobserved variables that vary across individual drivers but is same for a 

specific driver (referred as individual specific error term), and 𝜀𝑛𝑡 is the random error 

term (assumed to be independent and identically distributed). Finally, β, γ, θ and α are 

vectors of parameters to be estimated. 

Following the aforementioned assumptions, the probability of gap-acceptance 

conditional on individual specific error term is defined as (Equation 3.2): 
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Table 3.4:  Results of the paired samples t-test and Wilcoxon test 
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 𝑃𝑛𝑡
𝐺𝐴|𝜈 =  

𝑒(𝛽𝑋𝑛𝑡+𝛾𝑍𝑛+𝜃𝑊𝑛𝑡+𝛼𝜈𝑛)

1 + 𝑒(𝛽𝑋𝑛𝑡+𝛾𝑍𝑛+𝜃𝑊𝑛𝑡+𝛼𝜈𝑛)
 (3.2) 

 

If the observed choice of a driver to accept a gap is set as 𝑌𝑛𝑡=1, the conditional full 

probability of an observed driver’s decision can be expressed, as shown in Equation 

3.3: 

 

 𝑃𝑛𝑡|𝜈 = (𝑃𝑛𝑡
𝐺𝐴|𝜈)𝑌𝑛𝑡(1 − 𝑃𝑛𝑡

𝐺𝐴|𝜈)1−𝑌𝑛𝑡  (3.3) 

 

The conditional probability of a sequence of Tn observed decisions of the same driver 

takes the form indicated by Equation 3.4: 

 

 𝑃𝑛|𝜈 =∏(𝑃𝑛𝑡|𝜈)

𝑇𝑛

𝑡=1

 (3.4) 

 

The unconditional joint probability of the observations of a given driver can be 

expressed as follows: 

 

 𝑃𝑛 = ∫ (𝑃𝑛|𝜈)𝜑(
+∞

−∞

𝜈)𝑑𝜈 (3.5) 

 

where a φ(ν) is the probability density function of the individual specific error term 

assumed to have a standard normal distribution. The model parameters are jointly 

estimated using the Simulated Maximum Likelihood approach using 1000 Halton 

draws (Halton 1960). The model has been specified and estimated in R based on the 

code framework provided by the Choice Modelling Centre, University of Leeds. 

 

3.4.2. Physiological data analysis 

The model described in the previous section has been augmented by continuous 

physiological measurements. These observations have been used as direct explanatory 

variables, in order to investigate whether the gap-acceptance model would be more 

behaviourally representative when stress has been included. Two different responses 
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have been considered, namely, heart rate and Electrodermal Activity (EDA). Before 

turning to the actual implementation, it is worth briefly discussing our use of these 

measures as direct explanators. Recent work in choice modelling (Abou-Zeid and 

Ben-Akiva, 2014) has focussed on the use of hybrid choice models to incorporate 

additional indicators of heterogeneity such as answers to attitudinal questions. This 

type of approach is not critical in our case as the physiological measures are direct 

measures of physiological states and should thus not be affected by the same concerns 

of measurement error. 

The physiological variables have been initially processed and transformed before their 

incorporation in the model. Transformation or standardisation of physiological 

variables is a common practice in relevant research (e.g. Zhai and Barreto, 2006; 

Singh et al., 2013; Kalimeri & Saitis,2016), within an effort to reduce the inter-

individual differences in physiological responses, while it has also been found to 

improve the distinction among the various physiological states (Ben‐Shakhar, 1985). 

In the current approach, each gap is considered as a different discrete stimulus, rather 

than assuming the whole sequence as a single continuous stimulus (differences 

between the two approaches are explained in Cacioppo et al. (2007)). Thus, 

physiological responses used in the model have been calculated with reference to the 

initiation of each gap (i.e. when the lead vehicle associated with the gap reaches the 

beginning of the intersection).  

Instead of using the raw observations, the heart rate data have been normalised at the 

individual level, applying a z-score transformation (
𝑥−𝜇

𝜎
), where x is a heart rate 

observation, μ is the heart rate mean value across the whole urban task and σ is its 

standard deviation (Picard et al., 2001; Healey and Picard, 2005; Maaoui and Pruski, 

2010). The normalized heart rate in the beginning of each gap is then considered as a 

variable in the model. 

The EDA observations have been processed using the Matlab package Ledalab 

(Karenbach, 2005). The skin conductance responses (SCRs) have been obtained 

applying trough-to-peak analysis, where the amplitude of a response is calculated as 

the difference in the EDA values between a peak in the signal and its preceding trough 

(Benedek and Kaernbach, 2010). The amplitude is then considered as an explanatory 

variable in the models. The EDA analysis is based on event-related response 

activation; each gap has been considered as a different stimulus. The initiation of each 

gap has been used as the starting point and responses are detected 1-4s after that 

moment. Moreover, since we are interested to capture the stress level at the beginning 

of a gap (when the lead vehicle corresponding to the gap reaches the intersection), the 
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amplitudes corresponding to the immediately preceding gap has been used as an 

explanatory variable. An example of SCRs analysis is illustrated in Figure 3.5. 

Following literature indications (e.g. Sano et al., 2014), a critical value equal to 

0.01μS is selected as a minimum critical SCRs. Moreover, each significant amplitude 

(above 0.01μS) has been divided by the maximum observed SCR amplitude, during 

the simulator experiment, to minimise the effects of individual differences (Lykken, 

1972). 

 

 

Figure 3.5: Example of SCRs extraction 

 

3.5. Gap-acceptance model 

3.5.1 Parameter estimation results and interpretation 

A series of gap-acceptance models have been estimated based on the methodology 

presented in Section 3.4.1. The first model includes only traffic-related variables, 

while the socio-demographics, time pressure dummy, and the physiological 

observations are eventually added. Thus, each new model includes all the previous 

variables plus one or more new ones. The aim of this approach is to compare model 

fit and investigate the incremental improvement (if any) of adding a specific group of 

variables. Four different models have been estimated in total, as follows: 

 

• Model 1: Traffic-related variables only 

• Model 2: Socio-demographics variables included 

• Model 3: Time pressure considered 

• Model 4: Physiological variables included 
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The results of all four models are presented in Table 3.5. All parameter estimates are 

significant at 95% level (|t-ratio|>1.96). 

With reference to Table 3.5, gap size, speed, position, skin conductance response 

(SCR) and heart rate are continuous variables explained in the next paragraphs. 

Moreover, a series of dummy variables have been included in the models. 

Model 1: Traffic-related variables only 

The first model includes the gap size (in seconds), the position of the vehicle during 

the waiting time, vehicle speed when arriving at the intersection area, a dummy 

variable indicating whether there is another gap following, or not, and the standard 

normal disturbance term (Model 1) as explanatory variables.  

As expected, gap size has a positive effect on gap acceptance behaviour showing that 

drivers’ probability to accept a gap increases with its size. 

Vehicle position is a variable that captures a vehicle’s position at the intersection area 

(the value zero denoting the start of the intersection area) with an increase in value as 

the vehicle moves forward. If a participant has been outside of the intersection area 

during the task (it is the case for some participants during the first shown gap), the 

variable could also take negative values. The inclusion of this variable attempts to 

capture drivers’ behaviour to better position themselves and increase the likelihood of 

accepting the next available gap. This variable was considered in the model as, during 

data collection, a proportion of drivers was observed to slowly move their car forward 

during the period they were waiting for an acceptable gap. As expected, the effect of 

this variable is positively related to the gap-acceptance probability and drivers are 

more likely to accept a gap the closer to or further inside the intersection their vehicle 

is.  

The variable vehicle speed is considered in the utility function only for the first gap 

of each intersection and is ignored for all the rest. It is used to capture the behaviour 

of not stopping at all at the junction and accepting the first gap – the likelihood of 

which is expected to increase if the driver is travelling at a high speed.  

Finally, the dummy variable of the last gap (which is 1 if there are no further 

approaching vehicles on sight) has a negative effect denoting a reduction in the 

probability of accepting a gap which is the last one. This confirms that drivers’ gap-

acceptance decisions are not short-sighted or focused on the current gap only, rather, 

the drivers further consider the next available gaps before deciding whether to accept 

the immediately available gap or not (anticipation effect). The variable sign is thus 

intuitive. 
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Table 3.5: Gap-acceptance models’ parameter estimates 
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In gap-acceptance situations, waiting time would be expected to have a significant 

impact. The effect of waiting time was included both as time in seconds and also as a 

number of gaps that participants waited to accept a gap. However, none of those 

variables had a significant impact and thus, they were dropped from the model. 

Model 2: Socio-demographics variables included 

Model 2 included all of the Model 1 variables as well as the variables related to the 

sociodemographic characteristics of the drivers. Among the several 

sociodemographic variables tested, those with a statistically significant effect are 

Age>45 (which is 1 if the driver is older than 45 years, 0 otherwise) and Regular driver 

dummy (which is 1 if the driver typically drives every day, 0 otherwise). It may be 

noted that these variables are used in the dummy variable form, since it provides a 

better model fit with this coding, rather than having a continuous or ordinal form. The 

Age>45 dummy has a negative effect on gap-acceptance probability, indicating that 

older drivers are less likely to accept an available gap compared to younger. 

Moreover, all else being equal, participants that drive every day are more likely to 

accept a gap. It may be noted that the effects of gender, accident records and fine for 

speeding have also been tested but not found to have a statistically significant effect.  

The signs of the variables common with Model 1 were found to be the same but the 

magnitudes were different. Such changes in sensitivity are expected as the socio-

demographic variables are adding further insights in the observed behaviour 

potentially leading to more representative sensitivity values.  

The results of the gap-acceptance model(s) of this study support the existing literature 

findings. For instance, previous research (e.g. Matthews et al., 1999) used driving 

frequency as a measure of driving exposure and positively related it to crashes and 

speed violations. In the present case, participants driving on a daily basis – and thus 

with higher exposure - were more likely to accept a gap and therefore might be 

considered as more risk-takers. Similarly, in existing research elder drivers are found 

to have a less risk-taking propensity (e.g. Jonah, 1990; Krahé and Fenske, 2002; 

Rhodes and Pivik, 2011; Taubman-Ben-Ari and Yehel, 2012) which is in agreement 

with our findings.  

Model 3: Time pressure considered 

The third gap-acceptance model (Model 3) includes all the variables of Model 2 and 

also accounts for the time pressure conditions induced at the second gap-acceptance 

task. The time pressure parameter has a positive effect indicating that drivers were 

more likely to accept a gap if they are subjected to time pressure. Again, the signs of 
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the variables common with Model 2 were found to be the same but the magnitudes 

were different.  

Model 4: Physiological variables included 

Finally, the model is enhanced by physiological variables related to heart rate and 

SCRs. The extraction and transformation/normalization of the physiological 

responses is described in Section 3.4.2. Both variables have a significant a positive 

effect. This outcome, together with the effect of time pressure conditions, confirm that 

drivers’ (gap-acceptance) behaviour is not only influenced by traffic conditions but 

also by external stressors (time pressure in this case) or acute stress levels. In the 

current case, drivers’ stress is reflected through physiological responses during gap-

acceptance choices, where a rise in the indicator values also implies an increase in the 

probability of crossing. However, the crossing behaviour, as examined in the present 

study can be also interpreted as an action that involves risk-taking propensity. Drivers’ 

physiological responses can hence be seen as indicators of potential aberrant or risky 

behaviour that could lead to a crash. 

The main findings of the presented models are in accordance with literature findings, 

in terms of the effect of gap size on drivers’ behaviour, as participants were more 

likely to accept larger gaps. The effect of waiting time was also investigated, but no 

statistically significant outcomes were found. Moreover, potential queuing effects 

were not examined as we controlled for this effect and there was no other traffic on 

the minor road. Finally, literature findings (e.g. Bottom & Ashworth, 1978; Nabaee 

et al., 2011) suggest that older drivers tend to accept larger gaps. This outcome is in 

line with our results since older drivers had a smaller probability of accepting a gap.  

 

3.5.2. Model comparison 

As shown in Table 3.6, while the gap-acceptance model is being enriched with new 

parameters, measures of model improve, both for the final log-likelihood (LL) and the 

ρ2 and adjusted ρ2 values.  

All models are next compared using the likelihood ratio test (e.g. Ben-Akiva and 

Lerman, 1985). In brief, the test can be defined as: 

 

LR= -2(LLR - LLU) 
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where LR is the LL value of the restricted model (the one with fewer variables) and 

LU is the LL of the unrestricted model (the model that includes the extra variables). 

The resulting LR statistic is asymptotically χ2-distributed and is compared with a 

critical value which depends on the degrees of freedom (difference in estimated 

parameters). If the LR statistic exceeds that threshold value then the null hypothesis 

that both models perform equally is rejected. 

The results of the various likelihood ratio tests are presented in Table 3.6. In all cases, 

the null hypothesis is rejected at 99% level which implies that the models with more 

variables have a significantly better goodness-of-fit compared to the simpler models 

re-confirming the hypotheses that driving is a complex task affected by factors beyond 

traffic conditions. Furthermore, since Model 4 has a significantly better goodness-of-

fit compared to Model 3 -  indicating statistically significant improvements in the 

model fit due to the incorporation of physiological variables.  

 

Table 3.6: Likelihood ratio tests’ results 

 

3.5.3 Sensitivity analysis 

The effect of each variable on the gap-acceptance probabilities is investigated first. In 

this regard, each variable is varied within the predefined bounds (specified by the 

range of values observed in the experimental data) while keeping all other variables 

constrained to the sample averages. The fixed values of the continuous variables used 

are 4.295s for gap size, 0.96m/s for speed, 4.0543m for the position (median value), -

0.15 for the normalised heart rate and 0.038 for the normalised SCRs. For the dummy 

variables, sample average values are also used (varying between zero and one): 0.18 

for age, 0.46 for driving frequency, 0.45 for time pressure and 0.05 for the last gap. 

Based on these values, the probabilities of gap-acceptance are estimated for the 

Models LR Degrees of freedom (df) χ2
(99%,df) Null hypothesis 

Model 2 vs Model 1 15.41 2 9.21 Rejected 

Model 3 vs Model 2 8.43 1 6.64 Rejected 

Model 4 vs Model 3 13.42 2 9.21 Rejected 
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variables common in the Model 12 and the Model 4 (based on model fit results in 

section 5.2) as presented in Figure 3.6.    

 

  

 

Figure 3.6: Variations in gap acceptance probabilities in Models 1 and 4 

 

A general observation from Figure 3.6 is that in case of all traffic variables, the general 

trends of change in the probabilities are similar for both Model 1 and Model 4. For 

example, all else being equal, the probability of accepting a gap increases with gap 

size, speed (for the first gap), the position with respect to the intersection and the gap 

being the last gap. However, all else being equal, the probabilities of accepting a gap 

are always higher for Model 1, denoting overprediction of accepting a gap if the driver 

characteristics and stress levels are not included in the model.  

 

2 It may be noted that the state-of-the-art traffic simulation tools are based on the principles of Model 

1. 
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Figure 3.7 depicts the effect of the socio-demographic variables used in the Model 43. 

With respect to the age dummy variable, the probability for accepting a gap, for a 

driver above 45 years, has a value close to zero while gap-acceptance probability 

increases for younger drivers. In a similar way, the gap-acceptance probabilities for 

participants who drive on a daily basis, are higher compared to the rest. Finally, as 

expected, the probability for accepting a gap under time pressure conditions is almost 

double compared to no time pressure. 

 

Figure 3.7: Sensitivity plots of the dummy variables used in Model 4 on gap-

acceptance probability 

The effect of the physiological measurement variables is shown in Figure 3.8. The 

results show that the gap acceptance probabilities increase in a similar pattern as the 

values of heart rate and increase in SCR. 

  

 

3 Since these variables are not included in the Model 1, their effect on gap-acceptance 

probabilities have not been investigated across models but only for Model 4. 
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Figure 3.8: Sensitivity plot of heart rate and SCR on gap-acceptance probability 

 

3.5.4 Substitution rates 

At the final part of the analysis, an alternative approach is attempted to compare 

Model 1 and the Model 4. The approach is based on the marginal rates of substitutions 

(MRS) that also assists in avoiding issues of differences in scales across models. The 

MRS investigates the required change in a specific variable, in order to counterbalance 

the change in another variable and keep the total utility constant. The MRS is 

calculated as the ratio of the parameter estimates (𝛽𝑖/𝛽𝑗), where i and j denote two 

different variables of the model.  In most studies, MRS has been used to calculate 

marginal willingness-to-pay, using the marginal utility of price in the denominator 

and another variable (travel time for instance) in the numerator. In this case, the 

parameter of gap size has been used as the denominator and the ratios are computed 

using each of the other parameters as numerators. The results are illustrated in Figure 

3.9 where the calculated MRS values represent the relative effect of each parameter 

with respect to the gap size parameter in each model. 

It should be mentioned that since the parameter of gap size is positive, the ratios with 

negative parameter are expected to be negative while positive ratios are expected 

when the opposite holds. Thus, when interpreting the MRS values, what is important 

is whether the absolute ratio value is higher than unity, rather than the sign of the ratio 

itself. For instance, |MRS|>1 shows that the change in utility, from a one-unit shift 

from the baseline of a given variable, is greater than the change corresponding to an 

increase in gap size by 1s. The opposite applies for |MRS|<1. 
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As observed in Figure 3.9, the absolute values of MRS are larger than unity denoting 

all these variables have a higher contribution to the utility (in absolute terms) 

compared to the gap size variable (i.e. per second). Moreover, in all cases, the absolute 

values are higher for the Model 1. The MRS for the last gap dummy indicates that the 

effect of the current gap being the last in the sequence of gaps is almost 8 times as 

negative as the increase of 1s in the gap size in the utility of gap acceptance in Model 

1. However, in Model 4, it is 6 times as negative as the increase of 1s in gap size. For 

the approach speed, in the utility of gap acceptance in Model 1, the effect of an 

increase in approach speed of 1m/s is twice as positive as an increase of 1s in gap size. 

The same ratio in the Model 4 denotes that 1 m/s increase in approaching speed is 

approximately 1.4 times as positive as 1s gap increase. Likewise, the effect of a 1m 

increase in vehicle’s position (denoting proximity to the start of the intersection) is 

approximately 3.5 times and 2 times as positive as a 1s increase in gap size for Model 

1 and Model 4 respectively. For the individual specific error term, the MRS values 

indicate the contribution of these in the utility are 4 and 3 times more than the 

contribution of gap size in Model 1 and Model 4 respectively. This reduction is 

expected as Model 4 captures the heterogeneity among the driver by means of the 

socio-demographic and physiological sensor variables leading to a reduction in 

unobserved heterogeneity. 

 

Figure 3.9: Marginal rates of substitution 
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3.6. Conclusion 

The results of both the statistical analyses and the discrete choice model indicate a 

significant impact of time pressure on the gap-acceptance decision. The time pressure 

variable has an expected positive sign denoting that also else being equal, the 

probability of accepting a gap more than doubles in presence of time pressure. As 

expected, increasing gap size has a positive effect in acceptance probability. 

Moreover, socio-demographics as age and driving frequency, influence gap-

acceptance probability. The effects of gap size and age are in line with the findings of 

previous literature. Further, empirical analyses demonstrate that the explanatory 

power of the models increases when the models are augmented with EDA and heart 

rate data. The gap acceptance probability was found to increase non-linearly with the 

increase with the skin conductance response and heart rates resulting significant 

increase in the probability (up to 40%) of accepting a gap. In addition, using the choice 

modelling framework made it possible to quantify the impact of time pressure and 

stress on sensitivities towards the traffic-related variables.  Results indicate that the 

inclusion of the physiological sensor measurements reduced the sensitivities towards 

the traffic-related variables, which can have important safety implications. These 

findings indicate the need for an additional dimension that should be considered in 

driving behaviour models for more realistic representation of reality. 

Despite the promising nature of the results, there are some limitations in this study 

that can be investigated in future research. First of all, the data was collected in a 

simulated environment and thus may be behaviourally incongruent due the 

experimental nature. However, it is not possible to control the driving situation to 

isolate the stress effects in a field study. We are investigating the transferability of 

models developed using the driving simulator to the field in separate research 

(Papadimitrou and Choudhury 2017) and ways to correct for the potential scale 

differences (Paschalidis et al. 2018) which will help to make the model coefficients 

more applicable in the field. Secondly, it should be noted that time pressure was 

always induced at the second intersection without counterbalancing between the two 

tasks. Though this is a standard approach in stress research (see Rendon-Velez et al., 

2016 for example) and the learning effect is likely to be minimal given the 

experimental design, this is yet to be tested empirically. Moreover, it is worth 

mentioning that physiological responses actually represent ‘arousal’ which may be a 

reflection of other emotional states, positive or negative. Given the experimental 

setting of the current study, and the expected impact on drivers’ behaviour, we decided 

to conceptualize physiological responses as an expression of stress though it can be 

confounded with other forms of arousals as well. Finally, another potential source of 
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bias could be self-selection however, it is very likely that it is uncorrelated with stress 

levels and thus does not affect the results. 

It terms of model validation, the approach of investigating model performance on a 

hold out sample has not been applied in the current paper. Given the relatively small 

sample size (41 individuals) and the data structure (at most one acceptance 

observation per person per junction, while all the rest have been coded as rejection) it 

has been decided to use the most possible observations for the model estimation part. 

Also, in terms of the model structure, there is scope to use more advanced model 

structures (e.g. treating stress as a latent variable for instance) as well as enhance the 

models with ‘life stress’ and ‘trait stress’ data. Development of other driving 

behaviour models (signal violation, overtaking) and cross-comparison of the stress 

effects across scenarios will also be an interesting direction for future research. 

In terms of practical application of the models for prediction, the challenge lies in 

inferring the presence of time pressure and/or stress levels in real-life driving. 

However, with advances in ubiquitous computing technologies, it is now becoming 

feasible to measure stress levels in a very non-intrusive manner – wearable wristbands 

(as used in this study) and smartphone technologies that can detect stress levels from 

pitch and intervals of voice conversations (Sharma and Gedeon 2012, Lu et al. 2012). 

Given the extremely steep growth rate of wearables and smartphones, as well as 

advent of semi-autonomous cars (which have a wide range of sensors for inferring the 

surrounding traffic conditions), it is likely to be possible in near future to establish 

sophisticated models to sense stress levels of the driver and correlate it with potential 

influencing factors. Such prediction models for stress levels in real-world conditions 

will be very useful in widespread applications of the proposed model. This, coupled 

with the advances in the field of artificial emotional intelligence (Emotion AI) which 

has made it possible to device interventions to reduce stress (Fletcher et al. 2010, 

Picard et al. 2011), can make a significant contribution in increasing road safety. For 

instance, advances in vehicle operation technologies offer the opportunity for 

designing interventions to warn/advise drivers, limit acceleration- deceleration 

capabilities, introduce calming measures and even take over full control of the vehicle. 

The proper value addition of such novel technologies requires quantification of the 

safety impacts of stress. Our models can be used for such evaluations and/or 

subsequent willingness-to-pay. Applications may be also extended in the field of 

microsimulation to capture and better reflect driver heterogeneity. For example, there 

are emerging microsimulation models that combine activity models with traffic 

microsimulation (e.g. SimMobility (Adnan et al. 2016)). In these new types of tools, 

it is possible to include schedule delays in the traffic simulation component and our 
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models can contribute to more realistic representation of driving behaviour in such 

simulation tools and hence increase their accuracy. 
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CHAPTER 4: COMBINING DRIVING SIMULATOR 

AND PHYSIOLOGICAL SENSOR DATA IN A LATENT 

VARIABLE MODEL TO INCORPORATE THE EFFECT 

OF STRESS IN CAR-FOLLOWING BEHAVIOUR  

 

ABSTRACT Car-following models, which are used to predict the acceleration-

deceleration decisions of drivers in the presence of a closely spaced lead vehicle, are 

critical components of traffic microsimulation tools and useful for safety evaluation. 

Existing car-following models primarily account for the effects of surrounding traffic 

conditions on a driver’s decision to accelerate or decelerate. However, research in 

human factors and safety has demonstrated that driving decisions are also significantly 

affected by individuals’ characteristics and their emotional states like stress, fatigue, 

etc. This motivates us to develop a car-following model where we explicitly account 

for the stress level of the driver and quantify its impact on acceleration-deceleration 

decisions.  An extension of the GM stimulus-response model framework is proposed 

in this regard, where stress is treated as a latent (unobserved) variable, while the 

specification also accounts for the effects of drivers’ sociodemographic 

characteristics. The proposed hybrid models are calibrated using data collected with 

the University of Leeds Driving Simulator where participants are deliberately 

subjected to stress in the form of aggressive surrounding vehicles, slow leaders and/or 

time pressure while driving in a motorway setting. Alongside commonly used 

variables, physiological measures of stress (i.e. heart rate, blood volume pulse, skin 

conductance) are collected with a non-intrusive wristband. These measurements are 

used as indicators of the latent stress level in a hybrid model framework and the model 

parameters are estimated using Maximum Likelihood Technique. Estimation results 

indicate that car-following behaviour is significantly influenced by stress alongside 

speed, headway and drivers’ characteristics. The findings can be used to improve the 

fidelity of simulation tools and designing interventions to improve safety.   
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4.1 Introduction 

Car-following (CF) refers to the acceleration-deceleration decisions of a driver with 

respect to the behaviour of a closely spaced lead vehicle. CF models are critical 

components of microsimulation tools and are also used in safety analyses (Ahmed, 

1999).  Over the past decades, there has been significant research that focuses on the 

development and improvement of car-following models (Toledo, 2007). Saifuzzaman 

and Zheng (2014) classified the car-following models into two groups based on the 

modelling perspective: 1) engineering and 2) human factors based models. In the 

former type, the effects of surrounding traffic are used to model the acceleration-

deceleration decisions of drivers (e.g. Toledo, 2003; Ossen. and Hoogendoorn, 2005; 

Choudhury et al., 2009; Marczak et al., 2013 to name a few). However, the adequacy 

of engineering CF models, in terms of cognitive and behavioural representativeness, 

has been criticised by several researchers who approached the issue from its human 

perspective. For instance, Brackstone and McDonald (2003) stressed the limitations 

of CF models and suggested the need to incorporate motivational and attitudinal 

factors to explain the heterogeneity among drivers. In the same direction, Hancock 

(1999) questioned engineering CF models for representing car-following task as an 

optimal rather than a satisficing task and criticized the use of noise terms to explain 

variations across behaviours. Further, van Winsum (1999) suggested a model 

framework based on psychological findings and highlighted the importance of 

accounting for human factors. 

Based on literature findings (retrieved from Hamdar, 2012; Treiber and Kesting, 

2013), Saifuzzaman and Zheng (2014) provided a list of human factors that have been 

found to influence car-following behaviour including sociodemographic 

characteristics, reaction time, contextual sensitivity, aggressiveness and risk-taking 

propensity, desired speed, desired headway etc. Researchers in psychology have also 

identified that moods and stress have significant impacts on driving behaviour 

(Westerman and Haigney, 2000; Garrity and Demick, 2001; Hill and Boyle, 2007). 

The concept of incorporating human factors in microscopic driving behaviour models 

has been already reported and considered in some microsimulation tools (Rathi and 

Santiago, 1990; Liu et al., 1995; Dias et al., 2013). The main attention has been 

focused on the integration of groups of drivers with different characteristics and 

accounting for aggressive drivers. The aggressive drivers are expected, amongst 

others, to apply more abrupt rates of acceleration-deceleration, accept shorter gaps 

and have shorter desired headways (Laagland, 2005). Thus, in existing applications, 

the “aggressive” proportion of traffic is assigned different desired values compared to 

the rest. However, in many cases, the values assigned to the various drivers’ groups 
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are derived from theory, rather than observations (Bonsall et al., 2005). Based on these 

capabilities of specific microscopic simulation tools, Soria et al. (2014) calibrated car-

following models using naturalistic driving data. Moreover, Mubasher et al. (2017) 

associated a Big Five Factors Model of Personality, as derived from traffic psychology 

(Herzberg, 2009), to specific parameters of the IDM model (Treiber et al., 2000) and 

developed car-following models for different patterns of personality utilising existing 

software. The importance of drivers’ characteristics has been also underscored in non-

related to microscopic simulation driving behaviour modelling approaches; 

Anastasopoulos and Mannering (2016) modelled the effect of speed limit on speed 

choice and found several effects of sociodemographic characteristics (e.g. gender, 

age, income etc.). 

Apart from the base model specifications, where only the parameters’ values among 

drivers vary, there are also more sophisticated examples of car-following models. In 

order to increase the behavioural realism, Hamdar et al. (2008) and Hamdar et al. 

(2014) suggested a car-following model, based on the prospect theory of Kahneman 

and Tversky’s (1979). The model considers car-following as a sequential risk-taking 

process and allows for risk-taking manoeuvres based on a probability of being 

involved in a rear-end collision. This probability is estimated as a function of variables 

such as acceleration, spacing and relative speed. In another approach, Saifuzzaman et 

al. (2015) incorporated an additional term in their model, in order to represent task 

difficulty (TD) as expressed by the Task-Capability Interface (TCI) model (Fuller, 

2005). This term is specified as a function of time headway, spacing and speed of the 

driver. Although the aforementioned model specifications aim to indirectly account 

for human factors, the relevant terms are still expressed as a function of traffic related 

variables and do not refer to characteristics of the drivers per se; drivers are still 

assumed to behave in the same way for given traffic conditions. The unobserved 

heterogeneity in car-following behaviour has been investigated across drivers (e.g. 

Ossen and Hoogendoorn, 2011; Kim et al., 2013) and within drivers (e.g. Pariota et 

al., 2016). However, it has taken the form of statistical distributions and random 

parameters rather than being linked to individual characteristics. In a recent 

application, van Lint and Calvert (2018), used the IDM model to incorporate task 

demand and awareness (i.e. focus, distraction etc.). In a rather different approach, 

Hoogendoorn et al. (2010) conducted a driving simulator experiment to investigate 

the relationships between mental workload and car-following without however 

incorporating the former in the model specification. Finally, Farah and Koutsopoulos 

(2014) modified the GM model and expressed the stimulus part as a series of socio-

demographic variables – incorporating the effect of stress and/or the state-of-mind 



Chapter 4: Combining driving simulator and physiological sensor data in a latent 

variable model to incorporate the effect of stress in car-following behaviour 

126 

 

was however beyond the scope of their paper. It is worth mentioning that the 

importance of accounting for the unobserved heterogeneity has been also highlighted 

in modelling approaches from other streams of driving behaviour research. For 

instance, Sarwar at al. (2017b) considered unobserved heterogeneity in a model 

specification for the simultaneous estimation of discrete and continuous dependent 

variables while Mannering et al. (2016) also emphasised the importance of this issue 

in the analysis of accident data.   

Driving stress has been defined as a situation that challenges drivers’ abilities, reduces 

their perceived control or threatens their mental/physical health (Gulian et al., 1989). 

It can be a consequence of several factors including the direct demands of the driving 

task, the environmental conditions, network characteristics, traffic conditions, 

secondary tasks (e.g. use of navigation system, texting), etc. (Hill and Boyle, 2007). 

It is worth mentioning, that traffic, weather and road conditions have been also linked 

to accident occurrence (Norros et al., 2016), which can be an outcome of the increased 

demands of the driving task in some occasions. Moreover, time urgency and 

congestion levels have been identified as two factors influencing drivers’ stress 

(Hennessy and Wiesenthal, 1999). In many studies, stress has been measured with 

self-reported surveys, however, an alternative, and potentially more reliable, approach 

to detect drivers’ level of stress and study its effects, is through its implications on 

human physiology. While traditionally, stress levels are detected using levels of 

cortisol (e.g. Mather et al. 2009) which limits measurement of stress at a single or few 

time points, recent advances in sensor technologies and affective computing have 

made it possible to measure stress levels through physiological responses, e.g. 

changes in heart rate (HR), electrodermal activity (EDA), blood volume pulse (BVP), 

etc. on a continuous basis and in a non-intrusive way. There are several existing 

studies related to driving stress that use this type of data (Healey and Picard, 2005; 

Singh and Queyam, 2013). However, the aforementioned studies mostly focused on 

detecting the stress level of the driver rather than investigating its effects on driving 

behaviour. 

This study aims to filling in the research gap in the state-of-the-art car-following 

models by bridging the engineering and human-factor based approaches to include the 

full ranges of variables influencing the decisions and bring a safety-related perspective 

via drivers’ stress. A novel framework has been proposed in this regard to quantify 

the relative impact of driving stress in car-following decisions. The models are 

estimated using data from the University of Leeds Driving Simulator (UoLDS) where 

the participants were intentionally subjected to stressful driving conditions caused by 

time pressure and surrounding traffic conditions. Their driving actions were recorded 



4.2 Data 

127 

 

alongside physiological measurements of stress indicators (electrodermal activity, 

heart rate and blood volume pulse) and socio-demographic characteristics. The 

detailed data collected from different scenarios are used to estimate the car-following 

model parameters. 

The remainder of the paper is organised as follows: The next section presents the data 

collection efforts and exploratory analyses of the data. This is followed by the model 

structures and estimation results. We conclude the paper with the summary of the 

research and directions of future research. 

 

4.2 Data 

4.2.1 Driving simulator experiment 

The use of driving simulators, originally used primarily for human-factors research, 

is gaining popularity in the context of driving behaviour modelling. The driving 

simulator data has been used in development of car-following (Hoogendoorn et al., 

2010), overtaking (Farah et al., 2009), and signal crossing (Danaf et al., 2015) 

behaviour for instance.  Further, there have been driving simulator-based studies 

focussing on aggression (Sarwar at al., 2017a) and risk-taking (Lavrenz et al., 2014; 

Tran et al., 2015) to evaluate the safety impacts. 

The data used in this research is based on primary data collected as part of a 

comprehensive driving simulator study (Next Generation Driving Behaviour Models 

– NG-DBM) for investigating the effect of stress in different driving decisions. The 

experiments were conducted using the University of Leeds Driving Simulator 

(UoLDS). The UoLDS (Figure 4.1) is a high fidelity, dynamic simulator. The vehicle 

cab is a 2005 Jaguar S-type with all driver controls available and fully operational. 

This includes the steering wheel and braking pedal, and there is also a fully operational 

dashboard. The vehicle is positioned in a 4m diameter spherical projection dome. The 

dome provides fully textured 3-D graphical scene with a horizontal field of view of 

250o and 45o vertical. The raw data output consists of observations of 60Hz frequency. 

The full data collection process involved around 90 minutes of driving in the simulator 

for each individual. Participants initially had a short briefing session regarding the 

simulator and its operation followed by a practice session of approximately 15 

minutes to familiarise themselves with the simulated environment and vehicle 

dynamics (i.e. motion system). For safety reasons, participants were accompanied by 

a researcher during the practice run. Thereafter, participants started the main driving 
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sessions, composed of two different environments, using an urban setting and a 

motorway setting of approximately same duration each, with a short break in between. 

For the main part of the data collection, they were instructed to drive and behave as 

they would normally do in real life driving. 

The current analysis focused only on the motorway setting. The motorway was 

composed of six main sections approximately 6km long each, connected with some 

shorter road segments specified as intersections. In each of the main road segments, 

different traffic scenarios were implemented, while the role of intersections was to 

provide a smoother transition and also reduce potential residual effects from previous 

road segments, as no specific events were planned in these locations. 

 

 

Figure 4. 1: The University of Leeds Driving Simulator 

 [source: University of Leeds, University of Leeds Driving Simulator] 

 

Before explaining more detailed the traffic scenarios in each motorway segment, it is 

worth mentioning that one of the main objectives of the study had also been to 

examine drivers’ behaviour under time pressure. Hence, participants were deliberately 

subjected to time pressure. During their briefing session, participants were instructed 

that they had to reach their destination within 35 minutes and they could see an emoji 

placed on the dashboard (Figure 4.2) as an indicator of their performance. Moreover, 

they were informed that the emoji displayed to them was determined based on 

expected arrival time which was computed and constantly updated using a 

sophisticated algorithm running in the background and uses variables such as current 

speed, speed limit, distance to the end, an average estimated delay that will be caused 

by the events ahead etc. as inputs. This was then used to determine which of the three 

emoji to show.  Participants were instructed that the green state would indicate they 

were doing well, in terms of time, while the red would mean that they were late. The 

intermediate amber emoji meant that they were marginally fine in terms of time. That 

is, they would receive a red emoji if they had further delay in the remaining driving 

tasks. The introduction of an amber state was decided to make the shift from green to 

red emoji more convincing to the participants. 
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Figure 4. 2: Time pressure emoji 

 

In reality, the state of the time pressure emoji was not related to participants’ actual 

performance but was pre-decided in order to induce time pressure in specific road 

segments. It may be noted that the choice of 3 different emoji to indicate time pressure, 

was preferred to a conventional countdown timer since it would be easier to 

manipulate. In order to increase the likelihood that participants would consider time 

pressure indications, they were instructed that a penalty would be imposed on the 

monetary reward for their participation in case they were late at the end of the 

motorway (red emoji). However, this was never the case since both main scenarios of 

the experiment were programmed to end in the amber time pressure state. 

Regarding the motorway scenario itself, it has been already mentioned that it was 

composed by various traffic scenarios. In the initial road section, no specific events 

were taking place and the time pressure indicator was green. This was followed by 

the road section with “aggressive” surrounding traffic. This scenario was 

implemented by allowing the driving simulator car drones (vehicles controlled by the 

simulator software) to accept shorter gaps while performing a lane change. This 

resulted in the occurrence of lane change manoeuvres at short headways with respect 

to participants’ position. The scenario was repeated at the next main road segment as 

well but this time under the presence of time pressure (amber or red). In the next 

scenario participants faced traffic at slow speeds which aimed to create a sense of 

congestion. This scenario was time based (as opposed to all the rest which were 

position based) with an approximate duration of 5.5 minutes. During this scenario, 

participants faced all possible time pressure states. The last segment of the motorway 

did not include any specific events apart from changes in the emoji states. 

It should be mentioned that the order of scenarios/time pressure states was always 

fixed and the same for all participants. It is acknowledged that this experimental 

design might have impacted driving behaviour, especially in the last segments of the 

motorway (e.g. owing to fatigue or impatience). The order of scenarios was always 

the same as it was easier to develop the motorway following this approach. Moreover, 
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the emoji was always green during the first part of the motorway for purposes of 

realism, as the drivers would not expect to see an amber or red indication at the very 

early stages. For the same reason, there was some type of time pressure at the last 

motorway segments. In terms of each individual scenario, it was decided to present to 

participants a green to red sequence of time pressure indicators within an effort to 

minimise the risk of increasing their physiological responses at the beginning of a 

specific scenario that would potentially influence and prevent them from returning to 

the baseline levels. 

Drivers’ physiological data, across the whole experiment, was collected using the 

Empatica E4 wristband. The device is very similar to a common smart-watch and thus 

offers a non-intrusive manner to obtain physiological data. The Empatica E4 

wristband provides information about heart rate (HR), Electrodermal Activity (EDA), 

blood volume pulse (BVP) and temperature (TEMP). Each of the physiological 

indicators was collected with a different frequency, depending on the attributes of the 

wristband. EDA and temperature have a 4Hz frequency, blood volume pulse 64Hz 

and heart rate 1Hz. 

 

4.2.2 Physiological indicator extraction 

As stated previously, participants used a wristband device that collected physiological 

responses. One of the main objectives of the study was the incorporation of these 

responses in a car-following model framework in order to investigate the possibility 

of obtaining more behaviourally representative outcomes. Following findings from 

existing literature (Picard et al., 2001; Katsis et al., 2011), the raw signals were 

transformed, and a series of indicators were extracted. The indicators were calculated 

based on 10s moving windows (Katsis et al., 2011; Kushki et al., 2011) centred at 

each acceleration observation.  

Heart rate (HR): The HR signal was transformed into z-scores to reduce inter-

individual differences and obtain more comparable values (Picard et al., 2001). The 

mean transformed HR values were than calculated for each window. The basic z-score 

transformation can be described as (
x - µ

σ
), where x is a heart rate observation, μ is the 

heart rate mean value across the whole motorway task and σ is its standard deviation.  

Blood volume pulse (BVP): The same transformation as HR was also applied to the 

BVP signal and from the z-scores it was calculated, for each 10s window, the mean 

of the first absolute difference (FAD) as Equation 4.1: 
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FADX = 
1

N - 1
 ∑  |Xn+1 - Xn|

N

n=1

 (4.1) 

 

The aforementioned BVP indicator was normalised using a min-max transformation 

in order to always obtain values between 0-1. This transformation is common practice 

in literature (Zhai and Barreto, 2006; Sun et al., 2010) to reduce the inter-individual 

differences. In brief, the transformation can be summarised as shown in Equation 4.2: 

  

FADX norm = 
FADX  − FADX min

FADX max  −  FADX min
  (4.2) 

 

Electrodermal activity (EDA): The EDA observations were processed using the 

Matlab package Ledalab (Karenbach, 2005). The skin conductance responses (SCRs) 

were obtained applying trough-to-peak analysis, where the amplitude of a response is 

calculated as the difference in the EDA values between a peak in the signal and its 

preceding trough (Benedek and Kaernbach, 2010). The number of responses and the 

sum of their z-scores in each 10s window were then considered as additional EDA 

indicators. The min-max transformation was also applied in the sum of amplitudes 

indicator. Based on findings in existing literature (Sano et al., 2014), a critical value 

equal to 0.01μS was selected as the minimum critical SCR.  

 

4.2.3 Sample analysis 

In total, 45 participants were recruited through the UoLDS recruitment list. The only 

eligibility criteria was having a valid UK driving licence. However, 3 of the 

participants reported nausea at the practice drive of the experiment and thus 

completely removed from the analysis. Out of the remaining participants that 

successfully completed the urban scenario, that was presented to them first, only 36 

(19 male, 17 female) fully completed the motorway setting as the rest dropped out 

because of sickness. Motion sickness was also investigated with a yes/no question in 

a post driving survey. In total, 11 of 36 participants reported motion sickness however, 

given that they completed the experiment and their behaviour was not found to 

significantly differ, in terms of speed, acceleration etc. from those who did not report 

motion sickness, it was decided to include them in the analysis. The mean age of 

participants was approximately 35 years and the corresponding standard deviation 



Chapter 4: Combining driving simulator and physiological sensor data in a latent 

variable model to incorporate the effect of stress in car-following behaviour 

132 

 

was 11 years. Half of the participants stated that they were driving on a daily basis. 

The average driving experience of participants was almost 15 years. Regarding 

accident involvement, 6 participants reported involvement in minor accidents while 3 

reported involvement in serious accidents. It is worth mentioning that a major accident 

was defined as one where at least one person required medical treatment and/or there 

was property damage above £500. Finally, 6 participants stated that they had at least 

once received a ticket penalty for speeding behaviour. The descriptive statistics of the 

sample are presented in Table 4.1. 

 

Table 4.1: Descriptive statistics of the sample 

 

In Table 4.2, we also present the descriptive statistics of the key traffic variables. For 

an in-depth insight, the full data is split into three parts: 

 

• No events zone: This segment was composed of the initial and the last segment 

of the motorway. As a result, this segment involved, in total, motorway parts 

where no specific events took place apart from time pressure in the last 

segment. 

• Aggressive neighbour zone: This part was composed of the two motorway 

segments where the surrounding vehicles (car drones) could show aggressive 

behaviour, mostly accepting shorter gaps during their lane-change 

Variable Intervals Frequency % Mean 
Std. 

Dev. 
Min Max 

Gender 
Female 17 0.47 - - - - 

Male 19 0.53 - - - - 

Age - - - 35.06 10.99 19 57 

Driving experience - - - 14.83 11.73 1 39 

Frequency of driving 

Everyday 18 0.5 - - - - 

2-3 

times/week 
11 0.31 - - - - 

Once/ 

week 
4 0.11 - - - - 

Less often 3 0.08 - - - - 

Minor accident involvement 
No 30 0.83 - - - - 

Yes 6 0.17 - - - - 

Major accident involvement 
No 33 0.92 - - - - 

Yes 3 0.08 - - - - 

Ticket for speeding 
No 30 0.83 - - - - 

Yes 6 0.17 - - - - 

Physiological indicators 

 Min Mean Max 
Std. 

Dev. 

HR mean -3.55 -0.09 4.48 0.91 

BVP first absolute difference 

mean 
0.00 0.08 0.47 0.04 

SCR Sum Amplitude 0.00 0.09 1.00 0.15 

SCR no of responses 0.00 0.81 12.00 1.42 
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manoeuvres. Also, in this case, participants faced all possible time pressure 

states. 

• Slow traffic zone: This zone included the motorway segment where traffic was 

intentionally slowed to give the impression of congestion. All emoji were 

shown to participants during this segment. 

 

It is worth mentioning that in order to ensure that only car-following behaviour was 

captured (and also exclude free-flow), the conditions to include an observation in the 

analysis had been that a participant has not attempted a lane-change for a duration of 

4s before the observation and also always had a time headway shorter than 4s with 

the leader (based on Hoogendoorn, 2005). All other observations were excluded from 

the data. Table 4.2 presents the descriptive statistics of the data included in the main 

analyses. An in-depth descriptive and inferential statistics analysis of the whole 

driving simulator experiment has been carried out by Paschalidis et al. (2019). 

 

Table 4.2: Descriptive statistics of the motorway scenarios 

 

4.3 Model framework 

We first present the basic structure of the state-of-the-art car-following model 

followed by the novel extension to incorporate the effect of stress. Each of the models 

was estimated without and with the consideration of sociodemographic variables. This 

approach resulted in four main model specifications which can be summarised as: 

 

  Traffic variables Min Mean Max Std. Dev. 

No events      

Acceleration (m/s2) -10.09 -0.02 2.18 0.72 

Speed (m/s) 9.04 26.95 40.98 3.86 

Relative speed with lead vehicle (m/s) -26.63 -0.49 11.25 2.89 

Spacing with lead vehicle (m) 5.56 49.07 145.16 24.37 

Time headway with lead vehicle (s) 0.27 1.83 4.00 0.84 

      

Aggressive drivers     

Acceleration (m/s2) -10.23 -0.03 2.94 0.92 

Speed (m/s) 6.30 26.77 40.86 3.63 

Relative speed with lead vehicle (m/s) -20.03 -0.34 17.43 2.82 

Spacing with lead vehicle (m) 0.81 46.75 140.57 25.00 

Time headway with lead vehicle (s) 0.11 1.75 4.00 0.88 

      

Slow traffic     

Acceleration (m/s2) -10.04 -0.09 1.90 0.67 

Speed (m/s) 7.67 14.79 35.93 4.83 

Relative speed with lead vehicle (m/s) -21.76 -0.96 8.99 2.70 

Spacing with lead vehicle (m) 5.79 26.16 113.90 14.51 

Time headway with lead vehicle (s) 0.42 1.82 3.98 0.69 
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• Base car-following model (no sociodemographic variables) (Section 4.3.1) 

• Car-following model with sociodemographic variables (but no latent stress 

variable) (Section 4.3.2) 

• Car-following model with latent stress variable (but no sociodemographic 

variables) (Section 4.3.3) 

• Car-following model with both sociodemographic and latent stress variables 

(Section 4.3.4) 

 

4.3.1 Base car-following model 

Basic structure 

The model structure is based on the stimulus-response GM car-following model 

(Gazis et al., 1961). In the original GM model, acceleration choices for a vehicle are 

a function of its speed, space headway and relative speed with the lead vehicle. The 

original specification is (Equation 4.3):  

 

an(t)|τn= α
Vn(t)

β

ΔXn(t)γ
ΔVn(t - τn) (4.3) 

 

where: ΔXn is the space headway at time t, Vn is the following vehicle speed, ΔVn is 

the relative speed between the following and the lead vehicle and τn is the driver 

specific reaction time. Finally, α, β and γ are constants. 

Based on the GM model, several extensions have been suggested. Herman and 

Rothery (1965) were the first to highlight that passenger cars have different 

acceleration and deceleration capacity. In order to address this shortcoming in the GM 

model, Ahmed (1999) introduced acceleration-deceleration asymmetry within a 

stimulus-response framework (Equation 4.4): 

 

an
g(t)|τn = s [Xn

g(t - τn)] × f [ΔVn(t - τn)] + εn
g(t) (4.4) 

 

where: s[.] represents sensitivity, as a vector of explanatory variables and f[.] 

represents the stimulus, given as the relative speed. Also, εg is a normally distributed 

disturbance term while g represents the car-following regime (acceleration or 

deceleration). In the present study, the sensitivity and stimulus parts are analysed in 

(Equations 4.5 and 4.6): 
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s[Xn
g(t - τn)] = αg

1

ΔTn(t)γg (4.5) 

 

f [ΔVn(t ‐ τn)]= ΔVn(t ‐ τn)
λg (4.6) 

 

where: ΔTn is the time headway, ΔVn is the relative speed between the subject and the 

lead vehicle and τn is the reaction time. Finally, αg, γg and λg are parameters to be 

estimated and g indicates the type of regime. The GM model offers several 

computational advantages – both in estimation and application.  It is a well 

identified/specified model and the likelihood function can be estimated without the 

need for any parameter normalisations. Therefore, it was considered as a suitable car-

following model for the purpose of the current paper. It is worth highlighting that 

instead of applying the original GM model specification, the sensitivity part was 

modified in order to consider only time headway, as in Papadimitriou and Choudhury 

(2017). 

The reaction time distribution 

The current model specification also allows for the incorporation of reaction time. 

Following examples in literature (Ahmed, 1999), the reaction time is assumed to 

follow a log-normal truncated distribution (Equation 4.7):  

 

φ(τn)=

{
 
 

 
 

1
τnστ

φ(
ln(τn) ‐μτ

στ
)

Φ(
ln(τmax) ‐μτ

στ
) ‐Φ (

ln(τmin) ‐μτ
στ

)
              if τmin<τn≤τ

max

0                                                                   otherwise

 (4.7) 

 

where: φ(.) is the standard normal distribution density function, Φ(.) is the cumulative 

normal distribution, τn is the reaction time of driver n, μτ is the mean of the distribution 

of ln(τn), στ is the standard deviation and τmax, τmin are the bounds of truncation. 

Truncation is required since reaction time is finite. The bounds are set 

deterministically while the mean and the standard deviation are estimated 

simultaneously with the rest of the model parameters. The bounds of reaction time 

were set between 0 and 4 seconds (Ahmed, 1999; Kusuma, 2015). 
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Likelihood Function  

In Equation 4.3, assuming that the disturbance terms are normally distributed, the 

probabilities of accelertion-deceleration decisions can be expressed using the standard 

normal density function (Equation 4.8): 

 

φ(an
g(t)|τn)=

1

σεg

φ (
an

g(t)-s[Xn
g(t-τn)]×f[ΔVn(t-τn)]

σεg

) (4.8) 

 

where: g ∈ {acc,dec}. 

 

Also, the assumption of the GM car-following model is that a driver accelerates if the 

relative speed is positive and decelerates if negative. Given this, the distribution of 

acceleration decisions is given, conditionally on reaction time τ, as (Equation 4.9): 

 

φ(an(t)|τn)=φ(an
acc(t)|τn)

δ[ΔVn(t-τn)]φ(an
dec(t)|τn)

(1-δ[ΔVn(t-τn)])
 (4.9) 

 

where:  

 

δ[ΔVn(t-τn)]= {
1    if ΔVn(t - τn)≥0

        0        otherwise            
 

 

In the current specification, the acceleration observations of each driver n are assumed 

to be independent while the heterogeneity in driving behaviour is captured through 

the reaction time distribution. Thus, the conditional joint density of the acceleration 

sequential observations, of a driver n, is the product of the conditional densities of the 

acceleration decisions (Equation 4.10):  

φ(an(1),an(2),…,an(Tn)|τn)=∏φ(a
n
(t)

Tn

t=1

|τn) 
    

(4.10) 

 

The unconditional form of the distribution above is (Equation 4.11): 
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φ(an(1),an(2),…,an(Tn))=∫ φ(an(1),an(2),…,an(Tn)|τn)
τmax

τmin

φ(τn)dτ (4.11) 

 

At the final step, the model is estimated by maximizing the log-likelihood function of 

the acceleration observations (Equation 4.12): 

LL=∑ ln[φ(an(1),an(2),…,an(Tn))]

N

n=1

 (4.12) 

 

4.3.2 Car-following model with sociodemographic variables 

An important component of driving behaviour heterogeneity is also drivers’ 

sociodemographic characteristics. As mentioned in the Introduction section, this has 

been a disregarded issue in the vast majority of existing models. An interesting 

approach to incorporate these variables has been suggested by Farah and 

Koutsopoulos (2014), where sociodemographic characteristics are a part of the 

stimulus component. In brief, following the aforementioned work, Equation 4.6 is 

extended to (Equation 4.13): 

 

f [ΔVn(t - τn)]= ΔVn(t - τn)
λ

g
+β

g
Zn (4.13) 

 

where:  Zn is a vector of sociodemographic variables and βg is the vector of the 

corresponding parameters. The inclusion of these variables is expected to enhance the 

explanatory power of the models and provide improved behavioural representation of 

the car-following process. The remaining of the model specification and estimation 

follows the same process presented in Section 4.3.1. 

 

4.3.3 Car-following model with latent stress variable  

In the current study, stress levels are not directly measured but instead, their effects 

on physiological responses are observed. Thus, the suggested framework incorporates 

stress as a latent variable in the car-following model. The structure of the new model 

specification is based on the hybrid choice modelling approach (see Abou-Zeid and  

Ben-Akiva, 2014 for details).  
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Figure 4. 3: Example of the proposed car-following framework incorporating stress 

 

The new latent variable model (presented in Figure 4.3) is composed by two main 

parts, the structural equation, which describes the latent variable specification and the 

measurement component which is linking the latent variable to the indicators 

(Joreskog and  Sorbom, 1984). In a car-following context, stress levels are expected 

to affect drivers’ sensitivity to the presented stimulus (relative speed in the case of 

GM model). Hence, the latent variable that represents stress is incorporated as a shift 

to the sensitivity through an additive term.  

At the same time, the stress levels may be also influenced by the traffic conditions. 

For example, a driver may be more stressed if the driver in the front is too close or too 

slow. For this reason, stress in turn was expressed as a function of time headway and 

relative speed, following the formulation in Equation 4.14. However, as shown in a 

later section, our results indicated that only the time headway had a statistically 

significant effect on stress and thus, relative speed was dropped from the specification. 

The overview of the suggested model specification is depicted in Figure 4.3. Latent 

variables are shown in ovals and observed variables are shown in rectangles. The solid 

and the broke lines represent structural and measurement relationships respectively.   

The overall specification of the suggested latent variable car-following model can be 

summarised as (Equations 4.14-4.16): 

 

Structural equations: 

 

Stressn(t)= ξYn(t) + η
n
(t), η

n
(t)=N~(0,1) (4.14) 
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an
g(t)|τn = {s[Xn

g(t)]+ θ
g
 Stressn(t)}× f [ΔVn(t-τn)] + εn

g(t) (4.15) 

 

Measurement equations: 

 

Ik,n(t)=β
Ik

 + ζ
Ik

 Stressn(t) +u k,n(t) uk,n(t) = N~(0,σIk

2 ) (4.16) 

 

 

where: Stressn(t), is the latent variable representing stress which is expressed as a 

function of Yn(t) explanatory variables with a vector ξ of parameters to estimate and 

η
n
(t) is a standard normal disturbance term. Also, θ

g
 is a set of parameters capturing 

the effect of the latent variable in the acceleration-deceleration regimes, Ik,n(t) is an 

indicator k of individual n at time t, as extracted from the raw physiological responses, 

β
Ik

 is a constant of the kth indicator, ζ
Ik

 is a parameter that captures the effect of the 

latent variable on the kth indicator and u k,n(t) is a normally distributed disturbance 

term. If the mean value is subtracted from each continuous indicator, then the β
Ik
∀ k 

does not need to be estimated. 

Given the assumption of normality for the disturbance term of each indicator, a 

measurement equation takes the form (Equation 4.17): 

 

φ(Ik,n(t))=
1

σIk

φ (
Ik,n(t) - ζ

Ik
 Stressn(t)

σIk

) (4.17) 

 

where: φ(.) denotes the probability density function (pdf) of a standard normal 

distribution. For an individual n, the total likelihood of observing a specific pattern of 

indicators is given as the product of the pdf values at time t as shown in Equation 4.18: 

 

L (Ik,n(t)| ζ
Ik

,Stressn(t),σIk
,t)=∏φ(Ik,n(t))

K

k=1

 (4.18) 

 

The car-following model in its basic specification, captures heterogeneity across 

drivers through reaction time. However, the latent variable is expected to influence 
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acceleration observations within the same individual n. Thus, following Hess and 

Train (2011) the new model specification accounts for heterogeneity both at the inter-

individual (reaction time) and intra-individual level (latent variable for stress). The 

new log-likelihood function then takes the following form, as presented in Equation 

4.19: 

 

LL= ∑ ln [∫ (∏(∫ φ(αn(t))
 

η

L (Ik,n(t)| ζ
Ik

,Stressn(t),σIk
,t)  φ(η)dη)

T

t=1

)φ(τ)dτ
τmax

τmin

]

N

n=1

 (4.19) 

 

Given the nature of a stimulus-response car-following model formulation (a driver 

reacts to the stimulus of relative speed with a specific sensitivity), the specification 

presented in Section 4.3.2 is reasonable in terms of behavioural interpretation; stress 

levels could affect drivers’ sensitivity to a presented stimulus.  

 

It may be noted that additional model specifications (presented in Equations 4.20 to 

4.22) have been tested and compared with the proposed model specification. 

 

an
g(t) = s[Xn

g(t)]× f [ΔVn(t-τn)] + θ
g
 Stressn(t) + εn

g(t) (4.20) 

 

an
g(t) = (αg+ θ

g
 Stressn(t))

1

ΔTn(t)γg  × f [ΔVn(t-τn)] + εn
g(t) (4.21) 

 

an
g(t) = αg

1

ΔTn(t)γg+ θ
g
 Stressn(t)

 × f [ΔVn(t-τn)] + εn
g(t) (4.22) 

 

Each variant presented above represents different approximations regarding the 

effects of stress on car-following behaviour. For instance, Equation 4.20 assumes that 

stress has an overall shift on acceleration values, Equations 4.21 and 4.22 assume that 

stress interacts with the constant term and the time headway respectively. It should be 

mentioned that these specifications resulted in either worse log-likelihood values or 

unrealistic predictions in the sensitivity analysis (as performed in Section 4.4.3) and 

thus were not selected as the recommended specifications. 
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4.3.4 Car-following model with both sociodemographic and latent stress 

variables 

The last of the model specifications presented in the current paper focuses on the 

estimation of the latent variable car-following model, while it also accounts for the 

effects of sociodemographic characteristics. The incorporation of these variables is 

following the specification presented in Section 4.3.2 while the rest of the process 

remains the same as in Section 4.3.3. This approach provides the benefit to investigate 

the effects of stress within a car-following model framework, on top of the 

sociodemographic variables and thus obtain more robust outcomes.  

 

4.4. Estimation results 

The current section presents the results of the various car-following model 

specifications. We first estimated base models (i.e. car-following models without 

socio-demographic and stress latent variables) and tested for significant differences 

among the various segments (Section 4.4.1). Based on these results, we retained 

separate models for each of the scenarios and developed the following four sets of 

models, as presented in Section 4.3. These can be summarised to the base car-

following models without sociodemographic variables (Section 4.4.1), car-following 

models with sociodemographic variables, but no latent stress variable (Section 4.4.2), 

car-following models with latent stress variable, but no sociodemographic variables 

(Section 4.4.3) and car-following models with both sociodemographic and latent 

stress variables (Section 4.4.4). The final equations, including the parameter estimates 

for all models, are presented in Appendix B. 

 

4.4.1 Base car-following models  

Parameter estimates 

As described previously, three different segments were extracted from the motorway 

scenario and investigated separately to examine for significant differences in car-

following behaviour due to the different nature of traffic conditions. Three separate 

models were then estimated from these segments. These were: a model from the 

segments without specific events (“No events” model), a model from the aggressive 

drivers’ zone (“Aggressive drivers” model) and a model from the slow traffic zone 

(“Slow traffic” model). As an initial step, the various models were estimated 

following the basic GM model specification presented in Section 4.3.1. The parameter 
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estimates are presented in Table 4.3. All parameters of the car-following components 

have expected values and signs while most of them are significant at the 95% level. 

For instance, all acceleration constants are positive while the deceleration ones are 

negative. Moreover, the stimulus parameters (relative speed) have values smaller or 

close to 1, as expected, owing to the limited acceleration/deceleration a driver can 

apply (Ahmed, 1999). It should be mentioned that the “No events” model was also 

estimated using data only from the motorway segment without time pressure, but 

almost all parameter estimates did not significantly differ from those presented in 

Table 4.3.  

Sensitivity analysis 

The sensitivity analysis of the “Aggressive drivers” model is presented in the current 

section as an example of model interpretation. In particular, the effect of each 

explanatory variable is illustrated (Figure 4.4) with respect to the estimated 

parameters of acceleration-deceleration regimes. For purposes of consistency, the 

ranges of acceleration/deceleration were kept constant across explanatory variables. 

It is worth mentioning that despite the differences in the parameter estimates, similar 

patterns were in general observed for all three segments. 

The observed trends are consistent with expectations and findings in the existing 

literature. When in acceleration regime, drivers tend to apply lower rates of 

acceleration as time headway increases, since traffic conditions are more likely to be 

closer to free flow. On the other hand, deceleration rate increases in absolute terms, 

as time headway decreases, implying safety concerns from the perspective of drivers 

to avoid a potential crash. Finally, an approximately linear relationship is observed 

between acceleration-deceleration rates and relative speed. 

Reaction time 

The estimated reaction time distributions are illustrated in Figure 4.5. The mean 

reaction time is largest for the slow traffic scenario as expected and consistent with 

literature findings (Törnros, 1995). The mean and the standard deviation for the 

reaction time is smaller for aggressive driving scenario (as drivers are more alerted). 

Model comparison 

In order to examine whether traffic conditions affect car-following behaviour, the 

three models were compared in terms of individual parameters and overall model fit. 

The former was investigated with the t-test of parameter equivalence which is 

summarised as (Equation 4.23): 
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tdiff,k=
β1,k‐β2,k

√(
β1,k
t1,k

)
2

+(
β2,k
t2,k

)
2

 

(4.23) 

 

 

 

Figure 4.4: Sensitivity plots of the “Aggressive drivers” car-following model 

 

where β1,k and β2,k are the parameter estimates of the kth parameter of the two models 

and t1,k and t2,k are corresponding t-statistics. The null hypothesis of parameter 

equivalence is rejected at 95% level of confidence if |tdiff,k|>1.96. The three base 

models were compared pairwise, and the results of the t-test are presented in Table 

4.3. 
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Table 4.3: Parameter estimates and t-test of parameter equivalence of the base car-following models 

 

  
No events model 

(1) 

Aggressive drivers 

model (2) 
Slow traffic model (3) t-test of parameter equivalence 

  Estimate t-ratio Estimate t-ratio Estimate t-ratio (1) and (2) (2) and (3) (1) and (3) 

Reaction time distribution 

μt 0.297 1.58 -0.068 -0.22 0.655 14.63 1.01 -1.86 -2.31 

σt 0.725 7.40 0.746 4.30 0.350 2.73 -0.10 2.32 1.83 
          

Car-following acceleration 

Constant 0.193 8.39 0.139 7.93 0.347 6.97 1.85 -2.82 -3.94 

Time headway (s) 0.400 3.76 0.063 0.49 0.275 1.77 2.03 0.67 -1.05 

Relative speed (m/s) 0.707 10.15 0.818 10.84 0.674 9.73 -1.08 0.34 1.41 

σacc 0.447 22.03 0.634 15.78 0.337 25.72 -4.16 4.53 7.02 
          

Car-following deceleration 

Constant -0.219 -5.65 -0.174 -4.98 -0.255 -5.43 -0.86 0.59 1.38 

Time headway (s) 1.192 4.05 0.857 8.31 0.486 2.73 1.07 2.05 1.80 

Relative speed (m/s) 0.786 4.15 1.009 9.28 0.709 9.5 -1.02 0.38 2.29 

σdec 0.770 15.64 0.985 17.25 0.694 17.06 -2.85 1.19 4.16 

LL(β) -9278.67 -13622.58 -5681.67 

 ρ2 0.22 0.10 0.32 

N 36 36 36 

Observations 10105 11325 7236 
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Figure 4.5: Reaction time distributions of the car-following models 

 

With reference to the results of the t-tests, some of the parameters among the three 

models significantly differ either at the 90% or 95% level, indicating significant 

differences in car-following behaviour (e.g. acceleration constants significantly differ 

in all examined pairs). However, some of the variables (mean of reaction time and 

time headway) were retained in the ‘Aggressive Driver’ model in spite of being 

insignificant at 90% level of significance for the sake of consistency and ease of 

comparison. It may be noted that inclusion of these insignificant variables may have 

some effect on the efficiency of the estimation. 

Estimation results indicate that there is a significant difference in the reaction time 

distribution of “Slow traffic” model which may show that drivers perceive stimulus 

differently in various traffic conditions. As a final step, all models were also 

investigated pairwise, in terms of total fit, using the likelihood ratio test (Ben-Akiva 

& Lerman, 1985) that compares the log-likelihood (LL) values between a restricted 

and an unrestricted model, with degrees of freedom equal to the difference in model 

parameters. For every set of two models, from those presented in Table 4.3, the sum 

of LL was considered as the unrestricted model while a model estimated using the 

same data points of these two models, but only a single set of parameters was 

considered as the restricted model. In essence, the restricted model assumes that the 

effect of explanatory variables on acceleration is the same for both the examined 

motorway areas. The results of these likelihood ratio tests showed that in all cases, the 

null hypothesis was rejected indicating the restricted models were significantly worse 
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compared to the unrestricted. Following the findings also from the t-tests of individual 

parameter equivalence, this outcome further indicates that a single set of parameters, 

for model estimation from different segments of the motorway, does not capture the 

heterogeneity in car-following behaviour and the differences should be considered 

with additional parameters. Based on these results, the stress effects are investigated 

separately for each segment in the next section. 

 

4.4.2 Car-following models with sociodemographic variables  

The models presented in the previous section were extended to also consider 

heterogeneity across drivers via sociodemographic characteristics. Based on the 

findings of Farah and Koutsopoulos (2014), these variables were incorporated as a 

part of the stimulus term (relative speed parameter) as detailed in Section 4.3.2. The 

parameter estimates are presented in Table 4.4. It should be mentioned that different 

sociodemographic variables were found to be significant in the three models and only 

the variables statistically significant at 90% level of confidence have been retained in 

the model. This led to addition of gender, age, driving frequency and accident 

involvement variables in models, while driving experience, speed violation history, 

education level and employment status were dropped as they were not statistically 

significant in any of the models. In the model specification, as accident involvement 

were considered both minor and major reported accidents while, with respect to 

driving frequency, the best fit occurred when driving 2-3 days per week or every day 

were combined as a single category. 

All models were compared with the respective car-following models without 

sociodemographic characteristics using the likelihood-ratio test. In all cases, the 

difference was significantly higher from the critical values at the 99% level of 

significance. This finding shows that in all cases, model fit was significantly improved 

when drivers’ characteristics were considered. As expected, the smallest improvement 

occurred for the “Aggressive drivers” model where only the female dummy in the 

deceleration regime was found to be significant. Moreover, similar values were 

obtained for the reaction time distributions’ moments and the acceleration and 

deceleration constants kept their expected signs. The effects of the significant 

sociodemographic characteristics (90% level of significance or above) on 

acceleration/deceleration behaviour were investigated through sensitivity analyses 

(appended in Appendix B). 

The model where largest number of sociodemographic variables were found to be 

statistically significant was the “No events” model. In particular, gender, had 



4.4. Estimation results 

147 

 

significant effects on both acceleration and deceleration with male drivers applying 

higher acceleration and lower (absolute) decelerations. Age had a significant impact 

on acceleration only. More specifically, increase in age was associated with decrease 

in acceleration values. The effects of driving frequency had similar trends to those of 

gender on both acceleration and deceleration regimes. Moreover, higher driving 

frequency was related to higher acceleration and lower deceleration values. Also, 

participants who reported accident involvement also applied lower deceleration.  

Table 4.4: Parameter estimates considering sociodemographic characteristics. 

  No events model (1) 
Aggressive drivers 

model (2) 

Slow traffic model 

(3) 

  Estimates t-ratio Estimates t-ratio Estimates t-ratio 

Reaction time distribution 

μt 0.322 1.68 -0.023 -0.12 0.610 11.41 

σt 0.760 6.38 0.766 7.66 0.338 2.77 

Car-following acceleration 

Constant 0.190 8.92 0.139 8.06 0.332 7.14 

Time headway (s) 0.389 3.65 0.055 0.44 0.223 1.56 

Relative speed (m/s) 0.942 7.18 0.815 11.1 1.449 7.64 

σacc 0.447 23.24 0.634 15.92 0.337 25.08 

Car-following deceleration 

Constant -0.100 -3.66 -0.163 -5.86 -0.250 -5.22 

Time headway (s) 1.801 6.25 0.907 9.43 0.504 3.33 

Relative speed (m/s) 1.695 11.25 0.950 8.89 0.941 6.57 

σdec 0.727 16.5 0.979 17.53 0.686 17.21 

Sociodemographic characteristics 

Female dummy 

acceleration 
-0.192 -1.79 0 NA 

-0.436 -2.33 

Female dummy 

deceleration 
0.503 2.73 

0.289 2.26 
0 NA 

Accident involvement 

dummy deceleration 
-1.050 -6.35 0 NA 

-0.152 -1.83 

Age acceleration -0.008 -2.35 0 NA -0.012 -3.51 

Driving frequency 

dummy acceleration 
0.176 1.99 0 NA 0 NA 

Driving frequency 

dummy deceleration 
-0.387 -3.34 0 NA 

-0.203 -2.30 

LL(β) – (LR test) 

-8968.31 

(620.72 - χ2
(99%,df): 

16.81) 

-13588.98  

(67.20 - χ2
(99%,df): 6.63) 

-5628.68 

(105.97 - χ2
(99%,df): 

13.28) 

ρ2 0.25 0.11 0.32 

N 36 36 36 

Observations 10105 11325 7236 

 

Regarding the “Aggressive drivers” model, only gender in the deceleration regime 

was found to be significant. The type of effect was the same of the “No events” model.  

In the “Slow traffic” model, the coefficients corresponding to female drivers for 

deceleration and to frequent drivers for acceleration were not found to be statistically 



Chapter 4: Combining driving simulator and physiological sensor data in a latent 

variable model to incorporate the effect of stress in car-following behaviour 

148 

 

significant. The statistically significant coefficients were found to have the same sign 

as the “No events model” though the difference in magnitudes resulted slightly 

different trends in the sensitivity plots. 

  

4.4.3 Car-following models with latent stress variable  

Following the suggested methodological framework from Section 4.3.3, a series of 

car-following models incorporating stress as a latent variable were estimated. The 

estimation results of the latent variable car-following model based on Equation 4.15 

are presented in Table 4.5. The estimates of the other specifications (Equations 4.20-

4.22) are not presented in detail as they either resulted in inconsistent values during 

the sensitivity analysis (e.g. negative values in the acceleration regime, non-realistic 

deceleration rates etc.) and/or worse LL scores for the car-following component 

compared to the presented model. 

Measurement equation component:  

The parameters of the measurement components are of similar magnitude and same 

trend in all three models. There is a positive and significant effect of the latent variable 

almost on all indicators; that is, as stress increases, the value of each indicator 

increases too. This is in line with the a-priori expectations. The statistical significance 

is in general higher for the electrodermal response indicators (Sum of SCR amplitudes 

and Number of SCR responses exceeding the threshold) compared to the indicators 

corresponding to HR and BVP. Finally, the effect of the latent variable was not 

significant on the HR indicators of the “No events” and “Slow traffic” models. 

Structural equation component:  

The parameter estimates, for all three models, are similar to the base specifications. 

The latent variable was expressed in all models as a function of time headway; its 

effect was always negative and significant at the 90% or 95% level. The effect of the 

latent variable on acceleration was positive indicating that as stress increases, drivers 

tend to accelerate more. The coefficient of the latent stress was found to be statistically 

significant in the acceleration components of the “No events” and “Aggressive 

drivers” models, which is an indirect indication that the models are behaviourally 

more robust than the models without stress. The effect of stress was however not 

significant in the “Slow traffic” model. This is likely to be due to the fact that in the 

“Slow traffic” segment, even if drivers desired to accelerate, they were constrained by 

the slow speeds of the surrounding traffic.  For the sake of compatibility, the variable 

was retained in the model though. It may be noted that inclusion of these insignificant 
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variables may have some affect the efficiency of the estimation. Interestingly, the 

effect of stress on deceleration was not statistically significant in any of the models 

and removed from the model.  

Table 4.5: Parameter estimates of the latent stress car-following models 

  
No events model 

(1) 

Aggressive drivers 

model (2) 

Slow traffic model 

(3) 

  Estimates t-ratio Estimates t-ratio Estimates t-ratio 

Reaction time distribution 

μt 0.294 1.57 -0.057 -0.19 0.655 14.56 

σt 0.730 7.59 0.752 4.31 0.35 2.73 

Car-following acceleration 

Constant 0.190 8.21 0.137 7.82 0.349 7.18 

Time headway (s) 0.409 3.83 0.042 0.33 0.282 1.85 

Relative speed (m/s) 0.731 9.99 0.829 11.25 0.695 8.35 

σacc 0.446 22.18 0.633 15.74 0.34 25.54 

Car-following deceleration 

Constant -0.219 -5.64 -0.173 -4.97 -0.255 -5.43 

Time headway (s) 1.190 4.05 0.856 8.32 0.486 2.72 

Relative speed (m/s) 0.787 4.17 1.011 9.30 0.708 9.50 

σdec 0.770 15.67 0.985 17.25 0.693 17.06 

Effects of stress 

Stress acceleration 0.018 2.01 0.023 2.35 -0.012 -0.57 

Latent variable specification 

Time headway (s) -0.041 -2.38 -0.036 -1.80 -0.046 -4.37 

Measurement equations 

HR mean 0.089 1.54 0.093 2.10 0.065 1.47 

σHR 0.972 15.24 0.864 15.48 0.844 15.04 

BVP first absolute 

difference mean 
0.016 6.23 0.015 4.13 0.016 5.29 

σBVP-FAD 0.044 15.17 0.042 16.44 0.042 20.11 

SCR Sum Amplitude 0.168 29.6 0.164 14.63 0.159 27.46 

σSCR-sum 0.037 13.25 0.038 12.52 0.038 4.10 

SCR no of responses 1.625 6.87 1.384 8.00 1.370 12.54 

σSCR-no 0.531 5.27 0.489 4.18 0.396 3.00 

LL(β) – car-following 

component 
-9273.54 -13620.52 -5681.805 

 

Sensitivity analysis 

This section presents the sensitivity analysis for the “No events” and “Aggressive 

drivers” models considering the effects of the stress latent variable. As opposed to the 

sensitivity analysis presented in Section 4.4.1, where acceleration patterns arise as a 

single curved line, either as a function of time headway or relative speed, the 

incorporation of the latent variable introduces a third dimension to be considered. This 

approach results in a “surface” of predicted values, where acceleration patterns vary 
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also depending on the stress levels alongside traffic variables. Moreover, the values 

derived from the current sensitivity analyses, depend on parameter estimates of stress 

weighted by the distribution assumption of the latent variable, as explained in Section 

4.3.3. Compared to the deterministic approach of the base car-following model, the 

suggested latent variable specification allows for a wider range of acceleration 

patterns and better match the reality. The sensitivity analysis of the latent variable 

models is presented in Figures 4.6 to 4.9. It may be noted that since the parameter 

estimates of stress for the deceleration regime were not statistically significant, only 

the acceleration regime is analysed in detail. 

 

 

Figure 4.6: Time headway sensitivity analysis of the “No events” latent variable 

model 

 

Regarding the derived acceleration patterns per se, Figure 4.6 shows the results of the 

“No events” latent variable model, with respect to the time headway. On the left part 

of the figure, the plot corresponds to the Acceleration-Time headway plot presented 

in Figure 4.4, accounting also for the effects of the latent variable. Moreover, the base 

car-following model is highlighted with a dashed line. Given the model specification 

(latent variable is an additive disturbance to the sensitivity term) and also the 

similarity in the parameter estimates between the base and latent car-following 

models, the base model occurs as a line at the zero value of stress. The acceleration 

trend is in general similar to the one presented in the sensitivity analysis of the base 

model. For instance, higher acceleration values are observed at shorter time headways, 

while the values decrease as headway increases (and traffic conditions potentially 

approach free-flow). However, in addition, there is also a slope variation due to the 

stress effects. Hence, for the same value of time headway, acceleration increases as 

stress rises while similar values of acceleration can result for other specific 
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combinations of time headway and stress. It may be noted that given the distribution 

of the latent variable (presented on the right part of Figure 4.6) the stress values are 

gathered around zero indicating that there is higher frequency of obtaining 

acceleration values from this zone compared to the tail end of the stress distribution.   

Similar impacts of stress also occur in Figure 4.7 where the sensitivity plot with 

respect to relative speed and stress is presented. It is worth mentioning that the figure 

has been rotated around the z-axis for a better illustration of the results. Again, the 

overall pattern is similar to the one presented in the sensitivity analysis of the base 

model i.e. acceleration increases as relative speed becomes larger while the effects of 

the latent variable distribution apply in this case as well. Moreover, this plot shows 

that the latent variable model results in higher upper range of acceleration compared 

to the base model (though with lower probabilities, owing to the distribution 

assumption of stress). 

 

 

 

Figure 4.7: Relative speed sensitivity analysis of the “No events” latent variable 

model 

 

The outcomes presented regarding the “No events” model also extend to the 

“Aggressive drivers” model, as congruous patterns are observed (Figure 4.8 and 4.9) 

and all the acceleration trends are in line with expectations. Moreover, Figure 4.8 is 

an additional example that highlights the difference between the base and the latent 

variable model, as it is obvious that the latter provides a larger variability in 

acceleration values while the former is restricted only to the average band. This seems 

to be the case also in Figure 4.9, where the latent variable model also allows for 
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acceleration values beyond the range of the base model providing potentially wider 

heterogeneity of drivers’ behaviour. 

 

 

Figure 4.8: Time headway sensitivity analysis of the “Aggressive drivers” latent 

variable model 

 

 

Figure 4.9: Relative speed sensitivity analysis of the “Aggressive drivers” latent 

variable model 

Overall, our sensitivity analyses indicates that as stress increases, there is a significant 

increase of the acceleration rate, for both the “No events” and “Aggressive drivers” 

models. From a behavioural point of view, drivers under higher levels of physiological 

stress express similar characteristics with the “aggressive” drivers used in some 

microsimulation tools. However, while the current microsimulation tools assume that 

an aggressive driver will always have higher acceleration values, the proposed model 

captures the intra-driver heterogeneity in a more robust manner. Moreover, from a 
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road safety perspective, the increase of stress levels points out safety concerns 

regarding the performance of drivers. 

 

4.4.4 Car-following models with both sociodemographic and latent stress 

variables 

The last part of model estimation focused on the estimation of the latent variable car-

following model also considering drivers’ sociodemographic characteristics. The 

model specification combined the models presented in Sections 4.3.2 and 4.3.3. The 

parameter estimates are outlined in Table 4.6. 

Similar to the models presented in Section 4.4.3, stress was found to have a positive 

effect only on the acceleration regimes of the “No events” and “Aggressive drivers” 

models – however, statistical significance dropped to the 90% level in the former. The 

effect of time headway on stress remained negative and significant in all models. On 

top of these findings, the same effects of sociodemographic characteristics were also 

captured in the latent variable model with their levels of significance remaining the 

same, compared to the base cases. The detailed sensitivity analyses (generated 

assuming a sample average value for the sociodemographic variables) are presented 

in Appendix B. They show similar trends to those illustrated in Figures 4.6-4.9.  

 

4.5 Conclusion 

Car-following is a crucial component of driving behaviour both in terms of traffic 

flow replication and road safety analyses. The existing literature has highlighted the 

importance of incorporating human factors and the mental states of the driver in car-

following models – but to the best of our knowledge, this had not been done in any 

previous study. This paper fills in this research gap with a special focus on driving 

stress by suggesting a framework for their incorporation in a modelling framework. 

The study is based on data collected from a motorway scenario developed at the 

University of Leeds Driving Simulator, as part of a comprehensive driving simulator 

study, where participants were deliberately subjected to stressful conditions. 

Different car-following models were estimated based on an adaptation of the 

traditional GM model for three different motorway traffic scenarios. Our findings 

suggest that various traffic conditions yielded different car-following behaviours 

emphasizing the need to investigate the effect of stress independently for each 

motorway segment. For the incorporation of stress, a latent variable was introduced 
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in the model specification, capturing heterogeneity at the intra-individual level.  It 

may be noted that although the benefits of accounting for unobserved inter-intra 

heterogeneity have been demonstrated in other contexts using mixed logit (e.g. Hess 

and Train, 2011; Hess and Giergiczny, 2015) and hybrid choice models (e.g. Calastri 

et al., 2018), these efforts have often only led to minor changes in results. In the 

present work, the panel/dynamic nature of the indicators seems to have contributed to 

a greater ability to capture inter-intra heterogeneity, possibly due to more intra-

individual variation in the experienced scenarios. 

Table 4. 6: Parameter estimates of the latent variable car-following models with 

sociodemographic variables 

 No events model (1) Aggressive drivers model (2) Slow traffic model (3) 
 Estimates t-ratio Estimates t-ratio Estimates t-ratio 

Reaction time distribution 

μt 0.339 1.70 -0.018 -0.09 0.611 11.32 

σt 0.773 6.27 0.770 7.58 0.338 2.76 

Car-following acceleration 

Constant 0.188 8.69 0.137 7.90 0.333 7.23 

Time headway (s) 0.394 3.72 0.033 0.27 0.226 1.58 

Relative speed (m/s) 0.956 7.36 0.827 11.47 1.479 7.98 

σacc 0.446 23.39 0.633 15.90 0.337 24.10 

Car-following deceleration 

Constant -0.099 -3.65 -0.163 -5.86 -0.250 -5.13 

Time headway (s) 1.800 6.26 0.907 9.42 0.503 3.32 

Relative speed (m/s) 1.696 11.27 0.955 8.89 0.942 6.48 

σdec 0.727 16.49 0.979 17.54 0.686 17.24 

Effects of stress 

Stress acceleration 0.016 1.74 0.023 2.38 -0.011 -0.47 

Latent variable specification 

Time headway (s) -0.041 -2.38 -0.036 -1.80 -0.046 -4.37 

Sociodemographic characteristics 

Female dummy 

acceleration 
-0.188 -1.83 0 NA -0.407 -1.85 

Female dummy 

deceleration 
0.502 2.73 

0.290 2.27 
0 NA 

Accident involvement 

dummy deceleration 
-1.050 -6.36 0 NA -0.152 -1.82 

Age acceleration -0.008 -2.38 0 NA -0.013 -3.22 

Driving frequency 

dummy acceleration 
0.171 1.97 0 NA 0 NA 

Driving frequency 

dummy deceleration 
-0.387 -3.35 0 NA -0.203 -2.29 

Measurement model 

HR mean 0.089 1.54 0.093 2.10 0.065 1.47 

σHR 0.972 15.24 0.864 15.48 0.844 15.04 

BVP first absolute 

difference mean 
0.016 6.23 

0.015 4.13 0.016 5.29 

σBVP-FAD 0.044 15.17 0.042 16.44 0.042 20.08 

SCR Sum Amplitude 0.168 29.62 0.164 14.63 0.159 27.46 

σSCR-sum 0.037 13.26 0.038 12.52 0.038 4.02 

SCR no of responses 1.625 6.87 1.384 8.00 1.370 12.51 

σSCR-no 0.531 5.27 0.489 4.18 0.396 2.95 

LL(β) – car-following 

component 
-8964.19 -13586.81 -5629.05 

Regarding the effects of stress, a positive effect on acceleration was found which was 

statistically significant in all cases other than the slow leader scenario (where the 
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driver had restricted movement). From a behavioural perspective, drivers with higher 

levels of stress (as manifested in the physiological responses), express similar 

characteristics with the “aggressive” drivers used in some microsimulation tools. But 

while in the current state-of-the-art simulation tools, an aggressive driver is assumed 

to have the same level of aggression throughout the entire simulation, our findings 

indicate that there is significant within-driver heterogeneity which needs to be 

accounted for in the simulation.  Ignoring the within-driver heterogeneity in levels of 

aggression can have substantial impact on safety analyses. Interestingly, the effect of 

stress on deceleration was not found to be statistically significant in any scenario. A 

final remark regarding our findings, is the positive contribution of sociodemographic 

characteristics in the model fit. The latter were considered as a part of the stimulus 

term and their significance remained on both the base and the latent variable model 

highlighting the importance of incorporating human factors in driving behaviour 

models.  

However, while interpreting the results, it should be acknowledged that the research 

is based on data from a driving simulator experiment as opposed to real driving due 

to the infeasibility of controlling the surrounding traffic environment in the latter. 

Though utmost attention has been given to make the scenarios as realistic as possible, 

there is a possibility of behavioural incongruence owing to the “experimental flavour” 

of the simulated driving. Thus, there is a possibility of behavioural bias as a result of 

the lack of actual risk but also Hawthorne-like effects i.e. some participants may adapt 

their driving style closer to what they believe the observer perceives as desirable. 

Moreover, although participants were asked to drive as they would normally do, the 

absence of genuine possibility for physical harm and/or penalisation due to illegal 

driving may also lead to unrealistic behaviour e.g. in excessive speeding or lateral 

manoeuvring. However, this latter issue is not expected to significantly influence the 

outcomes of the current study as only car-following observations were considered and 

overtaking behaviour was excluded. In addition to the aforementioned issues, stress 

levels might be different when comparing simulated and real driving, and it will be 

interesting to combine the current data with real world data in future research. Another 

potential source of bias could be self-selection however, it is unlikely that it is 

correlated with stress levels and thus does not affect the results. Finally, the fixed 

order of scenarios/time pressure might have caused behavioural bias, as discussed in 

Section 4.2.1. 

Based on the findings of the current study, there is scope for further research. This 

involves the incorporation of stress in further aspects of driving behaviour (e.g. lane-

change behaviour) but also more elaborated model specifications, regarding the 
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effects of stress, are being considered. For instance, stress levels are expected to have 

different effects across individuals while drivers’ traits and perceptions towards the 

driving task vary as well. These characteristics have been found to significantly 

influence drivers’ behaviour, in the research field of road safety, and their integration 

in a modelling context could improve models’ performance. Another interesting 

aspect will be to investigate potential temporal shifts of parameter estimates that have 

been highlighted in recent safety research (Mannering 2018). 

In terms of practical application of the models, the challenge lies in inferring the 

presence of stress levels in real-life driving. However, with advances in ubiquitous 

computing technologies, it is now becoming feasible to measure stress levels in a non-

intrusive manner – wearable wristbands and smartphone technologies that can detect 

stress levels from pitch and intervals of voice conversations (Sharma and Gedeon, 

2012). Given the steep growth rate of wearables and smartphones, as well as advent 

of semi-autonomous cars (which have a wide range of sensors for inferring the 

surrounding traffic conditions), it is likely to be possible in near future to establish 

sophisticated models to sense stress levels of the driver and correlate it with potential 

influencing factors. Such prediction models for stress levels in real-world conditions 

will be very useful in widespread applications of the proposed model. This, coupled 

with the advances in the field of artificial emotional intelligence (Emotion AI) which 

has made it possible to device interventions to reduce stress (Hernandez et al., 2014), 

can make a significant contribution in increasing road safety. The proper value 

addition of such novel technologies requires quantification of the safety impacts of 

stress. Our models can be used for such evaluations and/or subsequent willingness-

to-pay.  

Applications may be also extended in the field of microsimulation to better reflect 

driver heterogeneity. For example, there are emerging microsimulation models that 

combine activity models with traffic microsimulation (e.g. SimMobility (Adnan et al., 

2016)). In these new types of tools, it is possible to include schedule delays in the 

traffic simulation component and our models can contribute to more realistic 

representation of driving behaviour in such simulation tools and hence increase their 

accuracy. 
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CHAPTER 5: FROM DRIVING SIMULATORS 

EXPERIMENTS TO FIELD TRAFFIC APPLICATION: 

IMPROVING THE TRANSFERABILITY OF CAR-

FOLLOWING MODELS 

 

ABSTRACT Over the last few decades, there have been two different streams of data 

used for driving behaviour research:  trajectory data collected from the field (using 

video recordings, GPS, etc.) and experimental data from driving simulators (where 

the behaviours of the drivers are recorded in controlled laboratory conditions). 

Previous research has shown that the parameters of car-following models developed 

using simulator data are not directly transferable to the field. In this research, we 

investigate the differences in details and compare alternative methods to overcome 

the problem. Two types of approaches are tested in this regard: 1) econometric 

approaches for increasing model transferability: Bayesian updating and Combined 

Transfer Estimation, 2) joint estimation using both data sources simultaneously. Car-

following models based on ‘stimulus-response framework’ are developed in this 

regard using experimental data collected from the University of Leeds Driving 

Simulator (UoLDS) and detailed trajectory data collected from Interstate 80 (I-80), 

CA, USA. Performances of the proposed approaches for improving transferability are 

evaluated using t-tests for individual parameter equivalence and Transferability Test 

Statistic (TTS). The results indicate that the transferability can be improved after 

parameter updating and Combined Transfer Estimation is found to outperform the 

other approaches. The findings of this study will enable more effective usage of 

driving simulator data for the estimation of mainstream mathematical models of 

driving behaviour.   
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5.1 Introduction 

Driving decisions and consequently vehicle interactions, are crucial factors for 

evaluating traffic performance and driving safety. Driving behaviour models, which 

are mathematical approximations of drivers’ decisions regarding longitudinal and 

lateral movements (e.g. acceleration-deceleration, lane-changing, etc.), have been 

widely studied in the past few decades (see Toledo, 2007; Zheng 2014 and 

Saifuzzaman and Zheng 2014 for details). Of particular interest are car-following 

models, which aim to replicate the accelerations and decelerations of the driver while 

closely following a lead vehicle in the front. Such models are crucial for increasing 

the realism of the microsimulation tools as well as safety and emission analyses.   

Car-following (and microscopic driving behaviour models in general) are typically 

developed using two types of data, (a) driving simulator (where drivers drive an 

instrumented vehicle in a simulated roadway) and (b) road traffic data. Driving 

simulator data are collected following standardised procedures and are more 

controllable and reproducible compared to actual road traffic. Furthermore, driving 

simulators allow researchers to manipulate the surrounding conditions (e.g. geometric 

layout of the road, number and type of vehicles etc.) as well as driver specific 

conditions (e.g. level of distraction and fatigue). They also allow analysts to run 

multiple hypothetical scenarios for the same driver and observe driving behaviour for 

longer time horizons. 

The advantages of driving simulators can allow researchers to shift from the 

development of models completely based on a Newtonian laws of motion approach 

(i.e. considering only speed, headway etc.) and incorporate further aspects of driving 

behaviour. For instance, Saifuzzaman and Zheng (2014) highlighted in their literature 

paper the need to incorporate human factors in existing car-following model 

specifications. Also, researchers in psychology (e.g. Van Winsum, 1999; Hancock, 

1999; Brackstone & McDonald, 2003) have questioned the existing engineering car-

following modelling approaches that omit the effects of drivers’ characteristics. Along 

the same direction, Laagland (2005) suggested a series of approaches to incorporate 

drivers’ aggression in microscopic driving behaviour models. Driving simulators offer 

a research environment where many of the aspects of driving behaviour related to 

human factors can be investigated, recorded and potentially used in modelling 

approaches.  

However, there is scepticism regarding simulator fidelity (physical and behavioural) 

and how well drivers’ behaviour in a simulator matches with their behaviour on real 

roads (Lee, 2003). On the other hand, traffic data collected from the field best 
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represents true driving behaviour, but have several limitations: short observation time, 

measurement errors, complex confounding of influencing factors, less control on the 

external factors and absence of driver characteristics in particular. It may be noted that 

besides these two sources, naturalistic driving data collected using instrumented 

vehicles (e.g UDRIVE, SHRP2 etc.) have also been used in research, but given the 

very high costs involved, the availability of these data is still limited. Moreover, 

similar to driving simulator data, naturalistic data are likely to be prone to behavioural 

incongruence; and similar to real road traffic data, the external variables are often not 

fully controllable and it is not possible to test the effects of hypothetical scenarios. 

Several studies have attempted to investigate the validity of driving simulators 

concerning drivers’ behaviour. Driving simulators’ behavioural validity is usually 

approached in terms of absolute (when the patterns and the magnitude of values are 

similar to real driving) or relative validity (when the patterns are similar but the 

magnitudes differ). Godley et al. (2002) investigated behavioural validity in terms of 

speed. Their research included two types of driving tasks (instrumented vehicle and 

driving simulator). While their results showed a similar pattern of deceleration in both 

environments, they noted that drivers adopted faster speed in naturalistic driving 

conditions and only relative validity prevails. In the same direction, Yan et al. (2008) 

developed a scenario based on a real signalised intersection and studied simulator 

validity in terms of speeding and surrogate safety measures. The results showed 

absolute validity regarding speeding, however, participants adopted riskier behaviours 

in the driving simulator, thus the safety measures had only relative validity. Bella et 

al. (2007) reproduced a real two-lane road section composed of 11 parts and tested 

validity in speed. This study confirmed relative but also absolute validity for most of 

the examined cases. Risto and Martens (2014) compared the differences in headway 

choice between an instrumented vehicle and driving simulator without finding 

significant deviations. Finally, McGehee et al. (2000) compared drivers’ reaction 

times in real and simulated environment and found statistical equivalence between the 

two cases. 

The development of driving behaviour models based on simulator data has already 

been reported in literature (Farah et al., 2009, Hou et al., 2014). However, since only 

relative validity has been established, it remains questionable whether this type of data 

is suitable for direct use in microsimulation tools for traffic flow and policy analysis. 

Recent research has shown that the parameters of car-following models developed 

using simulator data are not directly transferable to the field, although the models as 

a whole are transferable (Papadimitriou & Choudhury, 2017). However, the 

Papadimitriou & Choudhury study acknowledges a major limitation - the model 
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framework used in evaluating transferability ignores reaction time and driver 

heterogeneity – which have been identified as a crucial factor affecting car-following 

behaviour (e.g. Ahmed 1999, Toledo 2007, Koutsopoulos and Farah 2012, Van 

Hinsbergen et al., 2015, etc.). Further, the paper does not provide any guidance on 

how to close the gap between the models developed using the simulator and the real 

road data. 

In this research, we aim to address the research gaps in the previous studies by 

investigating alternative methods to improve the transferability of car-following 

models. A better understanding of the differences between the two sources of driving 

behaviour data (video trajectories and driving simulator) could allow for the 

estimation of car-following models from driving simulator data adjusted by real traffic 

data. This correction could potentially increase the behavioural realism of these 

models, assuming that the latter data represents the ground truth with respect to 

drivers’ behaviour. At the same time, driving simulator data allows for the 

implementation of extreme scenarios while information regarding drivers’ attributes 

can also be available (see e.g. Paschalidis et al., 2019) and can be incorporated in the 

model specifications. In this paper, advanced model structures that incorporate the 

reaction time (and acknowledges the associated heterogeneity) are used in this regard 

to address the limitations of the previous study (Papadimitriou & Choudhury, 2017). 

Experimental data collected from the University of Leeds Driving Simulator (UoLDS) 

and detailed trajectory data collected from Interstate 80 (I-80), CA, USA are used for 

this purpose. Based on a review of the literature, two main approaches are tested:  

1. Econometric approaches for improving model transferability  

2. Joint Estimation using both data sources simultaneously 

The remainder of the paper is organised as follows: Section 5.2 describes the 

methodological background. This is followed by the case study description and some 

preliminary analysis of data. In section 5.4 are presented the results of the model 

estimation and in section 5.5 the transferability and joint estimation results. The paper 

concludes with a discussion section. 

 

5.2 Background and methodology 

5.2.1 Car-following model 

Basic structure 
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The model structure is based on the stimulus-response GM car-following model 

(Gazis et al., 1961). In the original GM model, acceleration choices for a vehicle are 

a function of its speed, space headway and relative speed with the lead vehicle. The 

original specification is as follows (Equation 5.1):  

         

 αn(t) = α 
Vn(t)

β

ΔXn(t)γ 
ΔVn(t - τn) (5.1) 

 

where: ΔXn is the space headway at time t, Vn is the following vehicle speed, ΔVn is 

the relative speed between the following and the lead vehicle and τn is the reaction 

time. Finally, α, β and γ are constants.  

Based on the GM model, several extensions have been suggested. Herman and 

Rothery (1965) were the first to highlight that passenger cars have different 

acceleration and deceleration capacity. In order to address this shortcoming in the GM 

model, Ahmed (1999) introduced acceleration-deceleration asymmetry within a 

stimulus-response framework as presented in Equation 5.2: 

 

 an
cf,g(t) = s[Xn

cf,g(t-τn)] × f [ΔVn(t - τn)] + εn
cf,g(t) (5.2) 

 

where: s[.] represents sensitivity, as a vector of explanatory variables and f[.] 

represents the stimulus, given as the relative speed. Also, εcf,g is a normally distributed 

disturbance term while g represents the car-following regime (acceleration or 

deceleration). In the present study, an adaptation of the GM model is applied where 

the sensitivity and stimulus parts are represented by Equations 5.3 and 5.4 

respectively: 

 

 s[Xn
cf,g(t - τn)] = αg

1

ΔTn(t)γg (5.3) 

   

 f [ΔVn(t - τn)] = ΔVn(t - τn)
λ

g

 (5.4) 

 

where ΔTn: is the time headway, ΔVn is the relative speed between the subject and the 

lead vehicle and τn is the reaction time. Finally, αg, γg and λg are parameters to be 
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estimated and g indicates the type of regime. It is worth highlighting that instead of 

applying the original GM model specification, the sensitivity part was modified in 

order to consider only time headway, as per the recent literature (Papadimitriou & 

Choudhury, 2017). 

The reaction time distribution 

The current model specification also allows for the incorporation of reaction time. 

Following examples in the existing literature (Ahmed, 1999; Kusuma, 2015), reaction 

time is assumed to follow a log-normal truncated distribution as presented in Equation 

5.5:  

 

 f (τn)=

{
 
 

 
 1

τnστ
φ (

ln(τn) -μ
τ

στ
)

Φ(
ln(τmax) -μ

τ

στ
)  - Φ(

ln(τmin) -μ
τ

στ
)

              if τmin < τn ≤ τmax

                           0                                                otherwise

 (5.5) 

 

where: φ(.) is the standard normal distribution density function, Φ(.) is the cumulative 

normal distribution, τn is the reaction time of driver n, μτ is the mean of the distribution 

of ln(τn), στ is the standard deviation and τmax, τmin are the bounds of truncation. 

Truncation is required since reaction time is finite. The bounds are set 

deterministically while the mean and the standard deviation are estimated 

simultaneously with the rest of the model parameters. The bounds of reaction time 

were set between 0 and 4 seconds (Ahmed, 1999; Kusuma, 2015). 

Likelihood Function  

The assumption of the car-following model is that a driver accelerates if the relative 

speed is positive and decelerates if it negative. Given this, the distribution of 

acceleration decisions, conditional on reaction time τ, is presented as follows: 

 

 f (an
cf,g(t)|τn)=f (an

cf,acc(t)|τn)
δ[ΔVn(t - τn)]

f (an
cf,dec(t)|τn)

(1-δ[ΔVn(t - τn)])
 (5.6) 

 

where:  

 

δ[ΔVn(t - τn)]= {
1    if ΔVn(t - τn) ≥ 0

      0         otherwise            
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Assuming that the disturbance terms are normally distributed, the acceleration 

decisions can be expressed as follows: 

 

 f (an
cf,g(t)|τn)=

1

σεcf,g

φ(
an

cf,g(t) - s[Xn
cf,g(t - τn)] × f [ΔVn(t - τn)]

σεcf,g

) (5.7) 

 

where, g ∈ {acc,dec}.  

In the current specification, the acceleration observations of each driver n are assumed 

to be independent while the correlation among the decisions of the same driver (i.e. 

inter-respondent heterogeneity in driving behaviour) is captured through the reaction 

time distribution. Thus, the conditional joint density of the acceleration sequential 

observations, of a driver n, is the product of the conditional densities of the 

acceleration decisions is expressed as follows:  

 

 f (an(1),an(2),…,an(Tn)|τn)=∏ f (a
n
(t)

Tn

t=1

|τn) (5.8) 

 

The unconditional form of the distribution above is expressed as follows: 

 

 f (an(1),an(2),…,an(Tn))=∫ f (an(1),an(2),…,an(Tn)|τn)
τmax

τmin

f (τn)dτ (5.9) 

 

At the final step, the model is estimated by maximizing the log-likelihood function of 

the acceleration observations as expressed in Equation 5.10: 

 

 LL=∑ ln[f (an(1),an(2),…,an(Tn))]

N

n=1

 (5.10) 

 

The log-likelihood function was maximised using the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) algorithm implemented in the software R. 



Chapter 5: From driving simulators experiments to field traffic application: 

improving the transferability of car-following models 

172 

 

 

5.2.2 Evaluating Model Performance and Transferability 

The basic concept of transferability refers to the transfer of a model estimated in one 

context to a different one. Although there are limited studies of transferability in the 

domain of driving behaviour modelling, it has been investigated in detail in several 

other fields of transportation and beyond. The lion’s share is dedicated to the 

investigation of transferability with the application of discrete choice modelling e.g. 

(Atherton & Ben-Akiva, 1976; Galbraith & Hensher, 1982; Koppelman & Wilmot, 

1982; Ben-Akiva & Bolduc, 1987), however, other modelling approaches can also be 

found (Wilmot, 1995; Hadayeghi et al., 2006).  

A review of the literature revealed several formal statistical tests of transferability 

(Sikder et al., 2013) among which the t-tests of individual parameter equivalence and 

Transferability Test Statistic (TTS) have been found to be most widely used and were 

thus selected for this study. 

The t-tests of individual parameter equivalence compare parameter estimates of 

equivalent variables between the two models as e.g. in (Galbraith & Hensher, 1982). 

The t-stat differences can be expressed as follows (Equation 5.11): 

 

 

tdiff,k=
β

est,k
- β

appl,k

√(
β

est,k

test,k
)

2

+ (
β

appl,k

tappl,k
)

2
 

(5.11) 

 

where: βest,k is the the parameter estimate of the kth parameter of the transferred 

(simulator data) model and test,k is its t-statistic while βappl,k is the the parameter 

estimate of the kth parameter of the application context (video trajectory data) model 

and tappl,k is its t-stat. The null hypothesis of parameter equivalence is rejected at the 

95% level of confidence if |tdiff,k|>1.96. 

The TTS (Atherton & Ben-Akiva, 1976) assesses whether the null hypothesis of 

statistical equivalence between the transferred and the application context model is 

rejected or not (Equation 5.12): 

 

 TTSappl = -2 [LLappl(βest
) - LLappl (β

appl
)] (12) 
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where, LLappl(βest) is log-likelihood on the application context data using transferred 

context parameters and LLappl(βappl) is the log-likelihood on the application context 

data using application context parameters, i.e. new estimates. The TTS value follows 

a chi-squared (χ2) distribution and the degrees of freedom are equal to the number of 

model parameters, assuming that the parameters of the transferred model are fixed 

(Koppelman & Wilmot, 1982). At 95% level of confidence, the models are classified 

statistically different (i.e. non-transferable) if χ2
 > χ2

critical. 

 

5.2.3 Methods to Improve Transferability 

The direct transferability of parameters from a transferred to an application context is 

not always feasible, as models are never perfectly specified (e.g. omission of 

important variables) or contextual factors that affect a phenomenon e.g. over time or 

across areas (Badoe & Miller, 1995). Thus, a series of techniques has been proposed 

to update the parameter estimates of the transferred context in order to be closer to the 

application context. Based on a literature review conducted regarding studies that 

have dealt with transferability (Badoe & Miller, 1995; Sikder et al., 2013; 

Chingcuanco & Miller 2014), the following updating techniques have been 

distinguished: 

Adjustment of Alternative-Specific Constants 

The Adjustment of Alternative-Specific Constants (ASCs) has been suggested in the 

area of discrete choice modelling (see Koppelman & Wilmot, 1982). The ASCs are in 

general included in the utility function to capture the average effect of omitted 

variables. The assumption behind this updating approach is that this effect varies 

between the transferred and the application context and thus a model can be improved 

if the ASCs are updated with values derived from the latter. In this case, the 

deterministic part of utility function of the application context is specified as 

(Equation 5.13): 

 

 Vin,appl = ASCi,appl + βest
Xin,appl (5.13) 

 

where ASCi,appl is the alternative specific constant of alternative i, β
est

 is a vector of 

parameters from the estimation context and Xin,appl is a vector of explanatory variables 

of alternative i of individual n. 
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Transfer scaling 

Transfer Scaling, is another approach used in discrete choice modelling (Badoe & 

Miller, 1995). The ASCs are estimated from a small subset of the application context 

data while the rest of the utility functions’ parameters are assumed to be transferable 

from the estimation (transferred) context up to a specific scale to be estimated. The 

utility specification in this is as shown in Equation 5.14: 

 

 Vin,appl = ASCi,appl + γi,appl βest Xin,appl (5.14) 

 

where ASCi,appl is the alternative specific constant of alternative i, β
est

 is a vector of 

parameters from the estimation context, γi,appl is a vector of scale factors for the 

parameters to be scaled and Xin,appl is a vector of explanatory variables of alternative 

i of individual n. 

Bayesian updating 

The Bayesian updating process follows the Bayes theorem in which prior information 

about the model is combined with a random sample from the application context to 

obtain updated information that is important in reducing doubt during prediction (Dey 

& Fricker, 1994). The parameters estimated with the trajectory data can be used as the 

prior information in this case and the following formula can be used (Equation 5.15):  

 

 β
upt

=(
β

est

σest
2

+
β

appl

σappl
2
)(

1

σest
2

+
1

σappl
2
)

-1

 (5.15) 

 

where βest is the parameter of the estimation (driving simulator) context model, σest is 

its standard deviation, βappl is the parameter of the application (real driving) context 

model and σappl is its standard deviation.  

Combined Transfer Estimation 

The Combined Transfer Estimation (CTE) method (Ben-Akiva & Bolduc, 1987) can 

be considered as an extension of Bayesian updating, as it accounts for the impact of 

the transfer bias (the difference between the real values in the parameter vectors of 

the estimation and the application context) in the updating process. If the transfer bias  

does not exceed a critical point, Combined Transfer Estimation is considered as a 
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more efficient estimator, compared to the estimator of the application context only 

(direct estimator). The updated parameters are estimated as (Equation 5.16): 

 

 β
upt

=(
β

est

σest
2 +αα'

+
β

appl

σappl
2
)(

1

σest
2 +αα'

+
1

σappl
2
)

-1

 (5.16) 

  

where: α = βest-βappl and α΄=βappl-βest. 

The CTE is more efficient than the direct estimator if Δ
2
< δ(σest

2 +σappl
2 ), where Δ is 

the transfer bias, and δ is a parameter that the authors calculated with a Monte-Carlo 

approach (Ben-Akiva et al., 1995). In the same study, a test is also provided to assess 

the size of transfer bias and whether CTE is a better estimator. 

Joint Estimation 

The joint estimation of models using various data sources was introduced in the 

discrete choice modelling field (Ben-Akiva et al., 1994) and mostly refers to the 

combination of stated-preference (SP) and revealed-reference (RP) data. The 

motivation for data combination is the estimation of enhanced models that exploit the 

advantages of the various data sources while at the same time minimising their 

shortcomings, by allowing variations in their scales. A basic example regarding the 

application of this approach could be the reduction of hypothetical bias of a SP survey 

and improvement of the accuracy of parameter estimates, through joint estimation 

with RP data. The joint estimation process provides estimates of the common 

parameters but since the variances of the disturbance terms between SP and RP are 

likely to be different, an additional scale parameter is introduced to capture this 

variation. For model identification purposes, the scale of RP is normalised to one 

while only the scale of SP is estimated. Within a car-following context, Hoogendoorn 

& Hoogendoorn (2010) provided a methodological framework for joint estimation of 

driving simulator and real traffic data and suggested a weighting correction to account 

for the differences in sample sizes. However, in their estimation, they considered the 

contribution of driving simulator data as equal and did not investigate any potential 

behavioural bias deriving from its hypothetical nature. 

Comparison of updating techniques 

In existing literature, there are studies that compare the aforementioned parameter 

updating techniques. For instance, Koppelman et al., 1985 found that the Transfer 

Scaling approach provides better log-likelihood scores compared to the Adjustment 
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of Alternative-Specific Constants. This outcome is expected, since the former 

approach is adding at least on more parameter in model estimation, compared to the 

latter, based on Equations 5.13 and 5.14. Similar outcomes were found by Santoso & 

Tsunokawa (2010). Bayesian updating, has been the most deficient technique, 

compared to Transfer scaling, CTE and joint estimation in a study conducted by 

Badoe & Miller (1995) while Santoso & Tsunokawa (2010) found that it performs 

worse than the Adjustment of Alternative-Specific Constants approach for high 

transfer bias. This outcome, is a result of the inability of Bayesian updating to account 

for the effects of the latter. 

Regarding the most efficient approach, Badoe & Miller (1995) report that CTE 

produces the best predictive performance in the application context, however, joint 

estimation results are more parsimonious. Thus, they suggest that if the estimation 

data is available, researchers should proceed with the latter approach. Moreover, they 

mention that for small sample sizes, Transfer scaling is comparable to these two 

techniques. Santoso & Tsunokawa (2010) found that CTE is the most superior 

technique of updating however, they did not include joint estimation in their study. 

Similarly, Flavia & Choudhury (2019), reported that CTE performs better compared 

to Bayesian Updating. Finally, Karasmaa (2007), concluded that joint estimation 

provides the best results. In this study, authors also found that Bayesian updating 

provided significant outcomes but they highlight that it should be avoided for cases 

of large transfer bias. Based on the aforementioned literature review, there is not an 

optimum transferability method but the best solution can be data and case specific. 

5.3 Case study 

The datasets used for the model estimation are described in the present section. 

Initially, the characteristics and attributes of each site are provided followed by a 

preliminary descriptive analysis.   

 

5.3.1 Data 

Video trajectory data 

The vehicle trajectories data, used in the analysis, has been collected at the Interstate 

80 (I-80), CA, USA, within the framework of the Next Generation SIMulation 

(NGSIM) project (Halkias & Colyar, 2006) and have been extensively used in other 

studies (e.g. Koutsopoulos and Farah,2012; Aghabayk et al., 2012). The observations 

took place on 13 April 2005. The length of the road segment is approximately 500 
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meters (1650 feet) and comprises of five lanes plus a high occupancy vehicle (HOV) 

lane (Figure 1-left). The vehicles’ trajectories referring to the observations from 4.00 

p.m. to 4.15 p.m. have been further processed by Punzo et al. (2011) and Montanino 

and Punzo (2013). The final dataset includes information regarding the position, 

speed, acceleration, lane, size and type of each vehicle.  

 

 

Figure 5.1: (left) I-80 motorway data collection site, (right) Screenshots of the 

motorway setting of NG-DBM 

 

Driving simulator data 

The driving simulator data has been collected at the University of Leeds Driving 

Simulator (UoLDS). The UoLDS is a high fidelity, dynamic simulator (eight degree 

of freedom motion system), with all driver controls, such as steering wheel and 

breaking pedal, available and fully functional, while there is also a fully operating 

dashboard. The vehicle is placed in a 4m diameter spherical projection dome. The 

dome provides fully textured 3-D graphical scene with a horizontal field of view of 

250o and 45o vertical. The raw data output consits of observations of 60Hz frequency. 

The data collection has taken place in the context of the “Next Generation Driving 

Behaviour Models” project (NG-DBM). The full data collection process involves 

around 90 minutes of total driving. Participants have had first a short briefing about 

the simulator and its operation followed by a practice session of approximately 15 

minutes duration to get familiarised with the simulated environment and vehicle 

dynamics (i.e. motion system). For safety reasons, participants have been 

accompanied by a researcher, during the practice run, in the back seat. After the 

practice session, participants started the main driving sessions; an urban and a 3-lane 

motorway environment, with a short break in between. In total, 36 drivers (17 females, 

19 males) aged from 19 to 57 years old have successfully completed the motorway 
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setting that has been used in the current analysis (Figure 1-right) for the model 

specification and estimation. 

 

5.3.2 Preliminary analysis 

The raw datasets have been further processed to better meet the requirements for the 

estimation of a car-following model. As a first step, relationships regarding the 

surrounding traffic such as relative speed, acceleration of lead vehicle etc. have been 

extracted from both datasets.  

Regarding the I-80 trajectory dataset, only cars that have not attempted a lane-

changing manoeuvre during the observation period are included in the analysis. The 

driving simulator data has been first investigated in terms of its similarity to the 

trajectory data, in order to have more comparable cases. The full motorway setting is 

composed of several smaller sections, approximately 6.3km each, of varying traffic 

characteristics and surrounding vehicles behaviour. Each of the sections has been 

compared to the available trajectory dataset. The examined variables were 

acceleration, speed and relative speed with the lead vehicle and the simulated 

motorway section with the best match (in terms of descriptive statistics) in speed was 

used for model estimation. 

For both datasets, the considered observation frequency is 1 observation/sec. Also, in 

order to avoid free-flow observations and following the findings in (Hoogendoorn, 

2005), an upper bound of 4s has been applied in the observed time headway; all the 

values above that threshold, are treated as free-flow and excluded from the analysis. 

For the final estimation, the trajectory dataset is composed of 469 individuals and 

14,826 observations while the driving simulator dataset 36 individuals and 7,191 

observations. Table 5.1 summarises the descriptive statistics for some variables of the 

two datasets. 

The descriptive statistics indicate that there are differences in the examined variables 

of the two datasets. These differences are further investigated with an independent 

samples t-test (Table 5.1). Τhe p-values of the Levene’s test are significant for all 

variables, apart from time headway, which indicates that the variances of all the 

variables are different between the video trajectory and the driving simulator datasets. 
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Table 5.1: Descriptive statistics of the two datasets 

 

Additionally, the results of the t-test for the equality of means shows that the means 

of all variables are significantly different as well. These findings point out that there 

are variations in the traffic variables (and thus in traffic conditions) between the two 

datasets which may affect the models’ results. Though these differences impose extra 

challenge in the transferability of the models, in practical cases, this is very likely to 

be the reality (i.e. the simulator data being available for a small subset of participants,  

fixed variations in simulated traffic whereas actual road traffic will have larger 

variability or difficulties in reproducing observed traffic flow patterns in simulator). 
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5.4 Estimation results 

The estimation results are summarized in Table 5.2. The individual models are further 

explained and compared in Sections 5.4.1 and 5.4.2 respectively. Moreover, the 

estimated reaction time distributions are illustrated in Figure 5.2. The reaction time 

distribution from the video data ranges between 0-2s and is mainly centered slightly 

above 0.5s. On the other hand, the estimated distribution based on the simulator data 

covers almost the whole range of truncation with a peak between 1.5s and 2s. This 

may be an indication of different response patterns for the relative speed stimulus 

between the two contexts. Some further discussion with respect to their differences is 

presented in Section 5.4.1.  

 

 

Figure 5.2: Reaction time distributions of the car-following models 

 

5.4.1 Individual Models 

Model 1: Car-following model based on driving simulator data 

The estimated car-following acceleration of Model 1 is shown in Equation 5.17: 

 

 an
cf,acc(t) = 0.3506

1

ΔTn(t)0.2856
 |ΔVn(t - τn)|

0.6787
 + εn

cf,acc(t) (5.17) 

 

where, εn
cf,acc(t)~N(0, 0.33672). 
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Table 5.2: Models parameter estimates, t-test of individual parameter equivalence 

and TTS results 

 

In a similar way, Equation 5.18 presents the deceleration component of Model 1: 

 

 an
cf,dec(t) = -0.255

1

ΔTn(t)0.4798
 |ΔVn(t - τn)|

0.7043
 + εn

cf,dec(t) (5.18) 
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where, εn
cf,dec(t)~N(0, 0.68932). 

 

The acceleration and deceleration constants both have the expected signs and are 

statistically significant at 0.05 level. Moreover, the parameters of time headway both 

have positive signs but the parameter for acceleration regime is significant at the 0.1 

level. The positive sign for the time headway parameter of the acceleration regime 

implies that drivers tend to react less to the leader’s speed as time headway increases 

and they get closer to a free-flow state. Regarding the deceleration regime, the positive 

sign of the time headway parameter indicates that drivers adopt smaller decelerations 

at larger headways. The schematic interpretation of the aforementioned parameters 

and their effects on acceleration/deceleration are illustrated in the next section. 

Finally, the parameters of relative speed are significant for both acceleration and 

deceleration regimes. It is worth mentioning that the estimates are in accordance with 

the a-priori expected values (smaller than 1) as the acceleration or deceleration 

capabilities of the driver are constrained by the vehicle capability. The impact of each 

parameter is depicted more explicitly in the sensitivity analyses presented in the next 

section. Finally, Figure 5.2 shows the reaction time distribution as expressed by the 

estimated mean and standard deviation. Τhe distribution extends approximately to the 

whole 0-4s range and its peak is between 1.5s and 2s. The estimated distribution of 

reaction time is (Equation 5.19): 

 

 f (τn)={

1

0.3536 τn

φ (
ln(τn) - 0.664

0.3536
)               if 0 < τn ≤ 4

                    0                                         otherwise

 (5.19) 

 

Model 2: Car-following model based on video trajectory data 

The estimated car-following acceleration of Model 2 is presented in Equation 5.20: 

 

 an
cf,acc(t) = 0.8304

1

ΔTn(t)0.792
 |ΔVn(t - τn)|

0.8982
 + εn

cf,acc(t) (5.20) 

 

where, εn
cf,acc(t)~N(0, 0.73182). 

 

Finally, the deceleration component of Model 2 is shown in Equation 5.21: 
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 an
cf,dec(t) = -0.5128

1

ΔTn(t)0.1941
 |ΔVn(t - τn)|

0.928
 + εn

cf,dec(t) (5.21) 

 

where, εn
cf,dec(t)~N(0, 0.80072). 

 

The results of the car-following model estimation based on the video trajectory data 

are presented in Table 5.2. All the parameters have expected signs and are significant 

at 0.05 level. Moreover, the values of relative speed parameters are below 1, as a-

priori expected. The reaction time distribution (Figure 5.2) extends between 0-2s 

while its peak is approximately after 0.5s. This outcome suggests that drivers’ reaction 

time in real traffic is smaller compared to simulated driving (i.e. the drivers respond 

faster to the relative speed stimulus in field traffic conditions. This might be a potential 

indication that drivers perceive changes in traffic conditions differently in the 

simulator compared to field traffic driving (where a crash occurrence would have 

genuine consequences). The estimated distribution of reaction time is shown in 

Equation 5.22: 

 

 

 f (τn)={

1

0.3257 τn

φ (
ln(τn)+ 0.3973

0.3257
)               if 0 < τn ≤ 4

                    0                                         otherwise

 (5.22) 

 

 

5.4.2 Model comparison and sensitivity analysis 

The initial evaluation of the estimated parameters shows that their signs are expected 

while all of them are significant. The current section investigates the effects of 

models’ variables in the car-following acceleration (deceleration) to further assess the 

parameter estimates and ultimately compare the extent and nature of differences 

between the two models. Figure 5.3 depicts the sensitivity analysis for all parameters. 

Focusing on the driving simulator case, the results indicate that the value of 

acceleration slightly decreases with the increase of time headway. This pattern reflects 

drivers’ expected behaviour in acceleration state, as explained in Section 5.4.1. On 

the other hand, the absolute value of deceleration increases with the decrease of time 
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headway. This outcome meets the expectations, since drivers will decelerate to a 

higher extent when time headway is short and relative speed is negative (deceleration 

regime), while it also indicates drivers’ safety concerns; as time headway decreases, 

drivers decelerate to avoid collision. These interpretations also apply for the patterns 

related to time headway of Model 2. The steeper slopes in the latter case, which also 

result in higher absolute acceleration/deceleration values, better highlight the 

differences in drivers’ sensitivity between simulated and real driving. In the 

acceleration regime, the aforementioned differences may indicate a higher variance in 

traffic conditions – which influences applied acceleration - or suggest that drivers 

have higher sensitivity in the decrease of time headway during real road traffic 

conditions. A similar trend is also observed in the deceleration regime of this model - 

as the plots show that deceleration rate is in general higher - compared to the driving 

simulator case. This outcome might be an effect of the smaller variance in traffic 

conditions of the simulated scenario (as happens in the acceleration regime), but given 

the higher value of the standard deviation parameter in the deceleration regime, and 

thus a potentially higher variance in observed behaviour, it might also indicate that 

drivers assess or perceive risk in a different way (e.g. absence of real danger) and this 

behaviour could influence their deceleration decisions.  

Regarding relative speed, acceleration and deceleration reach their maximum absolute 

values when the former is maximum and minimum, respectively, in both models. The 

obtained acceleration-regime trends follow the underlying theory of the current car-

following model as drivers’ acceleration tends to increase while lead vehicle moves 

faster. In the same way, the increase in absolute deceleration as relative speed 

declines, is consistent with the safety implications reported about the effect of time 

headway, as a driver is expected to decelerate to a higher degree when relative speed 

gets smaller. Moreover, the same differences in sensitivities, reported with respect to 

the effects of time headway, are also observed in the relative speed plots. 
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Figure 5.3: Sensitivity analysis of the car-following models 

The different patterns in acceleration (deceleration) that the sensitivity analysis 

revealed, are further investigated through model comparison, in terms of parameter 

equivalence and model transferability. The results of the t-test of individual parameter 

equivalence (Table 5.2) show that for most of the parameters, the null hypothesis of 

equivalence is rejected (|t-value|>1.96). The t-stat of the difference is non-significant 

only for the standard deviation of reaction time distribution and the time headway 

parameter of the deceleration regime. Moreover, the results of TTS regarding 

transferability from driving simulator to real driving context show that the null 

hypothesis of equivalence between the two models is rejected at 0.05 level (χ2
critical 

=18.31), thus, transferability from simulated to real traffic driving cannot be validated. 

It may be noted that while testing transferability with simpler models (see 

Papadimitriou & Choudhury, 2017 for details), though majority of the parameters 

were not found to be transferable, the null hypothesis of equivalence was not rejected. 

Albeit the space headway and subjects’ speed, of the data used in the current study, 

have a closer match with the NGSIM data in comparison with the sim data used in the 

previous study, this may indicate that incorporation of reaction time heterogeneity  

increases the gap between the two sets of models in terms of transferability.    

Considering all the above, it is evident that the results of a car-following model 

developed by driving simulator data cannot be directly used for real-driving 

applications (e.g. in microsimulation). In the next section is investigated a series of 

approaches to address this drawback. 
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5.5 Model updating and joint estimation 

The analysis described in the previous section highlights the lack of transferability 

from driving simulator models to the field. The current section investigates two 

different updating approaches that aim to reduce the potential behavioural bias of 

driving simulator data and identify the most suitable of them in order to develop a 

context for its application in a real driving framework. Moreover, the results of the 

two car-following models are compared with the results of a joint model estimated 

using both datasets.  

 

5.5.1 Model updating 

The parameters of the driving simulator model have been updated using the Bayesian 

updating (Dey & Fricker, 1994) and Combined Transfer Estimation (Ben-Akiva & 

Bolduc, 1987) approaches. The updated parameters and the results of the TTS after 

the application of model updating are presented in Table 5.3. The TTS value after 

applying Bayesian updating indicates that the null hypothesis of model equivalence is 

rejected at 0.05 level (χ2
critical =18.31). However, the TTS value of the combined 

transfer estimation shows that after updating, the null hypothesis is not rejected and 

thus, driving simulator data can be considered transferable. This finding is consistent 

with existing literature, where Combine Transfer Estimation outperforms Bayesian 

updating. 

The effects of the updating techniques and the amendments of each on the parameters 

of Model 1 can be demonstrated more rigorously with the application of the sensitivity 

analysis described in Section 5.4.2. The results of both approaches are illustrated in 

Figures 5.4 and 5.5. The parameters after applying Bayesian updating (Figure 5.4) on 

Model 1, result in the occurrence of lines which are closer to Model 2 – compared to 

the initial sensitivity analysis as presented in Figure 5.3 – but still there is a distinct 

difference between the two cases. On the other hand, the new set of parameters, after 

Combined Transfer Estimation, produces very similar outcomes. In particular, the 

acceleration regime of both models is almost identical while some differences can be 

noticed in the deceleration regime. The results of the sensitivity analysis are consistent 

with the outcomes presented in Table 5.3 and provide an expanded investigation 

regarding the effects of each updating technique on each of the elements of the car-

following model based on driving simulator data. 
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Table 5.3: Parameters and TTS results after model updating 

  Bayesian updating 
Combined Transfer 

Estimation 

Variable 
Parameter 

estimate 
Parameter estimate 

   

Reaction time distribution   

μt -0.162 -0.398 

σt 0.326 0.326 
   

Car-following acceleration   

Constant 0.548 0.838 

time headway (s) 0.667 0.809 

relative speed (m/s) 0.837 0.908 

σacc 0.598 0.732 
   

Car-following deceleration   

Constant -0.430 -0.517 

time headway (s) 0.243 0.149 

relative speed (m/s) 0.887 0.935 

σdec 0.794 0.802 

Transferability Test Statistic (TTS) 

Summary statistics 
Bayesian 

updating 

Combined Transfer 

Estimation 

Degrees of freedom (Dof) 10 10 

LLapplic (βtransf) -17884.1 -17245.46 

LLapplic(βapplic) -17240.88 -17240.88 

-2[LLapplic(βtransf) -LLapplic(βapplic)] 1286.44 9.16 

 

 

Figure 5.4: Sensitivity analysis after Bayesian updating 



Chapter 5: From driving simulators experiments to field traffic application: 

improving the transferability of car-following models 

188 

 

 

Figure 5.5: Sensitivity analysis after Combined Transfer Estimation 

 

5.5.2 Joint estimation results 

The differences between the two datasets are further investigated in the context of 

joint model estimation.  In this approach, the car-following model is estimated 

combining simultaneously both data sources. Initially, the datasets have been 

considered as the same source and a single set of parameters have been estimated. The 

results of this model are not presented in the context of the present analysis, but its 

final log-likelihood value has been used for comparison purposes in Table 5.4. As a 

next step, a series of scale parameters are introduced to account for the differences 

between trajectory and simulator data. The scale parameters are applied to the 

sensitivity×stimulus terms, the standard deviation parameters and the reaction time 

parameters with the following formulation: (δtrajectory+δsimulator×scale), where δtrajectory 

is a dummy variable equal to 1 if the observation belongs to the trajectory dataset and 

δsimulator is a dummy variable equal to 1 if the observation belongs to the driving 

simulator dataset. Six scale parameters are used in total. In essence, given that for 

every density function involved in the model specification (acceleration, deceleration 

and reaction time) a mean and a standard deviation component is estimated, each of 

the scale parameters is used to approximate the difference of the driving simulator 

data estimates with respect to the video trajectory data estimates. After incorporating 
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the aforementioned scale specification in Equation 5.7, the acceleration/deceleration 

density function is given from Equation 5.23: 

 f (an
cf,g(t)|τn)=

1

σεcf,g

φ(
an

cf,g(t) - s[Xn
cf,g(t - τn)] × f [ΔVn(t - τn)](δ

traj
+θ

μ
δ

sim)

σεcf,g(δ
traj

+θ
σ
δ

sim)
) (5.23) 

where θμ and θσ represent the scale parameters of mean and standard deviation 

respectively. 

The parameter estimates of the model are presented in Table 5.4. Owing to the model 

specification, the t-ratio values of the scale parameters refer to the comparison with 1 

rather than 0. All scale parameters, apart from reaction time standard deviation, are 

significantly different from 1. This result consists an additional indication to the tests 

applied in the previous section, that for joint estimation, the differences between the 

various data sources should be considered and captured.  

Table 5.4: Parameter estimates of the joint model 

Variable Parameter estimate Robust t-statistic 
   

Reaction time distribution (Video trajectory data) 

μt -0.3964 -16.45 

σt 0.3264 65.20    
Car-following acceleration   

Constant 0.7209 14.88 

time headway (s) 0.5562 6.73 

relative speed (m/s) 0.7801 15.10 

σacc 0.7337 77.11 

   
   

Car-following deceleration  

Constant -0.5644 -12.01 

time headway (s) 0.2584 2.77 

relative speed (m/s) 0.8539 19.00 

σdec 0.8008 74.95 

   
   

Scale parameters   

Car-following acceleration mean 0.5435 -9.67 (1) 

Car-following acceleration std. 

dev 
0.4610 -27.90 (1) 

Car-following deceleration mean 0.3052 -29.92 (1) 

Car-following deceleration std. 

dev 
0.8629 -2.61 (1) 

Reaction time mean -1.6500 -16.72 (1) 

Reaction time std. dev 1.0908 0.23 (1) 

   

LL: -22892.67 

ρ2:  0.19 

Adj. ρ2:  0.19 

LR (compared to a joint model without scale parameters): 3024.48 (dof = 6) 

LR (compared to Models 1 and 2 combined): 81.89 (dof = 4) 



Chapter 5: From driving simulators experiments to field traffic application: 

improving the transferability of car-following models 

190 

 

Towards this direction, the joint model is compared, using the likelihood ratio test, 

with (a) the joint model initially estimated without any scale parameters and (b) 

Models 1 & 2. Regarding the latter case, the log-likelihood of the joint model is 

compared with the sum of log-likelihood values of Models 1 and 2 with degrees of 

freedom equal to the sum of the parameters of the initial models minus the estimated 

parameters of the joint model. The null hypothesis is rejected in both comparisons 

revealing two different outcomes. At first, the joint model without accounting for 

scale differences, does not perform as well as the model including the scale 

parameters. This result is expected and consistent with all findings presented in the 

current analysis. The differences in driving behaviour between simulated and real road 

traffic driving affect model fit and need to be considered. On the other hand, the use 

of scale parameters does not manage to improve the model sufficiently, since the 

results of the likelihood ratio test with Models 1 & 2 show that the joint model does 

not perform equally to the two separate ones. As a brief conclusion, it should be 

mentioned that the use of scale parameters, in the suggested model specification, 

improves model fit but does not fully capture the differences between the different 

data sources and further approaches should be considered. 

5.6 Conclusion 

The current paper presents a detailed investigation of the applicability of car-

following models estimated using driving simulator data to study real road traffic 

scenarios. This relates primarily to the transferability of model parameters estimated 

on data from simulator experiments and their suitability for representing driving 

behaviour in field traffic. While previous studies have conducted such transferability 

tests with simple models (that ignore heterogeneity in reaction time), a more advanced 

modelling approach was adopted which indicated that the differences become more 

pronounced when the model specifications are more complex.  

The analysis is based on the comparison of car-following models estimated using 

driving simulator data collected at the University of Leeds Driving Simulator and the 

widely used I-80 trajectory dataset from the NGSIM project. Transferability between 

the two contexts has been primarily examined with basic approaches as the t-test of 

individual parameter equivalence and the TTS. The results of the initial transferability 

tests suggest that driving simulator data should be used with caution. For instance, the 

t-tests for individual parameter equivalence show that almost all parameters are not 

directly transferable, while also the mean reaction time is different in the simulated 

environment. Moreover, the sensitivity analysis, shows that in real life, drivers are 

more sensitive to changes in traffic conditions compared to simulated environments – 
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this can have crucial safety implications. As an example, the results indicate that 

drivers apply smaller deceleration rates in the simulated environment. Discrepancies 

like this may mislead to false interpretation of drivers’ behaviour not only in terms 

road safety and crash investigation but also in microscopic modelling applications. 

The findings indicate that the parameters estimated from driving simulator data are 

not suitable for direct application in such models, which prompted us to investigate 

methods for improving transferability.   

We have applied a series of techniques to improve the transferability of the simulator 

data, based on a) parameter updating and b) joint estimation that accounts for 

differences in scale. While Bayesian updating did not validate model transferability, 

the results of Combined Transfer Estimation have indicated that driving simulator 

data can be made transferable to real driving context, opening up new prospects for 

further research. The joint model estimation consists of several steps where 

specifications without and with parameters that would account for the differences in 

scale have been tested. The results of the joint model estimation reveal that there is a 

statistically significant difference in the scale of both acceleration and deceleration 

values of the two data sources. Moreover, this model performs significantly better 

compared to a model where a single vector of parameters has been considered for both 

datasets, without accounting for differences in scales. While the two separate models 

are always expected to outperform the joint model, our results indicate that the former 

performed significantly better and thus joint estimation did not adequately capture the 

differences between the two cases. 

Considering all the above, within the framework of the present study, Combined 

Transfer Estimation is found to be the most efficient approach for improving the 

transferability of a car-following model estimated using driving simulator data to a 

field traffic context. It may be noted that given the secondary nature of the data, the 

traffic variables (speed, acceleration, space headway etc.) are significantly different 

between the two datasets, although there was an effort to use a road segment of the 

simulator data where these values were closer to the video trajectory data. Moreover, 

another limitation of the current work is related to the differences of the two samples 

that refer to drivers from different countries and thus, variations in driving behaviour 

may also be a result of cultural differences or differences in traffic flow and road 

geometry characteristics. For instance, Kusuma et al. (2017) and Papadimitriou & 

Choudhury (2017) estimated car-following models using video trajectory dataset 

collecting at a motorway weaving section at the M1 motorway in the UK. The latter 

study compared the UK data with the I-80 USA NGSIM data and differences were 

found not only in terms of number of lanes, or traffic flow but also the distributions 
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of acceleration, speed and space headway varied. Given that these differences pose 

extra challenges in model transferability or joint estimation, our results are potentially 

on the conservative side and present an upper bound on issues of transferability. 

Further research is needed however, to compare the behaviour of drivers from the 

same country under similar driving conditions. 

Based on the current findings, there is scope to extend the current study to other forms 

of car-following models e.g. the latent class GM (Koutsopoulos and Farah, 2012), 

IDM model (Treiber et al., 2000), Optimal Velocity model (Bando et al., 1995), as 

well as other driving behaviour models e.g. lane-change, passing etc.  

In terms of practical use of the updating, although the proposed approach still requires 

actual road data for model updating, the framework makes it possible to combine 

human factors in the driving behaviour models and develop models for emerging 

technologies and/or risky scenarios (e.g. Paschalidis et al. 2019) without 

compromising the behavioural realism of the real world data. Thus, bridging the gap 

between simulated and real driving context enables researchers to utilize the best of 

both sources of data.  
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CHAPTER 6: CONCLUSION 

 

6.1 Summary 

The overall aim of the thesis was to investigate the effects of drivers’ characteristics 

in driving behaviour models with an explicit consideration of drivers’ stress and the 

development of formulations to include this in mathematical models of driving 

behaviour. The research outcomes presented in the previous chapters have been based 

on a driving simulator experiment conducted using the University of Leeds Driving 

Simulator (UoLDS). Two different main scenarios were developed, including an 

urban and a motorway setting, where participants were intentionally subjected to 

stressful situations while their physiological responses were also observed at the same 

time. The main analysis has revolved around (a) investigating the general effects of 

drivers’ characteristics on driving behaviour, (b)  investigating the effects of 

contextual factors on driving behaviour, (c) incorporating stress in driving behaviour 

models and (d) investigating approaches to improve transferability of models 

estimated with driving simulator data to the real traffic context. The current section 

returns to these areas and presents how each of them has been addressed in this thesis. 

 

6.1.1 The effects of drivers’ characteristics on driving behaviour 

The effects of individuals’ characteristics on driving behaviour have been investigated 

to a lesser or greater extent in Chapters 2, 3 and 4 of the thesis. Among the significant 

relationships that have been found, many of them are related to gender and age, 

following the existing literature presented in Section 1.4. In particular, male and 

younger drivers have shown more “aggressive” behaviour to several of the scenarios 

of the urban setting, as presented in Chapter 2. The same chapter has also investigated 

the relationship of subjective measures (i.e. MDSI and personality questionnaires) 

with the observed behaviour. The personality traits of Anxiety and Excitement-

seeking have been related to smaller and higher risky behaviour respectively. Some 

expected findings have also occurred regarding the reported driving style and the 

observed driving behaviour supporting findings from previous research (van 

Huysduynen et al., 2018). Despite the moderate strength of most associations, the 

incorporation of similar types of data in model specifications could result in more 

accurate representations of driving behaviour in future applications. 
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The effects of sociodemographic characteristics have been incorporated in both the 

gap-acceptance model and the car-following model of Chapters 3 and 4 respectively. 

Several significant effects have been found in these modelling contexts, showing that 

sociodemographic variables are an important component that should not be omitted 

from driving behaviour models. Moreover, model fit was always significantly 

improved after the inclusion of these variables. Significant driver characteristics in 

both models are age and driving frequency while some additional significant variables 

in Chapter 4 were gender and past accident involvement. It should be highlighted that 

the age groups between Chapter 2 and 3 considered different age ranges. The age 

ranges in Chapter 2 were based on literature findings however, in Chapter 3 a slightly 

different categorisation was applied, as it resulted in better model fit for the particular 

gap-acceptance scenario. 

 

6.1.2 The effects of traffic conditions and time pressure on driving behaviour 

The effects of traffic conditions and time pressure have been mainly investigated in 

Chapter 2, where the overall behaviour of participants in the two main settings is 

presented. The motorway scenario has involved a variety of traffic conditions and 

time pressure levels which had a substantial impact on observed behaviour. In 

particular, drivers’ behaviour have been approximated in terms of speed, acceleration, 

lane-change/lane-choice, car-following and pedal depression. In many cases, 

significant differences have been observed across the different motorway sections, as 

a result of the traffic conditions and time pressure. For instance, (following the 

notation of Chapter 2), although time pressure have been applied both in segments 

M3 and M5, average speed is higher in the latter, as the former area has been a part of 

the “aggressive” surrounding traffic scenario, resulting in safety concerns. Also, 

average speed was lower in the last segment (M6), potentially because of participants’ 

awareness regarding the upcoming pull over manoeuvre at the next intersection. 

Similar outcomes have also emerged regarding the lane-change behaviour. More 

specifically, the highest lane-change rate has been observed in the M4 segment 

potentially because of participants’ efforts to manoeuvre through slow traffic. 

Moreover, the lane-change rate has been higher at the last segments, compared to the 

earlier ones, possibly because of the presence of time pressure. The effects of time 

pressure have been also investigated in the urban setting. In this scenario, participants 

have completed most of the tasks significantly faster, also applying higher speeds. 

The effects of time pressure have been also included within a modelling framework 

in Chapter 3. In particular, the presence of time pressure increases the probability to 
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accept a gap. It should be mentioned that, regarding this outcome, there might be 

confounding (or learning) effects, as time pressure was always applied at the second 

intersection, but these are likely to be minimal given the experimental design and the 

time difference between the two intersections. Moreover, similar issues have been 

reported to other similar work (see Rendon-Velez et al., 2016 for example). The 

effects of traffic conditions have been also investigated in Chapter 4, in the context of 

car-following. In this chapter, three different car-following models have been initially 

estimated for different segments of the motorway. The parameter estimates of these 

models (and the models overall) have been compared in terms of equivalence and the 

results showed significant differences in all cases. This outcome consists an additional 

indication that traffic conditions have a considerable impact of driving behaviour. 

 

6.1.3 The incorporation of stress in driving behaviour models 

One of the explicit aims of the current study has been the incorporation of stress in 

driving behaviour models. Work related to this research question has been presented 

in Chapters 3 and 4. The former chapter, focuses on the estimation of a gap-acceptance 

model. The modelling approach has been based on choice modelling techniques and 

the specification corresponds to an error component mixed logit model. Before 

presenting the final proposed model, a series of other models have been estimated, 

starting from a model including exclusively traffic-related variables and gradually 

adding variables. In each step, the added variables correspond to a different element 

of the driving behaviour task, namely, sociodemographic characteristics, contextual 

factors (time pressure in that case) and ultimately stress. In all cases, the newly added 

variables have had a significant contribution in the performance of the model showing 

that the omission of variables not related directly to traffic conditions may result in 

misrepresentations of driving behaviour. Moreover, increases in physiological 

responses have been associated with a higher probability of accepting a gap. With 

respect to these findings, one might argue that the effects of drivers’ characteristics 

and other unobserved factors have been already being considered to some extent in 

existing driving behaviour models, in the form of disturbance terms (as e.g. in Toledo, 

2003). This statement however, is only partially true as in the proposed gap-

acceptance model of Chapter 3, the effect of the non-related to traffic variables has 

been significant on the top of a normally distributed error term that was included in 

the specification and was significant as well. 

The incorporation of stress in driving behaviour models is further investigated in 

Chapter 4 in a car-following model example. The approach is different compared to 
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Chapter 3 as stress has been considered in a continuous task as car-following, rather 

than a discrete one, as gap-acceptance has been treated. This model has also extended 

the incorporation of stress, compared to existing approaches. For instance, Tarabay 

(2018) included stress in a model for traffic light violation which can be considered a 

more discrete case of driving behaviour. The incorporation of physiological responses 

for car-following has been also different, in terms of specification, compared to the 

model presented in Chapter 3. In the latter, physiological responses have been directly 

included in the utility functions however, in the car-following model stress has been 

considered as a latent variable that influences both acceleration-deceleration decisions 

and physiological responses simultaneously. Significant and positive effects of stress 

have been found on acceleration decisions however no significant outcomes have 

occurred regarding deceleration. An additional novelty of the current model 

specification has been the introduction of a latent variable while at the same time, 

heterogeneity in driving behaviour has been captured both at the inter (reaction time) 

and at the intra-individual (stress) level, following examples from the choice 

modelling practice (Hess and Train, 2011). 

 

6.1.4 The transferability of driving simulator data to the real driving context 

The models presented in Chapters 3 and 4 have shown some promising results 

regarding the possibility of incorporating stress and other drivers’ characteristics in 

driving behaviour models. However, there have been some concerns regarding the 

validity of driving simulator data for the estimation of driving behaviour models. This 

issue has been investigated in Chapter 5 through the estimation of a car-following 

model based on driving simulator and video trajectory data. The results show that 

most of the parameters between the two models differ significantly and they are not 

transferable. However, after the application of parameter updating techniques, the two 

models do not significantly differ. Thus, there is an indication that parameters of 

models estimated with driving simulator data can be potentially used for 

microsimulation applications after some recalibration based on parameters estimated 

from a model that is based on real traffic data. In this chapter, the presented analysis 

has extended previous similar work (Papadimitriou and Choudhury, 2017) with a 

more flexible model specification and suggested techniques to improve 

transferability.  
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6.2 Progress made in achieving the research objectives 

The previous section has presented a summary of the findings with respect to each of 

the main research objectives expressed in the introductory chapter of the thesis. The 

current section, returns to the same objectives and presents the overall progress made 

in each of them and the issues that still remain to be answered or resolved, including 

limitations of each approach. 

 

O.1: Investigate in which way and what extent individual character traits and 

stress affect driving behaviour. 

The analysis conducted in the thesis has provided answers to all the components of 

this question, to some extent. Sociodemographic characteristics have been 

incorporated as explanatory variables in the models of Chapters 3 and 4, showing 

some significant relationships. Moreover, physiological responses have been tested 

both as direct and indicators of a latent variable, in order to investigate the effects of 

stress levels on driving behaviour. However, their effect can still be tested in other 

forms of driving behaviour models (e.g. lane-change, overtaking etc) as further 

explained in Section 6.4. Similarly, the thesis does not present any models that 

incorporate the effects of personality and other traits, although some associations with 

observed behaviour were found in Chapter 2. Thus, the models presented in Chapters 

3 and 4  (and additional models as well) can be augmented with variables derived 

from those indicators of individuals’ traits. 

 

O.2: Investigate how traffic conditions and contextual factors such as time 

pressure affect driving behaviour and how they are linked to stress levels. 

The analysis in all Chapters 2, 3 and 4, has shown that driving behaviour is influenced 

by the traffic conditions and time pressure. This finding has been an outcome of both 

explanatory analysis and modelling techniques and resulted in a series of expected 

outcomes (e.g. higher probability of gap-acceptance under time pressure etc.). These 

chapters further have highlighted the need of incorporating the effects of contextual 

factors in driving behaviour models. However, issues as the absence of 

counterbalancing between the two main scenarios and the fixed order of scenarios and 

time pressure in each main scenario should be acknowledged. Furthermore, it is worth 

testing these effects with additional models e.g. gap-acceptance in lane-change 

behaviour might be affected under time pressure and drivers accept shorter gaps. 
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O.3: Investigate approaches to incorporate stress levels in driving behaviour 

models in order to obtain more behaviourally representative results.  

Chapters 3 and 4 have suggested two different modelling approaches in terms of 

incorporating the effects of stress in the specification of driving behaviour models that 

resulted in some statistically significant results. The first approach has used variables 

derived from physiological responses as explanatory variables directly in the model 

specification while in the second, physiological responses have been used as 

indicators of a latent variable that represented stress. These two chapters revolve in 

essence around the main research objective of the thesis and the findings can pave the 

way for additional research on this topic. An interesting future approach (following 

the latent variable specification presented in Chapter 4) could be the expansion of the 

latent variable as a series of explanatory variable or the development of a dynamic 

model where past stress levels influence the current. 

 

O.4: Investigate in which way behaviour in the simulator environment compares 

to a real life and whether models estimated with simulator data are transferable 

to the field traffic context. 

Similarly to previous work, direct transferability of a car-following model, estimated 

with simulator data, to real traffic data has not been established in the current research 

work. This can be a result of the different nature of the two environments, including 

behavioural realism issues for the driving simulator, however, the examined cases 

have had further differences that may have led to this finding and have been 

acknowledged in Chapter 5 (e.g. different number of lanes, different countries etc.). 

While the initial lack of transferability is not novel, the application of the Combined 

Transfer Estimation parameter updating technique made it possible to significantly 

improve transferability. This matter needs to be further investigated with respect to 

remaining issues to be solved (e.g. the introduction of scale parameters needs to be 

improved and the influence of the number of observations of each data source needs 

to be mitigated). 

 

6.3 Contributions to knowledge and practice 

The analysis conducted  in the thesis has resulted in a series of outcomes with respect 

to driving behaviour models and driving behaviour overall. These can be summarised 

as following: 
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• Individual characteristics significantly affect driving behaviour: In Chapter 1, 

the limitations of existing driving behaviour models are listed. Among them is 

the lack of drivers’ individual characteristics, for the majority of the existing 

models. The models presented in Chapter 3 and 4, have included these 

variables in the specification resulting in significant parameter estimates. 

These results stress the need for the incorporation of these variables in driving 

behaviour models. The findings provide mathematical support to earlier 

discussions in the human factors literature and show how models of driving 

behaviour can go beyond purely “mechanical” approaches. 

• Contextual factors significantly influence driving behaviour: As shown in 

Chapters 2 and 3, time pressure has significantly influenced driving behaviour. 

Similarly, most of the parameter estimates of the car-following models, 

presented in Chapter 4, have not  been equivalent for different motorway 

segments. Thus, it may be concluded that contextual factors can significantly 

alter driving behaviour. The changes in driving behaviour should be 

considered in traffic microsimulation to improve the behavioural realism and 

predictive capability of these models. 

• The incorporation of stress levels in driving behaviour models: The effects of 

stress have been included in the model specifications presented in Chapters 3 

and 4 via drivers’ physiological responses. The latter case, has extended the 

traditional GM model accounting for inter-intra heterogeneity showing that 

driving behaviour models need to account for both types of variation in driving 

behaviour and more complex specifications can be investigated in the future. 

Moreover, in both the aforementioned cases, stress has had an effect towards 

a more aggressive driving style. Although this finding requires further 

investigation, it enables the thinking for potential in-vehicle interventions that 

will exploit advancements in sensor technologies towards the improvement of 

road safety. In a recent study, (Pavlovskaya et al., 2017) a positive relationship 

between accident proneness and physiological responses is also reported 

indicating the need for additional research. 

• Transferability improvement from driving simulator to real traffic context: 

The thesis has contributed in improving transferability of car-following 

models estimated with driving simulator data to approximate estimates of 
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models using real traffic data. Although this issue has been just tested on a 

single pair of datasets, it still consists an indication that behavioural validity 

issues, which may arise owing to the simulated nature of the data, are not an 

insurmountable obstacle, if the results are treated with caution. Among the 

tested approaches, joint model estimation has not significantly improved 

transferability. However, the application of the parameter updating technique 

of Combined Transfer Estimation showed that transferability from a driving 

simulator context to real traffic is feasible. 

6.4 Future research directions 

The work presented in the current thesis is only a first step towards the incorporation 

of drivers’ characteristics in driving behaviour modelling. The significant associations 

that have been found, require further investigation which can be summarised in further 

analysis with respect to additional data, driving tasks and modelling approaches. The 

suggested future research directions are discussed in the current section. 

First, although the relationship of physiological responses with the simulator 

scenarios have been investigated in Chapter 2, only a few significant associations have 

been found. However, results became more significant when shorter time windows 

were considered (as e.g. in Chapters 3 and 4). The latter has been investigated in a 

gap-acceptance and a car-following task, however, more scenarios are still available 

to be investigated following the same approach. These include specific tasks such as 

e.g. the overtaking scenario in the urban task but also more continuous tasks such as 

e.g. lane-change behaviour in the motorway task. Apart from the incorporation of 

physiological responses in these models, sociodemographic characteristics and trait-

related data can be included in the models. 

Another important factor of the current research has been the presence of time 

pressure. Its effects have been investigated generally in Chapter 2 and have  also been 

included in the model specification presented in Chapter 3 supporting existing 

findings (Cœugnet et al., 2013; Rendon-Velez et al., 2016). However, it has not been 

used in the car-following model in Chapter 4. A next step could be to for example use 

the time pressure state as a shift to the sensitivity component of the GM car-following 

model. The same approach can also be applied in a lane-change model following for 

example the specification of Choudhury (2007). For instance, under time pressure, 

drivers may be willing to accept shorter gaps thus, this behaviour should be considered 

in the gap-acceptance part of the lane change-model. 
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The car-following models used in Chapters 4 and 5 are based on the stimulus-response 

framework, as it has been widely used in the existing literature and considered as an 

appropriate starting point. However, this approach is not necessarily the most accurate 

as it has specific limitations (e.g. drivers are assumed to accelerate when relative speed 

is positive) and also its principles may not be followed in a simulator environment. 

Therefore, additional and more flexible specifications can be tested to this end e.g. the 

latent class car-following model of Koutsopoulos and Farah (2012). Regarding the 

car-following model specification, aspects related to model identification and 

efficiency in estimation speed, when extra heterogeneity is added, can be also 

investigated, but these research directions extend the scope of the current thesis as 

they represent a more technical aspect of the models rather than enhancing 

behavioural insights.  

The issue of model transferability has been investigated via the simulator data and one 

database of video trajectory data. Although the Combined Transfer Estimation 

approach has significantly improved transferability, the results presented in Chapter 

5 are highly dependent on these specific data sets. Thus, it would be desirable to 

further investigate this issue by adding data sources. Moreover, the same can be also 

applied to the lane-changing context and even to a joint car-following and lane-change 

model. 

Finally, it should be mentioned that the aim of the present research has been related 

to the improvement of driving behaviour models in terms of behavioural 

representativeness, with an ultimate goal to be used in microscopic simulation. 

Therefore, the estimated models should be validated in the future in order to 

investigate whether they produce realistic traffic conditions. 

6.5 Concluding remarks 

The current thesis focused mainly on the investigation of stress in driving behaviour 

models but also on the effects of driving characteristics in driving behaviour, 

generally. The results have been based on a driving simulator experiment conducted 

at the University of Leeds Driving Simulator. The issue of stress in driving behaviour 

models has been addressed to some extent, in terms of model specification in a gap-

acceptance and car-following modelling context, while some significant associations 

occurred in the aforementioned models. Moreover, transferability issues have been 

investigated. Overall, findings indicate that stress and drivers’ characteristics can 

significantly influence driving behaviour and thus should be considered in the 

respective models. However, for real life applications, it is suggested that the extent 
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of these effects should be treated with caution and ideally rescaled based on real traffic 

observations. 
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APPENDIX A: APPENDIX TO CHAPTER 2 

 

A.1 Questionnaire surveys 

Part A: General driving style 

First, we would like to ask about your general driving style. There is a list of statements below 

concerning specific driving behaviours. Please read each statement carefully and indicate, on 

the following 6-point scale, to what extent the statement describes you.   

1. Not at all,     2. Very little,     3. Little,     4. Moderate,     5. Much,     6. Very much 

 

I often do relaxing activities while driving 1 2 3 4 5 6 

I often purposely tailgate other drivers 1 2 3 4 5 6 

I often blow my horn or 'flash' the car in front as a way of 

expressing my frustration. 
1 2 3 4 5 6 

I feel I have control over driving 1 2 3 4 5 6 

I often drive through traffic lights that have just turned red. 1 2 3 4 5 6 

I usually enjoy the sensation of driving on the limit 

(dangerously) 
1 2 3 4 5 6 

On a clear freeway, I usually drive at or a little below the speed 

limit 
1 2 3 4 5 6 

While driving I try to relax myself 1 2 3 4 5 6 

When I am in a traffic jam and the lane next to mine starts to 

move, I try to move into that lane as soon as possible 
1 2 3 4 5 6 

Driving usually makes me feel frustrated 1 2 3 4 5 6 

I often daydream to pass the time while driving 1 2 3 4 5 6 

I often swear at other drivers 1 2 3 4 5 6 

When a traffic light turns green and the car in front of me 

doesn’t get going, I just wait for a while until it moves 
1 2 3 4 5 6 
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I drive cautiously 1 2 3 4 5 6 

Sometimes lost in thought or distracted, I fail to notice someone 

waiting at a zebra crossing/pedestrian 
1 2 3 4 5 6 

In a traffic jam, I think about ways to get through the traffic 

faster 
1 2 3 4 5 6 

When a traffic light turns green and the car in front of me 

doesn’t get going immediately, I try to urge the driver to move 

on 

1 2 3 4 5 6 

At an intersection where I have to give right-of-way to 

oncoming traffic, I simply wait patiently for cross-traffic to pass 
1 2 3 4 5 6 

When someone tries to skirt in front of me on the road I drive in 

an assertive way in order to prevent it 
1 2 3 4 5 6 

I often fix my hair and/or makeup while driving 1 2 3 4 5 6 

I am often distracted or preoccupied, and suddenly realize that 

the vehicle ahead has slowed down, and I have to slam on the 

brakes to avoid a collision 

1 2 3 4 5 6 

I like to take risks while driving 1 2 3 4 5 6 

I base my behaviour on the motto "better safe than sorry" 1 2 3 4 5 6 

I like the thrill of flirting with death and disaster 1 2 3 4 5 6 

It worries me when driving in bad weather 1 2 3 4 5 6 

I often meditate while driving 1 2 3 4 5 6 

Lost in thoughts I often forget that my lights are on full beam 

until flashed by another motorist 
1 2 3 4 5 6 

When someone does something on the road that annoys me, I 

flash them with the high beams 
1 2 3 4 5 6 

I get a thrill out of breaking the law 1 2 3 4 5 6 

I often misjudge the speed of an oncoming vehicle when 

passing 
1 2 3 4 5 6 

I feel nervous while driving 1 2 3 4 5 6 

I get impatient during rush hour 1 2 3 4 5 6 
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I feel distressed while driving 1 2 3 4 5 6 

I often intend to switch on the windscreen wipers, but switch on 

the lights instead, or vice versa 
1 2 3 4 5 6 

I often attempt to drive away from traffic lights in third gear (or 

on the neutral mode in automatic car) 
1 2 3 4 5 6 

I often plan my route badly, so that I hit traffic that I could have 

avoided 
1 2 3 4 5 6 

I often use muscle relaxation techniques while driving 1 2 3 4 5 6 

I plan long journeys in advance 1 2 3 4 5 6 

I often nearly (or actually) hit something due to Misjudging my 

gap in a parking lot 
1 2 3 4 5 6 

I feel comfortable while driving 1 2 3 4 5 6 

I am always ready to react to unexpected manoeuvres by other 

drivers 
1 2 3 4 5 6 

I tend to drive cautiously 1 2 3 4 5 6 

I often honk my horn at others 1 2 3 4 5 6 

I usually enjoy the excitement of dangerous driving 1 2 3 4 5 6 
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Part B: General personality 

We would now like to know more about your general personality. There is a list of statements 

below that may (or not) describe yourself. Please read them carefully and indicate, on the 

following 6-point scale, your level of agreement with each one of them. 

1. Strongly disagree,     2. Disagree,     3. Somewhat disagree,     4. Somewhat agree,     5. 

Agree,     6. Strongly Agree 

 

Personally, I:       

Act wild and crazy. 1 2 3 4 5 6 

Adapt easily to new situations. 1 2 3 4 5 6 

Am afraid of many things. 1 2 3 4 5 6 

Am calm even in tense 

situations. 
1 2 3 4 5 6 

Am not easily annoyed. 1 2 3 4 5 6 

Am not easily bothered by 

things. 
1 2 3 4 5 6 

Am not easily disturbed by 

events. 
1 2 3 4 5 6 

Am often in a bad mood. 1 2 3 4 5 6 

Am relaxed most of the time. 1 2 3 4 5 6 

Become overwhelmed by 

events. 
1 2 3 4 5 6 

Can handle complex problems. 1 2 3 4 5 6 

Can't make up my mind. 1 2 3 4 5 6 

Dislike loud music. 1 2 3 4 5 6 

Don't worry about things that 

have already happened. 
1 2 3 4 5 6 

Enjoy being part of a loud 

crowd. 
1 2 3 4 5 6 

Enjoy being reckless. 1 2 3 4 5 6 
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Fear for the worst. 1 2 3 4 5 6 

Feel that I'm unable to deal 

with things. 
1 2 3 4 5 6 

Get angry easily. 1 2 3 4 5 6 

Get caught up in my problems. 1 2 3 4 5 6 

Get irritated easily. 1 2 3 4 5 6 

Get overwhelmed by emotions. 1 2 3 4 5 6 

Get stressed out easily. 1 2 3 4 5 6 

Get upset easily. 1 2 3 4 5 6 

Keep my cool. 1 2 3 4 5 6 

Know how to cope. 1 2 3 4 5 6 

Lose my temper. 1 2 3 4 5 6 

Love action. 1 2 3 4 5 6 

Love excitement. 1 2 3 4 5 6 

Panic easily. 1 2 3 4 5 6 

Rarely complain. 1 2 3 4 5 6 

Rarely get irritated. 1 2 3 4 5 6 

Readily overcome setbacks. 1 2 3 4 5 6 

Remain calm under pressure. 1 2 3 4 5 6 

Seek adventure. 1 2 3 4 5 6 

Seek danger. 1 2 3 4 5 6 

Seldom get mad. 1 2 3 4 5 6 

Willing to try anything once. 1 2 3 4 5 6 

Worry about things. 1 2 3 4 5 6 

Would never go hang gliding 

or bungee jumping. 
1 2 3 4 5 6 

 

  



Appendix A: Appendix to Chapter 2 

214 

 

Participant’s post driving survey 

Urban/rural run 

   Event: First encountering with slow moving vehicle Specific 
emotion(s) Stress level 1 2 3 4 5 6 

        Anxiety   
        Anger   
        Fear   

        

Other: 

  

       

 

 

   Event: First long lasting red traffic light Specific 
emotion(s) Stress level 1 2 3 4 5 6 

        Anxiety   
        Anger   
        Fear   

        

Other: 

  

       

 

 
   Event: Car violates priority and crosses the intersection Specific 

emotion(s) Stress level 1 2 3 4 5 6 
        Anxiety   
        Anger   
        Fear   

        

Other: 

  

       

 

 
   Event: First traffic light change from green to yellow Specific 

emotion(s) Stress level 1 2 3 4 5 6 
        Anxiety   
        Anger   
        Fear   

        

Other: 

  

       

 

 
   Event: First intersection crossing at rural road Specific 

emotion(s) Stress level 1 2 3 4 5 6 
        Anxiety   
        Anger   
        Fear   

        
Other: 
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   Event: Second encountering with slow moving vehicle Specific 
emotion(s) Stress level 1 2 3 4 5 6 

        Anxiety 
 

        Anger 
 

        Fear 
 

        

Other: 
 

       

  

   Event: Second long lasting red traffic light Specific 
emotion(s) Stress level 1 2 3 4 5 6 

        Anxiety 
 

        Anger 
 

        Fear 
 

        

Other: 
 

       

  

   Event: Second traffic light change from green to yellow Specific 
emotion(s) Stress level 1 2 3 4 5 6 

        Anxiety 
 

        Anger 
 

        Fear 
 

        

Other: 
 

       

  

   Event: Second intersection crossing at rural road Specific 
emotion(s) Stress level 1 2 3 4 5 6 

        Anxiety 
 

        Anger 
 

        Fear 
 

        

Other: 
 

       

  

   Event: Final right turn manoeuvre Specific 
emotion(s) Stress level 1 2 3 4 5 6 

        Anxiety 
 

        Anger 
 

        Fear 
 

        

Other: 
 

 

 

  

Overall stress level of the 
urban/rural run 

1 2 3 4 5 6 
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Motorway run 

 

   Event: First minutes of driving on the motorway until the first junction Specific 
emotion(s) Stress level 1 2 3 4 5 6 

        Anxiety 
 

        Anger 
 

        
Fear 

 

        

Other: 
 

       

  

   Event: Surrounding vehicles execute dangerous manoeuvres Specific 
emotion(s) Stress level 1 2 3 4 5 6 

        Anxiety 
 

        
Anger 

 

        Fear 
 

        

Other: 
 

       

  

   
Event: Surrounding vehicles executing dangerous manoeuvres under 

time pressure situation 
Specific 

emotion(s) 

Stress level 1 2 3 4 5 6 

        
Anxiety 

 

        Anger 
 

        Fear 
 

        

Other: 
 

       

  

   Event: Driving under slow moving traffic without time pressure Specific 
emotion(s) 

Stress level 1 2 3 4 5 6 

        Anxiety 
 

        Anger 
 

        Fear 
 

        

Other: 
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   Event: Driving during slow moving traffic under time pressure Specific 
emotion(s) Stress level 1 2 3 4 5 6 

        Anxiety 
 

        Anger 
 

        Fear 
 

        

Other: 
 

       

  

   
Event: Driving under time pressure towards the end of the motorway 

session 
Specific 

emotion(s) 

Stress level 1 2 3 4 5 6 
        Anxiety 

 

        Anger 
 

        Fear 
 

        

Other: 
 

 

Overall stress level of 
the motorway run 

1 2 3 4 5 6 
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Driving simulator experience 

 

1.  Please evaluate the realism of the driving simulator urban session compared to real-life driving experience: 

 

Not realistic at all 1 2 3 4 Very realistic 

 

2.  Please evaluate the realism of the driving simulator motorway session compared to real-life driving experience: 

 

Not realistic at all 1 2 3 4 Very realistic 

 

 

3. Please indicate how close was your driving performance at the simulator compared to real-life driving: 

 

Not at all 1 2 3 4 
Very close to 

real life 

 

4. Did you feel any type of motion sickness that might affected your driving performance? 

□ Yes □ No 

 

 

5. Is there any other comment that you would like to add regarding the driving simulator experiment? (optional) 

 

…………………………………………………………………………………………………. 

…………………………………………………………………………………………………. 

………………………………………………………………………………………………….. 

………………………………………………………………………………………………….. 

………………………………………………………………………………………………….. 

………………………………………………………………………………………………….. 

………………………………………………………………………………………………….. 

………………………………………………………………………………………………….. 
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A.2 Results 

Table A.1: Heart rate analysis 

  Raw HR data Normalised HR data 

 Mean 
Std. 

Deviation 
Test statistics Mean Std. Deviation Test statistics 

Overtaking 

NTP 81.70 13.53 F 2.313 -0.04 0.75 Z -1.536 

TP 79.92 12.07 p-value 0.136 -0.26 0.74 p-value 0.125 

   η2 0.055     

Red traffic light 

long 

NTP 84.10 19.81 Z -2.676 0.12 0.76 Z -2.715 

TP 79.68 15.46 p-value 0.007 -0.26 0.66 p-value 0.007 

Red traffic light 

long (red to leave) 

NTP 84.62 21.08 Z -2.909 0.16 0.81 Z -3.129 

TP 79.60 15.84 p-value 0.004 -0.28 0.72 p-value 0.002 

Amber dilemma 

(scenario) 

NTP 83.36 18.84 Z -1.315 0.02 1.21 Z -1.432 

TP 78.99 12.41 p-value 0.188 -0.36 0.94 p-value 0.152 

Amber dilemma 

(junction) 

NTP 83.42 18.84 Z -1.315 0.03 1.26 Z -1.367 

TP 79.14 12.50 p-value 0.188 -0.35 0.95 p-value 0.172 

Gap-acceptance 

(scenario) 

NTP 82.83 14.82 Z -0.149 0.05 0.66 F 0.0347 

TP 83.51 17.96 p-value 0.882 -0.06 0.94 p 0.559 

       η2 0.009 

Gap-acceptance 
(junction) 

NTP 82.36 15.18 Z -0.006 -0.03 0.67 F 0.136 

TP 83.59 19.82 p-value 0.995 -0.10 1.03 p 0.714 

       η2 0.003 

Free driving 

NTP 83.44 18.56 Z -2.456 0.02 0.81 F 5.497 

TP 78.38 12.18 p-value 0.014 -0.40 0.78 p 0.024 

       η2 0.121 

 

Table A.2: SC - CDA analysis 

  SCRs frequency SCRs mean amplitude SCRs mean amplitude - normalised 

  Mean 
Std. 

Deviation 
Test statistics Mean Std. Deviation Test statistics Mean Std. Deviation Test statistics 

Overtaking 
NTP 15.28 17.05 Z -0.624 0.032 0.044 Z -0.607 3.715 2.011 Z -0.299 

TP 17.45 17.86 p-value 0.533 0.041 0.058 p-value 0.544 3.523 2.181 p-value 0.765 

Red traffic 

light long 

NTP 17.63 18.54 Z -1.848 0.038 0.038 Z -0.792 4.061 1.725 Z -0.551 

TP 21.10 18.80 p-value 0.065 0.049 0.058 p-value 0.428 4.143 1.771 p-value 0.582 

Red traffic 

light long 
(red to 

leave) 

NTP 17.22 19.82 Z -1.456 0.037 0.043 Z -1.441 3.880 1.973 Z -1.29 

TP 20.19 19.52 p-value 0.145 0.049 0.067 p-value 0.150 4.099 1.746 p-value 0.197 

Amber 

dilemma 
(scenario) 

NTP 19.45 22.29 Z -0.789 0.030 0.049 Z -0.811 2.963 2.438 Z -0.357 

TP 16.78 21.67 p-value 0.430 0.038 0.065 p-value 0.417 2.913 2.522 p-value 0.721 

Amber 

dilemma 

(junction) 

NTP 22.99 33.63 Z -1.737 0.032 0.076 Z -0.438 2.132 2.651 Z -1.055 

TP 14.90 26.64 p-value 0.082 0.025 0.052 p-value 0.661 1.475 2.342 p-value 0.291 

Gap-

acceptance 

(scenario) 

NTP 18.18 17.70 Z -0.911 0.038 0.049 Z -1.98 3.773 2.039 Z -1.524 

TP 16.98 16.46 p-value 0.362 0.031 0.046 p-value 0.048 3.596 2.090 p-value 0.128 

Gap-
acceptance 

(junction) 

NTP 17.63 19.69 Z -0.898 0.034 0.052 Z -1.65 3.270 2.275 Z -1.342 

TP 15.33 17.13 p-value 0.369 0.027 0.046 p-value 0.099 2.904 2.388 p-value 0.180 

Free driving 
NTP 16.45 18.65 Z -1.385 0.040 0.049 Z -0.138 4.088 1.734 Z -0.109 

TP 19.74 18.55 p-value 0.166 0.043 0.067 p-value 0.890 4.182 1.604 p-value 0.913 
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Table A.3: SC - TTP analysis 

  SCRs frequency SCRs mean amplitude 
SCRs mean amplitude 

normalised 

  Mean 
Std. 

Deviation 
Test statistics Mean 

Std. 

Deviation 
Test statistics Mean 

Std. 
Deviatio

n 

Test statistics 

Overtaking 
NTP 5.36 6.68 Z -0.413 0.051 0.054 Z -0.022 4.222 1.613 Z -0.326 

TP 5.80 6.66 p-value 0.679 0.050 0.062 p-value 0.983 4.127 1.763 p-value 0.744 

Red traffic 

light long 

NTP 5.18 6.78 Z -0.173 0.040 0.052 Z -1.32 3.720 2.021 Z -0.55 

TP 5.57 6.38 p-value 0.863 0.058 0.084 p-value 0.187 3.790 2.068 p-value 0.582 

Red traffic 

light long 

(red to 
leave) 

NTP 6.00 7.77 Z -0.615 0.043 0.085 Z -0.159 2.847 2.463 Z -0.114 

TP 7.53 10.17 p-value 0.539 0.039 0.069 p-value 0.873 2.617 2.482 p-value 0.909 

Amber 

dilemma 

(scenario) 

NTP 5.20 13.76 Z -0.357 0.008 0.030 Z -0.459 0.716 1.775 Z -0.459 

TP 6.69 16.83 p-value 0.721 0.011 0.032 p-value 0.646 0.740 1.822 p-value 0.646 

Amber 

dilemma 

(junction) 

NTP 6.68 7.27 Z -2.255 0.055 0.072 Z -0.703 4.021 1.874 Z -0.95 

TP 5.29 5.98 p-value 0.024 0.048 0.066 p-value 0.482 3.762 2.247 p-value 0.342 

Gap-
acceptance 

(scenario) 

NTP 6.43 8.57 Z -0.641 0.044 0.066 Z -1.718 3.394 2.246 Z -1.667 

TP 5.83 8.54 p-value 0.521 0.035 0.063 p-value 0.086 2.861 2.481 p-value 0.096 

Gap-

acceptance 
(junction) 

NTP 5.31 5.98 Z -2.11 0.046 0.047 Z -1.82 4.106 1.761 Z -1.472 

TP 6.54 7.07 p-value 0.035 0.056 0.055 p-value 0.069 4.274 1.642 p-value 0.141 

Free driving 
NTP 5.51 6.80 Z -1.445 0.048 0.063 Z -1.257 4.012 1.919 Z -1.241 

TP 6.65 7.53 p-value 0.148 0.056 0.065 p-value 0.209 3.949 2.003 p-value 0.215 

 

Table A.4: Sociodemographic characteristics associations with the overtaking 

scenario 

  
Overtaking 

manoeuvre 

NTP 

Overtaking 

manoeuvre 

TP 

Time to 

overtake 

NTP 

Time to 

overtake 

TP 

Left lane 

min headw. 

NTP 

Left lane 

min 
headw. 

TP 

Right 

lane min 
headw. 

TP 

Right 

lane min 
headw. 

NTP 

Max 
speed 

during 

overtake 
TP 

Max 
speed 

during 

overtake 
NTP 

Gender 
Z -2.928 -2.904 -0.183 -1.750 -0.365 -0.700 -2.008 -1.260 -0.548 -1.820 

p-value 0.003 0.004 0.855 0.080 0.715 0.484 0.045 0.208 0.584 0.069 

Age 
Z -1.907 -3.182 -1.826 -1.643 -0.730 -2.008 0.000 -0.730 -0.183 -0.639 

p-value 0.056 0.001 0.068 0.100 0.465 0.045 1.000 0.465 0.855 0.523 

Frequency 

of driving 

KW 4.051 4.395 2.819 0.471 2.829 6.576 2.076 3.563 1.914 6.995 

p-value 0.256 0.222 0.420 0.925 0.419 0.087 0.557 0.313 0.590 0.072 

Miles per 

year 

KW 0.465 4.265 3.233 6.180 1.762 0.441 1.033 1.274 3.471 2.782 

p-value 0.926 0.234 0.357 0.103 0.623 0.932 0.793 0.735 0.324 0.426 

Driving 

experience 

Z -0.111 -2.002 -0.447 -0.516 -1.597 -1.872 -0.192 -0.194 -0.192 -0.839 

p-value 0.912 0.045 0.655 0.606 0.110 0.061 0.848 0.846 0.848 0.401 

Minor 

accident 

involvement 

Z -0.045 -0.322 -0.730 -1.095 -0.365 -0.639 -1.278 -0.274 -0.548 -0.548 

p-value 0.964 0.748 0.465 0.273 0.715 0.523 0.201 0.784 0.584 0.584 

Major 

accident 

involvement 

Z -0.401 -0.792 -0.372 -0.913 -0.868 -1.552 -0.868 -0.456 -1.364 -1.917 

p-value 0.688 0.428 0.710 0.361 0.385 0.121 0.385 0.648 0.172 0.055 

Ticket for 

speeding 

Z -0.527 -0.887 -0.234 -1.714 -0.856 -0.894 -1.012 -1.789 -1.012 -0.522 

p-value 0.598 0.375 0.815 0.086 0.392 0.371 0.312 0.074 0.312 0.602 

Life stress 
KW 2.089 1.235 4.474 2.189 1.669 0.005 6.707 2.305 0.495 1.505 

p-value 0.352 0.539 0.107 0.335 0.434 0.998 0.035 0.316 0.781 0.471 
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Table A.5: Sociodemographic characteristics associations with the red traffic light 

scenario 

  
Mean 

speed 

NTP 

Mean 

speed 

TP 

Max 

speed 

NTP 

Max 

speed 

TP 

End 

speed 

NTP 

End 

speed 

TP 

Mean 
acceler. TP 

Mean 

acceler. 

NTP 

Max 

acceler. 

NTP 

Max 
acceler. TP 

Gender Z -0.575 -2.353 0.000 -2.248 -0.392 -2.196 -2.092 -0.941 -1.909 -2.536 
 p-value 0.565 0.019 1.000 0.025 0.695 0.028 0.036 0.347 0.056 0.011 

Age Z -2.997 -2.337 -2.282 -2.117 -1.787 -2.007 -1.650 -0.412 -0.962 -1.622 
 p-value 0.003 0.019 0.022 0.034 0.074 0.045 0.099 0.680 0.336 0.105 

Frequency of 
driving 

KW 0.577 0.660 3.081 0.294 2.593 1.861 1.614 2.785 4.288 0.792 

 p-value 0.902 0.883 0.379 0.961 0.459 0.602 0.656 0.426 0.232 0.851 

Miles per 
year 

KW 2.198 3.234 3.383 4.074 3.255 4.200 3.188 1.093 3.296 1.902 

 p-value 0.532 0.357 0.336 0.254 0.354 0.241 0.363 0.779 0.348 0.593 

Driving 
experience 

Z -0.235 -0.183 -0.678 -0.078 -0.417 -0.391 -0.600 -1.148 -0.287 -0.130 

 p-value 0.814 0.855 0.498 0.938 0.676 0.696 0.549 0.251 0.774 0.896 

Minor 
accident 

involvement 

Z -1.033 -0.111 -1.512 -0.664 -1.217 0.000 -1.291 -0.553 -0.775 -0.848 

 p-value 0.302 0.912 0.130 0.507 0.224 1.000 0.197 0.580 0.439 0.396 

Major 

accident 

involvement 

Z -1.757 -1.626 -1.406 -1.142 -1.098 -1.098 -0.176 -0.659 -0.659 -0.747 

 p-value 0.079 0.104 0.160 0.253 0.272 0.272 0.860 0.510 0.510 0.455 

Ticket for 

speeding 
Z -2.148 -0.832 -1.594 -0.243 -1.213 -0.312 -0.277 -0.554 -2.044 -0.762 

 p-value 0.032 0.406 0.111 0.808 0.225 0.755 0.782 0.579 0.041 0.446 

Life stress KW 1.033 1.376 0.063 0.407 0.330 0.537 0.200 0.571 3.340 5.211 
 p-value 0.597 0.503 0.969 0.816 0.848 0.765 0.905 0.751 0.188 0.074 

  

Table A.6: Sociodemographic characteristics associations with the amber dilemma 

scenario 

  Stopped NTP Stopped TP End speed NTP End speed TP 

Gender 
Z -0.622 -1.195 -0.078 -2.013 

p-value 0.534 0.232 0.937 0.044 

Age 
Z -0.527 -0.695 -2.364 -2.777 

p-value 0.598 0.487 0.018 0.005 

Frequency of driving 
KW 3.413 8.867 2.597 1.695 

p-value 0.332 0.031 0.458 0.638 

Miles per year 
KW 2.485 2.279 0.940 2.314 

p-value 0.478 0.517 0.816 0.510 

Driving experience 
Z -0.480 -2.131 -0.861 -2.191 

p-value 0.631 0.033 0.389 0.028 

Minor accident involvement 
Z -0.028 -0.861 -0.738 -0.148 

p-value 0.977 0.389 0.461 0.883 

Major accident involvement 
Z -1.820 -1.068 -0.483 -0.527 

p-value 0.069 0.285 0.629 0.598 

Ticket for speeding 
Z -0.213 -0.944 -1.525 -1.213 

p-value 0.832 0.345 0.127 0.225 

Life stress 
KW 0.296 0.425 0.129 1.466 

p-value 0.862 0.809 0.938 0.480 
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Table A.7: Sociodemographic characteristics associations with the gap-acceptance 

scenario 

  
Time to 

clear 

NTP 

Time to 

clear TP 

Junction 
to finish 

NTP 

Junction 
to finish 

TP 

Mean speed 

after 

junction 
NTP 

Mean 

speed 
after 

junction 

TP 

Max 

speed 
after 

junction 

NTP 

Max 

speed 
after 

junction 

TP 

Total 

scenario 

time 
NTP 

Total 
scenario 

time TP 

Gender 
Z -0.157 -0.784 -0.745 -2.275 -0.497 -2.275 -0.732 -2.431 -0.118 -1.203 

p-value 0.875 0.433 0.456 0.023 0.619 0.023 0.464 0.015 0.906 0.229 

Age 
Z -0.357 -0.632 -2.323 -1.993 -2.062 -2.007 -1.540 -0.522 -0.577 -1.292 

p-value 0.721 0.527 0.020 0.046 0.039 0.045 0.124 0.601 0.564 0.196 

Frequency of 

driving 

KW 9.755 7.700 2.738 0.411 2.754 0.396 2.379 1.352 6.595 5.544 

p-value 0.021 0.053 0.434 0.938 0.431 0.941 0.497 0.717 0.086 0.136 

Miles per year 
KW 5.834 3.639 2.717 1.383 2.764 1.340 4.124 1.610 5.504 3.935 

p-value 0.120 0.303 0.437 0.710 0.429 0.720 0.248 0.657 0.138 0.269 

Driving 
experience 

Z -1.409 -0.235 -0.104 -0.170 -0.130 -0.156 -0.026 -0.183 -1.252 -0.443 

p-value 0.159 0.814 0.917 0.865 0.896 0.876 0.979 0.855 0.211 0.657 

Minor accident 
involvement 

Z -0.221 -1.143 -1.162 -1.107 -1.254 -1.107 -0.959 -1.955 -0.129 -1.475 

p-value 0.825 0.253 0.245 0.268 0.210 0.268 0.338 0.051 0.897 0.140 

Major accident 

involvement 

Z -0.022 -0.132 -0.813 -0.088 -0.747 -0.088 -0.791 -0.527 -0.527 -0.044 

p-value 0.982 0.895 0.416 0.930 0.455 0.930 0.429 0.598 0.598 0.965 

Ticket for 

speeding 

Z -1.421 -2.148 -0.797 -1.629 -0.832 -1.628 -0.277 -1.074 -1.455 -2.183 

p-value 0.155 0.032 0.425 0.103 0.406 0.103 0.782 0.283 0.146 0.029 

Life stress 
KW 0.079 0.013 0.335 1.210 0.321 1.210 2.679 1.224 0.229 0.203 

p-value 0.961 0.993 0.846 0.546 0.852 0.546 0.262 0.542 0.892 0.903 

 

 

Table A.8: Sociodemographic characteristics associations with the free driving 

scenario 

 
Mean 

speed 

NTP 

Mean 

speed TP 

Max 

speed 

NTP 

Max 

speed TP 

% above 

40mph 

NTP 

% above 

40mph 

TP 

% above 

60mph 

NTP 

% above 

60mph 

TP 

Z -1.072 -2.353 -1.490 -1.882 -1.099 -2.542 -1.076 -1.150 

p-value 0.284 0.019 0.136 0.060 0.272 0.011 0.282 0.250 

Z -1.897 -1.732 -1.512 -1.210 -1.734 -1.810 -0.720 -0.701 

p-value 0.058 0.083 0.131 0.226 0.083 0.070 0.471 0.483 

KW 0.553 0.648 0.235 1.221 0.667 0.403 2.417 1.301 

p-value 0.907 0.885 0.972 0.748 0.881 0.940 0.491 0.729 

KW 8.166 5.371 7.882 5.429 7.308 2.923 3.333 6.132 

p-value 0.043 0.147 0.049 0.143 0.063 0.404 0.343 0.105 

Z -0.678 -1.043 -0.574 -0.835 -0.888 -0.647 -0.976 -0.505 

p-value 0.498 0.297 0.566 0.404 0.375 0.518 0.329 0.614 

Z -0.111 -0.443 -0.406 0.000 -0.222 -0.187 -0.414 -0.357 

p-value 0.912 0.658 0.685 1.000 0.825 0.852 0.679 0.721 

Z -1.670 -0.659 -1.011 -0.615 -1.495 -1.224 -0.329 -0.773 

p-value 0.095 0.510 0.312 0.538 0.135 0.221 0.742 0.440 

Z -1.178 -0.346 -0.970 -0.346 -1.006 -0.123 -2.204 -1.615 

p-value 0.239 0.729 0.332 0.729 0.315 0.902 0.028 0.106 

KW 1.428 0.347 0.412 0.366 2.003 0.635 5.833 2.889 

p-value 0.490 0.841 0.814 0.833 0.367 0.728 0.054 0.236 
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Table A.9: Correlation matrix between personality factors and overtaking task 

 

Table A.10: Correlation matrix between personality factors and red light task 

  Anxiety Anger Vulnerability Excitement 

Scenario mean speed NTP 
r -0.223 -0.017 -0.189 0.295 

p-value 0.161 0.914 0.236 0.061 

Scenario mean speed TP 
r -0.140 0.021 -0.002 .360 

p-value 0.382 0.895 0.988 0.021 

Scenario max speed NTP 
r -.345 -0.123 -0.281 0.119 

p-value 0.027 0.445 0.075 0.458 

Scenario max speed TP 
r -0.288 -0.099 -0.093 0.252 

p-value 0.068 0.540 0.563 0.112 

Scenario end speed NTP 
r -.340 -0.136 -0.257 0.131 

p-value 0.029 0.396 0.105 0.414 

Scenario end speed TP 
r -0.283 -0.072 -0.075 0.238 

p-value 0.073 0.657 0.641 0.134 

Max acceleration NTP 
r -0.192 -0.023 -0.064 .371 

p-value 0.230 0.886 0.693 0.017 

 

Table A.11: Correlation matrix between personality factors and amber dilemma task 

 Anxiety Anger Vulnerability Excitement 

Stopped TP 
r 0.050 0.118 -0.004 -.337 

p-value 0.758 0.463 0.980 0.031 

End speed TP 
r -0.209 -0.101 -0.013 .427 

p-value 0.191 0.530 0.937 0.005 

 

Table A.12: Correlation matrix between personality factors and gap-acceptance task 

  Anxiety Anger Vulnerability Excitement 

Junction to finish NTP 
r 0.101 -0.061 0.087 -.445 

p-value 0.528 0.703 0.590 0.004 

Junction to finish NTP 
r 0.059 -0.087 0.070 -.442 

p-value 0.718 0.595 0.670 0.004 

Mean speed after junction NTP 
r -0.170 0.023 -0.094 .489 

p-value 0.287 0.888 0.557 0.001 

Mean speed after junction NTP 
r 0.059 -0.087 0.070 -.442 

p-value 0.718 0.595 0.670 0.004 

Max speed after junction NTP 
r -0.192 -0.041 -0.083 .360 

p-value 0.230 0.800 0.605 0.021 

Max speed after junction NTP 
r -0.123 0.063 -0.103 .466 

p-value 0.451 0.698 0.528 0.002 

Max speed after junction NTP 
r -.342 -0.071 -0.140 .426 

p-value 0.031 0.663 0.388 0.006 

  

  Anxiety Anger Vulnerability Excitement 

Right lane min 

headway NTP 

r .551 0.404 0.319 -0.438 

p-value 0.041 0.152 0.266 0.117 
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Table A.13: Correlation matrix between personality factors and free driving task 

  Anxiety Anger Vulnerability Excitement 

Mean speed NTP 
r -0.215 0.107 -0.085 .374 

p-value 0.178 0.507 0.598 0.016 

Mean speed TP 
r -.317 -0.055 -0.056 .324 

p-value 0.043 0.734 0.730 0.039 

Max speed NTP 
r -0.256 -0.033 -0.094 0.283 

p-value 0.106 0.838 0.558 0.072 

Max speed TP 
r -.316 -0.069 -0.067 0.307 

p-value 0.044 0.666 0.676 0.051 

% above 60mph NTP 
r -0.260 -0.007 -0.093 .328 

p-value 0.100 0.967 0.561 0.036 

% above 60mph TP 
r -.353 -0.081 -0.082 .414 

p-value 0.024 0.612 0.611 0.007 

 

Table A.14: Correlation matrix between MDSI factors and the overtaking task 

  Dissociative Anxious Risky Angry 
High-

velocity 
Distress-
reduction 

Patient Careful 

Overtaking 
manoeuvre NTP 

r -0.191 -0.072 0.149 0.176 0.026 -0.064 -0.299 0.110 

p-value 0.233 0.653 0.352 0.271 0.870 0.689 0.058 0.495 

Time to overtake 

NTP 

r -0.021 0.347 -0.153 -0.259 -.549 0.225 0.089 -0.239 

p-value 0.944 0.224 0.602 0.370 0.042 0.439 0.762 0.410 

 

Table A.15: Correlation matrix between MDSI factors and the red traffic light task 

  Dissociative Anxious Risky Angry 
High-

velocity 

Distress-

reduction 
Patient Careful 

Scenario mean speed NTP 
r 0.003 -0.250 .338 0.153 0.225 -0.101 -0.285 0.123 

p-value 0.987 0.115 0.031 0.339 0.157 0.530 0.071 0.442 

Scenario mean speed TP 
r 0.174 -0.126 0.302 .342 .319 0.110 -.407 -0.141 

p-value 0.276 0.431 0.055 0.029 0.042 0.492 0.008 0.380 

Scenario max speed TP 
r 0.170 -0.104 0.188 0.284 0.144 .309 -0.295 -0.154 

p-value 0.287 0.518 0.240 0.072 0.369 0.049 0.061 0.336 

Scenario end speed TP 
r 0.193 -0.097 0.201 0.300 0.131 0.267 -.338 -0.200 

p-value 0.226 0.547 0.208 0.057 0.414 0.091 0.031 0.209 

Scenario mean acceleration NTP 
r 0.120 0.000 -0.221 -0.031 0.069 0.266 0.168 -0.033 

p-value 0.456 1.000 0.165 0.849 0.670 0.093 0.294 0.840 

Scenario mean acceleration TP 
r -0.006 -0.008 -0.027 0.077 -0.183 .344 0.057 -0.080 

p-value 0.968 0.958 0.866 0.630 0.252 0.028 0.721 0.621 

Scenario max acceleration NTP 
r 0.216 -0.114 0.275 0.035 0.192 0.003 -0.081 -0.083 

p-value 0.176 0.479 0.082 0.828 0.228 0.984 0.614 0.608 

Scenario max acceleration TP 
r 0.205 0.027 0.123 0.225 0.214 0.102 -0.281 -0.116 

p-value 0.199 0.869 0.443 0.157 0.179 0.526 0.075 0.470 
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Table A.16: Correlation matrix between MDSI factors and the amber dilemma task 

 Dissociative Anxious Risky Angry 
High-

velocity 
Distress-
reduction 

Patient Careful 

Stopped TP 
r -.351 -0.027 -0.224 0.216 -0.019 -0.114 0.121 .343 

p-value 0.025 0.867 0.160 0.174 0.905 0.478 0.452 0.028 

End speed TP 
r .398 -0.127 .316 0.031 0.246 0.253 -.329 -.395 

p-value 0.010 0.427 0.044 0.850 0.121 0.110 0.036 0.011 

 

Table A.17: Correlation matrix between MDSI factors and the gap-acceptance task 

  Dissociative Anxious Risky Angry 
High-

velocity 
Distress-
reduction 

Patient Careful 

Time to clear NTP 
r 0.254 0.244 -.357 -0.205 -0.103 0.192 0.227 0.083 

p-value 0.109 0.125 0.022 0.199 0.521 0.230 0.153 0.604 

Time to clear TP 
r 0.082 0.179 -.464 -0.197 -0.183 0.164 0.294 0.085 

p-value 0.609 0.264 0.002 0.217 0.252 0.306 0.062 0.597 

Junction to finish NTP 
r -0.240 0.069 -0.125 -.346 -.312 -0.285 0.268 0.128 

p-value 0.130 0.668 0.435 0.027 0.047 0.071 0.090 0.426 

Junction to finish TP 
r -0.109 0.106 -.366 -0.290 -0.216 -0.214 .362 0.205 

p-value 0.496 0.508 0.019 0.066 0.174 0.178 0.020 0.198 

Mean speed after junction 

NTP 

r 0.216 -0.129 0.186 .328 .313 0.242 -0.254 -0.143 

p-value 0.175 0.420 0.245 0.036 0.047 0.127 0.110 0.373 

Mean speed after junction TP 
r 0.077 -0.140 .390 0.299 0.229 0.179 -.342 -0.212 

p-value 0.633 0.381 0.012 0.058 0.149 0.263 0.028 0.184 

Max speed after junction NTP 
r 0.247 -0.116 0.040 0.306 0.261 0.280 -0.179 -0.158 

p-value 0.120 0.469 0.804 0.051 0.100 0.077 0.262 0.324 

Max speed after junction TP 
r 0.080 -0.250 .476 0.259 0.241 0.219 -0.282 -0.263 

p-value 0.617 0.115 0.002 0.102 0.129 0.169 0.074 0.097 

Total scenario time NTP 
r 0.174 0.236 -.343 -0.287 -0.187 0.159 0.302 0.089 

p-value 0.276 0.137 0.028 0.069 0.243 0.319 0.055 0.581 

Total scenario time TP 
r 0.049 0.170 -.476 -0.248 -0.209 0.139 .349 0.114 

p-value 0.759 0.289 0.002 0.118 0.190 0.388 0.025 0.479 

 

Table A.18: Correlation matrix between MDSI factors and the free driving task 

  Dissociative Anxious Risky Angry 
High-

velocity 

Distress-

reduction 
Patient Careful 

Mean speed 

NTP 

r 0.194 -0.122 .354 0.275 .543 .326 -.438 -.337 

p-value 0.224 0.449 0.023 0.082 0.000 0.037 0.004 0.031 

Mean speed 

TP 

r 0.253 -0.156 0.285 0.237 0.242 0.252 -.415 -.403 

p-value 0.110 0.330 0.071 0.136 0.128 0.111 0.007 0.009 

Max speed 

NTP 

r 0.249 -0.066 0.281 0.158 .451 0.256 -.310 -0.292 

p-value 0.117 0.680 0.076 0.323 0.003 0.106 0.049 0.064 

Max speed TP 
r 0.293 -0.132 0.293 0.177 0.249 0.280 -.390 -.412 

p-value 0.063 0.409 0.063 0.267 0.116 0.076 0.012 0.007 

% above 

40mph NTP 

r 0.088 -0.041 0.156 .369 .396 0.270 -.418 -0.163 

p-value 0.585 0.798 0.330 0.018 0.010 0.088 0.007 0.308 

% above 

40mph TP 

r 0.145 -0.073 0.210 0.275 0.226 0.209 -.391 -0.259 

p-value 0.364 0.649 0.187 0.082 0.156 0.190 0.011 0.102 

% above 

60mph NTP 

r 0.247 -0.199 .416 0.000 .453 0.167 -0.212 -.376 

p-value 0.120 0.213 0.007 1.000 0.003 0.297 0.183 0.015 

% above 

60mph TP 

r 0.210 -0.217 .322 0.087 0.247 0.195 -0.246 -.344 

p-value 0.187 0.174 0.040 0.590 0.119 0.223 0.121 0.028 
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Table A.19: Speed related variables repeated measures 

Descriptive statistics Repeated measures analysis 

 Mean 
Std. 

Deviation 
  M1 M2 M3 M4 M5 M6 

Mean speed 

(m/s) 

28.246 1.759 M1 - - - - - - - 

26.967 1.905 M2 

F 19.582 

- - - - - p 0.000 

η2 0.359 

27.117 2.095 M3 

F 10.337 0.237 

- - - - p 0.003 0.629 

η2 0.228 0.007 

18.370 3.225 M4 
Z -5.232 -5.232 -5.232 

- - - 
p 0.000 0.000 0.000 

27.670 2.184 M5 
Z -1.273 -2.042 -1.430 -5.232 

- - 
p 0.203 0.041 0.153 0.000 

25.940 3.323 M6 
Z -4.069 -1.609 -1.901 -4.682 -3.645 

- 
p 0.000 0.109 0.057 0.000 0.000 

Maximum 

speed (m/s) 

35.479 3.137 M1 - - - - - - - 

33.883 2.909 M2 

F 10.984 

- - - - - p 0.002 

η2 0.239 

34.107 3.392 M3 

F 4.729 0.302 

- - - - p 0.037 0.586 

η2 0.119 0.009 

31.644 3.018 M4 

F 37.870 24.084 24.584 

- - - p 0.000 0.000 0.000 

η2 0.520 0.408 0.413 

34.134 3.234 M5 

F 3.720 0.305 0.002 31.338 

- - p 0.062 0.585 0.964 0.000 

η2 0.096 0.009 0.000 0.472 

33.747 3.924 M6 

F 6.023 0.054 0.372 18.462 0.411 

- p 0.019 0.818 0.546 0.000 0.526 

η2 0.147 0.002 0.011 0.345 0.012 

% above 
speed limit 

26.634 16.330 M1 - - - - - - - 

13.717 14.650 M2 
Z -3.931 

- - - - - 
p 0.000 

16.891 16.176 M3 
Z -3.284 -1.496 

- - - - 
p 0.001 0.135 

3.798 8.075 M4 
Z -4.783 -3.861 -4.869 

- - - 
p 0.000 0.000 0.000 

19.486 18.944 M5 
Z -2.388 -1.671 -1.053 -4.697 

- - 
p 0.017 0.095 0.293 0.000 

11.124 13.540 M6 
Z -3.915 -0.706 -2.385 -4.432 -3.243 

- 
p 0.000 0.480 0.017 0.000 0.001 
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Table A.20: Mean of positive and negative acceleration repeated measures 

Descriptive statistics Repeated measures analysis 

 Mean 
Std. 

Deviation 
  M1 M2 M3 M4 M5 M6 

Mean of 
positive 

accelerati

on (m/s2) 

0.419 0.119 M1 - - - - - - - 

0.551 0.174 M2 

F 31.988 

- - - - - p 0.000 

η2 0.478 

0.558 0.175 M3 

F 27.416 0.048 

- - - - p 0.000 0.828 

η2 0.439 0.048 

0.456 0.151 M4 
Z -1.320 -2.812 -3.566 

- - - 
p 0.187 0.005 0.000 

0.428 0.157 M5 

F 0.173 21.155 23.739 -1.053 (Z) 

- - p 0.680 0.000 0.000 0.293 

η2 0.005 0.377 0.405 - 

0.483 0.162 M6 

F 4.615 4.760 5.252 -1.602 (Z) 2.799 

- p 0.039 0.036 0.028 0.109 0.103 

η2 0.117 0.120 0.130 - 0.074 

Mean of 

negative 
accelerati

on (m/s2) 

-0.415 0.153 M1 - - - - - - - 

-0.525 0.212 M2 
Z -2.529 

- - - - - 
p 0.011 

-0.503 0.190 M3 
Z -2.561 -0.063 

- - - - 
p 0.010 0.950 

-0.416 0.129 M4 
Z -0.691 -2.561 -3.095 

- - - 
p 0.489 0.010 0.002 

-0.385 0.145 M5 

F 0.820 -1.147 (Z) -1.995 (Z) -2.388 (Z) 

- - p 0.371 0.251 0.046 0.017 

η2 0.023 - - - 

-0.489 0.246 M6 
Z -0.204 -1.760 -2.608 -1.414 

-
0.770 - 

p 0.838 0.078 0.009 0.157 0.441 

Table A. 21: Standard deviation of acceleration repeated measures 

Descriptive statistics Repeated measures analysis 
 Mean Std. Deviation   M1 M2 M3 M4 M5 M6 

Std. 
deviation of 

acceleration 

(m/s2) 

0.707 0.286 M1 - - - - - - - 

0.954 0.332 M2 

F 18.351 

- - - - - p 0.000 

η2 0.344 

0.921 0.291 M3 

F 16.841 0.412 

- - - - p 0.000 0.525 

η2 0.325 0.012 

0.682 0.219 M4 
Z -6.76 -3.912 -3.943 

- - - 
p 0.499 0.000 0.000 

0.662 0.276 M5 

F 0.530 21.072 23.871 -0.471 (Z) 

- - p 0.472 0.000 0.000 0.637 

η2 0.015 0.376 0.405 - 

0.868 0.377 M6 

F 4.437 1.645 0.711 -2.608 (Z) 9.835 

- p 0.042 0.208 0.405 0.009 0.003 

η2 0.113 0.045 0.02 - 0.219 
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Table A.22: Standard deviation of positive and negative acceleration repeated 

measures 

Descriptive statistics Repeated measures analysis 

 Mean Std. Deviation   M1 M2 M3 M4 M5 M6 

Std. Dev. of 

positive 

acceleration 

(m/s2) 

0.313 0.093 M1 - - - - - - - 

0.423 0.151 M2 

F 26.140 

- - - - - p 0.000 

η2 0.428 

0.413 0.128 M3 

F 22.624 0.116 

- - - - p 0.000 0.736 

η2 0.393 0.003 

0.334 0.090 M4 

F 1.765 13.449 15.907 

- - - p 0.193 0.001 0.000 

η2 0.048 0.278 0.312 

0.324 0.090 M5 

F 0.482 14.211 12.539 0.353 

- - p 0.492 0.001 0.001 0.556 

η2 0.014 0.289 0.264 0.010 

0.448 0.173 M6 

F 20.119 0.492 1.115 12.895 16.777 

- p 0.000 0.488 0.298 0.001 0.000 

η2 0.365 0.014 0.031 0.269 0.324 

Std. Dev. of 

negative 
acceleration 

(m/s2) 

0.736 0.409 M1 - - - - - - - 

1.048 0.477 M2 

F 11.923 

- - - - - p 0.001 

η2 0.254 

0.974 0.397 M3 

F 9.795 0.968 

- - - - p 0.004 0.332 

η2 0.219 0.027 

0.645 0.260 M4 
Z -1.241 -4.116 -3.802 

- - - 
p 0.215 0.000 0.000 

0.644 0.402 M5 

F 0.880 16.321 16.710 -0.079 (Z) 

- - p 0.355 0.000 0.000 0.937 

η2 0.025 0.318 0.323 - 

0.915 0.555 M6 

F 2.456 1.638 0.420 -2.796 (Z) 8.087 

- p 0.126 0.209 0.521 0.005 0.007 

η2 0.066 0.045 0.012 - 0.188 

Table A. 23: Lane-change frequency repeated measures 

Descriptive statistics Repeated measures analysis 
 Mean Std. Deviation   M1 M2 M3 M4 M5 M6 

Lane-

change 

frequency 

1.266 0.725 M1 - - - - - - - 

1.112 0.877 M2 
Z -0.819 

- - - - - 
p 0.413 

1.452 1.111 M3 

F 1.122 -2.282 (Z) 

- - - - p 0.297 0.022 

η2 0.031 - 

2.311 1.480 M4 
Z -3.331 -4.078 -3.456 

- - - 
p 0.001 0.000 0.001 

1.520 1.336 M5 
Z -0.880 -1.921 -0.150 -3.784 

- - 
p 0.379 0.055 0.881 0.000 

1.895 1.417 M6 
Z -2.592 -2.784 -1.335 -1.430 -1.982 

- 
p 0.010 0.005 0.182 0.153 0.047 
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Table A.24: Proportion spent on motorway lanes repeated measures 

 

  

Descriptive statistics Repeated measures analysis 

 Mean 
Std. 

Deviation 
  M1 M2 M3 M4 M5 M6 

% spent 

in the 

leftmost 
lane 

8.021 10.984 M1 - - - - - - - 

12.382 24.434 M2 
Z -0.689 

- - - - - 
p 0.491 

15.603 25.976 M3 
Z -0.832 -0.795 

- - - - 
p 0.405 0.426 

21.173 23.832 M4 
Z -3.618 -2.684 -2.433 

- - - 
p 0.000 0.007 0.015 

15.925 23.967 M5 
Z -1.450 -0.990 -0.243 -1.697 

- - 
p 0.147 0.322 0.808 0.090 

38.302 32.838 M6 
Z -4.684 -4.476 -4.160 -3.064 -4.128 

- 
p 0.000 0.000 0.000 0.002 0.000 

% spent 

in the 
middle 

lane 

49.979 23.490 M1 - - - - - - - 

32.072 24.894 M2 

F 14.890 

- - - - - p 0.000 

η2 0.298 

37.987 24.764 M3 
Z -2.388 -1.325 

- - - - 
p 0.017 0.185 

38.258 20.901 M4 

F 5.570 2.656 -0.049 (Z) 

- - - p 0.024 0.112 0.961 

η2 0.137 0.071 - 

36.559 24.524 M5 

F 8.91 0.821 -0.804 (Z) 0.105 

- - p 0.005 0.371 0.421 0.748 

η2 0.203 0.023 - 0.003 

41.944 26.078 M6 

F 2.533 3.651 -0.424 (Z) 0.61 1.197 

- p 0.120 0.064 0.671 0.440 0.281 

η2 0.067 0.094 - 0.017 0.033 

% spent 
in the 

rightmost 

lane 

41.89 27.77 M1 - - - - - - - 

55.37 32.34 M2 
Z -2.670 

- - - - - 
p 0.008 

46.25 31.60 M3 
Z -0.786 -1.916 

- - - - 
p 0.432 0.055 

40.57 23.61 M4 

F 0.061 
-2.781 

(Z) 
-1.100 (Z) 

- - - p 0.806 0.005 0.271 

η2 0.002 - - 

47.44 33.29 M5 
Z -0.710 -1.782 -0.355 -1.753 

- - 
p 0.478 0.081 0.722 0.080 

19.65 22.62 M6 
Z -3.534 -4.727 -4.217 -4.085 -4.413 

- 
p 0.000 0.000 0.000 0.000 0.000 
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Table A.25: Headway related repeated measures 

Descriptive statistics Repeated measures analysis 

 Mean Std. Deviation   M1 M2 M3 M4 M5 M6 

Mean 
time 

headway 

(s) 

3.410 1.144 M1 - - - - - - - 

2.743 0.917 M2 
Z -2.749 

- - - - - 
p 0.006 

2.393 0.650 M3 

F 19.126 -2.042 (Z) 

- - - - p 0.000 0.041 

η2 0.353 - 

4.191 2.099 M4 
Z -1.870 -3.346 -4.289 

- - - 
p 0.062 0.001 0.000 

2.524 0.700 M5 

F 15.346 -1.414 (Z) 0.638 -4.587 (Z) 

- - p 0.000 0.157 0.430 0.000 

η2 0.305 - 0.018 - 

2.865 0.909 M6 

F 4.434 -0.723 (Z) 6.198 -2.875 (Z) 3.925 

- p 0.042 0.470 0.018 0.004 0.055 

η2 0.112 - 0.150 - 0.101 

% spent 

at time 

headway 
< 1.5 

secs 

32.37 16.96 M1 - - - - - - - 

41.79 16.57 M2 

F 6.861 

- - - - - p 0.013 

η2 0.164 

44.48 13.52 M3 

F 11.752 1.247 

- - - - p 0.002 0.272 

η2 0.251 0.034 

37.61 21.39 M4 

F 1.794 1.421 4.532 

- - - p 0.189 0.241 0.040 

η2 0.049 0.039 0.115 

41.88 19.40 M5 

F 5.755 0.001 0.520 0.937 

- - p 0.022 0.979 0.476 0.340 

η2 0.141 0.000 0.015 0.026 

40.40 20.19 M6 

F 3.448 0.180 1.653 0.535 0.236 

- p 0.072 0.674 0.207 0.469 0.630 

η2 0.090 0.005 0.045 0.015 0.630 

Mean 
space 

headway 

(m) 

100.654 34.282 M1 - - - - - - - 

71.263 19.652 M2 

F 19.309 

- - - - - p 0.000 

η2 0.356 

63.369 14.585 M3 

F 32.131 4.915 

- - - - p 0.000 0.033 

η2 0.479 0.123 

87.303 45.693 M4 

F 1.798 3.503 9.070 

- - - p 0.189 0.070 0.005 

η2 0.049 0.091 0.206 

72.538 24.194 M5 
Z -3.456 -0.079 -1.602 -1.163 

- - 
p 0.001 0.937 0.109 0.245 

67.343 25.773 M6 
Z -4.258 -1.540 -0.581 -1.964 -1.430 

- 
p 0.000 0.124 0.561 0.050 0.153 
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Table A.26: Pedal depression repeated measures 

Descriptive statistics Repeated measures analysis 

 Mean 
Std. 

Deviation 
  M1 M2 M3 M4 M5 M6 

Std. 
deviation 

acceleration 

pedal 
depression 

9.861 3.358 M1 - - - - - - - 

12.039 4.171 M2 
Z -3.189 

- - - - - 
p 0.001 

12.297 5.039 M3 
Z -3.331 -0.393 

- - - - 
p 0.001 0.694 

9.096 3.702 M4 
Z -2.325 -4.116 -4.336 

- - - 
p 0.020 0.000 0.000 

10.630 3.917 M5 

F -1.430 (Z) 5.664 -2.718 (Z) -2.608 (Z) 

- - p 0.153 0.023 0.007 0.009 

η2 - 0.139 - - 

11.417 5.431 M6 
Z -1.948 -1.100 -1.932 -3.692 -1.304 

- 
p 0.051 0.271 0.053 0.000 0.192 

Std. 

deviation of 

braking 

12.795 7.902 M1 - - - - - - - 

17.623 10.188 M2 
Z -2.419 

- - - - - 
p 0.016 

16.572 9.151 M3 
Z -2.152 -0.251 

- - - - 
p 0.031 0.802 

10.989 3.463 M4 

F 1.961 -3.598 (Z) -3.425 (Z)    

p 0.170 0.000 0.001 
- - - 

η2 0.053 - - 

10.304 7.138 M5 

F 2.047 -3.425 (Z) -3.771 (Z) 0.362 

- - p 0.161 0.001 0.000 0.551 

η2 0.055 - - 0.010 

26.464 31.737 M6 
Z -2.671 -1.838 -2.152 -3.488 -3.755 

- 
p 0.008 0.066 0.031 0.000 0.000 

 

Table A.27: Heart rate repeated measures 

Descriptive statistics Repeated measures analysis 

 Mean Std. Deviation   M1 M2 M3 M4 M5 M6 

HR mean (bpm) 

82.069 18.804 M1 - - - - - - - 

81.766 17.949 M2 
Z -0.314 

- - - - - 
p 0.753 

80.345 11.831 M3 
Z -0.487 -0.016 

- - - - 
p 0.626 0.987 

77.268 11.038 M4 
Z -2.247 -1.571 -2.262 

- - - 
p 0.025 0.116 0.024 

79.815 12.594 M5 
Z -0.283 -0.644 -0.204 -2.090 

- - 
p 0.777 0.519 0.838 0.037 

82.822 16.408 M6 
Z -0.063 -0.707 -0.236 -1.995 -1.100 

- 
p 0.950 0.480 0.814 0.046 0.271 
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Table A.27: Heart rate repeated measures (continued) 

Descriptive statistics Repeated measures analysis 

 Mean Std. Deviation   M1 M2 M3 M4 M5 M6 

HR mean 

normalised 

0.013 0.542 M1 - - - - - - - 

0.02 0.589 M2 
Z -0.189 

- - - - - 
p 0.850 

-0.044 0.458 M3 
Z -0.424 -0.283 

- - - - 
p 0.671 0.777 

-0.289 0.383 M4 
Z -2.199 -1.728 -2.451 

- - - 
p 0.028 0.084 0.014 

0.034 0.66 M5 
Z -1.110 -0.613 -0.408 -2.545 

- - 
p 0.912 0.540 0.683 0.011 

0.055 0.671 M6 
Z -0.126 -0.408 -0.440 -1.901 -0.754 

- 
p 0.900 0.683 0.660 0.057 0.451 

 

Table A.28: Skin conductance – CDA repeated measures 

Descriptive statistics Repeated measures analysis 

 Mean Std. Deviation   M1 M2 M3 M4 M5 M6 

SCRs frequency 

(CDA) 

12.717 13.937 M1 - - - - - - - 

11.961 13.402 M2 
Z -1.103 

- - - - - 
p 0.270 

14.638 15.925 M3 
Z -0.864 -1.409 

- - - - 
p 0.388 0.159 

15.307 14.889 M4 
Z -1.051 -1.785 -0.157 

- - - 
p 0.293 0.074 0.875 

14.847 15.798 M5 
Z -1.462 -1.409 -0.295 -0.459 

- - 
p 0.144 0.159 0.768 0.647 

15.635 15.69 M6 
Z -1.257 -1.867 -1.048 -0.060 -0.331 

- 
p 0.209 0.062 0.295 0.952 0.741 

SCRs mean 

(CDA - μS) 

0.038 0.058 M1 - - - - - - - 

0.032 0.038 M2 
Z -0.983 

- - - - - 
p 0.326 

0.03 0.025 M3 
Z -0.204 -0.033 

- - - - 
p 0.838 0.974 

0.033 0.034 M4 
Z -0.539 -1.147 -0.063 

- - - 
p 0.590 0.252 0.950 

0.035 0.049 M5 
Z -0.692 -0.393 -0.164 -0.246 

- - 
p 0.489 0.694 0.870 0.806 

0.042 0.057 M6 
Z -1.633 -1.949 -1.425 -1.154 -2.296 

- 
p 0.103 0.051 0.154 0.248 0.022 
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Table A.28: Skin conductance – CDA repeated measures (continued) 

Descriptive statistics Repeated measures analysis 

 Mean Std. Deviation   M1 M2 M3 M4 M5 M6 

SCRs 
normalised 

mean 

(CDA) 

4.02 1.84 M1 - - - - - - - 

4.333 1.354 M2 
Z -0.419 

- - - - - 
p 0.675 

4.347 1.365 M3 
Z -0.487 -0.098 

- - - - 
p 0.626 0.922 

4.539 1.164 M4 
Z -0.727 -0.852 -0.299 

- - - 
p 0.467 0.394 0.765 

4.151 1.716 M5 
Z -0.436 -0.049 -0.131 -0.328 

- - 
p 0.663 0.961 0.896 0.743 

4.359 1.604 M6 
Z -1.017 -1.294 -1.081 -0.778 -1.188 

- 
p 0.309 0.196 0.280 0.437 0.235 

 

Table A. 29: Skin conductance – TTP repeated measures 

Descriptive statistics Repeated measures analysis 

 Mean 
Std. 

Deviation 
  M1 M2 M3 M4 M5 M6 

SCRs frequency 

(TTP) 

4.394 6.864 M1 - - - - - - - 

4.194 4.472 M2 
Z -0.213 

- - - - - 
p 0.831 

4.831 5.411 M3 
Z -0.950 -1.032 

- - - - 
p 0.342 0.302 

4.806 4.472 M4 
Z -1.671 -1.115 -0.049 

- - - 
p 0.095 0.265 0.961 

5.036 6.918 M5 
Z -1.622 -1.294 -0.246 -0.927 

- - 
p 0.105 0.196 0.806 0.354 

4.745 5.084 M6 
Z -0.999 -0.613 -0.426 -0.901 -0.131 

- 
p 0.318 0.540 0.670 0.368 0.896 

SCRs mean 

(TTP - μS) 

0.048 0.054 M1 - - - - - - - 

0.046 0.056 M2 
Z -0.999 

- - - - - 
p 0.318 

0.043 0.046 M3 
Z -0.164 -0.36 

- - - - 
p 0.870 0.719 

0.044 0.048 M4 
Z -0.131 -0.707 -0.409 

- - - 
p 0.896 0.480 0.682 

0.045 0.057 M5 
Z -0.098 0.000 -0.426 -0.110 

- - 
p 0.922 1.000 0.670 0.912 

0.056 0.066 M6 
Z -2.047 -2.137 -1.425 -2.080 -2.604 

- 
p 0.041 0.033 0.154 0.038 0.009 
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Table A.29: Skin conductance – TTP repeated measures (continued) 

Descriptive statistics Repeated measures analysis 

 Mean 
Std. 

Deviation 
  M1 M2 M3 M4 M5 M6 

SCRs normalised 

mean 
(TTP) 

4.302 1.569 M1 - - - - - - - 

4.51 1.159 M2 
Z 

-
0.770 - - - - - 

p 0.441 

4.273 1.557 M3 
Z 

-
0.115 

-
0.229 - - - - 

p 0.909 0.819 

4.689 0.895 M4 
Z 

-
0.573 

-
0.676 

-
0.147 - - - 

p 0.566 0.499 0.883 

4.296 1.578 M5 
Z 

-
0.197 

-
0.328 

-0.36 
-

0.628 - - 

p 0.844 0.743 0.719 0.530 

4.542 1.44 M6 
Z 

-
1.261 

-
1.870 

-
1.851 

-
0.999 

2.031 
- 

p 0.207 0.062 0.064 0.318 0.042 
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Table A.30: Correlation matrix of physiological responses with the motorway variables 

 hr hr_z 
cda 

sum 

cda 

sum_z 

cda 

mean_z5 

cda 

sum_z5 

ttp 

freq 

ttp 

mean 

ttp 

sum 

ttp 

sum_z 

ttp 

mean_z5 

ttp 

sum_z5 

Mean speed 
r 0.088 .146 -0.056 0.126 -0.028 -.182 0.007 0.061 -0.046 .151 -0.015 -.140 
p 0.200 0.031 0.412 0.081 0.682 0.007 0.915 0.376 0.499 0.033 0.822 0.039 

Maximum speed 
r .144 0.081 -0.074 0.049 0.103 -0.051 0.000 0.107 -0.048 0.138 0.123 -0.094 

p 0.034 0.238 0.278 0.496 0.130 0.460 0.998 0.119 0.485 0.053 0.071 0.169 

% above speed limit 
r 0.072 0.052 -0.079 0.040 .134 -0.084 0.013 0.049 -0.075 0.066 .147 -0.086 

p 0.290 0.444 0.250 0.576 0.050 0.221 0.845 0.478 0.274 0.357 0.030 0.207 

Std. deviation of 
acceleration 

r .162 0.109 -0.004 .177 0.120 0.001 -0.010 .165 0.062 .259 .159 -0.040 
p 0.017 0.109 0.952 0.014 0.078 0.989 0.882 0.015 0.368 0.000 0.020 0.556 

Total lane changed 
r 0.055 -0.035 0.059 0.005 0.077 0.112 0.097 -0.008 0.107 0.000 0.061 .138 

p 0.417 0.609 0.385 0.945 0.258 0.100 0.157 0.906 0.117 0.998 0.372 0.042 
% spent in the leftmost 

lane 

r -0.080 -0.013 0.131 0.070 0.032 0.054 .145 -0.014 .142 -0.064 -0.005 .182 

p 0.243 0.852 0.054 0.334 0.636 0.428 0.033 0.834 0.037 0.373 0.942 0.007 

% spent in the middle 
lane 

r -0.098 0.070 -0.090 0.036 -.185 -0.111 -0.094 -.135 -0.098 0.000 -.170 -0.117 
p 0.151 0.305 0.188 0.617 0.006 0.105 0.168 0.048 0.152 0.995 0.012 0.085 

% spent in the 

rightmost lane 

r .146 -0.047 -0.039 -0.090 0.121 0.043 -0.048 0.122 -0.042 0.054 .141 -0.061 

p 0.032 0.491 0.568 0.215 0.075 0.527 0.482 0.075 0.538 0.447 0.039 0.375 
Mean of positive 

acceleration 

r 0.085 0.016 -0.022 .161 0.132 -0.010 -0.034 0.123 0.039 .270 .165 -0.059 

p 0.215 0.815 0.745 0.025 0.053 0.886 0.615 0.072 0.565 0.000 0.015 0.386 

Mean of negative 
acceleration 

r -.213 -0.092 0.003 -.193 -0.128 0.005 0.010 -.169 -0.066 -.274 -.150 0.044 
p 0.002 0.177 0.961 0.007 0.061 0.945 0.883 0.013 0.336 0.000 0.027 0.523 

Std. Dev. of positive 

acceleration 
r 0.057 0.065 0.059 0.205 0.131 0.033 -0.008 0.133 0.081 0.27 0.184 -0.016 

 p 0.402 0.345 0.389 0.004 0.054 0.634 0.912 0.05 0.233 0.000 0.007 0.814 

Std. Dev. of 

negative 

acceleration 

r 0.179 0.13 -0.023 0.15 0.096 -0.007 -0.008 0.148 0.041 0.222 0.132 -0.037 

 p 0.008 0.056 0.736 0.037 0.162 0.919 0.908 0.029 0.553 0.002 0.053 0.586 

Std. deviation 

acceleration pedal 

depression 

r 0.054 0.051 -0.081 0.198 0.136 -0.071 -0.095 0.057 -0.048 0.271 0.167 -0.143 

 p 0.431 0.453 0.235 0.006 0.046 0.297 0.166 0.404 0.482 0.000 0.014 0.035 

Std. deviation of 

braking 
r 0.109 0.155 -0.038 0.121 0.082 0.000 -0.03 0.053 -0.009 0.165 0.132 -0.049 

 p 0.111 0.023 0.582 0.094 0.228 0.995 0.663 0.435 0.891 0.021 0.053 0.478 
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APPENDIX Β: APPENDIX TO CHAPTER 4 

 

Β.1 Base car-following models (no sociodemographic variables) 

equations 

Β.1.1 No events model 

 

Acceleration regime 

an
cf,acc(t) = 0.193

1

ΔTn(t)0.400
 |ΔVn(t - τn)|

0.707
 + εn

cf,acc(t) 

 εn
cf,acc(t)~N(0, 0.4472) 

 

Deceleration regime 

an
cf,dec(t) = -0.219

1

ΔTn(t)
1.192

 |ΔVn(t - τn)|
0.786

 + εn
cf,acc(t) 

 εn
cf,dec(t)~N(0, 0.7702) 

 

 

Β.1.2 Aggressive drivers model 

 

Acceleration regime 

an
cf,acc(t) = 0.139

1

ΔTn(t)0.063
 |ΔVn(t - τn)|

0.818
 + εn

cf,acc(t) 

 εn
cf,acc(t)~N(0, 0.6342) 

 

Deceleration regime 

an
cf,dec(t) = -0.174

1

ΔTn(t)0.857
 |ΔVn(t - τn)|

1.009
 + εn

cf,acc(t) 

 εn
cf,dec(t)~N(0, 0.9852) 
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Β.1.3 Slow traffic model 

 

Acceleration regime 

an
cf,acc(t) = 0.347

1

ΔTn(t)0.275
 |ΔVn(t - τn)|

0.674
 + εn

cf,acc(t) 

 εn
cf,acc(t)~N(0, 0.3372) 

 

Deceleration regime 

an
cf,dec(t) = -0.255

1

ΔTn(t)0.486
 |ΔVn(t - τn)|

0.709
 + εn

cf,acc(t) 

 εn
cf,dec(t)~N(0, 0.6942) 

 

Β.2 Car-following models with sociodemographic variables (no 

latent stress variable) 

Β.2.1 No events model 

 

Acceleration regime 

an
cf,acc(t) = 0.190

1

ΔTn(t)0.389
 |ΔVn(t -

 τn)|
0.942-0.192×Female-0.008×Age+0.176×Frequency

 + εn
cf,acc(t) 

 εn
cf,acc(t)~N(0, 0.4472) 

 

Deceleration regime 

an
cf,dec(t) = -0.100

1

ΔTn(t)1.801
 |ΔVn(t -

 τn)|
1.695+0.503×Female-1.050×Accident-0.387×Frequency

 + εn
cf,acc(t) 

 εn
cf,dec(t)~N(0, 0.7272) 
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Β.2.2 Aggressive drivers model 

 

Acceleration regime 

an
cf,acc(t) = 0.139

1

ΔTn(t)0.055
 |ΔVn(t - τn)|

0.815
 + εn

cf,acc(t) 

 εn
cf,acc(t)~N(0, 0.6342) 

 

Deceleration regime 

an
cf,dec(t) = -0.163

1

ΔTn(t)0.907
 |ΔVn(t - τn)|

0.950+0.289×Female
 + εn

cf,acc(t) 

 εn
cf,dec(t)~N(0, 0.9792) 

 

Β.2.3 Slow traffic model 

 

Acceleration regime 

an
cf,acc(t) = 0.332

1

ΔTn(t)0.223
 |ΔVn(t - τn)|

1.449-0.436×Female-0.012×Age
 + εn

cf,acc(t) 

 εn
cf,acc(t)~N(0, 0.3372) 

 

Deceleration regime 

an
cf,dec(t) = -0.250

1

ΔTn(t)0.504
 |ΔVn(t - τn)|

0.941-0.152×Accident-0.203×Frequency
 + εn

cf,acc(t) 

 εn
cf,dec(t)~N(0, 0.6862) 
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Β.3 Car-following models with latent stress variable (no 

sociodemographic variables) 

Β.3.1 No events model 

Stressn(t)= -0.041×ΔTn + η
n
(t) 

η
n
(t)~N(0, 12) 

 

Acceleration regime 

an
cf,acc(t) = [0.190

1

ΔTn(t)0.409
+0.018×Stressn(t)]  |ΔVn(t - τn)|

0.731
 + εn

cf,acc(t) 

 εn
cf,acc(t)~N(0, 0.4462) 

 

Deceleration regime 

an
cf,dec(t) = -0.219

1

ΔTn(t)1.190
 |ΔVn(t - τn)|

0.787
 + εn

cf,acc(t) 

 εn
cf,dec(t)~N(0, 0.7702) 

 

Β.3.2 Aggressive drivers model 

 

Stressn(t)= -0.036×ΔTn + η
n
(t) 

η
n
(t)~N(0, 12) 

 

Acceleration regime 

an
cf,acc(t) = [0.137

1

ΔTn(t)0.042
+0.023×Stressn(t)]  |ΔVn(t - τn)|

0.829
 + εn

cf,acc(t) 

 εn
cf,acc(t)~N(0, 0.6332) 

 

Deceleration regime 

an
cf,dec(t) =-0.173

1

ΔTn(t)0.856
 |ΔVn(t - τn)|

1.011
 + εn

cf,acc(t) 

 εn
cf,dec(t)~N(0, 0.9852) 
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Β.4 Car-following models with both sociodemographic and latent 

stress variables 

Β.4.1 No events model 

Stressn(t)= -0.041×ΔTn + η
n
(t) 

η
n
(t)~N(0, 12) 

 

Acceleration regime 

an
cf,acc(t)= [0.188

1

ΔTn(t)
0.394

+0.016×Stressn(t)] |ΔVn(t-

τn)|
0.956-0.188×Female-0.008×Age+0.171×Frequency

+εn
cf,acc(t) 

 εn
cf,acc(t)~N(0, 0.4462) 

 

Deceleration regime 

an
cf,dec(t) = -0.099

1

ΔTn(t)
1.800

 |ΔVn(t-τn)|
1.696+0.502×Female-1.050×Accident-0.387×Frequency

+εn
cf,acc(t) 

 εn
cf,dec(t)~N(0, 0.7272) 

 

Β.4.2 Aggressive drivers model 

Stressn(t)= -0.036×ΔTn + η
n
(t) 

η
n
(t)~N(0, 12) 

 

Acceleration regime 

an
cf,acc(t) = [0.137

1

ΔTn(t)0.033
+0.023×Stressn(t)]  |ΔVn(t - τn)|

0.827
 + εn

cf,acc(t) 

 εn
cf,acc(t)~N(0, 0.6332) 

 

Deceleration regime 

an
cf,dec(t) =-0.163

1

ΔTn(t)0.907
 |ΔVn(t - τn)|

0.955+0.290×Female
 + εn

cf,acc(t) 

 εn
cf,dec(t)~N(0, 0.9792)  
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B.5 Base “No events” model sensitivity analysis considering 

sociodemographic characteristics 

 

 

Figure B.1 Gender sensitivity analysis 

 

 

Figure B.2 Age sensitivity analysis 
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Figure B.3 Driving frequency sensitivity analysis 

 

 

 

Figure B.4 Accident involvement sensitivity analysis 
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B.6 Base “Aggressive drivers” model sensitivity analysis considering 

sociodemographic characteristics 

 

 

Figure B.5 Gender sensitivity analysis 

 

Β.7 Base “Slow traffic” model sensitivity analysis considering 

sociodemographic characteristics 

 

 

Figure B.6 Gender sensitivity analysis 
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Figure B.7 Age sensitivity analysis 

 

 

Figure B.8 Driving frequency sensitivity analysis 
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Figure B.9 Accident involvement sensitivity analysis 

 

Β.8 Latent variable “No events” model sensitivity analysis 

considering sociodemographic characteristics  

 

 

Figure B.10 Time headway sensitivity analysis 
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Figure B.11 Relative speed sensitivity analysis 

 

Β.9 Latent variable “Aggressive drivers” model sensitivity analysis 

considering sociodemographic characteristics 

 

 

Figure B.12 Time headway sensitivity analysis 

 



Appendix Β: Appendix to Chapter 4 

248 

 

 

Figure B.13 Relative speed sensitivity analysis 


