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Abstract 

The declarative class of computer languages consists mainly of two paradigms 
- the logic and the functional. Much research has been devoted in recent years 
to the integration of the two with the aim of securing the advantages of both 
without retaining their disadvantages. To date this research has, arguably, been 
less fruitful than initially hoped. A large number of composite functional/logical 
languages have been proposed but have generally been marred by the lack of a 
firm, cohesive, mathematical basis. More recently new declarative paradigms, 
equational and constraint languages, have been advocated. These however do 
not fully encompass those features we perceive as being central to functional and 
logic languages. The crucial functional features are higher-order definitions, static 
polymorphic typing, applicative expressions and laziness. The crucial logic fea­
tures are ability to reason about both functional and non-functional relationships 
and to handle computations involving search. 

This thesis advocates a new declarative paradigm which lies midway between 
functional and logic languages - the so-called relational paradigm. In a rela­
tionallanguage program and data alike are denoted by relations. All expressions 
are relations constructed from simpler expressions using operators which form 
a relational algebra. The impetus for use of relations in a declarative language 
comes from observations concerning their connection to functional and logic pro­
gramming. Relations are mathematically more general than functions modelling 
non-functional as well as functional relationships. They also form the basis of 
many logic languages, for example, Prolog. 

This thesis proposes a new relational language based entirely on binary re­
lations, named Drusilla. We demonstrate the functional and logic aspects of 
Drusilla. It retains the higher-order objects and polymorphism found in mod­
ern functional languages but handles non-determinism and models relationships 
between objects in the manner of a logic language with notion of algorithm be­
ing composed of logic and control elements. Different programming styles -
functional, logic and relational- are illustrated. 

However, such expressive power does not come for free; it has associated with 
it a high cost of implementation. Two main techniques are used in the necessarily 
complex language interpreter. A type inference system checks programs to ensure 
they are meaningful and simultaneously performs automatic representation selec­
tion for relations. A symbolic manipulation system transforms programs to improve. 
efficiency of expressions and to increase the number of possible representations 
for relations while preserving program meaning. 

13 



Chapter 1 

Introduction 

Children starve while boots costing many thousands of dollars leave their 
mark upon the surface of the moon Watchmen 

1.1 Merging Functional and Logic Programming 

The functional and logic programming paradigms have both found their niche in 
computer science. In many respects they are very similar - both are declarative, 
have a firm mathematical basis, and permit problems to be reasoned about at 
a very high-Ievel- but certain significant differences exist between them, their 
semantics are quite incompatible, and they offer expressive power in contrasting 
areas. This has provided much impetus to research into combining aspects of both 
paradigms into a single framework. The aim of this is to secure the advantages 
of both in a single language without retaining any of the disadvantages. Such a 
language, if it could be created, would be extremely expressive. Unfortunately this 
has proved to be a difficult problem - as Hudak [43] observes, many proposals 
have been made but none are completely satisfactory, especially in the context of 
higher-order functions and lazy evaluation. 

This thesis advocates a new declarative paradigm, relational programming. 
Although this paradigm is significant in its own right, this thesis aims to show 
that it may be regarded as a generalisation of functional programming that en­
compasses aspects of logic programming. 

1.2 Functional Programming 

Bird and Wadler [9] state that programming in a functional language consists of 
building definitions and using the computer to evaluate expressions. The primary 
role of a programmer is to construct a function to solve a given problem. Each 
function definition gives a name to an expression that is built from function ap­
plications. The output of a functional program is a pure mathematical function 
of its inputs. Functional programs use variables to denote values in the math­
ematical sense as opposed to the conventional procedural programming sense 
where variables denote storage locations containing different values at different 

14 
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times. The focus is on describing data values by expressions. Examples of modern 
functional languages are I...M:L, Miranda 1 and Haskell. 

Some of the recognised good points of functional languages are: 

Higher-order functions give good scope for software reuse. 

Lazy evaluation allows infinite data structures to be handled. 

Static polymorphic type inference detects many program errors at compile time. 

Applicative expression construction naturally controls program flow. Data val-
ues are communicated between definitions by function application. 

Some of the bad points are: 

Non-functional relationships are difficult to express. 

Non-determinism arid search based computations are poorly handled. 

Functions are directional - they can only be used to map arguments to results. 

1.3 Logic Programming 

Hogger [42] states that a logic program consists of sentences expressing know­
ledge relevant to the problem that the program is intended to solve. The sentences 
are logical assertions describing relationships between entities. It is the task of 
the programmer to formulate these sentences about the problem domain. The 
programmer can then ask questions about this problem and the computer can 
automatically derive answers by reasoning about the assertions. Reasoning is 
achieved by manipulating these sentences using logical inference. The most com­
mon example of a logic language is Prolog. Some of the main good points of logic 
languages are: 

Predicates (relations) allow both functional and non-functional relationships 
between entities to be easily expressed. 

Non-determinism and search based computation is naturally controlled. 

Predicates are polymodal - input and output terms are not predetermined. 

Some of the failings of logic languages are: 

Predicates must be first-order because unification, which is used as the para­
meter passing mechanism, requires equality to be defined for all terms. 

Program control flow is difficult to handle. 

No applicative expression construction -logical variables are needed to com­
municate data values between terms. 

1 Miranda is a trademark of Research Software 
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1.4 Relational Programming 

The term relational programming is often used synonymously with logic pro­
gramming. However, the context in which this thesis uses it is quite different. 

Relational programming is similar to functional programming - it consists 
of building definitions and using the computer to evaluate expressions. The 
primary role of a programmer is to construct a relation to solve a given problem. 
Each relation definition gives a name to an expression that is built from function 
applications where each function is one of a fixed set of operators that forms a 
relational algebra. A relational program is a pure mathematical relation that relates 
inputs to outputs. However, relational programming should be a generalisation 
of functional programming since mathematically relations are generalisations of 
functions. 

Relational programming is also similar to logic programming - each relation 
describes some relationship between entities and each relation definition forms 
a sentence expressing knowledge relevant to the problem that the program is 
intended to solve. The programmer formulates these sentences about the problem 
domain, then asks questions about the problem and the computer automatically 
derives answers by reasoning about the assertions. 

This thesis is an exploration of the feasibility of relational programming as a 
new declarative paradigm and attempts to answer two main questions: 

1. Can relational programming be implemented in its full generality? 

2. To what extent does a relational language merge aspects of functional and 
logic programming into a single, unified framework? 

The main results of the research are that a relational language can be imple­
mented and does indeed combine aspects of functional and logic programming. 
However the implementation requires computationally expensive static analysis, 
and power of expression in a fully relational language is limited by the absence 
of application for functional relations and data structure constructor functions. 

1.5 Structure of Thesis 

Chapter 2 reviews previous attempts to merge functional and logic programming 
and the use of relations in other languages. This chapter may be read in 
isolation - it justifies the direction taken in the thesis. 

Chapter 3 introduces a new relational programming language named Drusilla. 
A typed relational calculus is formulated as a mathematical model for this 
language and used to define the relational operators that are primitive to 
Drusilla. This chapter can be read on its own, but it does refer to material in 
chapter 2. 

Chapter 4 describes possible representations for relations and an algorithm, based 
on Milner type inference, that automatically infers relation representations. 
This algorithm forms the heart of the Drusilla implementation. 
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Chapter 5 explains how algebraic manipulation can be used to give representa­
tions to those expressions that typed representation inference cannot rep­
resent. Chapter 5 should be read after chapters 3 and 4. 

Chapter 6 describes the implementation of Drusilla explaining how the program 
analysis and manipulation techniques described in chapters 4 and 5 interact 
and how expressions are evaluated. 

Chapter 7 evaluates the success of relational programming as embodied in Drusilla. 
The extent to which it merges functional and logic programming is ex­
amined. It is essential to read chapter 3 before this chapter, and it is benefi­
cial to have read chapters 4,5 and 6 if the implementation evaluation is to 
be appreciated. 

Chapter 8 draws conclusions about the research work described in the thesis. 



Chapter 2 

Related Work 

2.1 Introduction 

This chapter discusses language development work that is related to relational 
programming. Section 2.2 surveys the approaches previously taken to to mer­
ging functional and logic programming. Section 2.3 assesses the relevance of 
the relational calculus and algebra based languages used for querying relational 
databases. Section 2.4 discusses the use of relations in programming languages. 
Section 2.5 ties together the literature and considers the direction to be taken in 
the development of relational programming. 

2.2 Merging Functional and Logic Programming 

Many attempts have been made to merge functional and logic programming 
and numerous new languages proposed. DeGroot and Lindstrom [31] give a 
comprehensive review. This survey groups the approaches into a number of 
categories. 

2.2.1 Dual Interpreters 

This method juxtaposes a functional language interpreter and a logic language 
interpreter. Each interpreter is capable of invoking the other. This allows part 
of a program to be written in a functional language and part written in a logic 
language. 

LOGLISP, developed by Robinson [87] in the late 1970' s, was the first approach 
to integration. LOGUSP is based on the idea of implementing Kowalski's logic 
programming within Lisp. 

The University of Salford LisplProlog system [4] takes a similar approach. 
The motivation behind this system is the belief that Prolog is best implemented 
in conjunction with a more conventionallanguage. Lisp is regarded as a more 
natural mate than any imperative language. 

The main problem with these systems is that they are not really unified - fairly 
complex mechanisms must be defined to interface the two language components. 

18 
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These languages simply give the sum of the functional and logic parts. The aim 
of integration is to produce a language that is more than the sum of the parts. 

2.2.2 Symmetric Functional and Logic Combinations 

This approach combines functional and logic components into a single framework 
to avoid having two separate languages and a necessarily complex semantic 
interface between them. 

APPLOG [24] integrates Prolog and Lisp directly, extending Prolog to embrace 
applicative expressions. This allows ideas to be expressed in either an applicative 
or logical style. Cohen claims the result is a powerful language with features such 
as function application, logical inference and pattern directed invocation. 

RF-Maple [115] is a union of R-Maple (a concurrent logic language which 
uses explidt quantifiers) and F-Maple (a functional language). Voda claims that 
quantifiers remove the need for the Prolog cut construct. RF-Maple tries to strike 
a balance between control over program execution and program meaning -
programs being, in theory, formulas of predicate calculus. Logic programs in 
R-Maple are based on the generate and test paradigm of problem solving - a 
program typically having the form: 

find x in { G ( I x) ; T ( x ) } 

This has the declarative reading: 

3x { G(x) & T(x) } 

find is a quantifier, G ( I x) is the generator and T (x) is the test. 
RELFUN [10] integrates functions and relations at the level of their defini­

tions through recursion equations and Horn clauses. All RELFUN definitions 
are generalised Horn clauses (facts and rules) called valued clauses. These allow 
arbitrary terms, not only goals, as the premises of rules assigning a value to each 
resolution of a goal with a clause. For relation definitions, valued clauses behave 
as logic language definitions except that on success they return the value true 
in addition to binding possible request variables; on fail they yield the value 
unknown. If used for function definitions valued clauses behave similarly to 
directed conditional equations or conditional term rewriting rules. The difference 
between functions and relations is that the value returned from a function can 
be an arbitrary term, not just a truth value. Functions, like relations, may bind 
request variables and evaluate non-deterministically. 

The designers of LEAF [6] (Logic, Equations, And Functions) argue that se­
mantic compatibility should make the integration of functional and logic lan­
guages conceptually simpler. Semantic compatibility requires the two languages 
to operate on the same data and to share both the basic control mechanism (rewrit­
ing) and the basic parameter passing and return mechanism (pattern matching 
or unification). The logic component combines Horn clause logic and equational 
theories with constructor functions. The functional component is essentially the 
same but relations are changed to tuple-valued functions with the addition of 
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mode declarations and some syntactic conditions which guarantee determinancy. 
Component integration is achieved by allowing mutual invocation. 

DIALOG [111] facilitates the construction of interactive theorem proving sys­
tems in the medium of Lisp. The functional component allows the user to enter 
functional definitions in the modern pattern matching style. The logic program­
ming component uses many sorted logic. Interplay between the functional and 
logic parts is achieved by allowing variables in the logic component to be instan­
tiated to identifiers that represent functions defined in the functional component. 
Use of such a variable causes the function it represents to be called. 

Unifonn [54], a language based upon augmented unification, is an attempt 
to combine features of Lisp, actor languages and logic languages into a single 
framework. All Uniform programs are an extension of the unification process. 
The language works in a continual read, unify, print loop. The user types a set of 
assertions and then types in expressions which are unified with those assertions. 
Unification is augmented - two expressions unify if they unify syntactically or if 
their equivalence can be deduced from assertions stating what is equal to what. As 
a result of this the same program may be used as a function, an inverse function, 
a predicate, a pattern or a generator. However, Uniform, has so little control that 
it is often forced into combinatorial searches. 

These languages have no clear underlying mathematical model and their sep­
arate language components require a complex interface. As a result their se­
mantics are more complex than those of a conventional functional or logic lan­
guage. 

2.2.3 Extensions to Functional Programming 

As the problems of juxtaposing two different interpreters were realised much 
research was focused on extending functional languages with various constructs 
designed to incorporate powers associated with logic languages - features like 
logical variables, unification, non-determinism and logical inference. 

Darlington [27] proposes an extension of the set abstraction (or list comprehen­
sion) construct found in many functional programming languages. This extension 
involves removing the requirement to base every abstraction on a predefined set 
and moving to absolute set abstraction where the members of the set are defined 
implicitly by a set of conditions. The conditions are equations involving functional 
expressions. For example: 

split 1 -+ {11,12 I append 11 12 = I} . 

Here 11 and 12 act as logical variables. The aim of this extension is to improve 
the handling of non-determinism in functional languages. 

The presence of unification in logic languages gives certain expressive power 
not possessed by functional languages. For this reason it is included in the 
language HASL [2] (a descendent of SASL) in the form of a new expression which 
Abramson calls a one-way unification based conditional binding. The limitation of 
one way unification is such that in 
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. A {- B 

where { - is the left crossbow operator, only A may contain variables to be instan­
tiated. This operator is embedded in the expression 

A {- B => C ; D 

which means unify B with A and if unification succeeds, the value of the expression 
is the value of C with any of the variables of A occurring in c replaced by the 
bindings established by unification. Otherwise, if the unification fails, the value of 
the expression is the value of D totally unaffected by any of the bindings involved 
in the failed unification. Although this new expression form adds unification 
to a functional language it does not appear to give any significant increase in 
expressive power. 

Qute [95] uses unification, rather than pattern matching, as its parameter 
passing and variable binding mechanism. By virtue of unification, Qute can 
handle incomplete data structures as a logic language might. Functions are re­
garded as first class citizens - they can be passed as arguments to other functions 
or returned as values of expressions. This suggests that higher-order unification 
may have to take place which is known to be undecidable. 

Fresh [103] is akin to Qute; it is a higher-order functional language that in­
corporates logic language features: unification, non-ground data structures, non­
determinism and negation-as-failure. Logical variables are included in the lan­
guage as first-class data structures - they can be used to partially define data 
structures. Non-determinism is introduced by a construct called disjunction which 
allows mUltirle results to be returned from an expression. The results of a dis­
junction, e f, are the results of e followed by the results of f. Orthogonal to 
this are two constructs for the elimination of multiple results. Horn clauses and 
predicates can be expressed in Fresh. Predicates become functions that either fail 
or yield the atom true as a result. Such functions have precisely the same se­
mantics as the the corresponding Prolog predica tes. Fresh deals with the problem 
of higher-order unification by hiding functions behind names called 'designators'. 
By treating designators like atoms unification can cover all objects. 

LMLl [12] is perhaps the best attempt to date to merge functional and logic 
programming. This is like any typical modern functional programming language, 
but its distinctive feature is the presence of a data type of theories, whose objects 
represent logic programs. This amalgamates into a single framework the express­
ive power of both the functional and logic paradigms. These theories are ordinary 
data values which can be manipulated by suitable operators. They are denoted as 
collections of clauses that are defined with reference to the same data types that 
functions manipulate. Clauses are of the form: 

A : - Bt, ... ,Bn 

Here A is an atom p(tt, ... ,tn) where p is a predicate name and ti are terms. 
Each Bi is either a literal or a universal or existential quantification over a con­
junction of literals. A literal is a positive atom q(t}, ... ,tn) or a negative atom 
-q(tb ... ,tn). 

1 LML is an acronym for Logical Meta Language and should not be confused with Lazy ML 
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Rather than using negation-as-failure as most logic languages do, LML defines 
negative information using intensional negation. Here the negation connective 
(-) applied to an atom p (t) is viewed as a particular kind of positive atom with 
the special predicate name -po The clauses defining -p can be systematically 
derived from the clauses defining its counterpart p. 

The operators on theories can be used to query them, collect their answers 
and compose them. A set mechanism is used to get results from theories. For 
example, using the theory Peano: 

val Peano = ( plus (zero,x,x). 
plus (succ(x) ,y,succ(z» .­
plus (x,y,z). ) 

a query of the form: 

{(x,y) I plus (x,y,3) wrt Peano} 

yields 

(0,3), (1,2), (2,1), (3,0)} 

The intensional operators are union and intersection. 

P union Q is an expression that denotes the theory obtained by putting the 
clauses of theories P and Q together. 

P intersection Q is obtained in the following way: 

if P(h, ... ,tn ) : - Body! is a clause of P 
P(tt, ... ,tn ) : - Body2 is a clause of Q 
o is the most general unifier of (t 17 ... ,tn) and (Ul' ... ,un) 

then P(tl, ... , tn ) : - Body!, Body20 is a clause of P intersection Q 

The union and intersection operators provide higher-order operations over 
logical relationships. 

The theory data type of lML provides a clean extension to functional program­
ming and introduces a mechanism that gives the power of expression normally 
associated with a logic language. However, the logic theories can only be used 
for computation in the manner of set-valued functions in set abstractions. 

Extending functional languages with new constructs that increase expressive 
power intuitively appears to be a good idea. However, the extensions are only 
successful if they do not conflict with the underlying mathematical model- the 
A - calculus - and do not complicate the semantics. Pattern matching is used 
as the parameter passing mechanism in conventional functional languages and is 
derived from the beta-rule of the ). - calculus. Unification is a generalisation of 
pattern matching and hence of this rule. This implies a change in the mathematical 
model and semantics. It also restricts a language making it first-order unless 
function names are used to provide syntactic equality for functions as in Fresh. 
The introduction of non-determinism by permitting multiple results to be returned 
from expressions also conflicts with the). - calculus since it allows introduction 
of non-functional definitions. 
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2.2.4 Extensions to Logic Languages 

One alternative to extending a functional language with logic features is to ex­
tend a logic language with functional features. The approaches discussed here 
incorporate functions, functional notation, strong typing and lazy evaluation into 
logic programming. 

Prolog with rewrite rules is suggested by Newton [79]. Functional notation 
is added to Prolog in the form of a new database rule which allows the user to 
specify conditional rewrite rules of the form: 

a=>b:-c 

This clause states: if a term unifies with a then it can be rewritten to b if the Prolog 
goal(s) c are true. Such rules are allowed to depend on Prolog clauses in order to 
permit the user to switch back and forth between functional and relational clauses. 
This extension of Prolog is designed to be a conservative one. The meaning of 
Prolog programs is preserved. It merely adds a primitive form of functional 
notation for term rewriting. 

Prolog with equality is advocated by Kornfield [57] - an extension of Prolog 
that allows the inclusion of assertions about equality. When an attempt is made 
to unify two terms that do not unify syntactically an equality theorem of the 
form equal (s , t) may be used to attempt to prove the two terms equal and 
hence allow them to unify. Besides improving the power of Prolog such equality 
theorems can be used to augment Prolog with functional notation. This allows 
composition of functions without the need to introduce temporary variables to 
glue successive relations together. 

FUNLOG [108] allows executable functions to be used in Horn clauses and 
reduced by need. A FUNLOG program consists of a set of equations and a set of 
Horn clauses. The equations act as term rewriting rules. Each Horn clause is of 
the form: 

where a predicate Bi in the clause body can be of the form M ::: E N where M, N 

are terms and = E means E-unification (Le. unification using equational theories). 
Parameter passing in Horn clauses is by unification. If two terms do not unify 

syntactically thenE-unification is invoked. The equations are applied to the terms 
as reduction rules in an attempt to make them unify. This will only terminate if 
the equations defining the functions are noetherian and confluent. This use of 
unification appears to complicate the semantics of the language. 

Eqlog [37] unifies Horn clause logic programming with (equality based) first­
order functional programming. It is based on the smallest logic containing these 
- Horn clause logic with equality. Both functions and predicates are allowed. 
Functions are computed by reduction and queries to predicates are computed in 
a Prolog-like fashion with unification and backtracking. According to Goguen, 
Eqlog extends the logic programming paradigm without sacrificing logical rigour. 
Besides functional programming it provides strong typing, user definable abstract 
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types and generic modules. Eqlog appears to be very large and complex and as 
far as the author knows has never been implemented. 

TABLOG [70,71] is another language based on first-order predicate logic with 
equality. Rather than having resolution as its proof system it is based on the 
Manna-Waldinger [72] deductive tableau proof system. This is a generalisation of 
the resolution rule of inference to non-clausal logic. This generalisation, however, 
sacrifices completeness. A TABLOG program is a list of assertions in quantifier 
free first-order logic with equality that allows a mixing of logical and functional 
styles of programming. Two example definitions for deletion of an element from 
a list are: 

delete (x, []) = [] 
delete (x,y:u) = (if x = y then 

else 

delete (x,x:u) = delete (x,u). 

delete (x,u) 
y : delete (x,u». 

x # y -+ delete (x,y:u) = y : delete (x,u). 

The use of unification as a parameter passing mechanism makes TABLOG inher­
ently first-order. 

The conservative approaches of Newton and Kornfield add only a little func­
tional notation to logic programming and as such give a limited increase in ex­
pressive power. The more ambitious approaches of Goguen and Malachi are 
more credible from the perspective of merging functional and logic paradigms. 
However, both Eqlog and Tablog are very large and complex and inherently first­
order. The underlying theorem proving engine of Tablog lacks completeness - a 
problem that results from the generalisation of logic programming to non-clausal 
logic. This means it is possible to write Tablog programs that will not execute. 

2.2.5 Alternative Declarative Paradigms 

Researchers have tried to merge functional and logic programming via use of 
new, alternative, declarative language paradigms. The idea behind this is that 
functional and logic programming may be seen as two separate aspects of a 
different paradigm. 

Equational Languages 

Equational programming languages were first presented by Hoffman and O'Donnell 
[41]. Equations can be used to program all the computable functions and provide 
a convenient notation for programming. Expressions in an equationallanguage, 
as in a functional language, can be evaluated by reduction. However, reduction 
can only be guaranteed to lead to a normal form if the equations are confluent 
and noetherian. 

Dershowitz and Plaisted [32] advocate condition directed equations. For 
functional programming equations are used as pattern directed rewrite rules. 
Each returns as output a simplified term equal to its given input term. Given 
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an input expression rewrite rules may be applied in any order. If a subterm 
of the given expression pattern matches the left hand side of an equation then 
that subterm may be replaced by the right hand side of that equation. For logic 
programming, rules are used to solve goals by a process called narrowing. If 
the left hand side of a rule unifies with any subterm of a goal, then the goal is 
narrowed by applying the narrowing substitution to the goal and then applying 
the rule to rewrite the subterm. 

Unicorn [5] introduces a language mechanism called constraining-unification. 
Given a particular input expression and a set of axioms, constraining unification 
produces a set of transformation constraints that any allowable transformation of 
the input expression must satisfy. Each axiom is viewed as producing a constraint 
on the operations rather than on the variables used in the axiom. For example the 
axiom 

centigrade (X) = plus (32,times (9,divide (X,S») 

states the desired relationship between quantities of centigrade and quantities 
of f ahrenhe i t. It can be used as a rewrite rule for converting from centigrade to 
fahrenheit or to convert from fahrenheit to centigrade. Constraining-unification is 
a generalisation of the mechanisms used in logic and rewrite rule programming. 
Equations here provide functional style rewrite rules. They must be first-order 
since constraining unification may be applied. Constraint unification gives a 
logic programming mechanism for solving equations but no rule of inference is 
involved. 

Jayaramann and Silbermann [51] propose rewrite rules and equations as the 
unifying language constructs for first-order functional and Horn clause logic 
programming. A program in this framework is a set of rewrite rules and equations 
that need to be solved. The rewrite rules are an extension of those found in non­
canonical term rewriting systems in that they permit conditions, expressed as a 
set of equations having logical variables, on the right hand side of a rule. The 
operational semantics are unified by outermost reduction, as used in functional 
languages, and object refinement, which solves an equation by progressively 
reducing its two expressions and by refining objects bound to its logical variables. 
This contrasts with the approaches that juxtapose functions and predicate clauses 
resulting in two radically different programming styles. Rewrite rules can be 
used to express functions directly and, by extending them with conditions, to 
express Horn logic relations. These are identical to the conditional rewrite rules 
advocated by Dershowitz [32]. 

Constraint Functional Programming 

Darlington's idea of absolute set abstraction has recently been developed into 
a new paradigm called constraint functional programming (CFP) [28]. Here 
constraints are associated with function definitions. Ina CFP system functional 
programming is achieved by evaluating expressions on the computational do­
mains. At the same time logic programming is achieved by solving constraints 
over these domains. A constraint is a declarative statement of the relationships 
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between objects in the domain, and is also a computational device enforcing these 
relationships. Thus functional and logic programming are integrated with a uni­
form semantic base. The satisfiability of constraints can be computed by some 
built-in solver together with a general goal reduction procedure. The express­
ive power of general logical inference and non-deterministic computation comes 
from the integrated system with constraint solving. For example, a CFP function 
for generating all the permutations of a list: 

permu @ [a] -> set [a] 
permu [] - > {[]} 
permu (a:1) -> {u:: (a:v) with U,v I u: :vE permu 1} 

2.2.6 Comparison of the Integration Approaches 

The dual interpreter~ approach discussed in section 2.2.1 does not integrate the 
aspects of functional and logic programming into a single language. Rather two 
separate languages with some communicating interface is required. 

The combining of functional and logic features into a single language, as , 
discussed in section 2.2.2, presents similar problems. Despite the features being in 
the same language some communication is required because different evaluation 
mechanisms are used for different parts of a program. There is a direct conflict of 
semantics between the logic and functional parts. 

The approaches extending functional or logic programming discussed in sec­
tion 2.2.3 and section 2.2.4 appear more sensible. However, finding an extension 
that is simultaneously powerful and implementable is difficult. Some of the 
suggested languages are very large and complex. Also changing the parameter 
passing mechanism in functional languages from pattern matching to unification 
eliminates the possibility of higher-order definitions. 

The idea of a new declarative paradigm, one which naturally incorporates as­
pects of functional and logic programming would seem preferable. The paradigms 
discussed in section 2.2.5 however do not match the criteria advocated for a suc­
cessful merge in chapter 1. 

2.3 Relational Database Query Languages 

One of the biggest uses of relations to date has been in the field of relational 
databases and their query languages. Relational query languages are therefore of 
interest to any designer of a relational programming language. 

2.3.1 Functional Query Languages 

FQL [16] is based on a functional programming system similar to Backus [3]. 
Instead of explicit control structures a few operators or functional forms are used 
to construct new functions or database queries from existing functions. Consider 
a very simple query: 
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!EMPLOYEE 0 *NAME 

Informally this reads "take a the sequence of all employees and create a sequence of 
their names". The function I EMPLOYEE generates a sequence of employees. The 
function NAME takes an EMPLOYEE as argument and returns a character string as 
result. The operator * takes a function that acts on some type of entity and makes 
it act on a sequence of that entities of that type. Here NAME acts on EMPLOYEE, 

*NAME acts on a sequence of EMPLOYEES. The two functions are composed by the 
composition operator '0'. 

One query optimisation used by FQL is memoisation. This prevents a function 
from being recomputed by storing result values as they are computed. This 
changes the representation of the function from the intensional to the extensional. 
Also only extensionally represented functions can be stored in the database. This 
means that the FQL system must cope with both extensionally and intensionally 
represented functions. 

The functional query language FDL [84] extends the functional database model 
to computational completeness while also supporting the persistence of any func­
tion whether extensionally or intensionally defined. All functions whether used 
for data modelling purposes or for computation, are treated uniformly with re­
spect to their definition, evaluation, update and persistence. Also functions can 
be partly extensionally defined and partly intensionally defined. 

As we shall see later these systems are related to relational programming sys­
tems that must process both extensionally and intensionally represented relations. 
Moreover all relations should ideally be treated uniformly, irrespective of their 
representation as they are in FDL. 

2.3.2 Calculus-based Query Languages 

The concept of basing query languages on relational calculus was first suggested 
by Codd [22]. The query language QUEL was one of the earliest implementations 
of Codd's proposal and is very close to his proposed predicate calculus notation. 

QUEL uses the notion of a Tuple Variable, which can be instantiated to reference 
any tuple in a given relation. For this reason it is called a tupZe-calculus language. 
The attribute values for a given tuple are obtained from the tuple variable by 
using a record selector notation similar to that of Pascal. For example if variable 
S ranges over an employee relation then name and salary attributes would be 
denoted by S • Name and S • Salary. 

There are four commands in QUEL: RETRI EVE, REPLACE, DELETE and AP-

pEND. In general queries in QUEL take the form: 

RANGE OF var IS rel 
{RANGE OF var IS rei} 
RETRIEVE [INTO rei] 
(rel. var {, rel . var } ) 
WHEREpred 

Here braces denote repetition and square brackets enclose optional items. An 
example query is: 
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RANGE OF S IS EMPLOYEE 
RETRIEVE S.Salary 
WHERE S.Name = 'Smith' 

28 

The query language SQL (Structured Query Language) may be regarded as an 
extension of QUEL with facilities for handling sets. Simple queries in SQL are like 
those in QUEL but it is also possible to write more complex queries which involve 
the formation of intermediate sets. Set union and set difference operations can 
be used on these sets which gives some of the features of relational algebra. The 
syntax of SQL queries is of the form: 

SELECT [UNIQUE] varlist FROM relJist WHERE pred 

Here varlist is one or more attribute values, which are taken from tuples refer­
enced by tuple variables ranging over the relations in rellist. The tu pies are 
selected by the predicate ir:t pred. 

SQL allows use of nested sub-queries which effectively generate unnamed re­
lations. The operators that may be applied to a sub-query S are based on those 
which one could apply to a set. For example set union (Sl UNION S) or set 
membership (x IN S). 

An example query in a football database is given by Gray [39]: 

"All groups that included Scotland or played some matches in Rosario" 

This could be written in SQL as: 

(SELECT UNIQUE Group 
FROM GROUP PLAC 
WHERE Team = Scotland 
UNION 

(SELECT UNIQUE Group 
FROM STAD ALLOC 
WHERE Stadium = 'Rosario') 

2.3.3 Algebra-based Query Languages 

The relational algebra used in database query languages is an equivalent notation 
to the relational calculus. It is based on function application and the evaluation 
of algebraic expressions. 

The basic operations of relational algebra were first suggested by Codd [22]. 
They are described concisely by Date [29]: 

SELECT: Extracts specified tuples from a specified relation. 

PROJECT: Extracts specified attributes from a specified relation. 

PRODUCT: Builds a relation from two specified relations consisting of all pos­
sible concatenated pairs of tuples, one from each of the two specified rela­
tions. 
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UNION: Builds a relation consisting of all tuples appearing in either or both of 
two specified relations. 

INTERSECT: Builds a relation consisting of all tuples appearing in both of two 
specified relations. 

DIFFERENCE: Builds a relation consisting of all tuples appearing in the first but 
not the second of two specified relations. 

JOIN: Builds a relation from two specified relations consisting of all possible 
concatenated pairs of tuples, one from each of the two specified relations, 
such that in each pair the tuples satisfy some specified condition. 

DIVIDE: Takes two relations, one binary and one unary, and builds a relation 
consisting of all values of one attribute of the binary relation that match (in 
the other attribute) all values in the unary relation. 

These operations are discussed in more detail in chapter 3. 
The output of each of these algebraic operations is another relation - that is 

the operations form a relation algebra that is closed. As a result of the closure 
property relation expressions may be nested - that is expressions in which the 
operands are themselves represented by expressions instead of just names. 

It should be understood that the eight operations do not constitute a minimal 
set, nor were they ever intended to. In fact of the eight, only five are primitive: 
restriction, projection, product, union, and difference. The other three - intersect, 
join and divide - can be defined in terms of those five. For example, the natural 
join is a projection of a restriction of a product as explained by Date [29]. . 

Gray [39] introduces a query language, called ASTRID, which uses these rela­
tional algebra operations. We present an example query for a world cup football 
database. The query is to list all groups in which Scotland played in 1978: 

GROUP_PLAC 
selected_on[Year = 1'1978" and Team = I'Scotland"] 
projected_to GROUP 

2.3.4 Comparison of Algebra and Calculus 

Equivalence of Calculus and Algebra 

Codd [23] proved that the algebra is at least as powerful as the calculus. He did 
this by giving an algorithm - Codd's reduction algorithm - by which an arbitrary 
calculus expression can be reduced to a semantically equivalent expression of the 
algebra. Conversely, it is possible to show that any algebraic expression can be 
reduced to a calculus equivalent, and hence the calculus is at least as powerful as 
the algebra. It therefore follows that the two formalisms - calculus and algebra 
- are logically equivalent. 

A language is said to be relationally complete if it is at least as powerful as the 
relational calculus - that is if its expressions permit the definition of any relation 
definable by the expressions of the relational calculus. 
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Relational completeness may be regarded as a basic requirement of express­
ive or selective power for database languages in general. However, relational 
completeness does not necessarily imply any other kind of completeness. For 
example, it is also desirable for a language to provide computational completeness. 
i.e. support all of the computational operators found in arithmetic. The calculus 
and algebra defined in this chapter are not complete in this sense. 

Advantages and Disadvantages of the Fonnalisms 

Given the two formalism are equivalent in power which is best to use? 
Gray [39] states that the principal advantage of the algebra is that it is closed 

under the relational operations. In calculus-based languages certain difficult 
queries have to be formulated by asking sub-queries and storing the results. The 
extra constructs needed to formulate these results are to some extent 'outside' 
the calculus. However, the algebra does not need these extra constructs since 
the notion of using intermediate relations is already there, and thus queries of 
arbitrary complexity can be built up. The crucial thing is that the user can give 
each intermediate result a name to remember it by if he chooses; by contrast, 
calculus notation tends to produce complex nested expressions that are unnamed, 
and it is thus harder to read and understand. 

Advocates of the calculus usually claim it is less 'procedural' than relational 
algebra, because it describes the result in terms of a collection of predicates whilst 
the algebra gives a succession of operations to be applied to give the desired 
result. However the relational algebra has the property of referential transparency 
which allows one to make substitutions and to rewrite the operations in many 
equivalent forms; thus the description is more flexible than it looks. In practice 
when transforming queries, it seems just as easy, if not easier, to work with 
algebraic rather than calculus notation. 

A Computationally Complete Algebra 

The above description of the good points of relational algebra by Gray encour­
ages the development of a programming language based on relational algebra. 
Perhaps more importantly the equivalence of calculus and algebra suggests that 
a programming language based on algebra could be of similar expressive power 
to a language based on relational calculus. This bodes well for the notion of en­
compassing logic programming within relational programming since logic pro­
gramming is typically based on relational calculus. 

The concept of relational completeness is of importance. A relational language 
should, at the very least, have analogues of the five primitive algebraic operations. 
Ideally, if the algebra is to be rich in terms of expressive power, it should have 
direct analogues of all eight. Of course computational completeness must be 
satisfied as well. 
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2.4 Related Work on Relational Systems 

2.4.1 Popplestone's Relational Programming 

Popplestone's [83] idea for relational programming is more of a logic program­
ming language than a true relational one - the language computation mechanism 
applies forward inference to predicate calculus. Conclusions are inferred from 
premises rather thanProlog-style backward inference which starts with a conclu­
sion and tries to find ways of inferring it. Rather than a 'backtrack search' this 
approach uses operations on tables of data and is identical in many respects to 
the work of Codd on databases. From one perspective this work is an extension 
of Codd's into the realm of general purpose computing. For example given the 
relation ON 

ON = (1,2) (2,3) (3,5)} 

and the relation ABOVE defined by the clauses 

ON (x,y) => ABOVE (x,y) 
ON (x,y) & ABOVE (y,z) => ABOVE (x,z) 

It is possible to find a value for ABOVE by cycling round the two clauses. From 
the first clause we derive: 

ABOVE ;2 ( 1, 2) ( 2 , 3) ( 3 , 5 ) } 

Then using second clause produce new rows: 

ABOVE 2 {(1,2) (2,3) (3,5) (1,3) (2,5)} 

Further rows can be generated by using the second clause again, and no more 
rows can be added by further use of the clauses, so a fixed point has been reached. 

ABOVE = { (1, 2) ( 2 , 3 ) ( 3 , 5 ) ( 1, 3 ) ( 2 , 5) ( 1, 5 ) } 

The main criticism of this work is that Popplestone makes no mention of 
higher-order relations or general relational operators for manipulating and com­
posing relations. To the author's knowledge Popplestone's work has not been 
implemented. 

2.4.2 Wile's Relational Data Structures 

Wile [118,119] argues the case for incorporating relational access in programming 
languages generally. He has implemented a set of macros in Lisp to allow defini­
tion, update and queries of abstract relations. Rather than being the repositories 
of 'bulk data' these relations are 'lightweight' being used as a common abstraction 
of a wide variety of conventional program data structures. 

The relations used are general n-ary relations and a relation'S schema is spe­
cified by giving name and the types of its arguments. For example: 
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defrelation grade-for (student course grade) 

Facts can be asserted, retracted and updated: 

assert (grade-for 'John-Jones 'cslOl 'A) 
retract (grade-for 'John-Jones 'cslOl 'A) 
update (grade-for 'John-Jones 'cslOl 'A-) 
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Here a single slot (field of the relation) is identified for change based on the 
declaration of the key slots - here grade is changed from A to A -. 

The true power of the relational approach comes from the retrieval language, 
where access through any fields is permitted. The selection? refers to any element 
satisfying the relation. The symbol?? refers to all elements satisfying the relation. 
For example: 

(grade-for 'John-Jones ?? 'A-) 
(grade-for 'John-Jones 'cslOl ?) 

The first query selects all the courses in which John Jones received an A-; the 
second query selects John Jones grade for course cslOl. . 

The system implementation has a large set of operators for manipulating and 
retrieving relationships. In addition to simple assertions and retractions several 
forms iterate over sets of items, inserting, retracting or changing tuples containing 
them. This language extension mechanism was designed to incorporate relational 
data structures, rather than to permit a relational style of programming as a 
whole. 

2.4.3 The Relational Language GREL 

The work by Legrand [62] is slightly closer to our idea of relational programming. 
That is relations are used in the same way as functions, but he makes the obser­
vation that relations are more general than functions because they allow us to 
consider point-to-set computations as well as point-to-point computations. 

However Legrand uses n-ary relations rather than binary relations. An n-ary 
function f may be defined as an (n + 1) - ary relation R such that: 

R = {(XI,X2' ••• ,xn,y) I y = f (Xl, X2, ••• ,xn)} 

Legrand notes that relations are more general than functions because they as­
sociate a possibly infinite set of values to their arguments. He uses set-valued 
functions to represent relations. The result of applying such a function is a 
stream of values that are returned one at a time to the calling relation/function. 
Legrand observes that relations are useful in the design of programs that are 
non-deterministic or multi-valued. When application of the function f to argu­
ments at, ... ,an gives a multi-set of results bl , b2 , '" the function evaluation 
is denoted by 
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Legrand has implemented his ideas as the relational language GREL which is 
the development of a functional language, GRAAL, towards relations. Function 
evaluation in GREL remains the same as in GRAAL but special forms and func­
tions are added to build non-functional relations. The most important of these is 
the union construct for applying a number of functions to the given arguments 
and collecting their multiple results: 

(union 11 ... In) : al ••• ax -+ Yl,l Yl,Pl 

Y2,l Y2,P2 

Yn,1 Yn,Pn 

where Ji : ab ... , a x -+ Yi,l. •• Yi,Pi 

One of the most important applications of GREL, Legrand says, is for pro­
gramming in logic. A relation appears as the procedure corresponding to the 
translation of a Horn clause of logic. , 

Legrand compromises relational abstraction by using lists as the basic struc­
ture and by fixing relation representations as set-valued functions. As a result 
relations must always be used in a directional manner and it is the programmer's 
responsibility to collect the alternative results. Ideally the programmer should be 
permitted to reason about relationships and leave processing of multiple results 
to the system. 

2.4.4 The Relational Algebra of Moller 

Maller [76,77] presents a relational language which he designed specifically to 
have a number of useful algebraic properties. The language is based on n-ary 
heterogeneous relations. 

Tuples 

Each element of a relation is a tuple, denoted as a sequence of components. The 
empty tuple is denoted with c and tuple concatenation by •. Tuple concatenation 
is associative with c as the neutral element: 

u e (ve w) = (u e v) e W 

ceU=uec=u 

All tuples are considered to be flat, Le. nesting of tuples is irrelevant. In particular 
the singleton tuple is not distinguished from the value it contains: 

(u)=u 

Concatenation is lifted to sets of tuples as well: 

U e V = {u e V : u E U, v E V} 

If U and V consist of singleton tuples only then U • V corresponds to the cartesian 
product U x V. Concatenation of sets of tuples is associative with c as the neutral 
and 0 as the zero element. 
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v • (V • W) = (V • V) • W 
c.U=V.c=U 
0.U=V.0=0 
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The reverse of a tuple u = Xl •.••• Xn is a the tuple u- l = X n • •••• Xl The 
reversal operation is extended pointwise to sets of tuples: 

U-1 = {u- l : u E U} 

Relations 

A relation is a subset R ~ Ql' ...• Qn of the cartesian product of certain sets 
Qb ... ,Qn' The type of R is Ql •...• Qn, the domain (dom R) is Ql and the 
codomain (cod R) is Qn. The arity of R is the length of the tuples in R: ar R = n. 
There are only two O-ary (nullary) relations viz. c and 0. A nullary relation R may 
serve as a pre- or postcondition for another relation S, with c representing truth 
and 0 representing falsehood. 

{ 
S if R = c R.S=S.R= f1t 
'lI if R =J e 

Operations Over Relations 

The converse (or inverse) of a relation R is denoted by R-l by virtue of the fact that 
tuple reversal is extended to sets of tuples. 

The relation composition of two relations R, S with ar R, ar S > 0 and cod R = 
dom S = Q is defined by 

R ; S = U {u. v : u. X ERA X • v E S} 
..,EQ 

The diagonal of a set P ~ Q is: 

Jp - {x. x : X E P} 
= U xexC;P.P 

",Ep 

The diagonal of a domain and codomain of a relation are left and right identities 
respectively whereas 0 is a zero element. 

JdomR ; R = R = R ; JcodR 

0;R= 0= R; 0 

Maner shows that interesting special cases of composition arise when one of 
the relations has arity 1. Suppose R <; dom S = Q for some S with arity ar S > 0 
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Ri S= u {u. v : u. x ERA x • v E S} 
zEQ 

U {c. v : c. x ERA x • v E S} 
zEQ 

U {v: x ERA x • v E S} 
:t:EQ 

U {v: X. v E S} 
:t:ER 
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In other words, R ; S is the image of set R under relation S. Likewise, for T 
~ cod 5, the set 5 ; T is the inverse image of T under S. 

M61ler defines the natural join used in relational databases theory: given two 
relations R, S with cod R = dom 5 = Q their join R ~ 5, consists of all tuples that 
arise from 'gluing' tuples from R that end in with a certain element to tuples from 
S that start with the same element. The set of tuples in R ending with x is given 
by R; x • x, while the set of tuples in 5 starting with x is given by x • x ; 5. 

R~S= U Rix.x.XiS 
:t:EQ 

This is closely related to composition. Whereas R ; S just states whether there is a 
path from a point x to a point y via some point Z E Q the relation R ~ 5 consists 
of exactly those paths x • z • y. 

Interesting special cases arise when one of the relations involved in a join has 
arity 1. Suppose R £; dom 5 for some S with ar S > 0 and dam 5 = Q: 

and hence 

R.S _{c xER 
, - 0 xfj.R 

U Ri x.x.x; S 
zEQ 

U c.x.XjS 
:z:E R 

U x.XjS 
:t: E R 

In other words, R ~ 5 is the restriction of relation 5 to set R. Likewise, for T 
C cod 5, the set 5 ~ T is the corestriction of 5 to T. 

Assessment 

Maller's principal interest is in the algebra of relations and he demonstrates a 
number of interesting properties for a beautifully simple view of relations. It 
would be desirable for any implemented relational programming language to 
have such properties. There would appear to be no reason why some at least 
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should not be retained although some may be impossible due to consideration 
of computability. For example, it will not be possible to pattern match tuple 
elements of a relation if that relation is represented by a function. Maller has not 
yet developed any implementation of his system. 

2.4.5 The Relational Language Ruby 

Ruby [l01] is a language, based on binary relations, designed by Mary Sheeran for 
use in describing hardware algoritluns and circuits. A Ruby circuit description is 
a binary relation between signals. For example 

a R b 

relation R relates domain signal a to range signal b. A signal is a data value that is 
either atomic or a tuple or a list of signals. Relations are useful for modelling the 
components of circuits: they are the simplest interpretation of what is happening. 

Ruby is an example of an constructive language. That is programs are built 
up piecewise from smaller programs. Higher-order functions called combining 
forms or combinators for short are used for this construction. Programming in the 
constructive style is a great aid to formal manipulation - something which Ruby 
takes advantage of. 

Data Structures in Ruby 

The two forms of structuring data in Ruby are lists and tuples. Tuples can be of 
any length and may be nested. Some examples of tuples are: 

(a), (a,b), (a, (b,c» 

Lists are denoted by enclosing the items in angled brackets. The basic operation 
over lists is append CO.). The following are examples of lists: 

<> 
<x> 

<Xl,X2, ••• ,Xn> 

<x>"'xs 

the empty list 
the singleton list containing element x 
a list containing the elements Xi 

a list with head x and tail xs 

The distinction between lists and tuples is blurred. For example there is no 
difference between a triple of things that have a common type and a list of things 
that have that type and which happens to be three elements long. 

Relational Operators in Ruby 

Circuit descriptions in Ruby are built up hierarchically using higher-order func­
tions. These functions are operators over relations and hence form a relational 
algebra. It is left to the circuit designer to decide which operators to define but the 
operators typically used are composition (; ), inverse ( -1), parallel composition 
([ , ]), union (+) and conjugate (\). These operators are defined: 
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x (R j S) y {:? 3 z. x R z /\ z S Y 
x (R-1 ) Y {:? Y R x 
(a,b) [R,S] (c,d) {:? aRc /\ b S d 
a (R + S) b {:? a R b VaS b 
R \ S - S-1 j R ; S 

The relational algebra is closed under these operators since each operator applic­
ation forms a new relation. 

Ruby is associated with a collection of transformation rules that are based on 
algebraic laws over relational expressions. An initial circuit description that is 
inefficient or even impossible to implement can be transformed using these rules. 

Sheeran [101] uses Ruby to specifying hardware algorithms for butterfly net­
works of chips. Jones and Sheeran [53] again study butterfly circuits but derive 
simpler, more elegant algorithms. In [52] they give a detailed description of Ruby 
and its use for describing and refining circuit descriptions. 

Rossen [91] describes a framework intended to allow the system designer to 
capture a circuit description as a relation and, through stepwise refinement, con­
struct a circuit suitable for automatic layout generation. This framework is based 
on a theorem prover that can be used to prove the correctness of equivalences 
used in the system process. He gives a formal definition of Ruby to implement 
this system support. Rossen [90] gives an example synthesis of a circuit from a 
specification using this theorem prover. This construction gives a formal proof of 
correctness of the circuit with respect to its specification. 

Hutton [49] observes that while programming in a relational framework has 
much to offer over the functional style in terms of expressiveness, computing 
with relations is less efficient and more semantically troublesome. Computation 
is less efficient because relations have no notion of data-flow. Relations are not as 
well-behaved semantically as functions. For example, the fixed-point approach 
to recursion does naturally extend to the relational world. 

He proposes a blend of functional and relational styles by identifying causal 
relations which retain the bi-directional properties of relations but retain the effi­
ciency and semantic foundation of the functional style. A relation is causal if it is 
possible to identify an 'input' part of the relation which uniquely determines the 
'output' part. Unlike functions however the input part of a causal relation is not 
restricted to its domain, nor its output to the range; indeed inputs and outputs 
may be interleaved throughout the domain and range. A causal relation may 
have many such functional interpretations. 

This weakening of the functional constraint permits bi-directional communic­
ation between components. The standard relation composition operator (; ) can 
be used to combine any two components regardless of whether they communic­
ate bi-directionally or not. It was this observation that originally led Sheeran to 
consider using relations rather than functions. 

However there are two problems with causal relations: 

• Causal relations are not closed under composition - composition of two 
causal relations may produce a relation that is not causal. 
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• There are causal programs that involve non-functional data flow. For ex­
ample (and- 1 i and) is equivalent to the identity relation over Booleans but 
operationally has non-functional flow between the two primitives. 

An Assessment of Ruby 

Ruby illustrates how relations may be used in a specification language. The 
work by Rossen shows that such a relational language can be implemented. 
However Ruby was designed as a domain specific language for high-level circuit 
descriptions, not as a general programming language. Also Ruby is not fully 
relational since tuples and lists, rather than relations, are used as the basic data 
structure. 

The operators used in Ruby appear to be powerful and widely applicable to 
relations. This implies that they would be of use in any relational programming 
language. 

The emphasis on algebraic laws for derivation of efficient algorithms is an 
interesting idea and one that can be used for a full programming language. 

2.4.6 The Relational Language RPL 

The work by MacLennan on relational programming is pioneering. He developed 
a programming language, RPL,from a relational algebra and designed a prototype 
interpreter for it. His work formed a basis for the research described in this thesis. 

Origin and Development of RPL 

MacLennan initially presented his concept of a programming language based 
entirely on relations in the papers [65, 66] and later produced a more detailed 
internal report [67]. This theoretical concept he developed into a working pro­
gramming language called RPL for which some of his students built an interpreter 
[13]2. From his experience with RPL MacLennan presented four sample relational 
programs in a report [68] which he later refined into a paper [69]. 

MacLennan had a view of relational programming which appears unique in 
the literature. It was to be a programming paradigm with a number of novel 
features: 

• entire relations are manipulated as data; 

• program definitions are represented as relations; 

• a set of relational operators, which are themselves relations, are available 
for manipulating both data and programs; 

• a paradigm that subsumes functional programming. 

2This author, however, has been unable to secure copies of either this thesis or the interpreter. 
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It should be possible to express clearly in a relational language anything that 
can be expressed clearly in a functional language. Furthermore, some things 
that are awkward to express functionally may be naturally expressed relationally 
because mathematically the concept of a relation is more general than that of a 
function - all functions are relations but not all relations are functions. The evol­
ution of functional programming into relational programming is a generalisation 
that increases expressive power. 

There should be a number of similarities between functional and relational 
programming. Functions and relations have both been studied and developed 
in mathematics and functional and relational programs can both be derived and 
processed via algebraic manipulation. 

MacLennan first published work on relational programming in 1981. Around 
this time Backus FP [3] was just emerging on the scene in functional programming 
and was proving to be very influential. The number of papers on FP published in 
the same journals as MacLennan's work testifies to this. Backus' view of functional 
appears to have been the one that most influenced MacLennan. MacLennan was 
really attempting to generalise FP, and its treatment of functions, to relations. 
The operators MacLennan uses are combining forms for relations akin to the 
combining forms for functions in FP. 

The Underlying Mathematical Model 

This section describes the mathematical model that underlies RPL and MacLen­
nan's mathematical view of relations in general. It is based on the earlier MacLen­
nan papers [65, 66] in which he presented the mathematical basis of relational 
programming, prior to the implementation of RPL. 

Sets are the most fundamental objects. A set is an unordered collection of 
items that contains no repetitions. An n-ary relation may be perceived as a set 
of n-tuples where each tuple is an element of the relation. Thus if R is a n-ary 
relation then 

R(xI, X2, ... ,xn ) {:} (Xl, X2, ... ,Xn ) E R 

MacLennan restricts his view of relational programming to binary relations. 
Any binary relation, R, may be regarded as a set of pairs: 

xRy {:} (x,y)ER 

More general n-ary relations may be modelled by allowing x or y themselves 
to be pairs. For example, arithmetic plus may, be thought of as a binary relation 
defined: 

(x,y) (+) z {:} z = X + y 

A relation is considered to be a function if there is only one output value 
associated with any given input value. For a relation expression x R y where R 
is the relation, x is considered to be the input and y the output. Such a relation 
is generally referred to in computer science as being deterministic. MacLennan 
refers to a relation having this functional property as being right univalent. The 
formal mathematical definition of right univalence given by MacLennan [65] is : 
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F E run {:} V x Y z [ x F Y A x F z :::} Y = z] 

The set of all right univalent relations (functions) is a subset of the set of all 
relations. 

Relational operators are a special case of set operators because a relation is a 
set of pairs. For example the union of two sets: 

x E (5 U T) {::} x E 5 V x E T 

The union of two binary relations is a special case in which x is a pair (y, z ) : 

(y,z) E (5 U T) {:} (y;z) E 5 V (y,z) E T 
{:} y5zvyTz 
{:} Y (5 U T) z 

The Universe of Values 

Although MacLennan refers to his theory of of relations as being typeless it is 
possible to identify an universe of typed values in which all RPL values lie. 

There are three primitive types in this universe, or domain: real numbers, 
Booleans and characters. More complex types are constructed from pairs, sets 
and intensional relations over the domain. These take the form: 

pair = (domain,domain) 
set = {domain} 

intensional relation = (domain -+ domain) 

Thus the whole domain may be defined as: 

domain ::= 

Representing Relations 

Bool 
Numbers 
Characters 
(domain,domain) 
{domain} 
(domain -+ domain) 

boolean values 
numerical values 
ASOI characters 
pairs of values 
sets of values 
functional relations 

For the implementation of relational programming some representation is needed 
for each relation defined in the program. 

There are two views of relation representation: the programmer's view and 
the implementation view. In RPL these two are one and the same; the method 
of representation, for any relation, must be known to the programmer. This is 
because the choice of representation for a particular relation is the sole determiner 
of which relational operators can be applied to it and which cannot. 

In RPL there are two main different ways in which relations can be represented: 

Extensional representation: the relation elements are explicitly stored in a list 
data structure. Such relations are the data the program manipulates. 

Intensional representation: the relation elements are not stored, rather the rela­
tion is represented by the corresponding computable function. This though 
forces all intensional relations to be functional. 
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The Relational Operators 

MacLennan defined numerous relational operators for RPL. Those operators are 
divided into two groups: 

Extensional operators can manipulate relations that are extensionally represen-_ 
ted. These are finite, extensional sets and relations - those sets and relations 
whose elements are explicitly stated. 

Intensionaloperators can manipulate relations that are intensionally represen­
ted. They are combining forms for computable functions. 

An Assessment of RPL 

MacLennan corrupted the mathematical view of relations in his implementation 
of RPL, with the divide between intensional and ex tensional relations. 

The extensional operators are functions for manipulating two kinds of data 
structure: one representing sets and one representing sets of pairs. They preserve 
the view of relations as a sets of pairs but are not applicable to intensional relations. 
This implies the intensional relations can no longer be thought of as sets. The 
intensional operators defined are really just combinators - combining forms for 
ordinary computable functions. They are not applicable to extensional relations 
and hence are not general relational operators. 

A program in RPL is a collection of definitions each of which is an intensional 
relation represented by a computable function. Since functions are deterministic 
non-determinism is not naturally handled. The only operators applicable to 
program code are the intensional of which there are comparatively few. Most 
operators are extensional and hence only applicable to the data of the program. 
As a result of this intensionallextensional divide the expressive power of RPL 
is greatly compromised. RPL is really a functional language with a few FP-style 
combining forms for functions and a collection of operators for manipulating a 
form of relational data structure. 

If relational programming is to succeed as a new declarative paradigm then 
it should be implemented in more generality than RPL and brought closer to 
MacLennan's original conception. 

2.5 Conclusion 

Section 2.2 concluded that if functional and logic programming are to be success­
fully merged then some new declarative paradigm is required. 

The work on relational query languages discused in section 2.3 shows that 
it is possible to use relations for high-level computation. The work on algebra­
based query languages has highlighted a number of relational operators which are 
known to form an algebra as powerful as Codd's relational calculus. Moreover, 
the arguments for relational algebra given by Gray [39] suggest that algebra forms 
a rich basis for languages. 
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Section 2.4 described research into relational languages which, although still in 
its infancy, is developing in a variety of directions. The relational data structures of 
Wiles, the set-valued functions of Legrand, the emphasis of algebra by Maller and 
in Ruby, and on generality of relational programming by Ma cLennan. These ideas 
have the potential to form a powerful new declarative paradigm but techniques 
more sophisticated than those used to implement GREL or RPL are required. 



Chapter 3 

The Relational Language Drusilla 

3.1 Introduction 

Chapter 2 concluded that more sophisticated techniques are needed to realise 
relational programming as MacLennan originally perceived it. The relational 
language used and its new implementation should satisfy certain criteria: 

• The language should be based on a mathematical model that can describe 
both program and data. 

• The relational operators used should be general purpose in nature and 
equally applicable to program code (intensional relations) and data (exten­
sional relations). 

• It should be possible to combine extensionally and intensionally represented 
relations within expressions. 

This chapter proposes a new relational language, named Drusilla, which will 
be used to investigate implementation techniques and possible relational pro­
gramming styles. 

In section 3.2 we define a typed relational calculus which forms the underlying 
mathematical model of Drusilla. In section 3.3 this model is used to define the 
primitive relational operators of Drusilla. In section 3.4 we give an overview of 
Drusilla and present some example programs. 

3.2 The Underlying Mathematical Model 

3.2.1 Mathematical Preliminaries 

It is useful to begin by defining some basic concepts that are fundamental to our 
discussion of relational programming. Some of these definitions are taken from 
Gallier's book [36]. 

43 
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Tuples 

Given two setS A and B (possibly empty) their cartesian product, A x B, is the set 
of ordered pairs: 

{(x, y) I x E A, b E B} 

These sets A and B may themselves be cartesian products of other sets - the 
elements within pairs may themselves be pairs. This concept may be generalised 
- an n-tuple (or tuple for short) is formed from the cartesian products of n sets. 
For example, A = Al X ••• x An, is the set of ordered n-tuples: 

{(aI, ... ,an) I ai E Ai, 1 :::; i :5 n} 

Again these sets may be constructed from tuples of other sets and hence nested 
tuples may be created. There is no distinction made between between a one-tuple 
and the element it contains . 

. Binary Relations 

A binary relation, R, between sets A and B is any subset (pOSSibly empty) ofAx B. 
Given such a relation, the domain of R is the set: 

{x E A I 3 y E B, (x,y) E R} 

The range of relation R is the set: 

{y E B I 3 x E A, (x, y) E R} 

Sanderson [94] observes that a relation, R, which holds between sets A and B, 
may be viewed in three different ways: 

1. It may be seen as a set - a subset ofAx B. Adopting this viewpoint enables 
us to use set-theoretic notation, writing, for example, (x,y) E R or R = S U T 
(where Sand T are also relations). 

2. It may be seen as a logical relation. Thus we may write x R y as the equivalent 
of (x,y) E R and use the predicate calculus in defining new relations. The 
above is read x has the relation R toy. This technique is adequate for setting up 
a complete relational calculus and forms the basis of the Drusilla calculus. 

3. When R is viewed as a relator we are thinking in terms of applying it to an 
element of the set A, to produce an element of set B as a result; thus x R 
Y is verbalised as application of R to x may yield y. The element pair (x,y) is 
referred to here as a map in R. 

A relationR between sets A and Bisfunctional (or deterministic or right univalent) 
if and only if: 

V x E A, y, z E B, (x, Y) E R /\ (x, z) ER=> y = z 

The cardinality of a set is the number of elements in that set. Therefore the 
cardinality of a binary relation is the number of element pairs in that relation. 
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3.2.2. A Typed Relational Calculus For Drusilla 

Sanderson [94] states that a relational calculus provides a formalism for writing 
expressions whose values are relations. Drusilla is based on an extension of 
Tarksi's [110] calculus of binary relations that introduces types. 

Calculus Expressions 

The relational operators built into the Drusilla language are themselves binary 
relations and as such should be treated in the calculus as any other relation. 
However, it should be possible to use those operators that are known to be 
functional to construct new relations. Therefore, such operators are attributed 
both relational and functional forms and may be used to construct expressions 
similar to Tarski's [110]. 

The most basic forms of expression are called relation designations of which 
there are two types: 

Elementary relation designations are user-defined relations and operators in 
their relational forms, denoted syntactically by use of square brackets e.g. 
[inv] (relation inverse), [; ] relation composition. 

Compound relation designations are formed from simpler ones by prefix ap­
plication of unary operators or infix application of binary operators. This is 
the functional form of operator use from which it is possible to obtain ex­
pressions such as inv r (the inverse of relation r), r i s (the composition 
of relations rand s). 

A calculus expression is created from predicate formulae over terms that are 
constructed from relation designations. This use of predicate calculus corresponds 
to Sanderson'S relation viewpoint. Calculus expressions will be used to define 
the Drusilla operators but are not actually part of the Drusilla language. Relation 
designations form part of both the calculus and the Drusilla language. 

Calculus Types 

Types are introduced into the calculus to permit Drusilla to be statically, poly­
morphically typed in the manner of a modern functional language. 

Cardelli and Wegner [20] make the observation that types, in the sense of 
conventional functional languages, correspond to sets of values and Cardelli [19] 
states that a mathematical model for such types is normally given by mapping 
every type expression into a set of values (the values having that type). By 
definition, every binary relation holds between two sets of values. The calculus 
is typed by regarding such sets as types. The sets of values associated with types 
are those values Drusilla may manipulate. The types in our calculus, and the sets 
of values associated with them, are given in table 3.l. 

There are three basic calculus types: num, string and un. The type num com­
prises integer and real numbers. The type string includes any string of ASCII 
characters. There is just one value of type un called the Uni t element. 
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Domain Type Corresponding Set of Values 
num natural numbers {O, 1, 2, ... } 

string strings of ASO! characters {"Drusilla", "1", "afh!#@)", ... } 
un unit element {Unit} 

(tl x .. , x tn) set of all n-tuples {(Xl, ... , xn) I Xi E ti} 
tl ++ t2 set of all relations between types t land t2 
A ... Z polymorphic type variables - any set of values 

Table 3.1: The types in the Drusilla calculus 

If tl ... tn are types then (tl x ... x tn) is the type of tuples with objects of 
these types as components. For example, the type of (Unit, "hello", 36) is 
(un x string x num). Such product domains introduce n-tuples which can be used 
to make binary relations model n-ary relations. An n-ary relation is, conceptually, 
a set of n-tuples. If each n-tuple is split into two tuples, the first is regarded as a 
domain value and the second as a range value, then that relation becomes a set of 
pairs of tuples and hence binary. 

If tl and t2 are types, then tl ++ t2 is the type of any relation with domain 
of type t 1 and range of type t2• By allowing relations to hold between domains 
that contain relations we permit introduction of higher-order relations into the 
calculus. 

Polymorphism is introduced via type variables (upper case letters), which 
are understood to be universally quantified. A type variable may optionally be 
followed by an integer number; this prevents any limitation on the number of 
type variables permitted within an expression (otherwise polymorphic 27-tuples, 
for example, would not be allowed!). 

All expressions denote a value drawn from one of the above types and hence 
may be given a calculus type. For example the type of arithmetic plus is written: 

[+] :: (num x num) <-> num 

Sets in the Calculus 

If the relational calculus is to be based solely on binary relations then it should 
not be concerned with manipulating sets of values as structures. However it 
should preserve Sanderson's three viewpoints of relations the first of which is 
that a binary relation is a set of pairs. How can this paradox be resolved? The 
solution is to introduce the unit domain and identify any set of values with a 
binary relation from the element type to the unit type. For example, the set of 
numbers {1,2,3} may be represented by the relation {(1,Unit),(2,Unit),(3,Unit)}. 
Therefore sets become special cases of binary relations and set theoretic operators 
(e.g. union, intersection and difference) become special cases of their relational 
equivalents. Similarly the cardinality operator rather than denoting the number 
of elements in a set now denotes the number of element pairs in a relation. As a 
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further aid section 3.3 introduces a special operator, set, which is used to give 
the set view of a relation. 

3.3 The Drusilla Operators 

The Drusilla primitive operators are defined in Table 3.2 using the typed relational 
calculus presented in section 3.2. The primitive operators are subdivided into two 
classes - unary (those that take one argument) and binary (those that take two 
arguments). The non-primitive operators are simply those that can be expressed 
in terms of the primitives. Primitive and non-primitive operators alike are all part 
of Drusilla and from now on the term built-in will be used to refer to both. The 
following subsections discuss the sources that influenced the choice of built-in 
operators. 

3.3.1 The Relational Operators of RPL 

MacLennan describes various relational operators in his papers [65,66, 69] and 
gives a comprehensive description of the primitive and non-primitive intensional 
and extensional operators used by his relational language RPL in his internal 
report [67]. The Drusilla operators were based on these. The ones taken were 
those that satisfied certain criteria: 

Fundamental: Those operators that are frequently used by MacLennan and seem 
fundamental to the expressive power of relational programming. 

General: Operators should be generally applicable to relations. Many of MacLen­
nan's operators were designed solely for manipulating specific relational 
data structures or functional relations. Also the operators should be defined 
for application to program and data. 

Primitive: Cannot be easily or efficiently expressed in terms of other operators. 

The generality consideration is necessary if MacLennan's division between 
intensional and extensional relations is to be excluded from Drusilla. However, 
there are exceptions - operators such adorn, rng, and card are taken although 
they can only be applied to data. They are included because without them certain 
expressive power is lost. There are only two Drusilla primitives not previously 
identified by MacLennan: 

relation containership [c~nt] replaces MacLennans extensional relation ap­
plication operator. There is no notion in Drusilla of applying an arbitrary 
relation to an argument, instead containership generates the element pairs 
of a relation. Section 3.4 discusses how it can be used to replace relation 
application. 

set fonn [set] is used to give the set view of a relation. The normal set view of 
a relation is by definition: 
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Primitive Unary Operators 

Cardinality of a relation 
[card] :: (A ++ B) ++ num 
card r = primitive to calculus Non-primitive Operators 
Domain of a relation Domain anti-restriction 
[dom] :: (A ++ B) f+ (A f+ un) [ < -] :: (A f+ un x A f+ B) ++ (A ++ B) 
x (dom r) Unit {::} 3 y. x r y s < - r == neg s < < r 
Range of a relation Range anti-restriction 
[rng] :: (A f+ B) ++ (B ++ un) [ - >] :: (A ++ B x B ++ un) ++ CA ++ B) 
y (rng r) Unit {::} 3 x . x r y r - > S == r > > neg s 
Inverse of a relation Relation difference 
[inv] :: (A ++ B) ++ (B ++ A) [\] :: (A ++ B x A f+ B) ++ (A ++ B) 
x (inv r) y {::} y r x r \ s = r /\ neg s 
Set form of relation Relation overide 
[set] .:: (A ++ B) ++ «A x B) ++ un) [@] :: (A ++ B x A ++ B) H (A H B) 
(x,y) (set r) Unit {::} x r y r @ s = dom s < - r \/ s 
Complement of a relation Image of a set under a relation 
[neg] :: (A ++ B) ++ (A ++ B) [ img] :: (A f+ B x A Hun) ++ (B Hun) 
x (neg r) y {::} ..., x r y r img s = rng (s «r) 
Relation containership 
[cont] :: (A ++ B) ++ (A x B) 
r [cont] (x,y) {::} x r y 

Primitive Binary Operators 

Relation intersection 
[/\] :: (A H B x A H B) f+ (A ++ B) 
x (r /\ s) y {:} x r y /\ x s y 
Relation union 
[V] :: (A H B x A H B) f-t (A x B) 
x (r \/ s) y {:} x r y V x s y 
Relation composition 
[ i] :: (A H B x B f-t C) H (A H C) 
x (r;s) y {:} 3 z . x r z /\ z s y 
Parallel composition 
[ 11 ] :: (A f-t B x C H D) H «A x C) H (B x D» 
(a,c)(r 1 I s) (b,d) {:} a r b /\ c s d 
Dual composition 
[ #] :: (A f-t B x A f-t C) H (A f-t (B x C» 
x (r # s) (y,z) {:} x r y /\ x s z 
Domain restriction 
[ < <] :: (A H un x A f-t B) f-t (A f-t B) 
x (s < < r) y {:} x s Unit /\ x r y 
Range restriction 
[ > >] :: (A f-t B x B H un) f-t (A f-t B) 
x (r > > s) y {:} x r y /\ Y s Unit 

Table 3.2: Drusilla operators 
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(x,y) E R {:} x R Y 

As sets are not used directly in Drusilla, the set view is given by: 

(x,y) (set R) Unit {:} x R Y 

3.3.2 Algebra-based Database Query Languages 

Relational algebra has long been used as the basis for relational database query 
languages. Chapter 2 briefly described the basic algebraic operations and con­
cludes that a relational programming language should have counterparts of these 
operations. 

Each of these operations takes either one or two relations as its input and 
produces a new relation as its output. Codd defined eight such operators, two 
groups of four each. The first group consists of traditional set operations: union, 
intersection, difference and cartesian product (all modified slightly to take account 
of the fact that their operands are relations as opposed to arbitrary sets). The 
second group consists of specialised relational operations: select, project, join 
and divide. These operations are all generally applicable to n-ary relations. For 
the description of these operations it is useful to visualise each n-ary relation 
as a table of rows and columns in which each row is an n-tuple with n column 
elements. Since any given n-ary relation can be modelled by a binary relation, 
each operation is considered and the analogous operator(s) for binary relations in 
Drusilla identified. However the divide operation is not considered since it is not 
computable for binary relations that are represented by computable functions. 

Union 

The union operation is dyadic joining two relations together by taking the set 
union of their respective tuple sets. This may be visualised as taking the rows of 
the two tables representing the relations and putting them one after the other to 
form one long table. The union operator (\/) is induded in Drusilla. 

Intersection 

The intersection operation is dyadic joining two relations together by taking the 
set intersection of their respective tuple sets. If both relations are visualised as 
tables then this operation may be seen as forming a new table from those rows 
that are common to both of the tables. The intersection operator (/\) is induded 
in Drusilla. 

Difference 

The difference operation is dyadic joining two relations together by taking the set 
difference of their respective tuple sets. If both relations are visualised as tables 
then this operation may be seen as forming a new table from those rows that are 
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in the first table but not in the second. The difference operator (\) is included in 
Drusilla. 

Cartesian Product 

By defining cartesian product in the Drusilla calculus it is possible to derive an 
equivalent expression in the Drusilla language. This is done by systematically 
introducing Drusilla operators substituting them for their defining expressions. 
For example: 

(a,b) (r cartesianProduct s) (x,y) {:} a r b A x s Y 
{:} (a,b) (set r) Unit A (x,y) (set s) Unit 
{:} (a,b) (set r) Unit A Unit (inv (set s» (x,y) 
{:} 3 z. (a,b) (set r) z A z (inv (set s» (x,y) 
{:} (a,b) (set r i inv (set s» (x,y) 

=} r cartesianProduct s = set r ; inv (set s) 

If the programmer defined the relations rand s by explicitly listing their elements 
then the elements of this relation can all be evaluated. 

If either of the relations r or s is represented by a computable function and 
their cartesian product is to be used as a relator then its application to a domain­
range element pair of r would have to generate all the domain-range pairs of s. 
This however is obviously not computable. A similar, but computable relation, is 
given in Drusilla by parallel composition ( 11 ) of relations. If this operator relation 
is viewed as a table then it is identical except for column ordering: 

(a,x)(r 11 s) (b,y) {:} a r b A x 5 Y 

This is computable in relator form as it relates a pair of domain values to a pair of 
range values using the respective relations rand s. 

Selection 

The selection operation reduces the number of tuples in a relation by selecting 
only those that satisfy some predicate. Gray [39] states that any predicate can be 
replaced by the set of values of its arguments for which it is true. Therefore, any 
predicate p can be represented by a Drusilla relation r: 

~ r Unit {:} x p True 

Since n-ary relations are modelled by binary relations selection must now have 
two predicates - one to select domain elements, the other to select range elements. 
Any given selection expression can then be translated into a calculus expression 
from which it is possible to derive a Drusilla language expression. Suppose 
selection is applied to relation s using predicates represented by relations f and 
g: 
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x (s select (f,g» y <=? x S Y 1\ x f Unit 1\ Y g Unit 
<=? x (f «s) y 1\ Y g Unit 
<=? x (f < < s > > g) y 

=>s select (f,g) = f« s » g 
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The Drusilla operators analogous to selection are the domain and range restriction 
and anti-restriction operators «<, > >, < -, -». 

Projection 

The projection operation extracts specific fields from a relation, reducing the size 
of the relation tuples. If the relation is visualised as a table a projection reduces 
the number of columns. A given n-ary relation is modelled by a binary relation 
by splitting each n-tuple into a pair of tuples - one denoting a domain element, 
the other denoting a range element. The domain (dam) and range (rng) operators 
in Drusilla project, respectively, the domain and range fields and are therefore 
projection operators. 

A more general form of projection can be performed using relations that extract 
tuple elements. An example of this is given in section 3.4. 

In Drusilla, a relation can be specialised by partial instantiation of its domain 
and/ or range. This is, in effect, a combination of selection and projection opera­
tions. It is a selection as it selects only those elements that include the specialising 
values. It is a projection as it reduces the relation tuple size. An example is spe­
cialising the addition relation [+] to derive the successor relation. Full projection 
would be impossible to compute for relations that are represented by comput­
able functions because there may be an infinite number of domain-range element 
pairs. Relation specialisation will be discussed in more detail in section 3.4. 

Join 

The other dyadic operation is join which is defined for any two relations. It is 
defined in different ways depending on how many column names are common 
to both relations: 

• If the two tables denoting the relations have no column names in common it 
behaves as a cartesian product operation and concatenates each row of the 
first table with each row of the second in turn. 

• If the two tables have identical column names it behaves as a set intersection 
operation and produces a table of those rows that occur in both tables. 

• If the two tables have some column names in common then it produces a 
table with all the column names from the first table together with any extra 
column names from the second one. Rows are selected from the first table 
and extra values are concatenated on from rows in the second table that have 
matching values in the common columns. This creates redundant columns 
and is referred to as equi-join. If the redundant columns are removed then it 
is called the natural join. 
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The action of join encompasses three different Drusilla operators. The notion 
of common column names is replaced in Drusilla by that of common domain / 
range types. The cartesian product of two relations of any arbitrary type has 
already been discussed. The intersection of two relations is permitted between 
any two relations that have the same domain and range types. The intersection 
operator (/\) has already been discussed. The relation composition operator 
(; ) encapsulates the notion of natural-join for binary relations with the common 
column removed. 

The dual composition operator (#) is also a form of join operation since it 
combines two relations on their common domain elements. 

3.3.3 Binary Relations in Mathematics 

Operations on binary relations have been much explored in mathematics and are 
well documented. Schmidt [96], Suppes [109] and Tarski [110] define the domain 
(dom), range (rng), inverse (inv), negation (neg) and relative product (or relation 
composition) (i) union (\/), intersection (1\) and difference (\) operators used 
in Drusilla. 

3.3.4 Formal Specification Languages 

One intended application for Drusilla is as a tool for rapid prototyping and fast 
program development. Consequently one aim of Drusilla is to simplify the task of 
deriving programs from formal specifications. A number of relational operators 
are included in the basic mathematical toolkit of the formal specification language 
Z as described by Spivey [104] and Woodcock and Loomes [121]. Consequently 
these have all been included as Drusilla operators, with the exception of transitive 
closure and reflexive transitive closure both of which can be replaced by recursion. 

These operators comprise domain (dom), range (rng), inverse (inv), relation 
composition (i), relational image (img), domain restriction «<), range restriction 
(»), domain anti-restriction «-), range anti-restriction (-». Z also includes a 
function overriding operator. This is included in Drusilla as a relation overriding 
operator (@) as MacLennan [66, 67] has previously suggested. 

3.4 An Overview of Drusi11a 

Drusilla is a prototype relational programming system designed primarily to 
develop the relational paradigm in which binary relations form both the basic data 
structure and the computation mechanism. Relational programming is viewed 
as a generalisation of functional programming that encompasses many aspects 
of logic programming. It is hoped that Drusilla will be used as a tool for rapid 
prototyping of software and as a language for artificial intelligence applications. 

This section gives a detailed description of the main features of Drusilla. A 
number of example programs are presented, some of which are described in detail. 
By the end of the chapter the reader should be able to understand all the programs 
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without any further explanation. The design of Drusilla is very much influenced 
by Miranda and hence this section has a structure very similar to Turner's [114] 
overview of Miranda. 

3.4.1 Basic Ideas 

The Drusilla language is declarative, applicative, and purely relational - there 
are no side effects or imperative features of any kind. A program is a collection 
of relation definitions which are to be computed. The order in which relation 
definitions are given has no significance; for example, there is no need for a 
relation definition to precede its first use. Drusilla has little excess baggage 
- there are no reserved words and the layout of a program has no syntactic 
significance. However, definitions must be terminated by a full stop. Any line 
starting with "- _" is considered a comment. A very simple Drusilla program 
is given in Figure 3.1. It is just an example collection of Drusilla definitions for 
defining mathematical relations. 

-- example Drusilla definitions 

z = (cube 11 cube) ; [/J . 
(n) cube n * n * n. 
x = a + b. 

Y = a - b. 
a = 10. 
b = 5. 

Figure 3.1: A simple Drusilla program 

The central notion underlying Drusilla is that all the world is a relation. There is 
no notion of functional application of user-defined relations because it is not gener­
ally known whether a relation is functional. All the primitive relational operators 
(except relation containership [cont J), are however known to be functional and 
may therefore be used either as relations or as functions. This is demonstrated 
in the definitions of cube, x, y in Figure 3.1 where the functional forms of 
the arithmetic operations multiply, plus and minus are used. The definition of z 
illustrates the relational form of use of the division operator, denoted by enclosure 
in square brackets. 

In the definition of the cube relation n is a formal parameter - its scope is 
limited to the definition in which it occurs. The other names introduced above 
have the whole program for their scope. 

3.4.2 Discussion of Example Programs 

This subsection aims to help elucidate the structure of Drusilla programs by 
explaining the creation of a few examples. 
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Factorial Definition 

It is known that the factorial of zero is one. This is the base case for the recursive 
definition and can be defined explicitly as a relation: 

{(O,l)} 

The relation between n and factorial (n - 1) can be defined: 

[- 1] ; fact 

This expression can be used to define the relation between n > 0 and its factorial, 
n * factorial (n - 1): 

id # ([- 1] ; fact) ; [*] 

To ensure this relation is only applicable for n > 0 we override it Witll the base 
case for ri = 0: 

id # ([- 1] ; fact) ; [*] @ {(O,l)} 

Fibonacci Definition 

The fibonacci relation relates a number to its value in the fibonacci series and 
has a similar structure to the factorial definition. The base case for the recursive 
definition is for argument values of zero and one: 

{(O,O),(l,l)} 

Thefibonacciofanumbern> 1 isgivenbytheexpressionfib(n-l) + fib(n-2). 
The relation between nand fib( n - 1) can be expressed as a relation: 

[- 1] ; fib 

Similarly the relation between nand fib(n - 2) can be expressed as a relation: 

[- 2] i fib 

These relations can be combined together using the dual composition operator 
(#) to create a relation between n and the pair (Jib(n - 1), fib(n - 2)): 

[- 1] i fib # ([- 2] ; fib) 

To get the some of these two fibonacci values we simply compose the relation 
with the addition relation: 

[- 1] ; fib # ([- 2] ; fib) ; [+] 

To make the relation applicable to all values n > 1 we override this relation with 
the base condition: 

[- 1] ; fib # ([- 2] ; fib) ; [+] @ {(O,O),(l,l)} 
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Ackermann's Function as a Relation 

Ackermann's function may defined in a modern functional language: 

ack ° y = y + 1 
ack x 0 = ack (x-I) 1 
ack x y = ack (x-I) (ack x (y-l» 
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As Drusilla does not use pattern matching we must define each condition as a 
relation and glue those relations together. The first case is defined as a partially 
parameterised relation: 

( ,y) ackC {(O,y+l)}. 

The defining relation is between x and the result, but is only applicable for x = O. 
The second case is similarly defined: 

(x,_) ackB (O,l)}; (x-l,_)ack. 

The defining relation is between y and the result, but is only applicable for y = O. 
The relation { ( ° , 1) }, which relates y to 1 if and only if y = 0, is composed with 
(x -1, _) ack to form a relation between y and ack( x-I, 1) that holds when y = O. 
The final case is defined as the relation: 

(X,_) ackA [-1] ; (x,_)ack ; (x-l,_)ack. 

The first part of the expression, [-1] ; (x, _) ack, defines the relation between 
y and ack x (y - 1). This relation is composed with (x-I, _) ack to yield the 
relation betweenack x (y -1) and ack (x -1) (ack x (y -1)). 

Finally the Ackermann relation must be constructed from these auxiliary rela­
tions. The pattern matching in the functional definition imposes an ordering on 
the definitions. If this ordering is not preserved then the meaning of the function 
will change. This ordering is preserved by gluing the relations together with the 
relation override operator (@): 

ack = ackA @ ackB @ ackC. 

Solving Quadratic Equations 

Quadratic equations of the form 

ax2 + bx +c = 0 

may be solved using the standard formula: 

2*a 

The relation quadSol ve solves the given quadratic equation, relating a triple of 
coefficients, (a, b , c ) , to the roots of the equation: 
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(a,b,_) quadSolve (a,b,_)quadB ; [- b] ; [/ (2*a)]. 

TheexpressionV'b2 - 4 * a * cisevaluated usingtheauxiliarydefinitionquadRoot: 

(a,_,c) quadRoot sq ; [- (4*a*c)] ; [sqrt]. 

This is a non-functional relation - it relates the coefficients to both the positive 
and the negative roots of b2 

- 4 * a * c. 
When quadSol ve is used in forward mode it returns as result the set contain­

ing the two roots of the given equation. 

3.4.3 Mathematical Relations 

The numerical relations primitive to Drusilla are defined in Table 3.3. All re­
lations can be used as elementary designations. The addition (+), subtraction 
(-) and multiplication (*) relations can be used to form compound designations 
because they are total functions. The division Cl) and modulo (mod) relations 
although functional cannot be used for compound designations because they are 
undefined when the divisor is zero - they are partial functions. If'they were 
used the result may be undefined and this would destroy our relational handling 
of exceptions which will be described in chapter 7. Square root (sqrt) cannot be 
used functionally because it is a relation, not a function - it relates any positive 
number to its positive and negative square roots; negative numbers are outside 
its domain. 

The mathematical relations can be easily extended, for example a number of 
equality and inequality relations are shown in Figure 3.2. The identity relation 
id relates any value to itself. The equality relation eq relates a pair of values to 
Uni t if they relate under the identity relation - it defines the set of all things 
that are equal. A value is related to any value except itself by notld. The notEq 
relation defines the set of values that are not equal. The relations 'less than or 
equal', lessEq, and 'greater than or equal', greatEq, are self explanatory. 

3.4.4 Expressions 

There are four expression forms: 

Basic values: the simplest form of expression is a basic value such as a number, 
character string or the Unit element. 

Tuples: a tuple is a sequence of elements of mixed type separated by commas 
and enclosed in parentheses. An example is ( "Jones" , Uni t, 39). Tuples 
are one of the two data structure forms in Drusilla. 

Elementary relations designations: a program definition, formal parameter, a 
built-in operator enclosed in square brackets, or a relation defined in exten­
sion. 

A relation is defined in extension by explicitly listing its elements in the 
form: 



aIAPTER 3. THE RELATIONAL LANGUAGE DRUSILLA 

Relational Operators 
Division 
[I] :: (num x num) ++ num 

Functional Operators (x, y) [I] z {:} z = x / y 
Addition Modulo 
[ +] :: (num x num) ++ num [mod] :: (num x num) ++ num 
(x,y) [+] z <=? z = x + y (x, y) [mod] z <=? z = x modulo y 
Subtraction Square root 
[ -] :: (num x num) ++ num [sqrt] :: num ++ num 
(x,y) [-] z <=? z = x - y x [sqrt] y {:} Y 'square root of' x 
Multiplication Less than relation 
[ *] :: (num x num) ++ num [<] :: num ++ num 
(x, y) [*] z <=? z = x * y x [<] Y <=? x 'less than' y 

Greater than relation 
[>] :: num ++ num 
x [>] y {:} x 'greater than' y 

Table 3.3: Primitive mathematical operators 

-- identity relation 
(x) id (x). 
-- less than or equal relation 
lessEq = [<] \I id. 
-- greater than or equal relation 
greatEq = [>] \I id. 
-- not identity relation 
notId = neg id. 

equality relation 
eq = set id. 
-- not equal relation 
notEq = neg eq. 

Figure 3.2: Equality and inequality definitions 

57 



a-IAPTER 3. THE RElATIONAL LANGUAGE DRUSILLA 58 

{(dbrd, ... ,(d,.urn)} 

Each pair (di, ri) is of the same type and denotes a mapping from domain 
value di to range value ri. Sets are replaced by relations as in the calculus. 
For example, the set of weekend days is denoted by the expression: 

{("Sat",Unit),("Sun",Unit)} 

This set could also be denoted by the relation 

{(Unit,"Sat"),(Unit,"Sun")} 

but the first form of set is the only one that can be used to restrict the domain 
«<) or range (> » of a relation. Relations defined in this way may be used 
as data structures or as program code relating inputs to outputs. 

The use of relations as data structures allows relational database operations 
to be naturally expressed. An example of a relation projection operations are 
given in Figure 3.3 where projections of relation workers are taken. Such 
database operations are expressed most concisely when the relations are 
viewed as sets Le. relations between elements and Unit. In modern func­
tionallanguages the data structures are created using constructor functions. 
This is not the case in Drusilla - data structures are just values. 

Compound relation designations: are constructed as in the calculus. Drusilla, 
like Ruby, is a constructive language - compound designations are built 
piecewise from smaller expressions, by applying the built-in, relational and 
mathematical operators as functions. The functional form of operator use 
makes Drusilla an applicative language. Equivalent expressions may be 
substituted for existing ones because the language has referential transpar­
ency. The syntax of a Drusilla expression is defined in Figure 3.4. Any 
expression that evaluates to a relation is called a relational expression. 

3.4.5 Definitions 

A Drusilla program consists of a collection of definitions, the grammar for which 
is given in Figure 3.5. There are three forms of definition: value, fully parameterised 
and partially parameterised. 

Value Definitions 

A value definition binds an identifier to an expression that can denote any form of 
Drusilla value including of course a relation. The definitions of z, x, y, a and bin 
Figure 3.1, factRec and fib in Figure 3.6 are all examples of value definitions. 
(A calculs definition of f actRec is given in Figure 3.7 as an aid to clarity). 
The problem with value definitions is that they become difficult to formulate 
when the flow of information between relations does not have a natural pipeline 
structure. Experience with FP [3] has highlighted this problem. This is alleviated 
by introducing definition forms that allow formal parameters to be used. 



CHAPTER 3. THE RELATIONAL LANGUAGE DRUSILLA 

workers relation 
workers = {( (1, "Simon", "Oxford", "13k") ,Unit), 

«2,"Dave","York","13k"),Unit), 
«3, "Paul", "Cambridge", "17 .Sk") ,Unit), 
«4,"Tim","Reading","18k"),Unit)}. 

-- tuple extraction relations 
(code,name,place,salary) getCode code. 
(code,name,place,salary) getName name. 
(code,name,place,salary) getPlace place. 
(code,name,place,salary) getSalary salary. 
(code,name,place,salary) getNameSalary (name,salary). 
(code,name,place,salary) getCodePlace (code,place). 

-- projection relations over workers 
projectCode = getCode img workers. 
projectName = getName img workers. 
projectPlace = getPlace img workers. 
projectSalary = getSalary img workers. 
projectNameSalary = getNameSalary img workers. 
projectCodePlace = getCodePlace img workers. 

Figure 3.3: Example relation projections 

compExp ~ simpleExp {binnryOp simpleExp}* 
simpleExp ~ [unaryOp] argExp 
argExp ~ opSection 1 optCurryRel1 domain 
domain ~ number 1 string I unit I extensRel I tuple 
opSection ~ [(left Sec I rightSec)] 
leftSec ~ argExp primOp 
rightSec ~ primOp argExp 
optCurryRel -t [curryTuple] curryObj [curryTuple] 
curryObj ~ identifier I brackExp I elementOp 
elementOp ~ [primOp 1 
brackExp ~ (compExp) 
tuple -t (compExp {, compExp}* ) 
curryTuple -t (curryItem {, curry Item} * ) 
curryItem ~ compExp 1_ 
extensRel ~ {domainPair {, domainPair}* } 
domainPair -t (domain, domain ) 

Figure 3.4: Grammar for a Drusilla expression 
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program -+ {relDefn} * 
relDefn -+ nameBind I parDefn . 
nameBind -+ identifier = compExp 
parDefn -+ defnPars identifier compExp 
defnPars -+ (parameter {, parameter}* ) 
parameter -+ identifier I defnPars I 

Figure 3.5: Grammar for a Drusilla program 

recursive definition of factorial 
factRec = id # ([- 1] ; fact) ; [*] @ (O,l)}. 

-- recursive definition of fibonacci 
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f ib = [- 1 ] ; fib # ([ - 2] i f ib ) i [ + ] @ ( 0 , 0 ) , (1, 1 ) } . 

-- Euclid's greatest common divisor 
(x, ) gcd [> 0] < < (id # [x mod] ; gcd) @ ( 0 , x) } . 

Figure 3.6: Recursively defined mathematical functions 

m factRec n {:} ..., m id 0 A (rn-I) factRec 1 A (m/l) [*] n V 
m id 0 A nid 1 

Figure 3.7: Calculus definition of factorial 
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Fully Parameterised Definitions 

A fully parameterised definition has the syntactic form: 

domainTuple relationN ame definingExpression 

It binds a name, relationN ame, to a relation between values in a domain, denoted by 
a tuple of formal parameters, domainTuple, and an expression, definingExpression, 
which defines the range value that is related to a given domain value. The formal 
parameters in domainTuple name the domain value so that formulation of the 
defining expression may be simplified. The definition of cube in Figure 3.1 is an 
example of such a definition. This form of definition can be used to extract tuple 
elements or to alter their nesting as demonstrated by the definitions of fst, snd, 
Ish, and rsh in Figure 3.8. A relation defined in this way must be functional 
because a given domain value relates to exactly one range value - the value of 
the defining expression. However, such functional relations cannot be applied to 
arguments since the aim of Drusilla is to explore the expressive power of rela tions 
rather than functions. 

(x,y) fst x. 
(x,y) snd y. 
(x,y) swap (y,x). 
(x) id (x). 

«a,b),c) lsh (a,(b,c» 
(a,(b,c» rsh «a,b),c) 

Figure 3.8: General tuple operations 

Partially Parameterised Definitions 

A partially parameterised definition has the syntactic form: 

domainTuple relationN ame definingExpression 

It binds an identifier, relationName, to a relation defined by an expression, defining­
Expression. Values in the domain of relationName are syntactically described by a 
tuple, domainTuple. This tuple contains formal and anonymous parameters. Part 
of any given domain value is named by the formal parameters and the rest is 
left unnamed by the anonymous parameters, denoted by underscores. If the an­
onymous parameters are extracted from domainTuple then they form a tuple (the 
anonymous tuple) that must syntactically match values in the domain of the defin­
ing relation, definingExpression. For example, if the anonymous tuple is a triple, 
then the domain values of definingExpression must also be triples. The definitions 
of the auxiliary relations ackA, ackB and ackC in Figure 3.9 are examples of 
partially parameterised definitions. 
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The pattern formed by the domain tuple does not constitute pattern matching 
in the functional language sense since it cannot be used to define a relation via sev­
eral separate equations with different domain patterns. There is however a close 
alternative to this as demonstrated by the relational definition of Ackermann's 
function, ack, shown in Figure 3.9. 

ack = ackA @ ackB @ ackC. 
(-,Y) ackC {(0,y+1)}. 
(x,_) ackB {(0,1)} ; (x-1,_)ack. 
(x, ) ackA [-1] ; (x, )ack ; (x-I, )ack. 

Figure 3.9: Definition of Ackermann's function as a relation 

3.4.6 Higher-order Relations 

Drusilla is a higher-order language - relations are first-class citizens and may 
be values in the domains and ranges of other relations .. The relational values 
that occur in the domain and range elements of other relations are called value­
relations. The relations while and repeat defined in Figure 3.10 are examples 
of higher-order relations. (The calculus definitions of both relations are given in 
Figure 3.11 as an aid to clarity). Both definitions contain subrelations, p and fin 
their domain values. 

-- simulation of a while loop 
(p,f,_) while id @ (p « f ; (p,f, )while). 

-- simulation of a repeat loop 
(p,f,_) repeat f; «p,f,_)repeat @ (p « id». 

-- example use of while 
createMantissa = ([> 1], [/ 10], )while. 

Figure 3.10: Example higher-order relations 

Higher-order relations are very common because the relation is the main form 
of data structure. 

3.4.7 Specialised Relations 

Although application of user-defined relations to arguments is not permitted, it 
is possible to specialise a relation by partial instantiation of its domain and/or 
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(p,f,x) while y {:} ., x P Unit A x id y V 
x P Unit A x f z A (p,f,z) while y 

(p,f,x) repeat y {:} x f z A (z P Unit A z id Y V 
., z p Unit A (p,f,z) repeat y) 

Figure 3.11: Calculus definitions of while and repea t 
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range. This 'freezes' values into the domain/range of the relation. For example 
the expression [- 1] used above in the definition of ackA in Figure 3.9 denotes 
the partial instantiation of the domain of arithmetic plus relation; the value being 
'frozen in' is 1. This is actually a syntactic sugar for the normal Drusilla relation 
specialisation syntax (_,1) [-]. It denotes the predecessor relation which holds 
between any number and that number minus one. Placement of the tuple before 
the relation indicates that the domain is being specialised. Placement of the tuple 
after the relation indicates that the range is being specialised. The specialising 
tuple is a syntactic description of values in the domain of the relation. The presence 
of the anonymous value (_) indicates that no value is being instantiated in that 
part of the domain. As with partially parameterised definitions, the anonymous 
values can be extracted to form an anonymous tupZe. The anonymous tuple forms 
a syntactic pattern that describes values in the domain of the specialised relation. 
The meaning of the specialised relation is not changed from the original - it is 
just a special case of it. For example: 

x (_,1) [+] z {:} (x,I) [+] z 

Specialisation of user-defined relations is demonstrated in the definitions of ackB 
and ackA in Figure 3.9. The specialising values may themselves be expressions 
as demonstrated in the definitions of quadSol ve (expression [/ (2*a)]) and 
quadRoot (expression [- (4 * a *c) ] ) in Figure 3.12. (The calculus definition of 
quadSol ve is given in Figure 3.13 as an aid to clarity). 

(a,b,_) quadSolve (a,b,_)quadRoot [- b] ; [/ (2*a)]. 

(a,_/c) quadRoot sq i [- (4*a*c)] i [sqrt]. 

(n) sq n * n. 

Figure 3.12: Program to solve quadratic equations 

Relation specialisation is also used by the the definitions of combI, curryK 
and cur in Figure 3.14 where the S, K and I combinators are defined. Calculus 
types, although not part of the original source code, are included to aid clarity, 
as are the calculus definitions shown in Figure 3.1S. The ability to define and 
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(a,b,c) quadSolve x {:} (a,b,c) quadRoot r /\ (r-b,2 *a) [/] x 

(a,b,c) quadRoot r {:} b sq squareB /\ (squareB,4*a*c) [-] x /\ x [sqrt] r 

(n) sq y {:} (n,n) [*] y 

Figure 3.13: Calculus definition of quadratic equation solver 

use these proves the computational completeness of Drusilla. The combinator I is 
defined as I = S K K by specialising the S combinator. In order for the definition of 
combI to be calculus type correct, a curried form of the K combinator, curryK, has 
to be used. The curried form is obtained from the relation cur which demonstrates 
how relation specialisation can emulate currying as used in functional languages. 
The calculus type of curryK is different to that of combK but its meaning as a 
combinator is preserved. 

Although there is no relation application by specialising the range of the 
containership operator (cont), a similar effect can be achieved. For example 
the expression [cont] (_, Uni t > is a relation between a set and its elements. 
Similarly [cont] (1,_> is a relation between a relation r and any value x such 
that 1 r x. 

The primitive unary opera tors can also be specialised. If [6] is a unary operator 
for which x and y are, respectively, domain and range values then [x 6] denotes 
a domain sepecialisation and [6 y] denotes a range specialisation, defined: 

y [x 6] Unit {:} x 6 y 
x [EB y] Unit {:} x EB y 

These specialisations are, respectively, syntactic sugar for the expressions: 

[x EB] - (x, _)(set [$]) 
[$ y] - (-, y)(set [63]) 

Example specialisations are [> 0], [< 0] and [mod y] used in the definitions 
shown in Figure 3.16. 

3.4.8 Lazy Reduction Semantics 

Drusilla's semantics are reduction as normally associated with a functionallan­
guage and parameters are passed by simple substitution of actual for formal 
parameters as defined by the beta rule of the A - calculus. The evaluation mech­
anism, called relational laziness, is lazy in the sense that no subexpression is 
evaluated until its value is known to be required. More explanation of this mech­
anism is given in chapter 7. This permits non-strict relations (relations which hold 
even if part of their domain is undefined) such as fst and snd. The other main 
consequence of laziness is that it permits definition and handling of infinite rela­
tional data structures. For example the definitions of na ts, odds and squares 
in Figure 3.17. 
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-- cancellator combinator K 
-- K x Y = x 
combK :: (A x B) <-> A 
( x , y ) combK (x). 

-- meta-application combinator S 
-- S f g x = (f x) (g x) 

combS :: « P x N) < - > Q x P < - > N x P) < - > Q 
(f,g,_) combS (id # g ; f). 

identity combinator I 

I x = x 
I = S K K 

comb I :: A < - > A 
combI = (combK,curryK,_)combS. 

-- curried form of combinator K 
curryK :: A <-> (B <-> A) 

curryK = (combK,_)cur. 

-- relation currying used in definition of combI 
cur :: « S x W) < - > V x S) < - > (W < - > V) 
( r , x) cur { ( x , _ ) r ). 

-- identity used in definition of combS 
id :: A <-> A 
(x) id (x). 

Figure 3.14: Definitions of the 5, K and I combinators 

(x,y) combK x 

(f,g,x) combS y {:} x g z A (x,z) f y 

xcomblx 

Figure 3.15: Calculus definitions of 5, K and I combinators 
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signum 
sgn = (O-l,_)fst @ ([> 0] « (l,_)fst) @ [(O,O)). 

-- absolute negate 
absNegate = absB ; negate. 

-- unary minus 
(n) negate (0 - n). 

-- absolute value 
abs = id @ ([ < 0] < < [* (0 -1) ] ) • 

-- set of even numbers 
even = (_,2)divisableBy. 

-- set of odd numbers 
odd = neg even. 

-- (x,y) divisableBy Unit 
-- if and only if x mod y = 0 
( ,y) divisableBy [mod y] ; {(O,Unit)}. 

-- positive square root 
posSqRoot = [sqrt] » [> 0]. 

Figure 3.16: Standard mathematical functions 

nats = [(Unit,O») \I (nats 
odds = {(Unit,l») \I (odds; 
squares = inv nats « sq. 
(n) sq n * n. 

[+ 1]). 
[+ 2]). 

Figure 3.17: Examples of infinite relational data structures 
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3.4.9 The Programming Environment 

The current environment is very much a prototype. The basic action is to evaluate 
expressions supplied by the user at the terminal in the environment established by 
a program. A Drusilla program is written as a normal UNIX file. The interpreter 
is written in Miranda and is invoked by applying the interpreting function to the 
file name of a Drusilla program. No interactive editing of a Drusilla program 
within the environment is possible. 

Expression evaluation takes place in one of three modes: show, forward, or 
test. The mode can be determined syntactically from the expression. 

Show mode is evaluation of any Drusilla expression. If the result is a rela tion then 
its element pairs should be explicitly available.5ome example expressions 
are: 

example expression result 
{(0,1),(1,2)} \/ {(3,23)} {(0,1),(1,2),(3,23)} 
2 + 3 5 
nats { (Unit, ° ) , (Unit, 1) , ... } 

Forward mode evaluation involves applying a relational exp~ession to an expres­
sion denoting a domain value to yield a set of related range values. Some 
example expressions are: 

example expression result 
(id) 2 { 2 ] 

(fact) 4 { 24 } 

(ack) (2,2) { 7 ] 

(quad) (1,0-7,12) { 3.0, 4.0 } 

(createMantissa) 456 { 0.456 } 

Test mode is a test of whether given domain and range expressions are related 
under a given relational expression. Some example expressions are: 

example expression result 
(2) (id) (2 ) "TRUE" 
(4) (fact) (12) "TRUE" 
«2,2» (ack) (11) "FALSE" 
«1,0-7,12» (quad) (23) "FALSE" 

3.4.10 Polymorphic Strong Typing 

Drusilla is statically and hence strongly typed. That is every expression and 
every subexpression has a type that can be deduced at compile time and any 
inconsistency in the type structure of a program results in a compile time error 
message. Drusilla actually possesses two related type systems: 
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Calculus types reflect the mathematical structure of the program. 

Moded types are built on top of calculus types and convey the operational struc­
ture of the program - the modes of use possible for different relations. 

If the definitions in a program are viewed as pieces in a jigsaw puzzle then the 
type systems dictate which pieces may be joined together. Calculus types ensure 
that two pieces can only be put together if meaningful to the overall picture and 
moded types are a further restriction that ensure pieces can only be put together 
if their edges match. . 

Calculus types (and hence moded types) are polymorphic in the sense of 
Milner [75]. Polymorphism is indicated by use of upper case letters as generic 
type variables. For example calculus types for some of the relations defined so 
far: 

fst · . CA x B) ++ A 
snd · . CA x B) ++ B · . 
sq .. num ++ num 
squares .. num ++ num . . 
nats .. un ++ num . . 

and moded types for the same relations: 

fst?? fo[(A x B) ++ A]] 
fst?? te[(eA x B) ++ eA] 
snd?? fo[(AxB)HB]] 
snd?? te[(A x eB) H eB] 

sq?? fo [num ++ num] 
sq?? te [num ++ num] 
squares?? sh[num H num] 
squares?? fo[num H num] 
squares?? te[num H num] 
nats?? sh[un ++ num] 

nats?? fo [un ++ num] 
nats?? te [un H num] 

The need for moded types is discussed in chapter 4. 

3.5 Conclusion 

This chapter has introduced a new relational language -Drusilla. The underlying 
mathematical model of this language has been defined and used to formally define 
the built-in operators. Examples of operator use have been given in several 
example programs. 

The implementation of this language must avoid MacLennan's constraint of 
fixed relation representations. The next three chapters consider techniques for 
implementing Drusilla. Chapter 7 explores more fully the programming styles 
possible in Drusilla. 



Chapter 4 

The Representation Bottleneck 

4.1 Introduction 

In his Turing award lecture Backus [3] identifies the barrier to expressive power 
in imperative languages as the 'von Neumann bottleneck'. He says: 

'The assignment statement is the von Neumann bottleneck of programming 
languages and keeps us thinking in word-at-a-time terms in much the same 
way the computer's bottleneck does.' 

He observes that the assignment statement splits programming into two 
worlds: a world of expressions and a world of statements. His conclusion being 
that the world of expressions is desirable as it has useful mathematical properties 
and most computation takes place there. The world of statements, however, is 
undesirable as it only exists for computations centered around the assignment 
statement. 

In a similar fashion an explicit constraint on expressive power in RPL can 
be identified as the representation bottleneck. MacLennan's fixed representation 
scheme splits relational programming into two worlds: a world of intensional 
relations and a world of extensional relations. This directly inhibits freedom 
of expression because it separates the relational operators into two classes: one 
applicable solely to intensional relations and one applicable solely to extensional 
relations. This representation bottleneck keeps the programmer thinking in terms 
of computable functions and data structures and as such fails to preserve the 
relational abstraction. As a consequence RPL arguably offers little more, in terms 
of economy of expression, than the functionallanguage FP [3] on which it is based. 

MacLennan [67] refers to his operator division as the 'elimination of poly­
morphism' - operators are only defined for one representation even if they 
are implementable and useful on others. Strachey [107] originally distinguished 
between two major forms of polymorphism: 

Parametric polymorphism is obtained when a function works uniformly on a 
range of types; these types exhibit some common structure. 

Ad-hoc polymorphism is obtained when a function works, or appears to work 
uniformly on a range of types (which may not exhibit a common structure) 

69 



CHAJYTER 4. THE REPRESENTATION BOTTLENECK 70 

and may behave in unrelated ways for each type. 

Ad-hoc polymorphism is the kind MacLennan is referring to. If the representation 
bottleneck is to be removed then each relational operator must be defined for 
different relation representations and the same symbol used for each occurrence, 
regardless of the representation of the relation(s) it is applied to and the context 
used to decide the appropriate definition. 

This particular form of ad-hoc polymorphism is called overloading and overload 
resolution is the process of selecting appropriate operator definitions. If relational 
abstraction is to be preserved at the programming level then the system must 
automatically select representations and resolve operator overloading to preserve 
relational abstraction. 

Section 4.2 discusses different relation representations and their relative mer­
its and demerits. Section 4.3 examines related work on automatic representation 
selection and overload resolution. Section 4.4 describes a mechanism, based 
on abstract interpretation, for automatic representation selection and overload 
resolution. Section 45 identifies the weaknesses and failings of this approach. 
Section 4.6 describes a more powerful approach for representation selection. This 
is a mechanism based on Milner type inference called typed representations. Sec­
tion 4.7 compares the two approaches to representation selection. Section 4.8 
explains how the information generated by the typed representation analysis can 
be used to resolve operator overloading in expressions. Even with automatic rep­
resentation selection constraints still exist on programmer freedom. Section 4.9 
discusses how these constraints might be reported to the programmer. Finally, 
section 4.10 offers conclusions as to the degree of success with which automatic 
representation selection alleviates the representation bottleneck. 

4.2 Relation Representation Techniques 

MacLennan [67] identifies several representations of relations suited to imple­
mentation in a functional language. Drusilla is implemented in Miranda and uses 
a variety of relation representation techniques. 

4.2.1 Extensional Representations 

An extensional representation of a relation stores the relation elements in a data 
structure. This method can only be used if all the relation elements, or some 
formula for their generation, is known. The programmer may give an extensional 
definition of a relation by explicitly stating this information. If lazy evaluation is 
used in the implementation then the formula can generate an extensional relation 
with an infinite number of elements. For example, s is explicitly defined and 
natSet is a formula for generating the infinite set of natural numbers: 

s = (1,"a"),(2,"b"),(3,"c"),(2,"d"),(1,"e")} 
natSet = {(Unit,O)} \/ (natset ; [+ 1]) 
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Extensional definitions can be extensionally represented by placing their ele­
ments in some data structure. If the data structure used is to support the different 
modes of relation use described in chapter 3 then it must allow associative lookup 
between related domain and range elements. 

For a given extensionally defined relation an association list where each ele­
ment is a pair could be used. In each pair the first element is a domain value 
and the second element is a list of range values related to that domain value. For 
example, s above would be represented: 

[ (1, [" a" , 11 e"] ) , (2, [lib 11 , "d JI ] ) , (3, [" c"] ) ] 

Relation natSet would be represented: 

[ (Unit, [0, 1, 2, ... ] ) ] 

For each element to be represented the set of range values related to some domain 
value must be known. However this range set can be lazily evaluated as with 
natSet. 

This form of association list may be detrimental to laziness, especially if infinite 
extensional relations are to be manipulated. Consider for example the union of 
identity over zero with identity over the positive natural numbers: 

{(O,O)} V {(1,1),(2,2), ... } 

This expression would be translated to the representation level as: 

union [( 0, [0] )] [( 1, [1] ) , (2, [2] ), ... ] 

The result should be a lazily evaluated list: 

[(0, [0]), (1, [1]) ,(2, [2]), ... ] 

The first element (0, [0] ) should pair domain value zero with the set of range 
values it is related to under the two relations. The implementation is unlikely 
to be aware that value·zero is outside the domain of the second relation and 
consequently lazily evaluates the infinite list of positive numbers searching for 
domain value zero. A non-terminating computation is entered and no value ever 
returned as result. 

It would be better for laziness if an element could be represented as soon 
as any pair of related domain and range values is known. A better choice of 
association list would be one with an element for each pair of related domain and 
range values. Relations sand na tSet would respectively be represented by: 

[(1,"a"),(1,"e"),(2,"b"),(2,"d"),(3,"c")] 
[(Unit,0),(Unit,1),(Unit,2), ... ] 

The above union expression would be translated to the representation level: 

union [( ° , ° )] [( 1,1) , (2,2), ... ] 

When evaluated this gives the required result: 

[(0,0),(1,1),(2,2), ... ] 
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4.2.2 Intensional Representations 

An intensional representation of a relation uses a computable function to represent 
the relation elements. 

Corresponding Computable Function 

If the relation being represented is computable and deterministic then it can be 
represented by the corresponding function in a functional language. The basic 
arithmetic operations and the relational operators that are known to be functional 
may be represented by such functions. They can only be used to represent those 
user-defined relations for which functionality is known. If functional relation R 

is represented by function f then: 

xRy#y=fx 

This form of mapping a function into a relation is referred to by Meijer [74] as 
taking its graph. For example the union of two relations sand T represented 
respectively by the functions f and g: 

x (5 U T) y {:} y = f x V Y = g x 

Set-valued Functions 

Set-valued functions can be used to represent relations that are computable 
but non-functional. If a relation R relates domain value x to range values 
Yt, ... Yn then the set-valued function, f, used to represent R maps x to the 
set {Yl) ... ,Yn}. If x is not in the domain of r then this set will be empty. If R is 
functional then the set will contain at most one result, otherwise it can contain 
any number of results. This relationship can be stated formally: 

xRy#y E fx 

Meijer [74] refers to the mapping of a set-valued function into a relation, as taking 
the function's choice. He refers to the mapping of a relation into a set-valued 
function as taking the breadth of the relation. Breadth and. choice, as he observes, 
establish a bijection between set-valued functions and relations. For example the 
union of two relations sand T represented respectively by the functions f and g: 

x (5 U T) Y {:} Y E f x V Y E g x 

Characteristic Functions 

Boolean-valued characteristic functions can be used to represent both functional 
and non-functional computable relations. If a relation R relates domain value x to 
a range value y then the characteristic function, f, used to represent R maps the 
pair (x,y) to True. If x and Y are not related under R, then f maps the pair 
(x, y) to False. More formally: 

x R Y {:} f (x,y) 
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For example the union of two relations sand T represented respectively by the 
functions f and g: 

x (S U T) Y {:} f (x, y) V g (x, y) 

4.2.3 Coercing Between Representations 

In practice no one representation is ideal for all purposes. For this reason it may be 
appropriate to make a number of representations available and permit coercions 
between representations. We describe various representation coercions and show 
how they may be implemented in Miranda. 

Coercing an Association List 

Extensional representation is essential for show mode where all element pairs of 
a relation are to be listed. It is also the most flexible representation in that it can 
also be used in the other two modes of relation use. An association list can be 
used in forward mode, if it is coerced by associative look up, into a set-valued 
function: 

coerceALtoSF :: [(*,**») -> * -> [**] 
coerceALtoSF'rel domVal = 

map snd (filter ({=) domVal . fst) rel) 

This is less efficient than a natural set-valued function due to the computational 
cost of associative look up. It also requires equality to be defined over relation 
domain values. 

An association list can also be used in test mode by coercing it into a charac­
teristic function. This can be done using a membership function: 

coerceALtoCF :: [(*,**)] -> (*,**) -> bool 
coerceALtoCF rel (domVal,rngVal) = member rel (domVal,rngVal) 

This will be less efficient than a natural characteristic function due to the cost of 
the look up operation. The coercion also requires equality to be defined over both 
domain and range values. 

For both association list coercions every pair in the representing data structure 
must be examined until the desired element(s) are found. If this data structure 
is infinite .and the desired element is not present, a non-terminating computation 
is entered! Furthermore the need for equality to be defined for relation elements 
means that should the elements themselves be relations they cannot be represen­
ted by functions. 

Coercing a Set-valued function 

Point-to-point and set-valued functions are less flexible than association lists as 
they cannot be used in show mode. However, they are the most efficient repres­
entation for forward mode and can represent relations whose domain elements 
are represented by functions. 
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A relation represented by a set-valued function can be used in test mode by 
coercing its representation into a characteristic function: 

coerceSFtoCF :: (* -> [**]) -> (*,**) -> bool 
coerceSFtoCF f (x,y) = member (f x) y 

This co-ercion requires equality to be defined for the relation's range elements. 

Characteristic Functions Cannot be Coerced 

Characteristic functions are less flexible than the other representations considered 
because they can only be used in test mode. However, they do not force equality to 
be defined on relation domain or range values. Some operations only use relations 
in test mode: for example, the restricting relation in domain and range restriction 
and anti-restriction operations. A characteristic function is the only possible 
representation for some operations: for example, if relation R is represented by 
characteristic function f then the inverse and negation of R can be represented 
respectively by the characteristic functions: 

in vC F :: « * , * *) - > boo 1 ) - > ( * * , * ) - > boo 1 
invCF f (x,y) = f(y,x) 

negCF :: « * , * *) - > bool) - > ( * , * *) - > bool 
negCF f (x,y) = -(f (x,y» 

If R is represented by a set-valued function then, by coercing it to a characteristic 
function, these definitions can be used. 

Furthermore the characteristic function can represent relations whose domain 
and range elements contain relations represented by functions. The inverse of a 
function can be handled relationally by constraining the mode of use to test mode. 

The relation representations discussed have their various merits and demerits. 
The best representation for any relation depends very much on its intended modes 
of use and the operators used to manipulate it. 

4.3 Related Work 

Section 4.3.1 reviews related work on automatic representation selection. Sec­
tion 4.3.2 examines related work on overload resolution and discusses whether 
the operators would be easier to implement in the functional language Haskell 
which provides a mechanism for handling ad-hoc polymorphism. 

4.3.1 Automatic Representation Selection 

This subsection reviews related work in the area of representation selection and 
assesses how relevant this work is to selecting relation representations. One 
aspect common to the approaches discussed is that they are concerned solely 
with selecting representations for data structures and not with the more general 
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problem of selecting representations for those program components that perform 
computation. 

Low's Overview of Issues 

An overview of representation selection up to 1978 is given by Low [64], who 
observes that automatic data structure selection should allow the programmer to 
use abstract data types without having concern for their underlying represent­
ation. The data structures implementing them should be chosen automatically. 
This is the aim for Drusilla - the programmer should see relations but not their 
representa tions. 

Low [64] identifies several points of importance in automatic representation 
selection: 

Representation alternatives: given any abstract data type it is rarely the case that 
one representation is optimal for all programs. 

Multiple representations: often there is no one representation that is most ef­
ficient or even applicable for all the primitive operations applied to the 
structure. 

Information gathering: it is crucial to know how the abstract structures are used 
within the program. 

These points are clearly of relevance to relation representation selection. Sec­
tion 4.2 discussed alternative relation representations (association list, set-valued 
function and characteristic function) and concluded that no one representation 
is always possible or desirable. The effect of multiple representations can be 
achieved for a relation by coercing its representation. Information should be 
gathered concerning the operators used to manipulate relations. 

Low identifies three major techniques for determining how abstract structures 
are used in a program: 

1. Requiring the programmer to provide information. 

2. Monitoring executions of the program. 

3. Static analysis of the program. 

Technique 1 can be performed through interactive conversations between the 
user and the system. This is not suitable - it should be possible for the Drusilla 
programmer to enter and execute a program without consulting the system. Al­
ternatively, the user can be required to make special declarations in the program 
source. This could be used in the Drusilla system if the declarations are, in some 
way, abstracted away from actual representations, although it is better for the 
programmer if such declarations are not necessary. 

Technique 2 can only be used if default representations for the abstract struc­
tures can be chosen. This is not possible for Drusilla programs since the problem 
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is to find those representations that permit program execution. Moreover, a pro­
grammer should be able to use a program without having to indulge in trial 
execu tions. 

Technique 3 is used to generate information about the combinations of prim­
itive operators used in a program. Ideally, this technique should be used for 
selecting representations in Drusilla programs as it requires no programmer in­
volvement. The analysis can be based on information concerning the constraints 
relational operators impose between their argument and result representations. 

Rule Based Approaches 

Rosenchein and Katz [89] construct a model for the process of selecting repres­
entations for data structures. This model however is intended to serve as the 
basis for a knowledge-based interactive system for aiding programmers in the 
selection process rather than automating it. Kant [55] describes a similar system 
for high level language program specifications. A knowledge base of refinement 
rules details the implementation of high level language constructs. 

The SETL Approach 

SETL [100] is a 'very high level' language based on set theory. The main set­
theoretic objects in SErL are finite sets and ma ps. A set is an unordered collections 
of objects with no element repetitions and a map is a set of pairs which can 
represent either a function or a relation. In the 1970's much work on automatic 
data structure selection was undertaken for implementation of the SETL language. 
Schwartz [99,98,35], Schonenberg [97] and Liu [63] all describe in varying detail 
the same compiler optimisations. 

One of the basic ideas behind the SETt system is that the data representations 
used to realise an algorithm should depend on the program code and not vice­
versa. Algorithms can be coded without specifying any non-set-theoretic data 
structures. Representations for the abstract data structures are automatically 
selected by an optimising compiler. The task of data structure selection is a 
complex one as each structure is efficient for some operations but inefficient for 
others. 

The central notion in the SETL representation scheme is that of a base. Bases are 
auxiliary data structures that permit efficient access to related groups of variables. 
This is the only way bases are used; they are not explicitly manipulated by the 
program. Each auxiliary identifier declared to be a base constitutes a 'universal 
domain' for certain program objects. 

A base is ordinarily represented as a linked hash table of element blocks. Each 
block holds, in addition to the value of the object it represents, fields that can be 
used to store related values. A set can be declared a subset of a base B and a map 
variable whose domain is a subset of B can be declared as a map from elements 
of B. For such variables there are three possible representations: local, indexed and 
sparse. In local representation a single bit element is reserved in each element 
block of B. Indexed representation uses a separate array which is indexed by the 
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element block indices of B. Sparse representation uses a linked hash table whose 
elements are pointers into B. 

One of the main goals of introducing bases and based objects into a SETL 
program is to improve efficiency by reducing the number of hashing operations 
required during its execution. For example if a number of (possibly overlapping) 
sets are subsets of some universal set B then B can be introduced as a base and 
the other sets based on B. The number of hashing operations in the program will 
then, typically, be decreased since there is no need to hash into each set, only into 
the base B from which the elements of the other sets can be accessed. 

It is the task of the automatic representation selection algorithm to identify 
such 'universal' sets. The algorithm was originally described in a report [63] and 
a paper [98]. Successive revisions of the algorithm are described in papers [97,35]. 

The algorithm initially generates provisional bases and based representations 
for variables involved in operations. Separate bases are created for each hashing 
operation and thus reflect only 'local' information. These bases are then propag­
ated globally so that they may be integrated into an overall basing structure. 

This algorithm uses information generated by subjecting the program to vari­
ous analysis techniques. One of these is determination of type information at 
compile time by abstract interpretation as described by Tenenbaum [112]. Two 
instances of a variable can only be based on the same base if they are instantiated 
to values of the same type. Another important analysis statically determines in­
clusion relationships when an element is a member of a set or when one set is 
a subset of another. These two analysis techniques are significant to later work 
by Paige (discussed below) and to the representation selection work described in 
this thesis since they establish links between types and representations. 

The SETL representation selection algorithm identifies subcollections of a pro­
gram's data as independent 'universes' and describes the program objects in terms 
of their relationships to these universes. It decides only the major representation 
details; finer details are refined by choosing between the three different set/map 
representations discussed above: local, indexed and sparse. These finer decisions 
may further reduce the number of hashing operations involved in a program. 

The SETL approach is concerned solely with efficiency. There is little variety 
in the data structures used and some degree of hashing is always retained. The 
approach is also largely heuristic and lacks firm theoretical basis. Paige's work, 
discussed below, follows in the same vein but introduces more theory. The SETL 
designers did not consider computable functions as representations. Functions are 
more general than extensional representations since they do not have to be finite 
and may be more efficient than hashing. Despite its 'very high level' aspirations 
the SEfL language is very much imperative - a factor that complicates the 
analysis of programs. Consequently, a wide variety of analysis techniques is 
required - Schwartz [98] describes nine different types of analysis used by the 
compiler. 
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After SETL ... Work by Paige 

Paige [18] introduces a declarative, set-theoretic, high-level, programming lan­
guage named SQ2+ (set queries with fixed points). Subtypings (type contain­
ments) are inferred from SQ2+ queries in a first-order, parametric, monomorphic 
subtyping theory. 

An SQ2+ program is initially compiled into intermediate level imperative code 
in a language that is similar to SEfL called SEfM. This transformation is made 
using techniques described by Paige and Henglein [81]. Type variables occurring 
in SQ2+ subtypings are uniquely interpreted as finite universal sets called bases 
which are, in principle, the same as in SETL. They are used to create aggregate data 
structures that avoid data replication and implement logical, associative access 
operations in the SETM intermediate code. 

Paige [80] describes the representations used to implement set-theoretic op­
erations in the SETM code that results from compilation of an SQ2+ query. He 

. describes four basic kinds of data structure which extend those discussed by Paige 
and Henglein [81]: 

1. The simplest data structure considered for implementation of a set is a 
doubly linked list with pointers to the first and last list cells. Each cell stores 
an element of the set. If the set is a map than each list cell stores a domain 
value and the range value(s) related to that domain value. This is similar to 
the association list relation representation described in section 4.2. Such a 
representation is called unbased and is capable of supporting all the basic set 
operations. It is however inefficient for operations which require associative 
access of elements. For example if an element is to be randomly taken from 
set S and searched for in set Q. 

2. More efficient associative access is supported by based representations of 
sets. For example if sets Sand Q are stored in the same place then access of 
an element from S simultaneously locates that element in Q. A universal set 
B is introduced as a base for Sand Q. Band Q are represented as a collection 
of records, each record containing a Q and an S field. The elements of the 
B field are the values in set B and serve as a key. The Q field stores an 
'undefined' value if the B field value does not belong to Q. Those records 
whose B field value does belong to Q are connected by a doubly linked 
list stored in the Q fields. The first and last cells of the Q field list are 
indicated by pointers. The elements of Q are said to be strongly based on B. 
The relationship between B, Sand Q is: 

SUQcB 

3. In the previous example set S is stored separately from Band Q as a doubly 
linked list of pointers to the records whose B fields hold a value which is in 
S. The elements of S said to be weakly based on B. 

4. The fourth kind of data structure considered is an array. Arrays are applic­
able for any set of static size or of bounded dynamic size, and can be used 
instead of doubly linked lists in based representations. 
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The data structures used here improve the SEfL based representations in sev­
eral ways. SETL lacks a linked list representation for sets with unbased elements, 
does not permit iteration over sets with strongly based elements, and requires all 
sets with weakly based elements to be hashed making element addition expensive. 

This work adds type theory to the SETL basing approach to representation 
selection by establishing a link between monomorphic sub types and represent­
ations. This thesis identifies a similar link between (ad-hoc and parametric) 
polymorphic types and representation. 

4.3.2 Overload Resolution 

Overload resolution is a particular form of representation selection which selects a 
representation for a function when several candidate representations exist. Over­
load resolution in Drusilla is the process of selecting definitions for operators. The 
definition given to a particular operator must be applicable to the representations 
of the relation(s) it manipulates. The process of selecting definitions for operators 
is therefore dependent on the process of selecting representations for relations. 

The Co-ordinating Operator Constructor in SQUIRAL 

Smith and Chang [102] describe SQUIRAL (Smart QUery Interface for Relational 
Algebra) as a database interface that employs automatic programming techniques 
to analyse and refine high-level query specifications. The interface is regarded as 
a special purpose 'programmer'. The user formulates a query abstractly and then 
defines it in terms of the database primitives. The interface 'programmer' then 
takes over and progressively refines this query until it is expressed efficiently in 
machine primitives. 

A query may be thought of as an operator tree where the leaf nodes are the 
given relations to be manipulated. Each node is an operator which operates on its 
descendant nodes. The root node represents the final operation which yields the 
result. Each operator (example operators are UNION, INfERSECT, PROJECT, 
JOIN) can be most efficiently implemented if it can assume its input tuples will be 
supplied in sort order on some domain. Each operator has a number of alternative 
implementation procedures which are applicable to relations sorted on different 
domains. 

The co-ordinating operator constructor of SQUIRAL takes an operator tree 
and implements each operator from the set of alternative procedures in such a 
way that the sort orders of intermediate relations passed between operators are 
optimally co-ordinated. The scheme tries to maximize the efficiency of sort order 
decisions by performing two passes of the operator tree. 

The first pass is an upward one and labels each branch in the tree with the set 
of sort orders that can be efficiently generated from lower operations. These are 
called the preferred sort orders. The second pass is a downward one which, for 
each operator node, selects the preferred sort order that most efficiently generates 
the sort order that node must pass up. With this selection the implementation of 
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the operator at that node is simultaneously constructed. Operator overloading is 
resolved by this downward pass. 

The co-ordinating operator constructor of SQUIRAL is the main inspiration 
for the abstract interpretation based approach to relation representation selec­
tion described in section 4.4. For this a Drusilla expression is perceived as an 
operator tree. An upward pass of the operator tree labels each branch with the 
set of representations that can possibly be generated from lower operations. A 
downward pass of the tree then selects actual representations from the possible 
representations. 

Overload Resolution in Ada 

Operator overloading occurs in Ada where the same identifier can appear in 
different enumeration types whose scopes overlap and as the name of several 
functions. Runciman [92] summarises the Ada overload resolution requirements 
and reviews several published solutions. 

The problem of resolving an overloaded expression is that of obtaining a single 
meaning for it. Overloading in the earliest implementation of Ada was resolved 
by a computationally expensive algorithm. Alternating top-down and bottom­
up traversals of an expression tree propagate information in both directions until 
only one candidate definition remains for each operator node. 

This algorithm was greatly simplified by an informal argument that resolution 
may be viewed as the communication of constraints between nodes in the expres­
sion tree. Messages between any pair of nodes can be exchanged by an upward 
collection to the root followed by a downward distribution. In other words one 
bottom-up followed by one top-down pass should be sufficient for resolution. 

The same approach is taken in SQUIRAL and it further encourages the abstract 
interpretation approach to representation selection. 

The Haskell Type Class System 

Section 4.1 distinguished between ad-hoc and parametric polymorphism. An ex­
ample of ad-hoc polymorphism is where multiplication is overloaded - the same 
symbol is used to denote multiplication of integers (e.g. 3" 4) and multiplication 
of floating point values (e.g. 3.0 .. 4.0). An example of parametric polymorphism 
is the length function which acts in the same way for a list of integers as it does for 
a list of floating point numbers. The Milner [75] type system is a widely accepted 
approach to parametric polymorphism. 

Type classes [117] are an extension to the traditional Milner type system. They 
subsume many uses of ad-hoc polymorphism and enhance the expressive power 
of a polymorphic language. Type classes have been included in the language 
Haskell [44]. 

A type class is a family of types (whose members are called instances of the 
type) for which a collection of functions (the member functions of the class) are 
defined. For example, a type class can be used to overload multiplication as 
discussed above: 
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class Num a where 
(*) :: a -> a -> a 

A type a belongs to this class if has a function named (*) of the appropriate 
type. Instances of this class may be declared: 

instance Num Int where 
(* ) = multlnt 

instance Num Float where 
(* ) = multFloat 

These two definitions assert, respectively, that Int and Float belong to the class 
Num. 

Would it be possible to use type classes to implement the ad-hoc polymorphism 
of Drusilla operators? A class Rela tion could be defined and contain a member 
function for each relational operator. Each instance of this class would apply to a 
particular representation and contain those operator functions that return results 
of that representation. For example, the relation class with union and composition 
operators as member functions would be: 

class Relation a where 
union :: a -> a -> a 
comp :: a -> a -> a 

A type a belongs to the class relation if it has union and comp operations defined 
for it. 

An instance of this relation for association lists would be: 

instance Relation [(a/b)] where 
union = unionAl 
comp = compAl 

Here the definitions of functions unionAl and compAl are not important but 
their type signatures are: 

unionAl :: [( a, b)] - > [( a, b)] - > [( a, b) ] 
compAl :: [( a , b )] - > [( b , c )] - > [( a , c) ] 

The type of unionAl matches the union class type perfectly - it takes two 
relations of the same type and yields as result another relation of that type. The 
type of compAl, however, conflicts with the comp class type because its type is 
more general. The two relations it takes as argument need not necessarily have the 
same type. The operator is defined if the range type of the first relation matches 
the domain type of the second. Moreover, compAL returns as result a relation of 
another type. This definition therefore cannot be included in the class rela tion. 

Mixing parametric polymorphism and ad-hoc polymorphism together is a 
problem. When an operator is defined for a particular relation representation 
it should work uniformly on that representation regardless of the type of the 
relation being represented. For example, composition should be defined for 
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two relations whenever the range type of one is the same as the domain type 
of the other. This is parametric polymorphism. The different definitions of 
a relational operator should also be grouped together as a single overloaded 
function that applies regardless of the argument representations. For exam pIe, the 
composition operator symbol, (; ), should be applicable to relations irrespective 
of their representation. This is ad-hoc polymorphism. 

When a class instance is defined its type is substituted for the type variable 
associated with that class. If this instance is of polymorphic type then it becomes 
monomorphic when its type is substituted for the class type variable. i.e. it must 
denote the same instance of that polymorphic type at each occurrence of the class 
type variable. 

If ad-hoc polymorphism is used to hide relation representations behind the 
operators that process them then the parametric polymorphism of those operators 
is lost. Ad-hoc polymorphism is gained at the expense of losing parametric 
polymorphism. 

4.4 Representation Selection by Abstract Interpreta­
tion 

4.4.1 What is Abstract Interpretation? 

Hughes [46] states that abstract interpretation (or forwards analysis) consists of run­
ning a program with partial information about its inputs to derive partial in­
formation about its result. A forwards analyser starts with information about the 
values of variables occurring in each subexpression and propagates it upward 
through the syntax tree to derive information about the expression as a whole. In 
contrast to this, backwards analysis derives contextual information about a program 
by running it backwards. A backwards analyser starts with information about 
the context of the entire expression and propagates it downwards through the 
syntax tree to the leaves to derive information about the contexts in which subex­
pressions occur. Forwards analysis uses synthesised attributes while backwards 
analysis uses inherited ones. Forwards and backwards analyses have been much 
used in optimising of compilers for declarative languages. This section describes 
how a combination of forwards and backwards analysis can be used to select 
representations for all definitions, expressions and subexpressions in a Drusilla 
program. 

4.4.2 Preliminary Definitions 

The Abstract Domain 

Some form of denotation is required for the relation representation information 
being propagated around the syntax tree. It is usual to use elements of an abstract 
domain, which are called abstract values since they represent partial information 
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about the values of expressions. The use of a domain rather than a set guarantees 
that recursive definitions all have a solution. 

The elements of the abstract domain are not single representations but sets 
of representations because, as section 4.2 concluded, no representation is always 
ideal. The relation representations - association list, set-valued function and 
Boolean-valued characteristic function - are denoted respectively by the ab­
stract elements AL, SF and CF. Basic values (numbers, strings, unit element) are 
denoted by the abstract element, DV. For each expression the set of feasible rep­
resentations is considered. The empty set of representations allows reasoning 
about expressions and subexpressions that have no possible representation. The 
abstract domain is the lattice presented Figure 4.1. 

Abramskyand Hankin [1] state that domains are partially ordered sets (D/C) 
with least element .iD such that 

.iD cd, Vd ED 

In the representation domain the partial ordering is the superset ordering and the 
least element is the universal set of representations. More formally: 

xCy{:}y~x 

.iD = {AL,SF,CF,DV} 

{} 

/~ 
{AL} {SF} {CF} {DV} 

/XN 
{AL,5F} {AL,CF} {SF,CF} 

~AL$F'CF( 
---------{ AL,5F/CF,DV} 

Figure 4.1: The abstract domain for representation analysis 

The Abstract Syntax Tree 

Figure 4.2 defines the abstract syntax of Drusilla expressions through which the 
abstract values will be propagated. For simplicity all compound relation desig­
nations are defined as an operator applied to a sub expression. If the operator 
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is binary then the two subexpressions it 'glues' together are tupled to form one 
subexpression. Relation specialisations are also represented as compound desig­
nations: 

specialOp (reI x tuple) 

Operator specialOp is a system operator that is opaque to the programmer, reI is 
the relation being specialised and tuple is the specialising tuple. 

ast -t value I tuple I elementary I compound 
value -t number I string I unit 
tuple -t cast x ... xast) 
elementary -t operator I userDefn I formPar I relExtension 
compund -t funcOperator ast 

Figure 4.2: Abstract syntax of Drusilla expressions 

4.4.3 Analysis of an Expression 

Representations for an expression and all its subexpressions are selected by using 
a combination of forwards and backwards analysis. Forwards analysis generates 
the possible representations for the expression by propagating abstract values 
of subexpressions up the abstract syntax tree. Backwards analysis selects actual 
representations from those possible propagating the context down the tree to 
subexpressions. For simplicity it is assumed that the expression is known to be 
calculus type correct. 

Forwards Analysis of an Expression 

The abstract interpretation function, abstlnt, shown in Figure 4.3, returns the 
set of representations possible for a given expression. Values in the abstract do­
main are denoted by a hash symbol superscipt. The representations available 
for a compound designation op arg depends on the possible definitions of op 
and the representations possible for arg. The function repMap returns the rep­
resentations possible for a given compound designation - it encapsulates the 
argument-result representation constraints for each operator. When applied to a 
given designation, the function elementaryRep, returns the set of representa­
tions possible for that designation. 

The analysis depends on satisfaction of the elementary representation condition: 
the representations of all elementary designations - Drusilla operators, formal 
parameters and program definitions - must be known. Basic numerical operat­
ors are represented by set-valued and characteristic functions and the relational 
operators by set-valued functions. The relational operators cannot be represen­
ted by characteristic functions since this would require equality to be defined 
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abstlnt value = {DV} 
abstI nt (ast l x . .. X astn ) -

({astt x# ••• X# ast~) I astf E abstInt astj; 1 < ~ < n} 
abstlnt relExtension = {AL} 
abstlnt elementary = elementaryRep elementary 
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abstlnt funcOp ast = {repMap funcOp ast# I ast# E abstInt ast} 

Figure 4.3: Abstract interpretation function 

for their results, which may be represented by functions. Formal parameters are 
given synthetic representations. The program is analysed in such a way that each 
definition is analysed before the definitions that reference it. 

Backwards Analysis of an Expression 

Backwards analysis is applied to the expression for each possible representation 
generated by the forwards analysis. For a chosen expression representation the 
context propagated to the subexpressions are those representations that make the 
expression representation possible. The backwards analyser context function is 
defined: 

context op expRep argReps = x, x E argReps A repM ap op x = expRep 

The arguments given to the context function are: the operator forming the com­
pound relation designation, op, the required expression representation, expRep 
and the set of possible subexpression representations, argReps. It extracts from 
argReps one representation that permits expRep to be generated by using func­
tion repMap, to calculate the representation context. 

Once backwards analysis has been performed for each possible expression rep­
resentation, the expression analysis is complete. The result is a set of syntactically 
identical expression versions; each of which has its own unique representation. 

4.4.4 Analysis of a Definition 

The expression analysis technique can also be applied to definitions. Chapter 3 
identified three forms of Drusilla definition: binding and fully parameterised and 
partially parameterised. The representations possible for a binding definition are 
simply the representations possible for the bound expression. 

The analysis of parameterised definitions is more complex - representations 
for the formal parameters must first be generated to satisfy the elementary rep­
resentation condition Hughes [46] observes that abstract interpretation often 
places constraints on variables or allows analysis by interpreting with given ab­
stract values for the formal parameters. Therefore, all possible representation 
assumptions are made for each parameter, and forwards and backwards analysis 
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is performed for each assumption For example, consider the definition of the 
cartesian product: 

(r,s) cartProd er ; inv s) 

If rand s are two sets (relations between the set elements and the unit value) then 
this defines their cartesian product. The set of all possible assumptions is: 

{(rRep,sRep) I rRep E {AL,SF,CF,DV}; sRep E {AL,SF,CF,DV}} 

The forwards analyser uses these assumptions as synthesised abstract values 
so that every elementary designation has a representation. The defining expres­
sion is then analysed to generate a set of possible representations, each of which 
depends on specific formal parameter representations. The backwards analyser 
again selects representations from those possible and, for each representation, 
places the necessary representation constraints on the formal parameters. For 
some of the parameter assumptions the expression may have no possible rep­
resentation; this is denoted by the empty set of representations. This reflects 
constraints as to the representations parameters cannot have. The definition can 
then be assigned the set of representations possible for its defining expression. 
For example, the analysis of cartProd is shown in Table 4.1. In this example the 
backwards analysis has only one representation choice at each node because no 
elementary designation in the expression has more than one representation. 

r s I inv sir ; inv s I 
{AL} .{AL} {AL} {AL} 
{AL} {SF} {CF} {CF} 
{AL} {CF} {CF} {CF} 
{AL} {DV} {} {} 
{SF} {AL} {AL} {SF} 
{SF} {SF} {CF} {CF} 
{SF} {CF} {CF} {CF} 
{SF} {DV} {} {} 
{CF} {AL} {AL} {CF} 
{CF} {SF} {CF} {} 
{CF} {CF} {CF} {} 
{CF} {DV} {} {} 
{DV} {AL} {AL} {} 
{DV} {SF} {CF} {} 
{DV} {CF} {CF} {} 
{DV} {DV} {} {} 

Table 4.1: Abstract interpretation of (r ,5) cartProd r inv s 
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4.4.5 Analysis of Recursive Definitions 

Recursive and mutually recursive definitions are analysed using the standard 
abstract interpretation technique of fixpointing. This technique has theoretical 
justification in the fixed point theorem (see Abramsky and Hankin [1]) which 
states that every continuous function over an abstract domain has a least fixed 
point. In other words a set of mutually recursive definitions can be expressed as 
the fixpoint of a higher-order operator: 

< f#, ... ,f# ;; = F < f# , ... ,f# > 

for some F so 

< f#, ... , f# > = fix F 

and the fixed point is the limit of an ascending chain: 

00 

< f#, ... ,f# > = U Fi ..L 
> i=O 

If this chain is finite then its limit can be used to calculate the fixed point. For 
representation selection this chain must be finite because the abstract domain is 
finite. 

The representation fixed point is calculated iteratively for each group of mu­
tually recursive definitions. Initially each definition is assigned the 'bottom' 
representation value - the universal set of representations. Forwards analysis 
is then applied to each definition, as described in section 4.4.4, to produce a new 
set of possible representations. The new representation set for each definition is 
an approximation to its 'real' set of possible representations and is used as the 
assumption for the next iteration of the analysis. This iteration continues until the 
least fixed point limit is reached, when, the representation set assumed for each 
definition is the same as the representation set possible under those assumptions. 
When this fixed point is reached the sets of representations possible for each defin­
ition are known. Actual representations are then selected by applying backwards 
analysis to each definition as described in section 4.4.4. 

4.4.6 Analysis of a Drusilla Program 

If the elementary representation condition is to be satisfied then analysis of a 
program must ensure that: 

• No definition is analysed until all the definitions it refers to have been 
analysed. 

• Groups of mutually recursive definitions are analysed as an entity 'as de­
scribed in section 4.4.5. 
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To preserve these conditions the program is partitioned into groups of max­
imally strong components with respect to the program reference graph. This is 
a standard technique described in Peyton-J ones' book [82]. When this partition­
ing is complete each maximally strong component contains a group of mutually 
recursive definitions. The reduced program graph is acyclic; Le. there exist no 
mutually recursive definitions outside these components. 

The first condition is maintained by analysing the strong components in the 
reverse of their depth first search ordering (with respect to the reduced call graph). 
The second condition is maintained by analysing the definitions in each strong 
component together using the technique described in section 4.4.5. 

4.5 Failings of the Abstract Interpretation 

This approach has failings in terms of both efficiency and quality of the data 
generated. There are three main causes of inefficiency: 

1. The need to analyse each expression tree twice - an upward pass followed 
by a downward pass - seems excessive; analysis based on one pass would 
be more desirable. 

2. For recursive definitions iteration must be used to find fixpoints. This is 
a standard abstract interpretation technique but is expensive in terms of 
computation. 

3. Representations for formal parameters must be synthesised. The cartesian 
product of all possible representations must be taken and forwards analysis 
applied for each representation. 

The criticism concerning the quality of data produced is far more fundamental. 
The interpretation scheme generates possible representations for relation defini­
tions within a program that is known to be calculus type correct. This information 
alone is insufficient: analysis of higher-order definitions reveals nothing about 
the representations possible for value-relations. 

This has horrific consequences for operational behaviour of programs. For 
example, consider an expression which is the composition of two higher-order 
relations r ; s where the range of r is a relation and the domain of s is a relation. 
For the expression to be calculus type correct the two value-relations must possess 
the same type. For example, suppose the types of rand s are: 

r :: A ++ (B ++ C) 
s:: (E ++ F) ++ D 

The composition expression will have a type if and only if the types of the value­
relations can be unified. If they can be then the expression type will be: 

r;s::AHD 
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For this composition to be implementable calculus type consistency of the two 
relations is not sufficient - they must also possess the same representation. The 
implementation of composition requires either r to generate range values for 5 

to consume in its domain or 5 to generate domain values for r to consume in its 
range. The value-relations are communicated between rand s. Therefore, it is 
necessary to ensure consistency of value-relation representation. For example, if 
5 requires the relation in its domain to have an extensional representation then 
the relation in the range of r must also have an extensional representation. Such 
consistency is not enforced by the abstract interpretation and without it many 
programs found to be calculus type correct and successfully analysed can 'go 
wrong' at run-time. This is exactly the problem a Milner [75] type system is 
intended to prevent. 

4.6 A Type System for Representation Selection 

4.6.1 Why Use a Type System? 

The static polymorphic typing of functional languages is adopted in Drusilla 
through the calculus types introduced in chapter 3.2.2. Such a type system should 
prevent a program from going wrong at run-time. However it was observed in 
section 4.5 that a program found calculus type correct could still 'go wrong' under 
the abstract interpretation approach to alleviating the representation bottleneck. 
This crucial failing suggests that some new form of type system is required­
one that ensures that programs found type correct do not produce representation 
inconsistencies between relations on program execution. 

The notion that a type system would be well suited to this task is reinforced 
by comments from Cardelli and Wegner [20]: 

'A major purpose of type systems is to avoid embarrassing questions about 
representations and to forbid situations in which these questions might come 
up. 

A type may be viewed as a set of clothes (or a suit of armour) that protects 
an underlying representation from arbitrary or unintended use. It provides a 
protective covering that hides the underlying representation and constrains 
the way object may interact with other objects. In an untyped system untyped 
objects are naked in that the underlying representation is exposed for all to 
see. Violating the type system involves removing the protective set of clothing 
and operating directly on the naked representation: 

In MacLennan's RPL the programmer needs to view the underlying repres­
entations of relations in order to know which operators are applicable. The aim 
of the Drusilla system is to cover naked relation representations with a suit of 
dothes that better preserves the relational abstraction. This would suggest the 
need for a type system. 
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A type system is further suggested by the example used in the criticism of the 
abstract interpretation approach. Suppose a program contains two definitions r 
and s whose cal~lus types can be inferred statically, using Milner polymorphism: 

r:: A t+ (B t+ C) 
s:: (E t+ F) t+ D 

A type can be inferred for the composition of rand s by forcing the elements in 
the range of r and the elements in the domain of s to have the same type: 

r;s:: A +-7D 

A substitution for type variables R, C, E, and F, called the most general unifier, is 
generated by the type inference algorithm. This substitution ensures that Band 
E denote the same type as do C and F. This type information is generated using 
the rule: 

x :: P +-7 Q y :: Q t+ R 
X; Y :: P t+ R 

The type system infers type constraints for relation domain and range values. The 
abstract interpretation should infer similar representation constraints but does not 
_ representations are assigned to relations but not to domain and range values. 
A type system is a mechanism that can infer type constraints; there appears to be 
no reason why the same mechanism should not be used to infer representation 
constraints. 

4.6.2 Overview of Typed Representation Analysis 

The typed representation system of Drusilla is a generalisation of Milner's type infer­
ence system [75] that infers ad-hoc as well as parametric polymorphism. Milner's 
type system, as used in modern functional languages, normally infers a type 
for every expression and every subexpression within a program. Typed repres­
entation inference in Drusilla infers not only a calculus type but also a suitable 
representation for every expression and subexpression. The analysis not only en­
sures a program is type correct but also automatically selects representations. This 
section describes how the typed representation inference rules are derived from 
calculus type inference rules, and how expressions, definitions, and programs are 
analysed. 

4.6.3 From Calculus Types to Representation Types 

Objects in Drusilla must be mapped to the chosen implementation language, 
Miranda. Drusilla values of basic type (num, string, un, tuples) can be trivially 
mapped to the corresponding Miranda values. A number becomes that Miranda 
number, a character string becomes a list of Miranda characters and the Unit 
value a Miranda algebraic data type value Unit. Chapter 6 describes how a 
tuple can be represented as a list of Miranda values by defining the universe 
of Drusilla values as an algebraic data type. Values of basic type all have one, 
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natural :Miranda representation. By contrast a relation (value of relational type) 
can map into anyone of three possible representations: association list, set-valued 
function, or characteristic function. The representation selection problem is to 
decide a representation for any given value of relational type. A framework for 
this selection process is created by extending calculus types, adding information 
about representation when the type is relational. This extends the process of 
calculus type inference to that of typed representation inference. 

Definition of the Typed Representation Universe 

The typed representations of basic values are as for calculus types: num, string 
and un. 

If tl ... tn are typed representations then (t l x ... x tn) is the typed repres­
entation of tuples with objects of these typed representations as components. 

If tl and t2 are typed representations, and rep denotes a relation representation 
then rep[tl ++ t 2] is the typed representation of any relation with representation 
rep and domain values with typed representation t 1 and range values with typed 
representation t 2• The inclusion of typed representation information for relation 
domain and range values ensures that value-relations are given typed represent-
ations. 

polymorphism is denoted by typed representation variables of which there are 
two forms: ordinary and equality. An ordinary variable can unify with the typed 
representation of any value. An equality variable can only unify with the typed 
representation of those values for which equality is defined. Equality variables 
are distinguished from normal variables by an '=' superscript. 

Typed Representation Inference Rules 

Each Drusilla primitive operator has one associated calculus type inference rule 
which forms the basis for its set of typed representation inference rules. Each rule 
within this set captures some argument-result representation constraint which 
dictates what the result representation will be when that operator is applied to 
an argument of a certain representation. For example, the calculus type inference 
rule for the relation composition operator 

x .. P ++ Q y:: Q ++ R 
x; y :: P ++ R 

is combined with the representation constraints for relation composition, shown 
in Figure 4.4, to form the set of typed representation inference rules presented 
in Figure 4.5. Each typed representation rule reflects the natural computational 
constraints of type and representation for composition. 

Representation Coercions 

Representation coercions depend on equality being defined for certain values, as 
explained in section 42. Three of the typed representation inference rules for 



CHAPTER 4. THE REPRESENTATION BOTTLENECK 

s 
r ; s AL SF CF AL for Association List 

AL AL AL a SF for Set-valued Function 
r SF SF SF a CF for Characteristic Function 

CF a 1. 1. 

Figure 4.4: Representation constraints for relation composition 

r :: AL[A ++ B=l s:: AL[B= ++ Cl 
r ; s :: AL[A ++ Cl 

r :: AL[A = ++ Dl s :: a[B ++ Cl 
r ; s :: a[A - ++ Cl 

r:: SF[A ++ Bl s :: SF[B ++ Cl 
r ; s :: SF[A ++ Cl 

r :: AL[A ++ Bl s :: SF[B ++ Cl 
r ; s :: AL[A ++ C] 

r :: SF[A ++ B=] s :: AL[B= ++ C] 
r ; s :: SF[A ++ Cl 

r :: SF[A f+ Bl s :: a[B ++ Cl 
r; s:: CF[A f+ Cl 

r:: CF[A f+ Bl s :: AL[B ++ C=] 
r;s:: a[A ++ C-] 

r:: CF[A f+ Bl s :: SF[B ++ Cl 
r; s:: 1.TR 

r:: CF[A f+ Bl s :: CF[B ++ Cl 
r; s:: 1.TR 

Figure 4.5: Typed representation inference rules for relation composition 
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relation composition correspond to definitions that coerce an association list into 
a set-valued function. Such coercions are necessary for relations to be used in 
forward mode. A set-valued function can only be coerced into an association list 
if equality is defined for its domain values. In typed representation inference rules 
equality type variables are used to incorporate the equality constraints necessary 
for representation coercions. Equality variables are described in section 4.6.5. 

4.6.4 Representation Analysis of a Relation Extension 

An expression denoting a relation defined in extension takes the form: 

{( "Plus", [+]), ("Minus", [-]), ("Times", [*]), ("Divide", [I])} 

Such an expression is naturally represented by the corresponding association list 
so analysis should produce a typed representation of the form: 

AL[domTR H rngTR] 

To generate this the domain and range elements must both have one consistent 
typed representation. This means that if the relation is higher-order, for example 
if the range elements are relations, then the subrelations in each element must not 
only have the same type but also the same representation. The above expression, 
for example, has the valid typed representation: 

AL[string ++ SF[(num x num) ++ num]] 

4.6.5 Typed Representation Analysis of an Expression 

The typed representation inference algorithm is similar to standard polymorphic 
typecheckers, as described by Cardelli [19] and Reade [85]. When operators or 
user-defined relations are used as elementary designations they may be poly­
morphic and as such can have a different instance of that polymorphic type at 
each occurrence. The typed representations of such designations are called type 
schemes and the type variables associated with their typed representations called 
generiC. Generidty is preserved by refreshing the polymorphic type scheme at 
each occurrence of the designation, substituting new type variables for old. Sim­
ilarly the typed representations of operators must be refreshed when they form 
compound designations. 

The algorithm begins with the leaves of the expression tree and proceeds left 
to right and bottom-up moving toward the root node. The non-leaf nodes of 
the tree are compound designation which consist of an operator applied to one 
subexpression. Whenever an operator node is reached each of its typed represent­
ation inference rules is, in turn, refreshed and applied to the subexpression. Each 
application of an inference rule involves unification which generates a new sub­
stitution for type variables. This yields a set of alternative possible substitutions 
and hence a set of alternative possible typed representations for the expression, 
rather than one principal type. 
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Typed representation analysis selects representations by building a new ver­
sion of the expression tree for each substitution generated. Each substitution 
assigns a type and a representation to type variables in its associated expression 
tree and hence to the relations those variables are attached to. 

When the inference algorithm reaches the root node of the expression tree 
a set of syntactically equivalent resolved expression trees has been generated. 
Each tree has its own unique typed representation and associated substitution for 
type variables. Every relation and sub expression within each tree has a typed 
representa tion. 

The algorithm, rn, for typed representation analysis of an expression is 
presented in Miranda in Figure 4.9. The abstract syntax of expressions and typed 
representations processed are defined as algebraic datatypes in Figure 4.6 and 
Figure 4.7 respectively. The substitution operations for typed representation vari­
ables, defined in Figure 4.8, are simplified for presentation by removing the state 
variable used in the real implementation to store the typed representations of 
definitions and parameters and an infinite supply of type variables used when 
refreshing polymorphic types. The algorithm references several basic functions 
that are not defined here: 

lookupRel takes as argument the name of a programmer-defined relation and 
returns as result the set of typed representations associated with that relation. 

lookupParTR takes as argument the name of a formal parameter and returns as 
result the set of typed representations associated with that parameter. 

poly AssList returns the typed representation of a completely polymorphic asso­
ciation list 

RTR AL (TRvar (Alpha x» (TRvar (Alpha y» 

where x and y are unique type variables. 

opRules takes as argument a Drusilla operator and returns as result the set of 
typed representations associated with that operator. Each typed representa­
tion can be used as an inference rule when that operator forms a compound 
designation. For example: 

op arg 

Each typed representation for op is of the form RTR SF domTR rngTR. Let 
argTR denote a typed representation of arg. If argTR and domTR unify 
with substitution (j then the expression op arg has a typed representation 
(jrngTR. 
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relExp ::= 
No nurn 
St [char] 
ut 
Tu [reIExp] 
ReI ident typedRep 
Fpar ident typedRep 
RO relOp typedRep 

number values 
string values 
unit values 
tuple of expressions 
user defined relation 
formal parameter 

Ext [(reIExp,reIExp)] typedRep 
E relOp typedRep relExp 

elementary designation operator 
relation defined in extension 
compound relation designation 

Figure 4.6: The abstract syntax of expressions 

typedRep :: = 
Num 
String 
Un 
TRvar trVar 
TuTR [typedRep] 
RTR reI Rep typedRep typedRep 
BotTR 

trVar ::= Alpha nurn 
I Beta nurn 

relRep ::= AL I SF I CF 

number typed representation 
string typed representation 
unit typed representation 
variable typed representation 
tuple typed representation 
relational typed representation 
undefined typed representation 

normal typed representation variables 
equality typed representation variables 

relation representations 

Figure 4.7: Algebraic data type defining typed representation abstract syntax 
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subst ::= Sub (trVar -> typedRep) 

abstype trSub 
with 

idSub :: trSub 
newSub :: trVar -> typedRep -> trSub 
appIySubToTR :: trSub -> typedRep -> typedRep 
appIySubToExp :: trSub -> relExp -> relExp 
composeSubs :: trSub -> trSub -> trSub 

trSub == subst 

idSub = Sub TRvar 

newSub i t = Sub (assocMI [(i,t)] TRvar) 

appIySubToTR (Sub f) (TRvar i) = f i 
appIySubToTR subs (RTR rep tl t2) = 

RTR rep (appIySubToTR subs tl) (appIySubToTR subs t2) 
appIySubToTR subs (TuTR tup) = 

TuTR (map (appIySubToTR subs) tup) 
appIySubToTR subs other = other 

appIySubToExp sub (ReI name typRep) = 
ReI name (appIySubToTR sub typRep) 

appIySubToExp sub (Fpar name typRep) = 
Fpar name (appIySubToTR sub typRep) 

appIySubToExp sub (E op typRep arg) = 
E op (appIySubToTR sub typRep) (appIySubToExp sub arg) 

appIySubToExp sub (RO op typRep) = 
RO op (appIySubToTR sub typRep) 

appIySubToExp sub (Tu tup) = 
Tu (map (appIySubToExp sub) tup) 

appIySubToExp sub (Ext reI typRep) = 
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Ext (map (appIyPair sub) reI) (appIysubToTR sub typRep) 
appIySubToExp sub other = other 

composeSubs subl (Sub f) = Sub (appIySubToTR subl . f) 

appIyPair :: trSub -> (reIExp, relExp) -> (reIExp, relExp) 
appIyPair sub (x,y) = 

(appIySubToExp sub x, appIySubToExp sub y) 

as socML :: [( * , * * )] - > (* - > * *) - > * - > * * 
assocML assList assFun z = 

hd [y I (x,y) <- (assList ++ [assFun z]); x = z] 

Figure 4.8: Substitution operations for typed representations 
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fullTypeCheckExp :: trSub -> relExp -> [(trSub,reIExp)]) 
fullTypeCheckExp subX expX = 

[(subY,appIySubToExp subY expY) , 
(suby,expY) <- typeCheckExp subX expX] 

typeCheckExp sub (ReI name typRep) = 

[(sub,Rel name reITR) , relTR <- lookupRelTR name] 
typeCheckExp sub (Fpar name typRep) = 

[(sub,Fpar name parTR) '·parTR <- lookupParTR name] 
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typeCheckExp sub (E op typRep arg) = 

[(newSub,newExp) I (argSub,newArg) <- fullTypeCheckExp sub arg; 
(RTR SF IhsTR rhsTR) <- opTypeRep 0Pi argTR <- [getExpTR arg] 
(succ,opSub) <- [unify IhsTR argTR]i succ = True; 
newSub <- [composeSubs opSub argSub]i 
newExp <- [appIySubToExp newSub (E op rhsTR newArg)]] 

typeCheckExp sub (RO op typRep) = 
[(sub,RO op opTR) I opTR <- opRules op] 

typeCheckExp sub (Tu tup) = 
[(newSub,Tu newTup) I 
(newSub,newTup) <- foldr putExplnList [(sub, [])] tup] 

typeCheckExp sub (Ext reIn tr) = 
foldr analExtRel [(sub,Ext [] polyAssList)] reIn 

typeCheckExp sub other = [(sub,other)] 

putExplnList exp subsExps = 

[(newSub,newExp : expList) I (listSub,expList) <- subsExpSi 
(newSub,newExp) <- fullTypeCheckExp listSub exp] 

analExtRel (dom,rng) subsExts = 
[(newSub,newExt) I (extSub,Ext reIn extTR) <- subsExtsi 
(eISub, [newDom,newRng]) <- tcExpList extSub [dom,rng]; 
domTR <- [getExpTR dom]; rngTR <- [getExpTR rng] 
(succ,newExtSub) <- [unify (RTR AL domTR rngTR) extTR]i 
succ=True; newSub <- [composeSubs newExtSub elSub]i 
newExt = appIySubToExp newSub (Ext «dom,rng) : reIn) extTR)] 

getExpTR (No n) = Num 
getExpTR (st b) = String 
getExpTR ut = Un 
getExpTR (Tu tup) = TuTR (map getExpTR tup) 
getExpTR (ReI name typRep) = typRep 
getExpTR (Fpar name typRep) = typRep 
getExpTR (Ext reI typRep) = typRep 
getExpTR (RO op typRep) = typRep 
getExpTR (E op typRep arg) = typRep 

Figure 4.9: Algorithm for typed representation analysis of an expression 
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Unification For Typed Representation Inference 

Unification for typed representation analysis is based on the normal unification 
algorithm [88] used in conventional typecheckers, but is complicated by the pres­
ence of equality type variables. 

A typed representation is called an equality type if and only if equality is 
defined for all values belonging to that typed representation. The basic typed 
representations, num, string and un, are all equality types. A tuple has an equality 
type if and only if every element within that tuple has an equality type. A 
relational typed representation 

rep [domTR +-t rngTR] 

is an equality type if and only if rep is an association list and domTR and rngTR 
are equality types. Every equality variable has equality type. An ordinary type 
variable is not of equality type but can be changed to an equality variable which 
does have equality type. Such a change is called a type variable coercion. Some 
typed representations can be made equality types by coercing the variables used 
in those structures. 

For example, the empty relation, when represented by the empty association 
list,has the calculus type: 

AL[X t+ Y] 

This typed representation is not an equality type because the domain and range 
typed representations are not of equality type, although it should be as equality 
is defined for any empty list. It can be made an equality type by coercing the type 
variables: 

AL[X= t+ y=] 

This method for making typed representations equality types is called type restric­
tion and the algorithm is presented in Figure 4.10. The unification algorithm, U, 
is presented in Figure 4.11. The rules for deciding whether two typed represent­
a tions unify are: 

• Two basic types unify if and only if they are the same type. 

• Two tuples unify if and only if they have the same number of elements and 
all corresponding elements unify. 

• Two relational typed representations may unify if and only if they have the 
same representation and their respective domain and range typed repres­
entations unify. 

• An ordinary type variable may unify with a typed representation if and only 
if that variable does not occur within the typed representation. This is the 
normal 'occurs' check of unification If a normal variable unifies with an 
equality variable then the substitution generated maps the normal variable 
into an equality variable. 
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• An equality variable may unify with a typed representation if and only if 
that typed representation is an equality type. If it is not then the unification 
algorithm attempts to make it an equality type by type restriction. 

mkEquality :: typedRep -> (bool,trSub) 
mkEquality Num = (True,idSub) 
mkEquality String = (True,idSub) 
mkEquality Un = (True,idSub) 
mkEquality (TRvar trVar) = (True,mkVarEquality trVar) 
mkEquality (TuTR tup) = mkListEquality tup 
mkEquality (RTR AL dom rng) mkListEquality [dom,rng] 
mkEquality (RTR SF dom rng) = (False,idSub) 
mkEquality (RTR CF dom rng) = (False,idSub) 
mkEquality BotTR = (False,idSub) 

mkVarEquality :: trVar -> trSub 
mkVarEquality (Alpha var) = 

newSub (Alpha var) (TRvar (Beta var» 
mkVarEquality (Beta var) = idSub 

mkListEquality :: [typedRep] -> (bool,trSub) 
mkListEquality = foldr mkListEqualityB (True,idSub) 

mkListEqualityB :: typedRep -> (bool,trSub) -> (bool,trSub) 
mkListEqualityB typRep (False,sub) = (False,idSub) 
mkListEqualityB typRep (True,subX) = 

(succ,composeSubs subY subX) 
where 
(succ,subY) = mkEquality (applySubToTR subX typRep) 

Figure 4.10: Substitution operation to enforce equality 

4.6.6 Representation Analysis of a Definition 

The typed representation inference algorithm can also be used to generate a set 
of typed representations for a Drusilla definition. 

Analysis of a Binding Definition 

The set of typed representation for a binding definition is simply the set of typed 
representations for its defining expression. For example, consider the definition 
of '2x + y': 

doublePlus = ([2 *] 11 id) ; [+] 

The expression and definition are both given the typed representation set: 
doublePlus:: {SF[(num x num) ++ num1} 
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unify:: typedRep -> typedRep -> (bool, trSub) 
unify BotTR BotTR (True,idSub) 
unify BotTR other = (False,idSub) 
unify other BotTR = (False,idSub) 
unify (TRvar (Beta v» (TRvar (Beta x» 

= (True, idSub), v = x 
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= (True, newSub (Beta v) (TRvar (Beta x»), otherwise 
unify (TRvar (Alpha v» (TRvar (Alpha x» 

= (True, idSub), v = x 
= (True, newSub (Alpha v) (TRvar (Alpha x»), otherwise 

unify (TRvar (Alpha v» x = 
(- (occurs (Alpha v) x), newSub (Alpha v) x) 

unify x (TRvar (Alpha v» = 
(- (occurs (Alpha v) x), newSub (Alpha v) x) 

unify (TRvar (Beta v» x = 

(eqExists & noOccurs, composeSubs (newSub (Beta v) newX) sub) 
where 
(eqExists,sub) = mkEquality x 
noOccurs = - (occurs (Beta v) newX) 
newX = applySubToTR sub x 

unify x (TRvar (Beta v» = 

(eqExists & noOccurs, composeSubs (newSub (Beta v) newX) sub) 
where 
(eqExists,sub) = mkEquality x 
noOccurs = - (occurs (Beta V) newX) 
newX = applySubToTR sub x 

unify (TuTR tupX) (TuTR tupY) 
foldr2 tupUnify (True, idSub) tupx tupY 

unify (RTR repX dornX rngX) (RTR repY domY rngY) = 
(repX = repY & succl & succ2, composeSubs subY subX) 
where 
(succl, subX) 
(succ2, subY) 

unify dornX domY 
unify (applySubToTR subX rngX) 

(applySubToTR subX rngY) 
unify otherX otherY = (otherX=otherY, idSub) 

tupUnify :: typedRep -> typed Rep -> (bool,trSub) -> (bool,trSub) 
tupUnify x Y (succl, subX) = 

(succl & succ2, composeSubs subY subX) 
where 
(succ2,subY) = unify (applySubToTR subX x) 

(applySubToTR subX y) 

Figure 4.11: Typed representation inference unification algorithm 
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Analysis of a Fully Parameterised Definition 

The formal parameters of a (fully or partially) parameterised definition must 
initially be associated to unique type variables in the same way that A-bound 
variables are in conventional functional language typecheckers. These type vari­
ables are non-generic, they must denote the same instance of the polymorphic type 
at each occurrence and, unlike generic type variables, must not be refreshed. Ana­
lysis of the defining expression then generates a set of type variable substitutions 
and typed representations for that expression. The substitution associated with 
each typed representation also determines the typed representation of each formal 
parameter. The typed representations for the definition are generated from the 
typed representations of the defining expression. For example the definition of 
2x + y: 

(x,y) doublePlus 2 * x + y 

Such a definition may be given a set of typed representations of the form: 

SF [paramsTR H expTRl 

Here paramsTR is the type of the parameter tuple and is obtained by applying 
the typed representation substitution to the type variables associated with the 
parameters. The typed representation for the expression is expTR. The repres­
entation is a set-valued function because the definition produces the range value 
2 * x + y from the domain value (x, y). In our example the typed represent­
a tions would be as follows: 

(x,y) :: (num x num) 
(2 * x + y) :: num 
doublePlus :: {SF [(num x num) f+ num]} 

Analysis of a Partially Parameterised Definition 

Analysis of the defining expression is as for a fully parameterised definition -
all parameters, named and anonymous, are associated to unique type variables. 
The defining expression must be relational and hence have a set of typed repres­
entations of the form: 

rep [domTR H rngTR] 

The type variable substitution associated with each typed representation is exten­
ded by unifying the expression domain type, domTR, with the tuple of anonymous 
parameters. This new substitution is applied to the domain tuple to create a typed 
representation for the definition of the form: 

newRep [newDomTR f+ rngTRl 

If the representation of the defining expression, rep, is a set-valued or character­
istic function representation then the representation of the definitions, newRep, 
is the same. However, if rep is an association list and domTR is an equality type 
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then newRep is a set-valued function. The definition cannot be represented by 
an association list since it depends on formal parameters. When the definition 
is used the representation of the defining expression must be coerced to either 
a set-valued or characteristic function. Therefore, the definition representation, 
newRep, is made a set-valued function, which, if necessary, can be coerced into 
a characteristic function. If rep is an association list and dornTR is not an equal­
ity type then the definition is unusable and has no typed representation. Here 
newDomTR is the typed representation of the domain tuple and rngTR is the same 
as before. For example, another definition of '2x + y': 

(_,y) doublePlus [2 *] ; [+ y] 

The typed representations will be as follows: 

([2 *1 ; [+ y]) 
y 

(-,y) 
doublePlus 

:: SF [num H num] 
:: num 
:: (num x num) 
:: {SF [(num x num) H num1} 

4.6.7 Representation Analysis of Recursive Definitions 

If recursive and mutually recursive definitions are not analysed separately from 
the rest of the program then some polymorphism may be lost and it might not be 
possible to typecheck the program at all. (For an explanation of this, see Mycroft 
[78].) 

Typed representation analysis is applied to a group of recursive definitions 
in the same way a conventional functional language typechecker is applied to a 
group of recursive definitions or a 'let-rec' expression. The description of this 
intricate process is based on Hancock's description of typechecking 'let-recs' in 
Peyton-]ones' book [82]: 

1. Associate new type variables with the definitions in the group. These vari­
ables are non-generic - all occurrences of a defined name on the right-hand 
side of a recursive definition should have the same type. 

2. The definitions are analysed as described in section 4.6.6. If successful, this 
will yield a set of lists of typed representations. Within each list there is 
one typed representation for each definition. Each list is associated with a 
substitution for type variables that is applicable to all typed representations 
within that list. It is crucial that within a component each definition sees 
one consistent typed representation for all other definitions. 

3. Within each list unify each definition's typed representation with the typed 
representation of the corresponding type variable. The right-hand side of 
each recursive definition must have the same type as its corresponding 
variable. Should the unification succeed, that constraint can be met. 
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4.6.8 Representation Analysis of Programs 

Program analysis is simplified if two conditions are satisfied: 
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• No definition is analysed until all the definitions it refers to, outside its 
mutually recursive group, have been analysed . 

• Groups of mutually recursive definitions are analysed as an entity as de­
scribed above in section 4.6.7. 

These conditions are the same as for the abstract interpreta tion a pproach. They 
are preserved by partitioning the program into groups of maximally strong com­
ponents with respect to the program call graph. The first condition is preserved by 
analysing the components in the reverse of their depth first search ordering, with 
respect to the reduced call graph. The second condition is maintained by analys­
ing the definitions in each component together as a single entity, as is customary 
in polymorphic type checkers, in the manner described in section 4.6.7. 

4.6.9 Correctness and Completeness 

The algori tlun, iR, shown in Figure 4.9, for inferring sets of typed representa tions 
for expressions, is based on an inference system (the sets of typed representation 
rules for operators) for inferring typed representations. This section has two aims: 

1. To show in is correct (sound) in the sense that the set of typed representa tions 
it yields is derivable in the inference system. 

2. To show iR is complete in the sense that any typed representation dElrivable 
for an expression is an instance of that computed for iR. 

Algorithm iR is a generalisation of Milner's [75] in which each expression 
construct (operator) has a set of inference rules rather than just one. Therefore, 
the result of applying it to an expression E is a set: 

{(SI, El), ... (Sn, En)} 

where each Ei, 1 S i S n, is syntactically identical to expression E but has its 
own unique typed representation and substitution, Si' for typed representation 
variables. Each (Si, Ei) is produced by applying Milner's algorithm to E, selecting 
one applicable inference rule for each expression construct. The correctness and 
completeness proofs for Milner's algorithm given by Damas and Milner [25] 
therefore hold for algorithm iR. 

The soundness and completeness results have very practical ramifications for 
the Drusilla system. The set of typed representation inference rules for each 
operator should reflect what is computationally feasible for that operator. The 
completeness result states that if there exists some possible representation for an 
expression then the algorithm will find that representation. In this sense typed 
representation inference reflects the limit of computability for relational operators. 
However, this is not the same as full computational completeness as, for example, 
we disallowed enumeration of domain and range values for relations represented 
by characteristic functions. 
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4.6.10 Typed Representation Inference Examples 

Figure 4.12 shows the typed representations inferred by the Drusilla system for 
the program in Figure 3.17. Definition nats can be given either a association 
list or a set-valued function representation since its defining expression may be 
viewed as a formula for generating the natural numbers or as a set-valued function 
relating Uni t to the natural numbers. Definition sq is represented by a set-valued 
function because it is fully parameterised. Definition squares is represented by 
either an association list or a set-valued function depending on the representation 
of nats. 

nats :: AL[ un ++ num] 
nats :: SF[un ++ nurn] 

sq:: SF[num ++ num] 

squares :: AL[num ++ num] 
squares :: SF[num ++ num] 

Figure 4.12: Typed representations inferred for nats program 

Figure 4.13 shows the typed representations inferred by the Drusilla system 
for the program in Figure 3.14. The definitions combK and combI combinators 
are represented by set-valued functions because they are fully parameterised. 
The S-combinator, combS, by definition is higher-order because it contains two 
relations in its domain Consequently it has a larger set of typed representations 
_ one for each possible value-relation representation. This representation set 
shows illustrates that this definition corresponds to several different definitions 
in RPL - one for each value-relation representation. 

4.7 Comparison of Representation Selection Approaches 

Section 4.5 described the fundamental flaws of the abstract interpretation ap­
proach to representation selection described in section 4.4. Section 4.6 detailed an 
alternative approach - a type system which not only ensures a Drusilla program 
is type correct, but also selects representations for definitions, expressions and 
relations. 

This typed representation inference system certainly overcomes the failings of 
the abstract interpretation: 

• Representations are generated efficiently. Each expression is only analysed 
once and fixpointing is not required within maximally strong components. 

• Representations are selected for value-relations as well as relations. 

• The equality constraints needed for representation coercions are generated. 
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CombK:: SF[(C x D) f-t Cl 

CombI :: SF[F f-t F] 

combS:: SF[(AL[(G= x W=) H V] x AL[G= H W=] x G=) H V] 
combS:: SF[(AL[(G= x T=) H V] x SF[G= H T=] x G=) H Vl 
combS:: SF[(SF[(G x W) H S] x AL[G H W] x G) H S] 
combS:: SF[(SF[(G x T) f-t 5] x 5F[G HT] x G) H S] 
combS:: CF[(G'[(G x W) HP] x AL[G H W] x G) HP] 
combS:: CF[(G'[(G x T) H P] x SF[G HT] x G) H Pl 
combS:: CF[(AL[(P= x Q) f-t M=] x CF[P= HQ] x P=) H M=] 

Figure 4.13: Typed representations inferred for S, K and I combinators 
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Why should type inference be better than abstract interpretation for repres­
entation selection? The answer appears to lie with the use of substitutions and 
unification. For example, consider analysis of a parameterised definition. The 
abstract interpretation must synthesise abstract representation values for the para­
meters and analyse the definition once for each possible parameter representation. 
By contrast, in the type system the parameter representations are denoted by type 
variables and the substitution generated by the inference process maps those 
variables to the required typed representations. The substitution is created by 
unifying the type variables with the operator typed representation inference rules 
_ the required representations are extracted directly from those built into the 
operator rules. 

The problem could probably be solved by a richer abstract interpretation than 
the one described. For example, better abstract elements that include information 
about the representation of relation domain and range elements, could have been 
chosen. For example, higher-order abstract interpretation could be applied over a 
more complex domain. However it is unlikely that any solution based on abstract 
interpretation would be as simple or efficient as the type system since there is a 
natural link between type and representation. 

4.8 Operator Overload Resolution 

Typed representation analysis of an expression yields a set of syntactically identical 
expressions each of which possesses its own unique typed representation. 'Within 
each of these expressions any subexpression that is a compound relation desig­
nation is of the form: 

op arg 

Let opTR denote the typed representation of op arg, and argTR denote the typed 
representation of arg. The expression typed representation opTR is produced by 
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applying to argTR the inference rule for op that unifies with:. 

SF[arg1R ~ opTR] 

Each of the inference rules for an operator reflects one, unique argument-result 
representation constraint and, therefore, corresponds to one particular definition 
of that operator. The above inference rule can therefore be used to identify the 
required definition of op. 

The typed representation inference rules for an operator are also the typed 
representations that operator may have when used as an elementary relation des­
ignation. The particular typed representation assigned determines the required 
definition of that operator. 

Thus typed representation analysis not only selects representations for rela­
tions but also resolves operator overloading. When expressions are interpreted 
or compiled the appropriate definition for each operator occurrence is selected 
using typed representation information. 

4.9 Reporting Constraints to the Programmer 

4.9.1 The Frontier of Expression 

Any relational programming system must impose some constraint on expression 
construction because not all operators are definable for all argument representa­
tions. This constraint forms the frontier for what can be expressed in that system. 
In RPL the constraint is the fixed representation scheme - the representation bot­
tleneck. However, this scheme outlaws many expressions that could be computed 
if each operator was allowed several definitions. 

In Drusilla the constraint is imposed by the typed representation system. Each 
operator's constraints are determined by its typed representation inference rules 
which reflect the argument-result representation constraints in its implementa­
tion. For example, in RPL, the domain operator, dom, is only defined for an 
extensionally represented relation, for which the result is an extensionally rep­
resented set. By contrast, in Drusilla, the domain operator is defined for any 
extensionally represented relation, the result being another extensional relation, 
and for any relation represented intensionally by a set-valued function, the result 
being another set-valued function. 

For example, the domain a relation represented by set-valued function f, can 
be represented by the set-valued function domFunc: 

domFunc f x = [], f x = [] 
= [Unit], otherwise 

Informally this states that a value is in the domain of a relation if it maps to a 
non-empty set of results under the representing function f. 

The domain operator cannot be defined for any relation represented by a 
characteristic function because this representation can only be used to test whether 
given domain and range values are related, and not to test whether a given value 
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is a member of the relation's domain. The operator could be used if the range of 
the characteristic function is recursively enumerable, Le. if the range is of type 
un or string. However, this is not used since, in practice, most range types are 
polymorphic. 

The constraints for each operator are similar to this - unlike RPL they are not 
artificially imposed by a fixed representation scheme, but are naturally enforced 
by the limit of what is computable. This allows many more expressions to be 
used and pushes back the frontier of expression creating an implementation of 
relational programming which is closer to MacLennan's [65] original conception. 

The computational constraints for operators curtail fre~dom of expression in 
Drusilla - it is possible to construct legal expressions that are not computable 
and hence useless. The Drusilla system is able to identify such expressions be­
cause they have no typed representation. The modes of relation use discussed in 
chapter 3 are used to inform the programmer of constraints on how relations may 
be used without reference to relation representations. They help the programmer 
to construct only representable expressions. 

4.9.2 Homogeneity of Program and Data 

The need for modes can be explained from another point of view. 
One aim of the SEfL system is to make the data representations used to realise 

an algorithm dependent on program code and not vice-versa. The program­
mer specifies only abstract data structures and need have no concern for their 
implementation. 

The Drusilla system takes this idea to its logical conclusion by making pro­
gram and code homogeneous - both are denoted by relations and are amenable 
to manipulation by the same set of relational operators. Unfortunately a price 
must be paid for this homogeneity. The representation resulting from application 
of an operator depends on the representation of its argument. Furthermore, some 
operators are only defined for extensional relations, for example relation range 
(rng). At the implementation level code and data can be distinguished by repres­
entation - relational data structures are extensionally represented and relations 
that are program code, intensionally represented. However, at the programming 
level this distinction blurs because a relational data structure may perform com­
putation and intensional relations may be passed as argument to higher-order 
relations. 

When constructing an expression the programmer may apply an operator to 
a relation, the representation of which it is not defined for, for example, applying 
the range operator to code, then it may not be possible to generate a typed rep­
resentation for that expression. Alternatively, the typed representation generated 
may constrain use of that expression in a way unexpected by the programmer. 
The Drusilla system should, therefore, provide some mechanism to help the pro­
grammer construct expressions that have representations. 

Two possible approaches to this problem are: 

Automatic symbolic manipulation: this can be applied to any expression that 
cannot be represented in an attempt to produce a mathematically equivalent 
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expression that is representable. If this mechanism is capable of successfully 
transforming any unrepresentable expression then the programmer can pro­
gram in the abstract mathematics of relational algebra and is free from all 
representation related concerns. Unfortunately perfection is unlikely be­
caUse the representation constraints for operators and expressions reflect 
the limit of computability. It is a difficult task to make non-computable 
expressions computable. Chapter 5 presents a mechanism which, although 
not perfect, is capable of improving the representa tions of some expressions. 

Automatic mode generation: section 4.9.3 describes how the possible modes of 
use for a definition can be automatically generated from its set of typed 
representations. This information aids the programmer in expression con­
struction by explaining how relations may be used. 

4.9.3 From Typed Representations to Moded Types 

Chapter 3 introduced two type systems that assist the programmer: 

Calculus types can be inferred statically to give the programmer information 
about the mathematical structure of a program. 

Moded types for a relation can be derived by combining its calculus type with 
information about its possible modes of use (show,forward and test). Moded 
types not only convey mathematical structure but also operational structure. 

There is a strong link between typed representations and moded types -
moded types explain to the programmer how a relation may be used operation­
ally given the constraints placed by its available typed representations. Section 4.2 
described these constraints. Any expression that uses a relation in a mode not 
supported by the typed representations available to that relation is said to be badly 
moded. If an expression cannot be given a representation it must be badly moded. 
Conversely, if an expression is badly moded it cannot possibly have a represent­
ation. Therefore automatic generation of moded types for definitions helps the 
programmer to formulate well moded and hence representable expressions. 

The modes that a relational typed representation rep[domTR H rngTR] may 
su pport are determined as follows: 

• If rep is an association list and equality is not defined for either domTR or 
rngTR then show mode is supported. 

• If rep is an association list and equality is defined for domTR but not mgTR 
then show and forward modes are supported. 

• If rep is an association list and equality is defined for both domTR and mgTR 
then show, forward and test modes are supported. 

• If rep is a set-valued function and equality is not defined for mgTR then 
forward mode is supported. 
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• If rep is a set-valued function and equality is defined for rngTR then forward 
and test modes are supported . 

• If rep is a characteristic function then test mode is supported. 

These rules are summarised in Table 4.9.3 which presents example typed rep­
resentations together with the modes of use they support. Each mode is supported 
by a particular typed representation. For each typed representation new modes 
are permitted by introducing the equality constraints needed at the implementa­
tion level to support the appropriate representation coercions. 

I Typed representation I Moded types 
AL[A t+ B] sh[A ++ B] 
AL[A- t+ B1 sh[A- t+ B], fo[A- t+ B1 

AL[A- t+ B ] sh[A- ++ B 1, fo[A t+ B-], te[A- ++ B-] 
SF[A t+ B] fo[A t+ B] 

SF[A ++ B-1 fo[A t+ B-], te[A ++ B-] 
CF[A t+ B] te[A t+ B] 

In the Drusilla system each definition is given a set of typed representations. 
Moded types for a relation definition are generated from its typed representa­
tions by using knowledge of possible representation coercions. For example the 
definition of f st 

(x,y) fst (x). 

is given the typed representation: 
SF [(A x B) ++ B] 

This typed representation means that the relation can be used only in forward 
mode. However, by enforcing equality on the range elements, a restricted typed 
representation that supports test mode of use can be created: 

SF[(A x B=) t+ B=] 

Therefore, the moded types for f 5 tare: 

fst?? fo[(A x B) t+ B] 
1st 11 te[(A x B=) H B=] 

where 'n' means 'has the moded type'. 
Therefore, typed representations can be mapped into moded types by adding 

new coercion information to the operator typed representation inference rules. 
Moded types are defined in Miranda in Figure 4.14 and the algorithm for gener­
ating moded types from typed representations is presented in Figure 4.15. 

From a different perspective moded types may be perceived as a relational 
form of the mode analysis used for Prolog programs. Mode analysis, as described 
by Reddy [86] and Debray [30], is used to see in what directions Prolog procedures 
may be run, i.e. which terms within a rule must be ground and which may be left 
uninstantiated. . 
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modedType :: = 

mode ::= .Sh 
I Fo 

., Te 

NumMT 
StringMT 
UnMT 
TuMT [modedType] 
MTvar trVar 
RMT mode modedType modedType 

repToMode 
repToMode 
repToMode 
repToMode CF = Te 

relRep -> mode 
AL = Sh 
SF = Fo 

number type 
string type 
unit type 
tuple type 

110 

moded type variable 
relation moded type 

show mode 
forward mode 
test mode 

representation to mode 

Figure 4.14: Moded types defined as an algebraic datatype 

4.10 Summary and Conclusions 

The introduction identified the representation bottleneck as the crucial weakness in 
the implementation of RPL and has discussed way to break down this barrier to 
freedom of expression in relational programming. 

Representations for relations that are suited to the implementation of rela­
tional programming in a functional language were discussed. The characteristic 
function has been identified as a representation, which although not used in the 
RPL system, is of use. The advantages and disadvantages of each representation 
and possible coercions between representations were discussed. 

Related work on representation selection and overload resolution was con­
sidered. The representation selection work is for a less general class of problem 
considering only representations for data structures and not for computing com­
ponents. One other difference is that the problem discussed here is the initial, 
rather than efficient, execution of relational programs. The work on overload res­
olution proved to be of more relevance inspiring the mechanism based on abstract 
interpretation initially used to select representations for relations. The failings of 
this approach inspired a more powerful and efficient one based on type inference. 

The typed representation system could be used more generally as a new mech­
anism for inferring both ad-hoc and parametric polymorphism. The advantage 
it has over a Haskell-like class system is that operators may be defined for ar­
guments of differ~g. ty~e. For exa.mple, in .Haskell classes, ~perations such as 
addition and multiplIcation can eaSIly be defined for two floating point numbers 
or for two integers but cannot be so easily defined for one integer and one float. 
Furthermore, Haskell's class system can be used in the implementation of the 
ad-hoc polymorphism of the relational operators but only at the expense of losing 
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complexMode BotTR - [] 
complexMode (RTR rep domTR rngTR) = 

mkShow rep domTR rngTR ++ mkForw rep domTR rngTR ++ 
mkTest rep domTR rngTR 

complexMode other = [simpleMode other] 

simpleMode Num = NumMT 
simpleMode String = StringMT 
simpleMode Un = UnMT 
simpleMode (TRvar var) = MTvar var 
simpleMode (TuTR tup) = TuMT (map simpleMode tup) 
simpleMode (RTR rep domTR rngTR) = 
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RMT (repToMode rep) (simpleMode domTR) (simpleMode rngTR) 

mkShow AL domTR rngTR = 

[RMT Sh (simpleMode domTR) (simpleMode rngTR)] 
mkShow rep domTR rngTR = [] 

mkForw AL domTR rngTR 
= [RMT Fo {simpleMode (applySubToTR sub domTR» 

(simpleMode (applySubToTR sub rngTR)], domEqSucc 
= [], 

where 
(domEqSucc, sub) = mkEquality domTR 

mkForw SF domTR rngTR = 

[RMT Fo (simpleMode domTR) (simpleMode rngTR)] 
mkForw CF domTR rngTR = [] 

mkTest AL domTR rngTR 

otherwise 

= [RMT Te {simpleMode (applySubToTR bigSub domTR» 
{simpleMode (applySubToTR bigSub rngTR»], 

domEqSucc & rngEqSucc 
= [], otherwise 

where 
(domEqSucc,subA) = mkEquality domTR 
(rngEqSucc,subB) = mkEquality (applySubToTR subA rngTR) 
bigSub = composeSubs subB subA 

mkTest SF domTR rngTR 
= [RMT Te (simpleMode (applySubToTR sub domTR» 

(simpleMode (applySubToTR sub rngTR»], rngEqSucc 
= [], otherwise 

where 
(rngEqSucc, sub) = mkEquality rngTR 

mkTest eF domTR rngTR = 
[RMT Te (simpleMode domTR) (simpleMode rngTR)] 

Figure 4.15: Algorithm to generate moded types from typed representations 
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parametric polymorphism of operators. 
The information generated by this type system indicates the definition required 

for each relational operator instance thereby resolving operator overloading. The 
computational constraints imposed by typed representation analysis reflect the 
computational constraints of operator definitions. The representation bottleneck 
has, therefore, been widened to give relational programming more freedom of 
expression. . 

Representation constraints are reported to the programmer by means of moded 
types - a generalisation of calculus types that not only reflect the mathematical 
nature of a program but also its operational nature. Moded types for program 
definitions are automatically generated from their typed representations. In this 
way the constraints are reported to the programmer as a relational abstraction of 
definition representations. 

In chapter 7 this system will be evaluated in order to assess whether this 
implementation effort gives the expected increase in programmer freedom. 



Chapter 5 

Symbolic Manipulation of Drusilla 
Programs 

5.1 Introduction 

As MacLennan [67] has noted a relational language is amenable to symbolic 
manipulation. Laws of equivalence between relational expressions are well doc­
umented in mathematics and laws specific to the operators used in Drusilla can 
easily be formulated. Such laws can be used as directed rewrite rules for the 
automatic transformation of relational expressions. The aim of manipulation is 
to transform a given expression into a form that is more desirable, with respect 
to some criteria, while retaining its meaning. This preserves the mathematical 
meaning of a relational program but changes its operational behaviour. 

Chapter 4 identified two mechanisms that help ensure expressions have rep­
resentations. One informed the user of the possible modes of use for relations; the 
other used symbolic (algebraic) manipulation to transform any unrepresentable 
expression to a form that can be represented. If an expression cannot be given 
a representation then it is unusable. Similarly, if a definition cannot be given a 
representation then it is unusable as is any definition that references it. 

Symbolic manipulation can also be used to improve the execution charac­
teristics of a relational program. The use of relations for programming permits 
flexible handling of non-determinism and search based computation as chapter 7 
will demonstrate. However, a given state space may be so large that searching 
it becomes infeasible. This chapter describes how automatic manipulation can 
decrease the size of a program's search space to make it run faster and use less 
memory. 

Section 5.2 introduces issues to be considered for the symbolic manipulation 
of Drusilla programs. The relevance of related work is assessed in section 5.3. 
Section 5.4 describes two possible manipulation strategies for improving repres­
entations in programs. Another manipulation strategy is introduced in section 5.5 
and shown to be superior to the previous two. Section 5.6 considers how program 
search spaces might be manipulated. Section 5.7 discusses how representation 
and search space manipulation may be applied to a whole Drusilla program. 
Conclusions on the use of symbolic manipulation are drawn in section 5.8. 

113 
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5.2 Preliminary Discussion 

This section discusses issues that are fundamental to the symbolic manipulation 
of Drusilla programs. 

5.2.1 Separating Manipulation Concerns 

Symbolic manipulation can be applied to a program to 

1. improve representation possibilities; 

2. decrease the size of its search space. 

The first of these two uses of manipulation is by far the most important. If a 
program is to be executable then all definitions must possess a defined typed rep­
resentation. Representation oriented manipulation is essential for the execution 
of programs where one or more definitions cannot be represented. By contrast, 
search space oriented manipulation can only increase the execution speed of a 
program that is already executable. It is never essential for execution; it is purely 
an optimisation technique designed to improve the run-time performance of pro-
grams. 

The aims of these two types of manipulation may sometimes conflict. For 
example there may be two possible transformations for a given expression: one 
improves the representation but increases search space size and the other de­
creases search space size but leaves the expression without a representation. To 
resolve such conflict the manipulation concerns are separated and representation 
considerations given priority over search space considerations. The manipulation 
scheme is split into two phases: 

1. Manipulation attempts to transform the program until all definitions have 
at least one possible representation. This program state is referred to as full 
representation. During this manipulation no concern is given to the size of 
the program's search space. If full representation cannot be achieved then 
the program is unusable and rejected by the system: the programmer must 
reformulate the program definitions by considering the system generated 
mode information. 

2. Search space oriented manipulation is applied to the program and care 
is taken to ensure that full representation is maintained. Transformations 
can only be applied if they decrease search space size while preserving 
representations. 

The two types of manipulation used by these phases can be distinguished: 

representation manipulation is algebraic manipulation designed to improve the 
representation of a given expression or definition. 

search space manipulation is algebraic manipulation designed to decrease the 
size of a program's search space. 
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The emphasis of this chapter is on representation manipulation - possible 
approaches are explored and the strategy used in the Drusilla system is described 
in detail. 

5.2.2 The Need for Calculus Type Correctness 

The calculus type of an expression reflects its meaning in the abstract mathematical 
world of relational algebra. A program is therefore regarded as having valid 
mathematical meaning if and only if it is calculus type correct, Le. if a calculus 
type can be generated for each defining expression in that program. It is essential 
that manipulation techniques preserve meaning. Therefore manipulation should 
never be able to change the calculus type of any expression or definition. A 
corollary of this is that manipulation should never be capable of correcting a 
program that is calculus type incorrect. This observation simplifies manipulation 
since it implies that any program considered for manipulation must be calculus 
type correct and hence have some recognizable structure. 

In the Drusilla implementation calculus type inference is applied to the given 
program. If the program is type correct then typed representation analysis is 
applied and manipulation considered, otherwise it is rejected. 

5.2.3 Types, Representations and Manipulation 

Typed representation correctness is a stronger condition than calculus type cor­
rectness - the set of all expressions that have a defined typed representation is a 
proper subset of the expressions that have a calculus type. In an ideal world these 
two sets of expressions would be the same. This, however, would imply that the 
programmer could program in abstract mathematics without any regard for op­
erational structure. The aim of representation manipulation is to generate typed 
representations for expressions that have a calculus type but no representation. 
This can be formally defined as a function: 

representationManipulation: (eT \ TR) -t TR 

where eT is the set of all expressions with a valid calculus type and TR is the set 
of all expressions with a defined typed representation. 

It may also be necessary to apply typed representation inference to a trans­
formed expression to generate its new representation. Therefore, typed repres­
entation inference and representation manipulation are inextricably linked and 
must interact. 

Manipulation approaches can be grouped into two broad categories according 
to the way they interface with typed representation analysis. These are eager and 
lazy approaches described in section 5.2.5. 

5.2.4 The Use of Laws for Manipulation 

Symbolic manipulation in the Drusilla system is based on laws supplied by the 
implementor. This subsection explains: 
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• how laws can be used as term rewriting rules; 

• how laws can be preprocessed to ensure rewriting improves representation 
and to obviate re-analysis; 

• how the programmer can prove the correctness of laws before supplying 
them to the system. 

Laws as Rewrite Rules 

Term rewriting forms the basis of all the symbolic manipulation strategies con­
sidered. The rewrite rules are extracted from the given laws which are equations 
of the form: 

expL = expR 

Here expL and expR are two relational expressions and the programmer is as­
serting their equivalence. It is assumed that the programmer has proved their 
equivalence before making the assertion. An example law is: 

(r » s) ; t = r ; (s « t) 

A law typically consists of a number of free variables glued together by the 
relational operators. In the above example, r, sand t are the variables. Laws 
can also involve the empty relation ({}) and primitive operators in elementary 
relation designation form. 

For a given law, expL = expR, let Land R be the sets of free variables occur­
ring in expL and expR respectively. 

If L C R then it is sensible to consider the rewrite rule: 

expR -+ expL 

If R CL then it is sensible to consider the rewrite rule: 

expL -+ expR 

These restrictions on the use of law equations as rewrite rules are in accordance 
with the description given by Huet and Oppen [45] of how a term rewriting system 
can be extracted from a set of equations. 

Application of Rewrite Rules 

The expression A on the left hand side of a rewrite rule, A -+ B, pattern matches 
with an expression C if and only if there exists a substitution u for the free variables 
in A such that: 

uA = C 

If such a substitution can be created then expression C can be rewritten as uB. 
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Adding Representation Infonnation to Laws 

One representation is considered to be better than another if it supports more 
modes of use. For representation manipulation it would be desirable to know 
under which circumstances, if any, each rewrite rule improves a given expressions 
representation. For example, suppose a given expression pattern matches with 
the left hand sides of N different rewrite rules. Consider the case where N is large 
but only one rule will improve the representation. It would be computationally 
expensive to apply each rule and re-analyse each expression to determine if the 
representation has improved. If the 'good' rule could be identified in advance 
then this computational cost would be saved. 

A relation definition may be constructed from any given law, expL = expR: 

pars lawExample (expL,expR) 

The defining expression is the tuple (expL, expR) and the tuple of formal para­
meters (pars) contains L UR where Land R are the sets of free variables occurring 
in expressions expL and expR respectively. Typed representation analysis of such 
a definition yields a set of definitions each of which has its own typed represent­
ation. This process also produces typed representations for the law expressions 
expL and expR and all their sub expressions. The rewrite rules extracted from 
such analysed laws also contain this typed representation information. 

For example, Table 5.1 shows the typed representations generated for the law: 

inv s i inv r = inv (r i s) 

Examination of this table reveals that the rewrite rule 

inv s i inv r -+ inv (r is) 

improves representation for the following typed representations of rand s: 

s :: SF[F H G] r :: AL[H= H F] 
s :: SF[W H X] r:: SF[V H W] 
s :: CF[T H U] r:: SF[S H T] 

However the reverse rule 

inv (r ; s) -+ inv S i inv r 

never improves representation. 
Table 5.2 shows the typed representations generated for the law: 

(r » s) i t = r; (s « t) 

Examination of this table reveals that the rewrite rule 

(r » s) i t -+ r i (s « t) 

only improves representation for one combination of typed representations: 

r :: CF[K H U=] s:: AL[U= Hun] t:: SF[U= H M=] 
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8 r I inv 8 ; inv r I inv (r 8) 

AL[I- ++ J1 AL[H ++ 1-] ALij ++H] ALU ++ H] 
SF[F ++ G] AL[H- ++F] a[G++ H-] AL[G ++ H-] 
a[c++ D] AL[B ++ C] a[D ++ B ] a[D ++ B-1 
AL[Z- ++ P 1 SF[Y ++ Z ] alP ++ Y] a[p- ++ Y] 
sF[w ++X] sF[v ++ W] .LTR a[x ++ V] 
a[T ++ D] 5F[5 ++ T] .LTR a[u ++5] 
AL[Q ++ R-] a[p++Q] CF[R- ++ P] a[R- ++ P] 
5F[N ++ 0] CF[M ++ N] .LTR .LTR 

a[K++ L] CFU ++ K] .LTR .LTR 

Table 5.1: Typed representations for law inv 8 ; inv r = inv (r 8 ) 

Again the reverse rule 

r ; (8 « t) -+ (r » 8) ; t 

never improves representation. 
The procedure for extracting rewrite rules from laws is modified to ensure that 

only those rules that improve representation are used. Let ML and MR denote the 
set of modes supported by the representations of expL and expR respectively. 

If L ~ Rand MR C ML then allow the rule 

expR -+ expL 

If R ~ Land ML C MR then allow the rule 

expL -+ expR 

Rules extracted in this way are called representation improving. The reverse ap­
plication of these rules must make representation worse and the reverse rules are 
therefore referred to as representation spoiling. A set of representation maintaining 
rules for which ML = MR can also be extracted. 

Representation Improving Application of Rewrite Rules 

The rewrite rule application procedure must be modified to ensure that the repres­
entation improving rules improve expression representation. This new procedure 
is only applicable to expressions that have been subjected to typed represent­
ation inference. For a representation improving rule A -+ B to improve the 
representation of an expression c two conditions must be satisfied: 

1. Expression c must syntactically pattern match with expression A. There must 
exist a substitution u for the free variables in A such that: 

uA=G 

This is the condition for normal rule application. 
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r s t I (r » s) t I r (s« t) I 
AL[C f+ V-] AL[V f+ un] AL[V f+ W] AL[Cf+ W] AL[C f+ W] 
SF[T f+ V ] AL[V f+ un] AL[V- f+ W] SF[T f+ W] SF[T f+ W] 
CF[K f+ V ] AL[V f+ un] AL[V f+ M ] CF[Kf+ M ] CF[K f+ M-] 
AL[C f+ D-] AL[D- f+ un] SF[D- f+ U] AL[C f+ U] AL[C f+ U] 
SF[T f+ U-] AL[U f+ un] SF[U f+ U] 5F[T f+ U] 5F[T f+ U] 
CF[K f+ U-] AL[U f+ un] 5F[U- f+ M ] .iTR CF[K f+ M-] 
AL[W- f+ Z-] AL[Z f+ un] CF[Z f+ S] CF[W= f+ 5] CF[W- f+5] 
5F[N f+ M ] AL[M f+ un] CF[M f+ 5] CF[N f+ 5] CF[N f+ 5] 
CF[E f+ Z-] AL[Z f+un] CF[Z f+ 5] .iTR .iTR 

AL[C f+ D-] 5F[D- f+ un] AL[D- f+Q] AL[C f+ Q] AL[C f+ Q] 
5F[T f+ U-] 5F[U f+ un] AL[U- f+ Q] 5F[T f+ Q] 5F[T f+ Q] 
CF[K f+ C-] SF[C f+ un] AL[C f+ M-] CF[Kf+M-] CF[K f+ M-] 
AL[Z f+ H-] SF[H f+ un] SF[H f+ 0] AL[Z f+ 0] AL[Z f+ 0] 
SF[Q f+ U ] SF[U f+ un] SF[U f+ 0] SF[Q f+ 0] SF[Q f+ 0] 
CF[H f+ H-] SF[H f+ un] SF[H ++ 02] .iTR .iTR 
AL[W- f+ M-] SF[M- f+ un] CF[M- f+M] CF[W- ++M] CF[W- f+M] 
SF[N f+ Z-] SF[Z f+ un] CF[Z- ++M] CF[N f+ M] CF[N f+M] 
CF[E f+ M ] SF[M f+ un] CF[M f+M] .iTR .iTR 
AL[C f+ D-] CF[D f+ un] AL[D f+K] AL[C f+ K] AL[C f+ K] 
SF[T ++ U ] CF[U ++ un] AL[U ++K] 5F[T f+ K] SF[T f+ K] 
CF[K f+ eP] CF[eP f+ un] AL[eP ++ M-] CF[Kf+ M=] CF[K f+ M-] 
AL[Z f+ H] CF[Hf+ un] SF[H f+ I] AL[Z f+ I] AL[Z f+ I] 
SF[Q f+ H-] CF[H f+ un] SF[H- ++ I] SF[QHI] SF[QH I] 
CF[H H U-] CF[U- Hun] SF[U- HI] .iTR .iTR 
AL[W- HF] CF[F f+ un] CF[F H G] CF[W H G] CF[W- HG] 
SF[N H M-] CF[M Hun] CF[M f+ G] CF[N H G] CF[N HG] 
CF[E H Z-] CF[Z Hun] CF[Z- HG2] .iTR .iTR 

Table 5.2: Typed representations for law (r > > s) t = r ; (s < < t) 
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2. The typed representation of expression a A and all its subexpressions must 
pattern match with the corresponding subexpressions in C.There must exist 
a substitution 6 for the typed representation variables in uA such that: 

If these two conditions are satisfied then expression C can be rewritten as 
an expression 6(uB). Application of the substitution for free variables, u, to ex­
pression B generates the new expression. Application of the substitution for 
typed representation variables, 6, to aB and all its subexpressions generates its 
typed representation obviating the need to re-apply typed representation infer­
ence. (However, if C is a subexpression, it will be necessary to re-analyse the 
enclosing expression). Although this lowers cost of computation the procedure 
will still be expensive if 6 is created by matching the typed representation of every 
sub expression in A with the corresponding typed representation in C. The cost 
can be lowered further by exploiting the leaf sufficiency theorem. 

Lemma 1 (fixed leaf representation) Typed representation analysis of a compound 
relation designation, op arg, produces a set 

{(SI,OP argl), ... , (sn, op argn )} 

in which the representation of each argi, argTR (1 < i ~ n), is fixed, i.e. cannot be 
completely polymorphic (a type variable). 

Proof 

o 

Each of the typed representation inference rules for op applies to one 
fixed representation. Each argTR, 1 < i :::; n, is unified with one of 
these rules. 

Corollary 1 (inference rule uniqueness) The typed representation of each expression 
op argi, 1 ;:; i ~ n, is produced by applying one of the typed representation inference 
rules for op which can be identified. 

Proof 

o 

Let expTR denote the typed representation of op argi. Each expTR is 
produced by applying to argTR the inference rule for op that unifies 
with: 

Uniqueness follows since each rule applies to one representation. 
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Theorem 1 (leaf sufficiency) If condition 1 of the rule application procedure is satisfied 
then, to derive substitution J, it is sufficient to pattern match the typed representations of . 
the variables in A with those of the subexpressions in C being substituted for them. 

Proof 

o 

The substitution a is a set of maplets: 

where Vi, 1 ::; i ::; n, are the free variables in A and eXPi are subexpres­
sions of C. Let ViTR be the typed representation of Vi and let expTR be 
the typed representation of eXPi. If there exists a substitution, e, for 
typed representation variables such that 

cV;TR = expTR 1 < i < n '" , , , - -
then by induction over expression construction: 

i.e. J = e. This follows from inference rule uniqueness because aA and 
c are syntactically identical. At each expression construct (operator) 
in both expressions, the same typed representation inference rule is 
applied. 

The algorithm for expression pattern matching is given in Figure 5.1 and uses 
the typed representation pattern matching algorithm shown in Figure 5.2. The 
algorithm for expression rewriting is given in Figure 5.3. These algorithms process 
the expression and typed representation algebraic datatypes defined in Figure 4.6 
and Figure 4.7 respectively. 



CHAPTER 5. SYMBOUC MANIPULATION OF DRUSILLA PROGRAMS 122 

varSub == ([char],relExp) 

patternMatch :: relExp -> relExp -> (bool,trSub, [varSub]) 
patternMatch (E formOp formTR formArg) (E actOp actTR actArg) 

= (True,sub,varSubs), actOp = formOp & succ 
= (False,idSub,[]), otherwise 

where 
(succ,sub,varSubs) = patternMatch formArg actArg 

patternMatch (Fpar name tr) actExp = 
(succ,sub, [(name,actExp)]) 
where 
(succ,sub) = typRepMatch tr (getExpTR actExp) 

patternMatch (Tu formTup) (Tu actTup) = 
patternMatchTups formTup actTup 

patternMatch formOther actualOther = 
(formOther = actualOther,idSub,[]) 

patternMatchTups :: [relExp] -> [relExp] -> 
(bool,trSub,[varSub]) 

patternMatchTups formTup actTup = 
foldr2 patternMatchTupEls (True,idSub, []) formTup actTup 

patternMatchTupEls :: relExp -> relExp -> (bool,trSub, [varSub]) 
-> (bool,trSub, [varSub]) 

patternMatchTupEls formExp actExp (succ,oldSub,subsA) = 
(SUCc & newSucc,composeSubs newSub oldSub,subsB ++ subsA) 
where 
(newSucc,newSub,subsB) = patternMatch newFormExp actExp 
newFormExp = applySubToExp oldSub 

(applyVarSubs subsA formExp) 

applyVarSubs :: [varSub] -> relExp -> relExp 
applyVarSubs subs exp = foldr makeSub exp subs 

makeSub :: varSub -> relExp -> relExp 
makeSub sub (E op tr arg) = E op tr (makeSub sub arg) 
makeSub sub (Tu tup) = Tu (map (makeSub sub) tup) 
makeSub (subParName,subExp) (Fpar parName tr) 

= subExp, parName = subParName 
= Fpar parName tr, otherwise 

make Sub sub other = other 

Figure 5.1: Algorithm for pattern matching expressions 
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typRepMatch :: typedRep -> typedRep -> (bool,trSub) 
typRepMatch BotTR other = (False,idSub) 
typRepMatch other BotTR = (False,idSub) 
typRepMatch (TRvar (Alpha v» (TRvar (Alpha w» 

= (True,idSub), v = w 
= (True,newSub (Alpha 

typRepMatch (TRvar (Beta 
= (True, idSub) , 

v) (TRvar (Alpha w»), otherwise 
v» (TRvar (Beta w» 

= (True,newSub (Beta v) (TRvar (Beta w»), 
typRepMatch (TRvar (Alpha v» x = 

v = w 
otherwise 

(definedTR x & -{occurs (Alpha v) x),newSub (Alpha v) x) 
typRepMatch {TRvar (Beta v» x = 

(showable x & -(occurs (Beta v) x),newSub (Beta v) x) 
typRepMatch (TuTR tupX) (TuTR tupY) = tupTRmatch tupX tupY 
.typRepMatch (RTR repX dornX rngX) (RTR repY dornY rngY) = 

(repX = repY & succI & succ2, cornposeSubs subY subX) 
where 
(succ!, subX) = typRepMatch dornX dornY 
(succ2, subY) = typRepMatch (applySubToTR subX rngX) rngY 

typRepMatch otherX otherY = (otherX = otherY, idSub) 

tupTRrnatch :: [typedRep] -> [typedRep] -> (bool,trSub) 
tupTRrnatch tupX tupY = 

foldr2 tupElTRrnatch (True, idSub) tupx tupY 

tupElTRrnatch :: typedRep -> typedRep -> (bool,trSub) 
-> (bool,trSub) 

tupEITRrnatch x Y (succ!, subX) 
(succ! & succ2, cornposeSubs subY subX) 
where 
(succ2,subY) = typRepMatch (applySubToTR subX x) y 

Figure 5.2: Algorithm for typed representation pattern matching 
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rule == (relExp,relExp) 

algManip :: [rule] -> (typedRep -> bool) -> 

relExp -> (bool,relExp) 
algManip allRules goalFun exp 

= (False,exp), possExps = [] 
= (True, hd possExps), otherwise 

where 
possExps = mapcat (applyRule exp) goodRules 
goodRules = filter (goalFun . rewrittenTR) allRules 

rewrittenTR :: rule -> typedRep 
rewrittenTR (lhs,rhs) = getExpTR rhs 

applyRule :: relExp -> rule -> [relExp] 
applyRule actExp (lhs,rhs) = 

createNewExp (patternMatch lhs actExp) rhs 

createNewExp :: (bool,trSub,[varSub]) -> relExp -> [relExp] 
createNewExp (True,sub,varSubs) newExp = 

[applySubToExp sub (applyVarSubs varSubs newExp)] 
createNewExp (False,sub,varSubs) newExp = [] 

Figure 5.3: Algorithm for representation improving rewriting 

The Correctness of Laws 

The correctness of program transformations is dependent on the correctness 
of the rewrite rules used for those transformations, which, in turn, depend on 
the correctness of the laws from which they are extracted. Therefore each law, 
expL = expR, asserted by the programmer must be a true mathematical equi­
valence. It is essential for the programmer to prove the validity of all laws before 
submitting them since it is outside the scope of the Drusilla system to prove the 
correctness of laws. 

Any Drusilla expression can be mapped into a calculus expression by repla­
cing each operator used to form a compound relation designation by its calculus 
definition. Two Drusilla expressions are equivalent if, and only if, they can be 
mapped to the same expression in the Drusilla calculus. An example of a valid 
law is: 

inv (r i s) = inv s i inv r 

Proof 
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o 

x (inv (r ; s» y {:} Y (r ; s) x 
{:}3z.yrzAzsx 
{:} 3 z . z (inv r) y A x (inv s) z 
{:} 3 z . x (inv s) z A z (inv r) y 
{:} x (inv s ; inv r) y 

As stated in section 52.2 all transformations and therefore all rewrite rules 
should be calculus type preserving. If this is to be the case then both sides of any 
given law should have the same calculus type. For example, consider the law: 

(s « r) /\ (s <- r) = {} 

This is a true mathematical equivalence. However, the expression on the left hand 
side has the same calculus type as relation r but the expression { } is a completely 
polymorphic relation The domain and range types of the two expressions may 
be different and this law therefore cannot be used by the system. 

5.2.5 Classifying Manipulation Strategies 

This subsection describes classifications for representation manipulation strategies. 

Eager and Lazy Manipulation 

Manipulation strategies may be differentiated according to when they are invoked 
and the amount of rewriting they attempt. 

Eager manipulation is based on the generate and test problem solving paradigm 
[120]. Manipulation is applied to each group of mutually recursive defin­
itions before typed representation inference. Each defining expression is 
rewritten into as many different forms as possible. Typed representation 
inference is applied to each expression form generated. The one with the 
best representation is used, the others are discarded. 

Eager approaches are perhaps the most intuitive. They are simple and 
guarantee to find the best form for each expression. Unfortunately they 
have two disadvantages: 

• The cost of manipulation is high - many expressions are created only 
to be discarded. 

• The cost of typed representation inference is high - each expression 
form generated must be analysed and typed representation inference 
is a complex and computationally expensive technique. The repres­
entation improving rule application procedure cannot be used because 
typed representations are not known before manipulation 

Lazy Manipulation is at the other extreme to eager manipulation. Typed rep­
resentation inference is applied to the program in the usual manner. Each 
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expression and sub expression that cannot be represented is assigned the un­
defined representation ..LTR. If a defining expression is assigned ..LTR then 
manipulation is invoked and its aim is to generate a representation for the 
whole expression by applying as few transformations as possible. Lazy 
approaches to manipulation have significant advantages over eager ap­
proaches: 

• The cost of manipulation is lower - only expressions that have no rep­
resentation are manipulated. The transformation is less costly because 
typed representation information can be used to direct manipulation. 
i.e. any subexpressions with ..LTR must be rewritten to a form whose 
representation permits the whole expression to be represented. 

• The cost of typed representation inference is lower. Much of the cost 
of re-inference can be avoided by using the representation improving 
rule application procedure. Furthermore, the directed nature of lazy 
manipulation generates fewer expressions to be re-analysed. 

Irregular, Bottom-up, and Top-down 

Strategies may be classified according to the order in which they rewrite subex­
pressions. This corresponds to Kowalski's [59] concept of an algorithm being 
composed of separate logic and control elements. The logic of a manipulation 
algorithm is the rewrite rules it uses and its control the order in which it applies 
rules to sub expressions. 

Irregular strategies select the subexpressions to rewrite in an irregular order. 

Bottom-up strategies begin at the leaves of an expression tree and move upward 
toward the root applying rewrites at appropriate points. 

Top-down strategies begin at the root and proceed towards the leaves applying 
transformations at appropriate points. 

Locally and Globally Improving 

If an expression is to be given a representation then each of its subexpressions 
must be given a representation. Moreover the representation of an expression is 
dependent on the representations of its subexpressions. 

Locally improving strategies are concerned purely with giving each subexpres­
sion a representation. How that representation affects the whole expression 
is given no consideration. 

Globally improving strategies aim to give each subexpression a defined typed 
representation that is beneficial to the whole expression. A strategy is called 
angelic if its sub expression transformations always improve the representa­
tion of the whole expression. If there is more than one possible transforma­
tion for the subexpression then the one most beneficial to the representation 
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of the whole expression is applied. This does not necessarily imply that 
each rewrite applied improves representation - it may be necessary for a 
subexpression's representation to be made worse temporarily in order for it 
to be improved later. 

5.2.6 Problems Facing Manipulation 

Two problems that any successful manipulation strategy must face are the need 
to search and the need to terminate. 

The Need to Search 

Symbolic manipulation is a search based computation. There may be many 
rewrite rules applicable and hence many different transformations possible for 
any given expression that has no representation. More than fifty laws have been 
identified for use in the Drusilla system. This means that a considerable search 
may be needed to find a representable expression, even with a lazy approach to 
manipulation. If a manipulation approach is to be effective then this search must 
be controlled: 

Law analysis may be used to identify the representation improving laws. This 
obviously narrows the search; for example, of the 54 laws used in the Drusilla 
system, only the seven shown in Figure 5.4, improve representation if used 
alone. 

Representation goals can be supplied to help rewriting to globally improve ex­
pression representation. 

Rewriting Cycles and Non-tennination 

One pitfall is that of applying rewrite rules in a cyclical fashion. For example, an 
expression A may be transformed successively into expressions B 11 B2, •• • ,Bn and 
Bn then transformed back to A. If this is allowed to continue then the manipulation 
will be non-terminating. 

The problem of non-termination is more general. A manipulation strategy 
will terminate if and only if there is no possibility for an infinite sequence of 
transformations. 

If the strategy adopted in Drusilla is to be feasible then it must be accompanied 
by some proof of termination. 

5.2.7 Properties of a Good Manipulation Strategy 

In reality, the distinction between eager and lazy strategies blurs - thees cat­
egories are two ends of the spectrum of manipulation strategies. One strategy 
is regarded as being more lazy than another if it involves less rewriting and less 
typed representation analysis. The advantages of lazy manipulation over eager 
manipulation are, in practice, so substantial that a good strategy must be lazy. 
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inv (inv r) = r 
rng (inv r) = dcm r 
inv s i inv r = inv er . s) , 
r \ (r \ s) = r /\ s 
inv r » s = inv (s « r) 
er » s) i t = r i (s « t) 

er i s) i t = r i (s i t) 

Figure 5.4: Laws that improve representations 

Globally improving rewrites are preferable to locally improving, but their 
application requires knowledge of the context of the whole expression. When a 
subexpression is to be rewritten its required typed representation must be propag­
ated down from the root node. This also helps control the manipulation search 
by making it goal directed. Therefore, a good manipulation strategy must, to 
some extent, be top-down. However, when a sub expression is manipulated the 
enclosing expression must be re-analysed and may itself require manipulation­
any strategy must therefore also be, at least partially, bottom-up. 

The aim of this chapter is to identify the best strategy from those considered. 
This should be lazy, angelic, and be a combination of top-down and bottom-up to 
make rewriting goal directed. 

5.3 Related Work 

This section assesses the relevance of related symbolic manipulation work: optim­
isation of queries in relational databases, term rewriting systems and an artificial 
intelligence technique called meta-Ievel inference. 

5.3.1 Optimisation of Queries in Relational Databases 

Efficient methods of processing unanticipated queries are a crucial prerequisite 
for the success of generalised database management systems. A wide variety 
of approaches to improve the performance of query evaluation algorithms have 
been proposed. The approach of interest here uses logic-based and semantic 
transformations. 

A query is a language expression that describes data to be retrieved from a 
database. Query optimisation tries to minimise the response time for a given 
query language and mix of query types. . 

The main costs that optimisation attempts to minimise are those of secondary 
storage access and CPU usage. Several ideas underly manipulation techniques 
used to reduce these costs: 

• avoid duplication of effort; 
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• avoid unnecessary operations by looking ahead; 

• sequence operations in an optimal fashion. 

Jarke and Koche [50] present a comprehensive survey of query optimisation 
techniques. They identify three main goals for query transformation: standardisa­
tion, simplification and amelioration. 

Standardisation 

This is the construction of a standardised starting point for query optimisation. 
This typically relies on a normalisation procedure to produce a normalised form 
for a given query. For example, queries expressed in relational calculus may be 
standardised by reduction to disjunctive prenex normal form. 

Simplification 

This is the elimination of redundancy. An expression that uses redundant opera­
tions can be transformed into an equivalent one without them. For example, the 
expression A OR A may be reduced to A. 

Amelioration 

This refers to the construction of expressions that are improved with respect to 
evaluation performance. Query simplification does not necessarily produce a 
unique expression. The evaluation of expressions that are equivalent may differ 
substantially with respect to performance parameters. 

Many transformation heuristics, when applied to expressions, yield amelior­
ated expressions with respect to evaluation performance. Two example heuristics 
are: 

• combination of a sequence of projections into a single projection; 

• combination of a sequence of restrictions into a single restriction. 

The goal of several ameliorating transformations is to minimise the size of in­
termediate results to be constructed, stored and retrieved. An important heuristic 
moves selective operations, such as restriction and projection, over constructive 
operations, such as join and Cartesian product, to perform the selective operations 
as early as possible. Smith and Chang [102] give examples of such heuristics. 

Relevance of this Work 

The three principles of standardisation, simplification and amelioration should 
apply to manipulation of Drusilla expressions. However, it is difficult to see 
how standardisation could be used. Expressions could be translated into the 
relational calculus by replacing operators with their calculus definitions but it 
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is difficult to see any advantage for manipulation of calculus expressions over 
Drusilla expressions. 

Search space manipulation may be thought of as simplification because it 
aims to eliminate redundant operators in expressions. It may also be thought of 
as amelioration since it tries to improve evaluation performance. Representation 
manipulation may be thought of as an extreme form of amelioration. Without it 
an expression may give no performance at all! 

The heuristics used for amelioration are, however, of little use for Drusilla 
expressions. They are designed to minimise the quantity of data processed i.e. 
the size of relations. Relations in Drusilla are not bulk repositories of data, they 
are computing components. The aim for manipulation of Drusilla expressions 
is computation oriented - representation manipulation makes expressions ex­
ecutable; search space manipulation aims to lower the cost of computation by 
reducing the number of operators used. However, pushing selection operators in 
front of construction operators may not improve representation possibilities and 
may even increase the computation cost. For example, it is considered desirable, 
for database queries, to push restriction operations in front of union operations. 
This corresponds to use of the rewrite rule: 

t « er \/ s) -+ (t « r) \/ (t « s) 

The right hand side of this rule uses one more operator than the left hand 
side. This rule is not representation improving and, generally, the more operators 
used in an expression, the poorer its representation is likely to be because each 
operator introduces representation constraints. Furthermore, if both expressions 
are represented by set-valued functions then the rewrite will be detrimental to 
efficiency - relation t is applied once on the left hand side and twice on the right 
hand side. 

Database query optimisation also depends on selecting efficient storage meth­
ods that use structures such as indexes, B-trees or hash tables. Since these struc­
tures are not present in Drusilla storage optimisation techniques cannot be used. 

The principles of transformation in databases are therefore of interest but 
manipulation of Drusilla expressions has different objectives. 

5.3.2 Term Rewriting Systems 

One paradigm of computing with equations uses them as rewrite rules over terms. 
Huet and Oppen [45] define a term rewriting system to be a set of directed equations: 

Po = {/\ -+ Pi liE I} such that, for all >. -+ p in Po, 'I9(p) ~ '19(>') 

{) (M) denotes the set of variables occurring in term M 
The reduction relation -+Po associated with Po is dosed under substitution and 

replacement. That is: 

M -+Po N => u(M) -+Po u(N) 
M -+Po N => P[u ~ M] -+Po P[u ~ N] 
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For discussion of term rewriting systems, the following notation will be used: 

• -+ denotes the reduction relation -+Po' 

• -+ + denotes the transitive closure of -+. 

• -+* denotes the transitive-reflexive closure of-+. 

• =Po denotes Po equality when Po is considered a set of equations. 

The fundamental difference between equations and term rewriting rules is 
that equations denote equality whereas term rewriting systems treat equations 
directionally as one-way replacements. The only substitutions required for term 
rewriting are the ones found by pattern matching. Rewrite rules can be used in 
this way to make deductions equationally. However, a set of rules is only complete 
as a proof system if it is Church-Rosser (Le. confluent). Po is Church-Rosser if 
and only if 

V M, N . M =Po N {:} 3 P.M -+* PAN -+* P 

When Po is Church-Rosser the normal form of a term is unique when it exists. 
A sufficient condition for the existence of such a canonical form is the termination 
of all rewritings. Po is noetherian or finitely terminating if and only if, for no M, is 
there an infinite sequence of reductions issuing from M. When Po is a finite set of 
equations that is confluent and noetherian the equational theory = Po is decidable, 
since now M =Po N if and only if M.l. = N.l.. The property of confluence is 
undecidable for arbitrary of term rewriting systems, but decidable for noetherian 
systems. 

Relevance of this Work 

The laws used in the Drusilla system are equations. Term rewriting can therefore 
be used as the basis for manipulation of Drusilla expressions. Generation of a 
representation for a Drusilla expression can be thought of as a term rewriting 
problem. A given expression, A, must be rewritten to an expression, B, that has a 
representation and can be found by equational reasoning. 

The system will only be complete for such equational reasoning if it is noeth­
erian and Church-Rosser. The analysed rewrite rules must be noetherian because 
they improve representation and the representation can only be improved a finite 
number of times. 

However, there is no guarantee that the rules would be Church-Rosser. For 
example, suppose the system contains just two rules that improve representation: 

inv s ; inv r -+ inv (r ; s) 
inv (inv r) -+ r 

If these rules are to be applied to an expression inv (inv p) 
there are two possible rewrites: 

inv q then 
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-+ p ; inv q 
-+ inv (q ; inv p) 

This system is not confluent without the law: 

p ; inv q = inv (q ; inv p) 

The lack of confluence introduces the element of search into manipulation. An 
attempt could be made to make a given system of rewrite rules confluent by 
applying the Knuth-Bendix completion procedure [56]. This algorithm attempts 
to make a system confluent through the addition of new rules but it may fail 
or enter an infinite loop. Moreover, there is no guarantee that the new rules it 
produces are representation improving or that the normal forms generated by the 
confluent system are those with the best representation. 

Therefore, although equationallaws can be used as directed term rewriting 
rules for the manipulation of Drusilla expressions equational reasoning cannot be 
exploited. 

5.3.3 Algebraic Manipulation by Meta-Ievel Inference 

Meta-Ievel inference [14, 15] is a technique for controlling inference that was 
developed for algebraic manipulation. It was tested in PRESS (PRolog Equation 
Solving System) [106] - a Prolog program for solving equations and performing 
algebraic manipulation on transcendental expressions. These are expressions 
involving polynomial, trigonometric, exponential and logarithmic functions. A 
commentary on this work is given in [34]. 

In PRESS inference is constructed at two levels simultaneously: the object­
level and the meta-Ievel. The object level encodes knowledge about the facts 
of the domain - in this case the rules of the algebra. The meta-Ievel encodes 
control or strategic knowledge - in this case methods for applying algebraic 
manipulation. 

Multiple Sets of Rewrite Rules 

The object level of PRESS consists of rewrite rules organised into several sets. 
Each set performs a particular algebraic manipulation and is associated with a 
syntactic characterisation of the kind of rule it contains. The meta-Ievel reasons 
about the task to be performed and the rules available to achieve it and on this 
basis selectively applies the rewrite rules to the current algebraic expression. 

The use of multiple sets has several advantages over conventional term re­
writing systems that exhaustively apply rules from a single set: 

1. With multiple sets of rules, a particular axiom may be used in different 
directions in different sets. With selective application the axiom may even 
be used in different directions in the same set without any danger of looping. 

2. The syntactic characterisation of rules allows the system to automatically 
decide, for a given rule, in which directions it should be used and in which 
sets. 
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3. A proof of method termination can be based on rule application being select­
ive. Le. selective application may terminate where exhaustive application 
might not. 

In PRESS the argument for termination is the same for each method. If 
no rule from the set applies then the method terminates trivially. If a rule 
does apply then some numerical property of the expression is reduced in 
magnitude. If this property is initially finite, then only a finite number of 
rule applications are possible before the method fails to apply and exits. 

Meta and Object-levels 

The object level in PRESS consists of algebraic axioms describing relationships 
between real numbers. Given an equation to be solved these define an object 
level search space. The methods used in the meta-Ievel express relationships 
between the syntactic representations of algebraic axioms. The PRESS meta-Ievel 
describes a meta-theory of algebra. 

Inference at the meta-Ievel in PRESS causes algebraic manipulation to be car­
ried out at the object level. Many of the meta-Ievel predicates express the relation: 

Ansvrer is the result of applying Rule to Expression 

If this relation is set up as a goal to be satisfied with Rule and Expression 
bound to a particular rule and expression then PRESS answers the question by 
applying the rule to the expression This constitutes a step in the object level 
search. 

As meta-Ievel inference continues it experiments with different object level 
steps. If successful it finds a proof or solution at the object level. By using 
this technique each object level decision can be based on an arbitrary amount of 
inference at the meta-Ievel, Le as much as desired. Making a wrong decision and 
hence taking direction on a fruitless search can become a rare event. 

This technique still involves search but the search is at the meta-Ievel, not 
the object-level. The object-level search space is determined by the ways a given 
expression can be rewritten. This is typically large because it has a high branching 
rate. By comparison, the meta-Ievel search space is small because is has a low 
branching factor. Most choices lie between equally successful branches and bad 
choices rapidly lead to dead ends. This is because choices are usually between 
different methods of solution and each method uses a terminating rewrite rule 
set. 

Relevance of this Work 

This technique naturally applies to symbolic manipulation of relational expres­
sions. Laws may be separated into classes using the analysis discussed in sec­
tion 5.2.4. Methods for manipulation can be based on the approaches a human 
might take to transformation. These techniques form the basis for transformation 
in Drusilla, described in section 5.5. 
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5.4 Two Possible Representation Manipulation Strategies 

This section describes and evaluates two manipulation strategies designed for use 
in the Drusilla system. 

5.4.1 A Graph Theoretic Strategy 

This strategy, based on graph theory, is eager and has irregular control of rule 
a pplica tion. 

The nodes of the graph are the given expression and all expressions mathem­
atically equivalent to it. The arcs of the graph are directed and are formed by 
the available rewrite rules. An arc exists from an expression node A to an expres­
sion node B if there exists a rewrite rule which, when applied to A or one of its 
subexpressions yields B. The representation improving rule application procedure 
cannot be used since the strategy is eager. 

The problem of transforming the expression into the required form can now 
be viewed in terms of searching the graph. Standard search algorithms such as 
depth first or breadth first can be used. The start node for the search is the given 
expression. The goal node, to be searched for, is any expression in the graph that 
can be given the required representation. 

The search through the graph is paralleled by expression transformations. 
Whenever an arc is traversed, the corresponding rewrite rule is applied to the rel­
evant part of the out node expression. Typed representation inference is applied 
to each expression node visited and the first one that can be given the required 
typed representation is taken as the goal. Rewriting cycles are avoided by these al­
gorithms because they keep a record of all expression nodes visited. Furthermore, 
the manipulation will terminate when these algorithms terminate. 

This strategy is complete - it will find the best representation for any expres­
sion given the rules available for manipulation. However, it is so inefficient that 
it is not practical- although guaranteed to terminate, it may take a long time. 

Efficiency is a problem because the rules cannot be guaranteed to improve 
representation - a problem that applies to any eager strategy. Consequently 
there is little scope for intelligence and a complex search is reqUired. Efficient 
search algorithms, such as best-first, branch-and-bound, or A*, that try to find the 
shortest path from start node to goal node could be used, although these require 
knowledge of remaining distance to the goal node and this may be difficult to 
estimate. However, the limitations of eager manipulation would still make this 
strategy inefficient. 

5.4.2 Integrating Manipulation With Representation Inference 

This lazy strategy directly incorporates manipulation into the typed representa­
tion inference algorithm using locally representation improving rewrites. Typed 
representation inference proceeds as normal- each defining expression is ana­
lysed from the leaves to the root. Whenever a subexpression is given l.TRI an 
attempt is made to rewrite that subexpression to a form that can be represented. 
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Analysis of the expression then continues, even if the expression cannot be re­
written. If one subexpression has .LTR, then so must any expression it is part of 
and the rewriting attempts will therefore continue through the rest of the analysis. 
The strategy terminates when typed representation analysis terminates. 

One advantage of this strategy over the graph theoretic is that it identifies the 
..LTR expressions which must be rewritten. However, since the rewriting is locally 
improving the effect of each rewrite on the representation of the whole expression 
is not considered. 

5.5 Representation Manipulation by Meta-Ievel In­
ference 

5.5.1 Overview of the Strategy 

The manipulation strategy used in the Drusilla system is based on meta-Ievel 
inference [14, 15, 106] as discussed in section 5.3.3. This approach uses several 
strategies, called methods, for rewriting expressions. Each method intelligently 
combines rewrite rules to transform some class of expression in a structured 
fashion. 

Rule Classification 

Bundy et a1. used syntax to subdivide the rewrite rules into sets - each set 
containing rules particularly suited to certain transformations. In a similar fashion 
the Drusilla system uses law analysis to subdivide rewrite rules into two categories 
_ those that improve representations and those that preserve representations. 
The first group is essential for representation manipulation and the second for 
search space manipulation. 

Intelligence in Meta-Ievel Inference 

Meta-Ievel inference is not one, but several goal directed strategies. Each method 
improves representation globally - given an expression, X, and a goal typed 
representation G, it must rewrite X to a form whose typed representation pattern 
matches with G. Manipulative power comes not just from each method individu­
ally, but also from the way methods interact manipulating different parts of a 
given expression. To transform an expression, op arg, a method may invoke 
other methods to manipulate the expression arg and its subexpressions. Rep­
resentation goals for subexpression arg can be extracted directly from the typed 
representation inference rules for op. 

For conventional manipulation strategies the size of the search space is dictated 
by the number of different ways a given expression can be rewritten. Such search 
spaces suffer a combinatorial increase in size for a linear increase in the number of 
rewrite rules. By contrast the search space for meta-level inference is the different 
ways in which the rules can be usefully combined. 
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Meta-Ievel inference is more flexible than the approaches previously con­
sidered. Its transformation power can easily be increased by adding new methods. 
This power is maximised by ensuring that each method is generally applicable to 
a wide variety of expressions. It is also applicable to search space manipulation. 
The same transformation methods can be used to reduce search space size while 
preserving representations. 

5.5.2 Methods for Representation Manipulation 

This subsection describes the rewriting methods used for representation manip­
ulation in the Drusilla system. 

There are no rewrite rules applicable to basic values hence the method applic­
able to these involves no transformations and terminates trivially. The methods 
for manipulating tuples and compound relation designations use only represent­
ation improving rules and are described below. Methods are combined by the 
higher-order functions presented in Figure 5.5. 

Rewriting a Compound Relation Designation 

Every compound relation designation is parsed into abstract syntax of the form: 

op arg 

This expression will have no representation if there is no typed representation 
inference rule for op applicable to the representation of arg. There are two 
methods available for rewriting such an expression. In the order they are tried: 

Compound Method A: rewrite the whole expression. An attempt is made to 
apply a single rule to the whole expression, the aim being to create a new 
expression with the goal representation. If such a rule cannot be found 
then the method fails. This method terminates because there is only a finite 
number of rules available for rewriting and at most rewrite is made. 

Compound Method B: rewrite the subexpression then re-analyse. arg is rewrit­
ten to a form whose representation matches one of the typed representation 
inference rules for op. Each of these rules in turn can be used as a goal. For 
example, one rule for relation composition is: 

(r x s) :: (AL[A t+ Bl x SF[B t+ Cl) 
r; s :: AL[A ++ Cl 

An attempt is made to rewrite the tuple of relations arg to make its repres­
entation match with the top of the inference rule. If this rewrite succeeds 
then the inference rule is applied to the new typed representation for arg. 
This must yield a new typed representation for the whole expression. 
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method == (trSub,relExp,typedRep) -> (bool, trSub, relExp) 

lMeth :: method -> method -> method 
lMeth methodA methodB val 

= (True,subA,expA), 
= methodB val, 

where 
(succA,subA,expA) = 

succA 
otherwise 

methodA val 

sOptMeth :: method -> method -> method 
sOptMeth methodA methodB val 

= (True,subB,expB), succA & succB 
= (succA,subA,expA), otherwise 

where 
(succB,subB,expB) 
(succA,subA,expA) 

methodB (subA,expA,TRvar (Alpha 0» 
methodA val 

tclMeth :: method -> method 
tclMeth methA val 

= rtclMeth methA (subA,expA,TRvar (Alpha 0», 
= (False,subA,expA), 

where 
(succA,subA,expA) = methA val 

rtclMeth :: method -> method 
rtclMeth methA val 

= rtclMeth methA (subA,expA,TRvar (Alpha 0», 
= (True,subA,expA), 

where 
(succA,subA,expA) = methA val 

succA 
otherwise 

succA 
otherwise 

Figure 5.5: Higher-order functions for combining manipulation methods 
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Compound Method C: rewrite the subexpression then the whole expression. 
This method applies if arg can be rewritten to newArg that has a defined 
typed representation but no inference rule for op applies to newArg. 

An attempt is made to transform the whole expression op newArg to a 
form that does have a representation by applying a single rewrite rule. 

The methods for manipulating a compound designation are presented in Fig­
ure 5.6. 

Rewriting a Tuple 

The form of the typed representation goal determines which method is invoked: 

Tuple Method A: the goal is a tuple of representations. An attempt is mad~ to 
rewrite each expression in the tuple. The goal for each expression transform­
ation is the corresponding representation in the goal tuple of representations. 

Tuple Method B: the goal is any defined typed representation. An attempt is 
made to transform each expression in the tuple. The goal for each expression 
transformation is simply to have a defined typed representation. A tuple of 
expressions has a representation if and only if every expression within that 
tuple has a representation. 

The methods for manipulating expressions that are not compound designa­
tions are given in Figure 5.7. 

5.5.3 Proof of Termination for Methods 

Each method either improves the representation or reduces the size of the given 
expression to be manipulated. Termination is guaranteed because there is a bound 
on representation improvement and each expression is of finite size. 

5.5.4 Comparison With Other Manipulation Strategies 

The meta-Ievel inference methods used here have significant advantages over the 
graph theoretic and integrated strategies. 

This manipulation strategy/like the graph theoretic, is complete with respect to 
representation improving rules. However, it is more efficient than the graph based 
strategy because representation improving rules are exploited and the search is 
directed by typed representation information 

The integrated strategy is subsumed by meta-Ievel inference - the subexpres­
sions that have no representation are isolated in a similar manner but the rewrites 
applied improve the representation globally. 
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rewriteCompound (sub,E op tr arg,resGoal) 
= hd goodForms, 
= (False,sub,E op tr arg), 
= tclRep (argSub,E op tr newArg,resGoal), 

where 

goodForms -= [] 
badForms = [] 
otherwise 

(goodTR,badTR) = goodBadTRrules resGoal op 
goodForms = mapcat (argRewrite sub op arg) goodTR 
badForms = mapcat (badTRarg sub arg) badTR 
(argSub,newArg) = hd badForms 

rewriteCompound (sub,exp,goal) = (False,sub,exp) 

goodBadTRrules :: typedRep -> relOp -> ([typedRep],[typedRep]) 
goodBadTRrules resGoal = 

split (rngTRmatch resGoal) . opTypeRep 

split p xs = (filter p xs, filter «-) . p) xs) 

rngTRmatch :: typedRep -> typedRep -> bool 
rngTRmatch resGoal (RTR SF dom rng) = trMatch resGoal rng 

argRewrite :: trSub -> relOp -> relExp -> typedRep -> 

[(bool,trSub,relExp)] 
argRewrite subA op arg (RTR SF dom rng) 

= [(True,newSub,newExp)], success 
= [], otherwise 

where 
(dummySucc,subB,newArg) = repOriented (subA,arg,dom) 
(success,subC) = typRepUnification dom (getExpTR newArg) 
newSub = composeSubs subC subB 
newExp = applySubToExp newSub (E op rng newArg) 

badTRarg :: trSub -> relExp -> typedRep -> [(trSub,relExp)] 
badTRarg sub arg (RTR SF dom rng) 

= [(newSub,newArg)], succ 
= [], otherwise 

where 
(sllcc,newSub,newArg) = repOriented (sub,arg,dom) 

Figure 5.6: Method for manipulation of a compound designation 
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twoPhaseMan = repOriented $sOptMeth searchOriented 

repOriented = repManip $sOptMeth tclRep 

repManip = noRewrite $lMeth repRewrite $lMeth rewriteCompound 
$lMeth tupRewrite 

tclRep = tclMeth repRewrite 

repRewrite = rewriteExp replmprove 

noRewrite (sub,E op tr arg,goal) = 
(trMatch goal tr,sub,E op tr arg) 

noRewrite (sub,Tu tup,goal) = 
(trMatch goal (getExpTR (Tu tup»,sub,Tu tup) 

noRewrite (sub,simpleExp,goal) = (True,sub,simpleExp) 

rewriteExp :: «typedRep -> bool) -> relExp -> 

(bool,relExp» -> method 
rewriteExp manFun (sub,E op tr arg,goal) = 

(succ,sub,newExp) 
where 
(succ,newExp) = manFun (trMatch goal) (E op tr arg) 

rewriteExp manFun (sub,exp,goal) = (False,sub,exp) 

tupRewrite (sub,Tu tup,TuTR tupReps) 
= (True,newSub,Tu newTup), succ 
= (False,sub,Tu tup) , otherwise 

where 
(succ,newSub,newTup) = 

foldr2 tupElemManip (True,sub,[]) tup tupReps 
tupRewrite (sub,Tu tup,TRvar v) = 

tupRewrite (sub,Tu tup,TuTR varTup) 
where 
varTup = map (const (TRvar v» tup 

tupRewrite (sub,other,goal) = (False,sub,other) 

tupElemManip tupEl goal (True,sub,tup) = 
(succ,newSub,newTupEl : tup) 
where 
(succ,newSub,newTupEl) = repOriented (sub,tupElB,goal) 
tupElB = applySubToExp sub tupEl 

tupElemManip tupEl goal (False,sub,tup) = (False,sub,tup) 

Figure 5.7: Methods for representation manipulation 
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5.5.5 More General Methods 

The power and flexibility of meta-Ievel inference is directly dependent on the 
methods available - as new methods are added this power is increased. This 
subsection considers the implications of adding two new methods that would 
make the strategy applicable to a more general class of expressions. 

Method 1: if representation manipulation of an expression is to be successful it 
may be necessary for its representation to be made worse in order for it 
later to be improved later. This method supports such manipulation by 
permitting representation spoiling rules to be applied before representation 
im proving rules. 

Method 2: this a restricted form of method 1. Representation spoiling rules are 
not permitted but representation maintaining rules may be applied before 
representation improving rules. 

Problems with these Methods 

Although these methods generalise the manipulation strategy and increase ma­
nipulative power they present two significant problems: 

Non-termination: The proof of method termination given in section 5.5.3 does 
not hold for methods 1 and 2. Moreover, if they are introduced in their 
full generality then they may well be non-terminating. To guarantee ter­
mination, restrictions must be imposed upon them but this will reduce the 
manipulative power. For example, method 1 could be restricted to apply at 
most one representation spoiling rule to any given subexpression; method 
2 could be restricted to apply a representation improving rule after each 
representation maintaining rule. 

Fruitless search: The new methods permit many more rules to be used. Method 
1 allows each law to be used in either direction. Method 2 allows each law 
to be used in at least one direction. Consider the 54 laws used in the Drusilla 
system - typed representation analysis isolates just seven that improve 
certain expressions with particular typed representations. Method 1 would 
allow 101 (Le. 54 * 2 - 7) and method 2 would allow 47 (Le. 54 - 7) rules, 
none of which improves representation. If an expression's representation is 
to be improved then application of a non-improving rule must eventually 
be followed by a representation improving rule. Therefore, one of the non­
improving rules must generate an expression that matches in both syntax 
and typed representation with one of the improving rules, otherwise the 
search will be fruitless. It is precisely such fruitless avenues that meta­
level inference aims to avoid. As more rules and more general methods are 
introduced the meta-Ievel search space becomes closer in size to the object­
level search space. This may mean a large increase in transformation time 
for comparatively little gain in manipulative power. 
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5.5.6 Examples of Representation Manipulation 

Examples of the use of representation manipulation are given here. The transform­
ations are produced by the Drusilla system using meta-Ievel inference methods 
described in section 5.5.2. 

Example One 

The example program is: 

r = neg [+ 1]. 
s = (1,1),(2,4)]. 
t = [* 4]. 
rst = (r ; s) ; t. 

The typed representations of the definitions in this program are: 

r :: CF[num f-t num] 
s:: AL[num f-t num] 
t :: SF[num f-t num] 
rst:: .LTR 

The definition of rst cannot be given a representation because of the nature 
of composition. The composition r i s is given a characteristic function repres­
entation. The composition of this relation with t has no representation because a 
characteristic function can only be composed with an association list. 

A new expression with a representation is generated by a single rewrite. The 
definition of rst is rewritten as: 

rst = r ; (s ; t) 

This new expression is generated using the law for associativity of composition. 

(a ; b) ; c = a ; (b ; c) 

The composition s ; t is given an association list representation. The compos­
ition of characteristic function r with this relation has a valid representation and 
the new typed representation is: 

Example Two 

The example program is: 

succ = [1 +]. 
pred = [- 1]. 
rnultld = [* 1]. 

rst:: CF[num f-t num] 

numld = inv «inv succ inv pred) ; inv rnultld). 
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Here numld is a contrived form of the identity relation over numbers. The typed 
representations given to the definitions are: 

succ :: SF[num f-+ num] 
pred :: SF[num f-+ num] 
multId :: SF[num f-+ num] 
numId:: l.TR 

The two laws used for this transformation are: 

inv (inv r) = r 
inv q i inv p = inv (p q) 

The sequence of rewrites applied is: 

inv «inv succ i inv pred) ; inv multld). 
~ inv (inv (pred ; succ) i inv multld) 
~ inv (inv (multld i (pred i succ») 
~ multld i (pred i succ) 

This final expression has the typed representation: 

mul tld i (pred i succ):: SF[num f-+ num] 

Note that the final rewrite is not actually necessary - the expression has 
a defined typed representation after the second rewrite - it is represented by 
a characteristic function. The system, however, always ends manipulation by 
attempting to improve the representation by applying a single rewrite to the 
whole expression. This is inexpensive, but may be useful. 

5.5.7 Completeness for Representation Manipulation 

This subsection proves the completeness of meta-Ievel inference for representation 
manipulation with respect to the representation improving rules. 

The proof is simplified by considering only representation improving rules. 
There is no need to consider the effect on representation of applying a rule since 
it is known the representation must improve. It is, however, necessary to prove 
that the representation manipulation algorithm M finds, if one exists, a sequence 
of rewrites that improves an expressions representation. To state this formally, 
notation is introduced: 

n r- (exp ~ newExp) 

Here n denotes the set of representation improving rules, exp is an expression 
without representation and newExp is an equivalent expression with represent­
ation. The turnstile states that exp can be transformed to newExp by applying 
rules from'R. Application of rule, r E 'R, to the whole expression exp (Le. not to 
any of its subexpressions) is denoted by r expo Completeness can now be stated 
formally: 
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n f- (exp -7 newExp) => (newExp E M exp) 

The transformed expression newExp is created by applying some sequence of 
rewrite rules in n, as a function, to expo The meta-level inference algorithm is 
denoted by function M. The proof is for the methods discussed in section 5.5.2 
and presented in Figure 5.6 and Figure 5.7. In the following proof the typed 
representation of any expression, exp, is denoted by expTR. 

Proof of completeness by induction over construction of expression 

Base Case: There are no rewrite rules applicable to basic values at the leaves 
of an expression tree. This corresponds to the noRewri te method. 

Hypothesis for Induction: assume the strategy is complete for expressions 
eXPl and exp2: 

n f- (exPl -7 newExPl) => (newExPl E M expd 
n f- (exp2 -7 newExp2) => (newExp2 E M exp2) 

The strategy is now proved complete for any expression construct ap­
plied to eXPl or exp2. 

Case tuple Tu[exPb exp2] 
The rules only apply directly to compound designations and not to 
tuples. A tuple can be manipulated by applying manipulation to each 
of its elements. Tuple Method A and Tuple Method B perform this 
task. The new tuple generated is Tu[newExPb newExP2] 

Case compound relation designation op eXPl 
The rules only apply directly to compound designations and not to 
tuples. Suppose there exists a sequence of rewrites for op eXPl which 
produces the required typed representation: 

n f- ((op expt) -7 compExp) => (compExp E M (op eXPl)) 

Expression compExp has the desired typed representation compExpTR. 
By the hypothesis, algorithm M can generate newExPl. 

Subcase 1 
The new expression compExp can be generated applying a rewrite 
ruler E n: 

r (op exp~ = compExp 
(r (op eXPl)) R = compExpTR 

Compound Method A applies this rule. 
Subcase 2 

There exists a typed representation inference rule for op, SF[dom H rng], 
and a unifying substitution, (7, such that: 

(7 SF[dom H rng] = (j SF[newExpIR H compExpTR] 
op newExPl = compExp 

(j (op newExPl)TR = compExpTR 
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Compound Method B produces the expression compExp using al­
gorithm U, shown in Figure 4.11, to compute (J'. 

Subcase 3 

o 

If subcase 1 and subcase 2 do not apply, there must be a rewrite 
rule, r E n, such that: 

r (op newExpy = compExp 
(r (op newExPl» R = compExpTR 

Compound Method C applies this rule. 

5.6 Search Space Oriented Manipulation 

A reasonable heuristic is that the size of the search space generated by an expres­
sion is related to the operators used, since each operator carries some computation 
overhead. For example, consider the expression: 

er \I s) /\ (r \I t) 

If this expression is used in forward mode then both of the subexpressions 
(r \/ s) and (r \I t) are applied to the given domain value and, hence, 
relation r is applied twice. In an expression, each compound designation pro­
duces some values necessary for the expression's result. Therefore, if the number 
of compound designations (Le. operators) in an expression can be reduced while 
retaining its meaning then the overhead of computation may also be reduced. 
This does not decrease the set of values produced as result but does decrease the 
set of intermediate values needed to produce that result, Le. the search space of 
the definition. However, the extent to which computation is saved is unpredict­
able because lazy evaluation is used. For example, the above expression can be 
reduced to: 

r \I (s /\ t) 

When this expression is lazily evaluated in forward mode the two sub expressions 
applied are rand (s /\ t) - relation r is applied once. Application of r 
involves less computation than application of (r \I s). 

5.6.1 Rules for Search Space Manipulation 

The above expression reduction is described by the distribution law: 

(r \I s) /\ (r \I t) = r \/ (s /\ t) 

Any law in which the expression on the left hand side uses more operators than 
the expression on the right hand side and in which the right hand side is linear (Le. 
contains no repeated law variables) can be used as a rewrite rule for attempting 
to reduce computation. Such rules are termed search space improving. 

To ensure search space manipulation preserves the representation of any ex­
pression it processes, only those rules that are representation maintaining and reduce 
the number of operators are used. 
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5.6.2 Termination of Search Space Manipulation 

Whenever an expression is rewritten by a search space rule, its size must be 
reduced since the expressions on the right hand sides of rules are linear. Therefore, 
since expressions are of finite size, termination is guaranteed. 

5.6.3 Methods for Search Space Manipulation 

Unlike representation manipulation, search space manipulation has no tangible 
'goal to strive for - the aim is to reduce expression size as much as possible. 

Basic values cannot be rewritten. A tuple is manipulated by applying manip­
ulation to each of its constituent elements. The only expression form that can be 
directly rewritten is a compound relation designation opA argA; the method for 
this is constructed from two smaller methods, which are applied in sequence: 

1. Repeatedly apply rewrite rules to the whole expression opA argA, until no 
more rules are applicable. If this method succeeds then the expression is re­
duced either to a simple expression that contains no operators, in which case 
manipulation ceases, or to a simpler compound designation, opB argB, in 
which case the next method is applied. 

2. Attempt to improve the search space of argB using the first method. If 
this method successfully applies rewrites to create a new, reduced, expres­
sion argC then the first method is re-invoked on the whole expression 
opB argC. 

The algorithm for search space methods is given in Figure 5.8. 

5.7 Manipulation of a Dntsilla Program 

Typed representation analysis of a Drusilla program proceeds in the usual fashion. 
When each maximally strong component is analysed, representation manipula­
tion is invoked for any defining expression that cannot be given a representation. 
The goal for this manipulation is merely to generate a representation for the 
expression without care as to what that representation is. 

In a component the representation available for each definition is dependent 
on the representations of the other definitions because of the mutual recursion 
between them. Ideally the goal for manipulation of a definition would be a 
representation that improves representation possibilities for the other definitions. 
Unfortunately, however, this representation cannot be known in advance. If one 
defining expression cannot be represented then neither can any definition within 
that component, so manipulation ceases, the program is rejected as unusable and 
it is left to the programmer to re-formulate definitions using mode information. 

Section 5.2.1 states that representation and search space manipulation are 
separated into phases since the latter is of no practical value for a program unless 
it is fully represented. However, this is compromised slightly in the Drusilla 
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searchOriented = structSearch $lMeth searchTup $lMeth noSearch 

structSearch = rtclSearch $sOptMeth searchCompound 
$sOptMeth rtclSearch 

rtclSearch = rtclMeth searchRewrite 

searchCompound (sub,E op tr arg,goal) 
rtclSearch (newSub,E op tr newArg, goal) , 
(False,sub,E op tr arg), 
where 

succ 
otherwise 

(succ,newSub,newArg) = searchOriented (sub,arg,goal) 
searchCompound (sub,exp,goal) = (False,sub,exp) 

searchTup (sub,Tu tup,goal) = 
(True,sub,TU newTup) 
where 
newTup = map (searchTupEl sub goal) tup 

searchTup (sub,exp,goal) = (False,sub,exp) 

noSearch (sub,exp,goal) = (True,sub,exp) 

searchRewrite = rewriteExp searchlmprove 

searchTupEl :: trSub -> rewriteGoal -> relExp -> relExp 
searchTupEl sub goal exp'= 

newExp 
where 
(durnmySucc,durnmySub,newExp) = searchOriented (sub,exp,goal) 

Figure 5.8: Methods for search space manipulation 
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system to simplify transformation. When a program is analysed representation 
manipulation is applied to each defining expression that has no representation. If a 
representation can be generated for the expression then search space manipula tion 
is invoked. It is invoked regardless of whether representation manipulation is 
needed. 

5.8 Conclusion 

This chapter has described how laws of relational equivalence can be used as 
directed rewrite rules for the manipulation of Drusilla expressions to achieve two 
main goals: 

1. most importantly, to improve representations, especially for expressions 
without representation; 

2. to improve run-time performance by pruning the search space; 

Typed representation inference is applied to the laws to ensure the rules extracted 
improve representations. The manipulation strategy uses meta-Ievel inference to 
control search. 

The results of this research are disappointing, particularly for representation 
manipulation for which it is difficult to find good examples since few rules im­
prove representation. 

An expression is given .LTR by the application of a typed representation rule 
for some operator within that expression. The typed representation rules for 
an operator only yield .LTR for those argument representations for which that 
operator is undefined. Table 5.3 shows the argument representations for which 
each operator is undefined. This table reflects the limit of what is computable 
with relational operators. Representation manipulation has only marginal suc­
cess in transforming away such operators because comparatively few laws are 
applicable. Most laws apply to operators that are defined for all argument repres­
entations and few apply to those operators that are only defined for extensional 
relations, for example range (rng), cardinality (card) and image of a (extension­
ally represented) set under a relation (img). This poses a fundamental problem 
for representation manipulation. 

Fortunately, in practice, few expressions are without representation since com­
paratively few operators are undefined for comparatively few argument repres­
entations. Moreover, all programs presented in chapters 3 and 7 are executable in 
the Drusilla system without any manipulation. 
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dom:: { SF[CF[A f-7 Bl f-7 ..LTRl } 
rng:: { SF[SF[A f-7 B] f-7 ..LTRl, 

SF[CF[A f-7 Bl f-7 ..LTRl } 
card:: { SF[SF[A f-7 Bl f-7 ..LTRl, 

SF[CF[A f-7 Bl f-7 ..LTRl } ... { , .. SF[(CF[A f-7 B] x SF[B f-7 CD f-7 .LTRl, 
SF[(CF[A f-7 B] x CF[B f-7 CD f-7 .LTR] } 

img:: { SF[(SF[A f-7 B] x CF[A f-7 un]) f-7 ..LTR], 
SF[(CF[A f-7 B] x SF[A f-7 un]) ++ ..LTR1, 
SF[(CF[A f-7 Bl x CF[A f-7 un]) ++ ..LTR] } 

@:: { SF[(AL[A f-7 Bl x CF[A f-7 BD ++ ..LTRl, 
SF[(SF[A f-7 B] x CF[A f-7 BD f-7 .LTR1, 
SF[(CF[A f-7 B] x CF[A ++ B]) ++ ..LTRl } 

Table 5.3: Undefined operator typed representations 



Chapter 6 

Architecture of the Drusilla System 

6.1 Introduction 

Chapters 4 and 5 described techniques designed to improve the implementa­
tion of relational programming by widening the representation bottleneck of RPL 
and GREL. The interaction of these techniques creates a far more sophisticated 
and complex implementation of relational programming. A data flow diagram 
describing the system is presented in Figure 6.1. This chapter describes the ar­
chitecture of this system. Section 62 describes the preliminary processing of 
calculus type inference rules, typed representation inference rules and laws. Sec­
tion 6.3 describes the parser for the Drusilla language. Section 6.4 discusses the 
interaction of the various semantic analysis techniques. Section 6.5 presents the 
framework used for the Miranda-Ievel definition of the primitive operators. Sec­
tion 6.6 explains the evaluation process for Drusilla expressions and run-time 
queries of relations. Section 6.7 explains how Drusilla programs can be compiled 
to Miranda programs. Section 6.8 draws conclusions about the architecture. 

6.2 Preliminary Processing of Inference Rules and 
Laws 

The inference rules for calculus type inference and typed representation inference 
must be defined before program analysis can commence. Similarly the laws for 
algebraic manipulation must be analysed before manipulation can commence. 

6.2.1 Type Signatures and Inference Rules 

Calculus type and typed representation rules are defined using the same mech­
anism but in separate text rues. The set of of typed representation signatures for 
each operator is enclosed in braces with each rule on a separate line. For example: 

150 
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Figure 6.1: Data flow in the Drusilla interpreter 
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i :: ( SF[(AL [A <-> B] x AL[B <-> Cl) <-> (AL [A <-> Cl)], 
SF[CAL[A <-> B] x SF[B <-> Cl) <-> AL[A <-> Cl], 
SF[CAL[eA <-> B] x CF[B <-> Cl) <-> CF[eA <-> cll, 
SF[(SF[A <-> eB] x AL[eB <-> Cl) <-> SF[A <-> cll, 
SF[CSF[A <-> Bl x SF[B <-> Cl) <-> SF[A <-> Cl], 
SF[(SF[A <-> B] x CF[B <-> Cl) <-> CF[A <-> cll, 
SF[(CF[A <-> B] x AL[B <-> eC]) <-> CF[A <-> eC]], 
SF[(CF[A <-> B] x SF[B <-> Cl) <-> bottom], 
SF[(CF[A <-> B] x CF[B <-> Cl) <-> bottom] } 

Equality variables are prefixed with an e. 
The calculus rule for each operator is written on a separate line. For example: 

; :: CA <-> B x B <-> C) <-> (A <-> C) 

The processing mechanism is described here for calculus type signatures but also 
applies to typed representation signatures. The text file is parsed to generate a 
calculus type signature for each operator. Calculus types are represented by the 
algebraic data type shown in Figure 6.2. 

calcType :: = 
NumC 
StringC 
UnC 
VarC num 
TuC [calcType] 
RelC calcType calcType 

calculus types datatype 
number type 
string type 
unit type 
type variable 
tuple type 
relational type 

Figure 6.2: Miranda algebraic datatype defining calculus types 

For example, the above calculus type of relation composition is parsed into 
the abstract syntax: 

RelC (TuC [RelC (VarC 1) (VarC 2),RelC (VarC 2) (VarC 3)]) 
(RelC (VarC 1) (VarC 3» 

Such a signature can also be used as an inference rule that is applicable when 
that operator constructs a compound relation designation. For example, the re­
lation composition r i s will be parsed into the abstract syntax for a relational 
expression Comp (Tu [r, s] ). Suppose the tuple Tu [r, s] is given the calcu-
lus type: 

TuC [RelC StringC NumC,RelC NumC UnC] 

The expression's calculus type is generated by the signature for composition: 
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RelC StringC UnC 

This is generated by unifying the type for the tuple with the domain type for 
composition. i.e. the the two expressions: 

TuC [RelC (VarC 1) (VarC 2), RelC (VarC 2) (VarC 3)] 
TuC [Re1C StringC NumC, Re1C NumC UnC] 

The unification produces a substitution which is applied to the range type for 
composition to give the above composition expression type. In this way each 
operator's calculus type signature can be used as a calculus type inference rule. 

6.2.2 Processing Laws 

The laws for algebraic manipulation are also specified in text files. Each law is 
written as the equivalence of two expressions. For example: 

(r > > s) i t = r i (s « t) 

From each law a relation definition is derived in which the defining expression 
is the pair of expressions that form the law and the formal parameters are the 
variables occurring in the law. Typed representation analysis is then applied to 
this definition as described in chapter 5. 

6.3 The Parser 

The parser is conventionally composed of a lexical analyser, which recognises the 
language tokens (basic values and operator symbols), and a syntactic analyser, 
which builds those tokens into the abstract syntax defined as algebraic data type 
relExp in Figure 4.6. 

Both analysers are constructed using the 'let form follow function' idea of 
Fairbairn [33]. This style of parser is based on the notion of 'gluing' [47] smaller 
parsers together to form bigger parsers. The glue is provided by higher-order 
functions for the alternation ($1), sequencing ($s), transitive closure ($tc1) and 
reflexive transitive closure ($rtc1) of parsers. 

The definition of the parser looks like the BNF that formally defines the gram­
mar. Consequently it is easy to modify the parser as the language evolves. Each 
grammar rule may be associated to a build function, which constructs the abstract 
syntax. The Miranda definition of the parser (without the abstract syntax build 
functions) is shown in Figure 6.3. 

6.4 Semantic Analysis 

The semantic analysis breaks down into three sequential phases: 
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compExp 

simpleExp 

argExp 
domain 
opSection 

leftSect 

rightSect 

optCurryRel 

curryObj 

elementOp 

brackExp 

tuple 

relExpSeq 

curryTuple 

currySeq 

curryltem 

extensRel 

pairSeq 

domainPair 

(simpleExp $s rtcl (binaryOp $s simpleExp» 
Sas buildCompExp 

= (opt unaryOp $s argExp) 
Sas buildSimpleExp 

= opSection $1 optCurryRel $1 domain 
= number $1 unit $1 string $1 extensRel $1 tuple 
= (lex SqOpen $s (leftSect $1 rightSect) $s 

lex SqClose) Sas buildOpSection 
= (argExp $s primOp) 

Sas buildLeftSection 
= (primOp $s argExp) 

Sas buildRightSection 
= (opt curryTuple $s curryObj $s opt curryTuple) 

Sas buildOptCurryRel 
= (identifier $1 brackExp $1 elementOp) 

Sas buildCurryObj 
= (lex SqOpen $s primOp $s lex SqClose) 

Sas buildElementOp 
= (lex ParOpen $s compExp $s lex ParClose) 

Sas buildTuple 
= (lex ParOpen $s relExpSeq $s lex ParClose) 

Sas buildTuple 
= (compExp $s tcl (lex Comma $s compExp» 

Sas buildRelExpSeq 
(lex ParOpen $s currySeq $s lex ParClose) 

Sas buildTuple 
= (curryltem $s tcl (lex Comma $s curryltem» 

Sas buildRelExpSeq 
= (lex Uscore $1 compExp) 

Sas buildCurryltem 
= (lex BrOpen $s opt pairSeq $s lex BrClose) 

Sas buildExtensRel 
= (domainPair $s rtcl (lex Comma $s domainPair» 

Sas buildPairSeq 
= (lex ParOpen $s compExp $s lex Comma $s compExp 

$s lex ParClose) Sas buildDomainPair 

Figure 6.3: Miranda code for the Drusilla expression parser 
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Maximal strong component isolation: once the program has been parsed and 
the abstract syntax constructed the maximal strong components of the pro­
gram reference graph are isolated. A reduced reference graph is obtained by 
collapsing each component in the full graph to a single node. The reduced 
graph is used in the following analysis phases. 

Calculus type inference: this ensures that each defining expression has a valid 
meaning in the world of relational algebra. If a program contains a definition 
that is calculus incorrect then the program is rejected. This ensures that 
later computationally expensive analysis techniques are never applied to 
incorrect programs. 

The calculus type inference algorithm is the conventional Milner [75] type 
inference algorithm used in functional languages. The type inference rules 
used are dictated by the relational operators. These rules are given in 
Figure 6.4. 

'IYped representation inference and algebraic manipulation: typed representa­
tion analysis is applied to strong components in the reverse of their depth­
first ordering. This ensures that each definition is analysed before the defin­
itions that reference it non-recursively. Representation manipulation is ap­
plied to any defining expression that has the undefined typed representation, 
..LTR. If this manipulation is successful then a defined typed representation 
is created for the expression; otherwise program analysis ceases. 

Search space manipulation is automatically applied to each defining expres­
sion that has a defined typed representation in an attempt to improve its 
search space characteristics. 

6.5 Defining the Operators in Miranda 

The definition of the relational operators in the Miranda implementation must 
preserve both ad-hoc and parametric polymorphism. Each operator must be 
defined for all possible argument representations. Ad-hoc polymorphism is im­
plemented by overloading each operator giving it separate definitions for each 
particular argument representation. Parametric polymorphism is preserved by 
ensuring each definition is applicable to all relations of the given representation 
regardless of their domain and range types. 

In order for Miranda to handle all definitions of an operator uniformly, the 
definitions must all possess the same MiIner type. Therefore the universe of 
Drusilla values is defined as an algebraic datatype, domain, shown in Figure 6.S. 

All built-in operators of Drusilla are defined over this domain of values. For 
example, the definition of arithmetic plus, +, as a point-tD-point function: 

plusF :: domain -> domain 
plusF (T [N x,N y]) = N (x + y) 
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t:: A f-7 B 
dom t:: A f-7 un 
card t:: nurn 
neg t:: A f-7 B 

rng t:: B f-7 un 
inv t:: B f-7 A 

set t:: CA x B) f-7 un 

r :: A f-7 B s :: A f-7 B 
r \/ s:: A f-7 B r /\ s:: A f-7 B 
r \ s:: A f-7 B r @ s:: A f-7 B 

s:: A f-7 un r:: A f-7 B 
s < < r:: A H B s < - r:: A ++ B 
r img s:: B H un 

p :: A ++ B q :: B ++ un 
p > > q:: A f-7 B p - > q:: A f-+ B 

r :: A f-7 B s:: B ++ C 
r ; s:: A f-7 C 

r :: A f-7 B s:: A ++ C 
r # s:: A ++ (B x C) 

r :: A f-+ B s :: C H D 
r 11 s:: (A x C) H (B x D) 

Figure 6.4: Calculus type inference rules 
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domain ::= 
N num 
S [char] 
U unitType 
T [domain] 
R reI 
DUM 

unitType ::= Unit 

universe of values data type 
number values 
string values 
unit value 
tuple of values 
relational values 
anonymous value for 
relation specialisation 

unit value data type 
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reI ::= 
Al [(domain,domain)] 
Sf (domain -> [domain]) 
Cf «domain,domain) ~> hool) 

relational value data type 
relation as association list 
relation as set-valued function 
relation as characteristic function 

Figure 6.5: Miranda algebraic data type defining universe of Drusilla values 

This form of function implements compound relation designations. For ex­
ample, the Drusilla compound designation a + b is represented by the expres­
sion: 

plusF (T [N a, Nb]) 

This can be treated as a new Drusilla value since it has type domain. When plus 
is used as an elementary designation, [+], it must be coerced to be included in 
domain: 

plusSf :: domain -> [domain] 
plus Sf = mklist . plusF 
nudist x = [xl 

This is included in domain as the value: R (Sf plusSf». 
The relational operators can be defined in the same manner. Consider, for 

example, relation composition (; ). The seven argument representations for which 
composition can be defined are identified in Figure 4.5. It would be reasonable 
to expect seven different definitions of composition to be needed - one for 
each combination of argument representations. However, by using argument 
coercions, only five are needed: compAl1, compAl2, compSf, compCfl and 
compCf2, shown in Figure 6.6. These definitions use the library functions shown 
in Figure 6.7. 

The typed representation of any expression op arg is created by applying 
one of op's inference rules to the typed representation of arg. Each of these 
rules corresponds to a definition of Ope For example, Figure 6.8, shows the typed 
representation inference rules and corresponding definitions for the composition 
operator. Each rule introduces the appropriate equality constraint (as an equality 
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compAll (T [reIR,reIS]) = 
R (AI [(a,d) II (a,b) <- ri (c,d) <- Si domainEquiv b c]) 
where 
{R (AI r» relR 
(R (AI s» = relS 

compAI2 (T [reIR, R (Sf s)]) = 
R (AI [(a,c) I (a,b) <- ri c <- s b]) 
where 
(R (AI r» = relR 

compSf (T [R (Sf r), R s]) = R (Sf {mapcat (coerceToSf s) . r» 

compCfl {T [R 
R (Cf f) 
where 

r, R s]) = 

• 
f (x,y) = exists (coerceToCf s . rpair y) (coerceToSf r x) 

compCf2 (T [reIR, reIS]) = 
R (Cf f) 
where 
f (x,y) = exists (r . pair x) (domAIFilter (y =) s) 
(R (Cf r» = relR 
{R (AI s» = relS 

I I general functions 
mapcat f = concat . map f 
pair x y = (x,y) 
rpair x y = (y,x) 
exists = or . map f 

Figure 6.6: Miranda definitions of the composition operator 
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domainEquiv .. domain -> domain -> bool 
domainEquiv (N x) (N y) = x = y 
domainEquiv (S x) (S y) = x = y 
domainEquiv (U x) (U y) = True 
domainEquiv (T tuX) (T tuY) = 
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# tuX = # tuY & and (map2 domainEquiv tux tuY) 
domainEquiv (R (AI r» (R (AI s» = setEqualH domPairEquiv r s 

domPairEquiv :: (domain,domain) -> (domain, domain) -> bool 
domPairEquiv (lftX, rhtX) (lftY, rhtY) = 

domainEquiv IftX IftY & domainEquiv rhtX rhtY 

domAIFilter :: (domain -> bool) -> [(domain,domain)] -> [domain] 
domAIFilter p = map fst . filter (p . snd) 

coerceToSf :: domain -> domain -> [domain] 
coerceToSf (AI a) = lookup a 
coerceToSf (Sf f) = f 

lookup :: [(domain,domain)] -> domain -> [domain] 
lookup xs x = [b I (a,b) <- XSi a = xl 

coerceToCf :: reI -> (domain,domain) -> bool 
coerceToCf (Cf p) (x,y) = p (x,y) 
coerceToCf (AI s) (x,y) = setMemH domPairEquiv (x,y) s 
coerceToCf (Sf f) (x,y) = setMemH domainEquiv y ef x) 

setMernH :: (* -> * -> bool) -> * -> [*] -> bool 
setMernH equals item = exists (equals item) 

Figure 6.7: Library of operations over domain values 
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variable) for a relation whenever it is coerced in the corresponding definition, 
as explained in chapter 4. The typed representation rules ensure that equality 
is defined for relation clomain and range elements whenever necessary for the 
coercions applied by operator definitions. 

For the Drusilla interpreter the typed representation inference rules were coded 
manually to match the definitions. It would be more satisfactory if they could be 
automatically generated from the operator'definitions. The possibility for this is 
discussed in section 6.7. 

compAll r:: AL[A f-t B=] s:: AL[B= f-t Cl 
r ; s :: AL[A f-t Cl 

compA12 r:: AL[A f-t Bl s:: SF[B f-t Cl 
r ; s :: AL[A f-t Cl 

compSf r:: SF[A f-t B=] s:: AL[B= f-t C] 
r ; s :: SF[A f-t Cl 

compSf r:: SF[A f-t Bl s:: SF[B f-t C] 
r ; s :: SF[A f-t Cl 

compCfl r:: SF[A f-t Bl s:: CF[B f-t C] 
r ; s :: CF[A f-t Cl 

compCf 1 r :: AL[A = f-t Bl s:: CF[B f-t Cl 
r; s :: CF[A- f-t Cl 

compCf2 r:: CF[A f-t Bl s:: AL[B f-t C=] 
r ; s :: CF[A ++ c-1 

Figure 6.8: Definitions and corresponding rules for relation composition 

6.6 Program Interpretation 

If analysis of a program is successful then all of its definitions have a defined 
typed representation, and expression and query evaluation may commence. 

6.6.1 Evaluation of a Drusilla Expression 

A Drusilla expression is evaluated by mapping its abstract syntax to an equivalent 
Miranda expression, which is evaluated by the Miranda interpreter. The Miranda 
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expression generated uses only domain values and returns as result a domain 
value. 

The functions that perform expression interpretation are defined in Figure 6.9. 
The main interpreting function is expEval. The evaluator must carry around a 
state variable substEnv, which binds the names of program definitions to their 
defining expressions and formal parameters to argument expressions. 

Program defined relations are evaluated by evaluateRel, which uses two 
functions that are not shown, relSfEval and relCfEval. These evaluate re­
lations that are represented by set-valued functions and characteristic functions 
respectively. They bind the relation formal parameters to values in the given do­
main tuple element and evaluate the defining expression using function expEval. 
The function getExpTR returns the typed representation assigned to a given ex­
pression and is defined in Figure 4.9. Relations defined in extension are evaluated 
by extRelEval. 

Function getOpDefn selects the appropriate definition of each operator that 
forms a compound relation designation. Application of the function getOpDefn 
takes the form: 

getOpDefn op argumentTR resultTR 

where op is a a relational operator, argumentTR is a typed representation of an 
argument, arg and resul tTR is the typed representation for the compound re­
lation designation op arg. The result of this application is the required Miranda 
definition of Ope The required definition for any elementary designation operator 
is generated by getOpSF. . 

This evaluation of operators and expressions forms the interpretive overhead. 
From one perspective this evaluation may be thought of as further representation 
selection - the representation selected for an operator is the appropriate defini­
tion and the representation selected for a Drusilla expression is the corresponding 
Miranda expression. It would be desirable for this extra representation selection 
to be performed at program analysis time and section 6.7 discusses this possibility. 

6.6.2 Interpretation of Run-time Relation Queries 

At execution time program definitions are queried in one of the three modes show, 
forward, or test. The Drusilla interpreter determines the modes of the query 
according to its syntax. The query evaluation function is defined in Figure 6.10. 

Show mode: the query is a Drusilla expression. The expression is evaluated by 
the interpreting function shown in Figure 6.9. 

Forward mode: these queries takes the form: relExp domExp where the result 
is the set of range elements to which domExp relates under relExp. The 
query is parsed into the abstract syntax: 

Forward (Tu [relExp,domExp]) 
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expEvai :: substEnv -> reiExp -> domain 
expEvai env (No n) = N n 
expEvai env (Ch c) = C c 
expEvai env (BO b) = B b 
expEvai env Ut = U Unit 
expEvai env (Dum tr) = DUM 
expEvai env (Ext rein tr) = extReiEvai env rein 
expEvai env (Tu tup) = T (map (expEvai env) tup) 
expEvai env (RO op tr) = getOpSF op tr 
expEvai env (E op resuitTR arg) = 

getOpFun op (getExpTR arg) resuitTR (expEvai env arg) 
expEval env (ReI name tr) = 
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evaIuateRel env (name,tr) (lookupRelExp (name, tr) env) 
expEval env (Fpar name tr) = 100kupEnvPar name env 

getOpSF :: relOp -> typed Rep -> domain 
getOpSF op (RTR SF domTR rngTR) = 

R (Sf (mkIist . getOpFun op domTR rngTR» 

extRelEval :: substEnv -> [(reIExp, reIExp)] -> domain 
extRelEval env = R . Al . map (extPairEval env) 

extPairEval :: substEnv -> (reIExp, relExp) -> (domain, domain) 
extPairEval env (dom, rng) = (expEval env dom, expEval env rng) 

evaIuateRel :: substEnv -> (ident,typedRep) -> 

(reIExp,reIExp) -> domain 
evaIuateRel env (name,typRep) (Dum tr, defExp) = 

expEval env defExp 
evaIuateRel env (name, RTR SF domTR rngTR) (parsExp, defExp) = 

R (Sf (relSfEval env parsExp defExp» 
evaIuateRel env (name, RTR CF domTR rngTR) (parsExp, defExp) = 

R (Cf (relCfEval env parsExp defExp» 

Figure 6.9: Evaluating function for Drusilla expressions 
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interExpEval :: substEnv -> relExp -> [char] 
interExpEval env (E FORW tr application) = 
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getForwFun (getExpTR application) (expEval env application) 
interExpEval env (E TEST tr pred) = 

getTestFun (getExpTR pred) (expEval env pred) 
interExpEval env expr = showDom (expEval env expr) 

Figure 6.10: Evaluating function for relation queries 

where Forward is a special Drusilla operator that the programmer is not 
permitted to see. In order for relation relExp to be used in forward mode, 
it must have a set-valued function or association list representation and its 
domain must have the same typed representation as domExp. Therefore, 
the abstract expression is given a typed representation by applying one of 
the two inference rules for Forward: 

(AL[A= +? Bl x A=) +? B 
(SF[A +? Bl X A) +? B 

This query is evaluated by function getForwFun defined in Figure 6.11. 

Test mode: these queries take the form: domExp relExp rngExp. If relExp 
relates domExp to rngExp then the answer to the query is True otherwise 
the answer is False. The query is parsed into the abstract syntax: 

Test (Tu [relExp,Tu [domExp,rngExp]]) 

where Test, like Forward, is a Drusilla operator that the programmer is 
not permitted to see. In order for relation relExp to be used in test mode 
it must have a relational representation that supports test mode, its domain 
must have the same typed representation as domExp and its range must 
have the same typed representation as rngExp. The abstract expression is 
given a typed representation using one of the three inference rules for Test: 

(AL[A= +? B=] X (A= X B=)) +? string 
(SF[A +? B=] X (A X B=)) +? string 
(CF[A +? B] x (A x B)) +? string 

The query is evaluated by function test defined in Figure 6.12. This query 
is evaluated by function getTestFun defined in Figure 6.12. 
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getForwFun :: typedRep -> domain -> [char] 
getForwFun (TuTR [RTR AL x y, z]) arg 

= "rel domain and arg types do not unify", 
= showResSet arg, 

"mode error --- showable relation", 
where 
(succ, subs) = typRepUnify x z 

getForwFun (TuTR [RTR SF x y, z]) arg 
= showResSet arg, 
= "rel domain and arg types do not unify", 

where 
(succ, subs) = typRepUnify x z 

getForwFun (TuTR [RTR CF x y, z]) arg = 

"mode error --- test mode relation" 
getForwFun typ arg = 
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succ = False 
showable x 
otherwise 

succ = True 
otherwise 

error ("getForwFun --- typRep is " ++ showExpTR typ) 

showResSet :: domain -> [char] 
showResSet = showFunction . forwF 

forwF :: domain -> [domain] 
forwF (T [R reln, val]) = coerceToSf reln val 

Figure 6.11: Evaluation of a query in forward mode 
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getTestFun :: typedRep -> domain -> [char] 
getTestFun (TuTR [RTR AL x y, TuTR [domTR,rngTR]]) arg 

= "domain/range. and arg types don't unify", 
succ = False 
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= testF arg, showable x & showable y 
= error "showable relation can't be used in test mode", 

otherwise 
where 
(succ, subs) = typRepUnify (TuTR [x,y]) 

(TuTR [domTR,rngTR]) 
getTestFun (TuTR [RTR SF x y, TuTR [domTR,rngTR]]) arg 

= "domain/range and arg types don't unify", 
succ = False 

= testF arg, showable x & showable y 
= error "forw rel can't be used in test mode", 

otherwise 
where 
(succ, subs) = typRepUnify (TuTR [x,y]) 

(TuTR [domTR,rngTR]) 
getTestFun (TuTR [RTR CF x y, TuTR [domTR,rngTR]]) arg 

testF arg, succ = True 
= "domain/range and arg types don't unify", otherwise 

where 
(SUCC, subs) = typRepUnify (TuTR [x,y]) 

testF :: domain -> [char] 
testF (T [R reIn, T [x,y]]) 

= "TRUE", 
= "FALSE", 

where 

succ 
otherwise 

(TuTR [domTR,rngTR]) 

succ = coerceToCf reIn (x,y) 

Figure 6.12: Evaluation of a query in test mode 
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6.7 Compiling Drusilla Programs 

Typed representation inference annotates each expression in a Drusilla program 
with a typed representation. The interpreter uses these annotations to map each 
Drusilla expression to a Miranda domain value at run-time. This interpretive 
overhead can be eliminated by replacing Drusilla expressions with Miranda ex­
pressions at program analysis time. 

Typed representation inference of each definition produces a set of versions, 
each of which is associated with a typed representation. Each definition version 
is associated with a unique identifier in a symbol table. Each Drusilla expression 
can then be replaced by the text of the corresponding Miranda expression: 

• Basic values are replaced by Miranda values: numbers remain numbers, 
lists of characters replace strings, True replaces Uni t, tuples remain tuples. 

• Each reference to a definition is replaced by the identifier appropriate to its 
typed representation, which is found from the symbol table. 

• Each Drusilla operator is replaced by the textual name of the Miranda defin­
ition appropriate to its typed representation. 

The result of applying this representation substitution to a Drusilla program is 
the text of a Miranda program, which may be written as a text file and compiled 
by the Miranda system. Therefore, it constitutes a compiler for Drusilla that 
compiles down to Miranda. The Miranda program produced is not defined 
over the domain of Drusilla values, but over the corresponding Miranda values. 
Each operator must be redefined for Miranda values with one definition for each 
combination of argument representations. 

The typed representation inference rules for the Drusilla system were cre­
ated manually to match the domain definitions of the operators. For several 
operators, one definition applies to several argument representations (by apply­
ing coercions), and remains type correct because of the domain. Consequently, 
several typed representation inference rules correspond to one definition. 

However, under the new compilation scheme, each of an operator's defini­
tions can apply to only one argument representation because Miranda values are 
used. Hence each definition for an operator corresponds to exactly one typed 
representation inference rule. Moreover this rule can be automatically generated 
by applying Milner type inference to that definition. 

This has important ramifications for the Drusilla compiler. If the typed rep­
resentation inference rules for each operator are obtained from the types inferred 
for its definitions then the type and representation constraints they capture are 
correct. When typed representation inference is applied to a Drusilla program us­
ing these rules, it generates a typed representation for each program expression. 
When representation substitution is applied, each Drusilla expression is mapped 
into a Miranda expression according to its associated typed representation. 

Chapter 4 explained that typed representation inference algorithm is sound 
and complete because it is based on Milner's algorithm. The Miranda object pro­
gram produced by the compiler is a representation of the Drusilla source program. 
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Soundness implies that the Miranda program generated by the compiler is de­
rivable under the inference system formed by the typed representation inference 
rules. Since these rules are derived from the operator definitions that the Mir­
anda program uses, type correctness of the Miranda program follows from typed 
representation correctness of the Drusilla program. Completeness implies that if 
a Miranda program is derivable from the Drusilla program under the inference 
system then the compiler will generate that program. 

Drusilla programs run considerably faster when compiled than when inter­
preted. For example, chapter 7 will present a Drusilla solution to the eight queens 
problem. When this program is interpreted it runs overnight to produce all 
92 solutions, but, when compiled all solutions can be produced in about five 
minutes. Figure 6.13 shows the algorithm for expression compilation. The result 
of compiling an expression is a triple: 

(miraCode,localDefns,unusedLocalNames) 

The expression is compiled to a list of characters denoting a Mfranda expression, 
miraCode. Relation specialisations are compiled as -X-abstractions, which are 
represented in Miranda as where blocks. The local definitions needed to support 
the compiled Drusilla expression are represented by localDefns. Each local 
definition is represented by a list of characters, hence localDefns is a ~ist of 
lists of characters. An infinite list of names for local definitions is passed to 
compileExp as argument names. Those that were not used are returned as 
unusedLocalNames. 

Appendix A shows several of the Drusilla programs introduced in this thesis 
alongside the Miranda translations produced by the Drusilla compiler. 

6.8 Conclusion 

This chapter described the architecture of the Drusilla interpreter and explained 
how the techniques presented in chapter 4 and chapter 5 are combined to form 
a framework for a new, powerful implementation of relational programming. 
Chapter 7 evaluates this implementation in terms of the freedom of expression it 
permits relational programming to possess. 
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compileExp sym names (No numb) = (shownum numb, [],names) 
compileExp sym names (St string) = 

('\"' : string ++ "\" ", [] ,names) 
compileExp sym names ut = ("True",[],names) 
compileExp sym names (Ext reIn tr) = 

(compileExtReln sym reIn, [],names) 
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compileExp sym names (Tu tup) = compileTuple sym names tup 
compileExp sym names (RO op tr) = (getOpSF op tr, [],names) 
compileExp sym names (E op resultTR arg) = 

(opDefn ++ 11 (" ++ argCode ++ ")", locals,newNames) 
where 
opDefn = getOpFun op (getExpTR arg) 
(argCode,locals,newNames) = compileExp sym names arg 

compileExp sym names (ReI name tr) = 
(lookupRelName sym (name,tr),[l,names) 

compileExp sym names (Fpar name tr) = (name, [],names) 

compileTuple sym names expList = 
(listToTuple objList, locals,newNames) 
where 
(objList,locals,newNames) = 

compileExpList sym names expList 
compileExpList sym names = 

foldr (compileListEI sym) ([], [],names) 
compileListEI sym el (objCode,locals,names) = 

(newCode : objCode,newLocals ++ locals,newNames) 
where 
(newCode,newLocals,newNames) = compileExp sym names el 

compileExtReln sym reI 
'[' : (mkStringList (map (compileExtEl sym) reI» ++ "]" 

compileExtEI sym (d,r) = 
, (' : dObj ++ "," ++ rObj ++ 11) 11 

where 
dObj = fst3 (compileExp sym [] d) 
rObj = fst3 (compileExp sym [] r) 

listToTuple [xl = x 
listToTuple lis = '(' : (mkStringList lis ++ 11)") 

mkStringList [] = [] 
mkStringList lis = foldrl addComma lis 
addComma x y = x ++ "," ++ y 

Figure 6.13: Algorithm for compiling analysed Drusilla expressions 



Chapter 7 

Evaluation of The Drusilla System 

7.1 Introduction 

Chapter 4 identified the main weakness in the implementation of RPL as the 
representation bottleneck. This fixed representation scheme creates an unneces­
sary compromise to relational abstraction and curtails freedom of expression. 
Chapter 4 and chapter 5 described new techniques for the implementation of rela­
tional programming, designed to widen this bottleneck: automatic representation 
inference and algebraic manipulation of relations. Chapter 6 described the use of 
these mechanisms in the Drusilla interpreter and the compilation of Drusilla pro­
grams into Miranda programs. Their use makes the implementation of Drusilla 
more complicated than that of RPL, but can be justified if it yields a significant 
increase in expressive power. 

The aim of this thesis is to demonstrate that relational programs are not only ex­
pressive but also capture aspects of functional and logic programming. It should 
be possible to formulate higher-order polymorphic definitions as in a functional 
language while relying on a type system to ensure mathematical validity of pro­
grams. Furthermore the presence of lazy evaluation should permit definition of 
infinite relational data structures. The presence of logical aspects should permit 
reasoning about the relationships between entities at a high level. It should also 
permit concise solutions to problems that involve non-determinism and search 
based computation. 

This chapter examines and evaluates Drusilla as a programming system with 
respect to the above criteria. Several Drusilla programs are presented and ex­
plained at both conceptual and implementation levels. 

Section 72 describes the declarative and operational reading of Drusilla pro­
grams. A good understanding of this section is essential if the following sections 
and the programs presented in them are to be understood. Section 7.3 draws 
a comparison between RPL and Drusilla by translating MacLennan's four rela­
tional programs [68,69] into Drusilla. Section 7.5 discusses relational aspects of 
Drusilla: the handling of sets, recursion over relations, non-determinism, con­
trol flow, exception handling, and formal derivation of Drusilla programs from 
specifications written in the calculus. Section 7.4 discusses functional aspects of 
Drusilla programs and presents several functional-style programs. Section 7.6 

169 



CHAPTER 7. EVALUATION OF TIIE DRUSILLA SYSTEl\1 170 

discusses logical aspects of Drusilla programs and example programs illustrate· 
the handling of relationships and state space searching. Section 7.7 draws con­
clusions about the degree of success of the Drusilla system. 

7.2 Declarative and Operational Reading 

Bratko [11] observes that Pro10g programs have two levels of meaning: declarative 
and operational. This is true of any program written in a declarative language. 
The declarative meaning is concerned only with what is defined by the program 
and determines what the output of a program will be. The operational meaning (or 
procedural meaning) also determines how the output is obtained. 

Read declaratively, a program is perceived purely in mathematical terms. A 
functional program is a collection of function definitions where each definition 
assigns a name to an expression in A - calculus. A Horn clause logic program is a 
collection of facts and rules written in first-order predicate calculus formulae. An 
equational program is a collection of equations - stated expression equivalences. 
A constraint program [28] comprises relations over some problem domain. The 
declarative reading of a program is similar to its denotationa1 semantics in that it 
states program meaning without reference to the underlying computation process. 

The operational (or procedural) reading of a declarative program considers 
not only its mathematical meaning but also its behaviour at execution time. Not 
only is the meaning of expressions understood, but also the order in which they 
are evaluated. In a functional language this is the order of evaluation of function 
applications within expressions, for example, eager or lazy evaluation [85]. For 
Horn clause logic programs the operational semantics is resolution based theorem 
proving with some in-built resolution strategy such as LUSH or SLD resolution. 
Equationallanguages have been given different operational semantics by different 
language designers. Hoffman and O'Donnell [41] use term rewriting, Dershowitz 
and Plaisted [32] use narrowing. 

Similarly Drusilla programs may be read declaratively or operationally. The 
declarative reading of an expression is given by mapping it to the relational 
calculus replacing each operator occurrence as a compound designation by its 
calculus definition. Any relation has a separate operational reading, for each 
mode of use, when evaluated using relational laziness (described in section 7.4.3). 
Read in show mode a relation is viewed as a set of pairs. This is only applicable 
to definitions where the elements are explicitly listed or where some formula for 
element generation is given. Read in test mode a relation is perceived as a predicate 
that holds or does not hold between values. A relation read in map mode is viewed 
as a relator mapping domain elements to sets of range elements. 

7.3 A Comparison of RPL and Dmsilla 

MacLennan [68,69] developed four relational programs to demonstrate the ex­
pressive power of his language RPL. This section compares these four programs 
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with Drusilla translations based on the same algorithms. These programs cannot 
be understood without definitions of the operators used. The Drusilla operat­
ors are shown in chapter 3 in Table 3.2. Tables 7.1 and 7.2 respectively contain 
MacLennan's definitions of the RPL extensional and intensional relational op­
erators. His definitions of the non-primitives are cyclic in places making exact 
meaning somewhat unclear. Furthermore, he does not define the operators (x) 
or (id) but one assumes that these refer to cartesian product and identity re­
spectively for which the standard definitions apply. Not all the systeJ?1 operators 
are given - only those relevant to the programs. MacLennan actually defines 
70 extensional operators (16 primitive and 54 non-primitive) and 23 intensional 
operators (13 primitive, 10 non-primitive). 

In each exam pIe MacLennan's original RPL program is followed by the Drusilla 
translation. Only a brief description of each algorithm is given; more detailed de­
scriptions are given by MacLennan [68, 69]. 

7.3.1 Program 1: Word Frequency Table 

The programs shown in Figure 7.1 compute frequencies of word occurrences in a 
word table. Relation s is an example word table and definition freq computes 
the frequencies. The algorithm first inverts the word table relation to create a 
new relation between words and their positions. The unit image (unimg) of this 
relation generates a relation between each word and the set of positions in which 
that word occurs. The frequencies are derived by taking the cardinality of each 
occurrence set. 

The unit image of a relation is calculated by restricting its element image 
(elimg) to its domain (dom). The image of an element under a relation is the set 
of range elements to which it relates. 

The RPL and Drusilla programs contain the same number of definitions. In 
RPL two domain restriction operators are needed - one for extensional relations 
(- », the other for intensional relations (restrict) - however, in Drusilla only 
one «<) is required. 

s = {(I, "to"), (2, "be"), (3, "or"), (4, "not"), (5, "to"), (6, "be")} 
freq r = unimg (inv r) I size 
unimg r = (dom r) restrict (r elimg) 
elimg t x = rng [un x -> t] 

s = {(1,"to"),(2,"be"),(3,"or"),(4,"not"),(5,"to"),(6,"be")}. 
freq = [inv] ; unimg ; [; [card]]. 
(r) unimg dom r « (_,r)elimg. 
(e,r) elimg rng ({(e,Unit)} « r). 

Figure 7.1: Word frequency programs in RPL (upper) and Drusilla (lower) 
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Primitive Extensional 
Operator Meaning 

t.l.x application 
t I u relative product 
t#u construction 
x:y pair formation 
curt currying 
unct uncurrying 
19x unique element selection 
size x cardinality 
str t structure of a relation 
t+ transitive closure 
filter ps {x I x E s A p(x)} 
or{ true} = true 
or{ false} = false 
or{ true,fa1se} = true 

Non-primitive Extensional 
Operator Definition 
a 19 . init 
w 19 . term 
initt domt\mgt 
term t rngt\ dom t 
(x,y) un (x:y) 
(x,) un. (x:) 
(,y) un. (:y) 
ilx (x,x) 
5\t dom [~ t -+ 5 X unO] 
p-+t filter (p. Hd) t 
domt imgHd t 
rngt (dom. inv) t 
n ~ init t -+ t 
Hd a.Un 
T1 W. un 
XEt or. img[x =] t 
invt img [: . (Tl,Hd)!] t 
t! x @x$t 

Table 7.1: RPL extensiona1 operators 
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Primitive Intensional Operators 

Operator Meaning 
f@x fx 
imgfs {fx 1 x E s} 
(L g)x f (g x) 
(f 11 g) (x,y) (f x, g y) 
f$t img [f 11 f] t 
p-4f;g if (p x) then (f x) else (g x) 

Non-primitive Intensional Operators 

Operator Definition 
while [p,f] p -7 iter [p -4 f] i id 
f §i while [0 =I w, (J . [id 110:] 11 n . w) . ~ ] . (i,) 
fn while [n=l 0:, 1 + 11 f]. (0,) 
restrict(s,f) img«idllf)·~)s 

Table 7.2: RPL intensional operators 

7.3.2 Program 2: Employee File Processing 

The programs shown in Figure 7.2 process files of employee records. In the two 
respective programs the employee files are denoted by relations F and f while the 
'hours worked' files are denoted by relations u and u. The object of the program 
is to generate a new employee file (newF) in which the hours worked ("H") field 
has been updated for each employee. Relation sumhrs calculates the new hours 
worked and is used to create an updated file (upd). The relation override operator 
([ i] in RPL and [@] in Drusilla) is used to replace values in the old employee 
file with values in the updated version to create the new employee file. Once 
again the programs have the same number of definitions but MacLennan needs 
two operators to express relation composition - one for extensional relations ( I) 
and one for intensional relations ( . ) - whereas Drusilla needs only one (; ). 

7.3.3 Program 3: Gaussian Elimination 

The programs shown in Figure 7.3 perform gaussian elimination on a collection 
of simultaneous equations whose co-efficients are stored in a matrix. The matrix 
is represented by a vector of vectors. MacLennan's notion of a vector may be 
viewed as modelling either the mathematical concept of a sequence or an array 
from an imperative language. The domain of a vector is formed by the element 
position numbers. In a vector each domain position number relates to the element 
in that position. In Drusilla, MacLennan's vectors are called sequences. Drusilla 
sequences are described in section 7.4 and relations over them such as foldl are 
defined. 

The gaussian elimination algorithm uses n successive steps where n is the 
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newF = (upd # F)l [i] 
upd = (F # U) 1 (as. ["H",] . sumhrs) 
sumhrs = [+] • <[,J.. "H"] 11 id> 
as <a,b> = (a:b) 
F = {124:{"N":"John","R":10,"H":lOO}, 

118:{"N":"Bill","R":15,"H":120}, 
207:{"N":"Sally", "R":14, "H":llS}} 

U = {118:6, 124:40, 207:40} 

newF = f # upd i [@]. 
upd = f # u i sumhrs ; addH. 
(x) addH ( "H" ,x)}. 
(_,x) sumhrs [c~nt] ("H" ,_) ; [+ x]. 
f = (124,("R",10),("H",100)}), 

(118,("R",15),("H",120)}), 
(207,{("R",14),("H",115)})}. 

u = {(118,6), (124,40), (207,40)}. 

Figure 7.2: Employee file programs in RPL (upper) and Drusilla (lower) 

number of rows in the matrix. Each step performs the transformation 

(M,k) ~ (M',k+l) 

174 

where M' is obtained from M by performing the elimination process on the kth 

column: 
M' = elim (M,k) 

The following subsection compares the RPL and Drusilla programs. 

7.3.4 Program 4: Finite State Machine Minimisation 

The programs shown in Figure 7.4 minimise finite state automata. The al­
orithm computes state equivalence classes by first deriving the inequivalent 

~tates through an i:erati~e method. ~~tially it is assumed that the final and 
on-final states are meqwvalent (defirutions Ro and rZero). Any pair of states 

~hichl under the sam~ input, le~d to .inequiv~lent states are themselves inequi­
lent. This is the basIS for the lteration, which converges when each state has 

~:en compared with every oth:r state. The iteration (performed by psi and iter) 
es polymorphic image (relations 1. and polylmg) to find pairs of inequivalent 

:tes. The set of equiv~lent ~tates (R= and rEqB).is.th~ set difference of the set of 
II states and the set of meqwvalent states. The ffiIDlffilsed machine (T = and tEq) 

? derived from the original by replacing each state by its equivalence class. 
IS The gaussian elimination and finite state automata programs are more sub­
stantial than the frequency table and employee file programs and are therefore 
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Gauss M = (elim for <1, ... , size M» M 
V = scaprod. « [1.0 /] . diag) T (vecdif. (column T unit») 
elim = matdif . ([.t. 1] 7 (outerprod . (V T [.t.]») 
transmap f = [I f] . [I] 
vecdif = transmap [-] 
scaprod <k,v> = v 1 [k *] 
outerprod <u,v> = u I (scaprod . [,v]) 
matdif = transmap vecdif 
column <M, k> = M I [.t. k] 
unit <M,k> = <1, ... ,size M> 1 [[= k] -> con 1; con 0] 
diag <M, k> = M.t. k .t. k 
con k =A x k 
f for S = [@ S] . [f §] 

gauss = id # initSeq ; (elim,_,_)foldl. 
v = diag ; [1 /] # (column # unit; vecdif) ; scaprod. 
( ,k) elim id # «_,k)v # [cont](k,_) ; outerprod) ; matdif. 
(r,s,f) transmap r # s ; f. 
vecdif = (_,_,[-])transmap. 
(k,v) scaprod v; [* k] ). 
(u,v) outerprod u; (_,v)scaprod. 
rnatdif = (_,_,vecdif)transmap. 
(m,k) column m; [cont](k,_). 
(rn,k) unit dom m ; {(Unit,O)} @ {(k,l)}). 
(_,k) diag [cont] (k,_) ; [cont] (k,_). 
(m) initSeq dom m « id. 

Figure 7.3: Gaussian elimination programs in RPL (upper) and Drusilla (lower) 
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T = {1:{lO:10,20:20},2:{lO:30,20:30)} 
o = {lD,20,30} 
F {3D} 
Q2 = 0 x Q 
n = size Q2 
Ro = F x (0 \ F) 
~ R = R U U (rng (T I [1- R])) 
Roo = ~n Ra 
R= = Q2 \ (Roo U R~,n 
eclass = [R= elimg] 
equiv = [eclass img] 
Q= = equiv Q 
T= = T I [eclass $] 
F= = equiv F 
R 1- S = R I S I R-l 
0' f = (J 0 (1st 7 (f 0 2nd)) 7 ([\] 0 (id 7 (un 0 f)) 0 2nd)) 
f p i = 1st 0 (0' f while ([# 0] 0 2nd)) 0 [i,] 
U = [u] p 0 
1st - [t 1] 
2nd = [t 2] 

bigT = {(1,{(10,10), (2D,20)}), (2,{(lO,30),(20,30)})}. 
bigO = {(10, Unit), (20, Unit), (30, Unit)}. 
bigF {(30, Unit)}. 
qSq = bigO ; inv bigQ. 
rZero = bigF i inv (bigO \ bigF). 
psi = id # (rngPoly i distUnion) i [\I]. 
(r) rngPoly bigT; (_,r)polylmg. 
rEq = (psi,rZero,_)iter ; rEqB. 
(r) rEqB qSq \ (r \I inv r). 
eclass = (card qSq,_)eclass2. 
(_,x) eclass2 rEq; (_,x)elimg. 
equivQ = bigQ « eclass. 
tEq = bigT ; (eclass,_)doll. 
equivF = bigF « eclass. 
(r,s) polylmg r; s ; inv r. 
(f,s) doll inv (inv s i f) ; f. 
(f , x, _) iter [- 1] ; (f , x, _) iter i f @ {( 0, x)}. 
distUnion = ([\/],{},_)foldr. 
(r,x) elimg r img {(x,Unit)}. 

Figure 7.4: Automata minimisation programsinRPL (upper) and Drusilla (lower) 
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more interesting for comparison. Perhaps the most notable difference between 
the RPL and Drusilla programs is the number of different operators used. The 
RPL gaussian elimination program uses 11 different operators compared to 6 in 
the Drusilla program and the RPL finite state automata program uses 16 different 
operators to Drusilla's 9. In both cases RPL needs almost twice as many operators 
as Drusilla, even though the same algorithms are used and programs are of a 
similar size. MacLennan is often forced to introduce two definitions (two sym­
bols) for what is conceptually, at the level of relational abstraction, one operator. 
One definition is applicable to extensional relations and the other is applicable 
to intensional relations. Table 7.3 shows examples of such operator duplication. 
Whenever such an operator is to be used it is left to the RPL programmer to de­
cide which version is required. By contrast Drusilla requires only one symbol for 
an operator and the system decides which definition is appropriate using typed 
representation analysis. 

Operation . I Extensional Symbol I Intensional Symbol I 
relation application .!- @ 

relation composition I . 
dual composition (construction) it 7 

domain restriction -+ restrict 

Table 7.3: Relational Equivalence of RPL operators 

7.4 Functional Aspects of Drusi1la 

Drusilla is certainly not a functional language since it is not based on the>. - cal cuI us. 
However, mathematically functions are just a subclass of relations - every func­
tion is a relation. In theory, therefore, relational programming should subsume 
functional programming. It should be possible to express anything in a relational 
language that can be expressed in a functional language. Similarly it should 
be possible to evaluate functional language expressions in a relational language. 
This section explains how functional programming concepts can be expressed in 
Drusilla. 

7.4.1 Function Application 

Functional language expressions are built from function applications. Drusilla 
expressions are also constructed from function applications where the functions 
are the built-in operators. The operators form a fixed set of combining forms, 
as advocated by Backus [3] in his functional language FP, except they combine 
relations not functions. 

A pplication of user-defined relations to arguments is possible at program exe­
cution time where relation expressions can be evaluated in the form of Sanderson's 
[94] relators. This is the map mode of relation use - given a domain element, a 
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set of related range elements may be generated in the manner of a set-valued 
function. 

7.4.2 Modelling Lists with Relations 

Modern functional languages use tuples, lists and algebraic data types as data 
structures. Tuples are present in Drusilla but lists and algebraic types are not. Al­
gebraic data types are arguably not so important - earlier functional languages 
such as FP did not incorporate them, but lists are central to all functional lan­
guages. In Drusilla relations are the main form of data structure as 'all the world 
is a relation'. Therefore, if relational programming is to encapsulate functional 
programming then some form of relational data structure must model lists. 

Sequences in RPL 

MacLennan uses a form of relation, which he calls a sequence, to emulate lists. 
He defines a sequence to be a relation with the structure: 

If x and y are two objects then the pair (x, y) can be an element of an 
extensional relation and used to relate x to y. MacLennan uses this to represent 
the relation of succession in a sequence: 

x -+ y 

means y is the successor of x in the sequence. Thus a list of two or more elements: 

can be represented by the relation: 

{(Xl, X2), (X2' X3), ... , (Xn-l, xn)} 

For example, the list [10, 2 0,3 0,4 0] would be represented by the relation: 

{(10,20), (20,30), (30,40) l. 

MacLennan defines several operators for constructing and decomposing such 
sequences and for accessing their elements. The (} and w operators, defined in 
Table 7.1, return, respectively, the first and last elements of a sequence. 

MacLennan recognises that only sequences with two or more elements can 
be represented. This creates a problem for applications where it is necessary to 
manipulate an empty or singleton sequence. Another problem is that the same 
relation may be used to model several different sequences without it being clear 
exactly which one is intended. For example the two sequences: 

2-+4-+2 
4-+2-+4 
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will both be represented by the relation: 

{(2,4),(4,2)} 

This creates ambiguity about the exact sequence being represented. Similarly a 
sequence consisting of the same element repeated several times, for example: 

1 -+ 1 -+ 1 

would need to be represented by the relation: 

(1,1), (1,1)} 

This is clearly not a set and so violates the concept of a relation as a set of pairs. 

Sequences in Drusilla 

The problems with MacLennan's sequences suggest that another form of relation 
should be used to model lists. Reade [85] observes that lists are derived from the 
mathematical concept of a sequence. Suppes [l09] defines a sequence mathemat­
ically as a function on the set of natural numbers. If x is a sequence then x n is 
the n-th member or term of x. Such a sequence may be modelled in Drusilla by 
a relation between the first n natural numbers and the elements of the sequence. 
Each number dictates the position of the element related to it in the sequence. For 
example the list [10,20,30,40] would be represented by the relation: 

{(1,10),(2,20),(3,30),(4,40)} 

This form of relation is one method for emulating lists in Drusilla. Such sequences 
maintain the notion that 'all the world is a relation' and may be manipulated by 
the relational operators. The notion of an empty list is replaced by the empty 
relation and there is no ambiguity created by such sequence representations of 
lists. 

Operations Over Sequences 

The standard functional language list manipulating operations can all be defined 
for sequences in Drusilla. Example sequence processing operations are given in 
figure 7.5. The basic construction operation is cons and the basic destruction 
operations are hd and tl. Definition append relates a pair of sequences to 
the sequence which results from appending them and a sequence is related to 
the number of elements it contains by length. Higher-order operations such 
as filter, foldl, foldr and map can also be defined. All definitions are 
polymorphic as in a functional language. These definitions combined with the 
map mode of relation use permit Drusilla to be used for evaluation of typical 
functional language expressions. 

The operations exhibit similar structure, which we explain by deriving the 
definition of map from the standard functional language definition shown in 
Figure 7.6. In Drusilla map is a relation between a pair (f, s) and a relation t. 
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hd = [c~nt] (1,_). 

tl = {({},Unit)} <- tl2. 
(5) tl2 dom 5 « [1 +] ; So 

(el, seq) cons { (1, el)} V inv (inv seq ; [1 +]). 

( ,t) append {({},t)} V (hd # (tl i (_,t)append) cons) . 

length = {( { 1 ,0) 1 V (tl i length i [+ 1]). 

(p,_) filter id @ (hd # (tl i (p,_)filter) 
(p,_) condCons snd @ (fst ; p « cons). 

( p , ) condCons ) 

(f,_) map {({},{})1 V (hd; f # (tl (f,_)map) ; cons). 

(op,x,_) foldr {({},x)} V (hd # (tl (op,x,_)foldr) i op). 

(oP,X, ) foldl {({},x)l \/ (hd (x, ) op # tl i (op, , ) foldl) . 

Figure 7.5: Standard list operations defined for Drusilla sequences 

map f [] = [l 
map f (h:t) = f h : map f t 

Figure 7.6: Definition of map in a functional language 
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Relations sand t are sequences and their corresponding elements are related 
under relation f. 

The first equation defines the base case for the recursive definition. In Drusilla 
this should state that the empty sequence relates to the empty sequence: 

{ ( { } , { } ) } 

The second equation uses pattern matching to split the list into its head and tail. 
The function f is then applied to the head. This can be replaced in Drusilla by a 
relation between a sequence sand f (hd s): 

hd i f 

The function f must be mapped over the tail of the list. This can be replaced in 
Drusilla by a relation between a sequence s and map f (tl s): 

tl i (f,_)map 

These two relations are combined by the dual composition operator so that they 
relate sequence s to the pair (f (hd s), map f (tl s»: 

hd i f # {tl i (f,_)map) 

The final operation must construct the new sequence from the new head and tail. 
To do this we compose the relation with cons: 

hd i f # (tl i (f,_)map) ; cons 

Map must be defined for both non-empty and empty sequences though. Since 
these are mutually exclusive we can simply take the union (\/) of the two defining 
relations and complete the definition of map: 

{({},{})} \I (hd i f # (tl i (f,_)map) cons) 

7.4.3 Relational Laziness 

Lazy evaluation [85] ensures that expressions or components of structures are 
expanded in a demand driven way and are not evaluated more than is necessary 
to provide a value at the top level. Lazy evaluation delays evaluation of arguments 
to functions until they are needed by evaluating expressions at the outermost level 
possible at each step. For example, in evaluating f x, f is first evaluated until 
a function is obtained. The application of this function to argument x is then 
evaluated in such a way that x is evaluated only when it needs to be (and as little 
as possible) to determine a final answer. 

Lazy evaluation centres around function application. All Drusilla expressions 
that are not basic values are constructed by applying the built-in relational oper­
ators to simpler expressions. As these operators are functional their manipulation 
of relations is a form of function application. Lazy evaluation in Drusilla is the 
same as in normal functional languages. An operator is evaluated before the 
relation(s) it manipulates and those relations are only evaluated as much as the 
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operator requires. This is called relational laziness. At the implementation level, 
Drusilla inherits laziness from Miranda. 

Two benefits normally associated with laziness are manipulation of infinite 
data structures and non-strict definitions. Chapter 3 gave examples of such 
definitions. Non-strict definitions are as natural in the relational framework as 
in the functional framework. A relation is non-strict if it relates a given domain 
value to a range value even when (part of) the domain value is undefined. 

The definitions of nats, odds and squares in Figure 3.17 all illustrate that 
infinite relational data structures can be lazily evaluated. However there is a prob­
lem with recursion over such structures. For example, the sieve of Eratosthenes 
program presented in Figure 7.7, can only be used for sieving the prime numbers 
from some initial subsequence of the natural numbers. If the infinite sequence 
is sieved, a non-terminating computation is entered and the outermost reduction 
never provides any value at the top level. 

sievelnit = (2,_)seqRange ; sieve. 
sieve = {({},{})} \I (hd # t12 ; sieveB). 
(x,_) sieveB «_,x)hasntFactor,_)filter ; sieve 
hasntFactor = neg ([mod] ; {(O,Unit)}). 
seqRange = (l,_,_)seqRangeB. 
(i,_,y) seqRangeB (i,_)mkrel # ([+ 1] ; (i+1, ,y)seqRangeB) 

[\/] @ {(y,{(i,y)l)}. 

(X,y) mkrel {(x,y}}. 

Figure 7.7: The sieve of Eratosthenes written in Drusilla 

Generally any relation composition 

r ; s 

represented by a set-valued function, denotes a Miranda expression in the imple­
mentation: 

concat . map 9 . f 

Set-valued function f represents r and set-valued function 9 represents s. 
Laziness is lost because the system uses the conventional definition of map, 

shown in Figure 7.6, which is insufficiently lazy as it evaluates the argument 
list to weak head normal form through pattern matching. A lazier definition of 
map ensures recursion over infinite lists terminates by using explicit projection 
operators (hd and tl). 

map f xs = f (hd xs) : map f (tl xs) 

This definition does not evaluate the argument list to weak head normal form until 
the projection operations are applied. However it cannot be applied recursively 
to a finite list as it is only defined for non-empty lists. It could be used in the 
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implementation if accompanied by static analysis to detect infinite lists, although 
not all infinite lists can be detected since this is equivalent to the halting problem. 

If the system knows r is functional, then a point-ta-point function representation, 
1', can be used and the expression r ; s translated into: 

9 . I' 
This solves the problem that was being created by the insufficiently lazy definition 
of map. However, this technique is not used since functional relations cannot be 
detected by the Drusilla system. 

7.5 Relational Aspects of Drusilla 

7.5.1 Extensional Mathematical Operators 

The basic mathematical relations of Drusilla may be defined extensionally as 
shown in Figure 7.8. These definitions, written in Miranda, are based on a di­
agonalised cartesian product of the natural numbers na tPairs which exploits 
laziness. 

nats = [0 .. ] 
natPairs = [(x,y) II x <- nats; y <- nats] 
1essAl = [(x,y) I (x,y) <- natPairs; x < y] 
greatA1 = [(x,y) I (x,y) <- natPairs; x > y] 
plusAl = [«x,y),x+y) I (x,y) <- natPairs] 
minusA1 = [({x,y),x-y) I (x,y) <- natPairs] 
multAl = [({x,y),x*y) I (x,y) <- natPairs] 
divAl = [({x,y),x/y) I (x,y) <- natPairs; y - 0] 
modAl = [({x,y),x mod y) I (x,y) <- natPairs; y - 0] 
sqrtAl = concat (map bothRoots [1 .. ]) 

bothRoots x = [(x,y),{x,-y)] 
where 
y = sqrt x 

Figure 7.8: Extensional representations of mathematical relations 

The possibility of using extensional representations is of interest for relational 
programming as it would permit many more expressions to be used in show 
mode. For example, the set of positive integers could be explicitly enumerated by 
evaluating the expression [> 0]. While this is useful it does pose the problem of 
conflicting operator definitions. One fundamental premise of the Drusilla system 
is representation independence - each possible representation for a given relation 
should denote exactly the same conceptual relation and, therefore, relate the 
same values. For example, each representation of arithmetic plus should satisfy 
the calculus definition 
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(x,y)[+] z {:} z = x + y 

for all values of x, y and z. The characteristic and set-valued function representa­
tions of plus relate real numbers but the extensional representation can only relate 
the natural numbers because the real numbers are not re cursively enumerable. To 
maintain representation independence, extensional representations of operators 
are not permitted in Drusilla. 

7.5.2 Describing Sets of Values 

Drusilla is unconventional in its treatment of sets. In Prolog, sets can be repres­
ented by lists or by predicates. Functional1anguages typically use either lists or 
predicates (Boolean-valued functions) to describe sets of values. For example, if 
set S is denoted by predicate p then, for any element x: 

p x = True {:} x E S 
P x = False {:} x (j. S 

Such predicates are used in operations such as list filtering. Thus a set of integers, 
{S,6,7,8}, named p could be represented in a functional language by either of the 
definitions: 

p = [5,6,7,8] 
p x = x > 4 & x < 9 

However, these are two separate types of object - the first is a list and the second 
a function - which therefore cannot be used interchangeably. 

In contrast Drusilla denotes a set by a relation between the set elements and 
Uni t. If relation r denotes set S then: 

x r Unit {:} x E s 
., x r Unit {:} x ~ s 

Consequently Boolean values are not needed in Drusilla. The set {S,6,7,8} could' 
be denoted by either of the relations: 

r = {(5,Unit),(6,Unit),(7,Unit),(8,Unit)} 
r = [> 4] /\ [< 9] 

These two relations both denote the same set of values and both could, for ex­
ample, be used to filter a sequence. This lessens the gap between program and 
data. The only difference between them is in their possible modes of use - the 
first can be used in show, forward or test modes while the second can only be 
used in forward or test modes. Any relation that may be used in show mode may 
be perceived as data. 
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7.5.3 Recursive Decomposition of Relations 

Functional and logic languages naturally admit a recursive style of programming 
since they mainly use re cursively defined datatypes, which are created by con­
structor functions, and can be recursively decomposed naturally. By contrast, 
the relational data structures used in a relational language are not recursively 
defined and are not created by constructor functions, they are just values (sets of 
pairs). This makes recursion over them problematic as there is no natural way of 
recursively decomposing them. 

This problem is partially circumvented in the definition of sequences because 
construction (cons) and destruction (hd, tl) operations are defined. However 
problems are still present. For example, the hd relation (hd = [c~nt] (1, _» 
relates a sequence s to any value x such that 1 s x If there is more than one such 
element then the sequence has more than one head. Moreover, if the sequence is 
infinite and hd is used as a relator then evaluation never terminates since there is 
always the possibility of another head value further on in the sequence. 

The decomposition problem can also be avoided using relation decomp, 
defined in Figure 7.9. Relation decomp holds between a relation r and a pair 
( (x, y) , s) where (x, y) is an element of rand s is the relation remaining after 
(x, y) is removed from r. Although decomp provides recursive decomposition 
of relational data structures it is not functional because element extraction is non­
deterministic. Consequently it introduces non-determinism into any relation that 
references it. This non-determinism must be handled at the implementation level 
as a set of alternatives. For example, consider the quick sort program shown in 
Figure 7.10. At execution time, when qsort is applied as a relator to a relational 
data structure whose range type is num the result is several, identical, sorted se­
quences. This form of recursion incurs a high run-time overhead - qsort must 
be evaluated for each possible recursive ordering of elements. This is a good 
argument for introducing recursively constructed data structures into relational 
programming although this would compromise the notion that 'all the world is 
a relation'. The problem of handling recursion in relational programming is an 
important topic for future research. 

decomp = id # [c~nt] ; elRem. 
(r,(x,y» elRem ({x,y), r \ {{x,y)l). 

Figure 7.9: Decomposition of a relational data structure 

7.5.4 Using Relations to Handle Non-determinism 

One main criticism of functional languages is their poor handling of non-determinism. 
This problem arises directly from the underlying mathematical model- func­
tions can only describe deterministic (functional) relationships. In contrast logic 
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qsort = decomp ; qsortB @ {({},{})}. 
«i,x) ,_) qsortB (_, [< x] )part (qsort i (x,_)post 11 qsort) 

join. 
(s,p) part (s » p,s -> p). 
(s,t) join s \I inv (inv t [+ (card s)]). 
(x,s) post s \I {(card s + 1,x)}. 

Figure 7.10: Quick sort based on relation decomposition 

languages are suited to programming non-deterministic solutions to problems be­
cause they are based on predicates (named n-ary relations) and backtracking- an 
implementation mechanism that allows those predicates to return different altern­
ative results. Relations, by their nature, may denote non-functional relationships 
and so have potential to describe non-deterministic (search based) computations. 
This subsection demonstrates that Drusilla naturally permits non-deterministic 
solutions to problems. Examples of such solutions are given. Various constructs 
suggested as non-deterministic extensions to functional languages are defined in 
Drusilla without extensions. 

Modelling Non-determinism with Lazy Lists 

A non-deterministic computation is one that has alternative possible results. A 
functional program might represent this by lazily generating a list of results as 
described by Wadler [116]. For example, Figure 7.11 presents typical solutions 
to generating all the permutations of a list and non-deterministically inserting 
an item into an arbitrary position within a list. Both solutions generate a list of 
alternative results - perms returns a list of all possible permutations and insert 
a list of all possible insertions. 

The Drusilla solution, shown in Figure 7.11, allows permutations to be viewed 
as a relation between two sequences. Similarly insert is a relation between a pair 
(x, s) and a relation t where t is a sequence generated by non-deterministically 
inserting element x into sequence s. This permits reasoning about the permuta­
tion and insert relationships and does not require 'mapping' over lists. At the 
implementation level the Drusilla interpreter exploits the functional language 
'lazy list' approach advocated by Wadler [116] as the mechanism for handling 
non-determinism. The relational abstraction permits this to be hidden from the 
programmer. 

Adding Non-determinism to Functional Languages 

Many non-deterministic constructs have been suggested for functional languages 
but most interfere with reasoning, often to the extent of compromising referential 
transparency. Hughes and O'DonnelI [48] give a good review of the various 
approaches for inclusion of non-determinism and suggest what is perhaps the 
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perms [] = [[]] 
perms (h:t) = concat (map (insert h) (perms t» 

insert x [] [[x]] 
insert x (h:t) = (x h : t) : map (h :) (insert x t) 

perm = {({},{})} \I (hd # (tl ; perm) ; insert). 
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(x, ) insert (x, )cons \I {hd # (tl (x, )insert) ; cons). 

Figure 7.11: Permutations solutions in Miranda (upper) and Drusilla (lower) 

best solution to date - addition of a set data type. Computations that may 
yield alternative results are regarded as set-valued functions. These functions 
when applied to arguments, yield a set of alternative possible results, which can 
be gathered using set-theoretic operations such as union. Their ultimate goal 
is to give a semantics to a language in which each set is represented by one 
of its values chosen non-deterministically. Hughes and O'Donnell demonstrate 
how non-deterministic primitives may be implemented using this data type in a 
referentially transparent way. 

McCarthy [73] suggested the amb operator: 

amb x y = either x or y 

Intuitively amb evaluates its two arguments in parallel and returns the first to 
yield a value. This makes amb 'angelic' or 'bottom avoiding': 

amb x .1 = x 
amb .1 y = y 

Hughes shows that by using sets this may be defined: 

amb :: * -t * -t {* } 
amb x y = {x} U {y} 

The angelic property is preserved because this union operator is angelic - the 
representative element of the set amb x y is the first of x or y to return a result. 

Henderson [40] advocates a non-deterministic merge, which interleaves two 
streams in the order in which their elements become available. This is defined 
by Hughes and O'Donnell as in Figure 7.12. They use an operator for mapping a 
function over a set (*) defined: 

f * S = {f x I x E S} 

Non-determinism can be handled in Drusilla because relations are equivalent 
to set-valued functions - relations are combined directly using relation-theoretic 
operators. For example the amb function can be written as a relation constructed 
from the union of two relations - one to choose the first argument, the other the 
second. 
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amb = fst V snd 

A Drusilla translation of Hughes solution to the non-deterministic merge is also 
shown in Figure 7.12. 

merge xs ys = bias xs ys \/ bias ys xs 
bias [] ys = {ys} 
bias (x:xs) ys = (x :) * merge xs ys 

merge = bias \I (swap; bias). 
( ,ys) bias {({},ys)} \/ (hd # (tl 
(a,b) swap (b,a). 

(_,ys)merge) icons). 

Figure 7.12: Non-deterministic merge by Hughes (upper) and in Drusilla (lower) 

Hughes observes that with his approach referential transparency is only com­
promised if a choose function, which can non-deterministically choose any ele­
ment from a set, is introduced. This function has the type: 

choose :: {*} -+ * 

However, it is not choose itself which introduces the side effect but its application 
to an argument. If the function is replaced by a relation and never applied to an 
argument then it may be reasoned about and composed with other relations 
without any compromise to referential transparency. The choose relation may 
be defined in Drusilla: 

choose :: (A f-+ un) f-+ A 
choose = [cont] (_,Unit). 

Although they are mathematically the same relations have an advantage over 
set-valued functions - they may be combined directly. Hughes and O'Donnell 
need to define two extra operators for the composition of two functions that return 
sets of results. The first operator (*) defined above takes the image of a set under 
a function. The second (U) is a distributed union operator defined for 'flattening' 
a set of sets of results and has the type: 

For example, the composition h of two set-valued functions f and g can be defined: 

J, g, h :: int -+ {int} 
h x = U (f * 9 x) 

Relations need no extra operations over sets and the composition can be defined 
directly: 

h = g ; f. 
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The ability to define such relations directly and the facility for higher-order, poly­
morphic definitions should permit non-deterministic programs to be more concise 
than in a functional or logic language. For example the perm relation could be 
defined more concisely as the fold right of a non-deterministic insertion by ex­
ploiting the foldr relation over sequences defined in Figure 7.5: 

perm = (insert,{},_)foldr 

The main disadvantage of Drusilla is that the relational operators do not pre­
serve the angelic property, for example, amb is no longer bottom avoiding. This 
is a major aim of Hughes and O'Donnell's work - they are interested in gener­
ating one solution not all solutions. However, in the implementation of Drusilla 
set-valued functions are processed in exactly the same manner. Consequently, 
Hughes and O'Donnell's language with its set data type and set-valued functions 
could be used to implement Drusilla in which case its angelic properties would be 
inherited by Drusilla allowing 'bottom avoiding' relations to be defined. Kowlaski 
[60] refers to this form of non-determinism as 'Don't care' - the program executor 
'doesn't care' which solution is generated. Kowalski also identifies another form 
of non-determinism called 'Don't know' - the program executor 'doesn't know' 
which solution is required until it is generated. 'Don't know' non-determinism 
encapsulates the notion of searching and state space handling. This form of non­
determinism is important for logic programming and Drusilla's handling of it is 
discussed in section 7.6. 

7.5.5 Relational Flow of Control 

A programming language must include primitives or constructs for allowing the 
programmer to influence the flow of control in a program. Conventional im­
perative languages typically use an 'if ... then ... else' statement. The functional 
language equivalent of this is guards and the standard if function defined: 

if True x y = x 
if False x y = y 

Application of this function is sometimes denoted by a special syntactic form: 

if ... then ... else 

Modern functional languages also exploit pattern matching in function definitions 
through alternative Kleene recursion equations. When such a function is applied 
to an argument the equation chosen is the first one (in the top down textual 
ordering) whose left hand side pattern matches with the argument. Control is 
influenced by patterns and the textual ordering of equations. Similarly in Prolog 
one procedure may be defined by several Horn clause rules. Prolog satisfies a 
goal by mat~g it against the rule~ ~ithin a pr~ce~ure in a top-down manner 
until one rule IS selected and then satisfies goals WIthin that rule from left to right. 
Once again control can be influenced by careful textual ordering. 



CHAPTER 7. EVALUATION OF THE DRUSILLA SYSTEM 190 

In such if constructs the result of a conditional test determines the flow of 
control. This seems inappropriate for the relational algebra style of program­
ming advocated in Drusilla; conditions at the relational level would appear more 
desirable. Pattern matching is considered unnecessary for expressiveness and 
the textual ordering it brings with it is considered undesirable, since one aim 
of declarative programming is to remove the prescriptive element where textual 
ordering of program elements has semantic importance. 

In Drusilla an alternative approach is taken to influence the flow of control. 
When a relation is defined it may be partitioned into several subsidiary relations 
defined separately. The main relation can be constructed by using the union 
or ordered union (relation override) operators to 'glue' the subsidiary relations 
together. The override operator is applicable when subsidiary relations with 
disjoint domains cannot easily be identified since it allows one relation to be 
given precedence over another. For example, a relation over sequences may 
be constructed from two relations - one whose domain is the empty sequence 
(relation), and one whose domain is any non-empty sequence of the domain type 
The insertion sort relation insort in Figure 7.13, for example, uses this technique, as 
do the sequence manipulation operators presented in Figure 7.5. This preserves 
the expressive power of textual ordering in a mathematically tractable way -
conditions are introduced in the form of expressions. 

insort = ({},{})} \/ (hd # (tl i insort) ; insert). 
(x,_) insert (x,_)cons @ (hd # tl ; (x,_,_)insert2). 
( ,h,ts) insert2 [h <] « ( ,ts)insert ; (h, )cons. 

Figure 7.13: A Drusilla insertion sort program 

7.5.6 Relational Exception Handling 

Exception Handling in Functional Programming 

The problem of exception handling arises through function application. An ex­
pression of the form f x denotes a new value formed from application of function 
f to domain value x. This generates an exception condition if f is a partial func­
tion and the value x is outside its domain. Spivey [105] describes a theory of how 
to handle exceptions in a functional language by making such partial functions 
total through use of an algebraic data type. Here an error case is defined for 
function J which returns some result denoting failure if x ~ dom J. 

Wadler [116] defines an alternative mechanism for handling exceptions by 
introducing functions that return a list of result values, not one value. This 
handles non-determinism by allowing a function to return more than one value 
in the list. Also an exception can be raised by a function returning the empty list, 
which denotes the absence of any result. 
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While both of these mechanisms are effective, they do complica te code to some 
extent. For example, with Wadler's technique two functions cannot be composed 
directly, instead one must be mapped over the result of another: 

f. g 

is replaced by 

cone at . map f. g 

Exception Handling in Relational Programming 

Sanderson [94] observes that when a relator is applied to an operand there is 
no expectation as to the number of results. Any number or none at all may 
be produced, so the notation takes account of an application being undefined 
without having to make special provision for it. 

The relational and mathematical operators can be applied to relations to con­
struct expressions because they are known to be total functions. When applied 
to an argument they produce exactly one, defined result. Functions such as divi­
sion (;) and modulo (mod) are known to be partial and cannot be used to form 
compound relation designations. 

At execution time when a relation is applied to an argument value in forward 
mode it returns a set of results. If the set contains one result then the relation 
is acting as a function. If the set contains several results then non-determinism 
has been handled. If the set is empty then an exception has been handled. This 
corresponds to Wadler's work, and indeed his mechanism is used at the imple­
mentation level. However it seems more intuitive in the relational framework 
where the lists of results can be hidden behind relational abstraction. 

7.5.7 Deriving Programs from the Calculus 

Drusilla programs can be derived informally from specifications expressed in the 
relational calculus. This is desirable for several reasons: 

• It is often easier to express the solution to a problem in the calculus and then 
derive a Drusilla program than to write the program directly. 

• For the translation of Prolog programs to Drusilla it is easier to translate 
from predicate calculus to relational calculus and then to relational algebra 
than it is to translate directly to relational algebra. 

• When deriving a program from a formal specification, it may be more natural 
to express the specification in the calculus than in Drusilla. If a program is 
derived formally from a formal specification then there is no need to prove 
its correctness. 

The technique for deriving programs is, in principle, simple. The Drusilla 
relational operators are all defined in the relational calculus as shown in Table 3.2. 
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Therefore any calculus expression that matches the definition of an operator may 
be replaced by that operator. A Drusilla relation can be obtained by repeatedly 
substituting operators for subexpressions in a calculus specification 

This work relates conceptually to the fold/unfold transformation system of 
Burstall and Darlington [17, 26]. This system is based mainly on two operations: 
fold and unfold. An unfold operation replaces a function call by the corresponding 
body instance. The fold operation is the reverse of unfold - it replaces a body 
instance by a corresponding function call. If an expression matches the body of 
some function definition then that expression may be replaced by a call to that 
function. This fold operation takes place when a Drusilla program is derived from 
a calculus expression. Operators are substituted for expressions that match their 
calculus definitions. For example, a sequence membership relation is derived in 
Figure 7.14. Calculus expressions appear in Roman font and Drusilla expressions 
appear in courier 

xs member y {:} xs hd Y V ( xs tl zs 1\ zs member y ) 
{:} xs hd Y V xs (tl member) y 
{:}xs (hd V (tl ; member) y 

=} member = hd \/ (tl ; member) 

Figure 7.14: Derivation of a sequence membership relation 

As a slightly more complex example relation nf ib is derived from the defini­
tion of the n fib function shown in Figure 7.15. 

nfib 0 = 1 
nfib 1 = 1 
nfib n = nfib (n-1) + nfib (n-2) + 1 

Figure 7.15: Definition of nfib function 

The base cases of the recursive definition for n = 0 and n = 1 can be mapped 
directly into a calculus relation: 

{(O,l), (1,1)] 

This is also a Drusilla expression and hence no derivation is needed. 
The recursive part of the function can be expressed in the calculus and a 

Drusilla expression derived as shown in Figure 7.16. (Drusilla expressions appear 
courier font.) 

Finally the relation denoting the base case overrides the derived expression to 
give the complete definition of nf ib: 

nfib = [-1] ; nfib # ([-
2] ; nfib) ; [+] ; [+ 1] @ {(O,l),(l,l)] 
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n nfib x {:} (n - 1) nfib y A (n - 2) nfib z A (y,z) [+] W A (w,l) [+] x 
{:} (n,l) [-] m A m nfib y A (n,2) [-] k A k nfib z A 

(y,z) [+] w A (w,l) [+] x 
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{:} n ( [ -1] n f ib) Y A n ( [ - 2 ] ; n f ib) z A (y,z) ( [+] ; [ + 1] ) x 
{:} n ( [ -1] ; n f ib # ([ - 2] n f ib) ) (y,z) A (y,z) ( [+] ; [+ 1] ) x 
{:} n ( [ - 1 ] i n f ib # ([ - 2 ] ; n f ib ) ; [ + ] ; [ + 1] ) x 

=? nfib = [-1] ; nfib # ([-2] ; nfib) [+] [+ 1] 

Figure 7.16: Derivation of nfib relation 

7.6 Logical aspects of Drusi1la 

This section considers the extent to which Drusilla is a logic programming lan­
guage. 

7.6.1 What is Logic Programming? 

Logic programming is more difficult to define precisely than functional program­
ming as a spectrum of definitions exists. At the most general extreme of the 
spectrum any programming language based on a formal logical system is in­
cluded - a fact observed independently by Malachi [70] and Goguen [38]. This 
of course includes relational programming along with pure functional and equa­
tional programming. The most narrow extreme is confined to the procedural 
interpretation of the Horn Clause subset of first-order predicate calculus as ad­
vocated by Kowalski [58] and Van Emden [61]. This definition is perhaps the one 
most commonly adhered to although in reality it includes little other than Prolog. 

Drusilla has been developed out of the desire to merge aspects of functional 
and logic programming into a single language. For this purpose these definitions 
are too extreme - the first so general it includes functional programming and 
the second so narrow it offers no scope for inclusion of functional features. A 
less extreme definition that better describes the essence of logic programming is 
required. Hogger [42] gives such a definition: 

I A logic program consists of sentences expressing knowledge relevant to the 
problem that the program is intended to solve. The formulation of this know­
ledge makes use of two basic concepts: the existence of discrete objects, referred 
to here as individuals; and the existence of relations between them . ... 
... Reasoning about some problem posed on the domain can be achieved 
by manipulating these sentences using logical inference. In a typical logic 
programming environment the programmer invents the sentences forming 
his program and the computer then performs the necessary inference to solve 
the problem.' 
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I Predicate Formula I Drusilla Relation I 
P(x) p 
Q(x) q 

P(x) /\ Q(x) p /\ q 
P(x) V Q(x) p \/ q 

.., P(x) neg p 
P(x) =} Q(x) neg p \/ q 

Table 7.4: Predicate calculus formulae and corresponding Drusilla relations 

7.6.2 Relational Logic Programming 

The above definition of logic programming bears resemblance to relational pro­
gramming. A relational program is a collection of relation definitions each of 
which expresses a relationship between two sets of objects - its domain and 
range. Each definition also forms a sentence expressing knoyvledge relevant to 
the problem the program is intended to solve. In Prolog relationships between 
objects are expressed using predicate calculus (a form of relational calculus) and 
a rule of inference deduces new relationships from existing ones. A relational 
language uses a relational algebra, rather than a calculus, and new relationships 
are constructed from existing ones using algebraic operations. The presence of op­
erations for direct construction of new relationships means that object names are 
used less in construction of expressions. Arguably this also clarifies the logic of 
relationships in a program. 

Gray [39] observes the correspondence between predicates and the sets of 
values that form the extensions of those predicates. This relationship also exists 
between predicates and Drusilla relations as shown in Table 7.4. 

No rule of inference is present in Drusilla but this may be regarded as an im­
plementation mechanism, not a conceptual feature. The conceptual feature is the 
ability to express relationships between objects at a high level while relying on the 
system to assimilate them. The inference rule is just one assimilation technique for 
establishing whether relationships hold; reduction as used by Drusilla is another. 

There appears to be a link between relational programming and intuitionistic 
logic. The essence of intuitionistic logic (or constructive logic) is that it is not truth 
functional but proof functional - a proposition is true if and only if it has a proof. 
To assert the existence of an object it is necessary to show how to find it. The 
meaning of a compound proposition is explicated by showing how a proof may 
be given as a function of the proofs of its constituents. A proposition in logic 
programming may be thought of as being the question of whether some relation­
ship exists between entities. Prolog proves a proposition by using backwards 
inference to show the negation of the proposition is inconsistent with existing 
relations. In Drusilla, a similar process is entered at the implementation levet but 
at the conceptual level the programmer constructs the proposition from existing 
relations. The relational operators provide the functions for proof construction. 
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This is illustrated in Figure 7.17 where a Prolog program for inferring ancestral 
relationships in the Julio-Oaudian (Roman C~sar) family tree is given along with 
a Drusilla translation for comparison. 

7.6.3 More Structured Control 

Hogger and Kowalski [60,59] both advocate the notion of a logic program al­
gorithm being composed of separate logic and control elements. Kowalski ex­
presses this as: 

algorithm = logic + control 

The declarative and operational properties of statements can be analysed separ­
ately as discussed in section 7.2. In a logic program the logic component is the set 
of statements making up the program. The control component is the execution 
strategy and is largely fixed in the interpreter. The strategy used by Prolog, and 
the one Hogger regards as standard, is top-down, left to right satisfaction of goals. 
The programmer can influence control of execution by choosing the textual order­
ing of calls and procedures and by using special devices such as the non-logical 
'cut' operator. 

The separation of logic and control in Drusilla is less explicit. The logic of 
an expression is given by the operators and relations it uses. The execution 
strategy applied to Drusilla programs, relational laziness, dictates that the order 
of evaluation for relations in an expression is determined by the operators used 
to construct that expression. Control can be influenced both by the programmer 
and by the implementation. The programmer controls flow logically through 
expression construction and choice of operators, as explained in section 7.5.5. 
Textual ordering is unimportant and no non-logical features are required. The 
implementation influences control through symbolic manipulation using known 
laws of relation equivalences to transform expressions. An expression when 
transformed has different operator structure and hence different flow of control. 

Although Drusilla contains logic and control features, they are not so clearly 
separated as in a relational calculus logic language. Bellia and Levi [8] state 
that one reason for wanting to integrate functional and logic languages is to add 
the kind of control information present in functional programming to logic pro­
gramming - the rigorous division between control and logic is not necessarily 
desirable. Hogger observes that the programmer needs to be aware of the control 
strategy for the sake of efficiency. However the textual ordering of procedures 
and calls does not just give control information - it simplifies program reading 
by giving it structure as well. Imagine reading a text if it was just a series of facts 
written down at random with no structure. It would be extremely hard to com­
prehend although its content, in terms of logic, would be unchanged. Structure 
helps convey meaning hence texts are broken down into sections, paragraphs and 
sentences. The use of operators to combine expressions introduces structure as 
well as control in a logical fashion. 

It is interesting to relate the approach of Drusilla to a quote from Hogger 
concerning the future of control flow in logic programming. 
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parent(drusus, germanicus). 
parent(drusus, claudius). 
parent(antonia, germanicus). 
parent(antonia, claudius). 
parent(germanicus, caligula). 
parent(germanicus, drusilla). 
parent (agrippina, caligula). 
parent(agrippina, drusilla). 
parent(caligula, juliaDrusilla). 
parent(caesonia, juliaDrusilla). 
male(germanicus). 
male(drusus). 
male(claudius). 
male(caligula). 
female (X) : - male (X) , , fail. 
female(X) . 
father(X,Y) :- male(X), parent(X,y). 
mother(X,Y) :- parent(X,Y), female(X). 
grandfather(X,Y) :- father(X,Z), parent(Z,y). 
parentCouple(X,Y) :- parent(X,Z), parent(Y,Z), X \== Y. 
sibling(X,Y) :- parent(Z,X), parent(Z,Y), X \== Y. 
brother(X,Y) :- sibling(X,Y), male(X). 
sister(X,y) :- sibling(X,Y), female(X). 
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uncle(X,Y) :- brother(X,Z), parent(Z,Y). 
uncle(X,Y) :- parentCouple(X,Z), sister(Z,W), parent(W,Y). 

parent - {("Drusus",IIGermanicus"), ("Antonia","Germanicus"), 
("DruSUs","Claudius"), ("Antonia","Claudius"), 
("Germanicus","Caligula"), ("Agrippina ll ,IICaligula ll

), 

(IIGermanicus ll , "Drusilla"), (IIAgrippina ll
, IIDrusilla ll

), 

("Caligula",IIJulia Drusilla ll
), (IICaesonia","Julia Drusilla"»). 

male = {( "Drusus" , Unit) , ( 11 Germanicus 11 ,Unit) , ( "Claudius" , Unit) , 
("Caligula",Unit»). 

female = neg male. 
father = male « parent. 
mother = female « parent. 
grandfather = father ; parent. 
parentCouple = parent ; inv parent \ id. 
sibling = inv parent ; parent \ id. 
brother = male « sibling. 
sister = female « sibling. 
uncle = (brother ; parent) \/ (parentCouple ; sister ; parent). 

Figure 7.17: Ancestors programs in Prolog (upper) and Drusilla (lower) 
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'Effective logic programming in the present state of the art, therefore relies 
mostly upon choosing appropriate logic components to suit the limited control 
available. One day it might be possible to rely upon one's implementation to 
devise the most effective control for whatever program is input, thus placing 
the burden of intelligence upon the machine rather than upon the program­
mer.' 

7.6.4· Relation Level Negation is Logical 
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The unimportance of textual ordering in Drusilla is desirable for logic. For ex­
ample the definition of mother in the Prolog program in Figure 7.17 could have 
been written 

mother ( X,Y ) :- female ( X ), parent( X,Y ). 

without changing its logical content or declarative reading. However its op­
erational content would be drastically transformed. The original definition of 
mother uses parent to generate parent names and any parent who cannot be 
proved to be male (using the male unit clauses) is presumed female under the 
closed world assumption. This is the classic generate and test problem solving 
paradigm described by Winston [120]. In the new definition of mother the tex­
tual ordering of the generator parent and the test female is switched. The 
female predicate cannot generate names since it is defined using negation-as­
failure. Consequently this rule attempts to prove a parent is female before that 
parent is generated and hence alway fails! 

By contrast there is only one logical way to define the mother relation in 
Drusilla - a mother is the parent relation with its domain restricted to female. 
The female relation can be defined using the relation complement operator (neg) 
to obtain the negation of the male relation directly. Constraints on the use of 
female still exist: for example, it cannot be used to generate female names. 
However, these constraints are reported to the programmer as modes - female 
can only be used in test mode (yet mother can be used in show, forward or test 
modes). This is perfectly logical and requires no negation-as-failure or extra­
logical 'cut' operator. Therefore, Drusilla succeeds as a logic language where 
Prolog fails! 

7.6.5 Non-determinism and Search Based Computation 

Another main feature of logic languages is handling of non-determinism and 
search based computation. Indeed, Bellia et al [7] regard the central features 
of logic programming to be 'don't know' non-determinism [60] (search based 
computation) and logical variables for unification. 

Section 7.5.4 describes how Drusilla naturally handles non-determinism in a 
tractable manner. 'Don't know' non-determinism is not handled by a mechanism 
such as backtracking, but by lazily evaluating lists of alternative results [116]. 
To illustrate Drusilla handling a problem with a search space, a solution to the 
8-queens problem is presented in Figure 7.18. 
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queens = [- 1) ; queens # newQueen -> attack relAdd 
@ {{O,{})}. 

newQueen = colPositions [c~nt] 

(n) colPositions 
{(n,1),(n,2),(n,3),(n,4),(n,5),(n,6),(n,7),(n,8)}. 

( ,pos) attack [cont]; (_,pos)check. 
(~,{x,y» relAdd r \/ {(x,y)}. 
((i,_), (m,n» check 
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{(n,Unit)} \/ {[- n] ; ({(i-m,Unit)} \/ {{m-i,Unit)}». 

Figure 7.18: Drusilla solution to the eight queens problem 

When this program is given to the Drusilla interpreter it can be used to enu­
merate all 8-queens solutions using a query of the form 

(queens) 8 

or to test whether a particular board position is an 8-queens solution using a query 
of the form 

( 8 ) (queens) ( ( ( 1, 4 ) , ( 2 , 2 ) , (3, 5 ) , (4, 8 ) , ( 5 , 6) , (6,1) , (7 , 3 ) , ( 8 , 7 ) } ) 

At the implementation level the Drusilla interpreter performs this test by lazily 
enumerating all the solutions in a list and testing whether the given board position 
is in this list. Although this is obviously inefficient it means that the Drusilla pro­
gram is polymodal in the sense that a Prolog solution might be. However a Prolog 
solution can perform such a test in constant time by exploiting partially instan­
tiated data structures. Such structures contain logical variables that are initially 
uninstantiated but bound to values by unification as the program executes. 

Descri ption of Eight Queens Program 

The relation queens holds between a number n and any chess board position 
that contains n queens such that no queen threatens any other. Each solution s 
is a relation between rows and columns: each element r s c indicates there is a 
queen in row r at column c. The base case for the recursion denotes the empty 
board solution for putting 0 queens on the board: 

{(O,{})} 

To place n queens on the board one must first position (n - 1) queens. The 
computation is simplified if they are placed in the first (n - 1) rows. This can be 
expressed re cursively as a relation between nand (n - 1) queens: 

[-1] ; queens 
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Let newQueens be a relation between n and a position pair (n, x), which places 
an nth queen on the board at row n in some column x, 1 ~ x ~ 8. Relation 
newQueens is composed with [-1] ; queens so that n is related to a pair 
(board, pos) where board is a relation denoting positions of (n - 1) queens and pos 
is the position of the new queen: 

[-1] ; queens # newQueen 

This is referred to as the positioning relation. The positions available for the new 
queen must be restricted so that it does not threaten any existing queen. Relation 
a ttack, tests for such an attack, and restricts the range of the positioning relation 
so that attacking queens are excluded: 

[-1] ; queens # newQueen -> attack 

This expression still relates n to the pair (board, pos) but the position of the new 
queen (pos) is now such that it does not threaten any of the (n - 1) queens. The 
new board is constructed by relAdd which adds the nth queen to the relation 
that stores the positions of the (n - 1) queens: 

[-1] ; queens # newQueen -> attack ; relAdd 

Finally the base case must override the recursion: 

[-1] ; queens # newQueen -> attack i relAdd @ {(O,{})} 

The relation newQueen holds between n and each possible position (n, column) 
for a new queen. It uses colPos i tions which places an nth queen in row n 
at each column. Containership ( [cont]) is used to non-deterministically extract 
one position. At the implementation level this means the queen is placed in each 
column in turn and a set of possible new positions is created. 

The relation attack relates a given board position (board,pos) to Unit if the 
queen at pos threatens some queen in board. It uses relation check which relates 
a pair of board co-ordinates denoting the positions of two queens to Un it if they 
threaten each other. 

7.6.6 From Prolog to Drusilla 

Some Prolog and Drusilla programs are similar, as the ancestor programs shown 
in Figure 7.17 demonstrate. Generally any Prolog program may be mapped 
into the Drusilla relational calculus from which it may be possible to derive 
a Drusilla program as discussed in section 7.5.7. This mapping preserves the 
declarative content of a Prolog program because predicate calculus forms a specific 
viewpoint of relational calculus [94]. However, the derived Drusilla program may 
differ in operational behaviour from the original Prolog because of the different 
operational semantics -lazy reduction semantics compared to resolution based 
theorem proving. 

The transformation converts pure, declarative Prolog terms to calculus values: 



CHAPTER 7. EVALUATION OF THE DRUSILLA SYSTEJvf 200 

Atoms become either character strings or numbers. 

Logical variables are replaced by mathematical variables. 

Lists are replaced by sequences as described in section 7.4 and pattern matching 
on lists for their decomposition is replaced by explicit use of hd and tl 
relations. 

Functors are exchanged for n-tuples - the functor name is dropped but its argu­
ments retained as the tuple. 

Predicates are converted to n-ary relations as follows: 

• If a predicate is unary then it may be thought of as denoting a set of 
(non-tu pled) values. This can be replaced by a binary relation between 
the values and Uni t . 

• An n-ary predicate (where n > 1) is formed by prefixing an n-tuple 
with an n-place predicate symbol. Such a predicate may be mapped to 
a binary relation by splitting the n-tuple into a pair of smaller tuples. 
One tuple is identified as forming an element of the relation domain, 
the other an element of the relation range. For example p (x, y, z) 

becomes (x, y) p (z) • 

Goals within a clause body are combined with the conjunction operator (A). 

Rules that comprise a procedure denote alternatives within that procedure and 
are therefore combined with the disjunction operator (V). 

As an example, the standard Prolog membership predicate is shown with its 
relational calculus translation in Figure 7.19. The corresponding Drusilla mem­
bership relation is derived in Figure 7.14. 

member ( x, [Xl_l ). 
member ( X, [ Ixs] ) :- member ( X,Xs ). 

I xs member y <=> xs hd Y V (xs t1 zs A zs member y) I 

Figure 7.19: List membership in Prolog (upper) and Drusilla calculus (lower) 

This conversion loses Prolog's non-directionality of predicates because part of 
the predicate is fixed as the domain and part fixed as the range. However, the 
derived Drusilla relation has alternative modes of use. The degree of success for 
such transformations remains a question for future research. 
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7.7 Conclusions 

This chapter has evaluated the success of Drusilla as a programming system in 
terms of both the implementation and the possible programming styles. 

The implementation effort is justified by favourable comparison of RPL pro­
grams with their Drusilla translations. Furthermore, the example programs 
demonstrate that Drusilla provides certain freedom of expression that RPL lacks. 
Certain problems have concise solutions in Drusilla but not in RPL because many 
more operators are applicable to intensional relations. In particular, Drusilla 
demonstrates that relational programming can possess aspects of both functional 
and logic programming. 

The main advantages are: 

• Non-determinism and search-based computation are naturally handled. 

• The programmer controls flow of execution in a structured fashion. The 
form of control present in functional programming is introduced to logic 
programming. 

• Exceptions are handled in a natural manner. 

• Programs can be formally derived from calculus specifications. 

The main disadvantages are: 

• Laziness is lost for recursion over infinite data structures. 

• Recursive decomposition of relational data structures is inelegant and ex­
pensive. 



Chapter 8 

Conclusion 

8.1 Introduction 

This cha pter draws together the theoretical and practical threads of the thesis. Sec­
tion 8.2 draws conclusions about the design of the Drusilla language. Section 8.3 
draws conclusions about the implementation of Drusilla. Section 8.4 suggests 
directions for future research on relational programming. 

8.2 Conclusions on the Drusilla Language 

8.2.1 The Underlying Mathematical Model 

Chapter 3 defined the typed relational calculus that underlies Drusilla and used 
it to formally define the built-in relational operators and create a universe of 
discourse for the language. The calculus is typed to allow MiIner type inference 
to statically check Drusilla programs. 

MacLennan based his model of relational programming on sets from which 
relations can be derived. Our model is based on relations from which sets can 
be derived. This appears more appropriate for relational programming since 
it is difficult to identify the corresponding set of values for any relation that is 
polymorphic or higher-order. 

8.2.2 Comparison with other Relational Languages 

Chapter 2 discussed relational languages proposed by other researchers and con­
cluded that a relational language that includes aspects of these languages is 
needed. The merits and demerits of Drusilla are compared with these languages. 

popplestone identifies relational programming with logic programming -
his proposed language is similar to Prolog but uses forward inference. Chapter 7 
discussed Drusilla as a logic programming language. 

Moller's relational language was designed to exhibit certain algebraic prop­
erties that assist formal derivation of algorithms. A related aspect of Drusilla is 
the ability to derive relations from calculus expressions. Also, the laws used for 
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algebraic manipulation form a relational algebra but the emphasis is on making 
programs executable rather than on algorithm derivation. 

The GREL language forced the programmer to view relations purely as set­
valued functions by fixing this as their representation. Drusilla provides this view 
plus two others. Furthermore, in Drusilla the alternative results of an expression 
are hidden to allow the programmer to reason about relationships. Operators like 
GREL's UNION are available but are used to glue relations together directly, not 
to gather sets of results. Drusilla offers greater relational abstraction - relations 
may be reasoned about as entities in their own right. 

The operators used in the Ruby language form a subset of those used in 
Drusilla. This is no accident - Ruby influenced the design of Drusilla as discussed 
in chapter 3. However, whereas Ruby is designed to be a hardware specification 
language, Drusilla is designed to be a general purpose programming language. 

The relational language that is closest to Drusilla both in terms of design and 
intended use is RPL. Drusilla is a successor to RPL with a more sophisticated 
implementation - the aim is to demonstrate that relational programming can be 
implemented in more generality than in RPL. We regard Drusilla as being the next 
step in the evolution of relational programming. 

8.2.3 Functional Programming, Logic Programming and Drusilla 

Chapter 1 defined those features of functional and logic languages that account 
for their expressive power. Chapter 7 demonstrated that Drusilla exhibits at least 
some of these properties. The results of this research has provided new insight 
into the link between functional and logic programming. 

Although Drusilla is not a functional language, it does incorporate lazy eval­
uation, static typing, higher-order definitions and applicative expressions. 

If the central aspects of functional programming are debatable, then the central 
aspects of logic programming certainly are. Many people consider unification, 
logical variables and partially defined data structures essential. Others stress 
the importance of showing some theorem is inconsistent with given axioms by 
use of a theorem prover. If a logic programming language can be based on 
relational algebra instead of relational calculus then Drusilla is an example of 
such a language. However the absence of unification means that relations are less 
polymodal and some computations are less efficient than in Prolog, as discussed 
in chapter 7. 

Comparing Drusilla with previous attempts to merge functional and logic 
programming, the most successful of the languages discussed in chapter 2 are 
IML, Eqlog, Tablog, CFP, and equationallanguages. 

LML is a clean extension of functional programming. However the logic aspect 
(the theory data type) and the functional aspect (the main part of the language) 
have only a limited scope for interaction through set abstraction notation. Simil­
arly constraint functional programming involves separate language components 
_ the functions and the constraints. In Drusilla there is only one component 
(relations), which incorporates functional and logic aspects. CFP needs to ma­
nipulate two forms of object for computation: functions and constraints. It also 
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needs sets to handle non-determinism. Drusilla manipulates only relations, but 
these naturally permit reasoning about non-determinism. 

Eqlog and Tablog are both large, complex, first-order languages. Drusilla is 
much smaller and higher-order. 

Equations are not always a natural notation for expressing real world rela­
tionships since they express equivalences. Relations are more intuitive for logic 
programming since they express general relationships. 

So Drusilla has its merits compared with other proposed functional-logic lan­
guages, but it does have several problems and shortcomings: 

Absence of function application: It was a deliberate decision to base Drusilla 
entirely on data values and relations over those data values. Functions were 
not introduced so that relations could be explored as the sole computational 
mechanism. Although the operators form a rich relational algebra they are 
the only means by which expressions can be constructed. i.e. the operators 
themselves limit expressive power. 

Expressions are concise to formulate when there is a natural pipeline struc­
ture for information flow through the constituent relations: composition 
operators are used. However, gluing problems may occur when the re­
lations to be combined have no obvious pipeline structure - a problem 
similarly encountered with the FP language. This problem becomes more 
acute as programs increase in size. To some extent it is circumvented by 
the presence of relation specialisation notation - indeed specialisation was 
introduced precisely for this purpose. However, if new operators could be 
defined or if functional relations could be identified and applied functionally 
to arguments then expressive power would be increased considerably. 

Data structures: chapter 7 identified the problem for recursion over relational 
data structures (extensionally represented relations). This problem could be 
solved by adding algebraic datatypes to Drusilla. 

8.3 Conclusions on the Drusi1la Implementation 

8.S.1 Removing The Representation Bottleneck 

Chapter 4 christened the fixed representation scheme of RPL the representation 
bottleneck since it forms a barrier to freedom of expression. The aim of the Drusilla 
system is to increas: expressive power by abstracting the programmer away from 
relation representations. 

The representation bottleneck is widened to the limit of computation by typed 
representation inference, a.n a~gorithm ~ased on MiIner poly~orphic type infer­
ence. Typed representation inference IS perhaps the most satisfying result from 
the research described in this thesis. Furthermore it has potential as a general 
mechanism for resolving operator overloading and implementing ad-hoc poly­
morphism in programming languages. Cardelli and Wegner [20] state that ad-hoc 
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polymorphism is a combination of overloading and coercion. Typed representa­
tion inference provides a mechanism for implementing such polymorphism while 
leaving the language implementor free to decide the exact combination of over­
loading and coercion to be used. 

Unfortunately some expressions cannot be represented. If an expression can­
not be given a representation it is because some operator is applied to a relation 
that has a representation for which it is undefined. This reflects the computa­
tionallimits of the operators. Moded types are used to distinguish the otherwise 
homogeneous program and data for the programmer and are needed to reify 
representations back to the programmer when an expression is unrepresentable. 
Some expressions that have no representation may be represented through rep­
resentation manipulation. This is algebraic manipulation based on known laws or 
relation equivalences and is helped by two mechanisms: 

Law Analysis isolates those laws which, when used as a rewrite rule in a spe­
cific direction, improve expression representation. The typed representation 
information encoded in the rules by analysis obviates much of the need to re­
typecheck. Unfortunately there are few representation improving laws and 
this is a fundamental problem for manipulation, although few expressions 
are without representation. Also unrepresentable expressions are often un­
computable, because the typed representation rules for each operator reflect 
computational constraints. 

Meta-Ievel Inference provides intelligent control of the search involved in ex­
pression manipulation. However, it relies on methods that are developed 
in an ad-hoc manner. 

This manipulation is unfortunately not particularly successful since few laws 
produce rules that improve representation. i.e. few rules transform away those 
operators that can generate the undefined representation. 

Search space manipulation is algebraic manipulation that improves program 
execution behaviour by removing unnecessary computation. It is more successful 
than representation manipulation as a greater number of the laws are of pse. 
However, its success for any given expression is difficult to judge because lazy 
evaluation avoids much unnecessary computation. The search should never be 
made worse but it might not be improved. 

8.3.2 The Implementation Architecture 

The architecture of the Drusilla implementation was described in chapter 6. All 
syntactic analysis is based on Fairbaim's 'let form follow function' [33]. While 
this may not be the most efficient form of pars er it does allow the parser structure 
to be close to the BNF defining the expression grammar. 

Calculus type inference i~ th~ rel~tional ~orm of the Milner polymorphic type 
inference performed at compile tIme ill functlOnallanguages. It provides a power­
ful mechanism for static detection of program incorrectness and as such is un­
doubtedly a success. This is executed before any other analysis for two reasons: 
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• Other, computationally expensive, analysis techniques are not applied to 
obviously incorrect programs. 

• Other analyses can be based on the premise that every program expression 
is well-formed. 

Typed representation inference is applied to the expressions in a maximally 
strong component before symbolic manipulation for two reasons: 

• This analysis isolates those definitions that have no representation and hence 
need to be manipulated. . 

• Lazy manipulation can then be used - me ta-level inference can be used to 
direct manipulation search and typed representation information encoded 
in the rewrite rules can be used to obviate much re-typechecking. 

This architecture is also used in the Drusilla compiler. The implementation 
is not the most efficient but it was never intended to be. The sole aim is to 
demonstrate that relational programming can be made more expressive than RPL 
or GREL through more sophisticated implementation techniques. The creation of 
an efficient, production quality, compiler is a subject for future research. 

8.4 Future Relational Programming Research 

8.4.1 The Semantics of Drusilla 

The mathematical model of Drusilla is not sufficient, nor was it ever intended, 
to constitute a formal semantics for Drusilla. The semantics are defined in terms 
of typed representation inference, the Drusilla interpreter / compiler, and the 
Miranda definitions of the operators. It would obviously be preferable to have a 
formal semantics for relational programming. 

8.4.2 The Need for Function Application 

The inability to apply relations functionally places a constraint on the expressive 
power of relational programming. In particular it may lead to gluing problems 
when programs increase in size, and domain and range elements become more 
complex. 

This is a problem that should, intuitively, be solvable. The set of all (binary) 
functions is a subset of the set of all binary relations. Ideally the system should 
be able to identify functional relations and allow the programmer to apply them 
as functions. Static analysis could identify such relations. For example, point· 
to-point functions c~u1d. be included as a new representation and incorporated 
in typed representatIOn inference rules. Alternatively Hutton [49] describes an 
analysis for identifying functional relations in Ruby. 

Any parameterised definition that does not use anonymous parameters (_) 
must be functional. For example, the definition of cartesian product for relations 
denoting sets is: 
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(r,s) cartProd (r i inv s) 

The domain values for this relation are pairs of relations that are described by 
the syntactic pattern: (r, s ). The range element related to any such domain 
element is determined by the defining expression - in this case r i inv s. 
This definition defines a relation whose functionality can be determined from 
the syntax. This relation could be used functionally, like the operators, in the 
formulation of expressions, for example: 

(r,s,t) tripleProd cp (r,cp (s,t» 

This would allow the definition of new operators. 
Normally all relations are first class values and every relation has the same 

status as every other relation. The only distinction between relations is their 
possible modes of use, with exception of the operators that can be applied as 
functions. There is no problem in recognising operators - their syntax indic­
ates this. Similarly in the extension suggested above the new operators can be 
recognised by their identifiers. This extension can be taken further to make func­
tional relations first-class citizens. This permits functional application of formal 
parameters to values. For example the definition: 

(f,r) binOpApply f ({(1,Unit),(2,Unit),(3,Unit)},r) 

The values in domain of this relation are pairs of relations where the first relation is 
known to be functional. The first relation, f, could be any of the built-in operators, 
or an explicitly defined functional relation, such as cartProd above. 

If functional relations were to be accepted as first-class citizens and programs 
remain type safe then a new class of objects - functions - would have to be 
created. If functions were to be still recognised as relations (as indeed they are) 
then they would have to become a subtype of relation. However this would 
prevent full polymorphic type inference from taking place because there is no 
known algorithm for inferring polymorphic subtype relationships [20]. 

Thus, if functions are to be introduced and recognised as a subclass of relations 
then there are two possible routes: 

• Remove the type system. This can be discounted given the premise of 
chapter 1 that type inference is a good aspect of functional programming . 

• Derive a new type inference algorithm, one that is capable of inferring 
subtypes. This is a general topic for future research. 

Knowledge of relation functionality could also be exploited at the implement­
ation level. A point-to-point function representation would improve laziness for 
relations that recurse over infinite extensional relations as discussed in chapter 7. 

8.4.3 Implementing Relational Programming Efficiently 

Chapter 6 described how Drusilla programs can be compiled into Miranda pro­
grams. Compilation into a functional language that is itself compiled, such as 
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Haskell or LML, would greatly improve efficiency. Also Haskell contains arrays, 
which can represent any relation defined in extension that is of a known fixed 
size. The idea of using arrays for implementing sets whose size can be determined 
statically has previously been explored by Paige [81,80, 18]. As he observes this 
permits constant time access to elements. 

This idea can be taken one step further - a compiler could generate object 
code in a lower level language, for example C, which might further improve 
efficiency. 

8.4.4 Querying Relational Databases 

The fact that Drusilla is based on a relational algebra that includes analogues of 
Codd's basic algebraic operations suggests that it could be used to query rela tional 
databases. As Drusilla is based on binary relations, it would seem most natural 
for it to interact with a database that is founded on binary relations. 

Drusilla would have more computational power than a conventional query 
language because it is Turing-complete. From this perspective it would be in­
teresting to compare I?rusilla with FDL, the computationally complete query 
language discussed in chapter 2. 

8.4.5 Symbolic Inversion of Relations 

The problem of inverting functions has been considered for functional programs, 
for example Runciman [93]. The inverse of a many-to-one function is a relation 
and hence must be represented by a set-valued function. However the inverse of a 
relation is always a relation, moreover, in a relational language all expressions are 
constructed from the built-in operators. Inversion of relations should therefore 
be a problem more tractable for relational programming. 

One problem with the Drusilla system is that the inverse of an intensionall y 
represented relation can only be represented by a characteristic function. This 
means that the inverse of a relation can never be used to generate range values 
from given domain values, only to test whether a given pair of domain and range 
values are related. Many expressions that cannot be represented use the relation 
inversion operator. This is reflected by the fact that several of the representation 
improving rewrite rules work by shifting or removing inversion operations. For 
example, the laws: 

inv r ; inv s = inv (s ; r) 
inv t » p = inv (p « t) 

If the inverse of expressions could be evaluated symbolically then the absence 
of any tangible relation representation would cease to be of importance. This 
would involve a new set of rules for algebraic manipulation. Each rule in the set 
would map a given expression to be inverted into an equivalent expression in 
which only the leaves are inverted. For an expression constructed from an unary 
operator f or from a binary operator E9 the rules would be of the form: 
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inv (inv 5) -+ 5 
inv (neg 5) -+ neg (inv 5) 
inv (dcm 5) -+ rng (inv 5) 
inv (rng 5) -+ dcm (inv 5) 
inv (set 5) -+ flip ; set (inv 5) 
inv (r Vs) -7 inv r V inv 5 
inv (r /\ 5) -7 inv r /\ inv 5 
inv (r \ s) -+ inv r \ inv 5 
inv (5 ; r) -7 inv r ; inv 5 

inv (r @ 5) -+ (inv r - > dom 5) V inv 5 

inv (5 img r) -+ dom (inv r » 5) 

inv (r # 5) -+ (inv r 11 inv 5) » set id ; 

inv (r 11 s) -7 inv r 11 inv 5 

inv (p « t) -7 inv t » p 
inv (t » p) -7 P « inv t 
inv (p <- t) -7 inv t -> P 

inv (t -> p) -7 P <- inv t 
where 
(x,y) swap (y,x) 

(x,y) fst (x) 

(x) id (x) 

Figure 8.1: Rules for simplfying relation inverses 

mv (f t) -7 

mv (r $ s) 
/' (inv t) 

-7 (in v r) $' (inv s) 
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fst 

Here l' and $' are new operators for combining the inverted expressions. The 
actual rules are presented in Figure 8.1. Their correctness can be proved in the 
same way as manipulation laws - by translation to a common expression in the 
relational calculus - as described in chapter 5. The rules do not cover the oper­
ators [con t] or card because [con t] cannot be used as a compound relation 
designation and card yields a number, which obviously cannot be inverted. 

The problem with symbolic inversion is that the leaves of the expression tree 
must be inverted. The leaves may be relational operators and the inverse of some 
operators cannot be comp~ted. For example, the inverse of union relates any 
relation t to any two relations, rand 5 such that r V s = t. If t is higher­
order or polymorphic then the relations rand s cannot be computed. Arithmetic 
operator designations, for. e~ample. [+], C?~ be inverted: bu~ the inversion is 
represented by ~ ct:aractenstic function. This IS self defeating smce the goal is to 
generate a relation mverse that can be represented by a set-valued function. 
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8.5 Summary of Conclusions 

Relational programs can have both functional and logic aspects: higher-order, 
polymorphic, applicative expressions that can be lazily evaluated, and permit 
reasoning about relationships between entities, non-determinism and search­
based computation. This is significant since Hudak [43] observes that previous 
functional-logic integrations have not been entirely satisfactory in the context of 
higher-order definitions and lazy evaluation. The research sheds new light on the 
link between the two paradigms. 

The success of the more sophisticated implementation is due to typed repres­
entation inference which widens the representation bottleneck closer to the Hmi t of 
computation. The analysis better preserves relation abstraction and consequently 
simplifies reasoning about relationships and non-determinism. Symbolic manip­
ulation is disappointing although helped by law analysis which isolates those 
laws that produce representation improving rewrite rules. A strategy based on 
meta-Ievel inference seems appropriate. Programs can be interpreted but com­
pilation is more efficient and the resulting functional program guaranteed type 
correct. 

However a formal semantics is needed for relational programming. Introduc-
tion of function application, or at least the ability to define new operators appears 
to be a good route for improving expressive power. To further test how express­
ive a relational language is, larger programs must be tried and compiled more 
efficiently. 

Consequently relational programming is a declarative programming paradigm 
that can be applied to applications where a functional or logic language might 
normally be used. 



Appendix A 

Example Compiled Drusilla 
Programs 

This appendix gives examples of the Miranda programs produced by the Drusilla 
ccompiler for a number of Drusilla programs. 

FigureA.1 shows the Drusilla permutations of a sequence definitons presented 
in chapter 7. Figure A2 shows this program compiled to Miranda. 

Figure A.3 shows the Drusilla solution to the Prolog-style ancestors program 
along with the compiled Miranda program. 

Figure A.4 shows the Drusilla solution to the eight queens problem along with 
the compiled Miranda program. 
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__ permutations of a sequence 
perm = {{{),{)} \I (hd # (tl 

__ permutations of a sequence 
permH = (insert, {},_)foldr .. 

__ non-deterministic insert 

perm) insert) . 

(x,_) insert (x,_)cons \I (hd # (tl ; (x,_)insert) 

__ fold right an operator over a sequence 
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cons) . 

(oP,x,_) foldr {({l,x)} \/ (hd # (tl; (op,x,_)foldr) ; op). 

hd = [cont](l,_). 

tl = {{{},Unit)} <- t12. 

Cs) tl2 darn s « [+ 1] ; s. 

(x,s) cons {{I, x)} \I inv (inv s [1 +]). 

seqZ = {{1,"b"),(2,"c"),(3,"d")}. 

s = {(1,"a"),(2,"b"),(3," c "),(4,"d")}. 

Figure A.l: Drusilla permutations program 
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hdO = con cat . map locall_ . cont 
where 
locall_ (l,dUMI) = [dUMl] 
locall_ other = [] 
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tl21 s' = [compAIAI «domResAISf «domAI (s),locall »,s»] 
where 
locall dUMl = (mklist . plusF) (dUMl,l) 

tl22 s = [compSfSf «domResSfSf «domSf (s),locall_»,s»] 
where 
locall_ dUMI = (mklist . plusF) (dUMI,I) 

tl3 = domAntAISf «[([],True)],tI21» 
cons4 (x,s) = 

[unionAIAI {([(l,x)], 
invAI (compAISf «invAI (s),locall_»»)] 

where 
locall dUMI = (mklist . plusF) (l,dUMI) 

insertS (x,dUMI) = 
unionSfSf ({locaI2_,compSfSf «duaISfSf «hdO, 

compSfSf «tI3,locall_»»,cons4»» dUMI 
where 
local2_ dUMI = cons4 (x,dUMI) 
locall_ dUMI = insertS (x,dUMI) 

perm6 = unionAISf «[([],[])],compSfSf «duaISfSf «hdO, 
compSfSf {(tI3,perm6»»,insertS»» 

foldr7 (op,x,dUMI) = 
unionAlSf ({[([],x)],compSfAI «duaISfSf 

«hdO,compSfSf «tI3,locall_»»,op»» dUMl 
where 
locall_ dUMI = foldr7 (op,x,dUMI) 

foIdr8 (op,x,dUMI) = 
unionAISf «[([],x)],compSfSf «duaISfSf «hdO, 

compSfSf «tI3,locall_»»,op»» dUM I 
where 
locall_ dUMI = foldr8 (op,x,dUMI) 

foldr9 «op,x,dUMI),dUMO) = 
unionAICf «[([],x)],compCfAI «duaISfCf «hdO, 

compSfCf «tI3,locall_»»,op»» (dUMl,dUMO) 
where 
locall_ (dUMI,dUMO) = foldr9 «op,x,dUMI),dUMO) 

permHIO = 

locall_ 
where 
loca11_ dUMI = foldr8 (insertS,[],dUMI) 

seqZ1I = [(1,"b"),(2,"c"),(3,"d")] 
s12 = [(I,"a"),(2,"b"),(3,"c"),(4,"d")] 

Figure A2: Drusilla permutations program compiled to Miranda 
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parent = {("Drusus","Germanicus"), ("Antonia","Germanicus"), 
("Drusus","Claudius"), ("Antonia","Claudius"), 
("Germanicus","Caligula"), ("Agrippina","Caligula"), 
("Germanicus","Drusilla"), ("Agrippina","Drusilla"), 
("Caligula","Julia Drusilla"), ("Cae~onia","Julia Drusilla")}. 

male = {( "Drusus" , Unit) , ( " Germanicus " , Unit) , ( "Claudius" , Unit) , 
("Caligula",Unit)}. 

female neg male. 
father = male « parent. 
mother = female « parent. 
grandfather = father; parent. 
grandmother = mother ; parent. 
parentCouple = parent ; inv parent \ id. 
sibling = inv parent ; parent \ id. 
brother = male « sibling. 
sister = female « sibling. 
uncle = (brother; parent) \I (parentCouple sister parent). 

parentO = 
([("DrUSus","Germanicus"),("Antonia","Germanicus"), 

("Drusus","Claudius"),("Antonia","Claudius"), 
("Germanicus","Caligula"),("Agrippina","Caligula"), 
("Germanicus","Drusilla"),("Agrippina","Drusilla"), 
("Caligula","Julia Drusilla"),("Caesonia","Julia Drusilla")] 

malel = ([ ( "Drusus" , True) , ( "Germanicus" , True) , 
("Claudius",True),("Caligula",True)]) 

femal e 3 = (negAl(malel» 
father4 = (domResAlAI«malel,parentO») 
motherS = (domResCfAl«female3,parentO») 

id6 x = [(x)] 
parentCouple7 = 

(diffAlSf«compAlAl«parentO,invAI(parentO»),id6») 
grandfather8 = (compAIAI«father4,parentO») 
grandmother9 = (compAIAl«motherS,parentO») 
siblinglO = (diffAISf«compAIAI«invAl(parentO),parentO»,ld6») 
sisterll = (domResCfAI«female3,siblinglO») 
brotherl2 = (domResAIAI«malel,siblinglO») 
uncle13 = (unionAIAI«compAIAI«brother12,parentO», 

compAIAI{(compAIAI{(married7,sisterll»,parentO»») 

Figure A.3: Ancestors programs in Drusilla (upper) and Miranda (lower) 
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queens = [- 1] ; queens # newQueen -> attack; relAdd 
@ {(O,(})}. 

newQueen = colPositions i [c~nt] 

(n) colPositions 
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{(n,l),(n,2),(n,3),(n,4),(n,S),(n,6),(n,7),(n,B)}. 
( ,pos) attack [c~nt] i (_,pos)check. 
(r,(x,y» relAdd r \I {(x,y)}. 
«i,_),(m,n» check 

{(n,Unit)} \I ([- n] i ({(i-m,Unit)} \/ {(m-i,Unit)}». 

colPositionsO n -
[[(n,l),(n,2),(n,3),(n,4),(n,S),(n,6),(n,7),(n,B)]] 

newQueenl = 
compSfSf «colPositionsO,cont» 

check2 «i,dUMl),(m,n» = 
unionAlSf «[(n,True)],compSfAl «locall_,unionAlAl 
«[(minusF «i,m»,True)],[(minusF «m,i»,True)l»»» dUMl 

where 
locall_ dUMl = (mklist . minusF) (dUMl,n) 

attack3 (dUMl,pos) = 
compSfSf «cont,local1_» dUMl 

where 
local1_ dUM1 = check2 (dUM1,pos) 

relAdd4 (r,(x,y» = 

[unionAlAl «r,[(x,y)]»] 
relAddS (r,(x,y» = 

[unionSfAl «r,[(x,y)]»] 
relAdd6 (r,(x,y» = 

[unionCfAl «r,[(x,y)]»] 

queens7 = 
overSfAl «compSfSf «rngAntSfSf «dualSfSf «compSfSf 
{(locall_,queens7»,newQueenl»,attack3»,relAdd4», [(0, [])]» 

where 
locall_ dUMl = (mklist . minusF) (dUMl,l) 

queensNoB n = 
[cardAl (domResAlSf «[(n,True)],queens7»)] 

Figure A.4: Eight queens in Drusilla (upper) and Miranda (lower) 



AppendixB 

Typed Representation Inference 
Rules 

r :: AL[A f+ B] 
inv r :: AL[B f+ A] 

r :: SF[A ++ B=] 
inv r :: CF[B- f+ A] 

r :: CF[A f+ B] 
inv r:: CF[B f+ A] 

Figure B.1: Typed representation inference rules for relation inverse 

r :: AL[A = f+ B=] 
negr:: CF[A- f+ B-] 

r:: SF[A ++ B=] 
neg r:: CF[A f+ B-] 

r :: CF[A f+ B] 
neg r:: CF[A f+ B] 

Figure B2: Typed representation inference rules for relation negation 
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r:: AL[A f-t B] 
dom r :: AL[A t+ un] 

r :: SF[A ++ B] 
dom r :: SF[A ++ un] 

r:: CF[A ++ B] 
dom r:: l..TR 

Figure B.3: Typed representation inference rules for relation domain 

r:: AL[A ++ Bl 
rng r :: AL[B f-t un] 

r:: SF[A ++ B] 
rng r:: l..TR 

r:: CF[A ++ B] 
rng r:: l..TR 

Figure B.4: Typed representation inference rules for relation range 

r :: AL[A f-t B] 
card r:: num 
r :: SF[A ++ B] 
card r:: l..TR 

r:: CF[A f-t B] 
card r:: l..TR 

Figure B.S: Typed representation inference rules for relation cardinality 
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r:: AL[A t-+ B] 
set r :: AL[(A x B) t-+ un] 

r :: SF[A t-+ B=] 
set r:: SF[(A x B-) t-+ un] 

r :: G'[A t-+ Bl 
set r:: G'[(A x B) t-+ un] 

Figure B.6: Typed representation inference rules for set view of a relation 

r:: AL[A t-+ Bl 
cont r:: (A x B) 

r :: SF[A t-+ Bl 
cont r:: .lTR 

r :: G'[A t-+ Bl 
cont r :: .lTR 
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Figure B.7: Typed representation inference rules for relation containership 
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r :: AL[A f+ B=] s:: AL[B= f+ C] 
r ; s :: AL[A f+ Cl 

r :: AL[A f+ B] s:: SF[B f+ Cl 
r ; s :: AL[A ++ C] 

r :: AL[A = f+ B] s:: CF[B f+ Cl 
r;s:: CF[A- f+ Cl 

r :: SF[A f+ B=] s :: AL[B= f+ C] 
r ; s :: SF[A ++ C] 

r :: SF[A, f+ Bl s :: SF[B f+ C] 
r ; s :: SF[A f+ Cl 

r:: SF[A f+ B] s:: CF[B f+ C] 
r ; s :: CF[A f+ C] 

r :: CF[A f+ B1 s:: AL[B f+ C=] 
r;s:: CF[A ++ C-] 

r :: CF[A f+ B] s:: SF[B ++ C] 
r; s:: ..lTR 

r :: CF[A f+ B1 s :: CF[B f+ C] 
r;s:: ..lTR 

Figure B.8: Typed representation inference rules for relation composition 
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r :: AL[A= f-+ B] s:: AL[A= f-+ B] 
r @ s :: AL[A - t7 B] 

r :: AL[A = f-+ B] s :: SF[A = f-+ B] 
r @ s:: SF[A- f-+ B] 

r :: AL[A f-+ B] s:: CF[A t7 B] 
r@s::..LTR 

r :: SF[A = f-+ B] s :: AL[A = f-+ B] 
r @ s:: SF[A- f-+ B] 

r :: SF[A t7 B] s:: SF[A f-+ B] 
r@s:: SF[A f-+ B] 

r :: SF[A t7 B] s:: CF[A t7 B] 
r @s:: ..LTR 

r :: CF[A= f-+ B=] s:: AL[A= H n=] 
r@s:: CF[A- f-+ B-] 

r :: CF[A t7 B=] s :: SF[A H B=] 
r @ s:: CF[A f-+ B-] 

r :: CF[A t7 B] s:: CF[A f-+ B] 
r@s:: ..LTR 

Figure B.9: Typed representation inference rules for relation override 
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r:: AL[A= ++ B] 5 :: AL[A= H C] 
r #5:: AL[A ++ (B X C)] 

r :: AL[A H B] 5 :: SF[A H C] 
r # 5 :: AL[A H (B X C)] 

r:: AL[A= ++ B=] 5:: CF[A= H Cl 
r # 5:: CF[A- ++ (B- X C)] 

r :: SF[A ++ B] s :: AL[A H C] 
r # s :: SF[A H (B X C)] 

r :: SF[A ++ B] s :: SF[A H C] 
r # s :: SF[A H (B X C)] 

r :: SF[A H B] s:: CF[A H C] 
r # s:: CF[A ++ (B X C)] 

r:: CF[A= ++ B] s:: AL[A= H C=] 
r #s:: CF[A- H (B X C-)] 

r:: CF[A H B] 5:: SF[A H C=] 
r #5:: CF[A H (B X C-)] 

r:: CF[AH B] s:: CF[AH C] 
r # 5:: CF[A H (B X C)] 

Figure B.10: Typed representation inference rules for dual composition 
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r:: AL[A ++ B] s:: AL[C ++ D] 
r 11 s:: AL[(A x C) ++ (B x D)] 

r:: AL[A= ++ B] s:: SF[C ++ D] 
r 11 s:: SF[(A- x C) ++ (B x D)] 

r:: AL[A= ++ B=] s:: arc ++ D] 
r 11 s :: CF[(A- x C) ++ (B- x D)] 

r:: SF[A ++ B] s:: AL[C= ++ D] 
r 11 s:: SF[(A x C-) H (B x D)] 

r :: SF[A H Bl s:: SF[C H Dl 
r 11 s:: SF[(A x C) ++ (B x D)] 

r :: SF[A H B=] s :: arc ++ D] 
r 11 s :: G'[(A x C) ++ (B- x D)] 

r:: G'[A H B] s:: AL[C= ++ D=] 
r 11 s :: G'[(A x C-) ++ (B x D-)] 

r:: CF[A ++ B] s:: SF[C H D=] 
r 11 s:: G'[(A x C) ++ (B x D-)] 

r :: CF[A ++ B] s :: CF[C ++ D] 
r 11 s:: G'[(A x C) ++ (B x D)] 

Figure B.11: Typed representation inference rules for parallel composition 
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r :: AL[A f-t Bl s:: AL[A f-t Bl 
r Us:: AL[A f-t Bl 

r :: AL[A = f-t Bl s :: SF[A = f-t Bl 
r Us:: SF[A- f-t Bl 

r :: AL[A= f-t B=l s:: CF[A= f-t B=] 
r Us:: CF[A- f-t B-1 

r :: SF[A = f-t B] s :: AL[A = f-t Bl 
r Us:: SF[A- f-t Bl 

r :: SF[A f-t Bl s:: SF[A f-t Bl 
r Us:: SF[A f-t Bl 

r :: SF[A f-t B=] s:: CF[A f-t B=] 
r Us:: CF[A f-t B-] 

r:: CF[A f-t Bl s:: AL[A= f-t B=] 
r Us:: CF[A- f-t B-] 

r :: CF[A f-t B=] s :: SF[A f-t B=] 
r Us:: CF[A f-t B-] 

r :: CF[A f-t B] s:: CF[A f-t Bl 
r Us:: CF[A f-t Bl 

Figure B.12: Typed representation inference rules for relation union 
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r:: AL[A= H B=] s:: AL[A= H B=] 
r n s :: AL[A H B-1 

r:: AL[A H B=] s:: SF[A H n=l 
r n s :: AL[A +-+ B 1 

r :: AL[A H B] s:: CF[A +-+ B] 
r n s :: AL[A +-+ Bl 

r :: SF[A +-+ B=] s :: AL[A +-+ n=] 
r n s:: AL[A +-+ B-1 

r :: SF[A H B=] s:: SF[A H n=] 
r n s:: SF[A +-+ B-1 

r :: SF[A +-+ B=] s :: CF[A +-+ n=] 
r n s:: SF[A +-+ B-1 

r :: CF[A +-+ B] s:: AL[A H B] 
r n s :: AL[A +-+ Bl 

r :: CF[A H B=] s :: SF[A H B=] 
r n s :: SF[A H B-] 

r :: CF[A H B] s:: CF[A H B] 
r n s:: CF[A +-+ Bl 

Figure B.13: Typed representation inference rules for relation union 
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r :: AL[A= +-+ B=] s:: AL[A= +-+ B=] 
r \ s :: AL[A +-+ B-1 

r :: AL[A f-+ B=] s :: SF[A +-+ B=] 
r \ 5:: AL[A f-+ B-] 

r :: AL[A f-+ B] 5:: CF[A +-+ B] 
r \ s :: AL[A +-+ B] 

r :: SF[A = +-+ B=] s:: AL[A = f-+ B=] 
r \ 5:: SF[A- f-+ B-] 

r :: SF[A +-+ B=] 5 :: SF[A f-+ B=] 
r \ 5:: SF[A f-+ B-] 

r :: SF[A +-+ B] s:: CF[A f-+ Bl 
r \ s :: CF[A f-+ Bl 

r :: CF[A= +-+ B=] s:: AL[A= f-+ B=] 
r \ s:: CF[A- f-+ B-1 

r :: CF[A f-+ B=] s :: SF[A f-+ B=] 
r \ s :: CF[A f-+ B-1 

r :: CF[A f-+ Bl 5:: CF[A f-+ Bl 
r \ s :: CF[A +-+ Bl 

Figure B.14: Typed representation inference rules for relation union 
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r:: AL[A= +-+ B] s:: AL[A= +-+ un] 
r img s :: AL[B +-+ un] 

r :: AL[A +-+ B] s :: SF[A +-+ un] 
r img s :: AL[B +-+ un] 

r:: AL[A +-+ B] s:: CF[A +-+ un] 
r img s :: CF[B +-+ un] 

r :: SF[A +-+ B] s :: AL[A +-+ un] 
r img s :: AL[B +-+ un] 

r:: SF[A +-+ B] s:: SF[A +-t un] 
r img s :: .LTR 

r:: SF[A ++ B] s:: CF[A +-t un] 
r img s:: .LTR 

r:: CF[A ++ B] s:: AL[A ++ un] 
r img s:: .LTR 

r:: CF[A ++ B] s:: SF[A ++ un] 
r img s :: .LTR 

r:: CF[A +-t B] s:: CF[A ++ un] 
r img s :: ..LTR 

, 
Figure B.15: Typed representation inference rules for image 
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s:: AL[A= Hun] r:: AL[A= H B] 
s« r:: AL[A- H Bl 

s :: AL[A Hun] r:: SF[A H B] 
s« r:: AL[A H Bl 

s:: AL[A= Hun] r:: CF[A= H B] 
s « r:: CF[A - H Bl 

s :: SF[A Hun] r:: AL[A H B] 
s « r :: AL[A H Bl 

5 :: SF[A Hun] r:: SF[A H Bl 
s « r:: SF[A H Bl 

s:: SF[A Hun] r:: CF[A H B] 
s « r:: alA H Bl 

s:: CF[A Hun] r:: AL[A H Bl 
s « r:: AL[A H Bl 

5:: CF[A H un] r :: SF[A H B] 
s« r:: SF[A H B] 

s:: a[A Hun] r:: CF[A H B] 
s « r:: alA H Bl 

Figure B.16: Typed representation inference rules for domain restriction 
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s :: AL[A= Ho un] r :: AL[A= Ho B] 
Sf- r:: AL[A Ho B] 

s:: AL[A= Ho un] r:: SF[A= H B] 
S f- r :: SF[A Ho B] 

s:: AL[A= Hun] r:: CF[A= Ho B] 
Sf- r:: CF[A- Ho B] 

s :: SF[A Hun] r :: AL[A H B] 
Sf- r:: AL[A Ho B] 

s :: SF[A Hun] r:: SF[A H B] 
Sf- r:: SF[A Ho B] 

S :: SF[A Hun] r:: CF[A H B] 
S f- r:: CF[A Ho B] 

s :: CF[A Ho un] r :: AL[A H B] 
S +- r:: AL[A Ho B] 

S :: CF[A Ho un] r :: SF[A H B] 
S f- r:: SF[A Ho B] 

S :: CF[A Hun] r:: CF[A H B] 
S +- r:: CF[A Ho B] 

Figure B.17: Typed representation inference rules for domain anti-restriction 
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r :: AL[A H B=] s:: AL[B= Hun] 
r » s :: AL[A H B-] 

r :: AL[A H B] s :: SF[B Hun] 
r » s :: AL[A H B] 

r :: AL[A H B] s :: CF[B Hun] 
r» s:: AL[A H B] 

r :: SF[A H B=] s :: AL[B= Hun] 
r » 5 :: SF[A H B-] 

r :: SF[A H B=] 5 :: SF[B= Hun] 
r » 5 :: SF[A H B-] 

r:: SF[A H B] 5:: CF[B Hun] 
r » 5 :: SF[A H B] 

r :: CF[A H B=] s :: AL[B= Hun] 
r » s :: CF[A H B-] 

r:: CF[A H B] s:: SF[B Hun] 
r~s:: CF[AH B] 

r :: (F[A H B] s :: (F[B Hun] 
r ~ s :: CF[A H B] 

Figure B.18: Typed representation inference rules for range restriction 
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r:: AL[A t+ B=] s:: AL[B= t+ un] 
r -+ s:: AL[A t+ B-] 

r:: AL[A t+ B] s:: SF[B t+ un] 
r -+ s:: AL[A t+ B] 

r:: AL[A f-t B] s:: CF[B t+ un] 
r -+ s :: AL[A t+ B] 

r:: SF[A t+ B=] s :: AL[B= t+ un] 
r -+ s:: SF[A t+ B-] 

r:: SF[A t+ B] s:: SF[B t+ un] 
r -+ s :: SF[A t+ B] 

r:: SF[A t+ B] s:: CF[B t+ un] 
r -+ s :: SF[A t+ B] 

r:: CF[A t+ B=] s:: AL[B= t+ un] 
r -+ s:: CF[A t+ B-] 

r:: CF[A ++ B] s:: SF[B t+ un] 
r -+ s:: CF[A t+ B] 

r:: CF[A t+ B] s:: CF[B t+ un] 
r -+ s:: CF[A t+ B] 

Figure B.19: Typed representation inference rules for range anti-restriction 
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