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INTRODUCTION

Because of the high financial cost involved in highway 

construction, it is essential that the most economic methods of design 
and construction are employed in roadworks. Prom the design aspect, 

a road must perform its required function for a specified number of 

years and the extent to which a pavement fulfils this requirement is 
largely dependent upon the structural method of design employed.

Such a method should be economical, completely reliable, and easily 
applicable. The main difficulty which arises is that there are a great 
many parameters involved in any pavement design procedure. These vary 

from those created by pavement frost effects to' those resulting from 

vehicle wheel configurations. The magnitudes and effects of several 

of these variables are also difficult to determine quantitatively.

In the li^ht of present knowledge it is generally accepted 

that the ultimate pavement design method will be principally empirical 

in nature. However, the use of a structural analysis of the pavement 
as a basis of such an empirical approach is advisable. The analysis 

should be used to determine the critical stresses, strains and 

deflections occurring in a pavement and should cover as many as 

possible of the determinate parameters. This theoretical analysis 
might then also provide a tool with which the effect of these 

parameters could be investigated.
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PRESENT STATE OP PAVEMENT STRUCTURAL ANALYSIS

Introduction

Pavement and foundation

The basic problem in highway pavement design is to provide, 
as economically as possible, a road structure capable of carrying an
estimated amount of traffic, for a given number of years, over the soil 
occurring along the proposed route.

The structural elements of a pavement and foundation are 

shown in Figure 1. A typical pavement and foundation cross-section 
may include the natural in-place subgrade, a compacted subgrade, a 

compacted subbase, a compacted roadbase of treated or plain gravel or 
crushed stone, and a surfacing of one or more layers of asphalt. The 

roadbase and/or surface layers may be replaced by one layer of reinforced 
or plain concrete. Thus a pavement is a structure consisting of 
superimposed layers of selected and processed materials whose primary 
function is to distribute concentrated vehicle wheel-loads to the 
supporting subgrade so that the reduced pressure transmitted does not 
exceed the supporting capacity of the subgrade and, at the same time, 
structural failure of the pavement itself does not occur.

Rigid and flexible pavements are the two main types of road



Figure 1. The basic structural elementa of apavement
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Subgrade
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structure. They are defined by the manner in which they distribute 

the applied wheel-loads to the subgrade. The distinguishing feature 
of a flexible pavement is that the reduction of transmitted pressure is 
accomplished through the lateral distribution of the concentrated load 

with depth rather than by the flexural action of the pavement itself.

In rigid pavements, on the other hand, flexural action is dominant and 

therefore such a structure can bridge over localized discontinuous or 

inadequate support.
Pavement design factors

The main causes of failure which need to be taken into account 
when designing a pavement are as follows:

1. Excessive stresses due to traffic. These may be 

transmitted to the subgrade and lead to excessive deformation with 

consequent failure of the layers above. Large stresses in the road- 

base or subbase may also lead to failure of the road even though the 

subgrade does not become excessively deformed.

2. Excessive stresses from other causes. Temperature or 

moisture changes in any part of the pavement may possibly, in the case 
of rigid pavements constructed of concrete, create stresses which cause 

the break-up of the pavement.
5. Stripping of the surfacing. This may occur through an 

insufficient adhesive bond being developed between either individual 

particles of mineral aggregate in the surfacing or between the surfacing 
and roadbase. Failures of this type are usually confined to bituminous 
surfacings.
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4 Deterioration of the subgrade after construction. A 

change in the moisture content of the subgrade can result in a loss of 
support for the pavement. An increase in moisture content usually 
causes a loss in subgrade strength, while a decrease in moisture content 
may result in shrinkage of.the subgrade. Eepeated wheel-loads can 
cause compaction and consolidation of the subgrade so that localized 

areas of pavement are left unsupported. The action of frost can often 
cause damage to the pavement and allow water to enter the subgrade 

through cracks formed in the surfacing.
Pavement deterioration due to excessive traffic stresses is 

probably the most important cause of failure and is therefore the only 

one considered in many methods of pavement design. ’Ideal’ methods of 

design, which attempt to design on the basis of resistance to traffic 
stresses, should normally try to take account of the following relevant 

factors:
a. The magnitudes of the applied wheel-loads.
b The wheel contact’pressures with the road surface.

c. The shape of the tyre-carriageway contact area.
d possible combinations of single, dual and tandem wheel

configurations.
e. The dynamic nature of wheel-loads and, thus, the 

dynamic properties of the pavement and foundation.

f. The impact effect on the pavement and subgrade due to
vehicles encountering irregularities in the surfacing.
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g. The cumulative effect of repeated applications of 

wheel-loads.
h. The distribution of stress throughout the pavement and

subgrade.
i. The distribution of wheel-loads across the road width.

j. The effects of temperature.

Again, ideally, such methods should give the thickness and type of 
construction that will most economically ensure the desired life of 

pavement structure. Unfortunately all of these factors cannot yet be 

taken into account when designing a highway pavement.
Approaches to pavement structural design

There are a great many methods of pavement design which not 

only differ considerably in their approach to the problem but also in 

their reliability. Most methods consider only some of the possible 

causes of failure. Because of the complexity of the problem and its 

relatively recent consideration, no single method has been shown to be 
completely acceptable. Even though existing methods are so diverse, 

they can be classified into the five following main groups (l)j

Group 1. Empirical methods based purely on precedent. The 

highway engineer's personal judgement, using his past knowledge of 
traffic and climatic conditions in the area, is still used to a certain 

extent to determine required pavement thicknesses. These methods are 
only justifiable in the 'design' of the most minor of roads and, even 
then, should be based on intimate knowledge and past experience of
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of highways in the locality.

Group 2. Empirical methods using soil classification tests. 
With these procedures the thickness of construction over a given suhgrade 
is determined from past experience of the thicknesses required for 
similar wheel-loads on similarly classified soil suhgrades. The 

classification tests used for this purpose are, normally, the particle- 
size analysis and the liquid and plastic limit tests. The justification 

for these nethods is that if the moisture content of a soil is controlled 
and an adequate dry unit weight is obtained in the subgrade through 
compaction, then the thickness of construction required to withstand 

given traffic stresses depends largely on the composition and structure 
of the basement soil. T h e Group Index method of design (2) is an 

example of a procedure which utilizes this approach in the design of 
both flexible and rigid pavements.

Group 3. Empirical methods using a soil strength test. In 
these methods a test is used to classify the 'strength' of a subgrade 
soil The test used, which is commonly a penetration or bearing test, 
is frequently only applicable to its associated design method. The 

strength test is considered to stress the subgrade in a standard way and 
then the thickness of pavement is determined on the basis of experience 
of the thicknesses required on top of subgrades of similar strength in 
the past The best known of these design methods is the California 

Bearing Ratio method (3).  ^  is use<i for both flexible and rigid
pavement thickness design purposes.



Group 4» Methods based partly on theory and partly on 
experience. These methods require that the fundamental stress/strain 
properties of the subgrade soil and the pavement materials be determined 
by shear or bearing tests so that the results may be employed in a 

simplified or modified theory of stress distribution which has been 

found to have some experimental justification. The reasoning here is 
that, in order to overcome the difficulty of analysing the true stress/ 
strain characteristics of the soil and the true distribution of stress 
in the layers under the wheel-load, a method in this group is justified 
in making certain assumptions and neglecting some factors in order to 
produce a simplified theory which can be easily handled at the design 
stage. The assumptions and neglected factors involved in any method 

of this group are generally proved reasonable by experience.
A theory of stress distibution in a concrete pavement which 

has been used as a basis of some methods in this group is that due to 

H.M. Westergaard (4). These methods have mainly given consideration 
to the stresses within the concrete, and the subgrade has only been 
considered in so far as it effects these stresses.

The Westergaard formulae simply provide a method of calculating 
the stresses within a given thickness of slab. Such matters as joint 
spacing, slab width, reinforcement, etc., are considered separately 
within the design method. In Westergaard's analysis the concrete 
slab is assumed to be an elastic solid. The reaction of the subgrade 
is assumed to be vertical and to be proportional to the deflection of 
the slab. Thus Westergaard's subgrade is assumed to be elastic and to
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act in a similar manner to a set of vertical springs. This idealization 
of a foundation is referred to as a Winkler foundation.

In his analysis Westergaard assumed that each wheel-load was 
uniformly distributed over a circular wheel contact area and obtained 
formulae for the maximum tensile stresses in the concrete for the loading 
positions shown in Figure 2. As can be seen, these locations were at 

a corner, at an edge and at some distance from an edge of the slab. He 
also (5) studied the problem of warping stresses due to a temperature 
gradient through the slab on the assumption that this gradient was a 
straight line. An improvement to Westergaard's work on this latter 
subject was later made by Tomlinson (6).

The elastic constant used to describe the sthess/strain 

relationship of the Winkler foundation is the modulus of subgrade 
reaction, k, and is defined as the pressure required to cause a unit 

deflection of the subgrade surface. It is normally measured in unit3 

of lb./in.2/in. and is determined a Plate bearing test. The most 
usual method of determining k is according to the procedure laid down 
by the U.S. Corps of Engineers (7).

A number of improvements have been made on Westergaard's 

original stress analysis which make it agree more closely with experi­
mental work. Thus, Kelley (8) suggested an improved formula for deter­
mining the maximum tensile stress for the corner loading case after 

comparing the value given by Westergaard s formula with experimental 
highway pavements^ his work is especially applicable when the slab
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Figure 2. The three loading positions on a slab which • 
were analysed by Westergaard.



-  10 -



-  11 -

corner is not in complete contact with the subgrade due to upward 

warping of the slab. Spangler (9), after conducting large-scale 

indoor experimental tests, confirmed Kelley's formula for corner loading 
and suggested a simplification of the formula which yields substantially 

the same results.

Pickett (10) noted that several of the theoretical and 
empirical formulae developed for corner stresses in concrete pavements 

had obvious limitations to their range of application. For example, 
he pointed out that the 7/estergaard, Kelley and Spangler equations all 
indicate the maximum stress to be zero when the ratio of the radius of 

the loading area to the radius of relative stiffness is unity. The 
radius of relative stiffness is a constant representing the slab/ 

foundation system and was first defined by Y/estergaard, in terms of the 

slab thickness, the Foissons ratio of the slab, the slab's modulus of 
elasticity, and the modulus of subgrade reaction of the subgrade.

Because of these observations, Pickett worked toward the development of 
a formula which had the same shape and characteristics of the Westergaard 
equation but which had less limitations on its use and also gave approx­

imately the same stresses as the Kelley and Spangler equations within 
their range of application.

Both Spangler and Pickett attempted to allow for the non- 

uniform distribution of moments along sections perpendicular to the 
bisector of the corner angle whereas Yiestergaard assumed this distribution, 

to be uniform. Pickett through his semi-empirical equation also allowed
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for lack of subgrade support near the corner due to warping.
Group 5. Wholly theoretical methods. These procedures 

are based entirely on mathematical analyses of the stresses and strains 
throughout the pavement and subgrade and on the true stross/strain 

characteristics of the various materials. The best known theoretical 

analysis in this group is that due to Burmister (ll) and it is this which 
forms the basis of most design approaches in this group.

Burraister analysed the stresses and strains in a two-layer 
system which consisted of an elastic slab, infinite in the horizontal 
plane only, placed on a semi-infinite solid of lower modulus of 

elasticity; he considered the system to be subjected to a uniformly 
distributed load acting over a circular area and applied to the upper 

surface of thesLab. The interface between the two layers was assumed 

to be either perfectly rough or perfectly smooth. Using these assump­

tions Burmister was then able to compute the vertical displacement at 

the surface under the centre of the applied load for various pavement 

thicknesses and elastic constants.
Burmister suggested a pavement design method based on the 

results of his analysis. For flexible pavement design purposes he
considered the pavement as the top layer of a two-layer system and the 
subgrade as the bottom layer. The thickness of the top layer was then 

determined so that the displacement under the wheel \vas limited to an 
arbitarily selected quantity. It is here that empiricism really 

entered into Burmister's design procedure since not only does difficulty
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arise in obtaining satisfactory values for the elastic properties of* 

the pavement and subgrade which are required by the procedure but, in 
addition, the value for the limiting displacement is chosen with no 
direct account being taken of the stresses in the materials. No 

account is also taken of the traffic intensity or of deformation due -(¡o 
traffic consolidation and compaction. In summary it can perhaps be : 

said that the method is not very practical, especially as it is 

extremely sensitive to the value of limiting displacement chosen.

From the above brief discussion it can be seen that there is, 
as yet, no one design method which is generally accepted. There are 

over forty design methods, many of them having little in common with 

one another either in the assumptions they make or in the results they 

produce. It is possible, however, that a structural analysis of the 

pavement/subgrade system may be used in the future as the basis of 

one generally accepted rational design method. What is clearly required 

in that case is a method of analysis which includes as many of the design 
parameters as possible and which would thus help to forecast pavement 

behaviour more accurately. Some of the relevant existing methods of 

structural analysis are examined briefly in a later section of this 
chapter. Before this, it is necessary to discuss the possible ideal­
isations which are applicable to a pavement/subgrade system.
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Idealization of the Pavement/Subgrade System

The vertical variation in the material composition of a 
highway structure, coupled with the complex nature of the behaviour 

under load of the individual materials, has hindered the development 

of a rational analysis for the stresses and displacements provided by 

traffic loads. Because of these and other difficulties, analysts 

have found it necessary to idealize the pavement/subgrade system into 

mathematically tractable forms. Some of the idealizations which have 
been made are now discussed.
Wheel/pavement contact area and pressure distribution

The actual contact area between a wheel and a pavement 

surfacing is somewhere between an ellipse and a rectangle, depending 

upon the type of tyre and the tyre pressure. The distribution of 

pressure over this contact area depends upon many factors including 

the type of tyre, the tyre pressure and the stiffness of the tyre walls. 

For example, low tyre pressure and stiff tyre walls result in a slightly 
higher contact pressure underneath the tyre walls compared with the 

remainder of the contact area.

The use of the exact shape of the wheel/pavement contact area 
and the actual distribution of pressure over this area does not appear 

to be critical to the analysis of stresses and deformations in the 

pavement and subgrade. For this reason, the perimeter of the contact 
area is usually idealized to a circle, while the area enclosed is assumed
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equal to the contact area. The pressure from the tyre is then 
assumed to be uniformly distributed over this area.

The pavement layers
The analysis of layered pavement systems is usually confined 

to those containing two or three layers. This is due to the difficulty 

in analysing and obtaining numerical solutions for higher order multi­

layer systems. For a similar reason each layer is considered uniform 
in thickness.

A flexible road is normally an example of at least a three­
layered system; this also applies to many rigid pavements. In three- 

layer theoretical approaches it is customary to take the whole 

surfacing as the uppermost layer, the roadbase as the intermediate 
layer, and the subgrade as the lower layer which extends downward to 

infinity. A problem arises, however, when there is a subbase between 

the roadbase and the subgrade. The difficulty is then in deciding 
within which of the idealized layers the subbase should be incorporated 

and what properties are representative of that combined layer. In this 

case, the roadbase properties are normally considered to be representative 
of the combination unless the subbase's properties are so obviously 

similar to those of the subgrade as to be naturally combined with it.
Many analyses consider the road to be a two-layered system and 

as a result even greater difficulties arise when choosing the elastic 

properties for two layers which are representative of the pavement and 
subgrade. The idealization of the pavement and subgrade to a two­
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layered system has the advantage that such a system can be more easily 

analysed than a three-layered system.

Lateral dimensions of the pavement
The majority of the theories relating vehicle loads with 

the stresses and deformations in roads, for simplicity, assume that 

the road consists of a number of layers, all infinite in the horizontal 
direction, and overlying a subgrade of infinite thickness. Some others, 

however, assume the presence of a finite horizontal limitation to the 

extent of the pavement; this may be either a pavement edge or corner. 
These discontinuities in the pavement can form a closed pavement shape 

such as a rectangle or circle. Structural analyses of circular areas 

have been made but their application to actual pavement analysis is 

questionable.

Which structural analysis to apply to a particular pavement 
has been largely dependent upon the type of pavement being considered. 

Because of the absence of joints, sharply defined edges and flexural 

rigidity in flexible pavements, those analyses which consider the pavement 
to be infinite in extent horizontally have found application mainly in 

flexible pavements. This simplification has allowed other effects 
to be incorporated into the theoretical analysis which are especially 
pertinent to flexible pavements, e.g. transverse compression of the 

pavement. In contrast, those theories which have included edge effects, 
etc., are especially useful for rigid pavement analysis since the 

concrete slabs are usually cast in the form of rectangles. Because in
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such cases the stresses and deformations generated are critical when 

the contact area is near an edge or comer, it is essential that the 
boundary effects are incorporated into the analysis.

A form of discontinuity which is similar to an edge is that 

of a crack in the pavement. Cracks are essentially a post-construction 

problem and a finite crack is, analytically, very difficult to handle. 

For these reasons little attention is usually given to them in most 

analyses.
With concrete slabs there is the additional problem of whether 

or not they obtain substantia.1 support from adjacent slabs. This 

problem is compounded by the introduction of dowel bars which result 

in a decrease in the stresses and deformation of the loaded slab.

Because of the difficulty of determining the efficiency with which 

particular dowel bars transfer stresses, this problem is idealized in 

most analyses by simply ignoring it$ where it is taken into account 

it is through the introduction of empirical factors which enable the 

results to be modified in a suitable manner.

The behaviour of the pavement
In the specification of the pavcment/subgrade system to be 

analysed, the elastic nature of the pavement and subgrade is probably 
the most important consideration. A balance has to be struck between 

the idealization of the system and the ability of such a system to be 
analysed.

Some pavements, especially those with bituminous layers, have
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been shown to be viscoelastic to some extent. Even so the magnitude of 

the problem which would be created by the inclusion of a time variable 

into the analysis has largely led investigators ■ to avoid this 

complication by assuming that the pavement and subgrade behave 

elastically.
The question as to whether the pavement is linearly elastic 

has also been given attention. The general conolusion is that at low 

levels of stress and high rates of loading most pavements and subgrades 
show a sufficient proportionality of stress to strain to enable the 
theory of elasticity to be used to predict stresses, strains and 

displacements. At higher levels of stress i.e. where failure of the 

pavement is approached, this is not so, as the pavement components do 

not exibit linear elasticity. Since however, proper design does not 

allow undue deformation of the pavement to occur, it is unlikely that 

these higher regions of stress arise in the highway in practice. There­

fore, a highway is usually considered to behave in a linear-elastic manner 

under the dynamic loading of moving vehicles.
The dynamic influence of a moving vehicle highlights the fact 

that the magnitude of the deformations within a pavement is related to 
the speed of a vehicle i.e. there is a decrease in the deformation of 
each layer as the speed of traffic increases. This effect can be 

included in a purely static elastic analysis, which most analyses are, 
by making use of values of dynamic elastic moduli which 

correspond with the design speed of the road. The main difficulty here,
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however, is in developing satisfactory methods for determining the 

dynamic elastic moduli of the pavement and foundation materials.

Until satisfactory methods are developed use must he made of the 

static elastic moduli in the purely static elastic analyses.
Finally, along with the requirement of elasticity, it is 

usual to consider each idealized layer as a homogeneous and isotropic 

material. These are basic assumptions which are necessary in order to 
make the problem mathematically tractable. Since, however, an 

idealized 'layer1 may be composed of more than one actual layer, it could 

be seen that the former of these requirements may be impossible to 

satisfy in practice. Similarly, the action of construction traffic 

can result in reorientation of the pavement materials in a particular 

direction and so violate the isotropic requirements.

The behaviour of the foundation

The idealizations involved with respect to the subgrade are 
equally as important as those of the pavement layers, even so, greater 

simplifications are normally found in relation to the subgrade than 

occur in the pavement representation.
While the subgrade can usually be considered to distribute 

the stresses applied to it by compression and granular interaction, the 
use of simple elastic properties in analyses, infers that it also possesses 
tensile strength. Except for the small amount provided by cohesion, and/ 

or by the artificial (tensile) strength due to the pre-compressive 
effect of the pavement weight, there i3 little tensile strength present.
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Thus there is ' little justification for the use of elastic properties.
The subgrade is usually considered to have tensile stiffness as otherwise 

the theoretical analysis becomes extremely difficult.
Whether the subgrade should also be considered as a homogeneous 

isotropic solid or as some simplification of this idealization is very 

much a case of convenience. The use of the simplification provided by 

the Winkler foundation is usually accepted as it enables more accurate 
idealizations in say the pavement to be incorporated in the analysis 

which would otherwise prove difficult to handle with the added complication 
of the homogeneous isotropic elastic solid foundation.

Another argument in favour of using a simplifying assumption, 

such as that provided by Winkler with regard to the subgrade is that on 

balance it may be just as near to the actual state of affairs as the 

three?-dimensional elastic solid representation. For instance, if the 

concept of an isotropic elastic solid was to be used, then the presumption 

would be of similar values of elastic constants whether the point in 

question was in tension or compression. As has been noted before this 

is most unlikely to be the case and so the advantageof using the refine­

ment of an elastic solid is questionable when the obvious basic violation 

is present anyway. Furthermore, the applied load is distributed within 
the subgrade to only a small degree by flexure, the main part being 
taken by direct compression in a direction transverse to the plane of 

the pavement. In view of this, the idealization of the pavement to a set 
of springs, as in the Winkler assumption, is not unreasonable, bearing in
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mind its distinct advantages when attempting to obtain analytical 

solutions.
An added point which works against the use of the clastic 

solid concept of the subgrade is that related to the difficulty in 

obtaining satisfactory elastic properties for the subgrade. No method 

of obtaining suitable values is yet available. In contrast, the 

determination of the modulus of subgrade reaction - this is the 'elastic' 

property used to describe the Winkler foundation - by the plate Jbearing 
method has found acceptance by engineers and there is considerable exp­
erience in using the results of this test. It also has the advantage 

that the test may be performed on the actual 'in place' subgrade, thus 

avoiding the change in properties of the subgrade material which results 

from its removal from the roadway to the laboratory for testing. (This 
is not the case with the triaxial compression test which can be used to 

approximately determine the properties required for the elastic solid 

idealization.)
Karl Terzaghi (12) has presented a comprehensive study of the 

evaluation of moduli of subgrade reaction which shows that the deter­

mination and use of these coefficients in relation to the YJinkler 
foundation involves two assumptions which are of particular importance. 
These are, firstly that the relationship between the applied pressure at 

the surface of the subgrade and the x-esulting surface displacement at 
that point is independent of the magnitude of the applied pressure and 

secondly, that this relationship is not affected by the presence of



pavement or "bearing plate edges. Terzaghi found however that if a 

loading test is performed on a subgrade of any kind the settlement 

increases with increased pressure - in fact, he showed that the first 
assumption is approximately valid only for values of pressure which are 

smaller than about one-half of the ultimate bearing capacity of the 

subgrade. According to the second assumption the subgrade reaction at, 
for example, the base of a centrally loaded perfectly rigid slab, (as 

is the presumed state of the plate in the plate bearing test), has the 
same value everywhere. In reality, the pressure at the rim of the surface 
of contact is either greater or smaller than that at the centre depending 

on the elastic properties of the subgrade. In summary, Terzaghi there­
fore felt that with problems involving the modulus of subgrade reaction 

the limits of validity of the first assumption should always be taken into 
consideration when applying the results to such work. He also considered 
that, in connection with practical problems, the errors resulting from 

the second assumption could in many cases be disregarded.

Pavement/subgrade continuity
The interface between the pavement and the subgrade is unlikely 

to be either of such a roughness to provide for a complete transfer of 
stresses between the two layers, or to be smooth enough to allow only 
the transfer of stresses normal to the interface. The difficulty in 
determining the actual degree of partial transfer of stress in any 
instance is very great and the usual procedure in mathematical analyses 

has therefore been to utilize a simplification which considers the inter­
face contact to be either completely smooth or completely rough. Thus,
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for example, the V/inkler concept considers the contact to he completely 

smooth.
Associated with the above is the possibility that an upward 

movement of the pavement at a little distance from the loading position 

may be accompanied by a loss of contact between the subgrade and the 

pavement at that. point. This can occur with respect to rigid

pavements although it must be also stated that the pre-compression of the 
subgrade, which results from the pavement weight, may be sufficient to 
exceed any subsequent upward movement due to wheel-loads and so contact 
may not be lost.

If loss of contact does occur then the result is the complete 

absence of stress transfer at that point. This creates a non-linear 

problem in which the relationships between stresses and deformations are 
entirely different to those when continuity is assumed to be preserved. 

Nearly all of the analyses ignore this possibility, however, and p.ssume 

that the subgrade remains attached to the pavement at the interface, even 
though the pavement deflection may be upward. Some researchers have 

attempted to overcome this difficulty by first of all analysing the 
problem in the usual manner and then, on noting the points where upward 
movement take place, repeating the analysis with no subgrade support at 
these points. By carrying out this procedure repeatedly a more correct 
solution can be approached, but it is a very tedious approach.

Related to the possibility of loss of interface contact due to 
upward movement of the pavement is the difficulty in obtaining uniform 
support for the pavement since local loss of support due to pumping or
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settlement of the subgrade is always a distinct possibility. While a 
number of investigators, notably Richart and 2>ia (l?) and Sparkes (14) 
have attempted to treat this problem speoifically by using various 

simplifications, they are generally omitted in pavement analyses on the 
grounds that, since they are primarily related to post-construction 

problems, it is better to design the road construction to avoid the 

possibility of their occurrence.
The variation of transvera; stresses and deformation through the plate

The classical theory of elasticity as developed for plates has 
been available to engineers for many years and is used a great deal in 

the analysis of the pavement/subgrade system. It is treated exhaustively 

in many textbooks notable among which is that of Timoshenko and 

Woinowsky-Krieger (15). This theory contains a number of assumptions 

which are principally concerned with the transverse variation of stress 
and deformation through the thickness of a plate. In fact, the only 

type of plate which completely satisfies the assumptions made are those 
which are referred to in the literature as 'thin' plates.

Research workers have recently been giving more attention to 

these classical assumptions and have found that substantial inaccuracies 
are possible in certain problems. Two of the assumptions which are of 
particular importance ares

1. That the component of stress normal to the middle surface 

is small compared with other components of stress.

2. That plane cross-sections normal to the undeformed middle-
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surface remain plane and normal to the deformed middle-surface.
These two assumptions are equivalent to neglecting the effects 

of transverse direct compression and transverse shear deformation, 
respectively. Plates for which these two assumptions are not justified, 
because of the inaccuracies which would result, are generally known as 

'thick' plates. A theory of elasticity which is referred to as a thick 
plate theory strictly refers to one which only includes the effect of 

transverse shear deformation. However the majority of writers use this 

expression to describe a theory which includes both transverse shear 
deformation and transverse normal compression. The latter connotation 

is used in this thesis unless otherwise stated.

In the application of the thick or thin plate theory to the 

analysis of the pavement/subgrade system the pavement is considered to 

be a plate resting on a foundation. Whether the application of a thick 
plate theory would produce substantial improvements over the classical 

thin plate theory in the analysis of the system is very much dependent 

upon the actual geometry and elastic properties of the layers involved.
Thus transverse compression of the pavement (plate) is an important 

influence on the distribution of stress and deformation within flexible 

pavements but probably not in rigid pavements. Transverse shear deformation 
is likely to be greater in plates which are supported on a foundation as 

compared with those which have other means of support, e.g. those with 

simply supported edges; this is because of the increased distribution 
of applied load over the plate through shear rather than flexure. In 

fact, the effect increases with increased stiffness of the foundation.
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The presence of plate (pavement) discontinuities provided by- 
pavement edges and corners can result in inaccuracies due to the neglect 

of transverse shear deformation especially when, as is the case in 
actual highways, the wheel-load is applied close to the edge. This is 
emphasized when the increased ability to accurately specify tho boundary 

conditions at the edges of the plate (pavement), made possible by 

including the effect of transverse shear deformation, is considered.

Thus the use of the thick plate theory rather than the thin 

plate theory, i.e. including the effects of transverse normal compression 
a.nd shear deformation, may result in a substantial increase in accuracy 
in determining the stresses and deformation of the pavement and subgrade.

Established Analyses of tho Pavement/Subgrade System

The Introduction has given the approaches to and the requirements 

of pavement design methods. In the preceding section are listed and 

discussed the relevant idealizations of the pavement/subgrade system.
The purpose of this section is to summarize the theoretical methods 
of analysis so that in association with the previous section and the 

background provided by the Introduction, the principal deficiences 
in the present state of pavement analysis can be brought to light.

The analyses considered are discussed in chronological order 

as they span a period of activity from the 1920's to the present day.
For convenience, they are referred to by the name of their authors.
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Westergaard, H.M.
As has been explained before, the two-layer analysis of a 

slab resting on a foundation, presented by Westergaard (4) in 1926, provides 
the basis of the methods used to-day for the design of rigid pavements 
and for this reason is discussed in some detail. This analysis is 

performed for each of the three loading positions shown in Figure 2.
These are referred to as the interior, edge and corner loading positions 

and are a large distance from any other slab corners or edges. The 

solutions obtained are in the form of simple formulae for the maximum 
tensile stress and maximum deflection of the slab at each of the 
positions considered. No direct analysis is made of the stress 

distribution within the foundation.
The basic assumptions in this analysis are:

1. The slab is treated as a thin, elastic, homogeneous, 

isotropic, solid plate.
2. The foundation is considered to be of the Winkler type.

3. The interface between the slab and the foundation is 
considered to be smooth.

4. The wheel-load is represented by a pressure of uniform 

intensity which is spread over a circular area.
5. Full contact is preserved between the slab and the 

foundation at all times.
The approaches to the throe analyses are now briefly explained.
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Interior loading position. The slab which is considered to be a circular 

plate of infinite extent horizontally, is first analysed using the thin 
plate theory. With slabs of the proportions as found in pavements this 

theory leads to a satisfactory determination of deflections at all points 

and of stresses at all points except in the immediate neighbourhood of 
a concentrated load such as the idealized circular wheel-load. The 

theory, in fact, produces infinite values of stress as the radius of 

the contact area decreases to zero.
To avoid this inaccuracy, Westergaard altered the formulae 

provided by the classical theory by replacing in these formulae the 
actual radius, c, of the contact area by an equivalent radius, b. This 

resulted in correct values of stress being computed from these formulae 

at points over and around the contact area. The relationship between 

the actual radius, c, the equivalent radius, b, and the thickness of 

the slab, h, which would give the correct stresses was determined by 
comparing the stresses from the classical theory with those based on 

an analysis performed by A. Nadai (l6) which considered the concentrated 

load to be at the centre of a form of thick circular slab of small 
radius. Westergaard, in effect, inserted this circular slab into the 
centre of the large thin slab. The radius of this inner slab was 
arbitarily chosen to be 5b. By comparing the stresses given by the 
thin plate theory with those of the more accurate theory the relationship 
between c, b and h was found to be

,6c2 + h2) - 0.675b for c ^  1.724h

b * c for c > 1.724hand (1)
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This indicates that for c> 1.724h the thin plate gives substantially 

the same values of stress as the more accurate theory based on Nadai's 
analysis.

introduced the term 'radius of relative stiffness' denoted by the 

symbol \  and expressed by the relationship:

where E is the modulus of elasticity of the slab, p is the Poisson's 

ratio for the slab, and k is the modulus of subgrade reaction of the 
foundation. This quantity, X, can also be considered as a measure of 

the relative stiffness of the slab flexure to the subgrade support.

The ordinary thin plate theory gave the following expression 

for the critical tensile stress, <?i, under the centre of the contact 

area:

where P is the total wheel-load. The correct stress at the centre of 
the contact area was obtained by replacing c by the expression for b 

in equation (5),

The deflection, di, at the centre of the load was computed 
using the thin plate theory and is as follows:

Edge loading position. When dealing with the wheel-load at the edge,

To facilitate the mathematical treatment, Westergaard

(3)

Westergaard assumed that an equivalent radius, b, might be introduced



in place of the true radius, c, in a manner similar to that for the

preceding case and by the same formula. This assumption was justified
on the ground that the distribution of energy due to vertical shearing

stresses was similar for both cases. The correct stresses were

obtained by introducing the equivalent radius, b, in place of c in

the following formula for the maximum tensile stress, <Je> along the

bottom edge of the slab under the centre of the contact area*

<Je = 0.529(1 + O.54n)!_(41ogei + 0.359) (5)
h2 b

From the classical theory, Westergaard found that the deflection, dg , 
at the point of application of a concentrated force P at the edge was 

approximately equal to

de = 1 (1 + 0.4n)P6 2

Corner loading position. For this case, Westergaard considered a wheel 

acting close to the right-angled corner of a large panel of the slab.
The critical failure stress in this instance is a tension at the top 

of the slab, at a critical section which is some distance from the 
corner. The centre of the circular load is then at a distance c^ from 

the corner, where c^ = c ¿ 2 . Yfcstergaard attempted to improve on 
previous critical stress formulae which assumed that tho load was 
concentrated at the corner, i.e. c^ * c = 0, and that there was no 

subgrade support between the corner and tho critical section.

Westergaard obtained an improved approximation by employing 
the thin plate theory to arrive at an approximate expression for the
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deflection, d, in the neighbourhood of the corner. Knowing that the

reaction of the subgrade at any point to be equal to kd, when k is the

modulus of subgrade reaction, Westergaard showed how the total bending
moment at the section x'= x^, where x’is the co-ordinate direction

along the bisector of the square corner, due to the combined influence

of the applied load and the reaction of the sub,grade,could be obtained.

He assumed that this bending moment was uniformly distributed over the

width 2x^ of the cross-section of the slab perpendicular to the

direction bisector, x’, of the corner; thus the bending moment per unit

width became M = M^/2x^. The numerically greatest value of M was then

found to occur approximately at the distance x^ » 2̂ (c^X). Division

of this value of M by the section modulus per unit width, h /6, led

Westergaard to the corresponding greatest tensile stress, a . Thusc

 ̂ ti - (yp 0-6]a  1

The associated deflection, d , at the corner was then found to bec
d = (1 .1  -  0 .88,, A )  E
° ,v2

(7)

(8)

As can be seen from this brief account of his analysis, the 

simplicity of the solutions proposed by Westergaard lend themselves to 

the usage which engineers have made of them in rigid pavement design.

A main advantage of the theory was that, for the first time, it attempted 

to allow for the effect of an edge or corner upon the stress distribution 
and deflection of a pavement slab.
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Nowadays, Westergaard's approach is regarded as being far from 

a pure application of the thin plate theory. In the interior case 

approximate corrections are required in order that the thin plate theory 
may give finite stresses under the centre of the load. Additional 

approximations are also necessary in the edge loading case in order to 

allow for the boundary effect of the slab edge. In addition, many 

assumptions are necessary in the corner loading case in order to obtain 

the critical stress.
The Westergaard theory becomes increasingly inaccurate as the 

stiffness of the upper layer approaches that of the support, Thus, 

Hagstrom, Chambers and Tons (17) suggest that a limiting stiffness ratio 

of E/k ^  100 should be chosen as a criterion for the plate-type behaviour 

of a pavement and the satisfactory application of Westergaard’s theory. 

Modifications to his original 1926 equations were, in fact, made by 

Westergaard in 1953 (18)* 1939 (19)* an^ 1947 (20). These modifications 
were concerned primarily with interior loads and so are not discussed 

further here.
Murphy, G.

The main contribution of the two-layer analysis made by 

Murphy (21) is that the plate i.e. the pavement, is considered to be 
supported by only that portion of the subgrade with which it is actually 

in contact. This is in contrast with the majority of analyses in which 
the foundation is assumed to remain in contact with the layer above 

when upward movement of the slab takes place. The other point of major



interest in this analysis was that the plate was considered to he 

rectangular in shape.

In his analysis Murphy assumed the slab to be thin and the 
foundation to be of the Winkler type when both were in contact. His 

approach was basically to obtain an expression for the deflection of the 

plate (slab) and to compute the stresses within it from an equation based 
on this expression. This approach was an extension of the technique 

employed by Happel (22) in his analysis of a symetrically loaded 

rectangular plate permanently in contact with the foundation.
Nadai's (l6) expression for the energy change due to the 

application of a load on a plate was used by Murphy to relate the plate 
deflection with the normal load. The deflection was assumed by Murphy 

to be expressablein terms of a double hyperbolic series in which the 

arguments were selected to satisfy certain boundary conditions due to the 

presence of plate edges. These boundary conditions were expressed in 

terms of bending moments and shear forces, but could also be related to 

deflection. In order that the unknown deflection would satisfy these 
conditions use was made of the thin plate expressions which related 

vertical shear with deflection and bending moment with deflection.

The deflection series chosen by Murphy only approximately 
satisfied the above essential boundary conditions} furthermore, he 

showed that this difficulty was independent of the number of series 
terms considered. The deflection series was substituted into the
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energy-change expression and made to satisfy the requirements of the
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thin plate theory of elasticity by minimizing the total energy of the 

system. The result was a system of simultaneous equations which could 
be solved for the unknown coefficients of the deflection series.

The ability of the plate and foundation to separate at a 

point on the interface when the plate at that point moves upward was 

retained in Murphy's theoretical analysis. The difficulty which then 

arose, however, was that before the simultaneous equations could be 

generated and solved it was necessary that the area of contact between the 
plate and foundation should be known. If this was not so, Murphy 

suggested that a method of overcoming this difficulty was to analyse 

the system initially assuming full contact and, on noting the deflection 

surface, to reanalyse the system with an adjusted area of contact.

Repeated application of this approach would then eventually result in 

the correct solution.
In summary, it may be said that Murphy's consideration of a 

finite rectangular plate is only made possible by approximately satisfying 
the theoretical requirements of the plate boundary conditions. His 

consideration of the problem of loss of contact between the plate and 

slab during loading is numerically difficult to solve for the plate 

deflections as the problem is, in fact, non-linear in nature and 

requires the use of an iterative method of solution.

Hogg, A.H.H.

In 1938 Hogg (23) considered a symetrically loaded thin 

plate (pavement) of infinite extent, resting on the horizontal smooth
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surface of a semi-infinite elastic solid (subgrade), and obtained 

expressions for the curvature at the centre of the circular area over 

which the load was uniformly distributed. His analysis differed from 
that of Westergaard's for the interior load, principally in the manner 

in which the foundation was assumed to act on the underside of the 

plate. Westergaard assumed that the pressure applied to the underside 
of the slab was equal to kw where w was the deflection at that point 

and k was the modulus of subgrade reaction of the foundation. Hogg 

on the other hand made use of the general solution due to K. Terazawa 
(24) of a point load applied to the surface of a semi-infinite elastic 

solid and expressed in terms of Bessel functions. The expressions for 

surface deflection and normal direct stress obtained by Terazawa were 

substituted by Hogg into an equation relating the applied normal stress 

and the deflection which was obtained by using the thin plate theory 

of elasticity. He then solved the expression for the plate curvature 

under a circular load and expressed the result in terms of Bessel 

functions.

In 1944> Hogg presented a paper (25) which analysed a two 

layer system composed of a thin elastic slab of infinite extent 

resting on the upper smooth surface of a uniform layer of elastic material 
which, in turn, rested on a perfectly rough rigid horizontal surface.

The analysis which he previously reported (23) is, in fact, a special 
case of this present problem. He obtained an exact solution for this 

general two-layer case in the form of an infinite integral and calculated
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approximate values by numerical integration. Hogg later presented 
the results of this theoretical work in a more useful far m (26) and 

considered how far they agreed with the result of experiment. He found 
fairly satisfactory agreement with such results as were available at 

that time if the properties of the subgrade were represented by an 

equivalent elastic layer.
The solution provided by Hogg can be considered to be relatively 

simple in form and to provide one of the first of the theoretical 

attempts involving consideration of the subgrade as an elastic layer.
In order to include this effect he had, however, to keep the remainder 

of the system as simple as possible. Thus it is that he had to include 

the concept of an infinite horizontal slab and subgrade, the application 

of thin plate theory, and the smooth interface between slab and subgrade. 

Eurmister, D.M.
In 1943» Burmister (ll) introduced a theory of stresses and 

displacement in two-layered pavement systems based on the assumption 

that the materials of each layer were three-dimensional elastic solids.
His analysis then provided an exact solution to the thrar-dimensional 

problem for a given surface loading. (The equations he developed were 
rather cumbersome to work with in practice, however, and thus, computer 

solutions have since been developed for a large range of applications.) 

Burmister considered that the layers were infinite in extent horizontally 
and, as such, his theory was not intended to apply to corner or edge 

loadings on concrete pavements but was principally intended for airport
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runways or, perhaps, the centre of a large pavement slab. Although 

some workers have developed design procedures for flexible roads which 

are based on Burmister's work, they have found relatively little 

acceptance up to the present time.

Burmister considered a two-layer system in his first paper (ll) 

each layer was assumed to be a homogeneous isotropic elastic solid, and 

the interface between the layers was either allowed to have no slippage 

or no friction. Because of the complexity of the computation, the 
value of Poisson's ratio was assumed to be equal to 0.5 for the materials 

in both layers. The solution of the problem was required to satisfy 

certain boundary conditions, i.e. the surface of the upper layer had 

to be free from normal and shearing stresses outside the limit of the 

loading area and the stresses and displacements at infinite-depth in the 

subgrade layer had to equal zero. It was also assumed that the two 

layers were continuously in contact and acted together as an elastic 

medium of composite nature.

In developing the theory of the two layer system, Burmister 

employed the stress and displacement equations of elasticity for the 

three-dimensional problem which were originally derived by Love (27) 
to satisfy the equations of equilibrium and compatability of the theory 

of elasticity. Burmister took a stress function expressed in terms 

of Bessel functions for each of the layers and found that they satisfied 
the compatibility conditions and equilibrium equations. The arbitary 

constants contained in these stress functions were then evaluated to
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satisfy the conditions at the interface for both the no slip and no 
friction conditions and for a general surface loading distribution 

expressed in terms of Bessel functions.
The stress and displacement equations in both layers were 

next determined by Burmister from the equations of elasticity relating 

stresses and displacements to the stress functions. He then obtained 

an equation for the settlement of the upper layer under the centre of 

a circular bearing area of a uniformly distributed load and carried out 

some numerical computations using this equation.
L. Pox (28) of the National Physical Laboratory later extended 

Burmister’s work by computing the stresses within the pavement and sub­

grade for various combinations of parameters. In this analysis Pox 

employed two methods of computation. The first, which was similar to 

Burmister's, dealt with both perfectly rough and perfectly smooth inter­

face conditions} it enabled accurate results to be obtained at points 

on the vertical axis of symmetry for the stresses in the lower layer.

The second method, based on relaxation methods applied to finite difference 

forms of the differential equations of elasticity, enabled Fox to obtain 

a general, though less accurate, picture of the stress distribution 
throughout the pavement and subarade for a perfectly rough interface.

Burmister (29) later extended his theory of stresses and 

displacements to cover the more general case of three layers, with full 

continuity across the interfaces between the layers. On this occasion 

he only derived a settlement equation for points on the upper surface of
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the bottom layer with a general loading distribution expressed in terms 

of Bessel functions applied to the top layer; no numerical results 
were, however, given. In order to remedy these deficiences, Acum and 
Fox (50) deduced associated equations for the stresses on the vertical 

axis of symmetry. The loading distribution which they considered was 

that of a load which was uniformly distributed over a circular area, 

the centre of which lay on the vertical axis of symmetry. They then 

computed the stresses for various combinations of parameters, the variables 
being the radius of the loading area, the thicknesses of the two top layers 

and the elastic properties of the three layers. These results were 
presented by Acum and Fox in the form of tables.

To make Acum and Fox's data more easily usable A.C. Whiffin 

and N.V/. Lister (3l) recently presented a paper based on a close 

analysis of Acum and Fox's computation. Presenting their data in 

graphical form, Whiffin and Lister showed the effect of changes in 

elastic moduli and thickness of the layers upon the stresses on the 
vertical axis of symmetry. They also gave attention to the information 

available on the dynamic elastic modulus of road-making materials and 
suggested Ihatthe use. of dynamic elastic moduli rather than static 

elastic moduli was necessary to any useful application of theoretical 

approaches to the structural analysis of actual pavement/subgrade 
systems.

Hank and Scriver (32) have also concerned themselves with 

making Burmisters theories more useful. For both the two-layer and 
three-layer theories, they deduced formulae for the stresses at the
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upper interface from Burmister's work, and gave numerical values for 

various degrees of relative stiffness of the layers. Laboratory 

measured strengths of roadbase materials were also compared with the 
stresses in the top layer computed from the two-layer theory so as to 

determine the required depth of pavement. In addition, Hank and 

Scriver employed the three-layer theory to study the effects of thin 
subbases directly underneath concrete slabs.

Pickett and Ai (33) have also used Burmister's two-layer 
theory. They felt that the expressions for stresses which were obtained 

by Burmister and other workers using his theory, were too involved and 
required too much computational work to evaluate. They set out, 

therefore, to obtain, with the aid of a few simplifying assumptions and 

semi-empirical methods, much simpler expressions for the subgrade stresses 

under rigid-type pavements. The rigorous solution of Burmister was 
replaced by a solution based on the theory of thin plates. The thin 

plate solution was in turn modified to, in effect, take into account the 
neglected effects of shear in the pavement on deflection and horizontal 

shear at the interface between the subgrade and pavement. They then 

developed equations which gave results which were in agreement, over a 
wide range of conditions, with those obtained by moans of the more- 
rigorous theory developed by Burmister.

Investigators have taken great interest in Burmister's work, 
even though it has the major disadvantage that it takes no account of 

pavement edges or corners. For this reason, its use has mainly been



confined to flexible pavements. The explanation for this interest is 
perhaps that Bannister’s approach provides an exact solution, with each 
layer being considered as an elastic solid and no use being made of any 

plate theories. In addition, the pavement/subgrade system is analysed 
as a whole and not, as in most other theories, whore the plate as been 

considered to be acted upon by an applied load and a subgrade reaction. 

Pickett, G. and McCormick, F.J.
In 1951 Pickett and McCormick presented a paper (34) which was 

concerned with the analysis of both circular and rectangular plates with 

free edges, under a general distribution of loading using thin plate 
theory. The supporting foundation was assumed to be a homogeneous 

elastic solid of uniform thickness and to extend a great distance beyond 

the plate boundaries. In this paper, the pressure and deflection of 

the circular plate, expressed ns double Fourier series, were equated, 

respectively, to the pressure and deflection of the surface of the 

elastic solid, expressed as Fourier-Bessel transforms. However, although 

circular plates are more easily analysed than rectangular plates and, 

for this reason, receive a great deal of attention, they do not readily 
fit into the consideration of actual pavements and are only useful in 

considering the inter-effect of pavement properties. For this reason 
they are not given further detailed attention in this thesis.

Pickett and McCormick were not successful in obtaining a 

solution to the rectangular plate problem by using the methods already 
employed in their analysis of circular plates. Instead, they obtained 

an approximate solution by replacing the thin plate differential equations
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of elasticity and boundary conditions by their equivalent expressions 
in finite difference form. For this purpose they divided the area of 

the plate into squares, the finite difference technique being applied 
to the centre deflections of these squares. Althoagh the plate 

equations were written in finite difference form, no approxima.tions were 

made in regard to the elastic solid foundation, except to assume that 
the plate reaction would be uniformly distributed over that portion of 

the foundation surface directly in contact with the given square.

Pickett and McCormick deduced a parametric equation which related the 
deflection at the centre of any square on the surface of an elastic 

solid resting on a rigid base with the forces at the centre of any one 

square due to the reactive forces over that square of the plate.

Substitution of the finite difference form of the differential equations 

of the plate into the parametric equation resulted in a system of difference 
equations which could be solved for the deflections at the centres of 

each square in terms of the loads at the centre of every square.

In hindsight, it can be seen that the main attribute of this 

work and, indeed, that of Fox (28) is that the technique of replacing 

the governing differential equations by an equivalent finite difference 
form provides a method of obtaining approximate solutions to problems 
which otherwise might prove impossible to handle.

Livesley, R.K.
In his paper, R.K. Livesley (35) considered some of the 

approximations necessary for a mathematical treatment of the general 

problem of a loaded thin elastic plate resting on an elastic foundation,
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and discussed in detail possible dynamic and static problems. Besides 
engaging in a purely general discussion of the problems involved in 

pavement analysis, Livesley also analysed the case of a pavement subjected 
to dynamic loading. The system which he considered consisted of a load 

which was uniformly distributed over a rectangular area and moved with 

constant velocity across an infinite thin plate resting on a Winkler 
foundation. He showed that there appeared to exist a certain critical 

vehicle velocity beyond which the deflection of a pavement became infinite; 
he also showed that this critical velocity was well beyond any which 
was likely to occur on a road or on an airport runway. The conclusion, 

that the plate deflection increases as the speed increases, is at first 

surprising, but Livesley points out that the plate was considered as an 

undamped elastic system whereas in most physical cases the effect of 

damping would be quite noticable and would certainly in practice tend 
to reduce the deflection.

In order to consider the dynamic effects of loads, Livesley 

found it necessary to simplify the problem to a large degree. The 

result has been that the inaccuracies due to this simplification may well 

outweigh any advantage accruing from including dynamic effects. The 
problem increases enormously in complexity and calls for many assumptions 
on such things as the pavement and subgrade«inertia.

Pister, K.S. and Westmann, R.A.
The majority of analyses of plates resting on elastic 

foundations are based upon thin plate theory which neglects the effects 

of transverse shear deformation and transverse normal compression.
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In recent years, however, the thick plate theory, which includes these 

effects has been given more attention by a number of investigators.
Thus, for example, Pister and Westmann (36) analysed, in 1962, an 
infinite plate which rested on a semi-infinite elastic foundation and, 
in this analysis, used the thick plate theory developed through the 

work of Reissner (37)* The effect of the foundation on the slab was 

taken into account by using a previously mentioned formula developed 
by Terazawa (24) which relates the interface displacement and pressure. 

The applied load was considered to be a uniformly distributed pressure 

over the area of a circle.
Pister and Westmann compared numerical results from the thick 

plate theory with those of the classical thin plate theory and also with 

those of Burmister's exact three-dimensional theory. They showed that 

the discrepancy between the thick and thin plate theories increased as 

the ratio of the modulus, k, of the foundation to that of the upper 

layer increased. They also showed that thick plate theory gave 

satisfactory agreement with the elastic theory, even in the range of high 

foundation to plate modulus ratios (up to 10) where it might be 
anticipated that plate theory was inadequate. The graphical results 

which they presented indicated that as the ratio of the thickness of 

a slab to the radius of the loading area was increased (up to 1 to 2) 
the thick plate theory showed a definite improvement over the classical 

theory. As a result, Pister and Westmann concluded that the improvement 

of the thick plate theory over the thin plate theory for the axisymmetric 
bending of plates on an elastic half space was governed by the ratios of
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foundation modulus to slab modulus and slab thickness to radius of 
loading area.

The application of thick plate theory to finite plates has 
been given very little attention by highway research workers. Never- 

the less a distinct advantage of the thick plate theory in such cases 

might be in its ability to more accurately describe the boundary 

conditions at the edges of plates. When points near the edges of 

plates are of major interest, e.g. in the edge and corner loading cases 

of the Westergaard analysis, there is the very serious possibility that 
the application of thick plate theory is advantageous.

As flexible pavements have only a low flexural strength, they 
distribute applied wheel-loads to the foundation mainly by shearing 

and compression of the pavement. Thus any theory which might be 

useful in flexible pavement analysis should be based on the thick plate 

theory which includes the effects of transverse shear and transverse 

compression.
Hudson, W.R. and Matlock, H .

Numerical methods of analysis and computation are most often 

used as approximations of a governing equation by substitution of 

the finite difference forms for the derivatives or by the approximation 
of a continuous problem with a discrete nodal system. Examples in which 

these occur are in the previously described work of L. Fox (28) and 
Pickett and McCormick (34). A second method is to model the slab 

physically by a system of finite elements whose behaviour can be 

described with algebraic equations. In 1966, Hudson and Matlock (38)
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applied this latter finite element technique to the analysis of 

discontinuous pavement slabs with freely variable foundation support 
such as a subgrade with holes in it. Their approach enables a variety 
of loads including transverse loads and in-plane forces, to be considered 

when analysing the pavement. The method is not limited by discon­

tinuities and is suited to the analysis of finite slabs of various shapes.

The physical model used by Hudson and Matlock consisted of 

bars, elastic blocks, torsion bars and elastic springs. The bars 
were used as infinitely stiff connections between joints while the 

elastic blocks represented elastic joints at which bending occurred 
between the bars. The torsion hars represented the torsional stiffness 

of the plate, and the elastic support springs at each joint provided 

the foundation support which was considefed to be of the Winkler type. 

Discontinuities and freely discontinuous changes in load, bending 

stiffness, torsional stiffness, subgrade support and other parameters 

were easily understood and represented by the physical model used by 

Hudson and Matlock.
The algebraic equations describing the behaviour of this 

physical model are derived by free body analysis of the finite model.
This consisted of considering a particular member of the model and 

replacing the other members connected to it by equivalent forces.
The equations describing the behaviour of the model were solved by itera­

tive methods and because of the large amount of computation required in 

solving these equations use was made of an electronic computer to solve 
for the deflected shape of the plate. From this deflected shape the
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bending moments and stresses were easily determined.
On the whole it can be said that numerical methods are 

extremely useful in formulating approximate solutions to problems 
having complicated parameters such as plate shape, applied loads and 
loss of subgrade support. A disadvantage is the large amount of 

computation required in obtaining solutions, especially when the 

plate is considered as being thick and if a large concentration of 

elements or nodal points is required in order to follow rapid changes 

in stresses and displacements which occur for example when wheel, 
loads are applied at the edges of slabs.

This brief description of the above analyses of the pavement/ 

subgrade system illustrates the diversity of approaches which are 

possible when attempting such an analysis. The governing factor in 

all of them seems to be that, in order to obtain solutions to a system 

containing an idealization of special interest, the remainder of the 

idealizations have to be made as simple as possible. Thus, for example, 

those analyses which place emphasis on the road materials neglect the 
geometry of the system, and visa-versa. As a result of this factor, 

no method yet described has a well-balanced and sufficiently general 

set of idealizations to give a single satisfactory analysis over a wide 
range of parameters. A simple indication of this disadvantage of the 

available analyses is the difficulty in applying the same analysis to 

both rigid and flexible pavements.
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Summary and Discussion

A pavement is a structure consisting of superimposed layers 
of selected and processed materials whose primary function is to 

distribute concentrated vehicle wheel-loads to the supporting subgrade 
in such a way that the reduced pressure transmitted does not exceed 

the supporting capacity of the subgrade while, at the same time, ensuring 
that the structural failure of the pavement itself does not occur.

Some of the main causes of structural failure are excessive stresses 

due to traffic, excessive stresses due to other factors such as 
temperature or moisture changes, stripping of the surface and deter­

ioration of the subgrade after construction. An ideal method of design 

when trying to avoid pavement failure due to excessive traffic stresses 
should take account of wheel contact pressure distributions, multiple 

wheel configurations, dynamic and impact effects, the cumulative effect 

of wheel-loads, the true distribution of stress throughout the pavement 
and subgrade, and traffic intensity. Methods of pavement design do, 

in fact, attempt to take into account as many of these factors as 
possible. The methods commonly used to do so cover a wide range of 

approaches and vary from those based solely on personal judgement to 

those based purely on theoretical methods of pavement stress analysis. 
While the emphasis at the moment is on the use of empirically developed 

procedures, there appears to be a growing interest in using a purely 

theoretical stress analysis of the pavement and subgrade as the basis 

of a rational design method.
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In developing such a theoretical analysis workers have found 
it necessary to idealize the pavement/subgrade system into a mathematically 
tractable form. The main points with which these idealizations appear 
to be concerned are the wheel/pavement contact area and pressure distri­
bution, the pavement layers, the lateral dimensions of the pavement, 

the behaviour of the pavement with respect to its flexural stiffness, 

its stiffness against transverse compression and its stiffness against 
shear deformation, the behaviour of the foundation and the pavement/ 

subgrade continuity.
The analyses which have been carried out have tended to 

concentrate upon one or two particular points and keep the remainder 

of the idealizations as simple as possible in order to facilitate the 

solution of the particular problem at hand. The idealizations which have, 

in fact, been made by relevant workers can be summarized in relation 

to the points listed above:
1. The load distributions which are of particular interest 

to highway engineers are those which represent a tyre in contact with 
a road surface. All analyses consider the contact area to be 
equivalent to that of a uniformly distributed pressure applied over the 

area of a circle. The reason is that the difference between this
and the actual contact distribution is negligible in terms of its 

effect on stresses and deformation,'

2. Pavements are made up of many layers of different 

materials but in order to make analytical problems soluble, the usual 
technique is to idealize the pavement/subgrade system to two or three
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layers. The majority of analyses consider only two layers} threo- 

layer analyses, because of their cumbersome nature have only been found 
of use in examining the effects of various pavement parameters on the 

stresses and deformation.

3. The lateral dimensions of the pavement are a major 
factor in the definition of the problem. Numerous solutions are 

available for the determination of stresses and deformations in infinite 

pavement slabs, while circular slabs have also been comprehensively 
treated. A small number of workers have considered the slab to be 

rectangular in shape. The analysis of infinite plates appears only
to be of use for flexible pavements because of the negligible boundary 
effects, while that of. finite rectangular plates can be applied to 

both flexible and rigid pavements.

4. In the past, it was common for investigators to evaluate 
pavements on the basis that they were either 'rigid' or 'flexible' 

according to whether flexural stiffness was accounted for in the stress 
and deformation analysis of the pavement/subgrade system. However, 
this dichotomy is now becoming less apparent as investigators realize 

that materials of low elastic moduli may possess significant flexural 
stiffness and also a worthwhile tensile strength.

Now pavements, irrespective of whether they are rigid or 
flexible, which are analysed to include both flexural and transverse 
direct compressive stiffness are referred to by many workers as elastic 

layers. The effect of transverse compression is of particular 
importance in pavements in which materials with low elastic moduli
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are used, i.e. in flexible pavements.

The effect of transverse shear deformation is most significant 

in the analysis of plates (pavements) of large thickness. Thick plate 
theory refers to the theory which includes the effect of transverse 

shear deformation in analysing the distribution of stress and deforma­

tion throughout the plate. While the majority of analyses make use of 

thin plate theory it should be borne in mind that in the behaviour of 

what may be thought of as 'thin* plates, the transverse shear effect 
can be of considerable importance when the plates are supported 
continuously over one surface and loaded at edges or corners. While some 

researchers have included the effect of transverse shear deformation in 

their analyses, this has only been for infinite plates.

5. The two most common idealizations applied to the 

behaviour of a subgrade are either that it is a continuous elastic 
solid, as used by Burmister or that it acts as a set of discrete 

springs. This latter representation, which is known as the Winkler 

foundation, is used by Vestergaard and many other workers. The 
Winkler foundation is simple in concept and use, and because of the 

complicated action of soils, it may well be just as reasonable a 
representation as the elastio solid assumption.

6. Most analyses assume that the foundation and pavement 

are in permanent contact for all modes of deformation. Consequently, 

they assume that the foundation possesses both tensile and compressive 

stiffness; the extent to which this is a valid assumption depends 

upon whether the weight of the pavement is sufficient to pre-stiffen



the foundation. This problem of loss of contact between the pavement 
and foundation has been considered, but there are great difficulties in 

solving this due to the non-linearity of the problem.
The above brief resume' of the present state of pavement 

structural analysis is not intended to cover all the points made 

previously but rather to help in pointing out and emphasizing the 

deficiencies of the established analyses in their application to pavement 
structural design. With the development of modern methods of numerical 

analysis and computation and with the advent of the electronic 
computer, analysts are now able to give increasing emphasis to better 
representation of the pavement/subgrade system. Nevertheless there 

still appears to be a need for an analysis which describes a thick 
rectangular plate (pavement) resting on a Winkler foundation (subgrade). 

This could well lead to an improvement in the analytical idealization 
of the road structure for pavement design purposes.

Considering the plate to be rectangular would enable rigid 

pavements to be analysed as well as flexible pavements and the use of 
the thick plate theory would enable transverse shear deformation and 
transverse compression to be included in the analysis. The former 

could well be important in the consideration of thick flexible or rigid 
pavements, or near loaded pavement edges or corners. The latter would 
be especially important in the consideration of flexible pavements.

In any such analysis the wheel/pavement contact should take 
the form of a uniformly distributed load over a circular area? this 
seems to have been found satisfactory by many previous workers. The

* 52 -
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consideration of more than two layers in any analysis would appear 

to make the problem nruch mord * difficult and so any method aimed at 
being the basis of a design method should probably only consider two 
layers. YYith regard to the foundation, the use of the V/inkler 

assumption is simple, the relevant subgrade property is easily deter­

mined and the use of the other alternative, the elastic solid assumption, 
has not yet been shown to be any more accurate than the Y/inkler 

assumption. Thus the use of the Winkler assumption might be quite 
reasonable in any two-layer analysis. Finally, while the possible 
loss of contact between the pavement and the subgrade due to the 
upward movement of the slab could prove important it should be kept 
in mind that the inclusion of this possibility into an analysis would 

create a problem which would most probably prove very difficult to 
solve because of its non-linear nature.

Hence, the problem which appears to deserve further consider­

ation is that of a uniformly-distributed circular load which is 
applied at any point on the surface of a thick rectangular plate 

resting on a Winkler foundation. Full contact between the plate and 
the foundation should be assumed for the main analysis, but some 
consideration should, separately, be given to the problem of loss of 
contact between the pavement and the subgrade.
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PROPOSED RESEARCH PROGRAM

There are five principal stages in the development of a 

theoretical analysis of a real structure. The development "begins "by 

obtaining an appreciation of the complete range of factors which 

contribute to the action of the structure. In the second stage, an 

appraisal is made of possible structural idealizations and a particular 
representation of the structure is chosen. The next stage is the 

formation of a mathematical model of this idealized structure, based 

on the theory of elasticity and expressed in terms of differential 
equations. Fourthly, the model is solved for the stresses and 

deformations in the structure by employing the methods of numerical 

analysis. Finally, the analysis is examined with the help of an 

experimental investigation.

The analysis of a pavement/subgrade system is no exception 

to this method of approach. The first two stages have been considered 
in the previous chapter of this thesis and as a result it is possible 

to propose for analysis an idealized pavement/subgrade system which 
is considered to be of practical interest. This system may be 
described as follows:

A general transverse load distribution 
applied to the upper surface of a thick 

rectangular plate which rests, with full
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continuity, on the surface of a 

Winkler foundation.
In this system a transverse load in the form of a uniformly distributed 
circular load applied at any point over the plate is of special interest. 

The problem of loss of contact between the plate and foundation also 

deserves special consideration.
The numerical solution of the mathematical model has almost 

always been the first consideration in previous analyses of the pavement/ 
subgrade system and has been assisted by the analysis of a very much 
simplified system. Today, with the development of modern methods of 
numerical analysis and the advent of the electronic computer, more 
consideration can be given to the idealization of the system. Thus 

the intention in this research program is to concentrate upon the 

development of a mathematical model of the pavement/subgrade system 
and then to examine methods of solving this model.

The proposed sequence of work is based on the last three 

stages of the general approach to the analysis of structures and is as 

follows«
a. The formation of a mathematical model of the above 

pavement/subgrade system.
b. The consideration of possible methods of numerical 

analysis of this model.
c. The mathematical representation of the applied load 

intensity distribution which is of special interest.
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d. The numerical computation of stresses and deformations 
in the plate resulting from the application of the load distribution 

of special interest or any other load intensity distribution.
e. The examination of the idealized pavement/subgrade 

analysis with the assistance of laboratory experiments.
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STRUCTURAL ANALYSIS OF THE HIGHWAY PAVEMENT 

Introduction

The classical theory of thin elastic plates, which 

previous workers have developed and used to a high degree, leads to 

a differential equation of the fourth order for the deflection and 

to two boundary conditions at each plate edge. Nevertheless, there 
can in reality be prescribed three rather than two boundary 

conditions at each edge, whether that plate edge is simply 

supported, clamped or free as in the plate/foundation system of 
the present structural analysis. The two boundary conditions, 

which are associated with the thin plate theory, are a contracted 

form of these three boundary conditions. Kirchhoff (59) has shown 
that in the case of a free edge, the ability to reduce three 

apparently independent stress-resultant boundary conditions, i.e. 

bending moment, shear force and twisting moment, to two equivalent 

boundary conditions is dependent on the fact that the boundary 

conditions on the twisting moment and shear force are reducable 
to an equivalent single boundary condition. This is because the 

distortion of the plate due to transverse shearing forces is 

neglected when establishing the relations between the stresses and 
the deflection of the plate. The historical background to this reduction 

in the number Of boundary conditions is given by Timoshenko (40).
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The intention in this chapter is to develop a structural 
analysis of the highway pavement based on a theory which includes 

the effects of transverse shear deformation and transverse normal 

compression* A plate theory which includes the effect of transverse 
shearing deformation has been developed by E. Reissner (41,57)« 

Later, he also extended this theory to include the effect of 

transverse compression (42,45)« These works are fundamental to the 
understanding of the behaviour of thick plates and are briefly 

described and the previous relevant applications summarized in the 
sub-sections which follow.

Reissner18 theory in elasticity

The linear theory of elastostatic bending of plates, as 

developed by E. Reissner (42,45) constitutes a definite improvement 
over the classical theory in that the effect of transverse normal 

and shearing stresses is retained in the stress-displacement 

relations. On this basis the question of appropriate plate boundary 
conditions is clarified and at the same time, the quantitative 

improvement of the solution of problems involving the edge zones 
of plates and/or localized surface loading is possible. For the 
analysis of 'thick' slabs, i.e., those where the thickness is not 
small when compared to the lateral dimensions, this is especially

true
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Reissner (42) treated the problem of thick slabs by means 
of Castigliano's Principle of Least Work, where the strain energy 
due to transverse shear deformation and normal transverse 

compression was included in the total energy of the system. The 

minimization of the total energy was carried out by using the 
established techniques of variational calculus (44) and employing 

Lagrangian multipliers (44) in order to include the effect of 
equilibrium. This led to a theory which accounted for the effect 

of transverse shear deformation and transverse normal compression. 

Green (45) subsequently,rederived this same theory from the 
general equations of elasticity.

Later, Reissner (45) formulated a new approach in which 

both the equations of equilibrium and the stress/displacement 

relationships were both developed from the minimization of the total 

potential energy of the system. This method gave no preferential 

treatment to either of the two systems of differential equations and, 
also, eliminated the need to employ Lagrangian multipliers which was 

basic to the earlier work.

In 1951 Mind1in (46) developed a theory for vibrating 
plates, including the effects of shear deformation and rotatory 

inertia, which was analogous to that of Reissner*s,by proceeding from 

the equations of elasticity.
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Previous relevant applications of Reissner’s theory

Since its introduction Reissner's theorem in elasticity 
has been applied to problems of plate flexure by several 
investigators.

Naghdi and Rowley (47) solved two problems involving 

axially symmetric bending of an infinite plate on a Winkler 

foundation. The reaction of the foundation was considered as a 

normal force applied to the bottom surface of the plate, with 
the deflection of the lower face of the plate, to which the 
reaction was Proportional, being approximated to that of a 

weighted average of the deflections across the thiclcness of the 
plate. They found that serious errors in the classical theory of 

plates could result in cases where discontinuity is present, either 

in the plate configuration or due to the surface loading, Naghdi 

(43) also considered the problem of both plain bending and pure 

twisting of an infinite plate with an elliptical hole. The solution, 
which he obtained was approximate in character and was used to 
furnish results in the form of stress-concentration factors.

Frederick (49), employing the same approximations as 
Naghdi and Rowley, initially considered some problems in the 
bending of circular plates resting on a Winkler foundation.

Later he applied the basic equations of Naghdi and Rowley to 
certain specific problems in the bending of rectangular plates
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supported by a Winkler foundation (50). A ' Fourier scries solution 

was obtained for a simply supported plate resting on a Winkler 
type foundation when the applied load took the form of a general 
load intensity distribution. The solution to the problem of a 

rectangular plate resting on a foundation and with two opposite 

edges simply supported, a line load applied parallel to these edges 

and with any combination of boundary conditions on the other two 
edges consistent with the Reissner theory, was also found to be 
expressible in a Fourier series form. Finally, Frederick extended 

the basic differential' equations to include the effects of surface 
shear stresses on the top and bottom of the plate. He then applied 

these equations to the bending of a plate under uniform surface 

shear stresses where two opposite edges were clamped and also of 

infinite length.

The thicknc-ss/length parameter at which the effects of 

shear deformation and normal pressure become important can also be 
determined from the results illustrated in Frederick's paper. He 

felt that this secondary effect would be important v/hen considering 

plates of a low modulus of elasticity which rest on a relatively 
stiff elastic foundation.

Pister and Westmann (56), in a paper which has been briefly 
discussed previously in this thesis, modified Reissner's original 
theorem (57) to represent a particular variation of the transverse 

co-ordinate e, and derived the following relationship?
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T ow(x,y,n) = w(x,y) + aw'(x,y) + ±  « w M (x,y) (9)

where w(x,y) is the transverse displacement of the middle surface, 

w' and w'' are undetermined contributions to the transverse 
normal strain and x and y are the orthogonal in-plane co-ordinate 

directions. Reissner's theory (37)» presented in 1945» assumed 

that the transverse disnlacement of the plate did not vary over 
its thickness,- i.e., th t w(x,y,s) equals w(x,y). This was, however, 

avoided in later work (42,43) by the introduction of a weighted 
average displacement.

! The significance of:additional;terms retained by.Pister

and Westmann in the expression for transverse displacement was 

illustrated in.their discussion of the:problem‘of axisymmetric 

bending of an infinite plate.resting on an elastic half-space. The 

classical thin plate theory, the Reissner plate theory, (with the 
effect of transveiHse normal strain neglected) and the modified 

(Pister and Westmann) theory, were compared,, where possible, with 
the equivalent three-dimensional analysis. For the case studied, 

they showed that terms associated with transverse shear deformation 

overcorrected both the transverse displacement and the interface 
pressure and, thus, must be corrected by adding terms associated 
with transverse normal strain. It appeared that for axisymetric 

bending of plates on an elastic half-space, the Reissner theory (37), 
as sot forward in 1945, did not always lead to an improvement over 

the results obtained from the classical thin plate theory. Likewise,



Figure 3 An infinitesimal cubic element'of an elastic solid 

. showing the notation for the components of stress 

acting on ¡its sides and.the positive directions of 

these stresses relative to thé sidés of the element.
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the use of a higher order approximate theory did not necessarily 
lead to a more exact solution unless the theory was selected on 
the basis of the specific physical problem being considered.

Coull (51) carried out a direct stress analysis of a 

swept cantilever plate without the usual need for intermediate 

deflection calculations and, because of the inclusion of 
transverse shear deformation, was able to use three boundary 

conditions on each edge. In his analysis, the partial differential 
equations of elasticity were reduced to a set of ordinary linear 
differential equations by representing the load and stress- 

resultants in a power series form in the chordwise direction.

A Thick Plate Theorem in Elasticity

Reissner's theorem in elasticity (43) was used in the 

present investigation in order to include for the effect of 

transverse shear deformation and normal pressure. The latest 

form of this theorem, presented in 1950» is» therefore, now given 

in outline.

Energy considerations

In the deformation of an elastic solid, a function

W(cr ,0 ,....x ), known as the complementary energy density, isx y fix
considered which, at every point, satisfies the six stress- 

displacement relations which are expressed in terms of the function 

W, the direct stresses <?x, tf and <Jg, the shear stresses xxy, xyg
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''ax 804 the corresponding strains ex , ey , ea , y , Yye and Yax« 

These six stress-displacement relationships are*

dW aw
9tf*’ y dV

dw
a<J_

„ aw dw
Yxy = dx^* Yya " 3tya’ Yax

dw
ax.

(10)

ax

where the stress components (d ,d , ....x ) are understood in thex y ex
conventional sense, shown b y  Figure 5» in which stresses are shown 
as positive, and the strain components are defined by:

an edx* ey S L  edy* a
dw
d«

(11)

xy
du + ôv ^ dv , dw dw + du
dy + dx* Yya da + dy* Yax dx da

where u, v and w are the displacements of a point in the x,y and 

a directions respectively.

It has been diown (44) that in the case of linear 

elasticity*

2W ex<Jx + cytfy + £aCT« + YxyTxy + YyaTy« + Y«xTax
A function F is now introduced by Reissner and it is

defined in terms of the twelve arguments dx, dy , da, x^, xya,

x ,e ,e ,e , y » Y and y l>y the equation ex' x* y* a* 'xy 'yz 'ax

(12)

F ^ d e + d e + d e + x  y + x  y + x  Y -W (13)x x y y a a xy 'xy ya 'ye ax 'ax '
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This function is refered to as the strain energy density.

If the potential energy density of the external forces is 

denoted by Pg, then a function P is defined by:

where P and P are summed over the volume V and surface S, respectively, e
of the elastic solid. The flinction P is called the total potential 

energy of the system.

Requirements of the theorem

Differential equations which must be satisfied at every 

interior point are the three equations of equilibrium:

30 3t . 3t „___X + —5L ex
ax ay a«

0T ao 3t
- J L + —SSL

ax ay as

3t at■gx + + a<J«dx ay a«

(15)

and the equations (10) which govern compatability of displacement 

and inherently include the equations of elasticity.

Considering an element of area, with normal direction n at 

the boundary of a solid body, the components p̂ ., Py and pg of the stresses 

acting on that area, in the directions x, y and e are given by:
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Px - <*x cos (n,x) + cos (n,y) + vax cos (n,a)

003 (ll»x) + 003 (£*y) + Tva 003 (l6)

P« " T«x 008 ^-,x  ̂ + V «  003 ^-,y  ̂+ tf« 003 ^-,a  ̂
where cos (n,x), cos (n,y) and cos (n,e) ore the direction cosines 

between the normal n and the x, y and z axes, respectively.

The solution to any problem in solid mechanics must

satisfy all the differential equations of elasticity at all points
in the interior and at all points on the boundary, as well as the

prescribed boundary conditions. Now, at a point on a boundary,
in each of the three reference directions, either the stress p^

Pv or p is prescribed, or the associated displacement of the point, y s
u, v or w, is specified. (This is, in effect, the definition of a 

'boundary' as considered in this thesis). Thus, a point on the 

surface of a solid body which is supported on an elastic restraint 

is not considered as a boundary point but rather as an interior 

point where neither the stress nor the displacement is explicitly 

specified.

Proof of the theorem

For a body to be in equilibrium both internally and 

externally, to be deformed in a compatible state, and to everywhere 

satisfy the prescribed boundary conditions, the total potential 
energy P of the system must have a stationary value. In order that 

P (mathematically a functional) should have a stationary value with
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respect to each stress, strain and displacement component, the 

variation of P with respect to each of those functions should he 
zero. The variation of P is understood in the sense of the calculus 

of variations (44) and is signified hy 6P, that isi

i  m6P i f F dV + P dSe (17)

The surface integral portion in equation (17) comprises 

a region S^, where stresses are prescribed, and a region Sg, where 

displacements are prescribed. Then, as no variation of potential 

energy can take place at points where surface displacements are 
prescribed, equation (17) can be rewritten in the form:

where the bar above the stresses indicates that they are prescribed 

and hence invariant, i.e.

- PXI Py - Py andPa - (19)

Reissner has demonstrated the proof of this theorem by 

expanding equation (18) with the form, .

V u
(|H . |I ) 6<J ♦ (£ - |5-) 6ff„ + (|? - -jg-) iff '3x 9<j ' v a

+ +\ay ax

X

9v aw

‘ay ac a« ac a

8Txy
\ c . /9v . 9w aW n.
) Txy ’ ( a« av “ ar  ̂ T:9« ay 8Tya

+ ) 6 t 3T 
vax a« 8TfiX J «x âx ay

ya
ax

9a ) 6u
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Figure 4'

- T

The idealized pavement/subgrade system consisting 
of a thick rectangular slab resting on a Winkler 

, foundation. .. :  ̂ '

i

I
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-(
3t_xy
ax 3y

Ü z iaz )6v -  (
ax
ÔX
ex 3t,I *

3y 3e ]-)6w dV

[(PX-PX) 6U + (Py-Py)ôV + (pa - pj6w]dS - 0 (20)

where the bracketed expressions are known as the Euler equations

and must vanish separately in order to satisfy the variational equation,

equation (17). These bracketed expressions are clearly the differential
equations of elasticity, equations (10) and (15)» and the stress

boundary conditions, equations (19)» each of which is associated

with an alternative displacement boundary condition. Thus the
variational equation (18) is shown to be equivalent to the

complete system of the differential equation of elasticity, equations

(10, 11 and 15), and the boundary conditions, equations (19)»

irrespective of whether they are specified in terms of stresses or

displacements.

Specifications and Assumptions of the Structural Analysis

The structural system considered in this thesis consists 

of a thick, homogeneous, isotropic and linearly elastic slab resting 

on a linearly elastic foundation} this is shown in Figure 4» This 
figure indicates the geometry of the structure, its dimensions and 

the co-ordinate system being used. It is emphasised that the 

system is treated as one structural unit although it consists of two 

elements, the slab and the foundation.



Figure 5« An infinitesimal element at the interior of a plate 
; ■ showing the notation and also the orientation Of the

stress'resultants and applied normal surface stresses.

Figure 6.- An infinitesimal element at the curvilinear boundary

. . of a plate showing,the orientation.of, the stress resultants
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Stress/stress resultant relationships

The stress resultants in the plate shown in Figure 4
consist of the "bending moments !£ and M , the twisting moment, H,x y
and the shearing forces V and V ; the orientations of these arex y
shown in Figure 5« Assumptions must he made on the internal stress 

distributions in each element of the plate, in terms of their stress 

resultants in order to reduce the problem to a two-dimensional form.

Considering, firstly the slab, as is customary in plate
flexural theory the stress G , 0 and x are considered to bex* y xy
distributed linearly over the thickness of the slab, as follows:

a* ’

V , - ^ - E 7 5

M

(21)

The equations of internal equilibrium of the slab can then be 

written in terms of its stress resultants at a point as:

3M __x
9x Vx 0

9M aTT___E + M  _ y 8y dx y
av

<*-»> ♦ a T ♦
ay

(22)

where p and q are the direct stress normal to its upper and lower 
surfaces, respectively, as shown in Figure 5*
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Substitution of the first and third of equations (2l), 

and the first of equations (22) into the first of equations (l5) 
yields the differential equation for tb x ass

Vx

Integrating this equation and using the boundary conditions Tgx = 0 

at « « Ï h/2, gives

(25)

The substitution of equations (25) into the third of 

equations (15), and "the elimination of the shearing forces Vx and 

V by using the third of equations (22), yields the differentialv
equation for C as:B

Integrating this equation and using the boundary conditions Ca 
at b = h/2, and c ■ -q at b ■ -h/2, gives

-P

0 . . ia±El + (,-p) 2
[ ¡ 7 2  - t ( ^ ) 5

(24)2 4

Consider, secondly, the foundation. Here the well-known 
Winkler assumption is adopted. Thus, the vertical stress, 0g , is 
assumed to be directly proportional to the deflection, w^, of the
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upper surface of the foundation , and all other stress components 
are considered as being equal to zero. Thus

( = -q = kwx) f  0

and <3 -  C = t = t = t = 0x y xy y« «x

Strain/average displacement relationships

(25)

In order to maintain the two-dimensional nature of the 

flexural behaviour of the slab the concept, used by Reissner, of 

weighted average displacements is also adopted here. These weighted 
average displacements, a- , and wq, are defined ass

Approximations for the displacement, v, u and w, can be obtained 

by introducing into the above equations the approximations,

u = a 0(x,y)«, v - PQ(x,y)a and w=wQ(x,y) (27)

resulting in

a *o and w* ro o wo
Thus, the starred quantities can be solved for, and using equations
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(27) the actual displacements obtained. The approximation w = WQ(x,y) 
i3 equivale.it to the variation of transverse deformation through the 

thickness of the plate being negleoted, as in Reissner's paper 

presented in 1945*

As far as the foundation/slab interface is concerned, its 

deflection is denoted by*

\  - w(x,y,-h/2) (28)

where w is not equal to wq due to the transverse compression in the 
slab.

Boundary conditions

Finally the boundary conditions on the system must be 

considered.

As the slab is being treated as thick, ie. the transverse 

shear deformation is being taken into account, three independent 

boundary conditions must be prescribed at points on the outer edges 

of the slab. Using a curvi-linear boundary with normal direction n 
and tangential direction (Figure 6) the general boundary 
conditions are

=■ Mn or # prescribed

Hn t -  Sst or PQ prescribed (29)

V ■ V or prescribedn n o
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where the "bar above the symbols indicates prescribed stress 

resultants. Here the problem being analysed is that of a slab 
with free edges and thus the two conditions of the classical 

theory,
a H

M = 0 and V + n n
ht

-  at (30)

are replaced by

M Hn "*nt Vn (31)
at all points along the slab edges. It is, therefore, no longer 
necessary to transform the twisting moment, E into an equivalent 

vertical shear as in the classical theory of thin plates.

On the upper surface of the slab the prescribed boundary 

conditions are all in terms of the specified loading normal to the 

upper surface of the slab and are thus described by

Pe - -P(x,y) , Px - Py - 0 (52)

the corresponding displacement is

- w(x,y, h/2) (33)

As far as the remaining boundaries are concerned, the 

conditions along the foundation sides do not enter the problem due 
to the Winkler foundation assumption, and along the bottom surface 
of the foundation,

w.If = w(x,y, - (d+ h/2)) (34)
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Analysis of the Pavement with Full Interface Contact Preserved

In the application developed in this section the problem 

relates to that of a thick finite slab resting on a Winkler type 

foundation, complete contact between the slab and the foundation 
being preserved under all conditions of flexure. Returning to the 

general form of the variational theorem, equation (18), this must now 

be written in the form required for this application. Defining the 

strain energy density for the slab as F^ and for the foundation as 

F^, the variational theorem then becomes

*1 F da P +
-h/2

' Ff d? -

-G+h/2)
dx dy 0 (35)

Using the relationship expressed by equations (13) and

separating the external force component into (p w) and (p w),„« 'u ' e  'If
for the upper surface of the slab and the bottom surface of the 

foundation respectively, equation (35) may be written as

" (p«w)u “ (P.*w^lf J dz dy =• 0 (36)

Expanding equation (36), substituting for using 

equations (ll), substituting for e , Y _  etc., in ft using theX Xjr
stress-strain relationships of linear elasticity, )]/e ,

xy ï(1+(i)t /e , etc., results in
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p  p

+ V x )+2(1+|1>(Tsy + V

-5^:(',«2)]'J,,]'3xay-

Each term in equation (37) is now integrated with respect to 

ce, in order to obtain a two-dimensional system. Using the stress/ 

stress-resultant and displacement/average displacement equations (21), 

(23)» (24) and (26) the following relationships are obtained for the 

slab:

h/2

;-h/2

h/2

-h/2 

r  h/2

•/-h/2

0 ~  dax ax

C ~  da
y ay

„ 9w .0 —  daa da

Mx ax

pw^ + qw-ĵ - (q-p) w q
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J

h/2

-h/2
.h/2

/
-h/2
r.h/2

/ ôu ^ av i . 
Txy dy + ax ) da

_ / ôv aw > ,
Ty« 9« + ôy * da

-r /¿Z. X 9U \ J
Tex 3x + a s ' da

-h/2 
Purthermore

<3 2 da
fi ^ M 2 

h5 x

<J 2 dis
y

12 2 ~  M ¿
h5 y

a a 2 da “ 70 (26P2+26q2+18pq)

~2MV y  d« - - M Mx My

- 2 ^ ^  d« - - n (q-p)My

“^ V x  d« - - i| p(q-p)Mx

(38)

(39)
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r  h/2

f 2 (l+t.)V 2 da 24 
" h3 (1+n) H2

CM1

h/2
12 

“ 5h(
J  -h/2

2 0 +1*)V 2 da (i+n) v : 
y

-h/2
12 

" 5h[ 2(1+P)t„x2 da (1+n) v :X
> -h/2

For the foundation 
-h/2

f-(d+h/2) 

. h/2

a daa 9« + qwlf

(40)

and 2 2 0 da = dq e
'-(d+h/2)

Substituting the integrals of equations (58)* (59) and (40) 

into equation (57), introducing -kwj_ for q, and replacing Ef by k.d 

as is specified as zero at the lower face boundary of the system, 
yields the variational equation in terms of stress-resultants and the 

average displacement.
Thus

1 _2
- V  2+M_ 2-2uM ]y

9wd a 98 9 a 9Pn
M — - + u -—  + (kwn +p)w + H f r - ^ +  r—  \ +V (a h— 2 \ x 9x y 9y v 1 0 V9y 9x ) xl o 9x )

(Po +l r  > ~ r ) -  ¿ ( ^ H 2-2̂

+2(l+p)H2) + i |  (1+1*) ( \ 2+Vy2) + ~  u (kw1+p)(Ma
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+V  + (26p2

o o
26k - 18pkw^ ))]dx dy

i

0 (41)

The variations are now carried out on all terms which can 

vary, the techniques being similar to that of differentiation (44)» to 
give

//[(5M
3«

+  h  .
36a

0• + 6M 9PoX dx x dx y a T  +
da

+(kw^+p)6wQ +• 6H(___ c
ay ! + a x >  E(-

awo 96w^
+ s v .c(“o + dx •) + Vx (6a +  - --------' o 3w

M 56Bo
y~  + *"o 6wl

96a 96p

9w

3Swc
ay ) - kwx 6 w ^  - ~  (2Mx6Mx+2My6My-2pMx6My

-2^Iy6Mx+4(l+p)H6H) + ~  (l+u)(2Vx67x+2Vy6Vy) 

(kw1+p)(6Mx+6M ) 4 | n  (Mx+M )k 6^

70 (52k2w1- lSkp^w^^J

Y  5^

dx dy = 0 (42)

Elimination of the partial derivatives of displacement 

variations by integration by parts, e.g.

j j v x  ̂ dxay
and re-arrangement of terms, leads to

ax S“0 a* ay

//
3“.

[ s T  - r j  - f k  (Wi + p)]En
6

(43)



dp+T-— 2. 

da

12
Eh'
9P

(My-pMx)- (kw1+p)]6My

4 *  ♦ £  -  ^  H]6Edx
dw Eh'

+[a + r—£ - y ] 6VL o dx 5Eh xJ x

+r n + —2. _ y 15vLPo + dy 5Eh yJ0 y
dM

< - z r  ]«“.dx
dM

9y

+[-~X . |S + v ]gpL dy dx yJ Ko 
9V dV_

+[(l«fp)- te- - ^ ] « » o

+[kwQ - ^  - ||j£ (Hx+Hy)- ̂  (2&5'1- 9kp)]6*Jdic dy
»x-limits f r  ^

o

•/[’
M„ 6 a + H6p +V x o ro

-ix-ajjux i<o ii -y
xAwoJ dy + J (H6a0 ^ y6P0 +Vy6wQJdxy-limits

" 0 (44)
where the suffix 'x-limits1 indicates that|M 6a +H6S +V 6w I applies[_x o o x ol
only to the plate edges which are perpendicular to the x-axis of the 

co-ordinate system. The suffix 'y-limit' has a corresponding meaning*

The contents of each bracket in equation (44) must vanish 
separately if, in order to satisfy the variational equation (17)» the 

variation of the total potential energy is to vanish. Therefore, using 
the relationship E - 2(l+n)G the following equatioina must be satisfied*
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9«o dl3o 12 
9y + 3x " Gh3 H - 0 (47)

Swo 6 
“o + 3x " 5Gh V = 0X (43)

„ 8wo 6 
po + ay “ 5Gh n 0 (49)

— J  + M  _ vax ay x = 0 (50)

+ n _  v3y ax y - 0 (51)

av av
s5T + a?2 - (1̂  +p) - 0 (52)

”0 - ”1 - l a  < W - t51 (26^ i-9p) - 0 (53)

[«r i a o  *  “ Pc 

[My W 0 +

x-limits
+ \  6W0] " 0 

y-limits
+ Vy 6wo] - 0

(54)

(55)

Equations (45) to (49) inclusive, along with equations 
(53), are the stress-displacement equations for the complete system, 

while equations (50), (5l) and (52) are the equations of equilibrium. 

Equations (54) and (55) represent the natural boundary conditions 
along the edges perpendicular to the x and y axes respectively and are 
clearly satisfied by those of the particular problem being analysed, i.e. 

equations (3l).

Equations (45 to 53) reduce to the customary equations of the 
plate theory by neglecting equations (53)» replacing w q and w1 by one
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expression for the plate deflection and neglecting all terms which 

contain v v

As the first step in the solution, w^, the deflection of 
the slab/frundation interface, is eliminated from the set of equations. 

This is done simply by substituting the expression for from 

equation (53) into the three other equations where it occurs i.e. 

equations (45), (46) and (52). Using the simplifying notation expressed 
by

8  - 1 + 26hk
70E T m J j i5Eh

m 12
Gh

O  w
12

+ 70Eg t ?  «
Eh5

6
3 r * 5Gh

2 „2f k V a
T k

1 1 O  A

8 V ®* ^  + g

'U f - (l+tyu)

t » (U - V2/U)

equations (45) to (53) can be expressed as

■ex"
ap
Jey0 + tM + —  w - - TC$ x g o

3« IT>kf— a -8 ■—  + tM + —dx y g ody

’ay

- TCfp

i5aax + m H = 0

(56)

(57)

(58)

(59)

«
0

rY_ 0 (60)
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3w

h + w
.  r  Ty  -  0

1 Q> K X i |2 + T3y x6x

.  « t —  + v9y 3x y

3V 9V .______X +  is3x 9y g
kT
8 (Mx + My ) -cp

(62)

(63)

(64)

( 6 1 )

The solution of this set of eight equations is considered 

in detail elsewhere (52) but as the weighted average Rotations a Q 

and are not used to specify the boundary conditions of the problem 

and are also of little interest in themselves, they are eliminated to 

produce the alternative set of si$ equations which is used hereafter. 

From equations (60) and (6l):

a rV„ -
3w 3w
0 “ rV„ - (65)3x 9y

Substituting these expressions for aQ and (3q into the remaining 

equations, results in:
3V 3V 9 wn Tvf

- «  + + 8 “ T  + g w° + * V - TCff3x

3V. 2 23V„ 3 w 9 w Tlcf*
a __ a o—  + 8 — cr + wn+t M —  TCfp (67)3y ax a „2 ,v2 g o  y * n • /-r __X _sr —-2S +

9y
3V 3V .29X -r — 2C + 2 ___0

"r 9y 3x 3x3y
3M___ X + y , 03x ay x

££ + v = 0ay ax y

3x

+ m H ™ 0 (6 8)

(69)

(70)
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3
’ax

87_ Z  . kay £ % - —  (M +M )=• -Cp g v x y / (71)

This system of six partial differential equations along 

with the boundary conditions

M = V = H = O a t x = o  and x - a
X X (72)

and M ® V = H =  0 a t y - o  and y = by y J  J

completely specify the boundary value porblem.

Further reduction of the number of differential equations

is inconvenient as, firstly, the introduction of higher differentials

is always accompanied by loss in accuracy when attempting to obtain

valuesibr those terms which have been eliminated, secondly, all the 
remaining unknowns are of interest and, thirdly, the boundary conditions

are specified in terms of five of these independent variables.

The solution of this problem, expressed in terms of the above 

equations (66 to 72) will be considefed later but, before doing so, 

another boundary value problem is examined.

Analysis of the Pavement Including Possible Loss of Interface
Contaot -I

In the previous case, every point on the surface of the 

foundation is assumed to remain in contact with the bottom face of the 

slab, independently of whether the foundation at that point is in 

compression or tension. For the majority of cases this is acceptable

for two reasons. Firstly, the weight of the slab has a 'prestressing' 
effect on the foundation, thus giving the foundation some apparent
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tensile stiffness. Secondly, the region of the slab which is of 

real interest i.e. where the maximum stresses and deflections occur, 
is also an area where the foundation is in compression.

In situations where these arguments are not valid, it is 

useful to develop a mathematical model which describes the case of a 

system in which the foundation has no tensile stiffness. Most 

attempts, e.g, that of Murphy (21), at treating this problem involve 
an iterative procedure based on appreciation of the physical 
behaviour of the system. For example the system can first be 

analysed as if full contact is preserved in all modes of deformation.
At points on the interface where tensile stresses are induced in the 

foundation, the slab is released. - The analysis is then repeated,

taking these releases into account, and further'regions of tensile
\

interface normal stress are obtained. These also are then released 

and a further analysis is carried out. The procedure is repeated until 

convergence of the solution occurs.

The treatment which follows, however, does not require such an 

iterative routine. The technique is based on a mathematical formulation 

of the foundation property which is described by specifying that the 
modulus of subgrade reaction, k (w^), should be a function of the 

deflection of the lower surface of the foundation, w^, such that

k(w^) = 0 when w ^ >  0
k(w^) « k when w^ <  0 (73)

0 ^  k ^ )  ^  k when «■ 0



Figure 7. -A plot of the function chosen to describe the required
variation of .the modulus of subgrade, reaction k(^ ) 

with the deflection* w^, of the upper surface of the 
foundation. ,• .
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Such a function is

k(w^) = k (74)
which has the graphical form shown in Figure 7* f  is an arb'ltcry 
large positive number, an increase of which results in k(w^) more

rapidly attaining a constant value as the modulus of increases or 

decreases from zero.

Substituting this function in place of k in equation 

(4l) results ins

the Euler equations can be considerably reduced by the use of the 

general form of Euler equation, obtained from the consideration of 
the variation of a functional. (Many textbooks are available on this 

subject, for example, that by Fung (53)*) If the variational equation 

is expressed ass

The labour of carrying out the variations and determining
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where u^jUg •••• u^ are the dependent functions and x, y are the 

independent variables, the guler equation representing the variation 
of K with respect to u^ is

6 y j K ( X,y,W  ....u^dx dy ■ - 0 (76)

ôK _ 9_ 9K _ 9_ 9K ^ 0
au. “ ax* au. " ay* eu

Xx *y
(77)

where u., aui and u
0u. __1

i * ay
y *x ax

Consider the variation of equation (75) with respect to a 

Rewriting equation (77) in terms ofaQ, where [ ] indicates all the 
terms within the square brackets of equation (75)*

a[ ] »[ ]
ôa 8x 8a

3_
ay

a[ ]
da (78)

Then since

3 [ ]
9 a. V , 9[ ]

x ’ 3a,
3[ ]

x’ 8a. H,

the resulting Euler equation is
9M.

V -x ax
x an n 

ay (79)

The remaining Euler equations are obtained in a similar manner.
Thus, the Euler equations associated with the variations of Mx , M ,

H, V , V , a , B , w and w, are x’ y* o’ Ho' 0 1

dx~ ^  ( V 1 V  " fsh ^ + I - 0 <80)Eh
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â T  - ¡fj (My - >*r> - f ê r  + f  »1 s) - 0 (6!)
0 {3

3 a 38 __ 0 r0
3y 3x H = 0 

Gh^ (82)

9w
a + - £ -

0 ÔX 5Gh Vx = 0 (83)

3w
"o + 5 T - l i s  V  • 0 (84)

M ,
x  " 9x M  . 0 

ay (85)
3M

7  - -r-2 -y  3y
I S  « 03x (86)

(f wi f  + p )
3V 3V

. -J E  . - J C .  0dx ay (87)

("o + f É  * 6^(MX+My))(f^wasech 2 0 Wl)
O

- w2(l - wa+ Wj W + sech wj)

+ ffol ^(W2 - sech 2 pí Wl) » o (88)

where W * 1 - tanh f i v (89)

The accompanying natural boundary conditions are determined 
(53) from the general boundary conditions

■j—  » 0 at 'the boundaries perpendicular
0Uix to the x-axis (90)

and 3K
8u."1

0 at the boundaries perpendicular 
to the y-axis. (91)
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For u equal to« the condition Mx - 0 at x - o and x - a is 
obtained from equation (90). The remaining conditions are obtained 
by considering each function in turn, resulting in the following 
complete set of boundary conditions which are those of the specified

problem:

M - V * H * 0 on x = o and x * a
X X (92)M - V  * H * 0 on y - o and y * b
y y
Thus the case of a thick finite slab resting on, but unattached 

to, a v/inkler foundation is specified in terms of the system of non- 
linear partial differential equations (80 to 88) and the boundary 

conditions, equations (92)»
Discussion

In this chapter two mathematical models, each in the form 

of a system of partial differential equations and a set of boundary 
Conditions, hare been developed for the structural analysis of an 
idealized pavement/subrade system in the form of a thick rectangular 
Plate resting on a Winkler foundation. The models differ only in the 
manner in which the interface conditions between the plate (pavement) 

and foundation (subgrade) are speoified.

In the first model, when the load intensity distribution
. „„„for* of the foundation remains in contact withis applied, the upper surface oi

. . __ interface, including these points at the plate at every nout on the muer-i* , s
, . unward. This is not a requirement of thewhich the plate movement is upwara.
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second model where the top surface of the foundation and the plate 
separate at points on the interface when, at these points, the plate 

deflects upward.

The second model may possibly be a more accurate 

representation of the actual state in, say, a rigid pavement.

However, the non-linear nature of the associated partial differential 
equations is such that a numerical solution to this second model 
cannot be anything but extremely difficult tc obtain. Per this 

reason only the numerical solution to the first model, expressed 
in terms of equations (66 to 72), in considered in the next chapter.
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SOLUTION TO THE DIFFERENTIAL EQUATIONS OF THE STRUCTURAL ANALYSIS

The analysis of a thick rectangular plate resting on a 
Winkler-type foundation and subjected to any arbitrary normal loading, 

is a typical example of a boundary value problem. It has been .shown 
that this problem reduces to finding the solution to a system of 

simultaneous, linear, nonhomogeneous, partial differential equations 

with oonstant coefficients, which at the same time, satisfies a 
given set of boundary conditions. Finding a suitable mathematical 

technique for this task is most usefully approached by examining 

the possible methods, eliminating those which are clearly unsuitable, 
and then developing those which are promising.

Only in the simplest cases can a solution to a set of 

simultaneous partial differential equations be found in an exact, 

explicit^ form. Approximate methods are, therefore, of particular 

importance in the present problem. Two types of approximate method 

of solving sets of partial differential equations can be distinguished.

1. Methods by which approximate values, in tabular form, 

of the required solution can be found at various points over the 

physical region for which the problem is defined.

2, Methods by which the approximate solution is derived 

from an analytical form, e.g. by means of truncated series.

In the first category are the so-called numerical methods, which 

include finite difference and finite element techniques. Polynomial
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and other series solutions fall into the second category where the 

exact solution is in the fonn of infL nite series and the approximate 

solution would then he the Siam of an arbitrary finite number of the 

terms of such series. In the present work however, it is considered 
that the future use of the solution, possibly as a basis for a design 

method, may find its greatest application if it is expressed in an 

analytical form. Hence, the numerical analysis has been concentrated 
in this area.

Two well-developed forms of polynomial expansions are 

power series and Chebyshev polynomials, while in the field of non­
polynomial expansions, Fourier series is perhaps the beat known.

Text books by Agnew (54), Lanczos (55) and Churchill (56) provide 

a good basis for the study of power series, Fourier series and 

Chebyshev polynomials, respectively. In order to determine whether 

any of these three series can be utilized to furnish a solution to 

the mathematical model each of them is examined in this chapter, 
in turn.

General Approach to the Solution of the Equations

One way of solving boundary value problems is, first, to 
seek the general solution of the system of differential equations and 

then to determine the remaining constants associated with the 

solution so that the boundary conditions are satisfied. This method 

can, however, be unnecessarily tedious and more expeditious methods
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therefore use the boundary conditions at the start of the process 

of obtaining solutions. In this manner a multitude of apparent 

'solutions' are eliminated and a restricted range of possible solutions 
can be concentrated upon.

This is the approach which is used here. Thus, thOBe 

functions which are subject directly to boundary conditions are 
first made to satisfy these conditions. Next, the functions are 

substituted into the system of differential equations and the unique 

solution sought. In order that this non-trivial solution may be 
obtained, the expansion used to describe each function must form a 

complete set of terms even though, at a later stage, some of these 

terms may prove to be non- contributory. (A set may be said to be 

complete if every piecewise continuous function can be approximated 

to any arbitrary degree by a linear combination of terms of the set). 

The form of the dependent functions which is mathematically most 

tractable is one which is similar to that of the independent function, 
i.e., the function describing the load on the slab.

"1 Application of Power Series.

The most elementary example of a complete two-dimensional

system of functions is given by the powers

, 2
l .  y> y *

2x, xy, xy ,
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These form the basis of a power series Used to represent a function, 

i(x*y)* that is,
06

f ( x , y )  =  o00 +  o 0 1 y  +  ° 0 2 y  +  • • •
1=0 0=0

°10X + + c12Xy~ + ••• 
2 2 2 2 

°20X + G21x y  + °22X y  +21
(93)

where c.. is the ijth*power series coefficient, and is a constant.
^  J

Relevant properties of power series

A possible limitation on the use of power series is that 
to each series there corrésponds a positive number, R^, in the 

x-direotion and R2 in the y-direction, called the radius of 

convergence of the power series, such that the series converges where 
/x/^Rj^ and /y/^R2 and the series diverges when /x/>R^ or /y/>R2*

It is impossible to examine the convergence of a series without first 
determining its coefficients and so the convergence of those series 

used to describe the dependent variables in the present investigation 
will be considered in a later chapter after applying the analysis to a
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specific example of the plate/foundation system.

Power series have many uses in pure and applied mathematics 
and in particular they are often used in the solution of differential 

equ&tions. The two following theorems are necessary for such 
applications.

Theorem 1:

If cijx*y'i cohere®3J U
i-o j-o

when /x/^IL and /y/^R- and f(x,y) - /  /  o, .x3̂
* i*o' 13

then f(x,y) is differentiable when / x / a n d  /y/ Rg and the 

derivative may be obtained by termwise partial differentiation, e.g.

ax

OQ CO

i-o j«0
■ij

i— 1 8«o
(i+1)ci+l,jx‘y

The latter representation depends upon the fact that an integer 

(positive or negative) can be added to the index of the summetion
whenever it appears after the symboly , provided that this is

‘ ^  ftcompensated for by subtracting the same integer from the index on the 
summation sign.

Theorem 2t Another requirement is that if R. > 0  and R2>0,

and also if f^x.y) - ^ ^ c ^ x V  and f2^x»y  ̂" /  ^
i*o j-o i75'

then f^(x,y) - f2 (x,y) when /x/^R^ and /y/^Rg if and, only if,

C00 " d00’ C01 " d01*
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and, in general, if

Proofs of these theorems can be obtained from most textbooks dealing 
with series.

to represent a function, enable the solution of the boundary value 

problem to be attempted.

The solution of the boundary value problem

satisfaction of the boundary conditions by the dependent functions. 
The requirement that a function should be zero at, say, x-o and 

x=a is most easily attained by the introduction of a multiplier

This does not appear to impose any unwanted restrictions upon the 

derivatives of such a function. This technique is similar to one 
used by Coull (51).

Considerations similar to that described above a^ply to 

the y-direction. Thus, in the present work in order to satisfy the 

boundary conditions represented by equations (72) the dependent 
functions can be represented by

These theorems, along with the ability of a power series

The first consideration in the numerical analysis is the



100 -CO CO

m  x V ( * y - y 2)
ij

V x V ( t y - y 2)
yi3

(94)

w
¿ L , " 0

w x^y^

C O  o o

H

i=o j=o

H ^ x 3̂  (ax-x2)(by-y2)
i=o j=o

while the load intensity distribution, p, applied to the slab 

maybe described by a loading function which is assumed to be

expressable in the form
OO

- £ £ * *  (9 5 )i=o j=o

These series expressed by equations (94) and (95) can now 
be substituted into the system of partial differential equations, 

equations (66 to 71)* For example, consider equation (69)»

.fix _ aH 7 
dx ay a (69)

Theorem 1 on the assumption of the initial convergence of the 

dependent functions enables the series to be substituted, thus*
C O\

M
_  Xi 4i»o J=o ^oc 00

j^aii+ljx1 - (i+2)xi+1Jy^

- ^6(j+l)y^-(j+2)yJ+1j
i=o j=0OP CO

+ \ V x1 (ax-x2)y^ =. 0
ij

i*o j=0
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Theorem 2 enables relationships between the coefficients to be obtained 
by summing the coefficients of the function, xV^* thereby resilting 

in the ijth equation

-(i-H)faM - M ViJ+OfabH i , - M  <
\ id i-l,j/ V

By applying the same techniques to the remainder of the partial 

differential equations, (66 to 7l), the following system of six 
general algebraic simultaneous equations maybe produced, which inter­
relate all the coefficients of the various series*

where :

+(i+l)(i+2)w
i+2,J

sQ+l)(j+2)w
i,3+2

+t (aM -M ) + —  w - - TCfp.,
V xi-i,j xi-2,jy « °ij PiJ (96)

where* i=o,l,2 J ■ 0,1,2 . . . «o

-r(j+l) ( w  - V  Vsr(i+1) faV - V  )
\ 7ij yi,d-l/ \ ij i-l,d /

+(d+l)(d+2)w + s(i+l)(i+2)w
i,d+2 i+2 ,d

- M \+ —  w - - TCfp. .
i,d-i yi,d-2 / g °id iJ

i “0 , l ,2  ■ • • oo$ d ■  0 ,1 ,2  • » • co

+t(bM
V y
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- r ( j+ l)f  aV - V r(i+l)(bV -YV xi - i , j + i  x i - 2 , j + i y  V y i + i , o - i  y

+2(i+l)(j+l)W
1 +1 f J +J. '

+Hi-2,3-2)- 0

where» i*0,l,2 . . . « > »  j*0,l,2 . . . »

-aHi-l,3-l ° (99)

where» i=0,l,2 . . . «>; i»0,l,2 . . . «o

-M i-i,3-l+Hi-l,j-2KbTyi,3-l‘ Tyi,J-2)- 0 (100) 
where» 1=0,1,2 . . . oo; i » 0,1,2 . . . »

-(i+l)(aV -V V(j+l)(*V -Vy )
\  ij xi-l,j/ '  yij yi.j-l J

w - —  ( aM - M + bM -M J
°ij g \ Xi-l,J Xi-2,j yi,j-l yi,j-2 J

- -Cp

where» 1=0,1,2 .. . « » ;  j=0,l,2 . . .

( 101)

Only a limited number of terms are, in fact, used to

approximately represent the loading function, i.e., 
m n

/ J
J± ip - p ^ x'y‘ ( 102)

i=o j*0

i+1,
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although the solution is still the solution of an infinity of 

equations in an infinity of unknowns. The practical possibility 

of a solution can then only be considered if the dependent series 
are also truncated. However, attempting to satisfy all equations 

in which the allowable coefficients appear results in an over­

determined system. Therefore, only an approximate solution, in 

which the coefficient of the truncated series are required to 

satisfy a limited number of the equations, and not the complete 
set, can be obtained.

The choice as to which equations should be 

disregarded is largely arbitrary, however, certain reasonable 

requitements should be maintained. These are: 1. that any 

equation containing a loading function coefficient should not be 

neglectedj 2. that the lengths of the various series should be of 

similar orderi and 3* that the number of equations created from each 

ijth equation should also be similar. Hence, it would appear that 

the ranges of each general equation and of each dependent function 
should be the same and at least equal to the loading function.

A minor difficulty arises in that the last term of the
ina

series representing the twistX moment, H , is not defined by any
equation. In order to overcome this difficulty and still preserve

i n y
an orderly system, the upper limit of the twisty moment series is 

defined by n_^ and the range of equation (98) is taken as iio to
m-1, j:o to n-1. Using this system, the ranges of the series and
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simultaneous equations are then as shown in Table 1 and Table 2, 
respectively.

Series Range of i Range of j

P o to m o to n

w0 o to m o to n

H o to m-1 o to n-1

MX o to m o to n
M
y o to m o to n
VX o to m o to n
V
y o to m o to n

Table 1. Ranges of series

Equations
—

Range of i
—

Range of j

(96) o to m o to n

(97) o to m o to n

(98) o to m-1 o to n-1

(99) o to m o to n
(100) o to m o to n
(101) o to m o to n

Table 2. Ranges of equations.
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The solution to the boundary value problem is thus reduced 

to the solution of a number of simultaneous algebraic equations, Q, 

in a similar number of •unknown power series coefficients, where

Q m 6mn + 5m + 5n + 5 (l05)

Application of Chebyshev Polynomials

Of all the forms of expansion, the Chebyshev polynomial 

series provides the maximum convergence inasmuch as it requires the 
smallest number of terms to achieve an aoproximation of a function 

which does not deviate from its true value by more than an arbitrary 

small amount, at any point of the given basic range [—1,+1] of the 
independent variable.

Fundamental properties of Chebyshev polynomials

The Chebyshev polynomials T^(q), where q is the independent 

variable and i indicates that T^(q) is the ith term ; of a Chebyshev 

polynomial series, possess a very valuable property in that they are 

expressible in terms of elementary trigonometric functions. They are, 

in effect, merely the simple trigonometric functions cos 10 but 
expressed in the variable q - cos 0. This fundamental relation, 

which translates the many useful properties of Fourier series into 
the area of pover expansions, is the most important property of the 
Chebyshev polynomials.

The shifted Chebyshev polynomial T^ (q) is of special 
interest. This is simply a Chebyshev polynomial with a range of
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definition [0,l]. The renormalization of the T̂ (t}) to the new 

range is easily arrived at by nutting cos 0 - 2t)-1 in place of cos 6  

*  T).  The shifted Chebyshev polynomials are thus defined by

Tj* (h) * cos id ■ cos [i cos ^(2tj—1 )] (104)

The new polynomials, t £  ( t) ) ,  have coefficients which are entirely 

different to those of the standard Chebyshev form T^(t)). In their 

polynomial expansions of the function, f(n) they are represented 

by the series
OO

î*(t)) - ci T * C1!) (105)
i-o

Since this expansion is, in fact, a reinterpretetion of a cosine 

series, the shifted Chebyshev polynomials form a complete set in 

the interval [0,1]. Theorems 3 to 6 are now developed relating 
to shifted Chebyshev polynomials.

Theorem 3* The connection between shifted Chebyshev 

polynomials and trigono:uotric functions can be used to obtain a 

recurrsive relationship between polynomials. Taking the trigonometric 

formula

cos(s+t)d + cos(sat)0 - 2 cos sd cos t0

and employing the notation of T * ( t) )  and T* ( n )  the following8 t
recurrsive formula is obtained»

Ts + t(T)) + Ts * t (T,) " 2T£ ( ^ t  W (106)
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Theorem 4* The orthogonality condition in Fourier
series which applies to a discrete set of noints, (®a)>

cos sda cos t3a = <n/2 ŝ=t̂ o; 
a=o (o (s/t)

< n / 2  (s-ty 
(o (s/t)

is easily expressed in the following polynomial form

where 2p - 1 - cos 9 . a
Theorem 5. Similarly, the orthogonality condition

applying to a continuous surface
^ n f x (s=t=o)
I cos(sfl) cos (ttf)dd - | x/2(s=t/o)

J o  ( o (s/t)

can be Expressed in the following polynomial form:

Theorem 6. '.'hen the need arises to differentiate shifted
Chebyshev polybomials, the best approach to the development of a 
technique for this purpose is to study their integration.

A useful relationship which provides the basis for the 
integration of shifted Chebyshev polynomials Is

n (s*t=o) 
n/2 (s*t/o) 
o (s/t)

(107 5

n (s»t-o) 
n/2 (s=t/o) 
o (s/t) (108)
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i+l
Tit!«!)

1-1 4/4 / T* (t|)dT) (i> D (109)

This can he arrived at by taking the trigonometric form of 
T*+i (t,) - T* x(r|) , differentiating, employing again the cosine 
relationship, integrating throughout, and rearranging,
Also:

and

Tf (•>)*(T))d,n = constant + — g---

?* (n)
T* (r))dT) = constant + — -̂--

( n o )

Equations (110) can both he verified (54) by consideration of the 
power expansion fora of the shifted Chebyshev polynomials.

Assuming that a function f(p) is expressable in a shifted

Chehyshev polynomial form;

f(p) - | Aq + Ax T j ( tj)  + Ag T*2 (p) + Aj T* (tj) + . . .

and assuming a similar expansion for the derivative f'(p) of this 
function

i*1 (ti) = I a0 + a! ̂  M  + a2 ̂ 2 ^  + a, (p) + . . .
where the halves are introduced for convenience,then on integrating 
f'(p) and applying equations (109) and (110):

*00
f "

, T*-(ti) T* (t,)
(T])dT) » constant + aQ -  ̂ — -g---

or f(Tj) £ v - 0 0

00 I— _  i

i=2 ■ *“
£ai")
i+l

T*_i(n)
i-1

(111)1=0
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where the symbol ' indicates that the first term is associated 
with a factor of one half and, in general,

A. - (i>0) (112)

Aq is determined by the lower limit of integration. The problem

of differentiation is the inverse of the above. Given a set A ,o
A^, Ag . . . , the required coefficients â , a^, a^ . . . , can be 

found using:

ai-l “ ai+l + 4iAi (n 3)

which is a rearrangement of equation (112). If A^ is the coefficient
of the highest order which is not negligible, taking a = a , -m m+l
am+2 * • • • ■ 0 and then finding an  ̂ an 2 * ’ * * * ao
successive application of equation (113) results in the differentiated
series.

Differentiation, orthogonality and the recurrsive nature 

of shifted Chebyshev polynomials have all been considered in 

Theorems 6 # 4 and 5* and 3» respectively. These are essential to 
the application of such polynomials to any boundary value problem 

and now can be used to attack the present problem, represented by 
the system of partial differential equations (66 to 71) and by the 

boundary conditions, equations (72).

The solution to the boundary value problem.

Since the range of definition of the shifted Chebyshev 

series is [0,l], then computation is simplest if the rectangular



110 -
plate (o^x^a, o ^ y ^ b )  is transformed into an equivalent unit 
square plate by the use of the transformations r| = x/a and £ = y/b. 

Noting that

9_
9x I !_a QT) and S_

97
i 9_b at- (114)

a transformed system of partial differential equations can also 

be obtained.

The assumption is also made that the applied normal 

loading, p, may be written in the form
0 0  oo

> - Z Z ’ P U  T1 (”) T J* ( 0i-o j*o
and the weighted average deflection, wq , in the form 

00 00
i

(115)

w
i=o j=0

W T.* (t)) T.* ( O  
°ij 1 J

(116)

where the symbol ' indicates that p^Q, p., w q and wQ , are each
J io oj

associated with one-half, and p and are each associated with*oo ooo
one-quarter so that the technique of differentiation can be easily 

applied.

In order that the given boundary conditions should be 

satisfied, e.g. - o at i) « o and t) « 1, the series multiplier- 

(t) - ) may be employed in its shifted Chebyshev polynomial form;

[ t q*(t)) - T2*(q)J/8
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This latter expression is obtained by usinp; the shifted Chebyshev

form of simple power terms. Taking IJ as an example, and multiplying 
the basic series by the series multiplier in order to make it satisfy 

the required boundary conditions,

M
1=0 J=0

>Mx. Ti (ll) Tj* M  [ T0 (t,) 'T2*

or, applying the recurrsive relationships expressed by equation (106),
00 , 00- . M 'v ‘ x.. r

M I I 4  [ 2 T±*-(r)) -r*+2 (t))-tJ_2(tj)Jt *'U) (117)
i=o j=o

Similarly, for the other dependent functions:

M
OO OO
Z Z ' ^  T*Xt,)[2T * (118)
i=o 0=0

00 OO V

1=0 j=0 
00 00 VvZZ’-S1
i=o j=o

' ĵ2 T *  (tj) - ( O  (119)

TJ*(t))[2 T * 0 0  - T*j +2( 0 - T £ 2(o ] (120)

00 OO
H

i=o j»0
' ~ ^ 2  [ 2 T * ' W -  Ti+2(T1)“Ti-2(T,)][2 TZ < 0

- tJ+2( 0  - i* 2<o] (121)

Returning to the system of partial differential equations (66 to 71) -
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and considering equation (71) as an example - the equation transformed 
to the new co-ordinate system, hy means of equations (114), takes the . 

form
1 9Z r  1 9Vv k  kT / \— £ - i- — I  + £ w - —  (M + M ) « - Cpa Qt) b 0£ g o g x y y

Substituting equations (115 to 120) results in

(122)

00 00 y
’ [2 T^ 'O j) -  T *+2( t!) -  T*- 2 ( ti) ] t J  ( O

1=0 J=0
00 00 V**

16
i=0 j-0

00 00
k *f—
« c— i c— / ui-ji=o j*0 J

Tr'(0-T3* 2 ( 0 *Ti-2(0]
00 00ZZ’ V,, Ti*(n) *?(0 i* «

-t*+2(d ) - t *.2(i )]t * ( 0  -

-*i\a<«> - V-2(l)] - -e

where from equation (113),

00 00

i*=o j=o
Pij Ti (t,) w

and

- + 4i V
Xi-l»j Xi+l,j Xij

V* - V* + 4j V
yi„)+l yU

and the superscripts tj and £ denote the coefficbits of the derived 

series obtained by differentiating the original series with respect
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to the t) and £ directions respectively. Similarly, higher order 

derivatives axe denoted by a corresponding number of superscripts.
Oi) t * a )

Multiplying through by

and integrating, in dimensionless co-ordinates, between the limits 

0 and 1 in each case, enables the continuous orthogonality conditions 

expressed by equations (108) to be applied. Thus, for example:
OO 00 v'’

F * & tt)
i*o j=o

1  ^ i i  f 1 V  f t )  rl  f t )
■■n) ' 0

becomes
OO OO . Ve* 1  ̂/ V

1 V ' Ÿ '  -ïti f
1*0 j*o J  ¥ v

or

or

or

1
b

1
b

i*o j*0 "o
V*

1 ys,t- 
’ b 16
V*
ys.t-2 f1 7t
16 [2 * 2 * ^

1 n 
2* 7t* 2

Vys,t-2 r 
ié 14*71, 71

1 ,i +2
✓ft2 - o

for s / o and t

s * o and t

Returning to equation (123) and cancelling through by the constant 
in the square brackets which is common to all terms in the equation 
for a particular i and j, independent of whether s * o or> o or 
t = o or >  o, results in the following ijth equations on replacing 
s by i and t by j for convenience:
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- i t
2 V11 - Yn -Y11
Xij Xi-2,J Xi+21

rewriting

-M -M j —  [2M
Xi~2,j Xi+2, i)J g L yiJ

[ 2 V11 - Y11 - ^  ]i
L Xij Xi-2,j i+2,dJ

-V* I + 16 — w
i,d-2 yi*j+2 _1 «

-M
'i,d-2 yi,d+2.

J- - 16 CpiJ

and applying the differential relationship, equation (113), results in

f4(i+l )V - 4(i-l)V.
L i+i,J*' - ■ V i . J

Thus the ijth equation, equation (123), can he rewritten as

-ff<ltl)Tx -<-i-1K  -(3-l)V 1aL xi+i,j xi-i,jJ «- yi,d+i yi,j-iJ

- —  [2M -M -M 1- ^  [2I.I -M -M
e L Xij Xi-2,j Xi+2,jJ S l yij yi,j-2 î,

+16̂  w g 0 d+2

-l6Cpid
where: i - 0,1,2 . . . °°; j ■ 0,1,2 ... 00

(124)

The same considerations also apply to the remaining five 
partial differential equations, i.e. equations (66 to 70). The 
overall result, then, is the following set of six general simultaneous 
linear algebraic equations:

-ff(i+i)v -(i-i)v "Upfu-ilv -(J-I)y 1
L i+i,j zi-i,dJ L yi,j+i yi»d-i-l

. 1 6  T)T1
a2 °ij
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where* w1̂  =f2(i+2)wT̂  -(i+l)w^^ +l6(i+l) (i+2)(i+3)w 1 r,\-\

°ij «- °i+2,j °i+4»j °l+2,jj ti+3'

■ / A j 2 ( j + 2 ) w ^  -(j+l)w^ +l6(j+l)(j+2)(j+3)w ]
U+3;L °i,j+2 °i,j+4 °i,j+2J

(131)

.[>*
°ij L °i,-

u , 
°ij

+w ”  -w +l6(i+l)(j+l)w
(j+2 °i+2,j °i+2,j+2 i+l,j+l

The expansion used to approximately represent the loading 

function must of necessity he limited to a finite number of terms, 
say, m terms in the q - dimension and n terms in the ^-dimension. Thus

P E l1-0 j-o
q M  t 3‘( 0 ■'152)

In order that the system of general equations and dependent 

variables should be compatible with the limited number of terms 
contained in the loading function, the range of the dependent variables 

are all

i i o to m - 1 and j * 0 to n - 1 (133)

and each of the general equations has the range

i s o to a - 1 and j i o to n - 1 (134)

Because the expansions which are used to satisfy the boundary conditions 
are combinations of Chebyshev series all the terms are interdependent 
and as such, require the solution of all coefficients at one and the

same time
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During the creation of the simultaneous algebraic

equations the coefficients w1̂  etc. are replaced by combinations
°fk

of the coefficients of the original terms, w , by applying
st

equation (131) to wT)T) and progressing down to w*1*1 taking
__ m-l,n-l oo

w’"> . .I" . - >  .
+1.J °o,J °-l,j °-2,J

are general subscripts. Similar considerations apply to w'

and w

0 , where f, k, s and t

'±3

ij

Thus, from the system of six general equations, equations 

(125 to 130), are created 6mn simultaneous algebraic equations which 

can be solved for the 6mn dependent coefficients. The series, 

defined by equations (116) and (117 to 120), which describe the 

dependent variables in terms of non-dimensionless co-ordinates are

easily expressed in terms of the original co-ordinate system by 

the substitution: « x/a and £ - y/b.

.Application of1 Courier Series

Fourier series has found innumerable applications to the 
solution of boundary value problems, due principally to a powerful 
fundamental property possessed by this form of expansion.

£ fundamental property of Fourier series

The most important theorem concerning Fourier series 

expansions is th-̂ t every function, f(x), which is piecewise 
smooth in the interval and periodic with the period 2n,

may be expanded in a Fourier series, i.e. a series of the following form:
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si(x) - I »0 ' ¿ J ' l
i-1

cos ix + b sin ix) (135)

which converges to f(x) with increasing m, where the Fourier 

coefficients (aQ ,a^ and b^) are given by*
1 C n/ f(x) cos ix dx (i - 0,1,2 . . . m)

b3 - — f  f(x) sin ix dx (i = 0,1,2 . . . m)
(156)

this theorem follows from the orthogonality and completeness of the 
trigonometric functions. It can be extended to cater for any

i i
arbitrary interval s ^ x ^ t .  A further consequence is that the best 

approximation to a function, in the mean, is obtained by the Fourier 

polynomial.

Consideration of a Fourier series solution

The method of solution employed here is similar to that 
used in previous sections and consists of the selection of suitable 

functions which can be made to satisfy both the boundary conditions, 
expressed by equations (72), and the system of partial differential 

equations given by equations (66 to 71)•

As the Fourier coefficients are completely determined by 
the differential equations, the trigonometric form of the selected 
functions should be such as to permit satisfaction of the boundary 

conditions. The conflicting requirements of the boundary conditions
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can be stated ass

(a) The function should be zero at certain arbitnary
points.

(b) The trigonometric functions should form a complete 
set, i.e. any function within the limitations set out above, should 

be describable by the series.

Such requirements are perhaps most easily met by defining 

the functions, f(x), in the Fourier half interval (o,x). To expand 
such a function all that need be done is to prolong it into the 
other half-interval (-n,o) and expand this function - now defined 
in the full Fourier interval (—n,n) - by the usual Fourier series 

techniques. This is possible, as no matter how the function is 

extended into the interval (-11,0) it will still represent the 

desired function in (o,n) as well as in (2n,3n), (4n»5n), etc.
There are two accepted methods of prolonging the function into the 

half interval (-x,o), i.e. either as an even function or as an odd 
function. A function, f(x), is said to be even if

f(-z) - f(x).
and odd if

f(-x) - -f(x)

An example of an even function i9 cos x, since 

cos (-x) - cos x
and sin x is an odd function, «Lsirrce
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sin (-x) - - sin x
The expanded even-function form in the half-interval (o, it) 

taken by f (x) is

l W  * J ao * ¿ 1 ^ 1 cos ix
i-1

n
where i it f(x) cos ix dx (i-1,2, • • . oo )

and the odd function form is00
f(x) * y  b^ sin ix 

i-1
it

where * 2 *i * f(x) sin ix dx (i-1,2, ... • OO )

By applying a transformation, the following even and odd 

functions in the half range can he obtained from those above* 

liven function m

f(x) K  + 2 ^ ai
i-1

cos inx
(137)

where a^ = f(x) cos dx (i - 0,1,2,. . . oo)&

Odd function

where

f(x)

'i a

00
sin

i-1
fa

iitx

f(x) sin dx (i - 1,2, . . . oo) &

(138)

Each of these two functions forms a complete set in the
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interval (o,a). In the case of the odd function f(x) is zero at 
x=o and x-a in the interval (ofa). The odd function satisfies the 
opposing requirements of the possible boundary conditions in that 

f(x) is expected to be expandable and yet be zero on the boundaries 
x*o and x=a*

The boundary value problem under <d nsideration makes it 

necessary to be able to expand functions of two variables into half­
range Fourier series with a half-range of (o,a) in the x-direction and 

of (o,b) in the y-direction. The form of the Fourier series terms is 
dependent upon whether the need is for an even or odd function in the 
x or y directions. For example, if a function, f(x,y), is required to 

be odd in the x-direction and even in the y-direction, then the double

half-range series will take the form
00 00

f(x,y) - z Z ^ Z f(x»y)ij sin ‘I T  003 (U9)

The remaining three possible trigonometric terms are as follows*

sin H i  ,ln ¡ S L , C OS iJBL cos t o  , cos i s  sin t o  b a b (140)

Restating the boundary conditions of the present analysis:
M - V - H - 0 at x - o and x - aX X

M - V a H » 0 at y - o and y « b
(141)

then the form taken by the stress resultants and deflection expansions
are as follows:
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M
i»l j=o

00 oo

M sin cos 
xij a b

i-o j-l
OO OO

ZE>
i-1 j-o
OO 00

M co3 i H  sin ¡S C  

yiJ a b

■in i E L  oos ¡S C
xij a b

¡S Cb

and the loading function
OO OO

i-o j=o
p. . cos cosa b

(142)

(143)

(144)

(145)

(146) 

(147)

(148)

The series can now be substituted into the system of partial 
differential equations and, by employing the orthogonality conditions, 
simultaneous algebraic equations relating to Fourier coefficients-can 
be obtained. The most immediate and interesting result from these 
equations is that all the bending moment Fourier coefficients are 
found to be zero. This indication that the solution is trivial 
in nature, shows that the selection of these particular trigonometric 
forms of the dependent variables by inspection and elimination, is 
unsuccessful in obtaining a real solution.
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Summary

The solution of the primary boundary value problem, 
represented by a sjrstem of partial differential equations (66 to 71) 
and a number of boundary conditions i.e. equations (72), has been 
considered. By assuming certain general forms of the variables, it 
has been possible to obtain a solution in terms of a system of 
interrelated algebraic simultaneous equations, when such variables 
have been expressed in terms of power series and Chebyshev polynomials. 
Because of the particular form of solution employed, this has not, 
howeveri been possible in the case of Fourier series representations.

Before proceeding with the solution of the principal boundary 
value problem under consideration a more detailed examination must 
be made of the function describing the load intensity distribution.
This will take the form of the development and comparison of the 
loading functions as represented by power, Chebyshev or Fourier 
series.
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FUNCTIONS DESCRIBING THE APPLIED TRANSVERSE WHEEL-LOAD

The solution to the system of the partial differential 
equations (66 to 71) is based upon the availability of suitable 
functions which describe the applied normal load. These loading 
functions, in terms of power, Chebyshev and Fourier series, are 
each now developed and compared.

In order that such functions may be obtained it is 
inevitable that, to some degree, the load intensity distribution 
must be initially specified. As the stress analysis of a highway 
pavement under applied wheel-loads is of prime interest, then, 
idealizing the contact area of a single wheel to that of a circle, 
the load intensity distribution, p,. considered may be taken as 
that of a unit load spread uniformly over a oircle of radius 
c and centre ( x q ,  yQ), as shown in Figure 8. There is no 
applied load over the remainder of the area of definition of the 
function, which is taken as that area oovered by the rectangular 
slab (o^x^a, o^y^b). Such a loading function can be used,
by the method of superposition, to describe any combination of 
such wheel-loads, e.g. dual and/or tandem wheels.

Methods of obtaining the loading functions of other 
wheel contact shapes are mentioned during the following development 
of the loading functions for the circular contact area.



Figure 8. - The idealized load intensity distribution ‘ ‘
, > represented by the loading functions rhich is applied

, to the surface of a'plate. This distribution consists

• of a unit load spread uniformly over a circle of radius c*
; :with centre (x y )i no load is applied to the ‘ i. o > o

remainder of the plate surface. . - c

t

>
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Development of the Loading Functions

Power series representation

There are, basically two types of load intensity 

distributions*

e.g.

1. Those which are expressed exactly by a polynomial,

p ■ a + bx + cy (149)

where a, b and c are constants.

2, Distributions which do not have an exact polynomial 
representation, e.g. one which contains a discontinuity.

The first type needs no further development here, as the 

load intensity distribution is explicitly represented by a 

truncated power series.

In order that, in the second case, a polynomial 
expansion canbe used to approximate to the load intensity 

distribution, a criterion must first be decided upon which uses 

the degree of error between the approximating and actual load 
intensity to arrive at the 'best' approximation. The criterion, 
'that the square of the error over the region of definition should 

be a minimum,' is employed in this case because, in comparison with 
other possible criteria, the series coefficients ore simple to 

determine from the known values of the load intensity at points over
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the region of definition.

Let it he assumed that p(x,y) represents the loading

function and let x , y,, (d - 1,2, . . . .  ti) he the sequenced G
of data points at which the values of the load intensity, p^, are 

known. If x V L  (i » 0,1,2, . . . m; j = 0,1,2, . . . . n) are a 

sequence of powers defined for every x^y^, then p^ can he 
approximated hy a linear comhination of x ^ ~ y ^ ,  thus*

L Ii*o j-0
piJ (d - 1,2, . N) (150)

with the constant coefficients p^j determined so that
IT m n

^Q0’*0Vh0’ - - - - * H P d  -  Z X ^ d V ]
dal i-0 j-0

(151)

is minimized. This is the mathematical formulation of the above 

mentioned criterion. The quantity R^, called the residual, is 

only zero in the case when the number of approximating functions 

is equal to the number of data points, i.e. 'T - (m+l)(n+l). Normally, 

the number of approximating functions is much less than the number of 

data points, in which case the usual intention is to make the 
function as accurate as possible by making the square of the 

residual a minimum. The coefficients, p ^ ,  for such a minimum are 
calculated by taking the partial derivative of L with respect to
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and setting it equal to zero, thereby making L a minimum with 

respect to the unknown coefficients*

IT _ m___ n_
3L
0Pfk -2 ¿1 [ pa - Z Z  ^ V K  *** ■ ° <i52>

d-l i=o j-o

where f — 0,1,2, • * • « m } k =  0,1,2, * • . « n.

Interchanging summations results in:
m

Z . Ii-o j-0

IT

Pij [Id-l P x fy k pd a yd (153)

where f — O^lf^ » • • m \ k — 0^1f2^ • • • n.

Equation (l55) is a system of (m+l) (n+l) linear equations which 

are generally called the normal equations for the (m+l)(n+l) 

unknown coefficients.

In the case of a unit load distributed over the area of 

a circle of radius c, such as is illustrated in Figure (8), whether 
or not the load intensity p^ at an arbitrarily chosen data point 

(xd,yd) Is l/nc depends on whether or not that point lies on or 
within the circle. The mathematical expression of this criterion 

is

if ( ' V X6 ^  + (yd-yo)2 “ °2^ 0 (*54)
2

then p^ - l / x c , otherwise the load intensity ia zero. Thus, a 
system of N data points is obtained which may be used in equations 

(153) to solve for the power series coefficients, p^.
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may be considered as an approximation to p(rj,̂ . The error, E, 
of this approximation is given by the infinite series

oo n-11 -9?-,

- ’ ¿1/2 pij Ti <") piJ Ti*(’>)Td*(0
i»m j-o i=o j*n (158)

If the convergence of the series is sufficiently rapid, an acceptable 

estimate of the error can be arrived at by keeping only the first 
termsi

e .  ! |2  T* ( , ) T* (,,) + iaa ^  ( , ) t * ( 0  (159)

This indicates that the error is of an oscillatory nature since

shifted Chebyshev polynomials are themselves oscillatory. If the
estimate is sufficiently close, then the problem of obtaining the

coefficient p ^  of the expansion given by equation (157) is now

transformed into an interpolation problem. The vanishing of E at

the zeros of T *  (t)) and T * ( 0  can be interpreted as the loading function

p (tj,0  and the approximation (i),0 coinciding at the zeros of Tm (h)

and T* (0» Thus, the problem of producing a strongly convergent
expansion of p ( t) , £ )  in t h e  polynomials T^*(t)) Tj*(0  is, in practice,
equivalent to p(t),^) being interpolated by a polynomial of (m-l)(n-l)
st degree, the tabular points being chosen at the zeros of the first

neglected polynomial, (T0 Tn (O* l»6* tlie P°in^s * ^p)
#

Tm (tj) and T* O O  are both zero.

Translating the algebraic conditions
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Tm*(T!a) - 0 and f* ($p) = 0 (l60)

where ( tj ,  f, ) are the zero tabular points, to the angular variables a P
^  and t>y using equation (104), gives

C03 mOa 0 and cos 0 respectively, (161)

These then become

m0a " k  + and n^p " CP + |ln (l62)

where there are m and n zero points, respectively and 
® s ^flf2, • . • « m-1| p a 0,1,2, . • . • n-1«

As cos 0 - 2n - 1 and cos Cf0 « 2^. - 1 , thena a p P
HB - cos2 (2a+ 1) t | and ip - cos2 ij (2|3+1)+| (163)

The expressions for the data points (tî , 5p) can thus be seen to be 
non-uniformly spread over the interval (O^q^l, 0 ^£^l), and

to be more highly concentrated at the end points of that interval.

Consider again the approximation of p(rj, ) to a finite 
number of terms. In order to determine the series coefficients, 
equation (157) is first multiplied throughout by T * ( t) ) T* (£.)1 “  ̂ S u p

Then
md p-o

Jbslv A-l
and the operator ̂  y  applied.

/ - ¿ L Pmn(V 9  Ta < V  Tt * Va «0 p*o p
r J i 1 n-1

i s u  PijL4 Ti n  ^ i? v]
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This enables the orthogonality condition, equation (107), for a 

discrete set of points, to be applied, thus*

^ ] > 3 p m n  T« ^  T ‘* V  6iB-r4Jt*l

where

a =0 p*0

is

i«0 j=0

is the Kronecker delta defined as

and

6la - 0 if i / s

«is " 1 if 1 - 8
and 6 ^  is the Kronecker délia‘defined as ' (164)

? ’ 6^t - 0 if'j/ t f ' ;

>  - 1 lf J

Consider the term.i * s, j - t

v. ■ s Z Z F«  (v 9  W  Wa =0 (3*0 5 ' - r ;
Replacing p ^  (t),£) by p (t),^), since p ^ r ^ O  is intended to be an 

approximation to p (t),&)> and replacing s by i and t by j for convenience, 

results in
m-1 n-1

p - 4-pij mn
a “0 P“0

• V T *  ‘V  * /  ( 9 (165)

where i - 0,1,2 . . . .  m-1 ; j - 0,1,2 . . .  . n-1

Thus the coefficients can be determined knowing the value of the load

intensity distribution p ( t) » £ )  at each tabular point ( tj , 0 .<x P



; Figure 9

•»

\

f .
V

The for* of the representation given in Figure 8 re-expressed 
in terms of a dimensionless co-ordinate system 
for use in the shifted Chebyshev polynomial 

representation of the idealized wheel-load. ' The circular 

area over which the unit load i3 applied is transformed 
into an equivalent elliptical‘area, and the plate

l -:s; \ v ,y * ’ / \  """''I '■ % t , ..
area (o^x^a, o ^ y ^ b )  is transformed into an 

■f equivalent - square (o -O) ̂ 1, o^^^l). ■ _ , , v ..

v r
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For the case of a unit load spread uniformly over the area 

of a circle of radius c (Figure 8), the transforms t) - x/a,£«y/b 

enable the criterion given by equations (154) to be expressed in terms 
of a dimensionless co-ordinate system, where as is shown in Figure 9 

the circle is transformed into an equivalent ellipse. The criterion 

for a point lying within or on the circle then becomes

( aT)oc “ xc /  + < V y o )2 "  °2 ( l6 6 )

Again, as in the power series representation, other contact shapes 

can be oo nsidered by using the appropriate criterion.

Thus the first step in obtaining the loading function is 

to derive the co-ordinates of the tabular points from

equation (163) and the value of the load intensity at each of these 

points from equation (166), These figures may then be substituted 

into equation (165) and the coefficients of the series obtained. Thus, 

the shifted Chebyshev polynomial series which approximately represents 
the load intensity distribution is finally determined.

Fourier series representation

itefrrring to Figure 8, it can be seen that the load 
intensity distribution, p(x,y), is considered to be a unit load 
uniformly distributed over the area of a circle of radius, c, and 

with centre (xQ yQ). The function, p(x,y) is defined at every point 

within the rectangular region (o ^  x ^  a, 0 ^ y ^ b )  thus, determining 
the half-range Fourier intervals (o-a, o-b).
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The loading function may he expanded in terms of a half­

range Fourier series in two dimensions, thus»
GO  CO

i-rcx
p(x*y) piJ cos i r coa (167)

i*0 j=0

First the relevant orthogonality condition is noted for

the x-dimension * 
a

(168)

where Ô-. is the Kronecker delta defined as..

6-. - 0 if a  ^  iai '

6«i if à « i

These conditions are valid-for all non-negative integral values 
of 5 and i which are not both zero. For the condition where a 

then
a

/ cos Ox cos Ox dx » a
Jo

i - o,

(169)

Similar conditions apply to the y-dimension.

Now, returning to the Fourier series expansion, as
, * , , 5nx flnygiven by equation (167) and multiplying through by cos cos ^ ,

then integrating over the region o to a and 0 to b, and applying the

orthogonality conditions, results in



Figure 10# The polar co-ordinate system which is introduced to 

facilitate the representation of the load intensity 

distribution by Fourier series. The origin of this 

polar co-ordinate system 'lies at the centre

of the idealized circular wheel-load with original 

Cartesian co-ordinates of (x0»yQ) and a radius c.: -

\
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ij ab

a b
-A r  r

i

p(x,y) cos cos dx dy& 0 (170)

•  9 00where i s Ij2j3j • • • • 00 |  ̂* l|2f3i • 

Multiplying the expansion given in equations (167) by
cos A COs Oy, integrating and applying the above conditions gives a

a b
pio “ ab p(x,y) cos dx dy (171)

'0 ' o

where i ■ 1,2,5,. . . . 00 

In a similar manner
a b

p0j ■ s  /  / p (*-y) cos ^ 4y
-'o -'o

where j - 1,2,3........ 00
By multiplying the expansion by cos Ox cos Oyand integrating, the 

following is obtained*

(172)

a

P,oo ab
■ '0

p(x,y) dx dy (173)

Introducing the polar co-ordinates (<J»,£) defined in Figure 

10 in place of the Cartesian co-ordinates and noting that p(x,y) is 
zero at every point outside the circle of radius c, then the new
form of equation (170) is

c 2n

Pij" ab’ ^ 2  ,no j
cos

in(x0*l> cos0) jit(y0+4* sinfl)
cos 4> d<V d<9



iitx.
Let ai »

iüia *
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j*y,
r  - *j, “ d if k * pj

c 2ti

then p ab . / / cos (o^ + cosjfl) cos (a-j+P-jsin2)4> d<J» d.0_
710 -'O ^0

Expanding and then multiplying the trigonometric terms results in
c 2n

, - i-ij ab . ĵ cos ai cos aj f  j~  c o s ^  cosd) cos(pjSin5}<|» d<l» d_0
Jo J 0

c 2x
(p^ cose) sin (PjSinfl) $ dij> d £

a j  I s in  (p± cose) cos (PjSin0)<|> dc|, d £
v0 J  0

+ sina ̂  sin  ̂ sin ^  cose) sin (p̂ sine)«!» d<|> d£,
J t0 ^ 0

Now,considering

f(0) - cos (Pi cose) cos (p̂ j sine) 

it can be seen that f ( 0 )  is periodic with n. Moreover, 

cos (p^ cos (n-Zp)) cos (Pj sin(n-Zp))

■ cos (p̂  cos (it +zp) cos (p̂j sin (it +ẑ ))
for any value of Thus
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V 2 3n/2

f (£) d ■ f ( d )  d£by  periodicity,

it 2 it
f(£) d(h* I f(e) d_0 by periodicity^

V 2 ~̂ 3k/2

3k/271
and / f(j0) d0_ ■ / f(0) by the above cosine relationship

-mi/2 ~7t

2 71 7t/2
Therefore/ f(jj) d £ =  4 / f(^) d_g

-'0 ^0 

Similar considerations result in

2 71
/ g(£) d0_- 0 where g(^) - cos (pA cos£>)sin(Pj sin^g )

0

2 71
^  h(£) d ^ »  0 when h(£) ■ sin (p^cosg) cos (p^ sin d )

v0

27C
j '  k(0) d_£ ■ 0 where - sin (p^ cosd) sin (p^ sinj?)

J 0

Therefore, applying these relationships to the previous egression 
for p ^  gives
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L . JL■ i t  ~ ab * 2'TtCPj j • — ô*C03 ol cosctj / / cos cos>e)cos(p j 8 i n J (j, dtj» d 6_

' 0  -'0

16
abnc

’2« cos cos
c n/2

“* f  * d+ f  

Jo Jo

cos (Pj sln^oosh ( J ( - l )  p^oslS) d £

With the aid of the following relationship.-, which is taken from a 
standard table of integrals (57) 

n/2
f COS (Pj sine) cosh ( J ( - l ) PA cos£)d£ - f«^[(P^+Pi2)1^2]

~'0

(where J is the Bessel function of order zero), then 0

> - J L L
abnc2

___8

abc

c 2 2  l/2
.cos oĉ cosoĉ J

■4 Sf •■ifÿf-]
2» cos o^cos

[■ (Pff
Using an integral quoted by Watson (58)».P»152

c
pij “ 003“i 008 V  ~ 2 Jl(Yij ^ 0

id
/j2 ,2*1/2

where y ■ . ^ = 5-+*^) and J,(y,, <J>) is the Bessel function 
\a b J  1 3

of

order one with argument y^ 4»

Hence p
o inx jny

cos 3 cos — (y^jo)ij abcy^ ”  a (174)

where i m lj2|3# • • • *ooJ j «■ Iy2p3i
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By the same approach,

where

and

,o hcni

i * 1,2,3,

p  = — 14..po,j acxj

the following

cos ---- . J. (a 1 v

are obtained

•nci'v 
a '

where j - 1,2,3, . . . . « >

(175)

(176)

In the case of poo

•oo ab

a b
p(x,y) dx dy <|> d<|» d 0

Integrating, the above becomes
= 1_

poo “ ab
’Vhen the load intensity is represented by only a limited 

number of terms, i = 0,1,2, . . . . m j j ® 0,1,2, . . , . n, then 
the complete expansion takes the form

m n
p(x»y) " /^. Pi j 008 008 

fco j*0
(178)

where 8 i7txo «5nyo T , vPij ■ ab=YlJ cos a 008 —  ' (174)

for i • • • • ni 5 • • • • ii

Pio - bSii 003 0 J1 (—  ) a (175)

for i * • • • •



(176)oj acnj COS - . J 1 (
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no
b

for j * 1)2,3, * . • «il

and, finally,

Poo " ab (177)

(it may be noted that a similar analysis which uses odd 
trigonometric terms has been developed by Woinowsky - Krieger (59)t 
who with Timoshenko (15) also considered rectangular loading areas. )

Numerical Computation of the Loading Functions

Because of the extremely large amount of computation 

involved in obtaining the loading function, the use of an electronic 

digital computer is obviously essential for this study.

The programs which are developed are described below 

by means of flow diagrams and copies of the actual programs are 

given in Appendix B. In explaining the details of the programs 
use is made of the symbol comment n where n is any integer. Thus, 

in the text which follows, the symbol comment 5 accompanies the 

description of the block which follows a similar label in the 
program itself.

Before considering the programs associated with each of 
the three forms of loading function, a brief account is given of 
the computer installation available at the University of Leeds.
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The KDF-9 computer

The facility for computation which is available at the 
Leeds University Computing Laboratory is based upon a medium-sized 

digital computer, i.e. the English Electric Leo-Marconi KDF-9. One 

language through which instructions and information are presented 

to the computer is ALGOL 60(60,61) and the programs presented in 
this thesis are written in this language. This is convenient since 

programs written in ALGOL 60 can be run on many computers.

In order that a computer can execute the instructions 
contained in the program they must be translated from Algol into 

the machine language. This translation is attained with the aid 

of either the Whetstone or Kidsgrove compiler which are both 

machine programs permanently available to the computer. The Whetstone 

compiler is used during the development stage due to its more rapid 

translation speed while the Xidsgrove computer is used during the 

running of actual problems oh account of its much faster execution 
speed,

A machine language version of each program is established 
to avoid constant retranslation when many separate execution runs 
are to be made.

Algol programs which are tinder development, and problem 
data for running, are presented to the computer, through a reader, 

in the form of punched-hole paper tape. The main store of the
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Figure 11.‘ Flow diagram illustrating the major stages of..
■ : ‘  ̂ computation in obtaining a power series function

‘ " to describe a load intensity distribution in the 
" ' form of anCidealized circular wheel-load.

t
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computer which contains the program instructions and the space 

required for computation has had for most of the period of this 
research program a capacity of 16k (16 x  1024) words. Recently, 

the capacity has heen increased to 32K hut only the same store, 

approximately 16K, is still available to any one program.
Results obtained are first stored in the computer on magnetic 

tape and there, at a later and more convenient time, are output 

in the form of punched - hole paper tape or 'line printed' sheets 

of paper.

Limits of the truncated series

So far, the upper limits of the expansions representing 
the load intensity distribution have been expressed in terms of m-and 
n. Since, however, there is no reason to emphasise either co-ordinate 

direction, m will be assumed equal to n for the numerical computations 

discussed here.

Power series program

The following explanation of the prograSn entitled 'iTheel- 

Load Expressed as a Power Series' should be considered in conjunction 
with the flow diagram, shown in Figure 11 which illustrates the 

general sequence of operations.

The computation starts by first reading the data fcomment
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1 and 14]. This consists of* a title enclosed between brackets,
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i.e.<TITLE>, the length of the plate in the x-direction (a),

the width of the plate in the y-direction (b), the co-ordinates
of the centre of the circular load (x ,y ). the radius of theo o
circular load (c), the data grid elemental side length (kl), 

the multiplier (cl), the maximum index considered in the power 

expansion (n), a number chosen to exceed the number of data 
points likely to be created (number), the number of grid divisions 

in each co-ordinate direction (pp in the x-direction, qq in the 
y-direction),¡the number'of extra check points which are ofi • : 

special interest §tt) and, finally, the co-ordinates of each of 
those extra check points (xx,yy)i. Hence the data takes the form«

< TITLE > ' ! 7-'* ~ ' v

a»bfx0>y0ic;kljcifn|number$pp;qqjttj ‘ '

x ^ i y y ^  ' ■ ' ~ - ’ ■ ' : ;

xx2»yy2; "•■'7 r : : ‘ ’’ ' "■
*, .. r  • , .............  „ • ,, .

• *
• •

• •
• •

xxtt»yytt ^

The preparation and storing of the N data points now begins. 

These consist of the co-ordinates of each data point (x<j»y,j) and the 
intended value of the load intensity at that point (p<j). Refering 

to Figure 12, the first set of data points collected are those at



Figure 12. The division of the idealized load intensity
distribution of Figure 8 into.(a) a uniformly spaced 
set of data points within a square of side 4o centred 

about xQ,y , and (b) over the remainder of the plate a set 
of data points which.become more sparse as their distance 
from x ,y increases. This is in order to generate0 0 . j  '■ s

■ ' i ‘
data points for use in the power series representation 
of the idealized wheel-load.
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the nodal points of a grid, (elemental side length kl), set over 

a square area of side 4° which is placed symmetrically about the 

centre of the circular load fcomment 2]. Whether a data point 

value is 0 or l/jtc is determined from the criterion set out in 

equation (154)»

The second set of data points to be stored are those 
which lie outside this grid area but are still inside the limits 

of the plate, This remaining area is divided into quadrants by 

a pair of perpendicular axes, centred at the centre of the 
circular load and parallel to the co-ordinate directions, see 
Figure 12« As these data points cannot lie on the load, they all 
have zero intensity. The quadrants are dealt with in cL ockwise 

order, the quadrant containing the corner x=a, y=b being 

considered first [comment 3]. Data points are obtained by moving 
along the line y=yQ from the outer edge of the grid area tonterds 

the edge x=a. The distance between each successive data point is 

a multiple, cl, of the distance between the previous two data 
points, the first distance between successive data points, being 

kl.cl. This procedure for selecting data points is stopped at the 

last possible data point within the plate and finally one extra
4

data point is placed on the edge, x=a, of the plate. This technique is 

repeated to cover the area of the quadrant with the spacing in the y- 

direction between successive lines of the data points, parallel to the
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x-direction, "being governed by the multiplier cl. The remaining 

three quadrants are handled in a similar manner and , finally, N 
data points are obtained fcomment 4>5* and 6],

so that as the distance increases away from the centre of the load, 

data points become more sparse. This is necessary because the 

computer size limits the number of possible data points and hence, 

since the area around the load is of major interest, the data 
points are concentrated there.

Having generated the system of ii data points, the normal 
equations can now be set-up and solved. The normal equations,

where f = 0,1,2, . . . nj k = 0,1,2, . . . n,

are e in number, where e ■ (n+l)(n+l). Rewriting these equations 
in matrix form

The multiplier cl is chosen to be greater than -unity

A p *» B (179)

where A is the matrix of elements a .of valuest

(180)
d*l t “ 0)1)2; • • • • 6

with the row position s: s * (n+l)f + k + 1 (181)
and the column position tt t ■ (n+l)i + j + 1
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The column vector of constants B is defined by 

N ̂
 ̂ kf 1

)  Pd xd S B • • • f 6 (182)
d=l

and p is the eolumn vector of unknown power series coefficients, 

where the coefficients p ^  has a column position t.

Consider the matrix A, where

a0,0 a0,l *

al,0 al,l *

ae,0 ae,l

to be made-up of the following three partsi 

1. The upper triangular portion:

0,e

^ » e

e.e

a0,l a0,2 1a0,e

1,2 l,e

e-l,e
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2. The leading diagonal*

0,0

1,1
2,2

3. The lower triangular portion*

al,0

S 2,0  »2 ,1

* • •

* ♦ ♦ *
• • • • *

ae,0 ae,l * * ae,e-l

Since A is symmetric about the leading diagonal, only 

the upper triangular portion and the leading diagonal are set upj 
the lower triangular portion remains as zeros. For each possible 

combination of i^j,f.and k in the upper triangular portion and 

for the leading diagonal the value ag^ is determined from equation 

(180) [comment 10]• Similarly, the vector B is formed using 
equation (182) f comment 11].



The computer now proceeds to solve the system of normal

equations. The matrix is symmetric and is also called positive
Tdefinite, as the quadratic form p Ap is positive for any real 

Tvector p, where p is the transpose of p. This is proved in the 

following manner:
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e e
T,P Ap P P+& 4. s t st

s*0 t=0 
N

but ast / f ( * , y ) s  f(x,y)t from equation (180) 
cUl

Therefore p^Ap V t

N

X>
d=l

y)s

0 J L t=0 J

I ps 'f(x-y)8l 2> °
0 J

(184)

(185)

The method of solving the normal equations is based upon 
the square-root method (62) which is one of the most effect techniques 

for fully utilizing the symmetrical nature of the matrix A. Because 

of this symmetry, A can be expressed as the product of an upper 
triangular matrix G and its transpose G^, so that A = G^G. The 

elements of G are computed from those of A using the following
recurrance formulae:
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gu  - K i )1/2

glt " alt/gll t = 2,3

g3S - [ \ S  - C  
L v-1 f s = 2,3

r ^-1

g8t - U s t  gvs 
L V=1

gvt] /gss

gst “ ® ®here s> t

(186)

s = 3j • • • • ©

*fc « 2,3, • • • * ®

Each row of A is considered in turn and, therefore, in the program 

the computed values of g g  ̂replace those of ag  ̂fcomment 71«

The solution is now undertaken in two stages. First of
all a vector F of the sarnie order as p and B is introduced so that 

TGp - F and B - G F. Using the latter relationship, the elements 
of F are computed from

fi ■ V gu
[ 9̂ 1̂  *"l

^ S  "  ^  , ̂ V S  j / ^ s l
V » 1  J

S - 2,5, . e (187)

and the computed values replace those in B fcomment 8].

The second stage involves the hack substitution process 
using the relationship Gp ■> F. The terms of p, the unknown power 

series coefficients, are computed from the formulae

^e “  *e/gee
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t+1

and Pt • [ ft - ' ¿ T  ®tv Pv /gtt t - e-l,e-2, . . . .  1 (188)
Y*e

and then temporarily placed JnB fcomment 9]» They are afterwards 

placed in their own vector p.

The coefficients of the power series expansion of the load 
intensity distribution cure then output on the line printer, along 

with their i,j suffices \comment 12].

As the qualitative check on the accuracy of the power 
expansion, the value of the load intensity at each of several 
points over the area of’the-plate are next computed from equation 

(155) and output along withrtherco-ordinatesrof these points fcomment 
13]» The points fall into two groups;'firstly,'a grid system of 
points distributed over the plate'with pp divisibns in the x- 
direction and qq divisions in the y-direction-and, secondly, a 

number tt of points of particular interest with co-ordinates 
(xx, yy).

The final form of the output sheet is as follows*

I J COEFP

2 3
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j
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%
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Figure 1J. "Flow diagram illustrating the major stages of. , .
cpmputationtia obtaining.a shifted Chebyshev ;-.>m  

. ~ series-function to describe a^load intensity
,.i . ; distribution in .the form ,of an Idealized circular-,

~ *■ * v ‘ ‘ \

[.* ’ ‘ ; ,i ' * '• • '  ■ '  ̂ ■> ; r ‘ - 1 i , • ! o r ,  ^ *■ ' ■ ‘ 4
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-  155 -



-  156 -

X Y LOAD

♦
10 5 0.57103

Chebyshev polynomial program

The program developed to represent the load intensity 

distribution in terms of shifted Chebyshev polynomials and entitled 
'Wheel-Load Expressed as a Chebyshev Series' is based on the flow 
diagram appearing in Figure 13» This diagram indicates that the 

computer first accepts the data, which is in the following form 
fcomment 1 and 8]*

<TITLE>

a>t>?xo;yo;c;n;pp;<i<i;tt;

X X  ‘

(it should be noted that the symbols used above have the same 
connotation as before, in the power series program.)
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The co-ordinates of the tabular points (^»Sp) are 

next computed along Vlth values of the shifted Chebyshev arguments

fcomment 3]» Equations (163) and the relationships 

T*(X) - 1, T*(X) - 2X - 1
* * (189

Ti+1(X) « (4X-2) T* <X) - T* X(X)

are made use of in this connection. The first two relationships 

of equation (189) are obtained from considering the polynomial 

form of shifted Chebyshev polynomials and the latter relationship is 

derived from equation (106).^ The value of the load intensity at each 
of the tabular points is calculated using equation (166) fcomment 4l.

i Prom equation• (1 6 5) the shifted Chebyshev coefficients can 
now be computed fcomment 51. with the contribution from each a,(3 .

term being determined separately fcomment 2]. These coefficients are 

then finally output along with their suffices fcomment 6].

Again, a3 a check on the accuracy of the polynomial, 

expansion, the load intensities at several points over the plate aire 

computed from the expansion using equation (1 5 7) fcomment 7]. The 

check points are chosen in a similar manner to that which has been 
described for those in the power series program. The output sheet 

is also similar in form to that of the power series program.

Fourier series program

The flow diagram shown in Figure 14 illustrates the order

) and T . ( 0  for each tabular point and each value of s and t t B



t'

t

"Figure 14; ‘Flow diagram illustrating the major stages of

computation in obtaining a Fourier series function 
to describe a load intensity distribution in the 

- form of an idealized circular wheel-load.
, f
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of computation of this program which is entitled ’Y/heel-Load 

Expressed as a Fourier Series’.

This diagrsim illustrates how, as a first step, the data -

which have exactly the same form as that for the Chebyshev polynomial

program - are read fcomment 1 and 3]. The coefficient pQ0 is next

computed from equation (177) and output together with its suffices
("comment 4l. Then the coefficients, p., associated with equation1,0
(175) are calculated fcomment 3] and output fcomment 5~1. The Bessel 

function of order one is obtained (56) from

Ji «  - ¿ J i i
R*1

where the number of terms,considered is decided from the criterion that 
the difference^between values computed from R and R+l terms, expressed 

as a fraction of that computed from R terms, is less than 1.0^Q-12 

fcomment 2]. More exacting requirements can be introduced by replacing 

this limit in the program. The coefficients represented by equation

(176) and equation (174) are dealt with in a similar manner to p^Q 
fcomment 6].

By applying equation (178) a number of check points are 
then examined in an identical manner to those described in the 

previous two pro,prams. The final output sheet is also similar to 

those in the previous programs.

. \ R  v  1 + 2 R

(R+l)2 2 - ' ^19°)



Pigare 15. Three positions at which the idealized circular 
wheel-load is applied to the surface of the 

plate in order to compare the manner in which 
power, Chebyshev and Fourier series are able to 

represent this idealized load intensity distribution
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Comparison of the Loading Function Representations 

The loading cases chosen as a basis of comparison

In order that the three representations of the loading 

function can he compared it is necessary to choose as a basis of 

such a qualitative comparison a particular set of loading 
arrangements. In highway engineering there are three cases which 

are normally used as a basis of comparison in theoretical and 

experimental work; these are the centre, edge and corner loading 

cases shown in Figure 15. For this reason, and also because they 

provide a reasonable variety of,loading,.configurations based upon 

- a,circular load, the three cases are used in this thesis to compare 
the three series representations.

- f i. Particular values for the dimensions shown in Figure 15 

which are approximately representative of the proportions found in 
highway pavementsfare;

a - 20 units of length, b » 10 units of length and 

c - 0.5 units of length
\ 1

The ancillary data used in the computation are as follows»

kl m 0.08 units of length, cl - 1.15, n - 4t 
number - 2,000, pp ■ 10 and qq = 5»

along with a number of extra check points about the circular load.

The load intensity within the circular wheel-load thus equals 4/n.

Examining the representations individually.

In order to compare the surfaces describing the power,



Figure' 16. Three' surfaces describing the load intensity
distribution, as represented by power, Chebyshev and 
Fourier , series, ‘superimposed on the actual load 
intensity distribution of.the.idealized wheel- 

" - load in the corner position; ;
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Legend; Actual load intensity distribution __ — _ _ _ _ _ _ _ _ _ _
Power series sur face  - - - - - - - - - - - - -- ----------------
Chebyshev series surface - - - - - - - - - - -— --- - - - - - - - - - - - - - - -
Fourier series s u r f a c e --- - - - - - - - - - - - - - - - - - - - - -------
Load intensity within circle - M i l  weight units/length units?
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Chebyshev and Fourier series representations of a particular load 

intensity distribution, they are superimposed upon that loading 

configuration and shown in diagrammatic form. Thus Figures 16,

17 and 18 show the surfaces for the corner, edge and centre cases, 
respectively.

Studying first the surfaces resulting from the power 
series expansions it can be seen that there are several points in 
each of the three loading arrangements where the surface moves away 
from the datum plane. The reason for this is alack of constraint 
on the power series at those points due to the.increased sparseness 
of. data points at such distances from the loading area. V/hile 
increasing the number of data points, in this region improves the 
surface at those points it also results in a poorer representation 
around the circular load, which is the point of major interest.

As the power series argument is non-oscillatory in nature 
it increases indefinitely in magnitude as the independent variables 
grow large. The resulting inability of the expansion to represent 
the given load intensity distribution for large values of the 
independent variables is important. For this reason, there may be 
advantages in placing the origin of the co-ordinate system at the 
centre of the circular load, which is the main region of interest, 
instead of at some distance from it as in the present analysis.

In order to check on this possibility, the centre loading



Figuré 17» Two surfaces describing the load intensity

* distribution, as represented by power and Fourier 
series,' superimposed on the actual load intensity 
distribution of the idealized wheel-load in the , 

edge position* ' ■ .
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Power series surface- ---------- - - - - - - - - - - - - - - - - - - -------
Fourier series surface: —  — ----  ---- ----------
Load intensity within circle = 1/Tt weight units / length units^



case was further examined. Thus, Figure 19 shows the profile obtained 

for the load intensity distribution on the vertical plane parallel 

to the x-axis and passing through the centre of the circular load. 
Here, for n » 4, the surface resulting from the origin being at the 

centre of the circular load is compared with that resulting from the 

origin being at the left-hand edge of the plate, and, as may be seen, 
the two surfaces are identical. Therefore', for the distance which 

any part of the plate is likely to be from the origin, there is no 

advantage in having the origin at any point other than the corner of 
: the plate. The reason is thati relative to infinity, the maximum 

values of the independent variables are1 still close to zero no matter 
where the origin is on the plate.

In the Chebyshev expansions, and where n = 4 f n0 surface

function appears in any of the three cases, since there is no tabular

point (T) ,£ ) that is a zero point and lies within the loading circle, oc p
This results in a load intensity distribution of zero being described 

by the expansion for all points over the area of the plate. This 

difficulty can be overcome by increasing the number of terms in the 
series thereby increasing the total number of zero points with the 

consequent increase in the likelihood of a zero point lying within 
the loading circle.

Increasing the value of n from 4 to 6 results in a non-zero 
surface being formed for the corner case but not for the other two 

cases. The reason for this difference is related to the form of



Figure 18. . Two surfaces describing the load intensity, distribution, 
as represented by power and Fourier series, superimposed 

■ on the actual load, intensity distribution of the idealized 

\ wheel-load in the centre position.
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Legend: Actual load intensity distribution .... — -   ... —
Power series surface ------ ------- —  ----------- - - - - - - -
Fourier series surface ----------- - —  —  —  —
Load intensity within circle =1/11 weight units/length uni t s?
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equation (l63) - it determines the zero points - which results 

in a predominance of zero points near the origin of the co-ordinate 
system. In the corner loading case as compared with the centre and 

edge cases, this increases the possibility of obtaining a zero 

point which lies within the loading circle.

No such difficulties arise with the Fourier series 

expansion as this is arrived at by the consideration of a continuous 

surface and not a set of discrete tabular points as in the Chebyshev 
expansion. In each of the three loading cases.illustrated in Figures 
16, 17 and 18 the Fourier Series representation can be seen to 
represent, to a similar degree, each.region of the load intensity 
distribution even though it does not respond very much to the load 

intensity distribution within'the circular; load. :

Comparing the representations * ..

None of the three expansions is capable of representing 

accurately the discontinuities of the load intensity distribution 

at the circular edge. This capability can be improved, however by 
including more terms in each of the truncated series, although it 

is theoretically impossible for a power series to describe accurately 

a discontinuity. To illustrate this consider Figure 20 which shows 

the one-dimensional surface for the plane parallel to the x-axis 

passing through the centre of the load in the centre loading case, 
for various values of n in the truncated power series expansion. In



Figure 19. The variation of the'load intensity distribution 

. on the vertical plane parallel to the x-axis ■ 
of the co-ordinate system and passing through 
the centre of the circular load in the centre­

loading aase, due to the movement of the origin 
from the left-hand edge of the plate to the centre
of the circular load
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Offset co ordinates
0 2 k 6 8 10

Central co ordinates
-10 -8 -6 -L -2 0

Legend: Origin
Origin
Actual

at left-hand edge of plate 
at centre of circular load 
load intensity distribution:



12 H 16 18 20

2 U 6 8 10

o
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this figure, it can be seen that, for a limited increase in the 
number of terms, the discontinuities of the circular load are 

represented to a much greater degree of accuracy. Similar results 

apply to the Fourier and Chebyshev expansions.

Where there is zero load intensity i.e. over the 

remainder of the plate, the surfaces are often wave-like in 

form. If, however, the value of n in all three series expansions 
is increased then this profile will appear to decrease, in the sense 

that the number-of-ripples will-increase and eventually effectively 
merge.

Even allowing for the increased value of n to 6, the 

Chebyshev expansion responds, in the corner case^ far more readily 
to the non-zero load intensity'distribution within the circle than 
do the other two expansions. Only one zero point falls within the 

circular load i.e. at the co-ordinates (0.72, 0.J6), and at this 

point the surface has a value of 1.8 instead of the actual intensity 

value of 1.27. This greater response may be attributed to the 

criterion used to minimize the difference between the computed 
surface and the actual load intensity distribution.

The Chebyshev polynomial expansion relies upon the 

criterion that the maximum error occurring at any one zero point 
over the plate should be a minimum, whereas the Fourier and power 

series each uses the criterion that the square of the total error

over the plate should be a minimum. Since the major part of the load



Figure 20. The variation of the load intensity distribution on the 
vertical plane parallel to the x-axis of the 

co-ordinate system and passing through the centre 
of the circular load in the centre-loading case, 

due to the limit, n, of,the truncated power series, 

having values of 4» 9 and 12*
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Offset coordinates
0 2 A 6 8 10

Legend: Actual load intensity distribution:
n = U 
n = 8: 
n = 12=
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intensity distribution is zero, then the expansion based on the 
square of the error being a minimum tends to follow the datum 

plane even near the loading circle and, as can be seen from 

Figures 16, 17 and 18, responds to the non-zero intensity to a 

limited degree. On the other hand, the Chebyshev expansion at 

the zero point (0.72, O.36) attains the actual load intensity 
distribution to a closer degree than either of the other series 

as it is here that - compared with the datum surface, which 

would be accurately represented by a Chebyshev expansion with all 

coefficients zero - the error is very likely to be the limiting 

maximum error for the whole plate.

The reason why the load intensity continues to increase 
from the centre of the load to the nearest corner of the plate is 
that the load intensity is undefined between the tabular point 

(0.72, O.36) and the corner of the plate. This difficulty can, 

however, be overcome by increasing the number of terms in the series.

A major advantage of the Fourier series, over the other 

two series, is that it has no bias in accuracy with respect to 
any region of the load intensity distribution. This is because of 

the equal ripple wave form of its cosine argument.' The Chebyshev 

polynomial expansion, on the other hand, has a concentration of 
zero points near both the origin and the corner of the plate which 

is furthest from the origin and, therefore, it represents to a 

better degree the load intensity distribution in these regions.
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It may "be noted that the power series expansion is theoretically 
only perfectly accurate at the origin although this point has "been 

shown not to he relevant to the size of plate considered here.

Discussion

In this chapter, the power, Chebyshev and Fourier series 

representations of the applied loads, with particular reference to 

circular wheel-loads, have been formulated, programed and compared 
on a qualitative basis, jtfone of these representations was, however, 

found to describe accurately the discontinuous load intensity 

distribution for the size of truncated series which was considered.

While the Chebyshev polynomial expansion was found to have 

serious drawbacks with respect to its ability to represent to any 

degree some loading configurations, it was shown that the difficulty 
could be overcome by increasing the number of terms in the polynomial 
expansion. While this was then shown to be comparatively successful 

in representing the load intensity distribution, the computer space 

necessary for solving the associated general simultaneous 

algebraic equations (125 to 1J0) is prohibitive on account of the 
available computer facility.

The Fourier series expansion utilized is based on a 

continuous surface and not, as in the case of the other two forms 

of expansion, on a set of discrete data points. For this reason 

it was possible to show that the Fourier series follows the datum
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plane over the unloaded portion of the plate to a far better degree 
than does either the power series or the Chebyshev series rhich are 

both undefined in areas between the data and tabular points.

The power series expansion for the case of discontinuous 
load distributions was shown not to be subject to abrupt surface 

undulations around the load because of the greater concentration 
of data points in that region. The remainder of the plate does not 
have the same concentration of data points because the region around 

the circular load is of major interest and the computer time 
limitations did not enable more data points to be considered.

Better computer facilities would have enabled larger 

truncated power series expansions to be considered. Increases 
in the number of terms in a truncated series have been shown to 
improve the representation of the load intensity distribution even 

when such increases are small.
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COMPUTATION OP THE PAVEMENT STRESSES AND DEFORMATIONS

The pavement stresses and deformations are now computed 

from the analysis of the principal boundary value problem in which 

contact between the slab and foundation is preserved during all 

modes of interface displacement. The limitations in representing 
the load intensity distribution in terms of Chebyshev polynomials 

and the inability of the chosen Fourier series representations to 

furnish a non-trivial solution to the boundary value problem indicate 

the need to concentrate on the further development of the power 

series solution.

As has been indicated previ ously the number of terms 
required by the series p in order to describe the continuous surface 
which best simulates an arbitrary load intensity distribution may be 

quite high. Similar requirements may also apply to a load intensity 
distribution which is represented explicitly in terms of co-ordirate 

powers.'' Consequently, the number of simultaneous equations generated 

from the general ijth equations, equations (96 to 101), may also be 
large. In order to solve these equations a computer is again necessary.

In order to obtain a solution it is now essential to 

consider the set of equations in the general matrix form

A x = b (191)

where x is the vector of unknown series-coefficients, b is the vector
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of constants and A is the matrix of parameters which are functions of the 

properties and dimensions of the slab and foundation and also of the values 
of i and j of equations (96 to 101) which are relevant to each term.

The vector b consists of either zeros or known functions of the 

coefficients of p and the major part of its elements are zero. The 

matrix A is extremely sparse and is non-symmetric.

The determination of the stresses and deformations in a 

slab under the applied load falls conveniently into three parts.
Firstly, there is the setting-up of the matrix A and the vector b; 

secondly, the solution of this system of equations; and, thirdly, 
the computation of stresses, strains and deflections from the vector 
x and the loading series p. Furthermore, in order that the maximum 

amount of computer space and time is retained for the major portion 
of the computation, which is the solution of the simultaneous equations, 
programming is split into three separate parts, each of which performs 

one of the above three functions. The following is a brief description 

of the three programs and of their relevant mathematical theory. (A 

copy of each of these three programs appears in Appendix C).

Setting-up the Algebraic Foim of the Differential Equations 

The arrangement of the simultaneous equations

The creation of the simultaneous equations (191) from the 

general equations (96 to 101) is based upon a system of reference 

numbers. These numbers refer to each general coefficient, e.g. V
Xi-l.J
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in equation^ (96),' and since there are fifty two general coefficients 
in the system of general equations, these numbers run from one to 

fifty two. The general coefficients to which these numbers refer are 

best indicated by rewriting equations (96 to 101) and replacing the 

coefficients by their relevant reference numbers:

r(i+l)(a[l]-[2])+sr(j+l)(b[3]-[4])-(i+l)(i+2)[5]-8(d+l)(j+2)[6]

-t(a[7]-[8])-2j£ [9] - TCa>tj
8  J (192)

r(d+l)(b[lO]-[U])+sr(i+l)(a[l2]-[15])-(j+l)(j+2)[l4]-s(i+l)(i+2)[l5]

- t ( b [ i 6 ] - E L 7 ] ) - 2 j £  [ i s ]  -  T C f p ^  '■ ■ 1 “  ‘ ....... ;
... ... S (193)

-r(j+l)(a[l9]-[20])-r(i+l)(b[2l]-[22])+2(i+l)(j+l)[23] 

+m(ab[24]-a[25]-b[26]+[27])« 0 (194)

(i+l)(a[28]-^9])+(j+l)(ab[30]-b[3l]-a[32]+[33])

-(a[34]-[35]) - 0 (195)

(j+l)(b[36]-[37])+(i+l)(ab[38]-a[39j-fc[40]+[4l])

-(b[42]-[43j) - 0 (196)

- ( i +l)(a[44M 45])-(j+ l)(t[46]-E l7])4  [48] - S  (a[49]-&0])o o
-^[5i]-[52])-cPlj

(197)

The functions which multiply each general coefficient are 
refered to as multipliers and it is these multipliers which furnish 

the values in the matrix A. The foim which this matrix takes is shown



Figure 21. Matrix form of the system of algebraic equations
generated from equations (96 to 101) for the power 

.series solution of the mathematical model.
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in Figure 21. The matrix is divided horizontally into six sections; 

each section containing the equations generated from a particular 

general equation. Running down the matrix A, the number of equations 
KK occurring before a particular section is expressed in the column 

in terms of and Bg which are functions of the maximum

power n of the p series. In each section the simultaneous equations 
are arranged vertically in ijth order, i.e. 00, 01, . . . .  ,10,11,

• • . . , etc. Thus the position, r, which a simultaneous equation 
has vertically is given by

r = KK + (HH+1) i + j + 1

where HH is the maximum value of j for each section (see Figure 21).

The matrix is also divided vertically into six sections,
each section of which contains the coefficients of one of the

dependent series. These sections are arranged in the order shown, the
only requirement being that the main diagonal elements of the H -

series should also be the main diagonal elements of equation (98).

Running across A from the left, the number of coefficients occurring

before a particular section is indicated in the row MM in terms of

and Eg which are functions of the maximum power n of

the p series. In each part, the dependent coefficients are arranged
horizontally in order of their suffices taken in rows, e.g. Vx ,

00
V t  . . .  Y , V , V , . . . .  V , eto. Thus, the position,

01 x0n *10 X11 xln
u, along the horizontal which a coefficient with suffices s ,t takes . . . m m
is given by
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u - MM + (LL + l)s + t + 1

where LL is the maximum value of sm for each dependent series (see 
Figure 21). To create the multiplier associated with each dependent 

coefficient, the range of substitution of i and j in the general 
coefficient is equal to that of the relevant general ijth equation, 
with the limitation that no multiplier should be considered which is 

associated with a dependent coefficient lying outside the limits of 
the particular dependent truncated series.

AA BB cc DD EE FF GG HH kx U l 20L i NN
1 0 n 0 n Q 0 n bi n B1 +ra (i + l)
2 1 n 0 n -1 0 n B. n B1 -r (i + 1)
3 0 n 0 n 0 0 n Bx n B2 srb (j + l)
b 0 n 1 n 0 —1 n BX n • b 2 -sr (j + l)
3 0 n-2 0 n 2 0 n BX n *6 -Ci + l)(i + 2)
6 0 n 0 n-2 0 2 n B1 n B6 -s (j +l)(j + 2)
7 1 n 0 n -1 0 n B1 n b i* -at
8 2 n 0 n -2 0 n B1 n t
9 0 n 0 n 0 0 n B1 n B6 Tkf/d

10 0 n 0 n 0 0 n V - n % rb (j + 1)
11 0 n 1 n ,0 - 1 n b2 n b 2 -r (j + 1)
12 0 n 0 n 0 0 n b 2 n' B1 sra (i + l)
13 1 n 0 n -1 0 n B2 n B1 -sr (i + l)
lb 0 n 0 n-2 0 2 n B1 n b 6 -(j + l)(j + 2)
15 0 n-2 0 n 2 0 n B2 n b 6 -S(i + l)(i + 2)
16' 0 n 1 n 0 -1 n b2 n b5 -tb
17 0 n 2 n 0 -2 n B2 n b5 t
18 0 n 0 n 0 0 n B2 n b6 Tkf/d
19 1 n-1 0 n-1 -1 1 n-1 B3 n b i -ra (j + l)
20 2 n-1- 0 n-1 -2 1 n-1 B3 n bi r (j + 1)

Continued overleaf
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of the algebraic equations of the powër series solution.
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Table 5 shows the information required, for the creation of 
each non-zero element of the matrix A, i.e. each multiplier. The 

column AA lists the reference numbers, thus relating the other 

columns to the fifty two general coefficients. The columns, BB, £C, 

DD, and EE contain the range of substitution of the ij suffices of 

each general coefficient e.g. the range of substitution of i and j 

in V ; these are minimum i, minimum j, maximum i, and maximum j ,
i-l.J

respectively. The columns FF and GG list the adjustments to each
i and j required for each, general coefficient in order to determine

the suffix s ,t ' e.g. - 1 and 0 in V v . 1 The next four columns 
m m  xi-l,j

list the values of HH, KK, LL and MM.in that order..; The last column 
M  contains.the algebraic form of. the multiplier associated with each 

general coefficient) some of these are functions' of i ahd j.

Thus the non-zero element ei 
of NN and a position obtained from

r,u of the matrix A has a value

r - KK + (HH + 1) i + j  + 1  

u - MM + (LL + 1) (i + PP) + (j + GG) + 1

( 198)

the most efficient manner of gathering the non-zero elements of the 

matrix is by considering all the multipliers associated with each 
general coefficient,the-limits of substitution of i and j being taken 

from the columns BB, CC, DD and EE.

The elements of the vector of constants b are only non-zero 

in the case of the general equations (96, 97 and 101). The value of



t

Figure 22. Flow diagram of the major stages of the .
" - computation involved in ; the setting-up of . , ■
< i the system of algebraic;simultaneous .

-equations generated from equations (96 to 101) 
in the power .series solution o£ the ( .
mathematical,model.

- r  t  -i 4 *
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continued overleaf:
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Continued from previous pages

| Compute the terms of A which are dependent on i and j

t| Output the number of equations on paper tape

t
Output the number of non-zero terms of A on paper tape

•Output the matrix positions of the non-zero terms of A on paper tape

Output the value of the non-zero terms of A on paper tape

r r  =
Stop
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these elements are simple multiples of p ^  for a particular ijth 

equation.

The program

This description of the program entitled 'Setting-up the 

Equations' should he read in conjunction with the flow diagram 

appearing in Figure 22, this shows the general sequence of operations 
for which the program is written.

As may he seen from the figure, the problem data are first 

read; these consist of a title enclosed between brackets, <TITLE>, 
the length of the plate (a), the width of the plate (b), the maximum 

power occurring in the truncated power series describing the.load 
intensity distribution (n), the thickness of the plate (h), Poisson's 
ratio for the plate (|i), the modulus of elasticity for the plate (e ), 
the modulus of subgrade reaction of the foundation (k) and the matrix 

of coefficients of the power series describing the load intensity

distribution, taken in rows; . . . .  Pon,P10’Pll.......Pin’
etc., [comment 1, 2 and 20]. Thus the data take the form;

<TITLE >

ajbjn;h;n;Ejkj

p00,p 01* *' ' • p0n*

P10?P11; * * * p lnV 
• # • • •

• • • • •

PnO;pnl’ * ' * Pn n ; -*■
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In the case of an explicitly defined polynomial function 

describing the load intensity distribution, the truncated power 

series is the series which, at least, includes all the coefficients 

of the polynomial function, the remaining coefficients in the 
truncated series being equal to zero. This system enables the 

maximum number of terms to be used for the description of the 

dependent variables, and the same program to be used for both an 

explicitly and approximately described applied load.

Computation begins with the determination of the values 
defined by equation (56) and the six possible values IOC and MM f comment *

5 and 4]. The non-zero values of S3, CC and EE, DI), FP GG, HH and LI,
KK and MM are then computed fcomment 5* 6, 7» 8» 9» 10» 11» and 12, 
respectively]. The constant terms of NIT axe next calculated fcomment lj] 
after which the number of non-zero multipliers in the matrix A is 
determined [comment 14].

The vector of constants b is calculated from the loading 
series using the general form of the right-hand side of equations 

(96 to 101) fcomment 15]. Each non-zero multiplier of the matrix A 

is next computed, along with its elemental position (r, u) fcomment 

16]J those multipliers which are independent of i and j  are considered 

first, followed by the dependent multipliers [comment 17 and 18].

The number of equations, the number of non-zero multipliers, 

the b vector and the non-zero multipliers along with their positions 

are finally output onto punch-hole paper tape fcomment 19]» and this is
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preserved for use in the next program i.e. for the solution of the 

algebraic equations.

Solution of the Algebraic Equations 

The consideration of methods of solution

As stated before the matrix A is extremely sparse and 

hence a method of solution which processes only the non-zero terms 

of A can save a great deal of computer storage space. Iterative methods 
of solution lend themselves to this idea, since only the non-zero terms 

contribute to the residual, b - Ax and thus the zero coefficients need 
not be processed. The equation is satisfied when the residual is 
zero. After initially making an arbitrary approximation to the vector 

of unknowns x each subsequent estimation of x uses the previous residual 
to estimate the values of the unknowns, until after repeated estimations 
the residual reaches zero and the correct x is obtained.

In the majority of iterative methods, it is only after an 

infinite number_of iterations have been carried out that the residual 

can possihly reach zero, although after a finite number of iterations 

a good approximation of the true value of x can be obtained. An 
exception to the iterative techniques which have this drawback is the 

method of conjugate gradients (65) which, theoretically, is able to 

obtain the correct solution after Q+l iterations, where Q is the 
number of equations. This method also has the advantage that the 

elements of A can be processed in any order. Thus elements which are
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formed from the same combination of parameters can be treated as a 

group even though they appear in different equations and thus can then 

be generated in an economical manner.

Because of these advantages which allow large systems of 

equations to be solved, this method of solution has been examined in 

detail to ascertain its potential for the present problem. However 
the method, when applied to this problem, was found not to converge 

to a solution after Q+l iterations. This was still true after 2(Q+l) 

iterations and better initial approximations to x did not help. Thus 

it appears that for this system of equations the method, as at present 

programmed, does not converge to the solution in a stable and rapid 
manner. For this reason the method is not considered further.

The direct methods of solution which can be relied upon to 

give a solution for x are now examined, although the use of such 
methods is wasteful in computer space. The first difficulty which 

arises in their application to the present problem is that zeros 

appear on the leading diagonal of the matrix A. This can be 
overcome by premultiplying each side of the system of equations by 

the transpose of A; thus

AT A x * AT b (199)
Twhere A is the transpose of A. This system of equations not only 

has the same solution as A x = b but has no zeros on the leading 

diagonal$ the only obvious requirement on A is that at least one element
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in each row of A is non-zero. Another consequence of premultiplying 
T Tby A is that A A is a symmetric matrix and so the square-root 

method of solution is suitable for solving the new system of equations.

TBecause A A is non-positive definite it may turn out that 

the root expression in the square-root method contains a negative term. 

However, this does not produce basic difficulties since the arithmetic 

operations in the case of imaginary numbers are identical to those 
of real numbers. A tracer is introduced which simply notes whether 

the term is negative and, on taking the square-root, holds.the . 

imaginary number (-1)^^ separately so that all numbers which are 
subsequently, acted upon by this diagpnal term are.altered accordingly. 
Then the solution for x, which is made up ofjreal numbers, may be 
obtained. . j - . r <• ■ r •; -• ... ;;t

As there is also a possibility of a diagonal term being 
close to zero, the elements of A and b are scaled up by a factor of 

1.0 x 10 ^ in order to avoid any chance of dividing, in the square- 
root method, by a number close to zero.

The program

The output on paper tape from the previous program, ’Setting-up 

the Equations’, is used as the data for the present program which 
is entitled ’Solving the Equations'; the flow diagram for this program 

appears in Figure 23«



• J .  t

Figure 23. Flow diagram of the major stages of
■ computation involved in solving the system

of algebraic simultaneous equations generated 
' from equations (96 to 101) in the power series 

solution of the mathematical model.

-5  * \
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The program begins by reading in the data, which consiste of 

a title between brackets<and> , the number of equations, the number of 
non-zero multipliers, the vector of constants b, and the non-zero 

multipliers along with their matrix positions fcomment 1 and j]» The 

non-zero multipliers and the b vector are all multipliedly 1.0 x 1 0 ^  

on entry to the program.

The first stage in the computation is the premultiplication 
T Tof A by its transpose A . Letting the new matrix A A be represented 

by C, then the element c.. of the matrix C is determined from

Q
°ij £k=l lik 'hc.j ( 200)

where Q is the number of equations, a ^  is an element of A and is
T tan element of- A . Since a^k ■ then

Êk=l \ i  akj ( 201)

Noting that a ^  a ^  = a ^  a ^  i.e., that c ^  = c^, then, 

since £ is symmetric, only the upper triangular portion and the leading 

diagonal need be stored. Since the non-zero multipliers of A alone 

contribute to the elements of C, only their contribution to £  need be 
considered. Because two elements of A multiplied together, a ^ a ^  » 

only contribute to c ^  when their row counters, k, are equal, each row 

counter of the non-zero multipliers of A is compared to every otherj
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then if they are equal, the two elements are multiplied together,
a ^  a ^  , and added to the element which is originally zero.

In order to avoid multiplying two multipliers together 

twice - one contributing to the upper triangular portion and the other 
to the lower triangular portion of C - only multipliers which have not 

been multiplied together previously are considered and if j> i then 

c . is contributed to c..j if j ̂ i, then c . is added to c...

Because the saving of computer space is so important and

the lower triangular portion of C contains only zeros, the upper

triangular portion and the leading diagonal are placed column-wise
in a column vector G* such that the element c.. has a position t in-  c
the column vector, where:

t0 - i + C(3-l)j/2] (202)

The sequence of operations concerned with the formation of
T »A A in £  is then carried out in a compact manner fcomment 4]* After

T _ -|this the computer forms A b in the column vector H | comment 5]» The
element h^ of H is determined from

Q
hi bk

or, applying - a^,
Q

aki \
k=l

(203)
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The computer is then able to solve the system of equations 

C x = H (204)

using the square-root method. This does not differ basically from its 

use previously in the solution of the normal equations, except that 

each term of £  must be sought in £* and the possibility of C being non­

positive definite must be guarded against fcomment 2].

After the solution for the vector of unknown power series

coefficients is obtained the coefficients are then printed out. The

order of printing is: V , V , H, M , M and w . The coefficientsx y x y o
of a particular unknown are printed in row-wise order, i.e. V ,

X00
V , . . . . V  , V , V , . . . . V , etc. These coefficients

01 x0n X10 X11 X ln
along with the coefficients of the loading function are then available
to determine the stresses, strains and deflections of the slab resting
on an elastic foundation.

Determination of Stresses, Strains and Deflections.

Stresses, strains and deflections of interest.

Having solved for the dependent variables, the final stage 
in computation is the evaluation of any required results. In the 

horizontal plane of the upper surface of the slab, the maximum 

principal stress (tfmax)» tie minimum principal stress the

maximum principal strain (£max)> the minimum principal strain (£m^n)
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and the direction of the maximum principal stress and strain (0 ), are 

all of interest. The upper surface of the slab, rather than the lower 

surface, is chosen simply on an arbitrary basis - the lower surface 

stresses and strains are of the same magnitude but the opposite sign.

The interior stresses are not considered as they are less in magnitude 

and, therefore, less critical than those on the surface.

The dependent variable concerned with deflection is the 

weighted average displacement, wQ, which does not itself have any 

practical significance. ‘ It is not possible to compute the. actual: 

transverse displacement w :from w q, other than by assuming the form 

of the variation of w through the thickness of the slab. This is 
because the analysis of the three-dimensional slab has been transformed 
into a two-dimensional problem by assumptions on the variation of 

stresses in the transverse direction. i  The simplest assumption is to 
neglect altogether the effect of transverse compression on the transverse 

displacements, i.e.

w - w0* (x,y) (205)

and then substituting into the first of equations (26) and integrating 
gives

wo " wo

or w q * w •* w q (206)

where w^ is the transverse displacement of the plate with the effect 

of transverse compression neglected. Thus, the displacement computed



Figure 24. Flow diagram of'the' ¡major stages of the . —  •
' computation-involved in calculating the.... .. 

t (stresses, strains and deflections in the plate 

■ from the . power series describing the . ■- t
; stress resultants, weighted average defleotion

- ■ - - \ , l • and load intensity distribution, v-
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| Start

j Print out the title of the problem

continued overleaf
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continued from previous pages



-  196 -
from the w q series is the transverse displacement of the slab, with 

transverse compression, neglected,- and is referred to as the 'plate 
deflection', w^,

A possibility still remains of observing the effect of 

transverse compression on the .deflection by considering the deflection 

of the lower surface of the slab. The deflection of this surface, 

after neglecting transverse compression, is simply the plate deflection. 

The deflection with this effect included however is w, ( /  w ) and, 

this can be determined from w q by re-arranging equation (53) into the 
form

W1 “ i 1 * 0 " T(Mx+*iy)+^,p] (207)

where g - (l + — |), T - ^  and D -

The load intensity, and the above stresses, strains 
and deflections are of interest at many points over the surface of the 

slab. The program which computes these values at any point on the 

surface of the slab is now described.

The program

The program which is now to be described is entitled 

'Determination of Stresses, Strains and Deflections'. The flow diagram 

of this computation is shown in Figure 24.

The program begins by accepting the data. First is a title 

enclosed between brackets<and>« Secondly the dimensions and 

elastic properties of the platet the length (a), the width (b), the
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thickness (h), Poisson's ratio (p), and the modulus of elasticity 

(E) are read. Thirdly the highest power of the truncated power 

series describing the load intensity distribution (n) is input. 

Fourthly, the number of grid divisions in the x-direction and y- 

direction (pp and qq respectively), which are understood in the same 

sense as before, are read. Fifthly, the number of extra points on 

the slab of special interest (tt) completes this section of the data 
to be read fcomment l].

The data then continue with the coefficients of the truncated 
series, taken in rows, in the following order* p, wq, Mx, and H 

icomment 9]* Finally, the co-ordinates of the extra points of interest 
(xx> yy) are read [comment 10]. Thus the data take the form

< TITLE >

a;b;h*,n;E;k;n;pp;qq;tt;

P00J P01* • • • pCh!

P10V Pll* . • • p ln*
• 0 . • • 0

Pn0* Pnl* . • • P- tn n
similarly w0

11 MX
11 M

y
11 H

XV »  ^ 1»
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xx2; yy2»

xxtt* ™ tt’

At each co-ordinate point of interest the load intensity (p), 
plate deflection (w ), x-direction bending moment ( M ), y-direction bend- 

ing moment (M ) and twisting moment (H) are computed from the power
y

series expansions fcomment 2]* The slab-foundation interface deflection

(w^) is then computed fcomment 3]> after which the direct stresses

<J , if and shearing stresses -r are calculated from equations (21)A xy
f comment 4-1 and the principal stresses from ’ ; f,: .• ’

C +<J
+ 7 [((Jv+cyv)2+4 ^ 2f /2 ;f‘max 2( 2 L' x y '  ‘ xy

_ 1 [(c «  )2*4 T 2]l/2 9 LV x y' xy J
(208)

min 2 ~ 2

These principal stresses are printed out .along with the co-ordinates

of the point, the load intensity, plate deflection, interface deflection 
%

and the principal strains fcomment 5]« The principal strains are com­
puted from

max

'min

a -p<J . max min
E

<3 . -ucr m m  max
(209)

E

The principal direction (j^) is finally computed fcomment 6] and printed 
out using
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•
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•
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•
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•
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•
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*
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•
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0 . 8

•

0 . 8

•
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•
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•
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•
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-3.29015*
•
•

•
•

24.0

•
•

1 2 . 0

•
•

2.5358o »-7

•
3 .3 0 8 2 6 » 4

9

3 .2 9 9 7 6 » 4

•
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MINIMUM
STRESS

MAXIMUM
STRAIN

MINIMUM
STRAIN

PRINCIPAL
DIRECTION

0.00000 0.00000 O.ÜÜOOO

0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 O.ÜÜOOO 0.00000
0.00000 0.00000 0.00000

-7.43474»-1 3.4l752»-4

•

-8.21518»-4 

•
O.ÜÜOOO

•

-7.57p33«-i

•
3.48260»-4

•
-8.37164»-!*

•

-9.00000»
-1.17512» 0 1 .766l4»-4 

•
-1.14724»-3 

•
-4.79364»

•

0.00^00

•
•

0.00000

•
»

0.00000

•
•

1

1
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2K  - 1“ ' 1 t!V (n )] ( 210)

where

and

if Txy “ 0» then " 0i
if (d -<? )=0, then there is no one principal direction»

 ̂ y

lf (ax_<Jy ^ 0» then =

if (V ' V * 0» then ^p “ “ 90 »
where $  is measured in degrees from the x-axis in a clockwise 

direction.

The points for which these values are determined fall into 

two groups. Firstly, they fall within a grid system of points over 
the plate with pp divisions in the x-direction and qq divisions in the 
y-direction fcomment 7]« Also, there are a number of points of 

particular interest, with co-ordinates (xx,yy), which form the second 

group fcomment 8]. The final form of the printed output is shown in 

Figure 25.

Discussion

In this chapter, programs have been described^ which upon 
insertion of the dimensions and elastic properties of the slab and 
foundation, and the truncated power series describing the load 

intensity distribution over the surface of the slab, determine the 
stresses, strains and deflections at any point on the slab.

The programming has been designed to make the most efficient 
use of the available computer space which, in the case of the installation
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of the University of Leeds, is 17,000 words. Splitting the 

programming into three parts has increased considerably the number 

of algebraic simultaneous equations which can be solved by a 

computer. This maximum number of simultaneous equations, with the 

Leeds installation, is generated when the limit, n, of the truncated 
power series describing the load intensity distribution^is four.
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A LIMITED EXPERIMENTAL APPLICATION OP THE STRUCTURAL ANALYSIS

The examination of a proposed theoretical analysis of an 

idealized structural system by experiment is intended usually to 
determine the degree of accuracy with which the analysis computes 

the stresses and deformations in that system and hence to decide the 

limitations of the analysis.

In the present investigation certain requirements, namely 

the available computer space and computer time, limited the extent 

to which the analysis of the idealized pavement/subgrade (plate/ 
foundation) system could be examined.'. Thus, in order to.examine the 

analysis," even to only a limited degree,.the experimental investigation 

had to be so designed so as to minimise the effect of those external 
restrictions; at the same time it had to represent as closely as 

possible the idealized pavement/subgrade system. As a result, only 

experimental deflection values were obtained for comparison with the 

results of the analysis. (The reason for this is made clear later 

in this chapter).

The use of a laboratory model enabled a close control to 
be kept over the envirofflantal conditions and the representation of 

the boundary conditions. Due to limitations of the available computer 

facilities, however, it was considered that no useful purpose could be 

served in carrying out an exhaustive program of experimental work and 

so the number of laboratory models was kept to the minimum consistant 
with obtaining the maximum useful information.



Figure 26, Experimental 'apparatus for loading and measuring 
the deflection of the plate/foundation system, 
with the loading equipment in the rest position.
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Design of the Experimental Investigation

The computational restrictions took two forms. Firstly, 

there was the difficulty of a truncated power series in describing 
the load intensity distribution and, secondly, there was the problem 

of the limited number of algebraic simultaneous equations which 
could be solved. This first difficulty was eliminated by considering 

a continuous load intensity distribution which was described explicitly 

by a limited number of termsj the second could only be minimized by 
the choice of the plate and foundation properties and by the distribu­
tion of the continuous load. These requirements did not cause any 

violation of the assumptions upon.which the analysis.was based and 
thus the basic intention of this investigation which was to examine the 

proposed structural analysis was still preserved even though a 

discontinuous load intensity distribution was not used. The general 

test arrangement is shown in Fig. 26.

Description of the model configuration

The lateral dimensions of the rectangular plate used were 
such that the ratio of length to width approximated to that of a 

concrete road slab, the length being 24 inches and the width 12 inches.

Two plates of different thicknesses and one type of 
foundation were considered. The thicknesses selected were 1/4 inch 

a-nd l/2 inchj again these choices were guided from knowledge of 

typical highway pavement proportions.



Figure 27, The theoretical load intensity distribution applied 
‘ to the experimental plate/foundation system.'
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The thickness of the foundation which rested on a rigid 

steel "base plate was 2 inches. This thickness was considered to he 
a compromise between an excessive thickness which might result in 

the buckling of the 'springs* in the Winkler type foundation and the 

minimum thickness required for the foundation to act as a set of 

springs in the Winkler manner.

Applied load Intensity distribution

The load intensity distribution described by a limited 
number of terms, was designed to resemble that of a wheel-load on the 
corner of the pavement. It consisted of a load intensity, v, at the 

corner (0,0) which decreased rapidly to zero away from that corner 
without becoming negative. The function which described this load 

intensity distribution, p, is*

p - v(l-l*25xlO"1x + 5.2083x10“3x2 - 7.2338x10“5x5)

*(1-2.5x10”^  + 2.0833xl0“2y2 - 5.7870x10“4y5)
A value of v - 0.25 lbs/in. was selected in order to obtain 

measureable value of plate deflection without them becoming excessive. 

The resulting load intensity distribution is shown in Figure 27.
Plate and foundation materials

Theoretically, each dependent variable can only be represented 

exactly by an infinite series. This applies even when the load 

intensity distribution is described exactly by a series of limited
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length. However any major error will not arise directly through 

truncating the dependent variable series, but rather it will be 

due to partial violation of the bc^n assumption upon which the use 
of multipliers to satisfy the boundary conditions rests. This is 

best appreciated by considering the ijth term of a particular series, 

which is acted upon by a multiplier e.g.

M x1 yd(ax-x2)
id

or, rewriting,

<«i+v u i+y >
Each simultaneous algebraic equation is the sum of the coefficients
of a particular argument, for example, x^y^. If the maximum

argument considered in generating the equations is xmyn and in the
i+2 iabove example m=i+l and n=j then the equation arising from x yJ

will not be considered. Hence although M satisfies the
iii /idsimultaneous equation arising from x j , it does not satisfy the

i+2 iequation generated from the sum of the coefficients of x y . The 

assumption implied by using the multiplier technique to satisfy the 

boundary conditions is that m and n are sufficiently high, and the 

expansion converges sufficiently rapidly, for the effects on M^, of 

this unconsidered equation to be negligible.

Because of the low order of the truncated dependent variable 

series this assumption is not completely satisfied and so its adverse 

effects must be minimised in the design of the experimental investigation,
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in particular by the choice of the properties of the plate and

foundation. If each w in the power series expansion of w is0 • • o
i jmultiplied by an argument x y , then the errors in the coefficients 

of w q (and similarly the other dependent variables) arising through 

the non-satisfaction of certain algebraic simultaneous equations are 
magnified and the errors are functions of x and y.

In the experimental investigation described here, these errors 

were minimised in the plate region which was of major interest - in ttis 

case this was the area around the maximum load intensity - by 
concentrating this region of maximum stress and deformation as closely 

as possible tn the origin. This meant that the magnifying effect of, 
for example, x*y*̂  on w was reduced until at the origin only the first

°ijterm of the dependent variable series was significant and thus there 

was no magnification of the error in this coefficient. This led 

naturally to the maximum load intensity being placed at the corner which 

was the origin for x and y.

An added advantage of the above arrangement was that it 

allowed the edge effects of the plate to play a major part in the 
distribution of stresses and deformations in this region, thereby 

enabling to some extent the ability of the mathematical model to 
analyse the effect of these free edge boundary conditions to be 
utilized.

The elastic properties of the plate and foundation were
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principally chosen also to bring the area of major deformation as 

near as possible to the origin. A plate of low flexural stiffness 
and a foundation of high support stiffness were chosen with this aim 

in mind. The plate material was a hard black rubber and the 
foundation material was an industrial latex foam rubber.

In order that the foundation would satisfy the Winkler 

assumption the 2-inch thickness of foam rubber was cut vertically into 

individual blocks, mostly 1-3/8 inches x 1-3/8 inches. At the outer 
edges of the foundation the size of block was' increased slightly 
so that they could stand flush with the edges of the plate. Each 
block was assumed to act as a vertioal * spring* • This block was small 
enough for the major portion of its stiffness to be axial but not so 
small as to create the possibility of its buckling under load.

It might be noted that the actual thickness of the 

foundation is not a factor in the analysis and although this model 

foundation is not, of course, the same as an actual subgrade, it 

does satisfy the theoretical requirements in that at some depth, d, 

the deflection is zero. Here, this depth is 2 inches, in an actutl 

pavement the depth would'be infinite. The factor which enables the 

theory to apply to both cases is that the modulus of subgrado reaction 

k, is a function of the depth of the particular foundation being 
considered.

It is likely that transverse shear stresses due to the
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stiff foundation, and transverse compression due to the low 

stiffness of the plate, would he influencing factors in the 

distribution of stresses and deformations. The models were not 

however, designed with this principally in mind because, although 

these stresses are of major interest, it was considered that they 
would be most difficult to examine And discuss because of the inaccuracies 
in the values of stresses and deformations likely to result from 

truncation of the power series expansions.

Upper and lower surfaces of th«s foundation

At the interface between the plate and foundation full
continuity of transverse direct stresses on both upward and downward

movement of the plate is preserved in the theoretical analysis.
Although physical attachment of the plate to the foundation was
required to completely satisfy this assumption, this presented

experimental difficulties since more than one plate had to be tested.
In order to attain the same end, without having to connect, for 

e
example by gluing, the plate and foundation together at the interface, 
the foundation wa3 precompressed; this was achieved by the application 
of a uniformly distributed load over the area of the plate,the 

deflection of which exceeded any subsequent upward movement due to 
the test load.

To retain the foundation blocks in position they were glued 

to a rigid base. The thickness of the model foundation was considered
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Plate ii The experimental apparatus uSed'to test the model plate/ 

foundation system. Note that the load intensity-'

• ' , ■ distribution in the; form of rods is-: shown applied to ;

• the plate through the steel and foam1rubber;square pads.
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to be sufficient to avoid this arrangement having any undue effect 

on tjie distribution of deflections.

The test rig

The principal aim was to measure the deflections over 

the corner of interest and to compare them with those given by the 

theoretical analysis. ' Unfortunately, it proved impracticable to 

determine the experimental principal strains over the upper surface of 

the plate because none of the strain measuring equipment considered, 

including electrical resistance strain gauges, had the obvious 

requirements of both an effective stiffness which was lower or equal 

1 to that of the plate rubber and a sufficiently short gauge length.

Plates 1 and 2 show a general view and close up,

respectively, of the load intensity distribution being applied to the
•tl/4-inch thick rubber plate. The load intensity distribution applied 

to this and the other plate had a maximum value of 0.25 lbs/in . at 

the origin and tended rapidly to zero as the distance from the origin 
increased. In order that the foundation could be precompressed 

sufficiently a uniformly distributed load was applied over the surface 

of the plate in the form of a l/4 inch thick layer of steel. With the 
intention of preserving full contact between the steel layer and the de­

formed rubber plate, the steel layer was cut into squares of 1-1/2 

inch side and a l/4 inch thick piece of soft foam rubber of similar 

shape was glued to the lower face of each square, (see Figure 26).



Plate 2

a-. ;-:r

. Close-up of'the experimental: apparatus used to test ;

the model plate/foundation’system; .Note that the loading 

rods are unsupported by the aluminium sheet and that.,-they 

are loading the plate directly .through the.steel squares. 

The dial gauge probe, is shown retracted above the thin
■ ' * ■: - ' - • . * ' !  • . \,j t. f  i

. steel pads. , : . .. _ ; r

f ■ ■, i

1 .  J  :* r ■ 1 :
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The load intensity distribution was applied to the plate 

and foundation through these steel and foam rubber pads. First, 

the load over each square was represented by a statically equivalent 
uniformly distributed load. This was then applied at the centre of 

each square of steel as a point load; the square was sufficiently 

rigid to uniformly spread the load. The total load applied to each 
square was in the form of a steel circular rod of the required weight. 

The weight of each rod was transferred to the centre of each square 

through a steel ball of l/4-inch diameter which was soldered to the 
base of the rod and seated in a conical depression in the centre of 

the pad, as shown in Plate 2. This avoided the creation of secondary 
stresses during rotation of the pad when it took up the deflected 
surface.

A practical difficulty arose in holding the rods in 

position and yet allowing them to move downwards during the deflection 
of the plate. This was overcome by having vertical guides down which 

each rod could move freely. These guides were in the form of slightly 

over-size holes in a l/4-inch thick horizontal aluminium plate through 

which the rods then passed. The aluminium plate was positioned 

approximately 1.7 inches above the top of the steel squares and was 
supported at its comers which lay outside the area of the model plate 

and foundation, as is shown in Plate 1.

The load intensity had to be capable of being applied 
instantly at all points over the area of the plate. Thus, each steel
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■ball soldered to the base of a rod was initially placed a very short 

distance above the conical seating of the corresponding steel 

square. This was accomplished by placing a l/l6-inch diameter 
cross-piece through each rod so that the rod was supported clear 

of the model by the cross-piece resting on the top of the aluminium 

plate, (see figure 26), The load was then applied by lowering the 
aluminium plate a distance of a l/4-inch; this resulted in the balls 

coming to rest in the conical depressions and the weight of the rods 

being transferred from the aluminium plate to the squares of steel 
and thus to the ruhber model (see Plate 2).

The ability to vary the size of the rods for different 
points on the plate was an essential requirement, due to the wide 
range of loads which it was intended to apply to the steel squares. 

For a large portion of the plate, the load applied to each square 

was extremely small and it was decided on practical grounds to ignore 
those which were less than one percent of the maximum value. These 

small loads would have been applied at points which were quite large 

distances from the origin and, consequently, would have had little 

effect on the deformation in the region around the origin. The 

diameter of the rods varied from 3/4 inch to l/8 inch and their 

length from 1,90 inchesto 3*66 inches.

Measurement of plate deflection

The intention was to measure the deflection of the plate



Figure 28, D ial gauge p o s it io n s  for,-the measurement o f p la te
deflection. •
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Legend Dia! gauge positions
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at a number of points over the area of special interest, i.e. the 

area around the origin in which the major deformation could be 

expected to take place. The theoretical analysis gives the actual 

deflection of the lower face of the plate and also the deflection 

which would result from neglecting the effect of transverse 
compression. Unfortunately, the practical difficulties of 

measuring any deflection other than the upper surface deflection 

of the plate are so large as to make such a task impracticable. 

Further, for a load intensity of 0.25 Its /in. which is the 

maximum occurring on the plate, a plate thickness of l/2-inch and a
A

modulus of elasticity of 750 1t»/in ., the transverse compression 
is only in the order of 1.7 x 10"^ inches which is barely the 
order of discrimination of the most sensitive dial gauges.
Thus, for the purpose of the experimental results, the deflection 

of the upper face of the plate was considered as being representative 

of those of all corresponding points throughout the plate 
thickness.

In the course of the experimental study the deflection 

of the upper surface of the plate was measured by dial gauges 
which were placed in the positions shown in Figure 28. They were 

rigidly fixed to a framework above and the probes of extended length 

passed through holes drilled in the aluminium sheet. In order 
that the probe points could reach the model, holes were also drilled 

in the squares of steel and soft foam rubber} the effect of this



upon the deformation of the model was assumed to "be negligible.
To avoid erroneous readings which might have resulted from the 
probe of the dial gauge penetrating the rubber of the plate, a 
small pad of steel, 0.25 inches x 0.25 inches x 0.005 inches, 
was placed under each probe and glued to the upper surface of the 
rubber plate. In order, also, to prevent the pressure of the 
probe on the steel pad from materially affecting the deflection 
of the plate locally at the point of contact, the probe, when the 
deflection was being measured, was lowered until contact was 
only just made with the thin steel pad. : This was facilitated 
by the help of an electrical circuit which consisted of a wire 
passing from the dial gauge support framework through, first, 
a small electric bulb and, second, a 6-volt battery, from which 
wires passed to each steel pad. The circuit was completed and 
the bulb lit when contact was made. Before and after the load was 
applied each probe was lowered in turn and the dial readings were 
noted.

Elastic Properties of the Plate and Foundation Materials

The properties required for the analysis were the modulus 
of-elasticity and Poisson's ratio of each plate and the modulus 
of subgrade reaction of the foundation.

Elastic properties of the plates
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Here, the principal difficulty in determining the elastic



Figure^. Apparatus used to determine the elastic properties 

i of the.plate by measuring the change in gauge 

; lengths due to the application of an in-plane . ; r

. , tensile.force to.the-'specimen, ; ■ : . ¡,
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Clamping bolts

Hangers and weights
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properties of a hard rubber is that the electrical strain gauges 

commercially available are many times stiffer than the rubber itself. 

Thus,-the gauges would stiffen the test material at the points at 

which they were affixed. This would result in apparent properties 

which could be grossly incorrect.

Strain measurement is essential for the direct 

determination of Poisson's ratio and a mechanical method of measuring 

strain is considered as being the simplest and most reliable solution 

to the above difficulties. The material was stretched in one direction 

and the increases of longitudinal and transverse gauge lengths were 

measured mechanically. The experimental set-up is shown in Figure 

29 and Plate 3-

After the model tests were carried out, each rubber plate 

was taken and placed in the testing apparatus to determine its elastic 

properties. Close fitting wooden clamps were placed over each end of 

the plate and were bolted-up to grip the rubber, see Figure 29. The 

clamped.plate was then placed on a solid wooden table and one of the 

clamps screwed down to its top. Wires were attached to the other 

clamp at the level of the mid-plane, of the. specimensj see Figures 29. 

These wires were then passed over metal runners vertically down 

to three weight-hangers. To ensure that no bending stresses would 

be present a wooden spacer was placed between the table-top and the 

specimen. To reduce the friction between the specimen and the spacer
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Plate 5

■Plate : 4

, The apparatus used to., determine the elastic properties 

t:.of .the plate. . Shown are: the electrical contact circuit 

and the 4-inch micrometer. r •* . .

;■ r •, . I :  ; , , . . . . . . . .

. ' The apparatus used'to ■•determine.'the; modulus of .subgrade 

asea-ct'ibn- of ■■ the- -foundatio’n material. by. .obtaining ;-the- 

l-oAd deflection curve-of .an ;individual-:blo6k "of 'ithe - 
• -‘rubber foundation,  ̂ -*■ ' ‘-I*





a sheet of P.T.F.E. was placed between them.

The longitudinal and transverse strain gauge lengths were 

placed about the centre of the upper surface of the rubber plate j 

one parallel, and the other perpendicular, to the direction of the 

applied uni-directional tensile stress. The gauge lengths themselves 

were each chosen to be slightly less than 4 inches; this was 

considered to be the maximum length at which the boundary effects of 

the plate sides and its clamped‘ends would not affect the strain 

incurred over the gauge-lengths. Each end of the gauge length was 

defined by a l/8-inch diameter steel ball soldered to a l/2-inch length 

of steel of l/4-inch x l/4-inch section which, in turn, was glued to 

the rubber plate; this is shown in Figure 29 and Plate 3»

The gauge length between the outside edges of each 

corresponding pair of steel balls was measured during the test by 

means of the micrometer shown in Plate 3« In the course of testing 

it was found that the micrometer ratchet was not sensitive enough 

to stop the closing movement of the micrometer when contact was just 

being made between the micrometer face and outer edge of the steel 

ball at each end of the gauge length. To overcome this source of 

inaccuracy an electrical circuit 'alarm' was introduced, similar to 

that used previously for measuring deflection in the model tests; see 

Plate 3*
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In tensioning the specimen a number of small weights were
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placed initially on the hangers to apply a pre-tension to the 

rubber plate and the first gauge readings were taken. Then additional 

weights were applied in increments, up to a maximum load of 105 lbs 

for the l/2-inch plate and 60 lbs for the l/4-inch platej each 

increment was 15 lbs After the application of each increment, the 

wooden spacer was vibrated slightly to release any frictional resists nee 
before the gauge lengths were measured.

The stresses were computed using the original cross- 

sectional area of the specimen. When the standard stress/strain. plots 

were drawn for each rubber plate, they were found to be linear* The 

values of modulus of elasticity obtained from these data for the l/4- 

inch and l/2-inch plates were 777 and 905 lbs’/in* , respectively.

The corresponding values of Poisson's ratio were 0.322 and O.4I6, 

respectively. (The perhaps surprising difference in the elastic 

properties between the l/4-inch and l/2-inch rubber plates was 

confirmed by their International Rubber Hardness values; these were 

58.0 and 68.0 degrees for the l/4-inch and l/2-inch plates, 

respectively.)

Elastic properties of the foundation

By definition, the modulus of subgrade reaction, k, is the 

pressure required to cause unit deflection of the surface of a 

foundation. There were two methods available for obtaining this k-value 

The first was to test a single 1-3/8 inch x 1-3/8 inch x 2-inch block
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in compression and then to plot the resulting load - deflection curve 

from which k could he calculated. The second method was to test the 

entire foundation in-situ in a similar manner. The former method had 

the advantage that it would he able to indicate the nature of the 

load-deflection curve. A disadvantage was that although each block 

was 1̂ 3/8 inches x 1- 3/8 inches in area, it actually ’supported' an 

area of l-l/2 inches x l-l/2 inches due to the l/8-inch gap between 

adjacent blocks. Thus the apparent value of k obtained from testing 

a block could be expected to be incorrect if used to represent the 

foundation. (This could, of course, be overcome by considering the 

area, over which the load is applied, to be 1.1/2 inches x 1.1/2 inches 

when computing k). The alternative experimental method of determining 

k eliminates any doubt in the validity of the single block test when 

applied to the complete foundation. For this reason it was considered 

that more confidence may be placed in the value of k determined from 

an in-situ test. Nevertheless both methods were used to obtain 

comparative values of k.

First of all, a small testing frame was employed to 

determine the load-deflection curve for a single block; the set-up 

is clearly shown in Plate 4» The load/deflection plot which resulted 

from 0.2 lb. increments up to a maximum of 1.0 lb. was linear. Using 

the actual area of the block (1-3/8 inches x 1- 3/8 inches} the value of 

k was found to be 14.50 lb*/inch /inch} using the area supported by 

the block when part of the foundation (l-l/2 inches x 1-1/2 inches),



Figure 50* <■ The analytical: plate, deflection surface of; the . -

area around, the origin computed for the l/4-inch = ■ 

. thick (plate and foundation model. The experimental'

. deflections are also shown.

!• •
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the value of k obtained was 12.20 lbs./inch2/inoh.

In the second method of obtaining the modulus of subgrade

reaction a linear load/deflection relationship could be safely

assumed and thus, the uniformly distributed load was applied in a

single increment. The k-value obtained from this test was 12.56 
2lbs./inch /inch.

As explained previously, more confidence may be placed in

the k-value which is determined on the basis of loading the foundation

in-sltu. Thus of the three moduli of subgrade reaction values, the

one which was selected as being most representative was the figure of 
2

12.56 lbs./inch /inch.

Obtaining the Analytical Results

The experimental deflections and analytical plate 

deflections, for n=4» are presented for both plate thicknesses in 

Figure 30 and 31, for the'portion of the plate around the origin.

The analytical deflections were obtained from the three 

computer programs which are presented in Appendix C and which have 

already been described in detail.

The form of the input data for the l/2-inch thick plate is 

given below and begins‘with that for the first program, entitled 

’Setting-up the Simultaneous Algebraic Equations’, thus 

EXPERIMENTAL MODEL-HALF INCH PLATE THICKNESS >



Figure 31. The analytical plate deflection surface of the area

around the origin computed for the l/2-inch thick plate 

and foundation model. The experimental-deflections

are also shown



Legend Experimental deflections  
Analyt ical  deflections
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24?12;4{0.5*,0.4l6;905jl2.56*,

O.25|-6f2510-2*,5.2083^1£)-3»-l,44675910-4>CH 
-3.12510-2»7.812510-3?-6.510415610-4i1.8O8449O610-5?O; 
1.302083310-?;-3.255208110-4î2.71267300310-5î-7.53520394510-7;0; 
-1.80844910-5»4.521122510-6|-3.76760l430510-7jl.046556l27510-8f0| 
Oîo;o ;o ;o ;-♦

The paper tape output from this program was fed without alteration, 

into the second program entitled 'Solving the Simultaneous Algebraic 

Equations.' The output from this second program consisted of the 

coefficients of the independent variables and these were then used to 

punch the input tape for the final program entitled 'Determination of 

Stresses, Strains and Deflections', thus

EXPERIMENTAL MODEL-HALE INCH PLATE THICKNESS >

24»i2j0.5;o.4i6;905;i2.56;4;r;i;99;

p coefficients in rows

v  coefficients i n  rows o
M coefficients in rows 

M coefficients in rows
y

H coefficients in rows

0 *,0 ?

O56.75?

0|1.50|.
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co-ordinates of the remainder of the 99 points at which the analytical 
deflections are required

The form of the analytical results produced on the final line- 

printed output sheet is shown in Figure 25. The deflection values 

thus obtained were then used to plot the analytical surface of 

deflection shown in Figure 31*

Discussion of Analytical and Experimental Results

The main points which come to light from a comparison 
of analytical and experimental results can be isolated and dealt with 
in turn.

1. As was expected, the plate deflection values-which can 

bo seen in.Figures 30 and 31 - increased rapidly with the distance 

away from the origin, thereby indicating that the radii of 

convergence R^ and Rg of the w q series are very small. The reason 
for this has already been explained in this chapter and so need not 

be repeated here. It does confirm however, that there is a 

considerable need to concentrate the region of deformation a3 closely 

as possible to the origin in order to obtain useful results for the 

purposes of the experimental application of this form of solution.

2. When the analytical and experimental corner deflections 
are compared it is seen that they are of the same order of magnitude
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even though at short distances from the origin, e.g. 4»5 inches, 

the analytical plate deflections are many times larger than the 

corresponding experimental corner deflections.

5. It must be pointed out that the differences which do 

exist between the analytical and experimental deflections at the 

corner of the plate are to a largo extent due to the experimental 
difficulties in applying the load intensity distribution in the 

exact theoretical manner and also in measuring the resulting deflections. 
In the test, the intensity applied at the origin was not 0.25 lbs./ 
inch^asit should havo been, but was 0.187 lbs./inch^ due to the finite 

nature of the loading pads. With a plate of higher flexural stiffness, 
for example had it been of perspex, this discrepancy, would not have 
had any significant effect. The low stiffness of the plate material, 

which was chosen to meet other requirements which have already been 

explained, is indicated by the similarity of the deflection surfaces 

of the l/4-inch and l/2-inch plates. Consequently the experimental 
corner deflections of the plates have been due to an actual intensity 

of 0.187 lbs /inch^ rather than the theoretical 0.25 Ibs/inch^ which 

was used in the analysis. As a uniformly distributed load of 0.187 

lbs/inch produces a theoretical deflection of 0.0149 inches and an
A

intensity of 0.125 ibs /inch produces one of 0.0199 inches, this 

conclusion would seem to be confirmed because the actual corner 

deflections of the l/4-inch and l/2-inch thick plates are 0.0143 

inches and 0.0140 inches, respectively.
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4. Two points which are illustrated by the results shown 

in Figure 25,which refers to the l/2-inch model, should be noted. 
Firstly, the interface deflection at a given point is slightly less 

than that of the plate deflection)' this is due to the presence of 
lateral plate support when transverse effects are included in the 
analysis. Secondly, the principal directions of the stresses are 

quite accurate even thou^i the magnitudes of the principal stresses 
become excessive as the distance away from the origin increases.

5» Because of the unrealistic form of the two analytical

plate deflection surfaces, (shown in Figures 30 and 3l) it would be
unwise to make any detailed recommendations on the applicability of
the analysis to plate/foundation systems based on the comparison of

these surfaces with experimentally measured deflections. Nevertheless,
the results of this analysis are useful to further the understanding of

*

the mathematical analysis.

6. An important fact which comes to light when examining

the series coefficients of the independent variables is that the

coefficients M and M for any value of j and i, respectively, have 
Xoj yio

values as large as 5-0^q-7 even though, theoretically, they should 
be equal to zero, according to equations (99 and 100). The most 

likely explanation is that the system of simultaneous algebraic 
equations, generated from equations (96 to 101) for this particular 

problem, is ill-conditioned. It is probable that because of the low 

flexural stiffness of the plate there is very little redistribution
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of the load and hence the load intensity at a point tends to pass 

through the plate, directly to the foundation. Thus, the major 

structural factor is the vertical equilibrium of the system and 
consequently the differential equation describing the vertical 

equilibrium of the system, equation (71) dominates the set of 
differential equations, equations (66 to 7l)« Hence, the 

simultaneous algebraic equations generated from equation (101), 

which is the ijth form of equation (71)» predominates over the 
remaining equations. This ill-conditioning is found to be confirmed 
when, on substituting the solutions back into the algebraic equations, 
those which are found to have negligable residuals are those generated 
from equation (lOl).

7. The very rapid increases in the theoretical values of 

plate deflection, (shown in Figures 30 and 31) have previously 
been explained as being due to the magnification, by the series 

arguments, of errors in the series coefficients. These errors are 

caused by the inability of the coefficients of the variables to 
satisfy all algebraic equations in which they occur. To some extent 

this explanation can be confirmed by comparing the plate deflection 
surface for a truncated power series limit of n = 3 to that with a 

limit of n = 4« For either plate thickness the result is that for 

n = 3 the deflection surface is found to remain finite at a much 

greater distance from the origin than for n = 4» For example, in 

the case of the l/2-inch thick plate, the deflection a£' the point
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whose co-ordinates are (6.0,0) is equal to - 0.025 inches, whereas 
the deflection at the same point for n = 4 is calculated to he

0.618 inches. If theoretically, a more accurate solution should 

arise when n is taken equal to 4 rather than 5» then the 
magnification caused by multiplying coefficients by x^y^ and x'VS 

in the case of n = 4> is likely to be the cause of the much more 
rapid divergence of the surface. This hypothesis is supported by 

the fact that at the origin where no magnification takes place, the 

solution for n = 4 gives a plate deflection which agrees more 
closely with the experimental corner deflection for both the l/4-inch 
and l/2-inch plates.

8. The effect of the coefficients of the independent 
variables not satisfying particular algebraic equations in which 
they occur and the manner in which this difficulty can be overcome 

by increasing the number of terms in the series, may be illustrated 

as follows. Consider the theoretical analysis (using the computer 

programs) of, say, the l/4-inch thick plate and foundation to which a 

uniformly distributed intensity of 0.25 lbs/inch is applied, and 

where the truncated loading series has a limit of n = 4. A uniform 

deflection of 0.0199 inches is theoretically produced by such an 
applied load intensity, while there are no bending moments, twisting 

moments or shear-stresses induced in the plate. As a result all the 

coefficients of the independent variables should be zero except w
oo



234 -
In fact, however, the analysis produces coefficients which although

small, are non-zero. The reason for this is that the neglected
equations are those which would make the coefficients of the higher

terms zero and these, in turn, - through the other equations - would

make the coefficients of the lower terms of the series zero, thereby
leaving only w to be non-zero. This disadvantage, which is 

oo
emphasised in this example, is inherent in this method of solving the 

differential equations.

9. That this disadvantage can be overcome by increasing 
the number of terms in the series, i.e. by raising the limit of n, is 

also illustrated by these results. Relative to the series describing 
the load intensity distribution there are many more terms in the 
independent variables of this example than in that of the experimental 
analysis with its varying load intensity distribution. Although not 

graphically reproduced here, it was found that the deflection of the 

plate remained at a value of 0.0199 inches for a large portion of its 
area (including the origin), even though the terms of the deflection 

series were non-zero. The principal stresses were also found to remain 

close to zero.

10. This limited application of the analysis has shown

that the disadvantages of the solution are associated with the truncation 

of the power series describing the dependent variables.
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CONCLUSIONS

The major conclusions which may be drawn from the foregoing 
research program are*

1. A thick rectangular plate attached to a Winkler

foundation and loaded transversely by a general load intensity
distribution, (referred to as the first boundary value problem),

can be described by a mathematical model consisting of nine linear
partial differential equations of elasticity and three boundary
conditions at each free edge of the plate. The prescribed dependent

variable is the load intensity distribution, p, and the unknown
dependent variables are the bending moments, M, and M , the shearx y
forces, Vx and V̂ ., the twisting moment, H, the weighted average 
rotations ocq and PQ, the weighted average deflection, wQ, and the 

deflection of the lower face of the plate, w^.

2. A thick rectangular plate which merely rests on a 

Winkler foundation, (referred to as the second boundary value problem), 
where loss of contact between the pavement and subgrade is allowed 

during upward deformation of the pavement, can also be described by a 

mathematical model. This consists of nine non-linear partial differentia] 
equations of elasticity and a set of boundary conditions which are 

similar to those of the first boundary value problem.

3. In each of the two analyses the pavement and. subgrade 
can be considered to be a complete system and not simply a pavement
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acted upon "by the subgrade stresses.

4. The direct stress within the subgrade is expressible

in the correct Winkler manner, i.e. as a function of the deflection
, ^of the lower face of the pavement and not, as in other published 

thick plate analyses, as some approximation to this e.g. the weighted 

average deflection.

5. The nine partial differential equations of the 
first boundary value problem are reducible to an equivalent system 
of six higher order partial differential equations in the dependent 
variables, p, w , M , M , V , V and E.V* x » x> y

6. The solution of the second mathematical model appears 
to be extremely difficult because of the non-linear nature of the 
associated partial differential equations.

7. A solution to the first boundary value problem is 

obtainable in terms of a system of simultaneous algebraic equations 
where the dependent variables are represented by power series or 

Chebyshev polynomials.

8. A non-trivial solution is not found to be possible 
with the particular forms of Fourier series used to represent the 

dependent variables although they are chosen to satisfy the boundary 
conditions.

9. In both the power series and Chebyshev polynomial 
solutions of the first boundary value problem the use of multipliers
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to satisfy the boundary conditions suffers from an important 
disadvantage. This is that there are a number of algebraic equations 

which are not considered and yet within which coefficients of the 

truncated series .arise. Consequently there are conditions, 
represented by these neglected equations, which are not satisfied, 

by the dependent variables.

10. None of the power, Chebyshev or Fourier series 
representations of the circular wheel-load distribution is found to 
accurately describe the discontinuous load intensity distribution 
for the length of truncated series which is considered.

11. Difficulties which arise in the ability of the 
truncated Chebyshev series to describe anything other than a zero 
load intensity in the case of the circular wheel-load can be overcome 

by increasing the length of the polynomial expansion.

12. When the truncated series is of the minimum sufficient 

length to produce a non-zero load intensity, the Chebyshev expansion 

produces a surface which represents the wheel-load intensity better 
than do those of power or Fourier series of similar length as far as 
the circular area of contact is concerned.

13. Beoause of the continuous nature of the function, 
the Fourier series expansion follows the plane of zero intensity 

over the unloaded portion of the plate to a better degree than the 
other two forms of expansion.
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14. In each of the three circular wheel-load distributions, 
the power series expansion produces a wave-like surface except in

the area around the ciraular load. This is due to the greater 

sparseness of load intensity data points in those areas as compared 
with around the circular load.

15. The ability of the truncated power series expansion 

to represent the circular wheel-load intensity distribution is seen 
to be much improved by only a small extension in its length.

16. For a circular wheel-load, the minimum computer 

space required for the solution of the general simultaneous equations 
associated with the Chcbyshev expansion is prohibitive as far as the 
computer facility available in the University of Leeds is concerned.

17. In the programmed solution of the simultaneous 

algebraic equations arising from the power series solution of the 
primary boundary value problem, n = 4 is the limit of the truncated 

power series expansions of the dependent variables which can be 

accommodated by the programs if the available computer fast store
is 17,000 words (as is the case with the University's installation).

18. The numerical and experimental tests indicate that, 
given better computing facilities, the method using power series 

expansions should lead to a more satisfactory analysis of the first 

boundary value problem.
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RECOMMENDATIONS FOR FURTHER RESEARCH

While these suggestions for further research are 

principally concerned with improving the programmed solution of the 

primary boundary value problem, some suggestions are also made with 
respect to other relevant points of interest.

1. A further examination should be made of the power 

series solution using a computer of larger capacity. This should 

enable power series of greater length to be used.

2. Re-programming the power series solution using disc 
files should be considered. This should eliminate the major 
limitation on the lengths of the power series expansions. The
new limitation of required computer time will not be as acute as it 
would be with magnetic tape decks.

3. A detailed analysis of iterative methods of solution, 

such as that of conjugate gradients, is indicated, as these lend 

themselves to sparse matrices of coefficients. Work has already 
begun on this subject and is proving very promising.

4» Programming the Chebyshev polynomial solution to "the 

primary boundary value problem is required. This, together with any 
one of the above suggestions, should produce more useful results 

because of the orthogonal nature of the Chebyshev polynomials.

5* The representation of the dependent variables in the 
primary boundary value problem by other forms of Fourier series
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expansion, perhaps of a more general nature, is worthy of 

investigation.

6. The solution to the second boundary value problem 
might profitably be undertaken by applying one of the limited 

number of methods available for the solution of non-linear partial 

differential equations.

7. The analysis of a pavement/subgrade system in which 

the subgrade is considered to be a semi-infinite three-dimensional 
elastic solid should be given attention.

8. An analysis should be made for a pavement/subgrade 

system in which the rectangular slab is considered to have partial 
support from adjacent slabs by means of, say, dowel bars, as this 
situation is common in practice.

9. The programming of the analysis for dual and tanden 

wheel configurations and elliptical wheel contact shapes applied 

to the surface of the plate should be undertaken.

10. The application of these suggested analyses to 

experimental large scale pavement/subgrade systems is clearly 
indicated should the analyses prove successful in determining the 

stresses and deformations in laboratory models.



SELECTED REFERENCES

1» Department of Scientific and Industrial Research. Road Research 

Laboratory. Harmondsworth. Soil Mechanics for Road Engineers. 

London. Her Majesty's Stationery Office. 1952.

2. Steele, D.J. Classification of highway subgrade materials.

Highway Research Board. Proceedings 25*376-384 and 388-392. 1945»

3» Porter, O.J. The preparation of subgrades. Highway Research 

Board. Proceedings 18t324-331. 1938.

4» Westergaard, H.M. Stresses in concrete pavements computed by 
theoretical analysis. Public Roads. 7(2)*25— 35» 1926.

5» Westergaard, H.M. Analysis of stresses in concrete roads caused 
by variations of temperature. Public Roads. 8(3)*54-60. 1927«

6. l^omlinson, J. Temperature variations and consequent stresses 

produced by daily and seasonal temperature cycles in concrete slabs. 

Concrete and Constructional Engineering. 35(6)*298— 307» 35(7)* 352—3^0* 
1940.

7. ÏÏ.S. War Department. Office of the Chief of Engineer^. Design of 

runways, aprons and taxiways at Army Airforce Stations. Washington 

D.C. Engineering Manual, Chapter XX. 1943»

8. Kelley, E.F. Application of the results of research to the

-  241 -



-  242 -

structural design of concrete pavements. Public Roads.

20(5)* 83-104. 1939.

9. Spangler, M.G. Stresses in the corner region of concrete

pavements. Ames, Iowa. Iowa Engineering Experimental 

Station, Iowa State College. Bulletin 157« 1942.

10. Pickett, G. A study of stresses in the corner region of 

concrete pavement slabs under large corner loads. Concrete 
Pavement Design. Portland Cement Association. Chicago.

PP. 77-86. 1951.

11. Burmister, D.M, The theory of stresses and displacements

in layered systems and applications to the design of airport 
runways. Highway Research Board. Proceedings 23* 126-144.

1943« Discussion 23*144-148. 1943.

12. Terzaghi, K.. Evaluation, of coefficients of subgrade reactior.

Geotechnique. 5*297-326. 1955.

13« Richart, P.E. and 2ia, P. Effects of local loss of support 

on foundation design. American Society of Civil Engineers. 

Journal of Soil Mechanics and Foundation Division. SMI,

Paper No. 3056*1-27. 1962.

14. Sparkes, F.N. Stresses in concrete road slabs. Structural 

Engineer. 17(2)*98-116. 1939.



-  243 -

15» Timoshenko, S. and Woinowsky-Krieger, S. Theory of 

Plates and Shells. New York. McGraw-Hill. 1959«

16. Nadai, A. Die Elastischen Platten. Berlin. Julius Springer.

1925.

17» Hagstrom, J., Chambers, R.E. and Tons, E. Low modulus 

pavement on elastic foundation. Highway Research Record 

71*172-192. 1964.

18. westergaard, H.M. Analytical tools for judging results of 
structural tests of concrete pavements. Public Roads.

14(10)*185-188. 1933.

19» Westergaard, H.M. Stresses in concrete runways of airports.

Highway Research Board. Proceedings 19*197* 202. 1939»

20. Westergaard, H.M. New formulas for stresses in concrete

pavements of airfields. American Society of Civil Engineers. 

Proceedings 73(5)*687-701. 1947.

21. Murphy, G. Stresses and deflections in loaded rectangular

plates on elastic foundations. Ames, Iowa. Iowa Engineering 

Experimental Station, Iowa State College. Bulletin 135* 1937*

22. Happel, H. Uber das Gleichgewicht von elastischen platten

unter einer einzellast. Mathematische Zeitschrift. 6*203-218. 1920.



-  244 -
23.' Hogg, A.H.A. Equilibrium of a thin plate, symmetrically loaded, 

resting on an elastic foundation of infinite depth. The 

Philosophical Magazine. 7th series, 25?576-582. 1958..

84*‘ Terazawa, K. On the elastic equilibrium of a semi-infinite

solid. Tokyo. Imperial University of Tokyo. Journal of the 

College of Science. XXVII, Article 7» 1916.

25. Hogg, A.H.A. Equilibrium of a thin slab on an elastic foundation

of finite depth. The Philosophical Magazine. 7th series, 

351265-276. 1944.

26. Hogg, A.H.A. Pavement slabs on a non-rigid foundation.

Proceedings of the Second International Conference on Soil 
Mechanics and Foundation Engineering. Rotterdam. 111:70-74*

1948.

27. Love, A.E.H. Treatise on the Mathematical Theory of Elasticity. 

Cambridge. University Press. 1923«

28. Fox, L. Computation of traffic stresses in a simple road 

structure. Department of Scientific and Industrial Research.

Road Research Technical Paper 9» Her Majesty's Stationery Office, 
London. 1948.

29. Burmister, D.M. The general theory of stresses and displacements 

in layered systems, III. Journal of Applied Physics. 16(5): 
296-302. 1945.



245 -
30. Acum, W.E.A. and Pox, L. Computation of load stresses in a 

three-layer elastic system. Geotechnique. 2(4)*293-300.

1951.

31. Whiffin, A.C. and Lister, N.W. The application of elastic 
theory to flexible pavements. Proceedings of the International 

Conference on the Structural Design of Asphalt Pavements.

Ann Arbor, Michigan. University of Michigan, pp. 499-521. 
1962.

32. Hank, R.J. and Scrivner, P.H. Some numerical solutions

of stresses in two and three-layered systems. Highway 
Research Board. Proceedings 28*457-468. 1948»

33» Pickett, G. and Ai, K.Y. Stresses in subgrade under rigid 

pavement. Highway Research Board. Proceedings 33*121-129» 

1954.

34» Pickett, G. and McCormick, P.J. Circular and rectangular 

plates under lateral load and supported by an elastic solid 

foundation. Proceedings of the First U.S. National Congress 

of Applied Mechanics. Chicago, Illinois. Illinois Institute 

of Technology, pp.331-338» 1951»

35» Livesley, R.K. Some notes on the mathematical theory of a 

loaded elastic plate resting on an elastic foundation.

Quarterly Journal of Mechanics and Applied Mathematics.

6*32-44. 1953.



36. Pister, X.S. and Jestmann, R.A. Bending of plates on an 

elastic foundation. Journal of Applied Mechanics. 29(2): 

369-374.' 1962.

37« Reissner, E. The effect of transverse shear deformation 

on the bending of elastic plates. Journal of Applied 

Mechanics. 67*A69-A77. 1945*

38. Hudson, \Y.R. and Matlock, H.‘ Analysis of discontinuous 

orthotropic pavement slabs subjected to combined loads.

Highway Research Record 131*1-48. 1966.

39* Kirchhoff, G.R. Vorlesungen uber mathematische Physik, 
Mechanik, Leipeig. 1876.

40. Timoshenko, S. History of Strength of Materials. New York. 

McGraw-Hill. 1953.

41. Reissner, E. On the theory of bending of elastic plates.

Journal of Mathematics and Physics. 23*184-191« 1944.

42. Reissnor, E. On the bending of elastic plates. Quarterly

of Applied Mathematics. 5(l)*55-68. 1947*

43. Reissner, E. On a variational theorem in elasticity. Journal

of Mathematics and Physics. 29*90-95» 1950.

44* Mikhlin, S.G. Variational Methods in Mathematical Physics, 
Oxford. Pergamon Press. 1964.

- 246 -



-  247 -
45» Green, A.E. On Reissner's theory of bending of elastic plates. 

Quarterly of Applied Mathematics. 7(2)*223-228. 1949»

46. Mindlin, R.D. Influence of rotating inertia and shear on 

flexural motions of isotropic, elastic plates. Journal of 

Applied Mechanics. 18*31-38. 1951*

47* Nagdhi, P.M. and Rowley, J.C. On the bending of axially

symmetric plates on elastic foundations. Proceedings of the 

First Midwestern Conference on Solid Mechanics. Urbana,

Illinois. University of Illinois, pp. 119-123. 1953.

48. Naghdi, P.M. The effect of elliptic holes on the bending of 

thick plates. Journal of Applied Mechanics. 77*89-94. 1955«

49» Frederick, D. On some problems in bending of thick circular

plates on an elastic foundation. Journal of Applied Mechanics. 

78*195-200. 1956.

50. Frederick, D. Thick rectangular plates on an elastic foundation. 

American Society of Civil Engineers. Transactions 122*1069-1087.

1957.

51. Coull, A. The direct stress analysis of swept cantilever 

plates of low aspect ratio. Aircraft Engineering. 37(6)*182-190. 

1965.

52. Yettram. A.L., O'Flaherty, C.A. and Fleming, M.E. The analysis 

of pavements under arbitrary loading* an application of



-  248 -

variational methods to thick rectangular plates on elastic 

foundation. Proceedings of the Second International Conference 
on the Structural Design of Asphalt Pavements. Ann Arbor, 

Michigan. University of Michigan, pp. 201-211. 1967»

53« Fung, Y.C. Foundations of Solid Mechanics. Englewood Cliffs, 

N.J. Prentice-Hall. 1965«

54* Agrew, R.P. Differential Equations. London. McGraw-Hill.

I960.
55» Lanczos, C. Applied Analysis. London. Pitman. 1957«

56. Churchill, R.V. Fourier Series and Boundary Value Problems.

New York. McGraw-Hill. 1963«

57* Gradshteyn, I.S. and Ryzhik, I.M. Table of Integrals, Series 

and Products. New York and London. Academic Press. 1965*

58. V/at8on, G.N. A Treatise on the Theory of Bessel Functions. 

Cambridge. University Press. 1952.

59. Woinowsky-Kreiger, S. Uber die biegung dünner rechteckiger
platten durch kreislasten. Ingenieur-Archiv. 3*236-250. 1932.

60. Reeves, C.M. and Wells, M. A Course on Programming in ALGOL 60. 

London. Chapman and Hall. 1964»

61. Green, J.S. KDF-9 ALGOL Programming. English-Electric Leo- 
Marconi Mini-Manual. Kidsgrove. English-Electric Leo-Marconi. 

1963.



-  249 -
62. Faddeev, D.K. and Faddeere, V.N. Computational Methods of 

Linear Algebra. San Francisco and London, Freeman. 1963.

63. Ralston, A. and Wilf, ÏÏ.S. Mathematical Methods for Digital 

Computers. London. Wiley, i960.



-  250  -
ACKN0Y7LEDGEMENTS

The author is indebted to Professor R.H. Evans, C.B.E., 

D.Sc., D.es Sc., Ph.D., M.I.C.E., M.I.Mech.E., M.I. Struct.E., and 

to Professor C.A. O'Flaherty, B.E., M.S., Ph.D., A.M.I.C.E.I., 

M.Inst.H.E. and Mr. A.L. Yettram, B.A., B.A.I., under whose 

supervision this investigation was carried out, for their guidance 
and encouragement during the course of this research program.

Sincere thank3 are extended to the technical staff of 

the Civil Engineering Laboratories for their assistance in the 
preparation of experimental equipment and to the staff of the 
University of Leeds Electronic Computing Laboratory for their 

advice in the writing of the programs.



-  251 -
APPENDIX A: NOMENCLATURE

x,y,«
a

b
h

d

V

S

S,

n

t

Geometry

Cartesion co-ordinate system

Slab length in the x-direction

Slab width in the y-direction
Slab thickness in the 0-direction

Arbitary depth of foundation

Volume of complete system
Surface of complete system

Surface over which stresses are prescribed
Surface over which displacements are prescribed
Direction normal to S

Direction tangential to S

E

E.
G

H
k

k(wx)

<5 ae-

Elasticity

Modulus of elasticity for the material of the slab 

Modulus of elasticity for the material of the foundation 
Modulus of rigidity for the material of the slab 

Poisson's ratio for the material of the slab 

Modulus of subgrade reaction, tension and compression, 
for the material of the foundation

Modulus of subgrade reaction, compression only, for the 

material of the foundation
Direct stresses in the x-,y- and s-directions
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T r » T ra* Shear stresses relative to the x-,y- and «-directions xy y«

T«X

a ijP

e ,ey *
»Y.y«'

Generalized form of stress in the slab and foundation 

respectively

Direct strains in the x-,y- and «-directions 

Shear strains relative to the x-,y- and «-directions

en  Generalized form of strain in the slab and the
Jp Jf

foundation respectively
u,v,w Displacements in the x-,y- and «-directions

Displacement of the upper surface of the slab in the 
«-direction

Displacement of the lower surface of the slab in the 

«-direction

Displacement of the foundation at depth d, in the 

«-direction

V P 0 Weighted average rotations in the x-and y-directions
w0 V/eighted average displace® nt in the «-direction

a0»P0 Weighted average rotations in the x-and y-.directions with

the effect of transverse compression neglected.

WQ Weighted average displacement in the «-direction with the

effect of transverse compression neglected 
Mx »My Bending moments per unit width in the slab in the x-and 

y-directions
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H

V ,V x* y

¥

Twisting moment per unit width in the slab relative to 
the x-and y-directions
Shearing forces per unit width in x-and y-directions
Strain energy density
Strain energy density for the slab
Strain energy density for the foundation
Complementary energy density
Complementary energy density for the slab
Complementary energy density for the foundation
Total potential energy of the system
Potential energy density of the external forces
Direct stress in the «-direction in the foundation

gjTjCjê  Intermediate symbols as defined in the text

U,V,s
K

W

i
A

A general functional

General function associated with the functional K 
A function of the deflection of the upper face of the 
foundation, as defined in the text 
Arbitary large positive number 
Radius of relative stiffness 
Total wheel-load in the Y/estergaard analysis 
Maximum tensile stresses in the pavement slab for the 
interior, edge and corner loading positions of the 
Yfestergaard analysis
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d ., d , d i e’ c Maximum deflection of the pavement slab for the interior, 

edge and corner loading positions of the Y/estergaard 
analysis

t ̂  i Intermediate symbols of the Westergaard analysis, as 

defined in the text

* ( * . y , < 0 Deflection of the plate, according to the analysis of 

Pister and Westmann, which is expressed as a function of the
i • i

transverse displacement contributions! w(x,y),w (x,y) and w

(x,y).

p*-py -p.

Boundary
Surface stresses in the x-,y- and 2-directions

px-py-p. Specified values of p ,p ,px y «
p Applied normal load intensity distribution on the upper 

surface of the plate
a .5 o ,ho Spscified values of a ,B at the surfaceo ro
wo Specified value of w at the surface0
Mn Bending moment per unit width in the n-direction
H * nt Twisting moment per unit width relative to the 

n-and ^-directions
Vn Shearing forces per unit width in the n-direction

c Specified value of bending moment per unit width in the 

n-direction

Specified value of twisting moment per unit width relative 

to the n-and t- directions
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n Specified value of shearing force, per unit width in 

the n-direction
a,b,£ General constants

V yo Co-ordinates of the centre of the idealized circular 

area of wheel contact

xd’yd Co-ordinates of a data point in the area over which the 

load intensity distribution is prescribed in the power 

series representation
N Number of data points x^y^ (<*=1,2, . . . . N)
L Functional equalling the sum of the squares of the

E
residuals at each data point x^y^

Error in truncating the Chebyshev series expansion of a load 
intensity distribution after mn terms

^ m n ^ » ^ Approximation to p at the point (ti,£) by the truncated 

Chebyshev series of mn terms

V * p Zero points of the Chebyshev arguments ^ * ( 1̂ ) and (£p) 

where a and p are integer subscripts for each zero point

Ga ^ Angular variable form of Tl(Xt^p

a,p Integer subscripts

Polar co-ordinates with origin at the centre of the 

idealized circular wheel contact area

a£»aj»P^t Intermediate symbols, as defined in the text

f(£)tg(£)»Intermediate symbols, as defined in the text 
h(e),k(0)
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Yid Intermediate symbol, as defined in the text
e Number of simultaneous normal equations in the power 

series representation of a load intensity distribution
A Matrix of elements, ast» of the normal equations
B Vector of constants, bg, of the normal equations
G,P Intermediate matrices in the solution of the normal 

equations and defined in the text with elements gg .̂ and f̂.

X General independent variable applicable to x ajid y
R Number of terms considered in the convergence of the 

Bessel function of order one

Computation

f(x,y) ,  . General functions of the independent variables x and y

f 2(x,y)

i.d Subscripts denoting the ijth term of a series

cid* did General coefficients of power series with subscripts i,j

m,n Subscripts associated with the limit of the truncated 
series describing the load intensity distribution p

R1,R2 Radii of convergence of a series in the x- and y- directions 

respectively

y »ijth coefficients of the series representing the
U  yij

v dependent variables M ,M.V -V ,w ,H and p respectively ■y * * -v » x y x y o
id yid
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w

P
°ij

id

»

S,t

Q

lift

f(n)

f'(ri)

Ai

General integer subscripts
Number of simultaneous algebraic equations from the 

power series solution to the boundary value problem 
Dimensionless co-ordinate system related to x,y by the 

transforms tj - x/a and £ » y/b

General function of the dimensionless variable t), 
expanded as a Chebyshev series
Derivative of the function f(r)) expressed as a Chebyshev 

series
General Chebyshev series coefficient of the expansion of

f(l)
General Chebyshev series coefficient of the expansion of

f'Oi)
w ^ » w  Symbols associated with the differentiated form of the

id °iJ
_ DS Chebyshev expansion of w , as defined in the textw o
°id
s^(x) General truncated Fourier series expansion, with series

coefficients aQ, a^ and b^, which converges to the function 

f(x)

x Vector of unknown power series coefficients of the

dependent variables.
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A

b

B1,B2,B3*

B 4»B5»b6

Matrix of coefficients of the simultaneous algebraic 
equations in the power series solution to the primary 

boundary value problem.

Vector of constants of the simultaneous algebraic 
equations

Intermediate symbols, as defined in the text

£,u

AA,BB,CC, 
DP,EE,FF, 

GG,HH,KK, 
L L , M , M  
C,C',H

o ,c . max min

c e . max, m m

t r

Row and column positions of an element a of the 
matrix A

Suffices of an unknown dependent series coefficient

Group symbols associated with the formation of the 
matrix of coefficients of the system of algebraic 

simultaneous equations of the power series solution

Intermediate matrices in the solution of the algebraic 

simultaneous equations, as defined in the text 

Maximum and minimum principal stresses in the upper 

surface of the slab

Maximum and minimum principal strains in the upper surfac« 

of the slab

Direction of the maximum principal stress and strain in tie

upper surface of the slab



Intermediate symbol defined in the text 

Displacement of the slab in the e-direction with the 

effects of transverse compression neglected

Experimental

Maximum intensity of the load intensity distribution 

p applied to the experimental model
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APPENDIX B* PROGRAMS TO DETER! HUE THE FUNCTIONS
DESCRIBING THE APPLIED TRANSVERSE ’.VHEEL-LOAD

The following three computer programs are written in 
order to calculate the coefficients of the power series, shifted 
Chebyshev series and Fourier series, each of which describes 
the load intensity distribution of an idealized circular wheel­
load applied to any point on the surface of a rectangular slab. 
Each of these programs also calculates, from the resulting 
series, the value of the load intensity at points over the 
surface of the plate.

W heel-Load Expressed  a s  a Power S e r ie s

b e g in  l i b r a r y  A0,A6,A1 4$

In te g e r  n ,N ,e e ,n u m b e r,tt ,1 2 , pp,qqj 

r e a l  a ,b ,x O ,y O ,,k 1 , c 1 , p i ;

comment 1 ;

open(2 0 );  open ( 7 0 ) jco p y te x t (2 0 , 7 0 ,Jx >2 ) $ 

a := re a d (2 0 ) ;b := r e a d ( 2 0 ) ; x 0 := re ad (2 0 ) ; y 0 := rb ad (2 0 ) ; 

c := re a d (2 0 )$ k 1 :«=read(2 0 ) ; c 1 := re a d (2 0 ) jn := re a d (2 0 ) $ 

number:= re a d (2 0 ) ; p p := re a d ( 2 0 ) |qq:= re a d (2 0 ) | 

t t r e r e a d ( 2 0 )3
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p i:*=3.l4 l592654jN :=O jee :=(n+1  ) x ( n + l );  

beg;In r e a l  a r r a y  p [1 : e e ] , s t o r e [1 ¡number, 1 :3 ]> 

x x ,y y [ 1 : t t ] ; 

procedure DATMAKER; 
b e g in  r e a l  F F ,x ,y ,p l,q l,m ,w ;  

procedure dodgy(X,Y,FUNCTIO N); 

va lu e  X ,Y ,FUNCTION; r e a l  X,Y,FUNCTION; 

b e g in  N:=*N+1; 

s t o r e [ N ,1 ] :*X ;  

s to r e [N ,2 ] : * Y ;  

store [N ,3]¡«FU N CT IO N ; 

end;

comment 2;
for x:«xt)-2xc+k1,
x+k1 while x<(x0+2xc-k1+0.0001) do 
for y:«yO-2xc+k1,
y+k1 while y<(yU+2xc-kl+0.0001) do 
begin FF:«lf ((x-xO)/c)?2+((y-yO)/c)T2£l 
then 1/(plxct2) else 0; 
dodgy(x,y,FF); 

end;

comment 3j
ql :=p1 :=*k1 ;w:=*x:«=xO-pl; 
for x:=x+p1 while xj£a, a do
begin pi ¡«pixel ;nu«x-w;w:«=x;q1 ¡«m/cl ;y^y0-q1 ; 

Repeat 1 ¡ for yJ^y+ql while y£b do
begin If x<2xc+x0 and y<2xc+y0 
then goto Repeat 1; 
dodgy(x,y,0);ql¡=qlxcl| 

end;
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If x>2xc+x0 or b>2xc+y0 then dodgy(x,b,0)| 
end;

comment 4$
q1 :*=p1 :=k1 ;w:=x:=x0-p1; 
for x:=x+p1 while x<£a, a do
begin p1 :*=p1xc1 |m:*=x-w;w:=x;ql :=m/c1 jy:«y0+q1; 

Repeat 2: for y:=*y-q1 while y>0 do
begin If x<2xc+x0 and y>y0-2xc 

then goto Repeat 2) 
dodgy(x,y,0)jql:=q1xc1J 

end;
If x>2xc+x0 or 0<y0-2xc then dodgy(x,0,0); 

end;

comment 5]
ql :«*pl :=k1 jw:«=x:**x0+p1; 
for x:=x-p1 while x£0, 0 do
begin pi :=*p1xc1 ;m:»w-x;w:=x;q1 :=Wc\;y:*=y0+q1; 

Repeat 3 : for y:=y-q1 while y£0 do
begin If x>x0-2xc and y>y0-2xc 

then goto Repeat 3j 
dodgy(x,y,0);q1:=q1xc1j 

end;
If x<x0-2xc or 0<y0-2xc then dodgy(x,0,0); 

end;

comment 63
q1:«p1:=k1|w:=x:=x0+p1; 
for x:*=x-p1 while x^O, 0 do
begin pi :=*p1xc1 ;m:=w-x3w:=x| ql :=m/c1 jys^yO-ql 3 

Repeat 4 : for y:*=y+ql while y<b do
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begin If x>x0-2xc and y<2xc+y0 
then goto Repeat 4; 
dodgy(x,y,0)|q1:=q1xc1 j 

end;
If x<x0-2xc or b>2xc+y0 then dodgy(x,b,0); 

end;
end o f  DATMAKER;

procedure NORMEQ(N,n,store)j 
value N,nj Integer N,nj real array storej 
begin Integer pi,p2,11,JJ,dd,ff,kk,p1f,p11, 
p1 fk,plij,lf, jkj
r e a l  a r r a y  A [1 : (n + 1 )x (n + 1 ) , 1 : (n + 1 )x (n + l) ] ,

B [ 1 :(n + 1 )x (n + 1 ) ] j 

procedure pos d iv (m ,A ,B )j  

v a lu e  m;In te g e r  m;a r ra y  A,B| 

b e g in  In te g e r  l , J , k j

r e a l  procedure d o t(a ,b ,p p p ,q q q )J  

va lu e  qqqj r e a l  a,b| In te g e r  ppp,qqq; 

b e g in  r e a l  s ;  s :*O j

f o r  ppp:= l s te p  1 u n t i l  qqq do s := s+ ax b  

d o t:= s  

end d o tj

comment 7j
for i:«1 step 1 until m do 
begin A[1,l]:=sqrt(A[1j i]

-dot(A[J,i]T2, 1, J, i-1 ))j 
for J:*=i+1 step 1 until m do 
A[1* 3 3:=(A[l,J]

-dottAtkjihAtk^hkii-l^/AU,!]
end;

Va
o
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comment

comment

comment

f o r  i :*»1 s te p  1 u n t i l  m do 

B [ i ] : = ( B [ i ] - d o t ( A [ k , i ] , B [ k ] , k , 1 -1 ) ) / A [ l , l ] j

f o r  i:=m  s te p  -1  u n t i l  1 do

B[ l ]  :** (B [ i] -d o t(A [ i,m + 1  -k ]  ,B[m+1 -k ]  , k , m - i ) )
/ A [ i , i ] j

f o r  l s »1 s te p  1 u n t i l  m do 

p[ 1] s«=B[ 13 5

end o f  pos d iv j  

p i:« n + 1 jp 2 :»p 1T2 j 

f o r  k k :»1 s te p  1 u n t i l  p2  do 

b e g in  f o r  i i :«1  s te p  1 u n t i l  p2  do 

A [ k k , l l ] : = 0 |

B [k k ] :« 0 j 

end;

10J
f o r  11;*»0 s te p  1 u n t i l  n do 

b e g in  p1 i : « p 1x l i + 1 $

f o r  s te p  1 u n t i l  n do

b e g in  p 1 lJ : « p 1 l+JJ|

f o r  f f :«=0 s te p  1 u n t i l  1 1 -1  do 

b e g in  p1 f  :**p1x f f +1 j l f  : « l l + f f  $ 

f o r  k k :=*0 s te p  1 u n t i l  n do 

b e g in  p 1f l:*= p 1f+ k k jJ k := J j+ k k j  

f o r  dd:=1 s te p  1 u n t i l  N do 

A [p 1 fk ,p 1 1 J] : =

( i f  l f *=0 then 1 e ls e  s to re [d d ,1  ] T l f ) x  

( i f  Jk?*0 then 1 e ls e  s t o r e [d d ,2 ] t jk )  +

9 }
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A [ p 1 fk ,p 1 ij ] ;

end;

end;

f f  s - i i j p l f  :=p1x f f +1 : = i i+ f f |  ■ 

f o r  k k := 0  s te p  1 u n t i l  JJ do 

b e g in  p1fk:=»p1f+ kk jJk := JJ+ kk ;  

f o r  d d := l s te p  1 u n t i l  N do 

A [p 1f k , p 1 i j J :=

( i f  i f » 0  then 1 e ls e  s t o r e [ d d , 1 ] T i f ) x  

( i f  Jk= 0  then 1 e ls e  s to re [d d , 2 ] t J k )+  

A [ p 1 fk ,p l i j ]  | 

end; 

end; 

end;

comment 1 1 ;

f o r  f f :« 0  s te p  1 u n t i l  n do 

b e g in  p 1f  :«p1x f f + l ;

f o r  1 1 : = 0  s te p  1 u n t i l  n do 

b e g in  p 1fk := p 1f+kk j

f o r  dd:**1 s te p  1 u n t i l  N do 

B [p 1fk ]  : =

( i f  f f «=0 then 1 e lse  s t o r e [d d , 1 ] i f f ) x  

( i f  kk» 0  then 1 e lse  s to r e [d d , 2 ^T k k )x  

s t o r e [d d ,3 ] + B [p lfk ] ; 

end; 

end;

pos d iv (p 2 ,A ,B )$  

end o f  NORMEQj
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comment 1 2 ;

procedure POWERCOEFF;

“beg in  In te g e r  f 1 #f 2 , f 3 ; r e a l  i , J ;

f  1 := form at(Jí4 sn d ¿ ); f2 :« fo rm a tQ 2 sn d ;]>) ;  

f3  reform at (_[4s-d.ddddddio-ndc2) ; 

w r lte te x t  (7ü,J^3c5sllX .3slJ¿5slCÜEFFX.2cjJ[) ; 

f o r  i := 0  s te p  1 u n t i l  n do 

f o r  J :» 0  s te p  1 u n t i l  n do 

“beg in  w r it e (7ü*f1 * i ) j  
w r lt e ( 7 ü , f 2 , j ) j  

w r it e (7 ü , f3 ,p [ (n + 1 )x i+ J + 1 ] );  
end;

end o f  POWERCOEFF; 

comment 13;

procedure POWERSURFACE; 

b e g in  In te g e r  f 4 , f 5 , f 6 ;

.real pp1 ,pp 2 ,q q 1 ,qq 2 ,x ,y ;  

r e a l  procedure POWERPOINT(X,Y); 

va lu e  X ,Y ; r e a l  X ,Y ; 

b e g in  r e a l  P ; In te g e r  iz , J z ;

P : -p [1 ] ;

f o r  i z :«1 s te p  1 u n t i l  n do 

P :« (Y T iz )x p [ iz + 1  ].+Pj 

f o r  J z :«1  s te p  1 u n t i l  n do 

P :« (X T Jz )xp [(n + 1 )x jz+ 1  ]+Pj 

f o r  i z :=1 s te p  1 u n t i l  n do 

f o r  J z :«1  s te p  1 u n t i l  n  do 

P :**(XT izxY T jz )xp [ (n+J )xiz+Jz+1 ]+P; 
POWERPOINTs-P; 

end o f  POWERPOINT; 

f  4 : « form at (J4sndd. ddj_) ;
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f5:*=format(J_2sndd.ddJ[) ; 

f 6 := form at ( ¿ 3 s-nd d . ddddddcJJ ; 

pp2 := a /  pp; qq2  :=b/qq$ p p l:= a -p p 2 +0 , 0001  

qq1 :=b-qq2 +0 .0 0 0 1  ; 

w rite te x t (7 0 ,  c 6 s J X [7  s jY[_9 s JLO A D[2 cjj_ ) |

f o r  x := 0 ,x+pp2  w h ile  x<pp1 ,a  do 

f o r  y := 0 ,y+qq2 w h ile  y<qq1 ,b  do 

b e g in  w r it e (7 0 , f4 ,x ) ;  

w r it e (7 0 ,f 5 , y ) ;  

w r ite (7 0 ,f 6 , POW ERPO INT(x,y))|  

end;

for 12:«1 step 1 until tt do 
begin x:«*xx[i2]jy:=yy[l2]; 
write(70,f4,x); 
write(70,f5*y)s
w r It e (7 0 ,f 6 , POWERPOINT( x ,y ) ) j 

end;

end of POWERSURFACE; 

comment 14;
for 12:=*1 step 1 until tt do 
begin xx[l2]:=read(20);
yy[l2]:«read(20); 

end;

c lo s e ( 2 0 )j

f o r  1 2 ;= 1  s te p  1 u n t i l ee do 

p [ 1 2 ] s - 0 ;

DATMAKER;
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N O RM EQ (N ,n ,store ); 

PCJWERCOEFF; 

POWERSURFACE; 

c lo s e ( 7 0 ) ;  

end;
end

W heel-Load Expressed  as a  Chebyshev S e r ie s

b e g in  l i b r a r y  AO,A6,A1**;

In te g e r  n , p p , q q , t t , l , J ;  

r e a l  a ,b ,c ,x O ,y O ,p l;

comment 1 ;

open(20)jopen(70);copytext(20,70,X<>J.)i
a :* re a d ( 2 0 ) ; b :» re ad (2 0 ) 5  xO :» re ad ( 2 0 ) ; yO :» re a d ( 2 0 ) 

c :» re a d ( 2 0 ) ; n :» 1+ re a d (2 0 )$ p p :» read ( 2 0 )5  

q q :» re a d (2 0 ) ; t t : »read (2 0 ) ; p l : »3 .1  5 9 2 6 5** 5

b e g in  r e a l  a r r a y  t [ 1 s n , l : n ] , x x , y y [ 1 : t t ] ;  

procedure CHEBCOEFFj 

b e g in  In te g e r  A L P H A ,B E T A ,f l,f2 ,f3; 

r e a l  p i s , n s , p i t ;

r e a l  a r r a y  fu n c t c o ,T s t a r [ 1 : n , 1 :n ] ,n a lp h a [1 :n ] ;

comment 2 ;

r e a l  p rocedure T H A T ( l,J );  

va lu e  I , J ;  In te g e r  I,J |  

b e g in  r e a l  tone ;
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to n e :* 0 ;

f o r  ALPHA:=0 ste p  1 u n t i l  n-1 do 

f o r  BETA:=0 ste p  1 u n t i l  n-1 do 

tone:=functco[ALPHA+1,BETA+1]x

T s t a r [ 1+1,ALPHA+1]xTstar[ J+1,BETA+1]+tone; 

THAT:=nsxtone; 

end o f THAT;

comment 3 ;

p i s  : * p i/ (4 x n )  ;n s :*=4/(nT2) ; p i t  : = l / ( p lx c t 2 ) ;

f o r  ALPHA:*0 step  1 u n t i l  n-1 do

b e g in  nalpha[ALPHA+1] := (co s(p isx (2 xA LP H A + 1 )

+ 0 .5 ) )T2;

T s t a r [1 ,ALPHA+1] s = l ;

T s ta r  [2, ALPHA+1 ] :=2xnalpha[ ALPHA+1 ] -1 § 

fo r  1:*=2 ste p  1 u n t i l  n -1  do 

T s t a r [1+1 ,ALPHA+1] :=(4xnalpha[ALPHA^H ]-2 )  

X T s t a r [ 1 ,ALPHA+1) - T s t a r [1 -1 ,ALPHA+1 ];

end;

comment 4;

f o r  ALPHA!=0 ste p  1 u n t i l  n-1 do 

f o r  BETA:=0 ste p  1 u n t i l  n-1 do 

fu n c tc o f ALPHA+1,BETA+1] : = l f  ( (axnalpha[ALPHA  

+1]-xO )T2+(bXnalpha[BETA +1]-yO )T2-cT2) 

< 0  then p i t  e lse  0 ;

comment 5 ;

t [ ! ,1 ] !« 0 .2 5 x T H A T (0 ,0 );  

f o r  1 s*=1 s te p  1 u n t i l  n -1  do 

t [ i+ 1 ,1 ]  :«=0.5xTHAT(l,0); 

f o r  J :*=1 s te p  1 u n t i l  n -1  do
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t [ 1 ,J+1] :«0 .5XT H A T(0 ,J );

f o r  i :«1  step  1 u n t i l  n -1  do

fo r  J :=1 s te p  1 u n t i l  n -1  do

t [ l+ 1 ,J + 1 ] := T H A T ( l, j ) ;

f  1 reform at (_[4snd_^) j f 2 := f ormat (_[̂ 2 sn d J );

f  3 reform at (J[4s-d. ddddddio-ndcj);

w r lte te x t  (JO c 5 s j . l l3  sJJ_L5 sJC0EFF_[2cJJ_ );

comment 6;

f o r  1:*=0 ste p  1 u n t i l  n-1 do 

f o r  J:=Q ste p  1 u n t i l  n-1 do 

b e g in  w r i t e ( 7 0 , f 1 , l ) ;  

w r it e ( 7 0 , f 2 , j ) s  

w r i t e ( 7 0 , f 3 , t [ 1+ 1 , J+1 ] ) ;  

end;

end o f CHEBCOEFF; 

comment 7 $

procedure CHEBSURFACE; 

b e g in  In te g e r  k 1 ,k 2 , f4 , f5 > f6;

r e a l  p p 1 ,p p 2 ,x ,y ,x t ,q q 1 ,q q 2 ,y t,S P ;  

r e a l  a r r a y  T n [1 :n ,1 :p p + 1 ],T e [1 :n ,1 :q q + 1 ], 

T n n ,T e e [ l:n ] j  

procedure TERM(X,K1, ARR) 5

va lu e  X ,K 1 ;r e a l  X ; In te g e r  K 1 jre a l a r r a y  ARR; 

b e g in  AR R[1 ,K 1 ]:«1 ; ARR[2,K1] :=2xX-1 ; 

f o r  1 :»2 ste p  1 u n t i l  n-1 do 

ARR[1+1,K 1 ] :» (^ x X -2 )x A R R [ l,K 1 ]-A R R [ l-1 ,K 1 ]j  

end o f  TERM;

r e a l  procedure  SU M (kk1 ,kk2 ); 

va lu e  kk1 ,kk2 ; In te g e r  kk1 ,kk2 ;
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b e g in  r e a l  F1 ;F1 :=0 ;

fo r  1 := 0  ste p  1 u n t i l  n -1  do 

fo r  s te p  1 u n t i l  n -1  do

F 1 := t [ 1+1 ,J+1]xTn[1+1,kk 1 ]x T e [j+ 1 ,k k2 ]+ F 1 ; 

SUM:=F1; 

end o f SUM;

k 1 :=0 ;pp 2 :*a /p p ;p p 1 :=a -pp 2 +0 . 0 0 0 1 ; 

fo r  x := 0 ,x+pp2  w h ile  x<pp1 ,a  do 

b e g in  k 1 î= k 1+ 1 ;x t := x /a ;

T E R M (x t,k1 ,T n );
end;

k l :*=0 ;qq 2 :*b /q q ;q q 1 :=b-qq 2 +0 .0 0 0 1  ; 

f o r  y := 0 ,y+qq2  w h ile  y<qq1 ,b do 

b e g in  k ls « k 1+ 1 ;y t := y /b ;

T E R M (y t,k1 ,T e );

end;

k 1 :« 0 ;f4  reform at (^ sn d d .d d J J ;

f  5  in form ât ( [ 2 sndd. ddj_) ;

f  6 : = f orma t  (_[_3 s -n d d . ddddddcj[ ) ;

w r ite te x t  (70,JX.3c 6s2 xX 7 s1 yX 9 s  U £A D £ 2 cJ_i) >
f o r  x := 0 ,x+pp2  w h ile  x<pp1 ,a  do

b e g in  k 1 :=k 1+ 1 ;k 2 :=0 ;

f o r  y ï * 0 ,y+qq2  w h ile  y<qq1 ,b do 

b e g in  k 2 :»k2 + 1 ; 

w r it e ( 7 0 , f 4 ,x ) ;  

w r i t e (7 0 ,f 5 ,y ) ;  

w r i t e (7 0 ,f 6 , SU M (k1 ,k2 ));  

end; 

end;

f o r  k 1 : = 1 ste p  1 u n t i l  t t  jdo



-  272 -

b e g in  x t := x x [k 1 ] / a ; y t : = y y [ k 1 ] /b ;

Tnn[1 ] :=Tee[1 ] :=1 ;

T n n [2 ] := 2 x x t - l;T e e [2 ] := 2 x y t -1 ; 

f o r  i := 2  ste p  1 u n t i l  n -1  do 

b e g in  T n n [ l+ 1 ] := (4 x x t -2 )x T n n [ i3 -T n n [ i-1 3$ 

Tee[ 1+13 s ^ C ^ x y t^ J x T e e f l i -T e e t l - l  ] J 

end;

SP :=0;

f o r  1:«=0 ste p  1 u n t i l  n -1  do 

f o r  J := 0  ste p  1 u n t i l  n -1  do 

SP s» t[l+1 ,J+13xT n n [l+1 ]xT ee [J+1 ]+SP  

w r i t e (7 0 , f4 ,x x [k 1 3)j  

w r lt e ( 7 0 , f 5 ,y y [k 1 3); 
w r lt e (7 0 , f6 , S P ) ; 

end;

end o f CHEBSURFACE; 

comment 8 ;

f o r  1 :* 1  ste p  1 u n t i l  t t  do 

b e g in  x x [ l 3 := re ad (2 0 ) ;

y y ( l 3 :® read (2 0 );  

end;

c lo s e ( 2 0 );

CHEBCOEFFj 

CHEBSURFACE; 

c lo s e (7 0 ) ;  

end;

end
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W heel-Load Expressed  a s  a F o u r ie r  S e r ie s

b e g in  l i b r a r y  A0,A6,A14 j

In te g e r  i , J , n , p p , q q , t t , i 2 ; 

r e a l  a ,b ,c ,x O ,y O ,p i,x ,y j

comment 1 5

open ( 2 0); open (7 0 ) ; copytext ( 2 0 , 7 0 ,£<>£) 5 

a :« re a d (2 0 ) ;b := re a d ( 2 0 ) ; x 0 := re ad (2 0 ) ; y 0 := re a d (2 0 ) 5 

c :*=read(2 0 ) jn : * r e a d ( 2 0 ) jpp := re ad (2 0 ) ;q q := re a d (2 0 ) 5 

t t : « r e a d (2 0 ) j p i : = 3 . 141592654$

b e g in  r e a l  a r r a y  L0AD[1:n+1, 1 :n + 1 ),x x ,y y [1 : t t ] $ 

procedure  FOURSERIES;

b e g in  In te g e r  f 1 , f 2 , f 3 ;  r e a l  a s ,b s ,a b c ,X i3 * E ta 3 j  

comment 25

r e a l  procedure B ESSEL (X )j  

va lu e  X; r e a l  Xj

b e g in  In te g e r  R,RR,RRR$ r e a l  Q,QQj 

QQ:«=Q:«X/2$Rj*0$RR:=RRR:=1 $

Repeat: R:«R+1; RR:*RxRR$ RRR:=(R+1)xRRRjQQ:=Q;

Q:«=Q+( ( (-1 ) tR )x  ( (X /2 )t  (1 + 2xR )) )/(R R + R R R ); 

i f  (QQ-Q)/Q>1 .Ojo- 12 then go to  Repeat

e ls e  BESSEL:=Q;

end o f BESSELj

comment 3 ;

r e a l  p rocedure F0U R C0EFF (l,J ,BESSEL ) 5 

In te g e r  I , J ;  r e a l  p rocedure BESSELj 

b e g in  r e a l  A ,B ;
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B := p ix s q r t  ( ( l î 2 ) / a s + ( J î 2 ) / b s )  ;

A := ab c/fe x co s(lx X 1 3 )xco s( Jx E ta3 )xB E SSE L (B xc ) 

FOURCOEFF:=*A ; 

end o f FOURCGEFF;

as := a î2 ;b s := b î2 ;a b c  :=8/(a x b x c );X 1 3 := p ix x O ;  

E ta 3 : ,=p ix y O ;f  1 : “form at ([4sndJ[) j 

f  2  : =form at ( [ 2 sndJ_) ; 

f  3  reform at ( [4 s -d .  ddddddjo-ndcJ) ; 

w r ite te x t  (70 ,X£3c 5 s j l i 3  s2 J l5  sJC0EFF[_2c ]J_ ) ;

comment 4;

L 0 A D [ l,1 I* « l/ ( a X b ) ;

w r it e ( 7 0 , f 1 , 0 );

w r lt e ( 7 0 , f 2 , 0 ) ;

wri t e (7 0 , f 3 , L0 AD[1 , 1 ] ) ;

comment 5 ?

f o r  J : - 1  ste p  1 u n t i l  n do 

b e g in  w r l t e ( 7 0 , f 1 , 0 );  

w r it e ( 7 0 , f 2 , j ) ;

L0AD[1 ,J + l ] t= (FO URCO EFF(O ,J,BESSEL))/2 ; 

w r i t e (7 0 ,f 3 ,L0AD[1 ,J+1] ) ;  

end;

comment 6 ;

f o r  l:* * l step  1 u n t i l  n do 

b e g in  w r i t e ( 7 0 , f 1 , i ) ;  

w r i t e (7 0 , f 2 , 0 );

L0AD[1+1, 1 ] (FOURCOEFF(1 ,0 ,BESSEL) ) /2 ;  

w r it e ( 7 0 , f SÍLGALE 1+ 1 , 1 ] ) ;

Va«
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end;

f o r  i ï =1 s te p  1 u n t i l  n do 

f o r  J:=1 ste p  1 u n t i l  n do 

b e g in  w r i t e ( 7 0 , f 1 , i ) ;  

w r i t e ( 7 0 , f 2 , J ) ;

LOAD[1+1 ,J+1] : » (FOURCOEFF(l, J ,BESSEL ) )5  

w r i t e (7 0 ,f 3 ,LOAD[1+1 ,J+1] ) ;  

end;

end o f FOURSERIES; 

comment 7 ;

procedure FOURCHECK;

b e g in  In te g e r  f 4 , f 5 , f 6 ;  r e a l  pp 1 ,pp 2 ,qq 2 ,q q 1 5

r e a l  procedure FOURVALUE(X ,Y ) ; 

va lu e  X ,Y ; r e a l  X ,Y ; 

b e g in  r e a l  HH,X1 ,Y1 ;

HHr«0;X1 :=p lxX /a;Y1  := p ix Y /b j  

f o r  i :«=0 ste p  1 u n t i l  n do 

f o r  J :« 0  ste p  1 u n t i l  n do 

HH:«HH+LOAD[1+1 ,J + 1 ]x c o s ( ix X 1 )x c o s ( JXY1);  

FOURVALUE:=HH; 

end o f  FOURVALUE;

f  4 : « f orma t  (J[_4 s ndd. ddj_ ) ; f  5 : “form a t  ( [ 2  sndd. ddj_ ) ; 

f  6 : « form at (J[3  s -n d d . ddddddc]_ ) ; 

pp2 :=a/pp ;qq 2 :=b/qq;j>p1 ï= a -p p 2 +0 . 0 0 0 1 5 

qq1 :«b-qq 2 +0 , 0 0 0 1 ;

w r lte te x t  ( 70 ,[[3 c 6 s J X jJ s jY Ì9  sJ_L0 ADX2cJJ. ) ; 

f o r  x := 0 ,x+pp2  w h ile  x<pp1 ,a  do 

f o r  y := 0 ,y+qq2  w h ile  y<qq1 ,b do 

b e g in  w r it e (7 0 , f4 ,x ) ;
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w r i t e (7 0 ,f 5 ,y ) ;  
w rite  (7 0 ,f  6 , FOUR VALUE (x ,y )  ) ; 

end;

fo r  1 2 := 1  ste p  1 u n t i l  t t  do 

b e g in  x := x x [ i2 ] ; y : = y y [ i 2 ];  

w r i t e (7 0 , f 4 , x ) ;  

w r i t e (7 0 ,f 5 ,y ) 5 
w rite (7 0 ,f6 ,F 0 U R V A L U E (x ,y )) ;  

end;

end o f FOTJRCHECK; 

comment 8 ;

f o r  i :«1 step  1 u n t i l  t t  do 

b e g in  x x [ i ] : = r e a d ( 2 0 ) ;

y y [ i ] : = r e a d ( 2 0 );  

end;

c lo s e ( 2 0 ) ;

FOURSERIES;

FOURCHECK;

c lo s e ( 7 0 ) ;

end;

end
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APPENDIX Ci PROGRAMS FOR THE COMPUTATION OF PAVEMENT 

STRESSES AND DEFORMATIONS

The following three computer programs are written in 
order to calculate, in a rectangular slab resting on an elastic 
foundation, the stresses,strains and deflections which result 
from the application of a given load intensity distribution, 
expressed in terms of a truncated power series, to the upper 
surface of the slab. The mathematical model representing this 
slab/foundation system is re-expressed in the form of a set of 
simultaneous algebraic equations by the use of a power series 
solution to this model. The first program sets up the simultaneous 
algebraic equations and the second program solves these equations 
for the coefficients of the power series which describe the unknown 
stress resultants and weighted average displacement. The third 
program determines stresses, strains and deflections in the 
rectangular plate from the power series representation of the stress 
resultants, weighted average displacement and the load intensity 
distribution.

S e t t in g -u p  the S im u ltaneous A lg e b ra ic  E q u a tio n s

b e g in  l i b r a r y  A0,A3,A6,A13,A14$

In te g e r  n , F ,z; 
r e a l  a ,b ,h ,m u ,E ,k j
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comment 1 ;

open( 2 0 ) ; open( 1 0 ) ; c h a ro u t( 1 0 , 2 ) ; c h a ro u t( 1 0 ,8 3 );  

co p y tex t ( 2 0 , 1 0 , £<>_]_); charout (1 0 ,8 4 ); charout ( 1 0 , 2 );

comment 2 ;

a:«*read(2 0 ) ; b : “re a d (2 0 );n:«=read(2 0 );h :*=read(2 0 );

m u:«read(2 0 ) ;E :» re a d ( 2 0 ) ;k := re a d ( 2 0 );

F*’"5x(n+1 )T2+nT2; 

b e g in  r e a l  a r ra y  R [1 :P ] ; 

procedure DATPREP;

b e g in  In te g e r  1 , J , r r , u , g , h 1 ,m ove ,f1 , f 2 ; 

r e a l  S ,C ,d ,T ,e , f ,U ,V ,T T , s , t , r ,m ;  

r e a l  a r r a y  Q [1 : 5 2 ];

In te g e r  a r r a y  P [ 1 :5 2 ,1 :1 0 ], B [ 1 :6 ] ;

comment 3 $

S :«*E/(2x(1-Hnu) );d:**(1+26xkXlv/,(70xE) )j 

C : -  (1+9xlo<h/(70xExd))  5 T : »=6xmu/( 5xhxE);  

e:«=12/ (EXh?3)$m:«*12/(SXhT3) jr:« *6 /(5xSxh );

U : «*e-(mT2xk/d); V : =muxe+(mt2xk/d); f : =1+V/U; 

s :» V /U ;t:« U -V T 2 /U ;

comment 4;

B[ 1 ] :«sO;B[2] :-(n+1 )x (n + 1 );B [3 ]  :=2xB [2 ];

B [4 ] : -B [3 ]+ n T 2 ;B [5 ] :» B [2 ]+ B [4 ] ;B [ 6 ]:= B [2 ]+ B [5 ]J

f l  : «form at (_[ndd;]_); 
f 2 : « form at (£ -d .  dddddddddddio-nd;J_); 
f o r  g : « 1s te p  1 u n t i l  5 2  do 

b e g in  f o r  hi :«1 s te p  1 u n t i l  10 do



comment 5 $

P [ 2 ,1 ] : - P [ 7 ,1 ] : - P [ 1 3 ,1 ] ï - P [ 1 9 , 1 ] î -P [ 2 4 ,1 ] ï -  

P [2 5 ,1 ] : -P [2 9 ,1 ] î - P [ 3 0 ,1 ] ! -P [3 2 ,13s -P [3 4 ,1 ]:=  

P[4o, 1 ] :» P [4 l, 1 ] : - P [ 4 5 ,13 s«*P[49,1 ] :=1J 

P [8 , 1 ] : -P [ 2 0 ,1 ] := P [2 6 ,1 ] :» P [2 7 ,1 ] :=P[31,1 ] :«

P £ 3 3 ,1 3 : -P [3 5 ,1 ] : -P [5 0 ,1 ] ï - 2 ;

comment

f o r  g : - 1  s te p  1 u n t i l  52  do 

P [g * 2 ] : -P [ g ,4 ] :® n j  

f o r  g : “ 19 s te p  1 u n t i l  2 7  do 

P [ ß > 2 ] : -P [ g ,4 ] :« n -1 ;

P [3 8 ,2 ]:» P [3 9 ,2 ] :» P [3 ü , 4 ] : -P [3 1 , 4 ] := n -1 ; 

P [5 ,2 ] : -P [1 5 ,2 ] :» P [6 ,4 ] := P [1 4 ,4 ] :» n -2 j

comment 7 ;

P[4,3]:-P[11,3]:»P[16,3]:-P[21,33;-P[24,3]:» 
P[26,3]:-P[32,3]:=P[33,33:-P[37,33:«P[38,3] 
P[4o,33 î“ P[42,3]:»P[47,3]:-P[51,3]:=1;
P[17,33:»P[22,33:-P[25,33:-P[27,3]:-P[39,3]:= 
PC41,33 î“ P[43,33 :-P[52,3]:»2 $

comment

P [2 ,5 ] :» P [7 ,5 3 :-P [1 3 ,5 3  î « P [1 9 ,5 ] := P [2 4 ,5 3 : = 

P [2 5 ,5 l:= P [2 9 ,5 3  : -P [3 0 ,5 ]:« P [3 2 ,5 ]  ï - P [ 3 4 ,5 3 : = 

Pi 4 0 ,5 3 : - P [ 4 l ,5 3 s-P [4 5 ,5 3 î ~ P [4 9 ,5 3 :=-11 

P[8,53 î -P [20 ,53  :»P[26,53:=P[27,53  s-P [3 1 ,53: = 

P[33 ,5 ] :*»P[35,53 s-P [50,53  ï — 2 ;
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P [ 2 1 ,5 ] s -P [2 2 ,5 ] : -P [2 3 ,5 ] s -1 5 

P [5 ,5 ] s-P [1 5 ,5 ] : -2 5

comment 9 j

P [ 4 , 6 ] s - P [ 1 1 ,6 ] : - P [ l6 ,6 ] : - P [ 2 1 , 6 ] ;« P [2 4 ,6 ] := 

P [ 2 6 ,6 ] : -P [3 2 ,6 ] : -P [3 3 ,6 ] := P [3 7 ,6 ] : * P [3 8 ,6 ] :=  

P[40,6] s-P [4 2 ,6 ]  :=P[47,6] s«P[51 , 6 ] :*=-1 $ 

P[17,6] : -P [2 2 ,6 ]  :»P[25,6] :-P [2 7 ,6 ]  :*=P[39,6] := 

P[41, 6 ] : - P [ 4 3 ,6 ] s- P [ 5 2 , 6 ] 2;
PC 19 , 6 ] ; - P [ 2 0 , 6 ] : - P [ 2 3 , 6 ] : - 1;
P [6 , 6 ] :» P [ l4 ,6 ]  :*=2;

comment 1 0 ;

f o r  g:«1 3tep 1 u n t i l  52 do

P [ g * 7 ] : - P [ g ,9 ] s -n j
f o r  g :» 1 9  s te p  1 u n t i l  2 7  do

P [ g * 7 ] : -n -1 ;

P[24 ,9 ] : -P [2 5 ,9 ]  : -P [2 6 ,9 ]  :*=P[27,9] : -P [3 0 ,9 l  

P [ 3 1 ,9 ] : -P [3 2 ,9 ] s -P [3 3 ,9 ] :« P [3 8 ,9 ] : -P [3 9 ,9 ] :« 

P [ 4 o ,9 ] :« P [ 4 l,9 ] s -n - lJ

comment 1 1 ;

f o r  g :«1 s te p  1 u n t i l  8 do 

b e g in  P [ g , 8 ] : * B [ 1 ] j  

P [g+ 9 ,8 ]s« B [2 ]$

P [g+ 1 8 , 8 ]:»B [3 ]|

P [g+ 2 7 ,8 ] :« B [4 ] 5 

P[g+35>8]:® B[5]l 
P [g + 4 3 ,8 ] : -B [6 ] j  

end;

P[9#8] :«*B[ 13 JP[ 18 , 8 ] :«B[2] |P[27,8] := B [3 ]j
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P [5 2 ,8 ]:» B [6 J j

comment 1 2 $

P [1 ,1 0 ]:» P [2 ,1 0 ] := P [1 2 ,1 0 ] := P [1 3 ,1 0 ]:= 

P [1 9 ,1 0 ]:« P [2 0 ,1 0 ]:« P [3 4 ,1 0 ]:= P [3 5 ,1 0 ]:= 

P [4 4 ,1 0 ]:= P [4 5 ,1 0 ]:= B [1 ]$

P [3 ,1 0 ] :« P [4 ,1 0 ] := P [1 0 ,1 0 ] := P [1 1 ,1 0 ]:=

P [2 1 ,1 0 ]:« P [2 2 ,1 0 ]:= P [4 2 ,1 0 ]:= P [4 3 ,1 0 ]:=

P [46,103 :«P[47,10] :-*B[2] 5 

P [2 4 ,1 0 ]: -P [2 5 ,1 ü ] := P [2 6 ,1 0 ]:= P [2 7 ,1 0 ]:= 

P[3ü,10] : -P [3 1 ,10] :-P [3 2 ,1 0 ] :=P[33,10] :*= 

P [3 8 ,1 0 ] : -P [ 3 9 , 1 0 ] := P [ 4o , 1 0 ] : » P [ 4 l , 1 0 ] :=B[33| 

P [7 ,1 0 ]:» P [8 ,1 0 ] :» P [2 8 ,1 0 ] := P [2 9 ,1 0 ]:=

P [4 9 ,1 0 ]s» P [50 ,1 0 ]:« B [4 ]$

P [1 6 ,1 0 ]j- P [ 1 7 ,1 0 ] î -P [ 3 6 ,1 0 ]: -P [3 7 ,1 0 ] : -  

P [5 1 ,1 0 ]:-P [5 2 ,1 0 ]:= B [5 ]|
P [5 ,1 0 ] : -P [6 ,1 0 ] :» P [9 ,1 0 ] := P [1 4 ,1 0 ] :=

P[15,10] :» P [1 8 ,10] :®P[23,10] s*=P[48,10] :*=B[6 ] $

comment 13 J

Q [7 l :— axt$Q [8 ] :»Q [17l :» t$Q [9 l :=Q[18] :~ -T x  

k x f / d ; Q [ l6 ] :« -bxt$Q [24] :*=axbxm$Q[2 5 ] := -a x  m$

Q[2 6 ] :«-bXmjQ[27] :=m$Q[34] :=-a$Q[35] :*»

Q[4 3 ] :« 1 ;Q [4 2 ]so -b jQ [4 8 ];= k /d $ Q [4 9 ]:« -aX  

kXT/d$Q[5 0 ] :-Q [52] :«kxT/d$Q[513 ;~-bxl<*r/d$

comment 14$

TT:«0$

f o r  g :**1 s te p  1 u n t i l  5 2  do

i f ( P [ g , 2 ] - P [ g , 1 ] ) 2 0  and ( P [ g , 4 ] - P [ g , 33)20 then  

T T := (P [g ,2 ] -P [g ,1 ]+ 1 )x (P [g ,4 ] -P [g ,3 3 + l)+ T T |
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comment 1 5 ;

f o r  z :» l s te p  1 u n t i l  (n+ 1 ) x ( n + l ) do 

b e g in  R [z ] :«*R[z+B[2] ] :a=+TxCxfxR[z] | 

R [z+B [6 ]] :*» -R [z ]/ (T x f); 
end;

b e g in  In te g e r  a r r a y  N U M [1 :2 ],B B [1 :2 ,1 :T T ]; 

r e a l  a r r a y  B3B [1 ;TT]j

comment 1 6 ;

procedure v a rc o e ff(V A R ,G );  

va lu e  G; In te g e r  G; r e a l  VAR; 

b e g in  f o r  i:«*P[G,1] s te p  1 u n t i l  P [G ,2] do 

f o r  J :»P [G ,3 ] s te p  1 u n t i l  P[G ,4] do 

b e g in  r r :* * (P [G ,7 ]+ 1 )x i+ J + l+ P [G ,8 ] ; 

u : - (P [ G ,9 ] + l) x ( i+ P [ G ,5 ] )+ J  
+P[G ,6 ]+1+P[G ,10]; 

move:«move+lJ 

B B [1,m o v e ]:-r r ;

BB[2,m ove]:=u;

BBB[move]:=VAR; 

end;

end o f  v a r c o e f f ;  

move:*»Oj

NUM[1] :«F;NUM[2]:«TT;

comment m
f o r  g : - 7 , 8 ,9 ,1 6 ,1 7 ,1 8 ,2 4 ,2 5 ,2 6 ,2 7 ,3 4 ,3 5 ,4 2 ,  

43 ,48 ,49 ,50 ,51 ,52  do v a r c o e f f (Q [ g ] , g ) ;
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comment I 8 j

v a r c o e f f ( r x a x ( 1+ 1 ) , 1 )ß 

v a r c o e f f ( - r x ( i+ 1 ),2); 
v a r c o e f f ( s x r x b x ( j +1 ),3)ß 
v a rc o e ff ( - s x rx (,J + 1 ) ,4 )  j 

v a r c o e f f ( - ( i+ 1 ) x ( i+ 2 ) , 5 )$ 

v a r c o e f f ( - s x ( j + 1 ) x ( j+ 2 ) , 6 ); 
v a rc o e ff ( rX b x (J + 1 ),1 ü ) ;  

v a r c o e f f ( - r x ( j + 1 ) , 1 1 )ß 

v a r c o e f f ( s x r x a x ( i+ 1 ) , 1 2 )j  

v a r c o e f f ( - s x r x ( i+ 1 ) , 1 3 )$ 

v a r c o e f f ( —( J + l ) x ( j + 2 ) , l4 ) ;  

v a r c o e f f ( - s x ( i+ 1 ) x ( i+ 2 ) ,1 5 ) ;  

v a r c o e f f ( - r x a x ( j + 1 ) , 1 9 )j  

v a r c o e f f ( r x ( j + 1 ) , 2 0 ) ;  

v a r c o e f f ( - r x b x ( i+ 1 ) , 2 1 )• 

v a r c o e f f ( r x ( i+ 1 ) , 2 2 ) j 

v a r c o e f f ( 2 x ( i + 1 )x (J + 1 ),23 )ß  

v a r c o e f f ( a x ( i+ 1 ) , 2 8 )ß 

v a r c o e f f ( - ( i + 1 ) ,2 9 )5  

v a rc o e f f  ( axbx( J+1 ),  3 0  ) ; 

v a r c o e f f ( - b x ( j +1 ) , 3 1 )| 

v a r c o e f f ( - a x ( j + 1 ) , 3 2 )ß 

v a r c o e f f ( ( j + 1 ) , 3 3 );  

v a r c o e f f ( b x ( j+ 1 ) , 3 6 ) j 

v a r c o e f f ( - ( J+1 ) , 3 7 )ß 
v a r c o e f f ( a x b x ( i+ 1 ) , 3 8 )ß 
v a r c o e f f ( - a x ( i + 1),39)ß 
v a r c o e f f ( - b x ( i+ 1 ) , 4 o); 
v a r c o e f f ( ( i+ 1 ) ,4 1)ß 
v a r c o e f f ( - a x ( i +1 ),44 )$  

v a r c o e f f ( ( i + 1 ) ,4 5 )5
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v a r c o e f f ( -b x ( j+ 1 ) ,4 6 ) ;  

v a r c o e f f ( ( J+1 ),47 )|

comment 1 9 ;

f o r  z :=1 s te p  1 u n t i l  2  do

o u tp u t ( 1 0 ,N UM [z]);

f o r  zs°1 s te p  1 u n t i l  F do

o u tp u t( 1 0 , R [ z ] );

f o r  z : * * l  s te p  1 u n t i l  TT do

b e g in  w r it e (1 0 ,f 1,B B [1 ,z ] );

w r ite  (1 0 , f1 ,B B [ 2 ,z ] );  

end;

f o r  z:«1 s te p  1 u n t i l  TT do 

w r ite (1 0 ,f2 ,B B B [z ] ); 

c h a r o u t ( l0 , 6 l ) j

end;

end o f  DATPREP; 

comment 2 0 *

f o r  z : - 1  s te p  1 u n t i l  (n + 1 )x (n + 1 ) do 

R [z ] :» re a d ( 2 0 ) •

c lo s e ( 2 0 );

DATPREP;

c lo s e ( 1 0 )$

end;

end



S o lv in g  the S im u ltaneous A lg e b ra ic  E q u ation s

b e g in  l ib r a r y  A0,A6,A14;

In te g e r  Z ,s1 ,s2 ,Q ,T T ;

comment 1 ;

open(2 0 ) j open (70 ); copytext ( 2 0 ,70, ;
Z : - re a d (2 0 ) jT T : - re a d (2 0 ) j

b e g in  r e a l  a r r a y  R ,H [1 :Z ],B B B [1 :T T ],

C C [1 :Z x (Z+ 1 )+2 ]j  

In te g e r  a r ra y  B B [1 :2 ,1 :T T ];

comment 2 j

procedure sym d iv (m ,A ,B); 
va lu e  m; In te g e r  mj a r ra y  A ,B j  

b e g in  In te g e r  i , j , k j  

boo lean  a r ra y  d [ 1 tm]j 

r e a l  procedure d o t (a ,b ,p ,q )$  

v a lu e  qj r e a l  a ,b j  In te g e r  p,q| 

b e g in  r e a l  s :  s : « 0 j

f o r  p:«1 s te p  1 u n t i l  q do s:« s+ aX b j  

d o t:« s  

end dot$

f o r  i :« 1  s te p  1 u n t i l  m do 

b e g in  r e a l  w;

w :« A [ i+ ( i-1  ) x i+ 2 ] -d o t (A [ j+ ( i - 1  )x i*2 ]T 2 ,

i f  d [ j ]  then -1  e ls e  1 , J , i - 1 )$
d [ i ]

A [ i + ( i - l ) x i + 2 ] : » s q r t ( i f  d [ i ]  then  ~w e ls e  w) 

f o r  J : » i +1 s te p  1 u n t i l  m do
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comment

comment

A [ i+ (J -1 )x J + 2 ] : - (A [ i+ (J -1 )x J + 2 ]

- d o t ( ^ f  d [k] then -A [ k + ( i-1 )x i+ 2 ]  

e ls e  A [ k + ( i - l ) x l+ 2 ] , A [ k + ( j - l ) x J + 2 ] ,  

k , l - 1 ) ) / ( l f  d [ i ]  then - A [ i+ ( i - 1 ) x l+ 2 ]  

e ls e  A [ i+ ( i - 1 ) x i+ 2 ] );  

end;

f o r  i :*»1 s te p  1 u n t i l  m do 

B [ l ] : » ( B [ l ] - d o t ( A [ k + ( l - 1 ) x i+ 2 ] , l f  d[k] 

then -B [k ]  e ls e  B [k ] jk < 1 -1 ) ) / ( l f  d [ l ]  then  

- A [ i+ ( i - 1 ) x i+ 2 ]  e ls e  A [ i+ ( i - 1 ) x l+ 2 ]); 
f o r  i:«*m s te p  -1  u n t i l  1 do 

B [ i ] : « ( B [ l ]  -d o t(A [ l+ (m -k )x (m + 1 -k )+ 2 ],  

B [ m + 1 -k ] , k ,m - i ) ) / A [ i+ ( i -1 ) x l+ 2 ]; 
end o f  sym div;

3;
f o r  s1:»1 s te p  1 u n t i l  Z do 

R [ s 1 ] :» 1 . 0 ]o10x re a d (2 0 ) • 

f o r  s i:» 1  s te p  1 u n t i l  TT do 

fregln  B B [1 , 3 1 ] :» re ad (2 0 )j  

B B [2 ,s1 ] :» re a d (2 0 );  

end;

f o r  s1 :-1  s te p  1 u n t i l  TT do 

BBB[s1 ] î - 1 . 0 ]o1 0x re a d (2 0 );

c lo s e ( 2 0 );

f o r  s1 :=1 s te p  1 u n t i l  Zx (Z+1)+2  do CC[s1]:=*0j

f o r  s 1 :«1 s te p  1 u n t i l  TT do 

f o r  s2 :»s1  s te p  1 u n t i l  TT do
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b e g in  i f  B B [1 ,s1 3 ”B B [1 ,s2 ] then  

b e g in  Q : = l f  B B [2 ,s2 ]2 B B [2 ,s1 ]

then B B [2 ,s1 ]+ (B B [2 ,s2 ] -1 )x B B [2 ,s2 ]+ 2  

e ls e  B B [2 ,s2 ]+ (B B [2 ,s l] -1 )x B B [2 ,s1 ]+ 2 j  

C C [Q ]j-B B 3 [s 1]x BEB[s 2]+CC[Q]5

f o r  s i ï » 1  s te p  1 u n t i l  Z do H [s1 ] :«*0 $ 

comment 5}
f o r  s1 :-1  s te p  1 u n t i l  TT do 

H [B B [2 ,s1 ] ] i« B B B [s1 ]x R [B B [1 ,s1 ]]+ H [B B [2 ,s1 ] ] j

sym d iv (Z ,C C ,H );  

comment 6 j

f o r  s1:«1 s te p  1 u n t i l  Z do 

o u tp u t( 7 0 , H [ s i ] )j

c lo s e ( 7 0 )$

end;

end

D e te rm in a tio n  o f  S t r e s s e s ,  S t r a in s  and D e f le c t io n s

b e g in  l i b r a r y  AO,A6,Al4$

In te g e r  n ,F ,tt ,p p ,q q ,N ,p d $  

r e a l  h ,a ,b ,m u ,E ,k ,x ,y ,g ,D ,T ;
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comment 1;
open (20) ;open( 7 0 ); copy text (2 0 , 7 0 , £<>]_)$ 

a : »re  ad( 20); b :**read(20);h: « read  (20) ;mu: « read  (20 ) ; 
E : «read ( 2 0 ) ; k : «read (20 );n: =read(20);pp; =read(20); 
q q :« re ad (2 0 );t t := r e a d ( 2 0 );

g :«(1 +26xkxh/( 70xE) ) ;  T : *=6xmu/(5XhXE); 
D :-9 x U /(7 0 x E )jF :« (n + 1  )x(n+1 )x 4 + n T 2 ;N :-(n + l}T 2  

r e a l  a r r a y  k k [1 :F ] ,x x ,y y [1 : t t ]$

procedure POWERS URFACE;
b e g in  In te g e r  f 9 , f 1 0 ; r e a l  p p l,p p 2 ,q q 1,qq 2 ; 

procedure POWERPOINT(X,Y); 

v a lu e  X ,Y j r e a l  X ,Y j  

b e g in  r e a l  P,W ,W L,M x,M y,H ,ph i,sigm a x, 

sigm a y , t o r  xy, fmax, fm in;
In te g e r  p ,q , s k s j

comment 2 ;
P:«W:«Mx:«My:»H:»Oj 

P :« k k [1 ] ;W :«kk[N+1] ¿Mx:«kk[2xN+1]; 
M y:-kk[3xN +1];H :«kk[4xN +1]• 

f o r  q :« 1  s te p  1 u n t i l  n do 

b e g in  sk s :« q + 1 $ P :« (Y T q )x k k [sk s]+ P j  

sks:« sks+N ;W :« (Y T q)xkk[sks]+W $  

s k s :« s k 3 +N jM x:« (Y T q)xkk[sks]+M xj  

s k s :« sks+N;My:» (Y T q )x k k [sk s ]+My; 
end?

f o r  q :«1 s te p  1 u n t i l  n -1  do

b e g in  sk s:«q+1+N x4 jH :» (Y T q )xkk [sk s]+H ;
end;

f o r  p :« l s te p  1 u n t i l  n do

b e g in  s k s :» (n + 1 )x p t 1 ;P :« (X T p )x k k [sk s ]+ P ;
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sk s  :=sks+N|W :=(X îp)xkk[sks]+W |  

s k s := sk s+N jM x :« (X îp )xkk[sk s]+M x|  

sk s  î= sks+N $M y:**(X îp )xkk[sks]+M yj  

end|

f o r  p :=1 s te p  1 u n t i l  n -1  do

b e g in  sk s := n x p + l+ N x 4 ;H := (X tp )x k k [sk s]+ H ;

end;

f o r  p :»1  s te p  1 u n t i l  n do 

f o r  q :=1 s te p  1 u n t i l  n  do 

b e g in

sk s:= (n + 1 )xp + q + l| P := (X T p x Y T q )x kk [sk s]+ P j  

sk s  : ®sks+N|W:*s(XtpxYtq )xkk[ sk s  ]+W; 

s k s := sks+N jM x:= (XTpxYTq)x k k [s k s ]+Mx| 

sk s  :«=sks+Njlvfy -:= (X îp xY îq )x kk [sk s]+ î/fyj 
end;

f o r  p :=1 s te p  1 u n t i l  n -1  do 

f o r  q :=1 s te p  1 u n t i l  n -1  do 

b e g in

sk s  ; =nxp+q+1 +Nx4; H :«= (XTpxY îq )xkk[ sk s  ] +H3 

end;

Mx:*=Mxx( axX-XT2) | My :«=Myx(bxY-Yî2) j

comment 3|

WL:« (W -Tx(Mx+My)+DxP)/ g 3

comment 4j

sigm a x î s=6xMx/hT23sigma y := 6 xM y/h î2 ;  

t o r  x y := 6 x (H x (a x X -X T 2 )x (b x Y -Y î2 ))/hT 23

comment 5j

fm ln := (s igm a  x+slgm a y ) / 2

- s q r t ( ( (s igm a  x -s ig m a  y ) / 2 ) î 2 + to r  x y î 2 )j
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fm ax:**(sigm a x+sigm a y ) / 2

+ s q r t ( ( ( s ig m a  x -s ig m a  y ) / 2 )T 2 + to r  x y ?2 )j  

w r ite te x t (7 0 j [ [2 c]])i
w r ite ( 7 ü , f 1ü,X)|

w r it e ( 7 0 , f 1ü ,Y );

w r ite (7 ü ,f9 ,P )|
w r lte (7 ü>f9,W)|

w r ite  ( 7 ü j Î*9 î WL) j

w r ite  (70 ,f9> fm ax) ;
w r it e ( 7 Ütf 9 , fm in );
w r ite (7 0 ,f9 >  (fm ax-rnuxfrnin)/E) j

w r ite (7 0 , f9 ,  (fm in-rnuxfm ax)/E)$

comment 6 $

i f  at>s(sigm a x -  sigm a y ) < 1 . 0 w- 2 0  

then  b e g in  w r lte te x t (7 Q * [ [ T 3 s ] ] ) i  

go to  n ex t;

end;

p h is « (a r c t a n ( (2 x to r  x y ) / ( s ig m a  x -s igm a  y ) ) )

x4 5 /1 . 5708 5

p h i: = i f ( s ig m a  x -s ig m a  y )> 0  then  p h i

e ls e  90+phij

w r ite ( 7 0 , f 9 , - p h i )5

next: end o f  POWERPOINT;

f  9 := fo im at (_[s-d. dddddjo-ndJJ | 

f  1 0 := fo rm at(j[s-ndd .d 2 ) j 
pp2 :=a/pp jqq 2 :*=b/qq|pp1 := (a -p p 2 +0 . 0 0 0 l ) j  

qq1 := (b -qq 2 +0 . 0 0 0 1 );

w r it e te x t (7 0 ,2 Ii|c5slC0-0RDS_[_7slL0AD[8slPLATE

26s2interpace25s1maximüm[6s2minimüm[6s2
MAXir4UM26s2MINIMUT4[_5s2PRINCIP ]_°5slXI6sl
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XL33iINTENSITYIJltsiDEFLECTI0NI3siDEPLECTI0NIi+si
STRESSj7sJ_STRESSj[7s]_STRAINj^7slSTRAIN[6s]_

DIRECTIONJJsJJJ >

comment 7 ;

f o r  x:® 0 ,x+pp2  w h ile  x<pp1 , a do 

f o r  yï*=0 ,y+qq2  w h ile  y<qq1 ,b  do 

POWERPOINT ( x , y ) ;

comment 8 ;

f o r  p d :«*1 s te p  1 u n t i l  t t  do 

b e g in  x :« x x [p d ]; y :**yy[pd];

POW ERPOINT(x,y); 

ends

end o f  POWERSURFACE j 

comment 9 j

f o r  pd :« 1  s te p  1 u n t i l  P do 

kk[pd] :«*read(2 0 );

comment 1 0 ;

f o r  p d :=1 s te p  1 u n t i l  t t  do 

b e g in  x x [p d ]:® re a d (2 0 );

y y tp d ] := re a d (2 0 );  

ends

c lo s e ( 2 0 )j

POWERSURFACE;

c lo s e (7 0 ) ;

end


