ON THE STRUCTURAL ANALYSIS OF
HIGHWAY PAVEMENTS:

An Application of Veriational Methods

by

S .
M.E, Fleming, BeSc.
—~

Thesis presented for the Degree of

Doctor of Philosophy

Department of Civil Engineering

The University of Leeds

March, 1968



IMAGING SERVICES NORTH

Boston Spa, Wetherby
West Yorkshire, LS23 78Q -
www.bl.uk

"~ CONTAINS
PULLOUTS


http://www.bl.uk

TABLE OF CONTENTS

INTRODUCTION

PRESENT STATE OF PAVEMENT STRUCTURAL ANALYSIS
Introduction
Idealization of the Pavement/Subgrade System
Established Analyses of the Pavement/Subgrade System
Summary and Discussion

PROPOSED RESEARCH PROGRAM

STRUCTURAL ANALYSIS OF THE HIGHWAY PAVEMINT
Introduction
A Thick Plate Theorem in Elasticity
Specifications and Assumptions of the Structural Analysis
Analysis of the Pavement with Full Interface Contact
Preserved
Analysis of the Pavement Including Possible Loss of
Interface Contact
Discussion

SOLUTION TO THE DIFFERENTIAL EQUATIONS OF THE

STRUCTURAL ANALYSIS
General Approach to the Solution of the Equations
Application of Power Series
Application of Chebyshev Polynomials

Application of Pourier Series

Page

14
26
48
54
57
5T
64
70
17

86

92
94

95
.96
105

117



Summary
FUNCTIONS DESCRIBING THE APPLIED TRANSVERSE VWHEEL-LOAD
Development of the Loading Functions
Numerical Computation of the Loading Functions
Comparison of the Loading Function Representations
Discussion
COMPUTATION OF THE PAVEMEINT STRESSES AND DEFORMATIONS
Setting-up the Algebraic Form of the Differential
Equations
Solution of the Algebraic Equations-
Determination of Stresses, Strains and Deflections
Discussion
A LIMITED EXPURIMENTAL APPLICATION OF THE STRUCTURAL
ANALYSIS
Design of the Expefimental Investigation
Elastic Properties of the Plate and Foundation Matérials
Obtaining the Analytical Results
Discussion of Analytical and Experimental Results
CONCLUSIONS
RECOMMENDATIONS FOR TFURTHER RESEARCH
SELECTED REFERENCES
ACKNOWLEDGEMENTS

APPENDIX A: NOMENCLATURE

Page
123
124
126
142
161
172
174

175

186
192
210

212

214
218
226
229
235
239
241
250

251



Page

APPENDIX B: PROGRAMS TO DETERMINE THE FUNCTIONS DESCRIBING 260
THE APPLIED TRANSVERSE WHEEL-LOAD

APPENDIX C: PROGRAMS FOR THE COMPUTATION OF PAVEMENT 275

STRESSES AND DEFORMATIONS



INTRODUCTION

Because of the high financial cost involved in highway
construction, it is essential that the most economic methods of design
and construction are employed in roadworks. From the design aspect,

a road must perform its requirea function for a specified number of
years and the extent to which a pavement fulfils this requirement is
largely dependent upon the structural method of design employed.

Such a method should be economical, completely reliable, and easily
applicable, The main difficulty which arises is that there are a great
many parameters involved in any pavement design procedure. These vary
from those created by pavement frost effects to’' those resulting from
vehicle wheel configurations. The magnitudes and effects of several

of these variables are also diffimlt to determine quantitatively.

In the light of present knowledge it is generally accepted
that the ultimate pavement design method will be principally empirical
in nature. However, the use of a structural analysis of the pavement
as a basis of such an empirical approach 1s advisable. The analysis
should be used to determine the critical stresses, strains and
deflections occurring in a pavement and should cover as many as
possible of the determinate parameters. This theoretical analysis
might then also provide a tool with which the effect of these

parameters could be investigated.



PRESENT STATE OF PAVEMENT STRUCTURAL ANALYSIS

Introduction

Pavement and foundation

The basic problem in highway pavement design is to provide,
as economically as possible, a road structure canable of carrying an
estimated amount of traffic, for a given number of years, over the soil
occurring along the proposed route.

The structural elements of a pavement ang foundation are
shown in Figure 1. A typical pavement and foundation cross-section
may include the natural in-place subgrade, a compacted subgrade, a
compacted subbase, a compacted réadbase of treated or plain gravel or
crushed stone, and a surfacing of one .or more layers of asphalt, = The
roadbase and/or surface layers may be repliced by one layer of reinforced
or plain concrete. Thus a pavement is a structure consisting of
superimposed layers of selected and processed materials whose primary
function is to distribute concentrated vehicle wheel-loads to the
supporting subgrade so that the reduced pressure transmitted does not
exceed the supporting capacity of the subgrade and, at the same time,
structural failure of the pavement itself does not occur.

Rigid and flexible pavements zre the two main types of road



Figure 1. “The basic’ structural elements of a. pavement. -
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structure. They are defined by the manner in which they distribute
the applied wheel-loads to the subgrade. The distinguishing feature
of a flexible pavement is that the reduction of transmitted pressure is
accomplished through the lateral distribution of the concentrated load
with depth rather than by the flexural action of the pavement itself.
In rigid pavements, on the other hand, fleyural action is dominant and
therefore such a structure can bridge over localized discontinuous or
inadequate support.

Pavement design factors

The main causes of failure which need to be taken into account
when designing a pavement are as follows:

1. Excessive stresses due to traffic. These may be
transmitted to the subgrade and lead to evcessive deformation with
consequent failure of the layers sabove. Large stresses in the road-
base or subbase may also lead to failure of the road even though the
subgrade does not become excessively deformed.

2. Excessive stresses from other causes. Temperature or
moisture changes in any part of the pavement may possidbly, in the case
of rigid pavements constructed of concrete, create stresses which cause
the break-up of the pavement.

3. Stripping of the surfacing. This may occur through an
insufficient adhesive bond being developed between either individual
particles of mineral aggregate in the surfacing or between the surfacing

and roadbase, Failures of this type are usually confined to bituminous

surfacings.
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4. Deterioration of the subgrade after construction. A
change in the moisture content of the subgrade can result in a loss of
support for the pavement. An increase in moisture content usually
causes a loss in subgrade strength, while a decrease in moisture content
may result in shrinkage of ;tre subgrade. Repeated wheel<loads can
cause compaction and consolidation of the subgrade so that localized
areas of pavement are left unsupported. The action of frost can often
cause damage to the pavement and allow water to enter the subgrade
through cracks formed in the surfacing.

Pavement deterioration due to excessive traffic stresses is
probably the most important cause of failure and is therefore the only
one considered in many methods of pavement design. 'Tdeal' methods of
design, which attempt to design on the basis of resistance to traffic

stresses, should normally try to take account of the following relevant

factors:

a. The magnitudes of the applied wheel-loads,

b. The wheel contact pressures with the road surface.

c. The shape of the tyre-carriageway contact area.

d. Possible combinations of single, dual and tandem wheel
configurations.

e. The dynamic nature of wheel-loads and, thus, the
dynamic properties of the pavement and foundation.
f. The impact effect on the pavement and subgrade due to

vehicles encountering irregularities in the surfacing.
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g The cumulative effect of repeated applications of
wheel-loads,

h. The distribution of stress throughout the pavement and
subgrade.

i. The distribution of wheel-loads across the road width.

3. The effects of temperature.
Again, ideally, such methods should give the thickness and type of
construction that will most economically ensure the desired life of
pavement structure. Unfortunately all of these factors cannot yet be
taken into account when designing a highway pavement.

Approaches to pavement structursl design

There are a great many methods of pavement design which not
only differ considerably in their approach to the problem but also in
their reliasbility. Most methods consider only some of the possible
causes of failure. Because of the complexity of +the problem and its
relatively recent consideration, no single method has been shown to bve
completely acceptable, Even though existing methods are so diverse,

they can be classified into the five following main groups (1):

Group 1. Empirical methods based purely on precedent. The
highway engineer's personal judgement, using his past knowledge of
traffic and climatic conditions in the area, is still used to a certain
extent to determine required pavement thicknesses. These methods are
only justifiasble in the 'design' of the most minor of roads and, even

then, should be based on intimate knowledge and past experience of
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of highways in the locality.

Group 2.  Empirical methods using soil classification tests.
With these procedures the thickness of construction over a given subgrade
is determined from past experience of the thicknesses required for
similar wheel-loads on similarly classified soil subgrades, The
classification tests used for this purpose are, normally, the particle-
size analysis and the liquid and plastic limit tests. The Justification
for these methods is that if the moisture content of 5 soil is controlled
and an adequate dry unit weight is obtained in the subgrade through
compaction, then the thiekness of construction required to withstand
given traffic stresses depends largely on the composition and structure
of the basement soil. The Group Index me thod of design (2) is an
example of a procedure which utilizes this approach in the design of
both flexible and rigid pavements.

Group 3. Empirical methods using a soi} strength test. In
these methods & test is used to classify the 'strength' of g subgrade
soil.  The test used, which is commonly a penetration or bearing test,
is frequently only applicable to its associated design method. The |
strength test is considered to stress the subgrade in g standard way and
then the thickness of pavement is determined on the basis of experience
of the thicknesses required on top of subgrades of similar strength in
the past. The best known of these design methods is the Califomia
Bearing Ratio method (3). It is used for both flexible ang rigid

pPavement thickness design purposes.



Group 4. Methods based partly on theory and partly on
experience. These methods require that the fundamental stress/strain
properties of the subgrade soil and the pavement materials be determined
by shear or bearing tests so that the results may be employed in a
simplified or modified theory of stress distribution which has been
found to have some experimental justification. The reasoning here is
that, in order to overcome the difficulty of analysing the true stress/
strain characteristics of the soil and the true distribution of stress
in the layers under the wheel-load, a method in this group is justified
in making certain assumptions and neglecting some factors in order to
produce a simplified theory which can be easily handled at the design
stage. The assumptions and neglected factors involved in any method
of this group are generally proved reasonable by experience.

A theory of stress distibution in a concrete pavement which
has been used as a basis of some methodsin this group is that due to
H.M. Westergaard (4). These methods have mainly given consideration
to the stresses within the concrete, and the subgrade has only been
considered in so far as it effects these stresses,

The Westergaard formulae simply provide & method of calculating
the stresses within a given thickness of slab.  Such matters as joint
spacing, slab width, reinforcement, etec., are considered separately
within the design method. In Westergaard's analysis the concrete
slab is assumed to be an elastic solid. The rcaction of the subgrade
is assumed to be vertical and to be proportional to the deflection of

the slab. Thus Westergaard's subgrade is assumed to be elastic and to
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act in a similar manner to a set of vertical springs. This idealization
of a foundation is referred to as a Winkler foundation.

In his analysis Westergaard assumed that each wheél-load was
uniformly distributed over a circular wheel contact area and obtained
formulae for the maximum tensile stresses in the concrete for the loading
positions shown in Figure 2.  As can be secn, these locations were at
a corner, at an edge and at somme distance from an edge of the slab. He
also (5) studied the problem of warping stresses due to a temperature
gradient through the slab-on the assumption that this gradient was a
straight line.  An improvement to ‘Westergaard's work on this latter
subject was later made by Tomlinson (6).

The elastic constant used to describe the stress/strain
relationship of the Winkler foundation is the modulus of subgrade
reaction, k, and is defined as the pressure required to cause a unit
deflection of the subgrade surface. It is normally measured in units
of 1b./in.2/in. and is determined by a plate bearing test. The most
usual method of determining k is according to the procedure laid down
by the U.S. Corps of Engineers (7.

A nuﬁber of improvements have been made on Westergaard's
original stress analysis which make it agree more closéiy with experi-
mental work. Thus, Kelley (8) suggested an improved formula for deter-
mining thevmaximum tensile stress for the corner loading case after
éomparing the valuc given by Westergaard's formula with experimental

highway pavementsy his work is especially apnlicable when the slab



Figure 2. The three loading positions on a slab which -

were annlysed by Westergaard.

.
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gorner is not in complete contact with the subgrade due to upward
warping of the slab. Spangler (9), after conducting large-scale

indoor experimental tests, confirmed Kelley's formula for corner loading
and suggested a simplification of the formula which yields substantially
the same results.

Pickett (10) noted that several of the theoretical and
empirical formulae developed for corner stressecs in concrete pavements:
had obvious limitetions to their range of application. For example,
he pointed out that the'Westergaard, Kelley and Spangler equations all
indicate the maximum stress to be zero when the ratio of the radius of
the loading area to the ‘radius of relative stiffness is unity. The
radius of relative stiffness is a constant representing the slab/
foundation system and was first defined by Vestergaard, in terms of thé
slab thickness, the Foissons ra£io of the slab, the slab's modulus of
elasticity, and the modulus of subgrade reaction of the subgrade.
Because of these observations, Pickett worked toward the development of
a formula which had the same shape and charactcristics of the Wéstergaérd
equation but which had less limitations on its use and also gave approx-
imately the same strcsses as the Kelley and Spangler equations within
their range of application,

Both Spangler and Pickett attempted to allow for the non-
uniform distribution of moments along sections perpendicular to the
bisector of the corner angle whercas Westergaard assumed this distribution

to be uniform., Pickett through his semi-empiricel equation also allowed
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for lazk of subgrade support near the corner due to warping.

Group 5. Wholly theoretical methods. These procedurcs
are based entirely on mathematical analyses of the stresses and strains
throughout the pavement and subgrade and on the true strcss/strain
characteristics of the various materials. The best known theoretical
analysis in this group is that due to Burmister (11) and it is this which
forms the basis of most design approaches in this group.

Burmister analysed the stresses and strains in a two-layer
system which consisted of an elastic slab, infinite in the horizontal
plane only, placed on a semi-infinite solid of lower modulus of
elasticity; he considered the system to be subjected to a uniformly
distributed load acting over a circular area and applied to the unper
surface of the dlab, The interface between the two layers was assumed
to be either perfectly rough or perfectly smooth. Using these assump-
tions Burmister was then able to compute the vertical displacement at
the surface under the centre of the applied load for various pavement
thicknesses and elastic constants.

Burmister suggested a pavement design method based on the
results of his analysis. For flexible pavement design purposes he
considered the pavement as the top layer of a two-layer system and the
subgrade as the bottom layer. The thickness of the top layer was then
determined so that the displacement under the wheel was limited to an
arbitarily selccted quantity. It is herc that empiricism really

entered into Burmister's design procedure since not only does difficulty
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arise in obtaining satisfactory values for the eclastic properties of-
the pavement and subgrade which are required by the procedure but, in
addition, the value for the limiting displacement is chosen with no
direct account being taken of the stresses in the materials. No
account is also taken of the traffic intensity or of deformation due to
traffic consolidation and compaction. In summary it can perhaps be :
said that the method is not very practical, especially es it is

extremely sensitive to the value of limiting displacement chosen.

From the above brief discussion it can be seen that there is,
as yet, no one design method which is generally accepted. There arev
over forty design methods, many of them héving little in common with
one another either in the assumptions they make or in the results they
produce. It is possible, however, that a structural analysis of the
pavement/subgrade system may be used in the future as the basis of
one generally accepted rational design method. What is clearly required
in that case is a method of analysis which includes as many of the design
parameters as possible and which would thus help to forecast pavement
behaviour more accurately. Some of the reclevant existing methods of
structural analysis are examined briefly in a later section of this
chapter. Before this, it is necessary to discuss the possible ideal-

isations which are applicable to a pavement/subgrade system.
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Tdealization of the Pavement/Subgrade System

The vertical variation in the material composition of a
highway structurc, coupled with the complex nature of the behaviour
under load of the individual materials, has hindered the development
of a rational analysis for the stresses and displacements provided by
traffic loads. Because of these and other difficulties, analysts
have found it necessary to idealize the pavement/subgrade system into
mathematically tractable forms. Some of the idealizations which have
been made are now discussed,

Wheel/pavement contact area and pressure distribution

The actual contact area between a wheel and a pavement
surfacing is somewhere between an ellipse and a rectangle, depending
upon the type of tyre and the tyre pressure. The distribution of
pressure over this contact area depends upon many factors including
the type of tyre, the tyre pressure and the stiffness of the tyre walls.
For example, low tyre pressure and stiff tyre walls result in a slightly
higher contact pressure underneath the tyre Walls compared with the
remainder of the contact area.

The use of the exact shape of the wheel/pavement contact area
and the actual distribution of pressure over this area does not appear
to be criticalAto the analysis of stresses and deformations in the
pavement and subgrade. For this reason, the perimeter of the contact

area is usually idealized to a circle, while the area enclosed is assumed
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equal to the contact area. The pressure from the tyre is then
assumed to be uniformly distributed over this earea.

The pavement layers

The analysis of layered pavement systems is usually confined
to those containing two or three layers. This is due to the difficulty
in analysing and obtaining numerical solutions for higher order multi-
layer systems. For a similar reason each layer is considered uniform
in thickness. |

A flexible road is normally an example of at least a three-
layered system; this also applies to many rigid pavements. In three-
layer theoretical apprmches it is customary to take the whole
surfacing as the uppermost layer, the roadbase as the intermediate
layer, and the subgrade as the lower layer which extends downward to
infinity. A problem arises, however, when there is a subbase between
the roadbase and the subgrade. The difficulty is then in deciding
within which of the idealized layers the subbase should be incorporated
and what properties are representative of that combined layer. In this
case, the roadbase provertics are normally considered to be representative
of the combination unless the subbase's properties are so obviously
similar to those of the subgrade as to be naturally combined with it.

Many analyses consider the road to be a two-layered system and
a8 a result even greater difficulties arise when choosing the elastic
properties for two layers which are representative of the pavement and

subgrade. The idealization of the pavement and subgrade to a two-
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layered system has the advantage that such a system can be more easily

analysed than a three-laycred system.

Lateral dimensions of the pavement

The majority of the theories relating vehicle loads with
the stresses and deformations in roads, for simplicity, assume that
the road consists of a number of layers, all infinite in the horizontal
direction, and overlying a subgrade of infinite thickness. Some others,
however, assume the presence of a finite horizontal limitation to the
extent of the pavement; this may be either a pavement edge or corner.
These discontinuities in the pavement can form a closed pavement shape
such as a rectangle or circle. Structural analyses of circular areas
have been made but their application to actual pavement analysis is
questionable.

Which structural analysis to apply to a particular pavement
has been largely dependent upon the type of pavement being considcred.
Because of the absence of joints, sharply defined edges and flexural
rigidity in flexible pavements, those annlyses which consider the pavement
to be infinite in extent horizontally have found application mainly in
flexible pavements. This simplification has allowed other effects
to be incorporated into the theoretical analysis which are especially |
pertinent to flexible paﬁements, e.g. transverse compression of the
Pavement.  In contrast, those the:ries which have included edge effects,
etc., are especially useful for rigid pavement analysis since the

concrete slabs are usually cast in the form of rectangles. Because in
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such cases the stresses and deformations generated are critical when
the contact arca is near an edge or corner, it is esscntial that the
boundary effects are incorporated into the analysis,

A form of discontinuity which is similar to an edge is that
of a crack in the pavenment. Cracks are essentially a post-construction
problem and a finite crack is, analytically, very difficult to handle.

" For these reasons little attention is usually given to them in most
analyses.

With concrete slabs there is the additional problem of whether
or not they obtain substantial support from adjacent slabs. This
problem is compounded by the introduction of dowel bars which result
in a decrease in the stresses ond deformation of the loaded slab,
Because of the difficulty of detcrmining the efficiency with which
particular dowel bars transfer stresses, this problem is idealized in
most analyses by simply ignoring it; where it is taken into account
it is through the introduction of empirical factors which enable the
results to be modified in 2o suitable manner.

The behaviour of the pavement

In the specification of the pavoment/subgrade system to be
analysed, the elastic nature of the pavement and subgrade is probably
the most important considerstion. A balance has to be struck between
the idealization of the system and the ability of such a system to be

analysed.

Some pavements, especially those with bituminous layers, have
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been shown to be viscoelastic to some extent. Even so the magnitude of
the problem which would be created by the inclusion of a time variable
into the analysis has largely led investigettrs - to avoid this
complication by assuming that the pavement and subgrade behave
elastically.

The question as to whether the pavement is linearly elastic
has also been given attention. The general conclusion is that at low
levels of stress and high rates of loading most pavements and subgrades
show a sufficient proportionality of stress %0 strain to enable the
theory of elasticity to be used to predict stresses, strains and
displacements. At higher levels of stress i.e. where failure of the
pavement is approached, this is not so, as the pavement components do
not exibit linear elasticity. Since however, proper design does not
allow undue deform tion of the pavement to occur, it is unlikely that
these higher regions of stress arise in the highway in practice. There-
fore, a highway is usually considered to behkave in a linear-elastic manner
under the dynamic loading of moving vehicles.

The dynamic influence of az moving vehicle highlights the fact
that the magnitude of the deformntions within a pavement is related to
the speed of a vchicle i.e. there is a decrease in the deformation of
each layer as the speed of traffic increases. This effect can be
included in a purely static elastic analysis, which most analyses are,
by making use of values of dynamic elastic moduli which

correspond with the design speed of the road. The main difficulty here,
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however, is in developing satisfactory methods for determining the
dynamic elastic moduli of the pavement and foundation materials.
Until satisfactory methods are developed use must be made of the
static elastic moduli in the purely static elastic analyses.

Finally, along with the requirement of elasticity, it is
usual to consider each idealized layer as a homogencous and isotropic
material. These are basic assumptions which are necessary in order to
make the problem mathematically tractable. Since, however, an
idealized 'layer' may be composed of more than one actual layer, it could
be seen that the former of these requirements may be impossible to
satisfy in practice. Similarly, the action of construction traffic
can result in reorientation of the pavement materials in ¢ particular
direction and so violate the isotropic requirements.

The behaviour of the foundation

The idealizations involved with respect to the subgrade are
equally as important as those of the pavement layers, even so, greater
simplifications are normally found in relation to the subgrade than
occur in the pavement representation.

While the subgrade can usually be considered to distribuﬁe
the stresses applied to it by compression and granular interaction, the
use of simple elastic properties in analyses. infers that it 2lso possesses
tensile strength, Except for the small amount provided by cohesion, and/
or by the artificial (tensile) strength due to the pre-compressive

effect of the pavement weight, ther: is little tensilc strength present.
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Thus there is © little justification for the use of elastic properties.
The subgrade is usually considered to have tensile stiffness as otherwise
the theoretical anslysis becomes extremely difficult.

Whether the subgrade should also be considered as & homogeneous
isotropic solid or as some simplification of this idealization is very
much a case of convenience. The usc of the simplification provided by
the Winkler foundation is usually accepted as it enables more accurate
idealizations in say the pavement to be incorporated in the analysis
which would otherwise prove difficult to handle with the addcd complication
of the homogeneous isotropic elastic solid foundation.

Another argument in favour of using a simplifying assumption,
such as that provided by Winkler with regard to the subgrade is that on
balance it may be just as near to the actual state of affairs as the
three~dimensional elastic solid representation. For instance, if the
concept of an isotropic clastic solid was to be used, then the presumption
would be of similar values of elastic constants whether the point in
question was in tension or compression. As has been noted before this
is most unlikely to be the casc and so the advantageof using the refine-
ment of an elastic solid is questionable when the obvious basic violation
is present anyway. Furthermore, thc applied load is distributed within
the subgrade to only a small degree by flexure, the main part being

taken by direct compression in a direction transverse to the plane of
the pavement. In view of this, the idcalization of the pavement to a set

of springs, as in the Winkler assumption, is not unreasonsble, bearing in
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mind its distinct advantageé"when attempting to obtain analytical
solutions.

An added point which works agrinst the use of the clastic
solid concept of the subgrade is that related to the difficulty in
obtaining satisfactory elastic properties for the subgrade. No method
of obtaining suitable values is yet available. In contrast, the
determination of the modulus of subgrade reaction - this is the 'elastic'
property used to describe the Winkler foundation - by the plate bearing
method has found acceptance by engineers and there is considerable exp-
erience in using the results of this test. It also has the advantage
that the test may be performed on the actual 'in place' subgrade, thus
avoiding the change in propertics of the subgrade material which results
from its removal from the roadway to the laboratory for testing. (This
is not the case with the triaxial compression test which can be used to
approximately determine the properties required for the elastic solid
idealization. )

Karl Terzaghi (12) has presented a comprehensive study of the
evaluation of moduli of subgrade reaction which shows that the deter-

mination and use of these coefficients in reclation to the Winkler
foundation involves two assumptions which are of particular importance.
These are, firstly that the relationship between the applied pressurc at
the surface of the subgrade and the rcsulting surface displacement at
that point is independent of the magnitudc of the applied pressure and

secondly, that this relationship is not affected by the presence of
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pavement or bearing plate edges. Terzaghi found however that if a |
loading test is performed on a subgrade of any kind the settlement
increases with increased pressure - in fact, he showed that the first
assumption is epproximately valid only for values of pressure which are
smaller than about one-half of the ultimate bearing capacity of the
subgrade. According to the second assumption the subgrade reaction at,
for example, the base of a centrally loaded perfectly rigid slab, (as |
is the presumed state of the plate in the plate bearing test), has the :
same value everywhere. In reality, the pressure at the rim of @he surfaceg
of contact is either greater or smaller than that at the centrc depending
on the elastic properties of the subgrade. In summary, Terzaghi there-
fore felt that with problems involving the modulus of subgrade reaction
the limits of validity of the first assumption should always be taken into
consideration when anplying thc results to such work. He also considered
that, in connection with practical problems, the errors resulting from

the sccond assumption could in many cases be disregrrded.

Pavement /subgrade continuity

The interface between the pavement and the subgrade is unlikely
to be either of such a roughness to provide for a comprlete transfer of
stresses between the two layers, or to be smooth enough to allow only
the transfer of stresses normal to the interface. The difficulty in
determining the actual degree of partianl transfer of stress in any
instance is very great and the usual procedurc in mathematical analyses
has therefore been to utilize = simplific~tion which considers the inter-

face contact to be either completely smooth or completely rough. Thus,
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for exemple, the Winkler concept considers the contact to be completely
smooth,

Associated with the above is the possibility that an upward
movement of the pavement at a little distance from the loading position
may be accompanied by a loss of contact between the subgrade and the
pavement at  that, point. This can occur with respect to rigid
pavemcnts although it must be also stated that the pre-compression of the
subgrade, which results from the paveuent weight, may be sufficient to
exceed any subsequent upward movement duc to wheel-loads and so contact
may not be lost.

If loss of conéact does occur then the result is the complete
absence of stress transfer at that point. This crecates a non-linear
problem in which the relationships between stresses and deformntions are
entirely different to those when continuity is assumecd to be preserved.
Nearly all of the analyscs ignore this possibility, however, and assume
that the subgrade remains attached to the pavement at the intcrface, even
though the pavement deflection may be upward. Somz researchers hnve
attempted to overcome this difficulty by first of all analysing the
problem in the usual manner and then, on noting the points wherc upward
movement take place, repeating the analysis with no subgrade support at
these points. By carrying out this procedure repeatedly a more corrcct
solution can be approached, but it is a very tedious approach.

Related to the possibility of loss of interface contact due to
upward movement of the pavement is the difficulty in obtaining uniform

support for the pavement since local loss of support due to pumping or
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settlement of the subgrade is always o distinct possibility. While a
number of investigntors, notably Richart and Zia (13) and Sperkes (14)
have attcmpted to treat this problem speeifically by using various
simplifications, they rre generally omitted in pavement analyses on the
grounds that, since they 2re primarily related to post-construction
problems, it is better to design the road construction to aveid the
possibility of their occurrence.

The variation of transvers stresses and deformrtion through the plate

The classical theory of elasticity as developed for plates has
been available to engineers for many years and is uscd a great deal in
the analysis of the pavement/subgrade system. It is treated exhaustively
in many textbooks notéble among which is that of Timoshenko and
Woinowsky-Krieger (15). This theory contains a number of assumptions
which are principally concerned with the transverse variation of stress
and deformnation through the thickness of a plate. In foct, the only
type of plate which completely satisfies the assumptions made are those
which are referred to in the literature as 'thin' plates.

Research workers have recently been giving more attention to
thesc classical assumﬁtions and have found that substantial inaccuracics
are possible in certain probiéms. Two of the assumptions which nre of
pParticular importance are:

1. That the component of stress normal to the middle surface
is small compared with other components of stress.

2. That plane cross-sections normal to the undeformed middle-
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surface remain plane and normal to the dcformed middle-surface.

These two assumptions are equivalent to neglecting the effects
of transverse direct compression snd transversc shear deformation,
respectively. Plates for which these two assumptions are not justified,
because of the inaccuracies which would result, arc gencrally known as
'thick' plates. A theory of elasticity which is referred to as a thick
plate thecory strictly refcrs to one which only includes the effect of
transverse shear deformation. However the majority of writers use this
expression to describe a theory which includes both transverse shear
deformation and transverse normal compression. The latter connotation
is used in this thesis unless othcrwise stated.

In the application of the thick or thin plate theory to the
analysis of the pavement/subgrade gystem the pavement is considered to
be a plate resting on a foundation. WVhether the application of a thick
plate theory would produce substantial improvements over the classical
thin plate theory in the anrlysis of the system is very much dependent
upon the sctual geometry and elastic propertics of the layers involved.
Thus transversc compression of the vavement (plate) is an importent
influence on the distribution of stress and deformation within flexible
pavement s tut probably not in rigid pavements. Transverse sherr deformation
is likely to be grcatcr in plates which nrc supported on a frundation as |
compared with those which have other mcans of support, e.g. those with
simply supported cdges; ‘this is because of the increased distribution
of applied load over the plate through shear rather than flexure. In

fact, the effect increases with increased stiffness of the foundation.
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The presence of plate (pavement) discontinuities provided by
pavement edges and corners can result in inaccuracics due to the neglect
of transverse sherr deformation especially when, 2s is the case in
actual highways, the wheel-load is applied close to the edge. This is
emphasized when the increased ability to accurately specify the boundary
conditions at the edges of the plate (pnvement), made possible by
including the c¢ffect of transverse shesr deformation, is considered.

Thus the use of the thick plate theory rather than the thin
plate theory, i.e. including the effects of transversc normal compression
and shear deformation, may result in a substantial increase in accuracy

in determining the stresses and deformation of the pavement and subgrade.
Established Analyses of the Pavement/Subgrade System

The Introduction has given the approaches to and the requirements
of pavement design methods. In the preceding section arc listed and
discussed the relevont idealizations of the pnvement/subgrade system.

The purpose of this section is to summarize the theorctical methods
of analysis so that in association with the previous scction and the
background provided by the Introduction, the principal deficiencas
in the present state of pavement analysis can be brought to light.

The analyses considered are discussed in chronological order

as they span a period of activity from the 1920's to the present day.

For convenience, they are referred to by the name of their eauthors.
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Westergaard, H.M.

As has been explained before, the two-layer analysis of a
slab resting on a foundstion, presented by Westergaard (4) in 1926, provides |
the basis of the methods used to-day for the design of rigid pavements
and for this reason is discussed in some detail. This analysis is
performed for each of the three loading positions shown in Figure 2.
These nre referred to as the interior, edge and corner loading positions
and are a large distance from any other slab corners or edges. The
solutions obtaincd are in the form of simple formulae for the maximum
tensile stress and maximum deflcction of the slab nt cach of the
positions considered. No direct analysis is made of the stress
distribution within the foundation.

The basic assumptions in this annlysis are:

1. The slab is treated as a thin, elastic, homogeneous,
isotropic, solid plate.

2. The foundation is considered to be of the Winkler type.

3 The interfoce between the slab and the foundation is
considered to be smooth.

4, The wheel;load is rcpresented by a pressure of uniform
intengity which is spread over 2 circular area.

5. Full contact is preserved between the slab snd the
foundation at all times, |

The approaches to the thrce analyses arc now briecfly explained.,
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Interior loading position. The slab which is considered to be a circuleor

plate of infinite extent horizontally, is first annlysed using the thin
plate theory. With slabs of the proportions ~s found in prvements this
theory leads to a satisfactory dctermination of deflections at all points
and of stresscs at 211 points except in the immediate neighbourhood of

a concentrated load such as the idecalized circular wheel-load. The
theory, in fact, produccs infinite values of stress as the radius of

the contact area decreases to zero.

To avoid this inaccuracy, Westergaard altered the formulae
provided by the classieal theory by replnacing in thése formulae the
actual radius, c, of the contact area by an equivalent radius, b. This
resulted in correct values of stress being computed from these formulae
at points over and eround the contact area. The rclationship between
the actual radius, ¢, thc equivalent radius, b, ond the thickness éf
the slab, h, which would give the corrcct stresses was determincd by
comparing the stresses from the classical theory with those based on
an analysis performed by A. Nadai (16) which considered the concentrated
load to be at the centre of a form of thick circular sleb of small
radius. Westergaard, in effect, inserted this circular slab into the
centre of the large thin slab. The radius of this inner sleb was
arbitarily chosen to be 5h. By comparing the stresses given by the
thin plate theory with those of the more nccurate theory the relationship
between ¢, b and h was found to be

b= J(1.6c° +h°) - 0.675h for og 1.724n

(1)

and b = ¢ for c >1.724h




- 29 -

This indicates that for ¢>» 1.724h the thin plate gives substantially
the same values of stress as the more accurate theory based on Nadai's
analysis.

To facilitate the mathematical treatment, Westergaard
introduced the term 'radius of relntive stiffness' denoted by the
symbol A and expressed by the relationship:

A4 -
12(1-12)k
where E is the modulus of c¢lasticity of the slab, u is the Poisson's
ratio for the slab, and k is the modulus of subgrade reaction of the
foundation. This quantity, A, can also be considercd as a measure of
the relative stiffness of the slab flexure to the subgrade support.
The ordinary thin plate theory gave the following expression

for the critical tensile stress, 0i, under the centre of the contact

area:
s A ,
o1 21%.%.&%2 (loges + 0.6159) (3)

where P is the total wheel-load. The correcct stress at the centre of
the contact_area was obtained by replacing ¢ by the expression for b
in equation.@);

The deflection, dj, at the centre of the load was computed
using the thin plate theory and is as follows:

di=P
8KkAZ

(4)

Edge loading position. When dealing with the wheel-load at the cdge,

Westergaard assumed that an equivalent radius, b, might be introduced
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in place of the true radius, ¢, in a manner similar to that for the
preceding case and by the same formula. This assumption was justified
on the ground that the distribution of encrgy duc to vertical shearing
stresses was similar for both cases. The correct stresses were
obtained by introducing the equivalent radius, b, in place of ¢ in

the following formula for the maximum tensile stress, 0g, along the

bottom edge of the slab under the centre of the contact areas

Je = 0.529(1 + o.54u)_'15__(4loge% + 0.359) (5)
2
h

From the classical theory, Westergaard found that the deflection, de,
at the point of application of a concentrated force P at the cdge wes
approximately equal to

a, = 1(1+ o.4u)_?__§

T = (6)

Corner loading position. For this case, VWestergaard considered a wheel

acting close to the right-angled corner of a large panel of the slab,
The critical failure stress in this instance is a tension at the top
of the slab, at a critical section which is some distance from the
¢corner. The centre of the circular load is then at a distance c1 from
the corner, where ¢, =¢ J@ . Westergaard attempted to improve on
previous critical stress formulae which assumed that the load was
concentrated at the corner, i.e. ¢, =c¢c= 0, and that there was no
subgrade support between the corner and the critical section,
Westergaard obtained en improved approximation by employing

the thin plate theory to arrive at an approximate expression for the
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deflection, d, in the neighbourhood of the corner. Knowing that the
reaction of the subgrade at any point to be equal to kd, when k is the
modulus of subgrade reaction, Westergaard showed how the total bending
moment Ml at the section x'= Xy where x'is the co-ordinate direction
along the bisector of the square corner, due to the combined influence
of the applied load and the reaction of the subgrade,could be obtained,.
He assumed that this bending moment was uniformly distributed over the
width 2xl of the cross-section of the slab perpendicular to the
direction bisector, f, of the corner; thus the bending moment per unit
width became M = M1/2x1. The numerically greatest value of M was then
found to occur approximately at the distance x, = ZJKclk). Division
of this value of M by %he section modulus per unit width, h2/6, led
Westergaard to the corresponding greatest tensile stress, dc. Thus

[1- (cl/*)o'6] (7)

0'c=

"ol

The associated deflection, dc’ at the corner was then found to be

4, = (1.1 - o.sscl/k)_EE (8)
I

As can be seen from this brief account of his analysis, the
simplicity of the solutions proposed by Westergaard lend themselves to
the usage which engineers have made of them in rigid pavement design.

A main advantage of the theory was that, for the first time, it attempted
to allow for the effect of an edge or corner upon the stress distribution

and deflection of a pavement slab.
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Nowadays, Westergaard's approach is regarded as being far from
a pure application of the thin plate theory. In the interior case
approximate corrections are required in order that the thin plate theory
may give finite stresses under the centre of the load. Additional
approximations are also necessary in the edge loading case in order to
allow for the boundary effect of the slab edge. In addition, many
assumptions are necessary in the corner loading case in order to obtain
the critical stress.

The Westergaard theory becomes increasingly inaccurate as the
stiffness of the upper layer approaches that of the support, Thus,
Hagstrom, Chambers and Tons (17) suggest that a limiting stiffness ratio
of E/k ? 100 should be chosen as a criterion for the plate-type behaviour
of a pavement and the satisfactory application of Westergaard's theory.
Modifications to his original 1926 equations were, in fact, made by
Westergaard in 1933 (18), 1939 (19), and 1947 (20). These modifications
were concerned primarily with interior loads and so are not discussed
further here.
lurphy, G.

The main contribution of the two-layer analysis made by
Murphy (21) is that the plate i.e. the pavement, is considered to be
supported by only that portion of the subgrade with which it is actually
in contact. This is in contrast with the majority of analysés in which
the foundation is assumed to remain in contact with the layer above

when upward movement of the slab takes place. The other point of major
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interest in this analysis was that the plate was considered to be
rectangular in shape.

In his analysis Murphy assumed the slab to be thin and the
foundation to be of the Winkler type when both were in contact. His
approach was basically to obtain an expression for the deflection of the
plate (slab) and to compute the stresses within it from an equation based
on this expression. This approach was an extension of the technique
employed by Happel (22) in his analysis of a symetrically loaded
rectangular plate permanently in contact with the foundation.

Nadai's (16) expression for the energy change due to the
application of a load on a plate was used by Murphy to relate the plate
deflection with the normal load. The deflection was assumed by Murphy
to be expressable in terms of a double hyperbolic series in which the
arguments were selected to satisfy certain boundary conditions due to the
presence of plate edges. These boundary conditions were expressed in
terms of bending moments andbshear forces, but could also be related to
deflection. In order that the unknown deflection would satisfy these
conditions use was made of the thin plate expressions which related
vertical shear with deflection and bending moment with deflection.

The deflection series chosen by Murphy only approximately
satisfied the above essential boundary conditionsj; furthermore, he
showed that this difficulty was independent of the number of series
terms considered. The deflection series was substituted into the

energy-change expression and made to satisfy the requirements of the
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thin plate theory of elasticity by minimizing the total energy of the
system. The result was a system of simultaneous equations which could
be solved for the unknown coefficients of the deflection series.

The ability of the plate and foundation to separate at a
point on the interface when the plate at that point moves upward was
retained in Murphy's theoretical analysis. The difficulty which then
arose, however, was that before the simultaneous equations could be
generated and solved it was necessary that the area of contact between the
plate and foundation should be known. If this was not so, Murphy
suggested that a method of overcoming this difficulty was to analyse
the system initially aséuming full contact and, on noting the deflection
surface, to reanalyse the sys tem with an adjusted area of contact.
Repeated application of this approach would then eventually result in
tle correct solution.

In summary, it may be said that Murphy's consideratior of a
finite rectangular plate is only made possible by approximately satisfying
the theoretical requirements of the plate boundary conditions. His
consideration of the problem of loss of contact between the plate and
slab during loading is numerically difficult to solve for the plate
deflections as the problem is, in fact, non-linear in nature and
requires the use of an iterative method of solution.

Hogg, A.H.H.
In 1938 Hogg (23) considered a symetrically loaded thin

plate (pavement) of infinite extent, resting on the horizontal smooth
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surface of a semi-infinite elastic solid (subgrade), and obtained
expressions for the curvature at the centre of the circular area over
which the load was uniformly distributed. His analysis differed from
that of Westergaard's for the interior load, principally in the manner
in which the foundation was assumcd to act on the underside of the
plate. Westergaard assumed that the pressure applied to the underside
of the slab was equal to kw where w was the deflection at that point
and k was the modulus of subgrade reaction of the foundation. Hogg
on the other hand made use of the general solution due to K. Terazawa
(24) of a point load applied to the surface of a semi-infinite elastic
golid and expressed in terms of Bessel functions. The expressions for
surface deflection and normal direct stress obtained by Terazawa were
substituted by Hogg into an equation relating the applied normal stress
and the deflection which was obtained by using the thin plate theory
of elasticity. He then solved the expression for the plate curvaturé
under a circular load and expressed the result in terms of Bessel
functions.

In 1944, Bogg presented a paper (25) which analysed a two
layer system composed of a thin elastic slab of infinite extent
resting on the upper smooth surface of a uniform layer of elastic material
which,/;; turn, rested on a perfectly rough rigid horizontal surface.
The analysis which he previéusly reported (23) is, in fact, a special
case of this present problem. He obtained an exact solution for this

general two-layer case in the form of an infinite integral and calculated
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approximate values by numerical integration. Hogg later presented

the results of this theoretical work in a more useful farm (26) and
considered how far they agreed with thc result of experiment. He found
fairly satisfactory agreement with such results as were available at
that time if the properties of the subgrade were represented by an
equivalent elastic layer.

The solution provided by Hogg can be considered to be relatively
simple in form and to provide one of the first of the theoretical
attempts involving consideration of the subgrade as an elastic layer.

In order to include this effect he had, however, to keep the remainder

of the system as simple as possible. Thus it is that he had to include
the concept of an infinite h?rizontal sleb and subgrade, the application
of thin plate theory, and the smooth interface between slab and subgrade,

Burmister, D.M.

In 1943, Burmister (11) introduced a theory of stresses and
displacement in two-laycred pavement systems based on the assumption
that the materials of cach layer were three-dimensional elastic solids.
His analysis then provided an exact solution to the threr-dimensional
problem for a given surface loading. (The equations he developed were
rather cumbersome to work with in practice, however, and thus, computer
solutions have since been developed for a large range of applications.)
Burmister considered that the layers were infinite in extent horizontally
and, as such, his theory was not intended to apply to corner or edge

loadings on concrete pavements but was principally intended for airport
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runways or, perhaps, the centre of a large pavement slab. Although
some workers have developed design procedures for f{lexible roads which
are based on Burmister's work, they have found relatively little
acceptance up to the present time.

Burmister considered a two-layer system in his first paper (ll);
each layer was assumed to be a homogeneous isotropic elastic solid, and
the interface between the layers was ceither allowed to have no slippage
or no friction. Because of the complexity of the comvutation, the
value of Poisson's ratio was assumed to be equal to 0,5 for the materials
in both layers. The solution of the problem was required to satisfy
certain boundary conditions, i.e. the surface of the upper layer had
to be free from normal and shearing stresses outside the limit of the
loading area and the stresses and displacements at infinite-depth in the
subgrade layer had to equal zero. It was also assumed that the two
layers were continuously in contact and acted together as an elastic
medium of composite nature.

In developing the theory of the two-layer system, Burmister
employed the stress and displacehent equations of elasticity for the
three-dimensional problem which were originally derived by Love.(27)
to satisfy the equations of equilibrium and compatability of the theory
of elasticity. Burmister took a stress function expressed in terms
of Bessel functions for each of the layers and found that they satisfied
the compatibility conditions and equilibrium equations. The arbitary

constants contained in these stress functions were then evaluated to
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satisfy the conditions at the interfsasce for both the no slip and no
friction conditions and for a general surface loading distribution
expressed in terms of Bessel functions.

The stress and displacement equations in both layers were
next determined by Burmister from the equations of elasticity relating
stresses and displacements to the stress functions. He then obtained
an equation for the settlement of the upper layer under the centre of
a ciroular bearing area of a uniformly distributed load and carried out
some numerical computations using this equation.

L. Fox (28) of the Nationél Physical Laboratory later extended
Burmister's work by computing the stresses within the pavement and sub-
grade for various combinations of parameters. In this analysis Fox
employed two methods of computation. The first, which was similar to
Burmister's, dealt with both perfectly rough and perfectly smooth inter-
face conditions; it enabled accurate results to be obtained at points
on the vertical axis of symmetry for the stresses in the lower layer.
The second method, based on relaxation methods applied to finite difference
forms of the differential equations of elasticity, enabled Fox to obtain
a general, though less accurate, picture of the stress distribution
throughout the pavement and subsrade for a perfectly rough interface,

Burmister (29) later extended his theory‘of stresses and
displacements to cover the morc general case of three layers, with full
continuity across the interfaces between the layers., On this occasion

he only derived a settlement equation for points on the upper surface of
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the bottom layer with a general loading distribution expressed in tcrms

of Bessel functions applied to the top layer; no numerical results

were, however, given. In order to remedy these deficiences, Acum and

Fox (30) deduced associated equations for the stresscs on the vertical

axis of symmetry. The loading distribution which they considered was

that of a load which was uniformly distributed over a circular area,

the centre of whioch lay on the vertical axis of symmetry. They then
computed the stresses for various combinations of parameters, the varisbles
being the radius of the loading area, the thicknesses of the two top layers
and the elastic properties of the three layers. These results were
presented by Acum and Fox in the form of tables.

To make Acum and Fox's data more easily usable A.C., Whiffin
and N.W. Lister (31) recently prescnted o paper based on a close
analysis of Acum and Fox's computation. DPresenting their data in
graphical form, Whiffin and Lister showed the effect of changes in
elastic moduli and thickness of the layers upon the stresses on the
vertical axis of symmetry. They also gave attention to the information
available on the dynamic elastic modulus of road-making materials and
suggested that th: use. of dynemic elastic moduli rather than static
elastic moduli was necessary to any useful application of theoretical
approaches to the structural analysis of actual pavement/subgrade
sy stems.

Hank and Scriver (32) have also concerned themselves with
making Burmisters theoriecs more useful. For both the two-layer and

three-layer theories, they deduced formulae for the stresses at the
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upper interface from Burmister's work, and gave numerical values for
various degrees of relative stiffness of the layers. Laboratory
measured strengths of roadbase materials were also compared with the
stresses in the top layer computed from the two-layer theory so as to
determine the required depth of pavement. In addition, Hank and
Scriver employed the three-layer theory to study the effects of thin
subbases directly underneath concrete slabs.

Pickett and Ai (33) have also used Burmister's two-layer
theory.  They felt that the expressions for stresses which were obtained
by Burmister and other workers using his theory, were too involved and
required too much computational work to evaluate, They set out,
therefore, to obtain, with the aid of a few simplifying assumptions and
semi-empirical methods, much simpler expressions for the subgrade stresses
under rigid-type pavements., The rigorous solution of Burmister was
replaced by a solution based on the theory of thin plates. The thin
plate solution was in turn modified to, in effect, take into account the
neglected effects of shear in the pavement on deflection and horizontal
shear at the interface between the subgrade and ravement, They then
developed equations which gave results which werc in agreement, over a
wide range of conditions, with those obtained by means of the more-
rigorous theory developed by Burmister.

Investigators have taken great intcrest in Burmister's work,
even though it has the major disadvantage that it tekes no account of

pavement edges or corners. For this rcason, its use has mainly been
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confined to flexible pavements. The explanation for this interest is
perhaps that Burmister's approach provides an exact solution, with each
layer being considered as an elastic solid and no use being made of any
plate theories, In addition, the pavement/subgrade system is analysed
as a whole and not, as in most other theories, whecre the plate as been
considered to be acted upon by an applied load and a subgrade reaction.

Pickett, G. and McCormick, F.J.

In 1951 Pickett and McCormick presented a paper (34) which was
concerned with the analysis of both circular and rectangular plates with
free edges, under a general distribution of loading using thin plate
theory. The supporting foundation was assumed to be a homogeneous
elastic solid of uniform thickness and to extend a great distance beyond
the plate boundaries. In this paper, the pressure and deflection of
the circular plate, expressed as double Fourier series, were equated,
respectively, to the pressure and deflection of the surface of the
elastic solid, expressed as Fourier-Bessel transforms. However, although
circular plates are more easily analysed than rectangular plates and,
for this reason, receive a great deal of attention, they do not readily
fit into the consideration of actual pavements and are only weful in
considering the inter-effect of pavement properties. For this reason
they are not given further detailed attention in this thesis,

Pickett and McCormick were not successful in obtaining a
solution to the rectangular plate problem by using the methods already
employed in their analysis of circular pla tes, Instead, they obtained

an approximate solution by replacing the thin plate differential equations
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of elasticity and boundary conditions by their equivalent expressions

in finite difference form. FPor this purpose they divided the area of
the plate into squares, the finite differcnce technique being applied

to the centre deflections of these squares. Although the plate
equations were written in finite difference form, no approximations were
made in regard to the elastic solid foundation, except to assume that
the plate reaction would be uniformly distributed over that portion of
the foundation surface directly in contact with the given square.
Pickett and McCormick deduced a parametric equation which related the
deflection at the centre of any square on the surface of an elastic
solid resting on a rigid base with the forces at the centre of any one
square due to the reactive forces over that square of the plate.
Substitution of the finite difference form of the differential equations
of the plate into the paramctric equation resulted in a system of difference
equations which could be solved for the deflections at the centres of
each square in terms of the loads at the centre of every square.

In hindsight, it can be seen that the main attribute of this
work and, indeed, that of Fox (28) is that the technique of replacing
the governing differential equations by an equivalent finite differcnce
form provides a method of obtaining epproximate solutions to problems
which otherwise might prove impossible to handle.

Livesley, R.X.

In his paper, R.K. Livesley (35) considered some of the
approximations necess~ry for a mgthematical treatment of the general

problem of a loaded thin elastic plate resting on ean elastic foundation,



- 43 -

and discussed in detail possible dynamic and static problems. Besides
engaging in a purely general discussion of the problems involved in
pavement analysis, Livesley also analysed the case of a pavement subjected
to dynamic loading. The system which he considered consisted of a load
which was uniformly distributed over a rectangular area and moved with
constant velocity across an infinite thin plate resting on a Winkler
foundation. He showed that there appeared to exist a certain critical
vehicle velocity beyond which the decflection of a pavement became infinites
he also showed that this critical velocity was well beyond any which

was likely to occur on a road or on an airport runway. The conclusion,
that the plate deflection increases as the speed increases, is at first
surprising, but Livesley points out that the plate was considered as an
undamped elastic system whereas in most physical cases the effect of
damping would be quite noticable and would certainly in practice tend

to reduce the deflection.

In order to consider the dynamic effects of loads, Livesley
found it necessary to simplify the problem to a large degree. The
result has been that the inaccuracies due to this simplification may well
outweigh any advantage accruing from including dynamic effects. The
problem increases enormously in complexity and calls for many assumptions
on such things as the pavement and subgrade.inertia.

Pister, K.S. and Westmann, R.A.

The majority of analyses of plates resting on el astic
foundations are based upon thin plate theory which neglects the effects

of transverse shear dcformation and transverse normal compression.
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In recent years, however, the thick plate theory, which includes these
effects has been given more attention by a number of investigators.
Thus, for example, Pister and Westmann (36) analysed, in 1962, an
infinite plate which rested on a semi-infinite elastic foundetion and,
in this annlysis, used the thick plate theory develomed through the
work of Reissner (37). The effect of the foundation on the slab was
taken into account by using a previously mentioned formula developed
by Terazawa (24) which relates the interface displacement and pressure.
The applied load was considered to be a uniformly distributed pressure
over the area of a circle.

Pister and Westmann comprred numerical results from the thick
plate theory with those of the classical thin plate theory and also with
those of Burmister's exact three-dimensional theory. They showed that
the discrepancy between the thick and thin plate theories increased as
the ratio of the modulus, k, of the foundation to that of the upper
layer increased. They also showed that thick plate theory gnve
satisfactory agreement with the elastic theory, even in the range of high
foundation to plate modulus ratios (up to 10) where it might be
anticipated that plate theory was inadequate. The graphical results
which they presented indicated that as the ratio of the thickness of
a slab to the radius of the londing area was increased (up to 1 to 2)
the thick plate theory showed a definite improvement over the classical
theory. As a result, Pister and Westmann concluded that the improvement
of the thick plnte theory over the thin plate theory for the axisymmetric

bending of plates on an elastic half space was governed by the ratios of
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foundation modulus to slab modulus and slab thickness to radius of
Ioading area.

The application of thick plate theory to finite plates has
been given very little attention by highway research workers. Never-
the less a distinct advantage of the thick plate theory in such cases
might be in its ability to more accurately describe the boundary
conditions at the edges of plates. When points near the edges of
plates are of major interest, e.g. in the edge and corner loading cases
of the Westergaard asnalysis, there is the very serious possibility that
the application of thick plate theory is advantageous.

As flexible pavements hnve only a low flexural strength, they
distribute applied wheel-loads to the foundation mainly by shearing
and compression of the pavement. Thus any theory which might be
useful in flexible pavement analysis should be based on the thick plate
theory which includes the effccts of transverse shear and transverse
compression,

Hudson, W.R. and Matlock, H.

Numerical methods of analysis and computation are most often
used as approximations of a governing equation by substitution of
the finite difference forms for the derivatives or by the approximation
of a continuous problem with a discrete nodal system. Examples in which
these occur are in the previously described work of L. Fox (28) and
Pickett and McCormick (34). A second method is to model the slab
physically by a system of finite clements whose behaviour can be

described with algebraic equations. In 1966, Hudson and Matlock (38)
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applied this latter finite element technique to the analysis of
giscontinuous pavement slabs with freely variable foundation support

such as a subgrade with holes in it. Their approach enables a variety

of loads including transverse loads and in-plane forces, to be considered
when analysing the pavement., The method is not limited by discon-
tinuities and is suited to the analysis of finite slabs of various thapes,

The physical model used by Hudson and Matlock consisted of
bars, elastic blocks, torsion bars and elastic springs. The bars
were used as infinitely stiff connections between joints while the
elastic blocks represented elastic joints at which bending occurred
between the bars. The torsion hars represented the torsional stiffress
of the plate, and the elastic support springs at each joint provided
the foundation support which was considered to be of the Winkler type.
Discontinuities and freely discontinuous changes in load, bending
stiffness, torsional stiffness, subgrade support and other parameters
were easily understood and represented by the physical model used by
Hudson and Matlock.

The algebraic equations describing the behaviour of this
physical model are derived by free body analysis of the finite model,
This consisted of considering a particular member of the model and
replacing the other members connected to it by equivalent forces,

The equations describing the behaviour of the model were solved by itera-
tive methods and because of the large amount of computati on required in
solving these equagtions use was made of an electronic computer to solve

for the deflected shape of the plate. IFrom this deflected shape the
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bending moments and stresses were easily determined.

On the whole it can be said that numerical methods are
extremely useful in formulating approximate solutions to problems
having complicated parameters such as plate shape, applied loads and
loss of subgrade support. A disadvantage is the large amount of
computation required in obtaining solutions, especially when the
plate is considered as being thick and if a large concentration of
elements or nodal points is required in order to follow rapid changes
in stresses and displacements which occur for example when wheel-
loads are applied at the edges of slabs.

This brief description of the ebove analyses of the pavement/
subgrade system illustrates the diversity of approaches which ere
rossible when attempting such an analysis. The governing factor in
all of them seems to be that, in order to obtain solutions to a system
containing an idealization of special interest, the remainder of the
idealizations have to be made as simple as possible, Thus, for example,
those analyses which place emphasis on the road materiale neglect the
geometry of the system, and visa-versa. As a result of this factor,
no method yet described has a well-balanced and sufficiently general
set of idealizations to give a single satisfactory analysis over a wide
range of parameters. A simple indication of this disadvantage of the
available analyses is the difficulty in applying the same analysis to

both rigid and flexible pavements.

’
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Summary and Discussion

A pavement is a structure consisting of superimposed leyers
of selected and processed materials whose primary function is to
distribute concentrated vehicle wheel-loads to the supporting subgrade
in such 2 way that the reduced pressure transmitted does not exceed
the supporting capacity of the subgrade while, at the same time, ensuring
that the structural failure of the pavement itself does not occur.

Some of the main causes of structural failure are excessive stresses
due to traffic, excessive stresses due to other factors such as
temperature or moisture changes, stripping of the surface and deter-
ioration of the subgrade after construction. An ideal method of design
when trying to avoid pnvement failure due to excessive traffic stresses
should take account of wheel contact pressure distributions, multiple
wheel configurations, dynamic and impact effects, the cumulative effect
of wheel-=loads, the true distribution of stress throughout the pavement
and subgrade, and traffic intensity. Methods of pavement design do,
in fact, attempt to take into account as many of these factors as
possible. The methods commonly used to do so cover a wide range of
approaches and vary from those based solely on personal judgement to
those based purely on theoretical methods of pavement stress analysis,
While the emphasis at the moment is on the use of empirically developed
procedures, there appenrs to be a growing interest in using a purely
theoretical stress analysis of the pavement and subgrade as the basis

of a rational design method.
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In developing such a theoretical analysis workers have found
it necessary to idealize the pavement/subgrade system into a mathematically
tractable form. The main points with which these idealizations appear
to be concerned are the wheel/pavecment contact areca and pressure distri-
bution, the pavement layers, the lateral dimensions of the pavement,
the behaviour of the pavement with respect to its flexural stiffness,
its stiffness against transverse compression and its stiffness against
shear deformation, the behaviour of the foundation and the pavement/
subgrade continuity.

The analyses which have been carried out have tended to
concentrate upon one or two particular points and kecep the remzinder
of the idealizations as simple as possible in order to facilitate the
solution of the particular problem at hand. The idealizations which have,
in fact, been made by relevant workers can be summarized in relation
to the points listed above:

1. The load distributions which are of particular interest
to highway engineers are those which represent a tyre in contact with
a road surface. All analyses consider the contect area to be
equivalent to that of a uniformly distributed pressure applied over the
area of a circle. The reason is that the difference between this
and the actual contact distribution is negligible in terms of ita
effect on stresses and deformations

2. Pavements ere made up of many layers of different
materials but in order to make analytical problems soluble, the usuanl

technique is to idealize the pavement/subgrade system to two or three
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layers. The majority of analyses consider only two layers; threo-
layer analyses, because of their cumbersome nature have only been found
of use in examining the effects of various pavement parameters on the
stresses and deformation.

3 The lateral dimensions of the pavement are a major
factor in the definition of the problem. Numerous solutions are
available for the determination of stresses and deformations in infinite
pavement slabs, while circular slabs hove also been comprehensively
treated. A small number of workers hnve considered the slab to be
rectangular in shape. The analysis of infinite plates appears only
to be of use for flexible pavements because of the negligible boundary
effects, while that of finite rectanguler plates can be applied to
both flexible and rigid pavements.

4, In the past, it was common for investigators to evaluate
pavements on the basis that they were either 'rigid' or 'flexible'
according to whether flexural stiffness was accounted for in the stress
and deformation analysis of the pavement/subgrade system. However,
this dichotomy is now becoming less apparent as investigators realize
that materials of low eiastic moduli may possess significant flexural
stiffness and also a worthwhile tensile strength.

Now pavements, irrespective of whether they are rigid or
flexible, which are annlysed to include both flexural and transverse
direct compressive stiffness are referred to by many workers as elastic
layers. The effect of transverse compression is of particuler

importance in pavements in which materials with low elastic moduli
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are used, i.e. in flexible pavements,-

The effect of transverse shear deformation is most significant
in the analysis of plates (pavements) of large thickness. Thick plate
theory refers to the theory which includes the effect of transverse
shear deformation in analysing the distribution of stress and deforma-
tion throughout the plate. ithile the majority of analyses make use of
thin plate theory it should be borne in mind that in the behaviour of
what may be thought of as 'thin' plates, the transverse shear effect
can be of considerable importance when the plates are supported
continuously over one surface and loaded at edges or corners. ‘hile some
researchers have included the effect of transverse shear deformation in
their analyses, this has only been for infinite plates.

5. The two most common idealizations applied to the
behaviour of a subgrade are either that it is a continuous elastic
solid, as used by Burmister or that it acts as a set of discrete
springs., This latter representation, which is known as the Winkler
foundation, is used by Yestergaard and many other workers. The
Winkler foundation is simple in concept and use, and because of the
complicated action of soils, it may well be just‘as reasonable &
representation as the elastic solid assumption.

6. Most analyses assume that the foundation and pavement
are in permanent contact for all modes of deformation. Consequently,
they assume that the foundation possesses both tensile and compressive
stiffness} the extent to which this is a valid assumption depends

upon whether the weight of the pavement is sufficient to pre-stiffen
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the foundation. This problem of loss of contact between the pavement
and foundation has been considered, but there are great difficulties in
solving this due to the non-linearity of the problem.

The above brief resume” of the present state of pavement
structural analysis is not intended to cover all the points made
previously but rather to help in pointing out and emphasizing the
deficiencics of the established analyses in their application to pavement
structurzl design. With the development of modern methods of numerical
analysis and computation and with the advent of the electronic
computer, analysts are now able to give increasing emphasis to better
representation of the pavement/subgrade system. Nevertheless there
still appears to be a need for an analysis which describes a thick
rectangular plate (pavement) resting on a Winkler foundation (subgrade).
This could well lead to an improvement in the analytical idealization
of the road structure for pavement design purposes.

Considering the plate to be rectangular would enable rigid
pavements to be analysed as well as flexible pavements and the use of
the thick plate theory would cnable transverse shear deformation and
transverse compression to be included in the analysis. The former
could well be important in the consideration of thick flexible or rigid
pavements, or near londed pavement cdges or corners. The latter would
be especially important in the consideration of flexible pavements.,

In any such analysis the wheel/pavement contact should take
the form of a uniformly distributed load over a circular area; this

seems to have been found satisfactory by many previous workers. The
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consideration of more than two layers in any analysis would appear
to make the problem much moré - difficult and so any method aimed at
being the basis of a design method should probably only consider two
layers. With regard to the foundation, the use of the Winkler
assumption is simple, the relevant subgrade property is easily deter-
mined and the use of the other alternative, the elastic solid assumption,
has not yet been shown to be any more accurate than the Winkler
agsumption. Thus the use of the Winkler assumption might be quite
reasonable in any two-layer analysis. Finally, while the possible
loss of contact between the pavement and the subgrade due to the
upward movement of the slab could prove important it should be kept
in mind that the inclusion of this possibility into an analysis would
create a problem which would most probably prove very difficult to
solve because of its non-linear nature.

Hense, the problem which appears to deserve further consider-
ation is that of a uniformly-distributed circular load which is
applied at any point on the surface of a thick rectangular plate
resting on a Winkler foundation, Full contact between the plate and
the foundation should be assumed for the main analysis, but some
consideration should, separately, be given to the problem of loss of

contact between the pavement and the subgrade.
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PROPOSED RESEARCH PROGRAM

There are five principal stages in the development of a
theoretical analysis of a real structure. The development begins by
obtaining an appreciation of the complete range of factors which
contribute to the action of the structure. In the second stage, an
appraisal is made of possible structural idealizations and a particular
representation of the structure is chosen. The next stage is the
formation of a mathematical model of this idealized structure, based
on the theory of elasticity and expressed in terms of differential
equations. Fourthly, the model is solved for the stresses and
deformations in the structufe by employing the methods of numerical
analysis. Finally, the analysis is examined with the help of an

experimental investigation.

The analysis of a pavement/subgrade system is no exception
to this method of approach. The first two stages have been considered
in the previous chapter of this thesis and as a result it is possible
to propose for analysis an idealized pavement/subgrade system which
is considered to be of practical interest. This system may be

described as follows:

A general transverse load distributicn
applied to the upper surface of a thick

rectangular plate which rests, with full
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continuity, on the surface of a

Winkler foundation.,
In this system a transverse load in the form of a uniformly distributed
circular load applied at any point over the plate is of special interest.
The problem of loss of contact between the plate and foundation also
deserves special consideration.

The numerical solution of the mathematical model has almost
always been the first consideration in previous analyses of the pavement/
subgrade system and has been assisted by the analysis of a very much
simplified system. Today, with the development of modern methods of
numerical analysis and the advent of the electronic computer, more
consideration ean be given fo the idealization of the system. Thus
the intention in this research program is to concentrate upon the
development of a mathematical model of the pavement/subgrade system
and then to examine methods of solving this model.

The proposed sequence of work is based on the last three
stages of the general approach to the analysis of structures and is as
followss

Q. The formation of a mathematical model of the above
pavement/subgrade system.

b, The consideration of possible methods of numerical
analysis of this model.

c. The mathematical representation of the applied load

intensity distriﬁution which is of special interest.



- 56 -
d. The numerical computation of stresses and deformations
in the plate resulting from the application of the load distribution
of special interest or any other load intensity distribution.

e. The examination of the idealized pavement/subgrade

analysis with the assistance of laboratory experiments,
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STRUCTURAL ANALYSIS OF THE HIGHVAY PAVEMENT

Introduction

The classical theory of thin elastic plates, which
previous workers have developed and used to a high degree, leads to
a differential equation of the fourth order for the deflection and
to two boundary conditions at each plate edge. Nevertheless, there
can in reality be prescribed ' three rather than two boundary
conditions at each edge, whether that plate edge is simply
supported, clamped or free as in the plate/foundation system of
the present structural analysis. The two boundary conditions,
which are associated with the thin plate theory, are a contracted
form of these three boundary conditions. Kirchhoff (39) has shown
that in the case of a free edge, the sbility to reduce three
apparently independent stress-resultant boundary conditions, i.e.
bending moment, shear force and twisting moment, to two equivalent
boundary conditions is dependent on the fact that the boundary
conditions on the twisting moment and shear force are reducable
to an equivalent single boundary condition. This is because the
distortion of the plate due to transverse shearing forces is

neglected when establishing the relations between the stresses and

the deflection of the plate. The historical background to this reducticn

in the numbercf boundary conditions is given by Timoshenko (40).
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The intention in this chapter is to develop a structural
analysis of the highway navement based on a theory which includes
the effects of transverse shear deformation and transverse normal
compressione A plate theory which includes the effect of transverse
shearing deformation has been developed by E. Reissner (41,37).
Later, he also extended this theory to include the cffect of
transverse compression (42,43). These works are fundamental to the
understanding of the behaviour of thick plates and are briefly
described and the previous relevant applications summarized in the

sub-sections which follow.

Reissner's theory in elasticity

The linear theory of elastostatic bending of plates, as
developed by E. Reissner (42,43) constitutes a definite improvement
over the classical theory in that the effect of transverse normal
and shearing stresses 1s retained in the stress-displacement
relations. On this basis the question of appropriate plate boundary
conditions is clsrified and at the same time, the quantitative
improvement of the solution of problems involving the edge zones
of plates and/or localized surface loading is possible. For the
analysis of 'thick' slabs, i.e., those where the thickness is not
small when compared to the lateral dimensions, this is especially

true,
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Reissner (42) treated the problem of thick slabs by means
of Casfigliano's Principle of Least Work, where the strain ecnergy
due to transverse shear deformation and normal transverse
compression was included in the total cnergy of the system. The
minimization of the total energy was carried out by using the
established techniques of variational calculus (44) and employing

‘Lagrangian multipliers (44) in order to include the effect of
equilibrium. This led to a theory which accounted for the effect
of transverse shear deformation and transverse normal compression.,
Green (45) subsequently,rederived this same theory from the

general equations of elasticity.

Later, Reissner (43) formulated a new approach in which
both the equations of equilibrium and the stress/displacement
relatibnships were both developed from the minimization of the total
potential energy of the system. This method gave no preferential
treatment to either of the two systems of differential equations and,
also, eliminated the need to employ Lagrangian multipliers which was

basic to the earlier work.

In 1951 Mindlin (46) developed a theory for vibrating
plates, including the effepcts of shear deformation and rotatary
inertia, which was analogzous %o that of Reissner's,by vroceceding from

the equations of elasticity.
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Previous relevant applications of Reissner's theory

Since its introduction Reissner's theorem in elasticity

has been applied to problems of plate flexure by several

investigatars.

Naghdi and Rowley (47) solved two problems involving
axially symmctric bending of an infinite plate on a Winkler
foundation. The reaction of the foundation was considered as a
normal force applied to the bottom surface of the plate, with
the deflection of the lower face of the plate, to which the
reaction was nroportional, being approximated to that of a
weighted average of the deflections across the thickncss of the
plate. They found that serious errors in the classical theory of
plates could result in cases where discontinuity is present, either
in the plate configuration or due to the surface loading, Naghdi
(48) also considered the problem of both nlain bending and pure
twisting of an infinite plate with an elliptical hole. The solution,
which he obtained was approximate in character and was used to

furnish results in the form of sitress-concentration factors,

Frederick (49), employing the same approximations as
Naghdi and Rowley, initially considered some problems in the
bending of circular plates resting on a Winkler foundation, |
Latcr he applied the basic equations of Noghdi and Rowley to

certain specific problems in the bending of rectangular plates
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supported by a Winkler foundation (50).' A ~ Fourier scries solution
was obtéined for a simpiy supported vlate resting on a Winkler

type foundation when the arplied lo~d took the form of a general
lo2d intensity distribution. The solution to the problem of a
rectangular plate resting on a foundation and with two op-osite
edges simply supported, a line load anplied parallel to these edgses
and with any combination of boundary conditions on the other two
edges consistent with the Reissner theory, was also found to be
expressible in a Fourier series form. Finally, Prederick extended
the basic differential eQuations to include the effects of surface
shear stresses on the top and bottom of the plate. He then applied
these equations to the bending of a plate under uniform surface
shear stresses where two opposite edgecs were clamped and also of

infinite length.

The thickncss/length parameter at which the effects of
shear deformation and normal pressure become important can also be
determined from the results illustrated in Frederick's paper. He
felt that this secondary effect would be important when considering
plates of a low modulus of elasticity which rest om a relntively

stiff elastic foundation.

Pister and Westmann (36), in a paper which has been briefly
discussed previously in this thesis, modified Reissner's original
theorem (37) to represent a particular variation of the transverse

co-ordinate &, and dcrived the following relationship:
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w(x,y,8) = w(x,y) + &' (x,5) + § &7w' " (x,7) (9)

where w(x,y) 1s the transverse displacement of the middle surface,

w' and w'' are undeternined contributions to the transverse

normal strain and x and y are the orthogonal in-plane co-ordinate
directions, Reissner's theory (37), presented in 1945, assumed

that the transverse disnlacement of the plate did not vary over

its thickness, i.e., th-t w(x,y,8) equals w(x,y). This was, however,
avoided in later work (42,43) by the introduction of a weighted

averaga displacement.

The significance of:additional terms retajned by Pister
and Westmann in the expression for-transverse displacement was
‘illustrated in  their discussion of the:problemof axisymmetric
bending of an infinite plate.resting on an elastic half-space. The
classical thin plate theory, the Reissner plate theory, (with the
effect of transvemse normal strain neglected) and the modified
(Pister and Westmann) theory, were compared, where possible, with
the equivalent three-dimensional analysis. For the case studied,
they showed that terms associated with transverse shear deformation
overcorrected both the transverse displacement and the interface
pressure and, thus, must be corrected by adding terms associated
with transverse normal strain. It appeared that for axisymetric
bending of plates on an elastic half-space, the Reissncr theory (37),
as set forward in 1945, 3id not always lead to an improvement over

the results obtained from the clessical thin plate theory. Likewise,
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¢+ Pigure 3. An infinitesimal cubic element of an elastic solid
" .ghowing -the notation for the components of stress
acting oniits sides and.the positive’'directions of

-these stresses relative to the sides of the. element.
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the use of a higher order approximate theory did not necessarily

lead to a more exact solution unless the theory was selected on

the basis of the specific physical »roblem beinz considered.

Coull (51) carried out a direct stress analysis of =a
swept cantilever plate without the usual need for imtermediate
deflection calcul~tions and, because of the inclusion of
transverse shear deformation, was able to use three boundary
conditions on each edge. In his analysis, the partial differential
equations of elasticity were reduced to a set of ordinary linear
differential equations by representing the load and stress-

resultants in a power series form in the chordwise direction.
A Thick Plate Theorem in Elasticity

Reissner's theorem in elasticity (43) was used in the
present investigation in order to include for the effect of
transverse shear deformation and normal pressure. The latest
form of this theorem, presented in 1950, is, therefore, now given

in outline.

Inergy considerations

In the deformation of an elastic solid, a function

W(dx’dy"“'Tax)’ known as the complementary energy density, is

considered which, at every point, satisfies the six stress-
displacement relations which arc cxwressed in terms of the function

T

W, the direct stresses Ty 0. and Og9 the shear stresses Txy’ &

y
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and T and the corresponding strains € €

8X ’ &

v at Yy Yyg 804 Ygye

These six stress-displacement relationships are:

e € W € ow
=TT = = oy m—
X acx Yy acy [ aG“
(10)
W oW oW
Y = e Y Yy = e v Y =
Xy aTxy y& a‘ry8 8X atgx

where the stress components (dx’Gy""'Tax) are understood in the
conventional sense, shown by Figure 3, in which stresses are shown
as positive, and the strain components are defined by:

Ju v aw
€ -—,8 -7’ £8=68

(11)

au , av av L o LA
Yoy "oy Y ox’ Yys " 98 T oy’ Yax " ox ¥ oe
where u, v and w are the displacements of a point in the x,y and

& directions respectively.

It has been shown (44) that in the case of linear
elasticitys

2W = £, 0, + €00 + €0, + Y Tou ¥ Y Tug F Vo Tey  (12)

A function F is now introduced by Reissner and it is

defined in terms of the twelve arguments dx, dy’ d“, Txy, T

i
Tgx,ex,ey,eg, ny’ sz and Yax by the equation

ya’

Fu O, +0p€ + 0.6 + T Yoo+ T, Yoo+ Toy YooV (13)
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This function is refered to as the strain energy density.

If the potential energy density of the cxternal forces is

denoted by Pe, then a function P is defined by:

P-/[/FdV+/f P_ds (14)
4y s

where F and Pe are summcd over the volume V and surface S, respectively,
of the elastic solid. The function P is called the total potential

energy of the system.

Requirements of the theorem

Differential equations which must be satisfied at every

interior point are the three equations of equilibrium:

adx s arxy . atgx - o
ox oY 08
ot G ]s) ot
—_—y ., X -2 . 0
x| oy * e (15)
argx aty¢ 20
ox ' 3y = - 0
o8

and the equations (10) which govern compatability of displacement

and inherently include the equations of elasticity.

Considering an element of area, with normal direction n at

the boundary of a solid body, the componentspx.,py and Pg of the stressecs

acting on that area, in the directions x, y and & are given by:
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P_= o cos (n,x) + Tyy ©O8 (nyy) + 7, co8 (n,s)

Py = T,y 008 (n,x) + d, cos (n,y) + Tyg CO8 (ny8) (16)

P =1 cos (g,x) + 7

. ax cos (n,y) + o, cos (n,s)

ve
where cos (n,x), cos (n,y) and cos (n,&) are the direction cosines

between the normal n and the x, y and 2 axes, respectively.

The solution to any problem in solid mechanics must
satisfy all the differential cquations of elasticity at all points
in the interior and at all points on the bound~ry, as well as the
prescribed boundary conditions. Now, at a point on a boundary,
in each of the three reference directions, cither the stress Py
py or pg is prescribed, or the associated displacement of the point,
u, v or w, is specified. (This is, in effect, the definition of a
'boundary' as considered in this thesis). Thus, a point on the
surface of a solid body which is supported on an elastic restraint
is not considered as a boundary point but rather as an interior

point where neither the stress nor the displacement is explicitly

specified.

Proof of the theorem

For a body to be in equilibrium both internally and
externally, to bé deformed in a compatible state, and to everywhere
satisfy the prescribed boundary conditions, the total potential
energy P of the system must have a stationary value. In order that

P (mathematically a functional) should have a stationary value with
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respect to each stress, strain and displacement component, the
variation of P with respect to each of those functions should be
zero, The variation of P is understood in the sense of the calculus

of variations (44) and is signified by &P, that is:

8P = %J{/VF av +f/ P,asp = O (17)
‘ Yoy S

The surface integral portion in equation (17) comprises
a region Sl’ where stresses are prescribed, and a region S2, where
displacements are prescribed. Then, as no vaeriation of potential
-energy can take nlace at points where éurfacé displacements are

prescribed, equation (17) can'be rewritten in the form:
f - 5 u+Pv+Du)dSs = O
5§fj/i‘dv /f (pxu+Pyv+?gw) (18)
A 31

where the bar above the stresses indicatesbthat they are prescribed

and hence invariant, i.e.

?x- px, Py-f)y a.ndpa ng (19)

Reissner has demonstrated the proof of this theorem by

expanding equation (18) with the form,

.= B _ 87y 5o . (m_ 30,
/:/j [('ai 30.) 8% + Goy = 3q7) 8%y + (Gg - 557 &,
v x %% B

ou v ow v w oW
+ (o= ) 61+ G+ - == )&= <
(oy * ox 0T, XV e Ay Tty
og ot ot
3w _ du _ W (X zy ax
+ (EE T 7 4 LU (ax twy Y o )bu



. .
’
. "
» h
[
PO [ R N
i
.
1 -~ 5 : ]
B < - L
I3 ) -
¥ . -
PR B * ~ ’
\ )
- 2
FPP T S I P Sl PR FENTAN o0 T (AR £+ A EAE E,

Figure 4. The idealized pavement{ﬁubgrade system consisting

- of & thick rectangular slsb resting on a Winkler

- Y

- -.
N )
., foundation. . Ty
AT T e Vo
« "
. P
. . . ’f
- - -
g X €
. R
. . LR . <. -
Pt
. & toa 4 4

) 4
: 4 ¢
. S, 5 o e e i AP PR [N
- > H

y N

b

)
v H - o [ . e 3 A\

* v
* S -



h
Iy
M,

-89-

Slab

=
=




ot o0 ot ot ot oo
- L —L 4 IE - ex ye a
(ax + 57 + 37 )év (ax * 5 t 5 Yoéw | 4V
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Sy :

where the bracketed expressions are known as the Euler equations

and must vanish separately in order to satisfy the variational equation,
equation (17). These bracketed expressions are clearly the differential
equations of elasticity, equetions (10) and (15), &nd the stress-
boundary conditions, equations (19), each of which is associated

with an alternative displacement boundary condition. ' Thus the
variational equation (18) is shown to be equivalent to the

complete system of the differential equation of elasticity, equations
(10, 11 and 15), end the boundary conditions, equations (19),

irrespective of whether they are specified in terms of stresses or

displacements.

Specifications and Assumptions of the Structural Analysis

The ‘structural systém considered in this thesis consists
of a thick, homogeneous, isotropic and linearly elastic slab resting
on a linearly elastic foundationy this is shown in Figure 4. This
figure indicates the geometry of the structure, its dimensions and
the co-ordinate system being useds It is emphasised that the
system is treated as one structural unit although it consists of two

elements, the slab and the foundation.



Figure 5. An infinitesimal element at the interior of a plate
‘showing the notation and also the erientation of the

“'stress’ resultants and applied normal surface stresses,
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Figure 6.  An infinitesimal element at the curvilinear boundary

. of a plate‘shoyipgftpg prigntation.of‘the stress resultantg,
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Stress/stress resultant relationships

The stress resultants dn the plate shown in Figure 4
consist of the bending moments Mx and My’ the twisting moment, H,
and the shearing forces Vx and Vy; the orientations of these are
shown in Figure 5. Assumptions must be made on the internal stress
distributions in each element of the plate, in terms of their stress

resultants in order to reduce the problem to a two-dimensional form.

Considering, firstly the slab, as is customary in plate
flexural theory the stress O dy and rxy are considered to Ye

distributed linearly over the thickness of the slab, as follows:
g ‘Mx & g M 2
= P » = .
H 5 (21)
and T = .
Xy hz; 6 m

The equations of internal equilibrium of the slab can then be

written in terms of its stress resultants at a point as:

X el -
% + oy Vx 0
aM
- o _ -
5 + 52 vy 0 (22)
oV av
X 4 -

where p and q are the direct stress normal to its upper and lower

surfaces, respectively, as shown in Figure 5.
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Substitution of the first and third of equations (21),
and the first of equations (22) into the first of equations (15)

yields the differential equation for Tax 28°

ot -
h .

Integrating this equation and using the boundary conditions Tax = 0

at & = £ h/2, gives

w1 G) |

and, similarly,

Tog = - Vy[l - (ﬁg)z]

The substitution of equations (23) into the third of

(23)

equations (15), and the elimination of the shearing forces V_ and
vy by using the third of equations (22), yiclds the differential

equation far 68 as:

2% - (4-9) %ﬁ[l (m)z]

Integrating this equation and using the boundary conditions O = =P

at @ = h/2, and o, = =q at & = ~h/2, gives

3
c“=-%ﬂ+(q-p)%[f7§ -%(%;5) ] (24)

Consider, secondly, the foundation. Here the Wwell-known
#Winkler assumption is adopted. Thus, the vértical stress, dg, is

assumed to be directly proportional to the deflection, Wy of the
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upper surface of the foundation , and all other stress components

are considered as being equal to zero. Thus

o, (=-a=1xw)#0 (25)

and cx = dy = Txy = Tyg = Tzx = 0

Strain[average displacement relationships

In order to maintain the two-dimensional nature of the
flexural behavi our of the slab the concept, used by Reissner, of
weighted average displacements is also adopted here. These weighted

average displacements, L Bo and W,y ere defined as:

10 [ b/2
ao = ;3 us ds
-h/2
h/2
B, = i% ve da (26)
~h/2
h/2 s \2
wo_= gg w[} -(?75) ] de
~h/2

Approximations for the displacement, v, u and w, can be obtained

by introducing into the above eguations the approximations,

* * ¥,
u = (x,7)8, V= B.(x,y)a and wew, (x,) (27)
resulting in

* . ¥ H*
44 o y
o=% B = By and w, = %o

Thus, the sterred quantities can be solved for, and using equations



(27) the actual displacements obtained. The approximation w = w:(x,y)
is equivaleat to the variatioa of transverse deformation throush the

thickness of the plate being neglected, as in Reissner's paper

presented in 1945.

A8 far as the foundation/slab interface is concerned, its

deflection is denoted dby:

w o= w(x,y,~h/2) (28)

vhere w 1is not equal to v, due to the transverse compression in the

slab,.

Boundary conditions

Finally the boundary conditions on the system must be

considered.

As the slab is being treated as  thick, ie. the transverse
shear deformation is being taken into accuunt, three independent
boundary conditions must be prescribed at points on the outer edges
of the slab. Using a curvi=-linear boundary with norumal direction n

and tangential direction t, (Figure 6) the general boundary

conditions are

= M o i
Mn ME or o prescribed

nt = ﬁnt or B, prescribed (29)

v, = Vn or w_ prescribed
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where the bar above the symbols indicates prescribed stress
resultants, Here the problem being analysed is that of a slab

sith free edges and thus the two conditions of the classical

theory,

Mn=0andvn+aH£.t=0 (30)
are renlaced by

WE = HE£ = Vé =0 (31)

at all points along the slab edges. It is, therefore, no longer
necessary to transform the twisting moment, Hnt’ into an equivalent

vertical shear as in the classical theory of thin plates.

On the upper surface of the slab the prescribed boundary
conditions are all in terms of the specified loading normal to the

upper surface of the slab and are thus described by

B, = -R(x,y) , B =3B =0 (32)

the corresponding displacement is

W= w(x,y, h/2) (33)

As far as the remaining boundaries are concerned, the
conditions along the foundation sides do not enter the problem due

to the Winkler foundation assumption, and along the bottom surface

of the foundation,

W = w(x,y, - (d+ h/2)) (34)



Analysis of the Pavement with Full Interface Contact Preserved

In the application developed in this section the problem
relates to that of a thick finite slab resting on a Winkler type
foundation, complete contact between the slab and the foundation
being preserved under all conditions of flexure. Returning to the
general form of the variati onal theorem, equation (18), this must now
be written in the form required for this application. Defining the
strain energy density for the slab as Fp and for the foundation as

Ff, the variational theorem then becomes

: _ h/2 -h/2
6]/[/ des +/ Ffdz-53W]dxdy=0(35)
-h/2 -@+h/2)

Using the relationship expressed by egquations (15) and
separating the external force component into ('138w)u and G’gw)lf

for the upper surface of the slab and the bottom surface of the

foundation respectively, equation (35) may be written as

h/2 <h/2
A /
¢

(o € -W)ds+/(o’ €, . =W, )da
/Uh/z Hp tp ¥ -(d+}j;}£)ijf £

- (Pgw)u = (p“w)lf]dz dyp= 0 (3%6)

sxpanding cquation (38), substituting for €; 5 using
equaticns (11), substituting for €y ny ete., in W using the
stress-strain relationships of linear elasticity, €, = [dx-u(cy-m“)]/m,

Yy = 2(1+p.)1.’xy/E, etc., results in
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X . r-h/2
o, W, o 2u , v av oW
Slj(]T;/ / [ <’dx ox " %y oy %o T Txy(ay tox M TY‘(aB oy
-h/2

dw , du 1 2 2 2
* Tax (ax * % ))- 2B (dx ¥y +9 28(0y 0y 40y

Xy ¥y
+ ngx)+2(1+ll)(‘f,2q + 132;; + Tix))]dg +/-h/2 [(GB %)
-(a+h/2)

- E}E‘; (%2 )]dz]dxdy - //[-pwu - qwlf] dxdyb = 0  (37)

Each term in equation (37) is now integrated with respect to

&, in order to obtain a two-dimensional system. Using the stre&s/
stress-resultant and displacement/average displacement equations (21),

(23), (24) and (26) the following relationships are obtained for the

slab:
h/2 "
¢ B g4 = 3 —2
X dx X 9x

h/2
‘ h/?2 . 28,
oy %% T
~h/2
h/2

aw

. Og g 48 == PW, +an - (g-p) Yo
.,-h/g

)



h/2

| oy, 2w
[ Tys(aa*ay)da=

-h/2
h/2
Jth/z
rh/2
v (22
8X ' 3x
~h/2
Furthermore

-2}16}(0’ dg = = gA

y

d/rh/z
-2u0 o
]|
7 =h/2 ¥

h/2
12
. [ -2p0,0, d& = - 5 u(q-p)Mx

du  3v
/ “wley tax) e - H(
ow
(o]
Bo +5T)
du
33) ds = Vx(o‘o
~ ,h/2
/ dzdgﬂ——
. 14
J ~h/2
/ Gyz dg = == M
-h/2
rh/2
f 652 dsa .ll--
~h/2

12
d B - -
¢ = -5k (ep)yy

28,
vy F 3?') (38)

ow

+ —

ox

(26p2+26q2+18pq)

(39)



h/2
2(1+p)7 2_dz - 24 (1+p) 7
/e 2% g
h/2
/ﬁ 2(1+“)7ya2 da = %% (1+4) vy2
J -n/2

h/2
2 2
,/( 2(1+u)1gx2 dg = %H (1+p) V,

-h/2
For the foundation

. -h/2
[ o ow de = ~,Qwy + QW

J=(a+h/2)

1f

- h/f2 (40)

and / 682 da = dq2
-(da+n/2)

Substituting the integrals of equations (38), (39) and (40)
into equation (37), introducing -kw; for g, and replacing E, by k.d
as vaf is specified as zero at the lower face boundary of the systen,
yields the variational equatio;l in terms of stress-resultants and the

average displacement,

3B o aa aB
/f o ax y---—+(1<w +p)w+H(5—+ )+v (ozo = )

+v (p - ) ?.E( (M +M -ZpM My

s2(14p)E%) + 22 (1+u) (v +V 2) + 25w (lowy4p) (M
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+My) + % (26p2 + 26k2 w12 - 18pkw ))]dx dy } = 0 (41)

The variations are now carried out on all terms which can

vary, the techniques being similar to that of differentiation (44), to

] da 3ba
o} o) o8 36B
M, < + M +0M_ "o .M 0
/:/[( ox X ox Y ow ot Yoot kw  dwy

aao 3{30 aéao 86B0
+(kw1+p)5wo + 5H(3.§_ + ?;)+ H(B-i—- + EX—.)

ow aéw
+V (2 + 5 )+ Ty (6ao +

give

°) + sV, (po 3y )+v (68,

Idw
o 1
+ 3y ) kowy 6w1) 5% (h5 (21 ol +21«:1ya31\ay 2uM éMy

- 12
-2uM yamx+4(1+u)HaH) + 5 (1+u)(2vx6vx+2vy5vy)

*EHH— (kW +p)(6M +8M ) u (M +M )k oWy

*%'6 (521c2wl- 1ekp)awl)] dx dy = O (42)

Elimination of the partial derivatives of displacement

variations by integration by parts, e.g.

___ - =limits_ aM,
/ dxdy ‘/(Mxéoro)gy /fax 6a dx dy  (43)

v

and re-arrangement of terms, leads to

r aa
. o 12 6
// [ 5 " 3 Oekly) - S (o v 2)] o,



g2 = T3 tgmaat)- S Gomyep) Jotty
+ :: + :i° 24;;;") H]6H
da, + 52 - B0 v ) o,
A, + 352 - 22 v qo7
oM
= - -gff} +V_ Joa
+[-Ei’[x ) 168

+[kwo - kwy - %HEIKC (Mx+My)- T%E' (26k2wl- 9kp)]5w1]dx dy

x-1imits y=-limits
+ [Mx 6«0 + H&B°+Vx6wo] dy + [H6a° +My6$30 +Vy6wo]dx

= 0 (44)
where the suffix 'x-limits' indicates thatE&x5a°+HGBo+bewé]applies

only to the plate edges which are perpendicular to the x-axis of the

co-ordinate systeme The suffix ‘'y-limit' has a corresponding meaning,

The contents of each bracket in equation (44) must vanish
separately if, in order to satisfy the variational equation (17), the
variation of the total potential energy is to vanish. Therefore, using
the relationship E = 2(1+p)G the following equations must be satisfied:

da

o 12 6
T sy~ (ko 42) = O (43)
¥ _12_

6
el (My-qu)-g%,; (kw, +p) =0 (46)



oy T ox Cho BE=0 (47)

ow
0 6
ao+-5-;-- -S_-G_ﬁvx=0 (48)
ow
0 6
Bo *35 - T 'y = © (49)
aM
—x 8" _ -
e -V = O (50)
)
3H
% + Ei - Vy = 0 . (51)
v
-a;—+-—x--(k1&+p) = O (52)
W= W - (M +1 )..70E (26kw1-9p) =0 (53)
x~-limits
[, 8, + HOp, + V, 6w ] -0 (54)
) y-limits
[, 88, + HSa, + V, &% ] = 0 (55)

Equations (45) to (49) inclusive, along with equations
(53), are the stress-displacement equations for the complete system,
while equations (50), (51) and (52) are the equations of equilibrium.
Equations (54) and (55) represent the natural boundary conditions
along the edges perpendicqlar to the x and y axes respectively and are
clearly satisfied by those of the particular problem being analysed, i.e.

equations (31).

Equations (45 to 53) reduce to the customary equations of the

Plate theory by neglecting equations (53), replacing w_ and w; by one
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expression for the plate deflection and neglecting all terms which

contain 1/h§

As the first step in the solution, W, the deflection of
the slab/frundation interface, is eliminated from the set of equations,
This is done simply by substituting the expression for w3 from

equation (53) into the three other equetions where it occurs i.e.

equations (45), (46) and (52). Using the eimplifying notation expressed

by
~ 26hk 6
e=1l+=5g T=3m
9hk _ 12
C=1+ TOEg £ EhB
12 6
_nl = — T m
o) 5Ch
2 2
Tk Tk
= - —— = — 6
U=g-= V=ope + z (56)
s =V/U f = (1+7/0)
t = (U - 72/U)

equations (45) to (53) can be expressed as

o ap
> o Tkf
-43;— - S‘é';- + th + P Wo - Tcm (57)
op oax
-9 _g 2 Ikf ¢ -
¥ "% = + tM& + z LR TCfp (58)
da ap
(o) o
5 - T tEh H=0 . (59)
awo
“O + EJ-C— - er = 0 (60)



awo
B0+-a§—-rvy=0 (61)
M
ol
-—a?cz-—a—y-‘i-vxzo (62)
oM,
X % v .o (63)

.S k kT
“ 3% - 3§X +'§ LA ra (Mx + M&) = -Cp (64)

The solution of this set of eight equations is considered
in detail elsewhere (52) but as the weighted average zptations %y
and ﬁo are not used to specify the boundary o nditions of the problem
and are also of little interest in themselves, they are eliminated to

produce the alternative set of six equations which is used hereafter,

From equations (60) and (61):

awo awo
% =TV =35 » PBo=TVy-3% (65)

Subztituting these expressions for ®, and Bo into the remaining

equations, results in:

2 2
v v ow ow
X 0 0 Tkf
e —Xay +—2 4+ 8 =% + =W+t M =-TCTp (66)
0x oy
2 2
oV ov o w 3w
v x 0 0 Tkf
-r -8r + + 8 + w_+t M_=-TCfp (67)
oy ox ay2 ax2 g o Ng
an avy 62w0
To Top t2 gy tRE- 0 (68)
oM
x _ 9H -
-yt V. =0 (69)
oM
L. ¥,y -0 (70)
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av. v
—X__ Y, Xk kT - -
=t S, g (MX+My) Cp (1)

This system of six partial differential equations along

with the boundary conditions

M = Vx =H=0at x=0and x = a
* (72)
and M& = Vy =H=0aty=o0oandy=>»

completely specify the boundary value porblem.

Further reduction of the number of differential equations
is inconvenient as, firstly, the introduction of higher differentials
is always accompanied by loss in accuracy when attempting to obtain

values ®r those terms which have been eliminated, secondly, all the

remaining unknowns are of interest and, thirdly, the boundary conditions

are specified in terms of five of these independent variables.

The solution of this problem, expressed in terms of ‘the above
equations (66 to 72) will be considefed later but, before doing so,
another boundary value problem is examined.

Analysis of the Pavement Including Possible loss of Interface

Contact o

In the previous case, every point on the surface of the
foundation is assumed to remain in contact with the bottom face of the
slab, independently of whether the foundation at that point is in
compression or tension., For the majority of cases this is acceptable

for two reasons. Firstly, the weight of the slab has a 'prestressing'

effect on the foundation, thus giving the foundation some apparent
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tensile stiffness. Secondly, the region of the slab which is of

real interest i.e. where the maximum stresses and deflections occur,

is also an area where the foundation is in compression.

. In situations where these arguments are not valid, it is
useful to develop a mathematical model which describes the case of a
system in which the foundation has no tensile stiffness., Most
attempts, e.g. that of Murphy (21), at treating this problem involve
an iterative procedure based}on appreciation of the physical
behaviour of the system. For“example the system can first be
analysed as if full contact is preserved in ali'modes'of deformation.
" At points on the interface where tensile stresses are induced in the
‘foundation, the slab is released. - The analysis is then repeated,
taking these releases into account, andvfurtherﬁregions of tensile
interface normal stress are obtained. These algo are then released

and a further analysis is carried out.. The procedure is repeated until

convergence of the solution occurs.

The treatment.whi§h'foilows, however, does not require such an
iterative foutine. The technique is based on a mathematical formulation
of the foundation property which is described by specifying that the
modulus of subgrade reaction, k (wy), should be a function of the

deflection of the lower surface of the foundation, Wys such that
k(wl) =0 when'w1:> 0 | |
k(wl) = k when w, <o (73)

0 Qk(wl) < k whén wl =0
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k(W)= X1~ tanh pwy)

-88-

k (wq)
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Such a function is
K(w.) = k[l - tarh ¢w1]
1 7

which has the graphical form shown in Figure 7. f is an arbitery

(74)

large positive number, an increase of vhich results in k(wl) more

rapidly attaining a constant value as the modulus of wl increases or

decreases from zero.

Substituting this function in place of k in equation

(41) results in:
as oo
// (Mx x * My 7t ( -125 (1-tarh ¢w1 )vi +p)wo+H(-é-i‘2
ow
P ) ¢ T (B ) - K (eten g 2)
- %—E- ( (a, +M +2pI'T M +2(l+p.)H )
2 (V21 ?) 4 2 2 ($(1- tanh gy )wy +9) (M )

140 (52 131 (1-tarh ¢wl) Wy -18pk(1-tanh #w ))]dx dy

= 0 (75)

The labour of carrying out the variations and determining
the Euler equations can be considerably reduced by the use of the
ganeral form of Euler equation, obtained from the consideration of
the variation of a functional. (Many textbooks are available on this

subject, for example, that by Fung (53).) If the variational equation

is expressed as:

B
1)
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J()[%(x,y;ul,uz,u ....ui)dx dy » = O (76)

where Uysly eees u, are the dependent functions and X, ¥ are the
independent variables, the Buler equation representing the variation

of K with respect to u, is

i

3 _3_ 3 _ 2 K

du, - ax’ ou, ~ oy ou, = 0 (77)
X y
du
ou i
where ui - i and ui = 3;-

X 3x g
Consider the variation of equation (75) with respect toa
Rewriting equation (77) in terms ofx , where [ ] indicates all the

terms within the square brackets of equation (75):

- — - — = 0 8
dax x aab oy aao (7 )
o x y
Then since
a [ ] of ) of ] .
aa = Vx' aao = Mx’ aao = ?
o % y
the resulting Buler equation is
M
X )i
V- s o = 0 (79)

The remaining Euler equations are obtained in a similar manner,
Thus, the fuler equations associated with the variations of M&, M&,

H, Vx, V,x, B, w and w, are

y’ o' "o’ o 1

_.._-.Eh—g(m - M) - 5Dh(p+—ngE)===0 (80)
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gf-;;-h%( - ML) - = (P +Ew W) -0 (1)
e} 0
e GEeo )
a + 32~ T T =0 (85)
By + oS - s T, = 0 (84)
v, - ;f—’ﬁ - -g-g-f = 0 (85)
v, - gl- Z .o (86)
Grgen) - 52 -5t - 0 e
(w, + 252 = 6u( 0 ) )(F-oysecn 2 g )
- 1(1 - Wyt Wy H o+ ¢w1 sech 2 ) wy)

ijgg (W2 ¢w ¥ sech 2 g wi) = 0 (88)

(89)

Where W=1- tarh ﬂhi

The accompanying natural boundary conditions are determined

(53) from the general boundary conditions

aI( ” »
35} = 0 at ‘the boundaries perpendicular
X to the x-axis (90)
angd 3K
53;: 0 at the boundaries perpendicular
4 to the y-axis. (91)
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For uy equal to<% the condition M_ = Oat x = 0 and X = a is

obtained from equation (90). The remaining conditions are obtained

by considering each function in turn, resulting in the following

complete set of boundary conditions which are those of the specified

pProblems:

M =V =H=0 on X=20 and X = a
X X

(92)

M =V =H=0 on y=20 end y = b
Y Yy
Thus the case of a thick finite slab resting on, but unattached

to, a /inkler foundation is specified in terms of the system of non-

linear partial differential equations (80 to 88) and the boundary

conditions, equations (92).

Discussion

In this chapter two methematical models, each in the form

of a system of partial differential equations and a set of boundary

conditions, have been developed for the structural analysis of an

idealized pavement/subrade system in the form of a thick rectangular

Plate resting on a Winkler foundation. The models differ only in the

manner in which the interface conditions between the plate (pavement)

and foundation (subgrade) are specified.
In the first model, when the load intensity distribution

is applied, the upper surface of the foundation remains in contact with

the vlate at eveiy noint on the interface, including these points at

which the plate movement is upward. This is not a requirement of the



Second model where the top surface of the foundation and the plate

Separate at points on the interface when, at these points, the plate

deflects upward.

The second model may possibly be a more accurate
representation of the actual state in, say, a rigid pavement.
However, the non-linear nature of the associated partial differential

equations is such that a numerical solution to this second model

Cannot be anything but extremely difficult to obtain. For this

Teason only the numerical solution to the first model, expressed

in terms of equations (%6 to 72), is considered in the next chapter.
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SOLUTION TO THE DIFFERENTIAL EQUATIONS OF THE STRUCTURAL ANALYSIS

The analysis of a thick rectangular plate resting on a
Winkler-type foundation and subjected to any arbitrary normal loading,
is a typical example of a boundary value problem. It has been shown
that this problem reduces to finding the solution to a system of
simultaneous, linear, nonhomogeneous, partial differentisl equations
with constant coefficients, which at the same time, satisfies a
given set of boundary conditions. Finding a suitable mathematical
technique for this task is most usefully approached by examining
the possible methods, eliminating those which are clearly unsuitable,

and then developing those which are promising.

Only in the simplest cases can a solution to a set of
simultaneous partial differential equations be found in an exact,
explicitX form. Approximate methods are, therefore, of particular
importance in the present problem. Two types of approximate method

of solving sets of partial differential equations can be distinguished.

l. Methods by which anproximate valueé, in tabular form,
of the required solution can be found at various points over the

physical region for which the problem is defined.

2y Methods by which the approximate solution is derived
from an analytical form, e.g. by means of truncated series.
In the first category are the so-called numerical methods, which

include finite difference and finite element techniques. Polynomial
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and other series solutions fall into the second category where the
exact solution is in the fomm of infi nite series and the approximate
solution would then be the sum of an arbitrary finite number of tha
terms of such series. In the present work however, it is coasidered
that the future use of the solution, possibly as a basis for a design
m:thod, may find its greatest anplication if it is expressed in an

analytical form. Hence, the numerical analysis has been concentrated

in this ares.

Two well-developed forms of polynomial expansions are
power series and Chebyshev polynomials, while in the field of non-
polynomial expansions, Fourier series is perhaps the bext known,
Text Books by Agnew (54), Lanczos (55) and Churchill (56) provide
a good basis for the study of power series, Fourier series and
Chebyshev polynomials, respectively. In order to determine whether
any of these three series can be utilized to furnish a solution to

the mathematical model each of them is examined in this chapter,

in turn.

Gencral Approach to the Solution of the Equations

One way of solving boundary value problems is, first, to
seek the general solution of the system of differential equations and
then to determine the remaininz constants associated with the
solution so that the boundary conditions are satisfied. This method

can, however, be unnecessarily tedious and more expeditious methods
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therefore use the boundary conditions at the start of the process
of obtaining solutions. In this manner a multitude of apparent
'solutions' are eliminated and a restricted range of possible solutions

can be concentrated upon.

This is the approach which is used here. Thus, those
functions which are subject directly to boundary conditions are
first made to satisfy these conditions. Next, the functions are
substituted into the system of differential equations and the unique
solution sought. In order that this non-trivial solution may be
obtained, the expansion used to describe each function must form a
complete set of terms even though, at a later stage, some of these
terms may prove to be non- contributory. (A set may be said to be
complete if every piecewise continuous function can be approximated
to any arbitrary degree by a linear combination of terms of the set),
The form of the dependent functions which is mathematically most
tractable is one which is similar to that of the independent function,

i.e., the function describing the load on the slab.
© Application of Power Series,

The most elementary example of a complete two-dimensional
system of functions is given by the powers

1, Y Y o» . .

2
Xy XYy Xy . .



These form the basis of a power series ased to represent a function,

£(x,y), that is,

S0 o
2 iJ
£(x,y) = 0g0 + Og1Y * Ogp¥ * eee = 2. E o)XY
i=0 j=o

2
010% * O * O1oXY + eee

2 2 2.2
0%+ 621x Y + 05X + oo

(93)

where cij is the ijth'power seties coefflcient, and is a constant.

Relevant wroperties of power series

A possible limitation on the use of power series is that
to each series there corrdsponds a positive number, Rl’ in the
x-direction and R2 in the y-direction, called the radius of
convergence of the power series, such that the series converges where
/X/S;Rl and /y/ng2 and the series diverges when /x/}R1 or /&/:>R2.
It is impossible to examine the convergence of a series without first
determining its coefficients and so the convergence of those series

used to describe the dependent variables in the present investigation

will be considered in a later chapter after applying the analysis to a
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specific example of the plate/foundation system.

Power series have many uses in pure and applied mathematics
and in particular they are often used in the solution of differential

equétions. The two following theorems are necessary for such

applications.

Theorem 1:

If ‘ci:jxj’y:j converges
i=0 j=o o
NS
) )
when /x/gl?.l and /y/ng and f(x,y) = __/‘_4__’ :ij:"y"j
i=0 J=0

then f(x,y) is differentiable when /x/SZRl and /[y/ R, and the
derivative may be obtained by termwise partial differentiation, e.g.

af i-1 i
e - ZZ“U" v - z i (14200, x5

i=0 J=o i=-1 Y¥=o

The latter representation depends upon the fact that an integer
(positive or negative) can be added to the index of the summetion
whenever it appears after the symbol E s provided that this is

compensated for by subtracting the same integﬁ? from the index on the

summation sign.

Theorem 21 AnotheaLfequirement is that if R, >0 and R )>0

:2 1 Yf“

and also if fl(x,y) - oy 4X yJ and f2(x,y) - dijx Y ’
i=0 j=o i=p 3=

then f, (x,y) = £, (x,y) when /x/R; and /y/{R, if and, only if,

c = 4

00 ™ %0’ %01 = do1¢
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and, in general, if cij = dij
Proofs of these theorems can be obtained from most textbooks dealing

with series.

These theorems, along with the ability of a power series
to represent a function, enable the solution of the boundary value

problem to be attempted.

The solution of the boundary wvalue problem

| The first‘considerafion in the numerical analysis is the
satisfaction of the boundary conditions by the dependent functions.
The requirement that a function should be zero at, say, x=0 and
X=a is most easily attained by the introduction of a multiplier
(ax-xz) which results in an ijth term of the form cijxiyj(ax-xz).
This does not appear to impose any unwanted restrictions upon the
derivatives of such a function. This technique is similar to one

used by Coull (51).

Considerations similar to that described above arply to
the y-direction. Thus, in the present work in order to satisfy the

boundary conditions represented by equations (72) the dependent

functions can be represented by

ZZ x 7 (ax-x?)

i=0 j=0

zz x y'j(ax X )

i=o0 j=o



M, = > Ky (vy-5P)
izo 3=6 Yij
o0 . .
v = Zv xty3 (by-3°) (94)
y Yiy
i=o j=o
S
13
W = w
° Zé__a °ijxy
i=0 j=o0
OO‘ [+2)
H = ZHijx (ax-x%) (by-y°)
i=o Jj=o0

while the load intensity distribution, p, applied to the slab
maybe described by a loading function which 1s assumcd to be
expressable in the form

pP= ?Z pij xiyj (95)

i=o j=o

These series expressed by equations (94) and (95) can now
be substituted into the system of partial differential equations,
equations (66 to 71). For example, consider equation (69):

oM
X _ B8H -
3% oy + Vx 0 (69)

Theorem 1 on the assumption of the initial convergence of the

dependent functions enables the series to be substituted, thus:

N . A Aa)
/ Mia[(id) (1+2) ]y

L

Hyyx(axex )[b(m)y (d+2)y3*1]

|

Y
N

e,
[
o
<.
H
o]

s

inj x (ax-xz)yJ = 0

N

(v
[}
o
e
[
o
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Theorem 2 enables relationships between the coefficients to be obtained
by summing the coefficients of the function, xiy‘j, thereby resilting

in the ijth equation

-(141) - M )-(j+1)(abHil - bH,
\ xid xi-l,j, -1,3 -219J

-8l + H > +(aV -V > = 0
i-l,j-1 i-2,j=-1 xi—l,j xi-z,J

By applying the same technicues to the remainder of the partial
differential equations, (66 to 71), the following system of six
general algebraic simultaneous equations maybe produced, which inter-

relate all the coefficients of the various series:

-r(if1)<av -V )- 8r(j+l)(bvy -V )

X135 *1e1,3 13 4,321
+(i+1)(i+2)wo + s(j+1)(,j+2)w°
142, 3 1,342
Tkf
+t{all -M +— W = = TCfp.
( X1, "1-2,;1) & 043 Pi (96)
WheI‘GS i=°,l,2 * o o °°; J - 0,1,2 s ¢ » ©O
-r(3+1) (bV -V )-sr(1+1) (aV -V )
Vi3 Yi,3-1 X33 *441,3
+(34)(3+2)v_ .+ s(141)(i42)w
1,3+2 °1+2,3
+t{by - N Tkf - -
( Yi,3-1 yi,j-2>+ g woij TCIps5  (97)

where: 120,1,2 o ¢ e 00 J = 0,1,2 4 4 o o
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-r(j+l)( aV -V )- r(i+l) (bv -V 2)
301,541 *i-2,38 Y141,5-1 J141,3-

+2(1+41)(3+1)W + E(abH 1 4.178Hy 7 s o=PHi o 4.
°341, 341 i~1,3-1"""1-1,3-27""i-2,3-1

+Hi-2,j-2> = 0 (98)

where1 130,1’2 « o o 99} j=0,1,2 ¢« o o O©

.1.'(1+1)(9foLj - Mxi )- (j+l)(abHi_1’ j-bHi_z’ 3

-1,

'aHi-l,,j-l + Hi-2,j-—1> + (avxi-l,j-vxi-2,j) = 0 (99)

Wheret 130,1’2 ¢ o @ w; 130,1’2 e o o O

-(341) (bMyij - Myi’j_))‘(i"'l)(abHi,j-l°aHi,j.-2

- -V
i1, ge1 Hi-l,a-z) Q’Vyi 31 yi,j_2)= 0 (100)

wheret 1=0,1,2 ¢« o o @3 1 = 0,142 ¢ ¢ o &

-(i+1 (v -V )-(3+1)(bv -V )
; )a"ia X3-1,3 Yiy Yi,3-1

Ky X (aMx - ¥, + BN M )
g °1j g i-1,3 1-2,3 Vi,3-1 Y1,3-2

= -Cpyy (101)

Where' 1=0,1,2 e o o oo; j=0,1,2 e o o OO

Only a limited number of terms are, in fact, used to

approxi mately represent the loading function, j.e.,

b= Zipijx y (102)

i=0 J=o0



- 103 -

although the solution is still the solution of an infinity of
equations in an infinity of unknowns., The practical possibility
of a solution can then only be considered if the dependent series
are also truncated. However, attempting to satisfy all equations
in which the allowable coefficients appear results in an ovér-
determined system. Therefore, only an a»proximate solution, in
which the coefficient of the truncated series are required to
satisfy a limited number of the equations, and not the complete

set, can be obtained,

The choice as to which equations should be
disregarded is largely arbitrary, however, certain reasonable
requirements should be maintained. These are: 1. that any
equation containing a loadin» function coefficient should not be
neglectedy 2., that the lengths of the various series should be of
similar ordery and 3, that the number of equafions created from each
ijth equation should also be similar. Hence, it would appear that
the ranges of each general equation and of each dependent function

should be the same and at least equal to the loading function.

A minor difficulty arises in that the last term of the
series representing the twiséginoment, Hmn’ is not defined by any
equation. In order to overcome this diffiailty and still preserve
an orderly system, the upper limit of the twisé{%wment series 1s

defined by Hm_1 n-1 and the range of equation (98) is taken as iso to
)N~

m-1, j:o to n-1. Using this system, the ranges of the series and
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simultaneous equations are then as shown in Table 1 and Table 2,

respectively.
Series Range of i Range of J
P o tom o ton
Yo o tom oton
H o to m-1 o to n-1
M v tom o ton
My o tonm o ton
vx o tom oten
vy o tom o ton
Table 1. Ranges of series
quations Range of 1 Range of J
(96) o tom oton
(97) ' o tom o ton
(98) o to m-l o to n-l
(99) o ton oton
(100) o tom o ton
(101) o tom o ton

Table 2. Ranges of equations.
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The solution to the boundary value problem is thus reduced
to the solution of a number of simultaneous algebraic equations, Q,

in a similar number of unknown power series coefficients, where
Q=6mn + 5m + 50 + 5 (103)
Application of Chebyshev Polynomials

Of all the forms of expansion, the Chebyshev polynomial
series provides the maximum convergence inasmuch as it requires the
smallest number of terms to achieve an anproximation of a function
which does not deviate from its true value by more than an arbitrary
small amount, at any point of the given basic range [-1,+1] of the

independent variable.

Fundamental properties of Chebyshev polvnomials

The Chebyshev polynomials Ti(n), where n is the indepandent
variable and i indicates that Ti(n) is the ith term: of a Chebyshev
polynomial series, possess a very valuable property in that they are
expressible in terms of elementary trigonometric functions. They are,
in effect, merely the simple trigonometric functions cos 18 but
expressed in the variable 1 = cos 8§, This fundamental relation,
vwhich translates the many useful properties of Fourier series into

the area of pover expansions, is the most important property of the

Chebyshev polynomials.

The shifted Chebyshev polynomial T;”(n) is of special

interest. This is simply a Chebyshev polynomial with a range of
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definition [0,1]. The renormalization of the Ti(n) to the new
range is easily arrived at by nutting cos 0 = 2n-1 in place of cos ¢

= n. The shifted Chebyshev polynomials are thus defined by
'I';L (n) = cos 16 = cos [1 cos'1(2n-l)] (104)

The new polynomials, T; (n), have coefficients which are entirely
different to those of the standard Chebyshev form Ti(n). In their

rolynomial expansions of the function, f(n) they are represented

by the series

00

() =) o1y () (105)

i=o

Since this expansion is, in fact, a reinterpretetion of a cosine
series, the shifted Chebyshev polynomials form a complete set in
the interval [0,1]. Theorems 3 to § are now developed relating

to shifted Chebyshev polynomials.

Theorem 3, The connection between shifted Chebyshev
polynomials and trigono:nctric functions can be used to obtain e
recurrsive relationship between polynomials. Taking the trigocnometric

formula
cos(s+t)8 + cos(sst)d = 2 cos s9 cos t8

and employing the notation of T;'(n) and T: (n) the following

recurrsive formula is obtained:

Toet(n) + T2 (n) = 2% (n)T# (n) (106)
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Theorem 4. The orthogonality condition in Fourier

series which applies to a discrete set of noints, (qx),

n- n (s=t=0)
cos 89, cos t8, = (nf2 (s=t#o)
&=o 20 (=#t)

is easily exnressed in the following polynomial form

n  (s=t=0)
X (n) 7 (n ) ={n/2 {s=to) (107}
a=0 o (sft)

n-1

where 21 - 1 = cosf .
o

Theorem 5. Similarly, the orthogonality condition

applying to a continuous surface

n 1 (s=t=0)
/ cos(s8) cos (t6)a8 = { n/2(s=tfo)
o o (sft)
can be éxpressed in the following polynomial form:
Lo* (n) ¥ (n) ®  (e=t=o)
/ — dn = n/2 (s=tfo)
o y(n-n) o (sft) (108)

Theorem 6. ‘hen the need arises to differentiate shifted
Chebyshev polybomials, the best approach to the development of a

technique for this purpose is to study their integration.

A useful relationship which provides the basis for the

integration of shifted Chebyshev polynomials is
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Ti:i(n) - Ti:i(n)'= f/[T; (n)an  (i>1)  (209)

This can be arrived at by taking the trigonometric form of

T:;l(”) _ T; 1(n)’ differentiating, employing again the cosine

relationship, integrating throughout, and reerranging,

Also:
, ¥ (n)
Ti"*(n)dn = constant + —3
1
| 77 () (210)
and . T (n)dn = constant + —=3

Tquations (110) can both be verified (54) by consideration of the

power expansion fora of the shifted Chebyshev polynomials.
Assuming that a function f£(n) is expressable in a shifted
Chebyshev polynomial form}
£(n) =5 A, + A 15 (n) + (n)+AT* (n) +
2 o A2 3 3 *® o

and assuming a similar expansion for the derivative f'(n) of this

function

£'(n) = % & TI'(n) + a, T;’(n) + 8y T; (") +...

where the halves are introduced for convenience, then on integrating

£'(n) and applying equations (109) and (110):
% (n) T (n)
£(n) =‘/r¥'(n)dn = constant + a_ 1 +a, =2

2 178
e [T () T ()
- *ZZ" s R P
: 12 -
or £(n) =Z A,7F (n)

i=o

(111)
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where the symbol ' indicates that the first term is associated

with a factor of one half and, in general,

a - 3
i=1 i+l :
A = =T (i>0) (112)

Ao is determined by the lower limit of integration. The problem

of differentiation is the inverse of the above. Given a set Ao’

Al, A2 e » » 5 the required coefficientsab, al, 32 e o o g can be
found using:
85 _q = 85, + 414 (113)

which is a rearrangement of equation (112). If Am is the coefficient

of the highest order which is not negligible, taking an = &4l

B 0= ¢ o= 0 and then finding Bi1 %2ttt vy &, by

successive application of equation (113) results in the differentiated

series,

Differentiation, orthosonality and the recurrsive nature
of shifted Chebyshev nolynomials have all been considered in
Theorems 64 4 and 5, and 3, respectively. These are essential to
the application of such polynomials to any boundary value problem
and now can be used to attack the present problem, represented by
the system of partial differential equations (66 to 71) and by the

boundary conditions, equations (72).

The solution %o the boundary value problem.

Since the range of definition of the shifted Chebyshev

series is [0,1], then computation is simplest if the rectangular
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plate (o< x<a, o<y <b) is transformed into an equivalent unit
square plate by the use of the transformations n = x/a and ¢ = y/b.
Noting that

2
y

® =
o

8 _ 13
3% o and

2
ok (114)

a transformed system of partial differential equations can also

be obtained,

The assumption is also made that the applied normal

loading, p, may be written in the form

) D ey T (o () (115)

i=O jso .
and the weighted average deflection, LA in the form
- “>’ % *
"Z E Yo B B ) (126)
i=0 Jj=0

where the symbol ' indicates that p, , D,y W and w_ , are each
io? o %40 oOJ
associated with one-half, and Poo and w, are each assoclated with
00
one-quarter so that the technique of differentiation can be easily

applied.

In order that the given boundary conditions should be
satisfied, e.g. Mx = 0at 1 =0 and 1 = 1, the series multiplier

(U - 02) may be employed in its ghifted Chebyshev polynomial form$

[To“(n) - 17*(n) ] /8
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This latter expression is obtained by usins the shifted Chebyshev
form of simple power terms. Taking Mx a8 an example, and multiplying
the basic series by the series multiplier in order to make it satisfy

the required boundary conditions,
o0
1
» * * %*
M, = .29 E Mxij T (n) 73 (%) [To (n) -7, (n)]/a
i=0 j=o
or, applying the recurrsive relationships expressed by equation (106),
09-\ o 1 MX !
- i * _T* I *
He=) > —H[znFm -, R0 @) @)
i=o0 J=o
Similarly, for the other dependent functions:

IR ) ENTOE SR LT ety

i=o0 j=o

v - ii %1 [2 2% (n) - T;+2(n)-T;_"2(n)]T§' (8) (119)

i=0 j=0
00 00 vV
- Zj}: T8 o2 1) - L0180 (20)
oo‘ OO H
LIS % %* *
- ZJZ 2 [2 1) 250075 0] [2 7, %)
- 7,0 - 700 (121)

Returning to the system of partial differential equations (66 to 71) .
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and considering equation (71) as an example - the equation transformed

to the new co-ordinate system, by means of equations (114), takes the .

form

ov
e ts Yo g (Mx + M&) Cp (122)

v
X
on

o |-
o‘lt—‘

Substituting equations (115 to 120) results in

%Zi -?1 [20 S - 180 - ;_Q(n)]'l‘; (€)

i=o j=o0
%Z:.Z e im0,
PZJZ 14(n) TH(E) - E—Ti?z 277 )
EMOBEIOI NGRS ZZ% AOIL 1)

i=0 j=o0
-13,5(8) - 2,(z.)] -c Zi' Dy T () T; (8) (123)
i=o j=o

where from equation (113),

v; - vz + ALV
i-1,J i+1,} iJ

and Ve - V" +43 7
Yi,5-1  Yi,9a 13

end the superscripts n and § denote the coefficints of the derived

series obtained by differentiating the original series with respect
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to the n and ¥ directions respectively. Similarly, higher order

derivatives are denoted by a corresponding number of superscripts.

> (0) T (€)

8

J(-n) J(e3-t)

Multiplying through by

and integrating, in dimensionless co-ordinates, between the limits
0 ahd 1 in each case, enables the continuous orthogonality conditions
expressed by equa.tlons (108) to be applied. Thus, for example:

%LZ _6;\ T4(n) T4, (8)
i=0

o j=o

_y%i ERAQEAION M OLE O

1
b =
ecomes b

2 * 2
e J a2 /& o)
‘0
Ve
R
which equals% ——s]’%—g [ 1.2 2]for s #oand t #£ o,
v
or %-—%gl'—z-[%.%.n] for s £ oend t = o,
13
y
or %-—ii%:g[%.ng] for s = o and t ¥ o,
v? |
or % Slt'z [‘]i-.n. n.] for s =0 and t = o

Returning to equation (123) and cancelling through by the constant
in the square brackets which is common to all terms in the equation
for a particular i and j, independent of whether s = 0 or> o or

t =o0o0r> o, results in the following ijth equations on replacing

8 by i and t by j for convenience:
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1 [ ) n ) J 1 [ £ _E A 1 k
-=12V -V -V -= 12V - -V + 16 = w
&L Xy Fyo3 Fyuo,5) P L Vyy Yi,5-2 Yi,342] 8 044

_kt kT

[ém -M -Mx } [2M -} -}
g X33 *i-2,5 Fie2,3) € Y13 Yi,3-2

1 = - 16 Cp
Yi,3+42 1

rewriting [2V11 -V -7 ]in the form [67“ -7 )
x X x X x
i) i-2,3 i+2,) 1j 7i+2,)

()]
( *3-2,5  *ig

and applying the differential relationship, equation (113), results in

4(141)V - 4(1-1)v ]
[ X341, 3 *4-1,3

Thus the ijth equation, equation (12%), can be rewrittcn as

_i[ilv -(1-1)V ]_i[ 1)V -(3-1)V ]
~{(i+41) % (i-1) Xy 1,4)b (3+41) Vi 301 (3-1) Vi g1

M kT [21»1 X

+16§ w - XL < ] -M ]
142,34 € L Y33 Yi,5-2 Ti,342

2M -M -
°35 & [ ¥13 *4.2,3
= -16Cpy (124)

Where’ i = 0,1,2 ¢ o om; J = 0,1,2 e o o ©O

The same considerations also apply to the remaining five
partial differential equations, i.e. equations (66 to 70). The
overall result, then, is the following set of six general simultaneous
linear algebraic equations:

-4-2[(1+1)v -(1-1)v ]-435[(3+1)v -(3-1)v ]
a X141, 3 X3.1,54 °P 4,341 Yi,3-1
16, .m

+ ———

32 oij
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where: w'! =[%(i+2)wnn -(441)w" +16(1+1) (i42)(143)w ] 1
°i3 142, °i+4,3 ) °142,34 (I¥3)

EE 1 113 13
B gplaed | | asnaom, ]

13 ( 04,342 i,3+4
(131)
L ,[%WE +16 -wlb +16(i+1)(j+1)w° ]
O35 L%, 342 %142,3 °%i+2,j+2 141,341

The expansion used to approximately represent the loading
function must of necessity be limited to a finite number of terms,
say, m terms in the n - dimension and n terms in the E-dimensidn. Thus
~ = 1
P =i§t Pyy ¥ (n) TJ*(E) 132)
im0 J=0
In order that the system of general equations and dependent
variables should be compatible with the limited number of terms
contained in the loading function, the range of the dependent variables

are all

i{itotom-1 and J1O0ton-1 (133)
and each of the general equgtions has the range

i:otom=~-1 and j t oton-1 (134)

Because the expansions which are used to satisfy the boundary conditions
are combinations of Chebyshev series all the terms are interdependent
and as such, require the solution of all coefficients at one and the

same time,
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During the creation of the simultaneous alsebraic

equations the coefficients wgn etc. are replaced by combinntions

fk
of the coefficients of the original terms, Wy by applying
st
equation (131) to wgn and prosressing down to Wgﬂ taking
m-1,n-1 00
wih . S AL L = . ¢ o« =0, vhere f, k, 8 and ¢t

4,J %, °-1,3  %-2, -
are general subscripts. 'Similar considerations apply to v

iJ
and wna

oij

Thus, from the system of six general equations, equations
(125 to 130), are created émn simultaneous algebraic equations which
can be solved for the 6mn dependent coefficients. The series,
defined by equegtions (116) and (117 to 120), which describe the
dependent variables in terms of non-dimensionless co-ordinates are
easily expressed in terms of the original co-ordinate system by

the substitutions 7 = x/a and § = y/p.

.Application of ‘Fourier Series

Fourier series has found innumerable applications to the
solution of boundary value problems, due principally to a powerful

fundamental property possessed by this form of expansion,

5 fundamental property of Fourier series

The most important theorem concerning Fourier series
expensions is th-t every function, f(x), which is piecewise
smooth in the interval -n<x<n, and periodic with the period 2m,

may be expanded in a Tourier series, i.e. a series of the following form:
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1
si(x) 58+ ; (ai cos ix + b, sin ix) (135)
i=]
which converges to f£(x) with increasing m, where the Fourier

coefficients (ao,ai and bi) are given by:

n
a; = %J/- f£(x) cos ix dx (1 =0,1,2. . .+ m)
-T (136)

j—

'bi -

A

1
/ £(x) sin ix dx (i =0,1,2. ., .m)
-7

this theorem follows from the orthogonality and completeness of the
trigonometric functions. It can be extended to cater for any

arbitrary interval skxgt: A further consequence is that the best
approximation to a function, in the mean, is obtained by the Fourier

polynomial,

Consideration of a Fourier series solution

The method of solution employed here is similar to that
used in previous sections and consists of the selection of suitable
functions which can be made to satisfy both the boundary conditions,
expressed by equations (72), and the system of partial differential

equations given by equations (66 to T1).

As the Fourier coeffiocients are completely determined by
the differential equations, the trigonometric form of the selected

functions should be such as to permit satisfaction of the boundary

conditions. The conflicting requirements of the boundary conditions
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can be stated as:

(a) The function should be zero at certain arbitzary
points,

(b) The trigonometric functions should form a complete
set, i.e. any function within the limitations set out above, should

be describable by the series.

Such requirements are perhaps most easily met by defining
the functions, f(x), in the Fourier half interval (o,n). To expand
such a function all that nced be done is to prolong it into the
other half-interval (-mn,0) and expand this function - now defined
in the full Fourier interval (-n,n) - by the usual Fourier series
techniques. This is possible, as no matter how the function {is
extended into the interval (-m,0) it will still represent the
desired function in (o,n) as well as in (2x,3n), (4n,5n), etc.
There are two accepted methods of prolonging the function into the
half interval (-m,0), i.e. either as an even function or as an odd

function. A function, f(x), is said to be even if

£(-x) = £(x)
and odd if
£(-x) = -£(x)

An example of an even function is cos x, since

cos (-x) = cos x

and sin x is an odd function, si8ince
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sin (-x) = - sin x

The expanded even-function form in the half-interval (o, =)

taken by f (x) is

£(x) = % a, + 2 ay cos ix

i=1
2 n
where a; = -J/’ £(x) cos ix dx
3
o

and the odd function form is

(o]
£f(x) = E b, sin ix
i=1
0 r
where by, =% ./[ £(x) sin ix dx  (1=1,2, +.4 oo )
o

(1=1,2y o o o )

By applying a transformation, the following even and odd

functions in the half range can be obtained from those above:

dven function 00
1
£f(x) = 5a,+ E a, cos
i=l
2 & inx
where a; = = £(x) cos == A&
o
0dd function
00
f(x) - b, ein !'—1!5
: : i a
i=1
2 [® inx
where b, = -‘j/- £(x) sin =I= dx
a a
o

inx
a

(i = 0,1’2,- . o°°)

(1 =1,2, o v « )

(137)

(138)

Each of these two functions forms a complete set in the
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interval (o,a). In the case of the odd function f(x) is zero at
x=0 and x=a in the interval (o,a), The odd function satisfies the
opposing requirements of the possible boundary conditions in that
£(x) 1s expected to be expandable and yet be zero on the boundaries

x=0 and X=2a.

The boundary value problem under © nsideration makes it
neccssary to be able to expand functions of two variables into half-
range Fourier series with a half-range of (o0,a) in the x-direction and
of (o,b) in the y-direction. The form of the Fourier series terms is
dependent upon whether the neced is for an even or odd function in the
X or y directions. For example, if a function, f(x,y),is required to
be 0dd in the x-direction and even in the y-direction, then the double

half-range series‘will take the form

£(x,y) = ZZf(x,y) sin __:_x. cos J%Z (139)

1=l j=o

The remaining three pussible trigonometric terms are as follows:

inx i n inx
sin === sin J%X, cos -EX cos JEI y COos == sin J%I (140)

Restating the boundary conditions of the present analysis:

M «aV a=sH= Q0 at x = 0 and xX = g
x x

then the form taken by the stress resultants and deflection expansions

are as follows:



(e.=] (o2
M, - ZZMX sin -1-25 cos .J_;EI (142)
i=1 j=o . 13
o0 (o]
M = :E:: M cos 1EX gyn T (143)
y yij a b
=0 §=1
oo %\
v - z / V. sin iz_’f_. cos J—;:I (144)
=T 5e0 1
00 00
'Vy = 27 Vy cos i-gl sin ‘1%1 (145)
I=o j=1 1J
[2,2] 00
H = jS-“:E::HiJ sin 15X gin I (146)
{=1 j=1
00 0
w, = ZZWO cos LZ-E cos J%‘I (147)
i3 ‘
i=0 j=0

and the loading function

=
p= Z_’z Pyy cOS 1—3)—( cos J_bEI (148)

i=o0 J=0

The series can now be substituted into the system of partial
differential equations and, by employing the orthogonality conditions,
simultaneous algebraic equations relating to Fourier coefficients.can
be obtained. The most immediate and interesting result from these
equations is that all the bendinz moment Fourier coefficients are
found to be zero., This indication that the solution is trivial
in nature, shows that the selection of these particular tripgonometric
forms of the dependent variables by inspection and elimination, is

unsuccessful in obtaining a  real solution.,
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Summary

The solution of the primary boundary value problem,
represented by a system of partial differential equations (66 to 71)
and a number of boundary conditions i.e. equations (72), has been
considered. By assuming certain general forms of the variables, it
has been possible to obtain a solution in terms of a system of
interrelated algebraic simultaneous equations, when such variables
have been expressed in terms of power series and Chebyshev polynomials,
Because of the particular form of solution employed, this has not,

however, Eeen pbssible in the case of Foufier éefies representations,

Before proceeding with the solution of the principal boundary
value problem under consideration a more detailed examination must
be made of the function describing the load intensity distribution.
This will take the form of the development and comparison of the

loading functions as represented by power, Chebyshev or Fourier

series,
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FUNCTIONS DESCRIBING THE APPLIED TRANSVERSE WHERL-LOAD

The solufion to the system of'the partial differential
equations (66 to 71) is based upon the availability of suitable
functlons which descrlbe the avplied normal load. These loading |
functions, in terms of power, Chebyshev and Fourier series, are

each now deve;oped and compared.

In order that such functions may be obtained it is
inevitable that, to some degree, the load intensity distribution
must be initially specified.- As the stress analysis of a highwey
pavement under applied wheel-loads is of prime interest, then,
idealizing the contact area of a single wheel ‘to that of a circle,'
the load intensity distribution, p, coqsidered may,bewtaken'as
that of a unit load spread uniformly‘oygrﬁa circle of radius
¢ and centre (xo, yo), as shown in Figure 8. There ig no
applied load over the :emainder of'the area of definitioh 6f the
function, which is taken as that area covered by the rectanguiar
slab (o $x<a, o< y<b), Such a loading function can be used,
by the method of superpoéition, to describe any combination of

such :wheel-loads, e.g;.dual and/or tandem wheels,

Methods of obtaining the loading functions of other
wheel contact shapes are mentioned during the following development

of the loading functions for the circular contact area.



The idealized load intensity distribution ~ : . * .

: represented by the loading functions which is applied-

" to-the surface of a . plate., - This distribution consists

'of & unit load spread uniformly over a circle of radius e,

":with~centre‘(xo;yd);"nO"load>iS‘appliéd'to the = * ..

remainder of the plate surface: el a

i
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Development of the Loading Tunctions

Power series representation

There sre, basicafly two types of load intensity

distributions:

1, Those which are expressed exactly by a polynomial,

€

P=a+bx+oy ' (149)
where a, b and ¢ are constants.

2, Distributions which do not have an exact polynomial

representation, e.g. one which contains a discontinuity.

The first type needs no further development bere, as the

load intensity distribution is explicitly represented by a

truncated nower series.

In order that, in the second case, a polynomial
expansion cante used to approximate to the load intensity
distribution, a criterion must first be decided upon which uses
tﬁe degree of error between the approximating and actual load
intensity to arrive at the 'hest' approximation., The criterion,
'that the square of the error over the region of definition should
be a minimum,' is employed in this case because, in comparison with
other possible criteria, the series coefficients ore simple to

determine from the known values of the load intensity at points over
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the region of definition.

Let it be assumed that p(x,y) represents the loading
function and let X4s Vo (@d = 1,2, « « « « N) be the sequence
of data voints at which the values of the load intensity, pd, are
known, If xiyj, (L =0,1,2y ¢« « om} J =0,1,2, ¢ 0« on)area
sequence of nowers defined for every xd,yd, then P4 can be

approximated by a linear combination of xdi ydj, thus:

pd *ii pi,j xdi ydj (d w142y 4 o o o 1‘:) (150)

i=0 j=o

with the constant coefficients pid determined so that

N m n
z E 137
L(pooipol’plo, e o o pmn) - [pd - pijxd yd ]

d=1 i=0 j=0

1

2
- E\ Ry (151)
d=1

is mininized., This is the mathematical formulation of the above
mentioned criterion. The quantity Rd, called the residual, is

only zero in the case when the number of approximating functions

1s equal to the number of data points, i.e. ¥ = (m+l)(n+l). Normally,
the number of approximating functions is much less than the number of
data points, in which case the usual intention is to make the
fuiction as accurate as nossible by meking the square of the

residual a minimum. The coefficients, pij’ for such a minimum are

calculated by taking the partial derivative of L with respnect to pfk



- 128 -~

and setting it equal to zero, thereby making L a minimum with

respect to the unknown coefficients:

3L k
35;22[ >y iy 7 v i vat e 0 G

i=0 j=o0
where ¥ = 0’1,2, e o ¢ o Il § k = 6,1,2' s o v o N

Interchanging summations results in:

m ‘i%“ N N
»3 vij[Zx;*fys*“}Z g vyt ()
d=

i=0 j=o0 d=1
where f = 0,1,2, *» o o M § k = 0,1,2, e o o N

Tquation (153) is a system of (m+l) (n+l) linear equations which
are generally called the normal equations for the (m+l)(n+l)

unknown pij coefficients.

In the case of a unit load distributed over the area of
a circle of radius ¢, such as is illustrated in Figure (8), whether
or not the load intensity Pq at an arbitrarily chosen data point
(xd,yd) is 1/nc2 depends on whether or not that point lies on or
within the circle. The mathematical expression of this criterion
is |
if (xg-x.)% + (7g7,)? - 6°K0 (154)
then py = l/ncz, otherwise the load intensity ia zero. Thus, a
system of N datarpoints is obtained which may be used in equations

(153) to solve for the power series coefficients, pijé
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may be considered as an approximation to p(n,f{). The error, E,

of this approxi mation is given by the infinite series

oo n-1
E- ;J}; iy T () Ty *(E) +;Z Py T (n)T*Ei;e)

If the convergence of the series is sufficiently rapid, an acceptable

estimate of the error can be arrived at by keeping only the first

terms:

pmo

Be 22 r* (n)r (1) + -2 0 ()Y () (159)

This indicates that the error is of an oscillatory nature since

shifted Chebyshev polynomials are themselves oscillatory. If the
estimate is sufficiently close, then the problem of obtaining the
coefficient Pyy of the expansion given by equation (157) is now
transformed into an interpolation problem, The vanishing of E at

the zeros of T&T(n) and Tn*(t) can be interpreted as the loading function
p(n,£) and the approximation Pon (n,t) coinciding at the zcros of Thr(n)
and T; (£)s+ Thus, the problem of producing a strongly convergent
expansion of p(n,%) in the polynomials Ti*(n) Tj*(z) is, in practice,
equivalent to p(n,f) being interpolated by a polynomial of (m-1)(n-1)

8t degree, the tabular points being chosen at the zeros of the first
neglected polynomial, T*(n)T* (£), i.e. the points (n,, EB) at which

*
T, (n) and T: (¢) are both zero.

Translating the algebraic conditions
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' - 6
Ty (n,) = 0 and B (£;) = O (160)

where (n , E,B) are the zero tabular points, to the angular varisables
«

% and ¢B by using equation (104), gives
cos mﬁa- 0 and cos n5?5B = 0 respectively, (161)

These then become

= [y + %—]n and nj25B = [p + %—]n (162)

where there are m and n zero points, respectively and

o= 0,1,2, * o o o m-l’ B = 0,1,2, o o o @ n-l,

- - - - th
As cos ¢ 2na 1 and cos ¢5 2t 1, en

g
1 2 = 1
- cos? % (2a+ 1) + 5 and Z,B = cos® Z= (2p+1)+§ (163)
The expressions for the data points (na, EB) can thus be seen to be
non-uniformly spread over the interval (0<n<1l, O0<E<L1), and

to be more highly concentrated at the end points of that interval,

Consider again the approximation of p(n,t) to a finite
number of terms. In order to determine the series coefficients,

equation (157) is first multiplied throughout by T *(T) ) T* (¢ )

and the operator applied. Then
Z -
a =0 P=0

‘—lipmn(na,iﬁ) 73 (n) T (8g)

o 80 B:O

:§fi:§:: pij T* (n) T* (n )J[TS—\T* (8g) T3 (c )]

i=0 j
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This enables the orthogonality condition, equation (107), for a

discrete set of points, to be applied, thus:

m-1 n-1 =i 0=
n
ZZPM (n,+8g) Ty (n) T, (8g) = Pyg 8345483473

a =0 ﬁso i=0 J=0
where 513 is the Kronecker delta defined as
8,o=0 if i £s
and ais = 1 if i=3s
'and’55t(i8'thé‘Kréneckér delia defined as' ' ¢ e o 7 T (164)

byg= 0 Af-3f v

,_bjt,’l i::-t

PO . A T ST ol e sl 3 - N e

Consider the term i = 8, J = t

. ’
A . . 4

,m"l n'lf,,. e ; e e
k) ) (1) 0D W)
IR =i, B DR R
Replacing p (n,a)lﬁy o(n,8), sincézpin(ﬁéi) is-intended to be an
approximation to p(n,t), and replacing s by i and t by J for convenience,

results in
,ﬂ.*-.l\%l\
2 4. »* *
Py = L P P aeg) Ty (n ) 25 (&) (165)
a=0 f=0
where i = 0,1,2 « o o o Mm=1 } J =0,1,2 « ¢« « » -1

Thus the coefficients can be determined knowing the value of the load

intensity distribution p(n,t) at each tabular point (na,EB)c
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-~ - Figure 9. The form of the representation given in Figure 8 re-expressed
in terms of & dimensionless go-ordinate system (n,f,)

for use in the shifted Chebyshev polynomial .

representation of the idealized wheel load. 'I'he ciramlar

b 3

area over which the unit load is applied is tmnsformed

1nto an equivalent elliptlcal area, and the vlate

* I

area (o<x<a, o<y<‘b) is tranéfOrmed 1nto‘“a.n

. equivalent square (o<1, ogtg1).
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For the case of a unit load spread uniformly over the area
of a circle of radius ¢ (Figure 8), the transforms 7 = x/a,t=y/b
enable the criterion given by equations (154) to be expressed in terms
of a dimensionless co-ordinate system, where as is shown in Figure 9
the circle is transformed into an equivalent ellipse. The criterion

for a point lying within or on the circle then becomes

(an,

2 2 2
- xo) + (bE,B-yo) - 0“ g0 (166)
Again, as in the power series renresentation, other contact shapes

can be mnsidered by using the appropriate criterion,

Thus the first step in obtaining the loading function is
to derive the co-ordinates (na,iﬁ) of the tabular points from
equation (163) and the value of the load intensity at each of these
points from equation (1665. ‘These figures may then be substituted
into equation (165) and the coefficients of the series obtained. Thus,
the sﬁifte¢'Chebyshév Polynomial series which approximately represents

the load intensity distribution is finally determined.

Fourier series representation

Rbferfing to Figure 8, it can be seen that the load
intensity distribution, p(x;j), is considered to be a unit load
ﬁniformly distributed over the area of a circle of radius, ¢, and
with centre (xo yo). The function, p(x,y) is defined at every point

within the rectangular region (o {x €&, oy b) thus, determining

the half-range Fourier intervals (o-a, o-b).
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The loading function may bde expanded in terms of a half-

range Fourier series in two dimensi ons, thuss

p(x,y) = ZZpij cos lg-}- cos j%.'[, (167)

i=0 j=0

First the relevant orthogonality candition is noted for

the x-dimension @
a

aATX inx a
/cos ar cos == dx = 5 5&1 (168)
)

where 6-, is the Kronecker delta defined as. --

ba = 0O if @ ¢
by = 1 Aae-d S T CUE R

These conditions are valid .for ail.nononegativevintegral'values

of & and i.which are not both zero.  For the condillon where a=1is=o,

then
a

fcos Ox cos Ox dx = & (169)
o

Similar conditions apply to the y-dimension.

Now, returning to the Fourier series expansion, as
given by equation (167) and multiplying through by cos EEE cos E%I ’
then integrating over the region o to a and o to b, and applying the

orthogonality conditions, results in



Figure 10, The polar co-ordinate system which is‘introduded;to~f
facilitate the representation of the load inten51ty
distribution by Fourier serles. The origin of this
polar co-ordinate system (¢ G)Wlies at the centre

of the idealized ciraxlar wheel-load with original

Cartesian co-ordinates of'(xo,yb) and a redius ¢
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a b
_;}j j‘ p(x,y) cos 1IX cos 4T ax ay (170)

where i= 1,2,3, e » o ow;J = 1,2,3, e o s 0 OO

Multiplying the expansion given in equations (167) by

cos “i—’s cos Oy, integrating and applying the above conditions gives

a b
P, = %‘F[ / p(x,y) cos 2-235 dx dy (1m)
o 0 .
where i= 1,2,3,. » o oo

In a similar manner

- / / p (x,y) cos m dx dy : (172)

where J=1,2,3, ¢« o o o @

By multiplying the expansion by cos Ox cos Oy and integrating, the
following is obtained:

a b
Poo ™ %;/ / p(x,y) dx dy - ar)
~0 o .

Introducing the polar co-ordinates (¢,6) defined in Figure
10 in place of the Cartesian co-ordinates and noting that p(x,y) is
zero at every point outside the circle of radius c, then the new

form of equation (170) is

c 2n
[ / in(x + cos 6) In(y + sind)
cos

= - coSs — ¢$ d¢ d_f?_

pij-




inx
Let - ao imh

4

c 2n
1
then Py = %‘B- . ;;—2- / [ cos (ai + By cosf) cos (aj+pjsinQ)¢ d¢ ag
0 “0

Expanding and then multi plying the trigonometric terms results in

¢ 2n
1
Pyy = ﬁf . ;—;2-[008 oy cOS ajf [cos(ﬁi cosfd) cos(pjsing)q: dy 48
0 -0 |
c 2% ,

- cos q singy /cos (84 cosf) sin (Bjsing) ¢ dp a8 ¢
0 -0

{
J

c 2%
- 8in oy cosaJ// sin (Bi OOS_Q) cos (Bjsian, ay daé
0 -0

c 2n

+ sinai sin ay /[ sin ([3:L cosf) sin (Bjsing)q; d¢ dQ_]
% Jo

Now, considering
£(6) = cos (Bi cosf) cos (Bj sinf)
1t can be seen that £(§) is periodic with m. Moreover,
- -2
cos (Bi cos (x zp)) cos (B.‘l sin(n p))

= cos (Bi cos (n +zp) cos (Bj sin (= +zp))

for any value of zp. Thus
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n/2 3n/2
£(6) d6= £(g) 4g by periodicity,

70 T

i3 27
/ £(6) ab= £(8) dg by periodicity,

n/2 3n/2

T 3n/2
/ £(6) ag = £(8) 49 by the above cosine relationship

T

/2 “n

2n n/2
Therefore £(g) ag = 4/ £(g) dp
0

and

()

Similar considerations result in

2n
/ g(6) 48 = 0 where g(g) = cos (Bi cosg)sin(ﬁj sing)
0

2n
h(6) 46 = 0 when h(f) = sin (Biqosg} cos (;3j sin §)
./o

2n
k(6) d0= 0 where k(g) = sin (Bi cosf) sin (ﬁi sin 6)
<0
Therefore, applying these relationships to the previous exp ression

for pij glves
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2n
Pys = 5:'3 . —]-'-5.003 oy cosay / j cos ([31 cose)oos(BJBin_)tb dy 46
ne
c n/2
- L8 pecos % cos"‘j [4; d¢/ cos (ﬁj sin 6joosh (,/(-l)ﬁicosg) ag
abne !
/0 0

With the aid of the following relationship’, which is taken from a
standard table of integrals (57)
n/2
2..2,1/2
[ cos (8, sing) cosh  (l-1)B, sosgMg = $.3[(s 24 H)M/2)

0

(where Jo is the Bessel function of order zero), then
c
2 ,21/2

P,, = 16 2COS 0, cosa 4:.-12-!-.3 [(lé—rd-z- . n¢]d¢
i eftme2 1 j ° b

42 /2 12 42\1/2 42 12\1/2

c nq»( .3( 3 . empid L o T
8 o a b a2 b2

= ——5.c08¢CO8 0

2
2
2
S
0 a‘2 b2

Using an integral quoted by Watson (58), p.132

c
-1
—-—§ 080 cos [¢ I (v 4 )]
'j abo © 05 Yi.'lz Y‘U 1174 0

1/2
where Yij - n\-—-#L) and Jl(YiJ ¢) is the Bessel function of

order one with argument Y'j ¢

inx Iy
Hence 8 cog <2

0
piJ - 5o Yij = 08 —g— - Jl (Yijc) (174)

Where 1 d 1,2,3, s o e 000; j = 1,2’3, e & o 8 00O
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By the same approach, the following are obtained

inx ..
- i ] ned 1
Py o ™ Bonl °°% 7 Jl( - (175)
Where i = 1,2,3, e« o s 00
Iy,
- ] ned 176
and Po,5 = 3037 °°° 5+ N1 (% ) (176)
Where J = 1,2,3’ e o o o
In the case of poo
e b c 2=
1 1 1
- == p(x,y) dx dy = == —5 b dp ag
Poo ™ &b /f (x ab mZ /
o~ o 0 0
Integrating, the above becomes
1 1
Poo = &b (177)

When the load intensity is represented by only a limited
number of terms, i= 0,1,2’ e o o o+ I § j = 0,1,2, e o o o Ny then

the complete expansion takes the form

p(x,y) = ZZpij cos -:—x cos ‘1{1 | (178)

i=0 J
where Pyy = abchi,j cos inzo cos 31%9- . Jl(YiJO) (174)
for 1=1,2,3, ¢« o ¢ em$} §=1,2,3, e 6o ¢ o
Pio = orT OO 1::: AN (175)

for 1-1,2,3,000013



J"yo: "o
po'j - —5-46-1-[3- cos 3 . Jl (—b‘l) (176)
fOr j=1,2,3,..'..n
and, finally,
1
Poo ™ ab | (177)

(It may be noted that a similar analysis which uses odd
trigonometric terms has been developed by Woinowsky - Krieger (59),

who with Timoshenko (15) also considered rectangular loading areas.)
Numerical Computation of the Loading Functions

Because of the extremely large amount of computation
involved in obtaining the loading function, the use of an electronic

digital computer is obvionsly essential for this study.

The programs which are developed are described below
by means of flow diagrams and copies of the actual programs are
given in Appendix B. In explaining the details of the programs
use is made of the symbol comment n where n is any integer. Thus,
in the text which follows, the symbol comment 5 accompanies the
description of the block which follows a similar label in the
program itself,

Before considering the programs associated with each of
the three forms of loading function, a brief account is given of

the computer installation availsble at the University of Leeds.
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The KDF-9 computer

The facility for comnutation which is available at the
Leeds University Computing lLaboratory is based upon a medium-sized
digital computer, i.e. the @©nglish Electric lLeo-Marconi KDF-9. One
language through which instructions and information are presented
to the computer is ALGOL 60(60,61) and the programs presented in
this thesis are written in this language. This is convenient since

programs written in ALBOL 60 can be run on many computers.

In order that a computer can execute the instructions
contained in the prosram they must be translated from Algol into
the machine language. This translation is agtaineﬁ with the aid

of either the Whetstone or Kidssrove compiler which are both

P
c oA A

machine prosrams permanently available to the computer. The Whetstone
compiler is used during the development staze due to its more rapid
translation speed while the Xidsgrove computer is used during the

running of actual problems oh account of its much faster execution

speed,

A machine lansmuage version of each program is established

to avoid constant retranslation when many separate execution runs

are to be made,

#lgol programs which are under defeloPment, and problem
data for running, are presented to the computer, through a reader,

in the form of punched-hole paper tape. The main store of the
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Start

!

Read the dats

!

Form a grid of points over and around the circular load,
covering a square of side 4c 2nd at each node determine the
co-ordinates LI 2 and the load intensity Py

'

Divide into quadrants the remaining area of the plate about the
centre of the circular load and in each quadrant generate 2
system of data points which become more sparse as the distance
from the centre of the circular load increases

Y

Form the upper triangular portion of the matrix A, the leading
diagonal of the matrix A and tte vector B

Y

Solve the normal equations Ap= B using the square-root method

Y

Print the power series coefficientspQ and their suffices 1i,j

Y

~—fp——— Determine the co-ordinates of the check pointi

Y |

Compute the load intensity

Y

Print the co«ordinates and the load intensity

Yes ‘*

-4 Any remaining check points

YNO

Stop
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computer which contains the program instrucfions and the space
required for computation has had for most of the period of this
research program a capacity of 16K(i6 x 1024) words. Recently,
the capacity has been increased to 32K but only the same store,
approximately 16K, is still available to any one program.
Results obtained are first stored in the computer on magnetic
tape and there, at a later and more convenient time, are output
in the form of punched - hole paper tape or 'line printed' sheets

of paper.

Limits of the truncated series

So far, the upper limits of the expansions representing
the load intensity distribution have been expressed in terms of m -and

n., Since, however, there is no reason to emnphasise either co-ordinate
direction, m will be assumed equal to n for the numerical computations

discussed here.

Power series program

The following explanation of the prograh entitled ‘Wheel-
Load Expressed as a Power Series' should be considered in conjunction
with the flow diagram, shown in Figure 11 which illustrates the

general sequence of operations.

The computation starts by first reading the data [comment

1 and 14].‘ This consists oft a title enclosed between brackets,
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i.e.{TITLE>, the length of the plate in the x-direction (a),
the width of the plate in the y-direction (b), the co-ordinates
of the centre of the cirailar load (xo,yo), the radius of the
circular load (c), the data grid elemental side length (k1),
the multi plier (cl), the maximum index considered in the power
expansion (n), a number chosen to exceed the number of data
points likely to be created (number), the number of grid divisions
in each co-ordinate direction (pp in the x-direction, qq in the
y-direction), ;the number of extra’'check points which are of; - -
special interest {tt) and, finally, the co-ordinates of each of

those extra check points (xx,yy):. "Hence the data takes the form:

S
k4 e N . “ . N [ - . .
"~ . - ¢

| 89Dyx 3y soiklycl ynynumbers ppjaastty

e

R S DA SO SR SR S PR AT S
XX 0¥V,5 o |
. [ ) o -
» [ ]
XX 3T 44V

The preparation and storing of the N data points now begins.
These consist of the co-ordinates of each data point (xd,yd) and the
intended value of the load intensity at that point (pd). Refering

to Figure 12, the first set of data points collected are those at



Figure 12. -The division of the idealized load intensity - ':
" - aistribution of Figure 8 into.(a) a uniformly spaced
- get of data points within a square of side 4c centred.
about x,y , and () over the remainder of the rlate a set
of data points whichb?come more sparse ge ?hgi?'digtance
from X,¥, increases. This is in order to 3ené?afe; .
data points for use in the power series representét;én.

of the idealized wheel-load.
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the nodal points of a grid, (elemental side length k1), set over
a square area of side 4c¢ which is placed symmetrically about the
centre of the circular load [comment 2]. Whether a data point

value is 0 or l/nc2 is determined from the criterion set out in

equation (154).

The second set of data points to be stored are those
which lie outside this grid area but arc still inside the limits
of the plate, This remaining area is divided into quadrants by
a pair of perpendicular axes, centred at the centre of the
cirailar load and parallel to the co-ordinate directions, see
Figure 12. As these data points cannot lie on the load, they ali
have zero intensity. The quadrants are dealt with in cl ockwise
order, the quadrant containing the corner x=a, y=b being
congidered first [comment 3]. Data points are obtained by moving
along the line y=y, from the outer edge of the grid area'towards
the edge x=a. The distance between each successive data point is
a multiple, c¢l, of the distance between the previous two data
points, the first distance between successive dafa points, being
klscl. This procedure for selecting data points is stopped at the
last possible data vpoint within the plate and finally one extra
data péint is placed on thé edge; x=g8, of the plate, This technigue is
repeated to cover the area of the quadrant with the spacing in the y-

direction between successive lines of the data points, parallel to the
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x-direction, being governed by the multiplier cl. The remaining
three quadrants are handled in a similar manner and, finally, N

data points are obtained [comment 4,5, and 6].

The multiplier ¢l is chosen to be greater than unity
80 that as the distance increases away from the centre of the load,
data points become more sparse. This is necessary because the
computer size limits the number of possible data points and hence,
since the area around the load is of major interest, the data

points are concentrated there.

Having generated the system of 4 data points, the normal

equations can now be set-up and solved. The normal equations,

En : EN 1+F _3+k EN o g
pij[ Xy ¥y ]- pg d 7d (153)
i=0 j=0 d=1 d=1

Where f = 0,1’2, e o o NIg k = 0,1,2, e o o N,

are e in number, where e = (n+l)(n+l). Rewriting these equations

in matrix form

Ap=3B (179)
where A is the matrix of elements ast of value
i+f +k
ast = xd yg S = 0,1?2, s o o o € (180)
d’l t o 0,1,2, e o o o ©
with the row position s: s = (n+l)f + k + 1 (181)

and the column position t: t = (n+l)i + j + 1
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The column Vector of constants B is defined by

N
5' f k

b = Py X1 ¥ 8 =0,1,2, ¢« o ¢ s © (182)

sdlddd 159Sy

and p is the eolumn vector of unknown power series coefficients,

where the coefficients pij has a column position t.

Consider the matrix A, where

-~ -
A= ao’o 80’1 . . . ao,e
#1,0 #1,1 . * Be
* L ] [d [ ] L ] [ ]
ae,O ae,l ¢ ¢ ¢ 8‘e,e
o =

to be made-up of the following three parts:
1. The upper triangular portion:

a &8

0,1 20,2 ° . . 0,e
a1,2 . . . a.l’e

a
e-1,e
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2. The leading diagonal:

80,0
1,1

2,2

3« The lower triangular portions

4,0
8
2,0 82,1
ae,O 8,1 * * 8e,e-1

Since A is symmetric about the leading diagonal, only
the upper triangular portion and the leading diagonal are set upj
the lower triangular portion remains as zeros. For each possible
combination of i,J,f and k in the upper triangular portion and
for the leading diagonal the value 8t is.determined from equation
(180) [comment 10]. Similarly, the vector B is formed using

equation (182) [comment 11].
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The computer now proceeds to solve the system of normal
equations. The matrix is symmetric and is also called positive
definite, as the quadratic form pTAp is positive for any real
vector p, where pT is the transpose of p. This is proved in the

following manner:

e e

T S
PAP= ) ) PoPiag (184)

8=0 t=0

N
but ay = E f(x,y)S f(x,y)t from equation (180)
d=1

N
T
Therefore p Ap = ; ; PP, E f(X9Y)s f(x’Y)t

8 t=0 d=1

PGZ Pg £x,¥), ] [i Ptf(x,y)f]

“ga() t=0

K - 2
ips f(x,y)s:' >0 (185)

=] *s=0

[
o

M= V-

[oH

The method of solving the normal equations is based wpon
the square-root method (62) which is one of the most effect techniques
for fully utilizing the symmetrical nature of the matrix A. Because
of this symmetry, A can be expressed as the product of an upper
triangular matrix G and its transpose GT, so éhat A= GTG. The
elements of G are computed from those of A using the following

recurrance formulse:
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gy = (2y9)
glt = alt/gll t = 2,3, s o e+ o €
_ s-1 1/2 (186)
E 2
gss = ass - gvs] 8 = 2,3, » o o o €
- vel
o s=1 } / 8 = 2,3, » o s+ o €
g ., =lea_; -~ E g.. & g
st L st vs °vt s8 $=2,3 e
v=1 ’ ’ * L ] * L ]
except ot = O shere s8>t

Fach row of A is considered in turn and, therefore, in the program
the computed values of 8gt replace those of I [comment T].

The solution is now undertaken in two stages. First of
all a vector F of the same order as p and B is introduced so that
Gp = F and B = GUF. Using the latter relationship, the elements

of F are computed from

£ = /ey

8.1
£, -[bs 'ngs fv:l /gsl B =2,3) ¢ o o o € (187)

Val
and the computed values replace those in B [comment 8].

The second stage involves the back substitution process
using the relationship GP = F. The terms of p, the unknown power

series coefficients, are computed from the formulsae

pe = fe/gee



t+1

and Py = I:ft - ; Epy pv] /gtt t = e-l4e-2, . . . . 1 (188)

o
and then temporarily placed inB [comment 9]. They are afterwards

Placed in their own vector p.

The coefficients of the power series expansion of the load
intensity distribution are then output on the line printer, along

with their i,j suffices [comment 12].

As the qualitAtive check on the accuracy of the power
expansion, the value of the load intensity at each of several
points over the area of'thé plate are next computed from equation
(155) and outnut along with"the"co-ordinates’of -these péints [ comment
13]. The ‘points fall into'two groups;’ firstly, ‘'a grid system of
points-distributed over the plate’with pp divisiéns in the x-
direction and qq divisions in the y-direction‘and, secondly, a

number tt of points of particular interest with co-ordinates
(xx, yy).

The final form of the output sheet is as follows:

I J. COEFF
. N ’
2 3 -1.056210-2
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start |
=

Read the data

!

j———%e————ro1 Calculate the zero points (na’z'ﬁ)

!

Compute T: (n,) and Tt* (F,p) for s<n-1 and t<n-1

| !

Comvute load intensity at zero point

Yes *

e e—— a <n-1 or g < n-1

No

~——we—— Determine the co-ordinates of the check point

!

Compute the load intensity

!

Output the co-ordinates and load intensity

Yes

il — Any remaining check points

*No

Stop
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X T LOAD
10 5 0.57103

Chebyshev polynomial program

The program developed to represent the load inténsity
distribution in terms of shifted Chebyshev polynomials and entitled
'fheel-Load Expressed as a Chebyshev Series' is based on the flow
diagram appearing in Figure 13. This diagram indicates that the
computer first accepts the data, which is in the following form

[comment 1 and 8]:
<TITLED>

8yb3x 5y scinippiaq;tt;
XX, 3Y¥,3

XX03¥Y 3

BRTILAT i

(It should be noted that the symbols used above have the same

connotation as before, in the power series program.)
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The co-ordinates of the tabular points (qm,aﬁ) are
next computed along with values of the shifted Chebyshev arguments
T:(na) and T:(EB) for each tabular point and each value of s and ¢

[comment 3]. Equations (163) and the relationshivs
*, *
T, (X) =1, T (X) = 2X - 1

* * * (189)
Ti+1(x) = (4)('2) Ti (X) - Ti-l(x)

are made ugse of in this connection. The first two relationships

of equation (189) are obtained from considering the polynomial

form of shifted Chebyshev polynomials and the latter relationship is

derived from equation (106)f: The value of the load intensity at each

of the tabular points is calculated using equation (166) [comment 4].
't . From ‘'equation-(165) the shifted Chebyshév coefficients can

now be computed:[comment 5], with the contribution from each x,B

term being determined separate}y [comment 2]. These coefficients are

then finally output along with their suffices [comment 6].

Again, as a check on the accuracy of the polynomial
expansion, the load intensities at several points over the plate are
computed from the expansion using equation (157) [comment 7). The
check points are éhosen'in a similar manner to that which has been
described for those in fhe power.séries program. The outnut sheet

is4also similar in form to that of the power series program.

Fourier series program

The flow diagram shown in Figure 14 illustrates the order
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Start

!

Read the data

!

o Compute and output Poo

!

balculate Bessel function

!

Calculate and outrut Fourier coefficients pij

1

ey i<n or j<n

YNo

Determine the co-ordinates of the check point

1

Compute the load intensity

!

Output the co-ordinates and load intensity

!

Yes

— Any remaining check points

}No

Stop
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of computation of thls prozram wblch is entitled 'theel-Load

Expressed as a Fourier Seriea'.

This diagrem illustrates how, as a first step, the data -
whichhaveexactly the same form ae that forvthe éhebyshev polynomial
program - are read [comment 1 and 3], The coefficient P, is next
computed from equation (177) and output together with its sufflces
[comment 4]3 Then the coefficients, pi,o’ associatedeith equation
(175) are calculated [comment 3] and output [comment 5]. The Bessel

function of order one is obtained (56) from

1428 o
- X
I3, (%) -z—ﬁ-(%{);m ISR S (190)

Rl

where the number.of terms considered is decided from the ctiterion that
_the‘differencehbetween,vaiues'computed.from R and R+l terms, expressed
as a fraction of that computed from R terms, is less than 1.010-12
fcomment 2]; More execting requirements can be introduced by replacing
this iimit in‘the program, The coefficients represented by equation-

(176) end equation (174) sre dealt with in a similar manner to 1

[comment 6].

By applying equation (178) a number of check points are
then examined in an identical manner to those described in the
previous two pro-rams. The final output sheet is also similar to

those in the previous pro:rams,



Figare 15.

Three positions at which the idealized circular
wheel-load is applied to the surface of the
plate in order to compare the manner in which

power, Chebyshev and Fourier series are able to

‘represent this idealized load intensity distribution
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Comparison of the Loading Function Representations

The loading cases chosen as a basis of comparison

In order that the three representations of the loading
function can be compared it is necessary to choose as a basis of
such a qualitative comparison a particuiar set of loading
arrangements. In highway engineering there are thrée cases which
are normally used as a basis of comparison in theoretical and
experimental work; these are the centre, edge and corner loading
cases shown in Figure 15. For this reasén, and also because they
provide a reasonsble variety of loadingconfigurations based upon
a circular load, the three cases are used %q;th{§‘thesis to compare

T

theithpee series representations.

-7 i Particular values for the dimensions shown in Figure 15
which are anproximately representative of the proportions found in

highway paveménts,are;

a = 20 units of length, b = 10 units of length and

¢ = 0.5 units of length

The'anéillary data used in the computation are as follows:

kli- 0.08 units of length, cl = 1.15, n = 4,

_number = 2,000, pp = 10 and qq = 5,

along with a number of extra check points about the cirailar load.

The load intensity within the circular wheel-load thus equals -4/n.

Examining the representations individually."

In order to compare the surfaces describing the power, '



ror : X .
. . T v N

" Figure 16, Thres surfaces describing the load intensity

o o a{sfriﬁufiéh,;és reﬁresented’by power, Chebyshev and
Fourier . series, superimposed on the ‘actual load .
intensity distribution of the idealized wheel-

ez seeie o load - in the corner positions. -or - - L
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egend: Actual load intensity distribution

Power series surface

Chebyshev series surface

Fourier series surface
Lead intensity within circle =1/TC weight units/length units?
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Chebyshev and Fourier series representations of a particular load
intensity distribution, they are superimposed upon that loading
configuration and shown in diagrammatic form. Thus Figures 16,
17 and 18 show the surfaces for the corner, edge and centre cases,

respectively.

Studying first the surfaces resulting from the power
series expansions it can be seen that there are several points in
- ¢cach of the three loading arrangements where the surface moves away
from the datum plane., The reason for this 1salack of constraint
on the power series at those points due to the. increased sparseness
of.data points at such distances from the loading area. Vhile
increasing the number of data points, in this region improves the
surface at thoseipoints it also results in a poorer representation

around the cirailar load, which is the point of major interest.

As the power series argument is non-oscillatory ;n nature
it increases indefinitely in magnitude as the independent varisbles
grow large., The resulting inability.of the expansion to represent
the given load intensity distribution for large values of the
independent variables is importanf. For this reason, there may be
advantages in placing the origin of the co-ordinate system at the
centre of the circular load, which is the main region of interest,

instead of at some distance from it as in the present analysis.

In order to check on this possibility, the centre loading



Figure 17. Two surfaces describing the load intensity
~distribution, as represented byfpower and Fourier -
. series, superimposed on the actual load intensity :
distribution of the idealized wheel~load in the .

"edge position.
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Legend: Actual load intensity distribution:

Power series surface: —

Fourier series surface: - —

Load intensity within circle = 1/TC weight units/length units

2
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case was further examined. Thus, Figure 19 shows the p;ofile obtained
for the load intensity distfibution on the vertical plane parallel
to the x-axis and passing fhroﬁgh the centre of the cifcular laad,
Here, for n = 4, the surface resulting from the origin being at the
centre of the circular load is compared with that resulting from the
origin being at the left-hand edge of the plate, and, as may be seen,
the two surfaces are identical. Therefore, for the distance which
any part of the plate is likely to be from the origin, there is no
advantage in having the origin et any point other than the corner of
‘the plate. 'The reason is that, relative to infinity, the maximum
values of the independent variables are 'still close to_iero no matter
where the origin is on the plate. ' |

In the Chebyshev éxfanéidns,rand where n = 4, no surface .
function appears in any of the three cases, since thege is no tabular
point (na,gp) that is a zero point and lies within the loading circle.
This results in a load intensity distribution of zero being described
by.the expansion for all points over the area of the plate. This
difficulty can be overcome by increasing the number of terms in the
series thereby increasing the total number of zero points with the
consequent increase in the likelihood of a zero point lying within
the loading circle.

Increasing the value of n from 4 to 6 results in a non-zero

surface being formed for the corner case but not for the other two

cases., The reason for this difference is related to the form of



RSN,

Figure 18, . Two surfaces describing the load intensity, distribution,

as represented by power and Fourier series,,superimposed

on the actual load. intensity distribution of the 1
A

dealized
wheel-load in the centre position.
2 e
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equation (163) - it determines the zero points - which results
in a predominance of zero points near the origin of the co-ordinate
system. In the corner loading ecase as compared with the centre and
edge cases, this increases the possibility of obtaining a zero

point which lies within the loading circle.

No such difficulties arise with the Fourier series
expansion as this is arrived at by the consideration of a continuous
surface and not.a set of discrete tabular points as in the Chebyshev
expansion. In each of the three loading cases, illustrated in Figures
16, 17 and 18 the Fourier Series representation can be seen to
represent, to a similar degree, each.region of the load intensity
distribution even though it does not respond very much to the load

intensity distribution within the circular load.

Comparing the representations

None of the three expansions is capable of representing
accurately the discontinuities of the load intensity distribution
at the circular edge. This capability can be improved, however by
inecluding more terms in each of the truncated series, although it
is theoretically impossible for a power series to describe accurately
a discontinuity. To illustrate this consider Figure 20 which shows
the one-dimensional surface for the plane parallel to the x-axis
Passing through the centre of the load in the centre loading case,

for various values of n in the truncated power series expansion. In




Figﬁre 19.° The variation of -the load intensity distribution’
’ “ . on the vertical plane parallel to ‘the x-axis -
" of the co-ordinate system and passing through °
"the centre of the circular load in the centre- -
"losding aase, due to the movement of the origin
from the left-hand edge of the plate to the centre '

of the c¢ircular load.
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this figure, it can be seen that, for a limited increase in the
number of terms, the discontinuities of the circular load are
represented to a much greater degree of accuracy. Similar results

apply to the Fourier and Chebyshev expansions.

Where there ié zero loéd intensity i.e. over the

remainder of the plate, the surfaces are often wave-like in
form. If, however, the value of n in all three series expansions
is increased then this profile will appear to decrease in the sense
that the number .of -ripples will.increase ‘and eventually effectively
merge.

| 'Evénvéllowing for the increased value of n to 6, the
Chéﬁyéhev'eiﬁaﬁéion‘rééponds;’iﬁ the corner case; far more readily
to the non-zero load iﬁ%enéity:distfibutién within the circle than
do the other two expansions. Only one zero point falls within the
circular load i.e. at the co-ordinates (0.72, 0.36), and at this
point the surface has a value of 1.8 instead of the actual intensity
value of 1.27. This greater response ma& be attributed to the
criterion used to minimize the difference between the computed

surface and the actual load intensity distribution.

The Chebyshev polynomial expansion relies upon the
criterion that the maximum error occurring at any one zero point
over the plate should be a minimum, whereas the Fourier and power
series each uses the criterion that the squére of the total ermror

over the plate should be a minimum. Since the major part of the load



Figure 20.A-The variation of .the load intensity distribution on the
- vertical plane parallel to the x-axis of the . |
co-ordinate system and passing through the ceqtre'
;of the circularnload in the centre-loading case,
Lﬁdugrgquthe ligit, n,_o?qthg Fruncated power series.

_.having values of 4, 8 and 12.
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intensity distribution is zero, then the expansion based on the
square of the error being a minimum tends to follow the datum
pPlane even near the loading circle and, as can be seen from
Figures 16, 17 and 18, responds to the non-zero intensity to a
limited degree. On the other hand, the Chebyshev expansion at
the zero point (0.72, 0.36) attains the actual load intensity
distribution to a closer degree than either of the other series
as it is here that - compared with the datum surface, which
would be accurately represented by a Chebyshev expanéion with all
coefficients zero - the error is very likely to be the limiting

maximum error for the whole plate.

The reason why the load intensity continues to increase
from the centre of the load to the nearest corner of the plate is
that the load intensity is undefined between the tabular point
(0.72, 0.36) and the corner of the plate. This difficulty can,

however, be overcome by increasing the number of terms in the series.

A major advantage of the Fourier series, over the other
two series, is that it has no bias in accuracy with respect to
any region of the load intensity distribution. This is because of
the equal ripple wave form of its cosine argument., The Chebyshev
polynomial expansion, on the othervhand, has & concentration of
zero points near both the origin and the corner of the plate which
is furthest from the origin and, therefore, it represents to a

better degree the load intensity distribution in these regions.
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It may be noted that the power series expansion is theoretically

only perfectly accurate at the origin although this point has been

shown not to be relevant to the size of nlate considéred here.
Discussion

In this cﬁapter, the power, Chebyshev and Fourier series
representations of the applied lqads, with particular reference to
circular wheel-loads, have been formulated, proirammed and compared
on a qualitative basis. WNone of these representations was, however,
found to describe accurately the discontinuous load intensity

distribution for the size of truncated series which was considered.

While the Chebyshev polynomial expansion was found to have
serious drawbacks with respect to its ability to represent to any
degree some loading configurations, it was shown that the difficulty
could be overcome by increasing the number of terms in the polynomial
expansion, VWhile this was then shown to be comparatively successful
in representing the load intensity distribution, the computer space
necessary for solving the associated general simultaneous
alzebraic equations (125 to 130) is prohibitive on account of the

available computer facility.

The Fourier series expansion utilized is based on a
coptinuous surface and not, as in the case of the other two forms
of expansion, on a set of discrete data points. For this reason

it was possible to show that the Fourier series follows the datum
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Plane over the unloaded portion of the plate to a far better degree
than does either the power series or the Chebyshev series vhich are

both undefined in areas between the data and tsbular points.

The power series expansion for the case of discontinuous
load distributions was shown not to be subject to abrupt surface
undulations around the load because of the greater concentration
of data points in that region. The remainder of the plate does not
have the same concentration of data points because the region around
the circular load is of major interest and the computer time

limitations did not enable more data points to be considered.

Better computer facilities would have enabled larger
truncated power series expansions to be considered. Increases
in the number of terms in a truncated series have been shown to
improve the representation of the load intensity distribution even

when such increases are small.
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COMPUTATION OF THE PAVEMENT STRESSES AND DEFORMATIONS

The pavement stresses and deformations are now computed
from the analysis of the principal boundary value problem in which
contact between the slab and foundation is preserved during all
modes of interface displacement. The limitations in representing
the load intensity distribution in'terms of Chebyshev polynomials
and the inability of the chosen Fourier series representations to
furnish a non-trivial solution to the boundary value pmw blem indicate
the need to concentrate on the further development of the power

series solution.

As has been indicated previ ously the number of terms
required by the series p in order to describe the continuous surface
which best simulates an arbitrary load intensity distribution may be
quite high., Similar requirements may also apply to a load intensity
distribution which is represented explicitly in terms of co-ordim te
powers.’ Consequently, the number of simultaneous equations generated

from the general ijth equations, equations (96 to 101), may also be

large, In order to solve these equations a computer is again necessary.

S N ettt e

In order to obtain a solution it is now essential to

consider the set of equations in the general matrix form

RS- S

Ax=D (191)

where x is the vector of unknown series-coefficients, b is the vector §
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of constants and A is the matrix of parameters which are functions of the

properties and dimensions of the slab and foundation and also of the values

of i and j of equrtions (96 to 101) which are relevant to each term.
The vector b consists of either zeros or known functions of the
coefficients of p and the major part of its elements are zero. The

matrix A is extremely sparse and is non-symmetric.

The determination of the stresses and deformations in a
slab under the applied load falls conveniently into three parts.
Firstly, there is the setting-up of the matrix A and the vector b;
secondly, the solution of this system of equationsjy and, thirdly,
the computation of stresses, strains and deflections from the vector
X and the losding series p. Furthermore, in order that the magimum
amount of computer space and time is retained for the major porfion
of the computation, which is the solution of the simultaneous equations,
programming is split:into three separate parts, each of which performs
one of the above three functions. The following is a brief description
of the three prosrams and of their relevant mathematicai theory. (4

copy of each of these three programs appears in Appendix C).
Setting-up the Algebraic Fom of the Differential Egquations

The arrangement of the simultancous equations

The creation of the simultanecous equations (191) from the
general equations (96 to 101) is based upon a system of reference

numbers, These numbers refer to each general coefficient, e.g. Vx
i-1,3
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in equation< (96), and since there are fifty two zeneral coefficients
in the system of general equations, these numbers run from one to
fifty two. The general coefficients to which these numbers refer are
bést indicated by rewriting equations (96 to 101) and replacing the

coefficients by their relevant reference numbers:

r(1+1)(e[1]-[2])+sr(3+1) (B[ 3]-[4])-(141) (142)[5]-a(3+1) (5+2)[6]

-t(a[7]-[8])-T5 [9] = TCm, 4 (192)

r(3+1)(b[lo]-D1])+sr(i+1)(a[121-93])-<3+1)(J+2)[14]-s(i+1)(i+2)[15]

et

-t(b[16] 57])- [18] - T°fpij Eiés)

-r(3+1)(a[19]-&n])-r(i+1)(b[gl]-[zzl)+2(i+1)(3+1)[23]
+m(ab[24]-a[25]-b[26]+[27]) = O (194)
(141)(a[28]-R91)+(3+1) (ab[ 30]-b[31]-a[ 32]+[33])

-(a[34]-[35]) = © (195)

(3+41)(b[36]-[37]) +(1+1) (av[38]-2[ 39]-b[40]+[41])
-(b[42]-[43]) =0 (196)

-(i+1)(a[44] [45])-(3+1) (v[46]- @7])*- [48]- (a[49]-B0])

(o[ 51]-[52])=-C
C = (197)

The functions which multiply each general coefficient are
refered to as multipliers and it is these multipliers which furnish

the values in the matrix A. The fom which this matrix takes is showmn -



Figure 21. Matrix form of the system of algebraic equations
' generated from equations (96 to 101) for the power
. series solution. of the mathematical model, .: °

-
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in Figure 21. The matrix is divided horizontally into six sectionss
each section containing the equations generated from a partiaular
general equation. Running down the matrix A, the number of equations
XX occurring before a particalar section is expressed in the column
in terms of Bl’Bz’BB’B4’Bs and B6 which are functions of the maximum
power n of the p series. In each section the simultaneous equations
are arranged vertically in ijth order, i.e. 00, Ol, . « « « ,10,11,
e « o« o 4 etc, Thus the position, r, which a simultaneous equation
has vertically is given by

r=KK + (BH+1) 4 + § + 1

where HH is the maximum value of j for each section (see Figure 21).

The matrix is also divided vertically into six sections,
each section of which contains the coefficients of one of the
dependent series. These sections are arranged in the order shown, the
only requirement being that the main diagonal elements of the H -
series should also be the main diagonal elements of equation (98).
Running across A from the left, the number of coefficients occurring
before a particular section is indicated in the row MM in terms of
Bl’BZ’B3’B4’35 and B6 which are functions of the maximum power n of

the p series. 1In each part, the dependent coefficients are arranged

horizontally in order of their suffices taken in rows, e.g. Ve
v ' 00
V., 3 e e oV, 4V, 4V 4, e.e.V, , eto. Thus, the position,
*o1 *m  *10 *n *1n ?
1, along the horizontal which a coefficient with suffices sm'tm takes

is given by
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u=M + (LL +1)s +t +1
=T =T\= m

where LL is the maximum value of smfor each dependent series (see

Figure 21). To create the multiplier associated with each dependent

coefficient, the range of substitution of i and j in fhe general

coefficient is equzl to that of the relevant general ijth equation,

with the limitatiori that no multiplier should be considered which is

associated with a dependent coefficient lying outside the limits of

the partialar dependent truncated series.

AAIBB| CC | DD EE | FR|GGf HH | KUILL| ML NN
11 0] n Of n Qf of n By | n B, 4ra (1 + 1)
21 1l n 0l n 1] o] n By | n B, -r (1+ 1)
310 n o] n 6f 0f n | By |m B, | stb (; +1)
41 ol n 1| n of-1f n | By | n| B, | =sr (3 +1)
50 n2| 0] n 210l n | B |n]| B | -(1+1DE+2)
6|0l n 0| n-2 of 2y n | By |n| Bg | =s ( +1)(3 + 2)
711 n O n =1} Of n Bl n Bl+ =at
812 n O n | -2j0of n | B |n| B [t
910 n of n | ofo}l n | B {nj B | Tkf/a
040} n ol n ojof n|B,gn}l B | b (§+1)
njot n il n ol-at n 1B, Jn| B, | -r(§+1D
12 0] n ol n 0 n | B, n | By sra (1 + 1)
13 (1] n O n | =1 n | B, |n| B | -er (1 +1)
b { of n Ofn-2] "0} 2| n | By |n| B =(3+1)(5+2)
15 | 0| ne2 0] n 2lof n | B |n]| B =-S(1 + 1)1 + 2)
16:10} n li n Of=l] n B2 n B5 ~tb
17 { o 2]l n Ol=2}| n B‘2 n B5 t
Blo} n 0l n 0] 0] n B, |n | Bg Tk£/d
19 f1|nl | Ofn-l} =1 | 1fn-l|3B; fn | B |-ra(J+1)
20 | 2 n=1 | Oln=l| =2 | 1|n=1 B, |n | B |* (3 +1)

Cont inued overleaf.




AAIBB [CC | DD |EE | FF |GG HH | KK |LL | MM il

21| 0fn-1 [ 1 [n=1{ 1 {-1 |n=1 By|n [ By | =ro@+1)
22| 0fn-1 | 2 |n-1} 12 In=1)| By | n | B, r (1L +1)
25 Ofn=l | O |n=1f 1| 1 n-1| B, Bg 2 (1 +1)(3+1)
2k} 1 in-1 | 1 jn=-1{ =l |=1 |n-1 B3 n=1 B3 abm

251 1 |n=l 2 In=l] =1 {=2 |n=l B3 n-1l B3 -ar

26| 2 ln=1 | 1 |n=1] =2 |«1 |n=1 By [n-1| By -br1

271 2 0=l | 2 [n=1f =2 [=2 [n=1| By |n~1| By n

28l 0| n olafojo]n | B |n |B a (4 +1)
291 1| n Ojn|=1|{o0|n| B |n |B - (1 +1)
20t 1fn Ofn=-1}=1}0 |n 34 n=1 B3 ab (§ + 1)
31| 2| n O n-1{=2 |0 |n | B |n=1] By -b (j +1)
321 1} n 1|n|-1|-1|n | B [n-1} By - (3 +1)
33| 2| n 1|n|=2|=1|n | By|n-1| By (7 +1)
34 1| n O|ln}|{=-1}]0|n B, | n By ~a

3512}l n Ofn}=-2}0|n B, | n B1 1

36{ 0fn Ofn O|n | Byfm 135 b (j+1)
371 0| n 1ln of=1|n B5 n B5 - (j+1)
31 0n-1 | 1|nj| Ol |n=n Bg |n-1| By ab (1 + 1)
391 0ln~L | 2|n] 0l]=2 |n B n=1 B, -a (i + 1)
]l 1fn 1|n|=-1}-1|n | By(n-1| B, ~b (1 + 1)
11 1{n 2in|=1{=2 |n B5 nel B3 (1 + 1)

2}l ol n 1{nfof-1|n:) Bs|=n |B -b

31 0| n 2fnf of2|n| B |n |B, 1
Lhlialn Ofn| 0|0 |n | B|n |B -a (1 + 1)
b1 11 n Ofn|=1|o0in | B |n |B (i+1)

L6t of n Ofn} 0]0|n| B |n |B, b (j + 1)
k1 ol n 1ln|of-2|n|B|m |B (j + 1)
LBl ol n Ofn 0}]0 |n By | n Bg k/d

bt 1| n Olnl=1}190|n B6 n Bh ~a kT/d
50f 2| n 0|n}=2]0|n | B |n |B kT/4

51} 0} n lin Of=1l|n B6 n B5 ~bkT/d

52' O n 21ln Ol=2 {n B6 n B5 k1/4

Table 3. Information required for generating each non-zero matrix element

of the algebraic equations of the dower series solution.

s e )
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Table 3 shows the information required for the creation of
each non-zero element of the matrix A, i.e. each multiplier. The
column AA lists the reference numbers, thus relating the other
columns to the fifty two general coefficients. The columns, BB, GC,
DD, and EE contain the range of substitution of the ij suffices of
each general coefficient e.g. the range of substitution of i and j
in in-l’J; these are minimum i, minimum j, maximum i, and maximum j,
respectively. The columns FF and GG list the adjustments to each
i and j required for each general coefficlent.in order to determine-
the suffix sm,tﬁ eege - 1 and O'ianiiflzﬁtdéihe‘next four colwmos
list the values of HH, KK, LL and MM in that order.: The last column

NN contains.the algebraic form of the multiplier associated with each

general coefficienty soﬁe'of:thésé are functions 'of i and j.

[ S v ! [
§ FE A BT

Thus the non-zero element d;.ﬁ of the matrix Aﬁhas a value
T,u =

of NN and a position obtained from

r=KK+(HH+1)i+J+1
' (198)

ue M+ (LL+1) (L + FF) + (§ +GG) +1

the most efficient manner of gathering the non-zero elements of the
matrix is by considering all the multipliers associated with each
general coefficient,the limits of substitution of i and j being taken

from the columns BB, CC, DD and EE.

The elements of the vector of constants b are only non-zero

in the case of the general equations (96, 97 and 101), The value of
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Start

1

Output the reference title on paper tape

!

Read the data
Compute the number of equations, Q
Compute the constants GI gy C, &, etc,

Calculate the number of equations generated from each general equation

Y

lDetermine the substitut ion requirements on each general coefficient:BBto MM |

Y

Compute the multiplying constants of each general coefficient, NN

!

Determine the number of non-zero terms of A j

Y

Form the vector _§

!

lfompute the terms of A which are independent of i and j

'

-

¢ mtinucd overleaf:



Continued from previous page:

!

Compute the terms of A which are dependent on i and j

!

]
Output the number of equations on paper taQ;W

!

Output the number of non-zero terms of A on paper tap%

.

Output the matrix positions of the non-zero terms of A on paper tape}

!

Output the value of the non-zero terms of A on paper tape

-

4 Stop

|
!
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these elements are simple multiples of pij for a particular ijth

equation.

The program

This description of the program entitled 'Setting-up the
Equations' should be read in conjunction with the flow diagram
appearing in Figure 22, this shows the general sequence of operations

for which the program is written.

As may be seen from the figure, the nroblem data are first
read} these consist of a title enclosed between brackets, {TITLE >,
the length of the plate (a), the width of the plate (b), the maximum
power occurring in the truncated power series describing the.load
intensity distribution (n), the thickness of the plate (h), Poisson's
ratio for the plate (), the modulus of elasticity for the plate (E),
the modulus of subgrade reaction of the foundation (x) and the matrix
of coefficients of the power series describing the load intensity
distribution, taken in rowsy Poo’POL’ e o o o pon’plo’Pll’ * e s Pln,
etc., [comment 1, 2 and 20]. Thus the data take the forms

<{TITLE >

aybynyhy pyEyky

pOO’pOl’ o < . pmf
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In the case of an explicitly defined polynomial function
describing the load intensity distribution, the truncated power
series is the series which, at least, includes all the coefficients
of the polynomial function, the remaining coefficients in the
truncated series being equal to zero. This system enables the
maximum rumber of terms to be used for the descrivtion of the
dependent variables, and the same vrogram to be used for both an

explicitly and approximately described anplied load.

Computation begins with the determination of the values
defined by equation (56) and the six possible values KK and MY [comment’
3 and 4]. The non-zero values of BB, CC and EE, DD, FF GG, EH and LI,
KK and MM are then computed [comment 5 6, 7, 8, 9, 10, 11, and 12,
respectively]. The constant terms of NN are next calculated [comment 13]
after which the number of non-zero multipliers in the matrix A is

determined [comment 14].

The vector of constants b is calculated from the loading
series using the general form of the right-hand side of equations
(96 to 101) [comment 15]. Each non-zero multiplier of the matrix A
is next computed, along with its elemental position (r, g) [comment
16]3 those multipliers which are independent of i and j are considered

first, followed by the dependent multipliers [comment 17 and 18].

The number of equations, the number of non-zero mul tipliers,
the b vector and the non-zero multipliers along with their positions

are finally output onto punch-hole paver tape [comment 19], and this is
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preserved for use in the next program i.e., for the solution of the

algebraic equations.
Solution of the Algebraic Equations

The consideration of methods of solution

As stated before the matrix A is extremely sparse and

hence a method of solution which processes only the non-zero terms

of A can save a great deal of computer storage space. Iterative methods
of solution lend themselves to this idea, since only the non-gero terms
contribute to the residual, b - AX and thus the zero coefficients need
not be processed. The equation is satisfied when the residual is

zero. After initially making an arbitrary approximation to the vector
of unknowns x each subsequent estimation of x uses the previous residual
to estimate the values of the unknowns, until after repeated estimations

the residual reaches zero and the correct x is obtained.

In the majority of iterative methods, it is only after an
infinite number_of iterations have been carried out that the residual
can possibly reach zero, although after a finite number of iterations
a good approximation of the true value of X can be obtained. An
exception to the iterative techniques which have this drawback is the
method of conjugate gradients (63) which, theoretically, is able to
obtain the correct solution after Q+1 iterations, where Q is the
number of equations. This method élso has the advantage that the

elements of A can be processed in any order. Thus elements vhich are
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formed from the same combination of parameters can be treated as a
group even though they appear in different equations and thus can then

be generated in an economical manner.

Because of these advantages which allow large systems of
equations to be solved, this method of solution has been examined in
detail to ascertain its potential for the present problem. However
the method, when applied to this problem, was found not to converge
to a solution after Q+l iterations. This was still true after 2(Q+l)
iterations and better initial approximations to x did not help. Thus
it appears that for this system of equations the method, as at present
programmed, does not converge to the soluti on in a stable and rapid

manner. For this reason the method is not considered further.

The direct methods of solution which can be relied upon to
give a solution for x are now examined, although the use of such
methods is wastéful in computer space. The first difficulty which
arises in their application to the present problem is that zeros
appear on the leading diagonal of the matrix A. This can be
overcome by premultiplying each side of the system of equations by
the transpose of A3 thus

AT Ax=2"v (199)

where é? is the transpose of A. This system of equations not only
has the same solution as A X = b but has no zeros on the leading

diagonaly the only obvious requirement on A is that at least one element
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in each row of A is non-zero. Another consequente of premultiplying
by A? is that A? A is a symmetric matrix and so the square-root

nethod of solution is suitable for solving the new system of equations.

Because g? A is non-positive definite it may turn out that
the root expression in the square-root method contains a negative term.
However, this does not produce basic difficulties since the arithmetic
operations in the case of imaginary numbers are identical to those
of real numbers. A tracer is introduced which simply notes whether
the term is negative .and, on taking the square-root, holds-the . --
imaginary number (-1)1/?;separately so-that all numbers which are
subsequently. acted upon by.this diagonal.term.are.altered accordingly.
Then the solution for x, which is,made;up_ofjregl numbers, may be

Obtained. [N Pe ~i*, - R B T T 4? :

.. [ . S .-

As there is also a possibility of a diagonal term being
close to zero, the elements of A and b are scaled up by a factor of
10
1.0 x 10 in order to avoid any chance of dividing, in the square-

root method, by a number close to zero.

The program

The output on paper tape from the previous program, 'Setting-up

the Equations', is used as the data for the present program which
is entitled 'Solving the Iquations'y the flow diagram for this program

appears in Figure 23.




Ll o - I ‘ . RIS

Pigure 23.- ‘Flow diagram of the major étages of
"computation involved in solving the asystem
of ‘algebraic simultaneous equations generated
from equations (96 to 101) in the power series

solution of the mathematical model.
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Start

Y

Print the reference title

Y

Read the data

Y

l ‘Mlul_t.‘iply b and the non-zero terms of A by 1.0 x 10]'0

Y

Form the upper triangular portion and the leading diagonal
t

of the matrix C = é’r A and place in the column vector C

using ' Q
Ci+(3-1)3/2 © °1j 'z *k1%kj
k=1

Y

Form the vector _A_T b and place in H using hi = § akibk

Y

Solve C x = H for the unknown series coefficients x using
‘Lthe square~root method

Y

Print out the vector x

Y

Stop
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The program begins by reading in the data, which consists of
a title between brackets<{and)> , the number of equations, the number of
non-zero multipliers, the vector of constants b, and the non-zero
multipliers along with their matrix positions [comment 1 and 3]. The
10

non-zero multipliers and the b vector are all multipliedly 1.0 x 10

on entry to the program.

The first stage in the computation is the premultiplication

of & by its transpose A?. letting the new matrix A?A be represented

by C, then the element ¢, of the matrix C is determined from

ij
Q
[+ - t .
ij § 83k 2k3 (200)
k=1

where § is the number of equations, is an element of A and a? is
_ B3 a ik

_ T . t
an element of A". Since aik = aki then

Q
45 = Z i %kj (201)
k=1 .

Noting that 83 akj = akj a4 i.e., that cij = cji’ then,
since C is symmetric, only the upper triangular portion and the leading
diagonal need be stored. Sin;e the non-zero multipliers of A alone
contribute to the elements of C, only their contribution to C need be
considered. Because‘two elemehts of A multiplied together, akiakj ’
only contribute to cij when their row counters, k, are equal, each row

counter of the non-zero multipliers of A is compared to every othery

-
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then if they are equal, the t..0 elements are multiplied together,

aki akj , and added to the element c which is originally zero.

i]
In order to avoid multiplying two multipliers together
twice - one contributing to the upper triengular portion and the other
to the lower triangular portion of C - only multipliers which have not
been multiplied together previously are considered and if j> i then
°4 3 is contributed to Cyy9 if j<i, then °5 is added to Cyq°
Because the saving of computer space is so important and
the lower triangular portion of C contains only zeros, the upper
trisngular portion and the leading diagonal are placed column-wise

in a column vector'g' such that the element ¢, has a position tc in

J

the column vector, where:

te = 1 + [(3-1)3/2] (202)

The sequence of operations concerned with the formation of

T
A"A in Qj is then carried out in a compact manner [comment 4]. After

this the computer forms ATE in the column vector H [comment 5]. The

element hi of E_is determined from

Q
_
hi'; 25k Pk
=1

or, applying aki = agk’

hy = T 83 O (203)
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The computer is then able to solve the system of equations

Cx=E (204)

using the square-root method. This does not differ basically from its
use previously in the solution of the normal equations, except that
each term of C must be sought in'g' and the possibility of C being non-

positive definite must be guarded against [comment 2].

After the solution for the vector of unknown power series
coefficients is obtained the coefficients are then printed out. The
order of printing is: Vx, Vy, H, Mx’ M_ and w,+ The coefficients

J
of a particular unknown are printed in row-wise order, i.e. Vx ’
00
Vo 43 ¢ a0V v v . v etc, These coefficients
X . » y ’ e » 0 y
01 *on %10 *11 *1n
along with the coefficients of the loading function are then available
to determine the stresses, strains and deflections of the slab resting

on an elastic foundation.
Determination of Stresses, Strains and Deflections.

Stresses, strains and deflections of interest.

Baving solved for the dependent variables, the final stage
in computation is the evaluation of any required results. In the
horizontal plane of the upper surface of the slab, the maximum

principal stress (o

max)’ tte minimum principal stress (Gmin)’ the

)

maximum principal strain (emax)’ the minimum principal strain (smin




- 193 -
and the direction of the maximum principal stress and strain (¢P), are
all of interest. The upper surface of the slab, rather than the lower
surface, isg chosen simély on an arbitrary basis - fhe lower surface
stresses and strains are of the same magnitude but the opposite sign.
The interior stresses are not congidered as they are less in magnitude

and, therefore, less critical thanthose on the surface.

The dependent variable concerned with deflection is the
weighted average displacement, #6, which does not itself @avé any
practical significancé.rllt is not possible to compute the actual:
transverse disnlacement w:from wo; othef than by assuming the form
of the variation of w through the :thickness of the-slab. This is
because the analysis of.therthreefdimensional slab has been transformed
into a two-dimensional ‘problem by assumptions on the variation of
stresses in the transverse direction.! The simplest assumption is to
neglect altogether the effect of transverse compression onthe transverse

displacements, i.e.

W o= wo* (x,5) (205)
and then substituting into the first of equations (26) and integrating
gives |

Wy = w¥ (x,)
or W= = v | (206)

where w, is the transverse displacement of the plate with the effect

of transverse compression neglected. Thus, the displacement computed



Pigure 24. Flow diagram ofthe major stages of the. ...
*+ computation .involviéd in calculating the ... . -
<{stre89es,-strains»and_Qeflections in the plate

U ﬂ-’from.the;powertqerigs dgscribing the
stress resultants, weighted average defleotion

el o -and-load intensity gistribution.
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Start
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{ Print out the title of the problem

;

{Read the datag
(Compute gy T, and D}

Compute the number of power series coefficients

Y

Determine the distances between the grid lines in each co-ordinate direction

Y

Print out the column headings of the results sheet;

Y

Determine the co-ordinates of the point

Y
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!
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Y
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max in

? cmtinued overleaf.
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continued from previous mage:

!

Calculate and print out ¢ and ¢
max m

!

Compute and print out the principal directiors

]

in}

Yes

Any remaining grid points on the slab to be examined

No *

Yes

Any remaining individual points on the slab to be examined

No’

Stop

‘
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from the v, series is the transverse displacement of the slab,'with
transverse compression, neglected, and is referred to as the 'plate
deflection', Wge
A possibility still remains of observing the effect of
transverse compression on the deflection by considering the deflection
of the lower surface of the slab, The deflection of this surface,
after neglecting transverse compression, is simply the plate deflection.
The deflection with this effect included however is Wy (# w ) and,
this can be determined from v by re-arranging equation (53) into the

£form

w = % [m, = 20H 2, )+D.p] (207)

26xh 6u h
where g = (1 + —76ﬁ), . Eﬁﬁ and D = 7%§

The loazd intensity, and the above stresses, strains
and deflections are of interest at many points over the surface of the
slab. The program which ® mputes these values at any point on the

surface of the slab is now described.
The program

The program whizh is now to be described is entitled
'Determination of Stresses, Strains and Deflections'. The fl ow diagram

of this computation is shown in Figure 24.

The program begins by accepting the data. First 1s a title
enclosed between brackets<Cand>e Secondly the dimensions and

elastic properties of the plate: the length (a), the width (b), the
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thickness (h), Poisson's ratio (u), and the modulus of elasticity
(E) are read. Thirdly the highest nower of the truncated power
series describing the load intensity distribution (n) is input.
Fourthly, the number of grid divisions in the x-direcfion and y-
direction (pp and gq respectively), which are understood in the same
sense as before, are read. Fifthly, the number of extra points on
the slab of special interest (tt) completes this section of the data

to be read [comment 1].

The data then continue with the coefficients of the truncated
series, taken in rows, in the following order: p, L Mx' M& and H
[comment 9]. Finally, the co-ordinates of the extra points of interest

(xx, yy) are read [comment 10]. Thus the data take the form
<TITLE >
ajbshsusEskin;ppraqstts

Poo? Por? ¢ ¢+ P!

‘g
5.

pno, Pnli . . . p ;
similarly v

[} M
X
b4

LB ] )|

xxl H yyl’



- 198 -

XXped Tyys >

At each co-ordinate point of interest the load intensity (p),

plate deflection (wc), x-direction bending moment (Mx)’ y-direction bend-

ing © moment (My) and twisting moment (H) are computed from the power
series expansions [comment 2]. The slab-foundation interface deflection
(wl) is then computed [comment 3], after which the direct stresses

Ty gy"and'shearing stresses Tij are calculated from equations (21)

[2222222 4] and the principal stresses-from' ,-{:j-: -
g._+0 .
X 1 2 sl2 1/2:'.i f‘;‘f'
“max T T2yt 7 [(oyrop) e 1y (208)
208
o _+0
e XX _ L1 2 241/2
0‘min 2 2 [(°x+6y) + Txy ]

These principal stresses are printed out along with the co-ordirme tes
of the point, the load intensity, plate deflection, interface deflection

and the principal strains [comment 5]. The principal strains are com-

puted from

(209)

The principal direction (¢p) is finally comruted [comment 6] and printed

out using



EXPERIMENTAL MODEL-~HAL

CU~-CRDS
X
0.0
0.0
24.0
24.0
0.0

0.0

0.8
0.8

24.0

0.0
12.0
0.0
12,0
0.0
0.8

0.0
0.8

12.0
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LOAD
INTENSITY
2., 5000001
4, 35200p0-T
8.959430-9
2.535800 -7
2,500005~1

2.,0599Hp-1

2.27287p-1
1.872790-"

2.535800~7

PLATE
DEFLECTION
-3.254219-2
1.02499;, 1
1.64690y 2
3,30826p b
-3.254219-2
-2.87781p-2

-3.06553p-2
-2.72826p-2

3,30826yp 4

F INCH PLATE THICKNESS

INTERFACE
DEFLECTION
-3.24407p-2
1.02235p 1
1.64267y 2
3.29976p 4
-3.24407p=-2
-2.86554 -2

-3.052560y=2
"2 -7 ‘ 303D-2

3.29976y 4

MAXIMUM
STRESS
0.00000
0.00000
0.00000

0.00000

0. 00000

0. 00000

.

0. 00000
-3 -2901 Swm

0.00000



MAXIMUM MINIMUM PRINCIPAL

STRAIN - STRAIN DIRECTION
0.00000 0. 00000
0. 00000 0.00000
0.00000 °~ 0.00000
0.00000 0.00000
0.00000 0. 00000

3.417525 -4 28.21518p-4  0.00060

3.482604-4 ‘-8.3716un-u -9.00000y 1
1.76014,-4 <1 1472003  -4,79364, 1

L4 . .

0.,00000 0.00000
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28 - tan™t [27 /(0,71 (210)

where if Txy = 0, then ¢p = 0O}
if (°x°°&)=o’ then there is no one principal direction,
N
if (Gx-cy)>0, then ¢p = -¢p;
*
and if (ax-cy)<o, then ¢p = -¢p - 90 »

where ¢p is measured in degrees from the x-axis in a clockwise

direction.

The points for which these values are determined fall into
two.groups. Firstly, they fall within a grid system of points over
the plate with pp divisions in the x-direction and qq divisions in the
y-direction [comment 7]. Also, there are a number of points of
particular interest, with co-ordinates (xx,yy), which form the second
group [comment 8]. The final form of the prinEed output is shown in

Figure 25,

Discussion

In this chapter, programs have been described, which upon
insertion of the dimensions and elastic properties of the slab and
foundation, and the truncated power series describing the load
intensity distribution over the surface of the slab, determine the

stresses, strains and deflections at any point on the slab.

The prograaming has been designed to make the most efficient

use of the available computer space which, in the case of the installation
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of the University of leeds, is 17,000 words. Splitting the
programming into three parts has increased considerably the number
of algebraic simultaneous equations which can be solved by a
computer. This maximum number of simultaneous equations, with the
Leeds installation, is generated when the limit, n, of the truncated

power series describing the load intensity distribution is four.
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A LIMITED EXPERIMENTAL APPLICATION OF THE STRUCTURAL ANALYSIS

The examination of a proposed theoretical analysis of an
idealized structural system by experiment is intended usually to
determine the degree of accuracy with which the analysis computes
the stresses and deformations in that system and hence to decide the

limitations of the analysis.

In the present investigation certain requiremonts, namely
the available computer space and computer time, limited the extent
to which the analysis of the idealized pavement/subgrade (plate/
foundation) system could be examined.. Thus, in order to.examine the
analysis, even to only a limited degree,.the experimental investigation
had to be so designed so as to minimise the effect of those external
restrictions} at the same time it had to represent as closely as
possible the idealized pavement/subgrade system. As a result, only
experimental deflection values were obtained for comparison with the
results of the analysis. (The reason for this is made clear later

in this chapter).

The use of a laboratory model enabled a close control to
be kept over the envirowsntsl conditions and the representation of
the boundary conditions. Due to limitations.of the available computer
facilities, however, it was considered that no useful purpose could be
served in carrying out an exhaustive program of experimental work and
80 the number of laboratory models was kept to the minimum consistant

with obtaining the maximum useful information.




" Figure 26, ‘Experimental ‘apparatus for loading and measuring
. the defloction of the plate/foundation system,

“with the lo=ding equipment in-the rest position.
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Destgn of the BExperimental Investigation

The computational restrictions took two forms. Firstly,
there was the difficulty of a truncated power series in describing
the load intensity distribution and, secondly, there was the problem
of the limited number of algebraic simultaneous equations which
cauld be solved. This first difficulty was eliminated by considering
a continuous load intensity distribution which was described explicitly
by a limited number of termsy the second could only be minimized by
the choice of the plate and foundation properties and by the distribu-
tion of the continuous load. These requirements did not cause any
‘'violation of the assumptions upon which the analysis was based and
thus the basic intention of this investigation which was to examine the
Proposed structural analysis was still preserved even though a
discontinyous load intensity distribution was not used. The general

test arrangement is shown in Fig. 26.

Description of the model confipuration

The lateral dimensions of the rectangular plate used were
such that the ratio of length to width approximated to that of a

concrete road slab, the length being 24 inches and the width 12 inches.

Two plates of different thicknesses_and one type of
foundation were considered. The thicknesses selected were %/4 inch
and 1/2 inchy again these choices were guided from knowledge of

typical highway pavement proportions.
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Figure 27, The theoretical load intensity distribution applied

" 4o the expeérimental plate/foundation system. -
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The thickness of the foundation which rested on a rigid
steel base plate was 2 inches. This thickness was considered to be
a compromise between an excessive thickness which might result in
the buckling of the 'springs' in the Winkler type foundation and tre
minimum thickness required for the foundation to act as a set of

springs in the Winkler mamner.

Applied lo0ad intensity distribution

The load intensity distribution described by a limited
number of terms, was designed to resemble that of a wheel-load on the
corner of the pavement. It consisted of a load intensity, v, at the
corner (0,0) which decreased rapidly to zero away from that corner
without becoming negative. The function which described this load

intensity distribution, p, is:

D = $(1-1s25x10"1x + 5.2083x10™7x? = 7.2336x10™°x°)

242 _ 5,7870x10"%3%)

x(1-2.5x10"y + 2,0833x10"
A value of V = 0,25 lbs/in.2 was selected in order to obtain
measureable value of plate deflection without them becoming excessive.

The resulting load intensity distribution is shown in Figure 27.

Plate and foundation materials

Theoretically, each dependent variable can only be represented
exactly by an infinite series. This applies even when the load o

intensity distribution is described exactly by a series of limited
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length., However any major error will nof arise directly through
truncating the dependent variable series, but rather it will be
due to partial violation of the ksln assumption upon which the use
of multipliers to satisfy the boundary conditions rests. This is
best appreciated by considering the ijth term of a particulaf series,

which is acted upon by a multiplier e.g..

M_ < yj(ax-xz)

i3

or, rewriting,

i

Each simultaneous algebraic equation is the sum of the coefficients

13

of a particular argument, for example, x y’. If the maximum

M, , (axi+lyj_xi+2y:j)

argument considered in generating the equations is xmyn and in the
above example m=1i+l and n=j then the equation arising from xl“h?y‘j
will not be considered. Hence although M satisfies the

X
simul taneous equation arising from xi+lji, it does not satisfy the

equation generated from the sum of the coefficients of xi+2yj. The
assumption implied by using the multiplier technique to satisfy the
boundary conditions is that m and n are sufficiently high, and the

expansion converges sufficiently rapidly, for the effects on Mx’ of

this unconsidered equation to be negligible.

Because of the low order of the truncated dependent variable
series this assumption is not completely satisfied and so its adverse

effects must be minimised in the design of the experimental investigation,
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in particular by the choice of the properties of the plate and
foundation. If each v, in the power series expansion of LA is
multiplied by an argume;i xin, then the errors in the coefficients
of w_ (and similarly the other dependent variables) arising through

"~ the non-satisfaction of certain algebraic simultaneous equations are

magnified and the errors are functions of x and y.

In the experimental investigation described here, these errcrs
were minimised in the plate region which was of major interest - in ttis
cagse this was the area around the maximum load intensity - by
concentrating this region éf maximum stress and deformation as closely
as possible tn the origin. This meant that the magnifying effect of,

i3

for example, xyY on w° was reduced until at the origin only the first

i)
term of the dependent variable series was significant and thus there
was no magnification of the error in this coefficient. This led
naturally to the maximum load intensity being placed at the corner which

was the origin for x and y.

An added advantage of the above arrangement was that it
allowed the edge effects of the plate to play a major part in the
distribution of stresses and deformationsin this region, thereby
enabling to some extent the ability of the mathematical model to
analyse the effect of these free edge boundary conditions to be

utilized,

The elastic properties of the plate and foundation were



- 209 -

principally chosen also to bring the area of major deformation as
near as possible to the origin. A plate of low flexural stiffness
and a foundation of high support stiffness were chosen with this aim
in mind. The plate material was a hard black rubber and the

foundation material was an industrial latex foam rubber.

In order that the foundation would satisfy the Winkler
assumption the 2-inch thickness of foam rubber was cut vertically into
individual blocks, mostly 1-3/8 inches x 1-3/8 inches. At the outer
edges of the foundation the size of block was* increased slightly
s0 that they could stand flush with the edges of the plate. Each
block was assumed to aqt as a vertical ‘spring'. This block was small
enough for the major portion of its stiffness to be axial but not so

small as to create the possibility of its buckling under load.

It might be noted that the actual thickness of the
foundation is not a factor in the analysis and although this model
foundation is not, of course, the same as an actual subgrade, it

does satisfy the theoretical requirements in that at some depth, d,

the deflection is zero. Here, this depth is 2 inches, in an actuel

pavement the depth would:be infinite. The factor which enables the
theory to apply to both cases 45 that the modulus of subgrade reaction
ky is a function of the depth of the particular foundation being

considered,

It is likely that transverse shear stresses due to the
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stiff foundation, and transverse compression due to the low

stiffness of the plate, would be influencing factors in the

distribution of stresses and deformations. The models were not

however, designed with this principally in mind because, although

these stresses are of major interest, it was considered that they

would be most difficult to examine &nd discuss because of the inaccuracies
in the values of stresses and deformations likely to result from

truncation of the power series expansions,

Upper and lower surfaces of the foundation

At thé interface between the plate and foundation full
continnity of transverse direct stresses on both upward and downward

movement of the plate is preserved in the theoretical analysis.

. Although physical attachment of the plate to the foundation was

required to completely satisfy this assumption, this presented
experimental difficulties since more than one plate had to be tested.
In order to attain the same end, without having to connect, for

example by gl&%ng, the plate and foundation together at the interface,
the foundation was precompresséd; this was achieved by the application
of a uniformly distributed load over the area of the plate,the
deflection of which exceeded any subsequent upward movement due to

the test load.

To retain the foundation blocks.in position they were glued

to a rigid base., The thickness of the model foundation was considered
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to be sufficient to avoid this arrangement having any undue effect
on the distribution of deflections.

The test rig

The principal aim was to measure the deflections over
the corner of interest and to compare them with those given by the
theoretical analysis.’ Unfortunately, it proved impracticable to
determine the experimental principal strains over the upper surface of
the plate because none of the strain measuring equipment considered,

including electrical resiétance strain gauges, had the obvious

~ " requirements of both an effective stiffness'which was lower or equal

“*to that of the plate rubber and a sufficiently short gauge length.

- Piafeé‘i‘énﬁ 2 show a général Qiew‘and close up,

‘respectively, of the load intensity distribution being applied to the

1/4-inch thick rubber plate. The load intensity‘di%tribution applied

to this and the other plate had}a maximum value of 0.25 lbs/inz. at

the origin and tended rapidly to zero as the distance from the origin
increased. 1In order that the foundation could be precompressed
sufficiently a uniformly distributed load was applied over the surface
of the plate in the form of a 1/4 inch thick layer of steel. With the
intention of preserving full contact between th; steel layer and the de-
formed rubber plate, the steel layer was cut into squares of 1*1/2

inch side and a 1/4 inch thick piece of soft foam rubber of similar

shape was glued to the lower face of each square. (see Figure 26).
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The load intensity distribution was applied to the plate
and foundation through these steel and foam rubber pads. First,
the load over each sguare was represented by a statically equivalent
uniformly distributed load. This was:then applied at the centre of
each square of steel as a point loadj; the square was sufficiently
rigid to uniformly spread the load., The total load applied to each
square was in the form of a steel circular rod of the required weight.
The weight of each rod was transferred to the centre of each équare
through a steel ball of 1/4-inch diameter which was soldered to the
base of the rod and seated in a conical depression in the centre of
the pad, as shown in Plate 2. This avoided the creation of secondary

stresses during rotation of the pad when it took up the deflected

surface,

A practical difficulty arose in holding the rods in
position and yet allowing them to move downwards during the deflection
of the plate. This was overcome by having vertical guides down which
each rod could move freely. These guides were‘in the form of slightly
over-size holes in a l/4-inch thick horizontal aluminium plate through
which the rods then passed. The aluminium plate was positioned
approximately 1.7 inches sbove the top of the steel squares and was
supported.at its corners which lay outside the area of the model plate

and foundation, as is shown in Plate 1.

The load intensity had to be capable of being applied

instantly at all points over the area of the plate. Thus, each steel
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ball soldered to the base of a rod was initially placed a very short
distance above the conical seating of the corresponding steel
square. This was accomplished by placing a 1/16-inch diameter
cross-piece through each rod so that the rod was supported clear
of the model by the cross-piece resting on the top of the aluminium
Plate, (see Figure 26). The load was then applied by lowering the
aluminium plate a distance of a 1/4-inch; this resulted in the balls
coming to rest in the conical depressions and the weight of the rods
being transferred from the aluminium plate to the squares of steel

and thus to the rubber model (see Plate 2).

The ability to vary the size of the rods for diffe;ent
points on the plate was an essential requirement, due to the wide
range of loads which it was intended to apply to the steel squares.
For a large portion of the plate, the load applied to each square
was extremely small and it was decided on practical grounds to ignore
those which were less than one percent of the maximum value. These
small loads would have been applied at points which were quite large
distances from the 6rigin and, consequently, would have had little
effect on the deformation in the region around the origin. The
diameter of the rods varied from 3/4 inch to 1/8 inch and their

length from 1,90 inchesto 3.66 inches.

Measurement of plate deflection

The intention was to measure the deflection of the plate
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Boundary of the model plate

AN

Legend Dial gauge positions e
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at a number of points over the area 6f special interest, i.e. the
area around the origin in which the major deformation could be
expected to take place. The theoretical analysis gives the actual
deflection of the lower face of the plate and also the deflection

which would result from neglecting the effect of transverse

compression. Unfortunately, the practical difficulties of
measuring any deflection other than the upper surface deflection

of the plate are so large as to make such a task impracticable,.

Further, for a load intensity of 0.25 1bs /in,> which is the

maximum occurring on the plate, a plate thickness of 1/2-inch and a
modulus of elasticity of 750]la/in2., the transverse compression

18 only in the order of 1.7 x 10”4 inches which is barely the

order of discrimination of the most sensitive dial gauges.

Thus, for the purpose of the experimental results, the deflection

of the upper face of the plate was considered as being representative
of those of all corresponding points throughout the plate

thickness,

In the course of the experimental study the deflection
of the upper surface of the plate was measured by dial gauges
which were placed in the positions shown in Figure 28. They were
rigidly fixed to a framework above and the probes of extended length
passed through holes drilled in the aluminium sheet. In order
that the probe points could reach the model, holes were also drilled

in the smquares of steel and soft foam rubber; the effect of this
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upon the deformation of the model was assumed to be negligible.
To avoid erronecous readings which might have resulted from the
probe of the dial gauge penetrating the rubber of the plate, a

small pad of steel, 0.25 inches x 0.25 inches x 0.005 inches,

was placed under each probe and glued to the upper surface of the

rubber plate. In order, also, 1o prevent the pressure of the
probe on the steel pad from materially affecting the deflection
of the plate locally at the point of contact, the probe, when the

deflection was being measured, was lowered until contact was
only just made with the thin steel pad.  This was facilitated

by the help of an electrical circuit which consisted of a wire

passing from the dial gauge support framework through, first,
a small electric bulb and, second, a 6-volt battery, from which

wires passed to each steel pad. The circuit was completed and

the bulb 1it when contact was made. Before and after the load was
applied each probe was lowered in turn and the dial recadings were

noted,

Elastic Properties of the Plate and Foundation Materials

The properties required for the analysis were the modulus
of-elasticity and Poisson's ratio of each plate and the modulus

of subgrade reaction of the foundation.

Elastic nropertiss of the plates

Here, the principal difficulty in determining the elastic
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properties of a hard rubber is that the electrical strain gauges
commercially available are many times stiffer than fhe rubber itself,
* Thus, - the gaugeé would stiffen the test material at the pointsiat
“which they were affixed. This would result in apparent properties

which could be grossly incorrect.

Strain measurement is essential for the direct
determination of Poisson's ratio and a mechanical method of measuring
strain is considered as being the simplest and most reliable solution
to the above difficulties. The material was stretched in one direction
and the increases of longitudinal and transverse gauge lengths were
measured mechanically. The experimental set-up is shown in Figure

29 and Plate 3.

After the model tests were carried out, each rubber plate
was taken and placed in the testing apparatus to determine its elastic
properties. Close fitting woaden clamps were placed over each end of
the plate and were bolted-up to grip the rubbe;, see Figure 29. The
clamped plate was then placed on a solid wooden table and one of the i
clamps screwed down to its top. Wires were attached to the other
clamp at the level of the mid-plane of the specimensy see Figures 29.
These wires were then passed over metal runners vertically down
to three weight-hangers. To ensure that no bending stresses would
be present a wooden spacer was placed between the table-top and the

specimen., To reduce the friction between the specimen and the spacer
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a sheet of P.T.F.E. was placed between them.

Thevlongitﬁdinal and transverse strain gauge lengths were
placed about the centre of the upper surface of the rubber plate 3
one parallel, andAthe other perpendicular, to the direction of the
applied uni-diréotional tensile stress. The gaugeblengths themselves
were cach chosen to be slightly less than 4 inches; this was
considered to be the maximum length at which the boundary effects of
the plate sides and its clamped ends would not affect the strain
incurred over the gauge-lengths. Bach end of the gauge length was
defined by a 1/8-inch diameter steel ball soldered to a 1/2-inch length
of gteel of 1/4-inch X 1/4-inch section which, in turn, was glued to

the rubber platej +this is shown in Figure 29 and Plate 3.

The gauge length between the outside edges of each
corresponding pair of steel balls was measured during the test by
means of the micrometer shown in Plate 3. 1In the course of testing
it was found that the micrometer ratchet was not sensitive‘enough‘
to stop the closing movement of the micrometer when cogtéct was just
being made between the micrometer face and outer edge of the steel
ball at each end of the gauge length. To overcome this source of
inaccuracy an electrical circuit 'alarm' was introduced; gimilar to
that used previously for measuring deflection in the model tests} see

Plate 3.

In tensioning the specimen a number of small weights were
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placed initially on the hangers to apply a pre-tension to the

rubber plate and the first gauge readings were taken. Then additional
weights were applied in increments, up to a maximum load of 105 1bg

for the 1/2-inch plate and 60 1bs for the 1/4-inch plates each
increment was 15 ibs After the application of each increment, the
wooden spacer was vibrated slightly to release any frictional resistence

before the gauge lengths were measured.,

The stresses were computed using the original cross-
sectional area of the specimen. When the standard stress/strain plots
were drawn for each rubber plate, they were found to be linear. The
values of modulus of elasticity obtained from these data for the 1/4-
inch and 1/2-inch plates were 777 and 905 lbé/in.z, respectively.

The corresponding values of Poisson's ratio were 0,322 ang 0.416,
respectively, (The perhaps surprising difference in the elastic
properties between the 1/4-inch and 1/2-inch rubber plates was
confirmed by their International Rubber Hardness values; these were
58.0 end 68.0 degreos for the 1/4-inch and 1/2-inch plates,

respectively.)

Elastic properties of $he foundation

By definition, the modulus of subgrade reaction, k, is the
pressure required to cause unit deflection of the surface of g
foundation. There were two methods available for obtaining this k-value

The first was to test a single 1+3/8 inch x 1.3/8 inch x 2-inch block
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in compression and then to plot the resulting load - deflection curve
from which k could be calculated. The second method was to test the
entire foundation in-situ in a similar manner. The former method had
the advantage that it would be able to indicate the nature of the
load-deflectioﬁ curve. A disadvantage was that although each block
was L-3/8 inches x %-3/8 inches in area, it actually 'supported! an
area of 1.1/2 inches x 1-1/2 inches due to the 1/8-inch gap between
adjacent blocks.  Thus the apparent value of k obtained from testing

a block could be ‘expected to be incorrect if used to represent the
foundation. (This could, of course, be overcome by considering the
area, over which the load is applied, to be 1.1/2 inches x 1.1/2 inches
when computing k). The alternative experimental method of determining
k eliminates any doubt in the validity of the single block test when
applied to the complete foundation. For this reason it was considered
that more confidence may be placed in the value of k determined from

an in-situ test. Nevertheless both methods were used to obtain
comparative values of k.

First of all, a small testing frame was employed to
determine the load-deflection curve for a single blocky the set-up
is clearly shown in Plate 4. The load/deflection plot which resulted
from 0.2 1b. increments up to a maximum of 1.0 1lb. was linear. TUsing
the actual area of the block (1-3/8 inches x 1-3/8 inches) the value of
k was found to be 14.50 1bs/inch2/inch; uging the area supported by

the block when part of the foundation (1-1/2 inches x 1-1/2 inches),
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the value of k obtained was 12.20 lbs./inchz/inoh,

In the second method of obtaining the modulus of subgrade
reaction a lincar load/deflection relationship could be safely
assumed and thus, the uniformly distributed load was applied in a

single increment. The k-value obtained from this test was 12.56

lbs./inchz/inch. .

As explained previously, more confidence may be placed in
the k-value which is determined on the basis of loading the foundation

. in-situ., Thus of the three moduli of subgrade_reac@ion values, the

- [~ one which was selected as being most representative was the figure of

12.56<lbs./inch2/inch. S
Obtaining the Analyticél Results

The experimental deflections and analytical plate
deflections, for'n=4, are presented for both plate thicknesses in

Figure 30 and 31, for the portion of the plate around the origin.

The analytical deflections were obtained from the three
computer programs which are presented in Appendix C and which have

already been described in detail.

The form of the input data for the l/2-inch thick plate is
given below end beging-with that for the first program, entitled
'Setting-up the Simultaneous Algebraic Equations', thus

<EXPERIMENTAL MODEL-HALF INCH PLATE THICKNESS >



' Figure 3l. The analytical plate deflection surface of the area
| around the origin computéd for the 1/2-inch thick plate
and foundatisn model. The experimental .deflections

are also shown,
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2451254$0.5;0.4163905512.563
0-251-602510*235-2083510~§$-1-44675910-4!01

-3-12510-2;7»8,1?510-3;-6. 51041 5610-4;1.8084490610-5;0;

1.5020833, 433 = 3+2552081 =432, T12673003, 1537+ 535203945, 4=T30;
-1,808449, ;=54.5211225, ;-69=~3. 7676014305, 1-T31.0465561275, -80s
0303030305 —» .

The paper tape output from this program was fed without alteration,
into the second program entitled 'Solving the Simultaneous Algebraic
Equations.' The output from this second program consisted of the
coefficients of the independent variables and these were then wed to
punch the input tape for the final program entitled 'Determination of

Stresses, Strains and Deflections', thus

<EAPERIMENTAL MODEL-HALF INCH PLATE THICKNESS >

2441230, 530.4163905512,56343151599;

P éoefficients in rows
L coefficients in rows
Mx coefficients in rows
M& coefficients in rows

H coefficients in rows
0303
030.753
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co-ordinates of the remainder of the 99 points at which the analytical

deflections are required

The form of the analytical results produced on the final line-
printed output sheet is shown in Figure 25. The deflection values
thus obtained were then used to plot the analytical surface of

deflection shown in Figure 31.
Discussion of Analytical and Experimental Results

The main points which come to light from a comparison
of analytical and experimental results csan be isolated and dealt with

in turn.

1. As was expected, the plate deflection valuesewhich can
be scen in.Figures 30 and 31 - increased rapidly with the distance
away from the origin, thereby indicating that the radii of
convergence Rl and R2 of the v, series are very small., The reason
for this has already been explained in this chapter and so need not
be repeated here. It does confirm however, that there is a
considerable need to concentrate the region of deformation as closely

as possible to the origin in order to obtain useful results for the

purposes of the exvcrimental application of this form of solution.

2. hen the analytical and experimental corner deflections

are compared it is seen that they are of the same order of magnitude



- 230 -

even though at short distances from the origin, e.g. 4.5 inches,
the analytical plate deflections are many times larger than the

corresponding experimental corner deflections.

3. It must be pointed out that the differences which do
exist between the analytical and expcrimental deflections at the
corncer of the plate are to a large extent due to the experimental
difficulties in applying the load intensity distribution in the
exact theorctical manner and also in measuring the resulting dcflections.
In the test, the intensity applicd at the origin was not 0.25 lbs./
inch%asit should have been, but was 0.187 lbs./inch2 Jue to the finite
nature of the loading pads. With a plate of higher flexural stiffness,
for example had it been of perspex, this discrepancy, would not have
had any significant effect. The low stiffness of the plate material,
which was chosen to meet qthor requiremcnts which have already been
explained, is indicated by‘the similarity of the deflection surfaces
of the 1/4-inch and 1/2-inch plates. Consequently the experimental
corner deflections of the plates have been due to an actual intensity
of 0.187 1lbs /inch2 rathcr than the theoretical 0.25 1bs/ihch2 whick
was used in the analysis., As a uniformly distributed load of 0.187
lbs/inch2 produces a theoretical deflection of 0.0149 inches and an
intensity of 0.125 1lbs /inch2 produces one of 0.019Y9 inches, this
conclusion would seem to be confirmed because the actual corner
deflections of the 1/4—inch and l/2-inch thick plates are 0.0143

inches and 0.0140 inches, reapeétively.
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4. Two points which are illustrated by the results shown
in Figure 25,which refers to the 1/2-inch model, should be noted.
Firstly, the interface deflection at a given point is slightly less
than that of the plate deflectiony’ this is due to the presence of
latera} plate support when transverse effects are included in the
analysis. Secondly, the principal directions of the stresses are
quite accurate even though the magnitudes of the principal stresses

become excessive as the distance away from the origin increases.

5. Because of the unrealistic form of the two analytical
plate deflection surfaces, (shown in Figures 30 and 31) it would be
unwise to make any detailed recommendations on the applicability of
the analysis to plate/foundation systems based on the compzrison of
these surfaces with experimentally measured deflections. HNevertheless,
the results of this‘analysis are useful to further the understanding of

the mathematical analysis.

6. An important fact which comes to light when examining
the series coefficients of the independent variables is that the
coefficients M‘ - and M - for any value of j and i, respectively, have
values as largeogs 5.01033

be equal to zero, according to cquations (99 and 100). The most

even though, theoretically, they should

likely explanation is that the system of simultancous algebraic
equations, genecrated from equations (96 to 101) for this particular
problem, is ill-conditioned. It is probable that because of the low

flexural stiffness of the plate there is very little redistribution
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of the load and hence the load intensity ~t a point tends to pass
through the plate, directly to the foundation. Thus, the major
structural factor is the vertical equilibrium of the system and
consequently the differential equation describing the vertical
equilibrium of the system, equation (71) dominates the set of
differential equations, equations (66 to 71). @Hecnce, the
simultaneous algebraic equations generated from equation (101),
which is the ijth form of equation (71), predominates over the
remaining equations. This ill-conditioning is found to be confirmed
when, on substituting the solutions back into the algebraic equations,
those which are found to have negligable residuals are those gencrated

from equation (101).

7« The very rapid ihcreases in the theoretical values of
plate deflection, (shown in Figures 30 and 31) have previously ;
been explained as being due to the magnification, by the secries
arguments, of errors in éhe series coefficients. These errors are ?
caused by the inability of the coefficients of the variables to
satisfy all algebraic equations in which they occur. To some extent
this explanation can be confirmed by comparing the plate deflection
surface for a truncated power series limit of n = 3 to that with a
limit of n = 4., For either plate thickness the result is that for
n = 3 the deflection surface is found to remain finite a2t a much
greater distance from the origin than for n = 4. For example, in

the case of the 1/2-inch thick plate, the deflection af the point
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whose co-ordinates are (6.0,0) is equal to - 0.023 inches, whereas
the deflcction at the same point for n = 4 is calculated 1o be

0.618 inches. If theoretically, a more accurate solution should
arise when n is taken equal to 4 rather than 3, then the
4,3 4

magnification caused by multiplying coefficients by x and xiy ’
in the case of n = 4, is likely to be the cause of the much more
rapid divergence of thc surface. This hypothesis is supported by
the fact that at the origin where no magnification tekes placc, the
solution for n = 4 gives a plate deflection which agrees more

closely with the experimental corner deflection for both the 1/4-inch

and 1/2-inch plates.

B. The effect of the coefficients of the independent
variables not satisfying particular algebraic equations in which
they occur and the manner in which this difficulty can be overcome
by increasing the number of terms in the series, may be illustrated
as follows., Consider the theoretical analysis (using the computer
programs) of, say, the 1/4-inch thick plate and foundation to which a
uniformly distributed intensity of 0.25 1bs/inch2 is applied, and
where the truncated loading series has a limit of n = 4. A uniform
deflection of 0.0199 inches is theoretically produced by such an
applied load intensity, while there are no bending moments, twisting
moments or shear. stresses induced in the plate. As a result all the

coefficients of the independent variables should be zero except LR
00
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In fact, however, the analysis produces coefficients which although
small, are non-zero. The rcason for this is that the ncglected
equations are those which would make the cocfficients of the higher
terms zero and these, in turn, - through the other equations - would
make the cocfficients of the lower terms of the serics zero, thereby
lcaving only v to be non-zcro. This disadvantage, which is

00

emphasised in this example, is inherent in this method of solving the

differential cquations.

9. That this disadvantage can be overcome by increasing
the nunber of terms in the series, i.e. by raising the limit of n, is
also illustrated by these results. Relative to the scries describing
the load intensity distribution there are many more terms in the
independent variables of this example than in that of the experimental
analysis with its varying load intensity distribution. Although not
graphically rcproduced here, it wos found that the deflection of the
plate remained at a value of 0.0199 inches for a large portion of its
area (including the origin), even though the terms of the deflection
series were non—zero; The principal stresses were also found to remain

close to zero.

10; This limited applicntion of the analysis has shown
that the disadvantages of the solution are associated with the truncation

of the power serics describing the dependent variables.
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CONCLUSIONS

The major conclusions vhich may be drawn from the foregoing

research program aret

1. A thick rectangular plate attached to a Winkler
foundation and loaded transversely by a general load intensity
distribution, (referred to as the first boundary value problem),
can be described by a mathematical model consisting of nine linear
partiel differential cquations of elasticity and three boundary
conditions at cach free edge of the plate. The prescribed dependent
variable is the load intensity distribution, p, and the unknown
dependent variables are the bending moments, Mk end M&, the shear
forces, Vx and V&, the twisting moment, H, the weighted average
rotations a, and Bo’ the weighted average deflection, LAY and the
deflection of the lower face of the plate, Wy

2. A thick rectangulnr plate which merely rests on a
Winkler foundation,(referred to as the second boundary value problem),
where loss of contact between the pavement and subgrade is allowed
during upward deformation of the prvement, can also be described by a
mathematical model. This consists of nine non-linear partial differential

equations of elasticity and a set of boundary conditions which are

similar to those of the first boundary value problem.

3. In each of thc two analyses the pavement and subgrade

can be considered to be a complete system and not simply a pavement
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acted upon by the subgrade stresses.

4. The direct stress within the subgrade is expressible
in the correct Winkler manner, i.e. as a function of the deflection
of the lower face of the pégément and not, as in other published
thick plate analyses, as some approximation to this e.g. the weighteéd

average deflection,

5. The nine partial differential equations of the
1
first boundary value problem are reduckble to an equivalent system
of six higher order partial differential cquations in the dependent

variables, p, LA Mx’ M&, Vx, Vy and H,

6. The solution of the sccond mathematical model appears
to be extremely difficult because of the non-linear nature of the

associated partial differential equations.

7. A solution to the first boundary value problem is
obtainable in terms of a system of simultaneous algebraic equations
where the dependent variables are represented by power series or

Chebyshev polynomials.

8. A non-trivial solution is not found to be possible
with the particular forms of Fourdier series used to represent the
dependent variables although they are chosen to satisfy the boundary

conditions.

9. In both the power series and Chebyshev polynomial

solutions of the first boundary value problem the use of multipliers
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to satisfy the boundary conditions suffers from an important
disadvantage. This is that there are a number of algebraic equations
which are not considered and yet within which coefficicnts of the
truncated series arise. Consequently there are conditions,
represented by these nceglected cquations, which are not satisfied

by the dependent varisbles.

10. None of the power, Chebyshev or Fourier scries
recpresentations of the circular wheel-load distribution is found to
accurately describe the discontinuous load intensity distribution

for the length of truncated series which is considered.

11, Difficulties which arise in the ability of the
truncrnted Chebyshev serics to describe anything other than a zero
load intensity in the case of the circular wheel-load can be overcome

by increasing the length of thc polynomial expansion.

12. Vhen the truncated series is of thc minimum sufficient
length to produce a non-zero load intensity, the Chebyshev gxpansion
produces a surface which represents the wheel-load intensity better
than do those of power or Fourier serics of similaf length as far as

the circular area of contact is concerned.

13, Beocause of the continuous nature of the function,
the Fourier series expansion follows the plane of zer» intensity
over thz unlonded portion of the plate to a better degrec than the

othcr two forms of expansion.
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14. 1In each of the three circular wheel-load distributions,
the power series cxpansion produces a wave-like surface except in
the area around the ciraular load. This is due to the grcater
sparseness of load intensity data points in those areas as compared

with around the cireular lond.

15. The ability of the truncated power series expansicn
to represent the circular wheel-load intensity distribution is seen

to be much improved by only a small extension in its length.

16, For a circular wheel-load, the minimum computer
space required for the solution of the general simultancous equations
associated with the Chcbyshev cxpansion is prohibitive as far as the

computer facility available in the University of ILceds is concerred.

17. 1In the programmed solution of the simultaneous
algebraic equations arising from the power series solution of the
primary boundary value problem, n = 4 is the limit of the truncated
power series expansions of the dependent variables which can be
accommodated by the programs if the available computer fast store

is 17,000 words (as is the case with the University's installation).

18, The numerical and experimental tests indicate that,
given better computing facilities, the meth>d using power series
expansions shoyuld lead to a more satisfactory analysis of the first

boundary value problem.
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RECOMMENDATIONS FOR FURTHER RESEARCH

While these suggestions for further research are
principally concerned with improving the programmed solution of the
primary boundary value problem, some suggestions are also made with

respect to other relevant points of interest.

1. A further examinntion should be made of the power
scries solution using a computer of larger capacity. This should

enable power serics of greater length to be used.

2. Re-programming the power series solution using disc
files should be considered. This should eliminnte the major
limitation on the lengths of the power series cxpansions. The
new limitation of required computer time will not be as acute es it

would be with magnetic tape decks.

3. 4 detailed analysis of iterative methods of solution,
such ns that of conjugnte gradients, is indicated, as these lend
themselves to sparse matrices of coefficients. Work has already

begun on this subject and is proving very promising.

4., Programming the Chebyshev polynomial sonlution to the
primary boundary value problem is required. This, together with any
one of the above suggestions, should produce more useful results

because of the orthogonal nature of the Chebyshev polynomials.

5. The representation of the dependent variables in the

primary boundary value problem by other forms of Fourier series
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expansion, perhaps of a more general nature, is worthy of

investigation.

6. The solution to the second boundary value problem
might profitably be undertaken by applying one of the limited
number of mecthods available for the solution of non-linenr partial

differential equations.

T« The analysis of a pavement/subgrade system in which
the subgrade is considered to be a semi-infinite three-dimensional

elastic solid should be given attention.

8. An analysis should be made for a pavement/subgrade
system in which the rectangular slab is considered to have partial
support from adjacent slabs by means of, say, dowel bars, as this

situation is common in practice.

9. The programming of the analysis for dual and tanden
wheel configurations and elliptical wheel contact shapes applied

to> the surface of the plate should be undertaken.

10. The application of these suggested analyses to
experimental large scale pavemcnt/subgrade systems is cleorly
indicated should the analyses prove successful in determining the

stresses and deformations in laboratory models.
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APPENDIKX A: NOMENCLATURE

Geometry
Cartesion co-ordinate system
Slaeb length in the x-direction
Slab width in the y-direction
Slab thickness in the s-direction
Arbitary depth of foundation
Volume of complete system
Surface of complete system
Surface over which stresses are prescribed
Surface over which displacements are prescribed
Direction normal to S

Direction tangential to S

Elasticity
Modulus of elasticity for the material of the slab
Modulus of elasticity for the material of the foundation
Modulus of rigidity for the material of the slab
Poisson's ratio for the material of the slab
Modulus of subgrade reaction, tension and compression,
for the material of the foundation
Modulus of subgrade reaction, compression only, for the
material of the foundation

Direct stresses in the x-,y- and g-directions
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Txy’Tys’ Shear stresses relative to the x-,y- and s-directions

Tsx

dijp'dijf Generalized form of stress in the slab and foundation
respectively

cx,ey,ex Direct strains in the x-,y- and s-directions

ny’Yya’ Shear strains relative to the x-,y- and 8-directions

Yax

eijp’eijf Generalized form of strain in the slsb and the
foundation respectively

U, V,w Displacements in the x-,y- and &-directions

Ya Displacement of the upper surface of the slab in the
#-direction

¥ Displacement of the lower surface of the slab in the
8-direction

i Displacement of the foundation at depth 4, in the
8-direction

ao,po Veighted average rotations in the x-and y-directions

Y Yeighted average displacemnt in the &-direction

ao’ﬁo Weighted average rotations in the x-and y-directions with
the effect of transverse compression neglected.

Y Weighted average displacement in the a&-direction with the
effect of transverse compression neglected

Mx’My Bending moments per unit width in the slab in the x-and

y-directions
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Twisting moment per unit width in the slab relative to

the x-and y-~directions

Shearing forceé per unit width in x-and &-directions
Strain energy density

Strain energy density for the slab

Strain energy density for the foundation
Complementary energy density

Complementary energy density for the slab
Complementary energy density for the foundation

Total potential energy of the system

Potential energy density of the external forces

Direct stress in the g-direction in the foundation
Intermediate symbols as defined in the text

[y

A general functional

General function associated with the functional X

A function of the deflection of the upper face of the
foundation, as defined in the text

Arbitary large positive number

Radius of relative stiffness

Total wheel-load in the Westergaard analysis
Maximum tensile stresses in the pavement slab for the
interior, edge and corner loading positions of the

Westergaard analysis
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Maximum deflection of the pavement slab for the interior,
edge and corner loading positions of the Vestergaard
analysis
Intermediate symbols of the Westergaard analysis, as
defined in the text
Deflection of the plate, according to the analysis of
Pister and Vestmann, which is expressed as a function of the
transverse displacement contributions: w(x,y),w'(x,y) and w

(x9Y)-

Boundary
Surface stresses in the x-,y- and z-directions
Specified values of px,gy,p8
Applied normal load intensity distribution on the upper
surface of the plate

Spacified values of ao’Bo et the surface

Specified value of LS at the surface

Bending moment per unit width in the n-direction

Twisting moment per unit width relative to the

n-and t-directions

Shearing forces per unit width in the n-direction
Specified value of bending moment per unit width in the
n-direction

Specified value of twisting moment per unit width relative

to the n-and t- directions
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Specified value of shearing force, per unit width in
the n-direction

General constants

Co-ordinates of the centre of the idealized cirailar
area of wheel contact

Co-ordinates of a data point in the area over which the
load intensity distribution is prescribed in the power
series representation

Number of data points x4,¥; (d=1,2, « « « & N)A
Functional equalling the sum of the squares of the

residuals R, at each data point xd,yd

d
Error in truncating the Chebyshev series expansion of a load
intensity distribution after mn terms

Approximation to p at the point {n,%) by the truncated
Chebyshev series of mn terms

Zero points of the Chebyshev arguments Tﬁ*(na) and Tﬁf(gﬁ)

where o and B are integer subscripts for each zero point

Angular variable form of na,£B

Integer subscripts
Polar co-ordinates with origin at the centre of the
idealized cirailar wheel contact area

Intermediate symbols, as defined in the text

Intermediate symbols, as defined in the text
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Yij Intermediate symbol, as defined in the text

e Number of simultaneous normal équations in the power
series representation of a load intensity distribution

A Matrix of elements, a8 g of the normal equations

B Vector.of constants, bs’ of the normal equations

G,F Intermediate matrices in the solution of the normal
equations and defined in the text with elements gt and ft

X General independent variable applicable to x and y

R Number of terms considered in the convergence of the

Bessel function of order one
Computation
f(x,y), . General functions of the independent variables x and y

fl(xoY))

fg(x’Y)
i, Subsceripts denoting the ijth term of a series

0139 dij ‘General coefficients of power series with subscripts i,]

myn Subscripts associated with the limit of the truncated

series describing the load intensity distribution p

Rl’Rz Radii of convergence of a series in the x- and y- directions
respectively
M M_ ,ijth coefficients of the series representing the

STRRLT

\'f

,dependent variables M&,M&,Vx,vy,wo,ﬂ and p respectively
Y
1)

V.
X4y
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oij ij?

pij

syt General integer subscripts

Q Number of simultaneous algebraic equations from the
power series solution to the boundary value problem

U3 Dimensionless co-ordinate system related to x,y by the
transforms 1 = x/a and £ = y/b

f(n) General function of the dimensionless variable 7,
expanded as a Chebyshev series

f'(n) Derivative of the function f(n) expressed as a Chebyshev
series

Ai General Chebyshev series coefficient of the expansion of
£(n)

&y General Chebyshev series coefficient of the expansion of
£'(n)

w "% %%, Symbols associated with the differentiated form of the
13 1

w N6 Chebyshev expansion of w_, as defined in the text
oij
Si(X) General truncated Fourier series expansion, with series

coefficients a8

£(x)

Vector of unknown power series coefficients of the

4 and bi’ which converges to the function

1%

dependent variables.
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Matrix of coefficients of the simultaneous algebraic
equations in the power series solution to the primary
boundary value problem.

Vector of constants of the simultaneous algebraic
equations

Intermediate symbols, as defined in the text

Row and column positions of an element 8. 4 of the
LX)

matrix A

Suffices of an unknown dependent series coefficient

Group symbols associated with the formation of the
matrix of coefficients of the system of algeﬁraic

simultaneous equations of the power series solution

Intermediate matrices in the solution of the algebraic
simultaneous equations, as defined in the téxt

Maximum and minimum principal stresses in the upper

surface of the sladb

Maximum and minimum principal strains in the upper surface
of the slab

Direction of the maximum principal stress and strain in tte

upper surface of the slab
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Intermediate symbol defined in the text
Displacement of the slab in the s-direction with the
effects of transverse compression neglected

Zxperimental

Maximum intensity of the load intensity distridbution

p applied to the experimental model
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APPENDIK B: PROGR/AMS TO DZTERIINE THE FUNCTIONS

DESCRIBING THE APELIED TRANSVERSE WHERL-LOAD

The following three computer programs are written in
order to calculate the coefficients of the power series, shifted
Chebyshev series and Fourier series, each of which describes
the load intensity distribution of an idealized cirailar wheel-
load applied to any point on the surface of a rectangular slab,
Each of these programs also calculates, from the resilting
series, the value of the load intensity at points over the

surface of the plate.

Wheel-Load Expressed as a Power Serles

begin library A0, A6,A14;

integer n,N,ee,number,tt,12,pp,qq;
real a,b,x0,y0,,kl,cl,pi;

comment 1;
open(20);open(70);copytext (20,70,[<>]) 5
as=read(20);b:=read(20) ;x0:=read(20) ;y0:=read(20);
c:=read(20) ;k1:=read(20)3c1:=read(20)jn:=read(20);
number :=read(20) ;pp:=read(20);qq:=read(20);
tti=read(20);
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pl:=3.141592654;N:=03ee:=(n+1)x(n+1);
begin real array p[1:ee],store[1:number,1:3],
xx,yyl1:tt];
procedure DATMAKER;
begin real FF,x,y,pl,ql,m,w;
procedure dodgy(X,Y,FUNCTION);
value X,Y,FUNCTION; real X,Y,FUNCTION;
begin N:=N+1;
store[N,1]:=X;
store[N,2]) :=Y;
store[N,3] :=FUNCTION;

end;

comment 2;
for xi=xC-2xc+kl,
x+kl while x<(x0+2xc-k1+0.0001) do
for yi=yU=2xct+ki,
y+k1 while y<(yU+2xc-k1+0.0001) do
begin FF:=1f ((x~-x0)/c)r2+((y-y0)/c)r2K1
then 1/(pixct2) else O;

dodgy(x,y,FF);
end;

comment 33
ql:=pl =kl jwi=x:=x0-p1l}
for x:i=x+pl while x<{a, a do
begin pl:=plxeljmi=x-wiw:=x;ql:=m/cljyi=y0-ql;
Repeat 1: for yi=y+ql while y<b do
begin 1f x<{2xc+x0 and y<{2Xc+yO
then goto Repeat 1;
dodgy(x,¥,0);q1:=qlxc}
end;
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1f x>2Xe+x0 or bd2xc+y0 then dodgy(x,b,0);
end;

comment 4;
ql:=pl:=kljwei=x:=xC-pl;
for x:=x+pl while x<a, a do
begin pli=pixcljm:=x-wiw:=x;ql:=m/cl3y:=y0O+ql;
Repeat 2: for y:=y-ql while y>0 do
begin if x{2xc+x0 and y>yO=-2Xc
then goto Repeat 23
dodgy(x,¥y,0)3q1 :=qlixcl;

end;
1f x>2xc+x0 or O<yU-2xc then dodgy(x,0,0);
end;

comment 5;
qli=pl i=kl jwi=x:=x0+pl;
for x:=x-pl while x>0, O do
begin pli=plxcljm:=w-x;wi=x3ql:=m/cl;y:=y0+ql;
Repeat 3: for y:=y-g1 while y>0 do
begin 1if x>x0-2Xc and y>yO-2Xc
then goto Repeat 3;
dodgy(x,¥,0)3q1:=qixel}
end; :
1f x<{x0-2%e or O<yU-2xe then dodgy(k,0,0);

end;

comment 6;
ql:=pl:=kljwi=x:=x0+pl}
for x:=x-pl while x>0, 0 do
begin pli=plxclimi=w=-x;w:=x;ql:=m/cly:=y0=-ql;
Repeat 4: for yi=y+ql while y<b do
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begin 1f x>x0-2Xc and y<{2Xc+yO
then goto Repeat 4;
dodgy(x,¥,0)5q1 :=qlxel}

end;
1f x<{x0=-2xc or bX2xct+yO then dodgy(x,b,0);
end;

end of DATMAKERj;

procedure NORMEQ(N,n,store);
value Nyn; integer N,nj; real array store;
begin integer pl,p2,11,33,4d4d,frf,kk,plf,pll,
pifk,pl11J,1f, Jk;
real array A[1:(n+1)x(n+1),1:(n+1)x(n+1)],
B[1:(n+1)x(n+1)];
procedure pos div(m,A,B);
value mjinteger mjarray A,B;
begin integer 1,J,k;
real procedure dot(a,b,ppp,qqaq);
value qqq; real a,b; integer prp,qqq;
begin real s; s:=03 '
for ppp:=1 step 1 until qqq do s:=s+axb;
dot:=
end dotj

comment 73
for 1:=1 step 1 until m do
begin Al1,1]}:=sqrt(Al1,1]
-dot(A[J,1112,1,5,1~1));
for J:=1+1 step 1 until m do
Al1,31:=(Al1,3]
~dot(Alk,1],Alk, 3],k,1-1))/Al1,1]

end;
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corment 8;
for 1:=1 step 1 until m do
Bl1]:=(B[1]-dot(Alk,1],B[k]),k,1-1))/Al1,1];

comment 93
for 1:=m step -1 until 1 do
B{1):=(B[1]-dot(Al1,m+1=k],Blm+1-k],k,m=1))
/Al1,1];
for 1:=1 step 1 until m do
pl1]:=B[1];

end of pos div;
pli=nt+1;p2:=p1 723
for kki:=1 step 1 until p2 do
begin for 11:=1 step 1 until p2 do
Alkk,11] :=0;
Blkk] :=0;

end;

comment 103
for 11:=0 step 1 until n do
begin pli:=pixii+i;
for JJ:=0 step 1 until n do
begin plij:=pli+JJ;
for £fi=0 step 1 until 11-1 do
begin plfi=pIXff+1§1fi=11+Lr;
for kk:=0 step 1 until n do
begin pl1fl:=plf+kk;Iki=JJ+kks
for dd:=1 step 1 until N do
Alpifk,plii]:=
(1f 1£=0 then 1 else storel[dd,1]71if)x
(1f Jk=0 then 1 else storeldd,2]tjk)+
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Alpifk,p113l;
end;
end;
Pri=113p1fe=pIXOr+lj1 . £i=1141F}
for kk:=0 step 1 until JJ do
begin plfk:=plf+kk;Jki=JJ+kk;
for dd:=1 step 1 until N do
Alpifk,plij]:=
(1f 1£=0 then 1 else store[dd,1]Tif)x
(1f Jk=0 then 1 else storeldad,2]1TJk)+

Alp1fk,pl1J];

comment 113
for ££:=0 step 1 until n do
begin plfi=pIxfi+l;
for 11:=0 gtep 1 until n do
begin plfk:=plf+kk;
for dd:=1 step 1 untll N do
Bl pifk]:=
(1f ££=0 then 1 else storeldd,1]1rf)x
(1f kk=O then 1 else store[dd,2]T kk)x
store([dqd,3]+B[p1fk];
end;
end;

pos div(p2,A,B);
end of NORMEQ;
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comment 12;
procedure POWERCOEFT;
begin integer £1,£2,f3;3real 1,J;
£1:=format([4snd]);f2:=format([2snd});
£3:=format([U4s-d.ddddddp-ndc]);
writetext(70,[[3c5s]1I[3s]1J[5s]COEFF[2c]]);
for 1:=0 step 1 until n do
for J:=0 step 1 until n do
begin write(70,£1,1);
write(70,£2,3);
write(70,£3,p[(n+1)x1+3+1]);
end; ’
end of POWERCOEFF;

comment 133
procedure POWERSURFACE;
begin integer £4,£5,6;
real ppl,pp2,qq1,9492,X,Y¥;
real procedure POWERPOINT(X,Y);
value X,¥;real X,Y;
begin real Pjinteger 1z,Jz;
P:=p[1];
for 1z:=1 step 1 until n do
P:m(YT1z)xp[1iz+1]+P;
for Jz:=1 step 1 until n do
Pi=(XTJz)Xpl (n+1)xJz+11+P;
for 1z:=1 step 1 until n do
for Jz:=1 step 1 until n do
Pi=(XT1zx¥TJz)xpl (n+1 )xiz+3z+1]+P;
POWERPOINT :=P;
end of POWERPOINT;
£h: =format(Lﬁsndd dd]),
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£5:=format([2sndd.dd]);
£6:=format([3s-ndd.dddddde]);
pp2:=a/pp; qq2:=b/qq; ppl :=a=-pp2+0. 0001 ;
aql :=b=-qq2+0,00013;
writetext (70, [[3c6s]1X[7s]¥[9s]LOAD[2¢c]]);
for x:=0,x+pp2 whille x<{ppl,a do
for y:=0,y+qq2 while y<qql,b do
begin write(T70,r4,x);
write(70,£5,y);
write(70,r6,POWERPOINT(x,y) )}
end;
for 12:=1 gtep 1 untll tt do
begin x:=xx[12]);y:=yy[12];
write(70,r4,x);
write(70,15,y);
write(70,£6, POWERPOINT(x,y));
eng;
end of POWERSURFACE;

comment 14;
for 12:=1 gstep 1 until tt do
begin xx[12]:=read(20);
yy[12] :=read(20);
end;

close(20);
for 12:=1 step 1 untilee do
pl12]:=03

DATMAKER;
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NORMEQ(N,n, store);
POWERCOEFF;
POWERSURFACE;
close(70);
end;
end
-

Wheel-Load Expressed as a Chebyshev Series

begin library AO0,A6,Al1L;

integer n,pp,qq,tt,1,J;
real a,b,c,x0,y0,pi;

comment 13
open(20) sopen(70) ;copytext(20,70,[<>]1);
ast=read(20);bs=read(20);x0:=read(20);y0:=read(20);
cs=read(20)jns=14read(20) jpp:=read(20);
qq:=read(20);tt:=read(20);pl:=3.141592654;

begin real array t{1:n,1:n],xx,yy[1:tt];
° procedure CHEBCOEFF;
begin integer ALPHA,BETA,f1,f2,f3;
real pis,ns,pit;
real array functco,Tstar[1:n,1:n],nalphali:n];

comment 23
real procedure THAT(I,J);

value I,J; integer I,J;
begin real tone;
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tone:=0;
for ALPHA:=0 step 1 until n-1 do
for BETA:=0 step 1 until n-1 do
tone :=functco[ ALPHA+1 ,BETA+1 ]X
Tstar[I+1,ALPHA+1 IxTstar[J+1,BETA+1 ]+tone;
THAT :=nsXtone}
end of THAT;

comment 33
pis:spi/(MXn);ns:=u/(nT2);p1t:=1/(p1ch2);
for ALPHA:=0 step 1 until n-1 do |
begin nalpha[ALPHA+1]:=(cos(pisx(2<ALPHA+1)
+0.5))12;,

Tstar[1,ALPHA+1]):=13

Tstar([2, ALPHA+1] t=2xnalphal ALPHA+1]-13

for 1:=2 step 1 until n-1 do

Tstar[i+1,ALPHA+1]:=(hxnalpha[ALPHAf1]-2)
xTstar(1,ALPHA+1]~Tstar[1-1,ALPHA+1];

end;

comment 43
for ALPHA:=0 step 1 until n-1 do
for BETA:=0 step 1 until n-1 do
functco[ ALPHA+1,BETA+1] :=1f ((axnalpha[ ALPHA
+1]=x0)12+(bXnalpha[BETA+1 ] =y0)12-cT2)
L0 then pit else O3

comment 53
t[1,1]:=0,25xTHAT(0,0);
for 1:=1 step 1 until n-1 do
t{1+1,1] :=0,5%THAT(1,0)3
for J:=1 step 1 until n-1 do
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t{1,3+1]:=0,5xTHAT(0, J);

for 1:=1 step 1 until n-1 do

for J:=1 step 1 until n-1 do
tl{1+1, J+1) :=THAT(4,3);

£1:=format ([4snd]);r2:=format([2snd]);
£3:=rormat([4s-d.ddddddp-ndc]);
writetext(70,[[3c5s])1[3s]J[5s]COEFF[2c]]);

comment 63

for 1:=0 step 1 until n-1 do

for J:=0 step 1 until n-1 do

begin write(70,f1,1);
write(70,£2,3);
write(70,£3,t{1+1,341]);

end;

end of CHEBCUEFF;

comment 7; _
procedure CHEBSURFACE;
begin integer k1,k2,f4,£5,£6;
real ppl,pp2,x,y,xt,qq1,q92,yt,5P;
real array ™[1:n,1:pp+1],Tel1:n,1:qq+1],
Tnn,Tee[1:n];
procedure TERM(X,K1,ARR);
value X,Kljreal Xjinteger Kijreal array ARR;
begin ARR[1,K1]:=1; ARR[2,K1]:=2xX~13;
for 1:=2 step 1 until n-1 do |
ARR[1+1,X1] :=(4xX-2)xARR[1,K1])-ARR[1~1,K1]};
end of TERM;
real procedure SUM(kk1,kk2)3
value kk1,kk2; integer kki,kk2;
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begin real F1;F1:=0;
for 1:=0 step 1 until n-1 do
for J:=0 step 1 until n-1 do
Fl:=t[ 141, J+1 IxTn[1+1,kk1 IxTe[ J+1,kk2]+F1;
SUM:=F13

end of SUM;

k1:=03;pp2:=a/pp;pp1 t=a~-pp2-+0.0001;
for x:=0,x+pp2 while x<{ppl,a do
begin ki1:=k1+13xt:=x/a}
TERM(xt,k1,Tn);
end;
k1:=03qq2:=b/qq;qql :=b-qq2+0.0001;
for y:=0,y+qq2 while y<qql,b do
begin kil:=ki+13yt:=y/b;
TERM(yt,k1,Te);
end;
k1:=03f4:=format ([4sndd.dd]);
£5:=format ([2sndd.dd]);
£6:=format ([3s-ndd.dddddde]);
writetext (70,[[3c6s]X[7s]1Y[9s]10AD[2c]]);
for x:=0,x+pp2 while x<{ppl,a do
begin ki1:=ki+13k2:=0;
for y:=0,y+qq2 while y<qql,b do
begin k2:=k241;
write(70,f4,x);
write(70,£5,y);
write(70,£6,SUM(k1,k2));
end;
end;
for k1:=1 step 1 until tt do
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begin xt:=xx[k1]/ajyt:=yylk1])/v;
Tnn[1]}:=Tee[1]:=1;
Tnn[2] :=2xxt=1;Tee[2] :=2xyt=1;
for 1:=2 step 1 until n-1 do
begin Tnn[1+1]:=(Uxxt-2)XTnn(1]-Tnn[1-113
Tee[14+1] t=(Uxyt-2)xTee[1]-Teel[1-1];
end;
SP:=0;}
for 1:=0 step 1 until n-1 do
for J:=0 step 1 until n-1 do
SPe=t[1+1, J+1IXTnn[1+1 IxTee[ J+1]+SP;
write(70,£4,xx[(k1]);
write(70,£5,yy[k1]);
write(70,6,SP);
end;
end of CHEBSURFACE;

comment 83
for 1:=1 step 1 until tt do
begin xx[1]:=read(20);
yyl1]:=read(20);
end;

close(20);
CHEBCOEFF 3
CHEBSURFACE;
close(70);
end;
end

>
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Wheel-Load Expressed as a Fourler Series

begin library AO,A6,A1l;

integer 1, J,n,pp,qq,tt,12;
real a,b,c,x0,y0,p1,x,y;

comment 13
open (20) jopen(70) jeopytext (20,70,[<>1);

as=read(20)jb:=read(20) ;x0:=read (20)3y0:=read(20)}
c:=read(20);n:=read(20) ;pp:=read(20);qq:=read(20);

tti=read(20);pi:=3.141592654;

begin real array LOAD[1:n+1,1:n+1],xx,yy[1:tt];
procedure FOURSERIES;S

begin integer £1,£2,£3; real as,bs,abec,X13,Eta3;

comment 23
real procedure BESSEL(X);
value X3 real X;
begin integer R,RR,RRR; real Q,QQ;
QQ:=Q:=X/23;R:=03RR:=RRR:=1}

Repeatt R:=R+1; RR:=RxRR; RRR:=(R+1)XRRR;QQ:=Q;
Qe=Q+( ((=~1)TR)x((X/2)1 (1+2xR) ) ) /(RR+RRR) ;
if (QQR-Q)/@>1.0p=12 then goto Repeat

else BESSEL:=Q;

end of BESSELj;

comment 33
real procedure FOURCOEFF(I,J,BESSEL);
integer I,J; real procedure BESSELj
begin real A,Bj;
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Bi=pixsqrt ((112)/as+(J12)/bs);

A:=abe/Bxcos (IxX13)xcos{ITXEta3)XBESSEL(BX¢ )

FOURCOEFF :=A}
end of FOURCOEFF;

as:=aT2;bs:=b12;abc :=8/(axbxe) ;X13:=pixx0}
Eta3:=pixy0;f1:=format([4snd]);
f2:=format([2snd]);
f3:=format([l4s~d.ddddddp=-ndec]);
writetext(70,[[3c5s)I[3s]3[5s]COEFF[2c]]);

comment 4;
LOAD[1,1]):=1/(axv);
write(70,£1,0);
write(70,r2,0);
write(70,£3,10AD{1,1]1);

comment 53
for J:=1 step 1 until n do
begin write(70,£1,0);
write(70,r2,J);
1L0oAD[ 1, J+1] :=(FOURCOEFF (0, J,BESSEL) ) /2;
write(70,£3,L0AD[1, J+1]);
end;

comment 63
for 1:=1 step 1 until n do
begin write(70,1,1);
write(70,£2,0);
LOAD[1+1,1] :=(FOURCOEFF(1,0,BESSEL) ) /23
write(70,£3,L0AD[1+1,1]);
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end;

for 1:=1 step 1 until n do

for J:=1 step 1 untll n do

begin write(70,£1,1);
write(70,r2,3);
LOAD[1+1, J+1] :=(FOURCCOEFF(1, J,BESSEL) )
write(70,£3,L0AD[1+1,3+1]);

end;

end of FOURSERIES;

comment 73

procedure FOURCHECKj
begin integer r4,r5,r6; real pp1,pr2,q9q92,4qq1}

real procedure FOURVALUE(X,Y);

value X,Y¥s; real X,Y;

begin real HH,X1,Y1;
HH:=03X1 :=pixX/a; Y1 :=pixY/b;
for 1:=0 step 1 until n do
for J:=0 step 1 until n do
HH:=HH+LOAD[ 141, J+1 Ixcos (1xX1)xcos (Jx¥1)};
FOURVALUE :=HH3

end of FOURVALUE;

fh:=format ([4sndd.dd]);r5:=format([2sndd.dd]);
f6:=format ([3s~-ndd.dddddde]);
PP2:=a/pp;qq2:=b/qq;pp1 t=a-pp2+0.0001;
qq1 :=b-qq2+0,0001}
writetext (70, [[3c6s]X[7s]¥[0s]10AD[2c]]);
for x:=0,x+pp2 while x<{ppl,a do
for y:=0,y+qq2 while y<qql,b do
begin write(70, f4,x),
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write(70,£5,¥);
write(70,£6,FOURVALUE(x,y));
end;
for 12:=1 step 1 until tt do
begin x:=xx[12];y:=yy[12];
write(70,£4,x);
write (70’ fSJY) H
write (70,6, FOURVALUE(X,y));
end;
end of FOURCHECK;

comment 83
for 1:=1 step 1 until tt do
begin xx[1]:=read(20);
yyl1]:=read(20);
ends;

close(20);
FOURSERIES
FOURCHECK;
close(70);
end;
end
o
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APPENDIX C: PROGRAMS FOR THE COMPUTATION OF PAVEMENT

STRESSES AND DEFORMATIONS

The following three computer programs are written in
order to calculate, in a rectangular slab resting on an elastic
foundation, the stresses,strains and deflections which result
from the application of a given load intensity distribution,
expressed in terms of a truncated power series, to the upper
surface of the slab. The mathematical model representing this
slab/foundation system is re-expressed in the form of a set of
simultaneous algebraic equations by the use of a power series
solution to this model. The first program sets up the simultaneous
algebraic equations and the second program solves these equations
for the coefficients of the power series which describe the unknown
stress resultants and weighted average displacement. The third
program determines stresses, strains and deflections in the
rectangular plate from the power series representaiion of the stress
resultants, weighted average displacement and the load intepsity

distribution,
Setting-up the Simultaneous Algebrailc Equations
begin library A0,A3,A6,A13,A14;

integer n,F, z;

real a:boh:muoEok;
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comment 13
open(20);open(10);charout(10,2);charout(10,83);
copytext(20,10,[<>]);charout(10,84);charout(10,2);

comment 23
at=read(20);b:=read(20);n:=read(20);h:=read(20);
mu:=read(20);E:=read(20);k:=read(20);

F:=5x(n+1)12+nt2;
begin real array R[1:F];
procedure DATPREP;
begin integer 1,J,rr,u,g,hl,move,1,r2;
real S,C,q4,T,e,f,U,V,TT,s,t,r,n;
real array Q[1:52];
integer array P[1:52,1:10]),B[1:6];

comment 3;
S:=E/(2x(1+mu) ) jd:=(1+26xkxh/(TOXE) ) 3
Ctm(149xlcxh/ (TOXEXA ) ) $ T :=6xamyu/ ( 5XhXE) 5
e:=12/(Exn13) jm:=12/(Sxh13) ;r:=6/(5xSxh);
Urme-(mt2xk/d) 3 Vi=muxe+(mt2xk/d) ;£ :=1+V/U3
8:=V/U; ¢ :=U-VT2/U;

comment 4;
B{1]:=0;B[2] :=(n+1)x(n+1)3B[3] :=2xB[2];
B[4]:=B[3]+n12;B([5] :=B[2]+B[4];B[6]:=B[2]+B[5];

f1:=format([ndd;]);

f2:=format ([-d.dddddddddddy-nd;])
for gi:=lstep 1 until 52 do

begin for hl:=1 step 1 until 10 do
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Qlgl:=0;
end;

comment 5;
P[2,1):=P[7,1]:=P[13,1]:=P[19,1]:=P[24,1]:=
P[25,1]:=P[29,1]:=P[30,1]:=P[32,1]:=P[34,1]:=
P[40,1]:=P[41,1]:=P[45,1]:=P[49,1] :=1; '
P[8,1]:=P[20,1]):=P[26,1]):=P[27,1]:=P[31,1]:=
P[33,1):=P[35,1]:=P[50,1]:=2;

comment 6;
for gi=1 step 1 until 52 do
P[g,2] :=P[g,4] :=n;
for g:=19 step 1 until 27 do
Plg,2] :=P(g,4] :=n=-13
P[38,2]:=P[39,2]:=P[30,4] :=P[31,4] :=n=1;
P[5,2]:=P[15,2]:=P[6,4] :=P[14,4] :=n-2;

comment 73
P[4,3]):=P[11,3]):=P[16,3]):=P[21,3]:=P[24,3]:=
P[26,3):=P[32,3]):=P[33,3]):=P[37,3]:=P[38,3]:=
P[40,3):=P[42,3]:=P[47,3]:=P[51,3]:=1;
P[17,3]):=P[22,3] :=P[25,3]) :=P[27,3] :=P[39,3]:=
P[41s3]==P[u3)3]=‘P{52:3]==2;

comment 8;
P[2,5]:=P[7,5]):=P[13,5] :=P[19,5]:=P[24,5] :=
P[25,5]:=P[29,5] :=P[30,5] :=P[32,5] :=P[34,5]:=
P[40,5):=P[41,5] :=P[45,5]) :=P[49,5] :=-1}
P[8,5] :=P[20,5] :=P[26,5] :=P[27,5] :=P[31,5] :=
P[33,5]:=P[35,5]:=P[50,5] :==2;
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P[21,5]):=P[22,5] :=P[23,5] :=1}
P[5’5]==P[15:5]3=25

comment 93
P[4,6]:=P[11,6]:=P[16,6]:=P[21,6]:=P[24,6]:=
P[26’6]=’P[32:6]3=P[33’6]:=P[37:6]3=P[38:6]3=
P[40,6]):=P[42,6] :=P[47,6]):=P[51,6]:==1;
P[1706]3=P[22:6]==P[25:6]:EP[27:6]:=P[39:6]3=
P[41,6]):=P[43,6]:=P[52,6] :==2;
P[19,6] :=mP[20,6] :=P[23,6]:=13
P[6,6) :=P[14,6] :=2;

comment 10;
for gi:=1 step 1 until 52 do
Plg,7]:=P[g,9] :=n;
for g:=19 step 1 until 27 do
P[S:7]:-n—1;
P[2n99]:‘P[25:9]3=P[26:9]3=P[27:9]:=P[30:9]3=
P[3109]3-P(32:9]:=P[33:9]3=P[38:9]:=P[39:9]3=
P(40,9] :=P[41,9]) :=n-1;

comment 11;
for g:=1 step 1 until 8 do
begin P[g,8]:=B[1];
P[g+9:8]==B[2]§
P(g+18,8]:=B[3];
Pg+27,8) :=B[4];
P[g+35,8]:=B[5];
P[g+b3,8]:=B[6];
ends
P(9,8):=B[1]3P[18,8]:=B[2]3P[27,8]:=B[3];
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P[52,8]:=B[6];

comment 123
P[1,10]):=P[2,10]:=P[12,10]:=P[13,10] :=
P[19,10]:=P[20,10]):=P[34,10]:=P[35,10]:
P[44,10):=P[45,10]:=B[1];
P[3,10]:=P[4,10]:=P[10,10]:=P[11,10]:=
P[21,10] :=P[22,10]) :=P[42,10] :=P[43,10] :=
P[U46,10C]) :=P[UT7,10]:=B[2];

P[24,10] :=P[25,10] :=P[26,10] :=P[27,10] :=
P(30,10]):=P[31,10]:=P[32,10]):=P[33,10]):=
P[38,10]):=P[39,10] :=P[40,10] :=P[41,10]:=B[3];
P[7,10):=P[8,10] :=P[28,10] :=P[29,10] :=
P[49,10] :=P[50,10] :=B[ 4]}
P[16,10]):=P[17,10]):=P[36,10]:=P[37,10]:
P[51,10]):=P[52,10]:=B[5];

P[5,10]) :=P[6,10] :=P[9,10] :=P[14,10] :=
P[15,10] :=P[18,10] :=P[23,10]:=P[48,10] :=B[6];

comment 13;
Q7] :=-axt;Q[8]:=Q[17}:=t3Q[9] :=Q[18] :=-Tx
kx£/d;Q[16] :=m=bxt ;Q[24] s=axbxm;Q[25] t==ax m;
Q[26] :==bxm3Q[27] :=m;Q[34] :=-a3Q[35] :=
Q[43] :=1;Q[42] :==b3Q[48] :=k/d;Q[49] s==ax
KXT/d;Q[50] :=Q[52] :=kXT/d;Q[51] :==bXUXT/d;

comment 14;
TT:=0;
for g:=1 step 1 until 52 do
E(P[S:E]"P[gol ] )2_0 and (Plg,4]-P[g,3] )20 then
TT3=(P[8,2]-P[3,1]+1)X(P[g,ﬂ]-P[g,3]+1)+TT;
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comment 15;
for z:=1 step 1 until (n+1)x(n+1) do
begin R[z]:=R[z+B[2]] :=+TXCxfXR[z]};
R(z+B[6]] :=-R[2]/(Txr);
end;

begin integer array NUM[1:2],BB[1:2,1:TT];
real array BBB[1:TT];

comment 163
procedure varcoeff(VAR,G);
value G; integer G; real VAR;
begin for 1:=P[G,1] step 1 until P[G,2] do
for §:=P[G,3] step 1 until P[G,4] do
begin rr:=(P[Q,7]+1)x1+3+1+P[G,8];
u:=(P[G,9]+1)x(1+P[G,5])+J
+P[G,6]+1+P[G,10];
move i=move+tl;
BB[1,move] :=rr;
BB[2,move] 1=u;
BBB[move] :=VAR;

end;
end of varcoeff;

move =0}
NUM[1] :=F3NUM[2] : =TT}

comment 17;
for g:=7,8,9,16,17,18,24,25,26,27,34,35, 42,
43,48,49,50,51,52 do varcoefrr(Qlgl,g)s



comment 18;
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varcoeff(rxax(1+1),1);
varcoeff(-rx(1+1),2);
varcoeff (sxrxbx(J+1),3);
varcoeff(=-sxrx(3+1),4);
varcoeff(=-(1+1)x(1+2),5);
varcoeff(-sx(J+1)x(J+2),6);
varcoeff(rxox(J+1),10);
varcoeff(=-rx(J+1),11);
varcoeff(sxrxax(1+1),12);
varcoeff(-sxrx(1+1),13);
varcoeff(=-(J+1)x(J+2),14);
varcoeff(-sx(1+1)x(1+2),15);
varcoeff(=-rxax(J+1),19);
varcoeff(rx(J+1),20);
varcoeff(=-rxbx(1+1),21);
varcoeff(rx(1+1),22);
varcoeff(2x(1+1)x(J+1),23);
varcoeff(ax(1+1),28);
varcoeff(=-(1+1),29);
varcoeff(axbx(J+1),30);
varcoeff(~-bx(J+1),31);
varcoeff(=-ax(J+1),32);
varcoeff((3+1),33);
varcoeff(bx(J+1),36);
varcoeff(~(J+1),37);
varcoeff(axbx(1+1),38);
varcoeff(~-ax(1+1),39);
varcoeff(-bx(1+1),40);
varcoeff((1+1),41);
varcoeff(-ax(1+1),44);
varcoeff((1+1),45);
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varcoeff(-bx(J+1),46);
varcoeff((J+1),47);

comment 19;
for z:=1 step 1 until 2 do
output(10,NUM[z]);
for z:=1 step 1 until F do
output(10,R[z]);
for z:=1 step 1 until TT do
begin write(10,£1,BB[1,z]);

write(10,£1,BB[2,2]);

end;
for z:=1 step 1 until TT do
write(10,£2,BBB[z]);
charout(10,61);

end;
end of DATPREP;

comment 20;
for z:=1 step 1 until (n+1)x(n+1) do
R[z] :=mread(20);

close(20);
DATPREP;
close(10);
end;
end
-+
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Solving the Simultaneous Algebraic Equations

begin library AO,A6,Al1l;
integer 2,s1,s52,Q,TT;

comment 1;
open(20);open(70);copytext(20,70,1<>1);
Z:mpread(20);TT :=read(20);

begin real array R,H[1:2],BBB[1:TT],
cCl1:2x(Z2+1)+2];
integer array BB[1:2,1:TT];

comment 2%
procedure symdiv(m,A,B);
value mj integer m; array A,Bj
begin integer 1, J,k;
boolean array d[1:m];
real procedure dot(a,b,p,q);
value gqj real a,b; integer p,q;
begin real s3 s:=0;
for p:=1 step 1 until q do s:=s+axb;
dot :=s
end dot;
for 1:=1 step 1 until m do
begin real w;
wimA[14(1-1)x1+2)=dot(A[ J+(1-1)x142]12,
1f d[J] then -1 else 1,3,1-1);
d[1] :=w<0;
Al1+4(1-1)x142]) s=sqrt(Lf d[1] then -w else w);
for J:=1+1 step 1 until m do




comment
e T )

comment
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A[1+(3=1)x3+2] :=(A[1+(J=1)x$+2]
-dot(1f d[k] then -A[k+(1-1)x1+2]
else Alk+(1-1)x142],A[k+(3-1)xI+2],
k,1=1))/(4f a[1] then -A[1+(1-1)x1+2]
else A[1+(1-1)x1+42]);
end;
for 1:=1 step 1 until m do
Bl1]:=(B[1]=dot(A[k+(1-1)x1+2],1f d[k]
then -B[k] else B[kl,k,1-1))/(if d[1] then
-A{1+(1~1)x142] else A[1+(1-1)x1+2]);
for 1:=m step -1 until 1 do
Bl1):=(B[1] -dot(A[1+(m-k)x(m+1-k)+2],
Blm+1-k],k,m=1))/A[1+(1-1)x142];
end of symdivj;

35

for s1:=1 step 1 until Z do

R[81]:=1.0p10xread(20);

for sl:=1 step 1 until TT do

begin BB[1,s1]:=read(20);
BB[2,s81]:=read(20);

end;

for sl:=1 step 1 until TT do

BBB[s1] :=1,0510xread(20);

close(20);
for sl:=1 step 1 until Zx(Z+1)+2 do CC[s1]:=0;

4;
for
for

ram———

81:=l step 1 until T7T do
82:=s1 gstep 1 until TT do
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begin 1f BB[1,s81]=BB[1,s2] then
begin Q:=if BB[2,s2]>BB[2,51]
then BB[2,s1]+(BB[2,52]~1)xBB[2,52]+2
else BB[2,s2)+(BB[2,s1]-1)xBB[2,51]+2;
cC[Q]:=BBB[s1]xBEB[s2]+CC[Q]};

for sl:m=1 step 1 until 2 do H[s1]:=0;

corment 5;

for sl:=1 step 1 until TT do
H[BB[2,s1]]:=BBB[s1]xR[BB[1,s1]]1+H[BB[2,581]];

symdiv(Z,CC,H); °

comment 6;
for sl1:=1 step | until Z do
output(70,H[s1]);
close(70);

end;

end
>

Determination of Stresses, Strains and Deflections

begin library AO,A6,A14;

integer n,F,tt,pp,qq,N,pd;
real h,a,b,mu,E,k,x,y,8,0,T}




comment 13
open(20);0pen(70);copytext(20,70,[<>]1);
as=read(20);b:=read(20);h:=read(20) ;mu:=read(20);
E:=read(20);k:=read(20);n:=read(20);pp:=read(20);

qq:=read(20)jtt:=read(20);

g:=(1+26x1oh/(TUXE) ) 3 T :=6xmu/ ( SXhXE) 3
D:=Oxh/(TOXE) jFim(n+1 )x(nt+1 ) x44n12;N:=(n+1)12;
begin real array kk[1:F],xx,yy[1:tt];
procedure POWERSURFACE; |
begin integer £9,110; real ppl,pp2,qq1,qq2;
procedure POWERPOINT(X,Y);
value X,Y; real X,Y;
begin real P,W,WL,Mx,My,H,phi,sigma x,
sigma y,tor xy,fmax,fmin;

integer p,q,sks;

comment 23
PimW:i=Mx:mMy:=Hi=O}
Pimkk[1]3Wimkic[N+1] ;Mx:=kk[2xN+1];
My smkie[ 3xN+1] s Himkke[ 4xN+11;
for q:=1 step 1 until n do
begin sks:=q+13P:=(¥Y1q)xkk[sks]+P;
sks imgks+NjW:i=(YTq)xkk[sks]+W;
sks ;msk3+N;Mx:=(YTq)xkk([sks ]+Mx;
sks:msks+NyMy :=(¥YTq)Xkk[sks ]+My;
end;
for q:=1 step 1 until nel do
begin sks:=q+1+Nx4;H:=(¥1q)xkk[sks ]+H;
end;
for p:=1 step 1 until n do
begin sks:=(nt+1)xp+!;P:=(XTp)xkk[sks]+P;




comment 33

comment 4;

comment 5;
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sks i=sks+N3W:=(XTp)xkk[sks]+W;
sks :=sks+N3Mx:=(X1p)xkk([sks ]+Mx;
sks s=sks+N;My:=(XTp)xkk[sks ] +My;
ends
for p:=1 step 1 until n-1 do
begin sks:=nxp+l+Nx4;H:=(XTp)Xkk[sks ]+H;
end;
for p:=1 step 1 until n do
for q:=1 step 1 until n do
begin
sks t=(n+1)xp+q+l jP:=(XTpx¥Tq)Xkk[sks ] +P;
sks i=sks+N3Wes(XTpXYTq ) Xkk[sks ]+W;
sks :=sks+N;Mx:=(XTpxY¥Tq)xXkk[sks ]+Mx;
sks t=sks+NjMy::=(XTpXYTq)Xkk[sks ] +My;
end;
for p:=1 step 1 until n-1 do
for q:=1 step 1 until n-1 do
begin ‘
8ks s=nXp+q+1+Nx4;H:=(XTpx¥Tq ) Xkk[ sks ] +H;
end;
Mx:=MxX(axX=-X12) s My :=Myx(bxY-Y12);

WLga(w-Tx(Mx+My)+DxP)/ss

sigma x:=6xMx/hT23sigma y:=6xMy/nh12;
tor xy:=6x(Hx(axX-X12)x(bxX¥-¥12))/n12;

fmin:=(sigma x+sigma y)/2
~sqrt(((sigma x-sigma y)/2)12+tor xyt2);



comment 63
A ————————

next:
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fmax:=(sigma x+sigma y)/2
+sqrt(((sigma x-sigma y)/2)T2+tor xy12);
writetext(70,[[2c]]);
write(70,£10,X);:
write(70,£10,Y);
write(70,£9,P);
write(70,£9,W);
write(70,£9,WL);
write(70,£9, fmax);
write(70,£9,fmin);
write(70,£9, (fmax-muxfmin)/E);
write(70,£9, (fmin-muxfmax)/E);

if abs(sigma x=- sigma y)<1.0p-20

then Dbegin writetext(70,[[13s]]);
goto next;
end;
phi'=(arctan((2xtor xy)/(sigma x-sigma y)))
x45/1. 57083
phi:=1f(sigma x-sigma y)>0 then phi
else 90+phij;

write(70, 9, 'phi);

end of POWERPOINT;

£9:=format([s-d.dddddp-nd]);
£10:=format([s-ndd.d]);
rp2:=a/pp3qaq2:=b/qq; ppl :=(a=pp2+0.0001);
ql:=(b-qq2+0.,0001) 3
writetext(70,[[4c5s]CO-0ORDS[ 7s ] LOAD[8s ] PLATE
[6s] INTERFACE[ 55 ]MAXIMUM[ 65 ]MINIMUM[ 65 ]
MAXIMUM[6s JMINIMUM[5s ] PRINCIP [e5s]X[6s]
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¥[3s] INTENSITY[4s ] DEFLECTION[3s ] DEFLECTION([4s}
STRESS[7s ] STRESS[ 7s ] STRAIN[7s JSTRAIN[6s]
DIRECTION[c]]);

comment T3
for x:=0,x+pp2 while x<ppl,a do
for y:=0,y+qq2 while y<qql,b do
POWERPOINT(x,y);

comment 8;
for pd:=1 step 1 until tt do

begin x:=xx[pd]; y:=yylpdl;
POWERPOINT(x,y);

end;

end of POWERSURFACE;

comment 9;
R ——————————

for pd:=1 step | until F do
kk([pd] :=read(20);

comment 10;
for pd:=1 step 1 until tt do
begin xx[pd]:=read(20);
yvlpd] :=read(20);
end;

close(20);
POWERSURFACE
close(70);
end;
end
S



