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Abstract

In this thesis the problem of distributed detection, localization, and estimation 
(DDLE) of a stationary target in a fusion center (FC) based wireless sensor net­
work (WSN) is considered. The communication process is subject to time-critical 
operation, restricted power and bandwidth (BW) resources operating over a shared 
communication channel suffering from Rayleigh fading and phase noise. A novel al­
gorithm is proposed to solve the DDLE problem consisting of two dependent stages: 
distributed detection and distributed estimation. The WSN performs distributed 
detection first and based on the global detection decision the distributed estimation 
stage is performed. The communication between the SNs and the FC occurs over a 
shared channel via a slotted Aloha MAC protocol to conserve BW.

In distributed detection, hard decision fusion is adopted, using the counting 
rule (CR), and sensor censoring in order to save power and BW. The effect of 
Rayleigh fading on distributed detection is also considered and accounted for by 
using distributed diversity combining techniques where the diversity combining is 
among the sensor nodes (SNs) in lieu of having the processing done at the FC. 
Two distributed techniques are proposed: the distributed maximum ratio combining 
(dMRC) and the distributed Equal Gain Combining (dEGC). Both techniques show 
superior detection performance when compared to conventional diversity combining 
procedures that take place at the FC.

In distributed estimation, the segmented distributed localization and estima­
tion (SDLE) framework is proposed. The SDLE enables efficient power and BW 
processing. The SDLE hinges on the idea of introducing intermediate parameters 
that are estimated locally by the SNs and transmitted to the FC instead of the 
actual measurements. This concept decouples the main problem into a simpler set 
of local estimation problems solved at the SNs and a global estimation problem
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solved at the FC. Two algorithms are proposed for solving the local problem: a 
nonlinear least squares (NLS) algorithm using the variable projection (VP) method 
and a simpler gird search (GS) method. Also, Four algorithms are proposed to solve 
the global problem: NLS, GS, hyperspherical intersection method (HSI), and robust 
hyperspherical intersection (RHSI) method. Thus, the SDLE can be solved through 
local and global algorithm combinations. Five combinations are tied: NLS2 (NLS- 
NLS), NLS-HSI, NLS-RHSI, GS2, and GS-NLS. It turns out that the last algorithm 
combination delivers the best localization and estimation performance. In fact, the 
target can be localized with less than one meter error.

The SNs send their local estimates to the FC over a shared channel using the 
slotted-Aloha MAC protocol, which suits WSNs since it requires only one channel. 
However, Aloha is known for its relatively high medium access or contention de­
lay given the medium access probability is poorly chosen. This fact significantly 
hinders the time-critical operation of the system. Hence, multi-packet reception 
(MPR) is used with slotted Aloha protocol, in which several channels are used for 
contention. The contention delay is analyzed for slotted Aloha with and without 
MPR. More specifically, the mean and variance have been analytically computed 
and the contention delay distribution is approximated. Having theoretical expres­
sions for the contention delay statistics enables optimizing both the medium access 
probability and the number of MPR channels in order to strike a trade-off between 
delay performance and complexity.
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Chapter 1

Introduction

1.1 Motivation

Wireless sensor networks (WSNs) are considered one of the most important emerg­
ing technologies in the 21st century [1] and one of ten technologies that will change 
the world [2]. WSNs are envisioned to be composed of cheap, smart devices with 
multiple on-board sensors that are deployed in large numbers and wirelessly net­
worked together. This endows the WSN with scalability, versatility, and flexibility. 
The sensor node (SN) simply consists of a transceiver, sensing device(s), power stor­
age (batteries usually), and a processor [3, 4]. This structure enables the WSN to 
be densely dispersed over a large geographically area in large numbers, thus provid­
ing deployment scalability and robustness to node failures. But limited on-board 
power restricts the system lifetime and communication BW. Cheap hardware also 
limits the computation ability. Furthermore, relying on wireless channels introduces 
reliability issues. Nevertheless, WSNs are used for a variety of applications [5] such 
as:

1. Environmental applications: Natural habitat monitoring of the Great 
Duck island using WSNs was reported in [6]. Under project SensorScope [7], 
a WSN was used for atmospheric monitoring of a mountainous area between 
Switzerland and Italy. In [8], WSNs were also used in monitoring, automating, 
and controlling an agricultural greenhouse. Volcanic eruptions were monitored 
using a WSN in central Ecuador [9].

2. Industrial applications: A WSN was instrumented in preventive equipment 
maintenance in [10] for a semiconductor plant and shipboard engine room.
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1.1. MOTIVATION
Bridges and tunnels were monitored using a large scale WSN deployment [11].

3. Civilian alarming applications: SensorScope was also used in a building 
monitoring system [12]. A landslide detection system based on a WSN was dis­
cussed in [13]. A real-time fire rescue application was presented in [14]. Border 
monitoring employing WSNs was investigated in [15] using the BorderSense 
system.

4. M ilitary applications: One of the earliest implementation of a WSN in a 
military application was in the SensIT project [16] for target detection and 
tracking. Another military surveillance system using a WSN was carried out in 
[17] to detect and track enemy vehicles using 70 MICA2 nodes [18]. Similarly, 
a WSN system for multi-target tracking was presented in [19] using 557 Trio 
motes [20]. Even larger WSN deployment of over 1000 SNs was introduced in 
the ExScal project [21], which was derived from an earlier field demonstration 
[22]. Sniper detection based WSN was proposed in [23, 24], which was based 
on the work in [25]. The VigilNet project [?] also took on the task of imple­
menting real-time tracking using WSNs, where the detection and classification 
algorithms were based on [26].

The above applications can be sorted into two general types: monitoring and surveil­
lance. In the former, WSNs are used to gather information about the surrounding 
environment and send it to a data sink. There, the main purpose is to maintain 
a satisfactory packet delivery rate at the sink while preserving a sufficient system 
lifetime. Thus the WSN is designed as a distributed data acquisition system with 
appropriate medium access control (MAC) [27] and routing protocols [28] in order to 
achieve the desired packet delivery rate with limited power and BW budget. Thus 
the emphasis in monitoring is on the communication side of the network. Whereas 
in surveillance WSN, the main objective is to detect the presence of any targets, 
track their location, and classify their type (i.e., person, vehicle, or animal) within a 
specific time constraint (e.g., before the target leaves the designated area of interest) 
[29, 30]. Hence, both signal processing and communication should be considered in 
the system design, which is more challenging because the signal processing algo­
rithms must be adapted to the restricted resources available. Note however, that 
target tracking requires repeated localization and the classification requires esti­
mation of the target’s attributes which are checked against a predetermined profile. 
Therefore, we will focus on the localization and estimation operations in surveillance 
applications.

An illustrative example of the surveillance application would be using WSNs to 
guard and monitor gas pipelines. For example the gas pipeline carrying the Egyptian
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1.1. MOTIVATION
gas to Jordan through the Sinai desert. However, this pipeline has been bombed 
more than fifteen times since 2011 [31]. It is virtually impossible to efficiently guard 
this line using fences, manned patrols, or even surveillance cameras. For instance, 
constructing fences around the pipeline is highly expensive since the pipeline extends 
over very long distances. Whereas manned patrols cannot provide around the clock 
security. Surveillance cameras on the other hand, require infrastructure to provide 
power and communication for the system, which is significantly challenging in harsh 
environments such as deserts. In such situation however, WSNs provide an efficient 
reasonable solution, since they can be deployed over vast geographical areas to 
perform intruder detection and localization tasks via seamlessly forming ad-hoc 
networks, and sustaining themselves via on-board batteries or energy harvesting. 
However, it is still required to have a series of base stations located far away from 
the network to act as fusion centers to cover the whole area of interest.

To appreciate the existing challenges in surveillance WSN, we take a deeper look 
into a local area covered by a single FC as shown in Fig. 1.1.1. When a target enters 
the sensing field, it generates a signature in one or more modalities (e.g., thermal, 
acoustic, magnetic, or a chemical trace). The SNs collect measurements from this 
physical phenomenon, process them, and then transmit this data wirelessly to the 
fusion center (FC) for target detection, localization, and estimation. Conventional 
centralized detection and estimation algorithms, in which all the data is processed 
at a single point in the network, do not conform with the WSN’s constraints and 
the real-time surveillance requirement. From a communication point of view, send­
ing all the data to the FC leads to excessive use of energy and bandwidth, both 
of which are scarce resources in WSNs. Moreover, such a set up will significantly 
burden the MAC protocol especially for large networks. In the case of deterministic 
MAC protocols (such as TDMA, FDMA, and CDMA) it would result in high com­
plexity due to the large time and frequency synchronization requirements. Hence 
using contention based MAC protocols (such as Aloha and CSMA) might be more 
resource efficient. However such protocols are known to introduce high delays, which 
could compromise the time critical operation of the WSN. Although other factors 
contribute to the overall delay like queuing and routing, we concentrate on the MAC 
delay here because it generally affects other elements in the network. For example, 
in queuing, the service rate of the queue is actually the successful medium access 
rate. The routing delay is actually the aggregation of the queuing and MAC delay 
in the case of multiple-hop network. From a signal processing point view however, 
the centralized approach requires high computational capacity. On the one hand, 
the wireless channels between the SNs and the FC need to be equalized. On the 
other hand, detection and estimation algorithms using a large amount of data are

3



1.1. M OTIVATION

rather complicated.

Physical

SN
- c P

Phenomenum ,  q  T Communication 
Channel

☆
Target

Figure 1.1.1: WSN system diagram.

Distributed processing is posed as ail efficient alternative in which the signal 
processing is distributed among the SN and the FC. There are two kinds, generally, 
of distributed processing: FC-based and Ad-hoc. In the former, the processing is 
divided between the SNs and the FC. While in the latter, there is no central point 
in the network, i.e., all the processing is done locally at the SNs. In both cases, 
distributed processing is more resource efficient because local processing reduces the 
amount of data disseminated in the network, which in turn leads to less power and 
BW expenditure.

In this thesis, we consider the problem of distributed detection, localization, 
and estimation (DDLE) of a stationary target in a FC-based WSN subjected to 
time-critical operation and restricted power and BW resources. We also consider 
transmission over a shared channel suffering from Rayleigh fading. To solve this 
problem, we propose a novel efficient modular DDLE algorithm in which the main 
detection and estimation problems are decoupled into simpler and cheaper local 
and global problems. The distributed detection and estimation are divided into 
separate tasks that are performed sequentially, i.e., the WSN performs distributed 
detection first and based on the global detection decision the distributed estimation 
is performed. In distributed detection, we adopt hard decision fusion and sensor 
censoring [32] in order to save power and BW. Moreover, using hard decisions facili­
tates the use of a shared channel for communication1. The effect of Rayleigh fading

1 This statement is thoroughly investigated in Chapter 2.
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1.2. LITERATURE OVERVIEW
on distributed detection is also considered and accounted for by using novel dis­
tributed diversity combining techniques. In distributed estimation, we propose the 
segmented distributed localization and estimation (SDLE) framework that enables 
efficient power and BW processing. The SDLE relies on the idea of introducing inter­
mediate parameters that are estimated locally by the SNs and transmitted to the FC 
instead of the actual measurements. The FC then uses the intermediate parameters 
to estimate the original target’s parameters. In order to transmit the intermediate 
estimates efficiently and with acceptable delay, we adopt a multiple-packet reception 
(MPR) slotted Aloha MAC protocol.

1.2 Literature Overview

Several interesting attempts to address this problem has been devised in the lit­
erature. However, most of the work addresses the detection and the estimation 
problems separately. The literature is abundant with theoretical work on dis­
tributed detection [33, 34, 35, 36, 37, 38, 39, 40, 41] and distributed estimation 
[42, 43, 44, 45, 46, 47, 48, 49, 50, 51]. However, the previous treatments tend to 
have used simplified assumptions about the target and the channel, such as a con­
stant target signal and an ideal channel. Therefore, we prefer to look at practical 
surveillance WSN systems in order to understand the actual problems and con­
straints facing such real-world implementations2.

In the VigilNet project [?], the real-time tracking problem was approached by 
dividing the system into several phases and minimizing the corresponding time of 
each phase to satisfy the overall real-time requirement. VigilNet adopts a hierar­
chical paradigm in which the the SNs group together and report to group leaders 
that also report back to a base station (BS). The classification algorithm there relies 
on the SNs sending a confidence vector to the group leader, which is statically cho­
sen. This confidence vector has confidence levels of detections from different sensing 
modalities such as acoustic, motion (using pyroelectric infra-red (PIR) sensors), and 
magnetic. The sensors samples are filtered and then fed to energy detectors (EDs) 
to compute the confidence vectors. The group leader then aggregates the confidence 
vectors from the SNs into a group-level confidence report that is in turn send to the 
BS where the ultimate classification takes place.

The ExScal project [21] also adopts a hierarchical topology. However, the net­
work is divided into Tier 1 consisting of XSM (Extreme Scale Mote) nodes respon­
sible for sensing and detection, Tier 2 XSS (Extreme Scale Stargate) nodes that

deployment problems, on the other had, were thoroughly discussed in [52, 53, 54].
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form the communication backbone, and Tier 3 node, which is the master operator 
or a BS. Tier 1 nodes employ simple signal processing techniques similar to the 
VigilNet case. The classification algorithm though, depends on the concept of field 
of influence that is actually the area around the target having detecting SNs. Dif­
ferent targets have a different field of influence, hence different number of detecting 
SNs. Therefore, the BS can classify a target based on the detection reports received 
from Tier 1 via Tier 2 nodes. Localization is performed via the centroid method 
however.

In contrast to VigilNet and ExScal, which use low end signal processing, the 
Urban sniper localization system [23, 24] employs more powerful signal processing 
like time-frequency analysis to extract the time of arrival (TOA) at each SNs. The 
TOAs then are sent to the BS, via multihop transmission, to be fused together 
by maximizing a consistency function appropriately defined to find the final sniper 
position. It is noteworthy though, that sophisticated hardware such as a digital 
signal processor (DSP) and field programmable gate array (FPGA) were used to 
implement the TOA processing in the SNs.

Two remarks can be drawn from the above projects. First, if no analytical 
signal model is specified, simple signal processing methods are used (e.g., energy 
detector or FFT) for local processing in the SNs. The loss of performance though, 
is compensated by the large numbers of SNs involved. Second, when the signal 
model is specified, more complex signal processing is needed, which leads to more 
complicated and expensive hardware used for local processing. This limits the use 
of SNs in large numbers to improve performance.

1.3 Thesis Proposal and Contributions

1.3.1 Proposal

In the light of the above conclusions about practical WSN implementations, we desire 
to have a sophisticated signal model that describes the spatio-temporal variation of 
the measured signal, while in the mean time keep the local (and global) signal 
processing as simple as possible in order to leverage the power of (SN) numbers in 
the WSN.
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Figure 1.3.1: Centralized Detection and Estimation.

Suppose there is a WSN with M SNs deployed in sensing field T  for surveillance 
as shown in Fig. 1.3.1. A target enters the sensing field at an arbitrary time and 
location. This target leaves a signature signal s(x.,t;0), which varies with space 
(x) and time (t ). The signature is characterized by a set of parameters compiled in 
vector 0 that includes the target’s location and entry time. The ith SN located at 
x, collects N  noisy measurements

fi[n\ -  s[x,.n;0] +  w,-[n] (1.3.1)
where w, [n] is the nth noise sample at the *th SN.

In contrast to conventional space-invariant models that are popular in the lit­
erature, such as the constant-plus-noise (s[n; 8} =  0) and the regression model 
(s[n;#[ =  H0), we adopt spatio-temporal signal models to better reflect practi­
cal scenarios. In fact, we discuss two signature models for targets in this thesis. The 
first is the power law, which is used in the distributed detection discussion since it 
emphasizes the spatial variation of the signal. The second model is the diffusion 
law [55], which is used in the distributed estimation discussion. The diffusion signal 
varies with space and time and is classified as a non-wave field [56], which is more 
general than the conventional sensor array models. However, the analysis in both 
distributed detection and estimation is fairly general and can be applied to different 
models as well.

Using fi[n]s for all i =  (),••• , M — 1 and n =  0, • • • , N — 1, it is desired to detect 
the presence of the target and estimate its parameters efficiently. In other words, 
we wish to test the following hypotheses:
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7ii ¡Target is present (1.3.2)
Ho : Target is NOT present (1.3.3)

and then find the target’s estimate (6) if the target is actually present. The con­
ventional approach,, as shown in Fig. 1.3.1, is to use the generalized likelihood ratio 
test (GLRT) [57] that requires finding the maximum likelihood estimate (MLE) of 
0, say 0Mle, by solving

0mle =  argm axi(F ,0;fti) (1.3.4)
0

where F =  (f0, fi, - •• ,fM-i) is an N  x M  matrix, f* =  (/¿[0], /¿[l], • • • ,/<[AT -  l])r is 
N  x 1 measurement vector from the ith SN, (-)r is the transpose operator, and 
¿(F, 0,7 ii)  is the likelihood function under the H\ hypothesis. The 0mle is then 
substituted into the likelihood ratio, i.e.,

Agltr = ¿(F, 0mle;^ i) (1.3.5)

The global detection decision is found by comparing the above with a specific 
threshold, say T, i.e.,

Jglrt =  ' 1,
0,

Aglrt >  T  
Aglrt <  Y.

(1.3.6)

Obviously, the GLRT leads to excessive use of power and BW because (F) 
needs to be sent to the FC that also causes large MAC delays. Furthermore, solving 
(1.3.4) is computationally demanding. However, such conditions do not suit WSNs 
operation.

In this thesis, we efficiently solve the DDLE problem by dividing the problem 
into distributed detection and distributed estimation that are dependently executed 
and then analytically evaluate the performance. The proposed DDLE system is 
shown in Fig. 1.3.2. In contrast to the conventional approach shown in Fig. 1.3.1, 
the detection is performed before the estimation in both local and global processing. 
This feature enables the WSN to save energy and BW. However, this efficiency comes 
with price of deviating from the optimal GLRT approach.
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Figure 1.3.2: Distributed detection, localization, and estimation (DDLE) block dia­
gram.

To understand our proposed algorithm, we turn to Fig. 1.3.3 that shows the 
proposed DDLE procedure. The algorithm starts with network initialization, the FC 
can send a known training sequence to the SNs to be used to perform the necessary 
channel estimation and synchronization [58], in addition to node localization [59]. 
Then distribution detection is performed by having the SNs sample the sensing 
medium and collect measurements periodically. Those measurements are used to 
perform local detection at the SN to come up with a local decision (/¿) at the ith 
SN. If the local decisions are positive (/, =  1), they are then sent to the FC over a 
shared channel where they are fused3 to compute the global decision, A, according 
to the counting rule [38], which is simple to implement and analyze. This approach 
has several advantages:

• It is power and BW efficient since it only sends the positive decision (a binary 
one) to the FC instead of the measurements.

• It circumvents the need to estimate 6 for detection purposes (in contrast to 
the GLRT), hence simplifying the local detector.

• Having local and global detection significantly reduces the false alarms and 
consequently saves the power and BW used in unnecessary estimation.

'’When different signals are sent over a shared channel to the same receiver, they are naturally 
mixed (fused) together. This fact was investigated and used in [(>()].
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If Ii =  0, the SNs doe not send their data to the FC. Similarly, if the global decision is 
negative, the FC signals the SNs to return to collecting data. However, if the global 
decision is positive (Iqd =  1), which asserts the presence of the target, the WSN 
moves on to distributed estimation. In this stage, local intermediate parameters 
(i?'s) are estimated at the SNs and then send to the FC where they are used to 
compute the desired estimate of 9. Upon finishing the estimation, the FC also 
signals the SNs to return to collecting measurements and hence restarting the whole 
algorithm. How often is the algorithm carried out is application dependent, e.g., 
if vehicle are expected to intrude into the sensing field, then the corresponding 
frequency should be such that the vehicle does not significantly change its location. 
This constraint enables the tracking of such targets. This paradigm also has its 
benefits:

•  It saves power and BW by sending a small number of intermediate parameters 
to the FC instead of the collected measurements.

•  It decouples the high dimensional MLE problem (1.3.4) into simpler local and 
global problems, which are solved at the SNs and FC respectively.

The local estimates (i9|s) are transmitted to the FC over a shared channel as well, 
in which the MPR slotted Aloha MAC is adopted to ensure that they are received, 
in addition to having network scalability, transceiver simplicity, and resource effi­
ciency4. Moreover, since the local parameters occupy a smaller bandwidth, powerful 
coding can be used to improve error correction at the FC. It is assumed however, 
that the local estimates are perfectly received at the FC.

The performance of the proposed DDLE algorithm is analyzed using stochastic 
geometry tools [61]. For distributed detection, the receiver operation curve (ROC) 
and the probability of error are characterized. Whereas in the distributed estimation 
case, the Cramer Rao lower bound (CRLB) is analytically derived and evaluated. 
The contention delay is also statistically analyzed.

1.3.2 Contributions

In addition to the previously proposed algorithm, we make the following contribu­
tions in distributed detection, distributed estimation, and contention delay analy-

4Note that in contrast to sending the local detection decisions (7,’s), which are always the same 
signal, sending the local estimates requires arbitration of the communication channel for a 
single transmitting SN. Hence, a MAC protocol is indeed needed.
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Figure 1.3.3: Distributed Detection, Localization and Estimation (DDLE) algo­
rithm.
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1.3.2.1 Distributed Detection

1. Using a stochastic geometry framework, the spatial distribution of the detec­
tion SNs has been characterized in theorems 2.1 and 2.2.

2. Using the above theorems we have found the theoretical performance of the 
optimal Chair-Varshney rule [62] and the counting rule [37, 38].

3. When distributed detection occurs over a shared Rayleigh fading channel, 
we have proposed and statistically analyzed the performance of the following 
distributed diversity combining algorithms:

a) Distributed Maximum Ratio Combining (dMRC).
b) Distributed Equal Gain Combining (dEGC).

that are shown to have better performance when compared to other rules in 
the literature.

1.3.2.2 Distributed Estimation

1. A SDLE framework has been introduced by using intermediate parameters. 
The original estimation problem was decoupled into a simpler more resource 
efficient set of local estimation problems and a global estimation problem, 
which both are nonlinear least squares (NLS). The following algorithms have 
been proposed to solve the local estimation problem:

a) Variable projection (VP) method.
b) Grid search (GS), which can be implemented as a simple correlator.

The following algorithms have been suggested to solve the global estimation 
problem by:

a) Global VP,
b) Global GS,
c) Hyperspherical intersection (HSI) method,
d) Robust hyperspherical intersection (RIISI) method.

We try out five combinations, NLS2, NLS-IISI, NLS-RIISI, GS2, and GS-NLS. 
It turns out that the last algorithm combination delivers the best localization 
and estimation performance.
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2. Using stochastic geometry, the CRLB was analytically computed. This ex­

pression is general and can be used for different signal models.

1.3.2.3 Contention Delay

We have defined the contention delay in DDLE WSN and statistically characterized 
the contention delay in MPR slotted-Aloha used for distributed detection. More 
specifically:

1. The mean and variance have been analytically computed for a single channel 
slotted-Aloha, via stochastic geometry tools and results from Chapter 2.

2. Using the above results, the contention delay distribution for a single channel 
slotted-Aloha has been approximated by a negative binomial distribution via 
moment matching.

3. The contention delay in MPR slotted-Aloha was also characterized by using 
order statistics and results from the single channel case.

Those theoretical results have then been used to find the optimal medium access 
probability and number of MPR channels, which minimizes the delay statistics.

1.3.2.4 Publications

Portions of this thesis have been presented at the:
•  2010 IEEE Seventh International Symposium on Wireless Communication Sys­

tems (ISWCS) [63].
•  2011 IEEE International Conference on Acoustics Speech and Signal Process­

ing (ICASSP) [64].
•  2011 IEEE International Workshop on Signal Processing Advances in Wireless 

Communications (SPAWC) [65].
•  2012 IEEE wireless advanced (WiAd) [66].

Furthermore, we have submitted to the:
• IEEE Transaction on Signal Processing [67].
•  IEEE Transaction on Vehicular Technology [68].
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1.4 Preliminaries

1.4.1 Notation

We use upper case to denote a random variable (RV) and the lower case for its 
realization, except for the indexes i, j, k and n, and number of samples N. Bold 
variables represent vectors, e.g., x  is a deterministic vector whereas X stands for 
a random vector. Rrf stands for a d-dimensional space. The vector transpose is 
denoted by the superscript (-)T. The vector norm used here is the Euclidean norm 
||-|| unless stated otherwise. The probability distribution for a RV A is denoted 
by pa(o) . Whereas P (D) is the probability of event B. Af(/i,<72) is a Gaussian 
distribution with mean // and variance a 2. Poi(A) refers to the Poisson distribution 
with mean A, i.e.,

Similarly, Gamma(-, •), Geo(-) and NB (•, •) refer to the Gamma, geometric, and 
negative binomial distributions respectively, are defined as:

where T(-) is the Gamma function.
The expectation and variance under the jth hypothesis are Ej[-] and var,[-] 

respectively. However, a different subscript might be used to explicitly refer to 
the RV over which the expectation is taken, e.g. E^[-], as will be clear from the 
context. Another use of upper and lower case, this time in the subscripts, is to 
indicate being local or global. For example, Pj and Pfa are the local detection and 
false alarm probabilities respectively, while Pd and Pfa are the global detection and 
false alarm probabilities respectively.

(1.4.1)
Geo(?) =  (1 -  g)‘ 9 (1.4.2)

(1.4.3)
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1.4.2 Stochastic Geometry

Stochastic geometry is a mathematical tool that is becoming popular in modeling 
wireless networks [69, 70]. Here we provide a brief introduction to stochastic geom­
etry. A more detailed discussion can be found in [61] and [71].

Stochastic geometry is mainly concerned with addressing point processes (PPs) 
and associated geometrical properties. A PP is the set of points {X*} random 
located in some space Rd of dimension d > 1, where X* is a RV that represents the 
location of the tth point. We are interested in the R2 plane here, so we restrict our 
attention to d =  2. $  is called simple if no two points occupy the same location. 
It is stationary if its statistical properties are unchanged after shifting. Similarly, 
$  is called isotropic if its properties are unchanged after rotation. An interesting 
PP class is the stationary Poisson point process (PPP) that is characterized by two 
main properties (informally stated):

1. For a closed subset T  C R2, the number of points in it follows a Poisson 
distribution.

2. The points in a PPP are independently scattered. In other words the number 
of points in disjoint sets are independent.

We restrict the discussion now to PPP, however it also applies to a general PP. 
A PPP can be marked as well, by attaching a certain attribute or mark to each 
point in the PPP forming a marked PPP (MPPP). For example, $ m =  {(X<, Mi)}, 
where Mi is the mark of the ith point. Those marks usually represent some relevant 
quantity, e.g. the channel coefficient of a communication link between a SN and the 
base station. Marks are usually RVs drawn from a certain distribution p \i{m )-

As with any stochastic process, we are interested in the moments of $ . The 
mean of the PP $  is defined for a certain subset5 T  as Efi^F")], which is the 
number of points in T. For an infinitesimally small F", the mean is called the 
intensity of 4>, which we denote as A. The intensity can be constant, which leads 
to a homogenous PPP or space varying (i.e., A(x) for an arbitrary location x 6 J )  
leading to an inhomogeneous PPP. Note that a homogenous PPP implies that the 
points are uniformly distributed in R2 in contrast to the inhomogeneous PPP. The 
second central moment of i>, on the other hand, is defined as E [4)2(F )]-E 2[4)(Jr)].

Let us define a positive function on the point process /(x )  for an arbitrary 
location x e $ .  Given that $  is a stationary MPPP, then using Campbell’s theorem

5Jr is an area in R2 and a volume in R3. For the general R®1 space, T  is a Borel set, which is a 
generalization of volume in higher dimensions.
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[70] we can get the mean and variance as

E E  /(x.)Xi£4>
var E  /(x.)

/  /  f(x)\(x.)pM(in)dxdmJr Jr2
/  /  f 2(x)\(x )pM(m)dxdm.Jr Jr2

(1.4.4)

(1.4.5)

Campbell’s theorem can also be used to find the mean and variance of a sta­
tionary PPP if we set PM(rn) to unity for all m  and /(X ) =  1(X), which is the 
indicator function of the PP locations, i.e., it takes unity value when X 6 $  and 
zero otherwise.

Finally, we discuss the thinning operation on $ . Thinning is actually the re­
moving of points from $  according to a certain regime. It can be deterministic or 
random. We are interested in the latter case here. In a random thinning, the point 
Xi is retained with probability P(Xj). If the thinning operation depends on the 
location of the point, then it is called dependent thinning, otherwise it is known as 
independent thinning.

1.4.3 Assumptions

Throughout the thesis we assume that the following assumptions hold:
•  The SNs locations are known to the FC.
•  The SNs are synchronized to the FC.
•  The channel states are perfectly estimated at the SNs.
•  Given the above assumptions, we also assume that the local estimates sent to 

the FC are received perfectly.
Those are plausible assumptions since the first can be satisfied in the network initial­
ization phase. The last two conditions can be fulfilled by using a periodic training 
sequence broadcast by the FC to all SNs.
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1.5 Thesis Outline

The rest of this thesis is dedicated to discussing the DDLE algorithm in Fig. 1.3.3, 
which is divided into the following operations:
0 ) Distributed detection.
(") Distributed estimation.
(Ill) Contention-based transmission.
Chapter 2 discusses the operation (I) in DDLE that involves distributed detection 
over a shared Rayleigh fading channel. The optimal hard decision fusion is ana­
lyzed first followed by the suboptimal counting rule. Both previous cases are under 
ideal parallel channels. Fusion rules over imperfect channels are then discussed and 
analyzed as well. This sets up the stage for the proposing and analyzing diversity 
combining techniques, dMRC and dEGC. These improve global detection, when 
compared to conventional diversity combining techniques.

Chapter 3 handles operation (II) that introduces the distributed localization and 
estimation of a diffusive target6. First, physical and statistical models for a diffusive 
target are presented. Then, the optimal distributed estimation is presented in the 
context of a random network modeled by a PPP. The CRLB is analytically found 
for the corresponding estimation problem using stochastic geometry. After that, the 
SDLE is suggested to efficiently implement distributed estimation, and five SDLE 
variants are presented based on the NLS, GS, IISI, and RIISI algorithms.

In Chapter 4 we investigate operation (III) of the DDLE that involves the 
medium access delay incurred at the FC to receive all the local estimates from the 
active SNs. The mean and variance of the contention delay are derived analytically 
using stochastic geometry tools. Then the statistical distribution is approximated 
by a negative binomial distribution, which is the discrete analog of the Gamma 
distribution. Note however, that even though the contention-based transmission is 
a part of the distributed estimation procedure, it is discussed before distribution 
estimation because it directly relies on the results provided by Chapter 2.

Finally, the thesis is concluded with Chapter 5 which contains conclusions and 
future work for the short and long terms.

6i.e., the target whose signature follows the diffusion law.
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Chapter 2

Distributed Detection over Rayleigh 
Fading Multiple Access Channel

2.1 Introduction

2.1.1 Motivation

WSNs are naturally suited for the task of target detection. On the one hand, 
the SNs are distributed geographically to monitor vast areas for any intrusion by 
adopting wireless communication. On the other hand, having multiple SNs sending 
information to the FC provides detection diversity, which significantly improves the 
detection performance. However, transmitting information over a wireless channel 
raises the issue of channel imperfections such as fading. Furthermore, the low cost 
SNs put stringent constraints on the power and bandwidth use. An efficient ap­
proach, to cope with resource scarcity, is having the SNs perform local detection 
first, and then send their decisions to the FC where those decisions are fused into 
the global decision about the target’s presence/absence. Conventionally, the local 
decisions are assumed to be sent over orthogonal channels. This assumption how­
ever, burdens the FC with the task of setting up an independent channel for each 
SN in the network, which can cause scalability issues if the network is large. Fur­
thermore, this chore gets more complicated when the number of SNs is unknown, 
which is usually the case in WSNs.

In this chapter, we will address the problem of distributed detection in WSNs, 
which is the highlighted section (I) in Fig. 2.1.1 in the DDLE algorithm. The main
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issues there are to perform energy and BW efficient decision fusion and overcome 
the effect of the fading channel on the transmission of the SNs decisions.

Figure 2.1.1: Distributed Detection, Localization and Estimation (DDLE) algo­
rithm. In this chapter, section (I) will be discussed.
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2.1.2 Related Work

There is a large body of literature studying the problem of decision fusion over ideal 
parallel access channels (PACs) [33, 34, 35, 36]. An optimum decision fusion rule over 
such a channel was derived in [62] and [72]. However both papers require knowledge 
of local probability of detection and false alarm for all SNs. Niu and Varshney 
[37, 38] relaxed the latter requirement leading to the suboptimal counting rule (CR), 
which is simply the count of positive local decisions. Scan statistics and a Bayesian 
framework were used in decision fusion in [73, 74]. Distributed detection in a noisy 
PAC was investigated in [41], where the local decisions are transmitted through 
binary symmetric channels to the FC. Decision fusion over coherent Rayleigh fading 
and noisy PACs was addressed in [75, 39]. Incoherent fading over PACs was studied 
in [76] for Rayleigh, Rician, and Nakagami cases. The authors there also consider 
“censoring” in their treatment [32], where a subset of SNs is allowed to relay their 
decisions to the FC according to some criteria. This method is used to save power 
and bandwidth in the WSN.

However, PACs suffer from scalability issues in several ways. Firstly, adding 
more SNs to the system is expected to improve detection performance because more 
information is used. However, adding more SNs implicitly adds more parallel chan­
nels that have their own noise, which ultimately limits the system performance, see 
Fig. 2 .1 .2 . Secondly, having a large number of dedicated channels leads to large com­
munication overhead and increased system complexity such as synchronization.

Hence, a multiple access channel (MAC) is proposed as an alternative because 
it is more resource efficient. Moreover, since all the SNs use the same channel, 
the communication noise is considerably less than the PACs case. From a signal 
processing point of view, a MAC can provide an array-processing gain since the 
receiver observes the aggregation of the transmitted signals. This is also known 
as in-channel fusion'(see Fig. 2.1.3), which is a general case of the source-channel 
matching property [77] for a coherent Gaussian channel. Ideally, if the received 
signals add up coherently, then the received signal’s signal to noise ratio (SNR) 
will dramatically increase as the number of SNs tend to infinity. This observation 
has been exploited in [78] for the type-based multiple access (TBMA) regime and 
extended to coherent fading channels in [79]. Note however, that an independent 
channel is needed for every type used. 1

1 In-channel fusion was used in distributed estimation in [60].
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F C

Incoherent Rayleigh and Rician fading MACs were considered in [80] where the 
authors suggested incoherent detection by using an ED. The authors showed that the 
error probability hits a floor even when increasing the number of SNs in the Rayleigh 
channel. To overcome this issue, the use of multiple antennas was suggested in [81]. 
Similarly, Diversity-MAC2 was proposed in [82], where several MACs are used to 
provide diversity. In each MAC though, incoherent detection is performed via an 
ED.

2.1.3 Chapter Contributions

In this chapter, we investigate distributed detection of a target with unknown pa­
rameters in a censored WSN suffering from an incoherent Rayleigh fading3 MAC. 
Interestingly, the above treatment of distributed detection takes a similar course as 
in data communication systems, where conventional diversity combining techniques 
(such as maximum ratio combining and equal gain combining) are suggested. Al­
though such an approach can tap into the vast literature of diversity combining, it

2We call it here centralized diversity combining (CDC) MAC.
3We refer to incoherent Rayleigh fading with random phase simply as Rayleigh fading.
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F C

requires that the FC has a more complicated receiver compared to other SNs. This 
leads to a heterogeneous network, which is not desirable due to cost and robust­
ness considerations. Hence, we take the next logical step of using precoding [83] to 
overcome the fading problem in distributed detection in WSNs. The performance 
of the discussed distributed detection algorithms is also analyzed using a stochastic 
geometry framework.

We gradually build up the discussion to reach the distributed diversity combin­
ing method. First, the optimal fusion rule over parallel access channels is discussed. 
By identifying its drawbacks, the counting rule is motivated here and is also con­
sidered over PACs. After that, distributed detection over MAC is shown to be 
more efficient than the PACs case. Hence, we discuss different channel assumptions 
starting with the ideal channel, then moving to the Gaussian MAC, and finally the 
Rayleigh fading MAC. In order to overcome the deterioration due to fading, the cen­
tralized diversity combining method [82] is revised. Finally, inspired by precoding, 
the simpler more efficient distributed diversity combining methods are suggested. 
We summarize our contributions in the following:

• We show that the detecting SNs under the alternative hypothesis form an 
inhomogeneous Cox PPP, whereas they form a homogeneous PPP under the 
null hypothesis. Consequently, the number of detecting SNs follows a Poisson 
mixture and Poisson distribution under the alternative and null hypothesis 
respectively. This is contrary to the results in [41] that use Poisson approxi­
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mation.

• We derive the optimal fusion rule for a random network with parallel channels. 
Also, we approximate the distribution of the optimal fusion rule using moment 
matching with a Gamma distribution.

• We derive the optimal fusion rules for ideal, Gaussian, and Rayleigh MACs. 
Since the optimal rules are difficult to implement and analyze, we derive im- 
plementable suboptimal fusion rules that upper bound the optimal rules. For­
tunately, the suboptimal rule is simply a threshold test on the received signal.

• The distributions of the suboptimal fusion rules for Gaussian, and Rayleigh 
MACs are proved to be Gaussian mixtures. But for the ideal MAC it is 
generally a Poisson mixture. We also prove that the CR is optimal under full 
knowledge of the target and the ideal channel in any network size, in contrast 
to findings in [38] that require a very large number of SNs in order to invoke 
the central limit theorem.

• We propose two distributed diversity combining methods, inspired from the 
precoding concept, to mitigate the fading effects. The distributed maximum 
ratio combining (dMRC) and distributed equal gain combining (dEGC). The 
dMRC and dEGC are in fact suboptimal solutions to the problem of maximiz­
ing the J-divergence for distributed detection. We also show that distributed 
diversity combining is able to overcome the performance floor reported in [84]. 
Furthermore, it performs better than the limitation of using CDC MAC [82] 
under low and medium SNRs. Better performance is attained by increasing 
SNs deployment density and optimizing the local detection threshold.

2.1.4 Chapter Outline

This chapter is organized as follows. A brief introduction about stochastic geometry 
and the system model are provided in Section 2.2. In Section 2.3, we derive statis­
tical properties of the SN point process. Those results are then used to characterize 
the performance of the distributed detection algorithms. Section 2.4 provides the 
discussion of distributed detection of PAC that paves the way for Section 2.5, which 
investigates fusion rides over MAC under different channel assumptions. In Section 
2.6 we propose the distributed diversity combining techniques and derive the detec­
tion performance for the various diversity combining techniques. Simulation results 
are also included in this section. Finally we conclude the chapter with Section 4.6.
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2.2 Problem Formulation

The problem is formulated by first modeling the target and the WSN. Then the 
distributed detection set up is considered.

2.2.1 System Model

We model the elements of the distributed detection system in addition to the target. 
Related assumption are provided as well.

Target

We assume that an intruder target is a point source randomly located at X*. The 
target emits energy that propagates in a spherical wave. Consequently, the received 
energy at any SN is inversely proportional to the square of the distance separating 
the target and the SN. However, having a non-ideal medium leads to further loss 
in energy. Hence, the received energy decay can be confidently modeled as an 
inverse power law with exponent e >  1. This model also reasonably describes 
electromagnetic or acoustic sources. While, the target’s amplitude A > 0 is usually 
unknown, we will assume that it follows a known probability distribution pa(o)-

Sensor node

SNs are deployed in a sensing field T  where T  C R2. They are located at points 
(X J  that are independent and identical distributed (i.i.d) according to a uniform 
distribution. SNs are primarily equipped with a physical sensing device, local detec­
tor, information extraction unit, and a transceiver. Each SN samples the physical 
medium and collects an N  even number4 at a sampling frequency of 1 /Ta. For 
example, the SN might be equipped with a pyrometric sensor to measure infrared 
energy [85]. The measurements are corrupted by i.i.d additive white Gaussian noise 
in space and time having zero mean and known variance a2.

Communication channel

The communication channel is shared and assumed to suffer from an AWGN noise 
having the distribution A/’(0,a2), where cr2 is assumed to be known. Moreover, the

4Having an even number of samples makes the Marcum Q-function in (2.2.9) tractable.
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transmissions between the detecting SNs and the FC occurs over an i.i.d Rayleigh 
fading channels with gain H (Xj) ~  CM(0, a%) between SN at X* and the FC, where 
a\ is the channel power. Note that the channel //(X j) does not depend on the SN’s 
location Xj in contrast to what might the notation here imply.

WSN

The WSN consists of a fusion center connected to a group of SNs dispersed over 
the sensing field. The FC task is twofold: fusing the received local decisions into 
global detection decision and broadcasting a periodic pilot signal, which is used for 
channel state information (CSI) estimation and synchronization by the SNs.

We use the elegant framework of stochastic geometry to model the previous 
WSN as a stationary marked Poisson point process (MPPP) = {(Xj, E(X,), //(Xj))}. 
The MPPP represents the SN as points located at Xj uniformly distributed in T . 
The SNs carry two marks, the first is the local test statistic E(Xt) and the second is 
the channel gain //(X j) between the SN and the FC. Finally, we make the plausible 
assumption of the target not being co-locating with any of the SNs in the network, 
i.e., X t $ $ .

2.2.2 Distributed Detection

2.2.2.1 Local Detection

Upon taking measurements, a SN located at Xj tests for one of the following hy­
potheses

Ho : Fj[n] =  Wi[n] (2.2.1)
% : F <[n) =  jjx ~ x 'f  + W i [ n ]  (2'2'2)

where n =  0, ,N  — 1. The SN processes the measurements through a local 
detector to produce a local test statistic S(X,), which is distributed according to 
p=(0- The local detector here can take any form, such as an ED for example. The 
local detection decision is found via a threshold test on the local test statistic, i.e.,

(2.2.3)/(X j) = 1, E (X j) > 7  

0, E(Xj) < 7
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2.2. PROBLEM FORMULATION
where 7 is the local detection threshold. Now, /(Xj) is a binary RV characterized 
by the false alarm probability

pfa =  F (E (x i) > r , n 0)
and the detection probability

(2.2.4)

Pd =  P (H (X i)> 7 ;« i) . (2.2.5)

Target with known parameters

If the target’s parameters are known at the SNs, the optimal detector would be the 
matched filter (MF). In this case, the false alarm probability of the MF is given 
by

P f I  =  Q ( 7) (2-2.6)

where Q (•) is the Gaussian Q-function with Q(z) =  J2°°exp *0  dy. Whereas 
for a given target amplitude (a) located at x t and SN located at x*, the detection 
probabilities for the MF is then given by

/ r ( x . , a )  -  (2 .2 .7 )

Unknown target parameters

On the other hand, if the target’s parameters are unknown, which is the case in 
passive detection applications, the MF cannot be used. A suitable alternative would 
be the ED since it does not need any prior knowledge about the target. The false 
alarm probability of the ED is given by [86]

P ^  =  Qxi M  (2 .2 .8)
where Qx  ̂(•) is the tail probability of the central x2 distribution with N  degrees of 
freedom. The detection probability, on the other hand, is
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where Qi± (•,•) is the generalized Marcum Q-function [86]. N  here should be an 
even number in order for the Marcum Q-function to be tractable.

However, as seen in (2.2.9), the target’s parameters are still needed to find the 
detection probability. Also those parameters are needed to find the global detection 
performance as we shall show later. One way to handle this matter is via estimating 
the required parameters, but this would lead to complications in the performance 
analysis. Another way is to assign a probability distribution to the parameters and 
use the Bayesian approach. The resulting theoretical performance would bound the 
actual performance. In this chapter we deal with the unknown parameter problem 
in two stages. The first eliminates the dépendance on the target location using 
the stochastic geometry framework and the second uses the Bayesian framework to 
eliminate the dépendance on its amplitude.

2.2.2.2 Global Detection

The SNs collaborate together to reach the global decision about the target. They 
send their local decisions to the FC for global processing. The overall system is 
shown in Fig. 2.2.1.
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To conserve energy, the SNs are “censored”, i.e., 7(Xj) is sent to the FC only if 
it is a positive decision. In other words, the SNs use a form of on-off keying (OOK) 
modulation for transmission, i.e., U(X,) =  c/(Xj), where c is an arbitrary value 
chosen to improve the global detection performance, with further discussion given 
later in Subsection 2 .6. Let Y  be the received signal at the FC, which is given by

Y =  £  H(Xi)U(Xi) +  V  (2.2.10)
X<6 $

where V  is the AWGN. The FC process the received signal via a global detector, 
A(-), to reach the global decision

Igd =  < 1 ,
0,

A(Y) > T 
A(Y) < T. (2.2.11)

Given the model uncertainties, from the sensing side, in addition to and erj; 
from the communication side, we wish to design efficient local and global processing 
algorithms, U(Xi) and A(Y) respectively5.

2.3 Stochastic Geometry Analysis of Detecting 
Sensor Nodes

In this section we derive the distribution of the number of positive local decisions 
under Ho and Hi hypotheses. By doing so, we provide the theoretical basis to 
analyze the global detection at the FC in the following sections.

As stated earlier, the SNs are modeled by the MPPP d>. The detecting SNs on 
the other hand, can be elegantly modeled by the thinned version of $ , say as

=  {X< € $> : H(X«) >  7 } (2.3.1)
where S(X 0 is the mark representing the local test statistic at the ith SN as ex­
plained earlier. Note that the properties of$rf , depend on the considered hypothesis. 
To distinguish different cases, we denote $2 as the detecting SN process under Ho 
and as the process under H\. The former is the set of SNs that have experienced 
false detection and the latter set is the set of detecting SNs under H i. Let Qj =  [$¿1 
for j  =  0, 1 be the number of SNs in or the cardinality of , which is a quantity

5U(Xi)  can be viewed as a modulation scheme as in [82].
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that provides significant information about the detecting PP. It follows that under 
Hj

=  (2.3.2)Xi€$
Obviously flj is a RV whose distribution is dependent on &d properties. To 

statistically characterize we present the following theorem.
Theorem 2.1. The detecting SNs under hypothesis Ho form a homogeneous MPPP 
$2 , and so Q0 follows the Poisson distribution6

Po(oj) =  Poi (Qq) (2.3.3)

where

n 0 =  APfa \T\ (2.3.4)
is the mean of Do and |.F| is the area of the sensing field.

Proof See Appendix A.l. □

The above theorem says that the active SNs due to constant false alarm are 
uniformly distributed in the sensing field with intensity Ho, since the point process 
of active SNs is homogenous. It also says that the distribution is independent of the 
local detector used because 7 can be set arbitrarily.

Under Hi however, the distribution of i)i is rather more challenging, due to 
having different local detection probability at each SN. Nevertheless, we can describe 
i l l ’s distribution using the stochastic geometry framework set up in Section 2.2. 
Thus, we present our main result in the following theorem.
Theorem  2.2. It is assumed that there exist a stationary homogenous MPPP $  
and an arbitrary amplitude distribution for the target, say Pa (o). Furthermore, 
assume that T  is infinitely large. Then, under hypothesis Hi for any local detector 
the detecting SNs constitute an inhomogeneous Cox7 MPPP <f>j. Consequently, the 
number of detecting SNs, fli, has the distribution

Pl(u) =  E^[Poi(A(A))] (2.3.5)

6Equation (2.3.3) actually means po(w) =  exp (-fio).
7Which is also known as mixed.
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A(A) =  A J Pd{x,A)dx.

It follows also that the mean is

ill =  XEa

Proof See Appendix A.2.

(2.3.6)

(2.3.7)

□

The theorem states that the distribution of the detecting SNs using any local 
detector of any target’s amplitude distribution follows an inhomogeneous Cox Pois­
son distribution with mean intensity depending on the local detector’s probability of 
detection. The spatial distribution of the detecting SNs, in contrast to theorem 2.1, 
is concentrated around the target and gradually decays as we move further away. 
It is noted from the proof that the distribution does not depend on the target’s 
location if T  is sufficiently large.

A special case of theorem 2.2 is when the target’s amplitude is deterministic. 
Then, the distribution simplifies to Poisson as stated in the following corollary.
Corollary 2.1. If the target’s amplitude is deterministic (say a), then the detecting 
SNs constitute an inhomogeneous PPP, and so fli follows the following Poisson 
distribution

pi(u) =  Poi (ill)
where

(2.3.8)

Di =  A f  Pd{x,a)dx. (2.3.9)

Furthermore, the above corollary applies to the case when the target signal is 
space-time varying one such as

s(x ,i) =  j — -— rerfc t >  0 (2.3.10)||x X( || \  2 v^ct )
where c and k are some constants and erfc(-) is the complementary error function. 
The above represents a diffusion signal generated by a source at xt, which is the
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model used in Chapter 3. In this case, the detecting SNs distribution adheres to
(2.3.8) with

2.3. STOCHASTIC GEOMETRY ANALYSIS OF DETECTING SENSOR
NODES

iii — A \ dx

if the ED is used where

(2.3.11)

as(x)
N-l

Xt 2>fc’( S )
7 1 = 0

(2.3.12)

A similar analysis applies for the MF detector. Note however, that the local 
detector averages (in some sense) the time signal leaving only the spatial aspect of 
the signal. Thus, our analysis in this chapter applies for space-time signal models 
as well without any significant change in analysis. However the power law model is 
simpler in its treatment.

Returning back to the power law model, if the target’s amplitude is random, 
finding i l l ’s distribution is not trivial since it requires the expectation with respect 
to (w.r.t) the distribution of A in (2.3.6), which in turn depends on the distribution 
of A through the local detector used. Indeed, A is a transformation of the random 
amplitude of the target A, i.e., equation (2.3.6) can be simply interpreted as A =  
g{A). Consequently, A ’s distribution is a function of p^(a). Nonetheless, we cannot 
find the distribution using g(-) directly since it is not analytically tractable. To 
address this issue we approximate g(-) with a polynomial function that can be easily 
inverted to find A ’s distribution. To do that, we show that [Pd(x, A)] can be 
approximated by a piecewise constant function. In fact, this approximation is known 
in the literature as the disk model [87]. We adopt a similar approximation in which 
the SNs detect a target with probability one within a certain range and experience 
false detection (if any) fall beyond that range. This claim is reinforced by the fact 
that the signal’s power decays as the distance from the target increases, see Fig.
2.3.1. Hence, there exists a particular range after which the target’s signal diminishes 
to approximately zero. Hence, if any SN beyond this range reports a detection, it is 
due a false alarm. Therefore, A (a) can be approximated by a piecewise quadratic 
function, since Pd depends on the signal’s SNR.

In order to prove the previous statement formally, first we use the J-divergence 
as a measure to distinguish between Hi and Hq given a set of measurements at 
an arbitrary SN. Recall that the J-divergence [88] between distributions pQ(z) and 
Pi(z), which is defined as
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Figure 2.3.1: The averaged local probability of detection (E^ [Pj(x, A)]) plotted 
against the distance from the target (||x — xt||).

J(Po{z),Pi{z)) = E, — Eq (2.3.13)
where Et [-] and E0[•] are the expectations w.r.t the distributions pi{z) and p0(z). 
Next we bound the J-divergence between the local test statistic distribution under 
the two hypotheses in the following lemma.
Lemma 2.1. For an arbitrary SN at x, and target located at x t, let an arbitrary 
test statistic be H* = E(X,), with realization (t. Also let e =  1 (in (2.2.2)) without 
loss of generality, then J-divergence of the measured data’s distribution under Ho 
and Hi satisfies

j  (pote).pite)) < N E [A2]
llX< -  x<

Proof. See Appendix A.3. □

Thus, for an arbitrary t > 0, there exists an SN located at some distance r > 0 
away from the target such that

A/'F [421J ( p o & ) ,M S i) ) < - 1h r < e .  (2.3.14)° sr
In other words, given a target at x t, we can find SNs located at x, € T  for 

which the J-divergence is arbitrarily small, i.e., SNs cannot discriminate between 
Hi and Ho■ This means that later SNs do not actually sense the target. Con­
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sequently, the useful SNs are located at {x,- € $  : ||x,- — x*|| < r}. This observa­
tion enables the division of the sensing field T  into two mutually exclusive regions 
B =  {xj € T  : ||xj — X(|| < r} and B. In B, the average detection probability can be 
approximated by one whereas in B the average detection probability is actually the 
false alarm probability. This decomposition facilitates the approximation of A as a 
quadratic transformation of the random amplitude A as explained in the following 
proposition.
Proposition 2.1. For an arbitrary target’s amplitude distribution Pa(o) , then there 
exist arbitrary constants Cq, C\ and C2 such that the intensity distribution of the 
detecting SNs, Q, is approximated by

1 -j aL +J*EE)2y/c0(u -  Cl) V V J

, 1 — } A U  -  (2-3.15)2^Cq{uJ — Cl) \  V Co /

□

The proposition states that A «  Co(A — ci)2 +  C2, and as a result, an inverse 
relation can be readily attained and consequently so can the distribution of A given 
an arbitrary distribution for A. However, the quadratic coefficients are dependent 
on the local detector. Incorporating the above proposition with Theorem 2.2, the 
distribution of the number of detecting SNs is completely characterized under H\.
Remark 2.1. We digress here for a moment and revisit Theorem 2.2 in the light of the 
above observations. Recall that J- is assumed to be infinitely large or equivalently 
the target is assumed to be in the center of T . Although the previous condition 
simplifies the proof of the theorem, it is rather strict. Using the previous argument, 
this condition can be relaxed to having the target at r units away from the edge of 
T.

2.4 Decision Fusion over Ideal Parallel Channels

In this section we discuss some of the fusion rules used in parallel channels. The aim 
of this section is to first explore the difficulties in the parallel channel decision fusion 
in order to set up the stage for the MAC case. The optimal fusion rule (OFR) for 
parallel channels is discussed first. Then the suboptimal counting rule is proposed 
as an alternative.

PnM  «  

+

Proof. See Appendix A.4.
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2.4.1 Optimal Decision Fusion Rule

Although this scenario is far from realistic in terms of assumptions and resources 
required, it gives an upper bound for distributed detection algorithms. The way this 
matter is tackled is by means of Neyman-Pearson’s approach, i.e., by formulating 
the likelihood ratio test. We proceed as follows.

Given a PPP 4>, the optimal fusion of independent local decision is attained 
through the likelihood ratio [57]

A _  TT P n xt)(d \H i)
j & p W d jW o ) (2.4.1)

where Pi(Xi) (d; Hj) for j  =  0,1 is the distribution of the local decision of the SN 
located at X*. /(XO. given the corresponding hypothesis. Note that in contrast to 
algorithms in the sequel sections, all SNs are required to report their local decision 
to the FC. Under both hypotheses however, /(X*) obviously takes one of two values: 
a one for positive detection and a zero for negative decision, which leads to the local 
decision’s distribution:

P/(x4)(<*;W i) = Pd(Xi)/(Xi) - ( l - P , i (X <) ) ( l - / (X i)) (2.4.2)

P/(xo (ditto) = ( l - P /o)/(Xi) - P /a(l-7 (X <)). (2.4.3)

For simplicity, we assume that the local detector is a MF, and hence the target’s 
parameters are assumed to be known. The above equations imply an interesting fact 
about distributed detection. Obviously the SNs can be from the detecting SN set 
or its complement, i.e., X 4 G or X 4 G 4>d. However, it is an element in if it 
detects the target if it exists or falsely detects it if the target is absent. Similarly, it 
is in $d if it misdetects the target if it exist or it does not detect it if it is actually 
absent. Hence, (2.4.1) can be decomposed into

» =  TT Pi(Xj)(d]Hi) -pj p/(Xi)(d;Hi)
xi*, P n xM  no) phxM  n 0)

Pd(X<) 1 -  Pd(X4)
X ie $ d P / a  X j€¥ d 1 “ P f a

(2.4.4)

where the first product represents the likelihood ratio of the detecting SNs, whereas
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the second product represents the non-detecting SN’s likelihood ratio. Taking the 
logarithm gives the log-likelihood ratio (LLR):

which is similar to the Chair-Varshney rule [62]. However, the distribution of the 
LLR is rather complicated. Its exact distribution is the A/-fold convolution of the 
local log-likelihood ratios distributions of all the SNs [72], where M  is a RV. Hence, 
the LLR in (2.4.5) is difficult to obtain in practice. Therefore, we resort to approx­
imating it by moment matching with either a Gaussian distribution or a Gamma 
distribution [66], which has the following form:

where T(-) is the Gamma function, and a and (3 are the shape and scale parameters 
respectively. Moment matching method is used here since we are able to find the first 
two moments analytically, which generally specify the statistical behavior. Thus, 
it is proposed to match those moments with that of a known distribution such as 
the Gaussian or Gamma. We start by finding the mean and variance of the A0FR, 
which are

So we require the calculation of the four terms on the right hand side of the above 
equations. Before proceeding, we introduce the following functions and constants, 
which prove useful in finding the moments.

(2.4.6)

E [A-ofr] — E [A-ofr] +  E [Aqfr] 
var [AOFr] =  var [A^Fr] +  var [a£Fr] .

(2.4.7)
(2.4.8)
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(2.4.9)

«■ ' ■  ■ « ( ¥ ) (2.4.10)

Ii =  A ^ lo g ( /0(x))dx (2.4.11)
I2 =  A j  log2( /0(x))dx (2.4.12)
I3 =  X J^\og(fi{x))dx (2.4.13)
¡4 =  X J^log2(fi(x))dx (2.4.14)

where the (log) is for base e. The required moments are computed in the following 
proposition.
Proposition 2.2. If Pd(x) >  P/a for all x, the AX0FR and A°OFR, under H i, have 
the following means and variances:

E [AoFfl] =  ÎÎ1E1 [log(/i(x))] (2.4.15)
=  Ii -  HiEi [log(/0(*))J (2.4.16)

var [&ofr] =  ÏÏiEi [log2(/i(x))] (2.4.17)
var [A°ofr\ =  I2 DjEi [log2(/o(x))]. (2.4.18)

Under Ho though, the mean and variance are

Proof. See Appendix A.5

E A1AOFR (2.4.19)
E A0AOFR =  ( l - F / . ) I i (2.4.20)

var ^OFR = P/.I4 (2.4.21)
var = (1 -  /Va)l3 (2.4.22)

□

The moments under Hi show a direct dependence on the average number of 
detecting SNs, whereas under Ho, the dependence is only on P/a- Ultimately, the 
OFR mean is
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Ei [Ao fr] =  Ii +  D i(E 1 [log(/i(x))]-E i[log(/o(x))]) (2.4.23)
e o[Ao fr] =  P/«l3 +  ( l - P / « ) I i  (2.4.24)

and the variance is

vari (Ao fr ) =  I2 +  Di (Ej [log2(/i (x))] -  Ex [log2(/0(ar))]) (2.4.25)
var0 (AOFR) =  P/cJ-4 + (1 — Pfa) I3. (2.4.26)

Now having the moments available, we are ready to perform moment matching. 
In the case of Gaussian distribution, the moments are plugged in directly. For 
the Gamma distribution case, the mean and variance of (2.4.6) are aft and a/32 
respectively. It is easy to find that

Ej [Aofr]
<*OFRJ = ----- 7T-----rvarj (Ao fr )
0 vari (Aofr)POFRj — , .2(^OFRj)

for j  =  0,1 representing Hq and Hi cases.
Given the approximate distribution Aofr ~  Gamma(ooFR,>i Pofrj) found by 

moment matching, the global detection probability Pd and the global false alarm 
probability Pfa can be found respectively as

(2.4.27)

(2.4.28)

P fa «  P ( Ä o F R > T ; ? f o )  (2 .4 .29)
PD «  P ( A q f r > T ; ? * , ) .  (2 .4 .30)

2.4.2 The Counting Rule

Unfortunately, the OFR requires the knowledge of all the detection probabilities in 
the WSN, which is very demanding. Hence, a suboptimal fusion rule was derived 
from (2.4.5) by Niu and Varshney known as the counting rule [37, 38]. In a random 
network, the CR simply takes the form of
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Acr =  £  I(Xi) (2.4.31)Xi€$
where the local decisions are defined as /  =  {0, 1 }.

The CR enjoys a few desirable features, such as implementation simplicity and 
no prior information about the local detection statistics. Furthermore, it promptly 
enables censoring. In other words, if the SN has a positive decision it sends to the 
FC otherwise it does not send anything. Yet another desirable feature is the ease of 
performance analysis. The performance is readily found by Theorems 2.1 and 2.2 
(in subsection 2.3) for and Hi cases respectively using the stochastic geometry 
framework. Thus, Ppa and Pp are given by

Pfa

Pd

R£  “ T e^  m!m=T

°°
m=T mi

-MA)
(2.4.32)

(2.4.33)

where R0 and A (A) are defined according to (2.3.4) and (2.3.6) respectively.
The theorems show that the distributions are exactly Poisson in contrast to [41] 

that uses Poisson for approximation. Using stochastic geometry also enables us to 
circumvent the issue of unknown target location, which was handled in [41] and [74] 
by integrating the target’s position over the sensing field. This led to distributions 
described by multiple integrations that are even difficult to compute numerically. In 
contrast, our result is exact and numerically tractable.

2.5 Decision Fusion over Shared MAC

In this section we discuss fusion rules for a more resource efficient shared channel 
scenario. We start by investigating an ideal shared channel. Then we look into the 
Gaussian, and Rayleigh channel case. We start by investigating the optimal rules, 
which are, as it is usually the case, too complicated for analysis or implementation. 
Then we resort to suboptimal but simpler rules for the previous channels. In this 
section however, we adopt the concept of censoring [32] for the purposes of saving 
energy.
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2.5.1 Ideal Channel

Under the assumption of an ideal channel and perfect synchronization between the 
SNs and the FC. The received signal at the FC is

Y  =  £  /(X (). (2.5.1)

The signal above is exactly the number of detecting SNs in (2.3.2), and therefore 
the distribution of Y  is characterized by Theorems 2.1 and 2.2.

However, the distribution depends on the local detector used at the SN. The 
choice of a local detector depends on the information available about the target. On 
the one hand, we study the case in which the target’s parameters are completely 
known. Although such assumption is strict from a practical point of view, it provides 
an upper bound on detection performance. On the other hand, we consider the case 
when only the statistics of the target’s parameters are known, which we are more 
likely to encounter in practice.

Known Target Parameters

Assuming that the realizations a and x f of A and X t are available at the SN, the MF 
is used for local detection. The LLR at the FC given some realization y  of (2.5.1) 
is

Ai_mf(î/)

(2.5.2)

Thus, the optimal fusion rule is Ai_mf(!/) ^  T which can be simplified into

Ai-mf(î/) =  V ^  Ti (2.5.3)Ko
where _  _

Y _  T -  Qi +  fi0
log (Hi) -  log (ïïo)
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2.5. DECISION FUSION OVER SHARED MAC
Note however, that (2.5.3) is actually the received signal itself. Interestingly, 

the CR, which was proposed as a suboptimal detector for parallel channels, turns 
out to be the optimal detector for the shared channel. The performance of the CR 
when using the MF as a local detector is fully described in corollary (2.1). Hence, 
the global false alarm probability is given by

Pf a =  Em=T i
Q -if0_e-llom\

and the global detection probability is

p o =  E
m=Y i

7 f  _ ÜLp-ni m! '

(2.5.4)

(2.5.5)

Unknown Target Parameters

If the target’s parameters are unknown or actually random, we propose using the 
ED8 for local detection and assigning a prior distribution for the target’s amplitude. 
The LLR follows as

where in this case

Ai-ED(y) =  log [Poi (A(A))] 
Poi (n0) (2.5.6)

A(A) =  X J  FdED(x,A)dx. (2.5.7)

Clearly, the optimal fusion rule (2.5.6) does not lend itself to performance anal­
ysis. Hence, a suboptimal (and simpler) fusion rule is formulated instead. Using 
Jensen’s inequality to establish an upper bound on Ai_ed yields

8Since in practice it is unlikely that the target’s parameters are known a-priori, the ED will be 
used for the rest of this chapter.
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Ai-ed(v) 5: Âi.ed(î/)
,og

Poi(fio) ) \
'A «(A)e~A Â)

=  EyJ

=  Ea log (A *(A )e-AW Y
\ T?0e~^ J.

= y(Ex[A(A)]-log(D0))
+  log (Ho) -  E 4̂ [log (fl(A))]

Adopting Aj.ed as our fusion rule, we again arrive at

■ Hi
Ai-ed(2/) =  2/ ^  Y2 nQ

where

(2.5.8)

(2.5.9)

(2.5.10)

(2.5.11)

T — log (tip) +  E,4 [log (fl(<4))|
2 (E„ ¡A(/l)] - lo g  ([!„))

Hence, our suboptimal fusion rule is simply the thresholding of the received 
signal, which is the same as the optimal rule in the case of the MF local detector 
above. The performance is again attained via Theorems 2.1 and 2.2 . Therefore

Pfa

Pd

00

m—T  2 ml e-fio

E  e am=Ï2
^ % H e-A(A)

ml
which is exactly the same as the CR results.

(2.5.13)

(2.5.14)

2.5.2 Gaussian Channel

The next step is to introduce AWGN into the shared MAC channel. For simplicity, 
we set the SN’s transmission power to unity. The received signal at the FC would 
be a corrupted version of that of (2.5.1), i.e.,
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2.5. DECISION FUSION OVER SHARED MAC

y  = £  w + v
=  n  +  V (2.5.15)

where, as stated earlier, V  is AWGN with zero mean and variance a\. The LLR of 
a given received signal y is

Ag-ed (y) =  log E i eXP ( “ 2f e ( y _ n )2)
E q ex P

(2.5.16)

where Ej [•] is the expectation w.r.t f i’s distribution under the Wj hypothesis for 
j  =  0,1. Note that fi’s distribution differs under Wo and W\ as Theorems 2.1 
and 2.2 state. Obviously, it is not easy to analyze the distribution of Ag-ed in 
(2.5.16). To obtain a suboptimal fusion rule, we proceed as before by applying 
Jensen’s inequality to (2.5.16) leading to

Ag-ed (y) <
=  Ei

Ag-ed (y) 
1

2 ° 2c (y -  n)2 — Eq
(2.5.17)
(2.5.18)

Taking the upper bound above to be our fusion rule, it can be shown that

Ag-ed(v) =  ^  (Ej[n] -  Eo[n]) -  2^2 (E j[a 2] -  e 0[q 2]) (2.5.19)

which can be simply expressed as

where

Hi
Ag-ed (y) — y Ĥo

(2.5.20)

T - 2fe(E ,[n ;l - E , [ n 2])
¿2 (Ei[i2] — E0[Q])wc

(2.5.21)

The communication noise changes the performance analysis when compared to
(2.5.3) and (2.5.11). The distribution of Y  in (2.5.15) is the convolution of the 
distributions of f2 and V, since it is the addition of the previous independent RVs. 
Thus it can be written as
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P?-ED(y) = E,- exp ( - è fe- n)2) (2.5.22)

where the expectation is taken w.r.t to (2.3.3) for j  =  0 and w.r.t (2.3.5) for j  =  1. 
Another layer of uncertainty is added to the system due to having communication 
noise. Hence, the global false alarms are due to two factors now: false local de­
tection and communication noise. The performance can be improved of course by 
increasing the transmission power, which implies decreasing a Asymptotically, as 
o\ decreases, the Gaussian distribution of the noise resembles a Dirac function and 
consequently the result from the distribution convolution will look more like the 
fi’s distribution. Hence, we expect that the performance of the fusion rule (2.5.11) 
bounds that of (2.5.20). The global false alarm and detection probabilities follow 
as

J
r o c
/  E0 r3 6 X P

dy (2.5.23)

y f l - n a l  J

r o o
/  E xr 3 e x p

dy. (2.5.24)

2.5.3 Rayleigh Fading Channel

Here we consider the case of having communication noise and fading, which causes 
fluctuation in the magnitude and phase. The received signal then takes the form

=  £  //(XO + Vc

=  ÜR +  Vc (2.5.25)

where 77 (Xj) is the complex channel coefficient between the SN located at Xj and 
the FC that follows the circular Gaussian distribution CM (0,<r£) and Vc is a circular 
AWGN noise, i.e., CM (0,a^). Note that the information carrying part of (2.5.25) 
can be written as

Vr =  £  (l-^(Xi)l cos ('F(Xj)) + j  |//(X j)| sin (\I/(Xj))) (2.5.26)
x<e*d
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2.5. DECISION FUSION OVER SHARED MAC
where |i/(X j)| is a Rayleigh RV and 'k(Xj) is a uniform RV in the interval [0,27t]. 
Note that Ür is the distorted version of H due to having phase noise, which results 
in destructive combining of the transmitted signals. However, since the imaginary 
part of the above carries redundant information, the FC takes only the real part,
i.e.,

V =  (2.5.27)
where SR {•} is an operator that extracts the real part of the argument. The LLR in 
this instance is

Ar-ed (y) = log exp (“^(y-R*)2)
Eq exp (-^  (y -  R*)2)

(2.5.28)

The suboptimal fusion rule for the Rayleigh fading case is by the same procedure 
adopted before given by:

HiAr-ed(i/) =  2/ ^  T 4 (2.5.29)Ho
where T4 takes a form similar to T3. To analyze the performance we observe that 
the received signal distribution in (2.5.25) is the convolution of Qr 's distribution 
and the Gaussian noise distribution. We can see that Qr is the random sum of the 
channel gains i/(X j), which are zero mean Gaussian RVs. As a result, the fusion 
rule’s distribution in (2.5.29) given Q (which is the number of the detecting SNs) is 
exactly Gaussian. Consequently, the received signal’s distribution is the following 
Gaussian mixture

pf™ (y) =  Ej _yj2ir(Üal +  a2c) exp ( ____ t ___ )\  2Qal +  2a2) (2.5.30)

Note that the variance is a RV that depends on the number (R) of detecting SN. 
We expect the performance here to be worse than (2.5.20) because of the destructive 
combining in (2.5.25) due to the presence of phase noise.

The Pra and Pp are consequently
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2Vlal +  2 aj

2 n<r2h +  2 al j  dy. (2.5.32)

j  dy (2.5.31)

As a conclusion to this section we note that the above fusion rules are fairly 
simple, intuitive, and work for any range of communication SNR in contrast to [89] 
and [39], which adopts different fusion rules for communication SNR.

2.6 Diversity Combining Techniques for MAC

In this section, we revise the centralized diversity combining scheme proposed in [82], 
in which the diversity processing is done at the FC. Then we introduce distributed 
diversity combining. In the latter, we first find the optimal distributed diversity 
combining scheme, which is unfortunately difficult to implement in practice. Hence, 
we propose two suboptimal methods, the distributed maximum ratio combining 
(dMRC) and the distributed equal gain combining (dEGC).

2.6.1 Centralized Diversity Combining

The conventional strategy to combat fading is to use diversity combining. However, 
diversity combining will not help if the received signal in (2.5.25), since the received 
signal has been destroyed by phase noise. Intuitively, the ED can be used in this 
case to extract information from the variance [76, 84]. Now, several instances of the 
MAC can be centrally combined at the FC [82]. The fusion rule therefore is

B- 1
Acdc =  5 Z \ynx\2 (2.6.1)(2 .6 .1)

6=0
where ynx is a realization of the received signal in (2.5.25). In order to simplify the
analysis of the above fusion rule, it can be written as

(2.6.2)

where
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B—l in t2
t'o (nah +  ° 2c) (2.6.3)

is a central Chi square RV with B  degrees of freedom, i.e., Z  ~  x%- Then, the 
cumulative distribution function (cdf) for the jth hypothesis is

=  P (A cdc < y\ Wj)
=  E,

=  E,

where Pz is the cdf of Clearly, the distribution is complicated. Therefore, 
we suggest approximation by a Gamma distribution via moment matching to find 
the scale and shape parameters (acDCj and Pcdcj respectively) of the Gamma 
distribution. The first and second moments can be shown to be

F ( Z <  (nal +  a*)) 

PZ ( ( t t ^  +  ^c)).

^ CDC(y)

[A cdc] =  (Ej [O] +  ffc) & (2.6.5)
varj (A cdc) =  2B (Ej [©2] a4h +  2E,- [0 ] a2ha2c +  ac4) (2 .6.6)

Consequently, we can approximate A cdc by Acdc which has a Gamma distribution, 
i.e., Acdc~ Gamma (qCd c j . Pcdcj) for Hj , j  =  0,1- Obviously, having higher diver­
sity improves performance as can be conjectured from (2.6.5). However, increasing 
the diversity also increases the hardware complexity and size of the FC. Then the 
Pfa and Pp are:

Pfa «  P (A cdc> T ; ^ 0) (2-6.7)
Pd ^  P (Acdc >  T;"Hi) • (2.6.8)

2.6.2 Distributed Diversity Combining

Considering the above disadvantages of conventional diversity combining, new ways 
of improving the performance should be pursued. In CDC, little can be done to 
process the received signal at the FC to mitigate the effects of fading, due to the 
aggregation of the transmitted signal in the shared MAC. In such a situation, the
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FC cannot resolve the signals to perform diversity combining. Therefore, inspired 
by precoding we propose distributed diversity combining where the SN scales its 
transmitted signal by f/(X j) that is a function of the corresponding channel coeffi­
cient i/(X j) between the SN and the FC. The transmitted signals are combined by 
virtue of the MAC, in order that the received signal at the FC in this case is

Yr x = £  //(X iM X O  + K. (2.6.9)Xi6<&d
As before, we are interested in the real part of the above, Y  =  5ft {Y/^x} - We 

wish to design the precoding factors t/(Xj) in order to improve the overall detection 
performance. To this end, an appropriate optimality measure should be chosen and 
then find the set of f/(Xj) values that optimizes it. We adopt the J-divergence of the 
received signal distributions under Hi and Ho- It measures the discrepancy between 
two distributions, hence it can be used as a detection quality indicator.

2.6.2.1 Optimal Distributed Diversity Combining

We investigate the problem of optimally choosing £/(Xj) in order to maximize the 
J-divergence, which is defined as

J ( p o ( y ) , p i ( y ) )  = Er log Pi(yA
M v ) J

(2.6.10)

Now we need to find a relationship between the J-divergence and the precoding 
factor U(XiYs. However, this problem in the current form is difficult to solve since 
the J-divergence has a rather complicated form. Therefore, we resort to approximate 
the J-divergence by its upper bound (J), since it is known to be a tight bound. The 
following lemma derives the required upper bound.
Lemma 2.2. Let the received signal at the FC take the form, of

Y  =  Qf +  W  (2.6.11)
where W  is zero mean AWGN with variance a 2 and fi/ is defined for any positive 
function /(•) as

n f =  £  /(X ,). (2.6.12)Xi€*d
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Then the J- divergence of the received signal is upper bounded by

J(Po(y),Pi(y)) < (El ln /l ~  Eo \n f])2 • (2.6.13)

Proof. See Appendix A.6. □

Recall that the expectations in the LHS of (2.6.13) are defined as

and

Eq [Qf] =  Eq E  /(*)

=  A P f a J  f ( x ) d x (2.6.14)

where
Ei [nf] =  A J / (x )P d(x)dx (2.6.15)

P d(x) =  EA [Pd(x,A)] (2.6.16)
is defined for convenience.

From (2.6.9) we can set /(X j) =  //(Xj){7(Xj) and then find the J-divergence’s 
upper bound. However, since the CSI is assumed to be known at the ith SN, 
/(xj) =  h(xi)u(xi). Then the J-divergence upper bound is

J{u) =  ( L  u(x)h(x)P(x)dxj  (2.6.17)

where

P(x) =  P d( x ) - P fa. (2.6.18)

Having such an expression that connects the precoding factor (u) with J, we 
now provide the optimal u(-) that maximizes J(u) in the following lemma.
Lemma 2.3. The solution of
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is
G(x) =  argmax J(u)

u (.t )
(2.6.19)

G(x) =  fc/i*(x)P(x) (2.6.20)
where h*(x) is the conjugate of the channel coefficient and (k) is an arbitrary con­
stant.

Proof. If no constraints are applied, then using the Cauchy-Schwarz inequality di­
rectly yields (2 .6.20). □

The above result implies that optimal pre-equalization means more energy 
should be pumped into the SNs with good channel and good local detection. An­
other interesting feature of (2.6.20) is that we have a degree of freedom provided by 
k. We can set it to

k =  (2.6.2 1)
where k0 is an arbitrary constant as well. However, the above choice is intuitive 
from two aspects. First, the transmitted signal’s power should be proportional to 
the channel noise in order to overcome it. And second, the MAC aggregation (if the 
phase noise is compensated) leads to a beamforming effect. Therefore, the desired 
SNR at FC is divided between the SNs. This is reflected in (2.6.21) by dividing by 
A.

2.6.2.2 Distributed Maximum Ratio Combining (dMRC)

Finding P(x) nonetheless requires the knowledge of the target parameters, which 
is unattainable in practice. Thus, we propose the suboptimal pre-equalization at a 
given SN located at X*

UdMRciXi) =  kh*(Xi). (2.6.22)

Note that we are using small letters notation, which implies that the variables 
are deterministic. This is due to assuming the knowledge of the CSI at all the 
detecting SNs.
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The above indeed resembles the maximum ratio combining (MRC) technique. 

However, in our case the the channel is distributed among the SNs that pre-scale the 
transmitted signal by (2.6.22), hence the name. Let the number of detecting SNs be 
M, and let for convenience the channel coefficient and precoding factor for the SN 
located at x» be denoted as h(i) and UdMRc(i) respectively, then the received signal 
at the FC (the real part of it):

where Vr is the real component of Vc. To analyze the performance , we consider the 
stochastic geometric framework of the network, i.e., we replace the summation in
(2.6.23) with the summation over the network realization. In other words,

where k =  1 for simplicity. Y  here is the summation of a Gaussian RV and ildMRC 
which is a RV resulting from a random sum. It is well known that, if |f/(X<)| is 
Rayleigh with power of a\, then the sum of say N  replicas is a Gamma RV with

of DdMRC (given M ) is T(il/, 2oft). Consequently, fidMRC is a Gamma mixture, with 
mixing coefficients being the probabilities of the number of detecting SNs. So, the 
distribution of the received signal is

v »=oM—lM—l
=  * £  IMOf +  K (2.6.23)

i=0

Y  =  £  |i/(X ,) |2 +Vr (2.6.24)

iidM R C

shape and scale factor of M  and 2tr̂  respectively. In other words, the distribution

(2.6.25)

Consequently, the Pfa and Po are exactly
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P fa =  

P d  =

"/ [  E0 exp ( — -  (y — fidMRc)2)
\J2iral Jr  [ \ ac J

7 ^ / r  ^ ( - ^ - S W 2) dy.

d y

(2.6.27)

(2.6.26)

2.6.2.3 Distributed Equal Gain Combining (dEGC)

Equation (2.6.22) is nothing but the MRC distributed amongst the SN. However,
(2.6.22), as in (2.6.20), requires the full knowledge of the channel. Relaxing this 
requirement to knowing only the channel phase yields the distributed EGC

UdEGcM =  A: exp ( - j  arg (ft(Xj)}) (2.6.28)
where arg{-} is the argument of the complex channel.

Following the same methodology in dMRC above to analyze the performance, 
the real part of the received signal is

Y =  £  \H(Xi)\ +Vr (2.6.29)
O dEG C

where OdEGC is a random sum of Rayleigh RVs. However, there is no closed form 
expression for the distribution of detecting SNs. Thus, we propose approximating 
fidEGC by a Gamma distribution as was done earlier. The first and second moments 
are

Ej [HdEGc] ==  % f E  lw (x ‘)l
J

=  1 h(x.)\pH{h)Td(x.)dhdx.

=  y ~ \ h \ P„ (h )d h ^ ( \J ^ T d(x)<b^ (2.6.30)

= (2.6.31)

In (2.6.30), the integration is decoupled because h(Xj) is independent of X<. In 
a similar manner, the second moment is
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varj [ndEGc] =  2aj|Ei [n]. (2.6.32)

After computing the scale and shape factors a dEGC,j and /?dEGc,j> now fIdEGc’s 
distribution is approximated by Gamma (adEGCj,/3dEGCj), where adEGCj and /3dEGC,j 
are the scale and shape factors respectively. Finally, the received signal distribution 
is

pf GC(y) « l (2.6.33)

The Pfa and P& are approximated by

Pfa

Pd

exp

exp

— 9 (y ~  f^d EG c)

----ÿ (j/ — f̂ dEGc)

dy

dy.

(2.6.34)

(2.6.35)

It is worth noting that the distributions (2.5.22), (2.6.25), and (2.6.33) are 
the convolution of a Gaussian RV with a random sum RV. We can think of the 
Gaussian distribution as an interpolation operator on the random sum distribution, 
which tends to take a shape closer to a discrete distribution than a continuous one. 
Therefore, having a low SNR channel would in fact produce a “nicer” fusion rule 
distribution.

2.7 Simulation Results and Discussions

2.7.1 Optimal Fusion Rule

We show the validity of the theoretical expressions for the OFR moments derived 
in Subsection 2.4. We simulate a WSN in a field of 300 x 300 m2 with SNs deployed 
according to a uniform random distribution therein. To exclude the edge effects we 
only choose SNs within 150 m from the origin. The SNs are deployed with intensity 
A =  10- 2SN/m . Every SN takes 200 samples of a target located at the origin, 
without loss of generality. The SNR is defined to be the target’s emitted signal 
power over the noise power at the target’s location, i.e., it is a2/a 2. We run the 
simulation 2 x 105 Monte Carlo iterations for SNRs of 10 and 20 dB.
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Figure 2.7.1 shows a perfect match between the theoretical and the simulated 

mean of OFR under both hypotheses and for SNRs of 10 and 20 dB. The mean 
increases as Pfa increases since more SNs are active then. For the same reason 
the mean under Hi is greater than Hq. In a similar manner, the theoretical and 
simulated variances fit closely in Figure 2.7.2. However, the variance decreases with 
increasing Pfa under Hi in contrast to the Ho case. The reason for the later is that 
the mean and variance are linearly proportional to Pfa- In contrast with the former 
case under Hi, because having greater Pfa leads to more detecting SNs, since the 
local threshold is higher, that in turn reduces the uncertainty about the target, and 
hence reduces the OFR variance.

Finally, Figures 2.7.3, and 2.7.4 depict the ROC of the OFR for Pfa =  10-3 
and 10-2. Although the Gamma distribution provides better approximation, both 
distributions yield similar global detection performance. Increasing the SNR, on the 
other hand and the approximation is improved due to more SNs being involved.

2.7.2 Fusion Rules over Fading Shared Channel

Now we show the theoretical and simulated performance of the CR, the fusion rules 
in Subsection 2.5, and the diversity combining techniques of subsection 2.6. We 
simulate a WSN in a field of 300 x 300 m2 with SNs deployed randomly there and 
every SNs takes 200 samples like before. In the latter we set the target’s amplitude 
distribution according to a Gaussian distribution with different mean and variance 
values. The observation SNR is defined to be the target’s emitted signal power over 
the noise power at the target’s location, i.e., it is E [A2] /a 2, which is chosen to be 
18 dB. The Rayleigh channel on the other hand, has unity power, i.e., cq2 =  1. The 
transmitted SNRC is defined to be 1 / ct2. The simulation is run for 104 Monte Carlo 
iterations.

In Fig. 2.7.5, the ROC curves are shown for all the discussed scenarios for a 
target amplitude following W(20,8) and sensing SNR of 20 and 25dB. Whereas Fig 
2.7.6 shows the ROC graphs for the case of target amplitude distribution AA(10,5) 
and sensing SNR of 20 and 15dB. The predicted theoretical performance closely 
matches the simulation. Even in the case of dEGC and CDC, which are based on 
approximation, the theoretical expressions are very close to the simulation.

The best performance, obviously, is given by the use of the MF with ideal 
channels. In fact it is perfect due to the use of exact information about the target. 
Using the ED with ideal channels however, leads to some degradation in performance 
because statistical information is employed instead. Further degradation is caused in
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Pfa
(a) SNR,= 10 dB.

Pfa
(b) SNRs=  20 dB.

Figure 2.7.1: The mean of the optimal fusion rule (OFR) (E[Aofr]) plotted against the local 
probability of false alarm, P/a, under both null and alternative hypotheses, Tio and 

respectively. The solid line represents simulated values and the dashed line is 
the theoretical values.
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(a) SNRs=  10 tlB.

(b) SNRs=  20 dB.
Figure 2.7.2: The variance of the optimal fusion rule (OFR) (E [Aofr]) plotted against the local 

probability of false alarm, Pja, under both null and alternative hypotheses, Ho and 
Hi respectively. The solid line represents simulated values and the dashed line is 
the theoretical values.
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(b) SNRs=  20 dB.
Figure 2.7.3: ROC for optimal fusion rule (OFR) at Pja =  10-3 . Solid line represents the 

Gamma distribution approximation and the dashed line represents the normal ap­
proximation.
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(b) SNR„= 20 dB.
Figure 2.7.4: ROC for optimal fusion rule (OFR) at Pjn =  10-2. Solid line represents the 

Gamma distribution approximation and the dashed line represents the normal ap­
proximation.
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the case of, Gaussian channels. On the other hand, Rayleigh fading channels yields 
the worse performance as the figures show in which we have Pp =  Pea- Using 
CDC with diversity order of 10 provides a slight improvement. This is mainly due 
to using the energy detector, which only uses the signal’s energy for detection, and 
hence operates poorly in low SNR, and the fact that adding more channels introduces 
more noise. However, using distributed diversity techniques, significantly improves 
performance as seen in Fig 2.7.5. This improvement is attributed to the structure 
of distributed diversity combining in which every SN increases the diversity gain, 
by locally preprocessing its channel, without adding extra noise to the system. It 
is noticed though, that dMRC and dEGC provides better performance compared 
to the Gaussian channel at very low SNRC, i.e., -20 dB. This is because distributed 
diversity combining techniques actually improve the SNR at the FC.

Fig. 2.7.7 depicts optimization of Pe w.r.t the local detection threshold, 7 . We 
define Pe as

Pe =  mm (0.5 (1 -  PD) +  0.5PFA) (2.7.1)
where the 0.5 factor is chosen arbitrarily. In other words, it is the minimum error 
probability over the global detection threshold.

Clearly, there is an optimal value for 7 as predicted by the J-divergence upper 
bound in (2.6.17). Obviously, using different detection schemes slightly changes the 
optimal value because it is mainly dependent on the choice of the local detector. The 
R-ED case however, is insensitive to changes in 7 because the J-divergence can be 
shown to equal zero, i.e., the FC cannot discriminate between Hi and Hq. Increasing 
the (sensing or communication) SNR generally preserves the trend except in the 
case of CDC, where increasing 7  leads to less detecting SNs, hence less destructive 
interference. In such a context the effect of diversity is more pronounced, therefore 
increasing 7  gives better Pe.

The impact of transmitted SNR is shown in Fig. 2.7.8. The R-ED does not 
change notably with SNR because the received signal is destroyed by the incoherent 
interference. It is also seen that the dMRC performs better for low SNRs, while the 
dEGC outperforms it when the channel is more reliable. At higher SNRs the G-ED 
approaches I-ED. However, all the fusion rules level-off due to the channel effect. As 
predicted in Fig. 2.7.7, increasing 7 provides better performance especially in the 
CDC case, which even outperforms I-ED.
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PFA
(a) The target amplitude follows the Gaussian distribution Af(20,8) and 

the sensing SNR (SNR,) is 25dB.

(b) The target amplitude follows the Gaussian distribution J\f (20,8) and 
the sensing SNR (SNR,,) is 20dB.

Figure 2.7.5: Global probability of detection, P p,  against global probability of false alarm, 
Pf a - Solid line represents the theoretical values, and dashed line represents the 
simulation values. Network deployment density A =  5 x 10~3, channel noise 
SNRC =  -20dB, Rayleigh channel power ajt =  OdB, and local detection threshold 
7 =  235 (Pfa =  IQ"2).
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Pfa
(a) The target amplitude follows the Gaussian distribution A"(10,5) and 

the sensing SNR (SNR,) is 20dB.

(b) The target amplitude follows the Gaussian distribution A/”( 10,5) and 
the sensing SNR (SNR,,) is 15dB.

Figure 2.7.6: Global probability of detection, Pp,  against global probability of false alarm, 
P f a - Solid line represents the theoretical values, and dashed line represents the 
simulation values. Network deployment density A =  5 x 10-3 , channel noise 
SNRC =  — 20dB, Rayleigh channel power crfx =  OdB, and local detection threshold 
7  =  235.
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150 160 170 180 190 200 210 220 230 240

Y
(a) SNRC =  -1 0  dB

(b) SNRC =  10 dB
Figure 2 .7 .7 :  P r o b a b il ity  o f  error, Pe, a g a in s t  lo c a l d e te c t io n  th r e s h o ld , 7 , a t

A =  1 x  10- 3 .
1 and
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SNR(dB)
(b) 7 =  240

Figure 2.7.8: P r o b a b ility  o f  error, Pe, a g a in s t  tr a n s m is s io n  S N R C, a t  =  1 a n d  A = x  10~ 3 .
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The effect of the SNs deployment density A is depicted in Fig 2.7.9. As expected, 

more SNs results in better performance approaching perfect detection except in the 
Rayleigh fading channel case, again, because the received signal is destroyed by 
the random phase that causes destructive interference. Increasing the SNR clearly 
improves the performance for all techniques. It is noted however, that A does not 
significantly affect performance in CDC because it is mainly affected by the channels’ 
SNR.

2.8 Chapter Summary

In this chapter we have addressed the problem of distributed detection in WSNs 
over a Rayleigh fading shared channel. To motivate the problem, the idealized case 
was considered first, in which the target’s parameters are known and perfect parallel 
channels convey the local decisions to the FC. In this case, the MF was used for local 
detection and the OFR for local decision fusion. We have analyzed the statistics of 
the OFR for distributed detection using stochastic geometry.

Then we moved on to study distributed detection of an unknown target with 
censored WSN over a shared communication channel suffering from Rayleigh fading 
and phase noise. First, we showed that the detecting SNs constituted a homogenous 
PPP under Ho and a inhomogeneous Cox point process under H\. Optimal fusion 
rules have been derived using the previous results for ideal, Gaussian, and Rayleigh 
fading channels. Interestingly, the optimal fusion rule in the ideal case is the counting 
rule. A simpler suboptimal universal rule for all cases was calculated that turned 
up to be simply a threshold test of the received signal at the FC. The distribution 
of the suboptimal rule with an ideal that was found to be Cox Poisson, whereas in 
Gaussian and Rayleigh channels it is an infinite Gaussian mixture.

To improve detection performance, distributed diversity combining has been 
suggested in which the SNs preprocess their transmitted signals that are fused “in 
channel” at the FC. This scheme simplifies the design of the FC by distributing the 
processing among the SNs. In contrast to using CDC MAC, distributed diversity 
combining provides improved performance when increasing the number of SNs. We 
find the optimal technique by maximizing the J-divergence of the distribution of 
the received signal under the two hypotheses. The optimal technique turns out to 
be MRC weighted by the local decision confidence. Since the optimal fusion rule is 
difficult to find in practice, distributed MRC and EGC were proposed as suboptimal
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2.8. C H A P T E R  SUM M ARY

(a) SNRC =  10

A
(b) SNRC =  -1 0

Figure 2.7.9: P r o b a b ility  o f  error, Pe, a g a in s t  n etw o rk  d e p lo y m e n t  d e n sity , A, w ith  <r̂
7 =  235 .

1 , and
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alternatives. The performance of all fusion rules was exactly found, except in the case 
of dEGC, which was approximated. Simulations showed significant match between 
the theoretical and simulated results.
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Chapter 3

Distributed Localization and 
Estimation of a Diffusive Target1

3.1 Introduction

3.1.1 Motivation

WSNs are increasingly used in time-critical applications for surveillance and moni­
toring due to their low cost, scalability, and robustness. This class of applications 
requires a fast response to sudden events, e.g., enemy intrusion [19], natural disasters
[13], or monitoring critical civilian structures [11]. A broad spectrum of phenomena 
can be described by diffusion [55]. In such scenarios, the diffusion measurements are 
used to localize any source or target and estimate relevant parameters. However, 
using WSNs for time-critical applications imposes several constraints on the system. 
The following are of interest:
Cl) Low bandwidth available at the SNs for wireless communication.
C2) Low power available on board the SN.
C3) Limited computational capability.
C4) Timely target localization and estimation of its parameters.

'Which is a target that generates a signal following the diffusion law, such as material concen­
tration or heat.
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3.1. INTRODUCTION
Moreover, the performance of such algorithms should be investigated under the 
previous operational constraints. The first three of them are the consequence of the 
nature of the SN, which is desired to be cheap and powered by on-board batteries. 
Hence, the communication and computational operations are restricted to affordable 
levels. The last constraint though, is dictated by the requirement of time-critical 
applications.

In this sequel we review the literature for related work aimed at solving the 
problem of distributed localization and estimation in WSNs and investigate its com­
pliance with constraints C1-C4. Thus, the design of any localization and estimation 
algorithm for WSNs should take the above constraints into consideration.

3.1.2 Related Work

There exist several main directions of research in handling the problem of distributed 
localization and estimation of a diffusive source. All start from the partial differ­
ential equations (PDEs) governing the diffusion process then formulate it into a 
suitable model for analysis. The models relevant to this work are categorized as the 
following:

3.1.2.1 Static Parametric Model

In this model, the PDE is solved and the solution in turn is used to formulate a 
statistical parametric model of the measured data. One of the earliest works on this 
approach is due to Nehorai et. al. [90], in which the diffusion equation is solved 
for a stationary point source emitting vapor continuously under different bound­
ary conditions. Detection and localization of the source is formulated according to 
GLRT and MLE respectively. The MLE results in a nonlinear and non-convex opti­
mization problem that needs a good initialization in order to converge to the global 
minimum. In order to find a good initialization, the authors suggest waiting until 
the measurements reach steady state, which in turn enables constructing a system 
of nonlinear equations that is solved to come up with the desired initialization. The 
authors also compute the CRLB by using results from sensor array processing [91]. 
Using the previous framework, Jeremic and Nehorai in [92] tackle the problem of 
detecting and localizing landmines using a chemical sensor array. The authors also 
optimize the number and positions of sensors based on the CRLB. The same authors 
apply the previous ideas but in the context of ocean floor monitoring [93]. However 
the GLRT detection is used as the optimization criteria under the assumption that 
the medium parameters and sources locations are known. Zhao and Nehorai [94]
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3.1. INTRODUCTION
investigated the detection and localization of a moving biochemical source. The 
open environment was modeled as a semi-infinite medium with unknown diffusivity. 
Maximum likelihood localization of a diffusive source is presented in [95] where the 
sensors use binary observations to preserve bandwidth. Matthes et. al. [96] on the 
other hand, proposed localizing a diffusive source via a two-step algorithm. In the 
first step the distances between the sensor and the source are estimated and in the 
second step the intersection of the previous distances is computed to find the final 
localization estimate. Localization in realistic environments was considered in [97] 
where a stochastic diffusion framework is used. A sequential version of the latter 
work was developed in [98].

Another approach for localizing a diffusive source is by using moving sensors 
instead of stationary ones. Porat and Nehorai [99], based on their previous work [90], 
proposed using a single moving sensor that follows a path set according to the CRLB 
gradient descent instead of the conventional concentration gradient. This work was 
extended to the case of multiple moving sensors in [100]. The previous algorithm is 
applied in [101], in which a group of robotic fish perform aquatic profiling.

The energy efficient distributed estimation method was introduced in Zhao and 
Nehorai [102] based on a distributed incremental implementation of the Gauss- 
Newton algorithm along with sensor selection based on maximizing the CRLB. The 
suggested algorithm though, was shown to resemble the extended Kalman filter, 
hence, the sensors exchange local statistics that involve a covariance-like matrix. A 
recent improvement on the previous work was given in [103] in which the initializa­
tion procedure was actually provided, in contrast to the latter work. The authors 
suggested solving the system of nonlinear equations of the steady-state measurement 
by semi-definite relaxation. Zhao and Nehorai also used distributed estimation but 
in a Bayesian framework in [104]. The belief (posterior pdf) is sequentially exchanged 
between the sensors. However, to preserve bandwidth only a few parameters that 
describe the belief are sent.

However, the work in papers [90]-[101] does not comply with constraints Cl 
and C2, since it assumes that the SNs can send all the raw data to the FC. This 
consumes considerable amount of bandwidth and energy, which is not tolerable in 
WSNs operation. Furthermore, it does not adhere to constraint C3 as well because 
straight forward MLE implementation is computational expensive. As is known, 
the success of MLE-based localization/estimation hinges on the choice of the initial­
ization. The way it is computed in the reviewed literature above does not comply 
with the time-critical constraint C4, since steady state is required. Although the 
work [102]-[104] is energy efficient, it also suffers from the previous issue because it
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3.1. INTRODUCTION
employs the same initialization technique.

3.1.2.2 Dynamical Parametric Model

In this approach, the PDE is used to formulate a discrete state-space model. The 
dynamics are obviously nonlinear, and therefore a linearization is often employed to 
be used with linear filtering, such as Kalman filter (KF) and its extended version 
(EKF), or nonlinear filtering such as Bayesian or particle filtering.

In [105, 106] the authors investigated the estimation of the PDE coefficient such 
as the diffusivity, wind speed, and dispersion for the purposes of field construction. 
The PDE was temporally and spatially discretized by using difference operators 
in order to formulate s discrete state space model. Then the PDE’s parameters 
are estimated using an EKF. Fox et. al. [107] addressed the problem of detection 
and localization of a diffusive source by linearized approximation of the state-space 
equations describing the evolution of the plume [108]. The authors use nonlinear 
least squares estimation (NLSE) to find the parameters of the system and then plug 
them into the likelihood function to perform detection. The state-space model used 
above also needs a good initial value to linearize the model around it. However, this 
issue is not discussed in any of the above papers, and so it is not clear if constraint 
C4 is satisfied.

Sawo et. al. [109] solved the same problem using modal analysis (basis expansion 
such as Galerkin’s method) instead of finite difference to formulate the state space 
model. Then the EKF is used to estimate the PDE’s parameters. The authors also 
used a hybrid density filter [110, 111] and sliced Gaussian Mixture Filter [112, 113] 
to solve the problem, which are shown to be better than the EKF. Sundhar and 
Veeravalli [114] discussed localizing a diffusive source and tracking its intensity. 
The Karhunen-Loeve Galerkin method was used to convert the PDE to a discrete 
state space model that is solved via recursive prediction error technique, where the 
processing is performed centrally. An incremental distributed version was provided 
in the paper [115]. However, using Galerkin’s method has its drawbacks, mainly 
the fact that in order to get high accuracy, a considerable number of terms must be 
included in the series expansion. This would increase the complexity of the system 
and hence violate constraint C3.
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3.1.2.3 Basis Representation Model

In this type of modeling, the diffusion field is represented by a linear combination 
of basis functions that are parametrized by the source parameters. The authors in 
[116] investigated the localization of diffusive point sources and the estimation of 
their release rates via representation by complex exponential eigenfunctions. The 
PDE now can be formulated into a system of linear equation that is used along with 
the annihilation filter [117] to find the location and the release rates of the sources. 
The same idea was used to find the release rates of smoke stakes in [118] using a 
number of chemical sensors for the purpose of environmental monitoring.

Although attractive from a computational point of view, this approach depends 
on the assumptions that the boundary condition is periodic, which might not apply 
to realistic scenarios.

3.1.2.4 Convolutional Model

Here the diffusion measurements are modeled as the convolution of a discretized 
kernel with the source signal. The localization/estimation problem is known as 
an inverse problem, which is well studied [119]. The inverse problem often boils 
down to the solution of a nonlinear estimation problem. However, such problems in 
this context are notoriously ill-posed. Hence the use of regularization techniques is 
needed. This framework was used to find the release rate in [120] and the location 
[121] of a polluting source under the atmospheric model in [108]. The same frame 
work is used to identify and track chemical, biological, radiological, nuclear and 
explosive (CBRNE) sources in [122],

The issue of initialization in the NLSE is not addressed here. Furthermore, find­
ing the optimal regularization parameter cannot be done in real-time, thus violating 
constraint C4.

3.1.3 Chapter Proposal and Contributions

In the light of the reviewed literature and the operational WSN constraints men­
tioned earlier, we investigate the problem of distributed estimation of a diffusive 
target in the context of the DDLE algorithm, which is part (II) highlighted in Fig.
3.1.1. The following contributions in the above problem are presented in this chap­
ter:

1. We find an analytical expression for the CRLB of the desired parameters es-
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timates in a randomly deployed WSN using tools from stochastic geometry. 
These results are fairly general and can be applied to other physical phenom­
ena.

2. As a part of the DDLE, the segmented distributed localization and estima­
tion (SDLE) is introduced as an energy, bandwidth, and computation efficient 
framework in lieu of conventional algorithms. The main idea behind the SDLE 
is to introduce intermediate parameters into the primary model that enables 
the decoupling of the estimation problem into a local estimation problem, 
solved at the SN, and a global problem solved at the FC. This reduces the 
complexity of the system via solving a group of lower dimensional problems. 
Moreover, the estimated intermediate parameters are sent to the FC instead 
of the raw data to save energy and bandwidth. The SLDE builds on the dis­
tributed detection discussed in Chapter 2 and the assumption that the data 
sent to the FC is received successfully via the mechanism in Chapter 4. Three 
SDLE methods are presented:

a) NLSE: NLSE is used to solve the local and global problems. The lo­
cal problem is proved to be convex, and so no initialization is needed. 
The global localization problem can be easily initialized via the centroid 
method. In both previous problems, gradient-based methods can be used 
to find a solution. Alternatively, the grid search can be used to find the 
estimates in a way that is shown to be simpler than the gradient-based 
methods.

b) Hyper-Spherical Intersection : Local problems are solved via NLSE, 
but the global problem is formulated as a hyper-spherical intersection 
(HSI) problem [123]. The HSI is ultimately solved by linear least squares 
(LLS). Although the LLS has a closed form solution, it is known to be 
sensitive to outliers. Hence, a robust IISI is proposed as well.

c) Hybrid-SDLE: In this algorithm, GS is used for the local problem and 
NLSE is used for the global problem.

3.1.4 Chapter Outline

This chapter is organized as follows: Section 3.2 describes the physical and statis­
tical models considered here. Then, the optimal maximum likelihood distributed
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Figure 3.1.1: Distributed Detection, Localization, and Estimation (DDLE). In this 
chapter, section (II) is investigated.
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estimation is discussed in Section 3.3. The Cramer Rao lower bounds of the esti­
mates are derived in Section 3.4. In Section 3.5 the segmented DLE is proposed as 
an efficient alternative to maximum likelihood. Simulation results and discussion 
are presented in Section 3.6. Finally, the chapter is summarized and concluding 
remarks are stated in Section 2.8.

Note

Note that in this chapter we slightly alter the notation used earlier for the purpose 
of simplicity of presentation. We will not use upper cases to denote RVs. However, 
it will be clear from the context when a variable is random.

3.2 Problem Formulation

In this section we derive the physical models of the target’s signal in an open, 
outdoor, environment. We present the diffusion signal model in an open environment 
with corresponding boundary and initial conditions that describe the system. This 
leads to the partial differential equations (PDEs) that govern the signal transport. 
The PDE is then solved to formulate an analytic expression parametrized by the 
desired parameters. Using that, a statistical parametric model is derived. Finally, 
the system model is presented.

3.2.1 Diffusion Model

We model the environment as a semi-infinite medium that corresponds to z > 0 in 
Cartesian coordinates. The WSN is deployed in the xy-plane, which represents the 
ground level. The ground is assumed to be impermeable, i.e., the signal does not 
pass through it. We assume that medium is source free. The medium transports 
the signal with rate k known as the diffusivity. There are several types of diffusivity 
however. Molecular diffusivity [55] is the basic form of diffusivity that results from 
the random walk of the medium’s molecules. Therefore, it is dependent on the tem­
perature, pressure, and molecular features of the medium and has small values. On 
the other hand, the eddy diffusivity is the transport resulting from having turbulent 
air currents, which is dominant in outdoor environments. The eddy diffusivity is 
dependent on the environmental conditions, hence it would be reasonable to assume 
it to be unknown [90]. This diffusivity is consequently space and time variant, i.e., 
it has different spatial components k(x , <), where x  =  (x, y, z)T is a point in z > 0
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(with some abuse of notation). However, as the eddy diffusivity is very compli­
cated to model in theory, we adopt the methodology used in [90] and [94] where 
the molecular diffusion model is used with diffusivity values analogous to the eddy 
diffusivity.

The intruding target is a point source at location x t =  (xt,y t ,Zt)T that initiates 
a transport of matter at an arbitrary time, say r. This matter can be a biological 
material, chemical material, or heat for example. The target’s release rate is modeled 
as

¿/(x, <) =  (/* +  £(f)) ¿(||x -  xt||) (3.2.1)
where fi is the constant or mean component, p,(t) is the time-varying component, 
and 5 (•) is the Kronecher delta function.

The target’s matter transport signal obeys the following diffusion law

rs
— s(x, t) =  - V 2 (k(x , i)s(x, t)) (3.2.2)

where V2 =  +  ̂  +  is the spatial second derivative. The impermeable ground
is represented by the following boundary condition

c\
— s(x, t) =  0 , Vx, y : x  =  (x, y, 0)r . (3.2.3)

The following

s(x ,r +) =  /i(r+)i(||x  — xt||) (3.2.4)
s(x, r~) =  0 (3.2.5)

represent the initial conditions, which includes the target’s signal.
The PDE (3.2.2) is difficult to solve in its current form. Hence, we impose some 

reasonable assumptions that simplify the solution. First we assume that k(x , t) does 
not significantly change in the period of time observed by the SNs. Furthermore, 
the detecting SNs are spatially close to each other, and so k does not experience a 
large change spatially. Hence, we can assume that the diffusivity is constant across 
the detecting SNs within the sampling period, i.e., k(x , t) «  «. In this case (3.2.2) 
reduces to
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JU (x, t) =  - kV2s(x, t). (3.2.6)

Now we can solve for the above boundary and initial conditions by first finding 
the corresponding Green function [124], say G (x,t), and then computing the final 
solution as

s(x ,t) =  /  /  G (x,t)fi(x,t)dxdt. (3.2.7)
J —oo J R3

However, since we are dealing with a semi-infinite medium here, it would be 
easier to find the solution for the infinite medium case and use the method of mirrors 
to arrive at the desired solution [94]. Thus, the Green function for the infinite case 
is found by solving (3.2.6) without the boundary condition (3.2.3) for an impulse 
source in space and time that gives [124]

Cfa;(x,t) = , /  X|11 ). (3.2.8)8[7T/i(i-T)]5 V 4«(t ~ T) )
Plugging (3.2.8) into (3.2.7) yields the final solution. In order to simplify mat­

ters, we restrict our analysis to the mean component of (3.2.1), and so we arrive at 
[901

in / ( x , () =  [ ‘ ---------- it--------
A  '  J r  8[7TK(t'-T# V M t ' - * ) )It 8[7rK(t' — t)]

" rerfc I  l|X ~ Xl14tt#c ||x — x*|| \ 2 y / K { t  - t ) ) '
(3.2.9)

The solution for the semi-infinite case now is

t ------ (  II*-*-»  ) +  »------ -erfc ( I|X-  'X ; I L 1
K ( t - T ) J  47T/C [|x — Xtll ^ ^ « ( t - r ) /

(3.2.10)
where x{ =  (xt,y t, - z t).

If the SNs are assumed to be deployed on the flat ary-plane, then the two terms 
in the above expression are identical, since the distances are symmetrical. Conse­
quently the above can be simplified to

47T/C ||x X( [I
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s(x,f) = /* i-erfc x - x t
27T« ||x -  Xf || " "  \ 2 y / K { t  -  t ) J  '

The above signal model will be used for the rest of this chapter.

(3.2.11)

3.2.2 System Model

Target

We assume that an intruder target is a diffusive point source located at an unknown 
and random location x t in R3. The point source assumption is valid when the 
distance between the target and the SNs are much larger than the target’s physical 
dimensions. The target leaves a signature that is governed by the above model 
(3.2.11). It is characterized by the unknown parameter vector ( /r ,x f , t ), where, as 
stated earlier, /x is the release rate and r is the entry time.

Sensor node

SNs are deployed in a sensing field T  where J  C R2. They are located at points 
{xj} that are i.i.d according to a uniform distribution. The SNs are equipped with 
a sensing device able to measure diffusion related signals. Every SN collects N  
samples at a sampling frequency of 1/Ta. The measurements are corrupted by 
AWGN with known variance o2. The noise is assumed to be spatially and temporally 
independent, i.e.,

E [wfwj N o2, i =  j  
0, i ±  j

(3.2.12)

where Wj =  (te^O], • • • , u>i[N — 1])T are the noise samples collected by the SN located 
at Xj. The SN also has an energy detector (to perform local detection) and a local 
processing unit to extract local information from the measured signal.

Communication channel

For the purposes in this chapter, we assume that there exists a perfect communica­
tion channel between every SN and the FC. In other words, the FC correctly receives 
any messages from the SNs. This goal can be achieved by proper channel coding
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and the use of a MAC protocol. The latter is discussed in Chapter 4.

WSN

A network of SNs is deployed to monitor and collect measurements of any occurring 
diffusion event in the sensing field. The WSN is modeled by a PPP $  =  { x j ,  i £ N 
with intensity A where x* £ R2 is the location of the ith SN. This implies that the 
SNs are deployed in the ary-plane. The target location x t is obviously not collocated 
with any SNs, i.e., x t £ $.

3.2.3 Distributed Estimation Problem

In this chapter, the problem of distributed estimation of the diffusion model pre­
sented above is considered in the DDLE framework. More particularly, the ith SN 
collected the measurements

fi[n] =  y[n;xi,0] -I- (3.2.13)
where n =  0, ••• ,N  — 1 ,0  =  (//,x f , nT, k)t is the vector of target and medium 
parameters, and

y[n;xj,0] = 27T/C ||Xi — xt|| erfc ||x< — Xf||
2yjK(n -  nT)Ts (3.2.14)

We wish to find a resource efficient distributed estimation algorithm to esti­
mate 0 with acceptable accuracy. To this end, the WSN should have performed 
distributed detection and arrived at a positive decision about the target’s presence, 
then proceeded to the distributed estimation stage as suggested by the DDLE algo­
rithm (see Fig. 3.1.1).

3.3 Classical Distributed Estimation

In this section, the classical centralized estimation problem is discussed in order to 
set the stage for the distributed estimation problem in a random network. First, we 
conveniently reformulate the measurement model (3.2.13) for convenience to

f* =/xh(xj,V») +  Wj (3.3.1)
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where rp =  (x f , r, k), fj =  (/»[0], • • • , /¿[AT — 1]), and h(xj, xp) is the vector format 
of (3.2.14) divided by /z. Note however, that (3.3.1) can also represent different 
physical phenomena such as wave propagation.

To find the optimal estimates of the target parameters the joint likelihood func­
tion of the SNs measurements must be first formulated. Let the number of SNs 
in the network be M  with known locations (the x ’̂s are known). Then the joint 
likelihood function of their measurements is

A f-l i / llf

J m- i\0 ) =  I I  /-----r exP ( -----Li=o y/27rof V
— /zh(x,, V>)|| 

2 c l :)
. . _M  / A/-1 \

{ 2n<Tì )  T exP P i -  /Ah(xi,^)||2J . (3.3.2)

Define the log-likelihood function (LLF) as

i M-1
!(») =  - »  £  llfi - / ‘h (Ici.'WI|2 (3.3.3)

Z i= 0
where we have ignored the term independent of 0. The optimal maximum likelihood 
estimate of 0  is the solution of

0MLE =  argmax /(#)u
=  argmin^ ||f i- /z h (x i,V»)||2 . (3.3.4)6 1 i=o

Let us group the measurement vectors into the matrix F =  [f0 • ■ • and the
transfer vectors into the transfer matrix H(t/») =  [h(x0, xp) • • • h(x*-_i, xp)]. Then
(3.3.3) can be formulated as

m =  ^tr {(F  -  ^H(V-)) (F -  ^H(V>)f}

=  ~ ||F -  (3.3.5)

where tr{-} is the matrix trace and ||-||^ is the Frobenius norm. It can be readily 
shown that the maximum likelihood estimates are
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and

, lFHTw|U (3.3.6)

f i  = (3.3.7)

The MLE is known to be asymptotically consistent and efficient given that some 
regularity conditions are satisfied [125], i.e., the MLE is asymptotically unbiased 
and achieves the CRLB. However, when a random network is considered, the LLF 
in (3.3.3) becomes more complex since both the number of SNs and their locations 
are random. Hence, the MLE in this case is also complicated. Thus, we resort to 
finding the CRLB of the MLE in the random network case.

3.4 Cramer Rao Lower Bound

In this section, the CRLB is derived for a WSN that is modeled by a PPR Moreover, 
the use of censoring is also included in the discussion.

The estimation/localization performance is characterized by computing the CRLB 
bound and comparing it to the mean square errors of the actual estimates. The 
CRLB is defined as

CRLB(0) =  [X(0)]_1 (3.4.1)
where

1(0) =  -E
is the Fisher information matrix (FIM).

Obviously the CRLB is inversely proportional to the FIM. Thus, in order to get 
an insight into the CRLB, the FIM should be calculated. From (3.4.2), the FIM 
is the expectation of negative curvature of the LLF at 0. In other words, it is a 
measure of the sharpness of the LLF at the true parameters value. A LLF with 
high curvature means that it is sharply centered around the true parameters value, 
and so there is a low uncertainty about the 0  value. By contrast, a LLF with low

d2l(d)
o e ‘ 0 (3.4.2)
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curvature means that the LLF is spread out, which in turn implies that there is 
high uncertainty about 0. Note however, that the FIM cannot be negative since the 
curvature at 0 , which is the global minimum of the LLF, is always negative. Having 
said that, the CRLB now represents the uncertainty about the parameters, which is 
manifested as the estimation variance.

The FIM for a PPP modeled WSN is computed using (3.4.2) and (3.3.3) as

The above can be simplified by the additive property of the FIM and the fact 
that the measurement noise and the network realization^, is independent, and so

i.e., the ultimate FIM is the aggregation of the individual SN’s information. In the 
case of censoring the SN, the FIM simply becomes

follows

(3.4.3)

m  =  E* Ex<€$ la * LcW U
=  E* £ Z ( X i , 0 )

(3.4.4)

(3.4.5)
x<€$

T c e n ( 0 ) = E * d (3.4.6)
X( €<!>,,

The FIM at a given SN is given by [94]

l ( x u 0) = (3.4.7)

where

(3.4.8)

is the derivative matrix whose columns are ^ h ( x ,  ?/'»)• The full derivation though, 
is given in B.2.
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However, the computation of (3.4.5) or (3.4.6) is not straightforward since the 

FIM depends on the stochastic geometry of the network, nature of censoring if used, 
and the nonlinear dependence on 0.

Nonetheless, stochastic geometry tools can be used here to find an expression 
for the CRLB as shown in the following theorem.
Theorem 3 .1. Assume that the conventional regularity conditions for the CRLB 
are satisfied [125J. And let Pd(x, 7) be the censoring probability with threshold 7. 

Let the following conditions hold

D t (x , VOh(x, VO > 0 (3.4.9)

for all x and in addition to the existence of the following integrals

h(V>,7) = /  IIMX> VO IP 7Mx
J  R2

(3.4.10)

G(V>,7) = f  D T(x,V»)h(x,vj)Pd(x ,7 )dxy®« (3.4.11)

D(V>,7) = [  ||D(x,V>)||2 Pd(x,7 )oixJr2 (3.4.12)

for all x and V> values in addition to h(V>,7) ^  0. 

(/x,V>T)T is
Then the CRLB for the 0 =

CRLB(V>) =
$  (D<̂ > Gr (V»,7)G(V,,7)'\ 1 

h(V>,7) / (3.4.13)

CRLB(ji) = •G(V>,7)D- 1(V>,7)Gt(V>,7)) (3.4.14)

Proof. See Appendix B.3. □

The bounds (3.4.13) and (3.4.14) coincide with the results given in [94] if the 
number of SNs is known and they are not censored, i.e., Pd(r) =  1. More impor­
tantly, the previous bound shows inverse proportionality to the deployment density 
of the SNs, A. In other words, the CRLB improves when A is increased. This is 
attributed to having more SNs providing information, which improves the estima­
tion.
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However, the influence of 7  on the CRLB is not explicitly clear in the theorem. 

To understand it, we need to look first at the non-censored case. Intuitively, SNs 
farther away from the target are expected to provide less information when compared 
to closer SNs. In other words

IP(*i,fl)ll *  1 „ „ (3-4.15)
where the norm in the left hand side is a general matrix norm. Hence, it is expected 
that SNs located outside a disk with some radius R  would provide negligible informa­
tion. If censoring is used though, only a subset of the SNs will provide information 
for the estimation to the FC. A SN is a member of this subset with probability 
Pd(x, 7 ), which is the local detection probability. Apparently, Pd(xj) (we drop 7  for 
convenience) is also inversely proportional to ||xj — xt||. To simplify the discussion, 
let us approximate Pd(xj) with the step function (see discussion in Section 2.3)

Pdfc) =

where r is some distance that is inversely proportional to 7 . In other words, the 
SN only detects the target, and consequently sends off information to the FC, with 
probability one if it is located inside a disk with radius r. Now if the local detection 
threshold is increased such that r < R, not all the “useful” information is sent to 
the FC. On the other hand, if r > R then SNs with negligible information also send 
their data to the FC. In terms of the CRLB however, it is expected that decreasing 
7  will improve the CRLB to a certain point after which the CRLB will not change 
significantly.

1 , | | x i - x i | |< r  
0, ||xj — x t|| > r (3.4.16)

3.5 Segmented Distributed Localization and 
Estimation

Although optimal, the MLE discussed earlier suffers from high communication and 
computational requirements that are undesirable for a realistic WSN. Therefore, we 
propose the SDLE algorithm that trades off performance with needed resources and 
complies with the time-critical constraints required by the application.

In this section we discuss the elements of SDLE and the implementation of 
its local and global estimation components. In both components, a nonlinear least 
squares problem is solved via iterative gradient based algorithms that are used for
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estimation in addition to grid search methods. The global estimation is also solved 
via reformulation of the problem as a linear least squares problem. The grid search 
however, is shown to be more computationally efficient than the other methods.

The philosophy of the SDLE is to decompose the MLE problem into decoupled 
local problems solved at the SNs and a global problem solved at the FC. The local 
estimation of intermediate parameters that are introduced to decouple the original 
problem (3.3.4) into simpler (lower dimension) local estimation problems. If the 
distributed detection stage results in a positive global detection (see Fig. 2.1.1), the 
local intermediate estimates are then sent to the FC for the second phase instead 
of sending the collected measurements, which considerably saves communication 
power and bandwidth. Chapter 4 discusses the communication side of the SDLE. 
In global estimation, the FC uses the received intermediate parameter estimates 
to estimate the desired target (and medium) parameters, which we call here the 
global estimates. This concept is illustrated in Fig. 3.5.1. Although this approach 
is resource efficient, it is not expected, however, to perform as well as the optimal 
approach described in Subsection 3.3 since the received intermediate parameters 
estimates used for global estimation might contain some errors. Thus, the SDLE 
trades-off estimation performance with network resource efficiency.

3.5.1 Elements of SDLE

SN t?0

P h y sica l
Phenom enum

\
\

LD: Local Detector 
LE: Local Estimator 
GD: Global Detector 
GE: Global Estimator

Figure 3.5.1: Segmented distributed localization and estimation system diagram, t?, is an inter­
mediate local estimate and 0 is the global estimate of the desired parameters.
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The SDLE relies on two main concepts. First, decomposition into local and 

global processing and the second is the reparameterization of the statistical model 
to facilitate the desired decomposition.

3.5.1.1 Reparameterization

At first glance, the estimation problem (3.3.4) can be decomposed into local esti­
mation problems solved at the SNs. However, this cannot be done directly since 
estimating x t requires information from at least four different SNs [90]. In order to 
decouple (3.3.4) into locally independent problems, we introduce intermediate pa­
rameters to be estimated in lieu of the original parameters 6 by re-parameterizing 
the diffusion case

into

0[n;xi,0] = 27TK ||X i — X t
rerfc |X t- - x , |

K2^K(n -  nr)Ta (3.5.1)

5[n;xj,i9j]

a.ih[n, (fii] (3.5.2)

where the intermediate parameters now are =  (oj,v?f), in which ip{ =  (6j, nr)T 
and

27TK ||X j — X t ||
ll*i -  Kill2VkÌ7

(3.5.3)
(3.5.4)

Note that the parameters a* and 6* have different values for every SN, in contrast 
to nr, which is constant. However, the estimate of nT is expected to vary from one 
SN to the other.

Another interesting interpretation of the above reparameterization is via using 
the finite rate of innovation concept [117]. In this context, the signal under con­
sideration has limited innovation, hence it can be represented by a finite number 
of free parameters. Fortunately, this idea suits our case, and most naturally gen­
erated phenomena. The diffusion concentration signal in (3.5.1) can be completely
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represented by the parameters a*, 6<, and nT. Therefore, we can code the signal in 
(3.5.1) by the set estimates of the previous parameters, and send the code to save 
bandwidth.

3.5.1.2 Distributed Detection

The reparameterization above also enables the decoupling of the detection problem 
into local and global parts. In the local detection, the ith SN tests for

Ho : fi[n] =  u’i[n], n =  0, • • • , nT (3.5.5)
'Hi- fi[n ]=  Qjerfc ( — — : | +  Wj [n] n =  nT +  1, • • • , N  — 1 . (3.5.6)

\v/n — nr J

However, the intermediate parameters are not known, hence the GLRT can be 
used. Although it is optimal, it leads to unnecessary processing if the target is not 
present. Therefore, we adopt the paradigm in Fig. 3.5.1, in which the ED is used 
because it requires no knowledge of i?*. The ED computes the energy of the signal, 
i.e.,

E(x .) =  ¿  fi[n]. (3.5.7)
n=0

The local decision is computed by comparing the above test statistic to the local 
threshold 7 . In other words

I(*i) = E(xi) > 7

Otherwise
The false alarm and detection probability follows as

(3.5.8)

Pd(Xi) Q n

(3.5.9)
(3.5.10)

respectively, where Q ^O ) is the tail probability of a central x2 distribution with N  
degrees of freedom and Q& (•, •) is the generalized Marcum Q-function. Recall that 
7 is set according to a specified P f  found from (3.5.9).
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Now the SNs with positive local decisions send their decisions to the FC where 

the global detection occurs according to the CR

Ac r =  £  /(x<) (3.5.11)Xj€$
and the global decision takes the form

I g d  =  <
1 ,
0,

Acr >  T  
Otherwise (3.5.12)

where T is the global detection threshold that is set according to a certain global 
false alarm probability, Pf a - The global false alarm and detection probabilities are 
given as

where

Pfa _  ?
~ r h (3.5.13)

Pd -  ?
“  H  k\m=T (3.5.14)

Do =  Pfa IT\ (3.5.15)
Di = J Pd(x.)dx. (3.5.16)

Note however, that knowledge of is not needed to compute T but it is needed 
to compute PD through (3.5.10) and (3.5.14). To address this issue, we suggest 
assigning a prior distribution to and use theorem 2.2 to find Pp. This value will 
lower bound the actual performance.

3.5.1.3 Local and Global Processing

Using the reparameterization in (3.5.2), (3.5.3), and (3.5.4) the original problem
(3.3.4) can be decoupled into simpler (lower dimension) local estimation problems 
solved individually at each detecting SN. Thus, the MLE problem (3.3.4) can be 
reformulated in terms of the intermediate parameters as
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min
i M-l
« E  ||f< - a ih (xi ,v>i) fz ¿=o (3.5.17)

where M  is the number of active SNs, i9, =  (a,, <pf)T and p i =  (¿¿, nr)T as mentioned 
earlier. Now the above estimation problem can be decomposed into the following 
M  problems solved individually at the detecting SNs

min ||£ -  aihixi, v?i)||2 . (3.5.18)

The solution of the MLE in (3.5.18) above is given in Subsection 3.5.2. The 
estimated intermediate parameters (2*, are then transmitted to the FC in order 
to solve for the ultimate global parameters 0 as shown in Fig. 3.5.1. This global 
estimation can be regarded as a fusion process of the local estimates to produce the 
desired result. The manner in which the fusion is carried out is not particularly 
specified by (3.3.4) as it is the case for local estimation. Hence, the fusion problem 
can be approached with more freedom. In this work, we generally adopt the least 
squares method. Given i?* and from the definition (3.5.4), the least squares approach 
can be used to find the position of the target and the medium’s diffusivity, i.e.,

<*"*> = argsi? g  (S‘ -  (3-519)
where Ts is the sampling period. The above is actually a nonlinear least squares 
problem and does not have a closed form solution, however it can be solved iteratively 
by a variety of methods, which are discussed later on in this chapter. Note that the 
previous estimator implies that the FC has knowledge of the transmitting SNs. So 
using linear least squares to find the entry time estimate ( f ) leads to the estimator

rp A / —1

f  =  -r-, £  K  (3.5.20)
iU  i=0

where n\ is the entry time sample estimate of the ith SN. The above estimator is 
actually a moving average filter. Similarly, the release rate (/i) is estimated according 
to

27TK  ̂ .. _ .
/* = -7r L  a< llx* — x«l

m  1=0
(3.5.21)

It is expected though that fi would not be accurate since it depends on several 
other estimates. We will now present local and global processing techniques to solve
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(3.5.18) and (3.5.19) respectively.

3.5.2 Local Estimation Techniques

In the following we discuss techniques to solve the local estimation problem (3.5.18). 
First, we investigate a gradient-based search approach and prove that it can be 
formulated as a convex problem, which ensures reaching an acceptable solution. 
However, it turns out that the latter technique might be computationally demanding 
in the context of WSN. Therefore, we suggest using a grid search technique that turns 
out to be a simple correlator with pre-stored values.

3.5.2.1 Gradient-Based Search

To solve (3.5.18), we employ the variable projection (VP) method [126]. The VP uses 
the fact that a subset of parameters exist linearly in the cost function to eliminate 
those parameters from the problem. The (a) parameter can be estimated using 
linear least squares as

2j hT(& )h(& ) (3.5.22)
where we dropped the x< argument for notational convenience, (p is the optimal value 
of ip, which is found by solving the problem resulting from substituting (3.5.22) into 
(3.5.18), i.e.,

Pi =  argmin (</>)£ ||2 (3.5.23)
where

H ( v )

P h (v > )

i  -  Ph(v>)
h(v>)hT(y>)
hT(v?)h(v?)

(3.5.24)
(3.5.25)

and Phiv5) is the projection matrix on the span of h(y>) and P £ (tp) is the comple­
mentary projection matrix of the latter.

To solve (3.5.23), iterative methods such as Gauss-Newton (GN) method or 
Levenberg-Marquardt (LM) method could be used. The estimate is updated itera­
tively according to
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<pk + 1 = q>k +  edfe (3.5.26)
where c is the step size in the search direction specified by dfc and the superscript 
(k) denotes the iteration index. Note that the SN’s index is dropped for notational 
convenience. On the other hand, dfc is found by solving

( ( j fc) T Jk +  e l)  dfc =  gk (3.5.27)
where e =  0 in case of GN and otherwise for LM and Jfc is the Jacobian matrix 
whose columns are defined as

1
hT(y?*:)h(y>fc)

Pj(V>k) dh(tpk)
hT(yj*:)h(y>fc) difj hT(<pk)f (3.5.28)

where the subscript (j) in fjfc refers to the jth  column and in ipj it refers to the jth  
element. The last line above follows if the residuals are small [126]. The analytical 
expressions of the derivatives of h(v?) are given in Appendix B.l. The gradient is 
computed as

gfe =  ( j fc) Tp* (3.5.29)
and

p* =  PjU v^f- (3.5.30)

However, any gradient-based approach requires an initialization. Fortunately,
(3.5.23) is asymptotically convex, i.e., as the number of samples goes to infinity the 
cost function becomes asymptotic. The following lemma provides the proof for the 
latter statement.
Lemma 3.1. If the Jacobian matrix defined in (3.5.28) is full rank for all x  and 
ip, then the VP method (3.5.23) is asymptotically convex, i.e., as the number of 
measurements goes to infinity, problem (3.5.23) becomes convex.

Proof. See Appendix B.4. □

This fact, theoretically, alleviates the need to find a good initial guess since
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any will suffice, which in turn reduces the computational complexity of the local
estimation problem.

3.5.2.2 Grid Search

The gradient approach requires matrix inversion, function evaluation, and derivative 
evaluation as well. Those operation are computationally demanding in the context 
of WSNs. Hence, we suggest the grid search (GS) method as an alternative when 
the SNs have low computational capacity. Although the GS might seem, at first 
glance, to require significant computation, we will show it to be otherwise.

Recall that <p is a two-dimensional parameter. Then tp can discretized into a 
two-dimensional grid. Let the parameter space be divided into K  grids, then the 
grid values are the set and the corresponding transfer vector is h*, =  h(y>fc).
Thus, the cost function in problem (3.5.23) can be readily written as

Ph(¥>fc)f||2 fT (Ph (¥>*))
fT p ±

fTf -  fT

h ( v >f c ) f
h*hjTf
hi hfc

2hfc (3.5.31)

where the third equality follows from the symmetric and idempotent properties of 
P£. Using the above, the optimization problem (3.5.23) can be reformulated as

arg max k
itff
ih*

where the optimization variable here is the grid index, 
above, then we have

(3.5.32)
Given the solution to the

(3.5.33)
(3.5.34)

The optimization problem (3.5.32) is merely finding the maximum dot product

90



3.5. SEGMENTED DISTRIBUTED LOCALIZATION AND ESTIMATION
between the normalized columns hfc/ ||hfc|| and the measurement vector. Hence, the 
implementation of (3.5.32) is simply a correlator of the received signal with the 
stored normalized vectors. At first glance, the storage requirement appears to be 
large if a good local estimates are desired, which is not the case indeed. Recall that 
ip =  (b,nr)T, where nT is the entry sample time and also it is the time shift of the 
time vector h(<^). Thus, we only need to store h(6, 0) and shift it according to nT. 
Furthermore, we can send k (instead Q>) to the FC since the former is an integer 
value representing an index. Hence, it is expected to be represented by a small 
number of bits, which consequently requires less bandwidth.

3.5.3 Global Estimation Techniques

Here global estimation techniques are investigated. We start by using NLS to solve 
the localization problem. Then a grid search approach is formulated as an alternative 
to circumvent the need for a good initial guess. Finally, the localization problem is 
cast as a hyperspherical estimation form.

3.5.3.1 Gradient-based Search

Upon the reception of the intermediate estimates at the FC, it starts estimating 
the desired parameters (0). This global estimation can be regarded as a fusion 
process of the local estimates to produce the desired result. The manner in which 
the fusion is carried out is not particularly specified by (3.3.4), as it is the case 
for local estimation. Hence, the fusion process can be approached from different 
angles. Next we present two methods for intermediate estimates fusion (or global 
estimation): Nonlinear least squares estimation, and the robust hyper-spherical in­
tersection method.

Using the received intermediate estimates, we formulate the following nonlinear 
least squares estimation problem

(x4, k) =  argminXt,(C 2 y/ZTa ) (3.5.35)

The above can be solved by the VP approach via defining 77 =  1 / a/ k as the 
linear parameter. In this case, the optimization problem to be solved is

x ( =  arg min P^(x«)b||2 (3.5.36)
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where b = (&o, • • • , (with slight abuse of notation) and the complementary
projection matrix is

P  H*t) r(xt)rT(xf)
rT(x,)r(x,) (3.5.37)

and r(x() = (||x0 — xf| | , • • • , Hx^/.j — x(||)r . Then, the diffusivity estimate follows
as

jj rT(x,)r(xt) 
4T’srT(xt)b (3.5.38)

The cost function in (3.5.35) is plotted in Fig. 3.5.2. Obviously, the problem 
is not convex and requires a good initialization. For this purpose, we suggest using 
the centroid of the locations of the active SNs, i.e., the average of the detecting SNs 
locations.

Figure 3.5.2: Global Cost Function.

3.5.3.2 Grid Search

To alleviate the need of a good initial guess and complicated function evaluations, 
(as before) a grid search (GS) is suggested as an alternative (a similar approach 
is adopted in [127]). Applying the procedure presented in (3.5.31) on (3.5.35) we 
have

92



3.5. SEGMENTED DISTRIBUTED LOCALIZATION AND ESTIMATION

x( =  arg max | rr(xt)b |
llr(xt)ll (3.5.39)

To implement the GS, first the sensing field (J7) is divided into M  grid points 
each with center x*, which are the potential target locations. Let

ri =  ( lx ° “  x ‘ 1»’'' ’ \\x m- i ~  x t ||)T (3.5.40)
be the distance between a SN location x* and the grid point x .̂ Then, similar to 
the local processing case, problem (3.5.19) reduces to

3 =  arg max i (3.5.41)

Consequently, we have x t =  x< and it follows that

( |x °  - - l l \  TX? X A/_! -X?||^ (3.5.42)

Let for notational simplicity ? =  tj , then the diffusivity is estimated as

k =  4 Ta (3.5.43)

The rest of the parameters are estimated according to (3.5.21) and (3.5.20). 
Note, however, that this algorithm implicitly requires that the FC knows the loca­
tions of the detecting SNs.

3.5.3.3 Hyper-Spherical Intersection (H SI) Method

However, the main drawback of the iterative NLSE approach is its computational 
load that requires cost function evaluation and matrix inversion. To overcome this 
hurdle several closed form approaches are suggested such as the IISI method [123], 
which performs localization by solving the hyper-spherical equations. We first in­
vestigate using the conventional IISI method then develop a robust approach.

The global localization problem (3.5.35) is formulated into the following IISI 
equations
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where

°ij =  1 -K ? .  ~  ^ Xj) (3.5.45)
are the center points and the corresponding radii are
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Pij =  i  _ 1/C2 llx« ~ xill (3.5.46)

with

Kti =  b  (3.5.47)

the ratio between the ith and jith SNs (6) intermediate estimates. Note, however, if 
the estimates are perfect, then the previous ratios would be

Kij =  ||X< - X4 . (3.5.48)llxi x tll
It is well known that the nonlinear least square problem (3.5.44) can be con­

verted into a linear least square (LLS) [123] by taking an arbitrary SN as a reference 
node, say SN 0, and then forming pairs of hypersphere equations to acquire the 
overdetermined linear system

2(c,0 -  cj0)r x t =  (c?0 -  piq) -  (c]0 -  p)0) (3.5.49)

for every pair of active SNs. Compiling all the values in matrix form we have

U xt =  C (3.5.50)
where U  =  (u j, • • • , u^_j), C  = (Co > • • • , d - i ) T> and L is the number of equations. 
Then, the target location is found by solving

min ||Uxt — £|| (3.5.51)X*
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which is a linear least squares (LLS) problem that has the following closed form 
solution

xt =  (UTU )_1UTC (3.5.52)
given that U  is full rank. This condition is satisfied when having three or more 
detecting SNs.

Although the LLS is generally attractive, it is known to perform poorly in 
the presence of outliers, which are possible in the DDLE algorithm since a false 
alarm detection leads to erroneous intermediate parameters. Therefore, we propose 
solving (3.5.50) using the robust and convex Huber cost function [128] instead of 
the conventional Z2-norm. In other words, we localize the target by solving

xt =  arg min H (U x4 — £) (3.5.53)
where T  is the sensing field and H(-) is the Huber function defined here as

m  u)

ffn(^n)

N - 1

E  # » (“»). u e  Rnn=0

2K I - 1

, K l  < « 
,|u»| > £•

(3.5.54)

(3.5.55)

For small errors, the Huber function behaves like the square function, whereas 
for large errors it behaves as the Zj-norm which is robust against outliers. Note that 
(3.5.55) reduces to LS when e -» oo. Here, we choose e =  1 for simplicity.

Now, (3.5.53) can be solved iteratively using convex optimization techniques 
[128]. However a solution is guaranteed since (3.5.55) is a convex function. There­
fore, localization robustness is traded-off with more computation complexity. The 
rest of the parameters are estimated according to (3.5.38), (3.5.21), and (3.5.20).

3.6 Simulation Results and Discussion

In this section we first present numerical simulation of the diffusion signal caused by 
a stationary target. Then the CRLB for both the target’s and the medium’s param­
eters are computed for different network setups. Finally, the mean square estimation
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3.6. SIM ULATION RESULTS AND DISCUSSION

(MSE) of the SDLE variants are compared together and with the CRLB.

3.6.1 Simulation Setup

Wireless Sensor Network

A WSN is randomly deployed in a sensing field, T , of square shape with side length 
of L — 100 meters in the xy-plane. The deployment is modeled as a PPP <I> = {Xj} 
with intensity A sensor node per unit area. The network is simulated for 1000 Monte 
Carlo iterations where a new point process realization is generated in each iteration. 
One such realization is shown in Fig. 3.6.1.
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Figure 3.6.1: Wireless sensor network realization in sensing field T , with target located at (1,-1) 
Target for * = 10

A stationary target is located at the arbitrary position (1,—1,0), at ground level 
for simplicity, entering the sensing field at time r  = 3.7 sec. The target releases 
material with rate /< = 0.5Kg/sec into a medium with diffusivity of k = 40m2/sec. 
The arbitrary parameters chosen are

96



3.6. SIM ULATION RESU LTS AND DISCUSSION
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(3.6.1)

The target causes a spatio-temporal variation in the concentration across the 
sensing field as shown in Fig. 3.6.2. Obviously, the signal degrades as the distance 
from the target increases. In contrast, the signal increases as time progresses because 
the target is constantly releasing material into the medium. The concentration 
stabilizes after some time that depends on k, and ||xt — x||. Larger /; values and 
smaller k and ||x( — x|| values contribute to faster stabilization, as can be verified 
from (3.2.11).

C
.2
£Sh
t:CDoCo
Ü

Xi - x

Figure 3.6.2: Concentration values plotted 
(||xf -x||).

versus both time (t ) and distance from target
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3.6. SIMULATION RESULTS AND DISCUSSION
Sensor Nodes

The SNs collect N  =  100 samples corrupted by AWGN and with a known variance 
<r2 that is set in our simulation to provide an average SNR of 20 dB. The SNR is 
defined as

Upon collecting the samples, the SNs perform local detection via an energy 
detector with threshold 7 . As explained earlier, local estimation is carried out 
if the prior distributed detection result is positive. The SNs locally estimate the 
intermediate parameters according to one of two algorithms:

1. Nonlinear least squares (NLS) estimation via the variable projection method.
2. Grid search (GS).

In both cases, the SN comes up with three intermediate parameters estimates 

Fusion Center

The intermediate estimates are sent and then perfectly received at the FC, which 
computes the final estimates of the desired parameters 0. This is done via one of 
the following algorithms:

2 . Hyper-spherical intersection method (NLS-IISI) solved via linear least squares.
3. Robust hyper-spherical intersection method (NLS-RHSI) solved via convex 

optimization.
4. GS.

Segmented D LE

The SDLE algorithm is the combination of both the local and global estimation 
approaches mentioned above. The algorithms used in the simulation are as follows:

The first three entries of the table are iterative algorithms and the fourth algo­
rithm is the grid search. The last entry is the hybrid of the previous two.

(3.6.2)

1. NLS.
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3.6. SIMULATION RESULTS AND DISCUSSION
SDLE Local Estimator Global Estimator
NLS2 NLS NLS

NLS2-HSI NLS NLS-HSI
NLS2-RHSI NLS NLS-RHSI

GS12 GS GS
GS-NLS GS NLS

Table 3.1: Segmented distributed localization and estimation algorithms used in simulation.

3.6.2 CRLB

In the following numerical simulation, we investigate the behavior of the CRLB of 
the estimated parameters (0 ) with respect to the local detection threshold (censoring 
threshold) 7 and the network deployment density A. We first set A =  3x 10-2  SN/m2 
and calculate the CRLB for 9 for different sensing SNR (SNRs) values as in Fig. 
3.6.3. As expected, the CRLB improves as the SNR increases.

Similarly, setting A =  3 x 10~2 and SNRs =  20dB, we compute the CRLB for 
varying 7 values. Fig. 3.6.4 illustrates the square root of the CRLB for 6 given 
in (3.6.1). Except for the /r CRLB, changing the censoring threshold does not 
significantly affect the CRLB of the parameters. Hence, a small CRLB loss can be 
traded-off with a significant saving in communication power and bandwidth.

This time we set 7 «  190, which corresponds to a local probability of false 
alarm to 10~7, and A is varied and the CRLB is observed as in Fig. 3.6.5. Clearly, 
the CRLB is inversely proportional to A. This implies, as is also shown, that the 
CRLB asymptotically approaches zero as A tends to infinity. However, it is clear 
that the reduction in the CRLB becomes small as A increases. This behavior can be 
explained physically by referring to the fact that having a large number of SNs in a 
fixed area necessarily means that they are located close to each other. Consequently, 
SNs close to each other would provide similar information. Hence, the improvement 
in the CRLB would not be significant.

3.6.3 MSE of SDLE Algorithms

Here we investigate the MSE of the SDLE algorithms, (see Table 3.1) with respect 
to A and 7 . Firstly, we compare the MSE of the intermediate parameters’ local 
estimation for the NLS and GS algorithms for different 7 values in Fig. 3.6.7. The 
NLS algorithm is the optimal estimator for the case of Gaussian noise. Thus it is 
expected to have better performance in general. However, the GS algorithm achieves 
a similar performance when 7 takes relatively high values. This is due to the fact
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«u

(c) (d)
Figure 3.6.3: CRLB of 9 given in (3.G.1) plotted against the sensing SNR (SNR,) with 7  =  191 

corresponding to local probability of false alarm of 10-7 .

that higher 7  results in the local detection of SNs with better information (closer to 
the target). Therefore the processed data will have a better SNR and consequently 
better estimation is attained. For example, Fig. 3.6.6 shows the effect of 7  on 
the location and number of detecting SNs. If 7  is set to be a high value, then the 
detecting SNs are concentrated around the target, in contrast to a relatively low 
value of it that causes a dispersion of the detecting SNs in the sensing field.

Next we show the MSE of the global estimation when 7  is varied in Fig. 3.6.8. 
An obvious observation is that the MSE improves for all algorithms as 7  increases 
for the same reason as mentioned above.

Starting with the iterative SDLE algorithms only, we note that the NLS2 al­
gorithm provides the best performance for all 7  values, whereas NLS2-IISI gives 
the worst due to having erroneous intermediate estimates. This happens when a 
SN is located far away from the target and the measured signal is, consequently,

aeü
ajcd
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(c) (d)
Figure 3.6.4: CRLB of 0 for values given in (3.6.1) plotted against 7  with A =  3 x 10-2  SN/m 2.

dominated by noise. This leads to a false alarm type detection, also known as spu­
rious detection [74]. Thus, the estimated parameters are the result of fitting the 
noise in the samples. In other words, those erroneous estimates act as outliers in 
the LLS localization, which is known to significantly degrade performance. O11 the 
other hand, the NLS2-RHSI performs better than the latter algorithm because it is 
robust to outliers. However, it does not reach the same performance level as NLS2 
since it inherits the properties of the hyper-spherical intersection algorithm that is 
known to be inferior to the NLS. It is shown that GS2 catches up with the NLS as 
7  increases due to having a better SNR as stated before. The GS-NLS on the other 
hand, combines the optimal properties of the local NLS and the global properties of 
the GS. Hence it performs better than the rest. The previously discussed trends are 
apparent in all the estimated parameters. As for estimate of r  , two methods are 
used here to estimate n\ that is used in (3.5.20) to estimate r. It is clear that the 
GS performs much better than the NLS. This is due to the fact that the GS tries 
out many values and chooses the best one.
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3.6. SIM ULATION RESULTS AND DISCUSSION

Figure 3.6.5: CRLB of 6 given in (3.G.1) plotted against A with 7  =  191 corresponding to a local 
probability of false alarm of 10~7.

Another impact of 7  on SDLE is the number of detecting SNs. Fig. 3.6.9 shows 
the ratio of the average number of detecting SNs to the average number of deployed 
SNs as a function of 7 . It can be seen that increasing 7  will reduce the number 
of detecting SNs and hence save energy. For example, increasing 7  from 118.5 to 
approximately 149 gives around a 14% reduction in the number of detecting SNs, 
whereas the loss of localization performance is negligible in the case of the NLS2 
algorithm.

Finally, the relationship between the MSE and A is investigated in Fig. 3.6.10. 
The figures reveal an overall improvement in localization error for all the SDLE algo­
rithms when increasing A, which is intuitive since more information is available that 
in turn improves the estimation. In fact, GS2 and NLS-MP achieve a localization 
error of 0.8 and 0.6 meters respectively at A = 0 .1  SN/m2, i.e., the previous perfor­
mance is reached if one SN is deployed in every 100m x 100m area, which is very 
reasonable in terms of the system cost. As for k estimation, we note that the NLS2, 
NLS-RHSI, and MP-NLS do not experience a significant change in the MSE with
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(a) 7  =  118.5 that corresponds to a local prob-(b) 7  =  172 that corresponds to a local proba- 
ability of false alarm of 10- 1 . bility of false alarm of 10-5 .
F igure 3.6.6: Impact of local detection threshold, 7 , on the location of detecting SNs.

increasing A. This can be explained by the k ’s estimator (3.5.38), which depends 
on x(. Although the latter improves significantly in the context of localization, its 
values are small in the k context and hence it does affect fi estimation. In the case 
of NLS-HSI however, the localization error reduces significantly, for example from 
15 meters to only one meter for the NLS-HSI algorithm. This change is reflected in 
the MSE of k. A similar argument applies for GS2 although on a smaller scale. To 
explain p ’s MSE behavior, we refer to its estimator (3.5.21), which depends on the 
estimates of a*, x(, and k. The former two estimates do not change with A leaving 
k to dominate the estimate. This explains the similarity between p and k MSEs.

3.7 Chapter Sum m ary

In this chapter we have reviewed the derivation of the physical model of a diffusion 
source in a semi-infinite field. Then, we formulated a corresponding statistical model 
parametrized on the desired parameters vector 6 = (/¿, x2 , k, t) . With this model 
at hand, we derived the maximum likelihood estimator (MLE) of 0 for a randomly 
deployed WSN with a SN intensity A. The Cramer Rao lower bound (CRLB) for 6 
estimation is found analytically using stochastic geometry tools. Numerical results of 
the CRLB show that it diminishes arbitrary with increasing A. However, the CRLB 
is not significantly affected by varying the local detection (censoring) threshold 7 .

We proposed the segmented distributed localization and estimation (SDLE) 
framework to serve as an efficient, alternative to the resource expensive (although
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Figure 3.6.7: Local estimation RMSE of intermediate parameters, (a,b,n'T), plotted against the 
local detection threshold 7 , with A =  5 x 10-2 .

optimal) MLE. Two flavors are suggested: iterative algorithms and exhaustive search 
methods. The former is based on the nonlinear least squares formulation that is 
solved iteratively using algorithms like variable projection. The same problem is 
solved via grid search that turns out to be computationally simpler than the iterative 
methods. Similar to the CRLB behavior, the SDLE mean square error (MSE) is 
relatively insensitive to 7  but reduces with increased A as the simulation results 
shown. It is also shown that using a hybrid of iterative and sparse methods leads 
to a better MSE.
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Figure 3.6.9: Average number of detecting sensor nodes plotted against 
threshold 7 , with SN deployment density A =  5 x 10~2.

the local detection
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Figure 3.6.10: RMSE of estimators plotted against SN deployment density A, with local detection 
threshold 7  =  172 corresponding to local probability of false alarm of 10~5.
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Chapter 4

Medium Access Delay for Slotted 
Aloha in Time-Critical Wireless 
Sensor Networks

4.1 Introduction

4.1.1 Motivation

Contention-based MAC protocols (such as Aloha, CSMA, and SMAC) are usu­
ally used for wireless communication in WSNs because of their scalability and au­
tonomous nature. Slotted Aloha though, is one of the most popular MAC protocols 
for wireless communication due to its simplicity and decentralized structure, i.e., 
a minimal coordination is needed between the nodes and the FC from one side, 
and between the nodes themselves from the other side. However, the slotted Aloha 
protocol is also known for the high service delays due to the adopted decentral­
ized approach. Such a disadvantage, if left unaddressed, can significantly impair the 
time-critical requirement of surveillance the WSN. In those applications, the empha­
sis is on the delay until the target is discovered, in contrast to conventional wireless 
networks that consider the delay until the sent packets are successfully received. 
One proposed solution to reduce the medium access (contention) delay is to use 
multi-packet reception (MPR) via including several communication channels, such 
multiple frequencies, time slots, or codes. However, adopting MPR necessarily leads 
to an increase in hardware complexity, which is a crucial matter in WSN. Hence, it
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4.1. INTRODUCTION
is vital to explore the performance improvement (in terms of delay statistics) when 
MPR is used in order to strike a trade-off between delay and complexity.

4.1.2 Related Work

Conventional contention delay distribution has been derived in [129] for a single 
node employing either slotted-Aloha or CSMA. The distributions were shown to 
intrinsically depend on the back-off policy used. The end-to-end delay distribution 
for a multi-hop WSN was investigated in [130], where a discrete-time Markov chain 
was used to model the system. The model encompasses both the queuing and the 
medium access delay. The authors in [131] considered the specific case of a de­
centralized detection WSN, in which the communication system was modeled as a 
continuous-time Markov process. The objective was to improve the detection error 
probability and the probability of delay violation, in contrast to traditional through­
put and average delay metrics. Similarly, the work in [132] addressed the detection 
reliability of a WSN within a specific probabilistic delay bound through modeling 
the system of nodes and traffic as a spatio-temporal fluid. Stability and delay of 
MPR slotted Aloha was investigated in [133] for conventional wireless networks. 
Surveillance networks using MPR slotted Aloha were investigated in [134].

4.1.3 Chapter Proposal and Contributions

In this chapter, we statistically investigate the delay experienced by the FC until 
all the active SNs send their data successfully using slotted Aloha with and without 
MPR. To this end, we first derive the contention delay and statistically characterize 
its distribution in slotted Aloha. However, the latter distribution is very compli­
cated, and so we resort to approximating it by a negative binomial distribution, 
which is the discrete counter part of the Gamma distribution. We use results from 
Chapter 2 to aid us in finding the mean and variance of the contention delay. Then, 
this information is used to tune the medium access probability of the MAC protocol 
to achieve a minimum delay. Thus, we address the case of MPR slotted Aloha in 
which the mean, variance, and distribution are analytically studied. We show (an­
alytically and via simulations) that the delay statistics improves as the number of 
channels increases.
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4.1.4 Chapter Outline

In Section 4.2 the contention delay assumptions are presented and the problem is 
formulated. The contention delay in slotted Aloha is defined and its distribution is 
derived in Section 4.4. The MPR slotted Aloha contention delay is investigated in 
Section 4.4. Section 4.5 presents the simulation results and discussion. Finally, we 
give some conclusions in Section 4.6.

4.2 Problem Formulation

4.2.1 System Model

The system model used here is the same as the one used in Chapter 3 where the 
target is a diffusive source. This model is chosen in order to preserve continuity with 
the previous chapter and at the same time to show that the analysis in Chapter 2 
also applies to diffusive sources. The SNs communicate with the FC over a shared 
channel. However we do not consider any imperfections here because, as discussed 
earlier, the SDLE framework enables low bandwidth transmission that in turn allows 
for powerful error correction codes. The data is sent only if the FC decides that a 
target is present and so transmission power is therefore saved. The MAC protocol 
used by the SNs is the p-persistent slotted-Aloha, in which every SN decides to 
transmit in the designated time slot with probability pma. The time slot is assumed 
to be of one time unit length for the sake of simplicity.

4.2.2 Contention Delay in DDLE

When the WSN attains a positive global detection decision about the target’s pres­
ence, a distributed estimation stage is initiated. As explained before (see Fig. 4.2.1), 
the SNs estimate local intermediate parameters and then send them to the FC. The 
transmission occurs over a shared MAC. Since the data payload sent is relatively 
small, powerful error coding can be applied to protect the data. Therefore, we as­
sume that the data are received perfectly at the FC. However, using slotted Aloha 
causes reception delay at the FC due to medium access collisions. In this chapter, 
we are concerned with investigating the total delay experienced by the FC until all 
the transmitting SNs successfully send their data through the shared channel to the 
FC.

In the context of the DDLE algorithm, we will be discussing part (III) high-
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lighted in Fig. 4.2.1. Our concern in this chapter is two folds. First, to statistically 
characterize the contention delay in WSN performing DDLE. Second, using the 
previous statistical description, we aim to choose the optimal medium access prob­
ability.

4.3 Contention Delay Analysis in Slotted Aloha

In this section, we define the delay from the FC point of view and approximate its 
distribution via moment matching with a negative binomial distribution. Finally, 
an insight into the medium access probability on the contention delay is provided.

Given the DDLE set up explained earlier, we expect to have 12 SNs ready to 
send their local estimates to the FC. This value is actually the offered traffic by the 
network. Recall that 12 is a RV given by

n = £  /(x,) (4.3.1)
as it was defined by (2.3.2). Note that we drop the subscript denoting hypothesis 
dependence since Hi is assumed. Moreover, recall that 12 is a Poisson RV, i.e.,

pn(u) =  Poi (n ) (4.3.2)
where

12 =  A J Pd(x)dx (4.3.3)
and Pd(x) is the detection probability at location x.

Now 12 SNs will compete for the time slot. Each SN decides to send its data 
with probability pma. If the transmission is successful, the FC will acknowledge the 
sending SN and the latter will withdraw from the contention. If the transmission 
is not successful, the SN will try again in the next time slot with probability pma 
as well. The contention ends if there are 12 successful transmissions. Ilence, the 
contention delay is the number of time slots required for 12 successful transmissions. 
This is in fact, the delay experienced by the FC to get all the required data, which 
is different from the delay experienced by the SN to send its packet.
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Figure 4.2.1: Distributed Detection, Localization and Estimation (DDLE) algo­
rithm. In this chapter, section (III) is discussed.
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4.3.1 Exact Distribution

The contention delay can be defined as follows:

£>C =  £ A  (4.3.4)
i=l

where Di is the delay required for the time slot to be captured by any transmitting 
SN for the ith time.

In order to find Dc's distribution, we need to discuss the statistics of Di. Let us 
start with D\, which is the delay for the first successful transmission. In this case, 
0  SNs would be competing for the time slot. Hence, the event of a transmission 
success is a Bernoulli RV with the success probability being the probability of only 
one SN transmitting amongst all contending SNs. This is

PSt (1 ) -  ~Pma)n *■ (4.3.5)

Consequently, the number of time slots required until the first success is a Geo­
metric RV with its mean being the reciprocal of the success probability, p \T. Simi­
larly, the delay until a successful transmission for the second time slot is a Geometric 
RV having mean l /p s T, where

PSt ( 2) =  (n -  1) Pm.il - P m a f '2 (4.3.6)
since now there are il — 1 SNs wanting to transmit.

Hence, by induction, we conclude that the delay of the ith successful transmis­
sion is Di ~  Geo (p£T) where

Psr(i) =  (fl -  t +  1) Pm«(l -  Pm.)0 V (4.3.7)

Now we turn our attention to Dc in (4.3.4). Since the Dj’s are in fact indepen­
dent, the Dc distribution is the Q-fold convolution of geometric RVs, i.e.,

PDc{d) =  Geo(psr(l)) ® Geo(p5:r(2)) ® • • • <8> Geo(p5r (f2)) (4.3.8)
where ® is the convolution operator. Remember that fi is also a RV.
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4.3.2 Negative Binomial Approximation

The above distribution is very complicated and does not have a closed form expres­
sion. Hence, we resort to approximation via moment matching. First, we estimate 
the first and second order moments and then match them with the first two statistics 
of the negative binomial distribution. We start by finding the mean delay:

E [Dc] Ei
r n 1
E ALi=l

(4.3.9)

where the expectation is w.r.t to the joint distribution of fl and the TVs under the 
Tii hypothesis. Fortunately, all the previous RVs are independent of each other. 
Thus we have

Ei
r n
E A Ei

Ex

r n

(4.3.10)

where Ei [•] is the expectation under Hi and the expectation in the last equality is 
w.r.t f2. On the other hand, the variance can be found using the total variance law 
as

vari (Dc) =  Ei [var (Dc|f2)] +  var (Ei [DC|Q])
■ n ’/n \2'

Ei ^va x (D i)
.¿=1

+ Ei (x : e[a ] - e [dc]J

where for a given Q, we have var (D,) =  (1 — pat{i))lp2st{i), which follows from Di 
being a geometric RV.

Having found the first two moments, we approximate poc{d) by moment match­
ing with a negative binomial distribution because it is flexible enough to take various 
forms. In fact, the negative binomial distribution is the discrete counterpart of the 
Gamma distribution. The negative binomial distribution (NB (r, q)) has parameters 
r and q, which are respectively the number of failed trials before the first success 
and the success probability. Thus
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Using moment matching, the required distribution parameters are given by
Ei[Dc]

(4.3.12)

9 = var^Dc) (4.3.13)

and

var,(D.) -  Ei[£»f]'

Now, the contention delay distribution can be approximately fitted to the fol­
lowing negative binomial distribution:

PD,(d)*‘ [ d +  Td ~ 1 (4.3.14)

Having the contention delay distribution at hand enables the inspection of the 
real-time aspect of the DDLE system. In such a situation, we are interested in the 
event of satisfying or breaking the real-time deadline specified by the application. 
The real-time deadline miss probability captures the needed information about the 
system performance, which is defined as

Prm =  P(D c > T S )  (4.3.15)
where T S  is the maximum required number of time slots to accommodate the com­
munication operation. The latter probability resembles the outage probability used 
in communication systems. Obviously, PRm is desired to be small, e.g., 1%. In other 
words, it is required that the real-time deadline is missed one percent of the time.

4.3.3 Medium Access Probability Impact

Apparently, there is no tractable relationship available between pma and the con­
tention delay statistics. However, we will try to get an insight into the behavior of 
the contention delay w.r.t pma. We consider the mean of the contention delay (Dc) 
given in (4.3.10). The latter can be written w.r.t pma as
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Dc — Ei £Li=i
___________ 1___________
( Q - i  +  l)p ma(l (4.3.16)

Making the simple substitution (j  =  i — 1) enables further simplification to
give

Pma(l -Pma)n -1 ~ j)  Pma{ 1 ~ Pma)Q~j (4-3.17)
where the average above is conditioned on 0. Note that the summation multiplier 
above is nothing but the average delay in conventional Aloha scenarios, and so, we 
should expect a similar behavior. In other words, there exists an optimal pma value 
that minimizes the average contention delay. Nonetheless, the statistical expressions 
(4.3.10), (4.3.11), and (4.3.14) can be numerically evaluated to get the optimal pma 
value.

4.4 Contention Delay Analysis in MPR Slotted 
Aloha

As shown by the simulation results, a Prm of 1% requires at best over 130 time slots, 
which is a prohibitive amount of delay. Thus, It is necessary to consider supporting 
technologies such as the MPR. In the MPR slotted Aloha, there exist a fixed number 
of channels (frequency, time slot, code) say L that any SN can use to transmit its 
data. When the SN decides to transmit, it chooses one of the L channels randomly 
and uniformly. To formally discuss the contention delay, we first need to define the 
channel choice variable at the SN, Xj, as C(Xj), which can only take integer values 
in the set {!,•■ • , L). Let us also define the channel indicator at the SN X< as

Mx<) = C(X<) =  i 
C(Xi) ±  l

Then the traffic offered at a the /th channel is

(4.4.1)

n, =  £  J(X,)/i(X*). (4-4.2)x (e$
The traffic’s distribution on the other hand is given by the following lemma.
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Lemma 4.1. If the traffic offered by the network is Poisson with mean Cl, then the 
traffic at the Ith channel follows a Poisson distribution, i.e.,

Pnl{ujl) =  P o i( j ^  • (4.4.3)

Proof. It is easy to recognize that the traffic in (4.4.2) is a thinned version of the 
original offered traffic (4.3.1), because //(Xj) has a uniform probability of 1 /L. 
Hence, Cl[ is a Poisson RV with mean ClfL. □

The above lemma states that the traffic at any channel in an L MPR system 
is 1 /L  the original traffic, an intuitive result since the SNs choose the channel in a 
uniformly random manner.

Now the contention delay for the Ith. channel follows as

(4.4.4)
«=1

where D\ is the delay required for the time slot to be captured by any transmitting 
SN for the ¿th time in the Ith channel. The Dlc distribution can be found in a similar 
manner as described in Section 4.3. The final contention delay on the other hand, 
depends on the delay in all the channels. We define the contention delay in MPR 
slotted Aloha as the maximum of all the channel delays, i.e.,

Dc =  max • • • , ) . (4.4.5)

The distribution of Dc now follows from order statistics as

PDc(d) =  L (PD'(d))L 1 pD,c(d) (4.4.6)
where Ppic(d) and po\{d) are the cumulative and probability distributions of the Ith 
channel contention delay respectively. Consequently, the mean and variance can be 
computed from their basic definitions, i.e.,

E [De]

var [Dc]

OO
J2dpDic(d)d=0

d=0

(4.4.7)

(4.4.8)
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4.5. SIMULATION RESULTS AND DISCUSSION
4.5 Simulation Results and Discussion

We simulate a WSN in a square of 100 m x 100 m with SNs deployed according to a 
uniform random distribution therein. The SNs are deployed with intensity A SN/m2. 
Every SN takes 100 samples of a diffusive target characterized by the parameters 
values are chosen arbitrarily to be 6 =  (100,0,0,40,3.7), which represents the release 
rate, x-coordinate, y-coordinate, diffusivity, and entry time respectively. Note that 
the target is located at the origin for convenience. The sensing SNR is defined 
according to (3.6.2) and is set to 20 dB without loss of generality. The SNs perform 
local detection using the ED, and if the detection was positive it tries to transmit 
data to the FC over an ideal shared channel. All the SNs use slotted Aloha with the 
same medium access probability pma. We run the simulations for 104 Monte Carlo 
iterations.

Note that we assume knowledge of 0 is available for simplicity. In practice, the 
approach 3.5.1.2 is suggested to find a lower bound on the performance.

4.5.1 Slotted Aloha

For the slotted Aloha without MPR, the contention delay mean, variance, and dis­
tributions behavior with pma is shown for different A and 7  values. Theoretical 
and simulated values are plotted. In Figures 4.5.1, 4.5.2, 4.5.3 and 4.5.4 the mean, 
variance (in which the theoretical delay mean and variance are given by equations 
(4.3.10) and (4.3.11) receptively), and T S  (the required number of time slots to achieve 
a probability of real-time deadline miss of 0.1 given in (4.3.15) ) are plotted against 
the medium access probability. Generally the figures indicate a clear similarity be­
tween the theoretical and simulated values. Clearly, increasing the A will increase 
the offered traffic, which in turn decreases the optimum pma value. Changing 7 , 
on the other hand, does not have a significant effect. We also note that the TS  
to achieve Prm = 0 .1  decreases when A decreases due to the same reason stated 
earlier.

4.5.2 MPR Slotted Aloha

Fig. 4.5.5 depicts theoretical and simulated contention delay statistics plotted 
against the MPR channel number with pmap value set to the optimal value as shown 
in the figures above. Generally, the delay decreases as the number of channels in­
creases, which is expected because the traffic per channel decreases.
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E[D
C]

4.5. SIM ULATION RESU LTS AND DISCUSSION

(a) Contention delay mean. (b) Contention delay variance.

(c) Number of time slots to achieve Prm =
0 . 1.

Figure 4.5.1: Contention delay statistics plotted against the medium access probability (pmap) 
with A =  1 x IQ“2 and 7  =  172 (P/a =  10~5).
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4.5. SIM ULATION RESU LTS AND DISCUSSION

(c) Number of time slots to achieve Prm =
0.1.

Figure 4.5.2: Contention delay statistics plotted against the medium access probability (pmap) 
with A = 1 x 10~2 and 7  =  118 (P/a =  10-1 ).
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4.5. SIM ULATION RESULTS AND DISCUSSION

(c) Number of time slots to achieve Phm =
0.1.

Figure 4.5.3: Contention delay statistics plotted against the medium access probability (pmap) 
with A =  1 x 10" 3 and 7  =  172 (PJa =  lO"5).
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4.5. SIM ULATION RESU LTS AND DISCUSSION

(c) Number of time slots to achieveP«Af =  
0 . 1.

Figure 4.5.4: Contention delay statistics plotted against the medium access probability (p„,ap) 
with A =  5 x 10~3 and 7  =  172 (Pja — 10-5 ).
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4.5. SIM ULATION RESULTS AND DISCUSSION

(c) Number of time slots to achieve f ’mt  =
0 .1.

Figure 4.5.5: Contention delay statistics plotted against the number of MPR channels for A =  
1 x 10~2 and 7 =  150 (Pfa =  10~3).
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4.6. CHAPTER SUMMARY
4.6 Chapter Summary

We have defined and statistically characterized the contention delay (Dc) in a DDLE 
based WSN using the slotted Aloha MAC protocol with and without MPR. The 
stochastic geometry framework has been used here as well to aid in performance 
analysis. We have found the theoretical expressions for the mean and variance 
of the contention delay. The latter were in turn used in the moment matching 
approximation of the contention delay distribution. Finding the distribution enabled 
investigation of the probability of a deadline miss (Prm)• We considered the required 
number of time slots to achieve Prm =  0.1. The impact of the medium access 
probability (pmap) on the delay statistics has been explored. It was shown that 
there is an optimum value that minimizes the delay statistics.

For the MPR slotted Aloha case also, the mean, variance and the distribution 
of the contention delay have been characterized as well. Increasing the number of 
channels decreased considerably decreases the contention delay. Finally, the medium 
access probability and the number of MPR channels have been optimized, given 
theoretical expressions of the delay statistics, in order to strike a trade-off between 
delay performance and complexity.
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Chapter 5

Overview, Conclusions, and Future 
Work

In this thesis, we have considered the problem of distributed detection, localiza­
tion and estimation (DDLE) of a stationary target using a WSN subjected to a 
time-critical operation, restricted power and BW resources, and a Rayleigh fading 
channel.

To this end, we proposed a modular DDLE algorithm that relies on two main 
stages. In the first stage, resource efficient distributed detection is performed to 
decide whether a target is present or not. The proposed distributed detection com­
prises from energy local detection carried out in the SNs and counting rule fusion 
performed at the FC. This structure does not require explicit knowledge about the 
target location or other parameters, which simplifies the distributed detection. Fur­
thermore, it enables censoring the SNs to preserve resources and using a shared 
channel for communication. The effect of fading on distributed detection is handled 
by using the novel distributed diversity combining technique. We propose two dis­
tributed techniques: the distributed Maximum Ratio Combining (dMRC) and the 
distributed Equal Gain Combining (dEGC). The detection performance improves 
with increasing A. There is an optimal 7 value that minimizes the probability of 
error.

In the second stage, target localization and estimation is implemented using the 
novel segmented distributed localization and estimation (SDLE). The localization 
and estimation problem is decoupled into a group of local estimation problems solved 
at the SNs and a global estimation problem, which delivers the final estimate, solved
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5.1. CONCLUSIONS
at the FC. We proposed two algorithms for solving the local problem: a nonlinear 
least squares (NLS) algorithm using the variable projection (VP) method and the 
grid search (GS) method. We proposed four algorithms to solve the global problem: 
NLS, GS, , hyperspherical intersection method (IlSI)and the robust hyperspherical 
intersection (RHSI) method. Thus, the SDLE can be solved through various local 
and global algorithm combinations. We tried out five combinations: NLS2, NLS-IISI, 
NLS-RHSI, GS2, and GS-NLS. It turned out that the last algorithm combination 
delivers the best localization and estimation performance. In fact, the target can be 
localized with less than one meter error. Intuitively, increasing A improves the MSE 
However the MSE is insensitive to variations in the 7 values used.

The local estimate transmission is done over a shared channel to save resources. 
Hence we propose using the slotted Aloha protocol. However, due to the relatively 
high delay in the latter protocol we adopt using multi-packet reception (MPR) 
with the slotted Aloha. We have found the theoretical expressions for the mean and 
variance of the contention delay. The latter was in turn used in the moment matching 
approximation of the contention delay distribution. Given theoretical expressions 
of the delay statistics enables optimizing the medium access probability and the 
number of MPR channels in order to strike a trade-off between delay performance 
and complexity.

5.1 Conclusions

It has been shown in practical surveillance WSN systems that the signal processing 
algorithm complexity can be compensated by the sheer number of SNs involved in 
the overall DDLE task. In other words, a large number of SNs with simple local 
processing can perform the same DDLE task (more or less) as a relatively small 
number of SN equipped with complex local signal processing. In this thesis, we 
have managed to start with a complex local signal processing algorithm (GLUT) 
and break it up into a group of simpler problems solved locally and globally.

For example, in the case of distributed detection, it has been shown that the 
distributed diversity combining techniques (dMRC and dEGC) performed better 
than centralized diversity combining even with high diversity order under low and 
medium SNRs. Because in the former, each SNs increases the diversity gain in 
contrast to the later that uses dedicated MACs to increase diversity. In fact, per­
formance levels close to the ideal case can be reached through the use distributed 
diversity combining because the channel effects are eliminated and the network can 
be then turned into a distributed beamformer.
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5.1. CONCLUSIONS
The performance of the distributed detection can be controlled through the 

system parameters A and 7 (deployment density and local detection threshold). In 
other words, the distributed detection system can be designed by first choosing Pp 
and Pfa values. Prom Pfa the global detection threshold (T) is readily found. Then, 
the A and 7 parameters are chosen to satisfy the Pp requirement. Furthermore, low 
Pe can be achieved while on the mean time turning off a significant number of SNs 
to save energy. This can be done by appropriately choosing the local detection 
threshold.

As for distributed estimation, breaking up the main MLE problem resulted in 
a group of simpler local problems that can be solved simply by using grid search 
techniques that reduce the required hardware to a simple correlator, while in the 
same time saving BW and energy by transmitting the intermediate estimates instead 
of the raw measurement. Results showed that a localization error of less than one 
meter can be achieved in a sensing field of 100m x 1007« area. Furthermore, such 
paradigm enables self censoring of the nodes that believes that their data are not 
good enough, which extends the system’s lifetime. Interestingly, when decreasing the 
number of involved SNs in the estimation problem, the performance is marginally 
affected. For example, 14% reduction in the number of detecting SNs can be achieved 
by increasing 7 , whereas the loss of localization performance is negligible in the case 
of the NLS2 algorithm.

Furthermore, the symmetry between the local and global processing enables the 
deployment of a homogenous network. The proposed algorithm local and global 
parts both consist of simple detection operation (ED and CR respectively) followed 
by the estimation operation, which can be solved via iterative or grid search methods. 
Thus, virtually the same algorithms are used to solve the local and global estimation 
problem. Hence, any SN can fulfill the duties of the FC.

Generally speaking, the performance of the proposed DDLE algorithm mainly 
depends on the system parameters (A, 7 , pmap, and L), which are the SN deploy­
ment density, the local detection threshold, medium access probability, and number 
of MPR channels respectively. The joint optimization of all the previous parame­
ters is a challenging task. On one hand, the performance measures are diverse, i.e., 
error probability (Pe) in the case of distributed detection, localization and estima­
tion means square errors (MSEs) in the case of distributed estimation, contention 
delay in case of slotted Aloha, and number of channels for the MPR. On the other 
hand, the joint optimization problem is high dimensional and irregular. For exam­
ple, increasing A improves both distributed detection and estimation. However it 
increases the contention delay of the system. Therefore, we have suggested taking a
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5.2. FUTURE WORK
sequential approach in which each parameter is optimized individually while fixing 
the others. For example, given a particular Pe and MSE, A should be first chosen 
to satisfy both. Then, 7  should be increased (which reduces the number of involved 
SNs and consequently preserves power and BW) to the maximum value that still 
maintains Pe. Then, L and pmap are chosen to reduce the contention delay while at 
the same time keeping the SN hardware within reasonable complexity.

In conclusion, the proposed algorithm enjoys the following features that are 
suitable for WSNs operation:

1. Low bandwidth requirement due to sending the local decision and intermediate 
estimates instead of the raw measurement.

2. Low power power requirement and consequently extended network lifetime, 
since a portion of the SNs are not involved in the DDLE process.

3. Low computational requirement, e.g., due to using ED for local detection and 
the GS processing, which is simply a correlator.

However, the above advantages come with the price of loosing optimality and in­
creased estimation variance. Nonetheless, the performance loss can be compensated 
by proper choice of A and 7 .

5.2 Future Work

The future work can be divided into two main categories, short term and long term. 
In the short term part, our work can be directly extended to new cases. In the long 
term part, the suggested algorithms and techniques can be used to solve different 
problems.

5.2.1 Short term Work

5.2.1.1 Distributed Detection

We can consider using more sophisticated local detectors instead of the ED. On 
the other hand, channel estimation error could be incorporated into the dMRC and 
dEGC algorithms to investigate its effect. Moreover, statistical channel information 
could be used instead of the actual realization. More optimistic channel fading 
models could be used, such as Rician fading, etc.
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5.2. FUTURE WORK
5.2.1.2 Distributed Estimation

In the SDLE framework, different local or global estimation algorithms could be 
investigated. Similarly, in the case of global estimation, an optimal estimator can 
be derived given that the local intermediate parameter statistical nature is identified. 
On a different note, the effect of quantization of the intermediate parameters can be 
investigated. And also consider the effect of reception errors of those parameters.

5.2.1.3 MAC Protocol

The CSMA or SMAC protocols could be used instead of slotted Aloha, and the delay 
statistic could be analyzed using the same proposed framework. A lower bound on 
the contention delay (in the case of the MPR) could also be investigated.

5.2.2 Long term Work

For long term work, different models can be considered in lieu of the diffusive source 
model, such as the wave field source, which can represent acoustic or electromagnetic 
targets. It is expected though, that the SDLE analysis would give more insight since 
the wave field source model is more tractable. Furthermore, a moving target tracking 
can be investigated using the DDLE framework, particularly, through the concept of 
the intermediate parameters used in Chapter 3. In this case, the tracking problem 
can be handled locally and globally via a framework similar to the SDLE. The DDLE 
can be used in the multiple target scenario, in which spatial clustering can be used 
with several instances of the DDLE algorithm. WSN specific simulators (such as 
TOSSIM [135]) can also be used to investigate the effect of different communication 
aspects.
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Appendix A

Proofs in Chapter 2

A . l  P ro o f of Theorem  2.1

Under hypothesis H o ,  the statistics E(Xj) VX< G $  do not depend on the target, in 
fact they are independently and identically distributed since they are only functions 
of noise and 7 . Thus, the probability of retaining that point in $2, i.e., the thinning 
probability of a point at X j, is

IP (X j G $d) =  P (E (X j) > 7 ; H o )  (A.1.1)
which is constant and equals the local probability of false alarm, say / V  Hence, 
the detecting SNs then form the point process = {Xj G : E(Xj) > 7} that 
is a p-thinning of $ . Such operation produces a homogenous PPP. The mean is 
simply APfa |.F|. As a result, fi0’s distribution follows a Poisson distribution given 
in (2.3.3).

A .2 P ro o f of Theorem  2.2

Since $  is stationary and T  is infinitely large, we construct the shifted MPPP 
=  {X j, E'(Xj), tf(X i), 'J'(Xj) : X j G $ - X t). The new MPPP is centered at X t, 

hence eliminating the dependence on the target’s position, which will significantly 
simplify the proof. We first prove that is a PPP by noting that is a dcpmdcntly 
thinned point process of i.e., =  {X j G : E(Xt, A) >  7 }, and hence it is a
PPP. Note that the notation E(Xj, A) is used here instead of E(Xj) to make clear

130



the dépendance on both Xj and A. To show that <3?̂ is inhomogeneous, we examine 
its intensity by first finding its mean:

fii =  £  / ( * )
x<e«î-i

=  £  1 (E (X < ,A )> 7) (A.2.1 )X<e*
where l(-) is the indicator function.

Let us condition ill on a specific value of the target’s amplitude say a, then the 
conditioned mean number of detecting SNs, say A(a), is

A(a) Ej [il|a] =  Ej £  i  (“ (x<, «) > 7 )X̂ ê '
(A.2.2)

where the expectation is w.r.t to For an arbitrary mark cumulative distribution 
P(£), Campbell’s theorem yields the following

A(o) =  A f  [  l(E (x ,a ) > y ,H \)d P {t)d x  Jo
=  A J P (E (x ,a) > y ,H i)d x  

=  A J Pd(x,a)dx. (A.2.3)

From the second line above, the intensity is APd(x, a) which is dependent on x. 
Hence we deduce that is a inhomogeneous point process. Hence, the conditional 
distribution of ill is p(w|a) =  Poi (A(a)). Consequently, i l l ’s distribution is pi(0) =  
E,4 [Poi (A(A))], which is the Cox distribution. Finally, the mean of Hi is attained 
by take the expectation of A w.r.t p(a)

ill Ea A(A)]
AE J Pd(x,A)dx  . (A.2.4)

131



A.3 Proof of Lemma 2.1

Let us group the signal samples in the vector F< =  (F,[0], • • • F,\2K — l])r with 
realization f* =  (/¿[0], • • • fi[2K  — l])r . Also let E* =  E(Fj) and dt — ||xì — xt|| for 
convenience. We begin, by identifying the following Markov chain F< —► E(Fj) that 
relates the observed signal with the LLR of the local detector at SN located at X,. 
By using the data processing inequality for the J-divergence [88], we have

=Ei[los(S i)]-E“[los©
Secondly, we characterize the LLR

- t e »  ■  - i 5® “) 
s - h ® ) ]

Then it follows that

(A.3.1)

(A.3.2)

Ei log (p iK A l < Ex E A log

Eq log (P l(ft)\
VPo(f<)/. < E0 Eyi log

l  P o (f.) )  
/ P » (f.|y Q \
V P o (fi) /

By adding the above inequalities we arrive at

J (P o ( f j ) .P i( f i ) )  <  J (p u ( f , |A ) ,p x (f , ) )

(A.3.3)

(A.3.4)

(A.3.5)

To evaluate the LI1S of the above, we evaluate the LI IS of both of the (A.3.3) 
and (A.3.4). Starting with the former, we need to evaluate the LLR
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(A.3.6)

and

log CpdCs.)) log ( ( ^ 2) “^ exp ( - ¿ J  ^  /? h ) )

log (Pl(Si)) =  - y log (™?) -  ¿ 2  E  (/¡["l -  Jr)
AT, ,  , N N A 2 1 ^ A f t[n]¿V . (  o\ I W=  - - l o g K ) - 2^  +  ^ E's n=0

i  N - 1

ola E  /?W-2<7* n=0
(A.3.7)

Then we have

Ei Ei
" ■ W )

=  Em

Em

Ei

Ei

log

NE [A2] 
2o 2d2 1

( p > m ) X
\  Po{fi) ) .
1 (N A 2 "¿¿A (A  \V Y

2<t2 \  d2 ^ 0 d i \d i  W' n /J j .
(A.3.8)

Similarly

Eq
■ • M S ) ]

NE [A2]
' 2a2J 2 • (A.3.9)

Consequently, by subtracting (A.3.9) from (A.3.8) we finally arrive at.

J (p 0(fi|A),pi(f<)) =
NE [A2] 

o ld2 • (A.3.10)

A.4 Proof of Proposition 2.1

Given a particular value for the target’s amplitude, i.e., A =  o, the approximate 
mean is
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where f(J3) the funtion defining the outer boundary of S. Using the result in lemma
2.1, for arbitrary e, we set r =  and then substituting into (A.4.1) we get

A XNa2 XPfa 
2 ta \ +  2

Na?\
)

XN q2(l — Pfa) XPfnp (B )  
2ta \ +  2

(A.4.2)

Hence, A is approximately a quadratic function w.r.t a. Consequently, there 
exist some constants c0, c\, and c-i such that

A «  g(a) =  c0(a -  Ci)2 +  c2. (A.4.3)

The above is simply a transformation of RV A to A. Hence the its distribut ion 
follows as in (2.3.15).

A.5 Proof of Proposition 2.2

Using the same translation argument in proof A.2, the target localtion dependence is 
eliminated. Now note that /i(x )  is always non-negative given the condition /j (x )  >  
P/a is satisfied for all x. Then, Aqfr is a summation of a non-negative function over 

which has intensity of APd(x) as stated in corollary (2.2). Hence, Campbell's 
theorem can be readily used to find the mean as follows

E £  / ( X )
LX’«»*

=  A ^ / ( x ) r i(x)iix. (A.5.1)

Similarly, the variance is given by



var var E  /(Xi)[Xi€*d
(x)Pj(x)dx. (A.5.2)

For Aqfr though, we apply the same procedure but this time 4'j has intensity 
A (1 — Pd(x)). As for the Mo case, the proof is similar. However the intensities of 

and are APja and A (1 — P/a) respectively.

A.6 Proof of Lemma 2.2

Starting with the LLR and using Jensen’s inequality

log fPi(v)\
kM v)J log Ei

. En
6XP (aA ~ n)8)
exP ( 5̂  (Y -  H)2)

We (Exfn] -  Eo[nj) -  ¿ 7  (Ei[n2] -  Eo[n2]). (a .g.i )

Now taking the difference of the expectation w.r.t Mi and Mq we get the in­
equality

J{Po(y),Mv)) <  ¿ | (E ,M -E „ [V '] ) (E , ( ! l ] -£ ,,[!!])

=  ^ i|(E ,[n ] -E „ [n j)2 (a .c.2)

where the last equality results in having E)[y] =  Ej[Q], which follows from (2.G.11).
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Appendix B

Derivation and Proofs in Chapter 3

B .l Analytical Expressions for Derivatives in the 
Diffusion Case

Recall that

h[n, 0] =
4 ttKyJ(xi -  xt)2 +  (yi -  yt) =erfc V ( X i  ~  X t ) 2 +  ( V i  -  V t Y

> 2^nT,(n -  nT) (13.1.1)

Then the derivatives w.r.t 0 =  (n, xt, yt, nT, k) are
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dh[n, 0] 
dfj,

dh[n, 0\ 
dxt

dh[n, 6] 
dnT

dh[n, 6\ 
dn

a k  i  .
V W « T .(n  -  nT) )
(  y/(x<- X |) 2 +  (y<- y i ) 2\
\  2 \ / kT, (« -  nT) J

( 13.1.2)
4nKy/(xi  -  x t)2 +  (yt -  y()2
__________ /f_________
47I7C [ ( X j  -  X ( ) 2 +  (Vi -  J / t ) 2 ] ^
_______________ n { x j - x t)________________(  (x, - X , ) 2 +  (y, - y , ) 2^
4 ((xj -  x f)2 +  (yi -  y()2) y/T,(n -  n T) \  4 « T ,( n - n T) /

_______ M_______ exp /  (x< - x t)2 +  (yj - y t)2\
8T2 [7r«(n — nT)]^ \  4Kla(n — n r ) )

» ( y / ( x i - x t )2 +  ( y , - y , ) 2\
4tTKy/(xi -  x t)2 +  (yt -  yt )2 \  2 N//c7’,(n  -  n r ) y

p exD f  f o - x ^  + ^ - y . n
87r$K$ y/Ta(n — n7j \  4 kT,(ti — nT) J

(13.1.3)

(13.1.4)

(13.1.5)

The derivatives with respect to yt and zt are similar to (13.1.3).

B .2  Derivation of Fisher Information M atrix for an 

arbitrary Sensor Node

Recall that the individual LLF

Z(xi50) l5?J 2  (/.[«] -/ihln.Xi.V»])2
n=0
1 JV-l
2 H  ' t f M -

 ̂ n=0
(«■ 2.1 )

The individual FIM follows as

Z ( * ,0) —E,,
N-l

(13.2.2)

Since the individual LLF, /(x*,#), has a sum of squares form, the above takes 
the following form
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(B.2.3)J ( x i,0) =  - E u, [ j r ( 0 ) J i ( 0 ) ] - E u;
N-l q2
H  9« K  % rpfcIM ],n=0 UO

where Jj(0) is the Jacobian matrix defined as

W )  =
=  “ 2 (fi ~  (**> V»))T ( h ( X j ,  ip) D (xit xp) )
=  ( h(xi,V») D ( x i tV») ) (B.2.4)

where qj(0) =  (çjO, #],••• — 1,^])7'î D (xitxp) is the deriwitive with respect
to xp as defined in (3.4.8), and the last equality above follows when 0 takes its true 
value. In this case the second term of (B.2,3) vanishes. Hence (B.2.3) becomes

l (x i ,0 )  = hT (xj, ip) Wjwf h (xj, xp) hT (Xi, xp) w^wf D (x ,̂ xp)
D t (xj, xp) w<wfh (Xi, xp) D T (Xi, xp) WjwfD (x<, xp)

_  JL /  hT (x i, ip) E* k w f l h  (Xi, ip) hT (x „  ip) E* k w f l  D (x é, xp) 
° i  \  DT (x i, xp) E,,, [w,wf] h (x<, xp) D r (x<, xp) B«, w<wf ] D (xh xp)
l_ f  hT(xi,xp)h(xi,xp) hr (Xi,xp)D(xi,xp) 

a \ l D T(xi,V»)h(xi ,V’) D T(xi,xp)'D(xi,xp) (B.2.5)

B.3 Proof of Theorem 3.1

Starting from (3.4.1) and (3.4.2) we have

CRLB(0) =  — ( e  [ ^ ] )  ' .

Recalling that Ew [g*[n]] =  0 in equation (B.2.3) gives

(B.3.1)

E d2l(0)
doTe —  E

which can be written as the following block matrix

(B.3.2)
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(B.3.3)

We proceed by finding the expectations of the matrix elements one by one. For 
the upper left element we have

d l ( 0 )
dfi =  ^  E  ( f ¿ - / íh (x¡,i/'))r h(x0 V')

X¿64>

=  -k Y  wfh(x¿,V>)Xi€$ (B.3.4)

where the last equality holds at the true value of 0. Then, the expectation is

E o m \ T ( a m
dn )  \  dfx ) Y  Z  hr (xi,V»)wiwJ’h(xJ,V’)x.eí'xye*

-7 E *  Y  Z  hT(x¿,V»)Eu, [wíwJ1°s [x.eí- x^eí h(xj ,V’)

(13.3.5)

where the last line comes from the fact that the measurement noise and the point 
process are independent. Also, using the spatio-temporal independence property of 
the measurement noise i.e.,

< # , i =  j
0, i j

we get

E Y  h^Xi.VOMxj.VOx.e*

(13.3.6)

(13.3.7)

Now since hr (xj, V’)h(xi, t/>) > 0, Campbell’s theorem ran be used to finally 
arrive at

E ^ ( g ) \ T ( < m \
, d f i  )  \  d n  ) =  4 /  l|li(x,t>)frfx. (li.3.8)
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If censoring is used, the summation is carried out over i>d and the above becomes

E ||h(x ,V>)||2 /M x,7)dx. (13.3.9)

Moving on to the second element in (B.3.3), we proceed as before to find the 
partial derivative

dl{9)
dij>

4  E  (f< -  tih(xi,rf}))T -^ r  UxurJ})°a Xi ™
4  Y .  w fD fx ,^ ) .°a x4e$

The expected value of the block element follows similarly as before

(13.3.10)

= 4 E E  I  hT(xil^)wiwJ’D(xj l^)â [xie+ x̂ e+
=  ^  [  hT(x,V»)D(x,V>)Pd(x ,7 Mx (B.3.11)

given that hr (x, y>)D(x, </>) >  0. And finally, the expectation of the last element in 
(B.3.3) is

E ( o i m \ T ( o m \  
V )  \  d*l> I

=  m  ||D(x,V>)l|2 / ,d(x,7)rfx. (13.3.12)

Aggregating (B.3.9), (B.3.11), and (B.3.12) gives us the FIM

1(d) _  (  J»(Vb7) G(V»,7) \  
\ G TW n ) D ( V » , 7 )  /

(B.3.13)

Finally, using the matrix inversion lemma we arrive at the CRLB expressions in 
(3.4.13) and (3.4.14).

B.4 Proof of Lemma 3.1

In order to prove convexity of (3.5.23), it suffice to show that the Hessian matrix of
(3.5.23) is positive semidefinite. The cost function of problem (3.5.23) is
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(13.4.1)
and recall that

C = l|p (v > )f

P(*>) =  P i M f  (B4.2)
where P^Cv?) is the projection matrix on the columns othogonal to li. The Hessian 
matrix then is

r f i C  N ~ l i )2
o . j r j  =  JTM J M +  E  (15.4.3)

where recall that J(y>) is the Jacobian matrix defined as

J M  =  ^ P ( V ) .  (154.4)

The first term in (B.4.3) is positive semidefinite according to the condition of 
the lemma. The lemma is proved if the second term in (13.4.3), however, is proved 
to vanish asymptotically and this is what is accomplished below:

N-l
E  =  E E E  f H f \ l ]p L Q ^ z p ni (u -4-5)
„ = 0  otP 'P n =0 m =0 (=0 ^

where P„m is the element in nth row and mth column. Note that we can state 
that

w o^8\m — Z] +  h[m, y>]h[f, tp], (13.4.6)

Plugging (B.4.6) into (B.4.5) yields
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N - l  N - l  N - l

E E En=0 m=0 1=0 
N —l  N - l

a2i  =  E E E  O '2 5[m - / ] - ( -  h[m, <p\h[l, <£>]) P„m ̂  T P̂ i
d2

=  E E  P nm E  { ° l S [m  ~  *1 +  Mm » V?]M*. V>]) ‘)inT: 3 P nl
n=0 m=0 ¿=0  ̂ ^  V9
N —l  / N - l  o2 A T - lN - l  o2 \

=  n S  +  S  S  M m ’ ^
N - l  N - l  q2 N - l  N - l  N - l  o2

=  ° \  E  E  P ^ m j r 7 f - p nl +  E  E  E„=0 m=0 c'ir  V5 „=o m=0 <=0 dipT(fi ‘

Taking the second term in the last equality, we show that

TV—1 N —l ps2 / N —l \

n=0 (=0 u r  » \m=0 /
=  0. (B.4.8)

since

E  = °m=0
by virtue of the complementary projection matrix. Now we have

(13.4.9)

N - l  N - l  02
L =  ^  ^  T . Pnmd T(pPnln=0 m=0 r

N —l N - l  n 2
=  ^  E  E  t 1 ■  ■ *«">) -  P n i)n=0 m=0 UKr  V3

N - l  N - l  n2 n2

= £  J?o ¡ V (1 ~ i "<)" p'""a?V (1 ~ /'"l>
W-l V-l 02 n2

=  '7* \ £ „ £ p”m^ Pn' ~ ^ r"'
=  CT

W-1 JV-1  /  o2 \
'5£,(awvrnl) (13.4.10)

Now using lemma 3.2 in [136] we can write the projection matrix as
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( B . 4 . 1 1 )p = ^ h ( v ) h» + o ( i )
where N  here is the number of samples and

K  =  J \h(f,cp)\2dt
then (B.4.10) becomes

L
N - 1 N - 1
E E

i
K 2N 2 (h[n'i <p]h[l;<p] 1 \  d 2 

K N J d<f>T<ph{n;<p]h[i,v\.

Finally, as N  —> oo we have L —> 0. This concludes the proof.

(B.4.12)

(B.4.13)
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