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Abstract

This research explored the idea of unifying the deterministic and stochastic process 

approaches together, and developing a generalised framework of dynamic traffic 

assignment models to include day-to-day and within day variations in traffic flow. 

The framework of models is also aimed at capturing individual drivers’ adaptation 

of route choices based on the route costs experienced through suitable driver 

learning models. In this thesis, the route flows within a day in a given departure 

period are modelled as random variables, and their evolution over a period of time 

(a number of days) is modelled as stochastic processes based on the laws of 

probability. The interactions among the route flows from various departure periods 

over the network links in space and time, are modelled through dynamic link 

loading procedures. Stochastic processes under certain mild conditions admit a 

unique stationary probability distribution which can be modelled by using 

simulation techniques. Alternatively, the moments (e.g., mean and variance) of the 

equilibrium (stationary) probability distribution can also be estimated. This research 

has advanced the idea of estimating the properties of equilibrium probability 

distribution by making a particular contribution in formulating the methodology for 

computing the Jacobians of route travel times with respect to the route inflows in a 

doubly dynamic assignment context using an analytical procedure, which are 

necessary for estimating the variance-covariance matrices of stationary route flows.

In this modelling framework, there are three modules -  the first one is a day-to-day 

route choice model defined as a discrete time stochastic process, the second is a 

continuous time dynamic network loading of the route flows considering the 

complete spatio-temporal effects of the traffic flows that use the road links at the 

same time, and the third is the drivers’ learning and adjusting model based on a 

linear filter. The main idea of estimating the properties of stationary probability 

distribution in this research builds on two earlier results: firstly, when the demand is 

sufficiently large, the equilibrium probability distribution converges approximately 

to a Multivariate Normal distribution and its mean coincides with the SUE flows; 

secondly, the variance can be estimated by an approximation procedure.
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The equilibrium probability distribution can also be worked out using the 

commonly followed Monte Carlo simulation technique, which involves simulating 

the route choice process as a multinomial probability distribution over a number of 

days, and then summarising the properties e.g., the mean and the variance of the 

stationary probability distribution. This procedure though simple, is time 

consuming and the main difficulty lies in detecting the stationarity of the process. 

Based on the necessary conditions, simple and practically useable tests for 

identifying the stationarity of a stochastic process have been introduced. These tests 

involve analysing autocorrelations and computing large lag standard errors in 

autocorrelations.

The stationary variance-covariance of route flows obtained by the variance 

approximation model, was compared with that computed by the simulation 

procedure. Overall, the variance approximation model performs satisfactorily. 

Variance-covariance of route flows has been found sensitive primarily to the input 

logit choice parameter, which defines the boundaries of the validity of the variance 

approximation model. Variance-covariance is also affected by the memory length 

with the shorter memory systems essentially producing highly variant systems. 

Similarly, the variance-covariance of route flows is also sensitive to the memory 

weight, and the lower memory weight (0 < memory weight «  1) produces the 

same effect as that of shorter memory systems.

The Jacobians of the travel times worked out in this thesis have much wider 

applicability, and a few possible situations have been listed here among many 

others. Firstly, the optimisation based user equilibrium programs can be speeded up 

by defining the descent direction with the help of the Jacobians. Secondly, the 

Jacobians may be found very useful in defining the dynamic road user pricing 

problems. Finally, the sensitivity analysis of user equilibrium problems requires the 

computation of the Jacobians.
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Chapter 1 

Introduction

1.1 Motivation

In transport network modelling exercises, it is a common experience to the 

modellers that the observed traffic flows and the modelled traffic flows are usually 

at a distance from each other and their convergence may depend on several factors 

such as the routing of the vehicles, fineness in the calibration of the model, stability 

of the flows and delays across the iterations within the model etc., for any given set 

of inputs including the trip matrix and traffic counts. Usually, it is assumed that the 

trip matrix and counts are accurate enough and the difference between the modelled 

and observed flows is reduced by altering one or more of the calibration parameters 

before repeating the model run and checking the validity of the model again. The 

whole modelling framework follows the idea that some self consistent state of flows 

(costs) exists, which can reproduce itself for any given set of costs (flows). Such a 

state is commonly referred as a state of equilibrium and the corresponding flows 

and costs are interpreted as long term averages of any transient state of the system. 

The validation stage of the modelling exercise usually relies on counts averaged 

over a shorter period and any difference between the modelled and observed flows 

is not sufficiently explained. This approach completely ignores the variable nature 

of the traffic flows, which is inherent to any given transport network system.

In fact, the traffic flows on roads vary both during the day and across the days. 

Consider the traffic count data collected over a period of a month during 6:00 -  

12:00 everyday and summarised in Figure 1.1. This figure clearly illustrates the 

building up of traffic flow during the morning peak period with a peak flow rate of 

over 3000 vehicles, which then stabilises at approximately half the peak during the 

rest of the morning period. This is usually referred to as within day variation of 

traffic flow. Similarly, there is a considerable variation of traffic flows across the 

days with clearly marked week day and week end patterns. This type of variation in 

traffic flow across the days is referred as day-to-day variation.
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Time of the Day

Figure 1.1 Day to Day and Within Day Variability of Traffic Flows
(Source: External Vehicle Speed Control, Deliverable D 11.3 (1999), ITS Leeds and MIRA)

In the past, there were several attempts made to address this question, especially in 

the case of variation of traffic flow within a day, e.g., Friesz et al (2001), Li et al 

(2003), Han (2003), etc. These models, commonly known as dynamic traffic 

assignment models, assume the traffic flow to be a deterministic variable which can 

take a single value at a point of time and solve for user equilibrium or system 

optimal type solutions which are dynamic extensions of Wardrop (1952) principles. 

Some researchers introduced the concept of variation in the perceived costs of 

drivers by adding an error term to the average route costs into the modelling 

framework, and formulated fixed point conditions for the user equilibrium 

(Daganzo and Sheffi, 1977), which is commonly referred to as Stochastic User 

Equilibrium. In spite of its name, this model assumes the flow as a deterministic 

variable, and one can work out exactly the number of drivers that will choose any 

particular route, given the cost difference between the alternatives.

From the above, it is clear that the question of variability in traffic flows cannot be 

addressed satisfactorily within the framework of conventional deterministic models 

as it essentially predicts a single outcome given a set of circumstances. By contrast,
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a wider range of modelling options are now becoming available with stochastic 

models which assume the traffic flow as a random variable, and such models 

predict a set of outcomes weighted by their likelihoods or probabilities, just as a 

truly stochastic model would be expected to perform.

In the literature there are several stochastic process models developed, for example, 

Cascetta (1989), Cascetta and Cantarella (1991), Cantarella and Cascetta (1995) and 

Watling (1996), which also assume the traffic flow to be a random variable and 

solve for equilibrium in probability distribution -  stochastic analogue of 

deterministic equilibrium. In fact, a state of deterministic equilibrium may be 

considered as a particular instance of an equilibrium probability distribution. Davis 

and Nihan (1993) in their asymptotic results showed that the stochastic processes 

converge to multivariate Normal distributions, approximately, with the mean 

equivalent to the Stochastic User Equilibrium (SUE) flows. This important result 

forms the basis for all the attempts in unifying the deterministic and stochastic 

approaches in traffic modelling. Cantarella and Cascetta (1995) noted that, provided 

the O-D demand and capacity values are large enough, the deterministic 

equilibrium link and path flows become closer to the mean values obtained through 

a stochastic process model.

Usually, stochastic process models are characterised with the help of Monte Carlo 

techniques to generate a pseudo-random observation of the whole process over a 

given period of time, referred to as a realisation. But such methods are not free from 

drawbacks, such as the difficulty in identifying the stationary of the process and 

the presence of highly autocorrelated flows. In addition, they require a lot of 

computer time even with fast modem computers for networks and demand levels of 

reasonable practical significance. Hence, there is a need for developing fast and 

efficient methods of working out the equilibrium probability distribution.

Returning back to the Davis and Nihan’s asymptotic result, in order to describe a 

Normal distribution completely, one would require its mean and variance. Since the 

mean, which is equal to the SUE flows, can be estimated by some method such as 

the Method of Successive Averages, we only need to estimate the variance. 

Following this lead, Hazelton and Watling (2004) made an estimate of the variance
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in the case of day-to-day dynamic, but static within day, conditions assuming 

standard BPR style cost-flow functions. In order to include the within day 

variability, there is a need to extend their modelling framework to incorporate 

dynamic cost flow functions. However, in such a case, working out some of the 

parameters required to proceed with the variance approximation, (for example the 

Jacobians of the travel time functions with respect to the path inflows) needs a 

detailed specification for their computation, and poses a major challenge to the 

modellers. Based on this line of investigation the following objectives have been 

formulated for this research work.

1.2 Objectives

The main aim of this research project is to develop an integrated mathematical 

model addressing the day-to-day and within day variation of traffic flows which 

unifies the stochastic and deterministic approaches. Within this framework, the 

following list states the specific objectives of the research work undertaken:

■ to specify a combined stochastic process model representing day-to-day and 

within day dynamics of traffic flows, and to approximate the mean and 

variance of the stationary probability distribution of the stochastic process;

■ to develop an analytic modelling framework for working out the Jacobians 

of the dynamic travel time functions with respect to the path inflows;

■ to identify and implement a suitable dynamic network loading model 

representing the within day dynamics of traffic flows, which would facilitate 

the above objectives;

■ to develop an implementation framework for the unified model using 

suitable computer programming;

■ to develop and implement a doubly dynamic simulation model and study its 

properties; and

■ to compare the properties of equilibrium probability distribution obtained by 

the method of approximation and the method of simulation.
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1.3 Structure of the Thesis

This thesis is divided into eight chapters including this introductory one, and three 

appendices as listed below:

Chapter 2 reviews the dynamic traffic assignment models;

Chapter 3 discusses dynamic network loading methods in the context of within day 

assignment process;

Chapter 4 proposes a theoretical framework for the combined day-to-day and within 

day stochastic process model;

Chapter 5 formulates an analytic model for deriving the travel time derivatives with 

respect to the path inflows;

Chapter 6 analyses the behaviour of the drivers across the days in a doubly dynamic 

simulation experiment;

Chapter 7 discusses the overall framework of computer programs for approximating 

the equilibrium probability distribution and illustrates the principles using suitable 

numerical examples; and

Chapter 8 summarises and concludes the research carried out.

Appendix A lists the papers published and conferences at which presentations were 

made on this research;

Appendix B shows the approximated and simulated variance-covariance matrices 

for a five-link network; and

Appendix C includes the conditional covariance, Jacobian matrices of route choice 

probability functions and travel time functions, and variance-covariance matrices by 

the approximation method and simulation method, in the case of a grid network.



Review of Dynamic Traffic Assignment Models

Chapter 2

Dynamic traffic assignment in the literature commonly refers to the modelling of 

traffic flows on street networks considering the variations in the demand within a 

day (within a peak hour, for example) and capturing the spatio-temporal congestion 

effects through suitable dynamic link travel time functions. Usually such models are 

aimed at solving for either dynamic system optimal (Li et al 2003) or dynamic user 

equilibrium (e.g., Heydecker and Addison 2005, Friesz and Mookherjee 2006) or 

dynamic stochastic user equilibrium (Han 2003), and as they consider the traffic 

flow as a deterministic variable, the solutions arising out of such approaches 

naturally tend to be deterministic, representing a single outcome at each moment 

within a day. Or in other words, the deterministic approaches ignore the fluctuations 

in the demand/ supply and hence cannot explain the random variations in the traffic 

flow on the street network (Cascetta, 1989). In addition, the deterministic 

approaches, primarily driven by the conventional optimisation algorithms, aim to 

solve the equilibrium state and so, are unable to represent the transient states in the 

evolution towards equilibrium (Cantarella and Cascetta, 1995).

On the other hand, there are a few other dynamic assignment models which 

concentrate mainly on the modelling of traffic flows over a sequence of days and 

consider the evolution of traffic flows, either as a stochastic process (Cascetta 1989, 

Cantarella and Cascetta 1995, Watling 1996 and Watling and Hazelton 2003) or as 

a deterministic process (Friesz et al 1994, Smith and Wisten 1995). However, these 

models do not deal with the spatio-temporal congestion effects since they adopt 

static link cost functions, and hence are called day-to-day dynamic assignment 

models. Usually, the day-to-day models represent the state of the traffic flow 

system on any given day by linking the system states in the past over a period of 

time by incorporating suitable driver learning models. Driver learning models deal 

with driver psychology (e.g., memory length, habit), information acquisition 

process (e.g., route guidance systems, external sources of information such as the 

weather reports), and represent the process of consolidating the experiences helping 

further in developing new perceptions for the following day. Various types of
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learning models, usually called the filters, are described in Horowitz (1984), 

Cantarella and Cascetta (1995) and Jotisankasa and Polak (2005) among many 

others.

In fact, the purview of dynamic traffic assignment is much wider and includes day- 

to-day variations in the demand besides the within day variations and even 

capturing the delays due to the congestion arising from traffic flow propagation in 

time and space. Such models are called d o u b ly  d y n a m ic  tra ffic  a ss ig n m e n t models,

e.g., Cascetta-and Cantarella (1991), represent such doubly dynamic approaches. 

Doubly dynamic traffic assignment is the main subject of this thesis, which is aimed 

at developing an alternative approach to the commonly followed simulation 

methods.

This chapter reviews the day-to-day dynamic assignment models which are based 

on deterministic as well as stochastic process modelling approaches. It then 

introduces the concept of equilibrium for stochastic process models, and also 

reviews driver learning models, an essential element of the day-to-day models. 

Following the review of day-to-day models, principles involved in carrying out the 

within day dynamic assignment are outlined in this chapter. This chapter also 

touches upon doubly dynamic models. Finally, simple numerical examples are 

included to demonstrate the principles of stochastic equilibrium.

2.1 Review of Day-to-day Dynamic Assignment Models

Day-to-day dynamic assignment models deal with the evolution of path /link flows 

during the peak period/ hour over a number of days and consider d r iv e r s  ’ lea rn in g  

a n d  a d ju s tin g  of their departure time/ route choices based on their past experience, 

potentially combining pre-trip information obtained through exogenous sources 

such as radio/TV, and solve for eq u ilib r iu m  in th e  d e te rm in is tic  o r  s to c h a s tic  sen se . 

A_few models that deal with the random day-to-day fluctuations in the demand may 

culminate in an equilibrium state of a stochastic process described by an 

equilibrium probability distribution, while most other models assume deterministic 

demand variables and hence solve for deterministic equilibrium. A day-to-day
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model needs to incorporate a built-in within day model, which may be dynamic or 

static in nature. A day-to-day dynamic model with an in-built static within day 

model is referred to as a ‘pure’ day-to-day dynamic model, which is the main focus 

of this section.

2.1.1 Stochastic Process Modelling Approaches

Stochastic processes are mathematical abstractions of empirical processes whose 

development is based on probabilistic laws (Doob 1952). In the context of traffic 

network models, these methods consider the demand as a discrete random variable. 

Under such assumptions, the system is visualised as occupying various possible 

states whose realisation is modelled using methods such as Markov models. 

Stochastic models are very flexible in that they can incorporate any driver 

behaviour at an appropriate level of aggregation.

Cascetta (1989) introduced the stochastic process models for dynamic traffic 

assignment in a day-to-day context, but assumed a static within day model. That is 

to say that the model considers the evolution of system states over a sequence of 

discrete epochs of time based on a constant within day demand profile. In a day-to- 

day context, the route choices (i.e., the current system state) are assumed to be a 

function of the previous experiences (i.e., past system states) such as flows/costs 

along the used routes up to a finite memory length of the drivers -  essentially a 

Markov chain property. A stochastic process model can then be used to characterise 

the probability distribution of traffic flows on the network. When the probabilities 

of choosing a route are stable over successive days, the system is said to have 

reached an equilibrium state and the corresponding probability distribution of flows 

is called eq u ilib r iu m  p r o b a b i l i ty  d is tr ib u tio n .

Consider a network of directed links serving O-D demand represented by 

Q = {....,q k , —}  where q k is  the O-D demand for a particular c o m m o d ity  k, each 

commodity defining a combination of origin, destination and (discrete) departure 

period within a day. Each commodity k is served by a set of routes R k with |R k\
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K
elements; the full route set across all commodities thus has dimension,

*=i
Let f be the p- vector of commodity route flows and c(f) be the vector of 

commodity route costs.

It is assumed that all the trip makers of commodity k are rational in their behaviour 

when choosing their route, in an attempt to minimise their perceived cost of travel. 

This means that the population of drivers in commodity k will have an aggregate 

memory which is identical to the aggregate memory case of Cantarella and Cascetta 

(1995). For each commodity k and route r  e  R k , the perceived travel cost C (rn)k at 

the start of day n is given by

¿ ( n ) k  _  £ . ( n - l ) *  _j_ (2 . 1)

where, C (rn is the population-mean perceived cost for commodity k and route r at 

the end of day n-1, and T]\n)k is a random variable describing unobserved attributes 

contributing to the population-dispersion of the perceived attractiveness of route r 

by commodity k. The p  -vector C(n_1) represents the collection of population-mean 

perceived costs across all routes and commodities. The probability of choosing 

route r on day n is then given by:

p * ^ - ') )  = prob(Cr(,,-1)* +rf;)k <  C \n- X)k +T]\n)k) Vi *  r (2.2)

pk(.) then represents the vector (of dimension |R k |) of route choice probabilities for

the commodity k, and p(.) denotes the collection of the choice probability vectors 

over all the commodities (i.e. p(.) is a vector of dimension p). The functional form 

of the path choice probabilities depends on the joint probability density function 

assumed for the residuals \r]]?)k : r  e R k } for each commodity k, resulting (for
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example) in a logit model, if independent Gumbel distributions are assumed, and a 

probit model for a multivariate Normal distribution.

While the behavioural choice-side of the model is quite conventional, a simple 

linear learning filter is used to replicate drivers building up their experience of 

travel costs on a day-by-day basis following the completion of each day’s trip. 

Please refer to section 2.1.3 for a review of drivers’ learning models. Cascetta 

(1989) assumed a simple weighted average approach similar to the other simulation 

experiments, for example, Horowitz (1984). Thus following the completion of trips 

on any day (n-1), the population-mean perceived costs are updated based on a 

weighted average of costs actually incurred in a finite number of previous days m, 

using the form:

C(',)=s(A)-1{c(F',-1) + Ac(F',-2) + .... + r " 1c(Fn-ra) } V0 <A<1  (2.3)

s (A )  =  j r  Xhx = (1 -  F ) /(I -  X ) (2.4)
7=1

where, s(X) is simply a scaling factor to make the weights sum to unity and c(.) is 

the commodity route cost-flow function as defined above, and F" is a vector random 

variable of dimension p  denoting the network path flows by commodity on day n. 

Assuming that for any day n and for each commodity k, all qk drivers wishing to 

travel make their travel choices independently, conditional on their experiences in 

past days, then the number of drivers taking each possible route on day n by each 

commodity k, conditional on the costs (2.3) experienced in the past, is obtained as:

C(" ~ M u lt in o m ia l  ( q k,p*(C('1 l))) independently, fork=  1,2,,...K (2.5)

where, F(n)k is the vector of route flows on day n by the commodity k. Typically, the 

working to implement (2.5) would involve calculating the multinomial probability 

of choosing a route conditionally, given the costs up to the previous day (assuming
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that the route choice is a function of the costs only) in the space of discrete demand 

and feasible route choices. These probabilities are called transition probabilities and 

the matrix of such cells is referred to as a transition matrix, denoted by M. Then the 

equilibrium probability distribution denoted by n , is calculated such that,

n T =  n T M  (2.6)

where, T denotes the transposing operator and M is the transition probability 

matrix. The elements of n  represent the probability that the system occupies a 

particular state as defined by the random variable commodity flow Fr(n)k, over a 

given route on any given day. Equation (2.6) means that the probability distribution 

is invariant, with itself repeating over time. For real sized problems, the dimensions 

of the vector n  are extremely large and so directly solving this condition is not a 

viable option. As such, it is common to use simulation methods to approximate the 

equilibrium probability distribution, which involves repeating the route choice 

process over a number of days using simulation techniques, and then working out 

the summaries such as means, variances at the end of the simulation. For simple 

networks catering to a very few trips, an equilibrium probability distribution can be 

directly solved. One such example is included in section 2.4 of this chapter. 

However, for larger networks this method is infeasible and requires either a time 

consuming simulation process or even more sophisticated alternatives as described 

in Chapter 4.

2.1.2 Equilibrium Probability Distribution of a Stochastic Process

An equilibrium state of a stochastic process is defined in terms of an invariant 

probability distribution (e.g., probability distribution of route flows) which is 

conceptually different from that of a deterministic process which is defined in terms 

of deterministic variables (e.g., route flows). This difference is arising due to the 

underlying assumption that the stochastic process is defined in terms of random 

variables as opposed to deterministic variables. Equilibrium probability distribution 

is of interest to the researchers, as then one can describe the stochastic process using 

summaries such as means and variances, and similarly draw comparisons with the



12

equilibrium state of a deterministic process. A stochastic process is called 

s ta t io n a r y , if at least one probability distribution is time invariant, it is e rg o d ic , if 

stationary and exactly one stationary probability distribution exists. Finally, a 

stochastic process is called re g u la r , if ergodic and converges to the same 

probability distribution irrespective of its starting state (Olofsson 2005). Cascetta 

(1989) uses the following sufficient conditions for the stochastic process of the 

traffic flow in path choice space to have a unique (ergodic), steady-state probability 

vector:

• Path choice probabilities are time homogeneous. They are invariant under 

temporal translation, given the previous states;

• Path choice probabilities depend on a finite number of the previous states; 

and

• Path choice probabilities are positive for all feasible paths. All the feasible 

paths have non-zero probability of being chosen each time.

Consider the stochastic process described in the previous paragraphs occupying 

system states defined in path flows F®. Then the probability of the drivers of 

commodity k choosing route r on day n is given based on the previous system 

states, as below:

Under the assumption that the path choice probabilities are time invariant, they can 

be moved over time scale without affecting the probabilities of choosing the routes. 

Thus, moving back the route choice probabilities over the duration of x> then we 

have,

Assuming that the drivers remember their experiences of route costs over a finite 

number of days m, representing the memory length, then

(2.7)
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p k(n) [F„-l ̂ p n - 2  ' ] = p k W ^ p n - l   ̂p n - 2 (2.9)

Equation (2.9) implies that the route flow system is an m-dependent Markov chain 

which can be transformed to a 1-dependent Markov chain using an appropriate 

transformation of state space. Let the transformed state be F *n corresponding to the 

day n, which includes the states on m-1 previous days plus the current state on day 

n, which can be written as below:

.... , F n) (2.10)p*n _ (pn-m+l^p

Then under the third assumption all the system states can communicate with each 

other, making the system irreducible. Applying the results from the Markov chain 

theory (Cox and Miller 1972, Bath 1984), an irreducible a-periodic finite Markov 

chain admits a unique, steady-state probability distribution 7T, given by the equation 

(2.6). The one-step transition probabilities (clearly, the cell values of the matrix, 

M) between the transformed states can thus be computed as the probability given by 

the multinomial distribution by equation (2.4). Further, it was also proved that, if 

the process is stationary and ergodic in path choice space, the same properties hold 

for the processes in path and link flow spaces (Cascetta 1989).

2.1.3 Driver Learning Models

Many drivers in general repeat their trips, for example for the purpose of work, but 

on any given day the (generalised) cost of travel is not known beforehand. Instead, 

the drivers develop some kind of perception of the cost of travelling by various 

routes based on their past experiences. The perceived cost is also complemented by 

external sources of information, for example, weather report, route guidance 

systems. This section reviews various approaches followed in modelling the 

drivers’ learning process, which is one of the important components of the day-to- 

day modelling.

There are various approaches in the literature on day-to-day traveller learning, see 

Jotisankasa and Polak (2005) for a comprehensive review. While it is noted that the
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modelling of driver learning is complex and a wide researching subject by itself, the 

three most common approaches followed are summarised here.

2.1.3.1 Weighted Average Approach

It is assumed that the drivers tend to remember their experiences over a finite 

number of days and develop their perception based on the most recent set of 

experienced costs. Thus, at the end of the day n-1 (equivalently at the beginning of 

the day n), the drivers update their perceived cost for the routes given by a linear 

combination of the experienced costs weighted by an appropriate weighting system. 

Commonly drivers tend to remember the most recent experience very well 

compared to the oldest. Thus, usually the most recent experience will be weighed 

higher relative to the oldest experience. Within the notational framework used so 

far, this can be expressed as,

C (n) = j(A)-1 c ( F {n~J)) (2.11)
y=i

where, X is the memory weight and can take values between (0,1) and s(X) is the 

sum to m terms of the memory weight as given by equation (2.4). This approach 

has been widely used in the research, for example Horowitz (1984), Cascetta 

(1989), Nakayama et al (1999) and Watling and Hazelton (2003), but little practical 

investigation of the issues involved in calibrating the model has been reported.

2.1.3.2 Adaptive Expectation Approach

While the weighted average approach was criticised for its inability in accounting 

for the difference between the actual and perceived costs (Iida et al 1992), an 

adaptive approach which combines the perceived and actual costs from the previous 

day has been developed. This model in its simplest form can be expressed as,

Cin) = A. c ( F {n-l)) + ( \ - X )  C(n~X) 0<A<1 (2.12)
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This model has been widely used in the research, for example, Cascetta and 

Cantarella (1991), Ben Akiva (1991), Iida et al (1992). In this approach, the 

perceived cost on day n is bounded by the perceived cost on the previous day and 

the actual cost on day n-1, and so the travellers ignore all their other experiences.

The third approach is based on Bayesian updating of the perceived travel time. Jha 

et al (1998) and Chen and Mahmassani (2004) adopted a two stage updating process 

-  pre-trip (prior) and post-trip (posterior), in which the perceived travel time and 

travel time information provided from external sources (e.g., Advanced Traveller 

Information System, ATIS) are modelled as random variables with an assumed 

probability distribution. Pre-trip updating incorporates the information received into 

the historic perceptions, and the post-trip updating combines the experienced travel 

time with the pre-trip perception to become the historic perception for the following 

day. The drivers choose routes and departure periods based on the mean of the 

probability distribution of the perceived travel time. This model assumes that the 

underlying mean travel time is steady, and hence can not deal with significant 

changes in the network flow patterns.

2.1.4 Deterministic Process Modelling Approaches

The previous sections 2.1.1 -  2.1.3, dealt with the stochastic processes and the 

associated driver learning models. Now, the aim of this section is to introduce the 

deterministic process models, which consider the evolution of deterministic 

variables over time rather than random variables. Or in other words, deterministic 

process models ignore the random fluctuations of demand/ supply. Therefore, the 

path flow vector is equal to the average path flow vector as given below:

2.1.3.3 Bayesian Approach

V k (2.13)

(2.14)
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Friesz et al (1994) formulated a continuous time deterministic process model, 

similar to an auctioneer increasing or decreasing the selling price of a good based 

on the demand, and applied the principles to compute the day-to-day user 

equilibrium. This process involves computing the excess travel demand or excess 

travel cost over the equilibrium solution after each time period, thus depicting the 

day-to-day adjustment of the process from one realisable disequilibrium state to 

another.

The rate of change of path flow in continuous time represented by the variable f(t), 

and the rate of change of perceived O-D cost represented by C(t), are described as 

an adjustment process over time which is considered as a continuous variable, with 

the dynamics specified as follows:

É M .  =  g ( E T C )
a t

(2.15)

d C ®  = 4 ( E T D )  
d t

(2.16)

©IIo<

(2.17)
©oiiOo

(2.18)

where, g, £ are matrices of constants of appropriate dimensions, ETC is the vector of 

excess travel costs and ETD is the vector of excess travel demands. Equation (2.15) 

represents the path flows varying in proportion to excess travel costs, i.e., the path 

flow decreases if the excess travel cost increases, or vice versa. Excess travel cost is 

the difference between the actual and perceived travel costs. Similarly, equation

(2.16) represents the perceived travel costs varying over time in response to the 

excess travel demand. Excess travel demand is the difference between the desired 

and actual travel demand for a given O-D pair. Equations (2.17) and (2.18) 

represent the initial conditions.

Friesz et al (1994) assumed BPR style cost flow functions for the link costs. They 

have shown that the process converges to a Wardrop’s solution asymptotically from 

any given initial condition. The impact of the provision of information on the rate of
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convergence was investigated. Provision of complete information accelerated the 

process of settling down towards the equilibrium state and their results supported 

the findings of Mahmassani’s (1990) experimental results that investigated exactly 

the same issue.

Smith and Wisten (1995) also formulated a day-to-day dynamic assignment model 

assuming deterministic flow variables in continuous time, and their route swapping 

rules are identical to the equations (2.15 and 2.16). However, the within day loading 

model divides the time of the day into a number of discrete departure periods and 

allows for the modelling of vehicle interactions at the bottlenecks through a 

deterministic queuing model. But, their model deals with only a single O-D pair 

serving two links which are paths as well, and hence cannot deal with the general 

case of multiple O-D pairs and links being shared by multiple paths.

Continuous time deterministic process approaches assume that the route choices are 

revised in continuous time, whereas due to the activity constraints certain types of 

trips (e.g., work, school trips) are repeatable over days (Watling and Hazelton 

2003). Therefore, it would be natural to model such trips using discrete time 

approaches as done by Horowitz (1984), Cantarella and Cascetta (1995), Watling 

and Hazelton (2003). A simple discrete time deterministic process aimed at solving 

for S to c h a s tic  U se r  E q u ilib r iu m  (SUE) is defined by the following equations:

C (n) = p c ( f {n- l))  +  ( \ - P ) C (n- X) ¡3 > 0  (2.19)1
f t ™  ? ! ( & • ' )  V r , k  (2 .2 0 )

It is important to note that despite the name, SUE refers to deterministic equilibrium 

because for a given set of costs, one can exactly work out the route flow state 

occupied by the system defined by the proportions p(.), and hence it is different 

from stochastic equilibrium which is defined by a steady state probability 

distribution as defined in section 2 .1 .2 .
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2.2 Within Day Dynamic Assignment Approaches

The aim of this section is to briefly review the principles involved in carrying out 

within day dynamic traffic assignment. A within day dynamic assignment model 

considers a non-uniform demand profile during the day and allows for the 

modelling of time varying path and link flows through drivers’ choice of departure 

time and/or route. A within day dynamic model thus models the spatio-temporal 

interaction between the time varying demand and supply through a d yn a m ic  

n e tw o rk  lo a d in g  m eth o d , seeking the path/link flows consistent with d y n a m ic  u ser  

e q u ilib r iu m  or d y n a m ic  sy s te m  o p tim a l conditions. Peeta and Ziliaskopoulos (2001) 

provides a comprehensive review of the within day DTA models. More recently, 

Szeto and Lo (2005) reviews the analytical formulation of DTA models, and also 

touches upon the issue of differentiability of route cost functions in addition to the 

solution properties of DTA.

Dynamic User Equilibrium (DUE) is reached when all the drivers entering the 

network at each instant of time are assigned to the routes with equal and minimal 

costs, and all unused routes have equal or greater costs.

Now for dynamic user equilibrium, we need

f k( t ) >  0 => C*(0 = C**(0 V r e R k a n d V k , t

f k( t )  =  0 => C k( t ) > C k\ t )  V  r  e R k a n d  V k , t

where, C k*(t) is the least travel cost for route r on O-D movement k at continuous 

departure time t. Janson (1991) formulated a convex non-linear programming model 

aimed at solving for the dynamic user equilibrium defined by (2 .2 1  and 2 .2 2 ) as an 

extension to the static user equilibrium principles. Thus, the objective function of 

the DUE is very similar to the static user equilibrium in continuous time, and is 

indicated below:

(2.21)

(2.22)

•*„(0
Minimise z = J J r 'O ) da> dt

I 0 0
(2.23)
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Subject to £ / r*(0 = ?*(0
reRk

(2.24)

f r ( t ) >  0 V k , t (2.25)

*a(0 = j"X  Z  f r  O ) K 'if i> )d a )  V a , t (2.26)
a> k rsRk

where, xa(t) is the number of vehicles on the link a at time t, and

f 1 traffic on path r departing at co is present on link a at time t
r : »  = ■

0  otherwise

This approach was used by many others including Jayakrishnan et al (1995), Ran 

and Boyce (1996). Lin and Lo (2000) demonstrated that minimising the objective 

function (2.23) need not necessarily result in an assignment that satisfies the 

complementarity in (2.21 and 2.22). Han and Heydecker (2006) modified the 

objective function to solve for DUE in the case of separable cost functions. 

Typically, the objective function is calculated at each incremental interval of time, 

using the outflow that is assigned throughout that increment together with the costs 

at the end of it. However, their approach still needs to be tested over larger 

networks.

The Dynamic System Optimal (DSO) formulation aims at minimising the overall 

travel time on the network at each instant. Thus, the objective function is to

Minimise Y  Y  [ C k (co) f k(co) dco
k r<=Rka)

(2.27)

Subject to = \ [u a{co) - v a{(0)] d a
d t  t

(2.28)

x a( t ) > 0 (2.29)

v a« ) > 0 (2.30)
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where, ua( t )  and v0 (7) are the inflow and out flow rates for the link a. Merchant and

Nemhauser (1978a) formulated DSO problem and followed by many others 

including Friesz et al (1989), Ziliaskopoulos (2000), Li et al (2003), Chow (2006).

The DUE paradigm assumes that all drivers have perfect knowledge of the route 

costs, and this limitation is relaxed by assuming that the drivers perceive route 

costs, which includes an error in perception over the average route cost as given by 

(2.1). When the errors in perception 77* are assumed independent Gumbel variables, 

then the route choice probabilities can be modelled based on logit principle (Dial 

1971) as below:

where 6 is the dispersion parameter and C* (t ) is the mean perceived route cost for 

route r, by commodity k, at time t.

When all the drivers entering the network at each instant are allocated to their least 

perceived cost routes, then the assignment is said to be in D y n a m ic  S to c h a s tic  U ser  

E q u ilib r iu m  (DSUE).

Many authors followed this approach in the literature, including Ran and Boyce 

(1996), Liu et al (2001) and Han (2003) among many others. The basic model can 

be expressed mathematically as below:

(2.31)

(2.33)

(2.32)

keRk

/ / ( ( )>  0  \ / k , t (2.34)
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where, p kr ( t )  is given by (2.2). At DSUE, the route choice given by (2.32 -  2.34) 

should be the same as that given by (2.2), i.e., when the perceived cost does not 

vary following the dynamic network loading process.

The solution to the DSUE problem can be obtained by analytical methods based on 

optimisation or by so called simulation methods. One of the analytical procedures is 

based on solving the variational inequality problem that can be expressed as below 

(Han 2003):

E E A* » [ i . ‘ ( 0 - / ,* ‘W ]ap (2.35)
k r

where, A‘ (0 = k * ( 0 - f , W ( 0 ] | s | ^  (2.36)

For the solution to the variational inequality (2.35) to exist, the mapping function 

(2.36) must be a continuous function of the cost (Nagumey 1993), and for the 

solution to be unique, the derivative in (2.36) must be strictly monotonic, i.e., the 

route costs increase with the increase in route flows. Rosa and Maher (2006) have 

been investigating to extend the DSUE by defining the perception errors at the link 

levels rather than route levels, thus leading to the formulation of probit-based 

DSUE.

While the analytical DTA models are usually limited to very small hypothetical test 

networks primarily aimed at studying the properties of the models, there are other 

classes of models developed mainly aimed at reflecting the traffic flow phenomena 

on larger real sized networks though not guaranteeing optimality or even 

convergence (Ziliaskopoulos et al 2004). This class of models are usually referred 

to as simulation based DTA models (Peeta and Ziliaskopoulos 2001) although they 

may not involve the simulation in the sense of realisation of the random variables 

by random drawings. The so-called simulation based DTA models are usually 

grouped into microscopic (e.g., Barcelo and Casas 2004, Liu et al 2006), 

mesoscopic (e.g., Mahmassani 2001, Taylor 2003) and macroscopic (e.g., Bliemer 

et al 2004) models, depending on the manner in which the traffic flow is treated 

within the modelling framework.
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The basic framework (See Figure 2.1) of a simulation based within day dynamic 

traffic assignment model (e.g., Bliemer et al 2004) consists of a route choice model 

and a dynamic network loading model interacting with each other until a 

convergence between them is achieved. The route choice module allocates the O-D 

demand to feasible paths usually based on logit principles and requires the input 

information on travel times on paths/links. Similarly, the network loading model 

moves the allocated route flows along the links of the network in space and time, 

resulting in new path travel times based on the experience. A detailed review of the 

dynamic network loading models is set out in Chapter 3. The convergence is 

obtained using the Method of Successive Averages (MSA) following the principles 

set out in Sheffi (1985) which computes the average path flow using the following 

equation:

FrkJ = [(1 -  (1/0) F rkJ~l + ( l / i ) F rkJ] (2.37)

where i is the current number of iteration, F k''~x is the average path flow over 

route r for commodity k up to (and including) the previous iteration i.e., (i-1), and 

F k,‘ is the current auxiliary path flows. It is well known that the MSA method 

converges far too slowly (Ortuzar and Willumsen 1999), and hence usually a large 

number of iterations (over which the flow averaging is done) is resorted to, so that 

the difference in flows/costs between successive iterations, in the end, may be 

considered negligible.

Figure 2.1 Outline of a DTA Model
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2.3 Doubly Dynamic Assignment Models

In general the traffic flows on road networks vary within a day as well as across the 

days (Figure 1.1). Therefore, any traffic assignment model addressing only one of 

these variations is inadequate to understand the situation. Hence, there is a need to 

develop a comprehensive framework which addresses both day-to-day and within 

day variations in traffic flow. Such models are called d o u b ly  d yn a m ic  tra ffic  

a ss ig n m e n t models, which are the main subject of the present thesis.

Although it is crucial to understand the doubly dynamic nature of the traffic flows 

for proper planning and management of the road networks, it is surprising to note 

that only very little research has been published on this topic. Cascetta and 

Cantarella (1991) developed such a doubly dynamic simulation model in which 

they defined the route flows on any day as a stochastic process, and used a 

simulation procedure based on which the summaries, such as means and variances 

were computed. They included a queuing model to capture the delays on the links. 

The mathematical specification of the stochastic process is very similar to the one 

set out in Section 2.1.1 earlier in this chapter. Cascetta and Cantarella (1991) used 

the adaptive expectation approach (Section 2.1.3.2) to update the perceived route 

cost at the beginning of any day n as set out by the equation (2.12). The dynamic 

network loading of the vehicles is handled through a queuing model, the principles 

of which are described in Chapter 3 -  section 3.3.2. The main limitations of this 

approach are that the queuing models assume that the vehicles travel at average (or 

free flow) travel time until they reach the state of queuing (i.e., when the outflow 

rate is more than the exit capacity) and hence under-estimate the delays. Besides, 

the link travel time relationships are non-differentiable due to the discontinuity in 

travel time with the increase in flow on the link.

2.4 Numerical Exercises

This section is aimed at demonstrating the steady state (equilibrium) probability 

distribution and its sensitivity to the input modelling parameter i.e., the driver 

behaviour represented by 6 in the logit choice, and also illustrates the
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implementation of the stochastic process modelling method over a simple network 

and discusses the results.

Consider the two link/route network (Figure 2.2) serving a single origin-destination 

pair with demand, q = 5 drivers with a memory length m = 1 day. The disutility of 

travel on route r is computed as the cost of travel defined as a function of the route 

flows. Note that in this example, the cost-flow functions assumed are static, and 

cannot capture the dynamics of time varying flow. Hence, this example corresponds 

to the case of day-to-day dynamic, but within day static assignment model.

Assume the cost flow functions for routes 1 and 2 as below: 

c,=10 + 5/; 

c2 =5 + 10/2

Route 1

Route 2
Figure 2.2 Two Link Network

It is assumed that the route choice probability follows the logit principle, and is 

given as,

(2.38)

(2.39)

Pr(cr ) = ~
*‘Qcr

6cv+  e -Qci
for r  =  1,2 (2.40)

where, 8 is the logit choice parameter which represents a measure of spread in the 

perceived route costs of the drivers.

The probability of choosing a route on any day is a function of the route costs on 

the day before, because the memory length parameter ‘m’ is taken as unity. Hence, 

the conditional probability distribution of a given number of drivers choosing route 

1 on any day ‘n’ is binomial, and is given by:



Vi,7 e {0,1,2,3,4,5} (2.41)
f a - ; ) .

( a ,y ( l

where, a (.= probability of i drivers choosing the route on the previous day, and !

indicating the factorial operator. Since the number of drivers and the number of 

routes available are very small, we can work out the entire probability distribution 

by hand calculations as we can completely enumerate all possible system states. 

However, it should be noted that such a method is not feasible for real size 

networks as the demand and the available paths are significantly large, thus 

increasing the size of the transition probability matrix by manifold. In such cases, 

simulation methods or even approximation methods would be the alternatives to 

use. Table 2.1 illustrates the steps in computing the probability of ‘i’ drivers 

choosing a route 1 (say), which would help in calculating the elements of the 

transition probability matrix given later. In this case, 6 was set equal to 0.1.

Table 2.1 Route Choice Probabilities for Driver Combinations

Number of drivers on route 1, i

0 1 2 3 4 5

Cost of travel on route 1, cj 10 15 20 25 30 35

Cost of travel on route 2, c2 55 45 35 25 15 5

Cost difference, CpC2 -45 -30 -15 0 15 30

Probability of ‘i’ drivers choosing route 0.989 0.953 0.818 0.5 0.182 0.047
1,

The transition probabilities are computed by substituting appropriate probability 

values from Table 2.1, in equation (2.41). To illustrate, the probability of no driver 

choosing route 1 on day n, if there were no drivers on the same route the previous 

day (n-1), is given as,

5!
(5 -0 )0 !

(0.989)° (l-0.989)(5_0) for i = 0 and j = 0.
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Similarly, the second cell on the first row indicates the probability of no drivers (j = 

0) choosing route 1, given that there was one driver (i = 1) on that route the 

previous day, and so on. Figure 2.3 shows the matrix of transition probabilities for 

all combinations of drivers choosing route 1.

0.0000 0.0000 0.0000 0.0012 0.0526 0.9463
0.0000 0.0000 0.0010 0.0194 0.1952 0.7843
0.0002 0.0045 0.0406 0.1819 0.4075 0.3653
0.0313 0.1563 0.3125 0.3125 0.1563 0.0313
0.3653 0.4075 0.1819 0.0406 0.0045 0.0002
0.7843 0.1952 0.0194 0.0010 0.0000 0.0000

Figure 2.3 Transition Probability Matrix for Route 1

It may be observed that the elements of the leading diagonal of the transition matrix 

are all very small and that the probability mass is concentrated on the second 

diagonal. This indicates that if there were no drivers on route 1 on the previous day, 

it is highly likely that all the drivers would choose that route on the following day 

and vice versa, thus suggesting a flip-flopping behaviour of the drivers. By solving 

the system of linear equations given by n T = n TM  , we can obtain the equilibrium 

probability distribution, which is given by,

x T =  [0.3633 0.1091 0.0233 0.0136 0.0523 0.4383],

Figure 2.4 shows the steady state probability distribution shown above and the 

mean and standard deviation work out to 2.56 and 1.87 respectively.
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Figure 2.4 Steady State Probability Distribution (#=0.1)

As indicated by the transition probability matrix earlier, the steady state probability 

distribution shows that nearly all the drivers are going to change their route every 

day, representing a flip-flopping behaviour. In a logit route choice modal, the driver 

behaviour is controlled by the 9  parameter, which represents the inverse of the 

dispersion in the behaviour of the drivers. Clearly, higher values of 9  indicate very 

little dispersion in the driver behaviour, tending all the people to think alike (as in a 

deterministic case) as represented by the high probability bars at the two extremes 

in Figure 2.4. Even higher values of 9 , such as 1, would just share the probability 

between the two extremes as shown in Figure 2.5 resulting in a bimodal distribution 

with probability mass concentrated towards the ends. The mean and standard 

deviation in this case were 2.5 and 1.87 respectively. On the contrary, reduced 

values of 9  (=0.01) result in a probability distribution (Figure 2.6) which is similar 

to a Normal distribution, with a mean of 2.58 and a standard deviation of 1.87.

0.6

0.5

a  0.3 .as
a  0.2 

0.1 

0

1'A
1
1
' ' / /
'r'/rf

É 1
' . -V .

'/y.V# '//■■■/ / /

2 3 4
Flow on Route 1

Figure 2.5 Steady State Probability Distribution (6 = 1)
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Figure 2.6 Steady State Probability Distribution (0 = 0.01)

Davis and Nihan (1993) shows that the mean of the equilibrium probability 

distribution coincides with the SUE solution, provided the demand is sufficiently 

large. Hence, it would be interesting to compare the above results with the SUE 

solution. For the given network demand as in the numerical example above for the 

case of 0 = 0.01, SUE solution is fi = 2.825 and f2 = 2.175 with corresponding costs 

Ci = 24.125 and c2 = 26.750 units. In this case, the mean of the steady state 

probability distribution as approximated by SUE flows seems to be an over estimate 

of the true mean, but given that there are only five drivers on the network, the 

estimate of the mean may be considered satisfactory. However, higher values of the 

demand are likely to take the approximation much closer to the true mean.

2.5 Summary

This chapter reviewed the principles involved in carrying out the day-to-day 

dynamic assignment including stochastic process and deterministic process models. 

It defined the equilibrium probability distribution of a stochastic process and 

introduced the conditions sufficient for a stochastic process to admit a unique 

steady state probability distribution. This chapter also introduced the principles of 

carrying out a within day dynamic assignment by analytical and simulation 

methods. It also introduced the doubly dynamic assignment available in the
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literature. The concept of equilibrium for stochastic processes has been 

demonstrated with a simple numerical day-to-day dynamic, but within day static 

example. The ensuing chapter introduces the dynamic network loading models 

essential for carrying out a dynamic traffic assignment.



Chapter 3

Dynamic Network Loading Models

This chapter reviews the dynamic network loading models and describes the basic 

principles involved. It also discusses in detail the properties of whole link models 

and illustrates a model with suitable numerical examples. .

3.1 Need for a Dynamic Network Loading Model

A dynamic loading model determines the number of vehicles on the link at each 

instant of time, computes the travel time, exit flow from each link and even models 

the interaction of vehicles satisfying various flow propagation constraints such as 

flow conservation, First-In, First-Out (FIFO), causality, given the route choices. In 

a static assignment, usually Bureau of Public Roads (BPR) (1964) style cost flow 

functions are assumed. The general model form of such a cost-flow function is as 

below:

(3-D

where, c is the link travel time (cost), Co is the free-flow time, f  is the link flow, Qcap 

is the capacity of the link and a , (3 are calibration constants. In equation (3.1), f  

represents the flow on the link which is equal to the sum of all the O-D flow rate 

contributions using that link. In contrast, the dynamic traffic assignment deals with 

varying demand profiles and needs to move the vehicles in space and time, thus 

resulting in varying inflow and outflow profiles on each link. Mere temporal 

extensions of BPR functions cannot capture such link dynamics, as then one would 

need to specify the link flow rate as either the inflow or outflow or some 

combination of them. Link travel time function in dynamic assignment should 

reflect this requirement i.e., it should be capable of capturing the link flow 

dynamics in space and time. However, day-to-day dynamic models do not explicitly 

deal with the kind of link flow dynamics in space or time, and hence the BPR style
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cost flow functions become popular choice (e.g., Cascetta 1989, Friesz et al 1994, 

Hazelton and Watling 2004).

3.2 Properties of Dynamic Link Models

As explained previously, dynamic link models are an essential element of a 

dynamic traffic assignment framework and the performance of the link models can 

significantly affect the solution to the assignment problem. Carey et al (2003) and 

Carey (2004) analyse the desirable properties of link flow models in dynamic traffic 

assignment. Nie and Zhang (2005) compare the performance of dynamic link flow 

models and in particular, study the property of First-In-First-Out (FIFO) besides 

identifying the issues in the computation of outflows from links. Dynamic link 

models are operated upon in each iteration of the assignment, and hence take up the 

majority of the computing effort required in carrying out the dynamic traffic 

assignment. Therefore, dynamic link models need to be efficient, and the resulting 

outflows and travel time profiles should be plausible. For this reason, dynamic link 

models, in the context of dynamic traffic assignment, should possess the desirable 

properties identified in Carey et al (2003) which are described in the following 

paragraphs.

3.2.1 Flow conservation

In a small element of length the quantity changes at a rate equal to the difference 

between the inflow and outflow, or in other words, traffic flow on a link can neither 

be created nor disappear, if there are no sources or sinks. Consider a small section 

of a road link. Let x(t) be the number of vehicles at instant t located in that section 

of the road and let u(t) and v(t) be the inflow and outflow rates to and from that 

section (See Figure 3.1).

u(t) CZ2 C3 .
« -  x (t)~»

v(t)

Figure 3.1 Illustration of Flow Conservation
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From the previous discussion, it follows that

(3.2)

Integrating (3.2) with respect to t yields,

x ( t )  = |  [ u ( s )  -  v(s)] d s (3.3)
o

where, s is a dummy variable of integration.

3.2.2 First-In, First-Out (FIFO)

In the context of traffic assignment, FIFO implies that the vehicles from a road link 

depart in the same order as they enter. In a multilane road link case FIFO may not 

seem a desirable property as the fast moving vehicles can overtake the slow moving 

ones. But in the case of single lane road links, it is very important to preserve FIFO 

mainly to ensure that the process of representing the congestion i.e., building up and 

dissipation of queues in space and time and hence the resulting solutions are 

plausible (Carey et al 2003).

Let us consider the traffic flow on a link at two successive instances say t and t + At. 

If the travel time for vehicles entering the link at t, is represented by z ( t ) , then the 

corresponding exit time would be t + z ( t ) . Similarly, the exit time for vehicles 

entering the link at t +At, would be t + At + z ( t  +  A t ) . Then, for FIFO we need,

t  +  z ( t )  <  t  +  A t  +  z ( t  +  At )

=> 0 < 1 + Z^  + ̂ (after transforming and dividing by At)
A t

Taking limit as At-» 0 and rearranging gives,

d z { t )
> - l

d t
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From the discussion on flow conservation and FIFO, we can write,

(3.4)
o o

Differentiating equation (3.4) with respect to t and rearranging will yield

(3.5)

where, f ( t )  represents the derivative of travel time. Astarita (1996) provides the 

proof of equation (3.5). From equation (3.5), it is clear that i ( t )  must be greater 

than -1 for the outflows to be meaningful. Therefore, in order to ensure FIFO, we 

need to monitor the derivative of travel time throughout the simulation period. 

Practically, this can also be achieved by monitoring the travel times at each time 

step through the simulation process, and the computer program can be designed to 

give an error message as soon as the FIFO is violated.

3.2.3 Causality

It means that delays to a set of vehicles entering the road link during any time 

period should only be caused by vehicles which have entered the link during that 

period or earlier but not later (Carey et al 2003). FIFO and causality are two 

independent conditions, which means for example, causality may be violated even 

if FIFO is satisfied and vice versa. To illustrate this, consider the inflows to a link at 

discrete time t then, the corresponding outflows can spread over time period until 

the earliest vehicle from the following time step t+1 reaches the exit. Although this 

condition satisfies FIFO, causality is violated as the travel time for vehicles from 

time period t is affected by vehicles from the following time period t+1. Similarly, 

satisfying causality need not imply FIFO. For example, if the travel time for 

vehicles entering at time t is a function of the inflow rate at t, then it satisfies the 

causality but can still violate FIFO, if the inflow decreases rapidly over time. In this
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research, in order to ensure the causality condition, a continuous time scale has been 

adopted which will be introduced later in section 3.4.

The need for a suitable dynamic network loading model was recognised long ago. 

Merchant and Nemhauser (1978a) were perhaps among the first few who 

formulated a dynamic traffic assignment model, and since then there have been 

several formulations proposed by various researchers with each including some 

form of dynamic network loading model. Cell transmission models, queuing models 

and whole link models are the dynamic network loading models which have been 

used by various researchers and the aim of the rest of this chapter is to describe 

each of these models in detail discussing its properties. Finally, this chapter 

discusses the implementation of whole link models -  one of the methods of moving 

the vehicles on the street network, and illustrates the model with suitable numerical 

examples.

3.3 Review of Dynamic Network Loading Models

This section introduces the dynamic link loading methods, and discusses their 

properties.

3.3.1 Cell Transmission Model

Daganzo (1994) formulated a method called cell transmission model which moves 

the vehicles on a link in discrete space and time. The cell transmission model 

divides the link into a number of cells of uniform length such that each cell can be 

traversed in one time step at free flow speed and applies the following dynamics:

x‘+l= x ‘ +u‘ - v ‘+1

x Li

u‘ = min of- Q'

(3.6)

(3.7)



35

where, x ', u\ a n d  v\ represent the number of vehicles in the cell i at time t, the 

inflow to and outflow from cell i respectively. Q\  is the inflow capacity of the cell i, 

X \  is the maximum number of vehicles that can be accommodated in the cell i and 

a  is a parameter. Equation (3.6) conserves the flow and (3.7) constrains the 

inflowing number of vehicles into the cell i. The cell transmission model calculates 

the exit flow in the next discrete time interval from any given link (i.e. a series of 

cells). The concept of delay in this model is implicit in equation (3.7) as the 

vehicles in the upstream cell are delayed by lack of space in the downstream cell 

and the flow propagation is actually modelled based on a piecewise linear 

approximation of the fundamental flow-density diagram.

Daganzo (1995) shows that the cell transmission model is a discrete equivalent of 

the hydrodynamic model which considers the traffic flow analogous to compressed 

fluid flow. Lo (1999) and Ziliaskopoulos (2000) embedded the cell transmission 

model into dynamic traffic assignment problems. The main limitation of this model 

is that it requires large computer memory, and even the model running times may 

be very high. Besides, due to the nature of the model, the link travel time is 

discontinuous in the number of vehicles present on the link, and hence they are non- 

differentiable.

3.3.2 Deterministic Queuing Model

A deterministic queuing model, also sometimes referred to as a bottleneck model, 

assumes that the traffic flow arrivals and departures are predictable which is fair as 

evident in rush hours with high arrival rates and long queues at some junctions 

every day. It is also assumed that the vehicles move freely from one end of the link 

to the other end and then possibly incur delay in a vertical queue before leaving the 

link. The basic model can be specified as below:

dL(‘ + a)  =u( t ) -v( t  +  a)  (3.8)
d t

Q e i f  L { t  +  a ) > 0

min(w(f), Q e) i f  L ( t  +  a )  =  0
v ( t  + a ) = (3.9)
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(3.10)

g(t) = t + a  + P(t). (3-11)

where, L(.) is the length of the queue, u(t) and v(t) are the inflow and outflow rates 

to and from the link respectively at time t. Qe is the exit capacity of the link. /3(t) is 

the delay incurred due to queuing and g(t) is the exit time for vehicles entering the 

link at time t and a  is the free flow travel time.

The rate of change of queue length is defined as the difference between the entry 

flow rate lagged by free flow travel time and the outflow rate. If there is a queue, 

the current outflow rate is equal to the exit capacity, otherwise it is equal to the 

minimum of lagged entry flow rate or the exit capacity under the deterministic 

assumption. /3(t) defines the delay incurred in the queue and g(t) defines the exit 

time for an entry time t. Simply, the travel time on the link is equal to the sum of 

free flow time and the delay incurred in queuing. There are many examples of using 

queuing models in dynamic assignment including, Cascetta and Cantarella (1991), 

Kuwahara and Akamatsu (1997) among many others. The drawback with this 

model is that it does not predict any delay as long as the inflow rate is less than the 

exit capacity (because of no queuing) which is clearly an under estimate of realistic 

delays.

Some assignment models e.g., Ben Akiva et al (2001) and Taylor (2003) made 

some adjustments to the deterministic queuing model approach by adopting a BPR 

type flow-delay function/ speed-flow function only for the moving part of link, but 

also assuming that the traffic flow on the link is uniformly distributed over the 

length of the link. As a result of this assumption, the model tends to overestimate 

the delays on lightly congested links and makes it suitable for highly congested

ones.



37

3.3.3 Whole Link Propagation Model

This section describes the sub-models used to estimate the outflow/travel time on a 

road link in the analytical network models for dynamic traffic assignment. They 

derive their name from the fact that the outflow ffom/travel time on the link is 

expressed as a function of the whole link attributes such as the number of vehicles 

currently on the link, inflow rate, outflow rate etc, at any given instant (Heydecker 

and Addison 1998). Within this class of models, there are two different sub classes 

viz., exit flow functions and whole link travel time models -  deriving their names 

based on the outputs from such models. Following paragraphs describe different 

types of whole link models.

3.3.3.1 Exit Flow Functions

One of the earliest attempts in formulating the dynamic traffic assignment model 

(Merchant and Nemhauser 1978a, b) included a combination of link exit flow 

function to propagate the traffic on the link and a static link performance function to 

represent the travel cost as a function of the link volume. The model in general may 

be specified as below:

As seen earlier, equation (3.12) conserves the flow and the exit flow function g(.) in 

(3.13), representing the process of congestion, is assumed to be a non-decreasing, 

continuous, concave function. Function h(.) represents the disutility of congestion 

and is assumed to be a non-negative, non-decreasing, continuous convex functions.

Exit functions were also used by Friesz (1989) and Wie et al (1995). The exit flow 

function implicitly assumes that the traffic on the link is uniformly distributed over 

the entire length of the link, and hence any changes in the density propagate 

instantaneously across the link. While this assumption is suitable for a congested

(3.12)

v(t) = g(x(t)) 

*■(*) = A(x(f))

(3.13)

(3.14)
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link, for uncongested links it is not. Moreover, Carey (1986, 1987) demonstrated 

that the exit flow functions violate the FIFO requirement. In addition, Heydecker 

and Addison (1998) demonstrated that the exit flow functions violate causality. 

Exit flow functions were also found practically difficult to specify and measure. 

Due to these reasons, exit functions were not used further by the researchers, who 

preferred the travel time function formulations which are described in the next 

section.

3.3.3.2 Travel Time Function Formulations

Travel time function calculates the travel time for vehicles entering the link at each 

instant of time and is usually expressed as a function of the number of vehicles on 

the link at that instant. Based on the travel time profile, the outflow profile can be 

easily computed. General form of the model is as follows:

dxi l ) = U( 0 - K 0dt
(3.15)

r(r) = h ( x ( t ) ) (3.16)

V(t +  T ( t ) ) ~
l  +  T(t)

(3.17)

r(.) in equation (3.16) is assumed to be a continuous and non-decreasing function. 

In order to run the dynamic link loading process, equation (3.16) should be operated 

in tandem with flow conservation equation (3.15) and flow propagation equation

(3.17). Although Friesz et al (1993) and Wu et al (1998) presented similar forms of 

the model (3.15-17), Astarita (1996) provides the proof of (3.17).

There are various plausible forms for the travel time function in (3.16). For 

example, the travel time could be a linear function of the number of vehicles on the 

link (Friesz 1993) or could be even a non-linear power function (e.g., Ran et al 

1993 and Ran and Boyce 1996). However, only the linear form of (3.16) is known 

to satisfy FIFO for various forms of inflows u(.) (Carey et al 2003, Nie and Zhang 

2005). Besides, the link travel time and hence the path travel time is continuous in
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inflows, which is essential for the travel time functions to be differentiable. As 

noted from Chapter 1, one of the main aims of this research is to compute, 

analytically, the Jacobians of travel time functions, therefore the differentiability of 

travel time functions with respect to the inflows, is an essential property. As the 

whole link travel time functions satisfy these requirements, further part of this 

research focuses only on such models. The next section of this chapter specifies and 

then implements a whole link travel time model. It also discusses numerical results, 

besides discussing the issues in implementing the model.

3.4 Implementation of a Whole Link Model

This section describes the dynamic loading model that is used in this research and 

illustrates the principles described using suitable numerical examples. Although the 

theory in sections 3.1 and 3.2 was described in continuous time, in this research the 

whole link travel time model is implemented in discrete time, but mapped back to a 

continuous time scale. The details of the model are discussed both for the case of a 

single link and a combination of links in a general network case. Suitable numerical 

examples follow.

3.4.1 Preliminaries and Model Specification

Consider the case of a single link which serves one O-D pair with the only link 

being also the path. It is assumed that the travel time for vehicles entering the link at 

any continuous instant t, i.e. interval (t-<5, t] where 5 is the step length (also called 

minor time step), is a linear function of the free flow travel time and congestion 

related time as shown in equation (3.18) (Friesz et al 1993). It is also assumed that 

the total period of analysis (say peak hour) is divided into L major periods 

representing as many departure periods (wh, w,] (for i = 1,2„..L) such that

(wo>w i]u (w i>w 2 ] u ...... u ( w L_,,wL] = (0,N5] where N is the total number of

minor time steps. Uniform O-D demand flow rates are assumed to have been 

specified over the major time periods. Now, the model can be formally written as 

below:
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r { t )  = a  + P  x ( t ) ( a  > 0, /? > 0) (3.18)

t t

*(0 = 2 “W -2VW- (3.19)
0 0

where, a =  free flow time, and 1//? = exit capacity of the link.

In this model 5 - the minor time step length is assumed much smaller compared to 

the free flow travel time a ,  so that the vehicles entering the link in any minor step 

cannot leave in the same step. The inflow was transformed into outflow based on 

the travel time profile obtained by using equations (3.18 and 3.19). It may be noted 

that the travel time computed for each discrete entry step need not necessarily be an 

integer again. However, we need to compute the outflow from the link at each 

discrete exit time step. For this reason, it was assumed that the outflow will spread 

uniformly over the exit period. Then by the method of linear interpolation, the 

outflow at each discrete exit step can be obtained. The details of the modelling 

process are described in the following section.

3.4.2 Model Development

Dynamic network loading model is aimed at moving the vehicles in space and time. 

In addition to the link specification parameters such as the free flow travel time a,  

capacity 1 /¡3, the main input to this model includes the departure-time-dependent 

route flows which are usually obtained from the route choice model described in the 

previous chapter. The main output from this model is the departure-time-dependent 

route travel time and is usually passed back to the route choice model. While the 

route choice model deals with a limited number of departure time periods during the 

peak hour, in order to capture the interactions amongst the vehicles on the road, the 

dynamic link loading model slices up each departure period into a number of 

simulation steps of length 8 (also referred as minor time steps), assuming that the 

demand is uniformly spread over during each departure period. The simulation is 

carried over the total number of simulation steps N, extending over the interval (0, 

N<5] in all departure periods put together.
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At each simulation step, the program computes the travel time for vehicles entering 

the link during that step as a function of the number of vehicles on the link, using 

equation (3.18). The number of vehicles on the link is computed as the difference 

between the cumulative inflow and the cumulative outflow, thus explicitly 

satisfying the flow conservation equation (3.19). A critical requirement in this 

module is to estimate the outflow v(.) from each link ahead of time. At each 

simulation step we know the travel time required to reach the end of the link from 

which we can compute the outflow ahead of the current time step, and stepping 

through the simulation process recursively works out smoothly. Thus obtained 

outflow is posted to an integer exit step using the linear interpolation method as 

described in the following paragraphs.

3.4.3 Computing Outflow by Linear Interpolation

Computing the outflow at each discrete exit step is critical for the overall success of 

the model. This is a complicated step because the possible scenarios that could arise 

during the simulation process are very many. For example, the interpolation may 

need to be carried out over a number of steps depending on the expected earliest 

and latest exit time of the set of vehicles from any given discrete inflow step. The 

other extreme could be the need to bypass the interpolation module completely 

when the earliest and latest exit times fall within the same discrete exit step.

Consider the time-space diagram as shown in Figure 3.2, where two time axes, -  the 

first representing the time when the vehicles enter the link and the other indicating 

the time when the vehicles leave the link, are represented. Consider the inflow step 

(y-5, y] at which the vehicles enter the link. Then the corresponding earliest and 

latest exit time g(.) are as indicated below:

g ( y - d )  =  ( y - 5 )  +  r ( y  -  5 )  (3.20)

g ( y )  =  y + T ( y ) (3.21)
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Figure 3.2 Time-space Diagram

Note that the exit times calculated from (3.20) and (3.21) need not be restricted to 

integers and the vehicles starting their journey at integer entry times may actually 

reach the exit at real exit times (See Figure 3.3). However, the simulation is based 

on discrete steps, hence the need for interpolation. We need to extend the notation 

to proceed with further treatment. Let V(t) be the cumulative outflow by the end of 

time step t, i.e., the step (t- 5, t] and let Vy(t) be the number of vehicles exiting by 

the end of time step t that had entered the link in time step (y- 5, y]. Assuming that 

the outflow due to the inflow from the time step (y- 5, y] is uniformly distributed 

over the exit period obtained as the difference between the corresponding latest and 

earliest exit times i.e., [g(y) -  g(y-<5)], the number of vehicles allocated to integer 

exit steps (t-8), t and (t+5) respectively are given below:

Vy( t - 8 ) [ t - y - r { y - 5 ) Y >  u ( y )  

T(y ) -T{ y - S )  + S
(3.22)

r , ( Q  =
8 2 u ( y )

r ( y ) - T ( y - S )  +  S
(3.23)

V M + S ) =
T ( y ) - r ( y - S ) + S

(3.24)

Interpolation process is graphically represented in Figure 3.3.
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Figure 3.3 Computing Outflow at Integer Exit Time Steps

Finally, when the simulation reaches the final step N, i.e., the end of the analysis 

period, there will still be some vehicles on the links which need to be allowed to 

reach their destination. This is achieved by extending the simulation period as set 

by a parameter called ‘cooling period’, during which no inflows to the link are 

allowed and only the vehicles on the link are allowed to exit.

The linear interpolation scheme presented here may seem similar to the published 

work of others, for example Nie and Zhang (2005). However between the two 

methods, there are some subtle but important differences, which are described in 

this paragraph. The aim of the interpolation in this research is to calculate exactly 

the number of vehicles leaving the link in each discrete time step with the help of 

the cumulative outflow curve, whereas Nie and Zhang aim to approximate the 

average outflow rate at the mid-point of each discrete time interval. The 

approximation in the outflow rate affects the number of vehicles on the link, and in 

turn the travel time calculation. In their scheme, the bigger the discrete time interval 

the greater is the error in the average outflow rate, and in turn the travel time. On 

the other hand, in this research, the travel time is calculated using (3.18) and (3.19) 

recursively as described previously, and with the discrete time steps mapped back to 

a continuous time scale, the error in travel time computation is not expected to be 

significantly affected by the size of the discrete time step. (See Section 3.5.1 for 

further discussion on this point).
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Dynamic link loading model passes back the average travel time in each departure 

time period to the route choice module. The mean travel time in each departure 

period on each route is computed as the mean of the travel times at each of the 

constituent minor time steps in that departure period weighted by their inflow rates. 

Formally, in case of a single link -  path network, the departure time dependent 

mean travel time for route r with uniform inflow rate in any departure time period T 

bounded by (w(._,, w i ] may be expressed as,

<-r={
i in 6

- } Y 'r(i)
(.w, - w M) ,=(,_1)n<J+1

(3.25)

where, n is the number of minor time steps in major time period T.

3.4.4 Whole Link Travel Time Model for a Network

This section extends the whole link travel time models from a single link case to the 

case of a network where a path is commonly constituted by a series of links rather 

than one single link. Now, consider a series of links a, (for i = 1,2,..,n), such that the 

sequence of links [a l , a 2 , . . . , a n_l , a n] constitutes any route r. Assuming that whole 

link travel time models of the form (3.18) are defined on each of the links on route 

r, the travel time function and exit time functions for any link a* may be expressed 

as a nested path cost operator following similar principles as described for a single 

link. Then the expressions for travel time and the exit time are as given below:

Ta, ( g a,_, (0) = a a, + Pa, (Xa, (£«,_, (0)) (3.26)

ga,(t) = ga,Jt)  + Ta,(ga,_l ( 0) (3.27)

where, r a (.) is the travel time on the link a; and g  (.) is the exit time from the link 

ai.
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However, as described in section 3.4.1, the model discretises time into a finite 

number of minor time steps, and hence we have the knowledge of travel times 

computed only at the discrete time steps. But this will be insufficient to compute the 

path travel time correctly especially from the second link onwards on any path with 

multiple links where the travel time needs to be computed at some real time and not 

just integers, otherwise the error in the travel time accumulates by the end of the 

dynamic network loading cycle. This is countered by computing the travel time in 

equation (3.26) using linear interpolation again by applying similar principles as 

described in the previous section, which is given below:

*■, (0 - K, (< /* > ■S) +' <Y‘S >S [ i ,  ((< > +1M) -  #, (< •/,>£)]

for, (t > 0; i' = 1,2,...,«)

where, x a> (.) = travel time on link a* at integer time, and 

<t/5> = integer part of time t.

(3.28)

Then the path travel time for vehicles entering the link ai at time t on route r (with 

an being the last link on route r before discharging the vehicles to their destination) 

is simply given as the difference between the exit time and the entry time at the 

origin, expressed as [g a (t ) - 1] . Finally, the mean travel time for vehicles entering

the path at any time t is computed using the equation (3.25).

3.4.5 Computer Program for Whole Link Travel Time Model

Dynamic network loading is a relatively straightforward process (Figure 3.4), and 

the majority of the programming effort is involved in computing the outflow, 

transferring the flows at nodes and computing the path travel time. Computation of 

the outflow at discretised integer exit time steps is based on the method of linear 

interpolation and has been described in detail in Section 3.4.3. The path travel time 

is worked out using the nested cost operator (3.26 and 3.27) and also uses linear 

interpolation to obtain the travel times at real entry times (3.28) used in the nested 

cost operator. Finally, the flow transfers are based on the link-path incidence 

relationship and the model requires complete path enumeration. The dynamic
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network loading module specially programmed using MATLAB, is also designed to 

remember each path flow progression over the network in time and space. This 

information will be used in computing the Jacobians of travel time functions, 

described in Chapter 5.

Figure 3.4 Dynamic Network Loading Process

3.5 Numerical Examples

This section discusses the numerical results obtained by implementing the whole 

link travel time model for single link paths with uniform inflow profiles described
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in the previous section and analyses some properties such as the capacity outflow 

rate and the impact of minor time step length on the overall results. It also reports 

the implementation of the model with more realistic inflow profiles such as the 

continuous time sinusoidal , inflow functions and also extends the implementation 

process to a network of links where paths constitute a series of links and are not just 

limited to a single link.

3.5.1 Step Function Inflow Profiles

Consider a two link parallel route network (Figure 3.5) serving one O-D pair with 

Oil = 12 minutes and ft = 0.025 minutes/vehicle for route 1 and cti = 9 minutes and 

f t  = 0.035 minutes/vehicle for route 2. It is assumed that there are two departure 

periods of 15 minutes each with 400 and 700 drivers uniformly spread over each 

departure period. Typically the route choice module assigns the demand to 

alternative routes (which is not discussed in this chapter) and works out the route 

flows. One such flow pattern satisfying stochastic user equilibrium conditions is as 

shown in Table 3.1:

Table 3.1 Demand in Departure Periods

Route/ Departure 

period

Period 1 Period 2

Route 1 143 376

Route2 257 324

Origin

Route 1

Route 2
Destination

Figure 3.5 Two Link Network

A minor step length of 1 minute was used to model the two departure periods and 

hence N = 30. The dynamic loading process was used to simulate the movement of 

the vehicles along the road link and compute the travel time profile and outflow 

profile given the inflow profile (Figure 3.6).
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Figure 3.6 Outflow and Travel Time Profiles for Discrete Demand Function

The inflow profiles are in two steps with route 2 absorbing a larger proportion of 

the total flow in the first departure period and in the second period giving away the 

first position to route 1. The travel times are computed using the link travel time 

function in tandem with the flow conservation equation shown above. The travel 

time profiles peak at about 30 minutes and start reducing from then as the inflow 

ceases. Steepest gradient of the travel time function appears to be of the order of - 

0.5 which is well above the limit o f -1 to preserve FIFO. In fact, in the simulation 

program, the derivative of the travel time function has been monitored at each 

minor time step to ensure FIFO. The corresponding outflow profiles are then 

worked out and are as shown in Figure 3.6. Thus the flow moves from origin to 

destination along the paths.

Capacity Outflow: Let us consider a single link serving one O-D pair with a linear 

travel time function defined as (3.18). At steady state, the inflow and outflow rates 

are equal and the number of vehicles on the link stays constant. Then we have, 

u = v = xJ t  

t = a + x  

x=> v = --------- .
a  +  f i x

(3.29)
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Consider the limit of (3.29) as x -> oo5 then we have,

L i m  v = L i m  — - —  = —. 
x-»oo x-*<o CC +  fix f3

Now, let a =  12 minutes and /3 = 0.025 minutes/vehicle, âs in the previous example. 

If we allow the length of the link to be unlimited (so that it can physically 

accommodate a large number of vehicles) then allowing the inflow rate to increase 

to a large value will result in a very high number of vehicles on the link. In such a 

situation, the outflow rate asymptotically tends to the outflow capacity given by 1/ 

(3. The outflow rate in Figure 3.7 tends to 40 vehicles per minute which is equal to 

1/0.025 vehicles per minute. This means that the outflow rate from a linear whole 

link travel time model can never exceed the outflow capacity.

Figure 3.7 Capacity Outflow Rate

Impact of Step Length: The simulation step length was reduced from one minute 

to 30 seconds, 15 seconds and to one second and its impact on the mean travel time 

was studied. Table 3.2 shows the modelled mean travel times by departure period 

for the two routes in the above example.
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Table 3.2 Mean Travel Time by Departure Period (in Minutes)

Route Step Length in Mean Travel Time in Minutes

Seconds Departure Period 1 Departure Period 2

1 60 13.8297 18.4424

30 13.7797 18.3362

15 13.7547 18.2831

1 13.7314 18.2335

2 60 13.2551 18.5793

30 13.1432 18.4971

15 13.0872 18.4558

1 13.0350 18.4172

As the step length reduced the mean travel time also reduced (though marginally) 

due to the fineness in working out the travel times over smaller steps. Clearly, this 

is due to the assumption that the travel time for all vehicles in a given simulation 

step is the same irrespective of their relative position in the group. However, the 

first vehicle in the group is not delayed by any of the following vehicles in the same 

group whereas the last vehicle is delayed by all vehicles ahead of it. In other words, 

the smaller the simulation step length, the better the travel time estimate. Ideal size 

for a step length should be that it is just sufficient to accommodate one vehicle. 

However, as the dynamic network loading module runs over a large number of 

iterations while solving for the equilibrium state, the computer time increases 

significantly, and hence we need to select an appropriate simulation step length 

suitable for handling the decision in question.

3.5.2 Continuous Function Inflow Profiles

In the second example keeping the network parameters identical to the previous 

example, a more general pattern of continuous inflow profiles are considered over a 

period of one hour divided into four departure periods of 15 minutes each. The 

inflow profiles for route 1 are indicated as below:
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u(0 =

32 Sin(xt/30) 0<t< \5
32 15 < t < 30

20 + 12 5m5[^(i + 1.5)/65] 30<f <45  
20 + 12 <SiHS[;r(f+ 1.5)/65] 45<i <60

(3.30)

Inflow profiles for route 2 are assumed half of the flow rate for route 1. The inflow 

profiles in this example clearly indicate the typical flow profiles during peak hour 

with steeply rising inflows during the earlier part and decreasing inflows after a 

period of stable inflows. The travel time profiles and outflow profiles are as 

indicated in Figure 3.8. The travel time profiles in Figure 3.8 are fairly smooth 

unlike the profiles corresponding to the step function inflow profiles shown in 

Figure 3.6. Continuous time inflow profiles are likely to result in finer estimation of 

travel time and hence the outflow profiles, as they represent the case of minor time 

step length 5 -» 0.

Figure 3.8 Outflow and Travel Time Profiles for Continuous Demand
Function

3.5.3 Five Link Network Example

This example illustrates the dynamic loading of vehicles to road links in a five link 

network specifically highlighting the merging and diverging manoeuvres at the 

junctions. Although the junctions are modelled as notional points in this example, 

the principles described here can easily be extended to incorporate the modelling of 

junction delays. Moreover, in this network, there are overlapping routes using the
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same road link at any given instance -  a feature necessary in larger networks. 

Consider the five link network as shown in Figure 3.9 with three paths serving a 

single O-D pair. Links 1 and 4 are used by route 1, links 2,3 and 4 are used by route 

2 and route 3 constitutes links 2 and 5. At node 1, flows on routes 2 and 3 diverge 

whereas, at node 2 flows from routes 1 and 2 merge together to form inflows to link 
4.

On each of the five links whole-link dynamic travel time functions of the general 

form Ta (!) = a a + P ax ra" (!) are defined with parameter values as shown in Table 3.3. 

In case of links 1,2,4 and 5, linear travel time functions have been defined, and the 

corresponding values of p have been set so that they reflect the saturation flows. For 

example, link 1 has been assigned a value of 0.025 min/veh for P, the inverse of 

which represents a capacity of 40 veh/min i.e., 2400 veh/hr which is similar to the 

saturation flow of an approach at a junction. In case of link 3, a quadratic 

relationship has been chosen though the FIFO property is not guaranteed in this 

case. Throughout the simulation process, the travel times at each step were 

monitored and ensured that the FIFO is not violated.

Table 3.3 Network Parameters
Link (minutes) /3a (minutes/vehicle) 7a Functional Form

1 12 0.025 1 Linear
2 9 0.035 1 Linear
3 10 0.00015 2 Quadratic
4 12 0.025 1 Linear
5 9 0.035 1 Linear
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The demand is assumed to spread over four discrete departure periods of 15 minutes 

each and the departure time dependent inflow on the three routes (output of a route 

choice model) is as indicated in Table 3.4.

Table 3.4 Departure Time Dependent Demand
Route Departure Period

1 2 3 4
1 148.44 302.71 40.58 32.97
2 49.49 79.79 15.42 16.18
3 202.07 317.50 44.00 50.85

Movement of vehicles on the road network is simulated through the dynamic 

network loading procedure as described in the earlier example and the link-wise 

flow and travel time profiles are as indicated in Figure 3.10. As an example, let us 

consider the flow on route 1. Travel time profiles are worked out using the 

procedure described earlier and the corresponding outflow profiles are as shown. 

Thus, the outflow from link 1 reaches node 2 where it joins with the outflow from 

link 3 resulting in an inflow profile to link 4. Repeating the procedure for moving 

the vehicles along link 4 yields the necessary outflow profile. Thus the movement 

of flow from origin to destination via route 1 has been simulated.

30
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Figure 3.10 Flow and Travel Time Profiles
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The travel time profiles in Figure 3.10 are interesting to observe. The travel time 

profiles for links 1,2,4 and 5 are showing clear peaks indicating that the travel time 

on them increases and then decreases until the free flow time as set by the 

parameter a. While the increasing travel time profile is no particular concern, the 

decreasing profile is important to monitor to check whether the FIFO is violated. 

For example, on link 2, the travel time for vehicles entering at 30th minute is about 

23 minutes and that for vehicles entering at 52nd minute is 12 minutes. That means 

the travel time has dropped by 11 minutes in an entry span of 22 minutes indicating

a slope of -0.5, which is greater than -1, thus satisfying the requirement d r { t )

d t
> - 1 ,

in an overall sense. In fact, in the computer program travel times at each minor time 

step are compared and FIFO has been ensured. In case of link 3, the travel time 

remained almost unaltered, mainly due to a very low demand to use that route and 

even perhaps a very low value of the coefficient (3 chosen.

3.6 Summary

This chapter introduced the dynamic network loading models required for carrying 

out dynamic traffic assignment and discussed their desirable properties such as flow 

conservation, FIFO and causality. It was noted that a whole link linear travel time 

model has the desirable properties besides being differentiable in inflows, and 

hence was implemented. Some critical issues in its implementation, such as 

computing the outflow using interpolation method were discussed. Numerical 

examples were constructed to illustrate the principles described using step functions 

and continuous functions as inflow profiles. In particular, the impact of the size of 

the simulation step length on the model performance was investigated. Finally, the 

results of dynamic network loading over a network with overlapping routes were 

discussed.



Variance Approximation Method

Chapter 4

4.1 Background

As described in Chapters 2 and 3, there have been a range of techniques based on 

equilibrium theory and stochastic processes to represent dynamic traffic flow 

phenomena and their impact on departure time dependent route choice (within day 

dynamics) and the associated behavioural adaptation, learning and information 

acquisition process (day-to-day dynamics). This Chapter presents the research that 

for the first time unifies the advantages of these competing philosophies, by 

bringing together three elements, namely:

- the representation of both within- and between-day dynamics within the 

overall framework of a discrete-time stochastic process, as proposed in the 

unifying framework of Cantarella and Cascetta (1995);

- the representation of within-day traffic flow dynamics by a continuous-time, 

whole-link, dynamic network loading model of the kind commonly used in 

the dynamic traffic assignment literature; and

- The solution and estimation of the equilibrium properties of the resulting 

stochastic process using a combination of conventional within-day dynamic 

network equilibrium theory and a theoretical approximation result.

Besides providing a practical solution technique, this approach is also able to place 

the diverse subjects of network equilibrium theory, simulation and stochastic 

process models within a common theoretical framework, whereby advances in one 

area may be used to the advantage of other areas.

Specifically, the modelling approach adopted is based on modelling the day-by-day 

evolution of driver decisions as a discrete-time Markov process, and the evolution 

of traffic flow dynamics within the day by a continuous-time whole-link model 

(hence it is termed ‘doubly dynamic’). While it is known that the stationary output 

of such a model, in the form of an equilibrium probability distribution of time- 

dependent network flows, may in principle be estimated by Monte Carlo simulation,
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there are many potential drawbacks of such an approach, such as the difficulties of 

detecting stationarity and the effects of multiple attractors, and of dealing with 

Monte Carlo error in policy tests (Cantarella & Cascetta, 1995; Watling, 1996; 

Watling, 2002).

With such considerations in mind, Hazel ton & Watling (2004) proposed an analytic 

approximation method for directly estimating the equilibrium probability 

distribution of such a model, without the need for simulation, and requiring only 

knowledge of a conventional Stochastic User Equilibrium (SUE) solution. Utilising 

a result previously established by Davis and Nihan (1993), namely that this 

equilibrium distribution is asymptotically multivariate Normal, with mean the SUE 

flow vector, then all that is required to complete the approximation process is the 

variance-covariance matrix of the flows, as provided by the approximation result of 

Hazelton and Watling (2004). However, a significant restriction of their work is that 

it was restricted to within-day static models. The contribution of the present thesis 

is to make the important step of extending this work to the within-day dynamic 

case, in which the origin-destination demand flows are time-sliced by departure 

time (to any desired resolution), and in which the interactions on the network are 

handled through a continuous-time, dynamic network loading model (estimated in 

practice by an arbitrarily fine discretisation).

In the following section, the underlying model is explicitly stated in quite general 

terms, and an approximation derived for the moments of the equilibrium probability 

distribution of the process. This approximation in turn requires the computation of 

various equilibria and Jacobian matrices, and so the next Chapter is devoted to 

explaining techniques for performing these computations. In particular, one 

complete section is devoted to describe the derivation of the route travel time 

Jacobian for a particular form of popular whole-link, dynamic network loading 

model.
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4.2 Earlier work

Davis and Nihan (1993) estimated the mean of a Markov chain assignment in a day- 

to-day context and demonstrated that it converges to the Stochastic User 

Equilibrium assignment, hence motivating further research in approximating the 

properties of equilibrium probability distributions. Hazel ton and Watling (2004) 

attempted to compute the equilibrium co-variance matrix in a day-to-day context 

(assuming static within day cost flow functions) and proved that the equilibrium 

probability distributions can be approximated in a fraction of time as compared to 

that by solving the Davis and Nihan’s fixed point equations or by the method of 

simulating the route choices using Monte Carlo techniques.

Hazelton and Watling (2004) follow similar principles as set out by Cascetta (1989) 

and the basic stochastic process model can be specified exactly in an identical way 

as described in Section 2.1.1 of Chapter 2. Let Fknbe a random vector of route flows 

on day n for inter-zonal movement k and a collection of the route flows across all 

the O-D movements is contained in F ". Route flows on day n for inter-zonal

movement k are obtained conditionally on the costs given up to day n-1 as a 

multinomial distribution as defined by equation (2.5). As noted by Cascetta (1989), 

the process F"for n = 1,2,...is an m-dependent Markov chain and hence

equivalently the combined process F", Fn_1,....F n_m+1 for n = 1,2,... is a Markov

chain and the probability distribution of the combined process converges to a 

unique equilibrium provided that there is a non-zero probability of the process 

switching from one state to any other. The focus of Hazelton and Watling (2004) is 

on estimating the moments of the marginal equilibrium distribution of F ".

Davis and Nihan (1993) demonstrated that the limiting probability distribution of C 

is multivariate Normal. This implies that the conditional distribution of F n+1 given 

Cn must also be multivariate Normal when the process is stationary. Therefore, the 

distribution of F" is also multivariate Normal when the process is stationary.
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Davis and Nihan (1993) also proved that the mean of the probability distribution of 

F tends to the SUE assignment when the demand is large. This means F can be 

approximated by

F ~ Normal(f*,£), approximately. (4.1)

where, f* is the route flow vector when the process is stationary, f*, the mean route 

flows, can be estimated by any suitable method such as the method of successive

averages and £  the variance-covariance of route flows is estimated as described in 

the following paragraphs. It is important to note that the approximation to a Normal 

distribution given in (4.1) works well provided the demand is large. This condition 

is usually satisfied by developing density-based models as in Davis and Nihan 

(1993) and Hazelton and Watling (2004). For example, Hazelton and Watling 

consider the case of link capacity growing in proportion to the demand, so that in 

the limit as the demand tends to infinity the approximation results still remain valid. 

However, such an approach based on densities (or proportions, equivalently) will 

result in significant notational complexity and hence the present work uses the 

notation based on absolute numbers rather than proportions.

Assuming the cost flow function is linear in the neighbourhood of f*, then

c(F) = c(f*) + B(F-f*) (4.2)

where, B is the Jacobian matrix of the route costs with respect to the route flows. It 

may be recalled that the dynamic link travel time model as described in section 3.4 

of the previous chapter, is defined as a linear function of the number of vehicles on 

the link at each instant and hence the equation (4.2) remains valid throughout the 

present modelling framework. Similarly, by assuming that the route choice 

probability function is linear in the neighbourhood of mean route costs c* when the 

system is stationary, then it follows that,

p(C) = p(c*) + D(C-c*) (4.3)
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where, D is the Jacobian matrix of the route choice probability with respect to the 

route costs. Following from Davis and Nihan (1993), Hazelton and Watling (2004) 

used a logit-based route choice probability function. It is well known that the driver 

behaviour as modelled by a logit-based route choice function can be represented by 

an S-shaped curve and that the shape of the curve depends on the value of the 

dispersion scaling parameter 8. The lower the value of 6,  the higher the dispersion 

resulting in an almost straight line, conversely, the higher the value of 8, the lower 

the dispersion resulting in a shape that is similar to the mirror image of the letter, Z. 

In the light of the above comments, it is important to note that the equation (4.3) 

and the underlying assumption of the linearity of the route choice probability 

function remain valid for a certain range of values of 8. Some of the numerical tests 

reported in Chapter 7 explore the validity of the approximation model for various 

values of 6.

Hazelton and Watling (2004) estimated the variance-covariance matrix of the route 

flows, in case of multiple origin-destination pairs, as below:

t  =  0* +5(Z)'2{QDB0*(QDB)t +QDMB0*(QDMB)t } (4.4)

where, 0* = i//ag(f*)-f*(f*)T, the conditional covariance matrix of the 

distribution in (2.5) evaluated at SUE,

s(X) = (1 -  Xm) /(I -  A.), sum to ‘m’ terms of the memory weight X for 0 < X < 1,

Q = diagonalised demand,

M = s(X)“‘BD + XI, an intermediate matrix with I representing an identity matrix 

of appropriate dimensions, and 

T represents the transposing operator.

In the above expression for variance-covariance matrix, all parameters on the right 

hand side are known except the Jacobian matrices D and B. Jacobian of the route 

choice probabilities D, can be easily computed by assuming a functional form such 

as logit and evaluating its derivative at SUE. In the case of the Jacobian matrix of 

the route costs B, Hazelton and Watling (2004) could easily evaluate the 

relationships obtained by differentiating the BPR style static within day cost-flow
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functions they assumed. However, in the case of dynamic within day cost flow 

relationships, the route cost is a composite variable and is a function of the route 

flows not only in one departure period, but also may be a function of the route flows 

which departed earlier from the reference time period. In general, the route costs are 

affected by route flows belonging to various O-D pairs using any given link at any 

given moment. Clearly, all the vehicles from the previous departure periods which 

are still on the link in consideration will influence the travel cost and hence 

computing the derivative of route travel cost becomes much more complicated. 

Therefore, the integrated day-to-day and within day situation (with multiple time 

periods) poses a major challenge to the researchers in approximating the properties 

of equilibrium probability distributions. Chapter 5 describes the method of 

computing the Jacobian matrix of the travel time (cost) which is one of the main 

contributions of this research project.

4.3 Variance Approximation Method

This model considers the case of multiple origin-destination movements, served by 

a network of links with overlapping path-flows on which there are time-varying 

travel time-flow relationships defined in continuou^time. On the demand side, the 

origin-destination flows are assumed to be specified (as is typically the case in 

practice) in discrete departure periods, though these periods can be made as fine as 

the modeller desires. Though not a necessary restriction, for notational simplicity let 

us assume that all origins are discretised into the same number of departure periods. 

On the network side let us consider the continuous-time dynamic network loading 

map as a relationship between a given vector of path flows (by departure interval 

and origin-destination movement) and the vector of resulting mean path travel times 

(by departure interval and origin-destination movement). Broadly speaking, the 

model and derivation of the approximation result in this section re-interprets that 

given in Hazel ton and Watling (2004), with origin-destination movements instead 

interpreted here more generally as c o m m o d itie s . In this case, a commodity consists 

of a triple (origin, destination, departure period), so that the number of commodities 

will be the product of the number of origins, number of destinations and number of 

departure periods. It is important to note that the thrust of the approximation
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method lies in an asymptotic (law of large numbers) argument, as the demand levels 

become large, but assuming that the network capacity grows in relation to the 

demand. This allows a large sample approximation to be made of any arbitrary 

network problem, whether or not the original problem has demands that are “large” 

in any sense. Below, an outline is provided of the key assumptions and results.

This section introduces the notation and describes the assumptions made in 

developing the model. The commodity demand flows (i.e. origin-destination 

demands for each departure time period) are held in a vector q of dimension K with 

elements qk (k = 1,2,..., K ). Each commodity k is served by a set of routes R k with

¡Rk | elements; the full route set across all commodities thus has dimension

K
p = ^ |R k| . Note that this notation includes some repetition, since for each O-D

k=l

movement, each entry time period will be repeated, yet this substantially eases the 

derivations below. If the p -vector of commodity route flows (across all 

commodities) is contained in the vector f, then c(f) denotes the p -vector of mean 

commodity route costs as a function of the commodity route flows. Let us 

presume c(f) = b + yc(f), where c(f) denotes the mean commodity route travel times 

(obtained from a suitable dynamic network loading model), y denotes the value-of- 

time, and where b is a p -vector representing the composite effect on commodity 

route costs of other flow-independent attributes (tolls, distance, etc.). Suppose also 

that c(f) is sufficiently smooth to be at least piecewise differentiable in f.

It is assumed that all the trip makers of commodity k are rational in their behaviour 

when choosing their route, in an attempt to minimise their p e r c e iv e d  cost of travel. 

For each commodity k and route r 6 R k, the perceived travel cost C(rn)k at the start 

of day k is given by

C(n)k = c(n_1)k +r|(n)k (4.5)
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where c[n is the population-mean perceived cost for commodity k and route r 

at the end of day n-1, and r|(rn)k is a random variable describing unobserved 

attributes contributing to the population-dispersion of the perceived attractiveness 

of route r by commodity k. The p-vector represents the collection of

population-mean perceived costs across all routes and commodities. The probability 

of choosing route r on day n is then given by:

pk(C(n-i)) = prob(c<n-I)k +ri(rn)k < C|n'1)k +ri[n)k V i * r) . (4.6)

pk(.) then represents the vector (of dimension |Rk|) of route choice probabilities for

the commodity k, and p(.) denotes the collection of these choice probability vectors 

over all the commodities (i.e. p(.) is a vector of dimension p ). The functional form 

of the path choice probabilities depends on the joint probability density function 

assumed for the residuals {r|(rn)k : r e R k} for each commodity k, resulting (for

example) in a logit model if independent Gumbel distributions are assumed, and a 

probit model for a multivariate Normal distribution.

While the behavioural choice-side of the model is quite conventional, a simple 

linear learning filter is used to replicate drivers building up their experience of 

travel costs on a day-by-day basis following the completion of each day’s trip. 

Although several authors including Horowitz (1984), Cascetta (1989), Ben-Akiva et 

al (1991), Iida et al (1992), Nakayama et al (1999) used similar perception updating 

models, very few e.g., Iida et al (1992) presented any analysis of the model 

parameters. While there are other approaches for updating the perceptions such as 

the Bayesian approach (Jha et al 1998), in this research, the weighted average 

approach has been used in order to derive analytic results though all other authors 

used learning models in simulation experiments. Thus following the completion of 

trips on any day n, the population-mean perceived costs are updated based on a 

weighted average of costs actually incurred in a finite number of previous days m, 

using the form:
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C(- ,) =s(A.)-'X^j-1c(F(n-j)) 0<X<1 (4.7)

m
where s(X) = = (1 -  A.” ) /(I -  A.) is simply a scaling factor to make the

j=i
weights sum to unity and c(.) is the commodity route cost-flow function as defined 

above, and where F(n) is a vector random variable of dimension p denoting the 

network path flows by commodity on day n. Assuming that for any day n and for 

each commodity k, all qk drivers wishing to travel make their travel choices 

independently, conditional on their experiences in past days, then the number of 

drivers taking each possible route on day n by each commodity k, conditional on the 

costs (3) experienced in the past, is obtained as:

pwk | £("->) ^  Multinomial(qk,p k(C(n'1))) independently, for k = 1,2,...K

(4.8)

where F̂ n)k is the vector of route flows on day n by the commodity k.

The route flows on day n are then given conditionally by the partitioned vector as 

below:

F (n) c (n 1)

V 0)1 cM
p ( n)2 C (n -D

p(n)KV
C (n -D

(4.9)

where F<n)k C(n !) is given by (4.8).

Then the expectation and variance-covariance matrix would follow as:

E[F (n)

E[F(n)1 C f" -1)

E[F(n)2 c M

E [ F ^ K c(n_1)
v y

C^n ^] = (4.10)
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where, E F, e [ï (n)k ,(n -l) - « k Pk (C < -l ) > (4.11)

and the conditional covariance matrix has a block-diagonal form:

Var(F c^n =
Var(F(n)1 cM) i

1-

1o ; o 
__1

A

0 1 1 0
0

V

11
1

0 ! V a r f F ^  
1

CM )
)

(4.12)

where, by standard results for the multinomial distribution:

V ar (F (n)k C(” ! ) ) = [diag (p^ (C(?I l ) ) ) - p k ( C {n l ) ) ( p k ( C {n  V ] (4.13)

where, the superscript T denotes the transposition operator.

Note that the moments above are all obtained conditionally on the perceived route 

costs; however, for any sensible prediction the u n c o n d i t i o n a l  moments are required. 

Based on standard results, the unconditional first moment is given as:

E = E r(n) ■«(n-1) (4.14)

Now, applying the work of Davis and Nihan (1993) to the case of multiple 

commodities (i.e., reinterpreting the multiple origin-destination movements case of 

Hazelton and Watling (2004)), the mean of the multinomial distribution in (4.8) 

converges asymptotically to the solution of the within-day dynamic stochastic user 

equilibrium (SUE) problem F SUE, as the demand grows to infinity in tandem with 

the capacities. Since Davis & Nihan also establish asymptotic convergence in 

distribution of the process to a multivariate Normal, the only remaining piece of 

information thus required to characterise the full equilibrium distribution is the 

covariance matrix.
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Now, the unconditional second moment is given as (again by standard statistical 

identities):

V a r (F ^ ) = E Var(F (n) + Var(E : ( n) (̂n-1) (4.15)

The first term on the right hand side of (4.15) is given by

E[Var(F CM ) ]  =
^ [ V a r iF ^ 1 ĉ n !))] | 0 | 0

_J _1

0 ! '•. ! 0

0 | 0 ! E[Var(F(n)K
l 1 1

c(n J))]y
(4.16)

where for each commodity k, E[var(F(n)k|C (n 1} ) J — with 0 k given by the 

multinomial covariance matrix evaluated at SUE path flow proportions

(p 'SUE,p 2SUE,...,pKSUE) :

e ;  = q k [diag(pksUE ) -  p kSUE (pksUE )T ] (4.17)

where p ksUE denotes the SUE path flow proportions for the commodity k.

Based on applying the results established in Hazelton and Watling (2004) to this 

new application area, the second term on the right hand side of (4.15) can be shown 

to be in the limit

Var(E[F(n) C(n l)] ) s ( X ) ‘2[QDB0*(QDB)T +QDMB0*(QDMB)t ] (4.18)

where 0*is the collection of the conditional covariance matrices (4.17) across all 

commodities; Q = diag(Tq) is a diagonalised matrix of the demand flow vector q 

where T is the commodity/route incidence matrix; D is the Jacobian of 

commodity/route choice probabilities p(C) with respect to commodity/route costs 

C; and B is the Jacobian of commodity/route travel costs c(f) with respect to
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commodity/route flows f. The matrix M is an intermediate matrix, with 

M = s(X)_,BD + XI where I represents an identity matrix of appropriate dimension.

The implementation of the approximation method above requires the calculation of 

the two terms on the right hand side of (4.15), namely (4.16) and (4.18). Expression

(4.17) is computed by finding the time-dependent SUE by the Method of 

Successive Averages, with the SUE route flow proportions by commodity then 

input to (13) along with the time-varying demand profile. Expression (14) requires 

as input the memory length, memory weights and demand profile, together with the 

Jacobians B and D evaluated at SUE. Computing D is straightforward for a logit 

model, and is possible for other approaches such as probit. Computing B is 

potentially more problematic, partially because the route travel time depends on 

link travel times at the appropriate link entry times for a vehicle following that 

route, and these entry times themselves depend on the network flows and the travel 

times on previous links in the route. Chapter 6 shows how this Jacobian may be 

deduced for a common form of dynamic network loading model from the literature.

4.4 Jacobians of Route Choice Probabilities

Following from equation (4.5), the functional form of route choice probabilities will 

be a logit model based on the assumption that the random residuals in perceiving 

the route costs are Gumbel distributed, and the choice probabilities for commodity k 

choosing route r are given by

(4.19)

Differentiating (4.19) with respect to route costs of commodity k using route r 

gives,
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Similarly differentiating (4.19) with respect to any s * r gives the off diagonal 

elements of the Jacobian matrix, and is given as,

8 p k O e M cr+ci)

d C k r h * r ,  V r,  h e  R k (4.21)

The Jacobian matrix will be a block diagonal matrix with as many blocks as there 

are departure periods, and each block will have diagonal elements given by (4.20) 

and off diagonal elements defined by (4.21). All elements of the Jacobian matrix 

other than the block diagonals are zero because the route choice probabilities in any 

departure period are based on the costs given in that departure period and so are 

independent of the costs in the other departure periods.

4.5 Implementing the Variance Approximation Method

The variance approximation as specified in sections 4.3 and 4.4 earlier in this 

chapter, has been implemented by developing purpose-written MATLAB programs. 

The scheme of implementation is shown in Figure 4.1. The main module of the 

program is based on a logit choice rule for splitting the trips of each commodity 

over the set of feasible routes and then the route flows are averaged over the 

number of iterations completed so far (the method of successive averages) which 

are passed on to the dynamic network loading module (See Figure 3.4). The 

dynamic loading process moves the vehicles along the street network in time and 

space and computes the path travel time in each departure period which is then 

passed on to the next iteration of the logit model. The number of iterations of the 

MSA is set very large such as 10000 iterations, to ensure that the route flows are at 

equilibrium. As noted by Ortuzar and Willumsen (1999), the MSA may be very
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slow in converging and hence the higher number of iterations. Clearly, the 

algorithm for solving the DSUE is not central to the present thesis, and perhaps a 

more efficient algorithm as for example, Han (2000) may be used which might 

require much fewer iterations. Thus, the route flows obtained are at dynamic 

stochastic user equilibrium as all the drivers are assigned to their least perceived 

cost routes within the departure period. The model implemented here assumes that 

the drivers do not have a choice of departure time period and concentrates only on 

the route choice.

Figure 4.1 Flow Chart for Variance Approximation Method

The balance of the computation is simply evaluating the conditional covariance 

matrix, and the Jacobian matrices of route choice and travel time, at SUE flows.
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The conditional covariance matrix is specified as a block diagonal matrix with each 

block representing each commodity and is given by equation (4.17), while the route 

choice Jacobian is also a block diagonal matrix and the blocks are defined with the 

help of equations (4.20) and (4.21). However, computing the Jacobians of travel 

time requires a more detailed treatment and will be the focus of Chapter 5.

4.6 Summary

The equilibrium probability distribution of a stochastic process can be 

approximated by a Normal distribution and its mean converges to SUE, provided 

the demand is sufficiently large (Davis and Nihan 1993). This chapter reinterprets 

the work of Hazel ton and Watling (2004) and extends the method of approximating 

the variance-covariance of a stationary probability distribution to the case of 

dynamic travel time functions, thus bringing together the two moments viz., the 

mean (as estimated by DSUE) and the variance (as approximated by the variance 

approximation method), with which the equilibrium probability distribution can be 

described. However, it is noted that the variance approximation method requires the 

Jacobian of travel time function, and the specification of this Jacobian forms the 

focus of Chapter 5.



Deriving Travel Time Derivatives

Chapter 5

5.1 Background

This chapter is aimed at formulating the methodology required for working out the 

travel time derivatives with respect to the path inflows. Path travel times are defined 

as the sum of the link travel times based on the nested cost operator as defined by 

equation (3.26). However, the link travel times in a dynamic network assignment 

are potentially a function of previous, contemporaneous and future departures along 

any path, and hence computing the derivatives of path travel times of any given 

path with respect to its inflows poses a challenge to transport modellers.

There has been very little work published on this topic. Lindveld (2003) computes 

the analytical derivatives of link flows with respect to O-D flows which followed on 

from the sensitivity analysis of Tobin and Friesz (1988). Tobin and Friesz compute 

the derivatives of link flows with respect to perturbations of the cost functions and 

of the trip table. Lindveld expresses the derivatives of the link flows in terms of the 

derivatives of the path dependent link flows and in their approximation considers 

the dynamic link path incidence and route choice proportions and ignores the 

effects of dynamic network loading and re-routing due to the changes in the trip 

table.

In this research, the derivatives of travel time with respect to equilibrium path 

inflows were computed and include the effects of dynamic network loading. 

Specifically, the Jacobian matrix contained the derivatives of the average route 

travel time in each departure period with respect to the inflow rate in that or earlier 

departure periods. As the inflows in later departure periods can not affect the travel 

times in earlier departure periods, the Jacobian matrix is a block triangular matrix.



71

5.2 Analytical Travel Time Derivatives

A key element to determine in the approximation method (4.18) presented in 

Chapter 4, is the Jacobian B of the route cost flow function c(f), which in turn is 

equivalent (under the stated assumptions) to the Jacobian of the route travel time 

function (or dynamic network loading map) c (f) . In this section, a method for 

computing this Jacobian is presented based on a form of whole-link travel time 

model popular in the dynamic traffic assignment literature.

5.2.1 Link travel time model and notation

Specifically, following Friesz et al (1993), the travel time xa(t) for vehicles

entering any link a (with links indexed a = 1,2,..., A) at any continuous time t is 

related to the number of vehicles xa(t) on the link at that entry time, given by the 

relationship

T» (0 = Va(xa(t)) ( t* 0 )  (5.1)

for some non-negative, differentiable function \|/„(.) with derivative (.). Several 

researchers including Astarita (1996) and Xu et al (1999) also investigated the 

properties of (5.1) either in linear or non-linear form. Astarita (1996) proves that the 

linear form of (5.1) limits the outflows to a maximum of the capacity of the link 

without additional constraints, while Xu et al (1999) show that it satisfies FIFO if 

the inflows are bounded from above in the linear case, or if the gradient of 

V.iXaiO) is bounded from above in the non-linear case. However, as (5.1) assumes 

that the travel time is independent of the relative position of the vehicles on the link, 

it would be, in general, suitable for use on congested links.

In order to implement the given model, a fine discretisation is performed. Care 

should be taken in mapping this to the underlying continuous time axis, and 

ultimately in aggregating to the typically coarser departure time periods over which 

route choices are made (for the application of the theory in the previous chapter). In
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practice, this method makes no premise about the level of discretisation involved, 

this is under the control of the modeller.

Let 5 denote the time increment of this discretisation, and denote the complete 

analysis period by (0, N5] for some positive integer N. The time increments are thus 

the intervals (t-<5, t] for t = 5, 25, ..., N5, which are referred to as m in o r  time steps. 

Below, when a time step (or interval) t is referred, it is to be understood that it refers 

the period (t-5, t]. Assume that 5 is chosen so as to be smaller than the free flow 

time to traverse any link, i.e. 5 < \j/a (0) for all a = 1,2,..., A . This is an assumption

which will be used implicitly on a number of occasions -  implying that a vehicle 

could not enter and exit a link in the same increment of time. Quite separately to the 

issue of how to discretise the travel time model, a coarser time-discretisation is 

assumed for specifying the origin-destination demand rates. In practice, the level of 

time-discretisation for the O-D demands will be controlled by data availability; in 

order to get a sensible approximation to the underlying continuous time dynamic 

network loading model, it is then sensible that the modeller chooses a somewhat 

finer discretisation for implementing the travel time model. The O-D demand rates 

are assumed (for notational convenience) to be specified over a common 

discretisation of the whole analysis period (0,N5], divided it into L m a jo r  time 

periods, also referred to as departure periods (w h , Wj] (for i = 1,2„..L) such

that (w0, w, ] U (w,, w2 ] U......U (wi_,, w L ] = (0, N S ] . These match exactly the

departure periods defined in the previous section, and for convenience are assumed 

to be of the same duration, i.e. w; -  w M = k for all i = 1,2,..., L and some given k .

Now, unlike conventional network equilibrium theory, a distinction arises here in 

the flow variables that are being considered. In the stochastic process approach, the 

commodity route flow vector f  is an a b so lu te  flow (measured in units of number of 

vehicles or drivers). In order to translate to the flow units more conventionally used 

for dynamic network loading models, consider the flow r a te s  u, given by a simple 

scaling of f  as u = K~'f . Thus, the route commodity travel time Jacobian computed 

as a function of u, namely J  = Jac(c,u), but then it is simple to recover the
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required route travel time Jacobian (of c with respect to f) as k *J. Then, finally 

the route cost Jacobian is given by B = yK_1J .

In the previous Chapter it turned out to be convenient to merge the notion of an 

origin-destination movement and departure period into a single entity, referred to as 

a commodity. In the present Chapter, on the other hand, a slight change of notation 

will considerably ease the presentation. In particular, now suppose that all R routes 

across all origin-destination movements (but neglecting departure periods) are 

indexed r = 1,2,...,R, making the origin-destination movements implicit in the 

routes. Then the commodity route flow rate vector u is written with the route and 

departure period explicit: thus, for each route and time period referred to in u one 

can identify the corresponding route label r (in the new route labelling system) and 

departure time period label i, and will thus henceforth refer to the departure time 

specific route flow rates as u^ for r = l,2,...,R and i = 1,2,...,L. It will also be 

convenient to move between time defined on a continuous axis and time defined in 

terms of the discrete departure intervals. Thus the indicator function 

I(t) (0 < t < N8) is introduced which takes the value i if  continuous time t refers to 

departure interval i (for i = 1,2,.. .,L).

5.2.2 Decomposition of outflows

A key element of the description below is the consideration of the cumulative 

outflows from each link. In particular, Va(t) defines the cumulative outflow from 

link a (a = 1,2,...,A) at any time t (t > 0) which it is natural to associate with the 

end of each simulation time increment (t-5, t] since it is a cumulative flow. In 

particular, Va(t) is written as the sum of its constituent outflows corresponding to 

each (minor) inflow period, t = 5 ,2 8 , ..., N5, as:

R  N

(5.2)
r=l s=l
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where, Vasr(t) denotes the cumulative outflow from link a at time t arising from 

flows on route r e n te r in g  th e  n e tw o r k  before the end of the minor time increment s5 

(i.e., before the end of the interval (s5 - 8, s5]). An important point to note is that the 

disaggregation is done by the minor time increments, not by the major time 

increments at which the O-D demands are defined.

Before considering the outflows further, let us turn attention to the cumulative 

inflows to each link. There are two kinds of contribution, those from vehicles 

starting their journey on this link (contribution Ua(t)) and those entering from 

incident links (contribution Ua (t) ), thus the cumulative inflow to any link a can be 

written in the form:

If sar is a 0/1 indicator variable, equal to 1 only if link a is the first link on route r 

(a = 1,2,..., A; r = 1,2,...,R), then based on the notation introduced above, the 

contribution to the cumulative inflow to any link a from vehicles starting their 

journey is:

Then, let us define the 0/1 indicator variable Eabr to be 1 only if link a follows link 

b on path r, then the contribution from flows incident to link a is:

U. (t) = U! (t) + U* (t) (a = 1,2,..., A; t = 5,25,..., N8). (5.3)

r=l V.
1) (,t =  S ,2 5 , . . . ,N S )  (5.4)

R  A

U.‘(>) = Z Z E» Vb(') (a = U  A; t = 8,25,...,N5). (5.5)
r=l b=l

Note that this notation automatically deals with traffic reaching its destination at the 

end of a link b that is incident to link a (for a particular route r), since the 

corresponding Eabr would then be zero.
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By conservation of flow it follows that the number of vehicles on the link at time t 

is the difference between the cumulative inflow and cumulative outflow:

X a ( t )  = Ua(t) -  Va(t) (a = 1,2,..., A; t = 8 ,2 8 ,... ,  N 8 ) . (5 .6)

Combining equations (5.2)-(5.6), the number of vehicles on the link at any minor 

time increment is expressed as a linear combination of the route inflow rates 

starting on that link in the current time period, and the exit flows from incident links 

which are decomposed according to (5.2).

5.2.3 Relationships between route and link travel time derivatives

Now, let us turn attention to the travel times. Recall that the travel time on any link 

a for vehicles entering at time t is denoted xa ( t) . Now, the ultimate interest is in the

path travel times from the dynamic network loading model. Supposing that the link 

travel times a t  a n y  co n tin u o u s tim e  t are already known, then one would simply 

trace along the links of the route in the relevant time trajectory, following the notion 

of a nested cost operator introduced by Friesz (1993). Thus if the n(r) links used in 

sequence by any route r have the link indices alr -> a2r —»... -> an(r)r, then define

g^  as the time that drivers departing on route r exit link a ̂  if they begin their 

journey at timejS for j= 1,2,...,N. These intermediate link exit times are built up 

recursively according to:

Sid = JÔ + Tlir(jô); = g k_1,d +xakr(gk_1,d) fork = 2,3,...,n(r) (5.7)

with the desired route travel time for the complete journey given by the difference 

between the departure time j5 and the final exit time at the end of recursion (5.7), 

namely a travel time of gn(r)jlj -  j ô .

However, there is a difficulty with (5.7) in that practical implementation of the 

dynamic network loading model requires a time discretisation, and therefore the 

link travel times at any continuous time are not known in general. Therefore some
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interpolation is required; in fact, the aim is to differentiate this interpolation directly 

(rather than its underlying continuous time system) and so there is a need to specify 

this more precisely in the notation. Specifically, if it is supposed now that xa (t) as

previously defined refers to any continuous entry time t > 0, and xa (t) denotes the 

travel times known only at the discrete entry periods t = 0,S,25,...,N5, then if for 

any real number x, the notation <x> denotes the integer part of x, a linear 

interpolation yields:

Combining (5.7) and (5.8) thus allows the intermediate link exit times on any route 

(and the complete route travel time) to be calculated for any departure time, based 

on knowledge of link travel times at the minor time increments. Clearly, xa (t) can 

be related to the number of vehicles on the link for discrete time intervals through 

(5.1), in just the same way as xa(t) would be in continuous time. The ultimate 

interest is in the mean route travel time during each of the L m a jo r  entry time 

periods (each of which consists of %  minor time increments, in terms of the 

notation already defined), namely:

Having now built up an expression for the route travel time by departure period, 

from (5.9) and earlier expressions, let us now start with the differentiation (with 

respect to the route flow rates by departure time). It is trivial to see from (5.9) that:

(5.9)

^h, k H ^  duhs
s.t Wj.^jSiWj

(5.10)
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Now, some care is needed in differentiating the path travel times above derived 

from the nested cost operator (5.7). To understand this point, consider a network 

consisting of a single path (path r = 1) made up of two links in series (n(l) = 2), the 

path using first link 1 then link 2 (i.e. an = 1, a21 = 2), and suppose that 8 = 1. For 

a vehicle departing at minor time step j, the nested operator (5.7) would give a 

complete path travel time of

g2lj “  j = j + *1 (j) + *2 (j + *i 0')) ~ J = h  (j) + x2 (j + *1 (j)) • (5-11)

Now suppose that an infinitesimal perturbation is made to the flow rate uhI on 

route 1 for some major time period h that is before or includes the current minor 

time step j (i.e. h < I( j) ). Then the time-profile of the number of vehicles on each 

link will be perturbed, and clearly through (5.1), there will be a direct impact on the 

time-profile of travel times on each link. However, since the argument of x2(.) in

(5.11) is itself a function of x, (.) there will also be an impact on the ‘census time’ 

at which the relevant travel time is picked out on link 2 that contributes to this path 

travel time.

Returning to the general case, the interpolation (5.8) in fact allows the 

decomposition of these two effects. Since the case k = 1 in (5.7) is straightforward 

(the first link on a path does not have the ‘census time’ problem), let us restrict the 

attention to the cases k = 2,3,...,n(r), substituting (5.8) into (5.7):

a , = a - w + t :  (< ,"L V, >■& )+g “ '* - <g ' ^ ’ > £ [ }

(5.12)

Now an infinitesimal perturbation to any of the (earlier) route flow rates will 

directly impact on the two travel time terms involved, but they are now evaluated at 

discretised census times that will not be affected by a small perturbation. The 

impact on the census times is captured, on the other hand, through the interpolation 

term, which is a function of the continuous exit time gk_,  ̂ from the previous link. 

Thus differentiating (5.12) yields:
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dgiaj_dgk-i,,j | d x 3J < Si-l % > .8)   ̂ g i < t j - < t i - ' % > S r dt>kf((<Bt~'% > +D-S) dr,h(<g>-'% >,5) , 
^  + + 6 L d a *  ^  J

> + !)« -V ( < * ^ >.5) ] (k=2,3....n(r)).

4,hs

5 5uhs

(5.13)

Expression (5.13) therefore defines a recursive method for computing the link exit 

time derivatives along any path, with the recursion initiated by the first link on the 

path (k = 1) for which:

dgld ^ , lr(j5) 

f t *  ^
(5.14)

Thus the required derivatives on the right hand side of (5.10) may be obtained as 

the limit of the recursive process (5.13)/(5.14), as the link exit times are traced 

through to the path’s destination. It may be seen that (5.13) assumes prior 

knowledge of the link travel time profile derivatives at any g iv e n  discrete entry to a 

link. An important point is that these link travel time derivatives (at given entry 

times) can be independently derived link-to-link, without the concern for the 

‘census time’ impacts, since the latter impacts are subsequently captured by tracing 

recursion (5.13) along the relevant paths. Let us now focus on the process by which 

the link travel time derivatives may be computed.

Now, combining equations (5.1), (5.3), (5.5) and (5.6), and then differentiating by 

the chain rule, yields for any given t = 5,28,..., N 8:

d*. (*) R  A

= v ;
m=l b=l

'Mi!>+y y E aVb(t) av.d)’
\  ^ h s  m=l b=Ì ^U hs ^ h s  )

(5.15)

It is straightforward to deduce from (5.4) that:
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dUl(t)
du hs

1 T

w h - w h_, i f S a s

0

= 1 and h = I(t) 
= 1 and h < I(t) 

otherwise
(5.16)

Then the only unknowns in (5.15) are the link exit flow derivatives, which by 

differentiating (5.2) are decomposed according to:

SV R N 5V itl
a ^ Z Z “ ^  (a = 1,2,—>A ;t = 5,25,...,N5;h =1,2,...,L;s = 1,2,...,R)

du hs r=l i=l du hs

(5.17)

5.2.4 Computational process for determining decomposed link exit flow 

derivatives

The process to determine all the relevant

v . M , i M dV- » % u a n d terms in (5.15) and (5.17) operates

chronologically, advancing all links/paths across the network by one (minor) time 

increment (t-5, t] before moving on to the next time increment. At the same time, 

the link exit times g^  for each path and departure increment are computed from

(5.7) and (5.8) as they become available. Importantly, the fact that all these terms 

(exit flows and travel times, their derivatives, and the link exit times) are calculated 

in time order means that these values are all known for all links at all time 

increments e a r lie r  than the current one. The steps followed for time increment (t-5, 

t] (for each t = 5,25,..., N 5) are as follows:

For each link a = 1,2,...,A, each major period h = 1,2,...,L , and each route 

r = 1,2,...,N that uses link a (for routes not using link a the flows and derivatives 

are clearly all zero):

Step 1: In this step we project the path flows entering the network in earlier time 

increments into outflows exiting link a in the current increment (t-5, t] (recall the
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assumption made earlier, that 5 is sufficiently small that any vehicles exiting a link 

in one time increment could not have entered the link in the same time increment). 

Suppose that the current link a is the k* link of route r. For each such earlier minor 

time increment iS for i = 1 ,2 ,... ,/ s - 1 ,  let us first determine the entry time to link a, 

the k* link along route r, which will simply be the exit time from the (k-l)th link, 

namely gk_, ri (extending the definition (5.7) so that g0ri = iS). These link exit times

will be known from the application of this procedure in previous iterations. For 

each i = 1,2, . . . , / s -1  there are then three possible cases (assuming FIFO to hold):

C a se  A :  No flow on route r entering the network in period ((i -l)5,i5] exits link a 

before the end of the current increment (t-5, t]. This occurs if the first vehicle from 

the entry interval arrives after the end of the current increment, i.e. if

Si-i.rj-i + )  > t , and then:

V..(t) = 0 and SV- (^ = 0  (fors = l,2,...,N).

C a se  B : All the flow on route r entering the network in period ((i -l)S,i5] exits link 

a before the end of the current increment (t-5, t]. This occurs if the last vehicle from 

the entry interval arrives before the end of the current increment, i.e. if

Sk-l,r,i +*,(glc-l.r.i)^t >andthen:

Vair (t) = 5uI(i)r and ^ air ̂  =8 if h = I(i) and r = s , and is 0 otherwise (s =

1,2,...,N).

C a se  C : Some of the flow on route r entering the network in period ((i -1)5, iS] 

exits link a before the end of the current increment (t-5, t], but not all. This occurs if 

the first vehicle from the entry interval arrives before the end of the current

increment, and if the last entering vehicle arrives after the end of the current

increment, i.e. if gk_u i_, +xa(gk_lir i_,) < t and gk_l r i +xa(gk_1,r,i) > t . In this case,

the path r inflow 5uI(i)r over the entry period ((i -l)5,i5] is translated to an outflow
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from link a spread (uniformly, it is assumed) over a period from the earliest to the 

latest exit from this link, namely (gk_I>r + t, (gk_lrji_,), gk_Uji + Ta (gk_u i )].

However, the end of this interval is after the end-time t of the current interval, and 

so only a proportion of this translated flow actually exits by the end of the current 

increment, namely:

v >ir(t) = ( t  ~  ( g k —l,r,i—1 +  T a ( g k —l,r,i—1 ) ) )  5 S .(i)r  

g k - l , r , i  "*"T a ( S k - l , r , i )  — ( § k - l , r , i - l  Xa ( g k - l , r , i - l ) )

(5.18)

Now, when differentiating the expression above, let us treat the exit times from the 

previous link, the g terms, as constants (recall the discussion following equation

(5.14)). Thus for s = 1,2,...,N, it follows that:

a v . (t) / \ 2
-------=  l g k - l . r . i + X a ( g k - l >r , i ) - ( g k - l , r . i - l + ^ ( g k - l . r . i - l ) ) j  X

[ f e k - l . r . i  + X . ( g k - l , r , i ) - ( g k - l , r , i - l  + X a ( g k - l . r . i - l ) ) ) X

( .  ,  X g  ( g k - l . r . i - 1 )  g ~
V  ( g k - l , r , i - l + X a ( g k - l , r , i - l ) ) j  ^  ^  ^ U I(i)

A ,  (S lc -1 .,.i)  ^ a  (g k - l .r . i-1 )
-  ( t  -  (gk-l.r.i-1  +  X.  (g k -l.r .i-1 ) ) )  5 U l(i)r

&U.hs

where
5uI(i)r J l  if h = I(i)andr = s 
Su^ [0 otherwise

(5.19)

(5.20)

Note, however, that the link travel time derivatives in the expression above are 

evaluated at a continuous time instant that may not match with the time 

discretisation chosen, and so they must be interpolated: differentiating (5.8) at a 

given continuous time g yields
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(5.21)

and the discrete time derivatives above are known from the application of this

procedure to earlier time increments.

Step 2: Using equations (5.1)-(5.6) and Vair(t) computed in Step 1, hence compute 

the travel times r a (t) on all links a = 1,2,..., A for the current time step t. Using the

and h at the current time increment t. Calculate link exit times from (5.7) and (5.8) 

as they become available from the information computed so far.

Having carried out the computations above for all time increments, the path travel 

time derivatives are then computed from recursion (5.13)/(5.14), and the results 

substituted into (5.10) to give the required Jacobian of the dynamic network loading 

model.

5.2.5 Computer Program for Analytical Travel Time Derivatives

The main idea of calculating the travel time derivatives is based on decomposing 

the cumulative outflows from any link into its constituent inflows at the origin, i.e., 

at each exit step, the cumulative outflows are traced back to the inflows from all the 

contributing inflow time steps and then the cumulative outflow derivatives with 

respect to the route inflows are computed (Figure 5.1). As the travel time 

derivatives are evaluated at SUE, it is sufficient to run the derivatives sub-program 

only once during the final iteration of the variance approximation method (See 

Figure 4.1). Therefore, in the final iteration of MSA at each time step, if the outflow 

exists, then for each earlier entry time step, the inflow is classified as no 

contribution (Case A), full contribution (Case B) or partial contribution (Case C)

derivatives hs for the current time increment t, for all links a, all routes r
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and then the decomposed outflow derivative for the current time step corresponding 

to the inflow from each entry time is computed as defined in Case A or B or C in 

section 5.2.4. Then the cumulative outflow derivative for the current time is 

computed by summing all the decomposed derivatives for that time step. Then the 

travel time derivative for the current time step is computed using equation (5.15). 

Alternatively, if there is no outflow, the travel time derivative increases at a 

constant rate and uses only the first part of equation (5.15), as the outflows and their 

corresponding derivatives are equal to zero. Finally, the path time derivatives are 

computed by using equations (5.13) and (5.14). Thus the analytical derivatives of 

travel time so obtained are compared with numerically obtained travel time 

derivatives which are worked out as described in the ensuing section.
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5.3 Finite Difference Travel Time Derivatives

Travel time derivatives can also be computed based on the perturbations of path 

inflows in any given departure period. This involves working out the differences in
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travel times from the dynamic network loading map before and after the 

perturbations, divided by the amount of perturbed path inflow. This results in 

estimates of the derivatives of travel time, which are called finite difference 

derivatives. Finite difference derivatives are useful in checking the analytical 

derivatives computed from the specification section 5.2. A simple scheme of 

implementation is shown in Figure 5.2.

Figure 5.2 Flow Chart for Computing Finite Difference Derivatives
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5.4 Summary

This chapter specified the framework for computing the Jacobian matrix of path 

travel times with respect to the path inflows for a network serving multiple O-D 

pairs with overlapping paths, in particular the link travel times which are captured 

by dynamic travel time relationships. The main idea of differentiating the travel 

time relationships relies on the fact that the outflows from any link can be 

decomposed into their constituent inflows at an earlier time step thus leaving only 

the inflow terms on the right hand side of the travel time equation. Then it is 

straightforward to proceed with the differentiation to compute the analytical 

Jacobian. This chapter has specified the steps involved in decomposing the outflow 

into the constituent inflows and eventually computing the analytical Jacobian. Finite 

differencing method can also be used to compute the Jacobian of travel time 

function, for which a simple computational framework has been described. As 

described in Chapter 4, the main use of variance approximation method is to 

describe an equilibrium probability distribution, and hence it is important to create a 

stationary probability distribution by a standard method, which can be used as a 

benchmark for comparing the results of the Variance Approximation. Therefore, the 

next chapter focuses on setting up a doubly dynamic simulation model, and 

discusses the issues in identifying the stationary probability distribution.



Chapter 6

Doubly Dynamic Simulation Model

The variance approximation method described in Chapter 4 is aimed at estimating 

the variance-covariance of a stationary probability distribution of a stochastic 

process. Now, in order to assess the quality of the approximation method, a 

stochastic process needs to be realised by using some standard method. For this 

reason, Monte Carlo simulation method, a commonly followed procedure in the 

literature (e.g., Cascetta and Cantarella 1991, Watling 1996, Hazelton 2002) has 

been used and a doubly dynamic simulation experiment has been set up. Summaries 

of the stochastic process have been worked out and compared with the results of the 

Variance Approximation Method. However, it is important to note that identifying 

the stationarity of a stochastic process is not easy. Therefore, necessary conditions 

have been identified to test the stationarity of a stochastic process.

6.1 Background

Simulation models offer a fairly transparent framework to model stochastic 

processes. Developing a d o u b ly  d y n a m ic  simulation assignment model involves 

specifying a d a y - to -d a y  route choice model as a stochastic process combined with a 

driver learning and adjusting model, and a w ith in  d a y  dynamic network loading 

model for moving the vehicles along the links of the network while capturing the 

interactions amongst vehicles that departed in the same/successive departure 

periods. The model specification included in this chapter follows identical 

principles described in the earlier chapters 2 and 4, however, the method for solving 

the assignment is based on Monte Carlo simulation experiments. Numerical tests in 

this chapter aim to demonstrate the stationarity of the stochastic process, while also 

illustrating the consistency of the link flow model with properties such as First-In, 

First-Out (FIFO), in case of a simple two route network serving a single origin- 

destination pair, for which the O-D demand varies over two departure periods.

Cascetta and Cantarella (1991) developed a doubly dynamic simulation model in 

which they defined the route flows on any day as a stochastic process, and included
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a queuing model to capture the delays on the links. In this chapter, the main aim is 

to develop a doubly dynamic simulation model capable of handling the variations in 

day-to-day and within day traffic. In particular the dynamic link travel time needs to 

be differentiable so that the results are comparable with those obtained from the 

variance approximation method.

6.2 Methodology

As noted in the previous section, the mathematical principles involved in setting up 

a simulation model of a stochastic process are identical to the description given in 

Chapter 2 -  section 2.1.1. The weighted average approach described in section 

2.1.3.1 has been used to model the drivers’ learning and adjusting model. Similarly, 

the dynamic network loading method has been based on the principles set out in 

Chapter 3 -  section 3.4.

Experimental set up

Although the specification of the simulation model has been identical to the 

principles described in the previous chapters, the method of solving for assignment 

is entirely different, in the sense that the route choices are here simulated using a 

Monte Carlo method. This means that the drivers are allocated to the routes based 

on random numbers generated from a probability distribution with the expected 

values given by the route choice probabilities. The steps in the simulation are listed 

below:

• Initialise the route choice probabilities based on free flow costs;

• Allocate the drivers in various departure periods to routes based on random 

drawings from a distribution mimicking the process of each driver choosing 

a route, and repeat this step for all drivers in all departure periods;

• Sum up all the drivers in each departure period on each route to feed the 

dynamic network loading model with the departure period dependent route 

flow;
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• Work out the departure period dependent experienced route costs based on a 

dynamic network loading map;

• At the end of day n-1, the population perceived mean route costs are 

updated using the learning model and the costs fed back to the first step 

above;

• Repeat the steps above over a predetermined number of days of simulation; 

and

• Compute the summaries viz., mean and variance of route flows at the end of 

the realisation.

A computer program has been developed in MATLAB based on the sequence of 

steps described above and an outline flow chart is shown in Figure 6.1. The main 

module of the program focuses on computing the route choice probabilities using 

the logit principle, and then allocating the drivers to routes in various departure 

periods. Then the dynamic loading sub-program is called in, which then facilitates 

updating the memorised route costs combining the historic costs with the 

experienced costs from the current run. The updated departure period dependent 

route costs are then fed to the following day’s simulation. Finally, when all the days 

of simulation are completed, then the simulation summaries are computed viz., the 

average route flows in departure periods and variance-covariance matrix.
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6.3 Numerical Examples

Two networks of different sizes have been used to illustrate the implementation of 

the simulation model described earlier. The properties of day-to-day and within day 

models, including stationarity, autocorrelations and probability distribution of route 

flows will be discussed.
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6.3.1 Two link network

In order to illustrate the principles described in the previous section, a simple two 

link network is used where routes themselves are the links serving a single origin- 

destination pair (Figure 6.2). It is assumed that dynamic linear travel time functions 

with a  and P parameters shown below are defined on both the links of the network. 

A demand of q = (650 1150) drivers each is assumed to spread over two departure 

periods (L = 2) of 15 minutes each respectively. Drivers are assumed to remember 

experiences over a two day period so that m = 2, and the memory weight was 

assumed at X = 0.5. The route choice is assumed to follow the logit principle with 

the dispersion parameter 6 = 0.1 minutes'1, unless otherwise mentioned. For 

dynamic loading purposes, it is further assumed that each departure period is sub

divided into 15 minor time steps of 5 = 1 minute each. This means that the 

simulation is carried over a total number of steps N = 30 steps of a minute duration 

each.

a  =
12
9

minutes, and /? =
0.025
0.035

minutes/vehicle.

Then as described in section 6.2, the simulation experiment was run over a 

realisation of 400 days long and the summaries were computed. While computing 

the summaries, each driver is assumed to have occupied one vehicle, i.e., at an
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occupancy rate of 1 person per vehicle. The following section discusses the main 

results from this exercise.

6.3.2 Total travel time

Total travel time measured by the vehicle-hours on the network indicates the 

intensity of travel over the network, and if monitored over the period of simulation, 

will indicate the day-to-day evolution of the intensity of travel. Figure 6.3 shows the 

plot of total travel on the network over a 400-day long realisation.

Total Travel on the Network

Figure 6.3 Total Daily Travel Time (400-day realisation)

It indicates that in a realisation of 400 days, the total travel time on the network 

settles down to about its mean value (= 634.7 veh-hrs), with a standard deviation of 

2.37 veh-hrs. Based on the initial condition that the network is empty at the 

beginning of the simulation, the first few days of simulation experience high 

volatility of travel conditions on the network, and is as indicated by the ‘Bum-In’
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period on Figure 6.3. Hence, it is common to ignore some of the initial period of 

simulation as the ‘Bum-In’ when computing the summaries such as means and 

variances. In order to check whether it makes any difference on the settling down of 

the stochastic process, a longer simulation run over a period of 1000 days was 

carried out. Figure 6.4 shows the day-to-day evolution of travel over 1000 days and 

provides a sustained visual reassurance that the process is stable. Total travel time 

shown in both the Figures 6.3 and 6.4 exhibits positive skewness with sharp 

increases above the level of mean total travel time than below. This suggests that 

the network under consideration is operating close to the minimum total travel time 

i.e., the system optimum due to the low level of congestion at the given demand. It 

is important to note that unlike a deterministic variable, a random variable still 

shows some variability even when it is stationary, resulting in the kind of 

fluctuations shown in Figures 6.3 and 6.4. This property of random variables makes 

it difficult to identify the stationarity, and hence more rigorous tests are needed to 

confirm the stationarity. The following section introduces a larger network with 

multiple OD pairs with overlapping paths, and then discusses the stationarity issue 

in detail.
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Total Travel on the Network

Figure 6.4 Total Daily Travel Time (1000-day realisation)

6.3.3 Grid Network Example

The second numerical example involving a grid network of 12 links serving two 

origins and three destinations (Figure 6.5) has been constructed to illustrate the 

properties of day-to-day and within day traffic flows in a general situation. Note 

that all the links are one-way, and there are 14 routes in all and the link-path 

incidence is shown in Table 6.1. Dynamic linear travel time functions with 

parameters shown in Table 6.2 are defined on all the links of the network. The 

demand for each of the six possible O-D pairs is assumed to be known in each of 

the four discrete departure periods of 15 minutes duration, and is as shown in Figure 

6 .6 . The route choice is based on the logit principle with the dispersion parameter 6 

= 0.1 minutes'1. In this example, it is further assumed that each departure period is 

subdivided into 15 minor time steps with one minute duration each. Drivers were 

assumed to remember up to two days (m = 2), and the memory weight X was taken 

to be 0.5.
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Figure 6.5 Grid Network

Table 6.1 Link -  Path Incidence_____
OD Pair Path Links Used by Path

0,-D, 1 1-4

2 1-9-5-11

3 7-2-5-11

O1-D2 4 1-9-5

5 7-2-5

O1-D3 6 1-9-5-12

7 7-2-5-12

O2-D1 8 8-2-5-11

9 3-10-5-11

O2-D2 10 8-2-5

11 3-10-5

O2-D3 12 3-6

13 8-2-5-12

14 3-10-5-12
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Table 6.2 Network Link Parameters
Link Free flow time, 

a a minutes

Service Rate, pa 

minutes/vehicle

Exit Capacity, 

Vehicles/hour

1 6 0.025 2400

2 4 0.040 1500

3 5 0.029 2069

4 4 0.021 2857

5 5 0.015 4000

6 5 0.030 2000

7 3 0.018 3333

8 2 0.024 2500

9 4 0.019 3158

10 3 0.022 2727

11 6 0.01 6000

12 5 0.01 6000

01-02 01-D3 02-D1
Origin - Destination Pairs

Figure 6 .6  Origin-Destination Demand Profiles

The following sections illustrate the properties of the day-to-day model (e.g., 

stationarity) and the within day model (e.g., FIFO).
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6.3.4 Stationarity of the Stochastic Process

A stochastic process is said to be strictly stationary if its properties remain 

unaffected by a change of time origin, or in other words, the joint probability 

distribution of m observations made at any set of times t ( for t = 1,2,..,m) is the 

same as that associated with m observations separated by an integer k made at a set 

of times t+k (for t = l,2,..,m and k is an integer) where k is called the lag (Box and 

Jenkins 1970).

To illustrate this, let us consider the flow on route 1 on the grid network described 

in section 6.3.3 over a period of 300 days from 201 to 500 in a realisation of 1000 

days. Let us also consider that another set of 300 observations is also picked up 

from the same realisation from days 426 to 725. Figure 6.7 shows the joint 

probability distribution of flows on route 1 for each of the four departure periods, 

for each of the two sets of observations as described above.

Figure 6.7 Histograms of Flows on Route 1

Visual observation of Figure 6.7 reveals that the distribution of the flows on route 1 

in each departure period are similar in each case of the two sets of observations. 

Moreover, in each case the mean and standard deviation of the route flows are
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nearly identical to each other indicating that the stochastic process being considered 

is stationary. It is important to note that this is a necessary condition for a stochastic 

process to be stationary, but not a sufficient condition.

Figures 6.8 and 6.9 show the histograms of flows on routes 2 and 3 for the two sets 

of observations as described in the case of route 1. The mean route flows and their 

standard deviations are similar in each case during various departure periods. These 

observations about routes 2 and 3 support the earlier comments on route 1 and 

reassure the stationarity of the process once again. The ensuing section presents a 

statistical procedure to test the stationarity of the stochastic processes.

Histograms of Route Flows from 201 to 500 days
Departure Period 1 Departure Period 2 Departure Period 3 Departure Period 4

Mean »61 .94  Mean = 93.38 Mean = 58.98 Mean = 33.43
SD a 7.51 SD = 9.68 SD = 8.25 SD = 5.95

Histograms of Route Flows from 426 to 725 days

Mean = 61.73 Mean = 94.13 Mean = 58.67 Mean = 33.83
SD = 7.37 SD  = 9.74 S D =8 .1 8  SD = 6.00

Figure 6.8 Histograms of Flows on Route 2
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Histograms of Route Flow s from 201 to 500 days
Departure Period 1 Departure Period 2 Departure Period 3

50 100 150
Mean = 106.74 

SD = 12.21

50 100 1 50
Mean = 73.97 
SD = 15.81

Histograms of Route Flows from 426 to 725 days

0.04

0.03

> 0.02 
16

0.01

80
Mean = 68.00 

SD = 7.49

°50 100 150
Mean = 106.36 

SD = 13.45

50 100 150
Mean »  75.40 
SD = 17.79

Departure Period 4

Mean = 38.30

50
Mean = 37.58 
SD = 13.90

Figure 6.9 Histograms of Flows on Route 3

6.3.5 Autocorrelations of route flows

As noted from various sections in Chapter 2, Chapter 4 and earlier in this chapter, 

analysis of stationarity of stochastic processes is of critical importance because only 

then one can summarise the process by its moments such as mean and variance. A 

simple t-test comparing the two samples considered in the previous section could 

have been applied, but due to the critical nature of the problem, use of a more 

robust test for identifying the stationarity of the process has been explored. The 

proposed method of identifying stationarity analyses the autocorrelations of a 

stochastic process. A necessary condition that a stochastic process is stationary is 

that, the autocorrelations are expected to die down with larger lags, which indicates 

that the random variable under consideration is stable about its mean value (Bartlett, 

1946).

Variance of estimated autocorrelations for any lag k, greater than some

hypothesized value k  beyond which the theoretical autocorrelations may be 

deemed to have died out is given by Bartlett (1946) as below:
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i '  + 2 2 > , !
v=l

(6.1)

where, pk is an estimator of autocorrelation at lag k

pv is the true theoretical autocorrelation at lag v

N is the length of the time series i.e., the number of observations in one 

realization.

In practice, the estimated autocorrelations are substituted for the theoretical 

autocorrelations and then the square root of the variance in estimated 

autocorrelations is referred to as the la rg e  la g  s ta n d a r d  e r ro r . On the assumption 

that the theoretical autocorrelations are zero beyond some hypothesized lag k  =  k  , 

the large lag standard error then approximates the standard deviation of pk for lags 

k  >  k  .

In order to further ensure that the stochastic process is stable, the autocorrelations of 

route flows have been tested for large lag standard errors by applying the Bartlett’s 

criterion, based on a 1000-day long simulation. Figure 6.10 shows the 

autocorrelations in path flows and the corresponding error bars for hypothesised 

lags for routes 1,2 and 3 up to 15 days of lag over a realisation of 1000 days.
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Figure 6.10 Correlogram of Flows on Routes 1,2 and 3 (0 = 0.1)

As the correlation of the flows with themselves is unity, the first bar (with ‘0’ lag) 

reflects the same. From then on, the autocorrelations can be observed to reduce with 

increasing lags. Figure 6.10 includes error bars based on Bartlett’s formula for large 

lag standard error, given by equation (6.1), for each of the routes 1,2 and 3, for 

some lag k > 0 beyond which the theoretical autocorrelation function is deemed to 

have died out. Insignificant autocorrelations, compared to standard errors at some 

lag k > 0, indicate that the flows on any route do not depend on the flows on the 

same route beyond k days, during the same departure period. This condition also 

implies that the process is stationary.

It can also be commented that the route flows in departure period 1 settle down 

relatively quickly, compared to the flows over the rest of the departure periods. This 

is intuitively supportive to the notion that the delays in later time periods are 

affected by the flows from the earlier time periods, and hence the flows in later time 

periods settle down much slower compared to the flows in earlier departure periods.

Quite differently from the above discussion, it will be interesting to see how the 

autocorrelations change with a change in dispersion of the perceived costs which is
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parameterised by the logit choice parameter 9. As described earlier, autocorrelations 

in Figure 6.10 were based on a value of 6  =  0.1 minutes'1. Figure 6.11 illustrates the 

autocorrelations of route flows with 6 = 0.01. As 6  decreases, the assumed 

dispersion of the perceived costs increases indicating that the drivers almost ignore 

the experienced costs and choose routes at random. In this case, the route flows on 

any day do not depend on any other day’s flows implying that the autocorrelations 

should be smaller compared to those in Figure 6.10. In the limit, the autocorrelation 

bars will vanish with even lower values of 9.

Figure 6.11 Correlogram of Flows on Routes 1,2 and 3 (9 = 0.01)

On the other hand, increasing values of 9 will reduce the dispersion of the perceived 

costs and then the drivers start thinking alike while perceiving the route costs and 

making route choices. In this case, when most of the drivers choose the same route 

on any given day, there is very little probability that they choose the same route on 

the following day because they experience high cost of travelling on that day. This 

means that the route flows tend to be negatively correlated as shown in Figure 6.12. 

In the limit with higher values of 9, the autocorrelations will be equal to -1.
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Figure 6.12 Correlogram of Flows on Routes 1,2 and 3 (0 =  0.5)

6.3.6 Assigned flows and Travel Times

Table 6.3 shows the average assigned route flows in each departure period. As the 

stochastic process exhibits variance unlike deterministic processes, the standard 

deviations of route flows are also computed for the 1000-day long realisation, after 

ignoring the first 10% of the simulated days to account for the empty network 

conditions. In the table, average path travel times and their standard deviations are 

also shown, which are based on the outputs of the dynamic network loading model, 

summarised over non-discarded number of trials of the simulation model. It may be 

observed that the path travel times are relatively stable earlier during the peak hour 

and start to vary during the later departure periods as indicated by the higher 

standard deviations in departure periods 3 and 4 compared to departure periods 1 

and 2. This is one of the reflections of the dynamic nature of the traffic flows as 

witnessed in the real world situation. The travel times vary significantly during the 

peak hour due to the building up and dissipation of the congestion in time and 

space. In the present model the route choice of drivers is purely based on the 

average path travel times memorised over a number of days, although the standard
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deviation in travel time can also influence the choice process as modelled in 

reliability type applications.

Table 6.3 Assigned Flows and Travel Times
Average Route Flow Average Path Travel Time

and (Minutes)
Standard Deviation Standard Deviation

Route Departure Period Departure Period
1 2 3 4 1 2 3 4

1 269.61 499.67 365.99 227.79 16.30 26.04 32.39 32.56
9.59 14.21 15.67 14.41 0.17 0.45 0.99 1.80

2 61.88 93.71 59.04 33.84 30.98 42.79 50.61 51.68
7.31 9.87 8.43 6.04 0.29 0.71 1.54 2.19

3 68.51 106.62 74.97 38.37 30.03 41.55 48.45 51.04
8.14 13.58 18.03 15.48 0.45 1.17 2.61 4.20

4 47.81 58.48 69.17 93.94 24.46 35.79 43.51 44.85
5.09 6.89 12.33 22.20 0.28 0.69 1.56 2.26

5 52.19 66.52 85.83 101.06 23.54 34.57 41.34 44.20
5.09 6.89 12.33 22.20 0.44 1.15 2.63 4.29

6 106.89 85.18 63.35 54.77 30.08 41.41 49.12 50.42
7.86 8.97 11.31 12.81 0.30 0.70 1.57 2.25

7 118.11 96.82 78.65 57.23 29.12 40.19 46.94 49.76
7.86 8.97 11.31 12.81 0.44 1.14 2.61 4.25

8 60.45 59.84 76.93 54.13 27.80 38.99 46.34 49.69
5.90 6.79 12.69 14.07 0.41 0.99 2.31 4.02

9 60.55 84.16 122.07 82.87 27.86 35.65 41.60 45.28
5.90 6.79 12.69 14.07 0.29 0.55 1.12 2.02

10 82.67 69.06 63.55 65.05 21.35 32.04 39.22 42.82
6.65 7.68 10.78 17.07 0.41 0.98 2.32 4.10

11 82.33 95.94 101.45 99.95 21.40 28.76 34.48 38.30
6.65 7.68 10.78 17.07 0.28 0.53 1.11 2.06

12 193.67 184.49 232.85 189.90 16.10 20.96 25.26 28.06
8.88 7.88 8.81 9.57 0.19 0.36 0.67 1.34

13 65.91 34.57 33.30 26.10 26.89 37.68 44.83 48.39
7.37 5.89 8.32 10.39 0.41 0.97 2.31 4.07

14 65.42 47.94 52.86 39.00 26.97 34.41 40.10 43.90
7.34 6.58 7.14 6.61 0.29 0.54 1.12 2.06
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Figure 6.13 shows the link-time plot for routes 1,2 and 3 in each of the departure 

periods. They indicate the travel times are fanning out in general, meaning that the 

congestion builds up as we progress with the dynamic loading of vehicles over the 

network. Especially on links 1 and 2, this phenomenon is very clear. On the other 

hand, parallel travel time lines indicate that the links are uncongested and operate 

below the capacity, as is the case with most of the links on routes 1,2 and 3. Figure 

6.13 also indicates that the model results are consistent with FIFO property as we 

do not have any intersecting link travel time lines. The figure is also indicative of 

satisfying the FIFO property at the path level.

Figure 6.13 Link Time Plots

As link 2 is used by several paths (see Table 6.1), in order to illustrate the 

dispersion of outflows over larger periods than the inflow periods the link inflow 

and outflow profiles have been drawn (Figure 6.14). Figure 6.14 indicates that the 

vehicles on link 2 no longer operate under free flow speeds and have started 

experiencing higher travel times due to the increase in the level of congestion. 

However, link 2 has still some spare capacity.
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6.4 Summary

In this chapter, a doubly dynamic simulation model has been specified and 

implemented. Two implementations of the simulation model, starting with a simple 

two link network and a grid network serving multiple OD pairs, have been reported. 

Various properties of the model including day-to-day variation of total travel time, 

stationarity of the stochastic process, and autocorrelations have been discussed. An 

important outcome of this chapter is that practically useable tests based on 

necessary conditions were developed to detect the stationarity of a stochastic 

process. In Chapter 4, the variance approximation method developed computes the 

variance-covariance of a stationary stochastic process. Therefore, it is important to 

confirm that a stochastic process is stationary before assessing the quality of the 

variance approximation method. The next chapter compares the results obtained by 

variance approximation method and simulation method and assesses the quality of 

the approximation. Besides, it also tests the sensitivity of variance-covariance to the 

input model parameters.



Chapter 7

Numerical Experiments

This chapter compares the results obtained by the Variance Approximation Method 

described in Chapter 4 with the alternative simulation method described in Chapter 

6. In particular, the variance approximation method requires the computation of 

Jacobians of the route choice probability function, path travel time function, and the 

theoretical framework for deriving each one of them has been discussed in Chapters 

4 and 5 respectively. Based on these expositions, bespoke computer programs were 

developed using MATLAB and in particular two parallel streams of programs -  one 

each for the variance approximation method and simulation method - were 

developed. An outline flow chart for each one of them is indicated in Figures 4.1 

and 6.1 respectively.

Both the variance approximation method and simulation method have an inbuilt 

dynamic network loading module each, for working out the departure-time- 

dependent route travel times experienced, and the basic principles of the method 

have been described in Chapter 3.

For each of the two methods described in Figures 4.1 and 6.1, separate schemes 

involving networks of various sizes starting from the simplest two link/route 

network serving a single O-D pair, to a slightly larger five link network with links 

shared by paths but still serving a single O-D pair, and to an even larger more 

general kind of network serving six O-D pairs with 12 links via 14 paths have been 

developed. The following sections describe each one of the network schemes just 

mentioned, and compare the results obtained by the method of variance 

approximation and the simulation method.

7.1 Results with Two Link Network

In this simple numerical example, the theory described in the previous chapters 4 

and 5 is illustrated by considering the two-link parallel route network servicing one 

O-D pair (used in the previous chapter), but having the demand spread over a single
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departure period, for simplicity. As before, travel time relationships are assumed to 

be linear functions of the number of vehicles on the link as given by 

xa(t) = a ,+ P axa(t), with parameters os, = 12 minutes and & = 0.025 

minutes/vehicle for route 1, and = 9 minutes and jSa = 0.035 minutes/vehicle for 

route 2. A minor time increment of 5 = 1 minute was used for implementing the 

travel time model over a 15 minute period (N = 15 minor time increments). A single 

demand period is modelled (L = 1 major time intervals) with a demand of 400 

drivers over the single within-day time period of k = 15 minutes (so the O-D 

demand matrices q and Q reduce to the scalar 400).

Drivers’ dispersion in travel cost perceptions in choosing their routes on any day, 

conditionally on their past experience, are assumed to be explained by a logit

model: p r (C) = e_eCr e”0C‘ j where 6 >  0 is the logit choice scaling parameter.

The value of time is assumed to be y  = 1, with travel time the only component of

travel cost. Within-day Dynamic Stochastic User Equilibrium flows are obtained 

using the Method of Successive Averages (MSA) based on 25000 iterations. Each 

iteration of MSA calls the dynamic link loading model by feeding in the departure 

time dependent route flows, and receives back the updated departure time 

dependent route travel times, and the process continues until the number of 

iterations is exhausted. In the drivers’ learning model, assume m = 5 days and X = 

0.5. Here the means and variances by three methods viz., simulation, naive and the 

approximation, are compared as explained below.

Simulation: The assignment process was simulated over a period of 40000 days 

and an initial period of 4000 days was discarded as bum-in time to allow the 

network to reach sufficient levels of loading (i.e. discarding the transient states of 

the process). Summary statistics are computed from the non-discarded days. Based 

on the law of large numbers, it is well known that the relative frequency of any 

event will tend to its probability, if repeated over a large number of independent 

trials (Olofsson 2005). Hence, the length of the realisation was set equal to an 

arbitrarily large number of days such as 40000, with the expectation that the relative 

frequencies of route choices are then approximately equal to their probabilities.
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That is to say, in this experiment the large number of trials as represented by the 

length of the realisation in ‘days’, indirectly assures the stationarity of the 

probability distribution of route choices. The results of this long simulation are 

treated as a benchmark against which the results of the approximation method viz., 

the mean route flows and the variance-covariance matrices of route flows are 

compared. However, in other experiments such as the sensitivity analysis (See 

section 7.3), where the stationarity of the probability distributions is not so critical, 

use of shorter realisations over 1000 days has been explored.

Naïve Method: This method assumes that the conditional covariance matrix (4.17) 

is sufficient to explain the variance in flows, and ignores the day-to-day variability 

in choice probabilities and travel costs.

Approximation: The variance approximation method is applied, giving an estimate 

of variance using the expression (4.18), and the mean of the route flows is estimated 

using the MSA based on 25000 iterations.

In each case, when applying the approximation method, appropriate Jacobian 

matrices of choice probability and travel times during the single major time period 

must be computed; for example, in the case of 0=0.1 in the two link network 

specified, these are given by:

0.0129 0
0 0.0172

The Jacobian matrix of travel time was computed following the analytical 

procedure described in section 5.2 and compared with the derivatives obtained by 

the finite differencing method described in section 5.3, which were found to be 

identical to four decimal places as shown in Table 7.1. As the travel time on each 

route is not affected by the inflows on the other route in the two link parallel route 

network, the corresponding derivatives are both zeros.

D = - 0.0248 0.0248
0.0248 -0.0248

B =
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Table 7.1 Comparison of Jacobians by Analytical and 
Finite Differencing Methods

Cell Reference_________________Analytical Jacobian
Travel time on route 1 wrt 0.0129

8 t
inflows on route 1, — -5m,
Travel time on route 2 wrt 0
• n  , 5 t2inflows on route 1, — -  

5m,

Travel time on route 1 wrt 0

inflows on route 2,
5m2

Travel time on route 2 wrt 0.0172
. _ „ 5r,
mflows on route 2, — -  

5m2

Finite Difference Jacobian 
0.0129

0

0

0.0172

Returning to the main discussion, Table 7.2 compares the means and variances for 

Route 1 by the three methods introduced earlier, for various values of the logit 

choice parameter 8.

Table 7.2 Comparison of Estimates of Mean and Variance on Route 1
Method e  = 0.005 0 = 0.1 0 = 1

Mean Variance Mean Variance Mean Variance

Simulation 198.88 99.66 182.49 102.84 170.13 26964

Naïve 198.88 100.00 182.52 99.24 143.71 92.08

Approximation 198.88 100.00 182.52 102.20 143.71 451.70

Considering the results in Table 7.2, it can be seen that when the logit choice 

parameter is relatively low (0=0.005), the random dispersion element in drivers’ 

travel costs is very high making them choose routes almost at random regardless of 

the experienced (mean) route costs. Thus approximately equal numbers of drivers 

are expected to select each route, and the variation is approximately binomial. In 

this case as would be expected, the naïve approximation is sufficient to explain the 

variance in traffic flows, because by definition, the conditional covariance ignores 

the variation due to the variation in costs. Consequently, the approximation method 

adds little to the conditional covariance matrix in this case. It is noted also that the 

mean flows by all the three methods are identical to two decimal places.
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In case of 0=0.1, the mean flows by all the three methods are again very close. 

However, the naïve variance underestimates the benchmark (simulation) variance. 

This underestimation of the variance is expected because the naïve method assumes 

fixed multinomial choice probabilities as opposed to the real case of day-to-day 

varying choice probabilities, i.e. it neglects one source of variability. The 

approximation method successfully corrects this underestimation by inflating the 

variance towards the benchmark simulation variance.

As an example, the matrices of variance-covariance from the simulation, naïve and 

approximation methods in the case of 8 = 0.1, are shown respectively as:

102.84 -102.84" * 99.24 -99.24"
i  =

102.20 -IO 2 .20"
-102.84 102.84

0  =
-99.24 99.24 -102.20 102.20

When the logit parameter is relatively large such as 6 = 1, the dispersion in 

perceived costs is very small and hence on any given day all drivers tend to behave 

in a similar manner. In this case, the summary statistics presented in Table 7.2 for 

the simulation method are produced by a rather different trajectory of the process, 

in which a large number of drivers choose one route on any given day and the 

following day they almost all shift their choice towards the other route, having 

experienced congestion on the first route. This en  m a sse  behaviour causes a large 

variance in the system and the probability mass gets concentrated towards the two 

extremes (all-or-nothing solutions), resulting in a bimodal distribution. Thus, the 

variance is measuring some kind of system instability (in the same sense that one 

could calculate a variance for a deterministic periodic system) rather than random 

variation of a stationary variable. To elaborate, consider the limiting case of all 400 

drivers choosing route 1 on any given day and all of them shifting en  m a sse  to route 

2 the following day, resulting in none getting assigned to route 1, and so on, over a 

number of days. Then, the mean of the flows on route 1 will be equal to 200 and the 

variance will be 2002 = 40000. Just to confirm the argument, a quick simulation run 

was carried out with 6 =  10 over a 1000-day long realisation which resulted in an 

average route flow of 178 and a variance of 39396 for route 1. In terms of the route 

flows, the resulting assignment is highly unstable because of the high fluctuations 

between the days, however in terms of the probability distribution, it is stable
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because of the bimodal distribution with equal probability of choosing route 1 by all 
drivers or none.

The naive variance is not expected to explain such behaviour and hence is too 

small. Indeed, neither is the approximation method designed to explain such a 

variation, and the corrected variance is seen to be far lower than the simulation 

variance. This is not surprising as we are estimating the variance of a bimodal 

distribution with an approximate Normal distribution, which is clearly not an ideal 

choice; nevertheless, it is partially successful in correcting the variance in the 

appropriate direction. In the light of the above observations, the case of 6 = 1 has 

not been pursued further in the rest of the analyses presented in this chapter. The 

results presented in this section are consistent with the observations made by 

Hazelton and Watling (2004) in their day-to-day dynamic, but static within day 

examples.

7.2 Results with Five Link Network

Consider the five link network described in Chapter 3, which has three routes 

serving one O-D pair (See Figure 7.1). Route 1 uses links 1 and 4, route 2 uses links

2.3 and 4, and route 3 uses links 2 and 5. In this scheme, the links 2 and 4 are 

shared by two paths each, and hence require the flows to diverge and merge in 

space and time which is a common requirement in dynamic traffic assignment over 

networks serving multiple O-D pairs. Moreover, in this example the demand 

considered is spread over four departure periods of 15 minutes each, and in this 

sense, this example generalises and extends the simple case described in the 

previous section. Thus, even though this particular example deals with a single O-D 

pair, the principles described here can easily be extended to the networks serving 

multiple O-D pairs.
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On each of the five links whole-link type dynamic travel time functions of the 

general form x,(t) = a a + Paxa'(t)are  defined with parameter values as shown in 

Table 7.3.

Table 7.3 Network Parameters
Link (4 (minutes) ßa (minutes/vehicle) 7a Functional Form

1 12 0.025 1 Linear

2 9 0.035 1 Linear

3 10 0.00015 2 Quadratic

4 12 0.025 1 Linear

5 9 0.035 1 Linear

It may be noted here that FIFO compliance is one of the important features of any 

dynamic traffic assignment model, as well as being an assumption of the 

approximation method, and so to confirm this assumption, FIFO has been 

monitored closely during the execution of the program and has been found 

satisfactory. It is assumed that the demand is spread over four discrete departure 

periods giving L = 4 , and each departure period of k = 15 minutes duration has 

been modelled, with a varying demand profile thus indicated by,

qk=[400 700 100 100].

As before, for the dynamic network loading purposes a minor time step of 8 = 1 

minute has been assumed. In addition, a memory length of m = 5 days with a 

memory weighting of X =  0.5 has been retained. The route choice is assumed to be
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based on a logit principle, and Dynamic Stochastic User Equilibrium (DSUE) flows 

are solved for using the Method of Successive Averages together with the dynamic 

network loading method as before. As before the variance of the route flows by a 

similar set of alternative methods, viz., simulation, naive and the method of 

approximation, run to similar specifications as indicated previously, are compared.

7.2.1 Comparison of Mean Flows

Table 7.4 compares the mean route flows estimated in each departure period by the 

methods of simulation, naive and approximation as before for the case of logit 

choice parameter 0 =  0.01. For relatively low values of 0 such as 0.01, the 

dispersion in the perceived costs will be higher and hence the drivers choose routes 

randomly ignoring the experienced costs. Therefore, in the limit, the drivers get 

equally distributed among the feasible set of routes in each case of departure period. 

Mean route flows displayed in the table indicate the same trend, although they are 

not exactly same. Even lower values of 0 should produce an equal share of route 

flows in each departure period. The naive and approximation methods produce 

nearly identical mean route flows compared to those of simulated route flows.

Table 7.4 Comparison of Mean Route Flows (0 = 0.01)
Method Time Period 1 Time Period 2 Time Period 3 Time Period 4

Route Route Route Route Route Route Route Route Route Route Route Route

1 2 3 1 2 3 1 2 3 1 2 3

Simulation 136.90 121.13 141.97 245.24 207.62 247.13 34.81 30.10 35.10 33.78 30.69 35.53

Naïve 136.93 121.06 142.00 245.24 207.61 247.16 34.76 30.14 35.10 33.78 30.70 35.52

Approximation 136.93 121.06 142.00 245.24 207.61 247.16 34.76 30.14 35.10 33.78 30.70 35.52

With a higher value of 0 (= 0.1), the means are well estimated by the naive and 

approximation methods as shown in Table 7.5. However, the route flow patterns are 

different from those reported in Table 7.4. This is due to the higher value of 0, 

which reduces the dispersion in the perceived costs of the drivers making them 

choose routes sensitive to the mean route costs experienced on the previous set of 

days. As a result, more number of drivers are allocated to quicker routes (example, 

routes 1 and 3) and slower routes experience reduction in assignment (example, 

route 2).
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Table 7.5 Comparison of Mean Route Flows (9 = 0.1)
Method Time Period 1 Time Period 2 Time Period 3 Time Period 4

Route Route Route Route Route Route Route Route Route Route Route Route
1 2 3 1 2 3 1 2 3 1 2 3

Simulation 149.37 48.92 201.71 302.08 81.24 316.68 40.71 15.11 44.19 35.11 15.99 48.89
Naive 149.39 48.88 201.73 302.07 81.27 316.66 40.62 15.15 44.23 35.07 15.99 48.93
Approximation 149.39 48.88 201.73 302.07 81.27 316.66 40.62 15.15 44.23 35.07 15.99 48.93

Figures 7.2 and 7.3 graphically compare the mean route flows in each of the two 

cases described above, and it is easy to see that the naive and approximation 

methods are able to estimate the simulation means in each case. Considering the 

nature of the results with 9 = 0.01 and 6 = 0.1, and by analogy with the two link 

network example, it can be stated that with even higher values of 9,  (such as 1) the 

simulation mean and the naive and approximation means as estimated by SUE, all 

will converge to a deterministic mean due to the all-or-nothing type solutions 

realised by a deterministic periodic system.

Figure 7.2 Comparison of Mean Route Flows (6 = 0.01)
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Figure 7.3 Comparison of Mean Route Flows (6  = 0.1)

7.2.2 Comparison of Variance

With four departure periods and three routes being considered, the variance- 

covariance matrix and other matrices such as the Jacobians of route choice and 

travel times will be of dimension 12 x 12 and as an example, these matrices are 

presented in Figures 7.4 -  7.8 with appropriate titles, just for the case of 9 = 0.1, 

although the comparison of variance and covariance has been carried out for the 

case of 0 = 0.01 as well based on approximated and simulated variance-covariance 

matrices included in Appendix B.

The Jacobian matrix of route choice probability with respect to the route costs 

(Figure 7.4) is a block diagonal matrix with each block representing each departure 

period and the rows in each block represent the number of routes. Off diagonal 

values in this matrix are zeros as the route choices are calculated based on the given 

costs in each departure period and hence are independent of the costs in other 

departure periods.
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Departure Period 1 Departure Period 2 Departure Period 3 Departure Period 4

Route 1 Route 2 Route 3 Route 1 Route 2 Route 3 Route 1 Route 2 Route 3 Route 1 Route 2 Route 3

£
Route

1 -0.0234 0.0046 0.0188 0 0 0 0 0 0 0 0 0

f s
Route

2 0.0046 -0.0107 0.0062 0 0 0 0 0 0 0 0 0
Route

3 0.0188 0.0062 -0.025 0 0 0 0 0 0 0 0 0

ff Pi
Route

1 0 0 0 -0.0245 0.005 0.0195 0 0 0 0 0 0

i i Route
2 0 0 0 0.005 -0.0103 0.0053 0 0 0 0 0 0

Route
3 0 0 0 0.0195 0.0053 -0.0248 0 0 0 0 0 0

t n
Route

1 0 0 0 0 0 0 -0.0241 0.0062 0.018 0 0 0

f  i
g- 5

Route
2 0 0 0 0 0 0 0.0062 -0.0129 0.0067 0 0 0

Q ° - Route
3 0 0 0 0 0 0 0.018 0.0067 -0.0247 0 0 0

Route
1 0 0 0 0 0 0 0 0 0 -0.0228 0.0056 0.0172

i f Route
2 0 0 0 0 0 0 0 0 0 0.0056 -0.0134 0.0078

O l Route
3 0 0 0 0 0 0 0 0 0 0.0172 0.0078 -0.025

Figure 7.4 Jacobian of Route Choice Probability Function (6 = 0.1)

The Jacobian matrix of route travel times (Figure 7.5) represents the partial 

derivatives of route travel times with respect to the route inflows. For example, the 

first cell value 0.3688 represents the derivative of the travel time on route 1 with 

respect to the route inflows in departure period 1. The second value in the first 

column, 0.1688 represents the derivative of travel time on route 2 in departure 

period 1 with respect to the route 1 inflows in departure period 1 and so on. Given 

the structure of the Jacobian, based on the principle of causality, one may think that 

the route travel times in the earlier departure periods are not affected by the route 

inflows in later departure periods, and hence may arrive at the conclusion that the 

Jacobian matrix should be lower triangular. However, this is not strictly true in the 

case of links being shared by multiple paths. For example, travel time on route 2 in 

departure period 1 seems to be affected by the inflows on route 1 in departure 

period 2 as indicated by the value of 0.0390 in the second row, fourth column of the 

matrix, which may appear to be a causality violation. This is due to the spatio- 

temporal interaction of the vehicles belonging to route 1 and route 2 which share 

link 4. To elaborate, the travel time on link 4 at any given instant is a function of the 

number of vehicles on the link at that time which may constitute the flows from 

route 2 and route 1. It may be noted that the flows on route 2 traversing through 

links 2 and 3 need a longer time to reach node 2, whereas the flows on route 1 reach
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node 2 earlier, which just need to traverse through link 1, thus leading to an 

interaction between the flows originating from different departure periods (1 and 2 

as in this case) on link 4. Therefore, the travel time at any instant is strictly 

dependent on the traffic ahead of it thus satisfying the definition of causality. This 

discussion illustrates one of the common features of the dynamic networks in real 

world situation.

Departure Period 1 Departure Period 2 Departure Period 3 Departure Period 4

Route 1 Route 2 Route 3 Route 1 Route 2 Route 3 Route 1 Route 2 Route 3 Route 1 Route 2 Route 3

ff
Route

1 0.3688 0.0577 -0.0045 0 0 0 0 0 0 0 0 0

f i
Route

2 0.1688 0.5211 0.3026 0.0390 0 0 0 0 0 0 0 0
■5Æ Route

3 0 0.2249 0.4456 0 0 0 0 0 0 0 0 0
Route

1 0.3809 0.2277 -0.0229 0.3573 0.0296 -0.0038 0 0 0 0 0 0

i s
Route

2 0.1221 0.5175 0.3080 0.2470 0.4409 0.2099 0.1466 0 0 0 0 0
Q ° - Route

3 0 0.3209 0.5144 0 0.1852 0.4290 0 0 0 0 0 0

1 «
Route

1 0.2061 0.1569 -0.0114 0.5228 0.1905 -0.0275 0.3443 0.0102 -0.0025 0 0 0

S ?  
s- «

Route
2 0.0806 0.2805 0.1910 0.2030 0.6421 0.3483 0.3484 0.5714 0.1584 0.2269 0 0

a ° - Route
3 0 0.2659 0.3395 0 0.3451 0.6824 0 0.0213 0.4832 0 0 0

i *
Route

1 0.0981 0.1050 0.0133 0.2653 0.2654 -0.0087 0.5242 0.2059 -0.0330 0.3471 0.0091 -0.0021

i l
g- §

Route
2 0.0332 0.1593 0.1272 0.0832 0.3820 0.2426 0.1765 0.7942 0.3287 0.3438 0.0072 0. 2008

S a - Route
3 0 0.1894 0.2388 0 0.2695 0.4792 0 0.2004 0.7786 0 0.1090 0.4707

Figure 7.5 Jacobian Matrix of Route Travel Times (6 = 0.1)

The conditional covariance matrix (Figure 7.6) is also a block diagonal matrix with 

as many blocks as there are departure periods and each block is a square matrix of 

size equal to the number of feasible routes within that departure period. All off- 

diagonal elements are equal to zero because the route flow in any departure period 

on any given day is defined as being from an independent multinomial distribution. 

The conditional variance-covariance within each departure period has been worked 

as the multinomial variance based on standard properties using (4.17).
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Departure Period 1 Departure Period 2 Departure Period 3 Departure Period 4

Route 1 Route 2 Route 3 Route 1 Route 2 Route 3 Route 1 Route 2 Route 3 Route 1 Route 2 Route 3

D
ep
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d 

1

Route
1

Route
2

Route
3

93.60

-18.25

-75.34

-18.25

42.91

-24.65

-75.34

-24.65

99.99

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

C n
Route

1 0 0 0 171.72 -35.07 -136.65 0 0 0 0 0 0
3  n
s  ® 
® 1

Route
2 0 0 0 -35.07 71.84 -36.76 0 0 0 0 0 0

Ü 1 Route
3 0 0 0 -136.65 -36.76 173.41 0 0 0 0 0 0

f r o
Route

1 0 0 0 0 0 0 24.12 -€.15 -17.97 0 0 0

» 5
Route

2 0 0 0 0 0 0 -6.15 12.85 -6.7 0 0 0
S o . Route

3 0 0 0 0 0 0 -17.97 -6.7 24.67 0 0 0
Route

1 0 0 0 0 0 0 0 0 0 22.77 -5.61 -17.16
■3 T3 

8 - |
Route

2 0 0 0 0 0 0 0 0 0 -5.61 13.44 -7.83
o ° - Route

3 0 0 0 0 0 0 0 0 0 -17.16 -7.83 24.99

Figure 7.6 Conditional Covariance Matrix (0 =  0.1)

The approximated variance-covariance matrix has been worked out based on 

equation (4.18). The main diagonal of Figure 7.7 represents the variance and the 

off-diagonal elements represent the covariance and it has the same structure as that 

of the conditional covariance matrix. As the conditional covariance ignores the 

variations due to cost variation, equation (4.18) inflates the values in Figure 7.6 and 

pushes them towards the true variance-covariance.

Departure Period 1 Departure Period 2 Departure Period 3 Departure Period 4

Route 1 Route 2 Route 3 Route 1 Route 2 Route 3 Route 1 Route 2 Route 3 Route 1 Route 2 Route 3

P
Route

1 105.45 -16.56 -88.89 25.13 2.59 -27.72 2.17 0.36 -2.53 1.41 0.34 -1.75

D
ep

ar
tu

i 
P

er
io

d 
1 Route

2 -16.56 44.78 -28.22 3.79 3.23 -7.03 0.32 0.39 -0.71 0.23 0.28 -0.51
Route

3 -88.89 -28.22 117.11 -28.92 -5.82 34.75 -2.49 -0.75 3.24 -1.64 -0.61 2.26

SCM
Route

1 25.13 3.79 -28.92 288.03 -23.72 -264.31 18.08 2.54 -20.62 11.79 2.50 -14.29

» !  CL Sj
< 3 *

Route
2 2.59 3.23 -5.82 -23.72 83.53 -59.80 1.60 2.30 -3.91 1.17 1.66 -2.83

Route
3 -27.72 -7.03 34.75 -264.31 -59.80 324.11 -19.68 -4.84 24.52 -12.96 -4.16 17.12

£<*>
Route

1 2.17 0.32 -2.49 18.06 1.60 -19.68 27.54 -5.72 -21.83 2.37 0.46 -2.83

i lCL
Route

2 0.36 0.39 -0.75 2.54 2.30 -4.84 -5.72 13.40 -7.69 0.33 0.44 -0.77
Route

3 -2.53 -0.71 3.24 -20.62 -3.91 24.52 -21.83 -7,69 29.52 -2.70 -0.90 3.60

1 -
Route

1 1.41 0.23 -1.64 11.79 1.17 -12.96 2.37 0.33 -2.70 24.68 -5.22 •19.46

! i

n

Route
2 0.34 0.28 -0.61 2.50 1.66 -4.16 0.46 0.44 -0.90 -5.22 13.86 -8.64

Route
3 -1.75 -0.51 2.26 -14.29 -2.83 17.12 -2.83 -0.77 3.60 -19.46 -8.64 28.10

Figure 7.7 Approximated Variance - Covariance Matrix (9 = 0.1)
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Figure 7.8 summarises the simulated traffic flows and specifically, represents the 

variance-covariance of the route flows of the system which is directly comparable 

to the values in Figure 7.7.

Departure Period 1 Departure Period 2 Departure Period 3 Departure Period 4

Route 1 Route 2 Route 3 Route 1 Route 2 Route 3 Route 1 Route 2 Route 3 Route 1 Route 2 Route 3

8
Route1 102.04 -18.82 -83.22 18.55 -1.19 -17.36 2.11 -0.08 -2.04 1.36 -0.28 -1.08

Is Route2 -18.82 42.67 -23.85 0.54 -0.16 -0.37 0.09 0.16 -0.25 0.28 0.06 -0.34<D 0) Q Q. Route
3 -83.22 -23.85 107.06 -19.09 1.36 17.73 -2.20 -0.08 2.29 -1.64 0.22 1.42

!«
Route1 18.55 0.54 -19.09 285.37 -32.67 -252.70 20.61 -0.10 -20.51 14.08 0.39 -14.47

l i  & »
Route2 -1.19 -0.16 1.36 -32.67 72.52 -39.86 1.24 -0.06 -1.18 0.82 0.04 -0.87<5°- Route

3 -17.36 -0.37 17.73 -252.70 -39.86 292.56 -21.84 0.16 21.68 -14.91 ■0.43 15.34

£ CO Route1 2.11 0.09 -2.20 20.61 1.24 -21.84 28.59 -6.11 -22.48 3.15 0.03 -3.18
i sIs

Route2 -0.08 0.16 -0.08 -0.10 -0.06 0.16 -6.11 12.97 -6.85 0.08 •0.08 0.005“- Route
3 -2.04 -0.25 2.29 -20.51 -1.18 21.68 -22.48 -6.85 29.33 -3.23 0.05 3.18

§»
Route

1 1.36 0.28 -1.64 14.08 0.82 -14.91 3.15 0.06 -3.23 25.02 -5.39 -19.63

s igjl
Route

2 -0.28 0.06 0.22 0.39 0.04 -0.43 0.03 -0.08 0.05 -5.39 13.33 -7.94
Route

3 -1.08 -0.34 1.42 -14.47 -0.87 15.34 -3.18 0.00 3.18 -19.63 -7.94 27.56

Figure 7.8 Simulated Variance - Covariance Matrix (0 = 0.1)

Figure 7.9 compares the variance of route flows obtained by the simulation method 

with that obtained by the method of approximation. In the case of 6 = 0.01, the 

drivers are relatively insensitive to the costs and choose routes almost completely at 

random. In this case, the naïve variance is sufficient to explain the simulation 

variance (Figure 7.9), and hence the approximation method leaves them almost 

unaltered. In contrast, in the case of 6 = 0.1 (Figure 7.10), it is noticed that the naïve 

variance is insufficient to explain the simulation variance and the approximation 

method adds a correction term and lifts the flow variances close to the simulation 

variance.
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Figure 7.10 Comparison of Variance (6 = 0.1)

7.2.3 Comparison of Covariance

The route flow covariance represents the drivers’ reactions to the interactions 

between the drivers departing in different time periods, but using the network 

during the same time period. To elaborate the meaning of the term interactions, 

consider, for example, a driver choosing (say) route 1 in the major time period 2 on 

any given day, who may interact with the drivers who already chose the same route
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during the earlier major time period but not yet completed their journey. If the 

carried over demand from the earlier period is high, the drivers from the later period 

would incur an increased travel time and this might make the driver in 

consideration from the later period, choose another route on the following day 

which is accounted for through the drivers learning and adjusting process. Thus, 

there are potentially complex chains of cause and action across the days, routes and 

time periods. Covariance of flows between various time periods on any given route 

precisely represents this reaction. The off-diagonal elements of Figures 7.7 and 7.8 

are the covariance of route flows for the case of 0=0.1, for the cases of the 

approximation and simulation methods respectively.

Figure 7.11 summarises the comparison of diagonal and off diagonal elements of 

variance-covariance matrices generated by the approximation and simulation 

methods for the case of 0=0.01 (See Appendix B). Similarly, Figure 7.12 plots the 

variance-covariance from both methods for the case of 0=0.1 (See Figures 7.7 and 

7.8). It may be observed that in the case of 0=0.01, the approximation method 

converges well with the simulation method. This is because the conditional 

variance-covariance was sufficient to explain the variance in traffic flows, whereas 

in the case of 0=0.1, the conditional variance-covariance was inflated by adding a 

correction term. In both the cases, the approximation method performed extremely 

well, as indicated by an R2 value over 0.99 in each case.
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Figure 7.11 Comparison of Variance -  Covariance (0 = 0.01)

Figure 7.12 Comparison of Variance -  Covariance (6 -  0.1)

7.3 Sensitivity Analysis

The aim of this analysis is to investigate the sensitivity of the model outputs viz., 

stationary variance-covariance of the route flows to the model inputs viz., memory 

length m, and memory weighting X. Estimates of variance-covariance are generated 

for a realisation of 1000 days by simulating the route choices as described in
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Chapter 6, and the variance-covariance matrices are also approximated using the 

variance approximation method with the MSA operated over 10000 iterations, to 

estimate the DSUE flows. In this analysis, the five link network described earlier 

has been used with the demand spread over four discrete departure periods of 15 

minutes each, q = [400 700 350 100].

There are two tests in this analysis -each one studying the impact of varying 

memory length m and memory weighting X respectively, and the testing schemes 

are described as below:

T est 1\ studies the impact of varying the memory length, m.

B a s e  C a s e : defines the benchmark case and the input model parameters are 6 = 0.1, 

\ =  0.5 and m = 5 days.

C a se  1\ defines the system with lower memory than the base case and the input 

parameters are 0 = 0.1, X= 0.5 and m = 1 day.

C a se  2: defines the system with higher memory than the base case and the input 

parameters are 0 = 0.1, X= 0.5 and m = 12 days.

T e s t 2: studies the impact of varying the memory weighting, X

B a s e  C a se : defines the benchmark case identical to the one in Test 1 above and the

input model parameters are 0 =  0.1, m = 5 days and X= 0.5.

C a s e  1 : defines the system with lower memory weighting than the base case and the 

input parameters are 0 = 0.1, m = 5 days and X= 0.1.

C a se  2: defines the system with higher memory weighting than the base case and 

the input parameters are 0 = 0.1, m = 5 days and X = 0.9.

The following paragraphs analyse how the simulation model performed in each test, 

followed by the approximation method, and then the overall comparison of the 

model performance by comparing the simulation model with the variance 

approximation method is provided.
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7.3.1 Sensitivity Analysis of Simulation Model

T est 1 : Figure 7.13 compares the variance of the route flows in base case with that 

in Test 1-Case 1, both having been generated by the simulation method, for various 

routes over various departure periods, and shows that the shorter memory systems 

have higher variance than the higher memory systems. This is intuitively supportive 

to the general notion that if a driver chooses routes based on only one experience, 

then that driver is likely to be less informative and such decisions may result in 

highly volatile traffic system. To verify this notion, correlograms were drawn which 

indicated that the route flows are highly negatively correlated similar to a 

deterministic periodic behaviour of the system.

On the other hand, when the memory length is increased (Testl-Case2), the flow 

variance remains relatively unaltered, although the routes 1 and 3 exhibit some 

growth in variance in departure periods 2 and 3 (Figure 7.14). In this experiment, 

although the memory length is increased to 12 days, the relative distribution of 

memory weight remained almost similar to that in the base case. This can be 

verified through the normalised memory weights given in Table 7.6. From the table, 

it is clear that in Testl-Case2, nearly 97% of the cumulative memory weight is 

accounted for by the first 5-days, thus explaining the similarity of the variance in 

Base Case and Testl-Case2.

Table 7.6 Normalised Values of Memory Weight, X
Memory 
Length, days 1 2 3 4 5 6 7 8 9 10 11 12 Sum
Base Case 
5-days 0.5161 0.2581 0.1290 0.0645 0.0323 1.0000

T e s ti-Case2 
12-days 0.5001 0.2501 0.1250 0.0625 0.0313 0.0156 0.0078 0.0039 0.0020 0.0010 0.0005 0.0002 1.0000



126

Simulation Method: Base Case vs Testi-Casel
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Figure 7.13 Comparison of Variance by Simulation Method (Testl-Casel)
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Figure 7.14 Comparison of Variance by Simulation Method (Tcstl-Case2)

T e s t 2: Figure 7.15 shows higher variance bars with lower memory weight (Test2- 

Casel) compared to the base case. Lower memory weight indicates that the drivers 

place highest weight on the most recent experiences than the older experiences and 

almost ignore the rest of the experiences other than the most recent one. In this case 

the system behaves like a shorter memory system and hence we expect a higher 

system variance just as in Testl-Casel described in the previous paragraph. On the 

other hand, increased memory weight (Test2-Case2) indicates that the drivers
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consider the most recent experience in addition to the older experiences in 

developing the perceptions for the following day and hence the system replicates 

the behaviour of a longer memory system. Therefore, it is not surprising that the 

variances have slightly reduced compared to the base case in Figure 7.16. Both the 

tests 1 and 2 support the idea that highly sensitive systems largely depending only 

on the most recent experience are likely to be more unstable. These results are 

consistent with the observations made by Cantarella and Cascetta (1995).

Simulation Method: Base Case vs Test2-Case1
□  Base Case □  Test2-Case1
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Figure 7.15 Comparison of Variance by Simulation Method (Test2-Casel)
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Figure 7.16 Comparison of Variance by Simulation Method (Test2-Case2)
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7.3.2 Sensitivity Analysis of Variance Approximation Model

T e s t  T. The variance approximation model also produced similar results to that of 

the simulation model and hence the same arguments are applicable here as well. In 

fact, the variance approximation method produced highly consistent results, with 

the reduction in memory length (Testl-Casel) producing higher route flow variance 

(Figure 7.17), and increasing memory length (Testl-Case2) producing exactly 

opposite effect reducing the route flow variance (Figure 7.18). It is interesting to 

note that in the case of longer memory systems (Testl-Case2), the route flow 

variance appears to be just as insensitive as in the case of its simulation counterpart, 

and seems to be affected by the distribution of normalised weights as discussed 

earlier.

F igure 7 .17  C o m p a riso n  o f V a r ian ce  by A p p ro x im a tio n  M eth o d  (T e s t l-C a s e l)
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Figure 7.18 Comparison of Variance by Approximation Method (Testl-Case2)

T e s t 2: In the case of varying memory weights, the approximation method 

performed well and produced intuitively supportive results just as the simulation 

model did. Lower memory weight indicates that the drivers place higher weight on 

the most recent experience and hence the system behaves akin to a shorter memory 

system and hence has higher variances (Figure 7.19). On the other hand, a higher 

memory weight produces the effect of considering the experiences over a longer 

period, and hence behaves similar to longer memory systems. Therefore, the system 

exhibited lower variance with higher memory weight (Figure 7.20).

Approximation Method: Base Case vs Test2-Case1
□ Base Case E Test2-Case1
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Figure 7.19 Comparison of Variance by Approximation Method (Test2-Casel)
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Approximation Method: Base Case vs Test2-Case2
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Figure 7.20 Comparison of Variance by Approximation Method (Test2-Case2)

7.3.3 Overall Model Performance

This section analyses the overall model performance of the variance approximation 

model against the simulation model and compares the variance-covariance matrices 

generated by the simulation model and the approximation model (Figures 7.21 -  

7.25) in each of the cases described in section 7.3.2. All the comparisons indicate a 

high level of agreement of the approximation results with the corresponding results 

obtained by the simulation method. However, Figure 7.22 shows slightly lower 

convergence (R2 = 0.822) which is expected because Test 1-Case 1 appears to 

destabilise the system towards a deterministic periodic system as described in 

section 7.3.1 and hence the variance-covariance approximated by the method 

overestimates the simulation variance-covariance. On the other hand, longer 

memory systems and those systems with higher memory weight seem to be well 

estimated by the variance approximation method.
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F igu re 7 .22 C o m p a riso n  o f  V a r ian ce  -  C ov a r ia n ce  (T e s t l -C a s c l)
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7.4 Grid Network

This section is aimed at identifying the procedure while analysing the variance in 

flows from a doubly dynamic traffic assignment thus utilising various techniques 

such as the autocorrelation function described earlier. For this purpose, a grid 

network of 12 links serving six O-D pairs using 14 paths has been used. The 

demand is assumed to spread over four discrete departure periods of 15 minutes 

duration each. The basic attributes of the network links and O-D demand are as 

described in section 6.3.3 of the previous chapter.

In fact, setting up the doubly dynamic traffic assignment problem over a larger 

network did not require any special inputs other than those required for simpler 

networks such as the five link network described earlier, however the dimensions of 

the matrices used within the model are proportionately larger. For example, on the 

grid network under consideration, as there are 14 paths used in four departure 

periods, the conditional covariance matrix and the Jacobian matrices of route 

choices and travel times will be of size (14 x 4=) 56 x 5 6 .

In this example, the conditional covariance matrix is a block diagonal matrix of 14 

x 14 in each departure period, with each block being defined by the number of 

routes used by each O-D pair. Clearly, in this example network, O-D pair 1 uses
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three routes and hence the size of the block is 3 x 3, and O-D pair 2 uses 2 routes 

therefore will be a 2 * 2 block and so on. The elements of each block are defined by 

equation (4.17). All the other elements in each block diagonal matrix (in each 

departure period) will be equal to zero based on the assumption that conditional on 

past experiences, the drivers belonging to each O-D pair choose routes independent 

to those of the decisions made by the drivers from the rest of the O-D pairs and 

departure periods. However, this assumption may be far from reality as in the real 

world situation, drivers interact with other drivers belonging to different O-D pairs 

and even departure periods. The effect of such interactions is captured by the 

approximation method through the variance-covariance inflation factor as defined 

by equation (4.18).

Similarly, the Jacobian matrix of route choices in this example is of size 56 x 56, 

composed of four blocks corresponding to as many departure periods and each 

block is of 14 x 14 as there are 14 routes in all being used by the O-D demand. In 

each departure period the matrix is a block diagonal matrix composed of six blocks 

(= number of O-D pairs). The diagonal elements of each block are defined by 

equation (4.20) and the off-diagonal elements are given by equation (4.21). Similar 

to the conditional covariance matrix, all other elements are zeros.

The Jacobian matrix of travel time is computed with the help of the specification 

described in Chapter 5.

The simulation model and variance approximation method were carried out on the 

grid network and the results are compared. The route choices were simulated over 

10000 days and summarised after ignoring the first 1000 days to account for the 

empty network conditions. Similarly the stochastic user equilibrium assignment was 

carried out based on an MSA run of 10000 iterations, after which the Jacobian 

matrices were evaluated to complete the variance approximation. The simulation 

and variance approximation were repeated for three different values of 0, the logit 

choice parameter mainly to identify the regimes over which the approximation 

method is effective. In this exercise, 6 was set equal to 0.01, 0.1 and 0.9 and the 

models were repeated. As an example, the conditional covariance matrix and 

Jacobians of route choice and travel time functions for the case of 9 = 0.1, have
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been included in Appendix C. Finally, the corresponding variance-covariance 

matrices computed by the approximation method and simulation method are also 

included in the same Appendix.

Figure 7.26 compares the variance in route flows (i.e., the diagonal elements of the 

variance-covariance matrices) by the simulation and approximation methods, with 8 

=  0.01. It shows an almost perfect comparison indicating a very high degree of 

convergence between the results obtained by the two methods. Figure 7.27 

compares the variance-covariance in route flows (i.e., all elements of the matrices 

including the diagonal elements of the matrices) by the two methods and again 

confirms a very high degree of convergence. In order to check whether or not the 

drivers consider the experienced costs while making the route choices, correlograms 

(Figure 7.28) were drawn for routes 1,2 and 3. These revealed that the route flows 

are almost independent on any given day and do not depend on any of the previous 

days’ flows. This observation supports the notion that under the given conditions, 

the drivers’ route choices are independent of other drivers across other routes/and 

departure periods and hence the conditional covariance matrix is sufficient to 

describe the simulation variance, thus resulting in the kind of greater degree of 

convergence as shown in Figures 7.26 and 7.27.

Comparison of Route Flow Variance
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Figure 7.26 Comparison of Route Flow Variance (0 = 0.01)
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On the other hand, comparison of variance with 0 = 0.1 puts up a more mixed 

picture (Figure 7.29). While the majority of the points are on or close to the perfect 

convergence line, the rest of the points are below the line indicating that the 

approximation method under-estimates the simulation variance in some cases. A 

closer look at the numerical results revealed that the approximation variances in 

departure periods 1 and 2 are closer to the simulation variances, compared to those 

in departure periods 3 and 4. In order to understand the results better, correlograms 

were drawn (Figure 7.30) which show that during departure periods 1 and 2, the 

route flows are fairly independent resulting in greater convergence between the 

simulation and approximation methods, but during departure periods 3 and 4 the 

route flows are significantly negatively correlated to the previous memorised days’ 

flows, indicating deterministic periodic type systems described in section 7.1 earlier 

in this chapter. This observation is pointing towards the logit parameter producing 

different dispersion effects in different departure periods due to the overlapping 

paths present in the network. It is suggested that the logit choice parameters may be 

lowered for departure periods 3 and 4 to increase the dispersion in perceived costs 

which will then push the system towards a stationary state, which can be 

approximated by a multivariate Normal distribution.

Comparison of Route Flow Variance

Figure 7.29 Comparison of Route Flow Variance (6 = 0.1)
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Finally, given the previous results with 9 =  0.01 and 0.1, the variance in route flows 

will be even higher with higher values of 9. The third leg of the analysis included a 

value of 9 = 0.9, and as expected the approximation variance grossly under 

estimates the simulation variance due to the deterministic periodic kind of shifting 

of flows from one route to the other arising due to the all-or-nothing type 

assignment. Just to confirm, the correlograms were drawn again (Figure 7.31) 

which indicated the drivers shifted in a group between routes 1 and 3 while route 2 

is more expensive, and could not attract any significant proportion of the flow. 

These observations are consistent with the results obtained earlier with two link and 

five link networks. Through these workings, it is clear that there are three regimes -  

one where the system operates completely at random, second where the variance 

approximation method works well, and the final where the system operates like a 

deterministic periodic one. Besides, the variance approximation method can also be 

used to identify highly autocorrelated flow systems which are important to identify 

while simulating the traffic assignment process.
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Figure 7.31 Autocorrelation of Route Flows, 0 = 0.9

7.5 Computational Performance

This section compares the computational performance of the Variance 

Approximation Method over the simulation method in terms of the cpu time 

required for running each model for a given range of networks (Table 7.7). In this 

exercise three networks viz., two link parallel route network, five link network and 

12-link grid network, which were described in sections 7.1, 7.2 and 7.4 were 

considered. The network and demand specifications were retained as earlier. The 

computing time has been based on 10000 iterations of MSA in the Variance 

Approximation Method, and 10000-day long realisation in the simulation method. 

A fast modem computer with Pentium D processor (3.00 GHz, 1GB RAM) has 

been used in all the runs. Although the computer programs are not optimised, it is 

expected that this exercise illustrates the relative time savings in using the Variance 

Approximation Method over the traditional simulation method. In this exercise the 

naive method of computing the variance has not been included explicitly, as it 

needs approximately the same time as that of the Variance Approximation Method.
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Table 7.7 Comparison of Computational Performance (Time in seconds)

Network Variance

Approximation

Method

Simulation Method Time Savings (%) 

over Simulation 

Method

Two link network 54.91 205.74 73.31

Five link network 240.62 655.57 63.30

Grid network 1308.49 2986.12 56.18

From Table 7.7 it can be observed that the Variance Approximation Method is 

much quicker than the simulation method and actually saves substantial computing 

time. It is to be noted that the Variance Approximation Method specified uses MSA 

for solving the DSUE, which may not be highly efficient and is known for its slow 

convergence. The performance of the Variance Approximation Method can be 

improved further by adopting an efficient algorithm for solving DSUE as in Han 

(2000). On the other hand, the simulation method will be even more time 

consuming for networks of practical significance. That is to say, the simulation time 

will be proportionately higher with the increase in the demand as simulating each 

marginal driver will incur additional computing time. Hence, the time savings could 

be even higher for networks of real world.

7.6 Summary

The overall framework of this research has explored alternative methods of carrying 

out dynamic traffic assignment using stochastic modelling procedures, in particular 

it has developed a methodology for estimating the properties of an equilibrium 

probability distribution as an alternative to the usual simulation procedure based on 

Monte Carlo methods. This chapter compared the stationary variance-covariance 

matrices of route flows obtained by the variance approximation method and the 

simulation method, and used a simple two link/route network and a five link 

network as illustrations. Overall, the variance approximation method performed 

satisfactorily over different sizes of networks. Variance and covariance of route 

flows are sensitive to the logit route choice input parameter, and the higher the
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parameter value, the lower the convergence with the simulation outputs. Outputs of 

variance approximation method are also sensitive to other model input parameters 

such as the memory length and the memory weight, however not as sensitive to the 

logit choice parameter which in some sense defined the boundaries of the utility of 

the variance approximation method. In general, shorter memory systems produce 

highly variant route traffic flows and smaller memory weight also produces a 

similar effect; on the other hand, longer memory systems result in low variance in 

route flows. This chapter also compared the computational performance of the 

Variance Approximation Method with the simulation method, and noted that the 

former method saves significant computing time over the latter method for the 

networks described earlier. The next and final chapter of this thesis summarises the 

overall research carried out, draws conclusions and identifies the issues for further 

research.



Chapter 8

Summary and Conclusions

8.1 Summary

The main focus of this research has been to explore the stochastic process models 

for carrying out dynamic traffic assignment, and aimed at specifying frameworks 

which are very general, addressing both day-to-day and within day variations in 

traffic flows, and even capturing individual drivers’ adaptation of route choices 

based on experienced route costs. Stochastic processes consider route flows as 

random variables, and their evolution over a period of time (a number of days) is 

modelled based on probabilistic laws. Stochastic processes under certain mild 

conditions admit a unique stationary probability distribution which can be solved by 

using simulation techniques. Alternatively, the moments (e.g., mean and variance) 

of the equilibrium probability distribution can be estimated. This research has 

advanced the idea of estimating the properties of such an equilibrium probability 

distribution, with a particular contribution in formulating the methodology for 

computing the Jacobians of route travel times with respect to the route inflows in a 

doubly dynamic context using an analytical procedure, which are necessary for 

estimating the variance-covariance matrices of stationary route flows.

The overall framework of the models include three modules -  (i) a day-to-day route 

choice model defined as a discrete time stochastic process, (ii) a continuous time 

dynamic network loading of the route flows considering the complete spatio- 

temporal effects of the traffic flows that use the road links at the same time, and (iii) 

the drivers’ learning and adjusting model based on a linear filter. The main idea of 

estimating the properties of a stationary probability distribution in this research 

builds on two earlier results. The first is a convergence theorem that established, 

when the demand is sufficiently large, that the equilibrium probability distribution 

converges approximately to a multivariate Normal distribution and that its mean 

coincides with the SUE flows (Davis and Nihan 1993). The second result is that the 

variance can be estimated by an approximation procedure based on the principles 

set out by Hazelton and Watling (2004). This research also closely follows the
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results of Cantarella and Cascetta (1995) and unifies the deterministic and 

stochastic approaches of carrying out traffic assignment.

Alternatively, the equilibrium probability distribution can also be estimated using a 

relatively straightforward Monte Carlo simulation technique, which involves 

simulating the route choice process as a Multinomial probability distribution over a 

number of days and then summarising the properties e.g., the mean and the 

variance, of the stationary probability distribution. This procedure, though simple, 

is time consuming and the main difficulty lies in detecting the stationarity of the 

process. Practically useable tests have been introduced and implemented to test the 

stationarity of a stochastic process satisfying the necessary conditions.

The stationary variance-covariance of route flows obtained by the variance 

approximation model was compared with that computed by the simulation 

procedure. Overall, the variance approximation model performs satisfactorily. The 

variance-covariance of route flows has been found sensitive primarily to the input 

logit choice parameter, which defines the boundaries of the validity of the model. 

The variance-covariance is also affected by the memory length with the shorter 

memory models essentially producing highly variant systems. Similarly, the 

variance-covariance of route flows is also sensitive to the memory weight, and the 

lower memory weight (0 < X «  1) produces the same effect as that of shorter 

memory systems.

8.2 Conclusions

The main conclusions from this research are listed below.

a. This research has been successful in bringing together the deterministic and 

the stochastic approaches of carrying out traffic assignment and established 

a procedure for a deterministic approximation of the stationary probability 

distribution of a stochastic process. By this method, transport modellers can 

now work out not only the average flows on the network, but also the
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variance in route and link flows, which have considerable significance in 

calibrating and validating the traffic models in practice.

b. Jacobians of the travel time functions with respect to the route inflows 

worked out in the variance approximation method have much wider 

applications, e.g., dynamic road pricing exercises, evaluating the cost of 

externalities. To elaborate further, currently road pricing exercises use either 

externally input gradients or gradients based on finite differencing as part of 

their optimising scheme, while solving for an optimal solution such as the 

system optimal. In such cases the quality of the solution directly depends on 

the quality of the gradients supplied. It is anticipated that the gradients based 

on analytical procedures such as the one described in this thesis result in 

high quality, less time consuming optimal solutions.

c. The uniqueness of this research is that it addresses a wide range of issues in 

traffic assignment including day-to-day dynamics, within day dynamics and 

drivers leaming/adjusting their route choice, all within the framework of 

stochastic process models which are very general in nature with 

deterministic approaches as a special case. This approach enables the 

development of a comprehensive traffic assignment model in the future.

d. In this research, a continuous time dynamic loading process has been 

adopted for propagating the vehicles in various departure periods belonging 

to various O-D pairs. In order to be able to capture the interactions between 

the vehicles that use the links simultaneously, each departure period has 

been subdivided into several minor time steps. The shorter the minor time 

step the better the travel time estimate is. In the limit the minor time step 

should be just sufficient to accommodate one vehicle so that the travel time 

estimate is perfect. However, the computing time may increase substantially 

with reducing step sizes as the program needs to iterate through many more 

minor steps.

e. Detecting the stationarity of the stochastic process could be tricky. 

Correlograms can be used as a way of detecting the stationarity based on
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satisfying the necessary condition that the autocorrelations should fade out 

at some large lags which are called large lag standard errors. On the other 

hand, the variance approximation method completely avoids the need to go 

through the process of identifying the stationarity of a stochastic process, 

and in fact provides a direct method to work out the mean and variance of 

the equilibrium probability distribution.

f. The stationary variance and covariance of the route flows are sensitive to the 

input parameters such as the logit choice parameter 6, the memory length m, 

and the memory weight \  Firstly, the variance approximation method works 

well at relatively lower values of 0, and at higher values of 0 the system may 

behave like a deterministic periodic system at which the stationary 

probability distribution could be significantly different from a Normal 

distribution and hence the approximation by a Normal distribution may not 

be suitable. Secondly, the shorter memory systems produce highly variant 

traffic flows on the network. On the other hand, the longer memory systems 

will help achieving lightly variant route and link flows, however both cases 

are still stable as the stochastic process is regular. Finally, the lower memory 

weight also produces the same kind of effect as that of a shorter memory 

system by placing the highest weight on the most recent experience and 

almost ignoring the earlier experiences.

8.3 Further Research

There are various strands in this research which can be further investigated, as 

given below:

a. In this model, the O-D demand is assumed fixed within each departure 

period, which in reality keeps varying from day-to-day. To reflect this, the 

case of stochastic O-D demand may be considered which will need to model 

the demand as a random variable by assuming a suitable probability 

distribution function.
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b. Another extension to the above case will be to consider the departure time 

choice of the drivers within a day. This means that the drivers will also have 

the departure period choice in addition to the route choice, and hence 

affecting the Jacobians of the route choice probabilities and travel times. 

Possibly the departure time choice can be nested into the modelling 

framework.

c. The present model may be extended to accommodate the case of multiple 

user classes. This can possibly be done by extending the definition of the 

commodity to include multiple user classes, which presently includes the O- 

D movement and departure period. However, computing the Jacobians, 

especially that of travel time can get quite complicated.

d. The driver learning model in this research has been based on a linear 

learning filter, but there is an excellent scope for looking at other learning 

models and revising the expressions for the approximation of variance -  

covariance of the route flows. In addition, the driver learning models can be 

extended to include the habituated drivers who will carry route specific 

perception error with them across the days.

e. The route choice models based on logit principle are not free from the 

independence of irrelevant alternative problem. That is to say, a very small 

insignificant deviation in route structure will identify that route as a 

potential route and will allocate a sizeable number of trips to it as well in 

addition to the main route (‘red bus’, ‘blue bus’ problem). One strategy to 

avoid this problem could be to follow a route choice model based on probit 

by assuming link-based Normal random error terms to make up the 

perceived cost.

f. To make the assignment model truly comprehensive, we need to consider 

extending the model to public transport assignment. As the public transport 

operates usually along predefined routes, the same can perhaps be treated as 

a fixed load.
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g. Dynamic link travel times were estimated based on whole link type linear 

travel time functions. These models do not assume any specific physical 

length of the links and hence the spill back effects can not be modelled. 

Therefore, there is a wide scope for enhancing the link travel time models to 

accommodate the effects of spilling back.

h. Although there are no restrictions on the type of dynamic link model, the 

present approach uses linear link travel time functions due to their 

simplicity. Hence, there is a need to investigate the application of 

polynomial functions of higher order to model the link travel time and the 

delays at the junctions. Moreover, currently the delays at the junctions are 

only assumed to be a function of the number of vehicles on that link alone 

(the case of separable functions) and hence need to be extended to the case 

of non-separable functions by incorporating the flows from other 

approaching links into the delay functions.

i. The doubly dynamic simulation model analysed the necessary conditions to 

identify the stationary probability distribution. There is a need to extend this 

analysis further by identifying the sufficient conditions, as then one can 

identify the stationary probability distribution positively, which is a critical 

requirement in the overall analysis of stochastic processes.

j. Finally, further research can also explore the range of values of 6 for which 

the approximation method produces results sufficiently close to the 

simulation. As an indicator, one can consider the range of values from 0.01 

to 0.1 and perhaps slightly beyond, but can clearly avoid higher values of 6 

such as 1 which lead the system towards highly unstable and even 

unrealistic states as illustrated in section 7.1.
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Departure Period 1 Departure Period 2 Departure Period 3 Departure Period 4

Route 1 Route 2 Route 3 Route 1 Route 2 Route 3 Route 1 Route 2 Route 3 Route 1 Route 2 Route 3

D
ep

ar
tu

re
 

P
er

io
d 

1

Route
1

Route
2

Route
3

90.1294

-41.4904

-48.639

-41.4904

84.5665

-43.0761

-48.639

-43.0761

91.7152

0.1513

0 .0813

0 .0 7

0.0877

0.2684

0.1807

0.0636

0.1871

0.2507

0.0142

0.0079

0.0063

0 .0089

0.028

0.0191

0.0053

0.0202

0.0255

0.0098

0.0055

0.0043

0.0062

0.0199

0.0136

0.0036

0.0143

0.0179
Route

i n 1 0.1513 -0.0813 0 .0 7 159.9672 -73.0423 -86.925 0.1028 0.0472 0.0556 0.0706 0.0335 0.0372
| S Route
| S 2 -0.0877 0.2684 0 .1807 -73.0423 147.0781 -74.0359 0.0455 0.1692 0.1238 -0.0319 0.1232 -0.0913
O l Routs

3 -0.0636 0.1871 0.2507 -86.925 -74.0359 160.9609 -0.0573 ■0.122 0.1793 0.0388 0.0897 0.1285
Route

i n 1 0.0142 0.0079 ■0.0063 0.1028 -0.0455 -0.0573 22.6978 -10.4858 -12.212 0.0144 -0.006 -0.0084
I ? Route
g -5 2 •0.0089 0.028 0.0191 0.0472 0.1692 0.122 -10.4858 21.0884 -10.6026 0.0059 0.0248 0.0189
£§°- Route

3 -0.0053 0.0202 0.0255 0.0556 0.1238 0.1793 -12.212 -10.6026 22.8146 0.0085 0.0187 0.0273
Route

1 0.0098 -0.0055 0.0043 0.0706 0.0319 0.0388 0.0144 0.0059 0.0085 22.3822 -10.3752 -12.007
| ? Route
s J 2 -0.0062 0.0199 0.0136 0.0335 0.1232 0.0897 0 .006 0.0248 0.0187 -10.3752 21.2955 -10.9203

Û 1 Route
3 -0.0036 0.0143 0.0179 0.0372 0.0913 0.1285 0.0084 0.0189 0.0273 -12.007 -10.9203 22.9273

Approximated Variance - Covariance Matrix (0 = 0.01)

Departure Period 1 Departure Period 2 Departure Period 3 Departure Period 4

Route 1 Route 2______ Route 3______Route 1______ Route 2______Route 3 Route 1 Route 2 Route 3 Route 1 Route 2 Route 3

D
ep

ar
tu

re
 

P
er

io
d 

1

Route
1

Route
2

Route
3

90.7238

-41.1306

-49.5933

-41.1306

83.5549

-42.4243

-49.5933

-42.4243

92.0176

0.0805

0.9953

-1.0758

0.0643

-0.3978

0.3335

-0.1448

-0.5974

0.7423

-0.1627

0.0921

0.0707

0.3209

-0.0258

-0.2951

-0.1582

-0.0663

0.2245

0.0383

0.2011

-0.2394

-0.2946

0.3433

-0.0487

0.2564

■0.5445

0.2881

S I

Route
1 0.0805 0.9953 -1.0758 158.3957 -71.5481 -86.8476 -0.1806 -0.0462 0.2268 -0.0227 0.2556 -0.2329

Route
2 0.0643 -0.3978 0.3335 -71.5481 144.8227 -73.2746 0.0969 0.0171 -0.114 0.2165 -0.2378 0.0213

û ° - Route
3 -0.1448 -0.5974 0.7423 -86.8476 -73.2746 160.1222 0.0837 0.0291 -0.1127 -0.1939 -0.0178 0.2116

1 «
Route

1 -0.1627 0.0921 0.0707 -0.1806 0.0969 0.0837 22.6387 -10.3675 -12.2712 0.141 -0.1587 0.0176
I f Route

2 0.3209 -0.0258 -0.2951 -0.0462 0.0171 0.0291 -10.3675 20.9876 -10.6201 -0.0078 -0.0438 0.0516
<3°* Route

3 -0.1582 -0.0663 0.2245 0.2268 -0.114 -0.1127 -12.2712 -10.6201 22.8912 -0.1333 0.2024 -0.0692

5;
Route

1 0.0383 0.2011 -0.2394 -0.0227 0.2165 -0.1939 0.141 -0.0078 -0.1333 22.302 -10.2089 -12.0931
s |
a *

Route
2 -0.2946 0.3433 -0.0487 0.2556 -0.2378 -0.0178 -0.1587 -0.0438 0.2024 -10.2089 20.9206 -10.7117

Route
3 0.2564 -0.5445 0.2881 -0.2329 0.0213 0.2116 0.0176 0.0516 -0.0692 -12.0931 -10.7117 22.8049

Simulated Variance - Covariance Matrix (0 = 0.01)
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C2. Jacobian Matrix of Route Choice Probability Function Columns 1-12
Rows 1-56

1 2 3 4 5 6 7 8 9 10 11 12
1 -0.022 0.0105 0.0115 0 0 0 0 0 0 0 0 0
2 0.0105 -0.0132 0.0027 0 0 0 0 0 0 0 0 0
3 0.0115 0.0027 -0.0142 0 0 0 0 0 0 0 0 0
4 0 0 0 -0.0249 0.0249 0 0 0 0 0 0 0
5 0 0 0 0.0249 -0.0249 0 0 0 0 0 0 0
6 0 0 0 0 0 -0.0249 0.0249 0 0 0 0 0
7 0 0 0 0 0 0.0249 -0.0249 0 0 0 0 0
8 0 0 0 0 0 0 0 -0.025 0.025 0 0 0
9 0 0 0 0 0 0 0 0.025 -0.025 0 0 0

10 0 0 0 0 0 0 0 0 0 -0.025 0.025 0
11 0 0 0 0 0 0 0 0 0 0.025 -0.025 0
12 0 0 0 0 0 0 0 0 0 0 0 -0.0241
13 0 0 0 0 0 0 0 0 0 0 0 0.0121
14 0 0 0 0 0 0 0 0 0 0 0 0.012
15 0 0 0 0 0 0 0 0 0 0 0 0
16 - 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 • 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0 0 0
51 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0
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C2. Jacobian Matrix of Route Choice Probability Function Columns 13-24
Rows 1-56

13 14 15 16 17 18 19 20 21 22 23 24
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0
12 0.0121 0.012 0 0 0 0 0 0 0 0 0 0
13 -0.0162 0.0041 0 0 0 0 0 0 0 0 0 0
14 0.0041 -0.0161 0 0 0 0 0 0 0 0 0 0
15 0 0 -0.0204 0.0096 0.0108 0 0 0 0 0 0 0
16 0 0 0.0096 -0.0116 0.002 0 0 0 0 0 0 0
17 0 0 0.0108 0.002 -0.0129 0 0 0 0 0 0 0
18 0 0 0 0 0 -0.0249 0.0249 0 0 0 0 0
19 0 0 0 0 0 0.0249 -0.0249 0 0 0 0 0
20 0 0 0 0 0 0 0 -0.0249 0.0249 0 0 0
21 0 0 0 0 0 0 0 0.0249 -0.0249 0 0 0
22 0 0 0 0 0 0 0 0 0 -0.0243 0.0243 0
23 0 0 0 0 0 0 0 0 0 0.0243 -0.0243 0
24 0 0 0 0 0 0 0 0 0 0 0 -0.0243
25 0 0 0 0 0 0 0 0 0 0 0 0.0243
26 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0 0 0
51 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0



167

C2. Jacobian Matrix of Route Choice Probability Function Columns 25-36
Rows 1-56

25 26 27 28 29 30 31 32 33 34 35 36
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0
24 0.0243 0 0 0 0 0 0 0 0 0 0 0
25 -0.0243 0 0 0 0 0 0 0 0 0 0 0
26 0 -0.0214 0.0089 0.0124 0 0 0 0 0 0 0 0
27 0 0.0089 -0.0113 0.0023 0 0 0 0 0 0 0 0
28 0 0.0124 0.0023 -0.0148 0 0 0 0 0 0 0 0
29 0 0 0 0 -0.0195 0.0087 0.0108 0 0 0 0 0
30 0 0 0 0 0.0087 -0.0104 0.0017 0 0 0 0 0
31 0 0 0 0 0.0108 0.0017 -0.0126 0 0 0 0 0
32 0 0 0 0 0 0 0 -0.0247 0.0247 0 0 0
33 0 0 0 0 0 0 0 0.0247 -0.0247 0 0 0
34 0 0 0 0 0 0 0 0 0 -0.0247 0.0247 0
35 0 0 0 0 0 0 0 0 0 0.0247 -0.0247 0
36 0 0 0 0 0 0 0 0 0 0 0 -0.0237
37 0 0 0 0 0 0 0 0 0 0 0 0.0237
38 0 0 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0 0 0
51 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0
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C2. Jacobian Matrix of Route Choice Probability Function Columns 37-48
Rows 1-56

37 38 39 40 41 42 43 44 45 46 47 48
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0
36 0.0237 0 0 0 0 0 0 0 0 0 0 0
37 - 0.0237 0 0 0 0 0 0 0 0 0 0 0
38 0 - 0.0237 0.0237 0 0 0 0 0 0 0 0 0
39 0 0.0237 - 0.0237 0 0 0 0 0 0 0 0 0
40 0 0 0 - 0.0196 0.0075 0.0121 0 0 0 0 0 0
41 0 0 0 0.0075 - 0.0093 0.0017 0 0 0 0 0 0
42 0 0 0 0.0121 0.0017 - 0.0138 0 0 0 0 0 0
43 0 0 0 0 0 0 - 0.022 0.0105 0.0115 0 0 0
44 0 0 0 0 0 0 0.0105 - 0.0132 0.0027 0 0 0
45 0 0 0 0 0 0 0.0115 0.0027 - 0.0142 0 0 0
46 0 0 0 0 0 0 0 0 0 - 0.0249 0.0249 0
47 0 0 0 0 0 0 0 0 0 0.0249 - 0.0249 0
48 0 0 0 0 0 0 0 0 0 0 0 - 0.0249
49 0 0 0 0 0 0 0 0 0 0 0 0.0249
50 0 0 0 0 0 0 0 0 0 0 0 0
51 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0
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C2. Jacobian Matrix of Route Choice Probability Function Columns 49-56
Rows 1-56

49 50 51 52 53 54 55 56
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0
16 . 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0
48 0.0249 0 0 0 0 0 0 0
49 - 0.0249 0 0 0 0 0 0 0
50 0 - 0 .025 0.025 0 0 0 0 0
51 0 0.025 - 0 .025 0 0 0 0 0
52 0 0 0 - 0 .025 0.025 0 0 0
53 0 0 0 0.025 - 0 .025 0 0 0
54 0 0 0 0 0 - 0.0241 0.0121 0.012
55 0 0 0 0 0 0.0121 - 0.0162 0.0041
56 0 0 0 0 0 0.012 0.0041 - 0.0161
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C3. Jacobian Matrix of Route Travel Time Columns 1-12
Rows 1-56

1 2 3 4 5 6 7 8 9 10 11 12
1 0.016 0.0109 0 0.0109 0 0.0109 0 0 0 0 0 0
2 0.0119 0 .0244 0.0172 0.0221 0.0154 0.0221 0.0154 0.018 0.0063 0.0161 0.0039 - 0.0018
3 - 0.0012 0.0058 0 .0 479 0.0036 0.0462 0.0036 0.0462 0.0405 0.0059 0.0387 0.0037 - 0.0017
4 0.0117 0.022 0 .0 146 0.022 0.0146 0.022 0.0146 0.0153 0.0042 0.0153 0.0042 - 0.0016
5 -0.0011 0.0039 0.0448 0.0039 0.0448 0.0039 0.0448 0.0375 0.004 0.0375 0.004 - 0.0015
6 0.0117 0.0218 0.0156 0.0218 0.0156 0.0239 0.0172 0.0164 0.004 0.0164 0.004 - 0.0017
7 - 0.0013 0.0035 0 .0 462 0.0035 0.0462 0.0055 0.0477 0.0388 0.0038 0.0388 0.0038 - 0.0016
8 - 0.0011 0.0051 0.0326 0.0031 0.0311 0.0031 0.0311 0.0461 0.0055 0.0445 0.0033 - 0.0015
9 - 0.0011 0 .005 0 .0 132 0.003 0.0117 0.003 0.0117 0.0139 0.0257 0.0122 0.0234 0.0135

10 - 0.001 0 .0033 0.0301 0.0033 0.0301 0.0033 0.0301 0.0432 0.0036 0.0432 0.0036 - 0.0013
11 - 0.001 0 .0033 0.011 0.0033 0.011 0.0033 0.011 0.0115 0.0234 0.0115 0.0234 0.0134
12 0 0 0 0 0 0 0 0 0.0118 0 0.0118 0.0209
13 -0.0011 0.003 0 .0 312 0.003 0.0312 0.0048 0.0326 0.0446 0.0033 0.0446 0.0033 - 0.0014
14 - 0.0011 0.0029 0 .0 119 0.0029 0.0119 0.0047 0.0133 0.0124 0.0234 0.0124 0.0234 0.0135
15 0.0187 0.0173 0 0.0173 0 0.0173 0 0 0 0 0 0
16 0.0181 0.0251 0 .0 552 0.0248 0.0548 0.0248 0.0548 0.0579 0.0044 0.0577 0.0042 - 0.0007
17 -0.0007 0.0059 0 .0 935 0.0055 0.0931 0.0055 0.0931 0.0948 0.0045 0.0946 0.0044 - 0.0008
18 0.0179 0.0242 0.051 0.0242 0.051 0.0242 0.051 0.0536 0.004 0.0536 0.004 - 0.0006
19 - 0.0006 0.0053 0.0887 0.0053 0.0887 0.0053 0.0887 0.09 0.0042 0.09 0.0042 - 0.0007
20 0.0178 0.0244 0 .0 537 0.0244 0.0537 0.0246 0 .0 54 0.0565 0.0042 0.0565 0.0042 - 0.0006
21 - 0.0006 0.0056 0 .0 912 0.0056 0.0912 0.0059 0 .0 915 0.0926 0.0043 0.0927 0.0043 - 0.0007
22 - 0.0009 0.0066 0 .0 883 0.0059 0.0877 0.0059 0.0877 0.0943 0.0049 0.0939 0.0047 - 0.0011
23 - 0.0013 0.0073 0 .0 465 0.0063 0.0456 0.0063 0.0456 0.0494 0.0274 0.0488 0.0269 0.0194
24 - 0.0008 0.0058 0 .0 834 0.0058 0.0835 0.0058 0.0835 0.0893 0.0045 0.0893 0.0045 - 0.001
25 - 0.0011 0.0062 0 .0 425 0.0062 0.0425 0.0062 0.0425 0.0454 0.0263 0.0454 0.0263 0.0191
26 0 0 0 0 0 0 0 0 0.0183 0 0.0183 0.0225
27 - 0.0008 0.006 0.0859 0.006 0.0859 0.0065 0.0865 0.0919 0.0047 0.0919 0.0047 - 0.001
28 - 0.0011 0.0064 0 .0 452 0.0064 0.0452 0.0073 0.046 0.0482 0.0264 0.0482 0.0264 0.0189
29 0.0142 0.0141 0 0.0141 0 0.0141 0 0 0 0 0 0
30 0.0146 0.0169 0.0679 0.0169 0.0679 0.0169 0 .068 0.0692 0.0024 0.0692 0.0024 0.0006
31 0 0.0025 0 .0 985 0.0025 0.0985 0.0025 0.0985 0.0997 0.0026 0.0997 0.0026 0.0006
32 0.0147 0.0168 0 .064 0.0168 0.064 0.0168 0 .064 0.0651 0.0023 0.0652 0.0023 0.0005
33 - 0.0001 0.0023 0 .0 945 0.0023 0.0945 0.0023 0.0945 0.0956 0.0024 0.0957 0.0024 0.0005
34 0.0147 0.0169 0.0661 0.0169 0.0661 0.0169 0.0661 0.0673 0.0023 0.0673 0.0023 0.0005
35 0 0.0024 0 .0 967 0.0024 0.0967 0.0024 0.0967 0.0979 0.0024 0.0979 0.0024 0.0005
36 0 0.0027 0 .0 983 0.0027 0.0983 0.0027 0.0983 0.0997 0.0027 0.0998 0.0027 0.0005
37 0 0.0033 0 .0 659 0.0033 0.066 0.0033 0.066 0.0676 0.0159 0.0676 0.0159 0.0132
38 0 0.0025 0.0942 0.0025 0.0943 0.0025 0.0943 0.0956 0.0025 0.0956 0.0025 0.0004
39 0 0.003 0.0617 0.003 0.0617 0.003 0.0617 0.0633 0.0156 0.0633 0.0157 0.0132
40 0 0 0 0 0 0 0 0 0.0124 0 0.0124 0.0126
41 0 0.0026 0.0966 0.0026 0.0966 0.0026 0.0966 0.098 0.0026 0.098 0.0026 0.0005
42 0 0.0032 0.0642 0.0032 0.0642 0.0032 0 .0 642 0.0658 0.0157 0.0658 0.0157 0.0132
43 0.0115 0.0115 0 0.0115 0 0.0115 0 0 0 0 0 0
44 0.0104 0.0117 0 .0 552 0.0117 0.0552 0.0117 0.0553 0.0557 0.0027 0.0557 0.0027 0.0017
45 0.0002 0.0015 0.0811 0.0015 0.0811 0.0015 0.0812 0.0815 0.0026 0.0815 0.0026 0.0016
46 0.0106 0.0119 0.053 0.0119 0.053 0.0119 0.053 0.0535 0.0025 0.0535 0.0025 0.0015
47 0.0001 0.0014 0.0797 0.0014 0.0797 0.0014 0 .0 797 0.0801 0.0025 0.0801 0.0025 0.0014
48 0.0106 0.0119 0.0543 0.0119 0.0543 0.0119 0 .0 543 0.0548 0.0026 0.0548 0.0026 0.0016
49 0.0001 0.0014 0.0808 0.0014 0.0809 0.0014 0 .0 809 0.0812 0.0025 0.0812 0.0025 0.0015
50 0.0002 0.0016 0.0846 0.0016 0.0846 0.0016 0.0846 0.0849 0.0025 0.0849 0.0025 0.0014
51 0.0002 0.0018 0 .0 634 0.0018 0.0634 0.0018 0.0635 0.0643 0.0118 0.0643 0.0118 0.0105
52 0.0001 0.0014 0.0826 0.0014 0.0826 0.0014 0.0826 0.0829 0.0024 0.0829 0.0024 0.0013
53 0.0001 0.0016 0.0604 0.0016 0.0604 0.0016 0 .0604 0.0612 0.0118 0.0612 0.0118 0.0106
54 0 0 0 0 0 0 0 0 0.0096 0 0.0096 0.0096
55 0.0001 0.0015 0 .084 0.0015 0.084 0.0015 0.084 0.0843 0.0024 0.0843 0.0024 0.0013
56 0.0001 0.0017 0 .062 0.0017 0.062 0.0017 0.062 0.0629 0.0119 0.0629 0.0119 0.0106
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C3. Jacobian Matrix of Route Travel Time Columns 13-24
Rows1-56

13 14 15 16 17 18 19 20 21 22 23 24
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0.0161 0.0039 0 0 0 0 0 0 0 0 0.0003 0
3 0.0387 0.0037 0 0 0 0 0 0 0 0.0003 0.0003 0.0002
4 0.0153 0.0042 0 0 0 0 0 0 0 0 0.0001 0
5 0.0375 0.004 0 0 0 0 0 0 0 0.0002 0.0002 0.0002
6 0.018 0.0061 0 0 0 0 0 0 0 0 0.0001 0
7 0.0404 0.0058 0 0 0 0 0 0 0 0.0002 0.0001 0.0002
8 0.0445 0.0033 0 0 0 0 0 0 0 0 0.0001 0
9 0.0122 0.0234 0 0 0 0 0 0 0 0 0 0

10 0.0432 0.0036 0 0 0 0 0 0 0 0 0.0001 0
11 0.0115 0.0234 0 0 0 0 0 0 0 0 0 0
12 0 0.0118 0 0 0 0 0 0 0 0 0 0
13 0.0461 0.0053 0 0 0 0 0 0 0 0 0 0
14 0.0139 0.0255 0 0 0 0 0 0 0 0 0 0
15 0 0 0.0171 0.0104 0 0.0104 0 0 .0104 0 0 0 0
16 0.0577 0.0042 0.0119 0.0249 0.0166 0.0223 0.014 0 .0223 0.014 0.0225 0.0076 0.0198
17 0.0946 0.0044 - 0.0016 0.0065 0.0419 0.0039 0.0392 0.0039 0 .0392 0.0449 0.0078 0.042
18 0.0536 0.004 0.0119 0.0227 0.0138 0.0227 0.0138 0.0227 0.0138 0.0192 0.0055 0.0192
19 0.09 0.0042 - 0 .0 014 0.0045 0.0389 0.0045 0.0389 0 .0045 0.0389 0.0413 0.0055 0.0413
20 0.0566 0.0043 0.0117 0.0223 0.0139 0.0223 0.0139 0 .0244 0.0161 0.0196 0.0052 0.0196
21 0.0928 0.0044 - 0 .0 015 0.0041 0.0389 0.0041 0.0389 0 .0062 0.0411 0.0416 0.0051 0.0416
22 0.0939 0.0047 - 0.0013 0.0054 0.0256 0.0032 0.0232 0 .0032 0.0232 0.0446 0.0073 0.0419
23 0.0488 0.0269 -0 .0 009 0.0041 0.0061 0.0022 0.0042 0 .0022 0.0042 0.0095 0.0278 0.0072
24 0.0893 0.0045 - 0.0012 0.0037 0.0232 0.0037 0.0232 0.0037 0.0232 0.0414 0.0049 0.0414
25 0.0454 0.0264 - 0.0009 0.0027 0.0045 0.0027 0 .0045 0.0027 0.0045 0.0073 0.0251 0.0073
26 0 0.0183 0 0 0 0 0 0 0 0 0.0121 0
27 0.0922 0.0049 - 0.0013 0.0033 0.0231 0.0033 0.0231 0 .0052 0.0251 0.0414 0.0045 0.0414
28 0.0488 0.0268 - 0.0009 0.0023 0.0043 0.0023 0.0043 0.004 0 .0059 0.0072 0.0245 0.0072
29 0 0 0.0255 0.0217 0 0.0217 0 0.0217 0 0 0 0
30 0.0692 0.0024 0.0222 0.0324 0.0548 0.0317 0.0544 0.0317 0.0544 0.0613 0.0054 0.0611
31 0.0997 0.0026 - 0.0023 0.0079 0 .094 0.0068 0.0933 0.0068 0.0933 0.0984 0.0057 0.098
32 0.0652 0.0023 0.0224 0.0317 0.0514 0.0317 0.0514 0.0317 0.0514 0.0576 0.005 0.0576
33 0 .0957 0.0024 - 0.0022 0.0067 0.0906 0.0067 0.0906 0.0067 0.0906 0.0948 0.0052 0.0948
34 0 .0 673 0.0023 0.0223 0.0318 0.0532 0.0318 0.0532 0.0321 0.0533 0.0596 0.0051 0.0596
35 0.0979 0.0025 -0 .0 023 0.0067 0.0923 0.0068 0.0923 0 .0074 0.0927 0.0968 0.0054 0.0968
36 0.0998 0.0027 -0 .0 024 0.0083 0.0877 0.0069 0.0866 0.0069 0.0866 0.0968 0.006 0.0962
37 0 .0677 0.0159 -0 .0 025 0.009 0.0405 0.0069 0.0387 0.0069 0.0387 0.0486 0.0336 0.0472
38 0.0956 0.0025 -0 .0 023 0.0069 0.0842 0.0069 0.0842 0.0069 0.0842 0.0931 0.0055 0.0931
39 0 .0 633 0.0157 - 0.0024 0.0071 0.0368 0.0071 0 .0368 0.0071 0.0368 0.0446 0.0326 0.0446
40 0 0.0124 0 0 0 0 0 0 0 0 0.0229 0
41 0 .098 0.0026 - 0.0024 0.0069 0.0858 0.0069 0.0858 0.0078 0.0864 0.095 0.0056 0.095
42 0.0658 0.0158 - 0.0025 0.007 0.0381 0.007 0.0381 0 .0084 0.0393 0.0463 0.0327 0.0463
43 0 0 0.0206 0.0201 0 0.0201 0 0.0201 0 0 0 0
44 0.0558 0.0027 0.0175 0.0227 0.0528 0.0227 0.0528 0.0227 0.0528 0.056 0.0057 0.056
45 0.0815 0.0026 -0.0012 0.0042 0.0867 0.0042 0.0867 0.0042 0.0867 0.0889 0.0055 0.0889
46 0.0535 0.0025 0.0179 0.0229 0.0507 0.023 0.0507 0.023 0.0507 0.0537 0.0053 0.0538
47 0.0801 0.0025 - 0 .0 013 0.0039 0.0855 0.0039 0.0855 0.0039 0.0855 0.0877 0.0052 0.0877
48 0.0548 0.0026 0.0179 0.023 0.0519 0.023 0.0519 0.023 0.0519 0.055 0.0054 0.055
49 0 .0812 0.0025 -0 .0 013 0.004 0.0866 0.004 0.0866 0.004 0.0866 0.0888 0.0053 0.0888
50 0 .085 0 .0025 - 0.0013 0.0044 0 .0899 0.0044 0.0899 0 .0 044 0.0899 0.0924 0.0053 0.0924
51 0.0643 0.0118 - 0.0015 0.0051 0.0589 0.005 0.0589 0.005 0.0589 0.0632 0.0243 0.0632
52 0 .083 0.0024 - 0.0014 0.004 0.0882 0.004 0.0882 0.004 0.0882 0.0906 0.005 0.0906
53 0.0612 0.0118 - 0.0016 0.0047 0.056 0.0047 0.056 0.0047 0.0561 0.0601 0.0243 0.0601
54 0 0.0096 0 0 0 0 0 0 0 0 0.0193 0
55 0.0843 0.0024 - 0.0014 0.0042 0.0896 0.0042 0.0896 0.0042 0.0896 0.092 0.0051 0.092
56 0.0629 0.0119 - 0.0016 0.0048 0.0576 0.0048 0.0576 0.0048 0.0576 0.0618 0.0243 0.0618
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C3. Jacobian Matrix of Route Travel Time

25 26 27 28 29 30 31 32 33 34 35 36
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0.0001 - 0.0001 0 0.0001 0 0 0 0 0 0 0 0
3 0.0001 - 0.0001 0.0002 0.0001 0 0 0 0 0 0 0 0
4 0.0001 - 0.0001 0 0.0001 0 0 0 0 0 0 0 0
5 0.0002 - 0.0001 0.0002 0.0002 0 0 0 0 0 0 0 0
6 0.0001 - 0.0001 0 0.0003 0 0 0 0 0 0 0 0
7 0.0001 -0.0001 0.0003 0.0003 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0

10 0.0001 0 0 0.0001 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0.0001 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0
16 0.0048 -0 .0 034 0.0198 0.0048 0 0 0.0002 0 0 0 0 0.0005
17 0.0047 - 0 .0 035 0.042 0.0047 0 0 0 0 0 0 0 0.0004
18 0.0055 - 0.0031 0.0192 0.0055 0 0 0.0001 0 0.0001 0 0.0001 0.0002
19 0.0055 - 0 .0 032 0.0413 0.0055 0 0 0 0 0 0 0 0.0004
20 0.0052 - 0.0031 0.0218 0.0074 0 0 0 0 0 0 0.0002 0.0002
21 0.0051 - 0 .0 032 0.0439 0.0076 0 0 0 0 0 0 0 0.0003
22 0.0041 - 0 .0 032 0.0419 0.0041 0 0 0 0 0 0 0 0
23 0.0246 0 .0123 0.0072 0.0246 0 0 0 0 0 0 0 0
24 0.0049 - 0 .0 029 0.0414 0.0049 0 0 0 0 0 0 0 0
25 0.0251 0 .0123 0.0073 0.0251 0 0 0 0 0 0 0 0
26 0.0121 0 .0236 0 0.0121 0 0 o 0 0 0 0 0
27 0.0045 - 0 .0029 0.0437 0.0071 0 0 0 0 0 0 0 0
28 0.0245 0.0122 0.0092 0.0272 0 0 0 0 0 0 0 0
29 0 0 0 0 0.0176 0.009 0 0.009 0 0.009 0 0
30 0.0053 - 0 .0 014 0.0611 0.0053 0.0105 0.0265 0.0146 0.0231 0.0112 0.0231 0.0112 0.0193
31 0.0056 - 0 .0 017 0.098 0.0056 - 0.0017 0.0065 0.0382 0.0037 0.0351 0.0037 0.0351 0.0398
32 0 .005 - 0 .0 014 0.0576 0.005 0.0107 0.0241 0.0116 0.0241 0.0116 0.0241 0.0116 0.016
33 0.0052 - 0 .0 017 0.0948 0.0052 - 0.0016 0.0044 0.0357 0.0044 0.0357 0.0044 0.0357 0.0369
34 0.0051 - 0 .0 014 0.0597 0.0051 0.0106 0.0235 0.0114 0.0235 0.0114 0.0263 0.0141 0.016
35 0.0054 - 0 .0 017 0.0969 0.0054 - 0.0017 0.0039 0.0354 0.0039 0.0354 0.0062 0.0379 0.0368
36 0.0058 - 0.0021 0.0962 0.0058 - 0.0013 0.0053 0.0242 0.0029 0.0215 0.0029 0.0215 0.0402
37 0.0328 0.0224 0.0472 0.0326 - 0.0007 0.0029 0.0044 0.0014 0.0026 0.0014 0.0026 0.0067
38 0.0055 - 0 .002 0.0931 0.0055 - 0.0013 0.0035 0.022 0.0035 0.022 0.0035 0.022 0.0377
39 0.0326 0.0225 0.0446 0.0324 - 0.0007 0.0018 0.003 0.0018 0.003 0.0018 0.003 0.005
40 0.0229 0.0281 0 0.0229 0 0 0 0 0 0 0 0
41 0.0056 - 0.002 0.0954 0.0057 - 0.0014 0.0031 0.0218 0.0031 0.0218 0.0051 0.0239 0.0376
42 0.0327 0.0224 0.0472 0.033 - 0.0007 0.0015 0.0027 0.0015 0.0027 0.0028 0.0043 0.0048
43 0 0 0 0 0.0277 0.0216 0 0.0216 0 0.0216 0 0
44 0.0057 0.0018 0.056 0.0057 0.0191 0.0339 0.0247 0.0327 0.024 0.0327 0.024 0.0295
45 0.0055 0.0016 0.0889 0.0055 - 0.0037 0.0096 0 .0635 0.0082 0.0625 0.0082 0.0625 0.067
46 0.0053 0.0016 0.0538 0.0053 0.0197 0.0333 0.0232 0 .0333 0.0232 0.0333 0.0232 0.0279
47 0.0052 0.0014 0.0877 0.0052 - 0.0038 0.0082 0 .063 0.0082 0.063 0.0082 0.063 0.0665
48 0.0054 0.0016 0.0551 0.0054 0.0196 0.0333 0 .0237 0.0333 0.0237 0.0339 0.0241 0.0286
49 0.0053 0.0014 0.0888 0.0053 - 0.0038 0.0081 0.0633 0.0081 0.0633 0.009 0.0639 0.0669
50 0.0053 0.0012 0.0924 0.0053 - 0.0038 0.0101 0.0633 0.0082 0.0619 0.0082 0.0619 0.0699
51 0.0243 0 .0 194 0.0632 0.0243 - 0.0036 0.011 0.0249 0.008 0.0225 0.008 0.0225 0.0303
52 0 .005 0.001 0.0906 0.005 - 0.0039 0.0083 0.0621 0.0083 0.0621 0.0083 0.0621 0.0688
53 0.0243 0.0197 0.0601 0.0243 - 0.0036 0.0084 0.0221 0.0084 0.0221 0.0084 0.0221 0.0275
54 0.0193 0.0197 0 0.0193 0 0 0 0 0 0 0 0
55 0.0051 0.001 0.092 0.0051 - 0.004 0.0082 0.0626 0.0082 0.0626 0.0094 0.0634 0.0694
56 0.0243 0.0196 0.0618 0.0243 - 0.0038 0.0081 0.0224 0.0081 0.0224 0.0102 0.0241 0.028
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C3. Jacobian Matrix of Route Travel Time Columns 37-48
Rows1-56

37 38 39 40 41 42 43 44 45 46 47 48
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0
16 0.0014 0.0001 0.0004 - 0.0006 0.0001 0.0004 0 0 0 0 0 0
17 0.0009 0.0003 0.0002 - 0.0003 0.0003 0.0002 0 0 0 0 0 0
18 0.0007 0.0002 0.0007 - 0.0005 0.0002 0.0007 0 0 0 0 0 0
19 0.0004 0.0004 0.0004 - 0.0003 0.0004 0.0004 0 0 0 0 0 0
20 0.0006 0.0002 0.0006 - 0.0005 0.0005 0.0014 0 0 0 0 0 0
21 0.0003 0.0003 0.0003 - 0.0003 0.0004 0.0009 0 0 0 0 0 0
22 0.0004 0 0.0001 - 0.0002 0 0.0001 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0
24 0.0002 0 0.0002 - 0.0001 0 0.0002 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0
27 0.0001 0 0.0001 - 0.0001 0 0.0004 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0
30 0.0084 0.0158 0.0054 - 0.0043 0.0158 0.0054 0 0 0.0001 0 0 0
31 0.008 0.0365 0.0048 - 0.004 0.0365 0.0048 0 0 0 0 0 0
32 0.0061 0.016 0.0061 - 0.0041 0.016 0.0061 0 0 0 0 0 0
33 0.0057 0.0369 0.0057 - 0.0038 0.0369 0.0057 0 0 0 0 0 0
34 0.0058 0.016 0.0058 - 0.0041 0.0186 0.008 0 0 0 0 0 0
35 0.0053 0.0368 0.0053 - 0.0038 0.0394 0.0077 0 0 0 0 0 0
36 0.0076 0.0372 0.0042 - 0.0037 0.0372 0.0042 0 0 0 0 0 0
37 0.0262 0.0045 0.0231 0.0113 0.0045 0.0231 0 0 0 0 0 0
38 0.0051 0.0377 0.0051 - 0.0035 0.0377 0.0051 0 0 0 0 0 0
39 0.0241 0.005 0.0241 0.0116 0.005 0.0241 0 0 0 0 0 0
40 0.0118 0 0.0118 0.0232 0 0.0118 0 0 0 0 0 0
41 0.0048 0.0376 0.0048 - 0.0035 0.04 0.0073 0 0 0 0 0 0
42 0.0236 0.0048 0.0236 0.0115 0.0066 0.0262 0 0 0 0 0 0
43 0 0 0 0 0 0 0.0182 0.0089 0 0.0089 0 0.0089
44 0.009 0.029 0.0088 - 0.0002 0.029 0.0088 0.0077 0.0238 0.0051 0.0198 0.001 0.0198
45 0.0088 0.0664 0.0086 - 0.0006 0.0664 0.0086 - 0.0019 0.0071 0.0259 0.0035 0.0221 0.0035
46 0.0083 0.0279 0.0083 - 0.0004 0.0279 0.0083 0.008 0.0211 0.0019 0.0211 0.0019 0.0211
47 0.0082 0.0665 0.0082 - 0.0008 0.0665 0.0082 - 0.0019 0.0041 0.0237 0.0041 0.0237 0.0041
48 0.0084 0.0286 0.0084 - 0.0005 0.0287 0.0085 0.0079 0.0203 0.0011 0.0203 0.0011 0.0238
49 0.0083 0.0669 0.0083 - 0.0008 0.0672 0.0083 - 0.002 0.0035 0.0228 0.0035 0.0228 0.0066
50 0.0086 0.069 0.0083 - 0.0013 0.069 0.0083 -0.0016 0.0058 0.0176 0.0027 0.0144 0.0027
51 0.0371 0.0283 0.0361 0.0239 0.0283 0.0362 - 0 .0007 0.0027 0.0019 0.0011 -0.0001 0.0011
52 0.0079 0.0688 0.0079 - 0.0014 0.0688 0.0079 - 0.0016 0.0033 0.0155 0.0033 0.0155 0.0033
53 0.0365 0.0275 0.0365 0.0244 0.0275 0.0365 - 0 .0007 0.0014 0.0004 0.0014 0.0004 0.0014
54 0.0249 0 0.0249 0.0319 0 0.0249 0 0 0 0 0 0
55 0.008 0.0694 0.008 - 0.0015 0.0699 0.0081 - 0 .0017 0.0027 0.0148 0.0027 0.0148 0.0054
56 0.0365 0.028 0.0365 0.0243 0.0293 0.0371 - 0.0007 0.0011 0 0.0011 0 0.0025
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C3. Jacobian Matrix of Route Travel Time Columns 49-56
Rows 1-56

49 50 51 52 53 54 55 56
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0
30 0 0.0004 0.0015 0.0001 0.0004 - 0.0006 0.0001 0.0004
31 0 0.0004 0.001 0.0003 0.0002 - 0.0004 0 .0 003 0.0002
32 0 0.0002 0.0008 0.0002 0.0008 - 0.0005 0 .0002 0.0008
33 0 0.0004 0.0005 0.0004 0.0005 - 0.0003 0 .0004 0.0005
34 0.0001 0.0001 0.0006 0.0001 0.0006 - 0.0005 0 .0004 0.0016
35 0 0.0004 0.0004 0.0004 0.0004 - 0.0003 0 .0 004 0.0011
36 0 0 0.0005 0 0.0001 - 0.0002 0 0.0001
37 0 0 0 0 0 0 0 0
38 0 0 0.0002 0 0.0002 - 0.0002 0 0.0002
39 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0
41 0 0 0.0002 0 0.0002 - 0.0002 0 0.0006
42 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0
44 0.001 0.0062 0.0127 0.002 0.0089 - 0.0018 0.002 0.0089
45 0.0222 0.0262 0.012 0.0222 0.0081 - 0.0018 0.0222 0.0081
46 0.0019 0.0029 0 .0095 0.0029 0.0095 - 0.0018 0.0029 0.0095
47 0.0237 0.0238 0.0089 0.0238 0.0089 - 0.0019 0.0238 0.0089
48 0.0046 0.0021 0.0091 0.0021 0.0091 - 0.0018 0.0057 0.012
49 0.026 0.023 0 .0084 0.023 0.0084 - 0.0019 0 .0 263 0.0114
50 0.0144 0.0281 0.011 0.0244 0.007 - 0.0021 0 .0 244 0.007
51 - 0.0001 0.0029 0.0272 0.0006 0.0236 0.0109 0.0006 0.0236
52 0.0155 0.0259 0.0078 0.0259 0.0078 - 0.0021 0.0259 0.0078
53 0.0004 0.0012 0.025 0.0012 0.025 0.0113 0.0012 0.025
54 0 0 0.0113 0 0.0113 0.0244 0 0.0113
55 0.0176 0.0252 0.0073 0.0252 0.0073 - 0.0021 0.0283 0.0105
56 0.0017 0.0007 0.0245 0.0007 0.0245 0.0113 0 .0 027 0.0275
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C4. Variance - Covariance Matrix by Variance Approximation Method Columns 1-12
Rows 1-56

1 2 3 4 5 6 7 8 9 10 11 12
1 94.9622 - 42.4544 - 52.5078 2.1097 - 2.1097 4.7949 - 4.7949 - 2.2411 2.2411 - 3.0044 3.0044 4.8265
2 - 42.4544 52 .9077 - 10.4533 - 0.0036 0.0036 - 0.0078 0.0078 0.183 -0 .1 83 0.2453 - 0.2453 - 0.4335
3 - 52.5078 - 10.4533 62.9611 - 2.106 2.106 - 4.7871 4.7871 2.0581 - 2.0581 2.7591 - 2.7591 - 4.393
4 2.1097 - 0.0036 - 2.106 25 .6999 - 25 .6999 1.7096 - 1.7096 - 0.6644 0.6644 - 0.8907 0.8907 1.4015
5 - 2.1097 0.0036 2.106 - 25 .6999 25 .6999 - 1.7096 1.7096 0.6644 - 0.6644 0.8907 - 0.8907 - 1.4015
6 4.7949 - 0.0078 - 4.7871 1.7096 - 1.7096 60 .0115 - 60 .0115 - 1.5095 1.5095 - 2.0236 2.0236 3.1832
7 - 4.7949 0.0078 4.7871 - 1.7096 1.7096 -60 .0115 60 .0115 1.5095 - 1.5095 2.0236 - 2.0236 - 3.1832
8 - 2.2411 0.183 2.0581 - 0.6644 0.6644 - 1.5095 1.5095 31 .3836 - 31.3836 1.5189 - 1.5189 - 1.9844
9 2.2411 - 0 .1 83 - 2.0581 0.6644 - 0.6644 1.5095 - 1.5095 - 31 .3836 31 .3836 - 1.5189 1.5189 1.9844

10 - 3.0044 0.2453 2.7591 - 0.8907 0.8907 - 2.0236 2.0236 1.5189 - 1.5189 43.2851 - 43.2851 - 2.6591
11 3.0044 - 0 .2 453 - 2.7591 0.8907 - 0.8907 2.0236 - 2.0236 - 1.5189 1.5189 -43.2851 43.2851 2.6591
12 4.8265 - 0 .4 335 - 4.393 1.4015 - 1.4015 3.1832 - 3.1832 - 1.9844 1.9844 - 2.6591 2.6591 82.6011
13 - 4.8554 0.4164 4.439 - 1.4246 1.4246 - 3.2361 3.2361 2 .2274 - 2.2274 2.9846 - 2.9846 -43.5399
14 0.0288 0.0171 - 0.046 0.0231 - 0.0231 0.0529 - 0.0529 - 0 .243 0.243 - 0.3254 0.3254 - 39.0612
15 26.5624 - 1.269 - 25 .2934 8.5518 - 8.5518 19.4355 - 19.4355 - 9.8018 9.8018 - 13.1379 13.1379 19.7306
16 -6.7369 0.4641 6.2728 - 2.0623 2.0623 - 4.6863 4 .6863 2 .6698 - 2.6698 3.5781 - 3.5781 - 5.2844
17 - 19.8255 0.805 19.0206 - 6.4895 6.4895 - 14.7492 14.7492 7.132 - 7.132 9.5598 - 9.5598 - 14.4461
18 3.5196 - 0.0806 - 3.4391 1.1988 - 1.1988 2.7249 - 2.7249 - 1.1859 1.1859 - 1.5897 1.5897 2.442
19 - 3.5196 0.0806 3.4391 - 1.1988 1.1988 - 2.7249 2.7249 1.1859 - 1.1859 1.5897 - 1.5897 - 2.442
20 5.0929 - 0.117 - 4.9759 1.7344 - 1.7344 3.9423 - 3.9423 - 1.716 1.716 - 2.3004 2.3004 3.5339
21 - 5.0929 0.117 4.9759 - 1.7344 1.7344 - 3.9423 3.9423 1.716 - 1.716 2.3004 - 2.3004 - 3.5339
22 - 4.2332 0.251 3.9822 - 1.3261 1.3261 - 3.0131 3.0131 1.8747 - 1.8747 2.5123 - 2.5123 - 3.4851
23 4.2332 - 0.251 - 3.9822 1.3261 - 1.3261 3.0131 - 3.0131 - 1.8747 1.8747 - 2.5123 2.5123 3.4851
24 - 4.7442 0.2829 4.4613 - 1.485 1.485 - 3.3741 3.3741 2.0992 - 2.0992 2.8133 - 2.8133 - 3.903
25 4.7442 - 0 .2 829 - 4 .4 613 1.485 - 1.485 3.3741 - 3.3741 - 2.0992 2.0992 - 2.8133 2.8133 3.903
26 8.6699 - 0.5429 - 8.127 2.6947 - 2.6947 6.1234 - 6.1234 - 3 .4384 3.4384 -4.6082 4.6082 6.8782
27 - 5.9899 0.3674 5.6226 - 1.8674 1.8674 - 4.2433 4.2433 2.4833 - 2.4833 3.328 - 3.328 - 4.819
28 - 2.68 0.1755 2.5045 - 0.8273 0.8273 - 1.8801 1.8801 0.9551 - 0.9551 1.2801 - 1.2801 - 2.0591
29 20 .2113 - 0.8182 - 19.3931 6.6172 - 6 .6172 15.0385 - 15.0385 - 7.5599 7.5599 - 10.1333 10.1333 15.0267
30 - 5.9817 0.2876 5.6942 - 1.9243 1.9243 - 4.3731 4.3731 2.3358 - 2.3358 3.1308 - 3.1308 -4.58
31 - 14.2296 0.5307 13.6989 - 4 .6928 4.6928 - 10.6653 10.6653 5.2241 - 5.2241 7.0025 - 7.0025 - 10.4467
32 3.5044 - 0 .0 883 - 3.416 1.1875 - 1.1875 2.699 - 2.699 - 1.1951 1.1951 - 1.6021 1.6021 2.4493
33 - 3.5044 0.0883 3.416 - 1.1875 1.1875 - 2.699 2.699 1.1951 - 1.1951 1.6021 - 1.6021 - 2.4493
34 3.218 - 0 .0 814 - 3.1366 1.0903 - 1.0903 2.478 - 2.478 - 1.098 1.098 - 1.4719 1.4719 2.2499
35 - 3.218 0.0814 3.1366 - 1.0903 1.0903 - 2.478 2.478 1.098 - 1.098 1.4719 - 1.4719 - 2.2499
36 - 4.127 0.218 3.9089 - 1.3128 1.3128 - 2.9829 2.9829 1.7519 - 1.7519 2.3481 - 2.3481 - 3.3141
37 4.127 - 0.218 - 3.9089 1.3128 - 1.3128 2.9829 - 2.9829 - 1.7519 1.7519 - 2.3481 2.3481 3.3141
38 - 3.4399 0.182 3.258 - 1.0941 1.0941 - 2.4859 2.4859 1.4594 - 1.4594 1.956 - 1.956 - 2.7617
39 3.4399 - 0.182 - 3.258 1.0941 - 1.0941 2.4859 - 2.4859 - 1.4594 1.4594 - 1.956 1.956 2.7617
40 11.3646 - 0.5482 - 10.8164 3.6546 - 3.6546 8.3053 - 8.3053 - 4.4443 4.4443 - 5.9568 5.9568 8.7138
41 - 6.1454 0.3047 5.8407 - 1.97 1.97 - 4.4767 4.4767 2.4626 - 2.4626 3.3007 - 3.3007 -4 .7 765
42 - 5.2192 0.2435 4.9757 - 1.6846 1.6846 - 3.8286 3.8286 1.9817 - 1.9817 2.6561 - 2.6561 - 3.9374
43 11.0354 - 0.4221 - 10.6133 3.6315 - 3.6315 8.2531 - 8.2531 - 4.0988 4.0988 - 5.4942 5.4942 8.1569
44 - 3.435 0.1516 3.2833 - 1.1152 1.1152 - 2.5343 2.5343 1.3193 - 1.3193 1.7683 - 1.7683 - 2.5978
45 - 7.6004 0.2704 7 .3299 - 2.5163 2 .5163 - 5.7188 5.7188 2.7795 - 2.7795 3.7258 - 3.7258 - 5.5591
46 3.7316 - 0 .1012 - 3.6304 1.2591 - 1.2591 2.8618 - 2.8618 - 1.2969 1.2969 - 1.7385 1.7385 2.6375
47 - 3.7316 0.1012 3.6304 - 1.2591 1.2591 - 2.8618 2.8618 1.2969 - 1.2969 1.7385 - 1.7385 - 2.6375
48 2.1343 - 0.0579 - 2 .0764 0.7202 - 0 .7202 1.6368 - 1.6368 - 0.7417 0.7417 - 0.9944 0.9944 1.5085
49 - 2.1343 0.0579 2 .0764 - 0.7202 0.7202 - 1.6368 1.6368 0.7417 - 0.7417 0.9944 -0.9944 - 1.5085
50 - 1.964 0.1065 1.8574 - 0.6227 0.6227 - 1.4148 1.4148 0.8372 - 0 Í8372 1.1221 - 1.1221 - 1.5827
51 1.964 - 0 .1065 - 1.8574 0.6227 - 0 .6227 1.4148 - 1.4148 - 0.8372 0.8372 - 1.1221 1.1221 1.5827
52 - 2.48 0.134 2.3461 - 0.7867 0.7867 - 1.7875 1.7875 1.0545 - 1.0545 1.4133 - 1.4133 - 1.9955
53 2.48 - 0 .134 - 2.3461 0.7867 - 0 .7867 1.7875 - 1.7875 - 1.0545 1.0545 - 1.4133 1.4133 1.9955
54 10.6102 - 0.4821 - 10.1281 3.4342 - 3.4342 7.8043 - 7.8043 - 4 .1 442 4.1442 - 5.5547 5.5547 8.1038
55 - 6.8508 0.3246 6.5262 - 2.2074 2.2074 - 5.0162 5.0162 2.7295 - 2 .7295 3.6585 - 3.6585 - 5.2958
56 - 3.7594 0.1576 3.6018 - 1.2268 1.2268 - 2.7881 2.7881 1.4147 - 1.4147 1.8962 - 1.8962 - 2.808
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C4. Variance - Covariance Matrix by Variance Approximation Method Columns 13-24
Rows 1-56

13 14 15 16 17 18 19 20 21 22 23 24
1 -4.8554 0.0288 26 .5624 -6 .7 3 6 9 - 19 .8255 3.5196 - 3.5196 5.0929 - 5.0929 - 4 .2 332 4.2332 - 4.7442
2 0.4164 0.0171 - 1.269 0.4641 0.805 - 0.0806 0.0806 - 0.117 0.117 0.251 -0.251 0.2829
3 4.439 - 0.046 - 25 .2934 6.2728 19.0206 - 3.4391 3.4391 - 4 .9 759 4.9759 3.9822 - 3.9822 4.4613
4 - 1.4246 0.0231 8.5518 - 2.0623 - 6.4895 1.1988 - 1.1988 1.7344 - 1.7344 - 1.3261 1.3261 - 1.485
5 1.4246 - 0.0231 - 8.5518 2.0623 6.4895 - 1.1988 1.1988 - 1.7344 1.7344 1.3261 - 1.3261 1.485
6 - 3.2361 0.0529 19 .4355 - 4 .6863 - 14.7492 2.7249 - 2.7249 3.9423 - 3.9423 - 3.0131 3.0131 - 3.3741
7 3.2361 - 0 .0 529 - 19.4355 4 .6863 14.7492 - 2.7249 2.7249 - 3.9423 3.9423 3.0131 - 3.0131 3.3741
8 2.2274 - 0 .243 - 9.8018 2.6698 7.132 - 1.1859 1.1859 - 1.716 1.716 1.8747 - 1.8747 2.0992
9 - 2.2274 0.243 9.8018 - 2.6698 - 7.132 1.1859 - 1.1859 1.716 - 1.716 - 1.8747 1.8747 - 2.0992

10 2.9846 - 0.3254 - 13.1379 3.5781 9.5598 - 1.5897 1.5897 - 2.3004 2.3004 2.5123 - 2.5123 2.8133
11 - 2.9846 0 .3254 13.1379 - 3.5781 - 9.5598 1.5897 - 1.5897 2.3004 - 2.3004 - 2.5123 2.5123 - 2.8133
12 - 43.5399 - 39 .0612 19.7306 - 5.2844 - 14.4461 2.442 - 2.442 3.5339 - 3.5339 - 3.4851 3.4851 - 3.903
13 57.1594 - 13 .6195 - 20 .5457 5.5513 14.9944 - 2.5132 2.5132 - 3.6368 3.6368 3.7854 - 3.7854 4.239
14 - 13.6195 52 .6807 0.8152 - 0.2669 - 0.5482 0.0711 - 0.0711 0.1029 - 0.1029 - 0.3003 0.3003 - 0.336
15 - 20.5457 0.8152 271 .3143 - 97 .2723 - 174.042 18.4307 - 18.4307 26 .6819 - 26 .6819 - 22.4624 22.4624 - 25.1381
16 5.5513 - 0.2669 - 97 .2723 89 .2763 7.996 - 3.7387 3.7387 - 5.4103 5.4103 5.35 - 5.35 5.9873
17 14.9944 - 0.5482 - 174.042 7.996 166.046 - 14.692 14.692 - 21 .2717 21 .2717 17.1124 - 17.1124 19.1509
18 - 2.5132 0.0711 18.4307 - 3.7387 - 14.692 34.1539 - 34 .1539 4.3801 - 4.3801 - 3.1966 3.1966 - 3.5773
19 2.5132 - 0.0711 - 18.4307 3.7387 14.692 - 34.1539 34 .1539 - 4.3801 4.3801 3.1966 - 3.1966 3.5773
20 - 3.6368 0.1029 26 .6819 - 5.4103 - 21 .2717 4.3801 - 4.3801 51 .6672 - 51 .6672 - 4.6278 4.6278 - 5.179
21 3.6368 - 0.1029 - 26 .6819 5.4103 21 .2717 - 4.3801 4.3801 - 51 .6672 51 .6672 4.6278 - 4.6278 5.179
22 3.7854 - 0.3003 - 22 .4624 5.35 17.1124 - 3.1966 3.1966 - 4.6278 4.6278 39.7532 - 39.7532 5.3228
23 - 3.7854 0.3003 22 .4624 - 5.35 - 17.1124 3.1966 - 3.1966 4.6278 - 4.6278 - 39.7532 39.7532 - 5.3228
24 4.239 - 0.336 - 25.1381 5.9873 19.1509 - 3.5773 3.5773 - 5.179 5.179 5.3228 - 5.3228 46.1036
25 - 4 .239 0.336 25.1381 - 5.9873 - 19.1509 3.5773 - 3.5773 5.179 - 5.179 - 5.3228 5.3228 - 46.1036
26 - 7.1857 0.3075 39 .6009 - 9.9246 - 29 .6763 5.3267 - 5.3267 7.7118 - 7.7118 - 7.2024 7.2024 - 8.0657
27 5.1154 - 0.2964 - 29.1148 7.136 21.9788 - 4.0169 4.0169 - 5.8154 5.8154 5.6716 - 5.6716 6.3518
28 2.0703 - 0.0111 - 10.4862 2.7886 7.6976 - 1.3098 1.3098 - 1.8964 1.8964 1.5308 - 1.5308 1.7139
29 - 15.7516 0.7248 117.0291 - 24.6221 - 92.407 18.6704 - 18 .6704 27 .0378 - 27 .0378 - 21.9896 21.9896 - 24.6057
30 4.8354 - 0.2554 - 32.6814 7.4252 25 .2562 - 4.8732 4.8732 - 7.0558 7.0558 6.2581 - 6.2581 7.0041
31 10.9161 - 0 .4 694 - 84 .3477 17.1969 67 .1508 - 13.7972 13.7972 - 19.982 19.982 15.7316 - 15.7316 17.6016
32 - 2.527 0 .0777 22 .5958 - 4.1043 - 18.4916 4.0079 - 4.0079 5.8057 - 5.8057 - 4.1113 4.1113 -4.5986
33 2.527 - 0.0777 - 22 .5958 4.1043 18.4916 - 4.0079 4.0079 - 5.8057 5.8057 4.1113 - 4.1113 4.5986
34 - 2.3215 0 .0715 20 .7223 - 3.7676 - 16.9547 3.6733 - 3.6733 5.321 - 5.321 - 3.7706 3.7706 - 4.2176
35 2.3215 - 0 .0 715 - 20 .7223 3.7676 16.9547 - 3.6733 3.6733 - 5.321 5.321 3.7706 - 3.7706 4.2176
36 3.5664 - 0.2523 - 28.2318 5.6695 22 .5624 - 4.6745 4.6745 -6 .7 7 0 2 6.7702 6.2456 - 6.2456 6.9936
37 - 3.5664 0.2523 28 .2318 - 5.6695 - 22 .5624 4.6745 - 4.6745 6.7702 - 6.7702 - 6.2456 6.2456 - 6.9936
38 2.9714 - 0.2097 - 23 .4767 4.7256 18.7511 - 3.8803 3.8803 - 5.6199 5.6199 5.1835 - 5.1835 5.8042
39 - 2.9714 0.2097 23.4767 - 4.7256 - 18.7511 3.8803 - 3.8803 5.6199 - 5.6199 - 5.1835 5.1835 - 5.8042
40 - 9.2 0.4862 62.6486 - 13.9547 - 48 .6939 9.5139 - 9.5139 13.7747 - 13.7747 - 12.1046 12.1046 - 13.5502
41 5.0719 - 0.2955 - 36 .245 7.809 28.436 - 5.6696 5.6696 - 8.2096 8.2096 7.3399 - 7.3399 8.2173
42 4.1281 - 0.1907 - 26.4036 6.1456 20.258 - 3.8443 3.8443 - 5.5651 5.5651 4.7647 - 4.7647 5.3329
43 - 8.5451 0.3882 65 .9602 - 13.3776 - 52.5827 10.8338 - 10.8338 15.6895 - 15.6895 - 12.4851 12.4851 - 13.9712
44 2.7366 - 0.1387 - 19.5231 4.2026 15.3205 - 3.0557 3.0557 - 4 .4248 4.4248 3.7475 - 3.7475 4.1943
45 5.8085 - 0.2494 - 46.4371 9.175 37.2621 - 7.7781 7.7781 - 11.2647 11.2647 8.7376 - 8.7376 9.7769
46 - 2.732 0.0945 24.3648 - 4.444 - 19.9208 4.3108 - 4.3108 6.2438 -6 .2 438 - 4.5046 4.5046 - 5.0393
47 2.732 - 0.0945 - 24.3648 4.444 19.9208 - 4.3108 4.3108 - 6.2438 6.2438 4.5046 - 4.5046 5.0393
48 - 1.5626 0.054 13.9365 - 2.5418 - 11.3947 2.4658 - 2.4658 3.5715 - 3.5715 - 2.5766 2.5766 - 2.8825
49 1.5626 - 0 .054 - 13.9365 2.5418 11.3947 - 2.4658 2.4658 - 3.5715 3.5715 2.5766 - 2.5766 2.8825
50 1.7038 - 0.121 - 13.3672 2.6753 10.6919 - 2.2189 2.2189 - 3.213 3.213 2.9426 - 2.9426 3.2955
51 - 1.7038 0.121 13.3672 - 2.6753 - 10.6919 2.2189 - 2.2189 3.213 - 3.213 - 2.9426 2.9426 - 3.2955
52 2.147 - 0 .1 515 - 16.801 3.3692 13.4318 - 2.7847 2.7847 - 4.0323 4.0323 3.6878 - 3.6878 4.1301
53 - 2.147 0.1515 16.801 - 3.3692 - 13.4318 2.7847 - 2.7847 4.0323 - 4.0323 - 3.6878 3.6878 - 4.1301
54 - 8.5681 0.4643 63 .0563 - 13.2464 - 49.8099 10.0734 - 10.0734 14.586 - 14.586 - 12.4608 12.4608 - 13.9484
55 5.6225 - 0.3267 - 42.0081 8.7238 33 .2843 - 6 .7 744 6 .7 744 - 9.8092 9.8092 8.5319 - 8.5319 9.5517
56 2.9456 - 0.1376 - 21 .0482 4.5226 16.5256 - 3.299 3.299 - 4.7768 4.7768 3.9289 - 3.9289 4.3967
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C4. Variance - Covariance Matrix by Variance Approximation Method Columns 25-36
Rows 1-56

25 26 27 28 29 30 31 32 33 34 35 36
1 4.7442 8.6699 - 5.9899 - 2.68 20 .2113 - 5.9817 - 14.2296 3.5044 - 3.5044 3.218 - 3.218 - 4.127
2 - 0.2829 - 0.5429 0.3674 0.1755 - 0.8182 0.2876 0.5307 - 0 .0 883 0 .0883 -0 .0 814 0.0814 0.218
3 - 4.4613 - 8.127 5.6226 2.5045 - 19.3931 5.6942 13.6989 - 3.416 3.416 - 3.1366 3.1366 3.9089
4 1.485 2.6947 - 1.8674 - 0.8273 6.6172 - 1.9243 - 4.6928 1.1875 - 1.1875 1.0903 - 1.0903 - 1.3128
5 - 1.485 - 2.6947 1.8674 0.8273 - 6 .6172 1.9243 4.6928 - 1.1875 1.1875 - 1.0903 1.0903 1.3128
6 3.3741 6.1234 - 4.2433 - 1.8801 15 .0385 - 4.3731 - 10.6653 2 .699 - 2.699 2.478 - 2.478 - 2.9829
7 - 3.3741 - 6.1234 4.2433 1.8801 - 15.0385 4.3731 10.6653 - 2.699 2.699 - 2.478 2.478 2.9829
8 - 2.0992 - 3.4384 2.4833 0.9551 - 7.5599 2.3358 5.2241 - 1.1951 1.1951 - 1.098 1.098 1.7519
9 2.0992 3.4384 - 2.4833 - 0.9551 7.5599 - 2.3358 - 5.2241 1.1951 - 1.1951 1 0 9 8 - 1.098 - 1.7519

10 - 2.8133 - 4.6082 3.328 1.2801 - 10.1333 3.1308 7.0025 - 1.6021 1.6021 - 1.4719 1.4719 2.3481
11 2.8133 4.6082 - 3.328 - 1.2801 10.1333 - 3.1308 - 7.0025 1.6021 - 1.6021 1.4719 - 1.4719 - 2.3481
12 3.903 6.8782 - 4.819 - 2.0591 15.0267 - 4.58 - 10.4467 2.4493 - 2 .4493 2.2499 - 2.2499 - 3.3141
13 - 4 .2 39 - 7.1857 5.1154 2.0703 - 15.7516 4.8354 10.9161 - 2 .527 2.527 - 2.3215 2.3215 3.5664
14 0.336 0.3075 - 0.2964 - 0.0111 0.7248 - 0.2554 - 0.4694 0.0777 - 0.0777 0.0715 - 0.0715 - 0.2523
15 25.1381 39 .6009 - 29 .1148 - 10.4862 117.0291 - 32.6814 - 84 .3477 22 .5958 - 22 .5958 20.7223 - 20.7223 - 28.2318
16 - 5.9873 - 9.9246 7.136 2.7886 - 24.6221 7.4252 17.1969 - 4 .1 043 4.1043 - 3.7676 3.7676 5.6695
17 - 19.1509 - 29 .6763 21.9788 7.6976 - 92.407 25.2562 67 .1508 - 18.4916 18.4916 - 16.9547 16.9547 22.5624
18 3.5773 5.3267 - 4.0169 - 1.3098 18.6704 - 4.8732 - 13.7972 4.0079 - 4.0079 3.6733 - 3.6733 - 4.6745
19 - 3.5773 - 5.3267 4.0169 1.3098 - 18.6704 4.8732 13.7972 - 4 .0 079 4.0079 - 3.6733 3.6733 4.6745
20 5.179 7.7118 - 5.8154 - 1.8964 27.0378 - 7.0558 - 19.982 5.8057 - 5.8057 5.321 - 5.321 - 6.7702
21 - 5.179 - 7.7118 5.8154 1.8964 - 27.0378 7.0558 19.982 - 5.8057 5.8057 - 5.321 5.321 6.7702
22 - 5.3228 - 7.2024 5.6716 1.5308 - 21.9896 6.2581 15.7316 - 4 .1 113 4.1113 - 3.7706 3.7706 6.2456
23 5.3228 7.2024 - 5.6716 - 1.5308 21.9896 - 6.2581 - 15.7316 4.1113 - 4.1113 3.7706 - 3.7706 - 6.2456
24 - 46.1036 - 8.0657 6.3518 1.7139 - 24.6057 7.0041 17.6016 - 4.5986 4.5986 - 4.2176 4.2176 6.9936
25 46.1036 8.0657 -6 .3 5 1 8 - 1.7139 24.6057 - 7.0041 - 17.6016 4.5986 - 4.5986 4.2176 - 4.2176 - 6.9936
26 8.0657 70 .2335 - 33.4086 - 36 .8249 33.99 - 9.9019 - 24.0881 6.0819 - 6.0819 5.5816 - 5.5816 - 8.2538
27 -6 .3518 - 33 .4086 37 .2634 - 3.8548 - 26.5268 7.6431 18.8837 - 4 .8 476 4.8476 - 4.4474 4.4474 6.9546
28 - 1.7139 - 36 .8249 - 3.8548 40 .6798 - 7.4632 2.2588 5.2044 - 1.2343 1.2343 - 1.1342 1.1342 1.2992
29 24.6057 33.99 - 26 .5268 - 7.4632 228.2827 - 76.9922 - 151.291 28.6691 - 28.6691 26.2676 - 26.2676 - 36.528
30 - 7.0041 - 9.9019 7.6431 2.2588 - 76.9922 61.4974 15.4948 - 6.5026 6.5026 - 5.9614 5.9614 9.0965
31 - 17.6016 - 24.0881 18.8837 5.2044 - 151.291 15.4948 135.7956 - 22 .166 5 22 .1665 - 20.3063 20.3063 27.4315
32 4.5986 6.0819 - 4.8476 - 1.2343 28.6691 - 6.5026 - 22 .1665 45 .584 3 - 45.5843 6.6994 - 6.6994 - 8.3722
33 - 4.5986 - 6 .0819 4.8476 1.2343 - 28.6691 6.5026 22 .1665 -45 .584 3 45 .5843 - 6.6994 6.6994 8.3722
34 4.2176 5.5816 - 4 .4474 - 1.1342 26.2676 - 5.9614 - 20 .3063 6.6994 - 6 .6 994 41.1934 - 41.1934 - 7.6676
35 -4.2176 - 5.5816 4.4474 1.1342 - 26.2676 5.9614 20 .3063 - 6 .6 9 9 4 6.6994 - 41 .1934 41.1934 7.6676
36 -6.9936 - 8.2538 6.9546 1.2992 - 36.528 9.0965 27 .4315 - 8.3722 8.3722 - 7.6676 7.6676 59.7453
37 6.9936 8.2538 - 6.9546 - 1.2992 36.528 - 9.0965 - 27 .4315 8.3722 - 8.3722 7.6676 - 7.6676 - 59.7453
38 - 5.8042 - 6.8627 5.7771 1.0856 - 30.2796 7.545 22 .7346 - 6 .9 344 6.9344 - 6.3508 6.3508 10.4929
39 5.8042 6.8627 - 5.7771 - 1.0856 30.2796 - 7.545 - 22 .7346 6.9344 - 6.9344 6.3508 - 6.3508 - 10.4929
40 13.5502 19.0561 - 14.7462 - 4.3098 65.7369 - 17.6466 - 48.0903 13.5446 - 13.5446 12.4153 - 12.4153 - 18.4148
41 - 8.2173 - 10.8756 8.6602 2.2154 - 40.9851 10.6963 30 .2889 - 8 .8 093 8.8093 - 8.072 8.072 12.529
42 - 5.3329 - 8.1804 6.0861 2.0944 - 24.7518 6.9503 17.8015 - 4 .7 352 4.7352 - 4.3433 4.3433 5.8857
43 13.9712 18 .8899 - 14.8935 - 3.9964 79.5548 - 19.4303 - 60 .1245 18 .6786 - 18.6786 17.1082 - 17.1082 - 23.444
44 - 4 .1943 - 5.7861 4.5181 1.2681 - 21.3119 5.7214 15 .5905 - 4 .3 9 3 4 4.3934 - 4.0262 4.0262 5.9625
45 - 9.7769 - 13.1038 10.3755 2.7283 - 58.2429 13.7089 44 .534 - 14 .2852 14.2852 - 13.082 13.082 17.4815
46 5.0393 6.5783 - 5.2763 - 1.3021 33.9481 - 7.2348 - 26 .7133 9.22 - 9.22 8.4403 - 8.4403 - 10.6535
47 - 5.0393 - 6.5783 5.2763 1.3021 - 33.9481 7.2348 26 .7133 - 9.22 9.22 - 8.4403 8.4403 10.6535
48 2.8825 3.7627 - 3.018 - 0.7447 19.4184 - 4.138 - 15.2804 5.2742 - 5.2742 4.8282 - 4.8282 - 6.0943
49 - 2.8825 - 3.7627 3.018 0.7447 - 19.4184 4.138 15.2804 - 5.2742 5.2742 - 4.8282 4.8282 6.0943
50 - 3.2955 - 3.9179 3.2893 0.6286 - 19.4761 4.4038 15.0723 - 4.9948 4.9948 - 4.5722 4.5722 7.4235
51 3.2955 3.9179 - 3.2893 - 0.6286 19.4761 - 4.4038 - 15.0723 4.9948 - 4.9948 4.5722 - 4.5722 - 7.4235
52 - 4.1301 - 4 .9262 4.1289 0.7972 - 24.363 5.5248 18.8381 - 6.2292 6.2292 - 5.7023 5.7023 9.2412
53 4.1301 4.9262 - 4 .1289 - 0.7972 24.363 - 5.5248 - 18.8381 6.2292 - 6.2292 5.7023 - 5.7023 - 9.2412
54 13.9484 18 .5544 - 14.7406 - 3.8138 74.7306 - 18.7869 - 55 .9437 16.914 - 16.914 15.4926 - 15.4926 - 23.0109
55 - 9.5517 - 12 .3497 9.9464 2.4034 - 52.5827 12.8425 39 .7402 - 12.35 12.35 - 11.31 11.31 17.2813
56 -4 .3 9 6 7 - 6 .2047 4 .7943 1.4104 - 22.1478 5.9444 16.2035 - 4.5639 4.5639 - 4.1826 4.1826 5.7296
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C4. Variance - Covariance Matrix by Variance Approximation Method Columns 37-48
Rows1-56

37 38 39 40 41 42 43 44 45 46 47 48
1 4.127 - 3.4399 3.4399 11.3646 - 6.1454 - 5.2192 11.0354 - 3.435 - 7.6004 3.7316 - 3.7316 2.1343
2 - 0.218 0.182 - 0.182 - 0.5482 0.3047 0.2435 - 0.4221 0.1516 0.2704 - 0.1012 0.1012 - 0.0579
3 - 3.9089 3.258 - 3.258 - 10.8164 5.8407 4.9757 - 10.6133 3.2833 7.3299 - 3.6304 3.6304 - 2.0764
4 1.3128 - 1.0941 1.0941 3.6546 - 1.97 - 1.6846 3.6315 - 1.1152 - 2.5163 1.2591 - 1.2591 0.7202
5 - 1.3128 1.0941 - 1.0941 - 3.6546 1.97 1.6846 - 3.6315 1.1152 2.5163 - 1.2591 1.2591 -0.7202
6 2.9829 - 2.4859 2.4859 8.3053 - 4.4767 - 3.8286 8.2531 - 2.5343 - 5.7188 2.8618 - 2.8618 1.6368
7 - 2.9829 2.4859 - 2.4859 - 8.3053 4.4767 3.8286 - 8.2531 2.5343 5.7188 - 2.8618 2.8618 - 1.6368
8 - 1.7519 1.4594 - 1.4594 - 4 .4443 2.4626 1.9817 - 4.0988 1.3193 2.7795 - 1.2969 1.2969 -0.7417
9 1.7519 - 1.4594 1.4594 4.4443 - 2.4626 - 1.9817 4.0988 - 1.3193 - 2.7795 1.2969 - 1.2969 0.7417

10 - 2.3481 1.956 - 1.956 - 5.9568 3.3007 2.6561 - 5.4942 1.7683 3.7258 - 1.7385 1.7385 -0.9944
11 2.3481 - 1.956 1.956 5.9568 - 3.3007 - 2.6561 5.4942 - 1.7683 - 3.7258 1.7385 - 1.7385 0.9944
12 3.3141 - 2.7617 2.7617 8.7138 - 4.7765 - 3.9374 8.1569 - 2.5978 - 5.5591 2.6375 - 2.6375 1.5085
13 - 3.5664 2 .9714 - 2.9714 - 9.2 5.0719 4.1281 - 8.5451 2.7366 5.8085 - 2.732 2.732 - 1.5626
14 0.2523 - 0.2097 0.2097 0.4862 - 0.2955 - 0.1907 0.3882 - 0.1387 - 0.2494 0.0945 - 0 .0945 0.054
15 28.2318 - 23.4767 23 .4767 62 .6486 - 36.245 - 26.4036 65 .9602 - 19.5231 - 46.4371 24.3648 - 24.3648 13.9365
16 - 5.6695 4.7256 - 4.7256 - 13.9547 7.809 6.1456 - 13.3776 4.2026 9.175 - 4.444 4.444 - 2.5418
17 - 22.5624 18.7511 - 18.7511 - 48.6939 28.436 20.258 - 52 .5827 15.3205 37.2621 - 19.9208 19.9208 - 11.3947
18 4.6745 - 3.8803 3.8803 9.5139 - 5.6696 - 3.8443 10.8338 - 3.0557 - 7.7781 4.3108 - 4.3108 2.4658
19 - 4.6745 3.8803 - 3.8803 - 9.5139 5.6696 3.8443 - 10.8338 3.0557 7.7781 -4.3108 4.3108 - 2.4658
20 6.7702 - 5.6199 5.6199 13.7747 - 8.2096 - 5.5651 15.6895 - 4.4248 - 11.2647 6.2438 - 6.2438 3.5715
21 -6.7702 5.6199 - 5.6199 - 13 .7747 8.2096 5.5651 - 15 .6895 4.4248 11.2647 -6.2438 6.2438 - 3.5715
22 -6.2456 5.1835 - 5.1835 - 12.1046 7.3399 4.7647 - 12.4851 3.7475 8.7376 - 4.5046 4.5046 - 2.5766
23 6.2456 - 5.1835 5.1835 12.1046 - 7.3399 - 4.7647 12.4851 - 3.7475 - 8.7376 4.5046 - 4.5046 2.5766
24 - 6.9936 5.8042 - 5.8042 - 13.5502 8.2173 5.3329 - 13.9712 4.1943 9.7769 - 5.0393 5.0393 - 2.8825
25 6.9936 - 5.8042 5.8042 13.5502 - 8.2173 - 5.3329 13.9712 - 4.1943 - 9.7769 5.0393 - 5.0393 2.8825
26 8.2538 -6.8627 6.8627 19.0561 - 10.8756 - 8.1804 18.8899 - 5.7861 - 13.1038 6.5783 - 6.5783 3.7627
27 -6.9546 5.7771 - 5.7771 - 14.7462 8.6602 6.0861 - 14.8935 4.5181 10.3755 - 5.2763 5.2763 - 3.018
28 - 1.2992 1.0856 - 1.0856 -4 .3 098 2.2154 2.0944 - 3.9964 1.2681 2.7283 - 1.3021 1.3021 - 0.7447
29 36.528 - 30.2796 30.2796 65 .7369 - 40.9851 - 24.7518 79 .5548 - 21 .3119 - 58 .2429 33.9481 - 33.9481 19.4184
30 - 9.0965 7.545 - 7.545 - 17 .6466 10.6963 6.9503 - 19.4303 5.7214 13.7089 - 7.2348 7.2348 - 4.138
31 - 27.4315 22.7346 - 22 .7346 - 48 .0903 30.2889 17.8015 - 60 .1245 15.5905 44 .534 - 26.7133 26.7133 - 15.2804
32 8.3722 -6 .9 344 6.9344 13.5446 - 8.8093 - 4.7352 18.6786 - 4 .3 934 - 14.2852 9.22 - 9.22 5.2742
33 - 8.3722 6.9344 - 6.9344 - 13.5446 8.8093 4.7352 - 18.6786 4 .3 934 14.2852 - 9.22 9.22 - 5.2742
34 7.6676 - 6.3508 6.3508 12 .4153 - 8.072 - 4.3433 17.1082 - 4.0262 - 13.082 8.4403 - 8.4403 4.8282
35 - 7.6676 6.3508 - 6.3508 - 12.4153 8.072 4.3433 - 17.1082 4.0262 13.082 - 8.4403 8.4403 - 4.8282
36 - 59 .7453 10.4929 - 10 .4929 - 18.4148 12.529 5.8857 - 23 .444 5.9625 17.4815 - 10.6535 10.6535 - 6.0943
37 59 .7453 - 10.4929 10.4929 18.4148 - 12.529 - 5.8857 23 .444 - 5.9625 - 17.4815 10.6535 - 10.6535 6.0943
38 - 10.4929 47.7251 - 47.7251 - 15.2779 10.3861 4.8918 - 19.4144 4.942 14.4724 - 8.8135 8.8135 - 5.0417
39 10.4929 - 47.7251 47.7251 15 .2779 - 10.3861 - 4.8918 19.4144 - 4.942 - 14.4724 8.8135 - 8.8135 5.0417
40 18.4148 - 15.2779 15 .2779 97.4108 - 45.3619 - 52.0489 38 .8787 - 10.9293 - 27 .9494 15.5416 - 15.5416 8.8903
41 - 12.529 10.3861 - 10.3861 - 45.3619 43.1011 2.2608 - 25 .0269 6 .7656 18.2613 - 10.5552 10.5552 - 6.038
42 - 5.8857 4.8918 - 4.8918 - 52 .0489 2.2608 49.7881 - 13 .8518 4 .1637 9.6881 - 4 .9865 4.9865 - 2.8524
43 23 .444 - 19.4144 19.4144 38 .8787 - 25.0269 - 13.8518 104.183 - 37 .9093 -66 .273 7 24 .3902 - 24.3902 13.9511
44 - 5.9625 4.942 - 4 .942 - 10 .9293 6.7656 4.1637 - 37 .9093 32 .7855 5.1239 - 4.6669 4.6669 - 2.6695
45 - 17.4815 14.4724 - 14 .4724 - 27 .9494 18.2613 9.6881 - 66 .273 7 5.1239 61 .1498 - 19.7233 19.7233 - 11.2817
46 10.6535 - 8.8135 8.8135 15 .5416 - 10.5552 - 4.9865 24 .3902 - 4 .6 669 - 19 .7233 62 .9002 -6 2 .900 2 8.1404
47 - 10.6535 8.8135 - 8 .8135 - 15.5416 10.5552 4.9865 - 24 .3902 4.6669 19.7233 - 62 .9002 62.9002 - 8.1404
48 6.0943 - 5.0417 5.0417 8.8903 - 6.038 - 2.8524 13.9511 - 2.6695 - 11.2817 8.1404 - 8.1404 32.6097
49 -6 .0 9 4 3 5.0417 - 5.0417 - 8.8903 6.038 2.8524 - 13.9511 2.6695 11.2817 - 8.1404 8.1404 - 32.6097
50 - 7.4235 6.1422 - 6.1422 - 9.4422 6.8221 2.6202 - 14.1499 2.8593 11.2906 - 7.9447 7.9447 - 4.5446
51 7.4235 - 6 .1 422 6.1422 9.4422 - 6.8221 - 2.6202 14.1499 - 2.8593 - 11.2906 7.9447 - 7.9447 4.5446
52 - 9.2412 7.6462 - 7.6462 - 11 .8123 8.5147 3.2976 - 17.6435 3.5781 14.0655 - 9.8798 9.8798 - 5.6515
53 9.2412 - 7 .6462 7.6462 11.8123 - 8.5147 - 3.2976 17.6435 - 3.5781 - 14.0655 9.8798 - 9.8798 5.6515
54 23.0109 - 19.0639 19 .0639 37 .6888 - 24.3878 - 13.301 47 .755 - 12.0949 - 35.6601 21 .8084 - 21.8084 12.4746
55 - 17.2813 14.3108 - 14 .3108 - 26 .2164 17.5114 8.705 - 34.9042 8.2819 26 .6223 - 17.0823 17.0823 - 9.7713
56 - 5.7296 4.7531 - 4.7531 - 11.4724 6.8763 4.596 - 12.8508 3.8129 9.0378 - 4.7261 4.7261 - 2.7033
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C4. Variance - Covariance Matrix by Variance Approximation Method Columns 49-56
Rows 1-56

49 50 51 52 53 54 55 56
1 - 2.1343 - 1.964 1.964 - 2.48 2.48 10.6102 - 6.8508 - 3.7594
2 0.0579 0.1065 - 0 .1 065 0.134 - 0.134 - 0.4821 0.3246 0.1576
3 2.0764 1.8574 - 1.8574 2.3461 - 2.3461 - 10.1281 6.5262 3.6018
4 - 0.7202 - 0.6227 0.6227 - 0.7867 0.7867 3.4342 - 2.2074 - 1.2268
5 0.7202 0.6227 - 0.6227 0.7867 - 0.7867 - 3.4342 2.2074 1.2268
6 - 1.6368 - 1.4148 1.4148 - 1.7875 1.7875 7.8043 - 5.0162 - 2.7881
7 1.6368 1.4148 - 1.4148 1.7875 - 1.7875 - 7.8043 5.0162 2.7881
8 0.7417 0.8372 -0 .8 372 1.0545 - 1.0545 - 4 .1 442 2.7295 1.4147
9 - 0.7417 - 0 .8 372 0.8372 - 1.0545 1.0545 4 .1442 - 2.7295 - 1.4147

10 0.9944 1.1221 - 1.1221 1.4133 - 1.4133 - 5.5547 3.6585 1.8962
11 -0 .9 944 - 1.1221 1.1221 - 1.4133 1.4133 5.5547 - 3.6585 - 1.8962
12 - 1.5085 - 1.5827 1.5827 - 1.9955 1.9955 8.1038 - 5.2958 - 2.808
13 1.5626 1.7038 - 1.7038 2.147 - 2.147 - 8.5681 5.6225 2.9456
14 - 0.054 - 0.121 0.121 - 0.1515 0.1515 0.4643 - 0.3267 - 0.1376
15 - 13.9365 - 13.3672 13.3672 - 16.801 16.801 63 .0563 - 42.0081 - 21 .0482
16 2.5418 2.6753 - 2.6753 3.3692 - 3.3692 - 13 .2464 8.7238 4.5226
17 11.3947 10.6919 - 10.6919 13.4318 - 13.4318 - 49 .8099 33.2843 16.5256
18 - 2.4658 - 2.2189 2.2189 - 2.7847 2.7847 10.0734 -6 .7 744 - 3.299
19 2.4658 2.2189 - 2.2189 2.7847 - 2.7847 - 10.0734 6.7744 3.299
20 - 3.5715 - 3.213 3.213 - 4.0323 4.0323 14.586 - 9.8092 - 4.7768
21 3.5715 3.213 - 3.213 4.0323 - 4.0323 - 14.586 9.8092 4.7768
22 2.5766 2.9426 - 2.9426 3.6878 - 3.6878 - 12.4608 8.5319 3.9289
23 - 2.5766 - 2.9426 2.9426 - 3.6878 3.6878 12.4608 - 8.5319 - 3.9289
24 2.8825 3.2955 - 3.2955 4.1301 - 4.1301 - 13.9484 9.5517 4.3967
25 - 2.8825 - 3.2955 3.2955 - 4.1301 4.1301 13.9484 - 9.5517 - 4.3967
26 - 3.7627 - 3.9179 3.9179 - 4.9262 4.9262 18.5544 - 12.3497 - 6.2047
27 3.018 3.2893 - 3.2893 4.1289 - 4.1289 - 14.7406 9 .9464 4.7943
28 0.7447 0.6286 -0.6286 0.7972 - 0.7972 - 3.8138 2 .4034 1.4104
29 - 19 .4184 - 19.4761 19.4761 - 24.363 24 .363 74.7306 - 52 .5827 - 22.1478
30 4.138 4.4038 - 4.4038 5.5248 - 5.5248 - 18.7869 12.8425 5.9444
31 15 .2804 15.0723 - 15.0723 18.8381 - 18.8381 - 55.9437 39 .7402 16 .2035
32 - 5.2742 - 4.9948 4.9948 - 6.2292 6.2292 16.914 - 12.35 - 4.5639
33 5.2742 4.9948 - 4 .9 948 6.2292 - 6.2292 - 16.914 12.35 4.5639
34 - 4 .8282 - 4.5722 4.5722 - 5.7023 5.7023 15.4926 - 11.31 - 4.1826
35 4.8282 4.5722 - 4 .5 722 5.7023 - 5.7023 - 15.4926 11.31 4.1826
36 6 .0943 7.4235 - 7.4235 9.2412 - 9.2412 - 23 .0109 17 .2813 5.7296
37 - 6 .0943 - 7.4235 7.4235 - 9.2412 9.2412 23 .0109 - 17.2813 - 5.7296
38 5.0417 6.1422 - 6 .1 422 7.6462 - 7.6462 - 19.0639 14.3108 4.7531
39 - 5.0417 - 6.1422 6.1422 - 7.6462 7.6462 19.0639 - 14.3108 - 4.7531
40 - 8.8903 - 9.4422 9.4422 - 11.8123 11.8123 37.6888 - 26 .2164 - 11.4724
41 6.038 6.8221 - 6.8221 8.5147 - 8.5147 - 24.3878 17.5114 6.8763
42 2.8524 2.6202 - 2 .6202 3.2976 - 3.2976 - 13.301 8.705 4.596
43 - 13.9511 - 14.1499 14.1499 - 17.6435 17.6435 47.755 - 34 .9042 - 12.8508
44 2.6695 2.8593 - 2.8593 3.5781 - 3.5781 - 12.0949 8.2819 3.8129
45 11.2817 11.2906 - 11.2906 14.0655 - 14.0655 - 35.6601 26 .6223 9.0378
46 - 8.1404 - 7.9447 7.9447 - 9.8798 9.8798 21.8084 - 17.0823 - 4.7261
47 8.1404 7.9447 - 7.9447 9.8798 - 9.8798 - 21.8084 17.0823 4.7261
48 - 32 .6097 - 4.5446 4.5446 - 5.6515 5.6515 12.4746 - 9.7713 - 2.7033
49 32 .6097 4.5446 - 4.5446 5.6515 - 5.6515 - 12.4746 9.7713 2.7033
50 4.5446 38.3515 - 38 .3515 7.1841 - 7.1841 - 13.7949 11.3899 2.405
51 - 4.5446 - 38 .3515 38 .3515 - 7.1841 7.1841 13.7949 - 11.3899 - 2.405
52 5.6515 7.1841 - 7.1841 48.0473 - 48 .0473 - 17.1981 14.1737 3.0245
53 - 5.6515 - 7.1841 7.1841 - 48.0473 48.0473 17.1981 - 14.1737 - 3.0245
54 - 12.4746 - 13.7949 13.7949 - 17.1981 17.1981 93.3292 - 52.0521 -41.2771
55 9.7713 11.3899 - 11.3899 14.1737 - 14.1737 - 52.0521 47.7411 4.3111
56 2.7033 2.405 - 2.405 3.0245 - 3.0245 - 41.2771 4.3111 36.966
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C5. Variance-Covariance Matrix by Simulation Method Columns 1 -12
Rows 1-56

1 2 3 4 5 6 7 8 9 10 11 12
1 91.9629 - 42 .1214 - 49 .8415 1.2119 - 1.2119 3.2179 - 3.2179 - 0.6844 0.6844 - 1.9653 1.9653 2.2655
2 - 42 .1214 52 .9029 - 10.7815 0.4061 - 0.4061 1.4873 - 1.4873 -0.9909 0.9909 -0 .5 088 0.5088 - 0.8095
3 - 49.8415 - 10.7815 60 .623 - 1.618 1.618 - 4.7052 4.7052 1.6752 - 1.6752 2.4742 - 2.4742 - 1.456
4 1.2119 0.4061 - 1.618 25.9886 - 25.9886 2.8693 - 2.8693 - 0.9118 0.9118 - 1.1335 1.1335 0.8402
5 - 1.2119 - 0.4061 1.618 - 25.9886 25.9886 - 2.8693 2.8693 0.9118 - 0.9118 1.1335 - 1.1335 - 0.8402
6 3.2179 1.4873 - 4.7052 2.8693 - 2.8693 62.0779 - 62 .0779 - 1.9431 1.9431 - 2.4068 2.4068 1.9621
7 - 3.2179 - 1.4873 4.7052 - 2.8693 2.8693 - 62.0779 62 .0779 1.9431 - 1.9431 2.4068 - 2.4068 - 1.9621
8 - 0.6844 -0 .9 909 1.6752 - 0.9118 0.9118 - 1.9431 1.9431 31.5713 - 31 .5713 1.6797 - 1.6797 -0.6331
9 0.6844 0.9909 - 1.6752 0.9118 - 0.9118 1.9431 - 1.9431 - 31 .5713 31 .5713 - 1.6797 1.6797 0.6331

10 - 1.9653 - 0 .5 088 2.4742 - 1.1335 1.1335 - 2.4068 2.4068 1.6797 - 1.6797 43.6062 - 43.6062 - 1.1195
11 1.9653 0.5088 - 2.4742 1.1335 - 1.1335 2.4068 - 2.4068 - 1.6797 1.6797 - 43 .6062 43.6062 1.1195
12 2.2655 - 0 .8 095 - 1.456 0.8402 - 0.8402 1.9621 - 1.9621 - 0.6331 0.6331 - 1.1195 1.1195 80.4303
13 - 2.8408 0.3827 2.4582 - 0.936 0.936 - 3.7005 3.7005 1.6204 - 1.6204 2.3648 - 2.3648 - 41.236
14 0.5753 0.4269 - 1.0022 0.0957 - 0.0957 1.7385 - 1.7385 - 0 .9 873 0.9873 - 1.2454 1.2454 - 39.1943
15 8.3224 3.5142 - 11.8366 5.8939 - 5.8939 11.1799 - 11.1799 - 4.6179 4.6179 -6 .6 175 6.6175 2.3624
16 2.3598 0.5866 - 2.9464 1.3992 - 1.3992 5.1329 - 5.1329 - 2.6093 2.6093 - 1.8401 1.8401 0.7974
17 - 10.6822 - 4 .1 009 14.7831 - 7.2931 7.2931 - 16.3128 16.3128 7.2272 - 7.2272 8.4576 - 8.4576 - 3.1598
18 3.9434 1.4081 - 5.3516 2.1632 - 2.1632 6.2129 - 6.2129 - 1.8138 1.8138 - 2.7718 2.7718 1.3599
19 - 3.9434 - 1.4081 5.3516 - 2.1632 2.1632 - 6.2129 6.2129 1.8138 - 1.8138 2.7718 - 2.7718 - 1.3599
20 5.0872 1.7197 - 6.8069 2.9898 - 2.9898 9.0725 - 9.0725 - 3.7124 3.7124 -4.4856 4.4856 1.7265
21 - 5.0872 - 1.7197 6.8069 - 2.9898 2.9898 - 9.0725 9.0725 3.7124 - 3.7124 4.4856 - 4.4856 - 1.7265
22 - 4.651 - 1.4123 6.0633 - 1.8849 1.8849 - 5.8355 5.8355 3.4649 - 3.4649 3.7894 - 3.7894 - 2.1449
23 4.651 1.4123 - 6.0633 1.8849 - 1.8849 5.8355 - 5.8355 - 3.4649 3.4649 - 3.7894 3.7894 2.1449
24 -4.3616 - 1.4547 5.8164 - 2.9052 2.9052 - 6.4323 6.4323 3.3572 - 3.3572 3.3214 - 3.3214 - 1.3538
25 4.3616 1.4547 - 5.8164 2.9052 - 2.9052 6.4323 - 6.4323 - 3.3572 3.3572 - 3.3214 3.3214 1.3538
26 0.8632 1.2292 - 2.0923 1.3796 - 1.3796 2.2563 - 2.2563 - 1.4942 1.4942 - 1.9346 1.9346 1.9424
27 - 2.4072 - 0.7736 3.1808 - 1.6 1.6 - 3.6362 3.6362 2.0511 - 2.0511 2.7973 - 2.7973 - 0.7348
28 1.544 - 0 .4 555 - 1.0885 0.2204 - 0.2204 1.3799 - 1.3799 - 0.557 0.557 - 0.8626 0.8626 - 1.2076
29 8.4123 3.5217 - 11.9339 6.2693 - 6.2693 14.3584 - 14.3584 - 6 .0 897 6.0897 - 6.3988 6.3988 2.4692
30 2.2467 1.3128 - 3.5594 1.2194 - 1.2194 4.7878 - 4.7878 - 2.2016 2.2016 - 1.0514 1.0514 2.4094
31 - 10.659 - 4 .8 3 4 4 15.4934 - 7.4887 7.4887 - 19.1462 19.1462 8.2913 - 8.2913 7.4502 - 7.4502 - 4.8787
32 6.4662 3.1677 - 9.6339 4.1891 - 4.1891 12.1537 - 12.1537 - 5.7034 5.7034 - 5.3317 5.3317 3.4152
33 ■6 .4 662 - 3.1677 9.6339 - 4.1891 4.1891 - 12.1537 12.1537 5.7034 - 5.7034 5.3317 - 5.3317 - 3.4152
34 6.4209 2.3748 - 8.7957 3.9965 - 3.9965 12.0584 - 12.0584 - 5.0201 5.0201 - 4.5509 4.5509 3.1217
35 - 6.4209 - 2.3748 8.7957 - 3.9965 3.9965 - 12.0584 12.0584 5.0201 - 5.0201 4.5509 -4.5509 - 3.1217
36 - 7.4391 - 2 .9 285 10.3676 - 4.9608 4.9608 - 13.5282 13.5282 5.7865 - 5.7865 7.0748 - 7.0748 -4 .2 15
37 7.4391 2.9285 - 10.3676 4.9608 - 4.9608 13.5282 - 13.5282 - 5.7865 5.7865 - 7.0748 7.0748 4.215
38 -6.6292 - 2.5624 9.1916 - 3.3728 3.3728 - 10.1613 10.1613 4.8097 - 4.8097 4.9958 - 4.9958 - 3.38
39 6.6292 2 .5 624 - 9.1916 3.3728 - 3.3728 10.1613 - 10.1613 - 4.8097 4.8097 - 4.9958 4.9958 3.38
40 2.7893 0 .6 712 - 3.4605 1.9789 - 1.9789 5.9432 - 5.9432 - 2.5539 2.5539 - 1.8757 1.8757 0.9056
41 - 5.5586 - 0 .5 285 6.0871 - 2.6658 2.6658 - 8.2852 8.2852 3.7451 - 3.7451 3.3284 - 3.3284 - 1.2769
42 2.7693 - 0 .1 427 - 2.6266 0.6869 - 0.6869 2.342 - 2.342 - 1.1912 1.1912 - 1.4527 1.4527 0.3713
43 6.5522 3.5896 - 10.1418 4.1101 - 4.1101 10.2978 - 10.2978 - 4.7611 4.7611 - 5.2348 5.2348 2.1373
44 1.2143 - 0.3481 -0.8662 0.7201 - 0.7201 2.3911 - 2.3911 - 0.4486 0.4486 - 0.2642 0.2642 0.2473
45 - 7.7665 - 3.2415 11.008 - 4.8302 4.8302 - 12.689 12.689 5.2097 - 5.2097 5.4989 - 5.4989 - 2.3846
46 11.0019 3.5619 - 14.5638 7.2614 - 7.2614 19.659 - 19.659 - 7.3228 7.3228 - 6.5311 6.5311 2.5945
47 - 11.0019 - 3.5619 14.5638 - 7.2614 7.2614 - 19.659 19.659 7.3228 - 7.3228 6.5311 - 6.5311 - 2.5945
48 6.1722 3.1134 - 9.2856 4.1312 - 4.1312 11.7012 - 11.7012 - 3.511 3.511 - 3.8617 3.8617 1.5893
49 - 6.1722 - 3.1134 9.2856 - 4.1312 4.1312 - 11.7012 11.7012 3.511 - 3.511 3.8617 - 3.8617 - 1.5893
50 - 6.5184 - 3.5606 10.079 - 4.3272 4.3272 - 12.3978 12.3978 5.7205 - 5.7205 5.2218 - 5.2218 - 2.3943
51 6.5184 3.5606 - 10.079 4.3272 - 4.3272 12.3978 - 12.3978 - 5.7205 5.7205 - 5.2218 5.2218 2.3943
52 - 9.164 - 3.7071 12.8711 - 5.3598 5.3598 - 15.1998 15.1998 6.4408 - 6.4408 5.7553 - 5.7553 - 2.2845
53 9.164 3.7071 - 12.8711 5.3598 - 5.3598 15.1998 - 15.1998 - 6.4408 6.4408 - 5.7553 5.7553 2.2845
54 3.9174 1.2112 - 5.1286 2.0191 - 2.0191 6.779 - 6 .779 - 3.3677 3.3677 - 2.6715 2.6715 0.2575
55 - 4.7941 - 2.4976 7.2918 - 3.0096 3.0096 - 8.487 8.487 4.3267 - 4.3267 3.3309 - 3.3309 - 0.8653
56 0.8767 1.2864 - 2.1631 0.9905 - 0.9905 1.7079 - 1.7079 - 0.959 0 .959 - 0.6594 0.6594 0.6078
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C5. Variance-Covariance Matrix by Simulation Method Columns 13-2 4
Rows 1-56

13 14 15 16 17 18 19 20 21 22 23 24
1 - 2.8408 0.5753 8.3224 2.3598 - 10.6822 3.9434 - 3.9434 5.0872 - 5.0872 - 4.651 4.651 -4.3616
2 0.3827 0.4269 3.5142 0.5866 - 4.1009 1.4081 - 1.4081 1.7197 - 1.7197 - 1.4123 1.4123 - 1.4547
3 2.4582 - 1.0022 - 11.8366 - 2 .9464 14.7831 - 5.3516 5.3516 - 6.8069 6.8069 6.0633 - 6 .0 633 5.8164
4 - 0.936 0.0957 5.8939 1.3992 - 7.2931 2.1632 - 2.1632 2.9898 - 2.9898 - 1.8849 1.8849 - 2.9052
5 0.936 - 0.0957 - 5.8939 - 1.3992 7.2931 - 2.1632 2.1632 - 2.9898 2.9898 1.8849 - 1.8849 2.9052
6 - 3.7005 1.7385 11.1799 5 .1329 - 16.3128 6.2129 - 6.2129 9 .0725 - 9.0725 - 5.8355 5.8355 -6.4323
7 3.7005 - 1.7385 - 11.1799 - 5.1329 16.3128 -6.2129 6.2129 - 9.0725 9.0725 5.8355 - 5.8355 6.4323
8 1.6204 -0 .9 873 - 4.6179 - 2 .6 093 7.2272 - 1.8138 1.8138 - 3.7124 3.7124 3.4649 - 3.4649 3.3572
9 - 1.6204 0 .9873 4.6179 2 .6 093 - 7.2272 1.8138 - 1.8138 3.7124 - 3.7124 - 3.4649 3.4649 - 3.3572

10 2.3648 - 1.2454 - 6.6175 - 1.8401 8.4576 - 2.7718 2.7718 - 4 .4856 4.4856 3.7894 - 3.7894 3.3214
11 - 2.3648 1.2454 6.6175 1.8401 - 8.4576 2.7718 - 2.7718 4 .4856 - 4.4856 - 3.7894 3.7894 - 3.3214
12 - 41.236 - 39.1943 2.3624 0 .7 974 - 3.1598 1.3599 - 1.3599 1.7265 - 1.7265 - 2.1449 2.1449 - 1.3538
13 56.4369 - 15.2009 -6.8946 - 2 .3276 9.2222 - 3.202 3.202 - 6 .0 158 6.0158 4.8641 - 4.8641 4.7911
14 - 15.2009 54.3951 4.5322 1.5302 - 6.0624 1.8421 - 1.8421 4 .2 893 - 4.2893 - 2.7193 2.7193 - 3.4373
15 -6.8946 4 .5322 190.2352 - 54 .4383 - 135.797 22.4785 - 22 .4785 32 .2755 - 32 .2755 - 19.3436 19.3436 - 21.1164
16 - 2.3276 1.5302 - 54 .4383 91 .7544 - 37.3161 9.5497 - 9.5497 13 .4663 - 13 .4663 - 8.5426 8.5426 - 8.0237
17 9.2222 - 6 .0 624 - 135.797 - 37.3161 173.113 - 32.0282 32 .0282 - 45 .7418 45 .7418 27 .8862 - 27.8862 29.1401
18 - 3.202 1.8421 22 .4785 9.5497 - 32.0282 43.18 - 43 .18 17 .2748 - 17.2748 - 10.3894 10.3894 - 10.8835
19 3.202 - 1.8421 - 22.4785 - 9 .5497 32.0282 - 43 .18 43 .18 - 17 .2748 17 .2748 10.3894 - 10.3894 10.8835
20 - 6.0158 4 .2 893 32.2755 13 .4663 - 45.7418 17.2748 - 17.2748 70 .2933 - 70 .2933 - 15.495 15.495 - 16.1704
21 6.0158 - 4 .2 893 - 32 .2755 - 13 .4663 45.7418 - 17.2748 17.2748 - 70 .2933 70 .2933 15.495 - 15.495 16.1704
22 4.8641 - 2.7193 - 19.3436 - 8.5426 27.8862 - 10.3894 10.3894 - 15 .495 15.495 46 .1535 - 46 .1535 11.3745
23 - 4.8641 2.7193 19.3436 8.5426 - 27.8862 10.3894 - 10.3894 15 .495 - 15.495 - 46 .153 5 46.1535 - 11.3745
24 4.7911 - 3.4373 - 21 .1164 - 8.0237 29.1401 - 10.8835 10.8835 - 16 .1704 16.1704 11.3745 - 11.3745 53.0848
25 - 4.7911 3.4373 21 .1164 8.0237 - 29.1401 10.8835 - 10.8835 16 .1704 - 16.1704 - 11.3745 11.3745 - 53.0848
26 - 2.4966 0.5542 8.9172 3.0667 - 11.9838 4.9139 - 4.9139 6 .7 387 - 6 .7387 - 4.4241 4.4241 - 4.7048
27 3.2073 - 2.4725 - 14.469 - 5.1679 19.6369 - 7.4959 7.4959 - 10 .8822 10.8822 8.0586 - 8.0586 8.9471
28 - 0.7107 1.9183 5.5519 2.1013 - 7.6531 2.5821 - 2.5821 4 .1 435 - 4 .1435 - 3.6345 3.6345 - 4.2423
29 - 9.4153 6.946 66 .8502 30 .7599 - 97.6101 37.8892 - 37 .8892 53 .5695 - 53 .5695 - 34 .2204 34.2204 - 34.3251
30 - 2.7849 0.3755 20.6481 10.9647 - 31.6128 12.004 - 12.004 17 .9458 - 17.9458 - 10.6173 10.6173 - 11.2592
31 12.2002 - 7.3215 - 87 .4983 - 41 .7246 129.223 - 49.8932 49 .8932 - 71 .5153 71 .5153 44 .8376 - 44.8376 45.5842
32 - 8.4159 5.0007 56 .9535 28.8891 - 85.8426 32.8238 - 32 .8238 47 .5026 - 47 .5026 - 29 .2616 29.2616 - 30.1172
33 8.4159 - 5.0007 - 56.9535 - 28.8891 85.8426 - 32.8238 32.8238 -47 .5026 47 .5026 29 .2616 - 29.2616 30.1172
34 - 7.3988 4.2772 52.6768 26 .6535 - 79.3303 30.3263 - 30 .3263 44 .4917 - 44 .4917 - 27 .9578 27.9578 - 27.258
35 7.3988 - 4.2772 - 52.6768 - 26 .6535 79.3303 - 30.3263 30 .3263 -44 .4917 44 .4917 27 .9578 - 27.9578 27.258
36 9.9609 - 5.7459 - 58 .8495 - 29 .6662 88.5157 - 34.0788 34.0788 -49 .778 3 49 .7783 31.5733 - 31.5733 32.1275
37 - 9.9609 5.7459 58.8495 29 .6662 - 88.5157 34.0788 - 34.0788 49 .7783 - 49 .7783 - 31.5733 31.5733 - 32.1275
38 8.0687 - 4.6887 - 48 .1543 - 25.0911 73.2455 - 27.8841 27.8841 -40 .5 1 0 4 40 .5104 26 .1699 - 26.1699 27.4015
39 - 8.0687 4.6887 48 .1543 25.0911 - 73.2455 27.8841 - 27.8841 40 .5104 - 40 .5104 - 26 .1699 26.1699 - 27.4015
40 - 2.8623 1.9568 20.5438 10.1189 - 30.6627 11.1408 - 11.1408 17.3458 - 17.3458 - 10.177 10.177 - 11.4384
41 5.0343 - 3.7574 - 33.8085 - 16.8816 50.6901 - 18.3841 18.3841 - 28 .1108 28 .1108 17.8684 - 17.8684 18.3026
42 - 2.1719 1.8006 13.2647 6.7627 - 20 .0273 7.2434 - 7.2434 10.765 - 10.765 - 7.6915 7.6915 - 6.8641
43 - 7.5128 5.3755 58.0275 30 .2999 - 88 .3274 33.7772 - 33 .7772 47 .9902 - 47 .9902 - 29.204 29.204 - 30.3954
44 - 0.5433 0.2961 9.9353 5.6056 - 15.541 6.0995 - 6 .0 995 9.2716 - 9.2716 - 5.4677 5.4677 - 4.8825
45 8.0561 - 5.6715 - 67 .9628 - 35 .9055 103.8683 - 39.8767 39 .8767 - 57 .2618 57.2618 34.6716 - 34.6716 35.2779
46 - 11.9693 9.3749 96.5367 52 .6388 - 149.176 58.279 - 58 .279 84 .1172 - 84.1172 - 50 .1078 50.1078 - 50.4376
47 11.9693 - 9.3749 - 96.5367 - 52.6388 149.1755 - 58.279 58.279 - 84 .1172 84.1172 50.1078 - 50.1078 50.4376
48 - 7.0701 5.4808 55.019 30 - 85.019 33.6957 - 33 .6957 47 .7029 - 47 .7029 - 29 .2309 29.2309 - 28.8327
49 7.0701 - 5.4808 - 55.019 -30 85.019 - 33.6957 33 .6957 - 47 .7029 47 .7029 29 .2309 - 29.2309 28.8327
50 7.9319 - 5.5376 - 61 .9868 - 32.9091 94.8959 - 36.5419 36 .5419 - 53 .3245 53.3245 32.4151 - 32.4151 32.991
51 - 7.9319 5.5376 61.9868 32.9091 - 94.8959 36.5419 - 36 .5419 53 .3245 - 53.3245 - 32.4151 32.4151 - 32.991
52 9.8339 - 7.5495 - 75 .7703 - 40 .4997 116.27 -45.7311 45.7311 - 65 .5209 65 .5209 41.5338 - 41.5338 40.4594
53 - 9.8339 7.5495 75 .7703 40 .4997 - 116.27 45.7311 - 45.7311 65 .5209 - 65 .5209 - 41 .5338 41.5338 -40 .4594
54 - 3.4135 3.156 30.6863 15.7364 - 46.4227 17.5917 - 17.5917 25 .2597 - 25.2597 - 15.7159 15.7159 - 15.294
55 5.2772 - 4 .4 119 - 44 .1354 - 22 .724 66 .8594 - 26.4039 26 .4039 - 37 .1313 37.1313 22.7438 - 22.7438 22.7612
56 - 1.8637 1.2559 13.4491 6.9876 - 20.4367 8.8122 - 8.8122 11.8716 - 11.8716 - 7.0279 7.0279 - 7.4672
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C5. Variance-Covariance Matrix by Simulation Method columns 25-36
Rows 1-56

25 26 27 28 29 30 31 32 33 34 35 36
1 4.3616 0.8632 - 2.4072 1.544 8.4123 2.2467 - 10.659 6.4662 - 6.4662 6.4209 -6.4209 - 7.4391
2 1.4547 1.2292 - 0.7736 - 0.4555 3.5217 1.3128 - 4.8344 3.1677 - 3.1677 2.3748 - 2.3748 - 2.9285
3 - 5.8164 - 2.0923 3.1808 - 1.0885 - 11.9339 - 3.5594 15.4934 - 9.6339 9.6339 - 8.7957 8.7957 10.3676
4 2.9052 1.3796 - 1.6 0.2204 6.2693 1.2194 - 7.4887 4.1891 -4.1891 3.9965 - 3.9965 - 4.9608
5 - 2.9052 - 1.3796 1.6 - 0.2204 - 6 .2693 - 1.2194 7.4887 - 4.1891 4.1891 - 3.9965 3.9965 4.9608
6 6.4323 2.2563 - 3.6362 1.3799 14.3584 4.7878 - 19.1462 12.1537 - 12.1537 12.0584 - 12.0584 - 13.5282
7 - 6.4323 - 2.2563 3.6362 - 1.3799 - 14.3584 - 4.7878 19.1462 - 12.1537 12.1537 - 12.0584 12.0584 13.5282
8 - 3.3572 - 1.4942 2.0511 - 0.557 -6 .0897 - 2.2016 8.2913 - 5.7034 5.7034 - 5.0201 5.0201 5.7865
9 3.3572 1.4942 - 2.0511 0.557 6.0897 2.2016 - 8.2913 5.7034 - 5.7034 5.0201 - 5.0201 - 5.7865

10 - 3.3214 - 1.9346 2.7973 - 0.8626 - 6.3988 - 1.0514 7.4502 - 5.3317 5.3317 - 4.5509 4.5509 7.0748
11 3.3214 1.9346 - 2.7973 0.8626 6.3988 1.0514 - 7.4502 5.3317 - 5.3317 4.5509 -4.5509 - 7.0748
12 1.3538 1.9424 - 0.7348 - 1.2076 2.4692 2.4094 - 4.8787 3.4152 - 3.4152 3.1217 - 3.1217 - 4.215
13 - 4.7911 - 2.4966 3.2073 - 0.7107 - 9.4153 - 2.7849 12.2002 - 8.4159 8.4159 - 7.3988 7.3988 9.9609
14 3.4373 0.5542 - 2.4725 1.9183 6.946 0.3755 - 7.3215 5.0007 - 5.0007 4.2772 - 4.2772 - 5.7459
15 21 .1164 8.9172 - 14.469 5.5519 66 .8502 20.6481 - 87 .4983 56 .9535 - 56 .9535 52.6768 - 52.6768 - 58.8495
16 8.0237 3.0667 - 5.1679 2.1013 30 .7599 10.9647 - 41 .7246 28.8891 - 28.8891 26.6535 - 26.6535 - 29.6662
17 - 29.1401 - 11.9838 19.6369 - 7.6531 - 97.6101 - 31.6128 129.223 - 85.8426 85.8426 - 79 .3303 79.3303 88.5157
18 10 .8835 4.9139 - 7.4959 2.5821 37.8892 12.004 - 49.8932 32.8238 - 32.8238 30.3263 - 30.3263 - 34.0788
19 - 10.8835 - 4.9139 7.4959 - 2.5821 - 37.8892 - 12.004 49 .8932 - 32.8238 32 .8238 - 30.3263 30.3263 34.0788
20 16.1704 6.7387 - 10.8822 4.1435 53.5695 17.9458 - 71 .5153 47.5026 - 47 .5026 44.4917 - 44.4917 - 49.7783
21 - 16.1704 - 6.7387 10.8822 - 4.1435 - 53.5695 - 17.9458 71 .5153 - 47 .5026 47 .5026 - 44 .4917 44.4917 49.7783
22 - 11.3745 - 4.4241 8.0586 - 3.6345 - 34.2204 - 10.6173 44 .8376 - 29.2616 29.2616 - 27.9578 27.9578 31.5733
23 11.3745 4.4241 - 8.0586 3.6345 34.2204 10.6173 - 44 .8376 29.2616 - 29.2616 27.9578 - 27.9578 - 31.5733
24 - 53 .0848 -4.7048 8.9471 - 4.2423 - 34.3251 - 11.2592 45 .5842 - 30.1172 30 .1172 - 27.258 27.258 32.1275
25 53.0848 4.7048 - 8.9471 4.2423 34.3251 11.2592 - 45 .5842 30 .1172 - 30.1172 27.258 - 27.258 - 32.1275
26 4.7048 59.2841 - 27.6389 - 31.6452 11.4977 3.2355 - 14 .7332 10.57 - 10.57 9.1502 - 9.1502 - 12.1752
27 - 8.9471 - 27 .6389 36.8211 - 9.1822 - 23.3007 -6 .9 499 30.2506 - 20 .5882 20 .5882 - 18.4755 18.4755 • 22.6195
28 4.2423 - 31.6452 - 9.1822 40 .8274 11.803 3.7144 - 15.5174 10.0183 - 10 .0183 9.3253 - 9.3253 - 10.4443
29 34.3251 11.4977 - 23.3007 11.803 243.7474 6.4262 - 250.174 128.4681 - 128.468 118.9479 - 118.948 - 130.246
30 11.2592 3.2355 - 6.9499 3.7144 6.4262 70.6063 - 77.0326 48.316 - 48 .316 43 .1933 -43 .1933 - 46.6576
31 -45 .584 2 - 14.7332 30.2506 - 15.5174 - 250.174 - 77.0326 327.2062 - 176.784 176.7841 - 162.141 162.1412 176.9035
32 30 .1172 10.57 - 20 .5882 10.0183 128.4681 48.316 - 176.784 157.1124 - 157.112 110.0036 - 110.004 - 119.803
33 - 30 .1172 - 10.57 20 .5882 - 10.0183 - 128.468 -48 .316 176.7841 - 157.112 157.1124 - 110.004 110.0036 119.8026
34 27 .258 9.1502 - 18.4755 9.3253 118.9479 43 .1933 - 162.141 110.0036 - 110.004 134.9977 - 134.998 - 110.679
35 - 27 .258 - 9.1502 18.4755 - 9.3253 - 118.948 - 43.1933 162.1412 - 110.004 110.0036 - 134.998 134.9977 110.6789
36 - 32 .1275 - 12.1752 22 .6195 - 10.4443 - 130.246 - 46.6576 176.9035 - 119.803 119.8026 - 110.679 110.6789 167.5631
37 32 .1275 12.1752 - 22 .6195 10.4443 130.2459 46.6576 - 176.904 119.8026 - 119.803 110.6789 - 110.679 - 167.563
38 - 27 .4015 - 9.1299 18.0271 - 8.8972 - 107.224 - 39.8447 147.0686 - 99.2494 99 .2494 - 92.0006 92.0006 101.5925
39 27 .4015 9.1299 - 18.0271 8.8972 107.2239 39.8447 - 147.069 99.2494 - 99 .2494 92.0006 - 92.0006 - 101.593
40 11.4384 4.5622 - 7.9257 3.3636 46.0348 14.8378 - 60 .8726 39.5391 - 39.5391 35.6946 - 35.6946 - 40.3074
41 - 18.3026 - 6.6942 13.0408 - 6.3466 - 75.4521 - 27.0352 102.4873 -68.1961 68.1961 - 62 .4517 62.4517 70.0052
42 6.8641 2.132 - 5.1151 2.983 29.4173 12.1974 - 41 .6147 28.657 - 28 .657 26.7571 - 26.7571 - 29.6978
43 30 .3954 10.1856 - 20 .1829 9.9973 152.7934 53.1415 - 205.935 133.7259 - 133.726 121.6932 - 121.693 - 134.757
44 4.8825 1.1416 - 3.46 2.3184 27.1086 11.7146 - 38 .8233 27.9381 - 27.9381 25.8926 - 25.8926 - 27.0294
45 - 35.2779 - 11.3272 23.6429 - 12.3157 - 179.902 - 64.8561 244 .7582 - 161.664 161.664 - 147.586 147.5858 161.7866
46 50 .4376 17.0724 - 34.3319 17.2595 249.7528 98 .2855 - 348.038 240.376 - 240.376 219.848 - 219.848 - 236.792
47 - 50.4376 - 17.0724 34.3319 - 17.2595 - 249.753 - 98.2855 348.0383 - 240.376 240.376 - 219.848 219.848 236.7923
48 28 .8327 10.0003 - 19.7824 9.7821 143.4597 55 .9459 - 199.406 137.3228 - 137.323 125.7103 - 125.71 - 134.421
49 - 28 .8327 - 10.0003 19.7824 - 9.7821 - 143.46 - 55 .9459 199.4056 - 137.323 137.3228 - 125.71 125.7103 134.4214
50 - 32.991 - 10.4795 21.9023 - 11.4228 - 160.351 - 61 .0157 221.3662 - 150.436 150.4355 - 137.97 137.9696 150.8878
51 32.991 10.4795 - 21 .9023 11.4228 160.3505 61 .0157 - 221.366 150.4355 - 150.436 137.9696 - 137.97 - 150.888
52 - 40 .4594 - 14 .9025 28.8457 - 13.9431 - 199.227 - 74.8729 274.0997 - 186.369 186.3688 - 171.021 171.0211 187.0607
53 40 .4594 14.9025 - 28 .8457 13.9431 199.2269 74.8729 - 274.1 186.3688 - 186.369 171.0211 - 171.021 - 187.061
54 15.294 6.0885 - 11.1007 5.0122 78.9451 25.8725 - 104.818 67 .853 -67 .853 62.6366 -62.6366 - 68.8243
55 - 22 .7612 - 8.0761 15.9718 - 7.8957 - 116.095 - 41.4411 157.5358 - 104.422 104.4215 - 95 .7425 95.7425 105.8151
56 7.4672 1.9876 - 4.871 2.8835 37.1496 15.5685 - 52 .7182 36 .5686 - 36.5686 33 .1059 - 33.1059 - 36.9908
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C5. Variance-Covariance Matrix by Simulation Method columns 37-48
Rows 1-56

37 38 39 40 41 42 43 44 45 46 47 48
1 7.4391 - 6.6292 6.6292 2.7893 - 5.5586 2.7693 6.5522 1.2143 - 7.7665 11.0019 - 11.0019 6.1722
2 2.9285 - 2.5624 2.5624 0.6712 - 0.5285 - 0.1427 3.5896 - 0.3481 - 3.2415 3.5619 - 3.5619 3.1134
3 - 10.3676 9.1916 - 9.1916 - 3.4605 6.0871 - 2.6266 - 10.1418 - 0.8662 11.008 - 14.5638 14.5638 - 9.2856
4 4.9608 - 3.3728 3.3728 1.9789 - 2.6658 0.6869 4.1101 0.7201 - 4.8302 7.2614 - 7.2614 4.1312
5 - 4.9608 3.3728 - 3.3728 - 1.9789 2.6658 - 0.6869 -4.1101 - 0.7201 4.8302 - 7.2614 7.2614 - 4.1312
6 13.5282 - 10.1613 10.1613 5.9432 - 8.2852 2.342 10.2978 2.3911 - 12.689 19.659 - 19.659 11.7012
7 - 13.5282 10.1613 - 10.1613 - 5.9432 8.2852 - 2.342 - 10.2978 - 2.3911 12.689 - 19.659 19.659 - 11.7012
8 - 5.7865 4.8097 - 4.8097 - 2.5539 3.7451 - 1.1912 - 4.7611 - 0.4486 5.2097 - 7.3228 7.3228 - 3.511
9 5.7865 - 4.8097 4.8097 2.5539 - 3.7451 1.1912 4.7611 0.4486 - 5.2097 7.3228 - 7.3228 3.511

10 - 7.0748 4.9958 -4 .9 9 5 8 - 1.8757 3.3284 - 1.4527 - 5.2348 - 0.2642 5.4989 - 6.5311 6.5311 - 3.8617
11 7.0748 - 4.9958 4.9958 1.8757 - 3 .3284 1.4527 5.2348 0.2642 - 5.4989 6.5311 -6.5311 3.8617
12 4.215 - 3.38 3.38 0.9056 - 1.2769 0.3713 2.1373 0.2473 - 2.3846 2.5945 - 2.5945 1.5893
13 - 9.9609 8.0687 - 8.0687 - 2.8623 5.0343 - 2.1719 - 7.5128 - 0.5433 8.0561 - 11.9693 11.9693 - 7.0701
14 5.7459 - 4.6887 4.6887 1.9568 - 3.7574 1.8006 5.3755 0.2961 - 5.6715 9.3749 - 9.3749 5.4808
15 58.8495 - 48.1543 48 .1543 20.5438 - 33.8085 13.2647 58 .0275 9.9353 - 67 .9628 96.5367 - 96.5367 55.019
16 29.6662 - 25.0911 25.0911 10.1189 - 16.8816 6.7627 30 .2999 5.6056 - 35 .9055 52.6388 - 52.6388 30
17 - 88.5157 73 .2455 - 73.2455 - 30.6627 50.6901 - 20.0273 - 88 .3274 - 15.541 103.8683 - 149.176 149.1755 - 85.019
18 34.0788 - 27.8841 27.8841 11.1408 - 18.3841 7.2434 33 .7772 6.0995 - 39 .8767 58.279 - 58.279 33.6957
19 - 34.0788 27.8841 - 27.8841 - 11.1408 18.3841 - 7.2434 - 33 .7772 -6.0995 39 .8767 - 58.279 58.279 - 33.6957
20 49 .7783 - 40 .5104 40 .5104 17.3458 - 28.1108 10.765 47 .9902 9.2716 - 57 .2618 84.1172 - 84.1172 47.7029
21 - 49 .7783 40 .5104 - 40 .5104 - 17.3458 28.1108 - 10.765 - 47 .9902 - 9.2716 57 .2618 - 84.1172 84.1172 - 47.7029
22 - 31 .5733 26 .1699 - 26 .1699 - 10.177 17.8684 - 7.6915 - 29 .204 - 5.4677 34 .6716 - 50.1078 50.1078 - 29.2309
23 31 .5733 - 26.1699 26 .1699 10.177 - 17.8684 7.6915 29 .204 5.4677 - 34.6716 50.1078 - 50.1078 29.2309
24 - 32 .1275 27 .4015 - 27 .4015 - 11.4384 18.3026 - 6.8641 - 30 .3954 - 4.8825 35 .2779 - 50.4376 50.4376 - 28.8327
25 32 .1275 - 27 .4015 27 .4015 11.4384 - 18.3026 6.8641 30 .3954 4.8825 - 35 .2779 50.4376 - 50.4376 28.8327
26 12.1752 - 9.1299 9.1299 4.5622 - 6.6942 2.132 10.1856 1.1416 - 11.3272 17.0724 - 17.0724 10.0003
27 - 22 .6195 18.0271 - 18.0271 - 7.9257 13.0408 - 5.1151 - 20.1829 - 3.46 23.6429 - 34.3319 34.3319 - 19.7824
28 10.4443 - 8.8972 8.8972 3.3636 -6.3466 2.983 9.9973 2.3184 - 12.3157 17.2595 - 17.2595 9.7821
29 130.2459 - 107.224 107.2239 46.0348 - 75.4521 29.4173 152.7934 27.1086 - 179.902 249.7528 - 249.753 143.4597
30 46.6576 - 39.8447 39 .8447 14.8378 - 27.0352 12.1974 53 .1415 11.7146 - 64.8561 98.2855 - 98.2855 55.9459
31 - 176.904 147.0686 - 147.069 - 60 .8726 102.4873 - 41 .6147 - 205.935 - 38.8233 244.7582 - 348.038 348.0383 - 199.406
32 119.8026 - 99 .2494 99 .2494 39.5391 - 68.1961 28.657 133.7259 27.9381 - 161.664 240.376 - 240.376 137.3228
33 - 119.803 99 .2494 - 99 .2494 - 39.5391 68.1961 - 28.657 - 133.726 - 27.9381 161.664 - 240.376 240.376 - 137.323
34 110.6789 - 92.0006 92.0006 35.6946 - 62 .4517 26.7571 121.6932 25.8926 - 147.586 219.848 - 219.848 125.7103
35 - 110.679 92.0006 - 92 .0006 - 35.6946 62.4517 - 26.7571 - 121.693 - 25.8926 147.5858 - 219.848 219.848 - 125.71
36 - 167.563 101.5925 - 101.593 - 40 .3074 70.0052 - 29.6978 - 134.757 - 27 .0294 161.7866 - 236.792 236.7923 - 134.421
37 167.5631 - 101.593 101.5925 40 .3074 - 70.0052 29.6978 134.7572 27 .0294 - 161.787 236.7923 - 236.792 134.4214
38 - 101.593 124.125 - 124.125 - 34.512 58.3672 - 23.8552 - 111.731 - 22.607 134.3375 - 196.033 196.0328 - 111.816
39 101.5925 - 124.125 124.125 34.512 - 58 .3672 23.8552 111.7305 22 .607 - 134.338 196.0328 - 196.033 111.8158
40 40 .3074 - 34.512 34.512 77 .15 - 47 .7054 - 29.4446 46 .4359 8.0658 - 54.5018 75.5688 - 75.5688 43.2984
41 - 70 .0052 58.3672 - 58.3672 - 47 .7054 69.969 - 22.2636 - 78.4359 - 14.8839 93.3198 - 133.447 133.4469 - 76.1986
42 29 .6978 - 23 .8552 23 .8552 - 29.4446 - 22.2636 51.7062 32 6.818 - 38.818 57.8781 - 57.8781 32.9001
43 134.7572 - 111.731 111.7305 46 .4359 - 78.4359 32 237.1154 4.5178 - 241.633 283.2857 - 283.286 160.6208
44 27 .0294 - 22.607 22 .607 8.0658 - 14.8839 6.818 4.5178 38 .1909 - 42 .7087 62.1356 -62 .1356 35.3819
45 - 161.787 134.3375 - 134.338 - 54.5018 93.3198 - 38.818 - 241.633 - 42 .7087 284.3419 - 345.421 345.4214 - 196.003
46 236.7923 - 196.033 196.0328 75 .5688 - 133.447 57.8781 283.2857 62 .1356 - 345.421 567.4258 - 567.426 295.841
47 - 236.792 196.0328 - 196.033 - 75.5688 133.4469 - 57.8781 - 283.286 - 62 .1356 345.4214 - 567.426 567.4258 - 295.841
48 134.4214 - 111.816 111.8158 43 .2984 - 76.1986 32.9001 160.6208 35.3819 - 196.003 295.841 - 295.841 194.041
49 - 134.421 111.8158 - 111.816 - 43 .2984 76.1986 - 32.9001 - 160.621 - 35.3819 196.0027 - 295.841 295.841 - 194.041
50 - 150.888 125.0443 - 125.044 - 48.5406 85.4582 - 36.9177 - 181.628 - 37.8812 219.5092 - 322.65 322.6495 - 183.734
51 150.8878 - 125.044 125.0443 48.5406 - 85.4582 36.9177 181.628 37.8812 - 219.509 322.6495 - 322.65 183.7344
52 - 187.061 155.2053 - 155.205 - 60 .7742 106.6202 - 45.846 - 225.04 - 46.5551 271.5953 - 399.365 399.3652 - 227.814
53 187.0607 - 155.205 155.2053 60.7742 - 106.62 45.846 225.0402 46.5551 - 271.595 399.3652 - 399.365 227.8137
54 68 .8243 - 57 .6183 57.6183 25.4321 - 41 .4416 16.0095 93.7301 14.2289 - 107.959 140.8988 - 140.899 81.0079
55 - 105.815 87.627 - 87 .627 - 35.7603 61.2256 - 25.4653 - 135.225 - 24 .4882 159.7134 - 221.656 221.6557 - 126.26
56 36.9908 - 30.0087 30 .0087 10.3282 - 19.784 9.4558 41 .495 10.2593 - 51.7543 80.7568 - 80.7568 45.2523
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C5. Variance-Covariance Matrix by Simulation Method columns 49-56
Rows 1-56

49 50 51 52 53 54 55 56
1 - 6.1722 - 6 .5 184 6.5184 - 9.164 9.164 3.9174 - 4.7941 0.8767
2 - 3.1134 - 3.5606 3.5606 - 3.7071 3.7071 1.2112 - 2.4976 1.2864
3 9.2856 10.079 - 10.079 12.8711 - 12.8711 - 5.1286 7.2918 - 2.1631
4 - 4.1312 - 4.3272 4.3272 - 5.3598 5.3598 2.0191 - 3.0096 0.9905
5 4.1312 4.3272 - 4.3272 5.3598 - 5.3598 - 2.0191 3.0096 - 0 .9905
6 - 11.7012 - 12.3978 12.3978 - 15 .1998 15.1998 6.779 - 8.487 1.7079
7 11.7012 12.3978 - 12.3978 15 .1998 - 15.1998 - 6 .779 8.487 - 1.7079
8 3.511 5.7205 - 5.7205 6.4408 - 6.4408 - 3.3677 4.3267 - 0.959
9 - 3.511 - 5.7205 5.7205 - 6 .4 408 6.4408 3.3677 - 4.3267 0.959

10 3.8617 5.2218 - 5.2218 5.7553 - 5.7553 - 2.6715 3.3309 - 0.6594
11 - 3.8617 - 5.2218 5.2218 - 5.7553 5.7553 2.6715 - 3.3309 0.6594
12 - 1.5893 - 2.3943 2.3943 - 2.2845 2.2845 0.2575 - 0.8653 0.6078
13 7.0701 7 .9319 - 7.9319 9.8339 - 9.8339 - 3.4135 5.2772 - 1.8637
14 - 5.4808 - 5.5376 5.5376 - 7.5495 7.5495 3.156 -4.4119 1.2559
15 - 55 .019 - 61 .9868 61.9868 - 75 .7703 75 .7703 30.6863 - 44.1354 13.4491
16 -30 - 32.9091 32.9091 - 40 .4997 40 .4997 15.7364 - 22.724 6.9876
17 85.019 94 .8959 - 94.8959 116.27 - 116.27 - 46 .4227 66.8594 - 20 .4367
18 - 33 .6957 - 36 .5419 36.5419 - 45.7311 45.7311 17.5917 - 26.4039 8.8122
19 33 .6957 36 .5419 - 36.5419 45.7311 - 45.7311 - 17.5917 26.4039 - 8.8122
20 - 47.7029 - 53 .3245 53.3245 -65 .5209 65 .5209 25.2597 - 37.1313 11.8716
21 47 .7029 53 .3245 - 53.3245 65 .5209 - 65 .5209 - 25.2597 37.1313 - 11.8716
22 29 .2309 32.4151 - 32.4151 41 .5338 - 41 .5338 - 15.7159 22.7438 - 7.0279
23 - 29 .2309 - 32.4151 32.4151 - 41 .5338 41 .5338 15.7159 - 22.7438 7.0279
24 28 .8327 32.991 - 32.991 40 .4594 - 40.4594 - 15.294 22.7612 - 7.4672
25 - 28 .8327 - 32.991 32.991 - 40 .4594 40 .4594 15.294 - 22.7612 7.4672
26 - 10.0003 - 10.4795 10.4795 - 14.9025 14.9025 6.0885 - 8.0761 1.9876
27 19.7824 21 .9023 - 21.9023 28 .8457 - 28 .8457 - 11.1007 15.9718 - 4.871
28 - 9.7821 - 11.4228 11.4228 - 13.9431 13.9431 5.0122 - 7.8957 2.8835
29 - 143.46 - 160.351 160.3505 - 199.227 199.2269 78.9451 - 116.095 37.1496
30 - 55.9459 -61 .0157 61.0157 - 74 .8729 74.8729 25 .8725 -41.4411 15.5685
31 199.4056 221.3662 - 221.366 274.0997 - 274.1 - 104.818 157.5358 - 52 .7182
32 - 137.323 - 150.436 150.4355 - 186.369 186.3688 67 .853 - 104.422 36 .5686
33 137.3228 150.4355 - 150.436 186.3688 - 186.369 - 67 .853 104.4215 - 36 .5686
34 - 125.71 - 137.97 137.9696 - 171.021 171.0211 62.6366 - 95.7425 33 .1059
35 125.7103 137.9696 - 137.97 171.0211 - 171.021 -62 .6366 95.7425 - 33 .1059
36 134.4214 150.8878 - 150.888 187.0607 - 187.061 -68 .8243 105.8151 - 36 .9908
37 - 134.421 - 150.888 150.8878 - 187.061 187.0607 68 .8243 - 105.815 36 .9908
38 111.8158 125.0443 - 125.044 155.2053 - 155.205 - 57 .6183 87.627 - 30 .0087
39 - 111.816 - 125.044 125.0443 - 155.205 155.2053 57 .6183 - 87.627 30 .0087
40 - 43 .2984 -48 .5406 48.5406 - 60 .7742 60.7742 25.4321 - 35.7603 10.3282
41 76.1986 85 .4582 - 85 .4582 106.6202 - 106.62 -41 .441 6 61.2256 - 19.784
42 - 32.9001 - 36 .9177 36.9177 - 45.846 45.846 16.0095 - 25.4653 9.4558
43 - 160.621 - 181.628 181.628 - 225.04 225.0402 93.7301 - 135.225 41 .495
44 - 35.3819 - 37 .8812 37.8812 -46.5551 46.5551 14.2289 - 24.4882 10.2593
45 196.0027 219.5092 - 219.509 271.5953 - 271.595 - 107.959 159.7134 - 51 .7543
46 - 295.841 - 322.65 322.6495 - 399.365 399.3652 140.8988 - 221.656 80.7568
47 295.841 322.6495 - 322.65 399.3652 - 399.365 - 140.899 221.6557 - 80 .7568
48 - 194.041 - 183.734 183.7344 - 227.814 227.8137 81.0079 - 126.26 45 .2523
49 194.041 183.7344 - 183.734 227 .8137 - 227.814 - 81 .0079 126.2602 - 45 .252 3
50 183.7344 234.9809 - 234.981 252.672 - 252.672 - 92.6553 142.534 - 49.8786
51 - 183.734 - 234.981 234.9809 - 252.672 252.672 92 .6553 - 142.534 49 .8786
52 227.8137 252.672 - 252.672 350.4059 - 350.406 - 114.504 176.0223 - 61 .5187
53 - 227.814 - 252.672 252.672 - 350.406 350.4059 114.5036 - 176.022 61 .5187
54 - 81 .0079 - 92 .6553 92 .6553 - 114.504 114.5036 98.0856 - 89.4239 - 8 .6617
55 126.2602 142.534 - 142.534 176.0223 - 176.022 - 89 .4239 127.2315 - 37 .8076
56 - 45 .252 3 - 49 .8786 49.8786 -6 1 .5 1 8 7 61 .5187 - 8.6617 - 37.8076 46 .4693


