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ABSTRACT

The temperature distribution of a heated body can be described by 
a well-known parabolic Initial-boundary value problem. In this 

thesis, we consider some control-theoretic questions arising in 

ccmnectlon with such a heating process.

Suppose that we can vary (subject to certain restrictions) the 

temperature of the medium which surrounds the body. The task is 

to choose the temperature under the given restrictions in such a 

manner that the temperature distribution of the body at a time T 

comes as close as possible to some desired temperature.

Assume we can reach to the mentioned desired temperature at time 

level T. We consider the optimal control of the above control 

problem. This problem consists of finding an admissible boundary 

control, to minimize an objective functional, which In general 

depends on time, positions of the points of the body and the

control variable.
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CHAPTER 1 

Introduction

(1.1) Boundary control of the diffusion equation in arbitrary 

dimensions

The temperature distribution of a heated body can be described 

by a well-known parabolic initial-boundary value problem. In this 

thesis, we consider some control-theoretic questions arising in 

connection with such a heating process.

We give a short explanation in technological terms. Suppose 

that we can vary (subject to certain restrictions) the 

temperature u(t,<;) (t € [0,T], <; e du) of the medium which

surrounds the body w. Here 10,T1 is a fixed time interval, du the 

boundary of the domain w. The task Is to choose u under the given 

restrictions In such a manner that the temperature distribution 

Y(T,x) (x 6 w) of the body at time T comes as close as possible 

to some desired temperature g(x), x € w.

Problems of this type have been considered by YEGOROV [1], 

PLOTNIKOV [1], BUTKOVSKIY [1]. Related questions were studied by 

many authors. Let us mention only FATTQRINI (l], (2], LIONS (11 

GLASHOFF and WECK [1]. The main distinction between these 

publications is a measure for the deviation of Y(T,x) from g(x), 

for example, some use supremum-norm (the norm in C(w) of Y(T,.) 

~ g(.)).

(1.2) An optimal control problem for the one-dimensional

diffusion equation.
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We consider a control system whose evolution In time Is described 

by a function Y * Y(x,t), defined in (0,1) X (O.T), where T is 

positive, satisfying

Y (x.t) » Y (x,t), (x,t) € (0,1) X (0,T) (l.DXX t

with boundary conditions

Yx(0,t) - 0, t € [O.T]

Yx(l,t) * u(t), t € [O.T] (1.2)

Y(x,0) * 0, x € [0.1]

where t € [0,T] -» u(t), is the control function. We define the 

control u to be admissible if it Is measurable function on [0,T] 

and

(a) u(t) € [-1,11, a.e. for t € [0,T]

(b) Y(x,T) * g(x) a.e. for x e [0,1].

g e L (0,1), is the desired final state.
Z

Let U be the set of admissible controls. In general this set may 

be empty, there are many control problems, even in one 

dimensional state space, without solution because the desired 

final state can not be reached by means of an admissible control.

But it is known from FATTORINI and RUSSELL [1] that a control
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system described by the one-dimensional heat equation In an 

interval (say, 0 s x s it) Is nullcontrollable In any time T > 0 

by a boundary control applied at one endpoint; that Is, given T 

> 0 and yQ(. ) € L^tO.n] such that If Y » Y(x,t) denotes the 

solution of the equation

Y * Y , . 0 < x < ir, 0 < t < T ,  (1.3)t XX

with Initial and boundary conditions

Y(x,0) » yQ(x), 0 s x s it

Y(0,t) = 0, 0 s x s T, (1.4)

Y(n,t) = u(t), 0 < t < T

then Y also satisfies

Y(x,T) =0. 0 i x s n, (1.5)

It is well known that the problem ( 1.3)-(l.5) has a unique 

solution in a sense made explicit In (FATTORINI and RUSSELL] (1], 

Furthermore, there Is something very special about the diffusion 

equation: the set of states which can be reached by means of 

controls In L2(0,T) is dense In L2(0,1) (see, for example, 

MACCAY, MIZEL and SIEDMAN (U).

We may reduce the above control problem to moment problems. These 

moment problems will be studied by employing methods developed
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by KACZMARZ & STENHAUS [1], PALEY 8. WIENER [1], 

R.M.REDHEFFER [1], FATTORINI & RUSSELL [1], WILSON & RUBIO [1] 

and RUBIO & WILSON [1], Particular cases of the controllability 

problems described above have been treated by EGOROV t13, [2] and 

GALCHUK [1] among others.

We define In the following an optimal control problem associated 

with the above control problem. Let U, the set of admissible 

controls, be non-empty, and let the optimal control problem 

consist of finding a u e U which minimizes the functional

= [0,T] X [-1,1], with uniform topology. In WILSON & RUBIO [1], 

the problem was first modified to one In which the minimum is 

sought of a functional defined on a set of Radon measures. They 

show the existence of a minimizing measure, and it is shown that 

this measure may be approximated by a piecewise constant control. 

Finally, conditions were given under which a minimizing 

measurable control exists for the unmodified problem.

(1.3) Optimal control problem for the n-dimensional diffusion 

equation.

Let n a 2 be a positive Integer and let u> be a bounded, open, 

connected domain In Rn with boundary du € C1. Let A be the 

Laplaclan operator In Rn and T a positive number. We consider the 

n-dimensional diffusion equation

o
( 1 . 6 )

where f° € C(O), the space of continuous functions on 0
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AY ■ Y . (1.7)t

We shall be concerned with the solution Y(x,t) of (1.7) which 

satisfies the initial condition

Y(x,0) = gQ(x), x € u. (1.8)

We attempt to influence the evolution of the solution Y(x,t) by 

means of a control function u(x,t) defined on du t 10,T]. We 

assume

Y(x,t) - u(x.t), (x.t) e du X [O.TJ. (1.9)

The point in question is the following . If we specify a terminal 

condition

Y(x,T) * g(x), x 6 w, (1.10)

do there exists control function u(x,t) defined on dw t (0,T], 

such that the solution (1.7), (1.8), (1.9), also satlsfl«s( 1.10)? 

Some results have been obtained when u is a domain with simple 

geometry, such as a sphere or parallelopipedon (see FATTORINI & 

RUSSELL [1], FATTORINI (2), GRAHAM ill). But RUSSELL [lj studied 

the above controllability question when the specific geometry of 

u was not prescribed, and put quite severe restrictions on the 

final desired function; we consider them in chapter (5).

In the following we consider an optimal control of the above 

control problem (1.7) - (1.10). We define the control u to be
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admissible if it is a mesurable function on du> X [0,T] and

(a) u(x,t) e [-1,1] a.e. for (x.t) e du> X [0,T]

(b) Y(x,T) = g(x) a.e. for x € w.

Let V be the set of all admissible controls and let V be 

non-empty. The optimal control problem consists of finding an 

admissible control u which minimizes the functional

J(u) - f f f°($,t,u(S,t))d£dt 
J0 Jdu>

where f° € C(£), the space of continuous functions on X 

= 8u> X [0,T] X [-1,1], with the uniform topology,

(1.4) Outline of thesis

Chapter (2) is concerned with an extension to n-dimensions of the 

paper by WILSON & RUBIO [1], We consider the existence of an 

optimal control for the n-dimenslonal diffusion equation with the 

same boundary conditions as in section (1.3) except that we 

assume Y(x,0) * 0, x e w. We assume the set of all admissible 

controls is non-empty and we denote it by U.

Our control problem consists of finding a u{.,.) e U which 

minimizes the functional

J(u) * fT f f°(£, t, u(£,t))d£dt 
J0 J8u

where f° c C{£), the space of continuous functions on X
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= 8u> X [0,T] X [-1,1].

In chapter (3) we consider a linear program for determining an 

approximation to the optimal control of the diffusion equation In 

one and two dimensions. In particular we obtain an approximation 

to the optimal Radon measure p , which was Introduced In WILSON & 

RUBIO [1] and one we Introduce In chapter (2), in 2-dlmenslons. 

By using linear programming we show a practical.way to obtain an 

approximation for the optimal measure p* in one and two 

dimensions . Also we obtain the optimal controls corresponding to 

several different final desired functions in one and two 

dimensions.

Chapter (4) is concerned with the optimal control problem for the 

one dimensional diffusion equation with a sequence of Radon 

measures as generalised control variables. The foundation of this 

work is contained in RUBIO and WILSON [1]. The purpose of the 

mentioned paper is this: suppose that the state g(.) € L (0,1), 

is not reachable by an admissible control, nor by a measure; then 

no minimization can be carried out. Thus, of course, the optimal 

control problem is meaningless.

RUBIO & WILSON [1] enlarged the set of admissible controls, 

further than that in WILSON & RUBIO [1]. They put an appropriate 

topology on this new space. The dual of this new space, say S, 

contains the space L2(0,T) as well as other elements. If no 

control u(.) e L2(0,T) exists so as to reach the final state g(.) 

e L2(0,1), it could be that among the elements of the set S there 

is one, or more elements, which provide a solution to the 

corresponding moment problem to the diffusion equation, This 

means that we can reach the final state g(.), by imposing as



8

control the new element or elements of S.

In general we show that the objective function of the optimal 

control depends on an infinite sequence of Radon measures defined 

on a closed interval. This problem Is an optimisation problem 

over a set of sequences of Radon measures satisfying an infinite 

number of constraints. We reduce this problem to an approximation 

problem, which is an optimisation problem over n-tuples of Radon 

measures satisfying a finite number of constraints. Then we 

transfer this problem to one which is a finite dimensional linear 

programming problem over a subset of Rn, Also we approximate the 

infimum of the objective function by a finite summation of the 

norms of discrete measures. Finally we compute the final desired 

states and we compute their corresponding control functions. The 

theory is confirmed by computing the desired final states and 

control functions of several different examples.

In chapter (5) we consider an extension to the paper of RUBIO & 

WILSON to n-dlmenslons. In this chapter we consider the optimal 

control of the diffusion equation in n-dimensions, which we 

discussed in chapter (2) with the same boundary conditions as in 

chapter (2). We want to minimize a functional such as

J(u) * f f f0(t,e,u(t,O)d$dt;
Jo J3w

the control u(.,.) is in the space L^du X [O.T]), and there are 

no constraints Imposed on its magnitude.

Consider a state g(.) € L^u), which is neither reachable by an 

admissible control nor by a measure; that is, the set Q defined 

in chapter (2) is empty. Therefore there can be no minimum on Q,
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and the problem has no solution. In this chapter we generalized 

RUBIO & WILSON [1] to n-dimensional space. We extend the set of 

admissible controls beyond the space of measures and we find that 

there is at least one element In the dual of the new space, which 

Is the solution of the moment problem with

Y(x,T) » g(x), x € u.

Therefore the final state g(.) e can be reached by imposing

as controls the above element or elements.

In chapter (6) we consider an optimal control problem for the 

n-dimenslonal diffusion equation with an infinite sequence of 

Radon measures as generalized control variables. This chapter is 

indeed an extension of chapter (4) to n-dimensional space. We 

consider an optimal control problem associated with the n- 

dlmensional diffusion equation

AY(x,t) = Yt(x,t)

where (x,t) e u X [0,T], with the same initial and boundary 

conditions as in Chapter 2. It is desired to choose u(.,.) 

€ L2(u X [0,TH, such that Y(.,T) * g(x) in L2(w) and the

function

u •* JCu)

is minimal, where the function J(.) is defined in Chapter 6.

As in chapter (4) we show this objective function J(u) depends on
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the Infinite sequence of Radon measures defined on du> X [0,Tl. We 

show a scheme for determining the lnfimum of the objective 

function. We approximate this inflmum by a finite summation of 

the norms of discrete measures, then we transfer this problem to 

one which Is the minimization of a real linear function over a 

set of linear constraints in finite dimensional space. Finally, 

by using the sequence of the control functions Introduced In 

chapter (5) it is shown that we can reach the final state with 

a rather good approximation. The theory is confirmed by computing 

the desired final state and control function of one example in

2-dimensions.
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CHAPTER 2

Existence of an Optimal Control for the Diffusion Equation in

n-Dimensions

2.1 Introduction

This chapter contains the extension to n-dimensions of the paper 

by WILSON and RUBIO [1]. Thus we consider the existence of an 

optimal control for the n-dlmensional diffusion equation

AY*Yt. (2. 1)

where Y=Y(x,t), (x,t) e u X [0,T],wlth boundary conditions 

Y(x,t) = u(x,t), (x,t) e du X [0,T],

Y(x,0) * 0, x € w;

here o> is a bounded open subset of Rn, with the boundary

du e C1, and u(x,t), (x,t) e du X [0,T], is the control.

We say that the control u is admissible if it is a measurable 

function on du X [0,T] and
(a) u(x,t) e [-1.1] a.e. for (x,t) e du X [0,T]
(b) Y(x,T) * g(x) a.e. for x 6 u, so that g € L2(u) is the 

desired final state. We assume the set of all admissible 

controls is nonempty and we denote it by U.

Our control problem consists of finding a u(.,.) e U which 

minimizes the functional

J (u )« fTf  f ° ( e , t ,u (S , t } )d Ç d t
V a «
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where f° 6 C(I), the space of continuous functions on 

I * 3u> X [0,T] X [-1,1] with the uniform topology.

2.2 Modified Control Problem

The solution of Eq.(2.1) Is

Y(x, t) = - f f “T": |"k (x , y, t-T)lu(y, T)dydt,
J0J3u y t  J

(see ROACH [ll.page 2Sl);here 3[K(x,y,t-T)]/dv is the normaly
derivative with respect to its second variable, and 

00
K(x,y,t) = E exp(-Ant)an(x)an(y)H(t), where the functions a (x), 

n* 1 n

n = 1,2,..., are the orthonormal eigenfunctions, with 

corresponding eigenvalues An, n = 1,2,..., defined by the problem

Av(x)+Av(x) * 0,x e u; v(x) = 0, x e 3w,

and H is the Heaviside function and is included to emphasize the 

fact that the solution is identically zero for t < 0. Thus,

Y(x,t) f f (a/dv ){Vexp[-An(t-T)]an(x)an(y)|u(y,T)dYdt,
J0 JSu> y '•n-1 J

(2.2)
or

Y(x ,t ) •a (x) n

Now let T-t*r:
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Y(x,T) JL M  (âa. (y)/dv)u(y, T-r}dy Jixj-a^x),

and define v (x)»f (Sa (y)/3v)u(y,T-x)dy. 
n JSu n

Y(x■T> '  - 1 [f,
-X T

e n v (tM t | a (x ) 
0 n

Then

Since the desired final state belongs to L2(u), we can expand it

in terms of the sequence of orthonormal eigenfunctions {a(x)>,n
so we have

00

g(x) - Y c a (x). 
u .  n n n*  1

Therefore

or

c * n
-X T 

n )) (r)dx 
n ,n » 1,2,.

* -X T
c » - Sa (y)/3v.e n u(y,T-x)dydx n » 1,2,.., . 

n n
j3cj X [0,t]

Since we assumed Su € C1, let the parametric equation of 3o> 

be in the following form,

.... s„.,>... <3,...... Sn.1»’

where 0 s s( i 1, for i * 1.2,...,n-1, (see CROWELL and

WILLIAMSON 111,p.419)» Ve also define b (y) - Sa (y)/Sw, so weft ft
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have

Cn b(€,(s)....^(s))
-X T n u(^Cs)....^(s),T-r)

,B(s)dsdt,

where for simplicity let

B(s)
r 3(x,....x ) ,2 n 2 ■3(x ,.. •*x n-1

% 3(s ,...,s )1 n-1 J
+ . . . +

. 3< v - • . ,S ) n-1

where 

r

s a (s , ...,s >, ds = ds ,dsv ..ds .and A *
i i - m i M i  n-’ ' 2

Let F (s,x,u)n[0,1] X [0,1] X ... X [0,1'].
-X T

** ,..., C^Cs) )e u.B(s), then, the control problem

reduces to finding a measurable control u(y,t) € [-1,1], 

(y, t) € 3u X [0,T], which satisfies,

0 J
F (s,t,u(s,t))dsdt, n * 1,2, n (2.3)

where u(s,t)-u(£ (s)....€n(s),t), and which minimizes

J(u)
A0 A
f (s,t,u(s,t))dsdt, (2.4)

where f°(s,t,u(s,t)) “ f°(s,t,u(s,t)).B(s).

In general, a minimising solution to the problem may not exist; 

in the following we replace this problem by another one in which 

the mlnimumum of a linear functional calculated over a set of
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Radoiw

/  ( n * 1 ) t ( n e t
/  ---------  ....

/  r i“►measures on Q ■ [0,1] X [0,1] X ... X [0,1] X [0,T] X [-1,1],

We notice that, for a fixed u, the following mapping

....) f ff(s,t,u(s,t))dsdt
■Vo

defines a positive linear functional on C(fl). Thus, by the Riesz 

representation theorem, there exists a unique positive Radon 

measure p, on Q, such that

f (" f(s,t,u(s,t))dsdt *» Ffdpap(f), (2 5 )
J0JA Jn

for all f e C(il); in particular the above equality is valid for 

f * f°. Now we replace the minimization problem by one in which 

we are going to find the minimum of p(/°) over a set Q of 

positive Radon measures on n, to be defined below. Measures in Q 

should have some properties which are deducedfrom the definition 

of admissible controls. First, from (2.5)

|p ( f ) |  s T . s u p | f ( s , t , u ) I ,
n

hence, j dp s T.
Jfl

Next, measures in Q must satisfy an abstracted version of 

Eq.(2.3):

p(F ) - e , n-1,2,...;n n
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note that this Is possible, since F 6 C(Q), n=l,2,... .n
Finally consider functions h e C(C1), which do not depend on u; 

that Is, for all (s,t) e A X  [0, T], and all u^,u € [-1,1], we 

have hts.t.u^ * h(s,t,u2).

Then the measures In Q must satisfy

| h dp = L I h(s,t,u)dsdt * c .
J0Ja h

where u Is an arbitrary number in [-1,1] and c Is the Lebesgueh
Integral of h(.,.,u), which Is Independent of u. This property 

of Q will be used In the next section, when we use an extension 

of a theorem due to Ghoulla -Hourl, [1]. Let M*[Q) be the set of 

positive Radon measures on Q. The set Q Is defined as a subset of

* Sj n S2 n S3

where,

Sj * p 6 it (fl) : p(l) 5 ij

S2 = | p € M* tU) : p(Fn ) - cn, n*l,2,... J.

p e N+ (ii) : p(h) “ ĉ , h e C(H), and Independent of uj*.

Now we topologize the space of all Radon measures on Q, by the
*

weak - topology. We show In appendix (A.2) that Sj Is compact* 

Thus the set S2 can be written as
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M » + (A) = MiV  ■ cn }
00

where each Mn Is closed because It Is the Inverse Image of a

closed set on the real line ((the set {c >), under a continuousn
map. We know that the Infinite Intersection of closed sets Is 

closed, so Sg is closed. By a similar argument, It Is easy to 

show that S3 is closed. Therefore Q Is a closed subset of the 

compact set S^, and then Q is compact. By definition of a convex 

set, it is easy to show that the sets S2> S3> are convex;

thus, Q, is a compact convex set. By the Kreln-Milman theorem 

(see ROBERTSON, A. and ROBERTSON, W. [1]), it has extreme points. 

Consider now the functional I ;Q -» R, defined by

This is a continuous linear functional on a convex compact set, 

Q; it will therefore attain' its minimum at least one extreme 

point; we have shown the following proposition.

Proposition (2.1) The measure-theoretical control problem, which

is to find the minimum of the functional I, over the set Q,
*

attains its minimum p , in Q.

2.3 Approximation of the optimal control by a piecewise constant 

control

With each piecewise constant admissible control u(,,,), we may 

associate a measure Pu> In /f+(Q) ft fl Sj. Let Qj be the set

I(p) * f f°dp, p e Q. 
Jil

(2. 6)
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of all such measures p . The extension to n-dimensions ofu

theorem (1) of GHOUILA-HOURI [1] which is proved in appendix

(B2), shows that, when the space of all Radon measures on £1, has
• +the weak -topology, Qj is dense in M (il) pj Sj ^ ,

A basis of closed neighborhoods in the weak - topology is given 

by sets of the form

{ : I*4«*,) I e. n * 1,2.... k+1
}•

where k is an integer, Gfl e C(£l), n - 1,2....k+1, and
* *

c > 0. In any weak - neighborhood of p ( the minimizing

measure of proposition (2.1)), we can find a measure p,
u

corresponding to a piecewise control u. In particular, we 

choose

Gi ■ /0' c2 * Fr k+1

we can then find a piecewise control u (.,.), such that

| f f f ̂ s, t,u (s, t)]dsdt - n (f°) j s c 
j o ja k

(2.7)

| f f F (s,t,u (s,t)]dsdt - c | s e. n ® 1,2, ... ,k 
J0 JA n

Constant
Therefore, by using the piecewiseA control uk(.,.), we can 

reach within c of the minimum value Mf°). The analysis of 

the relationship between the desired final state, g(x) and 

Y^tx.T), x € «, the one attained by the use of the control
A
u (.,,), is somewhat complicated. Let
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oo
Y (x,T) * V d (T)a (x), 

k L  n n
n» 1

where, of course,

dniT) “ J J F nIs't»u kis.t)]dsdt, n - 1,2.....

By substituting the values of d^(T), n ■ 1,2....k, In the

Inequalities (2.7) we obtain

cn | s e, n * 1,2,. ,k.

We can show that by choosing k large enough the distance between 

g(x) and Y^i-.T), in L2(u), can be made as small as desired.

Proposition (2.2) Let 5 £ 0 be given. We can choose k and 

c > 0 such that

Jw
Y.(x, T) - g(x) k

2
dx s S. (2. 8)

Proof We have shown in appendix (C.2) that the Fourier

coefficient d (T) of Y(.,T) satisfy n *

d2(T) & ê , if n £ M, (2.9)

»
where M is a specified positive integer and £ e is a

n»1

convergent series. Similarly, since it is assumed that the 

desired final state g(x) is reachable with an admissible 

control, c2 satisfies the same inequality as d2(T). Thus,
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oo
f [Y (x,T) - g(x) ]2dx = V (d - c )2 + V (d - c )

k n« 1 n n n i l * , "  "

S  y (d - c )2 +4 y e . (2.10)L n n L . n
n*1 n»L+1

In the last term we have used the following known inequality, 

(x + y) s 2(x + y), for all x,y e H. Now we choose L

sufficiently large such that L a M and

4 £ e a 5/2. 
n * L + 1°

The Integer K can be chosen as one satisfying

K a max{L, (1/25)} ( 2 . 11)

Then

m
4 £ e s 5/2; „ nn*IC*1

( 2 . 12 )

.......
we choose c = /  5/2K; thus from (2.11) it follows that

k a (1/2K), from which In turn It follows that e a 5. In the

neighbourhood defined by choosing c and K as above, there

exists a u , corresponding to a piecewise constant control u
u(.,.); for which

ldn " cnl S C* n " 1*2, . . .  ,k;
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hence,

L

n* 1
V (d - c )2 s k.e2 = 6/2. Lt n n

From (2.10), (2.12) and the last relation we have the proof of 

the relation (2.8); then the proof of the proposition (2.2) is 

completed. □

2.4 Unmodified Control Problem

In this section, we are looking for some conditions under which 

the original, classical, unmodified problem has a classical 

solution. Indeed, we show that any close approximation to the 

optimal measure is a solution to the classical problem. We show 

that if the function f° is convex, then we can obtain the 

classical solution to this unmodified control problem.

Proposition (2.3) Suppose that the function f°, in the 

following performance criterion

interior of 2 ** « * (O.Tl X (-1,11. [where u is closure of the 

open set w. ].

Ul) The function /° is convex in u e C-1,1! for all (£,t: 

6 du X [0,T1.

0 'u
(2.13)

satisfies the conditions :

(i) The derivative exists and is uniformly continuous In the

Then there exists an admissible control u*(.,.) such that
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Jfu*(... )] ® Inf Jfu(.,.)J * p, 
u ( . , . )  c u

where U Is the set of admissible controls.

Proof Since f° e C(2), and 2 is a closed bounded and thus 

compact subset of R"*2, therefore there exists a real number say 

m, such that f°(Ç,t,u) a m, for all (£,t,u) e 2. Thus, by 

definition of J(.) the functional J defined by (2.13) is bounded 

below; therefore there exists a sequence of admissible controls, 

(u^.,.)> such that

ltm J [u ( . , .  )]  » p. )-*» 1

Since each control in the sequence {uj.,.)> is admissible,

where L is the area of da. Thus, the L2- norm of the controls 

u(.,.) in this sequence satisfies llû .,.)H s 4T.L , i = 1,2,..., 

We endow L (da X [0,T]) with the weak-topology, which means the 

set V - { u(...) :H u(...) » * * T.L > is compact, and {u^. ,. )> 

has a weakly-convergent subsequence, which we again denote . by 

{u (.,.)> and whose limit we denote by v; we claim that 

v(.,.) c L (da X [0,Tl), a result which follows directly from the 

weak compactness of V. Also

( - A t
(9a (y)/3v).e " .v(y,T-t)dydt » ĉ , n » 1.2,.... 
da X [O.Tl
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since if this equal it iy was false for some n, then an e > 0 

would exist with

f ~X t(5an(y)/5v).e n |v(y,T-r) - u{(y,T - t ) |dydt > e 
*d(J X [ o, T ]

for all i a K; here K is some positive integer. However, since 
**XnTe . (Sa^CyJ/Sr) e L2(3w X [0,T]), this contradicts the fact

that {u(.,.)> converges weakly to v(.,.). We show that |v(y,t)| 
i 1

S 1 a.e. on X tO.T]. Suppose that |v(y,t)| > 1 on some subset 

of du X [0,T] having nonzero Lebesgue measure. Let p(.,.) be the 

function defined on 3u X [0,T] by

p(y.t) * 1 (y.t) c {(£,s) :v(£,s) > l>

p(y,t) =-l (y,t) c { (£,s) :v(£,s) <-l >

p(y,t) * 0 (y.t) e {(C.s) :v(£,s) s l).

Since v(.,.) is measurable, p(.,.) e L2(3u X [0,T]), and

« i»
p(y,t)v(y,t)dydt > p(y,t)u{ (y,t)dydt 

■'du X [0,T] X [0,T]

for all i. This contradicts the fact that { y (.,,) > 

converges weakly to v(.,.) We have therefore shown that 

v(.,.) is admissible. We now show
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J(v) s p.

Consider now the assumption of convexity arid differentiability on 

f°; they imply that

A y . t . v ^  t f°(y,t,v2) + (v^ v2)f°(y,t,v2) 

for every vltv2 € [-1,1] , (y, t) e 3w X [0,T]. Hence,

I f°[y,t,u.(y,t)] dy.dt a f° ty,t,v(y,t)] dy.dt +
•'Su X [O.T] X [0, T]

lu,v(y,t)-v(y, t)]fy[y,t,v(y,t)] dydt.
•'aw x t o . t ]

Therefore

11m J  [u (...) 1 
i-» •*

lim 
i-**» j

f°ty,tjU-(y,t)] dydt 

3w X [O.T]

(2.14)

fc J[v(.,.)l + lim [Uj(y,t)-v(y, tJl/Jy, t,v(y,t)]dydt. 

aw x i o » t  ]

By assumption, f° Is uniformly continuous in the interior of E, 

and thus bounded on E< Since v(y,t), (y,t) 6 3w X [0,T] is 

measurable (see, for example, EWING, G.M,) the function 

f°[y,t,v(y,t)] « L2(3w  X [0,T]). Also since (uj.,.)) converges 

weakly to v{.,.), the last limit in (2.14) reduces to zero, and



25

therefore

p £ J [v(.p.)].

From above inequality and by definition of p we conclude

J(v) * p.□

Discussion

We have shown in section (2.1) of this chapter that the set of

all admissible controls for the diffusion equation in n-

dlmensionsis nonempty; in section (2.2) we obtained a positive

Radon measure p* which minimizes the criterion functional J(u).

Next, in section (2.3) we found a piecewise constant control

u(.,.), corresponding to the approximation of the optimal measure

p*. In proposition (2.2) we showed that we may choose the

piecewise constant control u(,,.) such that the solution of the

diffusion equation corresponding to the above control u(.,.), at

final time T, becomes very close to the final state g(x),

x e u. Finally in section (2.4), we considered the unmodified

control problem and we showed that if we put conditions of

differentiability and convexity on f° then there exists an

admissible control say u(. *.)» such that if P * inf J(u), then
u e u

J(u) * p.

In the next chapter we are going to obtain an approximation to 

the mentioned optimal Radon measure p* by a finite combination

of atomic measures; then, by using linear programming, we obtain

a piecewise constant optimal control corresponding to the

approximation of p*. and In some examples in one and two
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dimensional spaces we obtain the corresponding approximation to 

optimal measures and optimal controls far different final 

states.

Appendix (A.2)

In this appendix we prove the following lemma (1)

Lemma (1)

Sj » jii e : II p(l) 11 * T | is compact in with

*
respect to weak topology.

Proof First we prove that M*LQ), is closed in tf(Q), with 

respect to weak*- topology; that is we show ■ rt*(n). Let

fi € and let f a 0, b e  any continuous function on fl, so we

have p(f) a 0, since ji e Then for every positive integer n

j v : |(t> - p)(f)| < 1/n J- n ¡?(Q) * <f>,

so there exists v € ft (£1), such that
n

|(i> -M)(f)| < 1/n,1 n 1

or,

\v (f) - M(f)| < 1/n; (A2.1)1 n

from (A2.1) we conclude that p(f) « llm v (f), but by definitionn n
we have v (f) a 0, for every n, so p(f) a 0, or n «
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which proves »*((1) is closed In »(fl).

Corollary 12.7 (CHOQUET (I)[l] p.217) asserts that for a > 0, 

(a < oo), the set

{p € »*(fl): II pll * a>,

Is compact In »(fl), therefore the set A — (p 6 M (fl): llpll s T}, 

is compact in »(fl), thus A n is compact in »(fl) [since A

n «*(fl) is a closed subset of the compact set A, so it is 

compact in A, (see for example JAMESON[l] p.84 ) thus it it is 

compact in »(fl)l.By definition we have — A A » (fl), so is 

compact in »(fl).o

Appendix (B.2)

Extension of theorem 1 of GHOUILA HOURI 111 to n-dimensions

Let Q be the set of positive Radon measures p defined on the 

space A X [0,T] X U. where A = [0,1] X...X [0,1], n -1 times, 

here U is a compact set of controls defined on A X [0.T]. Let 

Q° be the set of piecewise constant functions defined on A X  

[o,T]; we assume the measures on A X [0,T] X U are projected on 

A X [0,T] with respect to the Lebesgue measure. The extension of 

theorem 1 of Ghoulla - Houri to n dimensions is as follows 

Note: Let p be a measure on A X [0,T] X U, then, the projection 

of the measure p, say pt» is defined as follows:

^(C) » p(C X U). for C c A X [0,T].

Theorem (1). q J is everywhere dense in Qf

Proof Suppose t^ f2* are real-valued continuous
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functions defined on A X [0,T] X U, and let e > 0. One can find

easily a finite sequence [ We show In Lemma (1) In this appendix,

a way to obtain this sequence In practice ] of numbers

t = 0 <t <t < ... <t * T,
0 1 2  r

s’=0 <s* <s* < ... <s* = 1, for 1 * 1,2,...,n-l,
0 1 2  p

and a partition Â , A^...... A^, of U which are Borel sets such

that for every 1=1,2,...,r, j= 1,2, ... ,n-1, m = l,2,...,n-l, 

k = 1,2,..., q, we have

t.t' e Itf _1,' t f)

l * |fi(s,,t,u)-fi(s,,,t',u')| s 6 (B2.1)

u ,u' € A

for all 1 = 1.2....m, where s' = (s ',...,s' ,) and s "
1 1 n*1

* (s s "  ). [Since f Is continuous on the compact set

A X [0, T] X U It Is uni for «^continuous on It, and (B2.1) Is just 

the definition of uniform continuity].

Suppose (i be an element of Q̂ ; let

Kijk
‘ V r V

n * 1

x V v ,

dp(t,s,u)

where 1 ■ 1,2, ...iT, j * l,2,...,p, k » l,2,...,q. 

Therefore we have
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H

Ik»1
K .Jk - <tr t ,-,1-nn / sTni * I

(B2.2)

where 1 * l,2,...,r and j = 1,2....p. Let

B ijk “ [fcM  + E  K ijk**1 i-1 + I K U k ' ]
k '  < k k ' S  k

n - 1

k ' < k k ' S  k

Let u , u ....u be elements of1 2 q
U e Q® be defined by

, A and q

U(s,t) * uk for (s.t) e Bjjk for k * 1,2..... q and all 1 and J.

Now for every 1 , J ,  k ,  and 1 we define the following number

I jkl fjs.t.ujdpfs.t.u) 
B,.. X U1 jk

^(s.t.i^ldsdt

ijk

[we again mention that s = (s^, s2....  Sn-1^ ^ut, rayi jkl

satisfies the following inequalities,
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Uk u) (s, t) 6 C} X [tf_t t ) , u € Ak}

s m f jkl

K (jk . PUp-f/"( is, t, u) I (s,t) 6 Cj X ‘ V ,  ' V  • u e \ }

n - 1

where » ff
a *  1

On the other hand by the definition of K , we haveIjk

K|Jk . infjf^s.t.u) J (s.t) e C} X [tf>1 , t{) , u e J.

s f (s.t.uj.dfifs.t, u) 
c ‘t [V )  , t(l **,

So for every 1 ( 1 =1.2.... n̂ )

Wijkl f^s.t.uJ.d/iCs.t.u)
C X lt{ ,t ) X j l ' i f  k

s K. ik^

or we have
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q P r

Z  Z  £ ■ « « -  Z  Z  Z |k«1 J*1 )•! k*1j*1i*1 C. X 11, ,, t, ] X At
u)

i ■ i - r  i
q p r

s c z z z c
k = 1 j * 1  i *  1

or

f. (s,t,u. ; ).ds.dt 
i k

q r p
t f i  iV, jV ,B U k

f (s,t,u).dii(s,t,u) 
A X [ 0, T ] X U

q p r

z z z
k « 1  j * 1  1 * 1

fjk

By (B2.2)we have K. ^ T; Thus,
f j k

q P r , q p r

Z Z Z C -  Z Z Z ‘ , ?
k « 1  ] « 1  1 * 1 k * 1  j * 1  1 * 1

p r ,n* 1 r— « r~* n * ' _

T Z  I “ «-*
J«1 1*1

by definition of the partitions {ŝ > of [0,1]

n-1_ / » » s  ̂4
n (®i”sj.iJ s 1 i 
** i

by using the above inequality in (5) we have

(B2.3)

(B2.4)

(B2.5)
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Z  t  t K̂  t"'’ [ E i ?  -1- Is T
«1 i»i j«i <«1

n*1  n
.T ■ T . (B2.6)

k « 1  J - 1  j « 1

Therefore from (B2.H) and (B2.6)

.1 «
f (s, t, ufc )dsdt -

, o J a

(s,t,u)«l^(SA>u)
a X [ o, T] X U

n
S c.T .

Here n-1, is the dimension of the space in which we chose the 

set A, thus, it is fixed and we change c to e /T j. Thus

/ (s,t,uk)dsdt -
. o a 1

f (s, t, u)dF(s>Lu)
A X [0,T] X U

s e.D

Lemma (1) of Appendix (B.2)

Let f f f be N continuous functions defined on a

compact set fl £ Rp and let c > 0 be any positive number. In this 

lemma we show how we can divide 0 into a finite number of subsets 

say n J * 1,2..... of equal volume or measure such that for

every x, x' € Q., J * l»2....m

|fj(x) — ff(x')l < c, i ** 1,2,. ..,N

Proof Let i be any integer satisfying 1 s 1 s N. By assumption 

fj(.) Is continuous on the compact set £1 c Rp, therefore there 

exists a positive integer and a partition J

* , such that

Vx.x' € flj *♦ If,(x) - f jtx') | < c.
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Thus, for i - 1.... N. we have N partitions P( - J

* 1.... Mj, i * of n corresponding to N functions f^.),

j « !.... N< Let P 55 <n.>, i = 1.... m* tern partition of fi which

is finer than any partition P., i - 1....N(see the definition in

BARTLE [1] p.320), and further so that the volume or measure of 

the subsets fl are equal. Thus we have for J *

Vx,x' € 0 € P * If.(x) - f.(x')| < c, i - 1....N.d

Appendix (C.2)

Let Y * Y(x,t) be the solution of the n-dimenslonal diffusion

equation introduced in the beglnlng of chapter (2) and let

Y(x t ) * 7 d (T).a (x), where the functions a^ix) are orthonormal 
9 L n n n

eigenfunctions with corresponding eigenvalues *n defined by the 

problem

Av(x) + A.v(x) “ 0, x e w ;v(x) * 0 ,x € 5« .

As we showed in (2.3).

dn
(s,t,u(s,t))ds.dt.n

In this appendix we show there exists a positive integer H and a

sequence {e > such that for every n > M, 
k

d_(T)2s e_,



34

where £ e < ».
n*M n

Proof We find first the solution of the equation 

AY - Y * 0 (x,t) 6 u) X (0,T)

with the following boundary conditions

Y(x,t) * u(x,t) (x,t) e do X [0,T] 

Y(x,0) * 0 x e o

(C2.1)

(C2.2)

(C2.3)

Let

Y(x,t) ■ U(x,t) + v(x,t) (C2.3')

be the solution of the problem <C2.1)-(C2.3), where v(x,t) is a 

new unknown f u n c t i o n  and Utx.t) is an arbitrary (sufficiently 

smooth) function which assumes the value u(x,t) on Gu X (0,T). 

Now we substitute (C2.3') in (C2.1) therefore

(AU + Av) - (Ut + vt) * 0,

or Av - v * U - AU- We substitute fCx.t) * U - AU,
t t T

(x,t) 6 w X (o,T), SO the problem (C2.1)-(C2,3) is in the 

following form in terms of v(x,t):

Av - * fix,t) e o X (0,T) (C2.4)
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v(x,t) * 0 (x.t) € aw X [0,T] (C2.5)

v(x,0) * <p(x) x € u (C2.B)

where y(x) = -U(x,0).Now let

CO
f(x,t) - 7 f (t)a (x)n nn* 1

oo
¥>(x) = V <p a (x)L* n n n*1

where f (t) « f f(x,t)a (x)dx and ® * | p(x)a (x)dx and the 
n Jw n Jw

functions f (t) belong to L (0.T). By Parseval's equality, _ n c

«)2 * Hail!2 , and for all t e (0,T) 
n ^ t2<w)

CO
x.tj.dx ■ J UHx.t) - AU 1 2 dx.

We call the last Integral Fit)2, so that

1,fA(0,T> j^F^tJdt.

Let f F2(t)dt *  D, thus - i f *  T> *  D n *  *.2........... For any
Jo 2 '

n * 1,2,... we consider the functions

1n a> . e  n
X t n “ X tt*T>

f  ( t ) . e  n .dT (C2.7)
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By differentiating from both sides of (C2.7) we have

-X t ft “X (t-T)
1 (t) - <p .{-X ).e " - f (t) - {-X ).f .e n .dr,n n n n J O n r t

or l i t )  =  - X  . <p . e  n -  f  f  ( t )  n n n JO n

-X t _t -X (t-T)
. e n „dx -f (t), thus n

1 (t) * -X . 1 (t) - f (t). n n n n

We have 1 (0) = a> , so it is easy to check that the function n n
2 (x,t) a 1 (t).a (x) is a solution of the problem n n n

Av - V * f it).a (x), t n n

with the initial condition v(x,0) * <pn-Mx).It is seen that

CO
v(x,t) * £ 1 (t).a (x)n nn* 1

(C2.7')

Is the solution of the problem (C2.4) - (C2.6). But from 

theorem 3 of MIKHAILOV ill (page 372)

* /»* ~X (t*x)
n„l * + Jo IV»)|.e " ,dt

:■-*« ’ fn#l <0,T)
* |^|.e ♦ = = r  , when n > 1 (C2.8)

■* 2Xn
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But we showed Ilf B s D, where D is a positive constant,
n L2(0,T)

and

|fj s jj f (x).a^(x)dx j s |j |f(x)|2j .

since {a > is orthonormal. Thus we have If I s Hflli (0,T). 1. Let n n 2
now (ifIf m B where B is a constant, thereforeIgCO.T)

1,2 ,

By using this notation we conclude from (C2.8)

-X t D
1 (t)| s B.e n + ---—  (C2.9)
" ' 42X

We know that (x+y)2 s 2.x2 + 2.y2, so (C2.9) implies

-ZX t D
1 (t)2 s 2.B2.e n +—  , t € [0,T] (C2.9/)
n A„

therefore

~ZX T D
1 (T)2 s 2.B2.e " + ---- , n « 1,2,... . (C2,10)
" Xn

But all of the {X } are positive and asymptoticallyn
X * c2.n2 + O(n), for an appropriate constant c > 0; (See, e.g,It
R. COURANT AND HILBERT ill) so there exists a positive contant K 

such that

. *• ** -
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|A - c2n2| s K. n for all n a N, 
1 n 1

2 2or therefore, c n - Kn s A s c2n2 + Kn, for all n a N, thus
1 1 1 n

for all n a N. We can choose n... £2 2c‘n £ + K.n
".... J*
A 2 2 c n - K. n*

sufficiently
n

large such that
1 2

9 9 £ , wnicn simpiy
2K c n - K.n c n

requires n a - 2 'c
Therefore we choose

M a max i N ,(2K/c2) ♦ 0 , so we have

1 2
---s — — —  , if n a M.
A c n

Thus by using the above inequality we may rewrite (C2.10) in the 

following form

2 -2A t 2D
1 (T) s 2.B2.e " + -T~T , for n a M (C2.ll).
n t* r\

1 2 n2n2
Now let n a M so --- =* , or A a ------ when n a M. Thus

A c2n2 2n
-2.T.A s -T.c2n2, when n a M. So (C2.ll) can be written in the 

n
following form

2 -C1 (T) s 2.B .e n
-cxh 2D

+ ~~T*r, when n a M. 
c n

(C2.12)

to2 2— 2D
Let f * 2 B2 e”C n "TT* 80 is seen that £ f is 

n ' ’ c2n2 n« 1
forconvergent. Thus from (C2.12) we have 12(T) i f

* 2n * 1,2,... therefore , £ r(T) is convergent. But from (3') we
n»1

have Y(x,t) - U(x,t) ♦ v(x,t), Let
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Y(x,t) « £ d (t).a (x) for t e [0,TJ (C2.13)« n n n«1

Let the expansion of the known function U(x,t) be as follows

«
UCx,t) * E k (t).a (x) for t e [0,T]. (C2.14)n n

n* 1

oo
We know that £ kit) is convergent, also in {C2.7') we assumed , n n» 1oo oo
v(x,t) * £ 1 (t).a (x) and we showed above that £ l2(t) is . n n nn*1 r»«1
convergent. Now by definition of Y(.t.) we have 

dn (t) B knitJ + 1 (t)» 8X1(3 by usinS the inequality

(x + y)2 s 2(x2 + y2) we have

d (t) s 2! n [kn(tî + 1n(t)] n * 1*2" (C2,15)

From (C2.15) we

t e {0,T3. Let 
00

M, and £ e (t) < . n n»1
convergent, a

03 2
conclude that £ d (t) is convergent for

* 0n* 1
2 fk2(T) + l2(T)l thus d (T)2 s e , for n
l " n J « " •"2 2oo. because we showed £ k (t) and £ 1 (t) are

, n n
n»1 n«1



40

CHAPTER 3

A linear program for determining an optimal control of the 

diffusion equation in one and two dimensions

3.1 Introduction

In this chapter we construct linear programs for determining

optimal controls of the diffusion equation in one and two

dimensions. In section (3.2) we obtain an approximation to the

optimal Radon measure p , by using linear programming In
Constant

sections (3.3 )-(3.5 ) we obtain a piecewiseA control function 

corresponding to a desired final state by using the minimization 

scheme developed in section (3.2). In section (3.4), we obtain 

the controls corresponding to two different final states and we 

show the graphs of these controls in the (t.u)-plane. In sections 

(3.5) and (3.6) we develop similar results for two dimensional 

space.

3.2 An approximation to the optimal measure 

Let

sj * | n € mo) : |i(l) sT, n = 0 , 1,...

52 “ M £ fl(Q) : M(^n) “ an» n “ 2* * * •

53 “ j M « #(n) : pt(G) c a6* G e 8111(1 Independent of u

'■'here 0 (t.u) « 2 (-l)".exp (-n2n2(T-t)].u, n * 1, 2,., (t,u)n 0
* t e (0,TJ .and let Q * S^n S^.
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Proposition (2.1) of Chapter 2 claims: The measure theoretical 

control problem, which consists in finding the minimum of the 

functional

(i e Q -» p(fQ) € R

over the set Q of H (il)» possesses a minimizing fi , say, a 

measure in Q.

In the following we define Gj(.,u) as monomials in t only, that

is, Gj(t,u) * t1, and from Weierstrass Approximation Theorem any

continuous function on 10,T], can be uniformly approximated by a
finite linear combinations of elements of the set <G^(.*u) :

1*= > (see BARTLE [Up. 183). Now for simplicity we use the

notation lim(a), instead of limia^.
{ ' i-*0

Proposition 3.1 Consider the linear program which consists of 

minimizing the function p over the set °?

measures in i¥+(fl) satisfying :

) * oc n — 0,1,2,..., Mj

u(G ) * a n * 0,1,2,..., M_.r* J Q G*1

Then, as Mj and Mg tend to infinity,

ijÎM. ,Mp) - inf p(f )
QtMj.Kg)

tends to ti « inf p(f Î.
Q ...•

Proof The proof is the similar to the proof of proposition
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(Hi. 1) of RUBIO (13 D.

We conclude the following proposition from a result of ROSENBLOOM 

ill, (see its proof in RUBIO [1] Theorem A.5), also It is 

possible to characterise a measure in the set QCMj.M»,) at which 

the linear functional p p(fQ) attains its minimum.

Proposition 3.2. The measure p in the set at

which the function p -* p(fQ) attains its minimum has

the form

p* * J   ̂ak.S(Zk),
k«i

(3.1)

with 2* 6 0 ( 0 » 10,T) * 1-1.11 ). and the coefficients afc a 0,
k

k * 0,1,... .Mj+Mgî here SiZ) is a unitary atomic measure with 

support the singleton set (Z> which is characterized by 

5(Z)F «= F(Z), F € C(£l), Z e Q. (see RUBIO [1] p. 114).

Now let PiMj.M^.e) S RN he the set of all ( a ^ ..., â ) 

defined by

«, a 0 i * 0,1,2,...,N

| -e s jjT a .^jiZ^Î - a f s c 1 * 0,1,2,...
J-l

N
-e s £ a ,Gf(Zf) - *6 * c i * 0,1,2,..,,M?

1-1

Theorem 3.1. For every e > 0, the problem of minimizing the



43
N

function V a . f(Z), where 
j - i 1 '

Z € <r , J * 0,1,...,N with o* a

dense subset of Q, on the set PCM^.h^.c), has a solution for N 

* N(e) sufficiently large. The solution satisfies

N

J»1

where p(e) tends to zero as c tends to zero.

Proof The proof is the same as that of Theorem (iii.l) RUBIO [1], 

When setting up the linear programming problem akin to 

proposition 3.2, it was decided to take the parameter e as zero, 

at least formally; of course, the error present in the numerical 

computations will ensure that the solution of the linear 

programming problem will not satisfy exactly the constraint 

equations. Now our linear programming problem consists of 

minimizing the linear form

i-1

over the set of coefficients * 0, J * 1,2,... ,N such

TjCMj.Mg) + p(c) s \ oyf0(Ẑ ) s + e

N

that
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[  v V V  - VJ *1

J-1

a. 1(Z )
H

* T;

l

1 = 0,1,2,...,Mj

i * 0,1,2,....Mg (3.2)

or, equivalently, we are looking for a solution of the following 

linear programing problem which consists of minimizing the linear

form

£
• V V

over the set of coefficients a 0, J * 1,2,...,N+1 such 

that

N «■ 1

J . v W  *  v

N ♦ 1

J / ' i W  ■ V

II«-1

l “ i * T-j«l

i * 0,1,2,... 

i * 0,1,2,...»Mg

where we used one slack variable o^, to put the last 

inequality in (3.2) in the form of the following equality.
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. 1
a, + a . * T J N+1 (a . t 0). M+1

Remark Instead of choosing, F^Ct.u) * t , (1 * 0,1,2,... ), it

is suitable to choose F (t,u) as the following functions :i

F{(t, u) = 1  t € J (

a o otherwise

and L
At

where J ( = [(i-l)d, id), i * 1,2....L and d = —

is a positive Integer which is in fact the number of the 

subintervals In the partition of the interval tO,T). The 

functions F are not continuous, however,

Cl) Each of the F , i ■ 1,2.... ,L is the limit of an Increasing 

sequence of positive continuous functions, {F<k}, then if M is 

a ny  positive Radon measure on 0,

p(F ) * lira #*CF ). 
* k

(11) Consider now the set of functions F|t 1 * 1.2.....L, for all 

positive integers L. It has been shown in RUBIO ill that 

linear combinations of these functions can approximate arbitrary 

well a function in CjCCl). where fi * 10,T] X 1-1,1), [here C^CI), 

Is the class of all continuous functions depending only on t) in 

the sense of essential supremum (see Friedman 12)). Thus the 

error function can be made to tend to zero by choosing in an 

appropriate manner a sufficient number of terms in the 

corresponding expansions (see RUBIO [!))□.

3«3 Construction of plecewise^control functions
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In this section we wish to obtain the control function 

corresponding to a desired final state by using the minimization 

scheme developed above.

We showed in section (3.1) that our linear programming problem 

for thte control for the diffusion equation in one dimension 

consists of minimizing the following function

N ♦ 1

Z ' v W
j'1

over the set of coefficients a 0, j « 1 , 2 , such that

r  N ♦ 1

l a .» (Z ) - a,
j  »1 J

N ♦ 1

T aJ  iz,L . j s  j ) - b.J«1

N + 1

L * .  ■ T

1 * 0,1,2,.. .,Mj

s - 0 , 1 , 2 , . ( 3 . 3 )

where 7^ ■ {tk,uk), k ® 2,..., and <r = k = 1,2,...} is

chosen as being dense in 0; in pr^tice, the set <r" * <Zk, k 

. 1 , 2 , ,  ,N+1> c <r, was constructed by dividing the appropriate 

i n t e r v a l s  into a number of equal sub-interevals, defining in this 

way a grid of points. We explain more about the points Z k 

later.

In the following examples we choose f0(.) a known function and 

choose for example T » 1-We choose two different desired final 

states belonging to 1^(10,11). where a^ 1 * 0,1,...,^ are the 

cosine Fourier coefficients of the function g(.J, and b’# s
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« 1,2....VL, are defined as the following Integral: b#

* j F (t,.).dt, Introduced In section (3.2).
J0 *

Now we refer to the solution of the diffusion equation In one 

dimension as Introduced In the paper of WILSON and RUBIO (1) as 

follows

^Q(t,u) ■ u

0 (t.u) = 2.(-1)n.exp[-n2n*l.u n = 1,2,..., t € [0,T]
n

F (t) * 1 if t € Js s

■ 0, otherwise,

where we used the notation F(t,.)«F(t), and where
At

J - (<s-nd, sd) where d - --- and A * 1 - 0 * 1 and we choose
s L

L * 10 (the number of equi-distance subintervals of the partition 

of the interval (0,11). Therefore we have d * (1/10) and

b - fV (t).dt * d * 0.1 for all s * 1.... 10.
s J0 s

Now we divide the Interval l-l.ll on the u axes to 20 

equal subintervals therefore we have N * 200 and (3.3) 

will be In the following form



48

201
l * .#,« > - a,
J “1

201

l y . « . 1 -  b*1 j « 1
201

I . - ,  -  >•
j - 1

, i * 0,1,2... M,, (3.4)

s ** 0,1,2, ( 3 . 5 )

( 3 . 6 )

and we define

vi = u = .. . = u * -0,95 1 2  10

U * u 
191 192

u  *  0 . 9 5  
200

and also we have

t * t * ... *t *= t * 0.05 1 vii 181 191

t  m t  B SB t  x  0 .9 5
10 ¿0 • "  190 200

Therefore by definition of F ’ s we have

F, < V  - * V S s i 1 * 1

and for other t| s, F^t^) * 0 also

F 1itt,0> “ F,o(tis) ■ ••• ■ V S o O 1 ■ 1

and for other tJ s, F.Jt ) • 0.
1 10 J
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Therefore the equations (3.5) may be written In the following 

form

a + a  * ... * a =0.1 
1 11 191

a + a + 
2 12

a »0.1 
192

(3.7)

a + a + ... + ̂ 10 20

We conclude from

using this result
20 0
2 8,5(2,), is an
j.i 1 1
where Ẑ , j » 1

200
0 . 1 .

200  1 0
■ E «, s E (
j»i J j«i

a » 0. Therefore 201

section (3.5)

3.4 Two examples with different final states and cost functions.

In this section we obtain the control functions of two 

examples.

Example (3.1) Let the final state be g(x) =0.1 and we choose
2

the criterion function fQ(t,u) = u , so our linear programming 

problem consists of minimizing the following function

200 ,
2 «  «

over the set of coefficients ^  i 0, J * 1,2.... 200 such that
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2 0 0
£ a .u « 0,1 

j» i  j  j

200
£ a .2(-l).exp[-n2(l-t )].u * 0.0 

** * *

£ a .2(-l).exp[-4ir2(l-t.)],u * 0.0 
* J i

£ a .2(-l).exp[-9.n2(l-t )].u * 0.0 
* * *

2 0 0
£ a  .2{-l).exp[-16n2(l-t )].u = 0.0
t.4 * * *

We used «NAG library program which is based on the Revised 

simplex method. The computational results are as follows:

200
200

+ “ 19, '  ° - '

a + a + ... + a 
10 20 , * 0.1.

a * 0.005236 80 a « 0.09313 99

a i07 *  0 -0 5 7 5 0 atnn m 0.006872
109

ai10 * 0* 02088 * 0.1000 a,,, * 0.1000 * 12

*113 “ 0,1000 aiH * 0.1000 “l15 * 0* *000
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tt1l6 * °-1000 a117 ■ 0.04250 a « 0.02011.

The cost function * 0.01574, CPU time * 1.03 seconds, the number 

of iterations In phase 1 * 42 and In phase 2 is 1.

Example 3.2 Let the final state be g^x) ** O.Ol.cos(nx) and we 

choose the criterion function fQ(t,u) * |u| so our linear 

programming problem consists of minimizing the following function

200
¡•1

over the set of coefficients fc 0 , J » 1,2,.,.,200, with 

the number of linear constraints equal to 15 [the same as example 

3.1], Then the results of the computations are as follows; .

a * 0.02401 a * 0.01571 a * 0.0073
39 50 96

a = 0.1000 a * 0.1000 a » 0.07599
97 98 99

a * 0.02527 « * 0.1000 « »0.1000
100 101 102

a ■ 0.1000 a « 0.1000 “m  * °*1000

«106 » 0.0927 « * 0.05733 * 0.001696.

Cost function * 0.07935, CPU time « 0.93 second, the number of 

iterations in phase 1 * 26, the number of iteration in phase 2 is 

equal to 1.
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3.5 Control functions

In this section we intend to construct the control functions for 

the above two examples.

Here we follow the procedure explained in RUBIO [1] (Chapter 5), 

suppose that the set <r * {Z^ ; J * 1,2,... > has been chosen as 

being dense in the set 10,1] X [-1,1]; in practice, the set

<r" * {Zj ; J « 1,2,... ,N > was costructed by dividing the 

intervals [0,1] and [-1,1] into a number of equal 

subintervals, defining in this way a grid of points. Here we 

divide the interval J « [0,1] into 10 equal subintervals, also 

we divide the interval U * [-1,1] into 20 equal subintervals, 

the values t̂  were taken as 0.5, 0.15, ... 0.95, the values û  

were taken -0.95, —0.85, ... -0.05, 0.05, ... 0.85, 0.95. Now

by GHOUILA - HOURI* s theorem, we have

U dp*(t,u) * M * ÛJ-1’ Uj^■ V  * 'V . • V
for 1 s i 5 10 and 1 s J 5 20.

Let <r be the 1, Jth subrectangle of [0,1] X [-1,1] where
i

*
1 s i as 10 l s J s 20. The point Z has been chosen as the

following point Z*. * (t . u ) 1 s i s 10 and I s  j s  20.'» j ' *
Now let X be the following transformation

X : N X N -» N

defined by X(i,J) - lQ(j-l) + 1  1 * 1 * 10 and 1 s j s 20, and

let Z ^  » Z*^ for 1 a 1 s 10 and t a J s 20 or
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2  ( | , J )  “  2 io c j-i> *i f o r  1 5 1 s  1 0 and 1 s  j  s  2 0 -

Therefore the optimal measure introduced in (3.1) will be in the

following form

.  v \p * £ a ,6(Z ),
k«0

where Hj and are the number of constraints. But if Z c n

then by definition of S- measure f F.dS(Z) « F(Z), F 6 C(C1).

Therefore for the constant function F(t) * 1 and Z e Q we 

have f 1 d3(Z) ■ 1. Thus,

K,j -1
V  j

u) J
*1**2

d[£ a .S(zk) ] 
V i " - ’

v

where k *10(j-l)+i and 1 s i s 10 and 1 s j s 20.

Now we construct the control function of example 3.1, again here 

we use the method introduced in RUBIO [1] ( section 1 of chapter 

5 ) and we use the same notations in that section, so we have

K -  a  » 0 .0 0 5 2 3 6  t  *  0 . 9 5  u *  - 0 . 1 5  
10,8 80 80 8 0

K * a « 0.09313 tM  * 0.85 u „ « -0.05 
9,10 99 99 9 9

V «  * *1» * °-02011 ‘« o ' 0-95 “izo*0-15-

Again by using the notation in (5.1) of the above reference we

have u(t) « u,ft<1 .. , t c where10<H)*1 I i
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BJ'i' * (V i + £ V kk<j' ’ 1 ksj'‘ k

such that t{, are the numbers 0.0, 0.1, ... 0.9, 1. Therefore

for example we have B „ „ = (0.9, 0.905236) and for t e B10,8 10,8
we have u(t) = u = -0.15 . We obtain all B., . In the same so < j
way. Thus we have the control function of example 3.1 in 

fig (3.1). Similarly we obtain the control function of example 

3.2 which is shown in fig (3.2).

Finally we wish to calculate the final state Y(.) corresponding

to the desired final state g(.) in example 3.1, by using the

piecewise constant control function u(.) in example 3.1. Let

Y(x) * d . where o

d - | u(t) dt « I a u « 0.10072, o J k k

thus we have BY(.) - gt. )HL * 0.00072, Also let Y^t.) be

the final state corresponding to the desired final state g ^ , ) in 

example 3.2, by using piecewise constant control function û  in 

example 3.2. Therefore let Y^x) * d1 cos(rrx), where

.1 ^  -p
d = - 1 ^ {(t, u ))dt * 2 expf-iT(l-t)} u (t)dt 
1 J0 1 » J0 1

so we have

BY^.) - gt(.)Bt2(0,1j 0.008.
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3.6 A linear program for determining an optimal control for the 

diffusion equation in two dimensions

We assume T <= [0,1] X J X [-1,1] where J = [0,T] and let

Sj * | n e H+{D : p(1) a T J.

52 - | m € tf+( D  : fi(Fn) - cn , n « 1,2, ... j, (3.8)

53 * fi € /f+(D : p(F) * c^, h € C((l) and independent of u |,

where c . n « 1,2,... are the Fourier coefficients ofn
g(x),x e u. In this section u is an open region in the plane, and 

8o> e C1. We have defined c^, h € C(D, in chapter 2, where 

h(.,.,u) is independent of u, and only depends on (x,t). In

chapter 2, we defined T = [0,1] X [0,T] X [-1,1], and assumed
t

Q * S. n S_ n S0, and we showed that the control problem of the 

diffusion equation in two dimensions can be reduced to finding a 

measurable control, u(y,t) e [-1,1] ,(y,t) e 8u> X [0,T] which

satisfies

cn F (s,t,u(s,t)) ds.dt n n « 1, 2 ,...

where u(s,t) * u(£j(s),£2(s),t), t 6 [0,T], s 6 [0,1], such that 

y ■ (£j{s ),€2(s )) is the parametric equation of 8u and,

Fn(s,t,u)
-A .

-(5an / SwJCCjfsJ.^CsJJ.e n
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Proposition (2.1) in Chapter 2 claims: The measure theoretical 

control problem, which consists of finding the minimum of the 

functional

for n * 1,2....

p c Q' *» ji(fQ) e R,

over the subset Q' of M*(D, possesses a minimizing p\ say, a 

measure in Q'.

Now we define hj(.,.,u) on (0,1] X CO,T} as follows:

h^fs.t.u) - 1, (s,t) € JfJ (3.9)

* 0, otherwise

1
where J « ((l-l)d, id) X ((j-l)d', Jd') such that d * ---,1 j y

T
d* « - —  and 1 « 0,1,...,K, J * 0,1,...,L. (Here we assumed 

that the Interval 10,1] on s - axis has been divided into K 

equal subintervals, and the interval J * [0,1] on t - axis into 

L equal subintervals]

Remark : The linear combinations of the functions h , can 

approximate a function arbitrary well in Cg(r) where 

r « (0,1] X CO,T] X (-1,11, l C2(r), is the subspace of C(C1), 

which depends only on the variables, s, and t,]. This means that 

for h € C ( D  there exists a sequence, (h^}, of functions in 

the subspace spanned by the functions h (,,,,u) defined in 

(3.9), such that

h‘J(s,t,u) -» h(s,t,u)
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uniformly when i, and J, tend to infinity; see HEWITT and 

STROMBERY [1], (page 159). The functions h^, are not continuous;

however, each of the h{., i = 0 , 1 ..... J * 0,1,..., is the limit

of an increasing sequence of positive continuous functions 

(h > , [this notation means that this is a sequence of the1 j t K K
integer variable k and the other integer variables 1 and J are 

fixed ), then if p is any positive Radon measure, on T, we have

" ‘ V  *  H ” (hi].k)'

Proposition (3.3) Consider the following linear program which 

consists of minimizing the function p -» p(fQ), over the set 

Q'(Mj.Mg.Mg) of measures in H+(D satisfying

p(F ) - c n n n * 1,2,...,Mj,

M ( h “ c ,y 1 « 0,1,... »Mg,ij hu

J * 0,1,..«,

As Hj, Mg, and Mg tend to infinity

1j{M1*M2*M3) * lyf

■>} « Inf p(f ).
Q

tends to
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Proof This proposition is an extension of proposition (3.1), 

where instead of the set QCMj.Mg) in that proposition, here we 

have Q ' a n d  instead of rjiMj.Mg) here we defined 

rjiMj, it,, Mg), so its proof is similar to the proof of 

proposition (3. l).n

Remark: It is possible to characterise a measure in the set 

Q' (Mj.M^Mg) at which the linear functional

p p(fQ)

attains its minimum; it follows from a result of ROSENBLOOM [1], 

which is shown in RUBIO [1]. The following proposition is an 

extension of the proposition (3.2), and its proof is similar to 

the prooof of that proposition.o

Proposition (3.4) The measure p\ in the set Q' (M^M^l^), at 

which the functional p -> p(fg) attains its minimum has the 

following form

W j

k»1
a .5(2 ), k k

where Z e  T * [0,1] X [0,T] X [-1,1], the coefficients a fc 0, k k k
* 1, 2,...,Mj+Mg+Mg, and 5 a unitary atomic measure with support 

the singleton set (Z>, which we show by 5(2) € N*(0) and is 

characterzed by

5(Z)F « F(Z), F € C(D, 2 € T
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Now let PiMj.Mg.Kj.e), be the following sets of Inequalities

a( t 0, i « 1,2....N

•e s £ a F (2.) - c s c, i - 1.2....M
J - 1  J J

-c S £ a t.h,k(Z,) - c ..S e, i  * 1.2....K,
j.i J J h**

k = 1,2,....Mg.

Theorem (3.4) For every e > 0, the problem of minimizing the
N

function £ a .f(Z,), [where Z e 0, J * 1,2,...,N and e, is a 
j-1 J J 1

dense subset of r J on the set has a solution

for N « N(e), sufficiently large .The solution satisfies

N

t,(M1*M2*M3) + p{c) S ^ l ’W  + e

where p(e), tends to zero, as e, tend to zero.

Proof The proof Is similar to the proof of theorem (III.1 ), 

(RUBIO,[1]).D

As we described in section 3.2 we decide to take the parameter e 

in Proposition (3.4) as zero. Therefore the linear programming 

problem consists of minimizing the linear form,

N
£ o. ,f q(Z ) »

j - 1  J

over the set of coefficients a 0, j * 1,2,... ,N, such that
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N
Z a.F (2 ) « c . i * 1,2....Mr
J«1 J J

Z a^hkl(2^) * c kl* ^ * 1,2,...,Mg, (3.10)
J»1 h

1 * 1,2,..«, Mg,

'  N «
M( 1) * Za.-KZ,) - Z«. * T‘j.1 1 J J-1

or equivalently, we are looking for a solution of the following 

linear programming problem, which consists of minimizing the

linear form,

N ♦ 1
s «
J*1 i V V

over the set of coefficients t 0, j * 1,2, ...,N+1, such that

H*1
z aT (Z ) - cr i 
J-i

1(2,..., Mj i

Z a hkl(Z ) - c k - 1.2....Mg,
J » 1  J h

, 1 = 1.2....Mg,

where

NO
Z a , * T,
j.1

F^Z)
-Xt i 12 "T7

F^s.t.u) * (CjisJ.CgisJJ.e • ' * ^ 1 ^2 *U
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here x * ^ is), y * £9(s) ( s e 10,1]) is the equation of the

boundary of the region u, in the xy-plane, we have chosen one

slack variable a , so as to put all linear constraints in «♦1
equality form; that is, the last inequality in (3.10) changesto

Example 3.3 In this example let w be the rectangle 10,n] X [0,n], 

in the xy-plane; we assume T - 1, so that 

p b [o,l] X [0,1] X [-1.1]* We divide the set [0,1] X [0,1], in 

the st-plane into 64 equal subrectangles and we divide the set 

[-1,1], into 15 equal subintervals, so the set T is divided into 

960 equal subsets. Our linear programing problem then consists of 

minimizing the following real function

960
Z a^tZ)
j.1

over the set of coefficients aj * 0, J * 1,2.... 960, such that

961
Z « F (2 ) « c , 1 « 1,2, 
» _ « * * * *

• Mr

961z
J»1

kl k = 1,2,.. .Mg,

, 1 B 1,2,...,Mg,

(3.11)

961
Z a, * T. 
J»1



that tte
We proveA slack variable
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is zero. Next we choose the

criterion function, fQ, a known function, and also we specify

the final state function g(x). Let c{, i * 1,2,..., te the

Fourier coefficients of the function g(x) in terms of the
00

orthonormal eigenfunctions a,(x). That is let g(x) = £ c .a (x).k . , k kk« 1
We define the functions f' s as follows,

fki(s,t,u) » 1, (s.t) e Jkl

* 0, otherwise,

1 1
where J - ((k-l)d, kd) X ((l-l)d', Id'), d * — , d' • ~  k

■ 1,2....K, 1 ■ 1,2, We choose for example K * L * 8,
1 kitherefore d * d' « -r so k * 1,2....8, 1 = 1,2,... ,8 and c , isO

the integral of the functions ffcl> over Jkl, that is

ckl . I d  -kd
Ids.dt

J ( l - 1 ) d , J ( k - 1 ) d
d'd,

or

ckl « ( 1/8)( 1/8) « 1/64, k » 1,2....8 and 1 * 1,2.....8.

As we mentioned before we divide the interval [-1,1] on the u 

axis into 15 equal subintervals, and we choose the uk> s as 

follows:

Uj * u„ •m_. * -14/15, 64

u,65 u,66 “123 *
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in general we define

u * u = ... = u = (2k-14)/15, k *= 0,1,... ,14.
M k * 1  64k+2 M(k+1 )

Also we choose s as follows 
k

s ■ s 1 2 s = s = s 
8  65 6 6

... m S * S
”  72 * 897

*“ • • • *■* s
904

1/16.

In general we have

, * (2i+l)/lB. for 1 » 0,1....7, J
64k+8i+j

k = 0,1,...,14.

1,2,...,8 and

We choose

S  "  S  “  l 17 “  **• " l 64k+8i+1 1/16, i ■ 0,1,...,7 

k * 0,1,..., 14

or in general

ti;L , * (2J-D/16, for J - 1,2.... 8, i * 0,1,...,7,
64k*81+j

k * 0,1....14.

By definition of the functions f and due to the choice of the 

s' s and t' s we have for k * 1, •.., 8 and 1 * 1,.... 8 the 

following correspondence,
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* S l '  *k *  *  ^S64r*8<l*1)+k ’ t 64m8(l-1>*k^

for all n * 0,1....14, k * 1,2,...,8, and 1 * 1,2.....8.

Therefore we have

f lk*S l ’ V  *  f lk^S6«fH8(t-1)^k * t 64rH8(l*1)*k) 1’

f.,(.,.) * 0, otherwise. 
Ik

So we have the following equations

“i V w  * “jW v  * ••• -“w y 5«»' ‘w 1 -

“i V W  * “/ n (iV V  " *eW u (iW  ‘«o1 * 1/64

* Y l . l 1'!'1!1 * "• +a960^8,8^S960' ‘«O1
* 1/64,

where k * 1,2,...,8 and 1 * 1.2,...,8. We substitute the value
of f in the above system of linear equations giving 

kl

a + a + a + 1 65 129 + a +64n*1 + aaar « 1/64, 897

a 8 ( l - 1 )^k + a 64*8(l-1)*k

a + ..
64rH 8(M )*k

+ .. . +

+ ®6«.H+8Cl-1>+k
*1/64,

a + a + a + 64 128 129 ♦ a64n
♦ a960 1/64.
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If we add all the equations In the above system we obtain

960 64
l a. * £ 1/64 « 1.
J.1 J j-1

961

Now we compare the above equality with the c o n s t r a i n t 1 in

(3.11); we conclude, a , = 0, that Is. the only one slack

unknown a . Is zero and the other 960. variables are 
961

nonnegative. Now In this example we choose 

g(x,y) * 0 .l((2/u).slnx.siny); in the next section we calculate 

the functions F{( » and we assume f0(s,t,u) - u2, so our 

linear programming problem is as follows:

Minimize

960
l
J«1

2a u , j i

over the set of coefficients a 0, J - 1»2 ,960, such that,

960 “ <4/n>t
£  a  . 8 . s l n ( n s  ) . e  \  u  « 0 . 1
i-l 1 i J

9 6 0 . -(20/TTJt
£ a  .(4(3sln(ns ) + sln(3ns )J.e J * 0.0
J«1 ' 1 1

960
2 a. 24. sin(3irs ,, J JJ«1

0.0

960 *«0/«)t
l a 8.t2sln(2irs ) - slnUns^l.e » 0.0
J»1 J .



+ + ♦
a B ( M ) + k  + a 64*8(l-1)*k

a 64r»*8(t*1)*k + + a “1/64,64.14*8(l*1)+k

a +64 128
+ a.

129
+ a

64 n
+ a

960
1/64.

In example (3.3) we have assumed the region u to be the rectangle 

[0,ni X 10,n). Now we find a sequence of functions (an(x,y)>, n 

= 1,2,..., the set of orthonormal eigenfunctions of the problem

u + u + Xu * 0, (x,y) e w; u(x,y) « 0, (x,y) e Ôw.
xx yy

The corresponding eigenvalues X^ are

X1 = (2/n)(l2+ l2) « 4/jr 

X2 * (2/n)(l2+ 22) » 10/n 

X3 « (2/n)(22+ 22) * 16/ir 

X^ - (2/n)( 12+ 3 2) « ZO/ii

X5 * (2/n)(32+ 22) » 26/ir

X, « (2/rr)( 12+ 42) “ 34/n 6

X? “ (2/n)(3Z+ 32) « 36/n 

X. = (2/n)(2Z+ 42) * 40/nO

Now we define the functions a k * 1,2,..., corresponding

to the above eigenvalues Xfc as follows

a ^ i x . y )  «  ( 2 / w ) . s l n ( x ) . s i n ( y )  a ^ x . y )  «  ( 2 / n ) . s i n ( x ) , s i n ( 2 y )
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a^x.y) « (2/w).sln(2x).sin(y) a4(x,y)

agix.y) * (2/n).sin(3x).sln(2y) a6(x,y)

a^(x,y) * (2/w).sln(3x).sin(3y) a8(x,y)

(2/n).sin(x).sln(3y) 

(2/ir).sin(x).sin(4y) 

(2/w).sin(2x).sin(4y)

It Is easily seen that the above functions a aren
solutions of the following problem

u + uw  + x«u ' °* (x,y) € u; u(x'y) * °. (*.y) € a«,m  yy n

with the corresponding eigenvalues X̂ , n * 1,2,... . it is easy 

to show the functions a  n « 1,2,..., are orthonormal. Now

we calculate the following functions on 80

r da. * " V ’lM  '?
Fn(s,t,u) * ---J ^ *e ^1 + ^2 "u

-X (T -1 )"i— r

First we calculate the functions 1 j(x,y), n * 1,2....
t 8v i

(x,y) e 5w, where w is the following rectangle:

v * t*l,0> *-

v * to,i>

0 0  3
0 0*

501 00 2 V •

l n
P  » ( 0 , - 1 1

(1,0)
— -»

Therefore we have 80 * 801 u 002 u 803 u 004, where 8 01,
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i * 1,2,3,4, have been shown in the above figure; the equations 

of flul, 1 « 1,2,3,4, are:

’ Cj(s) * ns
Sul:

? 2 ( S )  - 0

3u3:«
Cjfs) * n(l-s)

$2(s) * it

flu 2:
£j(s) * IT

?2(s) = ns

flu4: <
Cj(s) « 0

. €2(s) * n(l-s)

where s e 10,1],
f 1Now we may calculate the functions, ------ n | ( € 1 ( s ) , €  ( s ) ) ,
l dv J 1 2

s e 10,11, for n * 1,2.... on flu, as follows

r fla %
^ « t(2/jr)slnfns).cos(0)H-l)

+ {(2/n)cos(ns).sin(jrs)l(l) + t(2/n)sin(ns).cos(n)](l)

+ t(2/n)cos(0).sln(ns)](-l)

r Sa x
or --- (C.(s).Co(s)) * (*-8/n)sin(ns), s € 10,1], also we have

l  fli, J 1 d

iCj2 ♦ C22 * *2* thus

F (s,t,u) « --- (Cjlsl.Cgis)) e 1 * c2 .u
1 Bv *.

-C*/n)(T-t )
« -8sin(ns).e .u, (s,t) c 10,1] X C0,13.
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In general we have ak(x,y) = (2/x)sln(mx)sln(ny), for some

positive Integers m, and n. Henceforth we assume
f 5ak1b (...) * -- where k * 1,2....  and v * (v ,w ), Is

* t aw J 1 2

the outward normal derivative to Su, therefore we have

b^Cjish^Cs)) * 3[ (2/ir)sin(mx)sin(ny) ] / 8v

- [ (2m/ir)cos(mx)sln(ny) + [ (2n/nr)sln(mx)cos(ny) ]y .' 2

By substituting the values of î , on Sul, 1 * 1,2,3,4, we

may write

bj€,(s),t,(s)) * -(2n/»t)sln(mirs)[l+(-l)rHm] k 1 2

+ (2m/n)sln(nns)[(-l)*+(*l)n].

Note:

(I) If both m and n. are odd or even and n * m, then

W s ) , ? 2i s ) )  * ° ‘
(II) If n and a are odd, and n * m, then ^ ( ^ ( s j . ^ i s ) ) 4 0. 

In other cases bk(C|(s),€2 ŝ ^  *

Therefore we conclude:

•(4 /n ){T*t>
(1) Fj(s,t,u) » -SsinUs).e .u

(2) F2(s,t,u) - F3 (s.t,u)- Fg(s,t,u) - Fgts.t.u) » 0

(3) F.(s.t.u) » -4t3sin(trs)*sin(3its)).e*<2<5/’n<T't>,u
4
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(4) F?(s,t,u) - -24sln(3rrs).e'i36/ir){T't> u

(5) Fgis.t.u) » -8(2sin(2ns) - sln(4ns) ]. e'140'*51**0 . u 

Now we have the following computational results:

Cost function. = 0.1463, and CPU time = 18.08 seconds. We

construct a piecewise constant control function similar to the 

one-dlmenslon case for this example. The graph of control 

function In su-plane Is shown In Fig (3.3).
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FIG  (3. 1 ) -CONTROL FUNCTION FOR EXAMPLE (3, Î)
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F IG  ( 3 . 2 ) -CONTROL FU N C TIO N  FOR EXAMPLE ( 3 .2 )
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F IG  ( 3 . 3 ) -CONTROL FU N C TIO N  FOR EXAMPLE ( 3 .3 )



CHAPTER 4

Optimal control problem for the one-dimensional diffusion 

equation with generalised control variables.

4.1 Introduction

In this chapter we consider again the one dimensional diffusion 

equation

Y (x,t) « Y. (x, t), (x,t) e (0,1) X (0.T) (4.1)XX w

with boundary conditions

Yx(0,t) = 0, t e t0,T]

Yx(l,t) = u(t), t € t0.T] (4.2)

Y(x,0) =0, x e [0,1] 

where u(.) is the control function.

It is desired to choose u(.) 6 L^iO.T), such that Y(.,T) * g(x) 

in LZ(0,1) and the function

u -» J(u)

is minimized (we specify the function J(.) later). Let g(.) 

e L2(0,1) be the desired final state, with the half-range Fourier 

series as follows:

to

g(x) ■ E «  cos(nirx).
An«0
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RUBIO and WILSON tl] have shown that a solution of (4.1) with 

boundary conditions (4.2) corresponding to a control 

u(.) e L2(0,T), satlsflng the terminal condition Y(.,T) * g(x) 

in LgiO.l) also satisfies

f $ (t)u(t)dt = a , n * 0,1,... (4.3)
JO n n

with

(t) = exp[-n2n2(T-t)], t e [0,T], n=0,l,...n

It is apparent from (4.3) that the problem of attaining a given

state g(.) at time T earn be studied by considering the moment

problem (4.3). From results of Fattorini and Russelltl], it can

be shown that there is a control u(.) e L,,(0,T) satisfying (4.3)

if there is a constant € so that the moments a satisfyn

¡oc J s C exp(-n2n2). n * 0,1,... (4.4)

There are, however, many functions in 1^(0,1) whose moments do 

not decrease with n as rapidly as this condition requires, for 

example

<09

f(x) * Z (l/n2)cos(nirx) 
n»Q

RUBIO and WILSON 111 assumed f be the space of real-valued 

functions infinitely differentiable on (0,T3 such that
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sup lDV(t) | s C L , 
[0,T]

for some constants C, L. 5 was endowed with the LF-toplogy and S 

was assumed to be the dual of the space S'. In S a solution was 

found to the problem of moments. Proposition (VIII. 4) of RUBIO 

and WILSON [lj shows that the following linear functional s on f 

defined In (4.5) Is In S

for all ^ e S', where k = 0,1,... are Radon measures on

10,T] such that

for all L i 0. If s satisfies (4.5) for all e ?, It Is 

denoted by

In proposition (VIII.5) In the above reference, they find an 

atomless s € S such that s($ ) “ a , n * 0,1,... , In othern n
words, It was proved that the set

s > I s c S : s(4 ) * a , n » 0,1,..,, s Is of the form 8 t n n

(4.5), the measures k » 0,1,.., associated
CO . \

with It are atomless and £ L j d|p | < »V
k»0 J(0,T] i

s(0) = Z ( - D m( dV ) . (4.5)
k«0

(4.6)

(4.7)
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Is non-empty, where a, n * 0,1,... are the cosine Fourier
n

coefficients of the desired final state. RUBIO and WILSON showed 

then that the problem of moments has a solution in S; they also 

Introduced a sequence of controls in L2(0,T) which approximate 

S € S.
We consider now the following correspondence 

00

s * E € S <* (pQ, ... ,|ik, ... ), (4.8)
k-0

where

(4.9)

for all L a 0. We show In appendix A.4 that the correspondence

(4.8) Is in fact an Injection. Thus, from (4.8) It Is possible to 

indentify any element of S with a sequence {p^}, of Radon 

measures on tO.Tj. So henceforth we use the notation 

s * (p^) e S. [We mention here that it is easier to use the 

Inequality (4.9) in the following equivalent form

•  k
E L Ip 1 < « (4. 10)
k*0

for all L a 0. Note that we used the fact that

lip || * |p |(i) a f  dip I; see for example (CROQUET [1) p.215)]. 
k k "10,t 1k

By Theorem 13-21 of AP0ST0L [1] we can obtain an equivalent 

condition to the condition (4.10) as follows,
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H m  sup Mp U1/k * 0, 
k k

which in turn is equivalent to the following:

11« Up B1/k * 0, (4.11)
k

since by definition 12.2 of the above reference, 11m sup llpll1/k
k k

= 0 if and only if for every e > 0 there exists an Integer K
i /ksuch that k > K Implies llp̂ll < e; this condition is the

1/kdefinition of lim Up.II * 0.
» 1

By definition of s we have, then, that s * (pn, p . ... ,p ,...)9 0 1 k
e s , If and only IfO

00

(1) s(* ) » y (-l)k( n V ) V ( * )  • «. n * 0,1,...n . L  k n n
k « 0

(2 ) 11m llpkllVk *  0.

We have shown in appendix (B.4) that the space S is a linear 

space. Now let J be an objective functional on S. For example let

J(s) * £ up n,
k « 0

where s * (p ,p , ... ,pfc, ... ) € S. It is apparent that J is

well defined, since £ llp̂ B < »•
k » 0

The reason that we have chosen J(.) in the above form Is that, if 

the classical control problem consists of finding a control u(.)
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which minimizes the functional

I[u(.)] ■ f |u(t)|dt 
iO,T] Hullt̂ O.T)

then we can define the associated measure u :
u

f 0dp * f ^(t)u(t)dt, \ji e 9;
J [0,T] u J 10,TJ

thus,

IIM 11 = Ip 1(1) * f dlP.I * f |u(t) Idt = Hull 
u u [0,T1 J CO,T] V 0,0

Therefore the above objective functional J(.) is indeed a true 

extension of the functional I(.).

We show In this chapter that:

(1) For positive Integers K,N,L, and a positive number c we have

Kl KL
inf £ Hr U 51 H m  inf £ lip ||
Q(K,N,L) k*1 e-X>vQ£(K,N,L) k>0 k

where Qe(K,N,L) Is the set of all ( p ^ .... P^.O) [we define

.0) * 11 such that

(a) I Z (-l)k( n V ) ku ) - a I < e, n * 0,1.....N
k-1 k n

(b) llMkH1/k < 1/K, (K-l)L < k s KL.

and Q(K,N,L) Is the set of all {p0,pt,... ,PKL,0) oi* Radon
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measures such that

(C) . £ (-l)k(n2ii2)k uM  )it n a , for n » 0,1.... Nn

(6 ) lip N1/k < 1/k, for (K-l)L < k s KL. k

(li) For positive Integers K, N, L,

Inf £ Up II “ U m  Inf £ lip I!
Q(N) k*0 k** Q(K,N,L) k-0 k

where Q(N) is the set of all .... Pk,... ) such that

£ (-l)k(n2Jt2)kpk(0n) ■ an, n « 0,1.... N,
k«1

11m lip llVk * 0. kk-*n

(111) We show next

Inf £ Up 8 * 11m Inf £ IIp II
s k»0 k-x*> Q(N) k*0

9

09
(iv) Let 0 * Inf £ Up fl. We approximate 0 by 

s k*09
where Pc(K,N) Is the set of all fp^P,»* • • .P^.O), 

of pfc Is a discrete measure on (0,T), and

K
Inf £ lip li, 
Pe(K,N) k«o k

such that each

I £ (-l)k(n2*2) V ( *  ) - «I < c, n - 0,1,..., N,k n n
(4.12)
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[c is agiven positive number and K and N are sufficiently large 

positive integers].

(v) We transfer the above problem to the one which consists of 

the minimization of a linear function over a set of linear 

constraints in finite dimensional space.

(vi) Finally, we use the sequence of control functions 

introduced in chapter (S), and show, through several examples, 

that we can reach .< different final states with a rather good

approximation.
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(4.2) A scheme for determining the infimum of the objective 

function

In this section we show that

Kl
inf E 
Q k*0

11m inf E IIn II , 
e - » *  Q ^ i e )  k « o  k J

where K, L are positive integers, N is a nonnegative integer, 

e > 0, and Q̂ tcr) ■ Q(K, N,L, e) is the set of all sequences 

(ji ,|i . 0) of Radon measures such that

(1) |ZL(-l)k( n V ) k Hk(*n) “ «J < c for n » 0,1....N.
k-0

(il) IIn ll1/k < 1/k, for (K-l)L < k s KL, k

and Q « Q(K,N,L) is the set of all sequences (pQ,pi.... p^.0) of

Radon measures such that

(Hi)
KL
E (■
k«0

l)ki n V ) k u U )  k n V
for n * 0,1, tN

(iv) l ji U1/k < 1/k, for (K-l)L < k s KL.

First we show in lemma (4.1) the sequence {QiK,N,L,e)>K, is 

non-decreasing.

Lemma (4.1) Q(K,N,L,e) c Q(K+l,N,L,c)

Proof It is seen that any element «1*^.0) « Q(K,N,L,e)
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is an element of Q(K+l,N,L,e):

L(K + 1> Ir 2 2 k(i) I 2  (-l)k( n V r  ) - « I
1 . .  k n n 1k » 0

KL
2 (-l)k( n V ) k H U  ) 
k - 0  k n

a I < e for n'

(ii) llnkll1/k « 0 < 1/k+l, for (K-l)L < k s KL.o

Remark It is shown in appendix (C.4) that Q(K,N, 

for any nonnegative integers K, N, L, and e > 0. 

Now we define

€M.L (e)
00

inf ZllM.fl, 
Q^ie) k»0

where Qje) * Q(K,N,L,e). Now in lemma (4.2) 

(f (c)> , is non-increasing:

Lemma (4.2) € . (e) s £ (c), when N, L,

and K takes value 1,2,... .

Proof In lemma (4.1) we showed Q(K, N,L,c) 

therefore we have

Inf 2 Bun s inf 2 Hm .«. 
Q(e) k«0 Q(c) k«o 
«♦1 K

where Q^c) ■ Q(K,N,L,e), for K » 1,2,... . But 

we conclude fro» (4.14) that

L.e) is non-empty

(4.13)

we show the sequence

and c are fixed 

c Q(K+l,N,L,e),

(4.14)

by definition (4.13)
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W 1* ’
C (c) (4.15)

We show In appendix (C. 4) that ■ Q(K, N,L) Is non-empty so the 

following definition Is meaningful:

€M.i
00

Inf E IIH I 
qK t-o

(4.16)

In the following we Intend to obtain a relationship between

£ and £ (e); therefore we prove the following lemma.
K.11,1

Lemma (4.3) Q(K,N,L) * f) Q(K.N.L.e).
e>0

Proof It follows from the definitions of Q(K,N.L) and Q(K,N.L.e) 

that for any c > 0,

Q(K.N.L) C Q(K,N.L.e), (4.17)

since if (|i ji....M^.O) 6 then We have

•a , , .
(I) IE (-l)‘(nz* T  ) - a | * 0 < e; for any e > 0

k.O k "

(II) < 1/K, for L(K - 1) < k s LK,

then .... € for e > 0. Now we

prove ft Q(K,N,L,e) c Q(K,N,l), so let (p .... u .0)
e>0 L

c f\ Q(K,N,L); then we have 
c> 0
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(a) |E (-l)k(n2tt2)k - a | < c for any e > 0, and all

k»0
n * 0,1,. . . ,N,

(b) llMkUVk < 1/K, for L(K > 1) < k s LK,

KL k 2 2 kWe conclude that |£ (-1) inn ) u (0 ) - a I » 0. If not, let 1, „ k n n1k*0IC L .
|Z (-l)k(nZjrZ)k u î “ a I * c > 0, then the above condition 
1 k n nk«0
(a) also should be valid for c/2, this means that e « 

kl , , .
|Z ( ' l ) i n i T  ) “ *J < c/2, for all n*0,l,...,N or
k»0 "

c < e/2, which is a contradiction. So the above conditions (a) and

(b) can be written in the following equivalent conditions (c) and 

(d):

KL
(c) z  (-ir(nV) jU *  ) ■ a i n * 0,1,....Nk n nk»0

(d) !lMkH1/k < 1/K, for L(K - 1) < k s LK,

therefore by definition of Q(K.N.L) we conclude that 

• • • .Mkl.0) € Q(K,N,L).a

Now we define another set Q(N), which we will use later, as the

set of all (m  ,M ,.. • ,M .•••) of Radon measures such that 0 1 k

co
(a) Z (~l)k(n2ir2)k Mk^ ft) * V  n *

k«0

(b) 11m Iul,/k « 0.kk

We have the following lemma:
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Lemma (4.4) Q(K,N,L) c Q(N) for all positive integers K, L. and all 

non-negative integers N.

Proof Let ( p ^ ....p^.O) € Q(K.N.L), then (m q,p ^ . . . . 0 )

€ Q(N), since

oo Kl
(I) £ (-l)k( n V ) k a (0 ) = £ (-l)k( n V ) k u (* ) » « . 

k -0  k n k.O  k n n

n = 0,1.... N

(II) 11m I!ju H1/k “ because p a 0, for all k > KL.a 
k k

In the next lemma we show that

V i  * liB iw ‘c>-* ' e-»o*
(4.18)

exists. Then we show that 8 ^ ^  - (

£ (e), were defined in (4.13) and (4.16)1.
lCfNfL J

and

Lemma (4.5) 0 _  , * 11» u ,<*> exists and 6 = £ ,
C-+0+

where 0 , has been defined in (4.18).
M.L

Proof We showed in (4.17) that Q(K,N,L) c Q(K,N,L,e) for all 

positive integers K, N. L, and e > 0. Therefore

inf £ Up 8 s inf £ Up It; 
Q (c) k»0 Q k»0k k

thus by definition we have
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5 e.

IC.lt,i

for all e > 0. Now let 0 < < e , then

QfK.N.L,^) c Q(K,N,L,e2),

(4,19)

(4.20)

(see definition of Q(K,N,L,e), in the begin!ng of section (4.2)) 

therefore from (4.20) and the definition of £ (e) we conclude

o s C (ej *,N,l 2 5 W c<’-

Therefore £ (e), as a function of e, is non-increasing; sinceK#Nf L
it bounded from above, it has ».limit as e -> 0*; that is

9 * lim £ (O, exists. Now we prove 0 « £
M . L  *  M . i  k , « , lC -fv T

From (4.19) we have £K M Jc) 5 H L for* all e > 0, therefore

lim £ (e) s £ for all K, N and L, or
€->0+ ' 'L ' '

0tc.tt, I
s £K.M.L (4.21)

Since £ (e) as a function of c is non-increasing, then for any
K.M.l

e > 0, we have

£ (e) s 0 , *,N,L l.H.l

CO
but by (4.16) we defined S ^ J e ) * inf £ II u II, where

Q,iO k«0 *

<3,(0 « Q(K,N,L,c), therefore

CO
inf £ IR» * „ .» 
QtU) k-0

(4.22)
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w
for all c > 0, thus from (4.22) we conclude inf £ lljj II

f| Q (e) k*o k 
e>o

s 0r „ ,* where by definition, Q (c) ■ fj Q(K, N,L,e). We showed in
c>o

lemma (4.3) that Q(K,N.L,e) * Q(K,N,L), therefore
c > 0

inf
Q„

00
£ llu H s e

k*0
K,N ,l’

where a Q(K,N,L). Or by definition

£ s 0fc,M,L K,M,l

From (4.21) and (4.23) we conclude

(4.23)

.0S 0K,N,L IC.N.L (4.24)
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4.3 Approximation of the infimum of the objective function when 

the cosine Fourier series of the desired final state is a finite 

summation.

N
Let g(x) » 2 a cos(nTtx), where N is an arbitrary non-negative

* n n«u
integer. We will show that for any positive integer L

00 CO

inf E Up II * 11m inf E Hu H, (4.25)
Q(N) k*0 K Qk k»0

where a Q(K,N,L), Q(N) was defined as the set of all sequences 

(p ,p .... ,p ,... ) of Radon measures such that

00
(a) E (-l)k(n2jr2)k p.(0 ) * a ; n » 0,1... . ,N. . k n nk«0

(b) lira lip ll1/k « 0.
k k

00
We show in appendix (C.4) that Q(N) is nonempty, so Inf E Up II

Q(N) k«o k
is meaningful. First we show that lim € exists.

K ' '

Lemma (4.6) For arbitrary K, N and L

£ s £

where £ was defined in (4.16),

Proof: From lemma (4.2) we have „ Jc) 5 for a U

c > 0. Therefore
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Urn „ L(e) * lim C (c),e-*o+ ' ' e-*o+ ' 'L

or, by definition

9 . s e*♦1,11,1 K.M.l (4.26)

But we showed in lemma (4.5) that 8 ** £ , therefore we»CjllfL KfNf L
may express (4.26) in the following form

€ s £ .d SK+1,M,L IC.H.L (4.27)

isIn lemma (4.6) we showed that the sequence -jj; lI K.M.LJK

non-increasing when N and L are fixed, and it is bounded from 

below by 0. Now let

t)n,t 11» £M,t’ (4.27')

as

0 * inf Z IIm J I-  (4.27")
* Q(N) k«0

With the above notations we can restate (4.25) in the following 

equivalent for»

00
We remember that £ u , * Inf Z Bf* »• It may appear that tj

M *\ Q k k-o * N,w

» lim ^ depends on the value of L, but we shall show that itJ£
is Independent of the value L a  1; In other words we shall show
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that for any fixed L a i ,  we have 0^ » First we prove the

following lemma which we will use later In this section.

Lemma (4.7) Let ^ (t) * e*n * <Tt\ where n ■ 1,2,..., N (N is an
fixed positive integer) and t 6 (Q,T]. Let t < t < ... < t , be1 2 m

defined by t. = i. A, where A * T/N, and i = 1,2,..., N. Then the 

following matrix

<P

w  w  ••• w

02(t1} *2(V  *2(V

W  W •p i t )*M M

(4.28)

is nonsingular.

Proof It i s  appearent that the functions t) ** e n * , n
2

» 1,2.... N are linearly independent since If we let e‘n <T't>
2

* X, then 6 (t) » Xn , n » 1,2.... N, are linearly Independent;n
therefore the above matrix <f> is nonsingular.□

Note Let D « tf*1 have elements d . We define

c* ',1 JS,(|4,i|/J“)- (4'291

which we will use in the following lemma.

Leona (4.8) Let a , n » 1,2,... ,N be N, real numbers such thatfl
|a | < 1, for n • 1,2,...,N, and let k be a fixed positive 

Integer. Then there exists a Radon measure such that
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v (0 ) * a / (n2it2), k n n ' for n « 1,2,...,N,

2 2, ,
where <f> (t) * e'n * lT* , and Hr II s C / ir2k.n Ir If *

Proof We look for i> as a measure of the form v = £ b 5 t ).k . k , i i *i ■ 1
where t{ * iA, 1 * 1,2,...N, A * T/N, and b{, 1 » 1,2.... N, are

unknowns to be determined. By assumption we must have v (d> )
n k n

n = 1,2,. ...N, or | £ bsS(t,)](0_) « a^in2»!2^, ni ̂/(n2*2),
[ . s tb ' * ( t ' , H'•1*1 *N

» 1,2,.. .,N. Therefore we have £ b ^ i t  ) = an/(n2n2)k, for n

= 1,2, ...,N. Then we have the following system of linear 

equations

W V  ♦ W V  *  • • •  *  W V  -  an /  n * .... N’

or we have

’ w  w  ••• w
r 1 
b,

r
V 2k

w  w  w b* M a2/(2«)Zk

w  ••• w , b
l " J an/(Njr)2k

(4.30)

or <f> b * c, where b and c are respectively column vectors (^.....b 
( a y  (2n)2k,... , a^/ (Nix)2k).

We showed the matrix 0 to be non-singular and we defined D » 0*1 

» so b * D.c, or

) and



93

b. ■j?1du h /(j")a] ■ <i/'2l)j?,(du v j 4  for 1
= 1.2.... N,

Thus |bj s (l/x2k) £ [ldijl l*jl/j2k]' But by assumption
 ̂  ̂ N

| < 1. for j * 1,2....N, so |bj a (l/ir2k) £ [ldu l/j2k]« for

1 ■ 1,2.... N. Therefore by using the above inequality we have

" V  *  «‘ ^ * > |i j i ( K , l /j«*]- «• c. ■ ?1Js [ l dl|l/j“ ]-

lull s c A 2k.Qk k'

oo
Now we define a norm on [J M, where H Is the set of all Radon

i »1
measures on 10,T], and we define a new set, which will be used 

for defining a topology which will be Introduced In the following 

lemmas. Let

« » i
ic = j(u,p..• • •.pk.• • •) * n *  * £ ^ 09f>L 0 ’ ‘ f»1 k»0 J

we show in appendix (B.4) that t Is a linear space. We define the 

function B.l , on t ,  as follows

l.l : f -> R*.

00
such that for any z » ..Pk .... ) « £, llzlj * £  II MU • We 

k«1
have shown in appendix (C.4) that the function 11 Is a norm on

X.

Note It is apparent that Q(N) C X, to see this let

« QCN) , lim 
k

l p kB1/k - 0 , or equivalently
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2 Lk II MU < «. for all L a 0; so for L = 1, we conclude 2 11 p. II 
k»0 k«0
< «a, and Q(N) c t.

In lemma (4.4) we showed that Q(K,N,L) c Q(N), for all K, N, and

L, so UQ(K,N,L) c Q(N), but In general Q(N) is not a subset of 
k«o00

U Q(K,N,L). As an example we mention the element 
k«0

RUBIO and WILSON 111, where they have chosen the following

measures u , k «0,1,...: k

We know prove the following lemma which we will use in the final 

lemma of this section.

Lemma (4.9) For any integer L a 0, Q(M) c U Q(K,N,L).
K * 0

Proof Let A denote the closure of the set A with respect to 

norm-I topology. Also let zQ * (m q.M̂ » • • • # •  * •) « Q(N); then 

any neighbourhood of zQ contains the following open set C>e(z0)

for at least one K a 1 and for arbitrary but fixed L, then since

CD

(M(j,M1.... Mk» •••)» introduced in the Proposition VIII.5, of

CO, T]

CD

, for some c > 0. If we show that

0 (zj n Q(K,N,L) *C 0 M (4.31)

we have
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W  ft UQOC.N.L) * *. 
L k . o J

00

Which shows that zQ is in the closure of U Q(K,N,L).
k-o

We proceed to prove (4.31). Indeed, let 0 < e < 1. Since z
m 0• • • CO

= (M0# • • ■ ) € Q(N), so £ llp̂ll < o o ; then, there exists a
k»0

positive integer * M^ie) such that

£ IlfiJI < e/2, 
k *K L♦ 1 *

(4.32)

for K 2 M̂ , and arbitrary but fixed L. Since (p^p^.......)

e Q(N), by definition of Q(N), we have

00
(-l)k(n2*2)k ul4> ) = a . for n * 0,1.... N (4.33)

k n n

We consider the above series as the following limit

Kl
m £ (-l)k(n2jr2)k Mfc(0n) a , n = 0,1,....N,n

where L is an arbitrary but fixed positive Integer. Therefore 

there exists K » K (e), n * 0,1.... N, such that for K a K , n
n n n

* 0,1,...,N, we have

KL
1 1  < - n  W ) ‘  v * „ >
k*0

a I < c. for n * 0,1,... ,N n* (4.34)

By using (4.33) we conclude
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00
| £ (-l)k( n V ) k Mk̂ n) |
k*Kl+1

00

I [  <-n‘ (nV) ‘
t l

£ (-l)k( n V ) k |ik(^n) I

KL
* la - 7 (-l)k(n2n2)k iiA<f> ) |. for n *  0,1.... N.

1 n , L i * nk=0

From the above equality and using (4.34) we have for K > K̂ ,

09

| r (-l)k(n2ir2)k M ($ )| < e, when n ** °*1....N, (4.35)
k * K L +1

00

where 0 < e < 1. Let B(K,n) * 7 (-l)k(n2n2)k n U  ), for n
k«Kl*1

* 0,1,... ,N. It Is apparent from (4.35) that |B(K,n) | < 1, for

n * 0,1.... N. Let M' - MaxUCU); n « 0,1.... N }, and K a M'.

From the results In lemma (4.8) we can determine a Radon measure

v , as follows:KU1

A(JC,n)
(U  V W  -  - - - - -  . n - 0 . 1 .........N.

m  i j

V  *  c^ A 2<tun‘

where A(K,n) » (-l)*1*1 B(K.n). and where was defined In

(4.29). We define now Radon measures k a 0, i..... KL, as

follows: * pk, for k * 0,1,....KL, and * 0, for k • KL+2,

KL+3, .; we show *** * * ' « . * *  Q(K+2,N,L). Indeed,

from (4.33) we conclude
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* W  *  vo(1) m V 13 = V (4.36)

But for n » 1,2,...,N, we have

o# kl ♦ 1
Y C-l)k(n2*2)k VA4> ) » Y ( - D k( n V ) k V U  )
L*_ K n , v-*. k nk*0 k* 0

K L
E , . ,k, 2 2.k t J. \ ^ t , \KL+1, 2 2.KI+1 , . .(-1) (n * ) ) + (-1) (n n ) v i<f> )

k n KL+1 r*

KL+1 f 2 2.KU1

k*0

Now by definition of rk> k = 0,1.... KN+1,.,. we have for n

= 1.2....N

Kl
[ (-l)k( n V ) k wk(^n) « [ (-D ( n V ) k Mk(^n)
k«0 k * 0

♦ ( - » “ ♦'(nV)“ *'
r A(K,n) ■,

'■<nV)l a H J

B(K,n)
where A(K,n) *
00 (-1)Kl*1

, and we defined BOC.n) «

; [ l-l)k( n V ) k „k(*n) , so we have from the above equality for n 
k * 1C L ♦ 1 ”
» 1.2....N

00 Kl

Y (*l)k(n2lt2)k Pk(#n) * Y ^~*3 ^k^n3
k»0 k* 0

♦ Y (-l)k( n W  Hjt ) 
A i m  k "

• ][ ( - U k( n V ) k 
k»0

(4.37)
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But we know (fiQ, ..., ... ) e Q(N), so

00

Y (-l)k( n V ) k \iU ) * a , n » 1,2....N.té k n n (4.38)

Therefore from (4.36), (4.37) and (4.38) we conclude

00
(-l)k(n2rt2)k v U  ) * a , n = 0.1....N. (4.39)

k n n
k * 0

But we defined p , s  0, for k * KL+2, KL+3, .... so k

lip Il1/k = 0 < l/K+2, for LOC+l) < k s L(K+2). (4.40)k

From (4.39) and (4.40) we have by definition of Q(K>2,N,L)

(V ’l....V ! ) L >0) " ' W i ,0) 6 Q(K+2*N*L)-

(4.41)

We defined v . such that M M

Up  II s  C ./n2(ia+i) (4.41')

N N
where C „ * KL*1

j ì 1, thus
t * 1 ) * t

. But J2<ICL*1) a 1, for all

Bp  ,1 s  Kt*1

M N

l. I ' Vt*1 j*1
/ «

2CKU1)
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Now we choose M « M (e), such that for K a M 2 2 2

r N N i ■
!ll> .1 S 

ICL*1 l  E ' V1-1 j i 1  lJ

l /w 2(kU1)

therefore for K *

II v II < e/2.KU1 (4.42)

Now let M = M(c) * Max (M^c), M2(c), Kq(c ), K^e).....  K (c)},

then for K a M, we have K a K (e), for n * 0,1, ....N: thereforen
(4.35) valid, that is 

00
I £ (-l)k( n V ) k nk(^n)| < c < 1, for n =  0,1.... N.
k-Kl*1

Since we assumed K a M, so K a M , therefore (4.32) is valid, 

that is

w •
£ ll̂ ll < e/2, (4.43)
k * K L ♦ 1

and since K a M, K a M2> we have (4.42); that is

Iv I < e/2 (4.44)

Finally let K a M, and let z » ( ......  v , ...)
* *  «

a ,v ,0). We have shown in (4,41) that0 1 iCL KL̂ 1

(#i0. I * , . . . . . « Q(K+2,N,L), therefore

z ■ * Q(K+2,N,L) (4.45)
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Now for zQ * (¿ig.Mj,.. • ,nk,...) € Q(N), we have

Hz0 - ZV  ' " V S ....W i - ” -’ ■ “V “,....

or

8(0,0.....°* ~vn+V ^1*2..... *V

00

»U - V  .» * Z III

00

*  " V . . "  *  S , " V -k»KL+ 2

Hz. -  ZB S IIv I  + £  Hu H
0 ' KU1 k .K t+ 1  k

By using (4,43) and (4.44) we have

Hz - zll, < e/2 + e/2 0 I

therefore Hz - zH, < c,0 1

We showed In (4.45) that z » (v^,^, ^  ■••) e Q(K+2,N,L),
a

therefore z € U Q(K+2,N,L), thus 
K »1

a
z € U Q(K+2,N,L) 0 „ .

or we conclude



101

00
Q(N) e U Q0C+2, N, L). □

K « 1

We can now prove the main lemma In this section that is, tjm  ̂ = 

0̂ . We prove half of It In the following lemma.

Lemma (4.10) Let L be an arbitrary positive fixed integer Then 

for any integer N £ 0,

T) S 0 . 
H,l N

Proof We have defined 0 * inf £ Up,II, and t> * 1 im £ ,
M Q(N) k-o N,L k M 'L00 . . .

where £ ■ inf 2 lpk». Let now z q = (pQ, p^ ..., p^,... ) be an
k*°

arbitrary element of Q(N). In the proof of the last lemma we

showed Q(N) c U Q(K+2,N,L), therefore we conclude that 
K«1

00
z e U Q(K+2,N,L), so there exists a sequence <z >, in□ WK«1oo ^
U Q(K+2,N,L), with z * (pj, m" •••• m" t,0) e QdC^.N.L), such
K«1 * ■*
that lim z = z , with respect to norm-1 topology. In lemma (4.6) « M O
we have shown that the sequence ^  ls a non-increasing

sequence with respect to K, and since 7) 11m fM.l’

therefore y s ( , for all K and for fixed N and L. Thus wei,L K,I,l
have for all (p » p , MKL*°) « Q(K,N,L), nM L a ¿llp̂ ll,

u 1 * k®0« KL
since C___ * inf £ Bp 8 » inf £ BpfcH. Since for each m

Q k»0 Q k*0“M.t.

» 1,2,..., have z • (pj, M*. •**. t»0) c  QOC^N.L), we

conclude
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K .L ■

V  S  ̂ ^ k 11, m * 1,2.....  (4.46)k «0

Thus, for z ■ ( y * .  y * .  . . . .  y *  ,0), m » 1,2,... we have Hz II *■ 0 ' a l

£ lly*H, for m » 1,2,...; therefore from (4.46), we conclude that 
k»o k

V sNl 11m II z II ■ m t (4.47)

But the norm- function Is continuous with respect to
00

norm-topology, so 8.0 , Is continuous on £ c fl M;
I *1

lira Hz H * H 11m z II ■ llz II.• ■ I » n l 0 1 (4.48)

since z * 11m z . From (4.47) and (4.48) we have 0 o n

T} s II z II , 
fNL 0 1 (4.49)

to

where ZQ * (yQ,yi.... yk...J, and flz^ « £ #y 0 < «, Therefore
k «0

from (4.49) we have

v 1 k«0
(4.50)

We recall that z„ » (y„,y,....M.. > • • ) was chosen as an0 0 1 *

arbitrary element of Q(N); thus we have from (4.50)

n s Inf £ By H, 
Q(H) k.O 11

(4.51)



103

00

where we defined 0 * inf £ llu U; thus, (4.51) implies that
" Q(N) k-o k

VNL 5 0 . 0  
N (4.52)

Lemma (4.11) For N = 1,2,... and any fixed L a i

Proof We have shown in lemma (4.4) that Q(K,N,L) c Q(N); therefore 
for all K * 1,2,..., we have

CO «
inf 2 IIpH * inf Zllfill, K *  1,2,... (4.53)
Q(N) k * 0 Qk k*0

where m Q(K,N,L), and each element of Q(K, N, L), is of the form 

(fiQ, H , .... fi^.O), Thus (4.53) Implies that

8 s f  K » 1,2.....  (4.54)

In lemma (4.6) we showed that the sequence  ̂ converges 
as K tends to infinity, and we defined t> = 11m £ ; fromNL
(4.54) we conclude 0 * lim € y • orN *i"iL

0,, * V  (4.55)

From (4.52) and (4.55), we conclude

Hot# : In lemma (4.11) we showed i)ML - 0, for any L a i ;  that 
is, ti does not actually depend on L.
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(4.4) Approximation of the infimum of the objective function when

the desired final state belongs to L2(0,1).

In section (4.1), we mentioned that the set s , defined in_ 9
section (4.1), is non-empty. Thus, inf E Up II is meaningful. Let

s k«0 k9

0 * inf E Hu II.
s k-o 

9

In this section we are going to show that

00
9 = 11m inf E Up II.

N Q(N) k*0

where Q(N) is the set of all ( p ^ ,  • • • ,Mk, • • •) such that

09
E (-l)k(n2ir2)kMk(^n) - n - 0,1.... N,

k » 1

11a tlpk»1/k * 0.
k-X»

The set s
9
may be characterized as follows

s * s 6 S : s(£ ) * * .
9 \  n n

(4.5), the measures pfc, k

atomless and lim B|x. •1/k *
» *

defined in section (4.1).

n » 0,1,..., s is of the form

■ 0,1,.,. associated with it are

0 V; the set S c j] », has been 
J i*1
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We assumed In section (4.1) that g(.) e L (0,1), and g(x)
CO *

- E a cos(nrrx). Define - n

guCx) » E a cos(njtx) * „ nn»0

and define

s * -Ises: s(<p ) = a , n ■ 0,1,.. . , N i, 
g)j l  fl n n y

00
where s = (u ,u , • • • »M.t • • • ). and s(0 ) * Y (-l)k(n2n2)k p (6 ).

0 1 k n k.o k n

Lemma (4.12) g^ -» g, with respect to L2(0,1)-norm.

Proof Its proof is well Known.o

We see that Indeed s * Q(N), because we can describe the set s
9k

as the set of all (p ,p »... ,Pk> •.. ), of Radon measures such that

CO
(a) Y (-l)k(n2n2)k p. (4> ) x • n - 0 , 1 , ,

. L n k n n
k « 0

(b) lim Bp H1/k « 0.
. k

Similarly we can describe s , as the set of all
0m

(Pq.P^ . • • .Pk, •..), of Radon measures such that

(c) Y ( - U k( n V ) k p U  ). k n
k » 0

a , n » 0,1,...,N,
ft
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(d) lira lip H1/k * 0. k k

Comparing the definitions of the sets Q(N) and s we concludea„

Q(N) * s ,
9«

It is clear from the definition of s that
9*

(4.56)

s C . . . C S  C S  C . . . C S  c s  . 
9  9 n+i  9n 9 1 9 0

But we defined in (4.27")

00
0 * inf SUM.«,
" Q(N) k-0 *

(4.57)

or, by using (4.56), we have

»
6 * inf 2 Hji.ll*
" s k*0 

9k

From (4.57) and the above result, we conclude that

(4.58)

eo s 9 t 3 ***• 3 eM 5 0**t 3 •** 3 01 (4.59)

therefore the sequence (0^, is a non-decreasing 

sequence, thus convergent. Let £ ■ lira 0 : from (4.59)
N "

bounded

? J0. (4.60)



Lemma (4.13) £ * 0.

00
Proof Let P * n s . Since s c

' 1 g  g
N •  0 % 8

c s ,g.

c s
N+1

c s

P P Sg (4.61)

so
But we defined in (4.58) 0 * inf 2 1IM. thus

" s k«o

€ - lim 0 - inf 2 lljU (4.62)
M P k-0

(see RUBIO (1), p, 27). Now we show that P c s .  Let s9
* (p , u .... p,...) « P, then it is clear that s e s , for all0 1 k  »M

N * 0,1,...; this means that

(a) s(0 ) » a , n ■ 0,1,..• n n

(b) lira ,/k * 0.

Therefore by definition of ŝ ,

* C**0-#*t.... ----- ) « lhUS P C Sfl*

that P o s , we conclude 
g

we conclude that s 

since we showed in (4.61)

p a s
g

(4.63)

From (4.62) and (4.63), we have
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£ * Inf (4.64)
S k*0 9

00

since

00
0 * Inf £ BfiJ. (4.65)

s k*0 9

thus from (4.64) and (4.65) we have

£ « e.D (4.66)
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(4.S) Approximation of the infimum of the objective function by a 

finite summation of the norms of discrete measures.

In this section we show that for any e > 0 and for any fixed 

integer L a i  there exists non-negative integers K and N such 

that

Kl
0 - 2  tv u

k*0

»
where 0 =* inf 2 Up 8» ^k>

s k*0 k
9

measures on {0,T). We also

(0 <SQ < e/5) such that

< e,

k * 0,1,...,KL, are discrete 

show that there exists $
0

10 - 0KNl

a
where 0 (5 ) * inf 2 «#»„■*, P„ 8 P(K,N,L,5 ) is the set of allKNL 0 _ k K Wp k*0 

K

(v , w .... v .0) so that each of v., k * 0,1,...,KL, is a0 1 kl *
discrete measure defined on C0,T1 such that

l l  ( - n V . V  w  - «„| < v
k»0

In the following lemma we show that for a finite number of Radon 

measures defined on [0,T] there are corresponding discrete 

measures on 10,TJ so that their norms are close to the norms of 

the initial Radon measures.

Lemma (4,14) Let c, (c < l)and SQ be fixed positive numbers such 

that a < e/5. Further let K, N, and L, be non-negative Integers.
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Assume that

....HKL,0) 6 Q(K,N,L,5q/2)

Then there exists an element

( » V V  •' ‘ e Q(K,N,L,5q),

where k = 0,1....KL, are discrete measures on [0,T]

such that

KL
£ Hull

k « 0

KL
£ l»l

k » 0

< e/5.

Proof Let u * u* - u\ be the decomposition of the Radon
k k k

measures pk, k * 0,1,...,KL, where pk, are positive Radon 

measures defined on [0,T]. Then by a theorem of approximation 

(see CHOQUET tl],p.22l), there exist discrete measures k

* 0,1,...,KL, corresponding to the positive measures p*. k 

= 0,1,...,KL, as follows

"k ,
y'* « £ k « 0,1.... KL,It I 1

i « 0

where k fc 0, for k » 0,1....KL, 1 * 0,1.....Mk and Afe * { y*;

1 » 0 , 1... Ml, k - 0,1.... M, are partitions of [0,T],It *
tusually, a partition P, of (a.bl, Is specified as a finite set 

of real numbers {x ,x|t.... , such that a s xQ s s ... s x^

« b. See BARTLE [U, P.275], such that

K  -
K y^4Rf n * 0| 1( » « * |Nj 1c * 0» 1 ». * • »KL
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here R = R = E (N2k2)\ r < minis. (1/K - u ) KL)t and c*
l0IL k,o 0 l 0 0 J 0

» Max |uMk»1/k; (K-l)L < k s Kl J.

By the above definition we have u < 1/K, since lu i1/k < 1/K,
0  k

for (K-l)L < k s KL. Similarly there exist discrete measures v' ,
k

corresponding to the measures p*, k * 0,1.... KL, as follows;

. v „  k
V' - Z r. k - 0 , 1 ....KL.

k i « 0

where jr' k £ 0, for 1 * 0,1,..., Nfc, and k * 0,1,..., KL, such that

|(w'* - »')$ I < 7 /4R. for n = 0,1....N, and k * 0,1... KL.
1 k k n ‘ O '

Let B » {zk; 1 » 0,1,...,N>, k » 0,1,...,KL, be partitions of 
1 KL Kl

t0,T]. Now let P * U A U B  ; P is a partition of [0,T]. We
k » 0  k k * 0

relndex the elements of P, and let P * {t̂ ; i a 0,1,... ,M}. We

claim for this new partition of [0,T], that there exist 0k a 0, k

* 0,1,...,KL, 1 ■ 0.1,. ...M, such that if we define v*

= z frs(t), k * 0,1....KL, then we have
i«o 1 1

K  - * K *  * < yo /4R- U  67)

jf
For example we can choose 0j,s as follows:

*•! - o;\ if t, - yJ « *k

- o. if t( < *k.
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Therefore we have y* * £ 0* 3(t ) » S ^  S(yk); for n
i«0 i»o 1

- 0 , 1 , and k * 0,1,...,KL

l(Vk ’ < T0 /4R‘

Similarly, there exist y| s 0, i * 0,1,.. - ,M, and k * 0,1,... , KL,
« k

such that if we define v » £ y 3(t ), k * 0,1....KL, then we
* 1*0

have for n = 0,1,... ,N, and k * 0,1,... ,KL,

|t% - (*;)♦„! * it»;' - < r0 /»r . u .«»

Now define

i> « y* - v , for k * 0,1,. k k k , KL. (4.68'1

then

i(Mk - wk)*j . j k m * - m ;> - K  -

» | Cm * - - ^k) ^ J

5 I(̂  " * l(Mk “

< Tq/^r ♦ r ^ R .

or

|(Mk " < »o/SR. (4.69)



113

for n * 0,1,... ,N, k * 0,1.... KL. But we have

•lMkn * (p* ♦ Cl), and ■ (v* + v')(l), (see CHOQUET [1],

p.215). Thus by using (4.67') and (4.68), and since 0Q(t) a 1 on 

[0,T], we have

KL KL KL KL
| Z lul > Z >M| - | Z (R ♦ Mr)«!) - Z I S + 0(1) |

k « 0  k * 0  k * 0  k * 0

S S l(Mk " I ” 2 l(Mk " yk)(1) Ik«0 k*0

KL KL
< E ijl* + E 7 /4R 

k»0 k*0

s (KL+lJr^R. (4.70)

Also we have by definition R = E (N2w2)k a KL+1, for N a 0;
k*0

therefore KL+l/ R s 1, so from this result we may write (4.70) 

in the following form

kl kl
| Z «fik# * Z HiHI | < 7Q/2. (4.71)
lc>0 k»0

Since rQ < *ln|«0, (1/K - have < 50* since by

hypothesis we assumed <3Q < c/5, so we have

kl KL
1 Z * - E tvj | < e/10 < c/5.a (4.72)
k«0 k k»0

By proving lemmas (4.15) and (4.16) below, we intend to show 

(*Vv r  ’ * * *VKi*®) € Q(K*N*L' V *  First in lemma i4.15) we prove



m

( i )

KL
| f > n
k«0

k, 2 2. k .(n n ) vjt ) - k n | < 3Q, for n * 0,1....N;

In lemma (4.16) we show that

(II) II v I < 1/K, for (K -1)L < k * KL. k

KL
Lemma (4.15) I ? (-1) (nV) v U  ) - a I < 6. for1 Li k n n uk«0
0,1,....N.

Proof For n * 0,1,...,N, we have 

KL
| T (-l)k(n2*2)k ii U  ) - « | 

k n n 1

• | y (-l)k(n2*t2)k l(v “ fO + i^H^) “ “J  
k*0

* | £ (-l)k(n2*2)k l(v - M )(*„) + [ (-l)k(n2«2)k - a |
k* 0 k»0

S J [  ( - D k(n V )k (i> - + I £ ( - D k(n V )k Mk(*n) - «J,

By the assumption of the lemma (4.14) we know 

( ^ , . . . , ^ , 0 )  € Q(K.H,L.50/2), so by definition we have

j't* (~l)k(n2«2)k Pk(*n) ” anl < 3q/2, 
k»0

also we have

that

(4.73)
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| £ (-l)k(n2*2)k (rfc - Mk)*J s £ (n2w2)k|(vk 
k«0 k»0

Now, (4.69) implies that j V (-l)k(n2*2)k (y - P )# |
k » 0  k k n

(n2*2)\(r /2R), but i ( n V ) k s 0 k*0
* 0,1,...,N. Therefore I V (-l)k(n2*2)k (y - p I

k« 0

< R. (t /2R). But since t < 5 . we conclude o 0 0

EL
l• 0

(N2u2)k * R, for

| £ (-l)k( n V ) k (vk - pk)^| < 7/2 < 5/2, (4.74)
k«0

for n = 0,1,...,N. By (4.73) and (4.74) we have

*  I [  C - l > k< n V > "  Mk( # n) -  « J
k*0

< 5  /2 + 5 /2 0 0

or

(-Dk(nV)k <#/ - *nl < «0, n « 0,1,....N.o
k«0

Lenina (4.16) Let wfc, k - 0,1....KL, to be defined as in (6.68');

then, Hr I < 1/K, for (K-l)L < k * KL. k
Proof For k * 0,1,...,KL, we have from inequalities (4,67) and (4.68)

of lemma (4.14)
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l ( l \  '  <  r o  / 4 R * n  *  0 , 1 , . . . . N ,  ( 4 . 7 5 )

<  r 0 / 4 R * n  ’  ° *  1 .....................N >  ( 4 . 7 6 )

From the definitions of <p (t), and R * R , we conclude 6 (t)n KNl ro
a 1, (0 s t s T), and R a 1. Therefore from (4.75) and (4.76), we 

conclude

1^(1)  -  |i*( 1)|  < rQ /4R s yQ /4  (4 .77)

|u * ( l )  -  < r 0 / «  s yfl / 4  (4 .78)

Now we have

|lli>kll - llMkm  * |vk(l) ♦ v*(l) ~ 1)1*0) ♦ M ^ D l l

s \lv[U) - + Iv'Cl) - 1)31

s |/(l) - /(1)| ♦ l / d )  - M'(l)l.
k k k k

By (4.77) and (4.78), we have IB^I - ljik«l < tQ /4 ♦ 7Q /4, or

M u  I - Bpl| < r , for k » 0,1....KL,. Thus II wi - Bui sk k 0 k k
111^1 - lMkl| < yQ, finally for k » 0,1.... KL, we have

uV n < Hr « ♦ rn (4 .79)k k 0

At this point we need to use the following Inequality, which Is 

valid for all a a 0, b * 0, and k « 1,2,...s
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(a ♦ b),/k s a1/lt ♦ b,/k.

Thus we conclude from (4.79) that

fivktUk < (1^1 ♦ r0)Vk * ■|*ki1/k + T01A. (4.80)

Let (K-l)L < k  s KL; then we conclude that 0 < k  s KL, [since 0 

s (K-l)L ] thus

1/k £ 1/KL (4.81)

From the proof of lemma (4.14) we have

y < rain
{ v

(1/K (4.82)

where 0 < 3 < 1 .  Therefore y „  < 1, so 1 / y  > 1, so from (4.81) 0 o o
we have (l/yQ)1/k t (l/yQ)1/KL, or

1/k 5 r
1/Kl (4.83)

From (4.82) we have yQ < (1/K - u0)a , or

r Utl < (1/K - u ), (4.84)'o o

where we defined uQ * Max (K-l)L < k s KLj, therefore

from (4.80) we have tv t,,k 1 In 1 k »'k ♦ y 1/ks *0 wo + ro * and

by using (4.83) we have I M 1/k 2t w k 0 + tQ . for

(K-l)L < k s KL; thus (4.84) Implies that, for (K-l)L < k * KL,
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• V m  * Uj ♦ ,o,/u < b4 ♦ (l/K - B()

1/Vffpkl < l/K, for (K-l)L < k s KL.q

Proposition (4.1) For every c > 0, there exists a positive number

<5 such 0 that 0 < e/5, and there exists an element

..V 5) 6 Q(K,N.L,50). where vk> k * 0, 1.... KL, are

discrete Radon measures on [0,T] (where L, is an arbitrary but

fixed positive integer and K, N, are two non-negative integers 

which will be determined later), such that

Kl
|e  -  Z « M j  <

k»0

here 0 * inf £ HrJ.kS k«0 
S

Proof In lemma (4.13) we showed that 8 » lim 0 , where e
h N

CD

* inf £ By #. Therefore for any c > 0, there exists an integer N 
s k»0 k

t 0, such that

|a - 0 I < e/5. (4.85)

We assumed in the hypothesis that the positive Integer L was 

arbitrary but fixed. Let the number N. which was obtained above, 

be fixed. We have shown in lemma (4.13) that 0^ • where ^  

m 11m C . a n d  C B1 “ lnf £ HV : here Qi * Q(K,N,L)’ is theKkl “"*■ Q k ■ 0£

set of all (p0.M,....such that
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* a , n » 0,1.... N,n

Cb) «Mk«1/k < 1/K, for (K-l)L < k s KL.

Thus 0 * 11» £ ; therefore there exists a non-negative integer
K m

Kq such that for every K * Kfl, we have

Assume that K is a fixed positive integer. In lemma (4.5) we

showed £ * 0 , where 0 . * lira (d), Therefore £m  m  m  d^ 0 + kml

■ Urn £ (d), where K, N, L, be fixed integers defined above.
d-»o* “ L Kl

But by definition £ ,(d) * Inf 2 «MJ, where Q(d)
m  QK(d) k-0 k *

a Q£K,N,L,d), therefore there exists 5Q > 0, (we assume SQ < e/5,

and < 1), such that

j£ - £ (d)| < c/5, for 0 < d <5. (4.87)m  sm  o

But (5 /2) < 5 , thus 0 0

Therefore by definition of tnflmum, there exists

(4.86)

(4.88)

» * * * i u ,0) € Q(JC,N,L,5 /2), such that ■ (CL 0

I 2  ' V  • e«t<40 /2) I ‘ c/s- (4.89)
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From the definition of QOC.N.L.e) we have

Q(K,N,L,3o /2) c Q(K,N,L,30) c Q(K, N, L, e/5),

since SQ < e/5, therefore the specified CpQ, . . . , 0 )  is an

element of Q(K,N,L,3 ). In lemma (4.14) we showed that there0
exists an element (v , i^,..., *^,0) € Q(K, N,L, Sg), where each of 

v̂ t k * 0,1.... KL, is a discrete measure on I0,T], such that

KL KL
I £ llu It - £ )| < e/5. (4.90)
k»0 k*0

Now by using (4.85}-(4.90). we have

19- Zll.ll - 19 -9, * 9 , -  /2> *
k*0

KL KL KL

/2) * s >R< * t iMki - z » V 1
1 ° t o  ‘  t o  t o

S 19-9,1 . |9( - C m l * li„L ' W V 2)I

KL i L
♦ 1C (« /2 )  -  E ip kH  ♦ I £  lMk> -  £  l ^ B l

k*0 k*0 k»0

< e/5 ♦ e/5 ♦ c/5 + e/5 ♦ c/5

KL
o r  |0  -  E « M l  < c. 0

k«0

We mention now some corollaries which will be useful later In
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section (4.6).

Corellarly (4.1) For K, (K a Kfl, defined in inequality (4.86))

there exists (ji^p^,... ^.0) € Q(K+l,N,L,3fl), such that

10 — 2 By l| < c.. „ k k»0
Proof we change K, (K a KQ), in inequality (4.86), to K+l, then

with similar proof we obtain (*V*V ' ‘' '^«+1 j^•0 )

€ Q(K+1,N,L,3 ), where each of the u's is a discrete measure and 0 *

<*♦1 >L
je - t t I < c.a

k * 0

Now we introduce another set which will be useful in corollary 

(4.2).

Let K, N, and L, be positive Integers and 5 a 0. We define

Q'(K,N,L,5), as the set of all ( v ^ .... such that each

of the v s is a discrete measure. We show in appendix (C.4), 
k*

that for all positive integers K,N,L, and positive 5, Q'(K,N,L,5) 

* 4». Therefore the following definition is meaningful

Kl
?  (3) inf

0^(3) k*0

where Q^(5) * Q'(K,N,L,3).

Corollary (4.2) l© - < (7/S)c*

Proof From (4.89) and (4.90),we have

ICr M l (3fl / 2 )  -  l V l ! |  « l£ .(3 /2 )  -  s W l0 k.0 k M.t 0 k.0 k
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2 HM,« - I V i  I 3 I W * » /2) ' *
k«0 k»0 * * k»0

KL ll
+ I Z » M  - Z » M l  < c/5 ♦ c/5

k » 0  k - 0

or

Kl
i. «(3n /2) - 2 “V  < 2e/S-

• u k * 0
(4.91)

Also by using (4.87) of prop.(4.1), we have

' W . ’ - W 4. * 1 - ' W 5) - cM.t

* <M.l - W * .  /2)l 1 ' W 41 - W

* l * (40 /2)l < C/S * ^

thus

rc (5 ) - € (aA /2 )| < 2e/5. 1 sr,«,t o M.i o (4.92)

We have fro* (4.91) and (4.92)

Kl
■ w v  -  *  ' U V  •  W s . / 2 )k * 0

kl

♦ ■ '  V 1’*"k * 0
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' W V  ‘ W 4.'2" * ' W * .
Kl

/2 ) - | £ Hi',Il I 
k.O 1

< 2c/5 ♦ 2c/5

or

-  A # v '  < 4 £ / s -
(4.93)

By definition we have Q'(K, N,L,3 ) c Q(K, N.L,^), so

CL KL
inf 2 h  i s inf £ «vi, (4.94)
Q,(3n) k-o Q'(3J k.o

where Q^CS^) * Q(K,N,L,5o), and Q'(5fl) * Q'(K,N.L,SQ), or by

definition we have £ (5 ) * £' (a ): %N,L 0 M,L o' from

Proposition (4.1) we have ( i ^ . v ^ ....v ^ O )  e Q' (K.N.L.Sq), s o

W V
(<U

KL
£ II V i 
k»0

Ue can conclude fro« the above inequalities that

K L

' W V  -  ( ' W V  -
(4.95)

By (4.93) and (4.94)

W V  - n . - . k ' V  < “ /5- (4.96)

Also by formulas (4.85) and (4.87) of proposition (4.1) we have
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|0 - Ç (<5 ) | = ¡0 - 0 + 0 - £ + P - £ (5)1
M . l  o M M  %M, l  S ,M ,t  V m,11V '

S |0 - 0 I + |0 - Ç I + IÇ
M M M,M,L ‘ K.M.l ”  ^ ,M , l l V *

< e/5 + c/5 ♦ c/5;

thus

la - $M<L< V i  < 3c/5- (4,97)

Finally by using (4.96) and (4.97) we conclude

19 - w v  • 19 - W V  * W V  '  W V

* i0 * e, * le.,.«.) - i*K#M,L 0 K.M.L 0 K,N,l 0

< 3c/5 ♦ 4C/5

o r

| 0  -  «  i ( 5 0) |  < 7 C / S . O  ( 4 . 9 8 )

Note If we change e, in proposition (4,1), by 5e/7, then the result 

(4,98) is in the following standard form:w v < e.

Corollarly (4.3) j0 >  * c.
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Proof In corollary (4.2) we change K to K+l then we have

"  ■ W i “ ." ‘

Note In fact corollary (3) expresses that If |0 - £' (5 ) 1
k.m,i o'

< e, then |8 - < E'

We defined Q'(K,N,L,5), as the set of all ....p^.O), such

that each of Is a discrete measure on [0,T], and

ICL
(a) | T (-l)k( n V ) k u(<p ) - a | < 5, n - 0,1....N,. k n nk*0

(b) llu ll1/k < 1/K, for (K-l)L < k s KL. k

Now we define P(K,N,L,6 ) as the set of all

where each of the /¿k’s is a discrete measure, satisfying only the 

condition (a) above; that is:

ri
(a) | T (-l)k(nV) fi M  ) - « I < <5. n * 0,1.... N.

¿ 0  t e n

It is apparent that Q'£K,N,L,a) c P(K,N,L,5), and it is easy to 

show that P(K,N,L,3) c Q'(K*1,N,L,5); Indeed, let 

(li^,.... Hft,0) £ P(k,M,L,e), then

(a) j £ (-l)k(nV) fik(*n) - «nl 
k* 0

I V (>l)k( n V ) k u (£ ) - a I < c, n *  0 , 1 , . . . , N.. u, k ft nk«0
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(b) flMkHVk » 0 < 1/K+l, for (K-l)L < k s E ,

thus we conclude that (|i ....H^.O) € (K>l,N,L,e), or

P(K,N,L,3) c Q' (K+l,N,L,5). Therefore we have

Q'(K,N,L,3) c P(K,H,L,5) C Q'(K*l.N,L,5). (4.99)

From (4.99) we conclude

KL KL KL
inf 2 «inf 2 II II « inf 2 « M ,  (4.100)
Q '  ( 5 )  k« 0 P ( 5 )  k * 0  Q ' ( S )  k * 0K + 1 K *

where Q'(a) • Q'(K,N,L.5) and P (3) a P(K,N,L,5). Now let
* KL KL

0 (3 ) a Inf 2 IIM and since £' (5) * inf 2 H M ,
*'M'L p (3) k*0 k * ' Ql(3) k-0 kK *
(4.100) we have

£' (3)*♦1, K ,L S 0 (3)M.L 5 S' (5). (4.101)

Lemma (4.17) Let a s b s c, and £, be any real number then 

1C - b|, is less than of at least one of |< - a| or - c|.

Proof Case (1) < * b, then |< - b| » b - C » 0 . But we know

b « c, so we have b * ( J c ’ Ì> or s l*» c ̂ '

Case (2) ( k b ,  then |< - b| - C - b * 0. But we know a a b. so

C - b s ( - a, o p I? * bl i K  ’ a t,D

Lemma (4.18) If <- is any real number, then 1C - is

less than of at least one of IC -
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W u (a)l

Proof By lemma (4.17) the proof is clear.o 

We use the following note In section (4.6).

Note We showed in corollary (4.3) that if

I® ~ < C’ I® ~ M L( V «  < C- Therefore by

applying lemma (4.18) we have

Discussion In this section we s W e d  that the infimum of the 

objective function on a set of infinite sequences of Radon 

measures satisfying to an infinite number of constraints can be 

approximated by the infimum of the objective function on a set of 

finite sequences of discrete Radon measures satisfying a 

finite number of constraints.

In section 4 .6 we intend to compute the approximation of the 

Infimum of the objective function by using the results of this

section.
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4.6 Computation of the infimum of the objective function and 

Control Functions

In this section we apply the results of section (4.5), and 

approximate the problem by one which consists of the minimization
It

of a real linear function defined on R , for some positive

Integer k, over a finite set of linear constraints. Then we

construct the control functions by the help of the paper of RUBIO

and WILSON [1). Finally, we show that the theory is confirmed, by

solving numerically several problems with different final states.

In section (4.5) we showed that for any e > 0 and for arbitrary

but fixed positive integer L, there exist non-negative,

sufficiently large integers K and N and a real number

(0 < 5 < e/5), such that o

This fact asserts that 6 (5Q) tends to 0 * inf £ when K
* ' s k*Q

9 oo
and N are sufficiently large, 0 (8 ) s inf E # M ,  and

' 1 P„(5 ) ico kK 0

P (5) * P(K,N,L,5 ). c o
We know from previous section that our problem is to calculate

in other words our

a
0 (c) * inf £ ByJ;
M.t P^Cc) K * 0

problem is to minimize

tt
2 »y#

I CO
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on the set P(K,N,L,c), which we defined in section (4.5), as the

set of all (r , v , ...,v ,0 ) such that each of v , k = o 1 ici k
0,1,...,KL, is a discrete measure with support in the set tO.T} 

and

KL
I E

k « 0

(-l)k(n2*Z)V (0 ) k n a | < c, n * 0,1....N,n

where K, N, and L, are positive integers and e > 0.

Proposition (4.2) Let T be a countable dense subset of (0,T 1, and 

let c > 0. Further, let m be a Radon measure on [0,T1. Then there 

exists a discrete measure v whose support is in T and

K m - | < c, n = 0,1,... ,N.n

Proof Since p is a Radon measure on 10, T], then by a theorem of

approximation (see CH0QUET [1] p.221) there exists a discrete

measure m  * £ jf 3(zp), where zp e 10,T] and L is a positive 1 « PP»1

integer, such that

l(M - < e/2» n * 0,1,...,N. (4.103)

Let now r * {t ), be a countable dense subset of [0,T] and let 
P

N‘, be the space of discrete measures on I*. We show there exists 

a discrete measure v in H' such that

K m , * v)0nl < e/2, n “ 0 , 1 .... N-

Also let v t r «(t ).
P.1 p P

where t « I\ and r and L were defined 
p P

above. Then we have
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l L
3 u(f ) - v(0 ) 3i n  n E r S(zp)

p.i pw r  J
K - E y s(zp) 

L p-1 p
*

- S rp ♦„<*") - Z r  *n(tp) = i , [ » ((2p) - *„(t )].
P* i  p* 1P«1

therefore.

I ( m ,  -  I *I n I E 7  U> (2P) - (t )]|
p.i p n n p

S E Ir II* (Zp) - <p (t )|
p.i p n n p

or

|(M, - v)#nl s ( S l3rp,J ^  ’ W 1}’ (4,104)
p.  1 *■ '

for n « 0,1,...,N. But 8m ,* * 1 ! C1) * E ly 1, so from (4.104)
p«1

we have

(M, - v ) t  I s tlM* Max (l# (zp) - # it )|i, (4.105)
1 n I n . p ^ n  n P J

where n » 1,2, ,..,N. By choosing t ,-p » 1,2.... L, sufficiently

close to z, the Max, can be made less than c/2(tlu0 + 1) p n.p i
(because for each n * 1,2,... ,N, # (t) * exp[-n2*2(T - t)),n
t 6 (0,TJ, Is continuous); therefore we have

| (u .  -  i' I H  5 8MJ ( c/ 2 ( « mJ  ♦ D )1 fl t I

or
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|(M, - v)+ I < e/2, n * 0,1.... N (4.106)1 ft

By (4.103) and (4.106) we have

K m  - v)<t I - K m  - M. ♦ M. - v)+ I i K m * m ,)* I ♦ K m , * v)4> Ift I « ft i n  i n

< c/2 + c/2, n = 0,1,..., N 

or

K m " vH  I < e, n * 0,1....N.aft

We remind the reader that the set T ■ (t ; k * 1,2,... > wasp
chosen as being dense in (0,T); in practice, we choose the set 

r *  * {tfc;k * 1 , 2 , . . . . M> c r ,  which is constructed by dividing the 

interval [0,T) Into M equal subintervals ttk, t 1, 

k » 1,2,...,M.

In the following we apply proposition (2) in the special case 

when the Radon measure m is a discrete measure on t0,T].

Let us remember that our problem is to minimize

Kl
l » M
k»0

over ( , , , . , 0 )  € P(K, N, L, c), where each of wk, 

k * o,l,, Kl, Is a discrete measure with support in {0,TJ, and 

where K, and L can be any positive integer; therefore KL can be 

any positive integer, so let K be an arbitrary positive integer. 

Thus our problem is to minimize
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Z  tv t
k»0

over (i> ,1̂ ....v^.O) e p K̂*N*e  ̂" P(K.N, l.e), which means

| 2 (-l)k( n V ) V ( #  ) - a | < c. n - 0 ,1,...,N.k n nk«0

Now
M *

let v* * 2 0* 3 ( ^ 1, and * 2 ¿(t^), where ß|i 0 and

Vj ^ 0 , for 1 3 1,2,..., M , k 3 0 ,1,..., K, [as we Introduced In 

lemma (4.14)1. Therefore we have for k 3 0,1....K

, ; u . ) . ( £  ««,)]♦„ = z <  ♦„
v f »1 J i «1

f.(t,), n 3 0,1.... N,

i»*(̂ n) 3  £ Z  r f  i ( t f ) ] # n - Z  r j  * n( t f ) .  n 3 o,  l.... n .

♦ ♦ n k • . "Also we have * v (1) 3 Z  ß., and i> (£ ) * i»’( 1) = 2 7
* 0 J«1 k is1

for k 3 0,1....K. Therefore we conclude

Z « M -  Z  b.lil) * Z iv*(l) * v'Ai)} * z f  Z ß k + 2 rk] 
k«o k«0 k*0 k*0 '‘ i » 0  i * 0  J

or

*  1 * r v
Z  8 M  *  Z  Z  ¡ 0 *  ♦  * * ] ,

k » 0  k « 0  i « 0  t  ’ v
(4.106)

Also we have

K
Z  (

k - 0
-l)k( n V ) V w  )k n

2 (-l)k( n V ) V * ( * fl) - ^(*n)l
k - 0

- E ( - 1) V « V [
*«* I ' " .
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* 2 Z(-l)k( n V ) kfcj - rjVtt,) (4.107) 
k«0 f«1 ^ 3

Therefore from (4.106) and (4.107) we conclude that our problem 

is to minimize

E 2 U) * (4.108)
k » 0  f - 1  ^ 3

on the subset of say, S(K,N,M,c), defined by

0k a 0, and r* a 0. i * 1.2,. -. ,M, k » 0,1....K, and

I E E(-l)k( n V ) kfck - rfl* (t > - « I < e. (4.109)
k«0 3

for n * 0,1,...,N.

Now we rename the variables0k and yk, as follows:

Oj.0].... 0k)^(xi,x2.... xK H )

^2*^2*''' ,̂ 2^<-̂ X̂K*2,XC*3....X2r»2^

(0® *^f)^iX(J )K*f ‘ x< i * i >K*f*r •x iofi>)

(0 ^ ,0 ^ , t . . , 0 ||) ^ ( x (|(. t)|C*Mt X(N-l>K*H«-r   ̂ * XN ( K*1 ) ^

or in general £k * k » 0 ,1,,.,,K.



m

Let for simplicity * M(K+1) and we rename the variables yk,
kIn a similar way to 8 , above, we assume y * v i

“ 1,2.... M, k ■ 0,1,...,K. Therefore from (4.108) we have

K t  r  . .•» N(«C*1) N(K»1)  2N
£ £ ♦ r| - E x * £ x - £

k * 0  f * 0 * -  J i *  1 t >N IK^I  )«1 |«1

2N(IC*1)

X! * (4.110)

Also from (4.107) we have

£ (-l)k( n V ) V ( *  ) = £ E(-l)k( n V > kf0k - rkL  (t )
k.O " " k>0 1-1 U  U  " '

£ ä - n V V ) k(x . - , <M1M. (] * nu (>
k » 0  i « 1   ̂ W J

(4.Ill)

where ■ M(K+1). Finally, from (4.108)-(4. Ill), our problem Is 

to minimize

2N(IC»1>
£x , (4.112)
f»1

on the set SOC.N.M.c) in R2***1*, defined by 

xf fc 0 . 1 » 1,2,...,2M(K*1)

I £ £<-l)k(nV>kfx - Xj '  «„I
k * 0  J»1 L 4 KM '

< e, n » 0 ,1,...,N, H3)

here the only unknowns are x̂ , i * 1,2,... ,2M(K+1), while the t̂ , 

l ■ 1,2, ...,H are fixed points of a partition of the interval 

10,TJ, The number of Inequalities in this linear programming
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problem Is 2(N+1).

The parameter e appearing in the constraints (4.113), can be 

considered as the error present in numerical computations of the 

expressions involved in constraints (4.113), so we can choose the 

parameter e as zero. Although we know the errors present in the 

numerical computations of the solution of the linear pro gram ini rvj 

problem, will not satisfy exactly the constraint equations. 

Finally, from (4.112) and (4.113) and the above discussion, our 

problem is to minimize

2H(K+1)
2 x

on the set S(K,M,N) in R2M<K+1), defined by

Xj * 0, i * 1,2,...,2M(K*1)

2 2 (-i)k(n * r h
k*Q i«t '•

X{M)K*k*i XJ|o*(M)K+k*i]^N^ “n

n * 0,1.... N,

where 1 * M(K+1). Supposing that this problem has been solved,

we intend now to construct practically the sequence of control 

functions u*. defined In RUB.O and Vila* 111. They have peeved 

that u* -* L*. in D'(w) strongly, where u * (-l,T+l), and Lt has 

been defined as follows, ly Cc(w)*> R. by

K t^ ("l)k J Dk $(£) ,
k-e °

for 4 « C*(w). K a fixed positive integer and t € (0,TJ. In 
r c



appendix (E.4), we have shown that

u ‘ ( t ) £  (-l)k j V  Pt/j(T - v  dMk(0. o s x a T, 
k«0 °

(4.114')

where

p(x)

P„.(x, » j" p(jx). when

a exp[-l/(l-|x|2)J, for

0 for

|x| < 1 

I x | a 1

and a » Ff exp [-1/(1 - |x|2)] dxl 
LJ|x| J

a-1
Let now p * E < (t ), k * 0,1,... ,K, where 

k { « o ’
the optimal measure found In our problem. We

<**„•#*,..... p k,0 ), Is

have from (4.114')

u‘(* > .  £  <->>k ^  H
k «0

or

0 <M(tf)

but by definition of unitary atomic measure for t e 10,T],

f Fd5(t) * F(t), thus 
J 0

k *-1
u * ( t ) ■ V *  ^  ( ” l ) k<[j D k ”  t f ) ,  ( 4 . 1 1 5 )

k»0 I«0

here 0 s r s T and (tf;l * 0,1,...,M>, Is a partition of [O.TJ.

k T

u'(T) - £  (-l)k £  J V  Pvj(T -
k « 0  I « 0
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Now let <k » j3k - yk, 1 * 0,1,...,M-l, k * 0,1,...,K. Therefore 

from (4.115) we have for J * 1,2,...

K * - 1ui(x) ■ z
k « 0  I > 0

Again we use the old notations

z C-l) k0 5  - Tk)Dk P,,/* - V * (4.116)

a* * xHi (i-Dk+k+i’ k * 0 , 1 ....K, 1 * 0 ,1,...,M-1,

= y k * 0,1.... K, 1*0,1,..., M~ 1,
i J ♦ (1-1>K*k*ik*

where J * M(K ♦ 1). Now we deduce from (4.116)k*

K «*1 ,
UjiT) “ ]T ^  (‘1)k[ X((-1)k*kH " J ‘

k * 0  C O

,Dk P17|(X - t}). 0 S T S 1.

In the following we consider some examples with different final 

states.
Eaa*>leU.l) Let the final state be g,(x) - 0.01 ♦ 0. lcos(rrx).We 

choose K « 2, M - 10 and let T - 1. therefore JM  - 30. Thus by 

(4.114) our problem Is, minimize

60
l X,i«1

on a subset of defined by
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xf s 0 , i * 1 ,2....60

E (xT. - x„ ) - 0.01
i. 0 ^  3i*31

E E (-i)k *2k[=
k « 0  f » 0

x - x  I e ' 1 lH,/10)1 « 0 1 
3 i * k > 1  3 i * k * 3 t  U> 1

and the results are:

Cost function » 0.01085

x = 0 .01, x » 0.00085 and all other x * 0. Therefore we have 
t 6  ■

u2(x) * 0.01 pi7j(T - 0.05) + 0.00085 D2 pvj(r - 0.95), (4.117) 

for 0 s x s 1.

Note For a given integer N > 0 and 0 s t s T, we have

Ju*(Ç) <p (Ç,T)dÇ •» a (t.S ), n * 0, 1 , 2 ..... N.
j  n *

[see RUBIO and WILSON C1J, (VIII.32)], where *(Ç,t)ft

- e "’*’"  Ç\ ^

a (t;s ) n K

g
« I ( - n k f ok* (*,tîdn to,
k*0 J

* r  kwhere s ($) * £ (-1)ViD^), $ e 2F. and 0 a t s T, Finally we 
K k - 0

conclude from proposition (VIII.10) of the above reference that 

for given any e > 0
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l«n ~ an(T,s)| < c, n » 0, 1, 2..... N.

We may conclude from the above Inequalities, that a (T,s ), Is ann K
approximation for a , n * 0, 1..... N.ft

By using note (1) of example (1) and (4.117) we have

r1 2 r1ao(T,s2) * afl(l,s) * J0 Uj(t)dt * 0.01 JQ p (t - 0.05)dt

- 0.00085 J D2pvj(t - 0 . 95)dt (4.118)

a ( T.s2) = +0.01 JQ e'n - 0.05)dt

+ 0.0017 JQ e‘* (1*° DZpvj(t - 0 .95)dt. (4. 119)

Note Lemma (15.2) of TREVES [1] claims that:

Let f be a continuous function with support In Rn, then for any 

e > 0 , the functions

f (x) *  f p (x - y)f(y)dy c JRn c

converge uniformly to f, when c 0. Also

(3/3x)pf * f Dp p (x - y)f(y)dy -» (3/3x)pf (as c •> 0 ). c J c

Now by using Note (2) in (4.118) and (4.119) we have 

ao(l,s2) - 0 .01,>i(l,s2) »O.lQQTa

Therefore we reach the state G^x) « a0(l,s2) + a (l,s )coa(«x)



■ 0.01 + 0.10073 cos(nx), by Imposing the computed controls. Fig

(4.1) shows the desired final state g^ix) and G^x) computed one. 

Example (4.2) Let

g2(x)
2x

l 2(l-x)

0 s x s 1/2 

1 / 2 3 X 4 1

The half range Fourier expansion of g2(. ) Is 

g2(x) * 1/2 - (4/n2)cos(2»rx)- (4/9n2)cos(6irx) 

- (4/25*2)cos(10irx) -----

Put In (4.112) and (4.113) T ** 1, M * 10, K * 6 and N * 6

thus J * M(K+1) * 70. So our problem is to minimize KM

no

over a subset of R140 defined by

x} a 0, for 1 * 1,2, ... ,140

t* 1°. .k. 2 2.k , \ -n2*2{1*t,)

k*0 <»1
a , n

for n » 0,1, , . . , 6  and t} « (21-U/20 where afl * 1/2, a2 * -4/n2, 

<*6 *» -4/9ir2 and a1 * * a$ « 0. The result of the

computation is: 

cost function » 0.5081

X49 * * 0,2675E-02 x)J{ ■ y4 » 0.2874E-03



x*, « *  0 .4987E-0262 o

■ 0? -  0- 1350E-03 0

xx, *  pi *  0 .5000E+G064 9

X139 = rl “ 0. 2881E-05 

x1/n * = 0.6995E-08140 9

and all other x « 0 . Therefore from (4.116) we conclude

u‘(t ) » D6Pi/î(t - 0.65) - 0* D5p (r - 0.85) ♦ 0* D6 p (rJ o a i/j 8 l/j

- 0.85) ♦ 0^ pvj(r - 0.95) - yj D4 p v j (t - 0.95) ♦

A  D p 1,j(T ‘ °’95) ’ y9 D6pi/j(T * °-95)-

Finally, with the same notation as in note in example (4.1) the 

final state produced by imposing the above controls when J -» ®, 

is the following

G (x) * £ a ( l , s ) *  0.5 + 0.0087c o s(ttx) - 0.445cos(2irx)
2 ft 6

n » 0

- 0.00685cos(3nx) - 0.00019cos(4irx) + 0. 00977 c o s ( 5 jtx)

- 0.0226cos(6irx).

Fig (4.2) shows the desired final state g?(. ) and the state 

G2(.), which we obtained.

Discussion Although the state G2(.) is close to the state g2(,) 

a better state could be achieved by Introducing mere than 

seven constraints, and also by choosing more measures; that is, 

by increasing K and N. When we choose N > 6 , however, there is a 

difficulty, because the coefficients of the linear constraints are 

of the following fora

6



k 2 2 k *<n2*2><1- V(-1) (n x) e , n * 0 ,l,... , and k » 0 ,1,...,

where t{ « (21- D / 20, 1 « 1 ,2.... 10.

It is apparent that when n Is chosen large, then the absolute 

value of the above functions are very small, even less than 

10*78, which Is the 1 Imitation imposed by the word -size of the 

computer; all of such numbers are treated as “zero. This causes 

ill-conditioning (see ROMAN ll) p.448) in the matrix that we use 

In the revised simplex method (see Gass [1] p.96). Although we 

reach the final solution, the accuracy is poor. So it seems that 

it is an open problem to find a way to overcome this difficulty 

despite the limitation of the computer.

Example (4.3) Let

0 < t <1/2

t
1/2 < t < 1

1*2

g3tx) » \
0

1

then its half-range Fourier expansion of the function g^Cx), is 

the following

gj(x) * 1/2 - (2/*)cos(«rx) ♦ (2/3s}cos(3irx)

«... + (2 (-l)k*1/(2k+l)]cosi(2k+i)nx]+ . ..

In this example we choose K *» 6 , N * 4, M ■ 10 so J « 70 and 

our problem is to minimize

HQ
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x a 0, for 1 * 1,2...... 140

7i>k-6
- X

7f+k+64k - 0  f » 1

for n * 0,1..... 4 and tJ * (21-1 )/20 where ag * 1/2, â  » -2/n,

*2 * °’ “3 * 2{3* ^  a 4 “ The results of the computation are: 

cost function * 0.5000

As in example (4.2), the computed final state is the 

following

C^ix) ■ 1/2 - 0.61948cos(trx) - 0.090cos(2rrx) ♦ 0.222 c o s ( 3 ttx)

+ 0.002cos(4rx).

Discussion In this example as in example (4.2), the value of N 

cannot be taken to be very large; N can not exceed 4, because of 

111-conditioning for N > 4. Fig(4.3) shows the desired final 

state g (x) and the computed one C3(x).

Appendix (A.4) The following mapping Is one to one

xci * 0.2153E-06
56

x,rt ■ 0.3922E-08 
69

x = 0.5000E+00
64

X
133 = 0.7531E-08.

s * Z D t Mg* * • • • * Mjj» • • • )

Proof Let cr be the following mapping

CO

<r ;S If M



where we defined S in section (4.2) and where 

Radon measures defined on (0,T]. Let now 7

define

M is the set of all 
00

• Z Dk u € S. We 
k«0 *

<r(y) = oT Z Dk u ) * (u .M,........) e n #•
Lk«o J *  i « t

■ k “  kAssume ^  and 7 ̂  Z D belong to S, then we have
k*0 k*0

o-(y ) * <ri Z Dk u | ■ ....• • • )
'■k«0 J

<r(r2) * 01 [ ^ °k ....V  "  '

Let <r(jr̂ ) s* then we have

^o-^i....< v - " ) * ‘V i .... %••••’

we have n * 1̂ , for k » 0 ,1 ....  (by definition of equality of

two sequences) which shows rx a 7? or <r is an injection.a
00

Appendix (B.4) The following space is a linear subspace of fj ?f
i-1{'•w V ) €

00

n *■
i«i

co
z
k *0

<00
}•

Proof Let s « (ji . .l*k. • • •) and r » (p^p,.... Pk> •••)* be
00

two element of £, then by definition we have Z *#iJ <» and
k«o

00
2 Bp 8 <m. Let a, 0€ R. It is easy to show that as <3r e £, 
k»0 k
because, we have



a  ao oo
£ Boc*xk + £pk# 5 a £ llpkB + 3 2  Dp II, 

k « 0  k * 0  k - 0  *

U 5

since llapk + £pk 1 s aBpfcB + £BpkB.Therefore we conclude

2 Bap + 0P * < ».
k*0

Appendix (C.4) The function U.B :j? -* R defined below is a norm 

on £.

Ilsll * 2 H R B ,
k«0 *

where s * (p^.p^....Pk* • • •) € £, and £ was defined in appendix

(B.4).

Proof (I) Let s * (p^P,....Pk- • • • ) e £ and let Ilsll t * 0, or
«0
2 Hp II « 0, then Bpfcfl * 0, for all k * 0,1,.... so pk a 0, for k 
k*0 k
* 0 ,1,..., therefore s * (0 ,0,...,0,... ) * 0 .

(II) Let s * (p^p,...Pk» • •> € t ^  r “ (v0'vi...... V ,)

€ £, then we have

Bs + rBj » B(p0,pt, • • • ,Pfc. • • •) * .... Vk’ i

■'"o * V". * ■’i... »1 * V " -’’i * V -

QB (O CD
s 2 (Bp » * By B) - 2 lip H ♦ 2  IIw II * IIsll ♦ llrll

k .o  k k » 0  k « 0  1

or Bs ♦ rBj a BsB( ♦ Iri(.

(Ill) Let A be a real number, then



00
HXsIlj = |(Xm 0.X|I|....* E  II XMkll * E  | A | II p II

a, k*0 k*0 k
= |A| E  «m J

k«0

therefore BAslj * JXIislj.D

Appendix (D.4) The sets QCK.N.L.c), Q(k.N.L), Q(N), Q'(K,N,L,e) 

and P(K,N,L,e) defined below, are non-empty; here K, N and L are 

positive integers.

(1) The set Q(k,N,L,e), is the set of all (pQ, p̂ , P^.O),

such that

KL Ir ? ? k(a) | E  (-1) (n w ) *  p U  ) - a | < c, for n *  0, 1..... Nt  n nk*0

(b) BpkH1/k < 1/K, for (K - 1)L < k s KL.

(2) The set Q(K,N,L), is the set of all {pQ, pt.....  p^.O),

such that

(c) E C-l)k( n V ) k p U  ) * « . for n “ 0- 1.Ic n nk*0

(d) lpk«,/k < 1/K, for (K - 1)L < k s KL.

(3) The set Q(N), is the set of all (p * • • * * • • ) • such

that

99

(e) | E  (-l)k( n V ) k p.U ) - « . for n * 0 , 1, ...I n nk*0

(f) lim BMk81/k »0.

(4) The set Q'(K,H,L,c), is a subset of QiK.W.L.e), such that

U6
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each of the measures is a discrete measure.

(5) The set P(K,N,L,e), is the set of all .... ^ (o),

such that each of the measures Is a discrete measure and

t L  k 2  2  k(g) I Z (-1) (n< ) fi (+ ) - a | < e, for n * 0, 1..... N.
k - 0  k n n

Now we intend to define a set which is a subset of all the sets 

defined above. Let P(K, N,L), be the set of all

(M0, ..... V 6 ), such that

Kl k 2  2  k(h) £ (-1) in « )* ftjt ) * a , for n * 0, 1..... N,
k n n

k » 0

where each of the measures is a discrete measure.

It is obvious from the definitions that

P(K, N, L) c P(K,N,L,e) c Q'(K.N,L,c) c Q(K,N,L,c), (D.4.1)

P(K,N,L) C Q(K+1,N,L), (D.4.2)

P(K,N,L) C Q(N). (D. 4.3)

From (D.4.1MD.4.3) we conclude It Is sufficient to prove 

PiK.N.L) * 4> for arbitrary positive Integers N, L and nonnegative 

integer K. We intend to find an element of P(K,N,L), of the form 

(nQ, 0); It Is then sufficient to show

u (* ) » a. , n » 0,1,... ,N.n n



Let m * S C,*5(t ), where t = KT/M); then, there exist C 
{■0 o’

C,....  £ . such that

i »0
n 0 , 1 , ,N.

Indeed,

W V  * W 1, 1 * ••• * W V  - «0 

< . W  W V  * •••

W V  * W 1,1 * + Ç # (t ) * a ; UTN N H

the contention follows since the determinant of the coefficients of 

the above system is non-zero; the proof is similar to that in the 

proof of lemma (4.71.0

Appendix (E.4) In this section we remind the reader of some 

aspects of the sequence of control functions defined In 

proposition (VIII) of RUBIO and WILSON 11J.

Let u - (-1, T*i), and let C*(u) be the space of infinitely 

differentiable functions with compact support in u, with the 

LF-topology. For any <P c C*(u) and a fixed Integer K > 0, they 

defined the functional L*:C*(u) -» R, by

<L* *> « l i-l)k J* Dk ^(C)dMk(C) 
k*0

for any t e (0, T]. In the above reference it has been shown that



L* is continuous, that Is, in D'(o), so by theorem 24.2 of 

TREVES [1] the support of L* is compact, and from TREVES [1] page 

302, there is a sequence <u*>^, of functions in L2(u) such that

u* * * L*, for 1/J < d(supp T,Cw),

and uK converges to L f where Cw * (-to, 1 ] U tT+2,oo), and p (. ) is 
J * e

defined as follows: P£M  * c*n p(x/e), for e > 0 , where

p(x)
a exp[-l/(l-|x|2)], for |x| < 1 

0 for Ix i a 1

and a

TREVES [11, we have

Ixni dx From page 288 of

u‘(t ) = ( L ^ - p ^ ^ C x )  * < L * .  P v j ( t - Ç ) >

* l i-l)k J0 0 s t s T
k»0 J

Therefore u*(r) * £ (~1) J0 D p^.it-Çldp^iÇ), 0 s r s T. 
1 k«0
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FIG ( 4 . 1 ) -F IN A L  STATE FOR EXAMPLE (4.1) 

S O L ID -D E S IR E D  F IN A L  STA TE FOR EXAMPLE ( 4 . 1 )  

BRQKEN-COMPUTED F IN A L  STA TE FOR EXAMPLE ( 4 . 1 )
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F I G < 4 .2 ) - F I N A L  STATE FOR EXAMPLE<4. 2)

S O L ID -D E S IR E D  F IN A L  STATE FOR E X A M P L E ( 4 . 2 )  

BROKEN-COMPUTED F IN A L  STATE FOR E XA M P LE ( 4 . 2 )
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F IG  (4 .3 )-F IN A L  STATE FOR EXAMPLE(4.3)

SOLID-OESIREO FINAL STATE FOR EXAMPLE <4.3) 

BRCKEN-CQFPUTED FINAL STATE FOR EXAMPLE 14. s



153

CHAPTER S

Strong Controllability of the Diffusion Equation in n-Dimensions. 

5.1 Introduction

This chapter contains an extension of the paper of RUBIO and 

WILSON {11 to n-dimension£.

Consider first the optimal control of the diffusion equation in 

n-dimensions which we discussed in chapter 2. That is, consider

with the same boundary conditions as in the beginning of chapter

(2 ); we want to minimize a functional such as

where the control is in the space L^fSw X {0,T]), and there are 

no constraints imposed on its magnitude. Consider a state

nor by a measure; that is, assume that the set of measures Q 

defined in chapter 2 is empty. Therefore there can be no minimum 

on Q, and the problem has no solution.

There are many optimal control problems, even in one dimensional 

state spaces, without solution because the desired final state 

can not be reached by imposing an admissible control (see RUBIO 

and WILSON ill). But MACCAMY, MI2EL and SEIDMAN ill) proved that 

the set of states which can be reached by means of controls in 

L'tdu X 10,TJ) is dense in L^w). The above fact is not helpful

AY(x,t) = Y(x,t), (x.t) c u X [0,T] (5.1)

g(.) € L^fu) which is neither reachable by an admissible control



If the set of measures Q is empty, but it suggests that we may 

arrange things so that every state in L^iw) is reachable from the

origin (see RUBIO and WILSON (11). In this chapter we extend the

set of admissible controls, beyond the set of measures.

(5.2) Defining a set larger than the set of measures.

Let {afe(x); k = 1,2,... >, be a sequence of eigen-functions 

corresponding to the sequence of eigen-values {Afc; k * 1,2,... > 

of the Laplacian operator A in w (for more detail see section

(4.2) ). Let the expansion of g(.) e L2(u) in terms of the
00

eigen-functions be g(x) = £ c a (x). From chapter (2) the
k*l k

solution of (5.1) with the boundary conditions corresponding to a 

control u(.,.) e X [0,T]) satisfies the terminal condition

y(.,T) * g(.) in L2(w ), if and only if

c » f (3a i$)/dv) exp(-Xt) u(£, T-t)d£dt. (5.2)
k Jd0 X CO,T] k

for k * 1,2,..., where v is the unit outward normal at 

<;(undefined on the subset (assumed negligible) at which do is not 

smooth; see MACCAMY 111). From (5.2) it is apparent that the 

problem of attaining a given state g(.) at time T can be achieved 

by considering the moment problem (5.2). From the results of 

RUSSELL and FATTORINI ill, it can be shown that there is a 

control u(.,.) c X (0.T3) satisfying (5.2) if there are two

constants ŷ  and ŷ , such that for all k * 1,2,...,

Je t * V. expi~(v, ♦ c)u 1, (5.3)K 1 m m

where is any positive number and ŷ  satisfies the following
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inequalities: %̂  and

\  > M e1/2 [2c1/2 ♦ 2c*1/2( 1 ♦ log(3c)V2],

c « log3/2, M > M and M is a number such that

|F(z)| s exp(M|z|1̂ ), for all complex z, where F(z)
CO

* [I (1 + z/A ). More details for M, M and M can be found in
k ■ 1 1

FATTORINI & RUSSELL p.287-291. Here {Afc> is the sequence of eigen

values defined above, satisfying the following inequalities 

0 < A < A < .,. < A < A <
1 2  n n*1 ’

also these eigenvalues have of course the property that

11m A * 09, where w, * A, '.
n k k

n

It Is possible, however, to think of many functions In L (u) 

whose moments do not decrease with k as the condition (5.3) 

requires, for example the following function g(.) does not 

satisfy the condition (5.3).

g(x) a T simm x + m x  + ... +m x >
4* I *  2 2 n n
(»)

where (ra) under E. indicates the whole combination of n-tuple 

integers m * (nym^,.,. .m̂ ) and the n-tuple (x^.x , ...,x ) 

belongs to (0,2n) X ... X (0,2x) (see MI20HATA (1) p.32).

In the following we intend to introduce a new set such that among 

its element we can find at least one element providing a solution 

to the moment problem.

We change the variable t to T-t in formula (2.2) of chapter (2),



156

thus we have

c = f  i5a C€)/Si>] expt-X (T-t)] u(£,t)d€dt, (5.4)
* Jdu> X [O.T] *

for k * 0,1,... .With the above change of variable the formula (2.3) 

becomes

c
n

T

. 0 w > -

-A T
.,€ is)) e n u(e,(s),...,e (s),T-t) n i n

J(s)dsdt (5.5)

where s * (s ,s ,... , s ) and A = [0,1] X ... X [0,1] and
1 2  n*i

fdix̂ ,. .. , ) ]

a ( s , , . . . , s  )
i n * 1

, Is the Jacobian determinant, J(s)

fa(x2, . . .  , x fl)

d(s r ,,,,8n-1)

fa(x4, . . . , x  )i n • * * 1
♦ ... +

a(s,,...,s )1 n • l
and

b (s) * b(£,(s)....£ (s)).J(s)k k 1 n (5.5' )

-X <T-t)
¿(t,s) * b (s) e (5.5" )

for k - 1,2,.... Also let u(t,s) * u(£ (s),... ,£ (s),T-t).i n

We can now write (5.5) in the following form

c *  f  ^ (t,s) u(t,s)dsdt, k * 1,2,....
k (0,T1 X A

(5.6)
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We are looking for a continuous linear functional in the space 

L2([0,T] X A) such as to satisfy (S.6 ). This functional is
A

defined by the control u(.,.). But we can say that the functions 

4>k are elements of a subspace of L2([0,T] X A), such as the space 

of infinitely differentiable functions with respect to the t 

variable on [0,T] X A, where the derivatives satisfy the 

condition (5.7) below (we explain moreatout this space In (5.3)). 

Then we put an appropriate topology on that such that its dual 

contains the space L2([0,T] X A), as well as other elements. If
A

there is no control u(.,.) € L2([0,TJ X A) that satisfies (5.6), 

there is a chance that we find one or more elements in the dual 

space to provide a solution to the moment problem.

(5.3) Defining a new space

Let F be the space of real-valued functions on [0,T] X A 

infinitely differentiable with respect to the variable t, on 

[0,T] X A (that is, these functions have uniformly continuous 

derivatives on (0,T) X A of all orders with respect to the 

variable t) such that

sup | D ĵ ( t, s ) | * sup| (dVath^it.s) | s c L* (5.7)
(t,s) € [0,T] X A (t.s) € [0,T] X A

for some constants c, L dependent in general on the function <j> 
e F; here D^'0'"''°Vu,s) a D^(t,s). We define a topology on 

F as follows. Let L > 0, and be the space of infinitely 

differentiable functions with respect to t on [O.T] X A which 

satisfy the inequality (5.7) for this particular L, and for some 

c which may be depend on Then we have
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(1) F c F , when L < L .
L1 L2 2

(il) We define below a real valued function II. II on F̂  and we show 

In appendix (B.5) that It is a norm on F.

II# * sup (l/L1)|D*#t,s)|. 
J,(t,s) € [0 ,T] X A

With the topology induced by the above norm, F is a Banach 

space, (see appendix B.5).

(Hi) For L2 > Lj, the topology induced by F on F is the same
L2 li

as the topology given on F , and the norms II. II and II. II are
1 S L2

equivalent on F . Indeed for all (t,s) € 10,T] X A and all j, 
L1

and all <p e F , it is apparent that
S

(l/L^lD^U.s)! s (l/Lj)|D^(t,s)|.inL

Therefore we have II# s B# . Thus, the Injection from F
2 ! ^

into Fl2 is continuous and then an Isomorphism into; therefore 

the two topologies are equivalent.

(iv) The space F, defined above, is the union of all spaces F , 

that is:

F « U F .
i>oL

Therefore we can put on F the LF structure generated by the space 

F . Let t be the dual of the space F, this space with LF 

topology, t is the new space in which we will find a solution to 

the problem of moments. In the following proposition an Important
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linear functional Is defined.

Proposition (5.1) The linear functional y on F, defined by (5.8), 

is in 2, that is, it is continuous:

0»

r(0) ■ E ( - D k p (Dk̂ ), (5.8)
k*0

for all <j> € F; pfc, k = 0,1.... are Radon measures on [0,T] X A

such that

00

E  Lk j dip | < », (5.9)
k*0 J [0,T] X A

for all L i 0. If y satisfies (5.8) for all 0 e F, we write

* k
y  *  E  D u . ( 5 .  1 0 )

k«0
Proof The proof Is similar to that of proposition (VIII.4) in 

RUBIO and WILSON (l].a

According to this proposition, tf(0) and L^tO.T] X A) are subsets
A

of 2, In the latter case we identify a function u e L2([0,T> X A) 

with a Radon measure p , so that for every 0 e F, we define p (0)
u u

a f  0 u(t,s)dtds.
J[0,T] X A

In the following we are going to show that the functions in 

(5.5"), are in F. The eigenfunctions ak(x), k * 1,2,... are 

known to be of class C® in the closure of w ( that Is, these 

functions have uniformly continuous derivatives on u of all
A

orders) (see for example RUSSELL II] p.200]. So ^(s) » 5ak(x)/5v
A

Is continuous and bounded in the closure of u; bk(s) 

» b (£ (s),... (s)). J(s), where we defined J(s) below (5.5),
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and du is assumed to be continuously differentiable. We conclude

that J(s) is continuous on A * [0,T] X ... X [0,T], and then J(s)

is bounded on A. Also b (£ ( s ( s ) )  are continuous on A.k 1 n
Let X * (£,..•,€). then b (£ (s),... (s)) » (boX)(s); sinceI n k I n k
X is continuous on A and bfc is continuous on 8u [du> is the image 

of A under X], the composition of bfc and X is continuous on A.
A

Therefore b(s) =.b (£(s),... (s)) is continuous and thusIt k 1 n

bounded on A. Let dfc, k * 1,2,... be constants such that

A
|bk(s)| s dfc, k * 1,2.... s € A, (5.11)

then we have

. , -  -X (T-t) a . -X .(T -t)
d V  (t,s) * D'[b (s)e ] » b (s).A*.e1 k 1 It it ic

By using (5.11) we deduce from the above equalities

|D{#k(t,s)l 5 Akj|bk(s)| s dkXkJ. (5.12)

Comparing (5.12) with (5.7), we conclude that we can take c * dk>

L * A for an arbitrary k « 1,2,... so 6 (t.s) € F, for all k k *
311 1,2,....

Notation: In (5.3) we substitute 0 » ŷ +c (e is any positive 

number), therefore the condition (5.3) becomes

|Cfc| s 7)i exp(-£u>k) (5.13)

where u>k « 4Xk, k * 1,2 ,....

Proposition (3.2) Let g e L^u), then the following set 2̂  is
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nonempty:

*9 “ {y € f:r(^n) * Cn’ n * r» Is of the form (S.8 ), the

measures Mk» k * 1 .2.... associated with it are atomlessj.

Proof We divide the proof of this proposition In (a) and (b).

(a)f We obtain an uppper bound for the sequence { - e x  >. By

definition -> » when k -* », since \  as k -m . Therefore

there Is a positive Integer N such that for every k > N w a

(3 was defined above), or u u a , thus X a /3u> , for k > N.
" *  *  k k

Now we specify a positive number 0 a 1, such that GX a 8u for
k k’

k x 1 '2.... N• Let 0, * sup{^/W|c, k * and let 0

* Max{0 ,1>; then we have 0u a 0, for k - 1,2,...,N or 0X a
*  k

We showed above that Xfe a for k > N; therefore we 

conclude that OX^ a for all k * 1,2 ,...; thus

~0X^ s k * 1,2,... (5.14)

(b) We consider the following problem of moments

f  *  *e \d (t,s)u(t,s)dtds » c e , k * 1,2,... . (5.15)
J10,T] X A *

The moments of g e Ljiu), satisfy IcJ s M, for some constant 

H > 0. We use the Inequality In (5.14) so that we have

|cfc exp(-0Xfc)) s M exp(-Buk), k » 1,2,... ,

so condition (5.13) or (5.3) is satisfied. Therefore from the 

results of RUSSELL and FATTQRINI 11J, we see that there exists a
•a

control u ( . s a t i s f y i n g  (5.15). Now we define the element t  by 
f Let 0 W  v  T'etv m i m k r  ic Le <Jeftne<i keloww.
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ï(f) 3 Y" [ Dk 0(t,s) —  u(t,s)dtds (5.15')
f-nJtO,T] X A 1 k!k *0

for ^ e F. According to proposition (5.1), this function belongs 

to X; Indeed, we have chosen the measures k » 1,2,... , as 

follows

e k „
f *  f ¿(t,s) (-1)*—  u(t,s)dtds, 0 6 F.
J(0,T] X A J[0,T] X A k!

These measures satisfy the condition (5.9), since for any L a 0, 

we have

oo 09 0k
V  Lk [ dip I = V* Lk —  f |u(t,s)|dtds
( r . W i i *  £ r ,   ̂ to,  h  x a

- E

(L0 )k

k! ^10,T] X A
u(t,s)|dtds

* e x p ( L 8 ) f  |u(t,s)|dtds < «,
J[0,T] X A

since u(... ) € C10,TJ X A) c L^dO.Tl X A). Therefore y € X, Is

of the form (5 .8 ), and the measures k « 0 ,1 ..... associated

with It are atomless.
A

Now we can compute the moments r(4>n), since u(.,.) Is a solution 

of the associated problem of moments, so we have

* . ek .
*{<*)„ \ f Dk $ (t,s) ~  u(t,s)dtds

" L i [ 0,T] X A ’ " kl
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00

Ak.0  (t,s) —  u(t,s)dtds 
[0,Tl X A " " k!

0»
<p (t,s) —  u(t,s)dtds 

[O.TJ X A n kf

ex ex
= e . c e = 0 , 0 * 1 ,2.....

n n

Therefore, the functional 7 defined by (S.1S) Is In I  , thus t
s s

Is nonempty, a

We have solved In some sense the problem of moments associated 

with the diffusion equation. At this point we are going to define 

the action of the functional 7 e if, not only at the final time T, 

but also at all time t where t € (0,T), then we approximate this
A

action by a sequence of controls u(.,.) in L2U0,T] X A), or 

equivalently by controls u(.,.) € L^iiO.T] X u).

Let u(.,.) e L ([0,T] X A), then the corresponding solution of 

(5 .1) can be written as follows:

a

k«1

where

c(t,u) »k J,(0,T1 X A
¿k(£,t,s)u(t,s)dtds, k « 1 ,2 1 • * * (5.16)

A
and t,s) » bfcis)e . If t ■ T, £ = t, we have

-X  (T-t)
d(t.T.e) - b (s) e * * (t.s).

k k *
($fc(t,s), defined In
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(5.5").

Let a functional jr € £ of the form (5.8) be defined in the 

following form

CO
c (t,r) - £ ( - D k I ($,t,s)du(e.s), (5.17)
n k.o J10,T) n  1n k

for n * 1,2 ,... .

Before we prove that the expressions for c^i-.y), n * 1,2,.., are 

well defined, we note that, If y is a functional yy corresponding 

to a control u e L2([0,T] X 3u), or corresponding to a control 

u(.,.) € L2([0,TJ X A), then the expressions (5.17) become

identical with those in (5.16); therefore the expressions in

(5.17) are true extensions of the previous ones. We prove now 

that the functions cj. ,y) are well defined and we show some 

fundamental properties of these functions.

Proposition (5.3) The functions c (.,jr), n * 1,2,... , defined in

(5.17) , are well defined and continuous on 10,T).

Proof The proof is similar to that of proposition (VIII.8 ) of

RUBIO and WILSON (11.a

The proof of proposition (5.3) suggests an approximation 

scheme: it seems that we can approximate the action of the 

functional y by the truncated functional yfc, defined below, at

every t e (O.TJ.

* k k7kW  - £ C-l)Vk(D^), $ € F.
k«0

Now we define
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cU.tk) E ( - D k f
k*0 JÎ0,T1 X A

ükA (Ç.t.s)du (Ç,s)in k

E ( - i ) V  f
k-0 n J(O.T] X A

t,s)d/ik(Ç,s). (5.18)

In the following we develop this scheme.
n -1

— ...— . —. — .  -*•     ...

Define k - (-1.T+1) and A* ■ (-1/2,3/2) X ... X (-1/2,3/2). Let

C®(k X A') be the space of Infinitely differentiable functions c
with respect to first variable t, such that each of these partial 

derivatives is continuous on k X A'. Also assume that the 

supports of these functions are compact in k X A'. We put the 

LF-topology on C ® U  X A'). Now for every <j> € C*(»c X A') and a 

fixed Integer K > 0, we define the functional Lt: C (ic X A') -» R 

by

r  K k f  k<Iv*> * EC-1) D*(Ç,t,s)du (ç.s) (5.19)
* k«0 JiO,T] X A 1 k

for any t € f0,T). Now we have the following proposition

Proposition (5.4) The functional L* defined by (5.19) is

continuous, that is, in D'(u X A'). There exists a sequence

of functions in L (w X A'), (u >., such that 2 1 J

u* -* L* In D'(v X A') strongly (5.20)

Proof Let t  X n be a compact subset of k X A', and let the 

support of $ be in t X t). Then we have

l<L*,#>| * K| sup f dlu Nsup sup |Dk *(t,s)|,
X OSkSK JÎ0,t) X A JoSkSlC T X 1} ’
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which implies that L* Is In D'(x X A'). For the definition of the
g

sequence (u^, see appendix (C.5).o

In the following we are going to approximate the action of the 

family of functionals l/, 0 s t <T, by the corresponding 

restriction of u* on £3̂, where * (0,t) X A', 0 s t <T, Then, 

we have

g g
Proposition (5.5) Let u. be the restriction of u, to fl , for jjt j t
*1,2,... . Then

uK LK in D' (£1) strongly as J -* ». (5.21)jt t

g
Proof (1) Let A* be the restriction of L? to £3t, that is, we 

assume that the test functions <f> are elements of and

define

g

<AK,4>> - l (-l)k f o W . t . s J d u  (£,s), 4> € c“(fl )
1 k.o J(0,T] X A 1 c *

From here on the proof Is similar to the proof of proposition 

(VIII.8 ) of RUBIO and WILSON.D

We want now to use this result in solving our problem of 

approximation. First we must extend the functions (Ç,s) 

-> 4> (Ç.t.s) toicXA'. We haveft

Proposition (5.6) Let N be a positive integer, and let B' be the 

set of all functions of the fora

(€,s) -* ^*(Ç.t,sî * i (Ç, t,s)r* (Ç,s), (C»s) « K X A't n
ft "
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= 1.2,. .. ,N.

t € 10,T]. The functions 0 is the extension of 0 to k X A' andn n

7' € c"(k X A')is such that r'(t.s) » 1 on [0,T] X A'. Then the c

set B' is bounded in C°°(< X A').
c

Proof The Proof is similar to that of proposition (VIII.9) of

RUBIO and WILSON [13. a

From propositions (5.5) and (5.6) we have

J[0,T] X A *

uniformly on (0,TJ. We can therefore approximate uniformly the 

action of at every t 6 [0,T] on a finite, but arbitrary number 

of functions (£,s) -> 0 (£.t,s). Finally we have the final 

approximation scheme.

Proposition (5.7) Given an integer N > 0 and any c > 0, there 

exists a control u(..•) € L^i(0,T) X u) such that

sup sup l<«‘ - L ‘ 4 ( „ . , t ) > | , 0
t€tO,TÎ 1 n

as j -» ». The above expression is equivalent to

sup sup
t e c o , ? }  i SnSM

|c (t.u) - c (t.r)I < c. n n

In particular

|c ~ c (T,u)| < c, n » 1 , 2,. ,N
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Proof The proof Is similar to that of proposition (VIII. 10) of 

RUBIO and WILSON 111. a

We could approximate the action of y, in the sense that any 

finite number of functions c(.,y), n * 1,2 ,,..,N, associated 

with the functional y may be uniformly approximated on (0,T) to 

within any accuracy by using a control function from 

L2((0,T) X u).

Discussion In this chapter we have found that any state in L2(w) 

can be reached at time T, Thus the set of admissible controls is 

not empty. In the next chapter we consider an optimal control for 

the n-dimensional diffusion equation, which is based on this

chapter.
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Appendix (A.5)

The function 8.8 :F -» R defined below is a norm on F L L l

3 SUP (l/LJ)|D^(t,s)|. 0 c F
i.it.t) 6 tO,T] X A 1 i

Proof (i) It Is obvious that If011 ̂ fc 0, for all 0 e F̂.

(ii) If H0Hl * 0, then we have (1/LJ)|D^0(t,s)| * 0, for all J

» 0,1.....  and (t.s) € [0,T] X A, so D|0(t,s) = 0 for all j

» 0 , 1 .....  Specifically for J * 0 we have 0(t,s) = 0 for all

(t,s) e CO,Tl X A, this means 0 a 0 on CO,TJ X A.

(Hi) Let 0 and 0 be two elements of F, first we show that 

0 ♦ 0 € F . Since by definition there are two constants ĉ  and c2

such that sup | D 0̂ C t, s} i
tt,t) € [0,T] X A 1

sup lD*0(t,s)| s c L1. therefore we have
<t,*> 6 I0,T] X A 1

sup |DJ(0 + 0) (t, s) |
(t,.) € [0,Tl X A

ctLJ;

sup |D*0(t,s) ♦ DJ0(t,s)|
<t,*> € tO,Tj X A 1 1

d,

s sup
ct,.) 6 [0,T] X A

|Dj0(t,s)| + sup d
<t,«> e [0,T] X A 1

|D,0it,s)|

s c1LJ ♦ c?LJ s (c1 ♦ cjL* * c3LJ,

where c3 a ♦ c2« Therefore from this last Inequality we 

conclude 0 ♦ 0 € F .

It is easy to show that 80 ♦ 08^ * 11011̂  + 11011̂

|a|ID]0(t,s)| 
X A V

(iv) Let 0 € F^ and a e R, then «0 € F̂ . Since

sup |D,(«0)it,s)| - sup
Ct.ij e {0,TJ X A it,*) « tO,T)
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* lalsup |DJ#t,s)| s lalcL* s cl',
<t,o € [O.T] X A 1 1 4

where = Jalc^ so <*4 € F .

Now we have

flat#!! * sup (1/LJ) |D*£a#(t,s) I
L € [0,T] X A

« lalsup (l/LJ)|D^(t,s)| * (allibii .a
€ [0,T] X A

Appendix (B.5)

Define on Fl the following norm

L sup
j, <t,•> € tO.Tl

(l/LJ)|Dj#t,s)|,
X A

<f> € F . T l

With the topology Induced by this norm, F is a Banach 

space.(i.e, it is complete).

Proof Let {6 > be a Cauchy sequence in F, then, by definition n »■

lira Il é - é II = 0 , so for any e >
n ■ L• , n •* »

integer N, such that for ali n, m a N,

0 , there exists a positive 

we have

B4> - $ 8 ■ sup t\/l))ID^td (t,s) - d (t,s)| < c
"  * l  *  t O . T l  X A  V "

so for every J and every (t.s) € £0,T) X A, we have

(l/L^ IDfi* (t,s) - #(t,s)J J < e, n, ra fe N,I n *

or
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|D|^(t,s) - ^(t,s)| < eLj, (c.5. 1)

for all n, b fc N and every (t.s) € [0,T] X A and all J a 0 . Let 

now J * 0 in (c.5.1), then we have

^(t.s) - ^(t,s)| < e (c.5 .2 )

for all m, n i N and (t,s) e (O.T] X A. Thus the sequence 

{^(t.s)}, Is a Cauchy sequence In R for every (t.s) e [0,T] X a 

since R Is complete, there exists a function of (t,s) like 

0(t,s) such that for every (t,s) € (O.TJ X A we have

£ (t,s) -» 0(t.s), as n -» #. n

Let n be fixed In (c.5.2) and m -» », Then we have

(t.s) - ¿(t.s)J s c, for every n * N and (t,s) e fO.TJ X A n *

which shows <p (t,s) -* tf(t.s), uniformly on £0.T] X A. Now we n
choose J * l in (c.5.1) so we have

ID?* (t.s) - D^(t,s)| s eL, for every n, m a N

and (t.s) € [0,T] X A. This shows that the sequence (Dj^Mt.s)}, 

converges uniformly on (O.TJ X A (with similar proof given for 

(t.s)}). Then by theorem 7.17 in RUDIN (1), we havefl

D*# (t.s) -» D^(t.s), uniformly on (O.T] X A.I n »
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Using a similar proof we have for any J fc 0

D,V (t,s) -» D]#(t,s), uniformly on [O.TJ X A. (c.i n *

Now let c * L*, (for an arbitrary but fixed j a 0). From (c. 

there exists a positive integer such that for all n a h 

all (t,s) 6 (0,T] X A

iDj^it.s) - D{^ (t,s)| < Lj,

so |D^ (t,s) I < |d V  £t,s)| + l), for all (t.s) € [0,T] 
In  ̂*1

or

(1/LJ)|d J# (t,s){ < (1/LJ)|d V  (t,s)i + 1
in ' *1

s sup (i/L^) ID^ (t,s)| + 1 = 110 il +
J, It,.) 6 iO.Tj X A "l "l L

So for every j and every (t.s) e (0,TI X A, from the 

Inequalities we have ID^ft.s)i < L^li^ 8  ̂+ 1). Let now

in the last Inequality, so we have

sup !D^(t,s)| < LJ(IU II + l),
I t , . )  «  1 0 , T3 U  "l

but ll<* 8 + 1, is a constant, say c, so we have from the 
1

inequality

5.3)

5.3) ,

I and

X A.

1.

above 

n »

above
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SUP lD¡*(t,s)| < cLj
Ct.s) € [0,TJ X A 1

which shows $(t,s) e Fja 

Appendix (C.5)

In this appendix we intend to construct the sequence of 

control functions Introduced In Proposition (5 ,4).

For constructing the above sequence we take two steps.

(1) We approximate an arbitrary distribution in I » k X A' 

m (“liT+1) X (-1/2,3/2) X ... X ( — 1/2,3/2), by a sequence of 

distributions In I, which have compact supports.

(2) By using lemma 28.1 of TREVES [1], we approximate any 

distribution with compact support by a sequence of test 

functions.

We consider now the convolution W*<p of distribution V with a cf°
c

function We may regard 0 as a distribution [0 ■* JV»(x)0(x)dxl 

so S*4> is the following distribution

ip <V*#, T)> * <V,

where ip e C* and #{x) * -#(x). 
c

But V*¿ Is, in fact, a ^function, precisely by definition 27.1 

of TREVES [1]

x -» <Vy, <p(x-y)>,

where the right - hand side Is called the convolution of # and V 

and Is denoted by V*^ or #*V. (When V Is a locally integrable 

function f, we have-<V , $(x-y)> * $ f(y)#(x-y)dyj.
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Let V be a distribution in Z, then from Theorem 28.1 of

TREVES [1], there is a sequence of distributions with compact

support, {Vfc> (k * 0,1,... ), such that, given any relatively

compact open subset [that is, its closure is compact] I' of Z,

there is an Integer k(Z') a 0 such that, for all k a k(Z'), the

restriction of Vk to Z', VJZ', is equal to restriction of V to

Z', V|Z'. Then from Theorem 28.2, TREVES [1], the test functions

<f> * p *V converge to V in D'(Z) as k -» », where we select the 
k

Integer as follows: for each k we select a k (in order to 

ensure that J -» »), sufficiently large so that the neighborhood 

of order 1/Jk of supp Vfc is a compact subset of Z. We have

defined the function p in chapter (4) and V, k » 0,1,... are
V K

distributions with compact suport.

By definition L* is a distribution with compact support, so we

can choose the sequence Vk> k * 0 ,1,... as Vk « for all k

* 1,2,... and we define the test functions <p* • p *LK (see
k 1 /k t

TREVES ill p.302). By theorem 28.2 of the above reference, ^ 

converges to L* in D'(Z) [strongly], where 1/k

< d([0,t] X A, C(t X A')); d is the distance between two sets and

C(r X A') is the complement of t X A', Now we rename k

- 1,2 ,... by u* or

for all k such that 1/k < d([0,t] X A, C(t X A')).

Now we calculate the elements of the sequence {u*> J * 1.2,... 

By definition

* <LU..»' < V ” - -  ■)»
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is the convolution of p and LK,
K1/J t

have

£denoted by * p ^  so we

u*(7),cr) * (L* * P̂ piv.cr)

K k f  k
*  E ( - 1 )  D p ( v -  cr -  s)dp CC.s)
k»0 J{0,t] X A 1 Vi k

But p (i} - <r - s) * JnpCJCtj - £). J(<r - s)) therefore

K . - .
u*(7),<r) * E (-1) j" D p(j(t) - £), J(cr - s))du (£,s)
j k»0 i0,t] X A 1 k

or by definition of the function p we have

u * ( t),<t ) * E ( - l ) kJn f 
J k.o J{0,t] X A

Dja e x p t - l / { l  -  i j 2(u -  O 2 * J2l<r -  s |2]> dpJC.s).
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CHAPTER B

Optimal control problem for the n-dimensional diffusion equation 
with a generalised control variable.

(6.1) Introduction

We consider an optimal control problem associated with the 

following n-dlmenslonal diffusion equation

AY(x,t) = Yt(x,t), (6 .1)

where (x,t) e « X [0,TJ, with boundary conditions

Y(x,t) * u(x.t), (x.t) € 3 «  X [O.T];

Y(x,0) » 0, x € w, (6.2)

u J(u)

is minimum (we will specify the function J(,) later).

Let {ak(x)>, k » 1.2,... be the normalized eigenfunctions

corresponding to eigenvalues (A^, k * 1,2,---satisfying

1 < A < A <. ... < * „ < - . • »

defined by the problem

Av(x) ♦ Av(x) * 0, x c u; v(x) «0, x € da.

In the following we give more details for the sequnce (A^).
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Remark There exists a sequence of eigenvalues {Afc>, k « 1,2,... 

where

1 < A , < •••

and a sequence of eigenfunctions <^(£1), ? e corresponding to 

the above eigen-values where

Aak(£) ♦ Afcak(C) * 0, afc(£) * o, £ e du.

Proof Let U k>, be a sequence of the eigenvalues of the Laplacian 

operator A, in w satisfying

0 < *1 41 *2 < ’ ' * < An < * * ’ • (6.2')

as we defined in chapter (2). If A > 1, we choose (A > * >
1 k k

and the proof is finished. But If 0 < Af s we choose the 

constant P, a fixed real number such that P2 Â  > 1. We define 

the set H e  Hn, as follows:

Q * (PC: £ € w>

Let {a (x)l, k * 1,2,..,, be the eigen-functions corresponding to 

the eigen-values k * 1,2,,.,, in Q and let x « p£ i
k 1

*1,2,.,., n. Let define a (x) a a (£), where x * (x ,.,. ,x ),

and C * )• Thus we haveI n

52ak(x) /  dxj - (i/p2)a^k(?) /
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Therefore

Aak(?) + W ?) * n/P2)A£k(C) ♦ \ak(C) (6.2*)

By definition of (ajx)}, we have

Aak(€) ♦ Akak^ }- “ °. x e fl; afe(x) * 0 , x e an (6 .2*')

But it is obvious that

x e il «* £ e w 

x € 8w ♦» ^ e 3w

Thus from (6.2*) and (6.2*'), it is clear that

(l/PZ)Aak(£) ♦ \ a k(C) * 0, € € w; afc( 0  » 0, ? € aw; 

or

A a ^ )  ♦ P \ a k( 0  * 0 , < € w; » 0 , C « 0«.

Let now A ■ P2A . k ■ 1,2.....  But we defined P, such that Ak k 1
» P2* > 1, therefore from (6 .2') we conclude

1 < A < .. • < A < A < .,. . p 1 k k*1

Note Henceforth, we denote the sequences <Ak> and iak(x)>, by 

(Ak> and {ak<x)> respectively.
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Let g(.) e L2(u ) be the desired final state, and let

00
g(x) * £ c a (x) x e w.. . k kk«1

In chapter (2) we have shown that the solution of (6.1) with the 

boundary conditions corresponding to a control u(.,.)

e L2(3u> X [0,T]) satisfying the terminal condltionn Y(.,T) * g(.) 

in L2(o>). satisfies

ck * -f I3a (€)/3i>]exp(-X t)u)£, T-t)d$dt (6 .3 )
* Jdu> X [0,T] * k

where k * 1,2,... and v is the unit outward normal at £. It is 

apparent from (6.3) that the problem of attaining a given state 

g(.) at time T can be studied by considering the moment problem

(6.3). We have shown in chapter (5) that there is a control 

u(.,. ) 6 L2(3w X [0,T]) satisfying (6.3) if there are two 

non-negative constants tji and 7)2 such that for all k * 1,2,,.,

|cfc| s T^expl-iT^+eJuJ, (6.4)

where Is any positive constant, i)2 has been defined in detail
J--- -

in chapter (5), «k * v , and c is an arbitrary positive 

number.

There are, however, many functions in L2(w) whose moments do not 

decrease with n as rapidly as this condition requires, for 

example

f(x.y) * Z (l/n )cos[nn(x+y)J. 
n»l
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In chapter (5) we defined a space F of real-valued functions \ji on 

(0,T) X [0,11 X ... X [0,1] * (0,T) X A, Infinitely

differentiable with respect to the first variable t e (0.T), such 

that each of the partial derivatives (d*/at*)0(t,s), J » 0,1,... 

Is continuous on [0,T] X A, and

sup | ( 3 tJ)0(t,s) | s CL*, (6.5)
(t,*) € [0,T] X A

for some constant C, L. We put the LF topology on F, and we 

considered £, the dual of F; here we found a solution to the 

problem of moments (see chapter (5)).

Proposition (5.1) In chapter (5) shows that the linear functional 

jr on F defined in (6 .6 ) is in £

00
7(0) * £ (-l)V(D^), (6 .6 )

k«0

for all 0 € F, and pk, k * 0 ,1,..., are Radon measures on 

[0,T] X A, such that

00
z Lk f d|u | < «0. (6.7)
k.O J[0,T] X A

*

for all L £ 0. If 7 satisfies (6 .6 ) for all 0 € F, we write it as

m
7 » £ (6 .8 )

k«0 ‘

In Proposition (5.2) in chapter (5), we have shown the existence 

of a 7 € it such that 7 (0 ) * c , n ■ 1,2 ,... , where* fl n
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» It.sJ * b (s)e " , (t,s) e 10,T> X A,n n

A
and b^(s) was defined in chapter (5). Also In chapter (5) we

proved that the following set s c X, is non-empty:
9

s * {y € X: jr(0 ) = c , n * 1,2,... ; y is of the form (6 .6 ),g n n

the measure ^ , k * 1,2 ,... associated with it are atomless and 

satisfying (6.7)}.

It was shown In chapter (5) that a sequence of controls in L (o>) 

exists which approximate y € X.

As in the chapter (4) we can show the following map is one to one

00

r » Z Dknk e x «-» (m0. m ,. - - • ,nk.
k»0

).

»
where J Lk [ d|u | < a, for all L s 0. We can identify

k*Q J C0.T1 X A
every element of X with a sequence of the form (pk>, k

*0,1,... . Thus, we denote y 3 <Vk> e X. As in chapter (4) an

equivalent condition to condition (6.7) is lim Hull1/k * o.
k-*» k

Therefore y * (^.M,....• • • ) « if and only if

(a) y[ij> ) * Z {-1) V m. ®  c_* n “ 1,2 ,...n . „ n k n nk*0

(b) lim Hu flVk “ 0
k-xo

„ -A (T*t)
where ^ (t.s) * b (s) e ” , (t,s) c (0,TJ X A.n n »
Let the objective function J be a function defined on fl H, by

k»o
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J(y) = HrB » E B m .II. Where y * (utu .... u . ...) 6 i c it*.
k-0 K o i k  k'J0

00
therefore the function J  is well defined since £ ||M || < «. the

k-o
reason that we have chosen J(.) In the above form Is that If the 

classical control problem consists of finding a control u(.,.), 

which minimizes the functional

■ L  X r o . T I  » i u i l ) ( a u  x  [ 0 i T 1 )

then, defining the measure as

f
Jdu x [ o , i l

$ du. Jdu X [0.T] (/»(?, t)u(C,t)dCdt, i/> e F.

Thus we have

lip II u l(i 1(1) I dipt
du X £0, T ] Idu X (0,T] lu(£, t ) |d£dt

“ " ^ ( d w  X [0,T]}‘

Therefore the above objective functional J(. ) Is Indeed a true 

extension of the functional I(.).

We show in this chapter:

(1) For positive Integers K, N, L, and a positive number c we 

have

in. ki
inf E Bp S * lim inf E «M II
Q(K,N,L) k«0 ce«Qe(K,N,U k«C

where Qc(K,K,L) is the set of all * ,1̂ , 0 ) [we define
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... J V 0) a . ,mkl»0,0, ...) ] such that

(a) | £ (-l)Vu (0) - c |  < c, n * ,1.... N
k«o B * " n

(b) «MkB1A < i/K. (K-l)L < k s KL.

(ill For positive Integers K, N, L,

»  KL
inf E Hp| * lim inf E HpH
Q(N) k*0 |t*° Q(K.N,L) k»ok

where Q(N) is the set of all (j^,p^ ... .p^,,.. ) such that

E i-l) 1'*11 p.(0 ) * c , n * 1,2,.. .,N, « n k n nk»0

11m lip H1/k « 0 .kk-*»

(111) We show next

00 CO
inf E ip 8 * 11» inf E Bp H
s k*0 n-w > Q£N) k»o

9

»
(lv) Let 0 * inf E Bp B, then we approximate e

S k*0
by

K 9
inf £ lip 8,
P (K,N) k«0 e

where P (K,N) Is the set of c all

.... ^ * 0)* such that each of u Is a discrete measurek on

to, TJ X A, and

| £ ( - l ) V  fU# ) -  c l  < e,  n »  1 . 2 . . . . . Nn t n nk-0



[K and N are sufficiently large and c is a given positive number].

(v) We transfer the above problem to one which Involves 

minimizing of a linear function over a set of linear constraints 

in finite space.

(vi) Finally, by using the sequence of the control functions 

introduced in chapter (5), we show practically that we can reach 

different final states to a good approximation.
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(6.2) A scheme for determining the Inf Iowa of the objective 

function

In this section we show

inf
QCk.N.L)

Kl
£ Bu B * iia
k»0 e-*0+

where K,L are positive integers, N is a nonnegative integer, e

> 0, and Q^fe) * Q(K,N,L,e) is the set of all .... 0)

of Radon measures such that

KL , k,k(1) I £ (-l)V n (0 )
k.o n k "

c | < c, n a 0,1.... Nn

(11) l#i |1/k < l/K, (K-l)L < k s KL,

Q(K,N,L) is the set of all (mq.M,.... Ji ,0) of Radon measures

such that

ki
(Hi) £ (-l)V ) s c , n = 1,2,. ...Nn k n nk*0

(Iv) 8MkB1/k < l/K, (K-l)L < k SKL.

First In lemma (6.1) we note that the sequence (Q(K,N,L,e)}^ is 

nondecreasing.

Lemma (6,1) Q(K,N,L,e) c Q(K+l,N,L,c).

Proof The proof is similar to that of lemma (4.l).a

As In the appendix (C. 4) in chapter (4), we conclude that
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Q(K,N,L,e) is non-empty for all K,N,L, and e. We now define

but K takes value 1 ,2......

Proof The proof is similar to that of lemma (4.2).o

As in appendix (C.4) we conclude a Q(K, N, L) is nonempty so the

following definition is meaningful

Lemma C6.3) Q(K,N,L) * fl Q(K,N,L,c)
C>Q

Proof The proof Is similar to that of lemma. {4.3).a

Lemma (6.4) Q(K,N,L) c Q(N), for any positive integers K, N and L. 

Proof The proof is similar to that of lemma (6 .3).a

(c) »inf 2 Bp H.
Qk(c ) k»0

(6.9)

In lemma (6.2) we note that the sequence {£ (e)> is
1C

non-increasing.

Lemma (6.2) ^* when N* L, and e are fixed

( 6 . 10)

In lemma (6.3) we obtain the relation between £ and

M
£ «inf 2

Q(K,N,L) k »0
2  i|*k*.

Now we define
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[As in appendix (C.4) in chapter (4) we can show that Q(K,N,L)

* 4>. 1

Lemma (6.5) 0 * lim £ „ .(e), exists and 0 « £ .
£̂ 0+ K#ll<t

Proof The proof is similar to that of lemma (4.5).a
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(6.3) Approximation of the infimum of the objective function when 

the cosine Fourier series of the desired final state is a finite 

summation.

N
Let g(x) = £ c^fx), where N is an arbitrary non-negative

n«1
integer. We will show that for any positive integer L

00 w
inf £ lip II = 11m inf £ lip II (6 .11)
Q(N) k*0 K k*o k

where * Q(K,N,L); Q(N) was defined as the set of all 

(po>p .... ,pk,...) of Radon measures such that

00

(a) £ (-1 )kA p (*fr ) a c , n * 1,2,... ,Nn k n n
k*0

(b) llm  lip llt/k *  0. 
k-*o

CD
As in appendix (C,4), we can show that Q(N) * 0 , so inf £ ||u ||

Q(N) k«0 k
is meaningful. First we note that lim £ exists.

K

Lenina (6 .6) For arbitrary K, N, and L

£ s £
*♦1,H,l M .L

where £ , was defined In (6,10).
sM,l

Proof The proof is similar to that of lemma (4.6 ).a

In lemma (6 .6 ) we showed that the sequence > is

non-Increasing, when N and L are fixed, and it is bounded from
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below by 0. We define now

(6 .12)

00
8 35 inf

"  A / l tQ(N) k*0
(6.13)

by using the above definition we may write (6.11) in the following 

form

Remark It appears that n * lim f depends on the value ofN|l

L, but we will show that it is Independent of the value L a 1; in

the following we note a lemma which will be used later.

-X (T-t)
Lemma (B.7) Let t) ® e n , 0 s t sT, n * 1,2,...,N, where

N is a fixed integer such that H M ,  and let * iA, I 

* 1,2,....N and A ■» T/N, then the following matrix Is 

non-singular.

other words, we show that for any fixed L a 1, In

r ̂ (t,) • • • ' V V

w  w  ■■■ w

Proof The proof Is similar to that of lemma (4.7).o
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K n
Note : Let G = v = ig ) and let G = 2 £ |g I.

11 " 1 . 1  J . 1  U
In the following lemma we will assume that there exists at least

n • 1 11

one s « A « [0,T] X ... [0,T], such that b (s ) » 0, for 1o j o *
» 1,2,...,N, tH Is any fixed positive Integer]. This matter will be 

left until appendix (A.6 ).

Lemma (6.8) Suppose there exists at least one sQ € A, such that
A
b,(s J  * 0, for J » 1.2, ...,N and let a , n * 1,2....N be N real

j o  n

numbers such that I a | < 1 ,  n » 1,2,. ...N. If k is any fixedn
positive Integer, then there exists a Radon measure v such that

(1) v (^ ) * a / Ak, n * 1,2,. ...N k n n 9 n

* -A (T-t)
where ^ (t,s) * b (s)e n , (t,s) e (0,TJ X A. 

n n

iil) IIVk" < CK / Af :

here c * (l/b)G , where G was defined above, and A > 1 (since H  ̂ " *
we assumed that all the eigenvalues A^ are greater than l], and b

* mln{|b (s )|: J “ 1,2,....N>. j 0
Proof We define the discrete measure as follows

M
v * 2 e,5(t,,sj, 
k 1-1 1 * 0

where t} ■ 1A, 1 » 1,2....N, A * T/N, and ejt 1 * 1,2.....N are

H unknowns to be determined below. Since we must have

v l\h ) « a / Ak, n * 1,2,...,N,
'  n n • n
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then
[ lV i 4 t t r , o, k - % / * ¡ -  n =  ’ -2 ........ NlM »1 J

or

2 eA (S * S0) “ an /  xn* n * 1*2....N-i*0

* *X (T-t)
But ifr(t,s)»b(s) e s b (s)$ (t), where ó (t)

n n n n n

-A (T-t)
* e n , so we have

M A L
£ e b (sJ* (t ) * a / X\ n « 1,2,... ,N i n 0 n 1 n • ni«1

or

V V  [ (2 e^nitl)] “ %  / Xn' n * 1 ,2.... N>

By assumption * 0 for n * 1,2,... ,N so we have

£ e * ( t , ) - a  / CsJl, n - 1.2.....N. ■ (6.14)
** i r n J n 7 n n 0

We have called ^ the matrix of coefficients of the above system 

(6 .1 4 )  of N linear equations in the unknowns ejt i « 1,2,,.. ,N; t¡> 
was defined In lemma (6.7) and we showed there that ^ is 

non-singular and G * $ “ 50 we have



192V 8n gtj'" si« ■  «,a ; v=0) ■
e 2 a '2 1  '2 2 -  • »2,•• V s,1

e
N
J

1 ,,, 9 » • *  * s 
11 «2 nN aA k V s,1•  4

Therefore we have from (6.IS)

e ( *  E  b j i s 0) ] > - J  *  1 . 2 ,
i»1

• ,N

or

le, * i <lg.,lla l/X'lb (s )|), 1 
j«1 J 1 1 1

1.2.... N (6.16)

Let b * mln< |b^(sfl) I; J * 1,2,...,N>. Then b > 0 , because we have
A

assumed that bj(sQ) * 0, n * 1,2,...,N. Also we assumed without 

loss of generality that the set of eigenvalues (A^, satisfy

1 < A. < A < ... < A < ... .1 2 n

Therefore A* > A*, for J « 1,2,... and Ib^s^l fc b, for j

- 1,2,... N. Further, by assumption, 1 a.J| <1, J « 1,2.... N; thus

we have from (6.16),

le i s E Ig .lAjb. (6 .17)
' j«i J

N
Since v • E  e3(t.,s ), 

m
By B » |w l(l) * E I« l. (6.18)
k k 1
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■ " t
By (6.17) and (6.18) we have fly II < £ £ |g I/Xd, or

* f»t J-1 <j 1

■ * „
«v » < 2  2  ig .l/X~b. (6 .19)

i-1 j-1 J

N N
But since c * (l/b)G , where G » 2 2 lg..l, from (6.19) we

i-1 J-1 ,J
conclude

fly II < c A k.a k w 1

00
To prove the lemma (6.9) we need to define a norm on ]] M, where M

i-1

Is the set of all Radon measures on 10,T) * A. Let

W * u#*0.*V
00 00

..) e JJ jf; 2 flp.fl < »>; 
i-1 k»Q

We define the function 8.#n on W as follows

B.H^.W -» R*

such that for any w * (p., p̂ > •»•»...), flwB ̂  £ flp̂ fl.
k-0

We show below that UQ(K,N,L) c Q(N) (where A means the closure
k-0

of the set A, with respect to norm-11, topology) By using the

definition of Q(H), it is apparent that Q(N) c W, because for
1/k

(p ,p .... ,p ,...)€ Q(N), llm Up fl «0, or equivalently 
0 1 * k-*»

»
£ L «p I < «, for all l * 0; therefore Q(N) c W. But in general
k-0 k «
Q(N) is not a subset of U Q(K,N,L), since in Chapter (S) we

k-0



m

showed that the element y of ss c Q(N) defined as follows

r($) 2 f Dk 0(t,s)(-l)k [0k/k!]u(t,s)dtds, $ e F,
k-0JlO,T] X A 1

where we have chosen the measures k » 0 ,1,... as the

following

4xi»k 3 f ¿(t,s)(-l)k(0k/ki ]u(t,s)dtds,0 e F.
10,T3 X A J10,TJ X A

It i s seen that r 38 (Mq.M,....•«• )  < U Q(K,N,L), Therefore

Q(N) is not a subset of U Q(K,N,L). In lemma (6.9) we show Q(N)
K * 0

CD
c U Q(K,N,L).

IC « 0

»
Lemma (6 .9 )  Q(N) c U Q(K.N.L), for any fixed positive Integer L.

K » 0
Proof The proof is similar to that of Lemma (4.9),o

Now we Intend to prove i) * 0 , but first we prove tj s 0 :
" N,L II

Lenma (6.10) For any fixed L a i ,  and any N i l

T)Nl 5 0N

Proof The proof is similar to that of lemma (4.10).a 

Lemma (6.11) For any fixed L a i ,  and any N i l

Ml 0N

Proof The proof is similar to that of lemma (4* H).o
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(6.4) Approximation of the infimum of the objective function when 

the desired final state belongs to L2(w).

In Proposition (5.2) of Chapter (5) we showed s * % * 6. Thus.g g» * *
inf Z lip II, is meaningful. Let
s k*o k 8

e ■ inf z Up I
S k*0 k 

8

00
In this section we show 0 = lim inf Z Up II, where Q(N) and

M̂ «o Q(N) k*0 k

s , where defined above. Now define for any positive N 
9

N
g (x) * Z  C a (x), x 6 u,N n n

and let s^ ■ € sj s(^) = n « 1,2....NJ-, where y
" «0

* (p„.P.» • • *»P,.» • • *) y(^) = E (-1) A p (4> ). First we prove
0 1  k n k » 0  n k n

the following lemma

Lemma (6.12) g^ -» g. with respect to L2(u)-norm.

Proof The proof Is similar to that of lemma (4.12).o

By using the definition of 0^ we conclude {0 }̂, is a

non-increasing bounded sequence satisfying

e s e s ... s e s ... s e (6 .2 0)1 • ™

(for more detail see lemma (4.12) and following material in

chapter (4)1. Thus (0 }converges. Let £ ■ 11» 0 ; from (6.20) we
" N
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have

5 S e. ( 6 . 21 )

Lemma (6.13) C s 6 -

Proof Its proof is similar to the proof of lemma (4.13).a



197

(6.5) Approximation of the infimum of the objective function by a 

finite summation of the norms of discrete measures.

In this section we consider that for any fixed Integer L a i  

there exists non-negative Integers K and N such that

KL
10 -  E II v 11 | < e,

k»0

where v , k * 0,1,...,KL, are discrete measures on [0,T] X 3u. We 
k

also show that there exists 5q(0 < Sq < e/5) such that

l e 0 (5)|KNl 0 < e.

where 0 (5 ) * inf E HpJ. 0X1(1 ® P(K,N,L,5 ) is the set of
KLM 0 k«0

all (u.y....,*>.0) where each of v, k » 0,1....,KL, is a0 I Ah *
discrete measure defined on [0,T1 X du such that

kl . .
| E i~l) ) - c | < 5 .

„ n k n n 0k»0

The proofs of the above claims are similar to the proofs of the 

same claims in one-dimensional space, given in section (4.5) of 

Chapter (4).
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(6 .6) Computations for obtaining an approximation for the infimum of 

the objective function and control Functions

In this section we apply the claims of section (6.5), and 

transform the problem into one which consists of minimizing of a 

real linear function defined on R, for some positive integer k, 

over a finite set of linear constraints. Then we construct the 

control functions with the help of the results of chapter (5). 

Finally, the theory is confirmed, by solving numerically one 

problem.

Let n * (Y ;k * 1,2,... >. This set can be chosen as one which is k
dense in (0,T] X A. In practice, however, we choose the set flM

= (Y ;k * 1,2, ...M> c fl, by dividing the appropriate intervals k
into a number of equal subintervals, defining in this way a grid 

of points; thus, in a manner similar to chapter (4) we conclude 

that our problem is to minimize

ic
£ » M
k * 0 k

over Iv .v ....,v ,0) e P(K,N,c) * P(K,N,l,c), which means v 0 1 KL

1 £ ( - n V a i *  ) - c | < c, n - 1 ,2....H.n k n nk >0

Now let v * w* - v*. v* » £ £ kS(t{), i/ » £r*d(t{), where
1*1 1*1

0k a 0, and yk £ 0, for 1 * 1,2, ...,M, k * 0,1,...,K. Therefore, 

our problem is to minimize

z £ ( * ; ♦ » ; )
*0 1*1 J

( 6 . 22 )
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on the subset of R2m<k+1), say S(K,N,M,e), defined by

ßk * 0, and yk a 0, for 1 * 1,2,... ,M, k * 0,1.....K;

K  , V ' !)kX‘(9! • »ijw ' Cn«0 i »1 »■ J
i < e, n a 1,2,... ,N. (6.23)

Now we rename the variables as follows:

....£*) ix1,x2.... xKO)

^ °A ..............«  (>W \ . 3 ........................... X2K.2>
^ N ’̂ «.... ..................................XM(K» 1 >1

or In general ft* » x(<.1)K+k*l* 1 * l»2.... M, k * 0 , 1 .....K. For

simplicity let » HCK+l); we rename the variables

* xj -*-<1-1 itc*k*i* 1 * k * 0,1.... K. Finally from

(6.22) and (6.23) and the above notation we conclude that our 

problem is to minimize

2*(K*1)
2  X .,. 1

on the set S(K,N,M,e), In nZm*n, defined by

(6.24)

x{ k 0, 1 » 1,2,,

K N
I 2  I  i - 1
k«0 t* 1

..,2M(K+1)

)w c | < c, n



200

where n * 1,2, and * M(K+1).

Supposing that this problem has been solved, we intend now to 

obtain numerically the sequence of control functions {u*} j 

* 1,2,... defined in appendix (C.5) of chapter (5). In appendix 

(C.5) we showed that

u*(u,<r) - Z  (-l)kJn f D* p(J(ij - $) + -s))dM CC.s).
1 k»0 J[0.T] X A 1 k

" kLet fiJS.tr) *  Z  where Yj »  (t^s^) e [0,T] X A, i
i ■ 1

= 1,2, therefore we have

u*( 7|, cr)
Kz
k»0

(-i)kjn P(jin - tt) ♦ J(<r -S|))

We consider now an example in two dimensions.

Example (6.1) g(x) * (2/n) sln(x)sin(y) + (2/rt)sin(x)sin(3y), 

(x,y) € u, where u * i(x,y); 0 s x s 1, 0 * y s 1}}. Without loss 

of generality let T » 1. K = 2, M * 100, J * 300, andmi
** R600 so our problem is to minimize

600
Sx,

on the set S(2,100) in R600, defined by

X| x 0 , i * 1 .2.... 600;

2 100

Z  Z  C - l )  V XSi+k.2 *  *  V  n  “  1 * 2 ' 3 * 4 *k»0 1*1
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*  - x  Cl' t )
where \p (t,s) * b (s)e n ; here X, X , ...» are the same as n n i z
those defined in examples in 2 dimensions in chapter 3. Therefore

by the above reference, we conclude that c * c * 1, c * c =0 .
1 4  2 3

Thus the results of computations are: 

cost function * 0.1344E+00

* 0.8421E-01
145

x * 0.4823E-01
446

« 0.1761E-02 450 x. ■ 0.1973E-0340U

with x * 0 , for all other 1 ( I s i s  600).
100

Let pk « Z <*3(Yf). k - 0,1,2 and * 0^ - yj, i = 1,2,..., 100, 
i * 1

k * 0,1,2. Therefore by the one to one correspondence defined

below (6 .22), we have

<4 * 0.08421 » 0.001762 <’9 * -0.04823 * -0.0001973

with all other « 0 .

According to the formula above Example (6.1), the sequence of 

control functions {u*}, is as follows

u * ( t , o-)
j

„ 2 200 t t 
' V T,'r) m * s  f-i> <iD,pt/itT -k*0 1*1

tj.tr - V
* 0.08421pt/j(t - 0.95,s - 0.45) + 0.048230^ (t - 0.85,s

- 0.45)

- 0.001762Djpt/J(t - 0.95,s - 0.45)

- 0.000197D^pVj(t - 0.95,s -0.55), (t,s) € (0,1) X (0,11.

But we showed below Proposition (5.6) of chapter (5), that when 

J -» «, then

10,T) X A
u*(£,s)$ (£,s)d£ds ■* c (t,y )J n n K
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,  - X  (1*s)
where <f> (Ç,s) a b (s)e n .But c (l,y J, Is close to c (l,y) 

n rt n k n

for large K (by definition); also, according to proposition (5.7) 

of chapter (5), c (l,y ), is close to c , n » 1 , 2 , , (for large
n K n

K), where c , n * 1,2,..., are the Fourier coefficients of the 
n

final state function. In this example (for K =» 2) in the desired

final state g(.,.) the coefficients -of the eigen-functions

a(.,.) and a(.,.) are 1. The corresponding computed 1 4
coefficients are 1.00166, 1.0089. Therefore the computed final 

state g'(.,.), corresponding to final state g(.,.), is g'(x,y) 

* 1.00166(2/n)sin(x)sln(y) ♦ 1.0089(2/»r)sin(x)sln(3y). Thus we

have |g' - gl^ ■ 0.00905. (See figures (6.1) and (6.2)).



203
H

CONCLUSIONS AND RECOMANDATIONS FOR FUTURE RESEARCH.A

TV\e .5tV'$esVvC'T\s<~ for- {urtWer work a re  as fellows;

(1) In Chapters 4 and 6 we studied am optimal control problem for the

n-dimensional diffusion equation with a sequence of generalized

control variables. There we defined the objective function J, a
00

function defined on [| /f, as J(jr) » IIjrH = £ llu II, where jr
k - 0  1 k *  0 k

00
* <u , u ....• • •) € f] M. We showed in Chapters 4 and 6 that

k* 0

this is a true extension of the classical control problem which 

consists of finding a control u(.) or u(. ,. ) on [0,T] or on 

da X [0,T] respectively, which minimizes the functionals

Ilu( . ) 1 - i [0, T]
IuCt ) Idt * HullL^O.T)

or

I[u(.,. )] i |u(Ç,t)|dÇdt * Hull
da X 10,T] L(3u X [O.Tir

respectively. The first problem is to choose the objective 

function J, .as a  function of (x,u,t), where x e [0,1] or x € w 

(the region defined in chapter 6 , which is in Rn), u e V (the set 

of admissible controls defined in chapter 6 ) and t € [0,T],

(2) In Chapter 4, we needed to compute functions as follows:

/ , 2 2,k(-1) (n n )
*<n2n2xi-t > 

e , n * 0 ,1,..., and k * 0 ,1,,..,
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where t{ * (21 - l)/20; 1 * 1,2,..., 10, for large values of k and 

n. It Is apparent that when n Is chosen large, then the absolute 

value of the above functions are very small, even less than 10 78 

which Is the limitation Imposed by the word-size of the computer; 

all of such numbers are then treated as zero. This causes 

ill-conditioning in the matrix that we use In the revised simplex 

method (see for example Cass (1], p.96). So It seems that It Is 

an open problem to find a way to overcome this difficulty despite 

the limitation of the computer.

(3) In Chapters 2 and 6 we assumed the boundary of the defined 

open set u c Rn, is differentiable or du e C1. so the third 

problem could be to assume there are lnflntely many points on 3w 

where 3w is not differentiable.

(4) In Chapters 2, 5 and 6 we considered the n-dimentional linear 

diffusion equation. The fourth problem could be to consider the 

following linear diffusion equation with variable coefficients:

a(x) Y ♦ b(x) Y + c(x) Y * Y 
xx x t

where Y ■ Y(x,t); (x,t) e u X [0,TJ, and a, b, c Eire continuous 

functions on u. We can assume the same boundary conditions as in 

Chapter 2 and define the set of admissible controls and the 

objective functional as in Chapter 2.
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In lemma (6.8 ) we assumed that for a fixed positive integer N
n - 1 t  i

there exists at least one s. « A » [0,T1 X ... X (0,T1. such that0
A

bj(s0) # 0, for J « 1,2,...,N. In this appendix we intend to 

obtain conditions which guarantee the existence of sQ.

Let

Appendix (A.6)

Bj * {s € Ajb^s) =0}, J ■ 1,2,....N

Indeed, B is the set of all solutions of the equation b (s) = 0 
* n n ^

on A. It is apparent that U B. c A, but if U B * A, then the
j-1 J j-1 j

M N
set A - U B * so there exists at least one s e A - U B ; 

J-1 J j-1 J
that is, sQ e A and sQ < B̂ , for J =* 1,2, ...,N, or by definition

of Bj( bj(sfl) * 0, J * 1,2....N. If all Bjt j « 1,2.....N, are

countable sets, then, that is a sufficient condition for the
m

existence o f s , since i f  i t  happens then U B , is  countable,
j-1 J

N H
thus A - U B , is uncountable so there exists s « A -  U  B ,

J-1 j-1 1
Another equivalent condition to the above sufficient condition is

that the sets B' * {x e 8u>\ b.(x) = 0} be countable; here b.(x) J J i
* Sa^xJ/dv, J * 1,2,... and v is the outward normal to du (for 

more detail see the beglning of chapter (2 )).
A

Note By definition, b^(s) * (b^oxHs), where x * x(s)

* (£ ( s ) , ...,£ ( s ) ) ,  s € A, is  the param etric  equation  o f 8u.1 ftA
Thus b^(s) * 0, for some s € A, if and only if b^(x) * 0, for 

some x € 5<J.

In the following we show that if w is an open interval in Rn (for 

definition see RUDIN ill p.229) then the sets J ■ 1,2,... ,N, 

defined above, are countable, which guarantee the existence of
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‘ s € A.0
Example ;Let

w » {x = « y ... ,£n) € Rn; 0 < C, < af, i - 1,2.... n>, (A6 . 1)

k kand let { (m....■ )} . , , be a given sequence in Rn, whereI n **1|2|•••
the 1 * 1,2 , ...,n are strictly increasing sequences

of integers such that

E  (m|)2(n2/a2J > 1; (A6.2)
i»1

here a * max{ai....a^. Let 1̂  * n/ajt i » 1,2, ...,n,. Now we

compute the sequence of eigenvalues {Aj, as follows:

A « E  (nh)2l? * £ (njj)2[n2/a2]. (A6.3>
f«1 ! - 1  ’

By definition of ny we have

A * E  (nr*Vln2/a2] > E  (mj)2[n2/a2] * A ,
k«-1 . , i i . . I 1 k

i »1 i *1

since the sequences Mjf 1 * 1,2,...,N, are strictly increasing,
2 2By definition of a we conclude 0 < a{ s a , 1 * l,2,...,n, so we 

have

E  (nh)2lit2/a2) * E  (m*)2U 2/a2}, (AS.4)
( • 1  i » i

Thus by using (AS.3) and (A6.4), for k ■ 1,2,... we have
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1-1 ’
(A6.5)

From (A6.5) and (A6.2)

Ak > 1, k * 1,2

Therefore we conclude that the sequence {A } satisfies the

following condition

1 < A <A < ... < A < ...1 2 k (AS.6 )

We define now the sequence of eigenfunctions. Let x

* (£....,£ ), and let1 n

afc(x) * n sinfm^l^), k * 1 , 2....
\ » 1

therefore we have

or aVixî/açJ * -Cm* 1 ) 2 a (x). Therefore we have
K J J j K
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Aa (x) 
k Z 3 2SL (x)/d£2 « z -Cm* l . ) 2 a (x) 

J»1 j j«1 J 1
(A6.7)

By using (A6.3) we can write CAB.7) in the following form

Aak(x) * -Ak ak(x), k * 1,2,... , x e w. (A6 .8 )

Now we are going to solve the equation ak(x) =* 0, x € 8u. Let x 

* ) e thus by definition of 3u, x is in one of thei n
following two forms

U) x • (C,.................. Cn);

(11) X *  ‘

We show a (x) “ 0, x 6 du> . But for x =* ) we havek I n

a (x) = n sin(» 1 $ ) , k * 1,2,...
i * 1 *

Thus in case (i) it is apparent that

a* ^ r  * * * *  * *’^  * °*

In case (ii) we have

* * * * aj* * "  * V J| sln(m*l £ jlsinCm1 
i»1 ’ 1 J J li V ’

but we defined 1  ̂» */a^, so we have
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sin(ml‘ 1 a,) * sln[m*(n/a,) a.] * sinim* n), J i j J J J i

but sinim* n) * 0 , because m* is an integer, thus

€ ) * 0 .n

Therefore

afc(x) * 0 , x € dm. ( A 6 . 9 )

From (A6.8 ) and (A6.9) we conclude that the sequence {afc(x)> is a 

sequence of eigenfunctions of the Laplacian operator A, 

corresponding to the sequence of eigenvalues (Ak>, where

» 0>, are countable (Indeed they are finite). By definition of

where x * <= dm, and v * (i>,... ,i> ), the outwardI n  i n
normal to dm. Since u is an interval in Rn, then at any point on

its boundary there is some j, j * 1 , 2.... n, where v̂  * +1 or

* -1 and for other i * J, v{ * 0. Thus without loss of generality 

let Vj * 1; thus

Now in the following we show that the sets B' ■ (x e dm; b,{x)

n
b.(x), k * 1,2 k # • * • * we have b (x) » 8bA x)/8v « Z 13a (x)/3£ ]i>

 ̂ 4 » »1 *1

b (x) k - Z i3ak(x)/a?j]vi * 3ak
n



210

Therefore b^ix) * 0 If and only If

[ IT !sin(»Jl(Cf)](■*[ l^cosCiJ l} 
i*J

* 0 , (AS.10)

but for any k, k » 1,2,... ,N, (where N is an arbitrary but fixed 

Integer) the number of solutions of the equations (A6.10) is

finite, since 0 s ^  s s a, for 1 * 1,2.... n. Thus the sets

B' = (x 6 flu; bj(x) =0), j = 1,2,...,N, are countable.a
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FIG. B.l DESIRED FINAL STATE FOR EXAMPLE 6.1

FIG. 6.2 COMPUTED FINAL STATE FOR EXAMPLE 6.1
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