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ABSTRACT

This thesis is concerned with theoretical studies in two areas
‘related to the noise of modern turbofan aeroengines. In the first
case, we are concerned with the propagation of internally generated
sound though the propulsion nozzle to the farfield, including the
effects of diffraction by the jet pipe, refraction and Doppler
amplificaticn by the mean flow and the exchange of energy bgtween
acoustic and hydrcdynamic modes at the nozzle lip, Both low and high
frequencies aré discussed. In the low frequency case, the essential
aim is the derivation of simple analytical expressions and their
interpretation in the context of various forms of acoustic analogy,
and the analysis is continued to seccnd order in a frequency parameter
or Helmholtz number, giving predictions of the farfield directivity
and of the magnitude of reflected waves in excellent agreement with
experiments, and yet expressible in simple analytical fashion., An
essential element of the solution of these problems is the satis-
faction of a Kutta condition at the nozzle lip. In the high frequency
case, two approximate theories are formulated, and compared with each
other and with exéct solutions, The theories we handle are Kirchhoff's
approximation and the geometric theory of diffraction. The aim is
again to provide a theoretical framework in which as many effects as
possible can be handled in a rational manner.

The final two chapters are concerned with a particular aspect
of compressor noise -~ the buzzsaw field generated by blading non-
uniformities. This fiéld is determined by the variation of shock
strength of a non-uniform cascade., This is achieved by a combination

of analysis of the detached shock waves ahead of a non-uniform
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cascade and a linear examination of the ocutflow from the cascade
showing this to depend on area alone, at typical operating conditions,
The upshot is a relation between the pressure rise across the shock
wave ahead of the nth and (n -~ 1)th blades., This relation is in
significantly better agreement with experiment than relations using
attached shock waves, and provides a theoretical basis for blade
shuffling proccedures designed to alleviate buzzsaw noise,

The aim throughout the thesis is to take the calculations as
far as is possible and sensible by purely analytical means and to

provide simple physical insight into the mechanisms involved.
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CHAPTER 1

INTRODUCTION



INTRODUCTION

The noise of a modern aero-engine is made up of contributions
from a large number of different sources. The chief among these are
jet mixing noise, internally generated combustion associated noise,
turbine noise and fan noise, This thesis addresses itself to two
problems that are of importance in the generation and propagation
of this noise. They are the propagation of internally generated
sound out of the propulsion nozzle and the generation of sound by a
supersonic fan., The aim throughout is to take the calculations as
far as is feasible and sensible by purely analytical means, and to
provide simple physical insight into the mechanisms involved. The
purpose of this introduction is to set the work described in the
main part of the thesis in some sort of context with respect to both
the noise of modern aero-engines and the academic confines of the
subject of aercacoustics,

We begin by discussing the relevance of the work presented
here to a modern aero-engine, showing how this differs from that of
early engines, for which only jet noise was important, We then
discuss the features of the interaction of sound with a vortex sheet
such as will exist behind any sharp edge in a mean flow, Examples
of such edges lie in the nozzle 1lip in the jetpipe problems dis-
cussed here, and in the trailing edges of turbomachinery blading.
There follows a description of some of the important aspects of
supersonic compressor performance, and also of the interaction of
sound with a cascade, Finally, we list other work done under this
Science HKesearch Council Industrial Studentship, but which is not

included in this thesis.

When the first jet engines appeared, their noise signature was

dominated by sound of the jet mixing with its environment. This was



first explained by Lighthill (1952, 1954), who showed the jet tb

be acoustically equivalent to a distribution of quadrupole sources
and thence, by using simple scaling laws for the turbulence intensity
and its associated length and time scales, derived his famous eighth
power law, This asserted that the noise increased wi%h the eighth
power of the jet velocity, and showed that the most direct way to
reduce jet noise was 1o use engines with a lower jet velocity. When
engines with lower jet velocities went into service (initially the
low bypass ratic engines like the Rolls-Royce Spey and Conway, and
Pratt and Whitney JT3D and JT8D, and later the high bypass RB211,
JT9D and CF6), it was found that the jet noise had not been reduced by
as large a margin as had been expected. Usually the jet noise is
found to vary more nearly as the sixth power of the jet velocity.

A useful survey of these differences between engines and model jets
was given by Bushell (1971). Collating data from a great number of
different sources, he showed that cold model jets did indeed follow
a 8 law, but that hot jets were noisier than this at low jet velo-
cities. This difference has become known as the "excess noise"
problem. Iﬁ can be split conveniently into two parts: the increase
in noise in going from a cold to a hot jet, and the difference
between the noise of a hot model jet and that of an engine.
Considering these in turn, it seems to be generally accepted that the
low Mach number noise of a hot jet does scale on a sixth power law,
this being caused by the scattering of "pseudo-sound" or turbulence
pressure fluctuations, by density gradients., This was first demons-
trated in the context of aerodynamic sound by Morfey (1973).

Besides this, there is also a much weaker monopole component, scaling
as the fourth pover of jet velocity, but this can be shown to be small

(Kempton, 1976), depending on the variation of the specific heats of

the exhaust gzses with temperature.



On an engine, a great many other sources have now been disc-
overed which can increase the level of "jet-noise", The first and
probably most important of these is combustion noise. Certainly,
tests on isolated combustors produce levels which are comparable to
those measured on engines (Mathews and kekos, 1976) ani the major
component of the excess noise, with around S500Hz peak freguency on
the larger engines, appears to correlate well with combustion
parameters., As a result of the combustion process a turbulent flow
of non-uniform temperature is produced; This can generate noise as
it passes through any pressure drop, examples of which are the
turbine rotor and stator blade rows (Pickett, 1974, Cumpsty & Marble,
1974), and the final nozzle (e.g. Ffowcs Williams & Howe, 1975). It
remains unclear, though, how important such indirect combustion noise

is, although Cumpsty (1975) has shown that theoretical predictions

of its levels are consistent with observations on engines.

Other internal noise sources that may be important are the
radiation of sound when the flow separates off the exhaust struis
(e.g. Bryce & Stevens, 1975) causing them to radiate as dipole sources
in the manner first described by Curle (1955), and the convection of
turbulence past the nozzle lip. While this latter source was once
thought to be important, this now seems unlikely, on account of the
discovery that no sound is radiated from turbulence convected with
the mean flow, when a Kutta condition is satisfied at the trailing
edge, Howe (1976). We shall return to the issue of ths Kutta
condition later on in this introduction, and discuss that noise
generatién mechanism in Chapter 2 of this thesis.

Outside the nozzle, the jet noise may be further increased by
so-called "jet noise amplification" (e.g. Moore, 1977, Bechert &
Pfizenmaier, 1975). In this mechanism, the internal noise propa-

gating down the Jetpipe interacts with the nozzle 1lip to produce



an instability wave in the jet which grows downstream, and causes
the level of turbulence and hence of broadband jet noise to be
artifically increased. The detailed mechanism by which energy is
transferred to the instability wave will be discussed at length in
Chapter 2 of this thesis,

Another mechanism that can increase jet noise in {light is
what has come to be known as "installation effects" (see Bryce, 1979,
for a general summary and Southern, 1980, for detailed experimental
results). These are of two sorts, the first, important in flight,
is that aerodynamic disturbances, such as wakes and the nacelle
voundary layer, may distort thes jet flow and raise the Jjet noise,

The second, is that internally generated noise may be reflected or
scattered by the aircraft control surfaces to give an enhanced
level of low frequency noise. This level, which is small in rela-
tion to the jet noise statically, may be important in flight when
the jet noise is reduced by the external flow,

In any event, it is now generally accepted that low frequency
excess noise (other than the hot jet noise referred to above) is
the result of some internal noise source. Now, any internal noise
source must produce propagating sound waves that interact with the
propagation nozzle in some way, It is this interacticn that forms
the subject of the first two chapters of this thesis.

Thus far, we have described the sources of low frequency noise.
we now come to the high frequency noise, generated by turbomachinery.
The most important element of this is fan noise, followed by turbine
noise., The latter, which we shall discuss first, is not well under-
stood. This is largely the result of the large number of stages
that are important to the generation mechanism, and also the relat-
ively small amount of research devoted to it as a result of its'
lesser importance. We only remark here that, like other internal

. noise fields, the noise of the turbine has to propagate out of the



jetpipe.

This topic of high as opposed to low frequency propagatiocn férms
the subject of the next chapter of the thesis. As compared with low
frequency propagaticn, we find that the application of the Kutta
condition bhas less bearing on the radiated.sound fieid, and the
latter has the same character as it has in the absence of a mean
flow, but modified by refraction, according to the rules of ray
theory.

The main source of high frequency noise on a modern high by~
pass aero-engine, the fan noise, may be split into a number of
different components. The first of these is the noise directly
associated with the pressure field of the fén (steady in rotor co-
ordinates) and is only significant when the fan rotates at supersonic
speeds so that the flow field ahead of the fan is composed of shock
waves which propagate non-linearly (Hawkings, 1971) away from the
fan face, At first sight, this would be expected to give rise
to a field whose spectrum consists of tones at multiples of the
bladé passing fregquency only. However, in practice the blades are
not identical, so that the shock waves have different strengths from
plade to blade, and thus prcpagate at different speeds, The result
of this is that the wave-form is distorted and the initial period-
icity is lost, so that its spectrum now contains all the harmonics
of the fan rotational frequency. This gives the characteristic
sound of buzzsaw noise. On modern engines, it is only significant
at the take-off condition, and even there is not terribly important.
Besides being radiated into the air outside the aircraft, however,
buzzsaw noise can also be an important source of cabin noise, It is
this aspect with whicﬁ the last two chapters of the thesis are

concerned.



The other sources of tone noise on aero-engines are termed
usually "distortion tones" and "interaction tones". The former is
caused mainly by ingested turbulence interacting with the fan, and
is most important statically; when the airecraft is in flight, the
ingested turbulence is relatively negligible, this soﬁrce is no
longer important (see e.g. Cumpsty & Loxrie, 1973) and interaction
tones dominate, These interaction tones are predominantly due to
the wakes of the rotor blades impinging on the downstream stators,
causing unsteady loading on the stator vanes, and hence sound
radiation. The sound radiation is organised into a set of ecircum-
ferential modes (Tyler & Sofrin, 1962) and may be controlled by
choosing the blade and vane numbers so that the induct sound field
associated with these modes is axially decaying. Pinally, the fan
is also a substantial source of broadband noise (Ginder & Newby, 1976),
which is highly sensitive to fan aerodynamic loading.

To summarise the situation as regards the importance of the
various noise sources, we have reproduced two figures from Barry
(1979), showing the breakdown of the noise of an RB211-524 engine at
take-off and approach conditions, in terms of the subjectively
important Perceived Noise Decibel (PNAB) units. At take-off thrust
conditions, Fig. 1, the forward radiated fan noise and the jet noise
are the most important noise sources, while at approach thrust, Fig.
2, the jet noise is relatively negligible, lower even than the self-
noise of the airframe., It should be pointed out, though, that the
relative levels of these sources are still controversial, 1In
particular, thcbinternally generated combustion or "core'" noise is
often thought to be more important than shown here, especially when
evidence from source location procedures, such as the polar corre-
lation technique (Fisher, Glegg & Harper-Bourne, 1975) and its

devebpments (Fisher & Tester, 1981) are taken into account.



In the following pages, we discuss some of the issues that
are central to the modellings contained in subsequent chapters of
the thesis, The first of these is the interaction of sound with
vortex sheets and trailing edges. The importance of these lies in
the fact that trailing edges and vortex sheets occur~in all the
interaction problems in this thesis, both at the lip of the pro-
- pulsion nozzle, and the ensuing jet shear layer (which may be ﬁrea-
ted as a vortex sheet) and also at the trailing edges of compressor
blades.

As befits such a fundamental problem, the interaction of sound
with a vortex sheet has a long history. Yet it was not until 1957
that Miles (1957) and Ribner (1957) gave the correct solution for
the interaction of plane acoustic waves with a vortex sheet, earlier
treatments having been in error as a result of using the wrong
boundary conditions on the vortex sheet (i.e. conservation of velocity
not sheet displacement). In considering the transmission of harmonic
plane waves across a vortex sheet, one complete bypasses the issue
of causalitj and of possible instabilities. It has long been known,
of course, that a vortex sheet is unstable (Helmholtz, 1868, Kelvin,
1871) to small perturbations., These instabilities would be expected
to arise if the vortex sheet were impulsively excited. The first
attempt at treating a source near a vortex sheet was that of
Gottlieb (1960). He was, however, only concerned with harmonic
sources and his solutions only demonstrated the effects of refraction
by the mean flow, important in pure jet noise studies. The time
causal problem, with impulsive excitation, was first solved by
Friedland & Pierce (1969) and later by Howe (1970). They showed
that when a sound pulse interacted with a vortex sheet, in addition
to the usual reflected and transmitted sound waves, the vortex sheet

became unstable, the instability being convected by the mean flow.



The causal time harmonic problem was solved by Jones & Morgan (1972).
They showed that the field of the instability waves was contained
within a wedge-shaped region close to the vortex sheet, aand that the
form of the waves for an impulsive source was highly singular so
that the mathematical theory of ultra-distributions (delta functions
of complex argument) had to be usad.

In practice, of courses, the idealisation of the shear layer
as a vortex éheet is not really valid, and other models must some-
times be used, Ior example, one can idealise the shear layer as a
laminar flow of continuously variable mean velocity. Then it is
found that amplifying instability waves only appear for wavelengths
greater than a certain limit, While it might be thought that this
thick shear layer result would contain all the significant effects,
this is not the case, for three reasons, First, the shear layer
grows downstream so that it cannot be idealised as a parallel mean
flow, as is usually done; some account must be taken of the ihcrease
in width of the shear layer downstream for that eventually causes
the instability waves to reach a location at which they cease to
amplify and thereafter decay. Second, any instability wave will not,
in practice, grow linearly; when it reaches a significant amplitude,
so that the velocity perturbations are a significant fraction of the
mean, non-linear effects will become important. In the case of a
thin vortex layer, this corresponds physically to the point at which
the vortex layer starts to roll up, and the displacement of the
vortex sheet from its unverturbed position is not small. lastly,
from the point of view of sound propagating through the shear layer,
it may not be relevant té treat the vortex sheet as a perturbed
steady flow. This has been discussed in the context of jet noise by
Crighton (1979), who shows that if the jet flow varies on a time
scale less than the time taken for a sound wave to cross it, it can

never be regarded as steady, and the problem might best be handled

O



by considering the prépagation of sound through an ensemble of
possible jet states,

- Having discussed the interaction of sound with an infinite
vortex sheet, we now go on to discuss what is more important for
this thesis, the interaction of sound with a semi-infinite vortex
sheet. This has numerous applications in the whole field of aero=-
acoustics, and unsteady aerodynamics. In particular, we are inter-
ested in two cases, that where there are two different flows on
either side of the vortex sheet, as in, for example, the lip of a
Jjet pipe, and that where the two flows are the same, as in the
trailing edge of the wing or compressor blade. In either case, a
critical issue is what sort of condition should be imposed af the
trailing edge of the splitter plate dividing the two flows, In the
steady aerodynamics of incompressible flows, it has long been con-
ventional to assume that there will be a Kutta condition: i,e.,
that the fluid leaves the trailing edge tangential to it., This is

necessary for two reasons. First, if there were no Kutta condition

10

the fluid would have an infinite velocity at the edge, and this would

cause violent shedding of vorticity and flow separation, Second,
without the application of trailing edge condition, the flow would
be non-unique: a flow with any value of the circulation about the

aerofoil would obey all the equations and boundary conditions (see,

e.g., Batchelor, 1967), Wwhen the unsteady problems, such as the flow

about an oscillating aerofoil were first studies (e.g. Theodorsen,
1935), it was natural to apply such a condition., The consequence of
a Kutta condition in unsteady flow is that vorticity is now shed
periodically at the trailing edge, to keep constant the circulation
of the complete system, as required by Kelvin's theorem (see, Caey
Batchelor)., This appears to provide a satisfactory mathematical

solution to the problem, at least as long as the shear layer and
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the boundary layer on the splitter plate are thin. When this is
not the case, the situation is more complicated as will be shown
below.

vWhen the velocities on either side of the splitter plate are
different there is more scope for different approachés to the trail-
ing edge problem. Orszag & Crow (1970) discussed this problem and
defined three sorts of edge condition; the full Xutta condition, in
which the flow leaves the plate with zero gradient, a rectified
Kutta condition in which the flow leaves either with zero gradient,
or directed into the moving fluid, and the case where there is no
Kutta condition at all, implying infinite velocities. A feature of
these solutions is that there is usually (except for one special
case) an unstable vortex layer downstream, which grows, at least in
the linearised thin vortex sheet model, as it travels downstreanm.
This means that any solution containing the instability will be un-
bounded and special care must be taken of this in the mathematics.
One can either assume that the solution is initially bounded, giving
no unstable wave but also no Kutta condition, and then add on the
part of the solution containing the unbounded instability wave later,
or one can solve a complete causal problem in which the solution is
only required to be causal, and may or may not be bounded. Which of
these is more appropriate is open to doubt. One might at first
think that causality was essential to the problem, an& this is the
approach adopted by Morgan (1974) and by Crighton & Leppington (1974).
In their soluticns, they found that the causal solution consisted of
ordinary acoustic waves, reflected off the plate and reflected and
transmitted through the vortex sheet, and also instability wave
compohents which grow downstream. In this causal solution one has
the option of satisfying a Kutta condition or not, Only in the

former case is the velocity non-singular at the trailing edge.,
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Another point of view is that of Dowling, Ffowes Williams & Goldstein
(1978), who argue that in any turbulent flow, the question of
causality is irrelevant, since the flow is dectermined by its own past
history. This point is taken up in the context of these vortex sheet/
plate problems by Rienstra (1972). From the above discussion it
should be clear that the Kutta condition is crucial to the response of
a trailing edge to a disturbance, but that this Aoes not necessarily
have anything to do with the causality issue (although it may have
ramifications as regards boundedness).

One now asks the question: does the real flow obey a Kutta
condition? The answer to this appears to be that it does, at least
at low frequencies. Crow & Champagne (1971) were the first to study
this problem in the context of a jet. They applied a measure of
unsteady forcing to the jet flow and observed that a definite coherent
structure was formed in the jet. This corresponds to the instability
waves predicted by theory and is responsible for the increases in the
broadband noise of the jet with internal forcing observed by Moore
(1977) and Bechert & Pfizenmaier (1975a). Thus it is clear that the
instability waves are produced, consistent with a Kutta condition,
Further evidence of the satisfaction of a Kutta condition was pro-
vided by Bechert & Pfizenmaier's (1975b) measurements of the actual
behaviour at the edge of the shear layer., When interpreted correctly
(see Crighton, 1981) these measurements are indeed consistent with
the Kutta condition.

This far, we have only discussed the question of a semi-infinite
vortex sheet., In practice the splitter plate ¢r nozzle will have a
boundary layer. The simplest way of accounting for a boundary layer
is to assume that the mean flow, while still unilirectional, will vary
with distance from the plate, and to then consider perturbations of

that flow. This has been done by Goldstein (1979) who showed that
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non-zero boundary layer thickness had little effect on the basic
physical phenomena. While this solution referred specifically to a
splitter plate one could equally well apply his ideas to 2 nozzle.
Then, the major change is that the instability waves are not those
of a plug flow Jjet but of a Jet with continuously vafiable velocity
(see Michalke, 1971).

In reality, of course, the comments made earlier about the
infinite shear layer, with regard to non-linearity, spatial spreading,
and unsteadiness, apply equally well to the semi~-infinite shear
layer, and we will discuss them no further. Ia any event, it appears
unlikely that these effects have any bearing on the interaction of
unsteady flows with the irailing edge. 1In the thin vortex layer
models we are still left with the ambiguity at the edge. This can
be resolved at least for laminar flow, by the use of the triple deck
type of solution (see, €.8., Daniels, 1978). In these, the flow
around the edge is split up into several different regions, the solu-
tions in which are obtained separately and matched together. From
this this it appears that except when the unsteady flow is of very
low amplitude, the flow outside the boundary layer does obey a Kutta
condition in the parameter ranges where the theory applies, The
acoustical implications of this theory have been discussed by Rienstra
(1979) and more recently by Cfighton (1981) who shows it to be wholly
consistent with Bechert and Pfizenmaier's (1975b) experiments.,

In these nozzle/vortex sheet problems it is always the case
that only the simplest geometries can bte handled analytically, for
example, a cylindrical pipe and top~hat profile jet. Even this
analytical solution becomes very cumbersome at high frequencies
where many duct modes are propagating. In this regime other
approximate methods are appropriate, as explained in the chapter
on the propagation of high frequency sound out Qf a Jetpipe, The

oldest approximate method is that based on Kirchhoff's theorem,
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in which the solution to the governing wave equation is expressed
in terms of the fields on the surfaces bounding the sound field,
This is related to the classical theory of pistons in baffle
plates dating back to Rayleigh (1896). We use that Kirchhoff
theory to determine the radiatiocn from a pipe, when é mean [low is
present., A more accurate method is the geometric theory of diffrac-
tion (see e.g. Keller, 1957 & 1962). In this, the solution to a
high frequency diffraction problem is shown to be made up of two
parts: the geometric acoustics field neglecting scattering, and
the fields diffracted by any edges and corners. The essence of the
theory is that it is only necessary to treat diffraction on a local
basis, so that the diffracted fields may be calculated using the
theory of plane wave diffraction. After diffraction, any acoustic
waves are assumed to propagate according to ray theory. Applications
of this geometric theory of diffraction to aero-acoustics are
discussed by Jones (1976) and Broadbent (1976) who show it to be
inherently more accurate than the Kirchhoff solution, Fortunately
the difference between the two is negligible at the peak angle of
radiation, in these duct radiation problems. The geohetric theory
of diffraction is extensively used in optics and other electromag-
netic wave propagation problems.,

We turn now to the other main topic of the thesis, dealing with
a cascade of non-uniformly staggered supersonic compressor blades,
having detached shock waves. Aero-engine fans are usually designed
so that they have supersonic tip speeds at the design condition.
This means that a system of shock waves exists ahead of the fan over
a considerable portion of the flight envelope, in fact everywhere
but at the approach condition. The basic aerodynamic features of
these fans are described in a recent review article by Kerrebrock
(1981). Wwe concentrate on the details of the shock waves., Typical

flow patterns in the tip section of a fan are shown in Fig, 3 from



Punker & Hungenburg (1980). The measurements were made using a
1asef anemometer. Three conditions are shown, representing different
blade lcading. When the blade is lightly loaded, the shock waves
ahead of the blades are attached to the leading edges, and there is a
complicated shock system in the passage. At the maximum efficiency
conditicn, the shock waves are just detached and the in-passage shock
stronger. When the fan aﬁproaches its highest loading (just below
surge) the shock waves have beccme ceompletely detached from the blade
leading edges, and the passage shock is now strong, dividing subsonic
and supersonic flows. This is most similar to the fan flow we model
in the last two chapters of this thesis.

As we noted above, in practice the blades are non=-uniformly
staggered as a result of manufacturing tolerances. 'Thus, the shock
wave strengths differ from blade to blade, so that they propagate
forward at different speeds. This non-linear propagation can be
handled by weak shock wave theory (see Whitham, 1974) as described
by Hawkings (1981), and results in a distortion of the waveform seen
in the fan duct, with the appearance of engine order tones, and the
rapid decay of the harmonic of the blade vassing freqﬁency. In the
past, the initial amplitude of the blades have been calculated on
the basis that they are attached to the blade leading edges (e.g.
Fink, 1971). But at the conditions of most interest this is
cértainly not the case, and as shown by Stratford and Newby (1976),
that results in a quite different dependence of the flow on the
blading parameters. When the flow is attached, the shock wave
strengihs only depend on the angles of the fore part of the blades,
but when they are detached, the shock strength depends on the spillage
of air around the leading edge of the blade which is governed by the

mass flow at the exit of the cascade,



In this thesis we produce a model for the flow field in such
a compressor with non-uniform blading, showing it to produce reéults
in acceptable agreement with experiment, A kKey feature of the
analysis is a calculation of mass flow out of the cascade. We show
that when the flow is steady and the blade to blade aifferences
small, the flows out of the individual blade passages depend on their
area alone, The theoretical method we use to tackle this is the
Wiener-Hopf technique (Noble, 1958), a method that we have also used
in the Jetpipe problems earlier in the thesis., It has also been
used in other analyses of the unsteady flow in turbomachinery (e.g.,
Koch, 1971, Mani & Horvay, 1970, and Goldstein et al, 1977). Of these,
the Goldstein paper, which is concerned with flutter, is the most
relevant., They considered a fan with a supersonic entry flow separ-
ated from the subsonic exit flow by a strong shock wave. The blades
are perturbed from their initial positions, in a similar manner to
that used here, but the flow is unsteady. In addition to the probleﬁ
examined in this thesis the concert of calculating the exit and entry
flows to the cascade separately and then matching them together has
more general application to turbomachinery noise (sée below),

Besides the topics described in detail in subsequent chapters

of this thesis, a number of other topics have been sudied during the
period of the Science Research Council Industrial Studentship, We
now list thesé, giving a brief description of the work done in each
case, _

(1)  Some existing work (Cargill & Duponchel, 1977) on the
acoustics of inverted velocity profile coannular jets
has been written up and accepted for publication in the
Journal of Sound and Vibraticn, (to anpear provisionally
in Volume 78, No. 3). This work was concerned with the

claimed advantages of inverted velocity profile jets in



(2)

(3)
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an advanced supersonic transport aircraft. It showed

that the benefits were considerably less than had been
claimed as a result of various American research progr-
ammes,

Work has begun on examination of ways of.improving the
resolution of source location schemes (e.g. Polar
Correlation, Fisher et al, 1977) currently used on aero-
engines, This resolution was thought to be limited to
around a wavelength, but studies drawing on experience

in such fields as spectral analysis, geovhysics and radio-
astronomy, mostly using the maximum entropy method, have
shown that the resolution is, in fact, only limited by

the 'noise' in the system. The first stage of the work
was a review of the available methods of resolution
enhancement, and formed the subject of a presentation to
the 1980 British Theoretical Mechanics Colloquium, and

in shortened form to the Rolls~Hoyce Noise Panel. The
second stage of the work will involve a trial of the

best of the methods using simulated data, It is intended
that on completion of this work it will be written up and
submitted to the Journal of Sound and Vibration for
publication,

The first draft of a comprehensive critical review of aero-
engine turbomachinery noiée has been written, This review
had two main objectives; to guide future Rolls-Royce work
on turbomachinery noise and toc provide an up-to-date
review of the state of aero-engine turbomachinery noise,
highlighting weaknesses in theoretical and experimental
knowledge. It is intended to publish the review in

Progress in Aerospace Sciences, with whom it is currently



(4)

(5)

14

under review. Some of the work has alsc been vresented

to the Xolls-itoyce Noise Fanel.

A substantial amount of work has been put in to lay the
groundwerk for a new attack on the problem of the
generation of scund by turbomachinery. fhis has involved
thecretical studies of the generation of sound in

retating flows and a new method of calculating the sound
emitted from a cascade has been devised. This has invo-
lved solving for the cascade outlet and inlet flows,

using the Wiener-Hopf technique, the twc flows being
matched together using slowly-varying duct theory. This
allows the effect of blade loading to be accounted for in
an elementary manner, Some three-dimensional effects are
allowed for by allowing the blades to have a non-zero
span, thus making the model quasi-three-dimensional,

This, we argue, is the best method of treating the problem
at the moment, All the available analytical methods
involve unloaded blades, or complex numerical procedures
thét are not feasible at hich frequencies. We maintain
th2{ in a practical turbomachine the effects of loading
can never be completely ignored acoustically, as to do

so would result in the wrong types of waves propagating
at infinity and the erroneous predictions of acoustic cut-
off. It is hoped that this method will be programmed in
due course and will eventually be written for publication.
Some work has teen done to assist with the existing
Rolls~Royce fan noise source location programme, This
involved experimental work using a multiple microphone
array and theoretical studies. It is described in an

ATAA paper (Cargill 1980a). The work was instrumental
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in highlighting a number of fundamental shortcomings
in the technique,

(6) Some work has keen done, aimed at understanding further
the features of scattering by unsteady jet flows. 'This
built on the work of Howe (1976b) and waé presented in
preliminary form in an AIAA paper (Cargill 1980b). ‘The
material in that paper also forms the basis for the work
presented in Chapter 4 of this thesis and shows how
energy is scattered into different frequencies by the
unsteady flow so that tones are spectrally broadened, It
is intended that this work will eventually be written up
for publication.

(7) A limited amount of work has also been done to support
other Rolls-Royce work on modelling installation effects,
applying the geometric theory of diffraction ideas set
out in Chapter 4. It is complementary to the experimental

work described by Southern (1980).

In addition we note that, of the work in this thesis, the
Chapter 2 has been accepted for publication in somewhat abbreviated
form by the Journal of Fluid Mechanics, and appeared in summary form
at the Conference on the Mechanics of Sound in Flows held in
G#ttingen in 1979 (Cargill, 1979). The two noisé propagation papers
have been submitted to the Journal of Sound and Vibration and the

two fan noise papers to the Journal of Aircraft.
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LOW_FREQUENCY SOUND RADIATION AND GENERATION DUE TO_THE

INTERACTION OF UNSTEADY FLOW WITH A JET PIPE

ABSTRACT

In this chapter we examine the low frequency sound radiated
when various types of unsteady flow interact with g jet pipe. In
each case we solve the problem exactly by the Wiener-Hopf
technique, producing results'valid for arbitraery internal and
external Mach numbers and temperatures, discuss the importance of
a Kutta condition at the duct exit and provide an interpretation
in elementary terms of the radiated sound field using the Lighthill
acoustic analogy.

When low frequency sound propagates down the jet pipe, little
of it reaches the farfield and the major disturbance outside the
pipe is that associated with the jet instability waves. At subsonic
jet speeds and low enough Strouhal number these waves transport
kinetic energy at a rate precisely balancing the loss of acoustic
energy from the pipe, resulting in a net attenuation of the sound
power. For supersonic jet conditions & further wave motion, the
unsteady flow counterpart of the steady wave structure of an
imperfectly expanded jet, is present in addition to the instability
wave. We use the Lighthill acoustic analogy to show that for high
enough jet Mach number and temperature, the sound radiation is
largely caused by quadrupole sources arising from the jet instabil-
ity waves. An alternative interpretation uses the acoustic

analogy incorporating a mean flow due to Dowling, Ffowes Williams
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and Goldstein and expresses the farfield sound as the sum of
contributions from monopoles and dipoles distributed over the
duct exit. The directivity and power of the calculated farfield
sound are in good agreement with experiments.

We also calculate the sound scattered by the jet pipe when
there is an incident external sound field, and show & previously
published result to be in error. In general, the flow phenomena
produced by internal and external incident sound fields are similar.

When vorticity is convected past the pipe exit we find that
the imposition of a Kutta condition is of crucial importance in
deternmining the radiation. Indeed, if the vorticity is convected
at the speed of the flow, no sound is radiated when a Kutta
condition is enforced, confirming for the jet pipe flow a result
given by Howe for two-dimensional unsteady flow past a splitter
plate. However, in both this and the other problems discussed in
this chapter all fields are causal, whether or not a Kutta
condition is enforéed.

Finally, we discuss the effects of nozzle contraction. We
find that the radiated sound field is little changed in character,
but that the refléction properties of the nozzle may be drasti-

cally altered.
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1. INTRODUCTION

In this chapter we'examine the interaction betweén a number of
types of unsteady flow and a jet pipe. The motivation behind this
study was the so-called "excess noise" problem on jet engines. It
has been found that when the noise of an engine is measured
statically, it is somewhat greater than would have been predicted
on the basis of tests on model jets. This discrepancy is even
greater in flight and has been the subject of a great deal of
research (Bryée 1979). 1In this paper we model some of the possible
mechanisms of excess noise: the transmission of internally
generated noise out of the Jjet pipe to the farfield, the scattering
of external sound fields by the Jjet pipe, and the convection of
turbulence past the end of the jet pipe. We consider only the low
frequency limit, but unlike many other authors we ellow the mean
flow both outside and inside the pipe to héve arbitrary Mach
numbers and temperatures. This is important since at the conditions
of interest (typically Jjet Mach number 0.8, internal to external
temperature ratio 2.5) the effects of flow may be considerable. For
example, Goldstein (1976) shows that placing a low frequency
acoustic source inside a Jjet flow has a dramatic effect on the field-
shape of the radiated sound.

The problem we solve first is the propagation of acoustic
waves out of the jet pipe to the farfield; in this as in the other
problenms we idealise the propulsion nozzle as a semi-infinite rigid
cylindrical pipe. The mean flow outside the pipe consists of a

wniform semi-infinite jet bounded by a vortex sheet. We confine the
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discussion to low frequencies, where the incident sound field in
the pipe is in the form of plane waves. In the absence of e mean
flow this problem was first solved by Levine & Schwinger (19L8)
using the Wiener-Hopf method. Their solution was extended to
include the same uniform mean flow both inside and outside the pipe
by Carrier (1956). The first attempts to include the effects of
different mean flows inside end outside the pipe were made by Mani
(1973) and Savkar (1975), for plane and circular pipe geometry
respectively, who used an approximate method. The exact solution
to the circular pipe problem was found by Munt (1977) who, again
using the Wiener-Hopf technique, allowed for arbitrary internal and
external Mach numbers and temperatures and obtained fieldshapes
for the radiated sound in excellent agreement with experiments.
Munt later extended his work to calculate both the amplitude of the
sound reflected back up the pipe (198%a) and to examine the
variation in the total power radiated with jet conditions (198]5).
The power radiation has been studied experimentally by Bechert et al
(1977) who observed that the power radiated to the farfield could be
substantially less than the net power flow along the pipe, so that
there was a net loss of acoustic energy. Munt's paper (1981b) is
consistent with these results, as is the work of Howe (1979) who has
studied the sound transmission problem in the low Mach number, low
frequency epproximation. Bechert (1979) also explains this net
power loss using a simple theory similar to that of the present work
only at vefy low Mach numbers.

In this chapter we use the low frequency asymptote of Munt's

theory to obtain simple expressions for the sound radiated to the
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far-field, that reflected back up the jet pipe, and for the unsteady
motion of the jet column. The latter consists mainly of a spatially
growing instability wave. This is an important feature of all
problems involving the interaction of unsteady flows and jet pipes.
In the limit of vanishingly low frequency this instability wave
grows only very slowly and is convected with the mean flow. In
addition to the usual low frequency limit we also discuss the case
vhere the jet is very hot compared with its surroundings, so that,
as it were, it is hotter than it is acoustically compact. Here,
there is a dramatic change in the nature of the radiated sound
field, similar to that found by Dowling et al (1978) in their study
of jet noise. In Munt's paper it is assumed that the sound
radiated is causally related to the incident sound field end that

a Kutta condition is obeyed at the duct exit. We discuss the effect
of relaxing the Kutta condition while still insisting on causality,
and establish that the jet instability wave can then be made fo
vanish. In that case, there is no loss of acoustic energy, and all
the power in the incident wave is reflected back up the duct, apart
from an O(k?a?) f;action which is lost to the far-field. We further
use an idea of Howe (1979) to provide an alternative modelling of
the instability waves.

Munt's solution only allows for subsonic jet speeds. We extend
his theory to cover supersonic jet conditions, using concepts due to
Morgan (197L4) and show that an additional physical phenomenon is
present at these speeds; the unsteady counterpart of the periodic
steady wave structure of an imperfectly expanded supersonic jet.

Using methods similar to those of Munt we determine the sound
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scattered when an external sound field is incident on the pipe. In
the absence of a mean flow the solution is known (see e.g. Noble,
1958) and may be deduced from that for incident interﬁal sound by
reciprocal arguments. There is no existing exact solution when a
mean flow is present, the only published work being the approximate
solution of Jacques (1975). We show that his solution is in error,
although the scaling laws he deduces are substantially correct when
the incident sound waves are due to some near-by aerodynamic
disturbance.

We model the generation of sound when turbulence is convected
by the mean flow past the end of the jet pipe, by idealising the
turbulence as convected vortex rings. The published work on this
low frequency problem is limited to two cases. Leppington (1971)
models the turbulence as non-convected quadrupoles, whose near field
is scattered as sound by the end of the pipe, resulting in farfield
sound levels which scale as the sixth power of the jet velocity.
Crighton (1972) models the problem as the scattering of the energy
of a jet instability wave by the pipe exit and finds the same
overall scaling lavws as Leppington. Related to these problems is
work by Howe (1976) on the sound generated when vortices are
convected past the trailing edge of a flat plate. He finds that
the sound radiated depends critically on the imposition of a Kutta
condition at the edge of the plate. When a Kutta condition is
enforéed and the vortices are convected with the mean flow, then no
sound is radiated. 1In our study of the semi infinite cylindrical

pipe, we find that a similar result holds.
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A useful way of examining sound radiation problems is by use
of acoustic analogies. These ascribe the sound radistion to
monopole and dipole sources on bounding surfaces, and to quadrupole
sources distributed throughout the flow field. We use two different
acoustic analogies; that of Lighthill (1952) as reformulated by
Ffowcs Williems & Hawkings (1969), which does not explicitly include.
the fluid shielding effects of any mean flow, and that of Dowling
et al (1978) which does. In each case the source terms are
determined using the lowest order asymptotic low frequency solutions
for the flows in the Jet and the pipe. We show that the sound
fields determined in this way are precisely the same as those
obtained exactly by the Wiener-Hopf method.

Thus far we have idealised the end of the jet pipe by a
cylindrical pipe. On real engines the end of the jet pipe contracts
to form a nozzle. We analyse the transmission of sound through such
e nozzle, and the sound generated when entropy waves are convected
through the contraction. We use the methods of Marble & Candel
(1977) and Cumpsty & Marble (197T), who were concerned with
variable area ducts and the transmission of acoustic waves across
turbines, respectively. Our results for the transmission problem
are in good agreement with the recent experimental results of
Bechert (1979) and our expressions for the sound generated by
entropy waves are essentially the same as those obtained by
Ffowes Williems & Howe (1975) using another method.

Finally, we discuss the practical significance of our results

and compare them with the limited experimental evidence.



2. RADIATION OF INTERNAL NOISE FROM A JET PIPE

In this section we consider the radiation of low frequency
internal noise from a ¢ylindrical pipe with both internal and
external flows. We first sclve the problem for a subscnic jet in
the low frequency limit, subject to the condition that it satisfies
a trailing edge Kutta condition. Then,we discuss the implications
of relaxing the Kutta condition and finally modify the analysis to

allow for supersonic jet conditions.

2.1. Subsonic Jet with Kutta condition

The mathematics in this section largely follows the work of
Munt (1977). For convenience, and to aid comparison with his
papers, we use his notation. While this problem has been solved
in some detail by Munt we repeat the steps in the mathematics
since the analysis forms the basis for both the rest of this
section and for sections 3 and 4 of this paper. The major
difference between our analysis and Munt's is that we choose to
work with pressure rather than velocity potential as the fundamental
variable.

We consider a cylindrical semi-infinite rigid tube of radius a,
from which issues a jet of density pj, speed of sound cj and velocity
Us =M cj, occupying the region x > O, r < a. The jet and pipe are
assumed to be immersed in an infinite region of velocity Uo =a M Cj’
‘density P, =Y pj and speed of sound c, = cj/C. We assume that g

covers the range 0 € o € 1.

The ron-dimensional quantities Yy, C, o express the ratios of the

UNIVERSITY LIBRARY LEEDS
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mainstream to jet value of density, reciprocal of sound speed, and
velocity. When the jet and mainstream are perfect gases with the
same specific heats, we find that y = C2,
The waves in the pipe are assumed to have the time dependence
iwt . .
e , and this factor 1s suppressed throughout the analysis. The

equations satisfied by the pressure fluctuations in cylindrical

coordinates are:

3%p .13 %, 1 3% _ . d_y2
3x2+r8rr3r+r28¢2 ik + M) p=0, r<a (2.1)

p,13 %, 3% _ 9_y?
2 * e T T r? 5r? C%(ik + M o 5;) p=0, r>a (2.2)

where k = w/cj. From the assumption that the cylinder is rigid, one
derives the boundary condition that the normal gradient of pressure

vanishes on it,
9
== (2,0,%) = 0, x € O, (2.3)

The boundary conditions on the jet vortex layer are the continuity

of pressure, so that

\Y
(o]

p(a-sq)’x) = P(a+s¢’x), X '
(2.4)

and the kinematic condition of equal particle displacement on both
sides of the vortex layer. Let n(x,$) denote the displacement of

the vortex layer from its mean position, r = a. Then this latter



condition implies that n satisfies

2
cjz(ik + M —g;) nla,¢) = - ;l-—gf: (a ,0,x)
J (x >0). (2.5)

cjz(ik +a M %; Yoo o ,$,%)

Two other conditions are important in determining the sound field:
causality, and the Kutta condition. Causality is defined to be the
requirement that the sound field shall vanish for impulsive
excitation before the source is switched on. As Jones & Morgan
(1974) have shown, if a time harmonic solution is used, this must
then obey certain constraints on its behaviour in the lower half
plane for complex k. The Kutta condition concerns the requirement
to be satisfied by the displacement of the vortex layer at the edge
of the cylinder. The usual Kutta condition is that the layer should
leave the end of the pipe with zero gradient. The solution found
by Munt satisfies both causality and this Kutta condition. We
shall later discuss solutions that are causal but do not satisfy a
Kutta condition.

Accordingly we now require for our solution that
an , +
ax (0 »0) = 0. (2.6)

We split the total field into two parts, an incident field whiech is
assumed to be known and the additional term arising from its
interaction with the pipe. We assume that the incident field has

the form of an acoustic duct mode with
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Jm(;jr;n r/a)
p; (r,¢,x) = W expl-i(u x-mp)]l, r <a

(2.7)

= 0, r >a,

which satisfies (2.1) and (2.3) and where

[K? - (1 - M2)5-3/a?]? - xu

(1 - M%)

Y T

with Im u < 0. Here j;n is the nth zero of %; Jm(y) and Jm(y) is
the Bessel function of order m. Since the primary wave has the
dependence eim¢, we further assume that the diffracted field has the
same dependence.

To assist the analysis we assume that k has a negative imaginary
part, so that any waves produced will decay as x > & ©», In
particular we define k = kr + iki = lkl exp(- i8), where 0 < § < m,
At the end of the analysis we shall put § = 0 to obtain the solution
for real w.

We define the half range Fourier transforms of any quantity y,
say, by the formulae

+00

Wi(u) = I ¥(x) exp(+ ikux) H(#* x) dx, (2.8)

-—00

where H(x) is the unit step function with

H(x)

]
’—l
-
o]
v
o
-

H(x)

"
O
L]
]
A
e
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The inverse of these transforms is given correspondingly

+00

W) = 3 | ¥k exp- ) (@)
where

Y(u) = ¥ (u) + ¥ (u).

After Fourier transformation the equatiors of motion, (2.1), (2.2)

become
{ %-g;-r =t k?v2(u) - f; } P(k,r) =0, r<a, (2.10)
{ %—g; r —g—r- + k% (u) - ’:—: } P(k,r) =0, r>a, (2.11)
in which we have defined
v (u) = ((1-m)* -u?), (2.12)
w?(u) = ((1 - Mow)? - u?), (2.13)

The branches of W, Vv are taken to be those where Im(v,w) < 0 as
u *> + ®°, The dependence on u of the transform P(k,r,u) will some-
times be omitted, as in (2.10), (2.11), while elsewhere it will be

the dependence on (u,r) which is explicitly displayed. The branch

cuts are taken to be from
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R S i S -
USRI to + « and o to - « for v(u),

and from

c

u=mto+mand(

-C _
1 -‘aMC) to - » for w(u).

It therefore follows that the t Fourier transforms have the regions

+
of regularity, R shown in Fig. 1. In that diegram we have shown

o 5 _ 1
(1 + aMC) (1 + M)

. If this condition is not satisfied the

the branch cuts drawn with

1 c
(1 - M) > 11 = onc)

order of the branch points on the real u axis should be reversed.

, and

Both half range transforms can be seen to be analytic in the
region of overlap between Ri, and the integration path in (2.9) is
taken to lie in this strip, and specifically along the line
arg u = §.

The solutions to (2.10), (2.11) are Bessel functions of order
m. We require that the solution be finite at r = O and decay as
r + @ for u in the strip.

Hence

P(u,r) = Afu) Jm(kvr) r<a

. (2.13)

B(u) Hiz) (kwr) r > a

Defining, further, the half range transforms of the boundary dis-

+
placement as Z , the boundary conditions (2.3), (2.4) become



+ - + - +
Pj(u,a ) o+ Pi(u,a ) = Po(u,a+)

and

7 (u) = 0,

(2.1k)

(2.15)

in which Pj’ Po are the transforms of the pressure inr < a, r > a,

and Pi is the transform of the incident pressure

-

Jw Jm(jmn%f) -ipmnx + ikux

_m'mn’ dx
J (3° a) ’

+ -—
Pi(u,a ) =

. +
for uin R .

We solve (2.14) and (2.15) by noting that

Pj(u,a-) - Po(u,a+) + P;(u,a') Pg(u,a-) - P (w8 ),

a function reguler in R .
Using equation (2.5) we find that
z(u) p.c,%k?.p?
(u) P, k%D J (kva)

Pj(u’a-) 9
kv Jm‘(kva)

2
z{u) pjcjzkzyDé Hé )(kwa)

P.(u,a+)
J K Héz) (kwa)

(2.16)

(2.17)

(2.18)

(2.19)

2 _ _ 2 2
where Dj = (1 - Mu)“, D_ = (1 - oMu)?. Whence, substituting

43
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(2.18), (2.19), (2.16), in (2.19) and noting that, from (2.5),

Z (u) = 0, we find that

K(u) z2¥(w) + i(pmnl_ — = F (), (2.20)

where

Dszm(kva) yDoz Héz)(kwa)
} . (2.21)

= 2,2 -
K(u) = pse .k [kv 3 (kva)

JJ kw Hiz)*(kwa)

We solve (2.20) by the Wiener-Hopf technique, described, for example,
in Noble's book (1958).

We factorise K(u) as K(u) = K+(u) K (u) where, Ki(u) are
analytic and non-zero in the two half planes R’ and R . Then

(2.20) gives

z*(0) K () + — 1 = E(u) (2.22)
K (u) i(p - ku) X (u)

This may be rewritten as

1 . E_(u)
K() iy - k) K (a)

2" (u) K (u) +

Sy S S |
K (u) K () - ku)

. (2.23)

The left and right hand sides of this equation are analytic in the
respective half planes Ry + By an extension of Liouville's theorem

they must therefore both equal some function E(u), which is regular
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over the whole u plane, except at infinity. The only form of
C(u) which has the required properties is a polynomial in u.

We consider now the edge conditions on n, and the resulting
constraints on the behaviour of Z{(u). From Munt (1977), we find
that if k ¢ Ao’ vhere Ao is a region of the k plane detgrmined by

/2

the instability zerces u_, u; of K(u), then k*(u) = olu ),
1

- ey
K (w) = o(u” ) as |ul =, but if k ¢A°, then

N 1/2 _ 1l
K(u) =0u ), K (u)=0(u /2) as |u] + =

The region Ao is shown in Fig. 2.

Then if k € 4, we find that if n(x) is o(x"), then Z(u) is
o(u'(n‘”l)), and the left hand side of (2.23) is O(x-(n-a)). This
means that C{u) is a polynomial of order (/2 - n). For instance
if n = ¥/2 and the solution obeys the Kutta condition, we are
restricted to C(u) = 0. If the solution is the least singular one
not obeying a Kutta condition, then C(u) must be a constant. The
procedure for obtaining a causal solution in either case is %o
solve equation(2.23 for some k € A, for example with 6 = %-,

and then argue the result for real k by analytic continuation.

Hence we find that

2*(w) = { = NGRS 2
i(e - ku) K (u) K_(p/k) K (u) (2.24)

as 2 (u) = 0, this is also the value of Z(u). Then hence by (2.9

+oexp i6 . -3k
n(x,k) = J (z7(w)]e ™ Kk au. (2.25)

~wexp 16



As § passes from § = g'to 6 = 0, the pole at u = v is passed over
by the integration path for u. For a causal solution we require,
from a theorem of Jones & Morgan (197k4), that n(x,k) is analytic

in the lower half plane, and that
exp[(ib + d)k] n(x,k) = o(|k|P) as |k| + w,

where b, d are real numbers and b > 0. Therefore there must be no
discontinuity in n as the contour passes over L Therefore, we
must add on a residue contribution from the pole for § < arg u_,

o

end thus for a causal solution we have

+oexp i s
nix,k) = -,};j 2" (u)e X yay
—oexp i6
) 4 ~iku x
+ H(arg u - §) lim 1iZ (u) (u-udke . (2.26)
w o )

With reference to Morgan (1974) it can be seen that the solution is
causal whether C(u) = O (Kutta condition) or C(u) is & constant (no
Kutta condition)..

Then the causal solution subject to a Kutta condition is given

by .

2(u) = ———— 3 , .
K () X (u/y) (- ku) (.21
ip.c.’®D,2J (k
P.(u) = 0% X Oy Tylke) . (2.28)

J kv J7(kva) K (u) K (W/,) (1 - xu)



< 2 .2, 2 .(2)
1pjc'j k“y Do Hm (kwr)

Po(u) = . (2.29)

kw H;Z)'(kwa) K+(u) K—(U/k) (0 - ku)

The general properties of the split functions have been given by
Munt. We list them in the low frequency limit in Appendix I.

We consider first, and in most detail, solutions for an
incident plane acoustic wave. In this limit the split functions

are

2 _ ¥ - 2,2
2M%a(u uo) (u uo)pjgjk

K (u) = - ~ . K(uw) =+ (2.30)

(ka)? v v

The pressure perturbation, for r < a, is given by

. -ikux
00 § .c.2k?p? *
exp 18 p.c. k DJ Jm(kva)ke du

1l
p (0 = - g- | ____.
J e ~oexp 16 kv J;(kva) i(n - ku) K (u) X (P/k)
(2.31)
In the limit of very low frequency,
-2a(1 - Mu)?p.c3k? h
K+(u) - d J ,
(ka)? (1 - (1 + M)u)
My T (2.32)
kK (L+M) °? 2.32
- 1 +M
U/ ) =
K (./k) 2 9
and therefore,
40 -ikux
1 e du
p; (x) = EJ . (2.33)



The value of this integral is equal to one or other of the pole
residue contributions according as x is greater than or less than
zero. The pole at u = 1/(1 + M) cancels out the incident field

for x > O, while the pole at u = gives the reflected field

.
(1 -M)
inside the jet pipe. This has a value Pj = - exp[ikx/(1 - M)], and
therefore the reflection coefficient R for incident plane waves is,

in the low frequency limit
R=-1. (2.34)

The result (2.34) is the basis for Bechert's (1979) simple theory of
nozzle flow sound attenuation; it is entirely dependent on the
satisféction of a Kutta condition at the nozzle lip (see later).

It is clear that in this low frequency limit there are no
contributions to the pressure from instability waves. This follows
from our approximation to K (u) in which we set the instability
poles, u s u:, at l/M’ rather than the more exact value (see
Appendix) of-% * j0. If the latter value had been used in K+(u),
there would have peen contributions to the pressure from these two
instability waves, growing and decaying exponentially along the
jet. The value of the contribution to the pressure from these two
poles is 0(0?) which is negligible for low enough frequency. The
axial velocity in the jefo does, however, contain contributions

corresponding to the instability waves, and it is given exactly by

2 2.2 -ikux
+00 .5 kDY
J p.c; DJ Jm(kva)e 7 ku du

= kv I7(kva) i(p - k) K@) KW (- madpge,

(2035’)
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which, in the low frequency limit, becomes

u e du
2
- p.ec.{l - M u -
; J( )¢

j+“ -ikux

+|~

T T @ - )
1 =1
T+M *@-n ° are the

acoustic waves discussed above. The contribution from the pole at

The contributions from the poles u

u = 1/y, gives the velocity fluctuation

<~ Pa. exp[-ikx/M]. (2.36)
J J

We see that this represents a convected instability wave albeit of
vanishingly small growth rate. If we had used the more complete

form of K+(u), u would have been given by

u =
1 J+m 2u (1-Mu) e-ikux du
T J o w2 1 1 _ {1-i0) _ (1+i0),°
o e gy W) (u - (e g - Bl - e,
(2.37)

and the instability wave contribution to this gives

-ikx/M
e
u =g

P.c.
* Jd

[- ekcfx/M . e-kox/ M]
; :

which tends to the previous result (2.36) for x << l/o’ but displays
clearly the amplification and decay factors of spatial instability waves

convected with the jet speed.

We can also derive the jet displacement due to these



instability waves: it is

n(x) = = Jm - (ka)? (1 - (LsM)u)e FX i au

i ) _, _s . ’
ate (u - 529y (u - (140)) (o o a2 (Lo - )
(2.38)
-ikx/M [ _. R
_ &e _ L 51nh2§7§é/M) J . (2.39)

2.2
.c.°M
pJ J

For small x, x $ M/ko, this expression shows that the shear layer
displacement grows linearly with distance from the end of the pipe.
This expression is only valid for x >> a, however, since our
expression for K+(u) was only valid for uka << 1 and the behaviour
near x = O depends on the value of K (u) as u > ®, Despite this,
however, the approximate form of N(x) does at least give zero
displacement at x = 0, even if the slope of the shear layer is
non-zero; the exact equation for n(x)‘does of course have zero
slope at x = O.

The linear growth of the amplitude of the instability waves
with distance has a simple physical explanation. Consider a jet
with an instability wave of negligible growth rate whose axial
velocity fluctuation is u = 1 expliw(t - x/Uj)]. For this wave,
the pressure fluctuation is zero. Therefore the continuity equation

can be written

where v is the radial velocity, and hence
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1 A . .
v = =% § exp[iw (¢t - x/U.)].
2Uj J

Now the displacement of the jet boundary is related to the

velocity v, by

an on
58 * V53 <V

We assume that N is the form n = fi(x) exp[iw(t - x/Uj)] and then

it is clear that if n(o) = O,

4 iwr
ﬁ - Uj . 2UJ o« Xo (2.’40)

This is precisely the same relation (2.39) obtained from the exact

analysis.

We consider next the sound field outside the jet. The

pressure fluctuation is, from (2.29),

2 s
+00 pjcjzk2 Y DozHé ) (kwr) e kux kdu
(2.b1)

1
P, T om -
° JA” kw Hiz) (kwa) (u-ku) XK' (u) K (/)

and in the farfield this expression is best evaluated by the
method of stationary phase. The stationary point is at

u = C cos8/(1 + aMC cosb), (2.42)

so that



-1kc.R/cO

p = o (4. — iy B ¥ By ]
o " Bm(raiC eos®) L1 " ey (%) (eya) (o)t (K ()
C cos®

evaluated at u =

(1+MoC cosp) (2.43)

where (R , 0) is the position of the farfield observer in so-called
"omission-time" coordinates (Fig. 3). The bracketed term becomes,

+
on substituting for K~ from Appendix 1,

[h kpjcjzkzy(l—aMu)za(l - (1+M)u) ]

i (}%a_) . 2(1-Mu)? ((li-M) -u) k jl_;’lvl_)_

- 2 ka.Ta Y
(1-MC(1-a) cos8)?

. (2.Lk)

By substituting for y, C, M, we can then rewrite P, &s

A iw Do.(2pi/pjcj) exp[- iwR/c ]

P, = s (2.L45)
° LR (1 + aMC cosf) (1 - MC(1 - a) cosB)?

where Aj is the duct area, and (2pi/pjcj) may be recognised as the

velocity fluctuation at the exit of the duct, u The Significant

N.

features of this formula lie in the scaling of the level (for a

given uN) on the farfield density rather than the jet density,

and the field shape. The field shape is determined by the product
of a Doppler factor based on the external flow velocity and the
square of a Doppler factor based on relative flow velocity. This

latter dependence is characteristic of low frequency acoustic



sources placed inside infinite jets (Goldstein (1976), Dowling
et al (1978)). For angles close to 90°, (M cosB <<1) the effect
of "flight" (i.e., external flow) is represented by a factor
(1 - aMC cose)-6 on the intensity which is identical to that found
experimentally by Pinker & Bryce (1976).

We now discuss the flows of energy in this problem. In the
jet pipe the net power flow is given by

A.p.2
W= =2 [(1+M? - |r|? (1 -M)?2], (2.46)

N .C.
pJ J
where p. is the strength of the incident wavefield, and R is the
reflection coefficient. In the limit of low frequency we have
shown that R = -1, so that

A.pi2
W= by, =L, (2.47)

N .C.

pJ J
This implies that there is a net flux of acoustic energy along the
pipe, proportional to the Mach number, and independent, to a first

order, of frequency. This is in contrast to the case of zero

flow where the net energy flux is of order

2

A.pi .
WN = Bj;;— (ka)“ .

In the jet the only significant motion is associated with the
convected instability waves. Since there is negligible fluctu-
ation in pressure associated with them, the only energy flow is a

flux of kinetic energy. This is the product of the fluctuations



in kinetic energy and mass flow so that the net energy flux in the

jet is

W. = (p. u’ A. . ul
f (pa uy AJ) (UJ uN) .

A, pi2

:C.
pJJ

where we have taken the velocity fluctuation as = 2p./p.c..
. 1 J4Jd

It is clear that in this low frequency limit there is a total

conversion of acoustic energy into kinetic energy associated

with the instability waves. We shall show later that this

conversion of energy is critically dependent on the imposition of a
Kutta condition.

The power radiated to the farfield is found to be (Munt

1979)
T 2
0.R .
WR = J or R? E—%—é—l . sinf(1 + aMC cosB)? ad , (2.49)
o 0o
s 2 4 2
i} Jn oR2 ) sind iw p_ (2pi/pj°j) %j ae (2.50)
o (LnR)? 0y (1 - oMC(1-0) cosf)* )
for a farfield pressure level of p(6,R).
Putting A = ma? and integrating gives
2 2 2
p: 2 wp at(l + M:/3)
Wy = (5o © ®'3
SECICRNC IS
Ap.? 2 p ¢ (1 +2/3)
_ i (wa o 3
= Lo (92" 2) . 5 R (2.51)

.C.
°i%5 % P31 - M2)3
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where
M = MC(1 - a) = (Uj - Uo)/co.

This expression is the product of the net incident energy in the
pipe in the absence of flow, the square of the compactness ratio
ka of the jet, the ratio of the impedances of the jet and ambient
medium, and a factor which depends on the velocity of the jet
relative to the surrounding fluid and which causes the power
radisted to increase rapidly as MR + 1. When the jet and ambient
fluid have the same velocity the power radiated is unaffected by
Mach number. The singularity in the radiated power when MR =1
could have been avoided by using a more accurate expression for
K+(u); then the Doppler factors [1 - MC(1 - a)cosf] would have
been replaced by [(1 - MC(1 - a)cos8)? + onz]l end the singularity
at the Mach angle removed.

In their study of Jjet noise, Dowling, Ffowcs Williams &
Goldstein (1978) have shown that when a low frequency acoustic
source is placed in a jet, the radiation from it changes
dramatically if the temperature of the jet increases to such an
extent that "it is hotter than it is compact", that is when
g% >>((ka)2 Zn(ka». We anaiyse the propagation of sound out of a
jgt pipe in this limit.

The sound pressure outside the Jjet is, from (2.k1),

2 .2 2,.(2) -ikux
1 J-wo pjc'j k YDO Hm (kwr) ke du

(2.52)

o (o) HCY Cwa) (k) KT (w) K (0/)
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When the jet is very hot, we have shown (Appendix 1) that the form

of the split functions changes:

. ma®(-Y) fn(ka)(ka)?(u + ie)k2p.c.
K (u) + |

(ka)? (1 ~ (1 + M)u) ’ (2.53)
K (u) > (u - ie) e = oIy

(1 +(1-Mu) ka[zn(l‘—g—g) + B+ 15'-1-]3 .

Therefore, the sound in the farfield is equal to its previous value

miltiplied by the factor

2(1 - mu)?
T v(ka)? fn(kaC).(u + ic) ('(li_M) + ie)

evaluated at
u = C cosb/(1 ~ MaC cosf)

that is, multiplied by

2, (1- MC(1-a)cos8)? (1+MCucos®)(1+M)

. (2.54)
TP, (1 - MCa cos®)?® (ka)? fn(kaC) cosd
Therefore, the farfield pressure is given by
-iwR/e
. i . 1+
) AJ iv p; uy ( M) e
| . (2.55)

27%R (1 + MaC cos@)? (ka)? en(kaC) cosé

Compared with the previous result, the field shape for the light jet

does not show the downstream Doppler amplification, but is



infinite in the sideline (900) direction. We see, therefore, that
the "light jet" condition always fails at this position, which is
indeed the Mach angle for disturbances transmitted along the jet.

The field in the jet is given by (2.31)

2,2 2 -ikux
4 Jym psc.“k” D, J (kvr) ke du

o ; (2.56)
Py = 2mi j (kv) 37 (kva) i(u-ku) K (w) K™ (u/y)

. » + - 3
substituting for K (u), K (u/k) from (2.53), we find that

400 2 =ikux 2
1 2 €%e (1-Mu)® du
= | (2.5T)

(e + 1) (whe) (1) (u + ) (@ = oy

The integral is thus the sum of the three pole contributiomsat

o1 -1
YT (M) 0 (1-m)

the case considered earlier, cancel the incident field, which now

,~i€. The first of these, does not, unlike

continues to propagate along the jet. In this limit the jet
behaves, to first order, as a semi-infinite rigid tube. The
pressure due to this pole is given by

-ikx/(1+M)

p: %-. e?2(1 + M) e

3 (2.58)

and the level in the Jjet due to the pole at u =e-ie is given by

2 -€kx
p, v et e (WM. (2.59)

Both these fields (which arise for x > 0) are small in the light
jet limit (€ small).

The reflected sound field in the jet pipe is given by the
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contribution from the pole at u = TE:%T— » hamely

{1 -w?)e? ikx/(1-M)

P; -

. (2.60)

Clearly then, the reflection coefficient is of order
(y(ka)? &n (ka)]—l, vhich is small in this light jet limit.

We have thus shown that if the Jet is sufficiently hot, then
there is a radical change in the acoustic behaviour of the jet pipe
system. The majority of the sound is no longer reflected back up
the pipe, but continues trapped inside the jet. The reason for this
is seen by examining the relation between the pressure gradient and

2
displacement on the jet boundary, In, L %% = 0., From this it is

Dt? po
clear that if Pq is greatly increased, and tends to infinity, then
for a given value of pressure gradient, the boundary displacement
must tend to zero. In the farfield the radiation is reduced
compared with that for the non-light jet case, except for angles
close to the sideline direction. At this 960 position (corres-
ponding to the Mach angle), the compactness condition of the light
jet does not hold, as already observed. An additional feature of
the light jet limit is that the instability waves on the jet column
are suppressed.‘

We now consider, in less detail, the radiation from higher
order spiral duct modes. In the low frequency limit, it is well
known that in the absence of a mean flow sound radiates very
inefficiently. Substituting for the split functions Ki(u),
(Appendix 1, A1.16) in the expression for the sound field ocutside

the jet, we find that
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. s
1 (* hpjcg kZYDé (% Hi )(kwr))ak o 2ku du
2|

P, = : . (2.61)

2 ym¥l L 212 ,un2
(==) i(u ku)pjc'j k a(Dj+YD°)

mi
(wa) oo« (G

Using stationary phase we find that the farfield sound pressure is

-jwR/e
ae * ° { YDZ ] (xwa )™k 8T } . (2.62)

p_ = (- P T ey
© 4R (1+aMCcosB) D§+YD2 l(um ko = (i+§§22056)

For these spiral modes,

o+ /L - (1 - X2 (ke

(1 - M?)

M
k

so that the bracketed factor becomes

Y (ka)m(sine)m 8m/m
((1 - Mc(1 - a)cos8)? + y)(1 + aMcC cose)m-l (%-(l - MoCcosB)- cose)’

and hence the complete radiation field is given by

-iwR/¢
a e © (ka)® (sin0)™ (8m/m) v

p =
© " yrR(1+aMceos8)” (L(1+aMCeosd) - cosd)[(1-MC(1-0)cos8)? + ]

(2.63)
This formula shows that as the mode number m increases, the power
radiated at a given (low) frequency progressively decreases. The
radiation is predominantly in the sideline direction, and the
effect of flight is largely that of the Doppler factors (1+aMC cosf)

which shift the field further forwards for higher values of a. For
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- . s 0 |/ . .
sufficiently low frequencies, U/k becomes 1Jmn/kdl-M2): which is

much greater than unity, so that the farfield pressure can be written

-iwR/c
_se © (ke)™(sin®)" gn/(1-¥?) Y

D ; B
O umR (1+oMCcos® )m+l mi jmn ((1-MC(1-c)cos8)2+Y)

(2.64)

The radiation from all of these higher order modes varies as a

higher power of ka than that from the plane wave mode. Further, for

a given pressure level at infinity upstream, the pressure level at

the nozzle, on which this radiation scales, is exponentially small.
The field in the jet and pipe, r < a, is given by

2 1212 -ikux
+© % kDL J (kvr)(-1 k 4
pie? KD g (kvr)(-L)e u

2 .
g H/—u)kp e k*a(D3+yD 2
~ kv J (kva) (M/y u)kach a(DJ+YDo )

1
P = Bni J (2.65)

In this expression the pole at kva = j;n cancels out the incident

field. Expending the Bessel functions yields

400 D.2 e—ikuz
J J du, (2.66)

- D,24yD 2 VAR
i o

. > e ® -1
and noting that the instability poles of (D§ + YD:) are

+1i . .
ilZEXl—— this gives

U = M(1tiay)

p. = 57 Jm " e ay
. - 2“. - -
J T ) e [u/-ullu - l.ililll_][u + l.&l:lll][M2(1+a2Y1)]

o |7

M (1+iay) M (1-iay)
(2.67)
. . . eoe 1 (1 + iyy .
t t . from th = =
The contribution to pJ e 1nstability pole u M (L + Toy) 1s



" o~iR(1+1Y)x/M(1~iay)
p, = (% -
ST Pm L 10wy) e 1 (1+y) L1 (1-iy),

(2.68)

and for low Strouhal number (%% << 1) this is

m e-1k(l+1Y)x/(l+1ay)M 1 -4 ke

) ~ . (2.69)
257 M (1 + oy?)

.
i
® =

Unlike the plane wave case considered earlier, the instability
wave does now have a pressure disturbance associated with it, whieh
increases in proportion to the Strouhal number for s given initial

) .. kY(1 - a) . .
amplitude. The growth rate is given by ,» Wwhich vanishes

M(1 + a%y?)
when there is no velocity difference across the jet boundaries.
Further, these non-axisymmetric waves are amplified with distance
downstream even for the lowest frequencies, although there the
initial disturbance level is very small, due to the aforementioned
dependence on frequency, and the exponentially small level of the

sound at the pipe exit due to the spiral acoustic modes being cut

off in the pipe.

2.2. Subsonic Jet with No Kutta Condition

We describe here two types of problem relating to a jet with no
Kutta condition. First, we consider the case where g jet
eigensolution is added on to the Kutta condition solution, by
taking C(u) in (2.24) as constant. Second we adopt an approach due
to Howe (1979). Instead of assuming the existence of an

instability wave, in the Jet, he assumes that the Jet motion consists
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of some other neutrally stable wave which is convected at a Mach

number VM, less than the jet Mach number M. He then finds the
field due to this and matches it to the nozzle flow. .He adds
this field to that found with no Kutta condition, and forces the
total to satisfy a Kutta condition.

We examine first the case where E(u) is a constant Co’ say.

Then equation (2.27) to (2.29) become

1

K (u)

Z(u) = (e+c1 , (2.70)

-p.c.?k? Dg I (kvr)

Pjla) = — (£+c] , .
J N kv J; (kva) K+(u) ¥ o (2.71)
- p.c? k% D2 ) (kur)
P(): J]J’ o m [E+c]’ ‘ .
o't kw H(z) (kwa) K+(u) o (2.72)

m

vhere we have defined

E = .-l
i (U)K (4/,)

By choosing different (non-zero) values of Co’ we can obtain a whole
range of solutions, none of which obeys & Kutta condition. One of
these is of special interest: that where C0 is chosen to cancel the
instability pole u_. We choose

1

¢ =
© K(u) iU - ku) (2.73)
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and then

. - k(u ~ uo) .
+#C, = .7k
° iK+(u/ko)(u - ku )(M - ku) ‘ (2.78)

Clearly, the net effect of this is to multiply the Kutta condition
u-u

solutions in u by (57——:—8—). In the farfield, where
k o

u = Ccos8/(1 - aMCcosB), and for the plane wave case —
L k 1+M°
u =-ﬁ), this factor is
[ Ccosb - ;]
(1+aMCeosb) (1 - (1 - a)MCeos8)(1 + M)
1 _1;] - (1 R 5 (2.75)
[(1+M) 5 oMCcosf)
The formula for the farfield sound, (2.45), then becomes
—in/co
, Py Uy 5y A, (1 + M)e (.76,
- h L) .
° R o (1 + aMCcos8)2 (1 - Mc(1 - a)cos8)

The major difference between this and the Previous result is the
removal of one of the relative velocity based Doppler factors, which
results in a considerably less directional sound field.

The corresponéing multiplier for the field inside the pipe is

obtained using u = —l/(l - M), giving

1
(- (1-M) ~ Hy)

- {1+M

(Y -1y G- m)

Therefore, the reflection coefficient has changed from - 1 to

(1 + M)

-aTm It is of particular interest that the power flow in the

€3
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duct, which is proportional to [(1 + M)2 - |R|2 (2 - M)2], is

now precisely zero. Therefore, we conclude that the imposition of

a Kutta condition is essential for a transfer of power from acoustic

to hydrodynamic fields to take place. With no Kutta condition, and

no generation of growing instability waves, almost all the
incident energy is reflected back up the duct, a negligible 0(k2a?)
fraction being diffracted to the farfield.

Howe proceeds by adding on to this non-Kutta-condition
solution the field due to a jet motion convected at a speed WMc,.

We assume that in the absence of the pipe this wave would induce
-ikx/VM

a jet displacement Z1 e . Then the transform of this over
x < 0 is Z;, where
- Z],
o= T 1, (2.78)

°  ix(u - /w)

Now from (2.1%) and (2.13) with P = 0 (since there is no driving

pressure) we have

- + - + -
Pj(u,a ) - Po(u’a ) = Pj(u,a- ) - Po(u,a ) =P ’ (2.79)
and
Z + ZO = 0. (2.80)
Hence

K(u) (z'(u) - 2) =F, (2.81)
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so that

. |
z, (K(w) ~ K (1,)) ) | AR

Kt (u) z7(u) - . (2.82)

ik (uw - /) K (u)  ik(u - %/

VM VM

The left and right hand sides are regular in the regions R* and R
and are, therefore, equal to the same constant C1’ say. Then the
displacement Z(u) is

+.1

+C}=
) ! K (u)

s S8y, (2.83)

k') k(e - Y,

which must now be combined with the non-Kutta condition solution,

which has

(w - up) : (2.84)
K'(u) ik(W/, - u) (W = u ) K (w/,)

Z(u) =
o)

We require that the total Z(u) due to (2.83), and (2.84) must not
have any instability pole, there being instead a resl pole at

1 .
u = /VM represent}ng the neutrally stable convected wave in the
Jjet.

To remove the instability pole at u = u, we set

+.1
_ Z1 K« /vM)

cC =
1 . 1
ik (uo /vM

(2.85)

)

and then
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p o e-w) K - w) ]
)

F) G- wE - u) €0 kG - Y )6 - Y

(2.86)

The correct behaviour at the edge then requires that the bracketed -

. 1 .
factor is O("/, ) as u > ®. This may be obtained by choosing

z, K"/ ,) _ L (2.67)
(w = y) K W) (wy-u)
so that now
(w = u ) (1 - wy/k)
Z(u) = ——= . [( ° ' ] . (2.88)
K (u) X (0 )ik(w/, = w) M/ - u )1 - wMu)

The square bracketed term is clearly the factor multiplying the
original solution obeying a Kutta condition.
In the farfield, therefore, the radiation field is multiplied

by this factor with
u = Ccos8/(1 - oMCcos@), u_ = l/ u = 1/
> o M (1 +mM) °

giving a factor

' (1 - Mc(1 - a) 8
(1 + M(1 - V)) (1 - M (v - a)czzsg) )

Thus we see that as V is varied between O and 1 the solution changes

continuously from the non-Kutta-condition solution to the Kutta
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condition solution. The major change in the farfield, as compared
with the Kutta condition solution, lies in the réplacement of the
(1 - MC(1 - a)cosB) Doppler factor by one based on the. convection
speed of the waves. This results in a less directional radistion
field, with a corresponding reduction in the acoustic power
radiated.

The reflection coefficient is obtained by substituting

u= - 1/(1 - ) giving & multiplier

WM
1, Gy MYE -y _(1+ (- v

w_ | (1 - (1 - M) ° (2.89)
SRR VRIS o) V)

The reflection coefficient varies again from its Kutta to non-Kutta-
condition values as V is altered. This is only to be expected,
since with v = 1, the convected waves are indistinguishable from the
instability wa&es, wvhile with v = 0 there is no spatial variation,
and the wave is effectively absent.

In this derivation of the radiation the existence of the waves
4convected at speed.VMcj is only an assumption. There are grave
.doubts over its validity; since thewave is not in fact the solution
of any equations governing the motion of the fluid. Nevertheless,
the idea remains a plausible means of representing in some way the

characteristics of the real jet flow.

2.3. Supersonic Jet

When we come to the supersonic jet the basic equations are the

same; the difference in the solution concerns only the position of



the branch cuts of the u plane. When M = 1, the branch point at

-1
1-M

the other side of the diagram at l/(M—l)' This is a consequence of

goes to ~ « for subsonic flow, but when M > 1 it reappears on

the impossibility of waves propagating upstream sgainst the super-
sonic flow. The resultant branch cuts and positions of R+, R for

M > 1, are essentially as described by Morgan (197L4) end are shown
C 1

in Fig. 3. It is assumed in this diagram that
If this is not so, the order of these points on the real axis is
correspondingly changed.

We consider the case of an incident plane wave propagating down

the jet pipe towards the exit,
p, = exp(- ipx], u=k/(1+M), (2.90)

and confine the analysis to plane waves purely for simplicity.
There is no other reason for doing so here since all modes are cut
on in supersonic flow. The derivation of the field due to the
higher order modes follows in an altogether similar fashion.

As ka > O, it is shown in Appendix 2 that (unless u >> l/ka,
a#z0); K (u)s= 1; K'(u) = K(u). Then the formulae used

previously may be applied, with the previous value of K (u)
J_(kva)

miltiplied by —— , ‘the factor K (p/k) multiplied by

v (1/k). Consequently, all the Fourier transformed quantities

P.(u), Po(u), zZ{u), are multiplied by
J

v (u) 1
— . = qQ (say). 2.
v (/) Jo(kva) ¥ (2.91)

1l
-1 > (1=aM) > (w+1) °
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In the above discussion we did not mention the edge conditions to
be satisfied near x = 0, and on which there was previously so much
emphesis. At high kva (u + ©) the kernel K(ﬁ) has & Eehaviour
similaer to its two dimensional vortex sheet equivalent. The latter
case has been examined in detail by Morgan, who finds that
K (u) is O(u); u + =, resulting in a displacement n(x) v x; x - o .
The displacement is, therefore, continuous across x = 0, but its
slope is not, so that a Kutta condition in the subsonic sense cannot
be applied. However, one would not expect it to hold for this
unsteady supersonic flow, any more then it does in steady supersonic
flows, and it cannot because of the impossibility of the downstream
motion of the jet affecting the edge. Besides that described above,
further solutions corresponding to the subsonic non-Kutta condition
solutions could be obtained. These would be even more singular at
the edge, and are physically implausible (displacement at the edge
must at least be discontinuous).

We determine next the farfield sound level. This is given by
its subsonic value with a Kutta condition, multiplied by the above

factor (2.91), evaluated at u = Ccos8/(1 + oMCcos6); that, is

pultiplied by

(1 + M) (L - Ccos® (M(1 - a) ~1))
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. (2.92)
2 (1 + aMCcosH)
The farfield pressure is accordingly
—in/c0
1wAjuNpoe : [(l + M) (1 - CcosB(M{1 - o) - 1))
2(1 - M(1 - a)cosB) 2(1 + MaCcose)]’ (2.93)

po = LR

The interesting features of this formula are the large values of



forward arc amplification (the exponent of (1 + aM cosf) is
increased) and the factor (1 - Ccos8(M(1 - a) - 1)). The latter
causes the field to have a zero if C(M(1 - a) - 1) > 1,

The reflected field inside the pipe is now precisely zero,
since the pole at u = fl/(l - M) is no longer present. In fact the
field inside the pipe is precisely zero everywhere, since all the
poles representing cut~off waves inside the pipe are now in R , and
cannot contribute for x < 0.

We consider the field in the jet in more detail; it is given by

1 (¥ (kvr) t-::.Lk du
B ar | o : (2.94)
dJd -
Jo(kva)((l TH) u)

The pole at u = 1/(1 + ) cancels the incident field. The other
poles at Jo(kva) = 0 are the unsteady flow analogue of the steady
wave structure of an imperfectly expanded supersonic jet. (We did
not consider them for the subsonic jet, since there they represented
fields which decayed exponentially along the jet axis.) These

poles occur at kva = j_ , that is, where

- M‘+/(1 - (1 - M?) ,i(‘)mz/(ka)2
Y T (1 -12) , (2.95)

L

Jom M ks
+ + 0(==). 2.96

Only the first term needs to be taken for ka sufficiently small,
since for small enough ka these poles occur at large u. Then with

g2=M2-1



1 (Y 1 Jo(krBu) —ix
Py T 7 EEE'J u J_(kaBu) ° € du, (2.97)

-0

© -2 Jo(jnr/a)
n=l Jn JO (Jn)

cos (%ﬁﬁ) . (2.98)

This formula, which is composed of contributions from the quasi-
periodic wave structure, is valid for x << l/ka' A form valid
over the whole distance x is only obtained by use of more exact
epproximations for the poles. In addition to these contributions
to the pressure in the jet, there is again an instability wave
present, which only affects the velocity (see Section 2.1).

Compared with that for the subsonic jet this wave has a velocity

- -1
amplitude v (l/M)/v (l " M) greater; and the velocity fluctuation
o _(1em) P4 -
at the exit is now Uy © " *p. oL for an incident pressure
i %3

wave amplitude p.. The contribution (2.98) alone will be referred
to as "the coherent wave structure", and denoted by with
corresponding velocity u,.

We next consider the energy flows involved: inside the duct the

energy flux is that in the incident sound wave alone and is,

accordingly,

2

p.“A.
Wb = Edz—l (1 + M)2. (2.99)
J’J

The energy in the instability wave is

2
o e 1 +m)2 Py A
W, = (paw”) (uv) =4 M i (2.100)
1 pjcj

Clearly, the energy in this wave is not equal to the net energy in
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the jet pipe. However, there are now two additional contributions
to the energy — those due to the coherent wave structure alone, and
due to the interference field between it and the instability wave.
This may be contrasted with the work of Ffowes Williams & Howe
(1978) who considered the scattering of the coherent wave by random
shear layer turbulence. They found that all of its energy was
scattered into sound, there being no coupling of the coherent
structure and instability waves.

The energy flux across a section of the jet is given by
W= J daa ho’(pv;), where h; is stagnation enthalpy. Splitting
this into components due to the coherent wave structure, p,, u s

c

and the instability wave ui-(pi = 0), we obtain

P Upc
W= I da (Er-+ ch + Uui) (:;— +pu, t pui). (2.101)
Now the fluctuation due to the coherent wave structure is to a first

1Y
order quasi—static, so that 7? + ucU = 0. Therefore, the contri-
bution to the integral due to this wave structure alone is negligible,

and the only important term (apart from the instability term already

caleculated in (2.100) is the interference term

PCU
wint = J vy U (:;_ * ucp) dA
(M2 - 1)
= J MPp, Yy o A (2.102)

Substituting for P> Yy this becomes



n+co 2 24J (j r/ ) ] 1
M-1 1 0'dn I X iwx/U
W, ., = J dA M X o= a8 s (B c (1+M)
int nio M s 3,92 (3] () e TR
n=-oo
(2.103)
Integrating over the area of the jet, and noting that
a 2
I (3 dv = B .
Io o3, /) rix 3—; 3y 9,00
n
2_ +° cos(j x/Ba) iwx/U,
W = ba Lﬁ 1) 2 e Y (2.10k
in J ¢; Iy ; . .104)
n

For finite x, the cosine terms dominate, and the exponential can be
ignored.

We now consider the flux of energy through the walls of the jet.
This is given by W, = j deX(Uui) Vo where v is the radial velocity
in the coherent field, and x is the length of the Jjet, perimeter s.

v
The velocity in the coherent field is given by U 5—9 = -1 9p
X ’

p ox
so that
v _ 1 iw 2 Jb’(jn r/a) jn
3x - M —0 J d (J. ) jl; ¢ ..a-,_- + COs (Jnx/Ba)
) n’ “n
400 2 L ] P
LB ; sin (x j /Ba) 3,7 r/,)
ML . (2.105)

Jy 9y (Jn)

Hence

13



0 x D. sin(xj_/Ba)M
B (1+M) i n
W = E J d.)( l&TTa. o 3, e . N
n Zel, M M pjc'j 3,
+00 2_ D
=) i S foos(s w/e) - 1) - (2.106)
—0 n 33

This contribution, when added to the previous one, gives the total
power through the walls and cross section of the jet up to a

certain distance x as

L . (2.107)
1

1

Now, it can be shown that —l; e Therefore, Wy is equal to
J
n

~e~1 8

Ap,® C (%21) (1em)

.C. M '
pJ J

(2.108)

Adding Wy to the net power in the jet instability wave, Wis Ve

obtain a total power of

Ap.2 Ap.?
L 0" (o) s - pp; (1+m?. (2.109)

.c. * M .C.
pJ d Jd J

This is precisely equal to the power in the incident wave. We
have therefore shown that, with a supersonic jet, all the power
in the incident jet pipe acoustic wave is converted into either
hydrodynamic kinetic energy or into the power in the interference

field between the quasi-steady wave structure and the instability
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wave. Indeed, in this ‘case all the incident acoustic energy is
in some sense sbsorbed, and the basic phenomenon found by Bechert
et al (1977) for a subéonic jet epplies equally for a supersonic

Jet.
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3. SCATTERING OF AN EXTERNAL SOUND FIELD BY A CYLINDRICAL

PIPE WITH FLOW

1

|
We consider the same system as in Section 2.1. In this case,
instead of assuming a plane acoustic wave incident from inside the
duct, we consider an e%ternally incident plane wave, which is then
scattered by the pipe %Hd jet. A more realistic problem would
perhaps have involved % point acoustic source in the ambient fluid.
But if such a source i% in the farfield of the pipe it just

|
generates plane waves at the nozzle and the problems are equivalent.

To some extent the alternative case of a source near the nozzle is

really the subject of'ﬂhe next section, §4, where the 'source'

takes the form of ring yortices convected past the nozzle exit.

|
The present problem has also been solved approximately by

i
Jacques (1975). He, however, finds & formula for the farfield

scattered sound that is:different from ours, We shall show in
Section 5 that his result is incorrect because, in his application

b

- i g L4
of the ecoustic analogy, he omits certaln source terms.

|
|
|
|

3,1. Subsonic Jet

We consider an incident plane acoustic wave with pressure
e in which, if the wave vector is at an angle B to the
jet axis u;, = CcosB/(1 * oMCcosB).
We first split this up into its circumferential modes using
the result (Abramowitz & Stegun (1965))
-ikvlrcos¢

. = Z el (-1)" 3 _(kg) cosmd (3.1)

{
H
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]
H
-
8
n
O

where
€ =2, m=Q,

to find that the incident pressure field is

® m -ikulx
2 €, (-1) gm(kvlr) cos mp e . (3.2)

1

el
1]

i
|

v(B). i

where v,

To apply the theo?y of the previous section we require the

pfessure that would have existed on the wall of the pipe had the

pipe been infinite. To find this, we add on to each modal term
!

(2) | 3
en extra term A H_ ) (kvlr) and apply 5% =0onyr = a+, to get

Em (‘1 = - Am Héz)‘ (kvla.)
so that %
|
2)” ‘ - -iku x
] e (-i)m 5 (evya) 3 kryr) - ve) B Goryyge
P o B H(Z))(kva) .
m

| | (3.3)

To the lowest order in ka we find that the plane wave (m = Q)

~-iku,x
. 1 . .
component is p = e ' » while the 1st spiral mode component is
-iku, x r & A
p=2 | . (- ikv,a) (E-+ ;) ,

=~ LUikvae on r = a, (3.4)
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Component (3.4), and the other components with m > O are smaller,
by a factor at least (ka)m smaller than the m = 0 component as

ka > O, and can accordingly be neglected. We therefore concentrate
on the plane wave component only. We briefly repeat for this
external forcing the derivation of the Wiener-Hopf equation,
presented in Section 2.1.

The equation (2.17) for the pressure difference across the

boundary is now

i
;
i

Pj(usa_) - P;(uQa‘F) = Pi+(usa--) = F—' (3-5)

i
|
H

The only difference between this equation and (2.17) lies in the
}
source of P;, an external, not an internal, field. Here Pi+ is

!
. 1 ?
given by Tx(u - 1,) .

theory, we see that the Fourier transformed pressures and displace~

Consequently, examining the rest of the

i
ments have their previous values (2.27-2.29) multiplied by the
i
factor {
f
_fu-wk) K (u/k) (3.6)
(11 - ul):é K"'(ul) .

{
i

|

In the farfield this must be evaluated at

{

|

;

u = Ccosei(l - aMCcos6),

and then it becomes

- c(1 + M(1 -'a)cos8))(1 + ¢ 1 - -
= 2(co§g e sl ML —a))) (5

|
i
i
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Compared with the field shape of internal noise this has two
interesting features. First, it is singular at 6 = 8. This
singularity is spurious, and is similar to that found in half
plane diffraction probiems on geometrical optics boundaries. It
can be removed using an improved evaluation of the stationary phase
integral, taking accou%t of the fact that when 6 & B, the integrand
has a pole near the stétionary phase point. Second, the field is

S ..
zero at the angle 6 = cos [C/(1 + (1 - a)M)]. This is the "cone

of silence" angle for éound waves passing from the jet to the
farfield.

In addition to the scattered field discussed above there is

an additional field present due to the pole at u = u, . This cancels,
l

in a menner entirely familiar in diffraction theory, the portion of

the incident field that represented sound reflected off the duct
|

walls, but it only exists for engles less than B to the jet axis.
i

To obtain the fieids in the jet and pipe we egain use the

!
previous solution, mulFiplied by (3.6). The pole at u, represents

i

the sound waves inside the jet due to the incident field. These
i

are pressure waves of amplitude equal to that of the incident
riv kx

field, i.e., pj = p; e « The field reflected up the pipe
| "

is given by the pole at u = l/(l - M), for which the asbove multiplier
i .

is equal to =1. Therefore the amplitude of the reflected wave is

: ]
equal to that of the incident wave. The pole at u = 1/M once again
gives the instability raves, whose effects are felt only as an

|
axial velocity surging, the pressure perturbation being absent. Then

{
the above multiplier, f3.6), is

u
1 1
-7 (- (L - M)

) (3.8)



so that the instability wave has an axial velocity fluctuztion

Y 7 pse. (1 - (1 - Mul)) (3.9)

This completes our evaluation of the sound scattered wvhen low
frequency plane waves are incident upon a cylindrical pipe with

internal and external flows. It is of interest to compare our

I

results with those of iacqueS’(l975). In his paper, he first
derives the 'zero ordef' fields in the jet and the pipe neglecting
the secondary sound ra&iation. Then he applies the acoustic analogy
to determine the lattef. It is clear that the zero order fields
which we derive here aée identical to his approximate solutions.,

Our result differs onli in the field shape of the radiated sound
field, which is more c;mplicated than his. The two results are

unequal even in the low Mach number limit., We pursue the

i
!

application of the acoustic analogy to this problem in some detail

in Section 5. f
|

In discussing the?relevance of his model, Jacques supposes that
i

the incident sound wav%s are caused by some nearfield turbulent

pressure fluctuation ffom, say, a nearby jet. Therefore he takes
: !

the incident pressure %o scale as p; N pU? where U is some
turbulence velocity. fnserting that into either our or his formilae
for the farfield sound?gives sound levels séaling as |

p pU2, g' . % . whére it is assumed that the incident Pressure
has frequencies proporgional to this velocity U. We feel his

modelling to be inapprépriate. If the pressure fluctuations do
i

scale in this way, andiare further the result of some nearby

aerodynamic disturbanc%, then the incident sound field cannot be
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modelled as plane waveé. In that case the modelling we have

used in Séction L would be more suitable. There we model turbulence
by qugdrupole sources, or by convected vortices. In spite of our
misgivings about Jacques' problem as a modelling of these disturb-
ances it does appear, however, that his scaling laws are correct.

In our treatment éf the scattering of external sound waves we
have neglected such faétors as the finite growth rate of the
instability waves, andfthe light jet issue. In this problem, though,
the basic phenomena théy represent are no different from those with
incident internal noisé and the corresponding results could easily
be derived. %

We consider briefiy the effect of relaxing the Kutta
condition at the exit éf the pipe. Generally the changes, compared
with the case where a ﬁutta condition does apply, are similar to
those for intermal noiée. As before we can relax the Kutta
condition, bj choosingfsome constant value of C(u) in the
Wiener-Hopf equation. iWhen we choose'E(u) so as to extinguish gll

1

‘the unstable waves in the Jjet, then the overall effect is to
(u - U
multiply all the P(u), Z(u) by -—————-—-y where u is the

instability pole. For the farfield this factor, with

= Ccosf/(1 + aMCcose), becomes
!

i

(1 + MaCeosB) (1 + MC(1 - a)eosB)
(1+ MaCcose)(l + MC(1 - a)cosB)  ° (3.10)

V
!

|

The effect on the field shape is to replace one of the relative jet

velocity based Dopplerjfactors by one based on the relative

velocity and incidenceiangle B. There is increased Doppler
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amplification in the upstream arc due to external flow.
The field transmitted up the pipe is given by the above

factor with u = -1/ 4 _ wy» that is,

1 1
-+ -1 |
1-M M = (1 + aMCcosB)
CcosB 1, . (1-M)(1-M(1-a)CcosB) y (3.11)

((1 + MoCcosB ) '“}71

'
[

This field is usually larger than that for the Kutta condition case,
and may become very 1afge as M+ 1. The field in the Jet arises now
only from the pole at u = Yia+ M), since the pole at 1/y repre-
senting the instabilit§ wave is cancelled; with u = 1/(1 + M) we
have to multiply the Kﬁtta condition so;ution by the factor

|

|

i

(1 + aMCcosB)
(1 + M1 E051(1 - a)CcosB) ° (3.12)

4
i

i

We could now continue és in §2 and deal with jet waves convected at

!

a speed chj, followiné Howe (1979). The phenomena induced by this
are, however, little different than those for incident internal
noise, and we do not pﬁrsue the possibility further.

In the above discéssion we have not considered the energy

flows involved, as we did for incident internal noise. The issue

is felt to be unimportant here, since there is no clear "incident"

energy flow to act as é reference point. The only useful such
|

reference quantity is éhe net acoustic energy flow inside the Jet,

!

directly due to the in%ident waves. Then there is an interesting

counterpart to the acoystic energy conversion discussed earlier, in



that some energy is converted to kinetic energy which is carried

away by the jet instability waves.

3.2. Supersonic Jet

One of the most interesting aspects of Jacques' work is the
prediction that the sound scattered vanishes when the jet is
sonic., We have shown in §3.1 that in our éolution this does not

occur. - We now examine the supersonic Jet problem (M > 1), Then,

t

with the same incident wave as in §3.1, and with the same
modifications to the internal noise theofy, we can use the theory

of §2.3. Then the functions P(u), 2(u) are thus multiplied by

the factor :
_ (u = Ho/k) K (u/k)
(u f ul) K-(ul)

’ (3.13)

(u - u /k)

TET:‘E:T“ » Since K =1 for supersonic
|

which is equal to -

flows at low frequency.

The farfield sound level is, therefore, for a given p

!

multiplied by this facﬁor evaluated at u = Ccos8/(1 + aMCcosf)

i
1

i’

giving a multiplier

|
_ (1 - (1 + (1 - a)MCecos8))(1 + oMCcosB) .
C(cos6 = cosB)(1 + M) (3.14)

% .
|

We notice that these are factors similar to those in the sub-
!

sonic case, giving a sqund Tield zero at the cone of silence

-1 1
angle, 6 = cos T+ (1-amc and the stationary phase
i

. o | - . .
calculation failing at 6 = B. There is no hint of the field

!

becoming zero when thefMach number approaches one.



The field in the pipe is still zero, as it was for inﬁernal
(w = u /k)

(u - u,;)

u = _l/(l - M). The pressure fields in the jet are also multi-

noise, since the factor - is still finite with

plied by this factor. For the cellular wave structure, with
un o(l/ka), the pressure amplitude is changed only in sign. The
value of the instability wave axial velocity is multiplied by the

factor with u = l/M, namely

(1 + &aCcosB)
{1+ M) (T-(1-a)Ccosg) ° (3.15)

In all this, the field representing the incident wave is, of course,
iku,x ‘

p=D, e s, @as it was for the subsonic case.
|
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4, SOUND GENERATION DUE TO THE CONVECTION OF VORTICITY PAST THE

END OF A CYLINDRICAL PIPE WITH FLOW

In this section we consider the convection of vorticity past
the exit of a cylindrical pipe with flow. We confine ourselves
initielly to subsonic flow, and derive results that apply with or

without a Kutta condition enforced at the duct exit.

4.1, Internal Convected Vorticity

Here we assume that the vorticity is convected at some speed
chj; the pressure field induced by this vorticity is described

in Appendix 3. The motion due to the termination of the pipe is

driven, as it was in séctions 2, 3 by the pressure difference that
would have existed across the jet shear layer if there were no

termination to the pipé. This difference may be written in the
1

form
: M-
e

p = _—ﬁ:_— . Q. exp[- ikx/Mc], (4.1)

i

where the convection speed is Uc M, cj and Q is given in Appendix

3. In equation (2.16)1we now have

M-M

+ ? _ ¢ 1
P (u,a{ = (—-ﬁ:——) Q . IE?E_:_EET s | (4.2)

|
]
;

1
where u = ~/,
c Mc

i
. . :
Then, compared with th? internal noise case (Section 2) the

quantities P(u) and Z(ﬁ) are multiplied by the factor



(u. - 1u ) . K_(u )
[e] Q .
., with u = TET%?TZT (4.3)

(u - uc) K_(uc)

The farfield sound, fof a given pressure level, is then multiplied
b& this factor evaluated at the stationery phase point

u = Ccosd/(1 + aMcosB); with K (u) = (1 + (1 - M)u)'l and Mc = M,
we have

i

(u - uo) K (uo) _ (3 . (1 + M1 - a)ccost)(1 - M(1 - v))

(u - uc) K-(uc) 2 (1 - M(v - a) Ccosb) (b1)
so that
i -iwR/
o Q(1-v) p_ 2ma v ka [1 - (1+1(1-a))Ccos8][1 - M(1-v)]e  ©
p_ (w) = —
° hwR.(l+aMCOse)72 [1+M(1-¢)Ccos0]?[1 + M(v - a)Ccoss]?
| | (4.5)

A principal featur% of this radiation field is that when v = 1
no pressure signal is fadiated (Q does not alter much with v (see
Appendix 3)). This is:in agreement with the results of Howe (1976),
who found a corresponding result for the two dimensional case when
a Kutta condition was énforced. The velocity dependencé of the
sound field is given bi P~ p UM, since Q scales as I'U which is
proportional to U? andzthe frequency will be proportional to U,
There is a zero in theffield at the cone of silence angle

§

-1 ! -1
60 = cos [(1+ (1~ a)M)C] as there was for the external sound

field, and there 1s an;extra Doppler factor based on the convection
| :
|
speed chj. |
[

'



From Appendix 3, we see that

J(ur ) | pr
m'zl %3 JO(u:la()j ] . 2.2 2m i ‘ (h.6)
[—w—-?'_é_ + u a ]
C

In this expression, the value of Q is made up of contributions from
the various radial eigenmodes of the pipe, the vortex ring being

situated at a radius r . Substituting this value of Q into (L4.6)

gives
in/
) E (1 - v) rma P, kal Jo(umro) IS © F(e)
p (w) = . L,
° m=1 : w2222 2 2 e
I (yma) (——;:f— * s a®)
c

|
where F(8) is a directional factor independent of yw. This
expression can be Fourier transformed to give the pressure level as

a function of time,

p,(t)
o 1y 800 TU_ s U (t-R/,) 2y r )
U T e R 1 BT

m=1 J o -m

which reveals more clearly the scaling of the pressure on U3,

In Appendix 3 we also derive an expression for the pressure
field of g convected distribution of vorticity. Comparing that
case with this, we see%that there is very little change in the
scaling of the farfield sound level with velocity.
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The fields in the jet and pipe due to the convected vortices
are again obtained from the internal noise case by the multipli-
cative factor

(u=-u) K (u)
o [e]
Q(l = \)) . (h.9)

(w - u) K ()

The sound field propagating up the pipe is obtained when u = z;l_ e
at which condition this factor is simply

Q1 - ). (4.10)
% .

Thus the sound field tfansmitted up the pipe is again (-1) times
the pressure on the wails of the pipe in the absence of the duct
termination. It also %aries as (1 - v), vanishing when the vortices
are convected with the‘mean flow,

The pressure in thé Jet given by the pole at u = u, cancels the
incident pressure field on the Jet boundary. The instability wave

is given by the pole at u = 1/y, when the above multiplying factor

i
i

becomes

1 E
-2 -(1 -V, (4.11)
|
that is, the velocity fluctuation is given by

i
i

-ikx/ '
U =2 (1-(1-vxe ¥ (4.12)

!
@
X p.C. !
Jd d ;
i
|

Unlike any of the othe# fields discussed so far, this does not
1.

foa)
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decrease to zero for vqrtices convected at the mean flow speed. A
similar result has again been obtained by Howe (1976) for two
dimensions. He found that there was a vortex wake present, which
cancelled the field due to the convected incident vortex, and this
enabled a Kutta condition to be satisfied.

We next consider the sound field generated when the Kutta
condition is not enforced. As before we take the value of E(u)
in the Wiener-Hopf equation as a constant. The value of C(u) is
chosen to cancel the instability wave completely. Then all the

Fourier transform quantities above are multiplied by

(U-‘ - l/M)
(uc = l/Ms * (14'013)

'

In the farfield we take u = Ccos8/(1 + aMCcos®) as usual, and then

the factor (L.13) becomés

v (3= Me(1 - o) cosé)
(1 -v) (1 + aMCcost) == (h.1k)

i

This factor has two important features. TFirst, for all u (except
l/Mv)’ there is a multiplication by Tif%—;y removing tbe previous
dependence on (1 - V).: Sound is thus generated even when the
vortices convect with fhe flow. This effect of the removal of the
Kutta condition is aga%n in complete agreement with Howe's results
for two dimensions. S#cond, the sound field is less directional,
one of the Doppler fac%ofs [1 - (1 ~ a)MCcos8] being removed and

replaced by the externél flow Doppler factor (1 + aMCcosd).
I

L : o
The field in the pipe is accordingly multiplied by the factor

B
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(4.14) with u = —1/(1 - M), that is, by

wM 1
(L~ (@-M - (4.15)

The field in the jet due to the instability wave is obviously zero.
An alternative theory related to thaf Just described has been
given by Crighton (1972). He considered a simple instability wave
whose energy is scatte?ed by the duct exit. This is essentially
given by the field due to the constant C(u) in the Wiener-Hopf

equation. With C(u) = constant = C, we obtain & jet displacement

¢
2(u) = —2 .
S (Lk.16)

Substituting this into the formula for the pressure in the Jjet gives

2.2 - )
1 [t ek Djz.co(ka)z(l - (1 o+ )u)e il o
Pj T oomi _ : s (%.17)
kv J_“(kva). -2a pc.2k?D,>2
m J J
1 (* ¢ e X gy
T oemi [_w (1 + (1 - Mu) ° (4.18)

'
1

The only pole in this expression is that representing a sound wave

propagating up the duct, with amplitude
!

k?c o Hikx/(1-M)
0 (4.19)

(1 - M) :
|
I
Additionally, we find that there is an instability wave, which

[
+
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produces a velocity fluctuation

kCo e—lkx/M

Yy =T To.c.M ’ (4.20)

Jd d

. 1 .
arising from the pole at /M' In Crighton's eanalysis this
instability wave essentially drives the motion.
The farfield sound level is then given by

2,2 .2 2 -ikux .. (2
1 pj;j k“YD? (ka) (1—(1+M)u)co e Hé )(kwr)kdu

b = ¥ J 2)”
o em kw H( ) (xwa). -2p.c.2%x%D.%a
o J d Jd

. (4.22)

Following Crighton, we scale the results on the value of the velocity

fluctuation

c .k oHikx/(1-4)
uy = - T =) , at the nozzle exit,

to give

APo Py (1o M) (1= (1+ (3 - o))ceost)

Py 7 hnRo [at 2 ) (k.22)
(1 + MaCecos8)“(1 - MC(1 - a)cosd)?

This sound field has several interesting characteristics. 1In
the low Mach number limit, M + O, it reduces to Crighton's value.
While at first sight this appears to scale on sz, assuming uN to
scale as Uj’ Crighton however, adopts a different procedure, noting
that W is linearly related to the net force on the nozzle. He then
assumes that this force is driven by the unsteady flow at the nozzle

and must scale as sz, so that the sound field scales as U.®. The
J



difference between our result and Crighton's is in the fieldshape.
In the low frequency limit his field shape is proportional to

(1 - cos8) and he suggests that forward speed U, will increase
this sound level by two inverse powers of the Doppler factor

(1 + aMCeosB). We see that this is incorrect, and the dependence
on angle is considerably more complicated, except in the limit of
vanishing Mach number. The complicated effect of external flow is,
however, in keeping with other studies of forward speed effects

(e.g. Dowling (1975), and Sections 2 and 3).

The field discussed above does not obey a Kutta condition, and
any attempt to make it do so through choosing C(u) = Co +C,u (say)
is doomed to failure, since adding the additional instability wave
solution will just result in the pressure venishing everywhere if a

Kutta condition is applied.

4.2, External Convected Vorticity

The formula for the excess pressure in this case may be
aM - M )
. — c . .
written as p; = ——ﬁ:———* Qa expﬁlkx/Mc], where Mc cj is the
convection veloeity. This velocity should clearly be scaled with

the external velocity, so that M, = avM. Then we can rewrite p; as

p. = (1 -v) q ikx/vM

1 \ o i
and the corresponding value of P;(a) is

(1L -v) %

v ik(u - 1/Mav) . (k.23)
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This yields a multiplying factor, as introduced earlier, and

relating the present problem to that with internal noise, equal to

[u - Ti"%'ﬁT] [1+ (1 - M)/amv]

A (4.24)
[u - /an] 1+ (1 ~m/(1+M)]

In the farfield this factor becomes (setting u = Ccos8/(1 + aMCeos))

(1 - (1 + M1 -a))ceost
[T+ (T = V) )0eea] + (4:29)

(25 @, « [1- M1 - av)]
The major effect on the fieldshape, as compared with the case of
internally convected vorticity, is that the Doppler factor in the
denominator is much reduced in effect because of the lower vortex
convection velocity.

Again, for the fields in jet and pipe we find that the pressure
transmitted upstream is unchanged (for a given v), while the

amplitude of the instability wave is correspondingly given by

(1 -v) 1
29, v M1 - av)

Therefore, that amplitude, for given Qa’ and v, is relatively

l-v )
bigger by the factor %if:—a%y than for the internally convected

vorticity.

The effect of relaxing the Kutta condition is again to

multiply the amplitude of the field by %% - Mu)) ’
Mu1

. . . MC (1 - M1 - a) Ccosf)
farfield is given by M - M ° (I + aMCoos) « In this case
c

which for the
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the relaxation of the Kutta condition gives a large increase in the
sound field for vortices convected with the velocity of the external
flow, so that the sound level is again non-zero when the vortices
are convected with the flow.

In this section we have shown that when axisymmetric vortex
flows interact with the jet pipe, sound is generated which scales
in amplitude in the farfield on Uja. This is the same dependence
as that found by Leppington (1971) who modelled the turbulence as
non-convecting point quadrupoles close to the end of the pipe:
we have, though, also shown that when a Kutta condition is en-
forced the sound field vanishes. This is because this sound is
essentially driven by the pressure fluctuations induced on the
pipe wall by the vortices, this vanishing to a linear approximation
when the vortices are convected with the flow.

We have not considered supersonic flows here. The phenomena
produced are not expected to be any different from those for
internal noise, while some of the features of the flow found by
Howe (1976) for vortices convected past a two dimensional plsate,

are also expected to be present.
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S5S. ACOUSTIC ANALOGIES

In this section we use two forms of acoustic analogy to derive
equations for the sound field. These enable the farfield sound to
be ascribed to various monopole, dipole and quadrupole sources.
The results are of interest for several reasons. In the past
these analogies have been used alone to determine the farfield
sound. In most cases this has been done incorrectly, ignoring the
quadrupole sources. We show that at high Mach numbers, these
quadrupole sources are responsible for most of the farfield sound.
Further, we show how the O(1) fields induced in the pipe and jet
mey be deduced by simple reasoning in the low frequency limit,
without reference to the Wiener-Hopf solution to the complete
problem. We then use these zero ordér fields to evaluate the
gsource terms.

We consider two forms of the acoustic analogy: that derived
from the Lighthill (1952) equations and a different analogy, due
to Dowling, Ffowes Williams & Goldstein (1978), incorporating a
mean flow. An alternative analogy is that of Howe (1975) which
relates the sound field to unsteady vorticity. Howe (1979) has
used it to discuss the transmission of sound out of a pipe with
flow with results simiiar to those of our analysis, but restricted

to low Mach numbers,

5.,1. The Lighthill Analogy

Ffowcs Williams & Hawkings (1969) have shown that the equation

governing the sound field created by a moving surface defined by
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f(x) = 0 and moving at a speed v is:

2
52 52 3% 1. . H(f)
(— - et —) H(f) (o - p.) = L]
at Bxi 9% x. ox.
i

2 of
- ..+ ou.(u. - v. of
B, [(le Oul(uJ vJ))G(f) 3xj

3 ar
1

(5.1)

where u is the fluid velocity, T., = ou, Us + D -e 2 §.. is the
i

i J o i
Lighthill acoustic stress, and pij the compressive stress tensor.,
We apply this to a surface which encloses the end of the nozzle and
the outer walls of the pipe. To take account of the external flow,
we express the solution to this equation in convected coordinates

such that the nozzle is fixed relative to the Observer. Then, the

Green's function G satisfying

2 2
D 2 9 D 3 3
—_— - G=96(t -t $ - = —— —_—
[th ¢ 3x.2] ( o) (x xo)’ Dt 8¢ * Uo 9x ?
i
(5.2)
is

- L% -
G - a 3 (5‘3)

where I is the direction of the observer relative to the source,
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and the result is valid in the farfield.

The sound field is, from (5.1), given by

32 ‘ 3G
p-p = J G — (5(f) T..) av - J 0 (p.. *+ pu.(u. - v.))e. as
° v 8yj 1 g 9y Tij 1] J)) J
hole]
] By vy ety w)) vy as (5.4)

where 2i is the normal to the surface S. In the problem under
consideration, the derivatives may be taken outside the integrals

to give the farfield result

1 aZJ
p-p_ = (H(£) T__] av
° urgR co2 (1 + Mocose)3 ot Jy rr
+ L -a-fp + pu_ ( ) as
u - v
4t R co2 (1 + Mocose)2 3% g ™o r = n

1 9
+ e P .ou_ + -
4 R coz (1 + Mocose)z ot JS o n p(un Vn) as

(5.5)

where the square brackets signify that the ihtegrals are to be
y

r
+ -
¢ (1 + Mocose) ’ Mo- Uo/co

end r and n denote the radiation direction and the normal to the

evaluated at the retarded time t - R/

surface S.

We now examine the quadrupole term in more detail. The stress



ensor can be written in the fo = (T .

t rm Trr (Trr + Trr) H(g) where

g = 0 is the boundary of the jet, and T., and T.. ere respectively
the mean and fluctuating components of Trr' We now take the time
derivatives inside the integral, and split g into g + g”, its mean '

and fluctuating positions. Then

‘ oT
52 _ 3 rr )
) H(g) T, = 57 (H(£) = 8le) + 7 8(e) 52),  (5.6)
and if g moves at speed Vgs
3g g .
3t © Vi Bx, O
i
so that
22, ta(e) w(e) T, = & (2(8) B HGE) - T 6(3) v, 22
T & Srrd Tt 3t Hel - T, $(g) Vi )

9x.
i

(5.7)

where we have ignored terms of second order in the fluctuating

quantities. Thus the sound due to the quadrupole sources can be

written:
: 3T’
1 3 -
(p -0 )q= ——J[H(f) H(
°'Q xR c; (1 +ugcose)3 ot ot )

~ T H(£) 8(8) v. 28] av.
rr & v axi] v (5.8)

It is clear that the source term due to the steady part of Tess
13
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acting over a variable volume, is equivalent to a surface sourcé
.

We may also write the sound from this quadrupole as

_ 1 _
(b= 0)g = 2 Js [v. T ] as (5.9)

LR co2 (1 +M coso)? 3t i n “rr J°

where S 1s the exterior surface of the jet, which moves at speed

¥. This is the velocity measured in free space. It is convenient
to convert this into a velocity in the jet flow. To do this we

. _ an . . .
write v = - , where n is the radial displacement of the jet

boundary. Then the velocity inside the Jet, u_, is related to the
n

displacement by

so that

(0 = 0g)q = — _a_f[uilds
kmR c, (1 + M cosf)(1 - Mpcos)? ot n “rr J°

(5.10)

In this expression the change to the fluid velocity in the jet has
caused one of the Doppler factors based on the external flow Mach
number Mo to be replaced by one based on the relative flow velocity
(Uj -U) =M.

For many purposes it is useful to relate the integrand of
(5.10) to the pressure and velocity in the Jjet, since the radial
velocity of the fluid in the jet is not g quantit& easily

calculated in our problems. The equation of continuity is, after
9
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linearisation,
Dp” 2 .
Dt + pjcj Vu® = 0, (5011)

so that if we consider a section of the jet flow, we find that

Dp + 2 z =
JV o av p'jc‘i fs w ds + [s pJ.cj v, 48 =0, (5.12)

X n
where Sx, Sn are the exial cross section, and outer surface of the

Jjet. Hence we find that for a section of the Jet of length ax,

Dp 2 du 2
JS o 45, dx + pjcj : (ax) ds, dx + pjcj ] v, T dd ax =0

bd n n
(5.13)
For an axisymmetric motion of the jet it follows that the 'steady’

guadrupole term is

(p - po)Q .

-7

rr 9

= o2, 2 du (5.1%)
LR cé (1 + Mocose)z(l - MRcose) ot J Dt z ¥ ax] av,

.C.
pJ J

where the region of integration is the volume of the jet. We now

apply the above results to a number of practical cases.



i) Internal Noise Provagating down a Pipe with

Internal and External Flow

We consider initially the situation described in §3.1. and
first estimate the relevant source terms. Clearly, the pressure
and normal velocity on the surface of the pipe are both small and
zero respectively, so that the sources on the outer wall of the
pipe are negligible., At the nozzle exit the pressure fluctuétions
are similarly negligible, as the flow cannot respond to low
emplitude fluctuations in velocity. Setting the pressure
fluctuation at the nozzle equal to zero, and assuming that the
radiation at low frequencies is relatively small (O(kzaz) in
energy), we £ind that the reflected amplitude within the pipe is
(-1) times the incident amplitude, in agreement with the exact
solution. The axial velocity fluctuation et the nozzle is then

given by Uy = 2p£/pjcj, where uy is assumed constant across the

nozzle exit.

The motion in the jet is assumed to consist of the simple
convected neutrally stable wave of axial velocity fluctuation and
zero pressure fluctuation; this is the limit of the cylindricsl
vortex sheet eigenfunction for very low frequencies. We now use
these zero order fields to evaluate the individual source terms,
and sound fields.

The monopole is

1 9
2 2 ot
0
LR c, (1 + M_cos )

(P =0 )y= Is legv, + 0 (u - vn)] gs.

(5.15)

Here v, is the velocity of the end of the Pipe relative to the
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external fluid and is, therefore, equal to - U ; the velocity uy
o Bt

is then uy + (Uj - U), and with p - P; zero at the nozzle the

monopole term is

p. A. ‘ ]
(b =p )y = e " a:N , (5.16)
TR e ® (1 +M cosd)
0 o
where Aj is the exit area of the nozzle.
The dipole term is
1 P
(p=-p ). = -—-J [p . +ou (x =-+v)]as.
o'D 7R co3 (1 + Mo cosb)? 9t s °r ron n :
(5.17)

The quantities on the nozzle exit are the same as those used for

the monopole source s0 that Py = 0, pur(un - vn)

= s (uN tuy - uo))(uN - uj). Accordingly, the dipole term is

pj Aj (2MR + Mo)cose [BuN] (5.18)
LR co3 (1 + M cos8)? 3t ’ &

(p - DO)D =

while the unsteady quadrupole term is:

Aj i 32
LR c03(1 + Mocosﬂ)3 ot )

(b =P )yg =

(5.19)

Since the motion in the Jjet is dominated by the instability wave,
p’, p” are zero. Then with U = u * (Uj - Uo) we find that if

uy 5 Uy (t - y/Uj) the quadrupole term takes the form
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(p - po)UQ

Y(l‘(Mj—Mo)cose)
B Uj(l+M°cose) )1 &  (5.20)

UN(t

-

- 2 oa

pj Aj LMR cos ‘6@ j 52 {
3 3 2

LR c, (l+MOcos6) o ot

Integrating with respect to y gives

2 —
(0 -0 = pj Aj . 2MRMj cos“8 [au]y_&
o LoR (1+M cosefzfl-MRcose) 5t ’ (5.21)
o y=0

end the contribution from the point at infinity must vanish for a
causal solution, since the disturbance will not have reached
infinity in a finite time. It follows that the contribution to the

sound field from this unsteady quadrupole source is

. A, .2 . 2
EJ 5 MR MJ cos“®o auN

: ] .
LR coz(l + Mocosa)2 (1 - MRcose) ot

(o - po)UQ = (5.22)

We now evaluate the steady quadrupole term. Since there is no

pressure fluctuation in the jet this is

T
= 3 du '
(p~p )apy = rr J B4 a0 s .
°'88  yrg c02(1+M°cose)2(1-M cosg) 9t ays & 9s, (5.23)

T > 2 - 2 2
Now the value of T is p; cos 8 (uj uo) a, (pj - po)’ so

that
(p - po)SQ =
: 2
(pj coszeMR—(gifDo)) J u " y(l-MRcose)
LR c02(1+Mocose)2(l—MRcose) 9x uj(l + Mocose))] W 48,

(5.24)
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and evaluating the integral as for the unsteady quadrupole, we have

this sound field in the form

p:A. (M 2cos?0 - (Pj/p -1)) 3
it e 0 [a:N]- (5.25)

(p =P dan =
°'8Q R ¢, 2(1#M cos8)(1-M cose)

Adding the four source terms we find that the total sound field is

then
pJAJ [3uN 1 (2MR+MO)cose
(p -p.) = 11 +
° mRe ® OF (1+M°cose)2 (1+Mocose)2
monopole dipole
2 200c20-(P3/0 -
) 2MR(MR + Mo)cos 8 . M. cos8 ( J/po 1)

(1 + Mocose)z(l—MRcose) (1+Mocos6)(l—MRcose)2
unsteady quadrupole steady quadrupole.
(5.26)
and simplification of the bracketed term gives precisely the sound

field obtained earlier by the Wiener-Hopf method, namely

(p A.) 3
" - " (a:N] . (5.27)
hcho (1+Mocose)(1-MRcos6)

(p =p,) =

For high density ratics po/pj and for high Mach numbers this

total field comes mainly from the steady quadrupole term. In

particular, this is responsible for the scaling (for a given uN) on

the farfield density CR rather than the jet density pj, and for the
high convective amplification observed on the fieldshape. Further,

it shows that in problems of this kind involving coupled unstable
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wave motion, it is never permissible to neglect the instability

wave when calculating the sound radiation. Indeed the sound

from these unstable (albeit neutrally stable at low frequencies)
waves apparently dominates the farfield sound for high enough
Mach numbers. In some senses this last conclusion is not
really surprising as the dominance of quadrupole sources would
seem to be a universal feature of high speed flow.

We now consider, in much less detail, the radiation from a
very hot jet. From the results of §3.1 we find that all the
sound energy is transmitted out of the jet pipe. The fields on
the exit plane are obviously p~ = pi‘, u = Pi/pjcj’ These give
dipole and monopole sound sources as described above and both
can be neglected here since they are proportional to the Jet
density Oj, which is by assumption very small. Of the fields in
the jet, that due to the propagating guided acoustic wave is very
small (proportional again to Dj) and can be neglected. Because
the density ratio is enormous, the boundary displacement is small
(the jet boundary appears as if almost rigid). Therefore, the
steady quadrupole source is negligible. The remaining term 1is

the quadrupole due to the pressure wave

2€2 2 1

P (o e, et s : (5.28)
[— (ka)® tn ka]
p.
J
For the essentially illustrative purpose of this section, we

P =DP;

consider only the low Mach number case. Then the quadrupole
element is dominated by the term (p - cozp) vhich in the limit

po/p- + « is simply p”. Therefore, the quadrupole field becomes
dJ



1 52 I 2 , iwt+iy €kx - WR/c
p ~p = = e“p, e dy
(o] )4" R c L at2 ™ 1 ’
o
(5.29)
o) iw ¢ 2
A g o 2t as €+ 0 (
2 cos§ ° T . 5.30)
km R c,
Substituting for €, we obtain the result
. iwp.
__f‘j_ Py (2/m)
P =Po"TmR 3 2, ’ (5.31)
e, [Qo/p'j . (ka)® % (ka)]

which is precisely equal to the field calculated exactly in

section 3.1. We have shown further that this sound arises from the

isotropic unsteady quadrupole term.

In the above account we have only touched on the subsonic
jet with a Kutta condition. However, since the purpose of this
section was mainly to illustrate the principles involved, there
seems little point in proceeding with the cases of a jet with no

Kutta condition or of a supersonic jet.

ii) Scattering of an Externally Incident Sound Field by a

Jet Pipe
This problem has been attempted by Jacques (1975) using an

acoustic analogy. He, however, considered only the monopole and
dipole terms on the nozzle exit. We shall show that many more

source terms should be included; dipole sources on the outside

wall of the pipe, and steady and unsteady quadrupole sources due to
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both the instability wave and the portion of the incident sound
field which propagates along the jet. For simplicity we confine
the analysis to‘a Jjet of the same temperature as its surroundings,
and no external flow. We consider the various source terms in
turn.

The amplitudes of the various sources are derived using the
following low frequency asymptotes to the unsteady flows in the
jet and pipe. On the outer wall of the duct, the pressure is

-1ku; x

equal to the ambient pressure, p = p; e » for this compact
jet (ka << 1). The jet itself is surrounded by a pressure

-1ku, x
fluctuation p; e » the incident sound field, so that there is
a pressure wave of this magnitude inside the jet. The pressure
also sends a wave of amplitude p; up the pipe, so that the
pressure in the pipe is P; ei#x/(l—M). Clearly, these pressure
waves provide an imbalance in velocity on either side of the
nozzle exit plane. This is balanced by the convected instability

wave (which has zero pressure fluctuation) and is accordingly

described by

p. v, .
i ikx/M
ST, L+ mvmpyl e : (5.32)

We now consider each of the source terms.
The dipole source on the outside wall of the cylinder gives

rise to the density field

(n.7) 3

(p -9p) =J — . == p_(
o'DW LTR coz ot “n c, o

where S is the surface of the jet pipe. If the incident wave is of

" R L.L
-t o) as, (5.33)
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the form

P = Pp; exp[ikx cose0 + iky 51n00]

we can write this dipole field sas

-in/cO
p; ive en _ -i(cosb-cosd )kx
(p_po)DW = d$¢ | 2ra dxsinfcos(¢-¢ )e °
LR c, o o °

i(sineo-sinecos¢)ka_
. 5 (5.34)

and to evaluate this integral for ka + O we simply expand the

exponeéntials for small ka. Then

-iwR/c

pi.iwe I2ﬁ ik(coseo-cose)x

(p_po)DW -

dé J dx 2masinfcos(¢-9 Je
2 o o

LR e o)
o

. [1+ ika(sineo - sinBcos(¢ - ¢°))],

(5.35)
and the only axisymmetric term is
pi.im 1a -iwR/e_ ¢m \ i(coseo-cose)kx
(p=p gy = —— ¢ J ika sin®e e dx
o’DW )-”TR C02 o H
-iwR/e¢
. . 2 :
p. + iwWA. sin“0 e
1 J

LrR ¢_ (cos® ~ cos6 ) ’ (5.36)
o o
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where we have assumed that k has a small imaginary part to ensure
convergence at infinity. This is the most important of the terms
neglected by Jacques, and is important even for venishingly small
Mach numbers. |

The monopole on the jet pipe exit plane has strength

R _
Py = - (1 -m), (5.37)
resulting in a sound field

iw A, p.
=—l=-me ° (5.38)
The dipole strength is
p+ (PU*)” = p”(1 - W)? , (5.39)

and therefore, the radiation field from the dipoles on the exit
of the duct is

iwA p. -iwR/c

_ i 2
(p - po)DE = — (1 - M)° cosb e ° . (5.40)
o

We consider next the unsteady quadrupole due to the instability

wave; for an instability wave amplitude u. this is given by

. 2 2 .
iwA p'j M® cos*8 ui -iwR/c
2 (1 - M cost) € * (5.b1)

(p -0 ) =
o'Uel )i c,

Here we have



. cosé@
Pl
u, = =

0
i ' chj (1 + (1 - Mcos 5;7) ’ (5.42)

so that this quadrupole field is

~iwR/e
1w AjPi e M2 cos2g coseo

(o ~ p°)UQI ) * (L - Mcose) ° (1 +

2
LaR cy

A (5.43)

Correspondingly, the sound radistion from the steady quadrupoles
excited by the instability wave is given by the previous result
(5.25), with the new amplitude of the instability wave substituted

and with p = Ps» giving

-iwR/c
iwA, p; e M2cos28 coseO
= —d T
(p - po)SQ - 2 ' 2 (1 + (1 + Mcosegy) .
LaR c, (1 ~ Mcos®) o

(5.44)

The unsteady longitudinal quadrupole due to the incident wave

existing in the jet flow has strength

2M coszﬁ cos O

= P'i M%cos?6 + o (5.45)

2;)
(1 - Meos® )

2y~ .
((pu®)" + " =0 "P7)

Then using the earlier results we see that the sound radiation from
this source is given by

-in/c0
Aj e iw Py, ) 2M coszecoseO
M 0
(M"cos®6 + 1= Mcoseay—)' (5.46)

(P =P )yqs = BTR c_

(1 - Mcosegj)'
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On the other hand, the steady quadrupole due to the wave in the jet
has strength
(—— Dp, Uy 7

0.C 2 Dt 9X rr

V)

and the bracketed factor becomes, on substituting for p* and u,

impi cos?e
2 ((l - Mcos8 ) - Mcoseo)) ’
°3°; ©

while Err is again just equal to M2cos28. Then the radiation from

this steady quadrupole is given by

(p - po)SQJ
-imR/co
iwp;A.e Mzcosze(coszeo-(l-Mcoseo)z) = ikx(cosg_-cose)
= TLwR ‘ (l-Mcose)(l-Mcoseo) jo € dx,
—in/co
Aj iw p; © Mzcosze(coszeo-(l-Mcoseo)z)
= . (5.47)

LR c, (l—Mcose)(l—McosBo)(cose-coseo)

Addition of these quantities, (5.36), (5.38), (5.40), (5.43), (5.44),
(5.46), (5.48), yields the radiation field derived exactly in the
low frequency limit (section 3). Comparison of this result with
Jacques' shows that he has neglected all the quadrupole sources and
also the dipoles on the duct wall. 1In the low Mach number limit

our radiation field is
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-iwR/c
Ap; iue ° sin2e
(p - po) = g;§~;;-— (cose -1 + (coms = coseo))’ (5.48)

of which the first two terms are those used by Jacques while the
last is the duct wall dipole. Adding these up gives the low
frequency low Mach number scattered field

Ap, iw(1 - coseo)(l - cos6)

(o - po) = kTR e (cosé - coseo) . . (5.49)

In this result, unlike that of Jacques, there is a reciprocal

relation between the incident and scattered fields.

iii) Source Terms due to Convected Vortices

The wave transmitted up the pipe due to the vortices is taken
ik,x/(1-M)
to be - p_ e » This allows us to estimate (again for
pj =0, end no external flow) the magnitude of the dipole and
monopole sources on the duct exit; the monopole source has

strength
ps U+ o U& =-(1-M) p./e_, (5.50)

s0 that the monopole sound field is

A. iw ~iwR/c
- = -
(o po)M LR c, Py (M~1)e ° . (5.51)

Similarly the contribution from the internal pPressure field to the
exit plane dipole is given by the dipole strength p; (1 - M2,

resulting in a radiated field
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-iuR/c
Aj iw (1 - M)2 p; cosB e ©
(p - po)E = LR cg . (5.52)

(There is no contribution to this source from the incident
pressure due to the convected vortices since it integrates to
zero.) The amplitude of the waves in the jet due to the incident

pressure convected with the vortices is

which has an associated axial velocity fluctuation

-ikx/Mv
- p, e

Uy © pjcj M(1 - v) (5.53)

vhere the convection speed Uc = Mvcj.
Matching the velocity fluctuations at the nozzle exit we find that

the magnitude of the instability wave is given by

P 1 _-h s ua - )
i Eﬁ?f‘ (-1 - M(l—v)) - pjcj M(1 - v)v . (5.54%)

The strength of the radiation due to the instability wave unsteady

quedrupole is, using (5.54%) and the earlier results,

-iwR/¢c
- Aj iw p; e ° Mzcosze(l + M(1 - v))
(p - po)UQI TR c, M(1 - v) (1 - McosB) . (5.55)

Similarly, it follows that the strength of the steady quadrupole

driven field associated with the instability wave is
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-iuR/c
Aiw p; e © M cos?e (1 + M(1 - v))
(o= 0,) = - . (5.56)
SQI L 7R c, - 2(1 - v) M(2 - M cos8)?

The unsteady quadrupole due to the waves convected with the
incident vorticity is given by substituting for the pressure and

axial velocity in the usual formula, to give

(p - po)SQO
-1wR/co
As e 32 [ 2Mcos 26 ~ikx(1-
_ o J pi(—Mzcosze N (lcos ) e iwt=-ikx(1 MvcosO)/Mvdx’
LTR ¢ ot° ‘o
-iwR/c
Ay e ° 2Mcos?e M
_ . (= ¥Peos?s cos v
o (iw) »; (= Meos®® + T°07) T "ieoze) + (5+57)
o

Finally, the sound radiation from the unsteady quadrupole is given

by
(p - po)UQ
. -in/co
Aj Py M“cos“8 e s [ . ov 1 Dp
= Y (S; + Py Dt) dx. (5.58)
L7R coz(l-Mcose) o pjcj

Substituting for peiﬁ and v this becomes

-iwr/cy
Aj © Mcos?6 1
(p =P )y = cdep, [-5= .
0'UQ  .g e 2 (1-Mcosb) M " M(1 - V)
o
+ Lo1), Mv

* (1 - Mvcose) ?
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-iwR/c
Aj M® cos®® (1 - (1 - Vsz) iwpi e
= - . (5.5
LrR co2 (1 - Mcos8)(1 - MV cosB) M (1 - v) . ?)

Adding the various source terms we recover the original
formula (L.6) for the sound radistion. At low Mach numbers it has
the (1 - cos®) directivity similar to that for a scattered
externally incident sound wave. For high Mach numbers the
quadrupole terms progressively dominate and are responsible for
the appearance of Doppler factors based on the vortex convection

velocity.

5.2. The Dowling, Ffowes Williams, Goldstein Analogy

Dowling et al (1978) consider sources of sound (quadrupoles,
surface dipoles and monopoles) immersed in a Jet flow and show
how the acoustic analogy-introduced in §5.1 must be modified to
account for both the propagation of sound through the mean flow
and for the presence of flow in the acoustic environment of the
source. They do this by using & non-causal Green's function, free
from troublesome instabilities,

Specifically, they show that for sources in a Jet flow the

farfield sound level is given by

ag’
p - P =BJ

(H(r) Tij) av

-8 J 537 (8(£) ij(pij = Pug (uj - V'J.)))G+ 2; @S

1

+
_8 J 5(f) Vr §§— (Po v, o+ (ui - vi)o) 2; as. (5.60)



In this equation, G+ is what Dowling et al call the "reciprocal
Green's function”, representing an incoming wave (reverse time)
solution and B is {1 - Mr)2 e/oaf%here M is the Mach number in
the radiation direction; but they show that BG' is equal to the
more usual Green's function for a source in the jet flow with
outgoing waves. In the expressions for the source strengths all
the velocities and pressures are measured relative to their mean
value in the medium in which they are situated.

We consider only the case of inéident plane waves in the pipe.
Then at the nozzle p°~ = 0, and ui' -V sy s 2pi/pc while the

quadrupole sources vanish since they eare of second order in

fluctuating quantities.

The monopole strength is then given by
= [=D6 -
(p-p.) = [ pr (P5 uy + P, (=U))) ds (5.61)

and the second term vanishes. The sxial dipole has strength
p° + pjuk (uk - vk). This is given by pUj ups SO that the

dipole source leads to the field

L]
(p - po)D = - J —a-g'; Uk DU.N ds. (5-62)

Adding the two sources we note that the Uk §§~ terms cancel
k

leaving
oG -
(p - po) = J 3t P5 Yy as. (5.63)

Now for these low frequencies, it has been shown by Dowling et al
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that with no external flow

(po/pj)

G = §(t -t - R/c + ) . (5.64)

LrR (1 - M cos6)?

ol :
">

Substitution of this in the above formula (5.64) leads to the

far-field density fluctuation

po Aj auN/at

(p-p,) = (5.65)

LR co2 (1 - M cost)?

This result is valid for no external flow. When external flow is

present, the only change is that the Green's function is multiplied

by (1 + Mo cose)-l and the original result is quickly recovered.
In applying this analogy which explicitly incorporates a

mean flow we have removed the quadrupole sources, which are now

included implicitly in the Green's function which then accounts for

all propagation effects. We have only given this one example for

the purpose of illustration. The sound fields for the other

cases discussed earlier could equally be derived with equal

facility using this analogy. In particular, the light jet result

follows easily if the appropriate Green's function is used.
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6. THE EFFECTS OF NOZZLE CONTRACTION

In this section we examine the change in reflection
coefficient and sound radiation (section 2) when s contracting
nozzle is connected to the pipe. Additionally we determine the
radiation produced when a slug of fluid of different entropy from
the mean flow convects through the duct.

The method of analysis we use is to assume that the nozzle
is sufficiently short that the flow through it is quasi~static
with no instantaneous storage of mass or energy in the nozzle. We
need therefore only consider the conservation of mass flow or
energy flux across the nozzle. Our method is then identical to
that employed by Cumpsty & Marble (1977) for turbine disks and by
Candel & Marble (1977) for varisble area ducts. It is also
similar to an analysis of the nozzle problem by Ffowes Williams
(1971). That enalysis though contains an error (see Mani (1981)).
We further assume that at these low frequencies the boundary
condition at the end of the nozzle is that the pressure fluctuation
p° is zero, (ef. section 2). For higher frequencies the theory
could still be used but some sort of impedance condition at the
nozzle exit would have to be used.

The equation of continuity of mass flow, applied at the two
ends of the nozzle, at stations 1 and 2, say, is (pua), - (pUA)2 = 0.

Linearising this in the fluctuations in density and velocity gives

0, 4,y LR
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an equation exact for low enough frequencies. zAt higher
frequencies it should be augmented by a term Jl TE%KT %%-dx
representing the instantaneous storage of mass in the nozzle.
For a frequency w, this term is of order wL/g smaller than the
others, where L is a typical nozzle length, and may be neglected
here. '(Of course the argument is only valid for fixed values of

M end in particular is not expected to be uniformly valid as M + 1.)

Since p,” = O and entropy is conserved, (6.1) may be rewritten

P, uy _uw .
Ca " v= @), (6.2)

The other equation we use is the energy equation. This states
that across the nozzle the specific stagnation enthalpy is

conserved, so that
(CPT’ + Uu')1_= (CPT’ + W), (6.3)

where T” is the temperature fluctuation. Since entropy S is

conserved and TdS = deT - dp/p, it follows that with p,” = 0 and

p,”

— ‘4 - o = »

o + U, (T1 Tz) s U, (6.1)
In this equation, &s with the continuity equation, we have
neglected a term of relative order %% representing the unsteady

storage of energy in the nozzle.

Assume nov that upstream of the nozzle there are incident and



120

-1 U+e i ~U
reflected waves pi e Lusc/ ( ) and R Pi elmx/(c ). Downstream

of the nozzle there is a convected neutrally stable wave
-iwx/U,
u, e . We substitute these forms into our mass flow and

energy conservation equations giving, respectively,

b
=

-

Sl +RM + QL-RI=F. 2, (6.5)
ch 2 2
and
’ 2
P. c U
P— (@ +R) + N (1-R)] =M 2 (6.6)
plcl2 1 cl2 2

Solving these two equations (6.5), (6.6) we find that the velocity

is

c (1 + Ml) P;
u_= M c . s (6'7)

2 : 2 | 2 2 p, C
171 (1 + M, c, /Mlc1 ) 11

and the reflection coefficient is

(L +M) (1-M,2 2mec,?)

R:— '. 6.8
(1 - Ml) (1 + M22°22/M1°12) ( )

In these expressions, we can use

c,? (1 + (y - l)Mlz/z)

= ’ 6.
cl2 (L+(y -1) Mzz/z) (6.9)

2

for isentropic flow, y here denoting the adiabatic exponent while

for small Mach numbers,Mz/M1 = Al/A2 (the area ratio of the nozzle),



so that then

(LM, a,) (1 - MpA /)
T (UM 7A]) T+ AR, (6.10)

R

It is clear from this expression that the reflection coefficient is
zerc when Mzczz/Mlcl2 = 1,that is, when M, = AZIA1 for low enough
M,. The result is in agreement with the recent experimental
results of Bechert (1979). 1In that paper Bechert presents a theory
for this phenomenon which is similar to ours, except that it does
not include the effects of compressibility and is, therefore,
restricted to low Mach numbers,

A consequence of the above theory is that since both the
radiation field and the instability wave ampli%ude depend only on
the velocity u, at the nozzle exit, the ratioc of their net energy
fluxes is unchanged and quite independent of the nozzle contraction.,

It is, nevertheless, of interest to express the radiated sound in

terms of the upstream pressure wave P;+ The radiated sound power
is

0= lo mzaZAJ wy (14 1%5)
R c 3 (1 - MRz)s

(o]

Substituting for Uy = U, this becomes

(1+M.7/,) wa? p; 2 (1+4))%.2M,c,8,
WR = -—-—-———2—)—3—— . po ’c’:—') CO (p P 2 2 2 N (6.11)
(10, o 1 (1,2, /e,
(142%/,) 2 e e, W
= — xe 0.0y 2 I
i L@ oo (2 . (6a2)

243
(l-MR ) o 2°2 1 (l+M22022/M1c12)
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where W, is the power flux in the incident wave in the pipe.

I
Therefore the ratio of the farfield to the incident power, (WR/WI),
c, '
is increased in the ratio by the contraction.

2 2
e, (21 + M,%c,%/Mc,?)

This ratio is less than unity which shows that there is always less
power radiated due to the addition of nozzle contraction, even at the
condition when the reflection coefficient is zero. In that case, all
the incident power is, to first order, transferred to the instability
wave.

We consider next the transmission of sound out of a choked
nozzle. Instead of assuming as the boundary condition that there is
an instability wave downstream with zero pressure, we use &
condition of constant non-dimensional mass flow through the choked
nozzle. This condition is the same as that introduced by Cumpsty &

Marble for a choked turbine. The choked nozzle condition is that
(mVTol/APOI) = constant

where m is the mass flow, A the area, and 'I'o1 and po1 the
stagnation temperature and pressure. In this case the energy
equation cannot be used to determine the unsteady flows since the
choked flow is not isentropic.

Cumpsty & Marble linearise the constant mass flow condition to
obtain an extra equation relating the pressure, temperature and
velocity at the entrance to the nozzle. In our case there is no
need to do this. We note that, since both the choked and subsonic
values of the reflection coefficient must be the same when M2 =1,

we can obtain the choked flow reflection coefficient for arbitrary
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upstream Mach number M, by simply setting M, = 1 in (6.8). Then

. =1 +1 . . . .
with czz/cl2 = (1 + xz-Mlz)/(IE—), the reflection coefficient is

+

(L+ M)y +21) M -2-(y-1)M7?)
R = - , (6.13)
(L-w)((y+1) M +2+ (y-1)m?)

(1 - (v - l)M1/2)
@+ (v - 1M /2) . (6.14)

For subsonic M, (this is always the case), this reflection
coefficient is always positive and less than unity. This may be
compared with the negative value obtained for a non-contracting
nozzle. If the full anlysis with the constant mass flow relation
is used, the same result is obtained.

Another interesting result that can be obtained from the above
theory is the reflection coefficient of a duct inlet. This result
is obtained by reversing the sign of the Mach numbers in the formula

(setting M, = - M,, M, = - M) and putting A,/A) = 0, for e

2? 2
"pellmouth" inlet. Then we find that the magnitude of the reflection
coefficient is equal to (1 - Mﬁtl + M). This is in good agreement
with the experimental value of Ingard & Singhal (1975) who obtain a
value of [(1 - M)/(1 + M)]l'33. Further, it corresponds to total
reflection of the sound energy incident on the end of the tube,
Finally, consider an entropy wave incident on the nozzle from
upstream. Again we take p,” = O at the nozzle exit. We assume that
-iwx/(e,-1;)

the pipe contains a wave of form p, e ,» and that entropy

is conserved across the nozzle. The continuity equation then reads



2 T e,M, > (6.15)

and the energy equation becomes

Py .
N (1~m)+ (T, -1,)s8 =Uu, . (6.16)
Hence
. _ 2
(r, - 17,) 8" = uz(UZ + Mpe,“/e,), (6.17)
so that
(T, - T,)s" ¢, ¥, (T, - T,)s" o,
1+ —) e’y (L-M) (1+ )
¢, My °12 My

We can now determine the sound radiated to the farfield, using

poAziw u, po A iw u, F(8)
p =P _ = = Sa,
o _ 2 2 LhnR 138y,
LR (1 M cosf)* (1 + Mbcose)co
to give
i ) P, A dw F(6) (T1 -T,)s c, M, 6.19)
o 2., 2,2 2 > .
bR (1 + ¢,"M,%/ciM, ) c, M,
and the energy reflected up the pipe is
2 2 - 2 .2 _ 2
P, (1-M )A, ) Al(T1 T,)" s o,
- . (6020)

p. ¢ 2,2, 2
1M p.c (1 + e, M, /c1 N&)
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In the above formulae T, - T, and s” may easily be related to
other flow parameters. TFor small Mach numbers, Ty - T, ™ AP/p Gp
vhere Ap is the pressure difference across the nozzle. (More
generally, Ty = T, = (uz2 - ulz)/2CP and s° = - Cp (%l) where p~
is the density fluctuation due to the entropy wave). From this we
see that, if this density varies on & time scale ~v l/u where 2
is a typical length scale, then the scaling of the sound field is,
for low Mach number, as |

2 Apz U

2 5 & 2 b 8P
P . b " U () X (6.21)
1

More generally, in this low frequency limit where additionally terms
of order M are neglected,we can show that with P, = po the radiated
field is

Bp. &P A,

. _ (1+2Mcos®) 2Py 3 [
P PA(L+ MAl/AZ)

P
2 4R ¢, ot

]’ (6022)
Tor M =+ O this result reduces to

»

- A
P %R "9 ° 3t © p

P P =09
° 12 (—2 wm,

vhich is in precise agreement with the results derived by more
sophisticated means by Ffowes Williams & Howe (1975). Their

 analysis assumes that a sharp fronted slug of gas of density
different from that of the mean flow is convected through the

nozzle, and determines the farfield sound by a rather more elegant

application of the acoustic analogy.
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7. DISCUSSION AND COMPARTSON WITH EXPERIMENTAL RESULTS

The purpose of this section is to discuss the overall features
of the results obtained in sections 2-6 and to compare them with
such experimental results as ére aveilable,

There are & number of compariéons with published data that can
be made for incident internal noise. Figure 5 compares our low
frequency field shapes (2.45) with the exact calculations of Munt
(1977) for the same problem, for cold jet conditions (C = 1); the
two agree beyond 60° to the Jet axis. Near the jet axis there is a
discrepancy which increases with frequency and Mach number. This
might have been expected since our predicted power levels increase
very rapidly as M nears unity, and would be expected toexcead the emct
values. We note that, in the theory, as the jet nears sonic
velocity one of the branch points tends to infinity and then the
approximate factorisations which we have used are not uniformly
valid as M + 1. That would accord with expectations that the
reflection coefficient should actually decrease near M = 1, so that
at M = 1 it changes gradually to its zero value for a supersonic
jet. Therefore our solution is expected to be invalid for Mach
nunbers close to one. In Munt's (1977) peper theory is compared
with the experimental results of Pinker & Bryce (1976) for both
hot and cold jets. In the latter case the agreement is good, as it
is for our theory for low encugh Mach numbers. For the hot jet
Munt's results are much lower tﬂan the experimental points elose to
the jet exis, and show a dip consistent with refraction of sound

by the jet. A possible reason for this disagreement is the incomplete



modelling of the jet instability waves. In the modl problem these
grow exponentially as along the jet and have no conventional
acoustic farfield. 1In reality, however, the growth is limited by
the spreading of the mean flow downstream of the nozzle and by
non-linear effects, Further, in Munt's theory, the region of the
discrepancy is the one where the direct field of the instability
is present, and limiting the growth of thiS'instability would
probably result in an extra farfield, dependent on the growth and
decay rates of the instability wave, but confined essentially to
the angular region in which thevdirect field of the original
instability wave was present. In our theory, there is no such
farfield outside the jet associated with the instability waves,
since this angular sector is vanishingly small for these low
frequency waves which grow at negligible rate.

The reflection coefficient we have determined is in agreement
with both the limited experimental data of Schlinker (1977) and
Munt's computations (1979). However, it would appear to be valid
over only a limited frequency range. At non-zero frequency it is
found that for ndn-zero Mach numbers the reflection coefficient
initially rises to give a peak at a nearly constant Strouhal
number and then decreases as more sound is radiated, in accordance
with the established theory without flow (Levine & Schwinger,

1948 ). We note though that this behaviour does not violate
conservation of energy, since |R| is always less than

(1 + M)/(1 - M). In a subsequent paper (Cargill, 1981; chapter 3

of this thesis) we carry out the low frequency calculation initiated

here to higher order in ka, with results that adequately reproduce
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the entire behaviour observed experimentally and computed by Munt.

In our thgory the effect of external flow on intensity has
been shown to be nearly as (1 + M, c:os,e)-6 near 6 = 90°, fThis is
in excellent agreement with the results of Pinker & Bryce (1976),
which covered higher frequencies. The highly directional field-
shape we obtain is, further, characteristiec of sources immersed in
jet flows at low frequency (Goldstein (1975), Mani (1974)).

Of great interest is the comparison between the net power in
the pipe and the power radiated to the far field. Figures 6-8
compare . our results with Munt's exact theory (1979), Howe's low
Mach number theory (1979) and Bechert, Michel & Pfizenmaier's
(1977) experiments. For the lowest frequencies all four are in good
agreement. As might be expected, our theory diverges from the
experiments and Munt's theory for higher frequencies, ana
agreement is only obtained over reduced frequency‘ranges as the
Mach number is increased, which is consistent with overprediction
of the far field sound levels. We have shown, further, that the
conversion from acoustic to hydrodynamic energy implicit in these
relations is critically dependent on the existence of a Kutta
condition at the pipe exit. When the Kutta condition is relaxed,
and no jet instability wave is produced, we find that there is no
such energy conversion, in agreement with Howe (2979). Further, we
find that then all the incident energy is reflected up the duet ang
the reflection coefficient is - (1 + M)/(1 - M). We have also
shown, again in agreement with Howe, that if the instability wave is
replaced by some sort of neutral wave convected at a speed chj,
then the radiation changes with V from the Kutta condition value

(v = 1) to the non-Kutta~condition value (v = 0).
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An alternative way of looking at the power transmission ratio
is as a function of Mach number. In figure 9 we compare our
results with Moore's (1976). We find that at Mach numbers between
0.2 and 0.8 agreement is good despite the relatively high ka
value (0.46) of Moore's experiments. At low Mach numbers our
result fails because the Strouhal number of his experiment is no
longer low, while at high Mach numbers we probably over-estimate the
farfield radiation.

A further corollary to this energy loss mechanism concerns the
resonances in a tube with flow. We have shown that energy is lost
from such & tube, and this loss would result in the elimination of
any resonant peaks. This has been demonstrated by Ingard &

Singhal (1975). Their results, es reproduced in Figure 10, do indeed
show a significant reduction in the relative amplitude of the
resonant peaks of tpe frequency respoﬁse vhen a mean flow is present.

When the jet is "hotter than it is compact" we find that a
quite different get of phenomena occurs. Then, all the sound
escapes from the pipe (the reflection coefficient is zero) and is
channelled along the jet, which in this limit behaves as a rigid
walled tube. There is no jet instability wave. Further, the
pressure in the farfield is reduced relative to its normal

P e -1
(BQ-N 0(1)) value by a factor ~ [-59-(ka.)2 fn (ka)] . This factor

J . s |
is by definition large in the light jet condition. We find, though,
that for a jet composed of a perfect gas, the condition always
o cps .
fails around the 90 position in the farfield, where there is a

peak in the field shape corresponding to the Mach angle for

disturbances transmitted along this very hot jet. These results are
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entirely consistent with those established by Dowling et al

(1978) for jet noise. Interesting though this result is, it

appears to have little relevance in an seronautical context, as the
temperatures required to achieve the light jet condition are far too
high ( ~ 10,000K).

Examination of our results for a supersonic Jjet shows
phenomena similar to those for the subsonic Jet. Again there is g
conversion from acoustic to hydrodynamic energy. But compared with
the subsonic jet, the reflection coefficient is now zero, since
sound cennot propagate upstream against the flow, and there is an
additional motion of the jet which corresponds torthe steady wave
structure of an imperfectly expanded supersonic jet. The energy in
the pipe splits itself between the instability wave and these quasi-
periodic waves. The field shape of the radiated sound is also
somewhat changed as compared with the subsonic case.

Our result for the scattering of an externally incident sound
wave by the pipe may be compared with the theory of Jacques., He
deduces the radiated sound from an epplication of the acoustic
analogy. We show this to be incorrect, firstly because he neglects
the sources on the wall of the pipe, and secondly because he
neglects the quadrupole sources in the jet., Our results do
however agree with his for the "zero order" fields in the pipe and
jet column. An interesting feature of the field shape of the
radiated sound is the appearance of a zero at the cone of silence
angle for waves propagating out of the jet and into the ambient
fluid.

We have discussed the sound generated when vortices are

convected past the end of the pipe. This sound is shown to scale
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as pz v p?U*M* 22 /R? which is in agreement with other theories,

for example that of Leppington (1971) who modelled turbulence by
point quadrupoles. The sound source due to convection of

vortices past the end of the pipe only exists when there is an
external flow over the jet, and could be one of the "installation
effects" of Bryce (1979) vhich raise the noise level of an
aircraft in flight above the level predicted for pure jet noise.
An important feature of our result is that, when a Kutta

condition is enforced, no sound is radiated when the vortices are
convected at the speed of the mean flow. This is similar to a
result obtained by Howe (1976) for the convection of line vortices
past a flat plate. In our model it arises because the sound field
is essentially driven by the pressure that would exist on the wall
of the duct if it were infinite, and in our linear approximation
this is proportional to the convection speed of the vortices
relative to the mean flow. When no Kutta conditions are enforced,
the response of the sound field to this pressure is increased and
the dependence on the velocity of slip removed.

We have re-examined Crighton's (1972) theory for the
scattering of an instability wave by the rire. We find a result
which agrees with his in the zero Mach number limit, but differs
somewhat otherwise, where the field shape is altered due to the
 internal and external flows. Then the effect of flight is more
complicated than the four powers of Doppler factor assumed by
Crighton.

In all these problems which we have solved by the Wiener-

Hopf method in the low frequency limit, we have implicitly
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assumed that both Strouhal number (ka/M) and Helmholtz number are
small. This limits the usefulness of the solutions. In an
seronautical context, Strouhal numbers of order one are important.
Examination of all our formulae shows however, that as the frequency
is changed the field-shapes are all changed by the same factor

(v l/K+(u)). To obtain the behaviour at these higher frequencies
all we have to do, therefore, is use Munt's results for the
internal noise at higher frequency and scale the other results
appropriately. Subject to the comments we have already made about
Munt's results compared with ours, our results for these other
mechanisms may be directly read across to higher frequencies.

We have used Lighthill's acoustic analogy to deduce & set of
equivalent sources for these sound fields and we find that there
are usually four types of source: dipoles and monopoles on the
duct exit and side walls, and two types of quadrupcle in the Jet
flow. The’quadrupoles involve the unsteady parf of the Lighthill
stress tensor acting over a fixed volume, and the steady pert of
the stress tensor acting over the variable volume of the Jet, the
latter reducing to a surface source on the outer surface of the
jet. At higher Mach numbers and for high density ratios, the
sound from the steady quadrupole dominates the far field and is
responsible for the high convective amplification on the field
shape of internal noise radiation. It is also responsible for the
sound field being proportional not to the jet density as one
might expect, but to the farfield demsity (for a given velocity
fluctuation at the nozzle exit). We have also shown, in consequence,

that in problems such as these the instability wave is an essential




feature of the unsteady motion of the jet. In the low frequency

limit, the instability wave degenerates to a neutral convected
vorticity pattern on the jet boundary.

We have also used another analogy due to Dowling et al (1978),
which incorporates, explicitly, the effects of fluid shielding by
the mean flow. Then the only sources are those dipoles and
monopoles on the duct exit alone, while the quadrupole sources are
negligible, being now of second order in fluctuating quantities.
Thus the field shape and density dependence appear as an artifact
of the particular Green's function used and not of the gquadrupole
sources.

We have produced & simple theory for the effects on these
sound radiation problems of the contraction.of the nozzle. In the
low frequency limit we find that this contraction haé no effect on
the transfer of power from acoustic to hydrodynamic energy, but does
have a large effect on the reflection coefficient. Indeed, as the
Mach number increases from zero, the reflection coefficient
decreases instead of remaining constant, reaching zero when the
Mach number is equal to the area ratio of the nozzle. This
behaviour is found in recent experimental results of Bechert
(1979), and figure 11 compares our result with his. The position
of the minimum in the reflection coefficient is well predicted.
For a choked supersonic nozzle we find the reflection coefficient
is always positive, and less than unity.

We have also used this theory to study the sound produéed
where 'hot spots' or entropy waves are convected out of the

nozzle. Our results are in excellent agreement, for low Mach
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number, with those of Ffowes Williams & Howe (1975) and show the

sound field to depend on the temperature drop across the nozzle.
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APPENDIX I

PROPERTIES OF THE WIENER-HOPF KERNEL ~ SUBSONIC FLOW

The purpose of this appendix is to set out the properties of

the kernel K(u) of the Wiener-Hopf equation (2.20);

) -
[Dj Jm(kva)kw Héa) (kwa) - yDoz Héz)(kwa) kv J; (kva)]

K(u) = p.c.k?
(u) psC;

kv.kw . Jé (kva) Héz)‘ (kwa)

(4.1.1)

We consider first the axisymmetric case, m = 0. Then as ks - 0 the

sy 2
. . . + -
This has the factorisation l%— Vv .V,

((l - Mu) = u)9

wvhere v

((1 - Mu) + u). (A.1.3)

<
]

The quantity

(kwa) - y IJO2 H;Z) (kwa) vk Jn‘z(kva)l = Q, (say)

(0.2 3, (va) v 50)

is, to second order in ka,
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iYE

2 . . .
2 _kVa) - 21 x _._Wka _ll‘____l_____
Dj (1 ) kw [ e kwa.(TT tn ( 5 ) >~ oo - )
-y D2xv (- kva) (- ——-l LEEE— +1 - 21YE =12, (A.1.4)
where Yg is Euler's constants, Yp = ° ST721 oo
Multiplying out the bracketed term:
. 2 2 2.2 2
2i D. , D.(kwa)®-yD%(kva) .,
S - [ o kwa LR
R el A Ly ] [n (B2 +y -T2y,
J
(A.1.5)

The zeros of this expression depend on the ranges of the parameters
involved. We distinguish between the two cases, that in which y is

0(1) as ka > 0, and the light jet case of Dowling et al (1978)

where vy >> S as ka, *+ 0, For the former case the
(ka)? %n ka . 1
zeros are near u = 1/M,at u = uo, uo = ﬁ'(l *+ ic) where
_x _l__i.
g = /; . D, kva [2n( 2) + 7 "5 1, (A.1.6)

which is to be evaluated with u = 1/M.
: . .

Then it is clear that Q may be factorised as Q .Q , where, for
ke s (Fig. 2)
+ _ 2iM2

¢ =B w-u) (w-uw), Q-1 (a.1.7)

am

with



./— - . .
2 Oo0) on (22 1 - Pa-a)id)d) vy - -1y

N
=

(A.1.8)

This expression differs from Munt's, because we have included terms
of 0(k%a®) and not just O((ka)? 2n ka) to obtain the correct
normalisation for the 2n ka term.

When Y is sufficiently large it is clear that ¢ is no longer
small end this approximation breaks down. This is the light jet
limit. There, the second term in Q dominates. In Q, we have

Y = C2 for a perfect gas, and therefore

Djz(kwa.)z -y Do"!(kva.)2 = - (kau)? (Djz -y Doz), (4.1.9)
Q=_2_5._(D2+k2a2u2 (D.Z_YDZ)(QIn(_kW_a)_._Y __1'_.11_;)
Ta g 2 J o 2 E 2 2

+ 0(k%a?). (A.1.10)

Then the zeros of Q are near u = 0, at * ie, say, where € satisfies

Q(+ ie) = 0, or

kaC i
1+ k2a2€2,¥ [2n (__Z__ + -YE - -121— —% = 0’ (Aolcll)

so that to a first approximation

e =v2/ ¥y ka|tn (-}%C—)I3 (A.l.12.)
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Then the factorisation is

Q+ = 2i (u + ie)’ Q- = (u - ie). (Aclnl3)

'rraez

We now consider the case of other azimuthal modes, at low
frequency. In the limit of small ka, u finite, the mth azimuthal

kernel function Km(u) may be expanded for small ka to give

Km(u) v

2.2 2rn2/kvay kvaym i, 2 \m+l 2m_ ,kvam-1,kva, i , 2 \m
pics k?a [Dj(m! ) 5 ) on (kwa) + D ( > U (SR = (=)

Y o m! 2 ' m ‘kwa

2y

1
kwa 2

im m_ (k -1
kvakva (50 ( = (55

m!

= pjcjzkza2 (DJ.2 + Y Doz)- (A.1.14)

The zeros of this factor are both in R so that we obtain the result

~
t

2 2 2 2
.c.“(k D.” +
pses”(ka)” (D5 + yD %),

(A.1.15)

~
1}
[

This factor (Dj2 + Y Doz) will be recognised as the dispersion
relation describing the instabilities of a plane two-dimensional

vortex sheet in compressible flow. The zeros are where

(1 - Mu)? = % iy(1 - Mau)?, (4.1.16)
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i.e., at
w.u¥=2 (1 + iy)
0> o M (1l *iay)°® (A.1.17)

where the upper and lower signs refer to the stable and unstable

modes of the jet. The factor (Dj2 + oy Doz) mey then be written as

2 2 _ g2 2.2 *
Dj +yD? =M (1 + a*y%) (u - uo) (u - u ). (A.1.18)



APPENDIX TT

PROPERTIES OF THE WIENER-HOPF KERNEL - SUPERSONIC FLOW

This appendix examines the properties of the Wiener-Hopf

kernel K(u) for supersonic conditions. As before, K(u) is given

by

p.cjzkz[Dszm(kva) kw H;Z)‘ (kwa) -y Do2 Hiz) (kwa)kv J°(kva)]
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K(u) =
u (z)

n ’ (kwa)

kv.kw.J; (kva) H

(A.2.1)

For convenience we consider only the m = O mode and ignore the
1ight jet condition.

In the subsonic case, the only poles of the numerator of
(A.2.1), that were important at low frequencies were those
representing instability waves. The other poles near the zeros of
Jm(kva) represented waves in the jet decaying as exp[- jmn/a/(l—Mz)
vhere Jm(jmn) = 0, and were unimportant. For supersonic jet speeds,
these poles produce non-decaying waves, which are the analogue of
the wave structure of an imperfectly expanded jet in steady flow.
We divide the range of u into two regimes for the factorisation of
K(u). First, where u << l/ka these poles are of no consequence,

and we can again approximate K(u) as

- 2pjcj2 k? DJ.2
K(u) = . (A.2.2)

(kv)? &

For supersonic flow this is a plug function. This is because K(u)
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depends only on the jet, not ambient, conditions, and because no
waves can propagate against the flow., Therefore we can take
K (u) =1 and K+(u) = K(u).

For values of u >> l/ka the poles of the numerator of (A.2.1)
become significant. We only deal with the case of no external
flow, where o = O. Then, we can approximate X(u) as

2p c.zksz2 Jm(kva)

K(u) = [—id
kv.J; (kva)

] . (A.2.3)

Again, we can take K (u) = 1 and K+(u) = K(u).
If there is an external flow present, we have to consider the

full numerator, and K (u) is no longer unity.
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APPENDIX TII

THE PRESSURE FIELD OF CONVECTED VORTICES

(a) Internal Vortices

In this appendix we determine the pressure fluctuations
induced on the wall of a pipe by convected vorticity. Specifically,
we consider a distribution of convected ring vortices w(r,x - Uct)
in which the vortices move at speed Uc. We first solve for the
perturbation in stagnation enthalpy due to these vortices. This
quantity is used rather than pressure since the latter vanishes
when the vortices are convected with the flow.

The equation governing the perturbations in stagnation

enthalpy due to vorticity is (Howe (1975)),

=
g

v
Dt

|

T -V)B=V(wAy) -=="(uAv), (A.3.1)

) +
Z Dt

=3

D 1
(Eg'(—;
(o]

L
0

for isentropic flow. For the present case, with a uniform mean

flow and convected vorticity, this equation becomes

(2725 - ¥*)B =
¢ Dt

" [~

%? (r wolrx -Ut) u) . (A.3.2)

We transform this equation into co-ordinates moving with the

vortices. Then, with x” = x - Uct, we have

U
13 13, 28 0 e .
(r 37 or B 7B = -3 aw (* wg(r,x")), (A.3.3)
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2
(U, - U)
where g2 = (1 - ——JETI—S——) accounts for the effect of com~
J

pressibility. The Green's function for this problem, satisfying

2 2 = ‘4 - -
Vr G + B G ogs = 8(x xo) 8(r ro)/ro, (A.3.4)
is
-Hplx=x [ /8
T Jo My 7o) Jo (br) e
G= ] - - , (4.3.5)
m=1 2ma” u B J (uma)
where
Jg (pma) = 0.
Applying (A.3.5) to (A.3.3), we obtain the result
22 U S0wn) glurg) owleex|/e
B=| 1- JERCEY IR Ry TS
o1 2ﬂa2um8 o -m o''m o
(A.3.6)

If we assume that the vorticity vanishes at the walls of the duct,

w(a,x) = 0, then

w ', U J(ur) J(ur) -u|x-x |8
c o ''m o -mo m o
B = J . . e w(r ,x)r dr dx.
E ona’p Jo(uma) Jo(pma) | © °°

(A.3.7)

To use this result we need some specifie form for m(x,ro), and we

consider two cases - convected ring vortices and a convected



distribution of vorticity.

i) Convected ring vortices

Here we take
w = rd(r - ro) §(x”) (A.3.8)

representing a vortex with circulation T and radius ro. For
convected turbulence, the appropriate megnitude of T is u”f, where
u” is & turbulence velocity fluctuation and & is a length scale.

From (A.3.7) the fluctuating stagnation enthalpy is

, -u_[x-U t|/p
-~ -m C
U, Ity 9o (uyr,) Jlur) e

. (A.3.9)

3]
|
-~ 8

2ﬂa28[Jo(pma)]2

In this expression we have reverted to the original co-ordinate
system. To convert to the perturbation in pressure, p“, we note

that here

so that

-u_[x-U t|/8
- - n C
ps Ir (U, = Us) I, (wr) d(ur)e

;. oma?s [T (ue)]?

L]
!
©~1 8

(A.3.10)

We observe that the pressure fluctuations are dependent on the
velocity of slip of the vortex relative to the mean flow, in this

linear approximation. If non-linear terms had been included there
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would be an additional component of order p N pju‘2 which would
not vanish for Uc = Uj'
In the problems we solve in this paper we need the time
harmonic components of this pressure. Defining the Fourier time
transform of p(t) by
+oo .
p(w) =J p(t) ¢ 4% at (A.3.11)

-00

we have
plw) =
-iwx/U
E ps I'r (U ~U) J (u ro)Jo(umr)lﬁu re ¢
. (A.3.12)
2 2,2
Dooma? [ (ua)lt U (BB, 2.2y

UZ
C

In practice we require the pressure fluctuations on the duct wall,

which are
P(m,a') =
-iwx/U
. © J7° (u ) U.-U Hr e ¢
_i o 3 e ‘m o
on z ' J (u a) 1 U ] 2 2.2 . (A.3.13)
c (w a“g + y2.2
Y _a
U 2 “m
c

An interesting facet of this expression is that there is no
pressure fluctuation due to the zero order radial mode of the

vorticity distribution.



ii)

Convected vorticity distribution
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We next consider a distribution of ring vortices w(r,x - Uct);

from equation (A.3.16) we find that

-]

1

p(t)

we have

p(w) = J

we find that

plw) =

el
J (U, U, )e. Jo(umro)J (vr) row(xo,ro) e dr dx
ora?B [J_ (w r ))?
° me (A.3.1L)
We now Fourier analyse this using equation (A.3.11), splitting w
into its wave number components, Setting
' -ikxo
olx,r ) = 55 J w(k,r ) e 7 & (A.3.15)
—ik(x-U,t)-iwt
+@ (Uc—Uf) . Iolur ) (nr) rwlk,r )e (-2ip / ) a dt ar
- 2.2, d 2 2 2/52
-= 3 (2m)%a’p (o, (ua)]® (k% + u2/p?)
(A.3.16)
Integrating with respect to t and R, and noting that
—ikx-i(m-Uck)t or
J F(k) e dt &k = o= F(ﬁ—) (4.3.17)
c ¢
E i(u, -Uc) .. J: (umro)Jo(umr) oy e diur '
) J 2 U o 2 2
1 [Jo(ljlma)] c ( a’g + p2a?)
U 2 n
c

(A.3.18)



This is then the pressure fluctuation due to the vorticity
w(r,x) convected along the duct. It again vanishes when the

pattern is convected with the flow.

iii) Convection of vorticity along the outside of the duct

We consider the same situation as above, except that vorticity
is convected along thé outside of the circular pipe. The Green's
function satisfied by (A.3.l4), with %%-= O on the outside of the
tube is first derived. We define the Fourier transform of the

Green's function as
a(k) = J olx) e ax, (A.3.19)

so that B, the Fourier transform of B, must satisfy

~

3B _ g2p25 - . 9
r 5. B°k°B = = aro w(ro,k). (A.3.20)

[}

o

The Green's function, with r < r s can then be written

= i-ng) (inro) I (igkr) + A ng) (ipkr), (A.3.21)

Q>
=

where A is a constant to be determined from the bouhdary condition,

~

Setting %% Oonr =a, gives

a=-tul®) ) o7 e ) (ieka). (A322)

Hence for r < r,
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(2) .
. H'/ (iBkr )
6 =i O o (2Y4 : 2),.
G =7 ng)—(iska) (£, "(ifka) J (igke) - Hé ) (i6ka) J7(igka)],

(A.3.23)

or equivalently,

K (Bkr ) ,
- 1 .
¢ =%r K:’(BerS [K3(Eka) I (Bkr) - K (Bkr) I7(Bka)] .  (A.3.24)

For the dquct wall r = a, we find, using the Wronskian for Bessel
functions,
K, (Bkro)

S_L
2T gka K”(Bkr ) ’ (.3.25)
s} (o]

and hence the pressure on the duct wall is given by

P, ~-ik(x~U t)+ikx K (Bkr)
= — c [o] o _ 3
P (21r)2 J © Bka Ko(Bka5 ‘(Uo UC) 3;; (row(x,ro))
dxo dro dk.
(A.3.26)

If we again assume that w(x,ro) is zeroon r = a, (A.3.31) gives

) -iwx/U
. 3.1[ x, Ki(Bur /0) U, -1v) e  °©
o a K (Bwa/Uc) U,
‘ iwx‘/Uc
x I w(x ,ro) e dx*d r . (A.3.27)

We consider two cases as before:



(a) Convected ring vortices

Here

§(r ~ r)

w =T 6(]{)

gives

K- (8wr /U ) ) imx/Uc
-p., r wr U -UIT e
p(w,e) s ——=2-2°_°c.€ o ¢ : (A.3.28)

em a K, (Bwa/UC) U,

For low frequencies, where our acoustic theory is valig,

(u, -u)
B o ¢
plw) = 5= T (A.3.29)

This is a much simpler result than for the interior of the circular
pipe. It is caused by the non-appearance of duct modes for an

infinite medium.

(b) Distributed Vorticity

Here we take the vorticity as m(ro,xo). We then find that

+® K “(Bur / iNX/UC
o) r, K, “(Bur /U ) (U, - Uo)w(w/UC,ro)e dr
P(U’:a) =Toem -0 a K ‘(BN /U ) '
[e] a o Uc
(4.3.30)
Again, the pressure fluctuations take on g simple form for
“’Bro/Uc << 1,
0 U -0 bl -iwx/U
_-a C () W
plw,a) = (———) J wlg-sr ) e ¢ .
o U, a U, ' o drye (4.3.31)
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A11 the results in this appendix result in pressure fluctuations of
the form

U
c .
pluw) ~ (—-U——o) Qw) exp(- iwx/U ) ,
c
where Q is a constant depending on the strength of the vorticity in
the pipe. The pressure fluctuations accordingly scale on the

velocity of the vortices relative to the mean flow.
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5. Comparison of low frequency fioldshapes with Muni*s calculations.
X =0, C=1.0,-—- ka—* 0,----—-- ka = 0.24 (Kunt 1977),-——--—- ka = 0.6

(Hunt, 1977).



rig. 6. Comparison of the ratio (radiated power/net power induct) ith measurements

and Hunt"s theory, M = 0.3, X =0, C = 1.0- - exact theory (Hunt, 1981b), - low
frequency theory----———— approximate theory (Howe, 1978;.



Flg 7. Comparison of the ratio (radiated power/net power induct) with measurements
and Munt®s theory, M = 0.5, X = 0, C = 1.0- --——-exact theory (Hunt, 1981b),------ low
frequency theory®»~ —— e« approximate theory (Howe, 1978).



Fig. 8. Comparison of the ratio (radiated power/net power induct) with measurements
and Hunt®s theory, M = 0.7» X =0, C = 1.0--——-exact theory (Hunt, 1981b), —--—-—- low
frequency theory; —————— approximate theory (Howe, 1978)*
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CHAFTER 3

LOW FREJENCY ACOUSTIC RADIATION FROM

A JET PIPE - A SECOND ORDER THECRY
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SUMMARY

In several recent papers, Munt has solved the problem of the
radiation of sound out of a jet pipe by the Wiener-Hopf technigue.
This paper extends his work, giving explicit formulae for both the
farfield radiation, and the sound reflected back up the pipe for an
incident plane wave. These formulae, which are valid to second
order in the ratio of duct diameter to wavelength, are shown to be

in excellent agreement with Munt's exact numerical computations,



INTRODUCTION

An important problem in the study of aero-engine noise
is the propagation of internally generated sound out of the
jet pipe to the farfield. This paper presents theory relating
to that problem, for the case of low frequency plane wave
internal noise,

The problem of sound propagation out of pipes has a
long history, its modern era beginning with Levine and
Schwinger[1). Using the Wiener-Hopf technique[2], they were
able to obtain exact formulae for the radiated and reflected
sound waves in the pipe, in the absence of any mean flow. At
low freguencies, they found that the magnitude of the reflection
coefficient had the form (/- DC'@/ X)l) where a is the duct
radius, )\ the wavelength and ¢ is a constant., The radiation
field was found to be omnidirectional for these low freque-
ncies, the pipe behaving as a simple source, At higher
frequencies the farfield sound became beamed along the pipe
axis. The first attempt at incorporating a mean flow into
the analysis was that of Carrier[3]; he showed that provided
the flow was the same everywhere, both inside and ocutside the
pipe, then a solution could be obtained by a relatively
simple modification of Levine and Schwinger's analysis.,
Candel[4] has given é similar solution for a two-dimensional
duct.

The first attempts at including different mean flows
inside and outside the duct were made by Mani(5], for a two-
dimensional duct, and by Savkar[5], for a cylindrical gduct,
Unfortunately, their solutions were only approximate and did

not consider the all-important instabtilities of the jet shear
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layer, becauseAthey used an approximate but inappropriate
factorisation of the Wiener-Hopf kernels. hecognition of
the importance of these instabilities, is crucial to a
correct solution of the problem, since it has a bearing on
the condition assumed where the flow leaves the pipe, which
in turn affects the farfield., This was originally demonstr-
ated by Morgan[7] and Crighton and Leppington[8], who showed
how the correct allowance for the vortex sheet motion in the
related problem of a two-dimensional splitter plate offered
one a choice of whether or not a Kutta condition was satisfied,
The first complete solution to the problem under dise-
cussion here was given by Munt{9J. He again used the Wiener-
Hopf technique and obtained a solution that both obeyed a
Kutta condition at the end of the pipe and satisfied the
requirement that the radiation be causally.related to the
incident field in the pipe. Despite the considerable simpl-
jfications in the theoretical model to make the analysis
tractable, very good agreement was obtained with experimental
measurements of the farfield directivity pattern by Pinker

and Bryce [10]. Extensions to this work were given by Howe[11]
and Cargill[12,13]. Howe solved the problem in the low Mach

number limit and was able to give analytic results for the
reflected field inside the pipe. In that low Mach number
limit, he showed that the end-correction of the pipe was
equal to its value in the absence of the mean flow plus an
additional part due to the flow., He also discussed the
behaviour of the reflection coefficient, showing it to
decrease from unity at low frequencies, A feature of this

and othexr analyses in which a Kutta condition is assumed
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to hold at the pipe exit, is that most of the acoustic
energy in the incident wave is converted to hydrodynamic
energy assoclated with the instabilities of the jet column.,
This loss of energy was first discovered by Bechert et al[ﬁ4]
and by Moore [15] and is correctly predicted by the theories.
The two papers by Cargill of which EZ) is a summary andl}}]
the detailed analysis, considered Munt's theory in a low
frequency limit which dces not reéuire the Mach number to be
small and in that important respect differ from the theory
of Howe. With these assumptions, Cargill was able to give
specific formulae for the low frequency radiated field shapes,
and showed the low frequency limit of the reflection co-
efficient magnitude to be unity. An additional feature Qf
his analysis was the inclusion of alternative'solutions in
which a trailing edge Kutta condition either did or did not
hold., He found that in the absence of the Kutta condition
and in the absence of shed vorticity, the reflection co-
efficient was increased to a value of (I+M )/(t—M ), 1In

a similar vein, is work by Rienstra EIG]. A new feature of
his limit was that he obtained a value for the pipe end-
correction in the low frequency'(%h*o,with Mach nunber
fixed) limit, showing it to be different from the low Mach
‘namber value (Howe [11] ). Recently, Ting [ 7} has tackled
the low frequency problem, for a two-dimensional duct, in a
quite different way, using matched asymptotic expansions:
his approach really relies, however, on the use of conformal
mapping to solve the "inner" incompressible problem and

cannot be adapted to deal with the axisymmetric pipe problem.



171

Work complementary to that of this paper is presentasd
in two papers by Munt[18,19]. The first of these deals with
the reflection coefficient, for a cold jet, and the second
with the radiated power. Munt shows that when a mean flow is
present, the pressure reflection coefficient does not initially
decrease with fregquency but increases, reachihg a maximum
value at a Strouhal number of 0.5 and thereafter decreasing,
but still remaining higher than the value it had in the
absence of the mean flow, This increase is reduced by the
addition of an external flow. It might be thought that the
increase violates energy conservation but this is not so and
the energy reflection coefficient is always less than unity.
This increase in the reflection coefficient is well substant-
iated by experiment[20,21,2é], at least for the lower Mach
numbers. Munt also shows [19], that the previously mentioned
power absorption phenomenon is well predicted theoretically,
in agreement with experiments[14].

The aim of the present paper is to model the above
phenomena in more detail. One of the features of Munt's work
is that only computed results are given, which do not necess-
arily enablé the physical basis for the results to be under-
stood. Tne aim here is to obtain explicit formulae for thé
reflection coefficient and radiation field to second order
in the frequency parameters, thus showing in detail how the
interesting features of fhe reflection coefficient arise. In
the author's opinion, this paper is likely to represent the
limit of what it is useful to do with this problem analytically.
To go further than the present approximation would produce very

complicated forrulae which, as a result, would do little
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to aid physical understanding.

The paper begins by summarising the Wiener~Hop{ theory
of the sound transmission problem following Munt [9] and
Cargill[13]. The results are derived both with and without
the application of a Kutta condition, and also with the jet
instability assumed to consist of a neutrally stable convected
wave following Howe [10]. The next section determines the
reflection coefficient, This is done by expanding the Wiener-
Hopf split functions to second order in the frequency para-
meter,k&. A solution is thus obtained that is valid as Ra—>0
with the Mach number,M, fixed. It appears that this solution
is valid, at fixed (Ra) over the whole range of Mach numbers,

so that it is not restricted to low Strouhal numbers (Ra/M).
As a result the theory is able to predict the whole range of
the results presented by Munt, using a simple analytic formula.
Results are given both with and without Kutta conditions, and,
unlike Munt [18,19], they include the possibility of different
temperatures inside and outside the jet, The effect of the
Strouhal number on the end-correction is also discussed.
Finally, the paper derives formulae for the radiated field in
the same limit. This enables some assertions made by
Cargi11[13], concerning the field at high Mach numbers (jet
velocity greater than ambient sound speed), to be proved.

The paper concludes with a discussion of where further
work is required on this problem. 1In particular, the possi-
bility of modelling some features of the real jet excluded by

the present idealisation is highlighted,
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BASIC THEORY

The purpose of this section is to summarise the theory
contained in Munt[9] and Cargill[}}], which forms the basis
of the work in later sections., The following problem is
considered. A rigid cylindrical pipe of radius &, containing
a fluid of density f'd s scund speed cj and mean velocity U.‘; is
placed in an ambient medium of density/D,, sound speed Co and
mean yelocity(iO. The boundary between the two fluids, v=a,
x>0 takes the form of a vortex sheet, which is attached to
the pipe at x= O (Fig. 1). The pipe contains an incident
sound field having a pressure perturbation.

F___ F;' exp [.;b\q(:-ateuuc] , (1)
in which kuiisthe wave number of the incident sound field,
and - for the plane waves considered here iskhu¢= k/(kf”j),
where f1j=(1j/ij. The frequency hcﬁ' is assumed to be of the
form c\)[k[exP[—(,gj , where & is between O and TM,and will be
set to zero at the end of the analysis. To account fof the
presence of the pipe termination, we assume correction pressure
fields FJ s ps toexist in the jet and in the ambient fluid
respectively., These fields satisfy the convected wave

equations

s 43 _fik-m:2 Y |y o

[3(‘k+ ¥ 3 + V"S—ﬁl (L J§L> YJ—O’ (2)
and

IR - ST - Y A ¢ Tl o P aﬂ -
[ y o C‘(L <2 )| =2, (3)

X

Since the problem involves incident plane waves and the
geometiry is axisymmetric, the dependence on the azimuth angle

;5 may be dropped. These equations (2) and (3) are solved
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subject to the requirements that the particle displacement
'rlis zero on the walls of the pipe (r=a, x £O) and is
conserved across the jet (r=a,x>0) and that the pressure
is constant across the jet boundary (r=a,x >0),

To proceed wifh the solution one introduces the Fourier

transforms
400

P:t (w) = j F(z) H(_ix)cékuldl: ' (4)

=0
for the pressures, and similarly Zr(u) are defined as the
Fourier transforms of Q(x)H(lx), where H is the unit step
function. In these transforms, the * parts are analytic in

. o, . .
the regions R (Fig, 2), which overlap in a strip of regularity.

Then, the correction fields PJ',P:, y satisfy the equations

(_Lé_ v +k‘V‘>Pj =0,

L2 v2 (5)
L2vd +kwHP, =0
(y >v By ) Fo=0; (6)

where V= (M)~ u’") and w2= GP(1-xhuy—u®,

in which the branch cuts of V; W are taken as shown on Fig, 2,

and the values of V,w +taken so as to ensure regular behaviour
within the strip of overlap between R¥ ana R™, Solving these
equations, it is obvious that Pu)PJ have the forms

P = AT (.to.vv‘) , (1)

P = B HS)U‘{WV): (8)
where Jo is a zero order Bessel function of the first kind and

S) is a zero order Hankel function of the second kind,
Fourier transforming the boundary conditions, it is found that
continuity of pressure gives
PP () — Pf(ar) —__Pe o,

it (u-ui) (9)
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continuity of displacement across the jet shear layer
similarly gives

ZJ+(Q._) - Z°+(Q.+> = O, (10)
and the rigidity of the pipe implies that

Zyla) = 2o (a*) =0. (1)

Solving these equations, one finds that

Kzt —ctiéu-—‘u.) = P = P2 F ™ ey, (12)
where
Kw)= — ((c/r Y w H 2 liewa) Ty (va)Df = DE V:r(km)mw.]

yw T Ck\/a) H“ )(khm.)
and Y = (PO/ﬂj)- (13)

The solution of equation (12) is described in some detail
by Munt[9]. Essentially the technique is to split | into the
product of two factors K+, K s Tegular in R*ana R respectively,

so that we obtain the functional equation

Z Ky —_Pe L Fw= P [ ! ‘k
th(u-ui) M (u) Lk(u-ug)lK(uL) K (14)

One initially solves this equation with the edge condition,
that the vortex sheet must leave the pipe with zero gradient.
‘i.e. the usual Kutta condition. Initially § is taken as
greater than amgue , where Uo is the instability pole of K(u).
Then, as -3, Kf) Arur Ky w2 (gee e.g. Munt{9]).
Since it is assumed that 12«»*-3/1; Zu)~ WS/ as wW-»e0, so
that Pﬂ+1u)2:+(u3 ~ + By Liouville's theorem, this
implies that both sides of equation (14) must be equal to zero,

soc that

Z(u)y =_ P .
Cla (u=ug )t YK w) (15)
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To obtain a causal solution with real R (i.e.5=0 ),
one deforms the Fourier inversion contour continuously to give
6=0. 1In so doing the pole at u=We is encountered, and a
contribution due to this must be added to (15) to ensure that
the field is regular when Imk< 0O, a requirement for causality

(Morgan[7]). Thus

Pc P
210 -  Heapprgamib
CR(W-uwd) K Tu)y K TQui) Che (e w) K ko) K (QL)( 16)

In the above expression, Kt are taken as the analytic
continuation for §¢ (amus|of [KTdefined with §> [argus|,

In practice it will be convenient to work with $=0 , and in

*.
that case the split of K(k) is KX ‘t(u) (say), in which

KFfuy =KW 5w = KW (u-ws) (17)

(u=Wo

It thus follows from (15) that the fields inside the jet

and in the ambient medium are given by

Pj (w) = R*p; ¢i* Di* To (kvr) P

’ 18
kv Jo/(kvy) Ck(u-uL)K+(“ YK () (e)

Po (u') = k"@lf’o :Doz H?) Ckwv) P('.
Rw HS')/(IQWV) il (u-ui YK H(u YK wc)

(19)

The fields in the ambient medium and in the jet pipe are then
obtained by Fourier inversion in the usual way.

When the Kutta condition does not hold, then the dis-
placement QCX) “ x/ras % S e, 5o that £ W—> ufz/l as w-»m ,
Therefore, thele:f‘th;md side of (14) is O(!) as u->, Thus
by Liouville's theorem, both sides of the equation must be

equal to a constant,E (say). “hat is from (15),

Zcu) = P(. E .
L (u-uwi) KT(u) K™ () + KT (w) (20)
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Clearly, there is an infinite numwber of possible solutions to
this equation, each corresponding to a different value ofE .

Only one of these is of interest, though, and that is the ons
for which there is no instability wave pole produced, so that
Z(W’):O. This is termed the non-Kutta condition solution,

and with

E = — ) (21)
KT(w) R (ug wi)

is precisely the same as the result that would have been
obtained if the causality argument had been ignored, and §

taken as zero from the beginning. That is
- (LL“ Uo
.. kutta () = §k““’“ () ml) ’ (22)

where gEis any field variable,

A third solution that will be required later is that
introduced by Howe E1]. He argues that at high Strouhal numbers
the jet boundary may well be tHick on the scale of the hydro-
dynamic wavelength, <1vl4j/cﬂk) y while remaining thin on the
scale of the acousticrwavelength (/R ), at low Mach numbers.
He therefore proposes that to the non-Kutta condition solution
one should add another solution, corresponding to a neutral
convected motion at wave number htﬁ*, say, with the requirement

that the Kutta condition is restored. That is, we set

Zwy = __Pc(u-ue) + A (u- uo) (23)
ch(u-u) K K tue) (uomws) e (w-w ) M KTw) (u.-u.‘)f

where A is a constant. Adding these so as to obtain the

3/

required growth of Vlm x at x-> 0, one obtains the relation

analogous to (22)

By = P Listedlizuy (24)

(wimtie ) (i)
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Some of the implications of these solutions for the
farfield sound and the reflected field are discussed by
Cargill[13]. The discussion of the deductions from these
solutions is split into two sections, In the first, the
reflected field in the pipe is discussed and in the second,
the farfield radiation. In each case, the analysis is taken
to second order in the frequency paraneter kq, as opposed to
the first order analysis of [13].

THE REFLECTED FIELD INSIDE THE JET PIPE

Using (18), the reflected field inside the jet pipe is

given by
oo s ~leux
Pj(x)=_| | k%D’ Te(ve  du e
ST | kve Tol(Rva)(urwi)k FlK (we)  (25)
-—00

For x{0, the contour may be closed in the upper half plane,
giving pole contributions from the zeros of :EJ(KVGB y which
represent duct acoustic modes travelling upstream away from

the nozzle. Of these, only one does not decay exponentially at

U-m)

low frequencies., This is the plane wave mode given by u= W,=
leading to
—-l:kurx
Pi(x)=_<i’Dj*(ur) @
a Kt (uy) K=(ue) (ur-ui) (26)

Clearly what is required now is the asymptotic behaviour
of }(*kuf),l<—(uc) . Now KI(u) are defined in the usual way

by the integrals

Kt («) = ezp[i | j&« K(s) ds]’

ame (s—w)

(27)

in which the contour is taken within the region of regularity

so as to run below u for KV and above for K. Since
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K) = - kColo [(C/)') kws Ho (kwa)J;(kw\)fDJ Do kvTa (kva) }-F (kwqﬂ

R*vw \T'(kva)Ha)/(lewa.) J
| (28)
it is convenient to split K into three factors,
K(w) = —2K’p) 3’2 5. T, (29)
(lv?a?)
where
S = [_-_ To(kva) kva
2 Jo/(kva) (30)
and

T- [kw U (Ruga) Ta(lva) D}~/ ) v He{iesua) T (qu)DJ
kw HE lewa) Je( kva) D (31)

These factors have been chosen so that S, T>1 as ka—> O,
with w,M  fixed. Substituting in (26), with S= STST, and
T=T%T", noting that the first factor in '(29) becomes
-2 kicj2p;Dja ][ [ ] ,
R¥Wa*((- Qen)u Y SL(1+ (=-n)u)

and evaluating the integrals in (25) and (27) with =0, so

that one must add the term due to the instability pole, one

obtains for the reflected pressure wave

f, - Fg (-Z-Cku'x(l-f-”) (U= us) .
(R (womur) SHUOS) THun) T-(w)  (32)
In this integral the split functions are defined using (27)
with §2 0 , and the (uo- uc)/( u.-uv) factor arises because
of the need to make this field continuous with that obtained
w1;1en S > amuo , when the contour in (27) runs the other side
of o, The functions $,T will now be factorised in turn, To
calculate the modulus of the reflection coefficient, one only

needs the magnitude of the split function; this is given by

IK+Lu), = lK(“)lv"exFLLv_ }m:‘\—i(.s) olSJ (33)



180

the value of the integral for by noting that only the combined

+ -
value [T- ("A‘M} T (‘/l+41)] is required, This, using

(35) and (33), is equal to
T/ texng )

T )T (i) = exp |7 22 [ 1
) () = <= 8c‘53’[@+'/.««) (=-vm]“’(36)

—G/(-xng)
VYLD

= exp[i%?lj(l)f/bj’) ds] , (37)

—cfCi-xng)
= exp Zgﬁ}z (M ,x, C)] say (38)

Noting that D& =(=xMu)*, p:2 = (1-Mu)* , the integral

fox~g}1nay be performed by making the substitution (P‘Hs)= =

to glve (1+ dn/C-=ng))

7o) - e

(- NG /(+ <) (39)

_ (-x)d + ﬁ&[(w «HG) 1+ Q- |
GUECOY (1=and) (-re )] - (40)

M
Substituting (37) into (32), and using (40), ome finds that

correct to second order inﬁhq, the magnitude of the reflection

coefficient is

R - (uo = YC+n))(1+81) ¢y = Y\ T
| l ‘k (e + ‘/C(—H))(t—r—l)(l Tgr ¢ >’ "

where the subscript k refers to the fact that a Kutta

condition holds. When the Kuita condition does not hold, one

has, using (22)7

_ (I+M &)
Rl - 23 (- 260 7).



181

where KLu) is any kernel function, and the integral is
interpreted as a principal value. Takings first one notes

= 1 .

Examining the integramd of (35) one sees that between the branch

that since v=0 at v, uc, {S (Lu)l,[S (uc)

points, on the path of integration, V is real, so that arg S=0.
On the parts of the path from —I/CI—M) to o and '/C(-f—r‘r)
toow s, v=—tN| so that 4'33 is again zero. Thus there is no
contribution tolsi!from the integration path. Nor is there

any contribution from the portion of the curve that is indented
round the branch points,

Considering the factorT, one first notes that on the
part of the path outside the branch cuts, W= -ifw|, and
'v-.:_-L'[VI + It then follows that on this part of the integration
path ag T=0O . There is similarly no co‘ntri.bution from the
indentation round the branch points, From the appendix, the low
frequency expansion of T(w) , obtained by expanding T(K) as

ka0 WM fixed, is

T« [+ (L2 e rig)] o

Examining this formula, it is clear that [1(%)=2 | when
v--> 0,at the branch points U=U¢,Us so that there is a unit
contribution to’Tt(u)\from lT(K)\y". Furthermore, it is also
clear that WJTU*) is only non-zero on the part of the
integration contour between the branch points at u= G/(H-o(ﬂd)
and '—C'i/((" D(MC), and there

D,
ou’a T(“L) M Xl JTJ.—;—F— ’ (35)

A
correct to second order in QQ\/A) « Now, it is easiest to find



182

Examining these in detail, one first notes that at
sufficiently low Strouhal number 4> /M , so that [R| ™[,
In the same limit, [R]ng = (4M)/(1-1) . These are in
agreement with Cargillf15]. At high Strouhal number W, is a
zero of the plane vortex sheet dispersion rzlation

. . 2
'DJKZJ -+ Do Lo ) = O .
Ky kw (43)
In the low Mach number limit, one can take V,w,= =t in (43),

so that

o = 1 (1t ev™)
M (('f‘ Cmbf)‘h. (44)

It is clear then, that when the two flows have the same
speed U, is again(‘/eM )and the factor
[(:+n)/(¢—r1)][(uo— '/Cl+n))/(u° + z/((-n))] |

appearing in (41), is unity. When the two flows have different
speeds, this augmentation factor, that increases the reflec-
tion coefficient above unity, is given by

| + (¥ (1t (i-w)) [

|+ ¢y (1-M(1~)) (45)

This clearly illustrates how this augmentation increases for
high Strouhal number to a constant value, which increases with
Mach number and density ratio, but is unity when the speeds of
the two streams are equal,

It is of interest to compare these results with Munt's[19]
exact computations. The important feature of the latter is
that as the frequency is increased from zero, the reflection
coefficient rises above unity, reaching its maximum value at
a Strouhal number (ka /lTrH) of about 0,5 and thereafter

decreasing. It is easiest to examine the present formulae in
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the low Mach number limit M*<< [, and for a cold jet, so
that {p=1].
Then in the absence of external flow

(1+M)uo —l}([_ QEQ‘).

(-AYus +1 | 2

lFZ]v< =

(46)

The last part of this expression is the Levine and Schwinger 1
reflection coefficient, so that the effect of flow is, to first
order contained in the first factor, wnich we shall refer to asAi.
Writing Ue = (w+iUy)/m , where in this low Mach number

limit W,,U, are functions only of (ka/f1), and expanding for

small M one finds
| = |l + 2M —__B__'___) .
‘A ' [ ({ Wt + Uyt ]

In the low Mach number limit, values of U ,U, have been given

(471)

by Crow and Champagne[?4] using a theory due to Batchelor and
Gil1[25]. 'These values have been used to calculat ]A"with |
results which are compared in Fig. 3 with those derived from
Munt's paper. As can be seen, the two are in excellent agree-
ment over the whole Strouhal number range. Figure 4 compares
the present results with those of Munt for Mach numbers of 0
and O.3. The agreement is excellent, except at high frequencies
where the approximation ha << | fails to hold. Furthermore,
these results are in good agreement with experiments([20], [?1),
[22],see [18])

At higher Strouhal numbers, still for a cold jet, it is

convenient to look at the effect of external flow, since here

(Fig. 5) Munt shows the effect of the external flow to be

(+ ¢
considerable, For (kq/M)—)oo, (Ae—v(l+‘.x>/!"] , SO that
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(Al~ (1+ m(=x). (48)

FThis demonstrates the reduction in reflection coefficient with
external flow,

Examining now the non-Kutta~condition solution, it is
clear that here the initial 1ift in the reflection coefficient
is completely absent, although, of course, the absolute value
is always greater'than unity. Indeed, in the same low Mach

number approximation as was introduced earlier,

[R]Nkr (HLM)(I— (BE)Z) (49)

There is thus no dependence on Strouhal number through the
instability voles,

The most interesting aspect of the two solutions,
represented by'UQ[K.and [RJNK lies in the energy fluxes involved,
In the case of the Kutta condition solution, acoustic energy
in the jet pipe is converted to hydrodynamic kinetic energy in
the jet instability wave. No such transfer occurs when the
Kutta condition does not hold [333. It does not appear pos-‘
sible to produce a formula for that energy transfer that
displays explicitly its dependence on the Strouhal number,
since the value of We is not known as a function of Strouhal
number. The energy aspects of the non-Kutta solution can,
however, be ascertained as follows,

In the non-Kutta-condition solution, the net energy flux
in the pipe is clearly given by

W= .f_‘:_/l‘_{_<( +n) = (=nY IRl:,J , (50)

Li <
in which the usual formulae for the energy fluxes in positive-
and negative-going waves have teen used (see, eea, Morfey[QQD.

Substituting forlIZ\NK, one obtains
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W= A (M) ¥ (k) P,
pisj @ )

Now from Cargilll9), the radiation field of the non-Kutta-

condition flow is

b= (£ [pi) R Ta* (t+n) Pc :
4TR (+ x M6 J2( (= MG (1-x)6) (52)

Therefore the radiated power is

W, = Jwﬂi(womdc@e)’smaae
) poce (53)
(/éo_g.) (ka) (1+n) (rar) Pi? S0 A0
PiSi (‘+W”aoe)’(l+r1 ccr-oc)cne)
(54)

One now makes the substitution Gme/(l‘\’“'”df-ne):t , S0 that

d/ti+xnq)
Lizxme )’ de (55)

c czl (-re)?
z Jeecnncy

(_bg) (+M) Aj

The integral here is of the same form as that in the integral
for the reflection coefficient., Using this fact and observing
the result for the total energy in the pipe, it becomes clear
that, to this approximation, the acoustic energy is conserved,

all the net energy flow in the pipe reaching the farfield,

with none being lost to any vortical disturbances. This is

entirely what one might expect, since there is, by definition,
no vorticity generated here. Furthermore, this result applies
at all Strouhal numbers.

The Howe model(11], with the neutrally convected wave in
the jet, is also of interést. Here the reflection coefficient

vecomes, on using(24),



186

Rl, = (uw (1+n) = 1) (’ _ Y(ka)’ 572‘) . )

(un (-1) +1) 2qt
In the case ccnsidered by Howe Ly = (/Vr1 y whereV is, by
definition, the ratio of the assumed convection speed to jet

speed. One has then

(t-n G-\ 24?

Rl fene- s e).
H (57)

As Y is varied, the augmentation varies from (an)/(k-ﬁ) when
Y=0, and the wave is effectively absent, to | when Vv=[ ,
and the wave is convected with the flow., Clearly, as a means
of representing the real flow due to the instability wave,
this analysis is incomplete, and could possibly be extended to
include other forms of U, . It should be emphasised, though,
that such work can only be of an approximate nature. If it is
desired to represent the true velocity profile, then the equat-
ions should be solved as a linear perturbation of that profile.
The Howe type of approach does not really contain the true
effect of such a profile,

Finally, the end-correction will be discussed., It would
be very useful if one could, as a result of the above analysis,
obtain similar formulae for the end-correction., Unfortunately,
this cannot be dcne, except in the low and high Strouhal
number limits. In the former case, Rienstra[j6] has shown, by
expanding the results for low Ra with M fixed, that the Kernel

may be approximated by the value

12 ctr Jo (kva) :D_’)1
= - k o
K(M) Cs P ¥ 3 (kva) va ) (58)
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which can te factorised as an infinite product. The
resulting end-correction is somewhat différent fro% that in
the abtsence of flow (Levine and Schwinger[1]). For high
Strouhal numbers the factorisation has been given by Howe {11},
who finds that the Levine and Schwinger value must be aug-
mented by an additional term scaling with M; since

M= ka(77/k. this part may be thought of as a correction
varying inversely with the Strouhal number, For intermediate
values of Strouhal number nothing can be done, beyond obtain-
ing an integral expression for the end-correction, This is
because the integrals involved in P(t(u) have paths which
produce contributions from their whole length, not just from
a finite part like those for /Kilu){ .

THE FARFIELD RADIATION

In this section, the farfield radiation produced by the
jet will be determined, again to second order inka. The
lowest order result Has been given by CargiIlﬁ2,15], who shows
that the principal effect of flow is to‘alter the previously
amidirectional directivity pattern to (H—ho( c;,;csy‘({-((—«m)f"lcic.»e)“‘:l
This field is clearlysingular at the Mach angle, where
Con O = ((‘-oqnc)". In [13], it was asserted that at that angle
one should employ the more accurate forms for the instability
poles (i.e. not justW.e = l/M) and that this would remove
the singularity. One of the main aims of this section is to
substantiate that claim. Another feature of the exact result
is that a refraction valley appears around the axis 8=Qas
the freguency is increased., Ixamination of this will also

feature in the succeeding analysis,
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Generally, the analysis proceeds in a manner similar
to that for the reflection coefficient; except that one now
needs to evaluate the split functions for arguments other than
those corresponding to the branch points, This considerably
complicates their evaluation.

From[19] , one obtains the field in the ambient medium as

—~kwx

i pu 32 HO) (kwv) e A
Fo(zf-) = ! j Co Lo Do Mo v S

]

mkw HL:)/(kwa)(u— we) K L) KT () (59)

LWL

which may be evaluated by the method of stationary phase, to

give

KR 3 X
FO _ eL PL RC-J'/JQ:DQ ’

LR (rt oc'ﬂdcue)(hw HSM(rewe) (u-u) K (ug) M 1) (ag43) } (60)

in which the term in square brackets is evaluated at

W=y s GO,DQ/(HK\MCC”G) , and the details of the

stationary phase evaluation can be found in, for example,

Munt [9]. Therefore to evaluate (60) one requires the values of

the product F(*(qf)%?(u;). To obtain this, P(Lu) is again

’split according to (29). In that expression, the first factor

is, by inspection, as described earlier; however Sand |

require a somewhat different treatment from that in Section 3,
The function S is factorised by the infinite product

theorem., Again,oknly the moduli of -5*-)5‘ are required, and

are obtained by using (33), ard an S is zero over the

whole of the integration path, so that (5+(,u)’= {S_(u)]= SS(u)\'/f

Furthermore, since \/(uc) = 0, it automatically follows that

Sue)=1 -

The factorisation of—T-also proceeds in the same manner
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as in Section 3., As noted there, there is no contribution to
the integral except from the region between the branch points

ofw, so that
' G/t xnc)
[Ti(uyl={’rcu){’*ex? i L am T(s)ds
27

s L]
-C'/CI—HSIC) “ (61)

gubstituting for msT(S) from (35), it is clear that one needs

toc evaluate

c/a+omc) ¢/Cwangy)
.I } viD2 le _ ((l—r’ls)’:..s"> ((—xﬂs)lals .
le(s—u) (I=Ns)*(s~w) (62)
=G /(1-«NQ) =C/ci-xng)

this integration is described in detail in Appendix II. As
that appendix points out, the result for general values of

is very complicated. To simplify matfers, without significant
loss of understanding, it suffices here to give only the

result for ¢C=0 which is

I= [.L (- & )M(Qﬂsl) 1._2ng

B Y U (TP e M (TRrre) | B S L (o YO Do

_(,_(T%F)aq(é%z” , (63)

If one.is only interested in the directivity of the
radiated sound, one only requires the term in (60) depending

onlu, not those depending on W;. YThus the directivity of the

pressure field is proportional to
D2 (- (er)u) exp— (k% z2fI/S’dL) —)

6
F Luj-w) kR w H(’)'(kwa) DJL (- s l[S "/; (T \"’-_J (64)

evaluated with W = et . Two areas of interest will be
examined in detail, namely the behaviour near the axis as 60 ’
and that near the Mach angle ;C O =(‘/I‘1C:) + In the former
case, it can easily be seen that to O(Ck«)"),the only

)
important terms are those in lTV" and inJ], Now from
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Appendix T,

w\ = (k\/a)z‘(lz e wa .
Tw) |+2d2 Dp(eh( 2)+XE+LT{_) .

Thus as 820, w20, and T»e ., Also, from Appendix II,

it is clear that I-> % as u-ao . Therefore, it is geen that
the field is always zero at the point §= O, and that this
appears to occur whenever the mean‘ flow is present, 1In the
absence of a mean flow,V=w, and the term giving rise to this
non-uniform behaviour then disappears, in the case of L, or
tend to zero in the case of T. It is thus seen - that the
refraction dip on axis is an essential feature of the direct-
ivity whenever a mean flow is present.

The other point of interest is the behaviour in the
neighbourhood of the Mach angle, Co6s@ -~ '/Hc « Here the low
frequency‘limit is singular [12,15] on account of the Df
terms that appear in Mf'(“) . When terms of O((Rﬁ)t) are
included, this singularity vanishes, being cancelled by the
terms in | f(u). The resulting effect of including the order
dq,\)l terms is that,near the Mach angle, the resulting split
functions are the same as those obtained by less rigorous
arguments in (:13] .

In this section, attention has been concentrated on the
solution in which a Kutta condition holds. It would have
been equally possible to have discussed the field shape when
there is no Kutta condition imposed. But the results then do
not seem to have any particular interest and in any event,
differ only from the Kutta condition solutions in the way

described in [13] and in equation (22),
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DISCUSSION AND CONCLUSICNS

This paper has discussed the interaction of internally
incident sound waves with a Jjet pipe in the low frequency
limit. BResults have been given that are correct to sscond
order in the frequency parameter (Kq). In particular, it has
been shown that the low frequency reflection cocefficient
modulus has a simple analytic form, that is valid for all
Strouhal numbers (with Ra<< 1) and agrees with both Munt's
computations[]B], and experiments[20,21,22]. The radiation
field has also been examined and it has been shown how the
presence of a mean flow inevitably involves a refraction
valley in the farfield near the jet axis,

In the author's opinion, this paper is likely %o
represent the limit of what it is useful to do analytically.
As has been indicated, to go beyond the present analysis
produces very complicated results that do not seem to be
particularly useful., It does not appear pessible to derive
simple formulae for the end-correction, for example, or for
the form of the instability wave,

There are a number of respects in which the idealisation
implied in this analysis may be too extreme. The most
important of these concerns the jet shear layers. Here is
has been assumed that the jet shear layer does not grow with
distance downstream, and is, furthermore, infinitely thin,
Neither of these is true in practice. Therefore, some method
of modelling these effects is required., This is likely to be
important at the higher Strouhal numbers,

One approach to this prcblem, used by Howe E\ﬂ y is to

add on the field due to the jet instability wave separately
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and to then assumed that wave to be convected at a velocity
different from the Jjet velocity. That is only partially
satisfactory, however, as that wave does not represent a
solution to any relevant wave equation. Another approach is
to assume that there is a finite thickness velocity profile,
both inside the jet and‘the pipe. .This should show some
additional effect of Strouhal number on the reflection co-
efficient, beyond that calculated here, and might perhaps
agree even better with experiments, The defect of that analysis
is that the flow is not allowed to be variable in an axial
direction. But that might not be too important, as the flow
does at least diverge slowly. In any event, one might
anticipate that any shortcomings of the representation of the
jet flow used here would principally affect the farfield
directivity, and would have only an insignificant effect on
the reflected field properties (which are essentially locally

determined at the pipe lip).
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APPENDIX I

LOW_FREGUENCY EXPANSION OF T(u)

In this appendix, the low frequency expansion of the function

“Ttu)will be given, where
@)

! > 2\ ®) r \pt
.T(‘*) _ [kw o (kwa) T, (kvﬂ)'b.\ LX/G )Ho (kwa):ro (kva)])o kv (1)
Rw Hg) (lewa) Jo U-Lva) J)Jl

This expansion is obtained by expanding the Bessel functions
to second order in kn, being careful to retain the terms of both
O((kqf') and O(Qeq)l&(ka)) « Then . using the formulae in

Abramowitz and Stegun [23], the numerator of TLu) y A (say), is

o &t D;l - (kva)z__ (L{way' lewa A
A=- == [‘ = 5 [e“(-a—)ﬂe" + L

(42)

.:Daz T(kv«)z fe C T
T Trar [%erq)*’“ ¥ l;:_”’

where Yg is Euler's constant (~ 0-5722).
Similarly the denominator of [(4), B (say), becomes

¢ Dy kval  (ewa)/, [law ;
B’—"‘}ﬁ—’(l".g;)- kz @u(i%‘ﬂz—lﬂrﬂ)' (43)

Hence dividingA by B, it follows that, to order (ka),

Tiw) = B L ¥ (leva) D2 sy, +_-L§_]],

a* 2 Dyt %

(a4)



197

APPENDIX II

EVALUATICN OF I(u)

From equation (62), :[(u) is defined by

d/U+xHG)
- (i~ s )-s2) (1= %r1s)? s '
T(w) = S )
=G /(1-xNgG)

In general this integration may be found by splitting the denominator
up as partial fractions. Kach of the resulting integfals may then

be re-arranged into a form that can be integrated in a straight-
forward fashion. Unfortunately the results obtained are exceedingly
complicated and will not be quoted here. In the main part of the
text only the result for o= 0 is required, In that case the

integrand may be easily re-arranged in partial fractions to give

c/(wmc) '
_ R ' L fwr
L= J [ M- ’75)(1 ("ﬂ‘*)) N(l-ﬂi)’-(l-r‘l,u)-i_(s—k)\l (:nu;lﬂ.(%)
—c/(«-an

This may be integrated to give

u (H-nC) amc
(. \ [ (l (- u 3 ) U'NC}) x(l‘ﬂu) ((_nxc‘nj (A7)

((‘ LK ) &%%%J )
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CHAPTER 4

THE RADIATION OrF HICH FREQUENCY SCUND OUT OF A JET PIPE
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THE RADIATION OF HIGH FREQUENCY SOUND OUT OF A JET PIPE*

By
A.M. Cargill
Noise Department Rolls-Royce Ltd., Derby
And

Department of Applied Mathematical Studies,
University of Leeds

ABSTRACT

The chapter begins by discussing a simple model problem:
the radiation of sound out of a semi-infinite cylindrical
pipe, with internal and external flows. Two approximate
high frequency solutions are presented, one based on
Kirchhoff's approximation, and the other in the spirit of
the geometrical theory of diffraction, and are compared
with Munt's [1] exact solution by the Wiener-Hopf
technique. The radiation from a jet emerging from an
orifice in a baffle plate is also discussed. Next, the
paper considers the differences between this simple model
and an aero engine configuration, showing how the results
are modified by the presence of a secondary flow (e.g.the
fan stream on a turbo-fan engine), by the contraction of
the final nozzle, and by the presence of many duct modes

in the pipe.

#Much of the material in this paper appeared in preliminary
form as ""The Radiation of High Frequency Sound from a Jet
Pipe" 2 , presented as paper 80-0970 at the A.I.A.A. 6th
Aeroacoustics Conference held at Hartford, Connecticut,
June & - 6 1980.
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1. INTRODUCTION

This study is concerned with the propagation of high frequency
sound out of the jet-pipes of aero engines. Typically, this
sound has a ka value (2T X pipe radius / wavelength) greater
than 20, and may be both tonal and broad-band in nature. The
mean flow out of the nozzle is typically of a high subsonic
Mach number (~0.8) and may be heated. The aim of this paper
is to account for all the features of the propagation of this

noise by using relatively simple approximate methods.

The paper begins by idealising the flow as a semi-infinite top-
hat jet issuing from a cylindrical pipe in which there is a
uniform mean flow. For a given incident duct mode, this
problem has been solved exactly by Munt [1], using the Wiener-
Hopf technique. His solution, while complete, is rather
unwieldy and the hope here is to show that the main features of
the radiation field can be adequately calculated using simpler

approximate theories.

The first of these is Kirchhoff's approximation (see for
example,Jones [3] ). In this,the radiation is first expressed
as a function of the field on the duct exit plane. This exit
plane field is then determined by using the assumption that for
sufficiently high frequencies (above the cut-off frequency of
the incident duct mode), there is no sound reflected from the
termination, so that the fluctuations on the exit plane are
then those due to the incident field alone. Here it is shown
that this Kirchhoff solution is identical to Munt's Wiener-Hopf
solution at the peak angle of the radiation field. Elsewhere,
agreement is less good, the Kirchhoff solution failing
completely in the forward arc. But there, the radiation from
these high frequency sources is in any event negligible, that
this discrepancy has little practical importance. It may
therefore be expected that our approximate solution will be as
useful as the corresponding baffled duct solutions have been

in the field of forward radiated compressor noise [4].

An additional feature of many real situations is that the jet
pipe is shrouded by a seconda;y flow, from the fan stream in
a turbofan engine for example. This may be handled by

assuming that it is thick on a wavelength scale, so that the

propagation of sound through it may be calculated by using
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geometric acoustics. Comments will also be given on the
possibility of solving the radiation problem in other config-
urations, for instance that where sound radiates from the

secondary jet pipe.

Following on from the Kirchhoff solution, the effect of a
"baffle'" (or '"flange'") around the pipe exit is next considered.
The solution presented here corresponds to the well-known
solution in the absence of a mean flow [4]. While the baffled
duct solution, with a mean flow present, has no immediate
application to aero engines, it may have considerable appli-

cation to small scale test rigs.

The cylindrical pipe radiation problem is then tackled by a
different method. This is the geometric theory of diffraction,
originally due to Keller [5,6] and worked out for a pipe in
the absence of flow by Felsen and Yee [7].Here, it is argued
that at high enough frequencies, the radiated field is that
due to the fields diffracted by the lip of the duct. There,
diffracted fields are calculated by assuming that the pipe
walls are locally plane. Compared with the Kirchhoff approxi-
mation, this method has the advantage that it is a formal high
frequency limit to the exact solution and is therefore valid
over a much wider range of far field angles. It will be used
here mainly to illuminate the failings of the much simpler

Kirchhoff solution.

All of the above solutions have concentrated on the radiation
due to a single incident duct mode in the pipe.In practice,
of coursé, many modes are present. For broadband noise these
are uncorrelated and result in a field shape with none of the
lobular character of the modal solution. It is therefore
necessary to examipe the summation of the fields from many
such modes and discuss the effects of different types of sound
source on the radiated sound. Finally,when the sound propa-
gates through the jet turbulence some of its energy will be
scattered and radiated in different directions. This was
discussed in detail by Cargill [2]. The ' matter will receive
no further discussion here, but will form the topic of a

future paper.
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2. KIRCHHOFF'S APPROXIMATION

The purpose of this section is to apply what is often known

as Kirchhoff's approximation to the problem of the radiation
of sound from a cylindrical duct with external and internal
mean flows. 1In the absence of a mean flow, the principles of
the method have been described by Jones [3]. Briefly, the
method is applied as follows: Kirchhoff's theorem relates the
acoustic field at any point to the fields on any surfaces.
Therefore, to estimate the radiation from a pipe all we need
to do is to estimate the pressures on these surfaces, which
are taken as the pipe exit plane and the outer walls of the
duct. The = pressures are estimated by assuming that they are
those due to the incident wave alone, so that the processes

of diffraction and reflection by the pipe are neglected. Then
Kirchhoff's theorem is applied and the far field radiation
obtained. A useful comparison of the Kirchhoff approximation
and the exact solution has been made by Butler [81 for the
scattering of plane waves by a half plane. He shows that they
are in good agreement in directions close to that of the

incident waves, but in much less good agreement elsewhere.

In the situation here, illustrated in Figure 1, the above
considerations must be modified somewhat to account for the
presence of a mean flow. 1In this case, the counterpart of
Kirchhoff's theorem has been given for a general flow by
Ffowcs Williams and Hawkings [9]and (as in the jet here ) for
one containing vortex sheets by Dowling, Ffowcs Williams and
Goldstein [10}. Clearly, one way of proceeding would be to
apply their analogies, with the field variables on the
surfaces in question determined from the incident field,
having first linearised the equations in the fluctuating
quantities, so that all the quadrupole sources vanish. Here,
we shall adopt a different approach. The standard approach
of Dowling et al [10] is inconvenient in two respects. First,
it is written in terms of the pressure and velocity on the
surfaces, rather than in a single field variable, and second,
it was originally formulated to deal with surfaces that move
with the flow and requires modifications here, where the
surfaces are fixed. The initial formulation here will be of

an analogue of Kirchhoff's theorem for a surface in a uniform
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mean flow, and use of this for the surfaces inside or outside
the jet, together with an appropriate Green's function which

will describe the propagation effects of the jet shear layer.

Before going on to do this it is important to discuss the
importance of causality, and of the Kutta condition, vis & vis
. our solution. In determining the exact solution, Munt
requires that his solution both obey a Kutta condition and

be related to the incident duct mode: Here neither
requirement will be enforced. They are in fact both
irrelevant over the range of angles in which the Kirchhoff
approximation is applicable. The exact solutions with and
without a Kutta condition have been compared by Cargill
[11,12]. He shows that they are identical near the angle of
peak radiation. Here,there is no real means by which a Kutta
condition may be applied as the Kutta condition is concerned
with the behaviour of the field close to the edges of the
pipe and that is precisely the region that is poorly approxi-
mated by the Kirchhoff solution. The causality requirement
is also involved; in Munt's exact solution, it is argued that
causality 1is important, and the solution is determined
subject to that requirement. In the analogy of Dowling et al,
it is argued, however, that for a turbulent jet causality is
irrelevant, since the sound field of the turbulence itself

is in a state determined by its own past histdry. 1In the
case of sound propagation out of a pipe however, causality
must presumably be obeyed, in some sense at least, as if one
turns off the sound source, sound radiation must eventually
cease. But from the point of view of the radiated sound
field, the question of causality is academic in the
Kirchhoff solution. Its only consequence there, is whether
instability waves are included or not in the Green's function,
and these instability waves do not radiate as a sound field
decaying as (//7), so that they are totally irrelevant to

the far field sound.

The first step is to develop an equation for the sources
due to a surface moving in a uniform fluid. Linearising
about the mean properies of the fluid, the pressure obeys

the convected wave equation

1
S N - U ? —
[\7 ct(ae * S'x) p=0 (1)
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in the usual notation. One wishes to obtain an equation

for the sound outside a surface. This surface is defined as
‘f‘o , with §>O outside it and ££ O 1inside it.Therefore
one multiplies (1) by H(f)where H is the Heaviside unit

step function (H=1[,f >0 ; H=0,§<0) and obtains, on

transferring H inside the derivatives,

(\7“-_ Lo )(FH) = V(pYH) + VH.9p

c* ot (2)
~ 1 Df,DH)_ « DHDp
c‘bt(rbt) c* Dt Dt
D = é.- ué— .
where Dy = St o %

This equation will now be used to obtain the far field
radiation from the pipe in the Kirchhoff approximation. A
surface S (Figure 1) is considered which is composed of the
outer wall of the pipe, and the exit plane of the pipe. 1In
the Kirchoff approximation, the fields on this surface are
determined by assuming that they are - the same as would exist
on that surface in the absence of the termination. Thus on
the wall of the pipe, the normal derivative of F is zero by
definition, but the pressure itself is also zero by assumption.
Therefore all sources on this surface can be neglected. On
the part of S that forms the exit plane of the pipe, the
values of Ps and its derivatives are precisely those that
occur in the incident wave. In detail, the following
problem, as illustrated in Figure 1,will be examined. A
pipe of radius a , contains a mean flow of density g;

sound speed ¢j and velocity (ij . Outside the pipe, the
corresponding mean flow parameters are fo,co,(io . The pipe

contains an incident sound field of the form

Fé = ]'M(JM'.\T/a.> exp(—dkax—cma-c-cwt) , .

where J;(Ja'--\)= O and Ju is the Bessel function of the

first kind and order m . A Green's function

G(z k] %o ,t,) is defined by

2%«

| 2 a,? * = % - Xa -&o
(v Zx(gﬁ J_y)q_ § (- xs) Sk -€0)

(&)
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for T < & , inside the jet, and

[V‘—Cz( +U3” S (5)

outside the jet. 1In the derivation of the Green's function &G
it is assumed that the particle displacement and pressure are
conserved across the jet shear layer. Then applying G

to equation (2) one obtains

ST

\

In this equation, YH and DH/Dt become, in the co-ordinate

system of Figure 1,

A
VH=x%x) , DH -ujsicx), (1)
Dt
where é% is the unit vector in the " direction. From

Appendix 1, the Green's function for a source
exp (Lot —cmo J§(x-xa)§Cr-7e)/¥
can be written in Fourier integral form as -

+ 00
G = ~£_ T (VYo) T(k) Hs)(‘v*)etr[-ck(x—x,)] dke.
Substituting for G in (6), and with the values of F and its

derivatives taken as those in the incident wave (3), it is

f—r(k)[—c(lwk )+ (0~ U54) = (= 53

:rm( VYO)H (WV' [ka] Yo dvo dle .

(9)

Integrating with respect to Yo using a standard integral
relation [13,p.484] and then with respect to k using
stationary phase (as in the description in the appendix) one

obtains the final result of

F-.-. —Ta @?(F[-LLAR +¢wt+gmﬂ‘-—w6 -D.T.T,
4TR
(10)

where D= —ta(Xt%e); X= ko+ Uj(e-Uk)/gj

= —2va Tm’(va):)"n(\]-fn) R T = T(k)
(Cva)= (4a)) |
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These factors are all evaluated at R= w(.‘ose/(l-c-Ma@s9)Ca
They represent the following physical processes:

I describes the interference between waves emitted from
different parts of the aperture, and is equivalent to the
(den/oc) pattern familiar in the radiation from a two-
dimensional piston. Its principal features are that it has
a strong peak at - Vu.=J':nn-, the mode-ray angle of the
incident mode, and is zero at va= J"MP » p#n the mode ray
angles of the other modes of the same azimuthal mode set.
T(k) represents the transmission properties of the jet. When
there is no flow mismatch, T = 1, and at low frequency T

tends to -2
(f%j)(ld(uj*u")@se/cc') (see [_11, 12] ).

Two other features are of interest. As the angle O is

varied the terms in the denominator of T(k) cause T(k) to
oscillate. Physically this is the result of the interference
between reflected sound waves inside the jet. For angles

inside the cone of silence (6( cos ! [ /(CJ' + (ij*uo)])

T becomes exponentially small as ka (: (oo./c,,)-—-:v co .

The poles of T(k) represent the instability‘waves of the jet.
D is a directivity function which varies relatively smoothly
with angle. The principal point of interest here is that

for the incident mode

o= Gli- € 1) o et e (11)
so that 76, is precisely zero when the incident mode is just
cut on. The properties of the radiation field will now be
examined in two stages. First, the result (9) will be compared
with Munt's exact solution and then the variation in the

fieldshape with jet conditions and frequencies will be

discussed in detail.

Munt has solved the present problem exactly, and in integral
form his solution can be written as
1 | peda Hwrye 4= 4
P Toam (R-keo)wa .Hg)’(w‘a) Ir('*(k) K-(Ru) (12)

where K*}(- is the Wiener-Hopf split of the function.

K(R) _  fiwa T (Va)])j"- S)’(Wq)_ :D:f' Va J-.J(w.) Hinzw a):,.

- (WA.VR. H%’qu)]’,“'(\/q)) (13)




212

With some algebraic manipulation, it can be shown that the
Kirchhoff solution presented here is simply Munt's Wiener-Hopf
solution multiplied by K (v )/K‘(R.) . Thus the two
solutions are identical at the mode-ray angle. Now one notes
that this factor, K‘(LQ)/ K—Ck.o) will not be strongly
frequency dependent. This is because at high frequencies, it
can be shown (see Section 4) that K™~ (.‘:’C. + k)"‘/z)

in the absence of a mean flow and when the sound speeds and
densities of the two media are identical.’ Then it follows
that the factor F((h)/y(tko)departs from unity only slowly and

on a scale independent of frequency, so that at these high

frequencies the first few lobes of the radiation pattern will
have levels jidentical to those predicted by the Kirchhoff
theory. Beyond the first few lobes, the two solutions will not
agree so well. But the solution there is of little practical
interest since it will, in practice, be swamped by radiation

from other modes.

Figure 2 gives a comparison of the two solutions, using a
result from Munt's paper. This is for an(M,u) = (4,!)

mode at a ka of 11.7, and the relatively low Mach number

of 0.14. We see that the agreement is exceptionally good
,until an angle of 100° is reached, where the curves diverge.
Indeed there is,at higher angles, an extra zero in the
fieldshape predicted by the Kirchhoff method. This additional
zero may be explained as being associated with the point
Va~=-jLn and would actually be a physically correct zero
for an inlet radiating in the oggosite.direction. It is
entirely spurious,as will be shown in the next section. For
the case of no mean flow, such zeros are present over the
whole of the 90° - 1800 region, but when a flow is present,

they are limited to a much smaller region.

Figure 3 demonstrates the powerful effect of refraction on
single mode field shapes for an(m,n)=(2,2) mode. An
interesting feature of this and other results inkthat at the
angle corresponding to the cone of silence (equivalent to
8 = 0 with no flow and the same densities), where va =0O s
the sound pressure level is finite = rather than zero, as it
is in the absence of a mean flow. 1In Figure 3, the curves

have been terminated where the method becomes invalid (see

above). Figure 4 demonstrates the typical effect of the
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external flow. The change in the position of the lobes is
predicted by simple ray refraction arguments, but more
interesting is the apparent reduction in level everywhere,
with no hint of the Doppler amplification phenomenon usually
associated with flight effects on internal noise radiation.
Lastly, Figure 5 demonstrates the effect of increasing the
frequency for a particular mode at constant jet conditions.
The main effect is that as the frequency is increased the
number of lobes increases and the principal lobe approaches

the cone of silence angle.

It is interesting to deduce some features of these field
shapes from the analytic results. First, at the mode-ray
angle, one clearly has X=X, , D"'l‘x-;the interference
term is | = [J’,,, (J..’...)]—&(l—m‘/jy’.:) and the transmission factor

T is

T = 2 . D°1/o°

T va DJ’-\/;J' H(,:.)/(Wa) : (14)
Thus
_TI'Q 2[: D:fo Q ' .
- . -J:‘ L ‘- " 1 ‘
F TR (I+Motes0) [TTWQ H(wa) 2] 0 )( /“) (15)

la= ko

The presence of the factor bjl indicates that for a collect-
ion of modes, the peak angles experience Doppler amplification
in the same manner as the low frequency sound [}1, 12}. At
angles between these (where Jwm (va)=0O ) it can be seen by
inspection of T (A11) that this Doppler amplification is

absent.

At the cone of silence angle, I becomes zero, with va j:!(v«).
But at this condition, T is infinite as (J]\(v«))_t These
items, when multiplied together, give a finite result, so

that the resulting sound field is finite here despite the fact
that the interference factor becomes zero. 1Inside the cone

of silence, one might at first expect that the same field
would be exponentially small on account of the behaviour of T,
giving the usual exponential decay found in jet noise studies,
(see, for example, [14} ). Here, this is not the case, as I
becomes exponentially large at the same rate. Thus, there is

no sharp cut off of the sound in that region, but a more
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gradual reduction in level. Physically,the reason for this
is that while the radiation from a source inside a jet may
decaykexponentially inside the cone of silence, that from a
pipe does not because the radiation field is dominated by the

sound from source elements situated at the edge of the duct

exit., Thus there is no exponential decay.
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3. RADIATION FROM A BAFFLED DUCT WITH FLOW

Unlike the unbaffled duct, the baffled duct configuration of
Figure 6 cannot be solved exactly. Indeed, even in the

absence of a mean flow, no sclution is yet known (Noble [15]),
In that case, though, a number of approximate solutions can
easily be obtained. First and most accurate, is the variational
method of Levine and Schwinger [}6 ;1], which is good at low
frequencies, but converges slowly at high frequencies. At
these high frequencies, an approximate solution may be
obtained using the geometric theory of diffracpion [5], with
the edge diffraction calculated from two dimensional theory.
This then provides an exact high frequency limit. Finally,
there is the well known "baffled duct'" theory (e.g.[6]),
with the velocity on the aperture determined from the incident
field alone. It is this theory whose counterpart, with a

mean flow present,is to be given here.

The difference between this and the Kirchhoff solution liesin
the choice of Green's function. In the absence of flow, one
chooses a Green's function giving 25% = 0 over the whole of
the baffle plate, and the aperture. One way of
proceeding (at least in principle) would be to use such a
Green's function here. Another is to require that G

2
only on the baffle plate. The choice between the two is some-

what arbitrary, and only goes to show the ambiguity inherent
in the Kirchhoff procedure. Of these two the latter is by far
the easier to apply, as the Green's function cannot be easily
obtained with‘aq/ah’ O on both aperture and baffle. This
difficulty is illustrated in Figure 7, where rays are shown
from a hypothetical source point in the jet. Those rays that
are reflected off the baffle plate are calculated by the
Green's function with 3C;/an = O on the baffle alone (at
least in the high frequency limit), the ray direction corres-
ponding to the reverse flow properties of the Green's function.
But for rays that were reflected off the aperture plane, there
is no simple determination of the reflected direction, which
is why the Green's function 1is itself difficult to determine.
However, the main difference between the results from the two

Green's functions occurs inside the zone of silence, where the

sound level is, anyway, small.
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To use the solution, equation (6) is again employed. This
time f is taken as the whole of the baffle and the aperture.
Since the baffle is assumed rigid there éan be no mean flow
DH -0 on the baffle. Also,

D
(since the baffle is rigid) and by construction, aq/ay. =0

outside the jet,so that

on the baffle. Thus,all the source terms on the baffle plate

vanish, and it follows that
= D 267w )e.ds
b= (G vp-pre]- afoz-p 3u)uss

where <iis the normal to the aperture,G is the Green's function
defined in Appendix 2:it is of the form Go(M) + Go(-H),
where (E;is the previously defined unbaffled duct Green's

function. Thus it follows that the radiation field will be

p = T anp[iue=tugine] [DVT(4) T(1)
+ T TEMT M),
where Dt = —ia ((k+ be.)(l—r’\j") + 2»&j/¢j")

D™ = —ia((k-k)(I-M) + 2 Uifeyt),

17

In the absence of a mean flow, it is clear that the (M) and
(-M) components are equal, and further that (D' +D7)= -2iak .
When there is a mean flow present, it is clear that the
principal lobes of the (+M) and (-M) components are in
different places, and that at the mode ray angle D is small
(0(M) ), so that the previous solution is again obtained.

In Section 2, it was found that the Kirchhoff solution was
invalid in the forward arc (CDS o <"FUC°/CJ(PFUZ)) . A
.similar effect pertains here, but this time at angles close to

the rear arc axis. This is a direct result of only having

(DC,/bh) = O on the baffle.

This completes our discussion of the baffled duct solution.
Clearly, there is much further work that could be done on this
topic, but unfortunately progress is likely to be very diffi-
cult, since exact solutions cannot be obtained. It is
fortunate indeed that this solution has only limited appli-

cation to practical situations.
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4, A GEOMETRIC THEORY OF DIFFRACTION APPROACH
TO DUCT RADIATION

At very high frequencies, it is well established that problems
of diffraction may be tfeated by what has become known as the
geometric theory of diffraction. The principles of this theory,
as originally expounded by Keller [5,6] are that the only
significant contributions to the far field sound from any
scatterer are those from the direct field of the incident
sound, and the waves scattered by the edges on which that field
impinges. These scattered waves maybe calculated as if the
surface were flat with straight edges and the incident waves
plane. Keller applied this analysis to the diffraction of
sound by an aperture. He found that the direct field from the
incident wave was cancelled out so that the only contributions
to the far field were, to first order, those from the edges.
Now in this simple case, it can also be proved that the
geometric theory of diffraction gives results equal to the high
frequency limit of the exact theory (see e.g[lSJ) + Thus unlike
the Kirchhoff theory, the geometric theory does contribute a
formal high frequency limit to the diffraction problem. A
useful comparison between the geometric and Kirchhoff theories
as applied to a half plane has been given by Butler [8]. He
finds that the theories agree well near the edge of the

shadow zone but that they disagree in the deep shadow zone.

The radiation from a pipe does not appear to have been treated
in this way in the literature, but there is a relatively large
body of work on the associated problem of the reflection of
sound from the pipe termination. Felsen and Yee {7] treat the
problem using a pure geometric acoustics method. This has the
disadvantage that the solution may become singular on shadow
boundaries. To overcome this limitation, Boersma [18,1Q] has
developed the theory so that it is valid along these shadow
boundaries and so that it accounts for themultiplediffraction

of sound by the pipe edge.

The major difference between the present and previous analysis
is the inclusion of a mean flow. This has two consequences.
First, to generate a geometric theory of diffraction with a

mean flow present, we must use canonical solutions with the
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mean flow included [20],[2(] + Second, we have to account for

the reflection of sound off the jet shear layer.

There are two ways in which we can proceed in order to derive
the high frequency solution to the duct radiation problem. The
first, and more accurate, involves the Fourier transform of all
quantities; thus the perturbed pressure in the pipe is set

equal to

Q) 1)
b= Al (v0) + + BH~(vr) | (18)

and that in the ambient medium to

bo = G HW(wr). (19)

The mixed (pipe plus shear layer) boundary value problem is
then solved by the Wiener-Hopf technique. Matching pressures
across the interface v=a , and with an incident pressure on
the wall of the pipe p = F.‘_ exp [—Ck.x +CL¢€] » one obtains

the equation

[AH (Va] [BHm(va] =[C Hf’(m)]+<zo>

where the + signs indicate half range Fourier transforms as

L(R-

described in Appendix III. The way to proceed from here is to
note that if the "scattered fields" AHO')(VY), C_H“’(Wv),
propagating away from the edge of the pipe, are small, so is
the''reflected" field, B Hf)(wV).This field is now rewritten

as a Fourier integral
460
J(’c-hkx

[BH"(va )] ]“]BU«')H (v()a)e  dw’ dx.

2o (21)

+ 00 \
:"L,[ B(i) HE (v(w)a) di!
J
SLAS I (k-le') (22)

that is, it may be expressed as an integral of quantities
similar to that arising from the incident wave. The equation
must then be solved iteratively. First, the approximation

B = 0 is made and a solution obtained, from which is calculated

the next value of B, and so on.
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There is, however, an alternative way of looking at the
problem; one observes that at high frequencies, the waves will
be travelling outwards. Thus to a good approximation they may
be treated as two dimensional. Therefore one may find the
amplitudes ofscattered waves close to the edge by application
of two-dimensional diffraction theory. This is described in
Appendix III. For larger radii one uses the principle of the
conservation of energy in a radial direction, which dictates
that the amplitude is proportional to (a-/ﬁ');h + The
secondary diffracted fields, that arise when these first order
diffracted fields strike the edge, may be calculated in a

similar manner.

Thus in this example one has from the incident mode in the

pipe (3) an incident pressure on the wall of the pipe
po = Tom (0] exp[-them=imge ct |, (23)

For the top edge, this will give a scattered field (using the
results of Appendix III) '

Tty e T 2 )

. ?o ) e (k- leo YWY L (R L7 (ko)

(24)

In the far field one must add the sound from the top and
bottom edge plus any waves reflected off the jet shear layer
(Figure 7). The effects of multiple diffraction will be
ignored since the corresponding fields are O(ka)_gmaller than
the primary diffracted fields. For angles well beyond the
geometric acoustics shadow of the pipe exit, only sound from
the upper edge is present, since the wave from the bottom
edge will be Shielded by the top edge. This explains the
spurious zeros seen in the Kirchhoff solution (e.g.Figure 2)
obtained earlier, and show that solution to be grossly

inappropriate in that region.

For a plane wave incident on the jet interface, the reflection
coefficient HQ and the transmission coefficient -ﬂ~ are

related, by continuity of pressure,through
| +~ R = T,

(25)
and by continuity of particle displacement through
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| - R =«[,

where (& =‘(w/oJ' ?DJ"/V/%D:)

(26)

Thus

R = (1-x)/(1+=),
(27)
and T = 2/(1+ %) . (28)

One is now in a position to add up all the waves that reach
the far field. 1In doing so one must assume that there is a
phase change of % each time a wave passes through the axis
of the jet. There is therefore in crossing the jet a total
phase change of_g +2va . Also it should be noted that at
emission the phases of the waves at the '"top" andubottom"of
the duct differ by mT . Thus in the far field, the pressure
will be,with the phase referenced to that of the direct waves

from the upper edge,

‘."’17’- oad 2 m Am LmT & 2'1
F = {ao |- o € (/+ ZR J< )-—o( IRe /gt(!-l- SR Pn
ma 2
upper edge . lower edge **(29)
where ﬁ = Mf[—IIWQ + é'lr/zj.
Summing the geometric series, and substituting for R and
using (27), (28), it follows that
c'mr)
(30)

f = Po (‘ — F'e .
(l" HZF‘aéM")

This summation of terms is rather similar to that employed by

Ffowcs Williams and Berman [22] who studied instabilities of a

two-dimensional jet. In our treatment, any instability

waves generated on reflection have been ignored, since they

are, for this semi-infinite jet, of no consequence to the

far field radiation.

Now substituting [R = ((-Dc)/(}+o(‘) , one has

p = pelit®) Sin(va- /2 - ry) .
CoS(Va—MfT/z—-‘f/q)—(stM (Vq "MTT/1-'W/4.) (31)
Next, at high frequencies, one may replace all the sinusoidal
components by their Bessel function equivalents (e.g.
cc.s(z—hﬁ/g_-%)-!,/?_ri_"J'..,(z),Substituting for po» it is found,
after some algebra, that the pressure in the far field is

just Lfai)//ﬁf(ka) times that derived using the Kirchhoff
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approximation. Thus, when compared with the exact solution,
this one, with the Kirchhoff solution,is precisely correct at
the mode ray angle. Unlike the Kirchhoff solution, it should
be valid everywhere, as ((«aa/co )—> 0o , except perhaps at
the points where Va =O. There, a more sophisticated
analysis must be used, as it must at the shadow line in the
rear arc. Such an analysis would account correctly for any
apparent discontinuities in the field found in the first
approximation. The finalalteration to the analysis would be
the addition of terms depending on the second order diffracted
fields. These are, though, of order’(aM*/C°>—' smaller
than the first order fields and (see e.g. Keller [5,6] Jare

not of any great significance at high frequencies.

An unfortunate feature of this analysis, which perhaps limits
its application,is that the functions KL7(k) ,L7(k) cannot
vbe determined analytically, for the usual case where jet and
ambient conditions are different. Nevertheless, in the limit
of Uj,Uo—> O, ¢ >Co,pj->pPo, we can determine L’(k.)/L'Cko)
In that limit, L (k) m,\/‘g’—-{-——k_ so that at k = w0

(L"(k)/L—Cho)) = ((lane)/(Hu:@o))v’; (32)

where 6, is the mode ray angle of the incident mode in the
pipe. Rewriting (32) as (Cos(@/z)/&s(@e/z))it is clear
that this ratio is close to unity when 8~ &4 , and only
becomes very large or small as 0,6, —> [30° yhere, as has been
pointed out, the theory is in any event invalid. It does
however, illustrate the assertion made earlier,that the ratio
of the split functionsis not strongly frequency dependent at

very high frequencies.

The reflected field inside the pipe willlnow be derived to the
same approximation., Adding the contributions from the two
edges, together with the associated reflections off the duct

walls gives, using the notation of (29),

P = DC'PO [(e-CV(A-Y)+ CLT.LV{&M-@’)‘)_%— - CVC(‘,Q(,@-,)))

EE T

ST/ ~iTfa—iv (2a=(a=y)) -iT) - a-
b e TT(eL 2 V( (_qj-)t_)e 2 v(2a+(.j-)) ](33)

in which the first term refers to waves originally emitted

from the top edge,and reflected off the walls of the pipe, the
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individual terms representing sound from the images of the
edge; and the second term likewise refers to waves from the
bottom edge. Re-arranging the terms in (33) gives

2 - 20uVva

—iva —((aT+L
FS ¢ o [e {va L(,_+4 c_os(vyﬂ«_qz_ _1{_ [H—ZC ]’(34)

and summing the series, the result

p= pe cos (Vg (/2 + i) ) (35)
" Sim (vq-(mr/;_+1r/q.))

is obtained.

To a good approximation ,(see above) the cosines may be
replaced by Bessel functions, and then substituting for

p, and o<C gives

{, ~ Te (). 207C) é\_,vbff;} T lvy)
20 L(R) L(ke) (R-leo) W(l) (V Do*pe ] T/ (va)

(36)

The Fourier transform may be inverted with contributions coming

only from the poles at Jw(va)= O Noting that, near v = O,
va Tw' (va) £ T (va) (1= ™2 1) Lew (R-Riden (37)
(va)
the summation of the residue terms gives

- Z Lknx {L_‘(Lu)]) [ iDJ P’; | Twlyga)
2 Lien) (15 ()] Cle; kDS Pt X2 (1=t gy G ) Tonl va.)

(38)

Several features of this result are noteworthy. First, the
reflected field is apparently infinite when kv‘= ky. This is
seen in other theories of this type (e.g. Felsen and Yee [7]
or Boersma [18,19])and is the result of ignoring multiple
diffraction. The other main feature is that as frequency is
increased, the reflected field becomes progressively lower,
as (ka)_l, so that, away from the cut-off frequencies {k= ku)

one can safely ignore reflections at high frequencies.

Clearly in this section we have only hinted at the possibili-
ties of this technique. Indeed its main merit would seem to
be that it can produce the correct high frequency limit of

the field diffracted by the jet pipe in situations where an
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exact solution is not just difficult but unobtainable

analytically. Such a case might be the important practical
one of an aero engine with twin stream exhausts. In that
case an exact closed form solution by the Wiener Hopf
technique is impossible (unless the exists of the inner and
outer streams are coplanar), but a good approximation can be
found by present methods. Additionally, it should be easy
to incorporate into this model the effects of the nozzle
shape, and the exact flow profiles, because these do not
affect the canonical diffraction problem governed by the
L}:(Q) functions but only the propagation of the signals
after scattering. Finally, it should be re-emphasised that
this solution is a formal high frequency limit to the exact
solution and should therefore be superior to the Kirchhoff

solution everywhere.
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5. MULTIMODE FIELD SHAPES

In the preceding section, attention was concentrated on the
field shapes of single modes. In practice the signal at any
one frequency will be composed of a large number of modes,
so that one should be interested in the field shapes of
combinations of modes. Typically, a smooth field shape 1is
produced (e.g Figure 8) which for realistic jet conditions
peaks at around 70° to the jet axis,just outside the cone of

silence.

To illustrate the effects of mode averaging,

the field due to a uniform distribution of uncorrelated mono-
pole sources in a duct will first be considered. Then consider-
ation in less detail will be given to the field of other
sources(for example a tip source), the effects of changes in
duct area for a given upstream source, and the possible -

effects of source correlation.

Consider a source,strength Q(+£) gﬁtd,situated in a rigid-
walled duct of radius a. It is easily shown (by methods
described, for example in Morse and Ingard [23])that the field
at a‘distance.x.from_the source is
_ ’i i exp/—clonx —cmd ] Tui(julr/a)

Fo{ ; 2 Zomn. Tl To(50 ) (1= ™ juia )’"
AT R . (39)

f@iﬂzf‘»):ll(J—’-*/a)e—myfadn dgo

o

me=-po n=|

|

This result is derived by,for example, splitting the source
up into its circumferential and radial modal components,
finding the field due to each and summing the results.,
Assume now that the source distribution consists of unco-

rrelated monopoles, so that

{aCn #)Q ) = QA

where the brackets <: :) indicate an ensemble average.
To obtain the far field radiation,use the previously
derived formula (10) in the Kirchhoff approximation,to find

the far field radiation pressure as
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(224
~ z Z-—rrq DmnTaw T.o exPEM/c:tHm.L*wHL-W/fw]
F - HTR (¥ Mocend). 20 L T2 T (jul) (1 - m/ja2)

AT

f JQCVO: )T (va./a)e ‘Y'.dr-dﬂo- (41)

for a duct of length L. Next,form the mean square of the
pressure, which by virtue of (40) comes from uncorrelated

modes,

[Fl ZZ(UQ) o (| T @ €xp[- l(I..k....)LJ

mz-s0 M= WR)IZ*'l’L '\[ b £\ (J""‘)("’“"/Jk )(H'noc-:G) (42)

Summation of this expression over all the modes is rather
complicated, and the details are relédgated to the Appendix IV.
In expression (42), the summation need only be taken over tﬂe
propagating modes, as all the other modes are exponentially
small and anyway, for the cut-off modes the Kirchhoff radiation
formula must provide a poor representation of the field.

Summing then over the radial modes, one obtains,from Appendix

M ) o
P= VA (Tal” 2 [(FHea) =) Tuva))
( f ; (&TR)L(Hﬂoc,,B)"‘n-q‘ (43)

The major point of difficulty in this summation is how to
account for the variation in angle and w of 1;, where, to

recapitulate, T, is given by

—1:; = T* !

Tva (:TM'(V4) HS (wa) - och:”(w«\T.(Va)) . (44)

The general features of the terms in the summation are clear.
The T, termoscillates as the angle © is varied for a given m.
The Bessel functionsin the numerator of (43) have the property
that for a given m, the corresponding term is only significant
beyond an angle such that (va/m) >>1. As there is no way of
summing the series exactly, approximations must be made. First,
note that in the range where the terms are significant one can
approximate Tm by expanding the Bessel function in the high

frequency limit. Thus

fTal® = b

va [ Cn"(va—mﬂ/7_—~'ﬂ/q)1— oa'sw‘(Vq-"""/r“?q,)] (45)
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Next, average over the ripples in’TZ‘so that as the average

. -4 -
of (Cm‘x-i-o(‘suf‘t) = o /") one obtains

> awa.?
Tl = s (46)

-;(D:/Do/bj‘)o‘j). (47)

This has reduced the summation (43) to

Mmax

[ l‘: Z (Ta)* Do Q. 2 [(Ful(va)f = T (va)Tutva) ]
F —(4TR(H+ N 0 )) Dy fj-Ta |

(48)

Finally, asmm;fnds to infinity, the Bessel functions can be
summed to give %, and as in further problemsmmax is

proportional to ka, that limit can be used to yield

T LS . (49)
(4TR) (H Mot)™ (1~ (Uj-UekamO/co )
Now this result is identical to that which can be obtained,
with much less effort, by a simple application of geometric
acoustics (see,e.g.,studies of sources in free jet wind tunnels
by Tester and Morfey [24]. In addition to the usual geometric
acoustics field, it has been shown here (Appendix IV)that the
field will fall off within a region of angular width

of the rear arc shadow line of the jet pipe.

Consider now the effect of other sources in the jet pipe, and
the effects of area variation. The general rule should be
obvious from the result proved in the appendix, namely that
the mode eigenvalue may be directly translated into the radial
wave number va. Thus if one considers an uncorrelated tip

source with

<Q("u¢|) R, ¢x)> = Q S(v—q) §Lvi-vy) s(ﬁ‘l'¢’-)
Y Ya . (50)
the difference from the previous result is that the amplitude

of the (m, n)th mode changes from

a .

[ i) sty te = 2 JTRG

[~

to

j T (J'-l*"/a) I~ (ﬁ",*“’la) fr-addy = T__"(}‘l“) . (52)
)
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Thus the amplitudes are, for a given mode set m, approximately
< 1 — (’M,’/(V‘\Y>) times those from the previous
source. Similar rules apply to other sources, in that those
producing predominantly high radial order modes will produce
far field radiation patterns that peak at a large angle to the
jet axis. Furthermore, when liners are fitted inside a jet
pipe, the attenuation is strongly dependent on the mode cut
on ratio <((—-Pﬁ1)JLt<§*/afaf) (see,e.g. Rice 25 ).

But by the rules just described, this translates directly into
va and thence to the angle of radiation. Similarly, non
monopole sources will give field shapes depending on the
source type; for example, an axial dipole source will produce
a field shape biased in the downstream direction. An
alternative explanation of these effects in the context of

ray theory has been given by Kempton [26,27].

The question of area change must now be discussed. Here, the

principal feature of transmission is that energy is conserved

if the duct area varies sufficiently slowly(see,e.g.[28,29] ).
In this case the energy flux for a uniform axial flow is given
by the formulae of Blokhintsev [30}. Applying these to one

mode

b= AT (o vja) exp (= tRmn ), (53)

one obtains an energy flux in the axial direction of

A* T2 () < ((—(m"/jL..‘)) Wornn (1= H";') )
P1<j (1 =11 Xmno/ ) (34)

E: =

In this formula, one can interpret the JL" as described
above, in the sensé that Jmy =Va . To illustrate the effect
of the area variation, consider the case where a mode travels
down a converging nozzle. If the mode is fairly near cut-on
at the source, it will become (unless the flow nears sonic
speed) less well cut on (Xdecreasing) when it reaches the
nozzle exit. Thus, the pressure amplitude will be correspond-
ingly increased and the amplitude in the far field increased.
An additional effect will be that as the mode ray angles of
the cut—on modes are increased by the nozzle convergence, then

the field shape will be biased towards higher angles.
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Obviously ‘the quéstion of modal addition is very complex and
there are a lot of items that have not been discussed, but
which may be important - for example the effects of secondary
nozzles and flows. However these can all be handled using the

methods described above.
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6. CONCLUSIONS

In this paper, a number of approximate methods for calculating
the radiation of high frequency noise from aero-engine exhaust
systems have been presented. While this has involved a
fairly complete description of the princiﬁal methods there

are clearly many items not treated at all; for example, the
practical effects of the velocity profile and exhaust systems
found on real engines. These can, however, all be treated

using the methods described.

Two particularly important topics which have not found mention
here are the effects of axial variation in velocity profile
and scattering by jet turbulence. The former is very diffi-
cult and can probably only be handled conveniently by true ray
theory. A start on this has been made by Candel [31]. The
topic of scattering is also complex, and was discussed in the
original version of this paper [2]. We hope to refurn to it

in a later paper.
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APPENDIX I

THE GREENS FUNCTION FOR A CIRCULAR JET

In this appendix, the Green's function for a circular jet will
be determined. While similar Green's functions have been
derived elsewhere, in jet noise studies (see for example:
Dowling et al [10]), the derivation is given in full to

establish the notation used throughout the paper.

The Green's function, G, satisfies

(£272 + 25 - (i uj?.)‘)'g= S(rove) %),

Y 2r o s <? % (A1)
inside the jet and
12v2 oL (w2 Vg = (A2)
(v 2v 2f+ ¥ c.;"((— >z CT O,
outside the jet. Defining the Fourier transform of G by
to .
— Ckx
G(k): J e GCI)&I ’ (A3)
-0
one finds that G satisfies
(_'_2 ¢2+ﬁ1+vl>—q—_= §Cr-7) (A4)
Y 2¢v dr v? Yo
inside the jet and
- M wz.) ~ = O A v
_ = Y 4 -
(Y dr v r2 + Gr ’ (45)

outside the jet, where

V.‘L = iu— u‘lk !7-__ lQ-,- , Wz= gt.)— Liuk 2’- "'kl ’ (A6)
(@S

CJ’-

the branches of v, w, being chosen to ensure that "Im Vv, Imw <O,
Note that in the absence of any jet boundaries, (A4) may be

solved to give

— . ®)
q = - C—_T_ri HM (VY‘) T}\\(V7> s v Yo

= —-L_’g_; H_S')(vy) T (v%)’ rsvy. (A7)

(see,for example,Morse and Ingard [23] .
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To obtain the complete solution with the jet boundaries
present, one adds on an additional part,

-%r R(R) T (vve)Tn(Vv¥) 1inside the jet and —t'-l{.T(l-z).
JQ(yys)J;@ﬁoutside the jet. In these expressions, the
solutions have been chosen to give finite pressures on the
axis, and outgoing decaying waves at infinfty, and R,T, may
be regarded as reflection and tranmission coefficients for
the shear layer. They are determined by matching the two
solutions to conserve pressure and particle displacement
across the jet boundary. Hence matching the pressures, it

follows that
HS (va) 4+ RTu(va) = T Hu(wa), (48)

and matching displacements
(AY) ! @)! '
™ (Va) =+ Ra—m(VA) = OCT Hw\ (Wa), (A9)

where

ol = ._/.l_bil ) D°=' C’-O‘ uuk) ’ DJ= (u‘-u:)\&)'

/Oo Dolv (AlO)

Solving equations (A8), (A9),'one obtains

TR = =2 [ ! ] (A11)

Tva | Jn'(va) H® (wa) — e Tntva) H2'(wa)

The complete Green's function is obtained by inverting the

Fourier transform as
+-co .

. x ~iRx
G = -?:_f:r.“(wo) Hodwr) Teeye  dk, v>a,

—b

(A12)

The far field pressure is then obtained by evaluating (Al2) by
the method of stationary phase to give

_(wk/co)-q- ({mT[2
G =~ .5 am T() Ty (va)
4TR (1+HeconB)

L)) (A13)
C‘(H‘ﬂome) |

The Green's fﬁnction when the jet has a continuous velocity
profile will also be discussed. 1In particular, there is
interest in the case where the source is situated in a region
of uniform mean flow, which is itself surrounded by another
region in which themean flow varies slowly on a wavelength

scale. There are two ways of solving this problem. First,
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note that each wave number component G(k) must obey an
equation of the form

toarvda _ a(@Wadk 3 L winy-mt\G = O,
yer v dv @ostxk)‘ rY's Yt (Al14)

A number of authors have studied this equation in the context
of jet noise. At high frequencies, it may be solved (see for
example Balsa ﬁ4])by the WKB method. Writing the equation
as (with /oc:’~ constant)

/@‘_9_1.3 PR w’)é}=o,

Y or /"D"S; r? (a15)

one sets

[o¥}

72—
G = (V//OD‘> G (A16)
and finds that with an error or order <‘/h}), G satisfies

(?: + W’)al=o .

Y o (A17)

Thus by the WKB method, one obtains

a‘ - (/f:f-?‘)ylzxf,gcfwcw)h]. (A18)

Matching this to the previously derived Green's function,
and using a suffix 'a' to denote the conditions at the edge
of the region of constant mean flow, it is clear that the
effect of the variation in the mean flow is to cause the
Green's function to be multiplied by a correction factor, for

each wavenumber component

_(_‘f_/_fiz_)f_ VlexP [—- ii?w(f)— WM)A'} .

(w1r2)w

Thus the effect of the mean flow variation is to change

(A19)

slightly the amplitude of the radiated sound and to alter its

phase.

As an alternative to the above analysis, note that when sound
of sufficiently high frequency propagates through a variable
mean flow it does so according to geometrical acoustics. A
general discussion of the conditions under which this remains
true has been given by Lighthill [?il- The correct expression
for the energy flux per unit area, in this situation, is that

given by Blokhintsev BO] » and may be written as
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Ev=10(p+ f’u‘u‘")“"v (A20)

where Wx,Wr are the x, r components of the velocity
perturbation quantities, and observing that any wave always
travels at the local phase speed, one obtains precisely the
law of propagation derived earlier, (A18), for a wave of
given axial wavenumber k. Thus the two approaches give

exactly the same result.
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APPENDIX I

THE GREENS FUNCTION FOR A BAFFLED DUCT

In this appendix,a discussion 1s given of the Green's function
for a baffled duct, that is for a point source in the jet,

and with the condition (3C'/bw)= O on =0, Note that this
condition is only imposed for v¥>a. To do so for the whole
of the ¥ plane seems unnecessary for the problem under
consideration. As the mean flow cannot penetrate the baffle,

the solution is restricted to M, = O.

From Appendix 1, the Green's function in the absence of a

flange is, for Y2 a

e ~ik(x o)
= —-L (J-) wvy ™ - T(.k- C Ak .
Go = jH () T (v2) T0O) s

To obtain a Green's function with zero gradient normal to the

2« = O surface, one must add another part to G, of the form

* e thx
- t) -
G ="L w (Wr)AR)e 4k, (A22)
G
g )
1f this is done naively one obtains G=0 everywhere, which
is clearly wrong. To get the correct result, one must

reverse the sign of k in (A21), and then the condition
(BQ[an) =2 0O onY 7 a leads to

—m -—(kx.o
Alk) = T(v(ER)Y)T(ER)Ee (A23)
so that 100
f=-L J () r) TR & N
“ J (A24)

2 .
Now in v,and T, k always appears as either k , or kM, so

that

V(*l&)ﬂ) = V(k,-h) s T(’l{,ﬂ) =T(k,~M).
. (A25)

Thus the complete Green's function is

G = Go(rrre, M)+ G (x,7 %o m M) e

where Cra is the unbaffled Green's function.
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At this stage it is important to emphasise that this Green's
function only satisfies G/an= O on??a, not on v {a.The

Green's function satisfying(aqyan>:()on all parts ¢f x = 0 is

much more difficult to obtain.

I1f one had allowed the mean flow in T 2 @ to be non-zero, the
problem would have been solved by replacing the change in

variable from Rk to-R by one from R, to ﬁ? which ensures that
wi(k)= w(k‘.") . The required change is K¥=—k- zaMoko/((—ﬁ:’).
The problem is then solved in the manner described above, and

a slightly different value of G cobtained.
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APPENDIX III
DIFFRACTION OF A PLANE WAVE

BY A SEMI-INFINITE VORTEX SHEET

In this appendix, the theoretical work of Crighton and
Leppington [20] and of Morgan [21] is summarised. Both
these authors use the Wiener-Hopf technique [151 to find
the diffracted field when a plane wave is incident upon a

semi-infinite vortex sheet, Figure 10.

A plane wave
b= Fé'ez,,[—zk.,x +¢m&] , (A27)

is incident from the lower side of the half plane. The
scattered pressures on the two sides of the plate are taken

as pgy» Pj> and the half range Fourier transforms

+ + ‘e '
Plr) = jpme Hitx) dx (A28)

are introduced.

Since the pressures on each side of the vortex.sheet obey
convected wave equations,it follows that will have the

forms

Poocexpl-cws ]y >0 (429
Py X%P[*vaj y <o,

Here the suffixes 0, j are used to signify the regions

where U = Uy, UJ and w, v are defined as in (A6). The branch

cuts of w, v, are chosen so as to ensure that all waves

decay as [y] —> ©co.

The boundary conditions are that pressure is continuous
across the vortex sheet, so that

P+ PT-PR" =0 | (A30)

and that the displacement of the sheet is zero on the plate,

so that if the Fourier transform of this displacement is
Z(k) ,then
Z.—Ck) = O . (A31)

— 3R -
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From the momentum equation, Z and P are related by
— (- Uk 2 = W P
&
—(-yk) 4 =-L7\3j. P

so that (A30) can be rewritten as

K (R)Z (k) + a?f—ilzo) = (PC- P, (A33)

(A32)

where
k) = — (DJII"J*'D:/O")/WV . (a38)

Then K(k) may be split as a product of two factors K+,K_,
analytic in appropriate half planes. 1If this splitting is
done with w nearly real (ie. w = w+i0Q), then by the usual

Wiener-Hopf arguments the solution may be obtained as

sz) = + P (435)
c(r-ke) KHCk) K (ke)
This solution does not obey a trailing edge Kutta condition,
or satisfy causality (see [20],[21]). If these are to be

satisfied, one must add on an extra part, incorporating an

instability wave proportional to exp (- ika), where kI is
the wavenumber of the Kelvin-Helmholtz instability of the
vortex sheet. Adding this to the above solution, and
cancelling the part giving singular behaviour near the

edge, one obtains

EZZh) = PC(ko‘ k:)
t(k-ko) (k= kz) K¥(k) K (ko) (436)

It is convenient to introduce the notation

LRy = Ki) (k-ke) , LT() = =Klk)/(k- ki) .

(A37)
Then one can write the pressure in the region y > O as
Po = P 2l (k)e W
2w (koko) La(le) LT(RY (a38)
and in the region y £ O as
= —xPe, (A39)

where K = <W~D31{DJ' /ng-/o°> .
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APPENDIX 1V

MODAL SUMMATIONS

It is required to sum (from (42) ) an expression for the

mth circumferential mode , of the form

A 2
Z X mon + X () / ! ,
oy () | ((=m¥ g2)[Cvay=j=] (a0

Consider an integral of the form

T = L [y Timde
2 | b AA) Tw'(4) (y:u)* (a41)

taken round the contour shown on Figure 11. 1In the sub-

sequent analysis, one may ignore the contributions from the
(_(76(/')4- %C?))/ %[/')j term. This is because the
major part of the integral comes from the region around
M=y and further, the error due to ignoring that term is
only the same as that arising from differences between the

Kirchhoff method and the exact solution.

One can evaluate the integral (A42) in two ways; from the
poles of (EMYA)('ﬂ—/“)) and from the contributions from
the arcs of the contour. Taking the poles first, take(for
definiteness)the contour to pass through the zeros of :ﬂn(/q)
between theN th and N+Ith zeros of :RJLA). Denote the zeros
of Ju!(#) by pu,.Then with

TPy ~ = Tm(m) (1= e p3) (A= An) 5 (a42)

the contribution to L from these poles is
N
l

L= Gee-an) (443)

The contributions from the poles at Y= M, are then given by

T, = 4 [ Tu(m) } L d [_ﬂg_)__] (as)

A Tl (#) (gt p) Jpeny IPACARE) Y
l T [8)Tuly) =T (Y)
= — ||- (A45)
‘Hj" [ (J"MI(B )31 y J';‘I(H)

R P AT EAT) Jml—&)]
+ 452 / (TMIC"J))l +93:-I(’B)
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Now using the well known continuation formulae
(4 5y14 ] (A0) g
J-M(‘j) = € :’-m(‘:j), T (3)" < J-ML':]), (ALG)

one finds that this part of the integral gives

T, =__ (@»«’(s))f- Tl (9) T ()
2y? (:I‘u'(:;))"

One can now proceed to show that to leading order in (90&;)

(ALT)

the value of the integral taken along the contour is negligible,

so that the series (A43) simply sums to I,. That. is,

N
I = — FY ) + —I-'[ — -.--—-———————J-M"(e)J-H(U)/] .
Z Xy " El T )

(AL8)
If the four arcs 1in the integral those at infinity do not
contribute, and the other two are equal, giving, with as the
value of the intercept with the real axis,
+v0
T = ___I_T_fzc:)'m(ocwix)olx. _ (2009
ATE | Fl(wrie)(yr=(x-2)%)

- 0o
In this analysis it is assumed that the frequency is high, so

that one can replace the Bessel functions by their high

frequency'expansions;for example,

. 2
Tm (C+ix) = oos(ow-(x—m‘rr ~T
™ ) T(K+ix) | = %) (a%0)
Thus, with < chosen to give Tm(oc)=o,
+00
[ "
T ~ L J Fanh x dx .- | (451)
me w((x'-do()l‘f-)'") .
In this integral, one can take Eamhx=1, with an error of
order exp (-— 2%} The integral can be expressed in the form
= %) — S(~
1 S (%) S( OC) ? (A52)
where
oo
S() = J dx
e o((x—ioc)l -;—31)" (A53)
)
— I 4 dx
(A54)

iy dy A ((x-t'«)‘+32)
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=_ | I _ \’am—l (""'.f.)_}‘ - .
27 y3 2 Y (y=ocz) (A55)

Two cases, must now be considered;where (:{/04) > |, which
corresponds to angles of radiation well away from the shadow

) - i

line where Y (or VQO&))— NLL and (‘j/o()/vl)corresponding

to the case of a radiation angle very near the limiting angle.
Write

tan"<—i_;0,) = Z, (A56)

so that after some algebra

2 = | (_o X+ i
: 3(—1) + 7 (a57)

2 X-Y

and = ! ty) _ _«xy
S 2my3 [L‘j(x-n ) (0(1_3,_)] . (A58)

Thus,
T = S) = S(-«r)

2
‘ [(53[(«1‘3))__.&_ . (A59)
wryd [ Ix-y))  (-y)
When y 1is not too neard , then this component is of order

(l/hq) smaller ((-e. ‘/‘j) than that from the poles, When
¥y — &, the second term of (A59) is large so that

- =1 o
* ?Troc:‘(oc—‘ﬁ). (462)

Clearly this becomes singular near =Y The réason for

Il

this can be seen by looking at the integral. When o -+Y

it is clear that one of the poles will, at some stage, inter-
sect the contour. This results in the integral along the
contour becoming very large. The correct value of the
summation at this boundary must then be taken as (1/2) that
given above, and this summation will change-from its typical

value over a region of angular width C)(l/kg),
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CHAFTER 5

THE SHOCK WAVES AH©ZAD OF A FAN WITH NON-UNIFORM DLADES

PART I: PRELIMINARY ANALYSIS
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ABSTRACT

When a fan operates at supersonic tip speeds, shock waves
are generated ahead of the blades. If these blades are non=-uniform,
then the shock waves are also non-uniform, and tones at harmonics
of the fan rotational frequency are generated. Thisg chapter prezents
a simple theory for the relation between the strengths of the
individual shock waves, the blade stagger angles and the blade
thicknesses. That relation which is derived in Part II of the
paper, depends on a number of assumptions about the_flow. The
justification of these assumptions forms the subject of this Part I,
First, the general features of detached shockwaves ahead of a blunt
nosed body are discussed and the method of analysis used in Part
II established. Next the outflow from a cascade of unevenly
staggered blades is discussed., Using the Wiener-Hopf method, it is
shown that the mass flow from a blade passage devends only on the

area of that passage, for the nearly sonic Mach numbers of interest,
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INTRODUCTION

This paper discusses the generation of "buzzsaw" or
"combination-tone" noise by supersonic compressors with non-
uniform blading. If such a compressor has uniform blading,
any tones generated are, by symmetry, at multiples of blade
passing frequency only. The low harmonics of rotational
frequency, that do in practice exist, are an important
component of the aft cabin noise on the Lockheed L1011
TriStar. The causes of this buzzsaw noise in modern turbofan
engines are the shock waves which appear ahead of ihe fan,
These shock waves are generated with different amplitudes,
depending on the blade parameters, and they then propagate
non-linearly along the fan inlet duct. Recent work by
Stratford and Newby ! has shown that while the strengths of
the shock waves change during this propagation process, the
levels of the low order harmonics of rotational frequency do
not. The levels of these harmonics are, therefore, set by
their levels at the fan disc., Stratford and Newby found a
linear relation between shock amplitude and the differences
in the stagger of adjacent blades. This is used 2 as the
basis for controlling shock étrengths and hence the low
order harmonics upstream of the fan., The order of the fan
blades is changed to minimise the second and third harmonics
of the stagger angle pattern. While this has been broadly
successful in reducing the sound level in these harmonics,
an additional factor is thought to bve significant., This is
the thickness of the blades. HRecently, much work has been
done to correlate the shock strengths with blade-to=-blade

s 2 .
thickness variations . As a result, when the blades are
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shuffled, thickness as well as stagger angle variations are
taken into account. In the Stratford and Newby paper, the
experimental relation between blade angle and shock strength
was at variance with existing theories. In these (see e.g.
Kurosaka 5 ) the shock waves were assumed to be attached to
the fan blades, and the flow pattern as in Fig. 1, If we neg-
lect the losses through the’shocks, the Mach number at a
point is directly related to the local flow angle. The flow
field may then be solved by the method of characteristics.
There, the Mach number and flow anglé are constant along
“characteristic” lines, at an angle a = Cagq('/“) to the
flow. Using this property, and the conservation of mass flow,
energy and momentum across the shock waves, the complete flow
field ahead of the fan can be constructed, In practice, it

is much easier to analyse the flow beyond the first blade
spacing ahead of the fan, using one-dimensional non-linear
acoustic theory (see Hawkings 4 ).

Since the blades are only slightly cambered, they may
bévtak@n as flat, to a first approximation, and with one
blade twisted from its original position the flow pattern
close to the fan is as depicted in Fig, 2, Over the section
AB, the flow ahead of the shock attached to the nth blade ig
uniform; all the changes in the flow behind it are caused by
the expansion fan shed from its leading edge, where the flow
is turned. Hence the shock strength only dépends on the
blade angles and is, therefore, easily calculated. Since the
shock waves are attached, they are uninfluenced by the flow
downstream of the fan. Consider now the effect of changing
the incidence of one bladej if the stagger angle of the nth

blade is decreased, the Mach number ahead of the (n + 1)th
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blade is reduced, and the Mach number behind the nth blade
reduced. Consequently, the strength of the shock from the
nth blade is increased and that from the (n + 1)th blade
reduced. Linearising, we may then expect a relation of the
form APnw=AXa—B osn-1 where AP, is the shock amplitude,
Oy the increase in stagger angle of the nth blade, and A and
B are positive constants of the same order of magnitude.

This is in contradiction to the observed relation !
AP, = —0 (v(»\— Xn—l) , for which the slope has the
opposite sign. Stratford and Newby argued that the difference
arises because in practice the shock waves are detached from
the blade leading edges. When a uniform fan or cascade is
running, there is only one value of flow direction (for a
given Mach number) for which the shock waves are attached -
the so-called "unigue incidence condition" (see, e.g., > J)e
In reality fans are operated away from this condition, at
higher values of blade incidence. As Stratford and Newby
demonstrate, this means that some of the inlet flow to a
blade passage is spilled around the leading edge of the
blade. This spillage is necessary to match the mass flows
through the passages with those far upstream of the fan and
it makes the blade bekave, in effect, as a thick blunt-nosed
body which has a detached shock ahead of it., A further con-
sequence of shock Wave'detachment is that the shock waves
are affected by the flow downstream of the fan., Stratford
and Newby assert that this is the primary factor controlling
the shock amplitudes. As the blade angles are altered, the
change in swallowing capacity of a blade passage is proportio-
nal to the change in angle. This change in swallowing capacity

then changes the spillage around the blade and alters the
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shock strengths accordingly. ‘It is, therefore, plausibly
responsible for the observed relation between shock strength
and blade angles,

The aim of this paper is to model this phenomenon in a
relatively simnple way, and to justify quantitatively the
observed experimental relations between shock strength, blade
angles and thicknesses. To do this we assume that the blades
are essentially thin and uncambered and we consider only two-
dimensional flow, such as persists near the tips of the blades
where the experimental measurements are made. Further, ve
consider only the flow close to the fan since 'its upstream
development is easily modelled by existing non-linear weak
shock theory. Three-dimensional effects in both the genera=-
tion and propagation of the shock waves may, however, be
important, particularly over the full length of the '3' duct
on the Lockheed L1011 TriStar. This will form the subject
of another paper.

The chapteris split into two parts: Parti II derives the
relation between the shock strengths and the blading non-
uniformities, while Part I is devoted to some preliminary
analyses to justify the assumptions on which Part II is
based. In this Part I we begin by discussing the mechanism
of shoeck wave detachment from isolatzd two-dimensional blunt-
nosed bodies in supersonic flows, We then derive a simple
theory that agrees well with exact calculations, Tais theory
forms the basis of the work on non-uniform fans presented in
Part II. An assumption made ih Part II is that the outflow
from the non-uniform cascade is, for these nearly sonic Mach
numbers, only dependent an the blade passage areas. We justify

this in Fart I by solving a linearisad oroblem involving a
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semi-infinite cascade with the blades moved from their mean
position. In solving a linear problem it may be objected
that the flow is inherently non-linear at nearly sonic Mach
numbers. We maintain, nonetheless, that the linear
solutions will be adequate so long as the flow is not
singular at M= 1| . The analysis proceeds by the Wiener-
Yopf technique 6 . We start by solving the problem for a
perfectly general set of perturbations, and generate a set
of simultaneous equations, of number equal to the number of
plades. We then specialise the analysis to harmonic varia-
tions in the stagger angles and displacements, These
harmonics are eésentially responsible for the harmonics of
shaft rotational frequency in the resulting engine order
tones. An essential feature of this analysis is that we
initially solve for time harmonic variations, and then let the
frequency tend to gero. In that respect, the analysis might
have some relevance to the flutter problem, and certainly
has some similarities to the supersonic flutter work of
Goldstein et al 7 . It is also related to much published
work on the transmission of sound through blade rows (see
e.g. Mani and Horvay 3 )e

DETACHED SHOCK~-WAVES ON BLUNT-NOSED BODIES

We consider a semi-infinite body of thickness t and
rose radius r immersed in a uniform mean flow of Mach
number M. The flow pattemis shown in Pig. 3 in both the
physical and hodograph planes. The flow decelerates through
the shock from C to C', B to B' and A to A', It then
accelerates up a stream line B'F, say, to the point where it
meets the sonic line CE. It then accelerates superscnically

until it eventually approaches the free stream Mach number M.
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These changes can be conveniently shown on a hodograph
diagram, which is a plot of the flow in the (U,V) plane,
where U,V are the two components of the velocity. On this
diagram the flow passing through the shock goes from A, B, C
on the V = 0 axis to points A', B', C' on the shock polar.

There are a number of ways of estimating the shock
detachment distance for such isolated blunt-nosed bodies.
First, there is direct calculation using a numerical solution
of the flow equations. This is feasible but complicated,
Furthermore, it is unlikely to yield either the degree of
understanding required here, or some simple relation that
could be fitted to an acoustic theory. Additionally, since,
as we shall see later, the outflow from the cascade can only
be crudely modelled, great accuracy seems unwarranted.

A second method is that of matched expansions. A
number of solutions are available (see e.g. Van Dyke‘9>.
They have two disadvantages. First, they arise from expan-
sions of the flow variables in powers of ‘/P1w, and are
accordingly excellent for hypersonic speeds(Nh°>q), but
much less suitable for the Mach numbers relevant here
@Au:<b70- Second, they mostly solve only the so~called
"indirect problems", in which the shape of the shock wave
is specified (a hyperbolic shape is frequently assumed) and
the body profile then determ%ned.

Our approach is based on the much simpler method due
to MBckel, as described in detail by Shapiro ‘O‘. He assumes
a shock shape, and finds its position by balanciﬁg the mass
fiows through the sonic line with the upstream mass flow, We
adopt his method with a number of simplifications, and obtain
2 result which agrees well with more exact calculuations and

therefore also, as shown by Shapiro, with experiments for the
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We balance the mass flow through the sonic line, (see
Fig. 4), with that through the characteristic AB. Downstream
of the sonic line we assume that the flow is isentropic, and
that the characteristics are all of one family. This means
that we are in some sense ignoring the rise in entropy through
the shock. Since the rise is O(M - 1)3 and here M = 1,5, this
is not too important. Since only one characteristic family
is present, the position of the sonic line on the body E, may
be determined. The sonic line is further assumed to be
straight (see Sbapirom) and at an angle(T_z_E-— Q)to the mean
flow,

The mass flow through the characteristic AB is

“ /";‘ T,) Po AA’B R
\AP | JTo (1)

where (M\ﬁ; ﬁPa> is the one-dimensional mass flow function,
FLJT} the stagnation pressure and temperature, and /\Aa

the area of AB perpendicular to the flow (per unit span).

This is set equal to the flow through the sonic line,

e = (n‘««/n) Ac Poc
A Pe ﬁ,c (2)

) et

Writing (M\/—/P{Po) asQ, where Q = ™M (H‘O’

we find that with Ag,= T+deon  and Ac=d {per unit span)

(Y‘+ alC.nQ)Qoo:: QQCOL, (3)

where R is the average ratio of stagnation pressures across

the shock., Hence

4 _ l

—

Y - . (_R(@c_/&m) - Co—aVL ) ' (4)
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Figure 5 compares this result with that of NMBckel's
calculation procedure quoted by Shapiro 10 « We see that
the two are in reasonable agreement, except above a Mach
number of 2, where the pressure losses become significant,
At very low excess Mach numbers, thz shock stand-off distance
tends to infinity. This region is probably not well modelled
either, since the geometric assumpfions are of doubtful
validity when the shock is far enough detached, However,
the agreement is quite acceptable in the region of real
interest.,

We examine the form of the result (4) for marginally

supersonic flow. It can be easily shown that, with (H—Q= E,

(afac)=(1+ 2FY(7+D), wop~ |- O(57), R* ocﬂ(.”

Hence the detachment for small excess Mach numbers is

y 2(m-0)f
This is plotted on Fig. 5, and agrees well with (4) as

A Y+ (6)

evaluated exactly.

THE STEADY OUTFLOW FROM A CASCADE OF NON-UNIFORM BLADES

We consider a semi-infinite two-dimensional cascade, as
shown in Fig. 6, containing a mean flow of Mach number M, and
with its blades displaced from their nominal positions by
angles Q,and distances Sne We initially solvé the time
dependent problem in which the blades displacements have the

time dependence sz[tkct] where Re is the frequency, and R is

assumed to have a small imaginary part such that Tmke - E,€70.

We obtain the steady flow solution by setting R equal to zero

at the end of the analysis,
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In each passage we deline the pressure perturbatibn
relative to the mean to be bw ('z,()g,\’yexp uqce] ,
where the ('xn14%4) coordinates are fixed in the nth blade.
We define general coordinates (X,g) such that Xn'= x-ns
Snl=ld—y\h « 'These pressures, Pas satisfy a convected
wave equation
2 1
T e o uz) o (1)
The problem is solved with the.boundary conditions that on
the blade surfaces( Yn= O, Kn<o)the fluid particle dis-
placements 12nsha11 bte equal to the blade displacements, so
that
Qn(OJZn’): ‘Zn—l("n Zv()-’ S+ Baxd . (8)
On the streamline leaving the nth blade, we assume that the
pressure is continuous, so that
Fy. (O,?Cnl)-'-' Fn—t (l’laxﬂ/>, (9)
and similarly the displacement is continuous, with
Nn(05%A) = Yoy (hyxn') . (10)
We also assume that the flow leaves the trailing edge of the

blades smoothly; that is, a Kutta condition is assumed to hold.

We now introduce the Fourier transforms of the
perturbation quantities; for a general perturbation ¢ these

are defined as

+oo )
8w = l(son(xn’)}—((ix,{)ewx”dm ,

-

(11)

where H is the unit step function, and the + transforms are

. . t . .
regular in the regions R™of Fig., 7. The transformed pressure

thus satis{ies the equation
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(Bi + Pl)Pn:'O’

35"'

(12)

T kS
where r'(,“\)= D-u*, D:(R—Nu) » and the branches of r‘(“)
are chosen such that Tw [7<0Oas k- 2 in the common strip
of regularity of the regions « Transforming the boundary

conditions and defining the transform of ').“ (x,,) as Z', we have

Z_ - 5V1 o)
2" Ty T facerr 2

where b refers to the blade, rather than the fluid, and in
which (to ensure ccnvergence) we have set the blade displace=-

ments as (gn + 6O, z")exP (—cg ) where IME?O and € will be
set equal to zero at the end of the analysis, Fourier trans-
forming equation (9), we have

-{us

Pnf(o) = Pnti ((") = s (14)
which can be re-written in the form
~Lug - - ~{u -
(P“(o)——ﬁ.q(b\)e )-_: <Pv\ (e)— P (h)c "),_ Fa » say (15)

where F~ is regular in R™. On the blade we have, similarly,

for x >0

ZXey - Zna(h)=0. (16)

This may be combined with the boundary condition on the blade

surface to yield
- _ - —{ug
Zb,y, +zh(°) = Zba +Zn~|(L‘)e =O- (17)
From equation (12), we can take the pressure to be of the form

I T
P. = A,e' Y ¢ B.e 'Y (18)

2
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and then using the equation of momentum conservation in the

4 direction it follows that

: e -
Z.(g) = L [Ae" - ge 7],
pc*d

(19)

Now the condition that the particle displacement is contin-

uous 4across 5‘*0 implies that
- U —lug
Zn(o) = Zaa (W€ F , Zun(e)=Zd)e . (20)
Thus it fellows from (19) and (20) that

An = [Pczbl/zpswr'h][zu(o)e—w‘l Zne (Q\CL“S] . (21)
By\ = [/"c_ij)‘l/,[f's@‘ r'[,,J [Zn(o)é!"k_ Zhﬂ(b)-e_(us] ,
(22)

so that substituting in (15) we have

~iustelh —ius-cMh _
An + BH"AV\—IC -B.,-,e = F; , (23)

and substituting for An, Bu,
g ,
- (P‘ibi/r“‘; Fk)[Z,‘,., e 2.Znoxh +72a=i Ewsj= A (24)

One way of proceeding from here would be to take (24)

and substitute for Z., using (17) to give

Z,‘ = "Zb—,\ +-Z-V’\+. (25)

This would then give the following set of equationss.’

i ~(pexfrsm)[Kne] (20, 4 2] BT o

m=|
A set of simultanecus equations such as this cannot, in

general, te solved ty the Wiener-Hopf technique, since there

is no general wmethod cf factorising the matrix Km, into parts
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regular in the two half planes, Howvever, in this caze P(mu
always has the form Ku-n . and the equations may indeéd. be
solved. This is done by splitting all the components

into their harmcnic. comvponents, so that

e}
Z n (u): Zze(u)exP[mme/Bj) o
e=1

where we have assumed that the cascade is periodic every B
blades, though we emphasise that this assumption is not
necessary for the solution of the equation (26). Making this

substitution in (26) we obtain
tle (“)<fe+— ibe.) = Fe, (28)

where P<ctu) is the function
* T — ool )/ W
K ()= -2p¢D (Cos(u5+ll€/8) el /(Mg l«z) . (29)
Equation (28) can now be solved by the Wiener-Hopf
- technique. Substituting for Zey and splitting K = K+K-
where the l’(tare regular in Ri, we obtain

tS k*(u\—»c*ca)]g_ Se [- Ke) | (KH(W)- k')
e Ze [i(u-s) Ge-€)L (u-g) K (u-¢)

) Se | Belle) | BeK™e) |

. (30)
((u-g) (u-£)? (u-£)*

The two sides of this equation are regular in R ana R~
respectively. Therefore, by Liouville's theorem they must be

equal to a polynomial, If we choose to apply a trailing

+ -5
edge Kutta condition, then Z (W)~ [ as U2 and from

3
the Apvendix, P((u\n,u./ as U000 ; so we find that the poly-
nomial must be zero. Therefore, noting that Ze =— Zbe ,

we have
’zez_l/\;(z)se __ ©Oe ‘i(Kg(r_) )
| KT (w) c(ug) W) de | (u-e)*

(31)
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The factorisation of the split functions is discussed in the
aprendix.

we are now in a position to calculate the mass flows in
the blade passages. Using the above value of :?6’(51)9 and
with (21), (22) and (13), it follows that the pressure Ek is

given by

_ ,Oc":D‘ b,—ry( -¢Mh :.171.'(/94'('.\*8) _"_FU( (Fh amies -r;'»N)
=€ e - e e e - €
FC 2 SamilMh +

. ["' K:(E)Ec _ 59 cé_( K*(z)) . (32)
Hu-e)KZ W) KEw)deE\n-¢

For the sake of simplicity we drop the suffix € and the over-
bar from K)6,$ etc. We deal separately with the mass flows
due to the displacement S, and angular perturbation®.

Dealing with the displacement first, we find, on Fourier
transforming (32) and subtstituting for K+Lu) from the Appendix,

that 400 ‘

3 =< ¢ ‘u -y, ¢ Pl Rie/grius
)
p= 21Su Ph (u-¢)

00
Y -{x
(‘2‘ (r)u) Dee) (I+.€ ){ du . (33)

(e +0-mu) DL (1t qpue ) -

As we only require the field in x<o, this consists of contri-
butions from the pole at w= € , that at w= —k./Q-H) and
from an infinite number of poles arising from the Sl h term.
The latter represent cut-off acoustic duct modes whose ampli-
tudes decay exponentially away from the exit of the cascade,-
They do not contribute to the mass flow since they integrate
to zero., Considering the two important poles in turn, that at

u= £ gives

_s prDe) Mok [2

- e YL r e vCLs
P (De) - £2) Sul(D)h Y=g)=2ealls)y € - (34)
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To get the field in the steady flow case we take the limit

of (34) as R>0and then &30, The order of these limits is
most important, only this order giving the correct result.
That ordering of the limits is physically equivalent to first
solving the problem of the steady flow from blades with dise-
placement decreasing exponentially with distance from the exit
plane. Taking the limits the other way round gives the solu-
tion for low frequency vibrations of perfectly flat plates and
is irrelevant and incorrect here. The correc£ result is, for

the pole at U= &
F - s M?- /oc’» /.— ezﬂ‘(-@/ﬂ) ‘ .
h(l-M*) ( (35)

Similarly, the contribution from the pole at u:=—&/(i=M)

gives

_ spc D) [ () _ Curze/@
F h (D) - a’)[sc.‘mo)u (I OCk) ) (36)

_ _ _§ petM? (‘_ elec‘C/B).

h(1-M*) (37)

Clearly, these two parts, (35) and (37), cancel, so that as
k-0, there is no pressure or velocity perturbation. Thus the

only perturbation in mass flow is that due to the area change.

This is entirely what one would expect for a set of blades that
ére displaced paiallel to themselves,

The pressure perturbation due to the change in stagger
angle is found by Fourier transforming (32) and substituting
for K+(u) as k> O from the Appendix to give

20
- -0 d cdu_pe 2D (1+ (- LL)[ ¢ :1( - mum)
P~ = Ag | 2(sinCh /1))

—_

-y, zr ¢
s .7( ¢ l-; t/d-f'cus)] 5)
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The pole at W= £ gives

(e/8+ ¢
/b— .y _a_l_ perd () (2cm Ny (h-y)~ 2" /c;/’as)y

2 (sa Ploh/ f’(:)H)(D(_:‘) - €?) >(39)

and letting A>0, followed by &+ o we obtain

(¢/8 ) e .
=_(os pihre” CCF co (1~ &™) (~ix) petint
/7 h (/'/‘7‘) /-na) * (40)

A similar evaluation for the pole at w = — R/(ﬁ_ﬂ) gives

iy ce/8
b= L8 N"ﬁcl.j,(l— sze/g)+ cespt e’ /.
1)k =) (41)

We now require the values of the density and axial velocity
perturbations., The latter are obtained from the linearised
momentum equation, which in the steady flow limit integrates
to give Ux = f’//a(l Plus a constant which may be taken as
zero. Now for these perturbations with no y’ variation, the

mass flow per passage is given by

= b (Up s ulp)= bt (1) (42)

Combining (41) and (42), we find that the mass flow per
passage is given by
™m = L'Gloacb (l"‘ ez‘o(z'rt.'ffﬂ)), (43)

and substituting for 1,from the Appendix we obtain

. ~eme\ B Bl o [Rhrs?
e Ceph (1= M) e fsoioh) - b ()

4 s Eo.:'(séet,)_fah/i) :{

Inasmuch as the full solution can be constructed from the

(44)

above equation by summaticn over the harmonic components €,
this completes the formal solution of the problem, From the
point of view of the buzzsaw cabin noise problem, we are

only interested in the solution for small mode numbers ¢,
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Expanding (44), with (€/B) small, we obtain

ho= OpU (s-iph £ 9pU[-Tr(s-cph
m P (s—<p ) + 5 p [-W(s £ )

; £} 3| *
- 1L7r(‘2A1_r’1 tn %&ﬁk%hﬂ(ﬁ) -/;_4)] |
(45)
Now the efL(S term arises from the geometry (it represents
the area increase relative toh, depending on &), But as
/V]_,l)p-—ao. Therefore, we have shown that to first order iné€/8,
the mass flow perturbations depend on area alone, Furthermore,
it can be shown that the second order terms in (45) are non-
singular as ﬂ—aO. This means that it is unlikely that the
theory will be greatly affected by non-linearities,
Part II of this study continues with the application of
the ideas of Section 2 to non-uniform cascades in which a
crucial simplification is the dependence of mass flow on area

alone, as has been justified in linearised form in this work,



276

APFENDIX

THE FACTORISATION OF K{(u)

Previous factorisations of the function K(w) in (29) have
been given, in different notation, by Mani and Howayeand Goldstein
et al.9 Gf these, the former is only concerned with the module of
Ki(u) , which is not good enough for our purpeses, while in the
latter the result is quoted in full but with a minimum of explan-
ations. In this Appendix we both give that result in the notation
of the present paper, and deduce the limiting form as k- 0. Briefly

the function K(«) may be split into infinite products as described

6
in Noble. Thus:

(k- m\e (4—(‘*/”) ﬁ(’ (“/f\f\))(f‘(“/vi))

Ky =

(- (i+H)u) ﬁ("‘( w/pnt)) L
e vF = [ace) + beo)] - E7R))
Lacnyt 0] ) + (s2))

V= [aem+ bew))[(Fr°) + (/W) s

At = [-—Mk + \/(k‘—(f-ni)”‘”7‘4‘)]/(l'N"”)'
v a(ny= — (Mk-2T(n-€8)s/k) .

b(ny = [kx(i+ s/1)~ (aMks i) 10 (n= €/}t (i-ri) 4T - Va)?“‘ﬁ
and

2 (W)= U [;12 ka,:'(%h)_ _/i[_' - L/a/'-&,,(ﬂlhl-l-S)].

2 1/,1
and is required to make K+(u) have algebraic behaviour as R=>m ,

For the calculations in the main part of. the paper, we only require

+
the values of K (w), as k Ju>o.
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In this limit, with (R/w) rixed, K¥(%) may be written

Kieo= Qo [y, g W],

(k- (+m)u) (42)

where

= (1%5 S tad'(S ;
v [ 2w 4pth? ) T (FE) /i“

+
L—-—-——J
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CHAPTER 6

THE SHOCK WAVES AHEAD OF A FAN WITH NON-UNIPORM BLADES
PART II: THE RELATION BETWEEN SHOCK STRENGTH AND BLADING

PARAMETERS
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ABSTRACT

This is the second part of an investigation into the relation
between shock wave strength and blading non-uniformities for a
supersonic aero engine fan in which the shock waves are detached
from the blade leading edges. Part I of the paper contained some
. preliminary analyses which we use here to derive a simple relation
between the strengths of the individual shock waves, the blade
stagger angles and thicknesses. This theory is in good agreement
with experiments, and so provides a theoretical basis for the blade
shuffling procedures used to minimise blade-to-blade variation and

to control shaft order tone generation by these variations,
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INTRODUCTION

This is the second part of an investigation into the
relation between the shock wave strengths and blading non-
uniformities for a fan in which the shock waves are detached
from the blade leading edges, Part I 1 contained two
analyses which were necessary to the analysis in this part,
The first of these was a general simplified analysis of the
features of the detached shock wave ahead of a blunt-nosed
body. This produced a relation between shock detachment and
the dimensionsof the body that is in good agreement with
experiments 2 and forms the basis for the analysis that
follows here. Second, Part I gave an zanalysis of the outflow
from a cascade with non-uniformly staggered blades, This
showed that at the nearly sonic Mach numbers that occur in
the tip section blade passages of supersonic aero-engine fans,
the perturbations in mass flow, due to the non-uniformities,
only depend on the exit area of each blade passage, This
established the validity of the approximation for the cascade
outflow used in the present paper.

In this part we begin by considering a uniform cascade,

A simple analysis, using conservation of mass flow alone, is

used to derive a simple relation between the shock wave strength

and the blade incidence and thickness, In the following
sectidn we look at perturbations of this condition, due to
blading non-uniformities. The analysis is in two parts:
first, the shock wave detachment at the leading edge of the
blades is detzrmined and then the propagation of the shock
waves forward of the fan is calculated, As a result a simple
relation between shock wave strength and the blading non-

uniformities is obtained, which is in good agreement with

experiments.
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SHOCK WAVE DETACHMENT FOR A UNIFORM CASCADE

Shock Detachment Due to Blade Incidence

We consider a cascade of blades of stagger angle € and
incidence ¢ s as shown in Fig. 1. The suction surface Mach
number is Mss, and the upstream Mach number MM. The blades
are assumed to be thin.

The mass flow through the characteristic AB, r\'nA'e, must
be equal to the sum of the mass flow through the blade passage
and the mass flow through the sonic line. The former is equal
to the upstream masé flow per blade passage., With a blade
spacing s (c.. f. Part I equé.tion 3),

Qs s +i) = (o\cwz *'SMW)QS;"R@QC_A s (1)
where the notation is defined in Part I, with Q the one-dimen-
sional mass flow function, and Rec the presssure loss ratio,

Transforming this equation, we find that

Qss cosoc = Qoo cos (K+L)
Rch—stC"'J*Z (2)

d _
s

Since the incidence is always small in practice, we can expand
the formula for small L. Then, changes in Mach number are
small and st may also be expanded about an'
From the appendix, we find that

Qss = Qoo — M= Qw , (3)

and hence

Qo Cosoe—i-all‘i,o""l Qoo ¢ = Qoo toroc — Qoo L Sk
RCQQ‘Q"OC"?’Z )(4)

d_ _
s

sSm &k = \/Naol"I Lo X (5)
(Re@e/Que )~ cony
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This formula shows that shock detachment measured along the
sonic line increases almost linearly with incidence, and is
zero for zero incidence, which here is the "unique incidence
condition",

In the design of turbofan compressors, a quantity often
"used is the capiure area ratio (CAR). This is defined as the
ratio of the mass flow through the characteristic AB to the

net mass flow, i.e.

CAR = \Yf’\aa= Mo + Fe (6)
Mo M oo
dQcRe

t

> (1)

S Qw0 oo (wri)

i

@C Rc (ngCOSOC - QNCDSCOC-P C))
Q»Cno(ocﬂ')(Rc Qe = Qsscos 'Z)

(8)

Linearising with respect to i, this becomes

[(QcRe /@ )(Sonic ~IM3-1 e )}

S R v P / (9)

~For the RB211 at 92% speed, the condition where buzzsaw noise
is important, we have Mp = 1.4, &C = 60°, ( = 4°, N = 13.4°
and.ﬁ4ss = 1,55, To estimatefzc, we note that across a normal
shockRC = 0,913 at rL°= 1.55. This must apply to the air
which is just spilled over the top of the aerofoil. For an
oblique shock wave with a downstream Mach number of 1,4, the
pressure ratio is Rc = 0,964, Accordingly, we estimate the
average value ofRC as 0.964. Then using (9), we find that

d/s = 0.142,
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This is similar to the value®calculated by Stratford
and Newby. Furthermore, it corresponds to a value of shock
pressure rise (AP/P.,O)= 0.35, at half a blade spacing shead
of the fan, This is acceptably close to the measured value
of 0.4 in view of both the approximation in the theory and
the difficulties of making measurements of this pressure rise,
when the flow is unsteady, and there are large blade to blade
variations.

Shock Detachment Due to Thickness

We consider a blade which has a thickness € at the tip,
and a thickness & at the position where the characteristic AB
(Fig. 2) meets the bladeS.

The method of analysis, as before,is to match the mass
flowsacross the sonic line and at infinity to the mass flow
through the characteristic AB.

The mass flow through the characteristic AB is

fpg = (Scosx = 8 —(4+£))Qss (10)
the mass flow through the sonic line is

fe = 4R Qe (11)
and the mass flow at infinity is

Mp = §cos (x+C)Qss . (12)
Hence, since Mo+ ¥ = Mpp , Wwe have

?

(13)

. d _
Qss Cos <0C+ t—) + —S'QcRc— (COS “‘_SS_‘*%‘“PL)QSs ff"%‘”’ZQSS

and therefore

4 _ [Qucsc > Qecostn v)] +[(66) coory ~(5/5)] @ss
s [R,,Qe_ - stCos;zj (14)

This shows that if the tip alone is increased in thickness
without altering the downstream thickness %, the change in

+ Actual Value 0.42
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shock detachment,(d/s),is then given by

A(':') :A(‘g’)‘ [(&&:‘;;Zs) Ty (15)

Tais is essentially the same forﬁula as that for an isolated
aerofoil (Part I equation 4). An interesting feature of the
formula (14), is that if both the tip and upstream thickness
increase together (for instance if there is a uniform
thickening of the whole blade), then there is virtually no
change in shock detachment,

SHOCK DETACHMENT FOR NON-UNIFORM‘BLADING

Effect of Blade Stagger Angle Changes

We consider the geometry shown in Fig, 3, where the
blades have perturbations «,and «€,,., respectively, in stagger
angle. We assume for simplicity that these perturbations
occur about the same point in each blade., There is no real
basis for making this assumption except that if the blades are
twisted by different amounts during manufacture, the twist will
be about the same axis for each blade,

The basis 6f the solution is to consider the mass flows
through a box formed by the characteristic AB, the sonic line
and the outflow from the blade passage (Fig. 5). These mass
flows are balanced by contiﬁuity, and are then expanded about
their mean values to first order in the perturbation quantities
of,0d. The shock detachment distance can then be determined,

We consider first the change in mass flow through the
exit of the cascade., This is assumed to depend only on the
area., The reasons for making this assumption are as follows,

Physically, since the cascade discharges into what is effectively
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a constant pressure sink, the outlet pressure on DE must be
constant, and unaffected by the non-uniformity, and since the
flow is nearly sonic the mean flow will be relatively
insensitive to any variations in Mach number, As the stag-
nation temperature and pressure are constant, and (Acvan)is
O((""ﬂx), as M"‘l, the mass flow will be proportional to area.
Furthermore, the linearised analysis of Part I has shown that
this is indeed asymptotically true (as M-> 1) for low harmonic
order variations in the blade positions., The area to be used
in these calculations is an effective area (rather than the
true, geometric, area), and should account for the presence
of the blade boundary layer. We will ignore the variation in
the latter with blading non-uniformity.

If these arguments are accepted we have, in the usual
notation, the increase in area per unit span as(c-x)Q{n-mh_D
Hence the change in mass flow is

Atrgy = (cmx)(xn-nt )Ry ApQp 5 (16)
where Rf accounts for the loss in total pressure between the
inlet and exit of the box, AT accounts for the contraction in
stream tube height that occurs on a real fan, and represents,
therefore, some attempt to take three~dimensional effects into
account,

The change in mass flow through the sonic line is

Amg, = AdQcR.. (17)
Here there is no stream tube contraction, and, furthermore,
we assume that the change in the pressure loss is negligible,
This is reasonable, since the loss is in any event a small

quantity.
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We now consider the mass flow change through AB, which

is
A ';‘AB = [@. sst AR s%] [(d +Ad-) Cos <vl—°(n) +((x(““"-'(")/c”’()+s)

. Ceo v(fo(‘n-()] - st(alcn»z-f-s CmPC) . (18)

Expanding in the perturbation quantities AR, Xn, oKay s O,

we obtain

Aimgy = Ast(dwlz-{-Scmo()

- Qss [oc“.._.ls Stn ¢ = AAcosxz - Kndsfwz "J:(o(,,_ro(.ﬂ.

We now use the results in the appendix, to express AQ in terms

of oy » giving

DQRss —
5= Ky Pss s
Q ss

where ﬁsF,/M5§_| ,

(20)

We then find that
Amh& = QSS("(n—l {5ss ("lm‘?_"' 5‘-"‘() — &p S s

+ Aotamz 'f"x_(o(-n-(—-(’(n)-f-o(v‘clen »L) . (21)

Since the net mass in-flow into ABCDE, must vanish, we have

DAmpg = dmee + A’;\$E 5 (22)

so that

Qss (o(n-tlﬁss(dCﬂ7Z+ 5C¢°°<>" Au-) S + Ad sy +XC(XI’-|-|"0(;‘)

2
bl )= (e x)ne %) RAGE+ BdReqe,

and therefore
Ad _ [Qp ¢
S= (80 S Ryl hum )+ F(- Al - 5 Jiurws)
+ (Xn-—l /359 (—?—CD’JVZ t CWK)—OC"_IYL'M( +_£(_°(n SU»\OC]

_ 5 (24
Rc&c — Cmyl '. . ' ( )
Qss
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There are several noteworthy features to this formula,
First, it has the multiplying factor [(Rcat /st)‘ C‘”Q] B
found in a2ll these problems. Sécond, considering the terms
in the numerator, (l— RpAr)z/S is much less than (C/s)(RFﬁ}’)
and may be neglected. Third, (d/s) ®ns™” is also small
(both.é§%)and Suapn are small) and is neglected,

For the RB211, at the conditions of interest, we estimate
the following guantities:

RpAp = 0.9, X/S = 0.6, d/s = 0.15, C/S = 1,25

R, = 0.95, = 13°, Qc/QSS = 1.21, M_ = 1.55, cos y = 0,98
X = 600, es = 1.18. The typica. value of n = O.2°
Then
%ﬂ - 4® (o(“- o(“-.)—d-(?(h-l , (25)
where « is in radians., Converting « into degrees gives
%a_( : O (Kn= Xua) = 007 Kn-t (26)

Change in Shock Detachment Due to Blade Thickness Changes

In this section, we discuss the change in shock detach-
ment due to the change in blade thickness. We assume that the
cascade of blades is uniform and therefore that thickness and
stagger are uncourled. This is a reasonable assumption and
likely to be valid, at least for the small changes encountered
in practice, The method of analysis is essentially that used
above. We balance the mass flow through a box bounded by the
blades, sonic line, trailing edge planz and the characteristic
from the blade to the sonic line: see Fig, 4.

The change in mass flow through AB is again dependent on
areachange, which is —(§.+ Sn-l) « The change in mass flow
is simply

Ay = = QpApRy(Sn+ Sne ) . (27)
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The result in this form is open to two objections, First,
the thicknesses ought really to incorporats the boundary layer
thicknesses, which may not be negligible for these transonic
flows., Second, because the streamlines on either side of the
tlade converge as the flow leaves the blade, the area of the
flow should account for the wake and its downstream mixing.
But nevertheless, we believe that the assumptions leading to
(27) are sufficiently good for our purposes.

The change in mass flow through the sonic line ié

Amus = ReBQe Ad (28)

and the change in mass flow through AB is

A g = (“‘I'\,.v\—l + (Adnt Oeu)(.osq_)&ss. (29)
Therefore, since

AY;IAB = An.')‘,_ —1- AM:‘ED D (30)

QSS[:(Adn + A(-”n)c’ﬂ 2’ Anq]: AdReQ e - QPAIRP (8»\0‘ sn-l),(31)

so that

[Ae" cnn 1 (QPAPRP/QSs)CS»\ + gm-l)—l’\n-' ]

Ad = .
[(®¢R¢ /QSs)"‘ C.of}zj (32)

This has the usual denominator [(Q;R‘AQQ..oni], and otherwise
depends on four thicknesses: the actual leading edge
thickness, &, , the trailing edge thicknesses (57,, Sn+.) ,
and the upstream thickness of the preceding blade Plh;, .
Because of this dependence on four variables, it is difficult
to apply the relation to a fan, Of these four, only the
leading edge thickness is important, since its percentage
variation is the largest, the blade leading edges being very

thin and hand~-finished. Then
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o d L€ Cea 7

x4 '((Q¢R</ass)- =) - (53)

In this relation, we note from Section 2 that substitution for
d gives

Ad _ Ak e N

4 s '(Cr:,o(" Cm(_KrC)GPO/Q:s)

(34)

This formula applies when the uniform component of shock
stand-off distance is dominated by spillage rather than thick-
ness. Using the same values for the parameters as in Section
2 we find that
A4 = 3350k,
a S

For typical blades, s = 8" at the tip, and, typically,
Ak, = o-ot" (standard deviation of measurements),
This corresponds to [%%%} = 004 s which is a much smaller
percentage change than that due to blade stagger angle varia-
tions. We note in passing that it has been found that it is
the 1eading‘edge thickness which correlates well with shock
strength.

This completes the calzculation of shock detachment due
to blading non-uniformity.

VARIATION OF SHOCK STRENGTH WITH SHOCK DETACHMENT

The objective of this section is to determine the varijation

in the positions of the shock waves as the detachment distance
is altered, To do this we consider a shock wave from a single
blade, as shown in Fig. 5. In this figure, the shock wave
propagates forward into a uniform flow whose characteristics
are at a constant anglg/zs to the downstream flow, The co=-

ordinates of a point on the shock are ¥, P\



We analyse the problem using weak shock theory 3 .
In that theory, the shock is shown to bisect the
characteristics intersecting it from upstream and
downstream. For the Mach numbers encountered here this
approximation should be adequate since at no point
(except perhaps close to the sonic line) are the shock
waves in any sense strong.

Then from Fig 5

tavx(-r{-—- &+ (M))= —_’_:_3.1'% >

> (35)
which can be rewritten as
COE(W\‘/‘:‘):__L_{‘_L .
2 Y dp (36)

Integrating from Y ==V§,the sonic line, to ¥ and from
y=d to Y gives

W r
wt(!"_:_ﬁs_)o‘ﬁ: -4, (37)
= r
e
” @ -4)/2
rwtode = 4 (4/r) .
A (38)
Thus
b [Sin (o) | 4],
n[;dh Vs (Vo - s ) _2%&4(7)’ (39)

that is, the shape of this part of the shock wave may then

be written

r o (m y;(w,-,&)]“

S tm '/:_(\0\‘/-:5) (40)

298



Using this relation, it is relatively straightforward to
calculate the change in shock positions with /—4_5 (which
depends on the upstream Mach number), %; (which depends
on the downstream Mach number) and d.

Examining thé above formula, we find that for the
fan under discussion, the maximum value of (Yr-4s )
occurs at the sonic line, where SA = 1030, /75 = 40°
(Ms = 1.55)« Then /(*/‘ "/‘45)/7-/ < 32° and we can

approximate (40) as
—- 2
R
A W = A (41)

This formula may be expressed intemsof © , the
angle between the characteristic and the sonic line
Since the sum of this angle and Y is the same for all
Mach numbers, and at the upstream Mach number WS‘ =,&',,
it follows that

(/&} + Bs ) = (p+ 5’) .

Then substituting in (41), and noting that %. = 0,

Y _ 6s \*
~ (o= (42)

Since O is a function of Mach number alone, this formula
may be used to calculate the Mach number, and hence the

static pressure rise at any position on the shock.

For a uniformly bladed fan, we choose a co-ordinate

system such that X = v sin (\/\fOC) y Y= -7 Cos(\P\—(-o()‘

ThenX,)’ are along the blade leading edge line and

perpendicular to the cascade, « is the stagger angle.
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The calculated shape of the initial portion of the
shock wave is shown in Fig.6. This calculation covers
the region of the shock wave before it meets the expansion
fan from the leading edge of the preceding blade, It is
clear then that we now know the pressure rise as a function
of Y/X. This is plotted on Fig.7, for the usual fan
‘conditions, and demonstrates the expected rapid decay of
pressure behind the shock.

An alternative plot is of the variation of shock
amplitude with distance away from the fan face, ie, of
AP [P, as a function of X/d, Fig.8., This shows the
expected decay of the shock strength ahead of the fan disec.

To relate the pressure rise at the shock to the
chénges in the detachment distance d, we use a small
perturbation analysis. To analyse the problem properly
we have to account for the changes in both blade
orientation and upstream Mach number. However, it can
be shown that the effects just referred to are small compared
with that of the change in the shock detachment distance,
If, therefore, we only account for the change in shock
detachment distance d, we can write (AP/Ppo)= &(Y/,()
and then for small changes we can write

A A_.P.>= -;'(Y/d).l.(é% : (43)
Poo 4 \d
For the fan here, Y/s = 0.5, d/s = 0.125, giving Y/d = 4
and f' = 0.1, Then (‘}_f): o.q_(_A__f(_) ,
P d
and substituting for-ca?ﬁ)from equation (25) we obtain the

required relation between pressure rise and blade incidences,
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o (] - -ovfoe (e e v o]
P
" (44)

This is to be compared with the relation determined

2
experimentally by Stratford and Newby .

A(éf) = _o-lw(x,\_ ocM-n) (45)
Poo [w

Two things are clear about these results., First, in our
relation, there is an extra weak dependence on on.;, for
fixed ( (- 0<v\-|)o Second, we have greatly over-estimated
the rate of change of <4P/Po¢)n with (.~ ®.)s There
are a number of possible reasons for this. The prime one
is the extreme sensitivity of the result to the steady
detachment distance. Substituting in (45) for 4d and

d, we find that
A(%i)h - 9“”“)'(?)(%) (46)
- “fl(y/al) sY [ %‘:}: Rrﬁr t :((" APRP)(«N- «,_,)}

.—d._i [(QcRc/&ss - Cu:)z_-] *
(47)

In this expression we have neglected a part proportional

to ®,., and in the numerator, only the (gf-i-RpAr term
Qss S

is significant., Now, since f' is relatively insensitive
to the actual value of d chosen and
ml
4 ((Qsts)Qc - cch&)

the result is, in effect, proportional to 1/d.
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Substituting for 4 from Section 2 gives

2P\ g2y (@erefsss)= 1)(Bas 5) 0P + X (1- Aptp) (n-ne)
A(Pa)>n (A) S (coscc— (QSS/Q“)CQS@(H))

Now we note that the numerator and denominator in this
expression are both small differences between larger
quantities, and the result is therefore very sensitive %o
small changes in the parameters used. In particular we
note the sensitivity to R~c . If Rc were reduced
to 0.9, (%g%i.<n7) would be reduced from 0,17 to 0.112 and
the result (44) would be more similar to Stratford and
Newby!s experimental relation. Also noteworthy is
the approximate variation as 1-2, indicating sensitivity

to this quantity also,

CONCLUSIONS

In this paper, we have devised a relatively Qimple
theory for the strengths of the shock waves found ahead of
a transonié compressor having non-uniform blading, The
theory shows that the shock amplitudes are proportional to
the differencesbetween successive blade stagger angles,
in agreement with the experimental results of Newby and
Stratford. These shock strengths are also dependent on
the changes in the thickness of the blades at a number of
different points on the blades. Of these thioknesses,
that at the leading edge is probably the most important,
For typical variations in each, the effect of stagger
angle variation is four times that of thickness

variation.
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While the general dependence of shock amplitude on
stagger angle is correctly predicted, the rate of change
is not. This is possibly due to the use of inadequate
nunerical data rather than any defect in the theory
itself. The slope of the shock amplitude/staéger curve
depends on factors that are very sensitive to the
conditions used, In particular, it is sensitive to mean
blade incidence and to the losses assumed. Neither of
these is accurately known in the present context, The
strong dependence on incidence does, however, suggest a
method of controlling the source of buzz-saw goise. As
incidence increases, so does the average shock detachment.
But this causes the extra detachment due to the blade non-

uniformity to decreases as a percentage of its mean value,

with a resulting decrease in the shock amplitude,

There are several ways in which the analysis could
be improved. First, it is clear that the correct values
of incidence and loss factors are critical, and some way must
be ‘found of. accurately determining them. Second, and
despite the analysis of Part I, one of the most questionable
assumptions - in the theory is that for the outflow from the
cascade. While Part I justified the assumption that it
depended an area alone, it did so on the basis of a
linearised analysis, which may be somewhat in error at
these high Mach numbers., However, this is likely to be
a smaller effect than that of the boundary layer. As the
shock strength and position change, so will the boundary
layer thickness and this in turm will alter the effective

outlet area. To calculate this effect properly would be

most difficult.



But in any event the analysis here does provide a
description of the flow that is consistent with the
observed relationship between the shock strengths and
the blading non-uniformity. As such it is about as far

as it is worth going with purely analytical means.
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APPENDIX

Page 1

Small verturtations of comopressible £1ow

(2) Two-dimensional flow

We are concerned with small perturbations to two=-
dimensional compressible flow, and thence with determining
the changes in Mach number, and flow per unit area due to
changes in flow angle.

We consider a pressure wave of form FCx-ﬁj) where

g = (;11—1)713 then, from the linearised flow equations

UJ.a_k_?. * ._’-if = O , (A1).
'DKJ' /D ’27((’

U2 4 poui =0,
.z ? xXC

(a2)

where Y4: is the velocity perturbation, we find, for a flow
angle perturbation ol , that

u-_-"_"_(_’_"’:r_oc,ﬁ:yf'l‘oe He . r-1 Nk
w

£

where & , U are the velocity perturbations parallel and
perpendicular to the mean flow, The change in Mach

number AM  is determined from

y—1 M%«

R

AM . 4w _ 8C . X
oo F (44)
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APPENDIX
Page 2
or
fﬁfﬂ = - J5L<((’* 7=t ,7t) .
M 2
P (45)

Then, since the one-dimensional flow function which

describes flow along a stream tube satisfies

AR An'. (t-r*) | (46)

—

Q Mo+ Zim)

we find that |

xQ (a7)

Prandtl-Mever RHelations

We use the definitions of Houghton and Brock 4 $ the
notation is illustrated in Fig.9.

Then with the Mach angle/uz si:'(l/m),we find that

_—an _
IR TR g vEnr) (#e)

By definition, the angle VY is equal to the flow angle «

plus a constant. Therefore

Av = Uﬁ”)%-dn
(1+ I2m*) M (49)

We also define another angle @ by (see Houghton and Brock 4 )
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APPENDIX

Page 3

. v,
_ [ - (¥ +1) b .
6 = [y ce* <1+@’*')”‘) (410)
Then

AG = [T i M am (¥-1)
7o (2r @MY (REn)/ (e epht))s (A11)

__an () M .

M (1 + L2

‘ =i > ) (A12)
As a check we note that

-A)"' AD = an (N‘—/—(T+I)M72)
M (nm)h(1+ () /2) (413)
— . 4an ) . (318)

M (n=1)

Since O + M =V = I, this is the expected result,
: A '

k4

Also of interest is the angle of the sonic line to
the free stream: this is Jl_ - ¥ in the notation used for

the estimation of the shock detachment distance. Now
ki = O+ .
- 7 M5 (A15)

therefore
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A'Z = A@-(-A/« , , (A16)
_an )N/ 2 1l (a17)
MASH=1 [(1+ (r-DMY2) 7

We expand some of these quantities for M’-‘-(H—i): from

A€

A/u=——ﬁ_£_;

(A18)

we have
=T -Jamrny + O(s’/z) (A19)

Similarly,

ap = 4E (A20)
J2e
and
© = JrUe) + O£, (A21)
and since

4v = Ao+ p), v O(eM), (A22)

Further éslz = Ai AJ2E ) so that "l'vO(E‘/z)also.
(74—1)/1
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#ig. 3. otation for calculation of shock wave detachment due to stagger angle variations.
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Figc. 5. MNotation for shock wave shape calculation.
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