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ABSTRACf 

Althougrr lateritic nickel ores are efficiently leached by pure 

dilute hydrochloric acid at atmospheric pressure and temperature between 

ambient and 90oC, the degree of extraction of nickel, as well as iron 

and magnesium is considerably decreased in the presence of rooderate 

concentrations of the respective cations in the leach liquor. In the 

case of nickel itself extraction falls to zero at concentrations of 

Ni2+ of about 20 g/l for roost laterite ores. Increase in free acid 

concentration or temperature does not improve the extraction. 

It has been shown that the poor extraction is not due to 

cessation of the reaction between the acid and the ore but to the 

formation of a layer of insoluble reaction product which prevents 

further dissolution of the cations. 

The problem may be solved by the application of washing with 

pure dilute HCl. The washing parameters have been sttrlied and a 

leach-washing flowsheet is proposed that would permit leach liquor 

containing at least 20 g/1 nickel to be produced with 92-95% extraction 

from the ore. 

The leaching of the cations Ni, Mg and Fe was fotmd to obey a 

kinetic rrnde1 of the form 

1- } R - (1 - R)2/3 = kt, 

where R is the fraction of cation extracted, up to a certain fraction 

of extraction after which a change to another ~chanism of leaching 

occurred. This fraction depended on both the cation involved and the 



temperature. The kinetics were chemically controlled up to 50-60°C 

and diffusion controlled at higher temperatures. 
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CHAPTER 1 

INTRODUCTION 

The importance of lateritic nickel ore deposits as a potential 

source of nickel has in recent years prompted detailed studies of such 

deposits, and of methods of extracting nickel. Although relatively low 

in nickel, 1% on average, the enormous tonnage available makes them a 

viable proposition. Today, about 40% of the world's nickel is 
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derived from lateritic oxidized ores found mostly in tropical countries. 

The balance is likely to shift further in this direction since these ores 

account for over 80% of land-based world nickel reserve. Thus, with 

more,and more nickel being derived from lateritic ores, significant 

efforts are being devoted to methods of extraction, whether they be 

pyrometallurgical or hydrometallurgical, with much development work 

devoted to the latter. 

~Umy of the hydrometallurgical processes patented for selective 

extraction of nickel and cobalt from lateritic ores include: Ca) a 

pretreatment stage, usually reduction roasting, and/or (b) a high temperature 

pressure leaching stage. A typical example of route Ca) is the Sherritt­

Gardon's ammonia leach process in the Philippines Cl ,2) and of route (b) 

. (3,4) Th acid leach1ng at Moa Bay • e ease of regeneration and low cost 

of the leaching reagents have, in the past, outweighed the cost of 

elaborate process plant equipment. However, with higher fuel costs 

(considering the ores as 1% nickel and 99~ gangue) and increasingly 

stringent effluent control regulations, the incentive has been towards 

the development of low temperature-pressure leaching systems within a 



closed cycle extraction process. Reviews by Meddings and Evans (S) 

and Deny (6) deal with the applications of low and high pressure 

hydronetallurgy . 

The application of direct aqueous hydrochloric acid leaching 

(low pressure-temperature) to nickeliferous laterites has been 

" " dO th tb St dRi (7,8). Alth ghl h" InvestIgate In e pas y rong an ce. ou eac Ing 

is not selective, the use of hydrochloric acid has certain advantages 

stemming from its good reactivity the ease with which mixed chloride 

solutions can be separated by solvent extraction and the ease of 

regenerating hydrochloric acid from metal chloride. The build up 

of magnesium chloride can be utilised to the advantage of the process, 

and the excellent regeneration efficiencies by spray roasting mean that 

all chloride liquors can be processed and acid recycled to the leaching 

stage. 

Prompted by the encouraging results reported by Strong and Rice, 

this research is an attempt to study further the aqueous hydrochloric 

acid leaching of nickeliferous laterites at low pressure - temperature. 
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CHAPTER 2 

GENERAL REVIEW' OF mE EXI'RACfIVE ?-1ETALLURGY OF NICKELlFEROUS LATERITES 

2.1. Introduction 

The recovery of nickel from nickeliferous laterites is difficult 

because of their corrplex mineralogy and the limited applicability of 

established technology(9). The orebodies are usually inhomogeneous 

and contain little or no sulphur. Preliminary beneficiation, apart 

from selective open pit stripping, is impossible and treatment 

depends on the type of deposit (10) • 

The complexity of the ores has led to the developrent of a 

variety of possible extractive techniques. Four of these, namely 

matte SIrelting, ferronickel smelting, Sulphuric acid leaching at 

elevated pressures, and reduction followed by ammonia leaching, are 

in commercial operation(9). The basic principles of these processes 

have been described in considerable detail by BOldt(ll), and no 

atteJlllt will be made here to review these data. A review by 

Canterford (12) has' dealt with the recent irrprovements in these 

processes as well as new innovations for the treatrent of lated tic 

nickel ores. In view of the detailed reviews by Canterford(12) and 

Strong(13) only the more recent aspects of the subject are discussed 

in this chapter. 

2. i. Hineralogical Aspects 

The low grade and cOJll)lexity of nickeliferous laterites is a 

result of their mode of formation(14) and despite many atteJlllts to 

physically tvgrade the ore(15,16), in general the whole orebody 
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rrust be treated. 

The process of laterization is extreJrely complex and because of 

variations in geological and geochemical factors, there are vast 

differences in lateritic ores, both within one deposit, and between 

deposits. The general concept of a laterite deposit is that it 

consists of three zones(14): (a) an upper, highly ferrup,inous zone 

in which the nickel is associated with hydrated iron oxide (lirrnnite 

ore) ; (b) an intennediate zone consisting of lirrnnitic and silicate 

ore (transition ore); (c) a lower zone which is enriched in clay 

minerals derived from the original ultrabasic bedrock (silicate ore). 

The complete separation of Fe and Ni into distinct zones h~~ver, is 

never realized. Thus, if Ni is retained in the upper zone with the 

iron through prevailing weathering factors, while the Mg and Si are 

rerrnved, such a deposit is termed a limonitic ore, or a nickeliferous 

iron ore, or a ferruginous nickel ore. If the Ni is partially 

separated from the Fe, and is associated at greater depth with the 

~fg and Si, the ore is termed a nickel silicate or seIpentine ore. 

The term "garnierite" is often used to describe nickel-containing 

silicate minerals, but in fact" g:lrnieri te" is not a distinct well 

defined mineral species (18) • "Garnierite" is usually high magnesia, 

high silica ore, while limonite is a high iron ore, predominantly 

goethite. 

The typical composition of limonitic and silicate laterites 

falls within the ranges shown in Table 2.1 (17), while the average 

composition of several deposits are given in Table 2.2 (17). These 

tables indicate that each deposit is different, but a more iJll)ortant 

point is that there are large variations within each deposit. 

4 
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Table 2.1. Cherrrrca1 composition ranges (%) for nickel 1aterites(17) 

LilIDnitic Silicate 

Ni 0.10 - 3.0 1.0 - 4.0 

Co 0.05 - 0.25 0.05 - 0.08 

Fe 35.0 - 60.0 8.0 - 18.0 

Cr 1.0 - 3.0 0.8 - 2.0 

MgO 0.2 - 1.0 25.0 -' 38.0 

Al203 4.0 - 18.0 1.0 - 3.0 

Si02 1.3 - 6.0 40.0 .. 55.0 

CUO 0.6 - La 1.0 - 2.0 

MnO 0.3 - . 2.5 0.5 - 1.0 

Table 2.2. Average composition (t) of several 1aterite deposits(17) 

Limonitic 1aterite Silicate laterite 

Cuban Philippine New Caledonia Philippine New Caledonia 

Ni 1.24 1.20 1.40 1.48 2.27 

Co 0.12 0.12 0.26 0.03 0.16 

Fe 41.9 48.0 45.0 12.4 26.8 

Mg 1.6 0.3 0.3 17.5 7.4 

Cr 1.6 2.3 2.2 0.9 1.4 

rvn 0.5 0.8 1.1 0.2 0.4 

Al 1.8 3.5 2.2 1.3 0.9 

SiOZ 10.6 2.0 9.2 32.4 21.4 



Since the metallurgical behaviour of an ore is directly 

dependent upon the mineralogical characteristics of that ore, and 

because of the complex nature of laterites, nearly all commercial and 

laboratory metallurgical processes are optimized on the basis of a 

constant feed material. Canterford(14) however, has demonstrated 

that even when using a feed of constant composition, there are. 

significant variations in processing behaviour within and between 

different feed lots. Thus, it has now been recognized that 

variations in recovery , consumption of reagents, product quality, 

et~. for a given process are related to the variation in mineralogy 

between the constant chemical composition feed lots. 

A procedure to aid the selection of appropriate process to 

extract nickel from lateritic ores was proposed by Limerick(18) in 

his Ph.D. dissertation. The procedure involves experimentally 

determining those mineralogical features of nickeliferous laterites 

which can be correlated with the efficiency of two extractive 

processes. These were; direct hydrochloric acid leaching at 

low pressure and temperature, and gaseous reduction and subsequent 

aqueous chlorination - conditions as described by Queneau (19). 

The usefulness of the proposal relies on the inherent assumption 

that; Ca) the mineralogical components of an ore can be defined 

and identified; (b) the proportion of the various components in 

any sample can be readily determined; (c) the mineralogical 

features which affect process efficiency can be identified and 

measured; Cd) correlation can be established; and Ce) there are 

no significant interaction between components. The validity of 

these assumptions and its inpact on the practicability of the 

schenc as a whole were evaluated in the laboratory, but remain to 
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be tested on a large scale. 

2.3. Pyronetallurgy 

Two new important projects on the extraction of nickel from 

1ateritic ores using the pyrorneta11urgical route have been reported 

at Soroako(20) in Indonesia and at Lake Izabel(21) in Eastern 

Guatemala. At Soroako, kiln-dried ore is redu:ed in a 100 m kiln, 

sulphidized with liquid e1enental sulphur at the kiln-discharge, 

with the product then being rre1ted in what is tUlderstood to be the 

worldts largest circular electric furnace, 6 m high x 18 rn diam. and 

rated at 45 NVA (22). The 25% Ni matte product is tranferred to a 

top blown rotary furnace and up-graded to a 75% Ni, 25% S Besserrer 

matte with the iron being slagged with silica flux. The corrpleted 

project is expected to have three su:h identical processing streams 

with a total annual production of about 45,000 mt of nickel. The 

sa.ne route is to be used by Exmibal (Lake habel), where a similarly 

sized furnace is employed with conventional Peirce-Smith converters 

instead of the top blown units to upgrade the matte to 75% Ni, 22%S. 

and less than 1\ Fe. The electric furnace is planned to operate 

at about 1,540oC, with a 0.5rn rretal layer and 1.2 m of magnesia­

silicate slag(21). 
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Currently in New Caledonia, electric snelting is used to produ:e 

a crude ferronickel! SOIre of which is either refined directly or 

sulphidized using a new sulphur-shrouded tuyere injection process 

in Peirce-Smith converters (23). ~fany of the existin,g pyronetallurgical 

lateritic processes produce ferronickel rretal 25-50% Ni. ~~ussou1os(24) 

has reported an interesting application of the top blown rotary 



converter to upgrade such ferronickel alloys to 90% Ni which would 

then be suitable for further refining by electrolytic process if 

required by the market. The basis of the process is the converting 

of the iron and the utilization of the heat released for the 

sinultaneous snelting of a large amount of lateritic ore. In this 

way, the temperature of the process can be controlled and appreciable 

amolU1ts of additional nickel and oxygen are introduced, affecting 

favourably the process economics (25) • The operation is carried out 

advantageously in a top-blown converter with pure oxygen. The ore, 

crushed to 6 mm is fed at a controlled rate through a jacketed pipe, 

which passes through the hood. It falls on the molten netal surface 

and is imrediately entrained in the turbulence produced by the oxygen 

jet, introdu:ed at the center of the converter, through a lance. 
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Under these conditions, the heat transfer is accelerated and the snelting 

of the ore is very rapid. The vigorous agitation of the nelt favour 

reactions anong the different conpolU1ds present, which include higher 

iron oxides, nickel oxide cobalt oxide, silica and other conpowds 

introduced by the added ore, as well as the blast of pure oxygen. 

The following main reactions represent the chemistry of the process: 

1) 2 [Fe]· + 02 = 2 (FeO) * 6H 1 SOOOC = -111 Kcal 

2) (Fe Z03) + [Fe] = 3 (FeO) 6H I9)QOC = 25.1 Kcal 

3) (NiO) + [Fe] = [Ni] + (FeO) 6HI~C = 4.2 Kcal 

4) (CoO) + [Fe] = [Co] + (FeO) llHISOOOC = 4.6 I<cal 

5) 2 (FeO) + (Si02) = 

* [ ] into the netallic bath, ( ) into the liquid slag. 

With the exception of reaction (1), which releases a considerable 

amolnt of heat, all the others are endothermic at 15000 C (26) 



Reaction (1)~ whose enthalpy amounts to -55.5 Kcal per mole of FeO. 

is overwhelmingly predominant during converting. This reaction 

consunes the greater amornt of iron and is the source of the energy 

required for the smelting of the added ore. Therefore, reaction (1) 

determines the mass of ore which is smelted and hence, it influences 

directly all the remaining reactions, and in particular; the 

extraction of more nickel and cobalt from the ore by reactions (3) 

and (4). Thus, the heat released by the oxidation of the iron is of 

bas ic inportance to the process. If the oxidation is carried out 

9 

rapidly in a converter blown with pure oxygen, heat losses are limited 

considerably and a large amornt of ore can be smelted per unit of iron 

converted. This favourably affects the economics of the process. 

Production of nickel from lateritic ores is characterised by 

very high energy requirements. More than half Exmibal's operating 

costs are reportedly for fuel(2l). The energy requirement for nickel 

via 1ateritic smelting is reported(22) to be 396 x 106 Btu/ton 

(4.6 x 108 KJ/tonne) of ferronicke1 as compared with 144 x 106 Btu/ton 

(1.95 x 108 KJ/tonne) for electrolytic nickel for production via sulphide 

ores. Energy requirement in 1ateri tic processing are certainly an 

irrportant issue facing this future source of nickel. It remains to 

be seen whether the hydrometa1lurgical or pyrometa11urgica1 route has 

a clear advantage in this respect. A study of energy consunption in 

nickel prodoction as was conducted for copper(27) would be most 

welcorre • 

2.4. Hydrorretallurgy 

A major problem in hydrollCta11urgica1 approaches to the treatrent 

of nickeliferous laterites is the well-known difficulty in achieving 

selective nickel dissolution, leaving the major impurity elements -



iron and/or magnesium - in the leach residues. The ~ba Bay process is 

the only example of a system in which the ore is leached directly to 

give selective extraction of nickel. In this case, a high temperature 

sulphuric acid leach under autoclave conditions results in iron 

hydrolisis. TIle process however, has been shown to be unsuitable 

for laterite ores with a high magnesium content. The relatively 

10 

high . content . of magnesia means that sulphuric acid leaching 

of a silicate laterite will result in a large acid consumption and a 

high dissolved magnesium level. One approach to this difficulty has 

been proposed by Kay(28). This involves a leach to dissolve nickel 

and magnesium followed by two stages of neutralization with magnesium 

oxide for iron removal and nickel recovery as hydroxide. The 

inversed solubility of magnesium sulphate with increasing temperature 

allows magnesium sulphate to be recovered by crystallization at about 

230oC, followed by decomposition to give magnesium oxide and sulphur 

dioxide for the manufacture of recycled sulphur acid. 

Published information on the sulphuric acid pressure leaching 

of lim:mite is scarce. l\brk performed in support of the large scale 

operation at ~ba Bay in Cuba was first detailed by Carlson and Sim::ms (4), 

then extended by Sohol (29-31)and Chavez (32). Carlson and Simons 

reported on the kinetics and mechanism of this pressure leach, 

demonstrating the importance of the acid-ore ratio and temperature; 

kinetics of nickel extraction were explained by three nickel-bearing 

species, but no proof was given. Perhaps the Jrost remnrkable feature 

of this work was the shape of the nickel extraction curves. ~1ost of 

the leaching was complete in the first few minutes, with little 

extraction occurring during the remaining hour. Recently, Chou, 



Queneau and Rickard(33) have presented laboratory results on the 

sulphuric acid pressure leaching of nickeliferous limonite from 

southern New Caledonia. This investigation extends that of Carlson 

and Simons. Particular attention was given to the first portion of 

the leaching period; the effect of temperature (22SoC to 3OQoC), 

acid-to-ore ratio (0.21 to 0.30), % solids (10 to 45), particle size 

(-20 to -270 mesh), and agitation (SO to 600 rpm) on nickel extraction 

and selectivity were discussed. In general the authors established 

that increasing temperature increases the initial rate of nickel 

extraction; increasing acid/ore ratio increases total nickel 

extraction and nickel extraction rate; and decreasing the % solids 

increases leaching selectivity and acid utilization (i.e. less 

sulphur is lost to the leach residues). The temperature dependence 

of the nickel extraction rate between 2500 and 27soC is pronounced 

during the first 10 min. of leaching, but becomes almost temperature 

independent after 15 mins. Also, the 22soC and 3000 C reaction 

temperatures results in significantly lower nickel extraction than 

does the 250 to 27SoC intermediate range. Low te~)erature apparantly 

does not provide the driving force needed for rapid nickel extraction, 

and very high temperature apparantly results in coprecipitation of 

nickel with the solid hydrolysis products. Nickel extraction is 

insensitive to agitation after 30 sec of leaching, showing that during 

most of the reaction period the diffusion of a reacting species through 

a liquid boundary layer was not limiting. The fact that nickel 

extraction is independent of agitation after a brief initial mixing 

period, verify one of Sobol's cOIlcepts: to attain high leaching 

rates and complete conversion, rapid and perfect mixing of the ore 

11 



and acid is required(29). However, Sobol also stated that "intensive 

agitation is required during the time the sludge remains in the reactor 

to attain complete conversion"(3O). This statement is quite contrary 

to the results obtained in this study. 

Concerning overall improvement of the leach response, the authors 

concluded that laterite leaching is best conducted at temperatures 

higher than 2500 C and at solids less than 30\. The acid/ore ratio 

level should be that required to attain reasonable nickel extraction 

at an acceptable rate. 

Other established and proposed process in which the aim is to 

leach only nickel (and cobalt) involve a pretreatment step, which is 

JT()st conuronly a reduction roast. Under controlled conditions, high­

temperature reduction allows IOOst of the nickel and small fractions 

of the iron to be reduced to an iron-nickel alloy. This alloy must 

be leached from a matrix of, essentially, iron oxides and magnesium 

olivine. Several leachants are effective in extracting nickel from 

the reduction-roast product with varying degrees of selectivity. The 

nost familiar example is presented by the commercially applied ammonia 

leach process (34) (Caron process) in which iron from the alloy dissolves 

and reprecipitates as hydroxide, while magnesium is not extracted. 

Power and Geiger(17) deal with the application of the reduction roast 

ammoniacal ammonium carbonate leach to nickel laterites. 

Other leaching systen~ reported include aerated dilute sulphuric 

acid(3S-37) and aqueous solutions of sulphur dioxide(38,39). Although 

metallic iron and iron oxides are attacked in acidic systems, hydrolysis 

alloWS the dissolved iron to be reduced to a low level. Some magnesium 

also dissolves, althou~l the extent of n~gnesium dissolution can be 

12 
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restricted by taking advantage of its relatively slow dissolution rate. 

The use of chlorination to leach nickel from reduction roasted laterite 

(limonite) also has been studied(40). If the solution contains 

substantially no free acid, magnesitnn dissolution is minimized, while 

extraction of iron may be limited to the iron content of the alloy. 

A recent paper presented by Roorda(41) deals with the advantages of 

chlorination. 

In an interesting paper presented by Distin(42) it has been 

suggested that under certain conditions, copper sulphate solution 

might be an effective leachant for metallic nickel from reduction­

roasted 1aterite. According to Distin, the use of this reagent would 

result in metallic nickel and iron dissolution only through the 

cementation reaction: 

Ni (or Fe) + eu++ - .++ ++ N1 (or Fe ) + eu 

Attack of iron oxides and wagnesitnn silicates would be minimized by 

operating with an effectively acid-free solution. In brief, the 

~urk outlined in the paper describes attempts to evaluate the technical 

feasibility of a process based on copper sulphate leaching under non-

autoclave conditions, as shown in Fig. 2.1. After copper sulphate 

leaching of the reduced laterite, solid/liquid separation would 

provide a weakly acidic solution of nickel and iron sulphates, and 

a leach residue containing metallic copper. Copper recovery by 

flotation is envisaged followed by oxidation of the concentrate and 

redissolution of copper oxide in slightly greater t~~ the stoichiometric 

rurount of acid. The claimed advantages of this system are that rapid 

extraction of metallic nickel may be obtained under non-autoclave 

conditions in only a weakly corrosive environment, while gas transfer 

into the solution is not required. The effluent would, essentially, 
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Fig 21 Conceptual flowsheet for copper sulphate leaching of reduced laterite~42) 



contain dissolved iron only, which could be precipitated by neutrali­

zation with lime. Distin however, made it clear that the advantages 

must be balanced against the necessity for flotation, concentrate 

oxidation, and copper oxide dissolution. 

Another interesting two part paper recently presented by 

De Graff(43) (investigating why recovery of nickel from silicates 

is lower than from 1imonites) deals with the leaching of reduced 
-3 -3 1aterites using the Caron liquor; 4.4 001 dm NH3 + 1.0 nil1 dm CDZ 

(Part I), and the use of EDTA (ethylenediamine tetra acetic acid) as 

a non-selective leach liquor, as well as a sodium citrate liquor 

15 

buffered with NrulC03 and containing sodium dithionite as a reductant 

for Fe(III). The use of ferric chloride, hydrochloric acid and HC1+HF 

are also reported (Part 11). The results are compared with those 

obtained with the standard Caron liquor. Detailed studies on oxygen 

conslID1Ption during anuronia leach and precipitation of Fe (OH) 3 were 

reported. 

Certainly, there are many other processes which have been proposed 

to achieve selectivity, but oost of them have certain aspects in common. 

These are: (a) a pretreatment stage, commonly reduction roasting, and/or 

(b) a high temperature-pressure leaching stage. The choice between 

these t\\·o routes is perhaps influenced by many variables other than 

chemistry, such as energy, reagent costs, and materials of construction. 

The ability to obtain selective nickel dissolution without a pre-

roast or high pressure conditions would be an attractive feature of an 

overall process for nickel recovery from 1aterites. One such approach 

which, in principle, is applicable to 1aterite, is that of Bauer and 

Lindstrom(44). These authors showed tlillt copper could be extracted 

rapidly from low grade carbonate ores containing large amounts of 



calcium by leaching with alkaline solutions of ethy1enediaminetra­

acetate OEDTA) at temperatures up to 80oe. 
The stabi1ities of the copper and nickel E.D.T.A. complexes 

are similar. With regard to 1aterites with a high magnesium content, 

nickel is much more strongly complexed by E.D.T.A. than magnesium. 

For high iron limonites, operation in a basic solution would limit 

ferric dissolution while retaining any dissolved nickel, despite the 

higher stability of the ferric-B.D.T.A. complex than that of nickel. 

Bryson and Distin(45) have evaluated the technical feasibility 

of such a process based on the leaching of a serpentine (1.65\ Ni, 

6.1\ Fe, 20.2\ Mg) and a 1imonitic (1.51\ Ni, 49.7\ Fe, 0.66\ Mg) 

16 

ores into E.D.T.A. solutions at atmospheric pressure at temperatures 

between 250 C and 90oC, followed by reduction with hydrogen (400 p.s.i. -

l200e or l40oC) to produce metallic nickel and regenerated leachant. 

In brief, Bryson and Distin concluded that nickel may be leached 

selectively from the raw serpentine and lirnonite components 6f a 

1aterite using E.D.T.A. solutions at P~I between 11 and 13 and at 

about 90oe. The leaching process is slow, especially for 1imonite 

if the major contained mineral is 2Fe203.~I20. (After 48 hours leach 

at 900 C and Plll3 with 1.5 moles E.D.T.A. per mole of nickel in the ore, 

nickel extraction from the serpentine and limonite were 87\ and 27\ 

respectively). ~bwever partial decomposition of the mineral 

structures by calcination gives substantial increases in reaction 

rates. Reduction from a leach solution at PIU3 with 800 p.s.i. 

hydrogen at 1400C for 3 hours gave 91\ nickel recovery and a solution 

that can be used effectively as recycle leachant. 



According to the experimental results presented in this paper 

any practical application based on an E.D.T.A. leach should exclude 

limonitic material due to the extremely slow leach kinetics and as 
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the authors have stated, data for a wide range of materials "''QuId be 

needed before the potential of any process based on an E.D.T.A leach 

could be judged. with certainty. Perhaps the IOOst interesting feature 

of Bryson and Distin's work is the strong influence of pre-calcination 

(providing partial decomposition of the mineral structures) on 

dissolution rates, which indicates that the leaching response is highly 

sensitive to laterite mineralogy. 

Obviously there is much scope when dealing with lateritic ores 

for the development of a process which requires no pretreatment stages 

and utilises leaching under low temperature and pressure conditions. 

Strong(13) has studied the use of hydrochloric acid for the non-selective 

leaching of unreduced lateritic nickel ores of both types, high iron 

content "lim:mites" and low iron content "serpentines". In this, it 

was demonstrated that silicates and limonites (classified on the basis 

of physical measurements; infra-red; differential thermal and X-ray 

diffraction analysis) react differently in acid solution and that the 

mineralogy of the nickel bearing phase plays an important part in 

determining the overall reactivity of the laterite towards acid 

extraction. Final extraction values are uniquely related to the 

solubility of the laterite, which is increased with the severity of 

the leaching conditions. (The effect of surface area, reaction time, 

temperature and acid concentrations were studied to optimize extraction 

conditions for both types of ore). 

Barber and Wilson (46) have reported electrolytic leaching 

of a lateritic nickel ore in hydrochloric acid. Lupton and Perry(47) 



have also reported the use of hydrochloric acid to leach an Egyptian 

Copper ore (2\ Cu, 0.5\ Ni) with the nickel in a chamosite gangue 

similar to laterite. The latter have shown that in order to have 

a feasible acid regeneration from the chloride solution a high metal 
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concentration for both copper and nickel was necessary. These workers 

also showed what has become the basis for the present research; that 

is the decrease of nickel extraction when increasing the nickel 

concentration in the leach liquor, but did not offer any e )(planation. 

Although hydrochloric acid provides a non-selective leaching, 

the use of this leaching reagent might be used for direct leaching at low 

tenverature-pressure, as both metal oxides and recycled acid can be recovered 

by pyrohydrolysis of acid leach solutions(48,49) and the removal of 

impurities such as iron and copper is easier from chloride media(50). 

The only industrial application of hydrochloric acid in nickel 

hydrometallurgy is the Falconbridge Matte leach process(5l,52). A 

detailed look at this process is perhaps informative as it embodies 

all the advantages of acid extraction ~ solvent extraction from 

chloride media(52) albeit from a nickel matte. Fig. 2.2. illustrates 

the unit operations involved. The basic principles are: 

1) Selective dissolution of nickel from a finely grolU1d matte \dth 

strong acid leach (7.5N). Copper and platinum metals are left 

as an insoluble sulphide residue. 

2) Separation, by solvent extraction, of any anionic complexes 

formed during leaching. 

3) Recovery of nickel utilizing the fact that increasing acid 

strength decreases nickel chloride solubility. 
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Fig. 2.2 Falconbridge Matte Leach Process 



The process conditions (7.5 N acid~ 70oC) enable the use of 

ordinary.rubber-lined acid-proof equipment for gas, liquid and solid 

handling, overcoming the major problem of plant corrosion. Nickel 
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chloride is recovered by crystallization and converted to oxide and 

hydrogen chloride gas in a fluidized-bed reactor(53~54). "Nickel 98" 

is the final product after reduction. 

Certainly, chloride processes involving gaseous reactants have 

good selectivity and because of their high volatility are easily 

recovered by distillation and adsorption (for details see references 

55 to 61). However, although numerous processes exist the wider 

application of aqueous chloride technology is limited by reagent cost 

and the problem of regeneration of the leaching rrediwn. Probably 

the most prohibitive feature of chloride routes is the excessive 

corrosion of plant equiprent. The use of hydrochloric acid in 

hydrometa1lurgical processes has been restricted due to these factors 

and perhaps because further retal separation steps are necessary due 

to lack of selectivity. However, the high efficiency of recovering 

acid from chloride leach liquor by high temperature hydrolysis with 

steam at 6SOo-800oC (both the Amen reactor (62,63) and Woodall­

Duckham(49) spray roaster are designed for this purpose), may 

perhaps make the use of hydrochloric acid feasible. The chemistry 

of retal chloride hydrolysis can be represented very simply by the 

following reaction types: 

1) ~C12 + Hp MJ + 2HCl 

2) 4~K:lZ + 4H2O + °z 2MZ03 + BllCl 

3) 2~C13 + 3HZO MP3 + 6HCl 



where M is (1) Ni 2+ , " Mi+ 
(2) Fe2+,"Mh2+,"Co2+ 

(3) Fe3+,A13+,'Cr3+ 

This offers the possibility of closed circuit operations with no 

waste products. The Woodall-Duckham process (49) has been applied 

comrrercially to many different applications, which fall largely into 

three categories: 

1) Steel pickling - where the acid is regenerated to reduce acid 

costs and eliminate pollution; the iron oxide recovered is a 

secondary, although valuable, by-product. 

2) Mineral upgrading - where a low grade mineral, such as ilnenite 

or silica sand, can be upgraded by leaching out tU1wanted 

contaminants. 

3) f.letal oxide production - where the feed nnterial may be a 

natural metal chloride (e.g. magnesium chloride) and the 

regeneration process is used to produce a high~uality metal 

oxide (nngnesia), with HCI as the by-product. 

Obviously, in all these applications, the optimum use of HCI 

regeneration is only obtained by considering the combined process 

as an integrated facility. A paper presented by conners(6~) deals 

with the optimum use of regeneration in all these processes. The 

application of hydrochloric acid to netal extraction from ores are 
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th abl f th b · th P Ri Iron Process(65,66) few, e most not e 0 ese elng e eace ver 

which was actually applied to scrap and failed due to market problems, 

lateritic iron ores in India(67) and more recently, manganese nodules(68) 

have been investigated with a view to acid extraction. 



The recovery of nickel from acidic chloride solution by pressure 

reduction of nickel hydroxide (Derry process (69, 70)) is certainly 
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an interesting proposition for the leaching of nickeliferous laterites 

(especially serpentines) in hydrochloric acid. Derry and Whittemore(69) 

have reported the use of magnesia as an alkali to precipitate nickel 

hydroxide from acidic chloride solution. The authors showed that 

magnesia is an ideal alkali because even when used in an excess, the 

rise in pH is not sufficient to remove all the nickel ions from solution 

(reduction proceeds via reduction of a small residual concentration 

of nickel ions in solution). In addition magnesia has the advantage 

that for chloride solutions that magnesia and hydrochloric acid can 

be readily recovered from the magnesium chloride reduction end 

solutions. 

Strong and Rice(7) have proposed in a general way the type of 

flow sheet that could be envisaged for the leaching of lateri tic 

nickel ores (serpentine) in hydrochloric acid, involving the Derry 

process as a Jreans of recovering nickel from chloride solution using 

MgO (recycled from spray roasting) as an alkali to precipitate nickel 

hydroxide. Strong and Rice suggested that excess of MgO could be 

sold as a by-produ:t, as could the high grade FeZ03 produced. A 

similar flow-sheet is proposed in this research (see Fig. 7.3 in 

Chapter 7). 

In general and as a swnmary it might be said that many patents 

and processes exist for the treatIrent of lateritic nickel ores. fust 

of those via hydroneta1lurgy invol ye a pretreatIOOnt stage and/or high 

pressure-teflllerature leaching stage in order to achieve selectivity. 



Aqueous chloride routes make rretal separation easier but lack the 

desired selectivity for nickel and cobalt over iron. However, it is 

possible that these disadvantages might be off set by a lowering of 

energy consumption as it would not be necessaIY to heat large arrotnlts 

of inert material to a high teJ1l>erature. A1 though rretal and acid 

recovery can be achieved the corrosion aspect of acid processes still 

remains one of the major obstacles to rretal extraction using hydro­

chloric acid as a leadling reagent. Many of the problems however, 

have been overcome in recent years. 
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OIAPTER 3 

EXPERIr1ENTAL 

3.1. Outline 

The experimental work of this research project involved the following 

aspects~ 

1. Leaching of nickeliferous 1aterites in hydrochloric acid with 

metal chlorides additions; 

Leaching of both silicate and 1imonite laterite ores in HCl 

solutions with addition of NiClZ• 

Leaching of silicate laterite ores in Hel solutions with addition 

of ~lgC12. 

Leaching of limonite laterite ores in Hel solutions with addition 

of FeC13 • 

Maximization of nickel extraction by optimization of leaching 

variables (temperature, acid concentration and contact time). 

Effect of pulp density upon cation extraction. 

Lunp leaching. 

Z'. Kinetics of acid dissolution of a lateri teic nickel ore • 

Effect of leaching variables upon cation extraction from a 

lateritic nickel ore leached in pure He! cmd in HCl containing 

nickel in solution (temperature, acid concentration, particle 

size). 

3. Washing of leach residues with pure dilute hydrochloric acid. 

Single-stage batch system. 

~lUtistage batch cross-current system 

~fu1tistagc batch cowlter-current system. 
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3.Z. Leaching studies 

All leaching tests were perfonned in SOO m1 capacity cylindrical 

flanged quickfit glass vessels held by clamps into a water bath equipped 

with thenrostat and circulating Ptn'l'p. The operating tenperature of 

both the water bath and of the solution into the vessels was controlled 

to an accuracy of about ± 0.1 - o. ZoC (checked by the nrorneter ) • Each 

vessel was equipped with a reflux condenser and a stirrer driven by 

a variable speed electric motor. A photograph of the apparatus is 

given in Fig. 3.1. 

3.2.1. Leaching technique 

Appropriate volumes of pure hydrochloric acid was added to the 

leaching vessels and whilst stirring, the operating temperature was 

raised. Depending on the experiment, known weights of NiCI Z' MgClZ 

or ~eC13 were added to the vessels. Weighed amounts of fresh ore were 

then added into the vessels and leached for the required time. At the 

completion of each run, samples of leach liquors (clear solution) were 

withdrawn and stored for atomic absorption analysis. The leach 

residues were then washed with an excess of pure HCl (diluted) whilst 

being filtered. Filtration was performed using a buchner funnel 

with double layer of 42 ashless whatman filter paper. After filtration, 

solid residues were dried at about IIOoC, weighed (to determine the 

weight of laterite dissolved) and stored for atomic absorption analysis. 

During the leaching tests for the kinetic studies, the procedure 

was similar, except that the sanples of leach liq,uor were withdrawn 

(by pippete) at various times during the reaction. 

Each leaching test was perfonned at least 3 times and the results 

given are an average of the tluree. The accuracy was about! 1\. 
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Fig . 3 .1 Leaching Apparatus 



3.2.2. Atomic Absorption Analysis 

Considering the mineralogy and chemical conposition of the 

lateri tes studied and the needs for analysis of both leach liqUJrs 
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and residues, the analytical method chosen should enable determination 

of the elements of interest over the full range of concentration and 

in the presence of large amounts of other substances. The capability 

of atomic absorption spectrophotometry (A.A.S.) to detennine mnrerous 

elements in a large number of samples rapidly and simply makes this 

method particularly attractive for this research. I ts principal 

advantages are: 

a) it shows high sensitivity for a wide range of metals and it 

is highly specific, 

b) anyone JJ'Cta1 can nonnally be detennined in the presence of 

large amounts of other substances, 

c)' it is rapid, sirrple and requires only small rurounts of sanple. 

Thus, owing to the above mentioned advantages, it was decided 

to apply A.A.S. for the determination of nickel, iron and magnesium 

in each laterite subject to leaching and for the subsequent analysis 

of leach 1iqu?rs and residues. The principles and instrumentation 

h d f 1 · 11 d d· h l' (71-74) for this met 0 0 ana YSIS are we ocumente ln t e lterature 

ind will not be discussed here. 

The analytical procedure involved a digestion technique and 

metal detennination as below: 

Digestion Techniqt~ 

Either direct acid digestion, or fusion and subsequent dissolution 

arc the JIl)st corrnoonly applied methods of taking laterite saJll)les into 

solution. Ccnercal procedures for both methods are given by Young(7S) 

and Easton(76~ In direct acid dissolution, the incorporation of 



netal ions in silicate phases requires the use of hydrofluoric acid 

mixtures to attack the silicate. The silicon is lost from solution 

as silicon tetrafluoride gas:. 

(3.1) 

and therefore cannot be determined by this nethod. However, the 

other elements of interest remain in solution: 

NiO + 2lt = Ni 2+ + H
2
0 

+ 3+ 
Fep3 + 6H = 2Fe + 3H20 
. + 2+ 

M&D + 2H = Mg + H20 

(3.2) 

(3.3) 

(3.4) 

The major anion present will depend on the other acid(s) used 

in combination with 11ydrofluoric acid - normally, hydrochloric, 

perchloric, sulphuric or nitric acid - since excess of HF is boiled 

off. 

28 

In this work, nickel, iron and magnesium were taken into solution 

by decomposition of the samples in a hydrofltDric, perch10ric and 

nitric acid mixture. In this, a wei ghed aTrOunt of saJll)1e (0.1 g) "'as 

transferred to a 2S m1 conical flask, then 5 m1 1IC104 ( 70\ W/W), 

2 m1 IW03 ( 70% W/W) and 1 m1 HF ( 400.) W/W) were added. This mixture 

was digested for 1 hour (using a funnel in the flask neck as an anti­

splash device) and taken to dryness. The residue was then taken up 

in diluted hydrochloric acid to provide a 5\ acid concentration in the 

fina 1 vo 1 \.l1TC • 

~btal determination 

A Varian Techtron MS spectrophotOlrcter instn.urcnt was elTl'1oyed, 

using hollow cathode larnps(77) and air-acetylene flame (for nickel 

and iron determination) and a nitrous oxide-acetylene flame (for 

magnesium determination). Two wavelengths were used for the 



29 

determination of each nickel, iron and magnesium,. depending upon the 

sensitivity required. Nickel was analysed at either 232.0 run 

(0-12 ~g rnl-1) or 352.4 nm (15-60 ~g ml-l ) , iron at 248.3 rum 

(2-10 ~g ml-l ) or 372.0 nm (25-100 ~g ml-l ) and magnesium at 

285.2 rum (0.1 - 0.4 ~g ml-1) or 202.5 nm (5-20 ~g ml-l ). Standards 

for nickel were diluted from a 1000 ~g ml-l solution (prepared by 

diluting pure nickel metal in hydrochloric acid) and made up to volume 

with the appropriate matrix solution. Similarly, standards for iron 

and magnesium were diluted from 1000 ~g ml-l stock solutions. 

Interference from ironC74 ,78(see Table 3.i - Effect of iron 

in the determination of nickel (13)),which enhances nickel absorption 

in the low temperature air-acetylene flame due to the formation of 

undissociated Fe-Ni oxides
(13

), was overcome by adding similar amounts 

of solution of a given iron concentration to the standards. providing 

a comparable matrix solution for nickel determination. Interference 

from aluminium, which suppresses magnesium absorption in low­

temperature air-acetylene flame because of the formation of stable 

aluminate, was avoided by using the high-temperature nitrous oxide 

acetylene flane(7?). Potassium chloride solution (1000 ppm) was 

added in identical volumes to both standards and sa.J1l)les, to 

compensate for the increase in ionization(13). 

No interference was observed during determination of iron. 

3.2.3. Electron Probe ~ucroanalysis 

Electron probe microanalysis provides a means of determining 

the chemical composition of very small volllJTCS at the surface of 



Table 3.1. Effect of iron in the determination of nickel U3
) 

Iron Content (ppm) 

System 0 100 200 300 

A* 1.00 B* 1.0 1.02 1.05 1.17 

C* 0.0 1.70 4.94 17.74 

A 2.00 B 2.0 2.04 2.10 2.28 

C 0.0 2.20 4.60 13.93 

A 4.00 B 4.0 4.01 4.02 4.44 

C 0.0 0.42 0.55 11.47 

A 8.00 B 8.0 8.01 8.16 8.80 

C 0.0 0.37 2.05 9.92 

A 10.00 B 10.0 10.04 10.06 10.98 
. 

C 0.0 3.38 6.00 9.20 

* A - True concentration of nickel present (pp m) 

* B - Observed concentration of nickel 

* C - % enhancerent of nickel value 

400 SOO 

1.18 1.23 

18.77 22.86 

2.31 2.36 

15.64 18.03 

4.51 4.52 

12.62 13.30 

8.91 8.96 

10.21 12.19 

11.10 11.28 

11.1 12.10 

30 
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polished thin sections of rocks or mineral JOOunts. The i1.a.Joo derives 

from the essential feature of a fine electron beam which'is directed 

at the point to be analysed. The x-ray generated by the impact. of the 

beam are characteristic of the elements present, and their intensity 

is an approximately linear function of concentration. 

In its simplest form the electron-probe rrdcroanalysis consists 

of an electron-optical system which focuses an electron beam into 

an area about 1 ~m diameter on the surface of the specimen, a stage 

on which the specimen and standards are JOOt.mted, a rrdcroscope which 

allows the area of interest to be selected and positioned in the electron 

beam, and one ore rore spectroreter which select and treasure the 

intensity of the characteristic radiation of the elements to be 

determined. The basic rreasurencnt is a corrparison of the net 

intensity of a particular x-ray line generated in the specimen with 

that generated in the standard of the same incident current. A 

detailed description of the instrumentation and principle of the 
. .. b (19) electron-beam m1croanalyser 1S glven y Long • 

The application of the electron probe analysis to mineralogical 

and metallurgical problems is well documented by the literature(80-84) • 

Its application to lateritic nickel ores both before and after leaching 

. d b L . . k( 18 ) I th· . . d h d has been reporte y 1mer1C • n 1S, lt 1S reporte t at ue to 

the physical and chemical nature of the late rites a nlIlTber of problems 

arise when applying th,e probe, of which the significance depends on the 

purpose of the probe investigation. For example, if the data is to be 

used sinply as an indicator of relative levels of an element in 

different components, then a fairly large, random error can be tolerated 

so long as the levels of, say, nickel concentration are not too close 
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in the various cOIll'onents. However, if a IrOdal analysis is required 

to indicate the proportion of total nickel content associated with 

each component, then absolute nickel concentrations are necessary. 

The physical and chemical nature of the sample will affect the levels 

of accuracy. 

Nickel is present in laterites at concentrations of about 1%, 

at which level it is readily measured by the probe, but its determination 

in residues after 90\ extraction may be a problem. Under favourable 

conditions the electron-probe is capable of detecting nickel at that 

level (0.1%), but it requires a polished specimen with the absolute 

minimum of surface relief(79). However, since late rites may contain 

coarse-grained, hard material like quartz and chromite in close association 

f f ' 'd f 'bl ' 1 (18) , , 1 d' ff' 1 with so t, ine-graine ria e rrunera s , it is extreme y 1 lCU t 

to produce a polished section free of relief, plucking, scratches, etc. 

This makes analysis of elements at low concentration highly inaccurate. 

In this research, microprobe analysis was used merely as an 

indicator of the relative concentrations of nickel, iron and magnesium 

in a reaction product layer in lump particles leached in pure HCl and 

in HCl solutions with additions of NiC12, MgC1 2 and FeC13• 

3.2.3.1. Procedure 

Each specilfCn was IrOtl1ted in a ~btaserve press (at 140°C and 

200 bar pressure), using black. bakelite moulding powder as mounting 

material. Subseq~nt1y, the nntmted specirrcns were submitted to a 

series of rotary polishers (metaserve) with the following polishing 

sequence: 



1 - 400 grit standard water proof sand paper 

Z - 6CX) grit standard water proof sand paper 

3 - 6 micron diarrond spray cOJll)otmd plus lubricant 

4 - I micron diarrond spray cornpotmd plus lubricant 

5 - 0.05 micron linde gamma alurnina plus water 
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The polished specimens were then carbon coated (79) , examined 

(using a Vickers MSS microscope) and photographed prior to examination 

in the electron probe microanalyser. 

Finally, determination of the elements of interest (Ni, Fe and 

Mg) was perfonred using a JEOL JXA SOA electron probe microanalyser, 

where pUl"e elemcnts were used as standard. These analyses were 

performed by the Department of Earth Sciences, University of Leeds. 

3.3. Washing studies 

This work involved the systematic washing of leach residues 

(from a laterite nickel ore leached in HCI solution containing high 

nickel concentration) with pure HCl in a: 

Single-stage batch system 

~~tistage batch cross-current system 

~~tistage batdl counter-current system 

3.3.1. Washing technique 

Single-stage batch system:-

At the conpletion of the leaching, the mixture was transferred 

to a washing unit (glass vessel) where it was allowed to settle until 

a clear solution was obtained, afte~which a known volume of leach 

liquor was withdrawn (this allowed the vo1tnne of leach liquor remaining 

associated with the solids to be known). A given volume of pure dilute 
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Hel was then added to the slurry ~ which was mixed and allowed to settle 

for 30 minutes (it was experimentally determined that a practical 

equilibrium was almost reached for 30 minutes contact time, see section 

6.2.2.2. in Chapter 6). It should be noted, that in some experiments 

agitation was provided. In those cases, the mixture was stirred for 

a given period of tine, after which it was allowed to settle as in the 

previous cases. At the completion of this operation, a known vo1t..nre 

of clear wash solution was withdrawn (overflow) and saJll)led for atomic 

absorption analysis. The slurry residues (underflow) were then 

filtered, dried and weighed. Atomic absorption analysis was only 

performed for those solid residues from washing experiments where 

the nickel concentration in the washing solution (at practical 

equilibrium) was extremely low. The reason for this lies on the 

fact that a perfect solid/liquid separation could not be achieved, 

thus unless the solution associated with the solid residues contained 

no nickel (or the content was extremely low and could be considered 

negligible) and no further nickel can be extracted from the solid 

by the washing, the analysis of solid residues would provide inaccurate 

results. lhis is because, if solid residues associated with a solution 

containing hiWl nickel concentration were to be submitted to atomic 

absorption analysis, and the solid/liquid separation has been imperfect 

(even when slightly imperfect), nickel in the solution which is 

entrained with the solids would alter the true nickel content in the 

solids. I f an attenpt was made to rerove the nickel in solution 

by diluting it with further washing of the residues, the true content 

of the nickel in the solids would also be altered, because by contacting 

the solids with a solution with a lower nickel concentration, 
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extraction of nickel from the solids would occur, i.e. the lower the 

nickel concentration in the washing solution~ the higher the nickel 

extraction from the solid residues, as will be seen later in Chapter 6. 

Multistage batch cross-current system:-

This washing system is an extension of the single-stage washing 

system, where the leach residues are successively contacted in "n" 

stages with known equal voltures of pure He!. In this, with the 

exception of the first stage the feed to any stage is the underflow 

slurry from the preceding stage. A single final underflow slurry 

results, and the overflrnof stream from each stage may be corrbined to 

provide a single final product washing solution. 

The washing procedure used in this system was rrerely a 

repetition of that previously described for a single-stage system. 

In this procedure, at each washing stage an overflow stream (clear 

wash solution) and an underflow stream (slurry residues) were obtained 

after a given period of contact time in which a '~ractical equilibrium" 

was assLUTCd to be reached. Thus, on the assunption that each stage 

was at practical equilibrium (i.e. the wash solution associated with 

the solid residues in the underflow has the srure solute (say nickel) 

concentration as that in the overflow), samples of wash solution for 

atomic absorption analysis were withdrawn from the overflow streams 

only. Analysis of the solid residues from the underflows were not 

performed, unless the nickel concentration in the solution associated 

with the solid residucs was extrenely low. 

~rultistage batch counter-current system:-

In this washing system, overflow and underflow streams flow 

from stage to stage countcrcurrcntly and provide two final products. 
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FI 3 2 Slll1u ld tl on 01 ;} hatc h coun ter - curren t washing in 4 s tages ( a t s tea d y 

s t a t e) 
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To sinulate this system, washing of residues was perfonred' according to 

the flow diagram as shown in Fig. 3.2. (simulation of a batch, counter-

current washing in 4 stages at steady state). In this, L.R. and P.IIC! 

correspond to the leaCh residues (slurry) and the pure hydrochloric 

acid entering the system respectively. O/Fl,O/FZ' O/F3, O/F4 and 

U/Fl , U/FZ' U/F3, U/F4 correspond to the overflow and underflow streams 

leaving stage 1, 2, 3 and 4 respectively. As in the previous 

washing systems, the volume of leach liquor associated with the solid 

residues and the volume of pure HCl added to the system were known. 

Similarly, the volumes of wash solution in the overflow and underflow 

streams leaving each washing stage were also known. The volume of 

wash solution withdrawn in the overflow stream from each washing stage 

was the Sa:ITC, then the volume of wash solution associated with the 

solid residues in the underflow from each stage was also the same. 

Thus the ratio of the solution discharged in the overflow to that 

in the underflow was constant. 

For this operation, glass vessels were used as washing units 

(each unit representing a washing stage). As in the previous washing 

system, the contact time in each washing unit was 30 minutes and 

the separation of both overflow and underflow streams was performed 

after a clear solution was obtained by decantation. To avoid 

mechanical losses the slurries residues (underflows) were left in the 

washing units and only the clear solutions (overflows) were transferred 

between washing units. 

Using the flow diagram, the nurrber of cycles required to reach 

a steady state through the system was estimated. However, additional 

cycles were performed to ensure that the steady state had been 

readlcd. S:lJ1f)les of cach overflow stream were taken from the latter 

UNIVERSITY UBRARYLEEDS 
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cycles for atomic absorption analysis. As in the case of' cross-current 

washing, the solids from the lDlderflow streams were not submitted to 

analysis ~ tmless the solution associated with the solids contained 

an extreme~y low nickel concentration. 



OI/\,PTER 4 

LEAOUNG OF LATERITIC NICKEL ORES IN IIYDROOILORIC ACID WInl METAL 

OILORIDES ADD IT ION 

4.1 Introduction 
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Strong(13) reported that during leaching of a nickeliferous 

laterite (serpentine) with hydrochloric acid in a multiple contact 

system (that is the leach acid is repeatedly contacted with fresh ore), 

it was observed that as the nunilier of contacts was increased (increasing 

the aqueous concentrations of NiCIZ' MgC1 2 and FeC~3 in the leach acid) 

the extraction of nickel, iron and magnesium gradually decreased. A 

similar effect on nickel extraction from a chamosite ore with 0.5\ Ni was 
(47) 

reported by Lupton and Perry . 

It was thought initially that the addition of other cations e.g. 

}'ll+ or Fe3
+ to the leach solution might increase nickel recovery by 

displacing the nickel or iron t}illt might have been adsorbed by the residues. 

This theory has subsequently been ShO\~l to be incorrect but the effects 

of such additions are of considerable interest. 

The work involved in this chapter describes a study of the effect 

of the addition of metal chlorides, NiC1 2, HgC1 2 and FeC1 3, to the leach 

acid (BCl) upon the extraction of nickel, iron and magnesitun. 

4.2 General characteristics of selected nickeliferous laterites. 

Seven laterites from the same batch of samples as used by Strong(l3) 

were selected and coded as shO\·:n in Table 4.1. TIleir places of origin 

and mineralogy are also indicated. A detailed chemical analysis(13) 



Table 4.1. Origin and ~lineralogy of selected laterite nickel ores(13) 

LATERlTE ORES mNSfITUEJITS 
ID1ARKS 

Code Origin Major Minor 

A Phlllippines Altered serpentine Quartz, Fe oxides ~bttled silicate with brown iron 

. staining, hard rock 

B New Serpentine Quartz, magnetite Brownish-green veined silicate, 
Caledonia hard rock. 

C Oregon, U.S.A. Garnierite Quartz, talc Brilliant green fragments in a 

highly silicified matrix 

D Australia Garnierite, Magnetite, Small green fragments in a soft, 

goethite Chromite powdery brown matrix. 
: 

E Philippines Goethite Magnetite Friable, nodular concretions with 

a rotted texture, light ochre colour 

F New Goethite Nagnetite Hard, dark brown nodules similar 

Caledonia to 'ore-E 

G Cuba Goethite Quartz, chromi te Very friable, irregular lumps. Rotted 

texture breaks down into a soft bro~ 
powder 

b 
- - _._---- ~ 
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for each of these laterites is given in Appendix I. From this table 

and according to the chemical analyses, it is possible to classify these 

laterites into two groups. The first (ores A-C) is characterized by 

a high SiOZ and MgO and a low FeZ03 content, and the second (ores E-G) 

by a low MgO and SiOZ content and high FeZ03• Ore D is a mixture of 

both groups. Thus, ores A to C can be classified as "silicates" 
(7) 

while ores E to G as "Lirronites",and ore D as a mixture of both. These 

ores were chosen to cover the whole range of lateritic corrq)()sitions as 

the chemical analyses show. No discrete nickel minerals are present 

in these ores(13) but it is generally assumed that nickel isornorphically 

replaces magnesium in the brucite layer in serpentines(7) and is 

associated with geothite(l3) ,either in solid solution or as an 

intinnte mixture, in the limonitic ores. 

Because of Strong's detailed work(7,13) on the chemical 

coml)()sition and mineralogy of these laterites, it was considered that 

no further study was necessary on these aspects, and his work was taken 

as the basis for the present research. lbwever, even though chemical 

composition data for the seven laterites were available, determination 

of nickel, iron and ~lgnesium for these laterites were performed. The 

results of these analyses (sec .A.ppendix I) showed an excellent agree­

ment with those given by Strong. 

4.3 Leaching testwork 

The eA~rimental apparatus, procedure and analytical method of 

analysis for the leach work have already been described in Chapter 3 

(sce sections 3.2 to 3.2.2 ). 



Leaching conditions such as temperature, acid concentration, 

contact time and pulp density are specified for each test or set of 

experiments. Details of the particle size distribution (ores A to G) 

used for most of the leach work are given in Appendix I. 

4.3.1. Leaching of la terites with nickel chloride addition 
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To study the effect of the aqueous nickel chloride concentration, 

in the leaching acid (HCl), upon the extraction of nickel, iron and 

magnesium from the selected laterites, sets of 7 leaching tests with 

nickel chloride additions to give from 0 to 20 g/1 Ni, were carried out 

for each of the silicate and limonitic nickel ores. The leaching 

conditions chosen for these experiments were: 

Temperature = 700 C 

Acid concentration = 4 mol/dm3 

Contact time = 1 hour 

Pulp density = lO~ solid 

Size distribution = as in Appendix I 

Agitation = strong stirring 

The results of these tests are presented in Tables 4.2 and 4.3, where 

cation extractions from each of the late rites are given both before and 

after the washing of the leach residues. The weight of ore dissolved 

(~) is also included. From these tables it is seen that those 

extraction data obtained before the ~~shing of leach residues (as 

detenllined by analyses of the leach liquors) clearly show that nickel 

concentration in the leach acid has a ~lrked effect on the cation 

extraction during the leaching of these laterites. This effect can 

be seen in Figs. 4.1 to 4.7, where plots of cation extraction (\) 

versus nickel concentration in the leach acid are illustrated for 
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Table 4.2 Cation extraction from 1aterite ores A to D leached in HCl 

solutions containing different nickel concentrations (4 JOO1/dm3HC1, 70oC, 

1 hour contact time 10~ solid and size distribution as in appcndix I) 

Ore 

A 

B 

C 

D 

B.W.R. 
A.\V.~. 

O. D. 

Nickel conccn- Cation extraction ~ O.D. tration in leach B.W.R. A.lV.R. 
\ acid (g/l) N1 Fe Mg N1 Fe Mg 

0 97.2 92.8 93.4 97.8 92.9 93.7 63.4 
2 80.0 92.1 93.1 97.1 92.7 93.4 62.9 
4 63.3 91.6 92.5 98.4 94.0 93.0 63.3 
8 27.2 90.2 91.8 93.5 92.8 94.2 63.2 

12 11.2 88.7 90.3 96.1 91.8 93.2 61.2 
16 3.0 88.1 87.9 97.2 93.3 90.7 64.0 
20 0.0 87.5 87.4 97.7 92.6 93.2 62.8 

0 91.6 94.9 94.4 98.0 97.5 98.1 57.5 
2 86.4 94.8 93.8 96.2 97.1 94.3 56.9 
4 78.3 94.6 93.6 98.4 98.0 96.6 57.0 
8 51.8 92.8 91.4 98.2 97.8 98.1 55.3 

12 12.4 92.0 88.3 97.1 95.9 98.4 53.9 
16 5.7 90.5 87.S 98.4 98.0 96.1 58.2 
20 0.0 89.9 87.2 97.8 98.3 97.7 56.8 

0 44.6 70.1 68.4 45.3 72 .0 68.6 17.6 
2 39.9 69.5 68.0 44.7 71.6 68.0 18.3 
4 34.8 68.6 66.7 42.9 69.9 67.2 20.2 
8 32.0 67.8 64.9 43.5 72.1 67.8 16.7 

12 20.5 67.3 67.2 45.0 74.2 71.1 18.5 
16 12.2 66.3 62.9 41.8 70.0 66.8 20.1 
20 0.0 64.9 61.2 44.2 73.0 68.4 17.9 

0 75.4 68.2 81.2 75.5 69.4 83.0 44.2 
2 73.3 68.1 80.9 75.8 67.2 81.6 43.7 
4 69.6 67.4 79.4 76.1 70.2 81.8 44.3 
8 44.2 66.3 77 .4 78.2 69.S 82.2 41.1 

12 8.6 65.7 75.6 71.5 66.3 79.S 43.2 
16 1.5 65.2 74.4 77.0 71.0 82.4 43.9 
20 0.0 64.7 72.6 75.8 70.2 82.1 45.7 

= 
= 
= 

cation extraction dctermined before washing of leach residues 

cation extraction detennincd after washing of leach residues 

weight of ore dissolved. 
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Table 4.3 Cation extraction from 1aterite ores E to G leached in lIe1 
solutions containing different nickel concentrations. (4 no1/dm3 HC1, 

700C, 1 hour contact time 10~ solid and size distribution as in 

appendix I) 

Nickel concen- Cation extraction % 

Ore tration in leach B.W.R. A.W.R. 0.0. 

acid (g/l) Ni Fe Ni Fe Cf, 

0 BO.3 98.3 82.0 98.5 78.6 

2 75.8 96.8 81. 7 97.3 78.1 

E 4 72 .2 94.1 82.4 98.0 79.0 

8 50.2 91.9 80.6 98.3 76.9 

12 10.6 88.6 78.9 96.1 75.4 

16 2.2 86.2 82.2 98.1 78.4 

20 0.0 84.9 81.5 98.2 77 .8 

0 B1.4 99.3 81.5 99.3 75.2 

2 77 .B 98.9 78.9 99.0 74.3 

F 4 74.9 96.7 80.2 99.3 77 .1 
8 61.3 90.9 80.7 98.1 73.1 

12 8.8 87.1 84.2 99.5 75.5 
16 1.9 86.4 82.3 97.1 75.3 

20 0.0 86.1 79.9 93.7 73.6 

0 69.0 78.2 74.0 83.8 68.2 
2 66.9 77.7 72 .5 85.2 62.7 

G 4 55.7 77 .2 74.1 79.4 64 .1 

8 21.2 75.9 73.2 81.2 59.9 

12 7.3 75.3 69.8 78.6 64.8 

16 1.3 74.8 71.S 80.0 66.4 
20 0.0 74.1 69.5 83.2 62.4 

B.W.R. = cation extraction determined before washing of leach residues 

A.W.R. = cation extraction determined after washing of leach residues 

O. D. = weight of ore diss01 veJ. 
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each of the laterite ores. From these plots it is clearly seen that 

extraction of nickel, from each of the ores, rapidly decreases as the 

concentration of nickel in the leach acid increases. The effect is 

drastic, for example, from ore-A (typical nickeliferous serpentine), 

S2 

nickel extraction falls from about 97% in pure HCl to zero with 20 g/l 

Ni in solution, and from ore-E (typical nicke1iferous geothite) from 

about 80% in pure HC1 to zero with 20 g/l Ni in solution. A similar 

drastic effect on nickel extraction is observed from the other 1aterite 

ores. From these plots, it is also seen that as nickel concentration 

in the leach acid increase, the extraction of iron and magnesium 

decreases as well. The effect on these cations however, is much 

less drastic than that for nickel. In fact, the extraction of iron 

and ~lgnesium decreases gradually and very smoothly. For example, from 

ore-B, rnagnesilUll extraction drops from about 94\ in pure lICl to about 

sn with 20 g/l Ni in solution, and iron from about 95% in pure HC1 

to about 90% with 20 g/l Ni in solution. From ore-E, iron extraction 

drops from about 98% in pure HCI to about 8S\ with 20 g/l Ni in 

solution. Extraction of magnesium was not determined. 

It should be noted that the reactivity of lateritic nickel 

ores in pure HCl is not the same for all the 1ateritic ores and cation 

extraction during the leaching depend on the solubility of the part 

of the 1aterite containing the relevant cation. In regard to this, 

Strong and Rice (8) have reported that the cation extraction from 

lateritic nickel ores leached in pure HCl, is dependent on the quantity 

of the octahedral layer (for silicate ores) and geothite (for limonite 

ores) dissolved in the acid solution. Thus, cation extraction can be 

related to the weight of laterite dissolved during the leaching(13) 
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Therefore, according to this one would expect to observe a decrease in 

the weight of ore dissolved together with the observed decrease of cation. 

extraction during the leaching. However, as is shown by Tables 4.2 

and 4.3, ore dissolution did not suffer any significant change with the 

decrease in cation extraction. This contradiction however, was explained 

by the analyses of the leach residucs washed with pure diluted HCI. 

These analyses showed that cation extraction was approximately the same 

(within experimental error), whatever the initial nickel concentration 

in the leach acid (see cation extraction A.l~.R. in Tables 4.2 and 4.3). 

In other words, these results indicate that after the washing of leach 

residues, this observed dependcnce that cation extraction has on the 

nickel concentration in the leach acid during the leaching stage is no 

longer applicable. 

The latter results clearly indicate that the extracted cations 

are. somehow held in the solid residues until thcy are washed out, 

I bwever , at this early stage it was impossible to determine the reason 

for this phenomenon until a further study of the residues had been under­

taken. Nevertheless, from the obtained data (cation extraction B.W.R. 

and A.W.R.) it is possible to establish that during leaching nickel 

concentration in the leach acid has a retarding effect on the cation 

extraction (especially for nickel). The higher the nickel concentration, 

the lower the extraction. However, as soon as the leach residues are 

washed with pure HCl this retarding effect no longer applies, and the 

cation extraction is practically the same whatever the initial nickel 

concentration in the leach acid. 



Perhaps it is worth mentioning that before the analyses o£ the 

washed leach residues, it was thought that the decrease of cation 

extraction with increasing nickel concentration in the leach acid was 

perhaps caused by some kind of adsorption phenomenon, where nickel 

in solution (Le. that initially present in the solution or liberated 

during the leaching) was adsorbed by the surface of the solid or 

perhaps replaced nickel and magnesium ions already leached from the 

lattice. Thus, a set of experiments were performed leaching fresh ore 

with pure HCl, filtering the residues and washing them very well with 

pure HCl. Before they went dry, they were then treated with acid 

containing a high nickel concentration. The purpose of this was to 

determine if solid residues could readsorb some nickel from the leach 

S4 

solution. The results however, were negative; no adsorption of nickel 

by the residues occurred. It was also observed that no standard 

adsorption isotherms (e.g. Freundlich, Langmuir or B.E.T. (85) ) would 

fit the decrease in nickel extraction with rising nickel concentration 

observed in Figs. 4.1 to 4.7. The use of a radioactive tracer 

(cobalt 60) was also suggested to determine any possible adsorption, 

but it was considered unnecessary because of the new observations 

obtained after analysis of the washed leach residues. 

4.3.2. Leaching of Laterites with magnesiLun chloride addition 

For leaching tests with magnesium chloride additions, ores A, 

B and C (silicates with a high M!:,-.Q content) were selected. Sets of 

5 tests with t-lgCl Z additions to give 0-100 g/l Mg were performed for 

each of these laterites using the same leaching conditions previously 

described for NiCI Z additions (Le. 4 nnl/dm3 IICl, 700 C, 1 hour contact 
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Table 4.4 Cation extraction from laterite ores A to C leached in HCl 
solutions containing different magnesium concentrations (4 mo1/dm3 HC1, 
700 C, 1 hour contact time, 10% solid and size distribution as in 

appendix I). 

f\1agnesium concen- Cation extraction % 

Ore tration in leach B.W.R. A.W.R. 0.0. 

acid (g/l) Ni Fe Mg Ni Fe Mg % 

0 97.3 92.6 93.0 97.5 92.8 94.3 63.0 

A 10 96.6 92.1 89.7 97.1 93.1 94.0 62.2 

25 95.4 90.8 86.1 98.0 93.6 92.8 63.6 

50 91. 7 88.3 73.2 97.4 93.0 94.6 61.9 

100 87.2 87.0 48.4 97,0 93.0 92.8 62.0 

0 90.8 95.3 93.7 98,0 95.8 94.3 56.5 

B 10 90.3 90.1 89.5 98,3 93.8 96.6 54.7 

25 89.5 88.6 87.5 97.6 97.4 93.1 57.3 

SO 87.4 83.9 80.2 98.0 98.2 96.4 57.5 

100 76.2 78 .9 55.3 97.8 92.5 96.1 56.8 

0 45.2 71.0 68.5 45.2 71. 7 68.5 16.6 

C 10 44.0 69.7 67.9 44.7 72.1 68.3 18.0 

25 43.8 67.3 64.3 45.6 72 .8 69.0 16.9 

SO 43.1 62.4 35.1 43.8 72.0 67.8 18.2 

100 42.2 59.3 24.6 44.6 74.2 69.1 20.1 

B.W.R. = Cation extraction detennined before washing of leach residues 

A.W.R. = Cation extraction determined after washing of leach residues 
0.0. = weight of ore dissolved. 
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time, 10\ solid and size distribution as in appendix I). 

The results of these tests are presented in Table 4.4, where 

ore dissolution and cation extraction before and after washing of the 
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leach residues are given. Cation extraction data (B.W.R.) are plotted 

in Figs, 4.8 to 4.10, from which it is seen that the extraction of 

nickel, iron and magnesium decreases as magnesium concentration in 

the leach acid increases. It slmuld be noted however, that in this 

case it is the nlgnesium extraction which decreases much more rapidly 

than the other two cation. For example, ore~A, magnesium extraction 

drops from about 93% in pure IICl to about 48% with 100 g/l Mg in 

solution, while nickel extraction drops from about 97% in pure IICl 

to about 87% with 100 g/l Mg and iron extraction from 92% in pure 

lICl to about 87% with 100 g/l Mg in solution. 

As in the case of NiC1 2 addition, cation extraction after the 

wa3hing of leach residues (A.W.R.) W..lS approximately the srune whatever 

the initial nlgnesil~ concentration in the leach acid, indicating that 

the observed retarding effect on cation extraction only occurred 

during the leaching stage. 

4.3.3. Leaching of 1aterites with ferric chloride addition 

For this addition, ores E to G (lirnonites with a high FeZ03 

content) were selected. Sets of 5 leaching tests with additions of 

FeCl
3 

to give 0-100 g/l Fe were perfonned using the same leaching 

conditions previously described for the NiCl Z and MgCIZ additions 

leaching tests (Le. 4 1ID1/dm3IlCl, 700 C, 1 hour contact time, 10% 

solid and size distribution as in appendix I). 



Table 4.5. Cation extraction from 1aterite ores E to G leached in lIel 

solution containing different iron concentrations. (4 mol/dm3 l~l, 
700 C, 1 hour contact time, 10% solid and size distribution as in 

appendix I). 

Iron concentration Cation extraction % 

Ore in leach acid B.W.R. A.W.R. O.D. 

(g/l) Ni Fe Ni Pe % 

0 79.7 98.2 79.7 98.5 78.1 

E 10 79.0 95.3 80.6 96.2 76.9 

20 73.6 86.9 76.8 96.9 75.8 

SO 71.8 73.5 78.2 93.8 78.4 

100 70.3 59.9 79.4 97.7 78.6 

0 81.3 99.2 82.0 99.2 74.3 

F 10 80.5 92.6 83.3 95.8 74.0 
20 78.7 84.2 79.8 98.1 75.5 

50 73.4 66.3 81.4 92.8 72.8 

100 68.8 45.4 79.6 97.S 73.1 

0 68.9 78.2 70.2 80.4 63.7 

G 10 65.7 76.9 70.0 77 .2 64.1 
20 63.4 71.4 71.3 79.5 66.5 
50 60.2 54.2 68.4 81.0 62.9 

100 57.9 41.8 72.0 80.5 60.4 

B.W.R. = Cation extraction determined before washing of leach residues 

A.W.R. :: Cation extraction determined after washing of leach residues 

O.D. = weight of ore dissolved. 
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Cation extraction before and after washing of leach residues are 

presented in Table 4.5. From this table it is seen that according to 

the data obtained before washing of the leach residues, the extraction 

of nickel decreases very smoothly as the iron concentration in the leach 

acid increases (see Figs. 4.11 to 4.13), while the extraction of iron 

decreases very rapidly. The extraction of magnesium was not detennineci. 

Once again, after the washing of the leach residues, it was fOLn1d that 

the extraction of iron was practically the same whatever the initial 

iron concentration in the leach acid. The same occurred with the 

extraction of nickel. 

By comparing the results (B.W.R.) from these three metal chloride 

addition, it is possible to establish that it is the same cation as 

that added which is preferentially retained in the solid during the 

leaching stage. 

4.3.4. ~bximization of nickel extraction during the leaching stage by 

optimization of leaching variables. 

In an attempt to improve the nickel extraction (during the 

leaching stage) from laterites leached in HCl solutions with NiCI 2, 

MgC1
2 

and FeCl 3 additions, several leaching tests (for each addition) 

were perfonncd with increasing severity of the leaching conditions. 

4.3.4.1. Temperature 

Table 4.6 and Fig. 4.14 show the nickel extraction (B.W.R.) from 

ores A and E leached at 70°C, BOoC and 900 C (4 mol/dm3 HCl, 1 hour 

contact time, 10~ solid) in HCl solutions with addition of NiC1 2 (to 

give 4, 12 and 20 g/l Ni), r.lgCl 2 (to give 10, 25, SO and 100 g/l Hg) 

and FeCl 3 (to give 10, 20, SO and 100 g/l Fe). From these results 
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Table 4.6. Effect of temperature on nickel extraction from ores A and 

E leached in HCl with additions of NiCl Z1 NgC12 and FeCI 3- (B.W.R.) 

Cation concentration NICKEL EXTRACTION % 

Ore in leach acid Temperature °c 
(g/l) 70 80 90 

Nickel 4 63.25 65.69 67.12 
12 11.15 13.51 14.37 
20 0.00 0.00 0.00 

A 

tvhgnesium 10 96.59 97 .89 98.18 
25 95.48 96.13 96.35 
SO 91.71 92.22 94.15 

100 87.71 89.36 90.82 

Nickel 4 72.60 74.10 74.92 
12 12.17 14.39 16.25 
20 0.00 0.00 0.00 

E 

Iron 10 79.75 81.80 83.57 
20 79.07 81.32 82.61 
SO 72.19 75.79 76.00 

100 70.33 71.93 72.15 

(4 mo1/dm~IC1, 1 hour contact time, 10% solid) 
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it is clearly seen that for the case of NiCIZ addition, with the 

exception of those tests where the initial nickel concentration 

on the leach acid was 20 g/l Ni (where no apparent nickel extraction 

occurred), the extraction of nickel from both laterite ores was 

slightly improved with an increase in temperature. In fact for 

ore-A samples leached in lICl solutions containing 4 g/l Ni, the 

extraction of nickel increases from about 63\ at 70°C to about 67% 

at 900C and in sanvles leached in solution containing 12 g/l Ni, 

° ° from about 11\ at 70 C to about l4t at 90 C. For ore-E samples 
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leached in HCl solution containing 4 g/l Ni, nickel extraction increases 

from about 73% at 70°C to about 7St at 90°C, and in samples leached in 

solution containing 12 g/l Ni, from about 12t at 70°C to about 16\ at 

For the cases of MgC1Z and FeCl3 additions, a slight improvement 

on ~he nickel extraction was also observed from both laterite ores with 

increasing temperature. For example, from samples of ore-A leached 

in llCl solutions containing 10 and 100 g/l Mg, the extraction of nickel 

increases from about 97\ and sst at 70°C to about 9S\ and 91\ at 90°C 

respectively, and from samples of ore-E leached in IIC1 solutions 

containing 10 and 100 gfl Fe, the extraction of nickel increases from 

about 80% and 70% at 700 C to about S4\ and 72\ at 90°C respectively. 

4.3.4.2. Acid concentration 

Table 4.7 and fig. 4.15 show the nickel extraction (B.W.R.) 

from ores A and E leached in 4, 6 and 8 nnl/dm3HCl solutions (70°C, 

1 hour contact time, 1001, solid) with additions of NiC1Z (to give 4 I 

12 and 20 g/l Ni), t-1gC12 (to give 10, 25, SO and 100 g/l Mg) and 

FcC1
3 

(to give 10, 20, 50 and 100 g/l Fe). From these results, it is 



Table 4.7. Effect of acid concentration on nickel extraction from 

ores A and E leached in HCl with additions of NiCl2, MgC1 2 and FeCl3 

(B.W.R.) 

cation concentration NICKEL EXTRACTION % 

Ore in leach acid Acid concentration (mol/dm3) 

(g/l) 4 6 8 

Nickel 4 63.25 66.13 67.51 

12 11.15 13.17 15.24 

20 0.00 0.00 0.00 

A 
~b.gnesium 10 96.59 97.45 97.82 

25 95.48 97.03 97.65 

50 91. 71 93.24 93.31 

100 87.71 89.16 90.19 

Nickel 4 72.60 76.55 78.10 

12 12.17 16.47 16.93 

20 0.00 0.00 0.00 

E 
Iron 10 79.75 79.93 80.14 

20 79.07 79.75 79.92 

SO 72.19 72.49 74.00 

100 70.33 71.15 71.86 

(70oe, 1 hour contact time, lO~ solid) 
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seen that as with temperature, the extraction of nickel from both 

laterite ores was improved (although very slightly) with increasing 

acid concentration. The exception of this however, was for those 

samples leached in HC1 solutions containing 20 g/l Ni, w}lerc once 

again no apparent nickel extraction occurred. 

4.3.4.3. Contact time 

Table 4.8 and Fig. 4.16 show the nickel extraction (B.W.R.) 

from ores A and E leacl1ed for 1, 2, 3 and 4 hours (700 C, 4 Dvl/dm3 

HCl, 10~ solid) in HCl solutions with additions of NiClZ (to give 

4, 12 and 20 g/l Ni), MgC12 (to give 10, 25, 50 and 100 g/l Mg) and 

FeC1
3 

(to give 10, 20, SO and 100 g/l Fe). From these results is 
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it seen that for all the additions (except those given an initial 

nickel concentration in the leach acid of about 20 g/l Ni), nickel 

extraction from both 1aterite ores increases very slightly (practically 

tl11I1oticeab1e) with increasing the leaching contact time. However, 

because the increase could be considered negligible, perhaps it is 

possible to say that after 1 hour leaching nickel extraction from 

both ores remains constant. 

In general, from the results presented in Table 4.6 to 4.8, 

it is perhaps possible to establish that by increasing the severity 

of leaching conditions (i.e. increasing the temperature of acid 
o 0 3 solution from 70 C to 90 C, the acid concentration from 4 to 8 mol/dm 

f~l and the contact time from 1 to 4 hours), the extraction of nickel 

from ores A and E (silicate and limonite ore respectively) leached 

in flCl solutions with addition of NiC12, MgC1 2 and FeC1 3, can only 

be improved very slightly. Thus, in pure economic terms, to 

increase the severity of the leaching conditions would perhaps not 
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Table 4.8. Effect of contact time on nickel extraction from Ores A 
and E leached in HC1 with additions o£ NiC12, MgC1 2 and FeC1 3. (B.W.R.) 

Cation concentration NICKEL EXTRACTION% 

Ore in leach acid Contact time (hours) 

(g/l) 1 2 3 4 

Nickel 4 63.25 63.51 64.03 64.41 
12 11.15 11.79 12.22 12.39 
20 0.00 0.00 0.00 0.00 

A 

Magne s itnn 10 96.59 97.21 97.59 97.84 
25 95.48 95.50 95.74 96.07 
SO 91.71 92.14 92.81 94.25 

100 87.71 87.71 88.22 88.25 

Nickel 4 72.60 72.91 72.99 73.16 
12 12.17 12.73 13.26 13.41 
20 0.00 0.00 0.00 0.00 

E 
Iron 10 79.75 80.12 80.12 81.24 

20 79.07 79.15 79.63 81.00 
50 72.19 72.26 72.58 73.19 

100 70.33 70.79 71.06 72.31 

(4 JllJ1/dm3 HC1, 70°C, 10% solid) 
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be worthwhile for such a small improvement of nickel extraction. 

A further discussion of the effect of temperature, acid 

concentration, contact time and also particle size (which so far has 

not been discussed) on nickel extraction from a silicate ore leached 

in HCl containing an initial nickel concentration in solution, is 

given in Chapter S. 
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4.3.5. Effect of pulp density upon cation extraction from a silicate 

ore leached in l~l containing different nickel concentrations. 

Table 4.9 shows the extraction of nickel, iron and magnesium 

from ore-B (serpentine) leached at different pulp densities (BOoC, 

6 rol/dm3 HCl, 1 hour contact time) in HCl solutions with addition 

of NiCl
Z 

(to give 0-40 gll Ni). From these leaching results (B.W.R.) 

it may be seen that with the exception of those leaching tests where 

pure HCl was used, the extraction of nickel has a completely different 

behaviour to the extraction of iron and magnesium with the increase 

in the pulp density. For each of the additions the extraction of 

iron and magnesium gradually decreases as pulp density increases. 

However, the extraction of nickel increases with increasing pulp 

density up to a point after which it starts to decrease. It should 

be noted, that this turning point is different for each addition 

(see Table 4.9). The reason for this odd trend in nickel extraction 

was unfortlmately not understood. It is, however, proposed that 

increasing the ruootmt of solid probably increases the attrition during 

the leaching, breaking up an outer "reaction product layer" (where 

perhaps nickel is retained in a crystallized or liquid form) allowing 

further removel of the nickel. The fon~ltion of this reaction 
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Table 4.9. Effect of pulp density upon cation extraction from Ore-B 

leached in HCI containing different nickel concentrations in solution 

(B.w.R·l 

Nickel concentration Pulp density Cation Extraction % 

in acid leach (% solid, W/W) 

(g/l) Ni Fe Mg 

0 5 95.34 97.03 95.10 
10 89.83 94.70 94.39 
30 78.53 71.35 63.04 

5 5 61.50 96.86 93.72 
10 78.26 94.62 93.54 
30 76.22 69.31 63.11 

5 0.00 94.81 89.02 

20 10 0.00 90.73 87.25 
30 52.18 68.49 60.51 
40 46.36 41.63 30.14 

5 0.00 93.41 86.45 

40 10 0.00 89.47 83.97 
30 17.32 66.05 56.69 
40 34.40 41.51 29.76 

(80oC, 6 mo1/dm3 HC1, 1 hour contact time) 



product layer is discussed in the following section. 

4.3.6. Lump leaching 

Lumps of about 1 cm diameter (ore-B) were leached in pure BCl 

and in HCl solutions containing tU 6S g/l Ni, tU 100 g/l Mg and tU 100 g/l 

Fe (SOoC, 6 JOOl/dm3 HCl, 2 hour contact time). After leaching, each 

lump was sectioned and examined under a low power binocular microscope. 

This examination showed that: 

a) each lump was surrounded by a visible layer of reacted n~terial 

(also easily visible by the naked eye). 

b) this layer was irregular and friable 

7S 

c) for most of the lump samples, the layer appeared to have several 

cracks 

d) the colour of the layer was very distinct for each of the addition; 

yellowish-white for those lump samples leached in pure HCl, 

greenish-yellow for those leached with addition of NiC1 2, 

redish for those with FeC1 3 and whitish-yellow for those with 

MgC12' 

Selected lumps were JOOunted and polished for further microscopic 

(Vickers ~~5) observations and for microprobe analyses. Photographs 

showing the reaction product layer in each of these lumps were taken '(see 

Figs.4•17 to 4.20). An unleached lump san~le was also mounted, polished 

and photographed for comparison (see Fig. 4.21). From these, it may be 

seen that like the previous observations the layer was very irregular 

and contained ffilny cracks. It should be noted however, that unlike the 

previous observations, the colour of the layer for most of the lumps was 

white-yellow. This was interpreted as perhaps being caused by the 

polishing. 



Mag · x 74 

Mag . x170 

Fig . 4 .17 Photographs of a lump particle leached in pure Hel show i ng the 

reac t ion product layer 
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Mag. x 74 

Mag .x 170 

Fig . 4.18 Photographs of a lump particle leached in Hel containing Ni in solution 

showing the react ion product layer 
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Mag.x 74 

Mag .x 170 

Flg . 4.19 Photographs of a lump particle leached in Hel containing Mg in solution 

showing the reaction product layer 



79 

Mag. x 74 

Mag. x 170 

Fig . 4. 20 Photographs of a lump particle leached in Hel con taining Fe in solut ion 

showing the reaction product layer 
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Mag . x 74 

Flg . 4 .21 Photograph of an unleached lump particle 
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The microprobe analyses (which were intended to determine if the 

reaction product layer in those lumps leached with additions of NiC12, 

MgClz and FeC13, contains a high concentration of nickel, magnesium 

and iron respectively) showed that the reaction product layer in all 

the lumps contains a very low (negligible) concentration of nickel, 

magnesium and iron. These results however, were considered incorrect 

because it was realised that during the polishing of the sanvles the 

cations dissolve out of the layer (Le. by washing). Thus, no further 

stress was put on the microprobe work for the determination of an 

average nickel, magnesium and iron concentration in the layer. 

Based on the evidence that a reaction product layer is formed 

during the leaching it is suggested that the decrease of nickel 

extraction with increasing nickel concentration in the leach acid 

could perhaps be attributed to crystallization of NiCl2 in the pores 

of ~he layer due to saturation of the solution in the pores caused by 

a faster chemical reaction (rapid rate of aqueous NiC1 2 formation there) 

and a slow rate of diffusion (due to high nickel chloride concentration 

outside of the mineral; that is, in the bulk leaching solution). 

Certainly, another possibility for this saturation could be the 

diffusion of nickel into the layer from the bulk solution contributing 

to the overall rate of nickel concentration in the pores. 

It should be noted that tlle idea that a solid crystallizes in 

the pores is supported to some extent by the slight increase in 

extraction with increasing severity of leaching, especially tenverature. 

This theory clearly needs further study before it is established. 

I bwever, this was not possible in the present work due to lack of time. 

Nevertheless, it is proposed that for future work, it would be worth-
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while to determine the rate of nickel diffusion out of the l~res of the 

layer and compare it with the rate at which nickel enters the pores due 

to chemical reaction. Then by estimating the volume of the pores, 

perhaps would be possible to determine the time that would take to 

saturate the solutions in the pores with NiClZ 2l1Z0 at a given set of 

leaching conditions and thus to stop the leaching reaction. This data 

should correlate with the % of nickel extraction vis leaching time at 

high nickel concentrations. 

rnagnesiLUn and iron. 

Similar calculations might be done for 

Perhaps, it is worth mentioning that a similar explanation to a 

different but related problem in the dissolution of copper sulphide 

anodes have been reported by Peters(86) and Etiennc(87). The 

problem was why the potential vis time curve shows a sharp rise at time 

> transition time t· This was attributed to crystallization of 

CuSQ4. SHZO at the bottom of the pores due to saturation of the solution 

in the pores caused by pressing and the volume change between digenite-

covellite transitions. 



83 

QW'TER 5 

KINETICS OF ACID DISSOLUTION OF A LATERITIC NICKEL ORE 

5.1 Experimental 

Ore B, typical of the serpentine ores was selected to study the 

kinetics of dissolution of a lateritic nickel ore in hydrochloric acid. 

The mineral was ground to give a particle size distribution as shown in 

Table 5.1 and was leached at different temperatures (250 C, 400 C and 70oC) , 

acid concentrations (1, 2 and 4 rnol/dm3) and various periods of time 

(5, 10, 30, 60, 120 and 180 minutes). Leaching of different particle 

size fractions (-18+36, -72+150 and -150+300 B.S.M.) was also performed. 

A pulp density of 2% solid (W/V) was used for all experiments in order 

to ~~intain a large excess of leaching reagent. 

All the leaching tests were perfonned in pure IICl solution, and 

in flCl solutions containing 5 g/l Ni. in order to study cation dissolution 

of both media. 

Table 5.1 Particle size distribution of Ore-B. 

Size Fraction Weight 

B.S.M. Retained \ 

- 5 + 10 1.28 

-10 + 18 13.59 

-18 + 36 20.77 

-36 + 72 11.28 

-72 +150 11.67 

-150 +3(X) 13.59 

-300 22.82 
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5.2 Effect of Terrperature 

Figs. 5.1 to 5.3 show the extraction of nickel, iron and magnesium 

with pure acid for different temperatures and contact times. From 

these, it is clear that increased temperature causes a significant 
rate of 

increase in the cation extraction. This may occur because increasing 

acid temperature increases the mobility and reactivity of the hydrogen 

ion, resulting in a more rapid attack on the silicate structure of 

the ore, reroving the me ions, and speeding up the destruction of 

the silicate lattice, which releases the cations from their position (8) 

Extraction of cations during leaching in HCl containing 5 g/l Ni. 

is presented III Figs. 5.4 and 5.5, where the extraction of iron and 

magnesium shows a similar behaviour to that in pure lICI, except that 

it is lower because of the presence of nickel in solution. As 

expected, nickel extraction was zero for each of the temperatures 

and contact times. 

Again, from these results one can see that extraction of ~1gnesium 

and iron is highly dependent on the temperature, as in the case of 

pure HC!. Details of the cation extractions at different temperatures 

in both acid media are given in Tables 5.2 and 5.3. 

5.3 Effect of Acid Concentration 

Figs 5.6 to 5.8 (Table 5.4) show how different concentrations of 

pure IICl (1, 2 and 4 rol/dm3) affect cation extraction at 250 C and 70oC. 

At both temperatures, increasing acid concentration increased the rate of 

extraction of nickel, iron and nngnesium. This indicates that 

extraction of the three cations is dependent on the acid concentration 
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to a greater degree for some cations than for others. This is clearly 

shown in the named figures at 70oC, where iron is the most dependent 

on the acid concentration, followed by magnesium and nickel respectively. 

Results for nickel (Fig. 5.6), indicate that nickel extraction depends 

a great deal mJre on the temperature than it does on the acid concen-

tration. Iron and magnesium extractions however (Figs. 5.7 and 5.S), 

are as highly dependent on the acid concentration as on the temperature. 

Leaching of the ore in HCl containing 5 g/l Ni at different acid 
3 the rate of 

concentrations (1,2 and 4 mJl/dm ) also showed that cation extraction 

increased as the acid concentration increased (except for nickel, 

where extraction was zero). This can be seen in Figs. 5.9 and 5.10 

(Table 5.5), where the extraction of iron and magnesium for each acid 

concentration at 2SoC and 700 C is plotted against leaching time. 

Again, these results indicate that extraction of iron and magnesium 

are as highly dependent on temperature as on acid concentration. 

5.4 Effect of Particle Size 

Figs. 5.11 to 5.15 show the cation extraction of both media at 

700 C for different specific size fractions (-lS+36, -72+150 and -150 

+]00 B.S.~I.) where the smaller the size, the higher the total extraction 

and the higher the rate of extraction, due to the larger surface area 

Of the solid exposed to acid attack. 

It will be seen later in the chlpter how particle size and shape 

are very ~~~rtant parameters in the interpretation of cation 

dissolution kinetics. 

l~tails of Figs. 5.11 to 5.15 are given in Tables 5.6 and 5.7. 



86 

100 

8O~--

N 

Z 
0 
I-
0 
<! 
er 50 
l-
X 
UJ 

...J 
UJ 
~ 
U 

z 25°C 

10 30 60 120 180 

T I M E, minut es 

Fig. 5. 1. Eff ec t of temp erature on nickel extr a ct ion kin et ics 

(ore -B), pure Hel . 



z 
o 
fo­
U 
c{ 

a: 
f0-
x 
UJ 

z 
o 
a: 

87 

100r-------~------T---~~~~~--~------------~~----

80~------~------~--------------4_--------------~--~ 

50~------4_------_r--------

10 30 60 120 180 

TIME. minut es 

Fig. 5. 2. Eff ec t of temp eratur e on iron e.( tr action kinetics 

(ore- B), pure Het. 



88 

80~----~------~---------------~------~----~-+~-i 

N 

Z 
0 
I-
0 
<! 
a: 
l-
x 
UJ 

~ 50 
::J 
Cl) 
UJ 
Z 
e,:) 
<! 
~ 

20 

10 30 

Fig. 5.3. Effec t o f 

kin et ics 

60 

70°C 

40°C 

_------0-_---c:>--

120 180 

TIME. minutes 

tempe rature on magnesium ex trac tion 

( ore - B), pure HCI. 



89 

100~----~~------r---------------~--------------~--~ 

80~------~-------+-----------------r----------------~--~ 

~ 

Z 
0 
I-
() 
4:: 
Cl: 50 .... 
X 
l.U 

Z 
0 
Cl: 

-------;Q.-

20~--

10 30 60 120 180 

TIME, minutes 

Fig. 5. 4. Effect of temperature on iron extraction kinetics 

(ore- B). Hel containing 5 gll Ni . 



90 

100 

SO~----~~----~---------------+---------------+--' 

~ 

z 700e 
0 
~ 
() 
« 
c:t 
~ 
)( 

w 

~ 
::) 

50 
(j) 
UJ 
Z 
<.:) 
« 
~ 

400e 

10 30 60 120 1S0 

T IM E, minu l es 

Fig . 5 . 5. Ell eet of temperature on magnpsium ex tr act ion 

ki ne tics (ore -B ). He t containing 5 g /l Ni. 



Table 5. 2 

Effect of t emperature on cation extraction kinetics (Ore-B) , 

pure HC1 

91 

Temperature Leaching Time Cation Extraction % 

°c (minutes) Ni Fe Mg 

5 2.0 1.6 2. 3 

10 5. 3 2.4 6. 1 

2S 30 18 .1 4. 3 8. 1 

60 31.6 6.8 13 .0 

120 38 . 4 9. 5 16 . 2 

180 43 . 3 10. 8 17 .4 

5 6. 4 2. 7 8. 2 

10 15 . 2 4. 3 14 . 6 

40 30 40 . 2 12 . 5 27 .0 

60 57 .1 20 . 1 35 . 2 

120 74 . 6 27 . 2 41.0 

180 7B . 5 29 .0 46 . 3 

5 57. 2 7.1 23 .0 

10 6B .0 14 .0 35 .B 

70 30 80 . 5 27 . 3 55 . 2 

60 86 . 2 40 . 4 6B . 2 

120 91.4 54 .0 71.4 

1BO 94 . B 5B .6 75 . 5 

Conditions : Pulp density 2% solid (W/V) , 2 rro1 / dm3 IIC1 



Table 5.3 

Effect of temperature on cation extraction kinetics (Ore-B), lICl 

containing 5 g/l Ni. 

Temperature Leaching Time Cation Extraction 

°c (minutes) Fe Mg 

5 - 1.7 

10 - 5.4 

2S 30 1.5 7.7 

60 2.8 12.4 

120 4.1 14.3 

180 7.0 16.8 

5 1.3 7.3 

10 2.2 12.9 

40 30 8.6 25.2 

60 17.3 34.9 

120 24.0 40.3 

180 27.1 42.7 

5 3.6 17.5 

10 9.1 30.6 

70 30 17.3 51.9 

60 31.8 65.3 

120 40.0 69.8 

180 47.2 71.0 

Conditions: Pulp density 2~ solid (W/V), 2 JOOl/dm3 lIel 
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Table 5.4 

Effect of acid concentration on cation extraction kinetics (Ore-B), 

pure HC1 

Acid Conc Temperature Contact Time (minutes) 
3 (ro1/drn ) °c % 5 10 30 60 120 180 

Ni 1.2 2.7 6.5 12.1 20.3 22.3 

25 Fe - 1.0 2.0 2.6 4.3 4.5 

Mg 1.9 3.0 6.4 8.5 11.8 13.0 
1 

Ni 28.0 50.2 71.5 83.0 85.9 87.4 

70 Fe 3.2 5.7 18.6 29.8 35.8 42.5 

Mg 15.2 28.1 44.7 57.0 59.8 63.2 

Ni 2.0 5.3 18.1 29.0 38.4 43.3 

25 Fe 1.6 2.4 4.3 6.8 9.5 10.8 

Mg 2.3 6.1 8.1 13.0 16.2 17.4 

2 Ni 57.2 68.0 80.5 86.2 91.4 94.0 

70 Fe 7.1 14.0 27.3 40.4 54.0 58.6 

Mg 23.0 35.8 55.2 68.2 71.4 75.5 

Ni 16.3 20.5 27.6 33.5 40.8 46.0 

25 Fe 4.1 6.0 9.4 15.5 24.4 30.8 

Mg 5.5 9.2 15.9 21.0 26.5 31.8 

4 Ni 64.6 76.3 89.0 95.3 97.0 98.3 

70 Fe 31.6 42.5 65.7 76.9 89.5 93.6 

Mg 50.6 64.1 85.3 94.3 97.1 98.5 

Conditions: Pulp density 2% solid (lv/V) 
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Table S.S 

Effect of acid concentration on cation extraction kinetics (Ore-B), 

Hel containing 5 ill Ni 

Acid Cone. Temperature Contact Time {}tinutes) 

(JOOl/dm3) °c % 5 10 30 60 120 

Fe - ... 1.3 1.8 3.7 
25 

Mg - 1.8 3.0 5.7 7.1 

1 Fe 1.7 4.1 15.9 27.0 30.4 
70 

Mg 8.3 14.6 27.9 38.1 49.8 

Fe ... ... 1.S 2.8 4.1 
25 

Mg 1.7 5.4 7.7 12.4 14.3 
2 

Fe 3.6 9.1 17.3 31.8 40.0 
70 

Mg 17.5 30.6 51.9 65.3 69.8 

Fe 3.3 4.9 8.2 15.0 22.8 
25 

Mg 4.7 8.0 15.5 19.7 26.0 
4 

Fe 27.7 40.6 65.0 74.0 85.1 
70 

Mg 47.0 60.3 83.8 90.5 95.8 

Conditions: Pulp density 2% solid (W/V) 
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Table 5.6 

Effect of particle size on cation extraction kinetics (Ore-B), 

pure HCl 

Size Time Cation Extraction % 

B.S.Mesh (minutes) Ni Fe Hg 

5 34.2 31.9 33.8 

10 42.7 39.7 40.4 

- 18 + 36 30 56.5 48.7 59.3 

60 67.6 58.5 73.1 

120 SO.l 72.1 83.5 

180 89.0 82,6 94.6 

5 45.5 41.7 51.3 

10 53.3 4S.4 55.9 

- 72 + 150 30 75.1 65.2 76.4 

60 84.7 78.1 87.8 

120 93.2 86.2 96.7 

180 97.1 96.5 98.6 

5 60.2 50.0 60.4 

10 70.6 57.6 75.4 

- 150 + 300 30 90.4 77 .5 89.7 

60 98.7 89.1 97.9 

120 100.0 98.9 100.0 

180 100.0 100.0 100.0 

Conditions: 2~ solid, 70°C, 4 1OO1/dm
3 

IICl 

103 



104 

100~------r-------r---------------'-------------------~ 

80~ ____ + 

-72 + 150 B.SM. 

~ 

Z 
0 
~ 
0 
<{ -18 + 36 B.S.M. 
Cl: 
~ 
>< 50 UJ 

z 
0 
Cl: 

20 

27. solid 

4 M. Hel 

10 30 60 120 180 

TIME , minutes 

Fig. 5. 14 . E ff ec t of oarticle size on iron ex traction kinetics 

(ore- Bl, Hel containing 5 9 /1 Ni. 



105 

80 
~50 soaM_._-+-_______ -t_-i 

- 18 + 36 B.S.M. 

~ 

Z 
0 
I-
U 
d. 
ex: 
I- 50 x 
UJ 

~ 
:J 
ii5 
w 
z 
(j 
<i 
~ 

20 

21. solid 

4 M He l 
_______ _ L-________________ ~ __________ ~ ______ ~~ 

180 60 120 10 30 

TIME . minutes 

Fig. 5. 15. Eff ect 0 1 particl e size on magnesi um ex t ra c t ion 

kinetic s (ore -8 ) . Hel con taining 5 gl l Ni . 



Table 5.7 

Effect of particle size on cation extraction kinetics (Orc-B), lIe1 

containing 5 g/l Ni. 

Size Time Cation Extraction % 

B.S. Mesh (minutes) Fc Mg 

5 27.8 23.8 

10 32.4 40.1 

-18 + 36 30 43.7 5S.1 

60 55.5 73.8 

120 70.1 83.2 

180 79.2 93.5 

5 40.7 36.3 

10 46.3 54.9 

-72 + ISO 30 63.4 73.8 

60 75.2 87.8 

120 83.2 95.9 

180 95.4 9S.3 

5 47.6 52.5 

10 55.6 71.5 

-ISO + 300 30 76.4 S5.7 

60 87.3 92.2 

120 96.5 98.4 

180 98.5 100.0 

Conditions: 2~ solid, 70°C, 4 nn1/Jm3 
lIe1 
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5.5. Cation Dissolution 

Analysis of the leaching results shows that dissolution of cations 

is best (although still only partially) represented by the kinetic law; 

1 - 2/3 R - (1 - R)2/3 = kt •••••• (5.1) 

where R is the fraction of the initial anount of cations dissolved 

at time t and k is the rate constant. 

This kinetic equation is normally used for diffusion-controlled 

o (88-92) 0 who h 0 0 h O kn f . d reactIons , In IC an Increaslllg t IC ess ° reactIon pro uct 

layer is fonned, and where the reaction rate is controlled by the rate 

of diffusion of the liquid reagent through this layer. The fonnation 

of such a layer was demonstrated in chapter 4 (see 1urrq) leaching), 

which agrees with the above interpretation. 

According to the theory from which this model was derived, this 

rate law is valid (92) if: 

a) The dissolved reactant concentration at the unleached mineral 

surface remains constant. 

b) The particles are essentially spherical with the same initial 

radius. 

c) The surface roughness factor does not change during leaching. 

d) The silica reaction product occupies the same volume as that of 

the original silicate. 

Figs. 5.16 to 5.20 show plots of the leaching results from Figs. 5.1 

to 5.5 (cation dissolution in both media at different temperatures) 

according to the lIDde1 (equation 5.1), \vhich for convenience has been 

represented by R vIs t. From these plots, onc can see that nickel 

dissolution data in pure IIC1 (Fig. 5.16) at 25°C obeyed the equation 
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TABLE 5.8 GENERAL RELATION BETWEEN R AND R 

R "R: R R R R R R R R 

0.00)) o.am 0.2(xx) 0.0049 0.4cm 0.0220 0.6000 0.0571 0.8000 0.1247 
0.0100 0.0000 0.2100 0.0054 0.4100 0.0232 0.6100 0.0595 0.8100 0.1295 
0.0200 o.am 0.2200 0.0060 0.4200 0.0245 0.6200 0.0620 0.8200 0.1345 
0.0300 o.ooe)! 0.2300 0.0066 O.4m 0.0259 0.6300 0.0646 0.8300 0.1398 
0.0400 0.cxx)2 0.2400 0.0072 0.4400 0.0273 0.6400 0.0673 0.8400 0.1453 

0.0500 0.cxx)3 0.2500 0.0079 0.4500 0.0287 0.6500 0.0700 0.8500 0.1510 

0.0600 0.0004 0.2600 0.0085 0.4600 0.0~2 0.6600 0.0729 0.8600 0.1570 

0.0700 0.0006 0.2700 0.0093 0.4700 0.0318 0.6700 0.0758 0.8700 0.1634 

0.0800 0.0007 0.2800 0.0100 0.4800 0.0334 0.6800 0.0788 0.8800 0.1700 

0.0900 0.0009 0.2900 0.0108 0.4900 0.0350 0.6900 0.0820 0.8900 0.1771 

0.1000 0.0012 0.3000 0.0116 0.5001 0.0367 0.7000 0.0852 0.9OOJ 0.1846 

0.1100 0.0014 0.3100 0.0125 0.5100 0.0385 0.7100 0.0885 0.9100 0.1925 

0.1200 0.0017 0.3200 0.0134 0.5200 0.0403 0.1200 0.0920 0.9200 0.2010 

0.1300 0.0020 0.3300 0.0143 0.5300 0.0422 0.7?m 0.0956 0.9300 0.2102 

0.1400 0.0023 0.3400 0.0153 0.5400 0.0441 0.7400 0.0993 0.9400 0.2201 

0.1500 0.0027 0.3500 0.0163 0.5500 0.0461 0.7500 0.1031 0.9500 0.2309 

0.1600 0.0031 0.3600 0.0173 0.5600 0.0482 0.7600 0.1071 0.9600 0.2430 

0.1700 0.0035 0.3700 0.0184 0.5700 0.0503 0.7700 0.1113 0.9700 0.2568 

0.1800 0.0039 0.3800 0.0196 0.5800 0.0525 0.7800 0.1156 0.9800 0.27::0 ~ 
~ 

0.1900 0.0044 0.3900 0.0207 0.5900 0.0548 0.7900 0.1200 0.9900 0.2936 ~ 
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almst to the point of tennmation of the leaching experiment (3 hours 

leaching) with about 40% nickel dissolved. (Note that the fraction of 

cations dissolved, represented by R, in all these figures can be read 

from the right hand side of the graph). Table 5.8 shows a general 

relation between RCind R. At 40°C and 70°C nickel dissolved according 

to the equation up to about 70% of the total initial annunt of nickel 

in the ore. At 40°C departure from the model occurs after the ore 

has been leached for more than 11 hours and at 700 C after 10 to 12 

minutes leaching. This indicates that with increasing temperature, 

the rate acid attack on the silicate lattice becomes greater, resulting 

in a much higher reaction rate in the earlier stages of the reaction 

and as a consequence of this, an earlier departure from the model. 

The fit of the rodel to the iron dissolution data for pure IICI 

(Fig. 5.17) shows that at 25°C and 40°C the data follow the equation 

(5.1) up to the end of the leaching experiments, with about lOt and 

28~ iron dissolved respectively. At 70°C the data obeyed the equation 

up to about 55% dissolution (2 hour leaching). 

Iron dissolution in HCI containing 5 g/l Ni. (Fig. 5.19) shows 

that at 25°C, 40°C and 700 C the data mostly fit eqwltion (5.1) up to 

the end of the experiments with about 7t, 27% and 47% iron dissolved 

respectively. Note however, that here the dissolution level is 

lower than in pure IICI, and perhaps if m the case of the leaching 

at 70°C, the leaching time were increased, allowing the iron dissolution 

to be increased up to about 60%, departure from the model would occur 

somewhere about 55%, as in the case of pure IICl. 

The fit of the m..'1gnesium dissolution data to the model is very 

similar for both media (Fig. S.18 and Fig. S.20). At 25°C, the data 



us 

obyed the equation up to the end of the experiment with about 17% 

magnesium dissolved (both media); at 400 C the model fits up to about 

36% (pure HC1) and 35% (HCl containing 5 g/l Ni) after about 1 hour 

leaching in both cases; at 700 C the model fit up to 53\ to 54% 

(pure HC1) and about 62% (HC1 containing 5 g/l Ni) after 20-30 minutes 

leaching and 30 minutes leaching respectively. 

In fact as illustrated by these plots (Figs. 5.16 to 5.20), for 

nickel (Fig. 5.16) the fit holds up to about R=O.7; for iron (Figs. 

5.17 and 5.19) perhaps up to R = 0.55; and for magnesium (Figs. 5.18 

and 5.20) to R = 0.4, or perhaps a little higher. The fit holds good 

for leaching times of up to 3 hours at 250 C, because dissolution is 

still very incomplete under these conditions. 

These departures from the model can most probably be interpreted (13) 

as being caused mainly by the large rrulge of particle sizes involved 

in each of these leaching experiments (see Table 5.1). This is 

because in samples such as these, where the smaller particles require 

a shorter leaching time for complete reaction, it is obvious that when 

increasing the temperature, the reaction rate is much faster in the 

earlier stages of the reaction than in the later stages, and, as a 

consequence of this, there is an earlier departure from the model. 

In the earlier stages of the reaction, most of the smaller particles 

are completely reacted, whilst the larger particles are only partially 

reacted, and clearly in the later stages of the reaction, the 

reaction rate slows down because there are only the larger particles 

still reacting. 



From this, one can see that as with temperature, particle size 

should also have a marked effect on the rate of cation dissolution. 

To evaluate this effect, samples of ore were leached at specific 
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size fractions (-18 + 36, -72 + 150 and -150 + 300 B.S.M.) in 4 mol/dm3 

acid concentration (both acid media) at 700 C.· Plots of these 

leaching results according to the model are given in Figs. S.2l to 

5.25, where it is clearly shown that the smaller the particle size 

of the fraction, the faster the rate of cation dissolution. As 

illustrated by Figs. 5.2l to 5.23 (pure IICl) chemical dissolution 

data obeyed the rodel perhaps up to about 92\, 84\ and 79\ of the total 

initial amount of nickel, iron and m~gnesium respectively, and in 

Figs. 5.24 and 5.25 (HCl containing 5 g/l Ni) perhaps up to about 79\ 

and 77~ for iron and m,gnesium resl~ctively. Note that in all 

these graphs, extrapolation of the linear rate plots to zero time, 

shows positive intercepts with the ordinate axes. This has also 

been generally observed in acid dissolution studies of phyllosilicate 

(93) , l' d' f 1 'd where lt was exp alne 1ll terms 0 u tra rapl removal of 

broken-bond cations and of the rapid dissolution of small particles. 

Similar results were also obtained by G.J. Ross (1967) during the 

study of acid dissolution of an orthochlorite mineral (94) from 

these graphs, one can see that these chemical dissolution data fit 

the model much better than the data from the leaching with a 

particle size distribution as shown in Table 5.1. TIlis is because 

the rate of dissolution is more homogenous, corresponding to a 

relatively discrete size distribution. lbwever, despite this 

improved fit, departure from the rodel still occurs when the 

percentages of cation dissolved are above 92t nickel, 84\ iron and 
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79~ magnesium in pure HCl, and 79% and 77% for iron and magnesium 

respectively in IICl containing 5 g/l Ni. Nevertheless, these 

departures are to be expected, because there are some factors which 

make a lOO~ agreement between the experimental data and the nudel 

very lU1like1y: 

a) Within each of the specific size frrtctions there is still a 

range of particle sizes. 

b) The variety of particle shapes. 

c) Cracks and irregularities in the particle surfaces. 

d) Ollll1ges of volume and shape of the particles during the leaching 

owing to the partial disintegration of the reaction product layer. 

All these factor~ are contradictory to the assumptions from which 

this rate equation was derived. TIlerefore, with samples such as 

these, where the particles do not meet the boundary conditions of 

the rode1 because of insufficient experimental control over the 

size and shape of the reacting particles, it is very t.U'llike1y that 

a lOO~ 3green~nt between experimental data and the model would he 

obtained. lIowever, despite these difficulties, the nude I still 

seems to represent dissolution of the cations very well (in an 

empirical sense), even when a goot fit of the chemical data alone 

is not in itself sufficient to establish the fundamental validity 

of the nodel. In regard to this, Jacobs and Tompkins in 1955(95) 

rulve pointed out that agreement between experimental results and 

rate equations (expressing R as a flUlction of t and deduced 

theoretically) does not necessarily establish the validity of the 

nodel from which the equations arc derived, and that other inforrn.'ltion 

about the reactions in addition to R versus t data may sometimes be 



required. Carter in 1961(88) also states that to warrant any 

conclusion as to the validity of a model used in the analysis of 

data expressing R as function of t, the data must fit the model 

to 100\R. 

Acid concentration, as well as te~)erature and particle size, 

is another variable which has strong effect on cation dissolution., 

This was demonstrated durulg the leaching of samples of ore-B (with 

a particle size distribution as in Table 5.1) in both acid media 

at different acid concentrations (1, 2 and 4 mol/rnn3) at 2SoC ruld 

700C (Figs. 5.6 to S.10). 

TIlese leaching results have also been plotted according to 
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the JOOdcl (Figs. 5.26 to 5.35), where it is clearly seen that in 

both acid media at both temperatures, the rate of cation dissolution 

shows a significant increase (except for nickel in lICl containing 

5 g/l Ni, with zero dissolution) when the acid concentration is 

increased from 1 to 2 and 4 JOOl/dm3• As expected, at 25°C the 

chemical dissolution data did fit the equation much better than at 

70oC. This is because at 70oC, the leaching conditions were more 

severe, resulting in a much faster rate of reaction in the early 

stages of the reaction; as previously explained, because of the 

large range of particle sizes involved in the leaching, the rate 

of cation dissolution slows dO~l in the later stages of the reaction, 

causing the departure from the oodel. Further discussion of the 

fitting of these chemical dissolution data to the model will not 

he atte~)ted in order to avoid lUldue repetition, but once again the 

nXJllc1 holds only at lower R values, and any factor speeding up the 

reaction rate leads to a departure from linearity l<.'hich is earlier 
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in time. It might also be said that the slower dissolution at high R 

values is not merely a function of spread of particle size. It is 

commonly observed in other systems even for rigorously controlled 

particle size. Thus, in gaseous reduction of iron ores complete 

reaction is rarely obtained (due to a variety of causes, including the 

"marooning of small areas of iron oxides within the particle or lump, 

surrounded by layers impervious to gaseous diffusion). 

lhving generally discussed the most obvious possible reasons for 

the departure of the model, it might also be considered that this 

departure could be due to the presence of more than one mechanism 

controlling Ule reaction. Take, for example, Fig. 5.16 (plot of R 

vis t for nickel dissolution in pure HCl at different temperatures), 

~lere it is seen that at 70°C, nickel dissolution holds the linearity 

of the model up to a R value of about 0.7. ~bwever, as the reaction 

proceeds, a transition stage is observed (indicated by a curve) from 

R = 0.7 up to about R = 0.86. Beyond this R > 0.86 the data is again 

linear, which bldicates that there are two regions where the data seems 

to obey a diffusion-controlled mechanism (it should be noted however, 

that this does not mean that it is the same diffusion mechanism in both 

regions). For the lower temperatures, 2SoC and 40oC, unfortunately 

this effect cannot be appreciated because the leaching time was not 

long enough to achieve R values higher than 0.7. Another figure, 

perhaps showing a better picture of these two linear regions and the 

transition stage in the nickel dissolution is Fig. 5.27 (plot IT vis t 

for nickel dissolution at 700 C at different acid concentrations). 
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For the iron dissolution in pure HCl and in HCL containing 5 gll 

Ni, these two linear regions and the transition stage may be observed 

in Figs. 5.29 and 5.33 respectively (plots of R vIs t for iron 

dissolution at 70°C at different acid concentration). From Fig. 5.29 

(pure HCl) it is seen that at 700 C the first linear region is perhaps 

up to about R = 0.55 or perhaps a little higher. Beyond this R value, 

the transition stage is observed up to about R = 0.89, after which the 

second linear region begins. In the case of iron dissolution in HC1 

containing 5 g/l Ni (Fig. 5.33), at 700 C the first linear region is 

perhaps up to about R = 0.55 and the second linear region perhaps from 

beyond R = 0.75 (note, that in this case, where the acid contains an 

initial amount of nickel chloride in solution, the R value from which 

the second linear region begins is nUlch lower than the case of pure HC1, 

this perhaps could be due to the accumulation of nickel chloride in the 

reaction product layer). The transition stage in this case is between 

R = 0.55 and R = 0.75. As in the case of nickel dissolution, this 

effect cannot be appreciated at the lower temperatures, 2SoC and 400 C, 

because for these temperatures the leaching time was not long enough 

to allow the iron dissolution to reach values of R higher than 0.55 

(see Figs 5.17 and 5.19). 

For magnesium dissolution, these two linear regions and the 

transition stage, may be observed at 400 C and 700 C in both acid media 

from Figs. 5.18 and 5.20 (plots of R vIs t for magnesium dissolution at 

different temperatures). From these, it is seen that in both acid 

media at 40°C and 70°C, the first linear region occurs up to about R = 

0.36. Beyond this point however, the transition stage and the second 

linear region are co~)letely different for both temperatures. At 40°C 



the transition stage (both acid media) seems to be from R c 0.36 up 

to about R = 0.38, whilst at 700 C it seems to be from R - 0.36 up to 

about R = 0.7. Thus, the second linear region seems to begin at 

R = 0.38 for 400 C and R = 0.7 for 700 C. The reason for this, 

unfortunately, is not understood. A similar behaviour can be 

observed for the magnesium dissolution at 700 C at different acid 

concentrations (see Figs. 5.31 ruld 5.35). 

Although the evidence of the presence of these two diffusion 

mechanism during the cation dissolution is still not very clear, it 
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. (13) 
should be mentloned that 1. W. Strong reported a similar conclusion 

during the kinetic study of acid dissolution (pure HCl) of a lateritic 

nickel ore (a silicate ore from Salomon Island). Luce (96) also reached 

similar conclusions using diluted acid to leach silica and magnesium 

from hydrated llkl~lesium silicates. Because of the similarity in the 

leaching conditions and type of silicate ore used by Strong in his study 

with those leaching conditions and type of silicate ore used in this 

research, it was considered worthwhile to give some details of Strong's 

approach for the determination of the mechanism controlling the reaction 

and also to replot his data (included in appendix I) accoruing to the 

model discussed here. 

In order to determine the mechanism controlling the reaction, 

Strong quoted that the reaction meclklllism can often be determined by 

plotting the fraction of reaction completed (defined by Strong as a, 

which corresponds to R in this research) against some flUlction ,of time 

and that for diffusion controlled reactions the data is normally plotted 

against the square root of time (in other words by using the well known 

parabolic law generally applied for onc-dimensional diffusion process 
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d Off 0 ffo 0 (89)) with constant 1 USlon coe lclent • According to this, Strong 

plotted his kinetic data (from leaching experiments dealing with specific 

size fraction, -85 + 170 mesh) in terms of a versus (Tl/2), illustrated 

in Figs. 5.36 and 5.37. From these plots Strong commented and 

concluded: 

a) "For nickel at low temperatures, where a < 0.3 all the points 

lie on a single straight line. The lines become steeper (i.e. 

the reaction rate increases) as the temperature and acid 

concentration of acid increases. As the reaction proceeds a 

transition stage is reached. Beyond this, a' > 0.86, the data 

is again linear". 

b) '~ere are two distinct regions where the data obeys a diffusion 

mechanism. The initial reaction rate is much faster than that 

in the later stages of extraction. The transition between these 

two stages varies for each cation, a values for nickel are 0.6 -

0.8, and for magnesium, 0.5 - 0.6. The transition stage'is 

much less distinct for iron, but is about an a value of 0.3" 

c) "Differantiation between alternative diffusion mechanism is 

impossible since there are difficulties in assigning the cation 

to either specific lattice position or to impurities". 

Strong also provides an Arrhenius plot, illustrated in Fig. 

5.38, from which the activation energies for these cation could be 

obtained. These were: 

Nickel 

Iron 

Magnesium 

6.38 

1.43 

3.92 

Kilojoule/mole 

Kilojoule/mole 

Kilojoule/mole 

which certainly agree with the activation energy which characterizes 
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diffusion-controlled mechanism in sOlid-liquid reactions. 

A replot of Strong's data for the specific size fraction, -85 

+170 mesh, in terms of ~vs T (Fis. 5.39 to 5.41) clearly shows that 

cation dissolution can be reasonably well represented by the kinetic 

equation, 1-2/3 R_(1_R)2/3 = kt, which is normally used for diffusion-

controlled reactions, in which an increasing thickness of reaction 

product layer is formed, and where the reaction rate is controlled by 

the rate of diffusion of the liquid reagent through this layer. In 

fact, from these plots it is seen that cation dissolution holds the 

linearity of the model perhaps up to R values, 0.6 - 0.7 for nickel 

and O.S for iron. In the case of magnesium however, it is much less 

distinct and seems to depend on the temperature and acid concentration. 

At 40°C perhaps up to R values of 0.28 and 0.31 for 1 and 2 mol/dm3 

HCl respectively and at 6SoC perhaps up to R values of 0.5 and 0.55 

for 1 and 2 IIDl/dm3 HCl respectively. At 2SoC, unfortunately, the 

leaching time is not long enough to appreciate up to what R value, 

magneisium dissolution hold the model. 

From these plots, as in Strong plots it may be seen that there 

are two regions (indicated by straight lines) where the data perhaps 

seem to obey a diffusion-controlled mechanism. The transition stage 

between these two regions being between R values of 0.6 - 0.7 and 

0.86 - 0.88 for nickel and from 0.5 and perhaps 0.55 for iron. In 

the case of magnesium at 400 C between R values of 0.28 and 0.3 for 

1 IIDl/drn3 IICl, 0.31 and 0.34 for 2 JOOld/dm3 HCl, and at 65°C R values 

between 0.5 and 0.63 for 1 JOOl/dm3 IICI and 0.55 and 0.73 for 2 IIDI/dm3 

IIC!. From these plots, and according to the evidences presented in 

this research (Chapter 4, lump leaching, and in this chapter) it is 
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perhaps possible to suggest that Strong's kinetic data (obtained from 

leaching of a silicate ore with characteristics very similar to the 

silicate ore used in this researCh) can be partially interpreted as 

being diffusion-controlled by a reaction product layer. 
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It should be noted that Strong's kinetic data discussed so far, 

are from leaching experiments with a specific particle size fraction 

(-85 + 170 mesh), but as Strong quoted, these analysis for a specific 

size fraction can be extended to include samples with specific particle 

size distribution (S.P.S.D.). Thus, in Figs. 5.42 to 5.44 Strong's 

kinetic data for S.P.S.D. (see appendix I for details of cation extraction, 

leaching conditions and S.P.S.D.) have been plotted in terms of ~ vs T. 

From these, it may be seen that once again there are two regions where 

the data lie on a straight line indicating the possibility of the 

presence of more than one diffusion mechanism during the cation dissolution. 

These plots clearly show that cation dissolution is represented by the 

R model up to R values of about 0.7 - 0.8 for nickel, 0.36 - 0.5 for 

magnesium and 0.4 - 0.5 for iron. It should be noted that these R 

values to which the model (R) represent the cation dissolution for 

Strong's data with S.P.S.D., are very similar to those R values to which 

the model represent the cation dissolution in this research for samples 

leached with S.P.S.D. (0.7 for nickel, 0.55 for iron and 0.36 for magnesium). 

5.6 React ion ~fechanism 

According to the fit of the chemical dissolution data to the 

kinetic equation 1 - 2/3 R _(1_R)2/3 = kt, the cation dissolution can be 

partially interpreted as being diffusion-controlled by a reaction 

product layer. However, a plot of the log of the rate constant k 

versus liT (Arrhenius plot) indicates that more than one mechanism 



controls the reaction. Fig. 5.45 shows this plot for nickel, iron 

and magnesilUTl dissolution in 2 lIDl/d.m3 pure HCl (values of log k were 

obtained from the slopes of the lines in Figs. 5.16 to 5.18 up to R 

values of about 0.7,0.55 and 0.36 for nickel, iron and magnesium 

respectively. See Table 5.9). 

Table 5.9. Values of log k for cation dissolution at different 

temperatures in both acid media (k in minutes-I) 
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Pure IICl IICl containing 5 g/lNi 

up to R 25°C 40°C 70°C up to R 25°C 40°C 70°C 

Nickel 0.70 -3.747 -3.033 -2.203 - - - -
Iron 0.55 -5.064 -3.985 -3.420 0.50 -5.380 -4.210 -3.717 

Magnesitun 0.36 -4.574 -3.471 -2.676 0.36 -4.703 -3.530 -2.764 

From this plot it is clear seen that as the temperature increases, the 

activation energy for each of the cation (obtained from the slope of the 

curves in this plot) gradually decreases, indicating a change in the 

mechanism controlling the reaction. According to the activation 

energies obtained from this plot, which are: 

Nickel r.hgnesilUll Iron 

(Kilojoule/mole) (Kilojoule/mole) (Kilojoule/nnle) 

25°C 94.4 139.9 148.5 

;;:PC 88.1 133.2 136.5 

40°C 77 .2 95.7 86.2 

45°C 65.8 66.4 59.1 

50°C 64 .1 53.4 46.1 

60°C 48.8 44.3 24.8 

65°C 42.S 41.1 18.0 

70°C 38.3 38.8 15.6 
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it is clear seen that at lower temperatures, the dissolution of the three 

cation is chemically-controlled. Ibwever, as the temperature increases 

the reaction becomes controlled by an intermediate mechanism (chemically­

diffusion-controlled) with a strong indication that at the higher 

temperatures the diffusion mechanism becomes predominant. 

Normally, diffusion-controlled mechanism in solid-liquid reactions 

are characterised by having an activation energy between 4 to 13 Kilijoule/ 

,mIc, while for chemically-controlled mechanism the activation energy 

is usually higher than ~42 Kilojoule/mle and for intermediate-controlled 

mechanism the activation energy is about 21-34 Kilojoule/mole. 

This change of mechanism from a chemical-control at low temperature 

to intermediate-control with a strong tendency to become diffusion-control 

at high temperature,. may be interpreted as being mainly caused by the 

formation of a reaction product layer during the reaction. Fonnation 

of this layer has been clearly demonstrated by the lump leaclling experi-

ment described in Olapter 4 and in this chapter, where the relatively 

good fit (at lower and intennediate values of R) of the chemical 

dissolution data to the kinetic equation 1~2/3 R _(I_R)2/3 = kt 

indicates that the reaction follows a model in which the acid attack on 

the particles proceeds from the exterior to the centre, leaving a reaction 

product layer "hich acts as a diffusion barrier. Therefore, according 

to this, it is seen that at the lower temperatures the rate of chemical 

reaction is much slower than the rate of diffusion through the layer, 

Le. the rate is chemically-controlled. lIowever, with the rise of 

temperature, the rate of chemical reaction is accelerated, becoming 

mre and n~re competitive with the rate of diffusion, Le. the rate 

is intermediate-controlled, and at the higher temperatures it seen1S 
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that the rate of chemical reaction is faster than the rate of diffusion 

through the layer Le. the indication that the diffusion mechanism is 

more predominant. 

An Arrhenius plot for cation dissolution in 2 nnl/dm3 HC1 

containing 5 g/l Ni is shown in Fig. 5.46 (values of log k were obtained 

from the slopes of the lines in Figs. 5.19 and 5.20, up to R values of 

about o.s and 0.36 for iron and magnesium respectively, see Table 5.9), 

where it is clearly seen that as in pure HCI, there is an apparent 

change of mechanism with the rise of temperature. Again, this may 

be interpreted as being caused by the formation of a reaction product 

layer. 

In general, these results of the kinetic of acid dissolution of 

Ore-B (serpentine) under the given leaching conditions indicates: 

a) The cation dissolution in pure IICl have a behaviour similar to 

cation dissolution in HCl containing 5 g/l Ni (except that in 

the latter, nickel remains in the solid). 

b) The dissolution. of the cations in both acid media is highly 

dependent on temperature, as well as on acid concentration. 

c) The dissolution of the cations is best represented by the kinetic 

equation 1 - 2/3 R _(I_R)2/3 = kt, indicating the formation of a 

reaction product layer which acts as a diffusion barrier, at least 

at low and intermediate values of R (0.7, 0.5 and 0.36 for nickel, 

iron and magnesium respectively). In regard to this, one might 

note that it is for nickel that the diffusion model hold over 

the largest range of R values. 

Thus, it nnlSt be ncntioned that Strong (1 3) has reported that there 

is a dis tinction between "lattice" and "no-lattice" ions. In 
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selpentines nickel' can be assigned to the octahedral layer of the serpen­

tine lattice, substituting isomorphically for Mg2+., Hence, purely in 

terms of lattice one might not have expected the observed difference in 

behaviour between nickel and magnesium. However, Strong plotted 

(Fig. 6.23 (13)) the % cation extraction vs weight of laterite dissolved 

in leaching, and also found a marked difference in behaviour between 

nickel, on the one hand, and magnesium and iron on the other. 

Certainly, Strong was able to present empirical relationships 

between the leaching variables and cation extraction which were useful 

predictions, and which were also useful for classifying types of "lateri tic" 

ores, but he was unable to provide a physico-chernical explanation. 

It might be noted that the free energy of fonnation of Ni(OH) 2 is 

about -542 Kilojoule/mole and of Mg(OfI) 2 about -834 Kilojoule/mole; 

that is, the nickel fonn is less stable in its own right (quite apart 

from any effect of isomorphus nickel substitution upon the stability of 

the brucite lattice). The ionic radius for Mg2+ is 0.65R, for Pe2+ and 

Fe 3+ 0.64 and O. 76 ~ respectively and for Ni 2+ it is 0.72 j. 'Thus 

the nickel ion will have more difficulty in diffusing through a lattice 

than either a ferrous or rnagnesitnn ion. One might, then, make a guess 

that the nickel is less strongly bonded in the bruci te layer than is 

magnesitnn, but that, once detached, it diffuses less rapidly by virtue 

of its ionic size ~ This view agrees quali tati vely with the observations 

made from the experirental results. 

d) According to the Arrhenius plots, at low temperature, catian 

dissolution is chemically-controlled. However, with the rise 

of temperature cation dissolution becores intermediate-controlled 

with strong indication that at the higher terrperatures diffusion 

control is predominnnt. 
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CIIAPTER 6 

WASHING 

6.1. Introduction 

The work in Chapter 4 has established that during the leaching of 

the seven laterite samples with l~l containing different concentrations 

of NiC1 2 in solution, the extraction of nickel from all dropped off 

rapidly as the aqueous nickel chloride concentration in the leach acid 

increased. lbwever, it was found that upon contacting or washing the 

leach residues with pure IIC1, extraction of nickel occurred to a degree 

similar to that when the laterites were leached in pure llCl solution. 

Therefore, the work described in this chapter involves a syste~~tic 

study of the washing of the residues of laterites leached in HCl which 

contained high concentrations of nickel chloride in solution. 

6.2. Single &1tch Washing 

It was first necessary to determine the effect of leaching variables 

upon cation extraction during the washing, and then to determine the 

effect of washing variables upon the cation extraction during the washing 

of leach residues (washi~g effi~iency). To do so, washing of the 

residues were performed using single batch tests. 

washing technique, see Chapter 3. 

For details of 

6.2.1. Effect of leaching variables upon the cation extraction during 

the washing of leaching residues 

In Chapter S, it was shown that during the leaching of Ore-B 

samples (2~ solid WN) in HCl containing S &/1 Ni in solution, leaching 

variables such as temperature, contact time, acid concentration 



and particle size did not affect at all nickel extraction (Q~), 

according to the determination of cation extraction by the analysis 

of leaching solutions. This was not so for the extraction of iron 

and magnesium, which was as significantly affected by those variables 

as when leaching took place in pure HCI, where the extraction of the 

three cations is highly dependent on the above variables. 

However, as previously established in Chapter 4, washing the 

leaching residues of laterites for which, whatever the leaching 

conditions, nickel extraction was zero, because of the presence of 

nickel in the leach acid, resulted in a degree of extraction of 

nickel similar to when the laterites were leached in pure HCl. 

This indicated that despite the fact that the effect of the leaching 

variables upon nickel extraction cannot be appreciated during the 

leaching stage, leaching variables still do affect the extraction of 

nickel, but their influence can only be observed and determined after 

washing with pure IICl. 

6.2.1.1. Temperature, Acid Concentration and Particle Size 

To determine the effect of these variables, residues from the 

leaching of Ore-B (2% solid W/V) in HCl containing 5 g/l Ni from the 

kinetic study in Chapter 5 (where the ore samples were leached at 

different temperatures, acid concentrations and particles size), 

were selected and washed with pure IICl (2 IIDI/dm3). After washing 

the final cation extractions were compared with cation extraction 

from Ore-B samples leached (under the same leaching conditions) in 

pure Hel (before washing). 

Tables 6.1 and 6.2 show the effect of the aforenamed variables 

upon the cation extraction in both acid media. It should be noted 
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Table 6.1. Effect of temperature and acid concentration upon the 

cation extraction from Ore-B leached in pure HC1 and in lIC1 with 

5 g/l Ni in solution. 

Temperature Acid Cone. Pure * HCl with 5 g/l Ni 

°c (IID1/dm3) % HC1 B.W. A.W. 

Ni 22.3 0.0 19.7 
1 Fe 4.5 4.1 5.0 

Mg 13.0 10.5 11.8 

Ni 43.3 0.0 43.0 

25 2 Fe 10.8 7.0 10.1 
Mg 17.4 16.8 17.6 

Ni 46.0 0.0 45.2 
4 Fe 30.8 28.2 28.5 

Mg 31.8 31.9 32.0 

Ni 87.4 0.0 84.8 
1 Fe 42.5 37.9 40.3 

Mg 63.2 59.2 61.0 

Ni 94.0 0.0 94.2 

70 2 Fe 58.6 47.2 59.S 
Mg 75.5 71.0 76.3 

Ni 98.3 0.0 98.1 
4 Fe 93.6 90.4 93.0 

Mg 98.5 97.5 97.9 

Leaching conditions: 2\ solid (WN), 70oC, 4 IIDl/dm3 HC! and 3 hours 
contact time 
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Washing conditions: 2 nol/dm3 pure lIC1, room temperature, 30 minutes 
contact time and no agitation. 

* Cation extraction data obtained from analysis of leaching solutions 
B.W. Cation extraction before the washing (analysis of leach solution) 
A.W. Cation extr~ction after the washing (analysis of residues and wash 

solutions) 



Table 6.2. Effect of particle size upon the cation extraction from 

Ore-B leached in pure HCl and in HCl with 5 g/l Ni in solution 

Size Fraction Pure * HC1 with 5 g/l Ni 

B.S. Mesh % HCL Before Washing After washing 

Ni 89.0 0.0 86.9 

-18 + 36 Fe 82.6 79.2 80.7 

Mg 94.6 93.5 94.1 

Ni 97.1 0.0 97.5 

-72 + 150 Fe 96.5 95.4 96.0 

Mg 98.6 98.3' 98.6 

Ni 100.0 0.0 98.9 

-150 + 3C() Fe 100.0 98.5 99.0 

Mg 100.0 100.0 / 

Leaching conditions: 2t solid (W/V), 70oC, 4 rol/dm3 HCl and 3 hours 

contact time. 
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Washing conditions: 2 rol/dm3 pure HCl, room temperature, 30 minutes 

contact time and no agitation. 

* Cation extraction data obtained from analysis of leaching solutions 

Cation extraction before washing (analysis of leaching solutions). 

Cation extraction after washing (analysis of residues and wash solution). 



that the cation extraction data from the leaching in pure lICl are 

given only for before the washing (by analysis of leaching solutions). 

From these tables it may be clearly seen, that in pure HCl, 

extraction of nickel, iron and magnesium is highly affected by 

temperature, acid concentration and particle size. The same occurs 

with the extraction of iron and magnesium in HC1 containing 5 g/l 
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Ni before and after the washing of the residue~. The nickel extraction 

however, before the washing remains unaltered at 0%, but as soon as the 

residues are washing with pure 1~1, the effect of the above mentioned 

leaching variables can be observed. 

From the tables it can also be seen that for each of the given set 

of leaching conditions, the final degree of cation extraction (after 

leaching and washing have taken place) from samples leached in HC1 

containing 5 g/l Ni, is very similar to the degree of cation extraction 

reached during the leaching of ore samples in pure HCl. This 

demonstrates that despite the retarding effect of 5 g/l Ni upon the 

extraction of nickel, and also to a smaller degree iron and magnesium, 

after washing of the residues with pure lICI, the leaching variables 

affect the extraction of nickel, iron and magnesium in both acid media 

to the same extent. 

6.2.1.2. Pulp Density 

To determine the effect of this variable, residues from the leaching 

of Ore-B (under the following conditions: 80oC, 6 mol/dm3 HCl, 1 

hour contact time), at different pulp densities in pure 1~1 as well 

as in IICl containing different concentrations of nickel in solution 

(Chapter 4, section 4.3.5. ) were washed with pure IICl (6 mol/dm3). 



The results of cation extraction before and after the washing of 

residues are given in Table 6.3. From this table, one can see that 

in pure t~l, before and after the washing, the extraction of nickel, 

iron and magnesium decreases as the pulp density increases. 

It should be noted however, that after the washing of the 

residues, an improvement in the cation extraction was obtained for 

each pulp density. This indicates that during the leaching stage, 

the maximum possible degree of extraction for the three cations, 

according to the given leaching conditions, were retarded to some 

extent by the aqueous NiC12, MgC1 2 and FeC13 concentrations that 

resulted from leaching itself, but as soon as the residues were 

washed with pure Hel, the maximum degree extraction for each cation 

was achieved. 

In the cases where the leach solution contained S, 20 or 40 g/l 

100 

Ni in solution, the results show that before the washing of the residues, 

the extraction of nickel increases as the pulp density increases, 

reaching a maximum after which the extraction starts to drop off. 

This was not the case for the extraction of iron and magnesium, which 

decreased as the pulp density increased (see effect of pulp density, 

Chapter 4, Section 4.3.5.). However, after washing of the residues, when 

the maximum degree of cation extraction has been reached (for a given set 

of leaching conditions), the extraction of nickel, iron and magnesium 

decreases with the increase of pulp density, as in the case of leaching 

in pure l~l. It should be noted that after the washing of the 

residues, the final cation extractions (for each of the pulp densities) 

from samples leached in pure IC1 and in IC1 with S, 20 and 40 g/l Ni 

were very similar. This demonstrates once again that the presence 



Table 6.3. Effect of pulp density upon cation extraction from Ore-B leached in Hel containing different 

nickel concentrations in solution (before and after the washing of residues) 

Nickel concentration Pulp density CATION EXTRACTION \ 

Leach acid \ solid Nickel Iron MagnesilDTI 

(g/l Ni) (W/W) B.W. A.W. B.W. A.W. B.W. A.W. 

5 95.34 98.86 97.03 98.54 95.10 98.10 

0 10 89.83 98.76 94.70 98.95 94.39 98.03 

30 78.53 93.19 71.35 86.55 63.04 83.50 

5 61.50 97.48 96.86 97.36 93.72 98.54 

5 10 78.26 98.05 94.62 98.10 93.54 98.10 

30 76.22 94.17 69.31 83.28 63.11 86.28 

5 0.00 99.05 94.81 98.18 89.02 98.21 

20 10 0.00 98.89 90.73 98.77 87.25 97.70 

30 52.18 92.87 68.49 82.95 60.51 87.59 

40 46.36 87.21 41.63 74.90 30.14 82.95 

5 0.00 98.66 93.41 98.65 86.45 96.51 

40 10 0.00 98.60 89.47 98.04 83.97 97.64 

30 17.32 91.93 66.05 86.49 56.69 85.49 

40 34.40 83.14 41.51 80.56 29.76 81.53 
- -----

B. W. = Before washing. A. W. = After washing 

...... 
0-...... 



of nickel in the leach solution has only a retarding effect, and 

once the residues have been washed with the appropriate volume of 

pure f~l, the final cation extraction from any of the samples leached 

in any of the above mentioned acid media, is determined only by the 

original leaching conditions. 

Although leaching variables such as contact time and agitation 

were not studied, the results shown in Tables 6.1 to 6.3 indicate 

that: 

a) Provided that the leaching residues are washed with pure lICl 

the final extraction of nickel, iron and magnesium from Ore-B 

is dependent only on the leaching conditions and not on the 

initial nickel concentration. The more severe the leaching 

conditions, the higher the degree of cation extraction. 
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b) Leaching samples of Ore-B in ,pure HCl tmder a given set of 

conditions and determination of the cation extraction allows the 

prediction with reasonable accuracy, of the extraction after the 

washing of the residues from leaching under the same conditions, 

in HCI containing nickel in solution. Ibwevcr, it must be 

remembered that even during leaching in pure HCI, cation 

extraction is retarded to some extent, because of the formation 

of NiCI Z' MgCl Z and FeC1 3 in the leach acid, due to the cation 

extraction. This effect was observed to be stronger at high 

pulp densities. Table 6.4 shows the improvement of cation 

extraction for each of the pulp densities after the washing of 

residues from pure I~l leaching, which indicates the extent of 

the retardation of the cation extraction during leaching. 



Table 6.4 Increase of cation extraction by the washing of residucs 

from samples of Ore-B previously leached in pure HCl at different pulp 

densities. 

Pulp Dens ity Increase \ 

~ solid W/W Nickel Iron MagnesilDTI 

5 3.52 1.51 3.00 

10 8.93 4.25 3.64 

30 14.66 15.20 20.46 

Leaching conditions: BOoC, 6 JOOl/dm3 HCl, 1 hour contact time 

Washing conditions: Room temperature, 6 rol/dm3 HCl, 30 minutes 

contact time, no agitation and a solidI 

liquid ratio of about 0.01 

6.2.2. Effect of washing variables upon cation extraction during 

the washing of leach residues. 

In order to determine the opt~ washing conditions for an 

efficient nickel extraction during the washing of leach residues, 

variables such as acid concentration, tcwperature, agitation, contact 

time and solid/liquid ratio were studied. To do so, samples of Ore-B 

with a particle size distribution as shown in appendix 11, were 

previously leached at a pulp density (unless otherwise stated) of 

10\ solid (W/W) in 6 Il'Ol/dm3 HCl containing 20 g/l Ni at 80°C for 1 

hour contact time, and the residues from these leaching submitted 

to washing under different conditions. 
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It is obvious that for. the purpose of this work, the evaluation of 

any set of washing conditions is based on their ability to achieve 

the maximum cation extraction efficiency (especially nickel) from the 

leaching residues during the washing. Thus, the efficiency of 

washing for any set of conditions is determined by the percentage 

of each cation extracted from the total amount of that cation 

initially present in the solid leaching residues before washing. 

6.2.2.1. Acid Concentration, TernperatureartdAgitation. 

To study these variables, leaching residues were washed in large 

volumes of pure HCl (about 0.01 solid/liquid ratio) in order to 

avoid any possible retarding effect on the cation extraction by the 

nickel in the leach solution present with the residues. 

Table 6.5 shows the cation extraction from leach residues washed 

in 0.5, 2, 4 and 6 nnl/dm3 pure HCl at room terrperature, 30 minutes 

contact time and no agitation. From this table, it may be seen that 

whatever the acid concentration of the washing solution between 0.5 

to 6 mo1/dm3, the percentage of each catio extracted from'the total 

amount initially present in the solid residues, is practical~y the 

same i.e. about 98.5% nickel, 81.6% iron and 81.7\ magnesium. This 

indicates that the efficiency of the washing is independent of the 

acid concentration in the washing solution. Table 6.6 shows the 

cation extraction from leach residues washed in 2 mol/dm3 pure HCl 

at 25°C, 50°C and 70°C with a contact time of 30 minutes and no 

agitation. These results clearly show that as in the case of acid 

concentration, whatever the temperature of the washing solution 

between 250C to 700e, the percentage of cation extrRcted from the 
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" Table "6." s.··· ·Effect·of ·acid ·concentratioo·upoo 'cation 'eXtraction during 
................................. 

. , .................. , . , . , ........ , .... " ....... , . 

Acid Cone. Cation extraction from residues \ 

(lOOl/dm3) Nickel Iron Magnesium 

O.S 98.72 81.17 82.4\3 

2.0 97.76 80.02 78.66 

4.0 98.64 82.27 82.77 

6.0 98.70 83.01 82.89 

Washing conditions: 0.01 sOlid/liquid ratio, room temperature, 

30 minutes contact time and no agitation. 

Table 6.6. Effect of temperature upon cation extraction during the 

washing of leach residues. 

Ternperature Cation extraction from residues \ 

°c Nickel Iron Magnesium 

25 98.53 82.12 81.72 

SO 98.57 81.36 81.54 

70 98.65 81.68 81.72 

Washing conditions: 0.01 solid/liquid ratio, 2 JlDl/drn3 HC1, 

30 minutes contact time and no agitation. 



total amount initially present in the solid residues is very similar. 

About 98. 6\ nickel~ 81. 7\ iron and SI. 7\ magnesium. This again 

indicates that the efficiency of the washing is not affected by the 

temperature of the washing solution. 

Table 6.7 shows the cation extraction from leach residues washed 

in 2 mol/dm3 pure HCl with and without agitation for 5, 10 and 30 

minutes contact time (room temperature). The results presented in 

this table clearly demonstrate that agitation did not give any 

inproveIrent in extraction within experimental error. The extraction 

rate for the three cations was practically the same, reaching about 

98.7% nickel, 8l.S% iron and 82.0% magnesium after 30 minutes washing. 

This indicates that agitation (at least for this particular solidI 

liquid ratio) has little effect on the washing efficiency. 

The final cation extractions achieved (after both leaching and 

washing) for all samples used in these tests are given in Tables 6.8 

to 6.10, where the cation extraction from each sample is presented 

before and after the ''lashing of the residues. From these tables it 

may be seen that: 

a) After leaching samples of Ore-B (particle size distribution as 

shown in appendix II ) at a pulp density of 10\ solid (JlM) in 6 roll 

dm3 HCI containing 20 g/l Ni in solution, at 800 C for a period of 1 

hour, the cation extraction that can be expected during the leaching 

is about zero % nickel, 90.7\ iron and 87.1\ magnesium. 

b) After washing the residues (from the above rentioned leaching) t 

at a solid /liquid ratio of about 0.01 in pure HCl, whatever the 

acid concentration (between 0.5 to 6 ITnl/dm3) and temperature 

(between 25°C to 70oC), either with or without agitation for 30 
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Table 6.7. Effect of agitation upon cation extraction during the 

washing of leach residues. 

Agitation Tine Cation extraction from residues % 

Minutes Nickel Iron Magnesium 

5 95.39 79.14 78.42 

without 10 97.46 79.60 80.37 

30 98.73 82.42 82.49 

5 97.10. 80.35 80.12 

with 10 97.94 80.72 81.26 

30 98.62 81.10 81.54 

Washing conditions: 0.01 solid/liquid ratio, room temperature, 

2 Jrol/dm3 HCl and 30 minutes contact tine. 
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minutes contact t~,. the final degree of cation extraction that can be 

exPected after leaching and washing have taken'placeis about 98.5% 

nickel. 98.3\ iron and 97.6\ magnesium. 

Table 6.8. Cation extraction from leached Ore-B samples before and 

after the washing of residues in pure HC! at different acid concen­

trations. 

Cation extraction Acid Cation extraction 

be fore washing \ Cone. after washing\ 

Ni Fe Mg lOOl/elm
j Ni Fe Mg 

0.00 90.47 87.25 0.5 98.72 98.21 97.76 

0.00 89.96 86.10 2.0 97.76 97.99 97.03 

0.00 91.39 86.95 4.0 98.64 98.47 97.75 

0.00 90.12 87.14 6.0 98.70 98.32 97.80 

Leaching conditions: 10\ solid CJl/W), BOoC, 6 JOOl/drn3 HCl containing 

20 g/l Ni and 1 hour contact time. 

Washing condi tions: 0.01 solid/liquid ratio, room temperature, 

30 minutes contact time and no agitation. 
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Table 6.9. Cation extraction from leachedOre-B samp1es'before and 

after' the washing of residues in pure Hel at different temperatures. 

Ore-B Cation extraction Cation extraction 

Samples before washing \ Temp. after washing \ 

Ni Fe Mg °c Ni Fe Mg 

1 0.00 91.63 87.32 25 98.53 98.50 97.68 

2 0.00 89.28 86.17 50 98.57 98.00 97.45 

3 0.00 92.15 88.23 70 98.65 98.56 97.85 

Leaching conditions: 10% solid (W/W), 80°C, 6 mol/dm3 HC! containing 

20 g/! Ni and 1 hour contact tire. 

Washing conditions: 0.01 solid/liquid ratio, 2 roo1/ dm3 HC1, 30 minutes 

contact tire and no agitation. 

Table 6.10. Cation extraction from leached Ore-B samples before and 

after the washing of residues in pure lIe1 with and without agitation 

Ore-B Cation extraction Agita- Cation extraction 

Samples be fore washing \ tion after washing \ 

Ni Fe Mg Ni Fe Mg 

1 0.00 90.12 87.14 Without 98.73 98.26 97.74 

2 0.00 91.30 87.54 With 98.62 98.36 97.65 

Leaching conditions: 10\ solid (W/W), 80°C, 6 nn1/dm3 HCl containing 

20 g/1 Ni and 1 hour contact time. 

Washing conditions: 0.01 solid/liquid ratio, room tenperature, 

2 1OO1/dm3 HC1 and 30 minutes contact tine. 
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6.2.2.2. Cantact Time ~d Solid/Liquid Ratio 

To determine the effect of these two variables, residues from 

saJ1l'les of Ore-B leached at a pulp density of 30\ solid I (Jl/W) were 

washed with different volt.mes of pure 2 mol/dm3 HC1 at room teJlilerature 

with no agitation for a total of 60 minutes, during which saJIi>les of 

washing solution were taken at 2, 5, 10, 30 and ro minutes, in order 

to determine the nickel extraction for different washing tires (iron 

and magnesitnn were not determined). 

Results of these tests are presented in Table 6.l1~ from which 

it is clear that nickel extraction during washing is certainly affected 

by contact tire and SOlid/liquid ratio. Extraction of nickel 

increases as the washing tire increases, almost reaching the maxiJTllU11 

attainable between 10 to 30 minutes washing for most of the solid/liquid 

ratios. This is illustrated in Fig. 6.1, where nickel extraction from 

residues washed at different Solid/liquid ratios is plotted in function 

of ccntact tine. 

As expected, for an increase in the voltme of pure HCl (Le. 

decreasing the ratio of solid to liquid), the rate and degree of nickel 

extraction are both increased. This dependence of nickel extraction 

on the voltme of washing solution (refer to Fig. 6.2, where the nickel 

extraction is replotted as a function of the voll.llTC of washing 

solution) indicates that during washing of the residues (which are 

a mixture of soluble and insoluble solids plus leaching soluticn with 

a high nickel concentration, in this case about 23.6 g/l Ni), nickel 

concentration in the washing solution has an effect on the nickel 

extractiOn similar to that during leaching i.e. the higher the nickel 

concentration, the lower the nickel extraction. This is confirned in 



Table 6.11. Effect of contact tine and solid/liquid ratio upon nickel extraction during the washing of leach 

residues. 

Vol. of leach. sol. Vol. of Total wash. Weight· Solid/liquid Initial nickel NICKEL EXfRACfICJl % 

mixed with residues. pure HC1 solution solid ratio conc. wash. sol. contact time (minutes) 

m1 m! m! gr gr/m! g/l Ni 2 5 10 30 

25 100 125 12 0.0960 4.6 13.49 36.80 44.45 48.28 

25 300 325 12 0.037 1. 769 33.52 43.33 48.08 50.69 

25 700 725 12 0.017 0.793 59.90 67.94 81.40 83.72 

25 1CXXJ 1025 12 0.012 0.561 79.77 88.82 94.92 94.98 
-----

Washing conditicns: room terrperature, 2 m:>1/dm3 pure HC1 and no agitation 

• average va1 ue (see appendix II) 

60 

48.47 

56.02 

83.78 

94.98 

..... 
-...J ..... 
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Fig. 6.3. where nickel extraction· data have been' replotted as a 
, ' 

function of the initial nickel concentratianin the~hing solution. 

From the results illustrated in Figs. 6.2 and 6.3, it is possible 

to establish that during the washing of residues, nickel extraction 

is dependent on the nickel concentration in the wash solution. 

Therefore, in order to achieve an efficient nickel extraction in a 

single batch washing, a large volt.nre of pure HCl is required so that 

the nickel concentration in the washing SOlution remains low. 

The final nickel extraction from the sarrples used in these tests is 

presented in Table 6.12, where nickel extraction from each of the 

sarrp1es is given before and after the washing of residues. From this 

table, it is seen that: 

a) When leaching sarrples of Ore-B (of particle size as shown. in 

appendix) at a pulp density of 30\ solid CJlfW) in 6 mol/dm3 IICl 

containing 20 g/l Ni in solution, at SOOC for a period of 1 hour, the 

nickel extraction that can be expected during the leaching is about 

52.4\, which provides a nickel concentration in the resulting leach 

solution of about 23.6 g/l Ni. 

b) When washing the leaching residues sanples from the above 

rrentioned leaching, which have equal vo1ul1'cs of leaching solution 

mixed with the solid residt.es, with different vo1tDTles of pure HC1 

(100, 300, 700 and 1CXXJ ml), which provides in each single test a 

solid/liquid ratio of 0.096, 0.037, 0.017 and 0.012, under the 

following conditions; 
3 

room terrperature, 2 nul/elm HCl and no agitation, the final nickel 

extraction (after both leaching and washing have taken place) that 

can be expected is about 75.3%, 76.4% 92.4% and 97.6\ respectively. 



Table 6.12. Nickel extraction from leached Ore-B before and after washing of residues at different solid/ 

liquid ratios for different contact times 

Ore-B Nickel extraction Solid/liquid Final nickel extraction (after leaching and washing) \ 

samples before washing \ ratio contact time (minutes) 

2 5 10 30 60 I 

1 52.26 0.096 58.70 69.83 73.48 75.31 75.40 

2 52.18 0.037 68.21 72.90 75.17 76.42 78.97 

3 53.02 0.017 81.16 84.94 91.26 92.35 92.38 

4 52.15 0.012 90.32 94.65 . 97.57 97.60 97.60 
-~ -

Leaching conditions: 30\ solid (W/W), 80oe, 6 JJl.)1/dm3 HCl containing 20 g/1 Ni, and 1 hour contact time. 

Kashing conditions: room temperature, 2 JJl.)1/dm3 HC1 and no agitation. 

~ 
--.J 

'" 
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It should be noted that extraction. data given' are those values obtained 

for 30 minutes washing, because beyond this washing tine,' the increase 

on nickel extraction is insignificant. 

The results in Tables 6.5 to S. 7 and 6.11 have shown that the 

contact tine and volune of pure HCI are the only variables which affect 

nickel extraction during washing. Acid concentration, teIll'erature 

and agitation did not show any influence. 

From the results presented in Tables 6.5 to 6.12, it is possible 

to determine the most favourable washing conditions for an efficient 

nickel extraction in a single-stage wash. At the sarre tine, these 

results provide the basis for a study of nickel extraction in rnulti­

stage washing systems. 

6.3 MUltistage Batch Cross-Current WaShing 

Earlier in this chapter, it was demonstrated that nickel extraction 

during the washing of residues is dependent on the nickel concentration 

in the washing solution, the lower the nickel concentration, the higher 

the nickel extraction. This indicates that the nickel concentration 

in the leaching solution and the voll..DTe of this solution mixed with 

the solid residue are of great irll'ortance when determining the voltme 

of pure HQ in which the residues should be washed. Obviously, a large 

vol~ of pure HCI will give a low nickel concentration in the washing 

solution, allowing efficient nickel extraction to be achieved. This 

is clearly demonstrated during the washing of residues in a single 

batch stage. However, it might also be possible that an efficient 

nickel extraction could be obtained if residues were successively 

contacted with small voll.ll1'CS of pure HCl in a cross-current washing 



system, as shown in Fig. 6.4 •. 

From this figure. it can be seen that to wash the residues in a 

null tistage cross-current system is nothing more than an extension of 

a single-stage washing, in which the feed to any stage (except the 

first stage) is the underflow (containing the solid residues plus 

soluticn) from the preceeding stage. Therefore, if the voltDTle of 

solution mixed with the solid residues in the feed to each stage is 
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kept constant, by adding pure HCl. at each stage, the nickel cmcentratim 

in the wash solution will decrease as the number of stages increase, 

which should allow an efficient nickel extraction to be achieved. 

Uldoubtedly, the degree of nickel extraction that could be 

achieved will depend on the volt.IlOO of pure HCl used to contact the slurry 

resid~s at each stage, and on the nurrber of washing stages. Thus, 

the subsequent work described in this chapter is concerned with a 

study of nickel extraction during the washing of residues in a multi­

stage cross-current system, involving these two variables. 

To perform this study, residues from samples of Ore-B, leached 

in HC1 solutions containing 20 g/l Ni (30% solid, SOoC. 6 mo1/dm3 and 

1 hour contact time) were used, and the general washing conditions 

for each experirent were; room temperature, 6 nnl/dm3 (pure HCl). 

30 minutes contact time for each stage and no agitation. 
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6.3.1. Washing of Residues in a 4-stage Cross-current System 

In four separate experiments, leach residue samples each containing 

equal volumes of leach liquor (25 m1 with a nickel concentration of 

about 23.6 g/l Ni), were successively washed with equal volumes of 

pure HCl of 10, 25, 50 and 100 m1 respectively for each experiment. 

Each washing stage involved the introduction and reJIDval of equal volume 

of solution, so that the ratio of solution in overflow to solution in 

underflow was constant for each stage in each experiment. See Table 6.13 

Table 6.13. Addition and removal of solution in each washing stage. 

Test Solution in Addition of Total volume of Solution in Solution in 

No. residues pure HCl washing solution overflow under flow 

m1 m1 m1 m1 m1 

1 25 10 3S 10 2S 

2 25 25 50 25 25 

3 25 SO 7S SO 25 

4 25 100 l2S 100 25 

The results of these four tests are presented in Tables 6.14 to 6.17, 

where most of the data were obtained by analysis of the overflow solutions. 

This was because of the ~~ssibility of performing analysis on the solid 

residues. In the first place, the amount of solid residue being washed 

was relatively small (as little ore was available) so that any withdrawal 

of solid samples (which would also carry some solution) would definitely 

affect the test as a whole. Secondly, and more important, as an 
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Table 6.14. Data of Cross-current Washing (4 stages) using 10 m1 of 

Pure HC1 to Contact the Slurry Residues in Each Stage (Test 1) 

Washing Nickel content Initial Nickel concentration NICKEL 
in feed to Ni Conc. after washing 

stages each stage in wash. EXTRAcrION 

Solid Solution sol. overflow underflow (cUIT1l.lla ti ve) 
No. 

gro gm g/l Ni g/l Ni g Ni/kg pulp· \ 

1 0.1646 0.59 16.86 17.38 15.77 11.12 

2 0.1463 0.4345 12.41 12.8" 12.28 20. '18 

3 0.1303 0.3218 9.19 9.74 9.64 32.38 

4 0.1113 0.2435 6.96 7.32 7.65 40.10 

+ 5 0.0986 0.183 

+ Residues 

Washing conditions: room temperature, 6 mol/dm3 (pure HCl), 30 minutes 

contact time (each stage) and no agitation. 

*height of nickel (dissolved + undisso1ved) per unit mass of pulp on a 

nickel-free basis. 

Weight of dry solid after washing: about 11.92 gm. 

Volume of solution discharged in overflow: 10 ml. 

Volume of solution discharged in underflow: 25 ml. 
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Table 6.15. Data of Cross-current Washing (4-stage) using ZS ml of 

pure Hel to Contact the Slurry Residues in Each Stage (Test 2). 

Washing Nickel content Initial Nickel concentration NICKEL 
in feed to Ni conc. after washing EXTRACTION 

stages each stage in wash. 
sol. (cumulative) 

No Solid Solution overflow \IDderf1ow 

gm gm g/l Ni g/l Ni g Ni/Kg \ pulp· 

1 0.1661 0.5893 11.79 12.59 11.91 24.20 

Z 0.1259 0.3148 6.30 6.87 7.27 41.48 

3 0.0972 0.1718 3.44 3.70 4.77 49.43 

4 0.084 0.0925 1.85 2.35 3.18 64.48 

+5 0.059 0.0588 

+ Residues 

Washing conditions: room temperature. 6 mo1/dm3 (pure HCl), 30 minutes 

contact time (each stage) and no agitation. 

*weight of nickel (dissolved + undissolved) per unit mass of pulp on a 

nickel-free basis. 

Weight of dry solid after washing: 12.07 gm 

Volume of solution discharged in overflow: 2S m. 

Volume of solution discharged in underf1ow: 2S ml. 
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Table 6.16. Data of Cross-current Washing (4 stage) using SO ml of 

Pure HCl to Contact the Slurry Residues in Each Stage (Test 3). 

Washing Nickel content Initial Nickel concentration NICKEL 
in feed to Ni conc. after washing EXTRACfION 

stages each stage in wash. 
sol. (clD11U1ative) 

No. Solid Solution overflow underflow 

gm gm g/1 Ni g/1 Ni g Ni/kg \ 
pulp'" 

1 0.1648 0.5898 7.86 8.71 8.66 38.47 

2 0.1014 0.2178 2.90 3.20 4.32 51.94 

3 0.0792 0.08 1.07 1.58 2.18 75.30 

4 0.0407 0.0395 0.53 0.93 0.92 93.63 

+ 5 0.0105 0.0233 

+ Residues 

Washing conditions: room tenperature, 6 JOOl/dm3 (pure HCl), 30 minutes 

contact time (each stage) and no agitation. 

"'Weight of nickel (dissolved + undissolved) per unit mass of pulp on a 

nickel-free basis. 

Weight of dry solid after washing: 11.87 gm. 

Volume of solution discharged in overflow: SO ml. 

Voll.11Te of solution discharged in underflow: 25 ml. 
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Table 6.17. Data of Cross-current Washing (4 stage)' using 100 ml of 

Pure HCl to Contact the Slurry Residues in Each. $tage (Test 4). 

Washing Nicke 1 con tent Initial Nickel concentration NICKEL 
in feed to Ni cone. after washing EXTRACfION 

stages each stage in wash. 
sol. (cumulati vel 

No. Solid Solution overflow tmderflow 

gm gm g/l Ni g/1 Ni g Ni/kg \ 
pulp· 

1. 0.1645 0.59 4.72 5.36 5.93 48.63 

2. 0.0845 0.134 1.07 1.41 2.11 74.29 

3 0.0423 0.0353 0.28 0.55 0.62 94.59 

4 0.0089 0.0138 0.11 0.12 0.29 95.32 

+ 5 0.0077 0.003 

+ Residues 

Washing conditions: room tenperature, 6 nn1/dm
3 

(pure HC1). 30 minutes 

contact time (each stage) and no agitation. 

*Weight of nickel (dissolved + undissolved) per unit mass of pulp on a 

nickel-free basis. 

Weight of dry solid after washing: about 11.85 gm~ 

Volume of solution discharged in overflow: 100 ml. 

Volume of solution discharged in underflow: 25 m1. 
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analysis of solid samples from the underflow stream of any intermediate 

washing stage, or even from the last would produce inaccurate results, 

unless a perfect sOlid/liquid separation could be achieved or the 

solution mixed with the solid residues did not contain nickel and no 

further nickel could be extracted. The reason for this has already 

been discussed in Chapter 3, Section 3.3.1. and will not be discussed 

again. 

Figs. 6.S and 6.6 show plots of the experimental "equilibrium" 

distribution curve for nickel between the overflow and underflow streams 

for each of these washing tests, from which it is possible to determine 

the nickel concentration in the overflow solution and in the underflow 

slurry leaving each washing stage. The values given for the under flow 

stream include the nickel undissolved in the solid residues plus the 

nickel dissolved in the washing solution mixed with solid residues. 

It should be mentioned that in order to plot the distribution curve, 

it has been assumed that after 30 minutes washing, a practical 

"equilibrium" has been reached (on the basis of previous results 

obtained for the washing of residues in a single batch stage, see 

Table 6.11), so that the washing solution mixed with the solid 

residues in the underflow has the same nickel concentration to that 

in the washing solution of the overflow. 

From these figures, it may be seen that for tests 1 and 2, during 

the earlier washing stages, where the nickel concentration in the washing 

solution is still relatively high, the distribution curve is practically 

a straight line, but as the washing proceeds and the niCkel concentration 

in the washing solution becomes lower, the curvature of the distribution 

curve starts to become gradually more pronolIDced. This indicates that 
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cross-current washing tes ts replotted on a common figure 
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during the earlier washing stages, what has taken' place is rere1y a 

dilution of the leach liquor (which contains a high nickel' concentration) 

initially present with the solid residues, and only a relatively low 

nickel extraction is obtained, and during the later washing stages, ~lere 

the nickel concentration in the washing solution is nruch lower, a gradual 

increase on the nickel extraction is achieved. For tests 3 and 4 

however, where the nickel concentration in the washing solutions reached 

relatively lower values during the earlier washing stages (because of the 

larger volume of pure HCl added to the slurry residues at each stage), 

the curvature of the equilibrium distribution curve is markedly defined 

from the first washing stage. This indicates that the nickel extraction 

was 'quite high during the earlier stages of the washing. It should be 

noted that a plot of the equilibrium distribution data from the four 

washing tests on a common figure, shows that all the points lie perfectly 

on the sane equilibrium distribution curve, cf Fig. 6.7, where it is clear 

that whatever the volume of pure HC1 in contact with the slurry residues, 

most of the significant nickel extraction only begins to occur once the 

nickel concentration in the washing solution has reached values below 

about 5 g/l Ni. 

The cumulative nickel extraction (stage by stage) for each of 

these four washing tests is illustrated in Fig. 6.8, and as was 

expected, this figure clearly shows that nickel extraction, stage by 

stage, for tests 3 and 4, where SO rn1 and 100 rn1 of pure HCl respectively 

were used to contact the slurry residues at each stage, was much 

better than for tests 1 and 2, where 10 rn1 and 2S m1 of pure HCl 

respectively were used to contact the slurry residues at each stage. 

After four washing stages, the nickel extraction achieved for tests 
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3 and 4 was 93.63% and 95.32% respectively, whilst for tests 1 and 2, 

after four washing stages, nickel extraction reached waS only 40.1\ 

64.48% respectively. This was expected because of the dependence 

of nickel extraction on the nickel concentration in the washing 

solution, cf to Fig. 6.9, where nickel extraction versus the initial 

nickel concentration in the washing solution in each washing stage 

is plotted for each of these tests. This figure clearly demonstrates 

that in order to obtain a given degree of nickel extraction, the nickel 

concentration in the washing solution, whatever the voltm1e of solution, 

has to lie below a required value. For example, in tests 3 and 4, 

a nickel extraction of about 75\ was only possible when the initial 

nickel concentration in the washing solution was about 1 g/1 Ni., 

which in test 4 took less washing stages (2- stages) than in test 3 

(3- stages) because of the larger volume of pure Hel in contact 

with the slurry residues in each stage (see Fig. 6.8). 

If a nickel extraction of 93-95% is considered to be desirable, 

then the results in Tables 6.16 and 6.17, for tests 3 and 4 clearly 

indicate that this degree of washing efficiency can be achieved 

in either 4 or 3 stages respectively. In the cases of tests 1 and 2, 

however, where nickel concentration in the product solution (i.e. 

leaving the fourth stage) is about 7.32 g/l Ni and 2.35 g/1 Ni 

respectively (see Fig. 6.5), to reach this degree of washing efficiency 

would certainly require at least 8 more washing stages for test 1, 

and 2 or 3 more washing stages for test 2, because, according to 

Fig. 6.9, to reach a nickel extraction of 93-95\, nickel concentration 

in the washing solution has to drop to about 0.5 g/1 Ni. Results of 
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. Table 6.18. Nickel extraction from single-stage washiilg and 4-stages 

cross-current waShing using different vo1wne of pure He1. 

Single-stage washing 4-stages cnlss-current washing 

total vo1tnne of nickel total volume of nickel 

pure Hel used extraction test pure He1 used extraction 

rn1 \ No ml \ 

1 40 40.10 

100 48.28 2 100 64.48 

3 200 93.63 

ro 50.69 

4 400 95.32 

700 83.72 

1000 94.98 

Leaching conditions: 30\ solid (W/W), 80
o
C, 6 JOOl/dm

3 
HCl containing 

20 g/l Ni and 1 hour contact time. 

Washing conditions: room tenperature, 30 minutes contact tiJOO and 

no agitation. 



a 10-stage cross-current waShing test, where the SaIre conditions. 

as test 1 were used, are given in appendix 11, and here it is 

shown that after 10 washing stages (where the nickel concentration in 

the overflow was 1. 6 g/l Ni) a nickel extraction of only 67.02% was 

reached. 

The results of these four tests provide good evidence that in 
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cross-current washing, where the volume of solution mixed with the solid 

residues ,in. the underflow stream at each stage is constant, the mmber 

of washing stages and the volume of pure HC1 contacting the slurry 

residues in each washing stage are the main factors that determine 

the degree of nickel extraction which can be reached. It is also 

shown by these tests t that the total volt.IITe of pure HCl used in a 

cross-current washing is much less than that required for a similar 

degree of nickel extraction in a single stage batch washing, cf to 

Table 6.18. 

The total nickel extractions (after both leaching and washing have 

taken place) for each of these four tests are given in Table 6.19. 

Table 6.19. Total nickel extraction fromOre-B samples after leaching 

and washing of leaching residues in cross-current (4 stages). 

Test Extraction 

No " 
1 71.37 

2 82.87 

3 96.95 

4 97.76 



6.4 MUltistage BatCh Counter~urrent Washing. 

It has already been shown' in this chapter that by washing the 

leach residues in a single stage batch system or in a nrul tistage batch 

cross-current system, efficient nickel extraction can be achieved. 

However, one of the main drawbacks when using either of these two 

washing systems is the inconveniently low nickel concentration which 

is provided in the final product solution. Therefore, it was 

considered that by using a multistage counter-current washing system, 

the problem might be overcorre. The subsequent work in this chapter 

describes a staIy of the extent to which the washing of leach residues 

counter-currently can provide a high nickel concentration in the 

product solution together with effieient nickel extraction. 

6.4.1. Washing System 

Before discussing the experimental work, a nrultistage counter-

current washing system will first be defined. Consider a system 

of "n" washing stages, as shown in Fig. 6.10. The residues entering 

stage 1 will progress towards the right contra to the washing solution 

which moves from right to left entering the nth stage. The volume 
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of washing solution (pure Hel) entering stage n is V and the mass of 

slurry residues (on a nickel-free basis) entering stage 1 is W = v + w, 

where v is the mass of leach liquor associated with the solid residues 

and w is the mass of insoluble solid residues (both v and w are on a 

nickel-free basis). Yh refers to the nickel concentration in the 

washing solution leaving the hth stage and is expressed as g/l Ni, 

~ refers to the nickel concentration in the slurry residues entering 

the hth stage and is expressed as g Ni/Kg pulp. Thus, Xl and ~+l 

refer to the nickel concentrations in the slurry residues entering 
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and leaving the washing system respectively, and Yn+ 1. and Y1 the 

nickel concentration in the washing solution entering cmd leaving 

the washing system respectively. Note, that Yn+1 • 0, because 

pure Hel is used. 

It should be mentioned that althougn in solid-liquid operations 

of this kind, it is common use to express the solute concentration in 

the overflow stream as mass of solute per unit mass of pure solvent 
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and in the underflow stream as JPaSS of solute per unit mass of insoltble 

solid, or in sore cases both streams as mass of solute per unit mass of 

'd (97-99) , h' £ • d ' d k insoluble SOIl , 1n t 1S, or conven1ence,an 1n or er to eep a 

continuity with those units used in previous experiments, it was decided 

to express the nickel concentration in the overflow stream as mass of 

solute per un! t voll.ll"le of pure wash solution and in the underflow stream 

as mass of solute per unit JPaSS of pulp. 

In each washing stage of this system, the voltnOO of wash solution, 

referred to as the overflow, and a mixture of solid residue and solution, 

referred to as the underflow, were brought into contact for a given 

period of tine, allowing a "practical equilibritDll" to be reached, so 

that the solution leaving in the overflow has the sare conposition as 

that associated with the solid residues in the underflow. (This is 

on the asst.nrption that no adsorption occurs during the washing). Now, 

if in this washing system, it is established that the volume of solution 

reJWved with the solid residues in the underflow from each washing 

stage is the sare. then the volume of solution reroved in the overflow 

from each stage is also the sare. Hence, R. the ratio of solution 

discharged in the overflow to that in the underflow is constant. 



R = 
Vo11.JJTe of solution discharged in· the overflow 

Volume of solution discharged in the imderflow 
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6.1 

Usually in solid-liquid extraction operations. where a solid 

material containing a desirable solute is brought into contact with an 

extracting solvent, it is common practice to assume that the original 

solid is an inert material and therefore has no influence on the solute; 

that is, there is no chemical bonding between the two nor any adsorption 

of solute onto the solid. Because of this simplified situation, the 

solute will dissolve completely in the solvent and partitioning occurs 

only by the wetting of the solid by this sruoo solution (100). By using 

a similar type of approach to this comter-current washing system, it 

may be possible to say that if the nickel in the solid residues entering 

the washing system has no chemical bonding wi th the insoluble solid and 

no adsorption occurs, the total amJunt of nickel (in leaching solution 

plus in solid) entering the system can be assumed to be already dissolved 

in the leach liquor associated with the solid residues. Therefore, 

because of this assumption, "the counter-current washing extraction 

system" is redoced to simple "counter-current washing", where the leach 

liquor associated with the solid residues feeding the system will be 

progressively diluted in n stages by a wash solution flowing in the 

° dO to (97) opposlte lrec lon • 

Now, let a mass balance on nickel over stages h to n inclusive 

be written: 

6.2 

or 

= (~ - ~ + 1) 6.3 



where Q = V/W, and is an expression" of a control paramater" for the 

system. 

Rearranging equation 6.3 gives 

Y
h 

="·Xh - ~ + 1 +. Yn + 1 
Q Q 

6.4 

This equation, usually called lithe operating solution" show that a 

linear relation exists between Yh and ~. 
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On the basis of the latter stated assl.UJl)tion (the total arrount 

of nickel entering the system is already dissolved in the leach liquor 

associated with the solid residues), it is obvious that the distribution 

of nickel between the overflow and underflow streams depends on the 

vol~ of solution held by the solid residues in the lUlderflow. Thus 

the distribution constant R is given at any stage by: 

Volt..me of solution in the overflow 
R = 

Vol~ of solution in the lUlderflow 

Arootmt of nickel in the overflow 
= 

AmolUlt of nickel in the tmderflow 

and since it is assumed that each washing stage in Fig. 6.10 represents 

an equilibrium stage, the overflow leaving the hth stage is in equilibrium 

wi th the underflow leaving the hth stage. Thus; 

6.S 

where, VI is the vo1t..me of solution held by the solid residues in the 

underflCM. 

Rearranging this equation gives 

R 
Yh = Q C1h + 1) 6.6 

which is a straight line expression of slope R/Q and is usually called 

"the equilibrium equation". 

As equation 6.4 and 6.6 are both straight line expressions, and 

the two lines represent the relation between Y h and both ~ and ~ + l' 
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y 

Fig. 6·11 Graphical estimation of equilibrium stages In a 

counter - current washi ng sys tern 



201 

by graphing these on a y-~ diagram, the change in conposition (stage by 
. . . 

stage) of the underflow and overflow streams can be eaSily detennined 

by a sinl>le stepwise construction as shown in Fig. 6.11. Starting at 

X 1 (the intercept of equation 6.4 on the X axis) a vertical line 
n + 

intersecting the equilibriwn line gives Yn • From Yri' a horizontal 

line intersecting the operating line gives ~ and so on. This graphical 

rethod, which is veI)' similar to the M::Cabe-Thiele rethod in distillation (99) 

is widely used in cOWlter-current process design (leaching or washing) 

when determining the number of stages required for the composition of the 

overflow and underflow streams to meet a given specification. For example, 

in this washing system, a cOWlt of the mmber of steps required to change 

the conposition of the overflow from Yn + I to YI or the tmderflow from 

Xl (defined during the experimental work as Xf ) to Xn + 1 is the number 

of washing stages required. 

6.4.2. Preliminary COWlter-current Washing Tests 

As a first attenpt to study the nickel extraction during the 

washing of leach residues in a counter-current system, a 3-stage washing 

test was set up using residues from Ore-B (particle size distribution 

as shown in appendix 11) leached in HCl solutions containing 20 g/l Ni 

according to the conditions: 

Weight of ore sample = 21 g 

Volume of leaching solution = SO ml. 

Acid concentration = 6 rnol/dm
3

• 

Temperature = BOoC. 

Contact time = 1 hour 

Agitation = strong stirring. 

Leaching of Ore-B samples according to these conditions, gave a nickel 

extraction of about 52\, and a nickel concentration in the resulting 
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leach liquor of 'about 23 • 6 g/1 Ni. The mass of s.olid residues' 

(approximately 12 g) contained about 0.1645 g of nickel' (~ee' appendix II). 

The operating conditions for this test are given in Table 6.20 

and the experimental technique used to simulate a batch counter-current 

washing operation are described in O1apter 3 (see 3.3.1. ). As in 

cross-current washing, the general washing conditions used in this test 

were; room temperature, 6 mo1/dm3 acid concentration, 30 minutes contact 

time (for each washing stage) and no agitation. 

The results for this test are presented in Table 6.21 and Fig. 6.12, 

where a graphical representation of the washing at practical equilibrium, 

showing the nickel concentration in the overflow solution and the tmder­

flow slurry entering and leaving each washing stage, is illustrated. 

From these results, it can be seen that from the total amount of nickel 

in the solid residues entering the washing system, about 90.1\ was 

extracted, and as expected because of the dependence nickel extraction 

has on the nickel concentration in the washing solution, this extraction 

occured gradually as the solid residues moved towards washing stages in 

which the solution contained lower nickel concentrations (see Table 6.21). 

The data illustrated in Fig. 6.12 show that whilst the nickel 

concentration of the underf10w slurry decreases stage by stage from about 

20.48 g Ni/Kg pulp to about 1.02 g Ni/Kg pulp, the nickel concentration 

of the overflow solution increases stage by stage from zero to about 7.13 

g/l Ni when leaving ~e washing system. This demonstrates that washing 

the leach residues in a counter-current mode results in efficient nickel 

extraction, and at the same time in a high nickel concentration in the 

product solution. 
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Although a nickel extraction of 90.1\ could be considered 

satisfactory. it has been demonstrated earlier in this chapter that 

an extraction of about 95% can be achieved from these residues by 

cross-current washing (see Table 6.17). However, to reach this 

degree of nickel extraction by cross-current washing, the results 

(test 4) show that the solid residues·'in the'linderfloW'were associated 

with solution containing a nickel concentration of about 0.55'g/1 for 

94.59% extraction and about 0.12 g/l for 95.32% extraction. This 

suggests that in the counter-current washing system discussed here 

(where the nickel concentration in the washing solution at practical 

equilibrium is 0.85 g/l Ni in the last stage), the addition of an 

extra stage might provide a similar degree of nickel extraction to 

that obtained in the cross-current washing. This is because the 

extra washing stage would allow the solid residues to be contacted 

in a washing solution with a nickel concentration within a suitable 

range (see Fig. 6.9). To verify this, a 4-stage washing test with 

the same operating conditions as the 3-stage test (see Table 6.20) 

was performed, and as suggested, the results of this test (presented 

in Table 6.22 and Fig. 6.13) showed that the degree of nickel 

extraction reached was about 95%. 

By comparing the results of these two counter-current washing 

tests, it is possible to appreciate that even though the 4-stage test 

provides a more efficient nickel extraction than the 3-stage test, the 

nickel concentrations which were obtained in the product solutions 

(Le. overflow solutions leaving stage 1) in both tests were very 

similar (about 7.13 g/l Ni in the 3-stage test and about 7.37 g/1 Ni 

in the 4-stage test). This indicates that when washin~ these leach 
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Table 6.20. Operating conditions for preliminary counter:"current 

washing tests (3-stage and 4-stage) 

Feed to the washing system: 

Wash. solution feed .. 100 rnl pure hydrochloric acid 

Slurry feed .. 2S ml leaching solution 

.. 12 g * solid residues 

Overflow stream: 

Voltune of solution feeding each stage .. 100 mle 

Voltune of solution leaving each stage .. 100 ml. 

Underflow stream: 

Voltune of solution associated with 

solid residues entering each stage ... 2S rnl. 

Vo1tune of solution associated with 

solid residues leaving each stage .. 2S ml. 

* average value (see appendix II) 



Table 6.21. Data far 3-stage counter-current washing at practical 

equilibrium. 
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Nickel concentration Weight of nickel Nickel extraction 

overflow unde r flow left in solid 

g/1 Ni g Ni/Kg pulp gm 

feed 20.48* 0.1645* 

stage-1 7.13 7.52 0.0989 

stage-2 2.36 3.39 0.0658 

stage-3 0.85 1.02 0.0163 

Weight of dry solid after washing = 11.85* 

R = 100/25 = 4 

* average value 

cumulative 

\ 

39.9 

60.0 

90.1 

Table 6.22. Data for 4-stage counter-current washing at practical 

~q ui lib ri um 

Nickel concentration \I[eight of nickel 

overflow underflow left in solid 

g/1 Ni g Ni/Kg pulp gm 

feed 20.48* 0.1645· 

stage-l 7.37 7.68 0.0987 

stage-2 2.65 3.76 0.0723 

stage-3 1.21 1.45 0.0231 

stage-4 0.36 0.47 0.0082 

Weight of dry solid after washing = 11.84* 

R = 100/25 = 4 

*average value 

Nickel extraction 

cunrulati ve 

\ 

40.00 

56.05 

85.96 

95.02 



z -Cl 

~ 
0 -.... 
Cl) 
> 

0 

10 L R= vi v': 4 

Q=V/W:2. 7l 

V= 100ml 

8L v': 25 ml 

W= 36.849 

t 
6 

4 

2 

2 4 6 8 10 12 1 4 1 6 18 20 

Underflow g Ni/Kg pulp 

Fig . 6 .12 Graphical representation of the 3-stage counter-current washing test at practical -eQuilibrium-

22 

N 
o 
0\ 



Z 

--01 

~ 
0 -.... 
a> 
> 
0 

la 

I 
R=V/v'=4 

8L 
Q= vjW: 2.71 

V= lOO rnl 

v~ 25 rnl 

W= 36 .84g 
6 

4 

2 

2 4 6 8 10 1 2 14 1 6 1 8 

Underflow 9 Ni/Kg pulp 

Fig . 6 .13 Graph ical representation of the 4-stage counter-current washing test at practical -equilibriurn-

20 22 

N 
o 
-....:J 



residues in a counter-current system with a given set of operating 

conditions, the addition of an extra washing stage permits the nickel 

extraction efficiency to be improved, but does not allow the nickel 

concentration in the final product solution to be increased. 

6.4.3. Maximization of nickel concentration in the product solution 

from the washing. 
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By using as a reference the experiIrental data of the 4-stage 

washing test illustrated in Fig. 6.13, it may be seen that if the value 

of Q is decreased (Q = V/W, see section 6.4.1.) by decreasing V (the 

volume of solution in the overflow), the operating line of this system 

will approach the "equilibrium" distribution curve (see Fig. 6.14), 

allowing: 

a) more washing stages to be fitted between the operating line and the 

"equilibrium distribution curve" 

b) an increase of the nickel concentration in the product solution (Yl)' 

From Fig. 6.14 it is seen that for the given values of Xf and Xn + 1 

('VZO.S and "'0.5 g Ni/Kg pulp respectively) when decreasing V in the 

overflo\.,r from lOO, ml to 50 ml, the operating line (the slope of which 

nearly reaches the maximtnn value), provides a washing system of 15 stages 

which should provide a nickel concentration in the product solution of 

about 15 gIll To verify this, a IS-stage washing test was perforIred 

using leach residues with the SaIre slurry composition as that used in 

the preliminary ,washing tests according to the operating conditions 

given in Table 6.23. The results of this test are presented in Table 

6.24 and Fig. 6.15, from which it may be seen that the degree of nickel 

extraction obtained was about 93.5\, ~~d the nickel concentration 

obtained in the product solution was about 14.6 gill From this, it 
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Table 6.23. Operating conditions for'IS-stage counter~current 

washing test. 

Feed to the washing system: 

Wash solution feed = SO ml pure hydrochloric acid 

Slurry feed = 2S ml leaching solution 

= 12 g* solid residues 

OverflCM stream: 

Yolurre of solution entering each stage .. 50 rn1 

Yolurre of solution leaving each stage .. SO ml 

Underflow stream: 

Volurre of solution associated with 

solid residues entering each stage 

Volurre of solution associated with 

solid residues leaving each stage 

*average value (see appendix 11) 

= 2S rn1 

= 2S ml 
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Table 6.Z4. Data of the IS-stage counter-current washing test at 

practical equilibrium. 
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Nickel concentration Weight of nickel Nickel extraction 

overflow underflow remaining in solid 

g/l Ni g Ni/Kg pulp g 

feed ZO.48* 0.1645* 

stage-l 14.59 13.61 0.1365 

stage-2 9.52 9.50 0.1119 

stage-3 6.49 7.02 0.0962 

stage-4 4.66 5.57 0.0888 

stage-S 3.59 4.71 0.0839 

stage-6 2.96 4.13 0.0781 

stage-7 2.53 3.73 0.0740 

stage-8 2.24 3.40 0.0691 

stage-9 2.0 3.12 0.0650 

stage-lO 1.81 2.85 0.0599 

stage-ll 1.62 2.62 0.0559 

stage-12 1.45 2.37 0.0510 

stage-13 1.27 2.02 0.0428 

stage-14 1.02 1.31 0.0229 

stage-1S 0.5 0.63 0.0107 

Weight of dry solid after washing = 11.82* g 

R = SO/25 = 2 

*average value. 

cumulative 

\ 

17.0Z 

31.98 

41.52 

46.02 

49.0 

52.52 

55.02 

57.99 

60.49 

63.58 

66.02 

69.0 

73.98 

86.08 

93.50 
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is clearly seen that al~ougn the nickel extraction was slightly lower 

than the expected ('1,,95\). the nickel concentration' obtained in the 

product solution was very close to that graphically predicted (15 g/l 

Ni) in Fig. 6.14. The sarre occured with the nickel concentration in 

the underflow slurry leaving the washing system, where the nickel 

concentration predicted was ~.5 g Ni/Kg pulp and that obtained 

experinentally w~ 'VO.63 g Ni/Kg pulp. This clearly shows that there 

is a reasonable degree of accuracy between the data obtained 

experinentally (within experinenta1 error) and the data theoretically 

predicted by graphical neans. 
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Therefore, on the basis of the results obtained in this test, it 

has been experinentally demonstrated that by alteration of the operating 

conditions of the washing system, the nickel concentration in the product 

solution can be maximized, and the validity of the graphical IOOthod has 

been confirned for: 

a) estimating the mmber of stages required in a counter-current washing 

system (with a given set of operating conditions) to change the nickel 

concentration in the overflow and underflow streams from Yn + 1 to Y1 

and from Xf to ~ + 1 respectively. 

b) determination of the nickel concentration (Yl) that can be obtained 

in the product solution from a counter-current washing system with a 

given mmber of washing stages and operating conditions. 

Thus, by graphical neans it is possible to determine the extent 

to which nickel concentration in the product solution from a counter­

current washing system can be ~zed for any set of operating 

conditions • 
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By using the "equilibrium" distribution curve from the IS-stage 

washing test, in Figs. 6.16 to "(1;Z3"a graphical estimation was made of 

the m.nrber of washing stages which would be required in a comter-current 

system with a constant Xf (",ZO.5 g Ni/Kg pulp), in order to provide 

different Y1 values for several specified values of ~ + 1 in the system. 

For details see Table 6.25. 

According to the data illustrated in Table 6.25, it may be seen 

that for Jll)st of the washing perfonnances specified, the nurrber of 

stages required flu:tuates from 6 to :51. This would certainly present 

a problem if any of these washing systems were to be carried out on a 

large scale operation, because of the large surface area Which would 

be involved in the construction of such mmDer of washing units. It 

is possible however, that this problem could be solved by the use of 

a multistage counter-current washing column as designed and developed 

by D. I. Hughes and C.C. Dell of the DepartIrent of Mining and Mineral 

. " f L ds(101,102) Th f "d f Sciences, UhIversIty 0 ee • ere ore, an aCl proo 

bench scale model of such a column was constructed (see Fig. 6.24) 

in order to study the possible application of such a column to the 

COUlter-current washing of leach residues. However, because of the 

lack of a suitable arount of ore sarrple. no relevant tests were 

perfonred and J1l)st of the work involved was concerned with the 

construction of the colwm. It should be m::mtioned however, that in 

principle this coltmn works and further study would be worthwhile. 
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Table 6.25. Graphical estimated data illustrating the nurrber of washing stages and operating conditions 

required for a counter-current ~ystem with a constant Xf in order to provide different Y1 values for 

several specified Xn + 1 values in the system. 

Washing Expected operating conditions 
Xf ~ + 1 Y n-1 Y1 stages extraction ~ V 

g Ni/Kg pulp Ni/Kg pulp g/l Ni g/l Ni No t m1 m1 
RV/vI Q = V/W 

'" 9 6 25 "'84 3.36 2.28 
20.5 0.5 0.3 95 

"'12 10 2S "'63 2.52 1.71 

"'10 5 25 "'78 3.12 2.12 
20.5 1.0 0.8 90 

"'15 12 25 "'SO 2.0 1.36 

"'13 6 2S "'58 2.32 1.57 
20.5 1.5 1.1 82 

"'18 13 25 "'41 1.64 1.11 

"'20 15 25 "'37 1.48 1.00 
20.5 2.0 1.3 75 

"'22 31 25 "'33 1.32 0.89 

\'i* = 36.84 g 

* = average weight of the slurry underflow an a nickel free basis. 
N 
N 
CA 
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Fig 6 · 24 Multistage Counter - Curren t Was hi ng Co I u mn 



aWTER 7 

PROPOSED INTEGRATED FLOW-SHEET IDR HYDROQILORIC ACID LEAaIING OF 

NICKELIFEROUS IATERITES 

The marked dependence which nickel extraction has been shown to 

have on nickel concentration in the leach liquor (i.e. the higher the 

concentration, the lower the extraction), would certainly present a 

disadvantage if a process for treating lateri tes by leaching in HCl 

was to be developed. This is because, it would severely limit the 

recycling of leach liquor as a Irethod of increasing the nickel 

concentration in the liquor to a point where economic recovery from 

solution is feasible. Based on the washing studies reported in 

Chapter 6 however, it may be possible that this problem could be 
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solved by the application of multi$tage counter-current washing following 

the leaching stage as shown in the conceptual flowsheet illustrated in 

Fig. 7.1. 

Experimental tests have shown that leaching of Ore-B samples 

(serpentine) in HCl solutions containing 20 g/l Ni (BOoC, 6 nnl/dm3 lel, 

I hour contact time and 30% solid W~v), provide a leach liquor containing 

about 23.6 g/l Ni, with about 52.2\ nickel extraction from the ore. After 

solid/liquid separation of the leach liquor and residues, a IS-stage 

counter-current washing test on the slurry has shown that a nickel 

extraction of 93.5% from the solid residues is obtainable (givinF, an 

overall extraction after leaching and washing of about 96.9%), whilst 

the final product washing solution contains about 15 g/l Ni (see Table 

6.23 and 6.24). By using graphical construction however, it was shown 

that for slurry of the SaJre conposition C'" 20 g Ni/Kg pulp), by the use 
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of more stages and a higher solid liquid ratio, it should be possible to 

achieve a washing performance in which the final washing solution 

produced contains a much higher nickel concentration (see Table 6.25). 

Based therefore, on these experimental leaching tests and on the 

assumption that the washing performances predicted graphically could be 

achieved in practice, it is seen that the proposed leaching-washing 

flowsheet would permit final leach-wash solutions containing 20-23 

g/1 Ni to be produced with 92 - 88% overall nickel extraction from the 

ore respectively. To illustrate this, Fig. 7.2 shows a typical example 

using experimental leaching data from the above test (see section 6.4.2. 

in Chapter 6) and from the estimated washing performances given in 

Table 6.25. The calculation is based on the mass balance in the 

system. 

It should be noted that in this example, the estim~ted data used 

from Table 6.25 are those which would provide the highest nickel 

concentration in the final leach-wash product solution. From Table 

6.25 however, it can be seen that there are two other sets of washing 

parameters which could also satisfy the minimum requirements of the flow­

sheet (that is to provide a final leach-wash solution containing at 

least 20 g/l Ni). 

These are: 

(1) Counter-current washing ~n 13 stages providing a product 

wash solution containing 18 g/l Ni, with 82% nickel extraction 

from the solid residues. 

(2) Counter-current washing in IS stages providing a product wash 

solution containing 20 g/l Ni, with 75\ nickel extraction from 

the solid residues. 
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The application of these two'counter-current washing performances 

to the flowsheet would, provide the fol,lowing final leach';'wash product 

solutions and overall nickel extractions from the ore: 

1) 

2) 

20.1 g/l Ni 

21.5 g/l Ni 

91.9% extraction 

88.4\ extraction 

From the example given in Fig. 7.2, it is clear that the 

alteration in the corrposition on flow of any si'ream in the flowsheet 

would affect the system as a whole, and would certainly alter the nickel 

concentration in the 'final product solution. Thus, in order to 

detennine the effect which would be produced in the system by any 

kind of alteration in any of the streams, a mathematical nndel based 

on the mass balances in the system and on separate models of each 

stage (leaching and washing) would be necessary. To do so, however, 

a study of the interaction of leaching and washing on pilot scale 

would be needed. 

Furthermore, from Table 6.25 it is, seen that for the above 

washing performances, a large nurrber of washing stages are required, 

which would certainly present a problem if the leach-washing process 

was to be applied on a large scale operation. This problem however, 

as rrentioned in Chapter 6, could be solved by the use of a nultistage 

counter-current washing colunn (see Fig. 6.24). Thus, further work 

on this colunn wOlud be needed in order to establish technical and 

economic feasibility of the proposed leach-washing process. 

On the assllIl"ption that the leach-washing flowsheet discussed 

above could be technically possible, the data given shows that it should 

be able to provide solution suitable for subsequent processing for nickel 

recovery and at the SaJre time achieve an adequate nickel extraction from 
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the ore. On this basis therefore, it may be possible that a promising 

process might be developed for hydrochloric acid leaching of nickeliferous 

laterites. Fig. 7.3 shows in a general way the type of flowsheet that 

could perhaps be appropriate for such a process. Fe and Co could 

be relmved from the leach liquor by sol ven t extraction (e. g. as in the 

1 chP r5l,521"\.,t..-l«-Falconbridge ~~tte ea rocess )Wll1 e n1ckel could be recovered 

by hydrogen reduction of the hydroxide as in the Derry Process (69,70), 

after neutralization of the leach liquor with MgO recycled from spray 

washing. It should be noted that this general flowsheet for the 

treatnent of laterites has previously been proposed by Rice and Strong (7) 

In this the authors emphasized the necessity to build up the nickel 

concentration in the leach liquor e.g. by cross-current leaching or 

using high solid/liquid ratios. 
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rnAPTER 8 

mNCLlBICN 

From the experimental work described above,' it has been established 

that when leaching lateritic nickel ores in dilute hydrochloric acid, 

the degree of extraction of nickel, as well as iron and magnesium, is 

considerably decreased in the presence of moderate concentrations of the 

respective cations in the leach liquor. 

For the case of nickel in solution in particular, it has been 

shown that the effect on nickel extraction is drastic (but is less marked 

for the extraction of iron and magnesium). Extraction falls from 

a relatively high value in pure HCl to zero with 20 g/l Ni 

initially present in the solution. (This effect is reported for 

leaching with a pulp density of lO~ solid. With increasing pulp density 

initially an increase on nickel extraction is observed due to the effect 

of attrition, see section 4.3.5 in Chapter 4). It has been derronstrated 

however, that after leaching laterites with acid solutions containing 

up to 20 g/l Ni, washing of the leach residues with pure dilute HCl 

readily increases the extraction of nickel to about 98\. This 

indicates that during the leaching stage, the presence of nickel in 

the leach liquor only has a ret~rding effect on the nickel extraction 

and does not prevent the reaction between the acid and the ore. 

For the cases of magnesium and iron in solution, it was shown 

that the effect on magnesium and iron extraction respectively was much 

less drastic than that for nickel extraction with nickel in solution. 

In fact, extraction of magnesium from a typical nickeliferous serpentine 

(Ore-A) falls from about 93~ in pure HCl to about 43\ with 100 g/l Hg 

ini tially present in the solution, and extraction of iron from a typical 
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nickeliferous geothite (Ore-E) falls from about 98% in pure HCl to 

about 60% with 100 g/l Fe initially present in the solution. As in 

the case of nickel. it was shown that the washing of leach. residues 

(after extraction in acid solution containing 100 g/l Mg or 100 g/1 Fe 

depending on the ore). with pure dilute HCl, readily increases the 

extraction of the respective cation. For the case rrentioned above, 

extraction of magnesium increases to about 93\ (Ore-A), and extraction 

of iron increases to about.98\ (Ore-E). 

The kinetic study of acid dissolution of a nickeliferous 

serpentine (Ore-B) showed that at low temperatures the rate of cation 

dissolution is chemically-controlled, but with increasing temperature 

cation dissolution becomes intermediate-controlled with a strong 

indication that at higher temperatures diffusion control is predominant. 

This change of rrechanism with the rise of teJTl>erature has been interpreted 

as being caused by the formation of a reaction product layer during the 

reaction. Formation of this layer has been clearly demonstrated by 

lump leaching tests. This theory is supported by the relatively 

good fit of the chemical dissolution data to the kinetic equation 

I - ~ - (1_R)2/3 = kt, which indicates that the reaction follows a 

rodel where the acid attach on the particles proceeds from the exterior 

to the centre, leaving a reaction product layer which acts as a diffusion 

barrier. 

Based on the evidence that a reaction product layer was fOTIred 

during leaching, it is suggested that the decrease of nickel extraction 

wi th increasing nickel concentration in the leach liquor could perhaps 

be attributed to crystallization of NiCl Z in the pores of the layer due 

to saturation of the solution in the pores. This saturation ~~y be 



caused by a faster chemical reaction' (rapid rate of aqueouS NiCIi 

formation there) and a slow rate of diffusion' (due to the high. nickel 

chloride concentration in the bulk solution). This saturation might 

also be due to diffusion of nickel from the bulk solution into the 

layer contributing to the overall increase of nickel concentration 
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in the pores. This theory of NiC1Z crystallization in the pores of 

the layer, has been perhaps supported to sane extent by the slight 

increase in extraction with increasing severity of leaching conditions, 

especially temperature (see section 4.3.4.3. in Chapter 4). 

Extraction of nickel from solid leach residues (after leaching 

in HCl solutions containing up to 20 g/l Ni) ,has been delOOnstrated to 

occur by washing the wet residues. with pure dilute IlCl. 

The degree of extraction has been shown to depend on: 

a) Severity of conditions during leaching; the more severe the 

leaching conditions, the higher the degree of extraction during 

washing (see section 6.2.1. in Chapter 6). 

b) Nickel concentration in the bulk wash solution containing'the 

solids; as in leaching the higher the concentration, the lower 

the extraction. 

c) Contact time. 

Parameters such as temperature, acid concentration and agitation 

did not show any influence. 

All these facts indicate that nost of the nickel in the solid 

residues has already reacted during leaChing and been retained in 

the solid as solid NiC1 Z (due to the high nickel concentration in the leach 

acid). Hence, extraction during washing is merely due to the 

dissolution of this NiC1 2• 



Washing of the residues· in a nultistage counter-current system 

was found to be the lIDst suitable rrethod of recovering this nickel 

as this provided both efficient nickel extraction and a high nickel 

concentration on the product washing solution (see section 6.4.2. to 

6.4.3. in Chapter6). Based on experimental tests and from the use 
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of graphical construction it was estimated that counter-current washing 

could provide final product washing solutions containing about 18-22 

g/l Ni with 82-75~ nickel extraction from the solid residues respectively 

(see Table 6.25) which correspond to about 91.9 - 88.4% overall 

extraction from the ore respectively as calculated from the mass­

balances from the proposed leach-washing flowsheet shown in Fig. 7.1. 

From this it was concluded that the process should be able to 

provide a solution sui table for stbsequent processing for nickel 

recovery and at the sarre time achieve an adequate nickel recovery 

fropl the ore. 

However, much further development work on the full process 

flowsheet would be necessary in order to confirm whether such a process 

for nicke1iferous 1aterites would in fact be either technically or 

economically feasible. 
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APPENDIX I 

Chemical analyses of the seven 1aterites (dried at 1100 C) from 
(13 ) 

L.W. Strong's data 

Ore-A Ore-B Ore-C Ore-D Ore-E Ore-F 

\ 

*SiOZ 34.40 36.90 76.85 32.80 2.20 2.10 

+Al203 1.60 0.69 0.34 7.20 4.23 3.10 

NiO 1.73 1.95 4.85 4.28 1.60 1.72 

Fez03 20.00 10.00 3.50 23.00 77.00 77 .10 

M~ 26.60 34.00 11. SO 13.00 0.60 0.80 

L.O.I. 15.08 14.17 5.69 11.12 12.78 15.96 

Total 99.41 97.71 102.73 91.40 98.41 100.78 

+HCl inS 32.79 37.40 44.42 42.49 2.17 2.15 

+Di sol 17.01 7.97 20.65 55.87 56.62' 
t 

+ Weight fraction insoluble in boiling conc. HC1 

+ Weight fraction soluble in sodium dithionite 
+ 

, Tay10rs (44) value for Goethite -58.8\ 

* Determined by X-ray fluorescence 

L.O.I. Determined from T.G. curves. 

Ore-G 

18.30 

7.50 

1.45 

52.20 

2.32 

12.15 

93.92 

19.96 

46.00 



Detennination of nickel. iron and magnesium content :in selected 

1 ate rite ores by atomic absorption analysis. 

Ore Ni Fe Mg 

% \ \ 

A 1. 79 14.05 15.58 

B 1.64 7.31 21.04 

C 3.78 1.85 6.55 

D 3.47 15.72 7.74 

E 1. 36 51.00 n.d. 

F 1.38 50.12 n.d. 

G 1. 24 35.74 n.d. 

n.d. Not detennined 



Size distribution of ore samples used for leaching tests 

B.S. Aperture Cunrulative % Passing 

rvi3sh (microns) A B C D 

99.54 98.35 

5 3.353 99.08 97.99 

10 1.676 99.79 100.00 97.72 97.44 

18 853 98.99 99.86 89.27 96.12 

36 420 94.36 89.63 68.56 87.66 

72 210 81.87 69.52 44.23 69.97 

150 105 64.62 52.94 29.49 48.83 

300 53 36.45 37.41 17.10 29.35 

Aperture Cunrulative % Passing 

(microns) E F G 

100.0.' 100.0 100.0 

45 90.2 89.7 87.0 

30 81.6 83.1 72.4 

20 74.2 76.7 61.9 

15 57.0 68.3 57.2 

10 52.5 64.7 48.8 



Strong I S(13 ) kinetic data illustrating "'The effect of acid concentration 

~d temperature on cation extraction from Ore BS-1" (-8S + 170 mesh, 
2~ solid, 1100 r.p.m.) 

Temp Acid Contact time, minutes 
°c ~b1ar \ 5 10 15 30 ro 120 240 

25 1.0 ~ 0.5 1.0 1.2 3.1 5.2 8.6 12.9 
1.0 2.4 3.5 6.3 11.4 19.6 30.0 

Fe <1.0 <l.0 <1.0 1.0 .1.6 4.2 4.5 
Mg 1.6 2.9 4.0 5.8 8.S 10.5 12.4 

2.0 WD 1.1 1.9 3.6 6.0 9.2 12.8 18.0 
Ni 2.0 4.7 9.0 16.6 30.0 36.0 52.0 
Fe <1.0 <1.0 1.2 2.0 3.4 9.S 14.9 
Mg 2.0 4.0 5.5 7.6 11.8 15.0 16.6 

40 1.0 WD 1.6 3.9 4.9 8.2 14.2 19.9 23.7 
Ni 4.5 7.2 10.5 21.0 35.3 54.0 73.5 
Fe 1.5 2.6 3.5 6.0 11.0 20.0 24.5 
Mg 3.6 6.8 8.9 15.0 23.0 29.5 31.6 

2.0 Wo 1.8 3.7 5.9 10.6 16.4 23.6 28.0 
Nl 5.5 11.4 17.5 35.2 56.6 72.0 80.5 
Fe 2.0 4.0 6.2 12.0 18.5 25.0 29.0 
Mg 9.0 13.0 16.1 25.7 33.7 34.9 40.0 

65 1.0 WD 11.0 15.8 20.0 27.1 YJ.7 32.9 35.0 
Ni 27.0 48.5 56.0 70.0 80.2 81.0 92.0 
Fe 3.5 5.4 7.2 20.0 28.7 34.0 51.0 
Mg 15.9 27.0 32.0 46.5 56.8 59.8 69.6 

2.0 WD 20.0 25.1 27.0 30.8 33.7 3S.8 38.5 
Ni S5.0 65.0 70.0 78.5 86.0 91.0 94.8 
Fe 5.8 12.0 14.4 26.0 38.1 52.3 63.9 
Mg 22.1 32.8 40.0 55.0 66.0 71.8 75.0 

WD Weight of 1aterite dissolved 



Strong'S(13) extraction kinetic data for samples with specific size 

distribution (Ore BS-1, 1.0 ID HC1, 2% solids) 

Tenp CONtACT TIME t minutes 

°c % 15 30 60 120 240 

25 WD 1.8 3.2 5.3 6.2 11.6 

Ni 1.0 1.8 5.0 13.5 29.2 

Fe < 1.0 1.0 6.2 5.0 12.2 

Mg 8.0 14.2 18.6 29.4 37.0 

40 WD 5.5 8.0 12.8 16.5 25.5 

Ni 13.6 30.0 35.5 56.0 74.5 

Fe 3.5 10.3 11.2 17.5 23.2 

Mg 28.0 33.1 29.2 45.0 54.2 

SO WD 9.5 13.5 21.0 26.5 32.0 

Ni 34.0 37.0 64.1 74.4 80.0 

Fe 11.4 13.0 20.0 26.5 31.4 

Mg 34.0 36.8 43.0 58.2 69.4 

6S WD 21.0 25.5 31.0 32.0 35.0 

Ni 64.5 74.4 82.6 86.0 90.3 

Fe 16.3 27.3 31. 5 36.0 52.2 

Mg 43.5 50.6 61.5 76.0 81.0 

80 Wo 30.3 33.8 35.7 40.0 41.0 

Ni 79.4 83.5 89.7 95.0 98.5 

Fe 30.0 37.0 52.2 74.0 83.0 

Mg 66.0 69.2 73.6 77 .6 8'5.4 

Wo Weight of 1aterite dissolved 
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APPF1ID IX II 

Particle size distribution of Ore-B samples used for leach-washing 

tests in Chapter 6. 

Size fraction Weight retained 

B.S .M. % 

- 5 + 10 

- 10 + 18 0.14 

- 18 + 36 10.23 

- 36 + 72 20.11 

- 72 + 150 16.58 

- ISO + 300 15.53 

- 300 37.41 

Leaching conditions used to provide tile leach residues for the multi-

st~ge cross-current and counter-current washing tests 

Weight of ore samples = 21 g 

Volume of leach solution = SOml (20 g/1 Ni) 

Acid concentration = 6 mo1/dm
3 

Tenperature = BOoe 

Contact time = 1 hour 

Agitation = Strong stirring 



Data of cross-current ~ashing (10 stages) using 10 rn1 of pure IIC1 to 

contact the slurry residues in each stage. 

Washing Nickel content Initial Nickel concentration Nickel 
stages in feed to each Ni cone. after washing extraction 

stage in was (clUTlU1ati vc) 
No. Solid Solution solu. Overflow Underflow 

g g g/1 Ni g/1 Ni g Ni/Kg pulp· \ 

1 0.1689 0.5878 16.79 17.20 15.80 8.41 

2 0.1547 0.43 12.29 12.93 12.30 21.73 

3 0.1322 0.3232 9.24 9.67 9.70 30.67 

4 0.1171 0.2418 6.91 7.33 7.72 39.37 

5 0.1024 0.1833 5.24 5.54 6.22 45.65 

6 0.0918 0.1385 3.96 4.12 5.11 49.02 

7 0.0861 0.103 2.94 3.15 4.26 53.29 

8 0.0789 0.0788 2.25 2.47 3.60 57.79 

9 0.0713 0.0618 1. 76 2.14 3.02 65.54 

10 0.0582 0.0535 1. 53 1.60 2.59 67.02 

+11 0.0557 0.04 

+ Residues 

Washing condition: room tenperature, 6 JJ'D1/dm3 (pure HC1), 30 minutes 

contact time (each stage) and no agitation 

* Weight of nickel (diso1ved and undisolved) per unit ~~s of pulp on 

a nickel free basis 

Weight of dry solid after washing = 12.07 

Volurre of solution discharged in overflow = 10 ml. 

Volurre of solution discharged in tmderflow = 25 rnl. 



The average weight of dry solid leach residues (before washing) 

for cross-current and counter-current washing tests was determined by 

performing la leach tests according to the leaching conditions 

specified in this appendix. Leach residues were filtered, dried 

(HOoC) and weighed. The average weight was 12 g~ where the highest 

was 12.32 g and the lowest 11.82 g. 

The approximate nickel content in the solid leach residucs 

used for the counter-current washing tests was detennined by the 

analyses of the leach liquors (from 76 leaching tests). From these 

analyses it was found that the average amount of nickel in the solid 

leach residues was 0.1645 g. The highest valuc' was 0.1664 g and 

the lowest 0.1627 g. 


