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ABSTRACT

This thesis is concerned with developing synthesis and design
procedures for microwave filters and multiplexers. The core of this

thesis presents the following topics.

1) New classes of lumped Towpass prototype filters satisfying
generalized Chebyshev characteristics have been investigated. Exact
synthesis procedures are given using a relatively new technique termed
the a1terhating pole synthesis technique to solve the accuracy problem.
The properties of these filters and their pract.cal advantages have been
discussed.. Tables of element values for commonly used specifications

are included.

2) A new design procedure has been developed for bandpass channel
multiplexers connected at a common junction. This procedure is for
multiplexers having any number of Chebyshev channel filters, with
arbitrary degrees, bandwidths and inter-channel spacings. The procedure
has been modified to allow the design of multi-octave bandwidth combline
channel filter multiplexers. It is shown that thfs procedure gives very
good results for a wide variety of sbecifications, as demonstrated by the
computer analysis of several multiplexers examples and by the experimental

results.

3) A compact exact synthesis method is presented for a Tumped bandpass
prototype filter up to degree 30 and satisfies a generalized Chebyshev
response. This prototype has been particularly utilized in designing

microwave broadband combline filters.

4) Different forms ot realization have been discussed and used in design
and construction of different devices. This includes a new technique
to realize TEM networks in coaxial structure form having equal diameter

coupled circular cylindrical rods between parallel ground planes. Other



(i1)

forms of realization have been discussed ranging from equal diameter
posts, direct coupled cavity waveguide filters to microwave integrated
circuits using suspended substrate stripline structure. The experimental

results are also given.

In addition, the fundamentals of lumped circuits and
distributed circuits have been briefly reviewed. The approximation

problem was also discussed.
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CHAPTER 1

FUNDAMENTALS OF LUMPED CIRCUITS THEORY

1.1 INTRODUCTION.

Filtering is a fundamental signal process in electronics, it
1nc]udés such diverse operations as channeling, demodulating, equalizing,
detecting, decoding, phase slitting, integrating and differentiating.
Nowadays, any two-port network that is designed to process signals is
loosely called a filter, whether it is linear or non linear, time
invariant or time-varying, and whether the signal is continuous or

digital.

The word "filter" is used in this thesis to designate a linear,
time invariant passive lossless two-port network terminated by a resistive
load that allows analogue signals in certain frequency band(s) which are
called passband(s) and suppresses all others which are called stopband(s).
In general, filters may contain purely passive elements (inductors L's,
capacitors C's, resistors R's), they may be of an active RC type, they
may contain mechanica] resonators (quartz crystals and ofher piezoelectric
resonators), or they may be built of distributed parameter components
(microwave or active distributed RC filters). For all or most of these
different types of ralizations, the synthesis and design theory is

common and became a highly specialized field within electronic engineering.

The filter designer has several design methods to choose, the
simplest and oldest being the image parameter method. This method is
useful for the design of LC, piezoe]ectric crystal, and mechanical
filter and, in fact, is still being used extensively for the latter
types. The network theory (insertion-loss) design technique is an exact

method for LC filters operating between resistive terminations. Under



normal conditions, it provides the simplest andvhence the least expensive
design. In the past the price one pays for this is a vastly increased
complexity in computations. But today sets of explicit design formulas
and a]gorithms'are available for numerous types of filters, which enable
even the non-specialist to design filters using no more than a pocket

calculator or a microcomputer.

Filters are present in any communication system and for a certain
extent in many systems and equipments that depend on selective network.
However, their major application is in frequency division multiplex

systems and this is the main concern of this work.

1.2 BASIC CONCEPTS.

A filter is assumed here to be a passive network with single-
input, single-output as shown symbolically in Fig. 1. and is composed
of only linear, time invariant elements. A network of this type generally
satisfies the following constraints on its input variable (the excitation)

X(t) and its output variables (the response) Y(t) [1]:

x(t) y(t)

Fig. 1.1. Single-Input, Single Out-put Filter.

a) Linearity: If X,(t) =+ (implies) Yi(t)
and X,(t) - Y,(t)
Then, linearity means
3 X1(t) +b Xy(t) > aY(t) +b Yy(t)

where, a and b are arbitrary constants.



b)

t represents time variable.

Time-invariance: It means that the network parameters do not

change as functions of time. Thus
X(t) - y(t)
then

K(ttg)> y(tet))

where to is an arbitrary time interval,.

c)

d)

Passivityf A network is said to be passive, if it may only absorb
or store energy. THat is, it does not provide amplification nor
returns more energy to the source than is supplied. If v(t) and i(t)
are the input voltage and current respective]j, then, the passivity

restriction requires:
t

total delivered energy = J v(t) i(1) di 20 t> -

-0

Causality: A network is causal if it yields no response until after

an excitation is applied.
If  x(t) ~ y(t)

then x(t) =0, tx t, X(t) = X](t), t >t

implies ¥(t) = 0, ts¢ t,

Y(t) - Y](t), t > to |
Real time function: when a signal X(t), which is a real function of
real time, is imposed upon the network, it must give rise to a

response Y(t), which is also a real function of real time.

If X (t) = X.(t) + 3§ X(t)

Yo(t) = Y () + 3 Y (t)



then, the real time function restriction requires:

xi(t)' 0 - Yi(t) =0

X(t) = X.(t)> ¥(t) = Y (t)

The linear relationship between the response and the excitation
which characterizes the network can be expressed either in the time

domain or in the frequency domain.

Consider X(t) and Y(t) to be continuous functions of time, so

they can be related through a convolution integral [2] as follows:

[--]

Y(t) = h(t-t) X(t) d = (1.1)

where h(t) is the response of the network to a unit impulse applied at

t=o0.

This time domain relationship can be converted to the frequency

dcmain by taking the Laplace transform of (1.1), yielding

Y,(p) = H(p) X,(p)

or H(p) = Y,(P)/Xy(P) (1.2)

where Y (P)s X{(p)s H(p) are the Laplace transforms of Y(t), X(t)
and h(t) respectively.

H(p) is referred to as the “transfer function" of the network. P=o+ Juw

is the lumped complex frequency variable.

The Laplace transformation F(p) for a function f(t) is defined as:

Fp) =L f(t) = [w f(t) e Pt at. (1.3)'

o]



1.2.1. Lumped Element Networks.

A Tumped element network is a combination of resistors,
capacitors, inductors and coupled elements (i.e. coupled coils including
transformers and coupled capacitors). In this tyre of networks, the
electrical and magnetic fie]ds and electric energy dissipation in the
form of heat may be considered as concentrated in separate elements of
the network. Changes in voltages and currents in these networks are
expressed only as time functions independently, of the spatial
coordinates [3]. If v(t) and i(t) are the time dependent voltage and
current associated with a particular element, then, the elements are

defined by the following relationships:

a) A resistor (R) ohms v(t) = Ri(t)
‘ t
b) An inductor (L) Henries v(t) = -L -93%3) or i(t) = [ v(t) dx
0

u

c MY o v(n)

c) A capacitor (c) Farads i(t)

"
ol
o \——-—-—-5
o
-—de
—
-~
S
a
~

d) An ideal transformer (n) turn ratio vi(t) = n v,(t) or iy(t)= L i,(t)

where 1 and 2 indicate the primary and secondary coils respectively.
The relationships defining the counled elements are excluded because

the networks to be considered are free of them.

Applying the Laplace transformation to f(t) = v(t)/i(t) and assuming
zero initial conditions, results in the concept of "impedance”". Hence the
impedance of a resistor R, inductor L and a capacitor C are R, LP and 1/CP

respectively.



1.2.2. Driving Point Functions and Transfer Functions.

For a general network consisting of any arbitrary connections

of a finite number of RLC elements the impedance function

Z(p) = F(p) = V(p)/1(p) (1.4)

is known as the "driving-point impedance" if V(p) and I(p) belong to
the same terminal pair (port). If each belongs to a different port,
then 2(p) is known as thg "transfer impedance". Furthermore the
reciprocal of the driving point impedance is the "driving point

admi ttance".
Y(p) = 1(p)/V(p) | (1.5)

The word "immittance" is sometimes used to mean either Z(p) or Y(p).

The .transfer admittance function may be defined by ecuation (1.5) if the
variables of the right hand side are taken at differnt ports. However,
no physical significance can be attached to the definition of a transfer

admittance function as a reciprocal of transfer impedance function.

Driving point and transfer functions are important quantities
in circuit theory and in practical_netwdrk applications. These functions
usually appear in the form’of rational functions (ratios Qf two finite
polynomials) in terms of the variable P. The coefficients of the
numerator and denominator polynomials are real and positive. The zeros
of the numerator polynomial are called "Zeros" of the function while the

zeros of the denominator are called the "poles" of the function.

A driving-point function may have zeros and poles in the left

half p-plane and on the imaginary axis. Taking z(p) as a typical case,

it is generally constructed in the form

N(p

z(p) = 5



or
m.(p) + ny(p)

z(p) = ﬁzp + "2 p)

(1.6)

where m](p), mz(p) and n](p), n2(p) are the even and odd parts of the

numerator and denominator polynomials respectively.

In genera] any driving-point function z(p) is positive real

(p.r.)[4] .
i.e. z(p) is real for p real

Re z(p) 2 O for Re p:0

Where “Re“(stands for real part of a complex quantity. However, some
driving point functions are of the LC form and thus have all their poles
and zeros on the imaginary axis. An impednace of this form is called a
"reactance function", and an admittance, a "sus;eptance function". 1If
z(p) is a Eeactance function, then it is an odd function i.e. a ratio of

even and odd polynomials or a ratio of'odd and even polynomials.

Z,0(p) = '-r‘\‘{%} or % (1.7)

where m(p) and n(p) are even and odd polynomials respectively.

On the other hand, a driving boint impedance may have none of
its poles on the imaginary axis, such a Tunction is called "minimum
reactive" impedance. Similarly, a driving-point admittance without poles
on the imaginary axis is called "minimum susceptive". A corresponding
sei of definitions is applied to transfer functions. A transfer function
of a stable network must have no poles ir the right half p-plane; however,
jts zeros are in general not restricted in}this way. A transfer function
that does have none of its zeros in the right half is called a "minimum

phase" function, otherwise it is "non-minimum phase".



Minimum phase transfer functions normally describe linear stable
physical systems where electromagnetic energy may only travel from the
input to the output port along a single path and the "Ladder" structure

type of networks shown in Fig. 1.2 is an example of them.

Ladder networks and their minimum phase transfer functions will
be discussed extensively in this thesis, while the nonmimum phase transfer
functions which describe multipath structures and realized by a rather
special type of networks (e.g. linear phase filters) are considered beyond

the scope of this thesis.

O —1 n l 7 ----- ]‘ l[ -
23 zs
Z
O— . -——— —0

Fig. 1.2. Ladder Structure.

1.2.3. Properties of Driving-Point Immittance Functions (5}.

The properties of the driving point immittance function F(p)

may be summarized in:

a) F(p) is positive real function i.e.
Re F(p) 20 forRe P30

F(p) is real for P real

This is the necessary and sufficient conditior For F(p) to be realizable
as an input immittance of a physical network.

Furthermore, if F(p) is positive real, then one can define a function

F(p)-1
dp) = T Fihs (1.8)



where ¢(p) is a bounded real function i.e.
o{p) is real for p real
0<|o(p)| < 1 forRe‘P>_ 0
b) The poles and zeros of the driving-point function are either real,

or occur in complex conjugate pairs.

c) The poles and zeros occur in the left half p-plane or on the jw-axis

(numerator and denominator are both Hurwitz polynomials).

d) Poles and zeros on the jw axis are simple, i.e. can never have

multiplicity (or degree)'greater than unity.

e) As a corollary of (d) above: The degree of the numerator and denominator
polynomials of the driving point functions cannot differ by more than

one.

1.2.4. Properties of Transfer Functions [5]

_The properties of transfer functions may be summarized in:

n) The poles and zeros of a transfer function are either real, or occur

in complex conjugate pairs.

b) The poles of transfer functions all occur in the left hand p-plane

or on the jw-axis. No restriction on the occurrence of the zeros.

c) Poles on the ju-axis are simple (of multiplicity of 1).

The properties of driving-point functions and transfer functions

are given briefly in section 1.2.3. and 1.2.4, the proofs and detailed
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discussions are omitted here because they are not needed and they can be

found in any standard text on networkssynthesis (e.g. 4,5).

1.3 TWO-PORT NETWORK PARAMETERS.

Two-port network are of general importance in filter theory.

Consider the general two port network N, shown diagrammatically in Fig.

1.3.
13— 4 2 )

Port 1
V] N v Port 2
12 2

Fig. 1.3. Two-Port Network.

The behaviour of the network at its accessible ports can be described

by relating the voltage V] and current I] at port 1 to the corresponding
quantities at port 2. The relationships between V]. V2’ I] and I2 can

be expressed by means of linear equations. Hence choosing any two of the
four variab]és and the remaining two variables can be expressed in terms
of them as linear relationships. The linearity due to the linear
properties of the network. In this sense there are six sets of two-port
parameters. They are called "Z-parameters","y-parameters",‘"ABCD and

reverse ABCD parameters", and "h- and g- parameters".

The four parameters of each set are related to the parameters
of other sets by simple formulas deduced by applying basic circuit laws

and algebric manipulations.

The h-and g- parameters are not commonly used in passive networks,
their main application being in circuits having transistors or mixed

current-voltage sources and they are not needed as far as this thesis is
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concerned, therefore they will not be discussed here.

1.3.1.

The z-Parameters.

The z-parameters are 2110 4120 29y and 255 which are functions

of the frequency variable p and each having the dimension of impedance

they are also referred to as "the open circuit impedance parameters" and

being defined by the equations:

V]. N I] + 1) 12

I, + 2z,, 1

Vo = 2oy Iy + 25 4y

or in matrix form

SN

11 22 T Y2 I

Y 2y
-1 291
Define
and AZ

The extension to n-port network is straightforward,

(a)

(b)
212 I
222 I

1 A2
I I

(1.9

(1.10)

(1.11)

(1.12)

Instead of two

impedance equations, there are n equations whicn can be expressed in

matrix form by

(4 = [y 0

where

N 42
1 I
Zn1 Zon

(1.13)
.
Z]n .
Zon (1.14)
znn J
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The elements of the matrix are defined by

Zrk 5 T, (1.15)

1.3.2. The y-parameters.

These four parameters Y11* Y120 Y9 and Yo, are the dual of the
z-parameters. Each of them is a function of P and having the dimensions
of admittance. They are also called the short-circuit admittance parameters

and defined by the following two equations:

L=ypnY+tn' (a)
(1.16)
L=y Y1 +y2 Yy (b)
or in matric form:
I Yoo Y2 V;
= (1.17)
I, Yo o Y22 Va
Define
SN Y12
vl - | (1.18)
Y21 Y22 :
and
B =Y %2 Y1 | (1.19)

The y-parameters for n-port network can be described by an nxn matrix as:

Y1 Y2 Y1n
Yo Y22 Y on
[_‘/] I'IXI'I=
R (1.20)
L nl ynZ ynn .l
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The elements of the matrix are defined by
I

|

yrk

<

P T P R R AN (1.21)

1.3.3. The Forward And Reverse Transfer Matrix Parameters:

The four parameters are well known as A, B, C. and D and often
designated as transmission parameters, chain parameters, general circuit
parameters, or simply as the ABCD parameters. They relate the input

quantities to the output quantities by means of the follow two equations:

vV, = AV, - BI2 ceea ()
(1.22)
I] = CV2 - DI2 ceoo(b)
or simply in matrix form as:
X
V] A B V2
= (1.23)

- and the transfer matrix is referred to as:
A B
. (1.24)
C D : .

AD -BC (1.25)

[7]

Define

AT

The dimensions of these four parameters are different. The parameters
A and D are dimensionless, while B and C have the dimensions of impedance and

admi ttance respectively.

The reverse transfer matrix parameters can be obtained from the

forward ones, because they are simb]y relating the output variables V, and I

2 2

to their input counterparts. Thus the reverse matrix [Tr} is given by:



- e —— - — .
e | *
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0 =

1
T (1.26)

The forward and reverse transfer parameter are widely used

in analysis of networks connected in cascade as shown in Fig. 1.4.

: - | — = o— r————-c
Fl'Bﬂ Fz Bﬂ Fn Bj

[ C, D, c, ©

N] ‘ N2 Nn

Fig. 1.4. Cascade-Connected Networks Ni

They simplify the calculation and reduce it only to a matrix multiplication

which is in turn the most appropriate case for computer handling of the °

A, B:}
€, 0

C(1.27)

problem.

’ A B (A1 B‘ A2 B2
The overall transfer matrix = ..

C D [p] 0,J I, ©

1.3.4. Relationships Between z, y and ABCD Parameters.

Although the 'y' and 'z' parameters are duals the individual
y-parameters is not the reriprocal of the corresponding z-parameter for
the same network. The relationship between each 2z and y parameters can
be obtained by arranging the relations (1.10) and (1.17) into the dual

form, which gives:

r - -
31 %2 m N2 Y2 Y
o
= T oay (1.28)
21 %22 Ya Y22 21 Ypyd
or
i K
m e RV 2, "2y
= 1 .
= 13 (1.29)
Jor Y22 A I B
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The relationship between z-parameters and the ABCD-parameters can be
obtained by the same argument of re-arranging and comparing the
defining equations.

Re-write equation (1.9b) as

y4
22

I.= — V,-— 1 (1.30)
1 251 2 251 2

Substitute for I] in equation (1.9a) to give

- z
Vv, = _..]lv - %E
21

. I, (1.31)

Comparing equations (1.30) and (1.31) with (1.22a and b) leads to the

following relationship - between the z and ABCD parameters

A B 11z ]
. %2 ]
, (1.32)
c D 2 22
221 2 |
Alternatively
' - .9 A AT
ST IR =
(1.33)
1 C
|1 %) [T D |

The relationship between y ard ABCD parameters can be derived by
rearringing equations (1.16.2a and b) and comparing the resulting equations
with (1.22.a and b) in the similar way in which the relationship between

z and ABCD pari~eters have been obtained.
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1.4 SYMMETRICAL AND RECIPROCAL TWO-PORT NETWORKS.

Symmetrical networks are defined as, the networks whose ports
cannot be distinguished or whose external characteristics are unchanged
when the network is reversed. Hence, in terms of the network parameters,

the symmetry conditions are:

11 T a2
T Y2 | | | (1.34)
and A =D

On the other hand, reciprocal networks are networks which satisfy the
reciprocity principle. In general any network Consisting of linear,
finite, time invariant and bilateral resistors, inductors, capacitors

and ideal transformers is reciprocal.

The reciprocity conditions can be expressed in terms of the two-

port parameters as:

21, = Ip )
' 1.35
.Y'|2 = .Yz] L | ( )
and AT = AD - BC = 1 |

1.5 LOSSLESS NETWORKS.

Lossless networks are particularly important because most
filter circuits dealt with later in this thesis are lossless. The lossless
networks mainly consist of LC elements. Their driving point immittance

functions are of the form defined in equation (1-7).
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1.5.1. One Port lossless Network:

For one port the driving point function is usually written as
(Taking a driving point impedance as a typical case).
(Pls?) (phasd)

Z K ‘ 1.36
LclP) P(P2+p§)(p2+P§) (1.36)

or
p(pls?) (PLash)

Z - K : 1.37
LclP) (PZ+§§)(p21P§) A (1.37)

where K is a scaling factor. The zeros occur at P = : Sr and the poles

+
at P = - Pr’

At the origin there is either a pole or a zero and there is
either a pole or a zero at infinity depending on whether the numerator

or the denominator polynomial has the highest degree.
ZLC(P) has the following properties.

a) Its poles and zeros are simple and occur only on the imaginary

axis in an alternating manner.

b) The constant multiplier K is positive. Since ZLC(P) must be positive
real, and since its poles are on the imaginary axis they must be simple
with real positive residues. Therefore ZLC(P) can be expanded in a

partial fraction general form as

K, ¥ 2K P
DelP) = kP + oot 12046 57,5 2 (1.38)
r

where all the "k's" are real positive residues. If there is no pole
at infinity k_ = 0 and if there is no pole at the origin ko = 0. Similarly,

the driving-point admittance function may be written as
a n 2 a, P

Hd”=af+bg+f —— (1.39)
r

r=1,3,5 P74+ P



where all the "a's" are positive real residues.

1.5.2. Two-Port Lossless Network.

Consider a reciprocal two-port network defined by its {z]
matrix. And 2110 212 and z,, are reactance functions. Hence, they

may be expanded in partial fraction form similar to (1.38)

(o)
_k(°°)p+k” n 2k1(!|.)P ]

Zyq = 5t
1 1 r=1 P® + P;Z‘

(0) (r)

k n 2k P
© 22 22

kéZ)P +—P_+Z—2—__2'

Z =
22 -
r=1 P° + Pr
k{9 2 k{7) p
R ) NP O it
12 12 P Y'=] pz + Pr ’

212

possible for zi] or z,, to possess poles not common with the other two
impedances. These non-common poles are called "private poles", and

can be removed as series elements consisting of parallel LC circuit.

cannot have a pole which is not a pole of 2% and Zyps but it is

(1.40)

A network whose zyy, 2, and 2P have the same poles is called "compact”.

The necessary and sufficient condition for a given [z) matrix with 21y

222
(1ossless) networks is:

(1)) _ (i)

(i,

at every pole on the imaginary axis.

The transfer matrix of two port lossle~< network generally

has the following properties.

a) A and D are even rational functions in P with no zero at the

origin.

and 2y being reactance functions, to be realized as two-port LC
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b) B and C are odd rational function in P.

1.6 TWO-PORT NETWORK TERMINATED BY AN ARBITRARY LOAD.

Consider the passive two-port network N defined by either set

of its parameters and terminated by an arbitrary load of impedance Zz

1_ at port 2 as shown in Fig. 1.5.
Y4
I I
+ . :] 2 t
_ 1

v N v, A 5

Fig. 1.5. Two-port network terminated by load.

The input impedance (driving point impedance) at port 1 is
defined as

. v]
Zin(p) = 'IT

and the transfer impedance

Y2
To find Zin(p) and Zt(p) in terms of the z-parameters let
L=
2" 1,
Substitute for 12 in equations (1.9a and b) giving
2
_ _ 12
hWEmh oo Y
z
_ 22
2=th o Y
Hence
Zny 1
v 21 1

(1

(1

(1

(1

.41)

.42)

.43)

.44)

.45)

.46)
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Substitute for V2 in (1.32) gives
V] Az + 274 Zy
S T e

Zt (p) can be obtained from (1.46) as

Z.(p) = V2 _ Zn 22 1.48
t p) = T; - ZE * 2y, (1.48)

Similarly, the driving point admittance at port 1 defined by
I

_ 1

Yiu(p) = \n (1.49)

and the transfer admittance
12 ‘ ]

Y. (p) = v, (1.50)

can be expressed in terms of the y-parameters as:
‘ _ o Ay+y.Y
Yin(P) = _Y;l;zi (1.51)
Yo¥y
RO (1.52)

2t Y22

Expressions can be developed also for Zin(p) and Zt(p) or Yin(p) and
Yt(p) in terms of the ABCD-Parameters. Substitute for I, as given by

equation (1.43) in equations (1.22 a and b), results in:

v, = (AB/Z,) V, | (1.53)

I] (C + D/Zg) V2 , _ (1.54)

so that, the driving point impedance at port 1 is given by:

V.l AZE+B
Zin(p) = ]—]' = -sz—"'ﬁ (].55)
and '
V2 Z2
Zt(p) = ‘r]' = TZ+D , (1.56)
L
or
Y. (p) = :12 = ! (1.57)
t V] K22+B |
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1.7 INSERTION LOSS OF DOUBLY TERMINATED NETWORK (5]

In equation (1.2), a general definition was given to the
transfer function H(p) of a two port network as the ratio of tﬁe
trans formed output variable to the transformed input variable, and
it has been shown in the previous sections that there exist at least
two variable (voltage and current) at each port of the considered two
port network. Furthermore, the transfer function was considered as
transfer impedance and admittance in equations (1.42) and (1.50)
respectively. In this section thé transfer function will be considered
as the ratio of the output to the input vo]tagé, and this definition
js used in deriving a formula for the insertion loss which may be
defined as "the ratio of the available power from the generator Poto

the power delivered to the load P2 .

Consider the connection shown in Fig. 1.6 when a voltage
generator Vg with a series connected resistance Rg is connected to a

resistive 1oad R, by an ideal transformer of turn ratio 1:n.

L
| &- _ f
@valqgl +% 1:n +%2"1
1! . !
+ (1) vy L
Vg <> ]‘ % % » (_2) .Vz Rz
- Zin i ; _
| !

Fig. 1.6. Transformer-connected generator and load.

It is well known from the basic princip]es 6f circuit analysis
that the maximum available power for delivery to the load is equal to half
the power delivered by the generator and the other half is dissipated
in its own series resistance and this can only happen when the load and

generator resistances are equal.
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From Fng 1.6 the input impedance at port 1 is given by

R
Zin = ;;— < (1.58)
and can be made equal to Rg by choosing n to be
R\ 2 ,
n =<p§> o (1.59)
3
=1y (E—i) Ve (1.60)

Since the same current I'] is flowing through Rg and Zin’ across which

js the voltage V{ . also equal powers are developed in both of them.

This means that the voltage across Rg and Zin are each equal to V{ . The
generator voltage Vg is developed across these two resistances, this

leads to the relation
: _R_g)i .
Vg = 2 V] =2 R2 )

or
B 1( N | | 1.61
-v-g -7 -Itg- . (‘ )
Now the ideal transformer can be remcved and a}two-port network N defined

by its ABCD parameters is inserted between Rg and Rz as shown in Fig. 1.7.

Ig Rg
. {] N ‘ ‘12 IQ
+ . + A B +
Vv (1) V.l ¢ 0 (2)V2 RSL

Fig. 1.7. Doubly terminated two-port network. .

The voltage Vg and current Ig delivered ffom the generator may
be related to the voltage V2 and current I2 across the load by using the

overall transfer matrix of the series resistance Rg and the network N as
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Vg A+CRg B+DRg Vz
= (1.62)
1g c o U,
and from it, deduce
Vg = (A + CRg) V, + (B +DRg) I, (1.63)
But Iz can be related to V by
VE .
Iy = ¢ - (1.64)
L
Thus
Vo= (merg+ &40 Ry y,
) %
or
;5-= (A+§— + C Rg + D-Bg) | | (1.65)
1 Ry ) .
Now, the ratio of the voltage across the load resistor when there is a
maximum power transfer to the actual voltage across it, i.e. V;/V2 can
be obtained from equations (1.61) and (1.65) as |
L eyt 5
+ C (R,R) + D(: ) ; 1.66
ooz | gt T th e
P
° (1.67)

Since the insertion loss power ratio = T
2

and the voltage V and V, are de11vered across the same Rz

(r) (RRy) +D(F9> | (1.68)

Po _
< T

Equation (1.68) is a general expression for any passive linear time

invariant two port network terminated at port 1 and 2 by Rg and R1
respecti 2ly. It can be simplified for a special but very important case

when Rg = R, = 1ohm to give

Po . 1 2
v, 7 | A+B+C+D (1.69)
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And for a lossless network at real frequencies when A and D are real

and B and C are imaginary it becomes

p
2 (lossless) = 1+ 3 (a-0)2 + 1 (8-0)?

L
1.8 THE IMAGE PARAMETERS AND IMAGE-MATCHED NETWORKS.

1.8.1. The Image Parameters.

The image parameters for a reciprocal two port network are a
set of three parameters, two image impedances z and 2 and an image
1 2

propagation functiony .

Image impedances ZI‘ and z; may be connected respectively to

1 2

port 1 and 2, and each of them is defined as the driving point impedance

(1.70)

at its port if the second port is terminated in the other image impedance.

The image parameters may bekexpressed in terms of other sets of parameters,

the most convenient of which are the transfer matrix parameters.

Consider a nethrk terminated at port 2 in the impedance 21 »
2

thus, its driving point impednace at port 1 is given by

A zI +B

2
e T emm— = 7
z] in cz, +D_ I

12 . 1
and the driving impedance at port 2,2I when port 1 is terminated in
2

21 is given by
] D z2; + B
1

Z2in” Tz +R T 7,
1

Solving (1.71) and (1.72) for ZI and ZI , results in

1 2
- Ag)i L. DB ¢
1, "\e/ ¢, T\,

and the image probagation function y may be defined by

(1.71)

(1.72)

(1.73)

(1.74)
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where v = a + Jj8

a s the attentuation function

g is the phase function

If z, = 7] is used in equation (1.53) it gives

2 .

Vi

' = A+ B/z 1

v, Ip (
Thus

i 3

.Z_I_ e’ = A+ B/zIZ (1

2

Substitutfng for 2 and 2 by their values given in (1.73) results in:
] .

2
e’ = (AD)? + (80} | (1

Now, it can be shown that

cosh = £3e&_ . (AD)? (1
. A
sinh . = e : e - (BC)Q (1
y4
I
] A B
— == Y Z Z s = (]
212 D IT I2 C

The relationship between the transfer matrix parameters and the image

parameters can be established as:

3
A z |
A= (ﬁ) . (AD)i = Eil cosh v
I
2
i .
B -(%) . (80! - (7 z12)5 sinh v

1 -
C = (%) (BC)J“ = i‘_"__b._\’w
- (%1y 71,0

and

.75)

.76)

.77)

.78)

.79)

.80)
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}

z
D = <%)§ (AD)é =(?;—2-> cosh v

: ]
j.e. in matrix notation:

"A B 2, } .
1
Eq—) cosh (ZI] Z; )é sin hy
2
_ 2
= ‘ 2, ) (1.81)
C DJ ;1n hv )é <E_Z) cos h v
L z, 2 I
I_.l 12 1 -

1.8.2. Image-matched Lossless Networks.

The concept of image-matching means that a network is matched
if it is terminated in its image impedances. It can be easily proved by
substituting for the transfer parameters (given by their image-parameter

equivalent form of (1.81)) in the insertion loss expression (1.68) and let

R,=2z 3 R =1, | (1.82)

this results in

P 2 2

o_1 .
7, =g |2 coshy + 2sinhy = le¥] | (1.83)
= l e°"’j5 |2
Hence Ps 2
)l e
2

a 1is either positive or zero, since the insertion loss must be greater

or equal to unity by definition. For a lossless network o equal zero
and FQ = 1 always holds under the assumption of (1.82), i.e. the
_ 2

network is perfectly matched.
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1.9 SCATTERING PARAMETERS (MATRIX) [1] .

The séattering parameters originated in the theory of
transmission lines. They are defined in such a way thatvthe_various
quantities of interest in power transmission have very simple
expressions in terms of them. Thus, they are indispensable in the design
of microwave networks and in any othgr situation when the concept of
power is much more important than the concepts of voltage and current.
One other important property of the scattering parameters is that every
linear, passive, time invariant network has a scattering matrix,
comparing with other parameters, for example, a two port consisting of
a series of impedance and a ground wire has no impednace matrix, or a

shunt two port branch has no admittance matrix.

1.9.1. Definition of Scattering Variables:

The scattering variables are termed as incident and reflected
voltages or incident and reflected currents. The linear relations between
such variables and the well known voltage and current at the input of one

port network shown in Fig. 1.8 are defined in terms of the general

equations:
a=apq Veap,l (1.84)
b = GZ] V + 022 I (].85)
where a is the incident voltage or current

b is the reflected voltage or current
o5 are arbitrary constants which define the transformation. They can
be chosen to make a and b particularly convenient to use in physical

problems when a power transfer is under ccnsideration.
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‘. I
— ~a |1- port
v . b ne twork
- . _ Z

Fig. 1.8, Definition of scattering variables.

A simple choice of % that yields this results for network design
problems is

- - 1

' 1
ayy =9y = ——52(R.|) » 05y = “850 =3 (R~,)é (1.86)

where R] is real positive constant termedthe port normalizing number and
has the dimensions of resistance. It is usually chosen equal to the

source resistance.

Equations (1.84)and(1.85) can be rewritten as:

] ] . 7 ‘ .
a- {_v{ + 1 (R} (1.87)
(R,) ]
1 V' - ] '
b= -1 (rpt | ~(1.88)
R)? |
defining the normalized voltage and current as
A TR |
v ZE;;; s I =1 (R]) (1.89)
Thus
: .
a=5 v+ I (1.90)
] v
b-
2 V-1
C ] (1.91)

The ratio of the reflected quantity b to the incident quantity a i

defined as the "reflection coefficient" at port 1 given by:

. V-1 79 o
b/a (1.92;

1 VT T

where Zis the normalized driving point impedance of the network.
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1.9.2. Scattering parameters of two-port network:

Consider a two port network N shown in Fig. 1.9 and defined

by its impedance matrix as:

v]1 I
= [7]
v, |1,
vl = [2] [1] (1.93)
L . I,
R \ Lo !
Ly Ry

' AL S v, .

Fig. 1.9 Scattering parameter representation for two-port network.

For such a network, two new matrices can be constructed as follows,

1] m o o] 4] R 1 (1.94)
= _ ) -1 + } )
Bl= =5 [0 R? 7 b Ry?
-b‘- 1 FR# o] Vi - PR‘é 0 I ‘(‘1 95)
bI- ba| T2 Ry B=z R,? t '

where [a] and [D] are linear combinationslofLV'l and [1], Rl and R2 are port

1 and port 2 normalizing numbers. R] and R2 are not necessarily taken

equal to the individual port termination, but their values are usually

chosen st as to simplify the form of the power transfer equations. The

linear relationships between a and b can be written as:
by =51y 3y+ 35458, (1.96)
by =551 3y *+ 355, 3, (1.97)
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or in matrix form

[b] = [s] [a] (1.98)
[S] is called the "scattering matrix" of the two port and

defined by -
S;1(P) Sy5(P)

5] = (1.99)
Sapy  Sz2lPM

where

S]] is "the reflection coefficient of port 1" obtained by

terminating port 2 with its matching load i.e. a, = 0.

- (1.10
=5, .100)
S,y is "port 2 reflection coefficient" obtained by terminating port 1
with its matching load i.e. a; =0
bz (1.10
S22 = 7, |a,= .101)
22 2, a]fo
52] is the "forward transmission coefficient" with port 2 terminated in its
matching load i.e. 3,=0.
b2
a7 3, (1.102)
21 a, 2,70
and S]2 1s the "reverse transmission coefficient" with port 1 term:nated
in its matching load i.e. a; = o.
by
S12° 3, (1.103)
12 a, a0

Each of the four scattering parameters is a function of .ue

frequency variable p.

However, scattering matrix is not only a two-port property

but it may be applied to networks with an arbitrary numher “n" of ports,
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in this case it takes the form of (nxn) matrix as

" 1
Sy Sy v++ Sqp
So1 S +ees Sop
[Sloxn * il (1.104)
Sn] Sn2 Snn

- ' | » | 1.108
Srk a (1.163)

T A-1 7 e TTTTT 370

1.9.3. Relationship Between The Scattering Parameters and Other Parameters.

Relationships can be obtained between the scattering parameters
and other sets of two-port parameters such as 2z y, ABCD etc. As an example,
the relationship between z and the scattering parameters is given here.
Starting from equations (1.94) and (1.95). [V] and [I] may be expressed

in terms of [a] and [b] as

[v]=b ] ([ a] + [b]) I 3 ( 1]+ [ [a) (1.106)
Fio0] R0 |
[I]= : ( [a] - [b] ) = ( []] - (s]) [b] (1.107)
0 R'%_ Bt -
2

substitute for [V] and [I] in (1.93) will result in

-f 0 r_% 0
oo} ¢ af = (D« 0shyc{n]-[s] )7 (1.108)
R34 b R

2

where.the left hand side of equation (1.108) is the normalized impedance

matrix[z')

ol o= ([ ) -5y ()
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1.9.4. Properties of The Scattering Matrix.

The 2 x 2 scattering matrix [S] of a two-port network
rormalised to R, at port 1 and R2 at port 2 which is given in (1.99)
has the following properties.

(a) The four entries in [S] are rational functions and real for real P. -
(b) ([S) is analytic in ReyP 0.

(c) The 2 x 2 hermetian matrix [1] - [S+(jw)] (S(duw)] is non-negative
definite for all w, where [1] is a unitary matrix and + denotes the

adjoint matrix (complex conjugate of the transpose matrix).

(d) The network is reciprocal if and only if S12(p) = SZI(p)’ That is

if and only if [S] = [S]t where t means transpose.

(e) The network is lossless if and only if [S] possesses the attributes

(a), (b) and meets the unitary constraint
CMEM) 6 M) N 1) (1.110)

for all w

(f) Any 2 x 2 matrix [S] satisfies (a), (b) and (c) is a scattering matrix
| of lumped, passive two port. Moreover, if S]Z(p) = ng(P) the network

is reciprocal and if [S(ju)] is unitary, the network is loss Jess.

1.10. NOUBLY TERMINATED LOSSLESS NETWORK.

The problem of transferring energy from a generator with a
resistive series impedance to a resistive load is one of the commoneét
problems in network theory. A coupling lossless two port network
inserted “~tween the resistive generator and the load operates as
a filter. The problem of designing such a reéiproca] lossless two port
" network to achieve a prescribed transfer function is one of synthesis and
the necessary equations for the synthesis of the lossless network can be

found from the fact that all the power leaving the generator must be



consumed in the resistive load.

ijs a lossless

relationships

Vi

and

and

Now, the ratio of P (w ), the average ac power de11vered to the Ioad

one. From equations (1.94) and (1.95), the following

can be written

= (ayby) Rél

(a2+b2) Ré]

(a;-b;) R

= (ayby) RS

it appears

= =Ryl

RI. +V

1°1 1

0 (no incident wave from Port 2) )

- 3
= 2 R] a

(a) )

(b)

(c)

(4

1

/

Consider the network N shown in‘Fig. 1.9

(1.11)

(1.112)

2, to P (w )» the available ac generator power is defined as "the trans-

ducer power gain" G(, ). He
2y _ Pylw?)
G(w)'P(Z
gtv’)
But )
2 v
p =
g(” ) JI%%'
2
2, _ 4l
G (u7) = :
Vg
Since
s, - 2
21 a

nce

(1.113)

(1.114)

(1.115)



o4

e 6(Je) = ISZI(jm)lz : (1.116)
and so
0 £1S,q(du) |21 |
£1S59(dw) [ “s (1.117)

Since the power delivered to the Tload cannot exceed the available power

from the generator when the coupling network is passive.

Another important function for the synthesis is the driving

point function at port 1 which can be expressed as the input impedance by

Z ) V] ) (a]+b]) _
inlP) = T C R, T (1.118)
But
by = Syq(ple,
Since a2 =0
Hence

Zo(P) 1+ S .(p)

a i (1.119)

Zin(p) must be a positive real function since it is the
input impedance of a passive RLC network, consequently S]](p) is bounded

real i.e. it satisfies the two conditions
1) Si](p) is real for P real

2) ISyy(p) <1 forR P>0 S (1.120)
or _ S]](p) analytic in Rep >0 and

From the unitary constraint given in equation (1.110), the
relationship between the reflection coefficient and the transmission

coefficient of a reciprocal lossless network can be constructed as:
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I-‘»n(a'm)l2 + |5]2(jw)lz. =1
or in more general form as:

517(P) S17(-P) + S1,(p) Sy(-p) = 1
Thus, if S]z(p) is given as a bounded rga] function, then on S11(pP)
satisfying the condition (1.121) may be constructed as a bounded real,
and from which Zin(p) may be determined according to equation (1.119) and
consequently the element values can be obtained and the whole procedure
js termed as the "synthesis problem". Usually S]Z(p) is not given, but

must be selected, the problem of selecting a suitable S]z(p) is an

"approximation problem" and it will be discussed in Chapter 2.

1.10.7. Darlington's theorem: [6]

This theorem states that: "Any positive real driving point
impedance function can be reaiized by a lossless network terminated in
one ohm resistor? and quoted here as a gerneralization to the argument
given in theklast section. The proof of this theorem is a standard part
of most network synthesis text e.g.{4] or of course in the original

paper by Darlington [6] so, there is no need to be repeated here.

1.11 Zeros of Transmission.

The zeros of transmission are the values of the complex

frequency p for which no power appears in the load.

(1.121)

(1.122)

Consider the lossless two port network N shown in Figure 1.10.

R T] 12
+ T+ . = +
Lossless
Vg " Y2 la
h R (2)

Zin

Fig. 1.10. Two- port lossless network.
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driven at port 1 by a voltage generator Vg of a resistive internal

impedance R, and terminated by 1 nhm resistance at Port 2.-

If z is

the impedance matrix of the lossless network then from equation (1.47)

the»input impedance at port 1 is

2
42

Zin(P) = 7y -
1+zz2

and from (1.46) the transfer impedance is given by
v F4

- . 2 12

2alP) = 2yle) = o - T,

Now, form the following:

z1§(p)
Zin(P) + Z; (-p) = 2;(p) - Trzy(p) * Zy4(-p) -

Since N is Tossless, hence z)(p), z,,(p) and Z,5(p) are odd

functions i.e.

Z]](°p)A= -Z]](p)

222(’p) = ‘zzz(p)
2,(-P) = ~2,,(P)
Therefore
2
-2
Z,(P) + 2, (-p) = 12 (P)
]'Zzz(p)
But 2 (o)
- Z p
Z,,(P) Z,3(=p) = —12
21 21 ;j;g;z;;

so, from (1.125) and (1.126)

Z51(P) Zpy(-p) =‘% (Zin(p) + Z, (-p))

Z]g(‘p)

1+222(-p)

This relationship is closely related to the power entering at port 1

of the lossless network and the power dissipated in the 1 ohm load and

jt can be shown as follows

(1.123)

(1.124)

(1.125)

(1.126)

(1.127)
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The power dissipated in the load P = V,(ju) V,(-ju)/l ' | (1.128)

while the power entering at port 1

Pin = 17 (Jo) I (-du) R, Zip (Ju) (1.129)
. and P = Pin (for lossless networks)
Hence ZZ] (Jw) 22]('jm) =.Re Zin (Jw) (1.130)

But the Ry Z;(du) =7 (Z3, (30) + gy (-30)

Then, by replacing jw by p leads to the relationship given in
(1.127). However, for a lossless network the zeros of transmission are
the zeros of 221(p) 22](-p) or the zercs of the even part of Zin(p).
It can also be shown by using the duality that the transmission zeros

are the zeros of Yz](p). Yz](-p) or the zeros of the even part of Yin(p)'

On the other hand, it can be generally considered that the
zeros of transmission are the zero of |S]2(jw)‘2 and this definition will

be adopted through this thesis for the doubly terminated networks.
P, =3 Iy (Ju) Iy (du) (Zy,(30) + Z, (-3u))
2 T 71 p (=d0) (23,03 in 730
*

v v
] L3 - .
2 R]+Zin%Jw5 ?T:Z;iftjay (?in(Jw) + Zin(-Jw))

and vy *
P = _%%151_
g 1
e | P 2(Z; (Ju) +Z; (-Ju) R
N Jw + * 'Jw 1‘;
| 512(3'@12 = p = —10 N ’ (1.131)
: g (R]+Zin(Jw))(R]+zin('jw))
or after .eplacing jw by p
2(z; (p)+Z; (-p)R
\
S1p(P)-Syp(-p) = — 010 /| (1.132)

(R1+Zin(p)}<R1+Zin(-p)>

UNIVERSITY LIERARY LEEDS
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From (1.132) the transmission zeros are the zeros of the even part of
Zin(p) and additional ones which are poles of Zin(p)’ since Zin(p) has

all of its poles on the imaginary axis.

1.12 CONCLUDING REMARKS.

"~ This chapter has presented a brief summary of the fundamentals
of passive linear circuit theory. It has reviewed the basic definitions
and relations of two port networks with special attention to lossless
"networks. The main reason to introduce this chapter is to serve as a back-
ground material particularly for the next chapter which deals mainly
with lTumped lossless prototype filters and their synthesis procedures.
Little attention has been given to the proofs and the derivation details
since they can be found in the standard texts on circuit theory and the

appropriate references are given instead.
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CHAPTER 2
APPROXIMATION AND SYNTHESIS OF PROTOTYPE FILTERS

2.1 INTRODUCTION.

It has been mentioned in chapter 1 that any lossless coupling

network matching a given resistive load to a resistive generator can be
synthesized to achieve a preassigned transducer power gain characteristic

lS]2 (jm)l2 over a frequency band of interest. Such coupling network acts

as a filter. The response of this filter in itS simplest case "the low

pass case" is necessarily an approximation to the response of a fictitious
“device called the "Ideal Low Pass Filter" (ILPF) shown in Fig. 2.1. However,
this infinitely selective ideal response cannot be achieved with a finite
number of network elements and furthermore the network is physically

unrealizable because it is non-causal.

The problem of seeking a mathematical function which approximates
the ideal response is called "the approximation problem". The resulting
function must on one hand meet the specification of the filter and on the
other hand be realizable by a practical network. The realizability
requirement restricts the mathematical functions to be rational function

of the variable (P) for passive lumped networks.

There are three popular rational function approximation schemes:
the maximally flat (Butterworth) response, the equiripple passband (Chebyshev)
response, and the elliptic (Cauer-parameter) response. The latter is
equiripple in both the pass band and the stopband. Special attention will
be given to the equiripple passband (Chebyshev) response, since the other
two have»not been used in this thesis. The corresponding netwqu realizations
are of the ladder types. These are attractive from the engineering view

point in that they are unbalanced and contain no coupling coils.
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In this chapter the three popular rational function approkimation
schemes are reviewed. At first the lowpass prototype filters are
considered and the available explicit formulas for the element values of
some well known ladder networks are given; This is because some of them
will be used later on in this thesis in designing the individual channel
'filterﬁ of a multiplexer. A part of this chapter is devoted for a new
class of filters satisfying a generalized Chebyshev function response and
for the computerized éynthesis methods. New tables of the element values
are provided. Finally, the method of achieving other types of filter
'amplitude responses and their corresponding networks, such as, high-bass.
band-pass and band-stop from the given low-pass prototype by applying the

appropriate frequency transformation is given.

2.2. THE [IDEAL LOW-PASS FILTER (ILPF).

The ILPF response is shown in Fig. 2.1 and if a steady state
behaviour is assumed, then it can be described by
Sy, (du) = K(u) e73¥(e)
From which the amplitude is given by:
.y 12 ‘ g
151, ()2 = K@) % Aw) ol (2.1)

| . =0 Hulw,
and the phase is given by:

-Arg|S12(jm)|= “¥(w) = - Tg © -

The ILPF has the property that if a signal in time domain with a
band-limited spectrum is applied at its input, it will appear at the
output with no amplitude or phase distortion i.e. i. is an exact replica
on the input signal. The only change is a delay by a constant time

displacement Tg. It is more convenient sometimes to use the normalized

ILPF i.e.
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CAw) =1 and o =1

The physically realizable filter has a response which may approximate
the ILPF response either in the amplitude or phase and sometimes in

both.

Filters discussed in this thesis are approximated only in the
amplitude response in an optimum manner defined by one way or another

as shown in the following sections.

2.3 MINIMUM PHASE TRANSFER FUNCTIONS.

As it has been defined in Chapter 1; the transfer function of
a stable network is a minimum phase one if it is devoid of poles and

zeros in the right half plane.

If

$12(P) = B} (2.2)

js a minimum phase transfer function then:

N(p) and O(p) are Hurwitz polynomials i.e.

N(p)#0, D(p) #0 for Re p>0

The name "minimum phase' arises from the fact that for a given |5]2(jw)|2

the phase shift of Arg S]2(j w) is minimum over the frequency range -e~swse.
The ladder structure is an example of minimum phase networks. However, with
minimun phase network there is a unique relationship between the amplitude
and phase response at real frequencies which appears as a Hilbert transform

pair [2].
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From equation (2.2), the'steady-state behaviour is given by:

Sg (Ju) = gL < emalu)+dn(e) | (2.3)

The ampli tude response is defined by

Alw) = lg j‘;’ - eme(w) (2.4)
which is normally bounded
So
a(w) = = 2n Alw) | ~(2.5)
and the phase.reponse is given by:
Yw) =t -»tan'] D(Jw) ~ D(-du (2.6)

J(D(Jw)+D({=Jw))

The relationships between o(w) and y(u) are:

“y(w) = & J ;gﬂ‘% X (2.7)

2
“a(w) = o(0) +'%— ] ;ziézlzy dX (2.8)

where X is just a dummy variable.

2.4 THE APPROXIMATION PROBLEM (AMPLITUDE CONSTRAINTS ONLY)

A real finite lumped network is characterized by its amplitude

characteristics and may be described by

L -4y o2

5 103) 2 = 122 v (2.9)
1 bi
1=0

where |S]2 (jm)l2 is a finite continuous rational function of degree n in mz.
This function may approximate the ILPF characteristics within a certain

prescribed error to give a physically realiable low-pass response specification

constrained as shown in Fig, 2.2 and gfven by:
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Az IS]Z(J'w)l2 2 A lm|<mp
(2.10)

ls]z(j“)lz < B |w|>ms

Now the three most popular types of response will be reviewed
following closely the approach used in [7]. It is believed that the
Chebyshev response is essentiaf in this thesis while the other two
(maximally flat and elliptic function) are briefly reviewed for the sake

of comparison.

2.4.1. The Maximally Flat Response.

Buttérworth polynomials can be used to approximate the function
in Fig. 2.2. If wP+ 0 and A' + A, then a maximally flat solution
about the origin is approached. This zero bandwidth approximation is
termed "maximally flat" response in the passband because it results in
thevmaximuh number of derivatives of lsn(:;w)l2 being made equal to zero
at w = 0. Similarly if wg> © ‘and B+ 0, then the response can be made
maximally flat by equating the maximum number of derivative of [Slz(ju)l2
at w = » to zero. The maximally flat amplitude response of S]Z(p) of

degree n is sketched in Fig. 2.3 with the bandedge frequency w  being

P
normalized to unity Let

1+a]m2+32m4+ seee + a'_ w2n-2

n-1
— (2.11)
1+b]w2+b2m4¥ L L )

15,9d0) 2= (

nw
where bn >0
This satisfies the conditions
2
'512(07‘ = A (2.12)

and

IS]2(~)|2 =0 | (2.13)
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Since equation (2.11) is of degree 2n in w, hence the maximum number of
derivatives, with respect to w that may be equated to zero is (2n-1) at

both w =0and w = =

a) The maxima11y flat condition at w = o:
From equation (2.11) '

2 8, ' n-2 . 2
(ay-by)w™+(a,~b,)u '+ .... +(a -b n-2_ n
I5,,000312 - & = A [0 HEp75)) (217Dp_q)a""2b

Th=D n L (2.14)
w .

Vd 4
]+b]w +b2w + sees + bn--l + bnm
Since it is require’ that (2.14) and its first (2n-1) derivatives be

zero atcoéo, then the power series expansion aboutw=o must be of the

form
. 42 2
1S19000)° - A= cu®wc W™, (2.15)
which implies
a; = bi for i =1,2, ... (n-1) (2.16)

b) The maximally flat condition at ¢ =ce:

The maximally flat condition atw=e can be applied if the

numerator and the denominator of (2.11) are divided by wZn to give
w2 an-Z“-4 + ... a]m’zn‘2+w'2"

. - 2.17
2nZ,<7n ) (2.17)

a
51500012 = A (—,
bn+bn-l“ + ...+ b]

The power series expansion of (2.17) about w== takes the form

-2n -2n-2
+ dn+1“ P (2.18)

. 12
IS]Z(Jw l = dnw
which gives

a; =0 for i=1,2, .... n-1 (2.19)
Hence, from (Z.16)

b. = o0 for i=1,2, .... n-1 | (2.20)

consequently (2.11) becomes

EIRE Y e—
1+ bnm

Zn
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bn is usually set equal to unity without changing the preScribed

maximally flat behaviour, so that

|512(iw)12 = ;‘Azﬁ (2.21)

+w
Then the half power or 3dB point is always at o = 1 regardless of the
degree of the transfer function. S]Z(p) can be constructed from (2.21)

by replacing wz by (-pz). hence

A

The poles of 512(p)’ 512(-p) occur when

2\n
(-p7) " = -1
= ej(Zr-])n r=1+2n
or P = J ed O |
= -sin 6.+ j cos o, (2.23)
where . = iggﬁllﬂ
and
Py is a typical pole

To construct Siz(p) as a bounded rcal function, the left half

plane poles must be chosen, i.e. for r=1+n
Al
S12(P) = 5 (2.24)

v (p-jpd &)
r=1

A1l the zeros of Slz(p) are at infinity, while the poles are
diStributed on a unit-semicircle in the left half yviane at equal angular

spacing as shown in Fig. 2.4.

It is usually convenient to set A = 1, then equation (2.21) becomes
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42 1
S..(jw) | =
[$12039 YL (2.25)
Thus
2 g2 wen
[Sq4(3) 1% = 1 = [S5,(3w)]€ =
n 12 T
and
2 n
S11(P) Sqq(-P) = ;:zf;%;% (2.26)

Hence, S]l(p) can be constructed as a bounded real function with all its
zeros at the origin and its poles lie in the left half plane as given by
(2.24). Therefore

tpn

$11(P) = (2.27)

n .
n (p-3 e?%r)
r=1

Then, Zin(p) can be formed and synthesized to yield the low-pass prototype

element values.

2.4.2., The Equiripple Response.

It has been pointed out in the last sub-sectionthat the maximally
flat approximation is'a zero bandwidth approximation. This is because it
is of the Maclaurian's expansion type whic% gives an accurate solution at
a single point, and in the low-pass fi]ter case that pofnt is the origin
(w=0). However, if an approximation is required to be accurate over a

certain frequency range,‘then the equiripple solution is the most appropriate,

Consider the amplitude response of a finite lumped network of

degree n and
2,2, _ . v12
Fa (07) = |$]2(Jm)| (2.28)
as a rational function of degree n in mz required to be within the shaded area

of Fig. 2.2Afor Ogws Wy and w 3 wg. For simplicity 0, is normalized
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to unity. Since Fn(mz) must be a rational function, then the derivative

d Fn(wz)/daﬁis zero at the origin and infinity and may be zero up to

2(n-1) times in the interval 0 < w < =. If these zeros occur only when

Fn(wz) attains the limits of the specification, i.e. A, A', B and zero,

then it is an equiripple solution as sketched in Fig. 2.5 for n = 5,

The number of ripples in each band is the same since Fn(wz) and its derivative
cannot simultaneously be zero more that n/2, for n even, or (n-1)/2, for n odd,

times in the interval 0 < w < =,

The equipripple solution has another important property away from
being a finite bandwidth approximation, that it is the minimum degree
solution to the problem of minimizing the_maximum deviation of a rational
function in each band of the two band specifications described in Fig. 2.2,
so it is often called a "mini-max" approximation. This can be shown fairly
easily by considering another functioh Fé (wz) of degree m in w? as a
solution to the approximation problem to meet the specification given in
Fig. 2.2. A typical F; (wz) is represented by the dashed Tine in Fig; 2.5.

Thus the error function
v2
e(w?) = F, (u?) - F, (u°) (2.29)

must be zero at least n times in the interval 0 < w ¢ 1, n times in the
interval W F w3 and once in the interval 1 > v 2 W Thus the total
number of times with E(mz) being zero is at least (2n+1). Hence from
(2.29) either m > n or e(wz) is equal to zero. Therefore the equiripple
solution is a minimum degree (optimum) solution with irriduceable error

(mini-max).

The response which is equiripple in both the pass band and the
stopband is called "the elliptic function response" and the response which

has an equiripple passband and maximally flat stopband is called
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"the Chebyshev response" and this response will be discussed first.

2.4.3. The Chebyshev Response.

This case may be obtained as ws +=; B = 0 and the first (2n-1)
derivatives must be set to zero at = to give a maximally flat stopband
while the equiripple solution in the interval»o swglie. the passband.
js still the optimum solution to‘the problem of a polynomial in u@,

constrained to lie in the rectangular area between A and A'.

The>terminology “conventional Chebyshev response" will be used
here to differentiate this response from other equiripple passband and
maxfmal]y flat stopband response which satisfies a generalized Chebyshev
rational funétion and will be discussed later in this chapter. The
convent{ona1 Chebyshev response is sketched in Fig. 2.6 and may be

expressed as

C 2 A
S J = 2.30
1S, (3v)] ;:j?—;;ZZ;) (2.30)
where
A = _(_1+_A23 | (2.31)
k ,

and Tnz(w) is an even polynomial in w which attains the maximum value of
unity at the maximum number of points in the interval |u]<l.

Tn(w)-is a Chebyshev polynomial which has the following properties:

(a) Tn(m) is either an even or an odd polynomial depending upan whether

n is even or udd. More specifically one can write

To(-w) = Tp(w) for n even

Tp(= ) ==T () for n odd
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(b) Every coefficient of Tn«d) is an integer, the one associated with

w" being ZH-]. Thus, in the limit as w approaches to infinity,

T () » 2" (2.32)

(c) In the interval -1 < Qas 1, all the Chebyshev polynomials have the
equiripple property. Varying between a maximum of 1 and a minimum of -1.
Qutside this interval their magnitude increases monotonically as w
inéreases,‘and approaches to infinity in accordance with (2.32). Sketches

of the polynomials for n=5 and n=6 are shown in Fig. 2.7 .

(d) As indicated in Fig.' 2.7 the'polynomials possess special values at

w= 0, 1 0or -1:

n/2

T (o) = (-1 n even
a(0) = (-1) (2.33)
=0 n odd '
T (f]) = n even ‘
n (2.34)
+1 n odd

However, Tn(m) is uniquely defined by its required behaviour. Properties

(c) amd (d) give
d Tn(w)
"TTTK—_I =0 ~xcept for |w|=1 (2.35)
lTn(m*_- 1
Hence a differential equation can be constructed as follows:

—n "

& - /-——2—— (2.36)

1-w

dT () /1T 2(4)
= ¢

where C is a constant and the right hand side mus* be of degree (n-1),

since 1-Tn2(m) contains zeros of multiplicity 2 in the interval |w|<]

and simple zeros at w = t 1, then the factor /l—mz is cancelled.
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Separating the variables of equation (2.36) gives

d Tn(w) . C _(:]2 | (2.37)

A-T2w) NP

and the integration results in

1

=1 -
cos Tn(w) =Ccos w +K (2.38)

where K is the constant of integration. This must be zero from property
(a). Furthermore, for Tn@A) to be an nth-degree polynomial, it must have
zeros at n distinct values of w, this condition leads to the conclusion

that C = n and (2.38) may be written as

T,(w) = cos (n COS-]m) ' (2.39)

cosh(ncosh']w)

and the zeros of the polynomial are given by

w, = cos[(2r-1)n/2n] r=1-n (2.40)

However, the Chebyshev po1ynomia1 Tnau) can be constructed for

any degree n from the following recurrence formula

Tner(w) = 26T () = T () (2.41)
with the {nitial conditions

To(w) = 1, T(w) = w | | o (2.42)

Now, it is required to construct 512(p) from (2.30) for the low-pass
case where all the zeros are at W= and the poles occur when

52 Tnz(w) = -] | : (2.43)

To simplify the calculations define a positive auxiliary parameter n as
n = sinh (-:." sinh'] le) (2.44)

Then
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() = - 1/ &= - sinh? (n sinh™Tn)
= sin® (n sin”! jn) (2.45)
Hence
ncos™ Vw = n sin’) gn + Lgf%lll (2.46)
replacing w by P/j and rearranging gives
P = - cos {sin\jn + 2r;1 "} for r = 1+2n (2.47)

A typical po]ePr is given by

_ e . =1 2r-1)n
Pr =0, + er j cos {sin " Jjn + - }
= nsin op + j/; + n? cos 0. (2.48)
where
r-1) =
8. = n
Hence
2
L (2.49)
n ]+n

This is the equation of an ellipse whose major semi-axis is 1+n2 and
whose minor semi-axis is n. This ellipse i< the locus of the pole

distribution in the complex plane as shown in Fig. 2.8 for degree 5 and 6.

To construct S]Z(p) as a bounded rea]}functioh the left half
plane poles must be chosen i.e. r =1 -+ n and all the zeros are at P = =,
Furthermore from equation (2.30) and from property (d) of the Chebyshev

polynomials. The following equations can be written;

A} for n odd | (2.50)

512(9)

and: )
S]=(0) =A—f—? fgr? n eyen | (2.51)
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Using these conditions a general formula for S]Z(p) of degree n even

or odd has been derived in |7] and given as

A "]{n + sin (fn/n)}
r=
S12(P) = 7 x (2.52)
n {p+J cos (sin 'j + (2r-1)n/2n)}
r:
If this equation is rewritten as

n
ATl sinZ(ra/n) 1

S12(P) = | (2.53)
. 2
ﬂ] {p+iN1+n cos((2r-1)n/2n)+nsin{(2r-1)n/2n)}
r=
and if P is replaced by mp and letting n+= _ (2.54)
Then equation (2.53) becomes
It
S$12(P) = — - (2.55)
. (P - eJ(Zr-])n/Zn)}

r=1

which is the maximally flat transfer function. Therefore it can be stated
that the maximally flat is the limiting case of the Chebyshev case and

can be always recovered by using the conditions in (2.54).

Since all the transmission zeros of the maximally flat and
the conventional Chebyshev low pass response lie at infinity, therefore
the filters can be realized as ladder networks of the general forms shown
in Fig. 2.9. Suchvnetwofks, which can form the bases for many types o%
filters are known as "low-pass prototype networks". Extensive tables for
their element values can be found in many hand books on filter design
e.g. [8]» [9]s also explicit formulas for the element values are

available for these filters and will be discussed later in this chapter.

5.4.4. The Elliptic Function Response [7].

The elliptic function response is an equiripple response in
poth the passband and the stopband and may be expressed for a low-pass

case as

1S92(3w) 12 = A ' (2.56)

2.2
T+¢ Fn (w)
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and sketched for n=6 in Fig. 2.10 where Fn (w) is a Jacobian elliptic
rational function of degree n in w, which oscillate the maximum number
of times between 1 for lo]<1 and |Fn(m)|; 1/moé for lezl/mé and the

turning points are the maximum or the minimum points of F (w) i.e.

dF _(w)
n =0 except when |w]=1 1
- | | | (2.57)
dF (w) 3 =0 except when lw] = l?
dw Fn(w)|= 1/m, m

Hence, Fn(m) can be defined by the following differential equation

d F (w) _ ¢, /(1-F 4w)(1-n F 4(w)) | | 2.58)
o hoed '

whoée right hand side being of the correct degree (n-1), since (1-F % ))

and (1-m, F (w)) contain zeros of mul tiplicity 2 except at |w| =1 and 1/mi

and this leads to the cancellation of the factors v1-u and /l-mwz

Separating the variables of (2.58) results in:

d Fp (o) ]
= — 7 7 &-59)
ﬂl-Fnz(w))(l-manz(w)) ﬁl-m ) (1-mw)
and integrating gives
-1 i -1 |
dO Fn(w) = Cn Cd  w=u (2.60)

7

with the constant integration being zero since Fn(m) is an even or odd
function and the mathematical symbols are the same as in reference{f]]
which also gives the details of the derivations yielding
B rgl{m-cd[(Zr-l)K[gl}

rgl {1 - uwm cd(2r-1)K/2]}

e Cs 'DRKQ ande the condi hcma’ Ve‘\‘““'“"‘t'

Folw) = (2.61)
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K hich relates the dliphie paramelers m,
KA m

B is a constant whose value is obtained from the fact Fn(1) =1,

hence

: 1-m cd[ 2r-1) K/n

“CA[(ZrTy K7n (2.62)

r=1

Inspection of Fn(w) in equation (2.61) shows that its poles are the
reciprocals of its zeros. Because of this reciprocal relationship between

the zeros and poles, it can be concluded that

1, . 1
Fa@ = Fwy (2.63)

Hence, the function Fn(w) has the important property that its value at any
frequency w, in the interval 0 < w < 1 is the reciprocal of its value at
the reciprocal frequency 1/wy in the interval 1 < u g =. Furthermore,

the zeros of F (u) lie within the passband while all the poles of F (w)

lie in the stopband.

Now, with Fn(m) having these properties, equation (2.56) gives
[512(jw)|2 as a bounded function satisfying an elliptic fﬁnction response
with transmission zeros at finite points on the ju-axis and at infinity.
Because S]z(p) possessés zeros on finite real frequency aXis, a ladder
network realization as shown in Fig. 2.9 is not possible. However, a
partial pole extracting technique can be used in the computation of the
element values resulting in a network realization shown in Fig. 2.11.

This realization has been used by Saal ﬁO] and the realizability conditions
given in [11] and [12] must be observed in order to‘avoid the appearance

of negative elemenﬁ vaiues whenever possible. Tables for the element vaiues
‘of these prototype networks can be found in e.g. [9] and [10]‘» On the
other hand Rhodes [7].used the property of Fn(w) given in equation (2.63)

to derive the transfer function of a high-pass prototype described by:
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Fig. 2.12 The natural prototype network satisfying
a high pass elliptic function response
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n| [1+m nZSnz(ZrK/n) ﬁ[P+jcd((2r-1)K/n)]

S.,(p) = A® 1 - (2.64)
12 r=1[14m n°cd®((2r-1)K/n)] 2 [P+icd(Sn™ ' jn+(2r-1)K/n)]
where n is an auxiliary parameter defined by
in = sn(- sn 71 ) (2.65)
' 0

Then he derived the explicit formulas forbthe element values of a ladder
type network shown in Fig. 2.12 satisfying a high-pass elliptic function
response and called it the "natural prototype" [13]. This prototype
jncorporates the concept of impedance inverter and frequency invariant
reac tance. The latter is an imaginary element ofigina11y introduced by
Baum [14] and widely used afterwards. Both the inverter and the
frequency invariant reactance will be discussed further later on in this
thesis. However, the main application of the natural prototype is in the

design of narrow bandwidth band-pass or band-stop filters.

2.5 THE EXPLICIT DESIGN FORMULAS.

The lumped element low-pass prototype filters are important
types of networks, since they are used in designing many other classes of
filters such as low-pass, high-pass, band-pasé and band-stop microwave
filters. Element values of the Tow-pass prototypes can be generally
obtained by network synthesis methods, for example, Darlington's method
[6]. However, there exist concise equations known as'"thé'explicit formulas"
which enable the designer to calculate the element values directly without

the need to go through any synthesis procedure.

In this section a review is given for the explicit design formulas
of the prototype which wi]] be used or referred to in the following
chapters of this thesis. The development of explicit design formulas
started with Norton's discovery [15] of formulas for Ladder networks, then

Bennett [16] extended Norton's work by giving the explicit formulas for
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the element values of Ladder networks exhibiting a maximally flat
response and terminated in equal resistances at both ends similar to

those shown in Fig. (2;9). These formulas are given in [16] and stated

as:

(2.66)

[T}
-
"
N
7
e
. 3
—
n
’f
30
—
3
[ )
3
]
ot
+
=3

After thut, there were several contributions among them was
that by Belevitch [17] who dérived the formulas for matched ladder
networks satisfying a conventional Chebyshev passband response. If the
prototypes shown in Fig. 2.9 satisfy a conventional Chebyshev response then

the elements values are calculated using the following formulas H?}.

R =1¢

2sin(n/2n)
sinh[(1/n)sinh™ ' (1/ 9]

[Te]
-—
n

(2.67)
_ 4sin{(2r-1)n/2n}sin{{2r+1)n/2n}

9r9ps1 © sinhz[(l/n)sinh'l(l/e)]+s1'n2(rn/n)
r=1+ (n-1)

The value of the load resistance RL depends on the value of n. In

equation (2.50), assuming the normalized gain case, i.e. A =1, results in:

512(0) =1, therefore R = 1q for n is odd. For n is even,
using equation (2.51) and assuming A = 1 gives:
i
S1,(0) =
12 Y+ ¢
1 YR

wé ()

15150} 1% =
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Hence

R = [e+ 4 +e:2]2 (2.68)

Most of the attempts to find the explicit formulas did not
give proofs and no proof was known for the general case of arbitrary
resistive termination before Takahasis work [18], [19] became known.
Takahasi gave a proof that yields the formulas as a final result.

His approach depends on a number of properties of the Chebyshev and
related polynomials in two or three variables. Rhodes [7] followed a
different approacn to derive the exblicit formulas for the element

values of the "modified low pass prototypes" with arbitrary gain A i.e. For
any ratio of resistance terminations and exhibiting either a maximally

flat or conventional Chebyshev response. His formulas for the matched
case (A=1, Rg = 1 and R = 1) of the modified low pass prototypes shown

in Fig. 2.12 and satisfy a conventional Chebyshev response are used in

this thesis whenever required.

2.5.1. The Modified Low-Pass Prototype Ladder Network.

The modified low-pass prototype ladder network is shown in
Fig. 2.13. It consists of either series inductors separated by ideal
jmpedance inverters or shunt capacitors sr.arated by ideal admittance
jnverters. It has the property of being always terminated by 1o load
resistance for A=1, regardless of even or odd values of n. This is
because of the impedance (admittance) scaling due to the presence of the
jnverters which makes the network symmetrical. The oriéinal low pass.
prototype shown in Fig. 2.9 in case of conventional Chebyshev response is
symmetrical and terminated by 1o load resistance unly when n is odd.
On the other hand, it is antimetric when n is even and the load resistance

has the value given by (2.68).
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Fig 213 The modified doubly terminated low_pass
prototype ladder networks.

{a) and (b) are duals
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The ideal impedance inverter is a two port network operates
like a quarter wavelength line of characteristic impedance K at all

frequencies. It is defined by the fo]loﬁing transfer matrix.

o
e o a | (2.69)

However, if an impednace inverter is terminated in an impedance,Z2 at

one end as shown in Fig. 2.14.a, the impedance Z, seen looking in at the

1
other end is

Z, - 7, (2.70)

The ideal admittance inverter of characteristic admittance J is shown
in Fig. 2.14b. It is considered to be the dual of the ideal impedance

inverter if J = 1/K and

Y, - %; ‘ (2.71)

Because of the inverting action indicated by (2.70) and (2.71),
a series inducfok between two impedance inverters looks like a shunt
capatitor from its eXterior terminals. Likewise, a shunt capacitor
between two admittance inverters looks li%: a series inductor from its
exterior terminals. Making use of this property, the prototype networks
shown in Fig. 2.9 can(be converted to either of the eauivalent forms in
Fig. 2.13 preserving the séme transmission response and allowing internal
jmpedance (admittance) scaling within the networks. Thus, the modified

Tow pass prototype is obtained.

2.5.2. Explicit Formulas For Element Values in Conventional Chebyshev

Filters |7

The explicit design formulas for element values of the modified
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Fig. 2.14 (a) Definition of an ideal impedance
inverter

(b) Definition of an ideal admittance
inverter

67



68

low-pass prototypes shown in Fig. 2.13, satisfying a conventional
Chebyshev response and terminated at both ends in 1 ohm resistance i.e.

the matched case of A equal to unity, may be derived as follows:

Rewriting equation (2.52) with A=1 as
A 2 2 3
7 [n“sin®(rn/n)]

S12(P) = 5 (2.72)
n] {P+ J cos[sin'](jn)+(2r-1)n/2n]}
r=
and since
511(P) Spq (-P) = 1 = 51,(P)S;5(-P) (2.73)
n ,
Then ﬂl [p+icos((2r-1)n/2n)]
r=
Sy = n . . =1 (2.78)
n]{p+3cos[s1n jn+(2r-1)1/2n]}
r=

To obtain the network in Fig. 2.13a, the positive sign of S]](p) must

be chosen to form the input impedance as

1+ S]](p)
Zn(p) ST g]](PS (2.75)
which can be described by a continued fraction expansion;
G2
Z.(p) = Lyp ¢+ 2 (2.76)
2 )
LP + K2,3
L3P+ K23’4
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For the dual network of Fig. 2.13b, the negative sign of S]](p) must be

chosen to form the input admittance as

1- Sn(p)
Y (p) = : 2.77
n I * S]](pjl | (2.77)

Similarly, the continued fraction expansion may be written as:

J2
1,2
Y. (p) =cyp + 2
in 1 2 2.78
czp + J2’3 ( )
- 42
J
c4pt 3,4
+ .
4
P * ‘Jr,r+1
cr+1P+
0J2]
cn-]p +———h
cnp+]

Taking equation (2.76) as a typical case, the synthesis cycle commences

by extracting the series inductor L

1
as
Z.(p)
L] = —— > 0 (2.79)
p=co

leaving

Zna(P) = Z,(p) - Lyp (2.80)
Then the impedance inverter K] 2 is extracted to qive

Z,.1(p) = —Ki—z | 2.81

n- ' .

Zn-](p) ( )

where Ky , may be chosen as any arbitrary scaling factor and Z,_1(p)

is positive real function. The typical rfh cycle may be written as
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U =’ - ]
Zp-r Zn4y-1) L.P (2.82a)
and
K2
Zn-r: l.",f"” (r=1-+n) * (2.82b)
z
n-r
Then | 2
z (p) =L P+ rard] (2.82¢)
n-(r-1)'P = b nr(P) | '

The cycle may be repeated until the Ladder structure is expressed
as a cascade of series inductors Lr(r=1+n) separated by ideal impedance

inverters K 1 (r=1+n-1),'a1lowing the terminating resistorsto be 1 ohm.

r,r+
However, if explicit formulas for the element values are available then

there is no need to follow this lengthy synthesis procedure.

It has been shown in [7] that the two important properties
required to derive the explicit design formulas are:
(a) The reflection coefficient S;,(p) of degree n in p given in (2.74)

degenerates into a function of degree u in the same variable ifn = : jsin(%l

(b) The transfer function Slz(p) given in (2.72), if evaluated at the
first point of perfect transmission i.e.| S]Z(j“)|2=1 at w= -cos(w/2n), it

will give

0 [ intra/n) - in ] 3 |
S,(-jcos(n/2n))= r:][ ;1;;§;ﬂ;g; . 3: ] (2.83)

which is a bounded real all-pass function in the auxiliary variable n.

Now, inspecting equation (2.81), at the zeros of K] ? the
jmpedance Zn_l(p) vanishes leaving Zn(p) of degree one in p (single
series inductor). Using the same argument for equation (2.22b) which

indicates that Zn_r(p) will vanish at the zeros of K leaving Zn(p)

r,r+l?’
of degree u in p at these points, where u = r. Furthermore, it has been
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shown in (7] that the zeros of Kr,r41 2re chosen to occur whenn= *jsin Lt

2 , .
i.e. the zeros of Kr,rﬂ are the zeros of (Y\2+s1n2(rv/n)). But these zeros

are the zero of the transfer function given in (2.83).

Thus, the only

realization of a function with such characteristic is a cascade form

of msive and all-pass sections forming a two port network with an

overall transfer matrix of the form ;

n-1 . (Sin (':;—.11) jn
ki1
rel 2,02 () .
: : : jn sin(——n-")
" N

Each of whose basic sections may be decomposed into

f.l - sin{:w/n)' [0
0 1 J

j42+51n2(£1) - ﬁ
n

n
0 0

/“*‘
/n2+sin2(£% - -

Comparison between the centre matrix of (2.85) and (2.69) shows

(2.84)

_jsingrn/nlﬂ

n

(2.85)
that

it is a transfer matrix of an impedance inverter of characteristic

impedance

K _ 1£?+sin2(rn/n)

ryr+l n

(r=1=*n-1)

(2.86)

Also from (2.85) it can be concluded that between the impedance inverters

of characteristic impedances Kr—] r
]

of impedance

23 Fsin (=) esinerm
- [Sln ((=)")+sin( n)J

and K

Fort] there is a series element

(2.87)

Since this impedance is evaluated at p = -jcos(T/2n) therefore, the

series inductor of inductance L. can be obtained as:
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L= -ifsin{(r-1)n/n)+sin(r7n)}
r~ =Jncos(n/2n)

Hence,

L, = Zsin [(2r-Dwen]  (r=ton) » (2.88)

Equations (2.86) and (2.88) are the explicit formulas for the
element values of the Tow pass prototype shown in Fig. 2.13a safisfying
a convéntional Chebyshev response. For the dual network shown in
Fig. 2.13b the same formulas can be used where Kr,r+1 fn this case is the
characteristic ad-ittance of the admittance inverter and C.=L.. In
both cases the auxiliary parameter n is defined as in equation (2.44).

For the maximally flat response case, the explicit design

formulas [7] are

1-+n

L, or C.=2sin [(2r-1)n/2n] r
' (2.89)

K r=1-+n-1

r,r+l =1

2.5.3. The Singly Terminated Low-Pass Prototype.

A filter is called "doubly terminated" if it has resistive
loading at both the generator and the load ends. On the other hand a
filter is called "singly terminated" if it nas a resistive termination at
the load end only. The singly terminated Tow pass prototype is designed
to be driven by an ideal source. In Fig. 2.15a the first element of
the singly terminated prototype filter is a series connected one and the
source is a zero-internal impedance, voltage generator of voltage Vg.
Fig. 2.15 b sihows a singly terminated low pass prototype whose first
element is shunt connected and the source is a zero-inferna] admi ttance,
Acurrent generator of current Ig. For a singly terminated filter the
definition of a transducer power gain given in equation (1.116) does not

apply since a zero internal impedance (admittance), voltage (current)
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generator has infinite available power. However, the power absorbed by
the network in Fig. 2.15a is given by

P =V I2 R Y., (du) (2.90)
g e 'in .

where R, Y;,(Jju) is the real part of the input admittance. Since all the

power must be absorbed in the 1 ohm resistive load, Therefore.

. 2
VgIZ R Yy (o) = IV, 1% x0T
or :
VE : . ‘
7| = Re Yin (Ju) (2.91)
g .

But from equation (1.130) and by using the dual quantities

Re Yin (Ju) = 15y (Ja). | (2.92)

Thus
2

= Y§] (Jw) | (2.93)

-
v
g

similarly, for the dual network shown in Fig. (2.15b)

I 2

T&
9

2
* 2, () | (2.94)

Hence, it can be concluded from equations (2.93) and (2.94) that the most
appropriate manner to describe the transfer function of a singly terminated
prototype is in terms of the transfer admittance Y21(p) or the transfer

impedance ZZ](p).

The singly terminated prototype has limited applications in its
own as a filter. However, its main application it in the design of

diplexers and multiplexers.

Orchard [Zo]gives explicit formulas for the element values

of the singly terminated low-pass prototype satisfying either a
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maximally flat or a conventional Chebyshev response. The element values
of the networks shown in Fig. 2.15 and exhibiting a maximally flat

behaviour may be obtained by using the following relationships:

g, = sin (v/2n) W
_ sinf(2r-1)n/2n]sin{(2r+1)n/2n] r=lsn) | 2.95
9,9r+1 COSZ(Y‘Tr/n) . ( ) \ (2.95)

and for the conventional Chebyshev response the explicit formulas are

g = sin(n/2n) 1
-

n

_ sinlr-nwenlsinfzrewon 2.96)
Sr9r+1 {n2+sin2(rﬂ/2n)}COSZ(r“/Z") r |

where

n = sinh[% sinh”! 1/¢

4

If it is required to use the modified singly terminated low pass
prototype shown in Fig. 2.16 , then the explicit formulas given by Rhodes

[7] may be used to obtain the element values in the Chebyshev case as:

sin[(2r-1)4/2n)

L.or C.= . r=1.n
. //2 5 (2.97)
K _ sin(rgp/2n)/n +cos (ry/2n) r=lan-1
ryr+l n >
and in the maximally flat case as:
Lr or C_=sin [(2r-1)n/2n) r=1w:n (2.98)
Kr,r+1 = sin (rn/2n) r=1+n-1

where K. . is either a characteristic impedance of an impedance inverter
[} .

in Fig. 2.16a or a characteristic admittance of an admittance inverter



Lr 1 Lr Ln

Kr.q’r Knan

AM

n

Kr.],r Cr [ K"—Ln

1

Fig. 2.16 The modified singly terminated low- Rass
prototype filter
{a) and (b)are duals



77

in Fig. 2.16b.

2.6 THE GENERALIZED CHEBYSHEV RESPONSE

For LC ladder low-padd prototypes shown in Fig. 2.9, when
all the transmission zeros of the transfer function are at infinity and
the network is required to satisfy an equiripple passband behaviour,
the solution to the approximation problem requires use of Chebyshev
polynomials. In some classes of networks, where the class is defined
by the location of the transmission zeros, and if an equiripple pass-
band amplitude response is required, then rational Chebyshev function
must be used. The term "generalized Chebyshev function" is used in
order to distinguish it from the Chebyshev po]ynomialé. Hence, the
generalized Chebyshev response may be described by

A
1+ € F o)

. 2
1S 50d)l” = (2.99)
where Fn«A) is the generalized Chebyshev rational function of degree n
in w with prescribed poles shown schematically in Fig. 2.17. This function
has been used in different forms for different applications e.g. [21],
[22], and one compact form is given in [7]. However, to obtain Fo (o)

which is optimally equipripple between 31 in the interval lu|<ly let

Pplw)
Folw) = ) (2.100)

where Pn(w) js an nth degree polynomial

E(w) is an even polynomial of degree 2m¢n in 4 and defined

by the location of the transmission zeros as

m
w

E(w) =

A (1 - wz/wzi) (2.101)

where w; are the Tocation of the transmission zeros which are given

independently of P_(w).
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For Fn(m) to be an equiripple between I 1 with the maximum number of
turning points in the interval -l<w<] as required, it must satisfy a

differential equation of the form

2, 1
ACH JF 21 qrul
dw /wz_] w

2, . s .
| where Q(w”) is a polynomial introduced to correct the degree of the

(2.102)

numerator. It can be determined from the condition that F (@) is a
n

rational function of degree n. Here, for simplicity, let

F(w) = coshy (2.103)

and use the transformation

1 (1
w = l,——_zz or = iz (2.104)

This transformation stretches the interval -1swg<l over the whole

imaginary axis of Z

Thus,

d Fn(w) .

—qu = sinh U (2.105)
and

z_ 1 .

dw wz wz_] (2.106)

substituting in (2.102) gives

d F (w) d] : 2
nt o o U_ sinh U Q
dow sinh UHF /?— m (m)wz (2.107)
w1 1_L(l- L)
Hence
du | 2
= Qw”)
(2.108)

1=

o m
sz-l ﬂ](]‘ wz/wiz)
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du _ cuz Q(wz) - R(2) (2.109)

T (102 fus®) (2%.-22
i=1 i 1

h=a 3
—

where
R(Z) = Ko Qud) :
S ——
N-72
K is a constant -
and -
- 2
Zi = /{ - 1/w i : (2.110)

Then, equation (2.109) may be written as

m [
K, K.
du
a7 ° i§1 z;}z ¥ z;:zl + B(2) (2.111)

where

B(Z) is a polynomial in Z with the assumption that the

transmission zeros Zi or(L§ are distinct.

Integrating (2.111) results in

0 T enmz) zn(Zi-Z)}+I B(Z) dz (2.112)

1He13

i=]

Hence,
Fn(w) = cosh [Z {k Z+Z )- k 2 (Zi-Z)} +J B(z) dz]
For Fn(m) to be a rational function in w, then )

k; = k', and B(Z) =

1 1
Thus, .
4z, y
Fo(w) =(cosh gn [ ( ) ]
i=] k
B m (Z+Z1. m Zi-z 1
=7 1:] Z]—-Z + i'_f] (m ) (2.113)
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which may be written as : _

F (o) = 1 112 V172 %2/2 (Z‘Zi (1-2 /2 %72 4-1-1.

n @r= 2 J-Z ) I -Z-Z'i + T+2 > 11"] ( - 1] (2.]]4)
= i

i=1

where the factor (1+Z) represents the transmission zeros at infinity.

Fo(w) is even for q;+q, even and odd for q1+9, odd, for q,=0 this
function degenerates to the case of the Chebyshev polynomial,

Tq simplify the expression of % (W) even further,

Define
T2
H(Z) = Z-1.
(2) i:] (2-2,) | (2.115)
Z=U+3jv (2.116)
P =0+ ju (2.117)
and

P= =L—orz= A+ 1/p° (2.118)
f2 '

However, Fn(w) is requirgd to have the maximum number of turning points

in.the interval -1 < w < 1, i.e. along the entire imaginary axis of

Z=jv
Let

Fp(w) = cose (2.119)
Hence '

0 = 28rg [H(dv) (T+iv) V2 (2.120)

The maximum variation in 8 in the interval == < vy < requires H(Z) to
a strict Hurwi ial i iti |

be rwitz polynomial in Z. Additionally, [F(w)] = 1 along

the entire imaginary axis. For the purposes of tue network realization,

all Zi must be either real or occur in complex-conjugate pairs.

Furthermore, if
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\

- S -1 v -1 1
$:= Arg(Z—Z.)l = tan ' —— = cos ——-_____.)
1 e T (1w922
1
) ' B 2.2])
- -1 -] 1 (
p =Arg (]+Z)l = tan ' V = cos
Z=jv ( J{:;Ef )
)
Then,Fn(w) may be written in tae trigonometric farm:
. i 2
a2+ I ¢5)  -i(q.p+ J° 4. )

Fn(“’) = %’ e L i=1 1 + e 1 i=] 1 (2.]22)

Thus
9

Folw) = cns[q] P+ 1_2] ¢1-J (2.123)

or in a hyperbolic form as:
92

Fplw) = cosh[q, ¢+ 121 ¢,-J o (2.128)
where

p=cosn” (=) (2.125a)

-22 |
and : {
-1
¢: = cosh <, ) (2.125b)
! A-2%12,2 - |

Substituting for Zby its value given in (2.118; results in

g = cosh™! <§ |
o = cosk] /P?(npiz) (2.126)
! T

Replacing p by jw and P2 by (-wz) results in
P = cosh'] w 3
NZ(NIZ_]) | (2.127)

(1-u7)

~

¢; = cosh™ !
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2.7 THE GENERALIZED CHEBYSHEV LOW-PASS PROTOTYPE FILTERS.

This section presentsa synthesis procedure for very selective
classes of low pass prototype networks which have important applications
in the design of TEM mode microwave broadband filters, diplexers and
multiplexers particularly for printed circuit forms of realization; These
networks satisfy a generalized Chebyshév response with an equiripple
passband, have an odd number of transmission zeros at infinity and an
even multiple of transmission zeros at a finite point on the juw-axis.
These prototypes are excellent alternatives to the elliptic function

prototypes when a minimum impedance variation in the network is required.

2.7.1. Prototypes Having A Single Transmission Zero at Infinity [23].

The generalized Chebyshev insertion loss response L of the doubly
tennindfed low-pass prototype network and its dual shown in Fig. (2.18a,b)

is giVen by

o 3
RE TN
L=14+ & cosh?{(N-1)cosh™! [ —92-—2> + cosh™lw } (2.128)
wo W
where
L = 1, 1 (2.129)
ls]z(Jw)l ‘ ‘

The transmission zeros are of order (N-1) at ¢ = 4 w, and one at infinity

N is an odd number equal to the degree of the network

-}
- [104 (RL/10) g | | (2.130)
and
R.L. is the minimum passband return lToss {(u3). The return loss

measured in deciBells is usually defined by:

Return loss (dB) = 10 log Ts—]_(__)_fz (2.131)
‘ 1tde
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Similarly, the insertion loss measured in (dB) is given by:

Insertion loss (d8) = 10 log ———'— (2.132)

lslz(jw)l

The insertion loss response L is illustrated in Fig. 2.19, where 0y is

the frequency of the minimum insertion loss level Lm in the stopband and wy is
the stopband edge frequency. ©r and ©g are derived numerically by

" jteration for the given values of N, R.L. énd Lm measured in (dB). If

~ equation (2.128) is written in a general form as

L=1+ &FR7 () (2.133)

where Fn(m) is a general Chebyshev function then o is defined as

d FN(w)
—Ta)—- =
W= mo
Yie1¢ing
‘ 3
o= u e (1) o (w,2-1) (2.134)

After finding these important points, one can proceed to find the
element values by using the standard Darlington Procedure i.e. by forming
the reflection coefficient S]](p) from

2
S17(P). Spql-p) = e Pu(P)

— 2.135
]'EPN (p) ( )

where

P=0+jw ’ PN(p) =an (w)

By forming a Hurwitz factorization of the denomina.or and the numerator,

the driving point impedance is given by:
1+ S]](p)

Y4 =
(p) SR

(2.136)
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However, it is not possible to carry out the computerized synthesis
of high degree network of this type by extracting elements in the p-plane
in the conventional manner without losing a significant amount of

accuracy. Therefore different techniques have been used.

The Z-Transformed Variable Technique.

The well known Z-transformed variable technique described in
[24], [25] among others, is attempted here first as a solution to the

synthesis accuracy problem. This technique is based upon replacing the

yariable p2 by an .. . - expression in 22 as
22-1+1/p% or P?= ;2‘—] (2.137)

where Z is the transformed complex frequency.

This transformation for the low pass case is used in
preference to any other mathematical form because it is the only simple
function that gives a one to one correspondence between the two variables
in both directions of the transformation. Moreover, it preserves the
degree of any rational function whose variable is so changed. Additionally
it stretches the passband |w|<l over the entire imaginary axis; hence
jt separates the critical frequencies (Po]es and Zeros) which are, in the
p-plane, tightly clustered around the cutoff frequency and this last
property is the main factor in improving the accuracy of the synthesis.
This is because the loss of the accuracy in the filter design occurs
when the information about the filter is stored in the coefficient of the
polynomials forming numerators and denominators of S]](p)‘and Zin(p) or
Yin(p)' A very small change in these coefficients results in a large change
in the element values of the ladder networks, in other words, the element
values are extremely sensitive to error in the coefficients. If the

critical frequencies are more widely separates as it is the case when the
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Z-transformed variable is used, hence, all the polynomials concerned
become very much better conditioned. The net result is that the sensitivity
of the ladder elements to the coefficients of the polynomials in the variable

Z is much less than their sensitivity to those of the P-variable case.

The synthesis of the network shown in Fig. 2.18 wusing the Z-

transformed variable is illustrated by the following numerical example.

NUMERICAL EXAMPLE No. 1.

Given: the degree of the network N = 7

R.L. = The minimum return loss in the passband = 20 dB

L, = The minimum insertion loss in the stopband = 40 dB
Reguired: to find the elements values of this network shown in
" Fig. 2.20.

Start by calculating the constant e from equation(2.142)

3
¢ < [10%0/10 _ 4] - on

and the location of the finite transmission zeros wq from

2 412
- wy =1 .
Lm = 10 Log {1 + ez coshz{(N-l)cosh ! l}’m <—°2——2j +cosh ]w }}

©o "m

(2.138)
Substitute for 0y by the value given in (2.134) and solve numerically
for W to obtain
wy = 1.41544 rad/sec
The numerical factorization of the denominator an& the numerator

of equation (2.135) is carried out and the left half plane (p-plane) poles

are chosen to form the denominator of S]](p). These are

-+

J1.03771
j0.947114

P] = -0.0485419
=-.0.181441

'+

P2
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e L m L&) L)

R L L
13 ‘% £6) ‘%Lz(m % 2(2) -

(- r—[ C(6) Cz(‘c) (2(2)

Z,(7)

Z(?)

Fig. 2.20 Low-pass pretotype of degree 7

{ 1)}
lNumerical example No.1



90

u

p. = -0.425805 ¥ j0.671126

3

Py -0.635948

let the typical complex pole be sz-xr;jyr r=1-(N-1)/2

and the real pole Pm = =X where m = (N+1)/2

m
The zeros of S]](p) are on the imaginary axis. Their values are

P; =t 50.98073
[

P, =T j 0.860628
"R T

Py = 7 J 0.541943

P; =0

let the typical zero be P; =1 Ky where r = 1+ (N-1)/2.

Thus, .
p[p? + KZ1[P2 + k5] [PP + K}
S11(P) = 2 T Z.v2
1 [P+ x][P +2X]+(X]+Y])][P‘+2X2f(X2+Y2)]
2 2,2
(P +2x3+(X3+Y3)] | (2.139)
, 1 2 ]
replacing P by and P” by —x-
2 Z"-1
2°-1
gives 2 4 6
s () - St ! *2(6)2 s
V4
1 P (0)+A;(2)Z74A (4) T+, (6)Z +/1 -1{A(0)+A,(2)1 +A2(4)z4+A:(5)253
(2.140)
where the numerical values of the numerator  coefficients are:
= 0.005066, B = 0.194667, = U
B0) (2) = 019 §67 B(qy = 0588745,
B,,) = 0.211522
and the numerical values of the denominator coefficients are:
A1(0) = 0.0308842, A;(2) = -0.59255, A,(4) = 0.190558, A,(6) = 1.37111.
and
A,(0) = -0.040755, A,(2) = -0.08525, A,(4) = 1.67007, A,(6) = 0.403182,
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Now, Zin(Zz) can be formed as
145,,(2%)

2
(7)) = ———
m 1-5,,(2%)

i E(9)+E(2)Z§+E(4)Z4+E(6)Ze+/22:1 (A, (0)+A,(2) 2%+ (4) 24, (6)26)
F(0)+F(2)Z +F(4)Z4+F(6)26+/52-1{A2(0)+A2(2)22+A2E4)Z4+A2Z6)26}ﬁ

(2 .141)

where
E(i) = A](i) + B(1)
F(1) = Aj(1) - B(i)

and their numerical values are:

E(0) = 0.035%02 E(2) = -0.397883, E(4) = 0.779303,
E(6) = 1.58264 ‘

F(0) = 0.058182, F(2) = -0.787217, F(4) = -0.3981g7,
F(6) = 1.15959

The element values can be obtained by using the zero shifting
technique in a similar manner to that used in P-plane synthesis [26] . ‘The

impedance of a series inductor Lo(r)P in the P-plane becomes

Lolr)

V2241

All these series inductors are partially extracted except the

in the z-plane

last one which is complete]y extracted. The first series inductor is

partially extracted such that

L0(6) =7 (2)2
/%2_] in 22=202 (2.142)
2 _ 2
where 4, = 1/(0-1/u o) (2.143)

. 2
and since Zin(Z ) has a pole at Zz=1
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Therefore,

F(0) + F(2)Z54F(8)2%r(6) 2= (221 [F, (0)+F, (2) 2%+, (4)2%)

Hence,

) E(0)+E(2)22+E(4)Z4+E(6)Zs+/22-1{A2(0)+A2(2)22+A2(4)Z4+A2(6)26}
Zin(z ) =

(22-1)[F](O)+F](2)ZZ+F](4)24]+/22-1{A2(0)+A2(2)22+A2(4)Z4+A2(6)26}

(2.144)
) |
An E(0)+E(2)22+E(4)Z4+E(6)26+/£?E;—{A2(0)+A2(2)22+A2(4)Z4+A2(6)26}
L (6) =
° /2210 (0)+F (2) Z24F, (4) 21+ [Ay(0)4A,(2)224R(4) 24, (6)2°]
22,7 ¢
6]
6 .
” I E(i)Z ? A2(1)Z
L,(6) = -iéL————- . T
R I Fi(i)7
2,2 =0 2., 2
yi :Zo A =Zo (2']45)
L (6)
2 2
2,(2%) = 7, (2°) ;2 : (2.146)

L - E](0)+E](2)ZZ+E](4)Z4+E](6)26+/£2-1{E2(0)+E2(2)22+E2(4)Z4+E2(6)26}

(22-1)[F](0)+F](2)22+F](4)24]+/§§:;{A2(0)+A2(2)22+A2(4)Z4+A2(6)ZG}
(2.147)

where

£, (1) = E(7) = Ly(6) Ayl) i - 0,26
Ez(i) = Az(i) - LO(G) F-l('i) i

E2(6) = A2(6)

0,2,4

The shunt connected branch which is a series connection of an inductor

L2(6) and a capacitor C2(6) must be completely extracted by removing a

pole at 2% - 202. Such that

Y,(2%) = ¥y(2%) - v’ (2.148)
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where ‘
C.(6)/2%-1
(2 = L e v e B
](Z ) Z-Zo
] 2 .
vo=Y(2) (2.149)
2%-7
%o

But Y (Z ) can be written as
(Z2-1) [F1(0)+F; (2) Z%4F 1 (4) 2| +/22-1[A(0) #h,(2)Z +A2(4)Z +4,(6)2°]

Y (Z ) = (251, ){[E 0)+E3(2)Z +E,(8) 2 ]4/2°-1[E,(0)+E J(DTHE(DT])

where ' (2.150)

‘(ZZ-ZO)[ﬁ3(0)+E3(2)ZZ+E3(4)Z4]=E](0)+E](2)ZZ+E](4)Z4+E](6)26

and
2 2 4 2 4 6
(Z -Zo)[E4(0)+E4(2)Z +E4(4)T7]= E5(0)+E,(2)Z%+E,(4)77+E,(6)Z
Thus, 2(6) may be calculated from

F1(0)+F,(2)2 24F (4)
C,(6) = (2.151)

0)+E,(2)Z%+E,(8)Z" | 2., 2
| £ 01 (2T, (T | 2
and L2(6) from the relationship
L,(6) = 1/(Co(6) w)?) (2.152)
From (2.148)
) 'e(0)+s(2)z +6(2)7%6(6) 8] +/4%1 [H(0)+H ) 2%+H(4) " +H(6)7°]
yA =
2= 2 -2 ) {[E5(0)+E,(2)724E,(4) 2] iR J2ZHE DT
(2.153)
where '
6(1) = F(1) = €x(6) 6)(1) 1 = 0,2,4,6
6,(0)= - E4(0)
G (1) = =[E4(1) - E4(i-2)] 1 = 2,4,6
H(1) = Ag(i) = Cy(6) E5(i) 1 = 0,2,4,6

Since ZZ-ZO‘ is a factor of the numerator of Y, (22) Then
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6,(0)48,(2)224G,(4) 7+ /221 [H, (0)+h, (2) 254, (4) 2]

2, _ (2.154)
Y, (Z%) =
2! E3(0)+E3(2)22+E3(4)Z4+/§§:;[E4(0)+E4(2)22+E4(4)Z4]
where
[6,(0)46,(2)2%46,(4) 2%} (%-7] = 6(0)+6(2)2%46(4)7%+6(4)2°
[H](0)+H](2)22+H](4)Z4][ZZ-Z§]= H(0)+H(2) 2%+H(8) Z%+H(6) 20
Then

2,(2%) = 1/¥,(2%) | (2.155)

and the synthesis cycle is repeated until all the elements of the

network are obtained. The element values of this example are given in

Table EX.1.

N=7, L = 40 dB
R.L. = 20 dB

L,(6)  0.59781
L,(6)  0.572575
C,(6)  0.871735
L(4)  1.36485
L,(4)  0.440682
C,(4)  1.13264
L(2)  1.36485
L(2)  0.572575
C,(2)  0.871735

L(1)  0.59781

Table EX.1.: Element Values of the Network Shown in
Fig. 2.20.
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However, a severe deterioration in the accuracy was noticed
when similar networks of degree greater than 11 was attempted using the
Z-transformed variable technique. Even for a degree 11 network which was
synthesized using this technique to satisfy a minimum passband return
loss of 20 dB and a minimum stopband insertion loss of 40 dB, a drop in
the minimum return loss level in band to 19.49 dB and to 18.77 dB at the
band edge was noticed. Hence a relatively new technique termed "the
alternating pole synthesis technique" [23] is used. A little accuracy

js lost for networks up to and including degree 19.

The Alternating Pole Synthesis Technique [23].

By using Bartlett's bisection theorem, the transmission
coefficient S]Z(p) of the passive lossless linear network (N) shown in
Fig. 2.21 may be written as, [7]

Iy = Ly

SP) 2 Ry (2.156)

where Zo and Ze are the odd and even mode impedances of a symmetrical
network respectively. Zo(ze) is the input impedance when a short
circuiting (open circuiting) plane is inserted along the line of.symmetry
as shown in Fig. 2.21b and c respectively and they are reactance

functions.

The reflection coefficient S]](p) may also be written as:

1-212
Sy4(p) = S0 (2.157
11 (l+Zo§(|+Ze5 .157)

To find the element values of the network, it is necessary to construct
either Z° or Ze uniquely from the poles of S]](p). This can be done as
follows:-

Rewrite Slz(jw)as:
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N
o— | —0
(3)
N short circuiting  plane
Lo—> 7
o

(b)

N open circuiting plane
7

NN

(c)

Fig. 2.21 (3) Symmetrical network N
(b) 0dd mode impedance Zo
(c) tven mocde impedarie Zg
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2
. 1
BEESINE
12 1+ [541(d0) | (2:159)
Slz(j‘*’) 2
Hence, from equation (2.156) and (2.157) we have
.y |2 ]
S1o(Jw)|” =
l 12 , ’ | (2.159)
. _(.1-2820 > |
T~ Iy
But
N 1
515030 [2 = - ‘ (
12030) v, ) ) 2.160)
PSR (0 ) - Jeyw)
therefore
1-1212 ‘
. _+ e“o
JeFy(w) = = (2;—:—2;—) (2.161)
Consequently, ‘
] = — % % 2,162
1+ JeFylo) (1420 - z,) (.162)
and
1 _ Ze - Zo ‘ (2.1
—_— = .163
1- JeFN(w) (1 + Ze)(1 - Zo) )
replacing w by (P/j) we have
1 o L - I, ]
- — = — = 2.164
VIR ()02 2) 1+ eny(p) (2169
and
1 L1 ]
. o = (2.165)
V- JeF(P/3) (1 + La-z) 1- Pp(p)
From equation (2.164), we have
Numerator of (1 + sPN(p)) = Numerator of [(1 + Zo)(l - Ze)] (2.166)

Since Z° and Ze are reactance functions, then the left half zeros of

1+ EpN(p)) are zeros of (1+ Zo).
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Similarly from equation (2.165)

Numerator of (1 - eP\(p)) = Numerator of [(1 + 201 - zo)] (2.167)
50, the left half zeros of (1 - &P\ (p)) are the zeros of (1 + Z,).
However, if a polynomial D](p) is constructed from the left hand zeros

of (1 + sPN(p)) it must be Hurwitz and may be written as

Dy(p) = E4(P) + 04(p) | (2.168)

where E](p) and Ol(p) are even and odd parts respectively and the

reactance function Ze may be constructed as,
; E;(p) 0,(p) 2 169
e T 7 HW) (2.169)

Meanwhile, following the same argument another Hurwitz polynomial Dz(p)

may be constructed from the left half zeros of (1 - ¢Py\(p)) as

Dz(p) = Ez(p) + Oz(p) (2.170)

resulting in

_ Ez(P) Oz(p)
Zo = 0,00 O E,0) | (2.17)

Thus, to synthesize the network one needs only to form the
numerator of (1 + ePN(p)) and to solve for the roots numerically. The
LHP roots are associated wiFh the zeros of (1 + ZO) and the RHP roots
with the zeros of (1 - Ze). For (1 + sPN(p)), it has been found that
the roots of the numerator taken in order from the largest imaginary part,
alternate between the LHP and the RHP. For N = 7 this is illustrated in
Fig. 2.22.

This is the reason why the synthesis procedure may be described
as the alternating pole technique and indicates why accuracy is retained

in the p-plane due to the inherent maximum separation of pole locations.
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Results

For the prototype network shown in Fig. 2.18, all the’eiement
values provided in tables (1-8) have been obtained by using the
alternating pole technique to construct either Ze or Zo whichever has
the highest degree. It has been found that networks of degree 7, 11,

15 and 19 can be synthesized by constructing Ze’ while networks of degree
5, 9, 13 and 17 can be synthesized by constructing Zo' However in either
case the element values may be extracted by using the zero shifting

technique. (the synthesis cycle is shown in Fig. 2.23).

Let Z(p)

and Z(p)

Ze or Zo

E(p)/0(p)

The series element LO(R) is obtained by:

2(Ju,)
L) TR
1
- E .1 0
Z](P) = ﬁ(%%l -+ Y](P) '2;(57 E§El-
(p)
The admittance of the shunt resonant section is:
P/L,(R)
1 _ 2
Y(p)= 7
p- + w,

where

2
woZ = 1/(Ly(R).Cy(R))

and the residue K2 of Y](p) at P

Ky = T—Ap)_

s (E°(p)) p

+ . . .
Jug 1s given by:

1+

Ju,
Lo(R) = 1/(2 K,)

Then, the cycle is repeated to éxtract the rest of the elements. The whole

synthesis procedure has been programmed on a computer, and the element values
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L4 R)
. erm
L2 (R)
—> r—> r—>
cz(mT
Z(P) P P

Fig. 2.23 The synthesis cycle of the
prototype shown in Fig, 2.18
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can be obtained easily for the given values of N, Lm and R.L. Besides
better accuracy, other advantages of the relatively new technique of
alternating pole over the Z-transformed variable are its simplicity and
also its application to bandpass networks in a similar manner. The
application of the Z-transformed variable technique to bandpasS networks
requires tedious and complicated algebraic operations especially at the
element extraction stage. However, the alternating pole techniques can
not be used in the synthesis of non-symmetrical networks, but this is not
a very serious limitation since these networks are less conmon than the

symmetrical ones.

Practical Advantages of this Prototype.

This prototype has a very important practical advantage, for
some application in that it is possible for certain minimum stop band
insertion loss levels and minimum passband return loss levels, to
synthesis the network shown in Fig. 2.18 with the numerical values of
Lo(N) and Lo(l) equal to zero. These prototypes with zero end-element
values make the realization of many structures much easier. Hence,
the classified tables provided in this section include element values of
networks having end elements of zero value in addition to the standard

set with minimum stopband insertion loss levels of 40, 50 and 60 dB.

Thié prototype has also the practical advtange of the selectivity
and the stopband response can be further improved for the same return
loss by simply adding more sectiors in the middle of the network. For
example an increase of about 9 dB per section is obtained in the stopband
jnsertion loss of a network of degree 17 designed ., satisfy-Lm = 60 dB
and R.L. = 20 dB. The computer simulation of the network insertion loss
and the return loss response before and after adding one more section at

the middle are shown in Fig. 2.24 and Fig. 2.25 respectively.



Fig.2.2~ Insertion loss (I.L.) and return loss (R.LJ response of
degree 17 network satisfying a generalized Chebyshev
response Lm=60 dB / R.L.=20dB



R.L.(dB)

Fig. 2.25

Insertion loss and return loss response of anetwork
originally designed to satisfy the specification given

in F’'g.2.24,

after addirg rne section at the middle

1L (d6i
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Key To The Tables

Table (1+8) contain the element values for different degrees of

the Tow-pass prototype filter shown in Fig. 2.18.

N is the degree of the network.

R is the section

R.L. is the return loss in the passband

I.L. is the insertion loss in the §topband.

The passband of the network is for |u|<l. |

The stopband of the network is from u = Wy tow = =,

wy is the location of the finite transmission zero oh the j ~axis of

the complex frequency plane.
Table No. (9) contains the values of mo'and wy for the different

specifications.
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TABLE (1
N=5 R.L.320(dB) R.L.226(dB)
R| | nLasd 1,135 | I.L,340 |I.L.360 1,L.a50 | 1,L.240
ag§ (dB) (dB) (dB) (dB) (dB) (dB)
L,(5) | 0.89085 | 0,845187| 0.774793 | 0.702537 | 0.666004 | 0,608975
5 | L,(5) 9.40429x1079 0151697 | 0.24796 | 7.48542x1072| 0.120903 | 0.197917
C,(5) | 1.25524 1.19029 | 1.09216 | 1.21304 1.15844 | 1.07507
L,(3) | 1.68008 1.6144 | 151788 | 1.50242 1.45581 | 1,387
3 | L,(3) | 9.40429x107% 0151697 | 0.24796 | 7.48542x1072| 0.120903 | 0.197917
C,(3) | 1.25524 1.19029 | 1.09216 |1.21304 1.15844 | 1,07507
1 | L) | 0.89085 0.845187 | 0.774793 | 0.702537 0.666004 | 0,608975
I A
TABLE (2)
N=7 R.L.220(dB) R.L.>26(dB)
R | & | 1.L.360 I.L.>50 |I.L.340 | I.L.360 1.L.350 | I.L.»40
bé‘\ (dB) (dB) (dB) (dB) (dB) (¢8)
7 |Ly(7) | 0.786251 |  0.705668 |0.59781 | 0.616933 | . 0.546048| 0.449416 |
Ly(7) | 0.267567 |  0.386612 |0,572575 | 0,228085 0.330539 | 0.491102
C,(7) | 1.1207 1.01161 [0.871735| 1,11113 1.01061 | 0.880119
L,(5) | 1.61077 1.50131 (1.36486 | 1.50415 1.41923 | 1,31304
5 [L,(5) | 0.222361|  0.311793 |0.440692 | 0.180832 0.253124 | 0.356454
C,(5) | 1.34854 1.25436 |1.13261 | 1.40148 . |  1,31969 | 1.21258
|
L,(3) | 1.61077 1.50131 11.36486 | 1.50415 |  1,41923 |1.31304
3 |L,(3) | 0.267567 |  0.386612 {0.572575 | 0.228086 |  0.330539 | 0.491102
C,(3) | 1.1207 1.01161  {0.871735 | 1.11113 1.01061 | 0.880119
. | Ltot | 0.786251 ©  o0.705668 {0.59781 |0.616933 ! 0.546048 | 0.449416
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TABLE (3)
N=09 R.L320(d3) R.L.26(dB)
R &1 1.Lo60 I.L.350 |1.L.580 | 1.L.360 | 1.L.350 | 1.L.40
,\5 (dB) (dB) (dB) (dB) (dB) (dB)
N :
L,(9) | 0.644682|  0.544275 | 0.418398 0482705 0.388214] 0.266948
9| 1,(9) | 0.500829| 0.691391|0.990478 | 0,448353| 0.622573) 0898558
C,(9) | 0.934737 |  0.808492 | 0.661355 | 0.93117 | 0.80858 | 0.664228
L(7) | 1.43923 1.31699 | 1.18012 | 1.3741 1.2757 | 1.16659
7| L,(7) | 0.38518 0.506465 | 0.674728 | 0.322058|  0.421909| 0.558494
c,(7) | 1.21539 1.1037 |0.970846 | 1.29633 | 1.19315 | 1.06867
L(5) | 1.49928 1.3644  [1.20707 }1.45196 | 1.33938 | 1.20668
5| L,(5) | 0.38518 0.506465 |0.674728 0.322058 | 0,421909| 0,558494
C,(5) | 1.21539 1.1037 |0.970846 ; 1,29633 | 1.19315 | 1.06867
L,(3) |1.43023 1.31699  |1.18012 | 1.3741 1.2757 | 1.16659
3| L,(3) |0.500829 | 0.691391 |0.990478 0.448353 | 0.622573 | 0,898558
C,(3) |0.934737 | 0.808492 0.661355 [0.93117 | 0.80858 | 0.664228
!
LM 0.644682 | - 0.544275 10.418398 |0.482705 | 0.388214 | 0.266948
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TABLE (4)
N=1 R.L.220(dB) - R.L.326(dB)

R &f 1.L260 [1,L250 | I,L,240 | I,L.360 | T.L,350 | I.L.>40
A | (d8) (dB) (dB) (dB) (d8) (dB)
L,(11)| 0.50507 |0,394402 | 0.259439| 0.340444| 0,230296 9,19182x102

1| L,(11)| 7.782383 | 1.06259 | 1.51523 | 0.730409| 1.00277 | 1.4£156
C,(11)] 0.762399 | 0.636015 | 0.497766| 0.752568| 0.626214 | 0.487296
L,(9) | 1.27764 |1.16099 | 1.04028 | 1.23913 | 1.14543 | 1,05203

9| L,(9) | 0.557858 | 0.708652 0.917621| 0.475431| 0.60097 | 0.772211
C,(9) | 1.06925 |0.953674 | 0,821938 1.15618 | 1.04489 | 0.915995
L,(7) | 1.33125 | 1.19351 | 1.04132 | 1.3107 ! 1.19145 | 1.05863

7| Lp(7) | 0.545154 | 0.689826 | 0.886124| 0.461143  0.580255 | 0.738673

. : ;
C,(7) | 1.09416 | 0.979701 | 0.851153| 1.192 . 1.08219 |0.957584
Ly(5) | 1.33125 | 1.19351 | 1.04132 | 1.3107 | 1.19145 |1,05863

5| L,(5) | 0.557858 | 0.708652 | 0.917621| 0.475431 '~ 0.60097 |0.77221
C,(5) | 1.06925 |0.953674 | 0.821938| 1.15618 1,04489 |{0.915995
Ly(3) | 1.27764 }1.16099 | 1.04028 | 1.23913 | 1.14543 |1.05203

3| L,(3) | 0.782383 |1.06259 | 1.51523 | 0.730409 | 1.00277 |1.45156
C,(3) | 0.762399 0.636015 | 0.497766 | 0.752568 | 0.626214 |0.487296

] L,(1) | 0.50507 |0.394402 | 0.259439 | 0.340444 | 0.230296 9.19182x10°2
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TABLE (5)
N =13 R.L.320(dB) R.L.226(dB)
R| ool I.L.360 | 1.L,250 | 1,L,280 | I,L.360 | I.L.350 1.L.244.4
tnet (d8) (dB) (dB) (dB) (dB) (dB)
L,(13)] 0.377667| 0.26111 | 0.119979 | 0.203178] 8.09507x107%| 0.000000
13| L,(13)] 1.11432 | 1.51126 | 2.17528 | 1.08375 | 1.,49632 1.840330
C,(13)| 0.618399| 0.499843| 0.376128 | 0.598405| 0.478328 0.408889
L,(11)[ 1.14686 | 1.04349 | 0.943709 | 1.12863 | 1,04896 1.008050
1| 1,(11)| 0.733459| 0.914577| 1.16974 | 0.633633| 0.786007 0.894539
C,(11)] 0.939512| 0.82595 | 0.699457 | 1.0235 | 0.910592 0.841206
L,(9) | 1.17922 | 1.04781 | 0.908234 | 1.17235 | 1.05629 0.988051
9 1 1,(9) | 0.709398| 0.877742 1.10576 | 0.60624 | 0.744918 0.840395
C,(9) | 0.971378] 0.860611} 0.739932 | 1.06974 | 0.96082 0.895402
L,(7) | 1.1893 | 1.05497 | 0.910559 | 1.1864 | 1.06688 0.995779
7| L,(7) | 0.709398| 0.877742| 1.10576 | 0.60624 | 0.744918 0.840395
C,(7) | 0.971378| 0.860611| 0.739932 | 1.06974 | 0.96082 0.895402
L,(5) | 1.17922 : 1.04781 | 0,908234 | 1.i7235 | 1.05629 0.988051
5 | L,(5) | 0.733459| 0.914577| 1.16974 | 0.633633| 0.786007 0.894539
C,(5) | 0.939512, 0.82595 | 0.699457 | 1.0235 | 0.910592 0.841206
L,(3) | 1.14686 | 1.04349 | 0.943709 | 1.12863 | 1.0489 | 1.008050
3| Ly(3) | 1.11832 | 1,51126 | 2.17528 | 1.08375 | 1.49632 1.840330
C,(3) | 0.618399| 0,499843| 0.376128 | 0.598405 | 0.478328 0.408889
L,(1) | 0.3776671 0.26111 | 0.119979 | 0.203178 | 8.09507x102 : 0.000000

d
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TABLE (6)
N =15 R.L.220 (dB) R.L.226 (dB)
- .
& |1.L.:60 | I1.L.250| I.L.»40 1.L.260 | I.L.254.28
R g§§? (B} (dB) (dB) (d8) (dB)
L,(15) |0.263531 | 0.142742 | 4.34057x10°2 | 7.37286x10"2 | 0.000000
15 |L (15) [1.50353 | 2.05284 | 2.65356 1.5263] 1.84187 -
C,(15) [0.502423 | 0.394767 | 0.318868 0.4724 0.409424
L,(13) [1.04645 | 0.958726 | 0.902256 1.04665 1.00962
13 |L,(13) [0.910809 | 1.1253 | 1.32799 0.795546 0.89438
c,(13) 0.829381 | 0.72002 |0.63715 0.906332 0.84316
L(11) |1.05262 | 0.93106 | 0.843625 1.05339 0.991252
11 [L,(11) [o.872537 | 1.06855 |1.23813 0.751377 0.837503
C,(11) [0.86576 |0.761107 {0.683394 | 0.95961 0.899991
L,(9) [1.06299 |0.936686 | 0.844274 1.0682 1.00298
9 |L,(9) |0.866998 | 1.05645 |1.2263) 0.745017 0.830259
c,(9) [0.871291 | 0.766941 | 0.68998 0.967803 0.908277
L,(7) [1.06239 |0.936686 | 0.844274 1.0682 1.00298
7 |Ly(7) |0.#72637 |1.06855 | 1.23813 0.751377 0.837903
C,(7) [0.86576 |0.761107 | 0.683394 0.95961 0.899991
L,(5) [1.05262 |0.931096 |0.843625 1.05339 0.991252
5 [L,(5) [0.910809 1.1253 |1.32799 0.795546 0.89438
c,(5) [0.829381 [0.72002 |0.63715 0.906332 0.84316
L,(3) [1.08645 | 0.958726 | 0.902256 1.04665 1.00962
3 |Ly(3) [1.50353 |2.05284 | 2.65354 1.52631 1.84187
C,(3) [0.502423 | 0.394767 | 0.318868 0.4724 10.409424
1 L (1) [0-263531 |0.142742 |4.34057x10°2 | 7.37286x10°2 | 0000000




TABLE (7)

N =17 R.L.220 (dB) R.L.226(dB)
@& 1.L.260 I.L.250 I.L.>64
R| @ (d8) (dB) (dB) N
L,(17) |0.161439 3.69278x1072| 0.00000
17 L,(17) [ 1.95691 2.69927 1.84298
C,(17) |0.410484 | 0.314437 0.409755
L,(15) [0.971446 | 0.899493 1.01058
15 L,(15) |1.09013 1.34192 0.89449
C,(15) |0.73687 [ 0.632489 0.844248
L,(13) |0.949788 | 0.839276 0.992952
13 L,(13) [1.03277 1.24849 0.837039
C,(13) | 0.77779 0.679824 0.902194
Lo(ll) 0.957438 0.840482 1.00646
1 L,(11) | 1.02282 1.23337 0.826949
C,(11) | 0.785354 | 0.688154 0.913202
- L,(9) |[0.960208 | 0.841718 1.01056
9 L,(9) 1.02282 1.23337 0.826949
C,(9) 0.785354 | 0.668154 0.913202
Lo(7) 0.957438 | 0.840482 1.00646
71 LM 1.03277 1.24349 0.837039
C,(7) | 0.77779 0.679824 0.902194
Ly (5) 0.949788 | 0.839276 0.992952
5 Ly(5) | 1.09013 1.34192 0.89449
C,(5) 0.736867 | 0.632489 0.844248
Lo(3) 0.971446 0.899433 1.01058
3 L2(3) 1.95691 2.69927 1.84298
C,(3) | 0.410484 0.314437 0.409755
L,(1) 0.161439 3.69278x10° 0.00000
1
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TABLE (8).
= 19 R.L.220 (dB) R.L.226(dB)
o] 1.L.360 1.L.25C 1.L.373.8
" R{glementi  (dB) - (dB) (dB)
| (19 7.01418x1072 |2.58668x10™2| 0.000000
19| L,(19) | 2.47716 2.77852 1.843780
C,(19) | 0.338366 0.306852 0.409976
L,(17) | 0.976813 0.894362 1.011150
17| L,(17) | 1.27072 1.3668 0.894733
C,(17) | 0.659616 0.623791 0.844838
L,(15) | 0.867497 0.830341 0.993900
15| L,(15) | 1.18825 1.269M 0.836653
C,(15) | 0.705336 0.671807 0.903486
L,(13) | 0.871112 0.831443 1.008500
13 L,(13) | 1.1737 1.25149 0.825451
C,(13) | 0.714142 0.681263 0.915747
L(11) | 0.87399 0.834233 1.014340
1| L,(1) | 117116 1.24544 0.823168
C,(11) | 0.71569 0.684576 0.918287
L,(9) | 0.87399 0.834233 1.014340
9 | L9 |ramr 1.25149 0.825451
| c,(9) | 0.7114142 0.681263 0.915747
L,(7) | 0.871m2 0.831443 1.008500
7 | L(7) | 1.18825 1.26911 0.836653
C,(7) | 0.705396 0.671807 0.903486
Lo(5) | 0.867497 0.83034] 0.993900
5| L,(5) | 1.27072 1.3668 0.894733
C,(5) | 0.659616 0.623791 0.844838
L,(3) | 0.916813 0.894362 1.011150
3| L(3) | 24778 2.77852 1.843780
C,(3) | 0.338366 0.306852 0.409976
Ly(1) | 7.01418x107% |2.58668x107%| 0.000000
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TABLE (9)
K R.L.3 ~ 20(dB) RL. 2 2(d8)
<
g €S .L.360] 1.L.350 { I.L.340 | I.L.»60 |1.L.»50 |I.L.340
<& & (aB) | (dB) | (dB) | (dB) | (dB) (dB)
w, .91054 | 2.35334 [1.92161 | 3.31859 |2.67205 |2.16790
i - 2.42435| 1.97656 |1.63445 | 2.75453 |2.23212 |1.82867
- .82616 | 1.59903 | 1.41544 | 1.98641 |1.7302 |1.52105
wy .52581) 1.35817 |1.2278 | 1.64656 | 1.45437 |1.30204
o | .46154 | 1.33752 [1.23555 | 1.54766 | 1.40943 |1.2944
wy .24632| 1.16429 [1.10137 | 1.30556 | 1.21129 |1.13705
W, .29479 | 1.21642 |1.15146 | 1.34879 | 1.26194 |1.18901
1 wy .13086 | 1.08535 [1.05122 | 1.16412 | 1.11133 |1.07046
1.L.»44.4
(d8)
13 | w, .20465 | 1.15057 |1.10554 | 1.24176 | 1.18202 |1.152787
) .07552 | 1.04829 |1.02833 | 1.09571 | 1.06377 |1.04939
[.L.354.28
(d8)
15 | w, .15056 | 1.11095 (1.08713 | 1.17767 [1.151554
W) .04636 | 1.02917 |1.02005 | 1.05929 | 1.0468
I.L;64 |
: _(d8) :
17 | e, 11575 | 1.08545 1.15074 i
“ .02994 | 1.0186 1.04523
~1.L.373.8
A _(dB)
19 | o .09227 | 1.0822 1.150182
W) .0202 |1.01679 1.04394
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2.7.2. Prototypes Having 3-Transmission Zeros at Infinity.

The doubly terminated low pass prototype network and its dual

shown in Fig. 2.2%a, b satisfy a generalized Chebyshev response described

by:
2 .2 RS IR A T
L=1+ ¢ cosh™{(N-3)cosh [m(——?——z) + 3 cosh ‘w} (2.172)
wo ~Ww

where the transmission zeros are of order (N-3) at w = ! W and three at
infinity. N is an odd number equal to the degree of the network. Other

symbols have the same definiti~n as in section 2.7.1.

The insertion loss response of this prototype looks similar to
that shown in Fig. 2.19. However,com and uﬁ are derived numerically by
iteration for the given values of N, Lm and R.L.

If equation (2.172) is written in general from as:

L=1 +e?

Fy2(0) (2.173)
where FN(w) is a general Chebyshev rational function, then W is

defined as:

dfy(w)
T fus w0 (2.174)
yielding, 5
2, (N3 2
Wl el wy (0,°-1) (2.175)

After finding these points, the element values can be obtained by using
the alternating pole synthesis technique to form either Ye or Yo’ where Ye(Yo)
are the duals of Ze(Zo) respectively. The synthesis procedure is illustrated

in the following example.

Numerical Example No. 2.

Given: The degree N=9, Lm = 60 dB, R.L. = 20 dB

Required to.find the element value of the network shown in
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LolN=1) ng(;\-é) . —-l}:(;'?_'[ - Lo2)
K — ‘%“?(N'o‘% ELZ’(R) qmiim
O S T} [
(a)
N- C{R) ;
o CaN-1) L B . e
=R el
s I i

Fig. 2.26 A generalized Chebyshev low_pass
prototype filter having 3-tran-<mission
zeros at infinity and ( N-3)af 3 finite
frequency.

(b) The dual circuit
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Fig. 2.27 A network of degree 9

“Example No. 2"
LO(B) Lo(é)
CA8) 2C (6)
°'( I(Tl -
4P V(P Y,(P) Yo(P)

Fig. 2.28 The synthesis cy:!é of examgle No. 2
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Fig. 2.27.
The constant e= 0.1

The numerical solution gives: wy = 1.32599 rad/sec and the

\\ poles of Sy4(p) as

Py g = -0.0303334 T 51.02275
P, g = -0.10604 I 30.96344
Py 7 = -0.225112 t 5 0.80937
Py.g = -0-377114 * J0.490176
Py = -0.455417

The network can be synthesized by constructing Ye which is

obtained by forming a Hurwitz polynomial such as
D(p) = [P + 0.0303334- j 1.02275](P + 0.0303334 + j 1.02275]
[P+ 0.225112 - j 0.80937 ][P + 225112+ j 0.80937]
[P + 0.455417]

3

- 0.455017 + 1.31691P + 1.793 P? + 2.72394 P° + 1,30779 P* +

1.35339 P°

Rearranging the odd and even terms in P results in D(p) = O(p) + E(p)

where
0(p) = 1.31691P + 2.72394 P> + 1.35339 P°
and = A(T) P+ A(3) P2+ A (5) P
E(p) = 0.455417 + 1.793 P + 1,30779 P
- B(0) + B(2) P? + B(4) ¥*
Hence

Yo(p) = BtE}

The synthesis procedure commences with the extraction of the shunt

capacitor C](9) by completely removing a pole at infinity from Ye(p) to
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leave:
Y;(p) = Y (p) - Cy(9) P
where Y (p)
p
C,(9) = S— éfg} = 1.03487
7 P:cn
Hence 3
AJ(1)P + A (3)P
(P = sopsTzReEY
Ay(1) = A(1) = C,(9) B(0) = 0.845557
AL(3) = A(3) - C;(9) B(2) = 0.868418
1
Z](p) = 'YT(FY
The series inductance Lo(8) is extracted by a zero shifting step such
that
Z,(ju.) B(0)-B(2)w_2+B(4)u *
Ly(8) = = = R - LB R PR
0 0 JA](])wO-J A](3)m0
Z,(p) = Z;(p) - Ly(8)p
B,(0)+8;(2)P%48, (4)P"
A (P (3P
where |
B;(0) = B(0)
B,(2) = B(2) - A (1) L (8) = 0.842999
By(4) = B(4) - A (3) L,(8) = 0.332105
T
Yo(P) = Z,)
e} P/L,(8)
- Ya(p) = Yol ;2:;;2-

L2(8) can be calculated by finding the residue Kg at 2 Ju, of Yo(p). Thus
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A((p) P + A (3) PP
Kg = 3 Z T2 +
| HP‘{B](0)+B](2)P +B](4)P AP = = Juw

0
=1.04847
L,(8) = 1/(2 K8) = 0.476885
2
C2(8) = 1/(L2(8) W ) = 1.19263

and the cycle is repeated to obtain the remaining element values of
half the network shown in Fig. 2.28. Hence, the element values of the other
half are obtained since the retwork is symmetrical. The complete element

values of this example are included in Table (12).

Results.

For the prototype network shown in‘Fig. 2.26 all the element
values provided in Tables (10-15) in this section have been obtained by
using the alternating-pole technique to construct either Yo or Yo
whichever has the highest degree. It has been found that networks of
degree 5, 9 and 13 can by synthesized by constructing Ye' while networks
of degree 7, 11, and 15 can be synthesized by constructing Yo' However,
in either case the element values may be obtained by using a similar
procedure to that used in example No. 2. Table No; (16) contains the
values of wj and v, for the different specifications and the corresponding

element values are given in tables (10+15).

Comparing the values of wy in table (16) with those in table (8)
for the same specifications except for the degree 5 case indicates that
the generalized Chebyshev low pass prototype with three transmission zeros

at infinity is more selective than that having a single transmission .0 at

infinity.
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Key to the Tables

Tables (10+15) contain the element values for different degrees

of the low-pass prototype filter shown in Fig. (2.26).
N is the degree of the network.

R is the section.

VR.L. is the return loss in the passband.

I.L. is the insértion loss in the stopband.

The passband of the network s for MER

The stopband of the network is from u = w1 tow = =,

is the location of the finite transmission zero on the Jj -axis of
the complex frequency plane.
Table No. (15) contains the values of w_ and wy for the different

specifications.



121

Table (10
Element I.F.;60 I.L.250 | I.L.240 | I.L.260 I.L.350 | I.L.240
{dB) (dB) (dB) (dB) (dB) (dB)

C](S) 0.97692 0.980]16 0.985092 | 0.771053 0.773927} 0.778435
Lo(4) 1.30282 1.26448 | 1.2068 ‘ 1.25245 1.22001 { 1.17048
L,(4) | 8.54378x10°°| 0.138258| 0.227543 7.36741x1079 0.119383 0.196/ 55
CZ(S) 1.62304 1.5241 1.37499 | 1.4518 1.37501 | 1.25759
LO(Z) 1.30282 1.26448 | 1.2068 1.25245 1.22001 | 1.17048
C](1) 0.97692 0.980116 | 0.985022 | 0.771053 0.773927] 0.778435




122

TABLE(11)
N=7 R.L.220(dB) R.L. 326(dB)
R |Etement |1.L.260 | I.L.250] I.L.240 [1.L.260 |1.L.250|1.L.240
(dB) (8) | () | (B) (dB) (dB)

7 c](7) 1.01858 | 1.02211 1.02647 {0.816773|0.820282| 0.824706
L,(6) |1.2363 [ 1.16791| 1.08027 [1.21518 [1.15125 1.06753
L(6) [0-256163| 0.3682 | 0.541922{0.233173)0.335228)0.492702

6 o -
C,(6) |1.45916 | 1.29965 | 1.10006 |1.36698 |1.23372 |1.06387
L,(4) [1.2298 | 1.1300 |0.9841471.30698 [1.19918 |1.06617

4 L,(4) |0.256163| 0.3682 |0.5419220.2331730.3352280.492702
C,(4) [1.45916 | 1.29965 [1.10006 (136698 |1.23372 |1.06387

2 |L,(2) [1.283 [ 1.16791 [1.08027 |1.21518 |1.15125 |1.06753

1feyn  |r.o18se | 1.02211 102647 0.816773[0.820282 0.824706
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TABLE (12

N=9 R.L. 320 (dB) R.L.> 26 (dB)
Element|I.L.360 | I.L.350 | I.L.»40 | I.L.260 I.L.250 | I.L.240
c](g) 1.03487 | 1.03721 | 1.03969 | 0.83549 | 0.837985| 0.840714
L0(8) 1.12352 | 1.04292 | 0.947416} 1.10722 | 1.0264 0.928279
L2(8) 0.476885| 0.654003| 0.930679| 0.450961| 0.618263| 0.877829
C2(8) 1.19263 | 1.01488 | 0.813568{ 1.13819 | 0.980696{ 0.799104
Lo(6) 1.07413 | 0.944115] 0.8009 1.15782 | 1.03493 | 0.898068
L2(6) 0.428164 | 0.569346 | 0.771466 | 0.394432| 0.521907} 0.70086
C2(6) 1.32834 ].16578 0.98147 | 1.30131 | 1.16176 }.00088
L0(4) 1.07413 0.944115 0.8009 1.15782 | 1.03493 | 0.898068
L2(4) 0.476885 O.§54003 0.930679 | 0.450961] 0.618263 | 0.877829
C,(4) 1.19263 |1.01488 |0.813568} 1.13819 | 0.980696 | 0.799104
L0(2) 1.12352 |1.04292 |0.947416 1.10722 1.0264 0.928279.
(M) 1.03487 |1.03721 |1.03969 |0.83549 | 0.837985} 0.840714
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TABLE(13)
N =11 R.L. > 20 (dB) R.L. 2 26 (dB)
I.L.360 | I.L.250 (I.L.240 | I.L.260 | I.L.250 | I.L.240
R| Element) =" (qp) (d8) (d8) (dB) (dB) (dB)
11 C](ll) 1.0416 1.04297 | 1.04428 | 0.843579] 0.845115| 0.846644
L0(10) 1.01792 | 0.935065 | 0.840267| 0.994819{ 0.907422} 0.804735
10 L2(10) 0.729441| 0.984313 | 1.39582 | 0.710293] 0.959304 | 1.36035
C2(10) 0.958626} 0.787121 | 0.60441 | 0.918352] 0.760814 ] 0.590439
Lo(8) 1 0.908631| 0.786767 } 0.661279] 0.995387 70.877259 0.755266
8 L2(8) 0.61751_ 0.794605 | 1.04755 | 0.576811 0.736593 0.959128
c2(8) 1.13239 | 0.975041| 0.80535 | 1.13087 | 0.990848 | 0.837434
Lo(s) 0.93471 | 0.807267| 0.672323] 1.03347 | 0.908381 | 0.77411
6 Lz(s) 0.61751 | 0.794605) 1.04755 | 0.576811]| 0.736593 | 0.959128
c2(6) 1.13239 0.975041| 0.80535 | 1.13087 0.990848 0.837434
Lo(4) 0.908631] 0.786767| 0.661279] 0.995387| 0.877259 {0.755266
4 L2(4) 0.729441] 0.984313 1.39582 0.710293] 0.959304 | 1.36035
c2(4) 0.958626| 0.787121| 0.60441 | 0.918352| 0.760814 |0.590439
2 Lo(2) 1.01792 | 0.935065] 0.840267{ 0.994819} 0.907422 |0.804735
1 c](]) 1.0416 1.04297 ].04428 0.843579} 0.845115 |0.846644

e




TABLE(14)
N =13 R.L. > 20(d3) | R.L.z 26 (dB)
R| Element| I.L3 60| I.L.350 | I.L.360| I.L.350
: (d8) (dB) (dB) (dB)
13| €,(13) | 1.04459 | 1.04538 | 0.84729| 0.848212
L,(12) | 0.928797 0.847254) 0.894132 0.804545
12| L,(12) | 1.01275] 1.36487 | 1.01212 | 1.36929
C,(12) | 0.773517 0.616731] 0.736698| 0.589614
L,(10) | 0.778798 0.670841 0.862227| 0.756386
10 } L,(10) | 0.810049 1.02504 | 0.764112| 0.958028
| c,(10) ] 0.96708 | 0.821198] 0.975811} 0.842726
L,(8) |0.80446 | (.687232|0.900696] 0.783025
8 [Ly(8) [0.795651 1.00249 |0.746468| 0.931278
C,(8) ]0.98458 | 0.839663|0.998876 | 0.866932
L,(6) |0.804469} 0.687232|0.900696 | 0.783025
6 L2(6) 0.810049| 1.02504 |0.7641121 0.958028
C,(6) 0.96708 | 0.8311980.975811] 0.842726
L,(4) |0.778798| 0.670841 | 0.862227 | 0.756986
4fLy(4) |1.01275 | 1.36487 |1.01212 | 1.36929
C,(4) |0.773517] 0.616731 | 0.736698 | 0.589614
2|L,(2) |0.928797|0.847254 |0.894132 | 0.204545
1lc; (1) [1.04459 | 1.04538 [0.84729 |0.848212
|
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TABLE(15)
j R.L.320 | R.L.226
N0 e )
1.L.360 | I.L.360
R | Element & ®
15 C,(15) |1.04601 | 0.849109
L0(14) 0.85466 | 0.806586
14] L,(14) |1.33100 | 1.36481
C,(14) |0.629993| 0.59235
L,(12) |0.680414| 0.759946
12| L,(12) |1.00399 | 0.953938
C,(12) |0.835194 0.847481
L,(10) |0.699487 | 0.788953
101 1L,(10) |0.977594| 0.921391
C,(10) |0.857741/ 0.877417
L,(8) |0.704337] 0.79654
8 |L,(8) |0.977594 ] 0.921391
C,(8) |0.857741]0.877417
L,(6) |0.699487 | 0.788953
6 |L,(6) |1.003%3 |0.953938
C,(6) |0.835194 | 0.847481
L,(4) |0.680414 | 0.759946
4 [L,(4) 1.331 1.36481
C,(4) |0.629993 | 0.59235
2 [L,(2) |o0.85466 |0.8%586
1 |c,(1)  |1.04601 |0.849109
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TABLE(16)
R.Ly 20(cB) R.L.> 26(cB)
Degree [Frequency I.L.360] I.L.250 .L.240 L.260} I.L.250| I.L.240
| (B) | () (dB) (dB) (dB) (dB)
w, 268541 | 2.17885| 1.7878 | 3.05766 | 2.46817 | 2.01033
5| w,  |o.52739 ] 2.0812| 1.69345 | 2.88554 | 2.3175 1.90012
w,  [1-63565 | 1.04558 | 1.29516 | 1.77125 | 1.55497 | 1.22122
7 ' ' |
w; 14999 |1.33773 | 1.21229 | 1.61703 | 1.43071 | 1.28362
w,  [1-32599 |1.22745 | 1.14922 | 1.3958 | 1.28424 | 1.19397
9
o 1.21737 11.14178 | 1.0888 | 1.27249 | 1.18496 | 1.11696
w,  [1-19586 [1.13609 | 1.08873 | 1.23816 | 1.17053 | 1.1158
1
wy 11087 |1.06853 | 1.03927 | 1.13856 |1.09134 | 1.05564
w, ~ [1.12983 |1.08995 -15808 | 1.11293
13
w;  [1.05953 [1.03646 07704 | 1.04948
0, 1.09205 .11218
15
oy 103489 .04574
|
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2.8 IMPEDANCE AND FREQUENCY SCALING.

In low-pass bfototype networks which are the natural results
of most synthesis techniques, the values of the terminating resistances
are usually regarded to be 1 ohm and the cut off frequency is at w equal
1 rad/sec However, the values of the LC elements of such networks are
1mpract1ca1 and are rarely, if ever, encountered in real 1life, However,
their use simplifies the arithmetical calculations and make the tabulation
of the element values more meaningful. If the prototype network designed
to work at 1 ohm impedance levc at one or more Parts and then required
to work at a practical level of Ro ohm, the conversion is called
"impedance scaling”. This simply means multiplying the terminating

resistances by R, and each inductor L becomes R,L and each capacitor C

becomes C/R

On the other hand the "frequency scaling" is also a straight-
forward operation which transforms the cutoff frequency of the Jow-pass
prototype from w equal 1 rad/sec to the required value w, rad/sec. Since
the res1stances in the network, are frequency independent, they remain
unchanged by the frequency scaling, but the reactive elements must be
changed, hence an inductor of impedance wlL is transformed to ——L,

) Yo
similarly a capacitor of impedance 1/uC is changed to ;g , i.e.

L *L/wo 3 C -» C/LOO

If the impedance and frequency scaling are required simultaneously,
all the resistances in the network must be multiplied by Ro’ all the

inductors by Ro/wo and all capacitors by I/woRo.

2.9 FREQUENCY TRANSFORMATION

Electric filters may be categorized according to the location of
their passbands or stopbands on the ju-axis into four main types, the low-

pass, the high-pass, the band-pass and band-stop filters. However, the
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low-pass case can be easily adapted to other cases by means of different
transformat1ons of the lumped complex frequency variable. Let P'=c"+ju’
be the complex frequencv variable for the normalized (cut off at w = 1)
Tow-pass function and p = 0 + ju be the new comp lex frequency variable,

Hence the frequency transformation is a function of the form

p = f(p) | (2.176)

which maps one or several frequency ranges of interest to the frequency
range of the passband of the low-pass characteristics. Thus, in moving
the passband, the different types of filter characteristics can be
obtained and the desired network is obtained from the‘low-pass one by
replac1ng each inductance L by a one- port whose impedance is Lf(p),

~and each capacitance C by a one-port whose admittance is Cf(p).

2.9.1. Low-Pass To High-Pass Transformation.

The transformation
' )

p' = 2 (2.177)
is used to transform the normalized low-pass to high-pass, which maps
the interval from jwo to += in the p-plane into the interva) -j1 to 0
in the p-plane, and from -Ju, to -= in the p-plane into j1 to 0 in the

p‘-plane and vice versa as indicated in Fig. 2.29.

If L' and c' represent the inductance and capacitance in the

normalized low-pass network, then the high pass element L, and G, can be

obtained by

L'P'aL' Y% _ 1

g |

| (2.178)
S = =L,P
C p C wO

where



-
|

C
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- 00

P . Plane

~ Fig. 2.29 Transformation frem low.pass to high_pass

qir
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c, - Vgl and L= 1/uC' ' (2.179)
Thus, to obtain a high pass network from its corresponding normalized
low-pass realization, each inductance L' is simply replaced by a
capacitance Ch and each capacitance ¢ is replaced by an inductance Lh'
" If the high-pass network is also required to be normalized i.e. wy=1s

then the relationships given in (2.179) become simple inverse.

2.9.2. Low-Pass To Bandpass Transformation.

The transformation from the normalized low-pass to band-pass

can be achicved by considering the transformation

' _ wO E_ wO i
P = [“’o+ Iy \ (2.180)
where
wy =79, | (2.181)
B = w, - u (2.182)

wo and wy are the upper and lower passband edge frequencies, Wy
is the geometric midband frequency and B is the bandwidth. The quantity
B/“o is an important bandpass filter design parameter and it i§ known as
“the relative bandwidth". This transformation maps the interval ju, to
Juy and -juy to -Jw, in the p-plane iato the interval -j1 to jl in the

p'..p]ane as indicated in Fig. 2.30.

The required band-pass network is obtained by replacing each
element in the normalized low-pass by a one-port whose impedance at any
point in the band-pass interval is the same as the impedance 6f the
replaced element at the corresponding poiht in the low-pass interval.

w w
lpv Ll__g %_+ 52 )

i.e. L
0

' w?

w

ELP*‘ Loy ;, » (2.183)

Lb]p +

b1P J
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L L C 1
b1 bt Wo=
(1000 > I v
> A— Lp1Cpy
’ CbZ U= !
chlr X 1 Lolha
o 2008
Lb2
ujw ojw
} jws
| J - Jw]
g o
-j1 1-.',(‘)]
) -J(.L)Z
P’ Plane P.Plane

Fig. 2.30 Transformation from low.pass to

band -pass
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where _
e . B
by =8 2 1= T2 (2.184)
w
o}
Similarly,
1 ]
Clpl C' (.do L+:)—°‘
B G t5)
, v 2
C'p+Cw0 _]_-
B p (2.185)
Hence v 2
S S
c = + —
P B P B P
=GPt
b2 P ‘
where
¢.=8 and L= — B o
b2 = B b2 o2 (2.186)
. Yo

Thus, it can be concluded from the above relationships that, to obtain
a bandpass network from its corresponding normalized low-pass, each
jnductance L' in the low pass is replaced by a series combination of an
1nduct0r with inductance Lbl and a capacitor w1th a capacitance Cbl
meanwhile cach capacitance C' in the low-pass is replaced by a parallel .
combination of an inductor with inductance Lb2 and a-capacitor with a

capacitance Cb2 as shown in Fig. 2.30.

If it is required to transform the normalized low pass to a
normalized Uandpass (the most convenient normalization is w = 1) then.

the transformation given in (2.180) becomes

a @+ 1/p") (2.187)

©
"

T
0" + ju

£
=3
o
3
1]
o
"
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or

w' = a(w" - T/w") | (2.188)
where '

n - w_.

©T g | (2.189)
Thus,

wp = Ve (2.190)

9
2 s (2.191)
2 T 9

w]u and ”2“ are the lower and upper normalized bandedge frequencies, and

consequently the normalized bandpass network is obtained.

When the low-pass contains reéonant branches as in the
generalized Chebyshev cases, the direct transformation results in
unappropriate combinations of elements for practical applications. Hence,
jt must be replaced by the equivalent preferred structure derived in
[26], [9] and shown in Fig. 2.31 a,b , where a parallel resonant circuit
forming a series branch in the lowpass is transformed into two parallel
c{rcuits connected in series in the bandpass structure and a series
resonant circuit forming a shunt branch in the low-pass is transformed
into two shunt connected, series resonant circuiis in the band pass.

The normalized element values of the preferred structure are given by

[9]-

L )
c+ = l. =ac(C ('|+ E’r-)
L

- 1 _ N 2

C =-I:;--aC (]'+wr+)
(2.192)

+ _1 _ ' 2 _
L —-é:-aL (]+wr') r

- 1 _ ' 2 .
e gmall (460

where
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U Ly Cp N L
’ ) c—— ! l‘—l 0 > + -
wr Cb{ l_‘wf‘ Wp
b A .
C L2 C C
(a)

— ——

Low pass Direct band pass Preterred band pass
structure Structure
(b)

Fig. 2.3V Transformation of low pass resonant
section to band pass equivalent
circuit

(a) A typical section
{b) Dual section
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+ w w '
“p = *<’z§) x5 (2.193)

r /{i;r' : | (2.194)

and equation (2.193) is a special case of the general expression
obtained by solving equation (2.186) for o (the bandpass normalized
real frequency) in terms of 4 (the Tow pass normalized real

frequency) and is given by

- /T g w' '

"2
et ® 0w <= (2.195)

Hence, equation (2.193) gives the two resonant frequencies wri~0f the
preferred bandpass structure as a direct result of substituting the low-

pass resonant frequency W

2.9.3. Low-Pass to Band-Stop Transformation

The frequency transformation required in this case is given by

p o= —1 (2.196)

“o Yo
g"({%’* 3-)

which maps the desired intervals -jw] to -jwz and jw] to +jw2 in the
p-plane into the interval -j1 to +j1 in the p'~plane and vice versa,

as shown in Fig. 2.32 and all the symbols have the same definitions as
in the band pass case (section 2.9.2.). Here, (wz- m]) means the band
width of the stopband. Using a similar argument to that in the previous
section the bandstop network can be obtained from its corresponding
normalized low-pass realization if each inductance L' in the Tow-pass

is replaced by a parallel combination of an inductor with inductance le
and a capacitor of Capacitance Ci1 and in the same time each capacitance
¢’ in the Tow-pass realization is replaced by a series combination of an

inductor with inductance Ls, and a capacitor of capacitance CsZ’ whose
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, Lsy
L , — T
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~ Fig. 2.32 Transformation from low.pass to band -step
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values are given by:

_ t 2 )
CS] = 1/L'B

= ' r 2.1
L, = 1/C'8 (2.197)

- However, if a normalized bandstop is required, fhen the
most convenient normalization is to set w, equal 1. Hence the
transformation given in (2.196) becomes

v
a(p'+1/p")

(2.198)

and the normalized element values can be obtained by replacing B in
equation (2.197) by 1/a with wy = 1
~ When a low pass realization containing resonant branches is

required to be transformed into the preferred bahdstop structure shown in

Fig. 2.33, the following formulas for the norma11zed element values maybe

used [26], [9] .

_a
CS = ‘l‘:'" (l + w ;S )
¢ = L1+ W)
L
L = L (2.199)
. CS |
+ ]
LS = -E_-
s
where 5
t o As ( 1 +
Yps 2 ) - ( ) (2 200)

which is the analogous form of that of the normallzed bandpass filter

given in (2.194).
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l: Ls] Ls ES
. Cl Lsa ng ) C; C;
(3)
; %:1__}
1T I |
Low- Pass Direct band-stop Preferred bandstop
Structure Structure
(b)

Fig. 2.33 Transformation of low-pass resonant
section to band.stop equivalent circuit

(a) A typical section
{b) Dual section
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2,10 CONCLUDING REMARKS.

This chapter starts by reviewing what is cdnsidered to be
the three most popular amplitude approximation methods. Special attention
is given to the equiripple type. Several design methods for different
prototype filters have been included ranging from the explicit formulas
to the computerized synthesis methods. The synthesis accuracy probiem ,
is discussed and a relatively new solution has been adopted and terms
the alternating pole technique. A comparison of this technique with

the z-transformed variable technique is illustrated.

Each filter discussed in this chapter has been chosen for its
merit to act as a prototype channel filter in an interacting channel filter
multipleser. For example, the modified Tow-pass prototype will be used
later in designing a bandpass channel multiplexer whichvin turn may be
realized in a waveguide structure for microwave applications. The
generalized Chebyshev response is also discussed and new classes of very
selective fi]tefs satisfying this response are introduced, their properties
and applications are given and new tables of the element values for typical
requirements are provided. Additionally, since this chapter concentrated
on the low-pass/prototybe filters, it was logical to devote some space to
the transformation of the Tow-pass into the other main types of filters
such as the high-pass, band-pass and'band-stop filters. The transformation
of the modified low-pass prototype which contains inverters will be discussed

later in this thesis.
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CHAPTER 3

DESIGN PROCEDURE FOR BAND==PASS CHANNEL MULTIPLEXERS

CONNECTED AT A COMMON  JUNCTION.

3.1 BASIC CONCEPTS

Filters are at the heart of multichannel systems and a large

~ percentage of the manufactufed filters are used in these systems
especially in the microwave region of the frequency spectrum. .Nowadays.
the applications of the multichanne] systems are numerous ranging from
the frequency division multiplex (F D.M.) system for microwave radio
relay links, earth stat1ons and satellite transponders to the military
use in airborne, seaborne and ground equipments for electronic counter-
measures (ECM) and electronic counter-countermeasures (ECCM), etc., to
mention but a few. Thus, the design problem of multichannel systems
(mu]tiplexing) becomes important and the technidues vary according to

the application.

In the context of this thesis, the word “multip]exer“.is used
to mean a passive linear device that combines a number of filters
representing different channels such that this device will have a single
input port and a number of output ports‘or having a single output port
énd a number qf input-ports depending on its use as a frequency spectrum
splitter or combiner. The "diplexer" is the simplest case of the multi-
p]exer,'since_it only combines two channel filters. However, if all of
the channel filters of the multiplexer have Bandpass characteristics, the
multiplexer is referrred to as "band pass/bénd pass" or simply a "band pass
channel multiplexer”. On the other hand a multiplexer may consists of a
cascade of a number of diplexers with each diplexer consisting of a low
pass and a high pass channel and may be calléd_a "low pass/high pass”.

However, the design problem of the multiplexer whether it is a bandpass
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one or a cascade of low pass/high pass dipTexeks, is not an easy task
as it might at first seem. This is because of the interaction effects
which usually occur when a number of ordinary filters are simply connected
together. Unless the filters and their interconnections are carefully
designed whilst taking into account the interaction effects, the whole
performance of the system will be disrupted. Several methods have been
used to decouple the filters and thus reducing or avoiding'their inter-
action by combining them with passive devices such as circulators,
hybrid junctions ar by using directional filters. For details of these
methods one can see Chapter 16 of reference [28]. An extensive
discussion of the advantages and the 1im1tation§ of these methods is

also presented in [29] and [30].

This chapter is devoted to presenting a new design procedure
for bandpass channel multiplexers without using any extra device except

the bandpass channel filters.

3.2 INTRODUCTION.

Most of the previous multiplexers design techniques have
adopted an approach based upon singly terminated bandpass channcels
inherently resulting in 3dB crossover points between channels (continguous)
e.q. [31], [32]. Such designs exhibit good return loss over the
ch&nne] bandwidths and guardbands. However dummy channels have
to be included to imitate absent channels at the edges of the total
multiplexer bandwidth, thus forming an addition annulling network;
These redundant elements are necessary for the compensation of the
channel interactions to produce a channel performance comparable to the

individual channels based upon a singly terminated prototype.
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In general, contiguous band multiplexers based upon the singly
terminated filter design are non-optimum because they need a higher
degree filter than necessary in each channel in addition to an annulling
network. Furthermmore, if the singly terminated designs are to be used
for crossovef Tevels in excess of 3dB, which is the case in most
communication systems, the passband return loss rapidly deteriorates if
‘a further annulling network is not used. A general design procedure
was recently presented in [33] for multiplexers based upon doubly
terminafed chanhe] filters where the parameters associated with the
first two resonators of each individual channel filter are modified in
terms of a well defined band separation factor. The process is powerful
and flexible but has a number of 1imitatiohs;méﬁtioned in [33] for the
simple series connection of channels. For example, the channels may
not be spaced too closely in frequency, the procedure will give inaccurate
results when the channel return loss is greater than 20dB and the lowest -
and highest frequency channels suffer a severe deterioration for most

specifications containing 3 or more channels.

In this chapter a new general design procedure is presénted
for bandpass channel prototype multiplexers having any number of Chebyshev
channel filters, with arbitrary degrees, bandwidths, and interchannel
spacings without the necessity of having a manifold feed. The design
procedure commences from the element values of a doubly terminated low-
pass prototype filter satisfying an equiripple response which is
obtained from the closed form formulas given in [7], and reView in
Chapter 2 of this.thesis and the individual channel filters can be
realized in a direct coupled cavify form connected in series at a common
- junction. The multiplexer design procedure modifies all of the elements
in each channel filter and preserves a complete match at the two point of

perfect transmission closest to the bandedges of each channel filter,
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whi]st'taking into account the frequency dependence across each channel,
An optimization process has been used to modify the elements of each
channel in turn and the convergence of the process is normally achieved
if the insertion loss of the neighbouring channels cross over at
greater than 3dB. The resulting multiplexer is canonic without an
immittance compensating annulling network or a manifold feed. Finally,
it is shown that this process gives very good results for}a wide
variety of specifications, as demonstrated by the computer analysis of

several multiplexer examb]es.

3.3 THE DESIGN PROCEDURE.

The design procedure commenced from Tumped element doubly
terminated channel filters operating is isolation satisfying an
equripple passband amplitude response with the maximum number of ripples.
Thus, there is perfect transmission at n points, = vy (1 =1 >n),

where n is the degree of transfer function.

The assumed normalized low pass prototype filter satisfies an
optimum equiripple amplitude passband response I.L.sketched in Fig.

3.1 and given by the formula:

LL=1+ 31}3 () | (3.1)

where
]

Tn(w) = cos(n'cos- w)

and has the equivalent circuit shown in Fig. 3.2 with the explicit design

formulas [7].
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[ 2r-1
! 2 Sin n
c. = -
]
r Y - r=1-n
f2, .2
_Yn_+ Sin"(ra/n
Ky ® : ) r=1=n-] (3.2)

e Vs =1 lv
n = Sinh ['ﬁ Sinh (79]

| )
The band pass channels based on this Towpass can be designed as

individual doubly terminated filters with the correct bandwidths and

centre frequencies by applying the frequency transformation
1
6> {w - 1;)/8, (3.3)

where

Ii and B; are the ith channel centre frequency

and bandwidth scaling factor respectively.

Assuming the Tower and upper band edges frequencies of the

individual bandpass channels wyj and u,. are known, then

[, = lwgq +wpy)
el B4 | (3.4)

The frequency transformation given in (3.3):changes all of the capacitors

C r into capacitors Cir in parallel with a frequency invariant susceptances

Bir’ where '
C
C . = _..r. )
ir z3i . (3.5)
Bir = ~Cir I (3.6)

and preserves the equiripple amplituae response.

The design principle used here modifies all of the elements in
each channel filter taking into account the frequency variation across

each channel and the interaction due to other channels.
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A perfect transmission is preserved with the correct overal]
phase shift in the auxiliary variable n at the two points of perfect
transmission (Fli and FZi) closest to the band edges of each channel.
However,‘when channel j (j = 1,2,3,---L) is modified the remaining
channels i(i = 1,2,3,---#j, --- L) are replaced by their input

impedances calculated at F]j and sz and the modification process may

be repeated until no more change in the element values is possible,

The two points of perfect transmission closest to the band edges
of channel i, (Fli and in) can be obtained by solving the following
set of linear equations formed by preserving the same arqument value of
n}(w) at‘the band edges and the two points of perfect transmission closest

to the low pass band edges, after applying the bandpass frequency

transformation given earlier in expressions (3.3). Hence,

A L R

5 = (3.7)
1. - F,.

i 11 _

3 = cos(n/Zni) (3.8)
I: = wqe
i 21 _

> = -1 (3.9)
I. - F,. o
i 21

z = - CO0S ("/2"1) (3.10)

From equations (3.7) and (3.9)

By = Iy - wpy =y - I | (3.11)

From equation (3.8)

F1i = 1j - 84 cos (n/2ny) | (3.12)

and from equation (3.10)
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FZi = Ii + B, COs (n/Zni) (3.13)

Now, if each bandpass channel i is assumed to be operating in isolation,
termtnated at both ends by 1 ohm resistors, then at w = F] » the transfer

matrix for the entire network of channel i would be:

-Sin (%) | in; 1

n, = 1
1 1 .
]
‘ l = — (3.14)
/ n€. + Sin°(=")
i n;
r=1

: : ry
L3 )

Also, at w = FZi the transfer matrix for the entire network of channel

i would be

. r .
S1n(i; _ in
i

n;
' 3.
‘ l J// .+ S1n2(r“) ’ (3:19)

. rn
Iy sin(Zt

,

L -

This has been shown by Rhodes [7] and represents a cascade of passive

all-pass sections in the auxiliary parameter -jn or jn.

The insertion loss characteristics of an L-channel multiplexer,
ino1cating the insertion losses from the commoﬁ port to the L - output
ports, is shown in Fig. 3.3, where the ripple level of the channels are
not necessarily identical. The L - channel, series connected multiplexer
is shown in Fig. 3.4. The effect on the passband response of one channel
due to the interaction of the others is to create a frequency dependent
complex load at one end. Since the value of this load is different at
the two critical bandedge frequencies where ali-pass behaviour in the
auxiliary parameter occurs, an impedance scaling within the network must
occur coupled with additional phase shift. Hence, the transfer matrix
for the entire network of channel i operating in a multiplexer of L-

channels calculate atw = F]i from general image parameter theory for
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matched sections is given by:

ro=l ‘621’ (e, )
or
ni-l .
1
121+521,r)(]*t21,r)

J

. (;-S

- G
_’ 1T,r (s

1i,r+l

t. )

i,ri,r

| Al en
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iortity e 372

] Jti,r
ity 1
= J
[
é“‘“‘f 0
1i,r+]
—1
0 vZ,. .
- Ti,r+l] |
(3.16)

———

1i,r 11 r+l

M35

(si,r+qiti,r)

(3.17)

_jzli,r+1
Z]i,r

Similarly at w = F,y the transfer matrix for the entire network of

channel i may be represented by

=1 {

n
ﬁfhs

1+t ,r)

)
,rti,r




Loir

S 224 e

where Si;r = Sin(r“/ni)

; (%S4, rti,p)

the all pass characteristic of channel i at F

channel i and required to be different at F]i and F

A2irL2i,r4l
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is a phase correcting factor introduced to preserve

j and F

Gy mti,e) j/E;i,rZZi,r+1 (ni*S5,rti,p)
2i,r+l _

[T Gty
1,1

(3.19)

2i’
and 221 p are the image impedances of the rth section of
9

2i°

the remaining channels of the multiplexer i # j may be replaced by their

equivalent input impedances evaluated at ¢ =

connected in series with the 1 Ohm generator load as shown in Fig. 3.5

and given by

and

L
) =2 Ryg (Fpy)

i#J

Xp¢ (Fa3) =.2szi (Faj)

where

if

and , = sz which are

(3.20a)
(3.20b)

(3.20¢)

(3.20d)

Ryg (Fqj) and Ryp (F,5) are the sum of the real parts of the

input impedances of the individual channels evaluated at Fi

and sz respectively.

.

J

In order to modify the element values of channel j(j=1,2,3 === L).
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X1t (F]j) and X, (sz) are the sum of the imaginary parts
of the input impedances of the individual channels evaluated

at F] and sz respect1ve1y.

J
For convenience, the load from the common junction side to
channel j is replaced by its shunt equivalent circuit as shown in Fig.
36 where Gq (F]j) and Gy, (sz) are the real parts, Y, (F]j) and YZt(FZj)
are the imaginary parts. Hence, they are given by ' '

G]t (F]j) = (1 + R]t (F]j»/«]+R]t (F”))2 + let (F]j)) (3.21a)
Vi (Fyg) = = X (Fygd/ QR (F1j))2 + X%, (Fy30) (3.21b)
Gy (Fpy) = (1+ Ryg (Fpq))/((14R54 (sz))z + x22t (Fps)) (3.21¢)
and

2

th (sz)‘= - th (sz)/((]‘Fth (sz))2+X 2t (FZJ)) ; (3.21d)

—

j in matrix (3.17) whose basic section can be decomposed into

Now let i
a transfer matrix of a shunt resonator and an admittance inverter [34].
Hence, the overall admittance of the shunt resonator can be described by

1 (GCar PN Y Gt 5 Y-

C. . {Fys-1;, )= +
SR I T S S i -
J e 100y = S5,e 4,e) (17 Sge Byead)
(3.22)
and the characteristic admittance of the inverter is given by
2 2 2
(n5 +8%, )+ t7, )
Li__dr L (3.23)

K. = -
Jorsrtl /fiij.r Zij,r+1 (qj Sj.rti-r)

Similarly from matrix (3.19)

S. =mits ) (Si . 4-nst.

1 ( jor 1i3,r j,r-1"5%, -1

C.  {Fpil; 3= - { R Cre s e (3.24)
Br V208 Ty | Mgt TRy Sy et )




. Gy My Gy By
{3)
r— - — - =)
! —— b - -
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Fig.3.6 Equivalent circult of the multiplew‘er

(Parallel connected load )
(a) at W =Fy
(b)af w =F2J
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and

'/(fj*sgw”]*t%uﬂ

Kyrorel =

3.25
//ZZJ,rZZJ,r+1(WJ+SJ,rtJ.r) )

Since Kj,r,r+1 is the characteristic admittance of a frequency independent

invertor, from (3.23) and (3.25) we have

2
S | Rl N X'
0Js 0j9r r]J B Sj:r tjor (3‘26)
where
R = Dgr
0d,r 7;3:; (3.27)

In addition it has been found, after trying different relationships, that
if the individual channel network is originally symmetrical, then the

reqqired impedance variation level through it can be approximately expressed

by the foj]owing expressions which give the best possible return loss over

the entire passband. 1/4
Z]j,r+1 = (le,r) (3.28a)
- 1/4 '
and consequently
- 1/4
Roj,r+1 (Roj,r) (3.28¢)

Furthermore, for the all-pass behaviour in the auxilidry parameter

for each channel at its critical frequencies we must have

Qg = Vo (Fpy)
and
Zag,1 = Vg (Fy3)

from equation (3. i » i
So, q (3.26) an expression for tj,r can be written as
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t. = (n./S )‘(J/Roj,r Roj,k+] -1 )
gor = N SRR 4]
0jsroj,r+l

(3.29)

and

The modified values of the elements associated with the first resonator
of channel (j) can be obtained by solving the following two equation for

Cj 1 and Ij,]'

A

Yig (Fyg) + G5y Ry = Iind = =Ags 4 (3.30)
Yor (Faq) + Gy {Fp5 = Iypd = Bogy (3.31)
to give
L PR P LA U SR I T (3.32
Js1 (sz "F]j) .32)
and
I = Fyg * Mg (Fygd + Ag 50 1E (3.33)
where
S. . +1n. t.
1775 Y50
o= Gy, (Fqpa) (90 3
0,1 1t V1) N5 sj,ltj,l (3.34)
S. . -1, t.
1 qJ 3,1
B . =G, (Fp) (=22 ) 3.35
05 2t Y 2] 0 + Sj,] tj,] (3.35)

The modified value of the remaining resonators of chanrel (j) can be

obtained by solving equation (3.22) and (3.24) for er and 1.,
J

A B . |
| Fodur, Zodur _ .
Cip f{ Tar Tpgr l/ (Fas= Py (r=2omp (3.36)
. = Fpq+ w2300 | - .
ir T T G (r=2>n;) (3.37)

where
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U Pl e R K-S I B ) .

0 3’ 57 %5 Yir N7 V4, Cire :
S. -wn. t. S. -n..t.

B Jsr Y]J J T + Jsr ] 'lJ J,Y‘-T ‘ (3'39)

0 dr T M5t Yor N5t 25.e-1 Yue-

The modified characteristic impedance of the inverter K,

§or o] can be

obtained by using either equation (3.23) or (3.25).

A‘computer program has been written to pérform the modification
process. This process is then repeated channel by channel until all
the elements values converge. No prcuf of convergence is offered but it
has been found that if the channel cross over insertion loss levels are

in excess of 3dB the process appears to converge.

3.4 PROTOTYPE EXAMPLES AND COMPUTER ANALYSIS.

i) The generality of this procedure is demoﬁﬁtrated here by an
asymmetric 8-channel . multiplexer whose individual channel filters are
designed with varying number of resoha;ors, bandwidths and interchannel
separations, but are identical in their inband return loss of 20dB,
(there is no restriction in this theory against designing the individual
filters to have varying inband refurn loss as well). The design
specifications are given in Table 1, and the computer analysis of the
common port return loss of the resulting multiplexer is shown in Fig. 3.7.
It may be seen that all of the channels have a good match even for such

complicated multiplexer.









— ) RLVB

RLCAB

Fig.3-7 Return loss characteristic of 8 channel asymmetric
multipl exer, minimum return Icss =20dB

i = channel number
{Individual channel specifications are given in
table | )

to (rad./sec)
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! " w5 wgi
1 8 ] 2
2 4 2.5 3
3 7 3.6 5
4 5 6 7.8
5 7 8.5 11.5
6 6 12.2 1341
7 5 14 17.5
8 5 19.5 20.5

TABLE 1 A Symmetric multiplexer specification:
minimum return loss = 20dB, i = channel
number, n; = number of resonators, and
wyi and w,s are the lower and upper pass.
b;nd edgeg of channel i respectively.
ii) A triplexer has been designed with each of the 3-channels
having 6 resonators, bandwidth of 2 rad/sec, minimum in bands return

loss of 26dB and centre frequencies at = 1.5, 4.5 and 7.5 respectively.

The modified elements values are given in Table II and the
return loss and insertion loss characteristic are plotted in Fig. 3.8
and 3.9 respectively. A fourﬁxsimi1ar channel with centre frequency at
w = 10.5 rad/sec is added to give a 4-channel multiplexer whose modified
element values are given in Table IIT and the return loss characteristic
is plotted in Fig. 3.10. Similarly Fig. 3.11 and 3.12 show the return
loss characteristics of 5-channel and 6-channel multiple.ers respectively.
These examples demonstrate the applicability of this design procedure
to a high return loss specificatioh and show that the parameters associated

with the first resonator of each individual channel suffer the larger

modification while the last resonator parameters suffer the least modification.



lod

r 1 2 3 4 5 6
Cyp 0.587586 | 1.97644 | 2,88192 | 2.93414 | 2.15776 | 0.790699
— L, 0.632983 | 1.40632 | 1,48548 | 1,49618 | 1,49853 | 1.49899
e
[
s
S Kyprs1| 1:00325 | 1.56137 |1.79859 | 1,65239 | 1.25728 0
C,, 1.02058 | 2.10667 |2.,9333 | 2.94736 | 2,16019 | 0.790922
o I 4.5 4,5 4,5 4.5 4,5 4.5
- 2r
g
=
5 0
(]
Ko pops1| 1-18079 | 1.63209 11.81896 | 1.65706 | 1.25817
o | Car 0.587586 | 1.97644 |2.88192 |2.93414 | 2,15776 | 0,790639
“ |
1]
)
o 3|15, 8.36702 |7.59368 |7.51452 |7.50382 |7.50147 |7.50101
— V]
2 <
g Il'__
Sl 37k 1.00325 [1.56137 |1.79859 |1.65239 |1,25728 0
3,1, rt]
(Yol
1]
™
o

TABLE I1  Element Values of 3-channel multiplexer,
(Minimum return loss = 26dB for all channels)



Ti ioT
. Q (rad/sec)
F|g.3—8 Return loss characteristic of 3-similar channels multiplexer

nr 6 resonator, minimum return loss=26dB, bandwidthr 2
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(Minimum return luss

26dB for all channels)

1 2 3 4 5 6
“ r 0.499742 1.92122 2.85953 2.92833 2.15669 0.790601
- %
= 0.422453 1.38863 1.48271 1.49545 1.49825 1.4988
o Iy
3 [ S
S | 9
2- —0.933194 1.53098 1.78968 1.65033 | 1.25689 0
it Cop 1.01613 2.09368 2.92807 2.94601 2.15995 0.790899
NLl?N
N
ol 2
£ :2 2 4.39607 4.46498 4.49459 4.43858 4.,49945 4.49962
1o}
Ll
T | H1.16215 1.62514 | 1.81688 1.65658 1.25808 0
CN¥N :
“ 3 1.01613 2.03368 2.92807 2.94601 2.15995 0.790899
%
| 37
—_1 w0 7.60393 7.53502 7.50541 7.50142 7.50055 7.50038
2o | 7"
Cll'_
g &l 7
© 1 *1.16215 1.€2514 1.81688 1.65658 1.25808 0
cmgm
s
— 0.499742 1.92122 2.85953 2.92833 2.15669 0.790601
llg
<| 2
i 11.5775 10.6114 10.5173 10.5045 10.5018 10.5012
| O
[ =4 ]
&l 3177
S 1 £ 0.933194 1.53098 1.78968 1.65033 1.25689 0
e <ﬁF '
TABLE ITII Element Values of 4-channel multiplexer



Fig. 310 Return loss characteristic of ¢»-similar channels multiplexer

(minimum return loss =26 dB)



AnG 6)

Fg. 312 Retum loss characteristic of 6-imilar channels multiplexer (minmum retum loss =26B)
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iii) A contiguous Diplexer.

The validity of this design procedure has been tested for a limiting
contiguous case of a diplexer of degree 5, with a return loss of 26dB
for both channels, the first channel has band edges at Wiy = 0.175 and
at w,, = 2.175 while the-second channel has its band edges at boy =
2.525 and at w,, = 4.525. The modifed values of this diplexer are given
in Table IV and the computer analysis of the insertion loss and return
loss characteristics shown in Fig. 3.13 where the required 3dB loss at
the cross over frequency is observed and the return loss at the common
port does not fall below 19.6 dB. This is an acceptable situation for

many applications.

Channel 1 Cbannel 2
ny=5, R.L.=26dB,w1q=.175 u)p=2.175| n,)=5, R.L.=26dB,u,(=2.525.u,,=4.525

r c1r I]r Kl.r,r+1 c2r IZr K2,r,r+1

1 | 0.428514 -0.132203 0.428514 | 4.8322
' 0.90002 0.90002

2 | 1.77957 0.969964 1.77957 | 3.73004
1.40676 1.40676

3 | 2.38908 1.13869 | 2.38908 3.56131
1 1.50911 1.50911

4 | 1.98661 1.16237 1.98661 3.53763
1.22983 1.2298:

5 | 0.764275 1.16664 0.764275 | 3.53336

0 | 0

TABLE IV. Element values of a contiguous prototype

BP/BP diplexer
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Fig.3.13 A contiguous BP/BP channels diplexer

n=5. minimum return loss = 26 dB
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From the many examples which have been desighed and analysed by a
computer, several points of interest arise. The design procedure is

a very general one in the sense that it can handle the design of
complicated asymmetric multiplexer with only a slight mismatch in some
channels. The'resulting multiplexers designed according to this technigue
are canonic (the degrees of the multiplexer is equal to the sum of the
degrees of the individual channel filtefs), because there is no necessity
for annulling immittance networks, or dummy channels to be added to the
multipiexer. Furthermore this optimum doubly terminated design procedure
shares the advantage of an increase of at least 6dB in the attenuation
level over the pass band regions of all other channels, similar to

other common junction multiplex design methods based upon doubly

terminated prototype [e.g. 33].
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3.5 CONCLUSIONS.

A new general design procedure has been presented for bandpass
Chebysheve channel multiplexers without the addition of immittance
compensation networks or dummy channels. This design procedure is
also an approximate one since an exact synthesis procedure has not
yet been found for this type of L-port network. It is believed that
a further improvement could be made if an exact expression could be
derived for the internal impedance level variation through each
jndividual channel instead of the approximate one ~iven in equations
3.28 a,b, and c. If a correct all pass equivalent form could be obtained
at a third point of perfect transmission different from those closest
to thevpass-band edges of each individual channel, an improvement could
be made. Attempts to obtain this solution has so far not been successful.
However, this design procedufe for a direct connection of all chanells
at a common junction results in an excellent design without the necessity

for annulling network and represents a strictly canonical solution.
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CHAPTER 4

'DESIGN AND PERFORMANCE OF EXPERIMENTAL

MICROWAVE MULTIPLEXERS

4.1 ~ INTRODUCTION

This chapter describes the application of the new procedure developed
in the last chapter for designing microwave multiplexers using direct
coupled cavity waveguide filters connected in series at a common junction

by a wave-guide feed.

The design process commences with the specifications which define
the number of channels, the band edges of each channel or the bandwidths
and centre frequencies, the inband return 1os§ (dB) and the rejection of
‘each channel over the neighbouring chénne] passbands (dB) or the number
of resonators in each channel. However, the given specifications should
be related to prototype values, since the multiplexer design procedure
was given in terms of such values. Finding the prototype element values
of each channel in isolation, then one can proceed to obtain the modified
values. Having obtained these, the direct coupled cavity waveguide

realization is very simple for relatively narrow-band specifications.

This chapter presents a design process of a 4-channel multiplexer
and explains the steps'taken beginning with the given specifications and
finishing with the physical dimensions. The computer analysis of the
prototype multiplexer ié plotted showing the insertion loss response of
each channel and the common port return loss. The 4-channel microwave
multiplexer was built in a standard rectangular wavequide WG16 (wR 90)
structure, tuned and tested by using a swept-frequency reflectometer

arrangement. The experimental insertion loss and return loss characteristics

have been established.
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4.2 'DIRECT COUPLED-CAVITY WAVEGUIDE FILTERS

The design of direct-coupled-cavity band-pass filters using a
rectangular waveguide realization based on a lumped low-pass prototype
js now a well established technique. The oldest comprehensive method
is that introduced by Cohn [35], who was the first to show the close
relationship between an ideal immittance inverter and the shunt inductive
coupling embedded in a negative length of waveguide. Cohn's method gives
good results for bandwidth up to approximately 20 percent if, in the case
of Chebyshev response, the voltage standing wave ratio (VSWR) is not too
close to unity. A decade later Levy [36] presented a new theory for
designing direct-coupled cavity filters in transmission line or waveguide
structuré and satisfying a Chebyshev response. ‘Levy's theory based
originally on a djfferent type of prototypes but it degenerates to that
by Cohn for narrow-band applications. Hence, any of these two methods
can be used in designing the filter of interest, which consists of half
wavelehgth cavities of electrical length 6, = mat the design frequency
which is normally chosen to be the mid-band frequency fo’ directly coupled
by shunt inductive irises or posts as shown in Fig.4.2. The coupling
elements (irisés or posts) can be adequately described by shunt induttiQe

susceptances of magnitude Y ., at f_, symmetrically embedded in a length

ry,r+

of waveguide of electrical length ¢ = ¢, at midband.

r,r+l

However, it is convenient to treat the frequency dependent quantities
in waveguide filters whether they are lengths of line or susceptances,in
terms of normalized guide wavelength i.e. Ag,/2g. Where 1ig is thé guide
wavelength and g, is the guide wave Tength at fo‘ It is also simpler
to operate with normalized values of suscepténces by considering the

characteristic impedance of the waveguide to be unity,
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In order to derive the design formulas for the direct coupled
cavity filter in terms of the prototype element values, the equivalent
circuit for a typical section of the direct coupled cavity filter may

first be established following the same procedure given in |35] and |36].

Consider firstly a'typical shunt inductive coupling element of
susceptance -er 4l Ag/Ag, symmetrically located in a unit characteristic
] .
impedance piece of waveguide having an electrical length ¢ Ag _/2g
r,r+l "o

. as shown in Fig.4.3.a. The overall transfer matrix of this combination

is
[ . [ 1 17 3 1 W
COS(¢r,r+1/%) JS1n(¢r,r+1/é) ] 0 c°5(¢r,r+1/é) JS1n(¢r,r+1/é)
I 0

v Y = Y w
.~ : 4l s foes N . ;
COS(¢r,r+1) + —-2755-——-S1n(¢r,r+1) - J{S1n(¢r,r+1 ;g:+] 1-Cos(¢r’r+p»

Ag Y Ag Y
Jesin(ep ppd - ____Egﬁil(1+cQs(¢r 1)1} COs(ey ppq) + ____E321151n(¢r r+1)
| ’ g, ’ : 229, !
- - - -8

As shown in |36] the shunt inductive coupling element symmetrically
located in a piece of waveguide is approximated by a frequency dependant

immittance inverter possessing a transfer matrix

0 j- 2o
K" A9l Lo (4.2
r,r+l (4.2)
ik Ag 0
r,r+1'K§b

This in turn may be splitted into three -parts, representing two

transformers with turn ratios /Ago7xg and,/xg?xgo separated by an ideal



Fig. <1 The thannels layout



~ Fig. 4.2
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Direct-coupled cavity in a waveguide filter
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Fig. 4.3 The approximate equivalence between 3 shunt
coupling element in a piece of waveguide (a)
and an ideal immittance inverter (b)

I 1 — o

Fig. 4.4

Pi-section equivalenece of half .wave length cavity
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immittance inverter of characteristic impedance K! as i{llustrated in

r,r+l
Fig.4.3.b.

Equating matrix (4.2) to the righthand side of (4.1) at midband
i.e. Ag = Ag, ylelds [35]

Y
~ +]
: = - Cot(——)
or,r+l ‘ . (4.3)
Yr,r+1 K'r,r+1 - ]/K'r,r+] J

Secondly, a half wave length cavity of electrical length B, =™

at Ag, characterized by the transfer matrix

-

Cos (mg,/rg) 3sin(nrg /2g) |
(4.4)

jsin(mrg,/2g) | Cos(mg,/2g)

| .

has P;-section equivalent circuit given in [35] and shown in Fig.4.4 where

the impedance of the series arm is
Z1 = -] Sin(nkgo/lg) ‘ (4.5)
and the admittance of each of the shunt arms is

=-Cot(mAg /g) | (4.6)

The latter is usually a small quantity compared with the large adjacent
~ admittance of the inverter. Hence the shunt arms may be neglected., The

1:-1 transformer has only a phase correcting effect,

However, neglecting the shunt arms of the P,-section equivalence of
the cavity and scaling out the frequency dependant transformers in the
equivalent circuit of the shunt coupling element across the filter, yields

the approximate circuit of a typical section of a waveguide direct
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coupled cavity filter shown in Fig.4.5.

The direct comparison with the lumped Tow-pass prototype in the dual
format shown in Fig.4.6. implies the frequency transformation (36}

given by

AQ es, -
w -+ a»)\-g;Sm(nAgo/Ag) ‘ (4.7)

where w is the lumped prototype frequency variable and a is a scaling
constant.  Furthermore, Levy |36| has shown that to a second degree of

approximation around Ag = Ag, {(Justified for narrow band applications),

the relationship (4.7) tends to

A
w o er (1 ;%;) (4.8)

and his method inherently leads to that used by Cohn [35],

However, the final design equations for the direct coupled cavity
waveguide filter based upon the lumped Tow-pass prototype shown in Fig.4.6

may be given by:

W, Agy + AgZ]
[ (4.9)

u - e——— ———————————
| Ag] - AgZ

yhere

w, is the cut-off frequency of the Tumped low-pass prototype (normally

w, = 1 rad/sec)

Ag; and ig, are the guide wavelength at the lower and upper band edge

frequencies.

The coupling between the rth and r + 1th cavities is given by

% vg. g
Yoorsl = relo- fih:ﬁj———-—- r=0+n
Kror4l * Y3 9y (4.10)
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Fig. 4.5 Equivalent circuit of
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of a diract coupled cavity waveguide
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Fig. .6 Lumped low-pass prototype filter
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where

Kr,r+1 is the characteristic impedance of the prototype inverter

and the terminating loads are:
9 = 94 = Vo (4.11)

The electrical length of the rth resonant cavity is

1

_ - _
Vr = % E’¢r—1,r E'¢r,r+1 r=1+n
(4.12)
where
Y
pror+l T Cot "L
’ 2
6 =T corresponds to a physical length of Ag /2
r
and
gyt Ag
Ag, = —9——5——5- (4.13)

Having reviewed the design procedure for the direct coupled
cavity waveguide filter, one can now proceed with the multiplexer design

example,
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4.3, THE MULTIPLEXER DESIGN SPECIFICATIONS

Number of channels = 4
A1l channels satisfy a Chebyshey response with inband
20dB

"~ return loss

The rest of the specification are given in the table below:

i F fi1(GHZ) fiz(GHZ)
Channel -No., of Lower Upper
Number Resonators bandedge bandedge

1 8 9.3 9.4

2 4 9.43 9.46
3 4 9.48 9.51
4 4 9.53 9.56

4.4 CALCULATION OF THE PROTOTYPE VALUES

The structure of interest here is the standard rectangular waveguide

WG16 (WR90) which has the following properties [37]:

(i) The inside dimensions:

b

heighf (narrow dimension) = 0.4"

a = width (broad dimension) = 0,9"

the walls thickness = 0,05"

(i1) Recommended frequency range for TE10 mode from

8.20 + 12.5 GHZ

(i11) . Cut off frequency f_ in MHZ = 6570.5860



(iv)

where
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Cut off wayelength A. 1s given by

- __2ab
¢ (n262:m2a2)

(4.13})

n = number of half waves variation of the field in the

a-direction (n =0,1,2,3 - - )

m = number of half waves variation of the field in the

b-direction (m =0,1,2,3 - - -)

For waveguide WG16 supporting TE10 mode

(v)

where

= [
Ao = 1.8

The guide wavelength Ag is given by

A

A = ————— 4.14
(1 - (/a2 (8191

A is the free space wavelength
. ,

A= — 4,15
. (4.15)

and ¢ is velocity of light in free space

= 11.80315 x 102 4inch/sec

However, in order to proceed in the multiplexer design process, the

given frequency specification in GHZ must be related to prototype values

in rad/sec.  One suitable prototype may be obtained by setting fi

2=

9.4GHZ to correspor:' to unity rad/sec on the prototype frequency scale and

using the transformation

w + BmAg 4.16)
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where
w is the prototype frequency variable rad/sec
g8 is a scaling constant

Ag can be calculated by using equation (4.14)

For channel i =1

The free space wavelengths at the bandedges frequencies afe:

11.80315x109

A]-I - = 1.269]56"
9,3x109
9
gy = ALBOSIENO0Y oy pepes
9.4x10%

The corresponding guide wavelengths are

1.789759"

Ay

agy, = 1.752479"

Now, using the relationship in (4.16) for gy, corresponding to

wyy = 1 yields
w
B = LI ] = 0.181634 (4.17)
mAg 1.7524797
12
Thus,
wyp = angll = 1,021272 rad/sec
Similarly,

For channel i = 2

Agp = 125166, 2y, = 1.24769"

Agpy = 1.74167% , 1gy, = 1.731021"

and

0.987755 rad/sec
0.993832 rad/sec

Wy = B"Agzz
CLPY

©22
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For channel 1 = 3

,*3] = 1.245058" , vx32 1.24113"
Ag3] = 1.,724013" , .Ag32 = 1,713629"
and
w3y = ang3z = 0,977831 rad/sec

For channel i = 4

Ay = 1.238526" -, Agp = 1.234639"

Aggy = 1.706795" , 1ig,, = 1.696665"

and

€
FN
—
[}
hos]
2
>
[fe]
>
~N
I

= 0.968151 rad/sec

0.973931 rad/sec

w42 = B‘"Ag4"

The pfototype channels layout is shown in Fig.4.7.

However, in practical design caSes, the number of resonators in each
channel may not be given, instead the rejection LA, in (dB) of each
channel over the adjacent ones is given. In this case the number of
resonators g may be calculated at this stage of the design process by

using the following relationship (7].
LAi + LRi-+ 6

n; 2
7 20 Tog (5;+/5,71) (4.18)

where

LR, is the inband return loss (dB)

Ai and Bi are as defined in Fig.4.7.



Fg 47 The prototype  channels layout
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Fig. .8 The prctotype 4-charnel multiplexer
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If equation (4.18) is used, one should keep in mind the adyantage
of multiplexer design procedures based on doubly terminated prototypes
which give an improvement of more than 6(dB) in the offband insertion loss,

and consequently result in saving of at least one cavity per channel.

Having calculated the fequired prototype design values, they can be
now supplied as input data to the programmed design procedure introduced
in the last chapter. The obtained prototype modified element values
of the four bandpass channel multiplexer are given in Table 1.A and 1.8B.
For convenience, the prototype muitiplexer is used in the dual form
shown in Fig 4.8 where the four channel may be seen seriesly connected
at a common junction and for practical reasons a normalized impedance

inverter is introduced at both ends of each channel.

o~ r Cr Lp ST
~
g .
- 1 89.3355 -1.01473 1.26534
- 3:"- 2 260,719 -1.01105 2.03759
i 3 402.929 -1.0107 2.58891
o) 0
gl = 4 |  479.376 -1.01065 2.78696
= 3
<l . 5 480.416 -1.01064 - 2.60654
" 6 407.498 -1.01064 2.09683
W . :
- 7 272.319 -1.01064 1.41246
" 8 95,6289 -1.01064 0
[ =

Table 1.A Modified element values of channel i = 1 of the prototype

multiglexer
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r 1 .2 3 4
9 Cop 366.867 730.754 737.69 306.288
M~
B
o [=)]
s Y
<l N3 I -0.990667 | -0,990766(-0,990787 | ~0,990789
¢t 3 2r
= ~ O
s
ol W, N
w 3
- Kor rs1 1.27823 1.56264 | 1.31665 0
“N
[
— Cy 357.757 740.474 753.919 313.859
oy r
2 .
1 R
~ .
sl w2 I -0.980155 |-0.98064 |-0.980755| -0.980771
2 3 o 3r
S| - w
=1 - o
© Il;, 300
© K3r,r+1 1.23784 | 1.54845 ; 1.3136 0
<r :
l|m
c
Cap 207.00 693.042 754,968 319.851
o .
0
S - ,
™ |I'_ g
L T I -0.968558 |-0,97082 |-0.970985{ -0.971008
~ 2 s r
2T
g &5 |
< K4r,r‘+1 0.983823 | 1.46013 1.29439 0
"
Table 1.B Modified element values of channel 2,3 and 4 of the prototype

multiplexer
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The computer analysis of this prorotype multiplexer yields the

insertion 10ss and return loss characteristics plotted in Fig 4.9,

4,5 CONVERTING THE PROTOTYPE INTO WAVEGUIDE STRUCTURE

Before proceeding in converting the prototype element values
obtained in the last section into their waveguide counterparts, few
more words are worth mentioning about the frequency invariant reactive
elements which inevitably appear in the bandpass prototype. As
mentioned earlier in this thesis, these elements are imaginary., Hence
they are not realizable by any physical component. But their existance
in the prototype causes no problem in the realization for relatively

narrow band applications.

However, since the frequency-invariant elements usually occur in
conjunction with ordinary reactances as shown in Fig 4.10 which represents
a typical series resonator in a bandpass channel “i" of the multiplexer
in question.  This resonator can be approximately realized by an
equivalent length of a uniform waveguide to within any half wavelength
at the resonance frequency of the cavity Agoi,r‘ In practice, the length
of guide should be between one-half and one wavelength long to prevent

evanescent modes interaction and avoid excessive length,

However, to convert this prototype resonator into a waveguide structure,
the familiar reactance slope technique (see for example [35] and [28]) may
be applied, such that the magnitude and the first derivative with respect
to Ag, of the reactancedf the prototype resonator in Fig 4.10 are
respectively equated to the magnitude and the first derivative of the

reactance of the waveguide resonant cavity, all evaluated at A o= Agoi re
3 *
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Fig. .10 A typical prototype series
resonator

(a) {b)

Fig. .11 H-plane , Tee;junction
{a) General view

(p) Top view showing the position
of the reference planes
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Thus,

: Ag.
- . - ’ 1,?’
Yi,r {ci,r B "-Agi,r Ii,r Ci,r} s T {Agoi , ) 1} (4.19)

where Vi,r is a scaling constant still to be determined. At resonance

i.e Xgi,r = Agoi,r’ this equation becomes

viir [:i’r 8 g AQOior B Ii,r Cisr} ) 0 (4.201
Yielding,
) ‘
- _1,r
Moi p = T (4.21)

‘where g for this particular design example = 0.181634 (obtained from

equation 4.17).

Now, calculating the first derivatives of both sides of equation

(4.19) with respect to xgi,r at Agi,r = Agoi p Tesults in
v C g = T |
i,r “i,r o3 r (4.22)
]
Hence,
v = ————lr—— »
1,r Ci’r i,r (4.23)

On the other hand, the inductive coupling susceptance Yi ror+]
between the rth and (r+1)th cavity can be determined by using an

‘equivalent form to equation (4.10) as:

1

- K, v

Y M. v o
i, Vi Vi,e-l

Keor Ve Vi, -
r=1 - n .

and the first and the last coupling at each channel can be obtained
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respectively from

" -‘.] :
Yi,oo.l -’7\7.—]—-, - v'[,] ’ (_4.24bl
1,
o = 1 f——
Yi,ni,ni+1 o = vi’ni (4.24¢)
. 1,0,

1

The electrical length of the rth resonant cavity is given by

N | -1 2 1 -1 2
V: =T tan v—| - » tan v
T Z [ i,r—l,r} z [ i,r,r+1} @25
r=1 » n;

~ Where m corresponds to a physical length of Agoi‘r/5° Thus, the
calculated waveguide element values for channels i=1 + 4 are given in

Tables 2.A,B,C and D respectively.
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- Table 2.A: The wayeguide element yalues of channel { =1

r Ag1e = ﬁf— Vi, = IJC"‘ ¥ Ve, rs
0 " ek " i ]Erad) 5.185528
1 - 1.778294 0.0034656 2,931828 36.861053
2 1.771845 0.011918 3.,096348 51.165343
3 1.771231 0.007714 3.103751 54,597921
4 1.771126 0.006484 3.105236 55.330145
5 i.771126 0.00647 3.105234 54,592437
6 1.771126 0.007628 3.10372 51.088974
7 1.771126 0.011415 3.094828 36.72675
8 1.771126 0.032506 . 2.936014 5.366196

Table 2. B: The waveguide element values of channel i = 2

——— |Xgpp = ;—frr— Yor = TE;E'{; Yor | “2r.r
0 Inch - (rad) 10.662825
1 1.736124 0.008644 3.041058 127.735666
é 1.730297 | 0.004339 3.L27017 148.181251
3 1.73633 0.004298 3.126062 113.854663
. 1.73634 0.010352 3.031415 | 9.726769
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Table 2.C: The waveguide element yalues of channel { = 3

I Y
r - 3r L 3r,r+l
Poozr = 78 | Var T T 5| Yar
0 Inch , {rad) 10.470366
1 1.717702 0.008959 3.039516 129.758755
2 1.718552 0.004326 3.127248 150.624996
3 1.718753 0.004249 3.176304 115.593447
4 1.718781 0.010206 3.023563 8.996155
Table 2.D: The waveguide element values of channel i = 4
r _ I4r _ Y4r,r+1
Moar = g | %r T T T | o ——
0 Inch (rad) 7.863582
1 1.697378 0.015669 3.00869 118.828249
2 1.701342 0.004669 3.126645 153.091799
3 1.701632 0.004286 3.126539 117.326
4 1.701€72 0.010115 9.842418

3.032834
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The next step in the design process is to convert the electrical

values of ¥ e and Y 1 into physical dimensions. The conversion
’

i,r,r+
of y; . 1sa straightforward operation since the corresponding values
H] .
of Ag,; , are already known as tabulated in Tables 2.A,B,C and D,
]
Yielding the physical length of most of Vi p to be slightly less than

»Agoi,r/é' However, the physical realization of Y, 1 can be obtained

NN
by using irises or posts. Their physical dimensions can then be
determined from standard experimental or theoretical data e.g. [37]

and |38 among others. In this'design example the structure of interest
islequal diameter post in a standard rectangular waveguide WG16 (WR30),
Therefore, the appropriate graphs of reference [39] have been used to
determine the suifable configuration and the physical dimensions of the

posts. These graphs are enclosed in the appendix of this chapter.

Each channel filter used three posts of the same dimeter (0;065")
for the input and output coupling susceptances and five posts having the
same diameter (0.065") for the internal couplings. Tuning screws were

located at the centre of each cavity of the channel filters.

The series connection of the channels at a common junction was made
with simple H-plane, Tee-junctions [38] as that shown in Fig 4.11 to
waveguide WG16 main feed. The feed has a common port at one end and short
circuited at the other., Standard square connecting flanges are used at
each channel output port and at the common input port. The final

structure of the multiplexer is sketched in Fig 4.12,

However, the uimensions "d" and 'd' associated with the reference
plans T, and T'y of the H-plane, Tee-junction shown in Fig 4.11 are as

indicated in [37].  They have been calculated here by using the graph
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4
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4.560-
1.603
1 channel .1
'
!
1
7.532
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Fig. 4.12 The &-channel waveguide multiplexer

(all dimensionrs are in inches)
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shown in F19.6,5.5, of Reference [37] with the required value of ag {s
at the suitably chosen frequency of 9, 47 GHZ, yielding d = 0,045" and d°
= 0,252",

" The dimensions of the channel-separating lengths and other length
of the main guide feed shown in Fig 4,12 have been calculated from the
fact that the distance from the short circuited end of the feed to the
appropriate reference plane of the Tee-junction of channel { should be
odd multiple of Ag/4. This Ag can be taken as the guide wavelength at
the centre frequency of the nearest channel to the closed end (channel 4
in this example), In calculating these dimensions, one should taken
into account the practical considerations such as the dimensions of the
connecting flanges, the engineering of the device and the feed should not
be too long, otherwise it will act as a frequency dependant manifold which

will disrupt the performance of the device.

4.6.  THE PERFORMANCE OF THE MULTIPLEXER

The multiplexer was tuned using a swept frequency reflectometer
arrangement connected to the common port whilst the other ports of the
device were terminated with matched loads. However, since this
multiplexer design procedure was originally based on the doubly terminated
prototype filter, hence the same simple criterion for tuning such filters
is used.. Its based upon minimizing the reflection in the passband with the
correct centre frequency and bandwidth, For example the technique
introduced by Dishal [40] for tuning filters may be followed, The
relatively easy tuning of the multiplexer is one more advantage of the
doubly terminated design procedures over those based on the singly terminated

prototypes which usually require special alignment procedures e.g. [32].
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The measured insertion loss and return loss response are shown in

Fig 4.13 and Fig 4.14 respectively.

4,7. CONCLUDING REMARKS

The application of the multiplexer design procedure developed in Chapter
3 has been presented by considering a 4-channel multiplexer designed and
constructed in the standard rectangular waveguide WG16. The individual
channels were realized in the form of dikect coupled cavity filters.
Hence, this chapter started with a brief review of the available design
prdcedures for these filters and the design formulas were also given,
Then the modified prototype element values of the channels were obtained
starting with the given design specifications. Thg steps taken in the
design process were fully explained. The final physical dimensions were
obtained using the experimental data [39] for equal diameter posts coupling
in WG16. The limitation of these data should be noticed when an equal
diameter post coupling is requifed for bandwidths less than 30 MHZ at the

band of operation.

The device was constructed as shown in Fig 4,12, It was tuned and tested
using a swept frequency reflectometer arrangement.  Although the tuning
of multiplexers designed on the doubly terminated basis is relatively easier
“than those designed on singly terminated prototypes, still it is a time
consuming operation because of the interaction of the channel filters. The tuning
of the multiplexers becomes even harder for asymmetrical cases such as in
this example. In this particular désign example the modified resonance
frequency of each cavity has been taken into account in calculating the
length of the corresponding cavity. But the Tength of the waveguide at

the input of each channel and the associate coupling have not been modified
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in the theory and this left to tuning to take care of. This in turn
make the sma1l screws which have been added to s]ight1y adjust the
coupling between the cavities, have larger effect on the tuning than it

was expected.

Finally judging from the response obtained that the practical devices
can be directly produced from the theory with no or little ehpirica]
adjustment. The shape of the device shown in Fig 4,12 has no special
significance and the channels can be dropped »1ternatively on either side

of the common feed if required.
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Fig. L.16 The measured return loss response of the experime: tal multiplexer
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APPENDIX
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CHAPTER 5

FUNDAMENTALS OF DISTRIBUTED NETWORKS AND

DESIGN OF TEM MODE MICROWAVE FILTERS

5.1 INTRODUCTION

This chapter is especially concerned with the design and realization
of microwave filter structures for which the wave propagation is
Transverse Electro-Magnetic (TEM), that is to say, the structures in
which the electric and magnetic field components in the direction of
propagation are zero. These structures are in contrast with the waveguide
structures which normally operate high order modes, where some of the

field components may exist in the direction of propagation.

The TEM networks generally incorporate finite lengths of transmission
1ine in one form or another as circuit elements. Therefore they are

sometimes referred to as “"transmission line networks".

However, this chapter begins with a brief review of the basic concepts
of the "distributed circuits" for which the TEM networks belong. These
concepts are’given here in a parallel manner to those of the lumped networks
mentioned in Chapter 1 of this thesis. An important part of this chapter
is devoted to a class of TEM networks known as "the multi-wire-line" structure.
The topics presented include the description of the multi-wire-line structures,
an exact synthesis procedure for the combline fi]ter'satisfying an equiripple
passband response of arbitrary bandwidth, and a design example of an octave
bandwidth microwave combline filter was realized and built in a coaxial form
using parallel coupled rectangular bars. Its experimental performance is
also given. A comparison between combline filters consisting of all

distributed elements and their counterparts utilizing mixed lumped/distributed
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elements is included. A new design technique for TEM networks having
equal diameter coupled circular cylindrical rods between parallel ground

plane is introduced.

Finally, the microwave integrated circuits (MICS) are briefly discussed.
A design example is given based on the generalized Chebyshev low-pass
prototype having three transmission zeros at infinity and the remainder
at the same finité real frequency. The microwave low-pass filter was
realized by utilizing a suspended substrate stripline structure. Its

experimental response is established.

5.2 BASIC CONCEPTS

Electrical circuits can be conventionally divided into circuits with
Jumped elements (defined in Chapter 1) and circuits with distributed
elements. The latter type cohsists of combinations of resistors, ideal
transformer, ;nd finite lengths of transmission line. These lengths of
transmissibn line are restricted to be "commensurate" i.e. of a proportionate

measure or they are multiples of a basic length of line.

The original idea of the commensurate lines as circuit elements is
due to Richards [41].  He also showed that networks composed of Tumped
resistors, ideal transformers and commensurate lengths of transmission line
behéve in a manner analogous to lumped element networks under the frequency
transformation

p - t = tanh (ap) (5.1)
where | \

p =o + jw. The lumped network complex frequency variable

a 1is frequency scaling constant, determined by the quarter

wavelength real frequency
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Let,
t = } + Ju. The complex frequency variable of the distributed
networks.
Also,
ap
_ _2 -1 _
t = tanh (ap) = o (5.2)
2 +1

However, the transformation given in equation (5.1) is well known
as"Richard's transformation". It ensures that the driving point
immittances of d.istributed circuits will be rational functions in ;P or
t. Cohsequent]y if Z(t) is a finite rational driving point immittance

function describing passive network, then

Z(t) is a positive real function

i.e.
Re Z(t) 3 for Re t = O

and (5.3)

Z(t) real for t real

Furthermore, the reflection scattering coefficient in the distributed
domain is a bounded real function.
S..(t) real for t real
; | (5.4)
|5]1(t)| ¢IforRet 3z 0

and the transfer function S]Z(t) is a rational fuaction in t and

. 12
IS]](Jiﬁl £ 1

For minimum phase transfer function in the distributed domain, the

‘relationships between the amplitude and the phase responses at real freguencies

appear in the form of Wiener - Lee transform [2].

a(w) a; Cos(2iaw)
i=1 ! (5.5)

-4 (w) fl ;. Sin(2iae)

]
OQ
+
t~1

n
[*]
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However, at real lumped frequency p = jw, the Richard's transformation

given in (5.1) becomes
t = jr=J tan(ew) A (5.6)
Hence, the real frequency response in the lumped domain becomes periodic

in the distributed domain as shown in Fig 5.1 for the ideal low-pass

amplitude characteristic.

Under Richard's transformation, the capacitors in a lumped network
may be replaced hy open-circuited lines, and inductors may be replaced
by short-circuited lines. All these lines or "stubs" are of the same
electrical length and can be completely described in terms of their
characteristic immittances e.q. Yoc & zoL’ which are proportional to the

corresponding lumped element values, and the frequency variable j tan(aw).

j.e.

Y = juc » J Y, tan(aw)

. . ‘ 5.7.a

Z=3JjuL > ] ZOL tan(aw) ( )
where

Yoc = 8C

, o ! (5.7.b)

ol 8

One additional distributed circuit element has no direct lumped
domain counterpart. It is a two port network consisting of a commensurate
]ength of lossless transmission line. Such a line of length 2 and
characteristic impedance Zo shown symbolically in Fig 5.2 has the transfer

matrix given by

v, ] ‘cosh(pa/v) | Z,Sinh(p2/v) [ v, 1
. 5.8
I | Sinh{pe/v) Cosh(pa/v) I (©-8)
L Zo ' E L P
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where
v is the phase velocity of TEM wave propagating on the line
and 2/v is the delay time of the wave on the line section.
2/v is the same or of an intéger multiple relationship for the

commensurate lines in the network,

Describing this matrix in terms of Richard's variable, it becomes

- -

r :
V] 1 Zot V2

S — | (5.9)

A - t2
1 t
z'0

| | it

1

This distributed element was originally called a "Unit Element"
by 0Ozaki and Ishii [42] and became known by this name eversince, The
Unit Element has many practical advantages in designing and constructing
numerous types of microwave passive devices. For example, the Unit
Elements may be introduced to be between every pair of stubs in the
microwave structures based qn the cﬁnventiona] lumped low-pass or
high-pass prototypes similar to those shown in Fig 2.9.  Although the
introduction of the unit elements in this case is redundant in an
electrical or mathematical sense (i.e. they do n~t contribute to the
resbonse characteristic), it is a practical necessity for realization
especially when they accompanied by the application of four network
jdentities known as "Kuroda's identities" [42] or in their general form
nkuroda-Levy's identities" [43]. For further discussion on the use of
unit elements in a redudant manner one can see for example Wenzel [44]

and Horton and Wenzel [45].
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However, there are many types of microwave structures which could not
be designed directly from a certain lumped prototype. Because they did
not possess such a prototype. In these structures, the unit elements
are generally non-redundant. Thus they contribute to the electrical
response and transmission zerosa}tt=iﬂ4 should be taken into account in the
approximation of the transfer function S12(t). These types include
configurations such as the interdigital filter whose distributed prototype
consists of a mixed of stubs-unit elements, and the stepped impedance
whose prototype composed only of a cascade of unit elements. Synthesis of
these circuits can be achieved by using "Richard's theorem". This is

an important theory in TEM network synthesis and in some types of lumped

network as well. It states: |If Zjn(t) is a positive real function

(p.r.f) and z4n(t)/Zin(1) is not identically equal to t or 1/t, then

Z'(t) = (5.10)
"= " Zincin 'l)
is p.r.f., Furthermore, if
L 7inA =0 (5.11)
Ii=l
Then,
the degree of Z‘(t) =the degree of zin(t) -1 (5.12)

For proof and details of this theorem, reference [46] may be consulted.

However, in some cases there is no need to recourse to this formal
synthesis technique, since sets of closed form design formulas are
available for different types of microwave structures e.g. the most widely
used interdigital and stepped impedance filters <*n be simply designed by

using the formulas given in [7].

No further attention will be given in this chapter for the synthesis of
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these types, since the main concern of this chapter is the design and
construction of classes of TEM filters for broadband applications in

which unit elements are hot essentially involved. They are based on
exactly synthesized Tumped Lc prototypes. However these microwave
structures may contain a redundant unit element at either end for
connection purposes.  Lumped components may also be utilized in these
microwave structures. . The first type to be discussed here is the combline
filter. It belongs to a wider class of networks known as "the multi-
wire-Tines" or "rarallel coupled lines" which also include the

interdigital filter.

5.3. MULTI-WIRE-LINE NETWORKS

A multi-wire-line structure consists of n-parallel coupled line arrays
over a ground plane representing the common return for all lines, as
shown symbolically in Fig 5.3. This structure supports a TEM mode and
" is utilized in several microwave passive devices such as filters, directional

coub]ers and matching networks.

The multi-wire line structure is characterized by the transfer matrix

[47] given by

r V, ; r []] []t] [ Vi
V2 Vé
én - éh (5.13)
5 /;:;E—l Ii
2 1
i §

£ L
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where
[1] is a unitary matrix

[ M M2 “Mn
M2 22 “M2n
[n] = b (5.14)
"Mn “"2n Mnn J
is the characteristic admittance matrix of the n-wire line.
And : ‘
[e] = [n] (5.15)

is its characteristic impedance matrix.

The necessary and sufficient condition for physical realization
of a network of this type is that [n] being symmetrical hyperdominant
matrix [48] i.e. all of its diagonal terms must be non-negative or zero

and the sum of all elements in every row and column must be non-negative

ng T 2 0 U (5.16)
T'l.ii = T].ie + z nij 'i,j = ]’2’3 --=n
Jti

where Nia is the sé]f—admittance of 1ine i‘to ground.

The analysis of wave propagation along a multi-wire 1ine is not
simple if the wires are lossy and their geometrica] arrangements are not
symmetrical. But it can be simplified if either assuming there is no
dissipation or the wires are symmetr1ca]1y arranged. A general treatment
of multi-wire networks is given [46]. Wenzel (48] gives a comprehensive
description of TEM propagation on an array of parallel coupled lines in
terms of the static capacitance matrix. There are many other contributions

dealing with the analysis of TEM parallel coupled lines. Al1l these methods
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show that neglecting the direct coupling between non-adjacent 1lines
simplifies the analysis and synthesis of the networks without causing

any series limitation of most practical applications.

One of the most popular parallel coupled line structures is the
jnterdigital bandpass filter. This filter was first introduced by
Matthaei [49]. He also gave an approximate design method for narrowband
applications. Llater on an exact design theory has been developed by
Wenzel [50] and commented on by Riblet [51]. On the other hand Rhodes
provided a rigorous mathematical treatment [52] and the explicit design

formulas for this filter [7].

The interdigital filter is constructed from the general n-wire-line
when every line is alternatively short circuited to ground at one end
and the other ends are either open circuited or capacitively loaded.
Each line is one-quarter wave long at band centre, when their ends are
open circuited.  These lines (resonators) can be made shorter than one-
quarter wavelength at band centre and the filter becomes more compact by -

capacitvely loading the open circuited ends of the resonators.

Another even more compact structure of the parallel coupled Tines is

the combline filter which will be discussed in some detail in the following

section.

5.4 THE COMBLINE FILTER

5.4.1 Background

The combline filter occupies a distinguished place among microwave
band-pass filters specially for moderate to octave bandwidth applications.
The popularity of the combline compared to other filters can be attributed

to the small size, broad stopband, and ease of manufacturing.
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It consists of parallel coupled arrays between two paralle ground
planes.  All these arrays are short-circuited to ground on the same
side and capacitvely 1oad¢d on the other. The capacitances afe
necessary to the functioning of the filter, since there is no coupling
between quarterwave length digital resonators when they are all grounded
on one side and open circuited on the other. The bars are typically
one-eighth of a wavelength long at midband. The first spurious passband
then does not occur until past the fourth harmonic frequency. This
property of a b.oader stopband makes it attractive in designing bandpass
channel multiplexers and this application will be discussed in the

next chapter of this thesis.

The combline fi]ter was first introduced and described by Matthaei
[53], who gave an approximate design method based on the conventional
Tow-pass prototype. His method is suitable for bandwidths less than
15 percenf. Kurzrok [54], [55] presented a modified version of the
original combline by introducing transverse decoupling posts between the
adjacent resonators. This modified version is particularly useful for
tunable fi]ters; where it is desired to keep the absolute bandwidth
constant as the filter is tunéd. The decoupling posts are also useful
to reduce thé size of very narrow bandwidth filters, where the resonators
might be widely separated to achieve the loose coupling necessary for such
bandwidths. Another modified version of the combline filter was given B
by Cristal [56]. His modification based on utilizing series lumped
capacitive coupling at the input and output of the filter‘instead of
the transmission line matching section, hence a size reduction might be
achieved.  But this version of combline has some mechanical drawbacks

due to the difficulty of realizing series capacitors.

Until the early years of this decade, no design procedure was
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known for broadband combline filter when Pregla [52] has described a
design procedure for this filter and other related structures consisting
of coupled lines and lumped capacitances. Later on Wenzel [58] presented
an exact synthesis method for combline filters and capacitvely loaded
interdigital filters of arbitrary bandwidth. This section presents

an exact synthesis procedure for the combline filter based on the lumped

prototype used by Wenzel [58] and shown in Fig.5.4.

5.4.2 Exact Sy.thesis Procedure For Lumped Band-Pass Prototype

The protytype network shown in Fig.5.4 can be used in designing
several band-pass microwave filters. It is adopted here for designing a
microwave combline filter satisying a generalized Chebyshev response
given by

1
1+ €2 FNZ (w)

|512(5‘")|z = (5.17)

where, FN(w) is a generalized Chebyshev function defined by the prescribed

transmission zeros and may be written as

-1 2 _ 2 3 a [ r 2 2 3
F (w) = cosh { (N-T) cosh EL"'EEF'] + cosh { llw -«
\ o l-a W l 1 -a
- - =(5.18)

where
N is an even number equal to the total number of transmission zeros.

The transmission zeros are of order (N-1) at w = = and cne at w = 0,

a is a bandwidth factors, its value is always less than unity when

the upper bandedge frequency wy s normalized to one as shown in Fig 5.5

However, this generalized Chebyshev function is derived by following a
similar procedure to that given in Section 2.6 of this thesis. The major

difference is the Z-transformed variable must be defined here for the
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bandpass case as [24], [25]
2 2
2 P tuw
L BN (5.19)
P ""*’]
and after normalizing wy to unity, it becomes
2

£ o= B (5.20)

p +a

From this transformation, the location of the transmission zeros at

w = » becomes at Z = 1 and that at w = 0, becomes at Z = ]/a. Substituting
for Z in equations (2.125.a and b) by the value in (5.20) and for Zi in
(2.125.b) by ]/a results in the first and second terms of the right side
of equation (5.18) respectively.

However, it has been fqund that it is quite possible to synthesis a
network satisfying this response and of degrees up to 18 using the
conventional p-plane element extraction technique and when the alternating
pole synthesis technique introduced earlier in this thesis is applied, the
element values of networks of degrees up to 30 can be obtained with little
loss of accufacy. It was also found that synthesizing such networks using
the alternating po1e'technique requirés the construction of both Y, and
Yc and the typical zero location of (1 + ePN(p)) for these bandpass

networks is as illustrated in Fig 5.6 for N = 12.

In either case (the conventional p-plane synthesis and the alternating
pole techniques) the entire synthesis process was programmed on a computer.
The process commences by supplying the input data N, ¢ and a and ends by
obtaining the element values, then establishing the theoretical insertion

and return loss characteristics.

Since the application of the alternating pole synthesis technique

to the band-pass networks is no different in principle from the low-pass
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case; then, there i{s no need to repeat it here. ~On the other hand the
synthesis cycle of the network shown in Fig 5.4 may be exp]alned by using

the standard Darlington's procedure as follows:

By constructing

P (p) 5.21
1- 52 N (p) .21

S]](p) ]]( P) =

where
PN(p) = j FN{m)
and forming a Hurwitz factorization of the denominator and numerator,

the reflection coefficient S]](p) is obtained, then the relationship

1+ S4,(p) -
Yin(p) = (5.22)

1- S]](p)

Yields the input admjttance of the network. The synthesis cycle commences

by total removal of the shunt capacitor C](l) from Yin(P) leaving Y](p) as
Yi(p) = Yy, () - C ()P : (5.23)

Then, the shunt inductor L;(1) is partially removed from Y;(p) and its
numerical value can be easily obtained by applying certain conditions such
as making all the shunt capacitors equal. The partial extraction of L](l)

Teaves
1) = V,(p) = 1/ (1)p - (5.24)

Holding L (l) as unknown quantity for the times being, moving to the next
step and totally remove the series inductor Lz(l) from Z (p) /Y2(p)

leaving
Z3(p) = Z,(p) - L,(1)p | (5.25)

Where the value of L,(1) can be expressed in terms of L](l), yielding
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Z,(p) as a second order expression in L](l). Proceeding to the next
cyc]e by total extraction of C](Z) from Y3(p) = ]/23(p) and applying the
condition Cy(2) = Cy(1). Then L;(1) is solved for and the root which
gives positive values of Lz(l) is chosen., The cycle is repeated until

all the element values are obtained.

The synthesis process may be illustrated further by the following

simple numerical example.

Numerical Example No.5.1

Synthesize the doubly terminated network shown in Fig 5.7 of degree

N=4’€=0.] anda=0.5.
Solution

The Hurwitz factorization of equation (5.21) gives the following

poles and zeros of S]](p)

The poles: Pp = -0.355345 + j1.17456
p, = -0.355378 + j0.245938
The zeros p.z =+ jo,927768
p', = ¢ J0.57162
Thus, )
1+ 4,22202 : 4
1 +4,27728p + 7.81392p% + 5.0538p° + 3.55539p"
and ,
V(o) - 2*4.27728 ¢ 12.0361p2 + 5.0538p° + 7.11093p"

4,27728p + 3.5917p~ + 5.0538p

The first shunt capacitor is totally removed by complete pole extraction

at infinity
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G (1) = ¥y, 0p)/, l = Zf1192§ = 1.40705
p=o

. ) 2
2 +4,27728p + '6.0178
Y](p)_= P 6 P

4.27728p + 3.5917p% + 5.0538p°

removing the shunt inductance L(1) partially from Y, (p) as in (5.24),

yields _
_ 6(0) + 6(1)p * G(2)p°
Yo(p) = > 3
F(1)p + F(2)p™ + F(3)p

where
6(1) = x(1) - F(i+1)/L, (1) i20a2
x(0) =2 , x(1)=4.27728 , x(2) = 6.0178
F(1) = 4.27728 , F(2) = 3.5917 , F(3) = 5.0538

1) = Lo - Fp+ F(2)p%-F(3)p°
2 Yp(p)  6(0) + G(1)p + G(2)p?

The series inductorsz(l) is totally removed by complete pole extraction at
infinity, 1) = 2.() "
- - Ly(1) = Z,(p ’ = F(3)/G(2)
2 2
/p p:w

leaving Z3(p) as described in Equation (5.25). Hence

] H(1) p
R e
" where
H1) = F() - Lp(1) 6(0) = F(1) - F(3) 6(0)/6(2)
| 2
Ya(p) = 1/Z4(p) = G(0) + G(1)p + G(2)p

H(1)p
Now, the next shunt capacitor C](Z) is totally removed

¢y (21 = Y3/, T G(2)/H(1)

Applying the condition C](Z) = C](1) = 1.40705 and substituting for
G(2) and H(1), results in
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| 6.0178 - 5.0538/L. (1
1.40705 = &(2) ()
M) T0.T076 -v21.6165/L](17}"

4.27728 - {

6.0178 ~ 5.0538/L, (1)

after si%]ification, it becomes

or

2 -
{t%117J - 2.38148/L,(1) + 0.55669 = 0 (5.26)
Therefore,
-(-2.38148) + {(-2.38148)% - 4 x 0.55669)}
1L, (1)
2
L) - 2.38148 + 1.85598 _ 21873

2
The right value of L](1) is 1/0.262747 = 3.80589. The other root is
neglected.

Substituting back in the expression for L2(1). results in

L,(1) = FQ3) . 5.0538 = 1.07759
G(2) 6.017753 - 5.0538/3.80589

The last shunt inductance L](2) is totally removed as L](Z) = G(0)/H(1) =
3.804589 and the load resistance

R, = HO) 1Q
L g)

However, if equation (5.26) is written in general form as
2 .
[1/L1(R) J + ULR) + VvV = 0 (5.27)

It has been found that the correct value of 1/L](R) is always obtained
by taking the root:
oo - % -

1/L,(R) = " (5.28)

because this is the only value which satisfies the fact that the values
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of all the shunt capacitors C](R) and the series inductors LZ(R) should

be pasitive.

In general, it is also possible to synthesize these prototype networks
with either all of their shunt inductors or their series inductors being
equal, following the same principles as in the equal shunt capacitors case.
Fufthermore, the prototype network which is shown in Fig 5.4 in its
redundant format can be synthesize in a non-redundant equivalent format as
shown in Fig 5.8, where the shunt inductor may be completely removed in
one step. The network can be brought back to the redundant form, if

required by scaling the inductive arrays [50].

5.5 DESIGN AND PERFORMANCE OF MICROWAVE BROADBAND COMBLINE FILTER

5.5.1 The Specifications

The microwave combline bandpass filter is to be built with al] of its
elements are commensurate lines (stubs) operates in 50q system and satisfies

the following specifications:

Number of resonators = 6 ij.e. N =12
The passband 1limits of f] = 3 GHZ and f2 = 6 GHZ

With minimum return loss = 20dB corresponding to ¢ = 0.1.

The stubs are x/4 long at f0 = 15 GHZ.

The value of fo is not so critical. It is usually taken in the

middle of arbitrary chosen upper stopband.

In most practical design specifications, the number of resonators or the
degree of the transfer function is not given. But it should be calculated to
satisfy a given attenuation level in one or both stopbands. Wenzel (58]
has given an gxpression of estimating the number of resonators in terms of

~attenuation levels at actual frequencies in both stopbands. It has been
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found here that N can be easily estimated from the following expression

using Tumped domain frequencies.

2 o
- p_ A0 3 N LY
N=T+cosh™ [0 - 1) [-sina” 5~ 2
P - w2t »
- Sin h ’ ———.?— (5.29)
where
Wy < aand A is the insertion loss (dB) at‘UA

5.5.2 The Prototype Element Values

The corresponding parameters to the microwave.specifications are
 obtained by applying the Richard's transformation
w -+ Btan(af)

and gquating the Tumped and ‘distributed frequency domains at the bandedges,

results” in the following equations

Q
n

etan(af]) (5.30.a)
= ptan(af,) ' (5.30.b)

-
[

Since the stubs are required to be 90 electrical degree long at

15 GHZ, hence

afo = 90 (5.30.c)
.°.a=90/15=6

From equations (5.30.b) and (5.30.a)

B = 1/tan(6x6) = 1.37638
and
tan(af1) tan(6x3)
o = = —— = 0.447214

tan(afz) tan(6x6)
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Then, by supplying the input data N, € and o to the programmed synthesis
procedure, the element values of the prototype network are obtained as
given in Table 5.1. This prototype netwofk is shown in Fig 5.9 and

its computer analysis showing the insertion and return loss.is plotted

Table 5.1: The prototype element values of the combline filter

Section Shunt capacitor Shunt ihductor Series inductor

R C](R) L, (R) L,(R)

12 - 1.79117 1.83351 1.61719

10 1.79117 8.18398 2.32676

8 1.79117 3.88507 2.4191
1.79117 © 3.88507 2.32676

4 1.79117 8.18398 1.61719

2 1.79117 ©1.83351 : -

in Fig 5.10.

5.5.3 Conversion of the Lumped Element Values to Commensurate Lines

‘Since all the elements of the microwave combline structure of interest
are required to be of the distributed type, then each capacitor in the
lumped prototype must be replaced by an open-circuited (0/C) stub and
each inductor must be replaced by a short circuited (S/C) stub. For'
conveﬁience the normalized characteristic admittances of these stubs are

calculated from the relationships

Yc](R) = 8C,(R) - (5.31.2)

Y (R) = 1/8L,(R) (5.31.b)
1

YLZ(R) = 1/8L,(R) (5.31.c)

The numerical values of these admittances are given in Table 5.2,



Fig. 5.10 The insertion and return loss for the combline prototype network
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Table 5.2: The characteristic admittances of the 0/C and S/C stubs

R te, () 1 0, ®) 1, ®)
12 2.46533 0.396258 0.449262

10 - 0.088776 0.312255
8 - 0.187009 0.300336
6 = 0.187009 0.312255
2 - 0.088776 0.449262
2 = 0.39%258 | ;

As previously mentioned that combline filters consist of arrays
of parallel lines between two parallel ground planes. ZThese arrays
are usually fabricated either in the form of para11e1 bars having
rectangular cross sections or in parallel cylindrical rods having
circular cross sections. In either case the physical dimension of the
structure are obtained from-the calculated self and mutual normalized
capacitances per unit length of the lines. These capacitan.es are

related to the characteristic immittances of the lines.

Getsinger's procedure [59] is used for designing parallel coupled
rectangular bars and it will be followed here in calculating the dimensions
of this filter. Methods for designing structures having circular cross

section rrds will be discussed in the next section.

However, all of the rectangular parallel coupled bars are designed

with the same t/b ratio. Where b is distance between the two ground planes



and t is the thickness of each bar as shown in Fig 5.11,
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practically desirable to make all of the bars having similar widths as

possible.

In order to achieve that, the admittance matrix of the

Moreoyer, it 1s

inductive arrays of the network should be scaled such that the inductance

" to ground at the internal nodes have the same value,

The inductive arrays

of the network in question is shown in Fig 5.12 and its admittance matrix

is given by:

~

Y, (12)+Y, (12)

=Y, (12) Y, (10)+Y, (10)+Y, (12
L, (120 Y (1007 (10007, (12)

0

'
'l\

oY, (12
L, )

=Y, (10
10

0

-Y, (10
Y, (8)+Y, (B)eY, {10
L, (80, (B {19

-Y, (8
L,®

=Y, (8
Lz( )
Y. (6)+Y (6)eY (B
L‘( )+ Lz( ) Lz( )
=Y, (6
{8

0

)
L,

Y, (4)+Y, (4)+Y (6
L'( ) LZ( I+ LZ( )

Y (4)

Y, (2)sY, (4
L@ L )

¥ (4
L

(5.32.a)

]
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It may be seen from the values of Y (R) and Y, (R) in Table
5.2 that it is most conven1ent to scale rows 2 and 5 and their
corresponding columns by a positive scaling factor n'. The value
of n' is determined by equating the total inductance to ground at the
scaled nodes to its counterpart at any other internal unscaled node,

e.g. node 3. 7 Thus

-Y (12)n' + Y, (10)+Y, (10)+Y, (12)1n'2 - Y, (10)n'
LZ( )n | [L] ) LZ( ) LZ( )]n LZ( In
==Y (10)n" +Y (8) +VY, (8) +Y, (10) -Y, (8

rearranging the termsgives

2 0)+Y, (10)+Y, (12)] - n'Y - -
n*o LY (10 ( 141, (12)] - 0 (12) [szuomL](s)] 0 (5.32.b)

Substituting for the admittances and solving for n', results in:

= 1.0747
and the values of the characteri;tic admittances of the stubs are given
in Table 5.3.  Although the scaling of node 2 and 5 effects the shunt
0/C stubs at these nodes, the change in their characteristic admittances
was neglected in the design and it can be compensated for by tuning

afterwards.
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Table 5.3: The scaled values of the characteristic admittances of

" the stubs
R Y. (R) Y, (R) Y, (R)
4 h b

12 2.46533 0.362693 0.482827

10 2.84747 0.16368 0.335584
8 2.46533 0.16368 0.300336

SRR

6 2.46533 0.16368 ~0.300336
4 2.84747 0.16368 0.482827
2 2.46533 0.362693 -

The 0/C stubs are realized in dielectric filled coaxial form. The

dielectric material is P.T.F.E. of dielectric constant /e, = 1.45

Since the characteristic impedance of a coaxial cable is given by

. — (5.33)

where b] is the inner diameter of th. outer conductor and 3 is the

diameter of the inner conductor.

For the 0/C stubs 2 = —350_ _ __ 50 = 20.281230
Yo (R} 2.46533
1
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Then,
b]/a] = 1.63253

The values of b, and ay are approximated to suit the dielectric
material which is available in a cylindrical tube form. Thus a, =
0.04", by = 0.064". The 0/C stub is quarter wavelength long in
the dielectric at 15 GHZ. Thus,

9
b, o= Mg/t = =Y = ALBBL XIC g y35660n
4/2;’f0 4 x 1.45 x 15 x 10

On the other hand the shunt ¥C stubs are quarter wavelength long
in the air filled structure, hence

9
b =g = e = HLEBBBXI0 g g671g0

s f, 4 x 15 x 10°

Proceed in calculating the dimensions of the bars and their

separating distances starting by the relationship [59]

(C/e) = - U (5.34)

A

which relates the characteristic impedance Z of a lossless uniform
transmission 1ine operating in TEM mode to (C/e) the ratio of its static
capacitance per unit length to the permittivity medium. n is the

impedance of free space = 376.7 @ and /E; is the relative dielectric
constant of the medium in which the wave propagages. For 50 @ terminations
and air filled structure, the static capacitances of the shunt S/C stubs

are givén by

(Ci/e) = (CR/e) = 7.534 YL](R)

1,2 -—- 6 | (5.35)

R =12,10-- 2

Similarly, the static capacitancés of the series $/C stubs are
given by ,
(ACi’]+]/€)=(ACR/€) = 7.534 YLZ(R)

-t
"

1,2 --- 5 (5.36)
12,10-- 4

e
]
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The calculated values of (Ci/e) and (aC ]/e) are given in Table 5.4.

i,i+

Table 5.4: The values of the shunt static capacitances of the S/C stubs

Ba: Nq. R Ci/e = CR/e Aci’i+1/e

= 4Cq/e

1 12 - 2.73253 3.63762

2 10 1.23317 2.52829

3 8 1.23317 2.26273

4 6 1.23317 2.52829

5 4 1.23317 3.63762

6 2 2.73253 -

Getsinger's charts [59] cah now be used to determine the cross-sectional
dimensions of the bars and spacing between them as follows:
choose a suitahle t/b ratio, then by using the values of (ACi’i+]/b)
and the chart in Fig.3 of Reference [59], the normalized spacing
(Si.i+1/b) between the ith and i+1th bar is obtained. Also, the normalized
- fringing capacitance (C'c ) /e associated with the gaps S.

1,941 i,i4]
obtained. The normalized width wi/b of the ith bar can be calculated from ,

are

the relationship [53], [59]

W./b
c =2 — 5.37
G/ =2 T - o (5.37)

where Cp “is the parallel plate capacitance between one side of the
i
jth bar and the ground plane.
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But

v g [0Qle-de

/e * Ceq /e (5.38)
i-1 i i

i,i+l

Hence
W/b =7 (1 " t/b) Ci/e " Cfei_I i./e - cfei i_|_|/£]
i =2«5
(5.39)

The ground plane spacing b is usually selected to be in the range
Ag/4 < b <\g/2 to obtain the best possible response. The choice of b
should minimize the losses in the passband and prevent the propagation

of higher ordered modes.

In this example b = 0.315"

The chosen value of t/b =0.2

The normalized dimensions obtained are given in Table 5.5.

Table 5.5: The normalized dimensions

v b = S'SSI,O = 0.08

$34/b 0.13
w/b = wbs/b = 0.151

w/b = wA/b = 0.129

Getsinger's [59] has also indicated that if

W/b/(L - t/b) > 0.35 (5.40)

Then, there is interaction of fringing fields from the neighbouring

gaps and the decomposition of the total capacitance as given in equation
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(5.38) is no longer accurate. Under these circumstances which are
applicable in this example, the width of the bars W should be corrected

by using the approximate formula

Wi/b = {0.07 (1 -t/b) +W./b} /1.2 (5.41)

resulting in the following

0.173
0.154

Wé/b = Wg/b
‘wé/b = Wy/b

The width of the bars at the ends of the array i = 1 and 5 can be obtained
by replacing the term (c;e ~/e) in equation (5.38) with C%D/e
1-1 ,.i
and adjusting the distance between each of them and its side wall. Take

i=1asa typical case.

Then

/e - C;(, /e (5.42)

; 1 ,
(C./e)=%C./e - C
P Z i fe] ,2 le

and because it is practically desirable to make these bars with similar

width as the rest, one can make the following choice

Wi/b = Wg/b = Wy/b = 0.173
From equation (5.37), this width corresponds to: Cp /e =cp /e = 0.433 . Then
' ] : 6

C%o /e = Cfo /e can be obtained from equation (5.42). This value

1w 6w .
which is equal to 0.835 is used in ["ig.4 of Reference (59] to give

25;,/b = 254 /b = 0.66.  Thus S; /b = 0.33. This value has been
calculated under the assumption that the side wall are symmetrically

located between the end bar and virtual similar one.

After obtaining the required dimensions, the combline filter was
built. The input and output connectors were tapped directly to the
end bars, since the use of transformer elements are not normally necessary

for broadband structure.  The filter was tuned and tested using a swept
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frequency reflectometer. Its experimental insertion loss and return
loss characteristics are shown in Fig 5.13.a and b respectively.
These results are satisfactory within the mechanical tolerance in the

construction of the device.

5.6 MIXED LUMPED/DISTRIBUTED COMBLINE FILTER

The compactness is one of the most attractive features df microwave
combline structure. It can be improved even further if Tumped capacitors
rather than commensurate 0/C stubs are used in their realization. Without
going through the multivariable network synthesis details, Wenzels [58]

has demonstrated that a mixed Tumped/distributed combline network can be

obtained from the distributed one by forcing the response of both networks
to be identical at bandedge frequencies. This is achieved by forcing
the admittance of each respective resonator to be identical at the

bandedges.

Consider the typical distributed section and its mixed lumped/distributed
equivalent counterpart shown in Fig 5.14.a. and b respectively. The
admittance of the shunt distributed resonator is

Y(R) = J [YCI(R)tan(af) - YL](R)cot(af)] (5.43)

and the admittance of the slunt resonator consists of a lumped capacitor

co(R) and a distributed shunt S/C stub of characteristic admittance Y (R)
0
is

Y (R) =] [co(R)m - YLO(R)cot(af)] | (5.44)
Assuming YC1(R) and YL](R) are known.  Then the values of C,(R) and

YL (R) can be obtained by solving the following two simultaneous equations
)

Yc](R)tan(af]) - YL](R)cot(af])

C,(R)uy - YLO(R)cot(afl) (5.45.a)

CO(R)w2 - YLO(R)cqt(af

(5.45.b)

YC](R)tan(afz) - YL](R)cot(afz) 2)
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which gives

2 2
. ltan®(af,) - tan"(af,)
¢,(R) = Y (R) ! 2 (5.46)
1 w]tan(af]) - wztan(afz)
and
: 4 f2tan(af1)-f1tan(af2)
YLO(R) = YL](R) + YC1(R) tan(af]).tan(afz) (5.47)

f]tan(afl)-fztan(afz)
where f] and fz are the lower and upper bandedge frequencies respectively

wy = an] and wy = 21n"2

However, this modification has been applied to the network given
in the last section whose original distributed element values are given
in Table 5.3. The equivalent 1umped/distributed.netWOrk having the element

values given in table 5.6 was obtained.

Table 5.6: The element values of the Lumped/distributed network. These ave
equivalent to the values given in Table 5.3

-9

R L
12 0.307605 0.402262 0.482826
10  0.355284 0.209382 0. 335584
8 0.307605 0.203249 0.300336
6 0.307605  0.203249 0.335584
4 0.355284 0.209382 0.482826
2 0.307605 0.402262 -

The computer analysis of both versions of the network is plotted in
Fig 5.15. A comparison of the responses shows no change in the passband

width and the return loss of the lumped/distributed version is nearly
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Fig.5.14 (3} A typical distributed combline section

(b) Mixed lumped,/distributed equivalent
section
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identical with the exact commensurate Jine length one.  Also there is

a slight change in the skirt selectivity with improvement in the Tow

side of the lumped/distributed passband over the distributed version.

The most important advantage of using lumped capacitors is the

widening of the stopband by moving the second passband to higher
frequencies.  In this particular example, the second passband of the
distributed network is moved from (24 - 27) GHZ.It was moved to higher
than 32 GHZ in the lumped/distributed case and it no Tonger appears as
perfectly shaped passband due to the destruction of the distributed

domain periodicity. This advantage makes the lumped/distributed combline
filter most suitable for multiplexer applications, when the broad stopband

is needed to accommodate more channels.

5.7  DESIGN TECHNIQUES FOR TEM-NETWORKS HAVING COUPLED CIRCULAR
CYLINDRICAL RODS

It has been pointed earlier in this chapter that parallel coupled
arrays TEM networks can be realized in the coaxial structure form by using
either rectangular bars or circular cylindrical rods. The physical
dimensions of the TEM structure having rectangular barg are obtained
by using Getsinger's procedure [59]. On the othe: hand, the circular
cylindrical rods realization can be achieved by using Cristal charts [60].
In his work, Cristal presented an approximate design method to realize
networks that require rods 6n non-equal diameters and Spacings. The
‘graph shown in Fig.2 of Reference (60] gives the normalized mutual
capacitance (C /e) against half normalized spacing 1/2(S/b). In Fig.3
of Reference [62]; half the normalized self capacitance 1/2 (cg/e) against

1/2(S/b) is given.  Both graphs are for periodic structures consist of -

circular cylindrical rods located between parallel ground planes. These

two graphs are provided in the appendix,
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This section presents a simple method based on those two graphs
and the capacitance matrix to design parallel coup1éd transmission-
Tine networks such as combline and interdigital filters with equal

diameter rods, as shown in Fig 5.16.

5.7.1 Method [61]

As was claimed in reference [60], the use of circular cylindrical
rods as resonators offers severa]imanufacturing advaﬁtages over the
rectangular bars; it is therefore, obvious that, when circu]gr
cylindrical rods of the same diameter are being used, the manufacturing

process becomes much easier and the cost is reduced still further.

Consider the N-resonator prototype parallel coupled transmission-
line filter shown in Fig 5.17 with a redundant normalized unit element
introduced for practical reasons at each end, the admittance matrix (Y]

of which may be written as:

r -1 o 0 o0 - - 0 0
1MW K, 00 0 I L - 0
0 -Ki,2 Y; -K2,3 0 - - - 0
0 0 Koz Y3 Ky, - - - 0
- 0 0 0 Ky, - - - - 0
- .. - _ o, | 5w
- - - - - - - - 0
L R R
0 © - - - 0 0 -1 1

To simply the calculations, matrix equation (5,48) may be scaled
by multiplying the rows and columns by suitable constant so that all

the main diagonal terms will be Unity and the transformed matrix -
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[Y] is given by:

—] "Yl’Z 0 ) 0 0 v 1o v 0 -

‘Yz’l 1 'Y2'3 0 0 teo voe

0 : -Y3’2 ] 'Ys,h 0 cee ) 0
0 0 -YL;’3 ] L) ee e 0

[v] = _ _ 0 5,49

° ' Yii-11 i (5:49)
. - . A T
O 0 evae ese - O -YN+2,N+] 1

From the [Y] matrix, the equivalent capacitance matrix may be derived
using the argument described by Wenzel [48],[50]. This is given by

-

CI+C12 —Clz 0 0 ) 0
'C21 CZ1+C2+CZ3 ’C23 0
0 -C3p  C32#C34C3, -Csyy

[c] = 0 0 » "CL,3 (5050) .
0 0 0 |
. . | . , 0
. . . | “Cna1 Ne2
0 0 0 -
N2, Ne1 Cns2?One2, Ne
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Consequently, the network in Fig 5,17 is replaced by {its
equivaTent.CaPaCtiVe form shown in Fig 5,18, where cik {s the coupling

capacitances and C; is the self capécitances.

The necessary and sufficient condition for realization is that [C]

must be a symmetrical hyperdominant matrix i,e.

(a) the diagonal terms

0 i=2,3 -=-N-1 ’

Cia1,i ¥ %41 * GLin 2
Cp+Cp 3 0
Chs2 F Cnsrne2 2 0
L (5.51)

(b) Gy =Gy 17 K

W

(C) | Ci 0

(d) Cp o€ O i# k

L,

The terms of matrix equation (5.50) may be obtained from matrix equation
(5.49) by assuming that each conductor is coupled directly only to its
nearest neighbours and using the relation given in equation (5.34). The
coupling capacitances ci.i+] and the self capacitances Ci can be

found by substituting the coupling and self admiiiances respectively, in

equation (5.34). From matrix equation (5.49), Y is the coupling

1,141
characteristic admittance between conductor i and i+1, Yi is the self

characteristic admittance of conductor i and given by

Y.i = ] - Y_‘_] ’.i - Yi,i‘\’.\ i =2+ “*]
Y, = 1 -0 » (5.52)
Vg2 =1 - YN+2,N+1 ‘
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In most practical applications, 50 q terminations and air filled

i 451 Can be found from the following
’ B

relations:

(C; s.4/e) = 7.534 Y, .
i,i#1 1,141 (5.53)

(Ci/e) = 7.534 Y,

Having obtained all of the terms of matrix equation (5.50), one

may proceed by finding the physical dimensions as follows:

(a)
(b)

(c)

(d)

Choose a suitable (d/b) ratios
Determine the separation distance % (S5, , +/b) and 3 (S; ..,/b)

i-1,i 1,141
between rod (i) (i =2+ N + 1) and its neighbours (i - 1) and
(i + 1) from the graph in Fig.2 of reference [60] for the given
values of Cm/e = (Ci,i-f/el and Cm/e = (Ci,i+]/e) respectively.

L]

Determine the total value of self capacitance (Cg/e = C;/¢) of
rod (i) from the graph in Fig.3 of reference [60], by adding the
values of the vertical coordinates of the two points on the chosen

(d/b) curve whose horizontal coordinates 3 (S, y ;/b) and % (S: ..4/b)
i-1,1 i,i+]

: . '
have been obtained in step (b).  The value of C,/e is different

from that shown in matrix equation (5.50).

scale the ith row and column of matrix equation /5,50) such that its

main diagonal terms will have the value of A;i where
] ]
Ai = Ciaq,g * G Gy qnle (=214 (5.54)

] . .
Ci/e is the self capacitance of rod (1) obtained in step (¢)

And the scaling constants (ny) are given by

N = [f_u_] (=2 + N+1) (5.55)

1
Aif
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(e) ~ owing to the scaling process in step (d), new value of
(Ci_]’ /) and Ci’i+]/q) are obtained and the cycle may
~_be repeated until the scaling constants (ni) approach unity.
And the dimensions obtained in the last scaling cycle are the

required ones,

(f) The first and the last rods may be made having the same
diameter as the rest by adjusting the position of the side

walls of the <tructure as follows:

let C0 be the coupling capacitance between the first rod

and its side wall
L A]] = (Co‘+ C] + C]Z)/e (5.56)
where A]] is the first diagonal term of the capacitance

matrix (known)

c] is the self capacitance of rod 1

C]Z is the final scaled value of the coupling capacitance

between rod 1 and 2 (known)

choose a reasonable separation distance between rod 1 and the,
wall } (Sq/b). From graph in Fig.2 v reference [60]
find the value of Cm/e = Co/s and from graph Fig,3 of reference

[60] find Cg/e = C;/e). Use the obtained values of C, and C4
in equation (5.56). Repeat the cycle by choosing a new
value for % (S]w/b) until equation (5.56) is satisfied.

The method may be illustrated further by the following numerical example:
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Numerical Example

A 4-resonator prototype doubly terminated by a 1 @ resistance,
shown in Fig 5.19 has been synthesised to satisfy an equiripple response
in the passband between 4 GHZ and 4.5 GHZ and 20 dB minimum return loss.

The resonators are quarter wavelength at 15 GHZ,

The element  values are shown in Table 5.7 where C; X 10'9 are the
t
lumped capacitors in farads, Yr are the characteristic admittances of
i
the shunt short-circuited stubs in Siemens and Kr re] @re the characteristic

admittances of the frequency-dependant admittance inverters in Siemens.

Table 5/1: Element values of 4 resonator combline filter

t _g t t
r C. x 10 Y. Kr,r+1
1 3.62554 7.40989 1.3188
2 8.78528 17.9608 1.57438
3 8.78528 17.9608 1.3188
4 3.62554 7.40989

The 1 @ unit elements at both ends of the network have been

introduced for practical convenience,

The admittance matrix for the inductive array of the network

may be given as:
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I n2 N3 ny
¥ v +
1 -1 0 0
n, ~ -1 8.40989 - 1,3188 0
., Insg > 0-1.3188 17.9608 =~ 1.57438
Y =
[v] In,» 0 0 - 1.57438 17.9608 -
ng+ 0 0 0 - 1.3188
0 0 0 0

e

1
8

.3188
.40989 -
-1

1
0

254

(5.57)

The scaling factors n; are chosen such that all the diagonal terms

be unity; therefore

and, because it is a symmetrical network,

n, = 0.34483
n, = 0.235959
ng = Ny

after scaling we have the values shown in matrix equation (5.58):

1
-0.34433
0

Y]

0
0
0

-0.34483
1
-0.107305
0
0
0

0

~-0.107305

1
-0.087656

0

0

0

0
-0,087656

1
-0.107305

0

0

0

0
-0.107305

1
-0.34483

0

. -
0
0
0
.34483
1

(5.58)
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For 50 @ terminations and air-fi]]ed line, the equivalent static

capacitive matrix s given by

7.534 -2.597949 0 0 0

0
-2.597949 7.534  -0.808436 0 0 0
0 -0.808436 7.534  -0.6604 0 0
Ic|= | | (5.59)
0 0 -0.6604  7.534 -0.808436 0
0 0 0 -0.808436 7.534  -2.597949
0 0 0 0 -2.597949 7.534 |
with d/b = 0.4,

By us1ng the elements of matrix equation (5. 59) and the graphs in

Reference [60] proceed in f1nd1ng the dimensions.

(i) Rod 2:
(a) From the graph in Fig.2 of Reference [60]: use C,,/e = 2.597949,
intersect (d/b) = 0.4, find } (CZI/b) = 0.06
(b) Repeat for (C23/e) = 0.808436 = } (S,3/b) = 0.193
(c) From the graph in Fig.3 of Reference [60], use } (52]/b) = 0,06,
intersect (d/b) = 0.4 find x(Cg/e) = 1.55
(d) Repeat for } (S,5/b) = 0.193 Q0 - X)(Cg/EI =2.]
i
Cy/e = X(Cg/e) + (1 - x)(Cg/e)
Cp/e = 1.55 + 2.1 = 3.65

(ii) Rod 3:

(a) From the graph in Fig.2 of Reference [60]: use (Cyp/e) =
0.6604, intersect (d/b) = 0.4 3 3} (S34/b) = 0.225

(b) -Since (Cgp/e) = (Cp3/e) >3 (S3p/b) = } (Spy/b) = 0,193

(c) From the graph in Fig.3 of Reference [60], use 3 (S5,/b) =
0.225, intersect (d/b) = 0.4 = X(C /e) = 2.2
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Then, the capacitance matrix equation (5.59) can be transformed to that
shown in matrix equation (5.60) by multiplying the ith row and column

L]
by the corresponding scaling constant ns

(7534 -2.514253 0 0 0 o ]
-2.514253 7.056385 -0.684629 O 0 0
| O 0684629 5768836 0.505673 0 0 (5.60)
0 0  -0.505673 5.768836 -0.684629 0
0 0 0  -0.684629 7.056385 -2.514253
0 0 0 0  -2.514253 7.53

The cycle may be repeated by using the elements in matrix equation (5,60)

|}
Consequently, results in the scaling constants ny at values

0.990924

3
N

[}

3
«n

n

0,988797

Similarly, by using nE, matrix equation (5.60) can be transformed to

the matrix given in matrix equation (5;6])

[ 7.534  -2.491838 0 0 0 0 )
~2.491434 6.928882 -0.670815 0 - 0 0
) 0  -0.670815 5.640302 -0.494406 0 0
Ic|= | (5.61)
0 0  -0.494406 5.640302 -0.670815 0
0 0 0  -0.670815 6.928882 -2.491434
0 0 0 0  -2.491434 7.534
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(d) For i (S3,/b) =0.1933 (1 - X)(Cg/e) = 2.1
C;/e =.x(cg/e)+(1-x)(Cg/e)théreforé (C;/e) =2,2+2,1=4.3

(i11) Since the network is symmétrica],’rod 4 has the same self
capacitance as rod 3, and rod 5 has that of rod 2; therefore
(C4/s) =43
1
(Cs/s) = 3,65

The scaling operation may be performed and the scaling constants
n; can be obtained as f21lows:,

(a) The scaling constant né:

[}
Ao = (Cpy + Cp + Cp3)/e

A, = 2.597949 + 3.65 + 0.808436 = 7.056385

22
therefore
! 7.056385 !
n, = —=—1 =0.967784
7.534
ng = n, = 0.967784

]
(b) The scaling constant n,:

Ay3 = (C3p * L3+ C3q)/e

>
(]

0.808436 + 4.3 + 0.6604 = 5,768836

33
therefore
3
Ny = 5.7688361% _ 4 875047
7.534
] A
= ny = 0.875047
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However, repeating the cycle by using the elements in matrix

equation (5.61) results in the dimensions shown in Table 5.8 and the new

i

set of scaling factors n; are

np =N, = 0.999882

n3 l"l4

1.00132

]
which clearly shows that n, = 1; i.e. matrix equation (5.61) is unique

for the dimension shown in Table 5.8 and for d/b = 0.4,

The first rod and the last one may be made with the same diameter
as the rest by adjusting the position of the side walls of the structure

as follows: Use equation (5.56)

A]] = Co + C1 + C]2 |
where

A]] = 7,534

C]2 = 2.,491434

(a) choose i(S]a/b) = 0.1
From graph in Fig.2 of Reference [60], C./e =C. /e =1.7

0
From graph in Fig.3 of Reference [60], ;(cg/e) = Q(C1/e) =1.75 2
Cq/c = 3.50 -
Ajp = 1.7 + 3.5 + 2,491434 = 7,691434

7.534 L 7.691434

(b) choose a new value of Q(S]u/b) = 0.1
From Fig.2 of Reference [60], C /e = C,/¢ = 1.55
From Fig.3 of Reference [60], Q(Cg/s) = 3(C/e) = 1. 3
C]/e = 3.65
A 1.55 + 3.65 + 2.491434 = 7,601434

1
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(c) choose another yalue of Q(Slu/b) = 0,115
From Fig.2 of Reference [60], C/e = C,/c = 1.48

From Fig.3 of Reference [60], ;(Cg/s) = ;(c]/e) =1.8 »
C]/e = 3.6
An =1.48 + 3.6 + 2.491434 = 7.571434

so it cah be claimed that the distance Q(S]U/b) = 0.115 is the
right choice for d/b = 0.4
S]u/b =0.23

Table 5.8: Dimensions

: 52]/b = 556/b = 0,126
Sypfb = Spg/b = 0.44

5.8 MICROWAVE INTEGRATED CIRCUITS (MICS)

In certain airborne receivers, satellite systems and many others,

| size and weight are very important factors in the design process. The
necessity and the greater demands in these app]icétions for mass production
with lower cost have pushed the trend towards smaller components and

consequently led to the development of microwave integrated circuits.

The MICS technology is nowadays quite mature and keeps in pace with
the continuous increase in the complexity and sophistication in almost

every aspect of microwave devices, components, sub-systems and systems.

In passive circuits, the microstrip transmission line and the suspended

substrate transmission line (strip 1ine) are the most popular forms of
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circuit for MICS. The microstrip shown in Fig 5.20 consists of a strip
conductor separated from the ground plane by a dielectric layer. All
associated circuit parameters are defined in the plane of the strip
conductor.  The characteristic impedance and length of lines determine
the circuit properties. The propagating field lines between the strip
conductor and the ground plane are distributed between the air and the
dielectric substrate with the major part is contained in the latter. Hence
the propagating mode along the strip is not purely TEM but a quasi TEM
or even more comp11cated than that when the structure shown in Fig 5.20
is sealed in a closed container. A detailed and comprehensive treatment
for the analysis of microstrip transmission line was given by Mitra and
Itoh in [62]. However, the microstrip structure has attracted much
attention in recent years and its characteristics and behaviour are still
under further investigation and study in different circumstances for

different applications.

On the other hand the suspended substrate strip transmission line or
as simply known the strip line shown in Fig 5.21 consists of a strip
conductor on the face of a dielectric substrate and the substrate is then
suspended in a metal enclosure. The major part of propagating field
in this structure is in the airspace between the dielectric substrate and the
ground. The circuit characteristics are determined by the substrate thickness,
dielectric constant, ground plane spacing and width of the strip conductor,
The strip line was introduced thirty years ago and was going under intensive
study in the early fiftees of this century, Therefore it may be considered
as the first generation of MIC_ where the microstrip may represent the second
generation, A]though the strip line was known for so long, its use in

microwave design did not become very popular until quite recently when new



Fig. 5.20 Microstrip transmission line

Fig 5.21 Suspended-substrate strip line
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Tow Toss dielectric and substrate materials became available and paved the
road towards the development of the different versions of MICS. A
considerable amount of experimental and theoretical data on the MICs can

be found in [63] and [64].

5.8.1 The MICS Filters

Filters are no exception from the continuous demands for §ma]1er.
components and cheaper minufacturing cost either as individual components
or part of MIC packages performing many functions. In the past some
types of microwave filters have been built in one form of MIC, or
another. They were limited to relatively wide band applications where
the selectivity is not severe. Most recently two important contributions
have been reported [65], [66]. In both of these papers, the microstrip
structure has been di;carded because microstrip filters suffer from
limitationé on stopband loss due to quasi surface modes, higher in-band
dissipation loss and Timited range of impedance achieved which 1imits
filter realizations, performance and design flexibility. In contrast
the suspended substrate stripline (SSS) has been found to be the most
suitable structure. This structure is capable of achieving very good .
electrical performance, temperature stability and fine tuning is possible

with screws in the main enclosure,

The SSS structure has been used in Reference [65] to construct
stepped impedance low-pass and broadband interdigital filters exhibiting
Butterworth and conventional'Chebyshev responses. In Referénce [66] this
form of realization was used for constructing broadband filters based on
the génera]ized Chebyshev low-pass prototype introduced in Chapter 2 of

this thesis which exhibits a single transmission zero at infinity with the
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remainder at the same finite point w = & 0y

This section presents a microwave low-pass filter design example
based on the highly selective prototype introduced earlier in this

thesis (Chapter 2, section 2.7.2). The design and construction technique

is similar to that used in [66].

5.8.2 Design and Construction of SSS Microwaye Lowpass Filter

The low-pass prototype filter satisying a generalized Chebyshev
response with three transmission zeros at infinity and multiple order
transmission zeros at the same finite frequency ¢ = + w, has been
introduced in Chapter 2. This filter has a selectivity close to the
optimum elliptic function prototype but much éasier to realize physically,
since the variation in the impedance level is less than 2:1 comparing

with about 10:1 in the elliptic function.

The microwave low-pass filter design example given here is based on
the generalized Chebyshev Tow-pass prototype of degree N = 11 shown in

Fig 5.22 and is required to satisfy the following specifications:

cut-off frequency fb = 4 GHZ
minimum stopband insertion loss = 40 dB

and minimum passband return loss = 2§ dB.

The lumped prototype element values C,(R), Lo (R), LZ(R) and C,(R) of this
network are taken from Table 13 in Chapter 2 of this thesis. The
corresponding value of wy = 1.1158 is taken from Table No.16 in the

same chapter.

To transform to the distributed domain, Richard's transformation
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should be applied

p » Bt = gtanh(ap)
where the constants a and g are chosen such that the shunt resonanf branch
may be realized directly by uniform admittance shunt 0/C stubs. Each
stub is one quarter of a wavelength long at the finite transmission zero

for

Consider a typical lumped shunt resonant branch and its proposed
microwave printed circuit realization of a uniform admittanée 0/C stub shown
in Fig 5.23,a §nd b respectively. Its admittance may be written as

L L 2P |

o(R) = T 5 | (5.62)

: 1+p/w 0

2
where w®) = 1/L,(R).C,(R).

After applying Richard's transformation, it becomes

C,(R) 8t

Y,(R) =
2 5.63
1+ thzlm 2 ( )
0
If B =u, | (5.64)
Then
B C,(R) t
Y,(R) = —2
2 B A | (5.65)
"o Y5(R) = 18 C,(R) tanh(2ap) | (5.66)

which clearly shows that the shunt resonant branch is realizable by a

uniform admittance shunt 0/C stub of characteristic admittance:
Yo2(R) = 8 Cp(R)/2 - (5.67)

The constant a can be obtained from the Richard's transformation at
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the bandedge.

8 tan(afb)

%‘ tan”' (1/) (5.68)

b

Wb

o. a

from equation (5.64), 8 = 1,1158, and fb = 4 GHZ (given). Then

a = 10.466817 (5.69)

Since the 0/C resonant stub should be Ao/4 Tong at fo then, from

equation (5.66)

0
2afy = 90° 3 fo = 4.2993 GHZ

- The length of the resonator is

2. = a8 = - o 0.68638" (5.70)

However, as a direct result of Richard's transformation, the two
shunt capacitors C,(11) and C;(1) of the lumped prototype network
contributing for two out of the three transmission zero at infinity are

rea]ized by shunt 0/C stubs of characteristic admittance

Yor (1) = Yoy (1) = 8Cy(11) = 8C, (1) (5.71)
and they can be made a quarter wavelength long at 2f,. Hence, the length

of the 0/C stub:

20 = Ao/8 = 0,34317 (5'72)

The characteristic admittances of the shunt 0/C resonator stubs YOZ(R)
and those of the shunt 0/C stubs Yp1(RY are calculated f.um equation (5.67)
and (5.71) respectively and given in Table 5.9.
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Table 5.9: The normalized characteristic admittances of the shunt

0/C stubs of the low-pass filter

Yor (1) = Y5, (1) = 0.944685
Y92(10) = Yo,(4) = 0.658812
Y02(8) = Yg,(6) = 0.934409

it remains to realize the series elements Lo (R).
These elements are responsible for the third transmission Zero at infinity.
Due to Richard's transformation, these elements correspond to short-
circuited stubs that produce an infinite impedance when a quarter of a
wavelength long at 2fo. At this frequency the two shunt 0/C stubs are
also a qﬁarter of a wavelength long each producing an infinite admittance
while the shunt 0/C resonator stubs are one half of a wavelength long and

hence do not contribute to the response of the filter,

Since a direct realization of a series S/C in printed circuit form
is difficult, therefore an alternative approximate realization is given in
[66] and adopted here. It utilizes a length of short transmission line
to provide a series inductive effect on the printed circuit. This
approximation is justified by holding a stopband upto about an octave above

the cut-off frequency and this is suitable for several applications.

Let thellength of short transmission lines which realize the series
Tumped inductances L (R) in m1crowave frequency equal g (R) < A,/8 and
have effective inductances L o(R).  To calculate these values, one may start
by equating the impedances of length of short transmission Tines to the

required impedance at the cut-off frequency fb‘ Thus
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Jup Ly(R) = § R} Z(R) tan(af,) | (5.73)

where Z(R) = BLO(R)
R

the actual load resistance. In this example

()
Ro =580 @
wy = anb
' R Z(R) ‘
_ 0
LR = —— tan(af,)
W
b
But tan(afb) = 1/8
-Hence
' L, (R)
0 0
ALO(R) = — (5.74)

[
b
which of course can be obtained directly by simple impedance and frequency

scaling.

However, the Tumped inductance of a short Tength of Tine ¢_(R) can
3
be approximately given by [28].
. Z_ 2_(R)
0 s
LR) = == (5.75)

where v is the velocity of wave propagation

Z°4is the characteristic impedance of the line.

Then, from equation (5.74) and (5.75)

L (R).
oy - R0

. (5.76)
Z,
where Z, = Zo/ko 1s the normalized characteristic impedance.

Since these series inductances are also acting as connectlng 11nes

to the shunt 0/C stubs, therefore the determination of Z is governed by
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the requirement of producing a smooth transition across the deyice and
from the input and output coaxial connectors to the printed circuit

board.

With the final configuration of the printed circuit structure shown
in Fig 5.24 in mind, one may proceed in calculating % (R) In this |
design a % oz., O, 005 thick glass reinforced teflon known commercially by
(RT/duriod) has ‘been used due to its high level of tolerance on dielectric
constant and the thickress of copper and dielectric. The circuit elements appear
on one side of the substrate. The board is placed in the middle of a metal
box of ground plane spacing b, suitably chosen to Prevent the propagation
of the higher order modes. In this design b = 0.07" which also ensures
that b is much greater than the dielectric thickness. Within this choice
the conductors are practically in air hence the variation of the overall
dielectric constant with temperatuke will be very close to that of air €
and has 1ittle effect on the response. ' The thickness of all conductors
ist = 0.00085". The width of the series conductors is chosen to be ws =

0.025 .

The characteristic impedance of the piece of centre conductor of

the terminal connectors symmetrically 1ocated 1ns1de the metal box is
given by [64].

og 2
m

. ,
- 5077
» (5.77)

For 50 @ termination and air filled structuré the diameter of the
centre conductor D=0, 036 The distance from the series connecting lines

to the nearest side wall S = 0, 03
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Having established these values, the characteristic impedance
Z; can be calculated, cqmmencing By calculating the fringing capacitances
using Getsinger's charts [59]. Consider the cross section of a typical
short series connecting line inside the box shown in Fig 5.25.a with the
associated capacitances. With t/p = 0.012 and 2$/b = 0,857, Getsinger's

1
charts gives: Cf/e° = 0.46 , Cf/eo = 0,51

Since Cp/e0

= 2W./(b-t) = 0.714
Then, the total static capacitance per unit length of the line is given
by

] ]
Cp leg =2 (Celey + Cfo/eo + Cp/e = 3,368

s o}

Then, applying equation (5.34)

Z, = 7-534/(025/50) =2.236 q

Now, the length of the short series transmission line can be calculated

from equation (5.76) and their values are given in Table 5.10,

Table 5.10: The length of the series connected

transmission lines

1 (10) = 2(2) = 0.169
1(8) = 1,(4) - 0.158"
1(6) =0.162"

To complete the design, the widths of the shunt 0/C stubs should be
found, Consider the cross section for a typical stub with the associated
capacitances shown in Fig 5.25.b. Each of these stubs caﬁ be treated as
being in isolation between two parallel ground planes. This is because

the coupling between the parallel stubs is negligible for high 2S(R)/b ratio
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as may be clearly seen from Getsinger's charts and the coupling between
the ends of the stubs and the nearest sidewall can be neglected by
adjusting the distances to these walls, Hence, the total static

capacitance per unit length of each shunt 0/C stub is

Cy(R)ey = 2 € (R)/e, + 8 Ce/e  (5.78)
and since

C,(R)/e, = 7.534 Yp(R) R = 10,8,6,4

Co(R)/c, = 7.538 Y, (R) R=11and 1

which can be obtained by substituting the values of Yg2(R) and Y4, (R)
given in Table 5.9. Then Cp(R)/eo are calculated from equation (5.78)
and the widths of the stubs W(R) are followed as given in Table 5.11.

Table 5.11: The width of the 0/C stubs

W(10) = W(4) = 0.053997"
W(8) = MW(6) = 0.089892"
N(11) = W(1) = 0.09123"

However, the length dimensions obtained so {ur are not final. Since
the shunt 0/C stubs and the series short lines are connected at a Tee-junction,
their Iengthé should be modified taking into account the junction effect.
Thus, the actual lengths 2;(R), z; shown in Fig 5.23 are calculated as
follows:
L. - W/4 = 0.68"
b - W /4 = 0,337"
1(R) = 2,(R) - Ei%ill - W(R)/A . R =10,8,6,4,2

L

1
r
'
20
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Thus,
2.(10) = 2.(2) = 0.133"
2 (8) = 2 (4) = 0.12F
1(6) = 0.118"

These set of values are obtained under the assumption that the
original values were measured from the corresponding reference planes
of a simple stripline Tee-junction as given in Reference [28] and

j1lustrated in Fig 5.26.

Having completed the design, the low-pass microwave filter has
been constructed and tested using a swept frequency reflectometer
arrangement. Its experimental insertion loss and return loss

characteristics are obtained as shown in Fig 5.27.

5.9 CONCLUDING REMARKS

The main concern of this chapter is developing design procedures

and construction of classes of TEM mode filters for broadband app]icatidns,

The chapter began by a brief introduction on the basic concepts of
the distributed circuits. The analogy between these circuits and their
lumped counterparts was ekp]ained by considering the weil known Richard's
transformation. The concept of the Unit Element was also discussed and
its utilization in TEM networks either in a redundant or non-redundant

form was mentioned.

After that introduction, the parallel coupled Tines class of TEM-
network was discussed. Within this context an exact synthesis procedure

for prototype broadband combline filter was given and a new design
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method to realize TEM-network in coaxial form haying equal-diameter

coupled circular cylindrical rods was presented.

The exact synthesis procedure was developed for arbitrary bandwidth
combline filter based on a doubly terminated LC bandpass prototype
satisying a generalized Chebyshev characteristic having equiripple passband
response with single transmission zero at the origin and an odd multiple
at infinity. The synthesis procedure was programmed on a computer and
wheh the alternating pole synthesis technique was used, networks of up
to degree 30 can be easily synthesized and their element values are
obtained with little loss of accuracy. On the other hand, it has been
found that networks of degree less than 18 can be synthesized using the
conventional p-plane element extraction technique. However, the computer
program gives the lumped prototype element values, converts them into
distributed stubs 6r into mixed lumped capacitors and short circuited stub

if required and provides the frequency analysis of the circuit,

An octave bandwidth microwave combline filter was designed using
distributed stubs and constructed in coaxial form with the parallel coupled
bars having rectangular cross sections. The experimental results are
given in Fig 5.13. They show a shrink in the pdssbahd. Instead of
(3 + 6) GHZ as expected, the measured one is approximately from (3.7 »
5.6) GHZ. This is because for such design specifications; the bars are
tightly coupled and the correct width of the bars can not be calculated
easily due to the interaction of the fringing capacitances. The use
of the approximate formula given in equation (5.41) has not helped much
in obtaining the correct value of the widths, since the resulting values
still do not satisfy equation (5.40) for the chosen t/b ratio.

Furthermore, Wenzel [58] has shown that the return loss and the upper
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bandedge of these networks response are extremely sensitive to the

value of coupling admittances YZ(R) which affect the gap between the
bars. So un]ess'a strict mechanical tolerance is considered during the
construction, the return loss and the upper bandedge are altered
considerably,  However, the experimental results obtained here are
considered satisfactory within the mechanical tolerance used. The

response might be improved if a smaller t/b ratio had been chosen.

This chapter has also presented a new design method to realize
TEM-networks such as combline and interdigital filters in coaxial form
having equal-diameter coupled cylindrical rods. This method based on

the graphs in Fig.2 and 3 of Reference [60] and the capacitance matrix,
‘It is approximate in the sense that each conductor is coupled only to its
nearest neighbours and its accuracy is governed by the accuracy of the
mentioned graphs which is within the accuracy of the manufacturing process.
The method permits the handling of data for filters synthesized to satisfy
narrow and moderate bandwidth specifications. It should also be suitable
for designing broadband fi1ters, but because a high capacitance Cm/e results
in some broadband cases (octave bandwidth), the limitation of Fig.2 bf
Reference [60] should be noticed. - In general the method is simple and
converges very quickly. It has been found that the method usually needs

no more than three cycle to converge, regardless of the rumber of resonators,

The last part of the chapter is concerned with the MIF:S form of
realizing TEM—networks. The concepts of microstrip and stripline were
giveh and the suitability of the latter to filter design in printed circuit
form was discussed. Then a design procedure was presented for a Jow-
pass broadband microwave filter. This filter based on fhe very selective

prototype of degree 11 satisfying a generalized Chebyshev response with 3-
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transmission zeros at infinity and the remainder at a finite point on

the imaginary axis. | The microwave structure was constructed in
suspended substrate stripline and the resonators were realized by

uniform admittance 0/C stubs. The selectivity of this type of filters
are close to that of elliptic function, but much easier to realize
considering the impedance level variation of less than 2:1 compared with
about 10:1 in the elliptic function and the uniform admittance 0/C stubs
realization which is not possible in the elliptic function. Furthermore
the experimental results shown in Fig 5.25 shows that an octave stopband
can be easily achieved.  This advantage make this filter even more |

admirable for diplexer and multiplexer applications than that used in

Reference [66].

In this particular example the experimental results shows a slight
| redﬁction in the cut-off frequency due to neglecting of the effect of

fringing capacitances between the resonators énd the nearest side wall,
However this can be easily adjusted either tuning screws or by pushing

the side walls a little further away from the printed circuit board.
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APPENDIX

-j- */b
Fig. 2—Graph of C-/ < (normalized mutual capacitance) vs J(i/6) (normalized half spacing).

(Reference [60])
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Fig. 3—Graph of (])C,/« (normalized half self capacitance) vs (J)j/6 fnormalized half spacing).

(Reference [60])
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CHAPTER 6

DESIGN PROCEDURE FOR MULTI-OCTAVE COMBLINE -FILTER MULTIPLEXERS

6.1 INTRODUCTION.

Broadband multiplexers, often spanning several octaves, are
most frequently used in electronic warfare applications. They allow
several signals to share a common broadband device usually an antenna.
Most of the multiplexers developed during the late sixties and early
seventies used higthass/low-pass or band-pass/band-stop diplexer
configuration in cascade. Elliptic prototypes were used to obtain sharp
cut-offs and maintain certain rejection level over very broadband e.g.
[67]. These devices have the disadvantage of being both difficult and
expensive to design. In addition, the number of filters used for a
given number of channels is high e.g. at least five filters for a
triplexer. The main reason that the cascade of diplexers approach has
been used is because, during those years;’it has seemed too difficult to
cover a ﬁulti-octave band with a common junction bandpass mu]tiplexer;
Meanwhile, the broadband combine filter has been undergoing continual
improvement. It can nowadays be constructed in straightforward manner
from the theoretical prototype with bandwid*ias approaching 100%,
stopband performance can exceed several times the upper passband edge
with no spurious response. The insertion loss and the VSWR in the
passband can be kept quite low even for a relatively high number of
resonators filter. Therefore the attention in recent years has focussed
on using combline bandpass filters to achieve smaller size, lower cost

bandpass common junction multiplexers.

A design method for comblire-filter nmultiplexers was presented
more than a decade ago by Matthaei and Cristal (68]. Their design equations

are based upon narrow-band approximations and the filters should be either
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singly-terminated or foreshortened doubly terminated. The junction
design consists of high impedance lines connected between‘the Jjunction
and the input resonators of the separated channel filters. However,

the method was limited to a total frequency range of the order of one
octave due to the narrow band approximation used in the design of
individual channels. More recently LaTourrette [69], [70] and [71]
presented several attempts to design a multi-octave combline filter-
multiplexers. His main concern was focussed on obtaining a minimum
susceptance‘band-pass channel filter by adding extra circuits to the
original non-minimum susceptance singly terminated combline structure

in order to achieve parallel connected common junction multiplexer.
Although these attempts have resulted in particularly successful devices.
Still their design processes are Tacking in generality and in most cases
the additional circuits make the manufacturing and the adjusting of these

devices much more expensive and difficult to achieve.

This chapter presents a new general design procedure for multi-
octave combline-filter multiplexers having any number of Chebyshev channel .
filters, with arbitrary number of resonators, bandwidth and interchannel
spacings. This procedure may be considered as a modified version of
that introduced in chapter 3 of this thesis. It commences from the element
values of a doubly terminated bandpass prototype combline filter
satisfying an equirfpple response which is obtained from a recently introduced
design equatibns [34]. These individual channel filters are connected at
a common junction. The multiplexer design procedure modifies the elements
in the nearest half to the common junction of each chénne] filter and as
in a similar manner to that given in chapter 3, it preserves a complete
match at the two points of perfect transmission c]oéest to the passband-

edges of each channel filter. However, this design procedure follows
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almost the same steps in chapter 3 and has all the advantages pointed

there.

The chapter begins by reviewing the combline filter Aesign
equations introduced recently by Rhodes [34]. Although these equations
are approximate they have been adopted here because of their compactness
and when used in a computerized multiplexer design method - as it is the
case here - they are certainly required less computer time compared with
the exact design method for combline filter introduced in chapter 5.
Then the multi-octave multiplexer design procedure is presented. The
computer analysis of several multiplexers are shown. Finally, a design
example of a combline filter diplexer constructed in a coaxial form of
realization is giVen and its experimental insertion loss and return loss

characteristics are established.

6.2 DESIGN FORMULAS FOR BROADBAND COMBLINE FILTER.

The multi-octave combline-filter multiplexer design
procedure commences from lumped/digtributed element doubly teminated
combline‘channe1 filters operating is isolation satisfying an equiripple

passband amplitude response shown in Fig. 6.1 and given by [24).

I.L. = 10 Log (1+& F %)) (6.1)

where w
1 [“tan(aw,)+ 2tan(awz)-zwtan(au)]

wztan(awzjlm]tan(aw]) | ]

F(w)=cos ncos”

+cos™ ) tan(am])tan(amz)(wz-m])+(tan(auz)-tan(awgy»tan(au)
tan(am).(wztan(amz)-uitan(awln

, (6.2)
w; and wy are the Tower and upper bandedge frequencies

n is the number of resonators in the netWork shown in Fig. 6.2
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whose lumped counterpart has (2n-1) transmission zeros -at infinity and

single transmission zero at the origin.

However, by extracting a negative>shunt short circuited stub
of characteristic admittance (°Y;,r+]) from every resonator in the network,
an equivalent format consisting of resonators separated by frequency
dependent admittance iﬁverter with characteristic admittance Y;,r+1 cot(aw)
js obtained. Scaling all admittances by cot(aw)/cot(awo), (where W) is
the passband centre frequency) results in the network shown in Fig. 6.3

where the rth shunt resonator possesses an admittance:

Br=j(crwtan(aw)-Yr) (6.3)
and the resonators are separated by ideal admittance inverters of
characteristic admittance Yr r41? but the terminating resistances become

frequency dependents 1i.e.

Rg=R2 = cot(aw)/cot(awo) (6.4)

However, it has been shown by Rhodes [34], that the design
formulas for this prototype network can be obtained easily with very good
approximation to satisfy upto an octave bandwidth specifications using

only the dominant term in Fn(w) given in equation (6.2) such that
-1 {m]tan(am])+u2tan(aw2)-2mtan(aw)
iwztan(awzf-w]tan(aw])

Fn(w) = COS |ncos

(6.5)

By comparing this prototype combline filter which satisfies the
equiripple response in the variable wtan(aw) given in (6.5) with the low-
pass prototype satisfies a conventional Chebyshev response in the variable w,
having a passband w=t1 and centre frequency at w=0, the approximate centre
frequency w, of the combline is obtained when the argument of Fn(w) is zero.
Hence

2ugtan(awy) = wtan(aw;)+u,tan(aw,) (6.6)
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and the frequencies F] qnd F2 where the perfect transmission occurs
closest to the bandedges, can be obtained when the argument is * cos(w/2n)

respectively i.e.

m]tan(am])+mztan(am2)-2utan(aw)

w,tan(au, -, tan(au, ) = cos(n/2n) (6.7)
w=F]
and
w]tan(aw)+w2tan(auz)-Zutan(am)
w tan(aw,) - w tan(aw;) = -cos(n/2n) (6.8)
w=F2

‘Hence, from equation (6.7)

F

2 .
tan(aF]) =w]tan(aw1)cos (n/4n)+m2tan(am2)s1nz(n/4n) (6.9)
and from equation (6.8)

than(aF2)=w]tan(am])sinz(n/4n)+w2tan(am2)cosz(w/4n) (6.10)

However, the values of w_, F; and F, can be obtained by using
one of the standard numerical techniques (e.g. Newton-Raphson) in solving

equations (6.6), (6.9) and (6.10) for given values of n, u, and u,.

The derivation of the design formulas for the combline based
on preserving unity transmission with the c~rrect overall phase shift
in the auxiliary parameter -jn or jn at the frequencies F] and Fz,where n
js as defined in equation (3.2). For broadband applications the cot(aw)/
cot(awo) frequency dependence of the terminating resistances Rz and R
must be taken into account. Furthermore,'the internal impedance level is
allowed to vary and the sections of the network in question is only required
to be image matched. Thus the overall transfer mairix of the network at F]

js given by:
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n-1 _/ilr —
_TT ] s (Spnt,) /A0 e (00 St

rlJ( 2+S)1+t

EE:?Ftr) ey
I 75— - [ == (Snty)
7 Arfien Ir
- ]
| (6.11)
and the overall transfer matrix of the network at F2 is given by
e -
nd 2r (S _~nt ) ivZ, 7 (n+ S_t
_IT ! .Z;'” rr Y eorlors I r r)
r=1 2,.2 2
.f(n +Sr-)“+tr)
Eﬁfsrtr) Zor41
' | ./Z (Sy=nt,.)
vyeartaral
- 1
(6.12)

Where the quantities in these two equations have similar definitions

as those in chapter 3.

Implying the same argument presented in chapter 3, matrix

equation (6.11) yields the characteristic admittance of the inventer.

(nf45 ) (14+t2)

Y = : r=.l_’r- (6 13)
ryr+l E i vl .
//erzlr+1(“ Spt)

and the admittance of the rth shunt resonator between the inventers Y

r=l,r

and Yr,r+] is
-1 (S#nt)) (S

C F,tan(aFy)- Y =
rl 1 r 'ZT; (n- Srtry

r-]+ntr-])
(“- sr—]tr-ﬂ

relag (6.14)
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Similarly, from matrix equation (6.12)
2 2
i J/kn #$5,)(1+t))

ryr+l - //E“—z-—— r=1*3 (6.15)
2rlorsy (n¥S,2 ) )

Y

and
] (Sr-nt ) (s _]"nt )
C Fotan(aF,)-Y = re+ - r-1
r2 2’ 'r ZZr (n+3rfr) (5 3857
r=l- (6.16)

To match into the terminating resistances at Fi and FZ’ the

internal image impedance of section r=1 must be respectively

) tan(amo)

4y = Tan(aF,] (6.17a)

tan(awo)

221 = tanZaF‘S

Since the network is symmetrical, then

and

1
N

Ln = Iy (6.18a)

Zon = I (6.18b)

and the impedance variation level can be approximately expressed by

- K
5 1™ (4gp) r=l> (6.19a)
3
L pa1™ (Zy) rel-g ~(6.19b)

On the other}hand, since Yr,r+] is the characteristic

admittance of a frequency independent inverter, then from equations (6.13)

and (6.15), it results in 2
1 n+Srt
Roril = B= {55t - (6.20)
o r+ or | "rty )
where
_ Z. i tan (an)
or 2;: - igﬁ‘car;) (6.21)

and consequently
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R

- 3 _1.D
ore1 = (Rgp) r=13 (6.22)

Rearranging equation (6.20), tr can be expressed by

-t _. n_ JR_QM r=l+g (6.23)

r Sr or 0r+1+]J

Having obtained all of the values in the right hand side of
equations (6.14) and (6.16), then they can be solved to gives the values
of Cr and Yr as

Aorlzlr +Bor/ZZr n

Co = Ftan(a Fp)-F tan(a Fy) rel>y (6.24)
and
_ _1.N
where 1
A = 1Srf“tr N Sp1ttey (6.26)
or © =St nmS b .
\
and rs N s ¢
-n _]-n -1
B =i, el 6.27
or ~ Tn¥S,E W +Sr-1tr‘-1j (8.27)
\ -

6.3 THE MULTIPLEXER DESIGN PROCEDURE.

As mentioned earlier, this design procedure is for multi-
octave combline filter multiplexers having any number (L) of Chebyshev
channel filters, with arbitrary number of resonators, bandwidths and
interchanne1 spacings. The design procedure is developed for bandpass
combline filters connected in series at a common junction. It commence§
from the lumped/distributed}element values of a doubly terminated prototype.
These element values are obtained from the formulas given in the last
section for the given values of: number of resonators ni(i=1*L), passband
edges frequencies wyy and wyys Passband minimum return loss, and the

quarter wavelength frequency f0>'
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The design principles used here are similar to those used in
chapter 3. But only the elements in the nearest half to the common
junction at each channel filter are modified here, taking into account the
frequency variation across each channel and the interaction due to other

channels.

A perfect transmission is preserved with the correct overall
phase in the auxiliary variable n at the two points of perfect transmission

(Fli and FZi) closest to the passband edges of each channel. However,

when channel § (j=1,2,3....L) is modified the remaining channels i (i=1,2,3,...

#3,...L) are replaced by their input impednaces calculated at F,. and F

. 1J 2]
to create frequency dependent complex loads at one end which are connected

in series with the generator resistance having values of

Z3j = tan (awoj)/tan(aF]j) (6.28a)

and

Z4j = tan (awoj)/tan(anj) (6.28b)
at F]j and sz respectively. The equivalent circuit of the multiplexer

is shown in Fig. 6.4, where

L

Ryg (Fyy) =i§jR]i (Fp3) tan(awg;)/tan(au,;) (6.29a)
L

Xt (F]j) =1§jxli (F]j) tan(a“oi)/tan(a“oj) (6.29b)
L

Rot (sz) =i§jRZi (sz) tan(a“oi)/tan(a“oj) (6.29¢)

and ) ‘
Xot (Faz) =i§jX21(sz)tan(auo1)/tan(auoj) (6.29d)

R]t(Flj) and th(sz) are the sum of the real parts of the

input impedances of the individual channels evaluated at F]. and F,. respectively.

J 2J
Xlt(Flj) and XZt(FZJ) are the sum of the imaginary parts of the

jnput impedances of the individual channels evaluated at F1j and sz
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respectively. The real and imaginary parts of the input impedance of

each individual channel may be given by:

_ 2, 2
Ry(F13) = Zgi Ay Dy34840y1)/(D74+(Z5:C40)7) (6.30a)
Xyi(Fus) = (ByiDyimZ2:ArsCr ) 02 4(ZesCr:)2)  (6.30b)
STALEY 11917 %51M3i 4 )07+ (25; G5 :
i 2 2
Roi(Faz) = Zgi(AriDpi*BpiCo3)/(Dp3+(Zg3Co4)7) (6.30c)
and ‘
Xos(Fps) = (ByiDoi-Z2 A Co ) 05:4( 2 Coi)?) 6.30d
2i(Fp; 210217 ZgiR21 %241 A02% (265 Co; (6.30d)
where '
‘251 = tan(awoi)/tan(a F]j) (6.31a)
Zg; = tan(aw ;)/tan(a sz) (6.31b)

0y is the passband centre frequency of channel i
A]i’ B]i’ C]i and D]i are the entries of the overall

transfer matrix of channel i calculate at Flj'

AZi‘ BZi’ CZi and DZi are the same entries calculated at

Fas.

For convenience, the series connected load from the common
junction side to channel j is replaced by its shunt equivalent circuit as
shown in Fig. 6.5 where G]t (F]j) and G,, (sz) are the real parts, Blt(Flj)

and By, (sz) are the imaginary varts. Hence, they are given by:

G]t(Flj)=(23j+R1t(Flj))/((Z3j+R]t(Flj))2+X$t(F1j)) (6.32a)

B]t(F1J)=‘X1t(Fij)/((z3j+R1t(Fij))2+X§t(Fij)) (6.320)
and e ) (L Ryl Fp ) U iRy Fp 5P ) (6.320)

Byy(Fpj) = -th(sz)/((Z4j+R2t(F2j))2+X§t(F2j)) (6.32d)

Now consider the overall transfer matrices given in equations
(6.11) and (6.12) respresenting channel j with all the remaining channels

i # j are replaced by the shunt connected load. Since the basic section of
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these matrices can be decomposed 1into a transfer matrix of a shunt
resonator and an admittance inverter, hence the overall admittance of
the rth shunt resonator obtained from matrix equation (6.11) can be

described by
S, 4. ¢, .t
85y e S5 et )

C. r Fijtan(aF :)=Y.

Js oz =St -
A5 15t 1,1
' (6.33)
and the characteristic admittance of the inverter is given by
//Qn S ; )(]+t .
Jarsr+l T ZJ 1o g.r! (r=1 ;i) (6.34)
// 1d,r lj,r+)("j' Jsr tj,r)
‘Similarly from matrix equation (6.12)
S: -n.t,
C;,rFp tan(aF, )-Yj r : E Lar 11J, r) (SJ r-1""%,r-1)
»§,r |t MJT (3553, r185, 770
(6.35)
and
J(ss daetd ) |
Jsr n
J (6.36)

YJ,r rel © //————*—-——- r=1,§-
2j,r"2j r+lh J J r J r)

Once again, since Yj,r,r+] is frequency independent then from'equations

(6.34) and (6.36) the expression for tj p can be written as

R _.R_. -1
t: = (n:/S; ) f 0j 0j.r+l nj
JaT Jd JsT r'=]“"2— 6.37
' 0J 0j,r+l + 1 ( )
where tj,o =0
R . = Z]j’r .
0j,r sz,r (6.38)

it has been found that the impedance level variation stiill follows the

expression given in(6.19a and b). Furthermore, for all-pass behaviour

in the auxiliary parameter for each channels at its critical frequencies

Fij and sz, the following re]ationships must be applied

Qg = Ve (Fry) (6.39)

1,1
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Roj,1 = G2¢(Fp3)/CGy¢(Fyj)
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(6.39b)

(6.23c)

However, the modified values‘of the elements associated with

the first resonator of channel j can be obtained by solving the following

twio equations for Cj,] and Yj’]

B]t(FlJ) + CJ 1 ]Jtan(a F] ) - Y - -A

0J,)
t(FZJ) + CJ 1o tan(a F ) - Yj’] = Boj,]
resulting in
Ci.1 = (A3, 1%Bo3,1%B1¢(Fi3) B ¢ (Fa3)3/(Fyj
and
Yj,l = Cj‘]F]jtan(a F]j)+Aoj.1 +Blt(F1j)
where ‘ ,
Aoi,1 = CrelFr (55,115 5,00/ (57854 ty)
and
Bog 1 = G2¢(F3) (55,17 M3%,0/ (y*S3,085,1)

(6.40)

(6.41)

.tan(a F2 .)- F]Jtan(aF .))

(6.42)

(6.43)

(6.44)

(6.45)

The modified values of the elements associated with the

remaining resonators in the nearest half to the common junction of channel

5 can be obtained by solving equations (6.33) and (6.35) for C
(r=1*ﬂj/2) to give
C. = Rogar + iy /(F,.tan(a F,.) - Fy.t F
s Y Tt Ty (st Fag) - Rygtente )
and
. =C, -
YJ,r Jar FZJta" (a FZJ) Boj,n/ZZJ,r
where
S. _+n.t. S. t.
IR 1S S A TG P9t M B Pl
AOJsr n°'§- t. + Nes S tJ

J JsT JsT J J,r' J,Y"]

Jor

and Yj,r

(6.46)

(6.47)

(6.48)
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and S t S t

N -n.C. N “N.L.

. _Jder Jd.r Jor=1_"jj,r-1

0jsr T M. ¥ 5. TS (6.49)

B
J J,rtj,r J J,r-ltj.r-1 .

The modified characteristic admittance Yj r'r+i of the

inverter can be obtained by using either equation (6.34) or (6.36).

The values of the elements associated with the other half of

each channel are remained without change as in isolation.

A computer program has been written to perform the modification
process. This prccess is then repeated channel by channel until all the

element values converge, to certain values and no further change is possible.

6.4 PROTOTYPE EXAMPLES AND COMPUTER ANALYSIS.

The validity of this design procedure for multi-octave combline
filter multiplexers is demonstrated by the computer analysis of several
design examb]es for a wide variety of specifications samples of those

example are given here.

i) a 5-channel multiplexer has been designed with each of its channels
having 8 resonators, bandwidth of 1 GHZ, minimum return loss of 20dB.

The combline channel filters are consisting of lumped capacitors and short
circuited stubs. Each of these stubs is a quarter wavelength long at
"15GHZ. The individual channel specifications and the modifed element
values are given in table 6.1.- The return loss and insertion loss

characteristics are plotted in Fig. 6.6 and 6.7 respectively.

‘ii) A triplexer has been designed with each of the 3-channels, having
6 resonators, bandwith of 2GHZ, minimum inband reti:i loss of 26dB. The:
short circuited stubs are quarter wavelength long at fo = 20 GHZ. The

 jndividual channel specifications and the modified element values are
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Yir and Yi;r,r+1 are in seimens-minimum return loss

multiplexer.

“$1

r 1 2 3 4 5 6 7 8
‘R} L.
o C]r . 6.15292 1 16.9766 |26.6197 |31.8151 | 31.9064 | 26.9409 |18.0062 | 5.72712
-1 3
2|'= Y, 1.32438 | 4.67732| 7.10123( 8.44703| 8.4796 | 7.21645| 5.08485[1.59616
o] 3
_: »
[S]
] .
é_ Y],r,r+1 1.19927 .00606} 2.57862] 2.78418] 2.59703] 2.06586| 1.38083 0
= -
™
Eﬁ CZr 3.53269 .38213(12.7745 {15.1522 {15.1747 [ 12.8509 | 8.58717 2.9376
< _
N )
o |0 Y2r 3.53633 .58893]12.8967 |15.264 ]15.2871 112.9752 | 8.80508] 3.0048
o 2“ Y2,r,r+1 1.32225 .05792] 2.59524| 2.78866| 2.60489| 2.08877| 1.40436 0
B =
it
gg C3r 2.11281 10663 7.77753) 9.22878| 9.24611| 7.8345 | 5.23597}1.81499
m -
=1 1}
g §; Y3r 5.0425 [12.1066 118.1972 |21.5514 [21.5867 }18.3121 |12.336 |4.26759
‘U L]
E :
[SAR]]
len Y3,r,r+1 1.32091 .05472] 2.5941 | 2.78834] 2.60634| 2.093041] 1.40914 0
< IR — —
< C4r 1.28897 .3158 | 5.06887] 6.02742| 6.04392| 5.122141 3.4236511.1919
1] . '
5
:t s y4 5.91935 }14.8966 [22.4531 {26.6443 {26.7067 |22.6514 [15.2233 |5.2925
2 u'_ r
Sla’
'S -~
21 Y4a[1£f] ?.2957 .039§En~3;5§§?§ 2.78§3$v ?.60682 2.09447 11.41092 0
© | 1
" 5: C5r 0.400102| 1.9617 | 3.23439| 3.92308| 3.96027{ 3.35653 | 2.2438210.78234]
'é Il'__
.E éf Y5r 3.56139 |15.1568 [24.6297 |29.811 |30.0801 25.5114 [17.1332 {5.96677
S )
it
™ Y5,r,r+1 1.00144 .90812 ] 2.54606| 2.77532| 2.607 2.09502 | 1.41188 0
TABLE 6.1: Element Values of 5-channel combline filter

C.
and w,, are in GHZ, ?%E x 1072 Farads

20dB for all Channels,
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Fig. 6.6

Return loss response of 5 channel combline filter

multiplexer
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given in Table 6.2. The return loss and the insertion loss characteristics
are plotted in Fig. 6.8 and 6.9 respectively.
r 1 2 3 4 5 6
C1r 1.638657|4.09635| 5.89134| 5.97556| 4.40932| 1.4245
:Nd'
N er 1.03293 [3.49723{ 4.80309| 4.90869| 3.937441 1.31704
Eé‘s’" '
ul\
(Ve
E’ Y]r,r+1 1.0506 }1.57961| 1.80382| 1.63519| 1.25028 0
~Npw0 o~ C2r 0.886556(1.89948 | 2.63698| 2.65737 | 1.95072 | 0.688487
—1 = N
g s 3 Y2r 2.927143 16.29474 1 8.447107 | 8.49499 | 6.410784 | 2.2872
©
she. Vor rer| 1-17441 [1.62015 [ 181514 | 1.65202 | 125809 | 0
= 9
C3r 0.19727410.934837| 1.36585 1 1.40874 | 1.03374 |0.370092
o, 2
" |%8|%§ Y3r 2.13856 |7.75791 [0.8825 {11.1736 |8.34211 {3.00667
%33
_cﬁ
© ﬁiﬁ Y3r el 0.966651 {1.52993 11.78877 | 1.65498 |1.26054 0
=
TABLE 6.2 Element Values of the Combline Filter Triplexer

6.5 DESIGN AND PERFORMANCE OF COMBLINE FILTER-DIPLEXER

C.
. ir -
w31 and wip are in GHZ, 7 X 10

Yir

9

in Farads,

and Yir,r+1 in seimens. Minimum return loss

= 26dB.

The combline filter diplexer has been designed with each

channel haing 6-resonators, bandwidth of 0.5 GHZ, in band minimum return

loss equal 20dB and the short circuited stubs are c:2rter wavelength long

at 18 GHZ.

The diplexer operates in 50Q system.

and the element values are given in table 6.3.

of this diplexer showing the insertion loss and the return loss characteristics

is plotted in Fig. 6.10,

The bandedges frequencies

The computer analysis
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r 1 2 3 4 5 6
C]r 3.58442| 9.78544 | 13.8054 | 13.9554 | 10.2167 | 3.73072
L
e
el — o Yip 8.95655125.3634 | 35.8444 | 36.2587 | 26.5866 | 9.70533
" Y]r,r+1 1.24406 | 1.88815 | 2.15027| 1.93985| 1.38577 0
Cop 2.82269 | 8.24469 | 11.6271 {11.7664 | 8.61422 3.14686
~ o~
Mw o
ol =" 1Y) 10.0143 128.2639 |39.686 {40.1356 |29.4217 10.7453
c] o N r
sl 3 °
_cﬂ .
© ‘ﬁ“ Y2r,r+1 1.23932 | 1.88261 | 2.14853| 1.93997| 1.38592] O
=
TABLE 6.3. Element Values of Combline Filter Diplexer Minimum

Return Loss = 20 dB in both channels.

These
. c .
Element Values are for 1o terminating loads. —" x10°2

2n

and Y.

Farads Yir ir,re

1 are in seimens.

This diplexer was constructed in coaxial form of realization
with all of the resonators in both channels having equal diameter circular
cylindrical rods. The design technique presented in section 5.7 has been
used in obtéining the physical dimensions of the diplexer structure shown

schematically in Fig. 6.11 its dimensions are obtained for the suitably

L]

chosen d/b = 0.4 and b = 0.3" and given in Table 6.4 when each rod has a

diameter d = 0.12" and since the length &r should be A»/4 at 18 GHZ, thus

er = 0.146".
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Insertion
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channel 1 channel 2
So1 = 0.044" - S47 = 0.046"
Siz = 0.165“ 512 = 0.174"
Sp3 = 0.194" Sp,3 = 0.204"
S3g = 0.2" 534 = 0.207"
S4g = 0.194" 545 = 0.204"
Sgg = 0.159" 556 = 0.171"
SGT] = 0.047" S6T2 = 0.048"
STAV4= 0.045" ST£¢V = 0.042"

TABLE 6.4 Distances between the rods.

The lumped capacitors have been realized by using screws.
These screws form parallel plates capacitances with the end of the rods.
However the distance D between the open end of the rods and the side

wali of the metallic box is determined by

Y = _‘%_A (6.50)

where ¢, is the free space permitivity = 8.842x10"2 Farad/meter

A is the cross sectional area of the rod = « d2/4

C is the smallest value of the capacitances given in table 6.3
scales to 5uq termination and modified according to the successive sciiing
ope}ation of the admittances to obtain equal diameter rods structure.
In this design example, the smallest value of C in table 6.3 is C2]=2.82269

13

x10'9/2n which finally became equal to 2.695x10” ' Farad. Thus D = 0.009".



o

Fig. 6.12 Experimental insertion
of the ccmbline filter

loss and
diplexer

return

loss characteristic



308

The diplexer has been built and then tuned using a swept-
frequency reflectometer arrangement connected to the common port. The
other ports were terminated with 50Q loads. The experimental insertion
Toss and common port return loss characteristics have been established and

shown in Fig. 6.12.

6.6 CONCLUSIONS

A new general design procedure has been presented for
multi-octave combline filter multiplexers. This procedure is based on
the same principles of that introduced in chapter 3 and has all the
merits, advantages and the approximations pointed there. In fact this
procedure may be considered as an ‘extension of the procedure introduced in
chapter 3 to broadband applications. The individual combline channel
filters are designed on the doubly terminated bases using the recently
introduced formulas [34]. Although these formulas are apbroximate, they
nevertheless give excellent results upto an octave bandwidth.
Furthermore, they are quite compact and can easily be programmed on a

computer.

The individual channels are connected in series at a common
junciion without the addition of immittance compensation netwo.ks or dummy
channels. However, the channels may be coupled by means of a common
transformer. Commoh transformer diplexers have been used in practice
for some time, but the theory behind the use of common transformer
coupling and the extension to multi-channels has not been verified until
recently when Rhodes and Levy devoted a full section in [33] to the

discussion of this topic.

The multiplexer design procedure presented in this chapter has
been programmed on a computer. An optimization process has been used to

modify the elements of each channel in turn and it has been found that the
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process normally converges if the insertion loss of the neighbouring
channels cross over at greater than 3dB. The very good results of this
theory are demonstrated and confirmed by both the computer analysis of

Aséveral mU1tip1exers and by a practical diplexer.
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CHAPTER 7

GENERAL CONCLUSIONS

The main object of this chapter is to present a brief review
of the original material in this thesis and to outline the possible

extension and further related work which may be carried out in future.

Considering first the material presented in Chapter 1, the
fundamental principles, properties and realizability conditions of Tumped
passive linear networks have been briefly discussed. Special attention
was given to the lossless two port retworks. Further details were
avoided since the main reason behind including that chapter was to serve
as an introduction to the resf of the thesis and to establish the general

picture and terminology used afterwards.

In Chapter 2, the approximation problem satisfying the
amplitude constraints has been discussed. The three most popular
ratiohal function approximation schemes (the maximally flat, Chebyshev
and elliptic function responses) have been presented. Special attention
was given to the Chebyshev response in its conventional and generalized
forms. This is mainly because the maximally flat and the elliptic function
characteristics were not used in this thesis. The concepts of doubly
terminated and singly terminated prototype ladder structures haye been
discussed and several low-pass prototype networks were considered.
Explicit design formulas were given for the element values of prototype
low-pass filters consisting of series inductors and shunt capacitors
and for the modified versions consisting of either series inductors
sepafated kv impedance inverters or shunt capacitors separated by admittance
inverters. These modified versions are particularly suitable for
designing microwave band-pass filters e.g. direct coupled cavity waveguide

filters. The prototypes considered were of a class often called "all-pole”
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which have all their transmission zeros at infinity.

The most important part of Chapter 2 may have been devoted
for new classes of very selective low-pass prototypes satisfying a
generalized Chebyshev response with some of their transmission zeros
at infinity and the remainder at the same finite point on the imaginary
axis. A new computerized procedure was presented. A relatively new
solution to the synthesis accuracy problem has been adopted and termed
"the alternating pole synthesis technique". The superiority of this
technique over the z-transformed variable technique was discussed.
Special properties and practical advantages of these prototypes were
also discussed. Tables of element values for typical requirements were
provided. These filters are very selective classes of prototype
netowrks having important applications in the design of TEM made microwave
broadband filters, diplexers and multiplexers particularly for printed

circuit forms of realization.

A design example of a microwave broadband Towpass filter
based on one of these prototypes having 3 transmission zeros at infinity
and the remainder at a finite point on the imaginary axis was given in
chapter 5. This microwave filter has been realized and constructed in a
novel suspended substrate stripline form. The primary experimental
results show a very good response especially in the stopband where an
octave stopband can be easily achieved. This property as well as the
better selectively make this prototype an equally attractive if not
better than that having a single transmission zero at infinity and the
remaindef At a finite point on the imaginary axis, which has been
extensively used in the design of microwave broadband dinlexers and

mu]tip]exeks e.g. [66].
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However the synthesis procedures and the results given in
chapter 2 for the generalized Chebyshev filters were for odd degree
networks having an odd number of transmission zeros at infinity and the
remainder at a finite point on the imaginary axis. Since two classes
of these prototype filters having either a single transmission zero or
three transmission zeros at infinity have been presented, it may seem
obvious that if a third class having five transmission zeros at infinity
and the remainder at a finite point on the imaginary axis is
investigated and synthesized in a si'table format as an extension to the
work given in chapter 2. In addition,similar prototype networks of even
degrees and having an even number of transmission zeros at infinity nay
be synthesized using jthe z-transformed variable technique at least for
degree 6, 8 and 10 since it is not possible to synthesize networks of
higher degrees using this technique and because the alternating pole
synthesis technique can not be applied to non-synmetrical even degree

networks.

Chapter 3 presented a new general design procedure for
multiplexers having any number of Chebyshev channel filters, with
arbitrary degrees, bandwidths and inter-channel spacing. The design
procedure was developed for bandpass channel filters connected in

series at a common junction for narrowband applications.

Commencing with the closed form expression for element values
in Chebyshev filters, the multiplexers design process modifies all of
the elements in each channel filter and preserves a match at the two
points of perfect transmission closest to the band edges of each cha...»el
filter, while taking into account the frequency dependence across each
channel. This design procedure for a direct connection of all channels

of a coomon junction results in an excellent design without the
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necessity for any immittance compensation networks or dummy channels and
represents a strictly canonical solution. It has been shown that this
procedure gives very good results for a wide variety of specifications and
jt is valid for most combinations of contiguous and non-contiguous channels
as demonétrated by the computer analysis of several multiplexer examples.
It is believed that a further improvement could be made if an exact
expression could be derived for the internal impedance level variation
through each individual channel instead of the appkoximate one given in
equations 3.28 a,b and ¢. If a correct all-pass equivalent form could

be obtained at a third point of perfect transmission different from those
closest to the passband edges of each individual channel, an improvement

could be made.

Chapter 4‘showed the application of the multiplexer design
procedure developed in Chapter 3 by considering a 4-channel multiplexer
designed and constructed in the standard rectangular waveguide WG16.

The individual channels were realized in the form of direct coupled

cavity filters. The design procedures for these filters have been reviewed
and their design formulas were deveioped. Then the multiplexer design
process has been explained in details starting from the given specification
ana finishing with the final physical dimensions. The most recent,

equal diameter post-coupled cavity structure was used in constructing the
channels. This type of coupling has many practical advantages éompared
with the iris-coyp]ed cavity such as elimination of the solder fillets

and waveguide cuts_and to provide simpler structure with a reduced
manufacturing cost. The experimental characteristics of this multiplexer

was also given in Chapter 4,

Chapter 5 has been devoted for the design of TEM mode networks.
The fundamenta] principles of the d1str1buted circuits have been briefly

d1scussed first. Then an exact synthesis procedure was presented for
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broadband prototype combline filters and it has been po1nted out that
networks of degrees as h1gh as 30 can be easily synthesized with Tittle
Toss of accuracy if the a1ternat1ng pole synthesis technique is used,

A comparison was given between microwave combline f11ter realization
using all d1str1buted elements and its lumped distributed counterpart.
This comparison was based upon the computer analysis of an octave
bandwidth microwave combline filter. A design example was giveh for an
octave bandwidth micrbwave combline filter. This filter has been
realized and built in coaxial form using parallel coupled lines having
rectangular cross sections. The design process has been explained in
some details and the experimental return loss and insertion loss
characteristics have been established. Other methods of coaxial form
of realization have been discussed including a new design method for
realizing TEM network us1ng parallel coupled circular cy]1ndr1ca1 rods
having the same d1ameter. Its pract1ca1 advantages have been indicated.

The method has been explained and illustrated by a numerical example,

The microwave integrated circuit form of TEM mode networks
realization has been discussed from filter deéign point of view and a
design example was given for a broadband microwave lowpass filter,
realized and constructed using a suspended substrate stripline structure.
As it was mentioned earlier this microwave filter is based on the
gehéralized Chebyshev 1ow?pass prototype introduced in chapter 2 and
having 3-transmission zero at infinity. A novel structure has been used
in the realization where each shunt resonator in the prototypé has‘been
realized by a uniform admittance shunt open circuit stub. This has an
important préctical advantaée in simplifying the design and making it even
more compact and easier to manufacture than other types of selective

filters e.g. elliptic function where the uniform adnittance shunt O/t

stubs realization is not possible.
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Howevef,}certain forms of physical realization have been
utilized in constructing certain TEM-mode microwave filters in Chapter
5. This should not lead to the conclusion that other forms of physical
realization are not possible for the same filter as long as they still
support TEM mode. For example, the combline filter which has been
realized in coaxial form with.parallel'coupled Tines having rectangular
cross-sections, can also be realized if required in one suitable form
of stripline structure or another. One suitable form may have been worth
attempting is similar to that used in Reference [65] in designing
interdigital filters. Similar argument can be applied to the generalized
Chebyshev prototype which can also be realized in coaxial form as well
as the printed circuit one presented in Chapter 5. However, the designer
may make his own judgement on which form of realization he needs to choose
according to the application and the environmental conditions under which

the system will operate.

In Chapter 6 a new general design procedure has been presented
for multi-octave combline filter multiplexers having any number of bandpass
Chebyshev combline fhannel filters, with arbitrary number of resonators,
bandwidths, and interchannel spacings. This procedure is for doubly
terminated channel filters connected in series at a common junctioh. It
results in an excellent design withbut the necessity for any compensuting
annulling network or dummy channels and represents a strictly cannonical
solution. Examples of several multiplexers wefe given indicating that the
design procedure is valid for different combinations of channels and gives

very good results for a wide variety of specifications.

However, due to the similarities between the principles of this
design procedure and that introduced in Chapter 3, further improvement in

the response of the multi-octave combline filter-multiplexer design
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procedure could also be made if an exact expression for the internal
impedance level variation and a correct all pass equivalent form at a
third point of perfect transmission could be obtajined for each

individual channel.

Although there is no limitation in this theory on the overall
multiplexer bandwidth, the multiple passbands or the spurious responses
of the microwave combline channel filters tend to limit the overall
bandwidth of the multiplexe} and this shquld be taken into account in

practical designs.

A design example of a combline filter diplexer has been given
in Chapter 6. This diplexer was realized and built in coaxial form with
channels having equal diameter circular cylindrical parallel rods. - The
physical dimensions of this diplexer have been obtained usfng.the new
method introduced in Chapter 5. Its experimental insertion and’return

loss characteristics have been established.

Finally, hoping the design methods presented in this thesis
have contributed something to the state-of-the-art in microwave filters and
multiplexers which was described by Professor Rhodes's words [72]. "The
stata-of-the-art 1n microwave filters has changed relatively slowly compared
to other areas of microwave engineering. One of the main difficulties has

been design rather than technology".
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