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ABSTRACT

This work is an attempt to provide simple formulae that 
can predict the initial behaviour of the most commonly used fabric, 
namely the plain weave. To achieve this, a simple zigzag shape 'saw­
tooth model' was adopted to describe the y a m  configuration in the 
weave structure. An energy method, using Castigliano's theorem, was 

then employed to derive closed form solutions which relate the y a m  
parameters and the fabric moduli under either tensile or bending 

strains.
To examine the theory, series of tests were carried out on 

different plain weave structures and the theoretically calculated 
results were compared with the actual fabric behaviour.

The outcome of the study showed that, when the y a m  and fabric 

parameters are accurately defined, it is possible to obtain a reasonable 
estimate of the above mentioned fabric properties using the formulae 
derived in the theoretical analysis.

The results and discussion also showed that the initial 

deformation of some plain weave constructions may produce extension 
and/or compression strain energies that cannot be ignored in estimating 

the fabric behaviour with reasonable accuracy.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

Textiles are now increasingly used for many purposes, from the 
traditional uses like garments and furniture to others such as conveyor 
belts, hovercraft skirts and aerospace applications. Probably, there are 
two reasons for this wide range of utilization, the first being that 
textile materials cover a wide range of different physical and mechanical 
properties, and the second is that textile technology is tending to become 
a science of well-established rules and predictable results, so that 

fabrics can be designed for specific purposes.
The end-uses of textiles decide the way they should be selected 

and constructed, suggesting that some properties should act in a. certain 

way, while others remain of less relative importance. For example, outer­
wear fabrics need to satisfy some aesthetic, physical and thermal properties 

as well as being required to be durable. On the other hand, fabrics used 

for industrial purposes are made for strength and flexibility, and possibly 

for certain electrical and thermal properties, and aesthetics are 

relatively unimportant.

Generally, for any end-use, the mechanical properties of fabrics

are of special interest, and a theoretical study of how these properties

are related to the fabric and y a m  parameters could help in deciding how

to produce a suitable fabric at a minimum cost when its likely range of♦
use is known.

The actual use of fabrics involves complex deformations in multi­
directions; however to study the problem, it is useful to begin by
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considering the simplest forms of deformation and the corresponding 
fabric mechanical behaviour.

1.2 Mechanical Properties of Plain Woven Fabrics

The simple forms of fabric deformation are extension and shear 

in the fabric plane, bending perpendicular to the fabric plane and buckling 
out of the fabric plane. Investigations are more easily carried out when 
the structure does not have the added difficulties arising with the more 
intricate configurations, such as we may find in twill weaves which show 
skewness (1), and the usefulness of the plain weaves is obvious in this 

respect.

1.2.1 Tensile properties of plain weave
When a plain woven fabric is initially extended in one of the 

major directions, the yams in the load direction are straightened. 

Accordingly, the crimp, c, crimp amplitude, h, and the weave angle, 0, 

decrease, while the thread spacing, p, increases. Because of the contact 
between warp and weft, at the cross over area, the fabric extension leads 

to a pressure build up in this area. This pressure leads to upcrimping 

of the yams in the no-load direction, so that the crimp amplitude and 

weave angle will increase, while the thread spacing decreases. The latter 

effect will result in a widthwise contraction in the fabric. This 

fractional contraction, expressed as a fraction of the fractional extension 

in the load direction,gives the so called Poisson's ratio for this mode 

of deformation* The initial phase of extension is normally referred to as 

the crimp distribution phase because the yams under such initial loads do 

not extend, or extend by very small amounts. It has been claimed that 

this phase is governed mainly by the y a m  bending properties but further
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work (2,3,4,5) has shown that the y a m  compressional properties may also 
play an important role.

A typical load-extension curve, as shown in figure 1, reflects 
these effects. 'In the initial region, OA, the curve possesses a 

relatively high initial tensile modulus due to the high initial bending 

modulus of the yams in which the fibres' frictional restraints have a 
great influence. Overcoming this frictional resistance, the curve shows 

a pure crimp interchange region, AB, dependent on both yams' elastic 
rigidities and probably on their compressibilities. If the fabric is 
further extended, additional effects will take place. These will be y a m  

extension with fibre extension and slippage in the load direction, and 

more flattening for both the warp and weft at the cross over region. In 
this phase, BC, the y a m  extensibility, compressibility and the coefficient 
of friction between fibres will play important roles. The above mentioned 
phases are affected by the magnitude of the forces existing between the 

two y a m  systems before extension; hence the degree of fabric set or 
relaxation will be of appreciable importance.

On increasing the extension still further, the fabric tensile 

modulus rises progressively until the yield point is reached. Beyond this 

point, D in figure 1, comparatively small increases in load are enough to 

produce considerable increases in fabric extension. The behaviour, around 

and beyond the yield point, probably depends more on the y a m  tensile 

properties than on the other y a m  properties or the geometrical structure 

of the fabric. The point of rupture or break occurs at the end of the 

yield phase. This may happen instantaneously or after a self-hardening 
region.
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1.2.2 Bending properties of plain weave
Bending is a very important property of fibres and yams as 

well as of fabrics. Fibre bending is inherent in y a m  bending and it can 
be shown that y a m  bending takes place in almost all types of cloth 
deformations.

The most important among bending properties is the flexural 
rigidity. For simply defined bodies the flexural rigidity, B, can be 

defined as

B = El,

where E is the Young's modulus of the material, and I is the moment of 

inertia of the cross-section of the body about a line perpendicular to the 

neutral axis.
In textiles, this equation is usually restricted to single fibre 

bending where I is reasonably accurately defined. The flexural rigidity 
for yams and fabrics is better defined as the couple, M, necessary to 
produce a unit change in curvature, K, i.e.

B = M/K •

In the above equation, if B is independent of the value of K, 

the K-M relation would be linear, and in this case.it is sufficient to 

find B by determining the value of M and the corresponding value of K at 

any moment. Actually, in both y a m  and fabric bending, fibres are 

capable of independent movement within the structure. This causes the 

resultant moment-curvature relationship to be non-linear and in this case 

the need to take successive readings for M and K over a range of fabric 

curvatures is essential. A typical curve of M against K is shown in 
figure 2.



6

Fig. 2
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It is now proposed to consider the fabric bending behaviour 
as shown by the bending hysteresis curve. The initial high modulus shown 
for the initial bending, OA, is probably due both to the resistance 
offered by the y a m  rigidity (elastic component) and to an extra 
frictional resistance restricting the fibres’ tendency to move relative 
to each other in the y a m  (frictional component). The magnitude of the 
frictional resistance is governed,generally, by the coefficient of friction 

between fibres and by the interfibre pressure. Gradually overcoming these 
frictional restraints,the fabric is then more easily bent and the couple- 
curvature curve is, ideally, a linear relation, AB, representing the 

elastic component in bending. t

, If the fabric is allowed to recover from a certain imposed 

curvature (usually taken as 3 cm""' in testing), the curve will show 
hysteresis. The difference between the magnitude of the couple at zero 

curvature, when loading and recovering, OC or OB in figure 2, represents 

that frictional couple, Mq, needed initially to overcome the frictional 
restraints. The elastic component in bending, therefore, obeys a law of 

the type

B = (M-MQ)/K .

The fabric elastic rigidity, B, is influenced by both geometrical 

and mechanical factors. Geometrical parameters such as the fabric cover 

factor, ratio of the number of warp threads to weft, type of weave and 

fabric relaxation will affect the magnitude of the interyam forces which 

have to be overcome in bending the fabric. The mechanical factors would 

be mainly the yam's rigidity and, probably, the yam's compressional 

properties. The former depends on the y a m  twist factor, fibre density,
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and tensile and torsional properties of fibres. A summary of the main 
factors contributing to fabric bending is given by Owen (6).

•
Mechanism of fabric bending

When the fabric is bent, the applied couple will induce internal 

forces between the two y a m  systems which will lead to several changes in 
the warp and weft configurations. In the bending plane, the yams will 
increase their length of contact with the cross yams on the outside of 
the bend and will unwrap from the cross-yams on the inside of the bend, as 
shown in figure 3* Between these contact regions, the yams are free to 
bend. Denby (7) assumed that large scale bending of woven fabrics involves 

the imposition of additional constant curvature to the individual yams. 

Considering the crossing yams Abbott (8), in a theoretical study, showed 
that fabric bending involves an increase in the crimp of the crossing 
threads. Skelton and Schoppee (9)* using Denby's assumption and considering 

a simple model of fabric crimp, reached the same conclusion as Abbott.
They stated tfiat the bending of idealized plain woven fabric (figure 3) 
will always result in an increased amplitude of fabric crimp which for 
certain fabrics reduces the restraining forces on the crossing yams.

1.2.3 Shear of plain weave
Because of the different treatments and terminology used to study 

shear as mechanical behaviour, it is useful to consider first the general 

definitions.

Pure shear is defined as the deformation of a body caused by 
uniform extension in one direction and contraction in the perpendicular 

direction, so that its area remains constant. As demonstrated by Hearle 

(10), if such a definition is applied to shear the square abed (figure 4a),
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the resultant shape will he a'b'c'd'. Rotating this parallelogram so that 
one pair of its sides becomes parallel to its original direction, we get 
what is known as a simple shear strain in the direction aa' , bb', cc' and 
dd' (figure 4b). A simple shear of a square initially constructed with 

one side in the direction, ah or cd , will result in the shape shown in 
figure 4c* where tanG is taken as the shear strain.

When testing textile fabrics under pure shear, a problem arises. 
This is because fabrics are thin sheets, they tend to buckle easily under 
compressive forces. The problem is overcome by introducing a tensile 
force much higher than the compressive force. Practically this is achieved 

by hanging a weight W, uniformly distributed,over EK as shown in figure 4c. 

It follows that the effective shear force, S, is

S = F-W tanG .

The shear stress-strain diagram represents the relation between the shear 

force, S, and the shear angle 0. A typical curve is shown in figure 4cL 
where it can be seen that a considerable hysteresis is involved in shear 

deformations.

The effect of weave construction and material, as well as the 

mechanism of shear, have been studied by a considerable number of workers 

(11-17).
Cusick (12,13) gave results for a variety of fabrics, and the 

curves were often found to be asymmetrical. Lindberg and his colleagues 

(14) gave a detailed study of different commercial fabrics. They pointed 

to the relation between bending rigidity, buckling and shear angle. Also, 

they showed that the formability of a fabric, defined as the maximum 

compression a fabric can take up before it buckles, is related to the 
product of buckling load and shear angle.
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Using a model containing one frictional and two elastic elements, 
Cusick (12) explained that the mechanism of idealized fabric shear will 
start with shear deformation of the free lengths of the yams. Such 
deformation, according to the model, will depend on the elastic bending 

resistance offered by the yams rigidities. When the shearing force 
exceeds the value of the maximum limiting friction force between the two 
sets of yams, slip will occur between warp and weft. The further shear 
will depend on a relatively lower elastic resistance to bending provided 
that a degree of relative rotation of the yams would be, by then, allowed 
at the intersections.

Grosberg and Park (16) showed that the initial shear behaviour is 

governed by the frictional forces resisting the relative rotation of the 
yams coupled with the elastic bending resistance of the yams. They 
showed also that the initial shear modulus depends on factors including 

the apparent area of contact at the y a m  cross-overs and that the latter 
can be determined if the former is known experimentally. Using this 

information Grosberg, Leaf and Park (17) gave a theoretical study of the 
problem of predicting the elastic shear behaviour of plain woven fabrics 

in terms of geometrical parameters and y a m  properties.

1 ,3  Review of Previous Work

Woven fabric geometry has been a topic for investigation by many 

workers over a period of nearly a century. The earliest works were 

directed to estimating the maximum square sett to be woven on the loom. 

Ashenhurst (1884), Armitage (1907), Law (1922) and Brierley (1931) were 
the most well known workers. They gave different rules for the problem 

of the maximum weavable threads per inch related to the y a m  count. 

Empirical data and assumptions which express the diameter as a function
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of the y a m  count were used in their cloth geometry (18-19). Their four 

rules give slightly different answers to stable fabric problems, Brierley's 
being the most accurate for general purposes.

Peirce's work (20) can be considered as a watershed, as he 
thoroughly investigated the plain weave structure and gave both a flexible- 
thread geometry and an elastic-thread model. However, the first was 
primarily used for the same purpose as the earlier works, i.e. to investigate 
the jammed condition. Recently, the theoretical study of fabric mechanical 
properties has received much attention by many, and in this respect Peirce's 
rigid-thread model is considered an important contribution.

In this section, both of the plain fabric models and some different 

approaches to the theoretical calculation of fabric properties in extension 
and bending are reviewed.

1.3.1 Plain fabric models

The different models of the plain woven fabric can be classified 

as geometrical (descriptive) and mechanistic (21). In the geometrical 

models’ no account of internal forces produced by the y a m  rigidities is 

taken into consideration. In the mechanistic models it is assumed that 

the two systems of yams are balanced in a way determined by their relative 
rigidities and the weave construction. The advantage of using the 

descriptive model is its comparative simplicity; on the other hand, the 

information that may be obtained about mechanical behaviour is rather 

limited. q  A mechanistic model is likely to be more capable of supplying 

such information, provided that its idealization is sufficiently realistic, 
but at the expense of greater complexity (22).
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a. Descriptive geometrical models

Peirce (20) was the first to describe the plain fabric geometry 
using flexible, circular bars set into the Shape shown in figure 5. Taking 
a normal section to the plane of the cloth through one of the thread axes, 

Peirce defined the geometrical parameters of the fabric using the following 

symbols:

p - Thread spacing. The distance between two planes, normal to the fabric, 
containing two successive cross yams.

/- Modular length. The length, measured along the y a m  axis, of half a 
crimp wave.

c - Y a m  crimp, expressed as the fraction (—^ ) . 
h - Modular height. The amplitude of the crimp wave.
0 - Weave angle. The maximum angle of the thread axis with the fabric 

central plane, 

d - Y a m  diameter.
D - Scale factor, equal to the sum of warp and weft diameters.

The subscript '1' is used to refer to warp parameters, while *2' refers to 

weft. In this thesis the same symbols and subscripts are used.

The geometry shown in figure 5 leads to the following equations:

p2 = (ii-D0i)cos0i+I)sin9i> (1.1)

and

h1 = (Z j-D 9 .j)sin e .j+D (l-cos0 .j) .  (1 .2 )

Similar euqations could be obtained for the weft with an 
appropriate interchange of subscripts.

fiAlso, lij+hg = d.!+d2 = D. (1.3)
*
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This provides a system .of 5 simultaneous equations with 9 unknowns 

(p1*P2>^i>^2,h1,h2’ei,0 2 311(1 E)» Therefore the model is completely 
defined when 4 parameters are known. The easiest and most measurable 
quantities are possibly the thread spacings and the modular lengths.

Due to the difficulties encountered in solving these simultaneous 
equations,a set of curves was produced by Peirce (20) and Love (23) to 
assist in the calculations. For practical uses, Peirce derived a simplified 
formulae. This is found by expanding the trigonometrical functions in 

equations (1.1) and (1.2) in terms of ascending powers of 0 to give

P2 = 21 + 41 " •**) + 3 j + 5 J ~ •••)» (l*4)

and

q3 q5 q2 04
h, = ( / 1-D91)(e1-  3Y + 3 Y '  •••) +b [i-(1- 2T + 4Y -  •••)]• ( 1 .5)

When 0̂  is small, 0^  and higher terms can be ignored to give (from 1.4)

e, = (a fto ,)4.

Also, when 0̂  is small, h^ — /jQ-j (from equation 1.5) and P2 -i-j,which 

gives

Peirce modified the latter equation to:

h1 P2<°l)4 = 3 p2(5 ; - l)i- ( 1 . 6 )
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He stated that this formula reproduces the exact values well enough for . 
many purposes and only in extreme structures does the error amount to 
The equation relating P2*^ and was later modified hy Peirce when he 
considered his rigid-thread model and was given as

(c.,)* = 0.55 er

when 0  ̂ is measured in radians, or 

G^(degrees) = 104(c^)^.

For the normal range of weave angles a better approximation is obtained 

by writing

i l*  i
01 (degrees) = 106(c.|)® = 106(— ■ -1)* . (1.7)

Equations (1.3)*(1*6) and (1.7)* in addition to the equations 
provided for hg and 0g in the weft direction, define a simplified model 
for the plain woven fabrics which is completely determinate if 4 parameters 

are already known.
Grosberg (24) pointed out that applying the original or the 

simplified equations of Peirce's flexible-thread model, knowing only 3 
geometrical parameters, leads to an infinity of possibilities for the 

fabric geometry, whereas in fact any relaxed fabric with these 3 parameters 

fixed has only one geometry. As will be seen later, the mechanistic 

models yield another condition in the relaxed fabrics (equation 1.11), and 

hence only 3 geometrical parameters are needed to define a mechanistic 

model, providing that the rigidities of the yams are known.

Dealing with the geometrical models, two separate lines of work 

have been followed since Peirce. The first is to modify Peirce's flexible-
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thread model to accommodate more realistic shapes of y a m  cross-section. 
The second is to approximate the crimped shape of the y a m  path hy a 
relatively simple function, such as a sine wave.

Modifying the circular cross-sectional shape of the y a m  was, in 
fact, considered by Peirce (20). He suggested that when flattened, the 
specific volume of the y a m  remains constant and the area of cross-section 
may be taken as

nab _ n d 2
4 “ 4 »

where a and b are the major and minor axes of an elliptical cross-section, 

see figure 6a. Prom this, Peirce obtained a distortion factor e = ̂ b/a 

with which the original y a m  diameter, d, can be modified. Peirce showed 
that in order to make such an elliptical geometry determinate, it is 
necessary to know further data about the relative ellipticity, a, of the 

two threads. He suggested that ê  may then be found by applying the 

following relation :

4(P2Vc7 + P ^ )  = b.j+b.

= 36 e.C1 V n 2

2where and Ng are the thread cotton counts and a = —  . However, Peirce 

pointed out that it would be rather laborious to develop and use a model 

based on the formal relations of an elliptic section.

Kemp (25) provided a reasonable alternative cross-sectional y a m  

shape to the ellipse. He suggested a ’Race-track’ section consisting of 

a rectangle with semi-circular ends as shown in figure 6b. The ratio (b/a)
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was made the distortion factor instead of Peirce's^/b/a . Kemp related 
the initial parameters given "by Peirce and the parameters resulting from 
the race-track shape and he used Peirce's equations, thus modified, to 
provide more accurate solutions for the jammed condition.

Recently, Hearle and Shanahan (26) modified Peirce's flexible 
model assuming a 'Lenticular Geometry' in which the y a m  cross-section is 
represented by two intersecting arcs as shown in figure 6c. The y a m  
path is assumed linear except where it wraps over the crossing yam. For 
such a model, the need to define the major and minor diameters of the yams 
is essential and the flattening coefficient was presented as F = a/b. The 
other parameters of the y a m  cross-section can then be calculated in the 

following way

sin 4» = 2r ’ and cos 4» = 1- -r- 2r

This gives

r =
2 v2a +b 
4b

Substituting in the above relation gives

. -1/ 2ab \ -1/a2-b2\4> = sin \~ 2— 2/  = cos v~2— 2 '  a +b a +b

Also, if D.j = 2r2+b1 and ,

the modified equations for this model are

, P2 = (i1-D19-,)cosei+L1sin01 
and

ĥ  = (Z1-Diei)sine1+D1(l-cos91) .
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Similar equations are provided for weft parameters and, in addition, 

h1+h2 = ^1+^2 •

Providing that the cross-section parameters are already defined, 
the model is completely determinate when 3 other parameters of the 
fabric are known.

a realistic interaction between the y a m  rigidity and y a m  flattening, 
when the fabric deforms under tensile forces. With this objective, the 
original equations for the model were presented, by the authors, in a 
different form, including the flattening coefficients and Fg.

different ways and for this purpose the y a m  cross-section was not always 
taken into consideration. A twin arc model has been used by Olofsson (27) 

and Wilson (28). In this model, it is proposed that the crimp-wave of the 

y a m  consists of two arcs, one above and one below the central plane of 
the cloth. The geometry of such a model leads to the relations

The 'Lenticular-Geometry' was developed with the aim of providing

The crimp-wave shape of the y a m  path has been approximated in

and h1 = p2
(l-cos©^

sin0^

A sinusoidal shape of the y a m  was assumed by Lord and Mohamed 

(29). Mathematically the y a m  shape may be' expressed by

h1y = —  sin( ttx/p 2),

and the y a m  modular length is given approximately by
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A straight line model has been used by Kawabata et al. (3) 
and Leaf and Kandil (5)* and further details of this will be given later. 
This model is, probably, the simplest and leads to

P2 = i.jcos0.j , and ^

b. Mechanistic models
In the mechanistic model, the shape of the y a m  path is assumed 

to be determined by the y a m  flexural rigidity, B, and by the vertical 
force, v, and the external tension, f, acting as point loads at the apex, 
as shown in figure rJ . This gives

= -v.x + f.y , (1.8)

referred to axes shown.
If the external tension on the fabric is zero, the equation is reduced to

B = -v.x (1.9)

Peirce (20) was interested in this case and he showed that integrating the 

last equation gives

x = sine-sin^. (1.10)

At the apex x = p/2 and \p= 0; substituting in the above equation in the 

warp and weft directions then gives

2 8B.. sin0. .p0 = 1 1 and
, 2 8B2sin92
P1 = vl
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The equilibrium condition between warp and weft is attained when v-j=v2» 
which leads to -- ..

B^sinB^ B2sin02 r*- * i Av-I
* V*' ■ '»•'
.-/■-a w *  "

(1.11)

This relation holds only for relaxed fabric. For grey fabric, due to 
frictional restraints between and within warp and weft, the relation is 

not applicable.
Using the relations dx/ds=cos^ and dy/ds=sin^, equations (1.9) 

and (1.10) can be converted to give the relation between ds and df or between 

dy and d^, and hence integrated. The parameters at any point of the y a m  

axis can be expressed in the form of standard elliptic integrals as 

follows:

= 2(— )^k cos<J>,

s = (|)* [F(k,7r/2)-F(k,d>)] ,

y = ( f ) ^  [F(k ,7r/2)-F(k,4>)-2 {E (k ,*/2)-E (k ,< i>)i|

( 1 . 12)

and

cos l/' = 2ksin<l> (l-k^sin^<i>)2

where F(k,y2) and F(k,$) are the complete and incomplete elliptic integrals 

of the first kind, and E(k,7r/2) and E(k,<l>) are the complete and incomplete 

integrals of the second kind. The modulus, k, and amplitude, , of these 
integrals are given by
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k = sin (0/2+V 4) and sin  $ = ^  sin(^/2+7r/4) •

-1 4At the apex, denoted by point H in the figure, ̂ =0} hence <j>_ = sin (l/2~k). 
The values of p/2, JL/2 and h/2 can be expressed in the form of elliptic 
integrals by substituting <j> = 4>g in the above equations.

Olofsson (jo) dealt with the general case of elastic yams formed 
to the shape in the fabric by the action of both external tension, f, and 

vertical force, v, (equation 1.8). Using this assumption and the 
relations dx = cos^ds and dy = sinsi'ds, he derived new expressions for p 
and h related to i . However, the final expressions are clumsy and 
laborious to use. Olofsson showed that the shape of the elastica is 

nearly independent of the ratio v/f, that the parameters at the apex could 
be obtained by simpler equations if we consider v/f = 0. This gave

V A  =
2 E (V . * - /2 ) - F (k '.* /2 )  , 

- ¥ { X ,  tt/ 2 )

and
2sin(01/2)

h1^1 = F(k', ir/2)

where Î k', * /2 ) and E(k' , 7r/ 2 ) are the complete elliptic integrals of the 

first and second kind with modulus k' = sin( 0^/2).

These values of P g / 311(1 h^/j^, for a fixed value of 0̂  can be taken to 

be the same for different ratios of v/f. The same conclusion was reached, 

by Grosberg and Kedia (31). Grosberg (24) stated that it becomes possible, 

therefore, to use the approximate relationships

h/p = ■j(c)^ and 0 = 106(c)^»

with considerable confidence since they give values close to the rigid-
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thread model and have already been proved to be independent of the 
ratio v/f.

Nordby (2) gave a comparison between the different models and 
showed that there is some, but not complete, agreement between the results 

obtained from Olofsson's relations assuming v=0 and Peirce's relations 
assuming f=0.

Apart from considering the y a m  rigidity, a realistic fabric 

geometry may also take into account two other aspects namely, the rigid- 
thread shape with finite contact, and the degree of y a m  set. The first 
of these is important when investigating a fabric deformation which is 
highly dependent on the contact length, between the two yams, while the 

second aspect is important when investigating the deformations of 
partially set fabrics.

Peirce (20) considered a model in which the rigid y a m  has a

finite contact with the crossing thread. This case, in a sense, constitutes
an intermediate state between his completely flexible-thread model and
the highly rigid-thread model with point contact. The model with finite
contact is shown in figure 8 where the contact starts at the point denoted
by C,(x ,y ) referred to the axes shown; the inclination of the y a m  axis c c
to the fabric plane at this point is (3. Equation (1.12) of the rigid- 

thread model with point contact gives the parameters x,y and s in the 

region 0^  ̂ -^P, while the following relations hold in the region |3̂  \p^.O

D 3 1
X = -jpCsinp-sin^)+2(— ) *k cos $ c ,

y = |(cos^-cosp)+(^ j^F(k,V2)-F(k,c|>c)-2 {E(k, 7r/2)-E(k, $c)(] ,
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and

s = |(P-^)+(f)^[F(k,ir/2)-F(kf*c)] , 

where k = sin(e/2+ 7r/4) » sin4^ = ̂ sin(p/2+?r/4) *

and the parameters at the apex (p/2,h/2  and H /2 ) are given by the above 
equations after substituting ̂ =0 .

Thus

L  = D(^2(|)i [p(k, x/2)-P(k,<|»c)] ,

and

h = D(l-cosP)+2(|)^[F(k,7r/2)-P(k.4>c)-2|E(k,7r/2)-E(k,4>c)}] .

To make this model available for use, v and (B are also defined in terms 
of the other parameters. It can be shown that

v = --- -----  and sinp = 2sin0-(p/D) .
pD-D sin©

The model can now be defined by the 4 equations giving l  and h 

in both directions, together with the following two relations

and

or

h1+h2 = D ’

V1 =  V2 ’

B 1
P2D-D2sin01

E2

P^D-D2sin02
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This gives a total of 6 independent relations between 11 unknowns

(p1»P2 »i-i»̂ 2’h1’h2 ’ei,e2 ’:B1,:B2 ’:D); therefore it is enough to define 3 
parameters and the y a m  rigidities, and B ^ , to define the geometry.

In order to differentiate between the two rigid-thread models 

given by Peirce, the curvature, l/£>, can be calculated at the apex from 

the relation 1/p = vp/2B, then

(a) if 1/^ ̂  2/D, the rigid-thread model with point contact applies;
(b) if 1/p > 2/D, a finite contact with the crossing y a m  occurs, starting 

at the point xc = ̂  •

It is commonplace in many analyses of fabric deformations, which 

use a rigid-thread model as a starting point, to assume that the inteiyam 

forces in the structure before deformation take one of the two following 

extremes:

1. they remain with the same value needed initially to form the fabric at 

the intersections in which case the fabric is said to be completely 
■unset;

2. they gradually vanish and the y a m  keeps its curvature inside the fabric 

structure due to permanent bending deformations; the fabric is then 

considered to be completely set.
Fabrics, in fact, take an intermediate state (partially set) which 

can be demonstrated by unravelling a y a m  from the fabric and observing 

how it undergoes a limited change in crimp. Olofsson (30) assumed that 

in a partially set fabric, the y a m  curvature at any point is proportional 
to its curvature in the released state outside the fabric. The constant 
of proportionality was termed the 'form factor'; thus
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rr •form factor* X •---d*0 '

where suffix 'r' refers to the released state and *0* refers to yams 

inside the fabric. This assumption proved to be useful (2,8 ,32) in 

calculating the degree of fabric set experimentally, as it can be shown 
to lead to ’set' as a function of the crimps inside the fabric, Cq , and in 
the released state, cr, namely

1.3.2 Different approaches to the theoretical calculation 

of fabric properties
This subject has been handled under two different categories. The 

first, which has been more generally used, considers the fabric as a complex 
geometrical combination of fibres and yams, while the second category 
treats the fabric as a planar sheet. The choice of which method to use 

depends on the final requirements of the study. For instance, if we are 
analysing the fabric to discover rather complicated mechanical behaviour, 

such as its ability to take up complex double curvatures or drape, it is 

probably better that the fabric should be modelled as a two dimensional 

•uniform sheet,irrespective of its constituent fibres or yams,except in so 

far as they are responsible for the particular properties of the sheet.

The planar stress-strain analysis involves many complications and it is, up 

to now, limited in its use.

combinations of fibres and yams can be further classified into energy 

approaches and force approaches.

,4 (1.13)

Theoretical approaches considering the fabric as geometrical
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1.3.3 Theoretical calculations of fabric tensile properties 

(a) Energy approaches
Grosberg and Kedia (31) considered the initial extension as a 

result of only bending energy changes. The force, f, needed to extend 

a warp thread in the fabric was regarded as divided into two parts, f7 to 
decrimp the warp thread and f^to upcrimp the crossing thread. The force 
f is related to the force v needed at the intersection to increase the 

crimp of the weft. If the fabric elongation is ¿p2 and Sh^ is the change 
in the crossing thread height, then energy considerations demand that

f*.5p2 =  v . 6h 2

Therefore

f = f + f /  fi+
6 h„ v __2

T  «p.

= f'| V _v_6p 2 , 
ih2 ~ F  K

5h
6p;> }

The ratio 5h^/5p2 was obtained using purely geometrical relations. 

The term 5p2/f7was calculated by defining the strain energy, in the warp 

thread, due to the bending deformations caused by f7 alone, then 
differentiating the energy expression according to Castigliano's rule. 

Using a similar procedure v/Sh2 was calculated after finding the strain 

energy in the weft thread caused by 'v' alone. The final expression for 

the fabric modulus was given by

8B.
E i =

j>ihi

v l  1
7 3 ri(ei'e2> •
B1P1 J

1 + (1.14)
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where
sin5//2(e2) fl-0.56(h1/p2)2]

= -------------------------------------- - -  -  _ ----------------------  p  -  J  ■ ’

1 1 2 f  (e2) . 2 ^  (1.12)2

F2(0 2) = E(k,7r/2)-E(k,<i>H)+ (k 2- l )  |p ( k ,  7r/2)-P(k,<|>II)}  .

f I t \ —1 1The modulus k = sin(0o/2+*/4) and 4>_ = sin” ~
* M V 2 k

Hearle and Shanahan (22) have recently described a uniform energy 
approach that can be applied to various types of fabric deformations. For 
the general treatment, they assumed that the fabric geometry gives one or 

more relations equivalent to:

f(x^jXg, • • • • »y^»yp» • • • • »y"n) — o » (1»15)

where (x-j »x2> • • • ) are t*1® generalized dimensions or displacements or
both associated with the external deformations, and (y^,y2,...,yn) axe a 
set of independent geometrical parameters.

Due to deformation by the external forces F^ acting on x^, the 

total energy in the system, E, is

l

E = X) "(Pixi)+U(3r1,3r2* ’yn ’a1’a,. ( 1 . 16)

where (a^,a2,...,a^) are the dependent geometric parameters, and TJ is the 

strain energy.

The principle of minimum energy was then applied with any one of the 

displacements (say x^) chosen as the dependent mode of deformation. This

gives
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dx„ m d a .UJL1 m T̂T V Uj
F, +F., x — ' = . a • !c = 2.3....,/
* 1 * * * 3=1 a a i  d \  .

d x
and F, 1 dE m ATT dOi.

S. dyf i * 1,2,...,n
1 dH  ^ i + h  d “ j

(1.17)

These conditions give a total of (•/+n-1) equations. In conjunction with 
the geometrical relation given by equation (1.15)» there will be a system 
of (/+n) equations describing the behaviour of the structure under the 

specified types of loads. If ,a ^ ,...»am » which may be eliminated, are 
ignored, there will be (2/+n) unknowns (F^,x^ and y^...*yn). The system 

is then completely defined when t of these quantities are given.
According to the authors, the following limitations are imposed;

1. The approach is restricted to materials in which there is a well defined 

strain energy.
2. Frictional effects can not be included because the frictional forces 

can act in any direction.

(b) Force approaches
Basically, the force approach generally uses a numerical 

approximation method to solve a set of equations resulting from both the 

geometrical relations of the y a m  shape and the stress analysis of the 

forces acting on the yam. The procedure is carried out for each fabric 

direction separately, bearing in mind that for equilibrium v^Vg. •̂n 

additional necessary condition can be obtained by considering the displace­

ment of the point of contact between warp and weft.

When investigating the fabric behaviour under high strains, it is 

necessary to consider both the initial configuration of the yams and their
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stressed shape. In the following, the notation is the same as in the 

previous section but an additional suffix 'O' will be used to denote 
quantities in the undefozmed state.

Nordby (2) used a force approach to study the load-elongation 

properties of plain fabrics. He considered the crimped shape of the y a m  
as divided into consecutive arcs,where the geometrical relations between 
the parameters of each arc are as shown in figure 9* When the fabric is 
deformed, the forces acting on the y a m  will be as shown in figure 10.

The bending moment, M, and the tension force, T, at the middle of a general 

arc PQ are

M = f(y+Ay/2)-v(x+Ax/2) ,

and
T = f.cos(iA-Ai//2)-v. sin(</'-Â /2) .

If the bending property of the y a m  is defined in such a way that

a solution of the stressed shape is possible,provided that the undeformed 

shape of each arc is known. The solution is then checked against

a - boundary conditions (^=0 at the apex);

b - continuity of contact stresses and displacements between warp and weft.

When a consistent solution is obtained, the co-ordinates at the apex are 

obtained by summing the increments Ay^, and AX^ for all the arcs.

In Nordby* s analysis it was possible to include the following:

1. Effect of y a m  extensibility. This was done by assuming ds/ds^ = 1+mT11, 

where m and n are constants.
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2. Effect of y a m  compressibility. The compression strains were also 
assumed to be a power function of the load v.

3. Effect of frictional restraints. This was included by asstiming the 
y a m  to bend according to a law such as

H-M0 = B(-| - i) ,

where MQ = MQy, 0 ̂  s ̂ if/:

and Mq = MQy+MOf '

is the coercive couple of the yam, & ^ is the y a m  length free of 
contact with the crossing y a m  and Mq ^ is an additional frictional couple 

due to fibre slippage.
4 . Deformation of partially set fabrics. For this purpose, the factor 'set' 

was evaluated experimentally, thus enabling the remaining interyam 

forces, v , to be calculated from the equation v^ = v^l-set). The 

general bending equation for this case becomes

f(y+Ay/2)-(v+vr)(x+Ax/2) = »

which obviously gives higher values of 'f' compared to the case of 

set fabrics (vr=0).

Mashaly (33) solved the mechanism of fabric extension for the case 

when twistless yams are used for warp and weft. An assumption was made to 

suit this case, that the y a m  cross-sections occupy the cavity shaped by 

the other crimped y a m  in the cross-wise direction. The reaction from the 

weft when the warp is extended was assumed uniformly distributed over the 
warp crimp-wave length. It follows that the bending moment, M, at the 

general point P, shown in figure 11, is
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Pig. 12
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M ="-^.x + f.y + |f(x2+y2),

where w is the interyam force, expressed as intensity of load. 
The main governing equation in this case is therefore

_ d'l' vrp - W/ 2 2\
B ds = " 2 * x + f*y + 2^x +y '  •

which, together with

af = cos*  •
and

ds = sin^ ,

represent a system of differential equations which can he put in the 

general form

do^
^g = f (s, o£-|, a2 * * * * ’ * * * * Cjj.) * i=1,2,...,n

where are the y a m  parameters at any point (x,y and>p).
If n boundary conditions at two points are known, the system can be solved. 
A standard computer subroutine was used for this problem. However it will 

be noticed that when f is given a small increment, the value of w is 
unknown and the equations give infinite possibilities for the values of 

p and h. The way out of this difficulty was to fix a value of f and then 

solve the system of equations for several values of w. In the cross-wise 

direction f=0 and the system of equations for the cross-thread were solved 

for the same values of w. Only one value of w will give the exact 
solution which should satisfy the condition

hi+hg = constant,

isos w m m  \ m m
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assuming incompressible yams. The constant is determined when the system 
is solved at f=0 in both directions.

The results were used to investigate the effect of the inter-yam 
forces, developed during extension, in sustaining this twistless y a m  

structure.
In both of the above force treatments a criticism may be made 

concerning the way the y a m  is assumed to bend. In Nordby's analysis, an 

idealized law of y a m  bending was chosen and the bending property is not 
defined in the region ( O ^ M ^ M q ), while in the Mashaly treatment, the 
general bending equation is applied as if the y a m  is initially straight

i.e. d%  = 0. 
dsQ

A more rigorous version of the force approach has been given by
(4)Huang. For the biaxial extension of completely set plain fabrics, he 

used Peirce’s rigid-thread, model to define the fabric initial parameters. 
These will be labelled by the additional suffix ’0’ while in the stressed 
state the parameters are only labelled by '1’ or '2' to indicate the warp 

and weft directions.
Peirce's formulae yields the following expressions for the y a m  

curvature and its inclination at a general point P(xQ,yg)

and

^  = -4k F(k,ir/2) - i ,(k,<i>&) X c o sV i0 .

cos\pQ = 2k cos<p(l—k^sin^4>)̂

( 1 . 18)

(1.19)

where the modulus, k, and amplitudes, 4> and of the above elliptic 

integrals can be defined in terms of 0Q and xQ , as follows:
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k = sin(0o/2+7r/4),

r 1[ ^  I F(k, V2)-r(k,<i>H)j],$ = cos
( 1 . 20)

and

\  = * ^ c / 2  ̂= sln~1(2-^k”1)

In addition, the values of xQ and at the apex are given by

■ECk^AO-ECk,^)

and

„ T _  ^E(k,7r/2)-E(k,4>g) ̂"|
h0 = *0  |_ 1-2 \ P(k, V ^ -F C k ,^ )  / J  »

pQ = 2k/0coscta/ {F(k, x/2)-F(k,<i>H)}.

When the fabric is deformed by forces f^ and fg per thread in the 
warp and weft directions respectively, 0 remains a point of inflection 

(figure 10b) and forces 2v are generated at the intersections. The tension 

and bending moment at P are then given by

T = f cos^+v sin^ and M = f.y - v.x

If x and B are the y a m  tensile and bending moduli, and y a m  

bending has the bilinear behaviour shown in figure 13, it can be shown that

= 1 + “ (f cos^+v sinif ) ,  
ds0 X

and

ds dsQ +
M  /B*

(m q/b*)+(m -m 0)/b M>M„

Huang's analysis then proceeds to formulate, the finite deformation of the 

fabric as a non-linear boundary value problem which can be represented by
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Fig. 13
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a set of differential equations.. Regarding Xq as the independent variable 
and the parameters ^,x and y, of the deformed state as the dependent
variables , the main governing equations are

M i ds
dx0 ds ds0 dxQ *

dx dx ds ds0
dx0 ‘ ds ds0 dx0 9

and
dso¿2- . ds

dxQ ds dsQ ^ 0

The value of dxQ/ds3q (= cos \Pq ) can be obtained

ds ds0 X-k W> o o sip + v s im p  )
ds»0 dxQ 2 X k cos <j)(l-k2 . 2.n^ ~ “: sin $>)*

The above governing equations, then, yield

M .  _dx,0

f.y-v.x . p* __
i

B* + ds» J ’ 0
.M» M 0 0 f-y-v.x d*q
B* " B + B + ds»0

M > M 0

(1 . 21)

and

4 ^ -  = Z cos \f/, dxQ

= Z sin ip.dxQ

( 1 . 22)

(1.23)

Provided that the initial parameters of the undeformed state have

already been defined, either by measurements (such as p and/) or by 
/ d^0calculation (such as k, $ and r—  , calculated from equations (1.20) and

(1.18) respectively); the above equations (1.21) to (1.23) can be



42

regarded as 

<U.
= •̂(xo’ ’̂ 2’ ’ * * * (i=1»2 and 3)

where J\ are the dependent parameters of the y a m  in the deformed state 
( ^,x,y) and Xq is the independent parameter.

The boundary conditions for the problem are

x(0) = y(0) = \Kp/2) = 0.
The numerical computation was carried out using an approach 

similar to that described by Mashaly (33)» yet different in detail. Again 

the idea is to set a value for f, and by trial and error, several values 

for v are to be examined. The correct value of v must fulfil an additional 
condition based on the y a m  compatability.

Due to the fact that warp and weft must remain in contact during 

deformation, the following condition is imposed:

5{4(h1-d1)[ +5{£(h2-d2)| = 0 ,  (1.24)

where ¿{x} denotes the change in jx| during the deformation.

The decrease in the y a m  parameter, ¿¡|d| , was assumed by Huang to 

be the result of two factors:

(a) A y a m  Poisson's effect, for which

«1*1/4 = - ° y & )  ,

where °y is the y a m  Poisson's ratio and ( f / x )  gives the y a m  fractional 
extension at the apex.'

(b) A y a m  compressive effect, for which

5|d[/d = nv ,
\

where H is the y a m  compression modulus.
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Superimposing the two effects and subscripting the changes by 
the appropriate suffices for warp and weft, equation (1.24) gives

[(h0r h1^+d0l(fVl ^  +“r>] + [(h02-h2>ta0 2 ( V  ^ +tl2 v>] =°-

When the correct value of v is found, the solution of the deformed shape 
is determined, from which the values of p in both directions can be 

obtained.
The numerical results provided by Huang for the load-extension 

behaviour (f vs. P~Pq ) show a marked resemblance to the real behaviour of 
fabrics; also some features of the load-contraction, under uniaxial 
conditions, show similarity to the behaviour of some fabrics tested in the 

present work. However, further work on this subject is needed.
Kawabata et al. (3) introduced a finite deformation theory, based 

on force approach, to solve the same problem, i.e. the biaxial tensile 

deformation of plain fabrics. They used the straight line model to describe 
the yam's configuration initially and after deformation. While the 

rigidity of the yams was ignored in their earliest theory (3), y a m  
extension and compression were taken into consideration.

In contrast to the previous approaches, the fabric stretch in

this analysis was assumed to be the independent variable for the stress-

strain relation. For this purpose stretch ratios for the fabric, Tu andw
rT, and for the yams, tj and 1̂ , were defined in the following ways

rW ~ P2^P02 $ rT “ Pl/p01*

^
rnt-T and •CMII

where the suffix ’O' refers to the initial state (see figure 12).
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The tension, T, in the yarn developed due to fabric stretch can 
be resolved to give both the tensile force acting on the fabric, f, and 
the compressive force acting on the crossing yam, v, so that

f^ = T1cos01 and f? = T2cos©2

v = T.jSin&j = TgSinGg.

(1.25)

(1.26)

From purely geometrical considerations (figure 12), they showed that

r. = — - — 1----- ■ , (1.27)

and

[(h01~ahl) 2+ (p02 rw)2 J
r 2 2 l * -
Lnoi + p02 J *

. -1 h01_5h1
[(h01- J hi ) 2+ <p02 rw) 2] *

( 1 .28)

Similarly, Tg and ©2 were defined in the weft direction by using the 

appropriate suffices.
The load-extension relations for the yams were defined by

T^g-jir,) and T2 = g2(r2), * (1.29)

where g.|(Ej) and g2(r2) are
From equations (1.26-1.29), the equilibrium between warp and weft 

is attained when the following relation is satisfied:

h^-ih. tu.„+ôhr
W r )  ________ _21_ _ J_______ _ = ________j02 2
1 1 K i - » i ) 2+(P02 V 2]4 2 2 [(h02+ih2>2-(p01 rT)2]*

For the case of incompressible yams, ¿h^=6h2=5h (say) and the 

above equation, for a particular set of (rv and 1^), can be solved for 5h;
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hence 0.|,e2,f.| and f2 are found from equations (1.28) and (1.25). A 
graphical solution was adopted and the extension-load curve was obtained 
up to high strains for biaxial deformations.

The y a m  compression was included later by substituting

5b., = 5h2 - <l»(v) *

where <J>(v) is a function depending on the interyam force, v, and both 
warp and weft compressional properties.

Kawabata et al. also treated other fabric deformations using the 

same principle and model (54»55)*

1,3 .4 Theoretical calculations of the fabric bending properties

Very few published works have tried to tackle the problem of 
predicting the fabric bending properties when the fabric parameters are 
known. Most of the other works on the subject provide qualitative analyses 

of the effect of fabric and y a m  construction on bending behaviour.
Peirce (56) suggested that a theoretical warp-way stiffness of a 

fabric may be calculated by summing the flexural rigidities of the fibres 
composing the warp or weft yams. If in a fabric strip there are N yams 

per unit width and each y a m  cross-section contains n fibres of an average 

flexural rigidity B^, the simple estimate of the minimum cloth flexural 

rigidity, B . , is then given by

It is obvious that any friction or binding between fibres causes the 

observed stiffness to exceed this limit. Due to the possible interactions 

between fibres and between yams, when the fabric is bent, N.J.Abbott et al. 

(37) suggested that the bending rigidity of fabric, B, is related to the
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bending rigidity of single fibre by the following relationship,

B/Bf = n.N.(C.T.R),

where C is a clustering modifying factor,

T is a twist modifying factor,

and E is a geometrical modifying factor which is related to the y a m  contact 
in the fabric.
Two of the above factors, C and T, are in fact related to the y a m  

geometry, while the third, R, depends on the fabric structure. Modifying 

the y a m  rigidity by a 'clustering factor',results from the fact that in 
y a m  bending there is a restriction on the individual fibre's free movement 
due to friction, and the fibres tend to move in groups. Platt, Klein and 

Humburger (38) suggested that this effect may be defined as

(By) with clustering 
® = (B ) with no clustering " nc^P *

«7

where B„ is the y a m  flexural rigidity, n is the average number of fibres 
y  c

per cluster and P is the packing factor within the cluster.

It is obvious that if the y a m  bends as one cluster, i.e. as a

solid beam, then n =n; also if the fibre diameter is very small comparedc
to y a m  diameter, P=1. This gives the above factor 'C ' equal to n and the

2maximum limit of y a m  rigidity reaches a value n Bf. The above analysis 

shows the large effect produced by fibres being prevented from bending 

independently; however, it does not explain how in y a m  bending the flexural 

rigidity yields lower values after the transient phase of initial bending.

More analyses (39*40) have been carried out on these lines and a 

model of parallel plates was used to demonstrate the effect of interfibre 

friction. G.M. Abbott et al. (40), on theoretical grounds, gave the
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following law for y a m  bending

ByK = M2/4Mq ,

and
B K = M-M„ .y 0

0«?M<2M0

M>2M q

The 'twist modifying factor* is needed since the fibres in a y a m  
tend to lie in helical paths with different radii and they undergo both 

bending and torsional strains when the y a m  is bent. An analysis by 
Livesey and Owen (41) showed that this factor may be taken as

(B )twisted y a mm _ . ■ y, ■(B )twistless y a my ■ t 2a2(l+Bf/rf)
■J h  £1+

a2a2(l+Bf./
' ] •

where a is the y a m  radius, a is the twist in radians per unit length, and 
1̂. is the torsional rigidity of a single fibre.

This analysis applies only for small bending deformations since 

the derived relations were found by analysing the forces and couples acting 
on the undeformed shape of the fibres. Leaf (42), in a recent publication,
examined the geometry of a bent helix under large deflections, and he was

/

able to show that the equation developed by Livesey and Owen was accurate 

’ to within 2% for even the largest strains considered. However, he also 

showed that the neutral axes of the helices moved by an amount depending 

on the helix radius. Hence independence of filament behaviour is unobtainable 

at large deformations.

Modifying the rigidity of the interlaced y a m  inside the fabric 

by a "geometrical factor", R, assumes that the yams at the cross-over 

region are prevented from bending by being in contact with the cross-yams. 

This assumption was first pointed out by N.J. Abbott, Coplan and Platt (37).
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The lengths of y a m  that canjiot "bend, £ .  and that can "bend, , were 
defined by the above workers as projections of the crimped y a m  on the 
fabric plane. Accordingly, they gave the factor 'R' as

(By)interlaced y a m  £

R = (By) straight y a m  = £ - £ q

■»

The ratio 'R' according to the above relation is never less than 
unity, a fact which fails to explain some results obtained by other workers

(6,8) for some open fabric structures. Following a similar argument to 
that given by N.J. Abbott et al. and accounting for the y a m  crimp, c, it 

can be shown that

i  ■ , ,
E “ ( i - 4 H  1« )  ’ (1-50)

which can take values less than 1.

The interaction between yams in fabric bending is probably more 
complicated than to be expressed by the mentioned geometrical factor.

The relation between the weave construction and fabric flexural rigidity 

was examined by Eeg-Olofsson (43*44)» who made an extensive study of a 

set of different commercial fabrics. In his study, the type of weave was 

regarded as of limiting effect, except in so far as it affects the length 

of yams in the unit fabric cell. From his experimental results, the 

following conclusions were reached:

(a) The stiffness of fabric is proportional to a function of the number of 

threads per cm, which function increases faster than the number of
threads per cm.
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(b) The stiffness is inversely proportional to a function of the length 

of the bent threads between two consecutive points, where the threads 
pass from one side to the other of the fabric.

These relations can be represented as follows:

V
1

P1P2n2

and 2
P2P1n1

(1.31)

where B^ and B^ are the warp-way and weft-way fabric stiffness per unit 

width, n.j is the number of warp threads which a weft crosses between two 
consecutive points of passing through the fabric, and is the corresponding 

number for the weft. It seems reasonable to suppose that the influence 

from the crossing system of yams is less than that from the bent system.
To include the effect of the crossing system the former relations were, 

thus, modified to

Vru
EjOc —r---- and B^a — -----

p1p2n2 P2p1n1

G. Abbott, Grosberg and Leaf (45) calculated the whole hysteresis 

bending curve using both energy and force approaches. A similar force 

approach to that used by Nordby was used for the case of set fabrics. For 

unset fabric defined by the parameters p , 1  and B in both directions, the 

undeformed y a m  configuration was completely defined using Peirce's rigid- 

thread model with finite contact. When the fabric plane deforms by an 

angle <J> , the deformed configuration of the y a m  was determined using the 
following assumptions:

1. The y a m  length does not change in bending the fabric.
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2. The modular height of the yarn, in the "bending plane, say the warp,

will change "by a small amount proportional to the inter-yam pressures,
dVV. The spring modulus, ^  , for this deformation can then he derived 

using small deformation theory (31) as
2 .36 b 2

Knowing the deformed and the undeformed configurations of the yam,
I

in the bending plane, the sum of the energy changes can be found and is made 
up of three terms:
1. Energy changes in the contact regions due to the y a m  in the bending plane 

increasing the length of contact with the cross yams on the outside of 

the bend and decreasing it on the inside of the bend.
2. Energy changes in the free section of the y a m  due to changes in 

curvature.
3. The energy increase or decrease due to the change in crimp of the cross 

yam.
The fabric flexural rigidity was then calculated by equating the 

siun of the energy changes in the system with the work done by the external 

couple bending the fabric. The final calculated results gave lower values 

than the observed fabric bending rigidity. Abbott et al. suggested that 

this discrepancy was mainly due to possible errors in estimating equivalent 

y a m  diameters which require a detailed knowledge of the load-compression of 

the yams.

A suggested model and energy approach were also given by Hearle 

and Shanahan (22,26). In order to apply their method, a general geometry 

of the fabric had to be defined, in which the fabric bending angle, <J>, was '
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introduced. This angle was used in the energy equations as the generalized 
displacement associated with the deforming external couple, M. The 
general mechanism of fabric bending, described by G. Abbott et al. (45), 
had to be preserved when defining the bent shape of the fabric, i.e. in 

the bending plane an increase of the angle of contact on the outside of 

the bend and a decrease of this angle on the inside of the bend should be 
achieved in such a way that the difference between the two contact angles 

is cj> .
Figure 14 shows this geometry, described by the authors as a 

modified Peirce's flexible-thread model. According to the bent geometry, 
the y a m  contact length in the cell unit will be reduced from L8q  ̂ to 

^(20^-ii). Referring to axes XZ in the bending plane and YZ perpendicular 
to this plane, the generalized dimensions and displacements are defined 
as follows:

(a )

r.j = (x/tan<$)+Z , rg = (x/sinc£>)-D/2, R =

D <J)h1 = r . j- r 2 = 2 + 2 -  x tan  2 , 0 0

h2 = ( 02<'s i n02+D ( 1-co  s e2 ) * (c )

h1+h2 = D . (a)

It can be shown that the above relations may be reduced (from b, 
c and d via a) to only one single relation in the form

2+ I  - j i s i n e ^ ^ -  l ^ - d ^ c o s  61 J tan I  +(/2-D02)sin02-Dcos02 = 0 ,

(1.52)

x  =_Psin0^+ | ( 2 01 -<Î>)| cose .,,

Z = |(1-2c o s0.,)+ | |(201-<îi)|sin01,



52

Fig. 14
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which may be regarded as <$= f(eif02), provided that and are 
constants initially defined and D is calculated for the undeformed 

configuration (D is also constant for incompressible yams). In order to 
define the deformed shape and the M-c£ relation, we need two more relations 
relating the external couple M to(J),0̂  and 0g. These relations are 
provided by the minimum energy method. The energy equation is given by

E = -M$>+U ,

where U is the strain energy due to the y a m  bending only, and is defined as

U = ¿ | b 1(201-^+2B202|. (1.33)

Regarding 0̂  and 02 as the independent parameters, the minimum energy 

conditions (equation 1.17) give

<3$ _dU_ ÔU <3$
M d01 = 001 + d<î> d01 »

and
d $ _ _ _5U_ 0ÏÏ d&_

M Ô02 " Ô02 + d $  dd2 ’

(1.34)

(1.35)

where the derivatives are found from equations (1.32) and (1.33). The 

problem is reduced to 3 simultaneous equations, (1.32) and (1.34-1.35)» in 

3 'unknowns (0^»02 either <£or M) which can be solved by iterative 

techniques.

1.4 Scope of the Present Vork

This thesis is an attempt at a theoretical study of the initial 

extension and bending of fabrics. The study is limited to dealing with the 

simplest and most commonly used weave, namely the plain fabric. The 
final aim of the work is to provide a closed form solution, for the above-
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mentioned initial fabric deformations, that directly relates the fabric 
modulus and fabric parameters.

In section 1.3 it was shown that a computer was a common feature 
used by all workers,in order to obtain numerical results that can be 
compared with experimental data. When large deformations are to be 
considered,it seems that this recourse to powerful computing techniques is 
most probably unavoidable. The need to know the fabric mechanical behaviour, 

at higher strains,is of considerable interest in industry in order to check 
the quality of the fabric and the effect of various methods of fabric 

treatment. However, in the practical uses of commercial fabrics, these 

high strains are rarely met with and in many applications only small 
deformations are expected to take place. For such cases, it would be useful 
if a closed form solution could be found,that gives a reasonable prediction 

of real fabric behaviour without the need for a computer.

A clear disadvantage of a computer-based solution is that only a 
specific solution, for the specific fabric in hand is obtained, and even 
with some approaches if a graphical method or dimensionless representation 

is used, a general solution can not be obtained which covers all the 

possibilities arising from the endless combinations of fabric parameters.
On the other hand, a closed form solution can provide such a general 

solution. Obviously,for practical purposes,the latter is recommended. In 

addition, the closed form solution is more capable of showing the inter­

relation between the fabric parameters. A quick glance provides an idea 

about the interaction, magnitude and importance of the parameter when a 
fabric is required to have certain given properties.

Apart from investigating higher strains, another reason why most 
of the analyses mentioned previously require the use of a computer is
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their employment of relatively sophisticated fabric models. Using Peirce*s 
flexible-thread model or the modified models, involving non-circular shapes 
of cross-section, necessitates the solution of a system of usually non­

linear simultaneous equations. Another alternative is to find an exact 
solution,considering Peirce's rigid-thread model as a starting point. This 
will involve the use of elliptic integrals and so the resulting equations 
of equilibrium are highly non-linear. A simple way out of the difficulty 
is'to use a much simpler model,and this has been the approach adopted in 
the present work. For this purpose,a simplified shape of the plain woven 

fabric was considered where the yams, warp and weft, were assumed to be 

modelled as elastic, straight thin rods forming a saw-tooth shape.



CHAPTER 2: THEORETICAL
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CHAPTER 2 

THEORETICAL

2.1 The Straight-line Model
It has been suggested in the preceding chapter that, in order 

to obtain closed form solutions for the initial tensile and bending 
moduli, a simple model for the plain weave geometry is necessary. A straight 
line model was thought to be most suitable for this purpose.

Different representations for the y a m  axis, in one of the major 

directions, of a plain weave structure have been given in figures (5-8); 
these representations have been shown to be dependent on the assumed y a m  
properties, namely their rigidity and compressibility. Two possible 

simplified models, using straight lines, áre shown as EPGI and AOH in 

figure 15» Of these, the first is in some respects a better representation, 
as it can be thought of as simulating the flattening which occurs in the 

y a m  cross-section during fabric formation. On the other hand, adopting 
such a model in the present analysis, will be at the expense of additional 

difficulties in defining the properties of the horizontal bits EP and GI, 

in the shape. The second model, AOH, which may be termed the "Saw tooth" 

model, was considered preferable, at least at the outset of the 

investigation.

Ve may now consider the geometrical characteristics of the model, 
and the mechanical properties of the constituent yams, that have been
assumed.
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Fig. 15

Fig. 16



58

Geometrical characteristics of the * Saw-tooth' model
Figure 16 shows half of a plain weave repeat together with the 

straight line approximation. The fabric neutral plane will be that which 

contains the intersecting lines and 02^2* ^wo yarn systems are
assumed set in 3-dimensional space, and CH^ and CH2 are the maximum 
heights of the warp and weft axis, at the cross overs, above the fabric 
neutral plane. It is assumed that the warp is rigidly jointed at and 
at similar points on the warp axis; also the weft is rigidly jointed at Hg 
and at similar points on the weft axis.

Using the notations given by Peirce, the fabric parameters related 

to figure 16b are as follows:

Thread spacings

P1 = °2^2 and

Modular lengths
1 .1 = a^d

Modular heights
h^ = 2CH.J and

Weave angles
/\©I = CO^H^ and

P2 —

l 2 -  O^gQg-

h2 = 2CH2 .

/\02 = C02H2.

It is usual in,practice to define the weave by the two thread 

spacings and the two crimp ratios for warp and weft, where

The triangles formed by a quarter of the plain weave repeat then yield 
the following relations:
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e1 = cos^Pg/Zj , e2 = cos“1 P1 / l ,

ĥ  = i1sin01 , h2 = i2sin02.

The geometry is completely defined if the measurable quantities - 

P2*P-|»A ^2 are given*
Because the fabric deformation depends on both the weave construction 

and the constituent y a m  properties, it is necessary to define the mechanical 
properties of the yams in the system.

The y a m  mechanical properties 

(a) Y a m  bending
The yams are assumed to have constant rigidities, B, along their 

lengths. The relation between the change in curvature, K, and the applied 

bending moment, M, is assumed linear for initial deformations, i.e. the 

y a m  rigidity does not change with the change in curvature. Using the 
notation of section 1.3«3» the assumed bending behaviour gives *

M
B

%
“ ds ds0

d'p 
” ds ifif the y a m  is naturally straight.

The strain energy, dU^, due to bending of an element of length ds is (46)

B /d¥v2. M . 
dUB = 2 fe) ds = ™  ds‘2B

(b) Y a m  compression

Because of the forces generated between the yams when the fabric 
deforms, the yams will be compressed, so that their dimension in the plane 
of the fabric is much greater than that out of the plane of the fabric.
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In a real fabric,the compressive forces will "be distributed over the region
of y a m  contact,but in the model they are represented as point forces. If
the inter-yam force is T and the original diameter of the y a m  is d, thec
compression modulus of the yams, n, will be assumed given by

where £  = Ad/d is the fractional change in diameter, c
The strain energy of compression, U , is thenc

U0 = i Ad (Tc) = Tc2d/2H .

(c) Y a m  Extension
The forces acting on the system when the fabric is deformed will 

usually have a tension component, T^, acting axially on the yams. If ̂  

is the fractional extension produced, the tensile modulus of the yams,

X, is

T
_ Sr

The strain energy, dU^, due to extension of an element of length ds is 

dUT = (Tt ) 2 ds/2X.

2.2 Solution for the Initial Tensile Properties of Plain Fabrics

It is now proposed to find the relation between the initial load- 

extension of plain woven fabrics, when the constituent warp and weft yams 

have the shape and properties defined in section 2.1. Before we proceed to 
consider the solution for the general case, it may be useful to demonstrate 
the adopted approach by considering a simple case. In this case, the yams
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are assumed incompressible and inextensible. The strain energy in the 
system, when it is deformed, is thus due only to bending deformations.

2.2.1 Simple case: Incompressible and inextensible yams

Suppose the fabric is deformed, biaxially, by forces and Fg 
per unit width along the warp and weft directions respectively. If the 

number of ends per cm and picks per cm are 1/p^ and 1/pg respectively, 
the forces f̂  and acting on the individual warps and wefts axe

f^ = F.| p^ and fg = Fg Pg"

Fabric extension will cause forces 2v^ and 2v ^ to be generated 
along the line H.jH2 between the threads (figure 17a). From statical 
considerations v^ = Vg, but it is convenient to retain the separate notations 

for the moment.
The forces f and v can be resolved as in figure 17c,to give an 

axial tension, transverse shear and bending moment,at any point on the y a m  
axis. In general,for such deformations it is usually assumed that the 

y a m  cross-cross section is undeformed by shear. The tension and bending 

moment at a point P(x,y), a distance 's' from 0* is (see figures 17b-c)

and
TT = f costy+v sin>^ , 

M = fy-vx.

If the deformations Ap/2 in the fabric plane and Ah/2 perpendicular to the 
fabric plane are small, then approximately>p= 0 

and x = s cos0 , y = s sin0 ,

i.e. the small deformations have no significant effect on the system geometry 
and the forces can be calculated on the basis of the undeformed
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V

Fig. 17b Fig. 17c
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configuration (46). We then have 

T̂j, = f cos0 + v sin0 ,

and
M = s(f.sin0-v.cos0).

The "bending strain energy in is then

The "bending strain energy in OgHg, in the weft direction, due to the tensile 
force fg, and the vertical reaction v^ is given by similar expression with 
suffix 2; hence the total bending strain energy in the unit cell is

UB “ UB1+IIB2

( f 1 sin 01 -v1 co s 91 ) 2 ( f 2 sin 92_v 2C0 s 02 ̂
48 B1 48 Br

By Castigliano's theorem (46,47)» the deflection in a load 
direction is given by the partial derivative of the strain energy in the 

body with respect to this particular load. Applying Castigliano's rule

gives
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dU- i^sina,
¿ P 2/ 2 =  Z f^  =  "2 4 ~33j ( V in0r V1COS01> , (2 .1 )

SUg jfisinQ̂
A P-|/2 = = 24 B2 (f2sin02“v2cos02) ’ (2*2)

dU- -/^cos01
Ah/ 2 = = ~ 2 4 B ~  (fisln9r vicos9i)> (2*3)

and
dUB -ficosQ-

A\ ! 2 = ̂  = 24 B2 (f2sin92"v2COS02  ̂* (2*4)

Another condition that must he satisfied is provided by the 
compatability condition of the point of contact between warp and weft. 
Assuming incompressible yams we know that h.j+h2 = constant and hence

Ah.j+Ah2 = 0

Substituting in the above equation from (2.3) and (2.4) gives 

/^cos01 ipcos®2
— ------1  ( f 1 sin01-v 1cos01)+ —jj----- - (f2sin02-v 2cos02) = 0. (2.5)

Furthermore, at any moment of deflection, the vertical force acting from 

the weft on the warp, v^, must be equal to the force acting from the warp 

on weft, v2, i.e.

V 1 = v 2 = v  (say )-

Equation (2.5) can be solved for v, giving

f^Bg^sin0^ cos0,j+f 2^  ̂ 2   ̂8p
EgZ-jCos2©̂  + B^gcos^g

v
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We shall define here a force ratio Q = f2/f^ ; the above equation is 
then

v =
f1 (B2^isin0icos0l+® 31 /^sine gCOsBg)

Boiiicos201 + B1i|cos202
■ A

( 2.6)

Equations (2.1) and (2.6) give

sin01
Ap2 " f1 12B sin0^ - co s 0.| ( B£ sin0.j co s 0.j+QB.J s*n 02co s ®2 ̂

Bg^cos2©̂  + B.ji2cos202

The above equation gives the fabric warp-way extension \mder the biaxial 
loads f̂  and fg. If only a uniaxial load is applied, arbitrarily taken in 
the warp direction, i.e. Qi=0, the equation reduces to

f1 -^^2 sin2 ei00 s2 e2 
2 12(B2i^ c o s201 + B1^ c o s 2 02)

If we let be the fabric fractional extension in the warp direction, then

£ , =ap2/p2 »

and we can define a fabric initial modulus E^ by

Ei - V S

_  J 1 p2 

p 1Ap2

12p2(Eĝ  COS20̂ + B^2COS202)
P1^ i 2sin201cos202

12BlPg
p1^sin291

1 +
Bg^cos2©̂

B1^cos2©2 (2 .7 )
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which is similar to the result derived hy Grosberg and Kedia (31), 

equation (1.14)»

2.2.2 General case: Compressible and extensible yams

It is well known that the actual deformation of fabrics involves 
both y a m  flattening and y a m  extension as well as bending, and the errors 
which may result from ignoring these effects could be crucial. Therefore, 
the above approach is extended to the general case of extensible and 
compressible yams.

The strain energy in the system

In the general case,it is slightly easier to consider the strain 
energy in half a repeat of the weave, i.e. the whole unit shown in figure 
17a. The total strain energy will be the sum of the following 3 terms:

(a) Strain energy due to y a m  bending

The bending strain energy in and OgHg is as before; hence
the bending strain energy in the unit cell shown is

/^(f1sin01-v1cos01)2 i2(f2sin02“V2COS02^2
UB = 24B^ + 24B^

(b) Strain energy due to y a m  extension

The tensile force in is (f^cos0^+v^sin0^), and from the

definition given earlier for the y a m  properties, the extension strain energy 
in the whole unit is

«  n

Z, (f1COS 01+v1sin 01) l2(f2co s02+v2 sin©2)
UE = + i T 2
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(c) Strain energy due to y a m  compression
If d.j and d2 are the original y a m  diameters of the warp and 

weft threads, the compression strain energy in the unit cell is given by

u0 = 4
(2Vi)2d1 (2v2)2d2

+ i

2Tiai gT2d2 
“1 + “2

The total strain energy in the cell unit is

UT " ÏÏB+UE+ÏÏC

■ s pi=1,2 *

sin9.-v.cos0.V x i  i' A.^ficos0i+Visin0i' 2v‘
243i 2 X.

2vidi) ( 2.8)

Calculation of fabric extension
The points of application of the forces 2v^ on the warp thread 

and 2Vg on the weft thread coincide with the point of contact of the two 

yams. These points are initially at a height (h^-d^)/2 when regarded as 

a point on the warp thread, as shown in figure 18. Obviously,

= i(d2-h2) •

When the fabric deforms, the height of this point will change by virtue 

of a decrease or an increase with respect to the fabric plane. If the 
yams are to remain in contact, the above argument leads to

A(h1-d1)/2 =A(d2-h2)/2 , 

or
A^-d.,) + A(h2-d2) = 0 • (2.9)
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Fig.

Warp extension

CM
CM_o

I
CMo"O

T

(b)

8 shows the change in height of the point of contact, N, 
regarded in (a) as point on the warp and in (b) as 
point on the weft.
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This condition replaces the condition Ah^+Ahg = 0 given for the case 
of incompressible yams, and reduces to the latter when the yams are 
incompressible.

Now by Castiligliano*s theorem,

àüT 
Ôf1 =

âP2 * (2.10)

àf2 = ¿P-, , (2.11)

ô ü T
= A(h1-d1)/2, (2.12)0(2^)"

Ô U T
= A(h2-d2)/2 . (2.15)ô(2v2)

These, together with equations (2.8) and (2.9), provide the solution to 
the problem. Equations (2.% (2.12) and (2.13) give

i /?cos0.(f.sin0.-v.cos0^) ¡¿ . sin0^(f^cos0^+v. sin0^) v̂̂ d̂ j
¿ ? A ' ^  + \  + — }=

Since v.j=V2=v, say, the above equation when rearranged gives

2 _ j  f.i.sinO.cosO.t^ - — ) = v
i=1,2 i i

E
i=1,2

i^cos^8i i ^ e i r P o ^  4d^
 ̂ 12Bi +

from which

v  =

V'' i-
J r f ,  f i 4 s in e i oosei ( î ^  -  ^  >

I % oos20i  i 1sin2ei  Ai,

à i z  ‘ ,25r + : + ~ *h  ' h

(2.14)
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Next, the extension in the warp .direction Ap2 can be obtained from 
equation (2.8) and (2.10) as

¿P2 =
/■|sine1(f1sine.|-vcose1) ijCosG^^cose^v sin0^) 

—  + r

r / J s i ^ e . .  jL c o s2 0 / 1  r  È  i .- i
= 4  "1̂ -) + — — J- v [_sin0iot>s0i(iS7 - <2-15>

Substituting the value of v from equation (2.14) gives

^ s i n 201 i1cos2e1 ^
ip2 = f1^ îâj + ^

4
-sinG.jCosQjGjgjj-

i, ^ / l 4 Bln9l0089i<ï5^ ~ 7 ?

Xl T (È™lh. 4sin2ei ^
i ^  12Bi + Xi + Pi

( 2 . 16)

Using the relations Ap2=<£jp2, f1=P1P1 and f2=F2p2, the above equation 

gives

* F1P1 M 
61 " P2 N » (2.17)

where

M =
[^l^sin291cos2e2 l \  i2sin201sin202 j ^ c o s ^ c o s ^

1443^2 + 12B1X1 + 12 V i

ili2cos201sin202 i2sin201 cos201 d1 d,2 , 2,
X1X2 4Ü,0 12B1 “ + X.1 )(,11 +

Û2 f .
-(FgPg/P^^^^sinG^osG^inGgCosSgi-i- - ̂ ( J g -  - ± )12B1 X1^12B2 Xg'
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and

A similar expression for the weft-way fabric extension, <£,, under biaxial 
loading could be derived from equations (2.8) and (2.11),or by the 

interchange of suffices in equation (2.17).

2.2.3 Special cases
The following special cases can be derived from the general 

expression.

1. Fabric extension of compressible and extensible 
yams under uniaxial loading

In this case 5\j=0 and the term including F^ in equation (2.15) 
is eliminated. The fabric tensile modulus in this case is

E N
w  * ( 2 . 18)

where

M'
^̂ sin2e1c°s2e1 

| 1443^2 +
A  / 1̂ /j^sin201cos201 

12B1X1 + 12  ̂ B^X2

cos2©, sin2 0  ̂ /?sin20. cos20. d. d0 )
+ Z f o  + 4V  12B1 + T j ~ ^ +

2. Fabric extension of inextensible and compressible yams 

under biaxial loading

If the yams are assumed inextensible, the X's tend to infinity 
in equation (2.17) and the warp-wise extension is given by
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* rip1 X
*  ’

where
d„ d.

and

f  ( «
= |j^sin201cos202+48B2sin201(-j|p + ~ )

-(F2P2/l’1 P1)4sin01cos01sin02cos02| ,

â. d
Y = B2^cos201+B1i^cos202+48B1B2(-^ + -ĵ )

(2.19)

3. Fabric extension of inextensible and compressible yams 

under uniaxial loading
In this case F2=0 and X is reduced to X/, given by

i^sin201 ( , p  d1 d )
l'  = - V |  4 ° ° ° V 88* ^ + ^ J

The initial fabric modulus for this mode of deformation is then given by

E 1
£2 Y 
P1 F

12BlPg 

P1i^sin201

4 . The simple case

The simple case of inextensible and incompressible yams, which 

was derived earlier, is a special case of the general solution (equation 2.17) 
when the X's and s tend to infinity.

1 +
B2/^cos201 

B1^cos202+48B1B2(d1/^+d2/H2)
( 2 . 2 0 )
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2.2.4 Fabric initial Poisson's ratio
Fabric Poisson's ratio is defined as the ratio of contraction to 

extension, expressed as fractions, and can be investigated by the present 

analysis.
Under biaxial loading, the warp-way change in fabric dimensions,

Apg, is given by equation (2.15). By change of indices we get a similar 
expression forAp., as follows: ,<

These expressions for Apg and Ap^ are reduced under uniaxial loading 

conditions, fg^» to the following

A P<
- * [

N (•
i^sin^G^ i^cos^G^

12B< ) - sin G,
£  L

ioos2ei(i25;-i;>2 ]'

and

A Pt =  -  T  [ s t a e l 0 o s e l S t a e 2 c o S e 2 ( A -  -  -  ^ ) J  •



A general expression for Poisson's ratio in the warp direction is then

7 4

applying the following rules:

(a) If the yams are assumed inextensible, and x2 tend to infinity.
(b) If the yams are assumed incompressible, ^  and tend to infinity.

The following cases are of interest,

1. Fabric initial Poisson's ratio for inextensible and compressible yams

The special cases can be obtained from the above expression by

In this case equation (2.22) is reduced to

where

or

(2.23)
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2. Fabric initial Poisson's ratio for inextensible
and incompressible yams

The above expression is further reduced to
P2 tan02 

= p1 tan ft," (2.24)
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2.3 Solution for the Initial Bending Properties 
of Plain Fabrics

For this analysis,it is proposed to find a closed form solution 

for the relation between the fabric initial bending modulus and fabric 
and y a m  parameters, under conditions when only small fabric bending 

deformations are assumed to take place in one of the major directions.

The yam's initial configuration in the fabric and its mechanical properties 
are assumed to be identical with those used in the previous analysis. In 
particular, it is important to remember that the yams at the intersections 

are assumed rigidly jointed, i.e. the angle subtended between CA and AH 

(figure 19b) remains unchanged during deformation.
Figure 19a shows a three dimensional representation of the plain 

weave using the 'Saw tooth' model. When the fabric is bent, say in the 
warp direction, the weave unit will appear as shown in figure 20a and 

because of the assumption that angles like CAH remain constant, the arm AH 
may be treated as a cantilever fixed at A.

Figure 20b shows the elevation view of two successive bent warps 

according to this mechanism of fabric bending. It is apparent that the 

thread spacings, in the bending plane, on the outside of the bend will 

increase,while those on the inside of the bend will decrease. This suggests 

that there is a 'neutral plane' in the fabric,whose length does not change 

after the bending deformation. Due to the fact that the fabric is not 

homogeneous in structure and fabric bending involves a relative freedom 

for y a m  deformations, including a change in their height amplitude, the 

'neutral plane' will not necessarily coincide with the plane of the fabric 

before bending (i.e. the plane through the mid-point 0 of AH in figure 19b). 
This neutral plane is shown in figure 20b and intersects AH/at D. If the
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radius of this plane after bending is , then 

P2 = »

where <£ is the angle of fabric deflection for the unit weave cell.

Note that the point 0 is not a point of symmetry for the warp configuration 
in the deformed fabric.

Force analysis in the system
When the fabric is bent by an external couple, forces will be 

generated between warp and weft threads at the cross-over points. We may 

take the unit cell AH7 and EF7 (figure 20a) as representative of the bent 

configuration of the fabric. The forces acting on the warp unit AH7, in 
the bending plane, can be assumed to be as shown in figure 21a, namely 
couples m^ and m^ at H7 and A respectively, together with the forces 

and v!j in the vertical direction and components f^ and f!̂ in the 

horizontal direction.
These forces and couples are assumed balanced,having deformed 

the unit warp to the shape shown in the figure. Three conditions must be 

satisfied in order for the system to be in equilibrium.

1. The resultant of the horizontal components of all the forces is zero.

2. The resultant of the vertical components of all the forces is zero.

3. The forces imposed by the cross y a m  at A,in the radial direction AI, 

is of the same magnitude as the forces imposed by the cross y a m  at 

in the radial direction IH/.

The last condition insures that the successive cross-yams will 

be crimped by equal and opposite forces. The first two conditions give
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and v' = v-j »

while the third condition gives 

y' = v.jCos(I>+f1sin<I>.

The second and third conditions lead to 

v.| = v.jCos<i>+f.|Sin<i>,

or
f _ v (1-oob<& 
*1 “ V1 sin<£

and when <J> is small, 

f1 = — '

*

is given approximately by

2.5.1 Fabric bending of incompressible and inextensible yams

The strain energy method will be used to solve this problem. A 
great advantage of the method adopted, as previously shown in the tensile 

analysis, is that independent co-ordinate systems may be established for 

each member without regard for consistency of positive directions of the 

various co-ordinate systems (47)» This advantage is essentially due to 

the fact that the strain energy is always a positive scalar quantity.

The strain energy in half a plain weave repeat may now be calculated 

in terms of the couples and forces shown. When assuming inextensible 

and incompressible yams, this energy will be the sum of the following 

terms:

(a) Bending strain energy in the warp unit AH' (figure 21a), due to the 
couple and forces v^ and f^;
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(b) Bending strain energy in the weft unit EF/ (figure 21b), due to the 
change in its height amplitude caused by forces like Vg.

Considering the warp, referred to axes H^Y.j (figure 21a), the 
bending moment at any point P(x^,y^) on the warp thread, a distance ŝ  

from H7 is

M 1 = m1+f1.y1-v1x1 .

Since the deformations are assumed small, the undeformed 
configuration may be used as a basis for the calculations instead of the 
unknown deformed shape.

• Initially we have

x1 = s1cos91 and y1 = s^inG^

Hence

M 1 = m1+s1(f1sin91-v1cosei) , 

and the strain energy, , in AH7 is

A

or

ÏÏ1 = zb: f M?ds1
Jo

= j  £m1+ s1( f 1sin01-v1cos01)J dSl ,

1 ( [mi + i i ( f i s in 01-v1cos01)] -mljj
= 2ÜJ” | 3(f-jsin0^—v^cos0^ ) j *TL (2.25)
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In the weft direction, the forces acting on the unit weft 
y a m  EF^ of length /,,, are shown in figure 21b. These are the vertical 
forces V£ and v£ , at E and F/ respectively, together with the couples m2 

and m' which balance the moment produced by and and prevent y a m  

rotation. Taking axes x2^2 in ^he plane "^e v e ^  t the bending
moment at any point (x2»y2) a distance s2 from F^ is

M2 “ V  V 2 9

and, since ^  SgCosBg for small defoxmations, the bending moment is 

given by

M2 = m2-v2s2cos02 .

Here,the possible rotation of the plane containing the weft thread 
is in a direction perpendicular to the forces and couples acting on the 

weft, therefore this rotation will entail no change in the total elastic 
strain energy. Hence the strain energy in the unit weft, resulting from 
the change in curvature due to change in its height amplitude, is given by

U2 " v2s2cos92-m2) ds2

[■

|v2i2cos02-m2}
3v 2c o s92 ( 2 .26)

The total bending strain energy, U, in one complete cell weave

is therefore
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U
or

U

The deformations in the system
The above expression for the strain energy was used together 

with Castigliano1s theorem to calculate the various displacements in the 

system at points at which the forces are applied. The sign convention 

with this theorem is that the partial derivative of the energy,with 
respect to particular force,yields the displacement in the force direction. 
Accordingly, a negative value for this derivative means a displacement 

against the assumed force direction.

By Castigliano's theorem

Ap2 = |f^ ’ Ah1 = dv“ ^  a = » (2.28)

also, Ah2 = and Y = . (2.29)

where Ap2 is the change in warp spacing (as considered at the outside 

of the bend);

Ah1 is the change in warp) amplitude; 

a is the relative angular rotation of the elastic line at H7 with 
• respect to A (figure 21a);

Ahg is the change in weft amplitude;

Y is the relative angular rotation of F^ with respect to E(figure 21b).

^1+^2 »

= £3mii1+3mii^(f1sine.|-v1cosei)+^(f1sinei-v1cosei)2J 

+ £v2i^ c o s 2e2-3m2v2i 2c o s2 e2+3m2i2 J  . (2 .2 7 )

and
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In the weft direction, the balance between the forces and couples 
acting on the unit weft cell gives v2=v2 and m2=m' . This means that the 
weft will deform symmetrically,with respect to its mid point G,as shown 

in figure 21b; hence the bending moment, M2, is equal to zero at G.
The relation between m2 and v2 can be obtained from the above

result

(M2)g = m2-Jv2j02cose2 = 0 ,

or

m2 = £V2^2COS02 *

The relative angular rotation between F/ and E is obtained from

equations (2.27)and (2,29) by

T
[

|v2£2cos92-m2|
2B2v2cos02

which leads to Y=0 when substituting by the above value of m2 in terms of v2.
This, physically,means that the reaction from the warp on weft, 

when bending the fabric in the warp direction, may only entail changes in 

the weft height amplitude without any relative rotation between the ends 

of the weft unit cell.

We shall proceed to find the relation between and v^ using 

the compatability condition of the point of contact between warp and weft.

The second condition in equation (2.28) together with equation 

(2.27) gives
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s ^ -3m^^cose^-2^cos9^Cf^ein9.-v.coB8.)
" 577 " S5j

2
-/1cos91 r

= — gjj---- I 3m ^+2l^ (f‘1sinei-v.]cosei)

The negative sign in the above equation means that the displacement 

of point H7(figure 21a) is against the assumed direction of the vertical 
reaction v^, i.e. the system of forces and couples will produce decrimping 

of the warp yam.

Similarly, the first condition in equation (2.29) together with 

equation (2.27) gives

Ah2 = = 6 ^  [2v2l’cos292- > 2^ oos2e2j ,

and since mg = ¿Vg/gCOsBg , we find

vg4 cos292
Ah2 “ 12Bg

Note that Ah^ is strictly the change in h^ in a vertical direction, 

since v.j is vertical. However, since <J> is small and '£>' large, the change 

of amplitude in the radial direction will, to the level of approximation 

being used, be equal to Ah^. The change Ahg is in a radial direction, 

since v2 acts radially. Thus, if the yams are incompressible, the 

relation 'h^+hg = constant' gives Ah^+Ahg=0; also we may put Vg=v^=v (say) 

and we get
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4 OOS01 r ,1 » & < » %
[3®1+ 2 A (f 1sln8r v  OOS01) J  = ----12BT >

or

mi =
vB1 s202-4B2i^cos01 ( f 1 sin01 -v cos 01)

6 B ^ c o s 0 1

Substituting the approximate value = vrj/2 in the equation we find

mi - T [
B1/2cos202-2B2^ co sO.jCcJisinO.j-̂ cosO.j)

6~B,J^c q q §^ \ (2.30)

The relative angular rotation of the elastic line at point H7 
with respect to A,a, is given from equations (2.27) and (2.28) by the 

following expression

5 U
a  =  ^  =

6m1i1+3i^(f1 sin 01-v1 cosO^
6Bh

Due to the assumption of the rigid intersections, it is apparent 

from figure 21a that a=<î  where <$» by definition is the angular deflection 

of the unit fabric plane. Also since f^vj/2, the above equation gives

4m1^1+v/^( (J)sin0^—2cos0^)
4Bi (2.31)

4B̂ <J) = $  sin0^ —2cos0^).

or
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Equations (2.30) and (2.31) can ,be solved for v and in terms of <J>. 
Thus

12^3^2^0080^

2Bi ̂ 2cos202-B 2^ c o s 0.| ( <£> sin0^-2cos0^ )

which may be approximated in the following way, 

We have

v =
6i)B1B2/1cos01

(B2^ c o s 201+B1i^cos202)
1 -

(j)B2/^sin01cos01

2(B2/^cos201+B1̂  COS202)

-1 -1

Since <I> is assumed small, we retain only terms of order $  and the 

above expression is reduced to

v =
6<I>B^B2^cos01

(B2i^cos201+B1i^cos202)
(2.32)

From equations (2.30) and (2.32), m^ in terms of <£ can be obtained

m. =
6 c£B.|B2j£|Co s0.| |^B^/2cos202-2B2i^cos01 ( sin01~2cos01 )

1 (B2i^cos201+B1i^cos202) L 6Bj2cos0Hr r UBVi ]

or

<I>B1 ["4B2i^ c o s201+B1 ^ c o s 202*l

1 ^1 Lb2^ cos201+B1/^  cos2©2 J

The strain energy in the system can now be calculated in terms 

of (J). First the expression for the energy, using the relations f^v^/2, 
v^=v2=v and m2=|v/2cos02, is converted to
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v^ 2 COS^02
+ 243 2

which, upon substituting the values of v and in terms of <J>, gives

We have defined the radius of curvature of the fabric neutral plane £,

to bend the single unit cell, shown in figure 21, of the fabric is 

W.D = ^C4>.

Also, the bending rigidity of unit width of the fabric is the sum of the 

interlaced y a m  rigidities in this width. Therefore, the fabric warp-wise 

rigidity, B y is

4B2^cos4e1+5B1B2/^ ^ c o s2e1cos2e2+B^/.2cos4e2

(B2^ cos201+B1/^cos202)2

where £>= p^*. If the external applied couple is C, then the work done

or

Therefore,
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Assuming the system to behave as frictionless mechanism, the 
external work done will be equal to the strain energy in the system. 

Thus

cD2B1 I- 3B2̂ cos281
2p2 P1 2/| L B2i^cos201+B1^cos2 02

which gives

_ B1P2 3B2j^cos 91 "I « ^
~K L + B2̂cos201+B1̂cos202 J P1
It is worth pointing to the result which can be obtained if the 

system is considered to be composed of only crimped yams in one direction, 
say in the warp direction, i.e. B2=0 in the above relation. This leads to

p 2e i 1 B1 j _
Tf I f  Pi (1+<=-|) P-| ’

which is the same result obtained by others (41»45).

2.3.2 Inclusion of the y a m  compressibility

Inclusion of the y a m  compression can be achieved in the present 

analysis in a similar way to that used in the tensile analysis. When the 

fabric is bent, considering a complete repeat of the plain weave, the forces 

2v^ and 2v2 are the reactions from the weft on warp and visa versa. These 

forces will reduce the y a m  diameter and hence another term due to y a m  

compression is added to the energy changes inside the fabric.

(2.33)
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The strain energy in the units AH1 and EF' is then made up of:

1. The bending strain energy for warp and weft, Tig, given by

Ug = |̂ 3m̂ /l+3m1i!|(f1sinel-v1cosei)+^(f1sinei-v1cosel)2J
2 2 2 

v 2 i 2 c o s  e2
24B0

2. The compression strain energy, Uc, given by

Un = t

JiSv,)2!, (2v2)2d2lT V + ~V~J
Ü i f i  f à
•*1 + “2

The total strain energy, TT̂ , is then obtained from

CT = 0B + U0 .

By Castigliano*s theorem

¿U„ SU
• ^  = A(hr d1) and 5^  = A(h2-d2)

which on using equation (2.34)» give

(2.34)

A(h^-d^) = - ^3^^0030^+2^0080^(f^sin0^-v^cos9^)J + — -- ,

and

v ¿cos2 0o 4v0d 
A(hg-dg) = Ï2B2 2---- 2 n'2“2— + — ---
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The condition which must be satisfied for the fabric deformation, 
assuming compressible yams, is

A(h^-d1 ) + A(h2-d2) = 0,

Applying this condition we get

*3 2- r 12 ,3 1 4v1d1 v A ' c o b e9 4v?d
- |5m, cos01+2/^cos01 (f, Bine^v^ose, )J + - j —  + ---^ ---+ - j —  = 0

Substituting f^ = — g— and v^=Vg=v, the above relation leads to

The angular deformation of the fabric plane, <j>, is given as before
by

ÔÏÏT 4m1i1+v|^((î)sin01-2cosei)
4> = dC. 43,

Hence

4B̂ <î> = 4™^/-j+v^(<$»sin0^-2cos0^ ),

Equations (2.35) and (2.36) give

(2.36)

v =
<b(12 B ^ ^ c o s © ^ )

2Bi^2cos^02-®2^1COS®1 (<i3S4n9-| -2cos01 )+96B1B2(d1/n1+d2/^2) 

which can be reduced to

<£(6 B.jB^cose.j)

B 2^ c o s 2 0 1+B 1i ^ c o s 2 e 2 + 4 8 B 1B 2 ( d 1/ ^ 2+ d 2 / n 1 )
v
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on neglecting cj> and terms of higher order.

Substituting v in equation (2.55) and retaining only terms of 
order <J> gives

<£B1 T  4B2i^ c o s 201+B1^ c o s 2 e2+48B1B2(d 1/n 1+d2/ | i2) 'j

1 T  L B2̂ c o s 201+B1^cos202+48B1B2(d1/(i1+d2/n2) J *
Furthermore, following the same argument as before,- the energy 

changes inside the fabric is equated to the work done to bend the fabric. 
This leads to the following expression

_ f i i 2  r  + ____________ 3B2^co.Ze1______________
* ^1 L B2i^oos201+B1i|cos202+48(dl/^1+d2/^2)

'It is apparent that this expression gives lower values for the 

fabric rigidity, in comparison with equation (2,27) and shows the effect 
of y a m  compression on fabric bending.

x - r -  (2.57)
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CHAPTER 5 

EXPERIMENTAL WORK

3.1 Planning for Experimental Work
To check the validity of the theory in Chapter 2, it was 

necessary to test the behaviour of a series of plain fabrics, woven and 
set according to predetermined specifications, under tensile and bending 
deformations. These experimental results were then compared with the 

theoretical calculations. Also, since the latter, according to the 

equations presented earlier, depend on the fabric construction and the 

constituent y a m  properties it was necessary to get an accurate estimate 
of these parameters by a series of tests carried out on both fabrics 

and yams.
The experimental part of this work can be summarized by the 

following sequence:

1. Weave a series of plain fabrics with different constructions.

2. 'Set' the relaxed fabric constructions.

3. Test the fabric dimensional properties.

4 . Test the y a m  mechanical properties.

5. Test the fabric mechanical properties.

The mechanical and dimensional properties of textiles depend on 

the temperature and the relative humidity under which the tests are made, 

and hence it was important to carry out the tests under standardized 
atmospheric conditions, defined (48) as 2C)i20C temperature and 65-2% 

relative humidity. Samples of all materials tests were left in this 

atmosphere for at least 48 hours before carrying out the tests, in order
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that equilibrium could be reached between temperature and humidity of 
the fibres inside the fabric, and the surrounding atmosphere.

J.2 Weaving the Fabrics
Planning for the experimental work included the choice of a range 

of different plain weave constructions. With the available range of y a m  
count, twist and material six fabric groups (X,Y and Z) and (A,B and C) 
were woven. The warp (R60/2 Tex Vincel) was common to all groups but the 
weft was varied according to the scheme shown in Table 3.1.

Table 3*1
Details of weft yams used

Weft specifications

Fabric Nominal linear Spinning Twist
group density (tex) Material method * (tums/cm)

X R60/2 Cotton Ring 6.0
Y R74/2 Cotton Ring 5-2
Z R98/2 Cotton Open-end 4.4
A R60/2 Vincel Not known 4.0
B R60/2 Cotton-vincel Not known 4.2
C R46/2 Cotton-vincel Not known 7.1

Within each group, the number of ends per inch, on the loom, was 

kept the same while three fabrics with different numbers of picks per 

inch were woven. Weaving was carried out on a loom with the following 
specifications:

The loom is a (4x1) Multi-shuttle, automatic, Saurer Loom (Model 
100W), with maximum reed space of 58 inches.

Shedding mechanism: is the Saurer positive dobby, lever type, operated
by punched cards.
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Let-off mechanism: is semi-positive, manually operated for tension 

equalization. The short term tension variation is controlled hy an 
oscillating hack rail.

Take-up mechanism: is continuous positive, and the nominal picks per inch 

on the loom is adjusted hy a Vernier type pick scale regulator.
The reed plane was adjusted for groups X, Y and Z to give a 

nominal 48 ends per inch and for groups A, B and C to give %  ends per 
inch. Further details about the loom timing and weave constructions are 
given in an appendix.

3 .3 Setting the Fabrics
•Setting’ is concerned with the equilibrium form which a textile 

material assumes. In practice this term is used to describe the 
stabilization of a structure in a particular form (49)* The effectiveness 

of a fabric 'setting' treatment may be assessed by the extent to which 

the curvature of the yams inside the fabric is retained when the y a m  is 
removed from the fabric.

In the present work, because of the assumptions made in the 

theoretical analysis, it was necessary to obtain fabrics which were as 

close to 100% 'set' as possible. The finishing treatments of commercial 

fabrics probably satisfies this requirement, so the actual treatment used 

in this research was carried out as follows:

(i) Scouring at 95°C for one hour in a winch machine containing 'DTL’ 

standard detergent and sodium carbonate (2 parts/litre each).

(ii) Two hot rinses (at 80°C), followed by one cold rinsing.
(iii) Water extraction by centrifugal hydroextractor.
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(iv) Stentering, without further distortion of the fabric dimensions
after hydroextraction, using a drying temperature of 110°C for one 
minute.

This treatment, as will be shown later, effectively 'set' the fabrics.

3 . 4  Testing the Fabric Dimensional Properties 

3 . 4 . I  Thread snacings
Thread spacing is one of the fabric parameters which can be 

relatively easily measured in several ways (50). The basic principle of 
most of these methods is either by counting the number of threads over a 

known distance normal to the thread direction or, more accurately, by 

precisely measuring the distance occupied by a certain number of threads.
If the distance is 's' mm and the number of threads is 'n', the thread 
spacing, p, is given by

sp = —  m m .
* n

The method used in the present work was to count the number of 
threads in 5 cm wide samples, originally prepared for the fabric tensile 

tests, using a standard counting lens, and the average of 10 readings in 

each fabric direction was taken. However this method is not recommended 

for open fabric constructions (51) (less than 10 threads per cm). Therefore 

a check on the previous results was also made using a projection microscope 

with a magnifying power of 128.5.

For this test four samples (5x2.5 cm) of the fabric in each 

direction were cellotaped onto microscope slides. After adjusting the 

focus of the microscope and starting with a zero reading on the Vernier 

scale, which controls the stage movement, the sample fixed on the stage was 

moved normal to the threads being counted, and the number of threads was



98

visually observed on the screen. The distance occupied by 50 threads 
could then be obtained directly from the Vernier scale reading. This 
method gives up to 0.002 mm accuracy in measuring the thread spacings.
A comparison between the results obtained by the two methods (Table A.1 

in Appendix 1) gave a maximum difference of 0.015 mm (3% ) in the extreme 
cases which suggested that most of the results obtained by the first 
method could be accepted with reasonable confidence.

3.4 .2  Y a m  modular length, crimp and degree of ♦set1

The crimp, as usually defined (20), is given by the fraction 

(-p^)* More generally, the crimp is defined as the fractional excess in 
length produced when straightening a crimped thread. If the crimped thread 
occupies a distance, Sq , inside the fabric and yields a length, S, when 
straightened outside the fabric, then

S-S
c = 0

Measuring the straightened length, S, involves applying a standard 

load, calculated on the basis of the y a m  count (52). However the problem 

encountered in this measurement is that such a load is usually not enough 

to remove all the y a m  crimp, while if a higher load is used the y a m  may 

be stretched and still not totally eliminate the crimp. A common technique 

used by many researchers (16,32,42) is to obtain S by extrapolating back 

the load vs elongation curves of the crimped yams from the linear 

stretching region of the straightened yam, as shown by the curves in 

figure 22a. Such a technique relies on the following assumptions:

1. At relatively high loads, the crimp of the y a m  is virtually completely 

eliminated and the y a m  load-extension behaviour is the same as that



Fig. 22a shows the y a m  tensile behaviour of
al 100% set crimped y a m
b) partially set crimped y a m
c) initially straight y a m  of length S

sr ---------------------- 1

----- —  Crimped y a m  inside the fabric
—  —  —  Crimped y a m  outside the fabric

Fig. 22b
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of an initially straight yam.
2. At these relatively high loads, the yam, if it were initially straight, 

will still obey Hooke's law.

The distance 0D in figure 22a then represents the excess in 

length (S-Sq ).
Actually, for simplicity, the complete load-elongation curve need 

not be obtained and the same concept can be used if the values at two 

points only of the curve are known. The method used in this work was that 
recommended by Grosberg and Kedia (31), in which by knowing the two 
straight lengths S^q and S^q corresponding to 30 and 60 g applied tension, 

we may write

sy>~s _ i o AS60-S = 6o7S -

where * is the tensile modulus of the yam.

This gives

S = 2S50-S6q.

Hence

(2S^q-S 6o) ~ SQ 
/>   ■■ ■ — * ■■■ •

so

Knowing the thread spacings and the crimps, the modular lengths and 

are given by

Z, = P2(1+Ci)f 311(1 4  = Pl(1+C2^‘

The apparatus used for the tests was the Shirley crimp tester, 

which comprises a ruler marked with a mm scale and two spring loaded 

clamps, one of which is mounted on a pivoted lever thus enabling the
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required tension to be applied. . The other clamp is mounted on a wooden 
block that can slide along the ruler. The test is carried out by 
adjusting the required tension through a sliding weight on the pivoted 
lever; the y a m  is then mounted and the sliding clamp is moved along the 
ruler untilthe zero, indicated by a pointer fixed on the pivoted lever, 
is reached. The straight length is read directly on the ruler scale.

To take samples, the fabric was laid flat, free from tension and 

creases and accurately measured (25x2 .5 cm) flaps along the direction of 
the yams to be tested were prepared. The yams of 25 cm crimped length 

were then frayed out of the fabric by means of a dissecting needle, 

starting from the middle. Each y a m  when taken out was held firmly to 

prevent loss in twist, and both ends placed in the clamps of the crimp 
tester. The average of JO readings taken in groups from different planes 
in the fabric represents the final crimp value.

As the previous theoretical analysis applies mainly to completely 

•set' fabrics,it was necessary to assess this parameter experimentally. 
This was achieved by defining the crimp values of the y a m  both in the 

fabric, c, and in the released state, c^, and the degree of set is then 
obtained by applying the relation

'set1 = (c/c)4 •

The actual load-extension curve differs in the case of sompletely 

•set' crimped y a m  from that of a partially 'set' crimped yam,as shown 

in figure 22a, and in the latter case an increase in length, e^, is 

expected when the y a m  is removed from the fabric. This is due to the 

y a m  decrimping in the released state.
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If the crimped length of the y a m  in the released state is Ŝ ,, 
see figure,22b, then

In order to determine ’set’, 10 y a m  samples were frayed out of 
specimens (30x2.5 cm) prepared as mentioned above. Before the yams were 
removed, ink marks were made to indicate a 25 cm length of the yams 

along the fabric. The yams were then removed to the Instron tensile 
tester, previously set to a 25 cm gauge length. In removing the yams 
and in subsequent handling great care was taken not to disturb the crimp 
and for this purpose it was necessary to cut the fringes protruding from 

the specimen after every one or two yams had been removed. The Instron 
crosshead was then driven at a rate of &/o extension per minute and the 
load-elongation curves were obtained up to a maximum load of 200 g. The 

final calculated results showed that most of the fabrics were over 90% 

set.
Using this method, it was also possible to estimate the values of 

c, adopting the same principle of extrapolation previously described. A 

comparative study (Table A2 in Appendix 1) of the values of c obtained 

using the Shirley tester and the Instron showed that the first method yields 

lower values in most cases, which may perhaps be attributable to the higher 

rate of increasing the tension on the yams that was applied with the 

Shirley tester method.
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5.4 .5 Y a m  cross-section, estimated thickness 
and contact length
Inclusion of the y a m  compressional effects in the theoretical 

analysis necessitates an estimation of the y a m  cross-sectional shape, 
thickness and contact length inside the fabric to be made. In fact, the 
estimation of these quantities needs a variety of data and assumptions 
about the following:

1. The type of loads applied to the yams and their distribution during 
fabric formation; also the forces produced by the possible swelling 

of the yams when they are treated for relaxation.

2. The y a m  behaviour under compressive forces and its behaviour when 
recovering from stresses.

In addition, the use of plied yams in the present research 

imposes an additional difficulty about the estimation of an equivalent 

diameter.
In this work, the following assumptions were made.

1. An "equivalent singles" to the plied y a m  is defined such that its

volume is equal to that of the combined singles. Then, if 1d 1 is thes
diameter of the singles yams and 'd' the diameter of the "equivalent 

singles", as shown in figure 25a, we have

9

if it is assumed that the y a m  length is unchanged, 

i.e. d = 2^dg.

The factor 2^ can be regarded as corresponding to the empirical factors 

given by Wira (55) for woollen and worsted yams (1.6 for worsteds).
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Fig. 25c



1 0 5

2. Due to the successive processes the y a m  undergoes, its equivalent 
singles cross-section of diameter d, will distort at constant volume 
to the 'Race-track' shape shown in figure 23b. This leads to

b(a-b) + (nb2/4) = n d 2/4 , 
or

> V
where a and b are the major and minor diameters of the y a m  cross- 
section.

It is thus now possible to'determine the y a m  thickness, b, when

the quantities 'a' and 'd ' are known. The latter for the time being cans
be considered as a known quantity through the y a m  compression test that 

will be explained later.
The y a m  projection at the intersections, a, was estimated using 

a projection microscope and the test was carried out for each fabric in 

both warp and weft directions. The unevenness of the yams and their 
hairiness necessitates a large number of readings to be made. At 100 

intersections taken from 4 different places of the fabric, 3 readings at 

every intersection were made as shown in figure 23c, and the average of 

these represents the projection 'a'. A magnification power of 128.5 was 

used on the microscope.

According to figure 23b the contact length between warp and weft, 

so far as a warp thread is concerned,is given by

4l = ag-bgO-e.,), (3.2)

where 0̂  may be estimated using Peirce's approximation 0^=1.85 V ^ .

The numerical values of these parameters, estimated using the above 
equations, and a measured value of d, are given in Table 3*2.

(3.1)b = 2.33 j a-(a2-1.3484d2
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tT a b l e  3 . 2

Y a m  projection, estimated thickness and contact length %
•

Fabric
group

Fabric
No.

Warp Weft «

d^(mm) â (nnn) b^(mm) Zc1(™n) d2(mm) a2(mm) b2(mm)

1 0.321 0.439 0.204 0.518 0.398 0.564 0.242 0.327
X 2 0.321 0.446 0.200 0.502 0.398 0.539 0.256 0.333

3 0.321 0.430 0.209 0.493 0.398 0.552 0.249 0.304
1 0.321 0.443 0.202 0.531 0.431 0.591 0.275 0.323

Y 2 0.321 0.462 0.191 0.519 0.431 0.580 0.281 0.348
3 0.321 0.439 0.204 0.498 0.431 0.574 0.285 0.307
1 0.321 0.450 0.198 O .566 0.479 - 0.613 0.332 0.3t4

Z 2 0.321 0.473 0.186 0.533 0.479 0.582 0.356 0.343
3 0.321 0.452 0.197 0.586 0.479 0.625 0.324 0.326

1 0.321 0.460 0.193 0.376 0.321 0.416 0.219 0.354
A 2 0.321 0.445 0.201 0.329 0.321 0.417 0.219 0.326 *

3 0.321 0.452 0.198 0.380 0.321 0.443 0.203 0.382

1 0.321 0.439 0.205 0.406 0.387 0.518 0.254 0.365
B 2 0.321 0.450 0.199 0.450 0.387 0.530 0.247 0.336

3 0.321 0.445 0.201 0.441 0.387 0.540 0.241 0.328

1 0.321 0.437 0.206 0.311 0.299 0.396 0.199 0.347
C 2 0.321 0.440 0.204 0.367 0.299 0.435 0.177 O.36O

3 0.321 0.431 0.210 0.295 0.299 O.38O 0.210 0.320

^ _ plied y a m  thickness =vg“,j oCT\
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3 .5  Testing the Y a m  Mechanical Properties 

3.5*1 Y a m  bending properties
The flexural rigidity of y a m  has often been estimated by quasi- 

* static beam (54) or loop measurements (36). .However such methods do not 
. #  • provide sufficient information about the y a m  bending characteristics. A

* more efficient technique (55) using samples of parallel yams, which
provides a complete bending hysteresis curve, was therefore used in this 
work. The apparatus used was the Shirley cyclic bending tester, originally 
'designed for fabric tests, which is based on a principle suggested by 

Livesey and Owen (41)•
The main idea described by the above authors is to apply an almost 

uniformly distributed couple along a small fabric specimen (2.5x0.5 cm) 
which is then taken through a pure bending cycle. Their apparatus is shown 

diagrammatically in figure 24a where the uniformity of couple through the 

specimen, AB, is achieved by using an extremely light aluminium tubing for 
the pointer BP and placing the weight 'p' at the end of this pointer so as 
to give a centre of gravity as far as possible from the sample. Under 

these conditions, the bending moment through out the sample is sufficiently 

constant for most practical purposes and its average value is taken as the 
moment at the sample centre point.

Both D and E in figure 24a represent circular scales calibrated in 

degrees. If at any position the rotatable clamp at A and the pointer make 

angles a and 3 with the vertical datum as shown in the figure, both the 

curvature, K, and couple per cm width, M, can be found from the relations



Fig. 24b
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and

M = (L + 2.5) sinP (mN.mm/cm)» (3*3)

where
£> = the sample radius of curvature (mm).
V = the pointer weight (g),

and
L = the distance between the pointer centre of gravity to the edge

of the sample (mm)•

Due to the fact that at higher values of (a-p) the sample does 

not pass through the centre of rotation, the best estimate of the bending 

moment in the curvature range (^0 .5 mm "*) is in fact given by

M = ̂ | 1  (L + 3.5) sinp .

The Shirley tester, shown in figure 24b, differs slightly from 

the above arrangement in order to simplify taking readings for both the 
couple and curvature. AB represents the fabric specimen held at one end in 

a rotatable clamp C and the weighted pendulum BP is attached at the other 

end. The instrument has two scales, an inner one for curvature and an 

outer one for couple, with a mirror zone between them which enables parallax 

errors to be eliminated. The readings are then taken from the pendulum to 

each of the two scales.

The inner curvature scale rotates with the clamp, making the 

pendulum deflection proportional to the specimen curvature. The outer 

couple scale indicates the sine of the angle of the pendulum deflection, P, 

from the vertical position to which the couple is proportional. While the 

curvature is read directly, the corresponding couple per unit specimen
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width is calculated from the expression 

M = calibration factor X sin(3 , 

where

Calibration factor = (L + 5.5) mN.mm/cm ,

and is given with the specific pendulum in use.

Sample preparation

To ensure that the tested yams were fairly representative of
ithose in the fabric, the following procedure was used. On the loom, after 

weaving each fabric group, several reed dents were emptied of warp threads 

so that straight weft threads were inserted in these sections during the 
ordinary weaving process. In the succeeding processes of finishing, 
these yams received the same treatment as the fabric. This procedure also 

ensured that an equal average tension is imposed on the parallel yams, 

the value of which is the same as the weaving tension. Control of the 
number of threads per cm was achieved by altering the rate of take-up on 

the loom.
These sections of parallel yams, shown in figure 25a, were cut 

into specimens of the standard width (2.5 cm) to be tested on the bending 

apparatus. Cutting the specimens to a specified standard length was 

immaterial since a simple mounting jig, shown in figure 25c, was used later 

to adjust the specimen in its precise location on the apparatus, and to 

set its free length between the pointer grip and the edge of the rotatable 

clamp to 0.5 cm.

The specimen is shown in figure 25b where a narrow band of cellotape 

is shown covering the yams on both sides at one end in order to ease their 
entry in the pendulum grip.
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Fig. 25c

Fig. 25d
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Testing procedure
For each type of y a m  8 specimens were tested. The sample is 

attached first to a pointer, chosen (see later) from the range of pointers 
provided, then mounted in the rotatable clamp with the aid of the mounting 

jig. The clamp with the jig plate carrying the specimen and pointer was 
rotated from the mounting position to the zero position, which is reached 
when the pointer is hanging vertically, pointing to zero on both the 

curvature and the couple scales. The jig is then removed and the test 

started.
The clamp is rotated automatically in an anti-clockwise direction

so as to exert a positive couple on the specimen. The apparatus is stopped
at intervals and the readings are recorded according to the procedure
suggested by Livesey and Owen (39)* This procedure is repeated to produce

cyclic testing (0 -» 0 .3 mm- —► -0 .3 mm —»0 .3 mm” ) and usually a
relatively large number of readings is taken in the initial region (0 to *
0 . 1.mm”"') to precisely determine the initial bending behaviour.

Throughout the tests, the following precautions are essential:

1. At maximum curvatures (-0.3 mm” ), the readings on the couple scale 

should be in the range of 0.4 <|sin9|<1.0 (56). This is achieved by sel­

ecting the proper pointer with respect to the y a m  stiffness.

2. The bending behaviour may differ according to the specimen mounting, 

face up or down, therefore half of the samples were tested starting with 

the face up and the rest with the face down. Finally for each tested 

specimen, the couple-curvature diagram was drawn.

Referring to figure 25d, the following y a m  bending properties 

were' calculated:
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1. The initial flexural rigidity, B*, which is the slope of the initial 
part, OB, of the hysteresis loop (up to 0.02 mm~^).

2. The low-curvature elastic flexural rigidity (57), B, which is the mean 
slope of the loop between curvatures 0 and 0.1 mm-"* (i.e., the mean 
value of the slopes PQ, and RS in figure 25d).

3» The coercive couple, M|y which is the frictional component of the
initial bending resistance and is half the width of the hysteresis loop 
at zero curvature (i.e. the mean of P0 and R0 in figure 25d).

The average values of B*, B and Mq are given in Table 3*3» while 

figures 26 and 27 show the curves obtained for the yams used.

Rate of y a m  bending
In spite of the fact that the test readings were taken intermittently, 

the total time of the test can give a reasonable estimate of the rate of 

y a m  bending in (mm V mi-n) • Because the deformations in textile materials 
are time dependent, the ideal would be to test the yams in bending under 
the same rate that is expected to take place in fabric deformations.

In the fabric initial bending analysis it has been shown that the 

angle of deflection of the yams can be considered as the same as that of 

the fabric. To estimate, roughly, the rate of y a m  bending in a fabric 

tensile test we may follow the geometry assumed by Wilson (28) of a twin 

arc thread model and use his assumption that the y a m  shape after deformation 

will still retain a twin arc shape.

Such configurations, as shown in figure 28, give the following 
relations:

p = 2sin0/K and 0 = ̂ K/2 , 

where K = 1/p is the y a m  curvature.



T a b le  3 * 3

Bending properties of the yams used

' B* B M0
No. Y a m 1 Tex* and material 2(mN.mm ) (mN.mm^) (mN.mm)

1 R 60/2 cotton 11.72 6 .06 0.50
2 R 74/2 cotton 14.11 7.05 0.61

3 R 98/2 cotton 18.91 8.16 0.79
4 R 60/2 vineel 10.2 5.62 0.28

5 R 60/2 vincel 8.67 4.44 0.26
6 R 60/2 cotton-vincel 8.74 4.25 0.33
7 R 46/2 cotton-vincel 5.33 2.96 0.19

Note: Y a m  4 is used as warp 
Y a m  5 is used as warp

for fabric 
for groups

groups 
A,B and

X,Y and Z 
G and as

weft for group A.
B* denotes the initial flexural rigidity at the first part 

of the hysteresis curve.
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B y differentiating we get

dp/dK = [2Kcos0(d0/dK)-2sin9]/K2 ,
and

d0/dK = i/2 ,
assuming inextensible yams.

Combining the above equations gives

dp/dK = [/Kcos0-2sin0]/K2 , 
and since

dK/dt = p(dK/dp) x (dp/pdt) , 

the initial change in the yarn curvature is given by

fdK/dt'i - ( dp  ̂ P0*b_______V ' 'initial ^pQdt' j ^ c o s e ^  sin 0Q »

where the suffix *0« refers to the initial parameters of the y a m  shape.

The term (dp/pQdt) gives the rate of extension per unit time which 
has been used in the tensile test (the rate used in our experiments, as will 
be seen later, was 0.08/min).

Table 3.4 shows that the calculations of the rate of y a m  bending
(mm /min) is then in the region of 0.5 mm 1/min. for fabrics with higher

crimp values while the rate could be as much as 3 times this for the

fabrics with low crimp values. It was not possible to measure the y a m
bending properties on the Shirley bending tester with rates higher than 

“10.5 111111 /min.
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Theoretical rate of yarn bending involved in fabric extension
T a b l e  3 . 4

Fabric
P02 *

mm

1 01

mm

C1 901

radians

K 01

mm"1mm

rdKn— i initial
U t  -1

-1/ .mm / m m

r dK! 1p n:) __i initial
L dp J
-1 ^mm per unit extension

X-l warp 0.588 0.700 0.1916 1.01 2.89 0.63 7.88
Y-l warp 0.677 0.798 0.1787 0.99 2.49 .0.57 7.06
Z-l warp 0.779 0.939 0.2065 1.06 2.25 0.45 5.62
A-l warp 0.589 0.704 0.1951 1.01 2.88 0.62 7.81
B-l warp 0.548 0.598 0.0920 0.72 2.41 1.08 13.45
C-l warp 0.465 0.509 0.0951 0.73 2.87 1.25 15.62

Poi 102 C2 C
D

O to K 02
[ £ ]

[poi in it ia l

X-l weft 0.485 0.514 0.0594 0.59 2.28 1.57 19.57
1-1 weft 0.490 0.514 0.0480 0.52 2.04 1.76 22.05
Z-l weft 0.494 0.508 0.0285 0.41 1.62 2.29 28.57
A-l weft 0.494 0.504 0.0587 0.58 2.31 1.66 20.75
B-l weft 0.476 0.623 0.1189 0.81 2.61 0.78 9.10
C-l weft 0.568 0.621 0.0934 0.72 2.33 1.03 12.89 119
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3*5.2 Y a m  tensile properties .

The y a m  tensile behaviour was obtained using the Instron tensile
tester. The y a m  was initially treated in a way which was similar to

that applied to the fabrics. For this purpose continuous lengths of the 

y a m  were prepared in the form of hanks, then soaked for one hour in a hot 
water bath (95°C) which contained the same chemicals that were used in the
process of fabric finishing. The hanks were then left to dry in the

conditioned atmosphere. For each type of yam, 10 samples of 25 cm length 
were tested on the Instron using a rate of 0.08 extension/min. The 

behaviour of all the yams used is shown in figures 29 and 30 where the 

slope of the tangent at the initial part of the tensile curve was taken to 
represent the initial y a m  tensile modulus.

It may be worth noting that the vincel and the cotton-vincel yams 
gave comparatively high load-extension behaviour, which may be expected 
since vincel is, in fact, a high tenacity regenerated cellulose fibre.

3*5*5 Y a m  compressional properties

The apparatus used to measure the y a m  compressional properties was 
designed by Oxtoby (58) find is based on an optical principle originally 
employed by Anderson and Settle (59).

General description of Oxtobv1s apparatus

A general view of the apparatus is shown in figure 3*13.. The idea 
shown in figure 31b, was to apply a compressive load on the y a m  through 

a load lever (A), the y a m  being situated between two parallel plates, the 

upper being fixed to the load lever and the lower to the solid'base of the 

apparatus. By means of an optical arrangement (B,C and D), the vertical 
distortion of the y a m  is shown, magnified, on a screen (e ) where the



Load
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readings are recorded. In the "basic apparatus an additional arrangement 
(i) is provided to drive the y a m  from a package.

1. The load lever
This is a perspex "balanced beam (A), shown in detail in figure 

52, which is supported "by two adjustable needles (A^). At one end of the 
beam is a stainless steel plate (A2)(i cm wide) which acts as a presser 
foot against the lower plate (G), described as an anvil. Above the presser 
foot in a centralized position is a perspex weight carrier (A^), used to 
hold the compressive weights. Mounted at the opposite end of the lever 

is a brass counter weight (A^), which can be adjusted to initially balance 
the load lever. The two supporting needles rest in grooves on an adjustable 
brass plate (A,-) and are referred to as the load lever bearings.

2. The optical arrangement
This consists of the following two elements:

a) An optical lever (B), shown in figure 31, which consists of a mirror 
mounted on a perspex stage (B^) and supported by three needles. Two of 

these (Bg) rest on grooves in the optical lever bearing plates (B^), 

while the third needle, the take-off needle, rests on a "stainless steel 

projection (Ag) from the load lever and thus the downward vertical 

displacement of the load lever, due to y a m  compression, results in an 

angular rotation of the optical lever plane. An additional weight is 

attached to the optical lever to give it more stability.

b) An arrangement (C) to provide a concentrated projected light beam, as 
shown in figure 31a. The light from a source (0 ^ ( 4 8  Watts, single 

filament bulb) passes through a lens (C2) onto a hair line mounted on 
.a frame (C^), then through another lens (C^). The lenses and the
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Fig. 31b
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hairline frame are mounted on a rail (C5), fixed to the base of the 
apparatus, and thus the distance between them can be adjusted to give 
the best illumination.

The whole optical arrangement is designed to direct the concentrated 
light beam towards the optical lever. The image of the hair line is then 
reflected from the mirror on the optical lever onto a flat mirror (D in 

figure 31) and then onto a curved screen specially shaped to be an arc of 
a circle. The distance travelled by the light from the source to the 

screen, together with the curved screen shape were designed to ensure that 

the variations in the position of the hair line projected on the screen 
corresponds to the variation in y a m  thickness due to compression.

On the screen, two paper clips (E^, shown in figure 31a, are 
mounted at each end, the object of which is to attach a strip of graph 
paper (E t o  the screen.

Applying the weights

In order to apply the compressive weights it is necessary to 

raise the presser foot, change the weights, then bring the foot into 

contact with the yam. The arrangement which achieves this procedure is 

better shown in figure 32a. This consists of an adjustable rod (H.,), 
mounted eccentrically on a wheel (H2); a curved copper strip (H^) is 

soldered to this rod. When the wheel is rotated, the copper strip contacts 

a stainless steel strip (A^), fastened to the underside of the load lever 

and slowly raises the presser foot. Proceeding, the cyclic rotation of 

the wheel brings the presser foot back into contact with the yam. If’ 

the compression test is to be carried out on a continuous length of the 
yam, several readings for the y a m  thickness, under the same load, are
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Pig. 32a

(2)

Start of raising the load lever 
Maximum lift for the load lever 
The load lever back in contact with the y a m

Position 1: 
Position 2: 
Position J> :
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recorded. In this case the arrangement (f ) vhich is used to drive the 
y a m  would also automatically operate the cyclic rotation of the wheel 
(Hg) by transforming a timed motion from the gear wheel (F^) to the wheel 

(Hg) via the gear wheel (Fg) and the belt (F^) shown in figure 31a. In 
the present work only small lengths of the y a m  were tested and rotating 
the wheel (Hg) was carried out manually. The action of the wheel (Hg) 
is shown diagrammatically in figure 32b.

Setting the apparatus
The apparatus is set for y a m  testing by carrying out the 

following steps.

(a) The distances between lenses, bulb and hair line are adjusted to give 

the best illumination (58)»
(h) The load lever bearings (A^) are adjusted to bring the projection (Ag)

• into a centralized position under the take-off needle of the optical 

lever.
(c) The optical lever bearing (B^) is adjusted to the position which makes 

the optical lever mirror (B^) reflect the light beam towards the flat 

mirror (d ).
(d) The mirror (D) is adjusted to reflect the light beam towards the 

screen (E).
(e) With the aid of the hair line image, now shown on the screen, the lengths 

of the two load lever fulcrum needles are adjusted to achieve complete 

parallelization of the presser foot and the anvil. This is carried out 

by inserting a fine shank of a drill at different positions between the 

two plates, under 50 8 load. The lengths of the two needles are then 
adjusted until a fixed reading is obtained on the screen irrespective
of the position of the drill shank.
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(f) The length of the optical lever take-off needle is adjusted to give 
zero scale reading at the lower part of the screen when the presser 
foot touches the anvil,

(g) The lengths of the fulcrum needles of the optical lever (B2) are adjusted 
to slightly tilt the optical lever to its front under its own weight.

(h) Finally, the weight (AH) is adjusted to bring the load lever to a 
balanced position, nearly horizontal, when there is no load in the 

weight carrier (A^).

Calibration
The method used to calibrate the instrument was to interpose 

engineering feeler gauges between the anvil and the presser foot, under a 
weight of 100 g/cm, and to record the corresponding thickness readings on the 
chart. The feeler gauges were initially measured accurately using the 

projection microscope. The calibration readings are given in the following 

table and in figure 33- The best fitting line for these points gave a
magnification factor of 782 for the apparatus.

Table 3*5

Nominal thickness(mm) 0.05 0.1 0.15 0.2 0.3
Thickness under 
microscope(mm) 0.051 0.992 0.149 0.201 0.296

Chart reading (mm) 40 .0 77-5 117-0 156.0 233-0

Ram-pi ft preparation and test procedure

The straight parallel yams, the same as those used in the y a m  

bending tests (section 3-4 *1), were used to prepare the compression test 

samples. These yams were frayed out of the fabric and each separated y a m  
was cellotaped onto a paper fibre frame, which is usually used for fibre
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tensile tests. This process was. done with great care so as not to disturb 
the y a m  twist or impose tension on the yam. The y a m  was then situated 
under the raised presser foot and metal grips were used to hold the fibre 

frame. Raising and lowering the presser foot and changing the loads was 
carried out according to the procedure described above.

From the survey made (58,60) it was found that 20 variable loads, 
starting at 1.0 g/cm and increasing to 400 g/cm are enough to define the 
load-thickness relation for the yams. For each y a m  specimen, these 20 
loads were applied and the corresponding thicknesses were recorded on the 
chart. For each type of y a m  20 specimens were tested and the average 

thickness for all the samples at each load was calculated.

Fitting the experimental results
An empirical formula due to Oxenham (60) was chosen to fit the 

experimental data. This formula is of the form 
-B^x -BgX -B,x

T = Aq+ A ^  +A2e +A? e 5  , ( 3 . 4 )

where

T = the y a m  thickness, 
x = the compressive' load/unit length, 

and Aq ,A^,A2,A^,B^,B2 and B^ are constants.

The initial y a m  thickness is obtained when the applied compressive 
load, x, is zero and therefore would be given by

Y=3
initial “ A Y (3.5)
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Also by differentiating the formula (3*4)* the rate of thickness 
change with load,at a load x=xQ ,is given by

(-)' d x /x = X Q

j=3
= E

j=1
A.B.e J 0

“V o (3.6)

The values of the constants in equation (3*4) were found by the 

method of least squares. Let the available data be pairs of observations 
(Xi,Ti),i=1,2,3...,M. Then a residual may be defined as

-B.X, -B?X, “B,X,
= (Ag+A-ie S-A2e ^Aje 5 1) - ^  .

The method of least squares calculates the A's and B's so that

F(Aq,Â ,Ag» • • • »Bg» • •) — | Bj) ,

is a minimum.
A gradient method, due to Marquardt (61), was used for minimization; 

and the computation, using a standard subroutine (62), was carried out on 

the 1906A ICL computer in Leeds University.

In the computer program it was necessary to make an initial 

estimate of the values of the constants. These initial values were found 

not to be critical and could be estimated as follows:

1. Prom equation (3*5) assuming, roughly, that AQ ,A1 and A^ are equal 

then

Aq = Ai = ... = T(initial)^ - »

and T(initial) is taken 30 microns above T^ at x^ = 1.0 g/cm.
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2. From the knowledge that the thickness is the sum of a constant and
three exponential functions, which are expected to have descending values 
of B, the estimates of B^.Bg and were taken as 0.5, 0.05 and 0.005 

respectively.

The program then iteratively modifies these initial estimated 
values until the least squares solution is reached. In order to see how 

well the estimated regression curve fits the experimental values, the 
coefficient of determination 'C.D' was calculated, where

M M M »
c .d . = ¿ ( z .-t )2/ /£; ( v Ti)2 + £  ( v * ) 2} * i=1 1 li=1 1 . i=1 1 1

and
= the experimental value of the y a m  thickness at a load x^;

Z± = predicted value of the y a m  thickness (according to empirical 

formula) at a load x.;
M

T = the mean value of the y a m  thickness = -i T./m }.
i=1 1

The computer program, lay out of data, and the results are given 

in the appendix. The fitted empirical formulae and calculated values 

for the initial thickness and the equivalent y a m  diameters, see section 

3.4*3» are given in Table 3*6 while figures 34 to 38 show the experimental 

curves obtained for some of the yams used.



Experimental results for y a m  thickness
T a b l e  3 * 6

Yarn 'Tex' and material
Empirical formula for thickness 
T in mm and ’X' in mN/mm

Initial
thickness
(mm)

Equivalent 
y a m  diameter 
(mm)

•
R60/2 cotton -0.7028X -0.0894X -0.0060X 

T = 0.1726+0.1236e +0.1379e +0.1281e 0.562 0.398

R74/2 cotton 11 e l -0.8610X -0.0778X -0.0059X 
T = 0.2133+0.2133e +0.1591e +0.1185e 0.601 0.431

R98/2 cotton -0.4645X -0.0369X -O.OO46X 
T = 0.2393+0.1496e +0.1542e +0.1339e 0.677 0.479

R60/2 vineel -0.3743X -0.0671X -O.OO66X 
T = 0.1447+0.0553e +0.1379e +0.1155e 0.453 0.321

R60/2 cotton-vincel -0.1557X -0.0264X -0.0030X 
T = 0.1539+0.1594e +0.1242e +0.1109e 0.548 0.387

R46/2 cotton-vincel -O.6537X -0 .0789X -0 .0061X 
T = 0.1410+0.0904e +0.1082e +0.0835e 0.423 0.299
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5 .6  Testing the Fabric Mechanical Properties

5.6.1 The fabric initial load-extension behaviour
The initial tensile behaviour of fabrics was readily found by 

using the Instron tensile tester. For each fabric 10 samples in each direction 

were tested. Each sample was rectangular, and was 30 cm long x 5 cm wide.
They were initially cut to approximately J0x6 cm, and the yams were then 
frayed out along the longer side until the sample width was 5 cm. The 
gauge length on the Instron was adjusted to give 25 cm between, the jaws 
and a sample mounted, taking care that it was neither slack nor pretensioned. 
The lower jaw was then driven downwards with a speed of 2 cm per minute to 
give a rate of extension of &/o per minute. The Instron chart speed was 

adjusted to suit the fabric extensibility and the predetermined maximum 
extension. The ratio of the chart speed to the cross-head speed determines 
the 'extension scale factor' with which the extensions are represented on 
the charts. On the other hand the 'load scale factor' with which the loads 
are represented on the charts is determined by the full scale load 'F.S.L.' 

knob (65) on the Instron. The different positions of this knob provide 

different ranges of loads, with the appropriate Instron cell in user 

corresponding to the chart full scale in the load direction. Since the 

main concern in these tests was to investigate the initial behaviour of 

fabrics, which usually involves relatively low loads, it was important to 

use the highest 'load seal factor' possible, and to achieve this the Instron 

'B' cell, usually used for y a m  testing, was employed. With such an 

arrangement specially prepared jaws were also used to fit to the 'B' cell 

attachment.

It is possible that the previous life history of fabrics may affect 

the tensile behaviour, and therefore several extension-load cycles up to
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5% extension were carried out; .in the event the difference "between the 
first cycle and other cycles was regarded as insignificant. The tangent 
to the first cycle of the load-extension curve was then taken as the initial 

tensile modulus.
From the relation,

F = E £  ,

the fabric tensile modulus may be defined in either of the two following 

ways:

1. E is the force, on unit fabric width, needed to produce a 100% extension; 
£ =  1, and the units of E are therefore in 'Newtons/cm'.

2. E is the force, on unit fabric width, needed to produce V/o extension 
and the units are 'Newtons/cm for 0.01 extension'.

The first definition was used to express the experimental results in Table

3.7.

3.6.2 The fabric initial Poisson's ratio
Relatively few methods have been suggested for measuring the fabric 

Poisson's ratio, in a tensile test, under dynamic conditions (2,64,65). 

Amongst these a photographic method has many advantages and was used in 

this work. In this technique the fabrics were stretched on the Instron 

tensile tester. Each fabric sample was initially marked, along the line 

of symmetry in the direction to be extended, by 3 fine stitches; the second 

stitch mark was at the fabric centre while the distance between the first 

and third marks was approximately the same as the fabric width. An ordinary 

35 mm 'S.R.L.' camera fitted with telescopic tubes was then used to take 

successive exposures during the fabric extension. The camera was mounted 

on a stand with a movable base which could be adjusted to bring the plane
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containing the camera lens parallel to the fabric specimen plane when 
mounted on the Instron. In order to carry out the test, the Instron cross­
head was driven at a speed of 2 cm per minute and the successive exposures 
were taken nearly at previously chosen values (0 .0 ,0 .0 1,0 .0 2,0 .0 4,0 .06,0 .0 8, 
0 .1 0 and 0 .12) of the fabric extension.

2. Projecting the negative on to a screen.

3. Printing the successive exposures and measuring the distances involved 
under a travelling microscope.

as it was very laborious. On measuring the specimen dimensions, it was not 
necessary to know the actual magnification involved in photographing and 

printing, and the changes in a specimen dimensions were referred to the

fractional extensions and the corresponding width-wise contractions could 
be calculated. The graphs given in figures 39-56 show the experimental 

results. The initial slope of these curves was taken as the initial

To measure the specimen dimensions, when extended, the available

methods were

1. Using a mark dense-meter

The first method was potentially the most accurate but was rejected

initial dimensions of the first photograph (at zero extension); thus the

Poisson's ratio.



Experimental results of the tensile tests
T a b l e  3 * 7

Fabric Fabric Pi *2 C1 C2 B1 B2 E1 E2 °i °2
group No. mm mm mN.imii mN.min N/cm N/cm

1 0 .435 0.588 0.192 0.060 5.62 6.O6 14.3 36.6 0.10 0.38
X 2 0.438 0.624 0.214 0 .056 5.62 6.06 9.4 29.8 0.11 0 .42

3 0.485 0.713 0.171 0.047 5.62 6.06 14.2 34.1 0.08 0.40
1 0.490 0.677 0.179 0.048 5.62 7.05 15.9 42.9 0.08 0 .40

Y 2 0.492 0.739 0.179 0.047 5.62 7.05 15.5 33-8 0.12 0.51
3 0.495 0.849 0.158 0.936 5.62 7.05 14.6 28.6 0.13 0.57
1 0.494 0.779 0.207 0.029 5.62 8.16 13.7 53.6 0.02 0.24Z 2 0.494 0.839 0.218 0.027 5.62 8.16 10.6 45.5 0.06 0.35
3 0.491 0.691 0.226 0.037 5.62 8.16 14.9 42.4 0.07 0.52
1 0.476 0.589 0.195 0.059 4.44 4.44 9.2 25.5 0.08 0.12

A 2 0.587 0.749 0.104 0.049 4.44 4.44 9.1 14.8 — 0.40
3 0.549 0.532 0.139 0.121 4.44 4-44 12.7 13.4 0.17 0.25
1 0.556 0.543 0.092 0.119 4.44 4.25 24.0 13.8 0.28 0.16

B 2 0.591 0.637 0.134 0.053 4.44 4.25 13.3 19.7 0.32 0.52
3 0.594 0.756 0.101 0.051 4.44 4.25 11.7 14.5 0.31 0.47
1 0.568 0 .465 0.095 0.093 4.44 2.96 23.2 22.0 0.20 0.13

C 2 0.577 0.538 0.110 0.107 4.44 2.96 18.0 12.8 0.37 0.25
3 0.571 0.662 0.103 0.065 4.44 2.96 12.0 13.0 0.20 0.26

-ti­ro
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W (warp) and T (weft) refer to fabric direction which was 
extended in the test
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3.6.5 The fabric bending properties

In the early experimental work, it was considered that, with the 
large number of readings and curve fitting involved in such tests, it was 
best to use an autographic method to obtain the stress-strain curves for 
the fabric bending behaviour.

An apparatus designed by Abbott (8), for use in conjunction with 
the Instron tensile tester, was used for these tests. In this apparatus, 
the same principle as described in section 3»4>1 is retained but the 

arrangement differs so as to enable the couple to be measured at one point 
and hence to record it, magnified, against the change in the sample curvature 

on the Instron chart. The apparatus is shown in figure 57» bolted to the 

Instron frame (i). The linear motion of the Instron cross-head is used to 

produce an angular rotation of the graduated disc (D). This is achieved 
by passing a folded nylon thread (t ) round a grooved track in the 

circumference of the disc, the thread being attached to the disc at a 
suitable point 'S'. One end of the thread is attached to the cross-head 
and the other to a 200 g weight, which is enough to produce a counter 
rotation of the disc when the Instron cross-head moves upwards.

Also fixed to the disc are two spring loaded jaws (j), 2.5 cm 

wide, whose edge is 0.25 cm from the centre of rotation. Thus the sample 
(0.5 free length), gripped to a light aluminium pointer (P), can be 

located at the beginning of the test in a centralized position by using a 

mounting procedure similar to that described for the Shirley bending 

tester. Restricting the couple measurement to one point is achieved by 

situating the pointer between the aims of a Y-shaped adjustable pin (denoted 

as 'Y' in figure 57) which permits both a slight rotational and/or downward 

movement of the pointer. The pin is screwed to an inverted L-shaped



153

Fig. 57

\
'\

'\
'V

\
'V

\



1 5 4

cantilever (denoted as 'C' in figure 57) at the end of the.latter's 
longer side, while a fine double hooked wire (H) passes through the canti­
lever at the end of its shorter side. The cantilever itself is pivoted, 
at the join of the L, to a vertical bracket, fixed to the back of the 

Instron apparatus.
Finally, the top hook of the double sided hooked wire is attached 

to the Instron 'A' cell and a small weight (w) is hung from the bottom 
hook. This weight is needed to keep the Instron cell always under load 

when the couple exerted on the specimen is negative; therefore the weight 
should be at least equal to half the range of load to be used in the test.

To carry out the test, the Instron is adjusted to perform a 

complete extension cycle in which the maximum down or up movement of the 
cross-head corresponds to the required maximum clock-wise or anticlock-wise 
rotation of the disc (-1.5 radians) and this produces the range of 
curvature required for testing the sample (-0.3 mm” -). At any instant 
when the sample is bent to curvature K, the couple on the sample, M, will 
exert a side way force I* on one side of the pin, where F = M// and / is 
the pointer effective length. This force will be transmitted, magnified 

to, say, F7, to the rear end of the L-cantilever via the frictionless pivot 

(V), and then to the Instron cell. The calculation of the couple from the 

force recorded on the Instron chart, F , can be obtained by a similar 

equation to (3*3)* In this apparatus an effective error may be produced 

due to a reduction in the effective pointer length; therefore the final 

calculations of the couple was given, by Abbott, as

M = x F 't lr^ .O )  , mN.mm/cm
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where R is the length ratio of the short side to the long side of the 
L-cantilever (0.1 in this arrangement),

L is the effective length (mm) of the pointer at zero sample 
curvature,

and p'is the force recorded on the Instron chart in g.
The results of the fabric bending (per y a m ) , using the above 

method at 0.68 mm” /min bending rate, are given in Table 3*8- Each value 
is the average of 4 tested samples. In this table (3*8), the corresponding 
values, using the Shirley tester, are also included and it is evident that 
the two methods may lead to different results. The main reason is, 

probably, due to the different conditions under which the samples are 

tested. In Abbott's apparatus, the samples are tested under dynamic 
conditions while in the Shirley method the testing procedure may allow 
some stress relaxation. In addition, the following are some sources of 

error associated with Abbott's method.

1. Abbott's apparatus is mounted on the Instron, and it was found that 
mechanical vibrations through the frame of the instrument severely 

affected the traces obtained for fabrics of low bending rigidities 

(e.g. fabrics in groups A,B and C).

2. The.Instron is actually operated, in cases of fabrics of low rigidities, 
under its minimum rated capacity of 1 g.

The Shirley cyclic bending tester was finally used to test the 

fabric bending behaviour and for this purpose 4 face and 4 "back samples were 

examined following the same testing procedure as that described for the y a m  

bending tests. The results obtained using the Shirley tester (Table 3.9) were 
considered more reliable and will be used for comparison with the theoretical
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calculations of the fabric bending. The fabric behaviour, under bending, 
was sometimes very close to the bending behaviour of the component yams, 
in the load direction, as can be seen in figure 58* Another case is shown 
in figure 59» in which the fabric bending behaviour is considerably 

different than that of the yams.

/



T a b l e  3 - 8

Fabric

Abbott’s apparatus Shirley Tester

Bending
Direction

B*
mN.mm^/yam

B
mN.mm^/yam

M0
mN.mm /yam

B*
mN.mm^/yam •

r̂o 
tri 

S'

*0
mN.mm’ /yam

X-1 warp 9-61 5.61 0.23 9.46 4.80 0.27
X-1 weft 12.64 6.59 0.41 12.93 5.56 0.48
X-2 warp 8.68 5.01 0.18 9.02 5.00 0.31
X-2 weft 13.13 . 7.10 0.55 12.79 6.24 0.68
x-5 weft 13.39 6.70 0.46 16.04 6.77 0.53
Y-2 warp 8.44 5.53 0.25 10.59 5.45 0 .30
Y-2 weft - 10.48 0.50 20.42 6.27 0.55
Z-2 warp 9.28 4.66 0.20 9.63 3.88 0.27
Z-2 weft 30.73 12.38 1.20 57.03 ’ . 10.69 1.34
Z-3 warp 10.80 7.35 0.34 16.45 7.09 0.41
z -3 weft 36.47 18.31 1.40 55.96 15.02 1.45

v_n



Table 3*9
Experimental results of the fabric bending characteristics

Fabric
group

Fabric
No.

Warp Weft
*BW

mN.mm^/cm
%

mN.mm^/cm
^ W

mN.mm/cm

*Bij
mN.mm^/cm

B|j
mN.mm^/cm

mot
mN.mm/cm

X 1 195.88 98.90 5.50 220.88 94.61 8.11
2 184.82 102.50 6 .38 205.50 99-98 10.89
3 204.00 76.82 6.00 225.00 . 95.00 7.49

Y 1 205.48 113.71 5.99 330.00 151.22 12.99
2
3

215.16 110.97 6.12 414.98 127.93 11.09

Z 1 194.78 81.21 5.24 789.28 174.85 17.98
2 194-98 78.63 5.49 679.86 127.46 15.99
3 335.05' 144.49 8 .24 806.79 217.35 20.98

A 1 172.50 96 .84 5-35 202.50 104.65 5.36
2 143.54 71.47 3.60 116.83 51.15 2.51
3 182.50 130.54 6.28 196.19 105.80 5.06

B 1 285.00 143-78 JL42 160.00 79.04 4.75
2 140.94 73.17 4.14 130.59 60.99 4.03
3 165.23 83-74 3.83 136.80 52.57 4.73

C 1 205.04 120.46 O i l 120.03 68.77 4.15
2 152.00 80.22 5.00 100.00 46.49 2.59
3 116.00 68.72 3.14 73.64 41.98 2.33

B^, are the initial flexural rigidities of the fabric (per cm width)
B^, B̂ , are the elastic flexural rigidities of the fabric (per cm width) 
Mn„, Mn_ are the frictional couples of the fabric (per cm width)UW Ui ui
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Curvature mm-1
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CHAPTER 4

RESULTS AM) DISCUSSION

4.1 Introduction

In this chapter the experimental data obtained for both the 
fabric dimensional properties and for the y a m  mechanical properties, 
previously presented, are used in conjunction with the theoretical 
relations, derived earlier, to calculate the initial fabric behaviour 
under tensile and bending deformations. The discrepancies and agreements 
of these calculations with the actual fabric behaviour, as obtained 

experimentally, will then be discussed, especially with regard to the 

theoretical assumptions and difficulties encountered in some experimental 

measurements.

4.2 A Discussion of the Initial Tensile Properties 

of Plain Fabrics
In the theoretical analysis of the fabric initial tensile 

properties, the behaviour under both uniaxial and biaxial tensions was 

described. However, due to the absence of an apparatus which tests the 

fabric under biaxial loading, most of the experimental work was directed 

to checking the validity of the theory under uniaxial loading conditions. 

The theoretical equations related to biaxial loading will only be briefly 

discussed later in this chapter.

It may be useful at this stage to reconsider the general aspects 

of the mechanism of fabric tensile behaviour, that may be observed from 

the experimental curves of the fabrics used.
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4.2.1 The experimental curves of the fabric load-extension

Figures 60-65 show the behaviour, under tensile test, of all 
the fabrics used in the experiments; the fabrics were extended up to 
10-12% in the warp direction and 6-8% in the weft direction. The general 
features of these curves can be summarized as follows;

1. Unlike what is theoretically expected, the majority of these finished 
fabrics do not exhibit the relatively high initial moduli of a typical 
fabric, as shown in figure 1, and which is attributed to friction 

effects. On the contrary, most of the fabrics showed a relatively easy 
initial extension, linearly increasing with the load, up to a value of 

extension in the range 1.5% to 4%* This initial neo-Hooke behaviour 

(referred to as OE in the figures), with the fabrics used, holds valid 

up to the relatively high region of 3-4% fabric extension in cases 
where the yams in the load direction have a considerable amount of 

crimp. Such conditions are usually associated with a relatively low 
fabric modulus and this can be seen with all fabrics in groups X,Y and 

Z when extended in the warp direction. On the other hand, the straight 
line relation represents the initial tensile behaviour only up to a 

value of fabric extension in the range 1.5% to 2%, if the yams in the 

load direction have a low crimp value, and the resultant initial fabric 

modulus in such cases is relatively high. This latter behaviour is 

noticeable with all the fabrics in groups X,Y and Z,when extended in the 

weft direction. The rate of initial extension therefore undoubtedly 

depends on the crimp.

It is of interest to note that De‘Jong and Postle (66) defined the 

initial tensile deformation by the extension which corresponds to a 

load/yam in the range 0<f<2B/^ . In the above discussion of the
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initial deformations from the curves shown in figures 6O-65, the 
initial extension of the fabrics does not exceed the maximum limit of 
load specified by the above workers,e.g. for a fabric such as X-1W, 
the numerical values of 'f' according to these limits are 0 ^ f 4 2 3mN, 
which from the experimental curves give a range of extension

£<3.3%.
2. It has been suggested that the relatively easy fabric extension in the 

early stages is possibly associated with the fact that the primary 
y a m  deformations involved are bending and compression, rather than 

extension. The energy required to bend and compress yams (at least 

initially) may be relatively low and this is obviously equivalent to 
the external energy needed to extend the fabric.
It is possible to examine the magnitude of the role played by y a m

extension in the following way. The y a m  tension at any point on its

path is given by T = f cosq+v sinq/, and the maximum tension occurs at
the apex when \]/= 0, i.e. T = f. An upper limit to the yam.max
extension involved may therefore be found as follows. Figures 66 and 

67 show the experimental values of the fabric and y a m  extensions 

plotted against f. From the fabric curve the value ' f' needed to produce 

an initial fabric extension of, say 3%» can be read at C after following 

the path ABC on the graph. The y a m  extension corresponding to this 

force can be read at E after following the path CDE. This is an upper 

limit to the y a m  extension involved when the fabric is deformed by 

the given amount. In the case of X-3V (figure 66) this upper limit is 

only 0.1%, while for fabric X-1T (figure 67) it is about 0.54%. The 
contribution of y a m  extension in the two cases is therefore quite 
different, and more will be said about this effect at a later stage.





Load/yarn (10m
N)

Fabric extension %
X-3 W
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3. The next phase, after the initial (indicated by EM in figures 60-65)» 
shows non-linear increasing values of load as the fabric extension 
develops, yielding higher values for the fabric modulus. This suggests 

that the fabric deformation has 'taken up the slack' and that the 
tensile behaviour is progressively becoming more dependent on those 
y a m  properties which require greater energy changes to deform them.
Also, the contribution of the crossing threads to the fabric resistance 
to extension is probably increasing. Unless jamming occurs, this 
crimp redistribution is expected to continue.

4. The fabric behaviour eventually reaches a phase of very rapid increase 

in modulus. This seems to occur at, or a little beyond,the point when 
the fabric extension is equal to the y a m  crimp value, e.g. for fabric 
X-3T (eg = 0.046) this point is indicated by M in figure 60 where it 

can be seen that the corresponding fabric extension is nearly 6%. The 

above mentioned phase probably starts when the y a m  crimp is totally 

eliminated or when jamming occurs; consequently,no further crimp inter­
change or y a m  flattening would take place and the fabric extension 

would be mainly dependent on the y a m  tensile properties.

4.2.2 The experimental curves of the fabric length 
extension-width contraction

The behaviour of the fabrics under this test is shown in figures 

39-56. An important feature of these curves is the fact that they lead to 

low values of the initial Poisson's ratio. In some cases there is a delayed 

contraction (sometimes it does not take place until there is as much as 

2-3^ fabric length extension e.g. Z-1W and A-2W in figures 45 and 49). This 
suggests that a mechanism of fabric extension with y a m  compression as an 
important factor is taking place, which reduces the value of the width
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contraction. Obviously this effect depends on how easily compressed 
are both of the two systems of yams, and on other factors which determine 
the magnitude of the interyam forces at the intersections.

When the test was carried,out on fabrics having high crimp values 
in the load direction, such as the fabrics in groups X,Y and Z when 
extended in the warp direction (c^ = 17-22%), the trend of the Poisson's 
ratio.up to the maximum extension employed on the tests (l2%),can be 
described to be of ever increasing values. However, this was not the 
case for the fabrics which have low crimp values in the load direction, 

such as fabrics in groups X,Y and Z when extended in the weft direction 
e.g. X-3T and Z-2T in figures 41 and 46. A point which is worth noting 
is that the width contraction vs. length extension produces curves that 
sometimes show an inflection point. Such behaviour may be associated with 

the crimp interchange mechanism in the following way. Since the latter 

takes place until the yams in the load direction are almost straight 
(assuming no jamming occurs), the fabric length extension beyond this 

limit becomes almost independent of the crossing y a m  resistance and little 

or no further changes in the interyam forces may occur; consequently 

one should expect correspondingly little or no further width contraction. 

The fabric Poisson's behaviour could, then, be expected to be in the form 

shown in figure 68a,which shows the experimental data for fabrics in 

group X, extended in the weft direction (note that the weft crimp values 

of these fabrics are less than the maximum extension employed in the 

tests).
Based on the analysis described earlier in section 1.3.3, Huang 

(4) gave theoretical curves for the relation between the fabrics' load- 
length extension and load-width contraction. Prom these curves it is
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possible to produce the theoretical behaviour of the fabric Poisson's 
effect, as shown in figure 68b. It is evident that the kind of behaviour 
shown by these theoretical curves is in accordance with the shape obtained 

by our experimental results.
The second feature of the experimental curves in the present work 

is that, for the same fabric, the higher initial Poisson’s ratio is 
always associated with the direction which possesses the higher value of 
the .initial tensile modulus. Probably the ratios E^/E^ and Q^/O^ are 
affected by the fabric dimensional and mechanical properties in much the 

same way.

4.2.3 How the values of the y a m  mechanical properties 
were interpreted

The final theoretical values of the initial tensile modulus, as 

well as the initial Poisson’s ratio, are dependent on the interaction of 
all the y a m  mechanical properties (B, A. and |i) and the y a m  configurations 
(p,'i and 0) in both directions for a specific fabric. While the values 

of the latter parameters are well defined, there could be more than one 

value to represent each of the mechanical properties of the yams, since 

the stress-strain behaviour the yams obeys

1) is not linear and shows time dependent behaviour;

2) shove visco-elasticity and hysteresis upon recovery from strains;

3) may differ if examined tinder different conditions, e.g. extension of 

straight yam, as tested experimentally, may differ from the extension 

of the same y a m  with a lateral distributed load imposed upon it, as 

always occurs at the cross-over regions when the fabric extends.
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These are obviously complicating factors, which will be discussed 
for each yam property individually.

The yam bending property involved in the initial fabric extension
A major factor affecting the initial fabric extension behaviour 

is the mode of bending of the component yams. In the analysis, this 
bending behaviour is assumed to be linear and represented by a flexural 

rigidity B. However, a number of workers (41,45) have shown that, in fact, 
the bending behaviour of a y a m  is non-linear and is more nearly represented 

by a curve of the type (2) in figure 69. The stress-strain relation tends 

to be linear beyond a certain value Mq of the bending couple, and 
approximations to this behaviour are represented by curves (l) and (3).
In these approximations the bending law is:

(1) M £ M q

M > Mq

(3)
M >  Mq

1/e = 0
M-Mq = B/e 

M = B*/?
m -m 0 = b/s>

In the above relations, B is the slope of the linear part of curve 

(2), and it was decided to use this value in the following work for the 

following reasons:

(a) Based on the rough analysis in section 3«4*1» it can be shown that a 

mean value of the initial change in the y a m  curvature involved in 1% 

fabric extension is of the order of 0.08 mm-"', when the yams in the 

load direction are of high crimp, and of the order of 0.2 mm-"' for the 

lower crimped yams (see the values of p02dK1/l00dp2 in Table3.4). 

Hence, the initial y a m  bending modulus (as commonly defined by the 
slope of the couple-curvature behaviour up to 0.02 mm-"') will not in
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general, reasonably represent the y a m  behaviour likely to be met 
in the experiments.

(b) The initial tensile modulus of a crimped yam, say in the warp direction, 

which has a saw tooth representation, is given by the following

12B1 p 2

1 /^sin01
E„ = (4.1)

ignoring the y a m  extension; the above expression can be obtained 
by treating the single y a m  deformation as a cantilever deformed by a 

tensile force acting on the plane of symmetry.

Using this expression, the theoretical values of E were calculated 
for the warp and weft crimped yams, assuming they have the same dimensional 
shape as that in the fabric and 'B' is represented by the y a m  elastic 

flexural rigidity at low curvatures. These values may be compared with the 
experimental values of the single crimped y a m  initial tensile modulus, 
calculated from the curves described in section 3.4.2. The comparison, 
given in Table 4.1» suggests that the values of B chosen will, in general, 

give a fair representation of the y a m  bending property involved in the 

initial fabric extension.

The y a m  compressional -property involved in the initial 

fabric extension

The initial compression behaviour of previously undistorted y a m  

obviously differs from the initial behaviour of the same y a m  inside the 

fabric, since the latter can be regarded as already having undergone cyclic 

compression strains during the fabric formation. A partial recovery from 

these strains has then taken place during the succeeding finishing process. 
After relaxation, the fabric is finally set into shape when dried, with a
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Table 4*1
Theoretical and experimental values for the 

crimped y a m  initial tensile modulus ( \  =  a>)

Fabric
group

Fabric ■ 
N o .

(mN) E2(mN)
Theoretical Experimental Theoretical Experimental

X 1 392 372 2384 17802 299 285 2537 16513 305 321 3050 2726
Y 1 319 349 3324 27242 270 252 3455 2868
Z 2 162 183 7264 43593 229 238 5308 4967
A 1 300 323 1826 14252 394 405 1457 12143 555 580 620 671
B 1 849 854 576 5682 406 490 1286 11873 402 516 1331 1343
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smaller y a m  thickness than the initial value. When the fabric deforms 
in extension or in bending, the interyam forces, thus developed, will 
cause the y a m  cross-section to start another cycle. The best estimate 

of the y a m  initial compression modulus in the fabric can therefore be 
obtained experimentally by an apparatus that can provide such cyclic 
compression strains in which the second cycle should start at the same 
thickness as that of the yarn inside the fabric. The apparatus actually 
used, however, does not provide this facility, and a procedure therefore 
had to be developed that would provide an estimate of the necessary 

information.

The compression modulus, n, is defined by the following relation 

V = ^ed’

where V is the compressive force (considered as a point load) and 8. is
T-T0

the fractional change in y a m  thickness (— — ) .
0

Differentiating the above expression we get 

dV = RdSj .

In practice a point load does not exist and therefore V may be

defined in terms of the intensity of load x(mN/mm), assumed uniformly
distributed over the contact length, / , between warp and weft i.e.c
V = x and dV = J^dx. Substituting in the above expression we get

^c>dx = pdg^

or

“  ■  < W ' ©  •
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In the above expression 'Tq ' corresponds to the initial y a m
thickness inside the fabric, denoted previously by b, which was defined
by the experimental procedure in section 5.3*3; this procedure also

enables J t to be estimated. From the experimental curve or the fitted c
empirical formula of the y a m  compressional behaviour, the equivalent load, 
say Xq , to the thickness b can be found either by a graphical or by an 
interpolation method. Assuming that the change in y a m  thickness under

'•L

cyclic loading will have the behaviour shown in figure 70, we may regard
the slopes of the tangents to the curve at the points 1 e' and 'g'as nearly

equal. Thus the rate of change of the y a m  thickness inside the fabric 
cL?is given by Or—) . This is obtained from the empirical formula (3.6)
LU C  a — X q

by

m  = E A . B . eVdx/x=x0 Aij 0 0
‘V o

The compression modulus is thus finally given by the expression

3=3
n = l - W  E  A iB ie " V °  •c j=1 J J

The yam tensile property involved in the initial fabric extension
The tensile behaviour of yams of normal twist such as those 

used in this work show a low initial modulus, rapidly increasing with the 
further extension. This behaviour may be fitted to a relation, as suggested 
by Nordby (2), of the form

t = kT11 , 0<n<1

where £ is the yam extension, T is the tensile load, and k and n are
v

constants.
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Such a relation may be useful when investigating the fabric 
tensile behaviour at higher strains; however.it leads to an initial 
modulus = 0, and is therefore not useful in the present work.

Since it has been shown in our experiments that the yams would 
only extend by very small amounts during the initial fabric extension, 
the best representation for this property would be the slope of the very 
initial part of the y a m  load-extension curve, up to a limit of 0.1%-0.2% 
y a m  extension (see figures 29-30).

4.2.4 Theoretical calculations of the fabric tensile modulus 
under uniaxial loading

v

The theoretical analysis presented earlier provides a general 
case, and several special cases corresponding to different levels of 

approximation. Each of these was compared with the experimental data in 

order to see what level of approximation, if any, is required to give 
reasonable agreement between theory and experiments.

Case 1: Calculations assuming inextensible and incompressible yams

The simplest theoretical expression for the fabric initial tensile 

modulus is provided by this case and is given by equation (2.7), namely

^ y 2 r  B2 i i ° ° » V
p1i^ s in 201 L B1i^cos202_

(2.7)

In order to calculate from this equation it was necessary to 

evaluate the weave angles 01 and 0g. According to the fabric model, we 

have

01 = cos~1(p2//1) and ©2 = cos" ’1(p -j/ig)*
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The theoretical calculations for and Eg plotted against the 
experimental values are shown as circles in figure 7 1 t and these deviate 
considerably from the straight line drawn on the graph which indicates 
perfect agreement between theory and experiment. In fact, the mean 
value of theoretical)^ is ®’49 which means that the theoretical values 
are, on average, nearly twice the experimental values. The reason for 
this can be explained if we consider the force needed to extend.the fabric 
to a unit extension (10096). This force can be divided into a force Ê , 
which is the contribution of the warp threads to the fabric resistance 
to extension, and a force F^ which is the cross yam's contribution. 
Equation (4-1) shows that

_/ 12B1*P2F1 = ---5-- Ô—  ’
P^jsin 91

and from equation (2.7) F* is then given by

„  12B..P2 B2^ cos201

1 p1j^sin201 B1igcos202

(4.2)

(4.3)

for incompressible’and inextensible yams.
HIn fact, if the yams are compressible, the contribution F̂  would 

be far less, as will be seen later by considering a similar expression of 
f" in Case 2. In addition, depending on the value of 0̂ , both warp and 
weft contributions to the fabric resistance to extension are further reduced 
if the yam extensibility is also included, as will be shown by examining 
the general case.

In the hope that for practical purposes we can avoid the necessity 
to define the tensile and compressions! properties of the yam, another
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approach was followed. When presenting his rigid-thread model, Peirce 
showed that

01 = 106(/,/ p 2- 1) ^  and 02 = lOS^/p.j-l)^ ,

where the angles are measured in degrees. When the values calculated from 

these relations were used in equation (2.7), quite good agreement between 
the theory and the experimental results were obtained, as can be seen 
from the points plotted as crosses in figure 71. It is obvious that in 
employing this procedure there is an element of inconsistency in that two 

fabric models have been used, one to derive the expression for the initial 

modulus and another to estimate the weave angles, but the resulting 
agreement seems to justify it. However, while this procedure has resulted 
in reasonable agreement between theory and experiment, so far as initial 

fabric moduli are concerned, it will be shown later that it does not produce 

satisfactory estimates of the initial Poisson's ratios. Consequently, we 
proceed to investigate the effect of the y a m  compression on the initial 

modulus.

Case 2; Calculations assuming compressible but inextensible yams

The expression for the tensile modulus in this case is given by 

equation (2.20), i.e.

B2i^cos201

. r , , B1^cos202+48B1B2(d1/^1+d2/p2)

In this case, the warp contribution to the force needed to produce 

unit extension has not changed and is still given by equation (4.2); however, 
the weft contribution is changed to

E1 *
1 2 3 ^ .v 2

Zisin 0„ (2 . 20)
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Bo^cos20i
— -r-------— ----- ------------ (4 .4)
B ^ 'c o s  02+48B1B2(d 1/ ^ 1+d2/ |i2)

When the theoretical calculations were carried out including the 
effect of y a m  compression,a generally better agreement between the theory 
and experimental was obtained. However, this procedure gives a reasonably 

close agreement for some fabrics but not for all, as can be seen from 
figure 72. The best agreement with experimental results is observed with 
fabrics having high to medium crimp values in the load direction. On the 

other hand, fabrics in groups X,Y and Z gave high theoretical weft-wise 

fabric initial moduli,and these represent poor agreement with the experimental 
data when the yams in the load direction possess low crimp values. The 
reason for this is associated with the neglect of the y a m  extensibility, 

as will be discussed in the next case.

General case: Calculation assuming compressible and extensible yams
Some plain fabrics are made, purposely, with nearly straight 

yams in one direction in order to achieve, for example, a rib effect or 

to obtain certain properties such as better drapability in the cross-wise 

direction. Such constructions are shown in figure 73« From our point of 

view, when these fabrics are extended in the direction of the straight 

yams, i.e. the weft direction shown in figure 73a> the initial tensile 

behaviour can not be explained on the basis of crimp redistribution only.

Most probably such a mechanism almost vanishes, and the fabric is virtually 

extended by extending the yams themselves; thus a comparatively high 

tensile modulus for the fabric is expected.

Calculations for the general case including the y a m  extensibility, 

as well as its compressibility, were carried out using equation (2.18),

12Br P2 
2sin 9,51^1
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(a) Rib effect produced by using coarse filling 
and open structure fine slack warp

(b) Rib effect produced by using coarse filling and 
fine highly tensioned warps alternated with 
coarse slack ones

Fig. 73
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Table 4*2
Theoretical and experimental calculations of the initial tensile modulus

E^N/cm) E2(N/cm)

Fabric Fabric X' S=oo X' S= oo General Experimental X’ S=oo X' s= 00 General Experimental
group No. b 2=o n' S=co X* S=co case values B1=0 M-1 s=oo X* S-OO case values

X 1 8.09 25-52 11.02 10.72 14.3 40.55 59.36 46.27 38.28 36.6
2 6.14 22.07 8.62 8.43 9.4 40.67 56.33 45.75 37.55 29.8
3 6 .30 30.41 9.81 9.56 14.2 42.78 53-95 47.19 37.52 34.1

Y 1 6.53 30.79 10.55 10.23 15.9 49.10 62.31 54.69 44.25 42.9
2 5.50 31.87 10.08 9.79 15.5 46.75 56.50 51.64 41.54 33.8
3 4.79 38.71 9.64 9.38 14.6 53.25 60.77 57.06 43.72 28.6

Z 1 4.13 31.71 7.20 7.05 13.7 85.81 98.65 91.67 65.38 53-6
2 3.29 31.10 5.56 5.48 10.6 86.59 96.84 90.99 63.61 45.5
3 4.68 27.04 7.59 7.43 14.9 76.82 92.88 83.52 63.05 42.4

A 1 6.32 19.85 8.76 8.57 9.2 31.07 45.57 35.72 32.42 25-5
2 6.72 21.40 10.52 10.19 9.1 19.46 28.39 23.32 21.48 14.8
3 10.11 19.46 12.99 12.55 12.7 11.67 24.29 15.35 14.75 13.4

B 1 15.27 28.87 18.80 17.88 24.O 10.52 22.33 13.33 12.80 13.8
2 6.88 15.76 9.63 9.36 13.3 20.20 35.85 25.95 23.74 19.7
3 6.77'- 20.78 11.45 11.05 11.7 17.61 26.13 21.95 20.09 14.5

C 1 20.07 27.42 22.71 21.39 23.2 11.11 41.41 16.26 15.58 22.0
2 12.40 19.11 15.53 14.87 18.0 7.90 22.49 12.58 12.10 12.8
3 8.96 18.60 11.38 11.17 12.0 11.52 22.22 14.54 13.80 13.0
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and are shown plotted against the experimental values in figure 74* It 
can he seen that most of the discrepancies noted in figure 72 for the 
weft-wise direction in fabric groups X,Y and Z, were improved.

The experimental and theoretical values, according to all the 
cases examined, are given in the general table 4*2.

4.2.5 Theoretical calculations of the fabric initial Poisson1s ratio

Case 1: Calculations assuming incompressible and inextensible yams
The simplest expression for the fabric Poisson's ratio, met with 

in literature, is due to Grosberg, which was derived by differentiating 

the relations

i = p(l+c) and h = ̂  py/c ,

for both warp and weft, assuming that the yams are incompressible and 

inextensible.
Thus

d/^ = d = 0 and dh^+dh^ = 0 •

The final expression for the Poisson's ratio is then obtained as

p2 dpi p2 (1"c-|) p2 tan02
°1 = ~ pn dp2 ” p-| (1-c2) ~ i7 tanei '

The same result was derived by Hearle and Shanahan (22) using Peirce's

flexible-thread model. In the present analysis,the simplest expression was

derived with the same assumptions of y a m  inextensibility and incompressibility,
and was given by

p2 tan02 
°1 ” p^ tan0.j 9
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which is similar to the above result. It may he worth pointing to the 
fact that both expressions are independent of the y a m  rigidities.

The theoretical calculations carried out using the above expression 

are given in Table 4*3 where it can be shown that the values obtained for 
this case ( X = oo, n =oo) are much higher than the experimental results. We 
therefore go on immediately to consider the case of compressible yams.

Case 2: Calculations assuming compressible but inextensible yams
The theoretical expression for this case is given by equation 

(2.23). This expression can in fact be written in the form

p tan0
(X = —  t— —  x K ,1 p^ tanO^ c

where
^ cos202/12B2 

__ ■ ■ ■■■ ' " ■
c ( ^ c o s 2 02/l2 B 2)+ 4 (d 1/n 1+d2/n 2)

(4.5)

and K may be thought of as a correction factor for case ' 1' if the y a m  c
compression is to be taken into account. It is obvious that the theoretical 

value of Poisson's ratio is reduced since K is always less than unity,and 

is dependent on both warp and weft compressibilities. Further, in this 
case it is possible to get values for and which are both less than 

unity, while in the previous case a theoretical value of O ' less than unity 

in one direction leads to a value higher than unity in the other direction. 
The calculations,carried out according to this case,give much better 

agreement for most of the fabrics, as can be seen in Table 4*3 (\=oo) and 

in Figure 75*



Table 4*3
Theoretical and experimental calculations of the fabric initial Poisson's ratio

«1 *2
Fabric Fabric X' S= oo General Experimental X' s= 00 General Experimental
group No. (J.' S= oo X' s= oo case values H' s= 00 X' S=CO case values

X 1 0 .66 0.11 0.10 0.10 1.53 0.46 0.37 0.38
2 0.63 0.10 0.09 0.11 1.60 0.52 0.41 0.42
3 0.75 0.11 0.10 0.08 1.33 0.53 0.41 0.40

Y 1 0 .70 0 .12 0.11 0.08 1.42 0.60 0.47 0.40
2 0.75 0.13 0.12 0 .12 1.33 O .67 0 .52 0.51
3 0.80 0.11 0.11 0.13 1.25 0.68 0 .50 0.57

Z 1 0.57 0 .06 0.06 0 .02 1.76 0.80 0.56 0.24
2 0.57 0.05 0.04 0.06 1.76 0.76 0 .52 0.35
3 0.54 0.07 0.07 0.07 1.85 0.77 0.57 0.52

A 1 0 .66 0 .12 0.11 0.0 8 1.52 0.55 0.43 0.12
2 0.87- 0.23 0.22 — 1.15 0.49 0.45 0.40
3 0 .90 0.28 0.26 0.17 1.12 0.33 0.31 0.25

B 1 1.14 0.30 0.28 0.28 0 .88 0.21 0.19 0.16
2 0 .66 0.21 0.20 0.32 1.51 0.55 0.50 0.52
3 0.89 0.30 0.28 0.31 1.12 0.57 0.52 0.47

C 1 0.81 0 .29 0.27 0.20 1.23 0.21 0.20 0.13
2 0 .92 0.43 0.41 0.37 1.09 0.35 0.33 0.25
3 0 .9 2 0.25 0.23 0.20 1.09 0.31 0.29 0.26

voo
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General caset Calculations assuming compressible and extensible yams 
The theoretical expression of this case is given by equation 

(2 .2 2) and may be put in the form

p tan0

p., tan©., ct *

where

\

K . = ct

• 2 / A  A w  ^2s m  e^os e2(12Bi - ~ X.,'

i^sin 01 £,003 0 2 2 £ \

...12B~  + -----£ ---- ) " Bin 91C0S ei (i2B 7  “
A \ 2
1 '

(4. 6)

and

E $ c o s 2 Q. £. sin20. 4d.
( ^ ¡ 2 B - ^  + - V 2  + IT)'i=1,2 1 1 i T.

'K may be termed a correction factor to include both the yam compress-C u
ibility and extensibility. The calculations, carried out according to this 
case, are included in Table 4«3 and are illustrated in figure 76.

4 .2 . 6  Discrepancies and agreements between the theoretical 
and experimental results
Generally, the theoretical calculations give a reasonable estimation 

for the fabric initial tensile modulus and Poisson’s ratio. The case which 
gives the best agreement is that which includes both yam compressibility 
and yam extensibility. A complete agreement is seldom possible for the 
following reasons;

1 . errors in the experimental measurements of the fabric initial behaviour;
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Theoretical and Experimental values of 
fabric initial Poisson's ratio (general 
case) .
* Fabric extended in warp direction
♦ Fabric extended in weft direction
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2. errors due to basic assumptions;
3. errors in defining the y a m  mechanical properties.

These will be discussed separately.

1. Errors in the experimental measurements of the fabric 
initial behaviour

The value of the fabric tensile modulus is ideally defined by the 
slope of the initial part of the load-extension curve, and this is sometimes 
not easy to determine with great accuracy. Also a slightly slack or slightly 
pretensioned fabric, when inserted in the jaws of the Instron, leads to 

an indeterminancy of the origin i.e. the point on the chart corresponding 

to zero load and extension. The coefficient of variation of the initial 
fabric tensile modulus is in the range of 4*4% to 13%. This variation may 

also, of course, reflect some variation in the fabric properties at 

different parts of the woven fabric piece.

The quoted values of the Poisson's ratio are based on testing one 

or two samples for each fabric direction, this small number of tests being 

done because of the lengthy testing procedure. Prom the preliminary 

investigation it was clear that it is necessary to extend the fabric to 
a sensible amount, beyond the initial, since the resultant initial changes 
in width are very small. Such a procedure clarifies the extension-contraction 

behaviour and reduces errors in interpreting the initial Poisson's ratio 
from the resulting curves representing the behaviour. In this test, a crucial 
error may result from the samples being pretensioned, since the curve will 
be interpreted from the experimental measurements as shown in figure 77a 

referred to axes o ' y f l i  The behaviour, in fact, should actually have been 
started from the point 0, where axes OXY represent the correct datum for 
extension and contraction,and it is clear that the correct value of the



Fig. 77b
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initial Poisson*ratio which is indicated "by the slope of the tangent '1' 
could be considerably different from the incorrect value indicated by the 
slope of the tangent * 21 in the figure. On the other hand, a slack fabric 

sample will result in initial small changes in the fabric extension, as 
measured from the prints; however, this does not produce significant 
errors in the experimental measurements. This case is shown in figure 77b 
where it can be seen that both curves are nearly parallel and the measured 
Poisson's ratio will be nearly the same.

The theoretical work described by Hearle and Lloyd (64) shows that E 

andO" under uniaxial loading are probably best measured using a high length: 

width ratio and that after a certain ratio, nearly 5» little or no changes 
in measuring these values may occur. In the present work this ratio was 5» 
and an additional check was made using a ratio of 10; both results were 

similar.
With respect to the sample size and a constrained contraction at 

the tensile tester jaws, another error in the Poisson's ratio measurements 
may result from the fabric sample tending to buckle or curl due to the 

heterogeneous strain in the neighbourhood of the clamps, as described by 

Kilby (67) which could lead to incorrect measurement of the width contraction. 
However, such an error is expected to be at a minimum for the small strains 

considered, and when using sample dimensions as described. In addition, 

the contraction of the sample is measured at the middle of the specimen 
where the stress and strain distributions are expected to be nearly 

homogeneous.

2. Errors due to basic assumptions

An obvious source of error in the theory results from assuming
the yams to be straight cantilevers. Such an assumption could be a
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reasonable approximation for both warp and weft in conditions which lead 
to an open fabric construction with low to medium crimp in both directions.
If the structure is highly unbalanced so that the ratio of diameters, 

rigidities and spacing of the yarns in one direction to the other is high 
(figure 75a), the straight line representation holds reasonably accurately 
in the direction which possesses the low crimp value, while giving less 
accurate estimates for the modulus in the crossing direction. This can be 

seen clearly in figure 78, where the mean values of g|theoretical)~̂  ^or 
each fabric group are plotted against the crimp value of the yams in the 
load direction, the theoretical values being calculated according to the 

general case. The graph shows that the best agreements between theory and 

experimental (g[theoretical)^ ~  °*75-1.2) are given by fabrics of low crimp 
to medium values in the load direction (0 .05-0 .12), while the maximum 

discrepancies are related to the warp-wise fabric extension of groups X,Y 

and Z, which have high crimp values in this direction.

3. Errors in defining the y a m  mechanical properties

The mechanical properties of the yams have been measured in 

isolation, and these could be different from those that apply when the y a m  

is inside the fabric. For example, the following might be cited:

(a) The yams inside the fabric may be regarded, approximately, as consecutive 

arcs of different radii, as suggested by Nordby (2), and the bending 

properties of these might be dependent on their initial curvature.

(b) The y a m  compression under zero axial tension could be different from 

the y a m  compression produced when the y a m  is also acted upon by axial 

loading (5)» such as may occur during the fabric tensile deformation.
In addition,the procedure used to define the compression modulus relies
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on assumptions such as a race-track cross-sectional shape and that 
the y a m  is compressed at constant volume, which may not, in fact, 
he satisfied.

(c) Extension of the free yams could be different from their extension 
under a combined axial and lateral loading, the case which represents 
the actual y a m  extension at the cross-overs. In addition, the y a m  

extension possibly produces a y a m  Poission's effect (4)» which has 
been ignored in the present analysis.

In spite of these objections, however, provided that the strains 

applied to the fabrics and yams are small, most of the previously estimated 
values of the yams mechanical properties can be regarded as reasonable.

4.2.7 The relation between E1,E2,0'1 and

The planar stresses and strains of an anisotropic elastic lamina 
are related by a set of linear equations. If the lamina possesses two 

planes of symmetry at right angles to one another and both perpendicular 
to the lamina, as shown in figure 79» the linear equations are reduced from 

considerations of symmetry. The stresses and strains, when referred to the 

principal axes defined by the intersections of the planes of symmetry with 

the lamina, i.e. axes X and Y, are defined by

eXX ” A11SXX+A12SYY *

eYY “ A21SXX+A22SYY ’

eXY ” A33Sx y ’

(4 .7 )

where and SYY are the normal tensile stresses and is the shear 
stress.

eXX,eYY 811(1 eXY 3X6 corresPonding tensile and shear strains. 

A11 ,A12’A21 ,A22 3111 A33 a x e inf1-tlence coefficients.
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Fig. 79



201

The above equations are sometimes referred to as Hooke's Law of a planar 
sheet, and it is obvious that they are reduced to the simple forms of 

Hooke's law if the stresses act individually in one direction. The simple 
interpretation of these coefficients is then

= 1/Er  A22 = 1/E2, A55 = 1/G ,

and A12 = A21 rr-Qj/E., = -C*,/E2 , (4 .8)

where G is the shearing modulus and suffices (1) and (2) refer to the 
warp and weft directions of the fabric (see figure 79)*

In deriving the above relations, the initial fabric parameters 

which define the fabric dimensions in planes XZ and YZ, i.e. h^ and hg, 
are immaterial except in so far they affect the final values of the 
sheet. It may be a matter of interest to show that the expression derived 

in our analysis, for the fabric tensile modulus and Poisson's ratio, 

assuming crimp interchange, leads to the same relations as the planar 
stress-strain analysis. Starting with the following expression:

and substituting the equivalent values of E^ and o^ from equations (2.7) 

and (2.24) gives

F1^ P 1sln2e1sln292 T P2tan9g . .]
12p2(i^B2cos201+i|B1cos2e2) L P1tan01 2 1 J

E1 /2P1 sin201 sin2 02-P2/ ^ p 2sin01 cos01 sin02cos02 

12p2(i^B2cos201+/2B.|Cos202)
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which is the expression previously derived for the warp extension under 
biaxial loading with the assumption of inextensible and incompressible 

yams.
Similarly, it can be shown that the planar stress-strain relation

(4.8), arising from symmetry considerations holds valid when substituting 

for E and O' from our analysis i.e.

°iE2
potan0o

( — -----)vp^tan0^'

and

12B2?1
P2i2sin202

^ cos202+B2/^cos201
B21^cos20̂ ]  •

0£E 1 = (
p^tan0^ ̂ 12B^p2 ^B^cos^+Bg/^cos^
P2tan02 /2sin20.,'1~1 B1/2cos202

and these in fact equal.
It can also be shown that the above equivalence is consistent in 

any case,when using the other expressions obtained with the different 

assumptions for the y a m  mechanical properties. The theoretical relation

(4.8) confirms the experimental finding, discussed in section 4*2.2, that 

for the same fabric, the direction which possesses the higher value of E, 

also shows a higher value of O'.

4.2.8 The fabric initial behaviour under biaxial tensile deformation

In a biaxial tensile deformation two quantities are involved, 

namely the two tensile loads (F^ and F2) and the two extensions and ^2). 

In order to carry out an experimental test, two of these quantities are 

regarded as specified independent variables,while the other will be dependent 

on them and obviously on the weave construction. The specified variables
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can be varied according to several schemes (3,68,4 ); for example, their 
ratio may be held constant. The following discussion applies to the case 
where Fg and are varied so that Fg/F^ = constant during the test.

To predict the initial biaxial tensile behaviour, it is possible 
to rely directly on the relations derived from the planar stress-strain 
analysis, since it has been shown that the expression in our work which 
assumes crimp interchange leads to the same conclusion. The particular 
value of the sheet (E^,E2,c^ and Og under -uniaxial loading) should be 
predicted using the case which best agrees with the experimental results,

i.e. with the assumption of extensible and compressible yams. The fabric 

extension, regarded as the dependent variable, under biaxial loading in a 
warp direction,, can then be calculated from

i; [^(W]
There will be 3 possibilities for the fabric initial tensile 

behaviour, namely

1. Warp-wise fabric extension if Oj (F2/F.j ) < 1.
2. Zero warp-wise fabric extension if (^(Fg/F^ = 1.

5 . Warp-wise fabric contraction if CX|(F2/F^)>1.

4.2.9 Comparison with other theories
The theoretical results based on the expressions derived in our

analysis were compared with some results obtained by I)e Jong and Postle (66,69)

Their analysis uses an energy method, and should be more accurate since it 
arelies onAmore realistic shape for the y a m  path. We shall use here the 

same dimensionless units used by the above authors. These ares
pf̂ s dimensionless decrimping load per yam ( f t / B ) ;
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relative extension (¿f/c), £ =  Ap/p and c is the y a m  crimp;
E^j relative fabric tensile modulus (f
Xr? the ratio of y a m  tensile rigidity to bending rigidity (xjr/B).

The following comparisons may be made,

a) Y a m  decrimping curves
Under conditions of extensible yams, our analysis yields the 

following expression

1^*r1(1-cos®1)E 1 = o q *
rl X . sin 0.+12cos 0.. r1 1 1

Theoretical load-extension behaviours for a region of load in the 
£ s

ra n g e ( 0<-j<4) are compared with De Jong's and Postle's curves in figures 

80 and 81, these being shown at two levels of crimp values and for different 

values of xr*
The following features can be noted:

(i) The load-extension behaviour based on the straight-line model holds 

reasonably well in the region of loads (O^-jj-^2), which were defined by De 

Jong and Postle as the initial decrimping region.

(ii) The effect of the y a m  axial extension is a vital factor for the 
theoretical calculations when the yams are highly extensible and/or 

the crimp level is low.

These two features have been confirmed earlier when the experimental
and theoretical values of our results were compared.

The above authors gave also numerical values of the y a m  axial

extension involved in the crimped y a m  extension. Similar values can be

obtained from the present analysis. Figure 82 shows the contribution of 
l  cos©1

this factor (--------) plotted against the crimp value for different levels

ofXp-
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Fig. 83
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b) Effect of y a m  length ratio, , on the
initial fabric modulus

Assuming incompressible and inextensible yams, the relative 

fabric modulus is

Er1 =
12(1-008^) r b 2^  cos20.j "j

3in201 [_ B1i^cos202J

We shall assume that the warp and weft yams are of the same bending 

•modulus, also the fabric is relaxed before setting. Thus the fabric 
dimensional parameters are more related by the following expressions

B1sin01
2

*2

B2sin02
and B.j = Bg .

It is thus possible to draw the curves shown in figure 83, relating and 
V A -  and it can be seen that a similar trend to that obtained by Be Jong 
and Postle is given by the above expression for . They mentioned that 

"as V A  increases, the fabric modulus, E^, is reduced because the inter­

y a m  forces acting on the extended y a m  (owing to the crossing thread) are 

reduced by a factor i / ( V A  )2." From the above expression, the reduction 

is in fact apparently related to 1 / ( V A ) 5-

c) Fabric initial Poisson's ratio

Very contradicting behaviour for this ratio has been obtained by 

De Jong and Postle. They gave experimental values for the initial Poisson's 

ratio that were greater than unity in both directions. Their experimental 
results, in fact, were interpreted in a different way to that used in the 
present research, since they ignored the initial part of the extension-
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contraction behaviour in the cases where no contraction was observed. They 
attributed this delayed contraction to the possibility that the interyam 
forces during the initial fabric extension are insufficient to upcrimp the 

crossing yam. De Jong and Postle also attributed the values of <y>1, in 
both directions, to the effect of the axial tension applied to the yams 
on y a m  rounding (rather than flattening). They suggested that the inter­
y a m  distance is therefore predominantly controlled by the effect of tension 
on the y a m  cross-sectional shape rather than by the interyam forces. In 
the present work, the values of the initial O' were always less than unity 

and the theoretical justification that we have presented for this highlights 

the effect of y a m  compression on the initial length extension-width
contraction.
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4 .3 A Discussion of the Initial Bending Properties 
of Plain Fabrics

The general trends of the experimental results, referring to 

Table 3.9, for all the tested fabrics can be summarized in the following 

remarks.

1. The general shape of the bending hysteresis curve, previously described, 

was observed for all the fabrics. These curves for plain fabrics are 
expected to show symmetry about the origin, since the weave cell is 
symmetrical with respect to the fabric plane. However such symmetry was 

not always found in the experimental curves, probably due to an initial in­
plane couple or to different treatment of the two faces when the fabric was 
dried in. the stenter during the finishing process. The procedure used

to interpret the results,(section 3*5»1)> effectively reduced these differ­
ences, since the mean values of all the tested samples of a particular fabric 
finally produced a nearly symmetrical curve.
2. The trends for the fabric bending modulus are probably better discussed 

by examining the experimental data with respect to a simple model of fabric 

bending. The simplest mechanism for this behaviour assumes that the effect 

of the crossing yams may be regarded as reducing the effective length of 

the yams, in the bending plane, that will bend when the fabric plane is 

deformed (38*45)» The yams are therefore considered as alternate rigid 

and flexible segments. The fabric stiffness per yam, as far as warp-wise 

bending is concerned, is given by

where is the length of the flexible segment of the warp thread in the 
fabric unit cell.
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An obvious difficulty in applying this simple model is how to define 
these segments,since a preknowledge about the y a m  compressibility and its 
cross-sectional shape, before bending, is required. One possibility is 

shown in figure 84, which gives the warp-wise fabric rigidity (per unit 

width) as

/ | - ( v b2> ' (4‘9)

Using the available data referring to the y a m  projections, the 

calculated values of the initial bending modulus, according to this model, 

are given in Table 4*4 aad are plotted against the measured values in 
figure 85. It is apparent that most of the measured flexural rigidities 
of the finished fabrics tend to be lower than those estimated by the simple 

model.
If the bending behaviour of fabrics does follow a mechanism like 

that assumed, the discrepancies between the measured and calculated data 
can possibly be explained on the basis that the rigid parts of the y a m  

length in the unit weave cell might be smaller than those given by the 
fabric model. Furthermore, there could be a possible interaction due to 

the y a m  compression, during fabric bending, which leads to lower values 

of the experimental fabric rigidity. On the other hand, for some fabrics, 

the measured initial bending moduli are higher than those calculated from 

equation (4*9)• This can be seen in connection with the tighter fabric 
constructions, and suggests that increasing values of the frictional 

resistance to the initial fabric bending have resulted and caused the noted 

discrepancies in these cases. The values of the1coercive couple/yam* for 

both the initially straight yams (Mq1 and MQ2) and the yams inside the
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Table 4*4

Fabric
group

Fabric
No.

Warp Weft

No. in 
Fig. 85

«01
mN.mm

MOW
mN.mm

B^(equation 4 *9) 
mN.mm2/cm

«02
mN.mm

MOT
mN.mm

B„(equation 4*9) 
2mN.mm /cm

X 1 0.28 0.27 327 0.50 O .48 346 1
2 0.28 0.31 275 0.50 0.68 341 2
3 0.28 0.29 282 0.50 0.52 278 3

Y 1 0.28 0 .29 292 0.61 0.88 374 4
2 0.28 0.30 268 0.61 0.82 385 5
3 0.28 — 252 0.61 — 296 6

Z 1 0.28 0 .2 6 245 0.79 1.40 469 7
2 0.28 0 .27 218 0.79 I d A 505 8
3 0.28 0.41 263 0.79 1-45 529 9

A 1 0 .2 6 0 .2 6 212 0 .26 0 .32 296 10
2 0 .2 6 0.21 176 0 .26 0 .19 183 11
3 0 .2 6 0,25 230 0 .26 0 .27 248 12

B 1 0 .2 6 0,47 256 0.33 0 .26 228 13
2 0 .2 6 0 .2 5 213 0.33 0.26 219 14
3 0 .2 6 0 .2 3 207 0.33 0.36 281 15

C 1 0 .2 6 0.41 227 0.19 0.19 167 16
- 2 0 .2 6 0 .2 9 239 0.19 0 .1 4 M 2 17

3 0 .2 6 0.18 180 0.19 0 .15 119 18

212
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fabric (Mq w and MQT) are included in Table 4.4, from which it can be 
seen that the high values of are associated with the coarser weft 
yams being used in fabric groups Y and Z, and the high values of are 
associated with fabrics Z-3,A-3,B-1 and C-1, which have high cover factors. 
These constructions gave higher experimental values of the fabric stiffness 
than the theoretical ones (figure 85).

4.J.1 Theoretical calculations of the fabric initial 

bending modulus
The mechanical properties of the component yams were discussed 

when considering the tensile behaviour of fabrics. The y a m  bending 
property involved,was chosen based on an analysis of the possible change 
in y a m  curvature, produced by extending the fabric by a small amount. A 

further comparison between the theoretical and experimental values, obtained 

for the initial tensile modulus of the isolated crimped yams, confirmed 
that y a m  bending is best represented by its elastic flexural rigidity.

In the following calculations, the y a m  bending property, involved 
in the fabric initial bending, will be redefined taking into consideration 

the following aspects:

1. In the bending analysis, it has been assumed that the yams are bent to 

the same angle as that of the fabric plane,i.e. the initial change in 

curvature of both are nearly the same.

2. The initial bending modulus of the isolated straight y a m  takes into 

account the effect of the fibre frictional restraints. This effect is 

very likely to act in the same way when the yams are bent during fabric 

bending, and may indeed be accentuated.
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Based on the above arguments it is reasonable to represent the 
y a m  modulus «B» by its initial value, i.e. the slope of the initial part 
of the hysteresis loop (up to the range 0.02 mm-1). With the other 
geometrical and mechanical properties involved in the calculations having 
the same values as before, the theoretical calculations of the fabric 
bending modulus can then be compared with the experimental initial bending 

modulus of the real fabrics.
Before discussing the theoretical calculations we must point out 

the following reservations:

1 • ÍPhe theory assumes a point contact between the crossing yams. The 
y a m  shape and the contact length between warp and weft are only taken into 

consideration in determining values for the yam's compression moduli. The 

theory, therefore, ignores any interference between the yams associated with 

the real contact and their possible effect on the fabric initial bending 

modulus.
2. The theory does not consider the interaction between the yams in the 

load direction, which may lead to a rubbing action, or additional frictional 

restraints, between the adjacent yams when the fabric is bent. This 

interaction causes both the frictional couple and the initial bending 

modulus to increase. This effect was discussed by Olofsson (43), Owen (6) 

and Cooper (70) and a common agreement between them is that such interaction 

is more likely to occur with the tighter fabric constructions. Because of 
the above two reasons, the theoretical calculations would not be expected 

to be comparable to the actual bending behaviour of fabrics such as Z-1 and 

A-3 in the warp direction and groups Y and Z in the weft direction, in 
which tight fabric constructions have increased the frictional restraints, 
leading to significantly higher values of the experimental bending modulus
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than are given by the calculations.
The first set of calculations was carried, out assuming the yarns 

to be incompressible and inextensible (n.'s, X's =a). The expression 
derived in the theoretical analysis for the fabric initial modulus, per 
unit width, is then

J l
1+c 1+

2_ cos 01
1 B1l|cos202+B2i^cos201 j ’

(2.33)

where B is the warp-wise fabric initial bending modulus, w
The estimated and measured values are compared in Table 4 .5, where 

large discrepancies can be seen with this assumption (n's =00). In the 

majority of cases, the calculated values are greater than the measured 
ones. The reason probably is associated with the overestimation of the 
crossing yam's contribution to the fabric resistance to bending,which, 
in terms of the couple needed to counteract the interyam forces involved 
in bending the fabric to a unit curvature, is given by

B1 3 \ l ^ o o a 2 Q^ 1
1+c1 B1i^ c o s202+B2/^ c o s201 V

( 4 . 10)

Fabrics made from highly compressible yams tend to feel softer 
and seem to bend more easily than those made from hard twisted yams of 
high compression moduli. This suggests that y a m  compression behaviour 
might effect the bending properties of fabrics, and the theory confirms this. 
The final expression for B^, talcing account of y a m  compression, was

B
\  = 1+c

“ 1 [1+
3V 1cos 0H

^ c o s 202+B2i^ c o s2 01+4SB1B2(d 1/i^ + d g / i^ )
~  , (2.37)
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from which it can be seen that the weft contribution to the fabric bending 
resistance is reduced.

The values calculated using the above equation are given in Table 
4.5, and are plotted against the measured values in figure 86. The 
underlined cases in Table 4*5 are excluded from the figure since the theory 
does not apply to them. It is apparent that a better agreement between 
the theory and experiment is achieved by including the y a m  compressibility, 
though the differences are still considerable.

The remaining discrepancies between theory and experimental may 

be attributed to the same general sources of errors as were mentioned in 
the tensile analysis. Applied to the fabric bending, these are :

1. Errors in the experimental measurements of the fabric bending behaviour.

In spite of the fact that a relatively large number of samples has been 

tested for each fabric construction, the fact that the standard size 

used with the Shirley tester is so small (0.5x2.5 cm), leaves some doubt 
about whether the fabric is best represented by the samples.

2. Errors due to the theoretical assumptions and the level of approximations 

used in deriving the final expressions.

In order to follow the theoretical trends suggested by the general 

equation (2.37), we shall use the following relative quantities:

2u : the ratio of y a m  compression rigidity to bending rigidity (ml/B), r
and I»r: the ratio of interyam spacing to y a m  modular length, in the 

bending plane (b/i).

We shall only consider the case when the warp and weft are made of the 

same yams, i.e. B p B 2 and HpUg* Equation (2,37) is then converted to



T a b le  4 * 5

V " BT(mN.rnm'Vcm)
Calculated Calculated Calculated Calculated

Fabric Fabric (Equation (Equation (Equation (Equation No. in
group No. 2.33) 2.37) Measured 2.33) 2.37) Measured Fig. 86
X 1 545.42 217.17 195.88 359.29 232.07 220.88 1

2 515.44 272.52 184.82 319.59 215.41 205.50 2
3 612.23 313.21 204.00 249.81 185.72 225.00 3

T 1 602.50 319.14 205.48 315.88 238.02 330.00 4
2 619.56 352.23 215.16 269.29 216.90 -4.14.98 5
3 651.13 378.12 — 215.13 183.57 — 6

Z 1 630.73 327.60 194.78 310.26 261.29 789.28 7
2 635.11 314.69 194-98 275.34 236.91 679.86 8
3 606.06 306.98 335.05 375.24 298.98 809.79 9

A 1 464.15 234.03 172.50 271.76 173.79 202.50 10
2 409.17 233.74 143.54 214.22 148.0 4 ' 116.83 11
3 338.38 199.50 182.50 371.96 214.45 196.19 12

B 1 350.16 194.22 285.00 363.19 197.26 160.00 13
2 353.08 205.59 140.94 295.95 186.70 130.59 14
3 405.13 251.66 165.23 213.90 155.42 136.80 15

C 1 244.97 170.41 205.04 339.91 173.92 120.03 16
2 270.65 192.38 152.00 268.49 164.87 100.00 17
3 343.49 196.92 116.00 189.37 108.33 73.64 18

218
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VBi - C O S 0 .J  +

• 3cos',0.j

2̂̂ÂCoŝ91+cos202+̂8 fT
where B^ is the warp-wise bending rigidity, per yam,of the fabric.

The theoretical trends shown in figures 87-89 can be easily 
obtained from the above equation. The graphs show the effect of y a m  

length ratio ( ^ / i O  on the ratio B^/B^. Figures 87 and 88 show this 
effect at two levels of crimp (5*5% and 16.6%), and for three levels of 
D̂ /jj, (0 ,0 .0 5 and 0.1) ; the latter two values of D,^/u^ represent realistic 

values of this ratio and are typical of some of the yams used in the 

present work.
The curves in figures 87 and 88 exhibit the following features:

1. In the chosen range of fabrics where 0 . 6 <  1.6 and O ^ D ^ n  ^0.1, 
the fabric initial flexural rigidity is always higher than the y a m  

initial rigidity.
2. A reduction in the fabric modulus (B^) is obtained by increasing the

length ratio This trend resembles the trend obtained for the

initial tensile modulus. The reduction has a steeper rate in the case 

of the lower crimp value (5*5%)*
3. For the same ratio of ), increasing the warp- crimp reduces the

warp-wise fabric bending rigidity.

4 . The effect of y a m  compression, i.e. increasing the value of D i s
interesting. Initially, as changes from 0 to 0.05, the effect

on is* in &eneral> relatively large. However, as increases
from 0 .0 5 to 0 .1, the change in B^/B^ is rather small.

The effect of the crossing y a m  rigidity is shown in figure 89
where it can be seen that, in general, an increase in the crossing y a m
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bending modulus stiffens the fabric. This is more prominent at the 
higher values of length ratio t ^ f t y

Prom equation (3*27) and the trends shown in figures 87-89, it 
is possible to obtain fabrics of By/B.j <1 if the fabric construction is 
very open, i.e. is high enough, also when the yams are highly
compressible and/or the crossing yams are very easy to bend. The minimum 
value of B^/B^ is l/(1+c^). Obviously the same applies to the ratio 
By/Bg when considering the corresponding parameters involved.

4 .3 .2  Comparison with other theories

The only other closed form solution, met with in the literature, 
which provides a theoretical expression for the fabric initial bending 
modulus, is due to Abbott (8). The ratio By/B.j of a warp y a m  inside the 
fabric was given in his analysis by

V B1 - 4 + 2(1-L)2
9.3B2 

+ 4>?Bi
(4.11)

where b1 is the minor diameter of the yam, in the load direction, b.jL/2 
defines the y a m  neutral axis as shown in figure 90, and L is given by

L =
B/Bg + 1 •

j

(4.12)

It may be shown that the expression given in equation (4.11) can, 
in fact, be reduced to

B, = 1
1 " 1+c1 2h?

(5-4L)
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Fig. 90a

Fig. 90b
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Abbott's expression for. the ratio (B^B.^ was derived by using 
certain relations developed by Grosberg and Kedia (concerning the crimped 
shape of the yams) and applying them to individual fibre deformations.

Using a similar method to that adopted by Abbott and using the 
relations obtained in our tensile analysis, which are equivalent to those 
derived by Grosberg and Kedia, the following expression for the fabric 
bending behaviour can be reached, (see Appendix 2)

VBi (4 .13)

where L is defined by

______________________________

Bi/B2+(i^oos20i/î c°s292) 1

From equations (4 .13) and (4 .14)* if P2 has a fixed value, then 
an increase in 0  ̂will reduce the fabric rigidity. This trend can be 
shown by putting equation (4.13) in the form

B1i|cos202+B2p|sec01 J
The numerical values obtained using equation (4.11) and (4.13) 

were examined with respect to the experimental data. Both expressions give 
higher calculated values than those actually measured, possibly due to 
ignoring the yam compression.

In the tensile analysis.it was shown that including the yam 
compression reduces the weft contribution to the fabric deformation. Doing

Bw/B1 = cos01 + 3b
2tan 0.
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this for the bending analysis leads to a value of L which is now given 
by (see Appendix)

L = V B2
¿^cos2e.

B1/B„ + p

1 * ^cos^02+48B2(d1/p1+d2/p2)

(4.15)

and this gives an increased value of L when the yams are compressible 
(L=1 when and/or equal zero).

The final expression (4.13) is still valid but with the above value 
of L, and may be put in the form

w B = _L_ L  | ________\ 1]c° s 2q1 _______ -
1 1+c1 L ,

....... (4. 16)
which may be regarded as a modification to the expression obtained by the 
earlier theory (equation 2.37), in which the weft contribution is 
multiplied by the factor b^/h^ •

Numerical values calculated using equation (4 .16) are given in 

Table 4 .6 , and are plotted against the corresponding experimental results in 

figure 91. It can be seen that this is the best agreement between theory 

and experimental so far found. The fabrics which give considerably higher 
experimental values than the calculated results are those of tight 
construction discussed earlier.



Table 4*6

Warp Weft

Fabric
group

Fabric
No. °1 L1 mN.mm^/cm C2 L2 mN.mm^/cm

No. in 
Fig. 91

X 1 0.1916 0.8210 203.79 0.0594 0.9222 277.52 1
2 0.2143 0.8060 193.75 0.0557 0.9297 268.45 2
5 0.1712 0.7519 210.54 0.0466 0.9392 235.09 3

Y 1 0.1787 0.7310 209.11 0.0480 0.9344 320.90 4
2 0.1789 0.6657 206.26 0.0472 O .9368 299.00 5
3 0.1580 0.6250 211.88 0.0359 O .9519 264.53 6

Z 1 0.2065 0.6953 193.48 0.0285 0.9643 431.53 7
2 0.2177 0.7147 184.91 0.0269 0.9736 387.29 8
3 0.2264 0.7292 191.67 0.0371 0.9556 470.87 9

A 1 0.1951 0.8215 172.91 0.0587 0.9167 199.65 10
2 0.1041 0.7509 166.77 0.0490 0.8861 162.25 11
3 0 .1394 0.8535 166.94 0.1210 0.8416 182.55 12

B 1 0.0920 0.8800 180.38 0.1189 0.8720 187.27 13
2 0.1336 0.8039 155-48 0.0532 0.8556 205.98 14
3 0.1011 0.7005 172.53 0.0506 0.8625 182.35 15

C 1 0.0951 0.9258 170.22 0.0934 0.7803 148.30 16
2 0.1097 0.8598 170.71 0.1074 0.7190 120.51 17
3 0.1027 0.8567 164.29 0.0652 0.8556 105.00 18

, . Bl I
\  ~ i+c1 !

r.
L 4

(3 .0 - 3 v ]I * k L. = —  
1 B1

B1 ̂ cos 
i|cos202+B

l2e2+48B1B2(a1/n1+d2/n2)
¡2/|cos2 ei+48B1B2(d1/H-j+dg/ n2)

rv>f\3
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SUMMARY AND CONCLUSION

The theoretical behaviour of the initial tensile and bending 
deformations of plain fabrics have been analysed. The aim was to provide 
a closed form solution for these deformations, Castigliano's theorem 
being used as the principal method of attack. The theory was then compared 
with experimental results.

The analysis showed that the resistance of fabrics to deformation 
should be regarded, in general, as two resistances contributed by both 
warp and weft; both are highly affected by the crimp value in the load 
direction.

In the tensile analysis, the yam extensibility and compressibility 
in addition to its rigidity were taken into consideration; however, the 
first of these is only important when the yams in the load direction are 
of low crimp value. If the effect of the yam extensibility is ignored, 
the initial tensile modulus in a warp direction tinder uniaxial loading» 
lies between the following limits :

12B1P2 <  E ^  12V 2
p1^sin201 1 p1i^sin201

1 + B2i^cos2e.j
B1i|cos202 J

where the maximum limit corresponds to incompressible yams and the minimum 
to extremely compressible yams. The weft contribution is independent 
of the warp rigidity, but dependent on its own rigidity and on geometrical 
factors. This has resulted from the mechanism of crimp interchange that 
has been assumed for the initial deformation.

Practically, most of the fabric's initial tensile moduli lie 
between the above extremes, and for a reasonably simple estimate of E



2J0

equation (2.20) may be used, which reduces the predicted upper limit of
fabric modulus by a factor in the range 1.2-4.

Using the same analysis it is possible to predict the fabric

initial Poisson's ratio with considerable accuracy by equation (2.23).
It has been found that the Poisson's ratio is nearly independent of the
y a m  rigidity in the load direction and depends on the y a m  extensibility
only when the fabric has a low crimp value in the load direction. For
other fabrics, of medium to high crimp value, the Poisson's ratio lies

P2tan02
between the limits 0^<X^— r— r- , and a reasonable estimate can be 

obtained by multiplying the maximum limit by the factor K ,given by 
equation (4-5). This factor depends on the compressibilities of the yams

4 8 ( d . | / ^2^
used i.e. on the ratio — =-- 5---------  . For the fabrics used,the estimated

’ ^cos^02/B2

Poisson's ratio is reduced 2-8 times below the maximum limit mentioned 

above, in agreement with the experimental results.
In the bending analysis, the y a m  bending rigidity and its 

compressibility were taken into consideration to derive the expression given 

by equation (2.37); however, considerable differences between experiment 

and theory have been found, possibly due to ignoring the real contact between 

warp and weft and the associated frictional restraints. A similar approach 

to Abbott's was later followed which gave a closer estimate of the fabric • 

initial bending modulus.
Possibly the most important feature of the theoretical analysis 

is the effect of y a m  compressibility on the fabric initial behaviour. It 
is recommended for further work in this area to develop a more accurate 
and simpler technique to define this property in the fabric structure.
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2 3 5

Some 3oom details 

1-Let-off motion

2-Loom Cycle 
A-Beat up point at zero 
B-Start of dwelling at 6h 
C-End of dwelling at 15^
D-Crossing point at 290
E-Start of mechanical picking at 60
F-End of mechanical picking at 100



T a b l e  A .1

Thread spacings

Fabric
group

Fabric
No.

Warp spacing(mm) Weft spacing(mm)

p1 Pf p2 p2

X 1 0.485 0.485 0.588 0.593
2 0.488 0.486 0.624 0.618
3 0.485 0.491 0.713 0.705

Y 1 0.490 0.495 0.677 O .696
2 0.492 0.491 0.739 0.724
3 0.495 - 0.849 -

Z 1 0.494 0.495 0.779 0.769
2 0.494 0.499 0.839 0.824
3 0.491 0.492 0.691 0.680

■ A 1 0.476 0 .486 0.589 0.591
2 0.587 0.592 0.749 0.727
3 0.549. 0.545 0.532 0.529

B 1 0.556 0.548 0.548 0.557
2 0.591 0 .588 0.637 0.660
3 0.594 0.591 0.756 0.755

C 1 0 .568 0 .584 O .465 0.469
2 0.577 0.566 0.538 0.536
3 0.571 0.591 0.662 O .655

P1 and p2 were measured by counting threads in 5 cm samples.

p* and p* were measured by measuring -the distance occupied 
by the threads using a projection microscope.



T a b le  A . 2

Yams crimp and degree of 'set'

Warp crimp (%) Warp Weft crimp (% ) Weft
group No. C1 C1

’ 1 sex1 
(% ) ■ °2 °2

■ 'set'
0 0

X 1 19.16 19.20 92 5.94 6 .19 912 21.43 21.72 95 5.57 5.70 923 17.12 18.17 91 4*66 4.21 89
y 1 17.87 15.15 90 4.80 4.65 902 17.89 18.63 91 4.72 4.15 913 15.80 16.27 96 3.59 3-58 93
z 1 20.65 23.22 93 2.85 2.82 962 21.77 22.65 90 2.69 2.84 963 22.64 23.83 93 3.71 2.72 97
A 1 19.51 19-48 97 5-87 6 .48 972 10.41 10.30 96 4.90 5.28 98

3 13.94 13.56 96 12.10 12.43 94
B 1 9.20 9.69 94 11.89 12.07 932 13.36 13.64 94 5.32 5.68 913 10.11 10.89 86 5.06 5.67 88
c 1 9.51 10.22 88 9.34 9.91 852 10.97 12.78 89 7.31 8.79 853 10.27 10.12 89 6.52 6.88 85

c.j and Cg were measured using the Shirley crimp tester, 
c* and c| were measured using the 'Instron*.

Big differences are underlined.



T a b l e  A . 3

Experimental data of the cyclic bending test for various yams

Curvature

Couple (mN.mm per thread)

R60/2 
vineel*

R60/2

cotton
R74/2
cotton

R98/2
cotton

R60/2 
vineel**

R60/2 
cotton/ 
vineel

R46/2
cotton/ 
vineel

0.0 0.0 0.0 0.0 0.0 o'.o 0.0 0.0
0.2 0.22 0.36 0.38 0.50 0.18 0.32 0.11
0.4 0.38 0.55 0.65 0.80 0.31 0.45 0.22
0.6 0.56 0.80 0.88 1.14 0.44 0.51 0.28
0.8 0.69 1.00 1.08 1.33 0.56 0.62 0.36
1.0 0.84 1.12 1.30 1.56 0.68 0.75 0.46
1.5 1.14 1.40 1.67 2.08 0.95 0.97 0.60
2.0 1.42 1.67 2.01 2.59 1.21 1.22 0.76
2.5 1.73 1.92 2.40 3.15 1.46 1.47 0.91
3.0 2.03 2.26 2.79 3.75 1.72 1.75 1.07
2.5 1.27 1.17 1.49 1.76 1.04 0.95 0.67
2.0 0.87 0.73 0.87 0.98 0.70 0.61 0.44
1.5 0.57 0.41 0.46 0.46 0.42 0.33 0.29
1.0 0 .3 0 0.11 0.12 0.03 0.17 0.11 0.12
0.5 0.04 0.18 0.22 0.34 0.09 0.11 0.04
0.0 -0.28 0.50 0.61 0.79 0.2 6 0.33 0.19

-0.5 -0.57 0.82 0.96 1.19 0.48 0.50 0.29
-1.0 -0.84 1.12 1.30 1.56 0.71 0.75 O .46

* Y a m  used as warp with fabric groups X,Y and Z
** Y a m  used as warp with fabric groups A,B and C, also for weft with 

fabric group A



Computor program for fitting t.he (239)
experimental results of yarn thickness

r* r t : ' r r Tv* 1 I ' Wl » ** l M •

c M I NI! I Z A T 1 U N ftp F U f; C T J 0 fj
d i m e n s i o n  z i . ( 1 6 )
I N T E G E R  H f n . m e t h o d , I w , I P K 1 N T , M a x  C A L , I  F A I L , I  
r e a l  X < 1 6 )  , 7 ( 1 6 )  , F , M 7 >  , 5 > t A | . E ( 7 >  , P . ( 1 o > , U ( 1 0 0 )  , X T 0 l < 7 )  
E X T E R N A L  R E S I D , l S Q , m O N i t  
COMMON/ AAAA/ X, z 
W R I T E  ( 2 , 9 0 o p 9 )  
p E A D M , 1 0 )  m 

1 0  F O R M A T  ( l O  
N = 7
S U M  s 0 , 0
DO 500 1 K * 1 ,M
PEAT. ( 1 , 2 0 0 )  X ( I X.) , Z ( I K )

2 00 f OF.m a T ( 2 E5 . 1 )
S U M 1  S S U M . 1 + 7 ( ! K >

5 0 Q  C O N T I N U E
71-1 b S 0!  ‘ 1 / *i
F C A D  ( 1  , 3 0 0 )  ( A (  J >  * J  E 1 ,  7 )

3 0 0  f O R MA T ( 7 F 1 0 ; 5 >  
x t ol  ( 1 >  = i o ; n - p
y T M L ( 2 )  = 1 0 ' ;C r^  
x  T  l ’ L  ( 3 ) = 1 0 7 E "  8 
x T  0 L  ( u  > = 1 0 7  E «  ft 
XTOL ( * ) = 1 07 E•*ft 
y T O  L  ( 6 )  = 1 0 7 C « 0  
x t o l  ( 7 )  = i o ; n ^8 
m e t h o d  =2
j l ;  BSJ*(N + A) * M 
I P R  I  si T B 1 
I1AXCAL b 1 00 
I F AI L  =0.
CALL E0 ACAF ( M f N # A , R # F , v T U L , M E T H O D , S C A L E , W , I U , R e S I D , l SQ 

* I P R I N T , M a X C A L , I F A I L )
URl T E  ( 2 , 9 9 9 9 3 )  F
WRITE ( ? , 90OQ7 )  ( A ( I ) , I = 1 , N )
WRITE ( 2 , 9 9 0 0 6 )  I F A l L  
WRITE ( 2 , 9 0 0 0 5 )

0 f; 9 9  5 F O R M A T  ( 3 6 H 0 l O A d  T H » C r N € S s  L  7 S .  T H  I  C K N E  S S  ,  1 X )
SUM,? = 0 . 0  
DO 31 0 L L = 1 , 1.
Z L ( L L )  = R ( L L ) + 7 ( L L )
S S = 7  L ( L  L ) " Z M  
S UM2 =SUM2 + S S * S S
W F I T F ( 2 , 9 9 9 " A )  X ( L L ) , 7 ( l  D , 7 L ( L L )

9 f> o 9 A FORMAT <1 H , " ( 2 X , F 6 . 1 , 3 X ) )
3 1 0  CONTI NUE

D C  = S U M 2 / ( S I ' l i P *  F )
WRITE (2»90ro3) DC

e /- c  9 3 f O R M A T d  3 H 0 D E T E R .  C o E F  ,  s ,  E 5 . 4 )
T l | ! T = A ( '  ) + A ( 2 )  + A C A ) + A ( 6 )  
i ; R l T E ( r » 9 9 9 9 2 )  TI NT 

c . c o t  F O R M A T ( 8 H0 TI NT , s , F f t , 1 )
^  • ‘  r  I r  -  A ( ? ) *  A ( 3 ) f . A U > * A ( R )  -  A ( 6 ) *  A < 7  )

C M| c 1 / C I
I . RJTF ( 2 , 9 9 0 0 1 )  C l ,  CM

0 r o 9 1  f ORHAT CUHOCOMP .  I w O t ,  = , M  5 ,  3 / 1  3HOCOMP,  MOD. s . M S . 5 )  
’ ¿ ¿ 9 9  FORMAT U d X / > , f t l H  CUk p RESI ON RESULTS , 1 X5
S f r A r a t o p  or . iTTfcD -at  a d o u t  Co , > 5 ,  l i n e  0 0 6 3 ,  c o mma  A s s u m e d

n r  0 9  o  p O R H A T  (?i>H F I N A L  S U M  0 F S Q U A R E S  I S  , F 1 2 , A )  
r r o 9 7  FORMAT < 1 3H AT T H F  P U J n t , 2 F 1 2 . 6 / 1 H  , 5 F 1 2 , 6 >
¿ , 9 9 6  F O R M A T  ( 2 2 H 9  T  H I S  H A S  E R R O R  N u m  ,  1 3 )

,MOn IT,
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II
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700

C

'¿0

C

40

6 0
8 0

— r~ -— i " 1 1 i — c » • i — J— *— n  '  ---------------------------------------------------------—

C A L C ! t U A T E  ̂ THi: V' A L U f S ( ) t  1 H F: K F. S JDI' A I.S RC AT AC 
L O O J c A L I F L 
INTEGER P f N > J •)
HEAL Ar , RC ( 1 A>>#AJ C ( 1 £>» 7 ï
d i m e n s i o n  A r a ; )
C0! ‘ l * 0>*/AAAA/X( l 6> » 7 < 1 6 )
Ç 0 f ' ?’> Q N / f> B Ö B / A J C 
r,C 7U0 J J = 1 , M  
Y? s A C ( 3 ) * X ( J vI)
IF ( W , r ~ V 2 )  4 , 4 »  5
r, 2 = 0 , 0  
GO t o  6 
62 « 1 / E X R Í Y ? )
TOT? = A C ( 2 ) * G 2  
ù j  s - X ( J J > * 7 o T 2 
V 4 r A C ( 5 > * X ( J J )I F C1 7,0 - Y 4 > 7 7 » 6
»i 4  c  0 , 0

r,o T  o Ç
r,4 r * / E X R l Y 4 )
T fi T 4 = A C C 4 ) * r, 4
C,5 s - X ( J J > * T n T 4
V 6 r A C < 7 ) * X ( J J >
î F ( 1 f , 0 ■  Y A > 1 0 » 1 0 » 1 1
6 6 b 0 » 0
GO TO 1 2
66  s 1 / E X P < Y 6 >
TOT î. b A C ( 6 > * 6 6  
g 7 c • X ( J J ) *  T n T 6
pA r ( A C ( 1 >  + TOT? + T 0 1 4  * T U T 6 ) - Z ( J J )
R C ( J J )  = F A 
A J C ( J J » 1 >  =1 
A J C ( J ** » 2 > " > 2  
A J C ( J J » 3 )  =03  
A J C < J J » 4)  =04  
a J C ( J vI , 5 )  =05  
A J  C ( J J  ,  6 )  « G 6 
* J C ( J J » 7 >  =07
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COMPUTER RESULTS POR YARN THICKNESS

( 1 )  R 6 0 / 2 c o t t o n

Load Load Experimental Corrected
(g/cm) (mN/mm) thickness(mm) thickness(mm)

1.0 0.98 0.493 0.490
1.4 1.37 0.468 0.471
2.0 1.96 0.451 0.449
2.4 2.23 0.438 0.437
3.0 2.94 0.422 0.423
4.0 3.92 0.406 0.407
6.0 5.89 0.384 0.384

10.0 9.81 0.351 0.355
20.0 19.62 0.308 0.310
40.0 39.24 0.272 0.270
50.0 49.05 0.260 0.261
70.0 68.67 O.251 0.249

100.0 09.10 0.236 0.236
140.0 137.34 0.223 0.224

A0 = 0.1726
160.0 156.96 0.218 0.219 u

A1 = 0.1236
200.0 196.20 0.208 0.210 I

B1 = 0.7028
240.0 235.44 0.204 0.203 I

A2 = 0.1379300.0 294.30 0.195 0.195 <L

B2 = 0.0894
340.0 333.54 0.191 0.190 C.

A, = 0.1281
400.0 392.40 0.187 0.186 3

B, = 0.0060
C .B . = 0.9997 3

T(initial) = O.562 mm
d(equivalent) = 0.398 mm



( 2 )  R 7 4 / 2  c o t t o n

Load 
(g/cm)

Load
(mN.mm)

Experimental 
thickness(mm)

Corrected
thickness(mm)

1.0 0.98 0.535 O .530

1.4 1.37 O .513 0.510
2.0 1.96 0.488 O.49O
2.4 2.35 0.479 0.478
5.0 2.94 O.47O O .466
4.0 3.92 O.45I O .450
6 .0 5.89 O.43O O .429

10.0 9.81 0.399 0.399
20.0 19.62 O.35I 0.353
4O.O 39.24 O .316 O .315
5O.O 49.05 O .306 O .306
7O.O 68.67 O .292 0.293

100.0 98.10 0.281 0.280
I4O.O 137.34 O .264 0 .266

160.0 156.96 0.259 O.26O
200.0 196.20 O.25I O.25I
24O.O 235.44 O .242 0.243
3OO.O 294.30 O .235 0.234
34O.O 333.54 O.23O O.23O
4OO.O 392.40 0.224 O .225

C .D . =  0 .9 9 9 7

T ( i n i t i a l )  =  0 . 6 0 1  mm

¿ ( e q u i v a l e n t )  =  O .4 3 I mm

= O.2I33 

= O.II9O 
= 0.8610 

= O.I59I 
= 0.0778 
=  0.1185 

= O.OO59



( 3 )  E 9 8 / 2  c o t t o n

Load Load Experimental Corrected
(g/cm) (mN.mm) thickness(mm) thickness(mm)
1.0 0.98
1 .4 1.37
2.0 1.96
2.4 2.23

3.0 2.94
4.0 3.92
6.0 5.89
10.0 9.81
20.0 19.62

40.0 39.24
50.0 49.05
70 .0 68.67

100.0 98.10
140.0 137.34
160.0 156.96
200.0 196.20

240.0 235.44
300.0 294.30

340.0 333.54
400.0 392.40

C .D . = 0 . 9 9 9

T ( i n i t i a l )  =  0 . 6 7 7  mm

d ( e q u i v a l e n t )  =  0 . 4 7 9

0 .619 0.616
0.597 0.598
0.575 0.576
0.563 0 .563
0.547 0.548
0.527 0.529
0.502 0.503
0.476 0.476
0.436 0.436
0.388 0.387
0.371 0.371
0.349 0 .349
0.331 0 .329
0.310 0.311 A
0.305 0 .305 A<

A
0.291 0 .294 B
0.284 0.285 A
0.274 0.274 *
0.269 0.268 <A
0.261 0.261

it-
B.

= 0.2393 
= 0.1496 
= 0.4645 
= 0.1542 
= 0.0369 
= 0.1339 
= 0.0046



( 4 )  R 6o/ 2  v i n e e l

Load 
(g/ cm)

Load
(mN.mm) thickness(mm)

Corrected 
thickness(mm)

1 .0 0.98 0.429 0.427
1.4 1.37 0.416 0.418
2 .0 1.96 0.406 0.406
2.4 2.35 0.399 0.399
3.0 2.94 0 .388 0.390
4.0 3.92 0.379 0.376
6 .0 5.89 0.355 0.355

10.0 9.81 0.325 0.326
20.0 19.62 0.283 0.283
40 .0 99.24 0.245 0.244
50.0 49.05 0.233 0.233
70.0 68.67 0.219 0.220

100.0 98.10 0 .205 0 .205
140.0 137.34 0 .192 0.191
160.0 156.96 0 .185 0.186
200.0 196.20 0.177 0.176
240.0 235.44 0 .169 0 .169
300.0 294.30 0.162 0.161
340.0 333.54 0 .156 0 .158
400.0 392.40 0.154 0.153

C.D. = 0.999 
T(initial) = O .453 nun

Aq = 0.1447 
A1 = 0.0053 
^  = 0.3743
a 2 = 0.1379  
b 2 = 0.0671  

Aj = 0.1155 
B^ = 0.0066

d*equivalent = 0.321 mm



( 5 )  R éO /2  c o t t o n - v i n c e l

Load 
(g/ cm)

Load
(mN.mm) thickness(mm)

Corrected
thickness(mm)

1.0 0.98 O .532 O .522

1.4 1.37 O .509 O .513
2 .0 1.96 0.493 0.499
2.4 2.35 0.481 O.49I
5.0 2.94 O .466 O.48O
4.0 3.92 0.449 O .462

6 .0 5.89 O .422 0.433
10.0 9.81 0.388 O .392

20 .0 19.62 O .342 O.34O
40.0 39.24 O .298 0.297
50.0 49.05 0.282 0 .284

70.0 68.67 O .263 O .264

100.0 98.10 O .246 0.245
14O.O 137.34 0.233 O .230 = 0.1539
I6O.O 156.96 O .223 O .225 A1 = 0.1594
200.0 196.20 0.214 0 .216 B. = 0.1557
24O.O 235-44 O .207 0.208 A_ = 0.1241
3OO.O 294.30 0.202 0.199 B_ = O.O264
34O.O 333.54 0.193 0.194 A? = 0.1109
4OO.O 392.4O 0.187 0 .187 B, = O.OO3O

C .L .  =  0 .9 9 9 8

T ( i n i t i a l )  =  0 .5 4 8  mm

d ( e q u i v a l e n t )  =  0 . 5 8 7  ran



(6 ) B.4 6 /2  c o t t o n - v i n c e l

Load 
(g/cm)

Load
(mN.mm) thickness (mm)

Corrected
thickness(mm)

1 .0 0.98 0.370 0.372
1.4 1.37 0.359 0.358
2 .0 1.96 0.341 0.342
2.4 2.35 0.334 0.333
3.0 2.94 0.323 O .322

4.0 • 3.92 0.312 0.309
6 .0 5.89 0.292 0.292

10.0 9.81 0.268 0.270

20.0 19.62 0.240 0.239
40 .0 39.24 0.214 0.212

50.0 49.05 0.206 0.206

70 .0 68.67 0.195 0.197
100.0 98.10 0.187 0.187
140.0 137.34 0.179 0.178
160.0 156.96 0.174 0.173
200.0 196.20 0.167 0.167
240.0 235.44 0.161 0.161
300.0 294.30 0.156 0.155
340.0 333.54 0.152 0.152
400.0 392.40 0.149 0.149

C .D . =  0 . 9 9 9 7

T ( i n i t i a l )  =  0 . 4 2 5  mm

¿ ( e q u i v a l e n t )  =  0 .2 9 9  mm

Aq = 0.1410
A1 = 0.0904 

= 0.6537
A2 = 0.1082
b 2 = 0.0789  
A? = 0 .O835 

= 0.0061
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Appendix 2

Initial fabric bending; an approach similar to Abbott’s

For the purpose of the following analysis, it is best to examine 
the behaviour of two adjacent cells of a completely set plain weave, 
although the bent configuration of each is similar. The yams are assumed 
effectively clamped at section A and Â  (figure 90a.), and the planes 
containing these sections are then rotated through an angle 4» so that the 
‘angle subtended by the deformed shape of the two cells is 2$. Since both 
unit cells are identical, the movement of fibres between the two cells is 
not allowed,and under such conditions it is possible to consider each unit 
cell in isolation when the fabric is bent. The fibres in the idealized 
twisted yam geometry take helical paths with different radii from the yam 
centre line; it is possible to greatly simplify the analysis by assuming 
that the fibres in the isolated weave cell run parallel to the yam centre 
line. This assumption seems reasonable when the yam twist is sufficiently 
small relative to the length of the unit weave cell,and a typical value 
of this twist with the fabrics used is of the order of 0 . 2 5 turns per unit 
cell.

When the fabric is bent, as shown in figure 90a, the outer layer 
of fibres in the yam, i.e. the layers above the neutral axis (N.A.), are 
in a state of tension, while the layers under the N.A. are in a state of 
compression. Obviously there is a greater likelihood of fibre extension 
at large deflections,but since the following theory applies only to small 
fabric deformations, the fibres may only extend by very small amounts so 
that they can be considered as inextensible. If the fibres inside the 
yam are assumed to bend independently, the fibres above the N.A. would
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move upwards at the region B rather than extend in length, while the 
fibres below the N.A. will buckle rather than decrease in length. When 

there is no resistance to the upward fibre movement at B, the distribution 
of forces acting at A/ to bend the unit weave cell will be symmetrical with 
respect to the neutral axis. However, due to the crossing yarn rigidity 

an additional force f "  is needed to bend the unit cell to the same 
angle <{>. Since the fibres are inextensible, the outer layer of fibres 
which suffers the highest strains would mainly support the crossing y a m  
and consequently the force f* acts at a distance y=b/2  (referred to 

figure 90). The displacement of the fibre ends and the force distribution 
at A7, for this case, are shown in figure 90b, where the N.A. is displaced 
upwards due to the extra force f* required to upcrimp the cross yam.

The following assumptions will now be used to solve this problems

1. The fibres in the yam, of a total number n, are uniformly distributed 
over the cross-section. It is convenient to assume a 'race track' y a m  
cross-sectional shape; the method of analysis is equally applicable

to other shapes.

2. The fibres are regarded as parallel elásticas which have the same 

initial crimped shape as that of the y a m  centre line before deformation 

i.e. are defined by p, / and 0.

3. The fibres, because they are assumed to bend independently, will have 

the sum of their flexural rigidities equal to that of the yam. There­

fore, the single fibre rigidity may be taken as B/n, where B is the 

y a m  flexural rigidity and n is the total number of fibres in the y a m  

cross-section.
4. The energies due to fibre extension and y a m  compression are ngelected 

in comparison with the bending energy involved.
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Consider now an element of area of cross-section, da, of 
thickness dy, a distance y from the line of symmetry of the y a m  cross- 

section (figure 90b). Using the first of the above assumptions, the 

number of fibres n(y) in this element is

a(y)
n[(a-b)+2(~ - y2) ] 

(a-b)b+7rb2/4
dy

, = n.F(y)dy, (A.1)

where A is the total area of cross-section.
By definition we can write the following relations for a 

symmetrical cross-section

r  D/2 r  A/2
/  yF(y)dy = /  da/  , y. t  = 0 » (A.2)J-b/2 y-A/2

r b/2 f V 2  o
a /  y n y ) d y  = /  y2da . (A .3)J-b/2 J'-A/2

In the tensile analysis, it was shown that the force required

to extend a warp crimped y a m  inside the fabric, due only to bending energy

changes, through a distance Apg* can be regarded as the sum of two forces,
/ //namely f^, the warp contribution, and f^ , the weft contribution, where

12B„
f; = a p , i^sin201

and

// 12B.
= Ap<

.7 2Bg/^cos 01

jî sin20̂  B^/gCos2©̂

(A.4)

(A. 5)
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For an individual fibre inside the warp yam, if its flexural 
rigidity is B^/n^, then the force needed to displace its end by Apg . 

is, using (A.4)

12B^/n^
^  = K’  4P2 6 a i  ( A l 6 )

According to the bending mechanism shown in figure 90 • Ap2 depends 
on the position of the fibre, being zero at the neutral axis. Above the 

N.A., Ap2> 0  and below it, Apg< 0.

In general

a p2 = [y~ |(1-L)]̂  »

where L is a fraction (0<L<:1) that defines the position of the y a m  N.A. 

as shown in figure 90t>*
In using the tensile theory together with the above expression 

for Apg, we are in fact assuming the following:

1. The warp spacing, unchanged in the bent configuration, is defined as 

the horizontal distance between the two planes containing the yam'N.A. 

at A7 and B. Obviously, this distance should be defined parallel to the 

bent fabric plane, but little error will be introduced by using the 

above definition.

2. The fibre deforms symmetrically with respect to its midpoint.
3. Only geometrical fibre extension or compression are taking place, whose 

moduli, K.j, are assumed to be the same for small deformations.

Now, consider the forces acting on all the fibres^ Above the 

N.A. we have the sum of the tensile forces



/outside
K.j Ap2 n(y)dy

N*.A#

j t= r1 +

J !
= f1 +

rb /2

A ( l - L ) / 2 K l [y' 2 (l-L)] * - n1FW ^

/■V 2
n1K1 <*>/ . w  [y~ 2 C1"L)1 F(y)dy .

Below thè N.A., thè sum of thè compressive forces Is

,b(l-L)/2
r

c = - / Kv Ap .n(y)dy.
J -b /2

For the pure bending condition, we must have

(T-C) = 0 ,

i.e. /•d/cÎ + n ^ U - L ) / 2  [y_ * M  P(y)4y
r b ( l - L ) / 2

+ n ^ ^  [y- I F(y)dy = 0

This gives

r W  2
' + J  [y- \  (1-L)J F(y)dy = 0 ,

which, on using the definition in (A.2), y=0, leads to
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r W  2
f "  -  n f a *  J  |  (l-L)F(y)dy = 0 ,

and since

F(y)dy = 1 , see (A.1), we get

f? = n ^ * .  |(1-L) .

Substituting the value of K1 from (A.6) we get

f "  _  é
f1 “ * i3_,_2rt 2i^sin201 i  (1-D

Substituting the displacement Ap2 = , at the outer layer, in equation

(A.5)» we find

t :  =
12B. B(,/^cos2e1'1 "2*1wa "1 * Mi

1 i^sin201 B^igCOS^Gr
(A.7)

//Equating the above two expressions for f̂  , we obtain

L = BA
i^cos201

V B2 + 13— —ijcos^e«

(A.8)

The flexural rigidity of the system can now be found by summing 

the internal energy changes for one unit cell and equating this sum to the 
work done by the external moment.
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The total internal energy change is the sum of the following 
terms:

1. The energy change, , due to the geometrical extension and compression 
of all fibres. This is given by

f W  2
£ / ^ - (a p 2) F(y)dy

fb/2

or

r o / t  2
- i  j  Kr  |y -  I  (1-L)J 02 .n 1P(y)dy

rb/2 /-b/2
ïï. ^ . y 2. <*>2.n F(y)dy + £ I -Lb(l-l) ^ . n . F ^ d y

1 J - b/2 1 J - b/2 1 1

j/2 2
+ ^  Kr ^-(1-L)2. <*>2.n1F(y)dy

Using the relations (A.1-3), U^ is reduced to

2
^  = 4 J  + n ^ ^ 2 [(1-L)2 ^-] (A.9)

The first term, say, in the above expression will now be 

considered in more detail. Since represents the modulus of geometrical 
extension of a single crimped fibre, the tensile modulus of a y a m  having 
•n^1 fibres can be regarded as , if the fibres behave independently, 

in 'force/elongation' units. The Young's modulus of this crimped y a m  is 

then

n 1K1E = — 7—  p9 (force per unit area/unit extension)
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The energy term, U^, is then converted to

= is n-iK ,2 I
1 *  I -

1
2P, <*>2 (El) (A.10)

(El) is the bending modulus for the crimped y a m  as it lies 
in the fabric since the distribution of the force £y- ̂  (l-L)J</>, shown 
in figure 90b,displace the fibre ends parallel to' the fabric plane. The 
relation between the bending rigidity of the crimped y a m  to its rigidity 

as it lies straight is given by the ratio of y a m  projection in the fabric 
plane, p, to its straight length,^.

i.e
(El)

* W 1

crimped y a m  
straight y a m

(EI)C (A.11)

Substituting in (A.10) from (A.11) gives

U11 = 2P2( W  B1 »

Hence

TJ - 1 1 " 2p2(1+c1)

2. The second energy term, Ug, is due to the force f^ needed to upcrimp 

the crossing yam, and is given by

//
Uo — i APo »

Since f "  is given by (A.7) and Ap2 is the distance moved by f*

at the outside of the y a m  (= ), is

U2 4 n1K 1 </>2
B2^cos2ei b2L2 
B 1i2cos2e2 ^
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The total internal energy change is therefore

UT = ïï1+ïï2

& - 2'Brtt^cos 0., ^2j2
2p,I&J -,)2 V]-1̂ 8

<fa<

2p2('l+Ci) + n1K1
B_/^cos20.,

*2 T  f ( « 2)* : S : : V :i *2L B ^ c o s 2©,, 3-
From (A.6) and (A.8), we have

1-1 V l 003^
L B1i^cos2e2 ’

and Kj =
^ / n , ,

1 sin201

Substituting in the above expression we get

Um =
,2t, ,2

î ^ b^  r o i*=^^+;]̂ [(1-L) +1H ’
and since /^sin0^ = h^ and *b * as considered above is the warp minor diameter, 

then

Um =
302B1b1

T " 2i1 2/jh2
(1-L) •

The external work done is ^ , where B,. is the warp-wise fabric
2p2

rigidity per thread. Equating and the external work done, we get
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B1 P2 . B1P2 3b1
¿1 +

(1-L) .
X1

This may he compared with Abbott's expression by putting the 
above equation in the form

V Bi -  ik ; [ 1 + 7 1 (1- L>] •

It can also be compared with the expression derived in the earlier analysis 
by substituting the value of L to get

B
= 1+c3 _  r ,  +  ^

C1 L h?
V i

2«cos 01

^2C° s2 ©2+B2^^c° s2 ©1 >] (A.12)

Inclusion of the y a m  compressibility

For this case, the force required to extend the crimped shape 

of the y a m  was given by the tensile analysis as follows,

f  = A p  2 5 ____ r  » 2 ^ 2 ° i  1

1 2 i3sin291 L B1/3cos202+B1B2(d1/^1+d2/|i2) J ’

and this was regarded as the sum of two force namely, f!j, the warp 
contribution and f̂  , the weft contribution, where now

, 12B,

f i = A P 2 ï ^ v AP2" iKl say*
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and

A 12B1f 1 = ¿P2
B2^cos2e1

^sin201 B1̂ cos2ei+48B1B2(d1/u1+d2/n2)

bLSubstituting Ap2 at the outer layer of the y a m  cross-section
above equation we get

r  , 12Bi
B,j/^cos2e1

1 ^sin2e1 B 1̂ c o s202+48B1B2(d1(i1+d2/fi2)
4> bL

Following the same argument as before, i.e. putting (T-C)=C
//get another expression for f̂  in the form

/' =
12B,

, - ,, 2 ~  * 2  (1‘1) • 1 f y i n \  2

Dividing equation (A.13) by equation (A.14) we now get

1-L
L

B2/^cos201

B1^cos202+48B1B2(d1/^1+d2/H2)

so that L is now given by

L = 1

1 +
B2/^cos201

B1/^cos202+48B1B2(d1/|i1+d2/^2)

The internal energy change is the sum of the following terms:

in the

(A.13) 

, we

(A.14)

(A.15)

(A. 16

1. Energy changes, , due to the geometrical extension and compression of 
all fibres, given by



2 5 9

r W  2
i / K 1 [y- I  (1-I*)2] <̂2 n1P(y)dy ,

which will yield a similar expression to that found in the previous case, 
though we note that and now have different values. Thus

ü, = A  + nlK, *2 [(1-L)2 .

2. Energy changes, U2, to increase the crossing y a m  amplitude.

When the threads undergo compression strains 'a D' as well as "bending 
deformations, the interyam force, v, will produce a strain energy 
contribution equal to half the product of v and the distance moved under 
this force i.e. £v(Ah-AD). Since f^ is defined as the excess force 

needed to overcome the cross y a m  resistance in fabric bending we get

U2 = £v(Ah-^D) = ¿P2 •

This leads to (from A.1j)

U2 = 4n1K1
B2/'c o s201

B1^cos202+48B1B2(d1/|i1+d2/n2)

2 2 d Ir

The total energy, U^, is then

UT = w
+ n1K1

+^n1K1 <t>
b2L2 ______________________________
4 B1^cos202+48B1B2(d1/n1+d2/n2)
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Equating the external work done with the total internal energy change 

we get

P2Bi  ̂ p2 nlKl b2 r t  ̂ V l 008^ ___________  ^ 1
^  ~  ¿1 4  L  B 1^ c o s 2 0 1+ 4 8 B 1B 2 ( d 1/ ^ + d 2/ ^ 2 ) J

^ / n . ,
Substituting from (A. 15) and using = ----2—  , in the above equation,¿A
we get

V Bi = 1+c< 1 +
5b! "I
~ T  (1-L) ,hT J

or

B
^  = _1+c

•i [1 + A 1*1 3B2^13cos291

^ c o s 292+B2^ c o s 2e1+48B1B2(d 1/ | i 1+d2/ | i 2) ) _


