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ABSTRACT

This work is an attempt to provide simple formulae that
can predict the initial behaviour of the most commonlj\used fabric,
namely the plain weave. To achieve this, a simple zigzag shape 'saw-
tooth model' was adopted to describe the yarn configuration in the
weave structure. An energy method, usiﬁg Castigliano's theorem, was
then employed to derive closed form solutions which relate the yarn
parameters and the fabric moduli under either tensile or bending
strains.

To examine the theory, series of tests were carried out on
different plain weave structures and the theoretically calculated
results were compared with the actual fabric behaviour.

The outéome of the study showed that, when the yarn and fabric
parameters are accurately defined, it is possible to obtain a reasonable
estimate of the above mentioned fabric prope;ties using the formulae
derived in the theoretical analysié.

The results and discussion also showed that the initial
deformation of some plain weave constructions may produce extension
and/or compression strain eneigies that cannot be ignored in estimating

the fabric behaviour with reasonable accuracy.
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CHAPTER 1: INTRODUCTION



CHAPTER 1

INTRODUCTION

1.1 General Introduction

Textiles are now increasingly used for many purposes, from the
traditional uses like garments and furniture to others such as conveyor
belts, hovercraft skirts and aerospace applications. Probably, there are
two reasons for this wide range of utilization, the first being that
textile materials cover a wide range of different physical and mechanical
properties, and the second is that textile teéhnology is tending to become
a science of well-established rules and predictable results, so that
fabrics can be designed for specific purposes.

The end-uses of textiles decide the wé& they should be selected
ana constructed, suggesting that some properties should act in a.certain
way, while others remain of less relative importance. For example, outer-
wear fabrics need to satisfy some aesthetic, physical and thermal properties
as well as being required to be durable. On the other hand, fabrics used
for industrial purposes are made for strength and flexibility, and possibly
for certain electrical and thermal properties, and aesthetics are
relatively unimporfant.

Generally, for any end-use, the mechanical properties of fabrics
are of special interest, and a theoretical study of how these pioperties
are related to the fabric and yarn parameters could help in deciding how
to produce a suitable fabric at a minimum cost when its likely range of
use is known. |

The actual use of fabrics involves complex deformations in multi-

directions; however to study the problem, it is useful to begin by



considering the simplest forms of deformation and the corresponding

fabric mechanical behaviour.

1.2 Mechanical Properties of Plain Woven Fabrics

The simﬁle forms of fabric deformation are extension and shear
in the fabric plane, bending perpendicular to the fabric plane and buckliﬁfy/
out of the fabric plane. Investiéations are more easily carried out when
the structure does not have the added difficulties arising with the more
intricate configurations, such as we may find in twill weaves which show
skewness (1), and the usefulness of the plain weaves is obvious in this

respect.

1.2.1 Tensile properties of plain weave

When a plain woven fabric is initially extended in one of the
major directions, the yarns in the ioad direction are straightened.
Accordingly, the crimp, ¢, crimp amplitude, h, and the weave angle, 6,
decrease, while the thread spacing, p, increases. Because of the.contact
between warp and weft, at the cross over area, the fabric extension leads
to a pressure build up in this area. This pressure leads to upcrimping
of the yarns in the no-load direction, so that the crimp amplitude and
weave angle will increase, while the thread spacing decreases. The latter
effect will result in a widthwise contraction in the fabric. This
fractional contraction, expressed as a fraction of the fractional extension
in the load direction,gives the so called Poisson's ratio for this mode
of deformation, The initial phase of extension is normally referred to as
thecrimpdistribution phase because the yarns under such initial loads do
not extend, or extend by very small amounfs. It has been claimed that

this phase is governed mainly by the yarn bending properties but further




work (2,3,4,5) has shown that the yarn compressional properties may also
play an important role.

A typical load-extension curve, as shown in figure 1, reflects
these effects. °In the initial region, OA, the curve possesses a
relétively high initial tensile modulus due to the high initial bending
modulus of the yarns in which the fibres' frictional restraints hgve a
great influence. Overcoming.this frictional resistance, the curve shows
a pure crimp interchange region, AB, dependent on both yarns' elastic
rigidities and probably on their compressibilities., If the fabric is
further extended, additional effects will take élace. These will be yarn
extension with fibre extension and slippage in the load direction, and
more flattening for both the warp and weft at the cross over region. In
this phase, BC, the yarn extensibility, compressibiiity’and the coefficient
of friction between fibres will play important roles. The above mentioned
phases are affected by the magnitude of the forces existing between the
two yarn systems before extension; hence fhe degree of fabric set or
‘relaxation will be of appréciable importance, °

On increasing the extension still further, the fabric tensile ‘
modulus rises progressively until the yield point is reached. Beyond this
point, D in figure 1, comparatively small increases in load are enough to
produce considerable increases in fabric extension. The behaviour, around
and beyond the yield point, probably depends more on the yarn tensile
properties than on the other yarn properties or the geometrical structure
of the fabric. The point of rupture or breagk occurs ét the end of the
yield phase. This may happen instantaneously or after a self-hardening

region.
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1.2.2 Bending properties of plain weave

Bénding is a very important property of fibres and yarns as
well as of fabrics. Fibre bending is inherent in yarn bending and it can
be shown that yarn bending takes place in almost all types of cloth
deformatiéns.

The most important among bending properties is the flexural
rigidity. For simply defined bodies the flexural rigidity, B, can be

defined as
B = EI,

where E is the Young's modulus qf the material, and I is the moment of
inertia of the cross-section of the body about a line perpendicular to the
neutral axis.

In textiles, this equation is usuwally restficted to single fibre
bending‘where I is reasonably accurately defined. The flexural rigidity
for yarns and fabrics is better defined as the couple, M, necessary to

produce a unit change in curvature, K, i.e.
B =MK-

In the above equation, if B is independent of the value of K,
the K-M relation would be linear, and in this case.it is sufficient té
find B by determining the value of M and the corresponding value of K at
any moment. Actually, in both yarn and fabric bending, fibres are
capable of independent movement within the structure. This causes the
resultant moment-curvature relationship to be non-linear and in this case
the need to take successive readings for M and K over a range of fabric
curvatures is essential., A typical curve of M against K is shown in

figure 2.
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It is now proposed to consider the fabric bending behaviour
as shown by the bending hysteresis curve. The initial high modulus shown
for the initialvbending, OA, is probably due both to the resistance )
offered by the yarn rigidity (elastic component) and to an extra
frictional resistance restricting the fibres' tendency to move relative
to each other in the yarn (frictional component). The magnitude of the
frictional resistance is governed,generallj,by the éoefficient of friction
between fibres and by the interfibre pressure. Gradually overcoming these
frictional restraints,the fabric is then more easily bent and the couple-
curvaturé curve is, ideally, a linear relation, AB, representing the
elastic component in bending. | .

, If the fabric is allowed to recover from a certain imposed
curvature (usually taken as 3 cm'-1 in testing), the curve will show
hysteresis. - The difference between the magnitude of the couple at zero
curvature, when loading and recoYering, 0C or OE in figure 2, represents
that frictional couple, MO; needed initially to overcome the frictional

restraints. The elastic component in bending, therefore, obeys a law of

the type
B = (M—Mo)/K .

The fabric elastic rigidity, B, is influenced by both geometrical
;nd mechanical factors. Geometrical parameters such as the fabric cover
factor, ratio of the number of warp threads to weft, type of weave and
fabric relaxation will affect the mégnitude of the interyarn forces which
have to be overcome in bending the fabric. The mechanical factors would
be mainly the yarn's rigidity and, probably, the yarn's compressional

properties. The former depends on the yarn twist factor, fibre density,



and tensile and torgional properties of fibres. A summary of the main

factors contributing to fabric bending is given by Owen (6).

[ ]
Mechanism of fabric bending

When the_fabric is bent, the applied couple will induce internal
forces between the two yarn systems which will lead to several changes in
the warp and weft configurations. In the bending plane, the yarns will
increase_their length of contact with the cross yarns on the outside of
the bend and will unwrap from the cross-yarns on the inside of the bend, as
shown in fiéure 3. Between these contact regions, the yarns are free to
‘bend. Denby (7) assumed that large scale bending of woven fabrics involves
the imposition of additional constant curvature to the individual yarns.
Considering the crossing yarns Abbott (8), in a theoretical study, showed
that fabric bending involves an increase in the crimp of the crossing
threads. Skelton and Schoppee (9), using Denby's assumption and considering
a simple.model of fabric crimp, reached the same conclusion as Abbott.

They stated that the bending of idealized plain woven fabric (figure 3)
will always result in an increased amﬁlitude of fabric crimp which for

certain fabrics reduces the restraining forces on the crossing yarns.
- L

1.2.3 Shear of plain weavel

Because of the different treatments and terminology used to study
shear as mechanical behaviour, it is useful to consider first the general
definitions. \\

Pure ghear is defingd as the deformation of a body caused by
uniform extension in one direction and contraction in the perpendicular
direction, so that its area remains constant. As demonstrated by Hearle

(10), if such a definition is applied to shear the square abcd (figure 4a),






10

the resultant shape will be &’b'<c’ d. Rotating this parallelogram so that
one pair of its sides becomes parallel to its original direction, we get
what is known as a simple shear strain in the direction aa’, bY, c¢’ and
dd’ (figure 4v). A simple shear_of a square initially constructed with
one side in the direction, ab or ed , will result in the shape shown in
'figure 4c, where tan®© is taken as the shear strain, |

When testing textile fabrics under pure shear, a problem arises.
This is because fabrics are thin sheets, they tend to buckle easily under
compressive forces. The problem is overcome by ihtroducing a tensile
force much higher than the compressive force. Practically this is achieved
by hanging a weight W, uniformly distributed,over IK as shown in figure 4c.

It follows that the effective shear force, S, is
S = F-W tan®.

The shear stress-strain diagram represents the relation between the shear
force, S, and the shear angle 6. A typical curve is shown in figure 4d
vhere it can be seen that a considerable‘hysteresis is involved in shear
deformations.

The effect of weave coﬁstruction and material, as well as the
mechanism of shear, have been studied by a considerable number of workers
(11-17).

Cusick (12,13) gave results for a variety of fabrics, and the
curves were often found to be asymmetrical. Lindberg and his colleagues
(14) gave a detailed study of different commercial fabrics. They pointed
to the relation between bending rigidity, buckling and shear angle. Also,
they showed that the formability of a fabrie, defined as the maximum
compression a fabric can take up before it buckles, is related to the

product of buckling load and shear angle.
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Using a model containing one frictional and two elastic elements,
Cusick (12) explained that the mechaniem of idealized fabric shear will
start with shear deformation of the free lengths of the yarns. Such
deformation, according to the model, will depend on the elastic bending
resistance offered by the yarns rigidities. When the shearing force
exceeds the value of the maximum limitlng friction force between the two
gets of yarms, slip will occur between warp and weft. The further shear
will depend on a relatively lower elastic resistance to bending provided
that a degree of relative rotation of the yarns would be, by then, allowed
at the intersections.

Grosberg and Park (16) showed that the initial shear behaviour is
governed by the frictional forces resisting the relative rotation of the
yarns coupled with the elastic bending resistance of the yarns. They
showed also that the %nitial shear modulus depends on factors including
the apparent area of contact at the yarn cross-overs and that the latter
can be determined if the former is known experimentally. Using this
information Grosberg, Leaf~and Park (17) gave a theoretical study of the
problem of predicting the elastic shear behaviour of plain woven fabrics

in terms of geometrical parameters and yarn properties.

1.3 Review of Previous Work

Woven fabric geometry has been a topic for investigation by many
workers over a period of nearly a century. The earliest works were
directed to estimating the maximum square sett to be woven on the loom.
Ashenhurst (1884), Armitage (1907), Law (1922) and Brierley (1931) were
the most well known workers. They gave different rules for the problem
of the maximum weavable threads per inch related to the yarn count.

Empirical data and assumptions which express the diameter as a function
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of the yarn count were used in their cloth geometry (18-19). Their four
rules give slightly different answers to stable fabric problems, Brierley's
being the most accurate for general purposes.

Peirce's work (20) can be considered as a watershed, as he
' thoroughly investigated the plain weave structure and gave both a flexible-
thread geometry and en elastic-thread model., However, the first was
primarily used for the same purpose as the earlier works, i.e. to investigate
the jammed condition. Recently, the theoretical study of fabric mechanical
properties has received much attention by many, and in this respect Peirce's
rigid-thread model is considered an important contribution.

In this section,both of the plain fabric models and some different
approaches to the theoretical calculation of fabric properties in extension

and bending are reviewed.

1.3.1 Plain fabric models

The different models of the plain woven fabric can be classified
as geometrical (descriptivé) and mechanistic (21). In the geometrical
models'né account of internal forces produced by the yarn rigidities.is
taken into consideration. In the mechanistic models it is assumed that
the two systems of yarns are balanced in a way determined by their relative
rigidities and the weave construction. The advantage of using the
descriptive model is its comparative simplicity; on the other hand, the
information that may be obtained about mechanical behaviour is rather
limited.r A mechanistic model is likely to be more capable of supplying
such information, provided that its idealization is sufficiently realistic,

but at the expense of greater complexity (22).
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a. Descriptive geometrical models

Peirce (20) was the first to describe the plain fabric geometry
using flexible, circular bars set into the ghape shown in figure 5. Taking
a normal section to the plane of the cloth through one of the thread axes,
Peirce defined the geometrical farameters of the fabric using the following

symbols:

p - Thread spacing. The distance between two planes, normal to fhe fabric,
containing two successive cross yarns.

[- Modular length. The length, measured aloﬁg the yarn axis, of half a
crimp wave.

¢ — Yarn crimp, expressed as the fraction (ggg)_

h‘; Modular height. The amplitude of the crimp wave.

® — Weave angle. The maximum angle of the thread axis with the fabric
central plane.

d - Yarn diameter.

D

Scale factor, equal to the sum of warp and weft diameters.

The subscript '1' is used to refer to warp parameters, while '2' refers to
weft. In this thesis the same symbols and subscripts are used.

The geometry shown in figure 5 leads to the following equations:
P, = ([1-D91)cose1+])sin91, C(1.1)
and

= (£,-D8,)sin6,+D(1-cos6, ). (1.2)

-
1

Similar euqations could be obtained for the weft with an
appropriate interchange of subscripts.

¢Also, hy+h, = d,+d, = D. ' (1.3)
% &



Fig. 5
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Thig provides a system of 5 simultaneous equations with 9 unknowns
(p1,p2,£1,£2,h1,h2,61,92 and D). Therefore the model is completely
defined when 4 parameters are known. The easiest and most measurable
quantities are possibly the thread spacings and the modular lengths.

Due 'to the difficulties encountered in solving these simultaneous
equations,a set of curves was produced by Peirce (20) and Love (23) to
éssist in the calculations. For practical uses, Peirce derived a simplified
formulae. This is found by expanding the trigonometrical functions in

equations (1.1) and (1.2) in terms of ascending powers of 8 to give

of of 93 95
and
5 5 2 4
3] 9 8 0
1 1 1
When 61 is small, 913 and higher terms can be ignored to give (from 1.4)

0 = (2)H(e )t

Also, when 6, is small, h, zl.l e, (from equation 1.5) and p29-'11,which

gives

3 3
= (2)%,(c,)2.
Peirce modified the latter equation to:

b, =4 py(ep)® - pg—-w% (1.6)
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He stated that this formula reproduces the exact values well enough for
many purposes and only in extreme structures does the error amount to 5%.
The equation relating pz,la and 91 was later modified by Peirce when he

considered his rigid-thread model and was given as

(c,)% = 0.55 e,
when 91 is measured in radians, or
91(degrees) = 104(c1)%.

For the normal range of weave angles a better approximation is obtained

by writing
61(degrees) = 106(c1)% = 106(§l -1)%- (1.7)
2

Equations (1.3),(1.6) and (1.7), in addition to the equations
provided for h, and 6, in the weft direction, define a simplified model
for the. plain woven fabrics which is completely determinate if 4 parameters
are already known. |

Grosberg (24) pointed out that applying the original or the
simplified equations of Peirce's flexible-thread model, knowing only 3
geometrical parameters, leads to an infinity of possibilities for the
fabric geometry, whereas in fact any relaxed fabric with these 3 parameters
fixed has only one geometry. As will be seen later, the mechanistic
models yield another condition in the relaxed fabrics (equation 1.11), and
hence oﬁly 3 geometrical parameters are needed to define a mechanistic
model, providing that the rigidifies of the yarns are known.

Dealing with the geometrical models, two separate lines of work

have been followed since Peirce. The first is to modify Peirce's flexible-
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thread model to accommodate more realistic shapes of yarn cross-section.
The second is to approximate the crimped shape of the yarn path by a
relatively simple function, such as a éine wave,

Modifying the circular cross-sectional shape of the yarn was, in
fact, considered by Peirce (20). He suggested that when flattened, the
specific volume of the yarn remains constant and the area of cross-section
may be taken as

Mab _ I1d2
4 - 4

where a and b are the major and minor axes of an elliptical cross-section,
see figure 6a. From this, Peirce obtained a distortion factor e =‘ﬁ;Z;
with which the original yarn diameter, d, can be modified. Peirce showed
that in order to make such an elliptical geometry determinate, it is
necessary to know further data about the relative ellipticity, «, of the
two‘threads. He suggested that e, may then be found by applying the

following relation:

b1+b2

'%(P2\/5; + pVe,)

= 36 e.(—) —a
—361(\/f\1l-+\/1\T2)'

where N, and"N2 are the thread cotton counts and o ='§% . However, Peirce
pointed out that it would be rather laborious‘to develop and use a médel
based on the formal relations of an elliptic section.

Kemp (25) provided a reasonsble alternative cross-sectional yarn

shape to the ellipse. He suggested a 'Race-track' section consisting of

a rectangle with semi-circular ends as shown in figure 6b. The ratio (b/a)
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was made the distortion factor instead of Peirce'st/_a » Kemp related
the initial parameters given by Peirce and the parameters resulting from
the race-track shape and he used Peirce's equations, thus modified, to
provide more accurate solutions for the jammed condition.

Recently, Hearle and Shanahan (26) modified Peirce's flexible
model assuming a 'Lenticular Geometry'! in which the yarn cross-section is
represented by two intersecting arcs as shown in figure 6c. The yarn
path is assumed linear except where it wraps over the crossing yarn. For
such a model, the need to define the major and minor diameters of the yarns
is essential and the flattening coefficient was presented as F = a/b. The

other parameters of the yarn cross-section can then be calculated in the

following way

. 2 - 1- 2.

sin ® = 57 and cos @ = 1 or
This gives

2wt

=~

Substituting in the above relation gives

2 .2
@ = sin-1(—§-a-'l)3) = cos-1(a‘2—b2)-
a +b a +b

Also, if ])1 N 21:'2+b1 and D2 = 2r1+b2 ’

the modified equations for this model are

= (l1 —])1 91 )cose1+D1 sj,nQ

e,
N
I

1

= ([1-D161)sine1+D1(1—cose1) .

-
I
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Similar equations are provided for weft parameters and, in addition,

h1+h2 = 'b1+b2 .

Providing that the cross-section parameters are already defined,
the model is completely determinate when 3 other parameters of the
fabric are known.

The 'Lenticular;Geometry' was devéloped with the aim of providing
a realistic interaction between the yarn rigidity and yarn flattening,
when the fabric.deforms under tensile forces, With this objective, the
original equations for the model were presented, by the authors, in a
different form, including the flattening coefficients F1 and F2.

The crimp-wave shape of the yarn path has been approximated in
different ways and for this purpose the yarn cross-section was not. always
taken into consideration. A twin arc model has been used by Olofsson (27)
and Wilson (28)./ In this model, it is proposed that the crimp-wave of the
yarn consists of two arcs, one above and one below the central plane of

the cloth. The geometry of such a model leads to the relations

(1-cos91)
1 % Py sin® )

Ly =7, im0 and  h

1 1

A sinusoidal shape of the yarn was assumed by Lord and Mohamed

29)., Mathematically the yarn shape may be'expiessed by
7 .

b
y=7% sin( 1rx/p2)s

and the yarn modular length is given approximately by

4y =», [1jr( rh1/4p2)2].
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A straight line model has been used by Kawabata et al. (3)
and Leaf and Kandil (5), and further details of this will be given later.

This model is, probably, the simplest and leads to
P, = i1cose1 ’ and h1 = £1sine1.

b. Mechanistic models

In the mechanistic model, the shape of the yarn path is assumed
to be determined by the yarn flexural rigidity, B, and by the vertical

force, v, and the external tension, f, acting as point loads at the apex,
as shown in figure 7. This gives
B _ vx+ fiy, | (1.8)

ds

referred to axes shown.

If the external tension on the fabric is zero, the equation is reduced to
d
Bt vx ‘ (1.9)

Peirce (20) was interested in this case and he showed that integrating the

last equation gives
2B R .
X = ?F)%(51n6—s1n¢)%. (1.10)

At the apex x = p/2 and ¢= 0; substituting in the above equation in the

warp and weft directions then gives

. 8B,sind
2 8B,sind :
p2= 11 1 and p1=_—'—_‘-‘2v 2'
2

Y1
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The equilibrium condition between warp and weft is attained when v.=v

17727

which leads to . —

B1sin61 ~ stine2
2 - 2
Py Py

(1.11)

This relation holds only for relaxed fabric. ZFor grey fabric, due to
frictional restraints between and within warp and weft, the relation is
not applicable.

Using the relations dx/ds=cosy and dy/ds=siny, equations (1.9)
and (1.10) can be converted to give the relation betweenlds and dy or between
dy and dy, and hence integrated. The parameters at any point of the yarn
axis can be expressed in the form of standard elliptic integrals as

follows:

X = 2(%)%1( cosd,

n
]

@2 [re,7/2)-5x0)]
(1.12)

- & [p0e,72)-B(c,0)-2 {50, 7/2) B(0)]

d
|

and

X
cosy= 2ksing (1—k2sin2c1>)2 ,

where F(k,72) and F(k,d) are the complete and incomplete elliptic integrals
of the first kind, and B(k,n/2) and E(k,$) are the complete and incomplete
integrals of the second kind. The modulus, k, and amplitude, ¢, of these

integrals are given by
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k = sin(6/2+7/4) and  sin o = % sin(¥/2+7/4).

At the apex, denoted by point H in the figure, ¢ =0; hence ¢y = sinf1(1/2%k).
The values of p/2, 4/2 and h/2 can be expressed in the form of elliptic
integrals by substituting ¢ = ¢H in the above equations.

Olofsson (30) dealt with the general case of elastic yarns formed
to the shape in the fabric by the action of both external tension, f, and
vertical force, v, (equation 1.8), Using this assumption and the
relations dx = cos)ds and dy = sinyds, he derived ﬁew expressions for p
and h related to‘l. However, the final expressions are clumsy and
laborious to use. Olofsson showed that the shape of the elastica is
nearly independent of the ratio v/f, that the parabeters at the apex could
be obtained by simpler equations if we consider v/f = 0. This gave

2B(x’, 7/2)-F(k’,1/2) |
F(x' T/2)

/L,

and
2sin(e,/2)
n,/L, = 1
15 =F, 7/2)
where F(k’, 7/2) and E(X’,7/2) are the complete elliptic integrals of the
first and second kind with modulus k¥’ = sin( 6,/2).
These values of p2/1a and h1/l1, for a fixed value of 6, can be taken to
be the same for different ratios of v/f. The same conclusion was reached.
by Grosberg and Kedia (31). Grosberg (24) stated that it becomes possible,

therefore; to use the approximate relationships

h/p ='§(c)% and 0= 106(0)%’

with considerable confidence since they give values close to the rigid-
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thread model and have already bgen proved to be independent of the
ratio v/f. '

Nordby (2) gave a compa£ison between the different models and
showed that there is some,‘but not complete, agreement between the results
obtained from Olofsson's relations assuming v=0 and Peirce's relations
assuming £=0.

Apart from considering the yarn rigidity, a realistic fabric
geometry may also take into account two other aspects namely, the rigid-
thread shape with finite contact, and the degree of yarn set. The first
of these is important when investigating a fabric deformation which is
highly dependent on the contact length between the two yarns, while the
second aspect is important when investigating the deformations of
partially set fabrics.

| Peirce (20) considered a model in which the rigid yarn has a
finite contact with the crossing thread. Thié case, in a sense, constitutes
an intermediate state between his completely flexible-thread model and
the highly rigid-thread model with point contact. The model with finite
contact is shown in figure 8 where the contact starts at the point denoted
by C,(xc,yc) referred to the axes shown; the incliﬁation of the yarn axis
to the fabric plane at this point is B. Equation (1.12) of the rigid-
thread model with point contact gives the parameters x,y and s in the

region 0> ¢ >P, while the following relations hold in the region B3 y>0

-B(sinﬁ-sin¢)+2(%)%k cos ¢, »

b
u

d
n

D(cosy~cosp)+(D)? | #(x,72)-5 (k)2 {E(k.w/z)-E(k,q>c)}] ,
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and

s = 5 B—¢)+(%)%[F(k,7'/2)—F(k,<l>c)] ’

vhere k = sin(6/2+7/4) , sing = %sin(6/2+1r/4) ,

and the parameters at the apex (p/ 2,h/2 and [/2) are given by the above
equations after substitutingy =0.

Thus

-

[ = 1)_;34.2(%)%[1‘(1(, 7r/2)—F(k,<bc)] ’
and

h = D(1-cosB)+2(-§)%[F(k,v/z)-F(k,¢>c)-2{E(k,w/z)—E(k,q>C)}] :

To make this model available for use, v and B are also defined in terms

of the other parameters. It can be shown that

ve —2 and sinB = 2siné-(p/D) .

pD-Dzsine
The model can now be defined by the 4 equations giving l and h

in both directions, together with the following two relations

h1+h2 =D,

and

or

By B,

pzl)--Dzsine.I p.]D—Dzsine

2
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This gives a total of 6 independent relations between 11 unkmowns
(pysPpsL114500450,,6,,6,,B,,B,,D); therefore it is enough to define 3
parameters and the yarn rigidities, B1 and BZ’ to define the geometry.

In order to differentiate between the two rigid-thread models
given by Peirce, the curvature, 1/@, can be calculated at the apex from

the relation 1/Q = vp/2B, then

(a) if 1/p € 2/D, the rigid-thread model with point contact applies;
(v) if 1/@ >2/D, a finite contact with the crossing yarn occurs, starting

R 2B .
at the point X, =3p *

It is commonplace in many analyses of fabric deformations, which
use a rigid-thread model as a starting point, to assume that the interyarn
forces in the structure before deformation take one of the two following

extremes:

1. they remain with the same value needed initially to form the fabric at
the intersections in which case the fabric is said to be completely
unset; '

2. they gradually vanish and the yarn keeps its curvature inside the‘fabric
structure due to permanent bending deformations; the fabric is then
considered to be completely set.

Fabrics, in fact, take an intermediate state (partially set) which
can be demonstrated by unravelling a yarn from the fabric and observing
how it undergoes a limited change in crimp. Olofsson (30) assumed that
in a partially set fabric, the yarn curvature'at any point is proportional
to its curvature in the released state outside the fabric. The constant

of proportionality was termed the 'form factor'; thus
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d¢i . d¢b
s = 'form factort X — -
8 ds
r 0

where suffix 'r' refers to the released state and '0' refers to yarns
inside the fabric. This assumption proved to be useful (2,8,32) in
calculating the degree of fabric set experimentally, as it can be shown

to lead to 'set' as a function of the crimps inside the fabric, Cos and in

the released state, C.s namely
1 T 3 ’
set! = (cr/co) . | (1.13)

1.3.2 Different approaches to the theoretical calculation

of fabric properties

This subject has been handled under two different categories. iThe
first, which has been more generally used, considers the fabric as a complex
geometrical combination of fibres and yarns, while the second category
treats the fabric as a planar sheet. The choice of which method to use
depends on the final requirements of the study. For instance, if we are
analysing the fabric to discover rather complicated mechanical beﬁéviour,
such as its ability to take up complex double curvatures or drape, it is
probably better that the fabric should be modelled as a two dimensional
uniform sheet,irrespective of its constituent fibres or yarns,except in éo
far as they are responsible for the particular properties of the sheet.

The planar stress-strain analysis involves many complications and it is, up
to now, limited in its use.

Theoretical approaches considering the fabric as geometrical
combinations of fibres and yarns can be.further classified into energy

approaches and force approaches.
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1.3.3 Theoretical calculations of fabric tensileAproperties

(a) Energy approaches

Grosberg and Kedia (31) considered the initial extension as a
result of only bending energy changes. The force, f, needed'to extend
a warp thread in the fabric was regarded as divided into two parts, £ to
decrimp the warp thread and f”to upcrimp the crossing thread. The force
15 reléted to the force v needed at the intersection to increase the
crimp of the weft. If the fabric elongation is ¢$p‘2 and 6h2 is the charfge

in the crossing thread height, then energy considerations demand that

" ‘
£ .6]_)2 = V.(Shz

Therefore
éh
7 ” 4 v 2
f=f+f=f[1+?ap2]
ép, &h
/ v 2 1,9

The ratio 6h1/6p2 was obtained using pu:ely geometrical relations.
The term 6p2/f'was calculated by defining the strain energy; in the warp
thread, due to thé bending deformations caused by f’alone, then
differentiating the energy éxpression according to Castigliano's rule.
Using a similar procedure v/8h2 was calculated after finding the strain
energy in the weft thread caused by 'v! alone. The final expression for

the fabric modulus was given by

8B, szg '
Ey, = —5 | =5 F4(0.,0,) |, (1.14)
phyL Bypy
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where
: 2
sin3/2(92)[}—0.56(h1/p2)2]
F,(6,).2Y2 (1.12)%

F1(61,62) =

and

7,(8,) = B0k, /2)-BC,a) (1) {70k, /2)-Bli,0,)} -

The modulus k = sin(62/2+w/4) and ¢y = sin” ] —

Hearle and Shanahan (22) have recently described a uniform energy
approach that can be applied to various types of fabric deformations. For
the general treatment, they assumed that the fabric geometry gives one or

more relations equivalent to:
f(x1,x2,....,xl,y1,y2,....,yn) =0 , | (1.15)

where (x1,x2,...,3g) are the generalized dimensions or displacements or
both associated with the external deformations, and (y;y¥,s-..,¥,) are a
set of independent geometrical parameters,

Due to deformation by the external forces Fi acting on X the
total energy in the system, E, is -

L
o EE% (B x 400 T g0 e e s T 0y eneny) (1.16)

where (a1’“2""’ah) are the dependent geometric parameters, énd U is the
strain energy.

The principle of minimum energy was then applied with any one of the
displacements (say x1) chosen as the dependent mode of déformation. This

gives
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dx m da,
__;1 9u_
F+F, 5%, g boy  Bx, , k=2,3,...,4
(1.17)
dFax1 OF ia—g—ﬁi~12
an. 1ay1 Fy,—i"" .= aaj ayi - ? ,onu,n

These conditions give a total of ({+n-1) equations. In conjunction with
the geometrical relation given by equation (1.15), there will be a system
of (l+n) equations describing the behaviour of the structure under the
specified types of loads. If OysOpseanayy which may be eliminated, are
ignored, there will be (20+n) unknowns (Fi,xi and y1...,yh). The system
is then completely defined when J of these quantities are given.

According to the authors, the following limitations are imposed:

1. The approach is restricted to materials in which there is a well defined
strain energy.
2. Frictional effects can not be included because the frictional forces

can act in any direction.

(b) Force approaches

Basically, the force approach generally uses a numerical
approximation method to solve a set of equations resulting from both the
geometrical relations of the yarn shape and the stress analysis of the
forces acting on the yarn. The procedure is carried out for each fabric
=v,. 4in

172
additional necessary condition can be obtained by considering the displace-

direction separately, bearing in mind that for equilibrium v

ment of the point of contact between warp and weft.
When investigating the fabric behaviour under high strains, it is

necessary to consider both the initial configuration of the yarns and their
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stressed shape. In the following, the notation is the same as in the
previous section but an additional suffix '0' will be used to denote
quantities in the undeformed state.

Nordby (2) used a force approach to study the load-elongation
properties of plain fabrics. He considered the crimped shape of the yarn
as divided into consecutive arcs,where the geometrical relations between
the parameters of each arc are as shown in figure 9. When the fabric is
deformed, the forces acting on the yarn will be as shown in figure 10.

The bending moment, M, and the tension force, T, at the middle of a general

arc PQ are

M= f(y+oy/2)-v(x+rx/2)

T

]

f.cos@k—A¢/2)—v.sin@P-A¢/2)..

If the bending property of the yarn is defined in such a way that
1 1
M=B(—=x~-=
a solution of the stressed shape is possible,provided that the undeformed

 shape of each arc is known. The solution is then checked against

a - boundary conditions (=0 at the apex);

b - continuity of contact stresses and displacements between warp and weft.

When a consistent solution is obtained, the co-ordinates at the apex are
obtained by summing the increments Ayi, and Axi for all the arecs.

In Nordby's analysis it was possible to include the following:

1. BEffect of yarn extensibility. This was done by assuming ds/dso = 1+an,

where m and n are constants.
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2. Effect of yarn compressibility. The compression strains were also
assumed to be a power function of the load v.
3. Effect of frictional restraints. This was included by assuming the

yarn to bend according to a law such as

1 1
M-M, = B\=~ - =
03D
where My = MOy’ 0gs gﬁf/2
and My = My M Lej2 <s<h/?

Mby is the coercive couple of the yarn,,zf is the yarn length free of
contact with the crossing yarm and MOf is an additional frictional couple
due to fibre slippage.

4. Deformation of partially set fabrics. For this purpose, the factor 'set!
was evaluated experimentally, thus enabling the remaining interyarn
forces, v_, to be calculated from the equation v = 0(1-set). The

general bending equation for this case becomes

£(y+by/2)-(v+v_) (x+8x/2) = B(-elc-)- - -;-) ,

which obviously gives higher values of 'f' compared to the case of
set fabrics.(vi=0).
| Mashaly (33) solved the mechanism of fabric extension for the case

when twistless yarns are used for warp and weft. An assumption was made to
suit this case, that the yarn cross-sections occupy the cavity shaped by
the other crimped yarn in the cross-wise direction. The reaction from the
weft.whép the warp is extended was assumed wniformly distributed over the
warp_crimp—wave length. It follows that the bending moment, M, at the

general point P, shown in figure 11, is



Pig.
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M =—E22.x + f.y + g(x2+y2), ‘

where w is the interyarn force, expressed as intensity of load.

The main governing equation in this case is therefore

ay_ _wp we 2, 2
Bas =" 2‘.x+f.y+-§(x+y),

which, together with

and
ay s
as — siny ,

represent a system of differential equations which can be put in the

general form

a,

%—;1 = f(s,a1,a2,...,oci,...,an), i=1,2,4.44n
where a; are the yarn parameters at any point (x,y andvy ).
If n boundary conditions at two points are known, the System can be solved.
A .st_andard computer subroutine was used for this problem. However it will
be noticed that when f is given a small increment, the vélue of w is
unknown and the equations give infinite possibilities for the values of
p and h., The waj out of this difficulty was to fix a value of f and then
solve the system of equations for several values of w. In the cross-wise
direction f=0 and the system 6f equations for the cross-thread were solved
for the same values of w, Only one value of w will give the exact

solution which should satisfy the condition

h1+h2 = constant,

LEEDS UNIVERSITY LIBRARY
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assuming incompressible yarns, The constént is determined when the system
is solved at f=0 in both directions.

The results were used to investigate the effect of the inter-yarn
forces, developed during extension, in sustaining this twisfless yarn
structure.

In both of the aﬁove force treatments a criticism may be made
concerning the way the yarn is assumed to bend. In Nordby's analysis, an
idealized law of yarn bending was chosen and the bending property is not
defined in the region (Ogrdsﬂb), while in the Mashaly treatment, the

general bending equation is applied as if the yarn is initially straight

ioeo _dﬁ)_ = 0.
dso

A more rigorous version of the force approach has been given by
Huang€4)For the biaxial extension of completely set plain fabrics, he
usea Peirce's rigid-thread model to define the fabric initial parameters.
These wili be labelled by the additional suffix 'O' while in the stressed
state the parameters are only labelled by '1' or '2' to indicate the warp
and weft directions.

Peirce's formulae yields the following expressions for the yarn

curvature and its inclination at a general point P(xo,yo)

_Z%g. - - [F(k,1r/2)-F(k,q>H)]XCOS<I>/[o , (1.18)
and
cosyy = 2 cosa(1-kstn?e)s , (1.19)

where the modulus, k, and amplitudes, ¢ and ¢y, of the above elliptic

integrals can be defined in terms of 90 and Xy 28 follows:
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k = sin(90/2+1r/4) .

d = 008-1[%})5 {F(k,f/z)-F(kgch)ﬂ’ | (1.20)
and

& =9 (py/2) = sin” (27 57).

In addition, the values of X, and Yo at the apex are given by

' E(k’ "/2)‘E(k’4”H)

by = 4o [1‘2 {7 772)-F(k1dg) }] ’
and

Py = 2k£OCOS<bH/ {F(ks ”/2)’F(k’4)H)}'

When the fabric is deformed by forces f1 and f2 per thread in the
warp and weft directions respectively, O remains a point of inflection
(figure 10b) and forces 2v are generated at the intersections. The tension

and bending moment at P are then given by
T = £ cosy+Vv siny and M=f,y - v.x

If A and B are the yarn tensile and bending moduli, and yarn

bending has the bilinear behaviour shown in figure 13, it can be shown that

. ds 1 .
ot 1+ J.(f cosy +v siny),

0
and
w Mo ) M /B* MM,
9~ %% (M./B*)+(M-1,)/B . M>M
0 0 0

Huang's analysis then proceeds to formulate. the finite deformation of the

fabric as a non-linear boundary value problem which can be represented by
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Fig. 13
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a set of differential equations. Regarding X, as the independent variable

and the parameters y,x and y, of the deformed state as the dependent

variables, the main governing equations are

ay gy as %o

dxo—ds'dso 0 ’

ax_ _ax das %

dxo ~ ds dso dxo ’
and

ay _ay ds 2%

dxo_ds dso dxo *

The value of dxo/dso(=cos ybo) can be obtained from equation (1.19); hence

as %0  a+(f cosy+v sing ) .
ds. ax, 2 . 2.\% » Say.
0 0 2ak cos(1-k“sin“®)
The above governing equations, then, yield
- dy,
7 f.y:'B—*V.X + dSO] MSMO
ay - 0
Z"EVI_Q__{',IQ fy-v.x '//O] MM
| B*¥ ~ B B ds,, >89
dx 7 .
g'x; =2 cosy, (1.22)
and
d . A
—d_.xxo- =2 siny. (1.23)

Provided that the initial parameters of the undeformed state have
already been defined, either by measurements (such as p andl) or by
dy,

calculation (such as k,¢ and dso , calculated from equations (1.20) and

(1.18) respectively); the above equations (1.21) to (1.23) can be
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regarded as

d'J:l.
S = F(XO,J1,J2,...,Ji,f,V), (i=1,2 and 3)

0

where Ji are the dependent parameters of the yarn in the deformed state
( ¢,x,y) and X, is the independent parameter.

The boundary conditions for the problem are

x(0) = y(0) =¥ (p/2) = 0.

The numerical computation was carried out using an approach
similar to that described by Méshaly (33), yet different in detail., Again
the idea is to set a value for f,and by trial and error, several values
for v are to be examined. The correct value of v must fulfil an additional
condition based on the yarn compatability.

Due to the fact that warp and weft must remain in contact during

deformation, the following condition is imposed:

6{%(n,-a,)} +8{3(n,-a,)} =0, (1.24)

where B{X} denotes the change in {x} during the deformation.
The decrease in the yarn parameter, 6{d} y was assumed by Huang to

be the result of two factors:

(a) A yarn Poisson's effect, for which

£
6{d}/d = "05((5) ’
where Oy is the yarn Poisson's ratio and (f/a) gives the yarn fractional
extension at the apex.
(v) A yarn compressive effect, for which
s{a}/a = wv ,

where U4 i1s the yarn compression modulus.
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Superimposing the two effects and subscripting the changes by

the appropriate suffices for warp and weft, equation (1.24) gives

[(ho hy )+dy4 (04 1;: *“1")] [( 02~ 1p)*30,(0y ;* by ")] = 0.
When the correct value of v is found, the solution of the deformed shape
is determined, from which the values of p in both directions can be
obtained.

The numerical results provided by Huang for the load-extension
behaviour (f vs. p—po) show a marked resemblance to the real behaviour of
fabrics; also some features of the load-contraction, under uniaxial
conditions, show similarity to the behaviour of some fabrics tested in the
present work. However, further work on this subject is needed.

Kawabata et al. (3) introduced a finite deformation theory, based
on force approach, to solve the same problem, i.e. the biaxial tensile
deformation of plain fabrics. They used the straight line model to describe
the yarn's configuration initially and after deformation. While the
rigidity of the yarns was ignored in their earliest theory (3), yarmn
extension and compression were taken into consideration.

In contrast to the previous approaches, the fabric stretch in
this analysis was assumed to be the independent variable for the stress-
strain relation. For this purpose stretch ratios for the fabric, qd and

RP’ and for the yarns, I} and Ié, were defined in the following way:

T, = Po/Pyp | , o = 4/Pgq»

where the suffix '0' refers to the initial state (see figure 12).
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The tension, T, in the yarn developed due to fabric siretch can
be resolved to give both the tensile force acting on the fabric, f, and

the compressive force acting on the crossing yarn, v, so that

T, cos6, and £, = T,cos6, (1.25)

v =T,sin8, = T,sind,. (1.26)

From purely geometrical considerations (figure 12), they showed that

- [(ho1-ah1)2+(p02%fw)2] ’ (1.27)

2 2
Db1 + Poz]

-1 By~

6, = sin [(ho1—5h1)2+(P02 Pw)z]% .

Similarly, Ié and 62 were defined in the weft direction by using the

oh

(1.28)

appropriate suffices.

The load-extension relations for the yarns were defined by
T, =e(D)  emd T o= g(D), - (1.29)

where g1(I;) and gz(Ié) are functions.
From equations (1.26-1.29), the equilibrium between warp and weft

is attained when the following relation is satisfied:

ho1-5h1 - h.  +6h

- (F‘ 02 "2
[(r1-00) % g TP T 2 2 [Chgomy) ety 1

g,(1n)

For the case of incompressible yarns, 8h1=8h2=6h (say) and the

above equation, for a particular set of (Rw and I&), can be solved for éh;
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hence 6,,6,,f, and f, are found from equations (1.28) and (1.25). A
graphical solution was adopted and the extension-load curve was obtained
up to high strains for biaxial deformations.

The yarn compression was included later by substituting
§hy = 8h, = ¢(v) ,

where ¢(v) is a function depending on the interyarn force, v, and both
[ J
warp and weft compressional properties.
AKawabata et al. also treated other fabric deformations using the

same principle and model (34,35).

1.3.4 Theoretical calculations of the fabric bending properties

Very few published works have tried to tackle the problem of
predicting the fabric bending properties when the fabric parameters are
known., Moét of the other works on the subject provide qualitative analyses
of the effect of fabric and yarn construction on bending behaviour.

Peirce (36) suggested that a theoretical warp-way stiffness of &
fabric may be calculated by summing the flexural rigidities of the fibres
composing the warp or weft yarns. If in a fabric strip there are N yarns
per unit width and each yarn cross—sectiqn contains n fibres of an average
flexural rigidity Bf, the simple estimate of the minimum cloth flexural

rigidity, Bmin’ is then given by

Bmin - n.Nch -

It is obvious that any friction or binding between fibres causes the
observed stiffness to exceed this limit. Due to the possible interactions
between fibres and between yarns, when the fabric is bent, N.J.Abbott et al.

(37) suggested that the.bending rigidity of fabric, B, is related to the
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bending rigidity of single fibre by the following relationship,

B/Bf = n.N. (C.T.R) y

where C is a clustering modifying factor,
T is a twist modifying factor,

and R is a geometrical modifying factor which is related to the yarn contact

in the fabric.

Two of the above factors, C and T, are in fact related to the yarn
geometry, while the third, R, depends on the fabric structure. Modifying
the yarn rigidity by a 'clustering factor',results from the fact that in
yarn bending there is a restriction on the individual fibre's free movement
~due to friction, and the fibres tend to move in groups. Platt, Klein and

Humburger (38) suggested that this effect may be defined as

(By) with clustering

C= (By) with no clustering nc/P ’

where By is the yarn’flexural rigidity, n, is the average ﬁumber of fibres
per cluster and P is the packing factor within the cluster.
It is obvious that if the yarn bends as one cluster, i.e. as a
solid beam, then n, =n; also if the fibre diameter is very small compared
to yarn diameter, P=1., This gives the above factor 'C' equal to n and the
maximum limit of yarn rigidity reaches a vaiue n2Bf. The above analysis
shows the large effect produced by fibres being pievented from bending
independently; however, it does not explain how in yarn bending the flexural
rigidity yields lower values after the transient phase of initial bending.
More analyses'(39,40) have been carried out on thegse lines and a

model of parallel plates was used to demonstrate the effect of interfibre

friction. G.M. Abbott et al. (40), on theoretical grounds, gave the
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following law for yarn bending

2
ByK =M /4Mo , . ogMgM,
and
ByK = M-M, - M>M

The 'twist modifying factor! is needed since the fibres in a yarn
tend to lie in helical paths with different radii and they undergo both
bending and torsional strains when the yarn is bent. An analysis by

Livesey and Owen (41) showed that this factor may be taken as

2.2,
(B,)twisted yarn [ 5 ] I [1+ o«“a“(1+B,/ r‘f],
)

T= 15&)twistless yarn a2a2(1+Bf/I% 2

where a is the yarn radius, a is the twist in radians per unit length, and
l} is the térsional-rigidity of a single fibre.

This analysis applies only for small.bending defoimations since
fhe derived relations were found by analysing the forces and couples acting
on the undeformed shape of the fibres. Leaf (42),in a recent publication,
examined the geometry of a bent helix under large deflections, and he was
able to show that the equation d;veloped by Livesey and Owen was accurate
" to within 2% for even the largest strains considered. However, he also
showed that the neutral axes of the helices moved by an’amount depending
on the helix radius. Hence independence of filament behaviour is unobtainable
at large deformations.

Modifying the rigidity of the interlaced yarn inside the fabric

by a "geometrical factor", R, assumes that the yarns at the cross-over

region are prevented from bending by being in contact with the cross-yarns.

This assumption was first pointed out by N.J. Abbott, Coplan and Platt (37).
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The lengths of yarn that can_not bend, [%, and that can bend,‘ﬂ—lg, were
defined by the above workers as projections of the crimped yarn on the

fabric plane. Accordingly, they gave the factor 'R! as

(B, )interlaced yarn /
R = A = .
ZBy)straight yarn [rI%

-~

The ratio 'R' according to the above relation is never less than
unity, a fact which fails to explain some results obtained by other workers
(6,8) for some open fabric structures. Following a similar argument to
that given by N.J. Abbott et al. and accounting for the yarn crimp, ¢, it

can be shown that

Sacol | - o

which can take values less than 1.

The interaction between yarns in fabric bending is probably more
complicated than to be expressed by the mentioned geometrical factor.
The relation between the weave construction and fabric flexural rigidity
was examined by Eeg-0lofsson (43,44), who made an extensive study of a
set of different commercial fabriecs. In his study, the type of weave was
regarded as of limiting effect, except in so far’as it affects the length
of yarns in the unit fabric'cell. From his experimental results, the

following conclusions were reached:

(2) The stiffness of fabric is proportional to a function of the number of
threads per cm, which function increases faster than the number of

threads per cm.
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(b) The stiffness is inversely proportional to a function of the length
of the bent threads between two consecutive points, where the threads
pass from one side to the other of the fabric.

These relations can be represented as follows:

1 1 '
2y S PpP4n,

where Bw and BT are the warp-way and weft-way fabric stiffness per unit
width, n1‘is the number of warp threads which a weft crosses between two
consecutive points of passing through the fabric, and n2 is the corresponding
number for the weft. It seems reasonable to suppose that the influence

from the crossing system of yarns is less than that from the bent system.

To include the effect of the crossing system the former relations were,

thus, modified to

va, vas

Bwa 5 and BTa >
P1P2n2 P2P1n1

G. Abbott, Grosberg and Leaf (45) calculated the whole hysteresis
bending curve using both energy and force approaches. A similar force
approach to that used by Nordby was used for the case of set fabrics., For
unset fabiic defined by the parameters p,E and B in both directions, the
undefoimed yarn configuration was completely defined using Peirce's rigid-
thread ﬁodel with finite contact. When the fabric plane deforms by an
angle & , the deformed configuration of the yarn was determined using the

following assumptions:

1. The yarn length does not change in bending the fabric.
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The modular height of the yarn, in the bending plane, say the warp,
will change by a small amount proportional to the inter-yarn pressures,
V. The spring modulus, %% » for this deformation can then be derived

using small deformation theory (31) as

av _ 2.36 32 .
dh p?

Knowing the deformed and’the undeformed configurations of the yarn,
the bending plane, the sum of the energy changes can be found énd is made
of three terms:

Energy changes in the contact regions due to the yarn in the bending plane
inoreasiné the length of contact with the cross yarné on the outside of
the bend and décreasing it on the inside of the bend.

Energy éhanges in the free section of the yarn due to changes in
curvature.

The energy increase or decrease due to the change in crimp of the cross .

yarn.

The fabric flexural rigidity was then calculated by equating the

sum of the energy changes in the system with the work done by the external

couple bending the fabric. The final calculated results gave lower values

than the observed fabric bending rigidity. Abbott et al. suggested that

this discrepancy was mainly due to possible errors in estimating equivalent

yarn diameters which require a detailed knowledge of the load-compressiqn of

the yarns,

A suggested model and energy approach were also given by Hearle

end Shanahan (22,26). In order to apply their method, a general geometry

of the fabric had to be defined, in which the fabric bending angle,d, was
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introduced. This angle was used in the energy equations as the generalized

displacement associated with the deforming external couple, M. The
general mechanism of fabric bending, described by G. Abbott et al. (45),
had to be preserved when defining the bent shape of the fabric, i.e. in
the bendihg plane an increase of the angle of contact on the outside of
the bend and a decrease of this angle on the inside of the benci should be
achieved in such a way that the’difference between the two contact angles
isd. |

Figure 14 shows this geometry, described by the authors as a
modified Peirce's flexible-thread model. According to the bent geometry,
the yarn contact length in the cell unit will be reduced from Dém to
-]22(291—@. Referring to axes XZ in the bending plane and Y2 perpendicular‘

to this plane, the generalized dimensions and displacements are defined

as follows:

X =_§sin61+ {[1- %(291—@)} cose1, (a)

7 = g(1—2cos61)+{ £1— ']22(261—@)} sing,,

r, = (x/tan®+ , r, = (x/sin®)-D/2, R ='(r1+r2)/2
h1=r1—r2=z+-g-—xta.n%- , (v)
by = (£,-Deeine+D(1-cos0,) , (é)
and h,+h, =D . . (a)

It can be shown that the above relations may be reduced (from b,

¢ and d via a) to only one single relation in the form

o

i . D ®
2+ -[Ds1ne1+ {'21— -2-(291-@}0)5 61 ] tan 5 +(£2—D62)sin92—1)00862 =0,

(1.32)
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which may be regarded as &= f(e1,62), provided that lg and lz are
constants initially defined and D is calculated for the undeformed
configuration (D is also constant for incompressible yarns). In order to
define the deformed shape and the M-® relation, we néed two more relations
relating the external couple M tocb,91 and 92. These relations are

provided by the minimum energy method. The energy equation is given by
E=-M®+U ,
where U is the strain energy due to the yarn bending only,and is defined as
1 .
U=3 {131(291—@)+2]3292}. _(1.33)

Regarding 61 and 62 as the independent parameters, the minimum energy

conditions (equation 1.17) give

d 30 90U 0d
M.%=T+E T ? (1.34)
1 1 1 v
and
0d _9U  dU 9D
M3 =30, *ap 90, ° (1.35)

where the derivatives are found from equations (1.32) and (1.33). The
problem is reduced to 3 simultaneous equations, (1.32) and (1.34~1.35), in
3 unknowns (61,62 and either & or M) which can be solved by iterative

techniques.

1.4 Scope of the Present Work

This thesis is an attempt at a fheore@ical study of the initial
extension and bending of fabrics. The study is limited to dealing with the
simplest and most commonly used weave, namely the plain fabric. The

final aim of the work is to provide a closed form solution, for the above-
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mentioned initial fabric deformations, that directly relates the fabric
modulus and fabric inarameters.

In section 1.3 it was shown that a computer was a common feature
used by all workers,in order to obtain numerical resulfs that can be
compared with experimental data. When large deformations are to be
considered,it seems that this recourse to powerful computing techniques is
most probably unavoidable., The need to know the fabric mechanical behaviour,
at higher strains,is of considerable inte:es% in industry in order to check
the quality of the fabric and the effect of various methods of fabric
treatment. However, in the practical uses of commercial fabrics, these
high strains are rarely met with and in many applications only small
deformations are expected to take place. For such cases,it would be useful
if a closed form solution could be found,that gives a reasonable prediction
of real fabric behaviour without the need for a computer.

A clear disadvantage of a computer-based solution is that only a
specific solution, for the specific fabric in hand is obtained,and even
with some approaches if a graphical method or dimensionless representation
is used, a general solution can not be obtained which covers all the
possibilities arising from the endless combinations of fabric parameters.
On the other hand, a closed form solution can provide such a general
solution. Obviousiy,for practical purposes,the latter is recommended. In
addition, the closed form solution is more capable of showing the inter-
relation between the fabric parameters. A quick glénce provides an idea
about the interaction, magnitude and importance of the parameter when a
fabric is required to have certain given properties.

Apart from investigating higher strains, another reason why most

of the analyses mentioned previously require the use of a computer is
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their employment of relatively sophisticated'fabric models. Using Peirce's
flexible-thread model or the modified models, involving non-circular shapes
of cross—section, necessitates the solution of a system of usually non-
linear simultaneous equations. Another alternative is to find an exact
solution, considering Peirce's-rigid—thread‘model as a starting point. This
will involve the use of elliptic integrals and so the resulting équations
of equilibrium are highly non-linear. A simple way out of the difficulty
is"to use a much simpler model,and this has been the approach adopted in
the present work. For this purpose,a simplified shape of the plain woven
fabric was congidered where the yarns, warp and weft, were assumed to be

modelled as elastic, straight thin rods forming a saw-tooth shape.
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CHAPTER 2
THEORETICAL

2.1 The Straight-line Model

It has been suggested in the preceding chapter that, in order
to obtain closed form solutions for the initial tensile and bending
moduli, a simple model for the plain weave geometry is necessary. A straight
line model was thought to be most suitable for this purpose.

Different representations for the yarn axis, in one of the major
directions, of a plain weave structure have been given in figures (5—8);
these representations have been shown to be dependent on the assumed yarn
properties, namely their rigidity and compressibility. Two possibie
simplified models, using straight lines, are shown as EFGI and ACH in
figure 15. Of these, the first is in some respects a better representation,
‘as it can be thought of as simulating the flattening which occurs in the
&arn cross-section during fabric formation. On the other hand, adopting
such a model in the present analysis,will be at the expense of additional
difficulties in defining the properties of the horizontal bits EF and GI,
in the shape. The second model, AOH, which may be termed the "Saw tooth"
model, was considered preferable, at least at the outset of the
investigation.

We may now consider the geometrical characteristics of the model,
and tﬁe mechanical properties of the constituent yarns,that'have been

assumed.
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Geometrical characteristics of the !'Saw-tooth' model

Figure 16 shows half of a plain weave repeat tégether with the
straight line approximation. The fabric neutral plane will be that which
contains the intersecting lines O1Q1 and 02Q2. The two yarn systems are
assumed set in 3-dimensional space, and CH1 and CH2 are the maximum
heights of the warp and weft axis, at the cross overs, above the fabric
neutral plane. It is assumed that the warp is rigidly jointed at H1 and
at similar points on the warp axis; also the wgft is rigidly Jointed at H2
and at similar points on the weft axié.'

Using the notations given by Peirce, the fabric parameters related

to figure 16b are as follows:

Thread spacings

Py = 0,8, and Py = 040,
Modular lengths

11 = 0,H,Q, and lz = 0,H,Q,-
Modular heights

h, = 2CH, and h, = 2CH,.
Weave angles

/\ /\
6, = CO.H, and 0, = CO.H,.

It is usual in practice to define the weave by the two thread

spacings and the two crimp ratios for warp and weft, where

c, =— -1 and c,=—=-1.

The triangles formed by a quarter of the plain weave repeat then yield

‘the following relations:
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-1 -
= cos pz/lg , © cos™ | p1/£2

-
|

N
]

and

= [1 Sine1 » h2 £25ine2-

-
I

The geometry is completely defined if the measurable quantities
p2,p1,1a and 12 are given.

Because the fabric deformation depends on both the weave construction
and the constituent yarn properties, it is necessary to define the mechanical

properties of the yarns in the system.

The yarn mechanical properties

(a) Yarn bending

The yarns are assumed to have constant rigidities, B, along their
lengths. The relation between the change in curvature, K, and the applied
bending moment, M, is assumed linear for initial deformations, i.e. the
yarn rigidity does not change with the change in curvature., Using the

notation of section 1.}.3, the assumed bending behaviour gives °

n_._ar_H
B~ T ds dso
¥ | .
= 4s if the yarn is naturally straight.

The strain energy, dUy, due to bending of an element of length ds is (46)

2
B (a¥y2,. _ M
v = 3 (ds) ds = 5z ds.

(b) Yarn compression

Because of the forces generated between the yarns when the fabric
deforms, the yarns will be compressed, so that their dimension in the plane

of the fabric is much greater than that out of the plane of the fabric.
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In a real fabric,thé compressive forces will be distributed over the region
of yarn contact,but in the model they are represented as point forces. If
the inter-yarn force is Tc and the original diameter of the yarn is 4, the

compression modulus of the yarns, M, will be assumed given by

g =
i
Oml O'-a

where é‘; = Ad/d is the fractional change in diameter.

The strain energy of compression, Uc’ is then
T =% Ad (7)) = T %a/2u
c c c *

‘ (¢) Yarn éxtension

The forces acting on the system when the fabric is deformed will
usually have a tension cofnponent, TT, acting axially on the yarms. If €T

is the fractional extension produced, the tensile modulus of the yarms,

The strain energy, dUT’ due to extension of an element of length ds is

\

2
auy, = ('I'T) ds/2\.

2.2 Solution for the Initial Tensile Properties of Plain Fabrics

It is now proposed to find the relation between the initial load-
extension of plain woven fabrics, when the constituent warp and weft yarns
have the shape and properties defined in section 2.1. Before we proceed to
consider the solution for fhe general case, it may be useful to demonstrate

the adopted approach by considering a simple case. In this case, the yars
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are assumed incompressible and inextensible. The strain energy in the

system, when it is deformed, is thus due only to bending deformations.

2.2.1 Simple case: Incompressible and inextensible yarms

‘Suppose the fabric is deformed, biaxially, by forces F, and F

1 2
per unit width along the warp and weft directions respectively. If the
number of ends per cm and picks per cm are 1/p1 and 1/p2 respectively,

the forces f1 and f2 acting on the individual warps and weftis are

Fabric extension will cause forces 2v1 and 2v2 to be generated
along the line H,H, between the threads (figure 17a). From statical
considerations Vy = Vo but it is convenient to retain the separate notations
for theimoment.

The forces f and v can be resolved as in figure 17c,to give an
axial tension, transverse shear and bending moment,at any point on the yarn
axis. In general,for such deformations it is usually assumed that the
yarn cross-cross section is undeformed by shear. The tension and bending

moment at a point P(x,y), a distance 's' from 0} is (see figures 17b-c)

T f cosy+v sinvy,

T
and

M = fy-vx.

If the deformations Ap/2 in the fabric plane and.Ah/Z perpendicular to the
fabric plane are small, then approximately v= 6

and X = s cosO ’ Y = s sinb ,

i.e. the small deformations have no significant effect on the system geometry

and the forces can be calculated on the basis of the undeformed
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configuration (46). We then have

]
n

T f cosb + v s8ind ,

and
M = s(f.éine—v.cose).

The bending strain energy in O‘IH is then

1
42

1 2
81 = 2B, My dsy

(@)

L2
1 . 22
= _23;/ (£,5in0,-v,cos0,)%s] ds,
0
3
£

. 2
= Z_éﬁ: (f1s1n91—v1cose1) .

The bending strain energy in 02H2, in the weft direction, due to the tensile
force f2, and the vertical reaction Vo is given by similar expression with

suffix 23 hence the total bending strain energy in the unit cell is

Up = Upqy+Up

. ' 2 .
) Z?(f1s1n91-v1cose1) , lg(f2s1n62-v200392)2 .
= 18 B, 78 B,

By Castigliano's theorem (46,47), the deflection in a load
direction is given by the partial derivative of the strain energy in the
body with respect to this particular load. Applying Castigliano's rule

gives
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, an lzsine1 .

Ap2/2 = 3T, =37 3, (f,8in6,-v,cos0,) , (2.1)
aT,, ﬁgsinez

Ap1/2 = 5%, = =57 5 (fzsinez-vzcosez)s (2.2)
Ju. —£300s6

Ah,/2 = B_- L (£,sin6,-v,cos0,) (2.3)

1 —av1 - 24 B1 1 1 1 1/ *
and

BUB -ﬁzcosez

4h2/2 = 5%, =32 5, (fzsinez-vzcosez). (2.4)

Another condition that must be satisfied is provided by the
compatability condition of the point of contact between warp and weft.

Assuming incompressible yafns we know that h1+h2 = constant and hence

A.h1+Ah2 =0

Substituting in the above equation from (2.3) and (2.4) gives

[30039 ‘ L2cos6
L L (f,sin6,-v, cosb, )+ 2
:B1 1 11 1 32

(fzsinez—vzcosez) =0. (2.5)

Furthermore, at any moment of deflection, the vertical force acting from
the weft on the warp, Ve must be equal to the force acting from the warp

on weft, \PY i.e.
V=V, =V (say)-
Equation (2.5) can be solved for v, giving

3 s 3 (]
f132ﬁ1s1ne1cose1+f231£2s1nezcos62 .

3 2 3 2
32[1cos 61 + B1zzcos 92
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We shall define here a force ratio @ = f2/f1 3 the above equation is

then
3 . 3 .
) f1(32£1s1ne1cos61+QB1£2s1n9200s92) (2.6)
- B EBOOSZG + B ,pcosze |
21 1 172 2
Equations (2.1) and (2.6) give
l?sin91 cos91(Bzé?sine1cos91+QB1£gsinegcos62)
A =f, —==5— ] sino, - .
Pp =% T12B 1

1 322?008291 + B1£2005292

The above equation gives the fabric warp-way extension under the biaxial

loads f, and f,. If only a uniaxial load is applied, arbitrarily taken in

1 2

the warp direction, i.e. Q=0, the equation reduces to

33 ..2 2
f1 laﬁ2s1n,61cos 92

Ap, = .
2 12(32£?cos261 + B1ﬁgcoszez)

If we let éﬁ be the fabric fractional extension in the warp direction, then

éo.l =AP2/P2 9
and we can define a fabric initial modulus E1 by

E, = F,/§

. i

p1Ap2

3 2 3 2.
12p2(32[1cos 6, + B1lgcos 82)
p1l?ﬂgsin291cos262

1231p2 Bzﬂ?cos291
Zas'nQG T B, [cos? " (2.7)
P1 1 i 1 1 2COS 92

]
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which is similar to the result derived by Grosberg and Kedia (31),

equation (1.14).

2.2.2 General case: Compressible and extensible yarns

It is well known that the actual deformation of fabrics involves
both yarn flattening and yarn extension as well as bending, and the errors
which may result from ignoring these effects could be crucial. Therefore,
the above approach is extended to the general case of extensible and

compressible yarns.

The strain energy in the system

"In the general case,it is slightly easier to consider the strain
energy in half a repeat of the weave, i.e. the whole unit shown in figure

17a. The total strain energy will be the sum of the following 3 termss

(a) Strain energy due to yarn bending

The bending’strain energy in 01H1 and 02H2 is as before; hence

the bending strain energy in the unit cell shown is

l?(f1sin91-v1cose1)2 . fg(fzsinez-vzcosez)z.
24B1 24]32

UB=
(b) Strain energy due to yarn extension
The tensile force in O,H, is (f1cose1+v1sine1),'and from the
definition giveh earlier for the yarn properties, the extension strain energy
in the whole unit is
L, (£,cos0,+v,sind )2 L. (£,cos6,+v, sind )2
U = 1M1 11 1 2\ 2 2 2 2

+ .
E 2 k1 2 XZ
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(c) Strain energy due to yarn compression
If d1 and d2 are the original yarn diameters of the warp and

weft threads, the compression strain energy in the unit cell is given by

(2v1)2d1 3 (2v2)2d2

Uy.=8—""""
2 2
_ 2v1d1 . 2v2d2.
U1 Hz

The total strain energy in the cell unit is
U, = Ué+Uﬁ+Uc

3 o 2 2 2
[i(fis1n6i v, 0086, ) Zi(ficosei+visinei) 2vid,
i=1,2 i _i i

Calculation of fabric extension

The points of application of the forces 2v, on the warp thread

i
and 2v2 on the weft thread coincide with the point of contact of the two
yarns. These points are initially at a height (h1-d1)/2 when regarded as

a point on the warp thread, as shown in figure 18, Obviously,
%(h1-d1) = %(dz'hz)'

When the fabric deforms, the height of this point will change by virtue
of a decrease or an increase with respect to the fabric plane. If the

yarns are to remain in contact, the above argument leads to

A(h1-d1)/2 =A(d2—h2)/2 ,

A(hy-4,) + A(hy-d,) = 0 - (2.9)



Warp extension

Gogm '@ 2

®

Fig. 8 shows the change in height of the point of contact, N,
regarded in (@) as point on the warp and in (b) as
point on the weft.
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This condition replaces the condition Ah1+Ah2 = 0 given for the case

of incompressible yarns, and reduces to the latter when the yarns are

incompressible.

Now by Castiligliano's theorem,
ST, = 4P » (2.10)

FYol Apy (2.11)

S(E%:)‘ = A(h,-a,)/2 (2.12)

and

av,) = A(hy-d,)/2 - (2.13)

These, together with equatlons (2.8) and (2.9), provide the solution to

the problem. Equatlons (2. 9),(2 12) and (2.13) give

+ +
1 QBi A

i=1, i Hy

3 .
2 {‘ ﬂicosei(fimnei-vicosei) [isinei(ficosei+visinei) 4vidi}_ .
2

Since v =Vo=V,y 88y, the above equation when rearranged gives

[2 ﬁscos 8 sin%e, 44
i=21,fﬁs:.necose(mB-)\)=vz: 1ZBi+Ii>\i l+uii),
" from which
£
_Z f ﬂ sine.cosei(-ﬁzlﬁ'; - -)\11- )
Z fzcos 8, lisinzei 4a, t | (2.14)
128, * V™ } .

1 1
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Next, the extension in the warp direction Ap2 can be obtained from

equation (2.8) and (2.10) as

) l1s1n91(f1s1ne1—vcos91) . Z1cose1(f1cose1+v sine,)
2 . 12B

Ap
1 M

. [(l?sin261) . L|cos2e1 l? l‘
- M

58 )\ ]— v[sine1cos91 (G~ - -A_)] (2.15)
1 1 1 1
Substituting the value of v from equation (2.14) gives -

. [?sin2 91 ,21005291

ap, = 1 128, N
22
1
: 3 £1 Zf l sind, cos6 (123 - —A-i-) : )
-sinb cose1 - —— . 2.16
1 123 £3cos 9 zi
Z : sin S
. i
i=1, A 128y M by

Using the relations Ap2=é.’|p2, i‘1’=F1p1 and f2=F2p2, the above equation

gives
11 M
& =— =, (2.17)
17 p, N .
where
s 2 2 .
{ l?[gs:.n 91cos 9 14 ,ﬂ1ﬂ2 £§s1n2e1 s:'Ln292 chos291cos292)
M= + +
14413132 1231l1 12 B1x2 Bzx_'
£1 12c0s291 sin262 £ ([fsinze_' cosze.l)(d1 d2
+ + 4 + — 4+ =)
A2, 1 1231 Xy He oMy

2
/ £
~(F 1 _ 1 1
( 2P2/F1P1),Z1£ 5in6,cos6,5ind,cos0 (1 ; - 1)(1 22 Tz_) ,
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and

) 2 . 2 A
Z (ficos 0; ﬁimn 8; 4di

N =
i=1,2 128 M Wy

A similar expression for the weft-way fabric extension, é;, under biaxial
loading could be derived from equations (2.8) and (2.11),or by the

interchange of suffices in equation (2.17).

2.2.3 Special cases

The following special cases can be derived from the general

expression.

1. Fabric extension of compressible and extensible

varns under uniaxial loading

In this case F_=0 and the term including F, in equation (2.15)

2 2

is eliminated. The fabric tensile modulus in this case is

F P
1 2 N
E, = =—2 N (2.18)
1 éﬁ Py M
where
[&[ﬁsinze c0329 £4 1%[% é?sinze cos29 l?cosze cos29
M’ = 172 1 1 + 1 + ( 17 1 1 + 2 1 2
1443132 1ZB1A1 12 B1x2 BZX1
1&1& cos291sin261 <ﬂ$sin291 cos291 (d1 d, }
+ + 4 + — 4+ ==))
X1X2 12B1 11 u u2

2, Fabric extension of inextensible and compressible yarns

under biaxial loading

If the yarns are assumed inextensible, the A's tend to infinity

in equation (2.17) and the warp-wise extension is given by
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F.p
11 X
é§= P, Y ° (2.19)
where

l3 4,

X = K Ssin 91cos 6,+48B,sin 9 (—— + o <)
1 2

_(F2p2/F1p1)égsine1cose1sinezcosez} ,

and

d, 4a
Sc0s® Dcos? 21,3,
Y = B,licos“6,+B, [cos ez+483132(u1 + “z)

3. Fabric extension of inextensible and compressible yarns

under uniaxial loading

In this case F2=O and X is reduced to X', given b&

Psin? 0, d, d
¢ _ AT 1) 1,2
X = —=3 {[cos 6+4SB( +uz }

The initial fabric modulus for this mode of deformation is then given by

P
2 Y
12B,p B, Pcos?o
192 2t 1
= |1+ 3 «  (2.20)
p,{;sin"0, B,L5cos 0,+46B,B,(d, /i, +3,/1,)

4. The simple case

The simple case of inextensible and incompressible yarns, wﬁich
was derived earlier, is a special case of the general solution (equation 2.17)

when the A's and W's tend to infinity.
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2,2,4 Fabric initial Poisson's ratio

Fabric Poisson's ratio is defined as the ratio of contraction to

extension, expressed as fractions, and can be investigated by the present

analysis.

Under biaxial loading, the wai'p—way change in fabric dimensions,

Ap2, is given by equation (2.15). By change of indices we get a similar

expression forAp1 as follows:

PR At et N
A Y

. _’«v."’,v... P "

)fi [IRAR i 5

2 2 BAON
[ssin o l cos © Ry e \%;
2 2 2 2 -@ ’(T - ‘us 5,;
= RALY B0
Ap, "[fz( 128, + A )

2 :
- % sinezcosez(]‘?_%‘ - Tz') Z fiSinej_cosej_(12%
2 i=1,2 i

2
where
2 .2
l?cos 0, f.s:.n 0, 44,
N = (112]3 L 1)\ L, P-l). (2.21)
i=1,2 i i i

These expressions for Ap2 and Ap1 are reduced under uniaxial loading

conditions, f2=0, to the following

£, ﬁ?sin291 l1cos291 ) £ 1, 0
Ap, = —N—[N ( 25, + y ) - sin e1cos 0 (——; -)\—1) R

Ap, = -} [s1n61cos6181nezcose (12]31 - ;\;-) (—1?]3; - ;\—) .
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A general expression for Poisson's ratio in the warp direction is then

o - 2
177 p8p,
| B4 L
p, £ind,cos6,sin6,cose, (12]3 - ——)(755— - —-)
- > > § - (2.22)
[ sin © [gcos 0 / [
N( 1 1, 1) ~ 8in®0,cos%0 (——1— - —-1-)2
Py 12B, M 1 1M2B, T

The special cases can be obtained from the above expression by

applying the following rules:

(a) If the yarns are assumed inextensible, i, and X, tend to infinity.

(b) If the yarns are assumed incompressible, M, and u, tend to infinity.
The following cases are of interest,

1. Pabric initial Poisson's ratio for inextensible and compressible yarns

In this case equation (2.22) is reduced to

£ l
P2 s1n91cose1s1ne 00362(14 B )
104
17 p 3 . 2 3
! Z(_‘ifiﬂ) = cin26.cose (A)z
12‘B1 1 1 12]31
where
l?cos29. 4di)
Z = + ,
=T,2 128 My
or
p2 [?cose1s1n9200862 . (2.23)

T 2 a, q,
s1ne1[ fgcos 62+4832(;; +-E;}



2. Fabric initial Poisson's ratio for inextensible

and incompressible varns

The above expression is further reduced to

Py tan62

0 = 5; tan 9{

75

(2.24)
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2.3 Solution for the Initial Bending Properties

of Plain Fabrics

For this analysis,it is proposed to find a closed form solution
for the relation between the fabric initial bending modulus and fabric
and yarn parameters, under conditions when only small fabric bending
deformations are assumed to take place in one of the major directions.

The yarn's initial configuration in the fabric and its mechanical properties

are assumed to be identical with those used in the previous analysis. In

particular, it is important to remember that the yarns at the intersections
are assumed rigidly jointed, i.e. the angle subtended between CA and AH

| (figure 19b) remains unchanged during deformation.

Figure 192 shows a three dimensional representation of the plain
weave using the 'Séw tooth! model. When the fabric is bent, say in the
warp direction, the weave unit will appear as shown in figure 20a and
because of the assumption that angles like dXﬁ remain constant, the arm AH
may be treated as a cantilever fixed at A.

Figure 20b shows the elevation view of two successive bent warps
according to this mechahism of fabric bending. It is apparent that the
thread spacings, in the bending plane, on the outside of the bend will
increase,while those on the inside of the bend will decrease. This suggests
that there is a 'neutral plane' in the fabric,whose length does not change
after the bending deformation. Due to the fact that the fabric is not
hoﬁogeneous in structure and fabric bending involves a relative freedom
for yarn deformations, including a change in their height amplitude, the
'neutral plane' will not necessarily coincide with the plane of tﬁé fabric
before bending (i.e. the plane through the mid—poiﬂt 0 of AH in figure 19b).

This neutral plane is shown in figure 20b and intersects AH(at D. If the
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radius of this plane after bending is @, then

p2=ecb'

where @ is the angle of fabric deflection for the unit weave cell,
Note that the point O is not a point of symmetry for the warp configuration

in the deformed fabric.

Force analysis in the system

When the fabric is bent by an external couple, forces will be
generated between warp and weft threads at the cross-over points. We may
take the unit cell AH/ and EF/ (figure 20a) as representative of the bent
configuration of the fabric. The forces acting on the warp unit AE/, in
the bending plane, can be assumed to be as ghown in figure 21a, namely
couples m, and mq at B and A respectively, together with the forces vy

end £/ in the

and vq in the vertical direction and components f 1

1

horizontal direction.
These forces and couples are assumed balanced,having deformed
the unit warp to the shape shown in the figure. Three conditions must be

satisfied in order for the system to be in equilibrium.

1. The resultant of the horizontal components of all the forces is zero.

2. The resultant of the vertical components of all the forces is zero.

3, The forces imposed by the cross yarn at A,in the radial direction AI,
is of the same magnitude as the forces imposed by the cross yarn at Hf
in the radial direction IH’.

The last condition insures that the successive cross-yarns will

be crimped by equal andﬂopposite forces. The first two conditions give
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/

/7 _
and vt1 = Vy
while the third condition gives

’ - .
vy o= 11coscb+f1s1ncb.

-

The second and third conditions lead to

v_,l \L) cosd +:£‘1 sind ’

or

£ (1-cosd) ,

V4 T sind

-
]

and when & is small, f‘l is given approximately by

v

1
L=

2.3.1 Fabric bending of incompressible and inextensible yarns

The strain energy method will be used to solve this problem, A
great advantage of the method adopted, as previously shown in the tensile
analysis, is that independent co-ordinate systems may be established for
each member without regard for consistency of positive directions of the
various co-ordinate systems (47). This advantage is essentially due to
the fact that the strain energy is always a positive scalar quantity.

The strain energy in half a plain weave repeat may now be calculated
in terms of the couples and forces shown. When assuming inextensible
and incompressible yarns, this énergy will be the sum of the following

terms:

(a) Bending strain energy in the warp wnit AH/ (figure 21a), due to the

couple m, and forces v1 and f1;
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(v) Bending strain energy in the weft unit EF/ (figure 21b),due to the
change in its height amplitude caused by forces like Voo
Considering the warp, referred to axes H'X1Y1 (figure 21a), the

bending moment at any point P(x1,y1) on the warp thread, a distance 8,

from B is
M1 = m1+f,|.y1—v1x1 .

Since the deformations are assumed small, the undeformed

configuration may be used as a basis for the calculations instead of the

unknown deformed shape.

Initially we have

X4 = s.‘cose1 and ¥y = s1sin61.
Hence

M, = m1+s1(f1sine1-v1cose1) ’

1

and the strain energy, U1, in AR’ is

o
-
1
5l
(s ] B3
\
R
=
- N
[
[}
-—

b 2

1 .

23{[ [m1+s1(f1s1n91—v1cos91)] ds, ,
0]

or

3
] [m.|+,£1 (f1 sing,-v,cose, )] —m?
) . (2.25)

1= 28 3(£‘1 sin91-v1cos91)
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In the weft direction, the forces acting on the unit weft
yarn EF’, of length )/ ,are shown in figure 21b. These are the vertical
forces AL and vé ,at B and ¥/ respectively,together with the couples m,

and mé which balance the moment produced by A3 and vé and prevent yarn
rotation. Taking axes X2Y2 in the plane of the weft at F’, the bending

moment at any point (x2,y2) a distance s, from ¥ is

M‘,2 = mé’-vzxz ’

and, since X, = szcose2 for small deformations, the bending moment is

given by
M2 = m2—v23200392 .

Here,the possible rotation of the plane containing the weft thread
is in a direction perpendicular to the forces and couples acting on the
weft, therefore this rotation will entail no change in the total elastic
gstrain energy. Hence the strain energy in the unit weft, resulting from

the change in curvature due to change in its height a.mplitudev,is given by

b

1 2
U 232,1/. (vzszcosez-mz) ds,
¢}

N
]

3
3
v l cosB,-m +m
1 { 272 2 2} 2 ] (2.26)

= 232 [ 3v200s92

The total bending strain energy, U, in one complete cell weave

is therefore
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d
]

U.4U

or

d
[l

1 2 2 . ' 5
gﬁ; [3m11%+3m1l1(f1s1n91—v1cose1)+[?(f1sine1—v1cose1) ]

1 2 2 2 2 2
+ Eﬁ; [vzfgcos 92—3m2v2£1cos 92+3m2£2] . (2.27)

The deformations in the system

The above expression for the strain energy was used tégether
with Castigliano's theorem to calculate the various displacements in the
system at points at which the forces are applied. The sign convention
with this theorem is that the partial derivative of the energy,with
respect to particular force,yields the displacement in the force direction.
Accordingly, a negative value for this derivative means a displacement
against the assumed force direction.

By Castigliano's theorem

d U oU d U
Ap2 = é?: ’ Ah1 = av1 and a = -;;n;- ’ (2.28)
also, ah, =‘§;§ and Y = gag . (2.29)

where Ap2 is the change in warp spacing (as considered at the outside
of the bend);
Ah1 is the change in warp amplitude;
o 1is the relative angular rotation of the elastic line at H’ with
- respect to A (fiéure 21a);
Ah, is the change in weft amplitude;

and Y is the relative angular rotation of F/ with respect to E(figure 21b).
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In the weft direction, the balance between the forces and couples

acting on the unit weft cell gives v2=v£ and m2=mé .

weft will deform symmetrically,with respect to its mid point G,as shown

This means that the

in figure 21b; hence the bending moment, M2, is equal to zero at G.
The relation between m, and vz can be obtained from the above

result

(MZ)G = mz-%vzﬂzcoséz =0,
or

m, = %v2£%cos62 .

The relative angular rotation between F/ and E is obtained from

equations (2.27)and (2.29) by

2
2
37 ) [-{&zﬁzcosez—mz} +m2] ,

2B2v200s62

which leads to Y=0 when substituting by the above value of m, in terms of Ve
This, physically,means that the reaction from the warp on weft,
when bending the fabric in the warp direction, may only entail changes in '
the weft height amplitude without any relative rotation between the ends
of the weft unit cell.
We shall proceed to find the relation between m, and vy using
the compatability condition of the point of contact between warp and weft.

The second condition in equation (2.28) together with equation

" (2.27) gives
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2 3 :
AR = d U _ -3m1£1cose1—2£1cose1(f131ne1-v1cos91)
1 av-| 6]31
2
—ﬂ1cose1

= —'6'131— [3m1+2l1(:t1sine1-v1cose1 )] .

The negative sign in the above equation means that the displacement
of point H/(figure 21a) is against the assumed direction of the vertical
reaction Vs i.e. the system of forces and couples will produce decrimpil:lg
of the warp yai'n.

Similarly, the first condition in equation (2.29) together with

equation (2.27) gives
U 1 3.2 3 2
Ahz = BVQ = 632 [2v2lzcos 92-3m21200s 92 ’
and since m, = %vzﬂ?_cosez , we find

vz,egcos262
Ah, = —F5—

2 12132
Note that Ah1 is strictly the change in h1 in a vertical direction,
since \L is vertical. However, since @ is small and 'e! large,the change
of amplifude in the radial direction will, to the level of approximation
being used, be equal to Ah1. The change Ah2 is in a radial direction,
since v, acts radially. Thus, if the yarns are incompressible, the
relation 'h,+h, = constant' gives Ah,+Ah=0; also we may put V==V (say)

and we get



87

£ 3 2
1cose1 . vlzcos 62
6B1 3m1+2,£1(f1s1n61-v cose1) = ----—‘]—2172 ,

or

2
o vB1ﬂzcosA62—432£2cos91(f1sin61-vv cos@, ) ‘
;=

6}32£$cos91

Substituting the approximate value f1 = v¢/2 in the equation we find

3. 2 3 .
B, l2cos“6,-2B,_ f cos6, (P sind, ~2cos6, )
m, = v [ 172 2 21 1 1 17 1. (2.30)

6BZZ$COSQ1

The relative angular rotation of the elastic line at point ;o
with respect to 4,a, is given from equations (2.27) and (2.28) by the

following expression

3T ,6m1£1+3ﬁ(f1 sin61-v1cose1)

azam.]_ 6§1~

Due to the assumption of the rigid intersections, it is apparent
from figure 21a that o=@, where @ by definition is the angular deflection

of the unit fabric plane. Also since f1=vd3/2, the above equation gives

ta, £1+x}£f( d£ine,~2c0s0,)
d= 7, ' (2.31)

or

48, = 4m1Z1+v[$( $sind,-2cos6, ).
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Equations (2.30) and (2.31) can be solved for v and m1. in terms of .
Thus

12$3B,B l 1c088,

2B, ﬂ cos 9 -B ,230089 (psine, -2cos6, )

Vv =

which may be approximated in the following way.
We have

3 .
6(1)]3132,@100391 CI>32£1 Slne.‘cose‘l

1 -
2 2 2 2
(Bzﬂ?cos 91+B1,£Zcos 0,) 2(32[?cos 61+B1ﬂgcos 6,)

Vv =

Since @ is assumed small,we retain only terms of order ¢ and the

above expression is reduced to

6<pB1B J4 c:ose1

v = . . (2.32
(B Pcos 6,+B, pcos 6,) ( )

From equations (2.30) and (2.32), m, in terms of ¢ can be obtained:

3 2 |
_ 6q>B1B I 4€086, [31 lzcos 82—232£?cose1(cpsin61-200s.91)]
1 ]

(B, Pcos 6,+B, pcos 62) 6B2[$cose1

or

¢B1|'4szcos 6,+B, Pcos 62]

[1 I_B pcos 0, +B [3cos 62

The strain energy in the system can now be calculated in terms

of . First the expression for the energy, using the relations f1=v¢/2,

v,=V,=V and m2=%'vl2cos92, is converted to
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U= 243 [12m2,£ +6m vL (cbs1n6 -2cosb )+v ,P(cbsme -2cos8 ) ]

243 2
vlzcos 62

+ TR
24:B2

which, upon substituting the values of v and m, in terms of &, gives

csz1 l cos49 +SB1132PL3005 91cos29 +3B L cos 92
U= -2*21

3 3 2
(Bzﬂ.l cos e1+B1lzcos 62)

CIDZB 3B, l, cos e : .
) T [ B L3cos 0,+3, licos 92]

We have defined the radius of curvature of the fabric neutral plane Qs
where Q= pqu'. If the external applie@ couple is C, then the work done

to bend the single unit cell, shown in figure 21, of the fabric is
= 3CP.

Also, the bending rigidity of unit width of the fabric is the sum of the
interlaced yarn rigidities in this width. Therefore, the fabric warp-wise
rigidity, Bw is

+

Cp
B =Ce) =5 G

or
C ®Bw
= P, P4
Therefore,
%8,
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Assuming the system to behave as frictionless mechanism, the

external work done will be equal to the strain energy in the system.

Thus
q?Bw 4331 [ 3B £3cos291
— p, = 1 +
2p2 1 221 B ﬁscos 6 +B KBCOS 92 ’

which gives

1p2 3B [ﬁcos 61 1
By = 7 [1 + - ] (;1-)- (2.33)

ﬂicos 6 +B [300s 6

It is worth pointing to the result which can be obtained if the
system is considered to be composed of only crimped yarns in one direction,

say in the warp direction, i.e. Bz=0 in the above relation. This leads to

PB4 By 4

N Ty B
which is the same result obtained by others (41,45).

2.3.2 Inclusion of the yarn compressibility

Inclusion of the yarn compression can be achieved in the present
analysis in a similar way to that used in the tensile analysis. When the
fabric is bent, considering a complefe repeat of the plain weave, the forces
2v1 and 2v2 are the reactions from the weft on warp and visa versa. These

forces will reduce the yarn diameter and hence another term due to yarn

compression is added to the energy changes inside the fabric.
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The strain energy in the units AR/ and EFY is then made up of:

1. The bending strain energy for warp and weft, UB, given by

2 2 2
12 2, . 3 2| Valpeos &,
Uy = 53 [%m1l1+3m1l1(f151n91—v1cose1)+l1(f1sin61—v1cos91) ]-+'——7555;——-

2. The compression strain energy, U

c? given by

2 2
. 1I:(2v1) d, . (2v,) d2]

=2
C Hy My
2 2
2v1d1 2v2d2
= + .
U1 “2

The total strain energy, UT’ is then obtained from
Up=Up + Ug - (2.34)
" By Castigliano's theorem

oy, U,
- -a;; = A(h1-d1) and g;r—z- = A(hz—dz) ,

which on using equation (2.34), give

1 2 . 194
A(h1fd1) = "Eﬁ; [3m1[1cos91+2[?cose1(f131n91-v1cos91)] + ™ ’
and
3. .2
A(h,-a ) - vzﬁzcos 82 4v2d2.
2 2/ 7 12B

o Ho



The condition which must be satisfied for the fabric deformation,

assuming compressible yarns, ié
A(hy-d,) + A(hy-d,) = 0.

Applying this condition we get

3 2
4V1d1 vzlzcos 62

92

d

1 2 3 ; o

- %, [3m11,1 cose1+2[1cos;91(i‘.lsz.ne1 v1cose1)] + i + 75, iy
v1cp

Substituting f1 =7 and v.l-vz—v, the above relation leads to

ZBZl?cose.] (200:591 -<1>Sin91)+B1lgcosz92*‘483132(‘11/“1""12/“2)
m1 =V ) (2’35)

2
6B2L| cose1

The angular deformation of the fabric plane,}, is given as before

by
.. 22T _ 4m1l1+va(q;}s3ine1—k2cos‘e1) .
1 1
Hence |
48,d = 4m1l1+vl$(<i>sine1-200se1). (2.36)

Equations (2.35) and (2.36) give

d(12 B1le1cose1)

V =
2 R
2B, ﬁgcos 6,-B, l?cos 0, (@sing,~2cos 6,)+96B, B,(d, /u1+d2/u2)

which can be reduced to

o (6 B,B lcose )

3 3
321g1cos 0,+B, L cos2o 5 *+48B1B, (8, /iytd /u, )

= 0 .
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on neglecting d>2 and terms of higher order.
Substituting v in equation (2.35) and retaining only terms of

order § gives

_ 3 2 3 2
i _@231 [4132[1cos e1+31£2cos 62+4SB132(d1/u1+d2/u2)]
1 3 2 3 2
1 Bzﬂ1cos 91+B1£2008 92+4BB1Bz(d1/u1+d2/u2)
Furthermore, following the same argument as before, the energy

changes inside the fabric is equated to the work done to bend the fabric.

This leads to the following expression

BW

B, p 3B £300s29
182 1, ob4 1
) 2
2 sz?cos 91+B1£gcos 62+48(d1/u1+d2/u2)‘

]
] X 2 (2.37)

‘"It is apparent that _this expression gives lower values for the
fabric rigidity, in comparison with equation (2.27) and shows the effect

of yarn compression on fabric bending.
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CHAPTER

EXPERTMENTAL WORK

3.1 Planning for Experimental Work

To check the validity of the theory in Chapter 2, it was
necessary to test the behaviour of a series of plain fabrics, woven and
set according to predetermined specifications, under tensile and bending
deformations. These experimental results were then compared with the
theoretical calculations. Also, since the latter, according to the
equations presented earlier, depend on the fabric construction and the
constituent yarn properties it was necessary to get an accurate estimate
of these parameters by a series of tests carried out on both fabrics
and yarns.

The experimental part of this work can be summarized by the

following sequence:

1. Weave a series of plain fabrics with different constructions.
2. 'Set' the relaxed fabric constructions.

3, Test the fabric dimensional properties.

4. Test thé jarn mechanical properties.

5; Test the fabric mechanical properties.

The mechanical and dimensional properties of textiles depend on
the temperature and the relative humidity under which the tests are made,
and hence it was important to carry out the tests uhder standardized
atmospheric conditions, defined (48) as 2022°C temperature and 65T
relative humidity. Samples of all materials tests were left in this

atmosphere for at least 48 hours before carrying out the tests, in order
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that equilibrium could be reached between temperature and humidity of

the fibres inside the fabric, and the surrounding atmosphere.

3,2 Weaving the Fabrics

Planning for the experimental work included the choice of a range
of different plain weave constructions. With the available range of yarn
count, twist and material six fabric groups (X,Y and 2) and (A,B and C)
were woven. The warp (R60/2 Tex Vincel) was common to all groups but the

weft was varied according to the scheme shown in Table 3.1.

Table 3.1

Details of weft yarns used

Weft specifications

Fabric Nominal linear Spinning Twist
group density (tex) Material  method - (turns/cm)

X R60/2 Cotton Ring 6.0

Y RT74/2 Cotton Ring 5.2

VA R98/2 Cotton ~ Open-end 4.4

A R60/2 Vincel Not known 4.0

B R60/2 Cotton-vincel Not known 4.2

c R46/2 Cotton-vincel Not known 7.1

Within each group, the number of ends per inch, on the loom, was
kept the same while three fabrics with different numbers of picks per
inch were woven. Wea&ing was carried out on a loom with the following
gpecifications:

The loom is a (4x1) Multi-shuttle, automatic, Saurer Loom (Model
1OOW), with maximum reed space of 58 inches.

Shedding mechanism: is the Saurer positive dobby, lever type, operated

by punched cards.
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Let-off mechanism: is semi-positive, manually operated for tension

equalization. The short term tension variation is controlled by an
~ oscillating back rail.

Take-up mechanism: is continuous positive, and the nominal picks per inch

on the loom is adjusted by a Vernier type pick scale regulator.

The reed plane was adjusted for groups X, Y and Z to give a
nominal 48 ends per inch énd for groups A, B aﬁd C to give 36 ends per
inch. Eurther details about the loom timing and weave constructioné are

given in an appendix.

3,3 Setting the Fabrics

'Setting! is concerned with the equilibrium form which a textile
material assumes. In practice this term is used to describe the
stabilizétion of a structure in a particular form (49). The effectiveness

~of a fabric 'setting'! treatment may be assessed by the extent to which
the curvature of the yarns inside the fabric is retained when the yarn is
removed from the fabric.

In the present work, because of the assumptions made in the
theoretical analysis, it was necessary to obtain fabrics which were aé
close to 100% 'set! as possible. The finishing treatments of commercial
fabrics probaﬁly satisfies this requirement, so the actual treatment used

in this research was carried out as follows:

(i) Scouring at 95°C for one hour in a winch machine containing 'DTL!
standard detergent and sodium carbonate (2 parts/litre each).
(i1) Two hot rinses (at 80°C), followed by one cold rinsing.

(iii) Water extraction by centrifugal hydroextractor.
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(iv) Stentering, without further distortion of the fabric dimensions
after hydroextraction, using a drying temperature of 110°C for one
minute.

This treatment, as will be shown later, effectively ‘'set' the fabrics.

3.4 Testing the Fabric Dimensional Properties

3.4.1 Thread spacings

Thread spacing is one of the fabric parameters which can be
relatively easily measured in several ways (50). The basic principle of
mosf of these methods is either by counting the number o% threads over a
known distance normal to the thread direction or, more accurately, by
precisely measuring the distance occupied by a certain number of threads.
If the distance is 's' mm and the number of threads is 'n', the thread

spacing, p, is given by

Ble

p= mm,

The method used in the present work was to count the numbgr of
threads in 5 cm wide samples, originally prepared for the fabric tensile
tests, using a standard counting lens, and the average of 10 readings in
each fabric direction was taken. However this method is not recommended
for open fabric constructions (51) (less than 10 threads per cm). Therefore
a check on the previous results was also made using a projection microscope
with a magnifying power of 128.5.

For this test four samples (5x2.5.cm) of the fabric in each
direction were cellotaped onto microscope slidés. After adjusting the
focus of the microscope and.starting with a zero reading on the Vernier
scale, which controls the stage movement, the sample fixed on the stage was

moved normal to the threads being counted, and the number of threads was
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visually observed on the screen. The distance occupied by 50 threads
could then be obtained directly from the Vernier scale reading. This
method gives up to 0.002 mm accuracy in measuring the thread spacings.

A comparison between the results obtained by the two methods (Table A}
in Appendix 1) gave a maximum difference of 0.015 mm (3%) in the extreme
cases whichisuggested that most of the results obtained by the first

method could be accepted with reasonable confidence.

3.4.2 Yarn modular length, crimp and degree of 'set!

The crimp, as usually defined (20), is given by the fraction |
(ng). More generally, the crimp is defined as the fracfional excess in
length produced when straightening a crimped thread. If the crimped thread
occupies a distance, SO, inside the fabric and yields a length, S, when

straightened outside the fabric, then

Measuring the straightened length, S, involves applying a standard
load, calculated on the basis of the yarn count (52). However the problem
encountered in this measurement is that such a load is usuallyugot enough
to remove all the yarn crimp, while if a higher load is used the yarn may
be stretched and still not totally eliﬁinate the crimp., A common technique
used by many researchers (16,32,42) is to obtain S by extrapolating back
the load vs elongation curves of the crimped yarns from the linear

stretching region of the straightened yarn, as shown by the curves in

figure 22a. Such a technique relies on the following assumptions:

1. At relatively high loads, the crimp of the yarn is virtually completely

eliminated and the yarn lqad-extension behaviour is the same as that



Fig. 22a shows the yam tensile behaviour of

al 100% set crimped yam
b) partially set crimped yam
c) initially straight yam of length S

----- — Crimped yam inside the fabric

— — — Crimped yam outside the fabric

Fig. 22b
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of an initially straight yarn.
é. At these relatively high loads, the yarn, if it were initially straight,
will still obey Hooke's law.

The distance OD in figure 22a then represents the excess in
length (s-so).

Actually, for simplicity, the complete load-elongation curve need
not be obtained and the same concept can be used if the values at two
points only of the curve are known. The method used in this work was that
recommended by Grosberg and Kedia (31), in which by knowing the two
straight lengths 850 and S60 corresponding to 30 and 60 g applied tension,

we may write

fﬁ_}%i
S6O—S - 60/ !

where % is the tensile modulus of the yarn.,

This gives

Hence
(2330-560) - S,
C = 3 .

(0]

Knowing the thread spacings and the crimps, the modular lengths [% and [2

are given by
[1 = p2(1+c1), and 1% = p1(1+02).
The apparatus used for the tests was the Shirley crimp tester,

which comprises a ruler marked with a mm scale and two spring loaded

clamps, one of which is mounted on a pivoted lever thus enabling the
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required tension to be applied. . The other clamp is mounted on a wooden
block that can slide along the ruler. The test is carried out by
adjusting the required tension through a slidihg weight on the pivoted
lever; the yarn is then mounted and the sliding clamp is moved along the
ruler untilthe zero, indicated by a pointer fixed on the pivoted lever,
is reached. The straight length is read directly on the ruler scale.

To take samples, the fabric was laid flat, free from tension and
creases and accurately measured (25x2.5 cm) fiaps along the direction of
the yarns to be tested were prepared. The yarns of 25 cm crimped length
were fhen frayed out of the fabric by means of a dissecting needle,
starting from the middle. Each yarn when taken out was held firmly to
prevent loss in twist, and both ends placed in the clamps of the crimp‘
tester. The average of 30 readings taken in groups from different places
in the fabric represents the final crimp value.

As the previous theoretical analysis applies mainly to completely
tset! fabrics,it was necessary to assess this parameter experimentally.
This was achieved by defining the crimp values of the yarn both in the
fabric, ¢, and in the released state, Cos and the degree of set is then

obtained by applying the relation
'set! = (cr/c)% .

The actual load-extension curve differs in the case of sompletely
tgset! crimped yarn from that of a partially 'set' crimped yarn,as shown
in figure 22a, and in the latter case an increase in length, €. is
expected when the yarn is removed from the fabric. This is due to the

yarn decrimping in the released state.
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If the crimped length of the yarn in the released state is Sr’
see figure 22b, then

5-8
r

where S = S.+e_ ,
T

and
S—Sr S-—So %
'set! = [T)/(T‘)] .
r 0

In order to determine 'set', 10 yarn samples were frayed out of
specimens (30x2.5 cm) prepared as mentioned abové. Before the yarns were
removed, ink marks were made to indicate a 25 cm length of the yarns
along‘the fabric. The yarns were then removed to thevInstron tensile
tester, previously set to a 25 cm gauge length, In removing the yarns
and in subsequent handling great care was taken not to disturb the crimp
and for this purpose it was necessary to cut the fringes protrgding from
the specimen after every one or two yarns had been removed. The Instron
crosshead was theﬁ driven at a rate of 8% extension per minute and the
load-elongation curves were obtained up to a maximum load of 200 g. The
final calculated results showed that most of the fabrics were over 90%
set.

Using this method, it was also possible to estimate the values of
c, adopting the same principle of extrapolation previously described, A
comparative study (Table A2 in Appendix 1) of the values of ¢ obtained
using the Shirley tester and the Instron showed that the first method yields
lower values in most cases, which may perhaps be attribﬁtable to the higher
_rate of increasing the tension on the yarns that was applied with the

Shirley tester method.
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3.4.,3 Yarn cross-section, estimated thickness

and contact length

Inclusion of the yarn compressional effects in the theoretical
analysis necessitates an estimation of the yarn cross-sectional shape,
thickness and contaét length inside the fabric to be made. In fact, the
‘estimation of these quantities needs a variety of data and assumptions

about the following:

1. The type of loads applied to the yarns and their distribution during
fabric formation; also the forces produced by the‘possible swelling
of the yarns when they are treated for relaxation.

2. The yarn behaviour under compressive forces and its behaviour when

recovering from stresses.

In addition, the use of plied yarns in the present research
imposes an additional difficulty about the estimation of an equivalent
diameter.

~In this work, the following assumptions were made.

1. An "equivalent singles" to the plied yarn is defined such that its
volume is equal to that of the combined singles. Then, if 'ds' is the
diameter of the singles yarns and 'd' the diameter of the "equivalent

singles", as shown in figure 23a, we have

if it is assumed that the yarn length is unchanged.

ioec d = z%ds'

The factor 2% can be regarded as corresponding to the empirical factors

given by Wira (53) for woollen and worsted yarns (1.6 for worsteds).
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2. Due to the successive processes the yarn undergoes, its equivalent
singles cross-section of diameter d, will distort at constant volume

to the 'Race-track' shape shown in figure 23b. This leads to

b(a-b) + (nb2/4) =nd2/4 ,
or )

b = 2.33 a—(a2-1.3484d2)% . (3.1)
where a and b are the major and minor diameters of the yarn cross-
section.

It is thus now possible to determine the yarn thickness, b, when
‘the quantities 'a' and 'ds' are known. The latter for the time being can
be considered as a known quantity through the yarn compression test that
will be explained later.

The yarn projection at the intersections, a, was estimated using
a projection microscope and the test was carried out for each fabric in
both warp and weft directions. The unevenness of the yarns and their
hairiness necessitates a large number of readings to be made; At 100
intersections taken from 4 different places of the fabric, 3 readings at
every intersection were made as shown in figure 23c, and the average of
these repfesents the projection 'a'. A magnification power of 128.5 was
used on the microscope.

.According to figure 23b the contact length between warp and weft,

so far as a warp thread is concerned,is given by

Zn = 8,-b,(1-6,), (3.2)

where 91 may be estimated using Peirce's approximation 61=1.85\/c1.
The numerical values of these parameters, estimated using the above

equations, and a measured value of d, are given in Table 3.2,



Table 3.2

Yarm projection, estimated thickness and contact length

Warp Weft e
Fabric Fabric

growp  No. dy(m)  ay(m) by(m) f,(m) ay(m) ay(m) by(m) £ (um)
1 0.321 0.439 0.204 - 0.518 0.398 0.564 0.242 0.327
X 2 0.321 0.446 - 0.200 0.502 0.398 0.539 0.256 0.333
3 0.321 0.430 0.209 0.493 0.398 0.552 0.249 0.304
1 0.321 0.443 0.202 0.531 0.431 0.591 0.275 0.323
Y 2 0.321 0.462 . 0.191 0.519 0.431 0.580 0.281 0.348
3 0.321 0.439 0.204 0.498 0.431 0.574 0.285 0.307
1 0.321 0.450 0.198 0.566 0.479 : .. 0.613 0.332 0.3%4
Z 2 0.321 0.473 0.186 0.533 0.479 0.582 0.356 0.343
3 0.321 0.452 0.197 0.586 0.479 0.625 0.324 0.326
1 0.321 0.460 0.193 0.376 0.321 0.416 0.219 0.354

A 2 0.321 0.445 0.201 0.329 0.321 0.417 0.219 0.326 °*
3 0.321 0.452 0.198 0.380 0.321 0.443 0.203 0.382
1 0.321 0.439 0.205 0.406 0.387 0.518 0.254 - 0.365
B 2 0.321 0.450 0.199 0.450 0.387 0.530 0.247 0.336
3 0.321 0.445 0.201 0.441 0.387 0.540 0.241 0.328
1 0.321 0.437 0.206 0.311 0.299 ' 0.396 0.199 0.347
c 2 0.321 0.440 0.204 0.367 0.299 0.435 0.177 0.360
3 0.321 0.431 0.210 - 0.295 0.299 0.380 0.210 0.320

d

1

- plied yvarn thickness =\/2_‘1
vz st

901
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3.5 Testing the Yarn Mechanical Properties

3.5.1 Yarn bending properties

The flexural rigidity of yarn has often been estimated by quasi-
static beam (54) or loop measurements (36). .However such methods do not
provide sufficient information about the yarn bending characteristics. A
more efficient technique (55) using samples of parallel yarns, which
provides a complete bending hysteresis curve, was therefore used in this
work. The apparatus used was the Shirley cyclic bending tester, originally
ﬁesigned fé; fabric tests, which is based on a principle suggested by
Livesey and Owen (41).

The main idea described‘by the above authors is to apply an almost
uniformly distributed couplé along a small fabric specimen (2.5x0.5 cm)
which is then taken through a pure bending cycle. Their apparatus is shown
diagrammatically in figure 24a where the uniformity of couple through the
specimen, AB, is achieved by using an extremely light aluminium tubing for
the pointer BP and placing the weight 'p' at the end of this pointer so as
to give a centre of gravity as far as possible from the sample. Under
these conditions, the bending moment through out the sample is sufficiently
constant for most practical purposes and its average value is taken as the
moment at the sample centre point.

Both D and E in figure 24a represent circular scales calibrated in
degrees. If at any position the rotatable clamp at A and the pointer make
angles o and B with the vertical datum as shown in the figure, both the

curvature, K, and couple per cm width, M, can be found from the relations



Fig. 24a

Fig. 24b

Curvature
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and

M= ﬂ%%ggl (L + 2.5) sinf  (mN.mm/cm), (3.3)
where

o = the sample radius of curvature (mm)

W = the pointer weight (g),
and

L = the distance between the pointer centre of gravity to the edge

of the sample (mm).

Due to the fact that at higher values of (o~B). the sample does
not pass through the centre of rotation, the best estimate of the bending

moment in the curvature range (¥0.3 mm_1) is in fact given by
M:% (L + 3.5) sinB .

The Shirley tester, shown in figure 24b, differs slightly from
the above arrangement in order to simplify taking readings for both the
couple and curvature. AB represents the fabric specimen held at one end in
a rotatable clamp C and the weighted pendulum BP is attached at the other
end. The instrument has two scales, an inner one for curvature and an
outer one for couple, with a mirror zone between them which enables parailax
errors to be eliminated., The readings are then taken from the pendulum to
each of the two scales.

The inner curvature scale rotates with the clamp, making the
pendulum-defiection proportional to the specimen curvature. The outer
c§up1e scale indicates the sine of the angle of the pendulum deflection, B,
from the vertical position to which the couple is proportional. While the

curvature is read directly, the corresponding couple per unit specimen
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width is calculated from the expression
M = calibration factor X sinp ,
where
Calibration factor = E%%g@l (L + 3.5) oN.mm/cm ,

and is given with the specific pendulum in use,

Sample preparation

To ensure that the tested yarns were fairly representative of
those in the fabric, the following proéedure was used. On the loom, éfter
weaving each fabric group, several reed dents were emptied of warp threads
- so that straight weft threads were inserted in these sections during the
ordinary weaving process. In the succeeding processes of finishing,
these yarns received the same treatment as the fabric. This procedure also
ensured that an equal average tension 1s imposed on the parallel yarns,
the value of which is the same as the weaving tension. Control of the
number of threads per cm was achieved by altering the rate of take-up on
the loom.

These sections of parallel yarns, shown in figure 25a, were cut
into specimens of the standard width (2.5 cm) to be tested on the bending
apparatus. Cutting the specimens to a specified standard length was
immaterial since a simple mounting jig, shown in figure 25c, was used later
to adjust the specimen in‘its precise location on the apparatus, and to
get its free length between the pointer grip and the edge of the rotatable
clamp to 0.5 cm.

The specimen is shown in figure 25b where a narrow band of cellotape

is shown covering the yarns on both sides at one end in order to ease their

entry in the pendulum grip.
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Testing procedure

For each type of yarn 8 specimens were tested. The sample is
attached first to a pointer, chosen (see 1ater) from the range of pointers
provided, then mounted in the rotatable clamp with the aid of the mounting
jig. The clamp‘with the Jig plate carrying the specimen and pointer was
rotated from the mounting position to the zero position, which is reached
when the pointer is hanging vertically, pointing to zero on both the
curvature and the couple scales. The Jig is then removed and the test
started.

The clamp is rotated automatically in an‘anti-clockwise direction
so as to exert a positive couple on the specimen, The apparatus is stopped
at intervals and the readings are recorded according to the procedure
suggested by Livesey and Owen (39). This procedure is repeated to produce

1 ! — 0.3 mm-1) and usually a

cyclic testing (0 — 0.3 mm  — -0.3 mm
relatively large number of readings is taken in the initial region (0 to
0.1 mm—1) to precisely determine the initial bending behaviour.

Throughout the tests, the following precautions are essential:

1. At maximum curvatures (¥0.3 mm-1), the readings on the couple scale
should be in the range of 0.4.<|sin6|<1.0 (56). This is achieved by sel-
ecting the proper pointer with respect to the yarn stiffness.

2. The bending behaviour may differ according to the specimen mounting,
face up or down, therefore half of the samples were tested starting with
the face up and the rest with the face down. Finally for each tested

specimen, the couple-curvature diagram was drawn.

Referring to figure 25d, the following yarn bending properties

were calculated:
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1. The initial flexural rigidity, B¥, which is the slope of the initial
part, OB, of the hysteresis loop (up to O.O2‘mm-1).

2. The low-curvature elastic flexural rigidity (57), B, which is the mean
slope of the loop between curvatures O and 0.1 mm | (i.e., the mean
value of the slopes PQ and RS in figure 25d).

3, The coercive couple, Mi},which is the frictional component of the
initial bending resistance and is half the width of the hysteresis loop

at zero curvature (i.e. the mean of PO and RO in figure 25d).

The average values of B¥, Bvand Mo are given in Table 3.3, while

figures 26 and 27 show the curves obtained for the yarns used.

Rate of yarn bending

In spite of the fact that thé test readings were taken intermittently,
the total time of the test can give a reasonable estimate of the rate of
yarn bending in (mm_1/min). Because the deformations in textile maferials
are time dependent, the ideal would be to‘test the yarns in bending under
the same rate that is expected to take place in fabric deformations.

'In the fabric initial bending analysis it has been shown that the
angle of deflection of the yarns can be considered as the same as that of
the fabric. To estimate, roughly, the rate of yarn bending in a fabdbric
tensile test we may follow the geometry assumed by Wilson (28) of a twin
arc thread model and use his assumption that the yarn shape after deformation
will still retain a twin arc shape.

Such configurations, as shown in figure 28, give the following

relations:
p = 2sin6/K  and 6 = fK/2,

where K = 1/0 is the yarn curvature.
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Table 3.3

Bending properties of the yarns used

B* B MO

No. Yarn'Tex' and material (mNmmz) (mNmmz) (oN.mm)

1 R 60/2 cotton 11.72 6.06 - 0.50
2 R 74/2 cotton 14.11 7.05 - 0.61
3 R 98/2 cotton 18.91 8.16 0.79
4 R 60/2 vincel 10.2 5.62 0.28
5 R 60/2 vincel 8.67 4.44 0.26
6 R 60/2 cotton-vincel 8.74 4.25 0.33
7 R 46/2 cotton-vindel 5.33 2.96 0.19

Note: Yarn 4 is used as warp for fabric groups X,Y and Z.
Yarn 5 is used as warp for groups A,B and C and as
weft for group A.

B* denotes the initial flexural rigidity at the first part
of the hysteresis curve.
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By differentiating we get

dp/dK

[ 2Xcos6(d6/aK)-2sin6 ] /K2 ,
and t

ao/ak = f/2
assuming inextensible yarns.

Combining the above équations gives

dp/dK = [LKcose-2sin6] /k2 ,
and since
dk/dt = p(dk/dp) x (dp/pdt) ,

the initial change in the yarn curvature is given by

2
%

d
(ar/at), = (55)
initial ~ Py at foKbcose —2s1n60 ’

where the suffix '0' refers to the initial parameters of the yarn shape.

The term (dp/podt) gives the rate of extension per unit time which
has been used in the tensile test (the rate used in our experimenfs, as will
be seen later, was 0.08/min).

Table 3.4 shows that the calculations of the rate of yarn bending
(mm_1/min) is then in the region of 0.5 mm-1/min. for fabrics with higher
crimp values while the rate could be as much as 3 times this for the
fabrics with low crimp values. It was not Possible to measure the yarn

bending properties on the Shirley bending tester with rates higher than

0.5 mm 1 /uin.
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Fig. 28



Table 3.4

Theoretical rate of yarn bending involved in fabric extension

P 1 c 9 K dK dx
Fabric dtl dp,
mm mm radians mm~1 mn ~/min mn ™t per unit extension
X-1 warp 0,588 0.700 0.1916 1.01 2.89 0.63 7.88
Y-1 warp 0.677 0.798 0,1787 0.99 2.49 .0.57 7.06
Z-1 warp 0.779 0.939 0.2065 1.06 2.25 0.45 5.62
A-1 warp 0.589 0.704 0.1951 1.01 2.88 0.62 7.81
B-1 warp 0.548 0.598 0.0920 0.72 R.41 1.08 13.45
C-1 warp 0.465 0.509 0.0951 0.73 2.87 1.25 15.62
Poa 102 s %92 Ko2 [EEE] [pOl EEE] initial
dt dp1
X-1 weft 0.485 0.514 0.0594 0.59 2.28 1.57 19.57
Y-1 weft 0.490 0.514 0.0480 0.52 2.04 1.76 22.05
Z-1 weft 0.494 0.508 0.0285 0.41 1.62 2.29 28.57
A-1 weft 0.494 0.504 0.0587 0.58 2.31 1.66 20.75
B-1 weft 0.476 0.623 0.1189 0.81 2.61 0.78 9.10
C-1 weft 0.568 0.621 0.0934 0.72 2.33 1.03 12.89 -

61T
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3.5.2 Yarn tensile properties

The yarn tensilé behaviour was obtained using the Instron tensile
tester. The yarn was initially treated in a way which was similar to
that applied to the fabrics. For this purpose continuous lengths of the
yarn were prepared in the forﬁ of hanks, then soaked for one hour in a hot
water bath (95°C) which contained the same chemicals that were used in the
process of fabric finishing. The hanks were then left to dry in the
conditioned atmosphere., TFor each type of yarn, 10 samples of 25 cm length
were tested on the Instron using a rate of 0.08 extension/min. The
behaviour of all the yarns used is shown in figuies 29 and 30 where the
slope'of the tangent at the initial part of the tensile éurve was taken to
iepresent the initial yarn tensile modulus.

It may be worth noting that the vincel and the cotton-vincel yarns
gave comparatively high load-extension behaviour, which may be expected

since vincel is, in fact, a high tenacity regenerated cellulose fibre,

3.5.3 Yarn compressional properties

The apparatus used to measure the Yarn compressional properties was
designed by Oxtoby (58) and is based on an optical principle originally

employed by Anderson and Settle (59).

General description of Oxtoby'!'s apparatus

A general view Qf the apparatus is shown in figure 31a. The idea,
shown in figure 31b, was to apply a compressive load on the yarn through
a load lever (A), the yarn being situated between two parallel plates, the
upper being fixed to the load lever and the lower to the solid base of the
apparatus. By means of an optical arrangement (B,C ang D), the vertical

dlstortlon of the yarn is shown, magnified, on a screen (E) where the
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readings are recorded. In the basic apparatus an additional arrangement

(F) is provided to drive the yarn from a package.

1. The load lever

This is a perspex balanced beam (A), shown in detail in figure
32, which is supported by two adjustable needles (A1). At one end of the
beam is a stainless steel plate (A2)(% cm wide) which acts as a presser
foot against the lower plate (G), described as an anvil. Above the presser
foot in a centralized position is a perspex weight carrier (A3)' used to
hold the compressive weights. Mounted at the opposite end of the lever
is a brass counter weight (A4), which can be adjusted to initially balance
the load lever. The two supporting needles rest in grooves on an adjustable

brass plate (AS) and are referred to as the load lever bearings.

2. The optical arrangement

This consisfs of the following two elements:

a) An optical lever (B), shown in figure 31, which consists of a mirror
mounted on a perspex stage (B1) and supported by three needles. Two of
these (Bz) rest on grooves in the optical lever bearing plates (33)’ |
while the third needle, the take-off needle, rests on a stainless steel
projection (A6) from the load lever and thus the downward vertical
displacement of the load lever, due to yarn compression, results in an
angular rotatién of the optical lever plane. An additional weight is
attached to the optical lever to give it more stability.

b) An arrangement (C) to provide a concentrated projected light beam, as
shown in figure 31a. The light from a source (C1)(48 Watts, single
filament bulb) passes through a lens (02) onto a hair line mounted on

.a frame (03), then through another lens (04). The lenses and the
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hairline frame are mounted on a rail (05)’ fixed to the base of the
apparatus, and thus the distance between them can bé adjusted to give

the best illumination.,

The whole optical arrangement is designed to direct the concentrated
light beam towards the opticalilever. The image of the hair lihe is then
reflected from the mirror on the optical lever onto a flat mirror (D in
figure 31) and then onto a curved screen specially shaped to be an arc of
a circle. The distance travelled by the light from the source to the
screen, together with the curved screen shape were designed to ensure that
the variations in the position of the héir line projecteﬁ on the screen
correspdnds to the variation in yarn thickness due to compression.

- On the screen, two paper clips (E1), shown in figure 31a, are
mounted at each end, the object of which is to attach a strip of graph

paper (E2) to the screen.

Applying the weights

In order to apply the compressive weights it is necessary to
raise the presser foot, change the weights, then bring the foot into
contact with the yarn. The arrangement which achieves this procedure is
better shown in figure 32a. This consists of an adjustable rod (8,),
mounted eccentrically on a wheel (HZ); a curved copper strip (HB) is
soldered to this rod. When the wheel is rotated, the copper strip contacts
a stainless steel strip (A7), fastened to the underside of the load lever
and slowly raises the presser foot. Proceeding, the cyclic rotation of
the wheel brings the presser foot back into contact with the yarm. If”
the compression test is to be carried out on a continuous length of the

yarn, several readings for the yarn thickness, under the same load, are
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Pig. 32a

@

Position 1: Start of raising the load lever
Position 2: Maximum lift for the load lever

Position > The load lever back in contact with the yam
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recorded. In this case the arrangement (F) which is used to'drive the

yarn would also automatically operate the cyclic rotation of the wheel

(Hz) by transforming a timed motion from the gear wheel (F1) to the wheel

(H2) via the gear wheel (F2) and the belt (F5) shown in figure 31a., In

the present work only small lengths of the yarn were tested and rotating

the wheel (H2) was carried out manually. The action of the wheel (H,)

is shown diagrammatically in figure 32b.

Setting the apparatus

The apparatus is set for yarn testing by carrying out the

following steps.

(a)

(v)

(e)

()

(e)

The distances between lenses, bulb and hair line are adjusted to give
the best illumination (58). '

The load lever bearings (A5) are adjusted to bring the projection (A6)
into a centpalized position under the take-off needle of the optical
lever.'

The optical lever bearing (B3) is adjusted to the position which makes
the optical lever mirror (B1) reflect the light beam towards the flat
mirror (D).

The mirror (D) is adjusted to reflect the light beam towards the

screen (E).

With the aid of the hair line image, now shown on the screen, the lengths
of the two load lever fulcrum needles are adjusted to achieve complete
parallelization of the presser foot and the anvil. This is carried out
by inse;ting a fine shank of-a drill at different positions between the
two plafes, under 50 g load. The lengths of the two needles are then
adjusted until a fixed reading is obtained on the screen irrespective

of the position of the drill shank.
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’

(£) Tﬁe length of the optical lever take-off needle is adjusted to give
zero.scale reading at the lower part of the screen when the presser
foot touches the anvil, .

(g) The lengths of the fulcrum needles of the optical lever (B,) are adjusted
to slightly tilt the optical lever to 1ts front under its own welght.

(h) Finally, the weight (AH) is adjusted to bring the load lever to a

balanced position, nearly horizontal, when there is no load in the

weight carrier (A3)'

Calibration

The method used to calibrate the instrument was to interpose
engineering feeler gauges between the anvil and the presser foot, under a
weight of 100 g/cm, and to record the corresponding thickness readings on the
chart. The feeler gauges were initially measured accurately using the
projection microscope. The calibration readings are given in the following
table and in figure 33. The best fitting line for these points gave a

magnification factor of 782 for the apparatus.
| Table 3.5

Nominal thickness(mm) 0.05 0.1 0.15 0.2 0.3

Thickness under
microscope(mm) 0.051 0.992 0.149 0.201 0.296

Chart reading (mm) 40.0 77.5 117.0 156.0 233.0

Sample preparation and test procedure

The straight parallel yarns, the same as those used in the yarn
bending tests (section 3.4.1), were used to prepare the compression test
gsamples. These yarns were frayed out of the fabric and each separated yarn

was cellotaped onto a paper fibre frame, which is usually used for fibre
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tensile tests. This process was done with great care so as not to disturb
the yarn twist or impose tension on the yarn. The yarn was then situated
under the raised presser foot and metal grips were used to hold the fibre

frame. Raising and lowering the presser foot and changing the loads was

'carried out according to the procedure described above.

From the survey made (58,60) it was found that 20 variable loads,
starting at 1.0 g/cm and increasing to 400 g/cm are enough to define the
load-thickness relation for the yarns. For each yarn specimen, these 20
loads were a@plied and the corresponding thicknesses were recorded on the
chart. TFor each type of yarn 20 specimens were tested and the average

thickness for all the samples at each load was‘calculated.

Fitting the experimental results

An empirical formula due to Oxenham (60) was chosen to fit the

experimental data. This formula is of the form

-B,x -Bzx —Bjx
T = AO+A1e +A e +A3e , (3.4)
where
T = the yarn thickness,
x = the compressive load/unit length,

and O 1,A2,A3,B1,B and B3 are constants.

The initial yarn thickness is obtained when the applied compressive

load, x, is zero and therefore would be given by

Y=3
(T)initia1 = é By - (3.5)
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Also by differentiating the formula (3.4), the rate of thickness

change with load,at a load x=X,,18 given by

Z . (3.6)

dx X=Xq

The values of the constants in equation (3.4) were found by the
method of least squares. Let the available data be pairs of observations

(xi,Ti),i=1,2,3...,M. Then a residual may be defined as

-B.x -B,x -B,x
' 1 i 271 371
Ri(AY’Bj) = (A0+A1e +Aje +A39 ) - T .

The method of least squares calculates the A's and B's so that

M
2
F(AyshyshyyeensBysBpres) = ;é; {r; (230}

is a minimum.

A gradient method, due to Marquardt (61), was used for minimization;
and the computation, using a standard subroutine (62), was carried out on
the 1906A ICL computer in Leeds University.

In the computer program it was necessary fo make an initial
estimate of the values of the constants. These initial values were found

not to be critical and could be estimated as follows:

1. From equation (3.5) assuming, roughly, that A orhqsh, and A3 are equal

then

By = By = oo = Tlinspsa)/d . o

and T(initial) is taken 30 microns above T, at x4 = 1.0 g/cn.
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2, From the knowledge that the thickness is the sum of a constant and

three exponential functions, which are expected to have descending values

of B, the estimates of B,,B, and 33 were taken as 0.5, 0.05 and 0.005

1772

respectively.

The program then iteratively modifies these initial estimated
values until the least‘squares solution is reached. In order to see how
well the estimated regression curve fits the experimental values, the

coefficient of determination 'C.D' was calculated, where

2 e 2. ey 2l
M AN HCS 72}

and

=]
n

i : the experimental value of the yarn thickness at a load xi;

Zi = predicted value of the yarn thickness (according to empirical
formula) at a load X, 3
: M
T = the mean value of the yarn thickness = EZ{Ti/M}.
i=1

The computer program, lay out of data, and the results are given
in the appendix. The fitted empirical formulae and calculated values
for the initial thickness and the equivalent yarn diameters, see section
3,4.3, are given in Table 3.6 while figures 34 to 38 show the experimental

curves obtained for some of the yarns used,



Table 3.6

Experimental results for yarn thickmess

Initial Equivalent
Empirical formula for thickmess thickness yarn diameter

Yarn 'Tex' and material T in mm and 'X' in mN/mm (mm) (mm)
R60/2 cotton  0.1726:0.12360 0.1 3798—0.0894J{+0.1281e—O.OO6OX 0.562 0.398
R74/2 cotton = 0.2153+o.f2‘jcéi3e—o'861ox+o.1591e—0'077sx+o.1185e—0'0059x 0.601 0.431
R98/2 cotton = (),23934.0.141,96e-0.4645X+0.15’»42e--0.0369x+0.1339e-o.0046X 0.677 0.479
R60/2 vincel = o.1447+o.0553e-0'374ax+o.1 379e-o'0671x+o.11 55e~0'0066x 0.453 0.321
R60/2 cotton-vincel _ 0.1539+0.1594e-o.1557X+0.12426-o.0264x+o.110%—0.0030}: 0.5 0,387
R46/2 cotton-vincel = o.1410+o.o9o4e-0'6537x+b.1082e_o'0789X+o.0835e—0'0061x 0.423 0.299

11t
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3.6 Testing the Fabric Mechanical Properties

3,6.1 The fabric initial load-extension behaviour

The initial tensile behaviour of fabrics was readily found by
uging the Instron tensile tester. TFor each fabric 10 samples in each direction
were tested. Each sample was rectangular, and was 30 cm long x 5 cm wide.
They were initially cut to approximately 30x6 cm, and the yarns were then
frayed out along the longer side until the sample width was 5 cm. The
gauge length on the Instron was adjusted to give 25 cm between the Jaws
and a sample mounted, taking care that it was neither slack nor pretensioned.
The lower jaw was then driven déwnwards with a speed of 2 cm per minute to
give a rate of extension of 8% per minute. The Instron chart speed was
adjusted to suit the fabric extensibility and the predetermined maximum
extension. The ratio of the chart speed to the cross-head speed determines
the 'extension scale factor' with which the extensions are represented on
the charts. On the other hand the 'load scale factor' with which the loads
are represented on the charts is determined by the full scale load 'F.S.L.'
knob (63) on the Instron. The different positions of this knob'provide
different ranges of loads, with the appropriate Instron cell in use,.
corresponding to the chart full scale in the load direction. Since the
main concern in these tests was to investigate the initial behaviour of
fabrics, which usually involves relatively low loads, it was important to
use the highest 'load scal factor' possible, and to achieve this the Instron
1B! cell, usually used for yarn testing, was employed. With such an
arrangement specially prepared jéws were also used to f£fit to the 'B' cell
attachment.

It is possible that the previous life history 6f fabrics may affect

the tensile behaviour, and therefore several extension-load cycles up to
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5% extension were carried out; .in the event the difference between the
first cycle and other cycles was regarded as insignificant. The tangent

to the first cycle of the load-extension curve was then taken as the initial
tengile modulus.

From the relation,
F=E 6 ’

the fabric tensile modulus may be defined in either of the two following
ways:
1. E is the force, on unit fabric width, needed to produce a 100% extension;

€= 1, and the units of E are therefore in 'Newtons/cm'.
2. E is the force, on unit fabric width, needed to produce 1% extension

and the units are 'Newtons/cm for 0.01 extension'.

The first definition was used to express the experimental results in Table

3.7,

2.6.2 The fabric initial Poisson's ratio

Relatively few methods have been suggested for measuring the fabric
Poisson's ratio, in a tensile test, under dynamic conditions (2,64,65).
Amongst these a photqgraphic method has many advantages and was used in
this work. In this technique the fabrics were stretched on the Instron
tensile tester. Each fabric sample was initially marked, along the line
of symmetry in the direction to be extended, by 3 fine stitches; the second
stitch mark was at the fabric centre while the distance between the first
aﬁd third marks was approximately the same as the fabric width., An ordinary
35 mm 'S.R.L.' camera fitted with telescopic tubes was then used to take
successive exposures during the fabric extension. The camera was mounted

on a stand with a movable base which could be adjusted to bring the plane
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containing the camera lens para;lel to the fabric specimen plane when
mounted on the Instron.. In order to carry out the test, the Instron cross-
head was driven at a speed of 2 cm per minute and the successive exposures
were taken nearly at previously chosen values (0.0,0.01,0.02,0.04,0.06,0.08,

0.10 and 0.12) of the fabric extension.

methods were: sg;, T
(LILAnY S

. 7\-—-.——-// B
1. Using a mark dense-meter. zhiﬁﬁﬁwfﬁﬁﬁ“

2. Projecting the negative on to a screen.
3, Printing the successive exposures and measuring the distances involved
under a travelling microscope.

The first method was potentially the most accurate but was rejected
as it was very laborious. On measuring the specimen dimensions, it was not
necessary to know the actual magnification involved in photograéhing and
printing, and thé changes in a specimen dimensions were referred to the
initial dimensions of the first photograph (at zero extension); thus the
fractional extensions and the corresponding width-wise contractions could
be'célculated. The graphs given in figures 39-56 show the experimental
results. The initial slope of these curves was taken as the initial

Poisson's ratio.



Table 3.7

Experimental results of the tensile tests

P P c ¢ B B E E, o
Fabric Fabric 1 2 1 2 1 o 2 5 1 2 1
group No. mm mm mN . mm N . mm N/em  N/cm
1 0.485 0.588 0.192 0.060 5.62 6.06 14.3 36.6 0.10
X 2 0.488 0.624 0.214 0.056 5.62 6.06 9.4 29.8 0.1
3 0.485 0.713 0.171 0.047 5.62 6.06 14.2 24.1 0.08
1 0.490 = 0.677 0.179 0.048 5.62 7.05 15.9 42.9 0.08
Y 2 0.492 0.739 0.179 0.047 5.62 7.05 15.5 33.8 0.12
3 0.495 0.849 0.158 0.936 5.62 7.05 14.6 28.6 0.13
1 0.494 0.779 0.207 0.029 5.62 8.16 13.7 = 53.6 0.02
Z 2 0.494 0.83%9 0.218 0.027 5.62 8.16 10.6 45.5 0.06
3 0.491 0.691 0.226 0.037 5.62 ‘ 8.16 14.9 42.4 0.07

1 0.476 0.589 0.195 0.059 4.44 4.44 9.2 25.5 0.08

A 2 0.587 0.749 0.104 0.049 4.44 4.44 9.1 14.8 -
3 0.549 0.532 0.139 0.121 4.44 4.44 12.7 13.4 0.17
1 0.556 0.548 0.092 0.119 4.44 4.25 24.0 13.8 0.28
B 2 0.591 0.637 0.134 0.053 4.44 4.25 13.3 19.7 0.32
3 0.594 0.756 0.101 0.051 A.44 4.25 M".7 14.5 0.31
1 0.568 0.465 0.095 0.093 4.44 2.96 23,2 22.0 0.20
Cc 2 0.57TT 0.538 0.110 0.107 4.44 2.96 18.0 12.8 0.37
3 0.571 0.662 0.103 0.065 4.44 2.96 12.0 13.0 0.20

44
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W (warp) and T (weft) refer to fabric direction which was
extended iIn the test
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3,6.3 The fabric bending properties

In the early experimental work, it was con;idered that, with the
large number of readings and curve fitting involveﬁ in such tests, it was
best to use an autographic method to obtain the stress-strain curves for
the fabric bending behaviour.

An apparatus designed by Abbott (8), for use in conjunction with
the Instron tensile tester, was used for these tests. In this apparatus,
the same principle as described in section 3.4.1 is retained but the
arrangement differs so as to enable the couple to be measured at one point
and hence to record it, magnified, against the change in the sample curvature
on the Instron chart. The apparatus is shown in figure 57, bolted to the
Instron frame (I). The linear motion of the Instron cross-head is used to
produce an angular rotation of the graduated disc (D). This is achieved
by passing a folded nylon thread (T) round a grooved track in the
circumference of the disc, the thread being attached to the disc at a
suitable point 'S'. Qne end of the thread is attached to the cross-head
and the other to a 200 g weight, which is enough to produce a counter
rotation of the disc when the Instron cross-head moves upwards.

" Also fixed to the disc are two spring loadea jaws (J), 2.5 cm
wide, whose edge is 0.25 cm from the centre of rotation. Thus the sample
(0.5 free length), gripped to a light aluminium pointer (P), can be
located at the beginning of the test in a centralized position by using a
mounting procedure similar to that described for the Shirley bending
tester. Restricting the couple measurement to one point is achieved by
situating the pointer between the arms of a Y-shaped adjuétable pin (denoted
as 'Y' in figure 57) which permits both a slight rotational and/or downward

movement of the pointer. The pin is screwed to an inverted L~shaped
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cantilever (denoted as 'C' in figure 57) at the end of the latter's
longer side, while abfine double hooked wire (H) passes througﬁ the canti-
'1ever at the end of its shorter side. The cantilever itself is pivoted,
at the join of the L, to a vertical bracket, fixed to the back of the
Instron apparatus.

Finally, the top hook of the double sided hooked wire is attached
to the Instron"A' cell and a small weight (W) is hung from the bottom
hook. This weight is needed to keep the Instron cell always under load
when the couple exerted on the specimen is negative; therefore the weight

uéhould be at least equal to half the range of load to be used in the test.

To carry out the test, the Instron is adjusted to perform a

. completeantehsion cycle in which the maximum down or up movement of the
cross?head corresponds to the required maximﬁm clock-wise or anticlock-wise
rotation of %he disc (£1.5 radians) and this produces the range of
curvature required for testing the sample (¥0.3 mm_1). At any instant
when the sample is bent to curvature X, the couple on the sample, M, will
exert a side way force F on one side of the pin, where F = M/ and / is

the pointer effective length. This force will be transmitted, magnified
to, say, F', to the rear end of the L-cantilever via the frictionless pivot
(V), and then to the Instron cell. The calculation of the couple from the
force recorded on the Instron chart, F , can be obtained by a similar
equation to (3.3). In this apparatus an effective error may be produced
due to a reduction in the effective pointer length; therefore the final

calculations of the couple was given, by Abbott, as

M= B%%%?l X F'(L+2.0) ’ mN.mm/cm
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where R is the length ratio of the short side to the long side‘of the

I-cantilever (0.1 in this arrangement),

L is the effective length (mm) of the pointer at zero sample
curvature,

and ¥’ is the force recorded on the Instron chart in &

The results of the fabric bending (per yarn), using the above
method at 0.68 mm-1/min bending rate, are given in Table 3.8. Each value
is the average of 4 tested samples. In this table (3.8), the corresponding
values, using the Shirley tester, are also included and it is evident that
the two methods may lead to different results. The main reason is,
probably, due to the different conditions under which the samples are
tested. In Abbott's apparatus, the samples are tested under dynamic
conditions while in the Shirley method the testing précedure may allow
some stress relaxation. In addition, the following are some sources of
error associated with Abbott's method.

1. Abbott's apparatus is mounted on the Instron, and it was found that
mechanical vibrations through the frame of the instrument severely
affected the traces obtained for fabrics of low bending rigidities
(e.g. fabrics in groups A,B and C).

2. The Instron is actually operated, in cases of fabrics of low rigidities,
under its minimum rated capacity of 1 g.

The Shirley cyclic bending tester was finally used to test the
fabric bending behaviour and for this purpose 4 face\and 4 back samples were
examined following the same testing procedure as that described for the yarn
bending tests. The results obtained using the Shifley tester (Table 3.9) were

considered more reliable and will be used for comparison with the theoretical
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calculations of the fabric bending. The fabric behaviour, under bending,
was sometimes very close to the bending behaviour of the component jarns,
in the load direction, as can be seen in figure 58. Another case is shown
Vin figure 59, in which the fabric bending behaviour is considerably

different than that of the yarms.



Table 3.8

Abbott's apparatus Shirley Tester
Bending 5 > Mo S - Y
Fabric  Direction oN.mm“/yarn = oN.mm“/yarn  oN.mm /yarn  oN.mn“/yarn  oN.mn“/yarn  oN.mm' /yarn
X-1 warp 9.61 5.61 0.23 9.46 4.80 0.27
X-1 weft 12.64 6.59 0.4 12.93 5.56 0.48
X2 warp 8.68 5.01 0.18 9.02 5.00 0.31
X-2 weft 13.13 . 1.10 0.55 12.79 6.24 0.68
X-3 weft 13,39 6.70 0.46 16.04 - 6.77 0.53
Y-2 warp 8.44 5.53 0.25 10.59 5.45 0.30
Y-2 weft - 10.48 0.50 20.42 6.27 0.55
Z-2 warp 9.28 4.66 0.20 9.63 3.88 0.27
Z-2 weft 30.73 12.38 1.20 57.03 " 10.69 1.34
7-3 warp 10.80 7.35 0.34 16.45 7.09 0.41
Z-3 weft 36.47 18.31 1.40 55.96 15.02 1.45

LS1L



Table 3.9
Experimental results of the fabric bending cha.racteristics

Warp : Weft
¥* *

Fabric Fabric Bw Buw Mow Br Br Mot
group No. mN.mm%/cm  oN.mm2/em  N.mm/em - mN.mm2/cm oN.mm2/cm  oN.mm/cm
X 1 195.88 98.90 5.50 220.88 94.61 8.11

2 184.82 102.50 6.38 205.50 99.98 10.89
3 204.00 76.82 6.00 225.00 . 95.00 T.49
Y 1 205.48 113.71 5.99 330.00 151.22 12.99
2 215.16 110.97 6.12 414.98 127.93 11.09
3
Z 1 194.78 81.21 5.24 789.28 174.85 17.98
2 194.98 78.63 - 5.49 679.86 127.46 15.99
3 335.05 - 144.49 8.24 806.79 217.35 20,98
A 1 172.50 96.84 5.35 202.50 104.65 5.36
2 143.54 71.47 3.60 116.83 51.15 2.51
3 182.50 130.54 6.28 196.19 105.80 5.06
B 1 285.00 143.78 8. 160.00 79.04 4.75
2 140.94 T3.17 4.14 130.59 60.99 4.03%
3 165.23 83.74 3.83 136.80 52.57 4.73
C 1 205.04 120.46 [.19 120.03 68.77 4.15
2 152.00 80.22 5.00 -100.00 46.49 2,59
3 116.00 68,72 3.14 73.64 41.98 2.33

B; B* are the initial flexural rigidities of the fabric (per cm width)

Bw B are the elastic flexural rlgldltles of the fabric (per cm width)

OW’ MOT are the frictional couples of the fabric (per cm width)

861
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CHAPTER

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter the experimental data obtained for botﬂ the
fabric dimensional properties and for the yarn mechanical properties,
previously presented, are used in conjunction with the theoretical
relations, derived earlier, to calculate the initial fabric behaviour
under tensile and bending deformations, The discrepancies and agreements
#of‘these calculations with the actual fabric behaviour, as obtained
experimentally, will then be discussed, especially with regard to the
theoretical assumptions and difficulties encountered in some experimental

measurements.

4.2 A Discussion of the Initial Tensile Properties

of Plain Fabrics

In the theoretical analysis of the fabric initial tensile
properties, the behaviour under both uniaxial and biaxial tensions was
described. However, due to the absence of an apparatus which tests the
fabric under biaxial loading, most of the experimental work was directed
to checking the validity of the theory under uniaxial loading conditions.
The theoretical equations related to biaxial loading will only be briefly
discussed later in this chapter.

It may be useful at this stage to reconsider the general aspects
of the mechanism of fabric tensile behaviour, that may be observed from

the experimental curves of the fabrics used.
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4.2.1 The experimental curves of the fabric load-extension

Figures 60-65 show the behaviour, under tensile test, of all
the fabrics used in the experiments; the fabrics were extended up to
10-12% in the warp direction and 6-8% in the weft direction. The general

features of these curves can be summarized as follows:

1. Unlike what is theoretically expected, the majority of these finished
fabrics do not exhibit the relatively high initial moduli of a typical
fabric, as shown in figure 1, and which is attribufed to friction
effects. On the contrary, most of the fabrics showed a relatively easy
initial extension, linearly increasing with the load, up to a value of
extension in the range 1.5% to 4%. This initial neo-Hooke behaviour
(referred to as OE in the figures), with the fabrics used, holds valid
up to the relatively high region of 3-4% fabric extension in cases
whefe the yarns in the load direction have a considerable amount of
crimp. Such conditions are usually associated with a relatively low
fabric modulus and this can be seen with all fabrics in groups X,Y and
Z when exfended in the warp direction. On the other hand, the straight
line relation represents the initial tensile behaviour only up to a
value of fabric extension in the range.1.ﬁ% to 2%,if the yarns in the
load direction have a low crimp value,and the resultant initial fabric
modulus in such cases is relatively high. This latter behaviour is
noticeable with all the fabrics in groups X,Y and Z,when extended in the
weft direction. »The rate of initial extension therefore undoubtedly
depends on the crimp.

It is of interest to note that De'Jong and Postle (66) defined the
. jnitial tensile deformation by the extension which corresponds to a

2
load/yarn in the range 0<f< 2B//°. In the asbove discussion of the
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initial defoxﬁations from the curves shown in figures 60-65, the
initial extension of the fabrics does not exceed the maximum limit of
load specified by the above workers,e.g. for a fabric such as X-1W,
the numerical values of 'f! according to these limits are O<f423mN,
which from the experimental curves give a range of extehsion

0g £<3. 3.

It has been suggested that the relatively easy fabric extension in the
early stages is possibly associated with the fact that the primary
yarﬁ deformations involved are bending and compression,rather than
extension. The energy required to bend and compress yarns (at least

initially) may be relatively low and this is obviously equivalent to

~'the external energy needed to extend the fabriec,

It is possible to examine the magnitude of the role played by yarn
extension in the following way. The yarn tension at any point on its
path is given by T = £ cos v siny, and the maximum tension occurs at

the apex when V= Q,i.e. T

max = f. An upper lirpit to the yarn.

extension involved may therefore be found as follows. Figures 66 a.pd

67' show the experimental values of the fabric and yarn extensions
plotted against f. From the fabric curve the value 'f!' needed to produce
an initial fabric extension of, say 3%, can be read at C after following
the path ABC on ﬁhe graph. The yarn extension corresponding to this
force can be read at E after following the path CDE. This is an upper
limit to the yarn extension involved when the fabric is deformed by

the given amount. In the case of X-3W (figu.re 66) this upper limit is
only 0.1%, while for fabric X-1T (figure 67) it is about 0.54%. The
contribution of yarn extension in the two cases is therefore quite

different, and more will be said about this effect at a later stage.
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3. The next phase, after the initial (indicated by EM in figures 60-65),
shows non-linear increasing values of load as the fabric extension
develops, yielding higher values for the fabric modulus. This suggests
that the fabric deformation has 'taken up the slack' and that the
tensile behaviour is progressively becoming more dependent on those
yarn properties which require greater energy changes to deform them.
Also, the contribution of the crossing threads to the fabric resistance
to extension is probably .increasing. Unless jamming occurs, this
crimp redistribution is expected to continue.

4. The fabric behaviour eventually reaches a phase of very rapid increase
in modulus. This seems to occur at,or a litfle beyond.thé point when
the fabric extension is equal to the yarn crimp value, e.g. for fabric
X-3T (c2 = 0.046) this point is indicated by M in figure 60 where it
can be seen that the corresponding fabric extension is nearly 6%. The
above mentioned phase probably starts when the yarn crimp is totally
eliminated or when Jjamming occurs; consequently,no further crimp inter-
change or yarn flattening would take place and the fabric eitenéion

would be maihly dependent on the yarn tensile properties.

4.2.2 The experimental curves of the fabric length

extension-width contraction

The behaviour of the fabrics under this test is shown in figures
39-56. An important feature of these curves is the fact that they lead to
low values of the initial Poisson's ratio. In some cases there is a delayed
contraction (sometimes it does not take place until there is as much as
2-%% fabric length extension e.g. Z-1W and A-2W in figures 45 and 49). This
suggests that a mechanism of fabric extension with yarn compression as an

important factor is taking place, which reduces the value of the width
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confraction. Obviously this effect depends on how easily compressed
are both of the two systems of yarns, and on other factors which determine
the magnitude of the interyarn forces at the intersections.

When the test was carried .out on fabrics having high grimp values
in the loadbdirection, such as the fabrics in groups X,Y and Z.when
extended in the warp direction (c1 = 17-229%), the trend of the Poisson's
ratio,up to the maximum extension employed on the tests (12%),can be
described to be of ever increasing values. However, this was not the
case for the fabrics which have low crimp values in the load direction,
such as fabrics in grotps X,Y and Z when extended in the weft direction .
e.g. X-3T and Z-2T in figures 41 and 46. A point which is worth noting
is that the width contraction vs. length extension produces curves that
sometimes show an inflection point. Such behaﬁiour may be associated with
the crimp interchange mechanism in the following way. Since the latter
takes place until the yarns in the load direction are almost straight
(2ssuming no jamming occurs), the fabric length extension beyond this
1imit becomes almost independent of the crossing yarn resistance and little
or no further changes in the interyarm forces may occur; consequently
one should expect correspondingly little or no further width contraction.
Thé fabric Poisson's behaviour could, then, be expected to be.in the form
shown in figure 68a,which shows the experimental data for fabrics in
group X, extended in the weft direction (note that the weft crimp values
of these fabrics are less than the maximum extensioﬁ employed in the
tests).

Based on the analysié described earlier in section 1.3.3, Huang
(4) gave theoretical curves for.the relation between the fabrics’ load-

length extension and load-width contraction. From these curves it is
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C2-0.19i c-jcO.1”, B#/B=10, X/m=0.3* TFabric
warp and weft yarns are of the same mechanical
properties
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possible to produce the theoretical behaviour of the fabric Poisson's
effect, as shéwn in figure 68b. It is evident that the kind of behaviour
shown by these theoretical curves is in accordance with the shape obtained
by our‘experimental results.

The second feature of the experimental curves in the present work
is that, for the same fabric, the higher initial Poisspn's ratio is
always associated with the direction which possesses the higher value of
vthe initial tensile modulus. Probably the ratios E, /E2 and 0] /02 are
affected by the fabric dimensional and mechanical properties in much the

same way.

4.2.3 How _the values of the yarn mechanical properties

were interpreted

The final theoretical values of the initial tensile modulus, as
well as the initial Poisson's ratio, are dependent on the interaction of
all the yarn mechanical properties (ByA and u) and the yarn configurations
(p;l and 9) in both directions for a specific fabriec. While the values
of the latter parameters are well defined, there could be more than one
value t§ represent each of the mechanical properties of the yarns,since

“the stress-strain behaviour the yarns obey:

1) is not linear and shows time dependent behaviour;

2) showsvisco-elasticity and hysteresis upon recovery from strains;

3) may differ if examined under different conditions, e.g. extension of
straight yarn, as tested experimentally, may differ from the extension
of the same yarn with a lateral distributed lozd imposed upon it, as

always occurs at the crogs-over regions when the fabric extends.
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These are obviously complicating factors, which will be discussed

for each yarn property individually.

The yarn bending property involved in the initial fabric extension

A major factor(affecting the initial fabric extension behaviour
is the mode of bending of the component yarns. In the analysis, this
bending behaviour is assumed to be linear and repreéented by a flexural
~rigidity B. However;a number of workers (41,45) have shown that, in fact,
the bending behaviour of a yarn is non-linear and is more nearly represented
by a curve of the type (2) in figure 69. The stress-strain relation tends
to be linear beyond a certain value MO of the bending couple, and
approximations to this behaviour are represented by curves (1) and (3).

In these approximations the bending law is:

(1) Mgy : 1o =0
M >N, : M-M, = B/p
(3) M<M, : u= B
M >M, : M-M, = B/p

In the above relations,B is the slope of the linear part of curve
(2), and it was decided to use this value in the following work for the

following reasons:

(a) Based on the rough analysis in section 3.4.1, it can be shown that a
méan value of the initial change in the yarn curvature involved in 1%
fabric extension is of the order of 0.08 mm—1, when the yarns in the

" load direction are of high crimp, and of the order of 0.2 m~! for the
lower crimped yarns (see the values of posz1/1OOdp2 in Tab1é3.4).
Hence, the initial yarn bending modulus (as commonly defined by the

slope of the couple-curvature behaviour up to 0.02 mm_1) will not in
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general, reasonably represent the yarn behaviour likely to be mét
in the experiments.
(b) The initial tensile modulus of a crimped yarn, say in the warp direction,

which has a saw tooth representation, is given by the following

1234 P, '
SR 4.1
1 [?sin91 ( )

E
ignoring the yarn extension; the above expression can be obtained
by treating the single yarn deformation as a cantilever deformed by a
tensile force acting on the plane of symmetry.

Using this expression, the theoretical values of E were calculated
for the warp and‘weft crimped yarns, assuming they have the same dimensional
shape as that in the fabric and 'B' is represented by the yarn elastic
flexural rigidity at low curvatures. These values may be compared with the
experimental values of the single crimped yarn ihitial tensile modulus,
calculated from the curves described in section 3.4.2., The comparison,
given in Table 4.1, suggests that the values of B chosen will, in general,

give a fair representation of the yarn bending property involved in the

initial fabric extension.

The yarn compressional property involved in the initial

fabric extension

The initial compression behaviour of previously undistorted yarn
obviously differs from the initial behaviour of the same yarn inside the
fabric, since the latter can bé regarded as already having undergone cyclic
compression strains during the fabric formation. A partial recovery from
these strains has then taken place during the succeeding finishing process.

After relaxation, the fabric is finally set into shape when dried, with a



‘Table 4.1

Theoretical and experimental values for the

crimped yarn initial tensile modulus () = o)

Pabric PFabric

E, (an)

B, (a)

group No. Theoretical Experimental Theoretical Experimental

X 1 392 372 2384 1780
2 299 285 2537 1651

w3 305 321 3050 2726

Y 1 - 319 349 3324 2724
2 270 252 3455 2868

Z 2 162 183 7264 4359
3 229 238 5308 4967

A 1 300 323 1826 1425
2 394 405 1457 1214

3 555 580 620 671

B 1 849 854 576 568
2 406 490 1286 1187

3 402 516 1331 1343
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smaller yarn thickness than the'initial value. When the fabric deforms
in extension or in bending, the interyarn forces, thus developed, will
cause the yarn cross-section to start another cycle. The best estimate
of the yarn initial compression modulus in the fabric can therefore be
obtained experimentally by an apparatus that can provide such cyclic
compression strains in which the second cycle should start at the same
-..thickness as that of the yarn inside the fabric. The apparatus actually
used, however, does not provide this facility, and a procedure therefore
had to be developed that would provide an estimate of the necessary
information.

The compression modulus, M4, is defined by the following relation
V - u&d,

where V is the compressive force (considered as a point load) and Ea is
T-T
the fractional change in yarn thickness ( T o) .
0

Differentiating the above expression we get
av = pdﬁa-

In practice a point load does not exist and therefore V may be
defined in terms of the intensity of load x(mN/mm), assumed uniformly
distribﬁted over the contact length, lc’ between warp and weft i.e.

V = [% x and 4V = Ide. Substituting in the above expression we get

[L.dx = udfa

[i]
=
l

or

b= (LT)/(E) -
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In the above expression 'TO' corresponds to the initial yarn
thickness inside the fabric, denoted previously by b, which was defined
by the experimental procedure in section 3.3.3; this procedure also
enables l; to be estimated. From the experimental curve or the fitted
empirical formula of the yarn compressional behaviour, the equivalent load,
52y Xq, to the thickness b can be found either by a graphical or by an

interpolation method. Assuming that the change in yarn thickness under

w. cyclic loading will have the behaviour shown in figure 70, we may regard

the slopes of the tangents to the curve at the points 'e!' and 'g'as nearly
equal. Thus the rate of change of the yarn thickness inside the fabric

is given by (%§)x=xb . This is obtained from the empirical formula (3.6)

by

-Bjxo

J=3
daT
(=2).,., = 2, AB.e .
The compression modulus is thus finally given by the expression
J=3 _
b= L./ S A3B.e 5% .
LA = B I

The varn tensile property involved in the initial fabric extension

The tensile behaviour'of yarns of normal twist such as those
used in this work show a low initial modulus, rapidly increasing with the
further extension. This behaviour may be fitted to a relation, as suggested

by Nordby (2), of the form

&y=lﬂp, O<n<1

where Ey is the yarn extension, T is the tensile load, and k and n are

constants.
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Such a relation may be useful when investigating the fabric
tensile behaviour at higher strains; however,it leads to an initial
modulus = O, and is therefore not useful in the present work.

Since it has been shown in our experiments that the yarns would
only extend by very small amounts during the initial fabric extension,
the best representation for this property would be the slope of the very
initial part of the yarn load-extension curve, up to a limit of 0.1%-0.2%

yarn extension (see figures 29—30).

4.2.4 Theoretical calculations of the fabric tensile modulus

under uniaxial loading

\

The theoretical analysis presented earlier provides a general
case, end several special cases corresponding to different levels of
approximation. Each of these was compared with the experimental data in
order to see what level of approximation, if any, is required to give

reasonable agreement between theory and experiments.

Case 1: Calculations assuming inextensible and incompressible yarns

The simplest theoretical expres31on for the fabric initial tensile

modulus is provided by this case and is given by equation (2. 7), namely

3 2

. 12B,p, " le1cos 6, . 2.)

T ﬂssinze B £3c0329 T
P45 1 1%2 2

In order to calculate E1 from this equation it was necessary to

evaluate the weave angles 61 and 62. According to the fabric model, we

have

6, = cos (p/Ly)  amd e, = cosT (p,/L,)
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The theoretical calculations for E1 and E2 plotted against the
experimental values are shown as circles in figure 71, and these deviate
considerably from the straight line drawn on the graph which indicates

perfect agreement between theory and experiment. In fact, the mean

E(experimental)
value of E(theoretical)

are, on average, nearly twice the experimental values, The reason for

is 0.49 which means that the theoretical vaiues

this can be explained if we consider the force needed to extend the fabric
to a unit extension (100%). This force can be divided into a force Fq,
which is the contribution of the warp threads to the fabric resistance

"

to extension, and a force F1 which is the cross yarn's contribution.

Equation (4.1) shows that

1231.p2
Iy (4.2)
Pq4ysin 61
and from equation (2.7) F: is then given by
3 2
» 12Bp, B, Lcos”e,
Fy ’ (4.3)

= B2 3 2
p1[H51n 6, B1lzcos 6,
for incompressible and inextensible yarns.

In fact, if the yarns are compressible, the contribution F: would

be far less, as will be seen later by considering a similar expression of

FI/
1

weft contributions to the fabric resistance to extension are further reduced

in Case 2. In addition, depending on the value of 91, both warp and

if the yarn extensibility is also included, as will be shown by examining
the general case,
In the hope that for practical purposes we can avoid the necessity

to define the tensile and compressional properties of the yarn, another
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approach was followed. When presenting his rigid-thread model, Peirce

showed that
6, = 106([1/p2-1)% and 0, = 106([2/p1—1)% ,

where the angles are measured in degrees. When the values calculated from
these relations were used in equation (2.7), quite good agreement between
the theory and the experimental results were obtained, as can be seen
from the points plotted as crosses in figure 71. It is obvious that in
eﬁploying this procedure there is an element of inconsistency in that two
-fabric models have been used, one to derive the expression for the initial
modulus and another to estimate the weave angles, but the resulting
agreement seems to Jjustify it. However, while this procedure has resulted
in reasonable agreement between theory and experiment, so far as initial
fabric moduli are concerned, it.will be shown later that it does not produce
satisfactory estimates of the initial Poisson's ratios. Consequently, we
proceed to investigate the effect of the yarn compression on the initial

modulus.

Case 2¢ Calculations aséuming compressible but inextensible yarns

The expression for the tensile modulus in this case is given by

equation (2.20), i.e.

12B1.p2 B2£?cos261
iy el Ly . S | (2.20)
p,Lysin"6, 1£oc0s 92+4BB1Bz(d1/u1+d2/ué)

In this case, the warp contribution to the force needed to produce

unit extension has not changed and is still giVen by equation (4.2); however,

the weft contribution is changed to



184

” 1231.p2 1

Bzﬂ?cosze
17 S Painle. B, foos20.0498.5(a,/red /o)
P15 1 142 ARGt e A VA M T

. (4.4)

When the theoretical calculations were carried out including the
effect of yarn compression,a generally better agréement between the theory
and experimental was obtained. However, this procedure gives a reasonably
close agreement for some fabrics but not for all, as can be seen from
figure 72. The beét agreement with experimental results is observed with
fabrics having high to medium crimp values in the load direction. On the
other hand,fabrics in groups X,Y and Z gave high theoretical weft-wise
fabric initial moduli,and these represent poor agreement with the experimental
data when the yarns in the load direction possess low crimp values. The
reason for this is associated with the neglect of the yarn extensibility,

as will be discussed in the next case.

Ceneral case: Calculation assuming compressible and extensible yarns

Some plain fabrics are made, purposely, with néarly straight
yarns in one direction in order to achieve, for example, a rib effect or
to obtain certain properties such as better drapability in the cross-wise
direction. Such constructions are shown in figure 73. From our point of
view, when these fabrics are extended in the direction of the straight
yarns, i.e. the weft direction shown in figure 73a, the initial tensile
behaviour can not be explained on the basis of crimp redistribution only.
Most probably such a mechanism almost vanishes,and the fabric is virtually
extended by extending the yarns themselves; thus a comparatively high
tensile modulus for the fabric is expected.

Calculations for the general case including the yarn extensibility,

as well as its compressibility, were carried out using equation (2.18),



185

FILLING WARP
FILLING

M

Warp cross section Weft cross section

(a) Rib effect produced by using coarse filling
and open structure fine slack warp

WARP ‘2’

P2

Y . L
7

FILLING

(b) Rib effect produced by using coarse filling and
fine highly tensioned warps alternated with
coarse slack ones
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Table 4i2
Theoretical and experimental calculations of the initial tensile modulus

E1(N/cm) , EZ(N/cm)
Fabric Fabric MN's=co MAs=o General Experimental A's=eco A'sS=co General ZExperimental
group No. 132=O Ml's=co Ns=eo case values B1=O p's=o MNs=co case values
X 1 8.09 25.52 11,02 10.72 14.3 40.55 59.36 46.27 38.28 36.6
2 6.14 22,07 8.62 8.43 9.4 40.67 56.33 45.75 37.55 29.8
3 6.30 30.41 9.81 9.56 14.2 42.78 53.95 47.19 37.52 34.1
Y 1 6.53 30.79 10.55 10.23 15.9 49.10 62.31 54.69 44.25 42.9
2 5.50- 31.87 10.08 9.79 15.5 46.75 56.50 51.64 41.54 33.8
3 4.79 38.71 9.64 9.38 14.6 53.25 60.77 57.06 43.72 28.6
Z 1 4.13  31.71  T.20 7.05 13.7 85.81 98.65 91.67 65.38 53.6
2 3.29 31.10 5.56 5.48 10.6 86.59 96.84 90.99 63.61 45.5
3 4.68 27.04 17.59 T.43 14.9 76.82 92.88 83.52 63.05 42.4
A 1 6.32 19.85 8.76 8.57 9.2 31.07 45.57 35.72 32.42 25.5
2 6.72 21.40 10.52 10.19 9.1 19.46 28.39 23,32 21.48 14.8
3 10.11 19.46 12.99 12.55 12.7 11.67 24.29 15.35 14.75 13.4
B 1 15.27 28,87 18.80 17.88 24.0 10.52 22.33 13.33 12.80 13.8
2 6.88 15.76 9.63 9.36 13.3° 20.20 35.85 25.95 @ 23.74 19.7
3 6.77- 20.78 11.45 11.05 11.7 17.61 26.13 21,95 20.09 14.5
c 1  20.07 2T7.42 22.71 21.39 23,2 11.11 41.41 16.26 15.58 22.0
2 12.40 19.11 15.53 14.87 18.0 7.90 22.49 12.58 12.10 12.8
3 8.96 18.60 11.38 11.17 12.0 11.52 22.22 14.54 13.80 13.0

Lst
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and are shown plotted against the experimental values in figure 74. It
can be seen that most of the discrepancies noted in figure 72 for the
weft-wise direction in fabric groups X,Y and Z, were improved.

The experimental and theoretical values, according to all the

cases examined, are given in the general table 4.2.

4.2.5 Theoretical calculations of the fabric initial Poisson's ratio

Case 1: Calculations assuming incompfessible and inextensible yarns

The simplest expression for the fabric Poisson's ratio, met with
in literature, is due to Grosberg, which was derived by differentiating

the relations -
£ = p(1+c) and h=-%p\/é' ,

‘for both warp and weft, assuming that the yarns are incompressible and

inextensible.

Thus

at, =al, =0 and dh,+dh, = 0.

1 2 1°772

The final expression for the Poisson's ratio is then obtained as
P, dp, Py (1-c4) V6, p, tans,

“:'Edpz:m?@\/?‘?"?? tan®,

The same result was derived by Hearle and Shanahan (22) using Peirce's
flexible-thread model. In the present analyéis,the simplest expréssion was
derived with the same assumptions of yarn inextensibility and incompressibility,

and was given by

o - Eg tan62
17 py tan6, ’



189

which is similar to the above result. It may be worth pointing to the
fact that both expressions are indepehdent of the yarn rigidities.

The theoretical calculations carried out using the above expression
are given in Table 4.3 where it can be shown that the values obtained for
this case ( A=, U =co) are much higher than the experimental results. We

therefore go on immediately to consider the case of compressible yarns.

Case 2: Calculations assuming compressible but inextensible yarns

The theoretical expression for this case is given by equation

(2.23). This expression can in fact be written in the form

Py tan62
,(% = 5; tane1 x Kc '
where
3 2
ﬂzcos 62/1232

%o = (chos262/1232)+4(d1/u1+d2/u2) ’ (4.5)
and Kc may be thought of as a correction factor for case '1' if the yarn
compression is to be taken into account. It is obvious fhat the theoretical
value of Poisson's ratio is reduced since Kc is always less than unity, and
is dependent on both warp and weft compressibilities. Further, in this
case it is possible to get values fozs(ﬁ and ob which are both less than
unity, while in the previous case a theoretical value of O less than unity
in one direction leads to a value higher than unity in the other direction.
The calculations,carried out according to this case,give much better
agreement for most of the fabrics, as can be seen in Table 4.3 (A =co) and

in Figure 75.



Table 4.3

Theoretical and experimental calculaéions of the fabric initial Poisson's ratio

0 %
Fabric Fabric A's=co General [Experimental A's=co General Experimental
group No. pU's=o MNs=co case values U's=eo MNg=oo case values
X 1 0.66 0.11  0.10 0.10 1.55  0.46  0.37 0.38
2 0.63 0.10 0.09 0.11 1.60 0.52 0.41 0.42
3 0.75 0.11 0.10 0.08 1.33 0.53 0.41 0.40
Y 1 0.70 0.12 0.11 0.08 1.42 0.60 0.47 0.40
2 0.75 0.13 0.12 0.12 1.33 0.67 0.52 0.51
3 - 0.8 0.1 0.11 0.13 1.25 0.68 0.50 0.57
Z 1 0.57 0.06 0.06 0.02 1.76 0.80 0.56 0.24
2 0.57 0.05 0.04 0.06 1.76 0.76 0.52 0.35
3 0.54 0.07 0.07 0.07 1.85 0.77 0.57 0.52
A 1 0.66 0.12 0.11 | 0.08 1.52 0.55 0.43 0.12
2 0.87- 0.23 0.22 - 1.15 0.49 0.45 0.40
3 0.90 0.28 0.26 0.17 1.12 0.33 0.31 0.25
B 1 1.14 0.30 0.28 0.28 0.88 0.21 0.19 0.16
2  0.66 0.21 0.20 0.32 1.51 0.55 0.50 0.52
3 - 0.89 0.30 0.28 0.31 1.12 0.57 0.52 0.47
c 1 0.81 0.29 0.27 0.20 1.23 0.21 0.20 0.13
2 0.92 0.43 0.41 0.37 1.09 0.35 0.33 0.25
3 0.92 0.25 0.23 0.20 1.09 0.31 0.29 0.26

061
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General case: Calculations assuming compressible and extensible yarns

The theoretical expression of this case is given by equation

(2.22) and may be put in the form

P, tanb

2
0, = 5; tane, Kot o
where
3 p)
sin29 00329 (._)ZL - _ﬁl)(_lz__ - ._li2_>
1 2 1231 A1 12B2 l1 ( 6)
K, = ’ 4.
ct PSinze 400526 [3 £1
N( 1 1 + 1)-sin26 00529 (——1— - ——)2
12B by 1 1M2B by
1 1 1 1
and
[?cosze. ﬂ.sinze. 44
i i i i i
N = j{: ( ot x * 7 ).
i=1,2 i i i

'Kct' may be termed a correction factor to include both the yarn compress-
ibility and extensibility. The calculations, carried out according to this

case, are included in Table 4.3 and are illustrated in figure 76.

4.2.6 Discrepancies and agreements between the theoretical

and experimental results

Generally, the theoretical calculations give a reasonable estimation
for the fabric initial tensile modulus and Poisson's ratio. The case which
gives the best agreement is that which includes both yarn compressibility
and yarn extensibility. A complete agreement is seldom possible for the

following reasons:

1. errors in the experimental measurements of the fabric initial behaviour;
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2. errors due to basic assumptions;

"3, errors in defining the yarn mechanical properties.
These will be discussed separately.

1. Errors in the experimental measurements of the fabric

initial behaviour

The value of the fabric tensile modulus is ideally defined by the
slope of the initial part of the load-extension curve, and this is sometimes
not easy to determine with great accuracy. Also a slightly slack or slightly
pretensioned fabric, when inserted in the jaws of the Instron, leads to
an indeterminancy of the origin i.e. the point on the chart corresponding
to zero load and extension. The coefficient of variation of the initial
fabric tensile modulus is in the range of 4.4% to 13%. This variation may
also, of course, reflect some variation in the fabric properties at
different parts of the woven fabric piece.

The quoted values of the Poisson's patio are based on testing one
or two samples for each fabric direction, this small number of tests being
done because of the lengthy testing procedure. From the preliminary
investigation it was clear that it is necessary to extend the fabric to
a sensible amount, beyond the initial, since the resultant initial changes
in width are very small. Such a procedure clarifies the extension-contraction
behaviour and reduces errors in interpreting the initial Poisson's ratio
from the resulting curves representing the behaviour. In this test,a crucial
error may result from the samples being pretensioned,since the curve will
be interpreted from the experimental measurements as shown in figure 77a
referred to axes O’X’Yf The behaviour, in fact, should actually have been
gstarted from the point O, where axes OXY represent the correct datum for

extension and contraction,and it is clear that the correct value of the



Fig.
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initial Poissonsratio which is ;ndicated by the slope of the tangent '1!
could be considerably different from the incorrect value indicated by the
slope of the tangent '2' in the figure. On the other hand, a slack fabric
sample will result in initial small changes in the fabric extension, as
meésured from the prints; however, this does not produce significant
errors in the experimental measurements. This case is shown in figure 77b
where it can be seen that both curves are nearly parallel and the measured
Poisson's ratio will be nearly the same.

The theoretical work described by Hearle and Lloyd (64) shows that E
and O under uniaxial loading are probably best measured using a high lengths
" width ratio and that after a certain ratio, nearly 5, little or no changes
in ﬁeasuring these values may occur. In the present work this ratio was 5,
and an additional check was made using a ratio of 105 both results were
gimilar.

With respect to the sample size and a constrained contraction at
the tensile tester jaws, another error in the Poisson's ratio measurements
may result from the fabric sample tending to buckle or curl due to the
heterogeneous strain in the neighbourhood of the clamps, as described by
Kilby (67) which could lead to incorrect measurement of the width contraction.
However, such an error is expected to be at a minimum for the small strains
considered, and when using sample dimensions as described. In addition,
the contraction of the sample is méasured at the middle of the specimen
where the stress and strain distributions are expected to be nearly

homogeneous.

2, BErrors due to basic assumpitions

An obvious source of error in the theory results from assuming

the yarns to be straight cantilevers. Such an assumption could be a
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reasonable approximation for both warp and weft in conditions which lead
to an open fabric construction with low to medium crimp in both directions.
If the structure is highly unbalanced so that the ratio of diameters,
rigidities and spacing of the yarns in one direction to the other is high
(figure 73a), the straight line representation holds reasonably accurately
in the direction which possesses the low crimp value,while giving less

accurate estimates for the modulus in the crossing direction., This can be

E(experimental)
E(theoretical)

’feachlfabric group are plotted against the crimp value of -the yarns in the

. seen clearly in figure 78,where the mean values of for

load :direction, the theoretical values being calculated according to the

general case. The graph shows that the best agreementsbetween theory and

. E imental) . )
experimental (Egiigsizﬁizaij) ~ 0,75-1.2) are given by fabrics of low crimp

to medium values in the load direction (0.03—0.12),wh11e the maximum
discrepancies are related to the warp-wise fabric extension of groups X,Y

and Z, which have high crimp values in this direction.

3, Errors in defining the yarn mechanical properties

The mechanical properties of the yarns have been measured in
isolation,and these could be different from those that apply when the yarn

is inside the fabric. ZFor example, the following might be cited:

(a) The yarns inside the fabric may be regarded, approximately, as consecutive
arcs of different radii, as suggested by Nordby (2), and the bending
properties of these might be dependent on their initial curvature.

(b) The yarn compression under zero axial tension could be different from
the yarn compression produced when the yarn is also acted upon by axial
loading (3), such as may occur during the fabric tensile deformation.

In addition,the procedure used to define the compression modulus relies
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on assumptions such as a race-track cross-sectional shape and that
the yarn is compressed at constant volume, which may not, in fact,
be satisfied.

(c) Extension of the free yarns could be different from their extension
under a combined axial and lateral loading, the caseAwhich represents
the actual yarn extension at the cross-overs, In addition, the yarn
extension possibly produces a yarn Poission's effect (4), which has
been ignored in the present analysis.

In spite of these objections, however, provided that.the strains
applied to the fabrics and yarns are small, most of the previously estimated

“yalues of the yarns mechanical properties can be regarded as reasonable.

4.2.7 The relation between E1,E2,cn and 0,

The planar stresses and strains of an anisotropic elastic lamina
are related by a set of linear equations. If the lamina possesses two
planes of symmetry at right angles to one another and both perpendicular
to the lamina,as shown in figure 79, the linear equations are reduced from
considerations of symmetry. The stresses and strains, when referred to the
principal axes defined by the intersections of the planes of symmetry with

the lamina, i.e. axes X and Y, are defined by

°xx = 1SSy 0 *

eyy = Ao1SxxthooSyy ‘b (4.7)

where SXX and. SYY are the normal tensile stresses and S

XY is the shear

stress.

eyx? eyy and eyy are the corresponding tensile and shear strains.

A11,A12,A21,A22 and A33 are influence coefficients,
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The above equations are sometimes referred to as Hooke's Law of a planar
sheet, and it is obvious that they are reduced to the simple forms of
Hooke's law if the stresses act individually in one direction. The simple

interpretation of these coefficients is then

A 1/E1, A, = 1/32, A, =1/G,

33
and Ay, = Ay =-/E) = -0/, , (4.8)

11~

where G is the shearing modulus and suffices (1) and (2) refer to the
warp and weft directions of the fabric (see figure 79) .
In deriving the above relations, the initial fabric parameters

which define the fabric dimensions in planes XZ and YZ, i.e. h, and h

1

are immaterial except in so far they affect the final values of the

2’

. sheet. It may be a matter of interest to show that the expression derived
in our analysis, for the fabric tensile modulus and Poisson's ratio,
assuming crimp interchange, leads to the same relations as the planar

stress-strain analysis. Starting with the following expression:
A, S, +A A g 19 _a 1-0,(F.,/F.)
11xx+1zsn" E,” 17E,""2 = E, I\l g

and substituting the equivalent values of E1 and o] from equations (2.7)

and (2.24) gives

F L;l;p sin®6,sin0 p,tane,
1717271 1 2 ] - p) (F /F )
5 29 03 2 pytang, ‘72
12p2(L13200$ 6,+£,B,cos 92) Py

_ F1[?[ p1sin 6 sin 6 l;[ p281n8 cos9151nezcose

12p2(l$ cos 9 +L3B1cos 92)
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which is the expression previously derived for the warp extension under
biaxial loading with the assumption of inextensible and incompressible
yarns.

Similarly, it can be shown that the planar stress-strain relation
(4.8), arising from symmetry considerations holds valid when substituting

for E and O from our analysis i.e.

p2tan9 12132p1 1[é’cos e +B Pcos 61
0182 = {3, tane, %) 3 2 3 ’
1 s
Py p2[281n 92 le1cos 61
3 .2 3
0. = p1ta.ne1) 1231p2 [B1lzcos 92+B l cos 91]

- 9

21 pztanez Py L?sinze1 B1lgcos 62

and these in fact equal.

It can also be shown that the above equivalence is consistent in
any case,when using the other expressions obtained with the different
assumptions for the yarn mechanical properties. The theoretical relation
(4.8) confirms the experimental finding, discussed in section 4.2.2, that
for the same fabric, the direction which possesses the higher value of E,

also shows a higher value of o.

4.2.8 The fabric initial behaviour under biaxial tensile deformation

In a biaxial tensile deformation two quantities are involved,
namely the two tensile loads (F1 and F2) and the two extensions (é'1 and 62).
In order to carry out an experimental test, two of these quantities are
regarded as specified independent variables,while the other will be dependent

on them and obviously on the weave construction. The specified variables
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can be varied according to several schemes (3,68,4 ); for example, their
ratio may be held constant. The following discussion applies to the case
vhere F2 and F1 are varied so that F2/F1 = constant during the test.

To predict the initial biaxial tensile behaviour, it is possible
to rely directiy on the relations derived from the planar stress-strain
analysis, since it has been §hown that the expression in our work which
assumes crimp interchange leads to the same conclusion. The particular
value of the sheet (E1,E2,(% and o, under uniaxial loading) should be
predicted using the case which best agrees with the experimental results,
i.e. with the éssumption of extensible and compressible yarns. The fabric
extension, regarded as the dependent variable, under biaxial loading in a
warp direction, can then be calculated from

&=% 3 [1"71(F2/F1)]
1
There will be 3 possibilities for the fabric initial tensile

behaviour, namely

1. Warp-wise fabric extension if CH(FQ/F1)‘<1°
2, Zero warp-wise fabric extension if cq(Fz/F1) = 1.

3, Warp-wise fabric contraction if (ﬁ(Fb/F1):>1.

4.2.9 Comparison with other theories

The theoretical results based on the expressions derived in our
analysis were compared with some results obtained by De Jong and Postle (66,69)
Their analysis uses an energy method, and should be more accurate since it
relies onf;ore realistic shape for the yarn path. We shall use here the

same dimensionless units used by the above authors. These ares

f.: dimensionless decrimping load per yam (fl?/B);
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é;: relative extension (£/c), €= ap/p and ¢ is the yarn crimp;

Er: relative fabric tensile modulus (fr/é;);

A the ratio of yarn tensile rigidity to bending rigidity (\{°/B).
The following comparisons may be made.

a) Yarn decrimping curves

Under conditions of extensible yarns, our analysis yields the

following expression

s . 12xr1(1-cos61)

r .. 2 2
Ar1s1n 91+12003 61

Theoretical load-extension behaviours for a region of load in the
rénge ( og-%[—'g 4) are compared with De Jong's and Postle's curves in figures
80 and 81, these being shown at two levels of crimp values and for different
values of AL

The following features can be noted:

(i) The load-extension behaviour based on the straight-line model holds
reasonably well in the region of loads (OQ%SZ), which were defined by De
Jong and Postle as the initial decrimping region.

(ii) The effect of the yarn axial extension is a vital factor for the
theoretical calculations when the yarns are highly extensible and/or
the crimp level is low.

These two features have been confirmed earlier when the experimental
and theoretical values of our results were compared.

The above authors gave also numerical values of the yarn axial
extension involved in the crimped yarn extension. Similar values can be
obtained from the present analysis. Figure 82 shows the contribution of

coso
1 . \
this factor (-—-5——-) plotted against the crimp value for different levels

ofxr-
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b) Effect of yarn length ratio,_f%/fa, on the

initial fabric modulus

Assuming incompressible and inextensible yarns, the relative

fabric modulus is

B

r1

12(1-cos8,) B 2300s26
Rk U PR haalihe
. 2 3 2 *
sin 61 B1l2cos 92
We shall assume that the warp and weft yarns are of 1';he same bending

--modulus, also the fabric is relaxed before setting. Thus the fabric

dimensional parameters are more related by the following expressions

B1 sine1 stinez

2 = 2 ?
P2 P1

It is thus possible to draw the curves shown in figure 83, relating Er1 and
,[2/[ ,and it can be seen that a similar trend to that obtained by De Jong
and Postle is given by thé above expression for Er1' They mentioned that
gg ,[2/ l1 increases, the fabric modulus, Er1’ is reduced because the inter-
yarn forces acting on the extended yarn (owing to the crossing thread) are
reduced by a factor 1/( l2/11)2." From the above expression, the reduction
is in fact apparently related to 1/(1/2/ 11)3

c) Fabric initial Poisson's ratio

Very contradicting behaviour for this ratio has been obtained by
De Jong and Postle. They gave experimental values for the initial Poisson's
ratio that were greater than unity in both directions. Their experimental
results, in fact, were interpreted in a different way to that used in the

present research, since they ignored the initial part of the extension-
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conﬁraction behaviour in the cases where no contraction was observed. They
attributed this delayed contraction to the possibility that the interyarm
forces during the initial fabric extension are insufficient to upcrimp the
grossing yarn. De Jong and Postle also attributed the values of o>1, in
both directions, to the effect of the axial tension applied to the yarns

on yarn rounding (rather than flattening). They suggested that the inter-
yarn distance is therefore predominantly controlled by the effect of tension
on the yarn cross-sectional shape rather than by the interyarn forces. In
the present work, the values of the initial O were always less than unity
and the theoretical Jjustification that we have presented for this highlights
the effect of yarn compression on the initial length extension-width

contraction.
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4.3 A Discussion of the Initial Bending ngperties

of Plain Fabrics

The general trends of the experimental results, refeiring to
Table 3.9, for all the tested fabrics can be summarized in the following

remarks.

1. The general shape of the bending hysteresis curve, previously described,
was observed for all the fabrics; These curves for plain fabrics are
expected to show symmetry about the origin, since the weave cell is
symmetrical with respect to the fabric plane. However such symmetry was
not always found in the experimental curves, probably due fo an initial in-
plane couple or to different treatment of the two faces when the fabric was
driediinhthé‘stenter during the finishing process. The procedure used

to interpret the results,(section 3.5.1), effectively reduced these differ-
ences, siﬁce the mean values of all the tested samples of a particular fabrie
finally produced a nearly symmetrical curve.

2, The trends for the fabric bending modulus are probably better discussed
by examining the experimental data with respect to a simple model of fabric
bending. The simplest mechanism for this behaviour assumes that the effect
of the crossing yarns may be regarded as reducing the effective length of
the yarns, in the bending plane, that will bend when the fabric plane is
deformed (38,45). The yarns are therefore considered as alternate rigid
and flexible segments. The fabric stiffness per yarn, as far as warp-wise

bending is concerned, is given by
Y
2
=3B .
% =2 Iy

where Lf1 is the length of the flexible segment of the warp thread in the

fabric unit cell.
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An obvious difficulty in applying this simple model is how to define
these segments,since a preknowledge about the yarn compressibility and its
cross-sectional shape,»before bending, is required. One possibility is
shown in figure 84, which gives the warp-wise fabric rigidity (per unit
width) as

B, Py

BW:EW . , | (4-9)

Using the available data referring to the yarn projections, the
calculated values of the initial bending modulus, according to this model,
are given in Table 4.4 and are plotted against the measured values in
figure 85. It is apparent that most of the measured flexural rigidities
of the finished fabrics tend to be lower than those estimated by the simple
model.

If the bending behaviour of fabrics does follow a mechanism like
that assumed, the discrepancies between the measured and calculated data
can possibly be explained on the basis that the rigid parts of the yarn
length in the unit weave cell might be smaller than those given by the
fabric model. TFurthermore, there could be a possible interaction due to
the yarn compression, during fabric bending, which leads to lower values
of the experimental fabric rigidity. On the other hand, for some fabrics,
the measured initial bending moduli are higher than those calculated from
equation (4.9). This can be seen in connection with the tighter fabric
constructions,and suggests that increasing values of the frictional
resistance to the initial fabric bending have resulted and caused the noted
discrepancies in these cases, The values of the'coerci&e couple/yain' for

both the initially straight yarns (MZO1 and M02) and the yarns inside the



r

b,

_J__..

—_ 8, ——m

\

}__.




Table 4.4

Warp Weft
Fabric  Fabric 01 Mow Bw(eq“at;°n 4.9) My, Mot BT(equat;°n 4.9)  Yo.in
group No. mN.mm  mN.mm oN.mm“/cm oN.mm  oN.mm oN.mm“/cm Fig.85
X 1 0.28 0.27 327 0.50 0.48 346 1
2 0.28 0.31 275 0.50 . 0.68 349 2
3 0.28 0.29 282 0.50 0.52 278 3
Y 1 0.28 0.29 292 0.61 0.88 374 4
2 0.28 0.30 268 0.61 0.82 385 5
3 0.28 - 252 0.61 - 296 6
7 1 0.28 0.26 245 0.79 1.40 469 a
2 0.28 0.27 218 0.79 1.34 505 8
3 0.28 0.41 263 0.79 1.45 529 9
A 1 0.26 0.26 212 0.26 0.32 296 10
2 0.26 0.21 176 0.26 0.19 183 1
3 0.26 0.35 230 0.26 0.27 248 12
B 1 0.26 0.47 256 0.33 0.26 228 13
2 0.26 0.25 213 0.33 0.26 219 14
3 0.26 0.23 207 0.33 0.36 281 15
c 1 0.26 0.41 227 0.19 0.19 167 16
- 2 0.26 0.29 239 0.19 0.14 142 17
3 0.26 0.18 " 180 0.19 0.15 119 18

cie



Experimental fabric rigidity (mN.mm2/cm)

213

800
|
7000
600}
500 |
400 |-
300}
200}
1004 * ‘
*Y//, e Warp~wise fabric bending
8 * Weft=wise fabric bending
o 1 [ 1 A J
0 100 200 400 500 600 700

Theoretical fabric rigidity
(mN.mm2 /cm)

Fig., 85



214

fabric (MOw and MOT) are included in Table 4.4, from which it can be

seen that the high values of MbT are associated with the coarser weft
yarns being used in fabric groups Y and Z, and the high values of MOw are
associated with fabrics Z-3,A-3,B-1 and C-1, which have high cover factors.
These constructions gave higher experimental values of the fabric stiffness

than the theoretical ones (figure 85).

4.3.1 Theoretical calculations of the fabric initial

bending modulus

The mechanical properties of the component yarns were discussed
when considering the tensile behaviour of fabrics. The yarn bending
" property involved,was chosen based on an analysis of the poséible change
in yarn curvature, produced by extending the fagric b& a small amount. A
further comparison between the theoretical and experimental values, obtained
for the initial tensile modulus of the isolated crimped yarns, confirmed
that yarn bending is best represented by its elastic flexural rigidity.

In the following calculations, the yarn bending properfy, involved
in the fabric initial bending, Qill be redefined taking into consideration

the following aspects:

1. In the bending analysié, it has been assumed that the yarns are bent to
the same angle as that of the fabric plane,i.e. the initial change in
curvature of both are nearly the same,

2. The initial bending ﬁodulus of the isolated straight yarn takes into
account the effect of the fibre frictional restraints. This effect is
very likely to act in the same way when the &arné are bent during fabric

bending, and may indeed be accentuated.
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Based‘on the above arguments it is reasonable to represent the
yarn modulus 'B' by its initial value,i.e. the slope of the initial part
of the hysteresis loop (up to the range 0.02 mm_1). With the other
geometrical and mechanical properties involved in the calculations having
the same values as before, the theoretical calculations of the fabric
bending modulus can then be compared with the experimental initial bending
modulus of the real fabrics.,

Before discussing the theoretical calculations we must point out

the following reservations:

1. The theory assumes a point contact between the crossing yarns. The

yarn shape and the contact length between warp and weft are only taken into
consideration in determining values for the yam's compressioh moduli. The
theory, therefore, ignores any interference between the yarns associated with
the real contact and their possible effect on the fabric initial bending
modulus.

2. The theory does not congider the interaction between the yarns in the
load direction, which may lead to a rubbing action, or additional frictional
restraints, between the adjacent yarns when the fabric is bent. This
interaction causes both the frictional couple and the initial bending
modulus to increase. This effect was discussed by Olofsson (43), Owen (6)
and Cooper (70) and a common agreement between them is that such interaction
is more likely to occur with the tighter fabric constructions. Because of
the above two reasons, the theoretical calculations would not be expected

to be comparable to the actual bending behaviour of fabrics such as Z-1 and
A-3 in the warp'direction and groups Y and Z.in the weft direction, in
which tight fabric constructions have increased the frictional restraints,

leading to significantly higher values of the experimental bending modulus
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than are given by the calculations.

The first set of calculations was carried out assuming the yarns

to be incompressible and inextensible (u's, A's =eg. The expression

derived in the theoretical analysis for the fabric initial modulus, per

unit width, is then

B 3B 1300329
1 271 1 1
B = t O )

e [ B1lgc05292+321,13cosze1] Pq (2.33)

where Bw is the warp-wise fabric initial bending modulus.

The estimated and measured values are compared in Table 4.5, where
large discrepancies can be seen with this assumption (u's =e). In the
majority of cases, the calculated values are greater than the measured
ones. The reason probably is associated with the overestimation of the
crossing yarn's contribution to the fabric resistance to bending,which,

in terms of the couple needed to counteract the interyarn forces involved

in bending the fabric to a unit curvature, is given by

3 2
- obiees o (4.10)
17 1+c 3 2 3 2 ) ¢ .
’ 1 B1lzcos 92+th1cos 91 1

Pabrics made from highly compressible yarns tend to feel softer
and seem to bend more easily than those made from hard twisted yarms of
high compression moduli. This suggests that yarn compression behaviour
might effect the bending properties of fabrics, and the theory confirms this.

The final expression for Bw, taking account of yarn compression, was

3 2

Bw _ B1 [1+ 5B2[1cos 91 ] ] (2.37)

= T—— 2 - .
ey B, Lcos?0,48,L2c0s0, +48B By(d, /v, /i) | P1
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from which it can be seen that @he weft contribution to the fabricvbending
resistance is reduced.

The values calculated using the above equation are given in Table
4.5,and arve plotted against the measured values in figure 86, The
underlined cases in Table 4.5 are excluded from the figure since the theory
does not apply to them. It is apparent that a better agreement between
the theory and experiment is achieved by including the yarn compressibility,
though the differences are still considerable.

The remaining discrepancies between theory and experimental may
be attributed to the same general sources of errors as were méntioned in

the tensile analysis. Applied to the fabric bending, these are:

251; Errors in the experimental measurements of the fabric bending behaviour,
In spite of the fact that a relatively large number of samples has been
tested for each fabric construction, the fact that the standard size
used with the Shirley tester is so small (0.5x2.5 cm), leaves some doubt
about whether the fabric is best represented by the samples.

2. BErrors due to the theoretical assumptions and the level of approximations

used in deriving the final expressions.,

In order to follow the theoretical trends suggested by the general

equation (2.37), we shall use the following relative quantities:

(T the ratio of yarn compression rigidity to bending rigidity (ul?/B),
and Dr: the ratio of interyarn spacing to yarn modular length, in the
bending plane (D/£).
We shall only consider the case when the warp and weft are made of the

same yarns, i.e. B,=B, and u,=k,. Equation (2.37) is then converted to



Table 4.5

BW(mN mm?/ cm) ‘ BT(mN .m?/cn)
Calculated Calculated Calculated Calculated
Fabric Fabric (Equation (Equation (BEquation (EBquation No. in
group No. 2.33) 2.37) Measured  2.33) 2.37) Measured Fig. 86
X 1 545.42 217.17 195.88 359.29 232,07 220.88 1
2 515.44 272.52 184.82 319.59 215.41 205.50 2
3 612.23 313.21 204.00 249.81 185.72 225,00 3
Y 1 602.50 319.14 205.48 315.88 238.02 330.00 4
2 619.56 352.23 215.16 269.29 216.90 414.98 5
3 651.13 378.12 - 215:13 183.57 - 7 6
Z 1 630.73 327.60 194.78 310.26 261.29 [89.28 T
2 635.11 314.69 194.98 275.34 236.91 679.86 8
3 606.06 306.98 335.05 375.24 298.98 809.79 9
A 1 464.15 234.03" 172.50 271.76 173.79 202.50 10
2 409.17 233,74 143.54 214.22 148.04 -  116.83 11
3 338.38 199.50 182.50 371.96 214.45 196.19 12
B 1 350.16 194.22 285.00 363.19 197.26 160.00 13
: 2 353.08 205.59 140.94 295.95 186.70 130.59 14
3 405.13 251.66 165.23 213.90 155.42 136.80 15
c 1 244.97 170. 41 205.04 339.91 173.92 120.03 16
2 270.65 192.38 152.00 268.49 164.87 100.00 17
3 343.49 196.92 116.00 189.37 108.33 73.64 18

8Le
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. 3
Acos 61
B/By = |cost, + 5 |
3 2 2 “r
(1;/[1) cos”6,+cos"0,+48 ™

where Bw is the warp-wise bending rigidity, per yarn,of the fabric.

The theoretical trends shown in figures 87-89 can be easily
obtained from the above equation. The graphs show the effect of yarn
length ratio ([;/}y) on the ratio B,/B,. Figures 87 and 83 show this
effect at two levels of crimp (5.5% and 16.6%), and for three levels of
Dr/ur (0,0.05 and 0.1); the latter two values of Dr/ur represent realistic
values of this ratio and aré typical of some of the yarns used in the

present work.

The curves in figures 87 and 88 exhibit the following features:

1. In the chosen range of fabrics where 0.6sl2/l1<1.6 and Ongjurg 0.1,
the fabric initial flexural rigidity is always higher than the yarn
initial rigidity.

2. A reduction in the fabric modulus (Bw) is obtained by increasing thé
length ratio (fy/L,). This trend resembles the trend obtained for the
initial tensile modulus. The reduction has a steeper rate in the case
of the lower crimp value (5.5%). |

'3. For the same ratio of (12/11), increasing the warp crimp reduces the
warp-wise fabric bending rigidity.

4. The effect of yarn compression, i.e. increasing the value of Dr/ur, is
interesting. Initially, as Dr/p.r changes from O to 0.05, the effect
on Bw/B1 is, in general, relatively large. However, as Dr/ur increases
from 0.05 to 0.1, the éhaﬁge in BW/B1 is rather small.

The effect of the crossing yarn rigidity is shown in figure 89

where it can be seen that, in general, an increase in the crossing yarn
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bending modulus stiffens the fabric. This is more prominent at the
higher values of length ratio 12/21.

From equation (3.27) and the trends shown in figures 87-89, it
is possible to obtain fabrics of BW/B1 <1 if the fabric construction is
very open, i.e. l%/f% is high enough, also when the yarns are highly
compressible and/or the crossing yarns are very easy to bend. The minimum
value of Bw./B1 is 1/(1+c1). Obviously the same applies to the ratio

BT/BZ when considering the corresponding parameters involved.

4.3.2 Comparison with other theoriesg

The only other closed form solution, met with in the literature,
which provides a theoretical expression for the fabric initial bending
modulus, is due to Abbott (8). The ratio BW/B‘I of a warp yarn inside the

fabric was given in his analysis by

2
b 9.3B l.-2p, 2
1 1 2 2 .22 1P
BW/B1 = e, h? l:% + 2(1_L)] + 4p?B1 biL P, ( » ), (4.11)

where b1 is the minor diameter of the yarn, in the load direction, b1L/2

defines the yarn neutral axis as shown in figure 90, and L is given by

B, /132
B,/B, + [ 1. 16p,(i2p,) 2]

L= (4.12)

.
It may be shown that the expression given in equation (4.11) can,
in fact, be reduced to
LY
BBt = Tag, + 7 (5-48)
1
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Abbott's expression for the ratio (BW/B1) was derived by using
certain relations developed by Grosberg and Kedia (concerning the crimped
shape of the yarns) and applying them to individual fibre deformations.

Using a similar method to that adopted by Abbott and using the
relations obtained in our tensile analysis, which are equivalent to those
derived by Grosberg and Kedia, the following expression for the fabric

bending behaviour can be reached, (see Appendix 2)
2

B,/B, = -175- [1 + ] (1-1-)] ’ (4.13)
1 h

1
where L is defined by

B,/B,
h B1/Bz+(l?cos291/lgcos292)

(4.14)

From equations (4.13) and (4.14), if p, has a fixed value, then
an increase in 91 will reduce the fabric rigidity. This trend can be

shown by putting equation (4.13) in the form

2
L2

Bw/B = cose, 5 [ 3 232P2 .
_ tan 61 5

B1IQcos 92+132p2sece1

The numerical values obtained using equation (4.11) and (4.13)
were examined with respect to the experimental data. Both expressions give
higher calculated values than those actually measured, Possibly due to
ignoring the yarn compression.

In the tensile analysis,it was shown that including the yarn

compression reduces the weft contribution to the fabric deformation. Doing
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this for the bending analysis leadsto a value of L which is now given

by (see Appendix)
B, /132
13008291

lgcos292+4832(d1/u1+d2/u2)

L = ) (4.15)

B1/B2 +

and this gives an increased value of L when the yarns are compressible
(I=1 when by and/or M, equal zero).
The final expression (4.13) is still valid but with the above value

of L, and may be put in the form

y [ 3b B, ljcos 0, ﬂ
B 1+ {
Bw =1 2 3
+°1 hi B Lcos 62+le?cos 0,+48B,B,(d, /i1, +d,/,)

eeese(4.16)

which may be regarded as a modification to the expression obtained by the
earlier theory (equation 2.37), in which the weft contribution is
multiplied by the factor bf/hf

Numerical values calculated using equation (4.16) are given in
Table 4.6, and are plotted against the corresponding experimental results in
figare 91. It can be seen that this is the best agreement between theory
and experimental so far found. The fabrics which give considerably higher
experimenfal values than the calculated results are those of tight

construction discussed earlier,



Table 4.6

Bw

Warp Weft
Fabric Fabric c I c AL No.in
group No. 1 1 oN.mm?2/cm 2 2 mN.mm?/cm  Fig. 91
X 1 0.1916 0.8210 203.79 0.0594 0.9222 277.52 1
2 0.2143 0.8060 193.75 0.0557 0.9297 268.45 2
3 0.1712 0.7519 210.54 0.0466 0.9392 235.09 3
Y 1 0.1787 0.7310 209.11 0.0480 0.9344 320.90 4
2 0.1789 0.6657 206.26 0.0472 0.9368 299.00 5
3 0.1580 0.6250 211.88 0.0359 0.9519 264.53 6
Z 1 0.2065 0.6953 193.48 0.0285 0.9643 431.53 T
2 0.2177 0.7147 184.91 0.0269 0.9736 387.29 8
3 0.2264 0.7292 191.67 0.0371 0.9556 470.87 9
A 1 0.1951 0.8215 172.91 0.0587 0.9167 199.65 10
2 0.1041 0.7509 166.77 0.04390 0.8861 162.25 11
3 0.1394 0.8535 166.94 0.1210 0.8416 182.55 12
B 1 0.0920 0.8800 180.38 0.1189 0.8720 187.27 13
2 0.1336 0.8039 155.48 0.0532 0.8556 205.98 14
3 0.1011 0.7005 172.53 0.0506 0.8625 182.35 15
C 1 0.0951 0.9258 170.22 0.0934 0.7803 148.30 16
2 0.1097 0.8598 170.71 0.1074 0.7190 120.51 17
3 0.1027 0.8567 164.29 0.0652 0.8556 105.00 18
B, b2 . B, {3c0s26,+46B,B,(d,/u+d,/1,)

1+c1

[

1+—;-(3.o-31.1)

h

1

]1_
Py

1

=L 32 3 2
B1lzcos 92+lezcos 91+483132(d1/u1+d2/u2)

Lzz
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SUMMARY AND CONCLUSION

The theoretical behaviour of the initial tensile and bending
deformations of plain fabrics have been analysed. The aim was to provide
a closed form solution for these deformations, Castigliano's theorem
being used as the principal method of attack. The theory was then compared
with experimental results. ‘

The analysis showed that the resistance of fabrics to deformation
should be regarded, in general, as two resistances contributed by both
warp and weft; both are highly affected by the crimﬁ value in the load
direction.

In the tensile analysis, the yarn extensibility and compressibility
in addition to its rigidity were taken into consideration; however, the
first of these is only important when the Yarns in the load direction are
of low crimp value. If the effect of the Yarn extensibility is ignored,
the initial tensile modulus in a warp direcfion under uniaxial loading.~

lies between the following limits:

%) 2
3 . .2 = 1 = 3 . 2 2 4
p1£.1s1n 61 p1ﬂ1s1n 91 31[2005 62

where the maximum limit corrééponds to incompressible yarns and the minimum
to extremely compressible yarns., The weft contribﬁtion is independent
of the warp rigidity,but dependent on its own rigidity and on geometrical
factors. This has resulted from the mechanism of crimp interéhange that
has been assumed for the initial deformation.

Practically, most of the fabric's initial tensile moduli lie

between the above extremes, and for a reasonably simple estimate of E
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equation (2.20) may be used, which reduces the predicted upper limit of
fabric modulus by a factor in the range 1.2-4.

Using thg same analysis it is possible to predict the fabric
jnitial Poisson's ratio with considerable accuracy by equation (2.23).
It has been found that the Poisson's ratio is nearly independent of the
yarn rigidity in the load direction and depends on the yarn extensibility
only when the fabric has a low crimp value in the load direction. For
other fabrics, of medium to high crimp value, the Poisson's ratio lies

pztane2
between the limits OO 75 and a reasonable estimate can be

1\p1tane1
obtained by multiplying the maximum limit by the factor Kc,given by
. equation (4.5). This factor depends on the compressibilities of the yarns
. 48(d,/p+d,/ 1)
Boos?e,/3,

used,i.e. on the ratio « For the fabrics used,the estimated

Poisson's ratio is reduced 2-8 times below the maximum limit mentioned
above, in agreement with the experimental results.

In the bending analysis, the yarn bending rigidity and its
compressibility were taken into consideration to derive the expression given
by equation (2.37); however, considerable differences between experiment
and theory have been found, possibly due to ignoring the real contact between
warp and weft and the associated frictional restraints. A similar approach
to Abbott's was later followed which gave a closer esiimate of the fabric -
jnitial bending modulus.

Possibly the most important feature of the theoretical analysis
is the effect of yarn compressibility on the fabric initial behaviour. It
is recommended for further work in this area to develop a more accurate

and simpler technique to define this property in the fabric structure.
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Some 3o0o0om details

l1-Let-off motion

2-Loom Cycle
A-Beat up point at zero

B-Start of dwelling at 6h

C-End of dwelling at 157
D-Crossing point at 290

E-Start of mechanical picking at 60
F-End of mechanical picking at 100



Table A.1

Thread spacings

Warp spacing(mm) Weft spacing(mm)

Fabric Fabric

group No. P4 p¥ p, P35

X 1 0.485 0.485 0.588 0.593
2 0.488 0.486 0.624 0.618
3 0.485 0,49 0.713 0.705%

Y 1 0.490 0.495 0.677 0.696
2 0.492 0.4 0.739 0.724
3 0.495 - 0.849 -

Z 1 0.494 0.495 0.779 0.769
2 0.494 0.499 0.839 0.824
3 0.491 0.492 0.691 0.680

A 1 0.476 0.486 0.589 0.591
2 0.587 0.592 0.749 0.727
3 0.549 0.545 0.532 0.529

B 1 0.556 0.548 0.548 0.557
2 0.591 0.588 0.637 0.660

c 1 0.568 0.584 0.465 0.469
2 0.577 0.566 0.538 0.536
3 0.571 0.591 0.662 0.655

Py and p, were measured by counting threads

in 5 em samples.

p*{ and 13*2e were measured by measuring -the distance occupied

by the threads using a projection microscope.

236
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Table A.2

Yarns crimp and degree of 'set!

Warp crimp (%) Warp Weft crimp (%) Weft

Fabric Fabric 'set! tget!?

group No. ¢4 C? %) 02 cg (%)
X 1 19.16 19,20 92 5.94 6.19 91

2 21.43 21.72 95 5.57 5.70 92

3 17.12 18,17 91 4.66  4.21 89

Y 1. 17.87 19.19 90 4.80 4.65 90
2 17.89 18.63 91 4.72  4.15 9

3 15.80 16.27 =~ 96 3.59 3.58 93

4 1 20.65 23.22 93 2.85 2.82 96
2 21.77 22,65 90 2.69 2.84 96

3 22.64 23.83 93 C 3.7 2.72 97

A 1 19.51 19.48 97 5.87 ~ 6.48° 97

- 2 10.41 10.30 96 4.90 '5.28 98
3 13.94 13.56 96 12,70 12.43 94

B 1 9.20 9.69 94 11.89 12.07 93
2 13.36 13.64 94 5.32 5.68 91

3 10.11 10.89 86 5.06 5.67 88

c 1 9.51 10.22 88 9.34  9.91 85
2 10.97 12.78 89 7.31  8.79 85

3 10.27 10.12 89 6.52 6.88 g5

c4 and ¢, were measured using the Shirley crim§ tester,

c? and cg were measured using the 'Instron!.

Big differences are underlined,



Table A.3

Experimental data of the cyclic bending test for various yarns

Couple (mN.mm per thread)

Curvature R60/2

(10-1mm-1) vincel* cotton

R60/2

R74/2 R98/2 Rmeo/2 ~ R6O/2  RA6/2

cotton cotton vincel** wvincel vincel

cotton/ cotton/

0.0 0.0
0.2 0.22
0.4 0.38
0.6 0.56
0.8 0.69
1.0 0.84
1.5 1.14
2.0 1.42
2.5 1.73
3.0 2.03
2.5 1.27
2.0 0.87
1.5 0.57
1.0 0.30
0.5 0.04
0.0 -0.28
-0.5 -0.57
-1.0 -0.84

0.0

0.36
0.55
0.80
1.00
1.12
1.40
1.67
1.92
2.26
1.17
0073
0.41
0.11
0.18
0.50
0.82
1.12

0.0 0.0 0.0 0.0 0.0
0.38  0.50 0.18 0.32 0.11
0.65 0.80 0.31 0.45 0.22
0.88 1.14 0.44 0.51 0.28
1.08 1.33 0.56 0.62 0.3%6
1.30 1.56 0.68 0.75 0.46
1.67 2.08 0.95 0.97 0.60
2.01 2.59 1.21 1.22 0.76
2.40 3,15 1.46 1.47 0.91 -
2.79 3.75 1.72 1.75 1.07
1.49 1.76 1.04 0.95 0.67
0.87 0.98 0.70 0.61 0.44
0.46  0.46 0.42 0.33 0.29
0.12  0.03 0.17 0.11 0.12
0.22 0.34 0.09 0.11 0.04
0.61 0.79 0.26 0.33 0.19
0.96 1.19 0.48 0.50 0.29
1.30 1.56 0.71 0.75 0.46

* Yarn used as warp with fabric groups X,Y and Z

#*% Yarn used as warp with fabric groups A,B and C, also for weft with

fabric group A

g¢2



Computor program for fitting t.he (239)

experimental results of yarn thickness
gy Wk vl
c MINITI ZAT 1UN ftp FUf,CT JOf]
dimension zi.(16)
INTEGER Hfn.method, |l wW,IPKINT Max CAL,I FAIL,I
real X<16) ,7(16) ,F,M7> ,5>tA|.E(7> ,P.(1lo>,U(100) ,XTO1 <7)
EXTERNAL RESID,1SQ,mONit
COMMON/AAAA/X, z
WRITE (2,900p9)
pEAD M,10) m
10 FORMAT (IO
N=7
SUM s0,0
DO 500 1K*1 M
PEAT. (1,200) X(IX),Z(1K)
200 fOF.maT (2E5.1)
SUM1 SSUM.1+7(!K>
50Q CONTINUE
7-1 bSO''1/%
FCAD (1 ,300) (A(J> *JE1,7)
300 fORMAT(7F10;5>
xtol (1> =io;n-p
yTML (2) =10%Cr~
xTI'L (3) =107E"8
xTOL (u> =107 Ect
XTOL (*) =107 E<ft
yTOL (6) =107C«0
xtol (7) =io;n~"8
method =2
jl; BSIJ*(N+A)*M
I PR IsIiT Bl
I1IAXCAL b100
I FAIL =0.
CALL EOACAF (MfN#A,R#F,vTUL,METHOD,SCALE,W,IU,ReSID,1SQ ,MONnIT,
* | PRINT, MaXCAL, | FAIL)
URITE (2,99993) F
WRITE (?,900Q7) (A(1),1 =1,N)
WRITE (2,99006) IFAIL
WRITE (2,90005)
0f;995 FORMAT (36HO0I10Ad TH»CrN€Ss L7S. THICKNE SS, 1X)
SUM,? =0.0
DO 310 LL=1,1
ZL(LL) =R(LL) +7(LL)
SS =7L(LL) "IM
SUM2 =SUM2+SS*SS
WFITF(2,999"A) X(LL),7(lI D,7L(LL)
9f>09 A FORMAT <l H ,"(2X,F6.1,3X))
310 CONTINUE
DC =SUM2/ (SI'liP*F)
WRITE (2»90ro3) DC
e/c93 fORMATd 3HODETER. CoEF ,s, E5.4)
TIPNT =A(") +A(2) +ACA) +A(6)
i;RITE(r»99992) TINT

c.cot FORMAT(8HOTINT, s,Fft,1)
Noe ol r-A(?)*A(3) fFLAUSYA(R) -A(6)*ALT)
CM c1/ClI
I.RITF (2,99001) CI, C™M
Oro9l fORHATCUHOCOMP. IwOt, =,M 5, 3/1 3HOCOMP, MOD. s.MS.5)
"¢¢99 FORMAT UdX/>,ftlH CUkp RESION RESULTS ,1X5

SfrAratop or.iTTfcD at adout Co, >5, 1line 0063, comma Assumed

nr 090 pORHAT (?i>H FINAL SUM OF SQUARES IS ,F12,A)
rro97 FORMAT <13H AT THF PUJnt, 2F12.6/1H ,5F12,6>
$,996 FORMAT (22H9 THIS HAS ERROR Num . 13)



—r~— i "1 1i—c » -i - )= n

C CALCHUATE”™ THi: VALUfS (Ot 1HE KESJDI'ALS RC AT AC

LOOJc AL I FL

INTEGER PTfN >39

HEAL Ar,RC(1A>>#AJC(1£>»T71

dimension Ara;)

COlI*0>*/AAAA/X(16> »7<16)

COf 2QN/ BOB/AJC

r,C 7U0 JJ=1,M

Y? sAC(3)*X(JM)

IF (w,r~v2) 4,4» 5
4 r,2 =0,0
GO to 6

62 «1/EXRIY?)
6 TOT? =AC(2)*G2

0j $-X(JJI>*T70T2

V4 rAC(5>*X(JJ)

IF C17,0-Y4> 7 7>6
7 »4 c0,0

ro 7o ¢
8 r4 r*/EXRIY4)

9 TfiT4 =ACC4) *r4

C5 s-X(JJ>*TnT4
V6 rAC<7)*X(JJ>
TF (11,0 1YA> 10»10»11

10 66 b0»0
GO TO 12

Il 66 s1/EXP<Y6>

172 TOTi. bAC(6>*66
g7 c*X(JJ)*TnT6
pA r(AC(1> +TOT? +T014 *TUT6) -Z(JJ)
RC(JJ) =FA
AJC(JI»1l> =1
AJC(I*»2> ">2
AJC(JJ»3) =03
AJC<JJI»4) =04
aJC(JJ,5) =05
Al C(JJ,6) «G6
*JC(JI»7> =07

700 CONTINUE . . - - -— -

RETURN
r NP

S5UEROUTINI: ISQ<M#N,AC»RC»AJTJC,GC>

CALCULATES THE C:n-BIaV KG AT AC
integer %", y
REAL AC»RG, AJTJ GC»AJC»SUT]

DII'ENSION' Af (a)TRC(M) , 6CLN> f AJTIC(N,N> »Ajeno6»?)
COUUON/PBBp/AJC
EVALUANTE Gc<!)
*0 ro isi,o
sun =u,n
po 20 K =1 »=m
SOIl) «SUn+AjC CK, T) *RC (K)
0 CONTI Mtr
GG(l) =5UuQ1
11=1
evaluate AJTJIC (J, 1)
pu 60 J =1 »11
Sup s0,0
DO 40 < =1,M
6lir -SUM 1+ Ajctu, I1>*AJC(K, J)
40 CONTIiJUp
AJTJIC(J,I> =SUF
60 CONTINUE
g0 CONTINUE
P FTuRN

ENP



SIT ROUT I ne MPK|] T (Mi Ni Api Kci fc»6r #Nf ALL)
C fRIJTe& THfe VALUES €VfcRy 1PRJNT ITERATION
I'M fGtR h»N*NCALL»1

pEAL XC»GC#pr#Fr
D1IMFHS I D> AC (N) 7GC <N) »pr IM)

c EVALUATION OF AJTJcU »l)
L'RITE (2,9C09>9) WNCAt L»Fr
JRITE <R,VC~07) (GC(1),T=1 ,K>
URITE (r.APOGCfl) (AC< 1) , !«l »N>
pETURN
99999 POFif AT (6H AFTER, U.16H LAt L$ OF RFSI D, » 19H THE SU~ OF SQUARES,

*2HIS, F12.A)
9c99R FORMAT (13m AT TuE PULfT, ¢(F12,6/5MJ?,6)

9r997 EOPf*AT{13H GPAPIE~AT 1S , i F16,4/4M > 4>

end



COMPUTER RESULTS FOR YARN THICKNESS

(1) R60/2 cotton

Load Load Experimental Corrected
(g/cm) (wN/mm) thickness(mm) thickness(mm)
1.0 0.98 0.493 0.490
1.4 1.37 0.468 0.471
2.0 1.96 0.451 0.449
2.4 2.23 0.438 0.437
- 3.0 2.94 0.422 0.423
4.0 3.92 0.406 0.407
6.0 5.89 0.384 0.384
10.0 9.81 0.351 0.355
20.0 19.62 0.308 0.310
40.0 39.24 0.272 0.270
50.0 49.05 0.260 0.261
70.0 68.67 0.251 0.249
100.0 09.10 0.236 0.236
140.0 - 137.34 0.223 0.224
160.0 156.96 0.218 0.219
200.0 196,20 0.208 0.210
240.0 235.44 0.204 0.203
300.0 294.3%0 0.195 0.195
340.0 333.54 0.191 0.190
400.0 392.40 0.187 0.186
C.D. = 0.9997
T(initial) = 0.562 mm
0.398 mm

d(equivalent) =

AO = 0.1726
A1 = 0,1236
B1 = 0,7028
A, = 0.1379
B2 = 0.0894
A3 = 0,1281
33 = 0,0060
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(2) R74/2 cotton

Load Load Experimental Corrected
(gfcm) (oN.mm) thickness(mm) thickness(mm)
‘ 1.0 0.98 0.535 0.530
1.4 1.37 0.513 0.510
2.0 1.96 0.488 0.490
2.4 2.35 0.479 0.478
3.0 2.94 0.470 0.466
4.0 3.92 0.451 0.450
6.0 5.89 0.430 0.429
10.0 9.81 0.399 0.399
20.0 19.62 0.351 0.353
40.0 39.24 0.316 0.315
50.0 49.05 0.306 0.306
70.0 68.67 0.292 0.293
100.0 98.10 0.281 0.280
140.0 137.34 0.264 0.266 Ao - 0.2133
160.0 156,96 0.259 0.260 A1 - 0.1190
200.0 196,20 0.251 0.251 31 = 0.8610
240.0 235.44 0.242 0.243 Az - 0.1591
300.0 294.30 0.235 0.234 32 - 0.0778
340.0 333.54 0.230 0.230 A3 = 0.1185
400.0  392.40 0.224 0.225 B, = 0.0059
c.D. = 0.9997
T(initial) = 0.601 mm

d(equivalent) = 0.431 mm



(3) R98/2 cotton
Load Load Experimental Corrected
(g/cm) . (mN.mm) thickness(mm) thickness(mm)
1.0 0.98 0.619 0.616
1.4 1.37 0.597 0.598
2.0 1.96 0.575 0.576
2.4 - .2.23 0.563 0.563
3.0 2.94 0.547 0.548
4.0 3.92 0.527 0.529
6.0 5.89 0.502 0.503
10.0 9.81 0.476 0.476
20.0 19.62 0.436 0.436
40.0 39.24 0.388 0.387
50.0 49.05 0.37 0.371
70.0 68.67 0.349 0.349
100.0 . 98.10 0.331 0.329
140.0 137.34 0.310 0.311
160.0 156.96 0.305 0.305
200.0 196.20 0.291 0.294
240.0 235.44 0.284 0.285
300.0 294.30 0.274 0.274
340.0  333.54 0.269 0.268
400.0 392.40 0.261 0.261
C.D. = 0.999
P(initial) = 0.677 mm
d(equivalent) = 0.479 mm

H o 0O > O = >
W W N D= O

0.2393
0.1496

0.4645

"

0.0369
0.1339
= 0.0046

L}

0.1542 '
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(4) R60/2 vincel

Load Load  Corrected
(g/em)  (zN.mm)  thickness(mm)  thickness(mm)
1.0 0.98 0.429 0.427
1.4  1.37 0.416 0.418
2.0 1.96 0.406 0.406
2.4 2.35 0.399 0.399
3.0 2,94 0.388 0.390
4.0 3.92 0.379 0.376
6.0 5.89 0.355 0.355
10.0 9.81 0.325 0.326
20.0 19.62 0.283 0.283
40.0 99.24 0.245 0.244
50.0 49.05 0.233 0.233
70.0 68.67 0.219 0.220
100.0 98.10 0.205 0.205
140.0  137.34 0.192 0.191 8y = 0.1447
160.0  156.96 0.185 0.186 A, = 0.0053
200.0  196.20 0.177 0.176 B: - 0.3743
240.0  235.44 0.169 0.169 &, = 0.1379
300.0 294.30 0.162 0.161 B, = 0.0671
340.0  333.54 0.156 0.158 2, = 0.1155
400.0  392.40 0.154 0.153 B, = 0.0066
Cc.D. = 0.998

T(initial) = 0.453 mm
d'equivalent = 0.321 mm



246

(5) R60/2 cotton-vincel

Load Load ‘ Corrected
(gfcm) (uN.mm)  thickness(mm)  thickness(mm)
1.0 0.98 0.532 0.522
1.4 1.37 0.509 0.513
2.0 1.96 0.493 0.499
2.4 2.35 0.481 0.491
3,0 2.94 0.466 0.480
4.0 3.92 0. 449 0.462
6.0 5.89 - 0.422 0.433
- %90,0 9.81 0.388 0.392
120.0 19.62 0.342 0.340
40.0 39.24 0.298 0.297
50.0 49.05 0.262 0.284
70.0 68.67 0.263 0.264
100.0 98.10 0.246 0.245
140.0  137.34 0.233 0.230 _
160.0  156.96 0.223 0.225 20 ; g':g;z
200.0  196.20 0.214 0.216 B: = 0:1557
1240.0  235.44 0.207 0.208 A, = 0.1241
300.0  294.30 0.202 0.199 3, - 0.0264
340.0 333.54 0.193 0.194 A, = 0.1109
400.0  392.40 0.187 0.187 B: — 0.0030
C.D. = 0.9998
T(initial) = 0.548 mm

d(equivalent) = 0.387 mm
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(6) R46/2 cotton-vincel

Load Load Corrected
(g/cm) (zN.mm) thickness(mm) thiclmess(mm)
1.0 . 0.98 0.370 0.372
1.4 1.37 0.359 0.358
2.0 1,96 0.341 0.342
2.4 2.35 0.334 0.333
3,0 2.94 0.323 0.322
4.0 . 3.92 0.312 . 0.309
6.0 5,89 0.292 0,292
10.0 9.81 0.268 0.270
20.0 19.62 0.240 0.239
40.0  39.24 0.214 0.212
50.0  49.05 0.206 0.206
70.0  68.67 0.195 0.197
100.0  98.10 0.187 0.187
140.0  137.34 0.179 0.178 A, = 0.1410
160.0  156.96 0.174 0.173 & = 0.0904
200.0 196,20 0.167 0.167 5 _ 0.6537
240.0  235.44 0.161 0.161 R 0. 1082
300.0  294.30 0.156 - 0.155 B _ 0.0789
340,0  333.54 0.152 0.152 A2 - 0.0835
400.0  392.40 0.149 0.149 B: - 0.0061

C.D. = 009997
T(initial) = 0.423 mm
d(equivalent) = 0.299 mm
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Appendix 2

Initial fabric bending: an approach similar to Abbott's

For the purpose of the following analysis, it is best to examine
the behaviour of two adjacent cells of a completely set plain weave,
although the bent configuration of each is similar. The yarns are assumed
effectively clamped at section A and X (figure 90a), and the planes
containing these sections are then rotated through an angle ¢ so that the
‘angle subtended by the deformed shape of the two cells is 2¢. Since both
unit cells are identical, the movement of fibres between the two cells is
not allowed,and under such conditions it is possible to consider each unit
cell in isolation when the fabric is bent._ The fibres in the idealized
twisted yarn geometry take helical paths with different radii from the yarn
centre line; it is possible to greatly simplify the analysis by assuming
that the fibres in the isolated weave cell run parallel to the yarn centre
line. This assumption seems reasonable when the yarn twist is sufficiently
small relative to the length of the unit weave cell,and a typical value
of this twist with the fabrics used is of the order of 0.25 turns per unit
cell.

When the fabric is bent, as shown in figure 90a, the outer layer
of fiﬁres in the yarn, i.e. the layers above the neutrai axis (N.A.), are
in a state of tension, while the layers under the N.A. are in a state of
compression, Obviously there is a greater likelihood of fibre extension
at large deflections,but since the following theory applies only to small
fabric deformations, the fibres may only extend by very small amounts so
that they can be considered as inextensible. If the fibres inside the

yarn are assumed to bend independently, the fibres above the N.A. would

i
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move upwards at the region B rather than extend in length, while the
fibres below the N.A., will buckle rather than decrease in length. When
there is no resistance to the upward fidbre movement at B, the distribution
of forces acting at Afto bend the unit weave cell will be symmetrical with
respect to the neutral axis. However, due to the crossing yarn rigidity
an additional force f: is needed to bend the unit cell to the same

angle ¢. Since the fibres are inextensible, the outer layer of fibres
which suffers the highest sfrains would mainly support the crossing yarn
~and consequently the force f? acts at a distance y=b/2 (referred to
figuie 90). The displacement of the fibre ends and the force distribution
at KC fdf this case, are shown in figure 90b, where the N.A. is displaced

”

upwards due to the extra force f, required to upcrimp the cross yarn.

The following assumptions will now be used to solve this problem:

1. The fibres in the yarn, of a total number n, are uniformly distributed
over the cross-section. It is convenient to assume a 'race track! yam
cross-sectional shape; the method of analysié is equally applicable
to other shapes.

2. The fibres are regarded as parallel elasticas which have the same
initial crimped shape as that of the yarn centre line before deformation
i.e. are defined by p, [ and o,

3, The fibres, because they are assumed to bend independently, will have
the sum of their flexural rigidities equal to that of the yarn. There-
fore, the single fibre rigidity may bevtaken as B/n, where B is the
yarn flexural rigidity and n is the total number of fibres in the yarn
cross-section. |

4. The energies due to fibre extension and yarn compression are ngelected

in comparison with the bending energy involved,



250

Consider now an element of area of cross~section, da, of
thickness dy, a distance y from the line of symmeiry of the yarn cross-
section (figure 90b). Using the first of the above assumptions, the

number of fibres n(y) in this element is

a[temee® - 5]

ng-é— dy
A (a-b)bsmb>/4

‘n(y)

n.F(y)dy, (4.1)

where A is ‘the total area of cross-section.
By definition we can write the following relations for a

symmetrical cross-section

b/2 ‘A Af2
7= [b/z yE(y)dy = [A/z y. =0, (4.2)
and
) b/2 ‘ A/2
I= A,/—b/Z y°F(y)dy =[A/2 y?da . (8.3)

In the tensile analysis, it was shown that the force required
to extend a warp crimped yarn inside the fabric, due only to bending energy
changes, through a distance APZ’ can be regarded as the sum of two forces,

"
namely f{l, the warp contribution, and f1 » the weft contribution, where

/ 12]31
£, =4p, 7 A4
1 2 l?sin291 ’ (2.4)
and
12B B l3cosze
f” = Ap 1 271 1 (A 5)
1 —°F2 3., .2 3 2 .
l1s1n 91 B1lzcos 62
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For an individual fibre inside the warp yarn, if its flexural

rigidity is B,/n,, then the force needed to displace its end by ap,.

is, using (4.4)

12B, /n

H1 = AP2 L3
1

= K, Ap, say (a.6)
sin26 1 2

1

According to the bending mechanism shown in figure 90, Ap2 depends
on the position of the fibre, being zero at the neutral axis. Above the
N.A., Ap2> 0 and below 1t, Ap2< 0.

In general
ap, = [y- 3(1-L)e
Py = y= 3% ’

where L is a fraction (0L <1) that defines the position of the yarn N.A.
as shown in figure 90b.
In using the tensile theory together with the above expression

for Ap2, we are in fact assuming the following:

1. The warp spacing, unchanged in the bent configuration, 1s defined as

the horizontal distance between the two planes containing the yarn N.A.

at A and B, Obviously, this distance should be defined parallel to the
bent fabric plane, but little error will be introduced by using the
above definition.
2. The fibre deforms symmetrically with respect to its midpoint.
3. Only geometrical fibre extension or compression are taking place, whose
moduli, K1, are assumed to be the same for small deformations,
Now, consider the forces acting on all the fibres. Above the

N.A. we have the sum of the tensile forces



252

outside
U4
T= £y o+ / K, 4p, n(y)dy

N.A.

(]
Hy

b/2
i +,[o(1-L)/2 % [3-3 D] s niar

i
Fy

b/2
" ‘ b
1I + n1K1f/;(1_L)/2 [y-'E (1—L)] F(y)dy .

Below the N.A., the sum of the compressive forces is

b(1-L)/2
C=- /—;:/2 K, .Apz.n(y)dy.

For the pure bending condition, we must have

(1-C) =

i.e. b/2
£ +nKoe f (1_L)/2 - 3 (1-1)] F(y)ay

b(1-L)/2
+ 0o ,[b/z y- = (1—L)] Py)dy = ©

This gives

, b/2
f’1' + nK.¢ /: o/ [y--g- (1-L)] F(y)dy = 0 ,

which, on using the definition in (A.2), y=0, leads to
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”

b/2
b
£, -nX ¢/ 2 (1-L)F(y)ay = 0
1 ™ b/2 2 ’
and since

b/2 :
/ F(y)dy = 1, see (A.1), we get
-b/2

”

£

b,
= n K ¢. 5(1-L) .

Substituting the value of K, from (A.6) we get

12B

” 1 b

£ =9 p 7, 20
l1sin 91

Substituting the displacement Ap2 = ¢”%% ,» at the outer layer, in equation
(A.5), we find

” ‘lZB1

B [300329
2“1 1
f1 = 3 5
11sin 5]

bL
¢ 5 AT
B1lzcos26 2 » ( )

1 2

Bquating the above two expressions for ff s, we obtain

B,/3,

L= . (A.8)
[2c03291

By/By + 33

lzcos 92

The flexural rigidity of the system can now be found by summing

the internal energy changes for one unit cell and equating this sum to the

work done by the external moment.
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The total internal energy change is the sum of the following

terms:

1. The energy change, U1, due to the geometrical extension and compression

of all fibres. This is given by
b/2
‘ 2
U, = %/ K,.(ap,) F(y)ay
1 _b/z’\ 1+ P2

- rbf2 2,
- b
-3 f o i [ 2 (D] Henpindey

or

b/2 b/2
2 2
U1 = %‘ [.b/2 K1'y . @ °n1F(y)dY + % _/;b/z 'K1b(1"I‘) ¢2°n1F(Y)dy

22,
+ {/2 K, 2(1-0)% ¢ nyF(y)ay

Using the relations (4.1-3), U, is reduced to

2
U, = %K, £ I+ n1K1¢2 [(1-14)2 %—] (A.9)

The first term, U11 say, in the above expression will now be
considered in more detail, Since K1 represents the modulus of geometrical
extension of a single crimped fibre, the tensile modulus of a yarn having
'n1' fibres can be regarded as n1K1, if the fibres behave independently,
in 'force/elongation! units. The Young's modulus of this crimped yarn is
then

n.K
—%rl P, (force per unit area/unit extension)



The energy term, U11, is then converted to

2 I 1 2.
U11 = % n1K1¢ A = 2P2 ¢ (EI)C
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(A.10)

(EI)c is the bending modulus for the crimped yarn as it lies

in the fabric since the distribution of the force K1[y— %-(1-Li]¢, shown

in figure 90b,displace the fibre ends parallel to the febric plane.

The

relation between the bending rigidity of the crimped yarn to its rigidity

ag it lies straight is given by the ratio of yarn projection in the fabric

plane, p, to ite straight length, £ .

ie (EI)crimpedgyarn _ (EI)C -
(El)straight yarn B1 1+c1

Substituting in (A.10) from (A.11) gives

U.. = L & B
11 = Zp(Tre, 10

Hence

2
1 2 2 b ]
U, = ETRETN] 5,017, ¢2]31+n1K14> [(1—L) 5

(a.11)

»
2. The second energy term, U2, is due to the force f1 needed to upcrimp

the crossing yarn, and is given by

4

Since £ is given by (A.7) and Ap, is the distance moved by f

1

at the outside of the yarn (= %% ), Uy s

1 por?
5. .2 4
B1lzcos 62

BQL?cosze

2
U2 = % n1K1 ¢

/”
1
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The total internal energy change is therefore

= 1t2
3 2
B, 2 2 b2 - 2 Byljeos”e, 22
= Bp,(ivoy) * MEq |07 |+ nky ¢7 S g
Pol 1+C4 B, L cos%0
142 2
2 3 2
¢34 2 b2 o, Bpljcos®e, g
= (o) * MK ¢ g [(F1Dr S 1]
P2 1 B l cos ©
172 2
From (A.6) and (A.8), we have
3 2
1L le1cos 0, 12B,/n,
L = 13 2 ’ and K1=:£_3-_—_2— .
B1 2cos 92 1sin 91

Substituting in the above expression we get

T 2p2(1+c1) * 2l?sin26

2

T [(1-L>2 ; L<1-L>] .

1
and since [asine1 = h, and 'b' as considered above is the warp minor diameter,
then
2 2
¢8y  3¢Bb

+

24, 2A'hf

U = (1-1) .

T

2
The external work done is ¢'BW s where Bw is the warp-wise fabric
. 55_-
2

rigidity per thread. Equating UT and the external work done, we get -
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3b
Nt g o

1

This may be compared with Abbott's expression by putting the

above equation in the form

2

B, /B, =\qu [1 + ;31-— (1-L)]

1

It.can also be compared with the expression derived in the earlier analysis

by substituting the value of L to get

2 3 2
B %b B l cos ©
] [14— 1¢ ! )]'

i ) 3 3
1 h1 B £ cos 62+32[1cos 61

(A.12)

Inclusion of the yarn compressibility

For this case, the force required to extend the crimped shape

of the yarn was given by the tensile analysis as follows,

128
1 "AP2 p

b

32[3005261 ]

[1 + 3 5
sin e B1l2cos 62+B B (d /u1+d /uz)

1

and this was regarded as the sum of two force namely, f;, the warp

contribufion and'f? s the weft contribution, where now

/ 128
f

17 0% Py

= Ap, n K, say,
sin 91 2 "1
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and

12131 B £3cosze1

sin® o, B, l3cos 0,+48B Bz(d1/u1+d2/u2)

f1 = Ap2 13

Substituting Ap2 =¢b—2L- at the outer layer of the yarn cross-section in the

above equation we get

_ %” 12281 B2[1cos e

1 bL
_ : ¢ 22 (A.13)
' Psine, B Lcos®0,+48B,B,(a utd/n) 2

Following the same argument as before, i.e. putting (T-C)=0, we

get another expression for ffl’ in the form

" 12]31
3 .
[1 sin 61

2 (1-1) . (A.14)

-
il

Dividing equation (A.13) by equation (A.14) we now get

3 2
1-L le1cos 8,
L =3 foos ’ (4.15)
B,{Zcos 92+4BB132(d1/u1+d2/u2)
so that L is now given by
L= ! (A.16

3 2
3261 cos 61

3 2
B1l2cos 0,+48B,B,(d, /i, +d,/1y)

1+

The internal energy change is the sum of the following terms:

1. Energy changes, U1, due to the geometrical extension and compression of

all fibres, given by
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b/2 :

b 2] .2

U1=%/ & [v- 3 00?] & nrlay
-b/2

which will yield a similar expression to that found in the previous case,

though we note that K1 and L1 now have different values. Thus

2
Uo- 93 . nx ¢2[(1—L)2 L-].
1% 2 1% 8
1

2. Energy changes, U2, to increase the crossing yarn amplitude.

When the threads undergo compression strains 'AD' as well as bending
deformations, the interyarn Afoi‘ce, v, will produce a strain energy
contribution equal to half the product of v and the distance moved under
-this force i.e. %#v(ah-aD). Since f: is defined as the excess force

needed to overcome the cross yarn resistance in fabric bending we get

U, = 3v(Ah-AD) = %f1 Ap, -
This leads to (from A.13)

3 2
32[1cos 6, 212

3.2 4 ¢
314290s 92+4BB1132(d1/u1+d2/u2)

2
U2 = %1’111{1 ¢
The total energy, UT’ is then

#E, 2 2 b2
Up = J— + n1K1 ¢ [(1-]3) —8-]

2

2.2 B Zscos 0
2 b°L 271

+%n1K1 ¢ 1 1

3 2
3142cos 0,+48B,B, (8, /1 +d,/u,)
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Equating the external work done with the total internal energy change

we get
2 3 2
P,By Py n4Ky D 2 B,¢j00876, 2
BW=L+ ) (1-L)+£32 Ll .
.Y B £jc0s"6,+48B,B,(d,/u+d,/1,)
12B1/n1
Substituting from (A.15) and using K, = —2——5—- , in the above equation,
h
1

we get

3 2
Bw/B m; [1 + 5 (1—L):|
or
2
1

B b 33&30099
i 1+ :
By = Tre, 23 (3cos e+B(3cos 0,+48B,B,(d, /i +d,/ )i]
h o4 152844/ kqrdof )




