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Abstract
In this thesis we will present and discuss various results pertaining to tiling

problems and mathematical logic, specifically computability theory.

We focus on Wang prototiles, as defined in [32]. We begin by studying Domino

Problems, and do not restrict ourselves to the usual problems concerning finite

sets of prototiles. We first consider two domino problems: whether a given set

of prototiles S has total planar tilings, which we denote TILE, or whether it has

infinite connected but not necessarily total tilings, WTILE (short for ‘weakly

tile’). We show that both TILE ≡m ILL ≡m WTILE, and thereby both TILE

and WTILE are Σ1
1-complete. We also show that the opposite problems, ¬TILE

and SNT (short for ‘Strongly Not Tile’) are such that ¬TILE ≡m WELL ≡m
SNT and so both ¬TILE and SNT are both Π1

1-complete.

Next we give some consideration to the problem of whether a given (infinite)

set of prototiles is periodic or aperiodic. We study the sets PTile of periodic

tilings, and ATile of aperiodic tilings. We then show that both of these sets are

complete for the class of problems of the form (Σ1
1 ∧ Π1

1). We also present results

for finite versions of these tiling problems.

We then move on to consider the Weihrauch reducibility for a general total

tiling principle CT as well as weaker principles of tiling, and show that there

exist Weihrauch equivalences to closed choice on Baire space, Cωω . We also show

that all Domino Problems that tile some infinite connected region are Weihrauch

reducible to Cωω .

Finally, we give a prototile set of 15 prototiles that can encode any Elementary

Cellular Automaton (ECA). We make use of an unusual tile set, based on hexagons

and lozenges that we have not see in the literature before, in order to achieve this.
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Introduction

In this thesis we will explore the connections between tiling problems and

logic, specifically in relation to, and through the lens of, computability theory.

Background to the Thesis

Broadly speaking, the tiling problems we study fall into two categories, for

given prototile set S:

(1) Domino Problems - the question of whether S tiles the plane.

(2) Tiling Properties - do all/any S-tilings have some specific property, e.g. are

they all periodic or aperiodic?

We will construct well defined versions of both of these problems, and study

their relationships to various areas of computability theory.

This thesis builds on results that the author first presented in their MSc disser-

tation [12] as part of their MSc Mathematics at the University of Leeds. In that

work, we presented some ways to code various results in computability, as well as

elementary cellular automata, into sets of Wang prototiles.

In building on these results, we explore with much more depth the ways in

which the classes of tiling problems listed above relate to various aspects of com-

putability. We ask questions along the following lines:

• What are the computable parts of a given tiling problem?

• How do tiling problems fit into existing computability hierarchies?

We also present improved versions of the Elementary Cellular Automata tilings

using an original tile schema that we have constructed for this purpose.

Motivations. There are some very interesting results in the literature regard-

ing tiling problems and logic, and in general the aim is to determine both what

conditions can be met by some given prototile set, and conversely whether there

exist prototile sets that exhibit particular properties that are of interest.
1



2 INTRODUCTION

We will look at both finite and infinite sets of prototiles and determine results

for both of these classes of possible tiling problems. Specifically, we are interested

in formulating answers to the question:

“What is the relative difficulty for a given problem about tile sets and tilings?”

This question, as the literature belies, is far from a foregone conclusion. The

construction of a prototile set is intrinsically linked to the various patterns and

behaviours of that set’s tilings in the plane.

Given the well-studied logical strength of other combinatorial principles, we

hope to expand the logical and mathematical vocabulary in this respect for tiling

problems.

Computability and Tiling Problems. In 1964 (see [32]) Wang proved that

if a prototile set of Wang tiles - diagonally quadrisected square tiles - can tile any

arbitrarily large finite portion of the plane, then it can tile the whole plane. This is a

fairly straightforward compactness argument, and does indeed use König’s lemma

(cited as ‘König’s Infinity Lemma’ in [32]) to achieve the result, which we present

in Chapter 2, Theorem 2.2.5.

Following on from this work, Wang continued to ask interesting questions re-

garding tiling problems. Indeed, many of the interesting results regarding tilings

spawns from a conjecture due to Hao Wang in the early 60’s:

Conjecture 0.0.1. It is necessary, as well as sufficient, that if a set of prototiles S

is periodic, it tiles the plane.

Seeking an answer to this question, Berger in [5] formulated the first set of ape-

riodic Wang tiles - a prototile set consisting of 20,426 tiles that has only aperiodic

tilings of the plane. This completely disproved Wang’s conjecture, and demon-

strated that periodicity is sufficient, but not necessary for a prototile set to tile the

plane - thereby negating the conjecture.

Berger’s refutation of Wang’s conjecture was surprising, and laid the ground-

work for further results in creating aperiodic prototile sets for a decade - the most

well known of which are probably Penrose tilings. A summary of this work is

given at the start of Chapter 4.
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In addition to creating the first aperiodic prototile sets, Berger was also the

first to formulate the connection between Wang tilings and Turing Machines. The

ultimate result was that the domino problem for finite sets of Wang prototiles,

namely

“Does a finite set of Wang prototiles S tile the plane?”

and the halting problem

“Does a given Turing Machine M halt on given input x?”

are equivalent, and these formed the central results of his thesis.

This equivalence was highly motivational for the current work we have regard-

ing prototile sets and mathematical logic, as we can include the Domino Problem

class of tiling problems for finite sets of prototiles as having the normal form of

some Σ0
1 formula - or the negation of one, if we desire an infinite planar tiling.

The Current Literature on Tiling Problems and Logic

Firstly, we will summarise results in the literature that relate areas of logic to

theorems and ideas about tiles, tilings, and prototile set properties and construc-

tions.

Although Berger showed early on that Wang tiles are related to the undecid-

ability of the Halting Problem, developments of using and studying tilings in math-

ematical logic is comparatively recent.

Beginning with Harel in [35], who showed how problems of ‘high undecid-

ability’, i.e. problems in Π1
1, can be expressed as tiling problems. This is achieved

in the plane by means of a set of carefully constructed Wang prototiles. Harel then

built on this work in [37] developing more full relationships between prototile sets

and theorems about well/illfounded trees. Indeed, [35] is cited by many texts in the

field of Dynamic Logic - with Harel providing a chapter on this in the Handbook

of Philosophical Logic [36].

In ‘On the Convenience of Tilings’ [6], van Emde Boas showed how vari-

ous complexity classes are captured in specific tiling boundary results. Starting

with an effective formulation of Turing Machines as prototile sets, van Emde Boas

shows that a Wang prototile set that is unbounded vertically and horizontally is

NP-complete, owing to the fact that a Turing Tape is realized left to right, whilst



4 INTRODUCTION

successive stages of a computation are realized vertically. Similarly, van Emde

Boas continued by showing that a ‘corridor’ tiling - a tiling that is of bounded

width but unbounded height - is complete for PSPACE.

Following Durand’s work on tilings and quasiperiodicity in [24], the work of

Durand, Levin, and Shen [25] showed that for every prototile set admits either no

tiling or some tiling with O(n) Kolmogorov complexity of its (n × n)-squares.

Thatis to say, the string taken to describe any given square in the tiling has a com-

plexity linearly related to the size of the square. This work was a continuation of

their study of computational complexity paradigms and how they relate to tile sets

and their planar tilings.

In Durand, Romashenko, and Shen [26], we find a significant development in

the underlying theory of tilings - the existence of fixed point-based tilings. This

work married up the work on Wang tiles with the previous work by Penrose and

Amman on aperiodic Penrose tilings - see [32, Chapters 10,11] for full presenta-

tions and discussions of these earlier works.

With these results in hand, recent work on Π0
1 sets and tilings by Brown-

Westrick in [64] utilised these self-similar Turing Machine tilings from [26] in

order to show that effectively closed subshifts of the distinct square shift are all

sofic [64, Theorem 1, 2].

The study of tilings has, naturally from the above, been found and utilised in

symbolic dynamics. A full introduction is found in the aforementioned Harel [36],

with some interesting results being found recently in the work of Delvenne and

Blondel [21] where it is shown that by means of tiling problems, an analogue of

Rice’s theorem for computable functions is possible, giving that certain properties

of dynamical systems are undecidable. As an extension to this result (Theorem 1

in [21]), it is shown that topological entropy (as defined in [21, Sec. 4.3, p.140])

is undecidable for Turing Machines and tilings alike. Simpson in [53] also gave

the following insight into tiling problems and their relation to mathematical logic,

writing in [53] that:

“In the study of 2-dimensional subshifts of finite type, it has

been useful to note that they are essentially the same thing as

tiling problems in the sense of Wang [ in [60]].”
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Indeed, Levin’s address, given as the Kolmogorov Lecture in 2005 at the Uni-

versity of London - see [44] - gave some detail on the use of enumerable tilings in

order to prove that 2-adic shifts and reflections can be enforced by a prototile set.

It is interesting to note that [21] makes use of the notion of quasi-periodicity -

the property that every pattern u of the tiling, there exists a k such that any given

(k×k) patch of tiles contains u. This notion is an interesting interim property that

bridges the gap between fully periodic and fully aperiodic - see section 4.1.2.3 for

further details.

Adjacent to this work in mathematical logic, papers by Kari [40] and later Cu-

lik [17] showed how theorems about cellular automata that compute non-repeating

reals can be converted into prototile sets to give very small sets of aperiodic pro-

totiles. This work was generalised by Jeandel and Rao in [39] to give the smallest

possible set of aperiodic Wang prototiles, with a very small size of 11 prototiles to

achieve this. They also proved through various means - both mathematically and

with computational assistance - that this prototile set was smallest possible, and

also had the property that if we were to remove any single tile from the prototile

set, we no longer have tilings of the plane. Thereby, this prototile set either tiles

aperiodically or fails to tile at all.

Having given this outline of the general view of tiling problems with respect

to mathematical logic and related fields, we are now in a position to outline our

contribution to this field.

Outline of the Thesis and Main Results

Here we give an overview of the outline of the thesis, the main points in each

chapter, and an account of the original work we are presenting in this volume.

Overview and Outline of the Thesis. In chapter 1 we give a full background

to the underlying mathematical logic and machinery we will use throughout the

thesis. We give many definitions and present theorems generally without proofs,

indicating sources along the way should they be necessary to the reader. We intro-

duce precise definitions of Turing Machines as well as basic computability results

that will be used later on. We also define various notions of reducibility in prepa-

ration for our work in Chapter 3.
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We also give the background theory of computable trees as computable subsets

of Baire space and Cantor space that form the backbone of many of our results in

later chapters. We also give background results concerning the Π1
1-completeness

of Kleene’s O which we shall use in later chapters. We finish this chapter with

overview material for how computable trees, ordinals, and the arithmetical and

analytic hierarchies hang together mathematically.

In chapter 2 we give an overview of core results regarding tilings and prototile

sets. We give proofs of the Extension Theorem and state formally the first of our

core tiling problems - the Domino Problem. We then give a proof of the unde-

cidability of the Domino Problem by means of the computable conversion of any

Turing Machine into a set of prototiles in such a way that their tilings tiling the

plane iff the given Turing Machine on input x does not halt.

We introduce here the notion of a tile schema - a way of describing specific

placement of colours from chosen colour sets. This allows us to describe (infinite)

prototile sets by means of carefully chosen colour sets and schema tile construction

such that the resultant product of combining these gives prototile sets whose tilings

carry the specific properties we are looking for. Though this method may seem

convoluted prima facie, we hope to demonstrate that this technique leads in fact

to quite straightforward proofs for translating various principles and concepts into

the combinatorial properties of a prototile set.

We round off this chapter by noticing some interesting corollaries and propo-

sitions arising from this fact that are of similar ilk to other results in mathematical

logic - principally the fact that there exist prototile sets such that their domino

problem is undecidable by Peano Arithmetic.

In chapter 3 we state the first run of our main results - Π1
1- and Σ1

1-completeness

of specific domino problems. We consider domino problems that require all tilings

to be total, as well as domino problems that do not require total tilings, but instead

only require an infinite connected patch of the plane to be tiled. To prove these

results of Π1
1 and Σ1

1 completeness, we utilise the completeness for these classes

due to wellfounded and illfounded trees. We construct tile schemas for each, and

then demonstrate the completeness by means of m-reductions between our classes

of prototile sets and ill-/well-founded trees.
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With Chapter 4 we depart from domino problems, and instead consider the

problems regarding whether or not the tilings for a given prototile set are all peri-

odic, all aperiodic, or some mixture of the two. We state the fundamental results,

with background references provided for this rather interesting class of problems.

We demonstrate that these notions are simultaneously Π1
1 and Σ1

1, as well as

prove that, in fact, the questions of periodicity and aperiodicity for infinite sets of

prototiles are both complete for the class of problems of the form (Π1
1 ∧ Σ1

1). We

also show that the set of all finite prototile sets whose tilings are aperiodic is Π0
1,

which is a surprising result.

Chapter 5 is an extension of this notion of computable reductions into the realm

of Weihrauch reducibility. We give a feature rich presentation of the definitions

and notions of Weihrauch reducibility, and state some core results. We then give

intuitions for the core concepts in this theory, and proceed to derive Weihrauch

equivalences between domino problems and closed choice on Baire space.

Intuitively these results are motivated by realisation that all Wang tilings can

be given by ‘tiling trees’, first defined by Wang, for which closed choice realizers

in Baire space can locate the infinite paths through, and from which we can recover

a tiling of the plane. We can also consider that, given a non-deterministic prototile

set - that is, for any prototile in the set there exist multiple possibilities for match-

ing tiles in a given tiling - then having some choice principle in play is a natural

conclusion. We give some exact results by means of Weihrauch equivalences.

The proposal for a new way of coding Elementary Cellular Automata (ECAs)

into prototile sets is the subject of Chapter 6. Here, we demonstrate that for the 3-

ary functions defining the behaviour of ECAs is naturally coded by a hexagon and

lozenge based construction. With the requisite tiles to neaten up the upper edge of

our tiling, we have a prototile set consisting of 15 tiles that very naturally give a

way to represent the behaviour of ECAs in tilings of the half-plane by means of

coding the first ‘input’ row, and then making it such that the subsequent tilings of

each row are exactly given by the underlying function of the given ECA.

We also show that such a prototile set is necessarily then chaotic and Turing

Complete given correct choices for the ECA rule that we encode - Rule 30 and Rule

100 respectively for these results. Thus we have a nice and very small prototile set

that carries with it a lot of possible mathematical capability.
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Finally, we complete the thesis with an overview in Chapter 7 of the various

open problems that we have found along the way - both in the literature and in the

course of our research. We also aim to indicate the possible avenues for extending

the results in this thesis further.

Summary of Original Work. In this thesis, the following items are our orig-

inal contributions:

• Our proof of theorem 2.3.2 is inspired by the form in [6], but is reshaped

to match the structure of our later proofs. The observations leading up

to corollary 2.4.5 have not been found in the literature, but are relatively

straightforward to derive.

• The results given in Chapter 3 are all original unless stated otherwise.

Specifically, our main results are:

– Lemma 3.3.3

– Theorem 3.4.1

– Theorem 3.4.4

– Theorem 3.4.7

– Theorem 3.4.9

• The results concerningATile, PTile, ATileFIN and PTileFIN in Chap-

ter 4 are all original:

– Theorem 4.2.1

– Theorem 4.2.2

– Theorem 4.2.8

– Theorem 4.2.9

– Theorem 4.3.1

– Theorem 4.3.2

– Corollary 4.3.3

– Theorem 4.4.5

– Theorem 4.4.6

• The Weihrauch reductions for tiling problems in Chapter 5 are original:

– Theorem 5.3.3

– Theorem 5.4.3

– Theorem 5.4.7
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– Theorem 5.5.2

• The main result in Chapter 6 is also original: Theorem 6.4.1





Glossary of Sets and Constructions

We give a table that details all of the major sets and operators that are used in

this thesis, for convenience and for reference.

Name Description Thesis
Ref.

m-reducibility Given two sets A and B, A is m-reducible to B,

writtenA ≤m B, if there exists some computable

function f : ω → ω such that for all x ∈ ω,

x ∈ A ⇐⇒ f(x) ∈ B

1.2.21

Weihrauch

Reducibility

Given two operators f and g on represented

spaces, we say f ≤W g, if there exist computable

H,K :⊆ ωω → ωω such that for any realizer

G ` g, F = K〈idωω , GH〉 is a realizer for f .

5.1.5

WELL The set of all indices e such that ϕe is the charac-

teristic function of a well-founded tree T ⊆ ω<ω.

3.4.3

ILL The set of all indices e such that ϕe is the charac-

teristic function of an ill-founded tree T ⊆ ω<ω.

3.3.2

TILE The set of all indices e such that ϕe is the charac-

teristic function of an infinite Wang prototile set

whose tilings are total in the plane.

3.3.1

WTILE The set of all indices e such that ϕe is the char-

acteristic function of an infinite Wang prototile

set whose tilings are infinite, connected, but not

necessarily total in the plane.

3.4.5

SNT The set of all indices e such that ϕe is the charac-

teristic function of an infinite Wang prototile set

whose connected tilings are all finite.

3.4.6

11
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ATile Set of all e such that ϕe is the characteristic func-

tion for a set of prototiles who planar tilings are

all total and aperiodic.

4.1.2

PTile Set of all e such that ϕe is the characteristic func-

tion for a set of prototiles who planar tilings are

all total and periodic.

4.1.1

ATileFIN Set of all e such that ϕe is the characteristic func-

tion for a finite set of prototiles who planar tilings

are all total and aperiodic.

4.4.2

PTileFIN Set of all e such that ϕe is the characteristic func-

tion for a finite set of prototiles who planar tilings

are all total and periodic.

4.4.1

AIT The construction found in the proof of theorem

3.4.1 that creates an aperiodic prototile set given

an ill-founded tree.

4.2.7

PIT The construction found in the proof of theorem

4.2.2 that creates an aperiodic prototile set given

an ill-founded tree.

4.2.7

CT The operator that takes some set of Wang pro-

totiles as input and returns a total tiling of the

plane.

5.3.2

CWPT An operator that takes a set of Wang prototiles

and returns a connected planar, but not necessar-

ily total tiling.

5.4.2

CIPT An operator that takes a prototile set S that has

total planar tilings, and returns an infinite ‘slice’

of this tiling as a tiling of an infintie region of Z2.

5.4.6

WIPT An operator that takes a set of prototiles and re-

turn a tiling that has an infinite patch tiled within

it, but we do not know where it is.

5.5.3
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DPW The DPW operator takes some set of prototiles

and return a tiling that has an infinite connected

patch within it.

5.5.1

Cωω Closed choice on Baire space - equivalent to find-

ing a path through an ill-founded Baire space

tree.

5.2.6

C2ω Closed choice on Cantor space - equivalent to

Weak König’s Lemma.

Sec 5.5.1

Cω closed choice on the natural numbers - this takes

a function f : ω → ω such that range(f) 6= ω,

and returns some point n /∈ range(f).

Sec. 5.5.1





CHAPTER 1

Computability, Trees, and Preliminary Concepts

The Analytical Engine has no pretensions whatever

to originate anything. It can do whatever we know

how to order it to perform. . . But it is likely to exert

an indirect and reciprocal influence on science itself.

Ada Lovelace,

in a Letter to Charles Babbage

In this chapter we will present the background theory for the rest of this vol-

ume. We will give definitions, theorems, and select proofs to lay the logical and

mathematical groundwork for later chapters.

1.1. Preliminaries

We will use the following standard notation throughout this work:

Definition 1.1.1. We shall make use of the standard logical notation:

• ∀x and ∃x for ‘for all x’ and ‘there exists x’ respectively.

• x ∧ y and x ∨ y for logical ‘x AND y’ and ‘x OR y’ respectively.

• In general, variables and constants will be in lower case Roman lettering:

a, b, c, x, y, z, . . .

• Lower case Roman letters such as f, g, h, s, t, . . . can also be used for

function names.

• In general, sets will be in upper case Roman lettering: X, Y, Z, . . .

• We shall use A→ B to denote logical implication.

• We shall use A ∩ B and A ∪ B to denote set intersection and union of A

and B.

• We shall use A \ B to denote the set A with any elements found in B

removed, the standard set-minus.
15
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• Greek letters α, β, γ, . . . shall be used primarily for ordinals, with the

exception of ϕ which is used for Turing Machines.

• We shall use N,Z,Q,R to mean the natural numbers, integers, rationals,

and reals respectively.

• For a given set A, let P(A) denote the powerset of A - the set of all

subsets of A.

• Unless otherwise indicated, our computable functions will be of the form

f : ω → ω.

Definition 1.1.2 (Cantor Pairing Function). We shall use the standard Cantor pair-

ing function to represent ordered pairs 〈x, y〉 as follows:

〈x, y〉 =
(x+ y)(x+ y + 1)

2
+ y

We will shorten the notation for ordered n-tuples as 〈x1, x2, . . . , xn〉, with

〈x, y, z〉 = 〈〈x, y〉, z〉, and so forth. We fix this coding for the duration of this

thesis, which will serve our definition of ‘computable’ later.

We denote the set of natural numbers by its ordinal notation ω, allowing for N
to be used where it will avoid confusion.

1.2. Computability

We will use standard definitions, using [16] as our main reference text.

Definition 1.2.1. Let a computable relationRe ⊆ ω×ω) be a computable relation

such that for some Turing Machine e,

R(x, y) ⇐⇒ (∃y)ϕe(x) = y

Definition 1.2.2 (First Layer of the Arithmetical Hierarchy). We define the fol-

lowing notation for logical complexity of formulas as follows:

• If for all x ∈ ω we have

x ∈ A ⇐⇒ (∃y)R(x, y)

for a computable relation R, then we say that A is a Σ0
1 set, or A ∈ Σ0

1.
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• If for all x ∈ ω we have

x ∈ A ⇐⇒ (∀y)R(x, y)

for a computable relation R, then we say that A is a Π0
1 set, or A ∈ Π0

1.

• If A ∈ Σ0
1 ∩ Π0

1 then we say that A is ∆0
1, or write A ∈ ∆0

1.

Note that we rely on alternating existential/universal quantifiers, called prenex

normal form, in the structure of our formulae to properly ascertain which layer of

any hierarchy we are at. Given this arithmetical hierarchy, we will later denote the

‘analytic’ (also called ‘inductive’) hierarchy in the same way, with a superscript of

1 - Π1
1, Σ1

1, and ∆1
1. We will also find the following definition useful:

Definition 1.2.3 (Skolem/Herbrand Normal Form). In the simplest form that we

require in this thesis, a function is in Skolem (Herbrand) normal form if all of the

existentially (universally) quantified terms are replaced by functions that take the

preceding universally (existentially) quantified variable as input.

We always begin with formulae in prenex normal form. An example of Skolemi-

sation is taking

∀x ∃y ∀z [P (x, y, z)]

and producing

∀x ∀z [P (x, f(x), z)]

for some Skolem function f . Likewise, Herbrandization is taking some formula

∃x ∀y ∃z [P (x, y, z)]

and producing some

∃x ∃z [P (x, g(x), z)]

for some Herbrand function g.

1.2.1. Turing Machines. We define a Turing Machine as follows:

Definition 1.2.4. A Turing Machine (abbreviated to ‘TM’) consists of a bi-infinite

row of cells called the ‘tape’, upon which are written symbols according to a ‘pro-

gram’ P held in the TM ‘head’ that moves sequentially along the tape. A program
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is a set of 5-tuples of the following form:

(s, q, s′, q′, {L,R})

where s and q are respectively the current symbol and state, s′ is the symbol to be

written in place of s, and q′ is the next internal state for the TM to switch to. The

final item instructs the head to move left or right, denoted L or R respectively.

Before a TM is run, we set the input in symbols on the tape, set the head at

position 0, and set the internal state to the starting state denoted q0. We then allow

the TM to operate along the input on the tape according to its program P .

Let us denote ϕe(x) as the eth TM, under some chosen, effective enumeration

of all possible Turing Machines, acting on input x. We say that our computation

halts if we reach the reserved halting state, after which no more computation is

performed. If such a computation halts, whatever is on the tape when it halts is

considered the output. If the eth TM halts on input x with output y, we write this

ϕe(x) ↓= y. Where ϕe(x) does not halt, we write ϕe(x) ↑.

Definition 1.2.5. A function f : ω → ω is computable if there exists some e s.t.

f = ϕe.

Definition 1.2.6 (Halting Problem). For any given TM ϕe and some input x, is

there a decidable method of determining if ϕe(x) halts?

Definition 1.2.7. There exists a Turing machine U - the Universal Turing Machine

- which if given input (e, n) can simulate ϕe(n). That is to say, ϕU(e, n) = ϕe(n).

Alan Turing introduced these concepts in [58], and determined that it the Halt-

ing Problem was in fact undecidable, meaning that there is no universal Turing

Machine that can decide it.

1.2.2. Enumeration in Stages. Given the discrete way in which we formulate

Turing Machines, it is natural to press ‘stop’ every now and again and see how our

computation might be going. To do this, we can talk of successive stages of a

computation, and the current configuration of the Turing Machine’s tape at that

particular point.

Definition 1.2.8. For any TM ϕe:
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• Let ϕe,s(x) denote the computation ϕe(x) carried out up to stage s.

• Let Ce,s denote the bi-infinite sequence corresponding to the tape config-

uration of ϕe(x) at stage s of the computation.

Theorem 1.2.9 ([16, Thm. 5.2.10]). For any computation ϕe(x),

ϕe(x) ↓ ⇐⇒ (∃s)ϕe,s(x) is in the HALT state

Proof. If our computation has halted, then it has managed to reach the ‘HALT’

state in the program. This necessarily means that a finite number of steps has been

carried out before we halt. Thus, s exists. �

This gives the following corollary immediately:

Corollary 1.2.10 ([16, E. 5.2.14]). For any e, {x : (∃s)ϕe,s(x) ↓} is a Σ0
1 set.

1.2.3. Core Background to Computability Theory. Computability Theory

arose out of the work of Gödel, Church, Turing, Kleene, Péter, and Post - their

foundational papers are collected in [18]. A core thematic idea arising out of this

study, originally called ‘Recursion theory’, was the Church-Turing Thesis defined

as follows in [16, p.42]:

Definition 1.2.11 (Church-Turing Thesis). For a given function f :

f is effectively computable ⇐⇒ f is recursive ⇐⇒ f is Turing computable.

This states that any algorithm we can come up with can be performed on a

Turing Machine. As Cooper points out in section 2.5 in [16], this gives us the

security that our intuition for computability is matched with relevant details when

it is needed.

We can extend idea of what is computable to sets and trees, which we can

initiate with the following definitions.

Definition 1.2.12. Let χA denote the characteristic function of a set A ⊆ ω.

Definition 1.2.13. A set A is computable if the characteristic function χA is com-

putable.
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That is to say that a set A ⊆ ω is computable if there exists e such that for each

x ∈ ω

ϕe(x) =

0 x /∈ A

1 x ∈ A
We can also define what it is for a set to be computably enumerable:

Definition 1.2.14 (Computably Enumerable Sets). We say that a set A is com-

putably enumerable, or c.e., if A = ∅ or for some computable f ,

A = range(f) = {f(0), f(1), f(2), . . .}

There is an early result due to Post (see [16, p.72]):

Theorem 1.2.15 ([16, Thm. 5.1.5]). If A ⊆ ω is computable, then A is c.e.

Proof. Let A be computable. Then we have a computable characteristic function

χA that can decide for any x ∈ ω the question “x ∈ A?”, meaning there is a code

i such that ϕi = χA.

Given this i, we construct a Turing Machine that contains the machine given by

i and recursively answers the questions “0 ∈ A?”, “1 ∈ A?”, . . . in succession. For

each positive answer to “x ∈ A?” we enumerate x into A, giving our result. �

In a similar way, we can prove other basic results, such as:

Theorem 1.2.16 ([16, Thm. 5.1.7]). A is computable if and only if both A and A

are c.e.

Proof. (→) This follows from 1.2.15 above.

(←) If both A and A are computably enumerable by computable functions f and

g respectively, then we can construct χA by means of a TM that for all x ∈ ω

computes both f(x) and g(x). Clearly one of these will give an answer, as both

sets are c.e., and so χA is computable. �

However, the inverse arguments fail, which is where computability theory

starts to get much more interesting.
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Theorem 1.2.17 ([16, Thm. 5.3.1]). There exists a computably enumerable set

that is is not computable.

We first define Post’s Set:

Definition 1.2.18 (Post’s Set). Let K = {e : ϕe(e) ↓}.

Proof. We first note that Post’s set K is Σ0
1, and thereby computably enumerable,

as

e ∈ K ⇐⇒ e ∈ We ⇐⇒ ∃s ϕe,s(e) ↓ .

However, to see that K is not computable, it suffices to show that K is not

computably enumerable. To see this, let K be computably enumerable for contra-

diction. Then K = Wi for some i ∈ ω, giving

x ∈ Wi ⇐⇒ x ∈ K ⇐⇒ x /∈ K ⇐⇒ x /∈ Wx

For x = e this forces a contradiction by forcing different answers for “j ∈ K”?

and “j ∈ Wj?” for all j ∈ ω. �

1.2.4. Conventional theorems in Computability. There are two standard,

and very important theorems in computability - the s-m-n theorem, and the recur-

sion theorem, which we will give brief exposition and proofs of. These statements

and proofs are based on [16] and [55].

Theorem 1.2.19 (s-m-n Theorem, [16, Thm. 4.2.6]). For every m,n ≥ 1 there

exists a 1-1 computable function smn ofm+1 variables, such that for all x, y1, y2, . . . ym:

ϕ
(n)
smn (x,y1,y2,...,ym) = λz1, z2, . . . , zn[ϕm+n

x (y1, . . . , ym, z1, . . . , zn)]

Here, the notation of ϕyx denotes the machine with index x that takes y-many

inputs. This theorem is the only time we shall use this notation in this thesis - later,

the subscript shall be used to denote Oracle sets.

Note, here we use the standard λ-notation for the substitution of z1, z2, . . . into

our computable function. The notation of m and n in smn denote the number of

parameters into the computable function s.

Proof sketch. For m = n = 1, let the TM ϕs11(x,y)(z) obtain ϕx, and then apply

ϕx(y, z). Such an s = s11 is computable, as it is some effective procedure on x and
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y. If it is not 1-1, then we can make it so by ‘padding’ the process, and then letting

the resultant s′ be s.t. ϕs(x,y) = ϕs′(x,y), ordering our inputs 〈x, y〉 using a standard

pairing function. �

Theorem 1.2.20 (Kleene’s Recursion Theorem, [16, Thm. 4.4.1]). For every com-

putable function f there exists an n - called the fixed point of f - s.t.

ϕn = ϕf(n)

Proof. Define the ‘diagonal’ function d(u) as follows:

ϕd(u) =

ϕϕu(u) if ϕu(u) ↓

↑ otherwise

Note that by 1.2.19, d(u) is 1-1 and total. d is also independent of the f that

we are interested in.

For such a given f , let i be the index given by

ϕi = f ◦ d

Claim: We claim that n = d(i) is some fixed point for f .

Note that, f gives that ϕi is total (as d is total, above), so ϕd(i) = ϕϕi(i). Thus

our result follows from the following equivalences:

ϕn = ϕd(i) = ϕϕi(i) = ϕfd(i) = ϕf(n)

�

In the previous proof, we constructed a function we described as diagonal. Let

diagonalization, the construction of a diagonal function, be as follows: let e be the

index of ϕe, which we diagonalise e by running ϕe(e).

This technique was first introduced by Gödel in [34] to give us unprovable

statements, and was later used by Turing in [58] in relation to proving the non-

computability of the halting problem. The set of Diagonally Non-Recursive func-

tions, or DNR, is composed of all the computable functions f such that f(e) 6=
ϕe(e) for all e, and is the subject of current study in modern mathematical logic.

A thorough introduction and treatment can be found in [38].
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We can also note that the numbers for which ϕn = ϕf(n) need not be unique

for any given f .

1.2.5. Computable Notions of Reducibility. In speaking about computabil-

ity, we often want to relativise two sets between each other. To do this, we will

need the following definitions. We will begin with a more basic form of reducibil-

ity, called m-reducibility. This is defined in [16] as follows:

Definition 1.2.21 (m-Reducibility). Given set A and B, we say that A is m-

reducible to B, written A ≤m B, if there is a computable function f : ω → ω

such that for all x ∈ ω:

x ∈ A ⇐⇒ f(x) ∈ B

If our function f is injective, we say that A is 1-reducible to B, written A ≤1 B.

Although m-reducibility was introduced after Turing reducibility (see 1.2.25

below), it is a slightly easier-to-formulate version of reducibility between two sets.

Cooper in [16, p.103] gives the intuition for m-reducibility as A being in some

sense “at least as computable” as B.

From the definition 1.2.21 above, we can derive that

A ≤m B ⇐⇒ A ≤m B

which follows from the fact that A = f−1(B), and following from a general fact

about pre-images we get that A = f−1(B)

Additionally, we can prove relatively straightforward theorems that give a good

flavour of how theorems around m-reducibility are carried out:

Theorem 1.2.22 ([16, Thm. 7.1.2]). The ordering ≤m is:

(1) reflexive.

(2) transitive.

(3) if A ≤m B and B is computable, then A is computable.

(4) if A ≤m B and B is c.e., then A is c.e.

Proof.
1. - Reflexive Clearly A ≤m A as for all x, f(x) = x is computable. �

2. - Transitive Let A ≤m B be given by f , and B ≤m C be given by g. We can
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get A ≤m C by

x ∈ A ⇐⇒ f(x) ∈ B ⇐⇒ g(f(x)) ∈ C

so A ≤m C by g ◦ f . �

For the next two proofs, let A ≤m B by a computable f .

3. If B is computable, then χA = χB ◦ f , which is computable. �

4. Let B ∈ Σ0
1, with

x ∈ B ⇐⇒ ∃yR(x, y)

for a computable relation R. Then

x ∈ A ⇐⇒ ∃yR(f(x), y)

giving us immediately that A ∈ Σ0
1 also. �

Following on from these normal forms, we can prove that not just computable

sets are Σ0
1, but also computably enumerable sets are Σ0

1 complete. This important

intuition will be complimented by successive results in later sections.

Theorem 1.2.23 ([16, Thm. 5.1.5]). The following are equivalent:

(1) A is c.e.,

(2) A ∈ Σ0
1.

Proof.
1 → 2 Let A be c.e. - if A = ∅, then x ∈ A ⇐⇒ ∃x(x = x + 1). Let

A = range(f) for some computable function f . Then

x ∈ A ⇐⇒ ∃s(f(s) = x)

where f is now a computable relation between s and x.

2→ 1 Let A ∈ Σ0
1 such that there is a computable R giving

∃yR(x, y) ⇐⇒ x ∈ A

we then construct a TM e such that on input y, it will search through all possible

x ∈ ω and R(x, y) (computable) with the following outcomes:

ϕe(y) =

x if R(x, y)

↑ otherwise
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Thus, (∃x)ϕe(y) = x ⇐⇒ x ∈ A with A also being c.e. �

1.2.6. Turing Reducibility and the Jump Operator. Althoughm-reducibility

is incredibly useful, we can generalise it to a notion of Turing reducibility by means

of the following definitions - first proposed by Turing in 1939, but following the

outline in [16].

Definition 1.2.24 (Oracle Turing Machines). We define an oracle Turing machine

to be a normal Turing machine, but with access to an extra tape - called the oracle

- and makes use of query quadruples (qi, Sk, qj, qk) that allow the Turing machine

to behave as follows. Let ϕAe (x) be the eth TM on input x and oracle A:

• The TM computes as before until it encounters a query quadruple.

• The TM, then in state qi, will read the current value on the work tape, call

it n, and then query the oracle tape to ask is n ∈ A?.

• Depending on the output of the query, the TM will then:

– State qj if n ∈ A.

– State qk if n /∈ A.

Note, this definition does not require our oracle sets to be computable nor

enumerable - just that they are there. In fact, it is explicitly why oracle Turing

Machines were introduced - in order to analyse questions like “is the halting prob-

lem all there is?” Essentially, we can now ask “What can we compute knowing the

characteristic function of a, not necessarily computable, setA?” This breakthrough

from Turing allowed us to reason about problems ‘beyond’ the halting problem,

by talking about Turing reducibility.

Definition 1.2.25 (Turing Reducibility). We say that a set A is Turing reducible

to a set B, written A ≤T B if for some e,

χA = ϕBe

.

It is worth noting, however, that Turing reducibility is finer thanm-reducibility,

as evidenced by the following result:
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Theorem 1.2.26 ([16, Thm. 4.2.6]). There exists A and B s.t. A ≤T B but

A �m B.

Proof. ConsiderC a non-computable computably enumerable set, withC its com-

pliment. It is clear that

C ≤T C

but as C is non-computable, we also have that

C �m C

�

The outcome of Turing’s work was the Turing hierarchy, which is defined by

taking successive ‘jumps’ which we define as follows.

Definition 1.2.27. Let A,B be given sets:

• We write A ≡T B if A ≤T B and B ≤T A.

• We define the Turing degree - also called the degree of unsolvability - for

some A ⊆ ω to be

deg(A) =def {X ⊆ ω : X ≡T A}

• We can write D for the collection of all such degrees, and can define the

partial ordering ≤ on D induced by ≤T as:

deg(B) ≤ deg(A)⇐⇒def B ≤T A

It follows from this and some other results that three is in fact a partial order

on D, however this is beyond the scope of this thesis. Returning to Post’s set, K,

we state the following theorems - omitting proofs that can be found in [16].

Definition 1.2.28. For n, e ∈ ω, let HALT = (n, e) : ϕe(n) ↓.

Theorem 1.2.29 ([16, Thm. 5.3.1]).

HALT ≤T K

Thus, K is incomputable, and so things that K reduces to are also necessarily

incomputable. We also need the following idea of index sets.
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Definition 1.2.30. Let A be a set of partial computable functions - or of com-

putably enumerable sets. The index set of A is then the set A of all the indices of

elements of A.

Theorem 1.2.31 (Rice’s Theorem, [16, Thm. 7.1.11]). If A is an index set - with

A 6= ∅ and A 6= ω - then K ≤m A or K ≤m A.

This result gives us the following corollary:

Corollary 1.2.32 ([16, Cor. 7.1.12]). Every non-trivial index set is incomputable.

This gives us a window into the core intuition behind Rice’s important result on

computable functions - that every non-trivial semantic property is fundamentally

undecidable, by means of m-reducibility of K into index sets.

1.3. Computable Trees

We denote Cantor space by 2ω, and Baire space by ωω. For any alphabet Σ, we

denote the set of strings σ = (σ(0), σ(1), . . . , σ(n − 1)) of length n by Σn. We

denote the set of arbitrary length finite strings by Σ<ω, and similarly for Cantor

space we use 2<ω, and for Baire space we shall use ω<ω.

Let |σ| denote the length of the string σ ∈ Σ<ω. We denote the initial segment

of σ of length n by σ � n. For σ and τ , where |σ| = i and |τ | = j, we write σ_τ

for the string (σ(0), σ(1), . . . σ(i− 1), τ(0), τ(1), . . . , τ(j− 1)), which we call the

concatenation of σ and τ . We write τ ≺ σ if τ is an initial segment, or initial

substring, of σ - that is, there is some n < |σ| such that for all 0 ≤ i ≤ n it holds

that τ(i) = σ(i).

1.3.1. Trees and Π0
1 Classes. The source for this section is Cenzer’s chapter

titled “Π0
1 Classes in Computability Theory” in [31].

Definition 1.3.1. A tree is a set T ⊂ Σ<ω that is closed under initial segments.

That is, for all τ ∈ Σ<ω such that |τ | ≤ |σ| it is true that ∀σ ∈ T (τ ≺ σ → τ ∈ T ).

We say that σ is a successor to some τ ∈ T if there exists some s ∈ Σ<ω s.t.

σ = τ_s. If σ ∈ T is a successor of some τ ∈ T and |σ| = |τ | + 1 we say that σ

is an immediate successor of τ .
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Definition 1.3.2. We say that a tree T is finitely branching if for every τ ∈ T there

are finitely many immediate successors in T .

For every T ⊂ 2<ω or T ⊂ Σ<ω (for a finite alphabet Σ), T can only be finitely

branching.

Definition 1.3.3. We will make use of the following definitions for paths through

a tree T :

• An infinite path through T is a sequence (x(0), x(1), . . .) such that x �

n ∈ T for all n ∈ ω.

• Denote by [T ] the set of infinite paths through T .

We also state what it is for a set to be a Π0
1 class, which is congruent with

earlier definitions of Π0
1 sets we stated earlier.

Definition 1.3.4. • A formula is ∆0 if it is a primitive recursive function.

• A setX ⊂ ωω is a Π0
1 class if there is a ∆0 formulaϕ(n, x) in the language

of first order arithmetic such that x ∈ X ⇐⇒ (∀n)ϕ(n, x).

A definition of Primitive Recursive Functions as well as other definitions we

use here can be found in Cooper [16, Sec. 2.1 p.12].

The Π0
1 classes may be described topologically as effectively closed subsets of

the product space ωω. Early results in the study of Π0
1 classes were carried out by

Kleene, who proved the Kleene basis theorem in 1943. Further work was carried

out by Kreisel, Shoenfield, Jockush, Soare, et al. .

The topology on Baire space, ωω is determined by a basis of intervals given by

I(σ) = {x : σ ≺ x}. A subset P ⊂ ωω is closed iff P = [T ] for some tree T ,

hence our description of Π0
1 classes as effectively closed subsets of Baire space.

Note that each interval given by I is also closed, thus we can describe the

intervals as clopen. Note also that for Cantor space, 2ω, the clopen sets are just the

finite unions of intervals.

Given these definitions we can state the core intuition for a Π0
1 class as a tree

in terms of some fixed initial segment σ for which the Π0
1 class is the set of points

that are all possible extensions of σ - the cone of extensions above this fixed initial

segment.
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We now wish to formalise the relationship between Π0
1 classes and trees by

means of the following Lemma:

Lemma 1.3.5 ([31, p.41,Lem. 1.1]). For any class P ⊂ ωω, the following are

equivalent:

(1) P = [T ] for some computable tree T ⊂ ω<ω.

(2) P = [T ] for some primitive recursive tree T .

(3) P = {x : ∀n(R(n, x))} for some computable relation Re,

(4) P = [T ] for some Π0
1 tree T ⊂ ω<ω.

Recall our definitions of computable relation (definition ??) and tree (definition

1.3.1) above.

Proof. A proof of this can be found in [31, p.41]. �

Armed with this characterisation, we can equate the enumeration of com-

putable trees with effectively enumerated Π0
1 classes, as demonstrated in the fol-

lowing lemma.

Lemma 1.3.6 ([31, p.41,Lem. 1.2]). There is a uniformly recursive sequence Te
of primitive recursive trees such that, for every Π0

1 class P , there is some e such

that it holds that

P = [Te]

Proof. Let π0, π1, . . . be a recursive enumeration of the primitive recursive func-

tions such that πi : ω → {0, 1}. Define the eth such tree by

σ ∈ Te ⇐⇒ (∀τ � σ)πe(〈τ〉n) = 1

where 〈τ〉n = 〈n, (τ(0), τ(1), . . . , τ(n− 1))〉.
Te is a tree, and if T is a primitive recursive tree with characteristic function

πe, then T = Te. By lemma 1.3.5, every Π0
1 class is thereby equal to one of the

[Te]. �

1.4. Kleene’s O and Π1
1-Completeness

In this section we will outline results that give the relationship between well-

founded trees and Σ1
1-completeness. Our preliminary definitions are as follows.

Unless otherwise stated, the material in this section is based on [16] and [50].
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Definition 1.4.1 (Ordinal). We define ordinals as follows:

• A totally ordered set is a set A with a relation ≤ such that the following

hold:

– (Reflexivity) ∀a ∈ A(a ≤ a)

– (Antisymmetry) (a ≤ b ∧ b ≤ a)→ a = b

– (Transitivity) (a ≤ b ∧ b ≤ c)→ a ≤ c

– (Comparability) ∀a, b ∈ A(a ≤ b ∨ b ≤ a)

• A well-ordered set is a totally ordered set A together with a relation ≤
such that every subset S ⊆ A has a least element.

• Two sets A,B ⊆ ω are said to be order isomorphic iff there exists a

bijection f : A→ B between A and B such that for all a1, a2 ∈ A

a1 ≤ a2 ⇐⇒ f(a1) ≤ f(a2)

• Two well-ordered sets A,B ⊆ ω have the same order type iff they are

order isomorphic.

• An ordinal number or ordinal (in the language due to Cantor) is just an

order type of some well-ordered set.

NB - later, in definition 1.4.16, we will formalise the difference between a

totally-ordered and well-ordered set. Specifically that the well-foundedness of

such as set forces the relation to be irreflexive and connected.

Definition 1.4.2 (Ord). We denote the set of all ordinals - that is, the set of every

possible order type - as Ord.

We now have all the basic machinery we need to describe the computable, or

recursive ordinals.

1.4.1. Ordinal Notations and Kleene’sO. The aim of Kleene’s construction

is to analyse the structure of the computable ordinals, by means of creating repre-

sentations of each as natural numbers.

The resulting theory identified that the computable ordinals form an initial

segment of Ord, sitting strictly below the least non-computable ordinal, which

we shall call the Church-Kleene ordinal, denoted ωCK1 .
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We will begin this journey into categorising and enumerating the computable

ordinals by first defining a way of formulating notations for the ordinals. The core

idea here is that we can construct things that represent ordinals - including succes-

sor ordinals and limit ordinals - but in a way that can be more easily manipulated

and understood for our present purposes.

Definition 1.4.3 (Ordinal Notation Ordering). We first define the ordering <O:

• If x and y are both notations for constructive ordinals, then let x <O y be

for “x is less than y according to the ordering of notations.”

• Given an ordinal can have two different notations, <O is not linear.

We can regard x <O y as a set of ordered pairs - thus it is the closure of a finite

set X under some Σ1
1-closure condition A(X) we we define below.

Definition 1.4.4. Let X be a finite set, the closure condition A(X) has three

clauses:

(1) ∀u, v(〈u, v〉 ∈ X → 〈v, 2v〉 ∈ X) (Successors)

(2) ∀n(ϕe(n) ↓ ∧〈ϕe(n), ϕe(n + 1)〉 ∈ X) → ∀n(〈ϕe(n), 3 · 5e〉 ∈ X)

(Limits)

(3) ∀u, v, w(〈u, v〉, 〈v, w〉 ∈ X → 〈u,w〉 ∈ X) (Transitivity)

Thus, there is some least X such that 〈1, 2〉 ∈ X , with A(X). We let <O be

this least such X .

1.4.2. Kleene’s O. We can now define Kleene’s O as follows:

Definition 1.4.5 (Kleene’s O). Let O denote the set of notations for constructive

ordinals. O forms the field of <O.

We will use the following definition of notations, noting that they are all de-

fined recursively for future purposes.
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Definition 1.4.6. Let the function | · | : O → Ord be defined by transfinite recur-

sion on <O as follows:

|1| = 0

|2u| = |u|+ 1

|3 · 5e| = lim
n→∞

|ϕe(n)|

We can now define all of the constructive ordinals in the following manner.

Definition 1.4.7 (Constructive Ordinals). An ordinal δ ∈ Ord is a constructive

ordinal if δ = u for some u ∈ O.

1.4.3. Kleene’s O, and Well-foundedness. We define well-foundedness as

follows:

Definition 1.4.8 (Well-founded relations). A binary relation R is well-founded if

there is no f s.t.

∀x(R(f(x+ 1), f(x))

We are now ready for the following theorem:

Theorem 1.4.9 ([50, Thm. 2.2]). (1) <O and O are Π1
1

(2) <O is a well-founded partial ordering.

(3) For v ∈ O, the restriction of <O to {u|u <O v} is linear.

Our proof comes directly from [50].

Proof. 1. A full proof of 1. can be found in [50, p.9]

2. The following natural enumeration of <O is equivalent to a redefinition of <O
by means of transfinite recursion on ordinals, as follows:

• Stage 0: enumerate 1 <O 2.

• Stage δ + 1: enumerate all v <O 2v and u <O 2v if u <O v was enumer-

ated at stage δ.

• Stage λ (limit): enumerate ϕe(n) <O 3 · 5e and u <O 3 · 5e, if not

enumerated at some earlier stage, if for each n it holds that ϕe(n) <O

ϕe(n + 1) was enumerated at an earlier stage, and if for some n, u <O

ϕe(n) was also enumerated at an earlier stage.
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By induction on each stage γ, a pair enumerated at some stage γ belongs to

<O. On the other hand, the set of all pairs enumerated into <O is a solution of

A(X), and so contains <O.

By induction on u <O v and v <O w, then u <O v is enumerated at an earlier

stage than v <O w. It then follows that <O is well-founded, else there would

otherwise be a descending infinite sequence of ordinals.

3. We prove this by induction on <O. Assume u1, u2 <O v, we check that one of

the following hold:

• u1 <O u2,
• u1 = u2, or

• u2 <O u1.

If v = 2u, then (1) above implies that u1, u2 ≤O u and our result follows by

induction. Else, if v = 3 · 5e, then we apply (2) to get the result. �

We can now prove the following facts about ordinal notations and their addi-

tion:

Definition 1.4.10. • Let +O be such that if a, b ∈ O, then a+O b ∈ O and

|a+O b| = |a|+ |b|

• Let h be a recursive function such that

ϕh(e,a,d) ' ϕe(a, ϕd(n))

• Let I be a recursive function such that

a if b = 1

ϕI(e)(a, b) ' 2ϕe(a,m) if b = 2m

3 · 5h(e,a,d) if b = 3 · 5d

7 otherwise

It is worth noting that, because our breaking up of O into notations for zero,

successors, and limits is effective, I above is recursive, even though <O is non-

recursive. Also, the clause for I(e) is sensible even if a, b /∈ O.
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Theorem 1.4.11 (Kleene, [50, Thm. 3.4]). The recursive function +O has the

following properties. For all a, and b:

(1) a, b ∈ O ⇐⇒ a+O b ∈ O.

(2) a, b ∈ O ⇒ |a+O b| = |a|+ |b|.
(3) a, b ∈ O ∧ b 6= 1⇒ a <O (a+O b).

(4) a ∈ O ∧ c <O b ⇐⇒ (a+O c) <O (a+O b).

(5) a ∈ O ∧ b = c ∈ O ⇐⇒ (a+O b) = (a+O c).

Proof. Can be found in Sacks [50] I.3.4 p.13. �

Due to our computable approach, and the fact that our notations for ordinals

are, in particular, very computable, we can get theorems such as the following:

Definition 1.4.12. Denote by We the eth computably enumerable subset of ω, the

domain of ϕe.

The intuition here is that We is the ‘set of inputs that ϕe halts on’ - which is

why we use the domain of ϕe in our definition.

Theorem 1.4.13 (Kleene, [50, Thm. 3.5]). There exists a computable function p

such that for all b ∈ O,

Wp(b) = {a : a ≤O b}

Proof. The required properties of p are as follows:

Wp(1) = ∅

Wp(2a) = {a} ∪Wp(a)(1.1)

Wp(3·5d) =
⋃
n∈ω

{Wp(ϕd(n)) : ϕd(n) ↓}

By induction on <O we get that any p that satisfies all of 1.1 will also satisfy

our theorem. As such, we want to show the existence of such a computable p,

specifically by means of effective transfinite recursion on p. Let e0 be any Gödel
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number for some TM, and let i and j be computable functions such that:

We0 = ∅

Wi(e,a) = {a} ∪Wϕe(a)(1.2)

Wj(e,d) =
⋃
n∈ω

{Wϕe(ϕd(n)) : n < ω}

In 1.2, it is intended that when ϕe(a) ↑, that Wϕe(a) = Wϕe(ϕd(n)) = ∅. We can

now obtain a recursive I (similar to 1.4.10 above) such that:

e0 if b = 1

ϕI(e)(b) ' i(e, a) if b = 2a

j(e, d) if b = 3 · 5d

0 otherwise

By theorem 1.2.20, the fixed point theorem, I necessarily has a fixed point c

where ϕI(c) ' ϕc. Let p(b) be ϕc(b). Then

e0 if b = 1

p(b) = i(e, a) if b = 2a

j(e, d) if b = 3 · 5d

0 otherwise

Given i and j are both computable and total, we get that 1.2→1.1. �

We are also able to obtain the existence of similar recursive functions:

Theorem 1.4.14 (Kleene, [50, Thm. 3.5]). There exists a recursive function q

such that for all b ∈ O,

Wq(b) = {〈x, y〉 : x <O y <O b}

Proof. Essentially the same as for the proof of theorem 1.4.13, with the modifi-

cation that we adjust the definition 1.1 and 1.2 preserve all of the pairs 〈x, y〉 s.t.

x <O y <O a in our recursive definition of i. �
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1.4.4. Recursive Ordinals and well-founded Relations. We can now show

that every c.e. subset of O is bounded in a “highly effective manner.”[50, p.15]

Theorem 1.4.15 ([50, Lem. 4.1]). There exists a computable g such that for all e:

(1) g(e) ∈ O ⇐⇒ We ⊆ O,

(2) g(e) ∈ O ⇒ |a| < |g(e)| for all a ∈ We.

Proof. A proof can be found in Sacks [50] p.16. �

We now formalize our definition 1.4.1.

Definition 1.4.16. A binary relation R(x, y) is a well-ordering if it is:

(1) (Connected) (∀x, y)(R(x, y) ∨R(y, x) ∨ x = y)

(2) (Transitive) (∀x, y, z)(R(x, y) ∧R(y, z)→ R(x, z))

(3) (well-founded) if S 6= ∅, S is a subset of the field of R, then ∃y ∈ S such

that (∀x ∈ S)¬R(x, y)

Note, that 3. implies:

(4) (Irreflexive) (∃x)¬R(x, x)

(5) (Antisymmetric) (∀x, y)(R(x, y)→ R(y, x))

Given the well-foundedness of a well-ordering relation, we can define the

height of R as follows:

Definition 1.4.17. • Let R be a well-founded binary relation, then it has a

height, denoted by |R|, measured by some ordinal.

• Let β be an ordinal variable. µβ is then the “least β such that...”

• |x| = µβ [R(y, x)→ |y| < β]

• |R| = µβ ∀x [x ∈ field of R→ |x| < β]

We can also enumerate computable relations:

Definition 1.4.18. Let Re denote Re(x, y) ⇐⇒ ϕe(x, y).

Thus, we can enumerate all computable relations. We shall let

Rel = {Re : e < ω}

Lemma 1.4.19 ([50, Lem. 4.3]). There exists a computable f such that, for all e:

• Re is well-founded ⇐⇒ f(e) ∈ O, and
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• Re is well-founded → |Re| ≤ |f(e)|

This lemma gives rise to the following theorem due to Kleene and Markwald:

Theorem 1.4.20 (Kleene-Markwald, [50, Thm. 4.4]). The computable ordinals

are equal to the constructive ordinals.

Proof. A proof can be found in Sacks [50] p. 18. �

1.4.5. O, Well-foundedness, and Π1
1 Sets. In this subsection, we will build

on our theory and present the ordinal analysis of Π1
1 Sets.

Definition 1.4.21. Let f(x) = {〈i, f(i)〉 : i < x}, essentially that, for pi being the

ith prime, p0 = 2:

f(x) =
∏
i<x

p
1+f(i)
i

If y = f(x) for some f and x, we say that y is a sequence number.

This f(x) can be thought of as the code for the graph of f � x - essentially, it

is the code for the sequence 〈f(0), f(1), . . . , f(x − 1)〉, with f(0) = 1. We can

denote the length of x as len(f(x)). We can thus view y as 〈y0, y1, . . . , ylen(y)−1〉.
If y and z are both sequence numbers, then we say that ‘y is properly extended

by z’, written y ≺seq z if len(y) < len(z) and for all i < len(y) we have that

yi = zi.

Definition 1.4.22. Let Seq denote the set of all sequence numbers.

Seq is a computable set, and ≺seq is a computable, antisymmetric, transitive

binary relation. We can think of (Seq,≺seq) as presenting Baire space, ωω as a tree

- which is why it is useful in the study of Π1
1 sets.

We denote SR(y) to be the restriction of (Seq,≺seq) to the sequence numbers

f(x) such that

SR(y) = ∀i < x[¬R(f(i), y)]

The following proposition begins our connection between well-foundedness

and formulae in the normal form Π1
1:

Proposition 1.4.23 ([50, Prop. 5.3]). ∀f∃x(R(f(x), y)) ⇐⇒ SR(y) is well-founded.
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Proof. Fix some y. ¬(∀x ∃xR(f(x), y) if and only if there is some f such that

∀x¬R(f(x), y) if and only if there is some f such that f(0) > f(1) > f(2) >

. . . in an infinite descending sequence SR(y) if and only if SR(y) is not well-

founded. �

We can now continue our analysis with the following normalisation of Π1
1 pred-

icates and theorems. We note that for any computable relation R1(f, x, y) we can

find e such that ϕfe (x, y) = 0 ⇐⇒ R1(f, x, y). Using this, we can prove the

following, denoting by WF the set of all well-founded trees - we now show the

following lemma:

Lemma 1.4.24 ([50, Sec. 5.2]). For each Π1
1 set P,

P ≤m WF

Proof. Let some B ∈ Π1
1. By the above, there is some computable R such that for

all y,

y ∈ B ⇐⇒ ∀f ∃xR(f(x), y)

By proposition 1.4.23, we get

y ∈ B ⇐⇒ SR(y) is well-founded.

�

We can thus extend this lemma to a result due to Kleene:

Theorem 1.4.25 (Kleene, [50, Thm. 5.4]). For each Π1
1 set P ,

P ≤m O

Proof. Let B ∈ Π1
1. As for 1.4.24, we have that there is some computable R such

that for all y,

y ∈ B ⇐⇒ ∀f ∃xR(f(x), y)

and again by 1.4.23, we get

y ∈ B ⇐⇒ SR(y) is well-founded.

Given the SR(y) is computable uniformly in y - that is, we only require one TM

with which to carry our the computation - we have that there exists a computable
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function g such that SR(y) = Rg(y). Let f be as in lemma 1.4.19, then

y ∈ B ⇐⇒ f(g(y)) ∈ O

�

This gives us the following useful corollary:

Corollary 1.4.26 ([50, Cor. 5.5]). O /∈ Σ1
1

Proof. This proof is structurally similar to one that a complete c.e. subset of ω is

not computable.

We first note that for any set S such that for some A ∈ Σ1
1, if S ≤m A, then

S must also be Σ1
1. So, by 1.4.23, we have that if O were Σ1

1, then every Π1
1 set

would also be Σ1
1.

Thus it suffices that we can find some A ∈ Π1
1 such that A /∈ Σ1

1. Define Q(y)

to be ∀f ∃xϕf�xy (y). Suppose (¬Q(y) ∈ Π1
1), then ¬Q(y) is equivalent to the

statement that there exists e, ∀f ∃xϕf�xe (y). So ¬Q(y) ⇐⇒ Q(y). �

We can now prove the result due to Spector about the Σ1
1-boundedness of O:

Theorem 1.4.27 (Spector, 1955 - [50, Cor. 5.6]). Let X ⊆ O and X ∈ Σ1
1. There

exists some b ∈ O such that ∀x ∈ X (|x| ≤ |b|).

Proof. As for the proof of 1.4.25, we can replaceO with B and find a computable

function t such that for all y,

y ∈ O ⇐⇒ Rt(y) is well-founded

Let our Q(y) be

∃z [z ∈ X ∧ ∃f ∀u, v (Rt(y)(u, v)→ 〈f(u), f(v)〉 ∈ Wq(z))]

where Wq(z) is as per 1.4.14. Q(y) ∈ Σ1
1. If Q(y) holds then we have Rt(y) must

be well-founded.

Suppose that b does not exist, then ifRt(y) is well-founded, then by 1.4.19 there

is some z ∈ X ⊆ O such that |Rt(y)| < |z|, and thereby Q(y) holds. But y ∈ O is

Σ1
1, contradicting 1.4.26. �

We can thus get the following corollary:
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Corollary 1.4.28 ([50, Ex. 5.7]). The set of all well-founded computable trees is

Π1
1 complete.

It should be noted that in later chapters, 1.4.24 and 1.4.28 will be particularly

useful, as it will form the basis for our theorems that relate the well-foundedness of

trees to tilings of the plane using infinite prototile sets (see Chap. 2 for definitions

of these terms).

1.5. Trees, Ordinals, and the Arithmetical and Analytic Hierarchies

We have outlined in previous sections various definitions that will be used in

our work in later chapters. There are some deep and illuminating connections be-

tween these objects, which we hope to outline and illustrate in this section. Unless

otherwise stated, all results can be found in [31] and [16].

1.5.1. Fundamental Results. Our formulation of König’s lemma comes from

[49] and [41].

Lemma 1.5.1 (König’s Lemma, [41, Thm. 3.13]). Every infinite finitely branching

tree has an infinite branch.

Proof. We prove this for T , a binary tree. For a string σ with |σ| = n, let

Tσ = {τ ∈ T : τ � n = σ} ∪ {σ � k : k < n}

We shall call Tσ the subtree of T below σ. Though it is easy to check that T is a

tree, it may or not be infinite.

We want γ ∈ T such that the tree Tγ below γ is infinite. Let this be our

induction hypothesis. Suppose we have some γ, with |γ| = n and Tγ is infinite.

Since our tree T is binary, we have

Tγ = {τ ∈ T : τ � (n+1) = γ_0}∪{τ ∈ T : τ � (n+1) = γ_1}∪{γ � k : k ≤ n}

The third of these sets is clearly finite, so one of the first two - corresponding

to ’0’ and ’1’respectively - must be infinite, by our induction hypothesis.

If the first of these is infinite, we set γ(n+ 1) = γ_0, and so we have

Tγ(n+1) = {τ ∈ T : τ � (n+ 1) = γ_0} ∪ {γ_0} ∪ {γ � k : k ≤ n}
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which is infinite. In the other case, we do the same for γ(n + 1) = γ_1, which

gives us the same infinite tree Tγ(n+1) as before.

In both cases, we have defined γ(n + 1) and proved our induction hypothesis

for n+ 1.

�

This lemma is rather famous throughout the mathematical œuvre - indeed, in

other reference texts such as [32], this theorem features in reference to the com-

pactness of Wang tiles as “König’s Infinity Lemma”. This is something we shall

later make use of in proving this result in chapter 2.

König’s Lemma applied to trees with a bound on the number of children for

each node, then we say that this is Weak König’s Lemma (WKL). WKL is a very

important principle studied in reverse mathematics, such as a compactness princi-

ple for Cantor space. This is not, however, within the scope of this thesis to study

or present.

1.5.2. Trees and Analytic Sets. We start by defining the extendible nodes of

a tree:

Definition 1.5.2. For a tree T , we define the set of extendible nodes Ext(T ) by

σ ∈ Ext(T ) ⇐⇒ (∃x)(x ∈ [T ] ∧ σ ≺ x)

This definition allows us to collect all of the initial segments of the points x

that lie in some tree T . Our aim is to use this set to establish Ext(T ) as a basis

for trees whose sets of paths are Π0
1 sets. By this, we mean that any extension in

Ext(T ) is a Π0
1 set. We first establish what a basis is:

Definition 1.5.3. Let Θ ⊆ P(ωω) be a collection of subclasses of ωω. A set

Γ ⊂ ωω is a basis if every class C ∈ Θ, there is some x ∈ C such that x ∈ Γ.

This gives us natural formulation for ‘basis theorems’, such as the following

extracted from [31, p.52].

Theorem 1.5.4 ([31, Remark p.51]). The class ∆0
0 of computable functions is a

basis for the family of open subclasses of Baire space.

However, we will present the following result - the Kleene Basis theorem.
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Theorem 1.5.5 (Kleene Basis Theorem, [31, Thm. 3.1]). For any tree T such that

a Π0
1 class P = [T ] 6= ∅, P contains a member that is computable in Ext(T ).

Proof. The infinite path x through T can be computably defined by letting x(0) be

the least n such that the sequence (n) ∈ Ext(T ). We continue the construction by

letting, for every k, x(k + 1) be the least n such that (x(0), x(1), . . . , x(k), n) ∈
Ext(T ). �

We can also prove the following result:

Theorem 1.5.6 ([31, Thm. 3.3]). For any recursive tree T ⊂ ω<ω, Ext(T ) is a

Σ1
1 set.

Proof. This follows from the following characterisation:

σ ∈ Ext(T ) ⇐⇒ (∃x)(∀n > |σ|)(x � n ∈ T ∧ σ ≺ x � n)

�

These results solidify the fundamental link that we will use later, specifically

that the well- or ill-foundedness of a tree T ⊂ ω<ω is complete to Π1
1 and Σ1

1

formulae. This is a fact that is central to our results in chapter 3 and beyond.



CHAPTER 2

Tilings - Concepts and Results

It is the shape that matters.

Samuel Beckett

to Harold Hobson

This chapter presents previous results to do with the mathematical study of

tiling problems. We present more general results first, and then focus on tiling

problems for Wang prototiles that will occupy the rest of our study in this thesis.

2.1. Tilings of the Plane

In this chapter, we will give an overview of the notation, history, and important

results concerning tiling problems. Unless otherwise indicated, we will use [32]

and [27] as our primary resources for material in this chapter.

2.1.1. Preliminaries of Tilings. We will use the following definitions of tilings

in this thesis. Note we restrict ourselves to tilings on the plane R2.

Definition 2.1.1 (Tiles). A tile is a closed polygon that covers some finite potion

of the plane.

Topologically, each tile is a closed subset of the plane, and is homeomorphic

to a disc. As such, we can define tilings as follows:

Definition 2.1.2 (Tilings). Tilings will generally take the following forms:

• Tiles form a complete tiling if the union of these subsets is the full plane.

• Tiles form a partial tiling if there are points in the plane that are not

contained in any subset.

For complete tilings, each point p ∈ R2 will find itself in one of two situations.

Either we have that:

(1) p is to the interior of at most one tile, or
43
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(2) p is on the edge join of two tiles.

As a consequence of this, tiles in a complete tiling have pairwise disjoint interiors,

and there are no gaps between the tiles in the tiling.

To make it easier to consider the relationship between a tiling and the tiles that

constitute it, we can define sets of prototiles as follows:

Definition 2.1.3 (Prototile Sets). For a given tiling T ,

• A prototile set S ⊂ T is a set of tiles such that for every tile t ∈ T there

is an s ∈ S that is congruent to t.

• A prototile set S is called minimal if for all si, sj ∈ S,

si is congruent to sj ⇐⇒ si = sj

Later in this thesis we will consider only minimal tilings, where we have substi-

tuted geometric requirements with a regular polygonal lattice with edge conditions.

But for now, we will proceed with all the above definitions.

2.1.2. The Extension Theorem. The Extension Theorem is a compactness-

like argument that is an important result from the literature, a version of which will

become very useful later in this volume.

We will start with some definitions for related and useful concepts we will use

in theorem 2.1.13. For this section we will assume that all prototile sets are finite,

although we will relax this requirement for our further work in tiling problems

later in this volume.

Definition 2.1.4. Given a tiling T , ti, tj ∈ T , the Hausdorff distance h(ti, tj)

between two tiles is defined as

h(t1, t2) = max

{
sup
a∈t1

inf
b∈t2
‖a− b‖ , sup

b∈t2
inf
a∈t1
‖a− b‖

}
From this definition it follows that where for some tiles t1, t2 ∈ T , we have

that h(t1, t2) = 0 =⇒ t1 = t2.

Definition 2.1.5 (Patch Tiling). A patch is the union of a number of tiles covering

some non-total portion of the plane R ⊂ R2.
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The usual intuition for patch tilings is that they are finite portions of the plane,

however we will also use this wording to denote infinite connected regions of the

plane that are not total. Where the context requires we will talk of ‘infinite patches’

and ‘finite patches’, but generally speaking, we use this looser definition of ‘patch

tiling’ than is generally used in the literature.

Definition 2.1.6. We say that a set of prototiles S tiles over a finite subset X of

the plane if there is a finite patch tiling PS such that for all x ∈ X , x ⊂ PS , with

each t ∈ PS congruent to some s ∈ S.

Where we have finite patches as a bounded tiling, these are then also topologi-

cally equivalent to a disc.

Definition 2.1.7. A sequence of tiles t1, t2, t3, . . . converges to a limit tile t if

limi→∞ h(ti, t) = 0.

Definition 2.1.8 (Circumparameter). U is a circumparameter of a prototile set S
if for every t ∈ S, t is contained in some disc of radius U .

Definition 2.1.9 (Inparameter). Analogously we have that u is an inparameter of

S if for each t ∈ S, there exists a disc of radius u that can be wholly inscribed

within t.

Now that we have covered the base definitions we require for this section, we

will proceed to prove some general theorems in the theory of tilings. Our aim

here is to state the geometric and topological arguments that are commonly used

to analyse general properties of tilings derived from finite prototile sets. We begin

with the following lemmas:

Lemma 2.1.10 (Bolzano-Weierstrass Theorem). Let S be a closed bounded area

in R2, and let z1, z2, z3, . . . be a sequence of points in S. There is a subsequence

of zi1 , zi2 , . . . that converges to some point z ∈ S.

Note, such a limit z need not be unique.

Proof. Let zi for i ∈ ω be our sequence z1, z2, z3, . . ., and let S0 be a bounded

region in R2.
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First we bisect S0. By pigeonhole principle, we have that at least one of these

pieces contains infinitely many zi. Call this piece S1, and repeat the subdivision

infinitely. The same density must apply to at least one of any subdivided region,

so we can choose a sequence of pieces S2, S − 3, . . . containing infinitely-many zi
in each subsequent piece.

From our eventual infinite sequence S0, S1, S2, . . .we can choose any sequence

of points, with each successive zi coming from Si. These points converge closer

to some limit point z. �

Theorem 2.1.11 (Selection Theorem, [32, p.154]). Let t1, t2, . . . be an infinite

sequence of tiles such that all ti are congruent - by translation and rotation - to

(bounded) t, that is fixed. If every ti contains point p, then the sequence contains

a convergent subsequence whose limit tile t′ is congruent to t, with p ∈ t.

Proof. Choose tn ∼= t0 for each n ∈ ω. As such, each point p ∈ tn identifies some

point qn ∈ T . By 2.1.10, there is a convergent subsequence qi1 , qi2 , . . .→ q inside

t.

Intuitively, this limit point q is taken from a point p that is ‘common’ to all tiles

where they translated, but not rotated, and placed over each other. When separated

out, this is our sequence of qi’s, where each tile is labelled spiralling out from our

t0 - much like the ‘snake’ proof in classical set theory.

If we position this t such that q is over the coordinate (0, 0) ∈ R2, then we can

notice that all of our translations are rotated about q. So the position of each tile is

the translation q − qi followed by some rotation αin (mod 2π).

As such, by using the same reasoning in lemma 2.1.10, we can we can gather

a subsequence of rotation angles αi1 , αi2 , . . . which converges (modulo 2π). Let α

be the limit of this sequence, and so ti1 , ti2 , . . . → t′, which is a copy of t rotated

by α and with q coincident with p. �

Note, this theorem will fail if such a p does not exist, for example. That said,

we will use the following special case later:

Corollary 2.1.12 ([32, p.154]). Let t0, t1, t2, . . . converge to some t, if d(ti, t)→ 0

as i→∞. Then t is congruent to t0.
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We can now prove the Extension Theorem, which is a fundamental, general

result about tilings.

Theorem 2.1.13 (Tiling Extension Theorem, [32, Thm. 3.8.1]). Let S be a fi-

nite set of prototiles - each of which is a closed topological disc. If S tiles over

arbitrarily large discs, then there exist S-tilings of the plane.

The proof will follow the one found in [32, p.151].

Proof. Let S be a finite set of prototiles, and let U be the common circumparam-

eter, and u be the common inparameter. Consider the lattice Λ of all points who

regular Cartesian coordinates are (nu,mu) for m,n ∈ Z. Λ therefore has some

point in each prototile in S. Let L0, L1, L2, . . . be the full sequence of these points,

spiralling out from some chosen L0, say (0, 0).

For any positive r ∈ N, letD(L0, r) be the disc of radius r centred on the point

L0. Let P (r) be the finite patch of tiles from S that covers D(L0, r). When r is

large enough for D(L0, r) to contain some Ls, let trs denote the tile of P (r) that

covers Ls. If, however, Ls lies on an edge or a vertex point, then we can choose

any tile in P (r) that is incident to Ls.

By the Selection Theorem (2.1.11) we have that, given S is finite, the sequence

t0, t1, t2, . . . has a subsequence t′0, t
′
1, . . . of tiles that are congruent to t′0. This se-

quence will also contain an infinite subsequence S0 = t′i0 , t
′
i1
, . . . that is conver-

gent, and whose limit tile t′0 will also contain L0.

We now consider the sequence of tiles tr1 containing L1, restricting attention

to values of r that correspond to tiles in S0. We can carry out the same line of

argument as we just did to acquire S1 of tiles all congruent to t1, containing L1,

and convergent to a limit tile t′1.

Let T = {t′0, t′1, t′2, . . .}, deleting any duplicates as necessary in our selection.

Ultimately, we want to show that T forms an S-tiling of the plane. To show this,

let p be any point of the plane. We want to show that p belongs to at least one t′i,

but does not belong to the interior of any other t′j .

Let D(p, u) be the disc centred at p, of circumparameter radius u. Let Lm be

the point of Λ in D(p, u) with greatest index. We want to restrict our attention to

the sequence of finite patches P (r) as r ranges through value corresponding to the

subsequences Sm, specifically Tr = {tr0, tr1, tr2, . . . trm}.
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As r → ∞, Tr converges to the set T ′ = {t′0, t′1, . . .}. Since all of the tiles in

Tr have disjoint interiors, and all contain p, the same is true of each member of T ′.
Thus, T is an S-tiling of the plane. �

2.2. The Domino Problem

Whilst theorem 2.1.13 gives us a notion of compactness that we can express

through tiles, we then come to a more general question about tilings, known as the

‘Domino Problem’.

Definition 2.2.1 (the Domino Problem). For any given set of prototiles S, does

there exist an S-tiling of the plane?

By theorem 2.1.13 we know that if we can extend any finite patch S-tiling, we

can get a tiling of the plane, but the Domino Problem asks us to consider whether

there is any finite patch that cannot be tiled.

When considering the Domino Problem for various sets of tiles, it is possible

to modulate various requirements on how we cover the plane. For example, we

might not consider trivial sub-tilings of some S ′ ⊂ S, or we might permit ‘small’

holes that are strictly smaller than any polygon t ∈ S, such that we can consider

them ‘small enough’ in the limit.

Given this definition, it is common to consider these conditions on a Domino

Problem for some prototile set, unless explicitly indicated otherwise. Given a set

of prototiles S:

• We will not require that ∀t ∈ S, t is used at least once in each S-tiling of

the plane.

– This requirement is sometimes used to prevent trivial sub-tilings of

the plane of some S ′ ⊂ S, mentioned above. However, when we

come to dealing with encoding a Turing Machine into prototile a set,

we need to allow that our TM will not enter every state on every

input.

• We will require that, for lattice regular polygonal tilings such as Wang

tiles (defined in 2.2.2) we do not admit rotations of the tiles.

– Although this increases our prototile sets significantly, it make our

later more functional definitions much more straightforward.
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• That our tilings are complete tilings.

Though we will make use predominantly of lattice-based tilings in this thesis, we

wish to prevent gap from occurring in our tilings. As such, our resultant tilings

can be thought of as total functions over the plane via coverings given by mapping

each point in the lattice to a copy of a prototile.

These requirements can serve as to simplify our tilings, definitions, and con-

structions of prototiles. As noted, although the number of prototiles will increase,

the complexity of our tiling functions will significantly reduce.

However, in this thesis, we will attempt to make our tilings as ‘free’ as possible.

Although this gives us slightly larger prototile sets, it serves to give us some better

insight into the equivalence between the logical complexity of some statement, the

computable trees arising from these statements, and the computable prototile sets

that code paths of these computable trees into planar tilings.

2.2.1. Wang Tiles. To properly analyse the Domino Problem, we wish to re-

duce the complexity of our tilings to some ‘bare minimum’, in line with the re-

quirements above. As such we will make use of Wang tiles, first introduced by

Hao Wang in [60], which we define as follows:

Definition 2.2.2 (Wang Tiles). Let Wang tiles be square tiles, diagonally quadri-

sected, such that ordered 4-tuples of the form 〈l, u, r, b〉 can be represented by:

u

l r

b

Where l, u, r, b each stand for left, upper, right, and bottom respectively.

We keep our previous definitions of ‘prototiles’, ‘prototile sets’, and ‘tilings’.

Given this prototile definition, we will need to consider what happens when the

edges of our tiles are to meet. Given a set S of Wang prototiles:

Definition 2.2.3. Given two Wang tiles w, u ∈ S , such that w = 〈lw, uw, rw, bw〉
and u = 〈lu, uu, ru, bu〉:

• The edge meets between these tiles are the comparisons between meeting

edges, where one of the following applies:
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·
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FIGURE 1. Edge Conditions in the von Neumann Neighbourhood
surrounding a Wang tile.

– lw is next to ru,

– uw is next to bu,

– rw is next to lu,

– bw is next to uu
• The match criteria for Wang tiles are the requirements that for any edge

meet, the edge symbols match. Explicitly, one of the following holds:

– if lw is next to ru, then lw = ru

– if uw is next to bu, then uw = bu

– if rw is next to lu, then rw = lu

– if bw is next to uu, then bw = uu

Intuitively we use the von Neumann neighbourhood surrounding the tile as the

basis for our matching and placement conditions for each Wang prototile. This

means that we only ever consider the 4-place valency for each tile and for each

position in our Z2 lattice following the rules we stated above. When we come to

code cellular automata, we will still only consider the von Neumann neighbour-

hood over the usual Moore neighbourhood.

From this construction of Wang tiles, we can now envisage our tilings as pro-

jection functions

fS : Z2 → S
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This characterisation will be useful when we explore computable tilings later in

this thesis. Thus, the following definition is natural:

Definition 2.2.4. Given a set of Wang prototiles S, we say that an S-tiling of the

plane is a total tiling if for f : Z2 → S , and f enforces the edge-meet criteria for

the von Neumann neighbourhood of every point in Z2.

Given for every point (x, y) ∈ Z2 there is some s ∈ S such that f(x, y) = s

and f ensures that s observes and meets all of the match criteria for its neighbours

in the plane.

Our notion of a ‘total Wang tile tiling’ is indeed a direct analogue for com-

plete tilings we defined earlier. The slight change in terminology is to facilitate

the intuition we will use later in this thesis that a complete tiling generated by a

computable function must be total on Z2, and so is in this sense a total function.

Thereby, total functions give total tilings, and total tilings must come from total

functions.

Thus, a total tiling from a Wang prototile set is analogous to a complete tiling

we considered previously. When we consider computable sets of Wang prototiles,

this definition will be equivalent to a computable function ϕe being total.

Wang proved a version of the Extension Theorem for Wang tiles - known as

Wang’s theorem. Our statement and proof are taken from [32, p.600].

Theorem 2.2.5 ([32, p.600]). Let S be a finite set of Wang prototiles. If it is

possible, of arbitrarily large values of n, to assemble n×n blocks of tiles satisfying

the edge-matching conditions, then there is an S-tiling of the plane.

We should reiterate that we only admit translations of Wang prototiles - we

do not permit rotations of Wang prototiles into tilings of the plane. If we did,

this theorem would be immediate from the Extension theorem, theorem 2.1.13.

Additionally the proof will make explicit use of the face that S is a finite set of

prototiles.

Proof. Given a set of prototiles S, with |S| = r. We can construct a graph-

theoretic tree in the following manner. We start with a single root node n0. Level

1 is formed of n1
1, . . . , n

1
r corresponding to each of the tiles in S. Similarly at each
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level k, we add nodes nk1, . . . , n
k
rk

corresponding to adding a ring of tiles around

each of the previous blocks.

We then form the tree by joining all of level 1 nodes to the root node. For any

level k, we connect any of the nk to the nodes in nk+1; if, for any nki , nk+1
j contains

the block represented by nki , and the tiles on the outer edge of block nk+1
j match

all the edge-matching criteria for the exterior of the tiles represented in nki are met

by the inner edge criteria nk+1
j . If this holds, then nki and nk+1

j are connected.

Each successive block can be thought of as an extension of the previous block

by an outer ‘square ring’ of tiles from S that surround the outside of the block.

Thus, we can reduce the question of an S-tiling now to whether each level k is

connected to each k + 1. If the answer is in the negative, then there exists some

n such that there can be no patch of Wang tiles greater than n × n that can be

extended to a full planar tiling.

If the answer is in the positive, then we have created a finitely branching infinite

tree. By König’s Lemma, there is necessarily an infinite path through our tree. By

this construction, this path corresponds to an S-tiling of the plane. �

It is worth noting that although König’s Lemma is utilised in this proof, this

is not necessary. Given our sets of prototiles are always finite, we only actually

require Weak König’s Lemma - that an infinite bounded-branching tree necessarily

has an infinite path - for this proof with some modification of our tiling tree as

follows.

Alternative Tree Construction for proof of 2.2.5. Take some finite prototile set

S, and consider each each point on Z2 by spiralling out from the centre point

(0, 0) as before for the proof of theorem 2.1.13. We can construct a tree based on

the valid tiles that could be placed at each successive point based on the 1 or 2

edge criteria defined by previously placed tiles.

This tree is bounded by the size S, which is finite, thereby restricting the

branching of our tree. A total planar tiling also corresponds to a path through

this tree by the following observations:

• Each level on our tree corresponds to a point in Z2.

• All edge-meet criteria are met by the construction of each branch.
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Thus if our tree is infinite, there must be an infinite path by WKL, meaning there

is a total planar tiling. �

Later in this thesis, we will entertain weaker notions of tiling the plane, and

will draw more equivalences with properties and principles on trees in both Baire

space and Cantor space.

2.3. Undecidability of the Domino Problem

One of Hao Wang’s students, Robert Berger, proved in [5] the undecidability

of the Domino Problem for finite sets of Wang prototiles. Whilst Berger’s original

created a prototile set of over 6,000 tiles, we present an updated proof where sets

of ‘universal Turing Machine prototiles’ number in the few hundred.

Definition 2.3.1. For a set S of prototiles, we denote “There exists a complete

S-tiling of the plane” by Tile(S).

Note that Tile(S) immediately has a Σ0
1 normal form as the existence of an

infinite sequence s ∈ Sω, such that s is a sequence of tiles that covers each point

in the lower-right quarter plane in Z2, thereby giving a total tiling of this quarter

plane.

However, given we can extend any S with tiles that fill in the other three

quarter-planes, we can convert this s to a total planar tiling.

Theorem 2.3.2 ([5, Thm. 3-3]). The Domino Problem for finite Wang prototile

sets is Σ0
1-complete.

We will prove this by showing that for any Turing Machine ϕe there exists a

set of prototiles Se such that

ϕe(x) ↓ ⇐⇒ ¬Tile(Se)

In order to do this, we will need the following machinery:

Definition 2.3.3. A schema tile is a prototile that determines a set of prototiles for

given sets of colours. That is, it determines the position of colours taken from one

or more sets of colours.
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Example 2.3.4 (Schema Tile Example). Let A = {a1, a2} and B = {b1} be sets

of colours. Let t be the schema tile, with i 6= j:

bi

ai aj

bi

The prototile set S generated by t will consist of the following tiles:

b1

a1 a2

b1

b1

a2 a1

b1

It is worth observing that this resultant prototile set can give total planar tilings.

Thus, we can talk about the following progression:

schema tile + colours⇒ prototile sets⇒ planar tilings

By careful control of our schema tiles, we can establish the overall ‘shape’ or

‘behaviour’ of our prototile sets, which in turn controls some desirable feature or

features of our classes of planar tilings.

The following proof is after [6] and [12], however it has been restructured in

order to match the structure of proofs later in this thesis.

Proof of 2.3.2. We construct the following schema tiles with which we can em-

ulate Turing Machines. Let s ∈ Σ be colours representing symbols, qi ∈ Q be

colours representing machine states, and (s, q) ∈ Σ×Q be colours corresponding

to each symbol matched with each state. Let B be a distinguished colour repre-

senting ‘blank’, and H be distinguished colour representing the halting state.

Symbol tiles

s

B B

s

Head State tiles
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s

q B

(s, q)

s

B q

(s, q)

Computational tiles For s, s′ ∈ Σ and q, q′ ∈ Q, permitting s = s′ and q = q′,

(s, q)

B q′

s′

(s, q)

q′ B

s′

Halting tile

s

B H

s′

Let ϕe be some Turing Machine composed of 5-tuples, and let ϕe(x) be the

computation that we wish to represent in our planar tilings.

We first take every symbol in our Turing program, and represent each one

by some s ∈ Σ. We then code each symbol in the tape by a symbol tile. The

‘blank’ representing colour B serves to line up our rows into representations of

configurations ci for i ∈ ω. We now colour all of the symbol tiles with each s ∈ Σ,

and put these into Se.
Next, we need to assign each of the states in e to a state q ∈ Q, and we are then

ready to add the Head State and Computation prototiles to Se. To do this, we take

each s ∈ Σ, and each q ∈ Q, and assign colours for each ‘TM state’ (s, q). The

Head State tiles will accept a state from q from left or right, and will merge this

information into the bottom quadrant of the prototile.

Next, we need to look to all of the 5-tuples (s, q, s′, q′, {L,R}) ∈ e. For each

(s, q) taken from Σ×Q, we look to see which of these form the first two positions

of a 5-tuple. We then create a prototile for Se of the form of this tuple based off the

schema, placing the exit state q′ on the left or right according to the last position

of the 5-tuple.
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E.g. let (1, a, 1, a, L) and (1, b, 0, a, R) be valid 5-tuples from some given ϕe.

We can represent them in Se by means of the computation schema tiles as follows

(respectively left and right):

(1, a)

a B

1

(1, b)

B a

0

Given this we colour all the necessary computation tiles - except for any 5-tuple

that enters the halting state, which we will deal with below) - remove any unnec-

essary head state tiles, and add all these to the symbol tiles in Se.
In order to complete the representation of ϕe, we need to add the halting states.

These are distinctive, 5-tuples, and for any given halting 5-tuple (s, q, s′, HALT, {L,R}),

we represent these as:

(s, q)

B H

s′

In order to fully represent our computation ϕe(x) we perform the following

steps:

(1) We first take the representation of x in symbols from Σ - let this be a

string of symbols s0, s1, . . . , sk, where k = |x|.
(2) We take s0, the initial state of our TM q0, and place the following tile in

the first position at co-ordinate (0, 0):

s0

q0 B

(s0, q0)

(3) We then place the respective symbol tiles for s1, . . . , sk to the right of this

tile on what will become the representation of the first configuration c0 of

ϕe(x). We can also continue tiling this entire bi-infinite row according to

the symbols on the rest of the TM tape.

• We will later use the index on each configuration ci to map to the

lower quadrants of every even row of tiles r2i for checking later.
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(4) We now continue the computation by continuing the tiling - given the

prototiles in use code each part of the computation, each row can be read

off as a successive stage of the computation.

(5) the Halting tiles are designed that they will block the tiling from tiling the

plane to the right any further.

We can check the following facts about our tiling computation:

• Given our TM is not a non-deterministic TM, there will be only one

choice for each computation prototile on each row.

• Each row r2i will correspond to some configuration ci in our computation,

with the tape configuration being readable from the top quadrants of each

tile on the row.

• Given our first row setup, there will not be more than one TM head per-

forming the computation.

Thus, our tiling problem Tile(Se(x)) is also represented by the problem

∃s {r2s ∈ Se(x) has a hole}

which is in turn equivalent to the statement ∃s ϕe,s(x) ↓. As such, the Domino

Problem for finite Wang prototile sets is Σ0
1-complete. �

Corollary 2.3.5 ([5, Cor. 4-1, p.36]). The Domino Problem is undecidable.

Proof. By 2.3.2, it is clear that there exists a class of prototile sets corresponding

to each TM enumerated by some e. By our construction,

¬Tile(Se(x)) ⇐⇒ ϕe(x) ↓

Thus, given the Halting Problem is undecidable, then the question of whether

or not the corresponding Se-tilings tile the plane or not is also undecidable. �

The above re-proof of this classic result due to Berger is intended to illustrate

our proof method in later chapters.

The original proof uses much more machinery, and a large set of prototiles

for a Universal Turing Machine. This simplification makes plain the equivalence

much more immediately, and lays a groundwork for our later results.
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We will use this equivalence in the rest of this volume when we define com-

putable prototile sets and computable tilings in the next chapter.

2.3.1. Universal Turing Machine and TM Tilings. Let Universal Turing

Machines (UTMs) be minimal Turing Machine symbol and state sets, such that

they can effectively emulate a Turing Machine of any size.

Definition 2.3.6. Let a (x, y)-Universal Turing Machine ψ, denoted (x, y)-UTM,

be a Turing Machine that uses precisely x active non-halting states, and y-many

symbols on the tape, such that ψ is Turing Complete.

As such, we can think of them as being a pre-coded minimum requirement for

any Turing Machine to operate. Let SUTM denote a ‘library’ of all possible states

and symbols given by some UTM of a given number of states and symbols.

Due to the succinctness of our construction, it is reasonable to ask “how big

would a Turing prototile library be?”. By colouring for all possible states, symbols,

and state-symbol combinations we can get the following theorem:

Theorem 2.3.7 ([12, Chap. 3]). There exists a set, called the library, of prototiles

S with |S| = 625, such that for every ϕe there exists a set of prototiles Pe ⊂ S
such that Pe is a finite set of prototiles that represents ϕe selected from S.

The proof of this can be found in [12], and involves colouring a full library

of Turing tiles with the states and symbols of a (2, 5) − UTM , known universal

Universal Turing Machine.

Indeed, if we take Smith’s as-yet unpublished proof that a (2, 3)-TM is univer-

sal, [54], then we can get the following theorem:

Theorem 2.3.8 (C. 2019). There is a library set of Turing Machine encoding pro-

totiles of size 105.

The proof comes from generating colours from a set of states |Σ| = 2 and a

set of symbols |Q| = 3, obtaining |Σ×Q| = 6, and then applying these colours to

our Turing Tile schemas, and then counting all possible compositions.
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2.4. Implications of TM Tilings

There are some interesting implications that arise out of the fact that every

Turing Machine has a representation in tiles. We state the following processes and

theorems from [14], assuming that the definitions of Primitive Recursive Arith-

metic (PRA) and Peano Arithmetic (PA) are already known:

Definition 2.4.1 ([14, Process 1]). (1) Given some n ∈ ω, write this number

as the sum of powers of x (base-x notation).

(2) Increase the base of the representation by 1.

(3) Subtract one from this new representation.

(4) Return to 2 and repeat this procedure.

Definition 2.4.2 ([14, Process 2]). Same as 2.4.1, except that on step 1 we write

n as pure base representation, that is we write n in base x, and then continue this

process for all the exponents.

The difference between these two definitions is that process 1 (definition 2.4.1)

will admit for n = 244 a representation of 35 + 1, whilst 2.4.2 will go further to

33+2 + 1. After one iteration of 2.4.1 we get (35 + 1) :→ 45, whereas 2.4.2 will

give us (33+2 + 1) :→ 44+2.

The algorithm in 2.4.2 is due to Goodstein in 1944 in [30]. [14] gives short,

elegant proof of the following famous results originally due to Kirby and Paris

[42]:

Theorem 2.4.3 ([14, Thorem 1]). For any n ∈ ω and base x, 2.4.1 terminates, but

this fact is not provable in PRA.

Theorem 2.4.4 ([14, Thorem 2]). For any n ∈ ω and base x, 2.4.2 terminates, but

this fact is not provable in PA.

Denote by ProvRec(PA) the Provably Recursive functions of PA. Cichon’s

[14] proof of 2.4.4 relies on demonstrating that some machine ϕGood that computes

2.4.2 is such that

ϕGood /∈ ProvRec(PA)



60 2. TILINGS - CONCEPTS AND RESULTS

Given this fact, it is necessarily true that

PA 0 ∀n, x∃s ϕGood,s(n, x) ↓= 0

Let SGood denote the Turing Machine tiling generated by the process outlined

in the proof of theorem 2.3.2. We get the following corollary:

Corollary 2.4.5 (C. 2019). It is necessarily the case that for all n, x there exists

an s such that the row r2s has a hole, and so ∀n, x [¬Tile(SGood(n, x))], however

by [14] it is necessarily true that

PA 0 ∀n, x [¬Tile(SGood(n, x))]

It is perhaps unexpected prima facie that the Domino Problem would have the

means to defy provability of mathematically strong theories such as PA. However,

the long established relationships between tilings and computability cement that

there exists sets of Wang prototiles that have interesting proof theoretic outcomes.



CHAPTER 3

Σ1
1-Complete Tilings

I could be bounded in a nutshell and count myself

king of infinite space.

Hamlet

In this chapter we present our main results that concern infinite sets of Wang

prototiles, and relate these to problems on infinite trees in Baire space. Previous

work in tilings has generally considered finite sets of prototiles - and this is a

natural assumption to make about things that we ostensibly only consider to be of

finitely-many possibilities.

The difference, as we shall see, is that by allowing our tilings as functions

f : Z2 → S to range over infinite prototiles, the original Domino Problem 2.2.1

becomes equivalent, after careful construction, to whether a tree corresponding to

our tiling is well-founded or ill-founded. As we found that finite sets of prototiles

are equivalent to the Halting Problem, so we construct this new equivalence in this

chapter.

We then extend this result to a variation of the Domino Problem - the problem

of ‘weakly tiling’ the plane, as well as an analogous notion of ‘strongly not tiling’

the plane.

3.1. Computable Trees and Computable Tilings

In the section that follows, we will need the following in order to prove theo-

rem 3.4.1. First, we define what we mean by computable tilings. Recall that we

represent by 〈l, u, r, b〉 the Wang prototile

u

l r

b

We define a computable set of Wang prototiles as follows:
61
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Definition 3.1.1. Let X ⊂ ω, and S be a set of Wang prototiles.

• Let XS = {〈cl, cu, cr, cb〉 : 〈cl, cu, cr, cb〉 codes some prototile in S}.
• We say that S is computable if XS is computable.

• We say that an S-tiling of the plane is computable if fS : Z2 → S is

computable.

• We say that S is total if for every point (x, y) ∈ Z2 and a tiling function

f : Z2 → S, f is total on Z2, all edge conditions are met for any S-tiling.

3.2. Π1
1 Properties of Tilings

In this section we will cover previous work on the Π1
1 nature of specified

Domino Problems that inquire about the properties of tile occurrences in planar

tilings.

3.2.1. Harel’s Π1
1 Tilings. David Harel in [37] was interested in translations

between various kinds of computable trees. The core idea is to formulate cor-

respondences between finitely branching and countably infinitely branching trees

and infinitely branching tress, one-to-one, such that the paths along the latter be-

come “ϕ-abiding” paths of the former, for ϕ being some property of infinite paths.

Harel in [37] proposes the following problem relating to Wang prototile sets:

Definition 3.2.1 (Recurring Tile Problem). Given a set of prototiles S, for t ∈ S,

does t occur infinitely often in a tiling of the lattice Z2?

This is a variation on the standard Domino problems that we have considered

so far. Rather than ask “do there exist planar tilings?” we ask “do any planar tilings

have a given property?” The property in this case is a weaker question than “are

all S-tilings periodic or aperiodic?” - something we will come to discuss later in

this thesis.

Harel in [37] goes on to prove the following theorem:

Theorem 3.2.2 ([37], Theorem 6.3). The Recurring Tile Problem is Σ1
1-complete.

We first require the following definition and lemmas from [37]:

Definition 3.2.3. A class A is Σ1
1-hard if there is a computable way of converting

any Σ1
1 formula into some member of A.
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Definition 3.2.4. A tree T is an ω-tree if T ⊆ ω<ω. A k-tree is a tree T ⊆
{0, 1, . . . , k − 1}<ω for some finite k ∈ ω. If such a k-tree T is bounded by some

b ∈ ω then it is a b-tree. We say that a recurrence in a b-tree is the repetition of

some specific i ∈ {0, . . . , k − 1} along an infinite path.

For graph-theoretic trees, this is equivalent to some of the non-leaf nodes being

marked, and a recurrence being infinitely many marked nodes along some infinite

path in the tree.

Lemma 3.2.5 ([37], p.230). The setA of computable well-founded ω-trees is com-

putably isomorphic to the set B of computable marked recurrence-free b-trees.

This lemma then sets the scene for the following theorem:

Theorem 3.2.6 ([37], Lemma 6.1). Let A be the set of computable well-founded

ω-trees, and let C be the set of enumerated notation for all Non-deterministic

Turing Machines (NTMs). Then

A ≡1 C

Recalling our definition of 1-reducibility in definition 1.2.21, and let A ≡1 B

iff A ≤1 B and B ≤1 A. A proof of this is found in [37]. From here we get:

Corollary 3.2.7 ([37], Corollary 6.2). C is Π1
1 complete.

The intuition behind these results is to set the stage that the question:

C1: “for a given NTM U , does U re-enter its starting state q0 infinitely often?”

is a Σ1
1 link to our Recurring Tile Problem above (RTP). The proof of 3.2.2 thus

proceeds as follows:

Proof of 3.2.2. To first see that RTP is Σ1
1, let S and some t ∈ S be given. Con-

struct and NTM M that begins on a blank tape by initially constructing a blank

tiling of Z2. At each step, M iterates over the Z2 lattice in a spiral pattern, consid-

ering each point in turn. Non-deterministically, M tries to tile each position with

some tile from S. M rejects if the edge conditions fail to match, and signals a

successful use of the tile t by re-entering its starting state q0. Otherwise, M will

never re-enter q0. Thus, M has the property C1 iff t occurs infinitely often in the

S-tiling.
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The rest of the proof is showing that RTP is Σ1
1-hard. This is done through the

following three claims. First, define R2 as follows:

R2 - Given S and t ∈ S, can S tile the positive quadrant of Z2 with t occurring

infinitely often and with the borderlines coloured white?

Claim 3.2.8. R2 is Σ1
1-hard.

Proof of 3.2.8. We sketch the following proof of this claim. By theorem 3.2.6 we

have that for an NTM M that computes from the right, the question of whether it

enters its initial q0 infinitely often will be a Σ1
1-hard problem, as it will be equiva-

lent to the well-foundedness of some ω-tree.

We then construct a tile set from a scheme such that for each M , the tile set we

build from M has the property R2 iff M has the property above.

Let M be given, reserving B as the ‘blank’ symbol, and let p, q be states, and

s, t be tape symbols, all in NTM quintuples as defined in chapter 1. Our prototile

set S will consist of tiles generated by the schema defined in the proof of theorem

2.3.2.

Given our translation of M into tiles preserves the recurrent properties of M ,

if M enters its starting state q0 infinitely often, then the tile representing this will

occur infinitely often in the tiling, so S satisfies R2, with the white borders guar-

anteed by substituting the blank colour B for plain white quadrants in our pro-

totiles. �

We modify R2 to the following statement:

R3 - Given S and t ∈ S, can S tile the positive quadrant of Z2 with t occurring

infinitely often?

Claim 3.2.9. R3 is Σ1
1-hard.

Proof of 3.2.9. Note that the border requirement in the previous claim was in-

tended to force the initial starting state tile giving q0 to appear in the right place.

Consider the following machine problem:

C2 - Given NTM M , is there some tape configuration and state such that the

following computation does not halt and re-enters q0 from the right onto a blank

tape cell infinitely often?
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C2 is Σ1
1-hard by theorem 3.2.6 and the observation that a machine can be

run from any starting tape configuration and state. We now adjust our schema

prototiles as follows in order to produce prototiles for our S as follows:

For all symbols s ∈ Σ:

s

→ →
s

s

← ←
s

For symbols s, s′ ∈ Σ and qi, qj ∈ Q:

s
→
qi

←

(s, qi)

s

→ ←
qi

(s, qi)

(s, qi)
→
qj

→

s′

(s, qi)

← ←
qj

s′

Fix t to be

B
→ ←

q0

(B, q0)

The addition of the arrows forces patterns of the form

· · · →→←← · · ·

This is intended to force only one state to appear on each row in our NTM

tiling. Thus t occurring just once forces exactly one state per row, and so (S, t)
satisfies R3 iff M satisfies C2. �

To complete our proof, we need to extend these tilings out from one quadrant

to full planar tilings. First, note that our NTM tapes are bi-infinite two way tapes,

so we can extend our · · · →→←← · · · pattern to the left half of the plane easily.

Extending to the upper half-plane is trickier. Note that there is nothing that

requires M to have infinite computations in the forwards or backwards directions
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by default. We can fix the backwards direction by requiring that M will return

repeatedly into some state qi, requiring that qi 6= q0.

Likewise, we can prevent S from having t appear infinitely often upwards

but nowhere appearing downwards by having M hold a counter variable that is

incremented each time M enters q0. Thus, a planar tiling with infinitely many q0
in the upper half of the grid would indicate a computation that checks the presence

of increasingly smaller positive integers, which is impossible.

Thus, for these modified machines,M satisfies C2 iff (S, t) satisfies RTP. This

completes our sketch of this proof for 3.2.2 from [37].

�

In the following sections, we will deviate from asking if the Recurring Tile

Problem from definition 3.2.1 is Σ1
1, and instead ask if we can find some Π1

1 prop-

erties that are equivalent to the original Domino Problem (2.2.1).

3.3. Domino Problems for Infinite Computable Sets of Prototiles

Next, we will define our class of prototiles sets with total planar tilings as to not

restrict ourselves to finite sets of prototiles. To this end, we define the set TILE

that will range over infinite sets of Wang prototiles.

Definition 3.3.1.

TILE = {e :ϕe is the characteristic function of some infinite

Wang prototile set whose tilings are total in the plane.}

It is natural from our definition of TILE that for any e ∈ TILE, the tiling

that is generated by e must be connected and infinite.

We also define set ILL which we will use later to get our Σ1
1-completeness of

TILE.

Definition 3.3.2.

ILL = {e : ϕe is the characteristic function of an ill-founded tree T ⊆ ω<ω}

Note that by proposition 1.4.23, specifically the converse argument, ILL is

Σ1
1-complete.
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3.3.1. Filter for Computable Trees. In order to adequately satisfy 3.4.1, it

is critical that our computable functions Φe do indeed actually compute trees. As

such, we will need the following lemma to ‘filter out’ the functions that do not

compute trees.

Lemma 3.3.3 (C. 2019). There is a computable g : ω → ω such that for every

characteristic function ϕe of some set T ⊆ ω<ω:

(1) if ϕe is a tree, then ϕg(e) is the same tree.

(2) if ϕe is total but not a tree, then ϕg(e) is not total.

(3) if ϕe is not total then ϕg(e) is not total.

Proof. For any ϕe define g(e) as follows:

ϕg(e)(σ) =



1 if ∀τ ⊆ σ (ϕe(τ) = 1)

0 if ∃τ ⊆ σ s.t.

∀η(η ⊂ τ → ϕe(η) = 1 ∧ τ ⊆ η → ϕe(η) = 0)

↑ otherwise

�

3.4. Π1
1 and Σ1

1 Domino Problems

We will now present our results that show some equivalences between the

domino problem for infinite prototile sets and well-founded trees.

3.4.1. Equivalences to TILE.

Theorem 3.4.1 (C. 2019).
TILE ≡m ILL

Proof. Firstly, we note that it follows from Σ1
1-completeness of ILL that anything

ILL is m-reducible to will be Σ1
1-complete as well, and so anything in ILL will

likewise be found in the set we are reducing to. Thus, we get the converse m-

equivalence essentially ‘for free’ from this fact and a opposite argument to that

found in lemma 1.4.24.

As such, it suffices to prove ILL ≤m TILE. For this, we will follow the shape

of regular m-reducibility proofs, and show that there is a computable function h
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such that

∀e(x ∈ ILL ⇐⇒ h(x) ∈ TILE)

.

We first fix the following colours/symbols:

• Let λ denote the empty string, and let λU , λD be unique colours.

• Fix ML
0 and MR

0 as unique colours.

• Fix unique colours for all Mi for i ∈ ω.

• For j ∈ {1, 2, 3, 4} and i ∈ ω, let each cji be unique colours.

• Let α ∈ ωω be an infinite string, and for all i ∈ ω let σi ∈ ω<ω denote

successive initial segments of α of length i such that σ0 ≺ σ1 ≺ . . . σi ≺
. . . ≺ α.

• Let σ0 = λ by this notation.

• For σ ∈ ω<ω, let σ_n denote σ concatenated with n as defined before for

some n ∈ ω, and let |σ| denote the length of σ.

With these defined, let e ∈ ILL be given. We will construct the following schema

tiles:

We start with the root tile:

λU

ML
0 MR

0

λD

Next, we require column tiles:

σ_i n

c1i+1 c2i+1

σi

σi

c4i+1 c3i+1

σ_i n

We also define mid-row tiles to be:

c1i+1

Mi+1 Mi

c4i+1

c2i+1

Mi Mi+1

c3i+1

We shall additionally define the following diagonal quadrant filling tiles:
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c1i+1

c1i+1 c1i

c1i

c2i+1

c2i c2i+1

c2i

c3i

c3i c3i+1

c3i+1

c4i

c4i+1 c4i

c4i+1

We now construct a ‘library’ S from which we will select the prototiles we

need. To generate S we take all of the colours we fixed at the start of the proof,

and colour the schema tiles as follows:

• We colour the root tile with the tuple 〈ML
0 , λ

U ,MR
0 , λ

D〉 and put this tile

into S.

– NB - our root tile has distinctions for up/down and left/right in order

to prevent trivial Se-tilings using only the root tile.

• For all the cji and Mi colour the mid-row tiles.

– We must be careful to put the ML
0 and MR

0 tiles such that they will

tile from the root tile.

– specifically, we add the tiles 〈M1, c
1
1,M

L
0 , c

4
1〉 and 〈MR

0 , c
2
1,M1, c

3
1〉.

• For all cji colour all of the quadrant tiles, and put these into S .

What now remains is to colour the column tiles and add the required ones to

S. To do this we will need to take our e and ensure that it has been put through our

pre-processing lemma 3.3.3 in order to ensure it is a tree.

With this done, we have an h that we will now use to construct a set of pro-

totiles Se ⊂ S as follows:

• Select all of the mid-row and quadrant filling tiles, along with the root

tile, and add these into Se.

• Next add all of the column tiles for all σn ∈ ω<ω such that ϕe(σn) = 1.

We choose all of the column tiles such that there are two copies of each

σn such that ϕe(σn) = 1; one copy going up from the root tile, with σ0 = λU

and one going down from the root tile with σ0 = λR.

We now want to verify that for each e ∈ ILL we will get an Se such that there

exist Se tilings of the plane, giving h(e) ∈ TILE.

To see this, we first note that the quadrant tiles, root tile, and mid-row tiles form

a near-complete tiling of the plane. Without the column tiles, we can tile the left

and right halves of the plane, meaning that whether or not we have a total function
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Φp : Z2 → Se (defined below) is dependant on whether this central column is fully

tiled. We now show that this is dependent on there being an infinite path through

the tree computed by ϕe.

So show that this is the case, let Te be the tree computed by ϕe - this is guar-

anteed by lemma 3.3.3. Given e ∈ ILL it follows that there is an infinite p ∈ [Te].

Thus, for all n ∈ ω there is some string σn = p � n. Given we added all of these

σn strings into Se as tiles that cover both the up and down directions from the root

tile, ϕh(e) will have contained all of the tiles that represent σ0 ≺ σ1 ≺ σ2 ≺ . . . p

- in fact, there will be precisely two copies. Given p is infinite, these column tiles

will thus complete our tiling, making our Se-tiling total in the plane.

Indeed, taking such a p ∈ [Te] as our oracle, for all x, y ∈ Z, and given the

output of ϕh(e) from above as Se, we define Φp as a fully as a total function

Φp : Z2 → Se

which can be fully defined algorithmically as follows:

• For Φp(0, 0) will return the root tile, 〈ML
0 , λ

U ,MR
0 , λ

D〉
• For Φp(x, y), where x, y 6= 0, we will return the relevant quadrant tile.

• For Φp(x, 0) we will return the correct middle-row tile of the form:

– if x is positive: 〈Mx−1, c
2
x,Mx, c

3
x〉

– if x is negative: 〈Mx−1, c
1
x,Mx, c

4
x〉

• For Φp(0, y) we will use that σ = p � y, and then return the correct

column tile of the form:

– if y is positive: 〈c1y, σ, c2y, σ � y − 1〉
– if y is negative: 〈c4y, σ � y − 1, c3y, σ〉

To show that h(e) ∈ TILE ⇒ e ∈ ILL we first note that if Φp is total, then

ϕe must also be total - as such, if there are no gaps in our Se-tiling following our

construction of Se, then it suffices to show that we can computably recover an

infinite p from an Se-tiling for which we can assume that e ∈ ILL.

Let I be the class of all Se-tilings of the plane. We take one total tiling I ∈ I
- clearly existing by our assumption that h(e) ∈ TILE - and try to recover an

infinite path p ∈ [Te], where Te is again the tree computed by ϕe. Our goal is to

use the tiling to show whether or not e ∈ ILL.
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c4i

low
ercopy

of
σ

c3i

left mid-row M−i λ right mid-row Mi

c1i

uppercopy
of
σ

c3i

FIGURE 1. Overall shape of our tiling construction in the proof of 3.4.1.

The following computable method will be our attempt to extract the path p

from our Se-tiling:

(1) If we choose the root tile, read upwards along the column of tiles, from

which we can recover a path p.

(2) If we choose a mid-row tile, then we follow the descending chain of Mi

colours to the root tile, and then go to 1.

(3) If we choose a quadrant tile, then for our given i ∈ ω from our chosen

tile:

• If c1i or c2i then follow all the tiles down to the mid-row tiles, and go

to 2.

• If c3i or c4i then follow all the tiles up to the mid-row tiles, and go to

2.

If our Se-tiling I is total, then the resulting τ from this process is infinite and

corresponds to some p ∈ [Te]. Thus, we have shown that for h(e) ∈ TILE we can

take any Se-tiling and computably recover a path demonstrating that e ∈ ILL. �
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We show in figure 1 the overall shape of our tiling proposed in the proof of

theorem 3.4.1. The cji ’s occupy the upper left/right and lower left/right quarter

planes of Z2, with the middle rows joining the upper/lower left quarter planes and

upper/lower right quarter planes. Thus, our root tile connects the two planes with

the paths from a tree coded in the upper and lower columns.

Corollary 3.4.2 (C. 2019). TILE is Σ1
1-Complete.

Proof. This follows immediately from the combination of facts that TILE is m-

equivalent to a Σ1
1-complete set, namely ILL, which we obtain by the opposite

argument shown in corollary 1.4.28. As such, everything expressible in ILL is

also expressible in TILE, so every a ∈ Σ1
1 has some representation in TILE. �

We should point out that a key part of this proof is that we have not restricted

ourselves to finite sets of prototiles, which we know from theorem 2.3.2 is Σ0
1

complete. By allowing ourselves to consider infinite sets of prototiles, we have

found a way to get Σ1
1 completeness by a proof that gives an equivalence between

familiar objects, namely the ill-foundedness of trees. In a sense, this result could

be entirely expected.

Figure 2 shows an example of a patch around the root tile for some Se-tiling

generated by the above algorithm. The first two bits of a path σ, with σ � 2 =‘01’.

Note that we can see in this diagram that if |σ| < ω then there will be gaps at some

point going up/down from the root tile, there by such an e will not be total, and so

e /∈ TILE.

Definition 3.4.3. We define the set of well-founded computable trees:

WELL = {e : ϕe is the characteristic function of a well-founded tree T ⊆ ω<ω}

Recall that by proposition 1.4.23 it follows thatWELL is Π1
1-complete, which

is an important fact we will use.

We let ¬TILE be the set of computable characteristic functions of infinite

sets of prototiles that do not have total tilings of plane. It is interesting that, by the

same construction above, we can get that WELL ≡m ¬TILE, despite unequal

complements and totality issues.
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c14
c14 c13
c13

c13
c13 c12
c12

01
c12 c22

0

c23
c22 c23
c22

c24
c23 c24
c23

c13
c13 c12
c12

c12
c12 c11
c11

0
c11 c21
λU

c22
c21 c22
c21

c23
c22 c23
c22

c12
M2 M1

c42

c11
M1 M0

c41

λU

M0 M0

λD

c21
M1 M1

c31

c22
M2 M2
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FIGURE 2. Tile Path Construction

Theorem 3.4.4 (C. 2019).

(¬TILE) ≡m WELL

Proof. We proceed as for the proof of 3.4.1 - it suffices to show WELL ≤m
¬TILE as (¬TILE) ≤m WELLwill follow then by Π1

1-completeness ofWELL

and lemma 1.4.24. Given this, we want computable h such that

e ∈ WELL ⇐⇒ h(e) ∈ ¬TILE

We derive the same Se ⊂ S as we derive in the previous proof. Thus we have

an h such that Φp : Z2 → Se is given for any path p ∈ [Te].

If we have some e ∈ WELL, then by our construction, it must be the case that

ϕh(e) would not give a total tiling of the plane as the well-foundedness of Te would

give that there is no infinite p ∈ [Te]. Thus, there is no set of column tiles in Se that

will tile the central column of our tilings. Thus it follows that h(e) ∈ ¬TILE.
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Now suppose that we have some h(e) ∈ ¬TILE, and let I be the class of all

Se-tilings of the plane. For any given I ∈ I we know that I is not a total tiling of

the plane, but we know that by our construction both halves of the plane about the

central column will be computably tiled. Thus, the gaps in our tiling that make it

non-total must be along this central column for all I ∈ I.

Given this central column is composed of tiles that code paths in [Te], it must

be the case that there is no output of ϕe that is an infinite path p ∈ [Te]. Thus it

follows that if h(e) ∈ ¬TILE then e ∈ WELL. �

As we shall see in the next section, this construction gives rise to some inter-

esting implications when it comes to equivalences of free Domino Problems and

infinite sets of prototiles.

3.4.2. Further Equivalences for WELL and ILL. It was found that the

equivalences in the previous section were not the only ones we could construct

when we consider infinite sets of prototiles. Indeed, when we consider other free

Domino Problems, we can prove further equivalences using a similar framework.

In order to do this analysis, we need the following definitions.

Definition 3.4.5.

WTILE = {e :ϕe is the char. func. of a Wang prototile set that has tilings

that are infinite, connected, but not necessarily total}

WTILE is short for ‘weakly-tile’, and intuitively stands for infinitely con-

nected, but not total tilings. This notion of weakly tiling the plane gives us a

natural notion of strongly not tiling the plane, which we define as follows:

Definition 3.4.6.

SNT = {e :ϕe is the char. func. of a Wang prototile set whose

connected tilings are finite}

Intuitively we can think of WTILE tilings as being everything in TILE but

plus other tilings up to infinite connected ‘snakes’ of tiles that are connected.

Though we are now considering tilings that are no longer necessarily total, the

fact that they are infinite and connected is the key property we wish to analyse.
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On the other hand, SNT denotes tilings that form (potentially infinitely many)

disconnected patches of tiles. We can picture disconnected colonies of mould, for

example, as an intuition for what these tilings can look like.

As such, prototile sets that are in SNT are necessarily disconnected, whereas

tilings in WTILE are necessarily connected, in a graph theoretic sense. We can

use the following construction to analyse tilings of infinite sets of prototiles for

these properties. Again, we will use WELL and ILL from previous proofs as

fundamental tools.

Theorem 3.4.7 (C. 2019).
SNT ≡m WELL

Proof. As before, we denote Wang prototiles through the 4-tuple 〈l, u, r, b〉, and

for σ ∈ ωω, let σ(n) denote the nth symbol of σ.

We prove these equivalences sequentially. Similarly to the previous proof, it

follows from the Π1
1-completeness of WELL that for a Π1

1 set A,

(WELL ≤m A)→ (A ≡m WELL)

As such, it suffices to show that WELL ≤m SNT , as SNT ≤m WELL will

follow from this, giving our m-equivalence.

We want some computable g such that

e ∈ WELL ⇐⇒ g(e) ∈ SNT

which will give us our m-reduction.

In order to carry out this proof, we will need to fix the following colours/symbols:

• Let λ denote the empty string as before, and fix unique colours λU , λD, λL,

and λR.

• For σ ∈ ω<ω let |σ| denote the length of σ,

• Let σ_n denote the concatenation of σ with some n ∈ ω.

• For j ∈ {1, 2, 3, 4} and n ∈ ω fix colours σjn for every σ.

• Let σ ∈ ωω, and for all i ∈ ω let σi ∈ ω<ω denote successive initial

segments of σ of length i such that σ0 ≺ σ1 ≺ . . . ≺ σ.

• Let σ0 = λ by our notation above.
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With these colours and symbols fixed, let e ∈ WELL be given. We construct

the following schema tiles:

We start with the root tile:

λU

λL λR

λD

We will also need middle column and row tiles:

s

s1 s2

σ

s2

σ s

s3

σ

s4 s3

s

s1

s σ

s4

Where s = σ_n for σ ∈ ω<ω and n ∈ ω.

Lastly, we will also require quadrant filling tiles:

s1i+1

s1i+1 s1i

s1i

s2i+1

s2i s2i+1

s2i

s3i

s3i s3i+1

s3i+1

s4i

s4i+1 s4i

s4i+1

Where for j ∈ {1, 2, 3, 4} we have that sji = σ ∈ ω<ω of length i, and sji+1 = σ_n

for some n ∈ ω as before. Each colour sji thereby encodes some string in ω<ω, and

sji+1 is the extension of this by 1 character, and both are initial segments of some

infinite path.

We can now construct a library U of tiles from which we will select the relevant

ones we need. To generate U we will take all of the colours we fixed earlier and

apply them to the prototile schema above as follows:

• We colour the root tile with the colours we fixed to get the prototile

〈λL, λU , λR, λD〉 and put this tile into U .

– As before, our root tile has unique colours for each direction to pre-

vent trivial tilings of the plane from the root tile alone.

• With j ∈ {1, 2, 3, 4}, for each initial segment colour sjn we fixed earlier,

colour all of the possible quadrant tiles and put these into U .

– For each σ, τ ∈ ω<ω, where τ = σ_i is an ancestor for some σ with

i ∈ ω, we fix 8 colours:
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– σ1, σ2, σ3, σ4

– τ 1, τ 2, τ 3, τ 4

– We then proceed to create 4 prototiles:

(1) 〈τ 1, τ 1, σ1, σ1〉
(2) 〈σ2, τ 2, τ 2, σ2〉
(3) 〈σ3, σ3, τ 3, τ 3〉
(4) 〈τ 4, σ4, σ4, τ 4〉

• We also colour for every σn ∈ ω<ω of length n, and every i ∈ ω the

following column tiles:

(1) 〈(σ_n i)1, σ_n i, (σ_n i)2, σn〉
(2) 〈σn, (σ_n i)2, σ_n i, (σ_n i)3〉
(3) 〈(σ_n i)4, σn, (σ_n i)3, σ_n i〉
(4) 〈σ_n i, (σ_n i)1, σn, (σ_n i)4〉

We are now left with a requirement to colour the middle-row and middle-

column prototiles. We again ensure that our e ∈ WELL has been through the

pre-processing lemma 3.3.3, which ensures there is a tree Te computed by ϕe.

Our g will then construct Ue ⊂ U as follows:

(1) Select the root tile, and add this into Ue.

(2) Select all of the middle column and middle row tiles that correspond to

each path p ∈ [Te] and add these also into Ue.

(3) Select from the quadrant filling tiles with the relevant τ such that for any

σ ≺ p ∈ [Te], τ is the immediate ancestor σ_i for i ∈ ω such that

σ ≺ τ ≺ . . . ≺ p. We then add to this the quadrant tiles we need into Ue.

The construction of the prototile set Ue embeds some path σn, where ϕe(σn) =

1, 4 times from the root tile - each copy going one of the 4 directions up, down,

left, or right, forming ‘spokes’ from the root tile that represent a path through Te.

The quadrant tiles are then used to fill in the gaps between these spokes with the

intention that we could get a total Ue-tiling of the plane if e /∈ WELL. As before,

the root tile’s empty strings are equivalent to σ0 = λL = λU = λR = λD.

We first want to verify that

e ∈ WILL→ g(e) ∈ SNT
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This can be done by analysing the behaviour of the tiling function Ψp : Z2 → Ue.

To do this, let e ∈ WELL be given. Then we can construct Ue as above,

and then observe what will happen in a Ue-tiling of the plane. Given the well-

foundedness of ϕe means that there is no infinite p ∈ [Te] such that our Ue-tilings

would have infinitely long spokes. Given this, each Ue-tiling will have a bound on

the width and height of the tiling, and as such our tiling function Ψp will not be

total over Z2.

Given this fact, ϕg(e) will only generate a finite patch tiling that is connected.

Thus we can say that g(e) must only have connected tilings that are patches, and

so we get g(e) ∈ SNT .

For the converse direction it suffices to show that

e /∈ WELL→ g(e) /∈ SNT

Given e /∈ WELL there exists an infinite p ∈ [Te] which we will use as our oracle.

This follows by construction of Ψp : Z2 → Ue as a total TM as follows - let

σn = p � n:

• For Ψp(0, 0) we return the root tile 〈λL, λU , λR, λD〉
• For Ψp(x, 0) we return one of two tiles:

– If x is negative: 〈σn, σ1
n, σn−1, σ

4
n〉

– If x is positive: 〈σn−1, σ2
n, σn, σ

3
n〉

• For Ψp(0, y) we return one of two tiles:

– If y is negative: 〈σ4
n, σn−1, σ

3
n, σn〉

– If y is positive: 〈σ1
n, σn, σ

2
n, σn−1〉

• For Ψp(x, y) such that x, y 6= 0, we return tile for the correct quadrant

such that σn−1 and σn are present for n = |x|+ |y|.

NB - we substitute λL, λU , λR, and λD as required for σ0 to ensure that all of

our tiles align in the plane.

With p ∈ [Te] infinite, given e /∈ WELL, then Ψp is total, which gives us

immediately that there are total planar Ue-tilings. Thus, our connected tilings for

Ue are not patches, and so g(e) /∈ SNT . �

In Figure 3 we find the proposed construction, showing the four copies of some

path σ emanating from the central root tile. The absence of any tiles to complete
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FIGURE 3. Weakly Tiling Path Construction

the edges means that these can never join together to form a complete tiling of the

plane - the only way for there to be a total tiling of the plane is for e /∈ WELL,

from which our result follows.

Corollary 3.4.8 (C. 2019). SNT ≡m WELL implies that SNT is Π1
1-Complete.

Proof. This follows as a consequence that SNT is equivalent to a Π1
1-complete

set, WELL. As such, every b ∈ Π1
1 will have some representation in SNT , and

as such, SNT is also Π1
1-complete. �

It should be noted that the proofs of theorem 3.4.7 could have been shortened

to just the tiles that enumerate the paths that we are interested in - however, we

will use the construction with filler tiles later in this thesis. We shall also utilise

the quadrant filling tiles in this construction in the next theorem.

Following on from theorem 3.4.7, we asked what the relationship to WTILE

was, and found that we can state the following theorem:
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Theorem 3.4.9 (C. 2019).
WTILE ≡m ILL

Proof. We get WTILE ≤m ILL by the Σ1
1-completeness of ILL. It is sufficient

to then show that ILL ≤m WTILE by our construction for the proof of 3.4.7. As

such, we want computable g such that

e ∈ ILL ⇐⇒ g(e) ∈ WTILE

We derive the same Ue ⊂ U as given in the proof of theorem 3.4.7, so we have

a g such that ϕg(e) : Z2 → Ue computable.

By our construction, we have that if e ∈ ILL then ϕg(e) will be a total func-

tion from the Z2 lattice into Ue. The resulting tiling will have 4 infinite spokes

coming from the root tile, and these are infinite connected tilings that satisfy

g(e) ∈ WTILE, even without knowing that ϕg(e) is total.

For the converse direction it would suffice to show that

e /∈ ILL→ g(e) /∈ WTILE

which can be seen through the following argument. Given e /∈ ILL then there

exists no path p ∈ [Te] that is infinite. Thus, when we create Ue by means of g(e),

we must create a tile set that has only connected patch of the plane, violating the

requirements for WTILE, thus g(e) /∈ WTILE. �

3.4.3. Discussion of these Results. These results differ from previous work

by [37] insofar as they do not rely on any knowledge of the properties of recurrent

patterns within a tiling, but rather manage to specifically equate several forms of

Domino Problems on infinite sets of prototiles.

It is worth noting some of the following facts about these results:

(1) At no point to we restrict ourselves to requiring to use every tile in a

generated prototile set.

(2) We do not require any special conditions on how/where our tilings start.

For 1, it is of interest that we do not require every tile t ∈ Se or t ∈ Ue to be

used at all. To this end, we have specifically added extra colours the make specific

alignments and prevent trivial planar tilings - specifically from the root tiles we

defined.
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For 2, these tilings can be essentially tiled without stating specific initial crite-

ria as we have been very careful to include design elements that essentially force

the hand of the tiling function into only admitting certain tilings that code the pre-

cise behaviour we want.

Note also that the classes of tilings from either of these prototile sets effectively

encode the paths down the trees computed by some e, once e has been passed

through our tree-filtering lemma 3.3.3.

It is also worth noting that our m-equivalences are such that they work despite

the mismatch in complements for the sets we concern ourselves with - e.g. the

complements of TILE and WTILE are quite different, and yet they are both m-

equivalent to ILL. This shows us that infinite computable sets of Wang prototiles

are not rich enough to discern the differences that we are mathematically aware of.





CHAPTER 4

Aperiodicity, Tilings, and Logical Complexity

Everything is simpler than you think and at the same

time more complex than you imagine.

Goethe (attrib.)

In this chapter we will explore and present results relating to tiling problems

that ask about properties of total planar tilings - specifically whether they are pe-

riodic or aperiodic. We present first an overview of past results, and then provide

new results inspired by our work in Chapter 3, culminating in a completeness result

between periodicity/aperiodicity in infinite prototile sets and the class of problems

of the form (Π1
1 ∧ Σ1

1).

4.1. Aperiodic Tilings and Σ1
1/Π1

1 Sets

We will now look at aperiodicity in tilings and uncover some interesting facts

about the m-reducibility of previously defined sets WELL and ILL to periodic

and aperiodic tiling problems.

4.1.1. Definitions of Periodic and Aperiodic Tilings. We will use the fol-

lowing definitions in our analysis of aperiodic prototile sets derived from our defi-

nitions in Chapter 3.

Definition 4.1.1 (Periodic Tilings). A tiling T of the plane is a periodic tiling iff

there exists some non-zero vector v such that v defines a shift of T such that

T = vT

83
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A set of prototiles S is periodic iff it admits only periodic tilings of the plane.

For computable e, let PTile be as follows

PTile = {e :ϕe is the characteristic function for a set of prototiles

whose tilings are all periodic total tilings.}

Our requirement that a periodic, set of prototile has only total tilings that meet

these criteria is how we avoid trivial periodic tilings by means of tilings that only

tile some finite portion of the plane.

Analogously we have the following definition for aperiodic tilings:

Definition 4.1.2. A tiling T of the plane is an aperiodic tiling iff for any vector v

necessary that T 6= vT . Similarly, a set of prototiles S is aperiodic iff it admits no

periodic tilings of the plane.

For computable e, let ATile be as follows:

ATile = {e : ϕe is the characteristic function for a set of prototiles

whose tilings are only aperiodic total tilings.}

It is worth recalling that Simpson’s equivalence of tiling problems on Wang

prototiles with 2-dimensional subshifts of finite type in [53] is prophetic with re-

spect to extending our gaze beyond domino problems and into questions of the

existence of shifts of total tilings themselves.

4.1.2. Overview of Aperiodicity. Whilst periodic tilings have been around

since ancient times - of which a plethora of examples mathematical significance

can be found in [32] - aperiodicity is relatively new. We will first discuss the

origins of aperiodic tilings sets, and then set the scene and context in which some

famous aperiodicity results find themselves.

4.1.2.1. Origins of Aperiodic Prototile Sets. As documented in [32, P.520-

600], the study of aperiodicity in tilings did not occur until Robinson proved that

such tilings must necessarily exist in 1968. Conway, Amman, and Penrose all

made headways in the study of aperiodicity in tilings. One such result can be

found in the following definitions and proposition - for which we shall use the

presentation in [26]:
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Definition 4.1.3. Let S be a finite set of prototiles. Then a macro tile is a square

of size n× n filled with matching tiles from S.

Definition 4.1.4. Let set of prototiles S and a set of macro tiles M be given. We

say that S implements M if any S-tiling can be split by horizontal and vertical cuts

into macro-tiles m ∈M .

Definition 4.1.5. A set of prototiles S is a self-similar prototile set if it implements

some macro-tile set M , with M isomorphic to S, which we shall write M ∼= S.

Here, ‘isomorphic’ means that we can find a one to one correspondence be-

tween the sets of M and S prototiles - that is, for some m ∈ M , we can find a

corresponding s ∈ S such that under a chosen mapping of the edge conditions of

m, s has the same edge conditions.

Note, that if n exists and S is self-similar, then S will have total tilings of the

plane, as for any patch tiling, we can inflate the tilings with the substituted macro

tilings to obtain arbitrarily large tilings of the plane by compactness. Though,

we shall lose this compactness argument when we graduate from finite to infinite

prototile sets.

Proposition 4.1.6 ([26, Sec. 4]). A self-similar prototile set S has only aperiodic

tilings.

Proof. Proof from [26]. Suppose for contradiction that a self-similar prototile set

S is periodic. We let p ∈ ω be the period of some S-tiling T . By definition, T can

be split uniquely into macro-tiles from M ∼= S by n × n cuts, for some unique

n ∈ ω. A shift by p should respect this splitting, else we get a different splitting,

so p must be some multiple of n.

‘Zooming out’ from our tiling, by which we mean rescaling our tiling by some

fixed factor, we can proceed in replacing each M macro-tile by its corresponding

S tile, we get a p
n

shift of T . However, by the same reasoning p
n

must also be a

multiple of n, so we can zoom out again, and continue this construction.

We must therefore conclude that p is a multiple of nk for any k, meaning that

p is a zero vector. →← �
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The classic instance of such results can be found in Penrose Tilings, specif-

ically the presentation from [33], and the original article by Penrose in [48] -

wherein Penrose shows how you can acquire aperiodic tilings of the plane from

as few as two prototiles. Indeed, two distinct but related prototile sets are given:

the Penrose Rhombi and Penrose Kite and Dart prototile sets.

Interesting tangents of study that have derived from the study of aperiodic tile

sets has been found in the study of quasicrystals - crystalline lattice structures that

are ordered but not periodic. Penrose tilings have been found to have given some

insight into the icosahedral phases of quasicrystals - see [45].

Their proofs of aperiodicity follow as analogous arguments to the above - by

showing that the Penrose constructions ‘deflate’ and ‘inflate’ to copies of the tiling,

we show that we can tile every arbitrary finite portion of the plane. Thus, by a basic

compactness argument, we find that Penrose prototiles tile the plane. However,

if they do so, then the inflation/deflation processes give the same bi-simulation

argument as given by proposition 4.1.6. As such, any Penrose tiling must then also

be invariant under any linear shift, else they would fail to be self-similar in the way

that there are, and so Penrose tilings are aperiodic.

There is a fantastic treatment of the underlying algebraic theory by de Bruijn

in two papers: [19], followed by [20] - both are dedicated to Pólya. The theory is

quite exceptionally beautiful, but beyond the scope of this thesis to include. The

essential idea that was given in this work is called the ‘cut and project’ method,

where a five-dimensional lattice is projected through a ‘window’ onto the plane in

order to acquire the corner points of a Penrose tiling. The original results can be

found in [19], with an excellent overview of this work and its relationship to actual

physical phenomena can be found in the work in Au-Yang et al. [1].

The existence of precisely 8 corner configurations in any Penrose tiling is also

given in [20], which is again work that is worthy of study but beyond the scope of

this thesis.

In the continuation of their work we outlined above, Shen et al. in [26] pro-

duced some very novel conditions under which aperiodic tilings could be found by

means of fixed points - they show that it is possible to have some predicate S that

is isomorphic to the set of tiles T that is used to implement it. This is analogous to

the challenge of creating Quines in computer science - that is, computer programs
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FIGURE 1. A Penrose Tiling - generated online at https://
misc.0o0o.org/penrose/

whose output upon being run is to print their own source code. Just as Quines are

necessarily existing, so are these Shen fixed-point tilings.

4.1.2.2. Aperiodic Wang Prototiles. As we quoted in the introduction, Simp-

son in [53] draws the equivalence between tiling problems in Wang prototile sets

and 2-dimensional subshifts of finite type. Utilising this as our base intuition, we

present now an overview of aperiodicity in Wang tiles, for which there have been

some very interesting and recent developments.

Building on from this basis, the question was asked about what the smallest

aperiodic Wang prototile sets might be. The survey in [39] gives a fascinating

timeline: Berger originally came up with a set of 20,426 Wang prototiles that

https://misc.0o0o.org/penrose/
https://misc.0o0o.org/penrose/
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FIGURE 2. A set of 13 aperiodic Wang prototiles due to Culik [17].

was aperiodic for his thesis. By [32], a set of 24 aperiodic Wang prototiles was

presented, with improvements by Robinson and Amman along the way.

After a result by Kari [40], it was Culik who set a record in [17] - an aperiodic

set of 13 Wang prototiles, which we have included in figure 2. These were derived

from the states of automata transducers which can compute non-repeating reals.

As such, any prototile set coding this behaviour will likewise be non-repeating,

thereby aperiodic.

The most significant breakthrough in this area has been a recent publication

from Jeandel and Rao in [39] where they proved the following two important re-

sults:

Theorem 4.1.7 ([39, Thm. 5]). There exists an aperiodic set of 11 Wang pro-

totiles.

Theorem 4.1.8 ([39, Thm. 1]). There is no aperiodic Wang prototile set with 10

tiles or fewer.

The proof of both of these theorems are computer assisted, and they used a

series of innovative techniques to check the tilings they generated - from the simple

cases of repeating patterns, through to the complicated cases that were in fact

subsets of the Kari and Culik constructions above. These more advanced cases -
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of which there were 4 - were not computer-checkable, so the proofs and checks

were carried out by hand. It transpired that each of these aperiodic tilings were

coding transducers in some way, and as such were given by similar reasoning to

the aperiodicity results due to Kari and Culik. We have included the 11-prototile

set in figure 3.

It has been postulated, and subsequently answered to a lesser degree than ex-

pected in [56], the question “Does there exist a single-prototile that tiles the plane

aperiodically?” The Taylor-Socolar tile detailed in [56] achieves this, but by the

use of a tile that is defined with gaps between its various pieces - though tilings of

the plane utilising this tile cover every point.

In general, the literature has not, however, given any consideration to infinite

sets of prototiles and their periodicity or aperiodicity. However, as seen in [37], the

aperiodic properties of some finite prototile sets - specifically that if a specified tile

appears only finitely often in a planar tiling, then this must be an aperiodic tiling

- were found to code Π1
1 statements, indicating that perhaps this would be some

interesting candidate for further analysis and study.

4.1.2.3. Quasi-periodicity of tilings. When observing the properties of Pen-

rose tilings, it is immediate that certain patterns recur regularly, even though the

overall tiling is aperiodic. Such tilings are in the class of quasi-periodic tilings,

which we define as follows, from [21]:
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2

2
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2
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1 1

4

3

1 3

2

1

3 0

1

FIGURE 3. A set of 11 aperiodic Wang prototiles due to Jeandel
and Rao [39].
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Definition 4.1.9. For a given prototile set S, S is quasi-periodic iff each S-tiling

of the plane is of the form such that for every pattern u of the tiling there is an

integer k such that u appears in every (k × k) patch of tiles.

Where here a pattern is any valid, finite patch of tiles that occurs in our tiling.

Intuitively, something is quasiperiodic if any finite patch can be found occurring

infinitely often and within a bound in any tiling. As a reference, consider a star-like

pattern in a Penrose tiling.

There is a lot of interesting work found in papers such as Delvenne and Blon-

del [21], and survey papers connecting quasicrystals to quasi-periodic tilings like

Schechtman [51]. The most interesting parts of these are the way in which Pen-

rose tilings mimic and indeed accurately code actual physical surfaces found in

Shi et al. in [52] - where we can note that their 7 diagrams of the “angles and

islands around each vertex” line up with de Bruijn’s derived unique vertex config-

urations for Penrose tilings found in [19] and [20]. We note that, although these 7

configurations are not the 8 identified by de Bruijn, we suspect that given two of

the configurations in the mathematics are identical with edge-conditions removed,

they look to be identical under the microscope in [52].

Such connections are found in other quasicrystals which we alluded to previ-

ously - e.g. Subramanian et al. in [57], Shi et al. [52] and Au-Yang et al. [1] are all

readily accessible physics papers that make extensive use of the developed mathe-

matics behind Penrose tilings as quasicrystals. This is, however, a digression from

the main content of this thesis.

Indeed, the work of Socolar et al. in [56] is a very interesting way of deter-

mining the dynamics of this aperiodic tiling system. We will consider more the

dynamics of tilings in Chapter 6 - but it is worth noting that it is an open problem

as to whether the tile-by-tile tilings of the plane due to the method in [56] does

indeed lead to planar tilings.

4.2. Periodicity and Aperiodicity of ILL

Theorem 4.2.1 (C. 2019).
ILL ≤m ATile
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Proof. To see this fact, we note that the construction of our function h in the proof

of theorem 3.4.1 gives an infinite set of prototiles S that tiles the plane in such a

way that the root tile will only occur once, and every point (x, y) in the plane has

some unique tile in Se that covers it. As such, any ill-founded tree e ∈ ILL coded

into a Se by h in our given construction is necessarily aperiodic. Thus it follows

that for any e ∈ ILL, our given h(e) ∈ ATile.
Conversely, any h(e) ∈ ATile must tile the plane, and as such our e must be in

ILL otherwise it would be a well-founded tree, and so not tile the plane as outlined

in our previous proof. �

It was, however, found that the following additional result could also be ob-

tained:

Theorem 4.2.2 (C. 2019).
ILL ≤m PTile

Proof. We can obtain the result by an adapting the procedure in the proof from

3.4.1 in the following way. We require a computable f such that

∀e(e ∈ ILL ⇐⇒ f(e) ∈ PTile)

We start by defining our colours as the following:

• Let λ denote the empty string, and let λU , λD be unique colours.

• Fix M unique, and Ui, Di unique for all i ∈ ω.

• Let α ∈ ωω, and for all i ∈ ω, let σi ∈ ω<ω denote successive initial

segments of σ of length i such that σ0 ≺ σ1 ≺ . . . ≺ σi . . . ≺ α.

• We fix for each σi an ‘up’ σUi and ‘down’ σDi colour that will be used in

the prototile set construction.

• Let σ0 = λ as before.

With these fixed, let e ∈ ILL be given. We will construct our prototile set

from the following schema tiles:

We start with a modified root tile:

λU

M M

λD
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Next, we require column tiles of the following form:

σU_i n

Ui Ui

σUi

σD

Di Di

σD_i n

We then construct our prototile set Se similarly to the previous proof, by colour-

ing the above schema tiles as follows:

• Colour the root tile with the tuple 〈M,λU ,M, λD〉 and put this into Se.
– NB - we still maintain the difference between the ‘up’ and ‘down’

variants of our empty string symbol in order to prevent trivial root-

tile only tilings of the plane, though they would be undoubtedly pe-

riodic.

• We fix some path p ∈ ϕe such that σn ≺ p for σn ∈ ω<ω, and add a

column tile where it holds that ϕe(p � n) = 1.

– For σ0 we use the appropriate placement of λU and λD as before.

– We also select distinct colours for σUi and σDi in order that we fail to

tile the plane if e /∈ ILL.

We can now verify that for each e ∈ ILL we get f(e) ∈ PTile. The core idea

in this construction is to have infinitely many copies of our central column tilings

from our previous proof, laid out in such as way that for left or right shift of our

tiling, we get the same tiling back, thus f(e) would be periodic.

As before, we can define our tiling function Φp : Z2 → Se as follows:

• For Φp(x, 0) return the root tile 〈M,λU ,M, λD〉.
• For Φp(x, y), with σ = p � y,

– If y > 0 return the tile 〈Uy, σU_n, Uy, σU〉
– If y < 0 return the tile 〈Dy, σ

D, Dy, σ
D_n〉

To see that our tilings are periodic, note that all of our root tiles will form an

infinite middle-row of tiles that can be left or right shifted. We then build up our

tilings, noting that each successive column will have prototiles selected that code

specifically some copy of our path p upwards or downwards. Thus, every Se-tiling

will have infinitely many leftwards or rightwards shifts.
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FIGURE 4. PTile for e ∈ ILL Construction

Thus, if v is a ‘shift right one’ vector, then we have that an Se-tiling Te has the

property

Te = vTe

meaning that f(e) ∈ PTile.
Suppose we have some f(e) ∈ PTile, then it follows that from any root tile

we can extract some infinite path moving upwards that gives us that e ∈ ILL.

We can also locate a root tile from any tile we select in our Se-tilings by moving

appropriately down our UMi’s or up our DMi’s until a root tile is reached.

From this position we can then follow our tiling upwards in order to extract

an infinite path that was given by e. As such, if our tiling is total and total, e ∈
ILL. �

In figure 4 we give an example of the tiling construction for theorem 4.2.2 for

the initial segment σ = 01. This illustrates the way in which we create vertical

dual copies of the given path from our ill-founded tree in such a way that any left
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FIGURE 5. Overall shape of our tiling construction in the proof of 3.4.1.

shift vector l, or right shift vector r and a given Te, we have that

lT = T = rT

Figure 5 shows the overall shape of this tiling construction used in the proof of

theorem 4.2.2. This diagram is complimentary to the previous figure 4.

Note that we were required to preserve the up vs. down directions of our paths,

which we were not required to do before. The reason being is that we wanted to

preserve that the existence of a tiling derived with f(e) implies that our original

e ∈ ILL. We could very well have constructed periodic tilings of e’s that are either

in WELL or ILL. This realisation drove the results in the next section 4.2.1.

4.2.1. Periodicity and Aperiodicity of WELL. Before we carry on with the

proofs in this section we will need the following tool - the ability to take disjoint

unions of prototile sets. Our requirement for this construction can be outlined in

the following definition and subsequent proposition:
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Definition 4.2.3. We say that two prototile sets S1 and S2 have common edge

meets iff for some tile ti ∈ S1, with ti = 〈li, ui, ri, bi〉, there exists a tile si ∈ S2

such that one of the following hold:

• si = 〈ri, ·, ·, ·〉
• si = 〈·, bi, ·, ·〉
• si = 〈·, ·, li, ·〉
• si = 〈·, ·, ·, ui〉

where · denotes a ‘wildcard placeholder’ for any other possible colour.

We say that two prototiles S1 and S2 have no common edge meets if the above

definition does not hold - intuitively, you cannot place any tile from S1 next to any

tile from S2, and vice versa. The following proposition demonstrates an important

consequence of two prototile sets being edge-meet disjoint.

Proposition 4.2.4 (C. 2019). If two periodic (aperiodic) prototile sets S1, S2 share

no common edge meets, then their union S1 ∪ S2 is also periodic (aperiodic).

Proof. Let periodic prototile sets S1, S2 be given. If S1 and S2 share no common

edge meets, then for any selection of a tile t ∈ S1 ∪S2, the resultant tiling must be

formed from only tiles from S1 if t ∈ S1 or S2 otherwise, as the edge-meet criteria

from each prototile set is incompatible. Thus any tiling from such a S1 ∪ S2 is

periodic.

We note that the same argument holds for S1 and S2 being aperiodic. �

To illustrate an example of where this fails - which is essentially the canonical

case that we wish to avoid - we provide the following:

Example 4.2.5. Let it be given that a periodic tiling consisting of squares can

be made aperiodic by the bisection of a single randomly chosen square into two

rectangles. Thus we give the following example to illustrate how this can be done

in Wang prototile sets, and thereby show the importance of the lack of edge-meets

between prototile sets.

Let S1 be given by the prototile
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and let S2 be given by the prototiles

Clearly both S1 and S2 are periodic by themselves. However, S1 ∪ S2 will

have tilings that, say, feature only finitely many of the patch tilings given by the

prototiles in S2, and would therefore be aperiodic. The same could be done by

a single column of tiles from the prototile in S1 being inserted into an S2-tiling,

which would also make it aperiodic.

As such, given the example above, we present a construction that provides a

way of combining prototile sets, yet preserving the periodicity and aperiodicity

conditions we wish to.

Definition 4.2.6 (Disjoint Union of Tile Sets). Let the disjoint union of prototile

sets A and B, denoted A tB, be given as follows:

• For each prototile t ∈ A, let t = 〈a, b, c, d〉 then this gets mapped to

〈a, b, c, d〉 7→ 〈(1, a), (1, b), (1, c), (1, d)〉

• For each prototile s ∈ B, let s = 〈e, f, g, h〉 then we map this similarly:

〈e, f, g, h〉 7→ 〈(2, e), (2, f), (2, g), (2, h)〉

Likewise, for any arbitrary number of prototile sets Si for i ∈ ω the disjoint

union
⊔
i∈ω Si is given by mapping each tj ∈ Si, with tj = 〈lj, uj, rj, bj〉 by

〈lj, uj, rj, bj〉 7→ 〈(i, lj), (i, uj), (i, rj), (i, bj)〉
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The intuition behind this disjoint union is the ability to take two sets of (po-

tentially infinite) prototile sets and ‘apply a tint’ to each prototile in each prototile

set, thereby placing us in the position given in proposition 4.2.4. Thus, we can talk

about the tiling properties of the resultant disjoint union, but each subset will be

incompatible for tiling with any others.

Our intention is to be able to talk about the disjoint union of two prototile sets

A and B in the following way, after proposition 4.2.4:

• If bothA andB are periodic (aperiodic) then the disjoint unionAtB will

be periodic (aperiodic), and so will likewise belong to PTile (ATile).

• If A is periodic and B is aperiodic, or vice versa, then A t B will have

both periodic and aperiodic tilings and so will belong to neither PTile

nor ATile.

In our previous example 4.2.5, were we to take S1 t S2, then we would only

have periodic tilings, given both S1 and S2 are periodic, total planar tilings, and

would fail to share edge-meet conditions in S1 t S2.

Prototile sets that are not in either PTile nor ATile are relatively easy to find.

A straightforward example is the set consisting of the following sixteen prototiles:

0

0 0

0

0

0 0

1

1

0 0

0

1

0 0

1

0

0 1

0

0

0 1

1

1

0 1

0

1

0 1

1

0

1 0

0

0

1 0

1

1

1 0

0

1

1 0

1

0

1 1

0

0

1 1

1

1

1 1

0

1

1 1

1

These prototiles allow us to encode two binary strings - one going vertically,

and another horizontally. Thus, if we place tiles such that they encode periodic
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repeating strings, such as “0101010101 . . .” using these prototiles in our tiling of

the plane, then our tiling will clearly be periodic.

However if we use non-repeating, aperiodic strings - such as using a Martin-

Löf random string vertically and the binary version of Champernowne’s constant1

horizontally - then our tiling will be clearly aperiodic.

Essentially, in this tiling we code two binary strings - σ going left to right and

τ going up and down. If either σ or τ (or both) are periodic, then the tiling is

periodic. Else, the tiling is aperiodic.

We will use our previous constructions, and fix the following construction

names.

Definition 4.2.7. Let the following short hand definitions be given:

• AIT (Aperiodic Ill-founded Tilings) - the construction found in the proof

of theorem 3.4.1.

• PIT (Periodic Ill-founded Tilings) - the construction found in the proof

of theorem 4.2.2.

Recall, our constructions here take any ill-founded tree and generate either

periodic or aperiodic prototile sets as required. We shall use these constructions in

the following sections in conjunction with our notion of disjoint union of prototile

sets (‘prototile set tinting’) in order to obtain the following results.

Theorem 4.2.8 (C. 2019).
WELL ≤m PTile

Proof. As before, we want some recursive function k such that

e ∈ WELL ⇐⇒ k(e) ∈ PTile

We begin by fixing some recursive ill-founded tree R and feeding this through

the PIT construction to obtain a set of prototiles R that has only periodic tilings

of the plane for any infinite path in R.

We next take our e and pass this through the AIT construction to get a prototile

set Ue that tiles the plane only if e /∈ WELL. We then let our desired prototile set

1This is constructed by concatenating every binary number: 0110111001011101111000 . . .
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Se generated by this recursive method be

Se = Rt Ue

If e ∈ WELL then the only tilings of the plane will be given by R, and as

such, k(e) ∈ PTile.
If e /∈ WELL then both R and Ue will give tilings of the plane, meaning that

k(e) /∈ PTile, as it would have both periodic and aperiodic tilings. �

By a nearly identical argument we shall obtain the following result:

Theorem 4.2.9 (C. 2019).
WELL ≤m ATile

Proof. We proceed exactly as above, to construct a recursive l such that

e ∈ WELL ⇐⇒ l(e) ∈ ATile

but with our argument switching the periodic and aperiodic constructions from our

previous proof.

We fix a recursive ill-founded tree R and now feed this through the AIT con-

struction, giving us a new R we shall use. Likewise, we will take our e and pass

this through the PIT construction to get Ve. Our prototile set Se is now given by

Se = Rt Ve

If e ∈ WELL then as above, the only tilings of the plane will come from R,

except that this time they shall be aperiodic, and so l(e) ∈ ATile.
Similarly, if e /∈ WELL then bothR and Ve will give tilings of the plane, and

given Ve gives periodic tilings, we have that l(e) /∈ ATile. �

4.2.1.1. An Alternative Proof. We note that there exist alternative and more

intuitive ways that we can prove both 4.2.8 and 4.2.9 that we shall provide here.

Alternative Proof for 4.2.8, C. 2019. We begin by using the construction in 3.4.7

- the finite diamond-shaped patches of tiles that will not tile the plane iff the tree

whose paths it tiles is well-founded. To this tiling set, we add the following pro-

totile schemes:

Corner tiles:
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σn

σn σn

σn

for each σ ∈ ω<ω, with |σ| = n and σ ∈ ϕe.
Edge Connecting tiles:

σ4
n

σ2
n σ4

n

σ2
n

σ3
n

σ3
n σ1

n

σ1
n

for each σn as above.

The idea of these tiles are, as we shall see, to fill in the gaps between fragments

of our original prototile set construction, and provide total and periodic tilings of

the plane.

We construct our library U as before, and extract Ue as before, adding in the

requisite Corner tiles and Edge Connecting tiles, being careful to remove the quad-

rant filling tiles we had included so far for paths σjn. We then note that we only

require two pairs of quadrant tile types that will meet in the total planar tiling - σ2
n

tiles will meet with σ4
n tiles, and σ3

n tiles will meet with σ1
n tiles.

The resulting Ue then takes each of our previous patch tilings and allows us to

join them together by the addition of the connective tiles. Thus, we are effectively

tiling with our ‘meta-tiles’ formed from the patch tilings we constructed above.

So, we can let this above procedure be a computable function p. If e ∈ WELL

then p(e) will construct a Ue, all of whose tilings are periodic total tilings of the

plane. Thus p(e) ∈ PTile.
Likewise, if e /∈ WELL then only one path will be tiled, and will be infinite

and total. However, as it will only use the root tile once in any tiling, it follows that

there are no linear shifts of our tiling that can be performed. Thus, p(e) /∈ PTile.
As such, we have

e ∈ WELL ⇐⇒ p(e) ∈ PTile
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which gives us our m-reduction

WELL ≤m PTile

�

4.3. Completeness of PTile and ATile

Given we have assessed the relationship ofWELL and ILL to tiling problems

regarding periodicity and aperiodicity, it is natural to next seek some completeness

for this general class of problems. In this spirit, we present the following theorem:

Theorem 4.3.1 (C. 2019). Let X ⊂ ω be in (Π1
1 ∧ Σ1

1), that is

X = {n : χ(n) ∧ ψ(n)}

such that χ ∈ Σ1
1 and ψ ∈ Π1

1, then

X ≤m ATile

Intuitively, this proof arises from the fact that our definitions of PTile and

ATile are both of the form “there exists a tiling” followed by some general state-

ment about all of the tilings given by that prototile set.

In this proof, we will pass each statement through the periodic or aperiodic

construction for the ill-founded (Π1
1) side of the conjunction as desired. We then

take the disjoint union of this with the Σ1
1 side of the construction being passed

through the opposite (a)periodic construction to obtain the result. The formal proof

now follows.

Proof. To show that X ≤m ATile, we want some computable h such that

n ∈ X ⇐⇒ h(n) ∈ ATile

.

First let us define our two recursive functions f : X → ω and g : X → ω as

follows:

• f(n) be such that (ϕf(n) is a tree ∧f(n) ∈ ILL)↔ χ(n)

• g(n) be such that (ϕg(n) is a tree ∧g(n) ∈ WELL)↔ ψ(n)
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Our function f holds only if the Σ1
1 side of our formula given by χ(n) and

constructs index that computes the tree T ⊆ ω<ω given by this formula, resulting

in an index f(n) ∈ ILL.

Likewise the function g holds if the Π1
1 side of our formula given by ψ(n)

holds, and constructs index that computes the tree T ⊆ ω<ω given by this formula,

resulting in an index g(n) ∈ WELL.

Now let the U, V be defined as follows:

• U is the set of prototiles obtained by passing ϕf(n) through the AIT con-

struction to create an aperiodic prototile set for ϕf(n) being ill-founded.

• V is the set of prototiles obtained by passing ϕg(n) through the PIT
construction to create a periodic prototile set for ϕg(n) not being well-

founded.

Both of these constructions are given by the previous results, and so are known

computable reductions. h(n) be then the function that produces the prototile set

that is the disjoint union Sn = U t V .

These two infinite sets of prototiles have both been passed through construc-

tions designed for total planer tilings intended for ill-founded trees. Thus, the

prototile set corresponding to our well-founded prototiles, V , will only tile the

plane if ¬ψ(n) holds. Given this, we now utilise our disjoint union in obtaining Sn
in order to restrict the behaviour of our combined prototile sets to obtain the result

we want.

We thus have the following 4 cases:

(1) χ(n) ∧ ψ(n) - In this case, everything is as we would like it to be, as the

only planar Sn-tilings will be given by U , which are aperiodic.

(2) ¬χ(n) ∧ ψ(n) - In this case we will get no total Sn-tilings of the plane.

(3) χ(n) ∧ ¬ψ(n) - In this case we will get both periodic and aperiodic Sn-

tilings of the plane.

(4) ¬χ(n) ∧ ¬ψ(n) - In this case we will only get periodic Sn-tilings of the

plane.

Given by our construction of h we only get aperiodic tilings of the plane for n

precisely when (χ(n) ∧ ψ(n)), it follows that n ∈ X → h(n) ∈ ATile.
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For the converse argument, take that h(n) ∈ ATile is given. For the class of

Se-tilings T given by h(e) we take some T ∈ T and ask if T is total. If T is a total

tiling, then we can extract (as described in 3.4.1) an infinite path corresponding to

the “ϕf(n) ↔ χ(n)” part of the definition of n ∈ X .

If T is not a total tiling, then we know that we have infinitely many copies of

the path given by ϕg(n) corresponding to the “ϕg(n) ↔ ψ(n)” part of the definition

of n ∈ X .

Thus, by examining the class of Sn-tilings given by h(n) ∈ ATile we can get

that n ∈ X , for any X of the desired form in the theorem. �

Theorem 4.3.2 (C. 2019). For X = {n : χ(n) ∧ ψ(n)}, with χ(n) ∈ Σ1
1 and

ψ(n) ∈ Π1
1, then

X ≤m PTile

Proof. Our proof proceeds precisely as for 4.3.1 in order to give a recursive k such

that

n ∈ X ⇐⇒ k(n) ∈ PTile

except that we differ in constructing U and V as follows:

• U is the set of prototiles obtained by passing ϕf(n) through the PIT con-

struction to create a periodic prototile set for ϕf(n) being ill-founded.

• V is the set of prototiles obtained by passing ϕg(n) through the AIT con-

struction to create an aperiodic prototile set for ϕg(n) not being well-

founded.

Wherein we have essentially swapped the roles of PIT and AIT in order to achieve

our result. We can then re-analyse the outcomes as follows:

(1) χ(n) ∧ ψ(n) - In this case, we only get periodic Sn-tilings of the plane.

(2) ¬χ(n) ∧ ψ(n) - In this case we will get no total Sn-tilings of the plane.

(3) χ(n) ∧ ¬ψ(n) - In this case we will get both periodic and aperiodic Sn-

tilings of the plane.

(4) ¬χ(n) ∧ ¬ψ(n) - In this case we will only get aperiodic Sn-tilings of the

plane.
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Thus, our k has precisely the same properties as our previous h, with the pe-

riodicity properties reversed. As such, the forwards and reverse directions of our

implication are precisely the same, giving our result. �

Once we define our constructions in these results, the entire proofs are essen-

tially captured in the four cases. The fact that both ATile and PTile have inter-

changeably periodic and aperiodic Σ1
1 and Π1

1 parts was unexpected, but actually

quite natural.

The background intuition for these results was the observation that the exis-

tence of a tiling, and the fact that all tilings either have exclusively or no peri-

odic/aperiodic parts. If we allow ourselves to use quantification of sets in the

analytic hierarchy as above, we obtain the following corollary:

Corollary 4.3.3 (C. 2019). Aperiodicity and periodicity for infinite prototile sets

is (Σ1
1 ∧ Π1

1)-complete

Proof. This follows from our previous theorem 4.3.1 and theorem 4.3.2 working

in tandem. Any problem given in the form

ζ(n)↔ (χ(n) ∧ ψ(n))

for χ(n) ∈ Σ1
1 and ψ(n) ∈ Π1

1 has a representation as a tiling problem on infi-

nite prototile sets by our constructions above, thereby having both periodic and

aperiodic total tilings being given. �

In fact, we can choose which of aperiodic or periodic tilings we would like for

our infinite prototile sets.

As an aside, the author did attempt to find other problems that share this same

or similar syntactical form or structure. The closest that we could find was a defi-

nition and corollary in Bagaria et al. [3, def. on p.6, Cor. 6.8] wherein they show

that Vopěnka’s Principle for Σn+2 classes is equivalent for (Σn+1 ∧Πn+1) classes,

which naively seems to be a weaker form. However, these only work for n ≥ 1,

so are not an exact match, and indeed were superseded by the work by Bagaria

et al. in [2, Cor 4.13], where the result was weakened further to Πn+1.2 Aside

2We would like to thank Dr. Andrew Brooke-Taylor for these references.
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from these references, it does indeed seem to be the case that very little in logic

has (Σ1
1 ∧ Π1

1) as the natural syntactic shape.

4.4. Aperiodicity and Periodicity for Finite Prototile Sets

Definition 4.4.1. Let the set of periodic finite prototile sets be

PTileFIN = {e : e tiles the plane from a finite set of prototiles

all of whose tilings are periodic}

Definition 4.4.2. Let the set of aperiodic finite prototile sets be

ATileFIN = {e : e tiles the plane from a finite set of prototiles

all of whose tilings are aperiodic}

Definition 4.4.3. Let a megatile M be a finite patch of tiles such that M can be

considered to be a tile at scale.

Note, we differentiate this from a macrotile we used earlier, as we are not

interested specifically in simulating the original prototile set in our megatiles. We

wish to be able to treat blocks of tiles as individual units.

Proposition 4.4.4 (C. 2019). [Rectangularisation of Megatiles] For any non-rectangular

megatile M made up of Wang tiles in a periodic tiling T , there is a rectangular

megatile M∗ that tiles T precisely the same as M .

Proof. Let v be the periodicity vector for T such that [vT = T ] for every non-zero

v-shift. Clearly we can rewrite v in the normal Cartesian orthogonal left-right, up-

down basis - let xy = v.

We first select a tile t ∈ T , our tiling, and begin with the rectangle formed

by one application on t. This rectangle will have sides of length |x| and |y|, and

will capture the translation of this one tile t. For each ti ∈ M , a megatile in our

periodic tiling, we can get a sequence r1, r2, . . . of rectangles tracking the motion

of each rectangle.

We take either a column (row) of each ri’s such that they overlap at the bound-

ary. We keep appending ri’s under (to the right of) each other until we get the

bottom row (right-most column) matches the top row (left-most column). Once
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we have this, which is guaranteed by the periodicity of our tilings, we can trim the

duplicated column (row) and we obtain a single rectangle that has captured all of

the translations of each ti ∈M under v.

�

The resultant rectangle in the proof has at least two opposite edges that are

some permutation of an integer multiple of the ti ∈ M . Thus, our theorem is

guaranteed by the finiteness of our prototile set.

We will now explore the logical complexity of whether finite prototile sets are

periodic or aperiodic. Our first result in this endeavour is somewhat unexpected:

Theorem 4.4.5 (C. 2019).
ATileFIN ∈ Π0

1

Proof. Let S be a finite prototile set, and define the following set:

EPTileFIN = {e : there exist periodic tilings given by ϕe}

Given it is equivalent to the halting state of a TM that finds the period of some

S-tiling T , specifically

ψ(S) = ∃s(s is the period of an S-tiling T )

it naturally follows that

EPTileFIN ∈ Σ0
1

Note that this computable search across all possible tilings can proceed itera-

tively along a sequence of S-tilings, which are enumerable given S is finite, given

by

T0, T1, T2, . . .

We only require that our search stops once for S to be in EPTileFIN .

We now note that ¬ψ(S) is equivalent to saying that our periodicity finding

machine will not halt for any S-tiling, noting that this does not require set compre-

hension. Thus,

¬ψ(S) ∈ Π0
1
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and given this is equivalent to saying every S-tiling is aperiodic, the theorem fol-

lows by:

ATileFIN = EPTileFIN

�

Theorem 4.4.6 (C. 2019).
PTileFIN ∈ Π1

1

Proof. For a any prototile S and any S-tiling TS we have

S ∈ PTileFIN ⇐⇒ (∀TS)(∃v)[TS = vTS]

We also notice that for any finite prototile set S, the maximal shift is given by every

tile of S in a line, thus a periodicity vector v has a maximal length determined by

|S|. Given that v is bounded by the size of S, we get that

PTileFIN ∈ Π1
1

�

However, given our previous result in theorem 4.4.5, we may consider that

there is some arithmetical representation of PTileFIN . But after some searching,

we pose the following conjecture:

Conjecture 4.4.7 (C. 2019). PTileFIN has no arithmetical representation.

The intuition for this follows from the fact that we are required to quantify over

every possible S-tiling for some prototile set S, and thereby guarantee that there is

no such S-tiling where there is no periodicity vector. As such, this would appear

to consistently give PTileFIN ∈ Π1
1 as given above. A concrete proof that there is

no arithmetical representation of PTileFIN has not been found, so the possibility

remains open.





CHAPTER 5

Weihrauch Reducibility and Tiling Problems

An algorithm must be seen to be believed, and the

best way to learn what an algorithm is all about is to

try it.

Donald Knuth,

The Art of Computer Programming, Vol. 1, 1999

In this chapter we will show how our constructions in the previous section can

be utilised as tiling principles on represented spaces of Wang prototile sets and

tilings. We present several Weihrauch reductions between these tiling problems

for Wang tiles and closed choice problems.

5.1. Weihrauch Reducibility

For this section, we use [10] and [29] as our primary source material. We give

a brief background overview of the theory surrounding Weihrauch reductions and

their recent uses, primarily from the viewpoint of computable analysis.

5.1.1. Core Concepts in Weihrauch Reducibility. Computable analysis lends

notions of computability and incomputability to computable separable metric spaces

by means of notions of effective approximation. The aim is to study multi-valued

functions between these spaces and to deal with their non-unique solutions. In-

deed, in papers such as [62], techniques from computability and reverse mathe-

matics were combined in order to tackle a problem in computable analysis.

As Weihrauch points out in [61], a core technique in computable analysis is

to take notions of topological continuity and replace them with notions of com-

putability - indeed, the explicit definition of ‘topologically reducible’ is precisely

the notion of (computably) reducible in that paper, with ‘computable’ substituted

for ‘continuous’.
109
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As such we give the following definition of reducibility for multi-valued func-

tions (from [29]). Let f :⊆ X ⇒ Y denote that f is a multi-valued function with

dom(f) ⊆ X ∧ ran(f) ⊆ Y . The idea is to take Π2 theorems of the form

(∀x ∈ X) (∃y ∈ Y ) [(x, y) ∈ A]

as operations f :⊆ X ⇒ Y such that

x 7→ {y ∈ Y : (x, y) ∈ A}

Note that the ‘:⊆’ here indicates the (potential) partiality of our functions.

Core Idea: As given by [10], the core idea for Weihrauch reducibility in re-

lation to the choice and boundedness conditions we will study here is that, rather

than defining our problems directly, we ask instead what can be understood by

means of negative information. That is - if we obtain a set X by negative infor-

mation, say by enumeration of the complement of X , then how difficult is it to

actually find a member of X? Can we define χX this way?

We shall put these ideas more formally:

Definition 5.1.1. A represented space X is a pair (X, dX) where X is a set and

dX :⊆ ωω → X is a partial surjective function.

An intuitive definition is given by Weihrauch in [61]:

Definition 5.1.2 (Notations and Representations). Using the notation for surjec-

tive partial functions above, and with Σ denoting a finite alphabet, with Σ<ω and

Σω denoting finite and infinite strings from Σ respectively.

(1) A naming system of a set, M , is a surjective function ν :⊆ Σ<ω → M ,

essentially naming every element of M with finite strings.

(2) A representation is a surjective function δ :⊆ Σω →M , essentially nam-

ing by infinite sequences.

Weihrauch then gives the following definition of reducibility:

Definition 5.1.3. For Y, Y ′ ∈ {Σ<ω,Σω}, and for functions γ :⊆ Y → M and

γ′ :⊆ Y ′ →M , we say that γ ≤ γ′ if and only if

∀y ∈ dom(γ) [γ(y) = γ′(f(y))]
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for some computable function f :⊆ Y → Y ′.

Likewise, (γ ≡ γ′) if and only if (γ ≤ γ′ ∧ γ′ ≤ γ). However, Brattka et al. in

[10] give some more general, and arguably applicable, definitions. These notions

of Weihrauch reducibility will require the following notion of a realizer:

Definition 5.1.4. For represented spaces X and Y,

• For some function f :⊆ X ⇒ Y, a function F :⊆ ωω → ωω is a realizer

of f , written F ` f , if and only if

∀p ∈ d−1X (dom(f)) [dY (F (p)) ∈ f(dX(p))]

• f is computable if and only if it has a computable realizer.

• f is continuous if and only if it has a continuous realizer.

This is more easily summarised in the following commutative diagram:

ωω ωω

X Y

dX

F

dY

f

Definition 5.1.5 (Weihrauch Reducibility). Let f :⊆ X ⇒ Y and g :⊆ U ⇒ V.

We say that f is Weihrauch reducible to g, written

f ≤W g

if there exist computable H,K :⊆ ωω → ωω, such that

F = K〈idωω , GH〉

is a realizer of f for every realizer G of g.

We say that f is strongly Weihrauch reducible to g, written f ≤sW g, if

F = K(GH)

is a realizer for f .

Here 〈·〉 is the pairing function, as before, and idωω is the identity function

on Baire space. We can also say that the single-valued function F is Weihrauch

reducible to G, also written F ≤W G if there exist single-valued computable
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functions H and K such that

F = K〈id,GH〉

In [10], these functions H and K are described as ‘functions of adaption’ - H

being an ‘input adaption’ and K being an ‘output adaption’. The key idea here

is to note that H is the input adjustment into problems that G understands, and

likewise, K is the transformation of the output of G into an equivalent output of

F . Thus, ifK does not need to know what the original input toH was, represented

by id in Weihrauch reducibility, then the reducibility is thus defined to be stronger

with respect to not needing to be ‘reminded’ about the input that was originally

fed into H .

Given these definitions, the following commutative diagram summarises the

Weihrauch reducibility of some f ≤W g:

ωω U

ωω〉 V

ωωX

ωωY 〈id,

dX

Ff

dY

dU

G g

dV

H

K

id

Note that the input it the arrows for H and id must be identical in order for the

reducibility to work. Recall that for Weihrauch reducibility to be strong, we can

do without this id arrow and requirement, giving us the following commutative

diagram which illustrates strong Weihrauch reducibility for some f ≤sW g:

ωω U

ωω V

ωωX

ωωY

dX

Ff

dY

dU

G g

dV

H

K

We state the following notion of realizer reducibility from [10]:
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Definition 5.1.6 (realizer reducibility). For F :⊆ ωω → ωω, a realizer for f :⊆
X ⇒ Y (F ` f in our notation). Let f, g be multi-valued functions on represented

spaces. Then f is Weihrauch reducible to g, f ≤W g as before, if and only if

{F : F ` f} ≤W {G : G ` g}

This single-valued function F can be parallelized, written F̂ , by letting

F̂ (x0, x1, x2, . . .) := F (x0)× F (x1)× F (x2)× . . .

for some F : ωω → ωω. It is shown in [10] that such parallelization is a closure

operator for Weihrauch reducibility, as well as the fact that a resulting parallelized

partial order forms a lattice into which the Turing and Medvedev degrees can be

embedded.

Indeed, we can obtain the following proposition from [10]:

Proposition 5.1.7 ([10, Prop. 2.5]). Let f and g be multi-valued functions on

represented spaces. Then

• f ≤W f̂ .

• If f ≤W g then f̂ ≤W ĝ.

• f̂ ≡W
̂̂
f .

Much is also made of the study of various kinds of choice in this setting, which

is the subject of the next section.

5.2. Weihrauch Reducibility and Choice Principles

We now look to the Weihrauch reducibility of specific choice principles, ob-

jects that have much relevance in computable analysis. Let C denote the choice

principle given by

“For any set A ⊆ N has a characteristic function χA : N→ {0, 1}.”

A choice principle or choice function is given by this definition, and a sig-

nificant amount of study is given as to the Weihrauch degrees of these functions,

e.g. in [7] and [10]. We shall state some of these results presently.
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Definition 5.2.1 (Compact Choice). Let X be a computable metric space, and

K(X) be the set of compact subsets of X . The multivalued operation

CCK(X) :⊆ K(X) ⇒ X,A 7→ A

with

dom(CCK(X)) := {A ⊆ X : A 6= ∅ compact}

is called the compact choice of X .

Note, in this definition we have the inclusion of the notation “A 7→ A”, which

might give the incorrect impression that we are simply mapping members in A to

members in A, but our aim is in fact rather to convey that we are mapping a given

closed set A to the set of its members in a multi-valued way. Our K(X) denotes

the set of compact subsets of X , which are represented by enumerations of finite

rational open covers which are not necessarily minimal.

Definition 5.2.2 (Omniscience Principles). We introduce the following principles:

• Limited Principle of Omniscience (LPO) - For any sequence σ ∈ ωω there

exists n ∈ ω such that σ(n) = 0 or σ(n) 6= 0 for all n ∈ ω.

• Lesser Limited Principle of Omniscience (LLPO) - For any sequence σ ∈
ωω such that σ(k) 6= 0 for at most one k ∈ ω, it follows that

– σ(2n) = 0 for all n ∈ ω, or

– σ(2n+ 1) = 0 for all n ∈ ω.

These notions may seem unusual, but their motivation is firmly rooted in con-

structive mathematics - LPO and LLPO translate the usually ‘forbidden’ principle

of excluded middle and de Morgan’s laws, respectively. Though intuitionistic rea-

soning rejects such ideas, their representations as LPO/LLPO have realizers that

correspond to discontinuous operations of varying degree of discontinuity - see

[10] for details on how these and other principles, such as Markov’s Principle,

become somewhat unproblematic owing to their continuous, and thereby com-

putable, realizers in this setting.

To illustrate how such a notion of choice is handled in the literature, we state

the following theorem, for which the proof can be found in [10]:
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Theorem 5.2.3 ([10, Thm. 2.10]). Let X be a computable metric space. Then

CCK(X) ≤W L̂LPO. If there is a computable embedding ι : 2ω ↪→ X , then

CCK(X) ≡W L̂LPO.

We omit the proof of this, but it can be found in [10]. The following definitions

are taken from [9].

Definition 5.2.4 (Weakly Computable). A function F :⊆ X ⇒ Y on represented

spaces X and Y is called weakly computable if F ≤W L̂LPO. Similarly, we also

call functions like F weakly continuous given F ≤W L̂LPO holds with respect to

some oracle.

Based off the previous theorem 5.2.3 and definition we can get the following

corollary:

Corollary 5.2.5 ([10, Cor. 2.11]). Let X be a represented space and let Y be a

computable metric space. Any weakly computable single-valued operation F :⊆
X → Y is computable.

For our tiling problem equivalences, we will need the following definition,

taken from [8] and [7]:

Definition 5.2.6 (Closed Choice). Let (X, dX) be a represented space. Then the

closed choice operation of this space is defined by

CX :⊆ A(X) ⇒ X, A 7→ A

where A(X) are the closed subsets of X, and our choice function takes some non-

empty closed subset A ∈ A(X) and outputs some point x ∈ A. We therefore have

dom(CX) := {A ∈ A(X) : A 6= ∅}

We will be specifically interested in closed choice for Baire space - as this is

where the trees we have been considering so far are found. [10] demonstrates how

this is, in a sense, the ‘hardest’ kind of choice, by the following definitions and

theorem below.

Definition 5.2.7. We define the following choice maps as follows:
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(1) Discrete choice -

Cω :⊆ A(ω) ⇒ ω, dom(Cω) = {A ⊂ ω : A 6= ∅}

(2) Interval choice -

CI :⊆ A([0, 1]) ⇒ [0, 1], dom(CI) = {[a, b] : 0 ≤ a ≤ b ≤ 1}

(3) Proper interval choice -

C−I :⊆ A([0, 1]) ⇒ [0, 1], dom(C−I ) = {[a, b] : 0 ≤ a ≤ b ≤ 1}

(4) Compact choice -

CK :⊆ A([0, 1]) ⇒ [0, 1], dom(CK) = {K ⊆ [0, 1] : K 6= ∅, K compact}

However, Brattka and Gherardi also present choice principles as boundedness

principles instead of principles of choice over intervals. The intuition here stems

from a similar question asked in [7]:

“Given information about what does not constitute a solution, find a solution.”

– Brattka, Brecht, Pauly in [7]

So, by seeing choice principles as boundedness principles, we shift our view to

the defined negative information about the represented set A, which is then given

explicitly in the form of a finite number of bounds. It turns out that this is very

useful in reducing problems in analysis - they often turn out to have a ‘boundedness

representation’.

We find that the boundedness principle analogues of the above choice princi-

ples, given in [10], are as follows:

(1) B : R< → R, x 7→ x

(2) BI : R< × R> ⇒ R, (x, y) 7→ [x, y], dom(BI) = {(x, y) : x ≤ y}
(3) B−I : R< × R> ⇒ R, (x, y) 7→ [x, y], dom(B−I ) = {(x, y) : x < y}
(4) B+

I : R< × R> ⇒ R, (x, y) 7→ [x, y], dom(B+
I ) = {(x, y) : x ≤ y}

Where R,R<,R> are equipped with ordinary Cauchy representations ρ of the

real numbers, the left ρ<, and right ρ> respectively.

These various notions of choice illustrate the degree of detail we can com-

mand in this theory. Brattka et al. in [10] illustrate the relationships between these
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choice operators in the following theorem. They denote these choice chains, in-

dicating the relationships between choice principles, boundedness principles, and

our omniscience principles.

Theorem 5.2.8 ([10, Thm. 3.10]). [Choice Chains] It is obtained in [10] that:

(1) LLPO ≤W C−I ≤W CI ≤W CK ≡W L̂LPO ≤W CA

(2) LPO ≤W Cω ≤W B+
I ≤W CA ≤W C ≡W L̂PO

(3) LLPO ≤W LPO, C−I ≤W Cω, CI ≤W B+
I

As a finale, Brattka proves the following theorem:

Proposition 5.2.9 ([10, Prop. 3.7]).

B ≡W C ≡W L̂PO

This is somewhat surprising when read out loud - all of our boundedness prin-

ciples are Weihrauch equivalent to all of our (closed) choice principles, both of

which are equivalent to the Limited Principle of Omniscience. This result and the

background theory and definitions in Weihrauch reducibility provide the backdrop

for our result we present in the next subsection.

5.3. Weihrauch Reducibility and Tiling Problems

We will look specifically at Closed Choice on Baire Space, denoted Cωω , de-

fined above.

We require a proper intuition for Cωω - namely that any realizer for this princi-

ple in Baire space takes a tree T ⊂ ω<ω as input, and returns a path through it, in

keeping with our definitions above.

Definition 5.3.1. Let the following notations be given:

• LetW denote the set of all possible Wang tiles, represented as 4-tuples.

• Let TW denote the class of all possible tilings of all possible Wang tiles.

In the spirit of our previous definitions, we define the following class.

Definition 5.3.2. Let ChooseT iling or CT be a multivalued operator such that

CT :⊆ P(W) ⇒ TW, S 7→ TS



118 5. WEIHRAUCH REDUCIBILITY AND TILING PROBLEMS

where S is a set of prototiles, and TS is an S-tiling. ChooseT iling as an opera-

tor/principle takes some subset of all possible Wang prototiles S ⊂W and returns

a total planar S-tiling TS , as a tiling function f : Z2 → S.

Note that we do not use definition of TILE from 3.3.1 in this definition, as we

defined TILE to be a set of indices for Turing Machines. However, our realizer

for CT will not be computable.

Intuitively this operator takes some set of prototiles and returns a total planar

tiling. Thus, a realizer for CT is a function

F :⊆ ωω → ωω

which takes some set of prototiles S, and outputs some infinite sequence corre-

sponding to a total planar S-tiling given by the tiling function f : Z2 → S

We present the following result:

Theorem 5.3.3 (C. 2019).
CT ≡sW Cωω

Proof. As per the definition of strong Weihrauch reducibility, we require to show

the following reductions hold in order to get thatCT andCωω are strong Weihrauch

equivalent:

(CT ≤sW Cωω)∧ (Cωω ≤sW CT )

Denote realizers C ` Cωω and T ` CT , we thus require computable H,K :⊆
ωω → ωω such that

C = K(TH)

as well as computable I, J :⊆ ωω → ωω such that

T = J(CI)

which we can represent with the following commutative diagram:
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ωω W

ωω TW

ωωA(X)

ωωX

dA(X)

CCωω

dX

dW

T CT

dTW

H

K

I

J

We will utilise our constructions in the proof of 3.4.1, and notice that in that

construction of tilings from trees, all the parts of our construction used in the proof

are computable. This important detail will inform much of the proof of this theo-

rem.

Note that underlying actions of C and T :

• C takes some closed subset of Baire space, a tree, and finds some infinite

path through it, and returns this as its output.

• T takes some finite or infinite set of prototiles S and finds some infinite

sequence of tiles that corresponds to a total tiling of the plane using tiles

from S respecting all edge meet conditions.

We will first show that there are computable I, J :⊆ ωω → ωω such that

T = J(CI) in order to prove CT ≤sW Cωω . We first notice that T is a function

that takes a set of prototiles and produces and infinite sequence corresponding to

some infinite planer tiling. Thus, I will encode information about the possible S-

tilings in a way that we can ask C to process this and give us an answer that J will

translate back into some tiling.

Given some prototile set S as input to T , our computable I will construct the

tree of possible tilings as we saw constructed in the proof of Wang’s Extension

Theorem, theorem 2.2.5 in this thesis. Specifically, I will code uniquely each tile

in S, and then proceed to code each successively larger sequence of possible tiles

in square rings of tiles, joining them into the tiling tree TS based on the required

edge-match criteria. With this done, we have a full tree of valid tilings given by

successively larger rings that properly extend the previous finite square patch of
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tiles. This encoded tiling tree TS is a subset of Baire space, and so it is this tiling

tree that we supply to C.

Given trees are closed subsets of Baire space, this is a problem that C will

be able to provide an answer for. Thus for our tiling tree TS , C(TS) = p, with

p some infinite path through TS . This path will represent a planar tiling, by the

construction of TS by I .

We can take the infinite path p through our tiling tree generated by I and then

decode this as a tiling by assigning all of the tiles for initial segment of p by decod-

ing the specific arrangement of tiles coded by I into the tiling tree for our S. Given

we computably generated TS , we can match up each successive initial segment of

p by decoding each of the encoded tiles in p without knowledge of the input to I ,

with the tiles that should be placed around the previous patch of tiles being coded

in each successive segment of p. This is our computable function J that will com-

plete our reduction, and is essentially a computable inverse of the operation of I ,

taking a coded sequence corresponding to edge-matched finite patches of S-tilings

and recovering a planar S-tiling from this.

With this now done, we have successfully shown that T can be computed by

means of translation of tree sets into input for C by I , and the output of C can then

be reinterpreted by J , such that we have satisfied the requirement and shown that

T = J(CI) is a realizer for CT .

Next we prove Cωω ≤sW CT , by finding computable H,K :⊆ ωω → ωω such

that C = K(TH). By our intuition above we require a computable function H

to convert some tree into sets of prototiles, which will then allow our realizer T

to construct a total planar tiling, and return this to us as output. We then require

a computable K to take this tiling and recover from it an infinite path, which will

then be returned as one of the possible paths from our original tree.

We take the two constructions in our proof of theorem 3.4.1 to be the com-

putable functions that we need. We will explicitly show which parts relate to this

reduction for this part of the proof.

First, note that for a given tree, converting each path into the library S is a

computable task. Although in the previous proof, we require a path to then choose

the Se ⊂ S for our original tiling, here we can pass this prototile set to our realizer
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T and it will give us a sequence corresponding to a tiling of the plane. Explicitly,

we construct this library as follows from the proof of theorem 3.4.1:

• Fix a root tile with the tuple 〈ML
0 , λ

U ,MR
0 , λ

D〉 and put this tile into S.

• For all the cji and Mi colour the mid-row tiles.

• For all cji colour all of the quadrant tiles, and put these into S .

• For each point (a string) p in our input tree we add column tiles for each

initial segment σ and σ_n in p - note, we still take two copies of each

and construct two tiles for each successive symbol in each path, as one is

required to go up and the other in the mirror position downwards.

With our full library S constructed, we now have an infinite set of prototiles

which we can pass as the input to our realizer T . The output from this will be a

planar tiling about which we already know the useful properties, namely that from

this we can recover the path coded in each of the S-tilings.

We can extract the path from an S-tiling in the following manner. Our follow-

ing computable method will be the same as the method to extract the path p from

our Se-tiling in the proof of theorem 3.4.1:

(1) If we choose the root tile, read upwards along the column of tiles, from

which we can recover a path p.

(2) If we choose a mid-row tile, then we follow the descending chain of Mi

colours to the root tile, and then go to step 1.

(3) If we choose a quadrant tile, then for our given i ∈ ω from our chosen

tile:

• If c1i or c2i then follow all the tiles down to the mid-row tiles, and go

to step 2.

• If c3i or c4i then follow all the tiles up to the mid-row tiles, and go to

step 2.

Thus we have computable functions H , that creates from a tree a valid input

for T , and a computable K, that takes the output from T and extracts an infinite

path p for our original tree. This is satisfying the same function as the realizer C,

thus C = K(TH) is satisfied and is a realizer for Cωω , completing our theorem.

�
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5.4. Weihrauch Reductions for Weak Planar Tilings

We can also prove a similar result for the following tiling principle, based

around the definition for WTILE we originally gave in definition 3.4.5.

5.4.1. Weihrauch Equivalence for CWPT . We first need the following def-

inition of a ‘wild card’:

Definition 5.4.1. Let ∗ denote the wild card that satisfies the edge meet conditions

of any Wang prototile in W in a tiling function f : Z2 → S ∪ {∗}, for a given set

of prototiles S ⊂W.

The wild card tile is intended to give us a way of handling the ‘blank’, or ‘no

tile’, possibility that we first encountered in our definition of WTILE. Thus, an

infinite region that is not tiled will be mapped by infinitely many wild cards. We

can now continue on and define non-total tilings of the plane by adding this wild

card to our prototile sets.

Definition 5.4.2. Let ChooseWeakPatchT iling, shortened to CWPT , be such

that

CWPT :⊆ P(W) ⇒ TW, S 7→ TS

where S is a set of prototiles, and TS is an S-tiling. Similar to CT defined in 5.3.2,

ChooseWeakPatchT iling, is an operator/principle that takes some subset of all

possible Wang prototiles S ⊂ W such that S-tilings returns a connected planar,

but not necessarily total, S-tiling TS given by

f : Z2 → S ∪ {∗}

where ∗ is the ‘tiling wild card’ defined above. CWPT also returns an infinite

connected region R ⊆ Z2 which is covered by this infinite connected patch of

tiles.

The following result can now be demonstrated:

Theorem 5.4.3 (C. 2019).
Cωω ≡sW CWPT
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Proof. We first reiterate that we are explicitly after two reductions to obtain our

equivalence, explicitly:

(Cωω ≤sW CWPT ) ∧ (CWPT ≤sW Cωω)

Let our realizers be C ` Cωω and W ` CWPT , with C, T :⊆ ωω → ωω.

As before, we want computable H,K, I, J :⊆ ωω → ωω such that the following

diagram commutes:

ωω W

ωω TW

ωωA(X)

ωωX

dA(X)

CCωω

dX

dW

W CWPT

dTW

H

K

I

J

We will prove the more straightforward of the two first, namely thatCWPT ≤sW
Cωω . To do this, we will require our two computable functions I, J to be such that

W = J(CI)

This will be achieved in the same way as for the proof of theorem 5.3.3.

We begin by using our intuition from the proof of theorem 3.4.7, where we can

think of our prototile sets as coding paths through trees. As for the proof there,

we let I be the function that codes the tree of all possible tilings from our given

prototile set, but this time we allow for each boundary enumerated into this tree

to be incomplete - as we only care that our tilings are connected, not that they are

total.

Despite this, we still arrive at a tree that is some subset of ωω. This follows

from noticing that for a given prototile set S, our tiling functions f : Z2 → S can

be extended in the following way

f : Z2 → (S ∪ {∗})

where ∗ stands for the “no tile here” option we have now allowed for f to be a

weak tiling of the plane.
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For this f there exists an infinite patch P ⊆ Z2 such that

• f follows the tiling rules.

• f is not ∗ on P .

• P is connected.

• |P | =∞.

This gives us some ξ ∈ Σ1
1 such that

∃f ∃P (ξ(f, P ))

is true if and only if f weakly tiles the plane according to our definition ofCWPT .

By [50, p.4] we have a Σ1
1-normal form given which allows us to rewrite this

formula as

∃f ∃P ∃X(ψ(f, P,X))

is true for X a sequence of Skolem functions and ψ ∈ Π0
1. This gives us a tree

with which C can find a path for. Thus, our I is defined and computable.

Once C returns a path, this path will correspond to an infinite sequence of tiles

in the plane, and so our J will take this and reconstruct our tiling from the selected

paths through the generated tiling tree from I that C has provided a path from.

Thus, the input and output adaption functions I, J are both computable, and by

utilising C we have that W = J(CI), giving us CWPT ≤sW Cωω .

Next, we will prove that Cωω ≤sW CWPT . To begin, we will once again

require that our computable H,K be such that

C = K(WH)

This naturally comes about given that our definition of CWPT includes not just

the tiling function, but the knowledge of which region is an infinite patch of the Z2

lattice that is tiled by tiles from S.

Our computableH will be given by the prototile set construction similar to that

given in 3.4.7 - we take the input that is some tree T ⊆ ω<ω, and then generate

the tile set S as follows. Fix R B, and P to be ‘red’, ‘blue’, and ‘purple’ respec-

tively - effectively making certain quadrants of Wang prototiles fixed colours. The

prototiles we need to create for S are:

• Add a unique root tile 〈R, λU , B, P 〉 into S:
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λU

R B

P

• For each path σ ∈ [T ] add the tile: 〈R, σ_n,B, σ〉:
– NB: We identify the empty string λU with σ(0)

σ_n

R B

σ

With this, we then give this S as input to W , which will return two things:

(1) A tiling function f : Z2 → S.

(2) A region R ⊆ Z2 containing an infinite patch of tiles.

Intuitively, our tilings given by the coding above are long snakes of tiles where

an infinite path is coded going up from the root tile. Given we have all this infor-

mation available to K, we can make K the computable function that first chooses

the minimum point in R - i.e. the point (x, y) that has the lowest values for x and

y - which is the point closest to (0, 0).

With this point given, we can then follow the tiles from this point down until

we reach the root tile 〈R, λU , B, P 〉. This is done by fixing the x co-ordinate

from this point, and then subtracting one from y until we find the m such that

(x, y −m) = 〈R, λU , B, P 〉.
With this found, we can then read each initial segment of an infinite path σ ∈

[T ]. With this recovered, we can return this as an infinite path through the original

tree T that has been obtained by our realizer W . Thus we have satisfied C =

K(WH) as required.

Finally, we note that both directions give our result, Cωω ≡sW CWPT . �

5.4.2. Weihrauch Reducibility for Other Weak Tiling Principles. We will

first state a neat notion of compositional product used in Weihrauch reducibility -

Brattka and Pauly give the following theorem in [11]:
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Theorem 5.4.4 ([11, Prop. 3.5 & Thm. 4.1]). For every f and g, the following

supremum exists:

sup{f0 ◦ g0 : f0 ≤W f ∧ g0 ≤W g}

As such, we will define the following compositional product:

Definition 5.4.5 (Compositional Product). The compositional product of f and g,

written f ? g, is precisely this supremum from theorem 5.4.4.

The core idea in this compositional product is that we can find two sub-principles

f0 and g0 that are each Weihrauch reducible to the principles we are interested in,

and then use the composition of these new principles to achieve a Weihrauch re-

ducibility of the two original principles composed. This enables us to sequentially

apply different principles in order to obtain new Weihrauch reductions - a tech-

nique that we will now utilise.

Note that the proof of theorem 5.4.3 requires that we provide the exact location

of the infinite patch containing our infinite patch tiling is returned in addition to

our tiling function. However, given we expected our weakly tiling prototile set S

to be non-total we knew how to ‘read’ an S-tiling when given a known-infinite

region R which was tiled by S.

We now explore what happens if we change these requirements to take some

prototile set S that is total, and return an infinite region R ⊂ Z2 and a tiling

function f : R→ S - thereby reducing a total tiling to a weaker tiling of the plane.

Definition 5.4.6 (CIPT ). Let ChooseInfinitePatchT iling, or CIPT be de-

fined similarly as before

CIPT :⊆ P(W) ⇒ TW

with CIPT taking a set of prototiles S that gives total tilings of the plane, and

returning the pair (R, t), composed of an infinite connected region R ⊂ Z2 with a

tiling function t : R→ S such that we have an infinite S-tiling on R.

We now have the machinery we need to state the following theorem:

Theorem 5.4.7 (C. 2019).

Cωω ≤W C2ω ? CIPT
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Here, C2ω denotes the Closed Choice principle on Cantor Space which is

equivalent to Weak König’s Lemma (WKL) which we defined in section 1.5.1.

As such, we can pass C2ω a finitely branching infinite tree, and it will return a path

through it. Our use of this in the compositional product is due to the fact that we

cannot always guarantee in a weak tiling of the plane that we can easily find our

infinite path in a computable way given an input prototile set that is total.

Proof. We require two principles f and g such that f ≤W C2ω and g ≤W CIPT

and aligned in such a way that f ◦ g ≥W Cωω . Let our g and f be defined as

follows:

• g will be the principle of taking some tree T ⊆ ω<ω and returning some

pair (R, t) with R ⊂ Z2 an infinite connected region, tiled by t : R→ S,

and S is a prototile set with total tilings of the plane for any ill-founded

tree T .

• f will be the principle that will take a pair (R, t) as above, and return an

infinite sequence of tiles through the infinite connected region R based

on the tiling t.

For realizersG ` g we will make use of the construction from the proof of theorem

3.4.7, and in the final part of the proof, we will decode an infinite path through T
from an infinite sequence of tiles from this construction.

Our proof will come in three main parts:

(1) We first require computable H,K such that G = K(〈id, TH〉) is a real-

izer for g, given T ` CIPT .

(2) Next, we require computable I, J such that F = J(〈id,WI〉) is a realizer

for f , given W ` C2ω

(3) Finally we then require computable X, Y such that C = Y (〈id, AX〉) as

a realizer for Cωω given A ` f ◦ g.

With H,K, J, I,X, Y,A :⊆ ωω → ωω.

By A = FG from the above, we will aim to arrive at the final form

C = Y (〈id, FGX〉)

is a realizer for Cωω . We will later prove in theorem 5.5.2 that CIPT ≤sW Cωω ,

hence we only focus on this particular direction for our theorem.
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Here follows the general plan for our proof. Recall that a realizer C for Cωω

takes some Baire space tree T ⊆ ω<ω and returns a path through it. Thus, we need

to align our realizers such that we take this tree T , construct some prototile library

S that gives total planar tilings, and then show that if we restrict our planar S-

tilings to some infinite region R ⊂ Z2, we can still recover an infinite path through

our original T by means of C2ω , which we recall is Weak König’s Lemma. We do

this last step by finding some infinite sequence of tiles through R, and set up the

construction of our S such that we can recover the path through T by means of a

path through the spanning tree of R.

Intuitively we want to show that even if we remove much of the structural

information of a total tiling of the plane but retain some infinite part, we can still

find some reduction for Cωω by utilising a weaker closed choice principle to ‘fix’

the damage we did to our original tiling.

Proof of (1). - Let g be the principle that takes some tree T ⊆ ω<ω as input, and

returns (R, t), composed of an infinite connected region R ⊂ Z2, and a tiling

function t : R → S, where S is the prototile set that has a total planar tiling for

some path p ∈ [T ] given T is ill-founded.

Let our H be the computable function that takes as input some tree in Baire

space, T ⊆ ω<ω and produces a prototile set S given by the construction we used

in the proof of theorem 3.4.7. The resulting prototile set gives a set with a total

tiling for a path in T , given that T is ill-founded.

H passes this prototile set S to our realizer T ` CIPT which returns our

(R, t) as desired for our output. As such, our computable K does nothing to this,

and we have that g ≤W CIPT . �

Proof of (2). - For this, we want f to be the principle of taking some pair (R, t),

comprised as above of a tiling for an infinite connected region R ⊂ Z2 given by

a t : R → S, and we wish to return some infinite sequence of tiles through this

infinite connected tiling over R.

To obtain our reduction, we let our computable I be the function that takes

some tiling on an infinite region R and computably constructs a spanning tree in

the graph theoretic sense by starting at some point closest to (0, 0) and enumerating

each tile based on the von Neumann neighbourhood of the edge meets for each
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successive tile that has not already been enumerated. This algorithm is generally a

breadth-first search along the following lines:

(1) Choose some tile in the S-tiling of R, and set the root node of TR as the

empty string λ.

(2) Enumerate the tiles to the upper, lower, right, and left sides if they are

available as successors in the resulting tree and have not yet been enu-

merated into the tree.

(3) Group each of the successors by whether they are upper/lower or left/right

in order to obtain binary branching.

By the end of this process we have some TR, a finitely branching tree, which is

bounded given the finite bound on the neighbourhood around each tile. We can

pass TR to a realizer W ` C2ω . This will take our bounded branching tree and give

us some infinite path through it.

With this returned, we pass this to a computable function J which takes the

path returned by W and decodes the infinite sequence of tiles through the tiled

region R that W has found. J can computably recover this by the fact that we can

program it to decode each 4-tuple as a Wang tile in our tiling, and so obtain the full

infinite sequence of tiles. J finally outputs this infinite sequence of tiles through

R. �

Now that we have our two subordinate principles defined and shown to be

Weihrauch reducible to our desired components in our compositional product, we

can now complete the proof by showing how these two principles work to give our

desired reduction of Cωω ≤W C2ω ? CIPT .

Proof of (3). - The final stage of this proof will show that using a realizer A `
f ◦ g will be such that C = Y (〈id, AX〉) is a realizer for Cωω for computable

X, Y : ωω → ωω.

Our input adaption X is a ‘do nothing’ function, passing the input tree T ⊆
ω<ω to a realizer for G.

G returns a tiling t : R → S for an infinite region R ⊂ Z2 that contains

some infinite path through T by the process described above. However, we cannot

predict enough about the structure of the tiling ofR, and so pass this to our realizer

F ` f that can take such a tiling on an infinite region R and locate an infinite
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sequence of tiles through this region. Given our construction of F we know that

we will always locate the path by means of the bounded branching on the spanning

tree across R which is procured by means of a breadth-first search, and given R is

infinite we will get our tile sequence accordingly in this composition.

Our output adaption Y works as follows: Recall that the prototile set S gener-

ated inside G, taken from the proof of theorem 3.4.7, has some coding of an initial

segment σ of the path p we desire in every prototile, thus we can take the infi-

nite sequence of tiles given by the realizer F and computably decode each initial

segment of p in turn.

Our tile sequence may begin on any tile, but this will give us some initial

segment σ ≺ p, and although its immediate neighbours may not give us additional

bits, it is certain that some tile at some point will give us some additional bit i ∈ ω
that such that σ_i ≺ p. This is guaranteed by the fact that the construction of our

prototile set S has longer initial segments of p found in any direction you care to

look, so as long as R is infinite and we find some infinite path through it, we will

certainly recover an infinite path in p ∈ [T ] by means of this process.

As such, the composition of f ◦ g and the corresponding composition of the

various realizers and input and output adaption functions X, Y , we can conclude

that that input is a tree T in Baire space, and the output is a path through this tree

T , which is precisely the function of Cωω , completing our reduction. �

Given this, we have our final result by the combination of f ◦ g as the compo-

sitional product equivalent to Cωω giving our desired result

Cωω ≤W C2ω ? CIPT

�

It should be noted that the AIT and PIT constructions given by definition 4.2.7

could not be utilised in this proof, at least not without significant rework. The most

immediate construction was that given for the proof of 3.4.7.

5.5. General Weihrauch Reducibility for Wang Domino Problems

Let the following definition for the general “Domino Problem for Wang Tiles”

principle be given as follows.
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Definition 5.5.1. Domino Problem for Wang Tiles Principle LetW denote the set

of all possible Wang prototiles, and TW be the set of all possible tilings given by

all possible Wang prototiles. Let the general principle of “Domino Problems for

Wang Prototile Sets”, DPW , be given by

DPW :⊆ P(W) ⇒ TW, S 7→ TS

where S ⊂W and TS is the class of all S-tilings.

Our input for DPW is some prototile set S ⊂ (W ∪ {∗}), and our output is

a planar tiling, given as a tiling function f : Z2 → (S ∪ {∗}) that meets our edge

requirements and has some infinite connected patch.

Note that we intend DPW to be the universal multivalued function from any

set of prototiles S to any possible S-tiling that has an infinite connected region.

Our aim is to show that any additional requirements on Wang tilings are essentially

captured by the closed choice principle on Baire space.

Given this is the general principle that governs any domino problem for sets

of Wang prototiles, the following reducibility will apply to any given Domino

Problem as a general case of sections of the proofs in this chapter.

Theorem 5.5.2 (C. 2019).
DPW ≤sW Cωω

This would appear to be intuitively true, given that our method for capturing

all possible tilings of any Wang prototile set on a tiling tree, that this tree is always

constructable.

Proof. We first note that every tiling problem is generally of the following form

∀X ∃Y (ϕ(X)→ ψ(X, Y ))(5.1)

where

X ⊂ (W ∪ {∗})

is a set of Wang prototiles that also permits the wild card ∗, which we used in the

proof of theorem 5.4.3, and Y is a set that encodes a tiling of the Z2 lattice, and ϕ

and ψ are arithmetical functions such that:

• ϕ(X) holds if X is a valid set of Wang prototiles.
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• φ(X, Y ) holds if Y is a valid X-tiling.

By this formulation, we see that the formula 5.1 is in Π1
2, and we can thus

obtain the following normal form for this (see [50, p.6] for how this is done) given

by:

∀X ∃Y θ(X, Y )

where θ ∈ Π0
1,X is our prototile set as before, and Y captures all Skolem functions

that give our X-tilings.

By Lemma 1.3.5, it follows that any domino problem can be defined in this

way, and is thereby representable by a path p = [T ] for some Π0
1 tree T ⊂ ω<ω.

Given Cωω , by definition, takes a tree that is a subset of Baire space and returns

a path, our Weihrauch reduction follows. �

Intuitively, this theorem shows that our tiling trees that we have made use of

are always of the correct kind for Cωω to process and return a path that encodes a

planar tiling.

5.5.1. Further Weak Tiling Problems. There are other weak tiling problems

we can consider, although they are currently just outside the scope of this thesis.

Take the following example, WeakInfinitePatchT iling:

Definition 5.5.3. [WIPT ] LetWeakInfinitePatchT ilings, shortened toWIPT ,

be defined similarly as before

WIPT :⊆ P(W) ⇒ TW

with WIPT taking a set of prototiles S, and returning a tiling function f : Z2 →
S ∪ {∗} that we know has an infinite patch, but not where that patch is.

Because of the lack of any knowledge of the resultant tiling, we do not have

enough structure to gain enough information in order to extract an infinite tree

without a lot of help. An initial estimate is that we would need the following in

order to have a Weihrauch reducibility:

Cωω ≤W C2ω ? Cω ? WIPT
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where Cωω and C2ω are closed choice on Baire space and Cantor space respec-

tively, as before, and Cω is the principle that takes some function f : ω → ω with

ran(f) 6= ω as input, and outputs some n /∈ ran(f).





CHAPTER 6

Small ECA Tilings

In mathematics you don’t understand things. You just

get used to them.

John von Neumann (attrib.)

This chapter presents a small tiling that encodes any Elementary Cellular Au-

tomaton in 15 prototiles. We also present some results about this class of automata

that show that these prototile sets have interesting properties, specifically that they

can be chaotic or Turing complete.

6.1. Elementary Cellular Automata

In this section, we will give formal definitions for Elementary Cellular Au-

tomata (ECAs) in preparation for coding them into small tiling sets. Our motiva-

tion for this originally was work that was ultimately carried out to its full comple-

tion in [39] - aiming to find small, aperiodic tiling sets by means of coding small

chaotic Elementary Cellular Automata into prototile sets.

However, as we shall show in theorem 6.4.1, we found a different way of en-

coding 3-ary functions as dynamical systems into prototile sets that represent their

behaviour in the plane. We maintain the usual structure from previous work on

coding Turing Machines into the plane - the 1-dimensional state is given left to

right, with subsequent iterations going vertically.

We first give the background theory on ECAs, as well as a basic primer on

the relevant pieces of chaos theory, and then proceed to detail results from Cook

and Cattaneo et al. about Turing completeness and chaos in ECAs, respectively.

Finally we give our representations of any ECA in prototile sets of only 15 tiles

using our new construction, replete with diagrams and relevant corollaries.

6.1.1. Elementary Cellular Automata. We will define a cellular automaton,

and elementary cellular automaton (ECA) as per [63]. They have appeared in a
135
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111 110 101 100 011 010 001 000
0 0 0 1 1 1 1 0

TABLE 1. Rule 30 Automaton Rules

considerable amount of research, in areas as varied as computer science, symbolic

dynamics, and as we shall see, chaos theory.

Definition 6.1.1. A cellular automaton is pair (X,R) where X is a grid of some

specific boundary topology1 and R is the ‘rule’ that is applied successively to the

grid. Each row is coloured based on the state of the colours on the previous row.

We will specifically look at the subclass of cellular automata known as Ele-

mentary Cellular Automata, or ECAs. These were first introduced and studied by

Wolfram in [65].

Definition 6.1.2. An elementary cellular automaton, or ECA, is a cellular au-

tomaton (X,Rn) where the rules in R are derived from the binary representation

of n. An ECA’s rules for a cell at position i on row j, written ci,j , is determined

by the triple (ci−1,j−1, ci,j−1, ci+1,j−1). Thus, our rule set Rn is given by a function

rn : {0, 1}3 → {0, 1}.

To acquire our rules for Rn we first take the binary representation of n, and

then send each of our 8 possible inputs sequentially to each bit of the binary rep-

resentation of n, starting with the least significant bit.

To illustrate how this works, take R30. We start with the 8-bit binary represen-

tation of 30, 00011110, and then map the inputs to r30 as per table 1.

If we let our grid be the full Z2 lattice, then for each row x ∈ Z2, we can

define Rn : Z2 → Z2 as the successive application of rn to every triple (x(i −
1), x(i), x(i+ 1)), for each cell x(i) ∈ x.

6.2. Some Results about ECAs

We will define and discuss some background results for our work on ECAs

and tilings. With ECA’s already being an interesting and fertile area of study, we

will give some background theory to the results, and then demonstrate that these
1These grids can have joined boundaries, fixed boundaries, be bi-infinite, etc. etc. .
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results can also be realized as tiling problems by means of coding ECA’s into

prototile sets.

6.2.1. ECAs and Chaos. We will view ECAs as Discrete Time Dynamical

Systems (DTDS) - that is, an iterated system that has discrete time steps. We write

these as above, (X,F ), where X is the phase space, which is equipped with a

distance function d, and a next state map F : X 7→ X , continuous on X according

to the topology onX induced by d. We also assume that such a metric space (X, d)

is perfect - i.e. has no isolated points.

Definition 6.2.1 (Sensitivity). A DTDS (X,F ) is sensitive to initial conditions if

and only if there exists δ > 0 such that

(∀x ∈ X) (∀ε > 0) (∃y ∈ X) (∃n ∈ N)[d(x, y) < ε ∧ d(F n(x), F n(y)) ≥ δ]

More intuitively, this definition states that the iterated map has the property that

there exist points arbitrarily close to some point x ∈ X that eventually separate

away from x by at least δ.

We will need, for our definitions of chaos, definitions of the following terms:

Definition 6.2.2. A dynamical system (X,F ) has a dense orbit if and only if

(∃x ∈ X) (∀y ∈ X) (∀ε > 0) (∃n ∈ N) [d(F n(x), y) < ε]

Definition 6.2.3. A dynamical system (X,F ) is topologically transitive if and

only if for all non-empty open subsets U, V of X ,

(∃n ∈ N) [F n(U) ∩ V 6= ∅]

For a perfect DTDS (X,F ), the existence of a dense orbit necessarily im-

plies topological transitivity. This is an important result in reference to the 1-

dimensional dynamical systems we wish to represent in tilings later on - it shows

us that the barrier to achieving chaotic behaviour is reassuringly low, which some-

what naturalises our results.
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Definition 6.2.4. A dynamical system (X,F ) has dense periodic points if and

only if the set of all the periodic points given by

Per(F ) = {x ∈ X : (∃k ∈ ω)F k(x) = x}

is a dense subset of X . Specifically,

(∀x ∈ X) (∀ε > 0) (∃p ∈ Per(F )) [d(x, p) < ε]

Following on from these definitions, Devaney in [22] formulated the most well-

known definition of chaos as follows:

Definition 6.2.5 (Devaney Chaos). The dynamical system (X,F ) is chaotic if

(1) F is topologically transitive,

(2) F has dense periodic points,

(3) F is sensitive to initial conditions.

Meanwhile, other formulations of chaos came about - the most notable for this

work is due to Knudson [43], which is nonperiodicity-free:

Definition 6.2.6 (Knudson Chaos). The dynamical system (X,F ) is chaotic if

(1) F has a dense orbit,

(2) F is sensitive to initial conditions.

This formulation that came about when Knudson proved there existed a dy-

namical system which is chaotic according to Devaney’s definition, but which the

restriction of the set to its periodic points was also Devaney Chaotic.

It will be useful later to consider similar restrictions, such as [59] that demon-

strates the following proposition:

Proposition 6.2.7 ([59, Prop. 1, p.353]). Let I be a (potentially infinite) interval

- a 1-dimensional space - and F : I 7→ I be a continuous, topologically transitive

map. Then

(1) The periodic points of F are dense in I ,

(2) F has sensitivity to initial conditions.

Thus, for 1-dimensional systems, topological transitivity is ‘enough’ for a dy-

namical system to be chaotic. Given our ECAs are being considered as essentially
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1-dimensional DTDS it becomes clear that our requirements for such a system to

be chaotic are quite surprisingly minimal.

In order to fully describe this, we need notions of ‘permutivity’ for an ECA,

which we get from [13]:

Definition 6.2.8 (Permutivity). A cellular automaton local rule f is permutive in

xi, for−k ≤ i ≤ k, if and only if for any given sequence x−k, . . . , xi−1, xi+1, . . . , xk ∈
X we have

{f(x−k, . . . , xi−1, xi, xi+1, . . . , xk) : xi ∈ X} = X

We can refine this idea to leftmost (rightmost) as follows:

Definition 6.2.9 (Leftmost (Rightmost) Permutive). A local CA rule f is said to

be leftmost (rightmost) permutive if and only if there is an integer i, −k ≤ i ≤ 0

(0 ≤ i ≤ k) such that:

(1) i 6= 0,

(2) f is permutive in the ith variable,

(3) f does not depend on xj for j < i (j > i).

As pointed out in [13], for ECAs this means that when an ECA is leftmost-

permutive, it follows that

(∀xi, xi+1) [f(0, xi, xi+1) 6= f(1, xi, xi+1)]

namely, if two strings differ in the xthi−1 position, they differ in the xthi position

under f . Likewise, when an ECA is rightmost-permutive, the mirror argument

follows, specifically

(∀xi−1, xi) [f(xi−1, xi, 0) 6= f(xi−1, xi, 1)]

We can now use the following result from Cattaneo et al. (Cor. 3.3 in [13]):

Corollary 6.2.10 ([13, Cor. 3.2]). Let (Z2, Rn) be an ECA based on the local rule

rn. Then the following are equivalent:

(1) rn is leftmost or rightmost permutive, or both.

(2) rn is Devaney Chaotic.

(3) rn is Knudson Chaotic
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(4) rn is surjective and non-trivial.

By Table 1 and the analysis in Section 3.3 in [13], it becomes clear that there

exist a set of rules that exhibit chaotic behaviour, the most well known of which is

R30, having been studied in some depth originally by Wolfram in [65].

6.2.2. ECAs and Turing Universality. We now wish to extend results from

earlier in this thesis to very small dynamical systems, for which we will need the

following definitions:

Definition 6.2.11. A cyclic tag system is a computational system consisting of the

following arrangement:

• A set P ⊂ 2<ω of productions.

• A finite binary string d = d0, d1, . . . dj called the data string.

• A transformation map

(i, d)→ (i+ 1(mod n), (d1, d2, . . . , dk)
_P d0

i )

where i is a counter, n = |P |, and for all i:

P 0
i = ∅

P 1
i = Pi

Intuitively, a cyclic tag system operates as follows:

(1) If d0 = 0, then we delete d0 and do nothing.

(2) If d0 = 1, then we delete d0 and append the ith member of P , Pi.

(3) If d = ∅ then we halt.

An example computation is as follows. Let P = {101, 110, 10} and d = 11,

our computation is as given in table 2.

It is proved in [15] that a cyclic tag system is Turing Universal - this was done

by showing a Universal Turing Machine can be coded into a 2-tag system, and

2-tag systems can be coded into Cyclic tag systems. The proof is omitted here, but

a clear proof can be found in [46].

In 2004, Cook proved in [15] the following theorem:

Theorem 6.2.12 ([15, Sec 4]). The ECA R110 is Turing Universal.
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Pi d
101 11
110 1101
11 101110
101 0111011
110 111011
11 11011110
101 . . .

TABLE 2. This table shows the development of a cyclic tag system
for initial d of 11 and Pi’s in sequence as given in the text. The
development of the contents of d is given at each line.

This is done by combination of the following theorem and Lemmas:

Lemma 6.2.13 ([15, Sec 3]). A cyclic tag system is Turing Complete.

This is a somewhat surprising result, owing to the very minimal nature of cyclic

tag systems, but the proof shows that by careful construction of the production sets

P it is possible to emulate the tag systems, due to Post, of a small number of states

easily. The proof of this coding is fairly straightforward, but is omitted here owing

to length.

Lemma 6.2.14 ([15, Sec 4]). A Cyclic Tag system can be implemented in a glider

system.

Sketch of proof of 6.2.12. Rule 110 has the ability to carry a state of 1’s and 0’s

left and right depending on careful setup of the strings - such patterns that shift

iteratively left and right down our ECA state are called ‘gliders’. A ‘glider system’

is some arrangement of these gliders such that they then propagate left and right.

There are 5 glider types documented in [15], and these are crafted into different

arrangements of glider systems in order to achieve the result we are interested -

specifically, coding the P and d of any cyclic tag system.

By carefully implementing a glider system in the input row for an ECA, Cook

was able to code Turing Machine computations into the dynamics of R110, thereby

showing this ECA to be Turing Universal.

An additional aside, which will be useful in our discussion of ECA tilings,

is that the halting state of some TM coded into R110 is equivalent to whether the
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FIGURE 1. The schematic diagram for Cook’s encoding of Cyclic
Tag Systems in Rule 110, taken from [28]

dynamics of the system become aperiodic or remain periodic, equivalent to halting

or not halting, respectively. �

An overall schematic diagram can be found in Figure 6.2.2

However, we note that there are some cases where simply expecting aperiod-

icity or continued periodicity is not sufficient. Take a TM that calculates some

non-repeating sequence, such as the Champernowne’s Constants used earlier in

this thesis. The output of this computation will necessarily be aperiodic in any

given tiling encoding of this computation.

Thus we have to resolve the issue surrounding this - if our tiling is going to be

aperiodic whether we have halted or not, then how can we tell if our computation

is running or if it has halted?

Firstly, we note that Rule 110 is not left or right permutive, so any tiling will

not naturally be aperiodic by the criteria in the previous section. We next need to

note that we can stratify these two notions of ‘aperiodicity’ by means of a straight-

forward argument on the underlying mechanics of our resultant tilings in vicem of

the Turing Machines and cyclic tag machines we are representing.
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We note that any non-repeating computation will actually be quasi-periodic

by our definition 4.1.9 - a fact that follows when we observe that certain strings,

namely those representing states in our Turing Machine via the set of productions

P in our cyclic tag system being recurrent in the tiling.

Thus, any aperiodic behaviour will be apparent from the fact that there will be

no sign of our Turing computational artefacts in the ECA following entering the

halt state. As such, it will either become periodic or aperiodic, but our test for the

occurrence of particular words that code these will fail.

The same carries forwards into our tiling by means of looking for particular

sequences of tiles - represented as finite tuples - in any resultant tiling. Given this,

we can safely work with ECA Rule 110 and not worry about ‘losing track’ of the

status of our computation.

6.3. Elementary Cellular Automata and Tilings

In this section we build on work from the author’s MSc thesis, [12], where we

proved the following theorem:

Theorem 6.3.1 ([12, Chap. 3]). There exists a universal prototile schema con-

sisting of 18 Wang tiles that tiles the plane according to the rules of any given

ECA.

Proof. We note that we need to satisfy the following requirements:

(1) Encode each cell in a time-space diagram for a given ECA.

(2) Encode the relationships between each cell given by Rn.

(3) Show how bits can be copied across each other in the tiling in order to

emulate the action of Rn.

We first construct the prototile scheme that will code the action of our ECA

function given by fn : {0, 1}3 → {0, 1}, given by our rule Rn. This scheme is as

follows:

b

a c

fn(a, b, c)
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Thus, for each rule we get the following 8 prototiles, where we fill in the spe-

cific outputs for each fn to get our Rule prototiles:

0

0 0

fn(0, 0, 0)

0

0 1

fn(0, 0, 1)

1

0 0

fn(0, 1, 0)

1

0 1

fn(0, 1, 1)

0

1 0

fn(1, 0, 0)

0

1 1

fn(1, 0, 1)

1

1 0

fn(1, 1, 0)

1

1 1

fn(1, 1, 1)

We add to these state swapping tiles that will take an output of fn and ‘swap’

this bit with the cell’s neighbours. We first fix the colour B that will act as ‘blank’,

allowing us to line up the tiles above and below each crossover of bits from the

distributor tiles (see below):

B

0 0

(0, 0)

(0, 0)

0 0

B

B

0 1

(0, 1)

(0, 1)

1 0

B

B

1 0

(1, 0)

(1, 0)

0 1

B

B

1 1

(1, 1)

(1, 1)

1 1

B

We now need some distributor tiles that will take an output state and distribute

this information left, right, and downwards:
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1fn

1 1

1

0fn

0 0

0

Note that these tiles differentiate the upper quadrant as being specifically from

the output of fn so as to prevent trivial tilings of the plane using just distributor

prototiles. These tiles code exactly the cells from the original time-space diagram.

We then note that each part of the action of some ECA rule Rn is now coded

into our tiling:

• Each cell is represented in any planar tiling due to the above prototile

constructions.

• Each relationship coded by fn is represented as state swapping tiles creat-

ing a space for some rule tile, which then has the output of fn distributed

for this process to repeat.

• We do not code the upper half-plane owing to our not-knowing the previ-

ous rows of computation that took place before our input row.

Thus, we have fully represented in 18 prototiles, given by our 8 rule tiles, 8

state swapping, and 2 distributor prototiles.

The tiling process is as follows:

(1) Code the input into a series of distributor tiles.

• We pad the input with infinitely many ‘0’s left and right to achieve a

full half-planar tiling.

(2) Place the relevant state swapping tiles between each of these.

(3) Tile each successive row using the correct tilings, in order to get succes-

sive states of the ECA.

�

Figure 2 shows the tiling in action, coding the first few rows of ECA rule 30,

with R30 clearly coded with the connecting tiles showing how the outputs interact

with each other.
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FIGURE 2. A sample tiling of S30. NB: Indicators Of and 1f are
omitted for clarity.

6.4. A 15 Prototile ECA Tiling

We present a tiling that codes any ECA in only 15 tiles, using an adapted

hexagon-based tiling. This particular tiling lends itself to our computable trinary

functions that form our fn ECA functions, and have not yet been found in the

literature.

Theorem 6.4.1 (C. 2019). For any ECA of Rule n there exists a prototile set Sn of

size 15 such that any tiling of the plane T by Sn codes each iteration of the ECA

starting from the string coded by the first row.

Proof. Broadly speaking, we require three things from our tiling of ECA rules -

for a given rule Rn:

(1) Encoding of each input and output of the fn for our rule Rn.

(2) Handling of the ‘transfer of bits’ from one represented cell to the cells

lower left, lower centre, and lower right.

(3) Fixing of upper half-plane boundary.
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For the purposes of this proof, we work on tiling the lower half-plane, with the

lower border of the upper half-plane having colour I . This means that we do not

have to worry about the pre-images of the inverse function f−1 which can not be

unique or even be a ‘Garden of Eden’, meaning it is a configuration that has no

pre-image. Thus simplifying the way in which we tile the plane by omitting these

in the upper half plane, essentially fixing it with colour I .

We first present the base tiling we are going to use - horizontally aligned

hexagons with diamond lozenges filling the gaps between them, as so:

We present two tile schemas that we will make use of can be carried out to

obtain a tile set Sn for each ECA Rule Rn.

Firstly, we give a schema for the hexagon tiles that will code the actual rule

action. For a, b, c, fn(a, b, c) ∈ {0, 1} we define our tile schema:

a
b

c

fn(a, b, c)

where fn is the operation of applying rule n to the three input bits a, b, c. Note, if

required we can use similar notation to the 4-tuple codes we used for Wang tiles -

specifically: 〈a, b, c, fn(a, b, c)〉
We can see that for a, b, c ∈ {0, 1} there are 8 prototiles that we can define as

our basis for each ECA tiling. These are as follows:
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1
1

1

fn(1, 1, 1)

1
1

0

fn(1, 1, 0)

1
0

1

fn(1, 0, 1)

1
0

0

fn(1, 0, 0)

0
1

1

fn(0, 1, 1)

0
1

0

fn(0, 1, 0)

0
0

1

fn(0, 0, 1)

0
0

0

fn(0, 0, 0)

We next define our diamond lozenges as being tiles that are vertically and

horizontally quadrisected and use the following tile schema, for s, t ∈ {0, 1}:

s t

t s

This gives us our 4 connecting lozenges as follows:

0 0

0 0

0 1

1 0

1 0

0 1

1 1

1 1

These connecting lozenges are required owing to a property of ECAs - namely,

for some string σ ∈ {0, 1}<ω, any bit bi ∈ σ is needed to calculate the bits

b′i−1, b
′
i, b
′
i+1 ∈ σ′. As such, these lozenges achieve the required ‘crossover’ of

these bits. These act in principle precisely the same as the ‘state swapping tile’ in

our previous theorem 6.3.1.

We will also need the following 3 ‘I’ tiles to make our tiling ‘neat’ and to define

the first row of out tiling:
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I
I
I

0

I
I
I

1
I I

This will give us a flat edge for the top of the tiling, where we can now see that

a tiling of the plane, with no gaps can be achieved, as shown in this diagram:

We can thus define the tiling algorithm for some ECA as follows:

(1) Take the input for our ECA and code this using the ‘I’ tiles.

• Pad the input with 〈I, I, I, 0〉 tiles as needed left and right to fill the

left and right halves of our lower half-plane.

• Ensure that the half-lozenge ‘I’-tiles are placed between the upper

gaps between these hexagons.

(2) Place the correct corresponding lozenge tiles between the hexagon tiles.

(3) Place the now-defined hexagon tiles under each hexagon such that the

upper 3 sides correspond to the lozenges on the upper left and upper right,

and the hexagon immediately above.

(4) Go to 2.

Given this algorithm and this tile set, we can code any ECA by choosing the

prescribed outputs from fn(x, y, z) from our rule n. Given this setup, we can see

that our tiling gives a tiling of the half-plane without any holes, and such that it

imitates the behaviour of any ECA.

�

As an illustrated example, the full prototile set for Rule 30 can be found in

figure 3

Our proof of this theorem is unusual as it makes use of a non-standard planar

tiling made up of hexagon and lozenge tiles - something that the author has not seen

at all in the literature. This particular prototile arrangement lends itself to 3-ary

iterated functions and dynamical systems slightly better than Wang tiles. Hence,

they are included in this thesis as objects for potential further consideration.

Corollary 6.4.2 (C. 2019). There are chaotic ECA prototile sets of size 15.
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1
1

1

0

1
1

0

0

1
0

1

0

1
0

0

1

0
1

1

1

0
1

0

1

0
0

1

1

0
0

0

0

0 0
0 0

0 1
1 0

1 0
0 1

1 1
1 1

I
I
I

0

I
I
I

1
I I

FIGURE 3. A 15 prototile set of tiles that encodes the behaviour of
the Rule 30 ECA in the lower half-plane.

Proof. This is immediate from the known properties of Rule 30, 90, etc. given in

[13] - specifically, we can simply code these ECAs into prototiles using the scheme

above and obtain a fixed-size prototile set that can code the required behaviour on

a given input, such an input being given by an initial row of ‘I’-tiles from our

original construction. �

Corollary 6.4.3 (C. 2019). There are Turing Complete prototile sets of size 15.

Proof. This corollary is immediate from the Turing completeness of Rule 110 [15]

and the theorem 6.4.1 by the same argument given for 1. We note that we have to

perform the following steps to obtain the result. Given a Turing Machine with

index e and a given input x:

(1) Convert ϕe to a cyclic tag system, to get Tage.

(2) For ϕe(x) we take Tage and code this and x into a single row input for

our ECA.

(3) Code this into the initial row ‘I’-tiles from our construction.
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With this done, we can allow our tiling to proceed row by row, and note that this

codes each successive stage of the computation ϕe(x) via the mapping above. �

We include in figure 6.4 as a worked example of the initial few stages and

columns of a Rule 30 ECA Hexagon and Lozenge tiling, demonstrating the func-

tion of the initializer tiles, the ECA hexagons, and the connecting lozenge tiles to

demonstrate how an ECA can be encoded into a tiling of the plane.

Conjecture 6.4.4 (C. 2019). There exist ECA prototile sets of 8 tiles.

By [39] these cannot be formed from Wang tiles - this would mean that there

is an aperiodic prototile set of fewer than 8 tiles, which they proved to not be the

case. As such, a tiling of 8 tiles must be some other planar repeating tessellation

with colours applied to different edges or areas in order to represent a prototile set

of 8 tiles.

I I I I I I I I I I I I

I
I
I

0

I
I
I

0

I
I
I

1

I
I
I

0

I
I
I

0
0 0
0 0

0 1
1 0

1 0
0 1

0 0
0 0

0
0

0

0

0
0

1

1

0
1

0

1

1
0

0

1

0
0

0

0
0 1
1 0

1 1
1 1

1 1
1 1

1 0
0 1

0
0

1

1

0
1

1

1

1
1

1

0

1
1

0

0

1
0

0

1
1 1
1 1

1 0
0 1

0 0
0 0

0 1
1 0

FIGURE 4. Example few rows of a hexagon and lozenge tiling of
Rule 30.





CHAPTER 7

Conclusion

Nevertheless, I repeat; we are only at the beginning. I

am only a beginner. I was successful in digging up

buried monuments from the substrata of the mind.

But where I have discovered a few temples, others

may discover a continent.

S. Freud,

in an interview with G. S. Viereck.

Here we give an overview of the conclusions from the work presented in this

thesis, and give summary of some of the open questions arising from this research.

7.1. Conclusions from Results

In Chapter 3 we presented our first results concerning the relationship between

computability and tiling problems. We extended results due to Harel in [37] to

the general Domino Problem for infinite prototile sets. These results follow the

general intuition due to Berger in [5] that the Domino Problem for finite prototile

sets is Σ0
1/Π

0
1 complete, so expecting that TILE/¬TILE is equivalent to Σ1

1/Π
1
1

does fit the general intuition regarding this class of tiling problems.

We next discussed, in chapter 4 the question of whether tilings from a given

prototile set are periodic or aperiodic. From this outset we found a rather unusual

set for which the problems of (a)periodicity for infinite prototile sets are complete

- (Π1
1 ∧ Σ1

1) - which is a rare class of problems. Indeed, it is entirely possible that

this may be weakened in subsequent work to one side of this conjunction.

The fact thatATileFIN ∈ Π0
1 is surprising, given we did not even have a proven

existence of such prototile sets until the mid-60’s. However, we state the conjecture

(below) that PTileFIN is unlikely to be arithmetical owing to the requirement to

quantify over all possible tilings for a given prototile set, despite its bound on

lengths of their possible periodicity vectors.
153
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The Weihrauch reductions presented in Chapter 5 are the first that we know

of concerning tiling problems. They directly use material from previous chapters

in order to show that the Domino Problems we have defined and studied are all

bounded above by the closed choice principle for Baire Space, with some equiv-

alences also being found. These give further detail to our picture of the com-

putability aspects of Domino Problems, fleshing out the overall picture beyond the

conventional view.

Finally, our results in Chapter 6 paint a picture regarding how to code tilings

of 3-ary functions, using ECAs as our example. This is, sometimes, a more natural

formulation of a problem, and as such the presentation of this hexagon-lozenge

tiling may be useful outside of this particular class of automaton coding into pro-

totile sets.

7.2. Open Problems and Further Work

There remain some interesting open problems that arise both from the literature

surrounding this thesis, and from results in the thesis itself.

From [39] we have the following conjecture:

Conjecture 7.2.1. All the aperiodic Wang prototile sets generated by Kari’s method

are minimal aperiodic.

This result holds for all given prototile sets derived and demonstrated in the

literature, but we did not make any progress regarding the resolution of this prob-

lem. It does, however, make a lot of sense, and would be a good result to complete

the picture painted by Rao et al. .

Recall PTileFIN is the set of finite prototile sets for whom all tilings are peri-

odic, we stated the following conjecture:

Conjecture 7.2.2. PTileFIN is not arithmetical.

This is motivated by the need to at some point quantify over the entire class of

tilings for some finite prototile set S in order to assert that S ∈ PTileFIN , and this

need seems unavoidable. However this is not something we have yet been able to

show in general. The possible vectors are bounded, which may belie some clever

trick for making PTileFIN arithmetical, but this is thus far elusive.
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Lastly, recall thatATileFIN ∈ Π0
1, it would seem natural to derive some notion

of measure on a prototile set’s tilings, in order to derive the following conjecture -

an analogue of Kucera’s key result (see [23] for an exposition):

Conjecture 7.2.3 (C. 2019). For a notion of positive measure on S-tilings, for

some prototile set S, if a tiling T has positive measure:

• T is aperiodic.

• T encodes some Martin-Löf Random.

However, the work to identify a suitable notion of measure was not yet under-

taken. We suspect that this can be achieved by means of analysis on the ‘colour

density’ for coloured edges/Want tile quadrants.

It is also worth noting that the following conjecture is unresolved:

Conjecture 7.2.4. The tiling method due to Socolar in [47] does indeed lead to

total planar aperiodic tilings.

It is our strong opinion that this is true by means of an application of WKL to

some additional machinery added to the construction that is presented. However,

the details have not yet been worked out to see if this can be achieved.

Finally, we have our conjecture from chapter 6:

Conjecture 7.2.5. There exist ECA prototile sets of 8 tiles.

As noted there, this cannot be formed of Wang tiles, but there is likely some

way of cutting a planar representation of a given ECA into a regular single prototile

per part of each rule. Shapes for this result would probably resemble interlocking

tilings that look like a double conjoined ‘H’, as detailed in [32].

Finally, we note that the work in Chapter 5 on Weihrauch reducibility for tiling

problems as principles has the capability to be taken much further. We alluded

to one, for which we gave a definition of WIPT , accompanied by the following

estimate of Cωω ≤W C2ω ? Cω ? WIPT .

Indeed, we consider that there are many further applications for tiling prob-

lems, in particular for dimensionality ≥ 2 and for non-Euclidian planar tilings.
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A good starting point for the latter is the result due to Beauquier, Muller, and

Schupp in [4]. Here, they showed that a tiling problem known as “the Bar Prob-

lem” - the question of whether a plane that has holes in it can be covered with

(1× n) ‘bars’ - is NP -complete in the Euclidian plane, however in the hyperbolic

plane it becomes polynomial time.

Overall, we hope that we have demonstrated some interesting results regarding

tiling problems, and laid down some framework and exposition that encourages

future results.
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