
 

 

 

 

 
 

Uncertainty estimation for QSAR models using 

machine learning methods 
 

 

 

 
By 

 

Christina Maria Founti 
 

 

 

 

A study submitted in partial fulfilment of the requirements for the degree of Doctor of 

Philosophy 

 

 

 

The University of Sheffield 

Information School 

 

 

 

September 2019 

 

  

 

  



 

 

 

 

  



 

 

 

 

 

  



 

 

 

 

 

  



 

 

i 

 

Acknowledgements  

In what seems like the end of a four-year long race there are many people I would like to thank for helping me 

reach the finish line.  

First and foremost, I want to thank my supervisors Professor Val Gillet and Jonathan Vessey for the guidance, 

unlimited patience and support over the last four years. 

I am very thankful to Dr. Dave Evans and the computational chemistry and chemoinformatics group at Eli Lilly, 

including Prashant Desai and Suntara Cahaya from the US division, for their useful advice and kindness during 

my 6-month secondment. I would also like to extend my thanks to the D3i4AD consortium administration team 

for making this secondment possible. Additional thanks go to my colleagues at Lhasa Limited for their kindness 

and help during my short placement. 

I would also like to express my gratitude to Professor Peter Willet and the Sheffield Chemoinformatics group for 

their helpful advice and constant encouragement. Particular thanks to my colleagues who have been a great source 

of inspiration and motivation: Matt, Lucy, Antonio, Giammy, Jess and James. 

Thank you to all my friends in the department who have made these four years a lot more pleasurable and fun: 

Mengdie, Sukaina, Soureh, Sally, Wasim, Marc and Alex. I’ll miss our badminton matches, coffee meetups and 

dinners. I’m also very appreciative of previous and current members of the iSchool admin team for always 

shedding the light in any glooming question related to all the paperwork. 

I’m very thankful to my extended family and friends located at various places in the world who provided me with 

moral support even from afar. Special thanks go to my housemates and the friends I’ve met in UK who have 

helped me stay sane at difficult times and feel like family by now. Particularly: Serena, Alexandros, Raquel, 

Barby, Chiara, Leandro, Roxana, Hannuun and Elli. 

More than anyone I would like to thank my parents for their love, support and encouragement in everything I do. 

Without their help I would never have made it until here. Words are not enough to express my gratitude and thanks 

to Lorenzo for his unlimited support from the first day in this journey. 

Finally, this work would not have been possible without the financial support of the BBSRC, the European 

Union’s Seventh Framework Programme, Lhasa Limited and Eli Lilly. 

  



 

 

ii 

 

 

  



 

 

iii 

 

Abstract 

Providing safe, timely and affordable treatments is a major challenge addressed by big pharma. An important 

computational technique that is established in risk assessment as an alternative method to animal testing is 

Quantitative Structure-Activity Relationship (QSAR) modelling. In drug discovery, QSAR models are utilised to 

predict the properties of new compounds, thus reducing the number of tests required and associated risks of 

potential side effects leading to high costs and drug attrition. Yet, their value is limited in the absence of 

information regarding the reliability of their predictions. 

The current research contributes to the understanding of limitations associated with uncertainty estimation 

methods for QSAR models and their implications on the validation of Absorption, Distribution, Metabolism and 

Excretion (ADME) models. The aim of this thesis is to investigate the value of machine learning algorithms in 

the estimation of errors in QSAR models and report on their performance for different ADME endpoints.  

The study focuses on the evaluation of error models as a method for identifying poorly predicted compounds and 

estimating the uncertainty of QSAR predictions. Assessment of the models takes into account the correlations of 

the error estimates to the actual prediction errors and the magnitude of the error estimates in relation to the 

experimental error. The error models are then integrated in the conformal prediction framework for the estimation 

of compound-specific prediction intervals. For this purpose, a new normalisation method that combines error 

models and applicability domain features is defined. The results of the assessment suggest that the performance 

of error models is influenced by the quality of the QSAR model and the presence of measurement bias in the 

modelled ADME data. It is shown that considering different types of features in the error models provides a 

flexible approach for optimising not only the efficiency of prediction intervals but also ensuring that they are 

correlated to the actual prediction error. 
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Chapter 1 Introduction 

In the present age of Big Data, machine learning algorithms have emerged as an indispensable tool for the 

exploration of complex data across many domains. In chemoinformatics, machine learning algorithms are applied 

to mine chemical databases and identify trends in experimental data that may be exploited for chemical property 

prediction, particularly, in the study of Quantitative Structure-Activity Relationships (QSAR) and Absorption, 

Distribution, Metabolism and Excretion (ADME) property prediction. These techniques are of primary interest in 

the pharmaceutical industry where they are used to guide drug development, but also in the regulation of chemicals 

for the assessment of risk. Despite their widespread use, the use of machine learning algorithms has been criticised 

due to the lack of reliability estimates for their predictions. A range of approaches for the estimation of reliability 

in QSAR predictions are available, yet, there is no consensus on a single best approach: one method involves 

estimating the errors of a prediction model using a second model, i.e., an error model. 

This thesis aims to investigate the performance of error models and assess whether these are useful for the 

estimation of uncertainty in physicochemical and ADME property models. The focus is on evaluating error 

models in the detection of poorly predicted compounds and the estimation of uncertainty in QSAR predictions 

with confidence. The objectives of this study are threefold: 1) to assess the predictive performance of regression 

error models, 2) to evaluate the utility of error models in the detection of prediction error outliers and 3) to evaluate 

the utility of error models as methods in confidence estimation. The contents of each chapter are outlined below. 

Chapter 2 provides a brief introduction to chemoinformatics and defines basic concepts such as molecular 

similarity and the representation of molecules. It also discusses the use of chemoinformatics techniques that are 

applied to support the drug discovery process.  

Chapter 3 introduces the theoretical assumptions of QSAR modelling, the main components of a model and the 

guidelines for the development of a standard modelling workflow. It discusses the importance of statistical 

techniques for the purpose of model optimisation and validation, and introduces the standard measures used to 

assess model performance. The main methods for estimating the reliability of QSAR predictions using the concept 

of the applicability domain is reviewed and an introduction to confidence estimation methods applied in QSAR 

is provided. 

Chapter 4 describes the datasets that were used to build the underlying QSAR models and error models that were 

investigated the experimental chapters that follow. 
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Chapters 5 to 7 describe the experimental work carried out in this thesis and report the results of the investigations. 

Chapter 5 describes the QSAR modelling workflow and presents the underlying models that were used as a base 

in the investigations of the following chapters. Chapter 6 presents the error models that were built for the 

estimation of prediction errors of the underlying models’ predictions. The error estimates are analysed and 

evaluated for their ability to rank predictions based on their true accuracy. The size of the error estimates is also 

assessed while taking into account the experimental error of the data. This is done by applying an information 

theoretic framework, which requires that measurements and predictions are represented as probability 

distributions. In Chapter 7 conformal prediction is applied to estimate prediction intervals using the estimates of 

error models and their results are analysed to evaluate the utility of error models in confidence estimation.  

Finally, Chapter 8 summarises the conclusions of this work, outlines the limitations and makes suggestions for 

future investigations.
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Chapter 2 Chemoinformatics 

2.1 Introduction 

Chemoinformatics is focused on the development of computational methods that address chemical problems and 

facilitate decision-making processes in the chemical and related industries. The emergence of the term dates to 

the late 1990s  and is linked to the technological advances of the time that resulted in increasing chemical data 

generated by the industry and the research community (Engel, 2006). Yet, important statistical techniques had 

already been developed for the study of organic chemical structures from as early as the ‘30s (Fujita & Winkler, 

2016).The invention of computers in the 1940s meant that they would be available for research by the 1950s. 

During that decade, a lot of work focused on documentation, such as the development of methods for archiving, 

processing and centralising collections of data of the Chemical Abstracts Service (CAS) (Powell, 2000; Willett, 

2008). The storage and retrieval of chemical information in databases were among the first challenges addressed, 

which helped establish fundamental concepts and methods for the representation of chemical compounds in a 

machine-readable format by the end of the decade. The next three decades were followed by the development of 

computational methods for the analysis of substructures in chemical databases and their extension to more 

advanced applications, such as the development of structure-activity relationships and chemical expert systems 

for automated structure elucidation and computer-aided synthesis (Engel, 2006; Leach & Gillet, 2007). By the 

early 1990s, advancements in biotechnology and high-throughput screening technologies contributed to the 

development of molecular modelling and structure-based virtual screening techniques, which created new 

opportunities for the discovery and development of new drugs (Lavecchia & Di Giovanni, 2013; Powell, 2000). 

This chapter is a brief introduction to the basic concepts of molecular similarity and molecular representation in 

chemoinformatics. It also discusses how chemoinformatics has contributed to the development of the modern 

drug discovery process and illustrates the types of problems that chemoinformatics techniques aim to address. 

2.2 Similarity-property principle 

A concept that is widely used in chemoinformatics applications is that molecules with similar structures are likely 

to exhibit similar chemical properties (Johnson, Basak, & Maggiora, 1988). This is more widely known as the 

similarity property principle (Maggiora, Vogt, Stumpfe, & Bajorath, 2014) and its implications extend to the 

interactions of molecules in biological systems and their ability to bind to biological targets. As a result, the 

concept of molecular similarity is widely applied, for example, in similarity searching to search for molecules that 
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are similar to a known compound with a desired property; or in quantitative structure-activity relationships to 

predict the activity of new compounds that are structurally similar to other compounds that have been tested. 

However, the definition of similarity is not trivial as it depends on the molecular representation selected to 

investigate a structure-activity relationship (Nikolova & Jaworska, 2003). A main limitation of the similar 

property principle is that it not continuous, as it is too simple to explain more complex, chemical interactions 

(Bender & Glen, 2004). This introduces discontinuities in the structure-activity relationship caused by molecules 

with similar structures but significantly different bioactivity values (Maggiora, 2006). These discontinuities are 

referred to as activity cliffs and, recently, they have been exploited to understand the limitations of structure-

activity relationships and how these may be best utilised in the structural optimisation of new compounds(Cruz-

Monteagudo et al., 2014; Stumpfe, Hu, Dimova, & Bajorath, 2014)). 

2.3 Molecular representation 

In chemistry, molecular structure is encoded using three main formats: structure diagrams, molecular formulas 

and systematic names. Structure diagrams are the most frequently used and information rich representation of the 

three, as they illustrate the topological arrangement of atoms and bonds in the structure using chemical symbols 

and lines. This representation enables chemists to estimate molecular properties (e.g. electrostatic) empirically or 

theoretically based on their intuition of inter- or intra-molecular interactions of the atoms using pencil and paper. 

Chemical diagrams also represent information that is often implicit to the structure and can do this via formalisms, 

e.g. d-, l- stereochemistry, which may be easily interpreted by a chemist but more difficult to interpret by a 

machine. Molecular formulas provide a summary of the atom count and atom types but can be ambiguous, as the 

same molecular formula may be used to describe more than one chemical structure (Table 2-1). More than one 

chemical name may be available to describe a single structure and even though a systematic, unambiguous name 

of a structure may be defined, it may only be intuitive to chemists. 
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Table 2-1. Example of chemical nomenclature for caffeine  

Graph 

 

Systematic Name 1,3,7-trimethyl-2,3,6,7-tetrahydro-purine-2,6-dione 

Chemical Name 

1,3,7-trimethylpurine-2,6-dione 

1,3,7-trimethylxanthine 

Caffeine 

Molecular formula C8H10N4O2 

 

2.3.1 Chemical representation in computers 

Various techniques that translate chemical representations to machine-readable formats have been developed, 

which facilitate the storage and processing of chemical information in computers. The methods that are more 

widely used are mathematical graphs, connection tables and linear notations; although these are used mainly in 

the representation of small organic molecules. More specialised representations and notations are available for 

more complex structures, such as proteins, polymers, mixtures and inorganic molecules. 

Mathematical graphs and connection tables. Mathematical graphs may be used to define two-dimensional 

structural diagrams where atoms and bonds are represented, respectively, by nodes and edges (Engel, 2006). The 

graphs preserve the topology of the structure and atom information but also strictly adhere to the valence 

connectivity rules that apply to chemical structure diagrams. The properties of mathematical graphs have been 

utilised in the development of search algorithms for the identification of substructures and isomorphic structures 

in chemical databases as well as the development of indices that summarise the molecules’ topology in structure-

activity relationship studies.  

 A connection table may encode two- or three-dimensional structural information of a molecule in tabular form. 

A simple connection table consists of two main sections whereby the first is a list that enumerates all the atoms 

present in the structure and the second is a table that enumerates the atoms’ bonds to other atoms (Leach & Gillet, 

2007). More detailed connection tables contain additional properties, such as the atoms’ coordinates, bond order, 

stereochemistry centres or atom charge. The most widely used connection table representations are MDL’s 

Molfile and the SDF format.  
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Linear notations. Linear notations translate connection tables into a string representation following a set of rules. 

This representation was developed to support fast search, transmission and compact storage of large collections 

of molecules in chemical databases. One of the earliest linear notations used, from the mid-60s until the 80s, was 

the Wiswesser Line Notation (WLN). The WLN notation represented molecular structures as a string of letters; 

and each letter represented a structural fragment. It was then replaced by the Simplified Molecular Input Line 

Entry System (SMILES) notation, which was easier to interpret even by non-experts in the field (Xu & Hagler, 

2002).  

The SMILES strings represent atoms by their atomic symbols; with uppercase characters denoting that they are 

aliphatic and lowercase characters that they aromatic. Hydrogen atoms are supressed, as in all representations, 

unless they belong to functional groups, which are enclosed in brackets. The notation also uses special characters 

to encode charges, bond order, chirality and isomers. Rings represented by attaching a number to the atoms of a 

ring-opening bond and branches are enclosed in parentheses (Leach & Gillet, 2007; Weininger, 1988). An 

important requirement for the storage and retrieval of the correct structures in database systems is that there should 

correspond a unique and unambiguous string representation to each molecular structure (Xu & Hagler, 2002). 

This is done through canonicalization, which assigns atoms of a molecular graphs a unique order. The Morgan 

algorithm is a well-known method for applying canonicalization, which orders the atoms by calculating their 

connectivity value over a number of iterations (Leach & Gillet, 2007). Atoms are ordered by descending 

connectivity values and ties are dealt with by taking into account the atomic number and the bond order. Canonical 

SMILES that are unique for each molecule are generated in a similar way using the CANGEN algorithm (Leach 

& Gillet, 2007). 

 The International Chemical Identifier (InChI) was developed by the International Union of Pure and Applied 

Chemistry (IUPAC). It was mainly developed for the purpose of establishing a universal identifier and to address 

unresolved issues of SMILES strings regarding stereochemistry and tautomers. Each unique, chemical identifier 

is a canonical alphanumeric string that encodes the structural information of the structure in ‘layers’ of substrings 

i.e., constitution, charge, fixed hydrogens, stereochemistry, isotopes and the reconnected layer. As standard InChI 

strings increase in length and become more complex as molecule size increases, they can be replaced with standard 

InChI keys, which are compact chemical identifiers generated by hashing (Heller, McNaught, Pletnev, Stein, & 

Tchekhovskoi, 2015).  
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Table 2-2. The connection table representation for caffeine in MDL Molfile format generated using Marvin Sketch 

(ChemAxon, 2016) and linear notations retrieved from DrugBank (Wishart et al., 2018). 

Connection table 

 

Canonical SMILES CN1C=NC2=C1C(=O)N(C(=O)N2C)C 

InChI InChI=1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3 

InChI Key RYYVLZVUVIJVGH-UHFFFAOYSA-N 

 

2.3.2 Molecular descriptors 

A descriptor is a numerical representation of one or more features in the molecule’s structure and may be the 

output of logical or mathematical operations applied to the molecular representation or an empirical estimate from 

experimental data. More than 5,270 molecular descriptors, which are only included in the latest version of 

DRAGON software(Todeschini & Consonni, 2009), have been developed to convey the chemical information 

that is present in a molecular structure and have a wide scope of application. However, only few descriptors may 

be relevant to a specific structure-property relationship, while others may contain redundant information. The 

relevant descriptors are identified using descriptor selection techniques and are encoded as a set of numerical 

values for each molecule, i.e., a descriptor vector, that can be processed by computational algorithms to make 

predictions or perform similarity search. An overview of description selection methods is provided in the 

following chapter. 

There are different ways of organising the molecular descriptors. Based on scope, descriptors may be classified 

into global or local, as they describe a property of the whole molecule or a property of its structural components, 
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i.e., fragments, respectively. Fragment descriptors may also be combined to compute the property of larger 

fragments or the whole molecule (Kubinyi, 1993b; Leach & Gillet, 2007), an important technique in the 

development of QSAR. Based on the dimensionality of the structural information encoded, they may be classified 

into: a) 0D, which include molecular weights and counts of atoms and bonds, b) 1D, which consist of functional 

and fragment counts, c) 2D, which are calculated from two-dimensional molecular graphs, d) 3D, which are 

generated from the three-dimensional structure and structural conformation of the molecule and e) 4D, which take 

into account multiple structural conformations. A more detailed description is provided below on 1D and 2D 

descriptors that are widely used in the study of QSARs. 

Constitutional. The simplest and most rapid descriptors to calculate for a molecule are the counts of atoms, bonds 

and rings. These can be calculated from the 2D connection table. The number of heteroatoms, hydrogen bond 

donors and acceptors are indicators of the overall binding capacity of a molecule, as they may be utilised to form 

intramolecular or intermolecular interactions. The number of multiple bonds, rotational bonds and aromatic rings 

carry information about bonding capacity, flexibility and the overall volume of the structure. These descriptors 

have a low discriminating power among molecules and are frequently used along with other types.  

Topological indices. The representation of molecules as topological graphs makes it possible to encode their 

structural information in matrices from which topological indices (TIs) that describe the size, connectivity and 

shape of the molecule may be derived (Leach & Gillet, 2007; Winkler, 2002). TIs were first introduced in work 

of Wiener in the late 1940s and later evolved into molecular descriptors for structure-property relationships in 

diverse datasets (Katritzky & Gordeeva, 1993). The first generation TIs are integer indices and characterise the 

molecules’ branching and composition. A characteristic example is Wiener’s index, also referred to as the path 

number, which is defined as the sum of bonds for all atom pairs and was designed to correlate with the boiling 

point of alkanes. A limitation of first generation TIs is that the same value may be calculated for more than one 

molecule (Balaban, 1995), thus, not allowing their structures to be differentiated. Second generation TIs consist 

of real numbers and take into account the degree of atom connectivity, i.e., the number of atoms attached to the 

bond. The best known example is Randić’s molecular connectivity index, which encodes the sum of the bond 

connectivities of all atoms (Leach & Gillet, 2007). This was later generalized by Kier and Hall’s valence 

connectivity indices, which include longer atom paths and heteroatoms with additional valences. Another example 

is Balaban’s average connectivity index, which encodes the presence of cyclic structures (Katritzky & Gordeeva, 

1993). Third generation indices are derived from complex matrix operations and include Kier and Hall’s 

electrotopological indices (E-state), which encode information on atom valence and sigma electrons, thus, 

encoding the influence of atoms that are more distant (Winkler, 2002) .   

Fingerprints. Fingerprints represent molecular structure as bitstrings that encode the presence or absence of 

substructures in a molecule by setting the bits to 0 or 1, respectively. These were originally developed for fast 

screening and similarity searches in chemical databases but have been redefined for use as descriptors in QSAR. 
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They may be generated following the definition of substructure dictionaries or rules to identify all the possible 

patterns of atoms in a structure and are classified into three, main fingerprint systems: structural keys, hashed 

fingerprints and circular fingerprints.  

Structural keys are bit string dictionaries that encode specific functional groups, ring systems, heteroatoms or 

other structural features. This means that other structural features that are present in the molecules will not be 

encoded. They are defined by applying substructure searches in compound libraries. As the structural features are 

assigned to specific bit positions, the information encoded in the set bit positions may be used to aid the 

interpretation of structure-property results and identify important structural features (Leach & Gillet, 2007). Two 

well-known dictionary systems are the MDL and the BCI structural keys. The MDL Molecular ACCess System 

(MACCS) dictionary contains the definition of 960 keys, which encode the nature of the atoms, bonds and the 

atom environment of specific structural features. Another MDL set of 166 keys encodes the atom 

properties.(Durant et al., 2002). Focused dictionaries that encode special features of interest may also be defined 

using the BCI fingerprint system, which allows the definition of structural keys by the user based on a specific or 

non-specific definition of atoms and bonds (Cereto-Massagué et al., 2015; Leach & Gillet, 2007).  

Hashed fingerprints encode all the structural features that are present in the molecule. First, an algorithm 

exhaustively generates linear paths through the structure of molecules; then, a hashing algorithm encodes these 

paths into the bits of the fingerprint representation. Unlike structural keys, they are not interpretable as the set bit 

positions cannot be mapped to the structural features (Leach & Gillet, 2007). Daylight fingerprints are generated 

by producing exhaustive lists of linear paths with varying length for every structure. The presence of these paths 

is encoded in a molecular fingerprint of fixed length that may be sparsely populated, i.e., fewer bits are set to 1. 

As information density increases with molecular size and complexity, the fingerprint typically requires 

optimization through the process of folding (“Daylight Theory Manual,” 2011). For Unity fingerprints, paths of 

varying size in a structure are identified and encoded in different fingerprint regions. Certain fragments can also 

be encoded in the form of ASCII strings. Unity fingerprints have a size of 988 bits out of which 928 bits capture 

the presence of the defined paths in the compound, while the rest encode specific atom types, rings and their 

frequency of occurrence (Wild & Blankley, 2000). 

Unlike structural keys and hashed fingerprints that were developed for substructure screening applications, 

circular fingerprints were developed to encode important structural features for SAR studies (Rogers & Hahn, 

2010). Furthermore, instead of relying on predefined structures, circular fingerprints encode structural information 

on the local neighbourhood of atoms in the molecule (Glen et al., 2006). Extended connectivity fingerprints 

(ECFPs) treat atoms as centres of concentric neighbourhoods and encode information about the connectivity of 

atoms and their environment by examining a neighbourhood within a specified radius. ECFPs are derived by 

assigning identifiers to all atoms using a variation of the Morgan algorithm and a hashing function. Depending on 

the required detail of their application, ECFPs can be optimized for the neighbourhood radius, fingerprint size and 
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frequency of occurrence for each identifier. The functional class fingerprint (FCFP) is a variation of ECFP that 

encodes features of pharmacophores(Rogers & Hahn, 2010). This allows for atom types that are identified as 

halogens, hydrogen bond donors or acceptors, aromatic or ionisable in a structure to be encoded using a non-

specific identifier that is representative of its functional class.  

Atom-Pair descriptors. An atom pair is defined as the shortest path containing two non-hydrogen atoms and is 

measured by the number atoms that are present in the bonded path (Leach & Gillet, 2007). It may also be extended 

to include a wider range of atoms. The information encoded in atom pair descriptors includes atom type, 

hybridization, structural environment and substructure size. Atom pair descriptors were originally developed to 

encode structural features from high dimensional representations for SAR studies without the requirement of 

complex mathematical transformations but are also widely used in similarity searching (Carhart, Smith, & 

Venkataraghavan, 1985). 

Physicochemical properties. Different to the topological descriptors which are calculated directly from the 

molecules’ structure, physicochemical descriptors are estimated, empirically, from available experimental data 

(Katritzky & Gordeeva, 1993). Widely used molecular descriptors include properties such as lipophilicity and 

molar refractivity, which are described below. Other physicochemical descriptors include molecular weight, 

molecular volume and molecular surface area may be estimated using fragment-, atom- or property-based 

methods.  

The logarithm of the octanol-water partition coefficient, LogP, is one of the most experimentally accessible 

properties that is used to model lipophilicity with many available implementations for its estimation (Mannhold, 

Poda, Ostermann, & Tetko, 2009). It is directly associated to other properties, such as aqueous solubility and 

membrane permeability (Kubinyi, 1993a). Well-known methods for the estimation of LogP include: The CLogP 

program, which calculates LogP values by adding the empirical LogP values of core fragments and, then, applies 

a set of correction factors for intermolecular interactions. Ghose and Crippen’s method estimates LogP as the sum 

of its atom contributions, which are estimated from a regression model that consists of the contribution of 115 

atoms types to the lipophilicity of approximately 8.3 thousand compounds. A variation of this method is based on 

a linear function of the number of atoms and correction factors for rigid, non-lipophilic carbons and intramolecular 

hydrogen bonds (Hou & Xu, 2003). Another approach for the estimation of LogP by Moriguchi et al. uses a 

structure-property regression model based on the number of hydrophobic and hydrophilic atoms as descriptors 

(Moriguchi, Hirono, Liu, Nakagome, & Matsushita, 1992). 

Molar refractivity is a widely used physicochemical parameter, which is an expression of the overall polarizability 

of a molecule. In QSAR studies, it has been correlated with other additive properties, like lipophilicity, molar 

volume and steric bulk. These have shown that molar refractivity may be used to predict the binding of a structure 
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to a polar surface or its steric hindrance to the binding site of a receptor. Available methods for its estimation are 

mainly atom- and fragment-based (Kubinyi, 1993a). 

2.4 Chemoinformatics in drug discovery 

In the early 1990s, the appearance of new computational tools and automated processes in the pharmaceutical 

industry introduced changes in the traditional drug discovery pipeline (Figure 2-1). Delays caused at the early 

stages of drug discovery, particularly in the identification of biologically active molecules against a disease target, 

severely slowed down the entire process and increased the cost of drug development candidates (Xu & Hagler, 

2002). 

 

Figure 2-1. Traditional drug discovery pipeline 

New strategies implemented were aimed at making the synthetic and screening processes more efficient for the 

discovery of lead compounds. These included the deployment of high throughput screening (HTS) technologies, 

which had been previously been used only as initial screens for potential drug candidates in the companies’ 

existing records, in a process referred to as ‘hit-to-lead’. The hit-to-lead optimisation process is iteratively applied 

and involves the screening of a chemical library, the validation and prioritisation of the hits identified, as well as 

the application of structure-activity relationships for the identification of a lead series (Duffy, Zhu, Decornez, & 

Kitchen, 2012).  

The emergence of combinatorial chemistry technologies permitted the synthesis and testing of thousands of 

molecules in parallel, thus, significantly reducing the amount of time to produce new compounds. The application 

of these techniques resulted in an explosion of assay data and demanded the development of new, data-driven 

methods to deal with the analysis of the increasingly large amounts of data (Bajorath, 2018). However, this came 

with the realisation that the majority of hits obtained from parallel screens were not useful, as they did not have 

suitable absorption, distribution, metabolism, excretion and toxicology (ADMET) properties. The problem was 

addressed with the development of chemical-diversity based methods in chemoinformatics at the time. These were 

focused on the design of diverse compound libraries for screening experiments with the aim of increasing the 

number of hits and identifying new lead series (Xu & Hagler, 2002).  

Nevertheless, the implementation of computer-aided technologies in the drug discovery process has not reduced 

the time or the costs for the development of a new drug nor have they been able to predict failures due to clinical 

toxicity (Ekins et al., 2019). The average time taken to move a drug from the early stages of research to the market 

is 10-12 years with an average cost estimate of 2.56 billion dollars (DiMasi, Grabowski, & Hansen, 2016). Thus, 
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there is interest in identifying compounds that are likely to fail early, while the cost of failure is still low. 

Computational techniques may be applied prior to experimental testing to eliminate molecules with low predicted 

bioactivity or poor ADMET and toxicity properties that would make them more likely to fail during clinical trials. 

Other techniques, such as virtual screening and molecular modelling, may be used to study the drug-target 

interactions and guide the optimisation process(Firdaus Begam & Satheesh Kumar, 2012).  

The study of molecular structure features and their association to a biological phenomenon, also known as 

structure activity relationship (SAR), is a computational tool that is used for the prediction of active structures. 

When the correlation of features and measured activity is good and an accurate numerical prediction may be 

derived then this may be referred to as a QSAR.  

The role of QSAR methods as an alternative to assay-based methods for the prediction of the biological activity 

and ADMET properties of compounds has been recognised (ECHA, 2016). QSAR predictions for compounds 

with no available experimental data may be used as an initial screen of large chemical libraries to support the 

prioritisation of compounds with low risk property profiles for testing. Further to their predictive role, QSAR 

models may also be used to interpret mechanisms of bioactivity based on the structural features of molecules. 

Examples of such models have been applied to identify novel structures and structural analogues (Guha & Jurs, 

2004), as well as to augment data where measurements in experimental data are unavailable (Papa, Kovarich, & 

Gramatica, 2009). Finally, they provide a solution towards the reduction of animal testing in toxicological studies 

and constitute an alternative, non-testing method for the assessment of risk in chemical substances for regulatory 

purposes (REACH) (Tetko et al., 2008). 

2.5 Conclusions 

This chapter has introduced the field of chemoinformatics and presented a fundamental concept that has been 

exploited for the development of many chemoinformatics techniques applied in drug discovery, namely the 

similarity-property principle. However, the principle is merely an abstraction and may be invalidated by 

considering alternative methods of molecular representation. Yet many descriptors have been developed to encode 

structural features and physicochemical properties of molecules, which facilitate the analysis and organisation of 

compound collections using computational methods. The implementation of chemoinformatics in drug discovery 

and drug development aims to aid the discovery of new chemical entities and their optimisation into useful leads 

and drug candidates. In particular, QSAR studies are widely applied to guide decision making at the early stages 

of drug discovery, i.e., in screening experiments, but also to optimise the biological activity and ADMET 

properties that are responsible for the failure of drugs during clinical trials. A detailed account on the development 

and application of QSAR methods is provided in the following chapter. 
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Chapter 3 Developing a QSAR model  

3.1 Introduction 

This chapter introduces the main concepts of QSAR and the requirements for the development and validation of 

a QSAR model. First, it outlines the available techniques for descriptor selection, then it describes the main theory 

of state-of-the-art machine learning algorithms and validation methods. The last section of this chapter introduces 

the concept of the applicability domain and the various ways that this has been applied to evaluate the reliability 

of future predictions.  

3.2 Overview of QSAR 

A QSAR model is a mathematical or statistical function that describes the dependence of the measured property, 

or biological activity, on the structural features of the molecules in a dataset (Kubinyi, 2002). The model is derived 

by applying statistical techniques to the dataset and may be used to predict the property or activity of untested 

molecules. Predictions are obtained as numerical estimates using regression methods or as labels using 

classification methods.  

According to Fujita & Winkler (2016) QSAR modelling methods are divided into classical approaches and 

machine learning approaches. Classical approaches use simple, linear regression models to predict the relationship 

between the structure and biological activity of molecules. An example is Hansch analysis, which estimates the 

bioactivity of molecules additively as the sum of the molecules’ electronic, hydrophobic and steric parameter 

contributions (Hansch, 1969). Free-Wilson analysis uses a similar approach where the bioactivity of a molecule 

is estimated by summing the bioactivities of the structural fragments (Free & Wilson, 1964). Due to their 

theoretical basis, these methods produce interpretable models that are able to explain which structural features 

contribute the most to the observed response (Fujita & Winkler, 2016). However, the scope of classical QSAR 

methods is local and the models’ applicability domains are restricted to series of congeneric compounds with little 

structural variation.  

Machine learning approaches use statistical algorithms to learn nonlinear structure-activity relationships between 

independent variables and the experimental response of large datasets. There are two broad machine-learning 

approaches: the frequentist, which treat experimental observations as random, repeatable events and infer an 

optimum model based on a maximum likelihood parameter estimate; and the Bayesian, which treat model 
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parameters as random variables and learn the model from prior data (Varnek & Baskin, 2012). Frequentist 

methods report predictions as point estimates while Bayesian methods explicitly report the uncertainties of their 

predictions, which are useful in decision-making (Sahlin, 2015). Although Bayesian methods are computationally 

demanding, recent improvements in computational resources and the optimisation of Bayesian algorithms, such 

as neural networks, have increased their use in QSAR (Ma, Sheridan, Liaw, Dahl, & Svetnik, 2015). However, 

because these methods rely on large numbers of descriptors and often lack mechanistic transparency, obtaining 

interpretative models is not always feasible. Frequently used alternatives are nonparametric methods based on 

ensemble trees, such as Random Forest (RF), and kernel methods, such as Support Vector Machines (SVM). Note, 

that, only the former may produce uncertainty estimates for individual predictions, directly. Section 3.4 provides 

a more detailed account of the algorithms applied in this thesis. 

The key components in the development of QSAR models are the quality of the data, the representation of 

structural features and the modelling algorithm, which determines how the similar property principle is applied. 

To achieve high accuracy for a QSAR model it is required that the data is of high quality, as model performance 

is limited by the accuracy of the experimental data. The molecular structures are typically represented as numerical 

descriptors or fingerprints indicating the presence or absence of structural features, however, these need to be 

relevant to the modelled property. The selection of important variables may be guided by expert knowledge or 

automated descriptor selection methods, which may also be embedded in the modelling algorithm itself. Prior to 

training the modelling algorithm, it may also be required that the descriptor ranges are scaled so that they 

contribute proportionally to the model. The modelling algorithm is then optimised using methods such as cross-

validation and validated on external data, if available.  

3.3 Descriptor selection 

The representation of chemical data poses a challenge in the development of accurate QSAR models. As discussed 

in the previous chapter, the information present in a chemical structure may be encoded in numerical form as 

molecular descriptors or as fingerprints. Machine learning methods are efficient in handling large numbers of 

descriptors, yet, the risk of overfitting due to added noise in the form of non-relevant descriptors (Topliss & 

Edwards, 1979) and descriptors carrying redundant information is high (Danishuddin & Khan, 2016; Hawkins, 

2004). Therefore, it is required that feature selection and dimensionality reduction techniques are applied for the 

removal of unnecessary variables.  

In QSAR, the aim of feature selection is to identify the descriptors that drive the prediction of the target variable. 

Ideally, this process is implemented during cross-validation, or by descriptor sampling using resampling methods, 

to avoid introducing descriptor bias into the model (Tetko et al., 2008). Feature selection techniques may be 

applied as filters on the original set of descriptors, as wrappers to the modelling workflow, or they may be 
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embedded in the modelling algorithm. Filter methods are independent of the modelling algorithm and have the 

advantage that they are easy to apply prior to model development. The descriptors are filtered using a relevance 

score that is based on, for example, the correlation with the target variable, the distance between the nearest 

neighbours in descriptor and target space (Robnik-Šikonja & Kononenko, 2003) or mutual information with other 

descriptors (Danishuddin & Khan, 2016). Wrapper methods make use of the model’s error to evaluate descriptor 

relevance by sampling different subsets of descriptor combinations. These methods are model-specific and their 

effectiveness is influenced by the nature of the modelling algorithm and the number of descriptor subsets 

(Chrysostomou, Chen, & Liu, 2008; Danishuddin & Khan, 2016). Embedded feature selection methods are built-

in to the modelling algorithm and, thus, specific to the algorithm’s underlying assumptions.  

An example of a filter is the Variable Importance in Projection (VIP) score that is obtained from the partial least 

squares algorithm. A VIP score represents the amount of variance that an individual descriptor explains in the 

model (Abdi, 2010). As the average of the VIP scores’ sum of squares is equal to 1, the minimum threshold of 1 

is, typically, applied for descriptor selection (Tran, Afanador, Buydens, & Blanchet, 2014). However, other 

methods for deriving robust thresholds have been suggested (Akarachantachote, Chadcham, & Saithanu, 2014) 

due to the sensitivity of this criterion to the underlying data distribution and its lack of theoretical justification. 

Variable importance scores may also be obtained from Random Forests. These may be computed as the 

permutation accuracy importance score (Strobl, Boulesteix, Kneib, Augustin, & Zeileis, 2008), which measures 

the change in prediction accuracy caused by the random permutation of a variable; or the mean decrease in 

impurity (Menze et al., 2009), which measures the change in the prediction variance attributed to each variable. 

Dimensionality reduction techniques, also referred to as feature extraction, aim to simplify the complex structure 

of a high dimensional space by applying linear or nonlinear transformations to the features (Jindal & Kumar, 

2017). The result is a low dimensional space, typically of two to three variables, that preserves the most important 

information in the data without deteriorating the model’s performance. Principal Component Analysis (PCA) 

applies a linear transformation to the independent variables to generate a new set of orthogonal, i.e., uncorrelated 

variables. Although PCA is efficient for data with linear underlying structures, it cannot handle data with more 

complex, nonlinear structures. These are effectively addressed using nonlinear dimensionality reduction 

techniques based on manifold learning (Gaspar, Baskin, & Varnek, 2016).  

3.4 Modelling algorithms 

The theory underlying four algorithms with widespread use in QSAR is outlined below with a focus on regression. 

These algorithms are representative examples of four machine-learning families, namely dimensionality reduction 

methods, nearest neighbour methods, kernel methods and ensemble tree methods.  
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3.4.1 Partial Least Squares 

Partial Least Squares (PLS) regression is based on the principles of PCA and multiple linear regression. First, the 

PLS algorithm transforms both the independent (X) and dependent (Y) variables into a common set of orthogonal 

X-scores, also known as latent variables, while accounting for most of the covariance between X and Y. This step 

is followed by applying linear regression between the latent variables, T, and Y for the estimation of Y for new 

compounds. Equation 3.1 describes the decomposition of the original variable matrix, X, as a product of T and 

their weights (loadings), P. In Equation 3.2, the estimate of the independent variable vector, Ŷ, is obtained as the 

product of the new latent variables, the regression weights, B, and the weight matrix of X, C. 

X=TPT 3.1 

Ŷ=TBCT 3.2 

It is generally the case that the first few latent variables encode most of the variation present in the original 

variables. As a result, high dimensional data may be reduced into a significantly smaller number of variables that 

contain most of the information present in their original representation. Although two to three latent variables are 

frequently selected in methods such as PLS, the optimal number of latent variables may be selected using cross-

validation. 

3.4.2 Nearest Neighbours 

The K-Nearest Neighbours (KNN) algorithm is an instance-based learner that does not require learning of the 

mapping function. In regression, the algorithm memorises the training data and makes predictions for new data 

by calculating the weighted average response of their nearest neighbours in descriptor space. Nearest neighbours 

are usually determined in Euclidean space, although other metrics may be used based on domain knowledge about 

the training data distribution (Chomboon, Chujai, Teerarassammee, Kerdprasop, & Kerdprasop, 2015). The 

original version of the algorithm uses uniform weights that assign equal contributions to all neighbouring values. 

However, different weighting schemes may be introduced based on domain knowledge about the training set 

distribution in descriptor space (Anava & Levy, 2016). The simplest variation of the KNN uses a distance-based 

function, i.e., inverse square distance, to assign a higher contribution to the values of the neighbours closest to the 

test compound (Mitchell, 1997; Nigsch et al., 2006). Optimisation of the KNN algorithm is simple as it requires 

the parametrisation of a single parameter K, which is the number of nearest neighbours. For a small K, predictions 

will be biased towards the estimates of their local neighbourhood while for large K, where model predictions are 

estimated from overlapping neighbourhoods, the predictions will converge to the data mean. The selection of K 

may involve making a trade-off based on the intended purpose of the model. For example, a smaller K value may 

benefit the accuracy of a predictive model, while a mechanistic model aiming at the description of an overall trend 

may benefit from setting a larger K value (Altman, 1992).  
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The algorithm is sensitive to the presence of outliers and sparse regions in the data that cause the performance of 

KNN to deteriorate. Limitations of the algorithm include its inability to deal with unscaled descriptors, high 

dimensional data and skewed data distributions.  

3.4.3 Support Vector Machine 

The support vector machine (SVM) algorithm was originally introduced for the binary classification of labelled 

data. The algorithm uses a kernel function to map the training data into a high dimensional descriptor space where 

a linear separating hyperplane exists between the two classes. Although more than one hyperplane may exist, the 

optimal hyperplane is the one that yields the maximum separation of the two classes, thus, minimising the error 

of classification. A margin is defined by the ε-insensitive loss function, which controls the level of noise in the 

data that is tolerated by the model. The size of parameter ε determines the number of data points that will be used 

to fit the regression function. Another parameter, C, increases model complexity and corresponds to a larger 

number of support vectors and a harder margin that applies greater penalties to predicted output with large errors. 

These data points are known as the support vectors and consist of the training data that are closest to the hyperplane 

(Ivanciuc, 2007).  

In SVM regression, the objective is to find a function that maximises the deviation ε for all training data from the 

experimental response (Ivanciuc, 2007). This involves introducing slack variables that account for the deviation 

of data points from each side of the linear hyperplane. During fitting of the regression function, the prediction 

errors of training data located inside the margin are set to zero, while the prediction errors of training data outside 

the margin are proportional to their distance from the boundaries.  

The use of kernels in SVM makes the algorithm efficient in high dimensional spaces because of a mathematical 

property known as the kernel trick. Instead of evaluating the mapping function for every data point, the kernel 

trick allows its replacement by a dot product, which is easily computed between the test instances and each support 

vector. Consequently, rather than being trained on the data descriptors, the SVM algorithm is trained on the 

pairwise dot products of the data. Predictions are also obtained as dot products of the test data and the training 

data (Mahé, 2006). 

A more complex separating hyperplane may be constructed using a nonlinear kernel. Standard nonlinear kernels 

applied in SVM include the polynomial, the sigmoid and the radial basis function. Kernels that are specific to the 

chemical domain are also available such as the graph, Tanimoto, pharmacophore and matched-molecular pair 

kernels (Lavecchia, 2015).  

The radial basis function (RBF) is a Gaussian kernel function 𝜑 with 𝜑(𝑥) = 𝑒−𝛾||𝑥𝑖−𝑥𝑗||2
  and 𝛾 =

1

2𝜎2, where 𝑥𝑖 

is the test feature vector,  𝑥𝑗 is a support vector and 𝜎 controls the shape of the hyperplane (Ivanciuc, 2007). It is 
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commonly used in regression due to its efficiency in computing the dot product in high dimensional descriptor 

space.  

3.4.4 Random Forest 

Random forest (RF) is widely used, particularly in the field of QSAR, for its ability to build robust models and its 

built-in mechanisms for descriptor selection and internal validation. The algorithm is an ensemble tree method, 

which yields stable and accurate predictions by averaging the predictions of many unstable, random decision trees. 

A decision tree (DT) algorithm sequentially applies conditional rules to distribute the data into internal nodes and 

leaf nodes. During the growing phase, the decision tree learns the conditions that, if applied to the attributes of 

the training data, minimise the mean squared error of the tree. At each partition, the data are split into internal 

nodes or leaf nodes. Internal nodes consist of data with large variation in the target response, which need to be 

considered for further splitting by applying additional conditional rules. The growing phase ends when all data 

have been distributed into leaf nodes with low variation in the target response. The process is represented in the 

form of a directed graph in which the root node at the top contains the full dataset and branches out to layers of 

nodes that consist of the partitioned data. Each branch represents a conditional rule that is applied to the 

distribution of a single descriptor. In prediction, the conditional rules that have been learned during the training 

of the tree are applied on test data and the prediction for a given instance of the test data may be obtained as the 

average response values of the training data in the leaf node that it is placed in. 

Overfitting of the RF to the data is avoided by applying different stopping rules, i.e., on the response variation in 

the nodes, or by a process called pruning. Stopping rules are applied on each individual node during the DT 

growing process using the information impurity minimisation criterion, i.e., mean square error, to stop the splitting 

when the target response variation threshold is reached. Pruning is applied retrospectively to all trees in the forest. 

First, the DT is fully grown by recursively partitioning the training data and, then, the nodes where the response 

variation exceeds the target variation are pruned.  

In RF, each tree is grown on a bootstrap sample of the training data and using a random subset of descriptors. A 

bootstrap sample is a subset of the training data obtained by random sampling with replacement. Repeatedly 

drawn bootstrap samples result in a fraction of the training set not being sampled, which is referred to as the out-

of-bag sample. The out-of-bag sample may be used to assess the predictive performance of the RF in parallel with 

the training process, thus, reducing the requirement of a separate validation set. Predictions for unseen data are 

made by averaging the individual tree predictions. 
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3.5 Model validation 

Following model development, evidence of the model’s ability to generalise on unseen data is required to confirm 

that it is useful. The most rigorous form of validation is done using external data but considerations such as the 

model’s applicability domain and the underlying experimental assumptions of the training data need to be made. 

That is to say, the descriptor space of the external data should be representative of the descriptor space of the 

training set and that their experimental protocols and environmental constraints should match.  

In the absence of an adequate external test set, a random sample that is representative of the training set may be 

held out for model validation, typically, 10-20% of the training set size. As performance estimates will vary for 

different random samples, repeated holdout samples may be obtained to calculate a robust estimate of the average 

performance of a model (Consonni, Ballabio, & Todeschini, 2010; Raschka, 2018). However, the performance 

estimates obtained may not reflect the model’s performance on unknown data. Other rational sampling methods, 

such as diversity sampling and time-based data splitting may yield more realistic estimates of the models’ 

prospective performance (Golbraikh & Tropsha, 2002b; Martin et al., 2012; Sheridan, 2013a). 

Cross-validation is particularly useful for small datasets where holding out a set of compounds from the training 

set significantly reduces a model’s performance. N-fold cross-validation involves partitioning the training data 

into N folds and holding out one fold in each iteration, until all folds have been excluded. The model is trained at 

each iteration on N-1 folds, while the remaining fold is used for evaluation. The model’s performance is then 

reported as the average performance across the N folds. Increasing the number of folds, N, yields more accurate 

error estimates for the individual folds but also increases the variance of the average model estimate. As a result, 

large datasets where each fold may contain a small, insignificant number of compounds, e.g., less than five 

percent, will produce unreliable estimates and, therefore, it is suggested that leave-one-out cross-validation 

methods are avoided (Golbraikh & Tropsha, 2002a). Cross-validation is the gold standard for both the 

optimisation and the validation of QSAR models (Tetko et al., 2008).  During model optimisation, the best 

parameters are identified by minimising the average model error across all folds. However, this estimate is biased 

to the data and overoptimistic of the model’s prospective performance (Chirico & Gramatica, 2011; Krstajic, 

Buturovic, Leahy, & Thomas, 2014). An unbiased estimate of model performance may be obtained by applying 

nested cross-validation methods, which permit the estimation of the average model error that accounts for the 

optimal model parameters for alternative data splits (Filzmoser, Liebmann, & Varmuza, 2009; Krstajic et al., 

2014). Nested cross-validation consists of two loops: the inner loop, which is used to fit and optimise the model 

at each iteration of the outer loop, which is used to estimate the average model error over the different data splits 

represented by each fold. Repeated nested cross-validation methods, which involve adding an external loop 

whereby the data are randomised at each iteration of nested cross-validation, have also been used to produce an 



Chapter 3   Developing a QSAR model 

 

20 

 

interval estimate of the model’s error that may be used to assess whether additional data need to be collected or 

additional descriptors need to be investigated (Krstajic et al., 2014). 

 The coefficient of determination (R2), the root-mean-squared error (RMSE) and the median absolute error (MAE) 

metrics are calculated on training data to assess the regression models’ fit. Respective measures may be calculated 

to assess the predictive performance of QSAR models on cross-validation or external test data, but in this case 

they are referred to as the predictive squared correlation coefficient Q2 and the root-mean-squared error in 

prediction (RMSEP). Corrections in the calculation of Q2 have been proposed by several groups resulting to a 

total of five Q2 variants (Chirico & Gramatica, 2011; Roy et al., 2012; Schüürmann, Ebert, Chen, Wang, & Kühne, 

2008; Shi et al., 2001). Detailed evaluation of the available Q2 metrics by Todeschini et al. revealed that only one 

introduced by Consonni, Ballabio, & Todeschini (2009) was suitable for the reliable evaluation of QSAR models 

(Table 3-1). Yet, it requires that the test data is within the model’s applicability domain and, thus, their values are 

within the representative value range of the training set. The other variants of Q2 were shown to be either sensitive 

to transformations applied to the data, to overestimate the predictive ability or were not well correlated with the 

RMSEP estimate of external or holdout data (Todeschini, Ballabio, & Grisoni, 2016). The definitions of three 

main performance measures for the evaluation of model fit and the external predictive ability of QSAR regression 

models on a validation set of size N are provided in Table 3-1, where 𝑦𝑖,  𝑦̂𝑖  are the observation and the prediction, 

respectively, of each validation compound and 𝑦̅𝑡𝑟 is the mean observed response of the training set. The RMSEP 

and Q2 are calculated for external or holdout data.  

Table 3-1. Performance measures for the evaluation of regression models for prediction 

Metric Reference 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑡𝑟)2𝑁
𝑖=1

 
(Alexander, Tropsha, & Winkler, 2015) 

𝑅𝑀𝑆𝐸𝑃 = √
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁𝑒𝑥𝑡

𝑖=1

𝑁𝑒𝑥𝑡
 

(Consonni et al., 2010) 

𝑄2 = 1 −

(∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁𝑒𝑥𝑡
𝑖=1 )

𝑁𝑒𝑥𝑡

(∑ (𝑦𝑖 − 𝑦̅𝑡𝑟)2𝑁𝑡𝑟
𝑖=1 )

𝑁𝑡𝑟

 

(Consonni et al., 2010) 

 

High confidence may be placed in a model’s predictions if these are obtained in the absence of trends in the 

model’s error and predictions with large residual errors. Particularly in the case of local models, the predictions 

with residual errors that exceed a specified threshold may indicate the presence of compounds that are dissimilar 



Chapter 3   Developing a QSAR model 

 

21 

 

to the training compounds, i.e., novel compounds, with distinct structural characteristics or modes of action 

(Dearden, Cronin, & Kaiser, 2009). To ensure high model accuracy, outliers that exceed 2-fold of the experimental 

error value (Keefer, Kauffman, & Gupta, 2013) or 3-fold of the standard deviations from the residual error mean 

(Dearden et al., 2009), during internal validation, are usually excluded prior to rebuilding the model. In the case 

of global models that consist of many diverse structures, however, there is interest in detecting novel structures 

and incorporating them in the model to extend the model’s applicability domain and the model’s ability to predict 

new compounds accurately. 

The model’s errors should also be of similar size to the experimental assay error (Eriksson et al., 2003). Regression 

based on the minimisation of least square errors relies on the assumption that the model’s errors are random and 

normally distributed with a mean close to zero and constant variance, i.e., homoscedastic. The presence of trends 

in the models’ residual errors or significant departure of the residual error distribution from normality indicates 

the presence of systematic errors (Cortes-Ciriano, 2016; Roy, Ambure, & Aher, 2017), which may be attributed 

either to the presence of measurement bias in the data or the lack of important variables in the model. Systematic 

errors may be detected by analysis of the residual errors with the use of residual error plots (Dearden et al., 2009).  

3.6 Domain of applicability 

In practice, the accuracy of a QSAR prediction for an untested compound can only be determined retrospectively 

and following experimental measurement. Therefore, even if a model has been validated, it may still produce 

inaccurate predictions, particularly, when the test data are dissimilar to the training data and are located in regions 

of the chemical, descriptor or response space that are not well represented in the model, such as activity cliffs 

(Keefer et al., 2013; Maggiora, 2006). This is partly attributed to the bias of medicinal chemistry datasets in certain 

regions of the chemical space. In fact, in-house datasets are integrated into public datasets to  bias  the applicability 

domain (AD) of the latter and improve the accuracy of QSAR models (Tetko, Bruneau, Mewes, Rohrer, & Poda, 

2006).  

To be useful, QSAR predictions need to be accompanied by a statement regarding their confidence so that users 

of the model may be warned if a prediction is not reliable (Netzeva et al., 2005). In QSAR, the confidence in a 

model’s predictions is assessed by taking into account the relevance of the query compound to the chemical space 

of the training set (Sheridan, Feuston, Maiorov, & Kearsley, 2004), which is also known as the model’s AD. 

Compounds with high structural similarity to the training data are associated with reliable predictions made by 

interpolation inside the model’s AD, where the QSAR is valid; while predictions made by extrapolation are 

expected to be less reliable (Sahigara et al., 2012). 
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Many methods for defining the AD have been described in the literature but there has been little agreement as to 

how a model’s AD is optimally defined. From a higher perspective, AD methods can be divided into novelty 

detection methods (Mathea, Klingspohn, & Baumann, 2016) and error estimation methods (Toplak et al., 2014). 

3.6.1 Novelty detection methods 

Novelty detection methods rely entirely on the input variables of the training and test data and may be applied 

prospectively to the model’s use to obtain qualitative estimates of the predictions’ reliability. The objective of 

these methods is to classify compounds as inside or outside the model’s AD by applying empirical thresholds on 

the basis of their structural or molecular similarity to the training data. The boundaries are then used to distinguish 

between high confidence and low confidence predictions. For example, range based methods apply thresholds to 

each individual descriptor to form an N-dimensional bounding box or define the smallest possible space by 

applying geometrical boundaries to the descriptor value ranges of the training set (Sahigara et al., 2012).  

Continuous reliability estimates, which facilitate the application of more flexible, user-defined thresholds, are 

obtained from distance- and density-based methods. Distance-based methods calculate the distance between the 

test compound and a reference point in the training data; and evaluate the confidence in a prediction based on a 

defined statistical threshold. The reference point may be defined as a) the mean of a single or K nearest neighbours 

in the training set, b) the mean of all training set compounds or c) a cluster of compounds (Stanforth, Kolossov, 

& Mirkin, 2007). Equivalent methods based on similarity measures are defined when the structural representation 

of molecules is based on binary fingerprints rather than numerical descriptors. 

Distance-based methods 

Distance is typically calculated using the Euclidean, Mahalanobis or Manhattan distance metrics in 

multidimensional descriptor space (Jaworska, Nikolova-Jeliazkova, & Aldenberg, 2005; Sahigara et al., 2012). 

The Euclidean distance is the most frequently used metric and it is applied on previously standardised data. The 

Mahalanobis distance accounts for correlated descriptors and its calculation is similar to the Euclidean distance 

but also requires calculating the covariance matrix. The Manhattan distance is more suitable for non-continuous 

numerical descriptors (Jaworska et al., 2005). The definition of the distance metrics for two compounds x and y 

in N-dimensional descriptor space is provided in Table 3-2. 
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Table 3-2. List of measures used to calculate the distance between compound x and y 

Euclidean 𝐷𝐸 = √∑ (𝑥𝑖 − 𝑦𝑖)𝑁
𝑖=1

2
   

Manhattan 𝐷𝑀𝑁 = ∑ |𝑥𝑖 − 𝑦𝑖|𝑁
𝑖=1    

Mahalanobis 𝐷𝑀𝑁 = √(𝑋 − 𝑌)𝑇𝑆−1(𝑋 − 𝑌)  

S: covariance matrix      X, Y: descriptor vectors of x and y 

T: transpose of matrix 

 

The leverage is another related distance metric, which is used to assess the influence of training data points on the 

model’s fit, if excluded. This metric is proportional to the Mahalanobis distance when the reference point is the 

centroid of the training set, and it assumes that the multivariate descriptor distribution is normal. 

Training set compounds with a high leverage are more influential on the model’s performance; they stabilise the 

model (Jaworska et al., 2005) and are considered to extend the coverage of chemical space (Gadaleta, Mangiatordi, 

Catto, Carotti, & Nicolotti, 2016). The leverage of test data is useful for identifying compounds that are 

extrapolated by the model (Netzeva et al., 2005; Tropsha, Gramatica, & Gombar, 2003; Worth et al., 2005). The 

leverages of the data are derived from the calculation of the hat matrix, H, and model extrapolations are identified 

by comparing the leverage values to a warning threshold. The warning leverage is associated with the amount of 

noise in the prediction and is set to 3(p+1)/n, where p is the number of descriptors and n is the size of the training 

set. The parameters required for the calculation of the leverage of a compound 𝑖 with a descriptor vector 𝑥 to the 

training set with descriptor matrix 𝑋 are provided in Table 3-3. 

Table 3-3. Parameters for the calculation of leverage for a compound 𝑖 

Hat matrix 𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇 

Leverage for 𝑖 ℎ𝑖𝑖 = 𝑥𝑖
𝑇(𝑋𝑇𝑋)−1𝑥𝑖 

Warning leverage ℎ∗ = 3(𝑝 + 1)/𝑛 

A user-defined threshold is applied to assess whether a test compound lies inside or outside the boundaries of the 

AD. Five strategies for defining distance-based thresholds on the training data were investigated by Sahigara et 

al. (2012). The thresholds suggested by the authors are the following: 1) the maximum distance to the centroid of 

the training set; 2) double; or 3) triple the average distance to the centroid; 4) the 95th percentile of the training set 

distances; and 5) the sum of the average distance and the standard deviation of the distances multiplied by an 

arbitrary factor z. The fifth strategy was found to be stricter than the other four as it integrates information about 

the density of the local neighbourhoods of the query compound and, thus, excludes more compounds from the 



Chapter 3   Developing a QSAR model 

 

24 

 

AD compared to the other methods. It was concluded that, generally, the results obtained by applying the same 

threshold on different metrics may differ and that the choice of threshold needs to account for a trade-off between 

the number of training set compounds to be excluded and the improvement in model performance. 

Density-based methods 

Density methods evaluate the AD as the average of a Gaussian distribution in the multivariate descriptor space 

using kernel density estimation (KDE). KDE estimates the probability density of higher dimensional data as a 

function of known parametrical distributions (Netzeva et al., 2005). The representation of the AD using the 

probability density distribution of the data makes it possible to identify the highest density region occupied by a 

(user-defined) fraction of data in descriptor space. The potential of each compound is calculated using a known 

kernel function, for example, Gaussian, and statistical cut-off values may then be applied to define the AD 

threshold. Compounds with a smaller potential than the AD threshold are considered to be outside the AD 

(Sahigara et al., 2012).  These compounds are easily identified visually in low confidence regions of the density 

distribution and correspond to predictions that are extrapolated by the model with high uncertainty.  

Despite their simplicity in defining the AD of a model, novelty detection methods are inefficient in high-

dimensional spaces (Mathea et al., 2016; Netzeva et al., 2005) and are unable to explain the poor accuracy of a 

model’s predictions inside the AD. Reliability estimates with higher correlation to prediction accuracy may be 

obtained by applying consensus approaches, which combine various AD metrics, including algorithm-specific 

reliability estimates. Examples of these approaches are implemented in the works of Dragos, Gilles, & Alexandre 

(2009),  Sheridan (2012, 2013b, 2015) and Yun et al. (2017) and are discussed in the following section. A 

consensus approach that involves the integration of multiple AD definitions during model development has also 

been suggested by (Hanser, Barber, Marchaland, & Werner, 2016). The authors propose that the various AD 

methods contribute different types of information to the modelling process, all of which need to be taken into 

account to evaluate a new prediction. They categorise the methods based on the following three elements of 

information that a fully described AD should have: the relevance of the test data to the training data; whether the 

amount of training data is enough to yield an accurate model; and whether the model may yield confident 

predictions (Table 3-4).  

Table 3-4. Elements addressed in the definition of a model’s AD according to Hanser et al. (2016) 

Layer Element Method 

1 Relevance to training set Range, Similarity/Distance 

2 Sufficiency of data Density (D2NN) 

3 Confidence Density 
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3.6.2 Confidence estimation based on model error 

Confidence estimation methods are applied retrospectively to QSAR modelling as they rely on the model’s output 

and algorithm-specific reliability estimates (Mathea et al., 2016; Sahigara et al., 2012; Sushko et al., 2010). In 

machine learning, the confidence in a prediction is reported in the units of the endpoint, in the form of a prediction 

error estimate (Toplak et al., 2014) or an interval estimate. 

As mentioned before, the uncertainty estimates of the model’s individual predictions are not always directly 

available when using machine learning algorithms, however, these may be obtained by introducing additional 

techniques into the modelling process. For example, resampling methods may be applied to build an ensemble of 

models (Sahlin, Jeliazkova, & Oberg, 2014), whereby uncertainty is estimated as the variation of a prediction 

across the ensemble.  Another technique uses the model’s residual errors to build a model that may be used to 

estimate the errors of future predictions, i.e., an error model (Sheridan, 2013b). These may then be used to 

calculate confidence intervals for the model’s future predictions, i.e., prediction intervals. Other techniques may 

be used to estimate the prediction intervals, such as conformal prediction (Eklund, Norinder, Boyer, & Carlsson, 

2012) or modified ensemble tree algorithms (Feng, Svetnik, Liaw, Pratola, & Sheridan, 2019; Meinshausen, 2006; 

Zhang, Zimmerman, Nettleton, & Nordman, 2019). 

Prediction intervals are associated with a probability that the future measurement will be included within the 

defined value range (Willink, 2012). In statistical inference, a prediction interval (PI) is a range of values that 

contains the future observation, 𝑦𝑜𝑏𝑠, with a certain degree of confidence. A PI should not be confused with a 

confidence interval (CI) for the prediction as a CI only accounts for the uncertainty of the model’s 

estimates, 𝑢(𝑦𝑝𝑟𝑒𝑑 ); while a PI also accounts for the uncertainty of the future observation, 𝑢(𝑦𝑜𝑏𝑠 ). As a result, 

the PI for a future observation will always be wider than a CI of a prediction. For a confidence level of 95%, a PI 

is interpreted as follows: “It is estimated that at least 95% of the calculated PIs are correct, i.e., they contain the 

future measurements”. The PIs that represent the uncertainty of predictions from linear regression are calculated 

parametrically (Table 3-5). The assumption is made that the data are independent and identically distributed (IID) 

and the model’s errors are approximately normal or follow a t-distribution. Both types of intervals are calculated 

using Equation 3.3, but, as seen in Table 3-5 the error margin (EM) of the PI for a new prediction,𝑦̂𝑖 , contains an 

additional parameter. 

CI = 𝑦̂𝑖  ± 𝑡
(

𝑎

2
 ,𝑛−2)

 EM 
3.3 

Where t: critical value at (1-α) % confidence 
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Table 3-5. Error margins used to calculate intervals in linear regression and sampling. 

Interval type Error Margin (EM) Application 

CI of the observation 

mean 

𝑠𝑒√(
1

𝑛
+

(𝑥𝑖 − 𝑥)2

∑ (𝑥𝑖 − 𝑥)2𝑁
𝑖

) Linear regression 

𝑠√
1

𝑛
 Sampling 

PI of the individual 

prediction 

𝑠𝑒√ (1 +
1

𝑛
+

(𝑥𝑖 − 𝑥)2

∑ (𝑥𝑖 − 𝑥)2𝑁
𝑖

) Linear regression 

𝑠√ (1 +
1

𝑛
) Sampling 

 

Other known nonparametric methods for prediction interval estimation include bootstrap resampling, mean-

variance estimation, the delta approach and the Bayesian approach (Kümmel, Bonate, Dingemanse, & Krause, 

2018). Methods for PI estimation have also been developed for neural networks, which may also be applicable 

for nonlinear machine learning models (Rasmussen & Hines, 2003).  

3.6.2.1 Resampling 

The standard deviation from an ensemble of models built with resampling is reportedly the best estimator of 

accuracy of a model’s prediction (Kaneko & Funatsu, 2014; Tetko et al., 2008). It is considered the gold standard 

for the estimation of prediction errors as it is able to distinguish well between small and large errors (Tetko et al., 

2008). 

Ensembles may consist of hundreds of models trained using the same algorithm but different subsets of data, 

variables or model parameters. These may be built through the implementation of bootstrap sampling (Kaneko & 

Funatsu, 2014) or cross-validation methods (Baumann & Baumann, 2014; Tetko et al., 2008). Ensembles formed 

as a consensus of separately trained models using different algorithms have also been reported by Tetko et 

al.(2008). 

An ensemble prediction is calculated by averaging the predictions, 𝑦𝑖, of the individual models, 𝑘, and its 

confidence is estimated by the standard deviation (STD) of the prediction mean, 𝑦̅ (Equation 3.4). 

𝑆𝑇𝐷 = √
∑ (𝑦𝑖 − 𝑦̅)2𝑘

𝑖=1

𝑘 − 1
 3.4 

The standard deviation informs about the degree of discord in the ensemble. A large STD for a prediction, 𝑦, 

implies that the new data is very different to the training set and, thus, that the prediction is less reliable and that 
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the prediction is likely to have a large prediction error. However, predictions with a large STD may still have 

small prediction errors. In the study of Kaneko & Funatsu (2014) it was found that ensembles based on variable 

sampling are more efficient in identifying large prediction errors in diverse datasets, while ensembles based on 

data sampling are suitable for less diverse data. However, neither of the sampling methods is able to capture the 

bias in the predicted value (Kaneko & Funatsu, 2014), which is introduced in the model by the data distribution. 

While this bias may be accounted for in AD-based metrics, it has been difficult to integrate in ensembles (Kaneko, 

2018; Kaneko & Funatsu, 2014). This is mainly due to the complexity of joining the ADs of the individual 𝑘 

models, which are based on different variables (Kaneko, 2018). 

Another ensemble method for obtaining prediction error estimates was suggested by Tetko et al. (2008)and 

Sushko et al. (2010) and is based on the correlation between the distribution of a test compound’s predictions and 

the distribution of training set predictions in the ensemble. A correlation measure is defined as the maximum 

correlation coefficient of the ensemble predictions of the test compound with the predictions of the training set 

compounds. However, it is outperformed by the STD of prediction in the estimation of prediction errors (Tetko 

et al., 2008) 

3.6.2.2 Error models 

The use of error models to study the relationship of more than one AD metric and QSAR prediction errors has 

been investigated in the work of Sheridan (2012). Regression algorithms, such as RF (2013a) and SVM (Lapins 

et al., 2018) have been applied as a data-driven approach to investigate the influence of different types of variables 

on the model’s individual prediction errors (Mathea et al., 2016; Sheridan, 2012). Classification error models have 

also been reported in the literature (Carrió, Pinto, Ecker, Sanz, & Pastor, 2014; Dragos et al., 2009; Klingspohn 

et al., 2017), though, error estimates typically involve averaging of errors within binary or multi-category classes 

(Carrió et al., 2014). 

In the works of Dragos et al. (2009) and Sheridan (2012, 2013a) the consensus of AD metrics was shown to 

synergistically improve the estimation of errors in individual QSAR predictions. Dragos et al. (2009) built 

classification error models based on AD metrics and statistical-based metrics to distinguish between trustworthy 

and untrustworthy predictions of QSAR regression models. Although their approach does not produce compound-

specific reliability estimates, their results suggest that the robustness of reliability estimates may be improved by 

using a consensus of AD metrics. Their proposed framework minimises the occurrence of inaccurate reliability 

estimates in order to objectively apply an optimal AD threshold. Furthermore, they show that robust reliability 

estimates may be obtained by resampling QSAR descriptor subsets without prior treatment of descriptor 

correlations, and that applying an error-based threshold on the training data improves the performance of distance-

to-model approaches.  
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In his work, Sheridan (2012) provides evidence that the relative importance of algorithm-based reliability metrics 

and the similarity between the test and training set data varies across diverse datasets. A consensus AD approach 

was also utilised in Carrió et al. (2014). The Applicability Domain ANalysis (ADAN) approach uses a 

combination of six AD metrics to classify PLS and RF predictions into seven reliability categories (Carrió et al., 

2014). Each category represents the number of AD rules, i.e., thresholds, satisfied for each compound and is 

associated with a range of prediction error estimates from validation, which are used to compute approximate 

confidence intervals for each category. However, linear correlation between categories is apparent only on well 

behaved data distributions and models with good predictive performance.  

Similar results were obtained in (Sheridan, 2013a), after training a RF regression error model on the cross-

validation residuals of a RF QSAR model. Later work (Sheridan, 2015), revealed that similarity was a more 

important variable for the estimation of prediction errors only in the case of local, less diverse datasets. 

Considering the low performance of error models on cross-validation data, the value of the error models when 

applied to holdout or external data is not guaranteed. This is further supported by validation data supplied by the 

author on a different study (Sheridan, 2013a), which indicates that cross-validation yields too optimistic estimates 

compared to other validation methods, such as the use of time-split or neighbour-split test sets.  

Error models based on PLS (Wood, Carlsson, Eklund, Norinder, & Stålring, 2013), KNN and SVM (Lapins et al., 

2018) algorithms have also been reported in the literature but may require optimisation, which is not required in 

the case of RF. Another benefit of RFs is that resampling and feature selection are embedded in the algorithm, 

which yield robust prediction error estimates and facilitate the identification of important AD variables. In contrast 

to the training of a QSAR model it is not clear as to whether error models should be optimised or not: as 

optimisation of the error models introduces bias to the error model it is likely to limit its predictive performance 

on new test data (Lapins et al., 2018). 

A method for assessing uncertainty estimation techniques that are based on resampling and error modelling 

involves treating observations and predictions as distributions. The uncertainty estimates generated by each 

method are applied to convert predictions to Gaussian distributions and a likelihood-based measure is used to 

assess the performance of the alternative techniques (Sahlin et al., 2014; Tetko et al., 2008; Wood et al., 2013). 

This requires that the probability distributions of the observations are known, in other words, that information 

about the experimental uncertainty of the data is available. The technique that produces the highest likelihood 

score for test data is the one that yields the optimal prediction distributions, which are those with the smallest 

uncertainty estimates for the maximum amount of overlap with the observations (Sahlin et al., 2014; Wood et al., 

2013).  
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3.6.2.3 Conformal prediction 

Conformal Prediction (CP) is a confidence estimation framework with successful applications in a range of 

classification and regression tasks solved by machine learning. Further to its use in chemoinformatics (Ahmed et 

al., 2018; Svensson, Norinder, & Bender, 2017) and QSAR (Cortés-Ciriano, Bender, & Malliavin, 2015; Eklund 

et al., 2012; Norinder, Rybacka, & Andersson, 2016; Sun et al., 2017) , the method has been used in applications 

such as biomedical diagnosis (Papadopoulos, Gammerman, & Vovk, 2009), bioinformatics (Nouretdinov, 

Gammerman, Qi, & Klein-Seetharaman, 2012), network traffic prediction (Dashevskiy & Luo, 2008), image 

analysis (Lambrou et al., 2010) and facial recognition (Eliades & Papadopoulos, 2017), cyber security (Wechsler, 

2015) and stock price prediction.  

Definitions 

CP is a nonparametric method and non-specific to the modelling algorithm, thus, it may be applied on top of any 

machine learning algorithm to obtain empirical uncertainty estimates for its predictions (Papadopoulos, Vovk, & 

Gammerman, 2011). A conformal predictor yields a prediction interval (PI) as output, which corresponds to a 

range of values that is expected to contain the future observation with confidence. The confidence threshold, 

which is set by the user, is applied on the model’s error distribution from existing data rather than parametric 

distributions, i.e., t-distribution or z-distribution, for the calculation of prediction intervals. 

Several implementations of CP that differ with respect to the model’s training schedule are available: transductive 

(TCP), inductive (ICP) and aggregate (ACP). The original implementation is based on a TCP training schedule 

whereby the model is retrained following the prediction of every additional test prediction made. An ICP training 

schedule involves training the model only once; following partitioning of the original training set of size 𝑙 into 

the proper training set and the calibration set of size m and 𝑞, respectively, where 𝑞 < m and 𝑙 = q + m. The 

ACP training schedule, involves repeatedly sampling the calibration set from the original training set to produce 

an average error distribution that improves the robustness of the model’s error estimates. Note that the calibration 

data are excluded from training of the underlying algorithm and only used to infer the model’s empirical error 

distribution. 

The concepts of CP for regression tasks have been introduced by (Papadopoulos et al., 2011). Given the vector of 

a training sample 𝑘 with {𝑧1, 𝑧2 … , 𝑧𝑙}  ∈ 𝑍𝑘, where 𝑧𝑖 represents a compound with a descriptor vector of 𝑥𝑖 and 

an observation of 𝑦𝑖, a conformal predictor estimates the confidence in all of the model’s predictions 𝑦̃ for a new, 

test compound with a descriptor vector of 𝑥𝑙+1. The only assumption made is that all (𝑥𝑖, 𝑦𝑖) pairs are 

independently and identically distributed (IID) or, at least, exchangeable.  

The nonconformity, 𝑎𝑖, i.e., the dissimilarity of 𝑧𝑖 to the compounds of the training sample k is given by a function 

of the model’s error, i.e., the signed residual error or the absolute residual error, which is referred to as a 
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nonconformity measure 𝐴 = 𝑓(𝑧).  The nonconformity scores of calibration data may then be ordered to produce 

a reference ranked list, {𝑎1,𝑎2, … 𝑎𝑖}𝑘,which, in essence, represents the model’s empirical error distribution. The 

nonconformity score of each reference compound is associated with a p-value (Equation 3.5), which is interpreted 

as the fraction of compounds in the list that are at least as “nonconforming” as the reference (Linusson, 2017).  

𝑝(𝑦̃) =
# {𝑖 = 1, … , 𝑙 + 1: 𝑎𝑖 ≥  𝑎𝑙+1}

𝑙 + 1
 3.5 

The error of new predictions is then estimated by applying a significance level threshold 𝜀 ∈ [0,1] to the list. The 

error estimate is equal to the value of 𝑎𝜀 that corresponds to the p-value that satisfies the condition given in 

Equation 3.6:  

𝑝(𝑦̃) >  𝜀 3.6 

Thus, the calculation of the PI for all possible predictions of the model, 𝑦̃, at a confidence level of (1- 𝜀) % is 

given in Equation 3.7. 

𝑃𝐼𝑦̃ =  𝑦̂ 𝑖 ± 𝑎𝜀 3.7 

However, Equation 3.7 yields uniform PIs for all compounds, which assume that the model’s uncertainty for every 

new prediction is equal. Compound-specific prediction intervals, where PIs are scaled to the uncertainty 

associated with the individual prediction, are obtained with the use of normalised nonconformity measures. These 

are defined as  𝐴𝑛 =
𝑓(𝑧)

𝜎
, where 𝜎 is an uncertainty estimate derived from a mathematical function, error model 

or a reliability score obtained from the evaluation of the AD (Eklund et al., 2012; Norinder, Carlsson, Boyer, & 

Eklund, 2015; Norinder et al., 2016; Svensson et al., 2018). Thus, the normalised PIs for predictions 𝑖  at a 

confidence level of (1- 𝜀) % are calculated as in Equation 3.8. 

𝑃𝐼𝜀,𝑖 =  𝑦̂𝑖 ± 𝑎𝜀𝜎𝑖 3.8 

The requirement for higher confidence yields larger intervals and, naturally, PIs are more likely to include the 

future observation. At a fixed confidence level, e.g., 95%, normalised PIs obtained from different normalisation 

functions may vary. The agreement of the different normalised nonconformity measures is assessed for a dataset 

by comparing the sizes of the average PIs (Bland & Altman, 2003; Johansson, Boström, Löfström, & Linusson, 

2014; Rasmussen & Hines, 2003).  

The validity of the PIs is guaranteed by the assumption that the data are IID, or at least exchangeable, which is a 

common requirement in statistical inference and machine learning methods. It is satisfied by designing the 

calibration and test data using random sampling methods, as they maintain the original probability distribution of 

the data. This assumption guarantees that future observations of the model will in fact be present in the specified 
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PIs at the stated probability. However, the assumption cannot be verified for new data until after the experimental 

measurements are made; nor may it be, strictly, satisfied in diverse, pharmaceutical datasets (Eklund, Norinder, 

Boyer, & Carlsson, 2015). Global QSAR models are periodically updated with predictions to account for the 

newly assayed compounds, although predictions outside the desirable range are commonly excluded. The 

diversity of compound structures is also greater in global datasets as a pharmaceutical company may work on 

multiple projects that focus on different molecular scaffolds represented by different probability distributions. 

Furthermore, temporal information may be associated with the data, since historical data is used to guide the 

design of new compounds. As a result, the validity of the CP models may be compromised and the uncertainty 

underestimated. Nevertheless, CP may still be useful even if validity is only approximate. The training schedule 

applied for global QSAR models is compatible with a TCP setting, where the CP model is updated with every 

new data prediction that is tested. However, as discussed in (Eklund et al., 2015), this setting is impractical for 

their development. Instead, the ICP setting, in which the model is trained once, is usually implemented due to its 

computational efficiency.  

Evaluation of Conformal Predictors 

The performance of conformal predictors is evaluated by their validity and efficiency. Validity holds if the CP 

confidence estimate is confirmed on test data. In other words, a CP is valid, when the percentage of PIs that do 

not include the future measurement, i.e., the error rate of the CP, is less than or equal to the significance level. 

The PIs estimated from a CP that is not valid are, thus, not useful. A conservative CP, that yields a much smaller 

error rate than the significance level results in large PIs. The L2-norm, which is defined in Equation 3.9 for an N-

dimensional space, may be used to measure the difference of an ACP’s expected error rate to the obtained error 

rate for the full confidence distribution or part of it (Svensson et al., 2017). 

𝑙2 = √𝑥1
2 + ⋯ + 𝑥𝑁

2  
3.9 

The efficiency of CPs is evaluated by the average PI size for a dataset. As previously mentioned, efficiency is 

greater at lower confidence levels where PIs are narrower than in higher confidence levels. Narrow PIs are more 

informative as they can be used to make decisions that require a greater precision. However, narrow enough PIs 

may not be easy to obtain at very high levels of confidence, e.g. 95% and, typically, setting the confidence level 

threshold at 80% yields a suitable trade-off between confidence and efficiency.  

In the work of Eklund et al. (2012), normalised PIs were constructed by applying error models as normalisation 

functions. The error models, similar to AD models, are considered as an alternative method for the estimation of 

prediction uncertainty based on the variability of the data in feature space. However, the combination of 

uncertainty from different sources has not been addressed. 
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3.7 Conclusions 

This chapter has introduced the concepts of QSAR modelling and the main steps required to build a QSAR model. 

These include the selection of descriptors, the optimisation of the modelling algorithm, validation of the model’s 

performance on known data and the definition of the model’s applicability domain. The main focus has been the 

development of regression QSAR models using supervised learning methods and the approaches for assigning 

confidence estimates to their individual predictions. The literature suggests that defining the model’s AD is a 

nontrivial task; and that combining information obtained from different AD methods and error-based reliability 

estimation methods may be required to obtain confidence estimates. A promising method is that of error modelling 

using regression algorithms, which may be used to explore the relationship between reliability metrics and QSAR 

prediction errors. Assuming that error models are predictive, then they may be useful for the estimation of 

confidence in individual QSAR predictions. Conformal prediction provides a robust mathematical framework for 

this purpose; as it utilises calibration data to estimate the confidence in the model’s predictions. Estimates are 

obtained in the form of PIs, whereby reliability estimates derived from the definition of ADs or error models may 

be used to generate compound-specific PIs. The predictive performance of error models and their utility for the 

purpose of confidence estimation for ADME models is investigated and discussed in greater detail in the following 

chapters of this thesis.  
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Chapter 4 Description of Datasets 

4.1 Introduction 

This chapter describes the datasets that are used throughout the thesis. The sections that follow provide an 

overview of the dataset characteristics and provide additional details regarding the pre-processing and data 

curation steps applied to the data. Eleven datasets were studied in total and consist of one physicochemical 

property dataset, namely LogD, and ten datasets that represent ADME endpoints. Each of the datasets contains 

experimental measurements from a single assay.  

4.2 LogD dataset 

The distribution coefficient, LogD, is the concentration ratio of a compound between two immiscible solvents, 

such as n-octanol and water. It is closely related to the partition coefficient, LogP, which quantifies the 

lipophilicity of a molecule in neutral form; however, the LogD yields a more realistic estimate of lipophilicity in 

physiological conditions as it quantifies all forms of the molecule, i.e., the ionised and neutral states (Wang et al., 

2015). In ADME prediction, LogD may be used as an estimate of membrane permeability. The wide availability 

of reliable LogP measurements in public datasets has prompted the development of many methods for the 

estimation of LogP. However, these are lacking for LogD  for which large datasets of experimental data are not 

available and the estimation is more complex (Tetko et al., 2006; van de Waterbeemd & Gifford, 2003). 

The LogD dataset (CHEMBL3301363) used here was retrieved from CHEMBL (v.21) and consists of 4200 data 

points. Each data point corresponds to a single compound represented by its SMILES string and a single 

measurement of its coefficient of distribution (LogD) in a buffer solution of n-octanol and water at pH = 7.4. This 

dataset is a small subset (7%) of the LogD AstraZeneca dataset that has been described in several publications 

and is associated with an experimental assay error estimate of 0.1 LogD units (Wenlock & Carlsson, 2015; Wood 

et al., 2011). 

Prior to the calculation of descriptors, compounds with missing measurements and molecular structures 

representing mixtures of compounds, inorganic molecules or salts were removed using the RDKit salt stripper 

node in KNIME. The remaining structures were standardised by applying the RDKit structure Normalizer node 

which removes salts, neutralises charged structures and resolves the structures in which the stereochemistry is not 

accurately represented. The canonical SMILES were then generated using the RDKit Canonical SMILES node. 
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Three compounds with missing measurements were identified and subsequently excluded from model training 

and validation. Following the data curation process and the removal of 27 structures that could not be resolved; a 

total of 4170 structures were used to generate canonical SMILES strings for the calculation of molecular 

descriptors the details of which are provided in the following chapter. The holdout data was sampled randomly 

for the purpose of model validation with 85% of the dataset assigned to the training set and the remaining 15% to 

the test set. Table 4-1 below shows the descriptive statistics of the training set and holdout test set measurement 

distributions. 

Table 4-1. Descriptive statistics of the LogD training set and holdout test set 

Data Partition Size Range Median Mean 
Standard 

Deviation 

Train 3574 [-1.50, 4.50] 2.37 2.19 1.19 

Test 596 [-1.48, 4.50] 2.33 2.16 1.24 

4.3 ADME datasets 

Ten datasets representing ADME endpoints were supplied by Eli Lilly. Due to their confidential nature, the 

training set and test set of each dataset were provided as pre-calculated matrices of descriptors, which were 

calculated following the same data curation protocol described for the LogD dataset in KNIME. Details on the 

calculated descriptors are provided in the following chapter. All figures reported below refer to the curated data. 

An external test set was provided by Lilly, which was derived from temporal ordering, i.e., time-split, and 

represented future data measurements. However, separate holdout test sets were generated by randomly sampling 

20% of the training data. The holdout test sets were used to validate the underlying models built in Chapter 5 and 

the error models in Chapter 6. Both the randomly selected holdout test sets and the temporal test sets were used 

to validate the conformal prediction results in Chapter 7. 

The provided measurements had been previously normalised at Eli Lilly to fall within the range [0, 1] by applying 

a log transformation, unless these were reported as a percentage or a fraction. Measurements that were reported 

as censored data, e.g. >1 or <0, were excluded. Repeated measurements in the data were averaged and replaced 

by their mean value for modelling. Table 4-2 below lists the endpoints and the descriptive statistics of the training 

sets and the external test sets of all ADME datasets. 
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Table 4-2. ADME endpoints and descriptive statistics of the training sets and external test set measurements 

Dataset Endpoint Partition Range Mean 
Standard 

Deviation 
Median Size 

1 
Brain-to-plasma 

concentration ratio 

Train [0.00, 1.00] 0.39 0.21 0.35 866 

Test [0.04, 1.00] 0.40 0.22 0.38 230 

2 Total concentration, plasma 
Train [0.00, 0.96] 0.34 0.11 0.34 928 

Test [0.03, 0.81] 0.34 0.09 0.35 248 

3 
Fraction unbound protein –

mouse, brain 

Train [0.00, 1.00] 0.49 0.23 0.48 1429 

Test [0.06, 1.00] 0.51 0.23 0.50 375 

4 Passive permeability 
Train [0.00, 1.00] 0.18 0.19 0.10 2089 

Test [0.02, 0.80] 0.19 0.19 0.11 548 

5 
Fraction unbound protein-

human, microsomal 

Train [0.0, 1.00] 0.18 0.14 0.13 2401 

Test [0.03, 0.85] 0.22 0.16 0.15 621 

6 
Fraction unbound protein –

mouse, plasma 

Train [0.00, 1.00] 0.38 0.20 0.37 3133 

Test [0.00, 0.85] 0.32 0.18 0.32 824 

7 Metabolic stability human 
Train [0.00, 1.00] 0.28 0.25 0.19 2959 

Test [0.00, 1.00] 0.33 0.30 0.23 804 

8 Metabolic stability-dog 
Train [0.00, 1.00] 0.33 0.28 0.25 2962 

Test [0.00, 1.00] 0.34 0.27 0.28 803 

9 
High throughput solubility 

assay 

Train [0.02, 1.00] 0.47 0.27 0.47 12022 

Test [0.04, 1.00] 0.47 0.27 0.46 3116 

10 Metabolic stability-rat 
Train [0.00, 1.00] 0.49 0.34 0.45 22094 

Test [0.00, 1.00] 0.44 0.33 0.36 5524 

 

The repeats were used to estimate the error of the individual measurements using the coefficient of variation. The 

coefficient of variation was calculated for compounds with repeated measurements as the standard deviation of 

the repeats divided by their mean. The average experimental error of the datasets was estimated as the median 

coefficient of variation (CoV) of the compounds with repeated measurements. Table 4-3 shows the percentage of 

compounds with repeated measurements in the training data, which were used to calculate the CoV, and the in-

house estimates of experimental error for each dataset that were provided by Eli Lilly. The latter were calculated 

as the MSD, i.e., the square root of the Minimum Significant Ratio (MSR) that is a statistical parameter that 

characterises the reproducibility of an assay’s measurements in two or more experiments (Haas, Eastwood, 

Iversen, & al., 2013). The MSR is an estimate of assay variability and it is obtained from historical data using 

analysis of variance (ANOVA). Both estimates were similar for some datasets but for others, the median CoV 

estimates were too small and, thus, it was decided that the latter should be used. The estimates of experimental 

error were used in the validation of the QSAR models, error models and conformal prediction models in the 

following chapters.  
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Table 4-3. Percentage of repeated measurements in training set and experimental error estimated as the coefficient of 

variation (CoV) and the square root of the minimum significance ratio (MSD). 

Dataset 
Percentage of repeats 

in training set 
Median CoV MSD 

1 5.9 0.072 0.133 

2 5.7 0.089 0.087 

3 5.9 0.030 0.061 

4 6.2 0.078 0.070 

5 6.8 0.074 0.044 

6 8.6 0.050 0.069 

7 100 0.262 0.218 

8 100 0.188 0.184 

9 4.2 0.027 0.133 

10 11.3 0.126 0.182 

4.4 Conclusions 

This chapter has provided details on the datasets that were used to develop the models in the following chapters. 

The details provided also include information regarding data processing and data curation steps, as well as the 

experimental details of the data. Further information on the calculation of molecular descriptors are provided in 

the next chapter. 

 

 



 

37 

 

Chapter 5 Developing the Underlying QSAR Models  

5.1 Introduction 

Poor physicochemical and ADME properties are identified as a major cause in the high failure rates of drug 

candidates during drug development. There is, therefore, a need to have access to methods that can predict these 

properties, both, accurately and reliably. The aim of this chapter is to build QSAR regression models for the 

datasets introduced in Chapter 4 using different state-of-the-art machine learning (ML) algorithms and validate 

their performance. The main objective is to produce QSAR models that will be utilised as underlying models in 

the investigations of the following chapters, which focus on the estimation of errors in individual QSAR 

predictions using error models. 

5.2 Methods 

This section details the methods that were applied for the development of the QSAR models. A summary of the 

QSAR modelling workflow is illustrated in Figure 5-1. It covers the steps followed for data curation/preparation, 

the descriptor filtering process, the optimisation of the modelling algorithms and their evaluation using validation 

techniques. Details on the definition of applicability domains are provided wherever these are applicable. A 

summary of each of the steps is described first before full details being given below. 

 
Figure 5-1. Summary of the QSAR modelling workflow 

 

The first step was described in the previous chapter and details regarding the output of data curation were also 

provided. 

The second step dealt with the calculation of molecular descriptors and descriptor selection. Numerical descriptors 

that are suitable for use in regression analysis and are calculated from the two-dimensional representation of 

molecules were used throughout this thesis. The presence of collinear descriptors, which carry redundant 
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information and introduce noise to the model, was treated by applying filters based on a correlation threshold and 

variable importance methods. The descriptors were standardised as this resulted in improved performance for all 

algorithms. 

The third step investigated the optimisation of four regression algorithms and the selection of the best models by 

means of cross-validation. The final step evaluated the average performance of the models on holdout data and 

their applicability domain. 

5.2.1 Molecular representation and feature selection 

The molecular descriptors for all datasets were calculated using the RDKit Descriptor Calculation node in KNIME 

and consisted of 117 constitutional, physicochemical and topological descriptors in total. The molecular 

descriptors of the training data were standardised using unit-variance scaling, and the mean and variance values 

used to scale the training data were applied to the test data, for all datasets. 

Redundant information present in the descriptors was removed by excluding collinear descriptors with a pairwise 

correlation coefficient greater than 0.95 (Pearson’s r) in KNIME. Invariant descriptors were also removed. This 

procedure was followed for all datasets, i.e., the LogD dataset and the ADME datasets. 

As discussed in Chapter 3, feature selection may also be applied using the variable importance scores obtained 

from the PLS and RF algorithms of previously trained QSAR models. Different feature selection methods were 

investigated for the LogD dataset as described below. Feature selection was not attempted on the ADME datasets 

due to their large number and the limited benefits seen for the LogD data.  

The PLS and RF models were trained on non-invariant (i.e., not constant), near orthogonal descriptors using 

default settings for both algorithms. The variable importance scores were extracted from the models with the aid 

of scripts using Python’s sci-kit learn library. Descriptors were removed as having negligible contribution to the 

models’ performance by applying a lower threshold of 1.0 to their PLS variable importance scores (Tran, 

Afanador, Buydens, & Blanchet, 2014) and an arbitrary lower threshold of 0.2 to the RF feature importance scores. 

The two descriptor subsets obtained by PLS and RF variable importance filtering were then used to train LogD 

models using four regression algorithms. 

The Gini impurity score of each descriptor in the RF was used to generate ranking of the feature’s importance. 

Gini impurity represents the number of times the descriptor is selected for growing the trees in the forest and is 

indicative of the descriptor’s contribution to the minimisation of error. The end result was the compilation of four 

descriptor subsets (Table 5-1); which were then used to train the algorithms with default settings.  
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Table 5-1. Description of the five descriptor sets compiled by filtering 

Descriptor set Details 

1 All descriptors 

2 Non-invariant, near orthogonal descriptors (r ≤ 0.95) 

3 Non-invariant, near orthogonal descriptors (r ≤ 0.95), 

Feature Importance (RF) 

4 Non-invariant, orthogonal descriptors (r ≤ 0.95), 

Variable Importance in Projection (PLS) 

 

5.2.2 Model optimisation 

The parameters of four ML algorithms (PLS, SVM, KNN and RF) for LogD and two algorithms (SVM and RF) 

for the ADME datasets were optimised using the reduced subset of descriptors (Table 5-1, Descriptor set 2). The 

optimal parameters for each algorithm were found by implementing a grid search algorithm in a cross-validation 

loop. All models were built, optimised and validated using Python’s sci-kit learn library. The gridsearch 

optimisation was implemented using the model selection function, while the evaluation metrics of the optimum 

parameters were calculated using the cross-validation and metrics functions available in sci-kit learn. The Q2 

values were calculated using a customised script. 

A range of parameter values for each modelling method was provided as input to the grid search algorithm, which 

was used to compute the cross-validated MSE and coefficient of determination measures for all parameter 

combinations. The algorithm reported the optimum parameter combinations that were evaluated using error 

minimisation. To prevent overtraining the cross-validation measures of all parameter combinations were plotted 

to aid visual inspection of the optimum parameters and, subsequently, manual parameter selection. The parameters 

and the ranges of values that were investigated during the optimisation of each modelling algorithm are shown in 

Table 5-2.  
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Table 5-2. Parameters and ranges of values provided as input to the grid search algorithm 

Algorithm Parameters Range 

PLS Number of latent variables 1 – 50 

SVM RBF kernel: Gamma 

Penalty C 

γ = (2-8, 2-7, 2-6) 

C = (0.1, 1, 2, 5, 10) 

KNN Number of neighbours 

Averaging weights 

1 - 25 

Uniform weights or 

Distance-based weights 

RF Number of trees 

Size of leaves 

50 – 500 

1 – 50  

 

5.2.3 Model validation 

The average performances of the QSAR models were evaluated using 7-fold cross-validation and on holdout data 

using the R2, Q2, RMSE and MAE measures (Alexander et al., 2015; Consonni et al., 2009). The measures were 

computed according to the definitions provided in Table 5-3. 

Table 5-3. Definition of measures for the evaluation of QSAR models 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑡𝑟)2𝑁
𝑖=1

 𝑅𝑀𝑆𝐸 = √
1

𝑁𝑒𝑥𝑡

∑ (𝑦𝑖 − 𝑦̂𝑖)
2

𝑁𝑒𝑥𝑡

𝑖=1

 𝑀𝐴𝐸 =
1

𝑁𝑒𝑥𝑡

∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑁𝑒𝑥𝑡

𝑖=1

 

𝑄𝐹1
2 = 1 −

∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑁𝑒𝑥𝑡
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑡𝑟)2𝑁𝑒𝑥𝑡
𝑖=1

 𝑄𝐹2
2 = 1 −

∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑁𝑒𝑥𝑡
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑒𝑥𝑡)2𝑁𝑒𝑥𝑡
𝑖=1

 𝑄𝐹3
2 = 1 −

(∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑁𝑒𝑥𝑡
𝑖=1 )

𝑁𝑒𝑥𝑡

(∑ (𝑦𝑖 − 𝑦̅𝑡𝑟)2𝑁𝑡𝑟
𝑖=1 )

𝑁𝑡𝑟

 

𝑦𝑖:measurement      𝑦̂𝑖: prediction       

𝑦̅𝑡𝑟: mean of training set measurements      𝑦̅𝑒𝑥𝑡: mean of external test set measurements 

𝑁 𝑜𝑟 𝑁𝑡𝑟: size of training set         𝑁𝑒𝑥𝑡: size of external test set 

 

The error distributions estimated from cross-validation and the holdout data were also examined for departure 

from normality; as a non-normal error distribution may indicate the presence of bias in the model or the lack of 

an important variable. Normality was confirmed visually, by inspecting the residual error plots and quantile-

quantile (QQ) plots of the models’ errors and, statistically, by applying the one-sample Kolmogorov-Smirnov 

(KS) test. A QQ plot is used to compare an empirical distribution function with another theoretical or known 

distribution function, e.g., Gaussian. The quantiles of the two distributions are plotted in a two-dimensional plane 
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and the distributions may be assumed to be equal only if they overlap with the diagonal (Thas, 2010a). The two-

sample KS test is used to evaluate the goodness-of-fit of two distributions. The KS test statistic is defined as the 

largest absolute deviation between the theoretical distribution function and the empirical distribution function 

(Thas, 2010b). The one-sample KS test was calculated using Python’s scipy library. 

5.2.4 Definition of the applicability domain 

The AD was defined only for the LogD models using traditional AD definitions implemented in QSAR that are 

independent of the ML method. These were used to qualitatively assess the reliability of the models’ predictions 

for the holdout data and were based on range-based, distance-based and density-based AD definitions (Table 5-4). 

The AD assessment and the calculations of the reliability estimates were implemented using the Applicability 

Domain Toolbox in MATLAB (Sahigara, Ballabio, Todeschini, & Consonni, 2014; Sahigara et al., 2012). 

Compounds in the holdout test set were classified as inside or outside the domain by the different AD methods 

for descriptor set 1 (all, 117 descriptors) and descriptor set 2 (82 descriptors). Classification was made using AD 

thresholds that were calculated using the parameters specified for methods in Table 5-4. 

For the leverage method, the threshold h was calculated by setting the warning leverage factor to three. The 

warning leverage then corresponds to three times the average leverage of p/n compounds, where p is the number 

of descriptors and n is the size of the training set. The threshold values for both descriptor sets are provided as h1 

and h2. 

The other distance-based thresholds were based on the Euclidean distance of the test compound to the centroid of 

the training set or its average distance from the 5 nearest neighbours or 9 nearest neighbours, the latter determined 

following the optimisation of k for values between 1-25 over 1000 iterations on validation data 20% the training 

set size. 

The density-based threshold was applied to the probability density of the holdout test set. The probability density 

distribution of the training set was estimated using a Gaussian potential for each training set compound with a 

smoothing factor that is optimised by default. The threshold was set to the value of the 95th percentile of the 

training set density distribution. 
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Table 5-4. Domain of applicability methods investigated and thresholds applied 

Method Parameters Threshold 

Range-based   

Bounded box - - 

Bounded box with PCA - - 

Distance-based   

Leverage Threshold factor = 3.0 h1=0.098 

h2=0.066 

Distance from centroid Euclidean d1=15.22 

d2=12.40 

Distance KNN - fixed K Euclidean, K=5 d1=8.30 

d2=7.54 

Distance KNN - variable K Euclidean,  

K1=10, K2=11 

- 

Density-based   

Potential functions Gaussian kernel 

Smoothness 1 = 0.1 

Smoothness 2 = 0.9 

Threshold = p95  

 

5.3 Results 

The following sections present the results from the evaluation of the underlying LogD and ADME models. 

Detailed results from the optimisation of the PLS, KNN, SVM and RF LogD models are provided and include the 

results from their evaluation using 7-fold cross-validation and a single holdout test set. The evaluation of each of 

the ADME models was conducted using 10-fold cross validation and a single holdout test set. 

5.3.1 LogD dataset 

Descriptor selection by filtering, based on the exclusion of collinear descriptors (linear correlation <0.95), and the 

variable importance thresholds of FI (threshold=0.01) and VIP (threshold =0.1), resulted in a total of 82, 31 and 

23 descriptors, respectively. The ranking agreement of the two variable importance methods was measured using 

Spearman’s rank order correlation coefficient, which is a nonparametric correlation measure that shows the 

association between the ranks of two sets of data. The calculated value of Spearman’s rho was -0.36, which 

indicates weak, negative correlation of the ranked features obtained by RF and PLS. 

The ten highest ranking descriptors based on their importance computed by the RF and PLS algorithms are shown 

in Figure 5-2. Besides the expected high importance of the SlogP descriptor, which is an atom-based estimate of 
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LogP (Wildman & Crippen, 1999), other important descriptors identified by both methods were the number of 

hydrogen bond donors (NumLipinskiHBD), the number of acyclic oxygen atoms (MQN10) (Nguyen, Blum, Van 

Deursen, & Reymond, 2009) and the molecule’s van der Waals surface area contributing to a predefined interval 

of LogP values (slogP_VSA10) (Labute, 2000). The RF algorithm gave a higher importance to descriptors based 

on surface area contributions to partial charge (peoe_VSA) and logP (slogP_VSA), though it is clear that the first 

two features contribute the most to the impurity reduction criterion of RF. On the other hand, PLS gave higher 

importance to molecular topological counts, such as the number of aromatic rings, rings, hydrogen bond donors 

and amide bonds, cyclic divalent nodes (MQN30), acyclic oxygens (MQN10) and 6-membered rings (MQN36).  

 
Figure 5-2. Ten most important descriptors based on their rankings from RF’s feature importance scores (left) 

and PLS’s (right) variable importance in projection scores 

Given that the feature importance ranks depend on the performance of the algorithm the ranking is sensitive to 

model parametrisation. Consequently, although the importance rankings in Figure 5-2 illustrate the most important 

features for the LogD models; the robustness of the results could be investigated by resampling of the models’ 

parameters. 

The performance measures computed for the modelling algorithms trained on the full descriptor set and the three 

descriptor subsets are shown in Table 5-5. Filtering of redundant information and collinear descriptors is seen to 

improve the accuracy of all algorithms, except KNN. With subsequent application of the FI threshold the accuracy 

of KNN and PLS increases; while it decreases for SVM and, surprisingly, RF. On the other hand, the use of the 

VIP filter results in similar improvement in the performance of PLS but deterioration in the performance of the 

other algorithms. 

While there is no value in maintaining descriptors that do not contribute to model performance, it is seen that the 

RF and SVM algorithms are able to yield accurate models without feature selection. Yet, their accuracy improves 

by excluding collinear variables that carry redundant information. As for KNN, removal of collinear descriptors 

followed by the FI filter yields the best results. Furthermore, despite the ability of PLS to extract the underlying 

latent variables; the performance of the algorithm improves with prior removal of collinear descriptors and with 

the application of either variable importance method.  
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Table 5-5. Performance of algorithms using default parameters for the four descriptor subsets 

Descriptor set Model R2 RMSE R2 (CV) RMSE (CV) R2 - R2 (CV) 

1     All (117)  

KNN 0.68 0.679 0.48 0.859 0.20 

PLS 0.24 1.040 0.23 1.044 0.01 

RF 0.92 0.343 0.55 0.803 0.37 

SVM 0.74 0.615 0.59 0.765 0.15 

2     LC (82) 

KNN 0.66 0.693 0.46 0.874 0.20 

PLS 0.25 1.032 0.24 1.038 0.01 

RF 0.92 0.333 0.56 0.786 0.36 

SVM 0.75 0.595 0.59 0.759 0.16 

3     FI (31) 

KNN 0.70 0.658 0.52 0.829 0.18 

PLS 0.27 1.020 0.26 1.025 0.01 

RF 0.92 0.341 0.55 0.795 0.37 

SVM 0.72 0.629 0.59 0.766 0.13 

4     VIP (23) 

KNN 0.67 0.686 0.46 0.875 0.21 

PLS 0.26 1.025 0.26 1.028 0.00 

RF 0.92 0.343 0.53 0.815 0.39 

SVM 0.64 0.721 0.52 0.825 0.12 

 

It is understood that feature selection introduces bias to the model by restricting the model’s applicability domain 

and, by doing so, limits the model’s ability to generalise for new instances and identify outliers (Eriksson, 2003, 

Hawkins, 2004). Therefore, the decision was made to proceed with model parametrisation using descriptor set 2 

that is the output of filtering collinear descriptors.  

The optimisation curves are shown in Figure 5-3 and illustrate the change in the R2 and mean squared error (MSE) 

for the parameter values optimised for each of the KNN, PLS, RF and SVM algorithms.  
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Figure 5-3. Optimisation of A) the number of nearest neighbours and weighting method of KNN, B) the number of latent 

variables in PLS, C) the number of trees and leaf size of RF and D) the C and gamma parameter of the RBF kernel in SVM 

The best parameters found with grid search-based optimisation are provided in Table 5-6 with the metrics from 

the evaluation of the algorithms’ performance.  

Table 5-6. Optimum parameters identified by the grid search algorithm 

Algorithm Parameters R2 RMSE R2 (CV) RMSE (CV) R2 - R2 (CV) 

KNN K= 9 1.00 0.029 0.52 0.827 0.48 

PLS LV=30 0.46 0.879 0.41 0.916 0.05 

RF 
Leaf size=1, 

Trees=500 
0.95 0.274 0.61 0.747 0.34 

SVM 
C=10, 

gamma= 2-6 0.98 0.178 0.64 0.710 0.33 

 



Chapter 5     Developing the Underlying QSAR Models 

 

46 

 

The grid search algorithm is strictly driven by error minimization and as a result it can easily lead to over-trained 

models and underestimate the prediction error of novel compounds. In Table 5-6, overtraining is evident from the 

large difference between the fitted R2 and the cross-validated R2 (ΔR2 > 0.3). For this reason, it was decided to 

identify an alternative set of parameters (Table 5-7) through visual inspection of the algorithms’ optimisation 

curves based on the cross-validation performance measures. The parameters were selected by taking into account 

the rule of parsimony according to which the most generalizable model with similar performance should be 

chosen. This approach resulted in less optimistic performance metrics and reduced the difference between the 

fitted and cross-validated R2 in the case of the RF and SVM algorithms but increased in the case of KNN and 

PLS.  

Table 5-7. Optimum parameters identified from visual inspection 

Algorithm Parameters R2 RMSE R2 (CV) RMSE (CV) R2 - R2 (CV) 

KNN K= 5 1.00 0.029 0.50 0.846 0.50 

PLS LV=5 0.46 0.879 0.35 0.962 0.11 

RF 
Leaf size=5, 

Trees=250 
0.86 0.449 0.59 0.766 0.27 

SVM 
C=2, 

gamma= 2-7 
0.76 0.591 0.60 0.753 0.16 

 

In Figure 5-4, visual assessment of the final QSAR models was carried out by overlaying the cumulative 

distributions of the actual and predicted endpoint values of the cross-validation and holdout data. Though scatter 

plots are the most common way of visually assessing the quality of a regression model, the plots in Figure 5-4 

clearly summarise the ability of the different ML algorithms to reproduce the LogD data distributions. Smaller 

distances in the predicted cumulative density distribution (CDD) of the cross-validation data from the actual CDD, 

in comparison to the CDDs for the holdout data, indicate that the performance of the algorithms on the cross-

validation data is higher. The result for KNN and SVM are better in estimating the full data distribution, while a 

larger distance of the PLS and RF CDFs from the actual data distribution indicates that these algorithms performed 

less accurately on the tails of the distribution. In addition, PLS generated predictions outside the response value 

range in the cross-validation data. These results are also reflected in the ranking of the algorithms produced by 

the Kolmogorov-Smirnov (KS) statistic from the two sample KS test, which was applied between the actual 

measurements and the predictions of each algorithm for the holdout data (Table 5-8). 
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Figure 5-4. Cumulative density distributions of QSAR predictions and the actual measurements of cross-validation 

(left) and holdout data (right). 

 

Table 5-8. Two sample Kolmogorov-Smirnov test for holdout measurements predictions 

Model KS statistic p-value 

KNN 0.143 0.00 

PLS 0.181 0.00 

RF 0.169 0.00 

SVM 0.122 0.03 

 

The model’s performance measures on cross-validated and holdout data are provided in Table 5-9. The estimates 

of the model’s accuracy for prospective predictions based on cross-validation are similar to the estimates of 

holdout data, yet slightly optimistic with a difference of 0.01 - 0.05 units. However, a limitation is that these could 

vary for other holdout samples and further investigation using resampling methods or other data partitioning 

approaches would have to be incorporated into the modelling process.  

Table 5-9. Performance measures estimated from cross-validation and holdout data. 

Model Parameters R2 (CV) RMSE (CV) Q2 RMSE (Holdout) 

KNN K= 5 0.50 0.846 0.48 0.859 

PLS LV=5 0.35 0.962 0.28 1.012 

RF 
Leaf size=5, 

Trees=250 
0.59 0.766 0.55 0.804 

SVM 
C=2, 

gamma= 2-7 
0.60 0.753 0.57 0.784 
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The residual error distribution of each model was tested for departure from normality by plotting the quantiles of 

the residual distribution against the quantiles of the theoretical, normal distribution (Figure 5-5).  

 

Figure 5-5. Q-Q plots of the models’ errors departure from normality. 

Given the absence of major trends indicating departure from normality in Figure 5-5, it is reasonable to assume 

that the models’ error distributions are, approximately, normally distributed. The results were confirmed 

quantitatively by applying a one sample KS test, which produced a KS statistic of 0.5 and p=0.0 for the residuals 

of all models (see Appendix, A 1).  

Evaluation of the reliability of the models’ predictions for the holdout data using the different AD methods 

produced varied results. Table 5-10 shows the percentage of the holdout test set that was classified as outside the 

AD defined by the individual methods using the original set of descriptors calculated, descriptor set 1, and the 

filtered set of descriptors, descriptor set 2 (see Table 5-1 for details). The joint AD was calculated by taking into 

account the predictions that were classified as out-of-domain by at least four AD methods. This was done to 

investigate the overlap in the results produced the different AD definitions. The density method produced 

surprisingly different results for the different descriptor sets, classifying most of the holdout data as outside the 

applicability domain using descriptor set 2. The difference between the number of out-of-domain compounds 

identified by the range-based and distance based methods using different descriptor sets is much smaller.  
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Table 5-10. Statistics of the evaluation of AD for the holdout data using descriptor sets 1 and 2 

Method 
Outside AD (%) 

Descriptor set 1 Descriptor set 2 

Range-based   

Bounded box 0.3 0.3 

Bounded box with PCA 0.8 0.8 

Distance-based   

Leverage 3.3 2.5 

Distance from centroid 5.1 4.9 

Distance KNN - fixed K 5.5 5.2 

Distance KNN - variable K 4.7 3.9 

Density-based   

Potential functions 0.0 91.8 

Joint AD (exc. density based) 1.3 1.7 

 

Table 5-11 compares the mean absolute errors (MAEs) calculated when no applicability method is applied to the 

holdout test set, indicated as None, with the MAEs calculated for compounds classified as inside (In) and outside 

(Out) the AD specified using each method, respectively. Highlighted in bold are the results for which the MAE is 

reduced following the removal of predictions for compounds that were out-of-domain. Indicated in italics are 

results were the MAE increases following the application of the AD. It is seen that the most efficient AD is 

obtained using the distance-to-model definition with a variable number of neighbours.  
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Table 5-11. Mean absolute residual errors of holdout test data classified as in/out of the AD defined using different methods 

(calculated for descriptor set 2) 

AD method  
Number of 

compounds 
KNN PLS RF SVM 

None - 596 0.620 0.786 0.592 0.556 

Bounding box  
In 594 0.618 0.784 0.587 0.553 

Out 2 1.354 1.351 1.902 1.358 

Bounding box  

with  PCA 

In 591 0.619 0.784 0.591 0.556 

Out 5 0.729 1.020 0.658 0.592 

Distance from centroid 
In 567 0.618 0.782 0.585 0.557 

Out 29 0.658 0.875 0.718 0.542 

Distance - fixed k 
In 565 0.620 0.787  0.587 0.555 

Out 31 0.628 0.772 0.670 0.570 

Distance - variable k 
In 573 0.616 0.778 0.580 0.548 

Out 23 0.734 0.986 0.882 0.739 

Leverage 
In 577 0.614 0.785 0.584 0.556 

Out 19 0.825 0.837  0.830 0.565 

Joint 
In 586 0.618 0.783  0.587 0.555 

Out 10 0.743 1.007  0.881 0.630 

 

The AD outliers that were identified by all methods (excluding the density-based method) are highlighted in the 

residual plots of the holdout data for models in Figure 5-6. Although most of the AD outliers lie within the 

boundaries of 2 and 3 standard deviations of the residual errors, indicated by the red lines in Figure 5-6, it could 

be argued that these should be removed and the model retrained, however, this was not done here. 
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Figure 5-6. Residual plots of the model’s holdout data indicating whether predictions are inside and outside the model’s 

joint AD 

There are 10 compounds that were identified as out-of-bounds by at least four AD methods representing 1.7 % of 

the holdout data. A total of 52 compounds were classified as out-of-domain by combining the results of all AD 

definitions, by at least one AD method. Surprisingly, only 1 compound was identified by all methods and this had 

a residual error between 1.05 - 1.5 across the four LogD models, thus, it may not be considered a residual error 

outlier. The distance-based methods were more successful in identifying predictions with large residuals than was 

the consensus of the methods, i.e., based on the joint AD, yet, many compounds that were poorly predicted by the 

four ML algorithms failed to be identified as out-of-domain by any method.  

This highlights the fact that the assessment of the reliability of predictions using these AD definitions is rather 

simplistic as it does not take into account the modelled response and, practically, implies a linear relationship 

between the similarity of the compounds and their accuracy of prediction. In addition, the ML algorithms used to 

build the QSAR models are applying a more complex statistical treatment that cannot be explained by a simple 

range-based or density-based reliability metric. These methods may be useful in verifying the theoretical 

assumptions of the QSAR experiment, such as for example, testing whether a prediction is the result of an 
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interpolation or extrapolation in the model’s AD as defined by its descriptors. However, many of the compounds 

that were classified as outside the AD were actually predicted well therefore these methods may not be very useful 

for identifying mis-predicted compounds by ML algorithms. 

5.3.2 ADME datasets 

Regression models based on the SVM and RF algorithms were trained using the best parameters obtained from 

grid search optimisation. These are reported in the Appendix (see A 2). Despite many of the models being over 

trained, these were chosen as they yielded models with the highest accuracy for cross-validation and holdout data. 

Model performance was evaluated using 10-fold cross validation and by resampling the hold-out data 10 times. 

The predictive performance of SVM and RF models estimated by 10-fold cross-validation is illustrated in Figure 

5-7. 

 

Figure 5-7. Distributions of predictive R2 and RMSE estimates (by fold) of RF and SVM models from 10-fold cross-

validation. 

Both algorithms produced models with similar performance on cross-validation data. The cross-validated R2 and 

RMSE values are compared with the statistics obtained on the holdout data, in Table 5-12. It is seen that the SVM 

models for datasets 1, 3, 6 and 10 were more accurate than the RF models by a small margin in the range of 0.004 

- 0.011. The overall accuracy of the QSAR models ranges between, approximately, 10 – 30 % of the endpoint 

values; with the models for the largest datasets being the least accurate. Dataset 2 produced ADME models with 

the smallest error on cross-validation and holdout data, however, the measurements in the dataset were 

accumulated in a smaller range of values. 
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Table 5-12. Average model performance of SVM and RF algorithms estimated from cross validation and holdout data 

Dataset Model R2 (CV) RMSE (CV) R2 (Holdout) RMSE (Holdout) 
Assay 

error 

1 
RF 0.33 0.170 0.41 0.170 

0.133 

SVM 0.36 0.166 0.41 0.169 

2 
RF 0.19 0.094 0.31 0.070 

0.087 

SVM 0.15 0.096 0.28 0.071 

3 
RF 0.55 0.151 0.59 0.142 

0.061 

SVM 0.61 0.140 0.61 0.137 

4 
RF 0.35 0.151 0.51 0.129 

0.070 

SVM 0.36 0.149 0.53 0.126 

5 
RF 0.45 0.104 0.52 0.091 

0.044 

SVM 0.45 0.104 0.54 0.090 

6 
RF 0.52 0.132 0.64 0.117 

0.069 

SVM 0.57 0.125 0.69 0.110 

7 
RF 0.20 0.221 0.51 0.183 

0.218 

SVM 0.20 0.221 0.33 0.214 

8 
RF 0.26 0.260 0.68 0.180 

0.184 

SVM 0.25 0.260 0.45 0.230 

9 
RF 0.32 0.220 0.42 0.201 

0.133 

SVM 0.31 0.218 0.34 0.212 

10 
RF 0.33 0.273 0.45 0.247 

0.182 

SVM 0.37 0.265 0.50 0.237 

The accuracy of the models was compared to the available experimental error estimates by applying a criterion 

based on the 3σ rule; whereby a model with an accuracy estimate that does not exceed 3 times the assay variability 

estimate is considered suitable for use (Haas, 2004). The rule was applied by calculating the ratio between the 

average model error estimate and the experimental error estimate and setting an upper threshold of 3 (results not 

shown). This condition was satisfied for the models of all datasets; however, a ratio greater than 2 for the ADME 

models of datasets 3, 4 and 5 suggested that the error was closer to the threshold.  

If a model has an average error value that is smaller than the assay variability estimate this suggests that the model 

is more accurate than the assay method. This is observed for the average SVM and RF error estimates obtained 

from holdout data for datasets 2 and 7, and the RF model of dataset 8. These three datasets were also the most 
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difficult to model and performed less well in cross-validation. The large difference between the R2 and RMSE 

values of the models in cross-validated and holdout data, suggests that the models perform better on the holdout 

data. This is also observed between the accuracy estimates obtained from cross-validation and holdout data for all 

datasets but dataset 1 and it is attributed to the presence of measurement bias in the data, which is discussed below.  

The low RMSE values for the models of dataset 2 and dataset 5 are partly attributed to the narrow data distributions 

rather than high predictive performance. The implications of this would have been clear if the normalised RMSE 

had been used for the assessment of accuracy, which would allow comparison of accuracy across data with 

different values and distributions. (Normalised RMSE is used in the following chapters to compare the accuracy 

of QSAR models and error models). Poor performance was also observed for datasets 7 and 8 (average predictive 

R2 <0.3 and average RMSE > 0.2), which have wide distributions and high variation in the response. 

The metabolic stability datasets (7, 8, 9 and 10) were the largest in size and, thus, model accuracy was expected 

to be higher. However, they proved to be the least accurate models as they consisted of greater assay error and 

variation in the response distribution.  

Figure 5-8 illustrates the shape of the ADME models’ error distributions obtained from the signed residual errors 

of cross-validation data. A striking observation is that the range of the residual error distributions is very large; 

particularly, for the larger datasets, i.e., datasets 8, 9 and 10. The presence of heavy tails on the residual error 

distributions is a consequence of measurement bias in datasets 3, 4, 5, 6, 7 and 8 and shows that normality of the 

error distributions cannot be assumed. This was also confirmed by visual inspection of the residual error 

histograms (see Appendix, A 4). Although the theoretical assumption of normally distributed errors is important 

in regression analysis, it may not be strictly followed when applied to real data nor is it a requirement for non-

parametric methods and ML algorithms. Model errors that are non-Gaussian distributed may also indicate the lack 

of important variables in the models, however, additional descriptors were not investigated in this thesis and the 

presence of measurement bias was quite clear, after inspecting the endpoint distributions. ML algorithms generally 

perform well close to the dataset response mean and are less accurate as the distance from the mean increases (see 

Appendix, A 2 and A 3), therefore the errors will also be larger where the data is sparser. This is a problem of 

imbalanced data and is easily addressed in categorical data for classification by techniques such as oversampling 

or under-sampling; but the treatment of continuous data that are unevenly sampled is less straightforward.  

Excluding outliers in the endpoint value range from model training is not a suitable option as this would represent 

a reduction of the models’ applicability domain and result in the deterioration of the models’ performance on 

external data, thus, outliers in the data have been retained.  
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Figure 5-8. Residual error distributions of RF and SVM models from 10-fold cross-validation 

The distributions of the RF signed residuals differ from the SVM signed residuals on several datasets (Figure 5-8); 

as they are shifted to positive values, indicating that the RF has overestimated. This is more obvious for the 

distributions of datasets 2, 4, 5 and 7.  

The reliability assessment based on the AD was not applied to these datasets. However, alternative methods for 

the assessment of prediction reliability using error models are investigated in the following chapter. 

5.4 Discussion 

Models of reasonable predictive performance have been obtained for the LogD and ADME datasets using ML 

algorithms without the requirement of complex tuning. Nevertheless, the use of the automated gridsearch 

algorithm for model optimisation produced models that were overtrained. 

From the LogD models, and with regard to descriptor selection, it was found that treatment of highly collinear 

descriptors improved the accuracy of PLS, RF and SVM algorithms but not in the case of KNN. The accuracy of 

PLS improved with the subsequent application of the PLS-based and RF-based feature importance methods; 

however, the predictive performance of the PLS model was very low. In contrast, there was no improvement in 

the performance of the RF and SVM models following descriptor selection using feature importance methods. 

The highest improvement following the application of RF’s feature importance method was observed for KNN.  

It was also seen that cross-validation estimates were generally more optimistic than the holdout data. However, 

more robust estimates of the model’s prediction error may be obtained using nested cross-validation or by 

applying resampling techniques. The results showed that SVM and RF algorithms consistently provided more 
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accurate predictions than PLS and KNN. Analysis of the models’ residual errors showed that approximate 

normality may be assumed. Minor deviations from normality in the residual errors are observed either as an effect 

of the modelling algorithm, thus, indicating the model’s lack of an important variable; or measurement bias in the 

data.  

The reliability of the LogD predictions was evaluated using applicability domain methods that do not take account 

of the modelled response or the model’s errors and are, therefore, non-model specific. A main drawback of these 

approaches is that they cannot efficiently identify compounds that are poorly predicted by ML algorithms. 

Consequently, predictions with high accuracy were considered unreliable, while many predictions with low 

accuracy were considered to be reliable. Yet, the distance-based applicability domains were more efficient than 

the range-based approaches for all modelling algorithms. Although the evaluation of the model’s applicability 

domain is concerned with the theoretical assumptions that are implicit in the QSAR model, rather than the 

statistical assumptions of the modelling algorithm, it is important to consider both aspects in the detection of 

unreliable predictions to avoid spending resources on testing compounds that are accurately predicted by the 

QSAR model. 

The RF and SVM algorithms produced models of similar overall performance for the ADME datasets. From the 

average performance of the models and the error distributions of the models, it became clear that, although the 

models were able to predict the mean response of the dataset well, they were less accurate in predicting instances 

that were further away from the response mean. This revealed that some of the datasets were biased; the 

measurements were either restricted to a short range of values or the measurement distributions were severely 

skewed, i.e., imbalanced. Data that were associated with larger experimental errors also had very broad error 

distributions regardless of the ML algorithm used to build the models.  

5.5 Conclusions 

This chapter focused on the development of physicochemical and ADME property regression models using 

established ML algorithms that will be further studied for the estimation of their prediction errors. The RF and 

SVM algorithms produced the most accurate models for all datasets, although in the case of several ADME 

datasets the errors were found to be non-normally distributed. Analysis of the results from the validation of the 

LogD models using AD definitions suggested that AD-based reliability estimates are not good indicators of the 

accuracy in predictions of ML algorithms as they do not take into account any information about the modelled 

response or the models’ errors. This suggests that other methods which produce reliability estimates that correlate 

with the accuracy of the models’ predictions need to be considered. In the following chapters, we investigate the 

use of error models as an alternative approach to the definition of AD for the assessment of prediction reliability 

and focus on the assessment of their performance. 
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Chapter 6 Prediction Error Estimation 

6.1 Introduction 

The existing approaches utilising machine learning methods for the estimation of uncertainty in individual QSAR 

predictions were discussed in Chapter 3. Previous studies have reported methods that are able to distinguish 

between accurate and inaccurate predictions; yet, their performance on ADME data is often poor (Sheridan, 2013; 

Toplak et al., 2014). The focus of this chapter is to investigate the performance of machine learning algorithms 

for the estimation of errors in QSAR models and assesses the usefulness in confidence estimation. Error models 

are developed with the objective of estimating the prediction errors of the underlying models built in the previous 

chapter. Details regarding the variables, methods and measures for the evaluation of the error models are described 

in the sections below. 

6.2 Methods 

Two error model methods are evaluated on their ability to estimate the prediction errors of individual QSAR 

predictions and on their ability to rank predictions based on their actual prediction errors. These are both based 

on RF regression but using different types of features: namely descriptor-based features and AD-based metrics. 

The performance of the two error based models are compared with a novelty detection method, i.e., the direct use 

of an AD distance-to-model (D2M), and bagged ensembles as baseline methods. Each method is applied to the 

underlying QSAR models that were built in the previous chapter using the LogD and ADME datasets described 

in Chapter 4. 

The baseline methods are described first followed by the error model methods. The two different methods used 

to evaluate performance are then described. 

6.2.1 Binned D2M-based model 

As discussed in Chapter 3, distance-to-model methods rely on the assumption that compounds with a greater 

degree of extrapolation from the model’s AD will be predicted less accurately than those which are closer to the 

AD. This section describes the development of the baseline D2M error models that were used to evaluate the error 

models for the LogD dataset. These were built using the D2M indices and the cross-validation errors of the 

underlying models. First, the D2M indices were binned and the mean prediction error of each bin was calculated; 



Chapter 6   Prediction Error Estimation 

 

58 

 

then, linear regression was applied to the mean D2M and mean error of each bin. Binning was applied in KNIME 

using the Auto-binner node and linear regression was run using the linregress function using Python’s scipy 

library. 

The D2M indices of the training data were calculated using the descriptors of the underlying LogD models built 

in the previous chapter. The descriptors are described in the Methods section of Chapter 5. The D2M index of 

each training set compound was calculated as its mean Euclidean distance to its three nearest neighbours, which 

is defined in Chapter 3. The Euclidean distances were calculated using the distance function in Python’s scipy. 

The D2M indices were ordered and then distributed into non-overlapping bins of equal frequency. The prediction 

error estimate of each bin was derived as the mean cross-validation error of the predictions assigned to each bin. 

The performance of the linear regression model was investigated for different numbers of bins, specifically 10, 

20, 50 and 100 bins. The D2M indices of the holdout data were calculated as the mean distances to their three 

nearest neighbours in the training set and used to assign prediction error estimates to the LogD predictions 

obtained from their corresponding bins.  

6.2.2 Bagged ensembles 

Resampling techniques are widely applied in statistical inference for the estimation of uncertainty. In machine 

learning, ensemble methods implement resampling techniques to construct multiple models by sampling the 

training data or the data variables. The uncertainties of the individual predictions are estimated as the standard 

deviations of the predictions in the ensemble. Several studies in QSAR have suggested that the standard deviation 

of ensemble predictions correlates well with prediction accuracy (Kaneko & Funatsu, 2014; Tetko et al., 2008). 

Here the standard deviation of ensemble predictions is used as a benchmark for the performance of the LogD and 

ADME error model estimates.  

Ensembles were constructed for both the LogD and ADME datasets by applying bootstrap sampling on the data 

and the features of the underlying models that were reported in the previous chapter. Instead of using the cross-

validation errors, as was done for all other error estimation methods in this chapter, the out-of-bag data of the 

bootstrap samples, i.e., the data that were omitted due to sampling with replacement, were used. The size of the 

ensembles was varied between 10, 100 and 1000 models. The parameters of the ensemble models applied were 

the parameters that were previously identified from the (visual) optimisation of the underlying models in Chapter 

5. Prediction error estimates were directly obtained as the standard deviations of the ensemble predictions for out-

of-bag predictions and the holdout test data. 



Chapter 6   Prediction Error Estimation 

 

59 

 

6.2.3 Regression error models 

According to Sheridan (2004), a single reliability method may not sufficiently explain the prediction errors of all 

compounds, nor is it necessary that it encodes their molecular structure in the same way as the QSAR model. 

Thus, supervised learning algorithms may be used to explore the non-linear relationships between several AD-

based reliability metrics and the prediction errors of the QSAR models. Specifically, the RF algorithm has the 

functionality of identifying important variables from a wide range of descriptors and contains an in-built validation 

method based on out-of-bag estimates. In Sheridan’s work (2013), RF error models were used to estimate the 

errors of RF QSAR models using the structural similarity of the test compound to its first nearest neighbour, the 

QSAR prediction and the standard deviation of the QSAR prediction across the ensemble as model features. In 

this study, RF error models are built for the underlying QSAR models that were developed in Chapter 5 and to 

predict the errors in holdout data. These RF error models were built using QSAR descriptors and AD-based 

metrics as features.  

Descriptor-based error models were generated by training the RF algorithm on the cross-validation errors and the 

descriptors of the underlying models built in Chapter 5. The parameters of the RF algorithm were set to a node 

size of 10 and 200 trees. 

The AD-based error models were trained on the cross-validation errors of the underlying models built in Chapter 

5 and features which combine AD-indices with predictions of the underlying model, similar to the approach 

suggested by Sheridan. The features included the mean and standard deviation of the D2M index, the prediction 

of the underlying model, and the standard deviation of the QSAR prediction, if the underlying algorithm was a 

RF. The D2M was calculated as the average Euclidean distance of the test compound to its three nearest 

neighbours in the training set using the nearest neighbour algorithm in Python’s sci-kit learn library. The standard 

deviation of the distance-to-model metric was included as an additional descriptor to capture the local variation 

in the test molecules’ D2M metric space. 

Two distance-weighted error metrics described in Sheridan (2013) and Keefer, Kauffman, & Gupta (2013), which 

capture the continuity of the QSAR relationship in the local neighbourhood of the test molecule, were also 

considered. These are defined in Equation 6.1 and Equation 6.2 below. The first, wRMSD1, is the weighted 

difference between the QSAR prediction for the test molecule, 𝑦̂𝑀, and the observations, 𝑦𝑖, of its k=3 nearest 

neighbours in the training set. The second, wRMSD2, is the weighted difference of the prediction for the k nearest 

neighbours of the query molecule M, 𝑦̂𝑘, and their observations, 𝑦𝑖. The weights are given by the inverse of the 

distance between the query molecule and the ith neighbour. However, neither of these were found to improve the 

model’s performance and they were, therefore, abandoned. 
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𝑤𝑅𝑀𝑆𝐷1 =  √
∑ 𝑤𝑖

2(𝑦̂𝑀 − 𝑦𝑖)2𝑘
𝑖=1

∑ 𝑤𝑖
2𝑘

𝑖=1

 6.1 

𝑤𝑅𝑀𝑆𝐷2 =  √
∑ 𝑤𝑖

2(𝑦̂𝑘 − 𝑦𝑖)2𝑘
𝑖=1

∑ 𝑤𝑖
2𝑘

𝑖=1

 6.2 

All error models were trained on the absolute residual errors obtained from cross-validation. For the LogD error 

models, these were obtained from 7-fold cross-validation; while for the ADME error models there were obtained 

from 10-fold cross-validation. Although other functions of error were tried on several datasets (signed error, 

logarithm, square root, square) in preliminary experiments; they did not improve the error models’ performance 

(results not shown); thus, subsequent error models were based only on absolute errors. 

6.2.4 Evaluation of error models using correlation 

The regression error models obtained were initially assessed for their predictive performance on cross-validation 

and holdout data, using the standard regression metrics of R2 and the RMSE, defined in Chapter 4. The estimates 

obtained from the ensemble models and the regression error models were also assessed using the linear and rank 

correlation of their estimates with their actual errors. These evaluations were conducted using Pearson’s 

correlation coefficient, r, and Spearman’s rank correlation coefficient, rho, respectively. While Pearson’s r is a 

parametric method and requires that the data are normally distributed, Spearman’s rho (ρ) is non-parametric as it 

is applied to the ranks of the data. Although residual errors are, generally, assumed to follow a normal distribution 

this may not be the case for the obtained prediction error estimates. The calculation of Pearson’s r for two variables 

𝑥 and 𝑦 is given in Equation 6.3: 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛′𝑠  𝑟 =
𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑥𝑦

𝑠𝑥𝑠𝑦
 6.3 

where 𝑠𝑥, 𝑠𝑦 are their respective standard deviations. Spearman’s ρ is calculated using the same equation but by 

replacing the continuous variables with their ranks. The values of correlation coefficients range between -1 and 

+1, which indicate a perfect negative and a perfect positive correlation, respectively. Pearson’s r and Spearman’s 

ρ were calculated in KNIME using the linear and rank correlation nodes, respectively.  

The ranking agreement between regression error model estimates and the benchmark, i.e., the standard deviation 

of the ensemble, was also assessed using Spearman’s correlation coefficient. The ranking agreement of all error 

estimates is also assessed using Kendall’s coefficient of concordance, W. Kendall’s W is a non-parametric 

correlation coefficient that is used to express the level of agreement between more than two ranking methods. The 

values of Kendall’s coefficient of concordance range between 0 and 1; with 0 indicating complete disagreement 
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between all the ranks obtained from all error estimation methods and 1 indicating their complete agreement. The 

calculations of the coefficient were applied with a custom script in Python using Equation 6.4, where columns 

refer to the ranks of the individual ranking methods.  

 

 

6.2.5 Evaluation of error models using Kullback-Leibler divergence 

Measurements were converted to distributions by assuming that they represent the means of Gaussian distributions 

with a standard deviation estimated by the experimental error. For the datasets where repeated measurements were 

available; compounds with repeats were considered to be less reliable than compounds with a single measurement 

since repeats may either be the outcome of retesting due to a suspected systematic error, i.e., environmental or 

assay failure, or measurements that have accumulated from multiple projects over time. The opposite could also 

be argued however: that average estimates of two or more repeated measurements are more reliable than estimates 

from a single measurement. Yet, repeated measurements were only available for the ADME datasets, where in 

most datasets they represented a small fraction of the data with the exception of two datasets where repeats were 

available for all compounds (see Chapter 4). For compounds with repeats, the standard deviation of the 

measurement was substituted by the propagated error 𝜎𝑖 of the measurement, 𝜎𝑖 = √𝜎𝑎𝑠𝑠𝑎𝑦
2 + 𝜎𝑚𝑒𝑎𝑠,𝑖

2 , where 

𝜎𝑎𝑠𝑠𝑎𝑦
2  represents the assay variability and 𝜎𝑚𝑒𝑎𝑠,𝑖

2  the variance of the individual measurement. This was done so 

that the sizes of the error estimates represent the reliability of the measurements in a consistent manner. The point 

predictions of the QSAR models were converted to distributions using the prediction error estimates obtained 

from error models as estimates of their standard deviation.  

The divergence between the measurement and prediction distributions of a compound was measured using the 

KLD score. This was calculated using Equation 6.5 

𝐷𝐾𝐿(𝑆𝑝𝑖
, 𝑆𝑞𝑖

) = [
(𝜇𝑝𝑖 − 𝜇𝑞𝑖)2

2𝜎𝑞𝑖
2

+
𝜎𝑝𝑖

2

2𝜎𝑞𝑖
2 + ln

𝜎𝑞𝑖

𝜎𝑝𝑖
] −

1

2
  

       

6.5 

where 𝜇𝑝𝑖 is the measurement value with a standard error of 𝜎𝑝𝑖 i.e., the measurement error and 𝜇𝑞𝑖is the predicted 

value obtained from the QSAR model with a prediction error estimate of 𝜎𝑞𝑖 . The value of 𝐷𝐾𝐿 is unbounded, 

non-negative and equal to zero only when the two distributions fully overlap; therefore, the smaller the value of 

the KLD score the higher is the overlap of the two distributions. The order of the values increases rapidly when 

the distance of the means becomes increasingly larger than the standard deviation of the prediction distribution, 

but also when the magnitude of the standard deviations of the distributions varies. The calculation of the KLD 

𝐾𝑒𝑛𝑑𝑎𝑙𝑙′𝑠 𝑊 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙𝑠 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙𝑠
 6.4 
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metric and a demonstration of its behaviour for the relative differences between the residual error, the prediction 

error estimate and the measurement error estimate are provided in the Appendix ( B  1 and B  2).  

The mean KLD of the N measurement and prediction distribution pairs of a dataset is calculated by averaging the 

KLD of the compounds (Equation 6.6).  

𝐾𝐿𝐴𝑉𝐸 =
1

𝑁
∑ 𝐷𝐾𝐿

𝑁
𝑖=1            6.6 

A mean KLD value that is close to zero indicates that there is high overlap between the model’s prediction 

distributions and measurement distributions. Error models that produce error estimates of the same order as the 

experimental assay and the true prediction errors, on average, will have lower KLD scores.  

The individual KLD scores were calculated by substituting the standard deviation of the prediction distributions 

with error estimates from the AD-based error models, descriptor-based error models and the standard deviation 

of the ensemble predictions. Standard deviation estimates were only available for the ensemble models for the 

KNN, SVM and RF algorithms in the case of LogD.  

The KLD scores using a uniform estimate based on the cross-validation RMSE of the QSAR models were used 

as a baseline for assessing the average performance of the error models. The experimental error estimates, i.e., 

MSD, and the uniform prediction error estimates that were used for the calculation of the KLD scores of the 

uniform, baseline error estimates are provided in Table 6-1. 

Table 6-1. Comparison of the assay variability estimate and the models’ cross-validation error used to assign uniform 

uncertainty estimates to the measurement and the prediction distributions, respectively. 

Dataset MSD 

CV RMSE 

RF SVM 

1 0.133 0.170 0.166 

2 0.087 0.094 0.096 

3 0.061 0.151 0.140 

4 0.070 0.151 0.149 

5 0.044 0.104 0.104 

6 0.069 0.132 0.125 

7 0.218 0.221 0.221 

8 0.184 0.260 0.260 

9 0.133 0.220 0.218 

10 0.182 0.273 0.265 
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6.3 Results 

6.3.1 Overall performance of error models 

The overall performance of the error models was evaluated with respect to the accuracy of the error estimates and 

their correlation to the actual prediction errors and compared to the predictive performance of the underlying 

LogD and ADME models that were built in the previous chapter. The boxplots in the left of Figure 6-1, represent 

a total of 96 estimates of the descriptor-based and AD-based RF error models’ predictive performance for the two 

underlying ADME models and the four underlying LogD models on cross-validation and holdout data. The error 

models perform poorly and are not predictive, with an average squared correlation coefficient that is close to zero. 

The negative R2 values  indicate that some models are unsuitable for use as they are unable to explain the 

variability of the errors and, thus, produce random output (Kvalseth, 1985). This is more prominent when AD-

based features are used to train the error models, although the large variation in the R2 values suggests that there 

may be cases where the error estimates may be useful.  

Normalised RMSE values were also used to facilitate the comparison of accuracy obtained across different models 

and datasets; as shown in the right of Figure 6-1. The normalised RMSE of each QSAR model was calculated by 

dividing the model’s RMSE with the range of observed values; while the normalised RMSE of each error model 

was obtained by dividing the error model’s RMSE with the range of the true residual errors. The normalised 

RMSE was calculated for both the cross-validation and holdout data. On average, the accuracy of descriptor-based 

error models is similar to the accuracy of the QSAR models; but marginally more accurate than the AD-based 

error models.  

 

Figure 6-1. Average performance of the error models relative to performance of the underlying QSAR models 

measured by the R2 (left) and the normalised RMSE (right) 
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6.3.2 Performance of error estimates for LogD models 

6.3.2.1 Binned D2M-based model 

The strength of the underlying assumption that prediction error increases with increasing distance from the 

model’s descriptor-based AD is first evaluated for the PLS, KNN, RF and SVM LogD underlying models.  

The cross-validation errors of the underlying RF model are plotted against the D2M indices of the training data 

on the left of Figure 6-2. The red line illustrates the linear relationship between the mean D2M and the mean 

errors of the binned data using 10 bins of equal frequency. The black line shows the same relationship following 

the removal of 26 statistical D2M outliers in the D2M range of 11 – 40 (not shown), i.e., data points with a D2M 

index greater than 3 times the standard deviation of the D2M indices of all compounds. On the right, the same 

lines are plotted against the linear regression of the median distances and median errors of the bins indicated by 

the hashed line, with and without the D2M outliers. The regression of the medians resulted in a better fit than the 

linear regression of the means. 

 

Figure 6-2. Linear regression line of the mean distances and errors plotted against the original D2M indices of the 

training data and the RF cross-validation errors following the removal of the 26 D2M outliers (left). Linear regression 

of the mean (red circle: outliers included; black circle: outliers excluded) and median estimates (red triangle: outliers 

included; grey triangle: outliers excluded) of the D2M bins (right). 

The prediction error estimates obtained by averaging the cross-validated errors of the four LogD QSAR models 

in each D2M bin are provided in Table 6-2, without the removal of outliers. 
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Table 6-2. Mean distances (D2M) and absolute error (AE) of bins used in the binned D2M-based error model for 

KNN, PLS, SVM and RF predictions (bins=10, bin size=357) without the removal of outliers.  

Bin 

D2M KNN AE PLS AE SVM  AE RF AE 

Mean SD Mean SD Mean SD Mean SD Mean SD 

1 1.51 0.42 0.36 0.31 0.71 0.53 0.27 0.23 0.34 0.26 

2 2.36 0.16 0.49 0.42 0.80 0.63 0.35 0.36 0.46 0.38 

3 2.88 0.14 0.51 0.42 0.84 0.59 0.38 0.31 0.50 0.37 

4 3.39 0.15 0.60 0.50 0.82 0.58 0.46 0.41 0.58 0.45 

5 3.88 0.13 0.62 0.54 0.79 0.61 0.46 0.40 0.58 0.45 

6 4.37 0.14 0.68 0.56 0.84 0.63 0.53 0.44 0.64 0.52 

7 4.84 0.14 0.79 0.62 0.88 0.62 0.61 0.50 0.67 0.53 

8 5.38 0.15 0.83 0.62 0.90 0.63 0.65 0.52 0.76 0.56 

9 6.13 0.28 0.81 0.62 0.80 0.58 0.65 0.55 0.69 0.54 

10 8.55 3.82 0.91 0.75 0.96 0.72 0.77 0.64 0.84 0.62 

 

The high variation in the residual errors of the bins, which is indicated by the increasingly large standard 

deviations, illustrates the uncertainty associated with the binned error estimates. Assuming a linear relationship 

would require that the variation of the errors remains constant across the bins; however, this is not the case as the 

standard deviation of the error is seen to increase. The increasing standard deviation of the binned error estimates 

also results in overlapping values across neighbouring bins. Higher variation in the binned estimates is observed 

for the binned D2M-models of the PLS and KNN errors.  

Strong correlations between the mean D2M and prediction error means of the RF, SVM and KNN models were 

also obtained for the binned cross-validation data, when increasing the number of bins from 10 to 100 (not shown).  

The prediction error estimates of the holdout data were assessed bin-wise; by evaluating the agreement of the bin 

estimate to the average true error of the predictions assigned to the bin. In Figure 6-3, the average error estimate 

is plotted against the average true error of each bin for all four algorithms. It is seen that the performance of the 

method deteriorates with increasing number of bins for each algorithm at different rates. This makes sense, as 

increasing the number of bins will result in fewer compounds in each bin and the average binned estimates will 

be less accurate. This is more obvious for bins with higher D2M and prediction error estimates, which have greater 
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variance. The binned models worked best for the SVM algorithms for up to 20 bins, and also performed reasonably 

well for the KNN and RF algorithms using 10 bins. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-3. Effect of bin number on the predictive performance of linear D2M error models for A: KNN, B: PLS,  

C: RF,D: SVM holdout predictions. 

The rank correlation of the binned error estimates to the errors of the individual predictions was also evaluated at 

different binning levels for both the cross-validation experiment and the holdout data (Table 6-3). The ranking 

ability of the binned models improves with increasing number of bins for the holdout data; albeit at a faster rate 

in the case of the PLS in relation to the KNN, RF and SVM models. As in the cross-validation data, the increase 

in the ranking correlation coefficient for the binned PLS models is likely attributed to the presence of large residual 
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errors, which are greatly underestimated by binned models with a small number of bins. As the number of bins 

increases, the binned error estimates for predictions with larger D2M become more accurate, thus, improving the 

ranking ability of the binned model for predictions with large prediction errors yet reducing the overall linear 

correlation of the average binned error estimates with the average binned true errors.  

Table 6-3. Rank correlation between the mean binned estimates assigned to the individual predictions and their absolute 

errors at different binning levels 

Binning level 10 20 50 100 

Spearman’s ρ 

PLS 
CV 0.10 0.12 0.15 0.20 

Holdout 0.13 0.22 0.35 0.45 

KNN 
CV 0.27 0.27 0.28 0.30 

Holdout 0.31 0.34 0.38 0.45 

SVM 
CV 0.28 0.29 0.30 0.32 

Holdout 0.33 0.34 0.41 0.48 

RF 
CV 0.32 0.32 0.33 0.35 

Holdout 0.31 0.32 0.36 0.45 

Given that prediction errors in the binned D2M-model are described by the mean and standard deviation of the 

binned error estimates; the prediction error of each bin may be represented by a Gaussian distribution as suggested 

by Tetko et al. in (2008). This assumption may be used to assign individual prediction error estimates to the 

compounds of each bin that are drawn from a Gaussian distribution, 𝑁 (𝜇, 𝜎), where 𝜇 is the mean and 𝜎 is 

standard deviation of the error estimates in each bin. 

6.3.2.2 Bagged ensembles 

The performance of the standard deviations of the ensembles’ predictions was used as a benchmark for the 

correlation of error estimates to the actual prediction errors. Listed in Table 6-4, below, are the calculated values 

of Pearson’s and Spearman’s rank correlation coefficients between the ensemble predictions’ standard deviation 

and the actual prediction error calculated on out-of-bag data and holdout data for the KNN, SVM and RF 

ensembles. 
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Table 6-4. Linear and rank correlation between standard deviation estimates and absolute errors of bagged ensembles 

 Pearson’s r Spearman’s ρ 

Ensembles 
Data 

sampling 

Feature 

sampling 

Data 

sampling 

Feature 

sampling 

 

KNN 
OOB 0.60 0.03 0.52 0.02 

Holdout 0.31 -0.02 0.28 0.01 

SVM 
OOB 0.61 -0.03 0.58 0.01 

Holdout 0.28 0.05 0.33 0.06 

RF 
OOB 0.81 0.12 0.71 0.12 

Holdout 0.33 0.00 0.29 0.15 

The results indicate that there is moderate to strong correlation between the RF, SVM and KNN ensemble 

estimates obtained by data sampling to the actual errors on OOB data, but weak correlation on the holdout test 

data. Feature resampling generally resulted in random correlations between the estimates and actual prediction 

errors, indicating that the estimates are not useful for ranking purposes.  

6.3.2.3 Regression error models 

The statistics of the descriptor-based and AD-based RFs’ performance on the estimation of the QSARs’ prediction 

errors are provided in Table 6-5. As indicated by the low R2 correlation coefficients, the correlation of the error 

estimates to the prediction errors is very poor or random.  The RMSE values of the error models suggest that the 

descriptor-based RF error estimates are generally less varied than the AD-based RFs, and result in estimates with 

weak correlations to the prediction errors of the QSAR models. An increase in correlation of the PLS error 

estimates of the descriptor-based error model and the prediction errors is observed. 

Table 6-5. Predictive performance of the descriptor-based and AD-based RF error model on 10-fold CV and holdout data of 

the four LogD QSAR models 

Underlying 

Model 

Descriptor-based RF AD-based RF 

CV Holdout CV Holdout 

 R2 RMSE Q2 RMSE R2 RMSE Q2 RMSE 

SVM 0.17 0.447 0.18 0.500 0.04 0.480 0.02 0.547 

RF 0.14 0.455 0.12 0.512 0.05 0.479 0.01 0.542 

PLS 0.28 0.498 0.32 0.527 0.04 0.575 0.09 0.609 

KNN 0.14 0.528 0.07 0.572 0.07 0.546 0.01 0.593 

Comparison of the underlying LogD and the RF error models’ normalised RMSEs calculated on cross-validation 

and holdout data in Table 6-6 suggest that error models are less accurate relative to their respective underlying 
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models. The only exception is the RF error model for PLS, which underestimates the residual error outliers of the 

underlying model.  

Table 6-6. Accuracy of the underlying QSAR models relative to the accuracy of the RF error models calculated as the 

normalised RMSE  

Underlying 

Model 

QSAR Descriptor-based RF AD-based RF 

CV Holdout CV Holdout CV Holdout 

SVM 0.099 0.127 0.123 0.128 0.132 0.139 

RF 0.056 0.131 0.135 0.148 0.142 0.157 

PLS 0.172 0.174 0.088 0.137 0.102 0.158 

KNN 0.116 0.146 0.121 0.156 0.125 0.162 

Table 6-7 shows the rank correlation coefficients between the estimates of the error models and the actual 

prediction errors of the four LogD models where it is seen that descriptor-based error models yield error estimates 

with higher correlation to the residual errors of the underlying models compared to the AD-based error models. 

Stronger correlation is obtained for the estimates of the PLS errors in the case of descriptor-based error models; 

while in the case of AD-based error models higher correlation, on average, is seen for the KNN errors.  

On holdout data, the rank correlation of the descriptor-based error estimates was stronger than the ensemble based 

error estimates to the actual errors. However, the AD-based error estimates were more weakly correlated than the 

ensemble estimates in the case of the SVM and RF models.  

Table 6-7. Rank correlation coefficients between the estimates of the descriptor-based and AD-based RF error models and 

the actual prediction errors of the four LogD models 

Underlying 

Model 

Pearson’s r Spearman’s ρ 

Descriptor-

based RF 

AD-based 

RF 

Descriptor-

based RF 

AD-based 

RF 

PLS 
CV 0.54 0.25 0.49 0.21 

Holdout 0.57 0.29 0.50 0.30 

KNN 
CV 0.37 0.30 0.35 0.31 

Holdout 0.29 0.28 0.29 0.28 

SVM 
CV 0.41 0.25 0.38 0.25 

Holdout 0.44 0.28 0.43 0.30 

RF 
CV 0.38 0.27 0.38 0.25 

Holdout 0.34 0.24 0.36 0.24 
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The ability of the error models to identify poorly predicted compounds was tested by applying thresholds to the 

error estimates of the holdout data and calculating the accuracy of the predictions above and below the thresholds. 

Table 6-8 shows that the error models are not very efficient in identifying large prediction errors. Specifically, 

using descriptor-based error estimates to filter the predictions of all underlying algorithms resulted in the removal 

of predictions with higher accuracy and increased the error of the remaining holdout data except in the case of 

KNN predictions. In the case of the KNN LogD model, improvement in the accuracy of the holdout data was 

trivial after removing 20% of the predictions with the largest error estimates. The AD-based error estimates were 

more effective for filtering out poor predictions in the case of the KNN and SVM models but less effective for 

RF. Nevertheless, using the error estimates of ensemble methods resulted in the highest accuracy of holdout 

predictions of all four models. 
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Table 6-8. Accuracy of the LogD holdout test set predictions above and below the thresholds of the 80th and the 90th 

percentiles on the error estimates calculated as the mean absolute error (MAE) 

Underlying 

Model 
Error 

model 

MAE 

(All predictions) 

 Threshold = p80  Threshold = p90 

 Below Above  Below Above 

PLS 
AD-based 0.786  0.806 0.709  0.799 0.673 

Desc-based 0.786  0.807 0.703  0.799 0.676 

KNN 

AD-based 0.620  0.607 0.673  0.601 0.796 

Desc-based 0.620  0.619 0.625  0.617 0.647 

Ensemble 0.620  0.555 0.881  0.597 0.830 

SVM 

AD-based 0.556  0.546 0.594  0.547 0.635 

Desc-based 0.556  0.573 0.487  0.562 0.505 

Ensemble 0.556  0.514 0.721  0.527 0.809 

RF 

AD-based 0.592  0.590 0.596  0.600 0.516 

Desc-based 0.592  0.615 0.498  0.598 0.532 

Ensemble 0.592  0.546 0.773  0.559 0.880 

SD 0.592  0.602 0.577  0.610 0.484 

Analysis of the correlations above suggested that the descriptor-based error estimates were better at ranking 

predictions based on their actual prediction errors than the AD-based error models or the ensemble error estimates, 

however, the opposite was observed here. In addition, similar rank correlation coefficients were obtained of the 

ensemble estimates and AD-based estimates to the actual prediction errors but there is a clear difference between 

the improvement of accuracy using ensemble and AD-based estimates to remove prediction error outliers. The 

results indicate that moderate correlation between the error estimates and the prediction errors may not be 

suggestive of the error model’s ability to detect large prediction errors.  

6.3.2.4 Evaluation using Kullback-Leibler divergence 

The quartiles of the KLD distributions obtained for the predictions of PLS, KNN, SVM and RF LogD models, 

whereby their uncertainty is estimated using error models, are provided in Table 6-9. The KLD distributions are 

illustrated in the Appendix (A 9), with a KLD cut-off value of 20. For each underlying model, the differences 

observed in KLD scores are attributed to the estimates of the error estimation methods, as the experimental error 

and the residual errors remain constant. The minimum value of the KLD distributions for the uniform estimates 

is greater than 1 due to the difference between the experimental error estimate and the cross-validation RMSE 

estimate. The fold-difference of the estimates ranges between 7 and 9; with an experimental error estimate of 0.1 

and the cross-validation RMSE estimates between 0.753 and 0.962 (see Chapter 4). The KLD distributions of the 

binned D2M estimates are shifted to larger values, as the error estimates assigned to individual predictions are 

average binned estimates. Error models with a median KLD score smaller than the baseline of the respective 
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underlying models indicate that at least half of the error model estimates are more informative than the uniform 

error estimates and are shown in bold in Table 6-9. 

Table 6-9. Quartiles and mean of the KLD distributions calculated using the uniform and variable estimates from the 

ensembles, AD-based and descriptor-based error models. The scores calculated using the error estimates from a single RF 

are provided in parentheses. 

Error model Underlying model Min 1st quartile Median 3rd quartile Max Mean 

Uniform 

KNN 1.64 1.66 1.77 2.19 10.98 2.16 

PLS 1.77 1.82 2.00 2.44 9.77 2.32 

RF 1.54 1.58 1.71 2.13 11.75 2.09 

SVM 1.53 1.55 1.66 2.04 15.10 2.07 

Binned D2M 

(10 bins) 

KNN 2.63 3.70 4.08 4.72 23.36 4.51 

PLS 3.42 3.89 4.18 4.79 15.31 4.59 

RF 2.39 3.62 3.93 4.57 19.76 4.37 

SVM 2.63 3.70 4.08 4.72 23.36 4.51 

AD-based 

KNN 0.06 1.05 1.58 3.79 86.87 4.16 

PLS 0.24 1.23 2.36 5.55 72.97 5.23 

RF 0.16 1.04 1.73 4.11 124.37 4.79 

SVM 0.23 0.98 1.49 3.90 335.48 4.78 

Descriptor-

based 

KNN 0.28 1.10 1.55 3.44 64.25 3.75 

PLS 0.26 1.32 2.26 5.38 85.89 4.78 

RF 0.32 1.07 1.64 3.72 65.36 3.91 

SVM 0.34 1.00 1.49 3.18 144.09 3.89 

Ensemble 

KNN 0.00 1.03 1.79 4.55 293.78 4.43 

RF 0.00 1.16 4.65 15.53 440.15 16.17 

RF (0.66) (1.51) (1.76) (2.23) (18.43) (2.28) 

SVM 0.01 0.83 2.40 6.74 217.26 7.45 

The mean KLD scores for the variable error estimates were all larger than the mean KLD score of uniform error 

estimates and indicated that there is no improvement in their use. However, this is because there are predictions 

with large residuals and small prediction error estimates, which result in very large KLD scores. Interestingly, the 

mean KLD scores suggest that the binned D2M estimates for the RF and SVM models are more informative than 

the estimates of the AD-error models and the ensembles. Similarly, the binned D2M estimates for the PLS model 

are more informative than the estimates obtained from the descriptor-based and AD-based error models. Based 

on the median KLD scores, error estimates of the descriptor-based and AD-based models indicate that they result 

in higher overlap between the measurement and prediction distributions than the ensemble estimates in at least 

half of the data. For example, the maximum KLD of 293.78 for the ensemble-based error estimate for KNN 

predictions is attributed to a residual error of 2.45 and a prediction error estimate of 0.101.  
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6.3.3 Performance of error estimates for ADME models 

The prediction errors of the underlying RF and SVM ADME models were estimated using the standard deviation 

of their ensembles and the error estimates derived from the RF regression error models. The RF regression error 

models were trained using the descriptor-based and AD-based features described in the Methods section. 

6.3.3.1 Bagged ensembles 

Bagged ensembles derived from data sampling produced error estimates with moderate to strong correlation with 

the actual prediction errors of the out-of-bag (OOB) predictions on average. However, these were not 

representative of the correlations on holdout data. Table 6-10 shows the linear and ranked correlations between 

the standard deviation of the predictions that were derived from bagged RF and SVM ensembles and their actual 

prediction errors. 

Table 6-10. Linear and rank correlation coefficients between the bagged error estimates from data sampling and actual 

errors of the ADME ensembles 

Dataset 1 2 3 4 5 6 7 8 9 10 

Pearson’s r 

SVM 
OOB 0.47 0.58 0.78 0.76 0.47 0.68 0.61 0.47 0.33 0.63 

Holdout 0.00 0.20 0.17 0.23 0.32 0.24 0.23 0.00 0.14 0.17 

RF 
OOB 0.90 0.92 0.92 0.92 0.91 0.92 0.93 0.92 0.91 0.90 

Holdout 0.14 0.32 0.32 0.42 0.51 0.37 0.32 0.03 0.23 0.14 

Spearman’s ρ 

SVM 
OOB 0.35 0.07 0.40 0.32 0.14 0.28 0.57 0.54 0.26 0.55 

Holdout 0.09 0.08 0.23 0.26 0.20 0.25 0.29 0.00 0.15 0.18 

RF 
OOB 0.84 0.80 0.86 0.85 0.79 0.86 0.86 0.89 0.85 0.87 

Holdout 0.15 0.08 0.35 0.49 0.55 0.34 0.32 0.05 0.26 0.17 

RF ensembles yielded error estimates with strong linear and rank correlations to their residual errors for OOB 

data. However, there are large differences in the linear and rank correlations for individual datasets which are 

likely due to the assumptions of Pearson’s r not being met. Pearson’s r assumes that the error estimates and the 

actual errors are normally distributed. However, inspection of the histograms in Chapter 5 suggests that the error 

distributions are skewed due to the presence of residual error outliers. Therefore, subsequent discussion of the 

results focuses on analysis of the rank correlations. However, for holdout test data, weak and moderate rank 

correlation of the error estimates to the prediction errors were obtained for four (datasets 3, 6, 7 and 9) and two 

(datasets 4 and 5) datasets, respectively. Weak to moderate rank correlation was also observed for the error 

estimates of SVM ensembles to the prediction errors of the OOB data. Weak correlations were also obtained for 

the estimates for the prediction errors of holdout data. The weakest rank correlations were observed for the error 
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estimates of bagged ensembles for the holdout data of datasets 2 and 8, which were also the ADME models with 

the poorest overall performance.  

In Table 6-11, the bagged ensembles from feature sampling have produced random estimates with very weak or 

no correlation to the actual errors of OOB and holdout data. Weak correlations obtained for the holdout test data 

between the estimates of both SVM and RF ensembles and their respective prediction errors for dataset 5 and the 

RF ensemble estimates for dataset 4 are likely the result of the skewed error distributions of these models (see 

Figure A 4 in the Appendix). 

Table 6-11. Linear and rank correlation coefficients between the bagged error estimates from feature sampling and actual 

errors of the ADME ensembles 

Dataset 1 2 3 4 5 6 7 8 9 10 

Pearson’s r 

SVM 
OOB 0.07 0.03 -0.12 -0.13 0.19 -0.14 -0.10 0.03 0.00 -0.01 

Holdout -0.08 -0.03 -0.16 -0.10 0.30 -0.19 -0.02 -0.03 0.01 -0.01 

RF 
OOB 0.00 0.12 0.09 0.09 0.14 0.02 0.04 0.00 -0.03 0.02 

Holdout -0.05 0.11 0.07 0.17 0.28 -0.05 -0.03 0.02 -0.02 -0.03 

Spearman’s ρ 

SVM 
OOB 0.06 0.05 -0.05 -0.11 0.17 -0.06 -0.09 0.01 0.00 -0.01 

Holdout -0.06 -0.03 -0.03 -0.09 0.20 -0.09 0.00 -0.01 -0.01 -0.02 

RF 
OOB -0.01 0.11 0.09 0.13 0.13 0.01 0.05 0.01 -0.02 0.01 

Holdout -0.11 0.01 0.02 0.24 0.29 -0.04 0.00 0.01 -0.03 -0.02 

6.3.3.2 Regression error models 

In section 6.3.1, the descriptor-based error models and the AD-based error models were found to have similar 

average performance for the underlying SVM algorithm; while AD-based error models were less accurate for the 

estimation of RF errors, on average. The cross-validated and holdout performance metrics of the error models on 

the ADME datasets are provided in  

Table 6-12 and Table 6-13, for the descriptor-based and AD-based error models, respectively. As a general 

observation, it is seen that the performance of regression error models is very poor and accurate error estimates 

for ADME predictions cannot be obtained.  

With regards to the descriptor-based error models; similar accuracy estimates are observed in  

Table 6-12 for both the RF and SVM models and the estimates obtained for cross-validation and holdout data are 

in good agreement. The R2 values for datasets 3, 4, 6, 7, 9 and 10 indicate that the error estimates are weakly 

correlated to the actual errors. Error estimates with the strongest correlation and highest accuracy to the actual 
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errors of the underlying RF and SVM models are observed for dataset 5, which also yields the best performing 

ADME models. The AD-based error models resulted in higher R2 values on cross-validation data; but only for 

underlying RF models. In comparison to the descriptor-based error models; the AD-based error models were less 

accurate for the underlying RF models. However, they had similar accuracy to the descriptor-based error models 

for the underlying SVM models. 

Table 6-12. Predictive performance of the descriptor-based RF error model on the 10-fold CV errors of RF and SVM 

ADME models 

Dataset 

RF SVM 

CV Holdout CV Holdout 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

1 -0.03 0.161 -0.05 0.153 -0.08 0.159 0.08 0.163 

2 -0.06 0.077 0.10 0.120 -0.07 0.074 0.09 0.119 

3 0.10 0.139 0.08 0.125 0.08 0.147 -0.01 0.116 

4 0.18 0.148 0.16 0.189 0.09 0.119 0.10 0.162 

5 0.35 0.078 0.24 0.115 0.23 0.076 0.25 0.121 

6 0.09 0.153 0.10 0.147 0.01 0.152 0.08 0.133 

7 0.16 0.183 0.07 0.181 0.12 0.202 0.12 0.193 

8 -0.07 0.200 -0.05 0.214 -0.14 0.209 -0.04 0.216 

9 0.11 0.163 0.07 0.165 0.08 0.083 0.16 0.145 

10 0.13 0.161 0.05 0.159 0.08 0.145 0.03 0.162 

Table 6-13. Predictive performance of RF error model trained using AD-based descriptors on the 10-fold CV errors of RF 

and SVM ADME models 

Dataset 

RF SVM 

CV Holdout CV Holdout 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

1 0.39 0.213 -0.85 0.202 -0.09 0.155 -0.21 0.160 

2 0.30 0.086 -0.15 0.134 -0.09 0.081 -0.12 0.131 

3 0.39 0.184 -0.60 0.165 0.06 0.150 -0.07 0.119 

4 0.58 0.166 -0.06 0.211 0.08 0.119 0.11 0.162 

5 0.53 0.129 -1.08 0.191 0.28 0.083 0.09 0.131 

6 0.37 0.264 -1.68 0.253 -0.01 0.170 -0.14 0.148 

7 0.55 0.243 -0.46 0.241 0.04 0.213 -0.01 0.203 

8 0.45 0.251 -0.85 0.268 -0.22 0.224 -0.14 0.232 

9 0.37 0.217 -0.65 0.220 0.03 0.087 0.08 0.151 

10 0.41 0.225 -0.87 0.222 0.09 0.129 0.09 0.144 
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In Figure 6-4 and Figure 6-5. Comparison of the error model and the underlying SVM model RMSE values on 

cross-validation (left) and holdout data (right)   , the accuracy estimates of the error models are plotted against the 

accuracies of the respective, underlying models on cross-validation and holdout data in units of RMSE. These 

results are also provided in tabulated format in the Appendix (A 5 and A 6). Figure 6-4, shows that, in general, 

ADME models with higher accuracy result in more accurate error models. On cross-validation data, the descriptor-

based error models were more accurate than the underlying RF models for most datasets; particularly when the 

underlying models had larger errors (7, 8, 9, 10). The AD-based error models were less accurate than the respective 

ADME models on, both, cross-validation and holdout data. 

 
Figure 6-4. Comparison of the error model and underlying RF model RMSE values on cross-validation (left) and 

holdout data (right) 

 

          

Figure 6-5. Comparison of the error model and the underlying SVM model RMSE values on cross-validation 

(left) and holdout data (right)    

More accurate error models were obtained when the underlying algorithm was an SVM. The accuracy of the RF 

error models is higher than their respective ADME models, particularly when the latter have larger errors. In 

Figure 6-5. Comparison of the error model and the underlying SVM model RMSE values on cross-validation 

(left) and holdout data (right)   , the average accuracy estimates of both error models are in good agreement on 

cross-validation and holdout data; and overlapping estimates are obtained for three datasets (1, 3 and 4). 
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Despite the poor predictive performance of the error models; the estimates obtained could still be useful for 

ranking predictions on their actual prediction errors. In Table 6-14 and Table 6-15 the rank correlations of the 

error model estimates to the actual prediction errors for the ADME models indicate the presence of weak to 

moderate correlations.  

Although the AD-based error models are less accurate for the estimation of RF errors for the LogD data set in 

section 6.3.1, it is seen that their error estimates for RF predictions are more strongly correlated than the estimates 

from the descriptor-based error models even when the underlying models are poor. However, this is likely 

attributed to the standard deviation of the RF predictions being included as a variable in the AD-based models; 

which is known to correlate with the residual errors of RF predictions (Sheridan, 2012; Tetko et al., 2008). This 

is confirmed by the results in Table 6-16, where it is seen to exhibit very similar ranking performance to the AD-

based model. In addition, the results obtained from cross-validation are similar to the results on holdout data when 

the underlying models have good predictive performance; such as in the case of the SVM models of datasets 3, 4, 

5, 6, 7 and the RF models of datasets 1, 3, 4, 5, 6, 7, 9. 

Table 6-14. Linear and rank correlation coefficients between the estimates of the descriptor-based RF error model and the 

actual prediction errors of RF and SVM ADME models 

Dataset 1 2 3 4 5 6 7 8 9 10 

Pearson's r 

SVM 
CV 0.01 0.07 0.36 0.34 0.49 0.26 0.05 0.39 0.29 0.30 

Holdout 0.29 0.38 0.27 0.34 0.51 0.29 0.05 0.37 0.37 0.19 

RF 
CV 0.13 0.12 0.37 0.44 0.60 0.33 0.15 0.44 0.34 0.37 

Holdout 0.22 0.33 0.35 0.41 0.52 0.32 0.05 0.30 0.34 0.24 

Spearman's ρ 

SVM 
CV 0.00 0.09 0.32 0.38 0.44 0.24 0.41 0.06 0.26 0.30 

Holdout 0.26 0.27 0.37 0.38 0.47 0.27 0.38 0.10 0.40 0.19 

RF 
CV 0.16 0.15 0.37 0.50 0.57 0.31 0.48 0.13 0.32 0.38 

Holdout 0.19 0.27 0.43 0.47 0.55 0.31 0.37 0.07 0.35 0.24 
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Table 6-15. Linear and rank correlation coefficients between the estimates of the using AD-based RF error model and the 

actual prediction errors of RF and SVM ADME models 

Dataset 1 2 3 4 5 6 7 8 9 10 

Pearson's r 

SVM 
CV 0.07 0.02 0.37 0.35 0.54 0.26 -0.05 0.31 0.25 0.34 

Holdout 0.17 0.11 0.27 0.40 0.48 0.18 0.02 0.15 0.29 0.32 

RF 
CV 0.64 0.61 0.66 0.77 0.74 0.64 0.71 0.76 0.62 0.65 

Holdout 0.34 0.40 0.29 0.44 0.48 0.35 0.05 0.24 0.43 0.30 

Spearman's ρ 

SVM 
CV 0.09 0.00 0.35 0.43 0.55 0.25 0.37 -0.03 0.25 0.38 

Holdout 0.19 0.13 0.28 0.48 0.48 0.18 0.22 0.01 0.31 0.37 

RF 
CV 0.51 0.41 0.55 0.64 0.63 0.50 0.62 0.56 0.53 0.55 

Holdout 0.31 0.25 0.37 0.50 0.56 0.37 0.31 0.08 0.45 0.32 

Table 6-16. Linear and rank correlation coefficients between the standard deviation of the RF predictions and their actual 

prediction errors 

Dataset 1 2 3 4 5 6 7 8 9 10 

Pearson’s r RF 
CV 0.61 0.55 0.65 0.70 0.73 0.60 0.68 0.62 0.56 0.58 

Holdout 0.32 0.33 0.33 0.48 0.55 0.36 0.29 0.07 0.46 0.33 

Spearman's ρ RF 
CV 0.55 0.45 0.59 0.65 0.64 0.51 0.62 0.54 0.53 0.55 

Holdout 0.34 0.18 0.38 0.54 0.59 0.36 0.36 0.10 0.46 0.34 

The diversity of each dataset was computed as the variance of its pairwise distance matrix using the Euclidean 

distance metric for the cross-validation and holdout data. In Figure 6-6 and Figure 6-7, the rank correlation 

coefficients of the error models’ estimates are plotted against dataset diversity for the underlying RF and SVM 

models respectively. It can be seen that the ability of error models to rank predictions is better in datasets that are 

more diverse. The linear trend is more prominent on holdout data than cross-validation data. In Figure 6-6, the 

AD-based error estimates have higher rank correlation to the actual errors of RF ADME models on cross-

validation data than on holdout data regardless of the diversity in the data. 
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Figure 6-6. Rank correlation of the descriptor-based (left) and the AD-based (right) error models for the underlying 

RF ADME model plotted against the diversity of the datasets subsets 

 
Figure 6-7. Rank correlation of the descriptor-based (left) and the AD-based (right) error models for the underlying 

SVM ADME model plotted against the diversity of the datasets subsets 

As seen in Figure 6-8, the average performance of the error models in ranking the RF ADME predictions based 

on their actual errors is poorer than the performance of the standard deviation of the RF ensembles predictions. 

However, the error models yield similar ranking performance to the ensemble estimates in the case of the 

underlying SVM models’ predictions.  
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Figure 6-8. Rank correlations of error model and ensemble estimates 

The ranking agreement between the AD-based and descriptor-based error models and the ensemble estimates was 

assessed in Table 6-17. The Kendall’s W values calculated suggest that there is a strong correlation between the 

ranks assigned based on the error estimates, particularly in the case of the RF predictions. However, these results 

were calculated on the full holdout test set and, thus, it cannot be assumed that all error estimation methods assign 

similar ranks to poor predictions. 

Table 6-17. Kendall’s W for the error estimates of the two RF error models and the error estimates of the ensembles for the 

predictions of the RF and SVM ADME models 

Dataset 1 2 3 4 5 6 7 8 9 10 

Kendall's W 

SVM 

CV 0.50 0.38 0.65 0.58 0.64 0.64 0.74 0.41 0.54 0.62 

Holdout 0.57 0.52 0.67 0.63 0.68 0.59 0.72 0.48 0.59 0.55 

RF 

CV 0.69 0.69 0.79 0.84 0.90 0.75 0.81 0.66 0.71 0.74 

Holdout 0.72 0.70 0.80 0.87 0.89 0.78 0.79 0.68 0.70 0.67 

Previously, there was no apparent trend between the rank correlations and improvement in the accuracy of the 

LogD holdout predictions was observed after applying statistical thresholds to the error models’ estimates. 

However, the opposite is observed for the holdout data of the ADME predictions in Figure 6-9. In the figure 

below, the difference between the accuracy of the error models for the full holdout test set and the filtered holdout 

data using the 80th and 90th percentile values of the error estimates rank correlation is plotted against the rank 

correlation between the error estimates and the ADME predictions for each holdout test set.  
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Figure 6-9. Trend showing the improvement in the accuracy of the holdout predictions after removal of the upper 20% 

(left) and 10% (right) error estimates 

The improvement in the accuracy of the holdout test set following the application of the threshold values to the 

different types of error estimates is illustrated in detail for the RF and SVM ADME models in Table 6-18 and 

Table 6-19. The instances where applying the threshold reduced the accuracy of the holdout data are underlined 

and italicised. 

It is seen that the removal of 20% of the holdout predictions based on their error estimates can result in double 

the accuracy of the error models on holdout data, such as in the case of datasets 3, 4, 5 and 9. The RF and SVM 

models of datasets 8 and 10 which had the largest model error did not benefit from filtering using AD-based error 

estimates or ensemble error estimates as it resulted in the removal of more accurate predictions, thus, increasing 

the error of the predictions below the threshold.  

Interestingly, applying a higher threshold of p90 leading to the removal of 10% of the holdout data with the largest 

error estimates results in higher accuracy than the threshold of p80. In both cases, however, it is clear that the AD-

based error models are more effective for identifying large prediction errors of RF models, while the descriptor-

based error models are more effective in the case of SVM models. In contrast to the results of the LogD models, 

the ensemble-based error estimates are the least effective for filtering large prediction errors in the ADME RF and 

SVM models.  
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Table 6-18. Accuracy of the RF and SVM predictions for the ADME holdout data above and below the 80th percentile threshold value on the error estimates calculated as the mean 

absolute error (MAE) 

Underlying 

model 
Error model 

Threshold 

p80 
1 2 3 4 5 6 7 8 9 10 

Mean 

Difference 

RF 

AD-based 

Holdout 0.111 0.053 0.112 0.126 0.070 0.101 0.205 0.217 0.154 0.224 

0.049 Below 0.070 0.032 0.059 0.056 0.031 0.063 0.117 0.224 0.077 0.152 

Above 0.121 0.058 0.125 0.143 0.079 0.110 0.227 0.215 0.174 0.242 

Desc-based 

Holdout 0.111 0.053 0.110 0.126 0.070 0.101 0.205 0.217 0.151 0.224 

0.048 Below 0.068 0.034 0.051 0.060 0.028 0.059 0.128 0.211 0.086 0.162 

Above 0.122 0.058 0.125 0.142 0.080 0.111 0.224 0.218 0.168 0.240 

Ensemble 

Holdout 0.112 0.056 0.115 0.129 0.075 0.105 0.211 0.217 0.160 0.229 

0.040 Below 0.085 0.051 0.059 0.067 0.027 0.067 0.148 0.224 0.107 0.193 

Above 0.119 0.057 0.129 0.144 0.087 0.115 0.227 0.216 0.174 0.237 

SVM 

 

AD-based 

Holdout 0.111 0.060 0.099 0.126 0.077 0.093 0.205 0.213 0.154 0.342 

0.027 Below 0.066 0.046 0.063 0.060 0.037 0.073 0.147 0.210 0.097 0.410 

Above 0.122 0.063 0.108 0.142 0.087 0.098 0.219 0.214 0.169 0.324 

Desc-based 

Holdout 0.111 0.060 0.099 0.126 0.077 0.093 0.205 0.213 0.154 0.211 

0.044 Below 0.074 0.042 0.061 0.071 0.037 0.063 0.116 0.201 0.088 0.161 

Above 0.120 0.064 0.109 0.140 0.087 0.100 0.227 0.216 0.171 0.224 

Ensemble 

Holdout 0.112 0.060 0.103 0.125 0.077 0.097 0.205 0.213 0.155 0.213 

0.022 Below 0.093 0.058 0.086 0.096 0.053 0.081 0.157 0.216 0.122 0.165 

Above 0.116 0.061 0.107 0.133 0.082 0.101 0.217 0.213 0.163 0.225 
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Table 6-19. Accuracy of the RF and SVM predictions for the ADME holdout data above and below the 90th percentile threshold value on the error estimates calculated as the mean 

absolute error (MAE) 

Underlying 

model 
Error model 

Threshold 

p90 
1 2 3 4 5 6 7 8 9 10 

Mean 

Difference 

RF 

AD-based 

Holdout 0.111 0.053 0.112 0.126 0.070 0.101 0.205 0.217 0.154 0.224 

0.063 Below 0.065 0.032 0.038 0.035 0.025 0.066 0.089 0.210 0.056 0.129 

Above 0.116 0.055 0.120 0.136 0.075 0.105 0.218 0.217 0.165 0.235 

Desc-based 

Holdout 0.111 0.053 0.110 0.126 0.070 0.101 0.205 0.217 0.151 0.224 

0.058 Below 0.063 0.026 0.045 0.053 0.022 0.057 0.117 0.209 0.062 0.138 

Above 0.116 0.056 0.117 0.134 0.075 0.106 0.215 0.218 0.161 0.234 

Ensemble 

Holdout 0.112 0.056 0.115 0.129 0.075 0.105 0.211 0.217 0.160 0.229 

0.049 Below 0.077 0.053 0.045 0.061 0.023 0.054 0.131 0.234 0.070 0.170 

Above 0.116 0.056 0.123 0.136 0.081 0.111 0.220 0.215 0.171 0.235 

SVM 

AD-based 

Holdout 0.111 0.060 0.099 0.126 0.077 0.093 0.205 0.213 0.154 0.342 

0.031 Below 0.060 0.040 0.049 0.065 0.037 0.074 0.141 0.204 0.069 0.435 

Above 0.117 0.062 0.105 0.133 0.081 0.095 0.212 0.214 0.164 0.331 

Desc-based 

Holdout 0.111 0.060 0.099 0.126 0.077 0.093 0.205 0.213 0.154 0.211 

0.057 Below 0.046 0.037 0.042 0.065 0.035 0.053 0.098 0.193 0.073 0.139 

Above 0.118 0.062 0.105 0.133 0.082 0.097 0.217 0.215 0.163 0.220 

Ensemble 

Holdout 0.112 0.060 0.103 0.125 0.077 0.097 0.205 0.213 0.155 0.213 

0.028 Below 0.069 0.052 0.082 0.077 0.058 0.080 0.171 0.232 0.116 0.150 

Above 0.116 0.061 0.105 0.131 0.079 0.099 0.209 0.211 0.159 0.220 
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6.3.3.3 Evaluation using Kullback-Leibler divergence 

Table 6-20 shows the mean KLD scores of the RF ADME models for the different error estimation methods. The 

full KLD distributions of the RF and SVM ADME models obtained using the uniform and variable error estimates 

from error models are illustrated in the Appendix with a KLD cut-off value of 10 (Figures A 10 and A 11 in the 

Appendix). As in the results of the LogD models, the maximum KLD scores exceeded the order of two, as an 

effect of a large difference in the means of the distributions and prediction error estimates. 

In Table 6-20 and Table 6-21, the KLD scores of the variable error estimates are generally more informative than 

the uniform error estimates. However, despite their larger KLD scores in comparison to the baseline it is seen that 

these are close to a value of one or lower, which suggests that there is some agreement in assumed measurement 

and prediction distributions. Lower KLD scores are observed for the AD-based and descriptor-based error model 

estimates of datasets 1 and 3, and the descriptor-based error model estimates of dataset 9. Although the standard 

deviation of the RF predictions performed less well than uniform estimates, it resulted in lower KLD scores than 

the other variable estimation methods in datasets 4, 5, 6 and 7. Conversely, the error estimates based on the 

standard deviation of the ensemble predictions resulted in high KLD scores that indicate a poor overlap of the 

measurement and prediction distributions.  In Table 6-21, similar trends are observed in that the AD-based and 

descriptor-based error model estimates produced the lowest mean KLD scores for datasets 1, 3 and 9.  

Table 6-20. Mean KLD of RF prediction distributions where prediction error is estimated by AD-based and descriptor-based 

error models, RF ensembles and the standard deviation of the prediction. The benchmark KLD score is calculated from 

uniform error estimates based on the model’s average CV error.  

Error model 

Dataset 

1 2 3 4 5 6 7 8 9 10 

Uniform 1.10 0.69 2.21 1.03 0.93 0.74 0.72 0.81 1.21 0.60 

AD-based RF 0.75 1.11 1.16 1.45 1.30 0.85 1.72 1.09 2.72 0.80 

Desc-based RF 0.75 1.30 1.07 1.30 1.34 0.90 1.51 1.22 1.04 0.84 

SD Ensemble 18.20 50.63 13.78 50.59 28.91 15.79 86.49 71.48 28.73 35.86 

SD RF 2.44 2.24 4.20 1.15 1.17 0.76 1.41 1.35 21.83 0.80 
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Table 6-21. Mean KLD of SVM prediction distributions calculated for the estimates obtained from AD-based and descriptor-

based error models and the standard deviation of SVM ensembles predictions 

Error model 
Dataset 

1 2 3 4 5 6 7 8 9 10 

Uniform 1.18 0.58 2.50 0.98 0.95 0.70 0.80 0.83 1.32 0.60 

AD-based RF 0.85 0.74 1.00 1.56 1.14 0.91 1.87 0.98 1.19 1.56 

Desc-based RF 0.79 1.07 1.05 1.19 0.98 0.91 1.50 1.30 0.86 0.89 

SD Ensemble 15.65 31.51 9.10 10.51 11.46 10.22 70.84 55.74 21.12 12.76 

6.4 Discussion 

The poor predictions of the models trained in Chapter 5 could not be sufficiently explained by defining their ADs; 

therefore, the use of error models that account for other variables that might be associated with the poor 

performance of the underlying models has been investigated. The use of a RF model to predict the errors of another 

RF QSAR model using similarity metrics as features was proposed by Sheridan in (Sheridan, 2013b). The AD-

based RF error model utilised a selected set of features that were based on similarity and the output of the 

underlying RF model, thus, exploiting a special characteristic of the RF residual errors, which are correlated to 

the RF prediction and the prediction’s variance. 

In this work, the performance of RF error models was studied using descriptor-based features, i.e., the same 

features as the underlying model, and AD-based features, similar to those defined in the approach by Sheridan. 

The descriptor-based features included molecular and physicochemical descriptors, while the AD-based features 

consisted of the mean and standard deviation of the D2M in a local neighbourhood, which were combined with 

the prediction and the standard deviation of the prediction of the underlying RF model. More specifically, the 

performance of descriptor-based and AD-based RF error models was investigated in: 1) a well curated, LogD 

dataset with no residual error outliers to estimate the prediction errors of four machine learning algorithms, namely 

PLS, KNN, SVM and RF; and 2) ten, diverse, ADME datasets where residual error outliers were left untreated to 

estimate the prediction errors of RF and SVM algorithms. 

The error models’ performance has been compared to the benchmark performance of a binned-D2M model for 

the LogD data set, which assigns mean estimates to predictions assigned to the same bin; and the standard 

deviation of ensemble predictions obtained from data sampling and feature sampling for the LogD data set and 

the ADME data sets. The performance of error models was generally poor and had weak correlation to the residual 

errors of cross-validation data. The accuracy of the error models was higher or equivalent to the accuracy of the 

QSAR models, but low R2 values indicated that the error estimates were very poorly correlated to the residual 

errors of the underlying models’ predictions. The linear and ranking performance of the error estimates were 
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assessed and yielded equivalent or poorer results compared to the performance of the benchmark estimates. 

Nevertheless, the estimates of the error models performed better in the task of identifying predictions of ADME 

RF and SVM models that had larger errors combined with statistical thresholds. In the LogD models, ensemble 

based error estimates were better in this task while the error model estimates were less effective. 

These results were in agreement with the performance of other error models previously reported by Sheridan 

(Sheridan, 2013b). In that publication the error models were used to estimate the errors of LogD and other activity 

models that utilised atom pairs as descriptors instead of molecular descriptors. Furthermore, similarity instead of 

distance to model metrics were used to build the error models.  

The descriptor-based error models performed better in ranking the residual errors of the PLS LogD model, which 

was the LogD model with the lowest predictive performance in Chapter 5. The average ranking performance of 

the error estimates for the RF and SVM LogD models, which were the best performing QSAR models, did not 

exceed the benchmark performance on cross-validation and holdout data. Ensemble based error estimates were 

better than descriptor-based error estimate in identifying poor predictions of the LogD models despite the stronger 

rank correlation of the latter with the actual prediction errors. Analysis based on the information-theoretic 

framework using KLD scores, suggested that descriptor-based estimates were actually the most informative and, 

that they may be useful for calculating confidence intervals that are more likely to include the measurement. Their 

KLD scores also indicated that, on average, the size of the prediction error estimates was comparable to the size 

of the actual prediction errors and the experimental error. The AD-based error models had poorer ranking 

performance for the LogD models but were found to be more effective in identifying large prediction errors than 

descriptor-based error models. However, the KLD scores for the KNN and the RF predictions indicated that their 

AD-based error estimates, on average, were more informative than the benchmark estimate based on uniform 

estimates.  

The AD-based error models outperformed the ranking performance of the descriptor-based error models for 

underlying RF ADME models on cross-validation data. However, this is mainly due to the inclusion of the 

standard deviation of the underlying RF’s prediction and the prediction itself as variables of the AD-based RF 

error model, which correlate well with the RF prediction errors. However, the former is only available for 

underlying RF models. The ranking performance of the error models was still poorer than the standard deviation 

of RF ensemble predictions, on average. Furthermore, there was no difference in the average ranking performance 

of the error models and the SVM ensemble error estimates. Improvement in the error models’ ability to rank 

predictions was obtained with increasing dataset diversity. This could potentially indicate that the inclusion of 

residual error outliers in the error models improves their ability to distinguish predictions with large residual 

errors.  

It was also found that the rank correlation was a useful indicator of the error estimates’ ability to identify poor 

predictions made by the RF and SVM ADME models. Therefore, it was confirmed that AD-based error models 



Chapter 6   Prediction Error Estimation 

 

87 

 

performed best in identifying poor predictions of the RF ADME models and descriptor-based error models 

performed best in the case of SVM ADME models. 

Analysis of the KLD scores made it clear that the RF error models yield more useful prediction error estimates 

than estimates based on the variation of individual predictions, as they represent direct estimates of the models’ 

absolute residual error. While the variation of RF predictions is the best indicator of prediction error it may not 

always be useful as a direct estimate and may need to be adjusted by regression. 

6.5 Conclusions 

This chapter has investigated the performance of RF error models and other approaches for the estimation of 

errors in underlying QSAR models. The results suggest that error models may be of potential use in identifying 

novel predictions for skewed ADME datasets that are easy to model. However, it is clear that the current error 

models are not suitable for the direct estimation of ADME prediction errors and other methods or variables may 

need to be investigated. While further steps could potentially be added to the modelling process to obtain binned 

estimates from the error models’ output it was considered that these would increase the uncertainty of the error 

models and become even less tractable. Furthermore, as seen in the linear binned D2M error models, binning is 

not suitable for the estimation of individual prediction error estimates. The results from KLD analysis suggested 

that the error estimates obtained may be useful for the calculation of interval estimates, if the estimates are larger 

and to some extent correlated with the actual prediction errors. The following chapter discusses an alternative 

approach for the estimation of uncertainty in individual prediction, namely conformal prediction, in the form of 

prediction intervals.
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Chapter 7 Evaluation of Error Models using Conformal 

Prediction 

7.1 Introduction 

The CP framework facilitates the estimation of compound-specific prediction intervals that represent the 

uncertainty associated with the individual predictions. These are produced by normalising the models’ errors with 

the output of any uncertainty estimation or reliability scoring method, thus, simplifying the comparison of 

uncertainty estimates and reliability indices to a direct comparison of prediction interval (PI) estimates. The best 

method among alternatives for the normalisation of the errors is the one that produces the narrowest PIs on average 

so that these may be informative for decision making. A study by Johansson, Boström, Löfström, & Linusson 

(2014) suggests that normalisation can significantly improve the efficiency of PIs particularly when the 

normalised PIs are strongly correlated with the actual prediction errors. Therefore, in spite of the low predictive 

performance of error models built in the previous chapter, their error estimates may be useful in the estimation of 

PIs with CP as long as they produce PIs that correlate well with the prediction errors.  

The aim of this chapter is to investigate the utility of error models for the estimation of confidence in ADME 

regression models within the conformal prediction (CP) framework. The optimisation of the CP models’ 

parameters is demonstrated, first, for the LogD dataset and is, then, followed for the ADME datasets. The 

estimates from different error models are used to generate normalised PIs for the underlying models built in 

Chapter 5, which are then assessed on their utility for the purpose of compound prioritisation. 

7.2 Methods 

Conformal prediction (CP) was applied in an aggregate conformal prediction (ACP) setting for the estimation of 

PIs of the LogD and ADME models built in Chapter 5. As discussed in Chapter 3, ACP infers a model’s empirical 

error distribution from calibration data that are repeatedly sampled from the training set. The effect of the 

following three ACP parameters was studied on the PI estimates of the underlying models: a) the size of the ACP, 

i.e., the number of calibration sets repeatedly sampled, b) the sampling method and c) the method applied to 

normalise the error.  
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The effect of the ACP size and the sampling method were investigated on standard ACPs, which generate uniform 

PIs i.e., without normalisation. First, standard ACPs of size 10 were built to estimate uniform PIs for all 

compounds and assess how the PI size for each ADME model varies with respect to the level of confidence. An 

arbitrary threshold of 80% confidence was then chosen, which is common in CP applications within the 

chemoinformatics domain (Cortes-Ciriano & Bender, 2019; Norinder et al., 2016; Svensson et al., 2018) but also 

produced acceptable results for all models trained following confirmation. The same threshold was also applied 

in subsequent investigations. 

The sizes of ACPs explored were 10, 100 and 1000. Larger ACPs were not studied as they were computationally 

expensive, particularly in the case of the larger datasets and also when applying normalisation. The sampling 

methods applied by the ACP to draw calibration data from the training set included bootstrap sampling, random 

sampling and cross-subsampling. Bootstrap and random sampling involve sampling N calibration set samples at 

random, each at 30% of the training set size with and without replacement, respectively. The implementation of 

cross-subsampling is equivalent to applying N-fold cross-validation, and involves randomly partitioning the 

training data into N folds with each fold representing a calibration sample draw. As a result, the size of the 

calibration set drawn by cross-subsampling is 10% of the training set for an ACP of size 10. The optimal size and 

sampling method identified were those that minimised the average PI estimates of the ACPs and these were then 

applied to build normalised ACPs.  

Normalised ACPs were trained for the estimation of variable PIs. These were derived by normalising the models’ 

errors using a distance-to-model (D2M) index and three error models. The distance-to-model index (D2M) was 

calculated for each instance as the average Euclidean distance of 5% of the nearest neighbours in the training set 

in descriptor space (Carrió et al., 2014). Two of the error models were built using RF and SVM algorithms and 

the molecular descriptors utilised by the ADME model. The third error model was an AD-based RF error model 

with three variables: the ADME prediction, the D2M index and the standard deviation of the distances to the 5% 

nearest neighbours in the training set. For the AD-based error model, the two distance-based variables introduced 

information regarding the density of the local neighbourhood: a small D2M and small standard deviation indicates 

a densely populated neighbourhood for a compound, while a large D2M indicates a sparser neighbourhood. Note, 

that the standard deviation of the RF ADME prediction was not included in these experiments.  

The performance of the ACPs was evaluated at the set confidence level of 80% on holdout data using measures 

of validity and efficiency. Validity was assessed using the difference of the ACPs expected error rate that is 

associated with the set confidence threshold and the actual error rate on holdout data. Thus, for an 80% confidence 

threshold the expected error rate of the ACP is 0.2; which means that 20% of the PI estimates for the holdout data 

will be wrong. In other words, 20% of the PIs will not contain the true measurement. However, this error rate is 

only guaranteed if the CP assumption regarding the exchangeability of calibration and test data is valid. In 

practice, an ACP is considered valid if the difference between the expected and the actual error rate, ΔEr, is small, 
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although a maximum threshold on the difference is not clearly defined. A negative difference indicates that the 

ACP fails to account for the errors of holdout data and is less desirable, while a positive difference is acceptable 

as the ACP accounts for all errors of the holdout data. In this work, the implications of a negative difference and 

a difference that is greater than 0.05 is explored. A difference greater than 0.05 is used as a threshold as it 

represents an ACP that fails to explain more than 5% of the holdout data and is also a standard threshold applied 

in significance testing.   

The efficiencies of the ACPs were assessed based on their average PI size; smaller PIs are preferable as they 

indicate a smaller amount of uncertainty associated with the predictions. The size of the standard PIs was used as 

a benchmark for the efficiency of the normalised ACPs. A normalising method is optimal if it produces PIs that 

are, on average, more efficient than the standard (non-normalised) ACP on holdout data.  

Finally, the usefulness of the PI estimates was evaluated based on their size and their correlation to the actual 

prediction errors. The former was done by comparing the PI estimates of the standard ACPs to the experimental 

error estimates of the data and the endpoint value range, which were provided in Chapter 4. The correlation of the 

normalised PIs to the actual prediction errors of the holdout data was calculated using Pearson’s r and Spearman’s 

ρ. 

A summary of the ACP parameters investigated is provided in Table 7-1. 

Table 7-1. Summary of parameters optimised during training of the aggregate CPs 

Sampling 

Cross subsampling 

Random subsampling 

Bootstrap  

Underlying model 
SVM 

RF 

Normalising method 

SVM error model 

RF error model 

AD-based RF model 

D2M index 

ACP was implemented using Python’s nonconformist library and necessary modifications of the original code 

using Python scripts that were required for the normalisation applied using the D2M index and the AD-based RF 

error model. 
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The ACP models built were based on the underlying QSAR models of Chapter 5 for the LogD and ADME data. 

Due to the incompatibility of the PLS algorithm with the nonconformist package, ACPs could not be obtained for 

the PLS LogD model. 

The performance of the ACPs for the LogD models was evaluated on the same holdout data used for the evaluation 

of the QSAR and error models built in the previous chapters, while the performance of the ACPs for the ADME 

models was evaluated on separate holdout data, multiple holdout data and time-split data. The performance of the 

ACPs on multiple holdout data was assessed for ADME models trained using different settings than those 

previously described and their details are provided in the results section.   

7.3 Results 

In this section, the results obtained from the optimisation of standard and normalised conformal predictors for the 

LogD dataset are first presented and discussed. These are then followed by the results obtained from the 

optimisation of the conformal predictors for the ADME datasets and the evaluation of the utility of their PI 

estimates for the identification of novel compounds. Finally, the performance of the ACPs on repeatedly sampled 

holdout data and temporal test data of the ADME data is discussed.   

7.3.1 LogD dataset 

Standard ACPs were built for the KNN, RF and SVM LogD models and were then optimised for the ACP size, 

the sampling technique and the normalisation method. The conformal predictors were evaluated at 80% 

confidence on randomly sampled holdout data from each ADME training set. 

7.3.1.1 Conformal predictor optimisation 

Figure 7-1 illustrates the error rates of the standard ACPs and the size of the PIs estimated for the KNN, RF and 

SVM LogD models at all levels of confidence. On the left, the expected error rate, which is indicated by the black 

diagonal line, is plotted against the actual error rate of the ACPs for the holdout data. The expected error rate of 

the ACP at each confidence level, αi, is calculated as the significance, 1- αi, and is indicated by the black diagonal 

line in the confidence vs. error rate plots. The ACPs are valid at all confidence levels with small fluctuations in 

the expected error rates. The RF ACP yield the smallest fluctuations and are consistently in high agreement with 

the expected rates. The SVM and KNN ACPs yield smaller error rates than the expected error rate for confidence 

levels between 10-80%. This suggests that the RF ACPs are more reliable than the SVM and KNN ACPs as their 

error rates are closest to the expected error rates.  
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To the right of Figure 7-1, the size of the PI estimates for the predictions of the LogD models is plotted across all 

confidence levels. The narrowest PIs are obtained for the SVM LogD model, which is also the most accurate (see 

Chapter 5), while the RF and KNN LogD models produce PIs of similar size.  

The hashed lines in Figure 7-1 mark the chosen confidence threshold of 80%, where it can be seen that valid PIs 

are obtained with only small differences between the actual and the expected error rates for the three models. 

Furthermore, the size of the PIs estimates is between 1.6 and 2.0 which is approximately 30% the LogD value 

range of the modelled data.  

 

Figure 7-1. Error rate (left) and size of PIs (right) estimated by standard ACPs of size 10 for the underlying KNN, 

RF and SVM models of the LogD dataset on holdout data from random sampling. 

7.3.1.1.1 ACP size 

The results from the evaluation of the standard ACPs with different sizes on holdout data for the underlying KNN, 

RF and SVM models are summarised in Table 7-2. In Table 7-2, the validity of the ACPs for different sizes was 

evaluated at 80% confidence and is expressed as the difference between the expected and the actual error rate, 

ΔEr, of the conformal predictor on holdout data. The ACPs with a negative ΔEr, i.e., the actual error rate is larger 

than the expected error rate, are italicized. It is seen that increasing the ACP size from 10 causes the error rate of 

the ACP to increase in the case of the KNN and RF models, but to decrease in the case of the SVM model. The 

differences in the error rates are small, however, and do not exceed the set threshold of ΔEr at 0.05. An interesting 

observation is that the actual error rates of the ACPs for the SVM model are consistently smaller than the expected 

error rate of 0.2, while in the case of KNN and RF the actual error rates exceed 0.2. Increasing the ACP size 

improves the efficiency of the PI estimates only in the case of the RF model, as the PI size steadily decreases; 

however, in the case of the KNN and the SVM model the most efficient PIs are observed for sizes of 10 and 100, 

respectively. 
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Table 7-2. Difference between the expected and actual error rate, ΔEr, and the PI size of ACPs (N= 10, 100, 1000) for the 

underlying logD models at 80% confidence 

 N KNN RF SVM 

ΔEr 

10 0.000 -0.008 0.015 

100 -0.009 -0.013 0.012 

1000 -0.001 -0.013 0.017 

PI size 

10 2.065 2.048 1.742 

100 2.078 2.033 1.736 

1000 2.076 2.029 1.742 

 

A small difference between the expected error rate and the actual error rate, ΔEr, of an ACP for the set confidence 

level suggests that the ACP yields approximately valid results. Therefore, Table 7-2 indicates that valid ACPs 

have been obtained for all three models with PI estimates that span over 30-35% of the LogD value range, which 

is 6 log units (see Chapter 3). A larger difference, whereby the actual error rate is smaller than the expected error 

rate suggests that the ACP performs better than expected on holdout data as it yields more PIs that are valid on 

holdout data than on calibration data. This is an effect of the calibration errors being larger than holdout errors at 

an 80% level of confidence, which decreases the error rate, as the PIs are more likely to include the measured 

values of the holdout data.  

For example, an 80% confidence value suggests that the expected error rate is 0.2, so that for a hypothetical value 

of ΔEr =+0.050, the actual error rate will be 0.15, i.e., ΔEr = expected – actual = 0.2 – 0.15. This means that while 

80% of the estimated PIs for calibration data are expected to contain the true measurement; 85% of the estimated 

PIs contain the true measurement on holdout data. In contrast, a value of ΔEr = - 0.05, suggests that the errors of 

the holdout set are larger than the errors of the calibration set for the specified confidence threshold and, thus, the 

PI estimates exclude the actual measurements of the holdout data more frequently than expected, i.e., by 5%. 

Regardless of whether the difference is positive or negative, a large difference in the expected and actual error 

rates indicates that the theoretical assumption of exchangeability is not valid and that the ACP is not reliable for 

the holdout data. Therefore, an ACP is valid only for small ΔEr values. This observation highlights the importance 

of the error models, which were investigated in the previous chapter, being predictive, as they may be used to 

estimate the prospective error distribution of holdout data and test in advance whether a valid ACP may be 

obtained. 

7.3.1.1.2 Sampling 

The influence of the three sampling methods on the validity and the efficiency of the ACPs is shown in Table 7-3 

for different ACP sizes. The most efficient PI estimates are in bold. 
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Table 7-3. Difference between the expected and actual error rate, ΔEr, and PI size of ACPs for the underlying logD models 

N  Sampling KNN RF SVM 

10 

ΔEr 

Bootstrap 0.015 -0.005 0.014 

Cross-sampling -0.015 -0.018 0.002 

Random 0.000 -0.008 0.015 

PI 

Size 

Bootstrap 2.185 1.980 1.779 

Cross-sampling 1.978 1.966 1.662 

Random 2.065 2.048 1.742 

100 

ΔEr 

Bootstrap 0.012 -0.010 0.012 

Cross-sampling 0.012 -0.006 0.019 

Random -0.009 -0.013 0.012 

PI 

Size 

Bootstrap 2.152 2.001 1.759 

Cross-sampling 2.108 2.012 1.729 

Random 2.078 2.033 1.736 

1000 

ΔEr 

Bootstrap 0.005 -0.006 0.012 

Cross-sampling 0.042 0.037 0.044 

Random -0.001 -0.013 0.017 

PI 

Size 

Bootstrap 2.161 2.000 1.760 

Cross-sampling 2.330 2.205 1.952 

Random 2.076 2.028 1.742 

The PIs obtained by cross-sampling of the calibration data are sensitive to changes in ACP size, while those 

obtained by bootstrap sampling and random sampling are more robust. Increasing the size of the ACP results in 

an increase of the PI size by approximately 0.4 when cross-sampling is applied. For an ACP of size 10, cross-

sampling produces the narrowest PIs but at the cost of the increasing error rate when the underlying algorithm is 

KNN and RF, which is indicated by a negative ΔEr. For an ACP of size 1000, cross-sampling leads to the least 

efficient PIs for all models and a large decrease in the actual error rate of the ACP. The least variation between 

the PI estimates obtained by cross-sampling and the other sampling methods is observed for an ACP size of 100, 

while the highest variation is observed for the PIs from ACPs of size 1000. This is a consequence of the difference 

in the calibration set size in cross-sampling; the calibration data sampled at each iteration represent 10%, 1% and 

0.01% of the training set data for ACPs sizes of 10, 100 and 1000, respectively. This demonstrates that applying 

the same threshold to an error distribution estimated from a smaller calibration set with smaller size will increase 

the size of the error estimate, thus, making it less accurate. 

Bootstrap and random sampling yield PI estimates of similar size across all methods and the actual error rates 

obtained are less varied. For ACPs of size 100 and 1000, bootstrap sampling produces more efficient PIs for RF 

models, while random sampling produces more efficient PIs for KNN.  
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7.3.1.1.3 Normalisation 

Different methods were tried for the normalisation of the ACPs, namely a D2M index, descriptor-based RF and 

SVM error models and an AD-based RF error model. These were applied for ACPs with size 10 and cross-

sampling as these settings produced the most efficient PIs for holdout data for all three underlying algorithms with 

no normalisation. In Table 7-4, the performance of the normalised ACPs is compared to the performance of the 

standard ACP with the most efficient PIs underlined and in bold. The ACPs normalised using the descriptor-based 

RF error model, in the case of RF and SVM QSAR models, and the descriptor-based SVM error models, in the 

case of the KNN QSAR model, yielded the smallest difference between the expected and the actual error rate and 

the most efficient PIs. The large value for the average PIs for the KNN model normalised using the AD-based 

error model is attributed to poor error estimates produced by the model, which is trained on the residual errors of 

the training data rather than the cross-validation data. Note that this is the main difference in the error models 

trained using the Python implementation of CP and the error models trained separately in Chapter 5. As a result, 

the errors of the calibration data are underestimated and their normalisation with the error estimates produces very 

large critical values for the calculation of the PIs. Nevertheless, this suggests that the current normalisation is not 

suitable for the KNN model and that the error model would have to be trained on cross-validation errors to improve 

the efficiency of the PI estimates. 

Table 7-4. Comparison of the difference between the expected and actual error rate, ΔEr, and mean PI size of standard and 

normalised ACPs (N=10) for the underlying RF and SVM models 

 ACP KNN RF SVM 

 Standard -0.015 -0.018 0.002 

ΔEr 

D2M index 0.012 -0.018 0.015 

RF 0.014 0.010 0.000 

SVM 0.004 0.031 0.012 

AD-based RF 0.026 0.031 0.020 

PI size 

Standard 1.978 1.966 1.662 

D2M index 2.164 2.042 1.789 

RF 2.524 2.000 1.723 

SVM 2.057 2.144 1.908 

AD-based RF 5.780 2.122 1.860 

 

7.3.1.2 Evaluating the usefulness of normalised PIs 

In the previous results, it was seen that the size of the PI estimates is approximately a third of the LogD value 

range which is one order of magnitude larger than the experimental error estimate of 0.1. This highlights the large 
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prediction uncertainty of the LogD models in relation to the experimental error, which suggests that the models 

cannot achieve as high precision as the assay at 80% confidence. 

However, as already mentioned, the sizes of the normalised PIs may be used to prioritize compounds for further 

testing. Large PIs indicate high uncertainty associated with the predictions suggesting that the model does not 

have enough data for the respective compounds; therefore, further experimental testing of similar compounds is 

required.  

The linear and rank correlation of the normalised PIs to the actual prediction errors of the KNN, RF and SVM 

LogD models are shown in Table 7-5. Higher correlation is seen between the PIs obtained by normalisation with 

the descriptor-based error models and the errors of the underlying RF and SVM models, as well as the AD-based 

PI estimates with the underlying RF errors. Interestingly, normalised PIs that are estimated using SVM error 

models are more strongly correlated with the errors of the RF LogD model than the normalised PIs estimated 

using RF error models. Overall, the results suggest that PIs obtained following normalisation with the RF and 

SVM error models may be useful in the prioritisation of compounds.  

Table 7-5. Pearson and Spearman correlation coefficients between the variable PI estimates and the actual prediction errors 

of the underlying models’ predictions 

 ACP KNN RF SVM 

Pearson’s r 

D2M index 0.08 0.06 0.08 

RF -0.05 0.31 0.28 

SVM -0.01 0.38 0.25 

AD-based RF -0.11 0.27 0.12 

Spearman’s ρ 

D2M index 0.06 0.01 0.05 

RF 0.06 0.33 0.24 

SVM 0.07 0.39 0.23 

AD-based RF -0.29 0.28 0.12 

 

7.3.2  ADME datasets 

Standard ACPs were built for the for the RF and SVM ADME models and, as for the LogD dataset, were then 

optimised for the ACP size, the sampling technique and the normalisation method. Subsection 7.3.2.1 describes 

the results from the optimisation of the ACPs on holdout data that were randomly sampled from the training data 

using a ratio of 80:20.  Subsection 7.3.2.2 contains the results of the ACPs applied on the full training set and the 

external test set that was originally supplied by Lilly.  
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7.3.2.1 Conformal predictor optimisation 

The performance of standard ACPs applied to the underlying RF and SVM QSAR models is illustrated for all 

levels of confidence in Figure 7-2 and Figure 7-3, respectively. The plot shows the actual error rate and the size 

of the PI estimates for the holdout test set.  

The confidence vs. error rate plots in the left of Figure 7-2 and Figure 7-3 indicate that for the two underlying 

algorithms the ACPs had smaller error rates on the holdout data at higher confidence levels. However, larger 

actual error rates than the expected error rate were obtained for the RF models for most datasets at lower 

confidence levels, particularly datasets 1 and 4, suggesting that there is less agreement between the error 

distributions of the calibration and holdout data. At 80% confidence, which was the chosen confidence threshold, 

valid PIs with small differences between the actual and the expected error rates were observed for all datasets. A 

closer look at the data shown in Figure 7-2, indicates that the highest observed margins for the error rates, ΔEr, 

were observed for the RF model of dataset 2 and the SVM model of dataset 7 with sizes of 0.010 and 0.011, 

respectively, which are both well below the ΔEr threshold of 0.05. These values suggest a higher than expected 

error rate by 1.0 % and 1.1 % for the holdout sets of dataset 2 and dataset 7, respectively.  

 

Figure 7-2. Error rate (left) and size of PIs (right) estimated by standard ACP (N=10) for the underlying RF models 

of the 10 ADME datasets on holdout data from random sampling. 
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Figure 7-3. Error rate (left) and size of PIs (right) estimated by standard ACP (N=10) for the underlying SVM 

models of the 10 ADME datasets on holdout data from random sampling. 

In the confidence vs. PI size plots in the right of Figure 7-2 and Figure 7-3, narrower PI distributions are, generally, 

obtained for more accurate ADME models. Levels of confidence 50% or lower, where half of the future 

measurements or more are likely to fall outside the PIs, are of less value; as the PIs will be too narrow and 

inaccurate most of the time. However, as seen in the figures above, higher confidence levels are associated with 

larger PIs. Furthermore, as the PIs are estimated from the underlying model’s empirical error distribution, it 

follows that underlying models with low accuracy will also yield large PIs that are less informative at high 

confidence levels (see Section 7.3.2.2). This highlights that setting a suitable confidence level requires making a 

trade-off with the PI size by taking into account the error distribution of the calibration data.  

For example, in Figure 7-2 and Figure 7-3, a 99% confidence threshold results in PI estimates with size between 

0.7 – 1.4; which corresponds to 70 % - 140% coverage of the endpoints’ value range. However, more precise PIs 

may be obtained, with a size of 0.2 or less, given an 80% confidence threshold.  

7.3.2.1.1 ACP size 

The performance of standard ACPs for the underlying RF and SVM models were compared for ACP sizes 10, 

100 and 1000 to find the optimal size, and to the performance of an ACP of size 1, which uses a single calibration 

sample for the estimation of the PIs. An ACP of size 1, is equivalent to an inductive CP, therefore, it is referred 

to as ICP below. In Figure 7-4 validity is measured as the difference between the expected error rate and the actual 

error rate of the ACPs for increasing  size, i.e., ΔEr. The ICPs are generally valid with smaller error rates than the 

ACPs, except in the case of dataset 3. However, the ICP results were not robust as the PI estimates were based on 

a single calibration set draw. For increasing ACP size, the actual error rate decreases for the underlying RF models 

of datasets 1, 5 and 6, and the underlying SVM models of datasets 1, 2 and 6, as indicated by the increase in the 

difference between the expected error rate and actual error rate. In fact, a difference greater than 0.05 was observed 

for the larger ACPs of the underlying SVM models of dataset 6. Increasing the number of calibration set draws 

from the training data results in greater coverage of the models’ error distribution and makes it more robust. 
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Increasing the size of the SVM ACP from 10 to 1000 reduces the error rate of datasets 3 and 4 and improves the 

efficiency of PIs by 0.05. 

 
Figure 7-4. Difference between the expected and actual error rate of ACPs with different sizes for the underlying 

RF (left) and underlying SVM (right) models 

The validity and the efficiency measures of the ICP with size 1 and the three ACPs with sizes of 10, 100 and 1000 

are provided below. In Table 7-6 and Table 7-7, the validity is expressed as the difference between the expected 

error rate and the actual error rate of the CP on the holdout data, ΔEr. Negative ΔEr values are italicized and, as 

discussed earlier, indicate that the actual error rate of the conformal predictor exceeds the expected error rate. A 

negative ΔEr is less preferable than a positive ΔEr as it indicates that a larger number of PIs will exclude the 

observed holdout measurement; a positive ΔEr indicates that a smaller number of PIs will exclude the observed 

holdout measurement.  As mentioned in the Methods section of this chapter, the difference is considered 

significant when the ΔEr is greater than 0.05 and such values are indicated in bold in the tables. 

In Table 7-6, which shows results of the RF QSAR models, ACPs with increasing size result in a decrease in the 

PIs of datasets 3, 4 and 8 but an increase in the PIs of datasets 2, 5, 9.  In Table 7-7, which shows the SVM QSAR 

model results, increasing the size of the ACP results in a decrease of the PI sizes of datasets 3, 4 and 9 and an 

increase of the PI size for datasets 6, 7 and 8. The size of the PI estimates of both algorithms was subject to smaller 

variations in datasets 1, 5, 6 and 10 for ACPs of different sizes. It is seen that rounding the PI estimates of these 

datasets to a precision of two shows no difference in the estimates obtained by ACPs of different sizes, while for 

all other datasets rounding to a precision of two results in a difference of 0.01 in the PI estimates. 
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Table 7-6. Difference between the expected and actual error rate and size of PI estimated for RF predictions at 80% 

confidence by standard ACP 

Standard 

ACP 
N 

Dataset 

1 2 3 4 5 6 7 8 9 10 

ΔEr 

1 -0.008 -0.001 0.019 0.008 0.007 0.001 -0.003 0.003 0.003 0.002 

10 0.020 -0.010 0.000 0.029 0.015 0.024 0.001 0.020 0.007 0.018 

100 0.025 -0.010 0.006 0.025 0.015 0.033 -0.002 0.021 0.009 0.019 

1000 0.025 -0.010 -0.003 0.025 0.021 0.031 -0.001 0.018 0.009 0.017 

PI size 

1 0.402 0.177 0.384 0.308 0.172 0.309 0.477 0.682 0.530 0.618 

10 0.403 0.179 0.366 0.311 0.166 0.308 0.479 0.681 0.525 0.614 

100 0.400 0.184 0.364 0.309 0.166 0.306 0.480 0.676 0.529 0.614 

1000 0.403 0.182 0.362 0.308 0.168 0.307 0.480 0.673 0.528 0.613 

 

Table 7-7. Difference between the expected and actual error rate and size of PI estimated for SVM predictions at 80% 

confidence by standard ACP 

Standard 

ACP 

N Dataset 

 1 2 3 4 5 6 7 8 9 10 

ΔEr 

1 0.010 0.010 -0.007 0.002 0.002 -0.003 0.006 -0.003 0.002 0.003 

10 0.031 0.010 0.016 0.031 0.011 0.038 -0.011 0.010 0.013 0.018 

100 0.020 0.020 0.016 0.029 0.005 0.052 -0.006 0.010 0.013 0.015 

1000 0.031 0.020 0.013 0.027 0.002 0.053 -0.006 0.012 0.011 0.017 

PI size 

1 0.406 0.191 0.347 0.321 0.202 0.292 0.453 0.627 0.512 0.586 

10 0.393 0.191 0.350 0.326 0.203 0.287 0.446 0.629 0.513 0.582 

100 0.393 0.196 0.345 0.318 0.202 0.290 0.449 0.632 0.510 0.581 

1000 0.395 0.195 0.343 0.321 0.202 0.291 0.450 0.636 0.511 0.581 

 

7.3.2.1.2 Sampling 

The effect of random subsampling, cross-subsampling and bootstrap sampling on the performance of the ACPs 

with size N=10 at 80% confidence are provided in Table 7-8 and for the RF and SVM models, respectively. The 

results for ACPs of size 100 and 1000 from different sampling methods are provided in the Appendix (Tables A 

12 and A 13) and show similar trends to those observed for the LogD dataset. 

On average, there is a smaller difference between the expected error rate and the actual error rate of ACPs with 

random sampling in relation to the other sampling methods. However, ACP with cross-subsampling resulted in 
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more efficient PIs for both the RF and SVM algorithms. The PI estimates obtained from bootstrap sampling and 

random sampling had similar sizes; while the sizes of the PI estimates from cross-subsampling were different due 

to the difference in the calibration set size. This trend was similar to that observed in the LogD results. Smaller 

fluctuation in the PI estimates across the different sampling methods were observed for datasets 4, 5, 6 and 9 for 

both underlying algorithms.  

Table 7-8. Difference between the expected and actual error rate and PI size of ACPs (N=10) for the underlying RF ADME 

models across different sampling methods 

Dataset 

  1 2 3 4 5 6 7 8 9 10 

ΔEr 

B 0.036 -0.020 -0.010 0.022 0.021 0.033 0.017 0.018 0.015 0.023 

C 0.015 0.015 -0.006 0.022 0.027 0.025 -0.002 0.014 0.005 0.017 

R 0.020 -0.010 0.000 0.029 0.015 0.024 0.001 0.020 0.007 0.018 

PI 

Size 

B 0.405 0.183 0.355 0.311 0.163 0.309 0.491 0.679 0.527 0.618 

C 0.391 0.192 0.355 0.303 0.168 0.299 0.477 0.670 0.518 0.599 

R 0.403 0.179 0.366 0.311 0.166 0.308 0.479 0.681 0.525 0.614 

B: bootstrap sampling, C: cross-subsampling, R: random sampling 

 

Table 7-9. Difference between the expected and actual error rate and PI size of ACPs (N=10) for the underlying SVM 

ADME models across different sampling methods 

Dataset 

  1 2 3 4 5 6 7 8 9 10 

ΔEr 

B 0.031 0.045 0.026 0.018 0.011 0.049 -0.009 0.010 0.013 0.017 

C 0.036 0.035 0.023 0.020 0.009 0.047 0.001 0.010 0.011 0.011 

R 0.031 0.010 0.016 0.031 0.011 0.038 -0.011 0.010 0.013 0.018 

PI 

size 

B 0.408 0.203 0.347 0.326 0.205 0.294 0.447 0.644 0.511 0.585 

C 0.409 0.198 0.336 0.306 0.199 0.286 0.460 0.634 0.506 0.568 

R 0.393 0.191 0.350 0.326 0.203 0.287 0.446 0.629 0.513 0.582 

B: bootstrap sampling, C: cross-subsampling, R: random sampling 

The influence of ACP size is on average smaller than the influence of the sampling method on the size of the PI 

estimates and error rates of ACPs. It was seen that ACPs with a size of 10 were able to produce valid ACPs for 

all datasets and the size of PIs obtained were similar to the sizes of PIs estimates from ACP with a larger size for 

a precision of 2. Subsequent ACPs were, therefore, trained with an ensemble size N = 10 and random sampling 

to further study the effect of normalisation on the utility of the PI estimates obtained for the RF and SVM ADME 

models. 



Chapter 7   Evaluation of Error Models using Conformal Prediction 

 

102 

 

7.3.2.1.3 Normalisation 

Compound-specific PIs were estimated from ACPs of size 10 that were normalised using the D2M index and, 

prediction error estimates obtained from the descriptor-based RF and SVM error models and prediction error 

estimates obtained from the AD-based RF error models. The performance of the normalised ACPs is compared 

to the performance of the standard ACPs on holdout data. As discussed above, a useful normalisation method is, 

generally, expected to yield PIs that are more efficient than the PIs from no normalisation. The results are provided 

in Table 7-10 for the underlying RF ADME models and  

Table 7-11 for SVM ADME models, where normalised PI estimates that are smaller than the non-normalised PIs 

are in bold and underlined. A large difference between the expected and actual error rate of the ACP is indicated 

in plain bold. 

It is seen that the most efficient PIs were obtained from normalised ACPs using descriptor-based RF and SVM 

error models.  On the other hand, AD-based error models and the D2M index resulted in the least efficient PI 

estimates. Normalisation generally reduced the error rates of the ACPs, which is indicated by the positive increase 

in the difference between the expected error rate and the actual error rate. This is because, during normalisation, 

large PI estimates are assigned to compounds with higher uncertainty than the calibration data, which increase the 

average PI size and, eventually, makes it more likely that the observed value will be included in the PI, i.e., the 

error rate is reduced.  

Normalisation using error models did not improve the efficiency of the PIs for the RF QSAR models of datasets 

2, 5 and 6, nor the efficiency of the PIs for the SVM QSAR models of datasets 2, 5, 6 and 8; as the average PI 

estimates were equal or larger than the non-normalised PIs. In most cases, normalisation using SVM error models 

produced more efficient PIs than the D2M index. For the RF QSAR models, normalised ACPs that used SVM 

error models as the normalising function were more efficient, particularly for datasets 2, 3, 4, 5 and 6. 
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Table 7-10. Comparison of the difference between the expected and actual error rate, ΔEr, and mean PI size of standard and 

normalised ACPs (N=10) for the underlying RF models 

 ACP 
Dataset 

1 2 3 4 5 6 7 8 9 10 

 Standard 0.020 -0.010 0.000 0.029 0.015 0.024 0.001 0.020 0.007 0.018 

ΔEr 

D2M index 0.020 0.000 0.042 0.020 0.013 0.030 0.002 0.012 0.002 0.015 

RF 0.041 0.005 0.035 0.016 0.036 0.031 0.036 0.026 0.018 0.030 

SVM 0.015 0.005 0.026 0.004 0.034 0.052 0.017 0.014 0.024 0.027 

AD-based RF 0.020 -0.005 0.035 0.056 0.046 0.068 0.042 0.064 0.023 0.039 

PI 

size 

Standard 0.403 0.179 0.366 0.311 0.166 0.308 0.479 0.681 0.525 0.614 

D2M index 0.412 0.190 0.356 0.291 0.166 0.315 0.465 0.697 0.538 0.600 

RF 0.430 0.192 0.368 0.290 0.174 0.308 0.470 0.704 0.523 0.594 

SVM 0.401 0.187 0.369 0.294 0.182 0.309 0.449 0.664 0.531 0.594 

AD-based RF 0.438 0.200 0.376 0.302 0.182 0.324 0.507 0.799 0.566 0.622 

 

Table 7-11. Comparison of the difference between the expected and actual error rate and mean PI size of standard and 

normalised ACPs (N=10) for the underlying SVM models 

 ACP 
Dataset 

1 2 3 4 5 6 7 8 9 10 

 Standard 0.031 0.010 0.016 0.031 0.011 0.038 -0.011 0.010 0.013 0.018 

ΔEr 

D2M index 0.031 0.015 0.042 0.029 0.000 0.014 0.007 0.015 0.013 0.015 

RF 0.025 0.025 0.032 0.038 -0.010 0.058 -0.003 0.010 0.009 0.019 

SVM 0.047 0.015 0.026 0.022 0.025 0.069 0.018 0.008 0.009 0.022 

AD-based RF 0.047 0.050 0.035 0.058 0.046 0.050 0.014 0.026 0.033 0.029 

PI 

size 

Standard 0.393 0.191 0.350 0.326 0.203 0.287 0.446 0.629 0.513 0.582 

D2M index 0.398 0.203 0.356 0.313 0.201 0.295 0.452 0.665 0.530 0.600 

RF 0.406 0.199 0.337 0.317 0.205 0.301 0.451 0.681 0.499 0.562 

SVM 0.383 0.195 0.341 0.308 0.203 0.291 0.428 0.643 0.498 0.567 

AD-based RF 0.421 0.219 0.343 0.318 0.208 0.297 0.471 0.716 0.501 0.563 

 

7.3.2.2 Evaluating the usefulness of normalised PIs  

The efficiency of the PIs estimated by ACP is strongly determined by the accuracy of the underlying models and 

the quality of the modelled data. In the left of Figure 7-5, the average size of uniform, i.e. non-normalised, PIs 

estimated with standard ACPs is plotted against the 10-fold cross-validation RMSE of the underlying models. It 
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is seen that models with an RMSE greater than 0.20 may produce very large PIs that span over 40 % or more of 

the endpoint value range of [0, 1].  

In the right of Figure 7-5, it seen that large PIs are also associated with datasets with experimental errors greater 

than 0.1, i.e., 10% of the endpoint value range. The results suggest that obtaining PIs as low as 0.2 at 80% 

confidence requires that the underlying model has high accuracy with an RMSE value that is close to 0.10. 

 

Figure 7-5. Size of non-normalised PIs estimated from standard ACPs of size 10 plotted against the accuracy of the 

underlying RF and SVM ADME models (left) and the experimental error of the data (right) measured by RMSE 

Experimental error was used to assess the utility of the average PI size as it is often used as a benchmark of QSAR 

model accuracy. This involved calculating the ratio between the error margin of the PIs, i.e., half the PI size, 

obtained from standard ACP and the experimental error estimate of the data. The ratio between the PI error 

margins for the RF and SVM QSAR models and the experimental error estimate is provided for each dataset in 

Table 7-12. 

A maximum threshold of three (Haas et al., 2013) was used to assess whether PIs were useful. Using this criterion, 

the PIs for all models were useful. However, the PIs for the RF and SVM models of datasets 1, 2, 7 had a ratio 

closer to one, which suggests that the experimental and prediction uncertainties are of similar size. A ratio close 

to two suggests that the prediction uncertainty of datasets 4, 5, 6, 8, 9 and 10 is approximately 2-fold the 

experimental uncertainty. Finally, a ratio of three suggests a 3-fold difference in the prediction and experimental 

uncertainties of dataset 3, which is on the borderline of the utility threshold. 
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Table 7-12. Utility assessment of standard ACP PI estimates based on the ratio between the PI error margin and the 

experimental error estimate  

Dataset 

Ratio 

RF SVM 

1 1.5 1.5 

2 1.0 1.1 

3 3.0 2.9 

4 2.2 2.3 

5 1.9 2.3 

6 2.2 2.1 

7 1.1 1.0 

8 1.9 1.7 

9 2.0 1.9 

10 1.7 1.6 

 

More efficient PIs may be obtained, however, if normalisation is applied using an uncertainty estimation method 

that correlates well with the actual errors of the models’ predictions. In the previous results, improvement in the 

efficiency of PIs was observed for the models that were less accurate than the RF and SVM models of datasets 2 

and 5. 

Pearson’s correlation coefficient was calculated between the normalised PI estimates and the actual prediction 

errors of each dataset and the results are provided in Table 7-13 and Table 7-14, with correlations greater than 

0.40 marked in bold and underlined. For the RF QSAR models, on average, stronger correlations were observed 

for the normalised PIs obtained from descriptor-based RF and SVM error models. For the SVM QSAR models, 

weaker correlations were obtained for normalised PIs, but these were stronger when normalisation with the AD-

based RF error models was applied. In addition, the strongest correlations between the normalised PI estimates 

and prediction errors on the holdout data were observed for models that were more efficient without applying any 

normalisation. The calculation of Spearman’s rank correlation coefficient produced similar results, which are 

provided as additional information in the Appendix (Table A 14 and Table A 15). 
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Table 7-13. Pearson's correlation coefficient between the variable PI estimates and the actual prediction errors of the 

underlying RF predictions  

Dataset 

Normalisation method 

D2M AD-RF RF SVM 

1 0.07 0.06 0.27 0.15 

2 0.10 0.06 0.21 0.25 

3 0.26 0.47 0.42 0.40 

4 0.22 0.35 0.38 0.36 

5 0.21 0.62 0.57 0.60 

6 0.20 0.27 0.31 0.35 

7 0.18 0.39 0.39 0.34 

8 -0.04 0.07 0.12 0.11 

9 0.07 0.09 0.30 0.30 

10 0.04 0.28 0.36 0.34 

Mean 0.13 0.27 0.33 0.32 

 

Table 7-14. Pearson's correlation coefficient between the variable PI estimates and the actual prediction errors of the 

underlying SVM predictions 

Dataset 

Normalisation method 

D2M AD-RF RF SVM 

1 0.03 0.10 0.16 0.10 

2 0.10 0.02 0.14 0.18 

3 0.19 0.37 0.21 0.32 

4 0.22 0.34 0.30 0.33 

5 0.20 0.54 0.51 0.51 

6 0.24 0.27 0.17 0.25 

7 0.13 0.32 0.39 0.33 

8 -0.04 0.06 0.11 0.08 

9 0.06 0.33 0.30 0.23 

10 0.03 0.23 0.30 0.26 

Mean 0.12 0.25 0.26 0.26 

For most datasets, normalisation has produced PIs with weak correlation to the actual prediction errors of the 

underlying models. Despite their poor predictive performance, estimates from error models seem to be a better 
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option for normalisation than a simple D2M index, particularly when the underlying model is a RF. Figure 7-6 

and Figure 7-7 show the normalised PIs plotted against the actual prediction errors of datasets 5 and 3, 

respectively. These plots are provided for other datasets with weaker correlation between the PI size and the actual 

prediction error in the Appendix (Figures A 16 - A 21). Highlighted in black are the predictions with a PI size 

greater than the 80th percentile of the PIs. Points to the left of the diagonal correspond to predictions with non-

valid PIs, as their prediction errors are larger than the normalised PI estimates. For both datasets, many of these 

correspond to prediction error outliers. Here we define prediction error outliers using the 95th percentile as a 

threshold for the actual prediction errors, which corresponds to a value of 0.2 for dataset 5. It is seen that, applying 

the 80th percentile as a threshold is effective enough to identify most outliers of the RF and SVM predictions using 

the AD-based error model PIs, but is less effective for the PIs obtained from the descriptor based-error models. 

However, it is also seen that many accurate predictions that have been assigned large PIs are also excluded. The 

errors of dataset 3 are less variable and using a similar threshold is not as effective. It seems likely, therefore, that 

linear correlation between the PI size and the actual prediction errors stronger than 0.5 is required to identify 

prediction error outliers successfully. 
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Figure 7-6. Actual prediction errors of the underlying RF (left) and SVM (right) models of dataset 5 plotted against 

the PIs normalised using descriptor-based RF and SVM error models and AD-based RF error models 

 

 

Figure 7-7. Actual prediction errors of the underlying RF model of dataset 3 plotted against PIs normalised using 

AD-based and descriptor-based RF error models 

7.3.2.3 Average performance on multiple holdout data and temporal data 

The average performance of the standard ACPs of size 10 was evaluated on 10 holdout samples obtained by 

random sampling and temporal test sets, as described in Chapter 3, for which the exchangeability of the data is 

not guaranteed. The performance of a normalised ACP using a RF error model was reassessed for comparison, 

but on different random holdout sets than in the previous section. The validity and the efficiency metrics of the 

standard and normalised ACPs are provided in Table 7-15 and Table 7-16, respectively. Normalisation was 

applied using a descriptor-based RF error model with a size of 200 trees for all datasets. 
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Table 7-15. Difference between the expected and actual error rate and size of PI estimated for the predictions of the RF QSAR 

models at 80% confidence 

 ACP 

Dataset 

1 2 3 4 5 6 7 8 9 10 

 Standard 0.020 0.010 0.003 0.003 0.016 0.008 0.002 0.002 0.005 0.007 

ΔEr 
Normalised 

with RF 
0.041 0.038 0.015 0.017 0.031 0.030 0.029 0.036 0.026 0.027 

PI 

size 

Standard 0.365 0.171 0.348 0.296 0.162 0.287 0.394 0.721 0.506 0.599 

Normalised 

with RF 
0.416 0.197 0.361 0.295 0.186 0.321 0.506 0.742 0.531 0.617 

 

The mean PI estimates for RF QSAR models were more stable than for the SVM QSAR models with higher 

fluctuations observed only for dataset 1 (SD=0.028). The normalised PIs were not as efficient as the non-

normalised PIs, except for dataset 4 where they were approximately equal. Greater fluctuations were generally 

observed in the mean PI estimates of the SVM QSAR models for datasets 2 (SD=0.025), 3 (SD=0.033), 4 

(SD=0.021) and 6 (SD=0.020). The highest correlation of the PIs with the absolute residual errors was observed 

for the PI estimates of the SVM QSAR models for dataset 5 (r=0.408, ρ=0.476) and dataset 7 (r= 0.447, ρ=0.444). 

For the normalised PIs of RF QSAR models the highest correlation was observed in dataset 4 (r= 0.477 ρ=0.554), 

dataset 5 (r= 0.508, ρ=0.529) and dataset 7 (r= 0.362, ρ=0.412).  

Table 7-16. Difference between the expected and actual error rate and size of PI estimated for SVM predictions at 80% 

confidence 

 ACP 

Dataset 

1 2 3 4 5 6 7 8 9 10 

ΔEr 

Standard 0.021 -0.005 0.007 0.013 0.016 0.002 -0.001 -0.002 0.001 0.007 

Normalised 

with RF 
0.027 0.029 0.036 0.021 0.036 0.022 0.020 0.018 0.016 0.025 

PI 

size 

Standard 0.378 0.187 0.316 0.308 0.199 0.268 0.471 0.776 0.499 0.570 

Normalised 

with RF 
0.403 0.207 0.342 0.322 0.203 0.299 0.496 0.718 0.512 0.587 
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The validity and the efficiency of standard ACPs on the temporal holdout set is illustrated in Figure 7-8 and Figure 

7-9. Non-valid ACPs that exceed the expected error rate appear on the upper side of the diagonal of Figure 7-8. 

The hashed, horizontal line indicates that for the 80% confidence threshold, valid PIs were obtained for the RF 

QSAR models of datasets 1, 2, 3, 8 and 9 and valid PIs for the SVM QSAR models datasets 1, 2, 8 and 9. However, 

PIs that were consistently valid for all confidence levels and both underlying models were obtained only for 

datasets 1 and 2. The training set and ACP parameters were the same as in the standard ACPs that were used to 

estimate the  PI for the holdout data in Section 7.3.2.1.3, therefore, the distributions of the PI estimates for external 

data are the same. However, with the exception of datasets 1 and 2, the increased error rates for the ACPs of the 

RF and SVM QSAR models for the external data suggest that the external data are not representative of the 

calibration data. As a result, PI estimates underestimate the uncertainty of the models’ predictions for the external 

test set. Furthermore, this implies that the external data represent a greater shift from the descriptor space of the 

underlying model for these datasets. Normalisation was not applied for the external data.  

 
Figure 7-8. Error rate (left) and size of PIs (right) estimated by standard ACP (N=10) for the 

underlying RF models of the 10 ADME datasets on time-split test data. 

 

  

Figure 7-9. Error rate (left) and size of PIs (right) estimated by standard ACP (N=10) for the 

underlying SVM models of the 10 ADME datasets on time-split test data. 
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7.4  Discussion 

The CP framework provides guarantees about the validity of PI estimates produced under the main assumption of 

exchangeability. In QSAR this assumption is satisfied by ensuring that the holdout data are representative of the 

model’s applicability domain. Although it is not explicitly stated, it is implied that test data that are representative 

of the model’s applicability domain are also representative of the model’s error distribution. However, it has been 

seen in Chapter 5 that commonly applied applicability domain metrics in QSAR are not well correlated with the 

algorithm-specific errors. However, regardless of the quality of the reliability estimates, conformal prediction is 

still able to produce valid estimates by applying a high confidence threshold. Variation is introduced to the PIs of 

the individual predictions by normalisation, whereby the sizes of the PIs are scaled to represent the difficulty 

associated with making the prediction. The difficulty is assessed in relation to calibration data; and predictions 

that are less reliable than the calibration data at the chosen threshold are assigned larger PIs while predictions that 

are more reliable are assigned smaller PIs. As a result, it is possible to obtain valid PIs using any reliability scoring 

method even if it is random. However, using random reliability scores to assign PIs to predictions would not be 

meaningful to the user; even if the PIs were correlated to prediction errors by chance. This was seen in section 

7.3.2.2 where the normalisation of ACP using D2M indices yielded PIs with very weak or no correlation to the 

actual prediction errors. Meaningful PIs that may be utilised to rank predictions require strong correlation of the 

PI estimates with the prediction errors, which is also challenging using error models. Moderate to strong rank 

correlation of error estimates with the prediction errors may be sufficient to highlight the presence of prediction 

error outliers even if the overall predictive performance of the error models is low. Normalised ACPs with rank 

correlations below 0.40 are not very useful for prioritisation; although, on average, they may yield more efficient 

PIs than standard PIs, which assign uniform PIs to all predictions. An interesting observation is that stronger 

correlations between normalised PIs and the underlying models’ prediction errors occurred when the models’ 

predictions were more strongly correlated to the prediction errors (see Table A 22 in the Appendix). This 

highlighted that the model’s prediction could be an important variable in the estimation of errors in biased data, 

where prediction error increases or decreases monotonically with the prediction value, i.e., due to the lack of 

sufficient measurements on the upper or lower end of the endpoint value range.  

Furthermore, standard ACPs at 80% confidence produced PIs with sizes approximately double the error of the 

underlying model, on average. The intervals covered between 30 - 90% of the modelled endpoints value ranges, 

which are too wide to be useful in practice. In the work of (Svensson et al., 2018) PIs for smaller datasets were 

reported with approximately 30% coverage of the endpoint value range, following the removal of outliers. 

Normalised PIs resulted in similar coverage on average, with a number of individual PIs exceeding the endpoint 

measurement range for datasets 4, 7, 8, 9, 10. However, the large coverage is a weakness of the underlying models 

for datasets 7, 8, 9 and 10 which are less accurate and are associated with high experimental error. The presence 

of compounds in the holdout data that are less conforming to the calibration data, where conformity was 
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determined by the error models, combined with the low accuracy of the underlying model is the reason for 

exceedingly large individual PIs. Overall, the normalised PIs obtained were not useful as quantitative estimates 

of prediction uncertainty for all datasets but they could be used in compound prioritisation to highlight the need 

that further sampling or testing is required for similar compounds or within a range of endpoint values so that the 

models’ uncertainties will be reduced. 

It is noted that datasets that contain prediction error outliers may produce large PI estimates at high confidence 

levels if these are sampled in the calibration data. Although these will improve the validity of the ACPs, as larger 

PIs are more likely to include future measurements, they will also reduce the efficiency of PIs. However, statistical 

outliers are often defined at higher percentiles than the 80th, therefore, selecting a lower confidence threshold 

avoids this problem. Also, as the prediction error distribution of the future data is unknown and may contain large 

prediction errors; it would not be beneficial to remove prediction error outliers from the calibration data. Retaining 

them is expected to produce more conservative PIs that are more likely to include the future measurement. Outlier 

removal under different outlier definitions, i.e., descriptor, response, error outliers, and thresholds are topics that 

could be investigated in future work. 

7.5 Conclusions 

The CP framework was implemented to evaluate the utility of error models in the estimation of compound-specific 

PI estimates for QSAR predictions. From the optimisation of the ACPs it was found that the size of the ACPs had 

less influence on the efficiency of the PIs than normalisation and that efficient enough PIs could be obtained from 

small ACPs with a size of 10. It also became clear that cross-subsampling was sensitive to the ACP size, which 

implicitly affected the size of the calibration samples; while bootstrap and random sampling resulted in equally 

efficient PI estimates. The investigations showed that using a single approach for the optimisation of conformal 

predictors did not yield useful PIs for all datasets; but this was, mainly, because of the varied accuracy of 

underlying models rather than the normalisation method. It is therefore expected that more informative PIs will 

be estimated for models with high accuracy, which are obtained from datasets with low experimental error. 

Underlying models with low accuracy produced PIs that were too broad to be useful but some improvement in 

the efficiency of their average PIs was observed with normalisation.  

Correlation of the normalised PI estimates and the prediction errors was not always associated with improvements 

in the efficiency of non-normalised PIs. The correlation of normalised PIs and the actual prediction errors was 

weak for most datasets; with stronger correlations identified in holdout data where residual error outliers were 

present. The high correlation indicated that predictions with high uncertainty could be identified or at least 

extracted by ranking the PIs of the holdout data. Normalisation using AD-based RF error models and the 

descriptor-based SVM models was more effective for the prioritisation of RF predictions than descriptor-based 
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RF error models. However, both descriptor-based error models produced more efficient PIs, while the normalised 

PIs using AD-based RF error models were less efficient than non-normalised in most occasions. Further 

investigation is required to better understand how to improve the accuracy of the uncertainty estimates of error 

models so that the size of the PIs provide a more accurate representation of the actual prediction error. 
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Chapter 8 Conclusions 

8.1 Summary of Findings 

This thesis has investigated the application of machine learning algorithms for the estimation of prediction 

uncertainty in ADME regression models and has assessed their performance as methods for assigning confidence 

to individual predictions. The use of supervised learning methods to construct error models represents an 

important opportunity for the systematic definition of a model’s applicability domain, as error models facilitate 

the investigation of non-linear relationships between the underlying data structure or other reliability indicators 

and the accuracy of the models’ predictions. Nevertheless, error models that were predictive for ADME data were 

challenging to obtain in this work but analysis of the correlations of the error estimates with the prediction errors 

was enough to confirm that, in fact, error models with poor performance can contribute some useful information 

to the QSAR modelling process. 

 In Chapter 5, underlying regression models were built for LogD and ADME data sets using state-of-the-art 

machine learning algorithms. Validation of the LogD models’ performance using range-based and distance-to-

model definitions of the applicability domain showed that only few of the algorithms’ prediction errors could be 

explained. Underlying models created using RF and SVM algorithms showed performance across all datasets with 

R2 values in the range of 0.15 – 0.61 and normalised RMSE in the range of 0.056 - 0.268. For the ADME datasets, 

analysis of the residual error distributions revealed that ADME datasets may contain measurement bias, which 

results in models with skewed error distributions. This is an important observation as a common assumption for 

confidence estimation is that model errors are randomly and normally distributed. 

The performance of regression error models for the estimation of the underlying models’ prediction errors was 

then investigated in Chapter 6. RF error models were trained on the cross-validation errors of the RF and SVM 

models using both the underlying molecular descriptors and then applicability domain-based reliability estimates 

as features. Evaluation using standard measures of regression analysis suggested that the error models were not 

predictive on holdout data and that alternative variables or techniques should be explored for the purpose of 

prediction error estimation. The use of applicability-domain based descriptors yielded surprisingly better 

performance in the estimation of RF prediction errors measured by the R2 on cross-validation data but larger 

RMSE values. However, this was attributed to the use of the standard deviation of RF predictions as a descriptor 

in the error model, which correlates well with the prediction errors of RF. The ability of the error models to rank 

predictions based on their true accuracy was then investigated. A higher correlation between the error estimates 
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and the actual prediction errors indicated that the error distributions were skewed as a result of measurement bias 

in the data. Yet, this was only apparent for data with low experimental error that were easier to model. Higher 

correlations between the error estimates and the actual errors were observed in more diverse datasets; which 

suggested that the error models may be useful in identifying compounds that are different to the modelled data or 

underrepresented in the measured endpoint value range. When statistical thresholds were applied, it was 

confirmed that error estimates with higher correlation to the prediction errors were more effective in identifying 

poorly predicted compounds.  

The magnitude of the error estimates was assessed by applying an information theoretic approach; whereby 

measurements and predictions were represented as Gaussian probability distributions. This approach facilitated 

the evaluation of the individual prediction error estimates while taking into account the actual error and the 

experimental error of the assay. The mean Kullback-Leibler divergence (KLD) scores calculated using the 

estimates of each error model were used to assess the average overlap of the paired distributions. The scores 

suggested that the estimates of the error models resulted in higher overlap of the prediction and measurement 

distributions than estimates based on the standard deviation of the ensemble predictions; yet, there was less 

overlap in the majority of the cases than when assigning a uniform estimate based on average model error. The 

KLD distributions calculated for each error model also suggested that for all ADME models there was overlap in 

more than 80% of the holdout data. These results suggested that the error estimates provided a large enough error 

margin for the calculation of prediction intervals. However, the lack of robustness in the error models and the 

poor correlation of the error estimates and the actual prediction errors did not justify this. 

In Chapter 7, conformal prediction was applied to estimate the prediction intervals (PIs) for the underlying RF 

and SVM models from the error distribution of calibration data. Aggregate conformal predictors (ACPs) that 

applied RF and SVM error models for normalisation were used to estimate compound-specific prediction 

intervals. Several ACP parameters were optimised to produce PIs for different datasets, such as the ACP size, the 

sampling technique and the error normalisation method; yet, they were found to be less important than the 

experimental error of the data and the accuracy of the underlying model when assessing the overall utility of the 

PIs. The different sampling techniques and error models used for normalisation of the ACPs showed success 

across several datasets but no single approach consistently emerged as best across all datasets or modelling 

methods. It was concluded that, an ACP would have to be optimised across various alternative normalisation 

methods to generate compound-specific PIs for a new test. However, RF error models are a flexible alternative as 

they facilitate the investigation of different types of features using the same algorithm. It was seen that the utility 

of the prediction intervals is mainly determined by the underlying models’ error, therefore, only models with high 

accuracy are likely to produce more efficient prediction intervals. Useful intervals were defined by applying a 

prediction interval size 3-fold the experimental error at the set confidence level. This meant that the PIs for models 

with 15% error or less qualified, and most importantly that useful PIs could not be obtained for models of 

endpoints with assay error that exceeded 10% of the response range. 
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A more realistic application of conformal prediction involved the use of ACP for the estimation of uncertainty in 

the predictions of temporal holdout data. Large error rates of the ACP were an indication that the holdout data 

were less conforming to the calibration data and, effectively, the modelled data. As a result, uniform PIs estimated 

by ACP were not valid across all confidence levels with the exception of the PIs for the models of two smaller 

datasets that were generally less diverse in descriptor space and more likely to conform to the modelled data.  

Analysis of the correlation between the error estimates and the actual prediction errors suggested that the error 

models may be useful for the identification of compounds that are underrepresented in ADME datasets due to 

measurement bias. Assessment of the error models as methods for the estimation of prediction intervals was 

evaluated by applying an information theoretic approach and conformal prediction. The utility of prediction 

intervals estimates is limited, however, particularly for models of ADME data with lower accuracy. 

Further to the limitation of the error models’ poor performance; the validation of machine learning algorithms for 

error modelling outside the conformal prediction framework can be rather complicated, particularly if the 

propagation of the errors of both the underlying QSAR and the error model need to be taken into account. With 

regards to the methods applied for the evaluation of the error models the data are also subject to several 

requirements. First of all, an estimate of experimental error is required to evaluate the utility of error model 

estimates as prediction intervals, i.e., using KLD scores, including the PI estimates derived using conformal 

prediction. Information on the experimental error of the data or single-assay ADME datasets with repeated 

measurements are not easily available in public databases. Finally, the validity of the results by ACP is guaranteed 

for data that are exchangeable. This means that the estimated PIs for external data may not be valid if the test data 

are not representative of the modelled data. 

8.2 Suggestions for Future Investigations 

The availability of large, single-assay ADME datasets in public databases is fairly limited to allow a large scale 

study to confirm the performance of error models. However, this could be done using available datasets of small 

to medium size in the PHYSPROP and CHEMBL databases with available experimental error estimates. There 

are also many other descriptors that could be utilised in the underlying models, including calculated estimates of 

other physicochemical properties. It could then be assessed whether the error in the calculated descriptors may be 

used to estimate the prediction error of ADME models’ using linear methods and error propagation. 

Further investigation could be carried out on the use of statistical divergence measures as significance tests, 

whereby the evaluation of the models’ performance may account for the uncertainties of measurements and 

predictions. The mathematical properties of alternative measures to the KLD metric may facilitate the definition 

of threshold values that are universal, i.e. they can be applied to all datasets.  
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Investigations could also be conducted in conformal prediction with respect to sampling of the calibration data. 

Unlike aggregate conformal prediction which repeatedly samples calibration data from the training set to estimate 

the model’s average distribution, it would be interesting to assess the validity and the efficiency of aggregate 

conformal predictors when the calibration data are sampled from outside the training set, i.e., from a larger 

population. This could help understand when the exchangeability assumption of the conformal prediction 

framework is invalidated and how this may be assessed prior to the estimation of PIs. 

Alternative methods for the estimation of PIs may also be compared to the PI estimates of conformal prediction. 

Several methods are available for the estimation of PIs of RF models and are based on the use of quantile 

regression RF, a variant of the original RF algorithm, which predicts the quantiles of individual predictions rather 

the mean. Two known methods have been discussed by (Meinshausen, 2006) and (Zhang et al., 2019). 
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Appendix A 

A 1. Results from one sample KS test for normality applied to the residual errors of the LogD models 

Model KS test p 

KNN 0.50 0.00 

RF 0.501 0.00 

PLS 0.502 0.00 

SVM 0.501 0.00 

 

A 2. Optimal parameters for the RF and SVM ADME models identified by grid search optimisation 

Dataset 

SVM  RF 

gamma C 
Number 

of trees 

Min. 

leaf size 

Max. number 

of features 

1 0.001 2 100 5 default 

2 0.01 0.1 100 35 default 

3 0.01 2 100 5 default 

4 0.01 1 100 5 sqrt 

5 0.001 2 100 5 sqrt 

6 0.01 1 100 5 default 

7 0.01 0.1 100 5 default 

8 0.01 0.1 100 5 sqrt 

9 0.001 10 100 5 default 

10 0.01 1 100 5 default 

default: total number of descriptors 

sqrt: square root of the total number of descriptors 
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A 3. Overlay of measurements and SVM predictions for the ADME datasets 
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A 4. Histograms of RF (left) and SVM (right) residual errors 
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A 5. Accuracy of underlying QSAR models and the descriptor-based RF error model expressed in units of nRMSE 

Dataset  1 2 3 4 5 6 7 8 9 10 

 

RF 

QSAR 
CV 0.170 0.094 0.151 0.151 0.104 0.132 0.221 0.260 0.220 0.273 

Holdout 0.170 0.070 0.142 0.129 0.091 0.117 0.183 0.180 0.201 0.247 

Error model 
CV 0.161 0.077 0.139 0.148 0.078 0.153 0.183 0.200 0.163 0.161 

Holdout 0.153 0.120 0.125 0.189 0.115 0.147 0.181 0.214 0.165 0.159 

SVM 

QSAR 
CV 0.166 0.096 0.140 0.149 0.104 0.125 0.221 0.260 0.218 0.265 

Holdout 0.169 0.071 0.137 0.126 0.090 0.110 0.214 0.230 0.212 0.237 

Error model 
CV 0.159 0.074 0.147 0.119 0.076 0.152 0.202 0.209 0.083 0.145 

Holdout 0.163 0.119 0.116 0.162 0.121 0.133 0.193 0.216 0.145 0.162 

 

 

 

 



 

139 

 

A 6. Accuracy of underlying QSAR models and the AD-based RF error model expressed in units of nRMSE 

Dataset  1 2 3 4 5 6 7 8 9 10 

RF 

QSAR CV 0.17 0.094 0.151 0.151 0.104 0.132 0.221 0.26 0.22 0.273 

Holdout 0.17 0.07 0.142 0.129 0.091 0.117 0.183 0.18 0.201 0.247 

Error model CV 0.213 0.086 0.184 0.166 0.129 0.264 0.243 0.251 0.217 0.225 

Holdout 0.202 0.134 0.165 0.211 0.191 0.253 0.241 0.268 0.220 0.222 

SVM 

QSAR CV 0.166 0.096 0.14 0.149 0.104 0.125 0.221 0.26 0.218 0.265 

Holdout 0.169 0.071 0.137 0.126 0.09 0.11 0.214 0.23 0.212 0.237 

Error model CV 0.155 0.081 0.150 0.119 0.083 0.170 0.213 0.224 0.087 0.129 

Holdout 0.160 0.131 0.119 0.162 0.131 0.148 0.203 0.232 0.151 0.144 

 

A 7. Fold-difference between the average errors of the descriptor-based RF error model and the average errors of RF and 

SVM QSAR models on cross-validation and holdout data 

Dataset 1 2 3 4 5 6 7 8 9 10 

RF CV 0.9 0.8 0.9 1.0 0.7 1.2 0.8 0.8 0.7 0.6 

Holdout 0.9 1.7 0.9 1.5 1.3 1.3 1.0 1.2 0.8 0.6 

SVM CV 1.0 0.8 1.0 0.8 0.7 1.2 0.9 0.8 0.4 0.5 

Holdout 1.0 1.7 0.8 1.3 1.3 1.2 0.9 0.9 0.7 0.7 

 

A 8. Fold-difference between the average errors of the AD-based RF error model and the average errors of RF and SVM 

QSAR models on cross-validation and holdout data 

Dataset 1 2 3 4 5 6 7 8 9 10 

RF CV 1.3 0.9 1.2 1.1 1.2 2.0 1.1 1.0 1.0 0.8 

Holdout 1.2 1.9 1.2 1.6 2.1 2.2 1.3 1.5 1.1 0.9 

SVM CV 0.9 0.8 1.1 0.8 0.8 1.4 1.0 0.9 0.4 0.5 

Holdout 0.9 1.8 0.9 1.3 1.5 1.3 0.9 1.0 0.7 0.6 
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A 9. Overlay of KLD distributions for the predictions of the LogD models with a KLD cut-off at 20 
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A 10.Overlay of KLD distributions for the RF predictions of the ADME models with a KLD cut-off at 10. 
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A 11. Overlay of KLD distributions for the SVM predictions of the ADME models with a KLD cut-off at 10. 
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A 12. Difference between the expected and actual error rate and PI size of ACPs for the underlying RF ADME models 

  N 1 2 3 4 5 6 7 8 9 10 

ΔEr 

B 

10 0.036 -0.020 -0.010 0.022 0.021 0.033 0.017 0.018 0.015 0.023 

100 0.036 -0.005 0.003 0.027 0.023 0.034 0.001 0.021 0.015 0.023 

1000 0.036 0.000 0.013 0.020 0.017 0.036 0.002 0.025 0.016 0.024 

C 

10 0.015 0.015 -0.006 0.022 0.027 0.025 -0.002 0.014 0.005 0.017 

100 0.137 0.135 0.077 0.067 0.050 0.043 0.076 0.074 0.009 0.022 

1000 -0.170 -0.155 -0.174 -0.027 0.042 0.024 -0.028 -0.059 0.043 0.064 

R 

10 0.020 -0.010 0.000 0.029 0.015 0.024 0.001 0.020 0.007 0.018 

100 0.025 -0.010 0.006 0.025 0.015 0.033 -0.002 0.021 0.009 0.019 

1000 0.025 -0.010 -0.003 0.025 0.021 0.031 -0.001 0.018 0.009 0.018 

PI 

size 

B 

10 0.405 0.183 0.355 0.311 0.163 0.309 0.491 0.679 0.527 0.618 

100 0.413 0.181 0.366 0.305 0.167 0.308 0.483 0.683 0.531 0.616 

1000 0.410 0.184 0.364 0.307 0.166 0.309 0.483 0.685 0.531 0.616 

C 

10 0.391 0.192 0.355 0.303 0.168 0.299 0.477 0.670 0.518 0.599 

100 0.580 0.338 0.423 0.361 0.177 0.312 0.601 0.801 0.519 0.601 

1000 0.263 0.126 0.226 0.263 0.172 0.291 0.436 0.585 0.558 0.669 

R 

10 0.403 0.179 0.366 0.311 0.166 0.308 0.479 0.681 0.525 0.614 

100 0.400 0.184 0.364 0.309 0.166 0.306 0.480 0.676 0.529 0.614 

1000 0.403 0.182 0.362 0.308 0.168 0.307 0.480 0.673 0.528 0.613 
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A 13. Difference between the expected and actual error rate and PI size of ACPs for the underlying SVM ADME models 

  N 1 2 3 4 5 6 7 8 9 10 

ΔEr 

B 

10 0.031 0.045 0.026 0.018 0.011 0.049 -0.009 0.010 0.013 0.017 

100 0.036 0.030 0.023 0.034 0.011 0.056 -0.007 0.020 0.021 0.019 

1000 0.041 0.030 0.016 0.031 0.013 0.056 -0.002 0.021 0.019 0.020 

C 

10 0.036 0.035 0.023 0.020 0.009 0.047 0.001 0.010 0.011 0.011 

100 0.142 0.145 0.094 0.061 0.019 0.055 0.078 0.067 0.014 0.011 

1000 -0.133 -0.145 -0.119 -0.045 -0.012 0.030 -0.021 -0.027 0.045 0.053 

R 

10 0.031 0.010 0.016 0.031 0.011 0.038 -0.011 0.010 0.013 0.018 

100 0.020 0.020 0.016 0.029 0.005 0.052 -0.006 0.010 0.013 0.015 

1000 0.031 0.020 0.013 0.027 0.002 0.053 -0.006 0.012 0.011 0.017 

PI 

size 

B 

10 0.408 0.203 0.347 0.326 0.205 0.294 0.447 0.644 0.511 0.585 

100 0.404 0.197 0.347 0.331 0.204 0.297 0.457 0.651 0.512 0.587 

1000 0.404 0.170 0.184 0.330 0.205 0.296 0.460 0.651 0.514 0.588 

C 

10 0.409 0.198 0.336 0.306 0.199 0.286 0.460 0.634 0.506 0.568 

100 0.566 0.331 0.395 0.351 0.202 0.291 0.636 0.824 0.511 0.568 

1000 0.264 0.135 0.319 0.260 0.189 0.273 0.428 0.583 0.542 0.644 

R 

10 0.393 0.191 0.350 0.326 0.203 0.287 0.446 0.629 0.513 0.582 

100 0.393 0.196 0.345 0.318 0.202 0.290 0.449 0.632 0.510 0.581 

1000 0.395 0.195 0.343 0.321 0.202 0.291 0.450 0.636 0.511 0.581 
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A 14. Spearman's rank correlation coefficient between the variable PI estimates and the actual prediction errors of the 

underlying RF predictions 

Dataset 
Normalisation method 

D2M AD-RF RF SVM 

1 0.1 0.08 0.30 0.12 

2 0.12 -0.04 0.21 0.29 

3 0.31 0.5 0.45 0.45 

4 0.33 0.42 0.46 0.46 

5 0.11 0.57 0.60 0.57 

6 0.17 0.26 0.33 0.34 

7 0.24 0.38 0.44 0.41 

8 -0.02 0.05 0.12 0.14 

9 0.08 0.1 0.31 0.28 

10 0.08 0.3 0.40 0.37 

Mean 0.15 0.26 0.36 0.34 

 

A 15. Spearman's rank correlation coefficient between the variable PI estimates and the actual prediction errors of the 

underlying SVM predictions 

Dataset 
Normalisation method 

D2M AD-RF RF SVM 

1 0.05 0.17 0.22 0.12 

2 0.11 0.08 0.13 0.23 

3 0.32 0.37 0.28 0.35 

4 0.17 0.4 0.33 0.37 

5 0.15 0.51 0.48 0.42 

6 0.23 0.19 0.19 0.24 

7 0.19 0.34 0.4 0.38 

8 -0.02 0.1 0.12 0.09 

9 0.02 0.33 0.31 0.24 

10 0.01 0.27 0.32 0.28 

Mean 0.12 0.27 0.28 0.27 
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A 16. Normalised PIs using descriptor-based RF error models plotted against prediction errors of the RF 

ADME models for holdout data.  

The diagonal separates non-valid (left) from valid (right) PIs. In black are the predictions with PIs greater than 

the 80th percentile of the PIs, which is indicated by the vertical line. The horizontal line indicates the 95 th 

percentile of the actual prediction errors which is used to define prediction error outliers 
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A 17. Normalised PIs using descriptor-based SVM error models plotted against prediction errors of the RF 

ADME models for holdout data.  

The diagonal separates non-valid (left) from valid (right) PIs. In black are the predictions with PIs greater than 

the 80th percentile of the PIs, which is indicated by the vertical line. The horizontal line indicates the 95 th 

percentile of the actual prediction errors which is used to define prediction error outliers. 
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A 18. Normalised PIs using AD-based RF error models plotted against prediction errors of the RF ADME models 

for holdout data.  

The diagonal separates non-valid (left) from valid (right) PIs. In black are the predictions with PIs greater than the 

80th percentile of the PIs, which is indicated by the vertical line. The horizontal line indicates the 95th percentile of 

the actual prediction errors which is used to define prediction error outliers. 
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A 19. Normalised PIs using descriptor-based RF error models plotted against prediction errors of the SVM ADME 

models for holdout data.  

The diagonal separates non-valid (left) from valid (right) PIs. In black are the predictions with PIs greater than the 

80th percentile of the PIs, which is indicated by the vertical line. The horizontal line indicates the 95th percentile of 

the actual prediction errors which is used to define prediction error outliers. 
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A 20. Normalised PIs using descriptor-based SVM error models plotted against prediction errors of the SVM ADME models 

for holdout data.  

The diagonal separates non-valid (left) from valid (right) PIs. In black are the predictions with PIs greater than the 80 th 

percentile of the PIs, which is indicated by the vertical line. The horizontal line indicates the 95 th percentile of the actual 

prediction errors which is used to define prediction error outliers. 
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A 21. Normalised PIs using AD-based RF error models plotted against prediction errors of the SVM ADME models 

for holdout data.  

The diagonal separates non-valid (left) from valid (right) PIs. In black are the predictions with PIs greater than the 

80th percentile of the PIs, which is indicated by the vertical line. The horizontal line indicates the 95th percentile of 

the actual prediction errors which is used to define prediction error outliers. 
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A 22. Linear correlation between underlying predictions (p) and normalised PIs (PI) to the actual prediction errors of the 

underlying models.  

Highlighted in bold are the results that suggest that the correlation between the prediction and the actual errors could be a 

good indicator of the correlation between the PIs and the actual errors in biased datasets. 

   Dataset 

Underlying 

model 

Normalising 

method 
 1 2 3 4 5 6 7 8 9 10 

RF SVM 
p 0.11 -0.1 0.21 0.36 0.57 0.23 0.36 0.15 0.18 0.08 

PI 0.15 0.25 0.40 0.36 0.60 0.35 0.34 0.11 0.30 0.34 

SVM RF 
p 0.11 -0.1 0.19 0.33 0.49 0.12 0.30 0.06 0.13 0.07 

PI 0.16 0.14 0.21 0.30 0.51 0.17 0.39 0.11 0.30 0.30 

SVM ADRF 
p 0.11 -0.09 0.20 0.30 0.50 0.13 0.31 0.05 0.13 0.08 

PI 0.10 0.02 0.37 0.34 0.54 0.23 0.32 0.06 0.33 0.33 

SVM SVM 
p 0.12 -0.11 0.21 0.31 0.49 0.12 0.31 0.05 0.13 0.07 

PI 0.10 0.18 0.32 0.33 0.51 0.25 0.33 0.08 0.23 0.26 

RF ADRF 
p 0.13 -0.09 0.21 0.33 0.56 0.21 0.36 0.13 0.18 0.08 

PI 0.06 0.06 0.47 0.35 0.62 0.27 0.39 0.07 0.09 0.28 

RF RF 
p 0.12 -0.07 0.21 0.35 0.56 0.23 0.37 0.16 0.18 0.08 

PI 0.27 0.21 0.42 0.38 0.57 0.31 0.39 0.12 0.30 0.36 
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Appendix B 

B  1. Definition of KLD metric and demonstration of its behaviour 

Given a measurement distribution, p(x), and a prediction distribution, q(x); then KLD may be used to measure the 

statistical divergence of the two distributions. In information theory, this quantity is also referred to as relative 

entropy and represents the information loss incurred by replacing the distribution p(x) with q(x). The definition 

of KLD is provided in Equation B- 1: 

 

 

If the measurement distribution and the prediction distribution are Gaussian; then the KLD may be parametrically 

calculated using Equation B- 2: 

 

𝐷𝐾𝐿(𝑆𝑝𝑖
, 𝑆𝑞𝑖

) = [
(𝜇𝑝𝑖 − 𝜇𝑞𝑖)2

2𝜎𝑞𝑖
2

+
𝜎𝑝𝑖

2

2𝜎𝑞𝑖
2 + ln

𝜎𝑞𝑖

𝜎𝑝𝑖
] −

1

2
   B- 2       

where 𝜇𝑝𝑖 is the measurement value with a standard error of 𝜎𝑝𝑖 i.e., the measurement error and 𝜇𝑞𝑖is the predicted 

value obtained from the QSAR model with a prediction error estimate of 𝜎𝑞𝑖 . The value of 𝐷𝐾𝐿 is unbounded, 

non-negative and equal to zero only when the two distribution fully overlap. Therefore, the smaller the value of 

the KLD score the higher is the overlap of the two distributions. The order of the value increases when the distance 

of the means becomes increasingly larger than the prediction error estimate and when the magnitude of the 

prediction error estimate and the measurement error estimate varies. An example of how this may vary is provided 

below.  

For a QSAR predictions with equal uncertainty estimates as the assay, Equation B- 2 is simplified to  

𝐷𝐾𝐿(𝑆𝑝𝑖
, 𝑆𝑞𝑖

) =
(𝜇𝑝𝑖 − 𝜇𝑞𝑖)2

2𝜎𝑞𝑖
2

   
B- 3 

And 𝐷𝐾𝐿(𝑆𝑝𝑖
, 𝑆𝑞𝑖

) is equal to 0 for (𝜇𝑝𝑖 − 𝜇𝑞𝑖)2 = 𝜎𝑞𝑖
2. 

𝐾𝐿(𝑝||𝑞) = − ∫ 𝑝(𝑥) ln 𝑞(𝑥) 𝑑𝑥 − (− ∫ 𝑝(𝑥) ln 𝑝(𝑥) 𝑑𝑥) 

    = − ∫ 𝑝(𝑥) ln
𝑞(𝑥)

𝑝(𝑥)
𝑑𝑥 

B- 1 
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If we assume that the uncertainty of a model’s predictions will always be greater than the uncertainty of the 

measurement in Equation B- 3, then the logarithmic component will always be positive. For example, if the 

uncertainty of the measurement is 𝜎𝑝𝑖
2=(2𝜎𝑞𝑖)

2
 using Equation B- 3 we have 

𝐷𝐾𝐿(𝑆𝑝𝑖
, 𝑆𝑞𝑖

) = [
(𝜇𝑝𝑖 − 𝜇𝑞𝑖)2

2𝜎𝑞𝑖
2

+
4𝜎𝑞𝑖

2

2𝜎𝑞𝑖
2 + ln

𝜎𝑞𝑖

2𝜎𝑞𝑖
] −

1

2
 

 

             =  [
(𝜇𝑝𝑖 − 𝜇𝑞𝑖)2

2𝜎𝑞𝑖
2

+ 2 + ln
1

2
] −

1

2
 

 

                   = [
(𝜇𝑝𝑖 − 𝜇𝑞𝑖)2

2𝜎𝑞𝑖
2

+ 2 + ln
1

2
] −

1

2
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which has a minimum value of 0.81 when the means overlap, but cannot be zero. The effect in the size of the 

uncertainty estimates on the minimum KLD value is demonstrated in Table B  2. The calculations show that KLD 

penalises more harshly the distributions 1) with a difference of the mean that is greater than measurement 

uncertainty estimate and 2) the prediction uncertainty estimates that exceed the measurement uncertainty estimates 

more than 2-fold and 3) the prediction uncertainty estimates that are smaller than the uncertainty estimates of the 

measurement. 

 

B  2. Effect in the relationship between the means and standard deviation of the  measured and predicted Gaussian 

probability distributions, N(𝜇𝑝𝑖, 𝜎𝑝𝑖) and N(𝜇𝑞𝑖, 𝜎𝑞𝑖) respectively, on the minimum KLD value 

 𝒎𝒊𝒏 𝑫𝑲𝑳 

(𝜇𝑝𝑖 − 𝜇𝑞𝑖)
2 = 0 (𝜇𝑝𝑖 − 𝜇𝑞𝑖)

2 = 𝜎𝑞𝑖
2 (𝜇𝑝𝑖 − 𝜇𝑞𝑖)

2 = 4𝜎𝑞𝑖
2 (𝜇𝑝𝑖 − 𝜇𝑞𝑖)

2 = 9𝜎𝑞𝑖
2 

𝜎𝑝𝑖 =
1

3
𝜎𝑞𝑖 0.65 1.15 2.65 5.15 

𝜎𝑝𝑖 =
1

2
𝜎𝑞𝑖 0.32 0.82 2.32 4.82 

σpi = σqi 0.00 0.50 2.00 4.50 

𝜎𝑝𝑖 = 2𝜎𝑞𝑖 0.81 1.31 2.81 5.31 

𝜎𝑝𝑖 = 3𝜎𝑞𝑖 2.90 3.40 4.90 7.40 
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