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Abstract 

Empirical and modelling Road Network Evolution (RNE) research from a network 

science perspective has increased in recent years. Empirical RNE research has 

quantified real-world urban road network characteristics and dynamics. Modelling 

RNE research has proposed Generative Network Models (GNMs) to reproduce 

statistically empirical urban road network characteristics. 

This thesis proposes a novel framework to address the evolution of urban road 

networks through modelling and simulation of Node Addition and Link Connection, 

respectively. 

First, this thesis generalises the Link Connection generative mechanism of urban 

road networks, as a process of examining the proximity relationship between a new 

spatial location and the urban road network, using β-skeletons proximity 

relationships with 𝛽 ∈ [1.0, 2.0]. Proximity relationships come from a family of 

proximity graphs, which determine node connections by various geometric closeness 

definitions.  

Second, the proposed GNM of urban road network evolution and the generalised 

Link Connection are shown to be capable of giving rise to both static and dynamic 

network structures, raising in correspondence to empirical RNE findings. The 

simulation identifies originally parallels between the simulated network dynamics and 

empirical RNE characteristics, demonstrating the proposed model’s capacity in 

modelling the dynamic RNE in addition to network generation. By controlling the 𝛽 

parameter, the proposed GNM is shown to be capable of modelling a broader range 

of plausible urban road network structures than previous studies in this field. 

Third, this thesis proposes an original hybrid model of population and urban road 

network coevolution, which models population and road network dynamics on two 

inter-dependent layers and integrates GNM and RNE into the urban system through 

Node Addition. Various spatial decision combinations are explored, instead of 

assuming fixed population and road network spatial preferences. 

Fourth, the proposed coevolution model is shown to be capable of giving rise to 

diverse road network and population spatial structures, from centralised to 

decentralised on the global scale, clustered to dispersed on the local scale. The 

simulation suggests that related push and pull forces across urban system layers 

drive the coevolution, leading to a spatial structure spectrum, rather than fixed clear-

cut types (Marshall, 2004; Huynh et al., 2017; Moosavi, 2017). The proposed model 

also simulates the emergence of population-driven dispersed spatial structure and 

road network-driven linear spatial structure. The simulation finds the variation of 

network spatial structure is one potential cause of differences in network 

characteristics, demonstrating a necessity to consider the spatial structure in urban 

road network structure analysis.  
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Chapter 1 Introduction 

1.1 Background 

1.1.1 Transport and Urban Questions  

Cities are there at the dawn of human civilisation, and so are the questions about 

cities - their origins, transformation, and prospect (Mumford and Copeland, 1961). 

After more than a hundred years of industrialisation and urbanisation, cities become 

central to the majority of the global population. Urban problems arise, some of which 

are density, poverty, congestion, social injustice, connectivity. The city turns into a 

study object of its own right (Burgess et al., 1925), and urban studies proliferate. 

Faced with current urban problems, the understanding of cities and how they 

develop is expected to lay the foundation of an alternative urban future (Mumford 

and Copeland, 1961).  

Transport and transport studies accompany the development of cities and urban 

studies. Before modern urban studies, the understanding of cities is mostly 

geographical, of their locations along critical water, land, and railway transport routes 

(Knox and McCarthy, 2012). Urban economics establishes theories of the 

relationship between urban land price, transport cost and land-use utility (Alonso, 

1960; Isard, 1956; Fujita et al., 2001), refines with individual decision-making 

behaviours (O'sullivan, 2007), and provides a leading strand of urban theory (Wilson, 

2014). After the Second World War, private car ownership increases, followed by 

road construction and congestion (Knox and McCarthy, 2012). Transport studies 

divert the research focus from rural and interurban to urban transport with pioneering 

studies of Detroit and Chicago, develop the Origin and Destination survey, and 

predict travels between transport analysis zones (Black, 1990). Applying the gravity 

models from social physics which use physics analogy to construct mathematically 

human interactions and urban scaling relations (Carrothers, 1956; Stewart, 1941; 

Zipf, 1942), pioneering urban models evaluate and predict locations of work, 

residence, and transport efficiency, and set up a framework to model urban 

development according to the land-use and transport interaction (Lowry, 1964). Car 

dominance and suburbanisation (Knox and McCarthy, 2012) attract attention of 

urban design and planning to problems such as the urban sprawl, through the 

perspective of urban form and function: whether the transport system should be 

designed to fit a city or the city should grow oriented by transport development 

(Kelly, 1994).  
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In short, the transport system performs critical urban functions and poses critical 

urban challenges, constituting both essential urban problems and answers. The 

development of urban and transport systems, of urban and transport studies 

intertwines; understanding one system requires understanding the other. Various 

research fields bring their theories and methods into solving the urban and transport 

problems, leaving diverse research perspectives and approaches.    

1.1.2 The Quantitative Revolution and Networks 

The research history that this study is further linked, begins in the mid-20th century 

with the social science revolution which aims at studying the society scientifically, 

and the rise of system theory, which enables different disciplines to approach their 

research subjects using a transferable system approach (Batty, 1976).  

The quantitative geography revolution applies graph theory to analyse the flow-

accommodating network structure in geographical systems, including transport 

networks (Garrison and Marble, 1962; Kansky, 1963). From a topological and 

geometrical perspective, quantitative geographical network analysis further explains 

how geographical networks form and change. For example, three network spatial 

growth sequences are identified: node-connecting, space-filling, and space-partition; 

also, simulation models are proposed to explain or reproduce geographical networks 

by generating targeted network characteristics, rather than picture a step-by-step 

growth process (Haggett and Chorley, 1969). Compared to deterministic models, 

e.g. with a predefined goal to optimise, these early probabilistic models and 

computer simulations are regarded as feasible and appropriate to explore systems 

resulting from numerous individual decisions over time and space (Gould, 1970). 

With the prevalence of transport demand and land-use modelling in the following 

years, the research interest in transport networks shift from network structural to 

functional. 

Transport networks channel spatial interaction flows in transport demand and land-

use-transport modelling (Haggett et al., 1977; Sheffi, 1985). Transport geography 

studies the spatial organisation of mobility; from this perspective, changes of a 

transport system are influenced by the interactions between the transport system 

and the urban spatial structure but are fundamentally driven by transport technology 

development (Rodrigue et al., 2016). The transport system, urban form and urban 

spatial structure are considered as intrinsically related (Rodrigue et al., 2016). The 

transport system consists of nodes (e.g. transport terminals), network (spatial 

organisation of transport infrastructure), and transport demand. Urban form refers to 

the spatial imprints of transport infrastructure as well as adjacent physical built 

environment. Urban spatial structure refers to the spatial interactions of people, 
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goods, and information underlying the urban form, which consists of nodes (clusters 

of socio-economic activities) and links (connections between socio-economic activity 

locations).  

Transport demand modelling uses a framework of transport supply, demand, time 

and space to approach transport system development and network growth. 

Transport supply refers to transport infrastructure and is represented by a 

geographical network; supply decisions are realised through changes in the network 

by expanding or adding links. Transport demand is derived from land-uses. Changes 

of the transport system are explained as driven by the interaction of demand and 

supply while constrained by time and space (Xie and Levinson, 2011). Transport 

network design optimises transport performance and minimises travel cost with link 

improvement or addition (Yang and H. Bell, 1998). 

The network structure research interests of transport networks revive with the 

development of network science (Xie and Levinson, 2011). Network science 

provides for transport studies the network representation, interdisciplinary knowledge 

and measures, while transport studies provide problems for network science to study 

and domain knowledge (contributors, 2011). Reviving quantitative geography’s 

initiatives from decades ago in network analysis and modelling, network science 

differs from the former by utilising substantial amount of data and exploring how 

statistical physics can contribute to the subject. Statistical physics studies the 

statistical regularities in large systems by a few system characteristics: empirical 

statistical regularities indicate mechanisms behind their emergence, which further 

lead to the construction of simple models that agree with empirical findings 

(Barthelemy, 2017). Therefore, this perspective explores transferable mechanisms 

and processes across urban systems that direct the evolution of transport network as 

well as of urban system, putting aside different local influences (Barthelemy, 2016). 

1.1.3 Complexity  

Besides the quantitative revolution, system theory’s applications across disciplines 

around the same period increase the recognition of complexity in natural and artificial 

systems, which further develops into complexity theory. A complex system consists 

of simple components, which follow local rules rather than central control; hard-to-

predict system behaviours emerge, hence “the whole is more than the sum of its 

parts” (Mitchell, 2009). Complexity theory enables different disciplines to view their 

research subjects using a transferable complex perspective. 

Complex networks represent complex systems; some systems are networked; some 

have structures better revealed with the network representation (Barabasi, 2016). 

The small-world (Watts and Strogatz, 1998) and scale-free (Barabási and Albert, 
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1999) properties in real-world complex networks reveal that complex networks are 

not random and do not come into being by chance. Explanations of these properties 

by network formation and dynamics mechanisms manifest that complex networks 

are intrinsically dynamic, and the mechanisms behind network formation and 

dynamics are essential to understand their structures (Boccaletti et al., 2006). 

The evolution of complex networks shows in the emergence and changes of their 

characteristics (Dorogovtsev and Mendes, 2013). Static network structure refers to 

network characteristics at a fixed time, and dynamic structure refers to the changing 

network characteristics with time (Barabási et al., 2002). Complex networks’ 

evolution can be studied through a sequence of static network snapshots, by 

analysing network characteristics of each snapshot and the changes of network 

characteristics across snapshots (Rocha, 2017). 

Further, complex systems co-evolve within a broader “ecosystem”. The co-evolution 

here means that a system’s evolution depends partially or totally on related systems; 

adaptation of the system during its evolution influences both related systems and the 

environment (Mitleton-Kelly, 2003). Accordingly, it is recognised that the evolution of 

transport and the urban system cannot be viewed separately. For instance, the 

transport network accesses spatial locations while buildings occupy spatial locations; 

their dynamics and development feedback on each other; the transport system and 

the urban system co-evolve(Schweitzer and Nanumyan, 2016). 

Viewed as complex systems, complexity theory and methods are applied to transport 

and urban systems. Transport networks have been perceived as changing by top-

down transport supply policies from a central authority to maximise efficiency; 

acknowledging their complexity, transport systems' changes are viewed increasingly 

as resulting from public and private suppliers’ interactions, pursuing different 

interests (Xie and Levinson, 2011). At the same time, the new science of cities thinks 

of the urban system as emergent macroscopic phenomenon based on microscopic 

urban components’ self-organisation; the urban system is considered as a networked 

structure built from bottom-up; external forces do not determine system behaviours 

but trigger the internal self-organisation instead; complex urban phenomena emerge 

(Barthelemy, 2016; Batty, 2013; Portugali, 2012b). Moreover, a bottom-up complex 

urban theory bringing together essential urban components - population, transport 

infrastructure, and socio-economic welfare, is proposed: urban system exists and 

operates because of individuals’ social interactions, which are realised through the 

transport network, when socio-economic welfare created by social interactions 

exceeds the infrastructure cost (Bettencourt, 2013). 



5 
 

 

System theory also stimulates bottom-up simulations and computational experiments 

in urban modelling. The all-encompassing land-use-transport models are criticised 

as overly comprehensive, having a gap between many objectives and variables and 

the limited control over modelled content (Lee Jr, 1973). Simple bottom-up models 

are developed instead (Batty, 2009), such as Tobler (1970)’s urban growth model of 

Detroit, which demonstrates a simple modelling framework and mechanism can as 

well simulate complex urban phenomena. This bottom-up modelling and simulation 

approach aims at understanding rather than predicting, does not impose optimisation 

as a goal of the urban system, and considers the urban system as intrinsically 

dynamical, which distinguish it from other operational urban and transport models 

(Batty, 1976).  

Recognition of the urban complexity manifests in the qualitative urban studies as 

well. 

Urban morphology reads cities through their physical form. Streets, together with 

buildings and blocks, are basic elements used to read cities (Moudon, 1997; Oliveira, 

2016). The structure and transformation of human settlements, such as towns and 

villages, are attributed to historical and socio-economic factors (Kropf, 2017), such 

as developing period and cycle (Conzen, 2018). Streets are thought as a framework 

of socio-economic changes (Whitehand, 2001), whose current form can be explained 

in terms of historical development and will persist in influencing future socio-

economic changes (Kropf, 1996). Complexity and evolutionary thinking are 

recognised with the unresolved paradox regarding the urban form being both 

planned and emergent (Kropf, 2009).  

Historical geography traces details of urban development since early human 

settlement (Mumford and Copeland, 1961); in particular, history of urban form 

studies patterns and elements of urban form, as well as changing processes and 

influencing factors (Morris, 2013). Cities are classified by historic origins of their 

urban form - streets, plots, and buildings, into historic periods, such as early 

settlements, Greek, Roman, Islamic, Medieval, Renaissance, 19th century and 

modern (Oliveira, 2016). From a historical perspective and analysing socio-economic 

changes, urban form is thought as a result of human purposes, and no urban form 

can be viewed as totally unplanned; however, urban planning is not single-minded 

but negotiated and broadly shared, and urban form is ever-changing and never at 

rest (Kostof, 1991). The evolution of urban form is thought as incremental and 

continuous in the traditional cities but are massively interrupted by major human 

initiatives like the WWII and Modernity, causing typological differences of urban form 

between the tradition and modern (Marzot, 2018), before and after the WWII (Dibble 
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et al., 2019). Streets are an essential element of urban form: once invented, streets 

rise as public space with political powers and experience regulation to improve 

safety, public health and traffic situation; returning from the modernist treatment as 

traffic corridors, streets resume the recognition as public space for individual human 

beings (Kostof, 1992).  

Urban design regards cities as individual historical phenomena (Lynch, 1984), which 

are never final results but phases of constant changes (Lynch, 1960). Cities and their 

changes are not and cannot be controlled by a central authority or masterplan 

(Alexander, 1977) but are due to constant building processes (Lynch, 1960) and 

cumulative decisions (Lynch, 1984), which are reflected in the history of shifting 

planning paradigms (Hall, 1988). Still, the urban form has been considered as an 

issue of design (Lynch, 1960), mirroring good or bad values (Lynch, 1984). 

Repeated problems or patterns occur in urban form, each of which can be solved by 

design (Alexander, 1977). For example, streets, together with other elements of 

urban form, should be legible to citizens, thus enabling them to grasp a coherent 

image of the city easily; consequently, the design goes into streets’ continuity and 

direction to ease orientation (Lynch, 1960). Streets are also designed to follow the 

intrinsic spatial hierarchy on different urban scales (Alexander, 1977). However, it is 

increasingly recognised that most spatial developments emerge largely 

autonomously resulting from a mix of factors and would have occurred even without 

planners (de Roo and Rauws, 2012). New approaches to urban design and planning 

orient around the urban complexity, with strategies of the collective planning (Batty 

and Marshall, 2012), self-planned cities (Portugali, 2012a), and the adaptive design 

(Salingaros, 2012). 

The complexity perspective to think about urban and transport systems is becoming 

a new paradigm, which unites ideas and development in urban and transport studies 

in the last century (Batty, 2013). Quantitatively, the geographical network analysis 

since the 1960s and the urban modelling since the 1970s are a pioneering effort 

which contributed to the emergence of the complexity perspective. Qualitatively, 

research fields, such as historical urban morphology, urban planning and design, all 

describe the urban form as not static but constantly changing, in which urban streets 

and their changes play an essential role. Though changes of urban streets have 

been attributed to socioeconomic, historical, design and planning respectively, these 

qualitative fields perceive such changes as resulting from many interacting forces 

rather than from central control, demonstrating the complexity thinking of urban 

systems. 

1.1.4 Generative Modelling and Simulation 
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Merging the urban complexity and the bottom-up urban modelling, some urban 

models look specifically into generating urban form. Batty and Longley (1994) apply 

fractal geometry to generate physical urban form and urban properties, such as 

boundaries, networks and population spatial distribution. The urban form, geometry, 

layout and configuration are seen as manifestations of socio-economic processes, 

urban problems and intrinsic order in cities, and fractal geometry is used as an urban 

theory to explain self-similar patterns in urban form across scales. Urban growth is 

modelled through generating urban form by cumulative addition and deletion of basic 

urban units and is seen as a space-filling process with physics analogy; simulations 

are used to explore possible ways, densities, and patterns to fill the urban space 

(Batty, 2013). Hillier and Hanson (1984) propose space syntax to analyse urban 

form, in particular streets and buildings; further, a generative syntax model is 

proposed to generate physical urban form by applying local rules to add and attach 

basic urban form elements “cell”, with certain randomness. Urban form is regarded 

as individual interactions’ embedment in space, in which streets generate transport 

flows and influence urban form and land-use (Hillier, 2007). Bejan (2000) proposes a 

constructal law which sees geometrical forms as a result of optimisation, and 

transport systems are explained by a mechanism to minimise travel time from one 

point to a finite area, leading to a dendritic structure.  

In these generative urban form models, the concept “generative” stands out as a 

bottom-up approach to model urban growth. This approach relates emerging 

geometrical and topological structures to their formation mechanisms. The proposed 

mechanisms do not picture step-by-step urban growth but advance understanding of 

the urban system through the urban form generation. This generative modelling and 

simulation approach is rooted in complexity theory and explores generatively how 

local rules of microscopic urban components’ behaviours and interactions give rise to 

macroscopic urban form, in order to model the urban system and its dynamics 

(Epstein, 1999). 

A Model represents a simplified real-world system, built to understand the original 

system better; a simulation implements and explores the model when the real 

system is mathematically and analytically difficult to track, especially with open 

systems in which not all the factors of interest can be controlled (Kelton and Law, 

2000). Varying with data availability and current understanding of system structure 

and operation mechanism, modelling and simulation realise different research 

purposes (O'Sullivan and Perry, 2013). With reliable and detailed data as well as a 

thorough theoretical understanding of system structure and operation mechanism, 

simulation can make predictions and help decision-making. With well-understood 

mechanism and insufficient empirical support, simulation can guide data collection, 
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by identifying critical factors to collect data on. With available data and limited 

theoretical understanding, simulation can be “tools to think with”. Simulation with 

working hypotheses of the system and comparison made between simulation results 

and empirical evidence can advance understanding of the system. 

Complexity theory aligns with the bottom-up generative modelling and simulation 

approach. Deconstructing and reconstructing complex systems using their most 

simple components enable modelling mechanisms of component behaviours and 

interactions. Because complex systems are hard to tract analytically with emergent 

and hard-to-predict characteristics, simulation is a suitable tool to explore complex 

systems (O'Sullivan and Perry, 2013). Simulation can carry out computational 

experiments to test hypothetical mechanisms about the formation and dynamics of 

the complex system, study long term system dynamics, and explore potential future 

scenarios.  

Understanding of cities enters the complexity era, and cities are increasingly 

perceived as networked complex urban systems. The urban questions may be 

updated to understand the origin, transformation and prospect of complex urban 

systems. As it has been in the urban and urban studies development, transport 

persists in the complex urban system to constitute an essential part of both urban 

problems and answers. With the network, complexity, generative bottom-up 

modelling and simulation lenses, how to understand urban road network structure 

and dynamics, and how may this contribute to understanding the complex urban 

system and urban future? 

1.2 How Urban Road Networks Evolve: Research Dimensions 

Xie and Levinson (2011) identify various dimensions to study the evolution of 

transport networks: topological, hierarchical, morphological, temporal, technological, 

economic, managerial, political. As discussed in section 1.1, research effort draws 

from different disciplinary perspectives to understand the urban system and 

diversifies into even more perspectives and research fields. In this broad 

background, the urban road network has been studied as a crucial component of 

both the transport and urban system. Multiple research dimensions can be identified 

regarding the research question – How urban road networks evolve? Table 1-1 

summarises the economic, historical, design and planning, topological, geometrical, 

and modelling and simulation dimensions. These research dimensions all have their 

urban theories and methods, demonstrated in their varied perspectives on the 

evolution of urban road networks. 
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Dated back to quantitative geographical network analysis and revived with 

complexity theory and network science, an approach combining quantitative network 

analysis, complex systems, bottom-up generative modelling and simulation, to 

understand the evolution of urban road networks takes shape. This approach 

focuses on the network structure, perceives the transport system as complex and 

arising from simple components and local rules, and explores the system structure 

and dynamics through modelling and simulation. New insights into the urban 

questions may occur through bottom-up explorations of urban road network 

formation and dynamics, improving understanding of the spatial and temporal urban 

road network structure as well as urban road network’s interactions with other urban 

components to realise population’s social interactions and urban system’s functions. 

Acknowledging these opportunities, an increasing number of studies look specifically 

into urban road networks’ structure and dynamics from a network science 

perspective. Next section 1.3 introduces briefly this group of studies, which extends 

Table 1-1 with the network science perspective. 
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Table 1-1 Research Dimensions of Urban Road Network Evolution 

Research Perspectives Objectives Subjects Road Network Evolution Theories Dimensions 

Transport Geography 

(Rodrigue et al., 2016) 

Understand the spatial 
organisation of mobility. 

Transport system; 

Land-use system. 

Changes in the transport system are influenced by the 
complex relationship between the transport system and 
urban spatial structure but are fundamentally driven by 

transport technology development. 

Economic 

Transport Demand 

Forecasting 

(Xie and Levinson, 2011) 

Solve the transport problems. Transport system; 

Land-use system. 

Transport network growth is driven by the interaction of 
transport demand and supply while constrained by time and 
space. 

 

Economic; 

Modelling  

Urban Morphology 

(Kropf, 2017) 

Read cities from their 

physical form. 
Urban form Physical urban form, e.g. urban streets, are the framework of 

socio-economic changes and persist in influencing future 
socio-economic changes. 

Design and 

planning 

History of Urban Form 

(Kostof, 1991) 

Trace details of the 
development of cities and 
urban form. 

Urban form Urban form results from human purposes; no urban form can 
be viewed as totally unplanned. However, the planning is not 
single-minded but is negotiated and broadly shared. 

Historical 

Urban Design  

(Lynch, 1984) 

Propose normative theory of 
cities and urban form. 

Urban form Urban form is an issue of design, has good or bad values, 
and has repeated problems and solutions.  

Design and 
planning 

Quantitative Geographical 
Network Analysis 

(Haggett and Chorley, 1969) 

Quantitatively analyse the 
shared network structure of 

geographical systems. 

Geographical networks Geographical networks change by sequential patterns: node-
connecting, space-filling, and space-partition. 

Topological and 
Geometrical; 

Generative Urban Form 
Models 

(Batty and Longley, 1994; 
Hillier and Hanson, 1989; 
Bejan, 2000) 

Generate the geometrical 
urban form. 

Urban system Urban system components’ microscopic behaviours and 
interactions give rise to spatial and temporal patterns and 
orders in urban systems. 

Topological and 
Geometrical; 

Modelling and 

simulation; 

Complexity 
theory 

Generative Road Network 
Models 

(Section 1.3) 

Model the evolution of urban 
road networks. 

Urban road network Road network components’ microscopic behaviours and 
interactions give rise to macroscopic network characteristics. 

Topological and 
Geometrical; 

Modelling and 
simulation; 

Complexity 
theory 
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1.3 Road Network Evolution (RNE) 

In recent years, an increasing number of studies on Road Network Evolution (RNE), 

both empirical and modelling, approach the structure and dynamics of urban road 

networks from a network science perspective. This perspective studies topological 

and geometrical network structures, explicitly represent and analyse urban road 

networks. With the inherent complexity theory perspective, urban road networks are 

perceived bottom-up from elementary components. This perspective further enables 

the modelling and simulation of urban road networks in a generative manner, 

experimenting with hypothetical mechanisms behind the formation and dynamics of 

macroscopic network characteristics. In particular, this perspective considers 

network evolution as changes of the network structure through a sequence of static 

network snapshots and with trajectories of network characteristic dynamics, thus 

quantifying RNE. 

Empirical RNE research studies a sequence of urban road networks’ historical 

snapshots, as the examples in Figure 1.1. Using such historical road network data, 

these studies visualise urban road network evolution with time, analyse the static 

network structure in each snapshot, and quantify the changes of network 

characteristics with snapshots. Urban road networks studied include the Groane 

region in Italy, London, Paris, Sheffield, Khorramabad, Kerman, and Dundee (Strano 

et al., 2012; Barthelemy et al., 2013; Masucci et al., 2013; Mohajeri and 

Gudmundsson, 2014; Gudmundsson and Mohajeri, 2013). Based on observation 

and quantification, these studies propose RNE theories. For instance, the study of 

Groane road network proposes that road network grows by two elementary 

processes –  the increase of road density around the urban centres and the addition 

of new roads at the urbanisation front (Strano et al., 2012). The study of London road 

network proposes the evolution of urban road network exhibits two properties: major 

roads exist before the beginning of urbanisation and persist, while minor roads are 

added in urbanisation through fractal space filling (Masucci et al., 2013). 

Empirical RNE research, compared to other research dimensions discussed in 1.1, 

studies specifically the urban road network structure and quantifies explicitly 

changes of the network structure with network characteristics. Focusing on the urban 

road network structure, instead of the whole transport system or urban form, 

distinguishes this perspective from other research dimensions and may improve the 

understanding of mechanisms behind road network formation and dynamics, as well 

as of various influences on RNE. The empirical RNE research is reviewed in Chapter 

2. 



12 
 

 

 

Figure 1.1 Empirical Evolution of Urban Road Networks: The upper six snapshots 

visualise the evolution of the Groane road network from 1833-2007 (Strano et al., 2012); the 
lower nine snapshots visualise the evolution of the London road network from 1786-2010 
(Masucci et al., 2013). 

The Evolution of Groane Road Network 

The Evolution of London Road Network 
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At the same time, increasing modelling RNE research sets out to generate the urban 

road network structure and reproduces empirical network characteristics(Barthélemy 

and Flammini, 2008; Courtat et al., 2011; Rui et al., 2013; Barthélemy and Flammini, 

2009; Yang et al., 2011), as shown by the example in Figure 1.2. Modelling RNE 

research has generated network structures with visual and statistical similarities to 

real-world urban road networks, which distinguishes them from other transport and 

urban models mentioned in 1.1 that model the transport system or urban form, on 

other scales or as static.  

The Generative Network Model (GNM) is used, which proposes generative 

mechanisms behind network formation and dynamics (Newman, 2010). Simulation 

experiments are performed using the GNM, and simulation results are examined to 

evaluate the proposed generative mechanism. If the generated network resembles 

real-world urban road networks, its generative mechanism may have explanatory 

power of real network structures. This model follows the bottom-up generative 

modelling and simulation approach. By putting aside various other potential 

influences on RNE and only modelling local rules of simple network components’ 

behaviours and interactions, it is easier to understand the relationships between the 

generative mechanism and the emerging road network structure.  

In short, modelling RNE research uses GNM to simulate the urban road network 

structure from bottom-up and is capable of generating network structures that agree 

with empirical urban road networks’ characteristics. The modelling RNE research is 

reviewed in Chapter 4. 

 

Figure 1.2 Modelling Evolution of Urban Road Networks: Four snapshots (a)-(d) 
visualise the urban road network generation using a Generative Network Model 
(GNM) (Barthélemy and Flammini, 2008).  
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1.4 Research Questions 

Existing empirical and modelling RNE research has accumulated a considerable 

number of findings. Especially, potential parallels are observable between the 

empirical RNE process as in Figure 1.1 and the modelled network generation 

process as in Figure 1.2, indicating the integration of these two groups of research. 

Meanwhile, existing research has shown the following limitations. 

Empirical RNE research studies individual road networks; with different research 

interests, various aspects of the urban road network structure have been examined 

without sufficient horizontal comparison regarding findings, measures, and data 

treatment. The uniqueness of individual urban road networks and different research 

questions lessen the generality of empirical findings. Different methods to quantify 

RNE and insufficient consensus on findings leave inconsistency when attempting to 

put together an empirical RNE understanding. Further, proposed RNE mechanisms 

are inferred from urban road networks observed at a few discrete historical time 

points, rather than from a continuous RNE process. 

Modelling RNE research has generated plausible topological and geometrical urban 

road network structures, yet existing models lack horizontal comparison regarding 

generative mechanisms, model design, and simulation results. First, existing 

research has not explained the working mechanism of GNM in modelling the urban 

road network structure. Efforts have been focused on reproducing network 

characteristics, without establishing the relationship between the network generation 

mechanism and the generated network structure. Second, existing modelling RNE 

research aims at generating static urban road network structure, rather than 

modelling the dynamic RNE process. Generative mechanisms of previous models 

propose theoretical RNE hypotheses, yet research efforts stop at the reproduction of 

statistical characteristics of empirical urban road networks. Whether GNM is a 

plausible tool to model the dynamic RNE process, beyond network generation, has 

not been explored. Further, existing modelling RNE research has not integrated 

empirical RNE findings into simulation result examination. Aiming at network 

generation, these studies have not examined simulated networks’ dynamic structure 

– the changes of network characteristics along the network generation process, 

which may be compared with observed network changes in empirical RNE research. 

Existing modelling RNE research may not fully utilise GNM’s potential.  

Finally, focusing on topological and geometrical road network characteristics, both 

empirical and modelling RNE research has limited consideration of urban road 

networks’ spatial structure and relationship to the urban system. The spatial structure 

of road networks relates to the urban system, as shown in transport and urban 
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studies’ association of road network to urban form and urban spatial structure. Road 

network resides and changes in the urban system and has been regarded as 

influenced by various interrelated urban factors, such as mentioned in Table 1-1 from 

different RNE research dimensions. Existing empirical and modelling RNE research 

has not sufficiently distinguished road network structure from or further integrated it 

into the urban system. For example, previous models have equated road network to 

the urban system, by using nodes to represent urban centres, and links to represent 

the road network. This representation may reflect a regional transport network in 

which nodes represent transport terminals and links represent the transport network 

(Rodrigue et al., 2016), or an urban network in which nodes represent urban centres 

and links represent the transport network (Salingaros, 2005). However, this structure 

is different from and should not be evaluated by the primal urban road network 

findings - nodes represent urban road network intersections, and links represent 

road segment. which constitute most empirical RNE studies.  

Both empirical and modelling research requires syntheses to piece together a more 

comprehensive picture of existing RNE knowledge. Also, both empirical and 

modelling findings require further understanding to establish the relationships 

between the empirical RNE characteristics at discrete time points, the proposed 

network generation mechanisms and network generation processes, and the 

continuous RNE process. Finally, both empirical and modelling research lacks 

characterisation of the road network spatial structure, as well as the integration of 

road network with the urban system.  

Identifying these limitations, this thesis attempts to answer the following research 

questions: 

1. What are the existing empirical and modelling knowledge on road network 

evolution (RNE)? 

a. How to quantify RNE? 

b. How do the Generative Network Model (GNM) of urban road networks 

work? 

2. Can GNM model the dynamic RNE process, in addition to generate static urban 

road network structures?  

a. What is the relationship between the simulated static and dynamic network 

structure and the generative mechanism?  

b. Can modelling and simulation provide insights into the empirical RNE 

findings? 

3. How to integrate RNE and GNM into the urban system?  

a. What is the relationship between the road network and the urban system? 
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b. How to represent both the road network and the urban system? 

4. What road network spatial structures may emerge during RNE?  

a. How to characterise the spatial structure of urban road networks?  

1.5 Research Objectives 

This thesis attempts to address the proposed research questions by RNE modelling 

and simulation. First, this thesis proposes a generative network model (GNM) of 

urban road network evolution, generalising the generative mechanism of urban road 

network evolution. Existing empirical RNE findings are integrated to compare the 

observed empirical RNE characteristics with simulated network structure and 

dynamics, bringing together empirical and modelling RNE research. Further, the 

proposed model’s capacity to model the continuous RNE process beyond network 

generation is explored by establishing the relationship between the generative 

mechanism and the modelled network static and dynamic structures. Second, this 

thesis attempts to integrate GNM and RNE into the urban system, explores the 

emergence of road network spatial structure as well as the relationship between the 

road network and the urban system. Through two modelling and simulation studies, 

this thesis aims at achieving the following research objectives: 

1. Synthesise existing empirical and modelling RNE understanding from previous 

studies, in terms of  

a. Empirical urban road network structure and dynamics, characterisation; 

b. Generative network models and generative mechanisms of urban road 

network structure; 

c. Urban road network spatial structure and relationship to the urban system, 

characterisation. 

2. Propose a generative network model of urban road network evolution: 

a. Propose generalised generative mechanism of urban road network 

evolution; 

b. Use simulation experiments to explore the capacity of GNM to model the 

dynamic RNE process, in comparison to the empirical RNE characteristics. 

3. Propose a hybrid model of road network and urban system co-evolution; 

a. Propose a co-evolution mechanism of the road network and the urban 

system; 

b. Use simulation experiments to explore the emerging road network spatial 

structure and its relationship to the urban system. 

4. Reach a more comprehensive RNE understanding based on these two modelling 

and simulation studies. 
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1.6 Research Scope  

As discussed in section 1.1, there are many potential research dimensions to 

understand how urban road networks evolve. This thesis aims at modelling and 

simulating the evolution of urban road networks from a network science perspective. 

This approach may differ from alternative research dimensions in terms of the 

network structure considered, the theoretical foundation on which to interpret road 

network evolution, the modelling style and objectives. Nevertheless, all the elements 

of this approach exist in the research history and background, as discussed in 1.1, 

which lead to this approach and situate it with other research approaches. 

1.6.1 Modelling 

Models have been used for prediction but have also been increasingly recognised as 

a tool for understanding and exploration. Whether models are used for prediction, 

directing critical data collection, or exploration and understanding depend on the 

adequacy of existing data and theories regarding the studied system (O'Sullivan and 

Perry, 2013). This thesis uses models as a tool for understanding and exploration, as 

network science perspective RNE studies have accumulated important results had 

insufficient consensus on findings or RNE mechanisms. Modelling and simulation at 

this stage of RNE research shall explore the relationships between modelled network 

structures and dynamics and generative mechanisms to improve the understanding 

of empirical findings and the theorisation of RNE. 

1.6.2 Network  

Road network structure in this study refers to selected urban network characteristics, 

including characteristics of elementary road network component nodes, links, blocks, 

which have both static and dynamic empirical findings. Static and dynamic network 

structures, based on the selected network characteristics, are to be compared with 

simulation results, which yields a general understanding of urban road network 

structure and dynamics. This thesis does not conduct empirical studies of individual 

urban road networks nor compares simulation results to any road network in 

particular. Instead, it surveys and synthesises a framework of network characteristics 

from reported empirical urban road network findings. This effort brings together 

scattered empirical RNE knowledge in existing research and maximumly utilises 

existing empirical findings. 

Compared to research dimensions such as the transport demand modelling, which 

emphasises on transport function and performance, this study’s scale and level of 

details are different regarding the road network structure. There may be a concern of 

over-simplification, regarding whether the urban road network can be reduced to a 
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topological and geometrical network. There have long been discussions revolving 

around form and function. On the one hand, form, including the network’s topological 

and geometrical structure, is thought to manifest socio-economic processes, urban 

problems, and intrinsic urban order, as with the generative urban from models 

discussed in 1.1.4, which emphasise on the importance to understand the network 

structure. On the other hand, research perspectives like transport studies emphasise 

on the functional structure; the relationship between form and function remains 

theoretical rather than empirical and quantitative (Ewing and Cervero, 2001; Ewing 

and Cervero, 2010). 

Batty (1976) note that urban models may always be insufficient to represent the 

reality, thus are always questioned of their relevance; but the existence of spatial 

and temporal patterns and orders in the urban system justifies modelling and 

simulation of such urban phenomena. Recognising the limitation in considering 

topological and geometrical network structure from a network science perspective, 

results and implications of this approach shall be interpreted within the research 

scope. 

1.6.3 Evolution 

The success of Darwinian evolution in explaining the biological system leads to 

applications of evolutionary theories in other systems and fields (Fracchia and 

Lewontin, 1999); all the research dimensions mentioned in Table 1-1 use “evolution” 

to describe the transport system and urban form. From a complexity theory 

perspective, evolution may be viewed as an emerging phenomenon in the biological 

system (Mitchell and Newman, 2002). Meanwhile, the meaning of the evolution of 

other complex systems, especially social systems, are often not clearly defined. The 

emergence of hard-to-predict phenomena leaves the intuition that these systems 

evolve, and evolution seems the most appropriate way to describe hard-to-predict 

phenomena in these systems but no clear definition or quantitative characteristics 

are given when describing their evolution. Regarding urban road networks, evolution 

has been referred to as the interaction of public and private suppliers to pursue 

different interests (Xie and Levinson, 2011), the application of design rules by many 

hands in the incremental urban growth (Marshall and Sutton, 2014), and so on. 

Evolution in this study refers to the complex network evolution as discussed in 1.1.3, 

which means the emergence and changes of network characteristics. Such a 

complex network evolution can be studied through a sequence of static network 

snapshots, by analysing each static network’s characteristics and measuring 

changes of these network characteristics with time. This study does not intend to 

define the evolution of complex urban or transport systems, nor finds exact 
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correspondences of the Darwinian evolution in the urban road network but restrains 

the meaning of evolution to usages of the complex network evolution. 

1.6.4 Generative Mechanisms 

GNMs propose and implement hypothetical generative mechanisms regarding the 

formation and dynamics of complex networks; the generation of network structures 

with statistical similarities to real complex networks suggests, though not proves, that 

the proposed generative mechanism is plausible as an evolutionary mechanism 

behind complex network formation and dynamics (Newman, 2010). For example, 

observing that many complex networks’ node degree distributions exhibit the power 

law decay, Barabási and Albert (1999) propose a generative mechanism that 

complex networks develop with two features: growth and preferential attachment of 

node degree. The power-law node degree distribution emerges by implementing this 

mechanism; hence, growth and preferential attachment are plausible as a 

mechanism to understand the formation of this scale-free property. 

The generative modelling and simulation approach is not new or unique to Network 

science and has been relevant in urban and transport modelling for decades. 

Haggett and Chorley (1969) review geographical network models which “simulate 

certain features of complete networks rather than giving a step-by-step picture of 

their evolution through time”; similarities between the modelled network and the real-

world counterpart are thought to bring insights into the real-world network evolution 

mechanisms and processes. Bejan (2000) point out applying a simple geometrical 

structure like a leaf or a tree from other systems to model the transport system does 

not imply the modelled systems are identical but provides a potentially transferable 

understanding of such structure which exists in all these systems. The dendritic 

structure widely exists in systems that accommodate flows; at the same time, the 

dendritic structure is easily identifiable but difficult to describe. A generative 

mechanism that models the dendritic structure, which can be applied across 

systems, manifests its potential to improve the understanding of different systems by 

applying a transferable understanding of this shared structure. Batty and Longley 

(1994) hypothesise the urban growth process as cumulative addition and deletion of 

basic fractal geometric units and generate fractal urban form on this basis. GNMs 

follow this long-existing generative modelling and simulation approach. As a few 

characteristics characterise complex networks, GNMs reproduce these 

characteristics using a minimal model with a set of rules designed for the target 

characteristics, while unique attributes of individual networks are put aside 

(Barthelemy, 2017). Besides modelling network structures, generative mechanisms 
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may also incorporate street design rules and are used as an alternative approach to 

design and planning (Marshall and Sutton, 2014). 

GNMs emphasise on modelling key characteristics of general complex network 

structures and dynamic processes behind the formation of these characteristics, 

acknowledging the fundamentally dynamic nature of complex networks. Generated 

network structures that share similarities with real complex networks increase the 

understanding of the targeted structure. On the other hand, the generative 

mechanism does not equal the modelled system to the simplified model, or 

reproduces step-by-step any evolution process in particular, but applies a 

transferable understanding of the modelled structure. Bottom-up generative 

modelling and simulation have been applied to the urban system, with generative 

urban form models as outstanding examples. Implications of generative mechanisms 

are to be interpreted generally within the scope of the modelled structure instead of 

for any evolution process in particular. Generative mechanisms of urban road 

networks have been exploratory and contested, utilising theories from land use-

transport interaction (Barthélemy and Flammini, 2009), urban land division (Courtat 

et al., 2011), urban spatial structure (Rui et al., 2013), and urban design (Marshall 

and Sutton, 2014). 

1.6.5 Randomness 

Randomness is considered on two levels. First, when human decisions are 

inexhaustive in modelling while knowledge of human decisions are limited, e.g. 

individual location choices, randomness is as regarded as effective as other arbitrary 

explicit assumptions of decision making rules; second, randomness imposes an 

extent of heterogeneity preferences in decision making which will reflect in the 

variety of simulation outcomes (Batty, 2007). Acknowledging the fundamental role of 

human decision making in the evolution of urban and transport systems, 

randomness in modelling and simulation does not imply the evolution of these 

systems are inherently random but is a modelling decision when not attempting to 

model human decisions explicitly. 

1.6.6 Human Agency 

Understanding of cities in the 20th century is impossible without the human 

intervention performed (Batty, 2013). As discussed in 1.1.3, historical and modern 

urban design and planning are essential research dimensions to understand the 

evolution of urban form and the urban road network. Though human intentions and 

actions are present throughout the urban history, there are urban areas without 

central planning and are subject to local changes, hence the classification of organic 

or self-organised cities and the planned cities (Portugali, 2012b). Nevertheless, no 
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urban areas can be thought as fully “organic” since all urban areas ultimately result 

from human purposes, yet design and planning change through time and space with 

the urban system, rather than being constrained under a single planning regime 

(Kostof, 1991). Extending this dynamic urban nature, the urban design and planning 

community recognises the complexity of the urban system through “wicked 

problems” which demonstrate that some urban issues are too complex to fully track 

impacts of the proposed design and planning solution, and conditions may become 

more problematic than if no plans were devised and implemented in the first place 

(Batty, 2013). With the recognition of urban complexity, design and planning are 

increasingly considered as agents participating in urban decision-making along with 

other agents (Batty, 2013). 

Urban design and planning are not the research focus of this study, along with other 

alternative research dimensions identified in 1.2. The network science perspective 

may be insufficient, if economic, historical, planning and design, and other potential 

research dimensions were to be considered. Nevertheless, the research interest of 

this thesis lies in studying a general urban road network structure, rather than a 

particular urban road network, so that factors such as socio-economic historical 

development path, natural environment, design and planning are put aside 

temporarily. Nevertheless, this does not mean this generative modelling and 

simulation approach is incompatible with alternative research dimensions. Factors of 

interest in other research perspectives may be designed into generative 

mechanisms, allowing convenient integration of GNM with established transport and 

urban theories. For example, urban design and planning have been perceived as a 

perturbation in the urban road network self-organisation (Benoit and Jabari, 2019), 

and may serve as an initial simulation condition or as part of a designed generative 

mechanism to influence system components’ behaviours and interactions. 

1.7 Chapter Conclusion 

This chapter set the research background in 1.1 and identified various research 

perspectives and dimensions in 1.2 Table 1-1 to understand the evolution of urban 

road networks. Research interests in the evolution of urban road networks agree with 

the long-standing urban questions regarding cities’ origin, transformation and 

prospect, in which the transport system poses both questions and answers. From 

this broad background, an approach combining the complexity theory, network 

science, and generative modelling and simulation takes shape, which emphasises 

on the network structure and perceives the urban road network evolution as 

emerging from bottom-up. 1.3 briefed existing RNE research, both empirical and 
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modelling, from the network science perspective. Following the limitations of existing 

empirical and modelling RNE research, 1.4 and 1.5 proposed research questions 

and objectives of this thesis. The generative network modelling and simulation 

approach involves research perspectives and methods long existing in urban and 

transport studies; 1.6 stated the research scope of this thesis, which both differs from 

and relates to alternative research dimensions. 

Figure 1.3 outlines this thesis’s structure. This thesis consists of five parts: 

Introduction, Literature review, Methodology, RNE modelling and simulation studies, 

and Conclusion. Literature review spans three chapters: Chapter 2 reviews network 

science perspective empirical RNE research, from which a framework of urban 

network structure and measures is synthesised for simulation result examination in 

later chapters; Chapter 3 reviews road network’s spatial structure as well as the 

representation and relationship of road network and the urban system together; 

Chapter 4 reviews modelling RNE research. After literature review, Chapter 5 

proposes the methodology of this thesis, as a framework of RNE modelling and 

simulation. Two RNE modelling and simulation studies constitute the following four 

chapters. Chapter 6 and 7 propose a generative network model of the urban road 

network evolution and perform simulation experiments to explore how GNM’s 

generative mechanism works and the proposed model’s capacity in modelling the 

dynamic RNE process. Chapter 8 and 9 propose a hybrid model of population and 

urban road network co-evolution and perform simulation experiments to explore 

urban road network’s spatial structure and relationship to the urban system. Chapter 

10 concludes this thesis. 



23 
 

 

  

Figure 1.3 Thesis Structure

Introduction •Chapter 1 Research Background 

Literature Review

•Chapter 2 Empirical RNE Research

•Chapter 3 Road network Spatial Structure, Road network in the 

urban system

•Chapter 4 Modelling RNE Research

Methodology • Chapter 5 RNE Modelling and Simulation

RNE Modelling and 
Simulation

•Chapter 6 Generative Model of Urban Road Network Evolution

•Chapter 7 Simulation and Results: Modelling the dynamic RNE 

process using GNM and the role of proximity relationship

•Chapter 8 Hybrid Model of Population and Urban Road Network Co-

evolution

•Chapter 9 Simulation and Results: Modelling the spatial structure of 

road network, the relationship between road network and the urban 
system

Conclusion • Chapter 10 Conclusions, Originality, Limitations, and Future 
work



24 
 

 

Chapter 2 Empirical Urban Road Network Evolution  

2.1 Chapter Introduction 

Quantitative transport networks analysis was established in the 1950-60s 

quantitative geography revolution (Garrison and Marble, 1962; Haggett and Chorley, 

1969; Kansky, 1963). Graph theory measures introduced back then have been one 

essential research approach in this field (Taaffe, 1996; Black, 2003; Ducruet and 

Rodrigue, 2011). Research interests shifted from network structure to function in the 

1970s and 80s (Ducruet and Lugo, 2013), such as to transport demand modelling, 

urban economics, and statistical studies on the correlations between transport 

supply and socio-economic factors (Xie and Levinson, 2011), while that of network 

analysis decreased. Network science since the 1990s has provided new 

opportunities for transport network analysis (Xie and Levinson, 2011). Network 

science explores how statistical physics can contribute to the subject, focusing on 

empirical network structure analysis using a substantial amount of data and 

generating potential implications from new theoretical models which agree with 

empirical findings (Barthelemy, 2017). 

The understanding of the urban road network structure depends largely on the road 

network structure measured. Complex networks have small-world and scale-free 

properties, which can be efficiently captured by the topological characterisation. 

However, these non-spatial characteristics are not enough for spatially embedded 

complex networks like urban road networks; spatial network research has been 

establishing its methodology to characterise complex networks’ space dimension. At 

the same time, complex networks result from dynamic formation and change 

processes. The study of the dynamic network formation distinguished complex 

networks from random networks, thus the dynamic structure is indispensable in 

understanding complex networks.  

The spatial network characterisation and the emphasis on the dynamic structure are 

reflected in the current empirical research on road network evolution (RNE). An 

increasing number of empirical studies have used historical data, visualised and 

quantified road networks’ changing structure with time - the network evolution, 

through analysing snapshots of real-world urban road networks. These studies have 

provided empirical evidence of road networks’ dynamic structure; together with 

research on road networks’ static structure, a more comprehensive understanding of 

road networks’ formation and dynamics may be formed. 
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Following the first research question laid out in Chapter 1 regarding existing 

knowledge on RNE, this chapter aims at establishing an empirical RNE 

understanding by piecing together existing studies. This chapter aims to review and 

synthesise an empirical RNE understanding from a network science perspective, of 

both static and dynamic urban road network structures. 

Figure 2.1 shows the structure of this chapter. Section 2.2 develops from 

characterising complex networks to spatial networks 2.2.1, then discusses the 

importance to understand dynamic network structure beyond static structure 2.2.2, 

leading to the spatial network characterisation of urban road networks. Section 2.3 

reviews the static and dynamic structure of urban road networks based on 

characteristics of elementary road network components nodes 2.3.2, links 2.3.3 and 

blocks 2.3.4. Section 2.3.4.4 reviews the static and dynamic structure of road 

network Betweenness centrality, which includes RNE phenomena proposed by 

empirical RNE research – the Backbone of urban road networks 2.4.3 and 

Densification and Exploration 2.4.4. Section 2.5.1 synthesises an empirical 

understanding of RNE 2.5 and discussed the limitations of existing empirical RNE 

research 2.5.2.  

 

Figure 2.1 Chapter 2 Structure 
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2.2 Measure the Urban Road Network Structure from the Network 

Science Perspective 

2.2.1 From Complex to Spatial Networks 

Two trends can be observed in urban and transport studies and network science, 

respectively. On the one hand, urban and transport studies recognise the complexity 

of urban and transport systems and include complex theory and network science into 

their research methods. On the other hand, network science recognises the space 

dimension of certain complex networks and has been establishing a methodology to 

study spatial networks. 

Complex systems consist of simple networked components; the systems self-

organise – components microscopic behaviours follow local rules instead of central 

control; hard-to-predict macroscopic system characteristics emerge from collective 

individual component behaviours - the systems adapt, learn and evolve (Mitchell, 

2009). Correspondingly, the new science of cities thinks of urban systems as 

emergent macroscopic phenomena based on microscopic system components' self-

organisation. Urban systems are considered as network structure built from bottom 

up by simple urban system components; external forces do not determine the 

system behaviours but trigger internal self-organisation instead; complex urban 

phenomena emerge (Torrens and Torrens, 2004; Portugali, 2012b; Batty, 2013; 

Barthelemy, 2016; White et al., 2015). Transport systems are traditionally explained 

to change through top-down transport supply policy-making processes by a central 

authority to maximize efficiency; acknowledging complexity in these systems; their 

changes are viewed instead as a result of interactions between public and private 

suppliers with different interests (Xie and Levinson, 2011).  

Complex networks encode behaviours and interactions of system components and 

represent complex systems (Barabasi, 2016). Some complex systems are 

networked; while others, when represents as networks, relationships between 

system components are better revealed. Graph theory is the formal language to 

describe networks, and provide basic concepts and tools to analyse networks; Social 

network analysis further provides measures of networks (Newman, 2010; Barabasi, 

2016). The discoveries of small-world (Watts and Strogatz, 1998) and scale-free 

(Barabási and Albert, 1999) properties shape complex network structure examination 

as a process of topological characterisation regarding these properties: complex 

networks differ from random networks by small average path length and power-law 

node degree distribution, these topological characteristics can capture their 

structure. 
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Complex networks are generally considered as lying in abstract space, where 

positions of nodes and links have no meaning (Costa et al., 2007). However, many 

real complex networks' nodes locate in space with metric, which is usually two 

dimension plane with Euclidean distance; the probability to form a link between two 

nodes is considered as a function of spatial distance (Barthélemy, 2011). According 

to the difficulty to form long-distance links, spatial networks can be categorised as 

"strong geographical" and "weak geographical" (Xulvi-Brunet and Sokolov, 2007). 

Weak geographical spatial networks exhibit small-world and scale-free 

characteristics like general complex networks. Strong geographical constraint leads 

to planar networks, in which links do not cross without forming intersections; 

planarity limits possibilities of small-world and scale-free characteristics. 

Consequently, topology does not contain all information about spatial networks. In 

other words, spatial networks cannot be described by topological characterisation 

using only degree distribution, average path length and other such topological 

characteristics. Various methods have been proposed to characterise spatial 

networks informatively (Strano et al., 2012). 

Strategies for spatial network characterisation switch from initial attempts of adapting 

complex network topological characterisation, to gradually establishing its methods. 

At first, spatial network characterisation characterised planar properties of strong 

geographical spatial networks and adopted spatial distance for complex network 

characteristics instead of network distance (Barthélemy, 2011). For example, the 

planar network’s geometric characteristics have been measured, such as link angles 

and orientations (Perna et al., 2010; Gudmundsson and Mohajeri, 2013), cell (block) 

shape and size (Lämmer et al., 2006); complex networks’ measures have been 

adapted with spatial distance, e.g. measure Euclidean distance instead of number of 

links along a path as in various centrality measures (Porta et al., 2010). Gradually, 

spatial network characterisation has been assembling its methods instead of mainly 

applying complex network topological characterisation, as the most often used 

complex networks’ characteristics like degree distribution and average path length 

are not informative under strong spatial constraints (Barthelemy, 2017). Still, spatial 

network characterisation has not standardized on measures like the complex 

network topological characterisation; though some informative measures stand out, 

with betweenness centrality being one successful example (Barthelemy, 2017). 

In short, urban and transport systems have been gradually recognised as complex 

with complexity integrated as part of the theoretical foundation to think about such 

systems; network science has become an essential approach to study the often 

networked complex urban and transport systems. However, the fundamental 

spatiality of urban and transport networks cannot be fully understood by the 
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prevalent complex network topological characterisation. Thus, spatial network 

characterisation has been establishing its methodology to account for this spatial 

dimension.  

2.2.2 From Static to Dynamic Structure 

The discoveries of small-world and scale-free properties reveal real complex 

networks’ deviation from random networks and their structure do not come into being 

by chance. Instead, complex networks are regarded as forming by continuous 

evolution, which affects complex systems’ function and operation (Boccaletti et al., 

2006). The evolution of complex networks shows in the emergence and changes of 

network characteristics (Dorogovtsev and Mendes, 2013). Consequently, knowledge 

of how complex networks change may reveal mechanisms behind network formation 

and dynamics, thus are of considerable significance to study.  

Static structure refers to network characteristics at a fixed time; dynamic structure 

refers to changes in network characteristics with time (Barabási et al., 2002). 

Measuring the dynamic structure attempts to characterise the formation and changes 

of complex networks. Trajectories record behaviours of network measurements as 

networks undergo structural changes; similar trajectories suggest networks have a 

similar dynamic structure which may result from similar evolutionary mechanisms 

behind their formation and dynamics (Costa et al., 2007). Complex network evolution 

can be studied through a sequence of static network snapshots: each static 

networks’ characteristics are analysed, and the changes of characteristics with time 

are analysed (Rocha, 2017). 

Complex network structure being fundamentally dynamic leads researchers to think 

about road networks’ dynamic structure. Beyond studying one static road network or 

comparing several static road networks and inferring the formation and dynamics of 

road network structure, the network evolution studies have analysed a series of road 

network snapshots in time, provided direct observations of the formation and 

dynamics processes, therefore provided more RNE information. These studies 

(Strano et al., 2012; Barthelemy et al., 2013; Masucci et al., 2013; Mohajeri and 

Gudmundsson, 2014) have increased in recent years because of the availability of 

historical road network data and data processing ability. Their results have been the 

primary source of empirical dynamic road network structure. Together with results 

from static road network structure studies, a more comprehensive understanding of 

road network structure may be synthesised.  

The next two sections 2.3, 2.3.4.4 review the spatial network characterisation of 

urban road networks’ static and dynamic structure. Together, these two sections 
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synthesise an understanding of RNE characterisation and characteristics from a 

network science perspective. 

2.3 Elementary Road Network Components Characteristics 

This section introduces first the representation of urban road networks as a spatial 

network 2.3.1, then reviews characterisation and the static and dynamic 

characteristics of road networks’ elementary components – Node 2.3.2, Link 2.3.3, 

Block 2.3.4. 

2.3.1 Represent Road Network 

A complex network is defined as 𝐺 = (𝑉, 𝐸), in which 𝑉 represents a set of nodes 

and 𝐸 represents a set of links connecting nodes in 𝑉 (Newman, 2010; Barabasi, 

2016). Based on this definition, a spatial network further requires a list 𝐶 that 

contains spatial locations of nodes in 𝑉 (Barthelemy, 2017). Besides nodes and 

links, blocks – the nonoverlapping cells of planar networks (Barthelemy, 2017), are 

considered as elementary road networks components as well (Haggett and Chorley, 

1969). There may be many possible ways to characterise the structure and changes 

of 𝐺; for instance, measuring 𝑉, 𝐸, and 𝐶, as well as their changes. The following 

sections review the measures and findings of static and dynamic characteristics of 

elementary road network components: nodes, links, and blocks. 

The representation of an urban road network as a graph, where intersections 

correspond to nodes and road segments correspond to links, has been widely 

referred to as the primal representation. Meanwhile, the representation of streets as 

nodes and intersections as links has been referred to as the dual representation, in 

which street may contain several road segments. Compared to the usage in 

mathematics, “primal” and “dual” urban road networks are often not symmetrical, 

causing information loss. Also, though the primal representation provides a 

mathematical formalisation that preserves the intuitive geometry of the road network, 

it removes urban road networks from the physical reality and selectively singles out 

main elements and relations, therefore limiting analytical possibilities. Alternative 

approaches which take streets as the primary study unit can preserve the continuity 

and hierarchy in urban road networks. (Marshall et al., 2018) 

2.3.2 Node Characteristics 

Degree 𝑘𝑖 of a node denotes the number of links connecting to it. 〈𝑘〉 is the average 

degree of 𝐺. (Barabasi, 2016) 𝑘, 〈𝑘〉 are topological measures and reflect the urban 

road network’s elementary connection patterns. 𝑘 of planar networks is bounded by 

6 (Barthélemy, 2011). The peaked 𝑘 distribution and small 𝑘 range differ from scale-
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free degree distributions of many complex networks, and network science regards 

road network 𝑘 as “irrelevant” (Barthelemy, 2017). Therefore, some have instead 

studied the dual representation, under which road networks display small-world and 

scale-free characteristics (Jiang and Claramunt, 2004b; Porta et al., 2006a; Jiang, 

2007).  

Though not significant for small-world and scale-free properties, 𝑘 is used to 

distinguish “organic” and “planned” urban road networks (Wang, 2015; Buhl et al., 

2006), which makes it relevant to characterise the evolution of urban road networks. 

Historically, 𝑘4 nodes have been associated with centrally planned layouts, while 

organic or more self-organised layouts typically have a higher proportion of 𝑘3 

nodes. This aspect is described by the organic ratio 𝑟𝑁 =
𝑘3+𝑘1

∑ 𝑘𝑖𝑖
 (Courtat et al., 2011), 

measuring the proportion of 𝑘1 and 𝑘3 nodes to indicate the network’s organic extent.  

Node degree also shows directly the result of urban planning and design. 𝑘4 nodes 

suggest a grid road network layout, which is considered as a signature of urban 

planning. Prominent grids include the Roman gridiron inner-city land division, the 

Renaissance’s geometry of straight streets, the American grids used for rapid urban 

expansion with railroads in the 18th century, and the new urbanism’s interconnecting 

street patterns. On the other hand, 𝑘3 nodes’ popularity can be associated with road 

engineering standards in the 1950s-1960s, which regarded T-junctions as safer than 

crossroads. 𝑘3 nodes also relate to cul-de-sacs, which are often suburban residential 

streets to provide private access and discourage through traffic. (Southworth and 

Ben-Joseph, 2013) 

2.3.2.1 Static Node Characteristics 

Boeing (2017) investigated with OpenStreetMap (OSM) “driveway” data and 

reported, by 2016, 〈𝑘〉 of all US urbanised areas (497 US metropolitan level urbanised 

areas with a population larger than 50,000) was 2.76, in a range of [2.22, 3.22]. On 

average there were 18.7%  𝑘4 nodes with range [5.4%, 42.2%], 59.3% 𝑘3 nodes with 

range [44.4%, 77.8%],  and 21.3%  𝑘1 nodes with range [7.7%, 41.6%]. This study 

concluded US urbanised areas were “overwhelmingly similar”, in terms of having 

dominant proportions of 𝑘3 nodes. 

Barrington-Leigh and Millard-Ball (2015) investigated with TIGER shapefiles and 

reported, by 2013 〈𝑘〉 of all US urbanised areas was 2.74, with on average 21.5% 

𝑘 ≥ 4 nodes, and 23.5% 𝑘1 nodes. (Their data treatment to extract road networks from 

shapefiles tended to decrease k3 nodes while increasing k4 nodes.) 

Empirical findings of European urban road networks have reported similar 〈𝑘〉 to the 

US road networks; centrally planned road networks standed out with 〈𝑘〉 larger than 
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the US average, such Barcelona with 〈𝑘〉 = 3.43 (Chan et al., 2011; Strano et al., 

2013). Overall, empirical research has reported similar proportions of node degrees 

with a majority portion of 𝑘3 nodes and similar average node degree 〈𝑘〉; planned 

cities with a dominant grid layout had higher 〈𝑘〉 with larger proportions of 𝑘4 nodes. 

2.3.2.2 Dynamic Node Characteristics 

As shown in Figure 2.2 (a), Strano et al. (2012) reported, from 1833 to 2007, 〈𝑘〉 of 

the Groane road network was almost constant, and the growth of link number had a 

linear relationship with and the growth of node number. They concluded that 

Groane’s 〈𝑘〉 dynamics reflected the self-organised growth. As shown in Figure 2.2 

(b), Masucci et al. (2013) reported, from 1786 to 2010, 〈𝑘〉 of the London road 

network decreased, suggesting London road network changed from more circuitous 

to more tree-like. They interpreted this finding as London’s changing from planned to 

self-organised. As shown in Figure 2.2 (c), Barrington-Leigh and Millard-Ball (2015) 

reported, from 1920 to 2013, 〈𝑘〉 of US urbanised areas started from high value 

around 3.2, decreased to the lowest point of 2.6 in 1994, and had increased since 

then to 2.8 in 2012. They explained this 〈𝑘〉 dynamics with the changing proportions 

of 𝑘4 and 𝑘1 nodes and interpreted 〈𝑘〉 reflected urban sprawl in the US from 1920 to 

1994, characterised by a large number of 𝑘1 nodes (dead-ends), relatively small 

number of 𝑘4 nodes, and decrease of urban sprawl after 1994. 

In empirical evidence, 〈𝑘〉 has been reported to increase, decrease, or first decrease 

then increase with the urbanisation; how 〈𝑘〉 changed in empirical road networks 

were not consistent; researchers reached different conclusions from interpreting 〈𝑘〉 

dynamics. Nevertheless, 〈𝑘〉 dynamics reflected proportion changes of different 

degree nodes; the increase of 𝑘1 and 𝑘3 nodes which was likely to decrease 〈𝑘〉  has 

been associated with road network growth without central planning; the increase of 

𝑘4 was likely to increase 〈𝑘〉 and has been associated with central planning. 
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Figure 2.2 Empirical Average Node Degree 〈𝒌〉 Dynamics: (a) 〈𝑘〉 dynamics of the 

Groane road network from 1833 to 2007. The x-axis represents the number of nodes; the y-axis 
represents 〈𝑘〉 (Strano et al., 2012). (b) 〈𝑘〉 dynamics of the London road network from 1786 to 
2010. The x-axis represents the number of nodes the y-axis represents 〈𝑘〉; dashed line was 〈𝑘〉 
fitted as a function of node number (Masucci et al., 2013). (c) The left plot shows 〈𝑘〉 dynamics 

of all US urbanised areas: the black line represents 〈𝑘〉 dynamics of all the US counties from 

1920 to 2012. The x-axis represents the number of nodes; the y-axis represents 〈𝑘〉 
(Barrington-Leigh and Millard-Ball, 2015). The right column shows two smaller plots with 𝑘 ≥ 4 

and 𝑘1 dynamics accordingly. (a) and (b) show different trends of 〈𝑘〉 dynamics in individual 

road networks: Groane’s 〈𝑘〉 increased with time, while London’s 〈𝑘〉 decreased. (c) shows on a 
nationwide aggregated level, 〈𝑘〉 correlated with urban sprawl, as it changed with the 

proportions of 𝑘 ≥ 4 and 𝑘1 nodes, which were associated with compact and sprawl urban 
development. 

(a) 

(b) 

(c) 
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2.3.2.3 Node Characteristics Discussion 

Empirical research has found a majority of 𝑘3 nodes in urban road networks, 

reported inconsistent 〈𝑘〉 dynamics and attributed 〈𝑘〉 dynamics to road network self-

organisation or central planning, which has been shown by the changing proportions 

of 𝑘1 and 𝑘3 nodes against 𝑘4 nodes. Following the empirical findings, further 

research questions may be asked:  

• How do 𝑘1, 𝑘3 and 𝑘4 nodes emerge respectively, and what RNE mechanisms 

does the emergence of different degree nodes reflect? Does node degree relate 

to self-organised and centrally-planned urban road dynamics? How do different 

〈𝑘〉 dynamics emerge, and why does 〈𝑘〉 increase, decrease, or remain constant 

with time? What RNE mechanism does this reflect?Link Characteristics 

Link length 𝑙 denotes the Euclidean distance between the two nodes connected by 

this link. Total link length 𝐿𝑡𝑜𝑡 = ∑𝑙, summing all the link length in 𝐸. In contrast to the 

complex network topological characterisation in which link length is abstract, 

measuring the Euclidean distance 𝑙 of links reflects that spatial network 

characterisation adopts geometric measures to address the space dimension.  

2.3.3.1 Static Link Characteristics 

Boeing (2017) reported all the US urban road networks followed lognormal 𝑙 

distribution and resulted from having very few very short links (e.g. 10 m), abundant 

short links (e.g. 80 m), many medium links (e.g. 250 m), and very few very long links 

(>1 km) in typical road networks. Exceptions were mainly grid layouts, e.g. cities and 

towns in the Great Plains and Midwest of US with the Homestead act signed in 1862 

giving applicants free land and stimulating grid town layout. As in Figure 2.3 (b), 

Strano et al. (2013) reported most of 10 European cities’ road networks followed 

lognormal 𝑙 distributions. On a log-log plot, the tail of 𝑙 distribution, e.g. the long links, 

fit power-law distribution as in Figure 2.3 (a), while most short links in the head of the 

distribution did not. They explained previous research which concluded that 𝑙 

followed a power-law distribution overlooked short links. They further added the 

exceptions that did not follow the lognormal 𝑙 distribution were mainly influenced by 

historical central planning which favoured particular link lengths. As in Figure 2.3 (d), 

Chan et al. (2011) reported that 20 largest German cities’ road networks had a 

bimodal 𝑙 distribution: the majority of short links formed a ‘plateau’, and the tail of 

long links fit power-law distribution. The ‘plateau’ here might result from their data 

treatment, which removed all 𝑘1 and 𝑘2 nodes, resulting in the underestimation of the 

short link abundance. As in Figure 2.3 (c), Masucci et al. (2013) reported the Great 

London Area (GLA) in 1786 had an exponential 𝑙 distribution. 
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Figure 2.3 Empirical Link Length 𝒍 Distributions: (a) shows 𝑙 distributions of two cities – 

Catania and Edinburgh on a log-log scale. The x-axis represents link length; the y-axis 
represents probability density. (b) shows 𝑙 distributions of 10 European cities on a semi-log (log 

x) scale; the x-axis represents link length; the y-axis represents probability density. Most cities’ 𝑙 
displayed lognormal distributions in (b), while on the log-log scale in (a), the tails of 𝑙 
distributions fit power-law distributions (Strano et al., 2013). (c) 𝑙 distribution of Great London 
Areas (GLA) on semi-log (log y): the x-axis represents link length, the y-axis represents 
probability density; GLA’s 𝑙 in 1786 followed an exponential distribution (Masucci et al., 2013). 

(d) 𝑙 distributions of 20 largest German cities on a log-log scale: the x-axis represents link 
length, the y-axis represents probability density (Chan et al., 2011). 

2.3.3.2 Link Characteristics Discussion 

2.3.3.2.1 The Lognormal Distribution 

Lognormal distribution describes a random variable whose logarithms follows the 

normal distribution. Two main theories explain the generation of lognormal 

distributions: the law of proportionate effect proposed by Gibrat in the 1930s to 

describe the growth of firm size and the breakage model proposed by Kolmogoroff in 

the 1940s to describe the successive breakage of a particle; the latter is an inverse 

of the former. For a random variable 𝑋𝑛, the law of proportionate effect proposes the 

change of 𝑋𝑛 between any two successive states 𝑋𝑗 − 𝑋𝑗−1 is proportionate to its size 

𝜀𝑗𝑋𝑗−1 by a small rate 𝜀𝑗; thus 𝑋𝑗 = (1 + 𝜀𝑗)𝑋𝑗−1. Assuming the initial state is 𝑋0, 𝑋𝑛 

and its generation process is described by 𝑋𝑛 = 𝑋0(1 + 𝜀1)(1 + 𝜀2) ⋯ (1 + 𝜀𝑛) =

(c) (d) 
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𝑋0 ∏ (1 + 𝜀𝑛)𝑛
𝑗=1 . Assuming the rate of change 𝜀𝑗 is small compared to 1 and 

approximating using Taylor expansion of ln(1 + x) , ln 𝑋𝑛 = ln 𝑋0 + ∑ 𝜀𝑗
𝑛
𝑗=1 . Assuming 

ln 𝑋𝑛 ≫ ln 𝑋0 and the rate of change 𝜀𝑗 follows the normal distribution, the logarithm 

of this random variable ln 𝑋𝑛 follows the normal distribution since ∑ 𝜀𝑗
𝑛
𝑗=1  follows the 

normal distribution because of the central limit theorem. Similar to this proportionate 

growth process, the breakage model describes a proportionate breakage process 

which leads to a lognormal distribution as well. (Crow and Shimizu, 1987)  

Different probability distributions reflect different generating mechanisms of the 

random variables. As described above, a random variable 𝑋𝑛 following the lognormal 

distribution changes in proportion to its previous state 𝑋𝑛−1; therefore, 𝑋𝑛 is a 

product of proportionate changes and is generated by a multiplicative process. The 

lognormal distribution is first distinguished from the normal distribution. The 

lognormal distribution differs from the normal distribution by its skewness shown in 

the heavy tail of the distribution; a random variable following a normal distribution is 

generated by an additive process, namely the variable is not the product but the sum 

of changes; because of the ubiquitous normal distribution, the skewed heavy-tail 

distributions used to be overlooked (Limpert et al., 2001). Among the heavy-tailed 

distributions, the lognormal distribution can be easily confused with the power-law 

distribution; generation of the latter differs slightly from the former in the presence of 

bounded minimum (Mitzenmacher, 2004). 

2.3.3.2.2 Link Length Distribution and Dynamics Summary  

Empirical findings of the link length 𝑙 distribution have shown inconsistency among 

several skewed distributions with a heavy tail, yet the latest findings have reported 

that 𝑙 followed a lognormal distribution. With the growth of the road network over 

time, more short and medium length new links were added, and 𝑙 persisted in 

following the lognormal distribution with a concentrating peak. The lognormal 𝑙 

distribution has been explained by a typical urban road network’s composition of a 

few extremely short or long links, many medium links, and a lot of short links. 

Reporting inconsistent findings, empirical research has not explained 𝑙 distribution 

through formation processes and generation mechanisms. Different distributions 

may result from different generation mechanisms and processes, which may lead to 

the inconsistency in reported empirical 𝑙 distribution findings. Further research 

questions may be asked:  

• How does the lognormal 𝑙 distribution emerge in urban road networks and what 

RNE mechanism does this reflect?   
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• Does 𝑙 persist in following the lognormal distribution? How do new links influence 

𝑙’s distribution? What RNE mechanism does it reflect? 

2.3.4 Block Characteristics 

Blocks have long been studied as one of the fundamental urban morphology 

elements, together with streets and buildings (Moudon, 1997), in which the block 

boundaries and dimensions are analysed to infer the history of block development 

(Whitehand, 2001). Among different potential measurements of the morphology of 

urban blocks, two suitable spatial network characteristics to describe urban road 

network blocks are area and shape (Louf and Barthelemy, 2014). 

2.3.4.1 Static Block Characteristics 

Lämmer et al. (2006) reported 𝑃(𝐴) of 20 largest German cities followed a power-law 

distribution 𝑃(𝐴)~𝐴−𝛼, with Dresden being an example in Figure 2.4 (a) whose  𝛼 =

1.892, (excluding all the blocks with 𝐴 ≤ 10000 m2). Louf and Barthelemy (2014) 

reported that the tails of 𝑃(𝐴) of 131 world cities followed a power-law distribution 

𝑃(𝐴)~𝐴−𝛼, 𝛼 ≈ 2. However, the head of 𝑃(𝐴) , e.g. the small block areas, did not 

follow power-law and had different shapes. Long et al. (2016) reported 70% areas of 

Chinese cities’ 𝑃(𝐴) followed a power-law distribution 𝑃(𝐴)~𝐴−𝛼; large and high 

administrative status cities had a better fit. As in Figure 2.4 (b), Beijing’s 𝛼 = 1.37; 

while 𝛼 = 1.78 if only considered values larger than the mean, namely 𝐴 ≥ �̅�. As in 

Figure 2.4 (c), Riascos (2017) separated blocks of built-up areas and natural areas 

(park, river, etc.), and reported 𝑃(𝐴) of building blocks followed a power-law 

distribution 𝑃(𝐴)~𝐴−𝛼, 𝛼 ≈ 3, considering only 𝐴 ≥ 2000 m2; 𝑃(𝐴) of natural blocks 

followed power-law distribution 𝑃(𝐴)~𝐴−𝛼, 𝛼 ≈ 1. As in Figure 2.4 (d) - (e), 

Fialkowski and Bitner (2008) divided concentric urban, suburban, rural zones from 

the urban centre, and reported 𝑃(𝐴) of urban blocks followed a power-law 

distribution 𝑃(𝐴)~𝐴−𝛼, 𝛼 ≈ 2; 𝑃(𝐴) of suburban blocks followed a lognormal 

distribution; 𝑃(𝐴) of rural blocks followed a power-law distribution 𝑃(𝐴)~𝐴−𝛼, 𝛼 ≈ 1. 

Jiang and Liu (2012) reported 𝑃(𝐴) of the UK, France, Germany nationwide road 

networks all followed lognormal distributions, and the average block area �̅� 

separated 80% of small urban blocks and 20% large blocks. Usui and Asami (2018) 

reported 𝑃(𝐴) of Tokyo followed a lognormal distribution, (excluding blocks with 𝐴 ≥

10000 m2). 
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Figure 2.4 Empirical Block Area Distributions 𝑷(𝑨):(a) - (c), (e) the x-axis represents 

block area 𝐴; the y-axis represents probability density; both axes are on the logarithmic scale. 

(a) 𝑃(𝐴) of Dresden, not considering 𝐴 ≤ 10000 m2. The power-law fit yielded 𝛼 = 1.892 

(Lämmer et al., 2006). (b) 𝑃(𝐴) of Beijing; the blue circles represent the actual data; the yellow 

line represents the probability density of the average area �̅�; green line is a power-law fit for all 

the data, 𝛼 = 1.37; red line is a power-law fit for values whose 𝐴 ≥ �̅�, 𝛼 = 1.78 (Long et al., 
2016). (c) 𝑃(𝐴) of Berlin. Blue stars represent built-up blocks’ 𝑃(𝐴), the dotted line represents 
its power-law fit with 𝛼 = 3, red dots are values under logarithmic binning. Green triangles 

represent natural area blocks’ 𝑃(𝐴), the dashed line represents its power-law fit with 𝛼 = 1, 

black dots are values under logarithmic binning. (Riascos, 2017) (e) 𝑃(𝐴) of Charters Towers, 
Australia. Diamonds represent urban core 𝑃(𝐴); its tail fits he power-law distribution with 𝛼 = 2. 

Squares represent suburban blocks 𝑃(𝐴), which followed a lognormal distribution. Circles 

represent rural blocks 𝑃(𝐴), which fit the power-law distribution with 𝛼 = 1. (d) displays the 
urban core, suburban, rural areas of Charters Towers, defined as concentric rings from the 
urban centre (Fialkowski and Bitner, 2008).  

2.3.4.2 Dynamic Block Characteristics 

As in Figure 2.5 (a), Strano et al. (2012) reported 𝑃(𝐴) of the Groane road network 

followed a power-law distribution and 𝛼 increased from 1.2 in 1833 to 1.9 in 2007 as 

in the inset plot. As in Figure 2.5 (b), Masucci et al. (2013) reported 𝑃(𝐴) of London 

persisted in following lognormal distributions, with peak decreasing and moving 

towards the right. 

𝑃(𝐴) dynamics in the Groane road network agreed with the static 𝑃(𝐴) findings that 

the slope 𝛼 of 𝑃(𝐴) on the logarithmic scale increased with urban density along with 

the urbanisation. At the beginning of the studied period, the Groane road network 

was in a pre-urbanisation state and had 𝛼 = 1.2, which was close to 𝛼 found in static 

(a) (b) (c) 

(e) (d) 
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rural and suburban road networks. With the urbanisation, Groane’s 𝛼 increased to 

1.9, which agreed with 𝛼 found in static urban road networks. 

 

Figure 2.5 Empirical Block Area Distribution 𝑷(𝑨) Dynamics: (a) 𝑃(𝐴) dynamics of 

the Groane road network followed a power distribution. The x-axis represents block area 𝐴; the 
y-axis represents probability density; both axes are on the logarithmic scale. The inset plot 
shows 𝑃(𝐴)’s power-law exponent increased from 1.2 in 1833 to 1.9 in 2007. (Strano et al., 

2012) (b) 𝑃(𝐴) dynamics of the London road network persisted in following a lognormal 
distribution. The x-axis represents block area 𝐴 and is on the logarithmic scale, the y-axis 

represents probability density. (Masucci et al., 2013)London showed contradicting 

characteristics: in the dynamics of a lognormal distribution, 𝑃(𝐴) moved 

towards the right, suggesting an increase in block areas 𝐴 instead of 

subdivision of larger urban blocks into smaller ones. This finding might result 

from the examined area – the greenbelt was much larger than the studied initial 

road network. The London road network expanded during the studied historical 

period and the inclusion of new urban land led to the increase of block areas. 

On the other hand, the Groane road network did not expand during the studied 

historical period and reflected mainly a process of increasing density within the 

initial road network – the subdivision of the larger blocks into smaller ones, 

which could be described by increasing 𝛼 of a power-law 𝑃(𝐴).  

2.3.4.3 Block Characteristics Discussion  

Empirical findings of urban blocks area probability distributions 𝑃(𝐴) have been 

inconsistent. However, the reported 𝑃(𝐴)  shared the same characteristics for large 

𝐴, which could be fitted on a log-log plot by a straight line. Mainly two 𝑃(𝐴) 

distributions have been reported: power-law and lognormal. Previous studies have 

acknowledged the head of 𝑃(𝐴) may not fit power-law: Lämmer et al. (2006) - Figure 

2.4 (a) excluded small values; Louf and Barthelemy (2014) pointed out this issue. 

These studies decided not to consider the head of 𝑃(𝐴) and concluded 𝑃(𝐴) 

followed a power-law distribution with exponent 𝛼 ≈ 2. Studies that concluded 𝑃(𝐴) 

(b) (a) 
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followed the lognormal distribution chose instead to consider the head of 𝑃(𝐴) as in 

Usui and Asami (2018). Consequently, they have faced the problem that very large 𝐴 

may not fit lognormal distribution and limited considerations of these very large 𝐴.  

As mentioned in 2.3.3.2.1, power-law and lognormal distributions are very similar on 

a log-log plot; the lognormal distribution may appear to be a straight line similar to 

the power-law distribution (Mitzenmacher, 2004). The power-law distribution Long et 

al. (2016) presented in Figure 2.4 (b) appears to be lognormal since it displayed a 

similar shape as the lognormal curve in Figure 2.4 (e). The slope of 𝑃(𝐴)’s tail of the 

log-log plot seems to increase with urban density and the level of urbanisation, which 

divides large urban blocks into many smaller ones. For dense urban areas, the slope 

𝛼 is likely to have value 𝛼 ≈ 2. If the density increases - for example, only consider 

the building blocks as Riascos (2017) did in Figure 2.4 (c), the slope 𝛼 is likely to 

have value 𝛼 ≥ 2. Expanding the examined area to include suburban and rural areas 

is likely to decrease 𝛼 and leads 𝑃(𝐴) to fit better the lognormal distribution. Long et 

al. (2016) found Beijing’s 𝛼 = 1.37. Jiang and Liu (2012) found lognormal in national 

road networks. Fialkowski and Bitner (2008) found lognormal for suburban and 𝛼 = 1 

for rural road networks. Riascos (2017) found 𝛼 = 1 for natural urban blocks such as 

a river, a park. Usui and Asami (2018) reported lognormal for Tokyo, excluding very 

large blocks.  

Empirical findings of the 𝑃(𝐴) dynamics have not been consistent either. The type of 

distribution appears to persist as the urban road network develops. The average and 

overall block areas have been reported to increase and decrease; this contradiction 

may result from the studied urban road network’s expansion. 

Existing findings suggest that 𝑃(𝐴) is highly sensitive to the chosen study area or 

density of the chosen area. 𝑃(𝐴) may exhibit power-law or lognormal distributions 

accordingly. Block area dynamics may be a process of the land subdivision because 

new roads divide larger urban blocks into smaller ones. Assuming 𝑃(𝐴) follows 

power-law distribution, this process has been reflected in the increasing slope 𝛼 of 

𝑃(𝐴) on the logarithmic scale. Meanwhile, in case of an expanding road network, 

urban density may not increase monolithically as the road network expands; average 

and overall block areas may instead increase with the inclusion of new land.  

Similar to the link length distribution, existing empirical studies have focused on 

reporting the different probability distributions but have not investigated the 

generation mechanisms of these distributions and the corresponding changing 

processes of urban road networks that led to these distributions. Further research 

questions may be asked: 
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• How do the lognormal or power-law 𝑃(𝐴) distributions emerge in urban road 

networks and what RNE mechanism does this reflect?  

• How does 𝑃(𝐴) change - does it persist in following a lognormal or power-law 

distribution, and how do the characteristics of the distribution change? What RNE 

mechanism does this reflect?  

2.3.4.4 Dynamic Link Characteristics 

As in Figure 2.6, Masucci et al. (2013) reported London road network 𝑙 distribution 

persisted in being lognormal from 1786 to 2010. Strano et al. (2012) reported the 

quantity 𝑙≥90% in the Groane road network, which was the 90th percentile of all new link 

length during a historical period, decreased from 625m to 325m from 1833 to 1925, 

and further from 325m to 225m from 1994 to 2007. This finding meant most new links 

persisted in decreasing in length. 

 

Figure 2.6 Empirical Link Length 𝒍 Distribution Dynamics:  𝑙 distribution dynamics of 

London from 1786 to 2010 on a semi-log scale (log x); the x-axis represents link length, the y-
axis represents probability. (Masucci et al., 2013) 

2.4 Betweenness Centrality Characteristics 

Betweenness Centrality (BC) is a type of centrality first proposed in social network 

analysis (Freeman, 1978; Borgatti, 2005; Borgatti and Everett, 2006), and later 

becomes an essential concept and measure in network science. Among all the 

centrality measures, BC has been the most informative in revealing the road network 

structure (Barthelemy, 2017). This section reviews BC’s application in characterising 

the urban road network structure. 

BC measures how frequent a node or link lies on the shortest paths in the network. A 

path is a sequence of nodes, along which each pair of adjacent nodes is connected 

by a link (Barabasi, 2016). Instead of referring to the number of links along a path as 

in complex network topological characterisation, spatial network characterisation can 
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adopt the total Euclidean link length of a path as the path length. Then, BC of a node 

or link 𝑖 is defined as  

𝐵𝐶(𝑖) =
1

(𝑁−1)(𝑁−2)
∑

𝜎𝑠𝑡(𝑖)

𝜎𝑠𝑡
𝑠≠𝑡 , 

in which 𝜎𝑠𝑡 is the number of the shortest path between node pair 𝑠, 𝑡, and 𝜎𝑠𝑡(𝑖) is 

the number of shortest path between node pair 𝑠, 𝑡 on which 𝑖 lies (Barthelemy, 

2017). 

Centrality has been applied in urban studies for decades and associated with the 

central places. Centrality is a fundamental concept to understand cities. It refers to 

“prominent locations”, and tries to understand “the generation and changes of 

centres” (Hillier, 1999). It suggests how cities work – around central places,  and the 

urban evolution mechanisms – the emergence of central places (Porta et al., 2010). 

Centrality contains functional and spatial information (Hillier, 1999). Functionally, it 

may represent accessibility, high density, intense land use, and principal urban 

functions; spatially, it may reveal the urban spatial structure, such as the 

concentration and distribution of economic activities (Porta et al., 2010).  

Centrality measures, including BC, have been used to study road networks for more 

than one decade (Crucitti et al., 2006a; Crucitti et al., 2006b). Debates of BC’s usage 

have revolved around two main issues: whether BC relates to traffic flows and how 

informative BC is in revealing road network structure. BC uses the frequency of 

shortest path traverse between node pairs to measure the importance of network 

components; it assumes equal transport demand between each node pair and 

indicates high BC components are important because more flows brought by 

shortest paths pass these components. In other words, regarding high BC 

components as important implicitly admits they accommodate more flows.  
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Figure 2.7 Betweenness Centrality and Road Network Usage Patterns: These two 

plots compare road segments’ BC and road network usage which was defined as origins of trips 
at road segment and calculated by mobile phone data in San Francisco Bay Area and Boston 
Area. Roads are coloured according to the correlations between link BC and usage: red roads 
have both high BC and usage; grey roads have both low BC and usage; green roads have high 
BC but low usage; yellow roads have low BC but high usage. (Wang et al., 2012) 

Deficiencies of these assumptions, when applied to road networks and traffic flows, 

have shown in the treatment of both transport demand and supply (Zadeh and 

Rajabi, 2013). First, transport demand origins and destinations are likely to distribute 

alongside road segments instead of being at each node pairs and are likely to be 

inhomogeneous as assumed in calculating BC. Second, as transport supply is 

limited, accessibility to shortest paths is likely to be inhomogeneous either, which 

means traffic flows are unlikely to all travel on the shortest paths as assumed in 

calculating BC (Gao et al., 2013). Third, transport demand and traffic are dynamic, 

e.g. vary during the day, whereas BC is a static measurement of a road network 

(Kazerani and Winter, 2009). Following these arguments, some empirical studies 

reported low correlations between BC and traffic flows (Gao et al., 2013; Wang et al., 

2012). However, BC has been shown as capable of capturing important routes with 

high traffic flows as in Figure 2.7 - the red major routes captured by high BC as 

critical agreed with the empirical data of road usage. Besides, the grey components 

also show the correspondence of low BC and road usage. 

In terms of revealing informatively the road network structure, BC’s limitation lies in 

the broader debate regarding the relationship of network configuration and function, 

and between urban form and function at large. Regarding BC, correlations have 

been found between high BC network components and major travel routes (Crucitti 

et al., 2006a), essential land uses (Rui and Ban, 2014), other transport networks 

(Strano et al., 2015), crucial economic activity locations (Porta et al., 2009; Porta et 

al., 2010; Wang et al., 2011), and transport accidents locations (Sarkar et al., 2017), 

suggesting positive correlations between high BC and important locations.  
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Despite potential limitations in predicting traffic flows and urban functions, BC has 

been shown as competitive to measure the road network structure. 

2.4.1 Static BC Characteristics 

As the example of Dresden shown in Figure 2.8 (a), Lämmer et al. (2006) found BC 

distributions of 20 largest German cities’ road networks followed the power-law 

distribution. They concluded that this finding reflected the hierarchy of road networks, 

with the following calculation. For example, in Dresden, 50% road length had only 

0.2% high BC concentration, while 80% of high BC concentrated on 10% of road 

length and 50% on 3.2%. Crucitti et al. (2006a) found BC distributions of planned 

road network followed a Gaussian distribution, while that of self-organised ones 

followed an exponential distribution (Crucitti et al., 2006b; Crucitti et al., 2006a; Porta 

et al., 2006a). 

Kirkley et al. (2017) found 97 world largest cities’ road network BC distributions 

followed the same bimodal distribution, as shown in Figure 2.8 (b). They pointed out 

previous studies suffered from small sample size (e.g. 1 mile2 road network 

sampling) and noise created from binning data thus used 3000 km2 of the road 

network instead for each city. They explained the found bimodal BC distribution by 

an underlying spanning tree high BC backbone and minor low BC roads from 

alternative loop paths. The bimodal BC distribution had a tail of high BC values 

peaking at 𝐵𝐶 = |𝑉|(the bump in Figure 2.8 (b)); this value corresponded to the BC 

of components next to the leaves of an underlying spanning tree in the network; the 

high BC values were bounded by |𝑉|2. The head of the bimodal BC distribution 

corresponded to low BC components; these components formed alternative loop 

paths which diverted part of the BC flows away from the high BC components on the 

spanning tree. This bimodal BC distribution was not affected by changing local 

topology and rewiring, i.e. change node degree locally, or changing local geometry, 

i.e. uniformly distribute nodes or change edge weights. It was determined by 

planarity and a network density quantity  𝜌𝑒 =
|𝐸|

𝐸𝐷𝑇
, which was the ratio of link number 

and maximum link number. (Given a set of points on a plane, MST is the planar network 

with the smallest number to connect all the points, while DT is the planar network with the 

maximum number of links (Kirkley et al., 2017). MST and DT are benchmark networks for 

overall connectivity and normalise road networks for comparison (Crucitti et al., 2006a). )  

In short, empirical findings have reported urban road networks’ BC distribution to be 

bimodal, which was regarded as a topological characteristic shared by planar 

networks. High BC components are likely to come from an underlying spanning tree 

of the network while low BC components form alternative loop paths. 
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Figure 2.8 Empirical Betweenness Centrality Distributions: (a), (b) The x-axis 

represents betweenness centrality (BC); the y-axis represents probability density; both axes are 
on the logarithmic scale. (a) shows BC probability distribution of Dresden road network, which 

followed power-law distribution 𝑃(𝐵𝐶)~𝐵𝐶−𝛽, 𝛽 = 1.355  (Lämmer et al., 2006); (b) shows BC 
distributions of 97 most populous cities’ road networks, all following a bimodal distribution with 
the tails of larger values peaking around BC = |𝑉| – the number of nodes (Kirkley et al., 2017). 

2.4.2 Dynamic BC Characteristics 

Kirkley et al. (2017) found the hierarchy or rank of BC was stable with time because 

network density 𝜌𝑒 =
|𝐸|

𝐸𝐷𝑇
 which determined the bimodal BC distribution had a small 

value range and was stable in real urban road networks. If network density was low – 

a spanning tree being the lowest as in the upper panel of Figure 2.9, BC distribution 

peaked at |𝑉| and high BC nodes did not show spatial correlation. When network 

density increased and alternative loop paths were created, BC distribution started to 

show the bimodal characteristics, and high BC nodes concentrated towards the 

barycentre of the network, as in the lower panel of Figure 2.9. Real-world road 

networks have a small 𝜌𝑒 range around [0.4, 0.6], thus have stable BC distributions. 

Paris road network has 𝜌𝑒 = 0.5; its BC distribution remained stable with time, as 

shown in Figure 2.10 (b), though the spatial distribution of BC changed drastically 

because of the Haussmann planning, as shown in Figure 2.10 (a).  
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Figure 2.9 The Emergence of Bimodal Betweenness Centrality Distribution: 

Upper and lower panel demonstrate how network density 𝜌𝑒 =
|𝐸|

𝐸𝐷𝑇
 - the ratio of link number |𝐸| 

and maximum link number 𝐸𝐷𝑇 (of DT realised on the same nodes), determined BC distribution. 
The upper panel sets 𝜌𝑒 = 𝜌𝑀𝑆𝑇 (of MST realised on the same nodes) and was the lowest 

possible 𝜌𝑒; the lower panel set 𝜌𝑒 = 0.55. The left column plots BC distributions; the x-axis 
represents BC; the y-axis represents probability density. The right column shows in grey one 
sample network at the set 𝜌𝑒, and in purple the highest BC nodes (larger than the 90th 
percentile). The upper panel shows at 𝜌𝑒 = 𝜌𝑀𝑆𝑇, BC resembled the tails of road network BC 
distributions, indicating road network’s largest BC components belong to an underlying 
spanning tree within urban road networks; high BC nodes did not show spatial correlation. The 
lower panel shows at 𝜌𝑒 = 0.55, close to real-world road networks; BC resembled the empirical 
bimodal BC distribution. At this 𝜌𝑒, high BC nodes showed spatial correlation and concentrated 
towards the barycentre of the network. (Kirkley et al., 2017) 
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Figure 2.10 Empirical Betweenness Centrality Dynamics: BC dynamics of Paris road 

network from 1790 to 1999. (a) shows the spatial distribution of high BC nodes, which was a 
persistent tree structure, except for an added ring of high BC nodes because of the Haussmann 
planning. (b) shows the correspondent BC distributions of different periods remained stable as 
network density 𝜌𝑒 was stable. (Kirkley et al., 2017) 

In summary, empirical research has proposed that BC dynamics depend on network 

density 𝜌𝑒 =
|𝐸|

𝐸𝐷𝑇
 and stay stable if 𝜌𝑒 does not change. Real-world road networks’ 𝜌𝑒 

lies within a small range, leading to observed similar bimodal BC distributions. Also, 

high BC components are likely to concentrate towards the barycentre with increasing 

𝜌𝑒, explaining the high BC around urban centres. 

2.4.3 RNE Phenomenon – The Backbone of Urban Road Networks 

Empirical RNE research has proposed a few RNE phenomena, which were more 

sophisticated network characteristics besides elementary network components’ 

characteristics, attempting to capture overall changes of urban road networks. Two 

(b)  

(a)  
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RNE phenomena are characterised based on BC. This section introduces the RNE 

phenomena – the backbone of urban road networks. 

As shown in Figure 2.11, Strano et al. (2012) found a correlation between road 

segments’ existence time and BC. 60% of 1000 highest BC links in the 2007 road 

network existed before 1833. They interpreted these high BC and long-existing road 

segments as the ‘backbone’ of the urban road network, which persisted in history 

without many modifications and drove local development through industrialisation, 

urbanisation, de-industrialisation. This finding might be associated with urban 

morphology’s view that backbone roads are the framework of urban development, 

which influence on different scales the urban forms by influencing accessibility and 

land-use (Whitehand, 2001). 

 

Figure 2.11 The Backbone of Urban Road Networks – Relationship Between 
Roads’ Existence Time and Betweenness Centrality: Plot a colours the network 

links according to their existent time, red links exist before 1833, and so forth; Plot b colours 
links according to BC, red links have highest BC, and so forth. Plot c shows the BC cumulative 
distributions of 7 groups of links in plot a, red links, which existed before 1833, had higher BC 
than other groups, and in general links’ BC correlated positively with their existent time. Plot c’s 
inset plot shows how the proportion of links (y-axis) from the different periods (x-axis) constitute 
top 100, 500, 1000 highest BC links; almost all 100 highest BC links existed before 1833, and 
the majority of top 500 and 1000 highest BC links existed before 1833. (Strano et al., 2012) 

As shown in Figure 2.12, Masucci et al. (2013) found London’s major roads existed 

before the studied period 1786 - 2010, and the increase of road length in recent 200 

years were mainly from minor roads’ growth. They concluded that the road network 

evolution had time sequences, in which major roads grew first and persist, then 

minor roads grew and subdivided the space between the major roads. 
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Figure 2.12 The Backbone of Urban Road Networks – Growth of Major and 
Minor Roads in London Road Network: The left plot shows total length of class A, B 

and minor roads; the x-axis represents time, and the y-axis represents road length. The right 
plot shows the change rate of the three categories of roads accordingly. Major roads had little 
increase during more than 200 years, while minor roads constituted the major growth. (Masucci 
et al., 2013) 

2.4.3.1 The Backbone of Urban Road Networks Discussion 

The observed RNE phenomenon – the backbone of urban road networks may be 

associated with the empirical finding of bimodal BC distribution, as reviewed in 2.4.1, 

2.4.2. Though used to indicate the correlation between road segment importance and 

existence time, the backbone phenomenon has measured the correlation between 

link BC and existence time. The bimodal BC distribution has proposed that urban 

road networks consist of high BC components belong to an underlying spanning tree 

of the road networks and concentrate towards the barycentre of the networks as 

network density 𝜌𝑒 increases. Therefore, it appears that the correlation found 

between high BC and long-existing roads in the backbone phenomenon relates to 

broader correlations among network components that have high BC, belong to the 

underlying spanning tree, locate near the geographical centre, and exist for a long 

time in the network.  

This correlation indicates that an inherent hierarchy does exist in urban road 

networks, which may relate to the road network hierarchy found in traffic 

concentration (Lämmer et al., 2006), road functional and operational classification 

(Xie and Levinson, 2007), and the continuity of streets (Marshall et al., 2018). Some 

networks components are more important than others, as shown by high BC, long 

existence time and geographical central locations. Moreover, this correlation 

indicates long-existing components are likely to be geographically central or lie on 

the underlying spanning tree of the network, which leads to their high BC values. 

Thus, the correlation between BC and existence time may require other factors, such 
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as the underlying spanning tree structure and the geographical location, to explain. 

Also, the empirical findings of the backbone phenomenon suggest the evolution 

process of urban road networks may be described by two phases: the formation of 

major routes and the subdivision of space by minor routes.  

Since the existing empirical studies have not considered the broader correlations 

between BC, existence time, the underlying spanning tree, and geographical 

locations, nor have they considered the network changing mechanism and process 

that led to the observation of the backbone phenomenon, two further research 

questions may be asked:  

• Do network components that have high BC, belong to an underlying spanning 

tree, locate near the geographical centre, and long exist in urban road 

network correlate? What RNE mechanism does this reflect? 

• How to the backbone of urban road networks form and change? What RNE 

mechanism does this reflect? 

2.4.4 RNE Phenomenon - Densification and Exploration 

Strano et al. (2012) proposed another RNE phenomenon – Densification and 

Exploration (DE). They proposed a measure - BC impact 𝛿𝐵𝐶(𝑒) to characterise new 

links:  

𝛿𝐵𝐶(𝑒) =
[𝐵𝐶̅̅ ̅̅ (𝐺)−𝐵𝐶̅̅ ̅̅ (𝐺\𝑒)]

𝐵𝐶̅̅ ̅̅ (𝐺)
 , 

in which 𝐵𝐶̅̅ ̅̅ (𝐺) denoted the average BC of network 𝐺, and 𝐵𝐶̅̅ ̅̅ (𝐺\𝑒) denoted the 

average BC after removing link 𝑒 from 𝐺. 

𝛿𝐵𝐶(𝑒) distribution at different historical periods along with the studied urban road 

network’s development displayed a bimodal distribution with two well-defined peaks 

as in Figure 2.13 (d), categorising two types of new links. Exploration links 

associated mostly with dead-ends, and Densification links with bridging links of two 

previously existing links. Densification links was regarded as increasing the local 

density, and Exploration links as exploring the urbanisation front. DE was proposed 

to be two elementary urbanisation processes, with Densification being the first phase 

and Exploration being the second phase of an urbanisation cycle, as reflected by the 

visualisations in Figure 2.13 (a) – (c). The early stage of network development (a)-(b) 

witnessed both red exploration links and green densification links. The mature 

network development stage (c) had only green densification links; red exploration 

links stopped to occur.
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Figure 2.13 Densification and Exploration in the Groane Road Network: (a) - (c) map the Groane road network of three historical periods 

and colour the new links occurred in green and red according to densification and exploration (DE). (d) shows the BC impacts 𝛿𝐵𝐶(𝑒) of new links 

added in six historical periods. The x-axis of each sub-plot represents 𝛿𝐵𝐶(𝑒), and the y-axis represents probability density. New links’ 𝛿𝐵𝐶(𝑒) 
distributions had two peaks – green and red, which separated them into D and E links accordingly. The final period (1994 to 2007) did not have a red E 
peak anymore. (e) further shows compositions of the two peaks by the measure 𝑘𝑚𝑖𝑛 during the period (1933 to 1955). All links in the right E peak had 

𝑘𝑚𝑖𝑛 = 1 and were dead-ends, while all links in the left D peak had 𝑘𝑚𝑖𝑛 ≥ 2 and bridged two existing links before 1933. (Strano et al., 2012) 
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Figure 2.14 Densification and Exploration in Spatial Networks: (a)-(b) The x-axis of 

each sub-plot represents BC impact values, (c) The x-axis represents PageRank Centrality 
impact; (a)-(c) y-axis represents frequency. (a) The five panels show DE dynamics in five 
historical periods in the Paris road network. (Barthelemy et al., 2013) (b) The five plots show DE 
dynamics of the Maynooth’s OpenStreetMap (OSM) in five periods starting from 02/2009 to 
10/2011. (Corcoran and Mooney, 2013) (c) shows DE dynamics of the Beijing OSM calculated 
by PageRank centrality instead of BC (Zhao et al., 2015).  

DE has been observed in other road networks and spatial networks. Barthelemy et 

al. (2013) confirmed DE in the Paris road network, as in Figure 2.14 (a). Another 

measure 𝐸𝑖 𝑖 ∈ {0,1,2} was proposed to categorise new link, by the number of new 

nodes in new links’ two end nodes. Corcoran et al. (2013) confirmed DE in three Irish 

cities’ OpenStreetMap (OSM) dynamics as in Figure 2.14 (b). Zhao, P. et al. (2015) 

used PageRank node centrality instead of BC and confirmed DE in Beijing’s OSM 

dynamics, as in Figure 2.14 (c). 

(a)  (b)  

(c)  
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Figure 2.15 Densification and Expansion: column (a) shows changes of maximum link 

length 𝑙𝑚𝑎𝑥  in historical periods 1902-1956, 1956-1980, 1980-2006. The x-axis represents link 
orientations, which are azimuth angles in degree measured from the true North; the y-axis 
represents 𝑙𝑚𝑎𝑥 in meter. The top and middle subplots had almost all increased 𝑙𝑚𝑎𝑥, indicating 
dominant expansion of the network during these two periods. This result could be seen on the 
correspondent maps in column (b). The bottom subplot of column (a) had increased 𝑙𝑚𝑎𝑥  on 

some orientations and decreased 𝑙𝑚𝑎𝑥  on other orientations, indicating a mixture of 
densification and expansion happened during this period. (Mohajeri and Gudmundsson, 2014) 

Instead of DE, Mohajeri and Gudmundsson (2014) proposed Densification and 

Expansion (DEx) as the two elementary processes to quantify urbanisation. They 

used the longest link length 𝑙𝑚𝑎𝑥 as the DEx measure, as in Figure 2.15: the 

decrease of max 𝑙 indicated further dividing previous links – densification; the 

increase of max 𝑙 indicated the addition of long new links at the periphery – 

expansion. They used DEx to described the evolution of Dundee (Gudmundsson and 

Mohajeri, 2013), Kerman, Khorramabad, Sheffield (Mohajeri et al., 2014) road 

networks. Further, DEx was related to the ecological effect of urbanisation and 

interpreted densification as preferred development and expansion as urban sprawl in 

the case of Geneva (Mohajeri et al., 2015). 

Also, Patarasuk (2013) found the connectivity of Thailand’s regional road network 

increased generally with the road network growth but not necessarily, because some 

new roads were dead-ends and did not improve road network’s topological 

connectivity. Most of the new dead-end roads located in the agricultural land at the 

edges where two big cities in the region meet and extended into the hinterland. 
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2.4.4.1 Densification and Exploration Discussion 

Since its proposal as an RNE phenomenon, DE has been observed in many road 

networks and spatial networks. Two issues are worth further discussion: first, the 

meaning and interpretation of the measure BC impact 𝛿𝐵𝐶(𝑒), and whether it reflects 

densification and exploration; second, the meaning and interpretation of the 

proposed RNE phenomenon DE and whether it reflects two elementary processes of 

RNE or urbanisation.  

The many observations suggest DE may be a property shared by planar networks. A 

planar network has two possible new link connection patterns: a new link that is a 

dead-end or a new link that bridges two existing links. This reasoning agrees with the 

DE finding. Therefore, DE’s mere existence may not be informative regarding 

whether road networks densify and explore, if it is a topological property of all planar 

networks and the only two possible connection patterns for new links. Densification 

has been expected to reflect the increase of urban density but has not measured the 

road network density explicitly; addition of new links bridging two existing links does 

not necessarily increase density. The same argument applies to exploration. Other 

than the identification of DE by BC impact 𝛿𝐵𝐶(𝑒), more aspects shall be considered 

in characterising DE for more meaningful results, such as the spatial locations and 

temporal sequence of new links. In short, BC impact 𝛿𝐵𝐶(𝑒) may quantify the two 

only possible connection patterns of planar network link addition; the mere existence 

of DE identified by 𝛿𝐵𝐶(𝑒) may lack comprehensiveness to quantify densification and 

exploration processes and require further characterisation of spatial and temporal 

aspects. 

Second, DE may represent elementary RNE processes, but the referred processes 

shall be further defined and related to urban processes. Existing DE definition has 

remained quantitative based on the new link’s positive or negative influences on 

network BC, which may identify the two possible new link connection patterns and 

have no significance. On the other hand, DE can be associated with parallel urban 

processes, such as with infill and edge urban growth, which increase density and 

urban sprawl, respectively. Visually in the Groane road network, DE had spatial and 

temporal characteristics, e.g. Exploration links were often found at the fringe of the 

network and were not built as urbanisation proceeded to a certain extent. This 

reasoning has been confirmed in empirical findings of the Thailand regional road 

networks, in which new links were usually dead-ends that occurred at the fringe of 

urban areas. Therefore, provided that spatial and temporal characteristics were 

included in the definition and quantification, DE may describe potential RNE 

processes.  
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With these limitations identified, further research questions may be specified:  

• Whether BC impact 𝛿𝐵𝐶(𝑒), the DE measure, distinguishes dead-ends and 

bridging links, thus quantifies a topological property shared by planar 

networks when adding new links?  

2.4.5 Betweenness Centrality Discussion 

Among complex network centrality measures, BC has been the most widely applied 

to road network analysis and yielded the most informative results of the urban road 

network structure. Empirical research has reported BC to follow a bimodal 

distribution, consisting of high and low BC components from an underlying spanning 

tree and alternative loop paths, respectively. The bimodal BC distribution may only 

relate to road network’s planarity and network density; the latter is measured by the 

number of links of the network against the number of links of a complete network on 

the same set of nodes. The BC distribution is likely to stay stable because the urban 

road network’s density is likely to lie within a small range of values. If the network 

density increases, spatial correlation of high BC components is likely to increase and 

concentrate towards the barycentre of the network. Two proposed RNE phenomena 

in recent empirical RNE research have been constructed based on BC. The 

backbone of urban road networks has related roads’ importance approximated by 

BC to their existence time and proposed long existing roads form a skeleton of major 

routes, and later network dynamics are the addition of minor routes that subdivides 

space in the skeleton. Densification and exploration (DE) have measured the change 

of network average BC caused by new links, distinguished two types of new links, 

and proposed these two types as representing different RNE or urbanisation 

processes – one increases the urban density, the other explores the urbanisation 

front. 

Two limitations of existing empirical research on BC were identified. First, BC 

findings, including the BC distribution and dynamics, the backbone of urban road 

networks, and DE, are likely to be related. However, current research has not 

compared these findings horizontally to form a comprehensive picture of BC 

characteristics. This limitation may result from three issues: there has been 

disagreement in terms of the BC distribution; the empirical studies have focused on 

reporting the different distributions rather than reasoning the mechanisms and 

processes behind their formation; further investigations are required to understand 

the BC observations and implications. Correlations are likely to exist between 

network components that have high BC, belong to the underlying spanning tree 

structure, locate near the geographical centre, and long exist. This correlation may 

reflect the formation and dynamics of urban road networks. Urban road networks 
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seem to first form a skeleton of major routes, then the minor routes; the major routes 

are likely to exist a long time in the network and have high centrality; the minor 

routes may perform densification or exploration.  

The second limitation concerned BC’s assumption in equating the high BC value to 

high road network structural importance. BC assumes the importance of network 

components, as well as the demand and flows on the network, can be approximated 

by the BC value, which is likely to require more empirical validation. This limitation 

lay beyond this study’ research scope. This study regarded BC as an informative 

measure of the urban road network structure, because of the empirical evidence of 

BC’s capacity in capturing major travel routes, as well as the correlations between 

BC and central spatial locations.  

Following the empirical findings and limitations, further research questions may be 

asked: 

• Does BC follow a bimodal distribution, consisting of high BC components from 

an underlying tree structure and low BC components from alternative loop 

paths in the road networks? Does network density control the BC distribution? 

How does the BC distribution emerge, and what RNE mechanism does this 

reflect? 

• Do network components that have high BC, belong to an underlying spanning 

tree, locate near the geographical centre, and long exist in urban road 

network correlate? What RNE mechanism does this reflect? How the 

backbone of urban road networks form and change? What RNE mechanism 

does this reflect? 

• Whether BC impact 𝛿𝐵𝐶(𝑒), the DE measure, distinguishes dead-ends and 

bridging links, thus quantifies a topological property shared by planar 

networks when adding new links? What functions do the two types of new 

links perform and can this be inferred from their spatial and temporal 

characteristics? Can such characteristics be incorporated into identifying DE, 

which further reflects the RNE mechanism? 

2.5 Chapter Conclusion 

To synthesise an empirical understanding of urban road network structure and 

changes, 2.2 introduced the changing network science methods from characterising 

complex networks to spatial networks and from static structure to dynamic structure; 

2.3 and 2.3.4.4 reviewed empirical findings of elementary urban road network 

components’ characteristics and dynamics. This section concludes this literature 
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review chapter’s findings, which is a synthesised understanding of empirical urban 

road network evolution 2.5.1 and discusses the limitations of network science 

perspective empirical RNE research 2.5.2. 

2.5.1 Synthesise an Empirical RNE Understanding  

Regarding incremental growth, urban road networks seems to evolve with the 

addition and connection of elementary network components, during which 

macroscopic network characteristics and dynamics emerge.  

Static node degree has been reported to exhibit a majority of 𝑘3 nodes. Dynamics of 

〈𝑘〉 may increase, stay constant, or decrease, according to changes of 𝑘1 and 𝑘4 

nodes proportions. Statically, link length 𝑙 has been reported to exhibit the lognormal 

distribution, which has been attributed to typical urban road networks’ having very 

few very short or very long links, many medium links, and abundant short links. 

Dynamically, 𝑙 distribution has been reported to persist in being lognormal, with the 

peak concentrating because more short links are likely to be added as road network 

grows. Statically, block areas 𝐴 may exhibit power-law or lognormal distributions, 

depending on the density of the studied area. Dynamically, P(𝐴) may persist in 

following power-law or lognormal distributions and may exhibit increased slope on 

the logarithmic scales because of more small blocks with urbanisation and large 

blocks’ subdivision. Static BC has been reported to follow a bimodal distribution, 

separating high BC components from an underlying spanning tree within the road 

network and low BC components from alternative loop paths. Dynamically, BC has 

been proposed to be determined by the network density 𝜌𝑒 =
|𝐸|

𝐸𝐷𝑇
; BC hierarchy or 

ranks of network components are likely to stay stable if 𝜌𝑒 remains stable. BC is 

likely to concentrate towards the barycentre as 𝜌𝑒 increases. Correlations may exist 

between high BC and long existence time of road network components, which may 

result from broader correlations among the high BC, the underlying spanning tree’s, 

the geographically central, and the long-existing components. Two types of new links 

may exist, causing different changes of the network average BC. These two types of 

new links are likely to be dead-ends and bridging links that connecting two previous 

existing links, which may perform different functions - Densification and exploration 

(DE). Urban road networks may first form a skeleton of major routes, followed by 

local development with the growth of minor network components. 

This synthesised empirical RNE understanding included both the static and dynamic 

urban road network structures, characterised by elementary network components’ 

characteristics and changes. Node degree characterised the road network’s 

elementary connection patterns and changes. Link length characterised the filling of 

urban space by road network segments. Block area characterised the division and 
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expansion of the covered urban space by road network. BC characterised the 

importance of network components and revealed the hierarchy among the urban 

locations. When combined, these characteristics quantified the urban road network 

structure and suggested the processes that lead to such a structure. This 

synthesised empirical RNE understanding provided a framework to characterise 

RNE, to examine simulation results in later chapters.  

2.5.2 Empirical RNE Research Limitations 

Empirical research using the spatial network characterisation has provided empirical 

evidence of RNE, with limitations in the meaning and interpretation of their measures 

and results, as well as in reflecting what urban knowledge has been created 

(Ducruet and Beauguitte, 2014).This chapter identified two limitations in the existing 

empirical RNE research.  

First, empirical RNE findings have required further exploration because of insufficient 

horizontal comparison, consensus regarding the findings, as well as investigations of 

dynamic processes and mechanisms behind the empirical observations. The 

inconsistency partly came from the studied subjects. Each empirical RNE research 

studied one or a limited number of individual road networks. Since each road 

network was unique, differences always existed among urban road networks. 

Similarly, the choice of historical periods to study was subjective to each study. Also, 

this discrete nature to analyse a few network snapshots limited the generality of the 

findings as continuous RNE processes. Despite the uniqueness of different road 

networks, their historical paths, and the discrete nature of empirical studies that 

contributed to the inconsistency in findings and conclusions, empirical RNE research 

had different research scope and questions. The different research focuses created 

a barrier to piece together their results. Given similar subjects and research 

questions, empirical RNE studies again differed in data treatment and measurement, 

creating difficulty for cross-comparison of their results. Finally, there were debates 

over several road network characteristics, such as the link length, block areas BC 

distributions. However, empirical research focused on reporting the different findings 

rather than investigating the dynamic processes and mechanisms that led to the 

occurrence of different network characteristics. 

Faced with the inconsistency in both findings and methods, this chapter started with 

elementary road network components’ characteristics, which were more frequently 

studied than more sophisticated network characteristics and had more existing 

empirical results for cross-comparison. Also, this chapter emphasised on urban road 

network characteristics examined in the empirical RNE research that studied the 
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changes in road networks. Through review and synthesis, this chapter put together a 

framework of RNE characterisation and characteristics.  

Further understanding may be acquired with modelling and simulation, exploring the 

mechanisms behind the emergence of inconsistency in reported empirical findings. 

The empirical RNE findings suggest potential changing processes of urban road 

networks, which required further experiments to explore the relationships between 

the emergence of road network characteristics and network components’ behaviour 

and interactions. Rather than accommodating the uniqueness of individual real-world 

road networks, modelling and simulation may study a general urban road network 

structure. Also, the changing processes of road network characteristics may be 

modelled, based on the growth of elementary components, to provide insights into 

the source of the inconsistency in empirical findings. Furthermore, modelling and 

simulation may study a continuous RNE process, thus transforming the discrete 

empirical understanding into continuous.  

The second limitation of existing empirical RNE research has been the insufficient 

consideration of road networks’ spatial structure, as shown in the limited discussions 

of both the road network spatial structure and its relationship with the urban system. 

Regarding the former, results of empirical RNE research suggest some network 

characteristics, such as the block areas, depended on the density and spatial 

distribution of urban road networks; others required representation and 

measurement of spatial characteristics, like the backbone of urban road networks 

and DE. However, existing empirical research has had limited measurements of the 

road network spatial structure, such as the spatial distribution and organization of 

road network components, in its methodology.  

Regarding the second limitation, empirical RNE research has recognised that the 

road network structure was influenced by the urban system. Nevertheless, most of 

the empirical RNE research has quantified road networks’ characteristics solely and 

did not consider the urban system at the same time. Many empirical RNE research 

has also equated road network to the urban system, overlooking the complex 

relationships between road network and the urban system. Urban road network 

resides and changes as a layer of the urban system. The urban road network should 

be distinguished from the urban system and urban spatial structure to be better 

integrated into them again. In doing so, it is necessary to understand both the spatial 

structure of both the urban road network and the urban system, as well as the 

relationships between them, to position the urban road network into the urban 

system. 
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In summary, this chapter addressed the initial research question 1.a in Chapter 1 

section 1.4 to gather existing empirical knowledge on road network evolution and 

quantification, by piecing together and comparing existing empirical RNE research, 

which synthesised a framework of empirical RNE characteristics and 

characterisation. Table 2-1 summarised specified sub research questions regarding 

each elementary network characteristics and dynamics based on the synthesised 

understanding of empirical RNE findings and their inconsistency in this chapter at the 

end of each discussion section, which are to be explored with modelling and 

simulation of the dynamic RNE process in future chapters. Chapter 7 follows and 

addresses these sub-research questions with summarised findings in Table 7-1. 

Together, the specified sub research questions guide the simulation findings 

concluded in Chapter 10 section 10.1.2. 

Furthermore, the characterisation of road network spatial structures and the 

integration of network science perspective RNE into the urban system have been 

limited; the next chapter reviews the road network structure in the context of the 

urban system.
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Table 2-1 Synthesised Existing Empirical RNE Understanding and Specified Further Research Questions 

Synthesised existing empirical knowledge on road network 
evolution and quantification 

Specified sub research questions to be explored in later chapters 

Node characteristics                                                           2.3.2.3 

Empirical research has found a majority of 𝑘3 nodes in urban road 

networks, reported inconsistent 〈𝑘〉 dynamics and attributed 〈𝑘〉 
dynamics to the changing proportions of 𝑘1 and 𝑘3 nodes against 

𝑘4 nodes. 

                                                                                                             7.2 

• How do 𝑘1, 𝑘3 and 𝑘4 nodes emerge respectively, and what RNE 
mechanisms does the emergence of different degree nodes reflect? 
Does node degree relate to organic and planned urban road 
dynamics? How do different 〈𝑘〉 dynamics emerge, and why does 
〈𝑘〉 increase, decrease, or remain constant with time? What RNE 
mechanism does this reflect? 

Link characteristics                                                         2.3.3.2.2 

Empirical findings of the link length 𝑙 distribution have shown 
inconsistency among several skewed distributions with a heavy 
tail, yet the latest findings have reported that 𝑙 followed a 
lognormal distribution. With the growth of the road network over 
time, more short and medium length new links were added, and 𝑙 
persisted in following the lognormal distribution with a 
concentrating peak. 

                                                                                                             7.3 

• How does the lognormal 𝑙 distribution emerge in urban road 
networks and what RNE mechanism does this reflect?   

• Does 𝑙 persist in following the lognormal distribution? How do new 

links influence 𝑙’s distribution? What RNE mechanism does it 

reflect?  

Block characteristics                                                          2.3.4.3 

Empirical findings of urban blocks area probability distributions 
𝑃(𝐴) have been inconsistent. However, the reported 𝑃(𝐴)  shared 
the same characteristics for large 𝐴, which could be fitted on a log-

log plot by a straight line. Mainly two 𝑃(𝐴) distributions have been 
reported: power-law and lognormal. 

                                                                                                             7.4 

• How do the lognormal or power-law 𝑃(𝐴) distributions emerge in 
urban road networks and what RNE mechanism does this reflect?  

• How does 𝑃(𝐴) change - does it persist in following a lognormal or 
power-law distribution, and how do the characteristics of the 
distribution change? What RNE mechanism does this reflect?  

Betweenness Centrality                             2.4.3.1, 2.4.4.1, 2.4.5 

Empirical research has reported BC to follow a bimodal 
distribution, consisting of high and low BC components from an 
underlying spanning tree and alternative loop paths, respectively. 
Two proposed RNE phenomena in recent empirical RNE research 

                                                                                                             7.5 

• Does BC follow a bimodal distribution, consisting of high BC 
components from an underlying tree structure and low BC 
components from alternative loop paths in the road networks? Does 
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have been constructed based on BC. The backbone of urban road 
networks: the backbone of urban road networks, densification and 
exploration (DE). 

network density control the BC distribution? How does the BC 
distribution emerge, and what RNE mechanism does this reflect? 

• Do network components that have high BC, belong to an underlying 
spanning tree, locate near the geographical centre, and long exist in 
urban road network correlate? What RNE mechanism does this 
reflect? How the backbone of urban road networks form and 
change? What RNE mechanism does this reflect? 

• Whether BC impact 𝛿𝐵𝐶(𝑒), the DE measure, distinguishes dead-
ends and bridging links, thus quantifies a topological property 
shared by planar networks when adding new links? What functions 
do the two types of new links perform and can this be inferred from 
their spatial and temporal characteristics? Can such characteristics 
be incorporated into identifying DE, which further reflects the RNE 
mechanism? 

 

 



62 
 

 



63 
 

 

Chapter 3 The Urban Spatial Structure of Road Network Evolution 

3.1 Chapter Introduction 

Focusing on quantifying topological and geometrical characteristics by analysing the 

network structure alone, network science perspective road network evolution (RNE) 

research has shown limitations in the characterisation and representation of the road 

network spatial structure in the context of the urban system. The spatial distribution 

and organisation of road network characteristics and dynamics have not been 

considered sufficiently. The urban road network structure resides and changes in the 

urban system; understanding RNE requires the integration of road network structure 

and dynamics into the urban system. However, existing empirical and modelling 

RNE research, if considered road network in the context of the urban system, has 

often equated the road network structure to the urban form, urban spatial structure or 

urban system, with limited discussions regarding the relationships of these concepts.  

The urban spatial structure has established research history and theories; different 

disciplines address different layers and components of the urban system. The urban 

spatial structure has been described and characterised in terms of its factors like 

population distribution, physical built environment, commuting between work and 

residence, with these factors interrelated among themselves. Equating road network 

to the urban spatial structure, as existing empirical and modelling RNE research has 

done without discussions regarding their relationships, has increased the difficulty to 

disentangle the relationships among urban factors that may influence RNE and 

hindered the integration of network science perspective research into the urban 

system. The road network spatial structure and the urban spatial structure require 

both differentiation and integration to understand RNE in the context of the urban 

system. 

Following the identified limitations, this chapter sets out with the following objectives:  

• Review and synthesise existing knowledge on the spatial structure of urban 

road networks, urban spatial structure, and the relationship between them, to 

integrate RNE into the urban system. 

Section 3.2 starts with the road network spatial structure, 3.3 reviews the urban 

spatial structure, leading to a framework of a layered urban system, in which road 

network spatial structure is distinguished from as well as integrated into the urban 

system. Following the framework of the layered urban system, 3.4 synthesises the 
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relationship between the road network and the urban system as co-evolving, as 

represented by the co-evolution of population and urban road network. 

 

Figure 3.1 Chapter 3 Structure 

3.2 The Spatial Structure of Urban Road Networks 

As reviewed in Chapter 2, network science research has recognised that aspatial 

topological characterisation neglects the physical environment in which certain 

complex networks reside (Marshall et al., 2018). To address this issue, spatial 

networks have been proposed and studied, emphasising on the spatial embedding of 

complex networks, e.g. spatial locations and distance; however, the meaning of the 

applied network science measures and the new knowledge produced still require 

further understanding and interpretation regarding the spatial dimension of complex 

networks (Ducruet and Beauguitte, 2014). This limitation has been shown in the 

insufficient examination of urban road networks’ spatial structure, their spatial 

distribution and organisation, in the network science perspective RNE research. 

Though existing empirical results have reported spatially inhomogeneous RNE 

processes, in-depth exploration of the corresponding spatial structures and behind 

emerging mechanisms has been limited. 

The spatial structure of urban road networks has been characterised qualitatively, 

such as by the urban planning and design styles - gridiron, fragmented parallel, 

wrapped parallel, loops and lollipops, lollipops on a stick (Southworth and Ben-

Joseph, 2013; Zhang et al., 2011) and has been classified implicitly with the urban 

form types – star, linear, grid, Baroque axial, lacework, inward closed, nested, and 

imagining (Lynch, 1984). This section divides existing quantitative research on the 

urban road network spatial structure into three categories: road network patterns 

3.2.1, spatial analysis 3.2.2, and quantitative classification 3.2.2. 

3.2.1 Road Network Patterns 

3.2 Road Network 
Spatial Structure

•3.2.1 Road Network Patterns

•3.2.2 Road Network Spatial Analysis 

•3.2.3 Quantitative Road Network Classification

3.3 Urban Spatial 
Structure

•3.3.1 Economic Urban Spatial Structure

•3.3.2 Physical Urban Spatial Structure

•3.3.3 Functional Urban Spatial Structure

3.4 Road Network in 
the Urban System

•3.4.1 Road Network in the Urban System

•3.4.2 Urban Road Network and Population
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Road network patterns are regularly repeated properties (Mackaness and Edwards, 

2002) that represent the hierarchy and most central structure of road networks (Jiang 

and Claramunt, 2004a) and convey statically geographical processes (Mackaness, 

1995). Road network patterns reviewed in this section included connection patterns 

and generalisation patterns. 

Connection patterns are the dominant geometric connection structure inherent to the 

road networks. Haggett and Chorley (1969) classified planar geographic networks 

into linear, tree, circuit, and cellular by the existence of circuits in the network. 

Marshall (2004) identified local connection patterns - T, X junctions, blocks and 

dead-ends and global road network patterns - linear, tree, radial, cellular and hybrid. 

Xie and Levinson (2007) identified four connection patterns - ring, web, star, hub-

and-spoke, as in Figure 3.2. Different connection patterns suggested structural 

differences of the road networks; for example, centrality was found to be more 

concentrated in road networks of the radial connection pattern than the grid pattern 

(Kisgyörgy, 2014). Connection patterns were associated with the travel behaviour, 

the distribution of work and residence, land-use and urban form (Xie and Levinson, 

2007). For example, central business district (CBD) was correlated with dense grid 

connection patterns while the suburban residential area was associated with the tree 

connection pattern (Van Nes and ZhaoHui, 2009; Shi et al., 2013). 

 

Figure 3.2 Urban Road Network Patterns: Xie and Levinson (2007) identified four typical 

connection patterns of urban road networks – ring, web, star, and hub-and-spoke.  

Generalisation patterns select the core structure of road networks that retain their 

global structural property (Jiang and Claramunt, 2004a), from a geographic database 

to summarise a less detailed database or map (Touya, 2010). Liu et al. (2009) 

outlined three generalisation methods: semantic-based, stroke-based, and graph-

based. The semantic-based method used road attributes such as the street name for 

selection (Jiang and Claramunt, 2004a). The stroke-based method transformed the 

road network into a set of linear elements, such as axial lines (Mackaness, 1995) 

and strokes (Thomson and Richardson, 1999), which chained road segments to 

retrieve continuity in the network. The graph-based method applied network 

characteristic measures such as centrality and connection patterns (Zhang, 2004; 

Heinzle et al., 2005) to extract the hierarchy of the network. Besides these 
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approaches, road network attributes such as shape, orientation, connectivity, density 

and distribution were also used for generalisation (Mackaness and Edwards, 2002). 

In summary, road network patterns have identified the structurally representative part 

of the urban road network spatial structure, such as the dominant connection 

patterns and the continuity hierarchy. Identified road network patterns may suggest 

specific road network spatial organisation and distribution, which have not been 

explicitly described. Road network patterns have been regarded as an inherent 

hierarchical structure, and the associated of road network patterns to the urban 

spatial structure has been limited.  

3.2.2 Road Network Spatial Analysis 

Road network spatial analysis combines the Geographic Information System (GIS) 

and the network concept and studies the geographic networks and the geography of 

networks (Borruso, 2003). The former extends the longstanding research effort on 

topological and geometric geographic network analysis to the GIS environment 

(Curtin, 2007; Curtin, 2017; Sovik, 2014). The generalised usage of GIS data ties 

road network and other layers of the urban system together by geographic location 

(Fischer, 2006). The primal representation of the road network is compatible with this 

GIS urban system representation (Boeing, 2019). 

Spatial analysis on the geography of networks establishes the relationship between 

the urban road network and the urban locations and space. Road network is viewed 

as a framework of land-use and socio-economic activities (Borruso, 2005), a spatial 

domain alongside which events happen (Okabe and Sugihara, 2012), and a linear 

referencing system of location (Curtin, 2007). Connecting urban road network and 

the urban space, density has been used to study the spatial distribution of road 

networks, which further indicates the relationship between the road network and 

urban form, urban spatial structure. 

Measuring road network density requires first the planar partition of space among 

geographical objects (Liu et al., 2009). Borruso (2003) proposed two methods to 

measure road density with road intersection point data. The first used a grid to 

partition the plane and measure the cell-wise road density; the second proposed a 

density estimator based on Kernel Density Estimation (KDE) which estimated point 

pattern intensity on a smoothed 3D continuous surface and avoided arbitrary space 

partitioning by the grid. Liu et al. (2009) proposed partitioning the plane using the 

Voronoi diagram of road segments and measured the tessellation-wise road density. 

Quinn and Fernández (2011) measured road density using concentric rings from the 

CBD centre. Road density on a larger scale, like on the national scale, was 

measured by administrative boundaries of cities (Zhang et al., 2015). 
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Figure 3.3 Urban Road Network Density: Quinn and Fernández (2011) calculated road 

network density by concentric rings from the CBD and found decreasing road density with the 
increasing distance to CBD. 

The spatial distribution of road network density was associated with the urban spatial 

structure and regional economic development. Borruso (2003), Quinn and 

Fernández (2011) found decreasing road network density with the increasing 

distance to CBD. Chen et al. (2017) found Guangzhou’s road density clustered in the 

historical city centre and CBD and reflected the realisation of city spatial form 

planning. Zhang et al. (2015) and Hu et al. (2018) found positive correlations 

between road density and regional economic development level. 

In summary, spatial analysis combines the road network into the GIS urban system, 

in which urban road network is the framework of urban socio-economic activities and 

land-use. The distribution of road network density has shown correlations between 

the urban road network spatial structures and the urban spatial structure, such as in 

the decreasing road network density from the CBD, but have not established 

systematically theoretical and empirical relationships between them. 

3.2.3 Quantitative Road Network Classification 

New methods are emerging, which quantitatively classify the urban road network 

spatial structure without presuming road network patterns and spatial structures to 

be identified. The quantitative classification has paid attention to the processes 

behind the formation of urban road network spatial structures, such as centralisation 

and decentralisation, space division, clustering and dispersion, urban planning and 

design. 

Quantitative classification, according to centralisation and decentralisation processes 

distinguished morphological or functional centre of the road network, e.g. high 

density or flow concentration part of the network. Samaniego and Moses (2008) 

investigated whether US urban road networks were analogous to the centralised 

biological vascular network, which had a single centre like the heart, as the origin 

and destination of all the flows. They proposed a centralised and a decentralised 
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model; the former hypothesised a single centre which was the destination of all 

population, whereas the latter hypothesised population’s destinations were nearest 

centres. Empirical US urban road networks’ total lane miles scaled with a population 

similar to the decentralised model, and the travel distances scaled in between the 

centralised and decentralised models. Fialkowski and Bitner (2008) identified the 

centre and periphery of cities through block area distribution. Blocks area 

distributions had increasing block size from the dense urban centre to the sparse 

urban periphery, but exceptions like the Hawaii island had reversed large to small 

block sizes from the geographical centre to periphery because of the natural 

environment. Peiravian and Derrible (2015) demonstrated US urban road networks 

might be regarded as grid layouts tuned by monocentric density distributions. 

Quantitative classification, according to space division processes regarded the urban 

road network spatial structure as fractal and self-similar. Jiang and Liu (2012) found 

block area distributions of the UK, France, and Germany road networks all followed 

heavy-tailed lognormal distributions, which had 80% of small blocks and 20% of 

large blocks. Such heavy-tailed distributions were thought as a result of recursive 

space division (Goodchild and Mark, 1987) by the urban road network, which 

generated fractal and self-similar structures across scales. Such space division 

process was also used to explain the power-law degree distribution in dual 

representation urban road networks (Kalapala et al., 2006; Zhang and Li, 2012). 

Quantitative classification, according to clustering and dispersion processes 

identified morphological or functional clustering and dispersion in urban road 

networks. Functionally, Strano et al. (2018) identified the community in the road 

network, where a group of roads were more connected than with roads outside the 

group. Because of road network nodes’ limited connectivity, the community detection 

used the dual road network representation, in which long links had large node 

degree and formed communities, then transformed the identified communities in the 

dual representation back to the primal representation. Morphologically, Huynh et al. 

(2017) characterised the spatial distribution of public transport points, bus stops of 

53 US cities, into regular, dispersed, and clustered. The regular spatial distribution 

displayed regular distance scales between points, which was attributed to underlying 

planned grid road networks. The dispersed spatial distribution maximised coverage 

area, in which the number of components was small compared to the coverage area 

increased by these components; while the clustered spatial distribution minimised 

coverage area, which contained a large number of components with relatively small 

coverage area. Public transport points are the events alongside the road network 

(Okabe and Sugihara, 2012) and delineate the road network; their spatial 
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distributions indicate road networks’ spatial distributions satisfy similar 

classifications.  

Moosavi (2017) performed machine learning pattern recognition on one million road 

networks. Figure 3.4 shows a stripe that assembled a large number of road network 

miniature visualisations. Each point on the stripe was a road network visualisation. 

Road networks with the similar spatial structure were arranged nearby on the stripe. 

Together, these urban road network visualisations made up the change of colour 

shades on the stipe. Four sample road network spatial structures were shown. From 

left to right, the first sample’s road networks had low density linear spatial structure; 

the second had monocentric radial spatial structure; the third had monocentric dense 

centres and sparse grid periphery; the fourth had dense polycentric spatial structure. 

This exhaustive machine learning study suggested the diversity of urban road 

network spatial structure; urban road networks are likely to display a spectrum of 

spatial structures. 

 

 

Figure 3.4 Quantitative Road Network Spatial Structure Classification: One million 

road networks displayed a spectrum of diverse spatial structures (Moosavi, 2017). 

Quantitative classification by urban planning and design identified design features as 

the road network spatial structure. Figueiredo and Amorim (2007) classified urban 

road networks according to two dimensions, tree-ness to grid-ness and regular to 

irregular. Porta et al. (2014) separated road network spatial structures of different 

historical periods - ancient, medieval, renaissance, baroque, industrial, from that of 

modern planning paradigms - garden city, radiant city, new urbanism, by the length 

of the major street segment.  

In summary, without presuming road network patterns and spatial structures to 

identify, quantitative characterisation found diverse road network spatial structures 

and demonstrated the spatial structure of urban road networks appear to be a 
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spectrum, rather than a few clear-cut pattern types (Marshall, 2004; Huynh et al., 

2017; Moosavi, 2017). This diverse spectrum of road network spatial structure may 

be characterised by the mechanisms and processes behind their formation and 

dynamics. 

3.2.4 Road Network Spatial Structure Discussion  

Network science’s limitations regarding the understanding and interpretation of 

measures and results of complex networks’ space dimension have been recognised. 

Chapter 2 identified inadequate representation and characterisation of the road 

network spatial structure in empirical RNE research, as well as the insufficient 

discussion regarding the relationship between the evolution of urban road network 

spatial structure and the urban system.  

This section reviewed methods from transport and urban studies, which have studied 

the road network spatial structure as connection and generalisation patterns, used 

spatial analysis and other quantitative methods. Literature suggested an inherent 

hierarchy in road network spatial structure, as shown by dominant geometric 

connection patterns and continuity patterns. Positive correlations between road 

network density and the urban spatial structure suggested connections between the 

spatial structure of the road network and the urban system. The urban road network 

is perceived as a framework of the urban space along which socio-economic 

activities happen; the GIS urban system ties together road network, land-use and 

other layers by geographic location. 

Especially, empirical studies (Huynh et al., 2017; Moosavi, 2017) have reported 

diverse road network spatial structures, suggesting that the spatial structure of urban 

road networks appears to be a spectrum, rather than a few fixed clear-cut types. This 

spectrum may be characterised by the processes behind the formation and 

dynamics of road network spatial structure. However, these empirical studies have 

been quantitative with limited qualitative theorisation. The processes identified, such 

as centralisation and decentralisation, clustering and dispersion, indicated 

relationships between the spatial structure of the road network and the urban system 

but have not specified. A framework to further explore the reported diverse road 

network spatial structure has yet to be established. Literature in the context of GIS 

urban system has treated the primal road network as the framework of the urban 

space; specific urban components that influence the road network spatial structure 

have yet to be specified. Further research questions may be asked:  

• How to integrate road network spatial structure and dynamics into the urban 

system? 
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The literature on road network spatial structure has associated extensively with the 

urban spatial structure, borrowing theories and methods, but has not distinguished 

and discussed the relationship between the two explicitly. Following the specified 

question, the next section reviews the urban spatial structure, to synthesise a 

plausible approach to integrating road network spatial structure and dynamics into 

the urban system. 

3.3 The Spatial Structure of the Urban System  

Analysis of a transport system requires a representation of an urban system, to 

represent explicitly or implicitly socio-economic activities, transport network, and 

flows; representations of the urban system differ with different transport problems to 

address (Fielbaum et al., 2017). Clifton et al. (2008) compared various disciplines’ 

perspectives on analysing the urban form. From a landscape ecology perspective, 

undeveloped areas are of interest rather than the urban areas and land cover types 

are measured instead of urban land-uses. The transport research perspective 

focuses on the transport efficiency and studies network configuration’s impact on 

travel and accessibility provided by the transport network. Urban planning and 

design coordinate socio-economic activities at land-uses, accessibility, built 

environment to achieve urban living quality.  

Concepts with intersecting contents have been used to refer to the urban system, as 

examples listed in Table 3-1. To identify a plausible approach to integrating road 

network spatial structure and dynamics into the urban system, this section builds up 

an understanding of the urban system through three levels of Urban Spatial 

Structure (USS): the economic USS 3.3.1, the physical USS 3.3.3, and the functional 

USS 3.3.3.  
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Table 3-1 Layers and Components of the Urban System 

The urban system 
Socio-economic: 
population, 
employment, 
activities. 

Land-
uses 

Physical 
Built 
Environment 

Transport 
Network 

Urban 
Planning 
and 
Design 

Spatial 
Interactions 

Urban spatial structure (Parr, 1985): Socio and economic 
organisation of a region, including 

• Spatial concentration of population, employment, and 
infrastructure,  

• Locational organisation of land-use and urban function,  
• Networked social interactions and flows. 

√ √    √ 

Urban form (Mackaness, 1995):  
• Urban history,  
• Population and activity, 
• Built environment. 

√  √  √  

Internal urban structure (Heinzle et al., 2005): 
• Land-uses, 
• Mobility and spatial interactions. 

 √    √ 

Urban pattern (Marshall, 2005): 
• Land-uses and distribution, 
• Socio-economic distributions, 
• Built environment and distribution, 
• Physical form and pattern, 
• Urban design type. 

√ √ √ √ √  

Urban form and function (Crooks et al., 2015): 
• Physical form, including buildings, streets and other urban 

space components, 
• Function: urban activities. 

√  √   √ 

Urban land-use (Duranton and Puga, 2015): 
• Land-uses, 
• Transport land-uses. 

 √  √   
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3.3.1 Economic Urban Spatial Structure 

USS describes the regularities and irregularities over the urban space and seeks the 

urban nature through understanding how spatial structure and organisation of cities 

affect people’s lives. From an urban economics perspective, USS mainly concerns 

the spatial organisation of population and employment. Evolution of this USS is 

perceived as driven by agglomeration economies, such as the scale of economy in 

which agglomeration of firms within a geographic area reduces production cost; 

meanwhile, positive and negative externalities interact, and all contribute to the 

formation and dynamics of USS. Processes along two dimensions characterise USS 

as in Figure 3.5: globally, concentration around the CBD leads to centralised spatial 

structure, the opposite leads to decentralised spatial structure; locally, concentration 

around subcentres leads to clustered polycentric spatial structure, and the opposite 

leads to dispersed and more regular spatial structure. (Anas et al., 1998) 

 

Figure 3.5 Urban Spatial Structure and Characterisation: Processes along two 

dimensions - centralised to decentralised (horizontal) and clustered to dispersed (vertical) 
characterise USS. (Smith, 2011) 

Empirical research has found the transformation of real-world cities’ spatial 

structures from monocentric to polycentric and dispersed (Gordon and Richardson, 

1996), such as residence suburbanisation, employment sub-centring and dispersion. 

The monocentric city is explained by spatial decisions based on income, land rent 

and commuting cost, which leads to radial urban land-use and land price distribution 

from the CBD (Alonso, 1960). Trade-off between agglomeration’s positive and 
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negative effects drives the transition of the monocentric city: if subcentres overcome 

negative effects of the agglomeration such as high land price and congestion while 

maintaining the benefits, polycentric USS emerge; if the benefits of agglomeration 

fail to excel due to factors such as decreasing commuting cost, dispersed USS 

emerge (Lee, 2007). 

Economic USS concerns the spatial distribution and organisation of urban population 

and their socio-economic activities. The population is a crucial component here. 

Decentralisation and dispersion of residence and employment lead to the widely 

observed transition from monocentric to polycentric and dispersed USS. Population 

density profile has been used to describe USS (Clark, 1951). Migration has been 

perceived to drive urban growth, and empirical population spatial distribution has 

been found as diverse and complex rather than singular and well-defined (Tatem, 

2017). 

In summary, the theoretical relationship based on individual spatial decisions, 

transport cost, and urban land-uses has been used to explain economic USS 

formation and dynamics. Processes of centralisation and decentralisation, clustering 

and dispersion, on the global and local scale respectively, characterise the economic 

USS. Economic USS has been the source of many concepts and measures used in 

describing the road network spatial structure as reviewed in 3.2. Existing research on 

road network spatial structure has borrowed greatly from economic USS, relating 

implicitly to the economic USS. Meanwhile, transport networks have not been 

explicitly considered in most economic USS studies, and understanding of the 

relationship between transport and USS has remained mostly theoretical. 

3.3.2 Physical Urban Spatial Structure 

Physical urban spatial structure in this section refers to the physical urban form - the 

spatial distribution and organisation of land-uses, infrastructure, transport and 

communication networks, and other elements of the physical built environment 

(Abrantes et al., 2017). The physical built environment can be decomposed into two 

types of space – access and place (Brelsford et al., 2018). Economic agglomeration 

encourages the spatial concentration of physical capital, such as buildings and 

infrastructure (Anas et al., 1998). At the same time, population and their socio-

economic activities are constrained in the physical built environment (Batty and Kim, 

1992); transport accessibility works as both centripetal and centrifugal forces in the 

centralisation and decentralisation, clustering and dispersion of USS (Smith, 2011). 

Because of the theoretical relationship between economic and physical USS and the 

increasing availability of physical USS data, empirical research has used the 

physical USS to approximate economic USS (Krehl et al., 2016). Nonetheless, 
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deriving population density and the monocentric, polycentric and dispersed spatial 

structures replied on the physical urban area (Tsai, 2005). Physical urban density 

captured better the urbanisation than population density (Inostroza et al., 2013). 

Data transition from statistical socio-economic to physical enabled research of the 

temporal and spatial urban form on non-aggregate scales and research questions 

regarding how cities originate and change were explored from the physical USS 

perspective (Dietzel et al., 2005). 

Physical urban growth patterns included infill and densification inside the urban 

boundary, expansion at the urban edge, and detached new development (Hoffhine 

Wilson et al., 2003), which led to the characterisation of physical USS as compact or 

sprawling (Johnson, 2001). Urban growth was regarded as an iterating process of 

coalescence and diffusion (Dietzel et al., 2005), which was globally constrained by 

the economic USS and transport network while locally driven by a set of enduring 

push and pull forces among categories of land-uses (Stanilov and Batty, 2011). 

Urban sprawl has been attributed to increasing income and decreasing commuting 

cost, inner city problems and residential preferences, planning and regulatory 

policies, with various leading factors for different world regions (Gouda et al., 2016). 

Figure 3.6 shows four examples of empirical physical USS dynamics patterns. 

Schneider and Woodcock (2008) found cities from different world regions grew with 

the diverse population and physical urban growth patterns, e.g. infill, expansion, new 

development, at different urbanisation speed, and with varying levels of density. 

Empirical research found a homogeneous trend in real-world cities’ physical USS in 

terms of increasing complexity, rather than following the dichotomy of becoming 

compact or sprawling (Darrel Jenerette and Potere, 2010). Physical USS’s impact of 

travel behaviours has not been established as normative; compactness was 

associated with lower vehicle miles travelled and infrastructure construction costs but 

did not necessarily reduce travel time than sprawl (Ewing and Cervero, 2010; Ewing 

and Hamidi, 2015). 

 

Figure 3.6 Physical Urban Spatial Structure: The panel shows four Italian cities’ urbanised 

areas dynamics between the 1950s in red and 2000s in grey. (Romano et al., 2017) 
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In summary, after the socio-economic component, the physical built environment is a 

second component of USS, with essential layers - land-use and transport network. 

The physical USS has been perceived to aggregate because of population and their 

socio-economic activities while constraining the economic USS at the same time. 

Physical urban growth has been attributed to the existing economic USS, transport 

accessibility’s centripetal and centrifugal forces, longstanding push and pull forces 

between land-uses, iterating coalescence and diffusion processes, which may 

combine to cause the complex physical USS and urban growth patterns. 

3.3.3 Functional Urban Spatial Structure 

USS extends from morphological to functional (Burger and Meijers, 2012), as 

demonstrated in Figure 3.7. Functional USS concerns spatial interactions underlying 

the arrangement of urban forms (Rodrigue et al., 2016) - the functional linkages 

(BERRY, 1968; Goddard, 1970). Functional USS has translated into the urban 

network, with nodes being urban centres and links being spatial interactions between 

centres (Salingaros, 2005; Dupuy, 2008). Commuting flows have been essential to 

study spatial interactions (Van der Laan, 1998; De Goei et al., 2010). Possible 

functional USS were identified: maximal disorder – dispersion of both residence and 

job, live-work mosaic – small residence and employment clusters, monocentric – 

concentration of employment at the centre, polycentric – concentration of 

employment at the centre and clustering of employment at subcentres, and hybrid of 

these structure; all generated different spatial interactions of commuting (Angel and 

Blei, 2016). 

 

Figure 3.7 Functional Urban Spatial Structure: Functional USS considers spatial 

interactions between centres, sub-centres and the periphery, besides their distribution as 
considered in the morphological spatial structure. (Burger et al., 2014) 
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Increasing empirical analyses of mobility data created knowledge of urban activities 

and travel trajectories, from which meaningful locations, spatial and temporal flows 

have been retrieved (Guo et al., 2012). Complementing the morphological urban 

centre, subcentres, and boundary, functional counterparts were identified (Roth et 

al., 2011; Louail et al., 2014; Zhong et al., 2014; Liu, G. et al., 2015; Mu and Yeh, 

2016). Transport demand (Guo et al., 2012) and land-use (Goddard, 1970; Toole et 

al., 2012) which resulted in the observed urban mobility could be derived from 

mobility data empirically. Urban mobility exhibited high spatial and temporal 

regularity, with individuals travelling characteristic distances and returning to a few 

frequent locations (Gonzalez et al., 2008).  

In summary, it is the flows of people and commodity, or the strength of spatial 

interactions between urban locations that connect the economic and physical USS  

(Liu, X. et al., 2015). Urban flows have been perceived as the manifestation of the 

spatial interaction potentials between urban areas (BERRY, 1968).   

3.3.4 Urban Spatial Structure Discussion 

Through three USS levels, this section proposed a layered framework of the urban 

system, as illustrated in Figure 3.8. The urban system was perceived as overlaid 

layers, such as the USS, land-use, and transport layers. Land-use and transport 

corresponded with two types of urban space - place and access, constituted the 

physical USS and influenced the urban spatial structure as a whole. All layers had 

socio-economic, physical, and functional components, represented by population, 

built environment, and spatial interaction. In this framework, the urban road network 

resided on the transport layer and belonged to the physical built environment of the 

urban system, thus distinguishing the road network spatial structure from the USS as 

well as integrating RNE into the urban system.  

Urban processes and patterns occurred on different urban system layers as Table 

3-2 outlines, which together led to the form and spatial structure of the urban system. 

Economies and diseconomies of agglomeration have been regarded as driving the 

economic USS; the scale of economies pull population and socio-economic activities 

while diseconomies of agglomeration such as high land prices and congestion push. 

Centralisation and decentralisation emerge on the global scale, and clustering and 

dispersion emerge on the local scale, leading to observed monocentric, polycentric, 

and dispersed USS. Physical USS has been regarded as growing by iterating 

coalescence and diffusion, under the influences of attraction and repulsion among 

different land-use categories, as well as centripetal and centrifugal forces of 

transport accessibility, leading to urban form such as compact and sprawling. 

Functional USS has been regarded as realising spatial interactions, balancing 
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demand and cost and leading to mobility patterns. Processes on different urban 

system layers are all likely to have push and pull forces on key components 

population, the physical built environment and spatial interaction. Spatial structures 

of different urban layers are likely to correlate. 

 

Figure 3.8 A Layered Framework of the Urban System: The urban system may be 

viewed in a framework of overlaid layers, such as the USS layer, land-use layer, transport layer. 
All layers have socio-economic, physical, and functional components, represented by 
population, built environment, and spatial interaction. 

Table 3-2 Processes and Patterns in the Urban system 

Urban 
System 

Process Pattern 

Economic 
USS 

• Economies and diseconomies of 
agglomeration (Anas et al., 1998) 

• Centralisation and decentralisation, 
clustering and dispersion; 

• Monocentric, polycentric, dispersed 
urban spatial structure 

Physical 
USS 

• Coalescence and diffusion (Dietzel et 
al., 2005) 

• Attraction and repulsion among land-
use categories (Stanilov and Batty, 
2011) 

• Centripetal and centrifugal forces of 
transport accessibility (Smith, 2011) 

• Infill, expansion, detached new 
development growth patterns; 

• Compact and sprawling urban form; 

• Linear urban development along the 
major transport routes 

Functional 
USS 

• Spatial interaction potentials (BERRY, 
1968)  

• Mobility patterns 

A shared theoretical understanding about the urban system has shown in urban and 

transport studies: population and their social interactions are the foundation of the 

urban system; social interactions require overcoming space through ways of 

communication including the transport system; construction of infrastructure such as 

D 

Built Environment Spatial Interaction Population 

Economic USS Functional USS Physical USS 

Socio-economic Activities Land-uses Spatial Interaction Potentials 

Transport Demand 

O 

Urban Road Network Traffic Flows 
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the road network realises the demand for social interactions selectively. In such 

processes, urban spatial structure as a whole emerge. For example, the gravity 

model and social physics introduced the physical flow metaphor for spatial social 

interactions among population (Zipf, 1942; Stewart, 1950; BERRY, 1968); urban 

transport and geography have been modelled based on population’s socio-economic 

activity, transport infrastructure, and land-use layers (Rodrigue et al., 2016); 

theoretical mobility research considered both potential and realised mobility 

(Kaufmann et al., 2004). 

3.4 Road Network in the Urban System 

As in the layered urban system synthesised in 3.3, the urban road network may be 

viewed as residing on the transport layer and belonging to the physical built 

environment of the urban system. Economic, physical, and functional urban spatial 

structures are likely to correlate, and push and pull forces present on all the urban 

system layers, together forming the urban spatial structure. Meanwhile, 3.2 reviewed 

that urban road networks have geometric connection patterns such as linear, star, 

ring, and web, continuity hierarchy, and density distributions; empirical quantitative 

pattern recognition has suggested urban road network spatial structure appears to 

be a spectrum, rather than a few clear-cut types. This section aims at connecting the 

spatial structure of the road network and the urban system. 

3.4.1 Road Network and the Urban System 

Being one primary source of geographic data, the urban road network has often 

been treated as part of the urban form and urban spatial structure; however, 

research that has considered the spatial structure of road network and the urban 

system independently while connecting the two with an explicit relationship has been 

limited.  

Urban road networks have been reported to show high spatial correlations with 

economic, physical and functional urban spatial structure. Road network has been 

used as a linear space along which socio-economic activities happen, and activity 

intensity decays with the distance to the road network (Yu, 2017). Network centrality 

was found to correlate with urban areas of intense socio-economic activities (Shen 

and Karimi, 2016; Shen and Karimi, 2018). Road network density was found to 

correlate with the physical built environment (Hawbaker et al., 2005); physical urban 

density increased with decreasing distance to the road network (Garcia-López et al., 

2015). As in Figure 3.9, Jia and Jiang (2010) used road network node number to 

approximate population, compared the growth of physical urban area against road 

node number, and categorised cities’ USS into the sprawling, normal, and compact. 
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Road network separated different land-use categories (Agryzkov et al., 2014; Law, 

2017); road network growth was found to correlate with employment and commercial 

development while railway correlates with residential development (Kasraian et al., 

2016). Traffic flows on urban road segments were found to correlate positively with 

the network structure, which reflected functional USS (Wang et al., 2012; Zhou et al., 

2015).  

 

Figure 3.9 Road Network and Urban Spatial Structure: The x-axis represents the 

physical urban area; the y-axis represents number of road network nodes, circles represent 
cities. By comparing the growth of the physical urban area against road node number, cities 
within the grey bandwidth were categorised as normal, cities above were compact, and below 
were sprawling. (Jia and Jiang, 2010) 

Road network spatial structure has been regarded as serving the urban spatial 

structure. Snellen et al. (2002) combined spatial patterns of the population and 

transport network to represent a multidimensional urban form. Spatial patterns of 

population included concentric, radial, polycentric, grid, and linear, and spatial 

patterns of transport network included linear, radial, ring, grid. Dutch cities were 

classified by the multidimensional urban form based on both population and 

transport network spatial patterns, e.g. cities with concentric population patterns and 

radial transport network. Grid transport networks were regarded as compatible with 

all population spatial patterns; radial transport networks were associated with 

concentric population patterns; ring transport networks were regarded as delineating 

the urban core. Wang et al. (2014) proposed a framework to understand transport 

network in the context of intraurban structure, relating road network centrality, land 

price, traffic flow by an inherent hierarchy in these urban components. 

Transport network has been regarded as exerting both push and pull forces on the 

urban spatial structure (Smith, 2011). Transport accessibility could lead to spatial 

redistribution of population and socio-economic activities (Reggiani et al., 2011), 

such as in the land-use and transport interaction (Kasraian et al., 2016). Highway 

construction was found to correlate with residential decentralisation and 
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suburbanisation (Baum-Snow, 2007; Garcia-López, 2012; Garcia-López et al., 2015) 

and employment decentralisation and sub-centring (Giuliano et al., 2012; Baum-

Snow, 2014; Sánchez-Mateos et al., 2014). Population relocated to high transport 

accessibility areas (Kotavaara et al., 2011), as shown in the rapid land-use and 

population growth (Ji et al., 2014) and linear urban growth patterns (Inostroza et al., 

2013; Krehl and Siedentop, 2019) alongside the road network. 

In summary, empirical findings have reported positive spatial correlations between 

the road network and mutual influences between the two. Road network has been 

perceived to serve the urban system with road network spatial structure following the 

urban spatial structure, as shown by its correlations with economic, physical, and 

functional urban spatial structure. This correlation may result from the push and pull 

forces behind the urban spatial structure, as discussed in 3.3, including economies 

and diseconomies of agglomeration, attraction and repulsion among land-use 

categories. At the same time, the road network has also been perceived to perform 

push and pull forces that form and change the urban spatial structure. Transport 

accessibility may exert both centripetal and centrifugal forces in the spatial 

redistribution of population. Therefore, the evolution of road network spatial structure 

is likely to depend on and influence the evolution of the urban spatial structure; the 

relationship between urban road network and the urban system may be summarised 

as co-evolving. 

3.4.2 Road Network and Population  

As reviewed in 3.3.1, aggregation of population and their socio-economic activities 

generate the urban spatial structure, and the population density is often used to 

represent urban spatial structure. The co-evolution of population and road network 

may be a starting point to explore the co-evolution of the road network and the urban 

system and integrate RNE into the urban system. Relationships between population 

and urban road network can be viewed with three aspects: quantitative correlations, 

the relationship between population and road network spatial structure, and the 

relationship between population and road network connectivity. 

Urban road networks and population have been found as positively correlated in 

quantity (Glover and Simon, 1975; Stamber et al., 2016; Meijer et al., 2018). As in 

Figure 3.10, Fu et al. (2016) reported positive correlations between road 

intersections and population density and attributed these correlations to 

infrastructure’s nature to serve the population. Dynamically, urban road growth was 

reported to positively correlate with population growth (Duranton and Turner, 2008; 

Chi, 2010; Aljoufie et al., 2011). The positive correlation observed may be explained 

by the theory of urban roads’ cost and benefit against urban density. As population 
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density increased, the average cost of road construction decreased; assuming the 

benefit of roads is constant across densities, roads’ benefit exceeded the cost at 

specific population density (Glover and Simon, 1975). 

 

Figure 3.10 Road Network and Population: This plot demonstrates the positive 

correlations between infrastructure density and population density in England and Wales, in 
which red crosses represent road intersections. The x-axis represents population density; the y-
axis represents infrastructure density; both axes are on the logarithmic scales. (Fu et al., 2016) 

Another strand of theory and empirical findings associating the quantity of urban 

road infrastructure and the population is urban scaling, which has related urban 

properties to urban size. Empirical observations found social performance properties 

such as wealth creation and innovation increased superlinearly with the urban size, 

while infrastructure properties like road and electricity cable length increased 

sublinearly. This led to a theory bringing together population, transport infrastructure, 

and socio-economic welfare: the urban system depends on individuals’ interactions, 

which are further realised through transport networks; and the system functions 

because socio-economic welfare created exceeds infrastructure costs (Bettencourt, 

2013). Levinson (2012) confirmed the sublinear scaling between transport 

infrastructure properties and population size. Research that disagreed with the 

super- and sub-linear scaling found linear relationships between road length and 

other urban properties with urban size (Strano et al., 2017), and argued population 

and a single scaling equation were not enough to describe the urban system, instead 

urban systems’ characteristics were in their diversity and heterogeneity (Arcaute et 

al., 2014). 

Beyond quantitative correlations, the spatial structure of the road network and 

population have been associated because of the correlations between the road 

network and urban spatial structure at large. Following a monocentric spatial 

structure, road network and population density were found as both decreasing with 

distance to CBD (Quinn and Fernández, 2011). Beyond monocentric, the empirically 
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reported a diverse spectrum of urban road network structures, as discussed in 3.2.3, 

which suggested the potential various population-road network spatial structures. 

Finally, population density and road network connectivity have been associated. 

Peponis et al. (2007) found urban road densities, including node, link and other 

connectivity measurements, correlative positively with population density in Atlanta; 

they proposed that urban road network serves as the framework of population 

density and land-use changes. Levinson (2012) found US urban road networks’ 

connectivity increased with population and inferred either large cities built highly 

connected road networks or highly connected road networks attracted more 

population. Maniadakis and Varoutas (2013) examined 100 1 km2 square Greek 

urban road network samples and found network length, connectivity, efficiency 

increased with population density. Tsiotas and Polyzos (2017) examined four Greek 

cities’ road networks and found road network characteristics including BC, total 

length, and shortest path length, increased with socio-economic factors including 

population, employment and commuting. On the other hand, Weber (2016) 

examined 160 US cities’ highway networks and found low correlations between 

highway network topological connectivity and urban population. Abundo et al. (2013) 

studied the complexity of 200 largest world cities’ road networks and proposed the 

upper limit of the complexity of road networks might prevent population growth. 

In summary, empirical findings have reported correlations between population and 

the urban road network in quantity, spatial structure, and network characteristics. 

Meanwhile, empirical findings have shown inconsistency regarding the correlation 

between population density and urban road network connectivity and have not 

discussed the mechanisms that gave rise to these empirical findings. Also, current 

research have not related the diverse road network spatial structures with the co-

evolution of the road network and the urban system.  

Further research questions may be asked: 

• What population-urban road network co-evolution mechanism do the 

correlations between population and urban road network in terms of quantity 

and spatial structure, and network characteristics reflect? Does road network 

connectivity relate to population? 

• What road network spatial structure may arise during the co-evolution of road 

network and population? Can this spatial structure be characterised by 

processes of global centralisation and decentralisation and local clustering 

and dispersion?  
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3.5 Chapter Conclusion 

3.5.1 Synthesise an Urban Road Network Spatial Structure 

Understanding 

This chapter filled in the gap identified in Chapter 2 regarding the lack of 

representation and characterisation of road network spatial structure and dynamics 

in the network science perspective RNE studies. Section 3.2 reviewed road network 

spatial structure and found road network spatial structure is likely a spectrum rather 

than a few fixed clear-cut types. 3.3 reviewed USS and proposed a layered 

framework of the urban system 3.3.4. Based on this framework, the road network 

resides on the transport layer and belongs to the built environment of the urban 

system, thus enabling the integration of network structure and dynamics into the 

urban system. 

The co-evolution of population and road network may be a starting point to explore 

the co-evolution of the road network and the urban system. Population and socio-

economic activities are the foundation of the urban system; the urban road network 

serves population’s spatial interaction demand. Correlations between urban 

population and road network have been reported in terms of quantity, spatial 

structure and network connectivity 3.4.1, 3.4.2. These correlations supported the 

theoretical hypothesis of the population and road network co-evolution, which may 

lead to the emergence of the diverse road network and urban spatial structure. The 

road network spatial structure spectrum may be characterised by the processes 

behind their emergence, such as global centralisation and decentralisation and local 

clustering and dispersion. Further, such diverse road network spatial structures 

indicate potential push and pull forces across urban system layers that drive the road 

network and population co-evolution, such as economies and diseconomies of 

agglomeration of the economic urban spatial structure, coalescence and diffusion in 

urban growth, attraction and repulsion among land-use categories, large and small 

spatial Interaction potentials. 

3.5.2 Urban Road Network Spatial Structure Research Limitations  

This chapter identified the following limitations in current studies of the urban road 

network spatial structure.  

First, the characterisation of road network spatial structure has been limited in 

existing research. Road network spatial structure has been studied by geometric 

connection patterns and continuity hierarchy, spatial analysis, and quantitative 

classification. Though existing research has borrowed concepts and measures from 

the urban spatial structure, few have tried to characterise road network spatial 
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structure by processes such as centralisation, decentralisation, clustering, and 

dispersion, which have been used to characterise the urban spatial structure, as 

discussed in 3.2.4.  

Second, studies of the USS have lacked considerations of transport networks, and 

vice versa. Previous transport network analysis pointed out the necessity and 

difficulty to represent and analyse detailed transport networks and USS together. 

Representing the road network and population as two inter-dependent layers and 

analysing their relationships may contribute to this issue, as proposed in 3.3.4.  

Third, though empirical correlations have been observed between urban road 

network and population in terms of their quantities, spatial structure, and network 

characteristics, exploration of the mechanisms behind urban road network and 

population co-evolution that led to these correlations have been insufficient, as 

discussed in 3.4.2.  

These gaps constituted further research questions specified in this chapter, as in 

sections 3.2.4 and 3.4.2. Future chapters follow the proposed layered framework of 

the urban system, propose methods to characterise the road network spatial 

structure, and a co-evolution mechanism of the urban road network and population, 

to integrate RNE into the urban system.  
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Chapter 4  Modelling the Urban Road Network Evolution 

4.1 Chapter Introduction 

Modelling of the evolution of transport networks dates back to quantitative 

geography, which introduced graph theory to analyse transport networks. Sequential 

changes of network topology and geometry were identified as transport networks'  

evolution processes, such as node-connecting sequences, space-filling sequences, 

and space-partitioning sequences (Haggett and Chorley, 1969). Prominent models 

included Taaffe et al. (1963)’s transport expansion phases in underdeveloped 

regions from scattered ports to interconnected ports and inland penetration lines, as 

well as Garrison and Marble (1965)’s transport network development prediction 

model which hypothesised connections among nearest neighbouring nodes. Graph 

theory introduced Network Design Problems (NDPs) which optimised to connect a 

set of points (Johnson et al., 1978); NDPs were applied to treat transport network 

formation and dynamics as an optimisation process. In the 1960s and 70s, transport 

demand modelling prevailed and shifted the research focus to transport systems’ 

function and performance; research interests in topological and geometrical transport 

network structure stagnated (Ducruet and Lugo, 2013). Meanwhile, transport NDPs, 

which designed addition and expansion of transport networks, developed a bi-level 

structure, incorporating lower-level transport demand modelling and upper-level 

socio-economic welfare optimisation (Yang and H. Bell, 1998). The theoretical 

foundation on which transport demand modelling relied developed from early 

location theories to social physics, macro and micro urban economics, then to the 

decentralised behavioural decision making - complexity of urban systems was 

recognised and modelled, including the evolution of these systems (Batty, 2009). 

Along with the development in complexity research, network science in the 1990s 

have been revived research interests in the network structure of transport networks; 

and the evolution of transport networks has been modelled from the network science 

perspective (Xie and Levinson, 2011). 

Though having this extensive research background, RNE modelling which has 

emphasised explicitly on the urban road network structure and dynamics have been 

few. Based on the layered urban system framework summarised in the previous 

chapter, this chapter reviews related models according to their modelled layers and 

components of the urban system as illustrated in Figure 4.1. First, models that have 

considered only dynamics of the road network alone are reviewed in 4.2. Then, 

models that have considered Road Network Dynamics in the urban system are 
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reviewed in 4.3. 4.4 synthesises a modelling RNE understanding which addresses 

the research question of existing modelling RNE knowledge in Chapter 1 and 

identifies modelling and simulation as a suitable approach to explore RNE and 

provide insights into empirical RNE findings. 

 

Figure 4.1 Chapter 4 Structure: RNE related models that have considered the dynamics of 

road network alone - ① Section 4.2 Spatial Network Models 4.2.1.1, Planar Network Models 
4.2.1.2, Proximity Graph Models 4.2.2, GNMs of Urban road networks 4.2.3. RNE related 
models that have considered the dynamics of road network in the urban system - ② Section 

4.3.1 Transport Demand Modelling and Network Evolution; ③ Section 4.3.2 Land-use and 

Transport Network Interaction (LUTI) and the Network Evolution; ④ Section 4.3.3 Urban 

Dynamics and the Transport Network ; ⑤ Section 4.3.4 Generative Network Models of the 

Urban Road Network in the Urban System. 

4.2 Modelling RNE: Consider the Urban Road Network Alone 

This section reviews previous RNE modelling research, which has considered the 

urban road network structure alone, from spatial graph 4.2.1.1, planar graph 4.2.1.2, 

proximity graph 4.2.2, and generative network models of urban road networks 4.2.3. 

4.2.4 summarised the section. 

4.2.1 Spatial and Planar Network Models  

As reviewed in Chapter 2, network science has regarded the urban road network as 

spatial and planar, and spatiality and planarity constrain the primal road structure 

from exhibiting small-world and scale-free complex network topological 

characteristics. Thus, spatial network and planar network generations have been 

used to model the evolution of urban road networks. 
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4.2.1.1 Spatial Network Models 

Gastner and Newman (2006b) compared the Internet, an airline network, and the US 

interstate highway network and found that road network differed from the other two 

by small link length, large diameter (the largest number of links along shortest paths 

between any two nodes), and low node degree. They hypothesised that spatial 

networks balanced two preferences, a short Euclidean or network distance (number 

of links along the path connecting two nodes). Given a set of nodes with spatial 

positions, they proposed a model to optimise the node connection by balancing the 

generated network’s preference between Euclidean distance and network distance. 

Simulation results showed when the Euclidean distance was preferred, the simulated 

network had a structure similar to the road network; and when the network distance 

was preferred, the hub-and-spoke structure emerged. The Gastner and Newman 

model solved a network design problem (NDP) originated from graph theory, in the 

context of network science. NDPs aim at finding an optimal way to connect a set of 

nodes; the optimisation might minimise network length, which would join the nodes 

into a minimal spanning tree (MST) (Johnson et al., 1978). 

Schweitzer et al. (1997) proposed an NDP road network optimisation model. They 

hypothesised that road networks optimised by two contradicting criteria: the first 

minimised construction costs, thus minimising connections and the total link length; 

the second minimised detour, thus minimising the shortest path length between any 

two nodes. The two criteria could not be achieved at the same time: the first criteria 

alone would result in an MST; the second criteria alone would result in a complete 

network. Real road networks lay between the two extremes; they proposed the 

optimisation model that balanced cost and detour. They acknowledged that their 

model did not consider transport properties of road networks, like link flows and 

capacity; costs only considered link length, neglecting link width; detour considered 

link length, instead of travel time and cost. The simulation started from a complete 

network of a set of nodes and optimised at each time step cost and detour to add or 

delete links. Simulated networks were examined using a potential function that 

measured the balance of cost and detour. Figure 4.2 shows how the simulated 

network changed during the optimisation process.  

The previous two models were static – connecting a given set of nodes to generate 

networks. Xulvi-Brunet and Sokolov (2007) proposed a dynamic model of spatial 

network growth. They hypothesised that the spatial network structure resulted from 

two mechanisms: spatial interactions, which depended on node attractiveness, and 

inhomogeneous node spatial distribution. The attractiveness of nodes related to 

node degree – higher degree indicated higher attractiveness. At the same time, node 
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attractiveness was local information, constrained within a geographical distance. 

Based on this hypothesis, the proposed model iterated adding nodes and links at 

each time step: new nodes were designed to locate more likely near existing nodes; 

then new nodes preferred to connect to high degree existing nodes within a 

geographical distance; besides, existing nodes might also form connections. 

Simulated networks were examined by complex network topological characterisation 

measures: node degree distribution, average path length, and clustering coefficient. 

The simulated networks ranged from “strong geographical” to “weak geographical”. 

The cost of geographical link length constrained strong geographical spatial 

networks; the primal urban road network was an example of such networks. Weak 

geographical networks included airline networks and the Internet, to which 

geographical distance was not a strong constraint; long-distance links might form 

between attractive nodes for spatial interaction. The inhomogeneous spatial 

distribution of new nodes – preference for spatial closeness to the existing network 

contributed to clustering and hierarchy in the simulated networks. 

 

Figure 4.2 Spatial Network Models: The four plots show changes of an initial complete 

network (left) to an optimised network (right), following a fixed parameter to balance cost and 
detour at each time step. Thickness of the links represents betweenness centrality, which 
suggested link usages. (Schweitzer et al., 1997) 

In summary, spatial network models have modelled the spatial network structure and 

dynamics according to the spatiality, embedding nodes in the space and associating 

link lengths with costs. Link Connection processes of reviewed models have 

considered the cost of link length as a primary factor to model the spatial network 

structure, ranging from “strong geographical” to “weak geographical”. Strong 

geographical constraints of link length generated short links and long average paths, 

leading to the planarity of urban road networks. Weak geographical networks may 

show small-world and scale-free properties despite the spatiality. Apart from link 

length, efficiency has often been considered in Link Connection as well; the Gastner 

and Newman model and the Schweitzer et al. model both considered the number of 

links along connected paths. In urban road networks, this reflects the number of 
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turns on a path. High efficiency is likely to require short-cuts between node pairs, 

leading to the circuitous structure.  

Node Addition processes of reviewed models have considered the role of node 

spatial distribution in generating the spatial inhomogeneity of the spatial network 

structure. New nodes were assumed to be randomly distributed or prefer spatial 

closeness to the existing network. Statically, the Gastner and Newman model and 

the Schweitzer et al. model both assumed optimisation mechanisms behind road 

network formation, while dynamically the Xulvi-Brunet and Sokolov model grew 

spatial networks by iterative addition of nodes and links.  

4.2.1.2 Planar Network Models 

Masucci et al. (2009) proposed a static and a growing random planar graph model, 

as well as a growing grid model to compare with the London road network. To 

generate a random planar network, a given set of nodes were connected while 

maintaining planarity: random node pairs within a certain Euclidean distance were 

selected and connected if obeying planarity until reaching a certain level of Link 

Connections. To model a growing random planar network, iterative Node Addition 

and Link Connection were performed while maintaining planarity. At each time step, 

the model chose one random node of the existing network and drew from it a link if 

obeying planarity; at every few steps, random node pairs within a certain Euclidean 

distance were selected to form cycles if obeying planarity. Simulated networks like 

that in Figure 4.3 were examined by measures: node density from the geographical 

centre, node degree, block perimeter and area, and closeness centrality. Compared 

to random planar graph counterparts, the London road network was characterised by 

a longer tail of density distribution at the periphery, similar link length distribution at 

the centre but smaller at the periphery, a lower range of node degrees, a broader 

range of block perimeters and areas. This finding related to London’s high level of 

urbanisation at the periphery; and the random planar graphs, on the other hand, are 

sparse at the periphery. The closeness centrality which measured the total length of 

shortest paths between node pairs, lay between static and growing planar networks, 

suggesting the level of easiness to reach nodes in the network. Based on these 

results, the authors concluded that the London urban road network’s characteristics 

were not trivial outcomes of its planarity. 

In summary, the planar network models, both static and dynamic, did not necessarily 

generate the urban road network structure. Growing planar networks could exhibit 

small-world and scale-free properties (Haslett and Brede, 2015), differing 

topologically from urban road networks.  
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Figure 4.3 Planar Network Models: The two plots show local views of simulated networks by 

the static (left) and growing (right) random planar graph models respectively. (Masucci et al., 
2009) 

4.2.1.3 Spatial and Planar Network Models Discussion 

Models and simulation results reviewed in this section showed that neither modelling 

spatiality nor planarity guaranteed the generation of the urban road network 

structure, which suggests mechanisms beyond the spatial and planar network 

generation. At the same time, the modelling of spatial and planar networks has been 

meaningful to the modelling of urban road networks, since the primal urban road 

network structure is spatial and planar.  

Both spatial and planar network models have recognised that static network 

structure results from a dynamic formation and changing process and used an 

iterative formation process to model this dynamic process. Growth models have 

been proposed for both spatial and planar networks to model characteristics beyond 

static models. Second, both spatial and planar network growth models have iterated 

Node Addition and Link Connection. Modelling spatiality has considered nodes’ 

spatial embedding in Node Addition. Inhomogeneous node distribution has been 

regarded as leading to the inherent spatial inhomogeneity. Modelling spatiality has 

considered the link length cost in Link Connection, leading to strong and weak 

geographical networks. Modelling planarity has considered the maintenance of 

planarity along with the iteration of Node Addition and Link Connection. Third, the 

spatial and planar network models have emphasised the comparison with complex 

networks; thus, simulation results have been examined by complex network 

topological characterisation measures. Some results have linked urban road network 

characteristics to spatiality and planarity:  

• Urban road networks have been reported to have lower node degree range, 

similar link length distribution, and follow the power-law distribution, compared 

to the modelled random planar graph, suggesting spatial and planar 

constraints. 
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4.2.2 Proximity Graph Models 

The last section concluded that spatiality and planarity could not guarantee the 

generation of urban road network structure. Meanwhile, a type of networks – 

proximity graphs, have demonstrated the possibility to model primal urban road 

network structure. Proximity graphs refer to a family of networks defined using some 

concept of “closeness” or “neighbourhood”; Relative Neighbourhood Graph (RNG) is 

a prominent member, from which the concept of “neighbourhood” is generalised, 

bringing this family of networks together (Toussaint, 2002; Jaromczyk and Toussaint, 

1992).  

RNG was proposed in the 1970s for pattern recognition in computer science 

(Toussaint, 1980). Figure 4.4 illustrates the definition of RNG. To decide whether to 

connect two nodes 𝑣𝑖 and 𝑣𝑗 in a given set of nodes, two circles are drawn with a 

radius equal the distance 𝑑𝑖𝑗 between 𝑣𝑖 and 𝑣𝑗, centring at 𝑣𝑖 and 𝑣𝑗 respectively. 

The intersection of these two circles - the lune, determines the proximity 

neighbourhood of 𝑣𝑖 and 𝑣𝑗. If there is no other node in this proximity 

neighbourhood, 𝑣𝑖 and 𝑣𝑗 are RNG neighbours and connected. Mathematically, given 

a finite set of nodes, RNG of the set is defined as the network G = (V, E), in which V 

represents a set of n nodes, and E represents a set of m links; there exists a link 𝑒𝑖𝑗 

with weight 𝑑𝑖𝑗 if and only if 𝑑𝑖𝑗 ≤ max (𝑑𝑖𝑘, 𝑑𝑗𝑘), 𝑣𝑘 ∈ 𝑉, and 𝑘 ≠ 𝑖, 𝑘 ≠ 𝑗 (Toussaint, 

2014). Namely, there is no third node in V, which was closer to both 𝑣𝑖 and 𝑣𝑗. 

 

Figure 4.4 Relative Neighbourhood Graph: The two plots illustrate the definition of RNG 

neighbourhood of nodes 𝑣𝑖 and 𝑣𝑗. 𝑣𝑖 and 𝑣𝑗 are RNG neighbours, if the lune (right) of two 

circles drawn with radius equals the distance 𝑑𝑖𝑗 between 𝑣𝑖 and 𝑣𝑗, centring at 𝑣𝑖 and 𝑣𝑗 

respectively (left), is empty. (Toussaint, 2014) 

Apart from RNG, other proximity graphs include Reciprocal pairs (RP), Nearest 

Neighbourhood Graph (NNG), Minimal Spanning Tree (MST), Gabriel Graph (GG), 

and Delaunay Triangulation (DT), as shown in Figure 4.5. From RP to DT, the size of 

proximity neighbourhood defined in each of these networks decreased, showing in 

the increasing connectivity of the networks, and their relationships: RP ⊆ NNG ⊆

MST ⊆ RNG ⊆ GG ⊆ DT. Watanabe (2008) found link lengths from RP to DT all had 

peaked distributions, with link length increasing with connectivity. He then compared 

GG, RNG, DT on regular node spatial distributions – triangle, square, and hexagon 

grids. RNG had shortest paths similar to rectilinear distances between nodes, DT’s 
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shortest paths resembled Euclidean distances, and GG’s lay in between them. He 

further interpreted these characteristics in terms of travel distance and efficiency of 

these proximity graphs when treated as transport networks. 

 

Figure 4.5 Proximity Graphs: The two panels include members of the proximity graphs family - 

Reciprocal pairs (RP), Nearest Neighbourhood Graph (NNG), RNG, Minimal Spanning Tree 
(MST), Gabriel Graph (GG), and Delaunay Triangulation (DT); RP ⊆ NNG ⊆ MST ⊆ RNG ⊆ GG ⊆
DT. (Watanabe, 2008) 

Watanabe (2010) compared RNG and several US cities’ urban road networks. He 

hypothesised that the proximity relationships between urban road network 

intersections decided network connect patterns and constructed RNGs based on 

empirical spatial distributions of US urban road network nodes. Generated networks 

were examined by the ratio between tree and grid, density, and link correspondence 

to the original urban road networks. The generated network based on the Denver 

road network nodes displayed the highest link correspondence to the original road 

network, which was explained by the Denver road network’s high proportion of grid 

structure. Therefore, the author concluded that RNG could model the grid structure 

in urban road networks. 

Following a similar approach, Osaragi and Hiraga (2014) compared β-skeleton 

networks and the Tokyo road network. β-skeletons use a single parameter β to 

describe a group of proximity graphs. Two nodes 𝑣𝑖 and 𝑣𝑗 are connected if the lune 

between two discs with radius β𝑑𝑖𝑗 2⁄ , centring at ((1 −
β

2
) 𝑖,

β

2
𝑗 ) and (

β

2
𝑖, (1 −

β

2
) 𝑗 ) 

has no third node, β ≥ 1.0. 𝑖 and 𝑗 are the coordinates of 𝑣𝑖 and 𝑣𝑗. β < 1 leads to 

non-planar networks, and β ≥ 2.0 leads to disconnected networks; β = 1 equals GG, 

and β = 2.0 equals RNG (Adamatzky, 2013a). Osaragi and Hiraga constructed β-

skeletons on Tokyo road network’s intersections and compared the generated 

networks with the real-world counterpart, as shown in Figure 4.6. Constructed 

networks with β ∈ [1.0,1.5] had the highest link correspondence with the Tokyo road 



94 
 

 

network; these networks also had similar efficiency to the real-road network. Further, 

they pointed out that β-skeletons exhibited lower similarity with urban road networks 

when applied to low density or mountainous areas. 

The previous two proximity graph models were static and connected a given set of 

nodes, e.g. real-world urban road networks’ intersection positions. Adamatzky 

(2013b) proposed a growing β-skeleton model. β-skeleton networks’ connectivity 

decreases with β; the network structure is not stable unless node spatial distribution 

is regular. To grow connected β-skeleton networks with stable β, the proposed model 

iterated Node Addition and Link Connection. In particular, Node Addition required 

new nodes to satisfy two criteria: first, new nodes lay outside the neighbourhoods of 

existing nodes; second, the network remained connected after adding the new 

nodes. Simulated networks transformed from having a grid structure to a tree 

structure when simulated with increasing β. 

 

Figure 4.6 β-skeleton networks: The four panels compare the Tokyo road network (top) and 

constructed β-skeleton networks on the spatial distribution of Tokyo road network nodes with 
β = 1.0, 1.5, and 2.0. (Osaragi and Hiraga, 2014) 

4.2.2.1 Proximity Graph Models Discussion 

Network structure like MST and DT have been used to compare and approximate 

urban road networks since quantitative geographical network analysis in the 1960s. 

The cost of link length and efficiency have been two essential mechanisms to model 
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the Link Connection of spatial networks as discussed in 4.2.1. Strong constraint of 

link length cost led to the minimally connected MST, while strong preference for 

efficiency led to maximumly connected DT. Meanwhile, only cost and efficiency 

mechanisms did not guarantee the generation of primal urban road network 

structure. The models reviewed in this section have shown, MST and DT belong to 

the family of proximity graph networks, which specify local geometric proximity 

relationships of network nodes, beyond globally minimising or maximising cost and 

efficiency.  

The proximity graph models have differed from spatial and planar network models in 

this additional consideration of local proximity relationships in the Link Connection. 

Previous models have found that RNG could reconstruct network structures with 

high link correspondence on real road network nodes. This empirical finding 

suggested that RNG may play an essential role in modelling the rectilinear 

connection in urban road networks. Previous models have also found β-skeleton 

networks β ∈ [1.0,1.5] had the highest link correspondence with real urban road 

networks, indicating this single parameter β may model a broad spectrum of urban 

road network structures. In short, existing proximity graph network models suggested 

the consideration of local proximity relationships beyond cost and efficiency in Link 

Connection, which the spatial and planar network models lacked, may enable the 

generation of the primal urban road network structure. 

Existing proximity graph models of urban road networks have been static, limiting the 

current research to the analyses of proximity graph realisations on real road network 

nodes. Nevertheless, the computer science community have developed dynamic 

growing proximity graph models, which iterated Node Addition and Link Connection 

processes as well. Further research questions may be specified: 

• Can proximity relationships from the proximity graph networks be used to 

model the dynamic process of RNE? Further, can proximity relationships 

controlled by β be used to model RNE? 

• What are the influences of link length cost, network efficiency and proximity 

relationship between nodes on the urban road network structure, and do the 

local proximity relationship lead to the differences of urban road networks 

from other spatial and planar networks? 

4.2.3 Generative Network Models of Urban Road Networks 

Generative network models (GNMs) hypothesise network evolution mechanisms and 

generate network structure, accordingly, thus offering theories of the formation and 

dynamics of networks. To be more detailed, GNMs implement hypothetical 

generative mechanisms; the emergence of simulated network structure similar to 
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real networks manifests, though not proves, the generative mechanism are plausible 

as evolutionary mechanisms behind complex network formation and dynamics 

(Newman, 2010). A prominent GNM is the Barabási-Albert (BA) model. Observing 

that many complex networks’ node degree distribution exhibits power-law decay – 

the scale-free property, Barabási and Albert (1999) proposed a hypothetical 

generative mechanism that real complex networks developed with two features: 

growth and node degree preferential attachment. Scale-free property emerged from 

implementing this mechanism; hence, growth and preferential attachment of the BA 

model became plausible mechanisms behind complex networks’ scale-free property. 

Spatial network models have generated spatiality in the networks using mechanisms 

related to the cost of link length; planar network models have generated planarity 

using mechanisms to maintain planarity during network growth 4.2.1. Proximity 

graph models have generated networks with mechanisms of proximity relationships 

between network nodes 4.2.2. Though compared with and used to approximate 

urban road networks, none of these models has generated the primal urban road 

network structure. Thus, the primal urban road network structure required other 

design in generative mechanisms (Courtat et al., 2011). Barthélemy and Flammini 

(2008) pointed out though GNMs have been successful in modelling complex 

networks, their application in urban road networks has been limited. This section 

reviews four generative models that have generated the primal urban road network 

structure, which are summarised in Table 4-1. 

4.2.3.1 Generative Network Model of Leaf Venation Patterns 

Runions et al. (2005) proposed two GNMs of leaf venation patterns, to generate leaf 

venation networks with or without loops. The leaf venation pattern was represented 

as a network with a set of nodes representing small vein segments and a set of links 

connecting adjacent vein nodes. A second sub-system modelled was a set of points 

representing hormone sources. 

The generative mechanisms were based on biological theories regarding hormone 

control of vein morphology. The generative mechanism modelled the following 

process of leaf venation growth: veins grew towards hormone sources embedded in 

leaf blade by laying new vein nodes, hormone sources occurred and disappeared 

according to their proximity relationships with veins and other hormone sources, and 

both vein and hormone sources’ development were further influenced by lead blade 

growth. To generate leaf venation network with cycles, the generative mechanism 

further designed: hormone sources attracted the closest vein node as well as all the 

vein nodes in their Relative Neighbourhood Graph (RNG) proximity neighbourhood 

to create cycles. Veins grew towards hormone sources that attracted them; new 
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hormone sources occurred at distance b𝑣, b𝑠 away from existing vein nodes and 

hormone sources accordingly. 

Assumptions made beyond the theoretical hypotheses included hormone sources 

emerge at random locations that satisfy b𝑣, b𝑠. The initial network condition was 

specified by user input. Parameters used to control the modelled system included b𝑣, 

b𝑠, and ρ, which controlled the number of hormone sources per time step. The model 

was validated visually by the generated leaf venation patterns, as in Figure 4.7. 

 

Figure 4.7 Generative Network Model of Leaf Venation Patterns: The three plots 

show the sensitivity test of parameter ρ, the number of new hormone source per time step, as  ρ 
increases from the left to right (Runions et al., 2005).  

4.2.3.2 Generative Network Model of Urban Street Patterns 

Based on the GNM of leaf venation patterns, Barthélemy and Flammini (2008) 

proposed a GNM of urban street patterns. The modelled sub-systems consisted of a 

set of nodes - urban centres which are new land-use locations, and a road network 

to connect the centres with nodes representing small road segments and links 

connecting adjacent road nodes. Observing similarity in empirical network 

characteristics, this model hypothesised general mechanism existed behind urban 

road evolution - local optimality: urban road network connected locally, in the most 

efficient way using minimum road length. In the implementation, urban centres were 

added with time and attracted the nearest road as well as other close roads in their 

RNG proximity neighbourhood. Assumptions made beyond theoretical hypotheses 

included exogenously given positions of new centres, a unit square simulation area, 

a time framework with new urban centres added slower than road growth, specified 

initial and termination conditions. 

Network characteristics examined of the simulated networks include the ratio 

between the node and link number e =
E

𝑁
, total link length Ltot, form factor φ =

4A

πD2
, 

and block perimeter p. As in Figure 4.8, average network characteristics of 1000 

simulations were plotted: Ltot~N1/2; 𝜑 peaked around 0.6 and in the range [0.4,0.7]; 

block area distribution P(A) followed an exponential distribution. By controlling the 

distribution of new urban centres to follow an exponential decay from the 
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geographical centre of the simulation area, generated urban road network’s P(A)~A𝛼 

followed a power-law distribution with 𝛼 =  1.9, as in Figure 4.9. After this, 

characteristics of the simulated networks agreed with Lämmer et al. (2006)’s 

empirical results of German road networks, which was reviewed in Chapter 2 section 

2.3.4. 

 

 

Figure 4.8 Generative Network Model of Urban Street Patterns:  Simulation network 

characteristics (a) total link length Ltot~𝑁1/2 followed a power-law distribution. The x-axis 

represents node number 𝑁, and the y-axis represents Ltot. Red dots represent values of Ltot at 
different node number and was fitted by the dashed line, showing a power-law fit. (b)-(d) Blue 
circles, red squares, green diamonds, and blue triangles represent simulated network 
characteristics at node number 𝑁 = 300, 600, 1200, 1500, respectively. (b) Form factor φ 

peaked at 0.6, and belonged to a range [0.4,0.7]. The x-axis represents form factor φ, and the 
y-axis represents probability 𝑃(φ). (c) Block perimeter p followed an exponential distribution. 

The x-axis represents p rescaled using node number 𝑁, and the y-axis represents probability 

𝑃(p) rescaled using 𝑁1/2 and on a logarithmic scale. (d) Block area distribution P(a) followed an 

exponential distribution. The x-axis represents block areas 𝑎 rescaled using node number 𝑁, 

and the y-axis represents probability 𝑃(a) rescaled using 𝑁 and on a logarithmic scale. 
(Barthélemy and Flammini, 2008) 

 

 

Figure 4.9 Generative Network Model of Urban Street Patterns – Node Spatial 
Distribution Following Exponential Decay: Plot (a) shows a simulated network 

given urban centres following an exponential spatial distribution. Plot (b) shows block area 
distribution P(A)~A𝛼 followed a power-law distribution, with 𝛼 =  1.9. The x-axis represents block 

areas 𝐴, and the y-axis represents probability 𝑃(𝐴). (Barthélemy and Flammini, 2008) 

4.2.3.3 Generative Network Model of City Graph 

Courtat et al. (2011) proposed a GNM to generate morphology of a city represented 

by its streets. The modelled network C(t) = [(V(t), E(t)), H(t)] consisted of G = (V, E) 
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– a spatial geometrical network with the set of nodes V and the set of links E. A 

hypergraph H, on top of G, in which as many as degree k2 nodes could be added to 

each link, recovering the city’s streets from G. The network was historically 

dependent, as all components were function of time t.  

The model hypothesised that a city developed locally through division and extension 

of space through constrained development like a shell and could be represented by 

infinite small street segments. The generative mechanism was implemented as the 

following. New urban settlements were added to the simulated city area according to 

a potential attraction field depending on the existing network; the settlements then 

connected to the existing network to the set of points which were orthogonal 

projections of new settlements on C while keeping the network planar and satisfying 

RNG proximity. 

Parameters influencing the simulated network structure included 𝑃𝑒 which controlled 

the extent to obey the attraction potential field, β which controlled local geometry in 

choosing new node position, ω which controlled the extent to obey the Link 

Connection choices, and 𝑓𝑒𝑥𝑡 which controlled the extent of network sprawling. As in 

Figure 4.10, ω influenced the network structure to vary from circuitous to treelike 

from top to bottom rows. 𝑃𝑒 reflected the extent of unplanned to planning growth, 

from left to right columns; planned networks obeyed to global node position choices. 

 

Figure 4.10 Generative Network Model of City Graph: These sixteen plots show the 

influences of parameters 𝑃𝑒 – the extent to obey attraction potential field and ω – the extent to 
obey Link Connection choices on simulated networks. The combinations of 𝑃𝑒 =
0, 0.5, 0.8, 0.99999 on the x-axis, and ω = 0, 0.3, 0.6, 1 on the y-axis were tested. (Courtat et al., 
2011) 
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Examined network characteristics included Organic ratio 𝑟𝑁 – the proportion of 

degree 𝑘1 and 𝑘3 nodes, Meshedness coefficient M – the extent of a planar network 

from a tree M = 0 to a complete planar network M = 1, Topological distance 𝑑𝑡𝑜𝑝𝑜 – 

the number of turns from a street to another, Anisotropy Α – the distribution of angles 

between streets, and link length distribution. The simulated networks showed 𝑟𝑁 ≈ 1,  

similar Α, M depending (𝑃𝑒 , ω) as in Figure 4.10, small 𝑑𝑡𝑜𝑝𝑜, and lognormal 

distribution of link length. 

4.2.3.4 Generative Network Model of Centre Competition 

Rui et al. (2013) proposed a GNM of self-organised urban street networks; they 

proposed a centre competition mechanism in Node Addition. The modelled road 

network consisted of a set of nodes representing urban centres and a set of links 

representing road segments. 

The generative mechanism hypothesised: new centres were chosen among 

candidates according to maximum or minimum utility value, which was the sum of 

node degree within radius r to a candidate node. New nodes first connected to one 

point on the existing network balancing distance and node degree; new nodes then 

connected to points on the existing network satisfying RNG proximity with a 

probability P𝑙. 

Parameters of the model included: α balanced the importance between distance and 

node degree in Link Connection, P𝑙 which controlled the extent of connections 

between new node and RNG proximity points in Link Connection, r which was the 

radius controlling the neighbouring area to measure candidate utility, and the number 

of new node candidates per time step. α introduced consideration of node degree, or 

the Link Connection would connect the new node to the nearest point on the existing 

network like previous GNMs 4.2.3.1 – 4.2.3.3. P𝑙  was like ω in 4.2.3.3, leading to 

treelike or circuitous structure. r affected Node Addition by defining the area to 

calculate candidates’ utility. As in Figure 4.11,  r = 0 in the plot (a) means the area is 

0, disabling the competition mechanism, and the simulated network has 

homogeneous node distribution. As r increased, the simulated network changed 

from having several small clusters to having one whole compact cluster.  

The examined simulated network characteristics included Organic ratio 𝑟𝑁, 

Meshedness coefficient M, total topological link length L𝑡𝑜𝑝𝑜, total geometrical link 

length L𝑡𝑜𝑡, Efficiency E which compared the Euclidean distance to network distance, 

Topological efficiency E𝑡𝑜𝑝𝑜, Fraction of dominant sectors which measured the ratio 

of sectors having dominant number of centres, Gini index of BC, Block distribution 

P(A), and BC distribution. 𝑟𝑁 decreased with α and P𝑙, while M increased. Both L𝑡𝑜𝑝𝑜 

and L𝑡𝑜𝑡 increased with P𝑙, while L𝑡𝑜𝑡 increased and L𝑡𝑜𝑝𝑜 decreases with α. E 
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reached the highest value with a medium P𝑙; larger P𝑙 led to decrease of E. E𝑡𝑜𝑝𝑜 

increased with α. The fraction of dominant sectors decreased with r. BC Gini index 

increased first to the maximum value, then decreased with r. P(A) was very sensitive 

to centre spatial distribution; uniform centre distribution at r = 0 led to exponential 

P(A) distribution; r = 0.25 resulted in power-law P(A)~𝐴𝛼, 𝛼 = 2.5; and r = 0.05 led to 

most heterogeneous block areas following P(A)~𝐴𝛼, 𝛼 = 1.05. Finally, BC exhibited 

exponential distribution. 

 

Figure 4.11 Generative Network Model of Centre Competition: The four plots show 

the influences of parameter r, increasing from 0, 0.025, 0.075, to 0.25 (a)-(d). (Rui et al., 2013) 

4.2.3.5 Generative Network Models of Urban Road Networks Discussion 

GNMs of urban road networks have combined considerations of spatiality, planarity, 

and proximity relations, and generated primal urban road network structures 

dynamically. These models have followed the network science approach to grow 

networks by the iterations of two processes – Node Addition and Link Connection. 

Generative mechanisms have been designed to direct Node Addition and Link 

Connection. Spatiality was modelled as spatial network models in 4.2.1.1: nodes’ 

spatial locations were meaningful in Node Addition; Link Connection used the cost of 

link length – connecting the new nodes to their nearest points on the existing 

network. Link Connection also considered efficiency – creating cycles between new 

nodes and the existing network besides the shortest connections. Planarity was 

modelled as planar network models in 4.2.1.2: planarity was maintained in Link 

Connection.  
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These models have further considered the proximity relationship in Link Connection 

besides cost and efficiency, as in the proximity graph models 4.2.2, which was key to 

the generation of primal urban road network structures. These models contributed to 

model proximity graph models dynamically, instead of connecting a given set of 

nodes. Last but not the least, these models have examined broadly simulated 

networks’ characteristics and compared to real urban road networks, which have not 

been done in the studies of spatial, planar, and proximity graph network models. 

Meanwhile, the previous GNMs of urban road networks have had the following 

limitations. 

First, though having generated the primal urban road network structure and validated 

the simulated network structure by comparing empirical counterparts, the modelled 

network structures were not all primal urban road networks. The GNM of urban street 

patterns 4.2.3.2 followed the GNM of leaf venation patterns 4.2.3.1 and modelled two 

sub-systems: a set of urban centres that attracted road growth, and a network to 

connected urban centres with nodes representing small road segments and links 

connecting adjacent nodes. The GNM of city graph 4.2.3.3 modelled a primal urban 

road network, with nodes representing intersections and links representing road 

segments, as well as a hypergraph representing streets. However, this network 

represented a city, thus equating the urban road network structure to the urban 

system. The GNM of centre competition 4.2.3.4 modelled a primal urban road 

network; the nodes represented urban centres. Therefore, existing GNMs of urban 

road networks have either modelled an urban network in which nodes were urban 

centres or a primal urban road network that represented a city. If these models have 

not modelled a primal urban road network, their simulated networks should not have 

been compared to or validated by one. If these models have modelled primal urban 

road networks, they needed to clarify the relationships between the urban road 

network and the urban system. 

Second, previous GNMs of urban road networks have not compared the Link 

Connection mechanism horizontally or analysed its impact on the generation of 

primal urban road network structure. These models shared a similarity in Link 

Connection: new nodes were all connected to the closest point on the existing 

network as well as RNG neighbours. However, each model has described this 

process differently and heuristically, without explaining the working mechanism 

behind. The GNM of urban street patterns 4.2.3.2 described that roads grew towards 

the urban centres and connected first according to a local optimisation principle to 

minimise the cost of link length connection locally, then connected to RNG 

neighbours. The GNM of city graph 4.2.3.3 described new nodes connected to an 



103 
 

 

intersection of a few point sets: the “visible points” – points on the existing network 

that maintain planarity after the connection, the orthogonal projection of new nodes 

on the existing network, and the RNG neighbours. The GNM of centre competition 

4.2.3.4 followed The GNM of urban street patterns.  

As reviewed in 4.2.2, RNG is a member of the proximity graph family, and its 

structure has been thought as similar to the urban road network because it could 

model the grid structure in urban road networks. Moreover, other proximity graphs 

may share a similar structure to urban road networks, too, such as β-skeletons with 

β = 1.0 to 2.0. The proximity relationships examined between nodes in Link 

Connection have determined the connection patterns of these networks. The existing 

GNMs of urban road networks have not related to the proximity graph models 4.2.2. 

They have not related the Link Connection process to the proximity relationship. For 

example, why Link Connection that connected to new nodes’ nearest point and RNG 

neighbours on the existing network could generate the primal urban road network 

structure. Other proximity relationships have not been explored either, like that of the 

β-skeletons, which may be equally effective in generating the urban road network 

structure besides the RNG proximity relationship. 

Third, previous GNMs of urban road networks have put more emphasis on 

reproducing empirical urban road network statistics, rather than modelling the 

dynamic RNE process. The generation of network structures that were statistically 

similar to empirical urban road networks did not guarantee the proposed generative 

mechanisms were behind the urban road network evolution, because different 

processes might result in the same pattern and different generative mechanisms 

might lead to the same network structure.  

Fortunately, GNMs enable the observation of the continuous simulated network 

dynamics as well. Statistical similarity in how simulated networks and empirical 

urban road networks change, namely the dynamic network structure, may increase 

the credibility of the generative mechanism. Nevertheless, previous models have not 

compared their results with the empirical RNE findings. As reviewed in Chapter 2, 

increasing empirical RNE research has quantified the dynamics of real-world urban 

road networks through network snapshots of historical periods. These quantified 

empirical RNE characteristics and processes may be compared with the simulated 

network dynamics using GNMs. The capacity of a GNM in simulating plausible 

network dynamics, besides static network structure, may increase the model and its 

generative mechanism’s credibility to model RNE. Further simulation experiments 

may explore the processes and mechanisms behind the occurrence of empirical 

RNE observations, thus provide insights into the inconsistent and conflicting results. 
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Finally, GNMs of urban road networks reviewed in this section have only considered 

the urban network structure, without integrating RNE into the urban system. This 

limitation has shown in the Node Addition process. Spatial network models 4.2.1.1 

demonstrated spatial distribution of nodes determined the spatial distribution and 

organisation of simulated networks to a great extent. The GNM of urban street 

patterns 4.2.3.2 assumed new nodes’ locations to follow a random and exponential 

distribution. The GNM of city graph 4.2.3.3 assumed a potential field to calculate 

spatial locations’ attractiveness to new nodes according to the existing network’s 

spatial distribution. The GNM of centre competition 4.2.3.4 assumed a utility function 

to calculate spatial locations’ attractiveness to new nodes according to total node 

degree within a certain distance, namely according to existing network’s spatial 

distribution and topological characteristics. Therefore, all reviewed models in this 

section have considered the urban road network structure alone. However, the road 

network resides and changes in the urban system; it is reasonable to expect urban 

factors significantly influence RNE. For example, as reviewed in Chapter 3, empirical 

evidence has reported positive correlations between the road network and the urban 

spatial structure. GNMs of urban road networks in the urban system are reviewed in 

section 4.3.4. 

4.2.4 Modelling RNE: Consider the Urban Road Network Alone 

Summary 

This section followed spatial, planar, proximity graph network models’ applications in 

modelling urban road networks and narrowed down to a small group of GNMs, which 

generated the primal urban road network structure. Selected simulation results of 

these models were put together in Figure 4.12, with summarised generative 

mechanisms. This progression of modelling effort led to the generation of the urban 

road network structure. GNMs of urban road networks have merged generative 

mechanisms of the three other models, generated the primal urban road network 

structure, and may model the dynamic RNE process.  

The reviewed models in this section have modelled the urban road network 

component of the urban system, as shown in Figure 4.1, which differed them from 

alternative RNE modelling approaches. The next section reviews modelling effort 

that has combined the urban road network with other layers and components of the 

urban system, demonstrating how RNE could be modelled according to different 

urban system aspects of focus. 
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Figure 4.12 Modelling RNE: Consider the Urban Road Network Alone 
Summary: The top panel selects simulated networks of spatial (Gastner and Newman, 

2006b), planar (Haslett and Brede, 2015), proximity graph (Watanabe, 2010) network models, 
respectively. The lower panel shows simulated networks of GNMs of Urban road networks 

(Barthélemy and Flammini, 2008). 

4.3 Modelling RNE: Consider the Urban Road Network in the 

Urban System 

4.3.1 Transport Demand Modelling and Network Evolution  

Based on the observation that urban road networks are hierarchical, Levinson and 

Yerra (2006) proposed this inherent hierarchy came from road networks’ self-

organisation, rather than the central planning. They proposed an agent-based model 

consisting of four sub-models for RNE. The model assumed uniform land-use and 

population distributions to avoid the influence from the land-use hierarchy on an 

urban road network. Land-use and road network were modelled as two connected 

layers. The road network was assumed to have a grid layout and given initial speed 

levels. The first transport demand sub-model followed the traditional four-stage 

transport demand forecasting, which loads populations’ transport demand onto the 

urban road network and calculated traffic flows. With the link speed, flows and 

length, the second revenue sub-model calculated revenue of links. The third cost 

sub-model used link flows to calculate maintenance costs. Finally, an investment 

sub-model determined whether links should be upgraded or degraded based on their 

revenue and maintenance costs. This modelled process of RNE iterated until 

equilibrium was reached or could not be reached. 

Spatial Network Models

•Cost; 

•Efficiency

Planar Network Models

•Maintain Planarity

Proximity Graph Models

•Proximity Relationships between Nodes

GNMs of Urban Road Networks

•Iterative Growth: Node addition; Link connection

•Merge Cost, Efficiency, Planarity, Proximity Relationships 
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Xie and Levinson (2009) continued exploring urban road networks’ self-organisation, 

and proposed a degeneration RNE process, as in Figure 4.13. Following the process 

of travel flow forecasting, revenue, cost, and investment in the previous model, this 

model added a degeneration step, in which the least used links were abandoned. 

The capacity of this model to generate typical urban road structure like ring, web, 

tree and circuit from different initial conditions, network structure, and decision rules, 

was used to demonstrate the plausibility of road networks’ self-organisation 

hypothesis. The topological structure of simulated networks was measured, including 

network connectivity, network density, the entropy of link speed, Gini index of link 

traffic volume, and connection patterns of ring, web, tree and circuit. 

 

Figure 4.13 Transport Demand Modelling and Network Evolution: The three plots 

show the evolution process of a simulated road network from an initial condition of an 
asymmetric hexagon to a hub-and-spoke network (Xie and Levinson, 2009).  

Instead of self-organisation, de Martinis et al. (2014) and Pagliara et al. (2016) 

proposed a dynamic retail structure model based transport demand RNE model. 

They perceived the RNE process as links upgrading according to the flow-capacity 

ratio, which suggested the congestion level. The model consisted of a hierarchy of 

zones, and roads connected nearby zones’ centroids. Link flows were acquired using 

transport demand modelling, then used to select links for the upgrade. However, the 

modelled road network structure was restricted to be of “illustrative purpose”. 

4.3.1.1 Transport Demand Modelling and Network Evolution Discussion 

As shown in Figure 4.1, models reviewed in this section have combined transport 

demand modelling and road network evolution on the transport layer of the urban 

system, modelling the transport generation from origins and destinations; the traffic 

flows resulted from transport demand direct the development of road networks. 

These models have explored the self-organisation of urban road networks, with the 

RNE hypothesis that road networks emerged from local individual economic 

decisions, merging traditional transport demand forecasting with complexity theory. 
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These models have focused on urban road networks’ transport properties: the urban 

road network modelled was link-centric, in which links had differentiated functional 

properties and operational performance (Xie and Levinson, 2007). These models 

have included a significant level of road network functional details, like link speed 

and flows, road construction time scales, which made them highly compatible with 

transport planning. They were applied to real road networks to simulate alternative 

policy scenarios like road expansion, road construction, budget constraints, and 

selections of possible new links, helping policy decision-making (Levinson et al., 

2012).  

However, with the high level of realisticity and applicability come these models’ 

complexity and inflexibility. The incorporated transport demand model has a 

profound theoretical and modelling framework, which made these models less 

flexible in terms of exploring urban road networks’ network characteristics and 

dynamics. For example, the modelled RNE processes have been restricted within 

the transport demand modelling framework, following a sophisticated process of 

reaching transport demand equilibrium. Consequently, it was challenging to 

experiment RNE by coupling with various urban system factors, because of the 

difficulty in introducing new factors into the profound transport demand modelling 

framework. The time scope accorded with the planning horizon but was limited in 

terms of exploring long-term dynamics. 

4.3.2 Land-use and Transport Network Interaction (LUTI) and the 

Network Evolution 

Transport and land-use are considered to have reciprocal influences on each other 

(Kelly, 1994), which forms a Land-use and Transport Interaction (LUTI) feedback 

loop consisting of four parts. The spatial distribution of land-uses determines spatial 

locations of socio-economic activities; socio-economic activities requires transport 

infrastructure to fulfil the demand for spatial interactions; the spatial distribution of 

transport infrastructure determines the accessibility for spatial interactions; 

accessibility, in turn, influences spatial decisions for land-use locations (Wegener 

and Fürst, 2004). 

On this theoretical foundation, most LUTI models couple a land-use component with 

a transport demand model; the latter assigns transport demand to and determines 

traffic flows on the transport network. Then, accessibility is imported to decide the 

locations of socio-economic activities; for instance, families are assumed to prefer 

high accessibility to work and shopping, while businesses are assumed to prefer 

high accessibility to the labour market. Provided by the transport network, 

accessibility is calculated by travel time and cost, projecting transport’s influences, 
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such as congestion, onto accessibility and the locations of socio-economic activities. 

(Iacono et al., 2008) 

Levinson et al. (2007) proposed a co-evolution model of land-use and the urban road 

network. This model followed the LUTI feedback loop: changes in land-use led to 

changing travel patterns and determined flows on the transport network; changing 

flows led to the improvement of the transport network and accessibility; the changed 

accessibility then led to land-use relocation. In particular, this model explored the 

influences of land-use’s hierarchy on the urban road network hierarchy, using four 

sub-models. Land-use was modelled as a grid layer with land-use cells; the urban 

road network was modelled as a grid layer on top of the land-use, connecting 

centroids of transport analysis zones which were the land-use cells.  

The first sub-model was a transport demand model, loading population and 

employment information and transport demand onto the urban road network. The 

second sub-model then balanced revenue and maintenance costs of individual links 

based on link flows calculated in the first sub-model and decided the investment of 

individual links locally. The third sub-model calculated the accessibility of transport 

analysis zones or the land-use cells. Finally, a land-use model remade spatial 

decisions of land-use locations according to accessibility provided by the road 

network, while maintaining the total population and employment. In making the 

spatial decisions, the population were assumed to prefer high accessibility to work 

and low accessibility to other population; businesses were assumed to prefer high 

accessibility to both population and other businesses.  
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Figure 4.14 Land-use and Transport Network Interaction (LUTI) and Network 
Evolution: Simulated land-use and urban road network with assumed fixed land-use (left) 

and evolved land-use with the road network (right). The grid land-use layer lay beneath the grid 
road network layer, with the road network connected centroids of land-use cells. The thickness 
of road network links represents the link capacity. (Levinson et al., 2007) 

Two simulation experiments were conducted, as shown in Figure 4.14: the first 

simulated urban road network evolution under fixed land-uses, and the second 

simulated the co-evolution of land-uses and the urban road network. Simulation 

results demonstrated that road network exhibited a higher level of the hierarchy, i.e. 

more concentrated link capacity when co-evolved with land-use than under fixed 

land-use. Simulation results were examined by a Gini index measuring 

agglomeration of land-use and link capacity, and a clustering degree that measured 

distances from land-use cell centroids to the centre of the simulation area. 

 

Other than hierarchy in urban road network during the co-evolution of land-use and 

transport network, Levinson and Huang (2012) further explored the reciprocal land-

use and transport relationship’s influence on road network’s connection patterns. 

They hypothesised a decentralised LUTI mechanism: land values increased with 

accessibility, and road building resulted from individual landowners’ pursuit of 

interests to increase land values through increasing accessibility. The model 

consisted of a grid land-use layer and a grid road network on top. The Land-use 

layer differentiated central and non-central cells for commercial and non-commercial 

land-uses; accessibility to different land-uses varied land cell values; different 

owners owned land-use cells. Road network was assumed to grow only rectilinearly 

to connect adjacent land-use cell centroids; individual landowners built roads 
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provided the interest in gaining accessibility exceeds the cost of road construction. 

Figure 4.15 shows (a) a simulated road network grew from an initial no roads 

condition, (b) to early development of a tree structure, (c) with emerging circuits, and 

finally (d) to a network with circuit structure around the centre and dead-ends at the 

periphery, demonstrating accessibility to central commercial land-uses’ incentive on 

Road Network Dynamics. Treeness and circuitness were examined to characterise 

the evolution of simulated road networks. 

 

Figure 4.15 Decentralised Land-use and Transport Network Interaction (LUTI) 
and Network Evolution : (a)-(d) show the simulated growth of an urban road network 

under a mechanism of decentralised land-use and transport interaction. Nodes represent 
centroids of land-use cells underneath the road network, which might be commercial (red) and 
non-commercial (green). Road network connected adjacent land cell centroids. (Levinson and 
Huang, 2012)   

4.3.2.1 LUTI and the Network Evolution Discussion 

LUTI models involve both land-use and transport layers, as illustrated in Figure 4.1, 

and perceive the RNE process as a step in the feedback relationship between land-

use and transport. Transport factors essential to LUTI models revolve around 

transport demand modelling, including trip length, trip frequency, mode choice 

(Wegener and Fürst, 2004). However, the characteristics and dynamics of the urban 

road network structure have been rarely considered. This limitation has been 

attributed to the fact that LUTI models were often quite complex, being all-

encompassing, operational and data-oriented, and their results were less 

reproducible, with components relationships hard to disentangle, and no emphasis 

on the emergence of macroscopic system characteristics (Levinson et al., 2007). 

The co-evolution model of land-use and urban road network proposed by Levinson 
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et al. (2007) demonstrated the possibility to integrate RNE into a LUTI framework. 

The Levinson and Huang (2012) model did not include a full LUTI cycle and land-use 

dynamics but grasped its key components – land-use, transport network, and 

accessibility. This design enabled a more flexible model that was capable of 

exploring in more depth emerging road network characteristics, other than the spatial 

distributions of land-use and road network studied by the previous model. 

Nevertheless, the LUTI theoretical and modelling framework has provided a well-

established perspective to think about and model the urban system (Renner et al., 

2014), as well as the relationship between urban road network and the urban 

system. 

4.3.3 Urban Dynamics and the Transport Network Evolution 

Urban modelling began with the initiative to test urban theories scientifically, with 

early urban theories like location theory which branched into social physics, macro 

and micro urban economics; economic-based urban models from the 1960s 

assumed self-equilibrium of land-uses and activities and urban movements in 

analogy to gravity and potential field; in the 1970s and 80s, the bottom-up 

decentralised dynamic models took off (Batty, 2009). Li and Gong (2016) 

summarised urban modelling developed from macro to micro and from static to 

dynamic. The micro and dynamic urban models, like Cellular Automata (CA) and 

Agent-Based Models (ABMs) agreed with the complex theory and modelled the 

emergence of macroscopic urban system characteristics and phenomena, arising 

from microscopic urban system components’ behaviours and interactions. Though 

not in great numbers, attempts have been made to include transport network 

dynamics into some most prominent urban dynamic models. This section reviews 

urban dynamic models including fractal 4.3.3.1, ABM 4.3.3.2, CA 4.3.3.3, and space 

syntax 4.3.3.4 models that have incorporated explicitly urban Road Network 

Dynamics. 

4.3.3.1 Fractal Urban and the Transport Network Evolution 

Batty et al. (1989) pointed out urban models at the time were built mostly around 

economic theories and assumed inherently specific urban spatial structure, without 

considering the formation of urban form. They introduced the Diffusion-Limited 

Aggregation (DLA) process from physics to model urban population’s spatial growth, 

leading to fractal urban form. The model assumed an urban centre, according to 

which new population locations were added and connected. The simulation results 

were dendritic clusters, which exhibited fractal structure and similar macroscopic 

urban scaling relations. This model pioneered in relating the growth process of urban 

form to urban system’s macroscopic characteristics, thus manifested modelling 
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dynamics of urban form could offer insights into understanding the urban system at 

large. 

Acknowledging DLA was essentially a physics process and did not realistically 

represent microscopic urban growth, Andersson et al. (2002) proposed urban growth 

result fundamentally from human behaviours, and proposed a model in which the 

locations of new urbanisations were chosen according to a spatial interaction 

potential field based on land-uses. Gastner and Newman (2006a) proposed a 

generative network model which was capable of generating similar dendritic 

structure as the DLA model. They modelled distribution networks, in which nodes 

represented distribution centres like transport stations, and links represented 

distribution lines. The model assumed a centre, according to which new nodes and 

links were added; it also assumed random locations of new nodes. Simulated 

distribution networks either minimised the cost of link length or maximised efficiency 

to the centre at each time step. As shown in Figure 4.16, simulated networks from 

both mechanisms had a dendritic structure; however, the former covered much less 

area compared to the latter, which was measured by the fractal dimension. The 

similar simulated networks of the network science model and the DLA model 

suggests their connection. 

 

Figure 4.16 Fractal Urban and Transport Network Evolution: These two plots show 

simulated distribution networks by minimising the cost of link length (left) and maximising 
efficiency (right), both having dendritic structure. (Gastner and Newman, 2006a) 

4.3.3.2 Agent-Based Models and the Transport Network Evolution 

Helbing et al. (1997) proposed an agent-based model (ABM) to study the formation 

of pedestrian trails in urban green areas in order to understand their topological 

structure and whether optimal trails could be predicted for urban planning. ABMs 

represent individual and elementary system components which have behaviours 

through time and space; these models generate emergent spatial and temporal 

patterns from bottom up (Batty, 2009). The model consisted of individual agents that 

represented pedestrians and an adaptive landscape. Pedestrians’ movements 

depended on destinations and existing trails. Pedestrians’ walking on the landscape 
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created trials, which further influenced their movements. Simulation results found a 

completely connected trail network between origins and destinations only emerged 

when all other existing trails were equally comfortable; emerged trail networks 

minimally connected if pedestrians preferred using existing trails.  

Acknowledging ABM’s potential usage on transport networks, Zanin and Véjar 

(2009) used an ABM to model the emergence of transport networks. Pedestrians’ 

movements depended on their destinations and neighbouring landscape. 

Pedestrians’ movements gradually changed the landscape into transport network 

paths. Figure 4.17 shows the simulated transport network evolved from a random 

initial state (a) with agents moving along various paths to a final state (d) with agents 

moving along major paths of the network.  

 

Figure 4.17 Agent-based model of Urban and Transport Network Evolution: (a)-

(d) show the evolving process of a transport network result from agents’ movements. (Zanin 
and Véjar, 2009) 

Further, Schweitzer and Nanumyan (2016) used ABM to model the co-evolution of 

the transport network and the urban system. They pointed out the two systems and 

their dynamics cannot be considered separately and employed two sub-ABMs to 

model the two systems and their feedback relationships on an adaptive landscape. 

They proposed the co-evolution of the transport network and the urban system are 

two iterative processes: access space and occupy space. The first sub-ABM created 

trails to model the dynamics of the transport network; the second aggregated to 

occupy space for land-uses and activities. The two sub-ABMs were connected with 

feedback relationships in which transport demand from the latter stimulates more 

network infrastructure in the former and increases of network infrastructure 

stimulates the aggregation of new land-uses and activities in the latter. 

4.3.3.3 Cellular Automate of Urban and the Transport Network Evolution 

White and Engelen (1993) introduced a Cellular Automata (CA) model to simulate 

the spatial and temporal dynamics of urban land-use spatial structure. CA uses an 

array of grid cells, which have discrete states that are determined by neighbouring 

cells; cell states change under transition rules. The authors proposed a 50*50 CA 

grid. Cells had four possible states: vacant, housing, industrial, and commercial. At 
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every time step, a certain number of cells changed states under designed transition 

rules; simulation terminated until clusters emerged. The simulated land-use spatial 

structure was examined in terms of their fractal dimension and found a similar fractal 

structure to real cities. 

Yamins et al. (2003) pointed out insufficient discussion of CA’s usage on transport 

networks, and the potential of combining CA of transport network dynamics with 

general CA models of urban dynamics. They proposed urban road networks evolve 

by two iterative processes in the context of urban growth. From an initial 

homogeneous CA grid with cells of potential states – unbuilt, built, and transport 

infrastructure, the first step chose new locations of land-uses among unconnected 

cells according to transport potential of an area – the total amount of unconnected 

cells. The second step connected the new location with roads by comparing the cost 

between building across or around the existing dense built area. By controlling the 

cost of building roads in dense urban areas in the second step, the model was able 

to simulate urban road network structure including radiating roads from an urban 

centre, beltways, and homogeneous irregular non-planned roads. 

The Yamins et al. model modelled land-uses and urban road network using the 

same CA grid. Semboloni (2000) on the other hand, modelled land-use and urban 

road network co-evolution using two interconnected layers - a CA land-use grid of 

Delaunay Triangulation (DT), and an urban road network connecting centroids of the 

DT cells. Their model iterated two processes of urban growth as well. The first chose 

new locations of land-use cells to be connected, which involved the generation of 

new DT cells and transformation of DT cell land-use states among unbuilt, built for 

housing, built for service activities, and temporarily unoccupied. The second 

connected centroids of the new land-use cells using two mechanisms – the new cell 

centroid might connect to the existing road network with long links while maintaining 

planarity, and the new cell centroids might connect orthogonally to the existing road 

network with short links. Figure 4.18 shows the simulated urban area and road 

network growth; the simulated urban area’s fractal structure was examined. 
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Figure 4.18 Cellular Automata of Urban and Transport Network Evolution: The 

two plots show simulated growth of an urban area and its road network by a Cellular Automata 
(CA) model. Land-uses were represented by a growing Delaunay triangulation (DT), and a 
growing road network connects the centroids of DT cells. DT cells had four states: unbuilt, 
temporarily unoccupied, built for housing, and built for service activities, in correspondence with 
white, light grey, dark grey, and black DT cells in the plots. (Semboloni, 2000)  

Though separately and explicitly modelled, the urban road network in Semboloni 

model had inherent geometric dependence on the DT land-use layer, since it 

connected land-use cells’ centroids. The modelled road network structure depends 

on land-uses, instead of having a reciprocal relationship. Raimbault et al. (2014) 

proposed a hybrid model consisted of a CA land-uses dynamic sub-model and a 

network dynamic sub-model. 

The CA land-use grid had cells with status empty or occupied that could change with 

time; a subset of cells was assumed as urban centres where socio-economic 

activities might happen. The dynamic road network consisted of nodes that were 

land-use cells and links that were roads. The modelled co-evolution of urban land-

uses and road network iterated two processes: building new land-use cells and 

building new roads to connect the new cells. Four characteristics of a cell were 

considered in choosing new cells to build and connect with roads: density around it, 

its Euclidean distance to the nearest roads, its network distance to the nearest 

centre, and its accessibility to different activities at centres. These four 

characteristics were assigned weights, which summed as the cell’s land value, to 

control their influences on the co-evolution process. At each time step, all cells’ land 

values were updated; among cells with highest values, a fixed number of cells were 

chosen to be built; and among the built new cells, the ones with a distance larger 

than a threshold from existing road network were connected orthogonally to the 

nearest road segments. As in Figure 4.19, the simulated land-uses and road network 

exhibited a broad range of forms, including human settlements types outlined by Le 

Corbusier - rural, linear, and radial-concentric, which were generated by large 

preferences for low density, short distances to road, and short distance to centre 
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respectively. The simulated structure was further examined by four categories of 

measures: morphology by density distribution, network performance by network 

efficiency, functional accessibility by accessibility to activities, and economic 

performance by a segregation index. 

 

Figure 4.19 Hybrid Cellular Automata and Network Model of Urban and 
Transport Network Evolution:  The three plots show generated urban settlement types 

rural (left), linear (middle), and radial-concentric (right); black points represent land-uses, red 
lines represented roads. (Raimbault et al., 2014) 

4.3.3.4 Urban Design and the Transport Network Evolution 

Generative modelling and simulation effort from the urban design perspective calls 

for attention to the local level urban fabric transformation besides the aggregated 

urban dynamics addressed by macroscopic urban models (Al_Sayed et al., 2012). 

Space syntax seeks the relations between spatial structure and the social structure 

behind, and proposes to describe, analyse, and model space as a discrete system, 

using elementary generators and structure that capture social logic; buildings and 

streets are the two urban form components of focus (Hillier and Hanson, 1989). 

Erickson and Lloyd-Jones (1997) proposed urban development iterates two 

processes – the local level informally planned and the global level planned 

development and proposed an urban growth model of buildings and streets. 

Following space syntax of fixed building and street spatial relationship, they 

modelled small and informal village settlements. As shown in Figure 4.20, this model 

was capable of generating the detailed urban form, including streets and buildings. 

Marshall and Sutton (2014) explored the possibilities of generating street-based 

urban layouts and proposed street-based rules to grow the urban layout in a 

structured way without a fixed plan. The proposed street-based rules used road 

design codes, including hierarchy, connectivity and frontage constraints. The 

proposed model could anticipate effects of rules in the street design manuals. 
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Figure 4.20 Urban Design and Transport Network Evolution: The two plots show 

initial and final states of a generative Space syntax model of urban settlements. The white cells 
represent roads and blacks cells represent buildings. (Erickson and Lloyd-Jones, 1997)  

4.3.3.5 Urban Dynamics and the Transport Network Evolution Discussion 

This section reviewed four types of urban dynamics models, chosen for their effort in 

combining urban road network dynamics. Figure 4.21 illustrated these models’ 

typical simulation results. 

Fractal models 4.3.3.1 have filled in the gap in previous urban theories and models 

in pre-assuming the urban form by modelling the growth of the urban form and 

showed insights of the urban system might be gained by modelling the formation and 

dynamics of urban form. ABMs 4.3.3.2 have demonstrated the emergence of system 

characteristics from individual agents’ behaviours and interactions. CA models 

4.3.3.3 have shown arises of spatial structure from autonomous transitions of 

individual cells. Urban design models 4.3.3.4 have generated specific urban form 

using elementary generators. All these models were compatible with the complexity 

theory, by modelling the emergence of macroscopic system characteristics from 

simple system components’ microscopic behaviours and interactions. 

 

Figure 4.21 Urban Dynamics Coupled with Transport Network Dynamics 
Summary: The four plots select representative simulation results of 4.3.3.1 fractal 

(Andersson et al., 2002), 4.3.3.2 agent-based (Helbing et al., 1997), 4.3.3.3 cellular-automata 
(Yamins et al., 2003), 4.3.3.4 urban design (Erickson and Lloyd-Jones, 1997) models reviewed 
in this section. 

Fractal Urban and Transport 
Network Evolution

•Modelling urban form 
growth

•Fractals and Urban scaling

Agent-based Models of Urban 
and Transport Network 
Evolution

•Autonomous agents 
changing adaptive landscape

Cellular Automata of Urban 
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•Detailed urban form: 
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The models reviewed in this section have demonstrated how the urban land-uses 

and dynamics might be modelled on various scales, as well as how the urban road 

network might be integrated into the micro and dynamic urban modelling. Fractal 

models have implemented an incremental dendritic structure and viewed RNE as 

part of the aggregate urban form growth. ABMs have modelled an adaptive 

landscape which changed through agents’ movements; RNE has been viewed as 

part of the landscape’s adaption - differentiate into land-use and transport network 

areas. CA models have constructed on a grid land-use layer which divided an urban 

area into parcels; RNE has been coupled on top of the land-use grid. Urban design 

models have used detailed urban form generators, buildings and streets, as well as 

their spatial relations; RNE has been viewed as an inherent part of urban form 

formation and dynamics. 

On the other hand, these models of urban dynamics have mainly focused on the 

land-use layer, as illustrated in Figure 4.1. Fractal models concerned the fractal 

structure of urban form; ABMs and CA concerned the dynamics of a land-use plane, 

on which transport network was a subset of land-uses; and space syntax models 

concerned design aspects of detailed urban form. None of these models has aimed 

to model the primal urban road network structure and dynamics nor have they 

examined network characteristics in simulation results. Hybrid CA models (Raimbault 

et al., 2014; Wu et al., 2016) that modelled road network and land-use explicitly and 

separately were the few exceptions. Still, the primary goal was on land-use 

dynamics, and the road network modelled only connected urban centres, instead of 

evolving as an independent urban road network. As Raimbault (2016) concluded 

from a systematic review on urban and transport network evolution models, models 

considering both urban and transport network dynamics have been still rare, due to 

diverging disciplinary research interests. 

4.3.4 Generative Network Models of the Urban Road Network in the 

Urban System 

Section 4.2 concluded that network evolution can be modelled by two iterative 

processes – Node Addition and Link Connection. Link Connection formed 

elementary network connection patterns. Node Addition influenced the network 

spatial structure, through directing node spatial distribution. Thus, Node Addition is 

the primary mechanism through which mutual influences and interactions between 

urban road network and the urban system may be modelled. When considering the 

network alone as in 4.2.3, Node Addition was assumed to follow random or given 

distributions. 
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This section reviewed Generate Network Models (GNMs) of urban road networks in 

the context of the urban system, extending GNMs from 4.2.3 which consider the road 

network alone. Table 4-1 summarised these models and simulation results. 

4.3.4.1 GNM of the Population Density - Road Network Topology Co-

evolution 

Barthélemy and Flammini (2009) observed positive correlations between empirical 

population density and transport networks and hypothesised a co-evolution 

mechanism of population density and urban road network: urban road network 

evolves to serve increasing population density; the consequentially increased 

accessibility attracts population; the increased population density leads to high land-

use price that limits the area growth. They proposed a GNM to explore the dynamics 

of population density spatial distribution and road network topological structure in 

their co-evolution. The modelled co-evolution iterated over Node Addition and Link 

Connection: Link addition was the same as in 4.2.3.2; the co-evolution mechanism of 

this model differed from the former by the Node Addition mechanism. 

The modelled structure represented a city that consisted of nodes – land-use and 

activity locations, and links - roads. The modelled urban area was divided into 

sectors, each having different potential to attract new nodes, based on existing 

population and roads in the sector. The land price of a sector was an increasing 

function of population density. Transport cost of a sector was a decreasing function 

of Betweenness Centrality (BC). The Node Addition mechanism chose a sector to 

locate new land-use and activity locations by balancing price and transport cost of a 

sector. Link Connection then followed to connect new nodes to the existing network. 

The simulation results, as shown in Figure 4.22, exhibited a more extensive range of 

structure, compared to that of previous models Figure 4.9. By controlling the 

preference for low land-use price or transport cost in Node Addition, this model was 

capable of generating exponential decay of population distribution from the centre. 

The simulated structure was examined by node density distribution. 
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Figure 4.22 GNM of Population Density and Urban Road Network Co-evolution: 

The two plots show two simulated structure with different spatial distributions by varying the 
preference for low land-use cost or transport price. (Barthélemy and Flammini, 2009) 

4.3.4.2 GNM of the Shanghai Pudong Road Network Growth 

Yang et al. (2011) applied a GNM to predict the growth of the Shanghai Pudong road 

network. The model iterated two processes as well, Node Addition and Link 

Connection. In Node Addition, the model first predicted the growth of new node 

number from base year to target year by regression based on base year’s road 

network density. Spatial locations of the new nodes on sectors of the studied area 

were then chosen by considering population density, tax revenue, road network 

density and clustering coefficient of a sector. After Node Addition, Link Connection 

connected the new nodes to the existing road network according to the same Link 

Connection mechanism as in the previous model 4.2.3.2. Calibrated by historical GIS 

and socio-economic data from 1995 to 2007, the model was able to simulate the 

growth of Pudong road network from 2000 to 2004 and 2004 to 2007 as shown in 

Figure 4.23, within 20% differences from the real growth in terms of total link length, 

road network density, average shortest path length, and BC. 

 

Figure 4.23 GNM of Shanghai Pudong Road Network Growth: The three plots show 

simulated Pudong road network growth from 2000 to 2007. (Yang et al., 2011)  
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4.3.4.3 GNM of the Population-Driven Urban Road Network Evolution 

Zhao, F. et al. (2015) hypothesised human settlements evolve under two 

mechanisms - accessibility-seeking and space-seeking: the former refers to the 

preference for communities with high population, the latter refers to the random 

exploration of communities. Following this mechanism, they proposed a GNM of 

population-driven road network evolution. The model consisted of two layers – the 

city and the road network; the city was divided into sectors with assigned land-uses; 

road network had nodes representing communities with specific population and links 

representing roads. The model iterated two processes of Node Addition and Link 

Connection. In Node Addition, the space-seeking mechanism added new nodes to 

sectors whose population exceeded capacity. Then Link Connection connected new 

nodes to the existing network by balancing the accessibility-seeking mechanism’s 

preference to connect to nodes in the network with a large population, and a cost 

mechanism for minimum link length. Compared to other GNMs of urban road 

network reviewed in this section and 4.2.3, the simulated network here, as shown in 

Figure 4.24, exhibited star structure as a result of the population driven mechanism: 

since new nodes had accessibility-seeking behaviours, they preferred to connect to 

existing nodes with high population. The simulated structure was further examined 

by degree distribution, BC, circuitness and treeness, and coverage of the area. 

 

Figure 4.24 GNM of Population-Driven Urban Road Network Evolution: This plot 

shows the simulated network under the population-driven mechanism. The red box highlights 
the formation of star structure due to new nodes’ preference to connect to existing nodes with 
high population in Link Connection. Colours of the nodes represented the size of the population 
at nodes, increasing from blue to red. (Zhao, F. et al., 2015) 

4.3.4.4 Generative Network Models of the Urban Road Network in the Urban 

System Discussion 

In comparison to GNMs in 4.2.3 that have modelled the urban road network alone, 

the GNMs reviewed in this section have attempted to integrate the network science 

perspective RNE into the urban system. The population density - road network 

topology co-evolution model 4.3.4.1 used LUTI and urban economic theories and 

designed the co-evolution mechanism using a feedback LUTI relationship between 
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land-use, transport network and accessibility, and urban economic location theory 

formulation of utility, income, rent, and transport cost. These urban theories were 

translated into network evolution mechanism to direct the iterative processes of 

Node Addition and Link Connection. The GNM of Shanghai Pudong road network 

4.3.4.2, on the other hand, carried out the integration by calibrating the proposed 

GNM statistically using empirical GIS and socio-economic data. The GNM of 

population-driven urban road network evolution was based on human settlement 

theories. These different designs to combine the road network and the urban system 

have manifested the flexibility of the GNM to explore RNE. 

The studies reviewed in this section have combined the urban road network 

component and the population component of the urban system, as illustrated in 

Figure 4.1. 

Compared to alternative RNE modelling approaches, such as transport demand, 

LUTI, and urban dynamics models, as reviewed in previous sections 4.3.1, 4.3.2, 

4.3.3, GNMs reviewed in this section emphasised on the urban road network 

structure explicitly. Simulated network characteristics were examined in detail. The 

population density - road network topology co-evolution model considered total link 

length, block shapes, perimeters, areas and density distribution. The GNM of 

Shanghai Pudong road network examined total link length, road network density, 

average shortest path length, and BC. The GNM of population-driven urban road 

network evolution examined degree distribution, BC, circuitness and treeness, and 

coverage of the area. The consideration of the urban system has distinguished them 

from models in previous sections 4.3.1, 4.3.2, 4.3.3, which have emphasised other 

aspects of the urban system. 

Meanwhile, GNMs reviewed in this section exhibited the following limitations. They 

inherited limitations from the GNMs that have considered the road network structure 

alone, as pointed out of 4.2.3.5. These models lacked horizontal comparison of the 

Link Connection mechanism and did not model the dynamic RNE process. Further, 

two limitations were notable.  

First, population and urban road network were modelled by one network, with nodes 

representing urban centres and links representing roads. For instance, the 

population density-road network topology co-evolution model implemented two 

layers: a land-use layer divided into grid cells and a network layer with nodes 

representing population locations and links representing roads. Under its population-

road network co-evolution mechanism, nodes of the network layer served as the 

indicator of population density and land price of a land-use cell; links of the network 

layer served as the indicator of accessibility and transport cost; together nodes and 
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links decided the potential to add new nodes of a land-use cell. Two sub-systems 

population and urban road network were modelled using one network; thus, 

population and road network were related even without the co-evolution mechanism, 

being one network’s nodes and links. This modelling choice undermined the model’s 

capacity of connecting the co-evolution mechanism and simulated population and 

road network structure since the simulated structure was not only influenced by the 

co-evolution mechanism but also by the built-in network connectivity. The GNM of 

population-driven urban road network evolution used a similar design, implementing 

a land-use grid layer and a network with nodes representing population concentrated 

communities and links representing roads. As reviewed in Chapter 3 section 3.3.3, 

the modelled network structure with nodes representing population concentration 

locations and links representing roads may be an urban network, rather than a primal 

urban road network. However, both models validated the simulated structure using 

primal urban road networks. If previous models intended to model urban networks, 

their results should not be validated against primal urban road networks’ 

characteristics. Otherwise, node should represent road intersections and links should 

represent road segments, as in a primal road network representation, and different 

representation of the road network and the urban system should be proposed. 

Second, the result examination of these studies have not considered the spatial 

structure of the urban road network and its relationship to the urban system 

sufficiently. The population density-road network topology co-evolution model 

examined the simulated structure as urban spatial structure, by examining population 

spatial distribution, namely its simulated networks’ node spatial distribution. The 

GNM of population-driven urban road network evolution examined the simulated 

structure as an urban road network. Since two sub-systems were modelled, result 

examination may look into both simulated sub-systems’ structure respectively, as 

well as their relationship. However, existing studies have examined only one sub-

system, urban road network or population, which possibly resulted from the 

modelling choice of population and urban road network as one network. Provided 

concepts such as urban road network, road network spatial structure, urban spatial 

structure and urban system were distinguished, and road network and population 

were appropriated represented and modelled, modelling and simulation using the 

GNM may contribute more to understand the co-evolution of road network and the 

urban system. 

4.3.5 Modelling RNE in the Urban System Summary 
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This section reviewed modelling approaches to urban road network dynamics in the 

urban system. The reviewed various RNE modelling approaches differed by the 

addressed urban system layers and components, as illustrated in Figure 4.1. 

 

Figure 4.25 Modelling RNE in the Urban System Summary: The upper panel selects 

simulation results from modelling approaches – transport demand modelling 4.3.1, Land-use 
and Transport Interaction (LUTI) 4.3.2, urban dynamics modelling 4.3.3, that explicitly included 
urban road network dynamics, from left to right (Levinson and Yerra, 2006; Levinson et al., 
2007; Wu et al., 2016) accordingly. The bottom panel shows a simulation result (Barthélemy 
and Flammini, 2009) of a Generative Network Model (GNM). 

The transport demand modelling approach 4.3.1 has focused on the transport layer 

of the urban system, integrating urban road network and the urban system by 

considering transport demand between origins and destinations satisfied by the 

urban road network. These models have emphasised transport function and 

performance, calculate urban road network’s transport properties such as link flow, 

speed and capacity. The well-established transport demand modelling framework 

has limited their flexibility to model long term dynamics of the urban road network 

structure. The LUTI modelling approach 4.3.2 has combined urban road network and 

the urban system through the theoretical feedback relationships between the 

transport and the land-use system. The road network structure has not been not the 

focus of LUTI models, though a few models as reviewed have started to incorporate 

transport network dynamics into the LUTI framework. Urban dynamic models 4.3.3 

lay on the land-use layer of the urban system; this approach has combined urban 

road network and the urban system through modelling fractal urban form 4.3.3.1, 

modelling urban road network as part of an adaptive landscape changed by agents 

4.3.3.2, as part of or a layer on top of a cellular automata grid 4.3.3.3, and as a 

space syntax generator 4.3.3.4. Hybrid CA, combining a land-use dynamics layer 

and a network dynamics layer, has achieved promising integration of the two. Still, 

Transport Demand and 
Network Evolution

LUTI and Network 
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Coupling Transport 
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inclusions of transport network dynamics have been limited, as these models 

focused on land-use dynamics, instead of urban road network characteristics. The 

upper panel of Figure 4.25 selected representative simulation results of these 

modelling approaches accordingly. 

The network science perspective GNMs have attempted to integrated RNE into the 

urban system. Instead of modelling the transport layer, the land-use layer, or the 

LUTI relationship, this approach has focused on dynamics of the urban road network 

structure and combined it with dynamics of key urban system factors, such as the 

population. Given its focus on the road network structure and dynamics, GNMs is a 

suitable tool to explore the evolution of urban road network in the urban system. 

GNM and RNE may be integrated into the urban system through the co-evolution of 

population and the urban road network. 



126 
 

 

Table 4-1 Generative Network Models of Urban Road Networks  

GNMs Modelled 
Systems 

Generative Mechanisms 
(N) Node Addition; (L) Link 

Connection. 

Assumptions, 
Parameters 

Simulation Results and Examination 
(t) topological; (g) geometrical; (p) spatial; (s) static; (d) dynamic. 

Modelling the Urban Road Network Evolution Alone Node Link Block Centrality 
Urban 
street 
patterns(Bar
thélemy and 
Flammini, 
2008)4.2.3.2 

1. Urban 
centres: A set of 
points; 
2. Road 
network: A 
network consists 
of nodes – small 
road segments, 
and links – 
connecting 
adjacent nodes. 

New urban centres added; (N) 
Urban road network first 
connects urban centres in the 
locally most efficient way using 
minimum road length, then 
connects urban centres locally 
to Relative Neighbourhood 
Graph (RNG) neighbouring 
points on the existing network. 
(L) 

1. Unit square 
simulation area.  
2. Time framework of 
urban centres 
addition and road 
growth.  
3. Specified initial and 
termination 
conditions. 
4. Node Addition 
assumes new centre 
positions. 

Node/link 
ratio e ≈
1.3. (t) (s) 
 

Total link length 
Ltot~|V|1/2. (g) (s) 

Form factor φ ∈
[0.4,0.7]. (g) (s) 
Block perimeter p: 
exponential distribution. 
(g) (s) 
Block area P(A): 
exponential distribution, 
new nodes added at 
random locations; - 
power-law distribution 
P(A)~Aα, α = 1.9, new 
nodes added according 
to exponential 
distribution. (g) (s) 

- 

City graph 
(Courtat et 
al., 
2011)4.2.3.3 

A network 
representing a 
city, consists of:  
Nodes – Road 
network 
intersections; 
Links – Road 
segments; 
A Hypergraph – 
Streets. 

New urban settlements added 
according to a potential field 
based on existing network; (N) 
New settlements connected to 
the existing network to the 
intersection of point sets: 
orthogonal projections of new 
settlements on existing 
network, points maintaining 
planarity, RNG neighbors. (L) 

As 1-3 above. 
4. Pe - the extent to 
obeys attraction 
potential field - Node 
Addition. 
5. β - local geometry 
in choosing new node 
position - Node 
Addition. 
6. ω - the extent to 
obey connection 
choices - Link 
Connection. 
7. fext - the extent of 
network sprawling - 
Node Addition. 

Organic 
ratio rN ≈
1. (t) (s) 
 

Anisotropy Α: similar 
across simulated 
networks. (g) (s) 
Meshedness coefficient 
M: depends on (Pe, ω). 
(t) (s) 
Topological distance 
dtopo. (t) (s) 
Link length: lognormal 
distribution. (g) (s) 

- - 

Centre 
competition 
(Rui et al., 
2013)4.2.3.4 

A network 
consists of  
Nodes – 
Intersections 
and Urban 
centres; 
Links – Road 
segments. 

New centres chosen among 
candidates, according to utility 
value - the sum of node 
degree within radius r. (N) 
New nodes first connected to 
the existing network balancing 
distance and node degree; 
then connected to RNG 
neighbors with a probability Pl. 
(L) 

As 1-3 above. 
4. α - preference of 
distance or node 
degree - Link 
Connection.  
5. Pl - the extent to 
connect RNG 
neighbors - Link 
Connection.  
6. r - radius to 
measure candidate 
utility - Node Addition.  

Organic 
ratio rN: 
decrease
s with α, 
Pl. (t) (s) 
Fraction 
of 
dominant 
sectors: 
decrease
s with r. 
(p) (s) 
 

Meshedness coefficient 
M:  increases with α, Pl. 
(t) (s) 
Total topological link 
length Ltopo: increase 
with Pl, decreases with 
α. (t) (s) 
Total geometrical link 
length Ltot: increase 
with Pl, α. (g) (s) 
Efficiency E: highest 
value with a medium Pl. 
(g) (s) 

Block distribution P(A):  
uniform centre 
distribution at r = 0 - 
exponential distribution; 
r = 0.25 - power-law 
P(A)~Aα, α = 2.5; r =
0.05 - most 
heterogeneous block 
areas, P(A)~Aα, α =
1.05. (g) (s) 

BC Gini 
index: 
increases, 
then 
decreases 
as r 
increases. 
(tg) (s) 
BC 
distribution: 
exponential 
distribution. 
(tg) (s) 
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7. The number of new 
node candidates per 
time step - Node 
Addition. 

Topological efficiency 
Etopo: increases with α. 
(t) (s) 

Modelling Urban Road Network Evolution in the Urban system Road network Characteristics Urban system Characteristics 
Co-
evolution of 
Population 
density and 
Road 
network 
topology 
(Barthélemy 
and 
Flammini, 
2009)4.3.4.1 

1. A Land-use 
layer, divided 
into sectors. 
2. A network 
representing a 
city, consists of:  
Nodes – Urban 
centres of land-
use and activity 
locations; 
Links – Roads. 

Sector chosen for new centres’ 
locations by balancing price 
(population density) and 
transport cost (BC) of a sector. 
(N) 
New centres connected as the 
Urban street patterns Model 
4.2.3.2. (L) 

As 1-3 above. 
4. λ: Relative weights 
between density and 
BC. 
5. β: the extent 
generative 
mechanism is 
obeyed. 

- Spatial distribution of centres: uniform 
– small λ; clustered – large λ. (p) (s) 
Fraction of dominant sectors: 
decreases with λ; decreasing speed 
decreases with β. (p) (s) 
Population density from the centre: 
uniform – small λ; exponential decay – 
large λ. (p) (s) 
 

Shanghai 
Pudong 
Road 
Network 
Growth 
(Yang et al., 
2011) 
4.3.4.2 

An urban road 
network, 
consists of:  
Nodes – 
Intersections; 
Links – road 
Segments. 

Predicted the growth of new 
node number by regression 
based on base year’s road 
network density; spatial 
locations of the new nodes 
chosen by considering 
population density, tax 
revenue, road network density 
and clustering coefficient of a 
sector. (N) 
New nodes connected as the 
Urban street patterns Model 
4.2.3.2. (L) 

- Total link length: within 20% 
difference compared to the 
empirical growth. (g) (s) 
Road network density: as above. (g) 
(s) 
Average shortest path length: as 
above. (g) (s) 
BC: as above. (tg) (s) 

- 

Population-
Driven 
Urban Road 
Network 
Evolution 
(Zhao, F. et 
al., 2015) 
4.3.4.3 

1. A Land-use 
layer, divided 
into sectors. 
2. A network, 
consists of:  
Nodes – 
Communities of 
population 
concentration; 
Links – Roads. 

A space-seeking mechanism 
add new nodes to sectors 
whose population exceeded 
capacity. (N) 
Connected new nodes by 
balancing the accessibility-
seeking mechanism’s 
preference to connect to 
nodes in the network with high 
population, and a cost 
mechanism for minimum link 
length. (L) 

As 1-3 above. 
4. β1: preference for 
low cost of link length. 
5. β2: preference for 
high population 
density. 
 

Degree distribution: range increases 
with β2. (t) (s) 
Average node degree: decreases 
with iterations. (t) (d) 
BC: decreases with iterations; BC 
concentration increases with β2. (tg) 
(s) 
Circuitness/ treeness: circuitness 
increases with β2. (t) (s) 
Coverage of the area: increases 
with iterations. (p) (d) 

- 
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4.4 Chapter Conclusion 

4.4.1 Synthesise a Modelling RNE Understanding 

This chapter reviewed RNE related modelling effort according to modelled layers and 

components of the urban system and positioned GNM in a broad RNE modelling 

research background. This chapter separated models considering the road network 

alone 4.2 and models considering road network in the urban system 4.3. The latter 

category can be further divided according to the urban layers and factors modelled. 

Compared to potential RNE modelling approaches that have focused on the 

transport demand 4.3.1, urban dynamics 4.3.3, and LUTI 4.3.2, GNMs 4.3.4 

emphasised on the urban road network structure and dynamics explicitly, with 

comparable simulation results to the increasing empirical RNE findings. Also, GNMs 

have shown flexibility to couple with urban factors and theories, as discussed in 

4.3.5. Thus, the RNE modelling approach choice shall be made by the urban factors 

and layers of interest. 

GNMs have generated macroscopic network structure by modelling the microscopic 

generative mechanism. GNMs model network evolution through iterating Node 

Addition and Link Connection. Empirical RNE characteristics, as reviewed in Chapter 

2, have shown potential parallels with the network generation process; thus, GNMs 

may be used to model the dynamic RNE processes, beyond network generation. 

Link Connection directed elementary connection patterns of the network. Node 

Addition directed simulated network’s spatial structure. Urban system’s influences on 

RNE have been designed into GNM mainly through Node Addition onto road network 

spatial distribution and organisation. Previous GNMs have modelled the co-evolution 

of population and urban road network.  

Table 4-1 summarised previous GNMs and their simulation results. Previous studies 

have generated urban road network characteristics and examined road network 

characteristics such as the block area distribution. Meanwhile, previous studies have 

lacked consistency in the simulated network structure examination framework and 

have not examined dynamic RNE characteristics sufficiently. Though previous 

studies have recognised the positive correlation between population and urban road 

network and proposed co-evolution mechanisms, representation of both population 

and urban road network has been limited, and simulation results have not been 

examined in terms of road network spatial structure and regarding the mutual 

influences between population and road network on each other’s characteristics. 

Further research questions can be specified regarding existing GNMs that have 

modelled the urban road network structure alone 4.2.3: 
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• What is the working mechanism of previous GNMs of urban road networks in 

generating urban road network structure? Can previous RNE models’ generative 

mechanisms be generalised? 

o Can their generative mechanisms be generalised – merging cost, 

efficiency, and proximity relationships to model the spatial and planar 

urban road network structure? 

o Whether proximity relationships from proximity graphs other than RNG, 

like β-skeletons play a role in modelling RNE? 

• Can GNMs model the dynamic RNE process? 

o What is the relationship between the simulated static and dynamic network 

structure and the generative mechanism, without considering the urban 

system? 

o Are the simulated networks’ dynamic structure comparable to the dynamic 

RNE process? Can this be examined using the framework of elementary 

network component - node, link, block characteristics? 

In terms of GNMs that have modelled RNE in the urban system 4.3.4, further 

research questions can be specified as: 

• How to integrate GNM of urban road network evolution into the urban system? 

o What representation of both the road network and the urban system is 

suitable to model the co-evolution of road network and population? 

o What population-urban road network co-evolution mechanism do the 

correlations between population and urban road network in terms of 

quantity and spatial structure, as well as by the mutual influences between 

the road network and the urban system reflect? 

• What road network spatial structure may arise during the co-evolution of road 

network and population? How do the simulated road network and population 

relate? 

o Can this spatial structure be characterised by processes of global 

centralisation and decentralisation and local clustering and dispersion? 

4.4.2 Modelling RNE Research Limitations 

This chapter identified four limitations in previous GNMs of urban road networks, as 

discussed in 4.2.3.5, 4.3.4.4. First, previous GNMs have not compared or 

generalised the Link Connection mechanism in the urban road network structure 

generation. Second, previous studies have put more emphasis on reproducing 

empirical urban road network statistics, rather than modelling the dynamic RNE 

process, and have not integrated empirical RNE studies into simulation result 

examination. Third, the representation of both the road network and the urban 
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system has been insufficient. Forth, previous studies have not examined the 

simulation results regarding the spatial structure of urban road networks or its 

relationship to the urban system sufficiently. With these limitations identified, the next 

chapter proposes the methodology of this study, a framework of RNE modelling and 

simulation. 
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Chapter 5 Methodology 

5.1 Chapter Introduction 

Modelling the evolution of urban road networks lies in a research background with 

intertwined urban and transport theories and methods development, as outlined in 

Table 5-1, which led to a network science approach. Road network evolves along 

with the urban system; hard-to-predict system characteristics emerge. Complexity 

theory in which simple components follow local rules rather than central control, 

provides a powerful tool to explore this evolution process. It does not presume a city 

resulting from particular historical development path, socio-economic condition and 

natural environment, or a global optimising goal to achieve economic equilibrium or 

minimise transport cost but had the flexibility to integrate with established transport 

and urban theories while exploring complex emerging system characteristics and 

processes. Network science studies the transport network structure explicitly, setting 

a feasible scope to explore network evolution and connecting research effort from 

the quantitative geography network analysis to the complex system modelling and 

simulation. 

Table 5-1 Research Background - Modelling the Evolution of Urban Road Networks 

 Theories and Methods 

19th 
Century -
Early 20th 
Century 

• Location Theory: How economic activities locate? (e.g. von Thünen’s Isolated 

state theory, Central place theory) 

• Human Ecology: Sociology of internal urban structure. (e.g. Concentric Model) 

1940s • Social Physics: Quantify social theories (e.g. Spatial Interaction/Gravity Models) 
1950s • Transport Demand Forecasting: (e.g. Detroit Metropolitan Area Traffic Study, 

Chicago Area Transport Study)  

• Quantitative Geography: Network analysis using graph theory; Sequential 

network development models. 

1960s • Urban Economics: Economics of internal urban structure. (e.g. Alonso’s 

Monocentric City) 

• Land Use Transport Interaction (LUTI): Urban development modelling 

framework (e.g. Lowry’s Pittsburgh Model) 

• Urban Morphology: Analyse urban form. (e.g. the Conzenian School) 

• Urban Design: Design ideal urban form. (e.g. Lynch’s Image of City) 

• Historical Geography: History of urban form. (e.g. Mumford’s City in History) 

1970s • Urban Modelling and Simulation: Switch to bottom-up dynamic models (e.g. 

Tobler’s urban growth model of Detroit) 

1980s • Space Syntax: Describe, analyse, generate urban form. 

• Spatial Analysis: GIS data and analysis. 

1990s - 
Present 

• New Science of Cities: Study cities as complex systems. (e.g. fractal urban form, 

cellular automata models, agent-based models) 

• Network Science: Describe, analyse, model complex networks. 
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Following this approach, this chapter proposes a modelling and simulation 

framework of Road Network Evolution (RNE), as summarised in Figure 5.1. So far, 

empirical RNE research has accumulated a considerable number of empirical 

findings, and modelling RNE research have proposed Generative Network Models 

(GNMs) to generate network structure that shared empirical urban road network 

characteristics. However, empirical RNE findings required further understanding 

regarding inconsistency and mechanisms behind the emergence of observed RNE 

characteristics. GNMs of urban road networks required further exploration regarding 

the generality of network generative mechanisms, model design, and simulation 

results examination. Modelling and simulation was an appropriate methodology for 

the current stage of RNE research. Rather than making predictions or directing data 

collection, modelling and simulation served as a suitable tool to forward RNE 

understanding and extend existing empirical and modelling findings. 

 

Figure 5.1 Methodology – An RNE Modelling and Simulation Framework  

5.2  Formulate Research Questions and Objectives: RNE 

Modelling and Simulation using Generative Network Models 

5.2.1 Research Scope 

From a network science perspective, the network structure was described by 

network characteristics examined; the evolution of networks was reflected in the 

emergence of network characteristics. Networks had both static and dynamic 

structure; the former referred to network characteristics at a point in time, the latter 

referred to changes of network characteristics with time. The evolution of networks 

was studied through a series of network snapshots, by analysing the static structure 

Choose Research 
Approach to RNE 5.1

•General research question: How urban road networks evolve (RNE)? 
•Research background

Formulate Research 
Questions and 
Objectives 5.2

•Research scope 5.2.1
•Synthesise existing RNE knowledge:

•Literature review and gaps: Empirical RNE research 5.2.2.1
•Literature review and gaps: Road network spatial structure 5.2.2.2
•Literature review and gaps: Modelling RNE research 5.2.2.3

•Formulate research questions 5.2.3

Propose RNE Models 
5.3

•Node Addition 5.3.2
•Propose a generalised generative network model of urban road 
networks 

•Link Connection 5.3.1
•Propose a co-evolution model of urban road network and 
population

Conduct RNE 
Simulations 5.4

•Plan two RNE simulation studies 5.4.1 
•General simulation settings 5.4.2

Simulation Result 
Examination 5.5

•Examine urban road netowrk static and dynamic characteristics 5.5.1
•Examine urban road network spatial structure 5.5.2
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of each snapshot and the dynamic structure between snapshots. Co-evolution of 

complex systems meant the evolution of one system depended partially or totally on 

related systems; the evolution of one system influenced the evolution of related 

systems and the environment.  

Within this scope, urban road network structure in this thesis was limited to the 

discussion of selected network characteristics; and the evolution of urban road 

networks referred to the changes of these network characteristics, reflected in both 

static network structure at a snapshot and dynamic structure between snapshots. 

Road network and the urban system were regarded to co-evolve, as the two systems 

had feedback relationships and mutual influences on each other’s development. 

5.2.2 Synthesise the Existing RNE Knowledge 

Within the research scope, existing knowledge regarding how urban road networks 

evolved, both empirical and modelling, required syntheses. 

5.2.2.1 Empirical RNE Research 

From the literature review in Chapter 2, an empirical RNE understanding was 

synthesised based on elementary road network components’ topological and 

geometrical characteristics and dynamics. First, the urban road network was 

considered as a complex system consisting of elementary components nodes, links, 

and blocks; emerging macroscopic road network characteristics arose from the 

behaviours and interaction of individual components. Second, the framework 

followed the network science approach to characterise complex network evolution. 

The static structure was studied by analysing an urban road network at one point in 

time; the dynamic structure was studied based on snapshots of networks over time 

tracing the trajectories of network characteristics. Third, the framework used spatial 

network characterisation with both topological and geometrical measures. Finally, 

empirical RNE research represented the urban road network structure explicitly 

using the primal representation, instead of aggregated statistical measurements, 

ideal networks, or road networks on the other scales like regional road networks. 

This synthesis framework maximised the utilisation of existing empirical results since 

elementary network component characteristics were most frequently studied and 

could be compared across studies. Table 5-3 summarised the synthesised RNE 

measurements and empirical understanding. 

Static node degree has been reported to exhibit a majority of 𝑘3 nodes, dynamics of 

〈𝑘〉 increased, stayed constant, or decreased according to changes of 𝑘1 and 𝑘4 

node proportions. Statically, link length 𝑙 exhibited lognormal distributions, because 

typical urban road networks had few very short or very long links, many medium-
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length links, and abundant short links. Dynamically, 𝑙 distribution persisted in being 

lognormal, with the peak concentrating because more short links were added as 

road network grew. Statically, block areas 𝐴 exhibited power-law or lognormal 

distributions depending on the density level of the studied area. Dynamically, 𝐴 

persisted in following power-law or lognormal distributions and exhibited increased 

slope on the logarithmic scales because of increasing small blocks with large blocks’ 

subdivision. Static BC separated high BC components from an underlying spanning 

tree within the road network and low BC components which formed loops in the 

network. Dynamically, BC depended on network density 𝜌𝑒 =
|𝐸|

𝐸𝐷𝑇
; BC hierarchy or 

ranks in network components remained stable if network density remained stable 

while BC concentrated towards the barycentre as network density increased. 

Correlations existed between BC and the existence time of road network 

components, which might further reveal correlations among the high BC 

components, the underlying spanning tree components, the geographically central 

components, and the long-existing components. Two types of new links were added 

to the road network, causing differences in the change of network average BC; these 

two types of new links – dead-ends and bridging links, may perform different 

functions and represent two RNE processes – Densification and exploration (DE). 

Overall, empirical research has pictured a dynamic RNE process of stable 

connections, iterative space division, first forming a skeleton of major paths, then 

filling in the space with minor paths, with elementary components characteristics and 

dynamics. 

Regarding the incremental growth of road networks, associations could be made 

between the microscopic growth of network components and the macroscopic road 

network characteristics and dynamics. Growth of road networks happened locally by 

elementary network components; urban road networks evolved with the addition and 

connection of elementary network components. Empirical RNE research has 

provided directions to relate elementary network dynamics to macroscopic network 

characteristics. Theoretical hypotheses of RNE mechanisms could be proposed 

when these elementary urban road network components’ characteristics and 

changing processes were put together. 

Gaps identified during this synthesis of existing empirical RNE research included:  

• The need to further understand empirical findings, because of the inconsistency 

in results and the lack of consideration of processes and mechanisms behind 

empirical observations; 
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• The limitation in studied network structures’ generality, since RNE mechanisms 

have been proposed based on individual urban road networks at a few discrete 

historical moments; 

• Insufficient characterisation of urban road network’s spatial structure and 

consideration of road network structure in the context of the urban system.  

5.2.2.2 Urban Road Network Spatial Structure Research 

Spatial structure referred to the spatial distribution and organisation of urban road 

networks. Attention paid to road network’s spatial structure in the network science 

approach has been insufficient, though the spatial distribution of network 

components has been recognised to influence network characteristics like the block 

area distribution. Existing research on urban road network spatial structure, as 

reviewed in Chapter 3, included road network patterns, spatial analysis, and 

quantitative classification. Road network patterns have studied dominant geometric 

connection patterns such as linear, star, hub-and-spoke, ring, cellular, as well as 

continuity hierarchy patterns based on street names or strokes. Spatial analysis has 

studied the geography of urban road networks and the networked geography, using 

measures such as density. The quantitative classification has not assumed fixed 

types of road network spatial structure and found diverse empirical urban road 

network spatial structures resulted from various formation processes.  

The spatial structure of urban road networks was likely to be a spectrum, rather than 

a few discrete types. Like the urban spatial structure, processes behind the formation 

of road network spatial structure - centralisation to decentralisation on the global 

scale, clustering to dispersion on the local scale, may be used characterise the road 

network spatial structure. Studying RNE in the context of urban system required the 

representation of the urban system, which could be thought as overlaid layers. Urban 

road network resided on the transport layer and belonged to the physical urban 

spatial structure. The spatial structure of urban road network has been reported to 

correlate with the economic, physical, and functional urban spatial structure; both 

road network and the urban system were likely to be driven by push and pull forces 

across different urban layers - urban road network and the urban system co-evolved. 

The population has been used to represent the urban spatial structure; correlations 

between population and road network in density, spatial structure, connectivity have 

been reported. The co-evolution of population and urban road network was an 

appropriate starting point to understand the co-evolution of the road network and the 

urban system. 

Gaps identified during the synthesis of urban network spatial structure included:  

• Insufficient representation of both the road network and the urban system; 
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• Insufficient network characterisation and understanding of processes and 

mechanisms behind empirical observations of the urban road network spatial 

structure; 

• The need to further understand empirical findings regarding the inconsistency 

in correlation results and relationships between urban road network and 

population. 

5.2.2.3 Modelling RNE Research 

RNE related modelling could be viewed according to the research scope - 

considering road network alone or road network in the urban system, and according 

to the urban layers and components involved. GNMs generated macroscopic 

network structure from microscopic network components’ behaviours and 

interactions, iteratively through local changes of Node Addition – adding new nodes 

and Link Connection – connecting new nodes to the existing network. Modelling 

RNE considering only the road network merged generative mechanisms of spatial 

networks, planar networks and proximity graphs.  

Modelling RNE in the urban system took place on different urban system layers and 

with different urban system components. On the transport layer of the urban system, 

RNE has been modelled in the framework of transport demand forecasting. Within 

the land use and transport interaction (LUTI) framework, RNE has been modelled as 

a step in the LUTI feedback relationship. On the land use layer, RNE has been 

modelled as part of the urban form and land use dynamics. GNM has been used to 

model the road network in the urban system and emphasised on the network 

structure and dynamics. The population has been the first urban system component 

to couple with GNM, modelling the co-evolution of population and urban road 

network. 

The synthesis of modelling RNE knowledge concluded that modelling and simulation 

using GNM was a suitable tool to advance the understanding of RNE and existing 

empirical and modelling findings. RNE models could be proposed, considering the 

evolution of the urban road network structure alone, and the evolution of the urban 

road network in the urban system, respectively. Gaps identified during this synthesis 

of existing modelling RNE research included:  

• Insufficient generalisation of previous GNMs of urban road network’s Link 

Connection mechanisms, especially regarding the role of proximity relationships; 

• Insufficient utilisation of GNMs’ potential to model the dynamic RNE process,  

• Insufficient integration of GNM and the urban system, including the 

representation of both the urban road network and the urban system, and the 

examination of road network spatial structures. 
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5.2.3 Formulate Research Questions  

After the literature review, the general research question regarding how urban road 

networks evolve can be specified based on the synthesised empirical and modelling 

RNE knowledge as well as gaps identified in existing research. These syntheses led 

to two proposed models and simulation studies – a generative network model of 

urban road network evolution and a hybrid model of population and urban road 

network co-evolution, considering road network alone and in the urban system 

accordingly. Table 5-2 lists the specified research questions and correspondent 

research objectives. 

Table 5-2 Specified Research Questions and Objectives 

Specified Research Questions Specified Research Objectives 

Generative Network Model of Urban Road Network Evolution 

1 What is the working mechanism of the 
Generative Network Model (GNM) in 
generating the urban road network 
structure? Can previous models’ generative 
mechanisms be generalised? 

1. Whether proximity relationships from 
proximity graphs other than Relative 
Neighbourhood Graph (RNG), like β-
skeletons play a role in modelling RNE? 

Propose a generalised GNM of urban road 
networks. 

1. Propose a generalised generative 
mechanism of urban road network structure. 

2. Explore proximity relationships’ role in 
modelling RNE using simulation. 

2 Can the GNM model the dynamic RNE 
process?  

1. What is the relationship between the 
simulated static and dynamic network 
structure and the generative 
mechanism?  

2. Are the simulated networks’ dynamic 
structure comparable to the dynamic 
RNE process?  

3. Can modelling and simulation provide 
insights on empirical RNE findings? 

Explore the potential of proposed GNM in 
modelling the dynamic RNE process. 

1. Explore the relationship between the 
simulated static and dynamic network 
structure and the generative mechanism 
using simulation. 

2. Compare the simulated network structure 
with empirical findings according to the 
examination framework of elementary 
network components and explore the 
generative mechanisms of network 
characteristics using simulation. 

Hybrid Model of Population and Urban Road Network Co-evolution  

3 How to integrate GNM of urban road 
network evolution into the urban system?  

1. How to represent the urban road network 
and population? 

2. What population-urban road network co-
evolution mechanism do the correlations 
between population and urban road 
network in terms of quantity, spatial 
structure, and network characteristics, as 
well as by the mutual influences between 
road network and the urban system 
reflect? 

 

Propose a co-evolution model of population 
and urban road network and representation of 
both the road network and population. 

1. Propose representation of both the 
road network and population. 

2. Propose a co-evolution mechanism of 
population and urban road network. 

4 What road network spatial structure may 
arise during the co-evolution of road 
network and population? How do the 
simulated road network and population 
relate? 

1. How to characterise the spatial structure 
of urban road networks?  

Examine the emerging population and urban 
road network spatial structure and their 
relationships. 

1. Propose a method to characterise the road 
network spatial structure. 
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5.3 Proposed Generative Network Models  

GNMs modelled the formation and dynamics of complex networks. GNMs 

hypothesised mechanisms behind network formation and dynamics, designed 

accordingly generative mechanisms by controlling two processes: Node Addition – 

adding new nodes, and Link Connection – connecting new nodes to the existing 

network. The generative mechanisms were implemented through computational 

simulation to simulate network formation and dynamics, by iterating Node Addition 

and Link Connection. If simulated networks shared a similar structure with real 

complex networks, it demonstrated the plausibility of generative mechanisms to 

explain real-world complex networks’ evolution. However, the similarity between 

simulated and real-world complex networks did not guarantee the proposed 

generative mechanisms were behind real-world networks’ evolution since different 

processes might generate the same pattern and different generative mechanisms 

might generate the same network structure. Nevertheless, generation processes that 

resembled real complex network evolution increased the generative mechanisms’ 

plausibility, hence the necessity to explore the dynamic network evolution process 

using GNMs and examine the simulated dynamic network structure. 

Following GNMs of complex networks, GNMs of urban road networks modelled a 

network G = (V, E); in particular, V represented a set of nodes which were road 

network intersections and had spatial locations; and E represented a set of links 

which connected nodes in V planarly, namely links did not cross each other without 

forming an intersection node. RNE hypotheses were designed into proposed 

generative mechanisms, directing Node Addition and Link Connection. GNMs of 

urban road networks assumed planarity and incremental network growth. 

5.3.1 Link Connection and Propose the Generative Network Model of 

Urban Road Network Evolution 

Link Connection connected newly added nodes to the modelled network; it 

determined locally whether a link shall connect two nodes. Link Connection was 

crucial to generate the primal urban road network structure. Two aspects were 

essential in this process: the proximity relationship used to determine whether two 

nodes shall be connected and viewing the modelled network as a continuous 

structure. 

5.3.1.1 Proximity Relationships 

As reviewed in Chapter 4, Link Connection of spatial networks balanced cost and 

efficiency. Cost depended on the link length; spatial network nodes’ spatial positions 

were meaningful, which associated costs to Link Connection. Efficiency might refer 
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to the number of links along the path connecting two nodes, or the difference 

between network distance and Euclidean distance between two nodes. Maximising 

the former led to a direct connection between two nodes, which created a shortcut in 

the network and led to small-world and scale-free properties. As the primal urban 

road network structure was not small-world or scale-free, efficiency from now on 

referred to the latter. Minimising cost led to Minimal Spanning Tree (MST) which was 

minimally connected, and maximising efficiency led to Delaunay Triangulation (DT) 

which was maximally connected under planarity. Link Connection of planar network 

generation maintained planarity, namely connections of every pair of nodes should 

obey planarity. Proximity graph model generated spatial and planar networks; in 

particular, Link Connection examined distance-dependent proximity relationships 

between all node pairs to determine whether they shall be connected, which led to 

local connections between neighbouring nodes that satisfied the proximity 

relationships.  

Link Connection of spatial, planar and proximity graph networks was not unrelated. 

Cost, efficiency and planarity could be seen as proximity relationship criteria, while 

proximity relationships could be seen as quantifying the preference for cost and 

efficiency. Therefore, Link Connection to model spatial and planar networks could be 

thought as a process of examining defined proximity relationships between network 

nodes, which balanced cost and efficiency, maintained planarity and determined the 

connectivity of the network. As shown in Figure 5.2, given a set of points, Link 

Connection of different proximity relationships generated spatial and planar networks 

of different connectivity. 

 

Figure 5.2 Link Connection – Proximity Relationship Examination: The three plots 

demonstrate performing Link Connection on a same set of nodes, examining proximity 
relationships between nodes from β-skeleton with β=1.0, 1.5 and 2.0 respectively.  

5.3.1.2 Network as a Continuous Structure 

The second essential aspect of Link Connection in generating the urban road 

network structure was the proximity relationship examination happened between 



140 
 

 

new nodes and a continuous network structure, instead of among nodes. In Link 

Connection, the modelled network was viewed as a continuous structure, which 

allowed proximity relationship examination to find proximity neighbours of new nodes 

at any point on the modelled network. As shown in Figure 5.3, the upper panel 

demonstrated proximity relationship examination between new nodes and a 

continuous network structure, while the lower panel demonstrated the same 

examination between new nodes and network nodes. Proximity relationship 

examination between new nodes and a continuous network structure led to the 

formation of perpendicular connections, which was crucial to generate urban road 

networks’ connection pattern. On the other hand, proximity relationship examination 

between new nodes and a discrete network structure led to sharp angles between 

links at nodes which were unlikely to be seen in urban road networks. 

 

Figure 5.3 Link Connection – Proximity Relationship Examination between 
New Nodes and a Continuous Network Structure: The left and right columns each 

share a same existing network and new nodes. The upper and the lower panels demonstrate 
proximity relationship examination between new nodes and a continuous network structure, and 
between new nodes and network nodes respectively. Black nodes and links represent the 
existing network, red nodes represent new nodes, green links represent new Link Connections 
identified by the proximity relationship examination.  

5.3.1.3 Link Connection Summary 

Link Connection was the second step of the iterative generation process in GNMs. It 

modelled elementary connection patterns of the urban road network, and its 

generative mechanism could be generalised by merging that of spatial, planar, 

proximity graph models and previous GNMs of urban road networks, as a process of 

proximity relationship examination between new spatial locations and the existing 

network. More specifically,  
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• Link Connection examined proximity relationships between new spatial locations 

and the existing network as a continuous structure, in order to balance Link 

Connection’s cost and efficiency, as well as maintain planarity, which resulted in 

the formation of elementary urban road network connection patterns. 

Following the theorisation in this section, Chapter 6 proposed a GNM of urban road 

network evolution, which generalised the Link Connection mechanism of urban road 

network generation. Subsequently, a simulation study was planned to explore the 

proposed model’s capacity in modelling the dynamic RNE process and proximity 

relationships’ role in modelling RNE. 

5.3.2 Node Addition and Propose the Hybrid Model of Population and 

Urban Road Network Co-evolution 

Node Addition added new road network nodes at specific spatial locations; this 

process initiated network growth iteratively and influenced the spatial structure of 

modelled networks. The spatial distribution of network nodes has been used to 

represent inhomogeneous demand over the space. In modelling spatial networks, 

the cost of link length was an essential factor, and nodes with shorter Euclidean 

distance had a higher probability of connecting. Spatial network generation models 

have designed generative mechanisms of Node Addition to direct spatial distribution 

of nodes and the network spatial structure.  

Previous GNMs of urban road networks, as reviewed in section 4.3.4 and discussed 

in 4.3.4.4, have used nodes to represent locations of population concentration 

locations and links to represent roads, thus representing two systems – the 

population and the urban road network, using one network. This design incorporated 

the urban system into a GNM and could be reasonable when modelling urban 

networks, regional transport networks, or the empirical correlation between 

population density and road network intersection density. However, this 

representation did not model the urban road network structure studied by this 

research, as specified in section 2.3.1, which has been used in most empirical RNE 

research. Thus, previous models’ simulation results could not be compared with 

empirical RNE findings. Further, the modelled population and road network were 

inherently connected, so that the simulated population and road network structures 

resulted from both proposed the generative mechanism and the inherent network 

connectivity, increasing the difficulty to disentangle mutual influences between the 

two systems of interests. 

This study used urban road nodes to represent road network intersections and links 

represented road segments. A layered urban system and the co-evolving 

relationship between population and road network were synthesised in Chapter 3, to 
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represent both population and road network. Chapter 8 proposed a hybrid model of 

population and road network co-evolution, which represented population and road 

network on two inter-dependent layers. Co-evolution mechanism of population and 

road network were designed into Node Addition to influence road network spatial 

structure. 

5.3.2.1 Node Spatial Distribution and Network Spatial Structure 

Figure 5.4 demonstrated node spatial distribution and its influence on network 

connectivity and spatial structure. The upper panel from left to right illustrated five 

potential spatial distributions of 100 nodes - regular grid, dispersed, centralised, 

clustered, and decentralised, respectively. The lower panel demonstrated Link 

Connection using the same Link Connection mechanism under the RNG proximity 

relationship, given the sets of nodes in the upper panel. In terms of regular grid node 

distribution, Link Connection generated a regular grid. In terms of the four irregular 

node distributions, connected networks exhibited different spatial structures. This 

result agreed with the finding reviewed in Chapter 4 section 4.2.2, which have 

connected US urban road networks using the RNG proximity relationship and found 

high link correspondence, especially in urban road networks with original grid 

layouts.  

 

Figure 5.4 Node Addition – Direct Network Spatial Structure: The upper panel 

illustrates five node spatial distributions – regular grid, dispersed, centralised, clustered, and 
decentralised respectively from left to right of 100 nodes.The lower panel shows the connected 
networks of the upper panel nodes using a same Link Connection mechanism with the Relative 
Neighbourhood Graph (RNG) proximity relationship. 

5.3.2.2 Node Addition Summary 

Node Addition was the first step of the iterative network generation process of 

GNMs, which 

     Grid                  Dispersed             Centralised                   Clustered            Decentralised 
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• Initiated network growth,  

• Influenced network spatial structure.  

Network nodes in the proposed models in this study represented urban road network 

intersections. In the proposed hybrid model of population and urban road network 

co-evolution in Chapter 8, road network-population co-evolution mechanism was 

designed into Node Addition to influence urban road network’s spatial structure. 

5.4 Simulate the Urban Road Network Evolution using GNMs 

RNE simulation implemented the proposed RNE models, used computer programs 

to imitate the formation and dynamics of urban road network structures, and 

conducted computational experiments.   

5.4.1 Plan RNE Simulation Studies 

Simulation experiments were conducted following the two proposed models, 

respectively. For the generative network model of urban road network evolution 

proposed in Chapter 6, simulation experiments in Chapter 7 planned to 

• Explore the proposed model’s capacity in modelling dynamic RNE process, 

• Explore proximity relationships’ role in modelling RNE.  

The capacity to model the dynamic RNE process showed in the capacity to model 

both static and dynamic road network structures. Data of the whole network 

generation process were to be stored instead of only the final generated networks so 

that both simulated networks’ static and dynamic structure could be examined. To 

explore proximity relationships’ role in modelling RNE, simulation experimented with 

different proximity relationships. Parallels established between microscopic 

generative mechanism and macroscopic simulated static and dynamic network 

structures may improve the understanding of network characteristic emergence and 

proximity relationships’ influences in real urban road networks. 

For the hybrid model of population and urban road network co-evolution proposed in 

Chapter 8, simulation experiments in Chapter 9 planned to  

• Explore the emerging road network spatial structure,  

• Explore the relationship between the simulated population and urban road 

network.  

To explore potential emerging road network spatial structure, simulations 

experimented with all parameter combinations that controlled population and road 

network spatial decision preferences enabled by the proposed co-evolution 

mechanism. The emerged road network spatial structures were characterised by a 
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proposed method which used processes behind the formation of these spatial 

structures for network spatial structure characterisation. Connections between the 

proposed co-evolution mechanism and macroscopic simulated structures and their 

mutual influences were to be established, thus forwarding the understanding of the 

emergence of urban road network spatial structure and its relationship to the urban 

system through the co-evolution of population and urban road network. 

5.4.2 Simulation Settings 

This section discussed general settings of conducted simulation experiments and 

their potential influences on simulation results. 

5.4.2.1 Simulation Area 

The simulation area was set as a square with sides of unit length. The size and 

shape of the simulation area were set for observational purposes, rather than 

represent a specific urban area. As the distance on the simulation area was relative, 

and the shape was for an observational purpose, the simulation area did not 

influence the simulated network structure. 

5.4.2.2 Initial Condition 

The initial road network was assumed to be a small rectangle at the geographical 

centre of the simulation area. This study did not intend to model human settlements 

or replicate the historical development of a particular road network. The initial road 

network did not have social and economic meanings. Still, the topology and 

geometry of the initial network were expected to influence the simulated network 

structure. For example, the largest possible initial network that was the same size as 

the simulation area initiated a process of space division, while a small initial network 

initiated a process of expansion. The influence of initial condition shall be considered 

in each simulation study conducted. 

5.4.2.3 Growth Rate 

The proposed models were incremental. Empirical findings have suggested road 

network growth rate varied in different historical periods. In terms of iterative growth 

modelled here, the growth rate did not significantly influence the simulation results. 

The modelled growth process was historically dependent; different orders of nodes 

added and connections made consequently resulted in different networks. However, 

as the growth was modelled iteratively by the same generative mechanism, long 

term network structure was not affected by the growth rate. 

5.4.2.4 Termination Condition 
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Regarding real-world RNE, it was reasonable to expect the size and density of the 

road network had limits and could not increase infinitely. Meanwhile, exploring urban 

boundary and density limits were not research objectives of this study.  

The simulated network grew and became denser as simulation advanced. Simulation 

terminated at user-specified time step when the simulated network reached certain 

node number so that the research questions could be best investigated. As a result, 

the simulation termination condition was decided individually for each simulation 

experiment. 

5.4.2.5 Number of Simulation Trials 

Each simulation experiment carried out multiple simulation trials with different 

random seeds to accommodate randomness’ influence on simulation results and 

reach general conclusions. Meanwhile, the number of trials also depended on 

computational power. Therefore, the number of simulation trials was decided 

individually for each simulation experiment by balancing computation power and the 

generality of simulation results. 

5.5 Examine Simulation Results 

Understanding of the urban road network structure depended on the network 

characteristics examined. Simulation result examination in Chapter 7 of the proposed 

GNM of urban road network evolution and simulation used the framework of 

elementary network component characteristics in 5.5.1 to examine both static and 

dynamic simulated network structures, in order to explore proposed model’s capacity 

in modelling the dynamic RNE process and proximity relationship’s role in modelling 

the urban road network structure. Simulation result examination in Chapter 9 of the 

proposed hybrid model of population and urban road network co-evolution used the 

proposed method in 5.5.2, to explore the emerging road network spatial structures 

and mutual influences between road network and population. Simulation results were 

compared to empirical findings reviewed in Chapter 2, 3; established relationships 

between proposed generative mechanisms and simulated structures provided 

insights into the emergence of inconsistency in empirical findings. 

5.5.1 Road Network Static and Dynamic Characteristics 

Simulation result examination in Chapter 7 aimed to explore proposed models’ 

plausibility in modelling the urban road network structure and the dynamic RNE 

process. Both static and the dynamic simulated network structures were to be 

examined using a framework of elementary network component characteristics and 

dynamics, as proposed in Table 5-3. 
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The network structure examination framework consisted of the node, link and block, 

Betweenness Centrality (BC) characteristics and dynamics. These characteristics 

were selected based on limitations identified in previous research. Empirical RNE 

research had inconsistency in findings; elementary network characteristics had more 

reported findings that could be compared horizontally, than more sophisticated 

network characteristics. Modelling RNE research using GNMs generated static urban 

road network structures rather than model the dynamic RNE process, thus did not 

incorporate empirical RNE findings to compare with simulated network dynamics. A 

network structure examination framework based on elementary network component 

characteristics and dynamics maximumly utilised existing empirical findings, 

including both static and dynamic network structures, to characterise general urban 

road network structure and dynamics. 

The proposed network structure examination framework consisted of static and 

dynamic structure, which differed from previous studies’ statistical comparison 

regarding whether simulated networks reproduced empirical network characteristics. 

Through examining the dynamic structure, comparisons could be made between the 

simulated network dynamics and empirical RNE findings. The simulation also 

enabled observation of elementary network growth of the whole network generation 

process, which pictured the formation of network structure continuously under the 

proposed generative mechanism, in comparison to empirical research’s inference 

made from discrete historical moments. This potential further illustrated the 

plausibility of the proposed generative mechanism in directing network dynamics. 

Elementary network component characteristic measures included: 

• Node characteristic degree 𝑘𝑖 referred to the number of links connecting to the 

node 𝑖.  

• Average node degree 〈𝑘〉 =
1

|𝑉|
∑ 𝑘𝑖

|𝑉|
𝑖=0 , in which |𝑉| was the number of nodes a 

network 𝐺 had and estimated the connections a node had on average.  

• Link characteristic length 𝑙𝑖,𝑗 measured the Euclidean distance between node 𝑖 

and 𝑗.  

• Block area 𝐴 measured the size of blocks in the network.  

• Betweenness Centrality (BC) measured how frequent a node or link lied on the 

shortest paths in the network; BC of a node or link 𝑖 was defined as 𝐵𝐶(𝑖) =
1

(|𝑉|−1)(|𝑉|−2)
∑

𝜎𝑠𝑡(𝑖)

𝜎𝑠𝑡
𝑠≠𝑡 , in which 𝜎𝑠𝑡 was the number of shortest path between node 

pair 𝑠, 𝑡, and 𝜎𝑠𝑡(𝑖) was the number of shortest path between node pair 𝑠, 𝑡 on 

which 𝑖 lies.  
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Apart from elementary network component characteristics’ dynamics, dynamic 

network structure included RNE phenomena proposed by empirical RNE research.  

• The backbone of urban road networks associated network components’ 

existence time with their BC.  

• Densification and Exploration (DE) referred to new links’ impact on average 

network BC, in which BC impact 𝛿𝐵𝐶(𝑒) characterised new links 𝛿𝐵𝐶(𝑒) =
[𝐵𝐶̅̅ ̅̅ (𝐺)−𝐵𝐶̅̅ ̅̅ (𝐺\𝑒)]

𝐵𝐶̅̅ ̅̅ (𝐺)
 , 𝐵𝐶̅̅ ̅̅ (𝐺) denoted the average BC of network 𝐺, and 𝐵𝐶̅̅ ̅̅ (𝐺\𝑒) 

denoted the average BC after removing link 𝑒 from 𝐺. 
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Table 5-3 Examination Framework of Urban Road Network Static and Dynamic Structure  

 Node degree 𝒌 Link length 𝒍 Block areas 𝑨 Betweenness 
centrality (BC) 

Backbones of the 
road network 

Densification 
and exploration 
(DE) 

Static 
Characteristics 

𝑘3
̅̅ ̅~59.3%, in 
[44.4%, 59.3%]; 
 𝑘4
̅̅ ̅~18.7%, in 
[5.4%, 42.2%]; 
 𝑘1
̅̅ ̅~21.3%, in  

[7.7%, 41.6%]. (US road 
networks) 
 
Planned e.g. 
US 〈𝑘〉 ≈ 2.76 in 

[2.22, 3.22],  
Barcelona 〈𝑘〉 = 3.42;  
Organic e.g. 
Oxford 〈𝑘〉 = 2.32, 

Worcester 〈𝑘〉 = 2.36, 

Edinburgh 〈𝑘〉 = 2.43, 

Sheffield 〈𝑘〉 = 2.42. 

Heavy-tailed 
distributions: 
Lognormal, 
Power-law. 

Heavy-tailed 
distributions: 
Lognormal, Power-law. 

Bimodal distribution：

High BC components 
from a spanning tree and 
low BC components 
forming loops. 

Correlations between 
high BC and long 
existence time of road 
network components; 

Two types of new 
links in the road 
network, reflected in 
different changes of 
average network BC. 

Dynamic 
Characteristics 

〈𝑘〉 may increase, stay 
constant, or decrease; 

Lognormal/ 
Power-law 
distribution with 
concentrating 
peak; 

Power-law/Lognormal 
distribution with 
increased slope on the 
log-log plot; 

Depends on network 

density 𝜌𝑒 =
|𝐸|

𝐸𝐷𝑇
;  

Concentrates towards 
the barycentre as 
network density 
increases; 

Hypotheses  Planarity resulted in 
small 𝑘 range. 

Multiplicative 
processes behind 
the formation of 
probability 
distributions. 

𝑃(𝐴) depended on 
density of the studied 
area; 
Multiplicative processes 
behind the formation of 
probability distributions. 

BC distribution was a 
planar network property 
and was decided by 
network formation 
process. 

Correlations existed 
among high BC, MST 
components, 
geographically central, 
and the long-existing 
components. 

DE was a planar 
network property but 
had temporal and 
spatial characteristics 
representing two RNE 
processes. 

Further 
Research 
Questions 

How do 𝑘3 and 𝑘4 
emerge? How do 
different 〈𝑘〉 dynamics 
emerge? 

How do lognormal 
𝑙 distribution 

emerge? How do 𝑙 
dynamics 
emerge? 

How do lognormal or 
power-law 𝑃(𝐴) 

emerge? How do 𝑃(𝐴) 
dynamics emerge? 

How do BC distribution 
emerge? Is the BC 
distribution controlled by 
𝜌𝑒? 

Do hypothetical 
correlations exist? 
Does this characterise 
the backbone of urban 
road networks? 

Do 𝛿𝐵𝐶(𝑒) distinguish 
dead-ends and 
bridging links? Does 
this characterise DE? 
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5.5.2 Road Network Spatial Structures 

Network science perspective research has shown an insufficient characterisation of 

urban road networks’ spatial structure, namely their spatial distribution and 

organisation. Some studied network characteristics, such as the block area 

distribution, exhibited high sensitivity to the density of studied area and road network. 

Without considering the spatial structure differences behind these network 

characteristics, empirical research has reported inconsistent findings. Thus, 

characterisation of road networks’ spatial structure may avoid the debate over 

specific network characteristic probability distributions, by shifting the focus to the 

various spatial structure and formation processes that led to the variance in network 

characteristics. At the same time, existing research on road network spatial 

structures has studied road network patterns such as geometric connection patterns 

and continuity hierarchy patterns, network density spatial analysis, and quantitative 

classification. Road network patterns have not connected road network’s spatial 

structure to the urban system; spatial analysis has not captured the network nature 

of road network’s spatial structure; quantitative classification has remained 

quantitative with limited theorisation. 

Empirical findings, as reviewed in Chapter 3 have suggested the spatial structure of 

urban road networks was likely a spectrum, rather than a few clear-cut types. Also, 

positive spatial correlations between urban road network and population, as well as 

between urban road network and economic, physical and functional urban spatial 

structure in general, have been reported. These empirical findings suggested related 

processes behind the formation of the road network and urban spatial structures, 

such as centralisation to decentralisation on the global scale, clustering to dispersion 

on the local scale, which may be used to characterise the urban road network spatial 

structure. This characterisation method was consistent with the urban spatial 

structure. This study proposed  

• The spatial structure of urban road networks could be measured with two 

dimensions - centralisation to decentralisation on the global scale, clustering to 

dispersion on the local scale, in accordance with the urban spatial structure;  

• Network characteristics could characterise the spatial structure of urban road 

networks. 

5.5.2.1 Characterise Road Network Spatial Structures Using Network 

Characteristics 

Figure 5.4 demonstrated different node spatial distributions – regular grid, dispersed, 

centralised, clustered, decentralised; the connected networks exhibited 

corresponded spatial structures. The grid network demonstrated the difference 
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between regular and irregular spatial structures. Two network characteristics could 

characterise these spatial structures: 

• Total link length 𝐿𝑡𝑜𝑡 = ∑ 𝑙𝑖,𝑗𝑖,𝑗  was the sum of Euclidean length 𝑙𝑖,𝑗 of all links in 

network 𝐺. 𝐿𝑡𝑜𝑡 measured the total quantity of network length and suggested the 

spatial coverage and construction cost. 

• Maximum shortest path length 〈𝑙〉𝑚𝑎𝑥 was the maximum length in network 𝐺 

among all its node pairs’ Euclidean shortest path lengths. 〈𝑙〉𝑚𝑎𝑥 measured the 

longest network distance between nodes and suggested the network’s diameter 

and span. 

 

Figure 5.5 Characterise Road Network Spatial Structure: Total link length 𝐿𝑡𝑜𝑡 (x axis) 

and longest shortest path length 〈𝑙〉𝑚𝑎𝑥 (y axis)  distinguished sample urban road network 

spatial structures in Figure 5.4. (𝐿𝑡𝑜𝑡, 〈𝑙〉𝑚𝑎𝑥) values of each sample network was plotted with 
blue points; networks were illustrated next to the (𝐿𝑡𝑜𝑡, 〈𝑙〉𝑚𝑎𝑥)  values. A simulation area of 
1000*1000 square unit length was assumed and distances in networks were measured 
accordingly. All networks had 100 nodes. The grid network served as a regular spatial structure 
in comparison with the sample irregular spatial structures.  

Together 𝐿𝑡𝑜𝑡 and 〈𝑙〉𝑚𝑎𝑥 may characterise the urban road network spatial structure. 

As shown by this small example, a centralised spatial structure network was likely to 

have small 𝐿𝑡𝑜𝑡 and 〈𝑙〉𝑚𝑎𝑥, depicting a compact layout with a close distance between 

nodes over a small area. A decentralised spatial structure road network was likely to 

have large 〈𝑙〉𝑚𝑎𝑥. 〈𝑙〉𝑚𝑎𝑥 approximated the diameter of the whole area, and there 

were nodes very far away from each other, since network nodes located near the 

fringe of an urban area. A dispersed road network was likely to have large 𝐿𝑡𝑜𝑡. 

Nodes distributed evenly and loosely, suggesting high connectivity, large cost to 
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connect, and similarity to a grid. A clustered road network was likely to have 

relatively small 𝐿𝑡𝑜𝑡 and relatively large 〈𝑙〉𝑚𝑎𝑥, as distances were large among 

multiple clusters. Figure 5.5 demonstrated 𝐿𝑡𝑜𝑡 and 〈𝑙〉𝑚𝑎𝑥 characterised the road 

network spatial structure according to the centralised to decentralised and clustered 

to dispersed dimensions, with network examples in Figure 5.4.  

5.6 Chapter Conclusion 

This chapter proposed a modelling and simulation methodology to approach the 

urban road network evolution (RNE). This methodology provided a feasible scope 

5.2.1 of network characteristics and dynamics to study the urban road network 

evolution, from a network science perspective. This methodology proposed to 

address the evolution of urban road networks through the two iterative RNE process 

Node Addition 5.3.2 and Link Connection 5.3.1, respectively. The proposed 

methodology consisted of formulating research questions 5.2 within the research 

scope and from syntheses of existing empirical and modelling RNE knowledge 5.2.2, 

proposing generative network models (GNMs) 5.3, designing simulation experiments 

5.4, and examining simulation results 5.5. 

Existing network science perspective RNE research has accumulated a considerable 

amount of topological and geometrical network characteristics findings but showed 

insufficient horizontal comparison, inconsistent findings, lack of integration with the 

urban system. The proposed RNE modelling and simulation framework using GNM 

aimed to address these limitations by two RNE modelling and simulation studies, 

targeting respectively the emergence of elementary road network characteristics 

considering the urban road network alone and the emergence of road network 

spatial structure in the urban system. Chapter 6-9 propose the generative network 

model of urban road network evolution and the hybrid model of population and road 

network co-evolution and conducted simulation experiments, exploring emerging 

road network characteristics, dynamics, spatial structures, and relationships to the 

urban system.  

Overall, the proposed RNE modelling and simulation framework brought together the 

long-standing research interest in urban road network evolution, a bottom-up 

complex network modelling and simulation approach using GNM and increasing 

empirical RNE findings. This methodology distinguished from alternative approaches 

to RNE by modelling explicitly the structure and dynamics of urban road networks, 

instead of modelling the whole transport or land use layers, but had the flexibility to 

integrate with long-established urban and transport theories as well. 
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Chapter 6 Generative Network Model of the Urban Road Network 

Evolution 

6.1 Chapter Introduction 

Transport network and its dynamics have been modelled explicitly or implicitly with 

approaches including transport demand forecasting, land use and transport 

Interaction (LUTI), urban modelling, and network science; the various modelling 

approach has differed in the urban factors and layers of interest, as reviewed in 

Chapter 4. Compared to alternative modelling approaches, generative network 

models (GNM) model explicitly the urban road network structure and dynamics, as 

illustrated in Figure 6.1. 

Existing empirical network science perspective RNE research, as reviewed in 

Chapter 2, has accumulated considerable urban road network structure and 

dynamics findings, which required further understanding because of the present 

inconsistency in the findings and the lack of consideration regarding mechanisms 

behind the emergence of observed empirical RNE characteristics. Existing GNMs of 

urban road networks, as reviewed in Chapter 4, have not compared network 

generative mechanisms horizontally, which may be generalised using proximity 

relationships. Existing GNMs have not modelled primal urban road networks but 

used nodes to represent urban centres of population concentration and links as the 

road network. This modelling choice has differed from most empirical RNE research 

that has used the primal representation, causing issues regarding whether the 

simulated networks could be compared to empirical primal urban road network 

findings. Further, current modelling RNE research has not explored the potential of 

GNM in modelling the dynamic RNE process. Parallels may be established between 

the simulated network dynamics and the dynamic RNE process, e.g. by investigating 

the network generation process, comparing the simulated network structure 

dynamics with empirical RNE findings.  

This chapter aims to answer the first research question of this thesis, as proposed in 

Chapter 1 and specified in Table 5-2: 

1. What is the working mechanism of previous GNMs in generating urban road 

network structure? Can previous models’ generative mechanisms be 

generalised? 

a) Whether proximity relationships from Proximity graphs other than RNG, like β-

skeletons play a role in modelling RNE? 
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This chapter proposes a generative network model of urban road network evolution 

6.3 with a generalised Link Connection mechanism 6.2. This model considers the 

road network structure alone without the urban system, as illustrated in Figure 6.1. 

6.4 summarises the proposed model with an algorithm. 6.5 plans the simulation 

experiments to explore emerging urban road network structures and proximity 

relationships’ role in modelling RNE. Next chapter conducts simulation experiments 

and examined simulation results, regarding emerging network structure and 

dynamics under the generalised Link Connection mechanism.  

 

 

Figure 6.1 Generative Network Model of Urban Road Network Evolution 

6.2 Generalise the Generative Mechanism of Urban Road Network 

Evolution 

Empirical research, as reviewed in Chapter 2 has suggested associations between 

the microscopic growth of network components and the macroscopic road network 

characteristics and dynamics in urban road networks’ evolution. Urban road 

networks evolved with addition and connection of elementary network components, 

which led to the emergence of different macroscopic network characteristics and 

dynamics. Urban road networks were likely first to form a skeleton of major paths, 

then developed locally by the growth of minor network components. Urban road 

networks’ connectivity, represented by node degree, was stable under the planar 

constraint. There were abundant short links, many medium-length links and very few 

very short or very long links, exhibiting a lognormal link length distribution. Block 
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areas related to the urban density; for example, from the dense urban centre 

outwards to the sparse urban periphery, block areas were likely to exhibit power-law 

or lognormal decay, namely heavy-tailed distributions with abundant small blocks 

and a few very large blocks. This network structure had an inherent hierarchy. For 

example, shortest paths between node pairs repeatedly passed through network 

components on an underlying spanning tree of high Betweenness Centrality (BC) 

components; while alternative circuitous paths had low BC, leading to a separation 

between high and low BC components. The high BC network components further 

corresponded with long-existing components and tended to concentrate around the 

geographical centre of the network. New links, depending on whether they bridged 

two existing links or formed new dead-ends, had different influences on the average 

network BC. Empirical findings have suggested the evolution of urban road networks 

emerged bottom-up from changes of basic network components. 

Regarding incremental growth, this bottom-up urban road network evolution could be 

viewed as two iterative processes: Node Addition - adding new nodes and Link 

Connection - connecting new nodes by new links. Node Addition directed spatial 

distribution and organisation of the network, while Link Connection formed 

elementary connection patterns. Node Addition in modelling spatial networks differed 

from modelling general complex networks, as spatial positions of nodes were 

meaningful. Link Connection in modelling planar networks differed from modelling 

general spatial networks, which maintained planarity and formed planar connection 

patterns. Meanwhile, modelling spatiality and planarity did not guarantee the 

generation of the urban road network structure. Among spatial and planar networks, 

proximity graphs showed structural similarity with urban road networks, indicating 

proximity relationships may play a role in the formation and dynamics of urban road 

networks. 

Thinking of the urban road network evolution in terms of the two iterative processes, 

Node Addition reflected transport infrastructure supply and interaction with the urban 

system, which was likely to respond to inhomogeneous transport demand over the 

space. Thus, the Node Addition mechanism needed to be considered in the context 

of the urban system. When considering the road network alone, the mechanism of 

Node Addition could be thought of as externally given. 

Link Connection connected new nodes to the existing urban road network, which 

equalled to finding locations on the existing network for new nodes to connect. 

Previous GNMs of urban road networks have not compared their Link Connection 

mechanism horizontally. The urban street pattern model and the centre competition 

model, as reviewed in 4.2.3.2 and 4.2.3.4 accordingly, have described Link 
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Connection as new nodes first connected with minimal link length to the existing road 

network according to a local optimal mechanism, then created loops by connecting 

to points on the existing network that satisfied the relative neighbourhood graph 

(RNG) proximity relationship. The city graph model, as reviewed in 4.2.3.3, has 

described Link Connection as connecting new nodes to points on the existing 

network in an intersection of point sets. This set of points intersected the point set 

whose connections to new nodes maintained planarity of the network, the set of 

points that were orthogonal projections of new nodes on the existing network, and 

the set of points that satisfied RNG proximity relationships of the new nodes.  

As a spatial network, costs were associated with link formation; considering cost, 

Link Connection tended to form local connections between new nodes and the 

existing network with short link length, e.g. connecting a new node to the nearest 

location on the existing network which led to a tree structure. At the same time, Link 

Connection considered efficiency; loop structure created short-cuts between nodes 

that led to increased efficiency compared to a tree structure. Balancing cost and 

efficiency locally in Link Connection, the macroscopic urban road network structure 

that lay between a tree and a complete circuitous structure emerged. Besides the 

process of balancing cost and efficiency, planarity was maintained. This whole 

process could be generalised as locally examining proximity relationships between 

new nodes and an existing network. Thus, this study proposed that Link Connection 

was a process which examined the proximity relationship between a new spatial 

location and the existing urban road network. The proximity relationship examination 

found connection locations for new nodes on the existing network, balancing cost 

and efficiency while maintaining planarity at the same time.  

6.3 Generative Network Model of the Urban Road Network 

Evolution 

Following the generalised generative mechanism, this section proposed the 

generalised generative network model of urban road network evolution. An urban 

road network G(t) = [V(t), E(t)], in which V represented a set of nodes v – road 

intersections with spatial locations c in C(t) and E represented a set of links e – road 

segments connecting nodes in V, evolved with time t by iterating the following two 

processes. 

6.3.1 Node Addition  

At time t′, Node Addition added new node v′ at location c′ to existing network G(t) so 

that V(t′) = {V(t) + 𝑣′}. The spatial location of the new node c′ was given externally. 
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6.3.2 Link Connection 

Link Connection examined the proximity relationship P(β) between new node v′ and 

the existing network G(t), found a set of points {𝑝} on G(t) which satisfied P(β); 

connected v′ and {𝑝} with links {𝑒′} so that V(t′) = {𝑉(𝑡) + 𝑣′ + 𝑝}, E(t′) = {𝐸(𝑡) + 𝑒′} 

and G(t′) = [𝑉(𝑡′), 𝐸(𝑡′)].  

The proximity relationship P(β) was the proximity relationship used to define the 

family of proximity graphs β-skeletons and was controlled by a single parameter β. 

New node v′ and a point 𝑝 were proximity neighbours and connected if the lune 

between two discs with radius β𝑑v′𝑝 2⁄  centred at ((1 −
β

2
) c′ ,

β

2
𝑝′ ) and 

(
β

2
c′ , (1 −

β

2
) 𝑝′ ) had no third node, β ∈ [1.0,2.0]. c′ and 𝑝′  were the coordinates of v′ 

and 𝑝. β < 1.0 led to non-planar networks, and β ≥ 2.0 led to disconnected networks; 

β = 1.0 equalled the Gabriel Graph (GG) proximity relationship, and β = 2.0 equalled 

to the RNG proximity relationship. 

6.4 Computer Model and Algorithm 

6.4.1 Computer Model 

The proposed RNE model was implemented with the Python programming language 

and package NetworkX, which offered the network data structure. The modelled 

urban road network was implemented as a NetworkX Graph with additional node 

attribute – coordinates and link attribute – Euclidean length. Node Addition and Link 

Connection were implemented as adding new nodes and links to the NetworkX 

Graph. In Link Connection, the existing network was approximated by a set of a 

large number of points, so that the proximity relationships between new nodes and 

the existing network could be examined. In more details, each link of the existing 

network was divided into small segments by a fixed length; all the dividing points on 

the links as well as the nodes of the existing network made up the point set to 

approximate the existing network. Examination of the proximity relationship between 

a new node and the existing network was approximated by examining the proximity 

relationship between the new node and the set of points - point approximation of the 

network. This approximation simplified the implementation of the proposed proximity 

relationship examination. Its limitation lied in that connection points on existing 

network found for new nodes were approximations of the analytical ones. The 

accuracy of approximation was controlled by the fixed length used to divide each link 

and was set to be the highest within the computation power. 
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6.4.2 Algorithm 

1. Initialisation: 

a. Initialise the initial urban road network 𝐺(0); 

b. Create approximation points set 𝑄(0) of  𝐺(0); 

c. Set iteration number 𝑡 = 1; 

2. While iteration number 𝑡 ≤  𝑁 Total iteration number: 

a. Node Addition: 

i. Add a new node with node attributes to 𝐺(𝑡); (Node ID, Spatial 

coordinates, Age); 

ii. Append the new node to Q(t); 

b. Link Connection: 

i. Find proximity neighbours of the new node using proximity 

relationship P(β): 

1. Construct Delaunay triangulation on Q; 

2. Calculate pairwise distance between points in Q; 

3. Test among the Delaunay neighbours of new node and find 

proximity neighbours of the new node; 

4. If two approximated orthogonal projection of the new node on 

a link are both found as proximity neighbours, choose one; 

ii. Connect the new node to its proximity neighbours: 

1. If the proximity neighbour is not a node in 𝐺(𝑡): 

a. Separate the original link where the proximity 

neighbour lies on into two links on each side of the 

proximity neighbour; 

b. Add the proximity neighbour into 𝐺(𝑡); 

c. Connect the new node to the proximity neighbour; 

2. Else: 

a. Connect the new node to the proximity neighbour; 

c. 𝑡 = 𝑡 + 1; 

6.5 Simulation Experiments 

6.5.1 Simulation Experiment Objectives  

The following Chapter 7 implemented the proposed model in this chapter, performed 

simulation experiments, and examined the simulated networks to explore the 

proposed research questions. This section designed simulation experiments. 

First, the simulation experiment explored the potential of the proposed model in 

modelling the dynamic RNE process. This objective was approached by examining 

both simulated networks’ static and dynamic structure and establishing relationships 

between the simulated network structure and the proposed generative mechanism, 

in order to examine the capacity of the proposed model in simulating plausible 

network structure and directing plausible network dynamics. Previous GNMs, as 
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reviewed in Chapter 4, have generated network structures sharing statistical 

similarity with empirical urban road networks but have not investigated the network 

generation process and simulated networks’ dynamic structures. Empirical research 

reviewed in Chapter 2 has suggested potential parallels between the network 

generation process and the dynamic RNE process. Thus, the association between 

the two may be established by investigating the whole network generation process 

and looking into simulated network characteristic dynamics through a series of 

network snapshots, examining the static network structure of each snapshot and the 

changes of dynamic network structure between snapshots. Studying the dynamic 

network structure would quantify how the simulated network structure changed and 

relate the microscopic changes of network components with the emergence of 

macroscopic network characteristics, thus demonstrating the plausibility of proposed 

the generative mechanism.  

Further, both simulated network static and dynamic structure were compared with 

empirical findings according to the examination framework of elementary network 

components proposed in Chapter 5 section 5.5. Aiming at generating and 

reproducing statistical network characteristics, previous modelling and simulation 

studies have compared their results only with empirical findings of static urban road 

networks but not with empirical RNE findings which have quantified how urban road 

networks changed. Empirical RNE research has documented direct empirical 

evidence, thus were critical in understanding the dynamic RNE process. Meanwhile, 

as empirical research has studied individual urban road networks and employed 

different methods, their results have exhibited inconsistency. By looking into the 

processes behind the emergence of inconsistency in empirical findings, simulation 

experiments may advance the understanding of empirical findings. 

Nevertheless, modelling the dynamic RNE process did not mean picture step by step 

the evolution process any particular urban road network but referred to the formation 

and dynamics of a generic urban network structure.  

Second, simulation experiments attempted to proximity relationships’ role in 

modelling RNE using simulation. The proposed model in this chapter generalised 

generative mechanism of urban road network evolution, using proximity relationships 

from proximity graphs β-skeletons. Plausibility of this generalisation was to be 

examined through simulated networks’ static and dynamic structure as discussed 

above. If the proposed model could generate urban road network structure similar to 

existing models’ simulated network structure, as well as broader plausible network 

structures, it demonstrated the proposed model effectively generalised the 

generative mechanism of urban road networks.  
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To explore the role of proximity relationship in modelling urban road network 

structure, simulation experiments were to be conducted with proximity relationship 

P(β) parameter β = 1.0, 1.5, 2.0, respectively. Chapter 7 section 7.6 examined the 

simulated networks accordingly. β = 2.0 equalled to proximity relationship of RNG, 

which has been used in previous models. Generation of plausible urban road 

network structure at β = 1.0, 1.5 would evaluate the generalised mechanism and 

reveal the role of proximity relationship in generating the urban road network 

structures. Simulated networks under proximity relationships with β = 1.0, 1.5, 2.0 

would be compared. 

6.5.2 Simulation Trials 

Each simulation trial was carried out on a unit square simulation area. The initial 

urban road network was a rectangle in the geographical centre of the simulation 

area. Parameters β which controlled the proximity relationship P(β), and 𝑁 was the 

total iteration number. At each time step, the simulation performed Node Addition 

and Link Connection. Node Addition added one new node to a random location on 

the simulation area. Link Connection examined the proximity relationship P(β) 

between the new node and the existing network and connected the new node to 

points on the existing network that satisfy P(β). The simulation trial terminated when 

reaching 𝑁.  

Each simulation experiment conducted a user-specified number of simulation trials 

with changing random seeds to acquire general results of the model behaviour of 

interest. The number of trials was specified by observing the variations of simulation 

results between simulation trials, which decided an appropriate number of trials 

required to achieve general model results.  

6.5.3 Sensitivity Analysis 

Parameters that might influence simulation results using the proposed model 

included the initial condition, the spatial distribution of new nodes, the number of new 

nodes added at each iteration, the point approximation accuracy of the network, 

allowed connections of each new node to found points on the existing network that 

satisfied the proximity relationship, simulation termination condition, and the number 

of trials performed for each experiment. 

The initial condition assumed an initial small rectangular urban road network at the 

geographical centre of the simulation area. This setting did not intend to specify a 

particular urban road network with historical or socio-economic meanings but was a 

choice of model implementation. The initial condition was expected to influence the 

simulation results; for example, a small initial network led to network dynamics as a 
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process of growth and expansion, while a large initial network led to network 

dynamics as a process of space division. The influence of initial condition was to be 

examined in the next chapter along with the simulation results. 

The spatial distribution of new nodes was assumed to be random in the simulation 

experiment. Previous models have tested the assumption of exponential node spatial 

distribution and found the resulted network reproduced power distribution of 

empirical block areas. The spatial distribution of new nodes was regarded as 

influenced by the urban system and was to be explored in Chapter8, 9. The random 

distribution of new nodes here did not imply spatial locations of real urban road 

network’s intersections were random. It was a model implementation choice made to 

avoid arbitrary assumptions of new road network spatial decision. Also, randomness 

enabled the observation of variations in simulation results, so that the modelled 

behaviour of interest could be better examined. 

The point approximation accuracy of the network influenced the precision of 

connecting points on the existing network for new nodes found in Link Connection. It 

was set to the highest within computational power. Allowed connections of each new 

node among found points on the existing network that satisfied the proximity 

relationship influenced elementary connection pattern of the network. Fewer 

connections allowed reduced the connectivity of the network; for example, if a new 

node was allowed to connect to only one point among the found points on the 

existing network that satisfied the proximity relationship, the simulated network 

developed into a tree structure. This simulation allowed the connection of new nodes 

to all the found points so that the role of proximity relationship could be explored. 

Simulation termination condition and the number of trials performed for each 

experiment were decided for each computer experiment according to the level of 

generality in simulation results. 

6.6 Chapter Conclusion 

This chapter addressed the first research question of this thesis and generalised Link 

Connection in the generative mechanism of urban road networks, as in section 6.2. 

This chapter proposed a generative network model (GNM) of urban road network 

evolution with the generalised Link Connection as in 6.3, 6.4. 6.5 planned next 

chapter’s simulation experiments to examine the role of β-skeletons proximity 

relationships in urban road network generation, as well as the proposed model’s 

potential in modelling the dynamic RNE process.  

The proposed model addressed three limitations in previous GNMs, which were 

identified in 4.2.3.5. First, this model used the primal representation in which nodes 
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represented road intersections, and links represented road segments, differing from 

previous GNMs’ modelled network structures using nodes to represent urban centres 

of population concentration and links to represent road network. The usage of primal 

representation enabled comparison of simulated network structures with primal 

empirical RNE findings, which constituted most empirical RNE research. Second, the 

proposed model generalised the Link Connection mechanism of urban road network 

generation, as a process of proximity relationship examination between a new node 

and the existing road network. Previous GNMs have not compared generative 

mechanisms horizontally. Link Connection has been described as a process of new 

nodes first connecting to the nearest point, then to the RNG neighbours on the 

existing network. Link Connection has also been described as a process of new 

nodes connecting to an intersection point set of points that maintain planarity, 

orthogonal projections of the new node on the existing network, and RNG 

neighbours. In doing so, previous models’ Link Connection has modelled the network 

structures under the generalised Link Connection mechanism with 𝛽 = 2.0. Third, 

this study proposed to model the dynamic RNE process, beyond previous studies’ 

network generation, and addressed previous studies’ limitation in not including 

empirical RNE findings into the simulation result examination. 

This study proposed that GNMs of urban road networks combined generative 

mechanisms of spatial networks, planar networks and proximity graphs, merging link 

length cost, efficiency, planarity and proximity relationship. The generative 

mechanism of the urban road network structure iterated two processes - Node 

Addition and Link Connection. Node Addition directed the spatial structure, and Link 

Connection directed elementary connection patterns of urban road networks. In 

particular, Link Connection examined the proximity relationship between a new 

spatial location and the existing road network, with proximity relationship from 

proximity graph β-skeletons β ∈ [1.0, 2.0]. 

Chapter 7 examines both simulated static and dynamic network structure, in 

comparison to existing empirical and modelling RNE findings, and explores 

simulated network structures under different β values. As discussed in 7.6, the 

generalised generative mechanism not only gave rise to plausible network structure 

and dynamics but also modelled a broader spectrum of plausible urban network 

structure than previous models, by changing the value of 𝛽. Network connectivity 

increased as 𝛽 decreased; network structures modelled with 𝛽 = 1.0 exhibited the 

closest average node degree to empirical findings. 𝛽 < 1.0 led to non-planar network 

structures while 𝛽 > 2.0 led to unconnected network structures, hence the range 𝛽 ∈

[1.0, 2.0]. 
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Chapter 7 Generative Network Model of the Urban Road Network 

Evolution – Simulation Results  

7.1 Chapter Introduction 

This chapter examines the simulated network structure and dynamics, using the 

proposed generative network model of urban road network evolution in chapter 6. 

This chapter aims to answer the second research question of this thesis, as 

proposed in Chapter 1 and specified in Table 5-2: 

2. Can GNM model the dynamic RNE process?  

a) What is the relationship between the simulated static and dynamic network 

structure and the generative mechanism?  

b) Are the simulated networks’ dynamic structure comparable to the dynamic 

RNE process? Can modelling and simulation provide insights on empirical RNE 

findings? 

First, to explore the proposed model’s capacity in modelling the dynamic RNE 

process, 7.2 - 7.5 examine simulated networks’ node, link, block, betweenness 

centrality characteristics and dynamics, which establish the relationship between 

simulated static and dynamic network structures and the proposed generative 

mechanism, in comparison to empirical RNE findings. Simulated network 

characteristics and dynamics are concluded from the results of 30 simulation trials. 

Second, section 7.6 explores the role of proximity relationship from proximity graphs 

β-skeletons in modelling the urban road network structure, in order to examine the 

proposed model’s generalisation of urban road network generative mechanism. Each 

β value’s influence on the simulated network structure is concluded from the results 

of 30 simulation trials. 7.7 concludes the findings of simulation experiments and 

summarises simulated network structure and dynamics with Table 7-1. 

7.2 Node Characteristics 

7.2.1 Static Node Degree Distribution 

The simulated networks had on average 54.1% k3 nodes in the range of 

[51.6%, 56.4%], 21.8% k1 nodes in the range of [18.2%, 24.5%], and 0.7% k4 nodes 

in the range of [0.3%, 1.2%], as shown in Figure 7.1. All 30 simulated networks had a 

majority of k3 nodes, which agreed with empirical findings reviewed in 2.3.2.1, e.g. 

US urban road networks have been found to have a majority of k3 nodes (on 
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average 59.3%, in the range of [44.4%, 77.8%]). Meanwhile, simulated networks had 

low k4 nodes compared to empirical findings, e.g. US urban road networks have 

been found to have on average 18.7% k4 nodes, in the range of [5.4%, 42.2%]. 

Previous generative network models (GNMs) of urban road networks have 

generated urban road network structures with organic ratio rN ≈ 1.0, as reviewed in 

4.2.3 and summarised in Table 4-1. rN measures the ratio of k1 and k3 nodes among 

all nodes; rN ≈ 1.0 meant almost all nodes of the generated networks were k1 and 

k3, as the simulation results here.  

 

Figure 7.1 Node Degree Distribution of Simulated Networks: This plot shows node 

degree distributions of 30 simulated networks. The x-axis represents node degrees presented 

in the simulated networks, k = 1, 2, 3, 4; the y-axis represents proportions of nodes of each 

node degree. Each colour represents one simulation trial’s simulated network node degree 

distribution, and there were 30 in total. The simulated networks had on average 54.1% k3 nodes 

in the range of [51.6%, 56.4%], 21.8% k1 nodes in the range of [18.2%, 24.5%], and 0.7% k4 

nodes in the range of [0.3%, 1.2%]. 

7.2.2 Static Average Node Degree 

Figure 7.3 shows the dynamics of ratios between link and node number of simulated 

networks, namely the dynamics of average node degree 〈𝑘〉 = 2
|𝐸|

|𝑉|
. 30 〈𝑘〉 dynamics 

trajectories lay within a small range; all were close to linear and can be fitted well by 

linear regression with a slope of 1.18, yielding 〈𝑘〉 = 2.36 of all simulated networks. In 

comparison to empirical findings reviewed in 2.3.2, simulated networks’ 〈𝑘〉 had 

similar value to urban road networks that have been recognised as organic, such as 

Oxford with 〈𝑘〉 = 2.32, Worcester with 〈𝑘〉 = 2.36, Edinburgh with 〈𝑘〉 = 2.43, 

Sheffield with 〈𝑘〉 = 2.42. However, simulated networks’ 〈𝑘〉 was low compared to 
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urban road networks that have been recognised as planned, such as 〈𝑘〉 = 2.76 of 

US urban road networks in the range of [2.22, 3.22], Barcelona with〈𝑘〉 = 3.42. 〈𝑘〉 of 

previous models have reported 〈𝑘〉 ≈ 2.6, which showed similar characteristics with 

the simulated networks here. Both node degree distribution and 〈𝑘〉 suggested the 

proposed model simulated reasonable k3 proportion but low k4 proportion compared 

to planned urban road networks.  

The Link Connection mechanism directed elementary connection patterns of 

simulated networks. k3 nodes were T-junctions with one road segment intersecting 

another road segment perpendicularly. Under the proposed model, Node Addition 

added one new node at a random location and Link Connection connected the new 

node by examining the proximity relationship between the new node and the existing 

network, namely finding new node’s connection points on the existing network. The 

proximity relationship used for these simulation trials was β-skeleton proximity 

relationship with β = 2.0, which equalled to that of the Relative Neighbourhood 

Graph (RNG). The resulted primary k3 connections in the simulated networks 

showed the proposed Link Connection mechanism modelled the emergence of  k3 

connection pattern. Thus, this mechanism of examining new spatial locations’ local 

proximity to the existing road network, behind k3 connection pattern, may relate to 

real-world k3 nodes’ construction. The same k3 node majority in both simulated 

network structures and empirical urban road networks indicates parallels between 

real-world k3 formation and the proposed Link Connection mechanism.  

On the other hand, simulated networks had almost no k4 nodes, showing that grid 

patterns would not emerge under the proposed generative mechanism. k4 nodes 

suggested grid urban layouts. 5.3.2.1 demonstrated the emergence of k4 nodes 

under the proposed Link Connection mechanism. When a grid layout of new nodes 

in Node Addition was given, the proposed Link Connection mechanism could form 

grid connection patterns and k4 nodes. Since this simulation experiment intended to 

explore the emergence of elementary road network characteristics, rather than node 

spatial distribution and organisation, the proposed model set Node Addition to 

generate new node at random locations, avoiding arbitrary spatial decision 

preferences. The simulation showed k3 nodes could emerge under random new 

node locations while k4 required predetermined grid layout design. The majority of k3 

nodes and the difference of k4 node proportions between simulated networks, 

organic, and planned urban road networks suggests that urban road networks lie 

between planned grid layouts and not-centrally-planned organic growth patterns.  
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7.2.3 Dynamic Node Degree Distribution 

Node degree distribution stayed stable after initial drastic changes. Figure 7.2 shows 

node degree distribution dynamics of 30 simulated networks, in which node degree 

distribution dynamics displayed the same trend across simulations. During simulated 

networks’ growth to about 700 nodes, their node degree distributions only 

experienced drastic changes when the number of nodes was less than around 100, 

and then stayed stable. In other words, node degree distributions of simulated 

networks formed after initial network changes and remained stable, with a majority of 

𝑘3 nodes, many 𝑘1 nodes, and few 𝑘4 nodes. This result indicates real urban road 

networks may experience the same growth process - drastic changes in the initial 

stage of network formation and long persistence of the network structure afterwards. 

This result also indicates the influences of individual network components decrease 

as the scale of the network increases, maintaining a stable and consistent network 

structure. 

 

Figure 7.2 Node Degree Distribution Dynamics of Simulated Networks: This plot 

shows the dynamics of 30 simulated networks’ node degree distributions. The x-axis represents 
the increase of node number as simulated networks grew and the y-axis represents the 
proportions of nodes at each node degree 𝑘1, 𝑘2, 𝑘3, 𝑘4.  Each simulation trial had four 
trajectories of 𝑘1, 𝑘2, 𝑘3, 𝑘4 node proportions dynamics: red triangles represent 𝑘3 nodes, blue 

circles represent 𝑘2 nodes, and yellow hexagons represent 𝑘4 nodes. 30 simulated networks’ 

trajectories were plotted together and showed the same trend of dynamics with a majority of 𝑘3 
nodes, many 𝑘1 nodes, and few 𝑘4 nodes, which formed after initial drastic changes and then 
persisted. 

 

 

7.2.4 Dynamic Average Node Degree 
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Empirical findings, reviewed in 2.3.2.2, reported increased, decreased, and constant 

〈𝑘〉 in different real urban road networks. The increase of 〈𝑘〉 is likely to reflect the 

transformation of road network connection patterns from tree to circuitous and grid ; 

the decrease of 〈𝑘〉 is likely to reflect the opposite transformation from circuitous and 

grid to tree; and the constant 〈𝑘〉 is likely to reflect the organic growth of urban road 

networks characterised by the addition of 𝑘3 and 𝑘1 connections. These 

transformations have been further interpreted and associated with different empirical 

urban road network developments. For example, the transformation of road network 

connection patterns from tree to circuitous and grid has been associated with the 

grid development (Barrington-Leigh and Millard-Ball, 2015). The transformation from 

circuitous and grid to tree has been associated with sprawl development which has 

been regarded to have a high proportion of 𝑘1 dead ends (Barrington-Leigh and 

Millard-Ball, 2015); this transformation has also been associated with organic growth 

characterised by mainly 𝑘3 and 𝑘1 connections (Masucci et al., 2013; Strano et al., 

2012). 

As shown by Figure 7.3, simulated networks exhibited almost constant 〈𝑘〉, 

portraying stable growth by consistent 𝑘3 connection patterns. As the trajectories of 

ratios between link and node number were linear, their slopes and 〈𝑘〉 remained 

nearly constant during the growth of simulated networks. This result may be 

interpreted as sharing the same trend of a nearly constant 〈𝑘〉 with empirical organic 

urban road networks, which grow by consistent 𝑘3 and 𝑘1 connection patterns. With 

the consistent 𝑘3 and 𝑘1 growth, the simulated networks did not show changing 

proportions of 𝑘1 and 𝑘4 nodes, which might cause 〈𝑘〉 to increase or decrease. 
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Figure 7.3 Average Node Degree Dynamics of Simulated Networks: This plot 

shows dynamics of the ratio between node and link number of 30 simulated networks. The x-
axis represents the increase of node number with the growth of simulated network; the y-axis 
represents the increase of link number. The link/node ratio dynamics of each simulated network 
was plotted by a line of different colour; 30 ratio dynamics were plotted together. The data of all 
30 simulated networks were fitted by a line, which had slope of 1.18; thus, the average node 
degree 〈𝑘〉 of all simulated networks was 2.36.  

7.2.5 Node Characteristics Summary 

2.3.2.3 specified the following research questions based on gaps identified in the 

empirical RNE research: 

• How do 𝑘3 and 𝑘4 emerge? What RNE mechanism does this reflect? Do 𝑘3 and 

𝑘4 relate to unplanned and planned growth? How do different 〈𝑘〉 dynamics 

emerge, namely why does 〈𝑘〉 increase, decrease, or remain constant with time? 

What RNE mechanism does this reflect?The simulated network grew by 

consistent 𝑘3 and 𝑘1 connection patterns, which led to node degree distribution 

with a majority of 𝑘3 nodes, many 𝑘1 nodes and few 𝑘4 nodes. In this growth 

process, 〈𝑘〉 remained almost constant.  

𝑘3 and 𝑘4 nodes could both emerge under the proposed Link Connection 

mechanism, which examined the local proximity relationship between new spatial 

locations and the existing road network. Meanwhile, k3 nodes emerged under 

random new node locations while k4 required predetermined grid node distribution. 

Without predetermined grid distribution, 𝑘4 node proportion that agreed with 

empirical planned urban road networks would not emerge under the proposed Link 

Connection mechanism. Therefore, it was reasonable to associate 𝑘4 nodes with the 

central planning of grid layout and 𝑘3 nodes with self-organised urban growth. 
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Simulated network structures’ majority of 𝑘3 nodes as in empirical findings but lower 

𝑘4 proportion than the planned networks suggest real-world urban road networks lie 

between planned grid layouts and not-centrally-planned self-organised growth 

patterns. Central planning and self-organisation coexist in the evolution of urban 

road networks. Simulated networks’ node degree proportion agreed with previous 

GNMs, suggesting GNM’s generative mechanism may model elementary connection 

patterns of self-organised urban road networks. 

〈𝑘〉 dynamics are likely to depend on elementary connection patterns by which the 

network grows. When the network grows by consistent connection patterns, e.g. 𝑘3 

nodes in the simulation, 〈𝑘〉 is likely to remain constant. When network grows by 

increased planned grid connection patterns, 〈𝑘〉 is likely to increase with increased 𝑘4 

nodes. When network grows by increased 𝑘1 connection patterns, such as in urban 

sprawl, 〈𝑘〉 is likely to decrease. Empirical findings of increase, constant, and 

decrease 〈𝑘〉 are likely to relate to the proportion of different elementary network 

connection patterns. 

7.3 Link Characteristics 

7.3.1 Static Link Length Distribution 

Link length l of the simulated networks exhibited right-skewed distributions with a 

majority peak of short to medium length links and a heavy tail of long links. Figure 

7.4 plots 30 simulated networks’ l distribution histograms side by side; simulated 

networks’ l distributions displayed the same overall shape, showing the consistent 

generic structure of simulated networks.  

Empirical research reviewed in 2.3.3.1 has reported inconsistent findings regarding 

real urban road networks’ l distribution among a few heavy-tailed distributions, e.g. 

lognormal, power-law, and exponential. As pointed out in 2.3.3.2, empirical research 

has focused on the debate of different probability distributions, with limited 

consideration of the mechanism behind the generation of each observed probability 

distribution. Addressing this identified limitation, Figure 7.4 fits simulated networks’ 

link length data with three different probability density functions, which were normal, 

lognormal and power-law distributions. 
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Figure 7.4 Link Length 𝒍 Distributions of Simulated Networks: This plot shows 30 

simulated networks link length 𝑙 distributions. The x-axis represents link length; the y-axis 
represents probability density. The histogram shows 30 simulated network’s 𝑙 distribution 
histograms side by side; each bin consists of 30 coloured lines; each line represents one 
simulated network’ values falling in this bin’s range. Three probability density function fit curves 
are used to fit simulated networks’ 𝑙 distribution, which are normal, lognormal and power-law 
respectively.  

Compared to the empirical lognormal and power-law findings, simulated networks’ l 

distributions lay between normal and lognormal. The head of l distributions, namely 

the majority of link length which were short to medium, was less than that of a 

lognormal distribution, as shown by the space between the lognormal fit curve and 

the histograms. At the same time, it was more than that of a normal distribution, as 

shown by the excess of small link length values above the normal fit curve. The tail 

of simulation networks’ l distributions fit better the lognormal distribution, which 

described the existence of a small number of very long links. The power-law 

distribution, as reported in some empirical research, did not fit simulated networks’ l 

distribution. As seen in Figure 7.4, the head of the power-law fit curve overfit the very 

short link length instead of capturing the majority of medium to short link length peak, 

and the tail overfit the small number of long links. 

Simulated networks’ l distribution resulted from simulated network dynamics. As 

reviewed in 2.3.3.2.1, lognormal and normal distributions have been distinguished by 

their generation processes: the former results from a multiplicative process while the 

latter results from an additive process. A random variable following the lognormal 

distribution is a product of multiplicative changes in which change of the random 
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variable to a later state are proportionate to the random variable at the previous 

state, while a random variable following the normal distribution results from additive 

changes. In the context of simulated networks, some network links resulted from a 

multiplicative process - the iterative division of earlier longer links. In the early stage 

of simulated network dynamics, long links were formed as the simulation area was 

empty. As simulated networks grew and simulation area’s density increased, new 

links intersected these long links, resulting in the split of these long links into shorter 

links. In this process, the change of link length was proportionate to the original long 

links’ length. Thus, network links resulted from such splitting process could be seen 

as the product of a multiplicative link splitting process.  

Meanwhile, this multiplicative process was not the only process that generated 

simulated network links. New links also connected to the simulated network at 

network nodes without intersecting existing network links. This additive process 

alone would lead to a normal distribution. Together, normal and lognormal 

distributions corresponding to multiplicative and additive link generation processes 

constituted simulated networks’ l distribution. 

This association of simulated networks’ link length distribution with its generation 

process may explain the inconsistency in empirical link length distributions. 

Differences of the observed real-world link length distributions may reflect the 

difference in their formation processes, such as the multiplicative splitting process of 

early long links into later shorter links and the additive process of random length 

links. Thus, the different reported l distributions may have characterised different 

network dynamics processes. 

Compared to the simulated networks, empirical l distribution has not reported normal 

distribution characteristics. This result may be explained by the proposed model’s 

Node Addition design, which positioned new nodes at random locations on the 

simulation area. New links of random length were sometimes added when adding 

nodes at random locations, these new links of random length were generated by the 

additive process that led to the normal distribution. This result may further relate to 

the planned versus self-organised network structures, as discussed in 7.2. Real 

urban road networks under central planning are unlikely to add road segments of 

random length. New road segments that intersect two parallel existing roads 

perpendicularly are likely to have the same length; very short links that presented in 

the simulated networks are unlikely to be constructed. This formation process 

enabled real urban road network l distributions to be better modelled by the 

multiplicative process, as new links’ length are likely to be proportionate to existing 

links, which may have enhanced the empirical lognormal l distribution fit. 
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7.3.2 Dynamic Link Length Distribution 

Figure 7.5 shows one simulated network’s l distribution dynamics with network 

growth, demonstrating in changes of the simulated network’s l distribution among six 

time steps.  

 

Figure 7.5 Link Length 𝒍 Distribution Dynamics of One Simulated Network: This 

plot shows the link length 𝑙 distribution dynamics of one simulated network. The x-axis 

represents link length; the y-axis represents probability density. Simulated network’s estimated 𝑙 
distributions at six time steps 𝑡 = 100, 150, 200, 250, 300, 350 are drawn to indicate the trend of 𝑙 
distribution dynamics. Raw link length data are drawn as vertical strokes along the x-axis. 

As the simulated network grew, the shape of l distribution persisted; the peak of the 

distribution concentrated and shifted slightly to the left; in other words, new links 

added as the networks grew were mostly short around the peak value, increasing the 

peak of l distribution. At the same time, the range of l decreased; long links formed in 

earlier stages of network dynamics were divided into shorter segments when 

intersected by new links. The empirical findings reviewed 2.3.4.4 reported a 

concentrating peak as well, but without the peak shifting to smaller values and the 

decreasing range of link length. This result suggests the multiplicative process that 

led to the empirical lognormal l distribution may differ from the multiplicative splitting 

process in simulated networks’ dynamics. The long roads may be treated as the 

same entity when intersected by new links and divided into segments; new short 

links with length proportionate to the existing links may be added; new long roads 

may also be added, such as highways and belt roads despite the increasing spatial 

density, maintaining the lognormal distribution. 
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7.3.3 Link Characteristics Summary 

2.3.3.2 specified the following research questions based on gaps identified in 

empirical RNE research regarding urban road networks’ link characteristics. 

• How does the lognormal 𝑙 distribution emerge? Does it result from the link 

composition of few extremely short and long links, many medium links and 

abundant short links? What RNE mechanism does this reflect?   

• Does 𝑙 persist in following the lognormal distribution, and how does this 

distribution change as the network grows? How do new links influence 𝑙’s 

distribution, and what RNE mechanism does it reflect? 

Simulated networks had a majority of small to medium length links and a small 

number of very long links, which exhibited combined lognormal and normal link 

length l distribution. As the network grew, the 𝑙 distribution maintained the overall 

shape with its peak concentrating, with the increase of short length links around the 

peak value. Simulated networks’ 𝑙 distribution and dynamics shared empirical urban 

road networks’ characteristics. Simulation suggests l distribution is likely to reflect 

urban road networks’ formation process and characterise the network dynamics, 

which may explain the inconsistency in empirical findings over the heavy-tailed 

distributions. Lognormal distribution is likely to be associated with a multiplicative 

splitting process. In the simulated network dynamics, long links formed at the early 

stage of network dynamics; as the network grew, long links split into shorter links, 

and the changes were proportionate to the original long link length; this multiplicative 

process led to the lognormal characteristic of simulated networks’ l distribution. New 

links of random length were also added and gave rise to the normal characteristic of 

simulated networks’ l distribution. 

Simulated link length characteristic and dynamics suggest a general RNE process, in 

which long links form at the early stage of network dynamics and persist; most new 

links added afterwards are short links and have a proportionate length to existing 

links. The proposed model is shown to be capable of giving rise to link length 

characteristics observed in real-world urban road networks. Rather than debating 

over different link length distributions, the simulation provided access to explore the 

formation processes of these distributions, establishing the relationship between the 

proposed generative mechanism and the simulated network structures. The enabled 

observation of continuous network dynamics process pictured the elementary 

network growth process and how the proposed generative mechanism directed 

elementary network dynamics. In comparison, empirical research only inferred the 

RNE process from discrete observations of individual urban road networks. 



173 
 

 

Modelling and simulation improved the understanding of empirical findings and their 

inconsistency.  

7.4 Block Characteristics 

7.4.1 Static Block Area Distribution 

Figure 7.6 plots 30 simulated networks block area distribution histograms side by 

side and fitted normal, lognormal and power-law probability density functions. The 

block area distribution P(A) of simulated networks exhibited heavy-tailed right 

skewness, with probability decreasing the block area increased. The 30 simulated 

networks exhibited the same overall shape of P(A), showing the consistent generic 

structure of simulated networks.  

The overall shape of simulated networks’ P(A) fit better the lognormal and power-law 

distributions. Lognormal and power-law distributions captured better the heavy tail of 

P(A), namely the small number of large area blocks. As shown in the inset plot of 

Figure 7.6, normal distribution did not describe the presence of the small number of 

large block areas. Between lognormal and power-law distributions, lognormal 

distribution described most of the large values but not all, while power-law 

distribution described almost all large values but had an overfitting tendency. The 

heavy tail of P(A) showed lognormal or power-law distributions and could not be 

captured by the normal distribution. The head of P(A) deviated from that of a 

lognormal or power-law distribution, as both these distributions over-described the 

number of smallest blocks. Between the two, lognormal distribution fit better than 

power-law distribution. The distribution of small area blocks indicated the presence 

of a normal distribution regime which fit the small to medium area blocks. 

Empirical research reviewed in 2.3.4.1 has reported inconsistent P(A) findings 

between lognormal and power-law distributions. Simulation results may improve the 

understanding regarding the emergence of this inconsistency in empirical findings. 

Like with the link length distribution, differences of generation processes and 

mechanisms may explain the different block area distributions. Both lognormal and 

power-law distributions have been explained as resulting from multiplicative 

processes, as reviewed in 2.3.3.2.1. In the context of urban road networks, large 

area blocks formed in the early stage of network dynamics are likely to be divided 

into small area blocks continuously, and the change of block areas was 

proportionate to the area of the initial block. Such a multiplicative division process 

may lead to the heavy tail of P(A). On the other hand, because of the random new 

node positioning in Node Addition, blocks of random size were added as well, hence 



174 
 

 

the additive change which formed the normal distribution characteristic in the head of 

P(A). 

 

Figure 7.6 Block Area 𝑨 Distributions of Simulated Networks: This plot shows 30 

simulated networks block area P(A) distributions. The x-axis represents block area; the y-axis 

represents probability density. The histogram shows 30 simulated network’s P(A) histograms 

side by side; each bin consists of 30 coloured lines; each line represents one simulated 

network’ values falling in this bin’s range. Three probability density function fit curves are drawn 

over the histograms, which are normal, lognormal and power-law fit of all the link length data 

respectively.  

In summary, block area distribution P(A) of the simulated networks exhibited normal, 

lognormal and power-law characteristics, which resulted from both multiplicative and 

additive changing processes. The heavy tail of P(A) suggests an iterative spatial 

division process as an urban road network develops. 

7.4.2 Dynamic Block Area Distribution 

Figure 7.7 shows simulated networks’ block area distribution P(A) dynamics, 

demonstrating by changes of one simulated network’s P(A) with six time steps. 

Simulated networks’ P(A) dynamics supported the inferrence made from static P(A) 

distribution that the simulated network dynamics could be charactetised as a 

multiplicative process because of the iterative space division. As simulated networks 

grew, the peak of P(A) concentrated and shifted to the left. These changes showed 

that as the simulated networks grew, larger blocks formed at an earlier stage of 

network dynamics were divided into smaller ones, which increased the number of 
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small blocks that formed the peak and decreased the number of medium to large 

blocks towards the tail.  

 

Figure 7.7 Block Area 𝑨 Distribution Dynamics of One Simulated Network: This 

plot shows the block area distribution P(A) dynamics of one simulated network. The x-axis 

represents block area A; the y-axis represents probability density. This simulated network’s 

estimated P(A) at six time steps 𝑡 = 100, 150, 200, 250, 300, 350 are drawn to indicate the trend 

of P(A)  dynamics. Raw block area data are drawn as vertical strokes along the x-axis. 

Empirical findings reviewed in 2.3.4.2 reported different P(A) dynamics. P(A) of the 

London road network, which has been reported to follow a lognormal distribution, 

exhibited a decreasing and right shifted peak, in contrast to simulated networks. This 

empirical finding meant that the area of most blocks in the London road network 

increased rather than decreased, which may result from the network expansion. As 

the London road network expanded, new blocks formed on the newly urbanised area 

were larger than most of the existing blocks. The changing process of blocks may 

still be viewed as multiplicative, with the newly added blocks having size 

proportionate to the existing blocks; thus, P(A) of London kept following the 

lognormal distribution. On the other hand, the Groane road network, which has been 

reported to follow a power-law distribution, showed an increasing power-law 

exponent as the network developed. This empirical finding suggests the Groane 

network did not expand as the London road network and experienced space division 

which divided medium to large blocks into smaller ones and caused the power-law 

exponent to increase. 
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Comparing empirical and simulated networks’ P(A) dynamics suggested diverse 

potential changing processes in real-world urban road network dynamics, other than 

the space division. For example, whether the studied road network expands during 

the studied period may lead to different results. Still, block area dynamics may be 

perceived as multiplicative processes, with changes of block area proportionate to 

existing blocks. 

7.4.3 Block Characteristics Summary 

2.3.4.3 specified the following research questions based on gaps identified in 

empirical RNE research regarding urban road networks’ block characteristics. 

• What leads to the emergence of lognormal or power-law 𝑃(𝐴) distributions in the 

road network? Is one of them more suitable to describe 𝑃(𝐴) and what RNE 

mechanism does this reflect?  

• How does 𝑃(𝐴) change as the road network grows; does it persist in following a 

lognormal or power-law distribution, and how do the characteristics of the 

distributions change? What RNE mechanism does this reflect?  

The simulated networks’ block area distribution 𝑃(𝐴) was right-skewed with a heavy 

tail and probability decreasing as the block area increased. The heavy tail may 

suggest lognormal or power-law distributions, which are likely to result from 

multiplicative processes such as continuous spatial division of larger blocks into 

smaller ones. Because of the random design in Node Addition, simulated networks’ 

𝑃(𝐴) also exhibited normal distribution characteristics in small to medium size 

blocks, which resulted from an additive changing process like the addition of random 

size blocks. Lognormal and power-law distributions may both capture the heavy tail 

of 𝑃(𝐴), with lognormal distribution fit better the simulated networks’ overall block 

area distribution. Compared to the simulated networks, real-world urban road 

networks are likely to experience various multiplicative process other than the spatial 

division; the areas of added new blocks are likely proportional to existing blocks, 

enforcing the lognormal or power-law distribution. Whether road network expands 

during studied period is likely to influence the conclusion of 𝑃(𝐴) dynamics; 

expanding road networks may add blocks larger than most of the existing ones while 

non-expanding road networks may change by increasing level of spatial division. 

7.5 Betweenness Centrality Characteristics 

7.5.1 Static Betweenness Centrality Characteristics 

2.4.1 reviewed that centrality has been a key topic in urban road network studies, 

aiming at understanding the spatial locations more important than others. Among 
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many centrality measures, Betweenness Centrality (BC) has found the most 

meaningful application in revealing the urban road network structure. Empirical 

research on urban road network BC have found the concentration of BC on a small 

number of network components and interpreted this finding as the hierarchy of urban 

road network. Meanwhile, there have been disagreements regarding the BC 

distribution over several heavy-tailed distributions, such as exponential, power-law. 

Recent empirical research on a large number of global urban road networks has 

reported urban road networks’ BC followed a bimodal distribution, which separated 

around the BC value equalled to the number of network nodes, into high BC 

components from an underlying tree structure and low BC components forming 

alternative loop paths. This bimodal BC distribution has been regarded as a planar 

network property; it was not influenced topologically by local rewiring or 

geometrically by edge weight changes and was only influenced by network density – 

the ratio of network edge number against completely connected networks. With the 

network density increasing from minimally connected to maximally connected, the 

bimodal BC distribution emerged as alternative loop paths formed beyond a tree 

structure; and the spatial correlation of high BC components increased, leading to 

the concentration of BC near the barycentre of the network. 

Figure 7.8 shows the simulated networks’ link BC distribution and spatial distribution. 

The left and right subplots draw the same BC distribution. The left subplot draws 

simulated networks’ BC distribution using histogram with logarithmic binning; the bin 

sizes increase exponentially. The right subplot first applies a logarithmic 

transformation to the link BC values, then plots the distributions using the histogram 

on the linear scale with fitted probability density curves. The 30 simulated networks 

displayed the same overall probability distribution, demonstrating the consistent 

generic structure of simulated networks. 

Simulated networks’ BC distribution was right-skewed with a heavy tail; most of the 

network links had low BC values, and a small number of links had very large BC. 

The simulated networks’ BC distribution displayed characteristics of a bimodal 

distribution, with two modes separated by the peak, as shown in the left subplot. The 

two modes separated at BC value around the number of nodes, into high and low BC 

components, in agreement with the empirical finding.  

The right subplot captures two well-defined peaks after the log-transformation of link 

BC values; the left peak corresponded with the separation of low and high BC values 

around the number of nodes, the right peak captured the logarithmic mode of high 

BC values in simulated networks centring around 104. The high BC links made up on 

average 59.5% of the total link BC while the small BC links made up on average 
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2.3% in the simulated networks. The inset plot visualises the two identified peaks: 

links with BC values smaller than the left peak value - the number of nodes BC < |V| 

were coloured in red while links with BC > 104 – the right peak value was coloured in 

black. Empirical research has associated the high BC components with an 

underlying spanning tree structure and low BC components with loops in the real-

world urban road network. The two peaks identified in simulated networks did not 

conform to tree and loop structure exactly; however, the high BC links with BC > 104 

captured the major routes in the network around the geographical centre while the 

low BC links corresponded to links of minor significance such as the dead-ends. 

The agreement of simulated networks’ bimodal BC distribution characteristics with 

the empirical findings suggests the possibility of BC distribution as a planar network 

property, consisting of high and low BC components which may be identified 

quantitatively. Besides the quantitative separation of high and low BC around the 

number of network nodes that agreed with the empirical findings, simulation results 

further identified two modes of simulated networks’ BC distribution after logarithmic 

transformation of BC values, revealing characteristics of high and low BC 

distributions respectively.  

At the same time, there were differences between the simulated networks’ BC 

characteristics and empirical findings. The number of small BC components in the 

simulated networks was less than that of the real urban road networks, as shown in 

the head of BC distribution; and the number of very large BC components was less 

than that of the real urban road networks as well, as shown in the trail of BC 

distribution. This result suggests the difference between low and high BC values is 

smaller in the simulated networks than in the real urban road networks, indicating a 

lower level of hierarchy difference. Also, the high BC components did not precisely 

correspond to an underlying tree structure, and neither did low BC components to 

loops. These disagreements are likely to result from the Node Addition design, which 

added new nodes to random locations of the simulation area. In the studied empirical 

urban road networks, new network nodes and links are likely to correlate spatially, 

such as in high density central urban areas, resulting in increased concentration of 

BC and the deepened hierarchy. Nevertheless, this model design did not interfere 

with the emergence of the bimodal BC distribution, supporting the hypothesis of BC 

distribution as a property shared by planar networks.  



179 
 

 

 

Figure 7.8 Betweenness Centrality Distributions of Simulated Networks: The left and right subplots draw the same link BC distribution of 

30 simulated networks. The left subplot draws the distribution using histogram with logarithmic binning; the x-axis represents BC values, the y-axis 
represents probability density, both axes are on the logarithmic scale; thus, the bins are not of an equal size but increase exponentially at the base of 
10. The right subplot first applies logarithmic transformation to the BC values, then draws the BC distribution using histogram; the x-axis represents 
logarithms of BC values at the base of 10, the y-axis represents probability density, both axes are on the linear scale. The inset plot of the right subplot 
visualises the two identified peaks in one simulated network; network links with BC values smaller than the left peak are coloured in red, while links with 
BC larger than 104 are coloured in black. The peak in the left subplot correspond to the left peak of the right subplot, both centring around the BC value 
that equals to the number of network nodes.  
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7.5.2 Dynamic Betweenness Centrality Characteristics 

Looking into the BC distribution dynamics, Figure 7.9 normalises simulated networks’ 

BC values by 
1

(|𝑉|−1)(|𝑉|−2)
, |𝑉| was the number of nodes. The main and inset plots 

draw the same BC distribution dynamics of one simulated network; the main plot 

draws BC distribution histograms and probability density estimations at six time 

steps on linear scales; the inset plot first applies a logarithmic transformation on BC 

values, then draws probability density estimations on the linear scales. 

 

Figure 7.9 Betweenness Centrality Dynamics of One Simulated Network: The 

main and inset plots draw the same BC distribution dynamics of one simulated network at six 

time steps 𝑡 = 100, 150, 200, 250, 300, 350. The main plot draws BC distribution histograms and 

probability density estimations on linear scales; the x-axis represents BC values; the y-axis 

represents probability density. The inset plot first applies logarithmic transformation on BC 

values, then draws probability density estimations on the linear scales; the x-axis represents 

log 𝐵𝐶, the y-axis represents probability density.  

Empirical findings, as reviewed in 2.4.2, have reported stable BC distribution in real 

urban road networks. The BC distribution has been regarded as determined by 

network density 𝜌𝑒 =
|𝐸|

𝐸𝐷𝑇
 – the ratio between the number of links in a network and 

that of the Delaunay triangulation realised on the network nodes; 𝜌𝑒 of real urban 

road networks has shown a small value range between [0.4,0.6] and have not 

exhibited significant variations with time because of planar constraint and stable 

connectivity. In the example of the Paris road network, as 𝜌𝑒 has been reported to 

remain stable in the last two hundred years, without changes of the BC distribution. 
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BC distribution maintained an overall shape as simulated network grow: on the linear 

scale as in the main plot, the BC distribution remained right-skewed with most of the 

network links having small BC and a small number of links having very large BC; in 

the inset plot, the logarithmic BC distribution displayed the bimodal characteristics 

throughout the network dynamics. As discussed in 7.1 about node characteristics, 

simulated networks’ degree distribution and average degree remained stable along 

with the network growth because of stable new node connection patterns, 𝜌𝑒 of the 

simulated networks remained around 0.4 along with the network dynamics. In 

disagreement with the empirical findings, the BC distribution of simulated networks 

did not remain precisely the same but decreased as a whole as the network grew. 

This result was shown in the increasing peak of small BC values and the decreasing 

BC range in the main plot, as well as the left shift of BC distributions in the inset. This 

disagreement may result from different scaling methods applied in empirical 

research. Nevertheless, simulated networks showed persistent bimodal 

characteristics throughout the network dynamics, suggesting a stable network BC 

structure with the high and low BC component separation. 

7.5.3 The Backbone of Urban Road Networks 

The Backbone of urban road networks has been used to refer to an empirical RNE 

phenomenon that the most critical roads in an urban road network persisted through 

time, which associated roads’ age with their BC, as reviewed in 2.4.3.  

Figure 7.10 and Figure 7.11 demonstrate the relationship between simulated 

networks’ link age and BC. In the left plot of each upper panel, links were divided into 

five equal age groups since the beginning to the end of the simulation. Links were 

coloured according to their age group: the red links were oldest in the network and 

then yellow, green, light blue and dark blue. In the right plot of each upper panel, link 

BC was ranked and divided into five groups according to 20th, 40th, …, 100th BC 

percentiles. Links were coloured accordingly: the red links had the highest BC 

values, then yellow, green, light blue and dark blue. To explore initial network spatial 

location’s influence on simulation results, simulation experiment starting from a 

square network - the border of the simulation area as shown in Figure 7.11 was 

implemented besides the default initial condition that started from a rectangle 

network in the geographic centre as in Figure 7.10. The lower panels of Figure 7.10 

and Figure 7.11 show Link BC’s cumulative probability distributions by each link age 

group and for 30 simulated networks starting from the two initial conditions 

respectively. 
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Figure 7.10 The Backbone of Simulated Networks: This plot demonstrates the 

relationship between simulated networks’ link existence time and BC, for simulation 
experiments with initial condition - a small rectangle network at the geographical centre of the 
simulation area. The upper panel colours one simulated network according to link existence 
time and BC respectively. The left network is coloured according to links added in five equal 
periods since the beginning to the end of simulation: the red links are oldest in the network, and 
then yellow, green, light blue and dark blue. The right network is coloured according to five link 
BC ranks at 20th, 40th, …, 100th BC percentiles: the red links have highest BC values, then 
yellow, green, light blue and dark blue. The lower panel plots link BC’s cumulative probability 
distributions by each link age group and for 30 simulated networks: the red dots are the oldest 
links’ BC probability distribution, then yellow, green, light blue and dark blue. 

The correlation between link existence time and BC were observable in both Figure 

7.10 and Figure 7.11. In both simulation experiments, existence time and BC both 

captured important routes in the simulated networks; existence time and BC had 

correlations, shown in the red long-existing and high BC major paths and blue short-

existing and low BC minor links. The visual association was confirmed by the BC 

cumulative probability distributions as shown in the lower panels: red points 
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representing oldest links in the network had overall highest BC; BC, in general, 

decreased with link existence time. 

 

Figure 7.11 The Backbone of Simulated Networks – Initial Network’s Influence: 

This plot demonstrates the relationship between simulated networks’ link existence time and 
BC, for simulation experiments with initial condition - a large square network at the border of the 
simulation area. The upper panel colours one simulated network according to link existence 
time and BC respectively. The left network is coloured according to links added in five equal 
periods since the beginning to the end of simulation: the red links are oldest in the network, and 
then yellow, green, light blue and dark blue. The right network is coloured according to five link 
BC ranks at 20th, 40th, …, 100th BC percentiles: the red links have highest BC values, then 
yellow, green, light blue and dark blue. The lower panel plots link BC’s cumulative probability 
distributions by each link age group and for 30 simulated networks: the red dots are the oldest 
links’ BC probability distribution, then yellow, green, light blue and dark blue. 

Initial geographical location influenced the simulation results; though both simulation 

experiments reached the same conclusion, the link existence time – BC correlation 

was stronger when network dynamics started from the small rectangle network at the 

geographical centre compared to the border of the simulation area. This result was 
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shown in the visual correspondence in the upper panels of Figure 7.10 and Figure 

7.11, as well as in the BC cumulative probability distributions by age groups in the 

lower panels. The influence of the spatial location of the initial network suggested 

road importance measured by BC captured road segments around the geographical 

centre of the urban road network. The correspondence between long-existing and 

high BC road segments may be explained as long-existing road segments which 

occurred in the early stage of road network dynamics are likely to span across the 

urban area given low urban density and occupy central locations as the urban area 

develops at the same time outwards. The empirical finding of link existence time and 

importance correlation is likely to identify geographically central roads which may 

occur in the early stage of road network formation and have high BC in the current 

network. 

In comparison to the empirical backbone phenomenon, one difference was the 

smallest values of each link age group’s BC. In the Groane road network, smallest 

BC values of the oldest link group were still larger than the rest of the links. However, 

in the simulated networks, though older links, in general, had larger BC, all age 

groups shared similar smallest BC values. 

7.5.4 Densification and Exploration 

Densification and exploration (DE) have been used to refer to two types of new links 

identified through examining Link BC impact 𝛿𝑏𝑒𝑡  of new links on average network 

BC, as reviewed in 2.4.4. The DE phenomenon has been regarded as different new 

links urbanisation functions: the former bridged existing roads which densified the 

urban area and the other extended the existing network. The two types of new links 

have been reported to occur at different stages of the road network and urban 

development in different proportions. 

Figure 7.12 shows 𝛿𝑏𝑒𝑡 distributions of new links during 30 simulated network 

dynamics, divided into five equal periods. In agreement with the empirical findings, 

𝛿𝑏𝑒𝑡 distributions of the simulated networks all exhibited two peaks; these two peaks 

persisted throughout the simulated network dynamics. The left peak had negative 

values and corresponded mostly with bridging new links - densification; the right 

peak had positive values and corresponded mostly with dead-end new links - 

exploration. Along with the simulated network dynamics, two 𝛿𝑏𝑒𝑡 peaks both moved 

towards 0 and became more concentrated. This result showed that a single new 

link’s impact on the average network BC decreased as network size increased. The 

ratio between the two groups did not show meaningful changes as in empirical 

findings. For instance, the right peak in Groane road network evolution eventually 

disappeared, indicating the exploration new links would decrease as urban road 
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network developed into a mature stage. This disagreement suggested more 

sophisticated urban factors which may include urbanisation, population dynamics, 

design and planning paradigm shift. accounted for the ratio changes of DE in real-

world urban road network dynamics, beyond topological and geometrical 

development of Node Addition and Link Connection. To account for such urban 

factors and model the following changes of urban road networks, a specific design of 

generative mechanism aiming at particular urban factors was required. The temporal 

structure of DE is further discussed in 9.2.2. 

 

Figure 7.12 Link Betweenness Centrality (BC) Impact 𝜹𝒃𝒆𝒕  Dynamics of 
Simulated Networks: The five panels show 𝛿𝑏𝑒𝑡 distributions of new links during 30 

simulated network dynamics, divided into five equal periods. The x-axis represents BC impacts 
𝛿𝑏𝑒𝑡; the y-axis represents probability density. 

One aspect that has not been investigated in empirical RNE research was the spatial 

locations of DE links. Figure 7.13 demonstrated the spatial distribution of identified 

DE new links in one simulated network along with the simulated network dynamics: 

the left peak – densification links were coloured in green and the right peak – 

exploration links in red. Figure 7.13 clearly showed the green densification links 

correspond in general to new links bridging two existing links while the red 

exploration links correspond to dead-ends or the links next to dead-ends. The two 

groups did not exhibit particular spatial distribution patterns. For instance, exploration 

may be more frequent at the urban frontier, while densification may happen at both 

sparse and dense urban areas. Nevertheless, DE links’ behaviours to divide and 
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explore space were observable: the green densification links further divided larger 

blocks into smaller ones while the red exploration links extended the network into 

unoccupied space. The spatial structure of DE is further discussed in 9.2.2. 

 

Figure 7.13 Spatial Locations of Densification and Exploration in Simulated 
Networks: The five subplots demonstrate spatial distribution of identified DE new links in one 

simulated network along with the simulated network dynamics, from left to right. Densification 
links – the left peak are coloured in green; exploration links - the right peak are coloured in red. 

 

Figure 7.14 New Link End Nodes Composition 𝑬𝒊 Dynamics of Simulated 
Networks: The five subplots demonstrate spatial distribution of new links of different end 

nodes composition 𝐸𝑖 in one simulated network along with the simulated network dynamics, 

from left to right. 𝐸1 meant a new link 𝑒 occurred in a studied period had one end node attached 

to new network infrastructure occurred as well in this period and the other end node to existing 

network infrastructure before this period. 𝐸1 links are coloured in green while 𝐸2 links are 

coloured in red. 

To further explore the types of new links in the simulated networks, Figure 7.14 

shows the dynamics of new link end nodes composition 𝐸𝑖 during the simulated 

dynamics of one simulated network. 𝐸𝑖 separated new links by the number of end 

nodes attached to new network infrastructure during a period. For example, 𝐸0 

meant a new link 𝑒 occurred in a studied period had no end nodes attached to new 

network infrastructure, i.e. both its end nodes attached to existing network 

infrastructure before the studied period. 𝐸1 meant a new link 𝑒 occurred in a studied 

period had one end node attached to new network infrastructure occurred as well in 

the same period and the other end node to existing network infrastructure before this 
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period. Two types of new links were identified in the simulated networks by 𝐸𝑖, 

demonstrated in Figure 7.14: 𝐸1 links were coloured in green while 𝐸2 links were 

coloured in red. 

Network dynamics depicted by 𝐸𝑖 showed the network dynamics of simulated 

networks could be divided into two phases, beyond the DE processes. An early 

stage of network dynamics during which the simulated network went through large 

scale global changes, as shown in the majority of red 𝐸2 links in the leftmost subplot 

and later stages of minor local changes, as shown in the majority of green 𝐸1 links in 

the following subplots. This result showed potential spatial processes other than DE 

to characterise urban road network dynamics and reflected 𝐸𝑖’s capacity in detecting 

both global and local urbanisation. 𝐸𝑖 also identified one limitation of the proposed 

model, shown in the absence of 𝐸0 links. New link creation of the proposed model 

was always initiated by the addition of new nodes in Node Addition, namely links 

only formed in Link Connection after the addition of a new node. When two existing 

roads were to be connected by a new link, real-world road networks used an 𝐸0 link 

with two end nodes attached to two existing roads. Whereas in terms of the 

simulated networks, a new node had to be generated first between two existing 

roads, followed by two new links extending from this new node to connect the two 

existing roads on each side of the new node; namely, an 𝐸0 link was approximated 

by two 𝐸1 links. This design that Link Connection only followed Node Addition led to 

the absence of 𝐸0 new links and one limitation of the simulated networks. Despite 

this limitation, BC impacts 𝛿𝑏𝑒𝑡 was still capable of capturing the bridge links, each 

approximated by two 𝐸1 links, suggesting the robustness of the DE property which is 

likely a topological property of planar networks. 

7.5.5 Betweenness Centrality Characteristics Summary  

2.4.5 specified the following research questions based on gaps identified in empirical 

RNE research regarding urban road networks’ BC characteristics. 

• Does BC follow bimodal distributions, consisting of high BC components from an 

underlying tree structure and low BC components forming alternative loop paths 

in the road networks? Does network density control the BC distribution? How do 

BC distribution emerge, and what RNE mechanism does this reflect? 

• How do BC distribution change with time, and what RNE mechanism does this 

reflect? 

• Do high BC components and the components from the underlying high BC tree 

structure, near the barycentre, and long existing in the road network correlate? 
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Do these correlations characterise the proposed RNE phenomenon - backbones 

of the road network? What RNE mechanism does this reflect? 

• Do 𝛿𝐵𝐶(𝑒) distinguishes dead-ends and bridging links? Do dead-ends and 

bridging links perform different functions in the road network and have different 

spatial and temporal characteristics? Do dead-ends and bridging links and their 

functions characterise the observed RNE phenomenon DE? What RNE 

mechanism does this reflect? 

The simulated networks shared BC characteristics and dynamics with real-world 

urban road networks, including the bimodal BC distribution, the correlation between 

component existence time and BC, and the bimodal distribution of new links’ impact 

on average network BC. These results demonstrated the plausibility of simulated 

network structure in modelling urban road networks and dynamics. On the other 

hand, this showed BC characteristics may be planar network properties, and planar 

networks at the network density similar to urban road networks are likely to share 

these BC characteristics, which explains the broad observations of these BC 

characteristics. 

Simulated networks’ BC distribution confirmed the bimodal distribution found in 

empirical research and the separation of high and low BC at the value equalled to 

the number of network nodes. This result suggested the existence of a high and low 

structural hierarchy of the urban road network centrality. The simulated network had 

not confirmed that high BC components come from an underlying tree structure in 

the network, and the low BC components formed the alternative loop paths. In the 

case of the simulated network, high BC components captured the major routes near 

the geographical centre of the network while low BC components were minor links 

such as dead-ends. Also, the simulated network had not confirmed that the BC 

distribution remained stable with the stable network density. Instead, BC of the whole 

network decreased as the network grew in size, which may be caused by a different 

scaling method used to calculate BC in empirical studies.  

The simulated network confirmed the correlation between network components’ 

existence time and BC; long-existing network components had high BC. In term of 

the simulated network, this correlation related to broader correlations between 

network components of high BC, near the geographical centre, and long-existing, as 

well as the correlations between network components of low BC, being minor links 

like dead-ends. This result suggested that the simulated network dynamics consisted 

of initial global changes and later local changes. In the initial stage of network 

dynamics, network spanned the simulation area and occupied the geographical 

centre; these network components were long-existing, near the geographical centre 
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and had high BC. The later stages of simulated network dynamics were local 

changes which further divided and extended the existing network into the large 

blocks formed in initial network dynamics; size and location of components added at 

that time were restricted by spatiality and planarity and had small BC. This result 

also showed the planar constraint, under which new links formed after initial global 

changes were constrained as minor road segments. 

The limitation of the simulated networks first showed in the lower level of BC 

hierarchy and the lack of meaningful spatial and temporal dynamics, which 

suggested such spatial and temporal inhomogeneous are likely to come from urban 

factors that were not considered by the proposed model’s generative mechanism. 

Second, the design of iterative network generation by Node Addition followed by Link 

Connection lacked the consideration for the addition of new links which was not 

initiated by the purpose to connect new nodes. Despite the limitations, the simulated 

networks shared key characteristics of BC distribution and dynamics with empirical 

findings of real urban road networks. 

7.6 The Effect of Proximity Relationships 

As reviewed in 4.2.3 and further discussed in 5.3.1, the previous GNMs of urban 

road networks have not compared the Link Connection mechanism horizontally. Link 

Connection has been described as a process of new nodes first connecting to the 

nearest point, then to the RNG neighbours on the existing network. Link Connection 

has also been described as a process of new nodes connecting to an intersection 

point set of points that maintain planarity, orthogonal projections of the new node on 

the existing network, and RNG neighbours.   

Recognising this limitation, the proposed model generalised Link Connection as 

examining the proximity relationship between a new spatial location and the existing 

road network, in which the proximity relationship was not fixed but might vary in a 

quantitative range. The range of proximity relationship implemented come from the 

family of proximity graphs - β-skeletons. To explore proximity relationship’s role in 

forming simulated network structure and dynamics, this section examined simulated 

networks generated under β-skeleton proximity relationship 𝛽 = 1.0, 𝛽 = 1.5, and 

compared to simulated networks generated under  𝛽 = 2 which were used in 

previous sections. 1.0 ≤ 𝛽 ≤ 2.0 because 𝛽 ≤ 1.0 led to non-planar networks and 

𝛽 ≥ 2 led to disconnected networks. 𝛽 = 1.0 equalled the proximity relationship that 

generated Gabriel Graph (GG); 𝛽 = 2.0 equalled to the proximity relationship that 

generated Relative Neighbourhood Graph (RNG) and was used in previous models.  
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Figure 7.15 shows simulated networks and dynamics under β-skeleton proximity 

relationships 𝛽 = 1.0,1.5, 2.0 at time step 𝑡 = 0,100, 200,300, starting from the same 

initial network and using the same random seed. The overall structure and dynamics 

of simulated networks under 𝛽 = 1.0,1.5 were similar to that of 𝛽 = 2.0, which were 

measured by the framework of elementary network component characteristics as in 

previous sections. The simulated network under 𝛽 = 1.0 had average node degree 

〈𝑘〉 = 2.78, which was closer to empirical findings of planned urban road networks, 

e.g. US urban road networks 〈𝑘〉 = 2.76, than the simulated networks under  𝛽 = 2.0 

in previous sections.  

 

Figure 7.15 The Effect of Proximity Relationship: The three panels demonstrate 

simulated networks and dynamics under proximity relationship 𝛽 = 1.0, 1.5, 2.0, respectively, 
starting from the same initial network and using the same random seed. Network dynamics are 
demonstrated by snapshots at time step 𝑡 = 0, 100, 200, 300. Network components with the 
highest BC are coloured in red. 

As can be observed in the simulated networks, 𝛽 = 1.0 led to a higher occurrence of 

𝑘4 nodes and grid patterns, though still fewer than planned grid road networks. Also, 

new links under 𝛽 = 1.0 had a larger proportion of densification links than exploration 

links compared to the 𝛽 = 2.0 examined in 7.5.4, which was similar to real-world 

𝛽 = 1.0

𝛽 = 1.5

𝛽 = 2.0

𝑡 = 0 𝑡 = 100 𝑡 = 200 𝑡 = 300
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urban road networks; namely, the proportions of new links being dead-ends and 

bridge links were closer to real-world road networks (reviewed in 2.4.4). From the top 

to the bottom panel in Figure 7.15, with the increase of 𝛽, the network connectivity 

modelled by Link Connection decreased. Meanwhile, 𝛽 = 1.0, 1.5 led to the 

occurrence of sharp angles in the simulated networks, which were limitations of 

these proximity relationships. These findings agreed with the finding reviewed in 

4.2.2, which have compared network structures constructed by connecting the Tokyo 

road network nodes with β-skeleton proximity relationships and the real-world 

network. Constructed network structures with β-skeleton proximity relationships 𝛽 ∈

[1.0,1.5] had the highest link correspondence with the Tokyo road network. 

Simulation results in this section showed network connectivity modelled by the Link 

Connection mechanism with 𝛽 ∈ [1.0,1.5] was closer to empirical planned urban road 

networks. 

7.6.1 The Effect of Proximity Relationship Summary 

Chapter 4 identified the limitation of previous GNMs of urban road networks in 

insufficient horizontal comparison of the Link Connection mechanism. The proposed 

GNM in Chapter 6 generalised Link Connection as a process to examine the 

proximity relationship between a new spatial location and the existing network, using 

β-skeletons proximity relationship with 𝛽 ∈ [1.0,2.0]. This section answered the 

following research question specified in Chapter 4:  

• Whether proximity relationships from proximity graphs other than RNG, like β-

skeletons play a role in modelling RNE? 

Simulation networks structure and dynamics under β-skeleton proximity relationships 

𝛽 = 1.0,1.5, 2.0 in this section showed the generalised Link Connection mechanism is 

capable of modelling urban road network structure and dynamics and may model a 

broader range of plausible network structures than previous GNMs of urban road 

networks, by changing the value of 𝛽. The simulated network structure and dynamics 

with different 𝛽 values suggested proximity relationships from β-skeleton proximity 

graphs in the range 𝛽 ∈ [1.0, 2.0] was essential to the generation of the urban road 

network structure. Link Connection could be controlled quantitatively by parameter 𝛽. 

The examination of proximity relationships achieved three things: it balanced link 

length and cost while maintained planarity; the former modelled spatiality and the 

latter modelled planarity; beyond spatiality and planarity, β-skeleton proximity 

relationships with 𝛽 ∈ [1.0, 2.0] formed elementary connection patterns of urban road 

networks, as reflected by the plausible simulated network characteristics and 

dynamics. 
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Table 7-1 Findings and Conclusions – Generative Network Model of Urban Road Network Evolution 

Network 
Characteristics 

Previous Empirical 
Findings 

Previous 
Models’ 
Findings 

This Study’s Findings and Conclusions 

Node  Static: 

• Majority node degree 𝑘3, 
e.g. on average 59.3% in 
the range of 
[44.4%, 77.8%] in US; 

• Planned US 〈𝑘〉 ≈ 2.76 in 

[2.22, 3.22], Barcelona 
〈𝑘〉 = 3.42; Organic 

Oxford 〈𝑘〉 = 2.32, 

Worcester 〈𝑘〉 = 2.36, 
Edinburgh 〈𝑘〉 = 2.43, 

Sheffield 〈𝑘〉 = 2.42. 

Dynamic: 

• Reported 〈𝑘〉 dynamics’ 
findings inconsistent: 
increased, decreased, 
stayed constant. 

Static: 

• Organic ratio 

𝑟𝑁 =
𝑘3+𝑘1

∑ 𝑘𝑖𝑖
≈

1.0; 

• 𝑒 ≈ 1.3, 〈𝑘〉 ≈
2.6. 

Static: 

• Simulated networks under 𝛽 = 2.0 had a majority of 54.1%  𝑘3 nodes, in the range 

of [51.6%, 56.4%]; 

• Simulated networks under 𝛽 = 2.0 had low 𝑘4 node proportion 0.7%, in the range of 
[0.3%, 1.2%]; 

• 𝛽 = 2.0, 〈𝑘〉 ≈ 2.36; 𝛽 = 1.0, 〈𝑘〉 ≈ 2.78. 

Dynamic: 

• Node degree 𝑘𝑖 distribution stayed stable after initial drastic changes. 

• 〈𝑘〉 was nearly constant. 

Conclusions: 

• Simulated networks’ majority of 𝑘3 agreed with empirical findings; high 𝑘3 and 𝑘1 
proportion agreed with previous models. 

• Simulated networks’ 〈𝑘〉 was close to empirical findings of organic urban road 
networks. 

• 𝑘3 was the main connection pattern under the proposed Link Connection 
mechanism using proximity relationship from β-skeletons with 𝛽 in [1.0, 2.0]. 𝑘4 
required a predetermined grid node distribution Node Addition mechanism design. 
The simulation suggested urban road networks lie between planned grids and 
organic 𝑘3 growth patterns. 

• 〈𝑘〉 dynamics resulted from changes of node degree 𝑘𝑖 proportions: increase of 𝑘4 
increased 〈𝑘〉; increase of 𝑘1 decreased 〈𝑘〉; stable connection patterns led to 

constant 〈𝑘〉. 

• Network connectivity increased with 𝛽. 

Link Static: 

• Link length l findings 
inconsistent among 
heavy-tailed distributions: 
power-law, lognormal, 
exponential; 

Static: 

• l distribution 
not examined 
by all previous 
studies; 
exponential 
lognormal l 

Static: 

• Simulated networks’ l distribution exhibited both lognormal and normal distributions’ 
characteristics; 

Dynamic: 

• l distribution maintained the overall shape, with concentrating peak and decreasing 
range of values. 
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Dynamic: 

• l dynamics findings 
inconsistent: power-law, 
lognormal distribution with 
concentrating peak. 

distribution 
reported. 

Conclusions: 

• Simulated networks’ 𝑙 distribution and dynamics shared empirical urban road 
networks’ characteristics: the distribution was right skewed with a majority of short 
to medium links and a small number of long links; as the network grew, the 𝑙 
distribution maintained the overall shape with its peak concentrating.  

• Simulated networks 𝑙 distribution exhibited both lognormal and normal distribution 
characteristics. The former resulted from multiplicative generation processes, such 
as longer roads from an earlier stage of road network evolution dividing 
proportionately into shorter segments; the latter resulted from additive processes, 
such as adding new links of random lengths. 

Block Static: 

• Block area A findings 
inconsistent among 
heavy-tailed distributions: 
power-law, lognormal; 
sensitive to density of the 
studied area; 

Dynamic: 

• P(A) dynamics findings 
inconsistent: power-law 
with increasing exponent, 
lognormal with decreasing 
peak. 

Static: 

• P(A) followed 
power-law 
distribution 
given 
exponential 
node spatial 
distribution. 

Static: 

• Simulated networks’ 𝑃(𝐴) was righted skewed with heavy tail and exhibited normal, 
lognormal, and power-law distributions’ characteristics; 

Dynamic: 

• P(A) maintained the overall shape, with concentrating peak and decreasing range 
of values. 

Conclusion: 

• Simulated networks’ P(A) and dynamics shared empirical urban road networks’ 
characteristics: righted skewed with heavy tail and probability decreased as the 
block area increased. 

• 𝑃(𝐴) exhibited normal, lognormal, and power-law characteristics: the latter two 
resulted from multiplicative processes, such as the iterative spatial division of larger 
blocks into smaller ones; the former resulted from additive process, such as the 
addition of random size blocks. 

• Besides density, 𝑃(𝐴) dynamics was also influenced by whether road network 
expanded during studied period; expanding road networks may add blocks larger 
than most of the existing ones while non-expanding road networks change by 
increasing level of spatial division. 

BC Static: 

• BC distribution findings 
inconsistent: bimodal 
distribution separated 
around BC value equals 
to the number of nodes, 
power-law, exponential; 

Dynamic: 

Static: 

• Concentration 
of BC on a 
small number 
of network 
component; 
exponential BC 

Static: 

• Simulated networks’ BC followed a bimodal distribution, separating around the BC 
value that equalled to the number of nodes; 

Dynamic: 

• BC maintained the overall shape, with concentrating peak and decreasing range of 
values. 
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• Bimodal BC distribution 
reported to be determined 
by network density 𝜌𝑒 and 
stay stable because of the 
small 𝜌𝑒 range of real-
world urban road 
networks. 

• Backbone of urban road 
networks: correlation 
found between long-
existing and high BC 
roads; 

• Densification and 
exploration: two types of 
new links that increased 
or decreased average 
network BC, respectively. 

distribution 
reported. 

• Backbone of urban road networks: correlation found between long-existing and high 
BC links; 

• Densification and exploration: two types of new links found that increased or 
decreased average network BC, respectively. 

Conclusions: 

• Simulated networks exhibited a bimodal BC distribution, correlations between high 
BC and existence time, and two types of new links increased or decreased average 
network BC respectively, in agreement with empirical findings. 

• The simulation suggested connections between BC related empirical findings, 
which may all result from the network formation process: the BC distribution and 
dynamics, the backbone of urban road networks, densification and exploration.  

• BC related characteristics and dynamics may result from a network formation 
process of initial global changes and later local changes. In the initial stage of 
network dynamics, network spanned the simulation area and occupied the 
geographical centre; these network components were long-existing, near 
geographical centre and had high BC. The later stages of simulated network 
dynamics were local changes which further divided and extended the existing 
network into the large blocks formed in initial network dynamics; size and location of 
components added then were restricted by spatiality and planarity and had small 
BC. 

• Simulated networks suggested BC-based characteristics were properties shared by 
planar networks. DE were two only possible connection patterns for new links. This 
explained frequent observations of such characteristics. However, urban road 
networks’ BC may differ from other planar networks by spatial and temporal 
characteristics, which were likely to be influenced by urban factors. 
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7.7 Chapter Conclusions 

This chapter addressed the second research question of this thesis and explored the 

capacity of the proposed GNM of urban road network evolution in chapter 6 to model 

the dynamic RNE process. This chapter examined both the static and dynamic 

simulated network structure in 7.2 - 7.5. Original simulation findings of a general 

urban road network structure and dynamics were yielded, as summarised in sections 

7.2.5, 7.3.3, 7.4.3, 7.5.5 on the node, link, block, betweenness centrality 

characteristics and dynamics, respectively. Table 7-1 outlined this chapter’s 

simulation findings, in comparison with empirical findings and previous simulation 

results. 

This chapter addressed three limitations in previous studies. First, existing modelling 

RNE research has stopped at network generation and has not explored the capacity 

of GNM in modelling the dynamic RNE process. Second, existing modelling RNE 

research has not integrated empirical RNE findings into simulation result 

examination, because of the network generation objective. Third, empirical RNE 

research has had insufficient horizontal comparison and shown inconsistency in 

findings. This study stored and investigated the whole simulated dynamics, rather 

than only the final generated networks. This study integrated with the empirical RNE 

findings in simulation result examination and established the relationship between 

the generative mechanism, the simulated network structure and dynamics, and the 

empirical RNE characteristics. Exploration of the continuous simulated network 

dynamics showed the potential processes that led to the emergence of the 

inconsistency in empirical RNE findings. 

This chapter demonstrated that the proposed GNM could model plausible static and 

dynamic urban road network structures and portrayed the evolution of a general 

urban road network structure, as outlined in Table 7-1. Elementary road network 

connection patterns may emerge from the Link Connection process, which examines 

the proximity relationship between a new spatial location and the existing network. 

Network connectivity changes with specific proximity relationships. The urban road 

network evolution may be characterised by stable connections, multiplicative and 

additive growth corresponding with continuous large component division and random 

size component addition, the initial formation of a major path skeleton and later local 

changes of minor components. 
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Chapter 8 Hybrid Model of the Population and Urban Road Network 

Co-evolution  

8.1 Chapter Introduction 

Road network and the urban system co-evolve: the spatial structure of road network 

and the urban system have been found to correlate and exhibit global centralisation 

and decentralisation as well as local clustering and dispersion as reviewed in 

Chapter 3, suggesting a co-evolution mechanism of push and pull forces on different 

urban layers behind urban system formation and dynamics. Research fields such as 

Transport demand forecasting, Land use and Transport Interaction, Urban modelling, 

and Network science have all involved explicitly or implicitly modelling of the 

transport network and its dynamics while differ in the urban factors and layers of 

interest, as reviewed in Chapter 4. Most approaches have not considered the urban 

road network structure and dynamics explicitly but focused on other urban 

components, as illustrated in Figure 8.1. Meanwhile, different approaches have 

shared an understanding of the urban system: population and their socio-economic 

activities are fundamental to existence and operation of the urban system and have 

fundamental demand for social interactions which require to overcome space; 

transport networks enable such spatial interactions of population. The population 

have been regarded as generating and representing the urban spatial structure. 

Generative Network Model (GNM) could model explicitly urban road networks’ 

structure and dynamics, as demonstrated in Chapter 6, 7 by the proposed GNM of 

urban road network evolution. Together, modelling the co-evolution of population and 

urban road network may be a starting point to understand RNE in the urban system. 

Existing GNMs have modelled the co-evolution of urban road network and 

population, as reviewed in 4.3.4, but have represented population and road network 

using one network, with nodes representing population concentrated locations and 

links representing roads. Under this model design, population and road network were 

related inherently, being one network’s nodes and links; and the modelled population 

and road network structure, as well as their relationship, were not only influenced by 

the proposed co-evolution mechanisms, but also by the built-in network connectivity 

between nodes and links. This modelling choice has increased the difficulty to 

disentangle and understand mutual relationships and interactions between 

population and road network. Also, previous models have assumed fixed population 

and road network mutual influences in proposed co-evolution mechanisms, e.g. 

using the land-use and transport interaction, rather than experiencing all potential 
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population and road network spatial decision possibilities. This modelling choice may 

limit the diversity of simulated spatial structures. Further, previous models have 

limited consideration of the spatial structure of urban road networks, in terms of 

characterisation and the relationship between road network spatial structure and the 

urban spatial structure.  

 

Figure 8.1 Hybrid Model of Population and Urban road network Co-evolution 

This chapter aims to answer the third research question of this thesis, as proposed in 

Chapter 1 and specified in Table 5-2:  

3. How to integrate GNM of urban road network evolution into the urban system?  

a) How to represent both the urban road network and population? 

b) What population-urban road network co-evolution mechanism do the 

correlations between population and urban road network in terms of 

quantity, spatial structure, and network characteristics, as well as by the 

mutual influences between road network and the urban system reflect? 

This chapter proposes a hybrid model of population and urban road network 

evolution 8.2, which integrates GNM into the urban system. This model proposes a 

representation of the population and urban road network that addresses previous 

GNMs’ limitation in representation, a population and urban road network co-evolution 

mechanism 8.2.1, and a framework to examine the modelled structure. 8.2.2 

explains the implementation of the proposed co-evolution mechanism. 8.2.3 

describes the hybrid GNM and the proposed representation of urban road network 

and population; 8.2.4 summarises the proposed model with an algorithm. The next 

chapter explores the emerging population and urban road network spatial structures 

and relationships under this chapter’s proposed model in simulation experiments. 

D 
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8.2 Hybrid Generative Network Model: Co-evolution of the 

Population and the Urban Road Network 

8.2.1 The Population and Urban Road Network Co-Evolution 

Mechanism 

The urban system could be expected to change with two processes, dynamics of 

population and dynamics of the road network, considering only population and road 

network. The process of Population Dynamics was referred to as Population 

dynamics, and the process of Road Network Dynamics was referred to as Road 

Network Dynamics. On a microscopic level, population and Road Network Dynamics 

happened individually and locally with individual population and road network 

component’s behaviours and interactions; individual population and road network 

components behaved and interacted considering components of their kind and 

concerning components of the other kind. Table 8-1 listed the processes in 

Population Dynamics and Road Network Dynamics, respectively, which were 

explained in the following sections. 

Table 8-1 Population and Road Network Co-Evolution Mechanism - Population 
Dynamics and Road Network Dynamics 

Population Dynamics 

k Criteria Ck 

• C1: Impact of Distance to Road network 
𝐝𝐩𝐨𝐩 

• C2: Impact of Population density 𝛒 

Road Network Dynamics 

k' Criteria Ck' 

• C3: Impact of Distance to Population 𝐝𝐑𝐍 

• C4: Impact of Flow within Radius ∑ 𝐟𝐥𝐨𝐰 

Generate j candidate population locations Generate j' candidate road node locations 

Calculate j candidates' Ck Measure Values: vk,j 

• C1: v1,1, ..., v1, j 
• C2: v2,1, ..., v2, j 

Calculate j' candidates' Ck' Measure Values: vk',j' 

• C3: v4,1, ..., v4, j' 
• C4: v4,1, ..., v4, j' 

Evaluate j candidates' Ck Measure Values vk,j  
with: 

• Measure value preference parameter βk:  
β1, β2  

• Criteria weights αk:  α1, α2 

Evaluate j' candidates' Ck Measure Values vk'j' 
with: 

• Measure value preference parameterβk:  β3, 
β4 

• Criteria weights αk:  α3, α4 

Score j candidates: U = U1, ..., Uj 

• Select new population locations based on U 

Score j' candidates: U = U1, ..., Uj' 

• Select new road node locations based on U 

8.2.1.1 Population Dynamics 

Population Dynamics made the spatial decision of new population location. At every 

time step, Population Dynamics chose from 𝑗 candidates 𝑗 ∗ locations to add new 

population. Two criteria 𝐶1 and 𝐶2 were evaluated to make this spatial decision. 𝐶1 

was the impact of candidate population location’s distance to road network 𝑑𝑝𝑜𝑝, on 
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the spatial decision. 𝐶2 was to the impact of existing population density 𝜌 around the 

candidate location. The criteria could have positive or negative impacts, denoted by 

𝛽𝑘 ∈ {−1,1}. The Population Dynamics mechanism did not assume fixed one-way 

influences from the two factors 𝑑𝑝𝑜𝑝 and 𝜌 on the spatial decision of new population 

locations but allowed the model to explore both positive and negative possibilities, as 

illustrated in Figure 8.2. 

 

 

Figure 8.2 Population Dynamics  

Table 8-2 Population Dynamics Mechanism 

Impact Indicator 
(𝛽1, 𝛽2) 

Criteria 𝐶1 Criteria 
Impact 

Criteria Value 
Preference 

New Population Location 
Preference 

Criteria 𝐶2  

(𝑑𝑝𝑜𝑝
+ , 𝜌+) 𝑑𝑝𝑜𝑝   Positive Large value Remote to existing road network 

 𝜌 Positive Large value Dense existing population 

(𝑑𝑝𝑜𝑝
+ , 𝜌−) 𝑑𝑝𝑜𝑝   Positive Large value Remote to existing road network 

 𝜌 Negative Small value Sparse existing population 

(𝑑𝑝𝑜𝑝
− , 𝜌+) 𝑑𝑝𝑜𝑝   Negative Small value Close to existing road network 

 𝜌 Positive Large value Dense existing population 

(𝑑𝑝𝑜𝑝
− , 𝜌−) 𝑑𝑝𝑜𝑝   Negative Small value Close to existing road network 

 𝜌 Negative Small value Sparse existing population 

For example, new population location might prefer high accessibility and be close to 

the road network; in this case, 𝛽1 = −1 for 𝐶1, a large distance between candidate 

locations and existing road network 𝑑𝑝𝑜𝑝 had a negative impact on the spatial 

decision, namely, population preferred small 𝑑𝑝𝑜𝑝
− . New population location might as 

well prefer being remote to the road network, potentially to seek space or avoid 

pollution and noise; in that case, 𝛽1 = 1, large 𝑑𝑝𝑜𝑝
+  had a positive impact on the 

spatial decision. Regarding existing population density, new population location 

might prefer dense area for high accessibility of social interactions and socio-

economic activities; in this case, 𝛽2 = 1 for 𝐶2, large population density 𝜌 within 

certain radius 𝑟𝑑𝑒𝑛𝑠𝑖𝑡𝑦  to the candidate locations 𝜌 had a positive impact on the 

C1: Distance dpop to 
road network             

(+, -)

C2: Population density 
ρ within radius rdensity 

(+, -)

Population Dynamics
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spatial decision, namely population preferred large density 𝜌+. New population 

location might as well prefer sparse area for low land price and more space; in that 

case, 𝛽2 = −1, large 𝜌 had a negative impact on the spatial decision and population 

preferred small 𝜌− and sparse area.  

Table 8-2 listed the combinations of impact indicator 𝛽𝑘 in population dynamics. 

Criteria 𝐶𝑘 = (𝐶1, 𝐶2), impact indicator 𝛽𝑘 = (𝛽1, 𝛽2) were weighed with impact 

weights 𝛼𝑘 = (𝛼1, 𝛼2) to evaluate 𝑗 candidate population locations for spatial decision 

score 𝑈𝑗. 

8.2.1.2 Road Network Dynamics 

 

Figure 8.3 Road Network Dynamics  

Road dynamics made spatial decisions to add new road network nodes and links. At 

every time step, road dynamics chose among candidate locations 𝑗′ candidates 𝑗∗′ 

locations to add new road network nodes, then performed Node Addition and Link 

Connection as the GNM for urban road network evolution proposed in Chapter 6, at 

the chosen new node locations. Two criteria 𝐶3 and 𝐶4 were evaluated to make this 

spatial decision. 𝐶3 was the impact of road node location’s distance to population 

𝑑𝑅𝑁, on the spatial decision. 𝐶4 was the impact of network flow ∑ 𝑓𝑙𝑜𝑤 within certain 

distance 𝑟𝑓𝑙𝑜𝑤 to a road node. The next section 8.2.1.2.1 explained ∑ 𝑓𝑙𝑜𝑤 

calculation. The Road dynamics mechanism did not assume fixed one-way 

influences either, from the two factors 𝑑𝑅𝑁 and  ∑ 𝑓𝑙𝑜𝑤 on the spatial decision of new 

road network locations, as illustrated in Figure 8.3.  

Table 8-3 listed the combinations of impact indicator 𝛽𝑘 in Road Network Dynamics. 

Criteria 𝐶𝑘 = (𝐶3, 𝐶4), impact indicators 𝛽𝑘 = (𝛽3, 𝛽4) were weighted with impact 

weights 𝛼𝑘 = (𝛼3, 𝛼4) to evaluate 𝑗′ candidate population locations for spatial 

decision score 𝑈𝑗′ to choose 𝑗′∗ new node locations. After making spatial decisions of 

new network node locations, Node Addition and Link Connection were performed, 

which added new road network nodes and connected them to the existing network, 

completing Road Network Dynamics of the time step. 

C3: Distance dRN to 
road network              

(+, -)

C4: Flow Σflow within 
radius rflow                             

(+, -)

Road Network  
Dynamics
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Table 8-3 Road Network Dynamics Mechanism 

Impact Indicator 

(𝛽3, 𝛽4) 

Criteria 𝐶3 Criteria 

Impact 

Criteria Value 

Preference 

New Road Network Locations 

Preference 
Criteria 𝐶4  

(𝑑𝑅𝑁
+ , ∑ 𝑓𝑙𝑜𝑤

+
)  𝑑𝑅𝑁 Positive Large value Remote to existing population 

∑ 𝑓𝑙𝑜𝑤  Positive Large value High existing flows 

(𝑑𝑅𝑁
+ , ∑ 𝑓𝑙𝑜𝑤

−)  𝑑𝑅𝑁 Positive Large value Remote to existing population 

∑ 𝑓𝑙𝑜𝑤  Negative Small value Low existing flows 

(𝑑𝑅𝑁
− , ∑ 𝑓𝑙𝑜𝑤

+
)  𝑑𝑅𝑁 Negative Small value Close to existing population 

∑ 𝑓𝑙𝑜𝑤  Positive Large value High existing flows 

(𝑑𝑅𝑁
− , ∑ 𝑓𝑙𝑜𝑤

−
) 𝑑𝑅𝑁 Negative Small value Close to existing population 

∑ 𝑓𝑙𝑜𝑤  Negative Small value Low existing flows 

8.2.1.2.1 𝒇𝒍𝒐𝒘(𝒊,𝒋) 

The quantity 𝑓𝑙𝑜𝑤(𝑖,𝑗) was defined to measure the population’s potential usage of the 

road network. Given a certain population with spatial distribution, and a road 

network, 𝑓𝑙𝑜𝑤(𝑖,𝑗) attempted to capture the potential population interaction flows 

realised by the road network on a link (𝑖, 𝑗). 𝑓𝑙𝑜𝑤(𝑖,𝑗) was calculated as follows.  

First, the population at different locations were loaded to the nearest road network 

nodes: a road network node 𝑖 was assigned the sum population 𝑃𝑖 to which it was 

the nearest node. Road network nodes with population loaded were then paired as 

origins and destinations (ODs), for the population’s interactions through the road 

network. For each pair of OD nodes (𝑠, 𝑡), quantity (𝑃𝑠 +  𝑃𝑡), the sum of their loaded 

population, was split equally among all the shortest paths between this pair. Each 

time a link lied on such a shortest path, its 𝑓𝑙𝑜𝑤(𝑖,𝑗) incremented by 
(𝑃𝑠+ 𝑃𝑡)

𝛿𝑠,𝑡
∙ 𝑑(𝑖,𝑗). 𝛿𝑠,𝑡 

denoted the number of shortest paths between an OD pair  𝑠, 𝑡, and 𝑑(𝑖,𝑗) denoted 

Euclidean length of link 𝑖, 𝑗. Flow calculation was summarised as: 

𝑓𝑙𝑜𝑤(𝑖,𝑗) = ∑ (𝑃𝑠 +  𝑃𝑡) ∙ 𝑑(𝑖,𝑗)
𝛿𝑠,𝑡(𝑖,𝑗)

𝛿𝑠,𝑡
𝑠,𝑡 ; 

𝑠 ≠ 𝑡;  𝑖 ≠ 𝑗;  𝑠, 𝑡, 𝑖, 𝑗 ∈ 𝑉; where 𝛿𝑠,𝑡𝑖, 𝑗 denoted the number of shortest paths passing 

link 𝑖, 𝑗. 

The concept and calculation of 𝑓𝑙𝑜𝑤(𝑖,𝑗) was inspired by Betweenness Centrality 

(BC), which calculated the centrality of a network component by its frequency on 

shortest paths between all node pairs. BC used all node pairs in a network as 

homogeneous OD pairs. To integrate population, 𝑓𝑙𝑜𝑤(𝑖,𝑗) adjusted BC to use only 
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nodes with the loaded population as ODs, the loaded population as node weights. To 

differentiate two links of different length passed by a same number of population, 

𝑓𝑙𝑜𝑤(𝑖,𝑗) was designed as the product of population 
(𝑃𝑠+ 𝑃𝑡)

𝛿𝑠,𝑡
 and link length 𝑑(𝑖,𝑗), 

instead of only population 
(𝑃𝑠+ 𝑃𝑡)

𝛿𝑠,𝑡
. The quantity ∑ (𝑃𝑠 +  𝑃𝑡) ∙

𝛿𝑠,𝑡(𝑖,𝑗)

𝛿𝑠,𝑡
𝑠,𝑡  was referred to as 

𝑓𝑙𝑜𝑤′(𝑖,𝑗) and compared with 𝑓𝑙𝑜𝑤(𝑖,𝑗) as in Figure 8.4. 𝑓𝑙𝑜𝑤(𝑖,𝑗) may as well relate to 

traffic flow measure 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ∙ 𝑘𝑚, which was the product of vehicle number and 

distance travelled.  

Figure 8.4 compared BC, 𝑓𝑙𝑜𝑤′(𝑖,𝑗) to 𝑓𝑙𝑜𝑤(𝑖,𝑗). Figure 8.4 (a) demonstrated that BC 

used all node pairs as ODs; all links had the same BC in this example. (b) showed 

𝑓𝑙𝑜𝑤′(𝑖,𝑗)  included population by using only node pairs with the loaded population as 

ODs but did not differentiate link of different lengths. (c) demonstrated 𝑓𝑙𝑜𝑤(𝑖,𝑗) used 

in the proposed model, which considered both population and link length when 

calculating link flow. 

 

Figure 8.4 Betweenness Centrality, Flow’, Flow Comparison: On a small rectangular 

network, link length 𝑑1,2 = 𝑑3,4 = 100; 𝑑2,3 = 𝑑1,4 = 200. Blue points represent population 

locations; each had population P = 1. (a) demonstrates link BC calculation; (b) demonstrates a 

quantity 𝑓𝑙𝑜𝑤′(𝑖,𝑗); (c) demonstrates 𝑓𝑙𝑜𝑤(𝑖,𝑗) used in the proposed model. 

The spatial distribution of population influenced 𝑓𝑙𝑜𝑤(𝑖,𝑗). Both Figure 8.5 and Figure 

8.6 showed 𝑓𝑙𝑜𝑤(𝑖,𝑗) captured potential population spatial interactions realised 

through the road network. 𝑓𝑙𝑜𝑤(𝑖,𝑗) was influenced by the size of the population, the 

structure of the road network, as well as the spatial distribution of population 

regarding the road network. 

Figure 8.5 demonstrated 𝑓𝑙𝑜𝑤(𝑖,𝑗) on a small example network with four nodes and 

four links and given three units population with different spatial distributions; 𝑓𝑙𝑜𝑤(𝑖,𝑗) 

were visualised with link width. In the left plot, all three units of the population were 

loaded to the same road network node 3; because population interactions on the 

𝑩𝑪(𝑖,𝑗) =  ∑
𝛿𝑠,𝑡(𝑖,𝑗)

𝛿𝑠,𝑡
𝑠,𝑡 ; 

𝐵𝐶(1,2) =
𝛿1,2(1,2)

𝛿1,2
+

𝛿1,3(1,2)

𝛿1,3
= 1.5; 

Similarly, 𝐵𝐶(2,3) = 𝐵𝐶(1,4) = 𝐵𝐶(3,4) = 1.5. 

𝒇𝒍𝒐𝒘′(𝒊,𝒋) = ∑ (𝑃𝑠 + 𝑃𝑡) ∙
𝛿𝑠,𝑡(𝑖,𝑗)

𝛿𝑠,𝑡
𝑠,𝑡 ; 

𝑓𝑙𝑜𝑤′(1,2) = 𝑓𝑙𝑜𝑤′(2,3) = 𝑓𝑙𝑜𝑤′(1,4) = 𝑓𝑙𝑜𝑤′(3,4) = (𝑃1 +  𝑃3) ∙
1

2
= 1.5. 

(a) 

(b)

(c) 𝒇𝒍𝒐𝒘(𝒊,𝒋) = ∑ (𝑃𝑠 +  𝑃𝑡) ∙ 𝑑(𝑖,𝑗)
𝛿𝑠,𝑡(𝑖,𝑗)

𝛿𝑠,𝑡
𝑠,𝑡 ; 

𝑓𝑙𝑜𝑤(1,2) = 𝑓𝑙𝑜𝑤(3,4) = 150; 

𝑓𝑙𝑜𝑤(2,3) = 𝑓𝑙𝑜𝑤(1,4) = 300. 
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same node were not considered, all four links had 𝑓𝑙𝑜𝑤(𝑖,𝑗) = 0. In the middle plot, 

two units of the population were loaded to node 3 and one unit to node 1, forming 

one OD pair 1,3. Two shortest paths existed between the OD pair 1,3; thus the 𝑃1 +

 𝑃3 = 3 were split between the two shortest paths. As 𝑑(1,2) = 𝑑(3,4) = 100, link 1,2 

and 3,4 had 𝑓𝑙𝑜𝑤 = 150; as 𝑑(2,3) = 𝑑(1,4) = 200,link 2,3 and 1,4 had 𝑓𝑙𝑜𝑤 = 300. In 

the right plot, three units of the population were loaded to node 1, 3, 4, respectively. 

The calculated link flows changed again.  

 

Figure 8.5  𝒇𝒍𝒐𝒘(𝒊,𝒋) Demonstration – Influence of Population Spatial Location 

on Network Flows: The three plots demonstrate the calculation of  𝑓𝑙𝑜𝑤(𝑖,𝑗) with changing 

population locations. The left plot’s population located near the same node, 𝑓𝑙𝑜𝑤(𝑖,𝑗) = 0, 

indicating no spatial interactions realised by the road network. The middle and the right plots 
demonstrate another two potential population layout and the consequantial 𝑓𝑙𝑜𝑤(𝑖,𝑗). 

Figure 8.6 demonstrated population spatial distribution’s influence on a larger 

example network with population ∑ 𝑃𝑖𝑖 = 500 of different spatial distributions. 

Population in the left and middle plots followed negative exponential distributions 

𝑓(𝑥) = λe−λx 𝑥 ≥ 0, with λ = 0.012 and λ = 0.005 respectively. Population in the right 

plot followed a uniformly random distribution. This figure showed flows spread and 

increased as the population dispersed over the network. 

𝑃1 = 1, 𝑃3 = 2; {(𝑠, 𝑡), … } = {(1,3)}; 

𝑓(1,2) = (𝑃1 + 𝑃3) ∙ 𝑑(1,2) ∙
𝛿1,3(1,2)

𝛿1,3
= 3 ∙ 100 ∙

1

2
= 150; 

𝑓(2,3) = (𝑃1 + 𝑃3) ∙ 𝑑(2,3) ∙
𝛿1,3(2,3)

𝛿1,3
= 3 ∙ 200 ∙

1

2
= 300; 

𝑓(1,4) = (𝑃1 + 𝑃3) ∙ 𝑑(1,4) ∙
𝛿1,3(1,4)

𝛿1,3
= 3 ∙ 200 ∙

1

2
= 300; 

𝑓(3,4) = (𝑃1 + 𝑃3) ∙ 𝑑(3,4) ∙
𝛿1,3(3,4)

𝛿1,3
= 3 ∙ 100 ∙

1

2
= 150. 

𝑃1 = 0, 𝑃2 = 0, 𝑃3 = 3, 𝑃4 = 0; 

{(𝑠, 𝑡), … } = { }; 

𝑓(1,2) = 𝑓(2,3) = 𝑓(1,4) = 𝑓(3,4) = 0. 

𝑃1 = 1, 𝑃3 = 1, 𝑃4 = 1; {(𝑠, 𝑡), … } = {(1,3), (1,4), (3,4)}; 

𝑓(1,2) = (𝑃1 + 𝑃3) ∙ 𝑑(1,2) ∙
𝛿1,3(1,2)

𝛿1,3
+ (𝑃1 + 𝑃4) ∙ 𝑑(1,2) ∙

𝛿1,4(1,2)

𝛿1,4
+ (𝑃3 +  𝑃4) ∙ 𝑑(1,2) ∙

𝛿3,4(1,2)

𝛿3,4
= 100; 

𝑓(2,3) = (𝑃1 + 𝑃3) ∙ 𝑑(2,3) ∙
𝛿1,3(2,3)

𝛿1,3
+ (𝑃1 + 𝑃4) ∙ 𝑑(2,3) ∙

𝛿1,4(2,3)

𝛿1,4
+ (𝑃3 +  𝑃4) ∙ 𝑑(2,3) ∙

𝛿3,4(2,3)

𝛿3,4
= 200; 

𝑓(1,4) = (𝑃1 + 𝑃3) ∙ 𝑑(1,4) ∙
𝛿1,3(1,4)

𝛿1,3
+ (𝑃1 + 𝑃4) ∙ 𝑑(1,4) ∙

𝛿1,4(1,4)

𝛿1,4
+ (𝑃3 +  𝑃4) ∙ 𝑑(1,4) ∙

𝛿3,4(1,4)

𝛿3,4
= 600; 

𝑓(3,4) = (𝑃1 + 𝑃3) ∙ 𝑑(3,4) ∙
𝛿1,3(3,4)

𝛿1,3
+ (𝑃1 + 𝑃4) ∙ 𝑑(3,4) ∙

𝛿1,4(3,4)

𝛿1,4
+ (𝑃3 +  𝑃4) ∙ 𝑑(3,4) ∙

𝛿3,4(3,4)

𝛿3,4
= 300. 
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Figure 8.6 𝒇𝒍𝒐𝒘(𝒊,𝒋) Demonstration – Influence of Population Spatial Location 

on Network Flows: The three plots demonstrate 𝑓𝑙𝑜𝑤(𝑖,𝑗) on a same network with the same 

number of population ∑ 𝑃𝑖𝑖 = 500. Different population spatial distributions – exponential with 

parameter λ = 0.012, λ = 0.005 and random uniform, led to different 𝑓𝑙𝑜𝑤(𝑖,𝑗). Red points 

represent network nodes, black links represent network links. Blue points represent population 
location. 𝑓𝑙𝑜𝑤(𝑖,𝑗) were visualised with link width. 

8.2.2 Criteria Evaluation 

The last section introduced the proposed population and urban road network co-

evolution mechanism: Population Dynamics and Road Network Dynamics. 

Population Dynamics used two criteria 𝐶1 distance to road network 𝑑𝑝𝑜𝑝 and 𝐶2 

population density 𝜌 around the candidate location, to make the spatial decision of 

new population location. Road Network Dynamics used two criteria 𝐶3 distance to 

road network  𝑑𝑅𝑁 and 𝐶4 total flow ∑ 𝑓𝑙𝑜𝑤 within radius 𝑟𝑓𝑙𝑜𝑤 to the candidate 

location, to make the spatial decision of new road network node location and 

performed Node Addition and Link Connection. This section explained how criteria 

𝐶𝑘 = (𝐶1, 𝐶2, 𝐶3, 𝐶4) were evaluated to choose among candidate locations the new 

population and road network node at each time step. 

The criteria 𝐶𝑘 of the two processes Population Dynamics and Road Network 

Dynamics were controlled by two sets of parameters 𝛼𝑘 and 𝛽𝑘. 𝛽𝑘 ∈ {−1,1} and 

controlled the preference for large or small values of criteria 𝐶𝑘. 𝛽𝑘 = −1 preferred 

small values and 𝛽𝑘 = 1 preferred large values. 𝛼𝑘 ∈ [0,1] and controlled the strength 

of criteria 𝐶𝑘. For example, 𝛼1 = 𝛼2 = 1 meant 𝐶1 and 𝐶2 were set with the same 

strength in Population Dynamics. For 𝑗 candidate locations, each candidate was 

evaluated by 𝑘 criteria 𝐶𝑘, yielding criteria values 𝑣𝑗,𝑘; bringing together individual 

criteria values, the candidate received an overall score 𝑈𝑗 according to the following 

evaluation equation: 

• ∑ 𝑃𝑖𝑖 = 500 
• Negative Exponential λ =

0.012 

• ∑ 𝑓𝑙𝑜𝑤(𝑖,𝑗)(𝑖,𝑗) = 12.6 × 106 

 

• ∑ 𝑃𝑖𝑖 = 500 

• Negative Exponential λ = 0.005 

• ∑ 𝑓𝑙𝑜𝑤(𝑖,𝑗)(𝑖,𝑗) = 39.9 × 106 

• ∑ 𝑃𝑖𝑖 = 500 

• Random Uniform 

• ∑ 𝑓𝑙𝑜𝑤(𝑖,𝑗)(𝑖,𝑗) = 97.1 × 106 
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Equation 1 Criteria Evaluation 

𝑈𝑗 = ∑
1

∑ 𝛼𝑘
𝑘
𝑘=1

𝛼𝑘 ∙
𝑣𝑚𝑎𝑥,𝑘−𝑣𝑗,𝑘

𝑣𝑚𝑎𝑥,𝑘−𝑣𝑚𝑖𝑛,𝑘
𝑘 . 

Right half of the equation  
𝑣𝑚𝑎𝑥,𝑘−𝑣𝑗,𝑘

𝑣𝑚𝑎𝑥,𝑘−𝑣𝑚𝑖𝑛,𝑘
, referred to as 𝑣𝑗,𝑘′, normalised candidates 𝑗’s 

𝑘th criteria values using maximum and minimum 𝑣𝑚𝑎𝑥,𝑘 and 𝑣𝑚𝑖𝑛,𝑘 among all 

candidates’ 𝑘th criteria values. Normalised 𝑣𝑗,𝑘′ were then weighted with 𝛼𝑘 to 

compute the overall score 𝑈𝑗 combining all criteria. 

8.2.2.1 Criteria Evaluation Numerical Demonstration 

This section demonstrated criteria evaluation with a small example. Assuming there 

were two candidates 𝑗1, 𝑗2 that needed to be evaluated by the two criteria 𝐶1 and 𝐶2, 

when 𝛽1 = 𝛽2 = 1, 𝛼1 = 𝛼2 = 1, the following procedures were performed to calculate 

𝑗1’s evaluation score 𝑈1 (with pseudo values): 

1. Measure 𝑗1, 𝑗2 and acquire 𝐶1 measure’s values 𝑣𝑗,1:  [𝑣1,1, 𝑣2,1] = [50,100] 

(sample 𝑣𝑗,1 given, i.e. the 𝑑𝑝𝑜𝑝 measurement); 

2. Measure 𝑗1, 𝑗2 and acquire 𝐶2 measure’s values 𝑣𝑗,2:  [𝑣1,2, 𝑣2,2] = [7,6] (sample 

𝑣𝑗,2 given, i.e. the 𝜌 measurement); 

3. Normalise 𝑣1,1: 

a. 𝑣1,1 = 50; 

b. 𝑣𝑚𝑎𝑥,1 = 100; 𝑣𝑚𝑖𝑛,1 = 50; 

c. Normalise 𝑣1,1: 𝑣1,1
′ =

𝑣𝑚𝑎𝑥,1−𝑣1,1

𝑣𝑚𝑎𝑥,1−𝑣𝑚𝑖𝑛,1
=

100−50

100−50
= 1; 

4. Normalise 𝑣1,2: 

a. 𝑣1,2 = 7; 

b. 𝑣𝑚𝑎𝑥,2 = 7; 𝑣𝑚𝑖𝑛,2 = 6; 

c. Normalise 𝑣1,2: 𝑣1,2
′ =

𝑣𝑚𝑎𝑥,2−𝑣1,2

𝑣𝑚𝑎𝑥,2−𝑣𝑚𝑖𝑛,2
=

7−7

7−6
= 0; 

5. Calculate 𝑈1 = 𝛼1 ∙ 𝑣1,1
′ + 𝛼2 ∙ 𝑣1,2

′ =
1

2
∙ 1 +

1

2
∙ 0 =

1

2
. 

The above example showed larger 𝑣𝑗,𝑘 approach 𝑣𝑗,𝑘′ → 0  after normalisation, and 

smaller 𝑣𝑗,𝑘 approach 𝑣𝑗,𝑘′ → 1  . As 𝑣1,2 was maximum among 𝑣𝑗,2,  𝑣1,2
′ = 0; as 𝑣1,1 

was minimum among 𝑣𝑗,1,  𝑣1,1
′ = 1.  

Similarly, 𝑗2’s score 𝑈2 was: 

1. Normalise 𝑣2,1: 

a. 𝑣2,1 = 100; 

b. 𝑣𝑚𝑎𝑥,1 = 100; 𝑣𝑚𝑖𝑛,1 = 50; 

c. Normalise 𝑣2,1: 𝑣2,1
′ =

𝑣𝑚𝑎𝑥,1−𝑣2,1

𝑣𝑚𝑎𝑥,1−𝑣𝑚𝑖𝑛,1
=

100−100

100−50
= 0; 

2. Normalise 𝑣2,2: 

a. 𝑣2,2 = 6; 

b. 𝑣𝑚𝑎𝑥,2 = 7; 𝑣𝑚𝑖𝑛,2 = 6; 
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c. Normalise 𝑣2,2: 𝑣2,2
′ =

𝑣𝑚𝑎𝑥,2−𝑣2,2

𝑣𝑚𝑎𝑥,2−𝑣𝑚𝑖𝑛,2
=

7−6

7−6
= 1; 

3. Calculate 𝑈2 = 𝛼1 ∙ 𝑣2,1
′ + 𝛼2 ∙ 𝑣2,2

′ =
1

2
∙ 0 +

1

2
∙ 1 =

1

2
. 

Because 𝛽1 = 𝛽2 = 1, 𝐶1 preferred large 𝑣𝑗,1 whose 𝑣𝑗,1′ → 0, and 𝐶2 also preferred 

large 𝑣𝑗,2 whose 𝑣𝑗,2′ → 0. Because 𝐶1 and 𝐶2, as both 𝐶𝑘 preferred large 𝑣𝑗,𝑘 whose 

𝑣𝑗,𝑘′ → 0, small overall 𝑈𝑗 → 0 were desirable. In this example, 𝑈1 = 𝑈2 =
1

2
, 

candidates 𝑗1, 𝑗2 received same level of preference. 

On the other hand, if both 𝛽1 = 𝛽2 = −1, 𝐶1 preferred small 𝑣𝑗,1 whose 𝑣𝑗,1′ → 1, and 

𝐶2 also preferred small 𝑣𝑗,2 whose 𝑣𝑗,2′ → 1. Then large overall 𝑈𝑗 → 2 were desirable. 

The next section discussed the situations when 𝛽𝑘 did not have same sign values, 

namely, when criteria had opposite preferences for large or small values. 

8.2.2.2 Opposite 𝜷𝒌  

For 𝑗 candidates, when criteria 𝐶𝑘 all preferred large values, e.g. all 𝛽𝑘 = 1, 

evaluation chose the candidate with 𝑗∗ lowest 𝑈 score; and when 𝐶𝑘 all preferred 

small values, e.g. all 𝛽𝑘 = −1, evaluation chose 𝑗∗ candidates with highest 𝑈. When 

𝛽𝑘 did not all prefer large or small values, and individual criteria had opposite 

preferences over large or small values, the overall preference for 𝑈 could not be 

determined. In this situation, measurement values of 𝐶𝑘 whose 𝛽𝑘 = 1 were reversed 

and their opposite values were normalised. Equivalently, the measurement values of 

criteria whose 𝛽𝑘 = −1 could be reversed, serving the same purpose to translate 

criteria with opposite value preferences before normalisation so that an overall 

preference of 𝑈 could be made. 

Following the example in the last section 8.2.2.1, if the sign of 𝛽2 flipped, namely 

𝛽1 = 1 and 𝛽2 = −1, 𝑈1 changed to: 

1. Normalise 𝑣1,1: 

a. Reverse 𝑣𝑗,1: 𝑣𝑗,1 = [−50, −100]; 

b. 𝑣1,1 = −50; 

c. 𝑣𝑚𝑎𝑥,1 = −50; 𝑣𝑚𝑖𝑛,1 = −100; 

d. Normalise 𝑣1,1: 𝑣1,1
′ =

𝑣𝑚𝑎𝑥,1−𝑣1,1

𝑣𝑚𝑎𝑥,1−𝑣𝑚𝑖𝑛,1
=

(−50)−(−50)

(−50)−(−100)
= 0; 

2. Normalise 𝑣1,2: 

a. 𝑣1,2 = 7; 

b. 𝑣𝑚𝑎𝑥,2 = 7; 𝑣𝑚𝑖𝑛,2 = 6; 

c. Normalise 𝑣1,2: 𝑣1,2
′ =

𝑣𝑚𝑎𝑥,2−𝑣1,2

𝑣𝑚𝑎𝑥,2−𝑣𝑚𝑖𝑛,2
=

7−7

7−6
= 0; 

3. Calculate 𝑈1 = 𝛼1 ∙ 𝑣1,1
′ + 𝛼2 ∙ 𝑣1,2

′ =
1

2
∙ 0 +

1

2
∙ 0 = 0. 

Similarly, 𝑈2 changed to: 

1. Normalise 𝑣2,1: 
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a. Reverse 𝑣𝑗,1: 𝑣𝑗,1 = [−50, −100]; 

b. 𝑣2,1 = −100; 

c. 𝑣𝑚𝑎𝑥,1 = −50; 𝑣𝑚𝑖𝑛,1 = −100; 

d. Normalise 𝑣2,1: 𝑣2,1
′ =

𝑣𝑚𝑎𝑥,1−𝑣2,1

𝑣𝑚𝑎𝑥,1−𝑣𝑚𝑖𝑛,1
=

(−50)−(−100)

(−50)−(−100)
= 1; 

2. Normalise 𝑣2,2: 

a. Reverse 𝑣1,2: 𝑣1,2 = [7,6]; 

b. 𝑣𝑚𝑎𝑥,2 = 7; 𝑣𝑚𝑖𝑛,2 = 6; 

c. Normalise 𝑣2,2: 𝑣2,2
′ =

𝑣𝑚𝑎𝑥,2−𝑣2,2

𝑣𝑚𝑎𝑥,2−𝑣𝑚𝑖𝑛,2
=

7−6

7−6
= 1; 

3. Calculate 𝑈2 = 𝛼1 ∙ 𝑣2,1
′ + 𝛼2 ∙ 𝑣2,1

′ =
1

2
∙ 1 +

1

2
∙ 1 = 1. 

In this example, 𝐶2 preference disagreed with 𝐶1: 𝛽1 = 1, 𝐶1 preferred large 𝑣𝑗,1 which 

normalised to 𝑣𝑗,1′ → 0; 𝛽2 = −1, 𝐶2 preferred small 𝑣𝑗,2  which normalised to 𝑣𝑗,2′ →

1. 𝛽1 = 1, namely 𝐶1 preferred large measurement values 𝑣𝑗,1, equalled preferring 

small reversed 𝑣𝑗,1; thus, measurement values 𝑣𝑗,1 of 𝐶1 were reversed; the reversed 

𝑣𝑗,1 normalised to  𝑣𝑗,1′ → 1. This design translated 𝐶1 from preferring large values 

into preferring small reversed values to coordinate with 𝐶2’s preference for small 

values so that Criteria evaluation could reach an overall score 𝑈 → 2, regardless of 

the opposite preferences of large or small among criteria. Followingly, candidate 𝑗2 

which had larger 𝐶1 measure values, smaller 𝐶2 measure values and an overall 

larger 𝑈2 = 1 was chosen. 

8.2.2.3 Demonstrate Choosing New Road Node Location in One Time Step 

This section performed the spatial decision making of Road Network Dynamics 

proposed in 8.2.1.2 and the Criteria evaluation process proposed in 8.2.2, with a 

small example and for one time step. Figure 8.7 showed a road network with four 

nodes (red points) and four links (black lines), three population points (blue points), 

and three candidate new road node locations (green points). Given this road network 

and population distribution, this section demonstrated spatial decision to choose 

among the three candidate new node locations 1, 2, 3.  

Figure 8.8 listed the Criteria evaluation process of the three candidate new road 

network node locations with Road Network Dynamics criteria 𝐶3, 𝐶4 - the impact of 

𝑑𝑅𝑁 which measured road network distance to existing population and the impact of 

∑ 𝑓𝑙𝑜𝑤 which measured potential population interactions realised through road 

network, under all (𝛽3, 𝛽4) combinations, at 𝑟𝑓𝑙𝑜𝑤 = 50,150,250,350, when (𝛼3, 𝛼4) =

(1,1). The header line listed the four possible (𝛽3, 𝛽4) combinations as in Table 8-3, 

namely road network preferred: 

1. (𝑑𝑅𝑁
+ , ∑ 𝑓𝑙𝑜𝑤

+
): Remote to existing population and high existing flows; 

2. (𝑑𝑅𝑁
+ , ∑ 𝑓𝑙𝑜𝑤

−
): Remote to existing population and low existing flows; 

3. (𝑑𝑅𝑁
− , ∑ 𝑓𝑙𝑜𝑤

+
): Close to existing population and high existing flows; 
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4. (𝑑𝑅𝑁
− , ∑ 𝑓𝑙𝑜𝑤

−
): Close to existing population and low existing flows. 

Each panel showed spatial decisions of choosing new road node location among the 

three candidate locations, marked in red and for a different 𝑟𝑓𝑙𝑜𝑤. In the first column, 

(𝛽3, 𝛽4) = (1,1), i.e. (𝛽3, 𝛽4) = (𝑑𝑅𝑁
+ , ∑ 𝑓𝑙𝑜𝑤

+
), road network preferred large 𝑑𝑅𝑁 and 

large ∑ 𝑓𝑙𝑜𝑤; the chosen new road node location was candidate location 1. Addition 

of a new road network node at location 1 did not change the population’s total 

distance to the road network, while other locations reduced the distance. Location 1 

was close to the existing road network, thus had high ∑ 𝑓𝑙𝑜𝑤. The advantage of 

location 1 under criteria preference (𝑑𝑅𝑁
+ , ∑ 𝑓𝑙𝑜𝑤

+
) prevailed across all 𝑟𝑓𝑙𝑜𝑤 values.  

The measurement of criteria 𝐶3 - 𝑑𝑅𝑁 did not change with 𝑟𝑓𝑙𝑜𝑤, changes with 𝑟𝑓𝑙𝑜𝑤 in 

Road Network Dynamics criteria evaluation come from changes of 𝐶4 measurement - 

∑ 𝑓𝑙𝑜𝑤. The effect of 𝑟𝑓𝑙𝑜𝑤 was shown in the third column when (𝛽3, 𝛽4) = (−1,1), i.e. 

(𝑑𝑅𝑁
− , ∑ 𝑓𝑙𝑜𝑤

+
). When 𝑟𝑓𝑙𝑜𝑤 = 50, 150, location 1 and 2 shared the same evaluation 

score 𝑈 = 0.5. Location 2 was close to population thus had preferable small 𝑑𝑅𝑁. 

Location 1 was close to all road network links, thus had a preferable large ∑ 𝑓𝑙𝑜𝑤. 

After 𝑟𝑓𝑙𝑜𝑤 increased to 250, the neighbourhood for flow calculation expanded, 

location 2’s ∑ 𝑓𝑙𝑜𝑤 increased and became more desirable than location 4. 

 

Figure 8.7 Demonstrate Road Network Dynamics – Network and Population 
Example: Green points represent candidate road network node locations. Grey dashed lines 

represent new links candidate connected if they were added. 
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Figure 8.8 Demonstrate Road Network Dynamics – Spatial Decision of New 
Road Network Node in One Time Step: This example demonstrates spatial decisions 

of new road network node location under different 𝛽𝑘 and 𝑟𝑓𝑙𝑜𝑤 combinations. 

This example showed that the proposed criteria evaluation process could choose 

candidate locations properly according to the specified criteria for Road Network 

Dynamics. It also demonstrated how the spatial decision of new road network node 

location in one time step changed under different (𝛽3, 𝛽4) combinations and with 

different 𝑟𝑓𝑙𝑜𝑤. 

8.2.3 Computer Model 

Following the proposed co-evolution mechanism – Population Dynamics and Road 

Network Dynamics 8.2.1, as well as the explained Criteria evaluation process to 

implement the co-evolution mechanism 8.2.2, this section described the hybrid 

generative network model of population and urban road network co-evolution. 

This model proposed to represent the population and the urban road network as two 

inter-dependent urban system layers, addressing previous GNMs’ design limitation 

of population and road network in one network. Road network was represented by a 

network 𝐺 = (𝑉, 𝐸), as in the proposed GNM of urban road network evolution in 

Chapter 6. The population was represented by a point set 𝑉𝑝𝑜𝑝, which consisted of 

abstract points where population concentrated. 

𝑟𝑓𝑙𝑜𝑤 = 50 

𝑟𝑓𝑙𝑜𝑤 = 150 

𝑟𝑓𝑙𝑜𝑤 = 250 

𝑟𝑓𝑙𝑜𝑤 = 350 
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As described in 8.2.1, this model proposed population and road network co-evolved 

with two iterative processes, Population Dynamics and Road Network Dynamics. 

The population increased at each iteration by adding new population; new population 

made spatial decision to locate in the urban area. Population’s spatial decisions 

considered the existing population and road network. Growth and spatial decision 

constituted the process of Population Dynamics. Road network also increased at 

each iteration by adding new road network components and made spatial decision to 

locate in the urban area. Road network’s spatial decisions considered existing 

population and road network as well. After making the spatial decision for new road 

network nodes, road network performed Node Addition and Link Connection. 

Growth, spatial decision, Node Addition and Link Connection constituted the process 

of Road Network Dynamics. 

At each time step, Population Dynamics happened first: 𝑗∗ new population locations 

were chosen from 𝑗 generated candidate locations, and new population were added. 

The spatial decision to locate new population was made by evaluating two criteria - 

𝐶1 measured impacts of factor 𝑑𝑝𝑜𝑝 – a population location candidates’ distance to 

the road network and 𝐶2 measured factor 𝜌  - a population location candidate’s local 

density within radius 𝑟𝑑𝑒𝑛𝑠𝑖𝑡𝑦. All 𝑗 population candidate locations’ 𝐶1 and 𝐶2 

measurement values were calculated and evaluated using Equation 1 with weights 

𝛼1, 𝛼2 and value preference 𝛽1, 𝛽2. Population Dynamics of a time step then 

completed by choosing candidate locations with the most desirable evaluation score 

𝑈 and adding new population to these locations. 

Road Network Dynamics then happened: 𝑗′∗ new road node locations were chosen 

from 𝑗′  generated candidate locations by evaluating two criteria. Candidate locations 

were compared by the potential network provided they were connected. 𝐶3 

measured the impact of factor 𝑑𝑅𝑁 - total distance from the potential road network to 

all existing population. 𝐶4 measured the impact of factor ∑ 𝑓𝑙𝑜𝑤 – total link flows of a 

subnetwork within radius 𝑟𝑓𝑙𝑜𝑤 to the candidate in the potential road network. All 𝑗 

road node candidate locations’ 𝐶3 and 𝐶4 measurement values were calculated and 

evaluated using Equation 1. The evaluation was controlled by 𝐶3, 𝐶4’s weights 𝛼3, 𝛼4 

and value preference 𝛽3, 𝛽4. Road Network Dynamics of a time step completed by 

choosing candidate locations with most desirable evaluation score 𝑈 and performing 

Node Addition and Link Connection at these locations.  
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8.2.4 Algorithm 

1. Initialisation: 

a. Generate initial population points Vpop;  

b. Generate initial road network G; 

2. While iteration number i ≤ Total iteration number N: 

a. Population dynamics: 

i. Generate 𝑗 population candidates; 

1. For each population candidate: 

a. Calculate C1 Population location candidate’s distance 

to road network dpop; 

b. Calculate C2 Population location candidate’s local 

density ρ within radius rdensity; 

2. Evaluate (C1, C2) of all population candidate locations with 

(α1, α2) and (β1, β2); 

3. Choose 𝑗∗ new population points and add to Vpop; 

b. Road Network Dynamics: 

i. Generate 𝑗′  road node candidates; 

1. For each road node candidates: 

a. Calculate C3 Potential distance to population dRN; 

b. Calculate C4 potential link flows ∑ flow within radius 

rflow; 

2. Evaluate (C3, C4) of all road node candidate locations with 

(α3, α4) and (β3, β4); 

3. Choose 𝑗′∗ new population points; 

4. For each new road node: 

a. Node Addition to G; 

b. Link Connection; 

c.  i = i + 1; 

8.3 Simulation Experiments  

By modelling microscopic road network and population behaviours and interactions, 

this simulation study attempted to explore emerging road network and urban system 

spatial structures as well as their relationships, by conducting experiments with 

parameters 𝛽𝑘 and radius rdensity, rflow combinations. Previous models often 

assumed fixed one-way influence from the transport system to population and vice 

versa. However, empirical findings as reviewed in Chapter 3 have suggested that 

urban road networks and urban systems exhibited diverse spatial structures and 

changed in various directions, e.g. the existence and emergence of monocentric and 

polycentric spatial structures, the suburbanization and urban sprawl processes. The 
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influences between the road network and population on each other behind the 

diverse urban spatial structure and dynamics required further understanding. Thus, 

the co-evolution mechanism might not assume fixed mutual influences between 

population and urban road network and of shall be able to give rise to different 

spatial structures. Following this idea, this simulation study attempted to explore with 

different combinations of parameters for various population and urban road network 

co-evolution scenarios. 

As explained in 8.2.1, 𝛽𝑘 ∈ {−1,1} and controlled the impact of co-evolution 

mechanism criteria Ck’s measurement values, on spatial decisions of new population 

and new road node locations in Population Dynamics and Road Network Dynamics 

respectively. The simulation study planned to experiment with all 16 𝛽𝑘 combinations 

in Population Dynamics and Road Network Dynamics, namely (𝛽1, 𝛽2, 𝛽3, 𝛽4) = 

1. (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

); 

2. (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

); 

3. (𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

); 

4. (𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

); 

5. (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
+

); 

6. (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
−

); 

7. (𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
+

) 

8. (𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
−

); 

9. (𝑑𝑝𝑜𝑝
+ , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

); 

10. (𝑑𝑝𝑜𝑝
+ , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

); 

11. (𝑑𝑝𝑜𝑝
+ , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

); 

12. (𝑑𝑝𝑜𝑝
+ , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

); 

13. (𝑑𝑝𝑜𝑝
+ , 𝜌+, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
+

); 

14. (𝑑𝑝𝑜𝑝
+ , 𝜌+, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
−

); 

15. (𝑑𝑝𝑜𝑝
+ , 𝜌−, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
+

); 

16. (𝑑𝑝𝑜𝑝
+ , 𝜌−, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
−

). 

Simulation trials happened on a 1000 𝑢𝑛𝑖𝑡 ∗ 1000 𝑢𝑛𝑖𝑡 square area. The initial road 

network was a small rectangle in the geographical centre of the simulation area. The 

initial population were three units of the population (three points), distributing from 

the geographical centre according to the exponential distribution. αk =

(α1, α2, α3, α4) = (1,1,1,1); this assumed all four criteria to have the same weight in 

the Population Dynamics and Road Network Dynamics spatial decision making.  

rdensity = rflow = 𝑟 were assumed with three experimental values: 𝑟 = 50, 150, 250 

units. 

For each simulation trial, at each time step, Population Dynamics generated 𝑗 = 5 

population candidate locations and chose 𝑗∗ = 1 location to add new population; and 

Road Network Dynamics generated 𝑗′ = 5 and chose 𝑗′∗ = 1  new location to add 

new road node and connect to the existing road network. Spatial decisions were 

performed with one combination of 𝛽𝑘 and 𝑟: for instance, (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

) 

and 𝑟 = 50. One simulation trial terminated when reaching a user-specified number 
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of time steps. Each 𝛽𝑘 combination set was experimented with all three 𝑟 values and 

for 30 trials. Table 8-4 summarised the setting of simulation experiments. 

Table 8-4 Simulation Parameter Setting Summary 

Parameters Setting 

Initial Road Network 200 𝑢𝑛𝑖𝑡 ∗ 100 𝑢𝑛𝑖𝑡 rectangle at the centre of the 
simulation area 

Initial Population and Distribution 3 Units; Following Exponential distribution from 
geographical centre of simulation area 

Population Growth Rate 𝒋∗ One Unit per time step 

Population Candidates Generation 

Rate 𝒋 
Five Unit per time step 

Road Growth Rate 𝒋′∗ One Location per time step 

Road Candidates Generation Rate 
𝒋′ 

Five Locations per time step 

Spatial Distribution of Candidate 
Location 

Uniformly Random 

Simulation Terminate Condition Time step 𝑡 = 150 

Number of Simulation Trials  30 

8.3.1 Sensitivity Analysis 

First, population and road network growth rate – the number of locations to add new 

population 𝑗∗ and new road nodes 𝑗′∗, at each time step, were both set to 1. The 

number of population 𝑗 and road node 𝑗′ candidate locations generated at each time 

step were both set to 5. When candidate generation rate 𝑗 and 𝑗′ were very large, for 

instance, 𝑗 → +∞ and 𝑗′ → +∞, simulation equalled computing analytical solutions at 

each time step for the co-evolution mechanism. Large 𝑗 and 𝑗′ shall speed up the 

process of revealing the simulated structure but would exhaust the computational 

power. On the other hand, when candidate generation rate 𝑗 and 𝑗′ were very small, 

for instance, 𝑗 = 𝑗′ = 1, the designed new population and road node selection 

mechanism were disabled. New population and road node locations followed the 

distribution of candidate generation location and were uniformly random. Therefore, 

the ratio between population growth rate 𝑗∗ and candidate location generation rate 𝑗, 

as well as between road network growth rate 𝑗′∗ and candidate location generation 

rate 𝑗′, were set by balancing the capacity to utilise the proposed model and the 

computational power. 

Second, the ratio between 𝑗∗ and 𝑗′∗ were set as equal in simulation experiment – 

adding one new location for population and road network each. In the urban system, 

the rate between population and road network growth may indicate the relationship 

between population and the required amount of transport infrastructure, like with the 
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urban scaling relations. It may as well indicate time scale differences between urban 

Population Dynamics and road infrastructure construction. In the proposed model, 

the population were represented with abstract units. Rate between 𝑗∗ and 𝑗′∗ did not 

suggest scaling relations or time scales of Population Dynamics and Road Network 

Dynamics. When 𝑗∗ ≫ 𝑗′∗, for road network at a time step, Population Dynamics 

added new population until exhausting locations over the existing road network. This 

setting led to the disabling of designed 𝑑𝑅𝑁 impact in Road dynamics. Because new 

population exhausted locations over road network, 𝑑𝑅𝑁 was homogeneous for road 

node candidate locations and made no difference on new road infrastructure 

locations. Similarly, when 𝑗′∗ ≫ 𝑗∗, for the population at a time step, Road Network 

Dynamics performed until exhausting new road node locations, relative to population 

distribution. This setting led to the disabling of designed 𝑑𝑝𝑜𝑝 impact on the 

population, as new population candidate locations were homogeneous when 

measured by 𝑑𝑝𝑜𝑝. Change of this ratio may be explored in future work to simulate 

more realistic Population Dynamics and Road Network Dynamics relationships.  

Third, to explore emerging spatial structures of simulated population and road 

network under the designed co-evolution mechanisms, candidate locations were 

generated as uniformly random. Population and road network spatial structures 

emerged would result from spatial decisions made according to the co-evolution 

mechanism, instead of predetermined candidate distribution. 

Forth, each simulation trial terminated at time step 𝑡 = 150. For 16 𝛽𝑘 combinations 

and 3 𝑟 values, 30 trials were performed for each of 48 sets of 𝛽𝑘 and 𝑟 

combinations. Simulation results of  𝑡 = 350 were compared with that of 𝑡 = 150 to 

show 𝑡 = 150 simulated structure were significant to represent the proposed model’s 

results.  

8.4 Chapter Conclusions 

This chapter addressed the third research question of this thesis and proposed a 

hybrid model of population and urban road network co-evolution in 8.2, with co-

evolution mechanism 8.2.1 consisting of Population Dynamics 8.2.1.1 and Road 

Network Dynamics 8.2.1.2. Using the synthesized layered urban system 

representation from Chapter 3, the proposed model considered explicitly the urban 

road network structure, which positioned it with alternative modelling approaches 

that involved RNE such as transport demand modelling, land use and transport 

models, urban models. At the same time, the proposed model coupled urban road 

network and population, which integrated GNM into the urban system, as illustrated 
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in Figure 8.1. 8.2.2 explained the implementation of the co-evolution mechanism, 

and 8.2.3, 8.2.4 summarised the model and algorithm.  

This model addressed two limitations in previous GNMs, as reviewed in chapter 4 

section 4.3.4.4. First, the proposed model represented population and road network 

as two inter-dependent urban system layers, addressing previous GNMs’ limitation in 

modelling population and road network using one network, with nodes representing 

population concentrated locations and links representing roads. The proposed model 

treated population and road network as independent urban system layers; thus, the 

two systems would not be inherently related being one network’s nodes and links as 

in previous representations. The modelled population and road network structure, as 

well as their relationship, would only be influenced by the proposed co-evolution 

mechanisms and not by the built-in network connectivity between nodes and links. 

This model design helped disentangle and understand mutual relationships and 

interactions between population and road network.  

Second, the proposed co-evolution mechanism did not assume fixed population and 

road network mutual influences but proposed to explore all potential population and 

road network spatial decision possibilities. This model and simulation experiment 

design attempted to relate to the diverse urban road network spatial structures and 

urban spatial structures reported in recent empirical research. Diverse spatial 

structures of simulated road networks may emerge, addressing previous studies’ 

limitation in exploring the urban road network spatial structure and its relationship to 

the urban spatial structure. 

Following the proposed model, the next chapter performs the planned simulation 

experiments in 8.3 and examines the emerging road network and population spatial 

structures, as well as their mutual influences, under different parameter 

combinations of the proposed co-evolution mechanism. 
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Chapter 9 Hybrid Model of the Population and Urban Road Network 

Co-evolution - Simulation Results 

9.1 Chapter Introduction 

Implementing the hybrid model of population and urban road network co-evolution 

proposed in the previous chapter, this chapter examines results of performed 

simulation experiments, explores the emerging road network spatial structure, 

population spatial structure, as well as their relationships.  

The proposed co-evolution mechanism iterated Population Dynamics and Road 

Network Dynamics, both making spatial decisions to add new components based on 

preferences for the distance between population and road network and existing 

population density or network flow situation. Population Dynamics made the spatial 

decision by two criteria 𝐶1 and 𝐶2. 𝐶1 measured the impact of candidate population 

location’s distance to existing road network 𝑑𝑝𝑜𝑝 and was controlled by the 

parameter β1. β1 = 𝑑𝑝𝑜𝑝
+   and β1 = 𝑑𝑝𝑜𝑝

−  represented population’s preferences for 

being away from or close to the road network. 𝐶2 measured the impact of existing 

local population density 𝜌 within radius 𝑟𝑑𝑒𝑛𝑠𝑖𝑡𝑦 of the candidate population location 

and was controlled by the parameter β2. β2 = 𝜌+ and β2 = 𝜌− represented 

population’s preferences for densely or sparsely populated areas. Road Network 

Dynamics made the spatial decision of the location to add new road network nodes, 

then performed Node Addition and Link Connection. Road Network Dynamics had 

two criteria 𝐶3 and 𝐶4. 𝐶3 measured the impact of total distance 𝑑𝑅𝑁 from the road 

network to all existing population, provided a candidate new node was connected; 𝐶3 

was controlled by the parameter β3. β3 = 𝑑𝑅𝑁
+   and β3 = 𝑑𝑅𝑁

−  represented the road 

network’s proximity preferences for being away from or being close to the population. 

𝐶4 measured the impact of total link flows ∑ 𝑓𝑙𝑜𝑤 of a subnetwork within radius 𝑟𝑓𝑙𝑜𝑤, 

provided a candidate node was connected; 𝐶4 was controlled by the parameter β4. 

β4 = ∑ 𝑓𝑙𝑜𝑤
+

 and β4 = ∑ 𝑓𝑙𝑜𝑤
−
 represented road network’s preferences for areas 

with high or low existing network flow. 

Simulation experiments in the chapter explore various population and road network 

spatial decision combinations, instead of assuming fixed ones, by experimenting 

parameters 𝛽𝑘 and r. Each 𝛽𝑘 in (𝛽1, 𝛽2, 𝛽3, 𝛽4) had two possible values - positive and 

negative. The radius of spatial decisions in Population Dynamics and Road Network 

Dynamics in each simulation trial was set to the same value  𝑟𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑟𝑓𝑙𝑜𝑤 = r, and 
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each 𝛽𝑘 set experimented with three radius values r ∈ {50,150,250}. Thus, there 

were a total number of 48 𝛽𝑘 and r combinations to explore. Each 𝛽𝑘 and r 

combination had with 30 simulation trials, from which the parameter combination’s 

effects on the simulated structure were concluded. This chapter attempts to answer 

the fourth research question of this thesis, as proposed in Chapter 1 and specified in 

Table 5-2: 

4 What road network spatial structure may arise during the co-evolution of road 

network and population? How do the simulated road network and population relate? 

a) How to characterise the spatial structure of urban road networks? 

This chapter first examines the simulated network spatial structure 9.2 by visual 

inspection 9.2.1, network characterisation 9.2.2, and the relationship between 

network spatial structure and connectivity 9.2.3. Second, the simulated population-

road network spatial structure 9.3 is examined, which identifies the combined 

population-road network spatial structures 9.3.1, as well as the mutual influences 

between population and road network 9.3.2, 9.3.3. Finally, 9.4 concludes the 

modelling and simulation findings under the proposed hybrid model of population 

and urban road network co-evolution. 

9.2 The Spatial Structure of Simulated Networks  

9.2.1 Visual Examination of Simulated Network Spatial Structures 

Figure 9.1 - Figure 9.4 show one sample set of simulation results under the 48 𝛽𝑘 

and r combinations. Together with the other 29 trials conducted under different 

random seeds, simulation experiments yielded 30 such simulation result sets in total.  

The shown set of 48 𝛽𝑘 and r combination simulation results were organised into the 

four tables Figure 9.1 - Figure 9.4, first by parameters (𝛽1, 𝛽3) - the preference of 

population and road network for being close to or away from each other. Simulated 

results in each table shared a same (𝛽1, 𝛽3) combinations, and there were four 

combinations, namely (𝛽1, 𝛽3) = (𝑑𝑝𝑜𝑝
− , 𝑑𝑅𝑁

− ), (𝑑𝑝𝑜𝑝
− , 𝑑𝑅𝑁

+ ), (𝑑𝑝𝑜𝑝
+ , 𝑑𝑅𝑁

− ), (𝑑𝑝𝑜𝑝
+ , 𝑑𝑅𝑁

+ ). For 

example, simulations in Figure 9.1 shared (𝛽1, 𝛽3) = (𝑑𝑝𝑜𝑝
− , 𝑑𝑅𝑁

− ), when population 

and road network both chose to be near each other in spatial decision making; and 

this table shows the simulation result visualizations with varied (𝛽2, 𝛽4) and r under 

the same (𝛽1, 𝛽3) = (𝑑𝑝𝑜𝑝
− , 𝑑𝑅𝑁

− ). Each table has three vertical panels with parameter 

r = 50, 150, 250. Each r panel shows the same simulated structure at two time 

steps 𝑡 = 150, 350 in two rows.  

Visual inspections yielded two findings. First, the simulated networks exhibited a 

spectrum of diverse spatial structures. In particular, the simulated networks exhibited 
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centralising, decentralising, clustering, and dispersing trends in the spatial structure, 

for instance, with simulated networks in Figure 9.1 column 1 r = 250, column 4 r =

250, column 1 r = 50, and column 4 r = 50 respectively. Second, differences in 

simulated network spatial structures resulted from varied parameter combinations, 

namely the population and road network spatial decision combinations enabled by 

the proposed co-evolution mechanism. According to each parameter’s influences on 

the simulated network spatial structure, the parameters were separated into three 

groups.  

9.2.1.1 The Influences of 𝜷𝟒 and 𝐫 on the simulated network spatial structure 

First, the parameter 𝛽4, whether new road network preferred area with large or small 

network flow ∑ 𝑓𝑙𝑜𝑤 in criteria 𝐶4 of the Road Network Dynamics mechanism, led 

simulated networks to centralise or decentralise, which was observable in all 

simulated networks. When 𝛽4 = ∑ 𝑓𝑙𝑜𝑤
+

 , namely column 1, 3 in all tables, new road 

network preferred area with large ∑ 𝑓𝑙𝑜𝑤, the simulated network spatial structure 

tended to centralise. When 𝛽4 = ∑ 𝑓𝑙𝑜𝑤
−

 , namely column 2, 4 in all tables, new road 

network preferred area with small ∑ 𝑓𝑙𝑜𝑤, the simulated network spatial structure 

tended to decentralise.  

Further, when 𝛽4 = ∑ 𝑓𝑙𝑜𝑤
+

 and the network spatial structure had the centralising 

tendency, large r, e.g. the third panels in all tables with r = 250, led to centralised 

spatial structures with a single centre; and small r, e.g. the first panels in all tables 

with r = 50, led to clustered spatial structures with multiple potential centres. This 

could be shown by Figure 9.1 column 1 at r = 250 and r = 50, respectively, as well 

as by Figure 9.2 column 1 at r = 250 and r = 50. When 𝛽4 = ∑ 𝑓𝑙𝑜𝑤
−

 and the 

network spatial structure had the decentralising tendency, large r, e.g. the third 

panels in all tables with r = 250, led to decentralised spatial structures; and small r, 

e.g. the first panels in all tables r = 50, led to dispersed spatial structures. This 

impact could be shown in Figure 9.1 column 4 at r = 250 and r = 50, as well as in 

Figure 9.2 column 4 at r = 250 and r = 50.  

Centralising and decentralising tendencies in the simulated network spatial 

structures under β4 = ∑ 𝑓𝑙𝑜𝑤
+
 and β4 = ∑ 𝑓𝑙𝑜𝑤

−
 respectively, suggested β4 

modelled opposite centralisation and decentralisation processes that pushed and 

pulled simulated road network spatial structures, by spatial decision preferences for 

areas with high or low existing network flow. Preference for high flow ∑ 𝑓𝑙𝑜𝑤
+

 

modelled simulated networks’ centralising behaviour and centralisation process, 

while preference for low flow ∑ 𝑓𝑙𝑜𝑤
−
 modelled the road networks’ decentralising 

behaviour and decentralisation process.  
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r modelled the scope of centralisation and changed the simulated structure between 

centralised to clustered resulted. Centralising globally within a large radius r resulted 

in the centralised spatial structure with a single centre while centralising locally within 

a small radius r resulted in the clustered spatial structure with multiple potential 

centres. The tendency between decentralised to dispersed resulted from the spatial 

scope of decentralisation. Decentralising globally within a large radius r resulted in 

the decentralised spatial structure while decentralising locally within a small radius r 

resulted in the dispersed spatial structure.  

Combining 𝛽4 and r, two dimensions of road network spatial structure – centralised 

to decentralised on the global scale, clustered to dispersed on the local scale were 

modelled. Overall, this suggested the spectrum of diverse simulated network spatial 

structures resulted from simulated networks’ centralisation and decentralisation 

processes on the global scale and clustering and dispersion processes on the local 

scale, behind the formation of these spatial structures as modelled by 𝛽4 and r.  

The observation and characterisation of simulated network spatial structures were 

consistent with the characterisation of urban spatial structure. As reviewed in 3.3.1, 

the urban spatial structure has been characterised by two dimensions centralisation 

to decentralisation on the global scale, clustering to dispersion on the local scale. 

The urban spatial structure has been attributed to push and pull processes, including 

economies and diseconomies of agglomeration on the economic urban spatial 

structure, coalescence and diffusion in physical urban growth, attraction and 

repulsion between land use categories, centripetal and centrifugal forces of transport 

accessibility, spatial interaction potentials on the functional urban spatial structure. 

Characterisation by the centralised to decentralised, clustered to dispersed 

dimensions, associated simulated network spatial structures and the push and pull 

processes behind their formation as modelled by 𝛽4 and r, with the urban spatial 

structure and push and pull processes behind its formation. Economic agglomeration 

encourages the spatial concentration of physical capital; urban road network spatial 

structures have been reported to correlate with population and urban spatial 

structure, by empirical research reviewed in 3.4. The correlations may suggest the 

presence of related push and pull processes behind their formation, respectively. 

Meanwhile, the urban spatial structure has socioeconomic, physical, functional 

components, as synthesised in 3.3.4; spatial structures of different urban system 

layers may correlate but should not be equated to each other. Hence, simulated 

network spatial structures were first characterised independently from the simulated 

population.   
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Column 1 2 3 4 

(𝑑𝑝𝑜𝑝
− , 𝑑𝑅𝑁

− ) (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

)  (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

)  (𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

)  (𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

)  

r = 

50 

t = 

150 

 

t= 

350 

r = 

150 

t = 

150 

 

t = 

350 

r = 

250 

t = 

150 

 

 

t = 

350 

Figure 9.1 Simulated Structures under (𝜷𝟏, 𝜷𝟑) = (𝒅𝒑𝒐𝒑
− , 𝒅𝑹𝑵

− ) with 𝒓 = 𝟓𝟎, 𝟏𝟓𝟎, 𝟐𝟓𝟎 at 

𝒕 = 𝟏𝟓𝟎, 𝟑𝟓𝟎: This figure shows the simulated population and road networks. Blue 

points represent population concentrated locations. Red points represent road network 
nodes and black lines represent road network links.  
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Column 1 2 3 4 

(𝑑𝑝𝑜𝑝
− , 𝑑𝑅𝑁

+ ) (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
+

)  (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
−

)  (𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
+

)  (𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
−

)  

r = 

50 

t = 

150 

 

 

t= 

350 

r = 

150 

t = 

150 

 

t = 

350 

r = 

250 

t = 

150 

 

 

t = 

350 

Figure 9.2 Simulated Structure under (𝜷𝟏, 𝜷𝟑) = (𝒅𝒑𝒐𝒑
− , 𝒅𝑹𝑵

+ ) with 𝒓 = 𝟓𝟎, 𝟏𝟓𝟎, 𝟐𝟓𝟎 at 

𝒕 = 𝟏𝟓𝟎, 𝟐𝟓𝟎: This figure shows the simulated population and road networks. Blue 

points represent population concentrated locations. Red points represent road network 
nodes and black lines represented road network links. 
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Column 1 2 3 4 

(𝑑𝑝𝑜𝑝
+ , 𝑑𝑅𝑁

− ) (𝑑𝑝𝑜𝑝
+ , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

)  (𝑑𝑝𝑜𝑝
+ , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

)  (𝑑𝑝𝑜𝑝
+ , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

)  (𝑑𝑝𝑜𝑝
+ , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

)  

r = 

50 

t = 

150 

 

 

t= 

350 

r = 

150 

t = 

150 

 

t = 

350 

r = 

250 

t = 

150 

 

 

t = 

350 

Figure 9.3 Simulated Structure under (𝜷𝟏, 𝜷𝟑) = (𝒅𝒑𝒐𝒑
+ , 𝒅𝑹𝑵

− ) with 𝒓 = 𝟓𝟎, 𝟏𝟓𝟎, 𝟐𝟓𝟎 at 

𝒕 = 𝟏𝟓𝟎, 𝟐𝟓𝟎: This figure shows the simulated population and road networks. Blue 

points represented population concentrated locations. Red points represent road 
network nodes and black lines represent road network links. 
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Column 1 2 3 4 

(𝑑𝑝𝑜𝑝
+ , 𝑑𝑅𝑁

+ ) (𝑑𝑝𝑜𝑝
+ , 𝜌+, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
+

)  (𝑑𝑝𝑜𝑝
+ , 𝜌+, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
−

)  (𝑑𝑝𝑜𝑝
+ , 𝜌−, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
+

)  (𝑑𝑝𝑜𝑝
+ , 𝜌−, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
−

)  

r = 

50 

t = 

150 

 

 

t= 

350 

r = 

150 

t = 

150 

 

t = 

350 

r = 

250 

t = 

150 

 

 

t = 

350 

Figure 9.4 Simulated Structure under (𝜷𝟏, 𝜷𝟑) = (𝒅𝒑𝒐𝒑
+ , 𝒅𝑹𝑵

+ ) with 𝒓 = 𝟓𝟎, 𝟏𝟓𝟎, 𝟐𝟓𝟎 at 

𝒕 = 𝟏𝟓𝟎, 𝟐𝟓𝟎: This figure shows the simulated population and road networks. Blue 

points represented population concentrated locations. Red points represent road 
network nodes and black lines represent road network links. 
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9.2.1.2 The Influences of (𝜷𝟏, 𝜷𝟑) and 𝜷𝟐  on the simulated network spatial 

structure 

The second group of parameters were (𝛽1, 𝛽3), namely population and road 

network’s preferences for the distance to each other. These two parameters 

intensified or counteracted the influences of 𝛽4 and r on the simulated network 

spatial structure, rather than giving rise to systematic differences on their own. 

Figure 9.1 - Figure 9.4 each corresponds to one combination of (𝛽1, 𝛽3). There was 

no persistent pattern of differences among simulated networks of the four figures; 

however, their centralised, decentralised, clustered, and dispersed spatial structures 

were intensified or counteracted. In comparison to (𝛽1, 𝛽3) = (𝑑𝑝𝑜𝑝
− , 𝑑𝑅𝑁

− ) of Figure 

9.1, (𝛽1, 𝛽3) = (𝑑𝑝𝑜𝑝
− , 𝑑𝑅𝑁

+ ) in Figure 9.2 intensified centralising and decentralising of 

simulated network spatial structures, as population chose to be close to the road 

network while road network chose to be away from the population. (𝛽1, 𝛽3) =

(𝑑𝑝𝑜𝑝
+ , 𝑑𝑅𝑁

− ) in Figure 9.3 counteracted centralising and decentralising of simulated 

network spatial structures, as population chose to be away from road network while 

road network chose to be close to population, and all simulated networks had 

dispersed spatial structures, exceeding other parameters’ influences. (𝛽1, 𝛽3) =

(𝑑𝑝𝑜𝑝
+ , 𝑑𝑅𝑁

+ ) in Figure 9.4 both intensified and counteracted centralising and 

decentralising of simulated network spatial structures, leading to asymmetric spatial 

distributions of simulated networks. 

The last parameter was 𝛽2, which controlled the population’s preference for areas 

with high or low existing population density. 𝛽2 exerted indirect influences on the 

simulated road network spatial structure, as it controlled the behaviour of the 

population. 𝛽2 intensified or counteracted influences of 𝛽4 and r as (𝛽1, 𝛽3) did, which 

could be observed by comparing each figure’s columns 1 and 3 as well as columns 2 

and 4. Columns 1 and 3 of each figure shared the same value of parameters 

(𝛽1, 𝛽3, 𝛽4), but had opposite 𝛽2 values; same applied to columns 2 and 4. The spatial 

structure of the population might intensify and counteract simulated networks’ 

centralisation, decentralisation, clustering, and dispersion. 

9.2.1.3 Visual Examination Summary 

In summary, visual inspection suggested the proposed model is capable of giving 

rise to a spectrum of network spatial structures, which could be characterised by the 

processes behind their formation - centralisation and decentralisation on the global 

scale, clustering and dispersion on the local scale. Simulated networks’ spatial 

structures being a spectrum, rather than a few fixed and clear-cut types, resulted 

from centralising, decentralising, clustering, dispersion processes that pushed and 

pulled the simulated network spatial structures as modelled by 𝛽4 and r, as well as 
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from further intensification or counteraction by influences of the simulated population 

as modelled by (𝛽1, 𝛽2, 𝛽3).  

To be more specific, parameters 𝛽4, the spatial decision preference for areas with 

large or small network flow ∑ 𝑓𝑙𝑜𝑤 to locate new network nodes, modelled the 

centralisation and decentralisation processes of simulated networks. And radius r of 

the area within which road network and population made spatial decisions, controlled 

the scale - global or local, on which centralisation and decentralisation happened. 

Centralisation on the global scale led to centralised monocentric spatial structures, 

centralisation on the local scale led to clustered spatial structures with multiple 

potential centres; decentralisation on the global scale led to decentralised spatial 

structures, and decentralisation on the local scale led to dispersed spatial structures. 

The rest of parameters (𝛽1, 𝛽3) - population and road network’s preferences of the 

distance to each other, and 𝛽2 - population’s preference for areas with high or low 

existing population density, intensified or counteracted centralisation and 

decentralisation, clustering and dispersion processes, together contributing to the 

emergence of the diverse spectrum of simulated network spatial structures. 

After identifying the two dimensions of simulated network spatial structures, the next 

section used network characteristics to characterise these spatial structures. 

9.2.2 Network Characterisation of Simulated Network Spatial Structures 

Existing research has characterised road network spatial structure by dominant 

geometric connection patterns, continuity patterns, and density distributions, as 

reviewed in 3.2. Dominant geometric connection patterns such as ring, star, web, 

hub-and-spoke, and stroke-based or street-based patterns have captured the 

inherent hierarchy of urban road networks, but defined fixed types of road network 

spatial structures, and have insufficiently considered these patterns’ relationship to 

the urban system. Spatial analysis of road network density has related the road 

network spatial structure to the urban spatial structure yet treated only road network 

nodes or road infrastructure quantities under certain space division, while neglecting 

the network nature of the road network spatial structure. Because of its network 

nature, measures of the urban spatial structure may not be directly applicable to 

characterise road network spatial structure. Network science perspective empirical 

and modelling RNE research, as reviewed in Chapter 2, 4 has had limited 

characterisation of road network spatial structure. Since road networks have been a 

significant data source of urban form, the road network structure has often been 

equated to urban form and urban spatial structure, without discussions of the 

relationship between them. 
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5.3.2.1 proposed to use two network characteristics - total link length 𝐿𝑡𝑜𝑡 and 

maximum shortest path 𝑙𝑚𝑎𝑥, to characterise the road network spatial structure from 

centralised to decentralised and from clustered to dispersed. On areas of the same 

size, centralised network structures concentrated around a single centre and should 

be characterised by relatively small network diameter and small total length. On the 

contrary, decentralised network structures spanned to the fringe of the area and 

should be characterised by a large diameter. Compared to decentralised network 

structures, dispersed network structures not only had a relatively large diameter but 

also had large total length, spanning over an area with high coverage. Compared to 

centralised network structures, clustered network structures had larger diameter but 

smaller coverage. 

 

Figure 9.5 Network Characterisation of Simulated Network Spatial Structure: 

This plot shows the total link length 𝐿𝑡𝑜𝑡 and maximum shortest path 𝑙𝑚𝑎𝑥 separated 

simulated networks under parameter combinations (𝛽1, 𝛽2, 𝛽3, 𝛽4) =

(𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

) at 𝑟 = 250, 50 and (𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

) at 𝑟 = 50, 250 to 

benchmark the centralised to decentralised, clustered to dispersed dimensions. The x-
axis represents 𝐿𝑡𝑜𝑡; the y-axis represents 𝑙𝑚𝑎𝑥. Sample simulated network 
visualizations of the corresponding parameter combination are marked with spatial 
structures. 

Figure 9.5 demonstrated 𝐿𝑡𝑜𝑡 and 𝑙𝑚𝑎𝑥 separated centralised, decentralised, 

clustered, and dispersed network spatial structures. Simulated networks under four 

parameter combinations (𝛽1, 𝛽2, 𝛽3, 𝛽4) = (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

) at 𝑟 = 250, 50 and 
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(𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

) at 𝑟 = 250, 50, corresponding to Figure 9.1 column 1 r = 50, 

250 and column 4 r = 50, 250, were selected to benchmark the two spatial structure 

dimensions. Each group of simulated networks had data of 30 simulation trials.  

In the lower left corner, simulated networks under (𝛽1, 𝛽2, 𝛽3, 𝛽4) =

(𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

) at 𝑟 = 250 had centralised spatial structures and formed a 

point cluster with smallest 𝑙𝑚𝑎𝑥 and small 𝐿𝑡𝑜𝑡 among the two spatial structure 

dimensions, indicating a compact layout and low construction cost. Simulated 

networks under (𝛽1, 𝛽2, 𝛽3, 𝛽4) = (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

) at 𝑟 = 50 had clustered 

spatial structures and formed a point cluster with smallest 𝐿𝑡𝑜𝑡 on average but larger 

𝑙𝑚𝑎𝑥 than centralised spatial structures. In other words, centralised network spatial 

structures with a single centre resulted from centralising globally over a large area, 

had the smaller 𝑙𝑚𝑎𝑥  but larger 𝐿𝑡𝑜𝑡 than clustered network spatial structures with 

multiple potential centres resulted from centralising locally within small areas. This 

finding showed clustered spatial structures with multiple local centres had the 

advantage of smaller construction cost than centralised spatial structures with a 

single centre, but also had the disadvantage of larger traversing diameter. This result 

may relate to empirical observations of the transformation from monocentric to 

polycentric urban spatial structure, in which polycentricity has been regarded as 

keeping benefits of agglomeration while avoiding diseconomies of agglomeration, as 

reviewed in 3.3.1. 

On the top, simulated networks under (𝛽1, 𝛽2, 𝛽3, 𝛽4) = (𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

) at 𝑟 =

250 had decentralised spatial structures and formed a point cluster with the longest 

𝑙𝑚𝑎𝑥, demonstrating the largest diameter among the two spatial structure 

dimensions. To the right, simulated networks under (𝛽1, 𝛽2, 𝛽3, 𝛽4) =

(𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

) at 𝑟 = 50 had dispersed spatial structures and formed a 

point cluster with the maximum 𝐿𝑡𝑜𝑡, demonstrating the highest coverage over the 

simulation area among the two spatial structure dimensions. Decentralised network 

spatial structures resulted from decentralising globally over a large area, while 

dispersed road network spatial structures resulted from decentralising locally within 

small areas. This result may further relate to empirical observations of the 

transformation from polycentric to dispersion, as reviewed in 3.3.1 when benefits of 

agglomeration have been regarded as failed to excel the negatives and have been 

characterised by increasing costs in infrastructure construction and travel.  

Compared to existing characterisation methods of the road network spatial structure, 

such as dominant geometric connection patterns or continuity hierarchy patterns, 

characterisation by processes behind road network spatial structure formation 

captured the potential diversity of urban road network spatial structures. The spatial 
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structure of urban road networks emerged as a spectrum, agreeing with the findings 

of empirical pattern recognition of global urban road networks as reviewed in 3.2.3. 

The centralised to decentralised, clustered to dispersed dimensions related more 

closely the spatial structure of the road network to the urban system. Compared to 

spatial analysis methods such as road network density, characterisation by network 

characteristics emphasised on the network structure, instead of treating network 

nodes spatial distribution or road infrastructure quantities in specific space division. 

In summary, this section combined two network characteristics, total link length 𝐿𝑡𝑜𝑡 

and maximum shortest path 𝑙𝑚𝑎𝑥, and characterised simulated network spatial 

structures by centralisation to decentralisation, clustering to dispersion processes, 

behind the formation and dynamics of these spatial structures. For simulated 

networks of the same size, the centralisation tendency was characterised by small 

𝐿𝑡𝑜𝑡 and 𝑙𝑚𝑎𝑥, whereas the decentralisation tendency was characterised by large 𝐿𝑡𝑜𝑡 

and 𝑙𝑚𝑎𝑥. The changes among simulated network structures and the generative 

mechanisms behind may relate to empirical urban spatial structure transformations 

from monocentric, to polycentric and dispersed, with accompanying changes in costs 

of road network infrastructure and travel. Compared to alternative methods, the 

proposed network characterisation of urban road network spatial structure using 

processes behind the formation and dynamics of spatial structures had the potential 

to capture a diverse spectrum of network spatial structures. Using the centralisation 

to decentralisation, clustering to dispersion processes related road network spatial 

structure to the urban spatial structure; using network characteristics emphasised on 

the network nature of the urban road network spatial structure. 

9.2.3 Simulated Network Spatial Structures and Connectivity 

Existing empirical and modelling RNE research, as reviewed in Chapter 2, 4, have 

limited consideration of urban road networks’ spatial structure; therefore, they have 

not related network characteristics’ differences to different spatial structures of the 

studied road networks, as well as their underlying urban spatial structure at large. 

The reported network characteristics differences may result from studied networks’ 

variation in the spatial structure, thus signalling different network spatial structures, 

rather than a general variation of network characteristics. Existing research has 

reported network characteristics without consideration of the spatial structural cause 

behind characteristic differences. For instance, current network science research 

might assume a monocentric spatial structure. Following the two dimensions of the 

network spatial structure, this section examines the variation in simulated networks’ 

connectivity, resulted from the variation of their spatial structures.  
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Two network characteristics were used to characterise simulated networks’ 

connectivity: average node degree �̅� and treeness 𝜑𝑡𝑟𝑒𝑒 =
𝐿𝑡𝑟𝑒𝑒

𝐿𝑡𝑜𝑡
. 𝜑𝑡𝑟𝑒𝑒 measured the 

ratio between Euclidean length of a network’s tree structure and the total Euclidean 

network length. Figure 9.6 and Figure 9.7 show �̅� and 𝜑𝑡𝑟𝑒𝑒 of simulated networks 

under the four benchmark parameter combinations (𝛽1, 𝛽2, 𝛽3, 𝛽4) =

(𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

) at 𝑟 = 250, 50 and (𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

) at 𝑟 = 250, 50, of 

centralised, clustered, decentralised, dispersed spatial structures. Each group of 

simulated networks had 30 simulation trials’ data. 

 

 

Figure 9.6 Road Network Spatial Structure and Average Node Degree �̅�: This 

boxplot shows average node degree �̅� of centralised, clustered, decentralised, and dispersed 

simulated networks, generated under (𝛽1, 𝛽2, 𝛽3, 𝛽4) = (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

) at 𝑟 = 250, 50 

and (𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

) at 𝑟 = 250, 50 respectively. 

Figure 9.6 shows how average node degree �̅� varied with simulated networks’ 

spatial structures. On average, �̅�𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑 > �̅�𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 > �̅�𝐷𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 > �̅�𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑. 

Dispersed simulated networks, such as Figure 9.1 column 4 r = 50, had nodes 

spanning over the simulation area and links of typical lengths; their connectivity 

shared the highest similarity with a grid layout among the two spatial dimensions, as 

discussed in 5.3.2.1, and had the highest connectivity among simulated networks, as 

measured by �̅�. Centralised simulated networks had the second largest �̅�; 30 

simulation trials’ �̅�𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 ≈ 2.39, larger than �̅� ≈ 2.36 of simulate networks in 

Chapter 7 under the same Link Connection mechanism but without the population 

and road network co-evolution mechanism in Node Addition. Clustered and 

decentralised simulated networks exhibited lower �̅� than simulate networks in 

Chapter 7. �̅� showed the spatial structure of simulated networks influenced their 

network characteristics, and different network spatial structures had different levels 
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of network connectivity. Thus, empirical research should consider the studied 

networks’ spatial structure when investigating network characteristics, as the spatial 

structure may be one potential cause of network characteristic variations.  

Meanwhile, the modelled network elementary connection patterns were also 

characterised by a majority of 𝑘3 nodes and low 𝑘4 node proportion, as the simulated 

networks from Chapter 7. Chapter 7’s simulated networks with random positioning of 

new nodes and without the co-evolution mechanism that influenced new node 

locations, had similar �̅� to urban road networks that have been recognised as 

organic, such as Worcester with �̅� = 2.36, as reviewed empirical findings in 2.3.2. 

Among the simulated network structures under the co-evolution mechanism, 

dispersed and centralised simulated spatial structures’ �̅� were close to Edinburgh 

with �̅� = 2.43, Sheffield with �̅� = 2.42. Decentralised and clustered simulated spatial 

structures’ �̅� was close to Oxford with �̅� = 2.32. However, compared to urban road 

networks with planned grid patterns, such as Barcelona with �̅� = 3.42, �̅� of simulated 

networks by the hybrid model of population and road network co-evolution still lower, 

showing that grid patterns would not emerge with the spatial structure variations 

under the proposed co-evolution mechanism. Thus, the hybrid model is likely to 

model as well self-organised urban road network structures and supported Chapter 

7’s simulation finding that planned and self-organisation regimes coexist in the urban 

road network evolution. 

Figure 9.7 shows how treeness 𝜑𝑡𝑟𝑒𝑒 varied with simulated networks’ spatial 

structures. On average, 𝜑𝑡𝑟𝑒𝑒_𝐶𝑙𝑠𝑢𝑡𝑒𝑟𝑒𝑑 > 𝜑𝑡𝑟𝑒𝑒_𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 > 𝜑𝑡𝑟𝑒𝑒_𝐷𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 >

𝜑𝑡𝑟𝑒𝑒_𝐷𝑖𝑠𝑝𝑒𝑟𝑒𝑑. Clustered simulated networks, such as Figure 9.1 column 1, r = 50, 

had the highest tree structure length proportion among the two dimensions of 

network spatial structures. Compared to the centralised simulated networks which 

had a single centre, clustered simulated networks exhibited multiple potential 

centres, suggesting the transformation from single to multiple centres may increase 

network’s tree structure and lower the network connectivity. This result agreed with 

the empirically observed increase of tree structures in the London road network 

evolution, which have been interpreted as increasing self-organisation with the urban 

road network evolution, as reviewed in 2.3.2.2.  The simulation suggested such 

increase of tree structure may relate to a transformation from monocentric to 

polycentric road network spatial structures.  

Together with Figure 9.6, negative correlations between �̅� and 𝜑𝑡𝑟𝑒𝑒 were 

demonstrated, namely simulated networks with low �̅� had high 𝜑𝑡𝑟𝑒𝑒, suggesting 

dead-ends’ effect on the network connectivity. The network connectivity variation 

among spatial structures mainly resulted from the changing proportion of dead-ends. 
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Clustered and decentralised spatial structures encouraged more emergence of 

dead-ends, thus having lower connectivity than dispersed and centralised spatial 

structures. Considering the similarity between simulated networks’ average node 

degree �̅� and empirical urban road networks that have been regarded as organic, 

mechanisms behind the �̅� variations between simulated spatial structures may find 

parallels in real-world processes that led to the observed empirical �̅� variations. The 

exception of 𝜑𝑡𝑟𝑒𝑒_𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 > 𝜑𝑡𝑟𝑒𝑒_𝐷𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 was because 𝜑𝑡𝑟𝑒𝑒 measured 

Euclidean length. Decentralised simulation networks had larger total length 𝐿𝑡𝑜𝑡 while 

their tree structure were mainly short links near the fringe of the simulated area. 

 

Figure 9.7 Road Network Spatial Structure and Treeness 𝝋𝒕𝒓𝒆𝒆: This boxplot shows 

treeness 𝜑𝑡𝑟𝑒𝑒of centralised, clustered, decentralised, and dispersed simulated networks, 

generated under (𝛽1, 𝛽2, 𝛽3, 𝛽4) = (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

) at 𝑟 = 250, 50 and 

(𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

) at 𝑟 = 250, 50, respectively. 

2.4.4 reviewed empirically reported RNE phenomena Densification and Exploration 

(DE), which categorised two types of new links based on their influences on average 

network Betweenness Centrality (BC). Densification links have been associated with 

new links that bridged two existing roads while exploration links have been 

associated to dead-ends. Exploration links have been reported to gradually decrease 

and disappear in the observed urban road network evolution. DE new links have 

been associated with two RNE processes, namely densification and exploration. 

Because DE characterised two only possible Link Connection patterns in planar 

networks, 2.4.4.1 concluded the broad observation of DE suggested DE’s existence 

is a planar network property. To describe RNE processes, DE shall include temporal 

and spatial characterisation. 

Simulation results in this section showed that different simulated network spatial 

structures had different new link proportions. Compared to centralised and dispersed 
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spatial structures, clustered and decentralised spatial structures encouraged more 

emergence of 𝑘1 nodes and dead-ends. Thus, the proportions of new DE links 

related to the underlying network spatial structures. Transformations, such as from 

clustered to centralised, decentralised to dispersed, would witness decreasing 

exploration links, which may relate to the empirical observations made between 

polycentric and monocentric, decentralised and dispersed urban road networks. 

Observations made of the urban road network transformation from centralised, 

dispersed to clustered, decentralised may witness increasing exploration links, as 

reported by the empirical findings. Simulation suggested DE may relate to and 

characterise the transformation of observed road networks’ spatial structure. 

In summary, this section showed simulated networks of different spatial structures 

had quantitative differences in network connectivity. These simulation findings 

showed the spatial distribution and organisation of simulated networks are likely to 

influence their network characteristics, as demonstrated by �̅� and 𝜑𝑡𝑟𝑒𝑒. Therefore, 

empirical and modelling research of network characteristics shall consider the 

underlying urban road network spatial structure, so that the variation of network 

characteristics caused by the variation of network spatial structures would not be 

overlooked.  

In general, dispersion and centralisation resulted in higher connectivity than the 

simulated networks modelled in Chapter 7 without the population and road network 

co-evolution mechanism. Clustered spatial structures had the lowest connectivity 

and highest proportion of tree structure, suggesting empirically observed decrease of 

network connectivity and increase of tree structure with urban road network evolution 

may result from a transformation from monocentric to polycentric road spatial 

structure. Dispersed spatial structure networks had the highest connectivity but 

required a trade-off with high construction cost, shown by the largest total link length 

𝐿𝑡𝑜𝑡 in the last section. In comparison, the centralised spatial structure achieved high 

connectivity without high construction cost, suggesting a compact and efficient 

network structure. Finally, the variation in simulated network connectivity with 

different spatial structures mainly resulted from the change of dead-end or 𝑘1 node 

proportions. This finding suggested simulated network spatial structures with lower 

connectivity, the clustered and decentralised spatial structures, encouraged more 

emergence of dead-ends, whereas centralised and dispersed spatial structures did 

not. This finding may share similarity with the processes that led to empirical �̅� 

variations; namely, empirical changes of �̅� may as well result from the changing 

network spatial structures, which differ in the level of network connectivity. This result 

may further relate to empirical observations of Densification and Exploration; that is, 

DE may have characterised the transformation of the road network spatial structure. 
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9.3 Combined Population-Road Network Spatial Structures and 

Relationships 

The spatial structure of simulated networks was expected to be independent from as 

well as interrelated to the spatial structure of the population. Thus, the spatial 

structure of simulated networks was characterised first in the last section, which 

found a spectrum of spatial structures under the proposed population and road 

network co-evolution mechanism. The simulated network spatial structures resulted 

from global centralisation and decentralisation as well as local clustering and 

dispersion processes in simulated networks’ dynamics. Network characteristics of 

different network spatial structures differed quantitatively. This section looked into 

the combined spatial structure of simulated population and road network 9.3.1, and 

established relationships between simulated population and road network spatial 

structures, regarding their correlations and mutual influences 9.3.2, 9.3.3. 

9.3.1 The Combined Population-Road Network Spatial Structure  

Like the simulated networks, visual examination of Figure 9.1 to Figure 9.4 

suggested the spatial structure of simulated population could be characterised by the 

global centralisation and decentralisation, local clustering and dispersion processes 

behind the formation of these spatial structures, as shown by the benchmark 

population spatial structures in Figure 9.8. Simulated population’s spatial structure 

was mainly influenced by parameters 𝛽2 and 𝑟, namely population’s spatial decision 

preference for new locations with high or low existing population density and the 

area radius within which spatial decisions were made.  

When 𝛽2 = 𝜌+ and new population locations preferred high population density area, 

the population spatial structure tended to centralise. Centralisation within a large 

radius, e.g. 𝑟 = 250, led to centralised population spatial structure with a single 

centre; centralisation within a small radius, e.g. 𝑟 = 50, led to clustered spatial 

structure with multiple potential centres. On the other hand, when 𝛽2 = 𝜌− and new 

population locations preferred low population density area, the population spatial 

structure tended to decentralise. Decentralisation within large radius 𝑟 led to 

decentralised population spatial structure; decentralisation within small radius 𝑟 led 

to dispersed spatial structure. The rest of parameters (𝛽1, 𝛽3) – population and road 

network’s preferences for the distance to each other and 𝛽4 – road network’s 

preference for high or low flow area, intensified or counteracted 𝛽2 and 𝑟’s influences 

on the population spatial structure, and contributed to forming a diverse spectrum of 

population spatial structures. 𝛽2 and 𝑟’s influences on simulated population spatial 

structure were demonstrated in the differences of population spatial structures 

between columns 1, 2 and columns 3, 4 of Figure 9.1 to Figure 9.4. Columns 1, 2 
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shared 𝛽2 = 𝜌+ and exhibited centralised spatial structure at large 𝑟 = 250 and 

clustered spatial structure at small 𝑟 = 50. Columns 3, 4 shared 𝛽2 = 𝜌− and 

exhibited decentralised spatial structure at large 𝑟 = 250 and dispersed spatial 

structure at small 𝑟 = 50. 

  

Centralised Clustered 

 
 

Decentralised Dispersed 

 
 

Figure 9.8 Population-Road Network Spatial Structure: four benchmark population-

road network spatial structure - centralised, clustered, decentralised, or dispersed when the 
spatial structure of population and of road network agreed under parameter combinations 

(𝛽1, 𝛽2, 𝛽3, 𝛽4) = (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

) at 𝑟 = 250, 50 and (𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

) at 𝑟 = 250, 

50. 

Together the simulated population and road network constituted a combined spatial 

structure, resulted from global centralisation and decentralisation, local clustering 

and dispersion processes of population and road network, respectively. Simulated 

population-road network structures in Figure 9.8 benchmarked the combined 

centralised, decentralised, clustered and dispersed spatial structures, under 

(𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

)

𝑟 = 250

(𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

)

𝑟 = 50

(𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

)

𝑟 = 250

(𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

)

𝑟 = 50
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parameter combinations (𝛽1, 𝛽2, 𝛽3, 𝛽4) = (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

) at 𝑟 = 250, 50 in 

Figure 9.1 column 1 and (𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

) at 𝑟 = 250, 50 in column 4. Under 

these parameter combinations, behaviours of population and road network modelled 

by the co-evolution mechanism coordinated. Population and road network preferred 

to locate near each other and both preferred high existing density and flow or low 

existing density and flow areas. These emerged combined spatial structures agreed, 

both exhibiting centralised, decentralised, clustered or dispersed spatial structures, 

suggesting coordinated spatial processes behind their formation. Other parameter 

combinations intensified or counteracted each other’s influences and contributed to 

forming a diverse spectrum of simulated population-road network spatial structures.  

Simulated population and road network structures supported the possible population 

and road network correlations, modelled more potential correlated population-road 

network spatial structures as in Figure 9.8, as well as specified the correspondent 

generative mechanisms. Empirical research has found spatial correlations between 

urban road network and population, and between road network and the urban spatial 

structure, as reviewed in 3.4. For instance, empirical research has reported 

exponential density decay of both population and road network from the CBD, 

suburbanization of population caused by highway development. The empirically 

observed exponential population and road network density decay from the CBD may 

relate to the simulated centralised combined population-road network spatial 

structure. Empirically observed suburbanization of population caused by highway 

development may relate to the simulated clustered combined spatial structure, which 

indicates the relocation of the population from a single urban centre to sub-centres. 

Besides, correlated population and road network may display potential decentralised 

and dispersed spatial structures as in the simulation, which may relate to dispersion 

of residence and work, low or high-density urban sprawl. 

As synthesised in 3.3.4, the urban spatial structure may be viewed as having 

socioeconomic, physical, and functional levels, and the urban system as consisting 

of overlaid layers such as urban spatial structure, land use, transport. Related push 

and pull forces are likely to present across urban system layers. For example, the 

economies and diseconomies of agglomeration influence the economic urban spatial 

structure; physical urban growth goes through coalescence and diffusion; land uses 

categories exert attraction and repulsion; transport accessibility serves as both 

centripetal and centrifugal forces in influencing the urban spatial structure; spatial 

interaction potentials influence the functional urban spatial structure. 

Parameter combinations that modelled these agreed spatial structures required 

coordinated preferences of population and road network, making spatial decisions to 
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locate near each other, as well as both centralise, decentralise, cluster or disperse. 

The necessity to coordinate population and road network behaviours modelled by 

the co-evolution mechanism, to simulate the spatially agreed combined spatial 

structures as in empirical findings, suggested empirical population and road network 

may experience such coordinated processes as well. Namely, there may be 

coordinated centralising, decentralising, clustering, or dispersing processes on the 

population layer and the road network layer, respectively, that formed their correlated 

spatial structures. Meanwhile, both empirical road network and urban spatial 

structure exhibited a diverse spectrum, indicating that both push and pull forces 

existed, which intensify or counteract each other’s influences. This finding of the 

necessity to coordinate Population Dynamics and Road Network Dynamics to 

simulate agreed combined spatial structures supported the proposed coevolution 

hypothesis that the population and road network spatial structures are the interaction 

result of push and pull forces across the urban system. The existence of both push 

and pull forces form a diverse spectrum, rather than fixed and clear-cut types. 

In summary, simulation results showed the proposed co-evolution model is capable 

of modelling a diverse spectrum of population and road network spatial structures. 

Simulated population exhibited global centralisation to decentralisation, local 

clustering to dispersion spatial structures, as the simulated road networks. Under the 

co-evolution mechanism when population and road network chose to be near each 

other and had coordinated behaviours, agreed population-road network spatial 

structures emerged as empirically observed, suggesting similar coordinated 

processes behind the formation and dynamics of real-world population and road 

network spatial structures, respectively. These processes may result from the push 

and pull forces across urban system layers that intensify and counteract each other’s 

influences, together contributing to the diverse spectrum of urban spatial structures. 

9.3.2 Population’s Influence on Road Network 

9.3.2.1 The Correlation between Population Density and Road Network 

Connectivity  

Empirical research investigating the relationship between population and urban road 

network, as reviewed in 3.4.2, has reported correlations between population density 

and urban road network characteristics, such as network length, connectivity, 

density. Among these studies, most have reported positive population density and 

road network connectivity correlations and proposed hypotheses of population and 

urban road network’s mutual relationship. Large cities with higher population density 

might have better-connected road network; road network might serve as the 

framework of population growth and land use changes, which in turn might attract 
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more population and increase the population density. On the other hand, a few 

studies have found low correlations between population density and road network 

connectivity. 

The relationship between simulated population density and road network connectivity 

was examined under the parameter combination (𝛽1, 𝛽2, 𝛽3, 𝛽4) =

(𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

), with the variations of population and road network spatial 

decision radius 𝑟 = 250, 150, 50, which were simulated structures in Figure 9.1 

column 1. Under this parameter combination, the simulated population and road 

network had the spatial decision preference to be near each other, and both had the 

centralising tendency. When centralising globally within a large radius 𝑟 = 250, both 

population and road network exhibited centralised spatial structures with a single 

centre; when centralising locally within a small radius 𝑟 = 50, both population and 

road network exhibited clustered spatial structure with multiple potential centres.  

The changes of 𝑟 from large to small under (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

) led the 

emergence of simulated population-road network spatial structures from monocentric 

to polycentric, as shown in the upper panel of Figure 9.9. During this transformation, 

the simulated population density decreased, as population spread from the single 

centre to the multiple potential sub-centres. At the same time, the simulated 

network’s connectivity decreased, as shown by the two plots in the lower panel, 

which reported 30 simulation trials’ results at each radius 𝑟. In the left plot, average 

node degree �̅� of the simulated networks decreased as 𝑟 decreased from 250, 150 

to 50, namely as the simulated network changed from centralised to clustered. In the 

right plot, network efficiency 𝐸𝑔𝑒𝑜𝑚, which measured the ratio of the Euclidean linear 

distance and network distance between network nodes, decreased as well.  

The decreases of �̅� and 𝐸𝑔𝑒𝑜𝑚 with 𝑟 supported the empirical findings of positive 

correlations between population density and network connectivity. The centralised 

population-road network structures had higher population density and road network 

connectivity, while the clustered structures had lower population density and road 

network connectivity. This positive correlation between population density and road 

network connectivity was persistent as 𝑟 decreases during the transformation from 

centralised to clustered spatial structures. In other words, population density and 

network connectivity positively correlated when studying the simulated centralised 

and clustered population-road network spatial structures.  

Meanwhile, there were also simulation scenarios that did not agree with the positive 

population density and road network connectivity correlation. For example, when the 

centralised and dispersed spatial structures in Figure 9.8 were compared, the 

dispersed structure had lower population density than the centralised structure, as 
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the simulated population spread from a single centre to dispersion. However, the 

dispersed simulated network connectivity was higher than the centralised networks 

as discussed in Figure 9.6.  

 

 

Figure 9.9 Population Density and Road Network Connectivity: The upper panel 

shows simulated population and road network under parameters (𝛽1, 𝛽2, 𝛽3, 𝛽4) =

(𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

) at 𝑟 = 250, 150, 50 accordingly. The three illustrations demonstrate the 

spatial structure changed from centralised with a single centre to clustered with multiple 
potential centres with the decrease of 𝑟; during this change, simulated population density 

decreased. The lower panel shows average node degree �̅� and network efficiency 𝐸𝑔𝑒𝑜𝑚 
decreased with 𝑟, namely with the variation of the network spatial structure. Population density 
and network connectivity were positively correlated in this example, as centralised spatial 
structure with high population density had higher network connectivity than clustered spatial 
structure with low population density. 

In summary, whether simulated population density and network characteristics 

correlated resulted from the underlying population-road network spatial structure. 

The variation of simulated combined spatial structures was associated with 

variations of the road network and population spatial structures accordingly. There 

were potential positive correlations between simulated population density and road 

network connectivity, such as when comparing centralised and clustered population-

                                                  (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

)  

             𝑟 = 250 

 

          𝑟 = 150 

 

             𝑟 = 50 
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road network spatial structures. This positive correlation between centralised and 

clustered combined spatial structures may relate to the empirically reported positive 

correlations between population density and road network connectivity, in the 

European studies. There were also scenarios in which such positive correlations 

could not be established, such as when comparing simulated centralised and 

dispersed spatial structures. The empirically reported non-correlated population 

density and road network connectivity, in the US studies, may have compared such 

population-road network spatial structures. Therefore, correlations between 

population density and road network structure shall be studied with the consideration 

of the underlying urban spatial structure, or both correlations and non-correlations 

may be found depending on the underlying urban spatial structure studied. 

9.3.2.2 Population’s Influence on Road Network 

Besides the correlation between population density and network connectivity, 

influences of the simulated population on the simulated road networks also showed 

under population-road network distance preference (𝛽1, 𝛽3) = (𝑑𝑝𝑜𝑝
+ , 𝑑𝑅𝑁

− ). Under 

(𝑑𝑝𝑜𝑝
+ , 𝑑𝑅𝑁

− ), the new population made spatial decision to be away from the existing 

road network, while new road network nodes made spatial decision to be close to the 

existing population. As mentioned in 9.2.1.2, (𝛽1, 𝛽3) counteracted other parameters’ 

influences on the simulated networks’ spatial structures. This population-road 

network distance preference played the dominant role in the generation of dispersed 

simulated population and road networks, which exceeded 𝛽4 and 𝑟’s centralising, 

decentralising, clustering influences on the simulated network spatial structures, as 

well as 𝛽2 and 𝑟’s centralising, decentralising, clustering influences on the simulated 

population spatial structures. Though there were traits of other spatial structure 

tendencies resulted from (𝛽2, 𝛽4) and 𝑟, all simulated population and road networks 

had overall dispersed spatial structures.  

Figure 9.10 shows the simulated population and road network structures which had 

the same (𝛽2, 𝛽4) and 𝑟 with the four benchmark parameter combinations for 

centralised, decentralised, clustered combined spatial structures in Figure 9.8, but 

with (𝛽1, 𝛽3) = (𝑑𝑝𝑜𝑝
+ , 𝑑𝑅𝑁

− ).  

Simulation demonstrated the effectiveness of (𝛽1, 𝛽3) = (𝑑𝑝𝑜𝑝
+ , 𝑑𝑅𝑁

− ) in causing 

dispersion. Because of the network nature, simulated networks could span the 

simulated area more easily; population’s spatial decision preference to locate away 

from the existing network easily led to the dispersion of the simulated population; 

road network’s spatial decision to locate near the dispersed population then led to 

the dispersion of te simulated network spatial structures. This simulated feedback 

relationship suggested (𝛽1, 𝛽3) = (𝑑𝑝𝑜𝑝
+ , 𝑑𝑅𝑁

− ) may model a scenario in which 
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population do not consider the transport access as a priority but seek space and 

avoid noise. At the same time, transport infrastructure is supplied unlimitedly to 

provide accessibility to all population; or roads, formal or informal, will follow 

population settlements to satisfy basic transport demand in any case. In such 

scenarios, population drive the population-road network co-evolution by locating 

away from the existing road network and forming dispersed population spatial 

structures, which further lead to dispersed simulated network structures, since the 

road network serves the dispersed population despite construction costs.  

Dispersed with Centralisation 
Tendency  

Dispersed with Clustering 
Tendency 

 
 

Dispersed with 
Decentralisation Tendency 

Dispersed with Dispersion 
Tendency 

  

Figure 9.10 Population’s Influence on Road Network: Four simulated population and 

road network structure under parameter combinations (𝛽1, 𝛽2, 𝛽3, 𝛽4) = (𝑑𝑝𝑜𝑝
+ , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

) 

at 𝑟 = 250, 50 and (𝑑𝑝𝑜𝑝
+ , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

) at 𝑟 = 250, 50 are arranged in the same order with 

the benchmark centralised, clustered, decentralised, dispersed population-road network spatial 
structures in Figure 9.8. Though there were traits of each corresponding spatial structure under 
the influences of (𝛽2, 𝛽4) and 𝑟, these simulated population and road networks were dispersed 

because of the population-road network distance preference (𝛽1, 𝛽3) = (𝑑𝑝𝑜𝑝
+ , 𝑑𝑅𝑁

− ). 

(𝑑𝑝𝑜𝑝
+ , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

)

𝑟 = 250

(𝑑𝑝𝑜𝑝
+ , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

)

𝑟 = 50

(𝑑𝑝𝑜𝑝
+ , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

)

𝑟 = 250

(𝑑𝑝𝑜𝑝
+ , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

)

𝑟 = 50
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Dispersed simulated network structures, as discussed in 9.2.2, had the highest total 

length 𝐿𝑡𝑜𝑡 and average node degree �̅� among the two spatial structure dimensions, 

which suggested highest network connectivity and construction cost. In comparison, 

the simulated centralised spatial structures had high connectivity and low total 

length. There was a trade-off between providing increasing network connectivity and 

the increasing construction cost in dispersed network spatial structures. 

Empirical findings, as reviewed in 3.3.2 have reported both high and low-density 

urban sprawl with dispersion characteristics. Low-density urban sprawl, such as in 

the US, and high-density urban sprawl, such in the Middle East, South America, and 

China, have been attributed to population growth, urban economics spatial decisions 

with increasing income and decreasing transportation costs, land use policies and 

regulation, urban planning, central urban problems and transport congestion, 

residential preferences. Urban dispersion has been attributed to the suburbanization 

of residence under the spatial decisions balancing land prices and transportation 

cost, which have further led to the dispersion of both residence and work.  

Simulation suggested urban sprawl and dispersion may relate to population’s spatial 

decisions to locate away from the existing road network, for reasons such as the 

trade-off between income, land price, and transportation cost, residential preference, 

urban planning. If such spatial decisions were all enabled by land use policies and 

regulations, urban sprawl and dispersion may occur, which are likely to be 

characterised by the dispersion of both population and road network. In comparison, 

the co-evolution mechanism under other parameter combinations, such as spatial 

decisions of the population to locate away from existing high population density area 

or road network locate away from existing high flow area, may not necessarily give 

rise to the dispersion of both simulated population and network. 

In summary, population’s influences on road network showed in the population-road 

network distance preference (𝛽1, 𝛽3) = (𝑑𝑝𝑜𝑝
+ , 𝑑𝑅𝑁

− ), which exceeded other 

parameters’ influences and modelled a population driven co-evolution process, 

which led to both dispersed population and road network spatial structures. This 

parameter combination modelled a feedback relationship in which locating away 

from an existing road network effectively dispersed population, and road network 

followed the dispersed population to dispersion as well. This co-evolution 

mechanism that gave rise to dispersed population and road network spatial 

structures may relate to empirical urban sprawl and urban spatial structure 

dispersion, suggesting new settlements away from the existing urban road network’s 

effect on the dispersion of urban spatial structure. Locating away from existing road 

network may quickly disperse population; formal and informal road network may 



242 
 

 

follow the dispersed population and develop into a reinforcing feedback relationship 

of dispersion. 

9.3.3 Road Network’s Influence on Population 

Simulated road networks’ influences on the population spatial structures were 

identified by comparing two pairs of parameter combinations’ simulation results. The 

first pair was (𝛽1, 𝛽2, 𝛽3, 𝛽4) = (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

), 𝑟 = 50 and 

(𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
+

), 𝑟 = 50, which were Figure 9.1 column 1 𝑟 = 50  and Figure 

9.2 column 1 𝑟 = 50. The second pair was (𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

), 𝑟 = 250 and 

(𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
−

), 𝑟 = 250, which were Figure 9.1 column 4 𝑟 = 250  and 

Figure 9.2 column 4 𝑟 = 250. Two panels of illustrations are shown together in 

Figure 9.11 accordingly. 
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Figure 9.11 Road Network’s Influence on Population: The upper panel shows the 

simulated population and road network under parameter combinations (𝛽1, 𝛽2, 𝛽3, 𝛽4) =

(𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

), 𝑟 = 50 and (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
+

), 𝑟 = 50. The lower panel shows the 

simulated population and road network under (𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

), 𝑟 = 250 and 

(𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
−

), 𝑟 = 250. Changing the parameter 𝛽3 from 𝑑𝑅𝑁
−  to 𝑑𝑅𝑁

+ , as from the left 

column to the right, simulated population and road network exhibited linear spatial structure. 

(𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

)

𝑟 = 50

(𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
+

)

𝑟 = 50

(𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

)

𝑟 = 250

(𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

+ , ∑ 𝑓𝑙𝑜𝑤
−

)

𝑟 = 250
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In the upper panel of Figure 9.11, the left simulated structure resulted from 

(𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

) and 𝑟 = 50; under this parameter combination, population 

and road network both preferred to be near each other and centralised locally with a 

small area, and the simulated structures exhibited clustered spatial structure with 

multiple potential centres. The right simulated structure changed one parameter 𝛽3 

from 𝑑𝑅𝑁
−  to 𝑑𝑅𝑁

+ , which changed the road network’s proximity preference from being 

close to the population to being far away from the population. This opposite value of 

𝛽3 changed the simulated combined population and road network spatial structures 

from clustered to linearly clustered, in which population located alongside the road 

network and road network exhibited an elongated structure with a few major roads 

and many minor roads.  

Similarly in the lower panel of Figure 9.11, the left simulated structure resulted from 

(𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

) and 𝑟 = 250; under this parameter combination, population 

and road network both preferred to be near each other and decentralised globally 

within a large area, and the simulated structure exhibited decentralised population 

and road network spatial structures. The right simulated structure changed one 

parameter 𝛽3 from 𝑑𝑅𝑁
−  to 𝑑𝑅𝑁

+ , and this opposite value of 𝛽3 changed the simulated 

structure from decentralised to linearly decentralised, in which population located 

alongside the road network and road network exhibited an elongated structure with a 

few major roads and many minor roads.  

Empirical research on urban road networks’ influences on the spatial structure of 

population have found road network construction stimulated population relocation to 

the urban periphery. Linear urban growth along the highway have constituted a large 

proportion of urban growth patterns, together with infill, independent new 

development, as reviewed in 3.4.1. In the urban planning history, linear city models 

have been proposed, in which urban development has been designed to orient 

around transport development. 

The linear features emerged in simulated population and network spatial structures 

may relate to empirical linear urban growth patterns, in which transport development 

lead the urban development and urban settlements to locate along the major 

transport routes. The population-road network distance preference (𝛽1, 𝛽3) =

(𝑑𝑝𝑜𝑝
− , 𝑑𝑅𝑁

+ ) modelled a feedback relationship in which road network did not serve 

population as a priority but probed into new urban areas away from existing 

populated areas, whereas population followed the growth and simulated network and 

located alongside the road segment, which further led to the further branching out of 

the simulated network. In Road Network Dynamics, parameter 𝛽3 = 𝑑𝑅𝑁
+  - new road 

network’s preference of being away from population, generated many minor road 
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segments along the major paths, leading to the linear simulated network spatial 

structures. In Population Dynamics, parameter 𝛽1 = 𝑑𝑝𝑜𝑝
−  - population’s preference to 

be near the road network, generated linear population distribution alongside the 

simulated major road segments. Iterating Population and Road Network Dynamics, 

the linear elementary growth of road network and population spatial structures 

accumulated and were reinforced.  

Besides, the linear population-road network spatial structures only emerged under 

the clustering and decentralisation processes of population and road network, 

respectively. This result suggested the potential clustering process on a local scale 

and decentralisation process on the global scale, as well as the lack of centralisation 

and dispersion processes, behind empirically observed linear urban growth. 

Empirical observations have been made with edge cities, which are sub-centres 

formed during the transformation from monocentric to polycentric urban spatial 

structures, often located at intersections of major transport routes. Simulated 

clustering and decentralising processes may find parallels in such empirical urban 

spatial structure transformation. 

In summary, road network’s influences on population showed in the population-road 

network distance preference (𝛽1, 𝛽3) = (𝑑𝑝𝑜𝑝
− , 𝑑𝑅𝑁

+ ), which modelled a road network 

driven co-evolution process and led to linear population-road network spatial 

structures. Under these co-evolution mechanism parameter combinations, 

population chose to be close to road network while road network chose to be away 

from population, both population and road network clustered on the local scale or 

decentralised on the global scale. These simulated scenarios may relate to the 

empirically observed linear urban growth, suggesting local clustering or global 

decentralising processes with the road network’s priority in probing new urban areas 

instead of serving the existing population. 
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Table 9-1 Findings and Conclusions – Hybrid Model of Population and Urban Road Network Co-evolution 

The Spatial Structure of Simulated Networks 

1. The co-evolution mechanism of Population 
Dynamics (𝜷𝟏, 𝜷𝟐) and Road Network Dynamics 
(𝜷𝟑, 𝜷𝟒) and the emergence of simulated networks’ 
spatial structure 

 

• β1 = (𝑑𝑝𝑜𝑝
+ , 𝑑𝑝𝑜𝑝

− ) - population’s distance 
preference for being far away from or close to 
road network; 

• β2 = (𝜌+, 𝜌−) - population’s preference for 
densely or sparsely populated areas; 

• β3 = (𝑑𝑅𝑁
+ , 𝑑𝑅𝑁

− ) - road network’s distance 
preference for being away from population or 
being close to population; 

• β4 = (∑ 𝑓𝑙𝑜𝑤
+

, ∑ 𝑓𝑙𝑜𝑤
−

) - road network’s 
preference for low flow or high flow areas. 

• r – Spatial decision radius 

• 𝛽4 and r modelled two dimensions of simulated road network processes 

o Centralisation to Decentralisation on the global scale 

o Centralisation: preference for high flow ∑ 𝑓𝑙𝑜𝑤
+

 globally within a large radius r 
modelled the centralisation process and resulted in centralised spatial structures with 
a single large centre;  

o Decentralisation: preference for low flow ∑ 𝑓𝑙𝑜𝑤
−
 globally within a large radius r 

modelled the decentralisation process and resulted in decentralised spatial 
structures; 

o Clustering to Dispersion on the local scale 

o Clustering: preference for high flow ∑ 𝑓𝑙𝑜𝑤
+
 locally within a small radius r modelled 

the clustering process and resulted in clustered spatial structures with multiple 
potential centres; 

o Dispersion: preference for low flow ∑ 𝑓𝑙𝑜𝑤
−
 locally within a small radius r modelled 

the decentralisation process and resulted in the dispersed spatial structures. 

• (𝛽1, 𝛽2, 𝛽3) intensified or counteracted centralisation, decentralisation, clustering, and 
dispersion processes and resulted in a spectrum of simulated network spatial structures, 
rather than fixed and clear-cut types. 

2. Characterisation of simulated networks’ spatial 
structures 

 

• Total link length 𝐿𝑡𝑜𝑡  

• Maximum shortest path 𝑙𝑚𝑎𝑥 

 

• Characterised simulated networks’ spatial structures by processes behind their formation and 
dynamics: centralisation to decentralisation on the global scale and clustering to dispersion 
on the local scale; 

o Centralised network spatial structures were characterised by the smallest 𝑙𝑚𝑎𝑥; 

o Clustered network spatial structures were characterised by larger 𝑙𝑚𝑎𝑥 but smaller 𝐿𝑡𝑜𝑡 
than centralised spatial structures; 

o Decentralised network spatial structures were characterised by the largest 𝑙𝑚𝑎𝑥; 

o Dispersed road network spatial structures were characterised by the largest 𝐿𝑡𝑜𝑡. 

• The proposed characterisation method by processes behind network spatial structure 
formation 

o Captured the diverse spectrum of network spatial structures;  

o Related road network spatial structure to the urban spatial structure; 

o Captured the network nature of road network spatial structure. 

• Transformation from centralised to clustered and dispersed simulated network spatial 
structures may relate to the transformation from monocentric, to polycentric and dispersed 
urban spatial structure: 

o Centralised to clustered: Decreasing  𝐿𝑡𝑜𝑡 and increasing 𝑙𝑚𝑎𝑥; 

o Centralised to dispersed: Increasing 𝐿𝑡𝑜𝑡 and increasing 𝑙𝑚𝑎𝑥. 

The Relationships Between Simulated Network and Population 
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3. The combined population-simulated network 
spatial structure 

 

• (𝛽1, 𝛽2, 𝛽3, 𝛽4) = (𝑑𝑝𝑜𝑝
− , 𝜌+, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
+

) and (𝑑𝑝𝑜𝑝
− , 𝜌−, 𝑑𝑅𝑁

− , ∑ 𝑓𝑙𝑜𝑤
−

) modelled the agreed 
road network and urban spatial structures - the combined centralised, clustered, 
decentralised, and dispersed spatial structure. 

• Conditions for the emergence of agreed population-road network spatial structures:  

o The simulated population and network chose to be near each other;  

o The simulated population and network coordinated to both centralise, decentralise, 
cluster, or disperse.  

• Under other experimented spatial decision combinations, parameters intensified or 
counteracted each other’s influences and resulted in a spectrum of simulated population-road 
network spatial structures; 

• Empirical correlations between urban road network and population spatial structures may 
experience coordinated centralise, decentralise, cluster, or disperse processes, resulted from 
related push and pull forces across urban system layers.  

4. Correlations between simulated network 
connectivity and population density 

• Simulated networks’ connectivity depended on network spatial structure: Dispersed > 
Centralised > Decentralised > Clustered. 

• The comparison of centralised and clustered spatial structures yielded positive correlations 
between population density and network connectivity. 

• The comparison of centralised and dispersed spatial structure did not yield positive 
correlations between population density and network connectivity. 

• Empirical correlations or non-correlations between population density and network 
characteristics may result from the underlying urban spatial structure: 

o Comparing monocentric and polycentric urban spatial structure may yield positive 
correlations; 

o Comparing monocentric and dispersed urban spatial structure may not yield positive 
correlations. 

5. Population’s influences on the road network • Mutual distance preferences (𝛽1, 𝛽3) = (𝑑𝑝𝑜𝑝
+ , 𝑑𝑅𝑁

− ) modelled a population-driven co-evolution 
and dispersed combined spatial structures: 

o The feedback relationship in the dispersed spatial structure formation: population easily 
dispersed when locating away from existing road network, road network followed 
dispersed population into dispersion; 

o Empirical urban spatial dispersion and urban sprawl may relate to enabled spatial 
decisions of population to locate away from existing road network. 

6. Road network’s influences on the population • Mutual distance preferences (𝛽1, 𝛽3) = (𝑑𝑝𝑜𝑝
− , 𝑑𝑅𝑁

+ ) modelled road network-driven co-evolution 
and linear combined spatial structures: 

o The feedback relationship in the linear spatial structure formation: road network located 
away from population when clustering or decentralising, formed a few major routes and 
many minor dead-ends, population followed alongside the elongated major paths; 

o Empirical linear urban development along transport development may relate to spatial 
decisions to locate road network away from existing population. 
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9.4 Chapter Conclusions 

Through modelling the Node Addition mechanism of generative network model 

(GNM) and coupling population, the proposed hybrid model of population and urban 

road network co-evolution in Chapter 8 integrated GNM and RNE into the urban 

system. The proposed model represented the population and urban road network as 

two inter-dependent urban system layers, addressing previous models’ limitation in 

representing the population and urban road network using the same network. The 

proposed co-evolution mechanism explored all population and road network spatial 

decision preferences for new locations, instead of assuming fixed spatial decisions. 

The proposed model gave rise to a diverse spectrum of road network spatial 

structures, as examined in this chapter, addressing network science research’s lack 

of road network spatial structure consideration. The modelled road network spatial 

structures were characterised by the processes behind the formation of network 

spatial structures, which did not assume fixed road network spatial structure types, 

related road network spatial structure to the urban system but not equated the two, 

as well as emphasised on the network nature of urban road network spatial 

structure. 

This chapter addressed the fourth research question of this thesis and examined the 

simulated network and population spatial structures, and their mutual influences, as 

summarised in Table 9-1. Simulation results suggested the spatial structure of urban 

road networks appear to be a spectrum, rather than fixed clear-cut types (Marshall, 

2004; Huynh et al., 2017; Moosavi, 2017). Urban road network spatial structure may 

be characterised by two dimensions of processes behind their formation – 

centralisation and decentralisation on the global scale, clustering and dispersion on 

the local scale. These processes may result from related push and pull forces across 

the urban system, which intensify and counteract each other’s influences and lead to 

the diverse spatial structure spectrum. The simulation also suggested different 

spatial structures of the urban road network have different quantitative network 

characteristics; the correlations between population density and road network 

characteristics shall be studied with the consideration of the underlying spatial 

structure. The spatial structure of urban road networks is likely to correlate with the 

urban spatial structure, both experiencing coordinated centralisation, 

decentralisation, clustering, or dispersion processes. Population’s influence on road 

network spatial structure may show in the spatial decision of population to locate 

away from the road network, leading dispersed spatial structures. Road network’s 

influence on population may show in the spatial decision of road network to locate 

away from the population, leading to linear spatial structures.



248 
 

 

Chapter 10 Conclusions, Originality, Limitations, and Future 

Research 

10.1 Research Conclusions and Originality  

This thesis proposed an original modelling and simulation framework to approach the 

urban road network evolution (RNE), using proposed generative network models 

(GNMs). This framework defined a feasible scope to study the evolution of urban 

road networks by the structure and dynamics of simulated networks. Following the 

proposed framework, this thesis addressed the evolution of urban road networks by 

modelling and simulation of two iterating RNE processes - Link Connection and 

Node Addition, considering RNE alone and in the urban system, respectively. The 

former connected new spatial locations to an existing road network and directed 

elementary connection patterns of the urban road network structure; the latter added 

new node and directed spatial structures of the road network and the urban system 

at large. Through two modelling and simulation studies, the thesis addressed the 

four research questions, as outlined in Figure 10.1. 

First, this thesis generalised the Link Connection mechanism in the generative 

mechanism of the urban road network structure (section 10.1.1). Second, the 

proposed GNM of urban road network evolution with the generalised Link 

Connection mechanism yielded original simulation findings of both static urban road 

network structures and dynamics (section 10.1.2). Third, this thesis proposed an 

original hybrid model of population and urban road network co-evolution model 

(section 10.1.3). Fourth, the proposed hybrid model of population and urban road 

network co-evolution model yielded original simulation findings of the urban road 

network and population spatial structures and relationships between population and 

road network (section 10.1.4).   

Combining modelling and simulation of the Link Connection and Node Addition 

processes, the proposed framework advanced the understanding of the network 

science perspective on urban road network evolution and led to a key original 

contribution of proposing the novel hybrid model of the population and the road 

network coevolution.  
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Figure 10.1 Research Questions and Conclusions 

Proposed a modelling 
and simulation 

framework of urban 
road network evolution 

•Proposed a feasible scope to study RNE
•Network structure: Selected network characteristics;
•Network evolution: Selected netowrk characteristics' dynamics.

•Generalised urban road network generative mechanism
•Node Addition: Directed network spatial structure;
•Link Connection: Directed elementary connection patterns.

Research Question 1

Modelling findings -
Generalised the Link 

Connection mechanism, 
section 10.1.1

•Proposed a generative network model of urban road network evolution 
•Generalised the Link Connection mechanism;
•Used the primal represetnation;
•Proposed using GNM to model the dynamic RNE process beyond 

network generation.
•Designed and performed simulation experiment

•Explored GNM's capacity in modelling the dynamic RNE process
•Proposed a framework to quantify RNE based on elementary 
network component characteristics and dynamics

•Integrated and compared empirical RNE findings;
•Stored and investigated the whole network generation process;

•Explored proximity relationship’s role in urban road network 
generation.

Research Question  2

Simulation Findings -
Modelling the Dynamic 

RNE Process 

section 10.1.2

•Modelled both plausible static and dynamic urban road network 
structures and advanced understanding of empirical RNE findings

•Node degree: urban road networks lie between centrally-planned 
grid patterns and not-centrally-planned self-organised growth 
patterns;

•Link length, Block area: urban road networks evolve with 
multiplicative and additive spatial processes.

•Betweenness centrality: urban road networks evolve with initial 
formation of major paths and later local changes.

•Modelled a broader range of road network structures than previous 
models by controlling parameter β, understood the role of proximity 
relationship.

Research Question  3

Modelling findings -
Proposed a hybrid 

model of population and 
urban road network co-

evolution 

section 10.1.3

•Proposed a hybrid model of population and urban road network co-
evolution

•Proposed a representation of population and urban road network;
•Proposed a population and urban road network co-evolution 

mechanism.
•Designed and performed simulation experiment

•Explored the urban road network spatial strucutre;
•Proposed a method to characterise the urban road netowrk 
spaital structure;

•Explored relationships between population and the urban road 
network.

Research Question  4 

Simulation findings -
the spatial structure of 

urban road networks, 
the relationship 

between the road 
network and the urban 

system

section 10.1.4 

•Modelled diverse road network spatial structures and advanced  
understanding of empirical findings

•A spectrum of road network spatial structures: Centralised to 
decentralised on the global scale, clustered to dispersed on the local 
scale;

•Different road network spatial structures have different network 
characteristics.

•Modelled mutual influences between population and the urban road 
network and advanced  understanding of empirical findings

•Related push and pull forces drive the co-evolution of urban road 
network and population;

•Coordinated population and road network spatial decisions result in 
agreed urban spatial structures;

•Population-driven co-evolution result in dispersed spatial strucutres;
•Road network-driven cevolution result in linear spatial structures.
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10.1.1 Modelling Findings: Generalisation of the Link Connection 

Mechanism in Generative Network Model of Urban Road Network 

Evolution 

Chapter 6 answered the first research questions proposed in Chapter 1 and 

specified in Table 5-2: 

1. What is the working mechanism of generative network models (GNMs) in 

generating the urban road network structure? Can previous models’ generative 

mechanisms be generalised? 

• Whether proximity relationships from proximity graphs other than Relative 

Neighbourhood Graph (RNG), like β-skeletons, play a role in modelling RNE? 

GNMs propose generative mechanisms behind the formation and dynamics of 

complex networks, to generate complex network structures. This approach 

acknowledges the dynamic nature of urban road networks, namely the static network 

structure results from dynamic formation and changing processes. Understanding 

this dynamic structure is necessary for understanding the urban road network 

structure as a whole. The generative mechanism of spatial network generation 

model balances link length costs and the realised efficiency through Link 

Connection. The generative mechanism of planar network generation models 

maintains planarity. 

As discussed in detail in 4.2.3.5, previous GNMs of urban road networks 

(Barthélemy and Flammini, 2008; Barthélemy and Flammini, 2009; Yang et al., 2011; 

Courtat et al., 2011; Rui et al., 2013; Zhao, F. et al., 2015) have generated network 

structures that statistically agreed with empirical urban road network characteristics, 

but have not compared their generative mechanisms horizontally, or considered the 

role of proximity relationships in generating the urban road network structure. 

Therefore, previous models have not generalised the Link Connection process. For 

example, previous models have described Link Connection as a process of 

connecting the new node first to the nearest point on the existing network, then to 

RNG neighbouring points. Previous models have also described Link Connection as 

a process of connecting the new node to points in the intersection point set of visible 

points that maintained planarity on the existing network, orthogonal projections of the 

new node, and RNG neighbours. In this way, previous models have generated 

network structures with RNG’s proximity relationship in Link Connection, which was 

equal to the proposed Link Connection mechanism when 𝛽 = 2.0. However, previous 

models have not considered the working mechanism of the RNG proximity 

relationship in generating the urban road network structure or used other proximity 

relationships, such as from β-skeletons, to model the urban road network structure. 
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Addressing this gap, the proposed generative network model of urban road network 

evolution in Chapter 6 generalised the generative mechanism of urban road 

networks as two iterative processes: Node Addition and Link Connection, in 

consistence with the spatial and planar network models. Node Addition directed the 

spatial structure of urban road networks, and Link Connection directed elementary 

network connection patterns. In particular, the proposed mechanism generalised 

Link Connection as a process of examining the proximity relationship between a new 

spatial location and the existing road network, using proximity relationships from β-

skeletons with 𝛽 ∈ [1.0, 2.0]. In doing so, Link Connection balanced link length cost 

and realised efficiency, as well as maintained planarity. Beyond spatiality and 

planarity, Link Connection further modelled connection patterns of urban road 

networks, which were characterised by local perpendicular intersections and a global 

structure between a tree and complete circuitous.  

The generalised mechanism modelled both static and dynamic urban road network 

structures, in correspondence to empirical RNE findings, and generated more 

diverse road network structures than previous models, by changing the value of 𝛽. 

The modelled network structures’ node, link, block, betweenness centrality (BC), by 

the proposed mechanism with 𝛽 ∈ [1.0, 2.0], exhibited characteristics and dynamics 

as reported in empirical findings. By changing the value of parameter 𝛽 in [1.0, 2.0], 

the proposed mechanism modelled not only network structures generated in 

previous models with 𝛽 = 2.0, but also a broader range of plausible urban road 

network structures. Network connectivity increased as 𝛽 decreased; network 

structures modelled with 𝛽 = 1.0 exhibited the closest average node degree to 

empirical findings. 𝛽 < 1.0 led to non-planar network structures while 𝛽 > 2.0 led to 

unconnected network structures, hence the range 𝛽 ∈ [1.0, 2.0].  

Addressing the first research question, this study generalised the Link Connection 

mechanism of the urban road network structure. In doing so, this study proposed a 

generalised GNM of urban road network evolution, designed an algorithm, 

implemented the model, and planned and performed simulation experiments. This 

study found that Link Connection could be generalised as examining the proximity 

relationship between a new spatial location and the existing urban road network, 

using β-skeletons proximity relationships with 𝛽 ∈ [1.0, 2.0]. As will be discussed in 

10.1.2, this original methodological contribution is significant, since the generalised 

Link Connection mechanism is capable of modelling a broader range of network 

structures and dynamics than previous GNMs, in correspondence with empirical 

findings. Therefore, the generalisation of the Link Connection mechanism has led to 

an improved understanding of modelling elementary urban road network connection 

patterns and the role of proximity relationships in urban road network generation. 
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10.1.2 Simulation Findings: Modelling the Dynamic RNE Process 

Chapter 7 answered the second research question of this thesis: 

2. Can the GNM model the dynamic RNE process?  

• What is the relationship between the simulated static and dynamic network 

structures and the generative mechanism?  

• Are the simulated networks’ dynamic structure comparable to the RNE 

process?  

• Can modelling and simulation provide insights on empirical RNE findings? 

Previous GNMs of urban road networks (Barthélemy and Flammini, 2008; 

Barthélemy and Flammini, 2009; Yang et al., 2011; Courtat et al., 2011; Rui et al., 

2013; Zhao, F. et al., 2015) have aimed at reproducing statistically empirical urban 

road network characteristics and examined only the final generated network 

structures, leaving a gap in understanding the simulated network dynamics. 

Empirical urban Road Network Dynamics quantified by empirical RNE research, as 

reviewed in Chapter 2, have shown potential parallels with the network generation 

process. Because of previous models’ network generation objective, they have not 

integrated these empirical RNE findings into results examination or looked into the 

dynamic simulated network structure. 

This study originally proposed using GNM to model the dynamic RNE process, 

beyond network generation. Simulation experiments demonstrated the proposed 

model’s capacity in modelling the dynamic RNE process, by examining both static 

and dynamic network structures, in comparison to empirical RNE findings. 

This study first synthesised empirical RNE findings in Chapter 2 and proposed a 

framework to quantify RNE, consisting of elementary road network component 

node, link, block characteristics and dynamics in Chapter 5 Table 5-3. In simulation 

experiments, data of the entire network generation processes were collected, instead 

of only the generated networks. The proposed model used the primal representation, 

in which nodes represented road intersections, and links represented road 

segments. This representation addressed the limitation of previous GNMs’ modelled 

network structure using nodes to represent urban centres of population 

concentration and links to represent road network. The usage of primal 

representation enabled the comparison of simulated network structures with primal 

empirical RNE findings, which have constituted most empirical RNE research. 

Chapter 7 explored the capacity of the proposed model in modelling the dynamic 

RNE process, by examining the modelled static and dynamic network structures, 
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simulated network dynamics, in comparison to existing empirical and modelling RNE 

findings, based on the proposed RNE quantification framework of elementary 

component characteristics and dynamics. Interpretations of the simulation results 

were made relating to existing empirical findings, as summarised in the following 

paragraphs and Table 7-1. 

First, simulated networks’ node, link, block, and BC all exhibited characteristics and 

dynamics that corresponded with empirical findings, demonstrating that the proposed 

model is capable of giving rise to both plausible static and dynamic urban network 

structures, and potential parallels may exist in processes that lead to simulated 

network structures and empirical urban road networks.  

Simulated networks had stable connection patterns with network growth, 

characterised by a majority of 𝑘3 nodes, and resulted in an almost constant average 

node degree 〈𝑘〉. Simulated networks under 𝛽 = 2.0 had 〈𝑘〉 ≈ 2.36, while simulated 

networks under 𝛽 = 1.0 had 〈𝑘〉 ≈ 2.78. Simulated 〈𝑘〉 was similar to urban road 

networks that have been recognised as organic, such as Oxford with 〈𝑘〉 = 2.32, 

Worcester with 〈𝑘〉 = 2.36, Edinburgh with 〈𝑘〉 = 2.43, Sheffield with 〈𝑘〉 = 2.42, yet 

was lower than urban road networks that have been recognised as planned, such as 

Barcelona with 〈𝑘〉 = 3.42. All US urban road networks had 〈𝑘〉 ≈ 2.76 in the range of 

[2.22, 3.22], showing the diversity of real-world urban road network connectivity 

under potential planned and organic regimes. Simulated networks’ 〈𝑘〉 resulted from 

low 𝑘4 node proportion, which could form under the proposed Link Connection 

mechanism given predetermined grid node distribution, as discussed in 5.3.2.1. 𝑘3 

nodes could emerge under random new node positioning as in the simulation. 

Previous models have reported similar node degree distributions, consisting of 

mainly 𝑘3 and 𝑘1 nodes.  Empirical urban road networks’ majority of 𝑘3 nodes and 

higher 𝑘4 proportion than simulated networks (Barrington-Leigh and Millard-Ball, 

2015; Boeing, 2017; Chan et al., 2011; Strano et al., 2013), suggested that urban 

road networks lie between planned grid patterns and organic growth patterns (Wang, 

2015; Buhl et al., 2006). Planned and organic urban form coexist (Kostof, 1991).  

Simulated networks’ link length l distribution and block area A distribution and 

dynamics suggested the existence of both multiplicative and additive processes 

during the simulated network dynamics, which were the continuous division of large 

network components into smaller components and addition of random size network 

components, respectively. Simulation suggested the inconsistency in empirical 

findings between heavy-tailed power-law, lognormal, and exponential distributions 

(Fialkowski and Bitner, 2008; Jiang and Liu, 2012; Lämmer et al., 2006; Long et al., 

2016; Louf and Barthelemy, 2014; Riascos, 2017; Usui and Asami, 2018; Liu, 2012) 
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may have characterised various potential spatial processes behind the formation of 

these network characteristic distributions, such as the continuous space division and 

random space addition.  

The betweenness centrality distribution of simulated networks resulted from the 

simulated dynamics characterised by initial global changes, which formed a skeleton 

of major paths spanning over the simulation area, and later local minor changes. The 

proposed model gave rise to the empirically reported bimodal BC distribution in 

global urban road networks, separating large and small BC components at the BC 

value of network node number (Kirkley et al., 2017). This bimodal BC distribution 

differed from previous smaller individual road network studies’ results (Lämmer et al., 

2006; Crucitti et al., 2006b; Porta et al., 2006b; Porta et al., 2010), but supported the 

long-standing recognition of backbone in urban road networks (Scellato et al., 2006; 

Strano et al., 2012; Masucci et al., 2013). The simulation confirmed correlations 

between high BC and long-existing network components found the empirical 

backbone phenomenon, and further included geographically central network 

components into this correlation, suggesting the inherent hierarchy in planar 

networks because of the formation process. Densification and Exploration (DE) 

(Barthelemy et al., 2013; Corcoran and Mooney, 2013; Mohajeri and Gudmundsson, 

2014; Mohajeri et al., 2015; Mohajeri et al., 2014; Patarasuk, 2013; Strano et al., 

2012) which characterised two types of new link influences on average network BC 

was observed in the simulated networks. The simulation suggested DE is a planar 

network property, which are the only two Link Connection patterns in planar 

networks; DE shall include temporal and spatial information to be meaningful in 

characterising urban road network evolution. Modelling and simulation in Chapter 8, 

9 found that the empirical DE phenomenon may relate to the change of road network 

spatial structure. For instance, the transformation from clustered or decentralised to 

centralised road network spatial structures may exhibit a decrease of exploration 

links and an increase of densification links in the central area with time, as 

empirically reported. Clustered and decentralised road network spatial structures 

encouraged more the emergence of dead-ends and 𝑘1 nodes, compared to 

centralised spatial structures.  

The simulation observed continuous simulated network dynamics under the 

proposed model and established a clear relationship between the generative 

mechanism and the emerged network structure. Observations of elementary network 

generation process portrayed a general network changing process. In comparison, 

empirical studies have inferred RNE mechanisms from static network structures at a 

few discrete historical snapshots, while previous GNMs have generated static 

network structures without considering the dynamic network structure. Look into the 
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emerging process of network characteristics and the related generative mechanism, 

rather than reporting more observed individual differences, the proposed model and 

simulation gave rise to unintuitive characteristics like the combined probability 

distributions of link length l and block area A. Inconsistency in empirical findings may 

have characterised network dynamics behind the formation of these probability 

distributions. The simulation also showed how complex macroscopic characteristics 

might emerge from a simple microscopic generative mechanism, and real-world 

urban road networks may experience similar processes.  

Answering the second research question, this study used GNM to model the 

dynamic RNE process, yielding original simulation findings. Simulations using the 

proposed model established associations between the network generation process 

and the dynamic RNE process, advanced the understanding of urban road networks’ 

structure and dynamics, and empirical RNE findings. Modelling and simulation in 

Chapter 6, 7 portrayed the formation and dynamics of a general urban road network 

structure, in particular, the emergence of elementary road network connection 

patterns under the Link Connection mechanism. The urban road network evolution 

alone may be characterised by stable connections, multiplicative and additive growth 

with continuous large component division and random component addition, the initial 

formation of a major path skeleton and later local minor changes. Nevertheless, 

modelling the dynamic RNE process did not mean reproducing step-by-step any 

urban road network evolution in particular but used GNM and computer simulation as 

a tool to improve the empirical and modelling understanding of urban road network 

evolution. 

10.1.3 Modelling Findings: Proposing the Hybrid Model of Population 

and Urban Road Network Co-evolution  

Chapter 8 answered the third research question of this thesis: 

3. How to integrate GNM of urban road network evolution into the urban system?  

• How to represent the urban road network and population? 

• What population-urban road network co-evolution mechanism do the 

correlations between population and urban road network in terms of quantity, 

spatial structure, and network characteristics, as well as by mutual influences 

between road network and the urban system reflect? 

Modelling of urban road network evolution is involved implicitly or explicitly in various 

transport and urban study topics; different research perspectives approach different 

urban system layers and components. Transport demand forecasting focuses on the 

transport layer (Levinson and Yerra, 2006; Xie and Levinson, 2009; Pagliara et al., 
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2016), urban models focus on the land use layer (Raimbault, 2017; Wu et al., 2016), 

land use and transport interaction models focus on the feedback relationship 

between transport and land use layers (Levinson and Huang, 2012; Levinson et al., 

2007). The network science perspective GNMs were distinguished from alternative 

approaches by modelling the urban road network structure explicitly and having the 

flexibility to integrate with transport and urban theories.  

As discussed in detail in 4.3.4.4, previous GNMs (Barthélemy and Flammini, 2009; 

Yang et al., 2011; Zhao, F. et al., 2015; Barthélemy and Flammini, 2008; Courtat et 

al., 2011; Rui et al., 2013) of urban road networks have shown limitations in the 

representation of the road network and population, and the consideration of road 

network spatial structure and its relationship to the urban system. In these studies, 

the modelled road network structure has not been sufficiently distinguished from and 

integrated into the urban system. Most of the previous GNMs have equated the road 

network to the urban system, by using nodes to represent population concentration 

locations and links to represent the road network. Under such a model design, the 

population and road network have been related inherently, being one network’s 

nodes and links; thus, the potential explanatory power of the proposed population-

road network co-evolution mechanisms has been weakened. The generated 

population and road network structure, as well as their relationship, have not only 

been influenced by the co-evolution mechanism, but also by the built-in network 

connectivity between nodes and links. Moreover, in the previous studies, simulation 

results have been evaluated by primal empirical urban road network structure 

findings, regardless of the difference in the modelled network structure and the 

primal urban road network representation.  

Based on the synthesis of previous empirical studies reviewed in Chapter 3, this 

study proposed that the spatial structure of urban road networks is correlated with 

the economic, physical and functional urban spatial structure (Baum-Snow, 2007; 

Garcia-López, 2012; Giuliano et al., 2012; Sánchez-Mateos et al., 2014; Garcia-

López et al., 2015; Batty and Kim, 1992; Hawbaker et al., 2005; Wang et al., 2014; 

Law, 2017; Porta et al., 2012; Wang et al., 2012; Agryzkov et al., 2014; Shen and 

Karimi, 2016; Shen and Karimi, 2018). These studies have suggested that the urban 

road network and the urban system may be driven by related push and pull forces 

across different urban system layers. For example, the economies and diseconomies 

of agglomeration on the economic urban spatial structure (Anas et al., 1998), 

coalescence and diffusion of physical urban growth (Dietzel et al., 2005), attraction 

and repulsion among different land use categories (Stanilov and Batty, 2011), 

centripetal and centrifugal forces of transport accessibility (Smith, 2011), and the 

influence of spatial interaction potentials on the functional urban spatial structure 
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(BERRY, 1968) have been identified. Chapter 3 proposed that the evolution of urban 

road networks depends on and is influenced the evolution of the urban system; road 

network and the urban system co-evolved.  

This study originally identified the need to represent both the road network and the 

urban system, to integrate GNM into the urban system. Chapter 3 proposed to view 

the urban system as overlaid layers, such as urban spatial structure, land uses, and 

transport layers, each having socioeconomic, physical, and functional components. 

The road network resided on the transport layer and belonged to the physical built 

environment of the urban system. The population generated and represented socio-

economic components across urban system layers, such as economic urban spatial 

structure, socio-economic activities, transport demand. The road network realised 

the spatial interactions of the population. The co-evolution of urban road network and 

population served as a starting point to understand the co-evolution of the road 

network and the urban system. Integrating GNM of urban road network evolution into 

the urban system required representation and modelling of these two inter-

dependent systems. 

Chapter 8 proposed a hybrid model of population and road network co-evolution. 

Node Addition in the generative mechanism of urban road network evolution directed 

the modelled network’s spatial structure and further related to the urban system; 

Node Addition integrated GNM into the urban system. The co-evolution mechanism 

proposed an iterative process of Population and Road Network Dynamics on two 

inter-dependent urban system layers. Population and Road Network Dynamics both 

located new components by making spatial decisions, regarding preferences of the 

distance between them and for areas with high or low existing population density and 

road network flow respectively. Implementing the proposed model, simulation 

experiments explored all combinations of spatial decision preferences, rather than 

assuming fixed population and road network relationships. The proposed model was 

capable of giving rise to a diverse spectrum of both road network and population 

spatial structures, as well as the mutual influences between them.  

Answering the third research question, this study made the third original contribution 

by integrating GNM and RNE into the urban system through Node Addition. The 

proposed model represented population and road network as inter-dependent urban 

system layers. Push and pull forces across urban system layers were hypothesized 

to drive the co-evolution of road network and population, which was designed into 

the co-evolution mechanism through population and road network’s spatial decision 

preferences for mutual distance, existing population density and network flow. 
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10.1.4 Simulation Findings: The Spatial Structure of Urban Road 

Networks, the Relationship Between the Road Network and the 

Urban System 

Chapter 9 addressed the fourth research question of this thesis: 

4. What road network spatial structure may arise during the co-evolution of road 

network and population? How do the simulated road network and population relate? 

• How to characterise the spatial structure of urban road networks? 

Empirical and modelling RNE research has paid limited attention to the spatial 

structure of urban road networks and the relationship between the road network and 

the urban system.  

This study originally modelled and examined the spatial structure of urban road 

networks and the relationship between the road network and the urban system. First, 

Chapter 3 reviewed existing research, which has studied road network spatial 

structure as geometric connection patterns and continuity hierarchy, by density 

spatial analysis and quantitative classification. Chapter 3 synthesised the 

relationship between urban road network and the urban system from empirically 

reported correlations, between population and road network quantity, spatial 

structure, and connectivity. Chapter 5 proposed an original method to characterise 

the spatial structure of urban road networks using network characteristics and by 

processes behind the formation of these spatial structures – centralisation and 

decentralisation on the global scale, clustering and dispersion on the local scale. 

This characterisation method was consistent with the characterisation of urban 

spatial structure, thus relating the road network spatial structure to urban spatial 

structure while emphasising on the network nature. A spectrum of spatial structures 

may be captured, rather than a few fixed types (Marshall, 2004; Huynh et al., 2017; 

Moosavi, 2017). The proposed hybrid model of population and road network co-

evolution in Chapter 8 gave rise to a diverse spectrum of population and road 

network spatial structure as well as their mutual influences. Simulation experiments 

in Chapter 9 originally explored the emergence of the urban road spatial structure, 

and the relationship between the road network and population, in terms of the mutual 

influences on their spatial structures and network connectivity, as summarised in 

Table 9-1.  

Diverse road network spatial structures emerged, which appear to be a spectrum, 

rather than a few clear-cut types, supporting empirical findings (Huynh et al., 2017; 

Moosavi, 2017). The spatial structures of simulated networks were characterised by 

processes of centralisation to decentralisation on the global scale, clustering to 
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dispersion on the local scale, behind the generation of these spatial structures. Road 

network spatial decision preference for areas with high or low flows in the proposed 

Road Network Dynamics mechanism modelled the centralisation and 

decentralisation processes of the road network structure. Centralisation on the global 

scale led to centralised road network spatial structures with a single centre, and 

centralisation on the local scale led to clustered road network spatial structures with 

multiple potential centres. Decentralisation on the global scale led to decentralised 

road network spatial structures, and decentralisation on the local scale led to 

dispersed road network spatial structures. Other parameters, namely road network 

and population’s spatial decision preferences for mutual distance and population’s 

spatial decision preference for high or low existing population density, intensified or 

counteracted the centralisation, decentralisation, clustering, and dispersion 

processes, thus leading to the diverse spectrum of simulated network spatial 

structures. 

The spatial structure of simulated networks was characterised by network 

characteristics total link length 𝐿𝑡𝑜𝑡 and longest shortest path length 𝑙𝑚𝑎𝑥. Together 

𝐿𝑡𝑜𝑡 and 𝑙𝑚𝑎𝑥 separated network spatial structures under the centralisation and 

decentralisation processes. Centralised spatial structure networks had both small 

𝐿𝑡𝑜𝑡 and 𝑙𝑚𝑎𝑥, suggesting low construction cost and diameter. Clustered spatial 

structure networks had smaller 𝐿𝑡𝑜𝑡 and larger 𝑙𝑚𝑎𝑥 than the centralised spatial 

structure networks, suggesting increasing traverse distance from monocentric to 

polycentric. Dispersed spatial structure networks had the highest 𝐿𝑡𝑜𝑡, suggesting the 

largest coverage and construction cost. Decentralised spatial structure networks had 

the highest 𝑙𝑚𝑎𝑥, suggesting the largest traverse distance. Characterisation of the 

network spatial structure by network characteristics and by spatial structure 

formation processes, linked road network spatial structure to urban spatial structure, 

emphasised on the network nature, and captured a spectrum of spatial structures 

rather than fixed types (Marshall, 2004; Huynh et al., 2017; Moosavi, 2017). 

A spectrum of population spatial structures emerged in the simulated co-evolution, 

which was also characterised by centralisation, decentralisation, clustering, 

dispersion processes. Joining the road network and population layers yielded 

combined population-road network spatial structures. Under road network and 

population’s preferences to be near each other and coordinated processes to both 

centralise, decentralise, cluster, or disperse, agreed population-road network spatial 

structures emerged, in accordance with empirical correlated population and road 

network spatial distributions, which formed urban spatial structures such as 

monocentric and polycentric (Snellen et al., 2002; Borruso, 2003; Tsai, 2005; Chen 

et al., 2017; Quinn and Fernández, 2011; Jia and Jiang, 2010; Krehl et al., 2016). 
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Other road network and population spatial decision combinations intensified or 

counteracted the combined spatial structure and led to the diverse spectrum of 

simulated population-road network spatial structures. The necessity to coordinate 

road network and population processes and mutual distance to simulate correlated 

population and road network spatial structures, as in empirical findings, supported 

the co-evolution hypothesis. Dynamics of population and urban road network, 

respectively, which lead to the formation and dynamics of urban form and urban 

spatial structure, may be driven by related push and pull forces across urban system 

layers.   

Besides the necessity to coordinate mutual distance and processes to form agreed 

spatial structures, relationships between simulated population and urban road 

network also showed in the quantitative correlation between population density and 

network characteristics, as well as the influences population and road network had 

on each other’s spatial structures.  

Simulations suggested the correlations between population density and road network 

characteristics may result from the underlying population-road network spatial 

structure. Comparing centralised monocentric spatial structures and clustered 

polycentric spatial structures may yield positive correlations (Peponis et al., 2007; 

Maniadakis and Varoutas, 2013; Patarasuk, 2013; Tsiotas and Polyzos, 2017) while 

comparison made with dispersed spatial structures may not (Weber, 2016). Thus, 

the study of correlations between urban road network characteristics and population 

density shall consider the underlying spatial structure. Clustered spatial structure 

networks showed the lowest connectivity and highest treeness among all spatial 

structures while dispersed spatial structure networks showed the lowest. Variation of 

network characteristics among different spatial structures may relate to empirical 

observations of increasing treeness and self-organisation as urban road network 

evolved with time (Masucci et al., 2013). Simulation suggested this empirical finding 

may characterise the transformation of the studied road network’s spatial structure 

from monocentric to polycentric. Variation in network connectivity among simulated 

network spatial structures resulted from the proportion of 𝑘1 nodes and dead-ends. 

Clustered and decentralised spatial structures encouraged more 𝑘1 nodes and dead-

ends than centralised and dispersed spatial structures. 

Population’s influence on the combined spatial structure showed in the spatial 

decision when population chose to be away from the road network while road 

network chose to be close to the population. Population’s spatial decision to locate 

away from the existing road network exceeded other parameters and resulted in 

dominant dispersed spatial structures. This impact indicated a population-driven co-
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evolution and may relate to the empirical urban spatial structure dispersion (Gordon 

and Richardson, 1996; Lee, 2007), as well as urban sprawl (Schneider and 

Woodcock, 2008; Gouda et al., 2016).  

Road network’s influence on the combined spatial structure showed in the spatial 

decision when road network chose to be away from the population while population 

chose to be close to the road network. Road network’s locating away from population 

resulted in linear simulated spatial structures with population locating alongside 

major road network segments. Such impact indicated a road network-driven co-

evolution and may relate to empirical linear urban growth alongside major transport 

routes (Krehl and Siedentop, 2019; Inostroza et al., 2013; Ji et al., 2014; Kotavaara 

et al., 2011). 

Answering the fourth research question, this study made the fourth original 

contribution with simulation findings of the road network spatial structure, urban 

spatial structure, and the relationship between the road network and the urban 

system. The proposed hybrid model of population and urban road network co-

evolution demonstrated the possible existence of a spectrum of urban road network 

spatial structures, which may be characterised by processes centralisation to 

decentralisation on the global scale and clustering to dispersion on the local scale, 

behind the formation of these network spatial structures. The proposed road network 

spatial structure characterisation method may find broader applications in real-world 

road networks. Correlated centralised, decentralised, clustered, dispersed 

population-road network spatial structures in accordance with empirical findings 

emerged under coordinated population and road network spatial decisions, 

supporting the hypothesis of related push and pull forces across the urban system 

that drive the co-evolution of population and urban road network, as well as the 

evolution of urban spatial structure at large. Population-driven co-evolution gave rise 

to dispersed spatial structures, and road network-driven co-evolution gave rise to 

linear spatial structures, suggesting potential parallels between the simulated 

population-road network dynamics and real-world urban growth patterns. Variation of 

the simulated network spatial structure resulted in the variation of network 

characteristics, demonstrating the necessity to consider network spatial structure 

when studying network characteristics or correlating network structure to population. 

10.2 Limitations  

10.2.1 The Network Science Urban Road Network Evolution Perspective 

Urban road network structure and evolution discussed in this study were limited to a 

network science perspective. RNE was regarded as a process of macroscopic 
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network characteristics arising from microscopic network component behaviours and 

interactions, which followed a set of local rules rather than central control. Network 

structure was limited to selected network characteristics. Network evolution was 

limited to the changes of selected network characteristics and studied by 

characteristics’ dynamics trajectories. Only incremental network growth was 

considered. Modelling and simulation of network evolution aimed at increasing 

understanding of the mechanism that gave rise to urban road network 

characteristics, instead of reproducing or predicting any road network evolution 

process in particular.  

Compared to alternative research perspectives identified in Chapter 1, for instance, 

a transport studies perspective, the discussed network structure and evolution here 

lacked considerations for road network’s transport function and performance. 

Meanwhile, this network science perspective also provided a feasible research 

scope to approach urban road network evolution. At this stage, empirical and 

modelling RNE research has accumulated a considerable number of findings and 

methods but with inadequate horizontal comparison and consensus. This study’s 

research scope suited the objective to explore the emergence of observed urban 

road network characteristics, from elementary road network components’ behaviours 

and interactions. At the same time, the proposed approach had the flexibility to 

integrate alternative research perspectives’ factors of interest, through the design of 

generative mechanisms, as additional system components that participate in the 

interactions of urban system formation and dynamics.  

Therefore, though the network science urban road network evolution perspective has 

limitations regarding insufficient consideration of alternative research perspectives’ 

factors of interest, such as road network design and planning, transport function and 

performance, it satisfied the research objective to explore and further understand 

RNE and had the flexibility to integrate with transport and urban theories through 

designed generative mechanisms. This bottom-up generative complex network 

modelling and simulation approach demonstrated the potential to advance the 

understanding of the urban road network structure and dynamics, which positioned it 

with alternative research dimensions. 

 

10.2.2 Generative Network Models 

GNMs generate networks iteratively; spatial and temporal network structure and 

dynamics are limited to the designed generative mechanisms. With the modelling 

and simulation conducted, this study identified two limitations about the proposed 

GNMs. 
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First, the modelled network structure shared similar node degree characteristics with 

urban road networks that have been considered as self-organising but had lower 𝑘4 

node proportion than urban road networks that have been considered as planned. 

5.3.2 discussed the potential emergence of grid connection patterns under the 

proposed Link Connection mechanism; given a grid node distribution, the proposed 

Link Connection mechanism would form 𝑘4 connections and grid connection 

patterns. Thus 𝑘4 connection patterns required predetermined grid node 

distributions, indicating design and planning. Meanwhile, 𝑘3 connections patterns, 

which have been reported to make up a major proportion of empirical urban road 

network intersections, could emerge under random node positioning as in the 

simulation. This study concluded that urban road networks lie between centrally 

planned grid layouts and not-centrally-planned self-organised urban growth patterns, 

and GNM with randomness in Node Addition may model the self-organised road 

network structure with low 𝑘4 proportion.  

Assumed randomness in the Node Addition mechanism to avoid arbitrary 

assumptions of spatial decisions led to the low 𝑘4 proportion. In the proposed 

generative network model of urban road network evolution, positions to add new 

nodes were modelled as random, since this model intended to explore network 

elementary connection patterns rather than spatial structure. In the proposed hybrid 

model of population and urban road network co-evolution, though the spatial 

distribution of network nodes was directed by the population-road network co-

evolution mechanism, candidate locations among which spatial decisions to add new 

nodes were made were modelled as random. These settings did not interfere with 

this study’s research objectives, as elementary connection patterns and diverse 

spatial structures emerged under proposed models. However, these settings caused 

the modelled network to exhibit low proportions of degree 𝑘4 nodes and grid 

patterns, as discussed in 7.2 and 9.2.3.  

The proposed GNMs perceived urban road network evolution as arising from 

elementary network components’ behaviours and dynamics, which were numerous 

interactions among numerous urban factors. GNMs selected the urban factors of 

research interest to design into the generative mechanism for further exploration. If 

𝑘4 nodes were the primary concern, generative mechanisms should include a 

predetermined grid node distribution design. 

Second, the propose road network generative mechanism consisting of Node 

Addition and Link Connection was always initiated by Node Addition. The addition of 

a new link only happened when a new spatial location was connected. However, in 

real urban road networks, new roads may be constructed not to connect a new 
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location, such as adding a road segment intersecting two existing roads. This was 

discussed in the examination of Densification and Exploration (DE) in 7.5.4, which 

showed one densification link in simulated networks were, in fact, two new links from 

a new node extending to opposite directions and intersecting two existing links. 

Though this did not affect the identification of DE, there was still a difference 

between the formation of simulated networks and real urban road networks’ 

densification links. 

In summary, GNM showed limitations in modelling planned grid patterns and real-

world bridge links. GNM was used as a tool for understanding; modelling and 

simulation using GNM did not mean reducing the real-world urban road networks 

and their evolution processes to the simulated network structures and dynamics. 

10.2.3 Simulation Result Examination 

This study examined the simulated network structure and dynamics by network 

characteristics and changes of a general urban road network structure, instead of by 

reproducing exact empirical urban road network characteristics or dynamics 

trajectories.  

First, the syntheses of existing empirical and modelled urban road network structures 

were general, based on a proposed RNE quantification framework consisting of 

elementary network components node, link, block characteristics, betweenness 

centrality and dynamics, as in Table 4-1, Table 5-3. Chapter 2, 4 reviewed and 

compared horizontally empirical and modelling RNE research findings. Elementary 

components and betweenness centrality were selected to quantify RNE, which 

maximumly utilised existing findings for comparison and synthesis. Many 

sophisticated network characteristics were not selected because of the uniqueness 

of individual road networks and the limited number of findings for comparison. The 

synthesised general static and dynamic urban road network structures concerned 

variation ranges of node, link, block, betweenness centrality characteristics, as well 

as trends of their changes.  

Simulated network structure and dynamics were examined according to the 

synthesised RNE quantification framework, as summarised in Table 7-1. Rather than 

reproducing specific network characteristic statistics, the plausibility of simulated 

network structure and dynamics were established by comparing simulated network 

characteristics’ variation ranges and trends with empirical findings. Simulated 

network characteristics all found correspondence in empirical findings. For 

characteristics and dynamics with inconsistent empirical findings, simulation results 

were analysed regarding the emergence of empirical inconsistency and advanced 

the understanding of empirical research in this regard. 
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Second, Chapter 9 proposed simulated networks’ spatial structures and 

characterisation method, as summarised in Table 9-1, since the spatial structure of 

urban road networks have had limited discussions in network science perspective 

studies. This simulation result examination was designed based on the synthesised 

understanding of the general urban road network spatial structure and urban spatial 

structure from Chapter 3. Simulation findings agreed with quantitative empirical 

findings of urban road network spatial structure as a spectrum and may guide future 

data collection of different spatial structure urban road networks. 

The simulation result examination design was limited, given the current research 

stage of RNE. Empirical RNE research, as reviewed in Chapter 2, has accumulated 

a considerable number of findings but had inconsistent conclusions because 

individual urban road networks were studied with various research questions. 

Modelling RNE research, as reviewed in Chapter 3, has generated various network 

structures without horizontal comparison either. A general urban road network 

structure and dynamics understanding serve to bridge the empirical and modelling 

RNE research and guide future research. 

Meanwhile, given specific network statistics and historical socio-economic 

development of a particular area and the accompanied spatial development history, 

road network structure and dynamics of particular numerical precision may be 

generated. If the research interests were network generation or road network 

development reproduction, the proposed models may be used to generate specified 

network structure and dynamics. In that case, simulation results examination shall 

compare specified network structure and dynamics. 

10.3 Future Research 

10.3.1 The Evolution of Self-organised Urban Road Networks  

Modelling and simulation using the proposed GNM of urban road network evolution 

in Chapter 6, 7 portrayed the formation and dynamics of a general urban road 

network structure. Elementary road network connection patterns emerged from the 

Link Connection process and could be characterised by stable connections, 

multiplicative and additive growth with continuous large component division and 

random component addition, the initial formation of major path skeleton and later 

local minor changes leading to hierarchy in the network. A majority of 𝑘3 nodes and 

low 𝑘4 node proportion characterised simulated networks’ elementary connection 

patterns because 𝑘4 node required predetermined grid node distribution while 𝑘3 

nodes could emerge under random new node positioning as in the simulation. 

Empirical findings of the 𝑘3 node majority and higher 𝑘4 node proportion than the 
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simulated networks suggested that urban road networks lie between centrally 

planned grid patterns and not-centrally-planned self-organised growth patterns. 

Self-organised has been used to describe urban road networks and the urban form, 

in comparison to the centrally-planned. Self-organisation in the complex system 

means system components’ behaviours follow local rules instead of the central 

control (Mitchell, 2009); external influences do not determine or cause system 

behaviours but instead trigger an internal and independent process (Portugali, 

2012b). Self-organised road networks have been attributed to local natural 

environment and history, land division and increments without the preservation of 

continuity (Kostof, 1991), interactions of various urban forces (Batty and Longley, 

1994), decentralised building processes and spatial decisions (Buhl et al., 2006). 

The spontaneous, grown organic road networks with representative narrow winding 

streets and cul-de-sacs (Kostof, 1991), have often been used as examples of self-

organised urban road networks. In contrast, the centrally-planned has been used to 

refer to networks determined once and for all by some authority at one moment, with 

representative regular grids (Kostof, 1991).  

Following this study’s simulation findings, future research may look into the evolution 

of real-world self-organised urban road networks, for instance, the evolution of 

informal urban settlements road network. Increasing research has studied empirically 

and quantitatively informal settlements, as one primary ongoing urbanisation 

process. The uniqueness in informal settlements’ morphology has been recognised 

regarding their blurred or absent typology of form, which has been attributed to their 

formation processes as a result of individual negotiation of space, rather than central 

planning (McCartney and Krishnamurthy, 2018). The road network of informal 

settlements has been regard to emerge as walking paths that connect residence, 

markets and street shops, transport hubs, meeting points and recreational area, 

which accommodate residents’ demand directly (Roy et al., 2014). The road network 

has been identified as the central physical problem of informal settlements for the 

lack of accessibility (Brelsford et al., 2018) and as shaping the structure and growth 

of informal settlements (Roy et al., 2014).  

The structure of informal settlements consists of access – roads, streets, paths and 

places – buildings (Brelsford et al., 2018). The proposed GNM of the urban road 

network evolution in Chapter 6 can model the dynamics of these two systems. 

Informal settlements and their road networks form and change in response to local 

individual demands, rather than by the design of a central master plan. External 

influences, such as policies to upgrade infrastructure, do not determine informal 

settlements’ future development but trigger complex internal responses, namely self-
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organisation. Local social and economic factors behind such self-organisation can be 

designed into the generative mechanism of the proposed model, which directs Node 

addition and Link connection. The simulated networks in Chapter 7 shared structural 

similarity with informal settlements’ road networks, as shown in the high 𝑘3,  𝑘1 node 

proportions and the low 𝑘4 node proportion. Identified evolutionary processes of the 

simulated networks including stable connection patterns, multiplicative and additive 

growth, the initial formation of a major path skeleton and later local minor changes, 

are likely to apply to the formation and dynamics of informal settlements’ road 

networks as well. 

Figure 10.2 shows one example of informal settlement evolution in I.S.Sadan, 

Hyderabad, India. The informal settlement developed in the central space of this 

area between 2003 and 2010, in contrast to the planned grid settlements around. 

Figure 10.3 shows the morphology of four informal settlements, which exhibited 

diverse spatial structures. The road network of informal settlements self-organised, 

following local rules rather than central control. The macroscopic structure of this 

road network structure displayed characteristics similar to urban road networks that 

have been recognised as organic. Compared to planned networks, these network 

structures have been reported to have high 𝑘3,  𝑘1 node proportions and low 𝑘4 node 

proportion, irregular street segment lengths and block sizes. With the increasing data 

availability (Kuffer et al., 2016), empirical research regarding the characteristics and 

dynamics of informal settlement road networks may be conducted, investigating both 

static and dynamic network structures. 

 

Figure 10.2 The Evolution of Informal Settlement : The two images depict the evolution 

of informal settlement in I.S.Sadan, Hyderabad, India between 2003 and 2010. The informal 
settlement grew in the central empty area since 2003, in contrast to the planned grid 
settlements around. (Kit and Lüdeke, 2013) 

Empirical and modelling research questions may be proposed regarding self-

organised road networks’ evolution, following this study’s modelling and simulation 
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findings and methodology. The evolution of informal settlements is happening 

rapidly, which provides data on self-organised RNE processes. Empirical research 

may explore whether real-world self-organised road networks exhibit RNE processes 

as concluded in Chapter 7: whether self-organised road networks evolve by stable 

connection patterns, multiplicative and additive growth corresponding to continuous 

large component division and addition of random size components, the initial 

formation of a major path skeleton and later local minor changes. Understanding of 

mechanisms behind the formation and dynamics of self-organised road networks 

may advance the understanding of informal settlement development.  

  

  

Figure 10.3 The Spatial Structure of Informal Settlement : Empirical informal 

settlements that exhibited global centralisation and decentralisation and local clustering and 
dispersion (Taubenböck et al., 2018), in accordance with simulation findings of Chapter 9.  

The empirical informal settlement dynamics may be studied by elementary network 

characteristics. For example, network characteristic dynamics of link length and 

block area may reveal the proportion of multiplicative and additive growth in the 

studied network; these two types of growth may further reveal different development 

in the informal settlement. Multiplicative growth, which corresponds to the continuous 

division of large network components, may suggest geographically constrained 

(a) Cañada Real Galiana, 
Madrid, Spain 

(b) Altıağaç Karaağaç, 
Ankara, Turkey 

(c) Turano, Rio de Janeiro,  
Brazil 

(d) Khoroo 9, Ulaanbaatar,  
Mongolia 
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development and division of existing land use for more sophisticated land use. 

Additive growth, which corresponds to the addition of random size components, may 

suggest geographical expansion and new primitive land use. Availability of empirical 

data, such as in Figure 10.2 suggests research direction to investigate mechanisms 

behind real-world self-organised road networks’ evolution. 

Second, the proposed GNM of urban road network evolution in Chapter 6 may be 

used to model various self-organisation scenarios of informal settlements’ 

development. Simulated network structure under the proposed model shared 

structural similarity with informal settlement road networks. Scenarios may be 

specified for informal settlements’ development, and the proposed model can be 

used to simulate different network structure and dynamics accordingly. Various 

development scenarios may result in different network characteristics, such as 

network connectivity. Simulation findings from Chapter 7 suggested potential 

hierarchy in informal settlement road networks because of the initial major path 

skeleton and high BC road segments. Modelling and simulation of different 

development scenarios may be used to improve the function of informal settlement 

road networks by improving these key network components. 

In summary, modelling and simulation findings from this study may increase the 

understanding of self-organised urban road networks’ evolution, such as informal 

settlement road networks. Meanwhile, future empirical research on self-organised 

road network evolution may improve the quantification and enhance the theorisation 

of the modelled general urban road network structure and dynamics, as well as the 

identified evolutionary processes in Chapter 7. 

10.3.2 Empirical Spatial Structure of Urban Road Networks 

Characterisation of urban road networks’ spatial structure in network science 

perspective research has been limited. Modelling and simulation findings from 

Chapter 8, 9 suggested that urban road networks are likely to have a diverse 

spectrum of spatial structures, rather than fixed types (Marshall, 2004; Huynh et al., 

2017; Moosavi, 2017). This spectrum of urban road network spatial structures may 

be characterised by processes behind their formation: centralisation to 

decentralisation on the global scale, clustering and dispersion on the local scale. The 

spectrum of the urban road network spatial structure, rather than a few fixed and 

clear-cut types, may result from related push and pull forces across the urban 

system that drive the co-evolution of road network and the urban system.  

Increasing quantitative empirical research, using approaches such as machine 

learning, have reported diverse road network spatial structures and urban form. 

Figure 10.3 and Figure 10.4 show empirical road networks that exhibited centralised 
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to decentralised, clustered to dispersed spatial structures. Figure 10.3 selects four 

samples of informal urban settlements and Figure 10.4 selects four samples of urban 

road networks. Future empirical research may apply the proposed road network 

spatial structure dimensions and characterisation to explore the real-world urban 

road network spatial structures.  

In summary, modelling and simulation findings from this study may guide the data 

collection and empirical investigation of the variation in real-world urban road 

network spatial structures, which has been limited in existing network science 

research. Future empirical research may improve the quantification and enhance the 

theorisation of identified centralisation, decentralisation, clustering, and dispersion 

processes, as well as improve the understanding of identified push and pull forces 

across the urban system behind the formation of such spatial structures in Chapter 

8, 9. 

 
 

  

(a) Baden, (b) Shanghai, 

(c) Konya, (d) Bacoor, Philippines 
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Figure 10.4 The Spatial Structure of Urban Road Networks: Empirical urban road 

networks that exhibited global centralisation and decentralisation and local clustering and 
dispersion (Moosavi, 2017) in accordance with simulation findings of Chapter 9.  
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