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Abstract
Quantified Boolean Formulas (QBF) extend the canonical NP-complete satisfiability problem

by including Boolean quantifiers. Determining the truth of a QBF is PSPACE-complete; this

is expected to be a harder problem than satisfiability, and hence QBF solving has much wider

applications in practice. QBF proof complexity forms the theoretical basis for understanding

QBF solving, as well as providing insights into more general complexity theory, but is less well

understood than propositional proof complexity.

We begin this thesis by looking at the reasons underlying QBF hardness, and in particular when

the hardness is propositional in nature, rather than arising due to the quantifiers. We introduce

relaxing QU-Res, a previous model for identifying such propositional hardness, and construct an

example where relaxing QU-Res is unsuccessful in this regard. We then provide a new model for

identifying such hardness which we prove captures this concept.

Now equipped with a means of identifying ‘genuine’ QBF hardness, we prove a new lower

bound technique for tree-like QBF proof systems. Lower bounds using this technique allows us to

show a new separation between tree-like and dag-like systems. We give a characterisation of lower

bounds for a large class of tree-like proof systems, in which such lower bounds play a prominent

role.

Further to the tree-like bound, we provide a new lower bound technique for QBF proof systems

in general. This technique has some similarities to the above technique for tree-like systems, but

requires some refinement to provide bounds for dag-like systems. We give applications of this

new technique by proving lower bounds across several systems. The first such lower bounds are

for a very simple family of QBFs. We then provide a construction to combine false QBFs to give

formulas for which we can show lower bounds in this way, allowing the generation of the first

random QBF proof complexity lower bounds.
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Chapter 1

Introduction

We begin by discussing some general background on proof complexity, both for propositional logic

and for quantified Boolean formulas. We also give a general overview of the contributions of this

thesis, and outline how these are organised in the following chapters.

1.1 Background

SAT solving Given any computational task or problem, it is a natural question to ask: How

efficiently can this problem be solved? The purpose of computational complexity is to provide a

formal and theoretical answer to this question by considering the running time or the memory usage

of algorithms solving the problem.

Perhaps the most famous and well studied such problem is the satisfiability (SAT) problem, of

determining whether or not there is an assignment which satisfies a given Boolean formula. SAT

is the canonical NP-complete problem – all problems solvable in non-deterministic polynomial

time can be efficiently translated to a SAT problem [42]. SAT solvers can therefore be applied to

many other problems in NP such as bounded model checking [32] and some bounded planning

problems [71]. The wide variety of applications has led to a great deal of development in SAT

solving recently. Modern solvers such as MiniSat [51] and Glucose [7], Lingeling [31], and

MapleCOMSPS and its derivatives [81, 84] compete on and regularly solve instances containing

millions of variables [85].

Propositional proof complexity Given a SAT solver, one can view the run of the solver on an

unsatisfiable instance as a proof that the instance is unsatisfiable. Proof complexity formalises the

definition of a proof and a proof system, and has as its main focus the size of proofs; propositional

proof complexity is concerned with proofs of the (un)satisfiability of Boolean formulas. There

is a natural correspondence between propositional proof complexity and SAT solving [90]. By

studying a proof system which corresponds to the running of a SAT solver, proof complexity helps

to better understand the advantages and limitations of the solver, as well as point towards potential

techniques worth exploring to improve such solvers.

1



CHAPTER 1. INTRODUCTION

The most studied propositional proof system is Resolution, a relatively simple proof system in

which every line is a disjunction of literals and which contains only one inference rule for deriving

new formulas. Much effort has been put into understanding Resolution since it provides insight

into the effectiveness of solvers based on the classical DPLL algorithm [46, 47] and its variants.

Many lower bounds have been shown for Resolution, using techniques such as the correspondence

between the size of a proof and the size of the largest clause [13], or lower bounding scores in a

two player game between a Prover and a Delayer on a CNF [96] (see [104] for a detailed survey

of such techniques). This variety of lower bounds demonstrates that despite the recent success

of SAT solvers based on DPLL and conflict-driven clause learning (CDCL), there still remain

problems which cannot be efficiently decided. Indeed, such problems are very common and are

straightforward to generate. Random 3-CNFs, in which kn clauses are chosen uniformly at random

from the set of 3-clauses on n variables, have been shown to be hard for Resolution with high

probability for suitable values of k [38].

Beyond Resolution, the substantially stronger Frege proof system is the classical ‘textbook’

proof system, in which lines consist of any logical formula, with a finite set of axiom and deduction

rules. Frege is known to be strictly stronger than Resolution, in the sense that there are small proofs

of more formulas. No lower bounds are currently known for the Frege proof system. The study of

strong proof systems such as Frege is motivated not by their correspondence to current solvers, but

by their relevance to longstanding complexity theory questions. The proof complexity of Frege

systems, and subsystems with restricted classes of formulas, is believed to have close ties to circuit

complexity. More generally, upper or lower bounds for sufficiently strong proof systems provide

one possible method for resolving the question of NP vs coNP [43].

Proof systems based on algebraic or linear programming methods, rather than propositional

logic, have also been developed. Cutting Planes (CP) [44] translates a CNF into a set of integer

linear inequalities and uses integer linear programming methods to determine that there is no

solution. There exist solvers which implement this approach to SAT solving [15], although this area

is certainly less developed than CDCL solvers. Polynomial Calculus (PC) [2, 40] translates CNFs

to polynomial equations, and by taking linear combinations of these equations, proves no solution

exists by deriving the equation 1 = 0. Both of these approaches strengthen Resolution, although

they are incomparable with each other. This is illustrated in Figure 1, which describes the relative

power of the proof systems mentioned.

QBF solving While the NP-completeness of SAT allows a wide variety of problems to be reduced

to a SAT instance, there are many problems we would like to solve which are not, or are not known

to be, in NP. Quantified Boolean formulas (QBFs) extend the language of propositional logic by

introducing Boolean quantifiers. The substantially more expressive formulas in this language lift

the complexity of determining the truth of QBFs to be PSPACE-complete [107], the canonical

problem solvable in polynomial space.

2



1.1. BACKGROUND

Truth tables

Resolution Polynomial Calculus

Polynomial Calculus with ResolutionCutting Planes

Frege

extended Frege

P

Q

Q is at least as strong as P

Fig. 1. A simulation diagram showing the relative power of some propositional proof systems

The PSPACE-completeness of the language of true QBFs (TQBF) gives practical QBF

solving much wider applications beyond propositional satisfiability, in fields as varied as formal

verification [14] and conformant planning [100]. The remarkable success of SAT solving and the

greater applicability of QBFs have spurred a large drive to develop both the practical and theoretical

aspects of QBF solving. Several QBF solvers, such as DepQBF [82], are based on the conflict-driven

clause learning algorithm common in SAT solvers, but introduce new techniques to handle universal

quantification. The solver RAReQS [69] adopts an alternative approach of counterexample guided

abstraction and refinement (CEGAR), making use of a semantic interpretation of a QBF as a two

player game. These techniques are combined to an extent in GhostQ [73]. Many solvers, such as

CAQE [97] and DepQBF [82], allow for the extraction of certificates verifying the truth or falsity of

a QBF; such certificates broaden the applications of such solvers yet further [106].

QBF proof complexity In a similar manner to the propositional case, one goal of QBF proof

complexity is to study proof systems which can be related to runs of QBF solvers in order to show

the strengths and weaknesses of different solvers. The differing approaches taken by solvers to

handling universal quantification are mirrored in definitions of different QBF proof systems. The

universal reduction (∀red) rule allows the assignment of a value to a universal variable whenever

the universal variable is quantified after all other variables in the formula. By adding the ∀red rule

to Resolution, the proof systems Q-Res and QU-Res [72, 109] provide insight into the CDCL-

based QBF solvers. On the other hand, expansion-based solving, such as that used in RAReQS,

is better modelled by expanding universal variables, using the equivalence ∃x∀y∃z ·φ(x, y, z) ≡
∃x∃z∃z′ ·φ(x, 0, z) ∧ φ(x, 1, z′), before using propositional resolution, giving the proof system

∀Exp+Res [70]. Extensions of these systems have also been defined, such as LD-Q-Res and

LQU+-Res [8,9,110], which allow tautologous clauses, in Q-Res and QU-Res respectively, under

limited circumstances to mirror certain techniques used in practice, or IR-calc and IRM-calc [20],

combining the expansion of ∀Exp+Res with Q-Res and LD-Q-Res respectively. The relative

powers of these systems are shown in Figure 2, with a line indicating that a system is strictly

stronger than the one below it.

3
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Q-Res

QU-Res

∀Exp+Res

IR-calc

IRM-calc

LD-Q-Res

LQU+-Res

Fig. 2. A simulation diagram for Resolution-based QBF proof systems

Many of the propositional proof systems stronger than Resolution have also been extended to

the realm of QBFs, generally by adapting the ∀red rule, producing systems such as CP+∀red and

Frege +∀red, which are QBF proof systems obtained by adding a universal reduction rule to the

propositional proof systems Cutting Planes and Frege respectively. The relative strength of these

proof systems of the form P+∀red corresponds to that of the propositional systems in Figure 1,

where Resolution +∀red is the proof system QU-Res.

The motivation for studying these stronger QBF proof systems is twofold. Lower bounds on

some of these more powerful QBF proof systems, such as Frege +∀red, have particularly tight

connections to circuit complexity [30]. Furthermore, analogously with the propositional case,

sufficiently strong QBF upper or lower bounds would resolve the longstanding NP vs PSPACE

question.

Despite the number of QBF resolution systems, lower bounds are obtainable for all of them

simply by quantifying a known propositional Resolution bound with existential quantifiers. However,

such lower bounds do not say much about the relative strength of different approaches to handling

universally quantified variables. Some other propositional techniques have been lifted to provide

lower bounds in QBF proof systems, such as feasible interpolation [22] and Prover-Delayer games

[25]. However not all propositional techniques can be lifted, as evidenced by the failure of the

size-width relations [23].

Beyond QBF adaptations of propositional techniques for QU-Res and other relatively weak

QBF proof systems, and a few carefully constructed specific formulas [70, 72], the most successful

technique for proving QBF proof complexity lower bounds has been that of strategy extraction.

This technique relies on the interpretation of a QBF as a two player game, between existential and

universal players. Any false QBF has a winning strategy for the universal player. Two different

methods have been used to construct this strategy from a proof, one based on restricting proofs

by partial assignments [53, 62], and one constructing Boolean circuits from proofs [19]. Both

approaches can be extended to QBF proof systems beyond those based on Resolution, and both

rely on strategies for universally quantified variables, and so have naturally been considered as

techniques which provide ‘genuine’ QBF lower bounds. However, no satisfactory formal definition

of what constitutes a ‘genuine’ QBF lower bound has been given, and the range of techniques for

showing such bounds is still limited when compared with propositional proof systems.
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1.2 Contributions

We begin by covering the necessary preliminaries, as well as surveying some of the key results

in the literature. Chapter 2 covers the relevant background in propositional logic, SAT solving

and propositional proof complexity. Chapter 3 deals similarly with quantified Boolean formulas,

including QBF solving and QBF proof complexity, including definitions of several QBF proof

systems used throughout this thesis. We now briefly describe the main contributions of this thesis.

Hardness from quantification Every SAT problem can be represented as a QBF by existentially

quantifying all variables. All QBF proof systems therefore implicitly also define a propositional

proof system, and lower bounds for this propositional proof system provide lower bounds for the

QBF proof system, even if the propositional formula is obscured by some universal variables. Such

propositional lower bounds are somewhat unsatisfactory in the realm of QBFs, as they give no

insight into the effect of universal variables on the complexity of the formula.

A potential approach to resolve this problem is to construct a proof system in which there are

no superpolynomial lower bounds arising solely due to propositional reasons. Just such a system,

relaxing QU-Res, was proposed in [35] by employing oracles for some fixed level of the polynomial

hierarchy when introducing axioms. This immediately provides short proofs of any propositional

formula. A superpolynomial lower bound for relaxing QU-Res is then defined as any set of QBFs

requiring proofs of superpolynomial size for any fixed level of the polynomial hierarchy.

While it does eliminate lower bounds which are entirely existentially quantified, relaxing QU-
Res is not sufficient for distinguishing lower bounds based only on propositional hardness. In order

to provide an example of a propositional lower bound for relaxing QU-Res, we give a way of

combining false QBFs such that we have very precise control over the size of refutations in QU-Res,

based only on the size of refutations of the original formulas. Using this, we construct a family of

QBFs combining the pigeonhole principle formulas PHPn, known to be hard for Resolution [65],

with the QBFs KBKFn of Kleine Büning et al. [72] where the falsity relies on many alternations of

quantifiers, but which have short proofs in QU-Res. Despite the hardness of these QBFs in QU-
Res being purely a propositional phenomenon, arising ony due to the hardness of the pigeonhole

principle, we prove an exponential lower bound for proofs of these QBFs in relaxing QU-Res. This

lower bound arises because the oracle access permitted when deriving axioms is unable to solve

the pigeonhole principle effectively, since it is obscured behind the quantifer alternations of the

KBKFn formulas.

Theorem 4.11. The QBF Φn = PHPn ⊕KBKFn requires relaxing QU-Res proofs of size 2Ω(n).

The lower bound of Theorem 4.11, and the necessary definitions and constructions preceding it,

are the focus of Chapter 4.

Not only does relaxing QU-Res still admit superpolynomial lower bounds based only on

Resolution lower bounds, as defined it also has short proofs of any QBF with a bounded number

of quantifier alternations, including some where it is clear that the hardness for QU-Res is a
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genuinely QBF phenomenon, rather than a propositional one. To alleviate this issue, in Chapter 5 we

define Σp
k-QU-Res and analogous systems Σp

k-P+∀red, as an alternative method for incorporating

Σp
k-oracle access into a proof system. Inspired by relaxing QU-Res, this new system simplifies the

deduction rules while allowing the use of Σp
k-oracles elsewhere in the proof.

By construction, Σp
1-QU-Res has short proofs of propositional formulas. The restriction to

using Σp
1-oracles allows Σp

1-QU-Res to distinguish between propositional lower bounds and those

based on the universal quantification in the prefix. We exemplify this first with a short proof of the

lower bound shown for relaxing QU-Res. We then also observe that lower bounds for Σp
1-P+∀red

are in fact bounds on the size of ∀-reduction steps in a proof, which is what we would expect if the

hardness is derived from the alternation of quantifiers rather than for propositional reasons.

Having shown that Σp
1-QU-Res is able to characterise lower bounds for QU-Res which do

not arise due to propositional hardness, we then consider Σp
k-QU-Res for larger k in order to

understand the precise effect of the quantifier prefix on proof size. After limiting the proof systems

necessary to consider to only Σp
k-QU-Res for odd k, we provide a separation between Σp

k-QU-Res
and Σp

k+2-QU-Res for any odd k. Indeed, we show that there are formulas with a Σb
k+2-prefix for

which QU-Res requires superpolynomial-size proofs, even with access to an oracle for Σp
k. We

complete our consideration of Σp
k-QU-Res with a lower bound for Σp

k-QU-Res for any fixed k. The

formulas which give this bound are the modified versions of the KBKFn formulas, which provide a

lower bound for QU-Res [9]. By this we see that not only does the falsity of these formulas rely on

the unbounded number of quantifier alternations, but that this is also the source of the lower bound

in QU-Res.

Characterising Frege +∀red lower bounds Having described a means of identifying QBF

lower bounds which arise due to the presence of universal quantifiers, we turn our attention to

understanding the underlying reasons behind such results.

With this in mind, we first present a refinement of a dichotomy for Frege +∀red proof systems

shown in [30] in Chapter 6. By constructing a normal form for Frege +∀red proofs using circuits

witnessing the universal variables, the dichotomy of [30] proved that a large Frege +∀red lower

bound implies a correspondingly large lower bound on the propositional Frege proof system, or

in circuit complexity. We observe that by reframing this in terms of Σp
1-Frege +∀red, this result

suffices to show that formulas which are hard for Σp
1-Frege +∀red are precisely those which are

hard for Frege +∀red for non-propositional reasons. However, this characterisation of lower bounds

only applies to relatively strong proof systems, whose lines are from circuit classes admitting

certain closure properties. Weaker systems, such as QU-Res and others based on Resolution, do

not fall into this category and so may admit lower bounds which do not fall into either of the above

categories.

Nonetheless, we observe that the normal form used for Frege +∀red can still be applied with

some minor modifications, since extension variables required in these weaker proof systems can be

encoded into the witnessing circuits. Through this modified normal form we obtain a characterisation
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of lower bounds for any proof system P which admits strategy extraction – lower bounds which

are neither propositional or circuit complexity lower bounds arise due to a lower bound in P on

constructing witnessing circuits from the QBF. This characterisation applies to a wide variety of

proof systems, including the widely used QU-Res. We exemplify our characterisation by providing

examples for each type of lower bound from existing formulas known to be hard for QU-Res.

A lower bound technique for tree-like systems The equivalence of several different definitions of

the Frege +∀red proof system was also observed in [30]. In particular, restricting to a tree-like proof,

or restricting ∀-reductions to only substitute 0/1 values result in an equivalent system. However,

applying both of these restrictions at once does not result in an equivalent proof system, a distinction

we prove in Chapter 7 using a round-based strategy extraction argument. The key observation is that

if universal reduction is restricted to 0/1 values, then each response in the strategy constructed by this

algorithm corresponds to a path through the proof from root to axiom. Moreover, different responses

arise from different paths, giving a lower bound for tree-like proofs even in strong systems such

as Frege +∀red and eFrege +∀red based only on the number of responses required by a winning

strategy, ρ(Φ).

Theorem 7.6. For any QBF Φ, if π is a tree-like P+∀red refutation of Φ, then |π| ≥ ρ(Φ).

Such lower bounds via strategy size give the rather surprising result that, when ∀-reductions

are required to substitute 0/1 values, tree-like Frege +∀red cannot simulate even relatively weak

dag-like systems such as QU-Res. This is in stark contrast to the situation in propositional proof

systems, where tree-like Frege is equivalent to dag-like Frege, and is substantially more powerful

than Resolution.

This new lower bound technique for tree-like P+∀red proof systems shows that the dichotomy

of [30] also does not hold in these tree-like systems. However, lower bounds via strategy size are the

only method of showing lower bounds for tree-like Frege +∀red systems without also proving lower

bounds for the corresponding dag-like Frege +∀red system. We show this by another modification

of the normal form for Frege +∀red proofs. This normal form has a branch for each response, and

so a strategy with few responses constructs few branches, resulting in a small proof.

A new lower bound technique Beyond propositional lower bounds, there are relatively few

techniques for proving lower bounds for QBF proof systems. The strategy extraction technique

of [19] provides a method for translating circuit complexity lower bounds into proof complexity

lower bounds. As we have seen, for strong enough systems, this is sufficient to prove all non-

propositional lower bounds. In weaker systems, it would be desirable to have a wider selection of

tools available to prove bounds that cannot be shown by circuit complexity. Such tools may also

provide some insight into those lower bounds which do not fall into the propositional or circuit

complexity categories. Some propositional techniques have been adapted to provide genuinely

QBF bounds, rather than propositional bounds, such as feasible interpolation [22] or, in the case of
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tree-like systems, Prover-Delayer games [25]; lower bounds have also been provided for specific

formulas by ad hoc methods [9, 70, 72].

Above, we introduced a new lower bound technique for tree-like proof systems based on the

complexity of winning strategies. Chapter 8 introduces a similar technique for P+∀red and Σp
1-

P+∀red proof systems in general, both tree-like and dag-like. We first define the cost of a QBF as a

measure of the number of responses a winning strategy requires on a block of universal variables,

and the capacity of a proof as the number of different responses a line of the proof system can give.

We then combine these measures to give a simple lower bound on the size of proofs.

Theorem 8.7 (Size-Cost-Capacity). Suppose π is a Σp
1-P+∀red refutation of a false QBF Φ. Then

|π| ≥ cost(Φ)

capacity(π)
.

In order to provide lower bounds via cost and capacity, it is necessary to provide an upper

bound on the capacity of proofs in the relevant proof system. It has been observed that all QU-Res
proofs have capacity 1 [18]. We show the same bound on the capacity of proofs in the QBF version

of the Cutting Planes proof system. In the case of Polynomial Calculus, it is not possible to give

a constant upper bound, but we see that small proofs have small capacity. These capacity upper

bounds allow us to obtain proof size lower bounds on these systems based only on the cost of

formulas. We demonstrate an application of this by giving a simple proof that refutations of the

well known formulas KBKFdn require exponential size in these proof systems.

We conclude our study of the capacity of proof systems with examples of proof systems with

large capacity. It is clear from the characterisation of Frege +∀red lower bounds that there are

Frege +∀red proofs with high capacity. We also give an example of an algebraic proof system

with large capacity. To do so, we give a QBF version of the Ideal Proof System (IPS) [64]. Since

IPS is a static proof system, we first define an equivalent line-based proof system we call line-IPS

(L-IPS). We can then add a universal reduction rule to L-IPS to give a QBF proof system IPS+∀red.

Demonstrating short proofs of QBFs with a large cost suffices to show that IPS+∀red proofs can

have large capacity.

IPS+∀red p-simulates Frege +∀red, so proving lower bounds for this system would represent a

major breakthrough in proof complexity. While lower bounds via cost and capacity are not possible,

we show that strategy extraction is still possible in IPS+∀red, with the resulting strategy being

represented as an arithmetic circuit. Given recent progress in lower bounds on some restricted

arithmetic circuits [56, 57], this represents a promising direction for strong proof complexity lower

bounds.

Random QBFs Thus far, cost lower bounds have only been shown for a couple of specific families

of QBFs. In order to provide a large collection of QBFs which have large cost, we give in Chapter 9

a method for combining simple false QBFs to provide a false QBF which has large cost. These

product formulas are constructed similarly to the combination which provided the lower bound for
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relaxing QU-Res. However, altering the order in which the variables are quantified results in a

substantially more difficult formula to refute. To produce a QBF with large cost, we only require

that the QBFs in the product have non-constant winning strategies, and that there is a suitably small

set of existential assignments which witness to this fact.

Indeed, these requirements are sufficiently weak that we can use these products to randomly

generate QBFs which are false and have large cost with high probability. By considering a modifica-

tion of randomly generated (1,2)-QCNFs [36, 45], and combining this with results on the falsity of

random 2-SAT, we construct small random QBFs without constant winning strategies. From these,

we define the randomly generated QBF Q(n,m, c), which for suitable parameters m and c, is false

and has high cost with high probability, giving a lower bound.

Theorem 9.16. Let 1 < c < 2 be a constant, and let m ≤ (1 − ε) log2(n) for some constant

ε > 0. With high probability, the randomly generated QBF Q(n,m, c) is false, and any QU-Res,

CP+∀red or PCR+∀red refutation of Q(n,m, c) requires size 2Ω(nε).

For propositional formulas, Resolution lower bounds for random 3-CNFs are well known

[12, 38, 55, 68]. However, Theorem 9.16 represents the first proof size lower bound on randomly

generated QBFs. The model used is more complex than that of a random 3-CNF, but this is

necessitated by the presence of universally quantified variables. The QBFs Q(n,m, c) are therefore

guaranteed to have a specific number of universal and existential variables, to ensure they are neither

trivially false by containing a clause with only universal variables, nor false for purely propositional

reasons.

Finally, we offer some concluding thoughts and possible directions for future work in Chapter 10.

Some results in this thesis have appeared in previous publications. Chapters 4, 5 and 6 contain

work from [29]. Chapter 7 contains work from [28]. Chapters 8 and 9 contain work from [17, 18]

([18] is the journal version of [17]).
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Chapter 2

Background on Proof Complexity

QBFs are extensions of propositional logic, and as a result many QBF solving techniques and

proof systems are based on those for propositional logic. In order to study QBF proof complexity,

therefore, we must first understand the proof complexity of propositional logic. Much of this

framework can then be lifted to QBFs.

This chapter contains an overview of propositional proof complexity and together with Chapter 3

defines much of the notation we use; a full list of the notation used is given in the preamble to

this thesis. In Section 2.1, we give an introduction to propositional logic and Boolean circuits.

Section 2.3 looks at the SAT problem, including solving techniques and its importance as an NP-

complete problem. Finally, in Section 2.4, we discuss proof complexity, and give some examples of

propositional proof systems and lower bounds.

2.1 Propositional logic

Propositional formulas The language of propositional logic contains the two constants 0 and 1,

representing falsity and truth respectively, and a countably infinite set of variables V . An assignment

to a set of variables W ⊆ V is a function from W to {0, 1}. We denote the set of all possible

assignments to the variables of W by 〈W 〉 = {α | α : W → {0, 1}}.
In order to define the set of propositional formulas, it remains only to define a set of connectives.

The set of connectives we use to define propositional logic consists of ¬, ∧ and ∨, representing

negation, conjunction and disjunction respectively. Although defining conjunction and disjunction

as binary operators is sufficient, they are both associative and commutative, and so we extend ∧ and

∨ for any arity k ≥ 0. In the special case of arity 0, the empty conjunction is true, and the empty

disjunction is false. Negation is defined only as a unary connective. The values of these connectives

on different Boolean inputs can be seen in Figure 3.

We can now inductively define the set of propositional formulas.

Definition 2.1. The constants 0 and 1 are propositional formulas, and v is a propositional formula

for every variable v ∈ V . If p and q are propositional formulas, then so are ¬p, p ∧ q and p ∨ q.
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We define the function var(p), which maps a formula p to the set of variables which appear in p.

Given propositional formulas p and q, and a variable x, we define p[x/q] to be the formula obtained

by replacing each instance of x in p with the formula q. For an assignment α, we define p[α], the

restriction of p by α, to be the propositional formula obtained from p by performing the substitution

x/α(x) for each x ∈ dom(α). We generally assume that formulas restricted by assignments are

also simplified by replacing 0 ∧ x by 0, 1 ∧ x by x and analogously for other connectives.

There are several other common Boolean connectives. The binary connective→, representing

implication, is sufficient to represent all Boolean functions as propositional formulas. The other

connective we define is exclusive-or, denoted ⊕. Like ∧ and ∨, this can be naturally extended to a

k-ary connective for any k. The truth values of both→ and⊕ are given in Figure 3. Unless specified

we only use connectives from {¬,∧,∨}; however, we use p→ q as a shorthand for (¬p) ∨ q, and

p↔ q for (p→ q) ∧ (q → p).

a b ¬a a ∧ b a ∨ b a→ b a⊕ b
0 0 1 0 0 1 0
0 1 1 0 1 1 1
1 0 0 0 1 0 1
1 1 0 1 1 1 0

Fig. 3. The truth table for Boolean connectives

Boolean Circuits The inductive definition of a propositional formula in Definition 2.1 naturally

gives rise to a rooted tree representing the formula. Such a tree has each leaf labelled with a variable

from V , or a constant from {0, 1}, and all other nodes labelled with a connective defined on the

number of inputs to that node. Such a tree defines a formula in the obvious way.

We can generalise this representation of formulas from a rooted tree to a directed acyclic graph

(dag), in which a node can be an input to more than one subsequent node. We use the term circuit to

refer to such a representation, and use formula to refer to circuits in which the graph is a tree.

Definition 2.2. A Boolean circuit (or simply, circuit) is a directed acyclic graph with a unique sink,

in which each source (node of in-degree 0) is labelled by a variable or a constant in {0, 1} and

each node of in-degree d ≥ 1 is labelled by a connective which is defined on d variables.

We also introduce two important properties of circuits: size and depth. The size of a Boolean

circuit is the number of nodes in the dag. The depth of a Boolean circuit is the number of edges in

the longest path from a source to the sink, so, e.g., constants and variables have depth 0. Allowing

∧ and ∨ to take any number of inputs ensures that any Boolean function f : {0, 1}n → {0, 1} can

be represented by a circuit of depth d for any d ≥ 3.
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Conjunctive Normal Form We now highlight some common constructions of propositional

formulas which are of particular importance. A literal is a formula which is either a single variable

x or the negation of a variable; we sometimes use x̄ instead of ¬x. For convenience and clarity, we

may refer to assigning a value to a literal, rather than a variable; the assignment x̄/0 is equivalent to

x/1 and vice versa.

A clause is a disjunction of literals, often represented as a set of literals. A formula is said to be

in conjunctive normal form (CNF) if it is a conjunction of clauses. For any propositional formula,

there is an equivalent formula in CNF. Observe that the size of a CNF equivalent to a formula p

may be exponentially larger than the size of p. However, when we concern ourselves only with

satisfiability of the CNF, we can construct an equisatisfiable CNF by introducing an additional

variable for each node of the formula (known as Tseitin variables) and adding clauses requiring

these variables to be equivalent to the value computed at that node. Adding a unit clause requiring

the value computed at the root node of the formula to be true gives our equisatisfiable CNF.

Analogously to a clause, a term is a conjunction of literals; a formula is in disjunctive normal

form (DNF) if it is a disjunction of terms. Similarly to CNF, for any propositional formula p, it is

possible to find a DNF which is equivalent to p.

2.2 Circuit Complexity

Circuit complexity classes As noted above, while CNFs and DNFs allow us to construct circuits

with a relatively simple structure expressing any Boolean function, such circuits may have size

exponential in the number of variables. Complexity theory concerns itself with what problems, or

functions, are efficiently computable, given a computational model and some measure of efficiency.

One possible model is computation using Boolean circuits, often a class of circuits with a particular

structure; this is the primary focus of circuit complexity. We conclude our overview of Boolean

circuits by giving definitions of several prominent such circuit classes.

The first circuit class we define is the class of functions for which there exist polynomial-size

circuits, denoted P/poly. A function f : {0, 1}∗ → {0, 1} is in P/poly if, for each n ∈ N, there

is a circuit on n variables which has size nO(1) and computes the function on any input of length n.

For i ∈ N, the class NCi contains all functions for which there are Boolean circuits with in-

degree at most 2 which have size nO(1) and depth O(logi n). Of particular interest is the class NC1,

with depth O(log n), as this class contains all circuits which can be represented as polynomial-size

formulas.

The classes ACi are defined in a similar way to NCi, but circuits may contain ∧ and ∨ nodes

of any arity. Circuits in AC0, the class of constant depth circuits, are therefore able to depend on

all input variables (unlike NC0), and are relatively well studied. Exponential lower bounds have

been shown on the size of any constant depth circuit computing the parity of n bits [1,59,66]. Since

the parity function is known to be in NC1, this gives the separation AC0 ( NC1.
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Allowing mod p gates, which check whether the sum of the inputs is equal to 1 mod p, or

threshold gates, checking whether the number of 1’s in the input is above a certain threshold, in

ACi circuits results in the classes ACi[p] and TCi respectively.

It is important to note that even though the circuits witnessing that a function is in one of

these circuit classes have polynomial-size, these witnessing circuits need not be computable in

polynomial-time. If we require the nth circuit to be computable in polynomial-time, the circuit class

is said to be uniform, otherwise, the class is non-uniform.

Arithmetic Circuits Beyond Boolean circuits, given a field F we analogously define an arithmetic

circuit to have input gates labelled by variables, or by constants from F, and internal gates labelled

as either addition or multiplication gates. Such a circuit computes a polynomial over F in the natural

way. The objects computed by arithmetic circuits are formal polynomials, rather than functions.

For example, over the field Zp, the polynomials xp and x are considered as distinct polynomials,

despite computing the same function from Zp to Zp.
An arithmetic formula is an arithmetic circuit in which the underlying dag is a tree. A particular

case of arithmetic formulas is that of a sparse polynomial, computing a polynomial as a sum of

monomials. Formally, a sparse polynomial consists of an addition gate, which is the sink, the inputs

to which are a layer of multiplication gates, each of which have as input only constants or variables.

2.3 SAT and complexity

The Satisfiability problem Given a propositional formula, it is natural to ask when the formula

is true and when it is false. The satisfiability (SAT) problem is the problem of deciding whether

a formula φ, given as a CNF, has a satisfying assignment, i.e. an assignment to the variables of φ

such that φ evaluates to true. Such decision problems are usually expressed in terms of establishing

whether a string is a member of a given language, and so we define SAT to be the language consisting

of CNFs which have at least one satisfying assignment.

The complexity class NP can be described as the class of languages for which membership

can be witnessed by a polynomial-size witness, and given such a witness, membership in the

language can be verified in polynomial time [5]. In the case of SAT, it is easy to see that a satisfying

assignment provides this witness, as the evaluation of a CNF can be performed in polynomial time,

and so SAT is in NP.

In fact, the Cook-Levin theorem [42] shows that the SAT problem is NP-hard, and therefore

NP-complete. The practical consequence of the Cook-Levin theorem is that for any problem in NP,

there is an efficient (polynomial-time) reduction of the problem to a SAT instance. This provides

strong motivation for the development of algorithms and solvers for SAT. Given any problem in

NP, such as the travelling salesman problem or the graph colouring problem, both of which have

several practical applications, we can reduce an instance of this problem to a SAT instance and

solve it using the most efficient SAT solver.
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We also introduce the complexity class P, the class of languages for which there is a poly-

nomial time deterministic algorithm to check membership of the language. No polynomial-time

deterministic algorithm for SAT is known. The existence of such an algorithm would place SAT in

P, and thus show that P = NP, resolving a major open problem in complexity theory.

SAT solving Despite the apparent difficulty posed by the NP-completeness of SAT, there has been

much work on the design and implementation of algorithms for SAT. State-of-the-art SAT solvers

regularly solve instances containing millions of variables, and are regularly used in applications

such as planning problems [71] and formal verification through bounded model checking [32].

The DPLL algorithm [46, 47] lies at the heart of many modern SAT solvers. This algorithm is

given a CNF in the form of a set of clauses, which are themselves sets of literals. The basic idea of

this algorithm is to search all possible assignments by branching on each of the possible assignments

for each variable until it either falsifies all literals in a clause, in which case it backtracks to the last

branching point, or finds a satisfying assignment, in which case it returns 1. If all branches have

been checked and no satisfying assignment has been found, the algorithm returns 0.

The DPLL algorithm (Algorithm 1) enhances this depth-first search procedure with two rules to

simplify the CNF at each stage before branching on a variable. The first, pure literal elimination,

checks for a literal l such that ¬l does not appear in any clause – such a literal l is called a pure

literal. If so, this literal can be assigned to true. The second, unit propagation, checks for a clause

with only one unfalsified literal (a unit clause), and assigns this literal to true. When backtracking

after finding a falsifying assignment, DPLL backtracks to before the last branching variable, prior

to any unit propagation leading to the falsification of a clause.

Modern SAT solvers employ a variety of techniques to improve the efficiency of the DPLL

algorithm. The choice of branching variable is of great importance in such solvers. Several heuristics

have been developed to improve this choice, such as VSIDS and its variations [33, 88], used in

solvers such as Chaff and MiniSat [51].

When the DPLL algorithm backtracks on finding a falsified clause, it establishes that this

branch does not lead to a satisfying assignment, but learns nothing about other branches. Conflict

driven clause learning (CDCL) [86, 87] constructs an implication graph throughout the algorithm,

containing information on which of the current variables were assigned by an application of unit

propagation, and which previous assignments to variables resulted in the relevant clause having

only a single literal remaining. Upon reaching a conflict (i.e. containing the unit clauses x and

¬x for some variable x), CDCL then finds a cut in this implication graph separating the choices

made by the algorithm from the derived assignments x and ¬x. The negation of the assignments

immediately prior to the cut is then added to the list of clauses in φ, since this partial assignment

leads to a conflict.

Learning clauses in this way can greatly improve the efficiency of solvers by ensuring that they

do not arrive at the same conflict by a different partial assignment, thus narrowing the search space.

However, as memory is also a limitation on practical SAT solvers, care must be taken to only learn
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Algorithm 1 The DPLL algorithm
function DPLL(φ)

if φ contains a pure literal l then
φ′ ← φ[l/1]
return DPLL(φ′)

else if φ contains a unit clause {l} then
φ′ ← φ[l/1]
return DPLL(φ′)

else if φ = ∅ then
return 1

else if ∅ ∈ φ then
return 0

else
Select a variable x in φ
φ0 ← φ[x/0]
φ1 ← φ[x/1]
if DPLL(φ0) = 1 then

return 1
else if DPLL(φ1) = 1 then

return 1
else

return 0

Note that φ[l/0] = {C \ {l} | C ∈ φ,¬l 6∈ C} and analogously for φ[l/1].

the ‘most useful’ clauses. Nonetheless, this CDCL technique forms the basis of many of the most

successful modern SAT solvers such as Glucose [7] and MapleCOMSPS [81].

2.4 Proof systems and proof complexity

Given a CNF φ ∈ SAT, a satisfying assignment in 〈var(φ)〉 serves as a witness proving that

φ ∈ SAT, as we can efficiently, in the size of the witness, compute the truth value of φ under this

assignment and verify that it does indeed satisfy φ. More generally, for any class known to be in

NP, such witnesses exist by definition of NP. The problem UNSAT is the complement of SAT,

consisting of all unsatisfiable CNFs. This problem is coNP-complete, as it is the complement of

an NP-complete problem. As coNP is not known to be in NP, it is not known whether there

exist polynomial-size witnesses that a formula is unsatisfiable.

One possible witness would be a computation of the truth value of φ under every possible

assignment, such as a truth table. This can clearly be checked in polynomial-time (in the size of

the truth table), but the size of a truth table is always exponential in the number of variables. The

SAT solving techniques described in Section 2.3 demonstrate that it should be possible to reduce

this search space, and reduce the size of the witness. In this vein, a refutational propositional proof

system defines for each φ a set of witnesses that φ 6∈ SAT. More generally, a proof system for L is

one answer to the question: What is a suitable witness that φ ∈ L?
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Proof systems We begin with a formal definition of a proof system for any language L. While the

proof systems we use will be described in a more intuitive fashion, they can all be expressed in this

formal sense using a suitable encoding of proofs as bit strings.

Definition 2.3 (Cook and Reckhow [43]). A proof system for a language L ⊆ {0, 1}∗ is a

polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that rng(f) = L.

It is generally convenient when describing proof systems to use larger alphabets than {0, 1},
for example when describing propositional formulas. Since all such alphabets Γ we use are finite,

there is a simple translation between Γ ∗ and a subset of {0, 1}∗, and so we do not give formal

definitions of these alphabets or their encodings. By way of a simple example, we use this definition

to describe the proof system in which a complete truth table is the only suitable witness that a CNF

is unsatisfiable.

Example 2.4. There are polynomial-time computable encodings of both CNFs and truth tables as

bit strings. Let f be the function such that f(π) = φ if π encodes the complete truth table for the

CNF φ, and the final column of the truth table is identically 0, and f(π) = ⊥ otherwise. Then f is

a proof system for UNSAT.

For a proof system f , a string π is said to be an f -proof of l ∈ L if f(π) = l. Usually, the proof

system will be clear from the context, and we simply refer to π as a proof of l.

When constructing a proof system, the condition that rng(f) = L ensures that the proof system

is both sound and complete. A proof system f is sound if rng(f) ⊆ L, i.e. there is no proof of any

string which is not in L. Conversely, f is complete if L ⊆ rng(f), i.e. every string in L has a proof.

Proof complexity Given a proof system, the primary goal of proof complexity is to answer the

question of how large proofs in a given proof system need to be. Other measures for proof systems

have been considered, such as the memory space required by a proof system [2], but in this thesis

we focus our attention solely on the size of proofs.

As we are interested in the size of the smallest proof of a given formula, we define sf (φ) =

min{|π| | f(π) = φ} for a proof system f for L, and φ ∈ L. We generally assume that the formulas

φ are minimally unsatisfiable, meaning that removing any clause from φ results in a satisfiable CNF,

and so every clause is required for a refutation. A proof system is polynomially-bounded if there

is some polynomial p(n) such that for any φ ∈ L with |φ| ≤ n, sf (φ) ≤ p(n). The existence of

a polynomially-bounded proof system for UNSAT is equivalent to NP = coNP [43]. Showing

that no such proof system exists would therefore suffice to show that NP 6= coNP and hence

P 6= NP.

In order to show that an individual proof system is not polynomially-bounded, we give superpoly-

nomial lower bounds on these proof systems. Such a lower bound consists of a sequence of formulas

{φn | n ∈ N} such that for any polynomial p(x), there is some n such that sf (φn) ≥ p(|φn|). In

general, since |φn| is polynomial in n, a superpolynomial lower bound is a family of formulas such

that sf (φn) = nω(1).
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In addition to proving lower bounds, we also seek to compare the sizes of proofs in different

proof systems. A proof system f is said to simulate a proof system g if there is a polynomial p

such that for any π ∈ {0, 1}∗, there is a π′ ∈ {0, 1}∗ with |π′| ≤ p(|π|) and f(π′) = g(π). That is,

for every g-proof of a formula φ, there is an f -proof of φ which is at most polynomially larger. If

such a π′ is computable in polynomial-time from π, then we say that f p-simulates g. If two proof

systems (p-)simulate each other, they are said to be (p-)equivalent, and if neither simulates the other,

the proof systems are incomparable.

Line-based proof systems A propositional proof system is a proof system for the language

UNSAT, or equivalently for the language TAUT of tautologous DNFs by showing the negation is in

UNSAT. We introduce two such systems here; other propositional proof systems will be introduced

where they are used. In common with almost all proof systems considered in this thesis, these are

line-based proof systems.

A line-based proof system consists of a set of axiom rules, defining what lines can be introduced

as axioms given a formula φ, and a set of deduction rules, defining what lines can be deduced

from previous lines. A derivation is then a sequence of lines L1, . . . , Lm such that each Li is either

introduced by an axiom rule, or deduced from L1, . . . , Li−1 by a deduction rule. A proof that

φ ∈ UNSAT is therefore a derivation of the empty clause ⊥ or some other trivial falsity. A proof

deriving ⊥ is sometimes referred to as a refutation. Since all proof systems we consider prove the

falsity of a formula, we use the terms ‘proof’ and ‘refutation’ interchangeably.

The axiom and deduction rules are chosen so that the proof system is sound and complete,

i.e. so that φ ∧ L1 ∧ · · · ∧ Li−1 |= Li, and consequently φ |= Li for each i, and so that there is a

derivation of ⊥ for any false CNF φ. In order to ensure that this is a proof system in the formal

sense of Definition 2.3, it is only necessary to ensure that there is a polynomial-time computable

algorithm to check whether a line Li was derived by a deduction rule of the proof system. We can

then construct a function which returns φ if and only if each line was correctly derived and the last

line is ⊥, and returns the trivial unsatisfiable formula ⊥ otherwise.

We can also view such a proof as a directed acyclic graph with vertices {L1, . . . , Lm} and an

edge from Lj to Li for any j ≤ i where Lj is used as a premise in the deduction rule used to deduce

Li. If there is a path from Lj to Li in this dag, i.e. Lj is used in the derivation of Li, we denote this

by Lj ≺ Li. If we require this dag to be a tree, i.e. if a line is used in multiple deductions, it must

be derived multiple times, we refer to the resulting proof system as tree-like; otherwise the proof is

dag-like.

Resolution The first proof system we describe is the Resolution proof system for the language

UNSAT of unsatisfiable CNFs [34,101]. This relatively simple proof system works with lines which

are clauses. It can introduce as an axiom any clause from the CNF φ and has only one deduction rule:

the resolution rule (see Figure 4). The variable appearing in opposite polarities which is removed
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via the application of the resolution rule is referred to as the pivot (x in the example in Figure 4). A

Resolution proof that φ is unsatisfiable is a derivation of the empty clause ⊥ from the clauses of φ.

Axiom: C C is a clause in the CNF

Resolution: C ∨ x D ∨ ¬x
C ∨D

C and D are clauses, x is a variable

Fig. 4. The derivation rules of Resolution [34, 101]

Example 2.5. As an example of a (dag-like) Resolution proof, Figure 5 is one possible refutation

of the unsatisfiable CNF φ = (x ∨ ¬y ∨ ¬z) ∧ (¬y ∨ z) ∧ (¬x ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ y).

Observe that the proof in Figure 5 is not the only Resolution refutation of φ, and indeed is not even

the shortest possible Resolution proof.

x ∨ ¬y ∨ ¬z ¬y ∨ z ¬x ∨ ¬z ¬x ∨ y ∨ z

x ∨ y

x ∨ ¬y ¬x ∨ ¬y ¬x ∨ y

¬y ¬x

y

⊥

Fig. 5. An example Resolution proof

Resolution is often augmented with the weakening rule, which allows the derivation of the

clause C ∨ l from C, for some literal l. Resolution with weakening is no more powerful than

Reslution without weakening, since the shortest refutation of any formula contains no instances of

the weakening rule. However, with the addition of weakening, Resolution becomes implicationally

complete: there is now a derivation of C from φ for any clause C such that φ |= C. As this is

a convenient property for a proof system, and does not alter the lengths of refutations, we allow

weakening in Resolution, and its analogues in other proof systems.

Resolution is perhaps the most well studied propositional proof system, due to the tight con-

nections between Resolution and SAT solving, particularly the DPLL algorithm and CDCL used

by many SAT solvers. Given the trace of the DPLL algorithm on a formula φ, one can construct a

tree-like Resolution refutation of at most the size of the branching tree by mapping each node to a
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clause which is falsified by the assignment at that node. Branching on two different assignments

to a variable then corresponds to a resolution step on that variable, unit propagation is modelled

by resolution with a clause of φ and pure literal detection requires no further steps. The clause at

the root must be ⊥ as the only clause false under the empty assignment. The learning of clauses

in CDCL necessitates using the full power of dag-like Resolution, since learnt clauses can be

subsequently be falsified several times by subsequent assignments, but traces of a CDCL algorithm

can still be modelled as a Resolution proof [10]. Conversely, given a suitable decision strategy and

clause-learning strategy, modern CDCL-based SAT solvers can run as efficiently as any Resolution

proof [6, 92]. Finding the optimal such strategies is not known to be possible efficiently.

The first superpolynomial lower bounds for Resolution were shown by Haken [65] for the CNFs

PHPn (Definition 2.6), a family of formulas based on the pigeonhole principle. This lower bound

on PHPn was later improved to an exponential lower bound in [93].

Definition 2.6. The nth pigeonhole principle formula, denoted PHPn is the unsatisfiable CNF

n+1∧
i=1

(xi,1 ∨ · · · ∨ xi,n) ∧
n∧
j=1

∧
1≤i<k≤n+1

(¬xij ∨ ¬xkj)

where the variable xi,j is interpreted as ‘the ith pigeon is assigned to the jth hole.’

Theorem 2.7 ([65, 93]). The pigeonhole principle formulas PHPn require Resolution refutations

of exponential size.

Frege systems Instead of working with clauses, as in Resolution, we can extend the lines of a proof

system to work with any Boolean circuit from a circuit class C to define a C-Frege proof system.

Various C-Frege systems can be defined, using any sound and complete set of axioms and

derivation rules. However, for a suitable and fixed circuit class C, all C-Frege systems are known to

be p-equivalent [99], so we do not distinguish between such variations, and instead consider C-Frege

as a single proof system. A definition of C-Frege with suitable axioms and a single derivation rule,

modus ponens, is given in Figure 6.

Resolution could potentially be viewed as a C-Frege system for the very restrictive class of

circuits consisting only of clauses. A stronger system is bounded-depth Frege, or AC0-Frege. This

is the strongest propositional Frege system for which superpolynomial lower bounds are known,

using the formulas PHPn [79].

We refer to the NC1-Frege proof system simply as Frege. In this proof system, the lines can be

any Boolean formula. This is a relatively powerful proof system, and no superpolynomial lower

bounds are known for this proof system; in fact, the best known lower bounds are quadratic [75].

A potentially more powerful system is P/poly-Frege, which we call extended Frege or eFrege.

An alternative definition of eFrege is as a proof system working with formulas, as in Frege, but

with the addition of extension variables [108]. Extension variables are variables equivalent to a

Boolean formula, introduced by the axiom xi ↔ C for a variable x not already in the proof, and
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Clause Axiom: C
C is a clause of the
CNF

Axioms:
(¬A→ ¬B)→ (B → A) A→ (B → A)

(A→ (B → C))→ ((A→ B)→ (A→ C))

for any A,B,C ∈ C

Modus Ponens: A A→ B
B

for any (A→ B) ∈ C

Fig. 6. A possible set of derivation rules for C-Frege [83]

a formula C ∈ NC1. Using extension variables allows us to represent any circuit in P/poly

using a Boolean formula by introducing extension variables equivalent to subcircuits which are

used multiple times. The power of these extension variables is such that the addition of extension

variables to the relatively weak Resolution proof system, which we denote extended Resolution,

results in a proof system equivalent to eFrege [43, 78].

The strength of these Frege systems are such that tree-like C-Frege and dag-like C-Frege are

equivalent for large enough circuit classes [75]. In particular, this is the case for Frege and eFrege,

as well as for the circuit classes AC0 and TC0.

This is by no means a complete list of propositional proof systems, however for most of this

thesis the proof systems used will be based on Resolution or C-Frege systems. Figure 7 contains the

various simulations of these systems; superpolynomial lower bounds are known for all proof systems

below the dashed line, and all p-simulations below this line are also separations. For proof systems

above the line, no separations are known, since such a separation would require a superpolynomial

lower bound on these proof systems. Also included in Figure 7 are several proof systems based on

algebraic reasoning, namely Cutting Planes, Polynomial Calculus and its extension PCR,and IPS,

which will be introduced in Chapter 8. Techniques for lifting these propositional proof systems to

the language of QBF are discussed in Chapter 3.
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Truth tables

Resolution Polynomial Calculus

PCRCutting Planes AC0-Frege

AC0[p]-Frege

Frege

eFrege

IPS

P

Q

P p-simulates Q

Fig. 7. A simulation diagram for propositional proof systems used in this thesis
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Chapter 3

Background on Quantified Boolean For-
mulas

Quantified Boolean formulas introduce universal quantifiers, complementing the implicit existential

quantification of a SAT problem. This allows for much more expressive formulas, modelling

problems from fields such as ontological reasoning [74], conformant planning [100] and formal

verification [14], as well as more light-hearted problems, including games such as Tic-Tac-Toe

and Connect-4 [50, 60]. However, to solve QBFs, we must introduce some new techniques, as

propositional reasoning alone is not sufficient.

In this chapter, we provide an overview of QBFs and QBF proof complexity. The definition

of QBFs, and different approaches to their semantics, are discussed in Section 3.1, as well as the

complexity of deciding QBFs and some restrictions of QBFs. Section 3.2 contains a description of

how SAT solving can be extended to QBF solving, and in Section 3.3 we detail the most prominent

approaches to constructing QBF proof systems from propositional proof systems, and the relations

between them.

3.1 Quantified Boolean Formulas

Quantified Boolean formulas extend propositional logic with the addition of existential and universal

quantifiers, ∃ and ∀ respectively, ranging over the values {0, 1}. Semantically, we can interpret

∃x·φ as φ[x/0] ∨ φ[x/1] and similarly ∀x·φ is equivalent to φ[x/0] ∧ φ[x/1]. A variable that is in

the scope of a quantifier is bound, otherwise it is free.

A prenex QBF is a QBF Φ of the form Φ = Π ·φ, where Π is a quantifier prefix, i.e. a sequence

of quantified variables, such as ∀x∃y∀z, and φ, the matrix, is a propositional formula, i.e. containing

no quantifiers. Any QBF can be transformed into a prenex QBF by renaming variables so that each

of the bound variables is distinct from all other variables, and then moving all quantifiers in front of

the propositional formula, changing quantifiers as needed whenever a quantifier is moved out of the

scope of a negation.
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Example 3.1. The QBF ∃x(x ∨ y) ∧ ∀x∃z(x ∨ (y ∧ z)) is not a prenex QBF. We can transform it

into a prenex QBF by moving all quantifiers to the front, and renaming one copy of x. The QBF

∃x∀x′∃z ·(x ∨ y) ∧ (x′ ∨ (y ∧ z)) is therefore an equivalent prenex QBF. The quantifier prefix is

∃x∀x′∃z and the matrix is (x ∨ y) ∧ (x′ ∨ (y ∧ z)).

A QBF is closed if it has no free variables, i.e. all variables are quantified. Since it has no

free variables, expanding the quantifiers using the equivalences ∃x ·φ ≡ φ[x/0] ∨ φ[x/1] and

∀x·φ ≡ φ[x/0] ∧ φ[x/1] results in a propositional formula with no free variables, which can be

evaluated to either true or false.

Similarly to the case for SAT, we can require that the propositional formula in a prenex QBF

is a CNF. If a closed, prenex QBF has a CNF matrix, then it is in prenex normal form, denoted

PCNF. Using extension variables, which must be quantified existentially and after the variables they

depend on, we can transform any closed QBF into a PCNF with a polynomial increase in size. We

therefore assume that all QBFs we consider are PCNFs, and use the terms interchangeably.

Example 3.1 (continued). The prenex QBF ∃x∀x′∃z · (x ∨ y) ∧ (x′ ∨ (y ∧ z)) is not closed,

since y is a free variable. If y is also quantified in the prefix, e.g. as ∀y, then the resulting QBF

∃x∀x′∃z∀y·(x ∨ y) ∧ (x′ ∨ (y ∧ z)) is a closed prenex QBF. This can be transformed into a PCNF

by expanding the propositional matrix into an equivalent CNF, giving the PCNF

∃x∀x′∃z∀y ·(x ∨ y) ∧ (x′ ∨ y) ∧ (x′ ∨ z)

It is clear that the order in which variables are quantified in the quantifier prefix of a PCNF is

important: the QBF ∀y∃x·(x↔ y) is true, while ∃x∀y ·(x↔ y) is false. However if variables are

quantified consecutively with the same quantifier, changing their relative order does not affect the

truth of the PCNF. With this in mind, we introduce the notion of the level of a variable in a QBF

prefix. A PCNF is of the form Φ = Q1X1Q2X2 . . .QnXn ·φ, where Qi ∈ {∃,∀} for 1 ≤ i ≤ n

are quantifiers with Qi 6= Qi+1, and X1, . . . , Xn are pairwise disjoint sets of variables. We refer

to each individual QiXi as a quantifier block, or simply a block. For any variable x ∈ Xi, we say

that the level of x is i, and write lv(x) = i. We can also extend this notation to literals l by defining

lv(x̄) = i. We say that x is left (resp. right) of y whenever lv(x) < lv(y) (resp. lv(x) > lv(y)). The

sets X and U consist of all existential and universal variables respectively, i.e. X =
⋃
{i|Qi=∃}Xi

and U =
⋃
{i|Qi=∀}Xi.

Game semantics The semantics of QBFs can be understood by expanding a (closed prenex) QBF

into a propositional formula. Since all variables are quantified, all variables will be expanded and

the resulting formula will have no variables, evaluating to either true or false.

However, a perhaps simpler and certainly more useful semantic interpretation of a QBF is

as a game between a universal player and an existential player. Given a closed prenex QBF

Φ = Q1X1Q2X2 . . .QnXn·φ, the players assign variables in the order they appear in the quantifier

prefix, with variables of Xi being assigned by the player corresponding to Qi. The universal
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player wins this game if φ evaluates to 0 under the total assignment constructed during the game,

whereas the existential player wins if φ evaluates to 1. A QBF is false if and only if the universal

player can guarantee a win in this game; for any false QBF, it is therefore possible to construct a

winning strategy for the universal player. Formally, a strategy for a variable u ∈ Xi is a function

Su : 〈X1 ∪ · · · ∪Xi−1〉 → {0, 1}. A strategy for the universal player therefore consists of a strategy

Su for every universally quantified variable u in Φ. A winning universal strategy S : 〈X 〉 → 〈U〉
for a QBF Φ = Π ·φ is then one such that φ[α ∪ S(α)] ≡ ⊥ for every α ∈ 〈X〉.

Considering a QBF as such a game allows for natural encodings of many problems, including

many two player games, such as Connect-4 [60] and some problems in Chess [4]. It also suggests

the use of winning strategies as a certificate for the truth or falsity of a QBF; partial strategies are

provided as such a certificate by some QBF solvers [97].

Complexity The language TQBF is the language of true closed QBFs given as PCNFs. The

addition of quantifiers suggests that deciding this language may be substantially harder than the

NP-complete SAT problem. Indeed, it is known that TQBF, and the complement FQBF, the

language of false PCNFs, are complete for the class PSPACE [91], the class of problems solvable

in polynomial space and a potentially much larger complexity class than NP. Nonetheless, the

questions of NP vs PSPACE, and even P vs PSPACE, are currently open.

The number of alternations of quantifiers also plays a key role in the complexity of TQBF.

Observe that if we have a PCNF in which every variable is quantified existentially, this is an instance

of a SAT problem. We can extend this limitation on the number of quantifier blocks in the prefix to

allow a constant number of blocks for constants larger than 1.

For a constant k, a Σb
k quantifier prefix is a prefix of the form ∃X1∀X2 . . .QkXk, i.e. a prefix

containing k quantifier blocks with the first block quantified existentially. Analogously, a Πb
k prefix

has k blocks with the first block being universally quantified. We can then define the complexity

classes Σp
k and Πp

k to be those problems polynomial-time reducible to a QBF with a Σb
k and a Πb

k

prefix respectively. Observe in particular that Σp
1 = NP. The polynomial hierarchy (PH), the

union of the classes Σp
k and Πp

k for all k ∈ N, is the class of all problems polynomial-time reducible

to a QBF with some constant number of quantifier blocks.

3.2 QBF solving

Given a QBF Φ in prenex normal form, there is a relatively straightforward extension of the DPLL

algorithm to the algorithm QDPLL (Algorithm 2), which determines whether the QBF is true or

false. In order to handle the addition of quantifiers, two modifications are made. First, when picking

a variable to branch on, this variable must be chosen from the leftmost quantifier block, as the

assignment of later variables may depend on the value of those in previous blocks. Second, when a

variable x has been picked to branch on, if x is existentially quantified, the algorithm must verify

that Φ[x/0] or Φ[x/1] are true, as in DPLL. However, if x is universally quantified, the QDPLL

algorithm must check that both Φ[x/0] and Φ[x/1] evaluate to true.
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Algorithm 2 The QDPLL algorithm
Input: a closed QBF Q1X1 . . .QkXk ·φ in prenex normal form

function QDPLL(Q1X1 . . .QkXk, φ)
φ← Simplify(Q1X1 . . .QkXk, φ)
if φ = ∅ then

return 1
else if ∅ ∈ φ then

return 0
else

Select a variable x in X1

φ0 ← φ[x/0]
φ1 ← φ[x/1]
if Q1 = ∀ then

return QDPLL(Q1X1 \ {x} . . .QkXk, φ0) ∧ QDPLL(Q1X1 \ {x} . . .QkXk, φ1)
else

return QDPLL(Q1X1 \ {x} . . .QkXk, φ0) ∨ QDPLL(Q1X1 \ {x} . . .QkXk, φ1)

If X1 \ {x} = ∅, then this block is removed and all other blocks are renumbered.

As in DPLL, various simple reasoning techniques can be used to simplify the formula at each

stage; these are represented in Algorithm 2 by the function Simplify. Pure literal elimination is still

possible, however if a pure literal is quantified universally, then the algorithm assigns the pure literal

to be false. Unit propagation can be performed using any clause containing only a single existential

literal which is quantified leftmost among all literals in that clause. The function Simplify performs

both of these, as well as other simple procedures such as evaluating the matrix to false if it contains

a clause with only universal literals.

Much like with DPLL, this can be extended to allow clause learning in a similar way to

the propositional case, resulting in the QCDCL algorithm, which forms a basis for several QBF

solvers [82, 110]. Many techniques similar to those used in SAT solving are used to optimise the

choice of branching variables and clauses learnt. A tool unique to the QBF solving case, however,

is the calculation of dependency schemes. While the order of variables in the quantifier prefix

gives a natural order in which to assign variables in QCDCL, not every variable will depend on the

all variables to its left. Solvers such as DepQBF [82, 105] recalculate these dependency schemes

regularly, and are thereby sometimes able to soundly assign variables much earlier than might

otherwise be possible when a variable is found to be independent of all remaining variables. Doing

so can lead to a substantially faster runtime on certain formulas.

Rather than QCDCL, some solvers use an alternative algorithm based on the expansion of

quantifiers. While a full expansion of all the variables would result in an exponential increase in the

size of the formula, the counterexample guided abstraction refinement (CEGAR) [39, 69] algorithm

attempts to avoid this issue by expanding variables beginning from the rightmost, and constructing

partial winning strategies on the blocks of variables working from right to left. However, in the

worst case a full expansion of the variables is still needed.
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3.3 QBF proof complexity

Soundness in QBF proofs Before considering QBF proof systems, it is prudent to consider the

soundness of such systems given the added complexity of quantifiers. In some sense, the definition

of a sound QBF proof system is clear – it can only prove true QBFs, or equivalently can only refute

false QBFs. However, if we wish to consider line-based QBF proof systems, we must define what it

means for the derivation of a particular line to be sound, rather than a proof as a whole.

All line-based QBF proof systems we consider have lines consisting of propositional statements,

where the axioms that can be introduced are defined by the matrix of the QBF, and where the

quantifier prefix is implicitly identical to that of the QBF. Line-based proof systems are refutational,

and so in a propositional proof system, C1 . . . Cn
D

is sound if any assignment satisfy-

ing C1 ∧ · · · ∧ Cn also satisfies D. For QBFs, the situation is a little more complex due to the

quantification of variables, however soundness can still be expressed relatively concisely: given a

quantifier prefix Π , the derivation C1 . . . Cn
D

is sound if any existential winning strategy

on C1 ∧ · · · ∧Cn (with respect to Π) also satisfies D. With this definition of soundness in hand, we

are now in a position to consider line-based QBF proof systems.

Universal reduction Since an existentially quantified QBF is simply a SAT problem, all QBF proof

systems must restrict to a propositional proof system on such instances. In fact, most commonly

studied QBF proof systems extend a line based propositional proof system by adding a method for

handling universally quantified variables.

Perhaps the most commonly studied such method is the addition of the ∀-reduction rule. The

∀-reduction rule allows the deduction of L[u/b] from L whenever u is a universal variable in the

rightmost block appearing in L, and b ∈ {0, 1}. This rule is easily seen to be sound: if in the two

player game, the existential player must ensure L is satisfied, then the existential player must also

ensure that L[u/b] is satisfied, else when the universal player comes to choose a value for u, she

can play u← b and falsify L.

The ∀-reduction rule was first introduced in the system Q-Res [72], which allows only two

deduction rules: resolution on existentially quantified pivots, and the ∀-reduction rule. The deduction

of tautologies is also forbidden; this is not essential but allows for a simpler representation of the

∀-reduction rule. A Q-Res derivation of the empty clause from a QBF Φ is therefore a proof that Φ

is false. Similar to the correspondence between Resolution and solvers based on DPLL or CDCL,

the trace of a QDPLL solver can be modelled by a proof in Q-Res.

In [109], Q-Res was extended to QU-Res, which allows resolution on any pivot variable,

regardless of its quantifier. QU-Res clearly p-simulates Q-Res, and in fact there is an exponential

separation. The derivation rules of QU-Res are given in Figure 8; the rules of Q-Res are identical,

with the added restriction that the variable x in the Resolution rule must be existentially quantified.
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Axiom: C
C is a non-tautological clause in the
CNF

Resolution: C ∨ x D ∨ ¬x
C ∨D

If l ∈ C then ¬l 6∈ D for any literal l

∀-reduction: C ∨ u
C

u a universal literal, lv(u) ≥ lv(l) for
all literals l ∈ C

Fig. 8. The derivation rules of QU-Res [72, 109]

Example 3.2. Figure 9 gives an example Q-Res proof (and therefore also a QU-Res proof) of

the QBF ∃x∀u∃y ·(x ∨ u ∨ y) ∧ (x ∨ u ∨ ¬y) ∧ (¬x ∨ ¬u ∨ y) ∧ (¬x ∨ ¬u ∨ ¬y), representing

resolution steps by solid lines, and ∀-reduction steps by dotted lines.

No ∀-reduction steps can be performed initially, since all clauses contain a literal on y, which

is quantified to the right of u. Having resolved on y, a ∀-reduction is necessary before any further

resolution steps can take place, as tautologies are forbidden in Q-Res.

x ∨ u ∨ y x ∨ u ∨ ¬y ¬x ∨ ¬u ∨ y ¬x ∨ ¬u ∨ ¬y

x ∨ u ¬x ∨ ¬u

x ¬x

⊥

Fig. 9. An example Q-Res proof

On existentially quantified formulas, both Q-Res and QU-Res are equivalent to Resolution,

and so the existentially quantified pigeonhole principle PHPn provides an exponential lower bound,

as do any other lower bounds on Resolution. However, there are also Q-Res and QU-Res lower

bounds for QBFs making use of universal quantifiers. The most prominent of these are the QBFs

KBKFn defined by Kleine Büning, Karpinski and Flögel in [72].

Definition 3.3 (Kleine Büning et al. [72]). Define the QBF KBKFn as

KBKFn := ∃y0(∃y1y′1∀u1) . . . (∃yny′n∀un)∃yn+1yn+2 . . . y2n ·
2n∧
i=0

Ci ∧ C ′i
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where the clauses Ci and C ′i are defined as

C0 = {¬y0} C ′0 = {y0,¬y1,¬y′1}

Ck = {yk,¬uk,¬yk+1,¬y′k+1} C ′k = {y′k, uk,¬yk+1,¬y′k+1} for k ∈ [n− 1]

Cn = {yn,¬un,¬yn+1, . . . ,¬y2n} C ′n = {y′n, un,¬yn+1, . . . ,¬y2n}

Cn+k = {¬uk, yn+k} C ′n+k = {uk, yn+k} for k ∈ [n]

The QBFs KBKFdn are defined similarly, but replace each instance of ∀ui in the prefix with ∀ui∀vi,
and add the matching literal on vi to every clause containing ui, so e.g. Cn+k = {¬uk,¬vk, yn+k}.

The intuition behind the KBKFn formulas is an induction principle. The initial clauses C0 and

C ′0 require that y1 or y′1 are false, and the final clauses Cn+k and C ′n+k require both yn and y′n to

be true. However if the existential player sets either yk or y′k to false, then the universal player can

ensure that either yk+1 or y′k+1 must also be false. The value of uk required depends on which of

yk, y
′
k is false, and these 2n possible sequences of moves provide an exponential lower bound on

the size of refutations of KBKFn.

Theorem 3.4 ([9,72]). The QBFs KBKFn require exponential size proofs in Q-Res, and KBKFdn

require exponential size proofs in QU-Res.

The ∀-reduction rule can also be used to lift other line-based propositional proof systems to

sound and complete QBF proof systems, such as all C-Frege systems [19]. Rather than removing lit-

erals from clauses, in general the ∀-reduction rule allows for restricting lines by a partial assignment

to variables from the rightmost block if that block is universal (Figure 10). For a propositional proof

system P, we denote the corresponding QBF proof system resulting from adding the ∀-reduction

rule by P+∀red. Notice that QU-Res coincides with Resolution +∀red.

∀-reduction: L
L[α]

dom(α) ⊆ Xi where i = lv(L) and Qi = ∀

Fig. 10. The ∀-reduction rule

The ∀-reduction rule can even be used to extend algebraic proof systems such as CP and PCR

(see Chapter 8) to the QBF proof systems CP+∀red and PCR+∀red respectively [24]. In these

proof systems, which work over rings and fields larger than Z2, such as Z or Q, the ∀-reduction

rule requires the assignments to the universal variables to be Boolean, rather than any value in the

field, to ensure soundness as a QBF proof system.
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Strategy extraction Attempts have been made to lift propositional lower bound techniques to QBF

proof systems, with mixed success. Feasible interpolation [76, 95] lifts circuit complexity lower

bounds to proof complexity lower bounds by efficiently deriving interpolating circuits C(b) from

a refutation of φ(a, b) ∧ ψ(b, c). These circuits C(b) determine which of φ(a, b) and ψ(b, c) is

unsatisfiable for a given assignment b. This technique has been successfully lifted to QBF proof

systems [22]. Prover-Delayer games construct a two-player game on a formula, in which the number

of points the Delayer can score provides a lower bound on proof size. Such games have been

successfully employed to prove tree-like Resolution lower bounds [26, 27], and an adaptation of

this method in [25] was used to show lower bounds on tree-like Q-Res and QU-Res. However the

size-width relations for Resolution [13], in which a lower bound for Resolution proofs follows if

the proof must contain a clause with many literals, hold only in certain very weak Q-Res systems,

and are known to fail in general Q-Res and QU-Res [23, 41].

Conversely, there exist methods for proving QBF proof complexity lower bounds that have no

analogues in propositional proof complexity. The most prominent of these is strategy extraction.

Given a P+∀red refutation π of a false QBF Φ, [19] exhibited a method for constructing Boolean

circuits of size polynomial in |π| such that these circuits compute a universal strategy which is

winning on Φ. For a given proof system P, these circuits will be in a circuit class CP depending on

P; in particular, in the case of C-Frege +∀red, the corresponding circuit class is C for all circuit

classes introduced in Chapter 2. For Resolution, this strategy extraction is in AC0
3, circuits of depth

3. To find a lower bound for P+∀red, it suffices to find a function f which requires large circuits in

CP, and to construct a QBF for which any winning universal strategy must play according to f .

Theorem 3.5 (Beyersdorff, Bonacina and Chew [19]). Let π be a C-Frege +∀red refutation of a

QBF Φ. There are circuits Ci ∈ C such that |Ci| = |π|O(1) and the Ci compute a winning universal

strategy by setting ui = Ci(α) for each universal variable ui.

The computation of this strategy begins by constructing for each universal variable ui, a decision

list. This list is constructed by taking each line of π in turn, and adding the line

if ¬L then ui ← b, else ...

to the decision list if L is derived as L′[ui/b] for some previous line L′, and concluding with the

line ui ← 0 to ensure that the decision list assigns a value to ui. The construction of this decision

list ensures that for any assignment α to the variables left of ui, the restricted proof π[α, ui/Ci(α)]

is a refutation of Φ[α, ui/Ci(α)], and so the strategy is a winning strategy.

It only remains to construct a Boolean circuit from a decision list containing lines of the form

‘if ¬Lj then ui ← bj , else...’ This is achieved by the circuit
∨
{j:bj=1}(¬Lj ∧

∧
k<j Lk).

Using this technique, circuit lower bounds for AC0 and AC0[p] have been lifted to proof size

lower bounds in AC0-Frege +∀red and AC0[p]-Frege +∀red. The lower bound for AC0[p]-Frege

+∀red is particularly noteworthy, as no superpolynomial lower bounds are currently known for the

corresponding propositional proof system AC0[p]-Frege.
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An alternative approach to strategy extraction is to obtain the response Su(α) directly from the

proof by restricting the proof by α, initially introduced in [62]. This approach, which is detailed in

Chapter 7, can also be leveraged to construct proof size lower bounds, as described in Chapters 7

and 8.

QU-Res, and more generally proof systems of the form P+∀red, are the main focus of this

thesis. Other approaches to extending propositional proof systems, particularly Resolution, to QBFs

have been considered. We describe some of these here. While we do not work with these systems,

instead focussing on QU-Res and proof systems of the form P+∀red, several of the results we

show have analogues in these systems, which we occasionally highlight.

Long distance Resolution To formally model certain aspects of QDPLL and QCDCL solving,

particularly some unit propagations, it is useful to introduce an extension to Q-Res and QU-Res
known as long distance Q-Resolution [8, 110]. Long distance Q-Resolution (LD-Q-Res) allows

resolution steps which would introduce tautologies on a universal variable u whenever the pivot

variable x satisfies lv(x) < lv(u) (see Figure 11). Rather than include both literals, we merge them

into the literal u∗. The literal u∗ cannot appear in a clause alongside any other literal on u, but can

be further merged with other literals on u, including other copies of u∗, in resolution steps on pivots

left of u, and can be removed in a ∀-reduction step if it is the rightmost literal in a clause. If both

clauses in a resolution step contain u∗, then we also require that the pivot be left of u.

Axiom: C C a clause in the CNF

∀-reduction: C ∨ u
C

C ∨ u∗
C

lv(l) < lv(u) for any literal l ∈ C

Resolution: C ∨ U1 ∨ x D ∨ U2 ∨ ¬x
C ∨D ∨ U

U = {u∗ | u ∈ var(U1)}

– If l1 ∈ C and l2 ∈ D with var(l1) = var(l2) = v then l1 = l2 and l1 6= v∗

– var(U1) = var(U2), and if u ∈ var(U1) then u is universal and lv(x) < lv(u)
– If l1 ∈ U1 and l2 ∈ U2 with var(l1) = var(l2) = u then l1 = u∗ or l1 6= l2

Fig. 11. The derivation rules of LD-Q-Res [8, 110]

The addition of long distance Resolution to Q-Res results in an exponentially stronger proof

system, with polynomial size proofs of KBKFn, however exponential lower bounds are still known

for modified versions of the formulas KBKFn. The proof system LQU+-Res [9] extends LD-Q-
Res by allowing both standard resolution and long distance resolution on universal pivots as well as
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existential pivots, and thus also p-simulates QU-Res. Nonetheless, superpolynomial lower bounds

are also known for LQU+-Res [21, 52].

Expansion and instantiation Universal expansion is an alternative approach to QBF proof systems

which does not use universal reduction. First introduced in the proof system ∀Exp+Res [70] to

model CEGAR solving, axioms of universal expansion systems take an assignment τ to the universal

variables such that τ falsifies all universal literals in the clause, and annotate each existential literal

l in the clause with the restriction of τ to the variables left of l. Literals with different annotations

are treated as different variables. As all literals in the introduced clauses are existential, the only

derivation rule required is the resolution rule. These rules are given in Figure 12.

Axiom: {lτl | l ∈ C, l existential}

C a clause in the CNF
τ ∈ 〈U〉 with C[τ ] 6= >
τl = {u/τ(u) | u ∈ U , lv(u) < lv(l)}

Resolution: C ∨ xτ D ∨ ¬xτ
C ∨D

Fig. 12. The derivation rules of ∀Exp+Res [70]

Although ∀Exp+Res does p-simulate tree-like Q-Res, it is incomarable with dag-like Q-Res;

there are QBFs with polynomial size proofs in ∀Exp+Res which require exponential size proofs

in Q-Res, and vice versa [21, 70]. Indeed, ∀Exp+Res is even incomparable with LQU+-Res,

demonstrating how the distinct approaches of QCDCL and CEGAR solving have both strengths

and weaknesses relative to each other.

The system IR-calc [20] combines the power of these systems by only annotating literals with

the negations of those universal literals which appear in that clause when introducing an axiom.

IR-calc also allows instantiation by an assignment σ to a subset of the universal variables, which

extends each annotation by u/σ(u) for each u ∈ dom(σ) which does not already appear in the

annotation. The annotation on a literal l still only contains variables left of l, and variables with

different annotations are still considered distinct propositional variables.

This generalisation allows IR-calc to p-simulate Q-Res and ∀Exp+Res. By introducing

annotations of the form u/∗, analogous to the literals u∗ in LD-Q-Res, we obtain the IRM-calc
proof system, which further p-simulates LD-Q-Res. The full picture of simulations and separations

for these Resolution-based QBF proof systems is given in Figure 13. Simulation of proof systems is

transitive, and for any pair of proof systems in Figure 13 for which no simulation is shown, these

proof systems are known to be incomparable.
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tree-like Q-Res

Q-Res

QU-Res

∀Exp+Res

IR-calc

IRM-calc

LD-Q-Res

LQU+-Res

P

Q

P p-simulates Q

Fig. 13. A simulation diagram for Resolution-based QBF proof systems
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Chapter 4

Relaxing QU-Res

Any QBF proof system restricts to a propositional proof system on existentially quantified formulas.

Indeed, most QBF proof systems build on a propositional proof system by introducing a method

of handling universal quantification, and hence a lower bound for the propositional proof system

immediately translates into a lower bound for the QBF proof system. Furthermore, it is clear that

even beyond purely propositional formulas, there are lower bounds containing universally quantified

variables for which the hardness is a propositional phenomenon. Such lower bounds are somewhat

unsatisfactory – they do not relate to the quantification of variables, which is the distinguishing

feature of QBF proof complexity rather than propositional proof complexity – and so it is natural to

ask whether we can construct a proof system or other technique to distinguish such lower bounds.

Relaxing QU-Res [35] has been proposed as just such a system. Using oracles for Σp
k for some

constant k, relaxing QU-Res allows the introduction of axioms not given as clauses of a CNF

matrix in such a way that any propositional formula can be solved instantly. It was therefore argued

that relaxing QU-Res, when given access to Σp
1-oracle, is able to make the distinction between

propositional hardness and hardness based on quantifier alternation. A lower bound for relaxing

QU-Res based on quantified Boolean circuits was subsequently given, from which it can be inferred

that this lower bound is dependent on quantifier alternation.

In this chapter, we present a lower bound for relaxing QU-Res which arises only due to a

propositional lower bound on QU-Res. These formulas are based on both the pigeonhole principle

formulas, a propositional QU-Res lower bound, and the KBKFn formulas, which are easy for

QU-Res but where the falsity relies on a large number of quantifier blocks. We provide a novel

method for combining two QBFs in such a way that we can simply add lower bounds for the base

formulas to provide a lower bound for the new formula. This combination of QBFs has the effect of

‘hiding’ the hard propositional part behind this large number of quantifier alternations to prevent

relaxing QU-Res from using a Σp
k-oracle to solve the pigeonhole principle efficiently.

We first give an overview of relaxing QU-Res in Section 4.1. In Section 4.2 we present our

method of combining QBFs, and then prove our lower bound based on propositional hardness.
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4.1 The issue of propositional lower bounds for QBF proof systems

In this section, we introduce the system relaxing QU-Res, proposed by Chen in [35] in response

to the issue of propositional lower bounds in QBF proof systems. We also define some necessary

related notions dealing with the alternation of quantifiers in the prefix of QBFs.

The majority of QBF proof systems which have been defined build on a propositional proof

system, such as the construction of QU-Res from Resolution, or more generally through the use of

universal reduction or universal expansion. Proof systems defined in this way reduce to this original

propositional proof system on Σb
1-formulas, which are equivalent to instances of the satisfiability

problem. Indeed, for any QBF proof system P, there is a corresponding propositional proof system

obtained by restricting P to Σb
1-formulas, and any lower bound for this propositional proof system

is also a lower bound for the QBF proof system P.

Such propositional lower bounds are not limited to Σb
1-formulas. A simple example such as the

conjunction of the pigeonhole principle with some true QBF shows that the presence of universal

variables alone is not sufficient to ensure they contribute to the hardness of a formula. However,

QBF lower bounds which arise only due to a lower bound on a propositional proof system are

somewhat unsatisfactory. They belong in the realm of propositional proof complexity and do not

enhance our understanding of how the proof system handles the universal quantification of variables,

a feature which is fundamental to the increased complexity of QBFs. It is therefore desirable to be

able to easily identify such propositional lower bounds, even when the formula itself is not purely

propositional, and to construct systems in which all lower bounds must be ‘genuine’ QBF lower

bounds, relying on the alternation of quantifiers in the prefix.

Relaxing QU-Res The issue of propositional lower bounds for QBF proof systems has been raised

several times previously, in particular by Chen in [35]. This motivates the definition of a set of

new proof systems called relaxing QU-Res. The goal of relaxing QU-Res is first and foremost to

construct a system in which all lower bounds are ‘genuine’ QBF lower bounds, in the sense that

they are not derived from propositional hardness. This system is then extended to attempt to capture

the extent to which the alternation of quantifiers influences the lower bound.

Before giving a full definition of relaxing QU-Res, we must first introduce the notion of a

relaxation. Relaxations allow for a reduction in the number of quantifier alternations in the prefix of

a QBF in such a way that no true QBF becomes false under this transformation.

Definition 4.1 (Relaxation). Let Π = Q1x1 . . .Qnxn be a quantifier prefix, with each Qi ∈
{∃, ∀}. For a permutation π : [n]→ [n], the prefixΠ ′ = Qπ(1)xπ(1) . . . ,Qπ(n)xπ(n) is a relaxation

of Π if for all i < j with Qi = ∀ and Qj = ∃, we also have π(i) < π(j). That is, no universal

variable moves to the right of an existential variable.

We refer to a relaxation which results in a Πb
k-prefix as a Πb

k-relaxation. The key property

of relaxations we are interested in is that true QBFs remain true under any relaxation. This is
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straightforward to verify, and so if any relaxation of a QBF is false, we can therefore conclude that

the original QBF is also false.

Lemma 4.2 (folklore). Let Φ = Π ·φ be a QBF. If there is a relaxation Π ′ of Π such that Π ′ ·φ is

false, then Φ is false.

Proof. Since Φ′ = Π ′ ·φ is false, there is a winning strategy σ for the universal player on Φ′. For

each universal variable u, all existential variables which are left of u in Π ′ must have been left of u

in Π . Therefore σ is also a strategy for Φ, and σ is winning for the universal player. ut

In the context of relaxing QU-Res, we also need to introduce a slightly altered definition of

the restriction of a QBF by a partial assignment. The primary difference is that here we define a

restriction such that it also alters the prefix of the QBF. This construction is only used in Sections 4.1

and 4.2, in which we discuss relaxing QU-Res; elsewhere, when we restrict a QBF Φ = Π ·φ by α,

we define Φ[α] := Π ·φ[α] as usual.

To define a restriction for the purposes of relaxing QU-Res, let Φ = Π ·φ be a prenex

QBF, where Π = Q1X1 . . .QnXn, and let α be a partial assignment to the variables of φ. We

define the restriction of Φ by α to be Φ[α] = Π[α]·φ[α], where φ[α] is the usual restriction of a

propositional formula by a partial assignment1. Define the prefix Π[α] = Q′1X ′1 . . .Q′nX ′n, where

X ′i = Xi\ dom(α) and Q′i = ∃ for any i < max{lv(x) | x ∈ dom(α)}, otherwise Q′i = Qi.
Described in a more intuitive fashion, Π[α] removes from Π any variables which are in dom(α),

and switches any universal quantifiers which are strictly left of a variable in dom(α) to existential

quantifiers.

Observe that there is a natural correspondence between clauses and partial assignments. We

denote by clause(α) the largest clause falsified by the partial assignment α, and conversely denote

the smallest partial assignment falsifying a clause C by assign(C). It is then possible to use these

restrictions of QBFs to verify that certain clauses are entailed by a QBF Φ.

Proposition 4.3 (Chen [35]). Let Φ = Π ·φ be a QBF and α be a partial assignment to the

variables of Φ. If Φ[α] is false, then any winning existential strategy for Φ satisfies clause(α),

i.e. Φ |= Π ·clause(α).

For any such assignment α, clause(α) can therefore be thought of as an ‘axiom’ of Φ, in

the sense that if the existential player can win the game on Φ, then they can win the game on

Π ·φ ∧ clause(α), and so the two formulas are equivalent. Determining the truth value of the QBF

Φ[α] would in general require access to a PSPACE-oracle. However by using Πb
k-relaxations of

Φ[α], which do not translate a true QBF to a false QBF, we can limit this oracle to a fixed level of

the polynomial hierarchy. This results in the axiom set

H(Φ,Πb
k) = {clause(α) | there is a false Πb

k-relaxation of Φ[α]}.
1 Generally, Φ[α] is defined only by restricting φ to φ[α] and removing the variables in dom(α) from Π .
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Notice that any clause C of φ is in H(Φ,Πb
k) for any k, since C[assign(C)] = ⊥, and hence

the empty clause is in φ[assign(C)]. As a result, Φ[assign(C)] is false under any relaxation. We can

see from Proposition 4.3 and Lemma 4.2 that introducing any axiom from H(Φ,Πb
k) is sound. If a

relaxation of Φ[α] is false, then Φ[α] is false and so Proposition 4.3 ensures introducing clause(α)

as an axioms is sound.

Whether a given clause is in H(Φ,Πb
k) can be determined by a Σp

k+1-oracle. A proof system

which can introduce any axiom in H(Φ,Πb
k) for some fixed value of k is therefore sound. Allowing

the use of any deduction rule of QU-Res ensures that it is also complete, since each clause of φ is

in H(Φ,Πb
k), and so any QU-Res proof is also a relaxing QU-Res proof.

Definition 4.4 (Chen [35]). A relaxing QU-Res refutation of a QBF Φ is a QU-Res derivation of

the empty clause ⊥ from the axioms of H(Φ,Πb
k) for some constant k.

One consequence of allowing the introduction of axioms from H(Φ,Πb
k) is that relaxing QU-

Res can be used as a proof system even if the matrix of the QBF is not a CNF, but any Boolean

circuit, as the Σp
k+1-oracle can still verify whether there is a false Πb

k-relaxation of Φ[α] when φ[α]

is a Boolean circuit.

It is important to observe that unless Σp
k+1 = P, relaxing QU-Res with the axiom setH(Φ,Πb

k)

is not a proof system in the formal sense of Definition 2.3, as there is no polynomial-time algorithm

to check the membership of a given clause in H(Φ,Πb
k). For convenience, we nonetheless refer to

relaxing QU-Res as a proof system.

The question of proving lower bounds in relaxing QU-Res must also be carefully considered.

For any given QBF Φ, the empty clause ⊥ ∈ H(Φ,Πb
k) for sufficiently large k, which would

give a constant size proof in relaxing QU-Res. It is therefore more sensible to consider relaxing

QU-Res to be a collection of proof systems, one for each value of k. A family of QBFs Φn is

then said to require relaxing QU-Res proofs of size Ω(f(n)) if for any fixed value of k, relaxing

QU-Res refutations of Φn from the axiom set H(Φn, Π
b
k) require size Ω(f(n)). The first such

superpolynomial lower bound for relaxing QU-Res was shown by Chen, also in [35].

Theorem 4.5 (Chen [35]). Let φn(x1, y1, . . . , xn, yn) be a Boolean circuit which is true if and

only if
∑n

i=1(xi + yi) 6≡ n mod 3. Then Φn = ∃x1∀y1 . . . ∃xn∀yn·φn is false for each n, and Φn
requires proofs of size 2Ω(n) in relaxing QU-Res.

Proof (Sketch). For large enough n, any Πb
k-relaxation of Φn is true, since it requires at least

two yj to be to the left of xj . The existential player then has a winning strategy by forcing∑n−1
i=1 (xi + yi) + xn ≡ n+ 1 mod 3.

Fix an oracle Σp
k+1 and therefore an axiom set H(Φn, Π

b
k). Consider the restriction of Φn by

any assignment α to at most n−2k variables. If there is more than one ‘gap’ in the assignment, then

the formulas Φn[α] is true by following a similar strategy to the case for a relaxation of Φn. The

assignment α must therefore assign variables on the left of the quantifier prefix, and the resulting

formula Φn[α] is equivalent to Φm for some m ≥ 2k, for which there is not false Πb
k-relaxation.
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Any clause derived by a relaxing QU-Res refutation therefore contains more than n − 2k

variables, and so a relaxing QU-Res refutation must contain 2Ω(n) axioms. ut

This lower bound demonstrates that despite the apparent strength of relaxing QU-Res, being

able to use oracles for level of the polynomial hierarchy, it is still possible to show lower bounds in

this proof system. However, the lower bound is defined with the matrix in the form of a Boolean

circuit, rather than as a CNF. Indeed, as we now show, it is not possible to construct a polynomial-size

CNF which is equivalent to this circuit.

Lemma 4.6. Any CNF ψn(x1, y1, . . . , xn, yn) equivalent to
∑n

i=1(xi + yi) 6≡ n mod 3 must

contain 2Ω(n) clauses.

Proof. Let ψn be such a CNF on the 2n variables x1, y1, . . . , xn, yn. For any assignment to any

subset of 2n − 1 variables, there is an assignment to the final variable such that ψn is satisfied,

since if the sum of these 2n − 1 variables is m, it cannot be the case that both m ≡ n mod 3

and m + 1 ≡ n mod 3. If there were a clause C in ψn containing fewer than 2n literals, then

assign(C) can be extended to an assignment to 2n− 1 variables which falsifies ψn, a contradiction.

Any clause in ψn must therefore contain literals on all 2n variables, i.e. there is a bijection between

clauses in ψn and assignments falsifying ψn.

It remains only to show that there are 2Ω(n) assignments falsifying ψn. Let α be any assignment

to the variables x1, y1, . . . , xn−1, yn−1. By ensuring xn+yn ≡ n−
∑n−1

i=1 (xi+yi) mod 3, which

is always possible, we can extend α to an assignment falsifying ψn. Since there are 22n−2 such

partial assignments α, we can construct at least 22n−2 distinct assignments falsifying ψn, and so ψn
contains 2Ω(n) clauses. ut

Given that the relaxing QU-Res proof system works with lines that are clauses, it is unconven-

tional to provide such a lower bound consisting of circuits without a polynomial-size representation

as a CNF. Indeed, comparing the proof of the lower bound of Theorem 4.5 with the proof of

Lemma 4.6 suggests that the relaxing QU-Res lower bound primarily arises due to the lack of

an efficient CNF representation of the formulas Φn. It would consequently be desirable to find a

superpolynomial lower bound for relaxing QU-Res which can be expressed using a QBF with a

polynomial-size CNF matrix.

4.2 A propositional lower bound for relaxing QU-Res

We now give an example of a family of QBFs which have a polynomial-size CNF matrix and which

require exponential-size proofs in relaxing QU-Res. The formulas are constructed as a combination

of hard propositional formulas and easy QBFs. Furthermore, this construction allows us to show

that the lower bound is based entirely on a propositional lower bound for Resolution, demonstrating

that relaxing QU-Res is not an adequate formalism to distinguish propositional lower bounds from

‘genuine’ QBF lower bounds which arise from quantifier alternation or otherwise.

39



CHAPTER 4. RELAXING QU-RES

Combining false QBFs We begin by defining a method for combining two false QBFs to construct

a new false QBF. As it allows a lot of control over the properties of this new QBF, this method may

be of independent interest for creating new families of hard QBFs.

Definition 4.7. Let Φ = Λ(x) ·
∧n
i=1Ci(x) and Ψ = Π(z) ·

∧m
j=1Dj(z) be QBFs consisting of

quantifier prefixes Λ and Π over disjoint sets of variables x and z respectively, and with clauses Ci
and Dj over x and z respectively. Let zi be a fresh set of variables for each 1 ≤ i ≤ n, and define

Φ⊕ Ψ := Λ(x)Π(z1) . . . Π(zn)·
n∧
i=1

m∧
j=1

(Ci(x) ∨Dj(zi)).

The intuition behind this construction is that each clause Ci in the matrix of Φ is replaced by

Ci ∨ Ψ , with the variables of the copies of Ψ mutually disjoint, and quantified after all variables of

Φ. It is then relatively straightforward to verify that if both Φ and Ψ are false, then the combined

QBF Φ⊕ Ψ is false.

Lemma 4.8. The QBF Φ⊕ Ψ is false if and only if both Φ and Ψ are false.

Proof. If Φ and Ψ are both false, then the universal player has winning strategies σΦ and σΨ on Φ

and Ψ respectively. Playing the universal variables in x according to σΦ will falsify some clause

Ci of Φ. The universal player can then play the variables of zi according to σΨ , which will falsify

some clause Dj(zi). The clause Ci ∨Dj(zi) is therefore falsified in the matrix of Φ⊕ Ψ .

If Φ is true, then the existential player has a winning strategy for Φ, and can use this winning

strategy to satisfy every clause Ci, and hence every clause of Φ⊕ Ψ . Similarly, if Ψ is true, then

the existential player can play according to the winning strategy for Ψ on every set of variables zi,

satisfying the clause Dj(zi) for every 1 ≤ j ≤ m and 1 ≤ i ≤ n. ut

The significant feature of combining QBFs in this way is that the size of proofs of the newly

constructed QBF Φ ⊕ Ψ can be fairly tightly bounded in terms of the size of proofs of Φ and Ψ .

Not only does this allow the construction of QBFs which require proofs of a precise size, but also

ensures that the reason for any proof size lower bounds for Φ⊕ Ψ can be easily understood in terms

of corresponding lower bounds for Φ and Ψ .

Lemma 4.9. Let P be a QBF proof system closed under restrictions to existential variables, and

let Φ = Λ·
∧n
i=1Ci and Ψ = Π ·

∧m
j=1Dj be minimally unsatisfiable QBFs. Then

max(sP(Φ), sP(Ψ)) ≤ sP(Φ⊕ Ψ) ≤ O (sP(Φ) + n · sP(Ψ)) .

Moreover, if P is QU-Res, then

sP(Φ⊕ Ψ) = Θ (sP(Φ) + n · sP(Ψ)) .

Proof. Let π be a refutation of Φ ⊕ Ψ and let σ be a winning strategy for the universal player

on Φ. Restrict π by some assignment α to the existential variables of Φ, and the corresponding
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response of σ to the universal variables. The resulting proof is at most as large as π, and is also a

sound refutation, and so contains a refutation of some copy of Ψ . Restricting by some assignment

to the existential variables of all the copies of Ψ , we restrict the proof such that it amounts to a

refutation of Φ, possibly with some additional universal variables from Ψ quantified rightmost, and

so max(sP(Φ), sP(Ψ)) ≤ sP(Φ⊕ Ψ).

Since Φ⊕Ψ can be refuted by first deriving each clause Ci from
∧m
j=1(Ci(x)∨Dj(zi)), which

can be done in O(sP(Ψ)) for each clause, and then refuting
∧n
i=1Ci(x) with size sP(Φ), we can

find a refutation of Φ⊕ Ψ of size O (sP(Φ) + n · sP(Ψ)).

As Φ is minimally unsatisfiable, we can find for each clause Ci some assignment αi to the

existential variables of Φ such that Ci is the only clause of Φ falsified by αi ∪ σ(αi). Restricting π

by this assignment results in a refutation of Ψ(zi), and so we can restrict π to a refutation of Φ, or

to a refutation of Ψ(zi) for any 1 ≤ i ≤ n. In QU-Res, each Resolution step or ∀-reduction step is

performed on only one variable, and so will remain as a Resolution or ∀-reduction step in at most

one of the restrictions to proofs of Ψ(zi) or of Φ, being replaced by a trivial or weakening step in all

others. The size of a QU-Res proof of Φ⊕Ψ is therefore at least Ω (sQU-Res(Φ) + n · sQU-Res(Ψ)).

By the upper bound above, in the case of QU-Res we have sP(Φ⊕ Ψ) = Θ (sP(Φ) + n · sP(Ψ)).

ut

A relaxing QU-Res lower bound With this technique for combining false QBFs, and having

established precisely the size of proof required for QBFs constructed in this way, we are now

in a position to define the QBFs which provide our lower bound on relaxing QU-Res. They

are built from the pigeonhole principle formulas, which are known to be hard for Resolution,

and the formulas KBKFn (Definition 3.3). An exponential lower bound for QU-Res proofs of

PHPn ⊕KBKFn follows immediately from Lemma 4.9 and the lower bound for the pigeonhole

principle (Theorem 2.7).

Corollary 4.10. The QBFs PHPn ⊕KBKFn require QU-Res proofs of size 2Ω(n).

Since it is known that there are polynomial-size refutations of KBKFn in QU-Res [109],

Lemma 4.9 also makes clear that the reason for this lower bound on QU-Res proofs is solely due

to the propositional lower bound for PHPn. We would therefore expect that any proof system

distinguishing propositional lower bounds from genuine QBF lower bounds would have short proofs

of PHPn ⊕ KBKFn. However, this is not the case in relaxing QU-Res, where we can show an

exponential lower bound on the size of proofs for any fixed k.

Theorem 4.11. The QBF Φn = PHPn⊕KBKFn requires relaxing QU-Res proofs of size 2Ω(n).

The proof of Theorem 4.11 is the focus of the remainder of this chapter. The proof essentially

observes that combining the QBFs in this way prevents the pigeonhole principle from being solved

immediately by the Σp
k-oracle by including a linear number of quantifier alternations to the right of

these variables. Moreover, the linear number of quantifier blocks in KBKFn are all essential to the

41



CHAPTER 4. RELAXING QU-RES

falsity of the formula, in the sense that relaxing the quantifers in KBKFn in any way results in a

true formula.

Lemma 4.12. Any relaxation of the quantifier prefix of KBKFn to a Πb
k prefix results in a true

QBF, for any k < n.

Proof. In any Πb
k-relaxation of the quantifier prefix of KBKFn, if k < n then there is some t such

that either ut is quantified existentially, or ut is quantified to the left of yt and y′t. In either case, we

can construct a winning strategy for the existential player with the new quantifier prefix.

First, suppose that some ut is now existentially quantified. A winning strategy for the existential

player is to play yi = 0, y′i = 1 for each i ≤ t, and to play yj = y′j = 1 for each t < j ≤ n. Finally,

playing yn+i = 1 for each i then satisfies every clause apart from {yt,¬ut,¬yt+1,¬y′t+1}, which

can be satisfied by playing ut = 0.

Now suppose that there is some ut which is universally quantified and to the left of yt, y′t. The

winning strategy for the existential player is identical to the strategy above, except on the variables

yt and y′t. After these restrictions, the restricted clauses not yet satisfied are {ut−1,¬yt,¬y′t},
{yt,¬ut} and {y′t, ut}.

When assigning the variables yt and y′t, the existential player may observe the value of ut, as it

is quantified further left. The existential player can thus set yt = ut and y′t = ¬ut. It is clear that

this assignment will satisfy the three remaining clauses, and so completes a winning existential

strategy on the relaxation of KBKFn. ut

We now introduce some notation to allow us to more easily talk about the structure of proofs of

Φn. We use the terms X-variables and Z-variables to refer to any variables in x and in z1, . . . ,zm

respectively. Given a clause C in the variables of Φn, we define CX to be the restriction of C to the

literals on X-variables, and similarly CZ to be the restriction to literals on Z-variables. We refer to

these as X-clauses and Z-clauses respectively, and observe that C = CX ∨ CZ . We extend this to

restrictions of proofs, denoting by πX = {CX | C ∈ π}. We maintain the same partial order on

these clauses, representing the structure of π, but do not assume that πX is a sound proof.

To prove Theorem 4.11, we show that if the Σp
k+1-oracle deriving axioms ‘proves’ a large part

of the pigeonhole principle when deriving an axiom, it can only do so under a large restriction on

the existential variables of the copies of KBKF. Thus a relaxing QU-Res proof of Φn must contain

either a large part of a proof of the pigeonhole principle, or a large number of different restrictions

on the copies of KBKF.

To this end, we first show that, for any clauseA derived as an axiom by relaxing QU-Res, ifAX

requires at least c clauses from PHPn to prove, then it also contains at least c existentially quantified

Z-variables (Lemma 4.13). We then establish an upper bound on the size of a Resolution proof of

an X-clause derived from c axioms of PHPn which depends only on c (Lemma 4.14). Using this,

we conclude that any relaxing QU-Res axiom where the corresponding X-clause requires proofs

of size 2m must contain Ω(m) Z-variables (Corollary 4.15).
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Lastly, we show that given any relaxing QU-Res proof, for any assignment to the existential

Z-variables, the set of axioms agreeing with this assignment constructs an unsatisfiable set of

X-axioms (Lemma 4.16). Using these results, we conclude that the relaxing QU-Res proof must

contain either a refutation of X-axioms of size 2Ω(n), or 2Ω(n) axioms corresponding to different

assignments to Z-variables.

We begin by showing that for any clause A ∈ H(Φn, Π
b
k) with k < n, AZ must contain an

existential variable from zi for each clause Ci needed to derive AX . This limits the use of the

Σp
k+1-oracle in deriving X-clauses, as in order to derive an X-clause from a large number of

pigeonhole principle axioms, we must make a correspondingly large restriction to the Z-variables.

Lemma 4.13. Suppose that the clause A = AX ∨ AZ is derived as an axiom of Φn by relaxing

QU-Res using a Σp
k+1-oracle, i.e. A ∈ H(Φn, Π

b
k) for some k < n. Let zi1 , . . . ,zil be such that

each existential variable in AZ is in some zij . Then Ci1 ∧ · · · ∧ Cil |= AX for the corresponding

pigeonhole principle axioms Ci1 , . . . , Cil .

Proof. Suppose that Ci1 ∧ · · · ∧ Cil 6|= AX , that is, there is some assignment to the X-variables

which falsifies AX but satisfies each Cij . We show that under this assumption, any Πb
k-relaxation

of Φ[assign(A)] is true, and thus any such clause A cannot be an axiom of H(Φn, Π
b
k).

Let α = assign(A) be the unique assignment to the variables of A which falsifies A. In

particular, the only X-variables assigned by α are those in AX , and so α can be extended to an

assignment α′ which falsifies AX (and AZ) but satisfies each Cij . Since α′ extends α only by

assignments to X-variables, which are existentially quantified and remain so in any relaxation, it

suffices to construct a winning strategy for the existential player on any Πb
k-relaxation of Φn[α′].

This can be extended to an existential winning strategy on a Πb
k-relaxation of Φn[α], by playing

the variables in dom(α′) \ dom(α) according to α′, and following the winning strategy on the

remaining Πb
k-relaxation of Φn[α′].

Given a Πb
k-relaxation of Φn, with quantifier prefix Q′, we show by induction that for each t,

we can construct a strategy σt which extends the assignment α′ and is a winning existential strategy

for Q′ ·
∧t
i=1

∧m
j=1 (Ci(x) ∨Dj(zi)). The final strategy σn is then a winning strategy for Φn[α′].

Define σ0 := α′. This clearly satisfies the empty conjunction. For each t ≤ n, we extend the

strategy σt−1 which is winning for
∧t−1
i=1

∧m
j=1(Ci(x)∨Dj(zi)) to obtain σt. It therefore suffices to

find a strategy for the unassigned existential variables in zt which satisfies
∧m
j=1(Ct(x) ∨Dj(zt)).

We divide into two possible cases:

– Suppose t = ij for some 1 ≤ j ≤ l. Then α′, and hence σt−1, already satisfies Ct(x). Therefore

σt−1 satisfies Ct(x) ∨D(zi) for any D, and we can define σt to be any extension of σt−1 to

the existential variables of zt in Q′.
– Suppose t 6= ij for any 1 ≤ j ≤ l. By the definition of the ij ,AZ does not contain any existential

variables in zt, so α′, and hence by construction σt−1, are not defined on any variables in zt

which were originally existentially quantified. Q′ ·
∧m
j=1Dj(zt) is therefore a Πb

k-relaxation of
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KBKFn, possibly restricted by assignments to some universal variables. By Lemma 4.12 this

QBF is true and we can find a winning strategy τt.

The strategies σt−1 and τt are defined on disjoint sets of variables. Extend σt−1 by τt to give σt,

which is a winning strategy on Q′ ·
∧t
i=1

∧m
j=1(Ci(x) ∨Dj(zi)).

The final strategy σn is therefore a winning strategy for the existential variables of the Πb
k-

relaxation of Φn, and σn extends the assignment α′. This suffices to show that the relaxation of

Φn[α′] is true. Since α′ extends α, the smallest assignment falsifying A, with assignments to the

existential X-variables only, the strategy detailed here can be extended to a winning existential

strategy for any Πb
k-relaxation of Φ[α] by assigning any variables in dom(α′) \ dom(α) according

to α′, and so any Πb
k-relaxation of Φ[α] is true. This does not satisfy the axiom derivation rules of

relaxing QU-Res, and so A = clause(α) cannot be derived as an axiom. By contraposition, if A is

derived as an axiom of relaxing QU-Res, then it must be the case that Ci1 ∧ · · · ∧ Cil |= AX . ut

To make use of this lemma, we now look at the clauses derivable from a given set of axioms

of PHPn. In particular, we show an upper bound on the length of a Resolution derivation of an

X-clause derived from a fixed number of pigeonhole principle axioms.

Lemma 4.14. Let C be an X-clause such that C1 ∧ · · · ∧ Ct |= C for some axioms C1, . . . , Ct of

PHPn. There is a Resolution proof of C from PHPn of size at most 18t.

Proof. We show that without any instances of the weakening rule, which we can assume occurs

only once as the final step if it is needed for the derivation of C, there are at most 18t clauses that

can be derived by Resolution from t axioms of PHPn. Since a Resolution proof of C need only

contain a subset of these clauses, any Resolution proof of C has size at most 18t. This upper bound

is far from tight, but is sufficient for the proof of Theorem 4.11.

All negative literals in PHPn are in clauses of length 2. Given t clauses, there are therefore at

most 2t variables xi which appear in both positive and negative literals in the clauses C1, . . . , Ct.

For each clause Ci, there is a subclause Yi consisting of the literals of Ci whose negation does not

appear in any other clause. Any clause derived by Resolution from C1, . . . , Ct contains a subset of

the clauses Yi, and may contain each variable xj as a positive literal, a negative literal or not at all.

Thus the total number of clauses derivable in Resolution from C1, . . . , Ct is at most 2t · 32t = 18t.

Any Resolution derivation of C from C1, . . . , Ct therefore has size at most 18t. ut

The combination of these two results produces the key observation required for the proof of

the lower bound for relaxing QU-Res: if an X-clause derived as part of an axiom requires a

large (exponential-size) derivation from PHPn, then it must be derived under a large (linear-size)

restriction on the Z-variables.

Corollary 4.15. Let A be an axiom in H(Φn, Π
b
k) for some k < n, and let s(AX) be the size

of the smallest Resolution derivation of AX from PHPn. The Z-clause AZ contains at least
1

log 18 log s(AX) existential Z-variables.
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Proof. Suppose AZ contains t existential Z-variables. By Lemma 4.13, we can find t clauses

Ci1 , . . . , Cit such that Ci1 ∧ · · · ∧ Cit |= AX , and hence there is a Resolution derivation of AX

from PHPn with size at most 18t (Lemma 4.14). We conclude that s(AX) ≤ 18t, and hence

t ≥ 1
log 18 log s(AX). ut

Corollary 4.15 ensures that all X-axioms in π were derived under a partial Z-assignment, and

the stronger the X-axiom, the larger the corresponding Z-assignment. The purpose of the following

lemma is to observe that for any Z-assignment, π contains a refutation of the X-axioms which were

derived under restrictions of that assignment.

Lemma 4.16. Given a relaxing QU-Res proof π of Φn and an assignment α to the existential Z-

variables of Φn, π|Xα contains a Resolution refutation of {CX | C is an axiom of π and C[α] 6≡ >},
i.e. the X-axioms corresponding to axioms in π which agree with α.

Proof. Consider π|α, the result of restricting π to those clauses which agree with α. This is a sound

QU-Res refutation from the (restricted) relaxing QU-Res axioms, as QU-Res is closed under

existential restrictions. We show by backwards induction on the structure of π that π|Xα contains a

Resolution refutation from the X-axioms.

– The empty clause is the root of a Resolution proof on the X-variables, and clearly agrees with

α.
– Suppose a clause C is derived by a ∀-red step on a Z-variable u. Then clearly C ∨ u agrees

with α if C agrees with α, since α does not assign u. Also CX = (C ∨ u)X , so this is a sound

step in a Resolution refutation.
– Suppose C agrees with α and C is derived from C1 and C2 by resolving on an X-variable x.

Then CZ1 , C
Z
2 ⊆ CZ , and so both C1 and C2 agree with α since C does so. Observe also that

CX is derived from CX1 and CX2 by a single Resolution step on x.
– Suppose C agrees with α and C is derived from C1 and C2 by resolving on a Z-variable

z. Then at least one of C1 and C2 must agree with α, depending on the value of α(z). As

CX1 , C
X
2 ⊆ CX , we can derive CX by a weakening step from whichever agrees with the

Z-assignment. If z is universally quantified, then α agrees with both C1 and C2, so derive CX

by weakening from CX1 .
– If C agrees with α and C is derived as an axiom, then CX is an X-axiom of the form required.

This completes our induction, proving that the X-clauses of the clauses in π which agree with

α contain a Resolution refutation of the X-axioms agreeing with α. ut

We can now combine this with the previous results to prove Theorem 4.11 by observing that any

X-axiom which proves a large proportion of PHPn can only appear in a small number of proofs

πXα .

Proof (of Theorem 4.11). Fix some constant k, and suppose that for any n > k, the length of the

shortest relaxing QU-Res proof of Φn with axioms from H(Φn, Π
b
k) is f(n). Let π be such a proof
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with |π| = f(n). Given an assignment α to the existential Z-variables, π|Xα is a sound Resolution

refutation of the X-axioms (Lemma 4.16), and has at most f(n) axioms. Since any Resolution

refutation of PHPn requires proofs of size at least 2tn for some constant t, there is some X-axiom

B in π|Xα which requires a Resolution derivation of size at least 2tn−f(n)
f(n) = 2tn

f(n) − 1. The X-axiom

B in π|Xα is a restriction of some axiom A in π. Since AX = B, by Corollary 4.15, there is a

constant c such that A contains at least c(tn− log f(n)) =: g(n) literals on existential Z-variables,

all of which are falsified by α.

For every assignment α to the existential Z-variables, we can find such an axiom containing

at least g(n) existential Z-variables, all falsified by α. As each of these axioms can be falsified by

at most a 2−g(n) proportion of the possible assignments α, π must contain at least 2g(n) axioms.

A proof cannot contain more axioms than its length, so we conclude that 2g(n) ≤ f(n), i.e.

2ctn ≤ f(n)2c log f(n) = f(n)c+1 and so f(n) = 2Ω(n) for any choice of the constant k. Thus

relaxing QU-Res proofs of Φn require size 2Ω(n). ut

This lower bound strengthens previous lower bounds for relaxing QU-Res by providing an

exponential lower bound which has polynomial-size when represented as a prenex normal form

QBF. Moreover, PHPn ⊕ KBKFn requires relaxing QU-Res proofs of size 2Ω(n) despite the

corresponding lower bound for QU-Res arising purely as a result of the propositional lower bound

on PHPn, demonstrating that relaxing QU-Res does not adequately distinguish propositional lower

bounds for QU-Res. In Chapter 5, we exhibit an alternative proof system which does achieve this

distinction.
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Chapter 5

Identifying lower bounds due to quanti-
fier alternation

In Chapter 4, we considered relaxing QU-Res, and provided a lower bound based on propositional

hardness to demonstrate that it was unable to distinguish such lower bounds from ‘genuine’ QBF

lower bounds. We now introduce an alternative proof system, Σp
k-QU-Res, which also makes use of

Σp
k-oracles. By using these oracles in a more natural way, Σp

k-QU-Res provides such a distinction,

ensuring that no lower bounds are based on a propositional Resolution lower bound.

After defining the system Σp
k-QU-Res, and showing that it simulates relaxing QU-Res, we first

focus on the simplest system Σp
1-QU-Res. The SAT problem of the satisfiability of propositional

formulas is NP-complete, and so it is natural to expect that access to an NP-oracle should be

sufficient to remove any lower bounds based on propositional hardness. We verify that this is indeed

the case, and that Σp
1-QU-Res does indeed characterise ‘genuine’ QBF lower bounds. In doing so,

we also find that lower bound techniques such as strategy extraction, which provide ‘genuine’ QBF

lower bounds, still apply to Σp
1-QU-Res.

Expanding our focus to Σp
k-QU-Res in general, we show separations between the Σp

2k+1-QU-
Res proof systems by providing lower bounds for Σp

k-QU-Res with a Σb
k+2-prefix. In particular,

we demonstrate a technique for lifting lower bounds for Σp
k-QU-Res to Σp

k+2-QU-Res, while

only adding two quantifier blocks to the prefix, allowing us to lift lower bounds for Σp
1-QU-Res to

provide these lower bounds for any k.

Even though more powerful oracles result in a strictly more powerful proof system, we cannot

always achieve short proofs for a family of QBFs simply by increasing k. We conclude this chapter

by showing that the formulas KBKFdn require large proofs in Σp
k-QU-Res for any fixed value of

k. The proof observes that the QU-Res lower bounds for KBKFdn shown in [9, 72] are a result of

any QU-Res proof containing a complete binary tree of linear depth. We then show that since every

alternation of quantifiers is necessary for the falsity of KBKFdn, Σp
k-QU-Res cannot omit more

than k consecutive levels from any branch of this tree.
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Section 5.1 contains the definition of Σp
k-QU-Res and how it relates to relaxing QU-Res. We

then focus on Σp
1-QU-Res and the difference between propositional and ‘genuine’ lower bounds in

Section 5.2. In Section 5.3, we observe that it is sufficient to consider only Σp
k-QU-Res for odd k,

and then show separations between any two such systems. The lower bound for KBKFdn for all

Σp
k-QU-Res proof systems is proved in Section 5.4.

5.1 A proof system characterising hardness due to quantifier alternation

In Chapter 4, we saw that relaxing QU-Res lower bounds do not characterise ‘genuine’ QBF lower

bounds in the sense we would expect, as we constructed a lower bound for this system based on a

propositional lower bound. We now define a family of proof systems, also making use of oracles for

levels of the polynomial hierarchy, for which lower bounds do make this distinction. As we would

expect, PHPn ⊕KBKFn have polynomial-size proofs in these systems.

Definition 5.1. A Σp
k-QU-Res proof of a QBF Φ = Π ·φ is a derivation of the empty clause using

any of the deduction rules of QU-Res (Figure 8), and the Σp
k-derivation rule (Figure 14).

Σp
k-derivation: C1 . . . Cl

D

There is a Σb
k-relaxation Π ′ of Π such that

Π ′ ·
∧l
i=1Ci |= Π ′ ·D

Fig. 14. The Σp
k-derivation rule

The definition of a Σb
k-relaxation we use in the Σp

k-derivation rule is as defined previously

in Definition 4.1, but we further allow a relaxation to replace any universal quantifier with an

existential quantifier. Any existential winning strategy for a QBF Φ will remain a winning strategy

under such a replacement, by further assigning the formerly universal variable in some constant

way. It follows that Lemma 4.2, that the relaxation of a true QBF is true, holds under this alternative

definition. The benefit of this more general notion of relaxation will be apparent later, when we

show that it eliminates the need for an analogously defined Πp
k-QU-Res (Lemma 5.10).

As in the case of relaxing QU-Res, Σp
k-QU-Res is not a proof system in the formal sense of

Definition 2.3, as the polynomial-time proof checking algorithm requires a Σp
k-oracle. Indeed, the

construction of a proof system with polynomial-size proofs for any problem in SAT without the use

of such an oracle would suffice to show that NP = coNP, a major open problem in computational

complexity. Nonetheless, since they are both sound and complete, we refer to Σp
k-QU-Res systems

as proof systems.

Theorem 5.2. For any k ∈ N, Σp
k-QU-Res is a sound and complete QBF proof system.
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Proof. Any QU-Res proof is also a Σp
k-QU-Res proof for any value of k. Since QU-Res is

complete, so is Σp
k-QU-Res.

To show soundness, we show that we can replace any instance of a Σp
k-derivation with a QU-

Res derivation. Doing so for all Σp
k-derivations constructs a (potentially much larger) QU-Res

proof from a Σp
k-QU-Res proof. Since QU-Res is sound, this suffices to show that Σp

k-QU-Res is

sound.

Any instance of the resolution rule in QU-Res is sound under any quantifier prefix. Given a

relaxation Π ′ of a quantifier prefix Π , any universal variable in Π ′ is also universally quantified in

Π . Moreover, any variable to the right of u in Π is also right of u in Π ′, so any sound ∀-reduction

step on u under Π ′ is also sound under Π . With the weakening rule, QU-Res is implicationally

complete, and so we can replace a Σp
k-derivation of D from C1, . . . , Cl with a QU-Res derivation

of D from C1, . . . , Cl which is sound under some Σb
k-relaxation Π ′ of Π . This QU-Res derivation

is also sound with the prefix Π , completing the proof. ut

Notice that the proof of Theorem 5.2 does not depend on the propositional deduction rules

available to QU-Res, only that QU-Res is implicationally complete. It is therefore straightforward

to generalise Σp
k-QU-Res to define Σp

k-P+∀red for any implicationally complete QBF proof system

P+∀red. We focus here on Σp
k-QU-Res, as QU-Res is one of the best studied QBF proof systems in

which several lower bounds are known. Nevertheless, many of the following results have analogues

in Σp
k-P+∀red.

First, we prove that Σp
k+1-QU-Res p-simulates relaxing QU-Res when relaxing QU-Res

introduces axioms from H(Φ,Πb
k).

Theorem 5.3. Σp
k+1-QU-Res p-simulates relaxing QU-Res with axiom set H(Φ,Πb

k).

Proof. Suppose π is a relaxing QU-Res refutation of the QBF Φ = Π ·φ from the axioms of

H(Φ,Πb
k). Apart from the introduction of axioms, every line in π is derived from previous lines

by a rule of QU-Res, and so the same deduction can be performed in Σp
k+1-QU-Res. It therefore

suffices to show that any axiom of H(Φ,Πb
k) can be derived from the clauses of φ by a Σp

k+1-

derivation.

Let C ∈ H(Φ,Πb
k) be introduced as an axiom in π. By the definition of H(Φ,Πb

k), there is

some Πb
k-relaxation Π ′ under which φ[assign(C)] is false. In the context of relaxing QU-Res, the

prefix Π ′ is defined as a relaxation of an altered prefix ΠC . However, ΠC is obtained from Π only

by switching universal quantifiers to existential ones, a process which is permitted in a relaxation.

Π ′ is therefore also a relaxation of Π .

We know that Π ′ ·φ[assign(C)] |= ⊥. Let Π ′′ be the prefix defined by existentially quantifying

each variable in var(C) to the left of Π ′. The prefix Π ′′ is a Σb
k+1-prefix, and is also a relaxation of

Π , since a relaxation may always quantify variables existentially and move existential variables

to the left. Doing so with the variables of var(C), then relaxing the remaining variables as in Π ′,

constructs Π ′′ as a relaxation of Π . The QBF Π ′′ ·φ ∧ ¬C is false, since any winning existential

strategy would first be required to play according to assign(C) to satisfy ¬C, and then the QBF
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reduces toΠ ′·φ[assign(C)], which is false. We conclude thatΠ ′′·φ∧¬C |= ⊥, and soΠ ′′·φ |= Π ′′·C.

This is precisely what is required for C to be derived from φ by a single Σp
k+1-derivation. ut

These systems are directly comparable, as both require the use of a Σp
k+1-oracle to check

the correctness of proofs. Furthermore, we believe the Σp
k-derivation rule to be a simpler way to

incorporate such an oracle into a line-based proof system, and hence that Σp
k-QU-Res is a more

natural proof system to distinguish propositional lower bounds from those based on the alternation

of quantifiers.

Having shown the soundness and completeness of Σp
k-QU-Res, and that it p-simulates relaxing

QU-Res, we are now in a position to use Σp
k-QU-Res to characterise lower bounds resulting

from the alternation of quantifiers rather than a propositional lower bound. We observe that any

propositional lower bound, such as PHPn for Resolution and QU-Res, has constant size proofs

in Σp
1-QU-Res, as the empty clause can immediately be derived from the axioms. This naturally

leads us to use Σp
1-QU-Res, and more generally Σp

1-P for a QBF proof system P, to characterise

‘genuine’ QBF lower bounds.

Definition 5.4. We say that the QBFs Φn are hard due to quantifier alternation if Φn require

superpolynomial-size proofs in Σp
1-QU-Res.

A family of QBFs Φn is said to have alternation hardness Σp
k if there are polynomial-size proofs

of Φn in Σp
k-QU-Res, but any Σp

k−1-QU-Res proofs of Φn require superpolynomial-size.

Beyond the theoretical understanding of ‘genuine’ QBF lower bounds, Σp
1-QU-Res is also of

practical interest. Recent success in SAT solving has led to some QBF solvers embedding a SAT

solver as a black box [69, 102]. Proof systems of the form Σp
1-P model this technique, and may

provide insights into the power and limitations of such QBF solvers.

5.2 Understanding Σp
1-QU-Res

We shall consider Σp
k-QU-Res for more general k > 1 in subsequent sections, but we first focus

on the question of the size of proofs in Σp
1-QU-Res and their correspondence with ‘genuine’ QBF

lower bounds.

As with relaxing QU-Res, any false family of propositional formulas, including those such as

PHPn which are hard for Resolution and QU-Res, have constant size refutations in Σp
1-QU-Res,

as the empty clause can be derived immediately by a Σp
1-derivation. Propositional lower bounds for

QU-Res need not have a Σb
1-prefix though, such as in the case of PHPn ⊕KBKFn. In contrast to

relaxing QU-Res, these formulas also have short proofs in Σp
1-QU-Res.

Theorem 5.5. There is a Σp
1-QU-Res refutation of Φn = PHPn ⊕ KBKFn containing O(n3)

lines.

Proof. Let Φn = Π ·
∧
i,j Ci ∨Dj(zi), where Ci are the clauses of PHPn over the variables x, and

Dj are the clauses of KBKFn.
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There is a QU-Res refutation of KBKFn consisting of O(n) lines [109]. Using this, we can

construct a QU-Res derivation of Ci from
∧
j Ci ∨Dj(zi), since the variables x are quantified left

of zi. There are O(n2) clauses in PHPn, and so repeating this derivation for each clause Ci results

in a derivation of
∧
iCi containing O(n3) lines.

The CNF
∧
iCi is unsatisfiable, as it consists of all clauses of PHPn, and all variables in∧

iCi are existentially quantified. We can therefore derive the empty clause from
∧
iCi in a single

Σp
1-derivation step, under the unique Σp

1-relaxation of Π . ut

As a consequence of this upper bound and Theorem 5.3, we see that not only does Σp
k-QU-Res

p-simulate the corresponding relaxing QU-Res system, but is in fact exponentially separated from

it. Moreover, these formulas demonstrate that relaxing QU-Res, despite oracle access to any fixed

level of the polynomial hierarchy, cannot simulate even Σp
1-QU-Res.

A Σp
1-QU-Res lower bound We have seen that lower bounds for QU-Res based on propositional

hardness do not give lower bounds for Σp
1-QU-Res. However, we can provide a lower bound on

Σp
1-QU-Res from known QU-Res lower bounds. To do so, we prove that the strategy extraction

technique for P+∀red proof systems [19] can also be applied to Σp
1-QU-Res, and indeed to Σp

1-

P+∀red proof systems in general. Lower bounds for QU-Res obtained through this technique are

therefore also genuine QBF lower bounds.

Lemma 5.6. Σp
1-QU-Res admits strategy extraction by depth-3 Boolean circuits.

Proof. QU-Res is known to have strategy extraction by depth-3 Boolean circuits [19]. We extend

this result to Σp
1-QU-Res by showing that Σp

1-derivations do not contain any information on the

strategy for the universal player.

Given any Σp
k-QU-Res proof, using the inferential completeness of QU-Res, we can replace

each Σp
k-derivation with a QU-Res derivation consistent with the Σb

k-relaxation. This expansion

of a Σp
k-QU-Res proof to a QU-Res proof is described in detail in the proof of Theorem 5.2 to

demonstrate the soundness of Σp
k-QU-Res.

In the case of Σb
1, the relaxation of the prefix treats all variables as existential. A QU-Res

proof constructed in this way, while potentially much larger than the Σp
1-QU-Res proof, does not

contain any additional ∀-reduction steps that were not in the Σp
1-QU-Res proof. Strategy extraction

for QU-Res, as defined in [19], constructs a depth-3 Boolean circuit which is polynomial in the

number of ∀-reduction steps in the proof, and uses only these steps in the construction. Given any

Σp
1-QU-Res proof, the same strategy extraction algorithm will therefore still produce a winning

strategy for the universal variables as a depth-3 Boolean circuit with size polynomial in the length

of the proof. ut

The key feature of strategy extraction that allows us to extend it from QU-Res to Σp
1-QU-Res

is that lower bounds arising from strategy extraction provide not only lower bounds on the size of a

QU-Res proof, but also lower bounds on the number of ∀-reduction steps in the proof. The proof
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of Lemma 5.6 observes that given a Σp
1-QU-Res proof, we can construct a QU-Res proof with the

same set of ∀-reductions. This gives a simple and elegant sufficient condition for ‘genuine’ QBF

lower bounds for P+∀red systems: a lower bound on the total size of the ∀-reduction steps.

This condition allows us to immediately transfer known strategy extraction lower bounds from

QU-Res to Σp
1-QU-Res. For this purpose, we use the QPARITYn formulas from [21].

Definition 5.7 (Beyersdorff et al. [21]). Define the QBF QPARITYn = ∃x1 . . . xn∀z∃t2 . . . tn ·φ,

where the CNF φ is equivalent to (t2 ↔ x1 ⊕ x2) ∧
∧n
i=3(ti ↔ ti−1 ⊕ xi) ∧ (z 6↔ ti).

The clauses in QPARITYn force the existential player to play tj =
⊕j

i=1 xi for each 2 ≤ j ≤ n,

and hence tn =
⊕n

i=1 xi. The unique winning move for the universal player is to play z according to

the parity of the xi. However QU-Res has strategy extraction in AC0
3, the class of depth-3 circuits,

whereas it is known that the parity function is not in AC0 [1, 59, 66]. In fact, any constant-depth

circuits computing parity require exponential size, and provide an exponential lower bound on

Σp
1-QU-Res and even Σp

1-AC0-Frege +∀red.

Theorem 5.8. The parity formulas QPARITYn require proofs of size 2Ω(n) in Σp
1-QU-Res.

Observe that the prefix for QPARITYn is a Σb
3-prefix, and so the empty clause is a member of

the axiom set H(QPARITYn, Π
b
4) for relaxing QU-Res. This provides a separation of relaxing QU-

Res from Σp
1-QU-Res. When combined with the converse separation given by PHPn ⊕KBKFn,

we see that relaxing QU-Res and Σp
1-QU-Res are incomparable.

The Σb
3-prefix of QPARITYn also ensures that there are constant size proofs of QPARITYn in

Σp
k-QU-Res for any k ≥ 3. We further explore the relationships between different Σp

k-QU-Res
systems in Section 5.3.

To conclude our discussion of Σp
1-QU-Res, we show that the lower bound on the size of

∀-reduction steps is necessary as well as sufficient for Σp
1-QU-Res lower bounds. This natural

characterisation of Σp
1-QU-Res lower bounds demonstrates the effectiveness of this model for

identifying ‘genuine’ QU-Res lower bounds. This will subsequently be emphasised further by

Theorem 6.3, which shows that in stronger P+∀red systems, this model does indeed precisely

encapsulate lower bounds arising from quantifier alternation.

Theorem 5.9. A superpolynomial lower bound on the total size of the ∀-reduction steps in a QU-
Res refutation is necessary and sufficient for a superpolynomial lower bound on the size of a

Σp
1-QU-Res refutation.

Proof. Given any QU-Res proof, we can construct a Σp
1-QU-Res proof containing precisely

the same ∀-reduction steps, and no further lines except axioms and the final line ⊥, by replacing

propositional subderivations by a Σp
1-derivation. Since the size of the axioms and of⊥ is polynomial,

a lower bound on the total size of ∀-reduction steps in QU-Res is a necessary condition for a lower

bound on Σp
1-QU-Res.

Given the smallest Σp
1-QU-Res refutation π, the total size of the ∀-reductions is at most |π|.

By ‘expanding’ the Σp
1-derivations as in the proof of Theorem 5.2, we can construct a QU-Res
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refutation containing precisely the same ∀-reduction steps. A superpolynomial lower bound on the

total size of the ∀-reduction steps in QU-Res is thus sufficient to prove the same lower bound the

size of a Σp
1-QU-Res refutation. ut

In the case of QU-Res, since the lines in each ∀-reduction are at most linear in size, a super-

polynomial lower bound on the size of ∀-reduction steps is equivalent to a lower bound on the

number of ∀-reduction steps; this is not necessarily the case in some stronger proof systems such as

Frege +∀red. The equivalence given in Theorem 5.9 allows certain QU-Res lower bounds to be

lifted to Σp
1-QU-Res; KBKFdn is an example of such a lower bound, since the QU-Res lower

bound proved in [9,72] lower bounds the number of ∀-reduction steps. All subsequent lower bounds

proved in this thesis will also be of this form, being lower bounds on the number or total size of the

∀-reduction steps. We therefore use both P+∀red and Σp
1-P+∀red in subsequent results, working

with whichever is most convenient.

5.3 Separating Σp
k-QU-Res and Σp

k+2-QU-Res

Having studied Σp
1-QU-Res in detail, we now turn out attention to Σp

k-QU-Res in general, in order

to better understand the effect of quantifier alternation on proof size. We begin by observing that in

order to determine the precise alternation hardness of a formula, we need only look at the proof

systems Σp
2k+1-QU-Res, as all others can be polynomially simulated by a proof system of this

form at some lower level of the polynomial hierarchy.

Lemma 5.10. Let Φn be a family of QBFs in n variables. If Φn has refutations of size s(n) in

Πp
m-QU-Res or Σp

2k-QU-Res, then it has proofs of size s(n) + n2 in Σp
m−1-QU-Res or Σp

2k−1-

QU-Res respectively. In particular, if Φn has alternation hardness C, then C = Σp
2k+1 for some

k ∈ N.

Proof. We first show that we can construct a Σp
m−1-QU-Res refutation of Φn with size s(n) + n

from a Πp
m-QU-Res refutation with size s(n). Without loss of generality, we assume that any

Πp
m-derivations in a proof derive the strongest possible clause under a given relaxation, in the sense

that if a Πp
m-derivation derives the clause C under a relaxation Π , then no subclause of C can be

derived under the same relaxation.

Consider the leftmost block of universal variables in aΠb
m-relaxation. If we replace the universal

quantifiers in this block with existential quantifiers, we obtain a Σb
m−1-prefix, which is also a

relaxation of the original prefix of Φn. We show that we can replace any Πp
m-derivation in a proof

by a Σp
m−1-derivation, replacing the relaxation in this way.

If the Πp
m-derivation does not derive the empty clause, then all clauses derivable under the Πb

m-

relaxation Π contain a variable quantified existentially in Π . If a clause containing only universal

variables were derivable under Π , then the empty clause could also be derived under Π , since a

clause containing only universal variables in Π can immediately be used to derive the empty clause

under Π . Expanding the Πp
m-derivation to a QU-Res derivation consistent with Π , this QU-Res
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derivation therefore contains no ∀-reductions on the universal variables in the leftmost block. As a

result, the same QU-Res derivation could derive the same clause under the Σb
m−1-relaxation Π ′,

obtained from Π by also quantifying the leftmost block existentially.

If the Πp
m-derivation does derive the empty clause, then under theΣb

m−1-relaxation, it is possible

to derive a clause D containing only variables which were in the leftmost block of Π . Since all

variables in the leftmost block of Π are universally quantified in the prefix of Φn, we replace the

Πp
m-derivation by a Σp

m−1-derivation of D, followed by at most n ∀-reduction steps to derive ⊥.

We now consider the case of a Σp
2k-QU-Res refutation of Φn. In any Σb

2k-relaxation, the

rightmost block of variables is universally quantified. From the definition of a relaxation, we see that

all variables in this block are also universally quantified in the rightmost block of the prefix of Φn.

Such variables can be immediately removed from any axioms of Φn by a ∀-reduction. We can then

follow the Σp
2k-QU-Res proof, removing from each clause any variables quantified rightmost in

Φn. In each Σp
2k-derivation, we replace the Σb

2k-relaxation with a Σb
2k−1-relaxation by quantifying

the rightmost block existentially.

The only levels of the polynomial hierarchy where we cannot use these reductions to construct a

polynomially larger C-QU-Res proof at a lower level are Σp
2k+1 and Πp

1. Observe that Πp
1-QU-Res

is equivalent to QU-Res, since any prefix with an existential variable cannot be relaxaed to a

Πb
1-prefix. If Φn has alternation hardness precisely C, then we conclude C = Σp

2k+1 for some

k ∈ N. ut

The effect of this result is to show that trailing universal literals at the beginning or end of

a prefix do not contribute to any complexity arising out of quantifier alternation. In the case of

universal variables rightmost in a prefix, it is clear that this should be the case, as we can assume

that QU-Res performs any ∀-reductions possible at each step. Such variables can be removed

directly from axioms and need not appear again. While P+∀red in general cannot be assumed to

perform ∀-reductions as soon as possible, this assumption can be made for any clauses of the matrix

introduced as axioms in P+∀red.

In the case of universal variables leftmost in a prefix, the QBF need only be disproved for one

assignment to these variables, and so a refutation of Φ under this assignment suffices to refute

Φ. The proof of Lemma 5.10 essentially formalises these arguments to show we need only use

Σp
2k+1-derivations in proof systems of the form Σp

m-P+∀red.

Our first application of this is to immediately determine the alternation hardness of the

QPARITYn formulas, which we know are hard for Σp
1-QU-Res.

Corollary 5.11. The QBFs QPARITYn have alternation hardness Σp
3.

Proof. Since QPARITYn has aΣb
3-prefix, there are short Σp

3-QU-Res refutations of QPARITYn. By

Lemma 5.10, the alternation hardness of QPARITYn is therefore either Σp
1 or Σp

3. Theorem 5.8 states

that there are no polynomial size Σp
1-QU-Res proofs of QPARITYn, so QPARITYn has alternation

hardness Σp
3. ut
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It is clear that Σp
m-QU-Res p-simulates Σp

k-QU-Res for any m > k, since a Σp
k-derivation

is also a sound Σp
m-derivation. If the proof systems Σp

k-QU-Res provide information on the role

of quantifier alternation in lower bounds, it is reasonable to expect that these systems are not

all equivalent, but rather provide a hierarchy of systems with increasing strength, i.e. that Σp
k+2-

QU-Res can be separated from Σp
k-QU-Res. The QPARITYn formulas provide such a separation

between Σp
3-QU-Res and Σp

1-QU-Res.

To show such a separation for arbitrary k, we first need lower bounds for Σp
k-QU-Res. We

have so far shown superpolynomial lower bounds only for Σp
1-QU-Res. To give lower bounds

for Σp
k-QU-Res for k > 1, we give a technique for lifting lower bounds for Σp

k-QU-Res to

Σp
k+2-QU-Res. Using this technique, we can therefore construct superpolynomial lower bounds

for Σp
k-QU-Res for any fixed value of k.

Theorem 5.12. Let k ≥ 1 be fixed, and let Φn = Π ·
∧n
i=1Ci be a minimally false QBF requiring

superpolynomial-size refutations in Σp
k-QU-Res. For variables a, b not appearing in Π , the QBFs

Φ′n := ∃a∀bΠ ·
n∧
i=1

((ai ∨ bi ∨ Ci) ∧ (¬ai ∨ ¬bi ∨ Ci))

are false and require superpolynomial-size refutations in Σp
k+2-QU-Res.

To prove Theorem 5.12, we use restrictions of Σp
k-QU-Res proofs. Restrictions of QU-Res

proofs are relatively straightforward, but it is prudent to observe that Σp
k-QU-Res proofs can be

restricted in the same way.

Lemma 5.13. Let π be a Σp
k-QU-Res refutation of a QBF Φ = Π ·φ. If α is a partial assignment

to the variables of Φ, such that all variables in dom(α) are either existential, or universal and

quantified leftmost in Π , then π[α] = {C[α] | C ∈ π} is a sound Σp
k-QU-Res refutation of Φ[α].

Proof. We proceed line by line in π. If a clause C ∈ π is derived by a rule of QU-Res, then the

derivation step deriving C[α] in π[α] is sound, since restrictions of QU-Res are sound.

If C ∈ π is derived by a Σp
k-derivation from C1, . . . , Cl, then there is a QU-Res derivation

πC of C from C1, . . . , Cl under some Σb
k-relaxation Π ′ of Π . Any variable in dom(α) which

is existential in Π is also existential in Π ′. Any variable in dom(α) which is universal in Π is

either existential in Π ′, or is universally quantified leftmost, as relaxations can only move universal

variables to the left. The restricted derivation πC [α] is therefore a sound QU-Res derivation

of C[α] from C1[α], . . . , Cl[α] under the prefix Π ′[α], a Σb
k-relaxation of Π[α]. In particular

Π ′[α]·C1[α]∧ · · · ∧Cl[α] |= Π ′[α]·C1[α]∧ · · · ∧Cl[α]∧C[α] and so the restricted Σp
k-derivation

is also sound. ut

We can now use these restrictions of Σp
k+2-QU-Res proofs to prove Theorem 5.12.

Proof (of Theorem 5.12). To show Φ′n is false, we construct a universal winning strategy by playing

bi = ai for every variable bi. The resulting QBF is then Π ·
∧
iCi = Φn. Since Φn is false, there is a

universal winning strategy for Φn, which completes the universal winning strategy for Φ′n.
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For the lower bounds, let π be the smallest Σp
k+2-QU-Res refutation of Φ′n. We consider

restricting π by an assignment α to the variables a. We aim to show that for the restricted proof

π|α, either we can find a clause in π|α containing a large number of literals on b which ‘agree’ with

α, or we can construct a Σp
k-QU-Res refutation of Φn with size |π|O(1). If the latter holds for any

α, a superpolynomial bound follows immediately from the bound on Σp
k-QU-Res proofs of Φn. If

not, a clause containing many literals on b can only agree with a small proportion of assignments to

b, and so π must contain a large number of such clauses.

Observe that if α is an assignment to the variables of a, the restricted QBF Φ′n[α] contains

precisely one of the clauses bi ∨ Ci or ¬bi ∨ Ci. In particular, each variable of b appears in only

one polarity in the clauses of Φ′n[α]. As such, if π|α is the restriction of π by α, we assume that the

literals on b appear only in this polarity in π|α. If at any point the opposing literal is introduced

into a clause of π|α, the proof remains sound if this literal is removed from the clause, as it is

introduced as a weakening step, or in a Σp
k+2-derivation in which the literal no longer appears in

any antecedents.

The last step in any QU-Res refutation of Φ′n[α] consists of a ∀-reduction on all the variables

b, since these variables cannot be removed from a clause in any other way. The last step in π|α,

a Σp
k+2-QU-Res proof, is therefore either such a ∀-reduction, or a Σp

k+2-derivation in which

the corresponding Σb
k+2-relaxation quantified the variables of b universally. Such a relaxation

corresponds to a Σb
k-relaxation on the variables of Φn, or a Πb

k+1-relaxation, which by Lemma 5.10,

we can replace with a Σb
k-relaxation.

For a proof π′, define g(π′) to be the largest number of literals on b in any of the clauses

immediately antecedent to the empty clause. We then define

f(n) = min{g(π|α) | α is an assignment to a}

Suppose that f(n) = O(log n), and let α be such that g(π|α) = f(n). If the last step of π|α
were a ∀-reduction, then we have f(n) = n, so for sufficiently large n, the final step of π|α is a

Σp
k+2-derivation. Let D1, . . . , Dm(n) be the clauses of π|α from which the empty clause is derived

in this final Σp
k+2-derivation.

Each clause Dj contains at most f(n) literals on b. As these literals cannot be removed in a

QU-Res derivation before the final ∀-reduction step, each Dj can be derived from at most f(n)

clauses of Φ′n[α]. We can therefore construct a QU-Res derivation πj of Dj from Φ′n[α] with

size 2O(f(n)) = 2O(logn). If β is the universal player’s winning response to α, then πj [β] is a

polynomial-size derivation of Dj [α, β] from Φ′n[α, β] = Φn.

TheΣb
k+2-relaxation corresponding to the final Σp

k+2-derivation in π must quantify the variables

of b universally and consequently to the left of any existential variables in Π . On the variables of

Π , this therefore restricts to a Σb
k-relaxation (or equivalently a Πb

k+1-relaxation, cf. Lemma 5.10).

We can then construct a Σp
k-QU-Res refutation of Φn, polynomial in n and m(n), by first deriving

each Dj [α, β] using πj [β], followed by a Σp
k-derivation deriving the empty clause. Since all such

proofs are superpolynomial in n, we conclude that m(n) ≤ |π|α| ≤ |π|, is superpolynomial in n.
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So now assume f(n) = ω(log n). For any assignment α to the variables of a, we can find a

clause in π which contains f(n) literals on b matching the universal response to α. From this, we

conclude that |π| ≥ 2f(n), and since f(n) = ω(log n), we have |π| ≥ nω(1) for any Σp
k+2-QU-Res

refutation π of Φ′n. ut

We can now combine the lifting result of Theorem 5.12 with the lower bound for Σp
1-QU-Res in

Theorem 5.8 to construct lower bounds for Σp
k-QU-Res. Moreover, the formulas which give a lower

bound for Σp
k-QU-Res have a Σb

k+2-prefix, allowing us to precisely determine their alternation

hardness.

Theorem 5.14. Define Φ3
n = QPARITYn, and for Φkn = Π ·

∧
iCi, define

Φk+2
n := ∃a∀bΠ ·

∧
i

((ai ∨ bi ∨ Ci) ∧ (¬ai ∨ ¬bi ∨ Ci))

where a, b are fresh variables not in Π . For any odd k ≥ 3, the QBFs Φkn have alternation hardness

Σp
k, i.e. any Σp

k−2-QU-Res refutation of Φkn requires superpolynomial size, but there are polynomial

size Σp
k-QU-Res refutations of Φkn.

Proof. The prefix of Φ3
n = QPARITYn is a Σb

3-prefix, and so for each odd k, the prefix of Φkn is a

Σb
k-prefix. Σp

k-QU-Res can therefore refute Φkn in a single Σp
k-derivation step. It therefore remains

only to show a superpolynomial lower bound on Σp
k−2-QU-Res proofs of Φkn. We proceed by

induction on k.

In the case of Φ3
n, the alternation hardness is Σp

3 (Corollary 5.11), with an exponential lower

bound on Σp
1-QU-Res proofs shown in Theorem 5.8. Now assume for any odd k that Φkn requires

superpolynomial-size proofs in Σp
k−2-QU-Res. Observe that Φk+2

n is minimally false, since Φkn is

minimally false, and hence we require both ai ∨ bi ∨ Ci and ¬ai ∨ ¬bi ∨ Ci for every clause Ci of

Φkn. It is then a simple application of Theorem 5.12 to show that any Σp
k-QU-Res proof of Φk+2

n

has superpolynomial-size. ut

The QBFs Φkn demonstrate that the Σp
k-QU-Res proof systems form a family of increasingly

powerful proof systems, but that we can nonetheless separate any one of these systems from the

systems below it. This leads us to conclude that, at least in the case of QU-Res, the number of

alternations of quantifiers plays an important role in determining the size of proofs.

5.4 A lower bound for all Σp
k-QU-Res systems

So far, every family of QBFs we have considered in the context of Σp
k-QU-Res has had quantifier

prefixes inΣb
k for some constant value of k. As a result, all such QBFs have had short proofs in some

Σp
k-QU-Res system for a sufficiently large value of k. In this section, we show that the KBKFdn

formulas, which have unbounded quantifier alternation, require large proofs in all Σp
k-QU-Res

proof systems.
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In the proof systems Σp
k-QU-Res, as with QU-Res, we can assume that any ∀-reductions are

performed as early as possible in a proof, i.e. trailing universal literals in a clause are immediately

removed by ∀-reduction to produce a strictly stronger clause. In the context of KBKFdn, and other

QBFs formed by ‘doubling’ universal variables, any Σb
k-relaxation can be assumed to quantify each

pair of universal literals in the same block. No resolution steps are possible using either ui or vi as a

pivot until one is ∀-reduced. If ui and vi appear in the same block of universal variables, when one

variable is removed by ∀-reduction, the second can also be ∀-reduced. Consqeuently, restricting to

only Σb
k-relaxations in which both variables are in the same block does not restrict which clauses

can be derived by a Σp
k-derivation.

As a result, in this section we refer only to universal variables ui, despite working with the

QBFs KBKFdn. The presence of literals on vi is implicit wherever there is such a literal on ui, and

this prevents resolution on the pivots ui or vi. Similarly, assignments to variables ui are assumed to

also make the same assignment to the corresponding variables vi.

Before we prove our lower bound for KBKFdn, we first show the following lemma, which

ensures that the first time ui is removed from a clause in Σp
k-QU-Res, it occurs in a ∀-reduction or

in a Σp
k-derivation where ui is quantified to the right of yi and y′i.

Lemma 5.15. Suppose the non-tautologous clause C is derived by QU-Res from KBKFdn, and

C contains a literal on ui. If the QU-Res derivation does not contain a ∀-reduction step on ui,

then C contains a literal on yj or y′j for some i ≤ j ≤ 2n.

Proof. Since no ∀-reduction step has taken place on ui, no resolution steps on ui are possible in the

derivation of C. We assume without loss of generality that the literal on ui is a positive literal; the

case for ¬ui is similar.

Suppose first that the literal ui is introduced by the axiom ui∨yn+i. In this axiom, all existential

variables are quantified to the right of ui. No resolution steps on universal pivots are possible, and

the only axiom not conflicting with ui which contains existential variables to the left and to the

right of ui is the axiom y′i ∨ ui ∨ ¬yi+1 ∨ ¬y′i+1. Unless this axiom appears in the derivation of C,

then we are done, as no variables left of ui can appear, or C is a tautology.

So now assume ui is introduced by y′i ∨ui ∨¬yi+1 ∨¬y′i+1, and consider a clause derived from

it. All axioms containing the literal ¬y′i also contain the literal ¬yi. The only axiom containing yi
also contains ¬ui. Since the literal ¬ui also cannot be removed from this clause by ∀-reduction or

resolution, it must remain in the final clause C. Any clause derived from y′i ∨ ui ∨ ¬yi+1 ∨ ¬y′i+1

which does not contain a literal on yi or y′i is therefore a tautology.

In the case i = n, the initial axiom introducing un is y′n ∨ un ∨¬yn+1 ∨ · · · ∨ ¬yn+n, however

a similar argument applies to show that removing literals on yn and y′n requires introducing the

literal ¬un and hence constructing a tautology. ut

We can now use this result to prove our lower bound for KBKFdn. In effect, we have shown

that each variable ui needs to be quantified right of the corresponding yi, y′i variables. This ensures

that it is not possible to ‘skip’ large parts of a QU-Res proof of KBKFdn with a Σp
k-derivation.
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Theorem 5.16. The QBFs KBKFdn require proofs of size 2Ω(n) in Σp
k-QU-Res for any constant

k.

Proof. Throughout this proof, we refer only to universal variables ui. As discussed above, we

assume that in any relaxation, the variables ui and vi are quantified identically and in the same

block. Recall that this ensures there are no resolution steps possible on universal variables in a

Σp
k-QU-Res or QU-Res refutation of KBKFdn.

QU-Res (with weakening) is implicationally complete, and so from any Σp
k-QU-Res proof

we can construct a QU-Res proof by replacing each Σp
k-derivation with an appropriate series of

QU-Res steps such that the ∀-reduction steps replacing a given Σp
k-derivation are consistent with

some Σb
k-relaxation of the quantifier prefix, as in the proof of Theorem 5.2. We show a lower bound

on the size of a Σp
k-QU-Res refutation of KBKFdn by examining the QU-Res proof we obtain

in this way. As all universal variables in KBKFdn appear with another universal variable of the

same polarity, at no point can there be a resolution step on universal variables. Thus once a clause

contains a universal variable, the only way it can be removed from descendants of this clause is by

∀-reduction.

As observed by [72], before a ∀-reduction step on any clause is possible, the clause must contain

a literal on all universal variables. Furthermore, all 2n possible sets of literals on all universal

variables are necessary for the QU-Res refutation. In fact, a further consequence of this observation

is that for any ∀-reduction step on ui not preceded by another ∀-reduction on ui, the clause also

contains literals on u1, u2, . . . , ui−1.

Observe from Lemma 5.15 that if a ∀-reduction on ui is not preceded by any other ∀-reduction

on ui, then the clause must contain some existential variable yj or y′j for some i ≤ j ≤ 2n. However,

if the step is a ∀-reduction, this existential variable is either yi or y′i. As a result we conclude that,

for each 1 ≤ i ≤ n, and for each assignment β to the variables u1, . . . , ui−1, a QU-Res proof of

KBKFdn contains a ∀-reduction on ui containing literals on u1, . . . , ui−1 agreeing with β.

Now suppose that π is a Σp
k-QU-Res proof of KBKFdn for some fixed value of k < n. Let α

be one of the 2n possible assignments to the universal variables of KBKFdn which the universal

player may be required to play. We show that there is some clause in π which contains at least n− k
literals on universal variables and agrees with α.

Let π′ be a QU-Res proof obtained by expanding the Σp
k-derivations of π. As observed above,

given the assignment α, there is some clause Cn−k ∈ π′ which is derived by a ∀-reduction step on

un−k, such that Cn−k is not preceded by any ∀-reduction steps on u1, . . . , un−k, and the universal

literals in Cn−k agree with α. In particular, Cn−k contains literals on all universal variables left of

un−k.

We look now at the derivation of Cn−k in π′. In this derivation, there must be some clause

Cn−k+1 derived by a ∀-reduction on un−k+1 with no preceding such ∀-reduction. We construct

clauses Cn−k+2, . . . , Cn similarly, choosing the first ∀-reduction on ui in the derivation of Ci−1.

Consider now the path through π′ from Cn to Cn−k through each Ci. Since Cn contains literals on
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all universal variables, and the universal literals of Cn−k agree with α, all clauses on this path must

contain literals on u1, . . . , un−k−1 agreeing with α.

We show that at least one clause in this path must also be in π. If this were not the case, then

Cn, . . . , Cn−k are all in the expansion of a single Σp
k-derivation. By the choice of Ci, each Ci

contains a literal on yi or y′i by Lemma 5.15. The derivation of Ci by a ∀-reduction is therefore

only possible if the corresponding Σb
k-relaxation quantifies ui universally and to the right of yi, y′i.

However if this were the case for each n − k ≤ i ≤ n, the relaxation would require at least 2k

alternations of quantifiers, since each ui must be left of yi+1, y
′
i+1 by the definition of relaxation.

Thus there is some clause D on the path from Cn to Cn−k such that D ∈ π and D contains literals

on u1, . . . , un−k−1 agreeing with α.

There are 2n−k−1 possible assignments to u1, . . . , un−k−1 that α could define, and for each

there is a clause in π which contains literals on all of these variables agreeing with α. The size of

any Σp
k-QU-Res proof is therefore at least 2Ω(n). ut

This lower bound for any Σp
k-QU-Res proof system gives us a relatively complete understanding

of the family of Σp
k-QU-Res proof systems. It is clear that increasing the value of k results in a

proof system which is at least as strong, and the separation of Theorem 5.14 demonstrates that it

is indeed strictly stronger. On the other hand, despite providing a lower bound for Σp
k-QU-Res

for any k, the KBKFdn formulas have short proofs in even very restricted Frege systems, such as

AC0
3-Frege +∀red. As a result, we conclude that no Σp

k-QU-Res proof system is able to simulate

even AC0
3-Frege +∀red, implying that the lower bound for QU-Res proofs of KBKFdn relies not

only on the alternation of quantifiers, but on the structure of the lines of QU-Res. This is an idea

we shall return to in Chapter 8.
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Chapter 6

A refinement of formalised strategy ex-
traction

Having shown that we can identify propositional lower bounds via Σp
1-P+∀red, we turn our focus

to understanding lower bounds which do not arise from propositional reasons. A new technique

for lifting circuit complexity lower bounds to QBF proof complexity lower bounds was shown

by Beyersdorff et al. [19] (cf. Theorem 3.5). This technique consists of using a proof in a given

proof system P to efficiently construct circuits in a class C computing a winning strategy for the

universal player. A lower bound on P-proofs of Φ can therefore be shown if any function computing

a winning universal strategy requires large circuits in C.

By formalising this technique for constructing winning strategies in the form of Boolean circuits,

Beyersdorff and Pich [30] gave a normal form into which Frege +∀red and eFrege +∀red proofs

can be efficiently transformed. This normal form reduces Frege +∀red and eFrege +∀red proofs to

two stages: constructing circuits representing winning strategies, and propositionally refuting the

formula when the universal variables are witnessed by these circuits. Lower bounds on such proofs

are therefore a lower bound on one of these stages, corresponding to either a circuit complexity or a

propositional proof complexity lower bound.

We improve the formalisation of the strategy extraction by choosing the witnessing circuits

more carefully. Including the correct extension variables in the circuit allows us to replace an eFrege

proof with a tree-like Resolution proof. This further simplifies the search for short proofs of QBFs,

and moreover allows the characterisation of [30] to be applied to any proof system simulating

tree-like Resolution. However, in doing so, we observe that in these systems it is not necessarily

the case that the witnessed formula can be derived efficiently from the matrix, introducing a third

possible type of lower bound.

We exemplify this additional cause for lower bounds by a common adaptation of the well

known KBKFn formulas of Kleine Büning et al. [72], which have a very simple winning strategy

resulting in a witnessed formula with a short Resolution proof. We therefore conclude that the lower

bound for QU-Res proofs of these formulas must fall into this third category. Finally, we observe
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that several other QU-Res lower bounds are known via propositional lower bounds and circuit

complexity, placing them naturally into the other categories.

In Section 6.1 we describe the dichotomy observed by Beyersdorff and Pich [30] for lower

bounds in strong C-Frege +∀red systems. Our refinement of this to a trichotomy for weaker systems

is then given in Section 6.2, followed by examples of lower bounds in each category for the QU-Res
proof system.

6.1 The dichotomy for C-Frege +∀red

We begin by describing a previous characterisation of lower bounds in the relatively strong proof

systems of Frege +∀red and eFrege +∀red. By appropriately formalising strategy extraction, [30]

showed that lower bounds in these systems arise either from a propositional lower bound, or from a

circuit complexity lower bound.

A QBF proof system P is said to have the strategy extraction property if for any QBF Φ of the

general form ∀x1∃y1 . . . ∀xn∃yn ·φ(x1, . . . , xn, y1, . . . , yn), where φ is the propositional matrix,

and any P-proof π of Φ, there are circuits Ci of size |π|O(1) which witness the existential quantifiers

in Φ, i.e. the propositional formula

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ φ(x1, . . . , xn, y1, . . . , yn) (1)

is a tautology. The strategy extraction is Q-formalised if, in addition, the propositional formulas

in (1) have |π|O(1)-size proofs in a propositional proof system Q.

The QBF proof systems Frege +∀red and eFrege +∀red are known to have the strategy extrac-

tion property by Theorem 3.5, with the circuits known to be in NC1 and P/poly respectively.

In [30], the strategy extraction for these proof systems was formalised in Frege and eFrege respec-

tively. We state this formally for eFrege +∀red:

Theorem 6.1 (Beyersdorff and Pich [30]). Given an eFrege +∀red refutation π of a QBF Φ =

∃x1∀y1 . . . ∃xn∀yn ·φ, it is possible to construct in |π|O(1) time an eFrege proof of

n∧
i=1

(yi ↔ Ci(x1, . . . xi, y1, . . . , yi−1))→ ¬φ

for some circuits Ci.

Notice that since Frege +∀red and eFrege +∀red are refutational proof systems, a refutation of

Φ is in fact a proof of ¬Φ. As a result, the witnessing circuits Ci correspond to circuits describing a

winning strategy for the universal player in Φ.

A normal form for proofs in these proof systems was given in [30], into which any proof can

be efficiently transformed. This formalisation was then used to show that lower bounds for these

Frege +∀red systems must be either a circuit lower bound on the size of the witnessing circuits Ci,
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or a lower bound on the corresponding propositional proof system for a derivation of the witnessed

formula.

Theorem 6.2 (Beyersdorff and Pich [30]).

1. There is a superpolynomial lower bound on Frege +∀red if and only if there is a superpolynomial

lower bound on Frege, or a superpolynomial lower bound for NC1.

2. There is a superpolynomial lower bound on eFrege +∀red if and only if there is a superpolyno-

mial lower bound on eFrege, or a superpolynomial lower bound on P/poly.

This characterisation of Frege +∀red and eFrege +∀red lower bounds gives an almost complete

understanding of the proof complexity of these systems. In particular, to prove a superpolynomial

lower bound on Frege +∀red without proving such a lower bound on the propositional Frege system

would require a major breakthrough in circuit complexity, namely superpolynomial lower bounds

on NC1.

The proof system Σp
1-Frege +∀red removes the possibility of a lower bound based on propo-

sitional hardness for Frege. We can therefore reframe the classification of Theorem 6.2 as an

equivalence between Σp
1-Frege +∀red lower bounds and NC1 lower bounds.

Theorem 6.3. A family of QBFs Φn require superpolynomial-size proofs in Σp
1-Frege +∀red (re-

spectively Σp
1-eFrege +∀red) if and only if this lower bound is due to a lower bound on NC1

circuits (respectively P/poly circuits).

Proof. We prove the statement for Frege +∀red, the case for eFrege +∀red is similar. It is simple to

verify an analogue of Lemma 5.6 stating that Σp
1-Frege +∀red admits strategy extraction by NC1

circuits. A lower bound on Frege +∀red proofs of Φn due to an NC1-circuit lower bound therefore

immediately lifts to a Σp
1-Frege +∀red lower bound.

Conversely, suppose that there are polynomial-size NC1 circuits Ci computing a winning

strategy for Φn. We follow the normal form for Frege +∀red proofs described in [30]. The witnessed

formula
∧
i(ui ↔ Ci) ∧ φn is deduced from φn using a single Σp

1-derivation. There is then a short

Frege +∀red refutation of this witnessed formula, producing a short Σp
1-Frege +∀red refutation of

Φn. ut

This suffices to show that, in the case of those C-Frege +∀red systems for which the dichotomy

of Theorem 6.2 holds, Σp
1-C-Frege +∀red precisely distinguishes propositional lower bounds from

QBF lower bounds.

6.2 A trichotomy for weaker systems

In this section, we extend the characterisation of Theorem 6.2 to QBF proof systems weaker than

Frege +∀red and eFrege +∀red. To do so, we begin by observing that with a careful choice of

witnessing circuits, strategy extraction for Frege +∀red and eFrege +∀red can be formalised in

63



CHAPTER 6. A REFINEMENT OF FORMALISED STRATEGY EXTRACTION

the relatively weak system of tree-like Resolution. In particular, we allow the witnessing circuits

to contain additional gates computing any extension variables required in the eFrege proof of the

witnessed formula.

Theorem 6.4. Let C be the circuit class NC1or P/poly. Given a C-Frege+∀-red refutation π of

a QBF

∃x1∀y1 . . . ∃xn∀yn ·φ(x1, . . . , xn, y1, . . . , yn)

where φ is a quantifier free CNF matrix, we can construct in time |π|O(1) a tree-like Resolution

refutation of the witnessed formula

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)) ∧ φ(x1, . . . , xn, y1, . . . , yn)

for some circuits Ci ∈ C.

As with the characterisation in Theorem 6.2, this result easily generalises to further ‘natural’

circuit classes C such as AC0 or TC0. For clarity, we focus here on the two most interesting cases

of NC1 and P/poly, which correspond to Frege and eFrege systems respectively.

Proof. By the formalised strategy extraction theorem for C-Frege systems [30] (Theorem 6.1),

there is a C-Frege proof of the witnessed formula (1) which has size |π|O(1). Given the equivalence

of eFrege and tree-like extended Resolution [43, 78], this means there is a tree-like Resolution

refutation of

Ext ∧
n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)) ∧ φ(x1, . . . , xn, y1, . . . , yn) (2)

of size |π|O(1), where Ext is a set of extension axioms defining C formulas on the variables

x1, . . . , xn, y1, . . . , yn.

With the exception of those depending on yn, the extenstion axioms of Ext can be encoded into

circuits Ci with each extension variable represented by a possibly redundant gate of a circuit Ci. In

order to remove the dependence of any extension variables on yn, we take two independent tree-like

Resolution refutations of (2). In one, we replace all occurrences of yn in clauses of Ext with 0; in the

other, occurrences of yn in Ext are substituted by 1. This results in two derivations from (2), both at

most as large as the original, one concluding with {yn} and the other with {¬yn}. Resolving on

these two clauses we obtain the needed tree-like Resolution derivation without extension variables

depending on yn. ut

The formalisation of strategy extraction given in Theorem 6.1 allowed the search for short proofs

in QBF proof systems with strategy extraction to be reduced to a search for the correct witnessing

circuits Ci, followed by finding an eFrege proof of the resulting witnessed formula. By formalising

the strategy extraction in tree-like Resolution rather than Frege or eFrege, we can replace this latter
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step with a search for a tree-like Resolution proof of the witnessed formula. Tree-like Resolution is

known to be quasi-automatisable [11], i.e. for any false CNF, it is possible to construct a tree-like

Resolution refutation in quasipolynomial time in the size of the shortest such proof. The problem of

finding proofs in QBF proof systems with strategy extraction formalisable in tree-like Resolution is

therefore essentially reduced to finding the correct witnessing circuits Ci.

As described above, [30] showed that any super-polynomial lower bound on eFrege +∀red is

either a super-polynomial circuit lower bound or a super-polynomial lower bound on eFrege. We

now generalise this phenomenon to other QBF proof systems.

Let P be a refutational QBF proof system operating on clauses of matrices of (prenex normal

form) QBFs which contains a resolution rule that allows resolution on both existential and universal

variables. We say that a set of clauses C defines a formula Ci(x) = z for a circuit Ci with input

variables x and output variable z if z appears in a literal of some clause in C and for any assignment

of the input variables there is exactly one assignment of the remaining variables in var(C) satisfying

all clauses in C.

Whenever a QBF Φ as above is hard for a QBF proof system P it is for one of the following

reasons:

1. the existential quantifiers in Φ cannot be witnessed by circuits Ci such that formulas∧
iCi(x1, . . . , xi, y1, . . . , yi−1) = yi have |φ|O(1)-size derivations from ¬φ in P.

2. the existential quantifiers in Φ are witnessable as in 1. but the witnessed formula

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)) ∧ ¬φ(x1, . . . , xn, y1, . . . , yn)

is hard for Resolution.

By considering the first case more carefully, this characterisation can be specified further.

Theorem 6.5. Let P be a refutational QBF proof system as above admitting strategy extraction by

C circuits. If Φn = ∀x1∃y1 . . . ∀xn∃yn. φn(x1, . . . , xn, y1, . . . , yn) are QBFs with propositional

CNF matrix φn, which do not have polynomial-size proofs in P, then one of the following holds:

1. Circuit lower bound. The existential variables in Φn are not witnessable by polynomial-size C
circuits.

2. Resolution lower bound. Condition 1. does not hold, but for all polynomial-size C circuits

witnessing Φn, the witnessed formulas require super-polynomial size Resolution refutations.

3. Genuine QBF hardness. There are circuitsCi ∈ C witnessingΦn so that the witnessed formulas

have polynomial-size Resolution refutations, but for all such circuits Ci it is hard to derive∧
iCi(x1, . . . , xi, y1, . . . , yi−1) = yi from ¬φn in P.

Proof. If the existential variables in Φn are not witnessable by polynomial-size C circuits, we are

done. We therefore assume that there are small circuits in C witnessing the existential variables.
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Suppose further that there are some circuits Ci ∈ C such that the witnessed formula (1) has a

polynomial-size Resolution refutation. If this is not the case, we are done as we are in case 2.

We can construct a refutation of¬Φn in P by first deriving
∧
iCi(x1, . . . , xi, y1, . . . , yi−1)↔ yi

from ¬φn, and then refuting
∧
i(Ci ↔ yi) ∧ ¬φn. Since the refutation of

∧
i(Ci ↔ yi) ∧ ¬φ is

assumed to have polynomial-size, but any refutation of ¬Φn requires superpolynomial-size, it

must be the case that for the circuits Ci ∈ C, the derivation of
∧
i(Ci ↔ yi) from ¬φn requires

superpolynomial size (case 3). ut

This means that any QBF lower bound on P is either a circuit lower bound, a propositional

proof complexity lower bound, or a ‘genuine’ QBF proof complexity lower bound in the following

sense: some small circuits witnessing the existential quantifiers in the original formula cannot be

derived efficiently by P, and for any small witnessing circuits which P can derive efficiently, the

witnessed formula is hard for Resolution.

Theorem 6.2 demonstrates that the last possibility does not happen in the case of strong systems

like eFrege +∀red. The situation is, however, more delicate with weaker systems such as QU-Res,

where we can encounter ‘genuine’ QBF lower bounds. We give an example, in the form of the

formulas of Kleine Büning et al. (Definition 3.3).

The QBFs KBKFn are known to require refutations of size 2Ω(n) in Q-Res (Theorem 3.4),

and this bound can be extended to QU-Res using the formulas KBKFdn, which were obtained

by adding new universal variables vk, quantified at the same level as uk, and adding the literal vk
or ¬vk to each clause containing uk or ¬uk, respectively [9]. By showing that neither of the other

two cases applies in the case of KBKFdn, we show that this lower bound falls into third category

of ‘genuine QBF hardness’ from Theorem 6.5. As a result, we see that at least some of the lower

bounds in this third category are due to quantifier alternation, as Σp
1-QU-Res also requires large

proofs of KBKFn.

Theorem 6.6. The formulas KBKFdn are hard for QU-Res due to genuine QBF hardness (case

3 in Theorem 6.5).

Proof. It is clear that playing the variables uk and vk identical to y′k is a winning strategy for the

universal player, and so there are circuits Ci as described in Theorem 6.5 which are of constant size.

The QU-Res lower bound on KBKFdn is therefore not an instance of case 1 in Theorem 6.5.

Looking now at the witnessed formula
∧n
i=1((ui ↔ y′i) ∧ (vi ↔ y′i)) ∧ φ, we show this can

be refuted by a linear-size proof. By resolving on each ui and vi to replace these with the relevant

literal on y′i, we obtain the clauses y′i∨yn+i and ¬y′i∨yn+i, and thus the unit clause yn+i. Resolving

each such clause with C ′n and Cn produces the clauses y′n and yn ∨ ¬y′n from which we also derive

yn. For each 1 ≤ i ≤ n, we resolve the unit clauses yi and y′i with the axioms Ci−1 and C ′i−1 to

deduce yi−1 and y′i−1 and finally resolve y1 and y′1 with C ′0 and C0, completing the refutation.

Since KBKFdn is known to require exponential size proofs in QU-Res [9], by Theorem 6.5, it

must satisfy one of the three conditions given. We have established that there are small witnessing
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circuits, for which the witnessed formula is easy to refute, and so it must be the case that it is hard

to derive the witnessing circuits. ut

For completeness, we also observe that examples of superpolynomial QU-Res lower bounds

shown using propositional lower bounds and using circuit lower bounds are already known. In

the case of propositional lower bounds, any propositional formulas which require large proofs in

Resolution, such as the pigeonhole principle formulas PHPn, fall into this case, as there are no

universal variables to witness. For an example of a circuit lower bound for QU-Res, we give the

example of the QPARITYn formulas (Definition 5.7), where the lower bound arises as a result of a

lower bound on AC0
3 circuits.

In this chapter, we have given a characterisation of QBF proof complexity lower bounds which

extends beyond the powerful Frege +∀red and eFrege +∀red system to all systems with strategy

extraction. In Chapter 7, we look in particular at the tree-like Frege +∀red and eFrege +∀red

proof systems. In this case, with ∀-reduction restricted to 0/1 substitutions, we are able to give an

alternative characterisation of lower bounds arising from this third case.
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Chapter 7

Tree-like P+∀red lower bounds via strat-
egy size

In Chapter 6 we observed that in weaker systems than Frege +∀red and eFrege +∀red, it is possible

for lower bounds to arise by means other than propositional lower bounds or circuit lower bounds.

Here, we present a novel lower bound technique which provides just such lower bounds in the case

of tree-like P+∀red systems. Moreover, in the case of tree-like Frege +∀red and eFrege +∀red

systems, we show that this technique is sufficient to show any lower bounds which do not also

provide a lower bound for dag-like systems via propositional hardness or due to a circuit complexity

lower bound.

For these lower bounds, we make use of a round-based strategy extraction algorithm [62]. Rather

than using the proof to construct circuits computing a universal winning strategy, this algorithm uses

iterative restriction of the proof by the players’ assignments to obtain responses for the universal

player. We make use of this strategy extraction algorithm to lower bound the size of such proofs

by the number of different responses the universal player may need in order to falsify the QBF, a

measure we call strategy size.

For any given existential assignment, we identify from the round-based strategy extraction

algorithm a sequence of lines in the proof defining the universal player’s response. We observe that

with a careful definition of the restriction of a proof, we can ensure that this sequence of lines is

totally ordered under ≺π. As a result, for each existential assignment we can find a path from the

root of a proof to an axiom which corresponds to the universal response. In the tree-like case, we

show that paths corresponding to distinct responses must be distinct, giving us a lower bound on the

size of the proof. This lower bound demonstrates that these tree-like systems are incomparable with

even weak dag-like systems such as Q-Res.

To completely categorise lower bounds for tree-like Frege +∀red and eFrege +∀red, we make

use of a variant of the normal form used in Chapter 6. We first construct small circuits computing

an identical winning strategy to the round-based strategy extraction algorithm. The previous normal

form is then followed, but with a separate branch of the tree for each distinct response in the range
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of the strategy, combining two branches when all universal variables on which the responses differ

have been removed.

We present the lower bound for tree-like P+∀red proof systems by strategy size in Section 7.1.

In Section 7.2, we show that this lower bound technique suffices to prove all tree-like Frege +∀red

lower bounds which are not also Frege +∀red lower bounds.

7.1 A lower bound technique for tree-like proofs

For this chapter, we assume that each block of variables in a QBF contains only a single variable.

That is, we assume that any QBFs are of the form

∃x1∀u1∃x2∀u2 . . . ∃xn∀un∃xn+1 ·φ(x1, u1, . . . , un, xn+1)

for some CNF φ. This is an equivalent definition of a PCNF to that given in Chapter 3, but we give

an explicit ordering on the order in which the variables are assigned within the blocks. It is clear

to see that the ordering of variables within the blocks does not affect the truth of the QBF. For an

assignment α ∈ 〈X〉, we denote by α|i the restriction of α to the variables x1, . . . , xi, and define

β|i similarly for β ∈ 〈U〉.
We further use only the version of the ∀-reduction rule which allows substitution by the constants

0 and 1. While this is regularly used interchangeably with substitution by any suitable circuit, since

the two are usually equivalent, the results of this chapter apply only to 0/1 ∀-reduction, serving to

highlight an important difference between the two approaches to this deduction rule.

We also wish to consider a slightly more careful restriction of proofs. Previously, it has been

sufficient to define the restriction of a proof π by an assignment α as π[α] = {C[α] | C ∈ π}.
However, while π[α] is a sound proof for suitable α, it may contain several lines which are not

necessary for a refutation of Φ[α], such as instances of >.

Given a proof π of a QBF Φ and an assignment α, we therefore let Lα be the first line in π

which restricts to⊥ under α. We initially restrict to the set {L[α] | L �π Lα} of lines used to derive

Lα[α] = ⊥. We then remove any lines now evaluating to > and iteratively remove any sinks which

are not Lα[α], i.e. lines with no direct descendants in the proof. The restricted proof is therefore

a derivation of ⊥ from Φ[α] which contains no superfluous lines. While these lines need not be

removed from a restricted proof, doing so greatly simplifies the structure of the restricted proof, and

the arguments in this chapter.

Round-based strategy extraction In Section 3.3, the concept of strategy extraction was introduced,

allowing the construction of circuits computing winning strategies for the universal player from

refutations of false QBFs. An alternative approach to strategy extraction was presented in [62], using

iterative restrictions of the proof to generate strategies, which we now describe. This approach was

initially shown only for Q-Res, but was later extended to LD-Q-Res [53], and the proof extends
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naturally to any P+∀red system if we assume a total order on the universal variables; we give this

extension in a slightly more general case in Lemma 8.9.

Given a P+∀red refutation π of a false QBF Φ, and an assignment α to the existential variables

of Φ, the universal player’s response β is constructed round by round, as described in Algorithm 3.

Algorithm 3 The round-based strategy extraction algorithm
function stratex(π,α)

πα0 ← π
β ← ∅
for 1 ≤ i ≤ n do

παi ← παi−1[α|i ∪ β]
Lαi ← root(παi )
if Lαi is derived by a ∀-reduction ui/b then

β ← β ∪ {ui/b}
else

β ← β ∪ {ui/0}
return β

In brief, at the ith round, the algorithm updates the current proof by restricting by the assignment

to the existential variable xi and by the current universal response. It then takes the root of this

restricted proof as the line Lαi . If Lαi is derived by a ∀-reduction on ui, which is now the leftmost

unassigned variable, then the universal player plays according to this ∀-reduction, otherwise the

universal player can play arbitrarily – for concreteness, we assume this is always to play ui/0.

We define παi to be the proof constructed at the beginning of the ith round. Since at any stage,

the proof is only restricted by an assignment to existential variables or to a universal variable that

is leftmost, each proof παi is a sound refutation of Φ[α|i ∪ β|i−1]. It is therefore clear that after n

rounds, παn is a sound refutation of Φ[α|n∪β], a purely existential formula, so β is indeed a winning

response to α, and the response at round i is computed using only the assignment α|i. The strategy

Sπ : 〈X 〉 → 〈U〉 defined by Sπ(α) = stratex(π, α) is therefore a winning universal strategy for Φ

for any P+∀red refutation π of Φ.

Since the strategy in Algorithm 3 is determined by the deduction rule used to derive the lines Lαi ,

we are primarily interested in which lines of π remain in παi , rather than in the precise restriction

to these lines. As a result, and to simplify notation, for a line L ∈ π, we abbreviate the statement

L[α|i ∪ Sπ(α)|i−1] ∈ παi to L ∈ παi , since the relevant restriction is evident in the proof παi .

We now observe that the round-based strategy extraction algorithm not only defines a universal

response to each assignment α ∈ 〈X〉, but it also constructs a sequence of linesLαi used to determine

the universal response on ui. Moreover, since the response for ui can be determined by looking at

the deduction rule deriving Lαi , assignments eliciting different universal responses from Sπ must

arise from different sequences of lines.
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Lemma 7.1. Let π be a P+∀red refutation of a QBF Φ. Given two assignments α, γ ∈ 〈X〉 such

that Sπ(α) 6= Sπ(γ), there is some 1 ≤ k ≤ n such that Lαk 6= Lγk .

Proof. Let βα, βγ ∈ 〈U〉 be the universal responses to α and γ respectively under Sπ. Since

βα 6= βγ , there is some k such that, without loss of generality, βα(uk) = 1 and βγ(uk) = 0. By

the construction of Sπ, it must be the case that Lαk is derived by a ∀-reduction substituting uk/1,

whereas Lγk is derived by a ∀-reduction substituting uk/0, or by a propositional deduction rule.

In either case, it is clear that Lαk 6= Lγk since each line in π is only derived by a single deduction

rule. ut

It is worth emphasising that as we have defined round-based strategy extraction, the proof παi
is a restriction of the proof παi−1 used at the previous round, rather than simply restricting π by

α|i ∪ β|i−1. Both approaches construct winning universal strategies, however since π[α|i ∪ β|i−1]
and παi are not necessarily identical, the strategies constructed may also be different.

Using restrictions of παi−1 rather than π at the ith round ensures the following useful property

of the lines Lαi : for any assignment α ∈ 〈X〉 and any j < i, either Lαj = Lαi , or Lαj ≺ Lαi . We

can therefore extend the sequence of lines Lαi to a path through π corresponding to the run of the

strategy extraction algorithm on π and α.

Definition 7.2. Define pα ⊆ π to be a path through π, i.e. a maximal totally ordered subset of π

under ≺π, such that Lαi ∈ pα for each 1 ≤ i ≤ n, and for any L ∈ pα, if L ≺π Lαi then L ∈ παi .

This definition does not necessarily uniquely define the path pα; we could ensure the uniqueness

of pα by requiring it to be the first such path lexicographically under the order in which lines

appear in π. Since the only properties of pα we require are those given in Definition 7.2, we do not

specify which of the many suitable paths we choose. In particular, the following result that different

universal responses correspond to different paths, is independent of the precise choice of pα.

Lemma 7.3. Let π be a P+∀red refutation of a QBF Φ. For any two assignments α, γ ∈ 〈X〉, if

Sπ(α) 6= Sπ(γ) then pα 6= pγ .

Proof. Extend the sequences Lαi and Lγi by letting Lα0 = Lγ0 = ⊥, the root of π. Pick the least k

such that Lαk 6= Lγk , and so Lαk−1 = Lγk−1 = Lk−1. Such a k must exist by Lemma 7.1.

If Lαk and Lγk are incomparable in ≺π, then they cannot appear in the same path, since paths are

totally ordered. As Lαk ∈ pα and Lγk ∈ pγ , we see that pα 6= pγ . Therefore assume without loss of

generality that Lαk ≺π L
γ
k . Recall that for any line L ∈ pγ such that L ≺π Lγk , we require L ∈ πγk .

To show pα 6= pγ , it therefore suffices to show that Lαk 6∈ π
γ
k , and hence Lαk 6∈ pγ .

The lines of πγk are a restrictions of a subset of the lines of πγk−1, so if Lαk 6∈ π
γ
k−1, we are done.

Now assume that Lαk ∈ π
γ
k−1. By the definition of Lαk , lv(Lαk ) ≤ 2k − 1 and so γ|k ∪ β|k−1 is a

total assignment to the variables of Lαk . If Lαk [γ|k ∪ β|k−1] = ⊥, this would contradict the choice of

Lγk as the first line in πγk−1 which restricts to ⊥ under this assignment. It must therefore be the case

that Lαk [γ|k ∪ β|k−1] = >, and so by the definition of restriction, Lαk 6∈ π
γ
k = πγk−1[γ|k ∪ β|k−1],

as tautologies are removed from the restricted proof. ut
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We have seen that existential assignments resulting in different responses from the universal

winning strategy correspond to different sequences of lines Lαi , and consequently different paths

through the proof. Given these results, it is natural to define a measure counting the number of

distinct responses required by a winning strategy. We can then use Lemma 7.3 to shed some light

on the structure of P+∀red proofs of QBFs which require a large number of responses.

Definition 7.4. Given a QBF Φ, the strategy size ρ(Φ) is the minimal size of the range of a winning

strategy for Φ:

ρ(Φ) := min{| rng(S)| | S is a winning strategy for Φ}

As an immediate corollary of Lemma 7.3, we get a lower bound on the number of paths through

a P+∀red proof, since for any two responses, the corresponding paths are pairwise distinct.

Corollary 7.5. Given a QBF Φ and a P+∀red proof π of Φ, the round-based strategy extraction

algorithm constructs at least ρ(Φ) distinct paths through π.

This lower bound on the number of paths through a refutation demonstrates the power of

dag-like proofs over tree-like proofs. In a dag-like proof, where lines can be reused in several

subsequent deduction steps, this allows multiple paths from a given line to the root of the proof.

However, in the case of tree-like P+∀red proofs, lines cannot be reused in this way, resulting in

a unique path from any given line to the root of the proof. This lower bound on paths therefore

immediately gives a lower bound on tree-like P+∀red proofs based only on the simple measure of

strategy size, and independent of the underlying propositional proof system P.

Theorem 7.6. For any QBF Φ, if π is a tree-like P+∀red refutation of Φ, then |π| ≥ ρ(Φ).

Proof. Since π is a tree-like proof, each axiom introduced in π defines a unique path between

the axiom to the root of the proof. By Corollary 7.5, there are at least ρ(Φ) distinct paths in π

constructed by the strategy extraction algorithm. Since each path identifies a distinct axiom, there

are at least ρ(Φ) axioms introduced in π. ut

The question of lower bounding tree-like P+∀red proofs is therefore reduced to finding a lower

bound on ρ(Φn) for some family of QBFs Φn. Several examples of such QBFs have previously

been defined, such as the formulas KBKFn. The QBFs we choose to exemplify a lower bound on

ρ(Φn) were defined by Janota and Marques-Silva in [70].

Definition 7.7 (Janota, Marques-Silva [70]). The QBFs DEQn are defined as

DEQn :=∃x1∀u1∃t1t2 . . . ∃xn∀un∃t2n−1t2n·
n∧
i=1

[(¬xi ∨ t2i−1) ∧ (¬ui ∨ t2i−1) ∧ (xi ∨ t2i) ∧ (ui ∨ t2i)] ∧
2n∨
j=1

¬tj
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The reason for choosing these QBFs is that it has been observed that there are short refutations

of DEQn even in proof systems as weak as Q-Res.

Theorem 7.8 (Janota, Marques-Silva [70]). The QBFs DEQn have polynomial-size refutations

in Q-Res and QU-Res.

Proof. Let Ti be the clause
∨2i
j=1 ¬tj . Beginning with Tn, which is an axiom, we derive Ti−1 from

Ti until finally deriving T0 = ⊥.

Given Ti, we can resolve with the axioms ¬xi ∨ t2i−1 and ui ∨ t2i to obtain Ti−1 ∨ ¬xi ∨ ui.
Similarly, resolving Ti with ¬ui ∨ t2i−1 and xi ∨ t2i gives the clause Ti−1 ∨xi ∨¬ui. In both cases,

we can ∀-reduce ui. Resolving the resulting clauses on the pivot xi deduces the clause Ti−1. ut

Despite these short proofs, there is a unique universal winning strategy for DEQn, and this

strategy requires 2n distinct responses.

Theorem 7.9. If π is a tree-like Frege +∀red or eFrege +∀red refutation of DEQn, then |π| ≥ 2n.

Proof. If ui = xi for any i, then the existential player can set either t2i−1 or t2i to 0 while still

satisying all clauses containing xi or ui. Playing all other tj positively satisfies all clauses. The only

winning universal strategy is therefore to play ui = 1− xi, as this forces the existential player to

set both t2i−1 and t2i positively, ultimately falsifying the large clause in the final round. As this

is the unique winning strategy, we see that ρ(Φn) = 2n, and the lower bound for |π| follows by

Theorem 7.6. ut

This lower bound for tree-like Frege +∀red and eFrege +∀red, and the consequent separation

between tree-like eFrege +∀red and dag-like Q-Res, is in stark contrast to previously observed

equivalences between Frege and Frege +∀red systems. In the propositional case, it is known that

tree-like and dag-like Frege systems are equivalent [75]. In [30], it was shown that tree-like and dag-

like Frege +∀red are equivalent if the ∀-reduction rule is allowed to substitute a variable u by any

suitable Boolean formula in variables left of u, rather than only by constants 0/1 as we have defined

here. Moreover, [30] also observed that in dag-like Frege +∀red systems, allowing ∀-reduction by

0/1 is equivalent to allowing ∀-reduction by arbitrary formulas. The same equivalences apply in the

case of eFrege +∀red, allowing substitutions by Boolean circuits.

However, both of these equivalences rely on the fact that the alternative restriction is not present.

Consequently, restricting proofs to be both tree-like and only use ∀-reduction by the constants 0/1

results in a substantially weaker system, as shown by the lower bound of Theorem 7.9. Since Frege

+∀red p-simulates QU-Res, we conclude that tree-like Frege +∀red is exponentially weaker than

dag-like Frege +∀red (both with 0/1 ∀-reduction) and even incomparable with Q-Res.

Theorem 7.10. Tree-like Frege +∀red (with 0/1 ∀-reduction) and Q-Res are incomparable.

Proof. To see that Q-Res does not simulate tree-like Frege +∀red, the pigeonhole principle

formulas PHPn have short proofs in tree-like Frege, and hence short proofs in tree-like Frege

+∀red, but require exponential size proofs in Resolution and hence Q-Res.
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For the opposite separation, DEQn have short Q-Res proofs but require exponential-size proofs

in tree-like Frege +∀red. ut

This exponential lower bound for tree-like Frege +∀red and eFrege +∀red is also significant

as no such lower bound is known for the corresponding propositional proof systems of tree-like

Frege and eFrege, which are known to be equivalent to their dag-like versions [75]. Such QBF

proof complexity lower bounds in the absence of propositional lower bounds are relatively rare.

Other examples, such as the lower bound for AC0[p]-Frege +∀red in [19], have been shown by

lifting circuit complexity lower bounds using the strategy extraction of Theorem 3.5. In the case of

Theorem 7.9, the unique winning strategy can be computed by small circuits, suggesting that this

represents a new approach to producing QBF proof complexity lower bounds.

7.2 Characterising tree-like Frege +∀red lower bounds

As described in Section 6.1, [30] established a characterisation of superpolynomial lower bounds for

Frege +∀red and eFrege +∀red. By constructing a normal form for proofs in these proof systems,

it was shown that such lower bounds on (dag-like) Frege +∀red or eFrege +∀red proofs are a result

of lower bounds on the corresponding propositional proof systems, or a circuit complexity lower

bound.

It is evident from the lower bound for tree-like Frege +∀red and eFrege +∀red given in Theo-

rem 7.9 that this characterisation does not hold for the tree-like versions of these systems. However,

by varying the normal form from [30] slightly, we can extend this characterisation of lower bounds

to the tree-like systems, with any lower bounds not arising from propositional lower bounds or

circuit complexity lower bounds being a result of a lower bound on strategy size. Similarly to the

results of Chapter 6, the results of this section will hold for C-Frege +∀red for suitable circuit

classes such as AC0 and TC0, but for clarity we use only Frege +∀red and eFrege +∀red here.

Recall that for a proof π and a line L ∈ π, we write L ∈ παi when the relevant restriction of L is

in παi . In the case of tree-like proofs, the lines of παi depend only on the line Lαi , and are otherwise

independent of the assignment α.

Lemma 7.11. Let π be a tree-like refutation of a QBF Φ, and let α, γ ∈ 〈X〉 be two distinct

existential assignments. For any 1 ≤ i ≤ n, if Lαi = Lγi = Li then:

(i) Lαj = Lγj for each j ≤ i.
(ii) for any line L ∈ π, L ∈ παi if and only if L ∈ πγi , i.e. παi and πγi contain the relevant

restrictions of the same lines of π.

Proof. (i) We prove the first claim by showing that if Lαj = Lγj then Lαj−1 = Lγj−1. The result then

follows for all j ≤ i by induction. In the cases j = 0 and j = 1, this is trivially true, since

πα0 = πγ0 = π and Lα0 = Lγ0 = ⊥.
There is a unique path in π from Lαj = Lγj to the root of the proof. Furthermore, since

Lαj ≺π Lαj−1 and Lγj ≺π L
γ
j−1, both Lαj−1 and Lγj−1 lie on this path. Towards a contradiction,

assume Lαj−1 6= Lγj−1, and so without loss of generality assume Lαj−1 ≺π L
γ
j−1.
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Since Lγj = Lαj �π Lαj−1 ≺π Lγj−1 , the restricted proof πγj−1 must contain Lαj−1, and

hence πγj−2 contains Lαj−1. The assignment γ|j−1 ∪ Sπ(γ)|j−2 which falsifies Lγj−1 is also a

total assignment to Lαj−1. If Lαj−1 evaluates to > under this assignment, then Lαj−1 and all its

predecessors would not appear in πγj−1, contradicting the choice of Lγj = Lαj � Lαj−1. Instead,

Lαj−1 evaluates to ⊥, contradicting the choice of Lγj−1 as the first instance of ⊥ in the restriction

of πγj−2. We therefore conclude that Lαj−1 = Lγj−1.

(ii) We proceed by induction on i. In the case i = 0, πα0 = πγ0 = π, so the property holds.

If Lαi = Lγi , by (i) we have that Lαi−1 = Lγi−1, so the restricted proofs παi−1 and πγi−1 contain

restrictions of the same lines of π. Suppose now that there is some line L such that, without loss

of generality, L ∈ παi but L 6∈ πγi . Since L ∈ παi−1, L ∈ πγi−1 and so there must be some line L′

such that L �π L′ ≺π Lγi−1 satisfying L′[γ|i ∪ Sπ(γ)|i−1] = >, since this is the only way that

L could fail to appear in πγi . Moreover, we have L �π L′ ≺π Lγi = Lαi , else Lγi would have

been removed from πγi .

Since γ|i ∪ Sπ(γ)|i−1 is a total assignment to the variables of L′, we have that α|i ∪ Sπ(α)|i−1
is also a total assignment to the variables of L′. However, since L′ ≺π Lαi , it must be the

case that L′[α|i ∪ Sπ(α)|i−1] = >, else this would contradict the choice of Lαi . However, if

L′[α|i∪Sπ(α)|i−1] = >, then we cannot have L ∈ παi , since any path from Lαi to L in π would

pass through L′. This contradicts the choice of L, so no such L exists. It follows that for any

line L ∈ π, L ∈ παi if and only if L ∈ πγi . ut

The properties shown in Lemma 7.11 allow us to compute which lines of π are in the proofs

παj for any j ≤ i when given no information about an assignment α other than Lαi . As a result, we

denote by πLi the set of lines of π in the restricted proof whenever L is chosen at the ith round.

Being independent of any assignment α, we give such a construction of πLi . It is prudent to observe

that, formally, πLi must be considered as a subset of lines of π, since even if Lαi = Lγi = L, the

lines in πLi will be restricted by different assignments in παi and πγi

Lemma 7.12. Let π be a tree-like P+∀red refutation of a QBF Φ. For any L ∈ π and 0 ≤ i ≤ n,

πLi = {L′ �π L | var(M) 6⊆ {x1, . . . , xi, u1, . . . , ui−1} for all L′ �π M ≺π L}

Proof. Let α be some assignment such that Lαi = L. If i = 0, πα0 = π. For every line L′ ∈ π, it is

clear that L′ �π Lα0 since Lα0 is the root of the proof. Moreover, every other line in M ∈ π with

M 6= Lα0 contains a variable, so var(M) 6⊆ ∅, and πLi = π.

We proceed by induction on i. Since παi is a restriction of παi−1, it is clear that πLi ⊆ πLi−1.

Moreover, since all lines in παi are predecessors of Lαi = L, we see that

πLi ⊆ {L′ �π L | var(M) 6⊆ {x1, . . . , xi−1, u1, . . . , ui−2} for all L′ �π M ≺π L}.

Aside from restricting only to the predecessors of Lαi , the only other lines removed from παi−1
to give παi are those lines which restrict to > under the assignment α|i ∪ Sπ(α)|i−1 and their
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predecessors. Any such line M must satisfy var(M) ⊆ {x1, . . . , xi, u1, . . . , ui−1}, and all lines

M ≺π L satisfying this property must restrict to > under α|i ∪ Sπ(α)|i−1, else they would restrict

to ⊥, contradicting the choice of Lαi = L. The definition of πLi follows. ut

The normal form for the dag-like Frege +∀red and eFrege +∀red systems used circuits comput-

ing universal winning strategies that had been constructed in polynomial time from a Frege +∀red

or eFrege +∀red refutation. However, the algorithm used to construct these circuits is that given

in [19], which need not construct circuits computing the same winning strategy as the round-based

strategy extraction algorithm. To give a normal form for tree-like proofs, we therefore begin by

extending this strategy extraction result to show that in the case of a tree-like Frege +∀red or eFrege

+∀red proof, we can construct circuits computing the winning strategy defined by the round-based

strategy extraction algorithm in Algorithm 3.

Lemma 7.13. Let π be a tree-like Frege +∀red (resp. tree-like eFrege +∀red) refutation. There are

formulas (resp. circuits) Ci with inputs {x1, u1, . . . , xi} of size O(|π|2) computing the strategy for

ui extracted from π by the strategy extraction algorithm in Algorithm 3.

Proof. As for the construction of strategies in Theorem 3.5, we aim to construct small decision lists

for the variables ui with circuits in NC1 or P/poly respectively. From such a decision list, it is

straightforward to construct a circuit in NC1 or P/poly respectively computing the same function

as the decision list, with size polynomial in that of the decision list.

For a line L ∈ π such that var(L) ⊆ {x1, u1, . . . , xi}, we inductively construct conjunctions

CLi in which all conjuncts are lines of π with all variables left of ui, or negations of such lines. We

further ensure that CLi is a sufficient and necessary condition that the strategy extraction algorithm

selects L in the ith round. We can then use these conjunctions in our decision list.

Define C⊥0 = >, since Lα0 is always the root of the proof for any assignment α. For i > 0,

there is a unique line M which must be selected at round i− 1 in order to select L in the ith round

(Lemma 7.11 (i)). Specifically, the line M is the first of L or its descendants to have all variables

left of ui−1. To choose L at the ith round, the assignment must therefore satisfy CMi−1.

Having chosen M at round i − 1, the proof is now restricted to the lines πMi−1. To choose

L at round i, the algorithm must verify that L restricts to ⊥ under the current assignment, and

that no lines appearing before L in πMi−1 restrict to ⊥. Since πMi−1 has already removed any lines

whose variables are all left of ui−1, and hence these were checked in CMi−1, it remains only to

check those lines of πMi−1 which appear before L and whose rightmost variable is either ui−1 or xi
and verify they evaluate to true. The set of lines the algorithm considers at this round is therefore

LLi = {L′ ∈ πMi−1 | L′ <π L, 2i− 2 ≤ lv(L) ≤ 2i− 1}, which can be computed efficiently. This

gives us the conjunction

CLi = CMi−1 ∧
∧

L′∈LLi

L′ ∧ ¬L. (3)
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For each line L ∈ π with variables left of ui, we can add to the decision list for ui the line

if CLi then bL, else ...

where bL is the value assigned to ui by the round-based strategy extraction algorithm if L is the line

at the root of παi . By our construction of CLi , it is clear that this decision list computes the same

strategy for ui as that computed in Algorithm 3.

To verify that the size of the decision list is O(|π|2), observe first that the decision list for ui
contains at most one line for each line in π, so the number of lines in the decision list is at most |π|.
The conjunction CMi−1 is a conjunction only of lines with level at most 2i− 3, and to construct CLi ,

only lines with level 2i − 2 or 2i − 1 are added. Each line therefore appears at most once in the

conjunction CLi , and hence |CLi | = O(|π|). The size of the resulting decision list, and therefore the

size of the circuit constructed from it, is O(|π|2). ut

Having demonstrated the existence of small circuits computing our desired winning strategy, we

can now use these circuits to define the normal form for tree-like Frege +∀red and eFrege +∀red

proofs which we use to give our characterisation. This normal form is based on that used in [30] and

in Chapter 6 to characterise proofs in dag-like Frege +∀red and eFrege +∀red, and other weaker

systems.

We begin in the same way, using the fact that the circuits Ci compute a winning strategy for

the universal variables to derive the line
∨n
i=1(ui 6↔ Ci). However, rather than deriving it only

once, we derive a copy of this line for each response β in the range of the strategy computed by

the circuits Ci. The normal form proceeds similarly to before, reducing each uj according to the

response associated with that line. We can then combine lines whose responses first differ on uj in

order to derive a copy of
∨j−1
i=1 (ui 6↔ Ci) for each response to the variables u1, . . . , uj−1, finally

deriving the empty disjunction after reducing u1.

We formally define this normal form in Definition 7.14, and Theorem 7.15 proves that we can

efficiently transform any tree-like Frege +∀red or eFrege +∀red proof into a proof in this normal

form.

Definition 7.14. Let Φ = Π ·φ be a QBF, and let the circuits Ci compute a winning universal

strategy for the universal variables ui. Define S : 〈X 〉 → 〈U〉 to be the strategy computed by

the Ci, with rng(S) = {β1, . . . , βs}. Since the Ci form a winning strategy for Φ, it is clear that∧n
i=1(ui ↔ Ci) |= ¬φ and so φ |=

∨n
i=1(ui 6↔ Ci).

A proof in the normal form begins by deriving (propositionally)
∨n
i=1(ui 6↔ Ci) ∨ ¬βj for

each 1 ≤ j ≤ s, where ¬βj is the disjunction of those literals falsified by βj . Each such line is

then ∀-reduced by the substitution un/βj(un). The lines
∨n−1
i=1 (ui 6↔ Ci) ∨ ¬βj |n−1 can then be

constructed either by propositional inference from a single line if βj is the unique extension of

βj |n−1 in rng(S), or by combining lines corresponding to the two extensions of βj |n−1 otherwise.

Repeating this process for each of the universal variables from un to u1 results in a derivation of ⊥.
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Given a tree-like proof π, Lemma 7.13 provides suitable circuits of size |π|O(1) which compute

a strategy S with | rng(S)| ≤ |π|. Using these circuits Ci in the normal form, we can now transform

any tree-like proof into this normal form with only a polynomial increase in size.

Theorem 7.15. Let Φ = Π ·φ be a QBF, and π be a tree-like Frege +∀red (respectively tree-like

eFrege +∀red) refutation of Φ. There is a tree-like Frege +∀red (respectively tree-like eFrege +∀red)

refutation of Φ in the form of Definition 7.14 with size |π|O(1).

Proof. For the circuits Ci, we use the circuits constructed from π in Lemma 7.13. By their con-

struction, these circuits have size |π|O(1), and Lemma 7.3 ensures that the corresponding strategy

S computed by the Ci satisfies | rng(S)| ≤ |π|. Since dag-like and tree-like propositional Frege

systems are equivalent [75], it remains only to show that each of the propositional inferences

described in Definition 7.14 can be done using a dag-like Frege derivation of size |π|O(1).

To first derive
∨n
i=1(ui 6↔ Ci) ∨ ¬β for some β ∈ rng(S), we construct from π a proof that

φ ∧ β ∧
∧n
i=1(ui ↔ Ci)→ ⊥, which can be straightforwardly transformed into the derivation we

require. To do so, we derive for each line L ∈ π the line ¬CL, where CL = ¬CLj , and j is the least

such j for which CLj is defined, i.e. j is minimal such that var(L) ⊆ {x1, u1, . . . , xj}. Since the

C⊥0 = >, we observe that ¬C⊥0 = ⊥, so this is indeed a derivation of ⊥.

We first note that if we have derived ¬CM for each M <π L, then it is sufficient to derive (a

subclause of) ¬CLi for any i such that CLi is defined. The disjunction ¬CLi = ¬CL ∨
∨
k ¬Mk

where the lines Mk ≺π L are those lines checked by the algorithm between choosing L at the first

round j in which it can be chosen, as must be the case by Lemma 7.11, and choosing L at round i.

Each line Mk ∈ πLj , and so by the definition of πLj given in Lemma 7.12, in order to choose Mk at

any given round, L must previously have been chosen at the jth round. In particular, this means that

each CMk is of the form CL ∧M1 ∧ · · · ∧Mk−1 ∧ ¬Mk, and so each instance of ¬Mk in CLi can

be ‘resolved’ away in turn using ¬CMk to obtain ¬CL. Clearly k < |π| and hence this requires size

|π|O(1).

We can now derive each ¬CL by induction on the order lines appear in the proof.

– Suppose L is derived in π as an axiom. In this case, L appears as a clause in φ and can be

introduced as an axiom. The definition of CLj in (3) ensures that L appears as a disjunct in ¬CLj ,

so ¬CL can be derived by weakening from L.
– Suppose L is derived from L′ by a ∀-reduction on ui which agrees with β, i.e. the ∀-reduction

ui/β(ui). Choosing either L or L′ at round i+ 1 requires choosing L at round i. As a result, if

CLi+1 is of the form C ∧L′∧¬L for some conjunction of lines C, then CL
′

i+1 = CL
′

= C ∧¬L′.
Using β, there is a short derivation of L = L′[ui/β(ui)] from L′, and so from ¬CL′ = ¬C ∨L′

we can derive ¬C ∨ L, which is a subclause of ¬CLi+1, in linear time.
– Suppose L is derived from L′ by a ∀-reduction on ui which does not agree with β. We can

then derive a contradiction from β ∧ (ui ↔ Ci), CLi and the previously derived lines ¬CM

for M <π L. The circuit Ci is constructed from a decision list, so if each CM is false but

CLi is true, it requires O(|Ci|) lines to evaluate the decision list line by line and conclude that
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Ci 6↔ β(ui). From this, a contradiction can easily be derived using β ∧ (ui ↔ Ci). This can be

transformed into a short derivation of ¬CLi from β ∧ (ui ↔ Ci) and the lines ¬CM .

– Suppose L is derived by a propositional rule from L1 and L2, with var(L1) ⊆ {x1, u1, . . . , xl}
and the rightmost variable of L2 being ul−1 or xl, so CL2 = CL2

l . Without loss of generality,

we assume that the ordering of lines in π has been chosen such that L1 <π L2 and that L is the

next line derived after L2 – the lines of π can always be ordered in this way in a tree-like proof.

Choose the conjunction C such that CL2 is of the form C ∧ ¬L2.

Until choosing L1, the paths chosen for L1 and L2 are identical, so apart from ¬L1, all

conjuncts in CL1 appear in CL2 , that is, CL1 = D ∧ ¬L1 where all conjuncts in D appear in

C. It is clear that var(L) ⊆ {x1, u1, . . . , xl} and so by the choice of ordering on lines of π,

CLl = C ∧ L2 ∧ ¬L. We can therefore derive from ¬CL1 = ¬D ∨ L1 and ¬CL2 = ¬C ∨ L2

the line ¬C ∨ L, a subclause of ¬CLl by a single propositional step.

Having now derived the line
∨n
i=1(ui 6↔ Ci) ∨ ¬β for each response β ∈ rng(S), we now

consider the deduction of ⊥ from these axioms. The lines (ui ↔ β(ui)) ∧ (ui ↔ Ci) is equiv-

alent to Ci ↔ β(ui). If β|j−1 has two possible extensions on uj in rng(S), a derivation of∨j−1
i=1 (ui 6↔ Ci) ∨ ¬β|j−1 from the corresponding lines for the two extensions requires only prov-

ing that Cj ∧ ¬Cj |= ⊥, for which there is a Frege proof of size O(|Cj |).

In the case where there is a unique extension of β|j−1 to β|j in rng(S), it suffices to derive

(Cj ↔ β(uj)) from
∧j−1
i=1 (Ci ↔ β(ui)). Each conjunction CLi defines not only a response on

ui, but a response on the variables u1, . . . , ui, as CLi specifies which lines were picked at each

round. We therefore construct for each i in turn the disjunction of those CLi which correspond to

the response β|i. This can be achieved in size |Ci|O(1) at each stage, deriving from each CMi−1 the

disjunction of those CLi for which choosing L at the ith round agrees with β and requires choosing

M at round i− 1.

For eachCLj−1 in the final disjunction, there is a |Cj |O(1)-size proof thatCLj−1 |= (Cj ↔ β(uj)),

by comparing CLj−1 with each line in the decision list for uj and showing that each line in the

decision list which would return ¬β(uj) is falsified by CLj−1.

For each 1 ≤ j ≤ n, we can therefore derive the line
∨j
i=1(ui 6↔ Ci) ∨ β|j for all β ∈ rng(S),

concluding with the empty conjunction. ut

The question of showing superpolynomial lower bounds on the size of tree-like Frege +∀red

proofs is therefore equivalent to showing such lower bounds on proofs in the normal form of

Definition 7.14. We use this to provide a characterisation of such lower bounds similar to that shown

for dag-like Frege +∀red and eFrege +∀red in [30] (Theorem 6.2).

Theorem 7.16. Each of the following is sufficient to give a superpolynomial lower bound on

tree-like Frege +∀red (resp. tree-like eFrege +∀red) proofs:

1. a propositional lower bound on Frege (resp. eFrege);

2. a lower bound on strategy size;
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3. a lower bound on NC1 (resp. P/poly) circuits computing S for any winning strategy S with

polynomial-size range.

Moreover, any superpolynomial lower bound on tree-like Frege +∀red (resp. tree-like eFrege +∀red)

is due to one of the above lower bounds.

Proof. We focus on the case for Frege +∀red; the eFrege +∀red case is analogous. First, we observe

that each of items 1 to 3 is sufficient to give a superpolynomial lower bound.

For item 1, a lower bound for (tree-like) Frege proofs of propositional formulas φn implies a

tree-like Frege +∀red lower bound for the existentially quantified version of φn.

For item 2, if Φn is a sequence of QBFs for which there is a superpolynomial lower bound on

ρ(Φn), then Theorem 7.6 gives the same lower bound on the size of a tree-like Frege +∀red proof

of Φn.

For item 3, let Φn be a sequence of QBFs such that ρ(Φn) is small, but there are no polynomial-

size circuits in NC1 computing a universal winning strategy with small range. By Lemma 7.13, we

can extract from any tree-like Frege +∀red proof π circuits of size |π|O(1) which compute a winning

strategy S with | rng(S)| ≤ |π|. This is sufficient to provide a superpolynomial lower bound on |π|.
To argue that any lower bound for tree-like Frege +∀red arises from at least one of the reasons

above, assume that Φn is a sequence of QBFs which are hard for tree-like Frege +∀red, but for

which neither item 2 nor item 3 holds. Since neither of these hold, there exist circuits Ci with size

polynomial in n computing a strategy S such that | rng(S)| is also polynomial in n. We can use these

circuits to construct a tree-like Frege +∀red proof π of the normal form given in Definition 7.14.

Since |Ci| and | rng(S)| are polynomial, any lower bound on |π| is due to a propositional lower

bound on one of the propositional subderivations in π. ut

Observe that (1) and (3) from Theorem 7.16 are nearly identical to the characterisation of lower

bounds on dag-like Frege +∀red and eFrege +∀red in Theorem 6.2. If a tree-like Frege +∀red

lower bound falls only under (3), it is straightforward to modify the formulas to force the universal

player’s response to belong to rng(S) for some universal winning strategy S with a polynomial-size

range. The circuit lower bound in (3) can then be translated into a lower bound on any circuits

computing a universal winning strategy, giving a lower bound for dag-like Frege +∀red as well.

The key consequence of Theorem 7.16 therefore is as follows: not only does strategy size

provide a simple method for producing tree-like Frege +∀red lower bounds, it is also the only way

to show such lower bounds which does not also entail showing a lower bound for dag-like Frege

+∀red, a major open problem in QBF proof complexity.
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Chapter 8

Size, Cost and Capacity: a lower bound
technique for P+∀red systems

We have seen that we can obtain lower bounds for P+∀red QBF proof systems via lower bounds on

the propositional proof system P, or via circuit lower bounds using a strategy extraction algorithm.

However, some lower bounds shown for Σp
1-QU-Res, such as the formulas KBKFdn, do not fall

into either of these categories. In Chapter 7, we introduced an alternative round-based strategy

extraction method from [53, 62], consisting of restricting the proof by existential assignments and

reading off a universal response from the ∀-reduction steps. This algorithm can be extended to work

with blocks of variables rather than individual variables. We use this strategy extraction algorithm

to give a new technique for proving P+∀red lower bounds, distinct from circuit lower bounds or

propositional lower bounds.

The two key notions needed are that of the cost of a QBF and the capacity of a proof. The cost

of a QBF is the number of different responses the universal player requires on a block of universal

variables in any winning universal strategy. Conversely, the capacity of a proof is the largest number

of universal responses that can be extracted from a single line of the proof by the round-based

strategy extraction algorithm. By formalising these notions, it is clear that if a proof of a QBF has

small capacity, but the QBF has large cost, then the proof must be large in order for a suitably large

number of responses to be extracted.

By showing an upper bound on the capacity of any proofs in the proof systems of QU-Res,

and QBF versions of the propositional systems of Cutting Planes and Polynomial Calculus, we can

therefore show lower bounds for these proof systems simply by proving a lower bound on the cost

of a QBF. To exemplify such lower bounds via large cost, we use the equality formulas of [18].

We further show the applications of cost and capacity by showing lower bounds for the formulas

KBKFdn using this method, despite these formulas themselves not requiring large cost.

Unfortunately, not all proof systems admit lower bounds via large cost alone. Some proof

systems, such as Frege +∀red, can have small proofs with large capacity. We also provide an

example of such an algebraic proof system, in the form of a QBF version of the Ideal Proof
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System (IPS) [64], which p-simulates Frege +∀red. To do this, it is first necessary to present IPS as

a line-based proof system. We can then provide short proofs of the equality formulas in this proof

system. Finally, we show that this proof system nonetheless admits strategy extraction by algebraic

circuits. Limiting these circuits to the relatively restrictive non-commutative formulas still allows a

simulation of Frege +∀red, and so provides a potential algebraic approach to Frege +∀red lower

bounds.

We first introduce the measures of cost and capacity, and prove the Size-Cost-Capacity theorem,

in Section 8.1. Sections 8.2 and 8.3 introduce the Cutting Planes and Polynomial Calculus proof

systems respectively, and prove capacity upper bounds for the QBF versions of these systems.

In Section 8.4 we use Size-Cost-Capacity to provide a new proof of lower bounds for KBKFdn.

Lastly, we introduce the algebraic system IPS in Section 8.5, the QBF version of which can have

proofs with large capacity.

8.1 The Size-Cost-Capacity theorem

We consider QBFs of the general form ∃X1∀U1 . . . ∃Xn∀Un∃Xn+1 ·φ, where each Xi and Ui are

pairwise disjoint sets of variables; X1 or Xn+1 may be empty. It is clear that all PCNFs are of this

form, as we can combine any adjacent blocks with the same quantifier. Similarly to Chapter 7, we

denote by α|i the restriction of an assignment α ∈ 〈X〉 to the domain
⋃i
j=1Xj , and analogously

define β|i for β ∈ 〈U〉.2

In this chapter, we concern ourselves in particular with the behaviour of winning strategies on

an individual block. Given a universal strategy S : 〈X 〉 → 〈U〉, define Si : 〈X1, . . . , Xi〉 → 〈Ui〉
to be the projection of the strategy S to the single universal block Ui.

In order to leverage the round-based strategy extraction to provide lower bounds on the size

of dag-like proofs, we wish to compare the complexity of winning strategies for the QBF with the

complexity of a strategy which can be extracted from an individual line of a proof. We therefore

define two terms measuring these properties of a QBF and a proof respectively.

Cost The first measure we define is cost. The cost of a false QBF is a measure of the number of

responses needed on a single block in order to construct a universal winning strategy.

Definition 8.1 (cost). If S is a winning universal strategy for a false QBF Φ, define cost(S) =

max{| rng(Si)| | i ∈ [n]}. We can then define the cost of Φ as

cost(Φ) = min{cost(S) | S is a winning universal strategy for Φ}.

Cost bears similarities to strategy size (Definition 7.4) in that both count the minimum number

of responses in a universal winning strategy. The important distinction between cost and strategy

size is that cost depends on the number of universal responses to a single block, whereas strategy

2 Recall that 〈X 〉 is the set of all Boolean assignments to the variables of X , i.e. all functions X → {0, 1}.
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size looks at responses across all blocks. This difference is made clear in the QBFs KBKFn. Since

the only winning strategy for KBKFn is to play ui = y′i , KBKFn has strategy size 2n. On the

other hand, each universal block in KBKFn consists of a single universal variable, for which there

are only two possible assignments. Both assignments are required, so cost(KBKFn) = 2.

It is clear that for any QBF Φ, cost(Φ) ≤ ρ(Φ). Nevertheless, it is relatively straightforward to

find QBFs with large cost. By way of example, we give the equality formulas from [18].

Definition 8.2 (Beyersdorff, Blinkhorn, Hinde [18]). The equality formulas are the QBFs

EQ(n) := ∃x1 . . . xn∀u1 . . . un∃t1 . . . tn ·

(
n∧
i=1

(xi ∨ ui ∨ ¬ti) ∧ (¬xi ∨ ¬ui ∨ ¬ti)

)
∧

n∨
i=1

ti.

The equality formulas are evidently false, as the universal player can win by playing ui = xi

for each i ∈ [n], ensuring the restricted matrix contains ¬ti for each i ∈ [n]. Indeed, this is the only

possible winning strategy for the universal player, since playing any uj = ¬xj allows the existential

player to win by playing tj = 1 and ti = 0 for i 6= j. The only winning strategy for EQ(n) has

exponential cost, and hence so does the QBF EQ(n).

Lemma 8.3 (Beyersdorff, Blinkhorn, Hinde [18]). The QBFs EQ(n) have cost 2n.

Capacity The other measure we define is the capacity of a proof. In [18], capacity is defined by

introducing the notion of a response map for a line, and considering the range of these response

maps. The definition we give here via response sets is equivalent, and is more convenient for the

proof we give of Theorem 8.7.

Definition 8.4. Let L be a line with the rightmost variables in L belonging to U for some universal

block U , and let X = var(L) \U . A response set for L is a setR ⊆ 〈U〉 such that for any α ∈ 〈X〉,
either L[α] is a tautology or there is some β ∈ R such that L[α ∪ β] = ⊥.

Note that the responses in a response setR assign all variables of the block U , including those

not in var(L). This does not affect the size of a response set, as we can assume that all responses in

such a response set assign variables in U \ var(L) to 0. RequiringR to be a subset of 〈U〉, rather

than a subset of 〈U ∩ var(L)〉, ensures that a response set represents the universal response on the

entire block rather than just on the variables of L.

Roughly speaking, the capacity of a line L is the minimum number of different responses in

〈U〉 that the universal player requires in order to be able to falsify L whenever possible. We can

define this formally as the size of the smallest response set for L. The capacity of a proof is then the

maximum of the capacity of its lines.

Definition 8.5 (capacity). Let L be a line. If the rightmost variables in L are existentially quan-

tified, define capacity(L) = 1. If the rightmost variables in L are universal, then capacity(L) =

min{|R| | R is a response set for L}. For a P+∀red proof π, define

capacity(π) = max{capacity(L) | L ∈ π}.
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Notice that capacity is a property of an individual proof, rather than a proof system. Despite this,

it is still possible to show bounds on the capacity of proofs in certain proof systems. As an example,

we consider QU-Res. Given a clause C, the only response needed by the universal player in a

response set is one falsifying all literals in the rightmost block of C. All QU-Res proofs therefore

have capacity 1.

Lemma 8.6 (Beyersdorff, Blinkhorn, Hinde [18]). For any QU-Res refutation π of any false

QBF, capacity(π) = 1.

The Size-Cost-Capacity theorem We now have everything required to give our lower bound on

the size of P+∀red proofs. Since the lower bound is in fact a lower bound on the total size of the

∀-reduction steps, we work with Σp
1-P+∀red, as this both simplifies the proof, and demonstrates

that lower bounds proved in this way are ‘genuine’ QBF lower bounds. Clearly all such lower

bounds are also lower bounds for P+∀red.

Theorem 8.7 (Size-Cost-Capacity). Suppose π is a Σp
1-P+∀red refutation of a false QBF Φ.

Then

|π| ≥ cost(Φ)

capacity(π)
.

To prove the Size-Cost-Capacity theorem, we first prove two lemmas. The first of these is to

show that given a response set for a line L, the ∀-reductions of L by these responses allow us to

infer propositionally anything we could infer from L. This allows us to restrict ∀-reductions in

Σp
1-P+∀red refutations to only responses from corresponding response sets without a large increase

in proof size.

Lemma 8.8. Let L be a line in a Σp
1-P+∀red refutation π such that the rightmost variables in L

are universally quantified in some block U , and let RL = {β1, . . . , βk} ⊆ 〈U〉 be a response set

for L. Any line L′ ∈ π with L as a parent can be derived propositionally from L[β1] ∧ · · · ∧ L[βk]

and the other parents of L′.

Proof. First suppose that L′ is derived from L in π by a ∀-reduction step, so L′ = L[β′] for some

partial assignment β to the variables of U . We require that L[β1] ∧ · · · ∧ L[βk] |= L′. For any

assignment α ∈ 〈X〉 satisfying L[β1] ∧ · · · ∧ L[βk], L[α ∪ βj ] = > for all i ∈ [k]. Since RL is

a response set for L, this can only be the case if L[α] is a tautology. Since L[α] is a tautology,

certainly L[α ∪ β′] = L′[α] is true.

In the case where L′ is derived propositionally from L∧ F for some conjunction of lines F , the

argument is similar, as L[β1] ∧ · · · ∧ L[βk] is only satisfied by assignments α such that L[α] is a

tautology. ut

Lemma 8.8 shows that we can limit ∀-reduction to assignments in a response set while maintain-

ing the completeness of Σp
1-P+∀red. If response sets are small, we can do so while only increasing

the size of Σp
1-P+∀red proofs by a small factor. The advantage of ensuring that response sets assign
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all variables in a block is that proofs in which all ∀-reductions are assignments to an entire block

admit a round-based strategy extraction algorithm (Algorithm 4).

This strategy extraction algorithm is identical to stratex(π, α) (Algorithm 3) in almost all

respects. The difference is that where stratex(π, α) assigned a single existential variable and a

single universal variable at each round, instead an entire block of existential or universal variables

are assigned at each round. To construct the universal response, the algorithm’s response on Ui is γ

if the line Lαi is derived by a ∀-reduction Ui/γ, otherwise it is some constant response from 〈Ui〉,
e.g. the all-zero assignment.

Algorithm 4 The round-based strategy extraction algorithm
function blockstratex(π,α)

πα0 ← π
β ← ∅
for 1 ≤ i ≤ n do

παi ← παi−1[α|Xi ∪ β]
Lαi ← root(παi )
if Lαi is derived by a ∀-reduction γ ∈ 〈Ui〉 then

β ← β ∪ γ
else

β ← β ∪ {u/0 | u ∈ Ui}
return β

Lemma 8.9. Suppose π is a Σp
1-P+∀red refutation of some false QBF Φ such that every ∀-reduction

step is a ∀-reduction by some assignment α ∈ 〈Ui〉 for some universal block Ui, i.e. any ∀-reduction

step is a ∀-reduction by a total assignment to a block. Then the strategy Sπ : 〈X 〉 → 〈U〉 defined by

Sπ(α) = blockstratex(π, α) is a winning strategy for Φ.

This is only a minor extension to the soundness of the original round-based strategy extraction

algorithm which considers each variable individually. The proof presented here is similar to that

in [62] and [53], but here we also verify that the same algorithm can be applied to Σp
1-P+∀red

refutations, rather than Q-Res and LD-Q-Res.

Proof. In a Σp
1-P+∀red refutation, we assume all lines are derived either by a ∀-reduction step or

by a Σp
1-derivation. It is clear from the construction of Sπ that Sπ is a universal strategy, in that

the response on Ui depends only on the variables in X1, . . . , Xi. We need only show that Sπ is a

winning strategy. We show this by induction on the number of blocks of variables in Φ, by proving

that παi is a Σp
1-P+∀red refutation of Φi = Φ[α|Xi ∪ Sπ(α)|Ui−1 ] for all i ∈ [n].

In the case i = 0, πα0 = π is a Σp
1-P+∀red refutation of Φ0 = Φ. Now assume that παi−1 is a

Σp
1-P+∀red refutation of Φi−1.

The leftmost block in Φi−1 is Ui−1. Since παi−1 is the restriction of some larger Σp
1-P+∀red

proof, the root of παi−1 is the first instance of ⊥ in παi−1. In particular, other than deriving ⊥, there
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can be no instances of ∀-reduction on Ui−1 in παi−1. The result of any ∀-reduction on Ui−1 contains

no variables in Ui−1 or to the right of Ui−1. Since the root of παi−1 is the only instance of ⊥, and

any instances of > are removed upon restricting, no such lines exist.

If the root is derived by a ∀-reduction step assigning γ ∈ 〈Ui−1〉, παi−1[γ] is a sound Σp
1-P+∀red

refutation of Φi−1[γ] since the line preceding the root restricts to ⊥, and there are no other ∀-
reduction steps on Ui−1 in π. If the root is derived by a Σp

1-P+∀red deduction step, then παi−1
contains no ∀-reduction steps on Ui−1, so παi−1[γ] is clearly a sound refutation of Φi−1[γ]. Since

Sπ(α)|Ui−2 ∪ γ = Sπ(α)|Ui−1 by definition of Sπ, we have παi−1[Sπ(α)|Ui−1 ] is a refutation of

Φi−1[Sπ(α)|Ui−1 ].

Now, observe that since both Σp
1-derivation steps and ∀-reduction steps remain sound under a

restriction to any existential variables, παi−1[Sπ(α)|Ui−1 ∪ α|Xi ] = παi is a Σp
1-P+∀red refutation

of Φi−1[Sπ(α)|Ui−1 ∪ α|Xi ] = Φi. If other propositional deduction rules were used other than

Σp
1-derivation, the proof would be sound in the sense that each line would still follow semantically

from its parents, but depending on the proof system P, this may not be an instance of a deduction

rule of P. Nevertheless, such a deduction can be performed by a Σp
1-derivation, so παi can be

considered as a Σp
1-P+∀red refutation of Φi.

Repeating this process until Φk contains no universal variables, results in a sound Σp
1-P+∀red

refutation παk of the Σb
1-formula Φk. Since παk is sound, Φk is false and the empty strategy is a

winning strategy for the universal player. If Φk = Φ[α|Xk ∪ Sπ(α)] is an unsatisfiable Σb
1-formula,

then certainly Φ[α ∪ Sπ(α)] = ⊥, and so Sπ is a winning universal strategy. ut

We now use these two results to prove the Size-Cost-Capacity theorem (Theorem 8.7).

Proof (of Theorem 8.7). Given a Σp
1-P+∀red refutation π of Φ, we construct a new Σp

1-P+∀red

refutation π′ such that the number of ∀-reductions in π′ is at most capacity(π) · |π|. Since all

∀-reductions in π′ will reduce by an assignment to an entire block, we can then construct a strategy

S using Algorithm 4. The lower bound then follows since cost(S) ≥ cost(Φ).

Let π be a Σp
1-P+∀red refutation of Φ. For each line L ∈ π in which the rightmost variables are

universal, pick some response setRL for L such that |RL| = capacity(L). In particular, for each

suitable line L, |RL| ≤ capacity(π).

We now construct the proof π′ by considering each line in π in order. For each line L ∈ π, if the

rightmost variables in L are existentially quantified, or if var(L) = ∅, we do nothing. Otherwise,

the line L has a response setRL = {β1, . . . , βk}. We include in π′ the lines L[β1], . . . , L[βk], each

derived by ∀-reduction from L. For any line of π which is derived from L by a deduction rule

of Σp
1-P+∀red, this deduction step is replaced in π′ by a Σp

1-derivation, replacing L in the set of

antecedents with some subset of L[β1], . . . , L[βk]. This is always a sound Σp
1-derivation step by

Lemma 8.8. We refer to the line L and the additional lines L[β1], . . . , L[βk] as the response tree for

L.

For each line L ∈ π, the response tree for L has |RL| ≤ capacity(π) leaves. Observe that all

∀-reduction steps in π′ occur as a leaf of the response tree for L for some L ∈ π, and hence the
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number of ∀-reduction steps in π′ is at most capacity(π) · |π|. Moreover, any ∀-reduction in π′ is

a reduction by an assignment to an entire block. For such a proof, we see from Lemma 8.9 that

we can apply the round-based strategy extraction algorithm described in Algorithm 4 to obtain a

winning universal strategy for Φ.

Let S be the winning universal strategy constructed by this round-based strategy extraction

algorithm on π′, i.e. S(α) = blockstratex(π′, α). Observe that for each line L ∈ π′ and for each

universal block Ui, there is a unique response returned if L is chosen at the ith round. If L is derived

by a ∀-reduction on Ui from some line L′ ∈ π, then L is of the form L′[β] for some β ∈ 〈Ui〉 and

the response returned is β. Otherwise, the response returned is some fixed constant response, which

can be chosen to be identical to some other response appearing in a ∀-reduction step on Ui.

It is therefore clear that for any block Ui, | rng(Si)| is at most the number of distinct ∀-reductions

in π′, so | rng(Si)| ≤ capacity(π) · |π|. However, since S is a universal winning strategy for Φ,

there is some i such that | rng(Si)| ≥ cost(Φ) and hence cost(Φ) ≤ capacity(π) · |π|. We conclude

that |π| ≥ cost(Φ)
capacity(π) . ut

Since the Size-Cost-Capacity theorem provides lower bounds for Σp
1-P+∀red, it is clear that any

lower bounds arising this way are ‘genuine’ QBF lower bounds, and do not arise due to propositional

hardness. We can see this explicitly, and prove the lower bound for P+∀red directly, by observing

that in the construction of π′ in our proof, it would be sufficient to replace the line L by its response

tree if and only if the line L is ∀-reduced in the proof. The number of ∀-reduction steps is then

increased by only a factor of capacity(π) and the lower bound on |π′| is in fact a lower bound on

the number of ∀-reduction steps in π′.

Given the capacity upper bound for QU-Res (Lemma 8.6), the Size-Cost-Capacity theorem

gives a simple lower bound for Σp
1-QU-Res refutations in terms of cost.

Theorem 8.10 (Beyersdorff, Blinkhorn, Hinde [18]). Let π be a Σp
1-QU-Res refutation of a

QBF Φ. Then |π| ≥ cost(Φ).

An immediate application of this lower bound is to provide an exponential lower bound on the

size of Σp
1-QU-Res refutations of the equality formulas.

Corollary 8.11 (Beyersdorff, Blinkhorn, Hinde [18]). Any Σp
1-QU-Res refutation of EQ(n)

requires size at least 2n.

Not all P+∀red proof systems have small capacity bounds. By way of example, it has been

shown that there are polynomial-size Frege +∀red refutations of the equality formulas.

Theorem 8.12 (Beyersdorff, Blinkhorn, Hinde [18]). There are polynomial-size Frege +∀red

refutations of the equality formulas EQ(n).

As a consequence of this, [18] observed that polynomial-size Frege +∀red proofs can have

large capacity. If πn is a polynomial-size refutation of EQ(n), then by Theorem 8.7, we have that
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capacity(πn) ≥ cost(EQ(n))
|πn| = 2n

nO(1) = 2Ω(n). Such capacity lower bounds can be be shown for

other systems such as AC0
3-Frege +∀red, where the equality formulas also have short proofs.

Nonetheless, the Size-Cost-Capacity theorem (Theorem 8.7) provides a general method for

proving lower bounds for several P+∀red QBF proof systems. If we can show an upper bound on

the capacity of proofs in such a proof system, Size-Cost-Capacity gives a lower bound on the size

of proofs of a QBF Φ in this system based only on cost(Φ). We now introduce several previously

studied propositional proof systems based on algebraic reasoning, and their QBF extensions, and

analyse the capacities of these proof systems.

8.2 Cutting Planes

The first such proof system we consider is Cutting Planes (CP). Inspired by integer linear program-

ming, Cutting Planes works with linear inequalities as lines. The literals x and ¬x are translated

to the linear sums x and 1 − x respectively. The requirement that each clause is satisfied is then

translated to the requirement that the sum of the literals in each clause is at least 1.

Definition 8.13. A Cutting Planes (CP) derivation [44] contains lines consisting of linear inequali-

ties a1x1+· · ·+anxn ≥ A, where x1, . . . , xn are variables, and a1, . . . , an, A ∈ Z. The derivation

rules of CP are shown in Figure 15, and a CP refutation is a CP derivation of the trivial falsity

0 ≥ 1.

Clause Axiom: ∑
l∈C R(l) ≥ 1

C a clause, R(l) = x if l = x,
R(l) = 1− x if l = ¬x

Boolean Axioms:
x ≥ 0

−x ≥ −1

for any variable x

Linear
Combination:

∑
i aixi ≥ A

∑
i bixi ≥ B∑

i(αai + βbi)xi ≥ αA+ βB
for any α, β ∈ N

Division:
∑

i caixi ≥ A∑
i αaixi ≥ d

A
c e

for any non-zero c ∈ N

Fig. 15. The derivation rules of Cutting Planes [44]

Cutting Planes can also be defined with a variation of the division rule in which all coefficients

ai are replaced by daic e, or in which any linear inequality can appear as a line, but all such definitions

are equivalent. In particular, we may sometimes refer to a linear inequality not of this form in a line,

but we assume it is translated into the form of a CP line in the proof.
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Example 8.14. Figure 16 contains one possible CP refutation of the CNF (x∨ y)∧ (¬x∨ y ∨ z)∧
(¬y ∨ z) ∧ (¬z). All constants α and β in addition steps are 1 unless labelled otherwise.

x+ y ≥ 1 (1− x) + y + z ≥ 1

−y + z ≥ 0

−z ≥ 0

2y + z ≥ 1z ≥ 0

2y + 2z ≥ 1

y + z ≥ 1

2z ≥ 1

0 ≥ 1
2

Fig. 16. An example CP proof

Considering the translation used in axiom introduction as the representation of a clause by an

inequality, it is easy to see that CP p-simulates Resolution. A resolution step corresponds to a linear

combination step adding the two inequalities representing the two clauses. Addition of Boolean

axioms and a division step are then all that is required to deduce the inequality representing the

resulting clause. The derivation of y+ z ≥ 1 from x+ y ≥ 1 and (1− x) + y+ z ≥ 1 in Figure 16

is an example of this, in this case resolving x ∨ y and ¬x ∨ y ∨ z to give y ∨ z.

It is fairly straightforward to define the QBF proof system CP+∀red by adding the ∀-reduction

rule to CP [24]. Although the lines of CP are integer linear inequalities, in order to ensure the

soundness of CP+∀red as a QBF proof system, ∀-reduction steps are limited to substituting universal

variables by either 0 or 1.

Despite CP+∀red being a strictly stronger proof system than QU-Res, since CP has short

proofs of PHPn, any CP+∀red proof still has unit capacity.

Lemma 8.15. For any CP+∀red or Σp
1-CP+∀red derivation π, capacity(π) = 1.

Proof. We need only show that for any line L ∈ π with rightmost block U , there is a response

setRL for L of size 1. Let X = var(L) \ U . Then L is of the form
∑

x∈X axx+
∑

u∈U buu ≥ c
where ax, bu, c ∈ Z for all x ∈ X,u ∈ U . For any assignment α ∈ 〈X〉, the restricted line L[α] is

therefore
∑

u∈U buu ≥ c′ for some constant c′ ∈ Z.

Define the assignment βL ∈ 〈U〉 by setting β(u) = 0 if bu ≥ 0 and β(u) = 1 otherwise.

Assigning the variables of U according to βL minimises the value of
∑

u∈U buu. If any assignment

falsifies the inequality
∑

u∈U buu ≥ c′, it must be the case that βL does so, and soRL = {βL} is a

response set for L. For every line L ∈ π, |RL| = 1 and hence capacity(L) = 1. We conclude that

capacity(π) = 1. ut
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As in the case of QU-Res, this immediately gives lower bounds for Σp
1-CP+∀red using only

cost lower bounds.

Theorem 8.16. If π is a Σp
1-CP+∀red refutation of a QBF Φ then |π| ≥ cost(Φ).

Proof. By Lemma 8.15, capacity(π) = 1; applying Theorem 8.7 immediately gives the bound

|π| ≥ cost(Φ). ut

Hence, even in the stronger proof system of CP+∀red, we still have a straightforward proof that

the equality formulas require refutations of size 2n simply by looking at the cost of the formulas.

Corollary 8.17. If π is a CP+∀red refutation of the equality formulas EQ(n), then |π| ≥ 2n.

8.3 Polynomial Calculus

Rather than using linear inequalities, Polynomial Calculus (PC) [40] has lines consisting of polyno-

mial equations over a fixed field F. As in Cutting Planes, PC translates the literal ¬x as 1− x. The

clauses of a CNF can then be treated as the assertion that the product of their literals is 0; observe

that in this context we consider 0 to be ‘true’ and 1 to be ‘false’. A proof of unsatisfiability is then a

derivation of 1 = 0 by linear combinations and multiplication by variables.

The lines in PC proofs are represented as sparse polynomials, and so the size of a PC proof

can be measured by the total number of monomials in the polynomial equations. However, the

translation of ¬x as 1− x results in even a single clause
∨n
i=1 ¬xi requiring an exponential number

of monomials. To alleviate this issue, Polynomial Calculus with Resolution (PCR) [2] introduces a

new variable x̄ as the translation of ¬x, with the additional requirement that x̄ = 1− x as an axiom.

Using these additional variables, each clause can be represented as a single monomial. We give

the definition only for the stronger system PCR; PC is defined similarly with any references to x̄

replaced by 1− x.

Definition 8.18. A Polynomial Calculus with Resolution derivation [2] contains lines of the form

q(x, x̄) = 0 where q(x, x̄) is a polynomial in the variables x = (x1, . . . , xn) and x̄ = (x̄1, . . . , x̄n)

over a fixed field F. The derivation rules of PCR are given in Figure 17, and a PCR refutation is a

derivation of the line 1 = 0.

In general, the linear combination and multiplication rules of PC and PCR are not sufficient

to allow these proof systems to be implicationally complete. However, in the instances we are

interested in, in which we can introduce the Boolean axioms forcing variables to take 0/1 values,

we do have implicational completeness [54].

Example 8.19. Figure 18 contains one possible PCR refutation of the CNF (x ∨ y) ∧ (¬x ∨ y ∨
z) ∧ (¬y ∨ z) ∧ (¬z). A similar PC refutation could be constructed by replacing instances of x̄

with (1− x).
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Clause Axiom: ∏
l ∈C V (l) = 0 C a clause, V (x) = x, V (¬x) = x̄

Boolean Axiom:
y2 − y = 0

x+ x̄− 1 = 0

y = x or y = x̄, for any variable x

Linear Combina-
tion:

p(x) = 0 q(x) = 0

αp(x) + βq(x) = 0
for any α, β ∈ F

Multiplication: p(x) = 0

y · p(x) = 0
y = x or y = x̄ for some variable x

Fig. 17. The derivation rules of Polynomial Calculus with Resolution [2, 40]

xy = 0

x̄yz = 0

ȳz = 0

z̄ = 0

x+ x̄− 1 = 0

y + ȳ − 1 = 0

z + z̄ − 1 = 0

xyz = 0

xyz + x̄yz − yz = 0xyz + x̄yz = 0

yz = 0

yz + ȳz − z = 0

yz − z = 0

z = 0 1− z = 0

1 = 0

xy + x̄y − y = 0

Fig. 18. An example PCR proof

Similarly to CP, the resolution rule can be simulated by the use of linear combination, with

some use of other axioms to ‘tidy up.’ The derivation of yz = 0 from xy = 0 and x̄yz = 0 in

Figure 18 is an example of this, also representing derivation of y ∨ z from x ∨ y and ¬x ∨ y ∨ z.

As was the case with CP, PC and PCR can be extended to QBF proof systems PC+∀red and

PCR+∀red by including a ∀-reduction rule allowed the substitutions u/0 or u/1 for some rightmost

universal variable u. In the case of PCR+∀red, the ∀-reduction u/b also performs the substitution

ū/(1− b) in order to preserve the soundness of this system.

In contrast to the situation in QU-Res and CP+∀red, not all proofs in PCR+∀red have unit

capacity. For a simple example, consider the line x(1 − u) + (1 − x)u = 0. This polynomial

equation is clearly satisfied if and only if x = u. In order to falsify this line in a PCR+∀red proof,

it is therefore necessary for the response to be u = 1− x. The only possible response set for this

line therefore contains both assignments to u, and if a PCR+∀red proof π contains such a line, then

capacity(π) ≥ 2.
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Indeed, given a QBF Φ with a universal block Ui containing n variables, it is possible to

construct a polynomial equation such that all 2n responses in 〈Ui〉 are required in a response set.

However, such a line would require an exponential number of monomials. Since PCR+∀red proofs

are measured by the number of monomials, any proof containing such a line would therefore be of

exponential size. To provide a suitable capacity upper bound for PCR+∀red, it suffices to upper

bound the size of a response set by the number of monomials in that line.

Theorem 8.20. Let L be a line of a PCR+∀red proof such that L has rightmost universal block U

and L contains M monomials. Then capacity(L) ≤M .

Proof. To show that capacity(L) ≤ M , it suffices to find a response set RL for L such that

|RL| ≤M .

Define X = var(L) \ U . We can now write L as

N∑
j=1

fjvj = 0

where each fj is a polynomial (not necessarily a single monomial) in the variables of X and each vj
are distinct monomials in the variables U . We denote by fj [α] and vj [β] the values (in F) obtained

by evaluating fj , respectively vj , according to the assignments α ∈ 〈X〉, respectively β ∈ 〈U〉.
Since vj is simply a product of variables in U , we have vj [β] ∈ {0, 1} for any β ∈ 〈U〉.

Observe that since L contains at most M monomials, N ≤M . We now construct a response

setRL such that |RL| ≤ N .

Such a response set must contain a response falsifying L[α] for all α ∈ 〈X〉 such that L[α] is

falsifiable. To begin, enumerate the assignments in 〈X〉 as 〈X〉 = {α1, . . . , αm}. We then construct

a sequence of sets RiL such that each RiL is a ‘partial response set’ for L, in the sense that RiL
contains responses falsifying L[αk] for each k ≤ i such that L[αk] is falsifiable. We further ensure

that |RiL| ≤ N for each 0 ≤ i ≤ m, so definingRL = RmL gives the response set we require.

Our construction of the RiL is inductive, and in particular RiL ⊆ R
i+1
L , so the construction

of RL amounts to going through each assignment α ∈ 〈X〉 in turn, and ensuring RL contains

a suitable response. Since we are aiming to minimise |RL|, we do not add a response if Ri−1L

already contains a response falsifying L[αi], or if L[αi] is a tautology. If we have not already chosen

a suitable response, then such a response is added to RL. To ensure our upper bound on |RL|,
we show that evaluating the monomials vj by α constructs an injection from RL into a linearly

independent subset of FN .

If L is a tautology, then for any α ∈ 〈X〉, L[α] cannot be falsified, and soRL = ∅ is a response

set for L. We therefore assume without loss of generality that L is not a tautology, and in particular

that 〈X〉 is enumerated such that L[α1] is falsifiable.

For any β ∈ 〈U〉, denote by v[β] the vector (v1[β], . . . , vN [β]) ∈ {0, 1}N . We now inductively

define the setsRiL ⊇ R
i−1
L such that they are the partial response sets we require. Furthermore, we
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show by induction on i that the set V i
L = {v[β] | β ∈ RiL} is linearly independent as a subset of

FN and that |V i
L| = |RiL|. Since V i

L ⊆ {0, 1}
N , this provides the necessary upper bound on |RiL|.

We begin by defining R0
L = ∅. It is clear that V 0

L = ∅, so |V 0
L | = |R0

L| = 0 and that V 0
L is

linearly independent. We can also defineR1
L = {β1} for some β1 ∈ 〈U〉 such that L[α1 ∪ β1] = ⊥.

It is clear that we also have |V 1
L | = 1, and since v[β1] 6= 0, V i

L is linearly independent.

Suppose we now have definedRi−1L for some 2 ≤ i ≤ m such that |Ri−1L | = |V
i−1
L | and V i−1

L

is linearly independent. We defineRiL as follows:

– Suppose L[αi] is a tautology, i.e.
∑N

j=1 fj [αi]vj [β] = 0 for all β ∈ 〈U〉. In this case, it is not

necessary forRiL to contain a response falsifying L[αi], so we defineRiL = Ri−1L . We also have

V i
L = V i−1

L , so it is clear by induction that |RiL| = |V i
L| and that V i

L is linearly independent,

since this is the case forRi−1L and V i−1
L .

– Else, suppose L[αi ∪ β] = ⊥ for some β ∈ Ri−1L . We can then define RiL = Ri−1L . As

previously,RiL = Ri−1L , and so |RiL| = |V i
L| and V i

L is linearly independent.

– Else, it is the case that L[αi] is not a tautology, but L[αi ∪ β] = > for all β ∈ Ri−1L . Pick

β′ ∈ 〈U〉 such that L[αi ∪ β′] = ⊥ and defineRiL = Ri−1L ∪ {β′}. It is clear this is a suitable

partial response set. We must show that |RiL| = |V i
L| and that V i

L is linearly independent.

Enumerate Ri−1L as Ri−1L = {β1, . . . , βk} for some k ≥ 1. It is clear that v[β′] 6= v[βl] for

any 1 ≤ l ≤ k, else we would have
∑N

j=1 fj [αi]vj [βl] =
∑N

j=1 fj [αi]vj [β
′] 6= 0, and so

L[αi ∪ βl] = ⊥. We therefore have |V i
L| = |V

i−1
L |+ 1 = |Ri−1L |+ 1 = |RiL|.

For the linear independence of V i
L, we assume towards a contradiction that there is some linear

dependence relation on V i
L. Since V i−1

L is linearly independent, v[β′] 6= 0 must have a non-zero

coefficient in any such linear combination. We can therefore find constant c1, . . . , ck ∈ F such

that
∑k

t=1 ctv[βt] = v[β′]. We can use these same constants to construct a linear combination of

the
∑N

j=1 fj [αi]vj [βt], by assumption all equal to zero, summing to
∑N

j=1 fj [αi]vj [β
′], which

by choice of β′ is non-zero.

0 =
k∑
t=1

ct

N∑
j=1

fj [αi]vj [βt] =
N∑
j=1

fj [αi]
k∑
t=1

ctvj [βt] =
N∑
j=1

fj [αi]vj [β
′] 6= 0

From this contradiction, we conclude that no such constants ct exist, and hence that V i
L is a

linearly independent set.

By construction, it is clear that RL = RmL is a response set for L. The set V m
L is a linearly

independent subset of FN and so |V m
L | ≤ N . Since |RmL | = |V m

L |, we conclude that RL is a

response set for L with |RL| ≤ N , so capacity(L) ≤ N ≤M . ut

The effect of this bound on the capacity of lines is to show that proofs with large capacity must

contain a line with a large number of monomials, which would require the proof itself to be large.

This provides a lower bound for PCR+∀red proofs of a QBF Φ based only on cost(Φ), since small

proofs also have small capacity.
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Theorem 8.21. Let π be a PCR+∀red or Σp
1-PCR+∀red refutation of a QBF Φ. Then |π| ≥√

cost(Φ).

Proof. The size of π is measured by the number of monomials in π, so any line of π contains

at most |π| monomials, and hence capacity(π) ≤ |π|. Applying the Size-Cost-Capacity theorem

(Theorem 8.7), we have that |π| ≥ cost(Φ)
|π| , i.e. |π| ≥

√
cost(Φ). ut

As with QU-Res and CP+∀red, this gives us an exponential lower bound on the size of

PCR+∀red refutations of the equality formulas.

Corollary 8.22. If π is a PCR+∀red refutation of the equality formulas EQ(n), then |π| ≥ 2Ω(n).

8.4 Lower bounds for KBKFdn via Size-Cost-Capacity

The lower bounds we have shown for the proof systems above require large cost, rather than large

strategy size. While this is evidently a stronger requirement for a lower bound, it is equivalent in the

case of QBFs with bounded alternation. That is, for a family of QBFs in which the prefixes are all

Σb
k-prefixes for some constant k, a superpolynomial lower bound on strategy size is sufficient to

provide a superpolynomial lower bound on proof size.

Lemma 8.23. Let Φn be a family of false QBFs such that each Φn has a Σb
k-prefix. Each Φn

requires proofs of size at least ρ(Φn)
1
k in QU-Res, CP+∀red and PCR+∀red.

Proof. We use the cost-based lower bounds we have already shown for these proof systems. We

need only show that cost(Φn) ≥ ρ(n)
2
k .

Since Φn has a Σb
k-prefix, the prefix contains at most k2 universal blocks, U1, . . . , U k

2
. Given

any winning universal strategy S : 〈X 〉 → 〈U〉, we see that

ρ(Φn) ≤ rng(S) ≤

k
2∏
i=1

rng(Si) ≤
(

max
i

(rng(Si))

) k
2

and in particular, maxi(rng(Si)) ≥ ρ(Φn)
2
k . By definition, cost(Φn) is the minimum of maxi(rng(Si))

over all winning strategies S, and so cost(Φn) ≥ ρ(Φn)
2
k . ut

In [16], it was observed that any family of formulas separating the instantiation calculus IR-calc
from ∀Exp+Res must have an unbounded quantifier prefix. Lemma 8.23 provides a similar result

for QU-Res: any lower bound for ∀Exp+Res which is not simply a Resolution lower bound on

the expanded formula must arise through a lower bound on strategy size. Any family of QBFs

providing a genuinely QBF separation between QU-Res and ∀Exp+Res must therefore have

unbounded quantifier alternation in the prefix. Given that separations with bounded quantifer

alternation between ∀Exp+Res and QU-Res are known, such as the QPARITYformulas [21], this is

a striking comparison between the two approaches to QBF Resolution systems, and suggests that on
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instances with a small number of quantifier blocks, expansion-based solving may have significantly

more potential than CDCL-based solving.

In the case of QBFs with an unbounded quantifier prefix, strategy size will not suffice, and

so we must focus on cost. As previously mentioned, the QBFs KBKFn and KBKFdn have large

strategy size, yet their cost is constant due to the unbounded number of quantifier blocks in their

prefixes. As a result, we cannot directly apply the Size-Cost-Capacity theorem to give lower bounds

for these formulas. However, by rearranging the quantifier prefix to construct an even weaker QBF

than KBKFdn, we can then apply Size-Cost-Capacity using the capacity upper bounds we have

shown to provide lower bounds for these weaker formulas. These lower bounds immediately give

lower bounds on proofs of KBKFn and KBKFdn.

Recall from Definition 3.3 that KBKFdn is defined as

KBKFdn := ∃y0(∃y1y′1∀u1v1) . . . (∃yny′n∀unvn)∃yn+1yn+2 . . . y2n ·
2n∧
i=0

Ci ∧ C ′i.

We define the QBF κn by quantifying the doubling variables vi together in the final universal block,

rather than adjacent to their corresponding variables ui.

κn := ∃y0(∃y1y′1∀u1) . . . (∃yny′n∀un)(∀v1 . . . vn)∃yn+1yn+2 . . . y2n ·
2n∧
i=0

Ci ∧ C ′i.

It is clear that the universal winning strategy for KBKFdn, of playing ui = vi = y′i, is also a

winning strategy for κn, since each vi remains to the right of yi and y′i and hence κn is false.

Since the only difference between KBKFn and κn is that universal variables in the prefix have

been moved further right, any ∀-reduction steps in a P+∀red or Σp
1-P+∀red refutation of KBKFn

will also be sound under the prefix of κn.

Lemma 8.24. Suppose Φ = Π ·φ is a false QBF, and Π ′ is a relaxation of the quantifier prefix Π .

If π is a P+∀red or Σp
k-P+∀red refutation of Φ′ = Π ′ ·φ, then there is a P+∀red or Σp

k-P+∀red

refutation of Φ of size |π|O(1).

Proof. To refute Φ, we follow the deduction steps in π. Any propositional step is clearly sound

under any prefix. In the case of a ∀-reduction, if the variable u is assigned in a ∀-reduction on a line

L in π, then u is right of any existential variables in L under Π ′. Since Π ′ is a relaxation of Π , u

must be quantified universally in Π , and any existential variable left of u in Π ′ is either left of u in

Π , or is quantified universally in Π . Since all existential variables in L are left of u in Π , u can be

∀-reduced from L under the prefix Π . This completes the proof for P+∀red.

In the case of Σp
k-P+∀red, it suffices to observe that sinceΠ ′ is a relaxation ofΠ , any relaxation

of Π ′ is also a relaxation of Π . Any Σp
k-derivation steps in π can therefore be performed as a single

Σp
k-derivation step in a refutation of Φ. ut
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As a consequence, proving a superpolynomial lower bound on P+∀red refutations of κn is

sufficient to show such a lower bound on refutations of KBKFdn. We do this using Size-Cost-

Capacity, by showing that κn has exponential cost.

Theorem 8.25. The QBFs κn have cost 2n.

Proof. Since κn is false, some universal winning strategy exists. Let S be such a universal winning

strategy for κn. We consider the response of S to the 2n distinct existential assignments in

A = {α ∈ 〈{y1, y′1, . . . , yn, y′n}〉 | α(yk) 6= α(y′k) for all k ∈ [n]}.

For any assignment α ∈ A, S must respond by setting ui = y′i for each i ∈ [n]. If this were

not the case, let uk be the first universal variable such that uk = yk. For all i < k, either yi or y′i
is false, and so Ci and C ′i are satisfied. The clauses Ck and C ′k are satisfied since uk = yk, and so

the existential player can win by subsequently assigning yj = y′j = 1 for all j > k, as each clause

Cj , C
′
j contains one of the literals yj or y′j .

In order to show that cost(S) = 2n, we show that, for any α ∈ A, the only winning response

on the variables vi is to play vi = ui = y′i. Since the vi appear in a single block in the prefix

of κn, this requires that cost(S) = |A| = 2n. We demonstrate this in the specific case where

α(yi) = 1, α(y′i) = 0 for all i ∈ [n] – all other assignments in A are similar.

Restricting
∧2n
i=0Ci ∧ C ′i by α, and by the only possible winning universal response β on the

variables ui, where β(ui) = 0 for all i ∈ [n], the restricted clauses remaining in the matrix are

C ′n|α∪β = {vn,¬yn+1, . . . ,¬yn+n}

C ′n+t|α∪β = {vt, yn+t} for each 1 ≤ t ≤ n.

If Sn(α) sets any vk = 1, then this conjunction of clauses can be satisfied by setting yn+k = 0

and yn+t = 1 for all t 6= k. The unique response on the vk for Sn(α) is therefore to set vi = ui = y′i
for all i ∈ [n]. In the case of any other α ∈ A, the restricted matrix will be similar with the polarity of

the literals on vi flipped as appropriate. We conclude that | rng(Sn)| = 2n and hence cost(κn) = 2n.

ut

We can therefore immediately obtain the following hardness result, which was known for

QU-Res [9], but also lifts to CP+∀red and PCR+∀red.

Theorem 8.26. Any QU-Res, CP+∀red or PCR+∀red refutation of KBKFdn requires size 2Ω(n).

Proof. The cost lower bound of Theorem 8.25 and the Size-Cost-Capacity theorem (Theorem 8.7)

immediately give a lower bound of 2Ω(n) on QU-Res, CP+∀red or PCR+∀red refutations of κn. In

each of these systems, using Lemma 8.24 we can construct from a refutation of KBKFn a refutation

of κn with at most a polynomial increase in size. Any such refutation of KBKFn must therefore

have size at least 2Ω(n). ut
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8.5 Ideal Proof System

While Size-Cost-Capacity is able to prove lower bounds for a variety of proof systems, some

proof systems are able to express lines with sufficiently high capacity that we cannot obtain

superpolynomial lower bounds through high cost. The short Frege +∀red proofs of the equality

formulas (Theorem 8.12) demonstrate that, despite their large cost, Frege +∀red proofs can have

high capacity. We now give an example of an algebraic proof system which also has high capacity.

This system is an extension to QBF of the recently introduced Ideal Proof System (IPS) [64], which

works with arithmetic circuits, rather than sparse polynomials as in PCR.

Definition 8.27 (Grochow and Pitassi [64]). Fix a field F. Given a system of polynomial equations

fj(x) = 0 for j ∈ [m], an IPS proof that the system is unsatisfiable over the algebraic closure of F
is an arithmetic circuit C(x1, . . . , xn, y1, . . . , ym) satisfying

(i) C(x1, . . . , xn, 0, . . . , 0) = 0

(ii) C(x1, . . . , xn, f1(x), . . . , fm(x)) = 1.

In conditions (i) and (ii) on an IPS proof, we require the polynomials to be equal as formal

polynomials. It is not sufficient that the polynomial always evaluates to 0 or 1 – the polynomials must

contain precisely the same monomials. Checking equality as formal polynomials is the polynomial

identity testing problem (PIT), and two instances of this are required to verify that a circuit C is

an IPS proof. PIT is not known to be solvable in deterministic polynomial time, and so IPS is

not a proof system in the formal sense of Definition 2.3. However, there are known randomised

polynomial time algorithms for PIT [103, 111], and derandomised polynomial time algorithms are

expected to exist.

As with PC and PCR, IPS can be used as a refutational proof system for propositional formulas.

Given a propositional formula C, the equivalent polynomial t(C) is defined inductively as

– t(x) = x for any variable x,

– t(¬A) = 1− t(A) for any propositional formula A,

– t(A ∨B) = t(A) · t(B) for propositional formulas A,B,

– t(A ∧B) = t(¬(¬A ∨ ¬B)) for propositional formulas A,B.

As a propositional proof system, an IPS proof of the unsatisfiability of
∧
iCi is an IPS refutation of

the axioms t(Ci) for each formula Ci, alongside the Boolean axioms x2 − x for any variable x to

ensure only Boolean solutions are permitted.

As with PC and PCR, true is represented as 0, and false as 1. Observe that since we are

considering polynomials as arithmetic circuits rather than sums of monomials, there is no need to

replace 1− x with a new variable, as in PCR.

A line-based IPS proof system To extend IPS to a QBF proof system, we wish to add the ∀-
reduction rule into this system. In order to do so, we must first consider IPS as a line-based proof
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system, rather than the static system we have used so far. We therefore define the system line-IPS

(L-IPS) to achieve this.

Definition 8.28. Fix a field F. A line-IPS refutation contains lines of the form p = q where p and q

are arithmetic circuits computing polynomials in F[x]. The derivation rules of L-IPS are given in

Figure 19. A L-IPS refutation is a derivation of the line 1 = 0.

Polynomial Ax-
iom: fj(x) = 0 fj(x) any axiom polynomial

Input Axiom: x = x 1 = 1 for any variable x

Addition:
p1 = q1 p2 = q2

αp1 + βp2 = αq1 + βq2
for any α, β ∈ F

Multiplication: p1 = q1 p2 = q2
p1 · p2 = q1 · q2

Rewrite:
p = q

p′ = q′
if p ≡ p′ and q ≡ q′ as formal polynomials

Fig. 19. The derivation rules of line-IPS

It is clear that there is a correspondence between IPS and L-IPS proofs, by mapping addition and

multiplication gates in an IPS proof to addition and multiplication steps in a L-IPS proof, and vice

versa. We formalise this in the following lemma, proving the equivalence of these two formulations

of IPS.

Lemma 8.29. IPS and L-IPS are p-equivalent.

Proof. Given a gate g in an arithmetic circuit C, define Cg to be the arithmetic circuit defined by

restricting C to a circuit with root at g.

Given an IPS refutation C(x, y1, . . . , ym) of a set of polynomials f1(x), . . . , fm(x), con-

struct a L-IPS refutation by deducing for each gate g in C the line Cg(x, f1(x), . . . , fm(x)) =

Cg(x, 0, . . . , 0) as follows:

– Suppose g is an input gate. If Cg computes a variable x or a variable yi, then the L-IPS refutation

can deduce the necessary equation by introducing the axiom x = x or fi(x) = 0 respectively.

If Cg computes a constant α, then α = α can be derived using the axiom 1 = 1 and an addition

step.

– If g is an addition or a multiplication gate, with inputs g1 and g2, then either Cg = αCg1 +βCg2

or Cg = Cg1 ·Cg2 . The line Cg(x, f1(x), . . . , fm(x)) = Cg(x, 0, . . . , 0) can be deduced from
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the corresponding lines for Cg1 and Cg2 by an addition or multiplication step, followed by a

rewriting step if necessary.

Since the final line computes C(x, f1(x), . . . , fm(x)) = C(x, 0, . . . , 0), which must be equiv-

alent to 1 = 0, this is a sound L-IPS refutation. Each line of the L-IPS proof has size at most

2|C| ·maxi |fi|, and the number of lines is linear in |C|, and hence the constructed proof has size

polynomial in |C|.
Conversely, given a L-IPS proof π, construct a circuit Cπ by assigning to each line L in π a gate

gL. If the line L is derived as an axiom x = x, fi(x) = 0 or 1 = 1, let gL be the input gate x, yi or

1 respectively. If L is derived using an addition or multiplication step from L1 and L2, then gL is an

addition or multiplication gate respectively, with inputs gL1 and gL2 . If L is a rewriting step from

L′, identify the gates gL = gL′ .

By the construction of Cπ, for any line L of the form p = q, CgL(x, f1(x), . . . , fm(x)) ≡ p

and CgL(x, 0, . . . , 0) ≡ q. Since the final line of π is 1 = 0, this ensures that the circuit Cπ is

indeed an IPS refutation. Moreover, the number of gates in Cπ is at most the number of lines in π,

and so certainly |Cπ| ≤ |π|. ut

These p-simulations also naturally extend to show an equivalence between formula-IPS, in

which the circuit C is a formula, and tree-like L-IPS. In the case of tree-like L-IPS, we require the

polynomials in each line to be represented as arithmetic formulas, and therefore can limit use of the

rewriting step to a single instance at the root of the proof. Viewing IPS as a line based proof system,

rather than the static proof system presented in [64], allows us to define the proof system IPS+∀red,

by adding the ∀-reduction rule to L-IPS.

Definition 8.30. Fix a field F. For a false QBF Φ = Π ·
∧n
i=1Ci, let the set of polynomials

F = {p(Ci) | i ∈ [n]} ∪ {x2 − x | x ∈ var(Φ)}. An IPS+∀red refutation of Φ is a deduction of

1 = 0 from F using the rules of L-IPS, or the ∀-reduction rule

p = q

p[u/b] = q[u/b]

where p and q contain no variables to the right of u in Π , b ∈ {0, 1} and p[u/b] is the circuit

constructed by replacing all instances of the input gate u by the constant b in p.

It is clear that IPS+∀red also requires the use of PIT to check a proof in polynomial time,

since the rewriting rule is still allowable. Observe that if a polynomial p computed by a circuit C

contains no monomials with a variable to the right of u, then there is a circuit C ′ also computing

p with |C ′| = |C|, which contains no input gates with variables to the right of u, by replacing

all such input gates with constants. The ∀-reduction rule can therefore be applied whenever the

polynomials contain no instances of variables right of u, even if the circuits computing them do,

by preceding the ∀-reduction with a rewriting step. Similarly to other P+∀red proof systems, it is

sound to allow the ∀-reduction rule to substitute any arithmetic circuit b in the variables left of u,

provided b[α] ∈ {0, 1} for any α ∈ {0, 1}n.
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It is also clear that IPS+∀red is sound, as we can show inductively that each equation derived

must hold given the axioms p(Ci) = 0 and x2 − x = 0, and the quantifier prefix Π . To prove

the completeness of IPS+∀red, it suffices to show that IPS+∀red simulates some other complete

QBF proof system. It is straightforward to see that IPS+∀red p-simulates QU-Res, translating

clauses and simulating resolution steps similarly to PCR+∀red, albeit with the variable x̄ replaced

by 1− x. Since IPS+∀red works with arithmetic circuits, this causes only a linear-size increase in

size compared to PCR+∀red.

However, IPS+∀red is strictly stronger than both QU-Res and PCR+∀red. We show this, and

also show that IPS+∀red admits large capacity proofs, by exhibiting short proofs of the equality

formulas EQ(n).

Theorem 8.31. There are polynomial-size IPS+∀red refutations of the equality formulas EQ(n).

Proof. It is clear that for any polynomial p, there is a derivation of p = p of size polynomial in the

size of p. Given a line q = 0, there is therefore a polynomial-size derivation of p · q = 0.

For each k ∈ [n], we have the axioms (1−xk)(1−uk)(1−tk) = 0 and xkuk(1−tk) = 0, from

which we can deduce (1− xk − uk + 2xkuk)(1− tk) = 0 by an addition step and a rewriting step.

Using the axioms x2k−xk = 0 and u2k−uk = 0, we can therefore deduce (1−(xk−uk)2)(1−tk) = 0

in constant size for each k ∈ [n], and hence the line (1 − (xk − uk)2)(1 − tk) ·
∏k−1
i=1 ti = 0 is

derivable in polynomial size.

Given the line
∏k
i=1 ti

∏n
i=k+1(1− (xi − ui)2) = 0 for any k ∈ [n], there is a polynomial size

derivation of
∏k−1
i=1 ti

∏n
i=k(1− (xi−ui)2) = 0 by adding (1− (xk−uk)2)(1− tk) ·

∏k−1
i=1 ti = 0.

In the case k = n, the line
∏n
i=1 ti is an axiom as it is the translation of the clause

∨n
i=1 ti. There is

therefore a polynomial size derivation of the k = 0 case
∏n
i=1(1− (xi − ui)2) = 0.

The ∀-reductions un/0 and un/1 give the lines (1 − x2n)
∏n−1
i=1 (1 − (xi − ui)

2) = 0 and

(2xn − x2n)
∏n−1
i=1 (1 − (xi − ui)

2) = 0. By adding these lines together, and using the axiom

x2n − xn = 0, we can efficiently derive
∏n−1
i=1 (1 − (xi − ui)

2) = 0. A sequence of similar

derivations gives
∏k
i=1(1 − (xi − ui)2) = 0 for each n ≥ k ≥ 0. In the case k = 0, we have

derived 1 = 0 and we are done. ut

This short IPS+∀red refutation of EQ(n) demonstrates that IPS+∀red proofs can have large

capacity. Indeed, we can see this directly by observing that the refutation described above contains

the line
∏n
i=1(1 − (xi − ui)2) = 0. The only falsifying assignment to the variables ui is to play

ui = xi for each i ∈ [n], and so the capacity of this line is 2n.

Simulating Frege systems That IPS+∀red proofs can have large capacity is to be expected, as

when IPS was introduced as an algebraic proof system, it was shown that IPS p-simulates eFrege.

The equivalence of IPS and L-IPS (Lemma 8.29) show that L-IPS also p-simulates eFrege.

A perhaps more interesting IPS-based proof system is non-commutative formula-IPS, in which

multiplication of variables is not assumed to be commutative and the circuit is a tree. The proof of

the p-equivalence of IPS and L-IPS in Lemma 8.29 naturally extends to show that non-commutative
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formula-IPS is p-equivalent to non-commutative tree-like L-IPS. Since polynomial identity testing

for non-commutative formulas is possible in deterministic polynomial time [98], non-commutative

IPS and non-commutative tree-like L-IPS are therefore checkable in polynomial time, and hence

are proof systems in the formal sense of Cook and Reckhow.

Furthermore, while no superpolynomial lower bounds are known for the size of general arith-

metic formulas, exponential lower bounds have been shown for non-commutative formulas comput-

ing certain polynomials, specifically the determinant and permanent polynomials [89]. While these

lower bounds are not themselves sufficient to prove non-commutative formula-IPS lower bounds, as

we require a lower bound on all polynomials which constitute a proof, they nonetheless represent

significant progress towards such lower bounds.

Lower bounds on non-commutative formula-IPS would nonetheless be desirable, as a p-

simulation of Frege by non-commutative formula-IPS was proved in [80]. In order to ensure

the completeness of non-commutative IPS, the equations xy − yx = 0 are included as axioms for

any variables x, y; without these, there would be no refutation of xy − yx+ 1 = 0, for example.

Theorem 8.32 (Li, Tzameret and Wang [80]). Let F be either Q or Zq for some prime q. Then

non-commutative formula-IPS over F p-simulates Frege.

The proof of the simulation given in [80] almost immediately extends to the QBF case. In this

case, we allow ∀-reduction by any formula, rather than only 0/1, to ensure the simulation of dag-like

Frege +∀red, since the lower bound of Theorem 7.6 also applies to tree-like IPS+∀red systems

with 0/1 ∀-reduction.

Corollary 8.33. Let F be either Q or Zq for some prime q. Then non-commutative formula-

IPS+∀red over F p-simulates Frege +∀red.

Proof. We allow ∀-reduction by any suitable formula, rather than only 0 or 1, and therefore may

assume that all Frege and Frege +∀red derivations are tree-like, since they are equivalent to their

dag-like versions [30,75], albeit with a possible slight increase in depth. The proof of Theorem 8.32

shows that if there is a tree-like Frege derivation of the line C from C1, . . . , Cm, then there is a

non-commutative formula p such that p(x, t(C1), . . . , t(Cm)) = t(C), and p(x, 0, . . . , 0) = 0.

Observing the simulation of non-commutative formula-IPS by non-commutative tree-like L-IPS, we

see that this immediately provides a polynomial-size non-commutative tree-like L-IPS derivation of

t(C) = 0 from the lines t(C1) = 0, . . . , t(Cm) = 0.

We can therefore construct a non-commutative tree-like L-IPS proof by deriving the line

t(C) = 0 for each line C in a Frege +∀red proof. We need only show that if C is derived by a

∀-reduction step, i.e. C = C ′[u/B] for some suitable formulas C and B, then t(C) = 0 can be

derived from t(C ′) = 0 efficiently. SinceC andB are non-commutative formulas, it is easy to verify

that t(C ′)[u/t(B)] = t(C ′[u/B]), and hence this is a simple ∀-reduction step in non-commutative

tree-like L-IPS. ut
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Strategy extraction We conclude our discussion of IPS+∀red by considering strategy extraction

techniques and consequent lower bounds. We first observe that in the case of tree-like IPS+∀red,

the lower bound of Theorem 7.6 via strategy size still applies when ∀-reduction is limited to only

the constants 0/1.

Corollary 8.34. The equality formulas EQ(n) require proofs of size 2Ω(n) in tree-like IPS+∀red

with 0/1 ∀-reduction.

Despite the high capacity of dag-like IPS+∀red proof systems preventing us from obtaining

lower bounds for IPS+∀red systems via cost lower bounds, these systems still admit a strategy

extraction algorithm via decision lists, similar to that of Theorem 3.5. Since IPS+∀red works with

arithmetic circuits, the extracted strategy is also represented as an arithmetic circuit.

Theorem 8.35. Let F be a field of characteristic q > 0. Given a QBF Φ and an IPS+∀red refutation

π of Φ, there exist polynomials over F computing a winning strategy for the universal variables,

and these polynomials have circuits of size |π|O(1). If π is a tree-like IPS+∀red refutation, then the

polynomials have formulas of size polynomial in |π|, q.

Proof. We follow the model of strategy extraction for P+∀red proof systems introduced in [19],

by first constructing for each variable a decision list which computes a winning strategy. We then

show that we can give a polynomial-size arithmetic circuit which computes the same function as

this decision list.

Recall that in the case of C-Frege +∀red systems, the decision lists were constructed by

considering each line of the proof in order, and for each ∀-reduction C
C[u/b]

, the line

if ¬C[u/b] then u← b, else...

was added to the end of the decision list.

Given an IPS+∀red proof, we construct decision lists Du for each universal variable u in the

same way. Let L1, . . . , Lm be the sequence of IPS+∀red lines in π. For each 1 ≤ i ≤ m, if Li is

derived by a ∀-reduction step on a universal variable u, i.e. Li is the line p[u/b](x) = q[u/b](x)

for some polynomial b(x), then add the line

if p[u/b](x)− q[u/b](x) 6= 0 then u← b(x), else...

to the decision list Du. It is clear from this construction that |Du| = O(|π|) for each universal

variable u. The proof that the decision lists Du compute a winning universal strategy is identical to

the proof of the correctness of this algorithm in [19].

It remains to show that we can construct an arithmetic circuit computing a polynomial which

is equal to the function defined by the decision list. For a universal variable u, suppose that the

decision list Du has m lines, and let pi(x) and bi(x) be arithmetic circuits such that the ith line of
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the decision list for u is

if pi(x) 6= 0 then u← bi(x), else...

Define the polynomial

Q(x) =
m∑
i=1

pi(x)q−1 · bi(x) ·
i−1∏
j=1

(
1− pj(x)q−1

)
Since F has characteristic q, pi(x)q−1 = 1 whenever pi(x) 6= 0. For each 1 ≤ i ≤ m, the summand

is either equal to bi(x) or 0, and in particular will only return bi(x) if pi(x) 6= 0 and for all j < i,

pj(x) = 0. As a result, the value of Q(x) is identical to the value of Du for any assignment to the

variables x.

To construct a circuit computing Q(x), each polynomial pi(x)q−1 and each bi(x) need only

be computed once. These can all be computed using O(|Du| log q) gates, since the polynomials

pi(x) and bi(x) appear in Du. Clearly m < |Du|, so we require O(|Du|) additional gates to

compute the products and the sum, hence there is an arithmetic circuit computing Q(x) with size

O(|Du| log q) = O(|π| log q). For any fixed field F, and hence fixed q, this gives a circuit of size

O(|π|).

In the case of tree-like IPS+∀red, the polynomials pi(x) and bi(x) are arithmetic formulas. To

compute the ith term in the sum, the polynomial pj(x) must be computed at most q − 1 times for

each j < i. The total size of the formulas computing the pj is less than |Du|, and so each summand

requires a formula of size O(|Du|q). Since there are m < |Du| summands, there is a formula

computing Q(x) of size O(|Du|2q) = O(|π|2q). ut

Strategy extraction of this form has been used to transfer lower bounds from Boolean circuit

complexity to QBF proof complexity, particularly in the case of C-Frege +∀red proof systems such

as AC0[p]-Frege +∀red. Theorem 8.35 suggests a similar approach for proving lower bounds for

IPS+∀red via lower bounds on arithmetic circuits or formulas. It is important to note that the lower

bounds required in this case are functional lower bounds [56, 63], i.e. lower bounds on the size of

circuits describing any polynomial which computes a winning universal strategy on the domain

〈X 〉, rather than a lower bound on a specific polynomial, as is often considered in arithmetic circuit

complexity.

In the case of non-commutative tree-like IPS+∀red, the lines of the proof consist of non-

commutative formulas, and so it is clear that the strategy computed in Theorem 8.35 is also a

non-commutative formula. Observe that in the simulation of Frege +∀red by non-commutative

tree-like IPS+∀red, ∀-reduction steps only occur on lines which are of the form t(C) = 0 for some

Boolean formula C. In particular, each of the polynomials pi(x) computed in the decision list Du

evaluates to 0 or 1 under every Boolean assignment to the variables x. This allows us to remove the

restriction on the characteristic of the fields, with the formula computing the winning strategy now
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expressible as

Q(x) =
m∑
i=1

pi(x) · bi(x) ·
i−1∏
j=1

(1− pj(x))


regardless of the characteristic of the field F.

This provides a potential route to proving lower bounds for Frege +∀red via functional lower

bounds on non-commutative formulas, in keeping with the close connections between proof complex-

ity and arithmetic circuit complexity [94]. For any sequence of Boolean functions (fn) ∈ P/poly,

we can construct false QBFs Φn such that the only winning universal strategy is to play according

to fn [19]. A superpolynomial functional lower bound on (non-commutative) arithmetic formulas

computing polynomials pn over Q or Zq such that pn(α) = fn(α) for any α ∈ {0, 1}n then

immediately provides a superpolynomial lower bound on Frege +∀red proofs of Φn.

No such functional lower bounds are currently known. However, functional lower bounds have

been shown for certain restricted classes of arithmetic circuits, such as for low depth homogeneous

circuits, both over finite fields [63] and over any field [56]. Functional circuit lower bounds

have even previously been used to show proof complexity lower bounds in substantially more

restricted versions of IPS [57]. Lower bounds have also been shown for the computation of specific

polynomials using non-commutative formulas [89] and even the stronger model of read-k oblivious

algebraic branching programs [3]. We therefore suggest that this represents a promising approach

for obtaining superpolynomial lower bounds for Frege +∀red.
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Chapter 9

Lower bounds on Randomly Generated
QBFs

Chapter 8 introduced the notion of the cost of a QBF, and demonstrated that cost is an effective

method for proving lower bounds on the size of refutations in several different QBF proof systems.

However, cost lower bounds were only shown for a few specific formulas. While the results of

Section 8.4 provide an example of a more general application of cost, it is desirable to show that

many formulas with high cost exist, and to be able to construct such formulas easily.

To construct formulas with large cost, we introduce product formulas, of which the equality

formulas EQ(n) are an example, as a method of combining false QBFs. These formulas are similar

to the formulas Φ⊕ Ψ (Definition 4.7) introduced in Chapter 4, in that the clauses of the product

formula Φ⊗Ψ consist of disjunctions of a clause from Φ and a clause from Ψ . However, by choosing

to quantify the variables from Ψ before those of Φ and interleaving the quantifier prefixes of the

copies of Ψ , we obtain a large cost, since any winning strategy must be winning for all copies of Ψ

simultaneously. If the QBFs Ψ have small sets of assignments witnessing that Ψ has non-constant

cost, we can leverage this to give a lower bound on cost(Φ ⊗ Ψ). The cost lower bound of the

equality formulas EQ(n) can be deduced in this way, but the technique allows for the construction

of many such families of QBFs.

To demonstrate that this method of obtaining QBFs with large cost is able to generate a large

number of such QBFs, we show that it can be applied when picking the formulas Ψ at random from

a family of QBFs. This family is based on the family of random (1,2)-QCNFs, a model of random

QBFs about which some results are already known [36, 45]. In this way, we can generate a random

QBF, with the product formula structure, which with probability 1 − o(1) requires large proofs

in QU-Res and other proof systems for which cost provides a lower bound. Lower bounds on

Resolution proofs of random propositional 3-CNFs are known [38], but to the best of our knowledge,

this is the first proof complexity lower bound on random QBFs which does not arise due to these

propositional lower bounds.
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In Section 9.1, we introduce the product formulas and show lower bounds on their cost. Sec-

tion 9.2 defines the random QBFs, and shows the proof complexity lower bound via Size-Cost-

Capacity and the cost lower bound from Section 9.1.

9.1 Cost lower bounds for product formulas

We begin by defining the product formulas Φ⊗ (Ψi). As with the formulas Φ⊕ Ψ (Definition 4.7),

we essentially replace each clause Ci of Φ with Ci ∨ Ψi. In the case of product formulas, we also

wish to allow using different formulas Ψi for different clauses Ci of Φ. The primary difference

between Φ⊗ (Ψi) and Φ⊕ Ψ , however, is that the variables of Ψi are quantified left of those of Φ.

Definition 9.1. Let Φ = ∃X1∀X2∃X3 . . . ∃Xk ·
∧m
i=1Ci be a QBF, and for each 1 ≤ i ≤ m, let

Ψi = ∃Y i
1∀Y i

2∃Y i
3 . . . ∃Y i

k ·
∧ni
j=1D

i
j be QBFs, where the sets Xi and Y i

j are (potentially empty)

pairwise disjoint sets of variables.

Define the product formula Φ⊗ (Ψi) to be

∃Y 1
1 . . . Y

m
1 ∀Y 1

2 . . . Y
m
2 . . . ∃Y 1

k . . . Y
m
k ∃X1∀X2 . . . ∃Xk ·

m∧
i=1

ni∧
j=1

(Ci ∨Di
j).

In the case that each Ψi is a variable disjoint copy of a single QBF Ψ , we denote this product as

Φ⊗ Ψ .

We have already seen an example of such a product formula, namely the equality formulas,

which are the product of two very simple QBFs.

Example 9.2. Let Φn = ∃t1 . . . tn ·
∧n
i=1(¬ti) ∧

∨n
i=1 ti. For each 1 ≤ i ≤ n, define Ψi =

∃xi∀ui ·(xi ∨ ui) ∧ (¬xi ∨ ¬ui), and let Ψn+1 be the trivially false QBF. The product formula

Φn ⊗ (Ψi) is precisely the nth equality formula EQ(n) (Definition 8.2).

The only difference between the construction of Φ ⊗ Ψ and Φ ⊕ Ψ is the order in which the

variables of Φ and the Ψi are quantified. However, as in the case of Φ⊕ Ψ , the variables of the Ψi
are pairwise disjoint and distinct from those of Φ, so it is straightforward to see that the product of

false QBFs is a false QBF.

Lemma 9.3. If Φ is a false QBF, and for each QBF Ψi, Ψi is false, then Φ⊗ (Ψi) is false.

Proof. We show that the universal player has a winning strategy on Φ⊗ (Ψi) by playing according

to winning strategies for Φ and for each Ψi.

Since each QBF Ψi is false, there exist winning universal strategies σi for each Ψi. If the

universal player plays the universal variables in each Y i
j according to σi for all 1 ≤ i ≤ m, then for

each 1 ≤ i ≤ m, some clause Di
j of Ψi will be falsified. After the kth round, when all variables in

the Ψi have been assigned, the restricted QBF is therefore ∃X1∀X2 . . . ∃Xk ·
∧m
i=1Ci, since each

clause Di
j now evaluates to either > or ⊥, and for each i, at least one such clause evaluates to ⊥.
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This restricted QBF is Φ, and so the universal player can win by playing according to a winning

strategy for Φ. ut

The choice to quantify the variables of the QBFs Ψi before, rather than after, the variables of

Φ has a large effect on the size of proofs of product formulas. In the case of Φ⊕ Ψ , we saw that

the size of P+∀red refutations is polynomial in the size of refutations of Φ and Ψ (Lemma 4.9).

Considering the equality formulas as an instance of a product formula, it is clear that each of the

individual components has short refutations in QU-Res, yet QU-Res refutations of EQ(n) require

exponential size (Corollary 8.11).

As noted in Chapter 8, the lower bound for the equality formulas arises as a result of a lower

bound on cost. We give a general method for constructing QBFs with large cost using product

formulas. These products can be of relatively simple formulas, the only requirement is that we can

find existential assignments for which the universal player must play distinct responses.

Theorem 9.4. Suppose that Φ = Π ·
∧n
i=1Ci is a minimally unsatisfiable false QBF and that

Ψ = ∃X1∀U1 . . . ∃Xk∀Uk ·ψ is a false QBF. If there exist α, β ∈ 〈X〉 and a block Uj such that for

any winning universal strategy S : 〈X 〉 → 〈U〉 for Ψ , S(α)|Uj 6= S(β)|Uj , then cost(Φ⊗ Ψ) ≥ 2n.

Proof. Let αi and βi be the existential assignments to the variables of Ψi, the ith copy of Ψ in Φ⊗Ψ .

We consider the 2n different existential assignments in A = {
⋃n
i=1 γi | γi ∈ {αi, βi}}, constructed

by picking either αi or βi on the existential variables of Ψi.

Let S be any universal winning strategy on Φ⊗ Ψ , and let Sj be the restriction of S to
⋃n
i=1 U

i
j .

We claim that for two distinct assignments σ, τ ∈ A, Sj(σ) 6= Sj(τ). This suffices to show that

| rng(Sj)| ≥ 2n and so cost(Φ⊗ Ψ) ≥ 2n.

Suppose that there are σ 6= τ such that Sj(σ) = Sj(τ). Since σ 6= τ , there is some i′ ∈ [n]

such that without loss of generality, σ|Xi′ = αi′ and τ |Xi′ = βi′ , i.e. σ and τ correspond to

different choices of α or β on the variables of Ψi′ . By the choice of αi′ and βi′ , the response

Sj(σ)|
U i
′
j

= Sj(τ)|
U i
′
j

cannot be a winning universal response on Ψi′ to both αi′ and βi′ , else we

could construct a winning universal strategy for Ψ which returns the same response on Uj to both α

and β.

Without loss of generality, assume that Sj(σ)|
U i
′
j

is not a winning response to αi′ on Ψi′ . The

existential player can therefore win against the strategy S by playing according to σ on all variables

not in Ψi′ . On the variables of Ψi′ , the existential player plays according to σ on variables left of

U i
′
j , and then play a winning strategy on Ψi′ thereafter. As a result, after all variables in the Ψi are

assigned, the resulting matrix is
∧
i 6=i′ Ci. Since Φ is minimally false, the existential player has a

winning strategy on this matrix. This contradicts the choice of S as a winning universal strategy,

and hence Sj(σ) 6= Sj(τ) whenever σ 6= τ . ut

Perhaps the simplest example of an application of Theorem 9.4 is to prove the cost lower bound

on the equality formulas (Lemma 8.3). In the case of EQ(n), Ψ = ∃x∀u·(x∨ u)∧ (¬x∨¬u). The

assignments α(x) = 0 and β(x) = 1 then require differing responses on u, and so Theorem 9.4

gives cost(EQ(n)) ≥ 2n.
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In the proof of Theorem 9.4, we do not explicitly require that all the QBFs Ψi are distinct

copies of a single QBF Ψ . It would suffice to find α and β requiring different responses in the jth

universal block of each individual Ψi for some fixed j. Indeed, with some suitable interleaving of

the quantifier prefixes of the Ψi, even the requirement of a fixed j could be relaxed. However, we

present the lower bound in this form since this provides a natural way to combine two false QBFs

to construct a false QBF with high cost.

Observe that the condition of having two assignments in 〈X 〉 to which no winning universal

strategy responds in the same way is a stronger condition than requiring that cost(Ψ) ≥ 2. For

an example, consider the false QBF Ψ = ∃x1x2∀u1u2 ·(x1 ↔ u1) ∧ (x2 ↔ u2). It is clear that

cost(Ψ) = 2, since any given universal response will not be winning on the matching existential

assignment. However, for any two assignments α, β ∈ 〈{x1, x2}〉, the response u1 = ¬α(x1), u2 =

¬β(x2) is a winning response to both α and β.

Since the requirement in Theorem 9.4 to find existential assignments with no response in

common is more restrictive than simply having non-constant winning strategies, we now prove

a more general result. Instead of requiring assignments with no winning response in common,

we consider the size of a set of assignments W witnessing the size of cost(Ψ), i.e. any winning

universal strategy must have at least cost(Ψ) different responses on the assignments in W . If the

size of such a set is sufficiently small in comparison to cost(Ψ), we can show that the product

formulas have large cost.

Theorem 9.5. Let Φ = Π ·
∧n
i=1Ci be a minimally unsatisfiable QBF. For each i ∈ [n], let

Ψi = ∃Xi∀Ui·ψi be a false QBF, and let Wi ⊆ 〈Xi〉 be such that for any winning universal strategy

S for Ψi, |S(Wi)| ≥ ci. Then

cost(Φ⊗ (Ψi)) ≥
n∏
i=1

(
1 +

ci − 1

|Wi| − (ci − 1)

)
.

The statement of Theorem 9.5 is only for products with QBFs with a Σb
2-prefix. We present it in

this form for simplicity, and because this is sufficient for our later cost lower bound on products of

random formulas (Theorem 9.15). The proof lifts relatively straightforwardly to products with Ψi of

the form ∃Xi∀UiΠi ·ψi, where witnessing sets Wi ⊆ 〈Xi〉 requiring at least ci different responses

in 〈Ui〉 still provide a cost lower bound of
∏n
i=1

(
1 + ci−1

|Wi|−(ci−1)

)
.

If the block requiring a large number of responses is not the leftmost universal block, a similar

result could be obtained with a more careful consideration of winning strategies for Φ ⊗ (Ψi).

Theorem 9.4 can be viewed as a special case of this more general form of Theorem 9.5, in which

each of the Ψi is identical with ci = 2. The witnessing set W = {α, β} ensures that |Wi| = 2 for

each i ∈ [n], and the cost lower bound of 2n follows.

To prove Theorem 9.5, we need the following lemma, which shows that given a witnessing set

W for which at least k different responses are required, for any response β ∈ 〈U〉 we can find k− 1

assignments in W for which β is not a winning response.
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Lemma 9.6. Let Ψ = ∃X∀U ·ψ be a false QBF with cost(Ψ) ≥ k. Let W ⊆ 〈X〉 be such that for

any universal winning strategy S : 〈X〉 → 〈U〉 for Ψ , |{S(α) | α ∈ W}| ≥ k. For any β ∈ 〈U〉,
define Wβ := {α ∈ W | ψ[α][β] = >} to be the set of assignments in W for which β is not a

winning response. Then |Wβ| ≥ k − 1 for all β ∈ 〈U〉.

Proof. Since Ψ is false, let S : 〈X〉 → 〈U〉 be a winning universal strategy. Define the strategy

S′ : 〈X〉 → 〈U〉 by

S′(α) =

{
β if α ∈W\Wβ

S(α) otherwise

The strategy S′ is a winning universal strategy, since S(α) is a winning universal strategy, and

for any α ∈W\Wβ , ψ[α][β] = ⊥ by the definition of Wβ . However,

{S′(α) | α ∈W} = {S′(α) | α ∈Wβ} ∪ {β}

and so |{S′(α) | α ∈ W}| ≤ |Wβ| + 1. Since S′ is a winning universal strategy, we have

|{S′(α) | α ∈W}| ≥ k and hence |Wβ| ≥ k − 1. ut

We can then use this lower bound on |Wβ| to prove Theorem 9.5. For any assignment βi ∈ 〈Ui〉,
we have seen that we can find ci − 1 assignments in Wi for which βi is not winning. We use this

to show that for any universal response β on the first block of Φ ⊗ (Ψi), we can construct many

existential assignments from the Wi for which β is not a winning response. Any winning universal

strategy therefore requires many responses to cover all possible existential assignments.

Proof (of Theorem 9.5). Let X =
⋃n
i=1Xi and U =

⋃n
i=1 Ui be the first existential and universal

blocks of Φ ⊗ (Ψi) respectively. Define A = {
⋃
i∈[n] αi | αi ∈ Wi} ⊆ 〈X〉 to be the set of

assignments to the leftmost block of Φ⊗ (Ψi) constructed by picking one assignment from each of

the witnessing sets Wi. Observe that |A| =
∏n
i=1 |Wi|.

Fix any winning universal strategy S for Φ⊗ (Ψi), and let SU : 〈X〉 → 〈U〉 be its restriction

to the first universal block. Let B = SU (A) ⊆ rng(SU ) be the responses on U given by S to the

assignments in A. Showing a lower bound on |B| therefore provides a lower bound on cost(S), and

hence on cost(Φ⊗ (Ψi)).

For each β ∈ 〈U〉, let Aβ := {α ∈ A | Φ⊗ (Ψi)[α][β] ≡ ⊥} ⊆ A be the assignments in A for

which β is a winning response to α. Since Φ is minimally unsatisfiable, in order for an assignment

β ∈ 〈U〉 to be a winning response to α ∈ 〈X〉, we must have that β|Ui is a winning response to

α|Xi on Ψi for every i ∈ [n]. For each α ∈ A, α|Xi ∈ Wi, and by Lemma 9.6, there are at most

|Wi| − (ci − 1) assignments in Wi for which β|Ui is a winning response. We therefore conclude

that |Aβ| ≤
∏n
i=1(|Wi| − (ci − 1)) for every β ∈ 〈U〉.

However, since S is a winning universal strategy, (Φ ⊗ (Ψi))[α][Su(α)] is false, and hence

α ∈ ASU (α) for every α ∈ A. Moreover, for each α ∈ A, Su(α) ∈ B, and so A =
⋃
α∈AASU (α) =⋃

β∈B Aβ , hence |A| ≤
∑

β∈B |Aβ|. Applying the bounds for the sizes of A and Aβ we have
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established, we conclude
n∏
i=1

|Wi| ≤ |B| ·
n∏
i=1

(|Wi| − (ci − 1))

and hence

|B| ≤
n∏
i=1

|Wi|
|Wi| − (ci − 1)

=
n∏
i=1

(
1 +

ci − 1

|Wi| − (ci − 1)

)
.

The cost lower bound follows immediately as this lower bound on |B| does not depend on the

winning strategy S. ut

Theorem 9.5 gives a simple way to construct QBFs with high cost. By way of example,

consider the equality formulas (Definition 8.2) which are of the form Φ ⊗ (Ψi), where Ψi =

∃xi∀ui ·(xi ∨ ui) ∧ (¬xi ∨ ¬ui). By taking Wi = 〈{xi}〉, we have |Wi| = ci = 2 for all i ∈ [n]

and hence cost(EQ(n)) ≥ (1 + 2−1
2−(2−1))

n
= 2n.

To ensure high cost, we need only find a sequence of QBFs Ψn with sets Wn of assignments to

the first existential block witnessing that cost(Ψn) ≥ cn > 1 such that |Wn| does not grow too fast

compared with cn. In particular, for an exponential lower bound on cost, a witnessing set Wn such

that |Wn|
cn

= O(n1−ε) will suffice.

Corollary 9.7. Let Φn := Π ·
∧n
i=1Ci be a sequence of minimally unsatisfiable QBFs. Let Ψn =

∃Xn∀Un ·ψn be a sequence of false QBFs, with a set Wn ⊆ 〈Xn〉 such that for any winning

universal strategy S for Ψn, |S(Wn)| ≥ cn ≥ 2. If |Wn|
cn

= O(n1−ε) for some ε > 0, then

cost(Φn ⊗ Ψn) = 2Ω(nε).

Proof. We apply Theorem 9.5 to obtain

cost(Φn ⊗ Ψn) =

(
1 +

cn − 1

|Wn| − (cn − 1)

)n
=

(
1 +

1
|Wn|
cn−1 − 1

)n
.

Since cn ≥ 2, |Wn|
cn−1 ≤ 2 |Wn|

cn
= O(n1−ε) and hence for sufficiently large n, |Wn|

cn−1 ≤ kn1−ε for

some constant k. Substituting this into the bound above, we have

cost(Φn ⊗ Ψn) ≥
(

1 +
1

kn1−ε − 1

)n
≥ 2

n
kn1−ε−1 = 2Ω(nε)

since (1 + 1
m)

m ≥ 2 for all m ≥ 1. ut

Corollary 9.7 allows the construction of QBFs requiring exponential-size proofs in QU-Res,

CP+∀red and PCR+∀red from any choice of two false QBFs, providing these QBFs satisfy rela-

tively weak conditions. Moreover, such lower bounds can be given even when Φ and Ψ themselves

have short proofs in these proof systems, such as in the case of the equality formulas.
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9.2 Lower bounds for products of random formulas

We have shown that we can obtain cost lower bounds via product formulas. The conditions required

to achieve these bounds are relatively unrestrictive. Indeed, we now show that selecting the formulas

Ψi uniformly at random from a suitable class of QBFs will suffice to give a cost lower bound via

Theorem 9.5. This represents the first proof size lower bound on a randomly generated QBF.

We begin by defining the class of random formulas we shall consider.

Definition 9.8. For each 1 ≤ i ≤ n, let C1
i , . . . , C

cn
i be distinct clauses picked uniformly at

random from the set of clauses containing 1 literal from the set Xi = {x1i , . . . , xmi } and 2 literals

from Yi = {y1i , . . . , yni }. Define the randomly generated QBF Q(n,m, c) as

Q(n,m, c) := ∃Y1 . . . Yn∀X1 . . . Xn∃t1 . . . tn ·
n∧
i=1

cn∧
j=1

(¬ti ∨ Cji ) ∧
n∨
i=1

ti.

Specifying that clauses contain a given number of literals from different sets may seem unusual,

especially when compared with random k-SAT instances, where clauses are picked from the set of

clauses containing any k literals. However, it is widely used in the study of random QBFs [36, 45].

Indeed, such a specification is necessary, since if any clause in the matrix of a QBF contains only

literals on universal variables, then this QBF is immediately false, and all P+∀red proof systems

have a constant size refutation using only this clause and a sequence of ∀-reduction steps. Specifying

that all clauses must contain a given number of literals from different sets of variables avoids this

issue by ensuring that every clause contains existential variables. It is natural that we also expect

clauses in a QBF to contain universal variables – it would be unsatisfying to have a random QBF

which is false because it contains some unsatisfiable propositional instance.

The randomly generated formula Q(n,m, c) builds on this idea by constructing formulas Ψi by

choosing clauses uniformly at random from all clauses containing one universal variable and two

existential variables, in a similar way to that in which random 3-SAT chooses clauses at random

from all clauses containing 3 literals. We can then view Q(n,m, c) as a product formula by defining

Φ = ∃t1 . . . tn ·
∧n
i=1 ¬ti ∧

∨n
i=1 ti, and Ψi = ∃Yi∀Xi ·

∧cn
j=1C

j
i ; Q(n,m, c) is then equal to the

product formula Φ ⊗ (Ψi). Since Φ is fixed and contains no universal variables, we focus our

attention on the randomly generated Ψi. In order for Q(n,m, c) to be false, it must be the case that

all Ψi are false. We therefore aim to show that for suitable values of m and c, with high probability

all the Ψi are false, and furthermore a linear number of the Ψi have cost(Ψi) ≥ 2.

In order to satisfy the matrix of the formula Ψi, the existential player must play an assignment

which satisfies a literal in each clause Cji . If not, the universal player could win by falsifying the

universal literal in any such clause where the existential literals are both falsified. Determining the

truth of Ψi is therefore reduced to the 2-SAT problem defined by the existential parts of the clauses

Cji . We can then use the following result on the satisfiability of random 2-SAT formulas, shown

independently by Chvátal and Reed [37], Goerdt [61] and de la Vega [48], to obtain the falsity of
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the Ψi. We state it here with a tighter probability lower bound of 1− o(n−1) proved by de la Vega

in [49], which is necessary for Lemma 9.10.

Theorem 9.9 (de la Vega [49]). Let Φ be a random 2-SAT formula on n propositional variables

containing cn clauses selected uniformly at random with repetition. If c > 1 then Φ is unsatisfiable

with probability 1− o
(
n−1

)
.

The following lemma is equivalent to the statement that, with the same bound on c, Q(n,m, c)

is false with probability 1 − o(1). This is a fairly immediate consequence of Theorem 9.9; we

need only check that the clauses of Ψi contain sufficiently many different existential clauses. The

possibility of repeating an existential clause many times with different universal variables makes

this non-trivial, but this is still relatively easy to verify.

Lemma 9.10. If c > 1, then with probability 1− o(1), Ψi is false for every 1 ≤ i ≤ n.

Proof. For Ψi to be false, it is sufficient for the 2-SAT problem constructed by taking only the

existential parts of the clause to be unsatisfiable, since the universal player can always falsify the

universal literal on any unsatisfied existential clause. In order to use Theorem 9.9, we must show

there is some constant k > 1 such that, for each i ∈ [n], the clauses Cji contain at least kn distinct

existential clauses with high probability.

For each i, there are 4
(
n
2

)
possible existential clauses, and 2m possible universal literals. The

total number of possible clauses Cji is therefore 4mn(n− 1).

Let k be some fixed constant such that 1 < k < c. To determine the probability of C1
i , . . . , C

cn
i

containing at least kn distinct clauses in the existential variables, we consider making cn random

choices of clause from the 4mn(n− 1) possible such clauses. If fewer than kn distinct existential

clauses have been chosen so far, the probability of a randomly chosen clause having existential part

distinct from all previous chosen clauses is

4mn(n− 1)− 2mkn

4mn(n− 1)
= 1− k

2(n− 1)
.

We define the selection of a clause to be successful if it either selects a clause with existential

part distinct from that of the previous clauses, of if kn distinct existential clauses have already been

selected. The probability of any selection being successful is therefore at least 1− k
2(n−1) . We make

cn selections, and require the probability that at least kn are successful.

Letting Z be the number of successes, Z is a sum of cn Bernoulli random variables with

p = 1− k
2(n−1) . Using Hoeffding’s inequality [67], we obtain

P (Z ≤ kn) ≤ exp

−2

(
cn− cnk

2(n−1) − kn
)2

cn

 = exp

(
−2(c− k)2

c
n+O(1)

)

and so P (Z > kn) = 1− e−Ω(n) = 1− o
(
n−1

)
.
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The probability that Ψi is false is at least the probability of it containing at least kn distinct

existential clauses and the first kn distinct such clauses being unsatisfiable. Since the clauses

C1
i , . . . , C

cn
i were chosen uniformly at random, each set of kn existential clauses is equally likely

to be chosen, so the probability these clauses are unsatisfiable is 1− o
(
n−1

)
, by Theorem 9.9. The

probability of Ψi being false is therefore P (Z > kn) ·
(
1− o

(
n−1

))
= 1− o

(
n−1

)
.

Finally, the clauses in each Ψi are independently chosen, so the probability of all Ψi being false

is
(
1− o

(
n−1

))n
= 1− o(1). ut

It remains to show that cost(Q(n,m, c)) is large. As with falsity, we first look at the cost of

Ψi, and observe that, for m ≤ log2(n) and 1 < c < 2, cost(Ψi) ≥ 2 with probability 1 − o(1).

Winning responses for Q(n,m, c) are simultaneous winning responses for each of the Ψi. Since

many of the Ψi require multiple distinct responses, it is reasonable to expect that the number of

different responses required to be able to falsify all of them is large. With a careful choice of the

parameters m and c, we can indeed ensure that Q(n,m, c) has large cost with high probability.

To prove cost(Ψi) ≥ 2, it is sufficient to show that cost(Ψi) 6= 1, i.e. that any universal winning

strategy S : 〈Yi〉 → 〈Xi〉 for Ψi is not constant. If there is such a constant winning strategy, say

S(α) = β for all α ∈ 〈Yi〉, then the response is independent of α and so β also constitutes a

winning strategy for Ψ ′i = ∀Xi∃Yi ·
∧cn
j=1C

j
i . Showing that Ψ ′i is true is therefore sufficient to show

cost(Ψi) ≥ 2. With this modified prefix, Ψ ′i is of the form of a (1, 2)-QCNF, a previously studied

model for generating random QBFs.

Definition 9.11 (Chen and Interian [36]). A (1, 2)-QCNF is a QBF of the form ∀X∃Y ·φ(X,Y )

where X = {x1, . . . , xm}, Y = {y1, . . . , yn} and φ(X,Y ) is a 3-CNF formula in which each

clause contains one universal literal and two existential literals.

If such a winning strategy for Ψ ′i exists, then Ψ ′i is false. However, for c < 2, Ψ ′i is known to be

true with high probability in the case that m ≤ log2(n).

Theorem 9.12 (Creignou et al. [45]). Let X = {x1, . . . , xm} and Y = {y1, . . . , yn} be disjoint

sets of variables, and let Φ = ∀X∃Y ·φ(X,Y ) be a (1, 2)-QCNF in which φ(X,Y ) contains cn

clauses picked uniformly at random from the set of all suitable clauses. If m ≤ log2(n) and if c < 2,

then Φ is true with probability 1− o(1).

Given the lower bound c > 1 of Lemma 9.10, and the upper bound c < 2 of Theorem 9.12, we

pick 1 < c < 2 to lie between these bounds. With this choice of c, we can combine these results to

observe that not only are the Ψi all false with high probability, but Ψi also requires non-constant

winning strategies with high probability.

Lemma 9.13. Let Ψi = ∃Yi∀Xi ·ψi be as above. If 1 < c < 2 and m ≤ log2(n), then with

probability 1− o(1), Ψi is false and cost(Ψi) ≥ 2.

Proof. From the proof of Lemma 9.10, we observe that since c > 1, Ψi is false with probability

1− o
(
n−1

)
and hence cost(Ψi) ≥ 1.
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Suppose now that cost(Ψi) = 1. There is therefore some β ∈ 〈Xi〉 such that β is a winning

response for any α ∈ 〈Yi〉. That is, for any α ∈ 〈Yi〉, ψi[α][β] = ⊥. We can use β as a winning

strategy for Ψ ′i = ∀Xi∃Yi ·ψi, defining a winning strategy as S′(∅) = β. Since ψi[β][α] = ⊥ for

all α ∈ 〈Yi〉, S′ is a winning strategy for the universal player on Ψ ′, and hence Ψ ′ is false. However,

since c < 2, by Theorem 9.12, Ψ ′ is false with probability o(1) and so such a β ∈ 〈Xi〉 exists with

probability o(1).

The probability that Ψi is false and cost(Ψi) ≥ 2 is therefore 1−o
(
n−1

)
−o(1) = 1−o(1). ut

We use Lemma 9.13 to show that with high probability, a linear number of the Ψi require

non-constant winning strategies.

Theorem 9.14. For each i ∈ [n], let Ψi be as defined above. Let m ≤ log2(n) and c, l be constants

such that 1 < c < 2 and l < 1. With high probability at least ln of the Ψi have cost(Ψi) ≥ 2.

Proof. Since c > 1, we have from Lemma 9.10 that with high probability Ψi is false for every

i ∈ [n], so cost(Ψi) is defined for every 1 ≤ i ≤ n. For any given i ∈ [n], the probability that

cost(Ψi) ≥ 2 is 1− o(1), by Lemma 9.13.

Again using Hoeffding’s bound on the sum of independent Bernoulli random variables, the

probability that fewer than ln of the Ψi satisfy cost(Ψi) ≥ 2 is

exp
(
−2(1− l − o(1))2n

)
which for sufficiently large n is upper bounded by exp

(
−2(1− l′)2n

)
for some constant l′ < 1.

Thus with probability 1− o(1), cost(Ψi) ≥ 2 for at least ln of the Ψi. ut

In the context of Q(n,m, c), which is equivalent to
∨n
i=1 Ψi, Theorem 9.14 shows that for

suitable values of m and c, not only are all the Ψi false with high probability, and hence also

Q(n,m, c) is false with high probability, but also a linear proportion of the Ψi have cost(Ψi) ≥ 2.

With a slightly more careful choice of m, these properties will suffice to show a cost lower bound

on Q(n,m, c).

Unfortunately, as noted previously, we cannot obtain cost(Q(n,m, c)) simply by multiplying

the values of cost(Ψi) for each i, as the universal response onXi may now depend on the assignment

to Yj for some j 6= i. Instead, we use the property that if cost(Ψi) ≥ 2 then for any response

βi ∈ 〈Xi〉, there is some assignment in 〈Yi〉 for which βi is not a winning response for the universal

player in Ψi. Using these, we can construct for any universal response β on Q(n,m, c), a large set

of assignments in 〈Y1, . . . , Yn〉 for which β is not a winning response.

Theorem 9.15. Let 1 < c < 2 be a constant, and let m ≤ (1− ε) log2(n) for some constant ε > 0.

With probability 1− o(1), Q(n,m, c) is false and cost(Q(n,m, c)) = 2Ω(nε).

Proof. The randomly generated QBF Q(n,m, c) can be considered as a product formula Φ⊗ (Ψi),

where Φ = ∃t1 . . . tn ·
∧n
i=1 ¬ti ∧

∨n
i=1 ti and for each i ∈ [n], Ψi = ∃Yi∀Xi ·

∧cn
j=1C

j
i with
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Yi = {y1, . . . , yn}, Xi = {x1, . . . , xm} and the clauses Cji chosen uniformly at random from the

set of all clauses containing two literals on variables in Yi and one literal on a variable of Xi. Clearly

Φ is false, and by Lemma 9.10, all the Ψi are false with probability 1− o(1), and hence the product

formula Φ⊗ (Ψi) = Q(n,m, c) is false with probability 1− o(1) (Lemma 9.3).

It remains to show that cost(Q(n,m, c)) ≥ 2Ω(nε). By Theorem 9.14, for any constant 0 < l <

1, at least ln of the Ψi satisfy cost(Ψi) ≥ 2. We show that this suffices for the cost lower bound

on Q(n,m, c). Without loss of generality, assume that Ψ1, . . . , Ψdlne have cost(Ψi) ≥ 2, and that

cost(Ψi) = 1 for dlne < i ≤ n.

We aim to apply Theorem 9.5, with ci = 2 for each 1 ≤ i ≤ dlne and ci = 1 for dlne < i ≤ n,

to provide our cost lower bound. To do so, we must construct suitable witnessing sets Wi ⊆ 〈Yi〉
witnessing that cost(Ψi) ≥ ci. For dlne < i ≤ n, this is straightforward, since we can let

Wi = {α} for any α ∈ 〈X〉. Any winning strategy Si for Ψi will return a response to α, and so

|Si({α})| = 1 = ci.

If 1 ≤ i ≤ dlne, list the elements of 〈Xi〉 as 〈Xi〉 = {βi1, . . . , βiN}, where N = 2m ≤ n1−ε.

For each βij , we can find some assignment αij ∈ 〈Yi〉 such that βij is not a winning response to αij
for the universal player on Ψi. If this were not the case, there would be a constant winning strategy

for the universal player on Ψi by playing βij . We therefore define Wi = {αij | j ∈ [N ]}. Given a

winning universal strategy Si for Ψi, observe that |Si(Wi)| ≥ 2, as for any β ∈ 〈Xi〉, Wi contains

an assignment for which β is not a winning response, and so we cannot have S(Wi) = {β} for any

β ∈ 〈Xi〉.
We can now use Theorem 9.5. For each 1 ≤ i ≤ dlne, we have ci = 2 with |Wi| ≤ N , and

hence (1 + ci−1
|Wi|−(ci−1)) ≥ (1 + 1

N ). For dlne < i ≤ n, ci = |Wi| = 1 and (1 + ci−1
|Wi|−(ci−1)) = 1.

We therefore have

cost(Φ⊗ {Ψi}) ≥
(

1 +
1

N

)dlne
≥
(

1 +
1

n(1−ε)

)ln
=

((
1 +

1

n(1−ε)

)n(1−ε))lnε
= 2Ω(nε)

since N ≥ n(1−ε) and for large n, (1 + 1
n)
n ≥ 2.

We have shown that if all the Ψi are false, and if at least ln of the Ψi have no constant winning

universal strategies, then Φ⊗ (Ψi) = Q(n,m, c) is false and cost(Q(n,m, c)) ≥ 2Ω(nε). Both of

these conditions hold with probability 1−o(1) by Lemma 9.10 and Theorem 9.14, which completes

the proof. ut

Theorem 9.15 proves that for appropriate values of m and c, the QBF Q(n,m, c) have large

cost with high probability. We can then apply the Size-Cost-Capacity theorem, and the capacity

upper bounds from Chapter 8 to give proof size lower bounds on Q(n,m, c).

Theorem 9.16. Let 1 < c < 2 be a constant, and let m ≤ (1 − ε) log2(n) for some constant

ε > 0. With high probability, the randomly generated QBF Q(n,m, c) is false, and any QU-Res,

CP+∀red or PCR+∀red refutation of Q(n,m, c) requires size 2Ω(nε).
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Proof. From Theorem 9.15, with high probability Q(n,m, c) is false with cost(Q(n,m, c)) ≥
2Ω(nε). Theorems 8.10 and 8.16 provide that cost is a lower bound for QU-Res and CP+∀red

proofs respectively. By Theorem 8.21, we have that the size of a PCR+∀red proof of Q(n,m, c) is

at least
√

cost(Q(n,m, c)) ≥ 2
1
2
Ω(nε) = 2Ω(nε). ut

The underlying structure of the formulas means that the QBF Q(n,m, c) = Φ⊗ (Ψi) may not

seem as generic as the model of random 3-CNFs, but nonetheless, to the best of our knowledge this

is the first instance of a proof complexity lower bound on a randomly generated class of QBFs. As

noted, some additional structure is necessary in any random QBF to ensure that no clause contains

purely universal literals. The structure of Φ need not be fixed. Our choice of Φ in Q(n,m, c) was

only for the sake of simplicity. The key feature required of Φ for the results of this section is that

any refutation requires Ω(n) clauses.

An analogous lower bound to that in Theorem 9.16 could therefore be applied to a similar

class of random formulas of the form Φ⊗ (Ψi) in which the formula Φ is a existentially quantified

random 3-CNF. A random 3-CNF with n variables and kn clauses is false with high probability

for sufficiently large values of k [58], yet still requires a linear number of clauses in any refutation.

However, with high probability such random 3-CNFs require large refutations in Resolution [38],

Cutting Planes [55, 68], and in Polynomial Calculus [12], and so while we can show a ‘genuine’

QU-Res or CP+∀red lower bound on such formulas in this way, in the sense that the formulas

would require large proofs in Σp
1-QU-Res, Σp

1-CP+∀red and Σp
1-PCR+∀red via the cost lower

bounds above, QU-Res, CP+∀red and PCR+∀red lower bounds also follow immediately from the

propositional lower bounds.

Suitably chosen random 2-CNFs are also false with high probability (Theorem 9.9), and all

false 2-CNFs have short Resolution refutations. However, the proof of Theorem 9.9 in [49] also

shows that, with high probability, such a random 2-CNF contains an unsatisfiable set of clauses

of size O(log n). This is not sufficient to provide a lower bound on cost(Φ⊗ (Ψi)), as a winning

strategy for the universal player need only be able to falsify O(log n) of the Ψi.

To show the proof size lower bound for the random formulas, we gave a lower bound on their

cost and applied Theorem 8.7. It is therefore natural to ask whether we can find short proofs of

the QBFs Q(n,m, c) in stronger proof systems, such as Frege +∀red, for which we do not have

capacity upper bounds. This is indeed the case.

Theorem 9.17. Whenever the QBF Q(n,m, c) is false, there is a polynomial-size Frege +∀red

refutation of Q(n,m, c).

Proof. ConsiderQ(n,m, c) to be the product formula Φ⊗(Ψi) as previously, where Φ = ∃t1 . . . tn·∧n
i=1 ¬ti ∧

∨n
i=1 ti and Ψi = ∃Yi∀Xi ·ψi, with ψi =

∧cn
j=1C

j
i .

From the clauses ¬ti ∨Cji , there is a polynomial-size Frege derivation of ¬ti ∨ ψi, and hence a

polynomial-size Frege derivation of
∨n
i=1 ψi from the clauses of Q(n,m, c). Since the variables

of each of the ψi are disjoint, it therefore suffices to show that for each i ∈ [n] there is a short

118



9.2. LOWER BOUNDS FOR PRODUCTS OF RANDOM FORMULAS

refutation of Ψi, since we can then use this refutation to derive
∨k−1
i=1 ψi from

∨k
i=1 ψi, ultimately

deriving ⊥.

Let β0, β1 ∈ 〈Xi〉 be the identically 0 and identically 1 assignments respectively to the variables

of Xi. Using two ∀-reductions, we can obtain ψi[β0] and ψi[β1], and hence derive ψi[β0] ∧ ψi[β1].
By the construction of the clauses Cji , this is a 2-CNF. Moreover, a clause of ψi is satisfied by

precisely one of β0 and β1, and hence ψi[β0] ∧ ψi[β1] contains the existential parts of every clause

of ψi. As discussed above, since Ψi is false, this is an unsatisfiable 2-CNF. All false 2-CNFs have

linear-size refutations in Frege (indeed, even in Resolution); this completes a polynomial-size

refutation of Ψi. ut

That there is always a short Frege +∀red, and indeed even AC0-Frege +∀red, refutation of

Q(n,m, c) serves to emphasise that lower bounds via cost fall into the third case of the trichotomy

given in Theorem 6.5. Moreover, the existence of a large number of formulas with large cost repre-

sents a significant challenge for QBF solvers, many of which correspond to proof systems admitting

lower bounds via cost. While some solvers incorporate elements of long distance resolution [110],

our results suggest that working with clauses or linear inequalities rather than more expressive

formulas is a major limitation of current solvers.
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Chapter 10

Conclusion

In this thesis, we have made contributions to QBF proof complexity in two related areas. The first

is an increased understanding of the causes for lower bounds in QBF proof systems, in particular

distinguishing those arising for propositional reasons. The second is in introducing two related new

lower bound techniques based on round-based strategy extraction.

Understanding lower bounds Dissatisfaction at the presence of propositional lower bounds for

QBFs has previously been raised [35]. Some previous progress had been made in identifying such

lower bounds, either through a new proof system, or by characterising any non-propositional lower

bounds [30]. We have provided a strengthening for both these approaches.

We first described the relaxing QU-Res proof system, which was designed to remove proposi-

tional hardness as a cause of lower bounds. By introducing a new method of combining false QBFs

which allows precise control over proof size and the reasons for lower bounds, we showed that

relaxing QU-Res does not eliminate all propositional lower bounds.

Having observed that relaxing QU-Res does not achieve this distinction, we introduced an

alternative proof system for identifying propositional lower bounds in Chapter 5. This takes the

form of a proof system with access to an oracle for Σp
1. Rather than only allowing use of an oracle

when deriving axioms, Σp
1-QU-Res can use the Σp

1-oracle throughout the proof, but is limited to

only Σp
1-oracles, rather than the higher levels of the polynomial hierarchy permitted in relaxing

QU-Res. This allows for more effective modelling of the approaches of QBF solvers which call a

SAT solver as a black box, as well as identifying families of formulas which are useful for testing

solvers’ handling of quantified variables.

The Σp
1-QU-Res proof system also extends to Σp

k-QU-Res for larger k, allowing us to study the

effect of the alternation of quantifiers on the complexity of proofs. We have given a thorough analysis

of the effect of such oracles on the QU-Res proof system. We showed a hierarchy of separations

between QU-Res proof systems with access to different levels of the polynomial hierarchy, but

that there also exist families of formulas which cannot be efficiently solved in QU-Res with any

fixed such oracle. These results emphasise the importance of the dependency schemes used by
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solvers such as DepQBF, and associated proof systems [82, 105]. Such systems offer the prospect

of overcoming some of the hardness produced by the alternation of quantifiers in the prefix by

considering more carefully the dependence of variables on each other beyond the information given

by the quantifier prefix.

The second approach to identifying propositional lower bounds in QBF is to understand all

possible reasons for hardness, including propositional hardness, and therefore be able to classify

QBFs accordingly. In Chapter 6, we refined the characterisation of lower bounds for C-Frege

+∀red systems to give a characterisation for any system with strategy extraction by circuits. Since

most QBF proof systems admit such strategy extraction, this allows for a substantially greater

understanding of QBF lower bounds. In particular, our results extend the classification of lower

bounds to proof systems such as QU-Res, which more closely relate to algorithms used in QBF

solvers. In contrast to circuit lower bounds, the additional cause of hardness which arises in weaker

systems such as QU-Res is harder to encapsulate in a simple idea. However, in the case of tree-like

proof systems we completely described lower bounds in this category in Chapter 7.

Lower bound techniques Having identified propositional lower bounds for QBF proof systems

via Σp
1-P+∀red, we provided two related techniques of a distinctly QBF flavour for proving lower

bounds. Both of these techniques are based on the size of a winning strategy for the universal player,

specifically the number of different ways the universal player may need to play on the universal

variables.

The first of these, presented in Chapter 7, is a lower bound for treelike versions of even very

strong QBF proof systems including Frege +∀red and eFrege +∀red. This lower bound is based

on the absolute number of responses required by a universal winning strategy. The simplicity of

this lower bound ensures that it can be applied to a wide variety of formulas, and demonstrates the

importance of clause learning in QCDCL based solvers. Moreover, the lower bounds proved via this

technique highlight the distinction between the two different implementations of the ∀-reduction

rule. This is the first instance in which a difference in power between these approaches has been

observed in a P+∀red proof system.

The second lower bound technique we presented seeks to apply a similar lower bound from

strategy size to dag-like proof systems. In order to achieve this, we measured the number of

responses in a single block of universal variables, rather than across the entire QBF. We used

this measure to show lower bounds on various proof systems, including CP+∀red and PCR+∀red.

This allowed us to show lower bounds for several systems simultaneously simply by showing a

lower bound on the cost of formulas. We also observed that this technique cannot be applied to

stronger proof systems such as Frege +∀red or IPS+∀red, suggesting that if solving techniques

corresponding to proof systems such as CP+∀red or PCR+∀red can be adapted to work with

stronger circuits, this could lead to significant improvements in solving.

Chapter 9 applied this technique based on cost and capacity to give a method for constructing

QBFs which are hard for these weaker proof systems. Such a method of constructing has obvious
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applications in generating test sets for solving competitions and solver development. The number of

hard formulas that can be generated in this way is large, as we showed by presenting a model for

randomly generating QBFs which are lower bounds for these proof systems with high probability.

Future work We have shown that in systems weaker than C-Frege +∀red systems, lower bounds

fall into three categories rather than two. It would be desirable to be able to give a simpler character-

isation of the additional causes of lower bounds in systems such as QU-Res. We provided a lower

bound technique which produces lower bounds in this third category, namely Size-Cost-Capacity,

but further work is needed to determine if this suffices to prove all such lower bounds.

Superpolynomial lower bounds for stronger P+∀red proof systems cannot easily be shown via

cost and capacity since these systems allow proofs with high capacity. Recent work by Beyersdorff

and Blinkhorn [16] has shown that a technique similar to cost and capacity, employing an adaptation

of cost, can be implemented in the expansion-based system IR-calc. In the case of long-distance

calculi such as LD-Q-Res, neither a dichotomy of the form of Theorem 6.2, nor a lower bound

technique based on the number of universal responses, is known. The establishment of either would

contribute greatly to the understanding the strength of long-distance QBF resolution systems.
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37. V. CHVÁTAL AND B. A. REED, Mick gets some (the odds are on his side), in Foundations of Computer Science
(FOCS), 1992, pp. 620–627.
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