
  
 

 

 

 

 

 

Climate Change and Cultural Heritage: 

developing a landscape-scale vulnerability framework 

to measure and manage the impact of climate change 

on coastal historic landscapes 

 

 

 

Isabel Cook 

 

 

 

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy 

 

 

 

The University of Sheffield 

Faculty of Arts and Humanities 

Department of Archaeology 

 



i 
 

October 2019 

Abstract 
 

The impacts of climate change, including sea-level rise, coastal erosion, and flooding, have the 

potential to damage or destroy archaeology and cultural heritage assets. Most studies that have 

modelled or measured the impact of coastal and climatic processes on archaeology have focussed 

on archaeological features as discrete entities rather than as part of the historic landscape. The 

results, therefore, can only inform a comparison between single sites and do not reveal threats to 

the wider cultural heritage and historic landscape.  

This thesis develops a Landscape Vulnerability Framework, which uses several methodologies to 

establish the vulnerability of the historic landscape to climate change and identify sustainable 

management approaches. Each step of the framework is tested on the Dysynni valley and estuary 

(west Wales), which acts as a pilot study for the methods being developed.  

Historic Landscape Characterisation characterises the historic landscape into definable areas with 

similar form, function and history. This is based on an analysis of aerial photographs, modern and 

historic maps, archaeological database records, archive research, and geophysical surveys. 

A two-step vulnerability index is then developed to determine the vulnerability of the historic 

landscape to climate change. The first step assesses the vulnerability of archaeological sites and 

landscape features to climate change. The second step uses the results of the first vulnerability 

index, as well as spatial data on the landscape character areas and the threat in question, to 

calculate the vulnerability of each landscape character area to climate change. 

The results of the vulnerability index are used to inform a sustainability assessment of different 

potential coastal and flood-risk management options. A multi-attribute value theory is used to 

calculate the level of impact that different management approaches would have on the most 

vulnerable historic landscape character areas, the local ecology, economy and community. 

 

The Landscape Vulnerability Framework developed in this thesis can be applied to landscapes in the 

UK and beyond. It will provide a simple, well defined method for policy-makers and heritage 

organisations to effectively consider the vulnerability of the historic landscape to climate change, 

and inform a holistic, proactive approach to the sustainable management of cultural heritage. 
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Chapter 1  

Introduction 
1.1 Background to Research 
Climate change is one of the most widely-debated and contentious phenomena of the 21st century, 

although 98% of climate scientists agree that anthropogenic greenhouse gas (GHG) emissions have 

been the dominant cause of the recorded global temperature increase over the last half-century 

(Anderegg et al. 2010). This warming trend is predicted to increase in the foreseeable future, and 

will result in rising sea levels, changing weather patterns and exacerbated natural disasters (Kirtman 

et al. 2013). The impacts of these changes on ecological systems, and farming and subsistence 

economies will be severe, and include shifting habitat biomes and species ranges, altered growing 

seasons and life-cycles, disrupted food-webs, disease and parasite spread, and intensified droughts 

and floods (see Knox et al. 2010; King et al. 2018). These impacts, and potential adaptive 

approaches, are well researched within ecology, environmental sciences and agricultural sciences 

(e.g. Parmesan 2006; Rosenzweig et al. 2008; Nelson et al. 2009).  

Climate change also poses a threat to cultural materials and heritage, through desiccation, erosion, 

weathering, inundation, and bioturbation, but this has been less thoroughly researched than the 

environmental or economic impacts (Hermann 2017). The threat of climate change is particularly 

significant in coastal areas, which are prone to accelerating rates of erosion due to sea-level rise and 

increasing storminess, causing archaeological remains located on the foreshore and in cliffs to be at 

risk (Murphy and Ings 2013). Coastal erosion is known to have destroyed over 150 documented 

settlements around the North Sea in the last millennium, such as Eccles, Clare, Foulness, Keswick, 

and Shipden (Custard 2017; Sear et al. 2011). Furthermore, coastal lowlands are at risk of more 

frequent flooding or even permanent inundation due to sea-level rise (ibid.)  

Archaeological materials are a finite resource, and the information held within archaeological 

deposits can facilitate our understanding of past societies, environmental change, and the historic 

interaction between humans and their environment. Coastal regions in particular often have a 

higher density of archaeological remains than inland areas (Dawson 2013). Coastal cities and 

societies were important throughout the development of civilisation, so coastal archaeological sites 

are often rich in artefacts that can indicate the extent of trade networks (Bailey 2004). However, 

many historic coastal towns are now threatened by erosion and sea-level rise, so both cultural 

heritage and coastal communities are at risk (Murphy and Ings 2013). The waterlogged 

environmental conditions along many coastlines and in the subtidal or nearshore zone mean that 
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there is a high potential for the preservation of organic remains (Fischer 2004, DONG Energy 2013). 

For instance, 30 Mesolithic canoes have been discovered off the coast of Denmark, while in the 

intertidal zone of Cardigan Bay, Wales, the preserved remains of a forest contains environmental 

and archaeological information from the Bronze Age and earlier (Godwin and Newton 1938; Milner 

2012). The importance of coastal regions for archaeological information is high, and therefore it is 

especially important for the threat of climate change to be addressed. In order to effectively address 

this threat to cultural heritage, it is essential that archaeologists and heritage managers fully 

understand the ways in which cultural heritage is vulnerable to the myriad of impacts that may 

occur.  

1.2 Previous Research 

There has been some research on the threat of climate change to archaeology on several 

jurisdictional levels. Internationally, the EU-funded Noah’s Ark project studied which meteorological 

changes will have the most impact on built historic structures (CORDIS 2007; Brimblecombe et al. 

2011). UNESCO has funded research into the impacts of climate change on World Heritage sites such 

as Orkney (Scotland), Chavin Palace Complex (Peru), the monumental site of Panamá Viejo 

(Panama), and the ancient city of Timbuktu (Mali) (Colette 2007a; Ciantelli et al. 2018; Mullaney 

2019). The purpose of both the UNESCO and Noah’s Ark research is to identify which sites are most 

at risk, and the nature of the threat, in order to inform policy-makers and adaptation strategies.  

In the UK, the National Trust is conducting research into the risk posed by climate change to its 

historic properties and developing adaptation plans for each, with particular focus on those in 

coastal areas (see National Trust 2015a). They suggest working with coastal processes where 

possible, and taking a long-term perspective, in order to transition into more sustainable 

management approaches for heritage sites (ibid). English Heritage undertook a scoping study on 

climate change and the historic environment, to identify gaps in information and produce general 

recommendations such as promoting and supporting local decision-making, identifying a way to 

prioritise sites for conservation and protection, and using impact information to develop adaptation 

strategies and guidelines (Casser 2005). Finally, the Historic Environment Group (HEG) Climate 

Change Subgroup, an advisory group that advises Welsh Ministers, produced a report on the 

potential impact of climate change on the historic environment of Wales (see Powell et al. 2012; 

Murphy and Ings 2013). This report divided historic assets into nine groups based on asset type or 

location, for example assets below the one metre contour, assets on the foreshore, historic 

buildings, forestry and woodland, historic landscapes, and assets in upland environments. This is the 

only report that looked specifically at the impact of climate change on historic landscapes and 
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determined that climate change threatens not only the historic assets within landscapes, but the 

character of historic landscapes themselves (ibid.).  In a report about sustainable management of 

heritage assets, Cadw (2011) briefly discuss historic landscapes as heritage assets, and the potential 

impact of climate change on the ecological elements of historic landscapes. However, there is no 

specific mention of sustainable management of historic landscapes in the face of climate change. 

The focus of this thesis is on historic landscapes as heritage assets. The HEG Climate Change 

Subgroup report estimated that historic landscapes will be the heritage asset most affected by 

climate change, due to the cumulative impact on the individual heritage assets within the landscape, 

as well as the woodland, parks, and gardens that characterise historic landscapes (Powell et al. 

2012). Furthermore, the focus of impact and adaptation research in archaeology tends to be on 

single sites, buildings and monuments. This means that historic landscapes are an overlooked 

historic asset. This thesis follows two of the general recommendations produced by English Heritage: 

‘identify a way to prioritise sites for conservation and protection’, and ‘use impact information to 

develop adaptation strategies and guidelines’ (Cassar 2005) (see 1.4).  

1.3 Justification for Research 

The importance of assessing and addressing the vulnerability of cultural heritage on a landscape 

scale, rather than on a site-by-site basis, is demonstrated by the limitations of a number of site 

protection projects. Matero (2008) states that the management and conservation of archaeological 

sites can result in a loss of place, and impact the visual integrity and legibility of the site within a 

landscape.  Shelters are often constructed over archaeological sites to protect them from erosion, 

weathering, precipitation, and sunlight (Teutonico 2013), but this can have many unforeseen 

negative impacts. For instance, shelters can isolate archaeological features from their surrounding 

landscape, making them appear as independent artefacts, and therefore obscuring the relationships 

between features and their environs (Thompson and Abed 2013). This can be seen at Chur, 

Switzerland, where a closed wooden pavilion was built in 1986 to cover Roman remains (see Figure 

1.1). The original Roman structures were single-storey, and the remains are now at ground level, but 

the shelters constructed are taller than a two-storey building (Martin 2013). These structures not 

only visually disrupt the landscape, but by covering the Roman remains, they remove the Roman 

character from the historic landscape and obscure the connection between the remains and their 

environment. Management approaches like this privilege the scientific and research value of the 

physical remains over the associative and aesthetic values of the site within the landscape (Matero 

2008).  
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 Shelters can also impact the character of the historic landscape as a whole. At Ephesus, Turkey, the 

remains of an ancient city including Persian, Hellenistic, Roman, Arabic, Byzantine and Christian 

remains, a shelter was built over a small section of the excavation (Bellibaş 2013). The shelter is stark 

white against the muted greens, browns and beige of the landscape, and is the most visible feature 

in the environment for many miles (see Figure 1.2).  Shelters like this dramatically alter the character  

 

Figure 1.1: Wooden pavilion constructed to protect Roman remains at Chur, Switzerland, 

obscuring them within the landscape. Copyright Pol Martin 2013 and Petr Šmídek 2008 
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of the overall landscape, as well as obstructing the view of the site, and are the result of a site-

focussed cultural heritage management approach (Teutonico 2013).  

Although these examples come from continental Europe, site-focussed cultural heritage 

management is also a risk in the UK. In a report for the HEG Climate Change Subgroup, Powell et al. 

(2012) warn that the construction of coastal and flood defences could impact the character of the 

historic assets and settlements that they are designed to protect. They estimate that the most 

serious impact of climate change on British settlements will be the impact on the historic character 

Figure 1.2. A shelter constructed to protect some of the remains of the ancient city of Ephesus, 

Turkey. Copyright Ephesus Foundation 2016, Austrian Archaeology Institute 2019, and EarthTrekkers 

2019 
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caused by coastal and flood defences (ibid.). Environmental Impact Assessments (EIAs) of such 

developments are required to consider cultural heritage. However, the predominance of list-based 

heritage management in the UK (Historic Environment Records, National Monuments Record) means 

that the EIAs often just consult existing national registers (King 2006). These registers can be 

incomplete for a number of reasons, including a lack of systematic survey in some landscapes, and a 

focus on architecturally or scientifically important sites rather than culturally significant areas (ibid). 

Cultural heritage as defined by lists and point-data also obscures the intangible elements of cultural 

heritage, such as local tradition, land-use, and sense of place, and geographically larger areas that 

cannot be easily defined as points, such as scattered remains or spiritually significant landscapes 

(ibid.) 

Evidently, piecemeal protection of heritage assets, and site-focussed management structures, can 

fail to consider the impact of protection and management on the wider historic landscape. However, 

the historic landscape, defined in section 3.2.3 , is a cultural heritage artefact which is as at risk from 

climate change as any other asset.  

1.3.1 Dunwich, Suffolk 

The example of Dunwich, Suffolk, demonstrates the potential impact of climate change, and 

associated sea-level rise and coastal erosion, on historic landscapes. Dunwich currently has a 

population of less than 200 (ONS 2011), but was once a large port. During the 14th century it was 

similar in size to London at the time, and was an important centre for shipbuilding (Sear et al. 2015). 

The local geology is particularly susceptible to coastal erosion, with large areas recorded to have 

been lost in single events over the last 1000 years (Sear et al. 2011). The cultural heritage and 

historic character of the town has been destroyed due to erosion: Dunwich was unable to continue 

to act as a centre for trade following the loss of the market place and town hall in the 17th century; 

while the All Saints church, St Mary’s Temple, Maison Dieu hospital and Franciscan Friary were all 

damaged or destroyed in the 18th - 19th centuries (see Figure 1.3) (Sear et al. 2011.). The loss 

experienced at Dunwich does not relate just to the disappearance of individual buildings and sites in 

isolation, but also to the loss of the heritage of the town and the historic character of the urban 

landscape. Climate change is projected to accelerate and exacerbate the coastal processes that here 

destroyed a whole urban landscape, and therefore has the potential to cause similar losses in both 

urban and rural historic landscapes.  
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Figure 1.3. Map indicating coastline position and retreat at Dunwich, Suffolk, each century 

during the second millennium AD. The extent of loss of the urban landscape and cultural 

heritage at Dunwich to due coastal erosion is shown. Source: Discovering Britain, 

Copyright RGS-IBG  



8 
 

1.4 Aims and Objectives 

The range of impacts associated with anthropogenic climate change will undoubtedly have an effect 

on the archaeological resource, particularly in coastal areas. The archaeological resource can 

encompass any and every trace of past human activity, whether that is a single findspot or a 

landscape-wide relic field system. However, most studies researching and addressing climate change 

impacts on archaeology focus exclusively on archaeological ‘sites’ (see sections 2.7 and 7.2.5). This 

overlooks processes and impacts that occur at a higher or lower spatial level than that of ‘sites’.  

This thesis is guided by a single research question: How can the vulnerability of cultural heritage to 

future climate change be assessed and managed at a landscape scale? 

A Landscape Vulnerability Framework is developed to address this research question. Within the 

framework, Hierarchy Theory and Historic Landscape Characterisation (HLC) are used to expand the 

spatial scope of archaeological analysis. These methods incorporate the wider historic landscape by 

creating a spatially continuous, landscape-level structure that can be used in vulnerability 

assessments. This addresses the problems caused by site-focussed vulnerability assessments and 

informs the sustainable management of the vulnerable historic landscape in the face of climate 

change.  

A case study in northwest Wales, the Dysynni valley, is used to trial and exemplify the methods and 

Landscape Vulnerability Framework developed in this thesis. Although the results of applying the 

Landscape Vulnerability Framework to the Dysynni valley are discussed, the intention was to create 

a framework that can be adapted and applied to any historic landscape in the UK and beyond, in 

order to establish a universal methodology for analysing and addressing the threat of climate change 

to historic landscapes.  

Three research aims were developed that feed into the overall research question, each of which is 

implemented using several research objectives.  

Research Aim 1 

The first research aim is to identify a method of analysing and characterising the archaeological 

resource on a landscape level. To develop a Landscape Vulnerability Framework, it is first important 

to identify, measure and characterise the archaeological resource of the landscape. The Dysynni 

valley study area is used to illustrate the methods chosen 
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Objectives 

1a) Collect information on the known archaeological resource in the Dysynni valley 

1b) Use aerial photography and geophysical surveys to enrich the archaeological record of the 

Dysynni valley 

1c) Use Historic Landscape Characterisation to characterise the historic landscape of the Dysynni 

valley. 

Research Aim 2 

The second research aim is to develop a landscape-level archaeology vulnerability assessment 

methodology. This methodology is a key element of the Landscape Vulnerability Framework, and 

was developed to be applicable to other contexts, so the framework can be replicated for other 

historic landscapes. 

Objectives 

2a) Determine the potential climatic changes in the Dysynni valley in the 21st century based on the 

results of a variety of climate models 

2b) Develop a vulnerability index for measuring and quantifying the vulnerability of historic 

landscapes, informed by the strengths and limitations of other archaeology vulnerability 

assessments 

2c) Apply the vulnerability assessment established in 2b to the Historic Landscape Characterisation 

output for the Dysynni valley (objective 1c), to identify any weaknesses in the methodology 

developed 

Research Aim 3 

The third research aim is to establish a way to identify the most appropriate approach(es) for 

sustainably managing the coastal historic landscape in the face of climate change. The final part of 

the Landscape Vulnerability Framework uses the outputs from the vulnerability assessment 

(Research Aim 2) to inform the most suitable and sustainable approaches to managing the risk 

identified. In line with the concept of sustainability (see section 3.2.4), this includes consideration of 

the economic, social and ecological impacts of different management approaches, as well as the 

archaeological impacts.   

Objectives 

3a) Identify, through literature research, a sustainability assessment approach that could be used in 

the Landscape Vulnerability Framework  

3b) Review the current coastal and flood-risk management approaches in the Dysynni valley, and 

research innovative sustainable alternatives  
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3c) Use the sustainability assessment approach (Objective 3a) to compare the current management 

policy in the Dysynni valley with potential alternatives identified in Objective 3b. This tests the 

suitability of applying this sustainability assessment methodology to the output generated in 

Research Aim 2. 

1.5 Thesis Outline 

The structure of this thesis is represented diagrammatically in Figure 1.4. After the Introduction 

(Chapter 1), there is a literature review of the current understandings of the potential impacts of 

climate change on archaeology, particularly in coastal areas (Chapter 2). Chapter three outlines the 

methodological approach followed in this thesis, including the conceptual framework and an 

explanation of how the methods chosen address the research aims. Chapter four provides an 

overview of the study area used to trial and exemplify the methods developed and used in this 

thesis. To address Research Aim 1, several primary and secondary research methods are used to 

enrich the archaeological understanding of the study area (Chapter 5) and inform a Historic 

Landscape Characterisation (Chapter 6). Chapter 7 addresses Research Aim 2, and involves the 

development of a landscape-scale vulnerability index, which is applied to the historic landscape as 

characterised in Chapter 6. This is based on a literature review of vulnerability assessment 

methodologies used in archaeological research, and addresses several of the limitations identified in 

common methods. In Chapter 8, Research Aim 3 is addressed, and a sustainability assessment 

methodology is developed to address the vulnerability of the historic landscape, as identified in 

Chapter 6. This involves a review of the current coastal and flood-risk management practices in the 

study area, an exploration of sustainable management approaches that could be employed, and a 

review of common sustainability assessment methods. Finally, Chapter 9 provides a summary of the 

thesis, the implications of the findings of this research, and recommendations for future research.  
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Chapter 1: Introduction  

Chapter 2: Impact of Climate Change on Archaeology 

Chapter 3: Methodological Approach  

Including the conceptual framework and approach to scale that inform the overall thesis  

Chapter 4: Study Area 

Introduction to the Dysynni valley, including the environmental and historical background of the area 

8.1: Sustainability Assessment Methods 

Chapter 8 

Sustainable Management 

for the Historic Landscape 

8.2: Current management of the study area  

8.3: Sustainable coastal and flood risk management options  

8.4: Application of the Sustainability Assessment to the study 

area   

Chapter 9: Discussion, Future Work and Conclusion 

 

Chapter 7 

Landscape-scale 

Vulnerability Index  

 

7.1: Vulnerability Index Methodologies  

7.2: Development of Landscape-scale Vulnerability Index  

7.3: Application of Landscape-scale Vulnerability Index to 

study area 

5.1: Multi-method research  

6.1: Landscape Character Area classification 

Chapter 5 

Landscape Analysis  

 

Figure 1.4: Visual diagram of the thesis structure 

Chapter 6 

Landscape Characterisation 

 

5.2: Landscape narrative development 

6.2: Historic Landscape Characterisation 
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1.6 Delimitation of Scope 

It is necessary to define the scope of this research, as phenomena discussed throughout such as 

climate change, cultural heritage, and historic landscapes, have broad and often different meanings 

depending on the research study or discipline. 

1.6.1 Climate Change 

Despite the contentious nature of the climate change debate within the media, this thesis is based 

on the belief that increasing radiative forcing, and therefore increasing average global temperatures, 

is occurring due to anthropogenic GHG emissions. The focus of this thesis is on the projected climatic 

changes, and associated impacts, for the 21st century. The uncertainty surrounding future emission 

pathways, and the lack of understanding of the impact of increased CO2 concentrations on 

atmospheric and ocean processes, means that any projections or recommendations made for longer 

time-scales would be too unreliable (Schneider 2002; Maslin and Austin 2012; Collins et al. 2013; 

Hawkins et al. 2014).  

1.6.2 Cultural Heritage 

Cultural heritage is mentioned throughout this thesis, and is mainly referring to any material 

remains of human activity, including archaeological features, buried remains, historic buildings, and 

monuments (UNESCO 2010). Infrequently within this thesis it is also used in its intangible sense, to 

refer to the collective culture, traditions, and way of life of communities (e.g. UNESCO 2011). The 

meaning of cultural heritage that is being used is evident in the context, but it is most frequently 

used to refer to tangible assets. 

1.6.3 Historic landscape 

The concept of the historic landscape is discussed in greater detail in section 3.2.3. It is important to 

clarify that although the Introduction (1.2) mentions ‘historic landscapes’ as individual entities, as 

they are discussed in Welsh historic environment literature (e.g. Murphy and Ings 2013), this thesis 

uses the concept of the historic landscape as a continuous, dynamic artefact of past and current land 

use (see Fairclough et al. 2002). In Wales, Cadw has created a register of historic landscapes, which 

defines areas of special or outstanding historic interest (Cadw 2016). This means that these 

landscapes are more highly valued for their cultural heritage assets and are prioritised in terms of 

management. This approach implies that some areas of the landscape are ‘more historic’ than 

others, when in reality all of the British landscape has been occupied, used and managed by humans 

at some point in history. The concept of the historic landscape used in this thesis recognises the 
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historicity of all landscapes, by acknowledging the existence of the historic landscape in all areas 

(Turner 2018; see section 3.2.3).  

1.7 Summary 

This chapter has introduced and justified the research topic of the thesis. The overall research 

question is How can the vulnerability of cultural heritage to future climate change be assessed and 

managed at a landscape scale? To address this research question, the Landscape Vulnerability 

Framework is developed as a conceptual and methodological approach for assessing and managing 

the vulnerability of the historic landscape to climate change.  

Each of the research aims develops one of the three steps of the framework: a method for analysing 

and characterising the historic landscape (Research Aim 1 – Chapters 5 and 6); a vulnerability 

assessment methodology for the characterised historic landscape (Research Aim 2 – Chapter 7); and 

a sustainability assessment for management approaches to address the identified threat (Research 

Aim 3 – Chapter 8). The study area location was chosen for both practicality and its apparent 

vulnerability, which is explored in greater depth in Chapter 4. The following chapter (Chapter 2) 

reviews the impacts of climate change on archaeology, in order to further contextualise this thesis 

and provide a solid foundation for developing the Landscape Vulnerability Framework.  
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Chapter 2 

Impact of Climate Change on Archaeology 
 

2.1 Introduction 

In order to measure and address the vulnerability of the historic landscape to climate change, it is 

important to understand the various mechanisms by which it threatens cultural heritage. This 

chapter provides a review of the potential ways that the impacts of climate change could damage 

archaeological and historic resources. First, there is a brief overview of the process of climate change 

and the general modelled climate change projections (2.2). Secondly, the potential impacts of 

different climatic changes on cultural heritage are discussed. This is divided into impacts associated 

with temperature change (2.3), impacts associated with changing weather patterns (2.4), and 

indirect impacts (2.5). Finally, the implications for the historic landscape are discussed (2.6).  

2.2 Climate Change and Climate Projections 

Increasing GHG concentrations in the atmosphere due to anthropogenic activities will cause, and 

indeed are already causing, changes to global weather and climate (see Figure 2.1). The ‘greenhouse 

effect’ of CO2 and other GHGs causes an increase in radiative forcing, which means that more of the 

sun’s radiation is being absorbed as less can radiate back into space (Forster et al. 2007). The 

resulting rising global temperatures are predicted to increase the rate of polar ice cap and glacial 

melting and cause thermal expansion of the ocean, leading to sea-level rise (IPCC 2013). Global 

average sea-level rise has shown an accelerating trend over the past few decades, from +1.8mm per 

year (yr-1) between 1961-2003, to +3.1mm yr-1 between 1993-2003 (Murphy et al. 2009). Modelled 

future rates of sea-level rise are up to 16mm yr-1 by 2100 (Church et al. 2013).   

Increased radiative forcing also causes changes to air and ocean circulation patterns, which can have 

dramatic impacts on weather patterns. For instance, a rise in sea-surface temperature will increase 

the strength of thermally-forced surface winds and result in an increase in the magnitude and 

frequency of storms (Anthes et al. 2006). This can also alter the timing, frequency, and magnitude of 

precipitation and drought events (IPCC 2013).  
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2.2.1 Climate models 

Different climate change modelling projects often generate slightly different results. The climate 

system is complex, and the interaction between systems and the impact of changing CO2 

concentrations and radiative forcing on different systems is not yet fully understood. Therefore, 

future climate projections cover a wide range of potential future scenarios (see Figure 2.2). 

Numerous models are often used in conjunction during climate modelling projects, in order to make 

the results more reliable (Flato et al. 2013). Different climate change modelling projects use 

different collections, or ‘ensembles’, of models, which may have different input variables, baseline 

Figure 2.1. Observed climatic changes during the 20th Century, according to the 

International Panel on Climate Change (IPCC). Source: Hartmann et al. 2013 
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climate values, and spatial and temporal resolution, and use different algorithms to create 

projections (Murphy et al. 2009; Jenkins et al. 2009). For instance, the UK Climate Projections (UKCP) 

UKCP09 and UKCP18 ensembles included 15 variations of the Meteorological Office Hadley Centre 

global model, and 12 other international global models, including both General Climate Models 

(GCM) and Atmosphere-Ocean Global Circulation Models (AOGCM) (Murphy et al. 2009; Jenkins et 

al. 2009; UKCP2014a; Lowe et al. 2019). The Intergovernmental Panel on Climate Change (IPCC) 

Assessment Report 5 (AR5) produced 952 different simulations using 58 models, including AOGCMs, 

Earth Systems Models (ESM), and Regional Climate Models (RCM)(Flato et al. 2013; Emori et al. 

2016). While the IPCC AR5 used more models than the UKCP projects, the spatial resolution of the 

UKCP09 and UKCP18 results is 25kmx25km, providing a relatively high level of detail, and useful for 

informing local-regional adaptation planning (Jenkins et al. 2009). The IPCC AR5 has a lower 

horizontal spatial resolution of around 100kmx100km, however the IPCC provides global coverage 

while the UKCP projections are for the UK only (Taylor et al. 2012). There is greater uncertainty and 

variation in the global projections compared to those focussed on a specific region. This is because 

there is spatial variation in projected temperature change, with polar and high latitude regions 

predicted to warm more rapidly than the low-mid latitudes (Kirtman et al. 2013). 

Different models are often based on different GHG emission or concentration scenarios. The UKCP09 

projections are given for ‘high’, ‘medium’, and ‘low’ emission scenarios (based on the Special Report 

on Emissions Scenarios (SRES) developed for earlier IPCC reports), while the IPCC AR5 and UKCP18 

projections are based on Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5, 

RCP6.0, and RCP8.5) (Jenkins et al. 2009; Emori et al. 2016). The RCP value refers to the amount of 

radiative forcing (Wm-2) due to GHG concentration projected for 2100, rather than a certain level of 

GHG emissions (Taylor et al. 2012). Where possible, the projections used in this thesis are informed 

by the medium (RCP6.0) and high (RCP8.5) concentration pathways or emission scenarios, rather 

than any low concentration or emission scenarios. This is because it is recommended that the 

precautionary principle is employed during climate change adaptation (European Parliament and 

Council 2002), meaning that pessimistic rather than optimistic scenarios should be used for planning 

purposes.  
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Figure 2.2. Graph indicating the wide range of potential future temperature conditions, based on 

different models used by the IPCC. Source: Kirtmann et al. 2013 
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2.3 Impacts of Temperature Change 

2.3.1 Sea-level rise 

Sea-level rise, due to both thermal expansion and melting ice caps and glaciers, is predicted to cause 

an increase in the frequency of flood events due to higher water levels, an increase in the frequency 

of storm surges, and a change in tidal ranges (Fitzpatrick et al. 2006; Kelly 2009). A study by Hunt 

(2011) calculated that 89% of coastal English Heritage properties are at risk from coastal flooding. 

Past research has indicated that newly flooded areas will develop new drainage patterns, which may 

create channels that could cause scour and erode archaeological deposits (Long and Roberts 1997; 

Chapman 2002; Edwards et al. 2007; Herle et al. 2009; Kelly 2009). During severe high-water events 

such as storm surges, dunes or sea walls may be breached, meaning that sites that were previously 

protected from coastal processes could be subjected to saturation and erosion (Murphy et al. 2009). 

Therefore, climate change will increase the number of archaeological sites that are threatened by 

such coastal processes (Sabbioni et al. 2008; Kelly 2009; Daly 2011). 

Another impact of flood events is the saturation of dry soils, or the generation of wet/dry cycles, 

which can both result in a loss of soil structure, and increase the likelihood of instability and 

landslides (Colette 2007b; Herle et al. 2009; Brimblecombe 2014), thus endangering the integrity of 

any archaeological sites within the flooded area (Herle et al. 2009; Holický and Sýkora 2010). Some 

stones, such as clay-bearing sandstones, are at a higher risk of destabilisation and cracking due to 

wet/dry cycles, although areas with igneous and metamorphic geology are not significantly affected 

(Holický and Sýkora 2010). This threat is not unique to coastal sites, as inland areas can also be 

affected by fluvial and pluvial flood events. However, archaeological remains within coastal 

landslides and cliff-collapses may then be subject to coastal erosion, resulting in the permanent loss 

of archaeological information (as discussed in 2.4.1) (Croft 2013).  

As well as flooding, sea-level rise can cause the permanent inundation of low-lying areas, resulting in 

the submersion of some previously land-based archaeological sites (Berenfeld 2008; Kelly 2009; 

Perez-Alvaro 2016). Macphail et al. (2010) argue that inundation causes ‘gravity-controlled down-

profile drainage’, in which fine soils move downwards, causing a loss of stratigraphic evidence (see 

also Colette 2007a). The loss of stratigraphic integrity, due to both flooding and sea-level rise, is a 

threat to the archaeological resource as it may hinder its interpretation and reduce the resolution 

with which archaeologists can reconstruct the past (Erlandson 2007). Inundation and the 

introduction of foreign water to a site may also cause changes to the soil chemistry and environment 

in which the archaeological resource is preserved, which could potentially damage archaeological 

remains (Long and Roberts 1997; Chapman 2002; Cassar and Pender 2003; Colette 2007a, 2007b; 
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Sabbioni et al. 2008; Macphail 2009). For example, an increase in the salinity of groundwater can 

impact wooden artefacts, as salt crystallisation damages the wood’s cellular structure (Long and 

Roberts 1997). Moreover, the magnetic signal from a hearth or burning activities can be lost due to 

the presence of Na+ ions in seawater, making the initial discovery of some sites more difficult 

(Crowther 2003). 

The increase in atmospheric CO2 is also causing ocean acidification: the average pH of oceans has 

dropped from 8 to 7.9 during the twentieth century (Daly 2011; Perez-Alvaro 2016). The warmer 

waters around the equator and tropics have a lower CO2 partial pressure, however cold waters in 

the northern latitudes can absorb more atmospheric CO2 (Sabine and Feely 2007). Therefore, it is 

predicted that the pH of polar waters may reach 7.4 during the 21st Century (Daly 2011; Perez-Alvaro 

2016). This increase in acidity could result in greater corrosion of metal remains in submerged 

archaeological sites, or in areas that will become inundated in the near future (Berghäll and Pesu 

2008; Kelly 2009; Daly 2011; Dunkley 2013). 

Conversely, the inundation of archaeological sites can be beneficial, as it may result in anoxic 

conditions, which are particularly good for preserving organic remains (Long and Roberts 1997; 

Lewis 2000; Davidson 2002; Macphail et al. 2010; Daly 2011; Milner 2012; Perez-Alvaro 2016). For 

instance, the submersion of sites beneath saltmarshes may increase their preservation due to 

waterlogging, and the reduced threat from land use and development (Lewis 2000). However, the 

submersion of archaeological sites may not necessarily preserve them as severe storm waves, and 

changes to sedimentation rates and currents, can erode and destroy submerged sites (Lewis 2000; 

Berghäll and Pesu 2008). The submersion and burial of sites may also reduce the possibility of 

discovering those archaeological remains, thus resulting in a loss of available archaeological 

information (Lewis 2000; Chapman 2002; Daly 2011; Croft 2013). For archaeological sites that are 

already underwater, even a small rise in sea level will make them much more difficult to explore and 

excavate (Dunkley 2013; Perez-Alvaro 2016). 

2.3.2 Biological impacts 

The temperature changes associated with climate change are altering the distribution and behaviour 

of certain fauna, for instance an extension of insect species ranges to higher latitudes, and an 

increase in over-winter survival (Bale et al. 2002). As a result, there may be an increased threat of 

insect attack on organic archaeological remains (Colette 2007b; Daly 2011). The shipworm Lyrodus 

pedicellatus is the most oft-cited biological threat within the British archaeological literature, as its 

northward expansion into British waters could cause damage to shipwrecks and other wooden 

submerged remains (Murphy et al. 2009; Croft 2013; Dunkley 2013). Mollusca and crustacea in the 
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intertidal zone can bore into archaeological remains and disrupt the stratigraphic integrity of some 

sites (Long and Roberts 1997). A combination of an expansion in the range of damaging species, and 

an increase in the number of sites in the intertidal and subtidal zone due to sea-level rise, means 

that more sites may be exposed to molluscan borers (ibid.).  

Some terrestrial remains are also threatened by changing biological activity. Warmer and more 

humid conditions are increasing the risk of insect infestation and fungal growth in historic buildings 

(Murphy and Ings 2013). This has the potential to affect both the structural elements of buildings, 

such as the timbers, but also the historic interiors such as carpets, tapestries, cloth, and wooden 

furniture and floorboards (Brimblecombe and Lankester 2012). It can be particularly difficult (and 

expensive) to control the interior atmospheric conditions in historic buildings, which are not well 

sealed and would be spoiled by the installation of air-conditioning and de-humidifying units (ibid).  

Faunal activity is not the only biological threat posed to the archaeological resource due to climate 

change. In the Baltic Sea, Milner (2012) argues that the climate change driven decline in the eelgrass 

Zostera marina L. has resulted in an increased exposure of sediments, leading to a decrease in 

stability and an elevated risk of erosion.  Furthermore, the CO2 fertilisation effect and longer growing 

seasons, may increase terrestrial plant growth and therefore raise the risk of bioturbation of 

archaeological sites by plant roots (Daly 2011).  

Finally, organic archaeological remains can be well preserved in frozen conditions, such as 

permafrost (Harmsen et al. 2018). Temperatures are already rising at a greater rate in polar regions 

than the global average due to air circulation patterns (Ecochard 2011). Figure 2.3 demonstrates the 

higher rate of warming in the Arctic, and the projected decrease in permafrost extent. The result of 

melting permafrost and changing microbial communities will be accelerated decomposition of 

remains such as bone and wood, as well as the destabilisation of structures and monuments on 

ground that is no-longer frozen solid (Hollesen et al. 2016; Harmsen et al. 2018).  
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2.4 Impacts of Changing Weather Patterns 

2.4.1 Coastal erosion 

Climate change will cause an increase in the frequency and magnitude of coastal storms, which will 

result in an increase in coastal erosion and the destruction of archaeological sites in some areas 

(Cassar and Pender 2003; English Heritage 2006; Erlandson 2008, 2012; Colette 2007b; Berghäll and 

Pesu 2008; Reeder et al. 2012; Croft 2013; Perez-Alvaro 2016). Cassar and Pender (2003) argue that 

the biggest causes of coastal erosion, and therefore the most significant threat to coastal 

archaeology, are storm surges and increased storminess. These can cause large losses of coastal 

material in a short period of time, and are therefore more difficult to plan for or adapt to compared 

with gradual sea-level rise (see also Lewis 2000; Egloff 2006; Kelly 2009; Marzeion and Levermann 

2014). 

Figure 2.3. A map to demonstrate the contracting extent of the Arctic permafrost and the 

accelerated warming trend in polar latitudes compared to temperate regions. Copyright 

Hugo Ahlenius  
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Sea-level rise also increases the risk of coastal erosion (Heppell and Brown 2001; Van de Noort 2002; 

Colette 2007a; Sabbioni et al. 2008; Kelly 2009; Daly 2011; Erlandson 2012; Milner 2012; Reeder et 

al. 2012; Bickler et al. 2013; Croft 2013; Dawson 2015). For instance, sea-level rise in an area with 

hard coastal defences, such as sea walls, causes a phenomenon known as ‘coastal squeeze’, in which 

areas of saltmarsh in front of the sea walls are lost due to an inability to migrate landwards in 

response to sea-level rise (Murphy et al. 2009). This could also cause the loss of any archaeological 

remains buried beneath the saltmarsh (Long and Roberts 1997; Trow 2003; Murphy et al. 2008, 

2009; Westley et al. 2011). Coastal defences also lead to a reduction in sediment input into the local 

sediment cell, which is known to increase erosion along other areas of coastline nearby (Cooper et 

al. 2001; Reeder et al. 2012), thus indirectly endangering coastal archaeological sites. 

Coastal erosion can lead to the discovery of new sites that would not otherwise have been found 

(Darvill et al. 1998; Chapman 2002; Davidson 2002; Edwards et al. 2007; Daly 2011; Milner 2012). 

For instance, Mesolithic footprints in the Severn Estuary and Low Hauxley, Northumberland, and the 

site of Seahenge, Norfolk, were revealed by coastal erosion (see Figure 2.4)(Pitts 2011; Milner 2012; 

Cosgrove 2015). However, the uncovering of archaeological sites, in particular organic remains, can 

accelerate their decay, as they are exposed to oxygen and microbial and fungal activity, as well as 

erosion (Long and Roberts 1997). Furthermore, the loss of beaches due to sea-level rise increases 

the amount of erosion at the bottom of cliff faces, leading to an increased chance of cliff collapse 

and a loss of any archaeological sites situated on the cliff (Darvill et al. 1998; Trow 2003; Bromhead 

and Ibsen 2006; Kelly 2009; Murphy et al. 2009; Westley et al. 2011; Daly 2011; Croft 2013). On high-

energy coastlines and during storm events, the material from a cliff failure may be transported away 

very quickly, meaning that any archaeological material is removed before it is discovered (Long and 

Roberts 1997; Trow 2003). Therefore, the information held within these archaeological sites has the 

potential to be destroyed without any opportunity for it to be discovered or recorded. 
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The threat of coastal erosion is mainly confined to coastlines with soft bedrock and overlying 

sediments, including sandstone, boulder clay and alluvial/marine mud (Jones 2002; Trow 2003; 

Edwards et al. 2007; Westley et al. 2011; Kelly 2009; Reeder et al. 2012; Croft 2013; Dawson 2015). 

Shorelines with more resistant rock, such as granite cliffs, are not significantly threatened by wave 

action. However, Trow (2003) states that soft coastlines, for instance estuaries and saltmarshes, are 

important for archaeology, as they often maintain favourable preservation conditions, and have 

been known to contain middens, submerged Mesolithic sites, shipwrecks, and submerged forests. 

Therefore, the coastlines at greatest risk of erosion may be the ones that have the greatest 

archaeological potential.  

2.4.2 Storminess 

Serious storms can threaten heritage sites in inland areas. Heavy precipitation events and more 

frequent droughts may result in flash flooding and a loss of soil structure, and increase the likelihood 

of instability, soil erosion, and landslides, thus endangering the integrity of any archaeological sites 

on, or within, affected areas (De Roo 1998; Colette 2007; Herle et al. 2009; Holický and Sýkora 2010). 

In steep or mountainous areas, artefacts can be eroded and scattered across the surface of the slope 

by sheet erosion (Meylemans et al. 2008). Earthwork features are particularly threatened as they are 

Figure 2.4. Human and animal footprints revealed by erosion in the intertidal 

zone at Low Hauxley, Northumberland. Source: NatureLogBlog.wordpress.com 
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eroded with the loss of surrounding sediment and may leave little trace (ibid.). Built structures are 

also at risk; heavy rains associated with Storms Eva and  Frank lead to the collapse of an 18th-century 

bridge in Tadcaster, North Yorkshire, in 2015 (see Figure 2.5) (Tran et al. 2015). Finally, coastal 

storms can increase the amount of sediment deposited in the intertidal or nearshore zone (Faulkner 

et al. 2005).  This has the potential to bury coastal archaeological features and prevent their 

discovery. The projected increases in magnitude and frequency of storm events due to climate 

change means that this kind of event, and the associated impacts discussed here, may become more 

common throughout the 21st century.  

2.5 Indirect Impacts  

The impact of climate change on archaeology is not limited to direct impacts, and can be caused by 

the mitigation and adaptive approaches taken by societies in response to climate change. For 

example, the construction of coastal defences in response to rising sea levels can result in coastal 

squeeze, causing the loss of saltmarsh and beach, leading to sediment starvation, and increasing 

erosion along other areas of coastline (see 2.4.1)(Jones 2002; Kelly 2009). Furthermore, the 

construction of built coastal defences and flood alleviation infrastructure can physically damage the 

archaeological resource beneath, due to the compaction of soils and heavy machinery used (Cassar 

and Pender 2003; English Heritage 2006; Wessex Archaeology Ltd 2007; Murphy et al. 2009; Flatman 

Figure 2.5. Collapsed section of a historic bridge in Tadcaster following heavy rainstorms during 

Storms Eva and Frank in December 2015. Copyright Giles Rocholl 
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2009; Kelly 2009; Daly 2011; Hall et al. 2016). The construction of infrastructure designed for the 

mitigation of climate change, such as offshore windfarms and tidal barrages, also has the potential 

to destroy any archaeological site located beneath them, as well as altering local erosion and 

sedimentation patterns (English Heritage 2006; Wessex Archaeology Ltd 2007; Berghäll and Pesu 

2008; Kelly 2009; Murphy et al. 2009)  

The lack of hard coastal defences can also pose a threat to coastal archaeology. Hard coastal 

defences are very expensive, so many areas of coastline are subjected to alternative management 

approaches, namely managed realignment or no active intervention (Egloff 2006). The managed 

realignment approach promotes the removal of areas of sea wall in order to allow the sea to breach 

the previously defended area and allow a saltmarsh to develop (Cassar and Pender 2003). Therefore, 

any archaeology landward of the sea wall, previously defended from coastal processes, is 

subsequently at risk from erosion or inundation (Cassar and Pender 2003; Bromhead and Ibsen 

2006; English Heritage 2006; Kelly 2009; Macphail 2009; Murphy et al. 2009). The development of 

saltmarsh is desirable for biodiversity and conservation, meaning that this approach is often 

favoured for both economic and environmental reasons (Egloff 2006; Murphy et al. 2009). 

Furthermore, no active intervention is an approach taken for many areas of the coastline for which it 

is not economically beneficial to construct defences. Scheduled monuments and listed buildings are 

the only cultural heritage assets to be properly considered in shoreline management plans (Cassar 

and Pender 2003; Trow 2003; Bromhead and Ibsen 2006; Murphy et al. 2009; Hunt 2011). However, 

Long and Roberts (1997) do argue that the construction of coastal defences for towns, cities, and 

power plants may inadvertently protect some local archaeological sites and historic buildings from 

erosion.  

2.6 Implications for the Historic Landscape 

As well as damaging individual archaeological sites and remains, climate change has the potential to 

significantly impact historic landscapes across the UK. As explained in greater detail in Chapter 3, the 

historic landscape is a product of past and present human action, and may be characterised by field-

boundary morphology, settlement structure, visible archaeological and historical sites, and 

vegetation structure and location. The impact of climate change on archaeological and historical 

sites could have a significant impact in particular on the historic character of rural landscapes 

(Kaslegard 2011). For example, coastal erosion and landslides have resulted in the destruction of 

many historic and even pre-Roman coastal fortifications on the south east coast of England 

(Bromhead and Ibsen 2006). The loss of these features threatens the military and defensive 

character of this historic landscape. Furthermore, changing climatic conditions may lengthen crop 
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growing seasons, and make areas suitable for arable agriculture that were once only used for 

livestock (Knox et al. 2010; King et al. 2018). As well as affecting the local economy and traditional 

ways of life, this could affect the visual character of the landscape as smaller field boundaries are 

removed and monocrop agriculture replaces livestock. Climate change may also alter the species 

assemblage or ecosystem structure in areas of woodland or parkland by changing species phenology 

and suitable ranges (Historic England 2016). This could lead to a collapse of ecosystems, if 

producer/prey/predator phenological cycles become desynchronised, or if invasive species 

outcompete native species under future climate conditions (e.g. Stachowicz et al. 2002; Mainka and 

Howard 2010; Chevillot 2017). A change in the location and type of vegetation in a landscape would 

dramatically impact the overall character. Rural landscapes often have close visual links with 

traditional industries and local sense of place (Kaslegard 2011). Climate change may lead to changes 

in historic landscapes that affect local sense of place and the experience of being within the 

landscape, as well as local economies and ecosystems (ibid.). 

2.7 Measuring the vulnerability of cultural heritage to climate change 

Chapter 7 provides a deeper discussion on the definition of vulnerability and how the vulnerability of 

cultural heritage to climate change is typically measured. The purpose of this section is to outline the 

general trends in vulnerability assessments within archaeological research and identify the 

associated limitations, in order to justify the proposed methodology of this thesis. 

Vulnerability indices are a popular method of assessing the risk and potential damage to material 

cultural heritage from climate change (see Thieler and Hammar-Klose 2000; McLaughlin et al. 2002; 

Boruff et al. 2005; Boruff and Cutter 2007; Diez et al. 2007; Hegde and Reju 2007; Torresan et al. 

2008; McLaughlin and Cooper 2010). Indices use a selection of variables to quantify different 

elements of vulnerability and produce a single vulnerability score (Barnett et al. 2008; Balica et al. 

2012). Risk maps and vulnerability matrices are also frequently used to identify archaeological or 

historical features with greater exposure to the impacts of climate change or other environmental 

disasters (Risk maps see: Accardo et al. 2003; Grossi et al. 2007; Robinson et al. 2010; Westley et al. 

2011; Daire et al. 2012; Westley and McNeary 2014; Boinas et al. 2015; Vulnerability matrices see: 

Papathoma-Köhle et al. 2017; Berry et al. 2019). Different methods and studies incorporate different 

types of threat, with some including both anthropogenic and natural factors, while others only 

measure vulnerability to a specific type of threat.  

The common theme across methods and frameworks reviewed during this research is that the 

object of study is individual or groups of sites, buildings or features. This causes several issues, which 

are discussed in section 7.2.5, such as a lack of coverage in areas that have not been systematically 
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surveyed, a lack of clarity about what constitutes the ‘sites’ included, and a lack of recognition of the 

historicity of the landscape as a whole. Even when research covers a stretch of coastline or a 

landscape, the focal level is still on the individual archaeological sites within the study area, rather 

than on the historic landscape (e.g. Daire et al. 2012; Reeder et al. 2012; Chadwick-Moore 2014; Van 

Rensselaer 2014; Westley and McNeary 2014).  

There are several limitations with studying the vulnerability of individual or groups of archaeological 

sites to climate change. Firstly, it neglects the importance of the context of sites and their 

relationships with other sites and the surrounding landscape. It implicitly assumes that 

archaeological data are confined to discontinuous points across a landscape, and therefore obscures 

the historicity of the liminal spaces between sites and the historical-cultural importance of the 

landscape as a whole (Turner 2006; Bender 2009a). 

This thesis develops a landscape-scale approach to vulnerability assessment using Historic Landscape 

Characterisation (HLC) (see Chapter 6) in order to address the limitations discussed here and in 

section 7.2.2. This takes into account the dynamic historic character of the landscape as well as the 

individual archaeological features or sites within it. It also incorporates the relationships between 

sites, and between sites and the landscape, and the evolving socio-cultural values associated with 

landscapes. HLC has been used by Cornwall County Council (2013) to determine the sensitivity of the 

Cornish historic landscape to the development of solar power farms and wind turbines. There is 

therefore precedence for combining a HLC with a vulnerability assessment to evaluate and manage 

the vulnerability of the historic landscape to various threats.   

2.8 Summary 

This chapter provides a brief appraisal of the different ways in which cultural heritage assets are 

threatened by the impacts of climate change. As well as affecting individual features and sites, 

climate change has the potential to cause wider changes to the historic environment, such as 

altering the character of the historic landscape through land-use and vegetation change. The impacts 

included here are not exhaustive, and there are many other ways in which climate change may 

affect archaeology and historic resources. However, this chapter demonstrates the extensive nature 

of climate change impacts with regard to archaeology, and therefore indicates the complexity of 

addressing the issue.  
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Chapter 3 

Concepts and Methods for Landscape-
Scale Vulnerability Assessment 
3.1 Introduction 

This chapter describes and justifies the methodological approach used in this research to address the 

research aims discussed in the Introduction (Chapter 1). The research question guiding this thesis is: 

How can the vulnerability of cultural heritage to future climate change be assessed and managed at 

a landscape scale? Chapter 3 presents the steps by which a landscape-scale vulnerability framework 

is constructed. This landscape-scale vulnerability framework was developed to address the lack of 

recognition of the historic landscape within archaeological vulnerability assessments (see sections 

2.7 and 7.2.5), and incorporate the historic landscape in sustainability assessments of coastal and 

flood-risk management approaches (see Chapter 8).  

The conceptual framework underpinning this thesis is described, in order to establish the conceptual 

and epistemological context of this research (3.2). This is important as it allows the reader to 

understand the context of the research methods, results and conclusions. Section 3.3 explains the 

methodological approach adopted, and justifies the choice of methods. Secondly, there is an 

overview of the methods used to address each research aim in this thesis (3.4). Each of the research 

aims develops one of the three steps of the Landscape Vulnerability Framework.  

3.2 Conceptual Framework 

This section explains and justifies the paradigm in which this research was carried out. The paradigm 

includes the concept of scale and the Hierarchy Theory scalar framework, the concept of the historic 

landscape, and the theory of sustainability. These ideas actively shape the methods chosen for 

addressing the research questions. 

The concept of scale, including its use in different disciplines as well as archaeology, and the 

importance of explicitly defining the chosen scale of research is initially discussed. This informs the 

choice of the Hierarchy Theory scalar framework which underpins this thesis. Section 3.2.2 provides 

a description of the Hierarchy Theory and an explanation of how it was applied to this research to 

address the limitations discussed. The concept of the historic landscape is then explained, with 

reference to how it was used to resolve some of the limitations within archaeological research. 

Finally, the theory of sustainability and its relevance to this research is explored. 
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3.2.1 Scale 

Scale and its conceptualisation are central to geographic research and theory, and are debated 

across various natural and social science disciplines. This section provides a brief overview of the 

different ways that scale is used (both explicitly and implicitly) in different disciplines, followed by an 

explanation of the Hierarchy Theory scalar framework which was employed in this thesis. 

 

Figure 3.1. Diagrammatic representation of various examples of scales (A-G) and levels (circular points 

along each scale), to illustrate the way in which the terms level and scale are used in this research. 

Taken from Cash et al. 2006. 
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As a brief precursor to the explanation of the scalar framework of this research, there must be a 

clarification of the ways that the terms level and scale interact. In much academic literature, these 

two terms can be used interchangeably with no loss of meaning (i.e. local-scale, local-level). This can 

result in confusion if this literature interacts with others in which the meaning of level and scale are 

specified. Within literature tackling the theory of scale in social sciences, levels are defined more 

precisely as units of analysis along a specific scale, while scale refers to “the spatial, temporal, 

quantitative or analytical dimensions used to measure and study any phenomenon” (Cash et al. 

2006, p.2, see also Gibson et al. 2000). Sayre (2009) goes further, arguing that scale is not fixed or 

absolute in nature, but rather represents the way in which phenomena and processes relate to one 

another. Figure 3.1 provides a diagrammatic representation of this definition of level and scale, in 

order to clarify its meaning. It is this use of scale and level that is employed within this thesis.  

The use of scale in social sciences 

Theoretical approaches to scale within the social sciences perceive scale as describing the 

organisation of social levels, and the interactions between these levels (Reed and Brunyeel 2010). 

There have been many debates within social theory regarding scale. A foundational discussion within 

scale theory involves the way that scale is considered to be socially constructed, and the means by 

which this occurs. For instance, national governments are key in constructing jurisdictional scales of 

governance (with local councils, county councils, and nation states as levels), and therefore deciding 

the power and resources allocated to each level of this scale (McCarthy 2005; Termeer et al. 2010). 

This is an example of the way in which the construction of scale can be used politically, in order to 

determine who receives power and resources, and the power relations between levels of a 

particular scale (Reed and Brunyeel 2010). Furthermore, ‘scale-framing’ can be used to support 

certain actors. Infrastructure companies can frame their opponents as being selfishly concerned only 

with the impact of development on their immediate surroundings (‘NIMBYism’ or ‘Not In My Back 

Yard-ism’), rather than the larger public benefit that an infrastructure project may provide, in order 

to discredit their argument (Towers 2000; Termeer et al. 2010). In this way, the construction of scale 

can fix social relations in space, giving meaning and priority to certain processes or actors over 

others, and thus acting as a potent political tool. 

There are also debates which tackle whether scale is an ontologically real property of social life, or 

whether it is imposed as a framework upon the subject of study by researchers (e.g. Marston et al. 

2005; Sayre 2009; Herod 2011). Many scholars have built upon scale theory, and added to its 

intricacies, for instance the relational theory of scale, which suggests that scales are organised not by 

set levels, but by the relations between levels (e.g. Brenner 1998; Howitt 1998). 
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The use of scale in physical and natural sciences 

Within the biophysical sciences, the term ‘scale’ can be used to refer to the ‘operational scale’, 

which describes the phenomenon being studied or the scale at which a process operates. It is also 

used to refer to the way in which a process or phenomenon is observed – the ‘observational scale’ 

(Sayre 2005).  

The operational scale refers to the scale at which a process or phenomenon operates, for instance 

its temporal and/or spatial range and magnitude (Sayre 2009; Reed and Brunyeel 2010). For 

example, the Coriolis Force has an ontologically real level on the operational scale, as it affects the 

way that low pressure weather systems rotate in the northern and southern hemispheres, but does 

not (contrary to popular belief) influence lower level processes such as the way that the water spins 

down a drain (Sayre 2009; Shakur 2014), which is controlled by factors such as basin design and the 

direction of water flow. However, the operational scale of other processes can span across several 

different spatial and temporal levels. The process of climate change through the build-up of GHGs 

operates at a global level. It is contributed to by processes at lower spatial levels such as 

deforestation, population dynamics and resource use, and impacts conditions across a variety of 

spatial and temporal levels, such as changing weather patterns, seasonal variation, and long-term 

temperature trends (Wilbanks and Kates 1999). As these processes do not operate at a single spatial 

or temporal level, they cannot be defined as having a single operational level or scale. In fact, 

McMaster and Sheppard (2004) argue that, in some cases, a process has no specific operational 

scale, and so the operational scale by which the process is defined is still socially constructed. 

Dungan et al. (2002) argue that not only should the physical structure of the system be considered, 

but that the processes that act upon the system should also be included, for instance those that 

occur at higher spatial levels, as they can form the context and constraints of the system in focus. 

This is examined in greater depth in the discussion of Hierarchy Theory (3.2.2). 

The observational scale of a study incorporates both the spatial extent of the study, for instance 

whether it encapsulates a wide landscape or focuses on a single organism, and the resolution of the 

study, i.e. the level of detail that is captured. Typically, studies that have a wider spatial extent 

(‘large-scale’) tend to have a lower resolution, while ‘small-scale’ studies often have a higher 

resolution. The observational scale can also include the temporal extent and resolution of the study, 

for instance whether the study incorporates days, years, or millennia, and the density of sampling 

points across the time period (Goodchild 2011). It is important to choose an observational scale that 

is appropriate for the variable being measured, but the choice of observational scale can influence 

the results and conclusions drawn from the study. This is because the scale of sampling and analysis 

can affect the patterns that are observed or not observed within the data (Lam 2004; Sayre 2009). 
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This can be seen in models designed to predict the potential impact of climate change on agricultural 

productivity. At a global level, there does not appear to be a significant impact on overall 

productivity, as losses in some areas are offset by improving conditions in other areas, and the CO2 

fertilisation effect. However, studies at regional levels indicate that the impact of climate change on 

agriculture may be most severe for the most vulnerable populations, such as migrant workers, 

pastoralists, small holders and wage labourers (Wilbanks and Kates 1999). This reveals that the social 

and economic impacts appear more severe and unequitable when assessed at a lower spatial level. 

Research over a larger spatial level can reveal processes of interdependence that may not be evident 

on smaller spatial levels, but result in generalisations in the data, which can cause smaller, complex 

processes to be obscured (Turner 1989; Turner et al. 1990; Cash and Moser 2000). On the other 

hand, studies at lower levels on the spatial scale can illuminate the way in which global processes 

influence, or manifest in, a specific locality. Walsh et al. (2004) suggest that research into human-

environment interactions, for instance climate change impacts and adaptation, should include 

several observational levels, due to the different levels upon which different processes operate. 

Furthermore, if research focuses specifically on processes operating at a single level, the analysis and 

results may overstate the importance of the processes, phenomena and actors operating at this 

level, while relevant processes that occur on different spatial or temporal levels may be missed (see 

also Wilbanks and Kates 1999). There is further examination of multi-level approaches in the 

discussion of the Hierarchy Theory (3.2.2).  

The use of scale in archaeology 

The concept of scale is not widely discussed in archaeological research, and although some scholars 

have addressed the issue, the focus remains on the observational scale (i.e. the appropriate scales to 

use in research projects) or the cartographic use of the term, rather than the operational scale (i.e. 

the scales of the processes that created the archaeological resource) (Lock and Molyneaux 2006b). 

This is surprising as, in accepting that scale is a social construct, it is also accepted that past societies 

may have constructed scales and scale relations differently compared to present societies (Lock and 

Molyneaux 2006a, b). Fairclough (2006) explores a wide range of scales in the context of 

archaeology, including spatial, temporal, and cartographic scales, scales of perception, use, 

objectives and application. However, these are concerned only with the observational scales, and 

still do not address the operational scales of the creation or development of the archaeological 

record. 

Many archaeological research projects do not explicitly discuss the scale they have chosen or the 

reasons behind the choice. Those that do generally use ‘scale’ to mean the spatial extent, resolution  

or scope of the subject matter, often interchangeably (e.g. Barker et al. 1997; Panich and Schneider 
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2015; Picornell-Gelabert and Servera-Vives 2017). When mentioned within the methodology of a 

report, ‘scale’ is mainly used to refer to different levels on a specific (usually spatial) scale (e.g. Linse 

1993; Bevan and Conolly 2004; Olson et al. 2013). Stein (1993) states that the scale used in research 

is often dictated by the discipline within which the research takes place, and that scale is considered 

“twice while conducting [archaeological] research; once while describing data and again while 

interpreting data.” (p.1). This does not account for the consideration of scale when deciding what 

data to collect. This corroborates with a point made by Harris (2006), that researchers often choose 

a level and scale of study unconsciously or unquestioningly. 

The importance of defining scale  

It is important to explicitly mention scale in the explanation of the conceptual framework, as the 

scale of observation influences the results of the research project. A focus on the spatial or 

jurisdictional scales may not accommodate the cultural factors influencing the vulnerability of a 

community, while projects using a temporal scale of observation may focus on processes occurring 

in the short, medium, and long term, but neglect to notice processes or impacts occurring at a higher 

or lower spatial level. Not only does the resolution and spatial extent of the study influence results, 

but the choice of scale can also affect the way that research is planned, the methods used, the way 

that data is interpreted, and therefore the conclusions drawn (Lam 2004). It is therefore important 

to explicitly consider, and justify, the choice of scale of a research project. To address the 

aforementioned issues, this project uses the methodological framework of Hierarchy Theory to 

define the scale of the research. Hierarchy Theory provides a framework for simplifying systems for 

study, and can facilitate the acknowledgement of higher and lower level processes than the object of 

focus, while reducing the complexity of the entire system to a more manageable state (Wu 1999; 

McMaster and Sheppard 2004). 

There are a multitude of meanings associated with ‘scale’, which has led to conflicting uses and 

confusion between, and even within, disciplines (McCarthy 2005; Sayre 2009). Several conceptual 

papers have aimed to clarify the meaning of scale, and the correct terminology that should be used 

(see Dungan et al. 2002; Cash et al. 2006). As a common term within both academic and lay 

language, a strict definition may be difficult to establish. However, it is important for research papers 

to explicitly establish the definition of scale that they use throughout, as well as the observational 

scale of the study. 

Many issues that occur as a result of scale are often related to scale mismatches. Scale mismatches 

occur when the levels on the operational scale of a phenomenon or process do not align with the 

levels on the institutional or jurisdictional scale that aims to control it. Coastal erosion is increasing 
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as a result of global climate change, and vulnerability to coastal erosion is increasing due to 

population growth and increased habitation of marginal areas. However, agencies tasked with 

addressing the risk of coastal erosion are often local or county councils, which have neither the 

resources nor the authority to address the driving forces of the problem (Wilbanks and Kates 1999). 

This is known as an institutional fit problem (Cash and Moser 2000). There are also scale discordance 

problems, in which the levels on the scale of assessment and knowledge creation do not match up 

with the levels on the scale of the management system. For instance, climate change projections are 

generally being undertaken on a global level, and for decadal time periods, due to the resolution of 

available climate models. However, adaptation to climate change is undertaken at the local level, 

and is often focussed on shorter-term, incremental changes. The spatial and temporal levels at 

which the knowledge is required are not the levels at which new knowledge is being created 

(Wilbanks and Kates 1999; Cash and Moser 2000). As a result, many of the difficulties faced by 

policymakers are caused by issues of scale. Scale discordance problems can be seen in the 

vulnerability assessment and management of cultural heritage. As explained in section 2.7, 

vulnerability assessments in archaeology are predominantly site-based, but cultural heritage and the 

processes of environmental change that threaten it are extensive and landscape-wide. Addressing 

the vulnerability of each individual site may highlight only the environmental processes affecting 

extant archaeological features, and neglect to consider other processes that affect the wider 

landscape. 

3.2.2 Hierarchy Theory 

Hierarchy Theory is a framework often used in ecology, that clarifies and simplifies the interactions 

between phenomena and processes at different spatial and/or temporal levels (Wu 2013). It states 

that natural systems exist within hierarchical scales, and that the phenomena and processes at a 

chosen level (focal level) are influenced by both the level above, and the level below (Figure 3.2). 

The higher level provides the context in which the focal level exists, and imposes constraints upon 

any processes that occur therein, while the lower level provides mechanisms through which the 

focal level processes occur, as well as imposing bottom-up constraints (Allen and Starr 1982; Cash 

and Moser 2000; Sayre 2005, 2009). As well as the vertical structure, Hierarchy Theory suggests that 

natural systems have a horizontal structure composed of holons (from the Greek holos, for whole, 

and on, meaning part) (McMaster and Sheppard 2004). Holons are individual entities which, 

combined, form part of the level above, but act as single entities with respect to lower levels (ibid.). 

For example, each archaeological site is a holon on the site level. Each site is made up of several 

contexts at a lower spatial level, but collectively these sites form part of a higher level, the regional 

archaeological resource. 
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The incorporation of more levels within the scope of a research project can provide a greater 

comprehension of the processes at work. For example, understanding precipitation patterns 

requires an understanding of large-scale, long-term climatic processes, as well as local-level 

topography (Cash and Moser 2000).  Sayre (2009) argues that acknowledging processes and 

phenomena at a higher level can illuminate patterns and processes that would not have been 

evident if the attention remained on the focal level alone. The use of Hierarchy Theory to structure 

this research addresses the issue mentioned in 3.2.1, that the choice of observational scale can 

influence the results of a study.   

Some criticisms of Hierarchy Theory include the argument that it oversimplifies interactions between 

processes at different levels, as processes occurring at lower levels may not necessarily nest neatly 

within higher levels of the hierarchy (Wu 1999; Sayre 2005). Furthermore, it assumes that all the 

relevant processes and phenomena can be clearly divided into spatial or temporal levels (McMaster 

and Sheppard 2004). These criticisms are particularly salient for social processes, as political, social 

and economic institutions can be created and altered more easily than biophysical processes (Sayre 

2005). Cumming (2016) also states that hierarchical models imply that ecological interactions only 

occur between levels adjacent to one another, and can therefore obscure interactions between 

lower and higher levels. 

Hierarchy Theory was used in this research despite these limitations, as the structure it provides 

facilitates the study of archaeological sites as they exist within Landscape Character Areas (LCAs) and 

Figure 3.2. Representation of relationships between levels in a system, as described by 

the Hierarchy Theory. Diagram developed from that of Darin Jensen. Source: Sayre 

2009. 
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the historic landscape as a whole. Moreover, for this project the processes occurring at the lower 

levels (in archaeological sites) do nest within the higher spatial levels (LCAs and historic landscape), 

as the LCAs were defined in part from the nature of the sites within them (see Chapter 6). Finally, 

although the LCAs are socially constructed (and therefore epistemological rather than ontological), 

they remain at a spatial level between that of archaeological sites and that of historic landscapes. 

Therefore, Hierarchy Theory is an appropriate scalar framework by which to structure the 

approaches used in this thesis. 

In this research, the focal level is the LCA, as defined by Historic Landscape Characterisation (HLC) 

(Chapter 6). The upper level is the study area as a whole, and the lower level is the archaeological 

sites and features within the landscape that characterise each LCA (see Figure 3.2). Each LCA is a 

holon which influences the overall character of the study area. The spatial scale was chosen over the 

jurisdictional, cultural or sectoral scales as the most appropriate for this study, as the processes 

resulting from climate change cannot be defined by jurisdictional, cultural or sectoral boundaries.  

However, there is a cultural element interwoven into the subject matter: although the upper level 

(the Dysynni valley landscape) and lower level (archaeological sites) used within this project can be 

considered ontologically ‘real’, their limits are produced through disciplinary conventions and 

traditions, and decisions taken by heritage managers. Furthermore, LCAs were defined spatially 

within this project, even though the methods for doing so are based on a subjective interpretation of 

their historical attributes. Delineating the extent of this study as spatial is therefore more 

appropriate, as the subjects of research are fixed entities, despite being socially constructed. It is 

acknowledged that the outcomes of this research may be most useful for heritage management 

purposes if the focus was on the jurisdictional scale. However, it is recognised that the management 

of natural systems is more effective when a holistic, integrated approach is taken. This is because 

natural systems and phenomena such as river catchments, flood plains and climate change do not fit 

into political borders (Termeer et al. 2010). The current accepted approach to coastal management 

is organised by sediment cells and sub-cells (a length of coastline in which coarse sediment input, 

output and processes are mainly self-contained) rather than by administrative boundaries (Motyka 

and Brampton 1993; Defra 2006; SCOPAC 2019). Therefore, precedent exists for using scales in 

management that do not directly fit the jurisdictional scale.  

3.2.3 The Historic Landscape 

The historic landscape is central to the approach taken in this thesis with regards to conceptualising 

the archaeology and cultural heritage of the study area. The underpinning philosophy is that the 

historic landscape is not a physical object or defined geographical area, but rather it is “an artefact of 

past land-use, social structures and political decisions” (Fairclough et al. 2002, p.70). This philosophy 
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is based on the idea that present-day landscapes are the result of human decisions and activities in 

the past, such as agricultural regimes, urbanisation, woodland management, field boundary 

morphologies, patterns of land ownership, and mineral extraction (e.g. Fairclough et al. 2002; 

Fairclough 2003a, 2003b, 2006). As the historic landscape is a social construct, it is subjective and 

dynamic, as the relationship between the area and the humans within it changes (Fairclough 2003b; 

Fairclough 2006a). This idea challenges the common view that landscapes that have been 

significantly modified by human activity, particularly in the past few decades, are not as valuable as 

those that remain relatively unchanged since the Middle Ages or prehistory (Fairclough 2003b; 

Bradley et al. 2004). The changes that occurred in the late-20th century, for instance the expansion of 

urban areas and infrastructure, are seen by many to have had a negative impact on landscapes 

(Natural England 2010). Moreover, aspects of the cultural landscape such as traditional practices and 

non-modern ways of life are often romanticised through an idea that there was once a harmony 

between nature and culture that no-longer exists (Fairclough 2003b, p.31). Fairclough (2003b) 

argues that this gives value only to antiquated land-use practices and ancient remains within the 

landscape, and devalues modern practices and evidence of more recent land-use. In contrast, the 

historic landscape concept does not consider the 20th-century impacts as negative, but rather as 

another episode of historical activity which adds another layer of historicity to landscapes (Bradley 

et al. 2004). This thesis employs this theoretical standpoint because it does not exclude any 

elements of cultural influence on landscapes, from Bronze Age cairns to 20th-century military 

remains, when assessing the historic nature of the area and evaluating conservation approaches.  

The historic landscape is spatially continuous and thus recognises the presence of humans in the 

landscape around their settlements and monuments during the past, rather than isolating 

archaeological sites from their surroundings (Clark et al. 2004). It also considers sites to be 

meaningful as they exist within the context of the landscape, rather than their importance and 

meaning being separate from the landscape. Therefore, this thesis and the framework developed 

within it consider the impact of climate change on the historic landscape comprising the sites within 

it, rather than on the archaeological and historical sites of a landscape in isolation.  

3.2.4 Sustainability  

The third research aim of this thesis is shaped by the concept of sustainability, namely the potential 

options for the sustainable management of the historic environment under scenarios of climate 

change. ‘Sustainability’ is conceptualised in a variety of ways by different scholars and within 

different disciplines, so no single definition or conceptualisation of sustainability can be applied to all 

situations (Heinen 1994; White 2013). The definition used in this thesis is that sustainability is the 

consideration, use and safeguarding of environmental, social and economic systems in a way that is 
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equitable across both present and future generations (see Brundtland and Khalid 1987; Bell and 

Morse 2008; Stocker et al. 2012; Sabaté and Warren 2015; Sánchez-Arcilla et al. 2016).  

Sustainability is considered by some to be a wicked problem (e.g. Norton 2005), defined by 

characteristics such as the fact that there are no ‘true’ or ‘false’ solutions, the fact that different 

stakeholders may have different understandings of the problem and potential solutions, and that 

there is no stopping rule, meaning that the problem is never fully solved, only managed (Rittel and 

Webber 1973). Furthermore, climate change is defined as a super wicked problem (see Levin et al. 

2009), because as well as the other wicked problem characteristics, it also is time-critical, there is no 

central authority to its management, and those seeking to solve the problem are also those causing 

it (Levin et al. 2012). 

In aiming for a wicked problem solution to the impacts of a super wicked problem, there may not be 

one single best solution, or any management approaches that are able to satisfy all the criteria of 

sustainability. However, explicitly approaching the issue of coastal landscape heritage management 

through the lens of sustainability in this thesis ensures that the three ‘pillars’ (environment, society 

and economy), and intra- and inter-generational equality are all consciously considered. 

There are several criticisms of the idea of sustainability, for instance the idea that economic growth 

is necessary for both environmental protection and sustainability. This is based on the current 

neoliberal economic world view, that economic growth will lead to more equality and prosperity 

worldwide (Mitcham 1995). It also assumes a western perspective of anthropocentrism and conflict 

between societal needs and environmental needs (Parodi 2015). The dominance of this western 

perspective can hinder the adoption of sustainability policies in developing countries, as ‘needs’ may 

be construed differently by different societies and cultures. Therefore, the policies and ideas 

outlined in sustainability policy and strategy (e.g. Brundtland Report, Brundtland and Khalid 1987) 

may not be applicable to the human ‘needs’ in many regions (Kopfmüller 2015). Although this thesis, 

and the vulnerability framework developed within it, are based on the concept of sustainability, it is 

important for these criticisms to be acknowledged. In order to address the western-centric 

limitation, efforts were made to ensure that the methodology and framework developed in this 

thesis is sufficiently customisable so that they can be adjusted for different environmental, social, 

economic and political conditions that influence the way that historic landscapes and cultural 

heritage are understood, perceived and managed.  

3.2.5 Summary 

This section discussed the three main conceptual elements of the methodological approach that 

underpins this research. These elements are interconnected in a number of ways, for instance the 
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use of the historic landscape concept requires the scale and levels of cultural heritage to be altered 

from information levels within spatially explicit sites, to features within spatially continuous 

landscape character areas. Even though the higher spatial level (landscape) may be the same, the 

organisation of archaeology into lower levels is different. Studies that make such changes to the way 

that archaeology is organised and perceived within their research must be explicit in their reasoning 

and new scalar framework, in order to avoid misunderstandings and misuse of their data and results. 

Sustainability relates to issues of scale, as by definition it requires the management of resources 

across three different institutional scales (economic, social, environmental), which are each 

organised with different jurisdictional and temporal levels. It also requires the consideration of 

various levels on the spatial scale, and both short-term and long-term resource use at various spatial 

and jurisdictional levels (local, regional, national, international/global). The pursuit of sustainability 

inevitably engenders issues of scale mismatch, so it is important to be cognizant of the complexity of 

scale issues in order to address them explicitly and effectively. 

Finally, sustainability is a crucial consideration when managing the historic landscape: a key element 

of the historic landscape is its time-depth and the fact it gives equal value to remains from all 

generations. Furthermore, the elements that characterise the historic landscape include the impacts 

of present and past economic systems and human action, as well as environmental processes. 

Employing the concept of sustainability in the management of historic landscapes is important to 

make sure all elements and temporal levels are considered.  

The methods, results and outputs of this thesis were informed by the conceptual and 

methodological approach outlined in this section. This was explored in detail in order to make the 

research process and conclusions of this study as transparent as possible. 

3.3 Overview of Methods 

This thesis used a mixed-methods approach, utilising both quantitative and qualitative data 

collection methods. The following section discusses and justifies the methodology with reference to 

how the chosen methods address each of the research aims. Detailed descriptions of each stage of 

the methodology are also presented in the relevant chapters. Following the introduction (Chapter 1), 

justification of research (Chapter 2), conceptual framework (Chapter 3), overview of the study area 

(Chapter 4), and landscape analysis (Chapter 5), the main body of the thesis is divided into three 

chapters, each of which is dedicated to one research aim (See Figure 1.4). The conceptual framework 

described above was instrumental in shaping the methods chosen for this thesis: HLC is based on the 

concept of the historic landscape. The concept of sustainability was addressed by creating a 
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sustainability assessment, which measured and compared different management approaches based 

on the factors needed to satisfy sustainability.   

3.3.1 Landscape Analysis and Characterisation 

The first research aim, addressed by Chapter 6, is the need to characterise the historic landscape of 

the study area, by analysing the known archaeological resource, identifying additional cultural 

heritage remains, and using the data generated to inform HLC.  

The known archaeological resource is defined as the records held in the National Monuments 

Record of Wales (NMRW) and the Historic Environment Record (HER) databases, any information 

held in archives such as The National Archives and The National Library of Wales (NLW), and the 

results of Level 1 surveys carried out by University of Sheffield Landscape MA students. These 

records formed the lower observational level within the Hierarchy Theory scalar framework 

employed in this research, as they influence the character of different areas of the historic 

landscape. Although the main focus of this thesis is on the historic landscape and landscape 

character areas, the level of archaeological features and sites is the most commonly used focal level 

within heritage management, so it was appropriate to include consideration of this spatial level. 

Additional cultural heritage remains were identified through the analysis of aerial photographs and 

the deployment of geophysical survey in areas with potential for sub-surface remains. The 

information collated and collected about the archaeological resource of the study area was 

combined with historic and modern maps to inform a HLC of the study area. This is a method of 

landscape analysis and interpretation, that represents the current landscape as the cumulative 

outcome of past human activities and identifies areas of similar historic character (see Chapter 6). 

Each area of similar character (LCA) is a holon at the focal level of the hierarchy theory as it applies 

to this thesis (see 3.2.3).  

3.3.2 Development of a Landscape Vulnerability Assessment tool 

Once the historic landscape has been characterised for the study area, the second research aim is to 

develop a methodology for assessing the vulnerability of the historic landscape to climate change 

and its associated impacts (see Chapter 7). This requires an exploration of climate change and sea-

level rise models for the coming century, and a review of other vulnerability assessment methods 

used in archaeology. Based on this review, the method chosen was a vulnerability index (VI). This 

review also showed that other vulnerability assessments used in archaeology predominantly 

concentrated on ‘sites’ as the focal level of analysis. Therefore, in order to maintain the focus on the 

historic landscape rather than on individual features or sites, a new landscape-level VI was created. 

The VI methodology developed is then applied to the Dysynni valley study area. 
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The temporal extent of this study and the climate change impacts included is the 21st century 

because the vast majority of integrated model assessments within climate change research focus 

solely on this period, and the IPCC RCP emission scenarios also only encompass the 21st century 

(Meinshausen et al. 2011; Collins et al. 2013). The uncertainties inherent in climate models, future 

GHG emissions, and the reaction of the climate to radiative forcing means that the range of potential 

outcomes in the longer-term is so great as to be unhelpful to decision-makers. For instance, the IPCC 

models project anthropogenic radiative forcing between 0 and 12Wm-2 by 2300, which would result 

in global surface temperature change between +0 and +12.6°C, depending on the RCP (Collins et al. 

2013). Tackling a longer timeframe in this project would suffer from a lack of robust research into 

potential climatic changes and impacts and too wide a range of eventualities for usefully informing 

coastal or archaeological management (Hawkins et al. 2014). 

 Although trialled using the Dysynni valley study area, this VI is designed to be applicable to other 

landscapes, so that the overall Landscape Vulnerability Framework developed in this thesis can be 

replicated for other historic landscapes in the UK and beyond.  

3.3.3 Development of a Sustainability Assessment tool 

In response to the results of Chapter 7, which identifies the most vulnerable landscape character 

areas to climate change, the most suitable methods of managing the threat to cultural heritage must 

be assessed. Chapter 8 develops a tool that assesses both the sustainability of potential coastal 

management approaches, and the impact that they would have on the historic landscape. In order 

to incorporate the various elements of sustainability, the assessment tool chosen is a Multi-Attribute 

Value Theory (MAVT) method (see section 8.2). MAVT is a tool used for multi-criteria decision 

analysis, in which alternative options are compared based on various criteria, in relation to one or 

more objectives. This allows both quantitative and qualitative factors, and conflicting objectives, to 

be incorporated into the same assessment (Wang et al. 2009). Section 8.2 provides a justification of 

this choice of tool based on a review of the most commonly used sustainability assessment tools.  

This sustainability assessment tool was trialled on the Dysynni valley study area, by using it to 

compare the sustainability of the current management approaches along the coast with other 

sustainable coastal and landscape management options. Unlike traditional sustainability 

assessments, this tool was designed to include specific mention of cultural heritage and the historic 

landscape, alongside economic, social and environmental considerations.  
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3.4 Summary 

Overall, the aim of this thesis is to develop a framework (a Landscape Vulnerability Framework) for 

assessing the vulnerability of the historic landscape to climate change and identifying the most 

sustainable approach to managing the identified risk. This framework is designed to be applicable to 

coastal landscapes across the UK and beyond, and is also easily customisable for application to 

inland or other types of landscape.  

 The conceptual framework throughout the thesis is defined by the three concepts discussed above 

in 3.2: the explicit structuring of the subject into a hierarchical framework in order to clearly 

incorporate elements from all spatial levels; the conceptualisation of archaeological/cultural 

heritage as spatially continuous and layered across the landscape; and the need to include 

economic, social and environmental variables, and both inter- and intra-generational equity, in the 

management of the historic landscape. All three parts of the thesis, as discussed above, are 

underpinned by this conceptual approach. Ecological and environmental vulnerability assessments 

are often undertaken using a patch-matrix approach, rather than focusing on discrete points within a 

landscape (e.g. Thuiller et al. 2005; Berry et al. 2006; Vos et al. 2008). Using Hierarchy Theory and 

applying it to the historic landscape provides a way to recalibrate the scale of archaeological 

management and assessment so that it is more in line with other systems and the impacts of climate 

change. Furthermore, focussing on the idea of sustainability and including economic, social and 

environmental considerations makes this landscape vulnerability framework more compatible with 

the mainstream climate change impact and adaptation reports, in which archaeology and heritage 

get little mention (e.g. IPCC 2014a, b; ASC 2016; Defra 2018). 
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Chapter 4 
Dysynni Valley, Gwynedd: an introduction 
to the case study 
4.1 Introduction 

The Dysynni valley historic landscape was chosen as a study area in order to trial and exemplify the 

framework being developed in this thesis. The Dysynni valley is a designated Landscape of Special 

Historic Importance in Cardigan Bay, in the county of Gwynedd, North Wales. The majority of the 

study area lies within the boundaries of Snowdonia National Park, with only the town of Tywyn lying 

outside the park. The extent of the study area for this thesis is outlined in Figure 4.1. This was 

defined by the Ordnance Survey national grid boundary for SH50 and SH60 to the north and east, 

the coastline to the west, and the Dyfi estuary and wetlands to the south and south east. This region 

has a long and rich history of human settlement, but most known archaeological sites in this 

landscape are confined to the upland areas. This is partly due to the disruption caused by centuries 

of agricultural activity in the lowlands, as well as a relative lack of archaeological survey in these 

areas. However, complex cropmarks, field boundary morphology and the location of find-spots 

indicate that there remains a wealth of archaeological information on the valley floor. Following a 

justification of the case study choice (4.1.1), this chapter reviews the current state of knowledge of 

the environment, history and archaeology of the study area and surrounding landscape. The 

geological and environmental background of the Dysynni valley are first discussed (4.2 and 4.3). 

Subsequently, the known archaeological information is detailed in chronological order, followed by 

information regarding the current research and management of the resource (4.4 and 4.5). Further 

research into archives and archaeological datasets were used to supplement this information in 

Chapter 5 as part of the landscape analysis. Figure 4.2 provides a map including the main sites of 

interest mentioned within this report.   

4.1.1 Case study choice  

The Dysynni valley was chosen as the study area for several reasons. In order to test the 

methodology on a full range of climate change impacts, the study area had to be vulnerable to 

climate change and there must also be accessible data about the natural and historic environment. 

The combination of low-lying valleys and steep slopes in west Wales allows the incorporation of 

many different climate change factors. Having a varied and dynamic coastline, including natural 

dune systems, saltmarsh, mudflats, both shingle and sand beaches, estuaries, and lagoons, means 
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that the framework developed can be tested on many different coastal systems. It was also 

important to have an area with a long history of human occupation, so that the results and 

framework generated could be meaningful for cultural heritage management. Other areas that could 

have been chosen for their vulnerability to climate change include the Holderness Coast, East Riding 

of Yorkshire, which is particularly vulnerable to coastal erosion, or The Fens in eastern England, 

which are vulnerable to sea-level rise. However, the topographic and biotypic variability in west 

Wales provides a greater insight into the way that different types of cultural heritage are vulnerable 

to climate change.  

The University of Sheffield Department of Archaeology was already undertaking archaeological 

survey in west Wales, in the Dysynni valley, including landscape and geophysical survey. This meant 

that the results of geophysical surveys undertaken in previous years but not yet published were 

available. It also meant that MA Landscape Archaeology students were available in the study area to 

help with geophysical surveys during the field season, allowing a greater area to be covered than 

would have been otherwise possible.   

As discussed below (4.3), the valley floor of the River Dysynni is low-lying and susceptible to 

flooding. Additionally, there are extremely steep areas which are susceptible to erosion and rockfall. 

Figure 4.1. Dysynni valley study area in Gwynedd, Wales. Copyright Maproom 2019 (left) 

and Google Maps 2019 (right) 



45 
 

Using this study area allows the Landscape Vulnerability Framework to be tested on several different 

environmental settings and topographies within the same landscape.  

Finally, the Dysynni valley is relatively rural and all land-use is extensive and low impact, so 

archaeological features from a range of periods are extant across the landscape. This facilitates the 

identification of historical elements and the characterisation of the historic landscape in Chapter 6. 

 

Figure 4.2: Locations in the Dysynni valley mentioned in this chapter on an Ordnance Survey Vector 

Map. Elevation is overlain on the map to indicate topography.  The brown lines indicate main 

roads, and the blue lines indicate waterways such as the River Dysynni, streams or drainage 

ditches. Crown copyright and database right 2019 Ordnance Survey 100025252 
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4.2 Geology 

4.2.1 Bedrock 

The bedrock geology in the Dysynni valley floor is dominated by sedimentary formations, mainly 

mudstone and mudstone mixes (see Figure 4.3). A ribbon of igneous formations, including felsic tuff, 

rhyolite and basalt, stretches inland from Morfa Gwyllt, although it has been divided by a fault plane. 

Sedimentary rocks are softer and more susceptible to coastal erosion than igneous rocks (National 

Grid for Learning 2008). The predominance of this type of geology indicates that the coastline in the 

study area may be at risk from coastal erosion.  

4.2.2 Superficial deposits  

Along the shoreline from the mouth of the Dysynni in the north, to the Dyfi Estuary in the south, is a 

band of coastal deposits (see Figure 4.4), including storm beach and tidal deposits, that extends 

inland south of Tywyn. This configuration of superficial deposits indicates that this area may have 

Figure 4.3. Bedrock Geology in the Dysynni valley from the British Geological Survey 

(DiGMapGB-50 2010). Geological Map Data BGS Copyright UKRI 2019. Crown 

copyright and database right 2019 Ordnance Survey 100025252  



47 
 

been in the intertidal zone or part of a delta system at some point during the Holocene (BGS 2019). 

Blown sand deposits also band the coastline, although do not stretch as far inland as the coastal, 

storm beach and tidal deposits (see Figure 4.4). 

The land from the coast at Broadwater, stretching inland along the Dysynni valley bottom to Castell y 

Bere, is dominated by alluvium and river terrace deposits, likely deposited by the river and estuary 

system during the Holocene (Thomas and Chiverrell 2003). Small areas to the north and south of 

Broadwater, and south of Tywyn, are formed of Devensian glacial till, which was deposited when 

glaciers in the valley melted at the end of the Devensian Glaciation (Entwhisle and Wildman 2010). 

In fact, the U-shaped nature of the Dysynni valley was likely created due to glacial erosion (Watson 

1962; Blundell et al. 1969; Snowdonia National Park Authority (SNPA) 2016).  There are also peat 

Figure 4.4. Superficial geological deposits in the Dysynni valley from the British Geological Survey (DiGMapGB-

50 2010). Geological Map Data BGS Copyright UKRI 2019. Crown copyright and database right 2019 Ordnance 

Survey 100025252  
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deposits located directly north and south of Tywyn and west of Bryncrug, while a larger deposit of 

peat stretches across the Dysynni Valley floor near Llanegryn (see Figure 4.4).  

To the northwest and southeast of Bryncrug is a large alluvial fan deposit, indicating that the River 

Fathew may have been much larger in the past. Smaller alluvial fan deposits can also be seen on the 

edge of the valley bottom further inland in the Dysynni Valley, near Craig yr Aderyn and Castell y 

Bere. The dominant superficial deposits around Castell y Bere are river terrace deposits (see Figure 

4.4), which indicates that there was a more extensive and dynamic river system in the Dysynni valley 

during the Holocene than at present (Griffiths et al. 2013).  

4.3 Environment 

The Dysynni estuary and surrounding coastline consists mainly of a low-lying coastal plain, while the 

Dysynni valley is a typical U-shaped valley, with a flat, wide valley floor and steep sides. The plain lies 

below 10m aOD (above Ordnance Datum) up to 10km inland along the river valley. As a result, the 

floodplain is vulnerable to storm surges, high rainfall events, and other flooding mechanisms. Prior 

to extensive drainage and land improvement schemes in the 18th and 19th centuries, much of the 

land in the valley was unproductive marshland (Smith 2004a; Frost 2012). This is indicated by the 

fact that there is an area of land north of Tywyn called ‘Morfa’, which translates to ‘marsh’ or 

‘saltmarsh’, while Penllyn farm, south of Tywyn, translates to “head of the lake”. This lake can be 

seen on tithe maps from the mid-19th century.  

Other historical reference to past environmental change in the valley includes Craig yr Aderyn, or 

‘Birds Rock’, which is a hill rising from the south side of the valley floor, approximately 8km inland. 

Craig yr Aderyn is a Site of Special Scientific Interest (SSSI) as it houses the only regular inland 

breeding colony of cormorants in Wales (McInnes and Benstead 2013). It is suggested that Craig yr 

Aderyn was once closer to the coastline, which is why cormorants initially nested there, and that 

they continued to nest there despite the retreating shoreline (ibid.).  

Finally, there is a submerged forest and peat bed located in the intertidal zone of the coast of Borth, 

around 7km south of the study area (Godwin and Newton 1938). Radiocarbon dating of the peat 

deposits show that it dates to c.6000-4700 cal. BP (Wilks 1979). This shows that sea level was 

previously lower than at present, so palaeoenvironmental and archaeological evidence could be 

preserved within the submerged forest and peat beds. It is possible that the peat beds extend 

further north than the current known extent, and are covered by sand (Smith 2004a). This is 

supported by the presence of both well-humified peat and woody peat beneath Penllyn Farm, as 

shown by the results of coring undertaken by both the British Geological Survey (BGS) (Leng and 
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Pratt 1987) and by Caitlin Nagle (pers.comm.). However, any offshore peat beds at Tywyn may have 

been subject to an increase in erosion since the construction of the sea wall there in the 19th 

Century, and so may not remain extant.  

The study area is also considered important for biodiversity, and includes several Biodiversity Action 

Plan priority habitats such as saltmarsh, lagoons, mudflats, reedbeds, and the SSSI Broadwater (JNCC 

2016; SNPA 2016; Welsh Government 2016). Broadwater, the saltwater lagoon near the mouth of 

the River Dysynni and the surrounding dunes and marshland, is designated a SSSI due to the range of 

habitats it includes, and the plant and animal species it supports. There are several species of both 

breeding and wintering birds at Broadwater, such as Coot and Sedge Warbler (breeding) and 

Mallard, Teal and Wigeon (wintering) (Countryside Council for Wales (CCW) 1983; Natural Resources 

Wales (NRW) 2007; Vanstone et al. 2012). Rare plants, such as the Welsh mudwort, pyramidal 

orchid, autumn ladies tresses, and bur-marigold can also be found in this SSSI (NRW 2007). The 

Snowdonia National Park Authority (SNPA 2016) acknowledges the threat of climate change to these 

estuarine ecosystems, although the Park makes no mention of the potential archaeological and 

historical sites that could also be affected. The area encompassing the Dyfi Estuary and coastal dune 

system to the north also has several designations relating to its ecological status; it is a National 

Nature Reserve (NNR), an SSSI, a Ramsar wetland site, a Special Protection Area (SPA), and a 

UNESCO Biosphere Reserve 

Upland areas in the Dysynni valley are dominated by acid grassland, heath and bracken, and raised 

bog habitats, which are used for sheep grazing (SNPA 2014a). Few areas of natural woodland are 

supported, but large areas of the hills are used for conifer plantations for timber production (ibid.). 

In addition to forestry, the main land use in the study area is pastoral farming. Sheep farming is most 

common on the steep slopes and higher upland areas, and both sheep and cattle are farmed in the 

lowlands and on coastal grazing marsh (ibid.).  

4.4 Archaeological and Historical Background  

This section provides an overview of the state of research prior to the undertaking of this thesis. 

Aerial mapping and geophysical surveys have identified additional features in the study area, as 

detailed in Chapter 5. Further information on the features mentioned in this section is available in 

Appendix 1 Table Ap1.1. 

4.4.1 Mesolithic (10,000BC – 4,000 BC) 

The main archaeological remains dating to the Mesolithic are the intertidal peats and submerged 

forest (see Figure 4.5), and the associated finds. These include a Mesolithic flint pick, flint flakes, and 



50 
 

an antler tool (Sambrook and Williams 1999, p. 26). There is also a high potential for Mesolithic 

artefacts or features to be preserved within the peat beds beneath Penllyn Farm, based on the high 

level of preservation of wood in cores from this area observed by Nagle (pers.comm.).  

4.4.2 Neolithic (4,000 BC – 2,200 BC) 

Within the intertidal peats a hearth was recorded and dated to c.5900 cal. BP (Godwin and Willis 

1961; Heyworth 1985), indicating that the area may have continued to be in use during this period. 

Two Neolithic stone axes were discovered in 1871 300m south of Llanegryn (Frost 2012). Other than 

this, there is little known archaeological evidence dating to the Neolithic.  

 

 

 

 

 

 

 

 

 

 

4.4.3 Bronze Age (2,600 BC-700 BC) 

There is significantly more archaeological evidence of the Bronze Age in the study area and 

surrounding landscape than the Neolithic. For instance, there are several known Bronze Age 

standing stones, such as the Waun Fach stone near Llanegryn (Smith 2001). There are also several 

Bronze Age find-spots, including several bronze axes and spearheads (Smith 2005). The majority of 

these are found at higher altitudes in the hills surrounding the valley, for instance the cairn found at 

the highest peak of Craig yr Aderyn. However, a group of Early Bronze Age burials and burial urns 

were also discovered on the eastern edge of Tywyn, only 1.5km inland (Anwyl 1909, p.162).  

4.4.4 Iron Age (800 BC – AD 43) 

There is a wealth of Iron Age evidence in and around the study area, primarily in the form of hillforts. 

For instance, there are two Iron Age hillforts located on the southwest slope of Tal y Garreg, a hill on 

Figure 4.5: Tree stump preserved amongst the submerged forest bed dating to at least 

5400-3900 cal. BP (Sambrook and Williams 1996) 
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the north side of the Dysynni valley (Smith 2008). There is also an Iron Age stone-walled hillfort on 

Craig yr Aderyn, at 233m aOD, with extensive views along the Dysynni valley (ibid.). Several 

enclosures have been identified as cropmarks in aerial photographs near Bryncrug, and are thought 

to date to later prehistory (Wiles 2007a).  

4.4.5 Roman (AD 43 – AD 410) 

There are several find-spots of Roman artefacts in or around the study area; pottery, a plumb bob 

and part of a lead bar all thought to be Roman were discovered during an excavation on Craig yr 

Aderyn during the 19th Century (Ffoulkes 1874, cited in Driver 2013). Roman coins have also been 

found in six findspots, according to Guest and Wells (2007). One of these was a single find, three 

were group finds, and two were hoards (ibid.). One of the group finds, from the well of Castell y 

Bere, indicates that the site was used prior to the construction of the medieval castle. There are also 

the remains of a Roman fort in a strategic position overlooking the Dyfi Valley at Cefn Caer, slightly 

east of the study area (SNPA 2016). There is evidence of a Roman road running from the coast near 

Llwyngwril towards the northeast along the south side of the Mawddach Estuary (Bowen and 

Gresham 1967). Bowen and Gresham (1967) also posit that there may have been a Roman road 

connecting the fort at Cefn Caer to the road at Llwyngwril, either directly over the hills and past 

Castell y Bere, or in the lowlands along the coast and crossing the Dysynni at Domen Dreiniog (see 

4.4.7). This combination of evidence indicates that there was undoubtedly activity in the study area 

during the Roman period. 

4.4.6 Early medieval (AD 410- AD 1066) 

There is a significant amount of archaeological and historical evidence dating to the early medieval 

period within the study area. Several inscribed stones have been found in or near Tywyn, including 

Croes Faen and the Pascentius Stone dating to the 5th-7th centuries (Longley and Richards 1974). It is 

thought that St. Cadfans Church Stone, dating to the 9th century, is the earliest documented instance 

of written Welsh, which makes it very valuable for the study of early Welsh history and the history of 

the Welsh language (Edwards 2013).  

Viking raids of Tywyn during the 960s and 970s AD were recorded in Brut y Tywysogion, a monastic 

chronicle documenting the 7th-14th centuries, a version of which is held within the Peniarth Estate 

Manuscripts collection. This suggests that there was a settlement or monastic community located at 

Tywyn that was large enough to be considered worth raiding (Longley and Richards 1974). 

A survey and excavation at Llanegryn undertaken ahead of the construction of a primary school 

revealed six hearths mainly dated to between the 8th-11th centuries (Cooke 2014). The hearths were 
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probably used for charcoal making, evidenced by the lack of any charred plant remains or any 

indication of industrial processes such as slag (ibid.). 

Cropmarks of several square features were identified in aerial photographs between Tywyn and 

Ynysmaengwyn. These features are thought to be an early medieval square barrow cemetery, and 

are located near the site of the Croes Faen stone (RCAHMW 2012a). 

4.4.7 Medieval (AD 1066 – AD 1540) 

Two castles, Castell y Bere and Castell Cynfal, were constructed during the medieval period in the 

study area. Castell Cynfal, now a motte located on a ridge on the south side of the Dysynni valley, 

would also have included a timber castle (Beverly Smith and Beverly Smith 2001; Wiles 2007b). It is 

uncertain how far the castle or complex extended, and it was only in use for a short time; 

constructed by Cadwaladr ap Gruffudd ap Cynan in 1147, but captured and destroyed in the same 

year by his nephews Hywel and Cynan (Beverly Smith and Beverly Smith 2001; GAT 2017a).  

Like Castell Cynfal, Castell y Bere was also built by the Welsh, and was conquered and abandoned 

shortly after its construction in the 13th century. It is located near Llanfihangel-y-Pennant, and is 

situated on top of a natural mound of bedrock surrounded by flat pasture land (see Figure 4.6). The 

function of Castell y Bere is uncertain, for instance whether it was for military or administrative 

purposes (Beverly Smith and Beverley Smith 2001). Finds of Roman coins and pottery from the well 

within Castell y Bere suggest that the site was occupied prior to the construction of the castle 

(Bowen and Gresham 1967). There is documentary evidence dating to the late 13th century that 

suggests that a borough, or burgh, was constructed by royal charter near the castle (Morris 1901). 

However, there is no reference to the burgh in any historical document later than 1295, which has 

been attributed to the destruction and abandonment of the castle in 1294-5, and the assumed 

abandonment of the burgh (Lewis 1912; Taylor 1974). It has been suggested that the location of 

Castell y Bere indicates that the River Dysynni, currently narrow with a low discharge near the 

remains, may have been navigable during the medieval period, greatly increasing the access to trade 

routes from this site (Smith 2004a). 

Llanegryn Parish Church of St Egryn and St Mary was also constructed in the 13th century, and was 

referenced in a document dating to 1254 (Beverly Smith and Beverly Smith 2001; Frost 2012). An 

earlier pillar with an incised cross was built into the south wall of the church, and the building was 

extended during the 19th century (Beverly Smith and Beverly Smith 2001). The church therefore 

incorporates architectural styles and cultural heritage from several historical periods. 
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During the medieval period, land in Wales was divided into administrative areas called commotes, 

which were controlled by a central royal court, or llys (Cadw 1990). Talybont Castle Mound, also 

known as Domen Ddreiniog, is thought to have been associated with a llys. It is located at a former 

bridging point of the Dysynni, at a meander which would provide defence for the site (Frost 2012; 

GAT 2017b).  

 

4.4.8 Post-Medieval (AD 1540- AD 1901) 

Several large stately houses with estates were built in or near the study area. For instance the 

Peniarth Estate, now a Grade II listed building, was established in 1412 and enlarged in the 1700s. 

(Frost 2012). The Peniarth Estate Records and Manuscripts, now held in NLW, comprise 106 boxes 

and 547 manuscripts, and include documentary material from as early as 1362.  

The Ynysymaengwyn Estate, also constructed in the 15th century, was demolished in the 1960s after 

falling into disrepair (Frost 2012). Both the Peniarth and Ynysymaengwyn Estates invested in 

significant drainage and land improvement in the Dysynni valley in the 18th and 19th Centuries, to 

Figure 4.6. View from the ruins of Castell y Bere across the flat valley floor towards the coast. 

The Iron Age hillfort atop Craig yr Aderyn can be seen from here.  

Craig yr Aderyn Hillfort 
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turn the lowlands of the valley into productive farmland (Smith 2004a; Frost 2012). The previous 

nature of much of the Dysynni valley as wetland is indicated in placenames. For instance, Penllyn 

(‘head of the lake’) Farm is no longer situated near any large water body, while the Glan y Morfa 

(‘next to coastal marsh’) Bach and Mawr farms, are located 4.5km inland, and 2.8km from 

Broadwater, the nearest large wetland area. Gwynedd Archaeological Trust (GAT 2017c) speculate 

that Ynysymaengwyn would have been within the tidal reach of the Dysynni prior to this land 

improvement, which would have provided greater access to communication and trade routes.   

There are numerous sites in the hills surrounding the Dysynni valley lowlands related to industrial 

activity, including quarries, mines, and related buildings. It is likely that these were important for 

transporting resources during the Industrial period (SNPA 2016). Talyllyn Railway is a narrow-gauge 

railway established in 1865 to carry slate from the Bryneglwys quarries by Nant Gwernol Station, 

Abergynolwyn to the standard-gauge railway at Tywyn (GAT 2017d). The development of this railway 

for goods transportation indicates that the resources sourced in the study area were important for 

regional development. The railway was the first narrow-gauge railway in Britain to carry passengers 

by steam, and remains open as a tourist attraction (ibid.). 

4.4.9 Contemporary (AD 1901-present)  

During the 20th Century there was significant military activity in the study area, particularly during 

the Second World War. Practice trenches and a rifle range can be found near Tywyn, with more 

practice trenches further up the coast near Barmouth (Kenney and Hopewell 2015). Near the coast 

Figure 4.7. Two of the line of Second World War pillboxes between Tywyn and Aberdyfi 
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between the Dysynni and Mawddach estuaries is a Prisoner of War camp also dating to the Second 

World War (ibid.). The remains of an RAF airfield and camp and 12 known air crash sites are located 

in the valley, and a line of pillboxes stretch along the coast to the south of Tywyn (see Figure 4.7) 

(GAT 2012; Steele 2012; Kenney and Hopewell 2015). Evidently, this area is important for the 

archaeological study of the Second World War, and much of the archaeological remains for this 

period are located in the coastal or intertidal zone, increasing their exposure to climate change.  

4.5 Archaeology and Cultural Heritage Management 

4.5.1 Organisations with jurisdiction 

The majority of the heritage management in the Dysynni landscape is led and undertaken by four 

organisations; Cadw, Gwynedd Archaeological Trust (GAT), SNPA, and the Royal Commission on the 

Ancient and Historical Monuments of Wales (RCAHMW). Other than Tywyn, the study area lies 

within Snowdonia National Park, and is therefore under the jurisdiction of the SNPA. This is a central 

planning authority made of representatives from local and Welsh governments. Any consent or 

planning permission for listed buildings within Snowdonia must be sought from SNPA rather than 

Gwynedd Council. 

Cadw is the historic environment service of the Welsh Government. They maintain and protect 

heritage assets including landscapes, archaeological sites, and historic buildings, and make them 

accessible to members of the public. They are also responsible for the designation of heritage assets 

such as scheduled monuments, listed buildings and conservation areas, which provide statutory 

protection. In Wales, county archaeological trusts exist to provide archaeological and heritage 

services such as research, excavation, survey, publishing reports, and education. For the Dysynni 

valley, GAT provides this service. GAT undertakes archaeological research commissioned by other 

organisations, for instance archaeological desk-based assessments (DBAs) for development projects 

(see Smith 2004a; Meek 2015), research projects funded by Cadw (see Longley and Richards 1999; 

Davidson et al. 2002; Kenney and Hopewell 2015), and conservation area appraisals for SNPA (see 

Davidson 2011). 

GAT also curates the HER, a comprehensive database supported by geographic information system 

(GIS) mapping, which contains information on historical and archaeological sites, monuments, 

buildings, and landscapes. It facilitates data sharing between organisations and is dynamic, meaning 

new information can be added to the record. Another database of heritage assets is the NMRW, 

which is curated by the RCAHMW. RCAHMW is a government-sponsored body which creates, 
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curates and provides archaeological information for governmental decision-makers, researchers and 

the public. 

4.5.2 Recent research 

Several of the research projects carried out in the Dysynni valley and surrounding region have been 

funded or commissioned by Cadw. The main aim of these projects has been to compile accurate 

records of different types of archaeological remains in the Dysynni valley and wider area, such as 

early medieval burial and ecclesiastical sites (Longley and Richards 1999; Davidson et al. 2002), 

medieval and post-medieval agricultural features (Kenney 2014), military aircraft crash sites (GAT 

2012; Steele 2012), military landscapes (Kenney and Hopewell 2015), and slate industry transport 

routes (Davidson and Gwyn 2014).  

There has also been a number of commercial archaeological assessments and surveys, for instance 

for development projects such as a new primary school (Roseveare 2012; Wessex Archaeology 2012, 

2014), a residential development in Tywyn (Smith 2013), a solar farm (Meek 2015), and a multi-user 

path between Tywyn and Bryncrug (Knight 2011; Blackburn 2011). In the DBAs for the latter 

example, Knight (2011) recommended that strip, map and sample excavations should be undertaken 

at several known features near Croes Faen, such as the Croes Faen standing stone, and the Croes 

Faen square barrow cemetery cropmarks. However, these were not undertaken due to heavy snow, 

which created unfavourable working conditions (Blackburn 2011). The construction went ahead 

without the strip, map and sample excavations, rather than delaying the development until more 

suitable conditions permitted the investigations to be undertaken. In this case the development 

time-line was prioritised over the potential archaeology in the area, and an opportunity to further 

the understanding of the archaeological record in the study area was potentially lost. 

There have been a few sensitivity or threat-related assessments undertaken in north west Wales. 

SNPA carried out a sensitivity analysis of each of the landscape blocks in Snowdonia, which focussed 

on threats to the character of the landscape such as wind energy developments, mobile masts and 

caravan parks (SNPA 2014b). This assessment determined that the Dysynni valley landform, skylines 

and key views, scenic quality, character, and tranquillity had high sensitivity to wind energy 

developments, mobile masts and static caravan or chalet parks. 

At a much larger spatial level, the CHERISH (Climate, Heritage and Environment of Reefs, Islands and 

Headlands) Project is assessing the potential impacts of climate change on coastal cultural heritage 

in Wales and Ireland. This five-year project (2017-2021) is funded by the EU through the Ireland 

Wales Co-operation Programme, and is led in partnership by the RCAHMW, the Discovery 

Programme Ireland, Aberystwyth University, and Geological Survey Ireland (RCAHMW 2018). Case 
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study areas in both Ireland and Wales have been chosen for detailed survey, mapping and 

monitoring. Detailed data of key heritage assets will provide a baseline for monitoring future rates of 

erosion (CHERISH 2018). One of the case study areas is Ynyslas National Nature Reserve, on the 

southern edge of the Dyfi estuary, but none of the work CHERISH is undertaking currently is directly 

related to the Dysynni valley and coastline (ibid.). However, the wider conclusions of the project may 

influence management decisions about coastal heritage in the future.  

The RCAHMW also funded the Uplands Archaeology Initiative, or the Welsh Uplands Initiative, a 

project that promoted the survey of upland areas across Wales in order to identify new sites and 

enhance the databases of known sites (Hughes 2003). 

4.6 Environmental Management  

This section provides a brief overview of the environmental, coastal and flood-risk management in 

the Dysynni valley. A more in-depth discussion can be found in section 8.3. As a low-lying coastal 

area, the Dysynni valley has long been prone to waterlogging and flooding. The Dysynni Low-Level 

Drain (DLLD) and extensive drainage ditch system, developed in the 18th-19th centuries, is critical for 

maintaining the pastoral farmland on the valley floor (Dunderdale and Morris 1996; Smith 2005).  

There is also a long history of coastal defence construction in the Dysynni valley. The original 

promenade and sea wall on the Tywyn coastal frontage was constructed in the late 19th century. An 

additional promenade was built further north, near Bryn-y-Mor, but was destroyed in a coastal 

storm in 1935 (Atkins 2009). A modern sea wall and promenade were built it its place around 1980 

(Smith 2004). The most recent coastal defence project was completed in 2011, and included a new 

recurve sea wall, wooden and rock groynes, rock armour, and a detached breakwater (see section 

8.3.1). It was developed to address the damage and undercutting of the previous defences (Atkins 

2009).  

Dredging has been carried out in the River Dysynni to lower the channel bed and reduce flood-risk in 

the surrounding floodplain (DredgingToday 2015; ITV 2015). As part of regional shoreline 

management policy, Aberdyfi harbour is also dredged to deepen the channel and make the estuary 

more navigable (Earlie et al. 2012a, b). The sand removed during this dredging is deposited on the 

beach and sand dunes to the west and north of Aberdyfi to combat shoreline retreat by widening 

the beach and stabilise the dunes (ibid.). The sand dunes west of Aberdyfi provide coastal protection 

for Aberdyfi Golf Club, which is important for the local economy and tourist industry (Wales Online 

2013).  
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4.7 Summary 

This chapter provided a brief overview of the Dysynni valley, the study area used to trial and 

exemplify the framework developed throughout this thesis. The Dysynni valley contains many areas 

that are environmentally and ecologically important, and is rich in evidence for human occupation 

with a high potential for further archaeological discovery. The nature of the Dysynni valley, as low-

lying and overlain by soft alluvial deposits, means that the coastal effects of climate change such as 

sea-level rise and storm surges may impact archaeological and historical sites located several 

kilometres inland. However, few studies into the vulnerability or sensitivity of the local 

archaeological resource have been carried out, and relatively little archaeological research has been 

undertaken in the Dysynni lowlands, so archaeological sites may be exposed to the effects of climate 

change before they have been discovered and researched properly.  

Several different organisations have jurisdiction over, or interest in, the heritage management of the 

study area. This can cause some confusion or overlap of information, for instance in duplicated 

records across different heritage resource databases (e.g. the HER and NMRW). This duplication 

indicates that some assets are being recorded and studied twice, which is inefficient and can be 

misleading if the two databases are combined without care. 

As much of the archaeological research in the study area has been in the form of desk-based and 

archaeological assessments for development projects, new archaeological information is often only 

discovered prior to destruction. Furthermore, often the research undertaken cannot be as thorough 

as would be desired due to time constraints or working conditions (see Blackburn 2011).  This study 

area provides a unique opportunity to develop indices of susceptibility to environmental change for 

sites that have not, as yet, been researched or protected in any way. 

There is a long history of coastal defence and flood alleviation schemes in the Dysynni valley and 

coastline, indicating that the area has already been subject to the processes that are set to 

exacerbate due to climate change. Difficulties arise once a defence structure such as Tywyn sea wall 

or the DLLD has been established, as the maintenance and renewal costs can make it challenging to 

continue the same level of protection that has become expected (see section 8.1). 
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Chapter 5 
Landscape Analysis  
5.1 Introduction 

Chapter 5 addresses some of the objectives of the first research aim of this thesis: Identify a method 

of analysing and characterising the archaeological resource on a landscape level. Namely, research 

objectives 1a (Collect information on the known archaeological resource in the Dysynni valley) and 1b 

(Use aerial photography and geophysical surveys to enrich the archaeological record of the Dysynni 

valley). In doing so, this chapter deepens the existing knowledge base of the cultural heritage in the 

Dysynni valley through a landscape analysis using a range of sources. This chapter focusses on 

collecting information on the components of the lower level of the historic landscape as organised in 

the Hierarchy Theory. These archaeological features inform the character of the landscape at both 

the focal level (LCAs) and the overall historic landscape.  

A range of methods were chosen for the collection and synthesis of data relating to the study area, 

in particular with relation to past land use and the archaeological resource. Firstly, archival research 

was undertaken to discover historical documents pertaining to the study area, such as maps, land 

ownership, and management information. Secondly, archaeological databases containing all 

recorded archaeological feature and historical building data in the study area were compiled and 

studied. Next, aerial photographs taken over the 20th-21st centuries were studied to identify any 

previously unknown cropmark features. Finally, geophysical surveys were undertaken to ground-

truth some of the cropmarks identified in aerial photographs, and survey the areas around known 

archaeological features. The main purpose of this data collection and synthesis was to provide a 

strong foundation for the HLC (see Chapter 6). All archaeological remains, historical buildings, and 

landscape features identified through this landscape analysis are used as Landscape Character 

Features (LCFs), the lower level of the historic landscape within the Hierarchy Theory framework. 

LCFs are features that give character to, or influence the character of, the historic landscape and 

different LCAs. 

Several methods were used for the landscape analysis because each method measures different 

variables, so the results of all methods combined provides a more complete picture of the cultural 

heritage of the study area compared to using a single approach (Islas and Vergara 2012). This makes 

the results of the analysis more informative, as well as more robust and reliable (Barber et al. 2000; 

Langdon et al. 2003; Birks 2005). 
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5.2 Methodology  

5.2.1 Archival research  

Archival research was carried out in order to identify and study any historical documents, 

particularly maps and photographs, relating to the Dysynni valley. First, online searches were carried 

out for records in the following archives: The National Archives, The National Library of Wales 

(NLW), Coflein (the RCAHMW online catalogue), The British Library, Bangor University Archives, and 

the Rhagorol (Gwynedd Council) online catalogue (The National Archives 2019; NLW 2019a; Coflein 

2019; British Library 2019; Prifysgol Bangor University 2019; Gwynedd Council 2019). The following 

place-name search terms were used in the initial online search: ‘Dysynni’; ‘Tywyn’; ‘Towyn’; ‘Dyfi’; 

‘Dovey’; ‘Aberdyfi’; ‘Aberdovey’; ‘Bryncrug’; ‘Peniarth’; ‘Ynysmaengwyn’; ‘Ynysymaengwyn’; 

‘Broadwater’; ‘Castell y Bere’; ‘Llanegryn’; ‘Llangelynin’; ‘Llanfihangel-y-pennant’; ‘Talyllyn’; ‘Penllyn’; 

‘Tonfanau’; ‘Croes Faen’; ‘Cardigan Bay’; ‘Gwynedd’; ‘Merioneth’; ‘Merionethshire’; ‘Meirionydd’. 

Based on the results of these searches, both the National Archives, Kew, and the NLW Archives, 

Aberystwyth, were visited to view the map and documentary sources identified in the online 

catalogue search.  

During the archive visits, detailed notes and photographs were taken of historical documents and all 

relevant maps found. In The National Archives, there were no restrictions on the taking of 

photographs, however in NLW all maps had to be kept within plastic sleeves, so any photographs 

taken were affected by glare from the sleeve.  

5.2.2 Historic Environment Record and National Monuments Record Wales databases 

Another source of archive data used were the NMRW and the HER databases. The NMRW is an 

archive of recorded historical and archaeological sites throughout Wales, held by RCAHMW. The HER 

in Wales are held by regional archaeological trusts, and contain a register of archaeological sites 

located within their local authority boundaries. Shapefiles of the HER and NMRW sites located in the 

Dysynni valley and surrounding landscape were provided by GAT, the Dyfed Archaeological Trust 

(DAT) and the RCAHMW as point-data for use in GIS, including attribute information such as the 

name, type and period of each record. 

Data processing 

The HER data was provided in Microsoft Excel Worksheet (.xlsx) format, while the NMRW data was 

provided in Microsoft Access Database (.accdb) format. To facilitate the processing and analysis of 

the site data, both sources were compiled into a Microsoft Access Database. As the HER and NMRW 

databases had been organised in different ways, some database fields were changed or omitted in 
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the new database.  An overview of each database to which I had access is available in Appendix 1, 

Table Ap1.2, including the information included within each database, and the information included 

within the final compiled database. 

A new field, ‘elevation’, was added to the newly created database, in order to include more spatial 

information on each record. To satisfy the ‘elevation’ field, GIS was used to extract the height values 

in metres aOD for the NMRW and HER point data from LiDAR data provided by the Welsh 

Government. This information was exported into a Microsoft Excel Spreadsheet format, and 

imported into the Microsoft Access Database. The LiDAR dataset used has a 1m resolution, and a 

vertical height error of ±5cm (NRW 2015a). 

In GIS, the point data shapefile was first ‘clipped’ to match the extend of the study area, as many 

records were located outside the defined boundary. Through an inspection of the compiled 

database, it was evident that some records had been duplicated, as they were included in both the 

HER and NMRW databases. Duplicates were identified through a query that searched for identical 

co-ordinate values. Some entries had the same co-ordinate values but were different features, for 

instance if the features were in very close proximity. Altogether, 504 of the 3775 entries were 

identified as duplicates and one version of each (252 records) were removed from the database. It is 

possible that more of the records in the HER and NMRW could be duplicates but with different co-

ordinates, for instance if the record location was entered more precisely in one database than 

another. Further records which appeared to be duplicates based on the name and description were 

removed during the process of this research. Some of these were discovered through systematic 

searches, and others were identified fortuitously. Records in the HER and NMRW databases that 

were recorded only as ‘Documentary Evidence’, and had either no description or which specifically 

stated that no known extant features existed, were also removed from the compiled database. This 

is because the main focus of this thesis is the way that the historic landscape, as it exists today, is 

vulnerable to climate change. The aim of using site databases was to record features that had a 

physical presence in the study area and would therefore be materially affected by climate change. 

Furthermore, the position of features located through documentary evidence alone may be 

inaccurate or may refer to a much wider area than is indicated by point data. Following the 

processing described above, 1529 records remained in the database.  

The information within the compiled database was collected and recorded over many years by 

different people, so there were several inconsistencies in the categories given to records. For 

example, ‘Anti Tank Block’ and ‘Anti Tank Obstacle’ were both included in the ‘Type’ field, while 

‘Post-Medieval,Modern’, ‘Post-Medieval/Modern’ and ‘POST-MEDIEVAL;Modern’ were all used in 
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the ‘period’ field. To improve the usability of the new database and facilitate the analysis of the data 

within it, the entries for some fields such as these were aggregated. Table Ap1.3 in Appendix 1 

details the changes made to the labelling system within the database. These changes were made 

with reference to the Historic England Monument Type Thesaurus, to ensure that the terminology 

followed a consistent and reliable standard (Historic England 2014). 

5.2.3 Aerial photographs  

Aerial photographs are a commonly used source in archaeological survey, as they can often reveal 

features such as cropmarks and shadow marks that are not visible from ground level (Winton and 

Horne 2010). The British Academy (2001) estimate that up to 50% of archaeological sites in Britain 

have been identified through aerial photography. This may be from archaeological reconnaissance 

surveys, or from aerial photography taken initially for another purpose such as military 

reconnaissance or for cartographic surveys (Winton and Horne 2010; Hanson and Oltean 2013). 

Aerial photography can be used to determine which areas should be prioritised for ground-based 

geophysical survey, but it can also be used for monitoring change to the historic environment 

(Bewley 2006; Jones 2008). 

Over 530 images of the study area were found across five collections of aerial photographs held by 

RCAHMW archive, located in NLW, Aberystwyth. The collections studied comprised The Cambridge 

University Collection of Aerial Photography (CUCAP), RCAHMW Black and White Oblique Aerial 

Photographs, RCAHMW Colour Oblique Digital Aerial Photographs, Royal Air Force Vertical Aerial 

Photographs, and the Ordnance Survey Aerial Photography Collection. Each of the images was 

studied, and copies were taken of those that featured potential cropmarks, in total 58 photographs 

(see Figure 5.1). Some of these cropmarks had already been recorded in the NMRW record and the 

HER record, but had not been mapped. Following the study of aerial photographs at RCAHMW,  

additional cropmarks were identified in the Dysynni during reconnaissance flights by Glyn Davies and 

Jonathan Brentnall during the dry summer of 2018. Theses cropmarks were added to the collection 

in this study (see AP_2018_4244, Figure 5.1D).  
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Tywyn 

Bryncrug 

A: AP_2006_2905 

Figure 5.1. Examples of aerial photographs from the Dysynni valley (A-D), and a map of their 

locations. All images are Crown copyright and are reproduced with the permission of Royal 

Commission on the Ancient and Historical Monuments of Wales (RCAHMW), under delegated 

authority from The Keeper of Public Records. Map Crown copyright and database right 2019 

Ordnance Survey 100025252 
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Figure 5.1 cont. 

C: AP_2006_2909 

B: AP_2006_2908 
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Figure 5.1A shows square cropmarks, c.12m in diameter, relating to a medieval square barrow 

cemetery near Croes Faen (Blackburn 2011). The cropmark in Figure 5.1B is a circular feature around 

18m in diameter, with an associated curvilinear feature. Figure 5.1C shows a number of features 

within a single field, including several intersecting circular features, and a square double-ditched 

enclosure. The feature identified in Figure 5.1D appears to be a double-ditched enclosure around 

30m in diameter, with a larger surrounding wall that has at least two clear entrances. 

QGIS, an open-source GIS software was used to georeference and georectify the copies of the aerial 

photographs onto the Dysynni landscape, using identifiable features such as field-shapes and roads. 

The vertical aerial photographs could be georectified relatively accurately, but the oblique aerial 

photographs were more susceptible to warping, particularly if there were too few reference points. 

Therefore, when a cropmark was featured in more than one aerial photograph, the aerial 

photograph that was most accurately georectified was used to determine the location of the 

feature. Subsequently, the features identified in each aerial photograph were rendered in QGIS as a 

vector layer (see Figure 5.6).   

The slight warping of the georectified aerial photographs may have introduced a small degree of 

error in the position of the georectified cropmark features. However, when compared to the 

Figure 5.1 cont. 

D: BDC_05_11 
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location of the features also identified in geophysical surveys, the errors were no more (and often 

much less) than 5m in the context of features up to 75m in diameter and fields several hectares in 

size. While this is at the higher end of the acceptable error margin suggested by Dr Toby Driver of 

the RCAHMW (pers. comms.), it is sufficient for informing decisions on where to locate further 

geophysical surveys, and provides a relatively accurate map of georectified features within the wider 

landscape. 

The purpose of identifying cropmarks and potential features in the study area was twofold. Firstly, 

the aim was to gather as much information as possible about the history and past land-use of the 

study area, by identifying features that were not yet recorded in the NMRW and HER databases. 

Secondly, the presence of features in aerial photographs was used to decide where geophysical 

surveys should be carried out, in order to ground-truth the results and gain a greater understanding 

of the features identified.  

5.2.4 Geophysical surveys 

Geophysical surveys are used as above-ground sensing techniques to identify any potential 

subterranean features. Some geophysical survey technologies are classified as ‘passive’ techniques 

because they measure what is already there. For instance, magnetic gradiometry (or 

magnetometry), undertaken using a gradiometer, measures anomalies in the near-surface magnetic 

field compared to the Earth’s magnetic field (Gaffney and Gater 2003). Features such as ditches, pits, 

and hearths and other burnt features are well detected by gradiometry, however it does not easily 

detect built features unless they are constructed from fired brick (ibid.). Other geophysical 

techniques are classified as ‘active’ techniques, as they induce a phenomenon to be measured. Earth 

resistance, or electrical resistivity, survey puts an electric current through the ground in order to 

measure the electronic resistance of subsurface features (Jones 2008). Resistivity survey identifies 

masonry and building foundations, as these features increase the subsurface resistance (ibid.). 

However, resistivity is affected by the saturation of the soil, so the results generated can vary with 

season and soil type (Gaffney and Gater 2003). Jones (2008) suggests that, as different geophysical 

techniques identify different types of features, two or more methods should be used in conjunction 

with one another. Therefore, both gradiometry and electrical resistivity techniques were used on 

areas in which features were identified as cropmarks in aerial photographs, and in surrounding 

fields. The purpose of this was to ground-truth the cropmarks identified in the aerial photographs 

and identify details that were not visible on aerial photographs (either due to lack of aerial 

photograph coverage or unsuitable conditions for features to create cropmarks). This helps to 

inform the HLC, as well as improve our understanding of the history of human occupation in the 

valley. 
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Geophysical surveys were carried out by MA Landscape Archaeology students from the University of 

Sheffield in fieldwork during the spring each year from 2014 to 2018. Both gradiometry and 

resistivity were used, because they identify different types of feature. Fluxgate gradiometer survey 

was used on all fields surveyed, while resistivity was employed less frequently, and often over a 

smaller area within the survey grid. This is because resistivity surveys are more time consuming, and 

the results of resistivity surveys that were undertaken were very similar to the gradiometry results. 

Over the five years, 20 fields were surveyed, covering around 32 hectares (0.32km2) in total. 

The areas surveyed were chosen based on the results of preliminary archive research and analysis of 

aerial photographs. Surveys focussed on the areas around Bryncrug and Croes Faen, where the aerial 

photographs revealed a wealth of features. Three fields at Croes Faen were also selected for 

geophysical survey despite having no cropmarks identified there, to determine whether the square 

barrow cropmark features (see Figure 5.1A) extended further than the areas visible in the aerial 

photographs. Additionally, the remains of a 2m high potential Bronze Age standing stone or 

medieval cross-shaft stone stood at the southern point of field A3 (see Figure 5.2) until 1840, when It 

was moved nearer Tywyn (Knight 2011; Vousden 2013). Cadw speculate that it could be associated 

with nearby burial or ritual deposits (Knight 2011).  

Some fields around Castell y Bere were also targeted for geophysical survey. The main reason for 

this was the documentary evidence dating to the late 13th century that suggests that a borough, or 

burgh, was constructed by royal charter near the castle (Morris 1901). No references to the burgh 

have been found in any document post-dating 1295, which has been attributed to the destruction 

and abandonment of the castle in 1294-5, and the assumed abandonment of the burgh (Lewis 1912; 

Taylor 1974). The aim of geophysical surveys around Castell y Bere is to identify features relating to 

the burgh, or those relating to infrastructure associated with the burgh, such as roads. 

The surveys were located using a survey-grade GNSS (Global Navigation Satellite System) with a 

horizontal accuracy of at least 0.1m. Figure 5.2 shows the location of the surveys carried out each 

year. The geophysical data was processed following the methodology suggested in the ‘Data 

Processing’ chapter of the Geoplot 3 manual (Geoscan Research 2004). The same processing tools 

were carried out in the same order for each plot, although this order differed between gradiometry 

and resistivity data. This process is outlined below, firstly for gradiometer processing, and secondly 

for resistivity.  

Following processing, the geophysical survey results were georeferenced using QGIS and the GPS 

data collected, so that they could be viewed within the context of the landscape (see Figure 5.2). 
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Gradiometer Processing 

1. Clip Function, with a threshold of ± 3.0 Standard Deviations (SD) from the mean, to remove 

highly magnetic features 

2. Zero Mean Grid (ZMG) and/or Zero Mean Traverse (ZMT) Functions. ZMG for correcting grid 

edge discontinuities. ZMT for further correcting edge discontinuities, slope errors or traverse 

stripe errors.  

3. Destagger Function, to address stagger errors. For plots collected with a single sensor, the 2-4-6-

8 setting was used, while plots collected using gradiometers with two sensors were destaggered 

using the —34—78 function.  

4. Clip Function, with a threshold of ± 3.0 Standard Deviations (SD) from the mean, to further 

remove magnetic anomalies. 

5. Despike Function, with a window of a window of X=Y=1m, to remove the effect of smaller 

anomalies. 

6. Low Pass Filter Function, with X radius = 0.5m and Y radius = 1m, to improve the visibility of 

weak features, and smooth the gradiometer data. 

7. Interpolation, using the Sin(x)/x expansion method, to increase the resolution from 0.25 x 1m to 

0.25 x 0.25m. This gave the data a smoother appearance and increased the visibility of large but 

faint features.  

Resistivity Processing 

Resistivity data require processing in a slightly different order, as the results present differently to 

that of gradiometer data.  

1. Clip Function, with a threshold of ± 3.0 SD, to remove noise spikes in the data. 

2. Despike Function, with a threshold of ± 3.0 SD, to remove any remaining data spikes. For data 

plots with small levels of spiking, a window of X=Y=3m was used, while for plots with more 

significant anomaly spikes, a window of X=Y=1m was used. 

3. Edge Match Function, to correct grid edge discontinuities.  

4. High Pass Filter Function, with a window size of X=Y=10m, to remove the geological background 

and enhance archaeological features.  

5. Low Pass Filter function, with a window of X=Y=1 readings, to smooth the appearance of the 

data and increase the visibility of faint archaeological features.  

6. Interpolation, using the Sin(x)/x expansion method, to increase the resolution from 1 x 1m to 

0.25 x 0.25m and enhance the appearance of large archaeological features. 
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5.3 Results and Analysis 

5.3.1 Archive results 

The National Archive 

The search of The National Archives found several records relating to the study area, eight of which 

held information regarding the landscape or past land use, including maps. Detailed descriptions of 

each record are provided in Appendix 1 Table Ap1.4. The majority (n=6) of the records found in The 

National Archives relate to the Dysynni Valley Drainage District and the management of drainage 

channels in the early 20th century. These records indicate that, despite the land improvement 

schemes in the 18th and 19th centuries, issues associated with drainage and waterlogging have been 

occurring for the past century at least. For instance, Merioneth Rivers Catchment Board (1952) 

includes correspondence from 1948 between Colonel J. Williams Wynne of Peniarth and C. H. Wake 

of the Dysynni Catchment Board, stating that the financial deficit of the Peniarth Estate was too 

great to maintain the drainage ditches on the land. Furthermore, several other records refer to 

decisions to change the official boundaries of the ‘main river’ in order to relieve the financial burden 

of drainage works on landowners. Records 2, 4 and 8 (see Table Ap1.4; Ministry of Agriculture and 

Fisheries 1950; River Dysynni Catchment Board 1950; Ministry of Agriculture and Fisheries 1949) all 
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Figure 5.2: Location of each of the geophysical surveys undertaken in the Dysynni valley. Gradiometry 

was carried out for all of these plots, but resistivity was only applied to A2, B3-5, D1-2. Crown copyright 

and database right 2019 Ordnance Survey 100025252 
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refer to ‘maining’ tributaries or drainage channels, which means changing their official status to be 

part of the ‘main river’ (see Figure 5.3). This would mean that any drainage works required would be 

carried out by the local authority, who had jurisdiction and responsibility over the main river, as 

stipulated in the Land Drainage Act 1930 (Dobson and Hull 1931). If watercourses were not part of 

the main river, then the responsibility for any drainage works rested on the landowners, who could 

receive grant-aid of only up to 50% of the total cost of drainage, under the Agriculture Act 1937 (Deb 

1940). Therefore, although the Peniarth and Ynysymaengwyn land drainage schemes (see section 

4.4.8) provided more land for agriculture in the valley, they also created a new financial burden and 

ongoing maintenance requirement for landowners and farmers in the valley.  

Figure 5.3. Section of the map Ministry of Agriculture and Fisheries (1950) included in record MAF 77/257 in 

The National Archives. The brown line indicates the River Dysynni main channel, and the green lines 

indicate channels added to the main channel designation. The blue line defines the boundary of the Dysynni 

Catchment Area. Source: Ministry for Agriculture and Fisheries 
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The National Library of Wales 

The only records found in NLW that were relevant to the study area were maps, and are described in 

Appendix 1 Table Ap1.5. Historic maps such as these can provide an insight into the form of the 

landscape, and the structure of land divisions, several centuries ago. For instance, the map Lands at 

Aber Dysynni (1833 – Record 9) displays the land divisions and form of the river near the mouth of 

the Dysynni, which can be compared with the current morphology of the river mouth. This map 

shows that at least one of the present sluices that form part of the drainage system already existed 

by 1833, and that Broadwater was not considered an estuary or lagoon feature, but rather a 

terrestrial area that was frequently flooded. If the map in Record 9 (Lands at Aber Dysynni 1833) was 

drawn accurately, it also shows that the sand bar that currently partially blocks the mouth of the 

Dysynni and causes it to flow northwest for several hundred metres before reaching the sea did not 

exist in 1833. Furthermore, there is no railway bridge or railway line marked on this map, suggesting 

that the current railway line north of Tywyn was not in the same location when the map was drawn, 

or that there was not yet a railway line in place as Tywyn train station only opened in 1863. Morris 

(1743 - Record 13) also indicates the way in which the landscape morphology may have been 

different in the past. In the 1743 map of Aberdyfi Harbour by Lewis Morris, the mouth of the Dyfi is 

blocked by a bar, which diverts the river channel to the north, so it meets the sea in front of the 

current golf course. The river channel is also more well defined on this map than on modern maps, 

suggesting that the Dyfi estuary has developed into a braided river channel in recent centuries. This 

record also depicts an area of ‘low marsh’ where Aberdyfi golf course is currently located.  

Aberystwith and Welsh Coast Railway (1865 - Record 11) provides a plan for a proposed new railway 

line that would have been built on a viaduct spanning the Dyfi estuary. The viaduct and railway line 

were not built, however no records were found discussing the reasoning behind this. Record 11 also 

shows a railway line across the sand on the south side of the Dyfi estuary, linking to a ferry crossing 

the River Dyfi. It is not evident whether this railway line to the ferry was in use at the time, or 

whether it was also just a proposal. 

 A problem with working with historic maps is exemplified by Lands at Towyn (c.1820 - Record 12), 

which is a simple map showing the shape, location, size and cost of fields owned by John Edwards 

Esqr. in Towyn parish. As the map only shows the relevant fields, and does not include any other 

landscape features or long sections of road, it was impossible to georeference in GIS and compare to 

modern maps. This is also the case for Record 10 (Aberdyfi Harbour Cartographic Material c.1880), 

which is difficult to situate against a modern map, as there is little information included about which 

features the lines on the map relate to.  
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5.3.2 Historic Environment Record and National Monuments Record Wales results 

When displayed visually in GIS, it is evident that the majority of HER and NMRW records are 

concentrated in upland areas in the Dysynni valley, in Tywyn and Aberdyfi urban areas, and along 

the coastline. In contrast, there are very few recorded features located in the lowland areas (see 

Figure 5.4). The high number of upland features reflects the local importance of extractive industries 

during the Industrial Revolution, and the subsequent wealth of historic industrial remains, such as 

mines, quarries and associated features, in the upland areas. Furthermore, many of the records in 

the uplands are related to extensive pastoral agriculture, such as sheepfolds and abandoned 

farmsteads, as well as prehistoric sites which have been relatively undisturbed by the continuing 

low-intensity land use. In the lowlands, more intensive agriculture and drainage means that 

archaeological remains are more likely to have been disturbed. Finally, there has been more 

archaeological survey undertaken in the upland areas compared to the lowlands, meaning that the 

distribution of the HER and NMRW records is not necessarily representative of the distribution of 

archaeological remains. For instance, the Welsh Uplands Initiative, or Upland Archaeology Initiative 

was a rapid reconnaissance project funded by RCAHMW during the 1990s. Its aim was to generate a 

more compete record of Welsh upland heritage by identifying new sites and their locations (Hughes 

2003). Across Wales, this initiative led to an 11-fold increase in the number of archaeological sites 

recorded in the searched areas (ibid.). MA Landscape Archaeology students from the University of 

Sheffield have also undertaken Level 1 walkover surveys in upland areas of the Dysynni valley, in 

particular near Craig yr Aderyn. The sites identified during these surveys were added to the database 

of HER and NMRW records used in this thesis. 

Many of the records in Aberdyfi and Tywyn refer to historic buildings, hence the high density of 

records in these urban areas compared to the lower density in rural areas. The HER and NMRW 

records in the Dysynni valley cover all time periods from the Bronze Age and potentially earlier, to 

the modern period. Post-medieval records are the most common, with almost half of the total 

records attributed to this period.  
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5.3.3 Aerial photography results 

The study of aerial photographs of the Dysynni valley revealed several new, previously unidentified 

cropmark features, and several features that had already been identified by the RCAHMW but not 

yet mapped. Figure 5.5 shows all vectorised features identified in the study of aerial photographs, 

classified by source collection. Figure 5.6 shows some of the features identified in greater detail 

alongside the georectified image in which they were identified. Table Ap1.7 and Figure Ap1.1 in 

Appendix 1 provide a description and location of all of the newly identified cropmark features in the 

Dysynni valley.   

The features identified in the aerial photographs are mainly distributed across low lying areas, for 

instance near Tywyn, Penllyn, and Bryncrug. There are some located in the upland or hilly areas 

north of the Dysynni estuary, however these are more widely dispersed than those in the lowlands. 

Figure 5.4. HER and NMRW records in the Dysynni valley, including elevation information (aOD).  

Crown copyright and database right 2019 Ordnance Survey 100025252 
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This pattern contrasts with the distribution of HER and NMRW records, which are mainly clustered in 

upland areas. The distribution of features identified in the aerial photographs may be because the 

conditions required to reveal cropmarks are more likely to occur in flat grassland compared to hilly 

areas or rough ground (Cornwall County Council Historic Environment Service 2007). It may also 

reflect a preferential bias for taking aerial photographs over some areas rather than others by some 

of the surveyors. For instance, Cowley (2002) found that aerial reconnaissance surveys in Scotland 

tended to target areas of known potential for cropmarks over areas of unknown potential or areas 

without known cropmarks. Dr Toby Driver (pers. comms.) acknowledged that he focussed on areas 

that he was confident would yield results during his reconnaissance work in 2018, due to time limits. 

Therefore, it is possible that the distribution of cropmarks identified in the study area is influenced 

by the original survey methodology as well as by the distribution of known archaeological remains.  

Figure 5.5. All cropmarks identified in aerial photographs, vectorised in QGIS. Crown copyright and 

database right 2019 Ordnance Survey 100025252 

Cropmark features 
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Figure 5.6. Examples of vectorised cropmarks from aerial photographs AP_2006_2905 (A) and 

AP_2006_2910 (B). All images are Crown copyright and are reproduced with the permission of Royal 

Commission on the Ancient and Historical Monuments of Wales (RCAHMW), under delegated 

authority from The Keeper of Public Records.  

A 
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Figure 5.6 cont. 
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The majority of cropmarks identified in aerial photographs were simple circular or curvilinear 

features, but there were also examples of more complex features, including rectangular features 

intersected or surrounded by linear features (see Figure 5.6). This indicates that the cropmarks are 

likely to date from a range of time periods, suggesting that there has been extensive and varied 

human use and habitation of the Dysynni valley in the past. Furthermore, the location of the 

cropmarks indicates that, although much of the lowlands were marshland before the land 

improvement schemes (see Chapter 4), the land may have been habitable at some point before it 

became wet. 

5.3.4 Geophysical survey results 

As explained in the methodology, the geophysical surveys were mainly carried out in areas where 

crop marks had been identified. In most cases, the geophysical surveys confirmed the presence of 

features first identified in the aerial photographs, and in some cases increased the known extent of 

features. This confirmed the evidence for complex, potentially multi-period structures and land use 

in areas of the lowlands. See Table Ap1.7 for a concise overview and description of features 

identified in the geophysical surveys. 

Survey results from Croes Faen (area A in Figure 5.2) confirmed the presence of several square 

features, thought to be a square barrow cemetery, identified in AP_2006_2905 (See Figure 5.7A) 

(Knight 2011). At Bryncrug (area B in Figure 5.2), survey results confirmed the presence of a square, 

double-ditched enclosure identified in AP_2006_2910 (Figure 5.6) as well as several intersecting 

circular and linear features (see Figure 5.7B).  

In field B2 at Bryncrug (see Figure 5.2), the gradiometer survey did not detect features that matched 

the circular cropmark in the north of that field from AP_2006_2910 (Figure 5.6), but it revealed two 

curvilinear features that were not visible in aerial photographs (see Figure 5.8), and a modern 

pipeline in the north of the field. Figure 5.8 also shows that the cropmark identified in 

AP_2006_2908 (see Figure 5.1) was confirmed in the geophysical survey of field B1.  

The dominant features revealed by gradiometer surveys in fields A3, A4 and A5 were considered to 

be modern pipeline features, based on the strength of the signal (Figure 5.9). In terms of potential 

archaeological features, fields A3 and A4 contained only a couple of faint linear features, while no 

archaeological features were revealed in field A5 (see Figure 5.9). This suggests that the Croes Faen 

standing stone was not associated with nearby buried features to the north east at least, although 

there may be associated deposits in unsurveyed fields to the south and west of field A3 (Figure 5.4). 
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Figure 5.7A: Geophysical survey plots near Croes Faen (area A, field 2). Both resistivity and 

gradiometry were undertaken and were used to render the subterranean features as a vector file in 

QGIS.  Crown copyright and database right 2019 Ordnance Survey 100025252 

A: Vectorised features 

A: Resistivity survey 

A: Gradiometry survey 
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Figure 5.7B: Geophysical survey plots near Bryncrug (area B, fields 3, 4 and 5). Both resistivity and 

gradiometry were undertaken and were used to render the subterranean features as a vector file 

in QGIS.  Crown copyright and database right 2019 Ordnance Survey 100025252 
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Figure 5.8. Processed gradiometry data (A) and vectorised geophysical survey results (B) from near 

Bryncrug (area B fields 1 and 2). Crown copyright and database right 2019 Ordnance Survey 100025252 
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Figure 5.9. Processed gradiometry data (A) and vectorised geophysical survey results (B) from 

near Croes Faen (area A, fields 3, 4 and 5), having discounted the modern features. Crown 

copyright and database right 2019 Ordnance Survey 100025252 
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Figure 5.10. Processed gradiometry data (A) and vectorised geophysical survey results 

(B) from near Castell y Bere (area D fields 1-5). Crown copyright and database right 

2019 Ordnance Survey 100025252 
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Little was revealed by the surveys undertaken at Castell y Bere; only a few short linear features 

appeared in the geophysical survey results of fields D1-3 (see Figure 5.10).  The strong features in 

field D4 were not considered to be potential archaeological features.  The strength of the circular 

feature in the south of the field (~200nT) indicates that is likely a modern piece of iron. Thornhill 

(2016) suggests that the branching shape of the linear feature in the north of the field indicates that 

it may be a hydrological or geological feature. This is supported by the fact that the location of the 

feature is at the boundary between alluvial fan deposits and river terrace deposits (Thornhill 2016). 

5.4 Landscape analysis discussion 

This section provides an overview of the methods and results of the landscape analysis carried out 

for the Dysynni valley, the study area for this thesis. This includes a period-by-period narrative of 

land-use and landscape development in the study area. Archive research, analysis of aerial 

photographs, and geophysical surveys were undertaken in order to gain a greater understanding of 

the archaeological resource. 

5.4.1 Landscape development over time in the Dysynni valley 

Chapter 4.4 provided a brief summary of the archaeological and historical background of the study 

area based on available archaeological reports, which established that there is evidence for human 

activity in the Dysynni valley throughout history and prehistory. This section provides a more 

detailed narrative on the development of the Dysynni valley landscape based on the results of the 

aerial photograph study, geophysical surveys, and archive research.  

Prehistoric, Roman and early medieval (10,000BC – AD 1066) 

In addition to the cropmarks identified near Croes Faen and Bryncrug by the RCAHMW (see Figure 

5.1), further cropmarks provisionally dated to the prehistoric or early medieval period were 

discovered through detailed study of available aerial photographs (see 5.2.1.3). The majority of new 

cropmarks identified are individual, circular enclosures in both lowland and upland areas, suggesting 

widespread use or occupation of the study area during prehistory. The cropmark complexes near 

Bryncrug identified by RCAHMW (see Figure 5.1C and Appendix 1 Table Ap1.6) comprise several 

different features of varying morphology (linear, curvilinear, circular, rectilinear) which overlap. 

Circular enclosures are more likely to be prehistoric in date (Bronze Age or Iron Age), while the 

rectilinear enclosures and in particular the square, double-ditched enclosure are more likely to date 

to the Roman period (Royal Commission on the Historical Monuments of England 1989). This 

indicates that there were multiple periods of use or occupation in some lowland areas of the valley.  
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There is little data available for mean sea-level along this stretch of coastline for the past c.4000 

years (see Wilks 1979; Heyworth and Kidson 1982), so the tidal reach and river dynamics during this 

period are not yet certain for the study area. However, the cropmarks identified thus far have all 

been concentrated in areas at least 4m aOD, on small rises above the floodplain. A possibility is that 

the most low-lying areas of the Dysynni valley may have been marshland or active floodplain, and 

were thus uninhabitable during the prehistoric to early medieval period. Habitation would therefore 

be concentrated on the small islands within the marsh, and in upland areas (in which there are 

plentiful prehistoric remains). This would explain the high concentration of cropmarks in slightly 

raised areas, and the lack of cropmark evidence in the lowest-lying areas or near the river channel. 

Alternatively, the lack of cropmark evidence in the most low-lying areas may be due to higher soil 

water content or waterlogging, meaning that the drought conditions required to reveal cropmarks 

have not been reached. There is also the possibility that the construction of the drainage ditches and 

channelisation of the River Dysynni disturbed or damaged subterranean prehistoric remains in the 

floodplain.  

Previous available information, such as the location of HER and NMRW records, suggested that the 

bulk of prehistoric and early medieval remains were in sloped and upland areas in the Dysynni valley, 

and that there was little evidence for occupation of the valley floor during this time. Further study of 

aerial photographs, and ground-truthing of cropmark complexes using geophysical survey, has 

revealed that the valley floor may also have been utilised during several periods during prehistory to 

the early medieval period. This supports the suggestion by  Sjöberg (2014) that the occupants of the 

hillforts in the area were also using lowland areas and could have had transhumant lifestyles, rather 

than constraining their activity to the uplands, as indicated by the fact that the Iron Age hillforts in 

the area predominantly overlook river valleys and have easy access to coastal routes and resources. 

Medieval (AD 1066 – AD 1540) 

From the HER and NMRW records, very few (n=53) are dated to the medieval period. Of these, only 

two are located below 10m aOD (a fish trap, NPRN 409087; and Talybont Castle Mound, NPRN 

302714). This indicates that, although Tywyn was inhabited, the areas of the Dysynni floodplain that 

were previously habitable lowlands became uninhabitable during the medieval period. This may 

have occurred due to a 0.2m rise in sea-level during the Medieval Warm Period (Grinstead et al. 

2009) or other factors causing an increase in waterlogging in the lowlands. 

Despite the lack of extensive settlement evidence and potential worsening of land quality, the 

construction of large defensive structures such as Castell y Bere and Castell Cynfal during the 

medieval period indicates that this area was considered valuable and worth defending. Talybont 
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castle mound has been associated with a llys (royal court), which would have had administrative 

control over the surrounding area and would have been supported by local produce (Fowkes and 

Wiliam 1960; Cadw 1990; Building History 2008), suggesting that the surrounding landscape was 

productive enough to support this royal court.  

Post-medieval (AD 1540 – AD 1901) 

During the post-medieval period, much of the landscape development and land-use change in the 

study area was engineered by the Peniarth and Ynysmaengwyn estates, which were both established 

in the late 15th century. As mentioned in section 4.4, both estates funded significant drainage and 

land improvement projects during the 18th and 19th centuries (Smith 2004a; Frost 2012). The 

outcome of these projects was that the marshland and floodplain on the valley floor became 

available for pastoral agriculture. The drainage ditches and field-systems that were created during 

these projects still dominate the lowland areas of the Dysynni valley at present, indicating that these 

works played a large part in the current character of the landscape. The establishment of lowland 

grazing land also allowed more cattle to be farmed, as rougher upland moors are more suitable for 

sheep (Prifysgol Bangor University 2015). Lowland pastures can also often be farmed more 

intensively with higher stocking rates, and therefore generate greater economic outputs, while hill 

and upland farming systems have lower stocking rates (ibid.). GAT (2016) state that the land 

improvement projects “transformed [Tywyn] from a small and wretched settlement into a sub-

regional centre with pretensions to becoming a holiday resort”. 

John Corbett, of the Ynysmaengwyn estate also invested significantly in Tywyn in the late 19th 

century, funding the development of a sewage system, the establishment of a school, and the 

construction of a promenade, market hall, and assembly room (now a cinema) (GAT 2016). 

A Tithe map dating to the early 19th century, found during online archive research, indicated the 

presence of a large lake called Penllyn Pool near Penllyn farm, south of Tywyn (see Figure 5.11; NLW 

2019b). Presently, the area is criss-crossed by drainage ditches, but at the time of the Tithe map this 

area had not yet been drained. As indicated in Figure 5.11, field boundaries extend into the area of 

the lake, suggesting that the lake was seasonal or an area frequently flooded, rather than a 

permanent body of water. The presence of Penllyn Pool in the Tithe map explains the name of 

Penllyn farm, which means ‘head-of-the-lake’ farm.  
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Figure 5.11: Tithe map of the study area with evidence of the existence of a lake or pool at Penllyn in the 

early 19th century (above), with modern Ordnance Survey map for comparison (below). Copyright The 

National Library of Wales and Crown copyright and database right 2019 Ordnance Survey 100025252 

Penllyn Farm 
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As described in 5.3.1, the archive source Aberyswith and Welsh Coast Railway (1865) (Appendix 1 

Table Ap1.5) details a plan from 1865 for a proposed viaduct and railway line across the Dyfi estuary, 

which would have significantly shortened the time taken to reach Aberystwyth. Although these plans 

were not undertaken, they were created only two years after the trainline was built through Tywyn. 

This indicates that there was significant investment in the industry and transport links in the study 

area during the 19th century, perhaps due to both the industrial revolution and extractive industries 

in the Dysynni valley, and the booming tourist industry during the Victorian period.  

Several areas of the Dysynni valley still have noticeable remnants of extractive industries such as 

mining and quarrying, which were most active during the post-medieval period; of the c.250 HER 

and NMRW records relating directly to extractive industries (quarry and mine features), over 200 are 

post-medieval in date.  

Evidently, the post-medieval period was a time of significant change in the character of the study 

area, mainly through the patronage of wealthy landowners, as well as the boom in tourism and the 

wealth of slate and metal ore in the surrounding hills.  

Modern (AD 1901 – present) 

Despite the extensive land-improvement projects, all of the archive sources found for the 20th 

century discuss ongoing issues with waterlogging and ineffective drains. These issues may have been 

caused by changing sea-level during the post-medieval to modern period. From the 17th to mid-19th 

centuries, global sea-level was around 0.2m below the mean sea-level for 1980-1999 (Grinstead et 

al. 2010). Subsequent sea-level rise of around 0.2m by the end of the 20th century may have 

increased the tidal reach up the Dysynni valley, and reduced the ability of the drainage system to 

prevent waterlogging. The National Rivers Authority stated that, even with the Dysynni Low Level 

Drain, the drainage was considered bad or very bad in most areas in the wet season, and in around 

one-quarter of the land during a dry season (Dunderdale and Morris 1996). Additionally, Records 3, 

4, and 8 (see Appendix 1 Table Ap1.4; Merioneth Rivers Catchment Board 1952; River Dysynni 

Catchment Board 1950; Ministry of Agriculture and Fisheries 1949) discuss the maintenance 

requirements of the drainage system, and that the associated costs prohibited it being carried out 

more frequently. Indeed, in 2017, the Farmers’ Union of Wales raised attention to the loss of 

productive land in the Dysynni valley due to high water levels in drainage ditches, but NRW state 

that the costs are too great to undertake maintenance more than once a year (Wales Farmer 2017). 

The lower sea level during the post-medieval period compared to the medieval and modern periods 

may have facilitated the establishment of drainage infrastructure in the Dysynni valley and the 

transformation of marsh into productive land. Subsequent rise in sea-level (and even more rapid 
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rates of sea-level rise in the future) may have negated some of the benefit of the drainage system. 

However, as many farmers now depend on these low-lying areas for their income, the local 

authorities are now tied into an expensive maintenance scheme. 

As discussed in section 4.4, there are significant military remains dating to the First and Second 

World Wars, such as the remnants of an RAF base, a rifle range, and a line of Pillboxes positioned on 

the beach between Tywyn and Aberdyfi. Some of these pillboxes are badly eroded and collapsed, 

while others still remain relatively unscathed. Although the RAF airfield is now out of use, the 

Dysynni valley is still a popular training-ground for pilots from RAF Valley Angelsey (Mawddach 

Estuary 2014). Frequent Hawk and Texan flights low in the valley maintain some of the military 

character of the area even as the physical remains decline (RAF 2019).  

5.5 Conclusion  

The results of the landscape analysis indicate that different sources of archaeological and cultural 

heritage data have widely different distributions. While there are many more HER and NRMW 

records located in urban and upland areas, the majority of features identified in aerial photographs 

were in low lying areas. Therefore, the absence of records in some areas from one source of data 

does not necessarily indicate an absence of archaeological information. Research undertaken for this 

chapter has revealed that there is much greater archaeological potential in the lowland areas than 

the current distribution of known features would indicate. It has also revealed that different areas of 

the landscape are characterised by different types of archaeological feature as well as by the 

remnants of different types of land use.  

The archive research was particularly revealing in terms of the way that the land improvement and 

drainage schemes led to longer-term changes to land management in the valley. For instance, the 

required upkeep of the drainage works put a large financial burden on landowners, many of whom 

had to put some parts of their land (or the waterways within their land) into the control of the local 

authority. This reinforces the character of much of the lowlands, as dominated by larger-scale, 

modern field-systems that were created en masse in a centralised scheme (and are now managed 

centrally), compared to the slopes and upland areas which have smaller, more irregular fields that 

developed gradually. A large number of the known archaeological features in the study area date to 

the post-medieval and modern period, which indicates an increase in activity in the study area 

during the Industrial Revolution, for instance in relation to extractive industries and the tourism 

boom during the 18th-19th centuries.   
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The landscape analysis undertaken for this thesis used a range of methods. If this methodology was 

applied to a different landscape, other methods could be used in addition to, or instead of, the 

methods used here. Methods and techniques that were not employed for this landscape analysis, 

but that could be used in the analysis of other landscapes for the purpose of characterisation, 

include LiDAR, fieldwalking, excavation, interviews and participatory mapping, and other geophysical 

survey methods such as ground penetrating radar 

In Chapter 6, the results of this landscape analysis are used to inform a HLC. Developing a deeper 

understanding of the study area through a multi-source analysis is important because HLC involves 

the characterisation and qualification of the time-depth of the landscape, which is dependent on a 

range of factors. 
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Chapter 6 
Landscape Characterisation  
6.1 Introduction  

Chapter 6 addresses research objective 1c (Use Historic Landscape Characterisation to characterise 

the historic landscape of the Dysynni valley). HLC is the mechanism through which the focal-level 

LCAs are defined in this thesis.  

 HLC was used to generate a landscape-wide, comprehensive representation of the cultural heritage 

in the area using LCAs (see 6.2). HLC was chosen as a characterisation method as it provides a way to 

combine and holistically display the information held in disparate records and across different 

spatial levels, for instance HER and NMRW records (point data), cropmarks and geophysical survey 

features (field-level), and historical archives relating to historic land management (landscape-level) 

(see Chapter 5). This allows all elements of the historic landscape to be analysed together, whether 

in vulnerability assessments, planning decisions, or landscape management schemes. For the 

purpose of this HLC, all features at a spatial level below LCAs are defined as LCFs, as they are 

features that influence the character both of LCAs and the historic landscape as a whole. This 

includes but is not limited to HER and NMRW database records, historic and modern buildings, 

earthworks, patches of parkland, ancient and modern woodland, and field-boundary systems.  In this 

thesis, using Hierarchy Theory and HLC expands the spatial scope of archaeological analysis to 

include the wider landscape. This was used to address the problems caused by site-focussed 

vulnerability assessments (see section 2.7 and 7.2) by creating a spatially continuous, landscape-

level structure that can be used in vulnerability assessments. In turn, the HLC was used to inform the 

sustainable management of the vulnerable historic landscape in the face of climate change (see 

Chapter 8). Figure 6.1 demonstrates how HLC fits into the Hierarchy Theory framework.   

Chapter 6 first provides an in-depth overview of HLC, and a literature review of the most common 

methods and uses for HLC projects (6.2). Secondly, the HLC methods used in this thesis are described 

and then applied to the Dysynni valley, including a description of each LCA-type used (6.3). 
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Figure 6.1. Visual representation of how HLC fits into the Hierarchy Theory framework in this thesis. The 

Landscape Character Features (LCFs) in the landscape are holons that form one of the levels below the 

focal level. The focal level is the Landscape Character Areas within the landscape, while the level above 

is the historic landscape as a whole. This diagram represents the way that objects influence one another 

both between and within spatial levels.  
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6.2 Introduction to Historic Landscape Characterisation 

HLC is a method of landscape analysis, developed as a tool for conservation management, that 

presents the time-depth of a landscape, and represents the current landscape as the cumulative 

outcome of past human activities. HLC evolved from and developed further the methodologies of 

Landscape Character Assessment, and can be used as a complementary technique to studying 

landscapes (Turner 2006). Landscape Character Assessment is used by environmental public bodies 

to map different character type areas, based on criteria such as topographic features, flora and 

fauna and land-use. This was supposed to be a holistic, catch-all method of studying and assessing 

landscapes as it included cultural and historical sites as well as environmental criteria (Fairclough 

and Herring 2016). However, it prioritises the visual and aesthetic aspects of the landscape and gives 

less priority to other aspects, such as cultural land uses and temporal change (Fairclough and Herring 

2016; Olwig et al. 2016). As a result, HLC was developed to focus predominantly on the historicity of 

the landscape. 

The basic premise of HLC is that the structure of a landscape is the result of human activity during 

different periods of history, which can often be seen in settlements, field boundaries, and the 

location of industry that survive in the present landscape, even after the land uses have changed 

(Fairclough et al. 2002; Rippon 2013). The location of LCAs (e.g. ancient enclosures, modern 

enclosures, ancient woodland, modern woodland, settlement), can be used to inform planning 

processes within the landscape, and foster a greater understanding of the cultural heritage within 

the landscape (Fairclough 2003b; Lang et al. 2009; Bradley et al. 2004). 

England and Wales have slightly different methods for assessing landscape character (Fairclough and 

Herring 2016). Since the early 1990s, Historic England supported the creation of HLCs for almost all 

of England by commissioning their creation from each county or local authority (Historic England 

2019). Characterisation of landscape types is also encouraged in Europe by the European Landscape 

Convention (ELC). Different approaches are used in different countries, due to different perceptions 

of landscape, and different historical and archaeological traditions (Fairclough and Herring 2016).  

This makes it difficult to compare the character of landscapes in different areas of the UK and 

Europe (ibid). This thesis uses the English HLC method, in which areas of land are characterised into 

pre-defined, thematic LCAs. In contrast, in Welsh HLC projects each LCA is uniquely defined, which 

obscures the trends in historic land-uses across the landscape and prevents comparison between 

landscapes.  An HLC for the Dysynni valley has already been carried out by GAT, using the Welsh 

methods (see Figure 6.2). This approach was considered unsuitable for use in this thesis because the 

LCA types used included ‘Dysynni lowlands’ ‘Tywyn’, ‘Intermediate slopes’, and ‘Upper slopes’, which 
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are not useful for characterising the historic elements of the landscape or defining past land use 

(Gwyn and Davidson 2009). There are areas of very similar character in different areas of the valley, 

suggesting that similar activities and land-use took place in a variety of locations. By creating 

different LCA types for different areas of the landscape, it implies that past activities and land use in 

one area were separate and distinct from those in another area. Furthermore, Welsh LCAs are much 

larger and at a coarser resolution, whereas English LCAs are at a higher resolution, and can be 

affected by individual fields and features. Therefore, the English method is the most suitable for the 

purpose of this research, and is the focus of this chapter.  

Characterisation into LCAs involves the simplification of land uses, in order for more general trends 

and patterns to be identified. This is carried out using GIS software, which facilitates the mapping of 

LCA types (Bender et al. 2005). The first HLC projects were carried out in England in 1993-4, and 

many were initially paper-based, as GIS was not widely used until the late 1990s (McClure and 

Griffiths 2002; Herring 2009). While the technologies used in HLC projects have progressed 

substantially, the underlying principles of HLC remain the same. LCAs are represented using polygons 

to form a ‘patch-matrix’, so that all areas within the landscape are characterised (Bender 2009a) (see 

Figure 6.3). This differs from a traditional approach to historical elements in the landscape, involving 

the designation of individual sites, which removes features from their context and obscures the 

historical-cultural importance of the landscape as a whole (Turner 2006; Bender 2009a). HLC views 

all aspects of the landscape as important, and values all equally, rather than focussing on individual 

historical or archaeological features or prioritising ancient features over more modern ones (Aldred 

and Fairclough 2003).  This method is rooted in the concept that the whole landscape, and indeed 

any landscape, has a historic character, and that the historic landscape is ever-present and ever-

changing (Rippon 2004; Fairclough and Herring 2016). 
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Figure 6.2. Welsh Historic Landscape Characterisation project by Gwynedd 

Archaeological Trust (Gwyn and Davidson 2009). Reproduced from the Ordnance 

Survey with the permission of the Controller of Her majesty’s Stationary Office License 

number (100017916) 2007 



96 
 

6.3 Methods and applications of Historic Landscape Characterisation 

in England and beyond  

The following section provides a brief review of HLC and the methods commonly used in the 

creation of HLCs. First, LCA-types and the different ways they are established or defined is discussed, 

followed by the data sources commonly used in HLC methods. Finally, the various purposes of HLC 

projects are discussed.  

6.3.1 Historic Landscape Character types 

HLC uses a continuous mosaic of polygons, rather than representing features using point data, as 

this represents the spatial element of land uses and remains more effectively. Each polygon is 

colour-coded to its corresponding LCA, in order to create an understandable model of general LCA 

distribution. Different projects use slightly different LCA-types. For example, in his HLC for Cornwall, 

Herring (1998) uses 17 different character types, including a differentiation between enclosures 

from different historic periods, historic and modern settlement, woodland types, and relict and 

modern industry (see Figure 6.3). In contrast, Clarke et al. (2004) list only 11 LCA types, with only 

one type of enclosed land, woodland and settlement (see also Rippon 2004, Herring 2009). Often, 

Figure 6.3. Historic Landscape Characterisation of Cornwall, carried out by Herring (1998). 

Source: Historic Environment Record, Cornwall Council, Copyright Cornwall County Council 

2004 (scale bar not provided on original map). 

All material copyright Cornwall County Council 2004. 

Based on the Ordnance Survey 1:10000 and Landline mapping with the permission 

of the controller of Her Majesty’s Stationary Office Crown Copyright. 

Unauthorised reproduction infringes Crown Copyright and may lead to 

prosecution or civil proceedings. CCC licence No. 100019590 
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these broad character types are sub-divided into character sub-types; the Scottish Historic 

Landscape Assessment approach contains over 100 sub-type characterisations (Herring 2009), while 

Fairclough et al. (2002) use 85 sub-types within 14 broad LCA-types in the HLC project for 

Hampshire. The objective of the classification system is to define a sufficiently large range of LCA-

types in order to maintain important characteristics and differences in the landscape, while having 

few enough to make the output understandable and the method repeatable in another area 

(Fairclough et al. 2002).  

The classification of different LCA types can be based on prescriptive, descriptive or multi-mode 

methodologies. Prescriptive approaches to HLC fit areas of the landscape into pre-defined LCA types. 

This is the most common approach used in HLC projects (see Cornwall HLC and Hampshire HLC; 

Cornwall County Council 1996; Herring 1998; Fairclough et al. 2002; Aldred and Fairclough 2003). 

This approach can be the least time-consuming, and is useful for comparing historic character 

between landscapes if the HLC projects use the same LCA classifications. However, it is considered 

by some to be less objective or transparent than descriptive methods. Descriptive approaches to HLC 

assign attributes to each small parcel of land, for instance the field-system type, current land-use, 

historic land-use, date of predominant features. Areas which share a similar combination of features 

are then grouped into LCA types (Rippon 2004). This approach is more time-consuming than 

prescriptive approaches; the Lancashire HLC contained 4,800 individual polygons to which attributes 

had to be assigned, while the Shropshire HLC contained over 30,000 (Ede et al. 2002; Fairclough and 

Wigley 2005). As a result, descriptive approaches are the least commonly used compared to 

prescriptive and multi-mode approaches (Aldred and Fairclough 2003). Multi-mode approaches to 

HLC are the most commonly used within recent HLC projects (e.g. Beckley 2007; Edwards et al. 2007; 

Quigley 2009; Van Eetvelde and Antrop 2009; Turner and Crow 2010; Defra 2014). This approach 

combines both prescriptive and descriptive methods, so the LCAs are defined based on information 

in modern and historical maps before areas of the landscape are classified into the LCA-types. This 

allows the LCA-types to be defined specifically for the types of land-use common within the study 

area but is not as time-consuming as descriptive methods. For these reasons, the HLC in this thesis is 

based on a multi-mode method.  

Regardless of the method used, the categorisation of areas of land into different character types is 

inherently subjective (Fairclough and Herring 2016). As HLC is usually carried out by a non-local 

expert, the way that they perceive and characterise the landscape may be different from the way 

that it would be done by another stakeholder (Fairclough et al. 2006; Fairclough and Herring 2016; 

Olwig et al. 2016). While attempting to keep the results of HLC value-neutral, value judgements can 

be made during the characterisation process (Fairclough et al. 2006; Fairclough and Herring 2016). 
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The approach used in HLC projects depends on the purpose of the HLC, the spatial scale of the 

project, and the area in question, as different regions have significantly different historical features 

within their landscape (Lambrick et al. 2013). Therefore, the decision of which features to represent, 

and how they are displayed, remains subjective. 

There is also an issue of a lack of flexibility in the categorisation process; Olwig et al. (2016) argue 

that HLC often fails to “look outside the box” of the character that has been predefined (p.174). HLC 

projects may fail to capture the unique character of certain landscapes, if the LCA types that they are 

using are too general and designed to be applicable to many different landscapes. This is particularly 

an issue if the person undertaking the HLC is not a local person, as they may not be able to capture 

or understand the character of certain areas as perceived by the local population (Olwig et al. 2016). 

Part of the reason that archive research was undertaken prior to the HLC in this thesis was to gain a 

greater understanding of the uniqueness of the Dysynni landscape, and the way that historic land-

use may have altered the structure and use of the landscape today. 

Although a map is the easiest and most accessible way in which to display information about a 

landscape, Herring (2009) argues that a 2D representation may obscure the complexity of the 

historic landscape, as it fails to capture movement or action within the landscape. Most HLC projects 

are based predominantly on field boundary morphology, and fail to take into account other 

indicators of landscape character, such as place names or architecture type (Rippon 2013). However, 

a more detailed HLC, including many more different character types and ways of determining 

character, may obscure general trends in land-use change, and dramatically increase the time 

required to undertake it (Aldred and Fairclough 2003). 

6.3.2 Data sources 

In order to establish the landscape change that has occurred during the recent past, 

characterisations are often carried out on historical as well as current maps. This facilitates the 

identification of areas of the current landscape that maintain their historic character, and the nature 

and rapidity of changes. Historic maps such as the first edition Ordnance Survey maps, cadastral 

maps and tithe maps can be digitised and georeferenced using GIS. Historical maps often include 

different land-cover and vegetation types compared to modern maps, and the terminology used 

changes over time. When using both historic and modern maps it is important to standardise the 

landscape features and vocabulary, in order to create a unified legend (Bender et al. 2005; Van 

Eetvelde and Antrop 2009). Standardisation can be hindered by the fact that many historic maps do 

not include a legend, so identifying the land type based on cartographic symbols may reduce the 

reliability of the HLC (Lang et al. 2009). Some historic maps may only include information that is 
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relevant to their purpose, such as property and agricultural land in parish maps, and so other details 

such as heathland may not be recorded (McClure and Griffiths 2002). Furthermore, sometimes 

symbols on historical maps are used for cartographic effect rather than representing actual 

geographic features, while lines may indicate either field boundaries, paths, small roads or small 

streams (Domaas and Grau Møller 2009). 

Another issue that may arise is the lack of cartographic coverage before the 18th century in many 

areas, and the reduced accuracy of maps that are older than the 18th-19th century. Less accurate 

maps can be georectified using GIS, by identifying common features between the old and modern 

maps. This may be difficult if there are not many shared identifiable points between the maps 

(Domaas and Grau Møller 2009). Significant warping of the historic map can occur during 

georectification, which can cause gaps in coverage (ibid.). Therefore, areas of medieval or earlier 

character within the current landscape are usually identified using the location of known 

archaeological and historical features, some documentary sources and the recognition of extant 

prehistoric or medieval field systems. Some projects (e.g. Fairclough et al. 2002) elect not to map 

characteristics that are not included in the historical evidence, thus excluding subsoil archaeological 

remains. Others utilise aerial and satellite photographs as well as documentary evidence to identify 

areas of different landscape character (e.g. McClure and Griffiths 2002; Bender et al. 2005). 

Documentary evidence can be useful for indicating the historical processes, such as war, policy 

changes or agricultural intensification, that led to the changes that are visible in the landscape 

(Aldred and Fairclough 2003). 

While an understanding of the past landscape processes is important for recognising historical 

elements within the current landscape, Clarke et al. (2004) warn that the focus of HLC should remain 

on the present day landscape. Rather than mapping the original extent of medieval and prehistoric 

field systems, HLC projects should show the areas of the current landscape in which the medieval 

character is still evident. This reflects the way that HLC is primarily used, which is by land managers 

for planning change in the landscape. 

6.3.3 Purpose 

Most HLC projects have been carried out by local authorities or heritage agencies due to the 

commissioning of HLCs by Historic England. A key use of HLC is in landscape management and 

planning, as it has the capacity to accommodate several different viewpoints and facilitate 

communication and understanding between different stakeholders (Rippon 2004; Turner 2006; 

Rippon 2013). HLC is also useful for facilitating the understanding of past landscape change and 

processes, and the surviving state of the landscape, in order to inform landscape planning and 
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predict future scenarios (Haase et al. 2007; Bender 2009b; Herring 2009; Lang et al. 2009). 

Therefore, HLC can allow more informed decisions to be made regarding development and indicate 

areas of historic significance that may be under threat (Herring 1998). Fairclough (2003b) argues that 

HLC can be the basis for reconciling two issues within historic landscape management: “how to 

reconcile minimising loss with the needs of the present, and how to ensure that the balance we 

strike does not reduce too greatly our successors options for understanding and enjoying their 

inheritance” (Fairclough 2003b, p.24). This is essentially a reiteration of the Brundtland 

Commission’s definition of sustainable development (Brundtland 1987), indicating that HLC may be 

used as a tool for incorporating the historic landscape into sustainable development, with a focus on 

economic, social and environmental sustainability.  

HLC can be used within archaeological and landscape research, for instance to increase 

understanding of the distribution of archaeological sites recorded in the Sites and Monuments 

Record (SMR), either in terms of the reasons behind their preservation, or their original distribution 

(Fairclough et al. 2002; 2003b). Bender et al. (2005) use HLC as a tool to predict future landscape 

change in montane regions of southern Germany, based on historical landscape change. The results 

from HLC can also be used for identifying areas of higher archaeological potential, which may then 

be targeted by research and used in DBAs (Herring 1998; Clarke et al. 2004).  

Another use for HLC projects can be outreach and community engagement. Herring (1998) argues 

that, because HLC is interpretative and non-hierarchical, communities can be involved in the 

creation of HLC, and benefit from an increased understanding of historical processes in their 

landscape (see also McClure and Griffiths 2002). Furthermore, HLC projects should be available to all 

stakeholders, rather than only the heritage management sector, as the historic landscape is a 

common resource (Clarke et al. 2004). The South Yorkshire Historic Environment Characterisation 

project, undertaken by South Yorkshire Archaeology Service and English Heritage, created HLC maps 

for South Yorkshire, covering nine time periods since AD 1400, which is available to the public 

(Marchant et al. 2008). The information from this project was made into an interactive map of the 

changing landscape, available on the South Yorkshire Timescapes website (SY Timescapes 2008).  

Finally, assessing the impact of development, land-use change or conservation policies on the 

landscape can be facilitated by HLC. Cornwall Council applied a sensitivity model to the 1994 HLC of 

Cornwall, to determine the sensitivity of the historic landscape to the installation of solar power 

farms and wind turbines (Cornwall Council 2013). Each LCA-type was given a sensitivity score for the 

potential impact of each development. A vulnerability map was created from the sum of the scores 

for each area, and this was used to determine the suitable location for the renewable energy 
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developments (ibid.). The application of a vulnerability index (VI) to the HLC in this thesis was 

inspired by this HLC-based sensitivity model by Cornwall Council (2013). 

6.4 Methodology  

The LCA types chosen for this project were inspired by those used in the Cornwall HLC (Herring 

2008), but have been adjusted to the specific characteristics of the Dysynni valley as determined 

from studying historic and modern Ordnance Survey maps, the HER and NMRW database, 

geophysical surveys, aerial photographs, the archive records. The decision was made to allow the 

LCA polygons to overlap in the HLC, as in many areas the landscape displays features of more than 

one period or more than one character type. Allowing overlap between LCAs meant that the HLC 

represents the multiplicity of land-use over time, and does not exclude one type of character in 

favour of any other in any area.  

This section provides an overview of the LCA types used in the Dysynni HLC, including the 

characteristics of each. QGIS was used to render the LCA polygons using the 2016 1:25,000 Scale 

Ordnance Survey map as a basemap. Table Ap2.1 in Appendix 2 provides a description and 

cartographic and visual examples of each LCA type. 

Rough Pasture 

The Rough Pasture LCA type is characterised by scrub, bracken, heath or rough grassland, and is 

located in areas of high elevation and/or high relief as indicated by the contour lines in the Ordnance 

Survey basemap. It includes areas of scree, rocky outcrops and loose rock (Ordnance Survey 2017). 

The majority of the rough pasture in the study area is unenclosed or has very large enclosures (c.20-

100ha). In terms of the LCFs, post-medieval agricultural remains such as sheep folds, clearance cairns 

and farmsteads characterise rough pasture areas. There are often overlaps between the rough 

pasture LCA and the ancient and historic industrial LCA types. Most areas of rough pasture are now 

used for extensive sheep farming, so the extant archaeological remains do not face significant 

threats from human development or land-use. 

Woodland – Ancient  

The Ancient Woodland LCA was defined using the Ancient Woodland Inventory available to 

download as a shapefile from the Welsh Government website (NRW 2011). This inventory is based 

on the study of historic maps. Areas of woodland that appear to originate from before AD 1600 

based on their name, location, nature of surrounding enclosure, and the presence of indicator 

species, have been classified as ancient woodland (ibid.). Areas of ancient woodland are generally 

small (c.<10-20ha), located in the lower slopes of the Dysynni valley, and are classified in the 



102 
 

inventory into Plantation on Ancient Woodland Sites, Ancient Semi-Natural Woodland, Restored 

Ancient Woodland Site, or Ancient Woodland Site of Unknown Category.  

Woodland – Modern 

Areas of Modern Woodland LCA were identified as areas of woodland on the Ordnance Survey 

basemap that were not included in the Ancient Woodland inventory. While ancient woodland 

consisted mainly of deciduous species, the areas of modern woodland are predominantly coniferous 

plantations.  These plantations are often larger than the ancient woodlands (c.65-400ha), and are 

located at higher elevations. Many conifer plantations in the UK were planted during the 20th 

century to increase timber production following the Second World War, so may be viewed as being 

part of an industrial or military landscape (Herring 2008). Modern woodland plantations can play a 

significant role in the visible character of a landscape, but this is sometimes considered to be 

negative as they are perceived as unnatural and ecologically damaging by many people (e.g. 

Barsoum and Henderson 2016). 

Field systems – Regular 

Regular field systems are those that have straight, often parallel boundaries and right angles, and 

are indicative of a large-scale planned group of fields. These are characteristic of agricultural land 

established in the post-medieval and modern period. In the Dysynni valley, most of the regular field 

systems are located on the flat valley floor, often with drainage ditches running along the field 

boundaries. These field systems were only created following the Peniarth and Ynysmaengwyn land 

improvement scheme. Due to the relatively recent reclamation of the land on which the regular field 

systems are placed, very few known LCFs are located in this LCA type, other than the field 

boundaries and ditches. However, as discussed in Chapter 5, several cropmarks were identified in 

aerial photographs in regular field systems, including a potentially Roman double-ditched enclosure, 

circular enclosures and linear features which may be ancient trackways or field boundaries. This 

suggests that the Dysynni valley floor may have been occupied prior to the development of wetland 

conditions, so there is a high potential that further archaeological remains and features may be 

preserved in this LCA.  

Field systems – Irregular 

Irregular field systems are here defined as field systems with small fields, irregular angles, some 

curved boundaries, and no clear layout, indicative of the gradual establishment of individual fields 

over time, rather than a planned field system. This type of field boundary morphology is 

characteristic of areas in which agriculture was established in prehistoric to medieval periods. In the 

study area, irregular field systems are mainly located on shallow slopes and immediately adjacent to 
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settlements such as Tywyn, Bryncrug, Abergynolwyn and Llanfihangel-y-Pennant, but not the flat 

valley floor. Most of the LCFs located in irregular field systems are chapels, churches and 

farmhouses, as these would have been the main areas of settlement. Although farming practices are 

now more intensive, the same field boundaries are maintained, so irregular field systems are an 

important visual element of the Dysynni landscape’s historic character.  

Drained land – Regular 

As explained in Chapter 4, large-scale land improvement and drainage projects were undertaken by 

the Peniarth and Ynysymaengwyn estates in the Dysynni valley in the late 18th-century. Further 

drainage may have taken place in the Dysynni valley during the early 20th century; archived sources 

indicate that the Air Ministry and local land owners wanted further drainage to take place north of 

Tywyn and further up the valley (see section 5.2.2; Merioneth Rivers Catchment Board, 1948; River 

Dysynni Catchment Board 1942-50). 

The land improvement is still evident in the drainage channels that cut across the floodplain of the 

Dysynni. In some areas, the drainage channels have a typically modern morphology, incorporating 

right-angles and parallel lines. This indicates areas in which drainage was undertaken as a centralised 

project, for instance by the estates or local catchment boards. The regular drained land LCA is 

located predominantly in the lower section of the Dysynni valley floor, shoreward of Craig yr Aderyn, 

and just north and south of Tywyn. As it was only relatively recently reclaimed from marshland, 

there are very few LCFs located within the Regular Drained Land LCA, and none which specifically 

characterise it other than the drainage ditches themselves. 

Drained Land – Irregular 

The Irregular Drained Land LCA is widespread in the study area. It is characterised by areas of land 

with irregular drainage ditches, often serving as (or following) field boundaries of irregular field 

systems. Unlike the regular drainage ditches, these do not have straight, parallel sides or regular 

angles. It is possible that these were created on a smaller scale, for instance by individual farmers on 

their own land, rather than as part of the extensive land improvement. Areas of irregular drained 

land are more dispersed across the study area than the Regular Drained Land LCA, and are smaller. 

This suggests that these areas were drained individually and potentially at different times, rather 

than being part of the large-scale land improvement projects. Like the Regular Drained Land, this 

LCA is not characterised by any particular LCFs. However, both the regular and irregular drained land 

are characteristic of the study area, as they cover a large area of the Dysynni valley, and are 

remnants of historic land use and governance. 
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Ancient 

The Ancient LCA-type is defined by the presence of LCFs dating to the medieval period or earlier, 

such as Iron Age hillforts, early medieval barrows, Bronze Age cairns, or prehistoric and Roman 

cropmarks. There is a wealth of Bronze Age and Iron Age features at higher elevations in the Dysynni 

valley, so there are significant areas of overlap between the Ancient and Rough Pasture LCAs.  As 

previously mentioned, extensive cropmarks were identified in the valley bottom, near Bryncrug and 

Croes Faen, indicative of features such as circular enclosures, square barrows, and a possible Roman 

double-ditched enclosure. Although the Ancient LCA is less visible within the landscape compared to 

other LCAs, it is important to include it in order to capture the long history of human habitation in 

the Dysynni valley and surrounding hills. Moreover, the character of the Dysynni uplands in 

particular is heavily influenced by the combination of prehistoric LCFs (Ancient LCA) and post-

medieval LCFs (Rough Pasture LCA) 

Settlement – Historic 

The areas of Historic Settlement LCA in the Dysynni valley were defined as the large and small 

settlements included on the 1853-1904 1:2,500 County Series First Edition map. This included 

clusters of farms and farm buildings, but not single farmsteads. It is thought that Tywyn was 

established as a settlement or monastic community in the early medieval period, as Viking raids of 

Tywyn during the 960s and 970s AD were recorded in Brut y Tywysogion, a monastic chronicle 

documenting the 7th-14th centuries (Longley and Richards 1974). Habitation of the area increased 

through the medieval and post-medieval period, evidenced by the construction of Castell Cynfal, 

Castell y Bere, and the Llanegryn Parish Church in the 13th century, and the growth of the mining and 

quarrying industries during the industrial period. Other settlements, such as Abergynolwyn, were 

established during the Industrial Revolution due to their proximity to the mining and quarrying 

industries. The Historic Settlement LCA is generally located in the same place as current settlements, 

but is less extensive, suggesting that there has been significant growth in the settlements of the 

study area during the 20th and 21st centuries. The common LCFs that characterise this LCA are mainly 

churches, chapels, and post-medieval terraces and individual houses.  

Settlement – Modern 

The Modern Settlement LCA type is defined as areas of settlement that are present on the modern 

Ordnance Survey basemap that were not present on the 1853-1904 1:2,500 County Series 1st 

Edition map. Most of the areas of modern settlement are located around areas of historic 

settlement, which have expanded during the 20th and 21st century. Tywyn, Bryncrug, Aberdyfi, and 

Llanegryn in particular expanded in the modern period, due to a combination of military activity 

during the Second World War, local extractive industries, and a small tourist industry. Few LCFs are 
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located in the modern settlement LCA other than the modern urban buildings, as they are newly 

built rather than a remnant of historic human activity.  

Recreation and Tourism 

The Recreation and Tourism LCA is characterised by LCFs that are for tourists and leisure activities, 

such as camp sites, caravan and mobile home parks, golf courses, and theme parks. In the Dysynni 

valley, caravan and mobile home parks form the majority of the Recreation and Tourism LCA; around 

20 have been identified in the area. There is also one camp site and one golf course. There are 

overlaps between the Ornamental and Recreation and Tourism LCAs, as the gardens and lands of old 

estates such as Ynysymaengwyn and Peniarth have been converted into caravan and mobile home 

parks. There are also caravan and mobile home parks located both inland and by the coast, and at 

different elevations, so the location of this LCA is not confined to particular areas. The tourism 

industry in the Dysynni valley grew significantly in the 19th century due to improved transport links, 

such as the railway. This was instrumental in the development of Tywyn and Aberdyfi as seaside 

tourist destinations.  This is now important to the character of these towns and the Dysynni valley.  

Industry – Historic 

Although other HLC projects combine all industrial activity into one LCA type (e.g. Herring 2008), this 

project separates the industrial type into three different LCAs, due to their different visual character 

and origins. The Historic Industry LCA is defined by the LCFs that are the remnants of extractive 

industries from the post-medieval period and earlier, predominantly features associated with 

quarrying and mining (e.g. levels, shafts, spoil heaps, open quarries, and the Tallylyn railway). In the 

Dysynni valley, the Historic Industry LCA is predominantly located in upland and valley areas, often 

with high relief. This makes the features susceptible to erosion from heavy rainfall and run-off 

(Herring 2008). There is significant overlap between the Rough Pasture and Historic Industry LCAs, as 

they are both characteristic of upland areas, and many areas that were exploited by extractive 

industries during the 18th- early 20th centuries are now used for extensive grazing.  

Industry – Maritime 

The Maritime Industry LCA is defined by areas with LCFs that are remnants of maritime industrial 

activity, such as fishing, shipbuilding and seafaring. As a result, this LCA is confined to coastal and 

riverine areas in the study area, and often overlaps with the Wetland and Beach and Military LCAs. 

Aberdyfi was a fishing and ship building port during the post-medieval period, and the structural 

remains of this (e.g. harbours, shipyards, jetties and shipwrecks) influence the character of the town 

and coastline (SNPA 2014a). Other areas of Maritime Industry LCA in the study area are 

characterised by LCFs like medieval and post-medieval fish traps, which may have been used for 
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either subsistence or commercial purposes. Some archaeologists propose that, as Broadwater was 

once more navigable, there may once have been more shipping activity in the Dysynni estuary than 

at present (GAT 2015). However, other than a small boat house identified on the Ordnance Survey 

First edition 25-inch map, no archaeological features related to maritime industry have been 

identified in Broadwater. There is a high potential for further remains of maritime industrial activity 

to be preserved in Broadwater or in peat beds near Penllyn. This could increase the understanding of 

historic and prehistoric trade, sea-faring and industry in the study area.  

Industry – Modern 

Modern industrial activity in the study area is no longer based on extractive industries, but rather is 

confined to a sewage works near Broadwater and an industrial estate on the outskirts of Tywyn. The 

modern industry LCA covers a relatively small area, and is not associated with any known 

archaeological features.  

Ornamental 

The Ornamental LCA includes areas of park, garden or estate that have been deliberately designed, 

for instance the lands, gardens or deer park of a country estate. The main areas of Ornamental LCA 

in the Dysynni are the Ynysymaengwyn and Peniarth estates, both established in the 15th century, 

and the early 20th-century Rhowniar country house and garden. By 1800, the Peniarth estate owned 

3,838 acres in the valley, although the area of the estate land is presently only around 150 acres 

(James 2006). The Ynysymaengwyn estate, once a powerful estate, was given to the local council in 

the mid-20th century and was used for firefighting practice and army training before being 

demolished. Presently, caravan and mobile home parks are located on the Ynysymaengwyn and 

Peniarth estate land, so these LCA types overlap. The Rhowniar country house and garden has 

maintained its visible character as it is used as a rentable holiday home, so this too is now part of the 

tourism industry in the Dysynni valley. The LCFs that characterise the Ornamental LCA are those 

associated with the previous estate, such as outbuildings, boat houses, cottages, and large estate 

houses.  

Military 

The Military LCA type refers to areas that maintain a character influenced by military activity, 

predominantly from the Second World War. There was significant military activity in the study area 

during the Second World War, the remnants of which are most evident along the coastline. The LCFs 

that characterise the Military LCA include practice trenches, rifle ranges, an RAF airfield, pillboxes, 

camps, and several air crash sites.  There is significant overlap between the Military LCA and the 

Wetland and Beach and Maritime Industry LCAs, due to the line of pillboxes stretching along the 
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beach from Tywyn (north) to Aberdyfi (south). Several air crash sites are recorded in coastal areas, 

however in most cases the records are documentary, and no known remains of the air crash site 

have been identified. Other air crash sites are located at higher altitude, of which there is greater 

preservation of remains. Second World War military remains represent a monumental time in this 

country’s recent history, and retain immense cultural value for many people (Atkin 2003).  

Wetland and Beach 

This LCA includes the land and intertidal zone by the coastline and water courses that is comprised 

of sand, shingle, marsh, reeds or saltings. In the study area, the coastline to the south of the mouth 

of the Dysynni is fronted by a sand beach, while the coastline to the north is characterised by a 

predominantly shingle beach. The majority of Broadwater, once an estuary, is also characterised as 

the Wetland and Beach LCA type, as it has now silted up to form a saltwater lagoon, with sand 

exposed between low and high tide. A large area of the Dysynni valley was wetland prior to 

extensive drainage by local estates in the 18th-20th centuries, but the wetland is now confined to the 

coastline and small areas next to the River Dysynni. A submerged forest and peat bed are revealed 

beneath the sand in the foreshore of the mouth of the Afon Dyffryn-Gwyn at periods of extreme low 

tide and after storm conditions (RCAHMW 2014). It is thought that this peat bed may extend inland 

beneath the Penllyn marshes, south of Tywyn (ibid.). The preserved tree trunks and the preservation 

environment within the peat mean that this environment is valuable for research into the 

palaeoenvironment of the Dysynni valley, as well as for reconstructing past sea-level change. A 

similar submerged forest and peat bed 10km further south has revealed finds such as a Mesolithic 

antler tool, two flint tools, and a partial auroch skeleton, as well as a Neolithic heath (RCAHMW 

2012b). It is likely that these two submerged forests and peat beds are associated, so there is a 

potential for similar finds to exist within the Tywyn submerged forest.  

There are several areas of overlap between the Wetland and Beach and Maritime Industry LCAs, as 

many of the remnants of maritime industry (e.g. fish traps, wrecks, quays, and peat cuttings) are 

located along the shoreline. Several areas of Military LCA type are located on the beach, for instance 

the Second World War pillboxes extending southwards along the beach from Tywyn to Aberdyfi. 

6.5 Results and discussion 

The results of the Dysynni valley HLC are displayed cartographically in Figure 6.4, and figures of the 

location of each individual LCA can be found in Appendix 2. Around 58% of the study area is 

characterised as Rough Pasture, in particular in the upland areas. The steep slopes, thinner soils and 

inaccessibility of many of these areas means that they are unsuitable for anything other than 

extensive sheep grazing, although coniferous plantations (Modern Woodland) have been established 



108 
 

in some upland areas. This is reflected in the high number of medieval and post-medieval LCFs in 

upland areas related to pastoral agriculture, such as troughs, sheep folds and pens. Most of the 

Ancient LCA is located in upland areas, however some areas near Bryncrug, Croes Faen and Castell y 

Bere are characterised by the cropmarks which indicate that the lowlands were in use prior to the 

medieval period. This may partly be because there is greater preservation of archaeological features 

in uplands, where land use is less intensive and there has been no urban development. Historic 

evidence indicates that there has been habitation at Tywyn in some form since the first millennium 

AD, but the evidence of this is less visible in the current fabric of the landscape.  

 

The Irregular Fieldsystems LCA is also mainly located in upland areas, although not on steep slopes 

or the highest elevations, and it is found in some lowland areas, for instance east of Bryncrug, above 

the 10m contour line. The morphology of these fieldsystems are indicative of enclosures that were 

developed in a piecemeal way, through a gradual process of land apportionment and sub-division, 

rather than as part of single events of planned enclosure. In contrast, the Regular Fieldsystems LCA is 

Figure 6.4. Completed Historic Landscape Characterisation for the Dysynni valley. Crown 

copyright and database right 2019 Ordnance Survey 100025252 
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formed of regular enclosures that were planned over large areas, often on maps, and constructed in 

a single event. This suggests that irregular fieldsystems are likely to pre-date the more uniform 

Regular Fieldsystems LCA in the valley bottom.  In some places, watercourses form or follow the 

irregular fieldsystem boundaries, indicating either that the fields were shaped thus to take 

advantage of the natural boundary of existing streams, or that small drainage efforts were 

undertaken by landowners or farmers on their individual fields.   

Historic Industry is the final LCA predominantly found in upland and sloped areas in the Dysynni 

valley. This is characterised by extant quarry and mine workings dating mainly to the post-medieval 

period, and includes the Talyllyn railway line that extends from Tywyn to Abergynolwyn. Although 

currently sparsely inhabited and used, the wealth of archaeological evidence in the uplands indicates 

that much of its current form is a product of medieval and post-medieval land-use, with some 

elements dating to the prehistoric period.  

In the lowland areas, the dominant LCAs are Regular Fieldsystems and Regular Drained Land, much 

of which overlaps as in many areas, field boundaries run alongside drainage ditches. The areas 

characterised as Regular Drained Land are also fieldsystems, and are mainly used for pastoral 

agriculture (although some are too waterlogged to use, see Wales Farmer 2017). The extensive, 

systematic drainage ditches that characterise Regular Drained Land can be identified as the product 

of the 18th and 19th century drainage programmes by the Peniarth and Ynysmaengwyn estates (see 

Chapter 4), as the uniformity indicates that they were part of one or two comprehensive projects, 

rather than piecemeal like the fieldsystems in the upland areas. Furthermore, the location of all 

regular (and therefore probably more modern) fieldsystems in the lowland areas indicates that this 

land is unlikely to have been cultivated prior to the establishment of the drainage system. This is 

corroborated by the historical records of the presence of marshland in the valley bottom before the 

land improvement schemes were undertaken. 

Urban areas in the Dysynni valley are generally small, with the Historic Settlement LCA located in the 

centre, and Modern Settlement LCA situated on the fringes of current towns. Both Tywyn and 

Bryncrug are situated in the lowlands, but on ground 5-10m higher than the surrounding lowlands, 

protecting the majority of the properties from the flooding that frequently affects the floodplain. 

The coastline of the Dysynni valley is predominantly characterised by three LCAs: Military, Maritime 

Industry and Wetland and Beach. Areas of the Military LCA were identified through the remnants of 

mainly Second World War activity, including a line of concrete pillboxes stretching over 3.5km 

between Penllyn and Aberdyfi. Although in various states of repair, with some displaying few signs of 

weathering while others are collapsed and laying as slabs upon the beach, the visibility of each 
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pillbox from its neighbour and their proximity to a rifle range means that this area is significantly 

influenced by the military history of the landscape.  Also important to the military character is the 

remains of the Morfa barracks, north of Tywyn, and that of an RAF base and airfield at Tonfanau. As 

this land is just used for extensive grazing, there are still earthworks associated with the RAF camp 

visible on aerial photographs, even though the buildings are no longer extant.  

As suggested by its name, Maritime Industry LCAs are all found along the coastline, other than a 

small section on the south bank of the River Dysynni, before it reaches Broadwater, due to the 

presence of a small fishing weir and boathouse. At Aberdyfi, the Maritime Industry LCA manifests as 

structures such as the modern harbour, jetty, and wharf, while on the beach it is characterised by 

older and more ephemeral structures, predominantly the remains of fish traps and peat cuttings 

from the medieval and post-medieval period. This indicates that the industrial activity in the coastal 

area evolved from smaller-scale ventures to the maritime trade of goods with other regions as the 

extractive industries in the landscape developed. 

The Ancient Woodland LCA is distributed in many small patches across the landscape, although most 

are on steep intermediate slopes rather than in the high uplands or in the lowlands. This suggests 

that these areas of ancient woodland remain because they are situated on land unsuitable for urban 

development, agriculture or forestry plantations.  

Areas characterised by the Recreation and Tourism LCA are mainly caravan and mobile home parks, 

with some camp sites. The largest single area of this type is the Aberdyfi golf club, situated in the 

sand dunes west of Aberdyfi and also characterised as Wetland and Beach LCA. The majority of 

these parks developed during the 20th-21st century, and some in the grounds of historic estates, such 

as Peniarth and Ynysymaengwyn. This is indicative of a shift in the local economy from wealthy 

estates owning the majority of the land (and undertaking landscape-wide works), to the 

diversification of estates and adaptation to new industries, such as tourism. The land around these 

old estate houses still holds evidence of being a designed, ornamental landscape, such as dovecotes, 

gateposts, and outbuildings. These areas have also been characterised as Ornamental LCA.  

On the whole, the upland areas of the Dysynni valley seem to be characterised by older, more 

structural remains of land-use and traditional economies. In contrast, the lowland areas are mainly 

characterised by regular, uniform field systems produced by large-scale, modern land improvement 

projects. However, geophysical surveys and the study of aerial photographs revealed that the land-

use history of the Dysynni lowlands is much longer than immediately apparent from the historical 

records.  
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6.6 Conclusion 

This chapter presented a HLC for the Dysynni valley, based on a range of sources such as historic and 

modern maps, as well as the results of the landscape analysis in Chapter 5. This created a holistic, 

spatially continuous representation of the historic landscape and the way that past and present 

human activity is evident in the features of the landscape. This research aims to transfer the focus of 

vulnerability studies in archaeology from individual sites (such as the HER and NMRW records), to 

the historic landscape as a whole. HLC provides a landscape-scale structure which represents the 

historicity of the landscape, and at which a vulnerability assessment can be targeted. This moves the 

focal level from individual sites to LCAs (see Hierarchy Theory, section 3.2.2), with the LCFs now 

informing the characterisation process. 

Using the results of the multi-method landscape analysis in Chapter 5 for the landscape 

characterisation meant that the resulting HLC includes and represents a wide range of historical and 

archaeological elements that would not have been evident in modern and early Ordnance Survey 

maps alone. Representing the continuity of the landscape’s cultural heritage, and the time-depth of 

different areas within the landscape through the HLC allows any further assessment to include the 

historic landscape as a whole, rather than just focusing on elements within it. Therefore, this HLC 

was created to be used as the focus of the vulnerability assessment in Chapter 6. 

HLC is a methodology designed to be applicable to any landscape, and can be used on a range of 

spatial levels; the Cornwall County HLC covered over 3,500km2, whereas the Dysynni valley HLC 

covers around 150km2. While the same LCA-types can be used across different projects, to facilitate 

the comparison of different landscapes, it is also possible to create novel LCA-types for a landscape 

in order to more accurately represent the unique land-use patterns that have occurred there, based 

on the landscape analysis. This means that HLC methods can be tailored to best suit the landscape in 

question.  

Some limitations of this approach to creating a landscape characterisation include potential 

inaccuracies in historic maps or the way that historic maps are georeferenced (Bender et al. 2005; 

(Domaas and Grau Møller 2009). However, taking a multi-method approach to landscape analysis 

(see Chapter 5) can help identify any inaccuracies in one of the methods, and make the results more 

reliable. Another limitation is that some suggest that HLC can over-simplify the complex, multi-

faceted nature of the historic landscape (e.g. Williams 2006); in attempting to make the historic 

landscape understandable, the intricacies of it can be obscured (Herring 2009). By customising the 

LCA-types used to the landscape in question, some of the uniqueness of the landscape can still be 

represented. It could be argued that the current focus within vulnerability assessment and 
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management on discrete sites does more to over-simplify and obscure the intricacies of the historic 

landscape than broadening the focus to LCAs. The purpose of HLC in this thesis is to move the focal 

level of vulnerability assessments and management from individual sites to the wider historic 

landscape. In doing so, it forces vulnerability assessments and historic landscape management to 

acknowledge the liminal spaces between ‘sites’, and recognise the historicity of all landscape 

features. 
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Chapter 7 
Landscape-scale Vulnerability Framework 
7.1 Introduction 

This chapter addresses Research Aim 2: develop a landscape-level archaeology vulnerability 

assessment methodology. This is divided into three research objectives: 2a: Determine the potential 

climatic changes in the study area in the 21st century based on the results of a variety of climate 

models; 2b: Develop a vulnerability index for measuring and quantifying the vulnerability of historic 

landscapes, informed by the strengths and limitations of other archaeology vulnerability 

assessments; and 2c: Apply the vulnerability assessment established in 2b to the Historic Landscape 

Characterisation output for the Dysynni valley (objective 1c), to identify any weaknesses in the 

methodology developed. Chapter 7 details the development of a methodology for assessing the 

vulnerability of the historic landscape to climate change, which fits into the Landscape Vulnerability 

Framework. 

In Chapter 6, a HLC was created for the Dysynni valley, as a way of classifying the historic landscape 

into definable areas (LCAs). The vulnerability assessment developed here, a vulnerability index (VI), 

was applied to the LCAs of the Dysynni valley, to demonstrate how the focus of vulnerability in 

archaeology can be moved from individual features, or groups of discrete sites, to the historic 

landscape as a continuous phenomenon.  

After an overview of the concept of vulnerability, which underpins the way in which it is used and 

conceptualised in this thesis, a review of the VI methods used in archaeology evaluates the most 

common approaches, and their strengths and limitations. An overview of the climate change 

projections for the Dysynni valley is then presented, in order to identify the aspects of climate 

change that may pose the greatest threat to the historic landscape of the study area. A VI 

methodology is developed, informed by the review of methods and climate change projections. The 

methodology is then applied to the Dysynni valley, and this is followed by the results and an 

evaluation of the results and the methodology. 

7.1.1 Vulnerability 

There is no single definition of vulnerability, due to the widespread use of the term across many 

different disciplines in reference to a wide range of systems and phenomena (Barnett et al. 2008; 

Daire et al. 2012). The assessment of vulnerability is also subjective; an event is only perceived as a 

threat if the outcomes result in something that is considered to be damaging. For instance, erosion 
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on an uninhabited island is thought of as a natural coastal process, whereas erosion of a populated 

coastline is considered a threat to which people and infrastructure may be vulnerable (McLaughlin et 

al. 2002; Barnett et al. 2008).  

In general, however, vulnerability is considered to be the likelihood that a system or phenomenon 

will experience harm as a result of a hazard, whether a short-term event or long-term stress (Turner 

et al. 2003; Accardo et al. 2014). In socially-oriented research, vulnerability is seen as dynamic and a 

state of being, whereas studies focussing on biophysical vulnerability often consider it to be the 

outcome of the hazard impacts minus the resilience of the system (Adger 1999; Vincent 2004; Daly 

2013; Nguyen et al. 2016). Many authors across disciplines see vulnerability as the function of three 

factors: exposure, sensitivity (or susceptibility) and adaptive capacity (or coping capacity or 

resilience) (e.g. Allison et al. 2009; Balica et al. 2009; Yusuf and Fransisco 2009; Balica and Wright 

2010; Glick et al. 2011; Balica et al. 2012; Nguyen et al. 2016). Exposure is the likelihood that a 

system will be exposed to a threat as a result of its location. A coastal town has higher exposure, and 

therefore higher vulnerability, to storm surges compared to an inland town. Sensitivity (or 

susceptibility) is defined as the degree to which the exposed elements of a system are affected by 

the event or phenomena, which influences the probability of damage occurring to, or within, the 

system. For example, organic archaeological remains have higher sensitivity to desiccation and decay 

as a result of increasing temperatures, compared to stone remains. Adaptive capacity, also referred 

to as coping capacity or resilience, is the capacity of a system to respond to change, maintain its 

functions, and cope with the consequences. The adaptive capacity of a system can be influenced by 

institutional planning, technology such as warning systems, and defence infrastructure. A high level 

of vulnerability is the result of high exposure, high susceptibility and low adaptive capacity, while an 

increase in adaptive capacity or a decrease in exposure or susceptibility will reduce the overall 

vulnerability of a system.  

7.2 Vulnerability Index Methods 

VIs are created and used to assess the risk and potential damage to a particular site or system from 

an event or threat. In particular, the potential impacts of climate change have resulted in the 

creation of indices addressing the vulnerability of systems to the emerging environmental issues 

discussed in Chapter 2 , especially in coastal areas (e.g. Thieler and Hammar-Klose 2000; McLaughlin 

et al. 2002; Boruff et al. 2005; Boruff and Cutter 2007; Diez et al. 2007; Hegde and Reju 2007; 

Torresan et al. 2008; McLaughlin and Cooper 2010). This review summarises VIs that have been 

developed for archaeology and cultural heritage, focussing particularly on coastal areas. The aim is 

to inform the development of a VI specifically tailored towards historic landscapes and HLCs. 
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Following an explanation of what VIs are, and examples of their use in archaeology, this section 

reviews the most common approaches to vulnerability assessment within archaeological research. It 

identifies the different variables used as proxies in VI calculations, the range of threats considered by 

VIs, and the objects selected for VI assessments. In this context, the ‘object’ of the VI refers to the 

sites, monuments or areas whose vulnerability is being assessed. There is subsequently a review of 

the equations that have been used to calculate the vulnerability ‘score’. Finally, there is a discussion 

of the limitations of using VIs both generally and for archaeology in particular. 

The following review was limited to the use of VIs in archaeology – a total of 19 studies were 

identified. Although the search was not limited spatially, the majority of studies focus on coastal 

areas and principally on natural hazards, such as flooding and erosion. Those addressing solely 

anthropogenic threats such as urban expansion were not included in the study. 

7.2.1 Vulnerability indices 

VIs are a common method of vulnerability assessment. They are used to simplify complex and 

uncertain systems in order to estimate their vulnerability based on certain chosen indicators or 

variables (Barnett et al. 2008; Balica et al. 2012). A quantification of vulnerability using these 

indicators can allow an easier comparison between different entities, such as cities, coastlines, or 

archaeological sites. This simplification can also increase policy-makers’ and decision-makers’ 

understanding of both the system in question, and the impacts of different potential policy 

approaches (Balica and Wright 2009; Reeder et al. 2012; Nguyen et al. 2016). Furthermore, the 

results of vulnerability assessments identify the areas that are most at risk and the reasons for the 

higher vulnerability, which can help policy-makers, resource managers, and aid organisations target 

their resources more efficiently (Boruff and Cutter 2007; Glick et al. 2011; Daly 2013). For this 

research, an indicator approach was chosen as the vulnerability assessment method for several 

reasons. Indices allow different types of data (e.g. qualitative and quantitative) to be combined into 

a single score, while remaining transparent regarding the scores for each indicator (Sullivan and 

Meign 2005; Perch-Nielsen 2010). This allows for easy comparison between areas or objects that are 

being assessed. Furthermore, a range of information can be included within an index, such as 

different characteristics of the threat, and the susceptibility, exposure and adaptive capacity of the 

object (Perch-Nielsen 2010; Papathoma-Köhle et al. 2017).  

Vulnerability matrices are another vulnerability assessment approach in which the interaction 

between different elements of the threat and different elements of the object are quantified. These 

also allow a range of indicators and data types to be included. The structure of vulnerability matrices 

clearly displays the relationship between the processes and consequences in question (Papathoma-
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Köhle et al. 2017; see Berry et al. 2019). However, matrices do not produce a single score that can 

be compared across the objects of the study, so they are less useful for ranking overall vulnerability 

and prioritising management compared to indices (Papathoma-Köhle et al. 2017). Finally, indices are 

the most popular vulnerability assessment method used in both archaeology and climate change 

studies. This provides a much larger source of material to consult for developing a VI for this 

Landscape Vulnerability Framework.  

The indicators chosen can be selected using deductive, inductive or normative approaches (Nguyen 

et al. 2016). Deductive approaches are theory-driven, and are based on scientific knowledge about 

variables that are relevant for indicating vulnerability. Data-driven, inductive approaches use 

information on statistical relationships between indicators and observed outcomes of hazard events. 

Normative approaches are those based on expert opinion on the best variables to use for calculating 

vulnerability. The majority of VIs use a combination of the three approaches, taking into account the 

impact of previous hazards as well as theoretical and expert knowledge (ibid.).  Glick et al. (2011) 

argue that there is no single correct approach to VIs, as the necessary approach depends on the 

focus of the vulnerability assessment, and what the VI will be used for. This, and the difficulties faced 

when attempting to simplify such complex systems, means that there have been hundreds of 

attempts to create VIs (Barnett et al. 2008). For example, different VIs have been created for 

assessing the vulnerability of several coastlines at a range of spatial levels, for instance in Northern 

Ireland, USA, the Caribbean, Buenos Aires, and Mangalore (McLaughlin et al. 2002; Boruff et al. 

2005; Boruff and Cutter 2007; Diez et al. 2007; Hegde and Reju 2007; Yusuf and Francisco 2009; 

McLaughlin and Cooper 2010). It is worth noting that these studies do not incorporate predictions of 

climate change, but instead only assess the threat posed by present conditions such as wave height 

and storm-surge frequency. Only a minority of the VI studies identified consider future scenarios 

under climate change (e.g. Torresan et al. 2008). Yusuf and Francisco (2009) argue that, as there is 

uncertainty surrounding future climatic conditions, the results of a VI based on projected climate 

would be less reliable than one using only present conditions. This does not account for the fact that 

VIs based on present conditions will become less accurate in the near future as climate change alters 

precipitation, temperature and coastal processes.  

7.2.2 Vulnerability indices in archaeology 

Several studies have used VIs to research the vulnerability of archaeological and historical sites in 

changing coastal environments. They can take into account not only the general vulnerability of the 

study area, but also the characteristics of the cultural heritage resource itself which may increase or 

decrease the sensitivity of the site. The following section reviews the ways in which VIs have been 

developed and utilised for coastal cultural heritage. 
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VIs have been developed for archaeological and historical sites in many locations worldwide, 

including the Santa Barbara Channel (California), France, Skellig Michael (Ireland), Newfoundland, 

Northern Ireland, and Chesapeake Bay (USA). The spatial extent and resolution of these studies 

varies depending on the length of the coastline in question and the resources available to the study.  

Many VI research projects were desk-based, which allowed a wider geographical area to be included 

in the study and reduced the time required to undertake the assessment (e.g. Reeder-Myers et al. 

2010; Westley et al. 2011; Daire et al. 2012; Reeder et al. 2012; Chadwick-Moore 2014). In contrast, 

very few involved detailed examination of individual sites and the characteristics that would 

influence vulnerability (e.g. Daly 2013). This may be because one of the purposes of VIs is to speed 

up the process of identifying vulnerability, so undertaking site visits would be counterproductive to 

this aim.  

The threats addressed also vary between studies, with some incorporating both natural and 

anthropogenic threats (e.g. Daire et al. 2012; Reeder et al. 2012; Van Rensselaer 2014), while others 

only measure the vulnerability of sites to natural hazards like erosion (e.g. Nageswara Rao et al. 

2008; Westley et al. 2011; Reeder et al. 2012;  Reeder-Myers 2015). Certain studies aimed to 

calculate the relative vulnerability of sites within the study area, and therefore left out variables that 

threatened all sites equally, such as mean wave height or tidal range (e.g. Reeder et al. 2012). This 

facilitated the comparison of vulnerability between sites within the study area, but reduced the 

possibility of comparing the results of this study with the vulnerability of another location, as 

differences in mean wave height and tidal range would not be included. In contrast, the 

ShoreUPDATE survey in Scotland aimed to assess the relative vulnerability of sites at a national level 

rather than in individual areas, so that sites could be prioritised for management for the whole of 

Scotland (Hambly 2017). 

Many studies create risk maps rather than a full index, for example by using GIS to overlay maps of 

erosion and flood risk with a map of the cultural heritage sites to identify the locations with high or 

medium risk (e.g. Robinson et al. 2010; Westley et al. 2011; Westley and McNeary 2014). This review 

focuses on the methods that develop or use a full VI, as it is a more thorough and reliable approach. 

Variables included 

Most VI projects have been desk-based, allowing a wider geographical area to be included in the 

study and reducing the time required to undertake the assessments. Only a few projects involved 

the detailed, field-based examination of the vulnerability of individual sites (e.g. Daly 2013). This 

may be because one purpose of VIs is to act as a replicable and efficient management tool. As a 

result, most VIs only considered characteristics that could be assessed remotely and across large 
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areas, for instance topographic slope angles, rates of relative sea-level rise, and tidal ranges of the 

nearest coastlines (e.g. Pendleton et al. 2005; Westley et al. 2011; Reeder et al. 2012; Reeder-Myers 

et al. 2015; Chadwick-Moore 2014; Van Rensselaer 2014; Westley and McNeary 2014; Rockman et 

al. 2016).  Only a few VIs considered the characteristics of the archaeological sites themselves, 

including the materials from which sites are constructed and current levels of preservation (e.g. 

Daire et al. 2012; Daly 2013; Robinson et al. 2010). Daly (2013), in a study limited to two World 

Heritage sites, considered a wide variety of characteristics that could influence the vulnerability of 

each site, including the structural damage from visitors, the vegetation cover, and numbers of 

animal burrows. 

The spatial extent and number of sites included in a study influences the resolution of the 

assessment. However, studies solely considering the threats determined by sites’ locations only 

address the exposure element of vulnerability, and neglect the sensitivity and resilience of the site to 

threats. For instance, a vulnerability model for Bering Land Bridge National Preserve created by the 

US National Park Service, was based only on a coastal erosion model and local climate change 

projections, and included no information on site resilience or susceptibility (Devenport and Hays 

2015; Rockman et al. 2016). An archaeological site may be buried and well preserved, or constructed 

of durable materials, and therefore have greater resilience to any threat than a site in the same 

location that is exposed and susceptible to damage (Daire et al. 2012).  

Although the studies considered vulnerability across a range of scales, none acknowledged that 

spatial scale and the resolution of the data can influence the variables included in the VIs. This is an 

important consideration, partly because some datasets are only available for specific areas or 

resolutions (Torresan et al. 2008). McLaughlin and Cooper (2010) argue that some variables are 

scale-sensitive, while others are important regardless of the spatial extent or resolution of the study. 

They suggest that geology is a scale-sensitive variable, as at a regional level there may be different 

types of bedrock, but at a local level the geological variation is likely to be negligible. McLaughlin and 

Cooper’s (2010) approach is valid when calculating relative vulnerability, which is limited to the 

comparison of vulnerability between sites within a study area (see Pendleton et al. 2005; Westley et 

al. 2011; Reeder et al. 2012). However, relative VIs reduce the potential for inter-regional 

comparison. Therefore, geological variation is still an important consideration if the aim is to 

generate results that can be compared to results from a different study area.  

Threats 

The threats considered within VIs vary between studies, with some incorporating both natural and 

anthropogenic processes (e.g. Daire et al. 2012; Reeder et al. 2012; Van Rensselaer 2014), while 
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others only measure the vulnerability of sites to natural hazards (e.g.; Westley et al. 2011; Reeder-

Myers 2015). Despite the importance of climate change as an emerging threat, few studies explicitly 

included the threat of climate change or its effects. Van Rensselaer (2014) mentions climate change 

and includes specific sea-level rise projections in his calculation of vulnerability. Consideration of 

changes to temperature, precipitation patterns and wind were included in Daly’s (2013) vulnerability 

assessment of Skellig Michael and Brú na Bóinne (see also Grossi et al. 2007; Westley et al. 2011; 

Chadwick-Moore 2014). In contrast, while acknowledging that climate change may increase the 

vulnerability of archaeological and heritage sites, several studies only based the VI on historic or 

observed rates of erosion or sea-level rise, rather than projected future change (e.g. Daire et al. 

2012; Reeder et al. 2012; Westley and McNeary 2014; Reeder-Myers et al. 2015). Several studies did 

not even acknowledge the impact that climate change is likely to have on the threats posed to 

archaeological heritage (e.g. Accardo et al. 2003; Fitzpatrick et al. 2013; Minos-Minopolous 2015). 

Objects 

The majority of the studies focus specifically on archaeological ‘sites’. Reeder et al. (2012, p.189) 

define archaeological sites in their study as encompassing features from “large villages and 

workshops to fragmented shell middens and lithic scatters”, while Daire et al. (2012, p.175) state 

that their research looks at sites comprising “all remains of built structures of anthropogenic origin 

or materials transformed by human activities.” Three studies (Robinson et al. 2010; Chadwick-Moore 

2014; Westley and McNeary 2014) only define sites as the records included in archaeological 

databases. All other studies provided no definition for archaeological ‘site’, despite this being the 

focal level of their VIs (e.g. Fitzpatrick et al. 2006; Westley et al. 2011; Chadwick-Moore 2014; Van 

Rensslelaer 2014; Reeder-Myers 2015). Therefore, there is evidently no single agreed meaning for 

‘site’ as the object of archaeology vulnerability assessments. There have been important debates 

within archaeology over what constitutes a ‘site’ and how it may be delineated from the surrounding 

landscape. Often, the term ‘site’ is used to refer to a concentration of evidence of human activity, 

such as monuments, shipwrecks, or large clusters of artefacts, but it is not used for single find-spots 

(Dunnell 1992). Dunnell (1992, p.29) argues that ‘sites’ are “not really things or qualities, but rather 

concentrations or quantities.” Using this argument, the archaeological record could be seen not as a 

collection of individual sites, but as a more or less concentrated distribution of evidence of human 

activity across the Earth’s surface (Dunnell and Dancey 1983). This raises questions about how 

‘sites’, as concentrations of evidence of activity, can be assessed in isolation from the surrounding 

landscape in which human activity also took place (Cooney 2003). The results of these studies can 

only indicate which ‘sites’ or archaeological features are at more or less risk of damage from a 

certain threat. They cannot provide information on how the historic character of the landscape may 
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be affected by impacts of climate change. Furthermore, only known, recorded sites can be included 

in vulnerability assessments. This excludes features in areas that have not yet been systematically 

surveyed or where archaeological material is masked by overlying sediments.  

Equations 

VIs are calculated with equations that incorporate the scores given to each of the indicators. A 

commonality between studies using VIs is that they give each of the variables a score on the same 

scale, for instance between 1 and 5 or 0 and 1 (e.g. Thieler and Hammar-Klose 2000; Torresan et al. 

2008; Balica et al. 2009; Daire et al. 2012; Chadwick-Moore 2014; Daly 2013; Reeder-Myers 2015; 

Nguyen et al. 2002). Using the same scale allows quantitative and qualitative indicators such as the 

distance to coastline and geomorphology to be compared more easily and combined into a single 

vulnerability score (McLaughlin and Cooper 2010; Reeder et al. 2012). It is also important to note 

that the relationship between a variable and vulnerability may not be linear; Reeder et al. (2012) 

note that vulnerability decreases exponentially as distance from the coastline increases. This is 

exemplified by the fact that there is a greater difference in the vulnerability of sites 1m and 100m 

from the shore than sites 1000m and 1100m from the shore. Therefore, the value represented by 

each score given to an indicator may not increase linearly. 

There are two main approaches used to calculate the overall VI score: unweighted indicators and 

weighted indicators. 

 Unweighted Indicators 

The equation most commonly employed in unweighted VIs is: 

𝑉𝐼 = √
𝑎 × 𝑏 × 𝑐 × 𝑑 × 𝑒

𝑛
 

n being the number of indicators included, in this case five (a-e) (see Thieler and Hammar-Klose 

2000; Pendleton et al. 2005; Alexandrakis et al. 2010; Van Rensselaer 2014). This calculates the 

square root of the geometric mean, which is used when comparing different items or systems when 

each item has multiple properties that are measured on different numerical scales, as it normalises 

the values on different scales. This type of equation can provide a useful way to compare the 

vulnerability of archaeological sites where the level of protection is measured between 0 and 5 but 

the exposure to flooding is measured between 1 and 10, for example. If the arithmetic mean was 

used, the exposure to flooding variable would be given relatively greater weighting than the level of 

protection variable (Transaction Processing Performance Council 2019) 
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Chadwick-Moore (2014) uses a simpler approach: they use three indicators and rank each between 0 

and 3. The sum of these was the overall vulnerability score (between 0 and 9). Using the score given 

to each indicator without weighting some as more important than others has the benefit of being 

straightforward, so different variables could be included or removed easily (Reeder et al. 2012). 

However, there is a risk that the results of this approach could be skewed by a variable that is of 

lower relative importance, while the influence of others may be underrepresented (McLaughlin et al. 

2002). Vulnerability scores calculated using an unweighted index by Diez et al. (2007) for two coastal 

areas near Buenos Aires differ dramatically despite the areas having very similar geomorphology and 

sea-level rise. The authors suggest that the index used was too sensitive to changes in individual 

indicators, in this case mean wave height, which may have been avoided through weighting.  

Weighted Indicators 

Some studies aim to more accurately represent the relative importance of some indicators over 

others by weighting them differently when calculating the VI score. Nageswara Rao et al. (2008) use 

the following equation: 

 

𝑉𝐼 = 4𝑔 + 4𝑠 + 2𝑐 + 𝑡 + 𝑤 

(g = geomorphology, s = coastal slope, c = historic shoreline change, t =spring tidal range, and w = 

significant wave height) 

The weightings indicate that the researchers consider geomorphology and slope to be the most 

important, followed by the historic rate of shoreline change, with tidal range and wave height as the 

least important indicators of vulnerability (see also Diez et al. 2007; Ortiz et al. 2014). 

Weighting different variables allows those with a greater influence to be taken into account, to 

prevent their impact from being under-represented (Reeder et al. 2012). Although Daire et al. (2012) 

use unweighted indicators in their research, they suggest that a good approach may be to weight 

certain variables differently based on the specific study area. For example, in areas with higher rates 

of coastal retreat, the ‘distance to coast’ variable should be weighted more highly than in areas with 

little erosion. Many studies avoid using weighting methods due to a lack of knowledge about which 

indicators should be weighted above others, and by how much. While it is thought that weighted 

variables can make the VI more accurate, the judgements about which indicators to weight above 

others are subjective and may be based on incomplete data, and therefore do not necessarily 

increase the reliability of the VI score (Daly 2013; Nguyen et al. 2016). 
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While the studies already discussed in this section use only one equation to calculate the VI score, 

others use more than one. Reeder-Myers (2015) developed the following equation to calculate the 

vulnerability of the shoreline (1), and a second equation (2) that calculates the vulnerability of the 

archaeological site using the result of (1) as well as other indicators. 

(1):  𝑆ℎ𝑜𝑟𝑒𝑙𝑖𝑛𝑒 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
4(𝑢+𝑣+𝑤)+3(𝑥)+2(𝑦+𝑧)

6
 

(u = geomorphology, v = historic sea-level rise, w = coastal slope, x = historic erosion rates, y = wave 

height, z = tidal range) 

(2): 𝑆𝑖𝑡𝑒 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
2(𝑎+𝑏)+3(𝑐)+2(𝑑)

3
 

(a = distance to the shoreline, b = elevation, c = shoreline vulnerability (Equation 1), d = land-use) 

A similar approach was taken by Reeder et al. (2012). The benefit of using two equations is that it 

simplifies the equation needed to calculate the vulnerability of each archaeological site, as the 

vulnerability of the shoreline can be worked out for a larger area.  

Balica et al. (2012) also use more than one equation to calculate the overall VI. They calculate 

separate hydrogeological, social, economic and politico-administrative VIs based on separate 

indicators, and use the sum of these as the total VI score (see also Minos-Minopolous 2015). This 

approach could use either unweighted indicators (see Balica et al. 2012) or weighted indicators (see 

Minos-Monipolous 2015), but benefits from the fact that comparisons can be made between the 

types of vulnerability experienced in different areas, rather than only an overall score. This can 

reveal differences in the driving forces of vulnerability at different locations, and facilitate an 

understanding of the most suitable management approaches (see also McLaughlin et al. 2002; 

Grossi et al. 2007). 

Some authors investigate the data further by generating a vulnerability ‘percentage’, rather than just 

using the raw vulnerability score produced by their VI equation. For example, McLaughlin et al. 

(2002) and McLaughlin and Cooper (2010) normalised the results of their VIs using the following 

equation: 

𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =  
𝑉𝐼 𝑠𝑐𝑜𝑟𝑒 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑐𝑜𝑟𝑒

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑐𝑜𝑟𝑒 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑐𝑜𝑟𝑒
× 100 

Using this equation, in the study by McLaughlin and Cooper (2010), seven variables were ranked 

between 1 and 5, so the possible scores for the VI range from 7 to 35. If a site scored 15 on its VI, the 

vulnerability percentage would be: 
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15 − 7

35 − 7
 × 100 =  

8

28
× 100 = 28.6% 

Normalisation of the results makes it easier to merge the results of indices, for instance in studies 

that combine several indices into an overall score. Within the studies reviewed this is an uncommon 

approach, with most using the raw value obtained from the VI as the vulnerability score. 

Limitations  

There are some limitations to the use of VIs for archaeology. Firstly, desk-based VIs are often used to 

increase the speed at which the vulnerability of sites can be assessed. Westley et al. (2011) argue 

that this may neglect crucial aspects of certain sites that render them more or less vulnerable than 

the chosen variables suggest. Therefore, they suggest that site-specific assessment should also take 

place as part of the VI.  

Another limitation is that some VIs use variables that have the potential to change in the near 

future, such as the proximity to development or the visitor numbers (e.g. Minos-Minopoulos 2015). 

Although this acknowledges the dynamic nature of vulnerability, it means that the results for a 

particular area are only accurate in the short-term. The approach taken in this thesis incorporates 

threats that are changing, for instance sea-level rise and flood risk, which are projected to increase 

in the future. The vulnerability of areas in this thesis is based on the projected sea-level rise and 

flood risk for 2100, rather than the present conditions. This takes a longer time-frame into account, 

which is useful for informing proactive, rather than reactive, adaptation. It is acknowledged, 

however, that projections for future climate and weather conditions may change in the future if new 

knowledge or modelling techniques are developed.  

A wide variety of methods and variables are used across VIs in archaeology and other disciplines. The 

inclusion of different indicators of vulnerability in different studies makes it difficult to compare the 

vulnerability of sites between studies. This means that the vulnerability of the subject matter is only 

calculated in relative terms within the scope of each study. This is difficult to resolve, as different 

conditions and forcing factors exist in each study area, so making a VI that was applicable to all areas 

would either be too detailed to be of any practical use or too general to generate meaningful results.   

VIs can be a useful tool for informing stakeholders about the vulnerability of different areas or sites, 

as the results they produce are simple and clear, facilitating comparisons between phenomena. 

However, the quantitative appearance of the VI score can hide important qualitative judgements 

introduced by the researchers. Firstly, the way that vulnerability itself is defined involves value 

judgements, as it is based on cultural perceptions of what constitutes ‘damage’, and how much 

damage is acceptable (McLaughlin et al. 2002; Barnett et al. 2008). Decisions regarding what 
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indicators should be included or omitted, and how each should be weighted (or not) are also 

implicitly subjective, even when made by experts (Vincent 2004; Nguyen et al. 2016). This is 

obscured by the transformation of these value judgements and decisions into quantitative data, 

which may lead to indices being treated as neutral ‘fact’ rather than indicators based on human 

values. Subjectivity is not necessarily negative, but it is important to understand the transformation 

of data from qualitative to quantitative through the creation of indices, and to take a critical 

approach to the data produced. It is also important to note that this subjectivity is not necessarily an 

insurmountable limitation of VIs; as long as it is understood that a VI is “a numerical expression of 

multiple subjective judgements” rather than an empirical measure (Barnett et al. 2008, p. 113).  

Finally, the focal level of all studies reviewed was the ‘site’, whether or not that was defined within 

the study. This causes several issues, which are discussed in 7.2.5, such as a lack of coverage in areas 

that have not been systematically surveyed, a lack of clarity about what constitutes the ‘sites’ 

included, and a lack of recognition of the historicity of the landscape as a whole. The scale of 

archaeological research and investigation influences the scale of archaeological management. 

However, there is currently a mismatch between the scale of the impacts of climate change, and the 

scale at which archaeological management is undertaken. For example, coastal erosion around the 

UK is increasing as a result of climate change. Archaeological research and management of erosion 

risk is most commonly directed at individual sites. Even when research covers a stretch of coastline, 

the focal level is still on the individual archaeological sites along that coastline, rather than the 

historic coastal landscape (e.g. Daire et al. 2012; Reeder et al. 2012; Chadwick-Moore 2014; Van 

Rensselaer 2014; Westley and McNeary 2014).  There are several limitations with managing discrete 

archaeological sites in the face of climate change. This approach makes it difficult to appreciate sites 

in their contexts and in their relationships with other sites and the surrounding landscape. It 

implicitly assumes that archaeological data are confined to discontinuous spaces within a landscape 

and obscures the historical-cultural importance of the landscape as a whole (Turner 2006; Bender 

2009a). The whole landscape can include the intangible values held by people, such as connections 

with local heritage, the maintenance of traditional land-use practices, and senses of place. 

To address this limitation, the VI that was created for this project used the LCAs as the focal level, 

rather than looking exclusively at sites or features within the landscape. This is a novel approach to 

vulnerability assessment within archaeology, and addresses the issue of the historic landscape being 

excluded from other VIs.  The results of the landscape-scale VI create a continuous map of 

vulnerability for the study area, rather than only measuring the vulnerability of discrete points 

within the historic landscape.  
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7.2.3 Summary 

As shown by this review, there are many ways in which VIs have been developed and used with 

regard to coastal archaeology, among other subjects. The approaches taken, and the results they 

produce, are influenced by many factors including the spatial extent and resolution of the study, the 

available datasets, and the threats under examination (Nguyen et al. 2016). It is important to 

acknowledge that these choices can influence the use of the VI. Both Barnett et al. (2008) and 

Torresan et al. (2008) argue that VIs should be addressing issues at a high-resolution and smaller 

spatial scale, as the more general results of broad-brush studies are not meaningful for informing 

management decisions. However, vulnerability is influenced by processes and systems that operate 

at a wide range of spatial and temporal levels, so it may be prudent to consider more than one 

observational scale within vulnerability assessments (Turner et al. 2003). The information gathered 

during this literature review was used to inform the development of a VI that focuses on the historic 

landscape (see 7.4) 

7.3 Climate Change Projections for the Dysynni Valley 

This section provides an overview of the various climate change projections that have been made for 

the study area. The main sources of data used are the UKCP18 projections (Met Office 2018) and the 

IPCC AR5 projections (Church et al. 2013; Collins et al. 2013; Kirtman et al. 2013), as they are the 

most highly regarded climate modelling projects, although other sources are also included. 

Projections vary between sources because different studies use different climate model ensembles 

with varying geographical resolution. The climatic changes that are included in this review are 

limited to temperature change, sea-level change, and precipitation change, as these three factors 

will drive the majority of the projected meteorological changes, such as increased storminess, 

drought, and flooding. The results of this review were used to determine the climate projection 

values that were used in this thesis for the development and application of a VI to the Dysynni 

valley.  

As climate model projections produce a range of results, this thesis mainly focuses on the ‘central 

estimate’, which is the value at the 50th percentile, or the value which has a 50% chance of being 

exceeded, and a 50% chance of not being met (UK Climate Projections 2014b). 
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7.3.1 Variable 1: Temperature Change 

Temperature change projections indicate that the impacts of climate change are likely to vary 

seasonally. Although temperature is projected to increase annually, the rate of increase is higher in 

the summer than in winter (see Table 7.1). This could result in an increase in the magnitude and 

frequency of heatwaves (Jones et al. 2010). UKCP18 seasonal air temperature anomaly projections 

for RCP6.0 and RCP8.5 for grid reference 262500, 312500 (Figure 7.1) are synthesised in Figure 7.2 

(Met Office 2018). These indicate that, for the Dysynni valley area, the mean winter temperature is 

projected to increase between 2 - 4°C by the end of the 21st century, and the mean summer 

temperature is projected to increase around 4 - 6 °C, depending on the emission pathway. It is 

noteworthy that even under a moderate emissions scenario, temperature is projected to exceed the 

1.5°C target defined by the United Nations Framework Convention on Climate Change (UNFCCC) in 

the Paris COP21 Agreement (UNFCCC 2016) (see Figures 7.2 and 7.3).  

Figure 7.1. The blue square indicates the location of grid reference 262500, 312500, the area 

included in the UKCP18 temperature change projections. The area covers the majority of the 

Dysynni valley study area (red square). Copyright Maproom 2019 (left) Copyright Met Office 2019  

(right). 
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Figure 7.2. UKCP18 temperature anomaly projections for summer (A) and winter (B) for 2000-2100 

using a baseline of 1981-2000, for the grid reference outlined in Figure 7.1. Each graph includes 

RCP6.0 and RCP8.5 scenarios, and the upper (95th percentile) and lower (5th percentile) bounds of 

likely projections, as well as the central estimate (50th percentile). Data downloaded from the UKCP18 

user interface.  

B 

A 
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7.3.2 Variable 2: Sea-Level Rise 

Table 7.2 summarises the wide range of sea-level rise projections that have been generated by 

different models. Such a variety of projections makes using this information in decision-making 

difficult, for instance when designing coastal defences. The H++ scenario in Table 7.2 refers to an 

extreme but physically plausible potential scenario developed for the UKCP09 and UKCP18 

projections, in which ice-sheets melt more quickly than initially expected (Jenkins et al. 2009; 

Humphrey et al. 2017). The aim of this scenario was to provide information on potential extreme 

cases for those involved in contingency planning (ibid.). However, rates of melting in Greenland and 

Antarctica have increased recently, leading to an acceleration of global sea-level rise (Weeman and 

Lynch 2018). Across the more ‘usual’ climate scenarios, the projected relative sea-level rise ranges 

from +0.48m to +0.905m, and the likely range of sea-level rise for the study area according to the 

UKCP18 RCP8.5 projections is between +0.625m and +0.785m (see Figure 7.3). The Environment 

Table 7.1: Temperature Change Projections for the 21st Century 

Category Scenario Temperature 
change 
(central 
estimate °C) 

Time 
frame 

Baseline Region Source 

Mean 
winter air 
temperature 
anomaly 
 

RCP6.0 
(moderate) 

+2.7 2080-99 
 

1961-
1990 

West 
coast of 
Wales 
 

UKCP18 
Met Office 
2018 RCP8.5 (high) +3.8 

Mean 
summer air 
temperature 
anomaly 
 

RCP6.0  +4.9 
 

2080-99 1981-
2000 

West 
coast of 
Wales 

UKCP18 
Met Office 
2018 RCP8.5  +6.2 

 

Mean 
annual air 
temperature 
anomaly 

RCP8.5  +3.4 - 6.2 2081-
2100 
 

1986-
2005 
 

Global 
land 
mass 
 

IPCC AR5 
WG1: Collins 
et al. 2013 

RCP6.0 +1.8-4.1 

SRES A1B, but 
with a 
radiative 
forcing target 
of 2.9Wm-2 in 
2100. RCP2.6, 
a low-
emission 
scenario) 

+2-3 2070-
2099 

1961-
1990 

UK ENSEMBLES 
Royer et 
al.2009 

 



129 
 

Agency (2017) states that coastal flood risk assessments should allow for a sea-level rise of 0.99 - 

1.14m by 2115, depending on location. 

As well as an increase in relative sea level, UKCP18 projections indicate that extreme high-water 

levels will increase faster than the rate of sea-level rise (See Figure 7.4). In Abersoch (on the Llŷn 

peninsula) in 2017, a 1-in-1000 year extreme high water level was +4.13m aOD, but the UKCP18 

projects a 1-in-1000 year extreme high water level of +5.266m aOD for Barmouth (four miles north 

of the study area) in 2100, an increase of +1.136m (see Figure 7.4) (NRW 2015b; Met Office 2018). 

This is significantly greater than the projected rate of sea-level rise. As a result, coastal defences 

designed to protect against water levels of a certain return period will no longer protect against 

events of that magnitude, even if defences are enhanced in line with the rate of sea-level rise. 

Assuming a 2°C temperature rise, the Committee on Climate Change project that on the mid-west 

coast of England and Wales, vertical sea walls with a standard of protection (SoP) of 1-in-200 year 

event will have a SoP of 1-in-17 years by the 2080s (See Table 7.3; Sayers et al. 2015). Therefore, 

coastal defences in many areas are likely to become obsolete in the coming century. 

Table 7.2: Projected Change in Relative Sea Level 

 

Projected 
change 
(Central 
estimate m) 

Scenario Time 
frame 

Baseline Region Source 

+0.93-1.9 
(likely limit) 

H++ 2100 1961-1990 UK UKCP09 
(Lowe et al. 
2009) 

+0.83 
 

RCP8.5 2115 1981-2000 Dyfi Estuary UKCP18 
(Met Office 
2018) 

+0.905 SRES A1F1 
(high) 

2095 1990 South UK 
 

Defra 
(Lowe et al. 
2009) 

+0.547 RCP4.5 (low-
moderate) 

2115 1981-2000 Dyfi Estuary UKCP18 
(Met Office 
2018) 

+0.4-0.82 RCP8.5 2100 1971-2010 Global IPCC AR5 
(Church et al. 
2013) 

+0.99 Climate 
change 
allowances 
for flood 
defences 

2115 
 

1990 
 

North West 
UK 

(Environment 
Agency 2017) 
 +1.14 

 
South West 
UK 
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Figure 7.3. UKCP18 sea-level anomaly projection for RCP8.5 for the Dysynni coastline for 2007-

2100 based on a 1981-2000 baseline. Graph downloaded from the UKCP18 user interface. 

Table 7.3: Changes in the standard of protection of coastal defences by 2080s assuming a 2°C 

temperature rise (adapted from The Committee on Climate Change: Sayers et al. 2015) 
Table 6.3: Changes in the standard of protection of coastal defences by 2080s assuming a 2°C 
temperature rise (adapted from The Committee on Climate Change: Sayers et al. 2015) 

Location East coast South-east South-west Mid-west North-west 

Present day 
SoP 

Future SoP 

Coastal defence type: Vertical Wall 

10 3 4 3 3 3 

50 13 4 23 3 16 

100 20 8 61 5 32 

200 53 20 153 17 48 

Coastal defence type: Embankment 

10 4 4 3 3 3 

50 13 4 23 9 16 

100 33 6 61 17 32 

200 93 10 123 26 96 

Coastal defence type: Shingle Beach  

10 4 4 3 3 3 

50 13 4 23 9 16 

100 40 6 61 26 32 

200 106 10 123 34 80 
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7.3.3 Variable 3. Precipitation Change 

The precipitation change projections in Table 7.4 show that, across different climate models, mean 

precipitation is expected to increase in winter and decrease in summer. The range of projections is 

wide, but the UKCP18 central estimate for RCP8.5 projects a 30-40% decrease in summer rainfall, 

and a 20-30% increase in winter rainfall in the study area (see Figure 7.5). It is thought that the 

precipitation patterns will also involve more intense events, increasing the risk of flash flooding 

(Kirtman et al. 2013).  The Committee on Climate Change predict that the return period of run-off 

events would almost half by 2100 if intense rainfall increased by 20% (Sayers et al. 2015). This means 

that run-off events would be almost twice as likely in 2100 compared to 1990. The IPCC projects 

that, under a medium emission scenario, global mean run-off would increase by 6 - 8% by 2035, but 

that the increase will be greater in mid-high latitudes, as the tropics and subtropics record a decline 

(Kirtman et al. 2013). Therefore, it is likely that run-off will increase in the study area at a greater 

rate than the global projected mean, particularly during the winter. 

 

  

Figure 7.4. UKCP18 projections for extreme still water return levels at Barmouth in 2100 under the 

RCP8.5 scenario. Graph downloaded from the UKCP18 user interface. 
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The projected reduction in rainfall during the summer, combined with the aforementioned 

temperature rise, is likely to result in an increase in the frequency and intensity of droughts in the 

UK (Watts et al. 2015). This may cause desiccation and destabilisation of soils, further increasing the 

susceptibility of the soils to pluvial erosion (Abdalla and Smith 2016). 

 

Figure 7.5. UKCP18 projection for RCP8.5 for seasonal average precipitation rate anomaly (%) for 

Summer (A) and Winter (B) in 2070-2099 in west Wales, using baseline 1961-1990. Study area is 

demarcated in red.  

A 

B 
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7.3.4 Projections used in this thesis 

As evidenced by Tables 7.1-7.4, there are a wide range of climate change projections due to 

uncertainties surrounding both future anthropogenic activity, and the subsequent reaction of the 

climate system. Therefore, for the purpose of this thesis, it is more important to be informed by the 

trends indicated across all models and scenarios for which there is a high certainty. This section 

details the climate change projection values that were used in the VI developed in 7.4 

Temperature Change 

All models indicate that temperature is projected to rise during the 21st century, with a greater 

increase in summer than in winter. Rather than base the vulnerability assessment on specific 

temperature values, the vulnerability assessment in this thesis focuses on the vulnerability of 

features to a general rise in temperature and increase in heatwave frequency. The change in 

summer temperature will have a more marked effect on desiccation and drought conditions, while 

Table 7.4: Precipitation change projections 

Category Scenario Change 
(Central 
estimate) 

Time 
frame 

Baseline Region Source 

Mean 
winter 
precipitation 

RCP8.5 
(High) 

+20-40% 
 

2061-
2080 

1981-2000 West 
coast of 
Wales  

UKCP18 
(Murphy et al. 
2018) 

RCP8.5 +0-10% 2081-
2100 

1981-2005 UK IPCC AR5: (Collins 
et al. 2013) 

Medium, 
i.e. A1B 

+33%  2080s 1961-1990 West 
coast of 
UK 

UKCP09 
Watts et al. 2015 

RCP4.5 +11% ±3% 2100 1986-2005 Northern 
Europe 

IPCC AR5 
Christensen et al. 
2013 

Mean 
summer 
precipitation 
 

Medium i.e. 
SRES A1B 

-40%  2080s 1960-1990 South UK UKCP09 
Watts et al. 2015 

RCP8.5 -30 - -50% 2061-
2080 

1981-2000 West 
coast of 
Wales  

UKCP18 
Murphy et al. 2018 

RCP8.5 -10 - -20% 2081-
2100 

1981-2005 UK IPCC AR5: Collins 
et al. 2013 

Mean run-
off 

560ppm 
atmospheric 
CO2 

+6-8%  2035 1750 Global IPCC AR5: Kirtman 
et al. 2013 

1 in 20 yr 
flood peak 

Medium i.e. 
SRES A1B 

+28% 2080s 1960-1990 West 
Wales 

Kay et al. 2014 
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warmer winters and fewer frost days may have significant impacts on species phenology, range and 

distribution, and ultimately on the structure of ecosystems (Jones et al. 2010; Watts et al. 2015). 

Sea-level Change 

The sea-level rise projection of +0.83m by 2115 (See Table 7.2) was used in this thesis to identify 

areas at risk of flooding and inundation. There are a wide range of sea-level rise projections for the 

study area and at larger spatial scales, but this projection is the highest-resolution for the study area, 

and the most recent projection available. The RCP8.5 scenario is used rather than the more modest 

RCP4.5 projection, as the precautionary principle is recommended for coastal management and 

climate change adaptation (European Parliament and Council 2002; McKenna et al. 2008). 

Precipitation Change 

As with temperature change, the models reviewed have significant variations in the amount of 

precipitation change, but they all follow the same trends. There is projected to be a decrease in 

summer precipitation and an increase in winter precipitation for all models and scenarios. The 

vulnerability assessment in this thesis focuses on these trends, rather than on a single specific 

projection. The increase in winter precipitation is likely to result in an increase in waterlogging and 

rising groundwater levels. It is also projected to increase run-off and therefore gully erosion (Zhang 

et al. 2012). In contrast, the projected decrease in mean summer precipitation may result in longer 

and more frequent drought periods (Watts et al. 2015). Combined with an intensification of high 

magnitude rainfall events, this will increase the risk of soil erosion (Herle et al. 2009). Heavy 

precipitation events also have the potential to cause flash flooding and cause rivers to break their 

banks. 

7.3.5 Summary 

This section provided a brief overview of the various climate change projections for the study area, 

and used them to determine the climate projection values that were used in this thesis. Climate 

modelling cannot produce single value projections, or provide complete certainty for the projections 

generated. However, basing the vulnerability assessment on a range of sources increases the 

reliability of the results. The climate projection values identified above were used in the vulnerability 

assessment for archaeological features and historic landscapes in the coming chapters. 
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7.4 Development of the Vulnerability Index Methodology 

This section details the development of a landscape-scale VI for assessing the vulnerability of the 

historic landscape. This VI was developed to address the limitations of site-focussed VIs as discussed 

in 7.2.7, and generate a methodology that can be applied to other landscapes through the use of 

HLC. Firstly, the landscape-scale VI methodology is described and justified, with a detailed 

description of the variables and threats considered. A logistical and technological test was carried 

out to test the methodology and establish the usability and suitability of the techniques and 

technologies chosen. The methods, results and implications of this test are discussed in 7.4.2.   

7.4.1 Development of the vulnerability index 

The landscape-scale VI is divided into two sections, each with a different equation. Firstly, the 

vulnerability of LCFs is calculated using a set of variables that assess their sensitivity, resilience and 

exposure to climate change impacts (Stage 1). The second VI equation (Stage 2) works at the level of 

the LCA, and calculates the vulnerability of the LCAs using the vulnerability of the LCFs (as calculated 

in the first equation), as well as a range of variables that relate to the exposure of the LCA to climate 

change impacts. This two-stage VI is influenced by that developed by Reeder et al. (2012) and 

Reeder-Myers (2015), as it can calculate the vulnerability of both small and large areas and considers 

the way that the vulnerability of one can influence that of another. Stage 1 addresses LCFs as the 

lower level of the Hierarchy Theory, while Stage 2 makes the LCAs the focal level of this VI. Figure 7.6 

provides a visual representation of how this VI fits into the Hierarchy Theory framework. This 

acknowledges the influence that LCF vulnerability has on the overall LCA vulnerability, as the lower 

level of the Hierarchy Theory can act as mechanisms and initiating conditions for the focal level, as 

well as just characterising components (Wu 2013). 
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Vulnerability of Landscape Character Features 

It is acknowledged that there are a multitude of variables that would measure the vulnerability of 

LCFs to climate change impacts. McLaughlin and Cooper (2010) argue that it is not necessary to 

consider every variable for which data exists, as some of them are highly correlated, and so would 

likely be measuring the same phenomena. For instance, the susceptibility of the LCF to predicted 

precipitation change is likely to be closely related to the susceptibility of the feature to storminess, 

as the impact of storms includes heavy precipitation. In addition, Lane et al. (1999) state that 

variables used in VIs should be “measurable, accessible, transferable, easy to be applied in practice, 

Figure 7.6. Visual representation of how the VI developed in Chapter 7 fits into the 

Hierarchy Theory framework 

Level Above 

Focal Level 

Level Below 
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and not redundant”. Therefore, the variables used in this study were chosen on the basis of their 

accessibility and their transferability between regions. Five variables were identified for the VI for 

the LCFs: current level of preservation, resistance of the remains, resistance of the local substrate, 

the susceptibility of the feature to projected precipitation change, and the susceptibility to projected 

temperature change in the 21st century. These variables and the scoring system for Stage 1 are 

detailed in Table 7.5. 

Variables 

Current Level of Preservation 

The current level of preservation of a feature measures how much damage it has already succumbed 

to. This includes whether the site is buried or exposed, and how much of the site remains extant. 

The level of preservation indicates which sites have been damaged due to past or current 

environmental conditions or management practices, and which may therefore be more vulnerable 

to further damage than those which have remained well preserved. 

Resistance of the Remains 

The resistance and mechanical strength of the constituent material of the LCFs is an important 

consideration. LCFs made of organic remains, earthworks, or living features are likely to be more 

susceptible to weathering or erosion compared to brick or stone constructions. Features that are 

currently used and managed, such as historic buildings and field boundaries, have greater resilience 

to environmental threats than unmanaged remains, as they may be protected and repaired. Finally, 

archaeological features that are buried are less exposed to any impacts of climate change compared 

to those that are above ground.  

Resistance of the Local Substrate 

Resistance of the local substrate can influence the vulnerability of archaeological remains as features 

located on less resistant deposits, such as unconsolidated sediments or sand, are at greater risk of 

being undermined or disturbed than those positioned on resistant bedrock. Disruption of the 

context of features will have a negative impact on the survival of archaeological information, even if 

the features themselves have not been eroded. An important objective with this thesis is to identify 

the absolute vulnerability of LCAs to climate change, rather than their relative vulnerability. As 

previously discussed, several studies exclude variables such as geology from the VIs as it is unlikely 

for the geology to vary significantly over the study areas, and therefore it does not influence the 

relative vulnerability of the sites studied. This is only suitable if the aim is to compare sites within a 

single, geologically homogeneous study area. This approach does not allow the VIs to be compared 
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across different study areas. Nor is it appropriate for areas with significant geological variation, for 

example where differences in superficial deposits can influence vulnerability to erosion. 

Susceptibility to Projected Temperature Change 

As the focus of this VI is on the threat of climate change in particular, it was important to include 

variables that specifically address climate change impacts. As climate models predict that sub-zero 

temperatures will become less common during winter months in the future, the main threat of 

temperature change will be caused by rising summer temperatures (Murphy et al. 2009; Jones et al. 

2010; Kirtman et al. 2013). LCFs that are most sensitive to rising temperatures include organic 

remains, particularly those preserved in waterlogged conditions, which may dry out in the future. 

Living features are sensitive to both the damaging effects of higher temperatures and heatwaves, as 

well as secondary impacts such as invasive species and wider ecosystem effects. Brick and stone-

built structures are the most resilient to temperature changes, so are less likely to be affected by this 

aspect of climate change.  

Susceptibility to Projected Precipitation Change 

As discussed in 7.3, precipitation in the study area is projected to increase in the winter and 

decrease in the summer, with the rain that does fall occurring in more intense events. This is likely to 

exacerbate the impacts of increased winter precipitation, such as soil erosion and gully erosion. LCFs 

located on steep slopes and in gullies may therefore become more exposed to erosion. The 

projected decrease in precipitation during summer months is likely to result in more frequent and 

severe droughts, to which LCFs such as ancient woodland, parks and gardens, and organic remains, 

are particularly sensitive. To generate this score, the feature type was combined with the flow 

accumulation at its location. Flow accumulation is a tool in GIS which indicates where water flowing 

down a slope will accumulate based on the topography, for instance in gullies and valley bottoms. 

Areas with greater flow accumulation are therefore areas that are more likely to experience torrents 

and gully erosion during high rainfall events (Mitasova et al. 1996; Zlocha and Hofierka 2014).  

Stage 1 Equation 

Each LCF was given a score between 1 and 5 for each variable, as this was a common scoring method 

used in the studies reviewed (e.g. Thieler and Hammar-Klose 2000; Reeder-Myers 2015; Nguyen et 

al. 2016).  

The vulnerability score for each LCF (VLCF) is calculated using the following equation: 

𝑉𝐿𝐶𝐹 =
𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒

5
 

 



139 
 

Where a = level of preservation, b = resistance of the remains, c = resistance of the local substrate, d 

= susceptibility to projected temperature change, e = susceptibility to projected precipitation 

change. The equation used here calculates the arithmetic mean rather than the geometric mean, 

which is a common approach in other VIs (see 7.2.2). The arithmetic mean was chosen because all 

variables were scored on the same scale (1-5), and the VLCF score also had to score between 1 and 

5. This is because the VLCF scores were used in a second equation for Stage 2 in which the variables 

are also scored between 1 and 5. 

 

Variable Classes Score 

Level of 

preservation 

no visible damage/buried 1 

Some small damage or visible weathering to structure.  

Buried archaeological feature slightly exposed 
2 

Structures show structural damage and weakness  

Buried features are exposed and show signs of weathering,  
3 

Significant weathering damage, little evidence remains of the features 4 

Extremely damaged, ephemeral remains 5 

Resistance of 

the remains 

Solid built feature, actively used, managed or protected.  1 

Made of resistant materials such as rock/stone, but is less fixed i.e. a 

drystone structure 
2 

Made of less resistant materials, such as organic remains or earthwork, 

but remains buried or has a small amount of protection 3 

Feature or site characterised by a collection of artefacts rather than a 

structure, so lacking foundations. Also made of less resistant materials 4 

Features made of a less resistant or very fragile material, previously 

buried but are now exposed.  5 

Table 7.5. Vulnerability Index Stage 1 variables and scoring system 
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Resistance of 

local substrate 

Feature is positioned on solid bedrock, in an area of low relief (<5°) with 

no visible weathering or erosion nearby  1 

Feature is positioned on solid bedrock in an area of medium relief (5-

15°).  Little or no visible weathering or erosion in the area. 2 

Feature is positioned on bedrock in an area of high relief (>15°), or on 

unconsolidated sediments in a low relief area. Some visible erosion and 

weathering in the vicinity 3 

Feature is positioned on or in unconsolidated sediments in a medium 

relief area, or sand in a low relief area. Visible weathering or erosion 

nearby 4 

Feature is positioned on or in unconsolidated sediments in an area of 

high relief (>15°) or sand in an area of medium or high relief. Significant 

visible erosion and weathering near the remains 5 

 Susceptibility to 

projected 

temperature  

change 

Solid built feature, made of rock or other resistant material  1 

Buried features not thought to include organic remains 2 

Organic or wet-preserved remains, but located in areas unlikely to be 

prone to desiccation, such as the intertidal zone 3 

Living features such as parks and gardens  4 

Organic or wet-preserved remains, in areas susceptible to desiccation or 

peat fires i.e. uplands 5 

Susceptibility to 

projected 

precipitation 

change  

Solid built feature, actively used, managed or protected, or made of 

resistant materials, Located in very low flow accumulation area (<20). Or 

In intertidal zone 1 

Made of resistant materials such as rock/stone, In a low flow 

accumulation area (20-50). Not affected by drought 2 

Made of resistant materials, but located in areas with moderate flow 

accumulation (51-100) or on the banks of water courses. Alternatively, 

made of less resistant materials such as earthworks or organics and 
3 
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located on unconsolidated sediments in areas with very low flow 

accumulation (<50). 
 

Made of less resistant materials such as earthworks or organics and 

located in unconsolidated sediments in areas with moderate flow 

accumulation (50-100) or on the banks of water courses/rivers 

 or made of resistant materials in areas with high flow accumulation 

(>100) 4 

Made of less resistant materials and located in valley or gully areas with 

high flow accumulation (>100) 

Organic, living or wet preserved remains susceptible to desiccation 5 

 

Stage 2: Vulnerability of Landscape Character Areas 

The main aim of this chapter is to develop an approach that assesses the vulnerability of the historic 

landscape to climate change, rather than focussing on individual sites. The second stage of the VI 

calculates a vulnerability score for the LCAs in the study area. The variables for Stage 2 used are the 

Stage 1 VI scores for LCFs that characterise the LCA (VLCF), the proportion of the LCA threatened by 

coastal, fluvial and pluvial flooding or inundation, the proximity of the LCA to an eroding stretch of 

shoreline, and the susceptibility of the soil in the LCA to erosion. These variables and the scoring 

system are detailed in Table 7.6.  

Variables 

Stage 1 VI score 

The first variable is the average vulnerability score of the LCFs that characterise each LCA (VLCF). This 

is because the vulnerability of LCAs does not depend only on their exposure and sensitivity to 

climate change impacts, but also on the way that characteristic features of each area will be 

impacted. LCAs are characterised by the presence and structure of features such as field boundaries, 

settlements and buildings, vegetation, and historic and archaeological features. While the focal level 

of this vulnerability assessment is LCAs, it still must acknowledge the influence that individual LCFs 

have on the landscape.  
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Proportion of the LCA at Risk of Fluvial and Tidal Flooding and Sea-Level Rise  

Sea-level rise and seasonal increases in precipitation both escalate the risk of flooding, particularly in 

lowland or coastal areas. In very low-lying areas, a shift in the intertidal zone may result in some 

places becoming periodically flooded and transforming into wetland such as saltmarsh. The 

subsequent change in vegetation, land-use and visual character of the area would significantly 

impact the historic landscape. Furthermore, periodic wetting and drying cycles can be particularly 

detrimental to any archaeological remains affected (González and Scherer 2006; Pokines et al. 2018; 

see Chapter 2).   

 

 

 

Variable Classes Score 

Mean vulnerability 

score of the 

features 

characteristic of 

this LCA  

1<=x<1.5 1 

1.5<=x<2 2 

2<=x<3 3 

3<=x<4 4 

4<=x<=5 5 

Proportion of the 
LCA at risk from 
fluvial and tidal 
flooding, and sea-
level rise  

<5% the LCA area at risk of sea-level rise, or at risk of flooding from rivers and 

seas by 2100 (RoFRS) 

1 

<20% threatened by any RoFRS 

high storm surge or flooding from rivers, but none threatened by sea-level rise. 

2 

 20%-50% threatened by high or medium RoFRS and <20% threatened by sea-

level rise alone. 

3 

>50% threatened by high or medium RoFRS 

 storm surges (below 5.715m OD) and river flooding, and/or 

20-50% of the LCA threatened by sea-level rise 2100 (within 2.965m OD)  

4 

>50% at risk of inundation by 2100 (within 2.89m OD) and/or >70% at high 

RoFRS 

5 

Proximity to 

unprotected 

eroding shoreline 

0% located within 100m of unprotected shoreline or in front of defences 1 

LCA has <10% of area within 100m of unprotected shoreline or in front of 

defences, or shoreline with managed retreat policy  

2 

10-50% of LCA area is within 100m away from unprotected shorelines or 

shoreline with managed retreat policy  

3 

10-50% of LCA area is located 0-50m away from unprotected shorelines or 

shoreline with managed retreat policy OR most sites (>50%) are located within 

100m of unprotected shoreline or in front of defences  or shoreline with 

managed retreat policy 

4 

>50% of the LCA located within 50m of unprotected shoreline, shoreline with 

managed retreat policy or in front of defences 

5 

Table 7.6: Vulnerability Index Stage 2 variables and scoring system 
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Proximity to Eroding Shoreline 

Shoreline erosion is projected to increase as a result of sea-level rise and increased storminess, both 

impacts of climate change (see Chapter 2). Along soft, unprotected coasts in particular, shoreline 

erosion has the potential to completely destroy and remove large areas of land, as seen on the east 

coast of England (see Dunwich case-study, section 1.3). This completely changes the character of the 

historic landscape, as well as destroying any archaeological information. The rate of shoreline 

erosion can be identified by comparing the shoreline position in historic and modern Ordnance 

Survey maps, and historic and modern aerial photographs.  

Susceptibility to Soil Erosion 

Although the resistance of the substrate was included in Stage 1 for each of the LCFs, the 

susceptibility of the whole LCA has also been included here. This is because soil erosion can 

dramatically change the character of large areas of land, even if no specific features are impacted, as 

it alters the visual character and the ability of vegetation to grow (Arnaez et al. 2011).  

Stage 2 Equation 

The equation used to calculate the vulnerability of LCA-types (VLCA) is: 

Table 7.6 cont. 

 

Variable (cont.) Classes (cont.) Score 

(cont.) 

Susceptibility of soil 

type to erosion: 

the classification 

chosen should be 

based on the most 

common soil 

characteristics for 

each LCA 

Very little risk, as soils are freely draining, relatively cohesive, and 

low relief. 

1 

One of the following criteria: 

In an area at risk of floodwater scouring or runoff  

Sandy/unstable soils at risk of wind erosion during dry periods  

Risk of sheet erosion during high-precipitation events 

Shallow soils and bare rock in places 

Risk of soil erosion due to grazing and trampling 

 Slow or impeded drainage 

 Steep slopes 

2 

Two of the above criteria 3 

Three of the above criteria 4 

Four or more of the above criteria 5 
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𝑉𝐿𝐶𝐴 =
𝑉𝐿𝐶𝐹 + 𝑓 + 𝑔 + ℎ

4
 

Where VLCF = the vulnerability score for the LCFs that characterise each LCA,  f = proportion at risk 

of flooding or inundation, g = proximity to eroding shoreline, and h = susceptibility to soil erosion   

Summary 

This section describes the development of a VI that addresses the vulnerability of the historic 

landscape to climate change. The focal level of this VI is LCAs, rather than archaeological sites. 

However, it still incorporates features within the landscape (LCFs), including archaeological sites, in 

the first stage of the index. This recognises the important role that archaeological and historical 

features play in the cultural heritage of an area, while expanding the focus to include living and 

current features, and the spaces between sites. Section 7.4.2 details a logistical and technological 

test which was undertaken to trial the techniques and technology chosen for the developed 

methodology and establish any changes that may be required. 

7.4.2 Logistical and technological test 

The fieldwork session available for the VI assessment was time-limited, so a logistical and 

technological test was designed to determine the time taken to assess features, and to identify any 

limitations or issues with the techniques and technologies chosen. Adverse weather conditions in 

late February 2018 caused the planned logistical and technological test in the Dysynni valley to be 

cancelled due to impassable roads, so the Stage 1 VI data collection methods were tested on HER 

sites in the vicinity of the author’s residence. This was sub-optimal in terms of testing the VI 

methods on the wide range of sites found in the study area, including hillforts and coastal features. 

However, a range of site types were visited (i.e. churches, earthworks, military structures), which 

allowed the technology and general methodological approach to be tested in order to identify any 

potential changes that could be made and any technical issues that may occur.  

Methods 

Twelve records from the local HER database (Peterborough City Council, n.d.) that covered a range 

of site types, including earthworks, buildings and monuments, were chosen for the logistical and 

technological test. The full list of visited features is available in Table Ap3.1 in Appendix 3.  A form 

including each of the features to be visited and each variable in the VI was created in Microsoft 

Excel, and subsequently downloaded into an iPad.  

As well as an iPad, a Garmin GPS device was used for this fieldwork to link to the iPad and provide 

location data in GIS. Although the location of each feature was provided in the HER record, this was 

often inaccurate, so the latitude and longitude of the feature was recorded using the Garmin GPS 
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device, which is accurate to 3m (Garmin 2018). This is an acceptable amount of potential error 

considering the size of many of the features, and the resolution of the Ordnance Survey maps used 

in GIS. The elevation of the features was obtained later using LiDAR data in GIS (see section 5.2.2) 

Photographs were taken at each site in order to document the preservation and appearance of the 

feature, and as a memory-aid for future study. A separate table was added to the Excel file, in which 

the photograph number, site number, orientation, and description of each photograph was logged. 

Although time consuming, this is useful for remembering which photographs are of which site, to 

avoid confusion later on in the assessment process. 

Prior to the fieldwork, point data relating to the features identified for assessment were 

downloaded onto an iPad in order to view them in iGIS. This allows the user to identify their location 

in relation to the features. When using the free version of iGIS, only vector files i.e. point, line and 

polygon shapefiles) can be downloaded and used. Although a satellite basemap is provided in the 

application when it is online, the application cannot load a basemap for any new areas while offline, 

for instance when one is in the field. The resolution of the loaded basemap can also reduce when 

offline. Therefore, an Ordnance Survey vector map was downloaded for the test study area from the 

Ordnance Survey website. This covers the whole National Grid Reference (NGR) square and includes 

a range of features such as buildings, roads, surface water, woodland, junctions, electric car charging 

points, and railways. This was too much information to load into iGIS, and caused the application to 

crash. The vector files had to be clipped to the relevant area using QGIS, and only those useful for 

navigation (roads, surface water, railways and woodlands) were downloaded into iGIS.  

Due to snow cover, Features 1 and 2 were not visible or accessible on the day of the fieldwork. 

Feature 7 could not be found in the location provided or nearby, and Feature 9 was not able to be 

distinguished from the other similar features in the vicinity. Different features took different 

amounts of time to assess. For instance, the Saxon Villas (Feature 10) were easily identifiable and 

could be assessed in 5-10 minutes. The ridge and furrow at Fletton Playing Fields (Feature 11) took 

longer to be located and identified, and the vulnerability assessment took longer, in total around 20 

minutes. Furthermore, around 10-15 minutes was spent looking for sites that were not found 

(Features 7 and 9). Overall, in 3 hours, 8 sites were assessed and 4 more were unsuccessfully sought 

out. This includes the time taken travelling to sites, either by car (Features 1-6) or on foot (Features 

7-12). This means that it took on average around 25 minutes to assess each site when travel is 

accounted for.  

To assess the Susceptibility to Projected Precipitation Change, the r.flow algorithm was used in QGIS, 

which uses a DEM to construct flowlines downhill from each cell in order to identify areas where 
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flowlines accumulate (Heywood et al. 2011). The point sampling tool was then used to extract the 

flow accumulation data for each of the HER records.  

Superficial and bedrock geology information was downloaded from Digimap, where it is freely 

available with license. This information indicates which sites are located on unconsolidated 

sediments, and which are positioned on harder substrate. This was used to address the variable 

Resistance of Local Substrate.  

Results 

The Stage 1 scores for each of the features visited during the logistical and technological test are 

provided in Table 7.7. A breakdown of the scores given for each variable at each feature are 

provided in Appendix 3 Table Ap3.2. The initial results of the logistical and technological test suggest 

that the categories are skewed towards giving low-vulnerability results. However, the VI has been 

developed with the Dysynni valley in mind, which has many steep slopes and areas at risk of gully 

erosion during high-precipitation events. In contrast, the area that the logistical and technological 

test was carried out in has consistently low relief, so little risk of erosion. Furthermore, the main 

study area is predominantly rural, and many more sites are earthworks or less consolidated 

structures. The features visited during the test were mainly located in urban areas or villages, and 

more were buildings or more robust structures, which explains the generally low level of 

vulnerability.  

ID PRN/NPRN Name Vulnerability Score 

3 2814 Whittlesey Butter Cross 1.6 

4 2928 St Mary's Church 1.4 

5 3917 Whitecross Stone 1.6 

6 50457 Pillbox 1.2 

8 1411 St Margarets Church 1 

10 50585 Saxon Villas  1.4 

11 53704 Fletton Playing Fields Ridge and Furrow  2 

12 53820 The Nene Viaduct (Great Northern Bridge 184)  1.6 

 

 

Table 7.7:  Vulnerability scores for the test features 
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For this logistical and technological test, only Stage 1 of the VI was undertaken, because this is the 

only part of the VI that requires fieldwork. Stage 2 is based on the HLC undertaken for the study 

area, and incorporates Stage 1 with other variables to identify which LCAs are most vulnerable to 

climate change. As Stage 2 does not rely on fieldwork, but rather on data analysis in GIS, it can be 

altered and re-run if required during the main assessment.  

Implications of the logistical and technological test 

The logistical and technological test indicated that the locations given in the HER for features are 

often slightly inaccurate, which could affect the results of some of the vulnerability variables. The 

Vulnerability to Projected Precipitation Change variable is partly based on the flow accumulation in 

the cell that the feature is positioned within. An inaccuracy of even a few metres will have a 

significant impact on this result. It is acknowledged that in reality, many features cover a wider area 

than a single flow accumulation raster cell (5m2), so using the value found at a single point location is 

not an accurate portrayal of the exposure of the whole feature to runoff. It is still important to be as 

accurate as possible, rather than having a point value that is not located within the bounds of the 

feature’s actual location. The accuracy of the GPS equipment used should also be considered. For 

this test, a Garmin GLO GPS device was linked via Bluetooth to the iPad. This has an accuracy of 3 

metres (Garmin 2018), which is an acceptable amount of potential error considering the size of 

many of the features, and the resolution of the flow accumulation raster.  

For the logistical and technological test, the name and record number of the features identified for 

visiting were input into the VI form prior to the fieldwork. This was done in the order that the 

features were found in the online HER database (Peterborough City Council, n.d.), rather than the 

order in which the features were to be visited. This led to some confusion when entering data into 

the form. For the main fieldwork, the features were listed in the VI form in the order in which they 

were visited.  

In order to facilitate the identification of features, and avoid being unable to assess features that 

cannot be found, a copy of the descriptions of the features from the HER and NMRW was taken into 

the field during the main fieldwork. A short list of ‘back up’ features was compiled, which could be 

assessed if several of the features that were planned to be visited could not be found or were 

inaccessible.  Based on the time taken to undertake the logistical and technological test, 15 minutes 

was given for assessing each site, which allowed for some to take longer and others to take less 

time. The additional walking and driving time was also considered in order to plan for the right 

number of sites each day. An average of 14 features was planned for each day. Fewer were planned 

for days in which accessing the sites took more time, i.e. upland features, while more were covered 



148 
 

on days which focussed on features that are located close together in urban areas, i.e. historic 

buildings.   

In order to avoid any issues with losing the basemap in iGIS during the fieldwork, the Ordnance 

Survey vector map was downloaded for the study area. Only the relevant area of the map, and 

relevant features for navigation (i.e. roads, surface water and woodland) were downloaded into iGIS, 

as the application has a relatively low capacity to deal with large amounts of data compared to full 

GIS programmes. QGIS was used to clip the vector files to the correct area prior to downloading 

them onto the iPad. 

The logistical and technological test identified changes that were required to the methodology in 

order to undertake the data collection as efficiently as possible. Although it could not be undertaken 

in the Dysynni valley, the methods and technology used were the same, so the general approach to 

data collection for the vulnerability assessment could still be tested.  

7.4.3 Summary 

This section details the development of a landscape-scale vulnerability assessment for applying to 

HLC projects. The main reason behind developing a new VI that focusses specifically on landscapes 

and LCAs is to address the current limitations in archaeological vulnerability assessments, as 

explained in 7.2.7. By dividing the assessment into two equations, the VI acknowledges the value of 

historic and archaeological features of an area, while also considering the importance of the historic 

landscape as a spatially continuous phenomenon.  

7.5 Vulnerability Index Methodology 

This section details the application of the VI methodology developed in 7.4 to the Dysynni valley 

study area, informed by the climate change projections described in 7.3. First, Stage 1 of the VI is 

applied to a sample of LCFs from the Dysynni valley. Subsequently, Stage 2 of the VI is applied to 

each LCA in the study area.  

7.5.1 Vulnerability index stage 1  

Landscape Character Feature Sampling 

Prior to undertaking the VI, it was necessary to select a range of LCFs to which Stage 1 of the VI could 

be applied. It is also important to explicitly define the population that the sample was drawn from. In 

this case, the population is the NMRW and HER database records located in the study area, 

additional LCFs identified in Level 1 surveys undertaken by University of Sheffield MA students, and 

cropmarks identified in aerial photographs. The HER and NMRW databases had 1931 records in the 
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study area. Once those listed as ‘documentary evidence only’ were removed, 1526 records were left. 

There were also 57 cropmarks and buried features, and 56 LCFs from the Level 1 surveys, 1639 LCFs 

in total.   

This study used a stratified, systematic sampling approach. The population was stratified by the LCA 

in which they are located, and whether they are characteristic of that LCA. For instance, the 

medieval Domen Ddreiniog motte was not included in the ‘Regular Fieldsystems’ LCA VI, even 

though it is technically located within this LCA, as it does not characterise post-medieval and modern 

fieldsystems. Rather, Domen Ddreiniog was included in the ‘Ancient’ LCA. It is for this reason that 

the LCAs were allowed to overlap in this HLC, as some areas of land are characterised by features 

from more than one time period or activity. The LCFs sampled from each LCA are detailed in Table 

Ap3.3 in Appendix 3. 

Data collection 

Five days were available during fieldwork for me to visit LCFs and apply Stage 1 of the VI to them. 

Based on the findings from the logistical and technological test (see 7.4.2), this would allow 70 LCFs 

to be assessed. This would mean only 4% of the recorded LCFs in the study area would be included in 

the VI (in fact, only 64 features were actually visited during fieldwork, as some could not be found, 

or were inaccessible due to vegetation). A greater population sample would provide a more robust 

assessment of the vulnerability of LCFs in the study area. Therefore, the site visits during fieldwork 

were used as a ground-truthing exercise, to establish the reliability and accuracy of the information 

included within the HER and NMRW databases and L1 survey results. If the information available on 

LCFs proved reliable and accurate, it would suggest that other LCFs could be assessed in the VI 

without being visited. The ground-truthing exercise revealed that 91% (n=64) of the records have 

sufficient information to undertake the VI without visiting the LCFs. Furthermore, variables c 

(resistance of the local substrate) and e (susceptibility to projected precipitation change) are related 

mainly to the exposure of the features, and are assessed through GIS analysis rather than site visits. 

Following the fieldwork, a further 80 LCFs were included in Stage 1 of the VI through a DBA, so the 

total sample was 144, around 8.8% of the LCF population (see Table Ap3.4 in Appendix 3). The LCFs 

suitable for inclusion in the second sample were identified based on the amount of additional 

description about them in their respective databases. It was considered acceptable to apply Stage 1 

of the VI to these additional LCFs based on the high level of accuracy of information in the HER and 

NMRW records, as established during the initial ground-truthing fieldwork 

Another reason for applying Stage 1 to a virtual collection of LCFs was to establish whether this 

framework would be suitable for applying to a landscape that may be too large or inaccessible for 
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archaeologists to visit many features, or for projects with time or budget restraints but an existing 

resource of survey information for the features in the area. This study found that Stage 1 of the VI 

could easily and satisfactorily be applied to LCFs virtually, as long as records had sufficient and 

relatively up-to-date information on each feature, for instance on the level of preservation, material 

type and current usage.  

Reliability and robustness of the data collection 

The field-based ground-truthing exercise and subsequent desk-based completion of Stage 1 of the VI 

were undertaken to increase the number of potential LCFs included in the VI for the Dysynni valley, 

to make the results more robust. A second aim of trialling both field-based and desk-based methods 

was to test the suitability for using this vulnerability framework both in the field and remotely, in 

order to make it usable for a range of different landscapes with different levels of existing 

heritage/archaeological data. For the most part, it was determined that the information provided in 

the HER and NMRW databases, and the descriptions provided from the L1 surveys carried out by MA 

students, were sufficient for satisfying the Stage 1 VI variables. 

Including more LCFs through desk-based methods allowed the results of the VI to be more reliable 

and robust. In total, 144 LCFs were assessed, 8.8% of the recorded features in the study area. If only 

the visited LCFs were included in the assessment, only 3.9% of the recorded features in the Dysynni 

valley would have been included, which is less reliable for assessing the vulnerability of the whole 

historic landscape. The reliability of the scores produced by the field-based and desk-based exercise 

is analysed further in 7.6.3.  

Assessment of each variable 

This section provides an overview of the methods and data used to calculate the scores for each 

variable in Stage 1 for the study area (see Table 7.5).  

Level of Preservation 

During the site visits, the level of preservation was assessed by identifying any weathering or 

structural damage and, if the feature was previously buried, whether any of it had become exposed. 

Alternatively, during the desk-based analysis of additional LCFs, this variable was based on 

information held in the database records regarding whether structures were buried, standing, or 

ruined, and information on any erosion or weathering noted.  

Resistance of the Remains 

The resistance of the remains variable was based on the constituent material of the feature. This is 

included in the description of features from the HER, NMRW and L1 survey records, and proved to 
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be accurate during the ground-truthing. Features made of resistant materials such as brick or rock 

were given a low vulnerability rating for this variable, while those including organic remains or living 

features were rated more highly.  

Resistance of the Local Substrate 

The resistance of the local substrate was based on information on relief in the feature location, 

whether the feature was positioned on bedrock or superficial deposits, and whether there was 

evidence of erosion near the feature. Prior to the fieldwork, British Geological Survey 1:50 000 scale 

digital geology maps were downloaded and consulted (BGS Geology 2016). The maps contain 

information on the bedrock and superficial deposits (see Figures 4.3 and 4.4). The Point Sampling 

tool was used in QGIS to extract the geological information at the exact location of each feature.  

The slope relief at the location of each LCF was calculated before the fieldwork took place. A 1:10 

000 scale Digital Terrain Model (DTM) was downloaded from Digimap. Using the DTM and the 

Terrain Analysis tool, a model of slope relief was created as a raster file in QGIS. The Point Sampling 

tool was again used to extract the slope relief (in degrees) for each LCF. 

The evidence of erosion near a feature was investigated during site visits, or alternatively 

determined from the feature descriptions in the database records. It is acknowledged that the use of 

the Point Sampling tool to extract information is slightly problematic, as some features covered a 

wide area and therefore would have had different levels of slope steepness in different areas. 

However, the pixels for the DTM covered 25 square metres, which is larger than many of the 

features included in this assessment. Groups of geological materials cover wide areas (several 

hectares at least), so it is unlikely that the point data for LCFs would be so inaccurate as to provide 

incorrect information for this variable. 

Features positioned on solid bedrock, in areas of low relief, with no visible erosion nearby were 

given low vulnerability scores. Features positioned on unconsolidated sediments, in areas with 

greater relief, and/or with visible erosion nearby, were given higher vulnerability scores. 

 Susceptibility to Temperature Change 

The susceptibility of the feature to temperature change was based on its constituent material, which 

was identified in the description of the feature in the corresponding databases. The ground-truthing 

exercises established that the information provided in the feature records was accurate and 

sufficient for this variable.  Features considered to have low susceptibility to temperature change 

include those constructed of resistant material, such as brick or stone. Features considered more 
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susceptible to temperature change include living features, and those containing organic remains 

particularly in areas susceptible to desiccation.  

Susceptibility to Precipitation Change 

The susceptibility of LCFs to projected precipitation change was based predominantly on areas likely 

to experience gully erosion. Using the DTM of the study area, the flow accumulation was calculated 

in QGIS using the r.flow algorithm. This algorithm constructs flowlines downhill from each cell in the 

DTM to identify areas where flowlines accumulate (Heywood et al. 2011). The results create a model 

of where water will flow as it travels across a landscape, based on topography (see Figure 7.7). Areas 

with greater flow accumulation are therefore more likely to experience torrents and gully erosion 

during high rainfall events (Mitasova et al. 1996; Zlocha and Hofierka 2014). The Point Sampling tool 

was then used to extract the flow accumulation data for each of LCF. As above, the usefulness of the 

Point Sampling tool can be questioned as, if the GPS co-ordinates provided for any of the LCFs are 

inaccurate, the flow accumulation result would be incorrect. The initial results indicate that high 

flow accumulation scores are generally located in sloped areas, while level areas in both the uplands 

and lowlands tend to have low flow accumulation scores. 
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Figure 7.7. Flow accumulation calculated for the Dysynni valley (ltop) and a magnified section of the study area with 

LCFs included (below). LCFs located over the darker blue sections are in areas with higher flow accumulation and are 

at greater risk of erosion. Crown copyright and database right 2019 Ordnance Survey 100025252 
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7.5.2 Vulnerability index stage 2 

The results of Stage 1, as well as further desk-based research and modelling, were used for Stage 2 

of the VI, which assessed the vulnerability of each LCA to the impacts of climate change. Table 7.6 

provides an overview of how different variables were classified for Stage 2 based on the data 

sources used.  

Assessment of each variable 

Stage 1 VI score 

The first variable used in the Stage 2 equation is the average Stage 1 vulnerability score for the LCFs 

that characterise the LCA in question.  

Proportion of the LCA at Risk from Fluvial and Tidal Flooding, and Sea-Level Rise 

The spatial extents of the flood risk areas were defined by the Risk of Flooding from Rivers and Sea 

(RoFRS) shapefile downloaded from NRW (2016a) (see Figure 7.8). The RoFRS shapefile was 

categorised by the level of risk:  

 High Risk: Areas with greater than a 1-in-30 (3.3%) chance of flooding  

 Medium Risk: Areas with between a 1-in-30 (3.3%) and 1-in-100 (1%) chance of flooding  

 Low Risk: Areas with between a 1-in-100 (1%) and 1-in-1000 (0.1%) chance of flooding  

 Very Low: Areas with less than a 1-in-1000 chance of flooding (0.01%). 

These projections took into account the existing flood defences, including the height and condition 

of the defences. The terminology used in flood risk assessments can be misleading. A 1-in-100 year 

flood does not mean that a flood of this magnitude will only be experienced once in 100 years. 

Rather, it means that each year there is a 1-in-100 (or 1%) chance of a flood of that magnitude 

occurring; indeed it could occur each year, or more than once a year. Although new flood risk 

probabilities have not yet been generated based on projected changes to precipitation patterns or 

sea-level rise, Hall et al. (2005) argue that the likelihood of flood levels that currently have a 1-2% 

annual probability of occurrence may increase tenfold or more by the end of the 21st century.  

The areas of the specific LCA at ‘High’ (>3.3%), ‘High and Medium’ (1% - 3.3%), and ‘Any’ (>0.01%) 

risk were calculated by using the Clip function in QGIS, to create a new shapefile of the area of 

overlap between the LCA polygon and the RoFRS polygons. The percentage of the LCA at varying 

levels of risk could then be calculated by comparing the area of the new shapefile with the area of 

the LCA. 
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The areas at risk of inundation or frequent flooding under a future sea-level rise scenario were also 

calculated. The level chosen for the new high-tide mark (+2.89m) was a sum of the projected sea-

level rise by 2115 in the RCP8.5 scenario (+0.83m: see Table 7.2) and the current level of average 

high tide above Ordnance Datum (+2.06m), based on tide gauge data for Aberdyfi (visitMyHarbour 

2017). The new high tide mark was represented by a raster file in QGIS (0= below 2.89m, 1=above or 

equal to 2.89m), so the Zonal Statistics tool was used to calculate the mean value for the area 

covered by each LCA. The mean value (between 0 and 1) was multiplied with the total area of the 

LCA to identify the amount of land in the LCA that was not at risk from sea-level rise. This was then 

used to calculate the proportion of each LCA that was at risk of inundation at high tide by 2100 

under this sea-level rise scenario. 

Figure 7.8. Areas at risk of flooding from rivers and seas from different return periods. Shapefile 

downloaded from NRW geoportal Lle.gov.wales Copyright CNC/NRW and CEH, Crown copyright 

and database right 2019 Ordnance Survey 100025252 
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Proximity to Eroding Shoreline 

This criterion identified areas at risk from coastal erosion in the long-term. The Spatial Flood 

Defences with Standardised Attributes shapefile was downloaded from NRW (NRW 2019) to identify 

areas of the coast that are protected by built defences. This shapefile contains features such as 

natural banks, cliffs and dunes as well as built defences. The natural features were removed from 

the shapefile as, although they can provide protection against flooding, they themselves can be 

susceptible to erosion. This left only the areas along the coast protected by built defences (see 

Figure 7.9). Although built defences can be affected by erosion, the rate of shoreline retreat in 

defended areas is markedly less than in undefended areas (Sutton-Grier et al. 2015). For the 

unprotected stretches of shoreline, the Buffer tool was used in QGIS to create two buffer zones, 

100m and 50m inland of the current high-water mark on the Ordnance Survey map (see Figure 7.9). 

The buffer zones were used to calculate the proportion of each LCA that was within the buffer zone 

or seaward of the high-water mark, and therefore the exposure to coastal erosion over the next 

century and beyond. The difference in both MHW and MLW between the historic and modern maps 

was measured every 200m along the Dysynni coastline (see Figure 7.9). The most rapid rate of 

retreat for the MHW line was 0.44m per year, which would equate to around 36.75m retreat by 

2100. For the MLW, the most rapid rate of retreat was 1.08m per year, which would equate to 

around 90m additional retreat by 2100. These values are based on historic rates of erosion, and so 

do not account for any acceleration of shoreline retreat due to sea-level rise or increased 

storminess. The values of 50m and 100m from the MHW line were chosen in order to satisfy the 

precautionary principle.  
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Figure 7.9. Map indicating the location of built defences in the study area, and the erosion buffer zone along 

unprotected stretches of shoreline (A). B and C  (below) are magnified areas indicated in red in A, 

demonstrating the assets at risk from erosion, such as the Aberdyfi Golf Club and the trainline. Crown 

copyright and database right 2019 Ordnance Survey 100025252 

A 
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Figure 7.9 cont. 

B 
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Susceptibility to Soil Erosion 

The final criterion studied the susceptibility of each LCA to loss of land surface, and therefore a 

change in character, due to soil erosion. Soil property data was downloaded for the study area from 

the British Geological Survey (Cranfield University 2018), which comprised 69 polygons and included 

attributes such as drainage, fertility, land use, soil water regime, dominant and associated soils and 

their characteristics.  

 

Figure 7.10. Susceptibility of soil in the Dysynni valley to soil erosion, based on soil characteristic 

data from the British Geological Survey, from 1 (very low) to 5 (very high). Crown copyright and 

database right 2019 Ordnance Survey 100025252 
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The susceptibility of each polygon to erosion was ranked between one and five based on the 

following characteristics:  

i) In an area at risk of floodwater scouring or runoff  

ii) Sandy/unstable soils at risk of wind erosion during dry periods  

iii) Risk of sheet erosion during high-precipitation events 

iv) Shallow soils and bare rock in places 

v) Risk of soil erosion due to grazing and trampling 

vi) Slow or impeded drainage 

vii) Steep slopes 

Polygons with none of the above characteristics were given a susceptibility rating of 1. Those with 

one of the above characteristics were rated 2, those with two of the characteristics were rated 3, 

those with three of the characteristics were rated 4, and those with four or more of the above 

characteristics were rated 5 (see Figure 7.10; Table 7.6). The soil map shapefile was then 

transformed into a raster file using the Rasterize function, and the susceptibility to soil erosion was 

kept as the attribute field. The Zonal Statistics tool was then used to extract and calculate the mean 

susceptibility to soil erosion from the soil map raster for the area in each LCA. The values obtained 

were used as the values in the Stage 2 VI equation. An alternative method would be to use the 

susceptibility rating of the most common soil type in the LCA, in order to have only whole numbers 

in the VI equation.  However, this method could either obscure or overstate the susceptibility of the 

LCAs to soil erosion. For instance, if 50% of the LCA had a soil susceptibility rating of 2, 40% had a 

rating of 3, and 10% had a rating of 4, using the mode value (2) instead of the mean (2.6) would 

understate the susceptibility of the LCA to soil erosion.   
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7.5.3 Results 

Stage 1 results 

In total, 144 sites were included in the initial vulnerability assessment of archaeological features. 

This includes both the 64 sites visited during the ground-truthing exercise, and the desk-based 

analysis of a further 80 sites. The Stage 1 scores for each LCF can be seen in Figure 7.11 and 

Appendix 3 Table Ap3.5. 

 

 

Figure 7.11. Results of Stage 1 and Stage 2 of the vulnerability index, from 1 (very low vulnerability) 

to 5 (very high vulnerability). Crown copyright and database right 2019 Ordnance Survey 100025252 



162 
 

Of the LCFs analysed, 42 (29.2%) had a Stage 1 VI score of 1 ≤ x < 2, considered a very low 

vulnerability score. Most of these (n=32) were post-medieval or modern built features that were 

currently in use, such as a new church, farm cottages, and townhouses. This means that they were 

relatively recently constructed, and are also being actively managed against decay. It is noteworthy 

that 28 of these features are located in urban areas, which are positioned mainly in flatter areas at 

lower risk from gully erosion.  

Fifty-one features (35.4%) had Stage 1 VI scores of 2 ≤ x < 2.5, or low vulnerability to the potential 

impacts of climate change. These features are spread across both lowland and upland areas, and 

include a range of modern and historic, built and earthwork features. Twenty-six features (18%) had 

Stage 1 VI scores of 2.5 < x < 3, or moderate vulnerability. Most of these were located in upland 

areas, and consisted of features such as the remains of post-medieval quarries and sheep-farming. 

Only 22 LCFs (15.3%) had Stage 1 VI scores of 3 ≤ x < 4, or high vulnerability. Of these, over half 

(n=12) were located in steeply sloping areas, indicating that flow accumulation (or the risk of gully 

erosion) may be an important factor for addressing the threat of climate change to archaeology in 

mountainous or hilly areas. Furthermore, 11 (50%) of these features are earthworks, compared to 

none of the low vulnerability features and 27% of the moderate vulnerability features. This suggests 

that earthwork features are more vulnerable to the potential impacts of climate change compared 

to stone and brick-built features. This is partly determined by the fact that feature material was, for 

two of the variables, used to influence the score given, so earthwork features were given a score of 

at least 3 for two variables. For features to have Stage 1 VI scores greater than 3, the mean score of 

the variables must be greater than 3. Therefore, having only two variables that give earthworks a 

score of 3 does not solely account for the high proportion of earthworks with high vulnerability. 

Another explanation may be that earthworks were also more likely to be found on unconsolidated 

sediments, and in a less well preserved state, which further increased their vulnerability.  

Finally, only three features (2%) had a Stage 1 VI score of ≥ 4. Two of these features were organic 

remains (a section of submerged forest, and an area of peat cutting – see Figure 7.12), making them 

particularly susceptible to temperature increase and desiccation. Additionally, two of the features 

were located on sand or beach deposits in the intertidal zone, making them at high risk of 

undermining due to the unstable nature of this superficial deposit.  

Stage 2 results 

Of a possible range of 1-5, the results LCA VI scores range from 1.93 to 4.2 (see Table 7.6 and Figure  

7.11). Only one LCA (Historic Settlement) has a Stage 2 VI score of less than 2. In particular, the 
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Historic Settlement LCA had low scores for both LFC vulnerability and risk of coastal erosion, likely 

due to the presence of coastal defences along the urban areas in the Dysynni valley. 

Figure 7.12. Two of the most vulnerable features as assessed by Stage 1 of the vulnerability 

index: an area of peat cuttings (A) and the remains of a submerged forest (B), both on Tywyn 

beach. The images DS2016_066_005 and DS2016_066_009 are Crown copyright and are 

reproduced with the permission of Royal Commission on the Ancient and Historical Monuments 

of Wales (RCAHMW), under delegated authority from The Keeper of Public Records. 

A- DS2016_066_005 

B - DS2016_066_009 
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Nine LCAs (53%) had a Stage 2 VI score of 2 ≤ x < 2.5 (Modern Woodland, Ancient, Irregular 

Fieldsystems, Modern Settlement, Irregular Drained Land, Tourism, Modern Industry, Historic 

Industry, Rough Pasture). These are mainly located above the floodplain, and predominantly in 

inland, upland areas, so have ‘very low’ or ‘low’ risk of tidal and fluvial flooding and coastal erosion. 

The Tourism LCA does have a large area located at the coastline (Aberdyfi golf course), however the 

high dunes fronting the golf course protect the area from 1-in-100 year or more frequent flood 

events. Furthermore, there are several other areas of the Tourism LCA (generally caravan and camp 

sites) located further inland.  

 

 

 

 

 

 
Table 6.9: Stage 2 VI scores, in descending order of Stage 2 score 

LCA Stage 1 
score 

Risk of 
Flooding or 
Inundation 

Risk of 
Coastal 
Erosion 

Risk of Soil 
Erosion 

Stage 2 
Score 

Maritime Industry 3.2 5 5 3.6 4.2 

Wetland 3.083333 5 5 3 4.021 

Military 2.2 4 4 3.8 3.5 

Regular drained 2.485714 5 1 2.1 2.646 

      

Ancient Woodland 2.575 3 2 3 2.644 

Regular field 2.4 3 2 2.8 2.55 

Ornamental 2.171429 4 1 3 2.543 

Rough pasture 2.473684 1 2 3.8 2.32 

Historic Industry 2.388889 1 2 3.8 2.297 

Modern Industry 2 3 1 3 2.25 

Tourism and Recreation 1.8 2 2 3 2.2 

Irregular drained 2.08 3 1 2.5 2.145 

Modern Settlement 1.4 2 2 2.9 2.075 

Irregular Field 2.311111 2 1 2.9 2.053 

Ancient 2.482353 1 1 3.7 2.046 

Modern Woodland 2.514286 1 1 3.5 2 

Historic Settlement 1.72 2 1 3 1.93 

Table 7.8: Stage 2 Vulnerability Index scores, in descending order of Stage 2 score 
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Four LCAs had a Stage 2 VI score of 2.5 ≤ x < 3 (Ornamental, Regular Field Systems, Ancient 

Woodland, and Regular Drained Land). These LCAs are predominantly located on the flat valley floor, 

and are therefore at risk of both fluvial and tidal flooding, but they are located away from the 

coastline and so are not threatened by coastal erosion.  

Finally, only three LCAs scored greater than 3 (Military 3.5, Wetland and Beach 4.021, Maritime 

Industry 4.2). A small area of the Military LCA is located in the uplands, but most of the Military LCA 

is located on or near the coastline, such as the line of pillboxes along Aberdyfi beach – see Figure 

7.13), and is therefore at risk of flooding or coastal erosion. Both Wetland and Beach and Maritime 

Industry LCAs are located on the coastline or in Broadwater, and so are at high risk from both coastal 

erosion and flooding. Furthermore, the features that characterise both of these LCAs had high Stage 

1 scores due to their ephemeral nature and high levels of degradation.  

The VI scores for these three LCAs are the only ones classified as outliers (over 1.5xIQR greater than 

the third quartile). This indicates that they are significantly more vulnerable than the other LCAs to 

the impacts of climate change, based on this VI.  

Summary 

This section discussed the results of the VI applied to the HLC of the Dysynni valley, both Stage 1 

(vulnerability of LCFs), and Stage 2 (vulnerability of LCAs). Overall, the results revealed that more 

than half of the Stage 2 scores were clustered between 2 – 2.32, and that very few had scores lower 

than 2 or greater than 3. The spread of the Stage 2 scores allowed easy identification of outliers with 

particularly high vulnerability relative to other LCAs: Military, Wetland and Beach, and Maritime 

Industry. The coastal and flood risk management approaches discussed in Chapter 8 are analysed in 

terms of their impact on these three LCAs.  
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Figure 7.13. Two examples of pillboxes along Aberdyfi beach at different levels of preservation  
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7.6 Discussion 

The following section reviews different methods of result classification that are used in academic 

studies, and how they influence the conclusions or suggestions for management.  Subsequently, 

there is a discussion regarding the implications of the VI results, the robustness of the data used in 

the VI, and what the results were used for in the following chapters.  

7.6.1 Classification and display of results 

Having completed the VI methodology development and data collection, the next aim of this thesis 

was to evaluate approaches for the sustainable management of the most vulnerable elements of the 

historic landscape. In order to do this, the LCAs that occur in the ‘most vulnerable’ bracket based on 

the VI results were identified. The VI produces a numerical score between 1 and 5, but this alone 

does not provide a threshold score that defines whether or not an LCA should be prioritised for 

management.  

There are several different methods used by other studies to divide and display results, and 

therefore inform which areas or sites are considered a priority for management. The purpose of this 

literature review is first to discuss the different ways in which other researchers who use VIs (or 

other similar indices) classify their results into different levels of vulnerability, and what the 

implications would be if each method was applied to the results of this study. The second section 

explores the ways in which different studies use the VI score and classification to define which sites 

or areas should be prioritised for management or further study. The results of the second section 

informed the methods that were used to classify the VI results, and crucially which LCAs were 

included when evaluating potential management approaches. In the final section, several different 

classification approaches were applied to the results, to determine what impact the different 

approaches could have on the conclusions of this study. 

7.6.1 Classification and display of results in other studies 

A. Binary (i.e. Yes/No) 

Some researchers who used very simple indices divided their results in a binary fashion, so areas 

were either ‘at risk/vulnerable’ or ‘not at risk/not vulnerable’, rather than creating a scale of more to 

less vulnerable. Bickler et al. (2013) only included two variables in their VI: coastal flooding and 

coastal erosion. Sites in their study area were either defined as at risk (because they were in the 

defined flood zone and/or erosion zone) or not at risk (because they were not in the flood and 

erosion zones) (see also Robinson et al. 2010; Westley and McNeary 2014).  
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When applied to this study (see Figure 7.14A), the threshold for which LCAs were considered 

vulnerable was set as a score of 3, because it is the middle point of the available scores (1-5). In this 

case, the LCAs considered ‘vulnerable’ are Military, Wetland and Beach, and Maritime Industry, and 

all other LCAs are considered ‘not vulnerable’ (see Table 7.14). This approach is not suitable for the 

results of Stage 2 of the VI as more variables were included than in the example studies above, and 

the range of results is too wide to be confined to two categories. 

B. Equal Interval 

A common method used is to divide results into groups of equal interval based on the VI score.  

Widyastuti and Suprayogi (2016) divide their results into low vulnerability (score 10-20), medium 

(>20-30) and high (>30-40) (See also Barbat et al. 2010; Kurniawan et al. 2016). Other researchers, 

such as Guégen et al. (2007), use a greater number of classes with a smaller interval. In this case, 

their results range from 0 to 0.75, and they divide the results into 15 classes each with an interval of 

0.05 (see also Yoo et al. 2011). This is a very simple method of categorising the VI results as it does 

not require any analysis of the data. It can also facilitate the comparison of results between different 

areas, as the scores defining low, medium, and high vulnerability (or whatever divisions are chosen) 

will be the same regardless of the skew of the scores produced. It is less useful a method of 

classification in instances where the results are skewed so that most fall into a single vulnerability 

class. Except in cases where a large number of classes with a small interval are used, this 

classification method is not useful for indicating the relative vulnerability of the sites or areas in the 

study.  

Three different iterations of the equal interval approach were undertaken for the results of this 

study (see Figure 7.14B): B1 had three classifications (Low [1-2.33], Moderate [2.34-3.66], High 

[3.67-5]), B2 had four classifications (Low [1-1.99], Moderate [2-2.99], High [3-3.99], Very High [4-5]), 

and B3 had five classifications (Very Low [1-1.8], Low [1.81-2.6], Moderate [2.61-3.4], High [3.41-

4.2], Very High [4.21-5]). The threshold of LCAs considered Low and Moderate vulnerability varied 

significantly between the iterations. Wetland and Beach and Maritime Industry were considered 

High vulnerability in B1 and Very High vulnerability in B2. In B3, Military and Wetland and Beach 

were classified as High Vulnerability, with only Maritime Industry classified as Very High Vulnerability 

(see Table 7.19). 
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C. Equal Count 

Another simple method of classifying results is by equal count, in which the same number of objects 

are put into each vulnerability category. This displays the vulnerability of the sites or areas by the 

score relative to the other objects in the study, rather than the absolute score. Allison et al. (2009) 

use quartiles to divide their results; the first quartile (0-25%) of objects scores are classified as ‘very 

low vulnerability’, the second quartile (25-50%) are ‘low vulnerability’, the third quartile (50-75%) 

are ‘medium vulnerability’, and the fourth quartile are ‘high vulnerability’. Garthe and Hüppop 

(2004) use a similar method, but use 20 percentiles rather than 25 percentiles to divide results (see 

also Özyurt and Ergin 2009). The equal count method was also undertaken with three different 

iterations when applied to the results in this research (see Figure 7.14C). C1 had three classifications 

 

Table 6.10: Comparison of the results when classified in different ways 

LCA Score A B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 

Historic Settlement 1.93              

Modern Woodland 2.0              

Ancient 2.046              

Irregular Field System 2.053              

Modern Settlement 2.075              

Drained Irregular Land 2.145              

Tourism and Recreation 2.2              

Modern Industry 2.25              

Historic Industry 2.297              

Rough Pasture 2.32              

Ornamental 2.543              

Regular Field System 2.55              

Ancient Woodland 2.644              

Drained Regular Land 2.646              

Military 3.5              

Wetland and Beach 4.021              

Maritime Industry 4.2              

Legend Very Low Low Moderate High Very High 

Table 7.9: Comparison of the results when classified in different ways: Binary (A), Equal 

Interval (B), Equal Count (C), Standard Deviation (D), Jenks Natural Breaks (E) 
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(Low [1-2.4], Moderate [2.41-2.73], High [2.74-5]), C2 had four classifications (Low [1-2.22], 

Moderate [2.23-2.5], High [2.51-2.75], Very High [2.76-5), and C3 had five classifications (Very Low 

[1-2.18], Low [2.19-2.45], Moderate [2.46-2.7], High [2.71-2.8], Very High [2.81-5]).   In all three 

iterations, Drained Regular Land, Ancient Woodland, Regular Field System, Military, Wetland and 

Beach and Maritime Industry were classified as High or Very High vulnerability, and in C2 and C3, 

Ornamental land was also considered High vulnerability (see Table 7.11). C2 is the only iteration 

across all approaches that classifies Rough Pasture as having High Vulnerability. 

D. Standard Deviation 

Standard deviations are another way that VI results are classified into levels of vulnerability. Rygel et 

al. (2006) classify results into four categories based on the amount that they deviate from the mean: 

<-0.5 SD; -0.5-0.5 SD; 0.5-1.5 SD; >1.5 SD. McLeod et al. (2010) also use standard deviation, but they 

divide the results into three vulnerability classes: Low vulnerability (<-1 SD), Medium vulnerability 

(+/- 1 SD), and High vulnerability (>+1 SD) (see also Dismukes and Narra 2015). This approach does 

not produce classes of equal interval or equal count, but rather indicates how much more or less 

vulnerable an area is compared to the average. 

When applied to the results of this research, three iterations of this approach were undertaken: D1 

has three classifications (Low [<-1 SD], Moderate [+/-1 SD], High [>+1 SD]), D2 also had three 

classifications (Low [<-0.5 SD], Moderate [+/-0.5 SD], High [>+0.5 SD]). D3 had 5 classifications (Very 

Low [<-1 SD], Low [-1 SD – 0 SD], Moderate [0 SD - +1 SD], High [+1 SD - +2SD], Very High [>+2 SD]). 

In all three cases, Military, Wetland and Beach, and Maritime Industry LCAs are classified as High 

vulnerability, with Wetland and Beach and Maritime Industry classified as Very High in D3 (see Figure 

7.14D, Table 7.11). In D1, no LCAs were classified as having Low Vulnerability, indicating that the 

data is positively skewed. 

E. Jenks Natural Breaks 

Only one of the VI studies reviewed (Ghobadi et al. 2018) used the natural breaks technique, also 

known as the Jenks natural breaks classification method or Jenks optimisation method. This 

approach is a data clustering method which groups scores into classes in which the scores are as 

close to the median of the class as possible, and as far as possible from the median of other classes. 

This maximises the similarity of scores within each class, and maximises the differences between 

classes. Unlike the other methods tested, this approach goes some way towards addressing the 

limitation that classifying scores into groups can hide the similarities between scores in different 

classes.  
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Figure 7.14: Comparison of the 5 different methods of result classification: Binary (A), Equal Interval (B), 

Equal Count (C), Standard Deviation (D), Jenks Natural Breaks (E). Methods B-E had 3 different iterations 

with different number of classes or class divisions. Larger, more detailed maps are provided in Appendix 3 

Figure Ap3.1. Crown copyright and database right 2019 Ordnance Survey 100025252 

B1 B2 B3 

C1 C2 C3 

D1 D2 D3 

E1 E2 E3 

A 
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The Jenks natural breaks method was undertaken three times when applied to the results of this 

research (see Figure 7.14E): E1 had three classifications (Low [1-2.23], Moderate [2.24-2.77], High 

[2.78-5]), E2 had four classifications (Low [1-2.23], Moderate [2.24-2.5], High [2.51-3.7], Very High 

[3.71-5]), and E3 had five classifications (Very Low [1-2], Low [2.01-2.23], Moderate [2.24-2.5], High 

[2.51-3.7], Very High [3.8-5]). This method showed the most variation in the way the LCAs were 

classified between iterations compared to the other methods (see Table 7.11). E1 classified Wetland 

and Beach and Maritime Industry as High, with E2 and E3 classifying them as Very High vulnerability. 

Military was classified as High vulnerability across all three iterations. E2 also classified Ornamental, 

Regular Field System, Regular Drained Land, and Ancient Woodland as High Vulnerability. 

 Low, Moderate and High, but not (seemingly) related to a score 

Several studies display their results in vulnerability classes (often low, medium and high, or very low, 

low, medium, high, very high) without indicating how the classification was decided or undertaken. 

In some cases the authors provide information on which raw scores are divided into each class, but 

no obvious justification is given, and the classes have unequal intervals and unequal counts (e.g. 

Abuodha and Woodroffe 2010; Botero-Acosta et al. 2017). In other cases, the vulnerability classes 

are displayed visually on a map but there is no indication of which VI scores go into each class (e.g. 

Ibe et al. 2001; Andreo et al. 2006; Hunt 2011; Reeder et al. 2012). This is not a transparent way to 

display results, as the results could be divided and classified in a way that specifically supports or 

disproves a certain hypothesis or agenda. Regardless of the classification method used, it is 

important to explain the method used and explicitly state which VI scores fall into which 

vulnerability class.  Without this, it is difficult to justify why some objects should be given 

management or conservation priority over others. This method was not applied to the results of this 

study, as it is not a defined method.  

Classification and displaying the results of this study 

Of the studies reviewed, the most common approach for classifying and displaying results is to 

create vulnerability classes without indicating how/why the results were divided thus, or in some 

cases what scores are classified into each group. This is concerning as the most common method for 

identifying objects to prioritise for management and conservation is by the vulnerability class that 

they fall into. If the score range for these classes is decided arbitrarily, or not justified, then the 

threshold for what should or should not be prioritised is also somewhat arbitrary.  

All methods of result classification tested classified Wetland and Beach and Maritime Industry LCAs 

as High or Very High vulnerability. The Military LCA was also classified as High or Very High 
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vulnerability in all but one iteration. All other LCAs were more frequently classified as Moderate, 

Low or Very Low vulnerability than High or Very High. The next section of this research, namely 

evaluating the suitability of potential coastal and archaeological management approaches, focuses 

predominantly on the Military, Wetland and Beach and Maritime Industry LCAs and the specific 

threats posed thereto. These three LCAs are consistently classified as being highly or very highly 

vulnerable regardless of the classification method used. Moreover, the VI scores for these three 

LCAs are the only ones classified as outliers (over 1.5xIQR greater than the third quartile). This 

indicates that they are significantly more vulnerable than the other LCAs to the impacts of climate 

change, based on this VI.  

Using results to inform prioritisation and management 

This section compares the different ways that other VI studies use their results to suggest 

prioritisation or management of the objects of their research. Some studies recommend the 

prioritisation and management of sites that were classified as ‘high’ vulnerability, or ‘high’ and ‘very 

high’, depending on the classifications chosen in the study (e.g. Garthe and Hüppop 2004; Allison et 

al. 2009; McLeod et al. 2010; Hunt 2011; Westley et al. 2011; Reeder et al. 2012;  Ghobadi et al. 

2018). The objects included in the ‘high’ and ‘very high’ vulnerability classes are dependent upon the 

method used to group the results, as discussed above. In many cases the chosen method of result 

classification and display has a direct impact on the way that the results may be utilised.  

In the case of Bickler et al. (2013), their simple VI meant that sites were classified as vulnerable or 

not vulnerable, so all objects classed as vulnerable may be priorities for management or 

conservation. This is a straightforward method of prioritisation, but is not applicable in instances 

where the VI is more complex and produces a range of results. It is also unhelpful if too large a 

number of objects would be classified as ‘vulnerable’ for them all to be prioritised, as then another 

method of ranking would also have to be used.  

Westley and McNeary (2014) identify regions that are outliers in terms of their vulnerability, i.e. 

areas with particularly high scores, as the scores for the other areas cluster closely together with 

little to separate them. They argue that objects that are markedly more vulnerable should be 

addressed or prioritised, rather than just an arbitrary percentage of the overall objects. If this 

approach was used for the results of Stage 2 of the VI, the outlying LCAs would be Military, Wetland 

and Beach, and Maritime Industry, as all other results are clustered more closely together.  

Rather than focusing on the final VI score, Adu et al. (2017) argue that prioritisation of areas for 

further study and management should be based on those that scored highest for individual 

variables. This would make the type of management required easier to define as there may be a 
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single issue to address, rather than a high vulnerability score caused by a wide range of issues. 

However, this might not capture the areas that are most in need of management, or those in which 

the interaction between different variables compounds the overall vulnerability.  

Rather than state which objects should be researched or managed based on the VI results, some 

studies only touch upon the way that their results should be used. Ortiz et al. (2014), in identifying 

areas of environmental risk in a historic city, say that their results should be used to help decide 

which historic monuments should be prioritised in order to carry out preventative conservation 

measures. However, they do not specify exactly which monuments, or level of vulnerability, this 

refers to. Preston et al. (2009) used a VI for an Australian landscape to identify areas more or less 

vulnerable to bush fires. They state that the vulnerability maps created as an output can be used in 

local government risk assessment and adaptation, but they don’t specify which areas should be 

prioritised or exactly how the information would inform risk assessment and adaptation (see also 

Abuodha and Woodroffe 2010; Dismukes and Narra 2015; Kurniawan et al. 2016; Botero-Acosta et 

al. 2017). 

Finally, a large number of studies reviewed did not discuss specifically how the results of their VI 

would, or should, be used at all beyond answering that study’s research question (see Rygel et al. 

2006; Fekete 2009; Alexandrakis et al. 2011). Several of these papers were focussed on developing a 

VI methodology using a case study rather than researching the vulnerability of a particular system 

for policy purposes. Therefore, these do not help inform the methods for displaying the VI results in 

this study, or identifying the LCAs that should be prioritised for management (see Chapter 8). 

Summary 

This research assesses the vulnerability of 17 LCAs over a large landscape, so narrowing down the 

number prior to evaluating the most appropriate management approaches is crucial. Public sector 

archaeological organisations have tight budgets, and many coastal management techniques can be 

extremely costly. The range of threats, land-uses and environmental conditions in the study area 

means that identifying a suitable, sustainable management approach that would suit all 17 LCAs 

would be difficult if not impossible. The VI results of this research (and therefore suggestions for 

management of LCAs) must be classified based on their level of vulnerability. When applied to the 

results in this study, there was clear variation in the way that different LCAs were classified in terms 

of their vulnerability (see Table 7.9, Figure 7.14).  

7.6.2 Implications of the vulnerability index results 

The three LCAs identified as being the most vulnerable in the study area are also particularly 

important for the Dysynni landscape. As a coastal area, Wetland and Beach is a key element of the 
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character of the landscape, and links strongly to local identity and sense of place. Seaside tourism is 

an important industry for both Tywyn and Aberdyfi – 29% of the employment in Tywyn is in the 

hotel, café and restaurant sector (Beatty et al. 2009). However, Tywyn in particular has an ageing 

population, and had a 15% decline in employment rates between 2003/4 and 2006/7 (ibid.). Tywyn 

beach has lowered and retreated significantly, and the presence of sea walls and groynes reduces 

the amenity value of the beach for leisure (Mead 2009). Further damage to the Wetland and Beach 

LCA could have a detrimental impact on Tywyn as a seaside resort, and therefore on the local 

economy, as well as on the historic landscape. 

The Maritime Industry LCA is also important for the local history of the study area. Aberdyfi village 

was founded around the fishing and ship building port here during the post-medieval period, and the 

structural remains of this (e.g. harbours, shipyards, jetties and shipwrecks) strongly influence the 

character of the town and coastline today (SNPA 2014a). Commercial use of the jetty and wharf 

continued until 1959, and since then it has been a popular marina for recreational seafaring, as well 

as some small-scale fishing (Lewis 1997). Numerous sources suggest that Broadwater was also used 

for shipbuilding before it silted up, and that small sailing boats could traverse the River Dysynni to 

transport peat cuttings in the 18th and 19th centuries (Rolt 1998; Hawes 2014; Tilt 2015; Brominicks 

2016), although there is no firm historical evidence for this. Archaeologists also suggest that the 

River Dysynni was used for maritime and river transport during the Neolithic, and that Broadwater 

may have been an important landing place during prehistory, indicated by a prehistoric trackway 

leading northwards from Broadwater towards Dolgellau (Bowen and Gresham 1967; Smith 2004b; 

GAT 2016). This connection to seafaring and maritime industry is an important element of the 

heritage of the Dysynni valley, and to the way that local people perceive the landscape.  

Finally, the Military element of the historic character of the Dysynni valley, and its associated 

features, date primarily to the First and Second World Wars. The coastline of Cardigan Bay was a 

strategic location as the Irish Free State across the Irish Sea was considered to be vulnerable to 

German invasion during the Second World War. Defensive features such as pill boxes were installed 

along the coastline, and RAF Towyn (sic) was established and operated between 1941 and 1945. 

Following the Second World War, the RAF Towyn camp was taken over by the army and was in use 

until 1965 (Gwyn and Davidson 2009). There are also several aircraft crash sites in the landscape, 

and a memorial stone for three children killed in 1944 by an unexploded mortar bomb (BBC News 

2015). Other memorials to both world wars in the Dysynni valley include Tywyn Memorial Gardens 

(WWI+II), Tywyn Church Porch memorial (WWI+II), Llanegryn memorial (WWI), Aberdyfi Memorial 

(WWI+II), and Tywyn Memorial Hospital (WWI). The First and Second World Wars are still an 

important part of national identity for many British people, and the military remains and high 
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density of memorials in the Dysynni valley (population c.6000 – ONS 2011) suggests that this is a 

significant element of the character of the historic landscape.  

This is not to say that the LCAs that are less vulnerable to climate change also happen to be less 

important to the historic character of the study area; an important principle of HLC is that it is ‘value-

free’, and does not give some LCAs greater worth than others. However, it is important to recognise 

that some LCAs and associated features may have a greater connection to local people’s sense of 

cultural heritage, and connection to their history or current way of life.  

When displayed visually (see Figure 7.11), the results indicate that the character of the historic 

landscape most threatened by climate change is the coastline and the estuary of the River Dysynni. 

This is perhaps unsurprising as two of the four variables used to assess vulnerability were related to 

coastal and hydrological processes (Risk of Flooding; Risk of Coastal Erosion). The results for the Risk 

of Soil Erosion variable negatively correlate with the overall results and have higher scores in upland 

areas. Furthermore, even though Stage 1 of the VI assessed a range of factors unrelated to the 

coastal location of the study area, there is a moderate positive correlation between the Stage 1 

score variable and the Risk of Coastal Erosion variable (0.56) and Risk of Flooding variable (0.4). The 

Maritime Industry and Wetland and Beach LCAs also scored significantly higher for the Stage 1 

scores than any other LCA, indicating that LCFs located near the coast are more vulnerable to the 

impacts of climate change even before the exposure to erosion and flooding is considered. This may 

be because these features have been subject to coastal processes, and so have lower levels of 

preservation than features located in the uplands. Overall, therefore, the historic character of the 

landscape in the coastal regions of this study area is most vulnerable due to sensitivity and resilience 

as well as exposure. With vulnerability index methods, the choice of variables used to determine 

vulnerability inevitably influence the findings. If the only variables chosen related to inland 

processes, the results would be different. This is why a detailed discussion of climate change impacts 

was necessary (see Chapter 2), in order to ensure that the variables chosen were the most relevant 

to known threats.  

7.6.3 Reliability and robustness of the study 

Part of this study involved a field-based ground-truthing exercise, and then a desk-based completion 

of Stage 1 of the VI. In order to establish whether carrying out over half of the Stage 1 analysis 

remotely affected the overall VI results, the Stage 2 results were calculated based only on the LCFs 

visited, as well as on all LCFs assessed. There was a correlation of +0.989 between the visited LCFs 

only Stage 2 results and the overall Stage 2 results. Therefore, the LCFs that characterise each LCA 

gave similar Stage 1 scores regardless of whether they were visited or assessed remotely. This 
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indicates that the VI methodology developed here can be employed both in the field and remotely, 

and that there is no reason that one approach would give markedly different results to another as 

long as there is sufficient documented information about each feature. When applying this 

vulnerability framework to other landscapes, the most suitable method is therefore determined by 

the availability and coverage of any heritage databases, the accessibility of features in the landscape, 

and any time and budget restraints. 

7.7 Conclusion 

This two-stage VI was created as part of the Landscape Vulnerability Framework developed in this 

thesis. In order to address the limitations associated with the site-focussed VIs commonly used in 

archaeology, the Hierarchy Theory framework was used to guide the focus of the VI to LCAs 

developed in Chapter 6, as informed by the vulnerability of LCFs. The results, namely the 

identification of the most vulnerable elements of the historic landscape to climate change, including 

their location and the nature of their features and assets, was used to inform the approach taken in 

Chapter 8.   

Creating a VI scoring method with well-defined variables improves the transparency and clarity of 

the methods, in order to avoid some of the limitations mentioned in 7.2.2. It also allows results from 

several landscapes to be compared. This contrasts with several VI methodologies that are developed 

to be specific for the study area, and so are not useful for applying to other regions or comparing 

between studies. The structure of the Landscape Vulnerability Framework and the VI means that it 

can be added to or repurposed to assess vulnerability to a different threat. While the focus of this 

thesis is on coastal historic landscapes, the methodology could be applied to inland historic 

landscapes, for instance the location of the logistical and technological test, if the Risk of Coastal 

Erosion variable was removed or exchanged with a different variable, and the Risk of Flooding 

variable used only pluvial, fluvial and groundwater flooding data. 

As the LCA classifications developed were based on the specific character and historic land-

use/management in the Dysynni valley, the application of this framework to a different landscape 

may require slightly different LCA classifications to be used. This precludes direct comparison of the 

vulnerability of specific LCAs between landscapes. However, it still allows researchers to compare 

the most vulnerable LCAs across landscapes, the vulnerability of the historic landscapes as entities, 

and the most significant threats identified.  

Using indices for climate change vulnerability assessments can be considered as simplification 

(perhaps over-simplification) of a complex threat and the multi-facetted nature of the impacts 
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(Small-Lorenz et al. 2013). However, when prioritising areas and assets for management, it is 

important to offer a clear and transparent justification for the choice (Perch-Nielsen 2010), rather 

than create an elaborate prioritisation system that requires the investment of significant time and 

resources to carry out.  

The results generated in this chapter were used to inform Chapter 8, in which potential coastal 

management methods are assessed in terms of their sustainability across social, economic and 

environmental factors, as well as their suitability for addressing the threat to the vulnerable 

elements of the historic landscape as identified here.  
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Chapter 8 
Sustainable Management of the Historic 
Landscape 
8.1  Introduction 

Coastal management is an important consideration in the UK in the face of climate change; 

currently, nearly 2 million properties are at risk of coastal flooding in England and Wales, totalling 

around £200 billion in value (OST 2004a, 2004b). The Foresight Future Flooding project predicted 

that, if there is no change to the current spending and approaches used in coastal flood defence, the 

annual economic loss to flooding would increase by up to £27 billion per year by the end of the 21st 

century, depending on the emission scenario (OST 2004a, 2004b).  

Some approaches to coastal management, particularly hard defences, have received criticism for the 

high cost of construction and maintenance, adverse environmental impacts, and for causing policy 

lock-in. Policy lock-in is where a policy decision creates conditions in which the decision cannot be 

reversed (Brown et al. 2017). For instance, hard defence construction to reduce flood risk can lead to 

a false sense of security among the residents, and increased business and property development. 

The value of assets protected by the hard defences therefore increases, so it becomes less socially or 

economically viable to remove or stop maintaining the defences regardless of the economic cost or 

ecological impacts (ibid.). There is clearly a need to review the appropriate coastal management 

strategies, and develop those that are more sustainable. In order for a project to be sustainable, it 

must meet the requirements of sustainability as outlined in section 3.2.4, by considering social, 

economic, and environmental factors, and providing a solution that is equitable across both present 

and future generations (Brundtland and Khalid 1987; Stocker et al. 2012; Sánchez-Arcilla et al. 2016). 

Sustainable coastal management would “provide the maximum possible social and economic 

resilience against [threats such as erosion and] flooding, by protecting and working with the 

environment, in a way which is fair and affordable, both now and in the future” (Werritty 2006, 

p.19). In order to address the threat to the historic landscape identified in section 2.6 it is important 

that both heritage assets and the wider character of the historic landscape are considered when 

identifying the most suitable approach for coastal management.  

Chapter 8 addresses Research Aim 3: establish a way to identify the most appropriate approach(es) 

for sustainably managing the coastal historic landscape in the face of climate change. This is divided 

into three  research objectives: 3a: Identify, through literature research, a sustainability assessment 
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approach that could be used in the Landscape Vulnerability Framework; 3b: Review the current 

coastal and flood-risk management approaches in the Dysynni valley, and research innovative 

sustainable alternatives; 3c: Use the sustainability assessment approach (Objective 3a) to compare 

the current management policy in the Dysynni valley with potential alternatives identified in 

Objective 3b.  

To achieve this aim and the associated objectives, there is firstly a review of different methods used 

for assessing the sustainability of different processes or systems (8.2). This review informed the 

choice of sustainability assessment methodology to apply to the study area. The current coastal and 

flood-risk management context of the Dysynni valley is then examined (8.3). There is then a review 

of innovative, sustainable coastal and flood-risk management techniques, to inform the 

development of an innovative sustainable (IS) alternative management approach for the study area 

(8.4). The next section (8.5) applies the chosen sustainability assessment method (from 8.2) to both 

the current and alternative management options (from 8.3 and 8.4). This trials the chosen 

methodology and determines its suitability for use in the Landscape Vulnerability Framework. 

Finally, there is a discussion of the results of the sustainability assessment for the study area, and an 

evaluation of the overall sustainability assessment methodology (8.6 and 8.7).  

8.2 Sustainability Assessment methods 

A sustainability assessment is used to assess different potential approaches for managing the risk to 

the historic landscape of the Dysynni valley, and determine the most sustainable option. In order to 

determine what type of sustainability assessment would be most suitable for the study area, 8.2 

provides a review of several different sustainability assessment approaches.  

Firstly, there is an overview of what a sustainability assessment entails, and what they are generally 

used for (8.2.1). Subsequently, there is a discussion of different types of sustainability assessment, 

and the tools that are used within each (8.2.2). Finally, the chosen approach is explained and the 

methodology that was followed is briefly described.  

8.2.1 Sustainability assessments 

A sustainability assessment, or sustainability impact assessment as it is sometimes known, is a tool 

for assisting decision-makers in choosing the best (most sustainable) option for a policy or project, 

usually carried out ex-ante (during the design phase) (Arbter 2008; Singh et al. 2012). There are 

many different methods or tools that can be employed to undertake sustainability assessments, but 

there are several key themes that should be included regardless of the specific tool used.  
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For sustainability assessments, it is important to integrate the assessment of social, economic and 

environmental factors, in order to take into account all three ‘pillars’ of sustainability (see Chapter 3; 

Ness et al. 2007; Connor 2008; Stevens 2008). Balkema et al. (2002) argue that cultural aspects 

should be incorporated alongside social aspects, as threats to cultural values are as important as, if 

less tangible than, threats to social factors. They state that a measure of the actual effectiveness of 

each alternative in meeting the objectives (for instance for flood protection) is an important 

consideration for all approaches to sustainability assessments. However, there are difficulties 

associated with attempts to integrate all three (or more) aspects of sustainability into a single 

assessment. Giving equal weight to environmental, economic and social impacts, and including the 

ways in which they interact, can be difficult if there are more known indicators to measure one 

aspect over the others, or due to the availability of data in certain contexts (Kasperczyk and Knickel 

2006; Stevens 2008). Furthermore, the integration of both qualitative and quantitative data can 

prove a challenge. This is addressed in different ways by different sustainability assessment tools, 

each with strengths and weaknesses. 

The intergenerational and intragenerational equity aspect of sustainability is also an important 

consideration, so it is necessary to incorporate both long-term and short-term impacts within 

sustainability assessments (Ness et al. 2007; Stevens 2008). Assessments that continue beyond the 

project implementation and involve reflection and adaptation are particularly useful for detecting 

and addressing longer-term or cumulative impacts (Kasperczyk and Knickel 2006), however these are 

especially time-consuming and costly (Dijk et al. 2006; Hinterberger and Jäger 2008).  

Regardless of the tool chosen to undertake a sustainability assessment, it is important to 

acknowledge the synergies and trade-offs that occur between the environmental, social and 

economic objectives. This raises the question of whether the assessment is based on the acceptance 

of weak sustainability, or whether it demands strong sustainability. Weak sustainability is the 

premise that human capital can be substituted for natural capital, so ecological or environmental 

damage would be acceptable if the project provided adequate economic or social benefits (Arbter 

2008). In contrast, the idea of strong sustainability is based on the assumption that natural and 

human capital are non-compensatory, so one cannot be substituted for the other. The results of a 

sustainability assessment are influenced by the stance taken on the weak versus strong sustainability 

debate (Arbter 2008). It is important for projects to be explicit and transparent regarding the 

approach taken, so that it is clear what is accepted under the banner of sustainability within the 

sustainability assessment (Kasperczyk and Knickel 2006).  
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8.2.2 Different methods used 

There are various different tools that can be employed in sustainability assessments. Although there 

is no consensus over which approach is best, some are more suited to certain types of project than 

others (Von Raggamby 2008; Van Herwijnen 2010; Zijp et al. 2015). Two types of sustainability 

assessments mentioned by Ness et al. (2007) are product-related assessment tools, and integrated 

assessment tools. The following section explains these two different types of sustainability 

assessment method, and give examples of the tools used within each. 

Product-related assessment tools 

Product related assessment tools focus on the environmental impacts throughout the production, 

use and discarding of a product (Ness et al. 2007). The two most common product-related 

assessment approaches used are ecological footprint analysis and lifecycle assessment analysis.  

Ecological Footprint Analysis 

An ecological footprint is a measure of the amount of natural resources that would be required to 

create a product or sustain a population, for example. Ecological footprint analysis essentially aims 

to measure the area of productive land that would be ‘used’ in the project or product (Van der Veen 

2006). This includes both the amount of land required to provide the necessary resources, but also 

the amount of land needed to absorb the waste created by the project or product (Schianetz et al. 

2009). 

A benefit of using ecological footprints is that the use of land area as a measure of environmental 

impact allows the environmental impact of very different projects or products to be compared 

easily. It is most commonly used retrospectively for assessing the environmental impact of projects 

that have already been carried out, so is not often used for informing decision-makers (Schianetz et 

al. 2009). Another weakness is that it is not fully understood how ecosystems deal with waste or 

emissions, or exactly how much land would be required, so it is based on assumptions rather than 

actual data (Van der Veen 2006). 

Lifecycle Assessment Analysis 

A lifecycle assessment analysis assesses the environmental impact of a product or project across its 

entire lifetime from ‘cradle to grave’, i.e. from sourcing the natural resources to use, recycling, and 

disposal. It is a very complex process, as it aims to consider all possible energy and material inputs 

and outputs, and is usually undertaken retrospectively, so the product or project has already been 

created.  
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Lifecycle assessments are particularly useful for avoiding problem shifting, where an environmental 

problem in one sector or life stage is solved in a way that moves the problem elsewhere, either 

spatially or temporally. As lifecycle assessments take all stages and processes into account, any 

problem shifting would be detected (Schepelmann 2006; Schianetz et al. 2009). Cumulative impacts 

are also more easily detected through this method. However, the vast amount of data required to 

undertake a lifecycle assessment means that it can be very costly and time-consuming to carry out, 

and the calculations involved can be very difficult (Schianetz et al. 2009). Moreover, missing data can 

cause the accuracy of results to suffer (Schepelmann 2006). Finally, neither lifecycle assessments nor 

ecological footprint analyses include consideration of any socio-cultural or economic impacts, or 

impacts that are not quantifiable. This means that a significant proportion of the negative impacts of 

a project or product are not taken into account (ibid.). Therefore, lifecycle assessment analysis is not 

really a suitable method for assessing sustainability, which requires the consideration of all three 

‘pillars’ 

Integrated assessment tools 

Integrated assessment tools are generally undertaken ex-ante, and aim to incorporate a mixture of 

environmental, social and economic factors. This contrasts with the product-related assessment 

tools, which mainly focus on environmental impacts. Examples of this include cost-benefit analysis 

and multi-criteria decision analysis. 

Cost-Benefit Analysis 

The aim of cost-benefit analysis is to directly compare all of the costs and benefits of a project. To do 

this, all impacts and outcomes of a project are translated into monetary terms, so that the net 

benefits (benefits - costs) can be easily calculated (Kuik 2006). The costs that are often factored into 

a cost-benefit analysis include: cost of resources, regulatory costs, social welfare costs (i.e. potential 

price increases), transitional costs (i.e. job losses, firm closures), indirect costs (i.e. discouragement 

of investment or tourism, changes to markets), and environmental costs (i.e. pollution, impact on 

biodiversity or habitats). Often included in the calculation of benefits are: reduction of risk to human 

health, reduction of threat to heritage, food and fuel for market, fishing and hiking for recreation, 

flood moderation and CO2 sequestration of ecosystem services, and the intrinsic value of the 

ecosystem (Kuik 2006). 

Cost-benefit analysis is an easy way to factor in all strengths and weaknesses of a project and 

compare a wide range of different projects. There are several criticisms of this approach, primarily 

relating to the difficulty in translating qualitative or intangible costs and benefits into monetary 

values. It is unlikely that the calculated monetary value of social and environmental factors is 
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accurate or able to consider all aspects (Von Raggamby 2008). Willingness to pay, where people are 

asked how much they would be willing to pay for the benefit or to avoid the cost, is often used as a 

way to determine the monetary value of products or services. However, it is based on hypothetical 

situations, and may not actually reflect how much people would be willing or able to pay in reality 

(Kuik 2006). Another criticism is that the idea that environmental and social assets can be simplified 

into economic terms may cause the intrinsic value of things like nature and culture to be lost (Kuik 

2006; Von Raggamby 2008). It also implies that the loss or substitution of social and environmental 

assets would be acceptable if the right price was found (ibid.). Finally, Kuik (2006) argues that cost-

benefit analysis does not consider the potential inequalities in the distribution of costs and benefits, 

and so does not take into account the intra- and inter-generational equity aspect of sustainability.  

Multi-criteria decision analysis 

Multi-criteria decision analysis (MCDA), also known as multi-criteria analysis or multi-criteria 

decision making, is a tool that compares alternative options using various criteria, in relation to one 

or more objectives. The overall aim is to be able to rank the alternatives from ‘best’ to ‘worst’ based 

on how they meet the objectives, or identify options that are acceptable or unacceptable for the 

project in question (Van Herwijnen 2006; Girard and De Toro 2007; Ferretti et al. 2014). This 

approach is very flexible, as the criteria chosen to assess the alternatives can be changed to suit 

specific contexts and projects. Furthermore, MCDA can take into account both quantitative and 

qualitative factors, making it particularly suitable for assessing projects relating to historic assets, as 

they have both use- and non-use values (Mendoza and Martins 2006; Schianetz et al. 2009; Giove et 

al. 2010). There are several different types of MCDA tools, for instance multi-attribute value theory, 

analytical hierarchy process, and dominance-based approaches. 

The multi-attribute value theory (MAVT) approaches calculate an overall score for each alternative 

by aggregating the scores awarded for each criterion. As with the indices approach, this requires the 

criteria scores to be normalised onto a common scale (Dutta and Husain 2009). This approach is 

most suitable when there is a discrete number of alternatives that must be evaluated based on 

conflicting objectives (Ferretti et al. 2014). It is very suitable for assessing the sustainability of 

projects or policies, as sustainability is defined by the conflicting objectives of environmental, 

economic and social benefits (Wang et al. 2009). 

Analytical hierarchy process (AHP) is another MCDA method in which the criteria are organised into 

a hierarchy framework so that each sub-problem within the overall objective can be analysed 

separately (Cinelli et al. 2014). Pairwise comparisons are made between alternatives for each 
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criterion, and then represented as a matrix of comparisons expressed as ratios. This can then be 

translated into scores that are more easily comparable (Yau 2008; Cinelli et al. 2014). 

Dominance-based approaches are another MCDA method, in which alternatives are eliminated if 

they are dominated by another option. An option is eliminated if another alternative performs 

better than it on one or more criteria, and no worse on any other (Van Herwijnen 2006; Cinelli et al. 

2014). Dominance-based approaches are the only MCDA methods discussed here that are non-

compensatory, and so support strong sustainability. With AHP and MAVT, a weak score for one 

criterion can be offset by a strong score for another, if the criteria scores are aggregated before 

comparison. In contrast, dominance-based approaches compare alternatives based on individual 

criterion scores, so a weak score for any criterion can make an alternative more at risk of being 

eliminated (Van Herwijnen 2006; Ferretti et al. 2014). In reality, it is uncommon for many of the 

alternatives considered to be fully dominated across all criteria, as there are many different criteria 

that must be taken into account. Therefore, it is not the most useful approach for informing 

decision-making, as several alternatives may remain at the end (Van Herwijnen 2006).  

All MCDA approaches require the definition of criteria by which the alternatives are judged, which 

allows a variety of conflicting requirements to be incorporated. These criteria can be sub-divided 

into categories. Wang et al (2009) divides criteria into economic criteria (e.g. investment cost, 

operation and maintenance cost), environmental criteria (e.g. emissions produced, land use, local 

pollution), social criteria (social acceptability, job creation) and project-specific criteria (e.g. 

effectiveness of flood protection, impact on cultural landscape). It is important to ensure that the 

criteria chosen are relevant to the research question and objectives of the assessment, otherwise 

the alternative that scores the most may not actually be the ‘best’ approach for the project (Dutta 

and Husain 2009). The selection of criteria, and whether or not they are weighted, introduces an 

element of subjectivity into MCDA (Schianetz et al. 2009). Some projects give some criteria a greater 

weight than others during the scoring and aggregating stage, in order to take into account the fact 

that they are more important for the sustainability of a project. Due to the complex nature of the 

systems being assessed, it can be difficult to establish exactly how important criteria are in relation 

to one another. The weights given to criteria may therefore be arbitrary and based on subjective 

opinions or assumptions by the decision-maker. Most projects use the equal weights method, 

wherein all criteria are given the same weighting (Wang et al. 2009). 

8.2.3 Selection of a sustainability assessment tool 

This research uses MCDA to assess the sustainability of different management alternatives for 

cultural heritage at risk from climate change, and the tool used was the MAVT approach. This is 
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because there was a discrete set of alternatives that must be assessed based on conflicting 

objectives, which is what MAVT is suitable for. This method is more suitable than a dominance-

based approach, as dominance-based approaches eliminates some options, but do not rank the 

‘acceptable’ alternatives from most to least suitable. Ranking provides greater transparency 

regarding the performance of each alternative, and is useful for further narrowing down the most 

appropriate option. The MAVT method was chosen over the analytical hierarchy process as the 

process involved is more simple, and does not require the construction of a hierarchy of criteria or 

pairwise comparisons of alternatives for each criterion. Instead, each alternative is scored for each 

criterion, and only the final aggregated scores compared. 

The approach taken in this research is influenced by that of Giove et al. (2010) in their assessment of 

the sustainability of different options for the re-use of an historic waterfront.  They defined only 

three criteria (intrinsic sustainability, context sustainability, economic and financial sustainability), 

which they divided into attributes, and divided further into parameters. Each parameter was ranked 

between 0-100 based on the potential impact on it under each alternative scenario. The attribute 

score was calculated as the average of the parameter scores, while the score for each criterion was 

calculated as the average of the attribute scores. This allowed the alternatives to be compared not 

only on the overall score, but also by each attribute. For this assessment, the criteria used were 

economic sustainability, socio-cultural sustainability, environmental sustainability, and functionality. 

As in the assessment by Giove et al. (2010), each was divided into attributes, and further sub-divided 

into parameters. The purpose of this is to be able to compare the alternatives for each ‘pillar’ of 

sustainability, rather than only based on an overall score. It therefore reveals alternatives that 

perform particularly poorly on certain criteria rather than, for example, a poor performance in 

environmental sustainability being compensated for by a strong economic sustainability score. This 

approach goes some way towards addressing the fact that normal MAVT approaches only support 

weak sustainability. The underlying approach within this thesis is based on the idea that all three 

‘pillars’ are crucial to the realisation of sustainability, and that they cannot be wholly substituted for 

one another. In contrast, other MAVT studies used in heritage and archaeology (see Dutta and 

Hussain 2009; Ferretti et al. 2014; Ferretti and Comino 2015) do not group the attributes into 

different criteria, but instead produce only one score for the whole MAVT. This means that any 

compensation between criteria is not evident, so this only supports weak sustainability. 

Furthermore, the above authors focussed predominantly on socio-cultural attributes, with little 

mention of wider economic impacts, and no consideration of environmental or ecological factors. Of 

the studies reviewed, only Giove et al. (2010) used methods that covered a range of factors 

sufficient for assessing sustainability. Finally, the above authors all compared many (50+) single 
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buildings for renovation or re-use, but this thesis is assessing fewer but larger, more complex 

systems and solutions. The approach taken by Giove et al. (2010), which compares only 2 

alternatives which are complex and involve a wide area (~45 ha), is more suitable for application to 

this thesis.  All parameters were weighted equally within this assessment, due to the difficulties with 

accurately establishing the relative importance of some factors over others when the assessment is 

being carried out ex-ante. 

8.2.4 Summary 

MAVT, a type of MCDA, was chosen as the sustainability assessment method for this thesis, as it is 

designed to compare alternatives for a project with conflicting objectives; a feature of sustainability. 

MAVT can include consideration of both qualitative and quantitative factors, meaning that the 

economic, environmental and socio-cultural impacts of each alternative can be assessed. 

As per the MAVT steps laid out above, the next part of this thesis identifies the coastal and flood risk 

management alternatives for addressing the identified threat to the historic environment that were 

compared in the MAVT. There is first a review of the current approach to coastal governance in the 

UK and the existing management approaches and policy in the study area (8.3).  Section 8.4 explores 

what sustainable coastal and flood-risk management entails and reviews several innovative 

sustainable alternatives that could be compared.  

8.3 Current Coastal and Flood Risk Management in the Dysynni Valley 

In order to assess the most sustainable and suitable approach for management of the climate 

change impacts on the Dysynni valley, it is important to first discuss the way in which the risk of 

erosion and flooding along coastline and in the valley is currently being managed. It is also important 

to understand the current coastal and flood risk management paradigm in the UK, and the way in 

which coastal and flood risk management projects are designated and organised. Therefore, 8.3 

provides an overview of the existing coastal and flood risk management projects and infrastructure 

in the study area, with a focus on the Victorian sea-wall and promenade, the 2011 Tywyn coastal 

defence scheme, and the Dysynni Low Level Drain. Subsequently, there is a brief appraisal of the 

way in which future coastal management policy is planned and designated in the UK, namely 

through Shoreline Management Plans (SMPs), and the different types of coastal management they 

recommend. There is finally an overview of the SMP that was developed for the Dysynni coastline in 

2012.  
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8.3.1 Existing coastal defence and flood risk infrastructure 

This section reviews the current coastal defence and flood risk infrastructure in place in the study 

area, with a focus on the historic and modern defences at Tywyn, and the Dysynni Low Level Drain. 

Victorian Promenade and Sea Wall  

The original promenade on the Tywyn coastal frontage, stretching 465m, was constructed in 1889 

under the patronage of John Corbett of the Ynysymaengwyn estate. An additional promenade was 

built further north, near Bryn-y-mor, but was destroyed in a coastal storm in 1935 (Atkins 2009). A 

modern sea wall and promenade were built it its place around 1980 (Smith 2004a). Further coastal 

defence structures were constructed during the 20th century, including a detached breakwater, rock 

armour, wooden groynes and a sea wall (see Figure 8.1).  

Figure 8.1. Late-20th century sea wall built along the Tywyn frontage to protect the Victorian 

promenade. Present defences visible now also include wooden groynes. Photograph Copyright 

Penny Mayes 
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. 

Figure 8.2. Map displaying the rate of retreat of the MLW mark between 1888 and 2016 (above), 

indicating beach narrowing, and images demonstrating evidence of beach lowering and undermining of 

defences at the slipway (A), sea wall (B) and wooden groynes (C) at Tywyn (below). Crown copyright and 

database right 2019 Ordnance Survey 100025252 
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Figure 8.2 cont. Evidence of beach lowering and undermining of defences at the 

slipway (A) and sea wall (B) at Tywyn.  

A 

B 
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Despite the existing defences, conditions at the start of the 21st century indicated that further work 

was required to maintain Tywyn beach and frontage. The groynes built in the 1970s had become 

dilapidated and less effective at preventing beach recession. This meant that in the first decade of 

the 21st century beach levels dropped by 3 metres, a higher rate than the long-term average, which 

caused increased erosion and undermining of the defence structures (see Figure 8.2) (McDougall 

and Boyd 2009; Maslen Environmental 2011;YGC 2011).  A loss of beach material can be seen in 

Figure 8.2, which shows the amount of retreat of the MLW mark between 1888 and 2016. This was 

calculated by measuring the difference in the MLW position on the 1853-1904 1:2,500 County Series 

1st Edition map (last edited in 1888) and on the 2016 Ordnance Survey map. As the land behind the 

sea wall is low lying, any water that overtops the defences can easily flow inland. This reduction in 

beach levels worsens the risk of overtopping of sea walls due to the increased water depth at the 

foot of the structure (Sutherland et al. 2003; McDougall and Boyd 2009).  

Accessibility issues were caused by the groynes, which obstruct access along the beach, by the 

erosion of steps down to the beach built into the sea wall, and by the collapse of some sections of 

the promenade footpath (Atkins 2009; Maslen Environmental 2011). As a result of these issues, 

Figure 8.2 cont. Image demonstrating evidence of beach lowering and undermining 

of defences at wooden groynes (C) at Tywyn.  

C 
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Tywyn beach lost its Blue Flag status in 2009 (Atkins 2009). Emergency repair works have been 

required several times after storm events, but this is an uneconomical approach in the long-term. 

Future sea-level rise combined with lowering beach levels are likely to significantly increase the risk 

of overtopping and flooding, and the potential for the natural defences to the north and south of 

Tywyn to be breached (McDougall and Boyd 2009).  

Tywyn Coastal Defence Scheme 

A coastal defence project was designed by Atkins in 2009, and completed by Jones Bros (Ruthin) Co. 

Ltd in 2011. Before this defence project was agreed, several other coastal defence projects were 

proposed for the Tywyn frontage, but rejected for a wide range of reasons including cost and public 

opposition (see Stevens 2002; Maslen Environmental 2011). The successful project was co-funded by 

the European Regional Development Fund and the Welsh Government, who contributed £3.5million 

and £4.1million respectively, totalling £7.6million (Maslen Environmental 2011). Atkins consulted a 

range of stakeholders, including Tywyn Town Council, the Countryside Council for Wales, 

Environment Agency Wales, Tywyn and Aberdyfi Coast Protection Public Group, Welsh European 

Funding Office, Snowdonia National Park, and the general public (Atkins 2009). 

The main project objectives were to protect public assets by reducing the risk of overtopping and 

erosion, maintain safe beach access, maintain or improve the amenity of the beach, and ensure that 

it is environmentally acceptable and economically viable (McDougall and Boyd 2009; Maslen 

Environmental 2011). The main works included in this project were an intertidal rock breakwater at 

the south end of the promenade, two rock groynes, one at each end of the promenade, a rock 

revetment in front of the Bryn-y-mor section of the frontage, and beach nourishment behind the 

new breakwater (See Figure 8.3) (Atkins 2009). Also included was the replacement of 27 timber 

groynes with new groynes made from recycled timber, repairs to the concrete steps that run the 

length of the promenade, an extension of the blockstone revetment near the south end of the 

promenade, and repairs to the slipways and promenade itself (ibid.). The project aimed to reduce 

flood risk to a 1-in-100 year return, so while this does not eliminate the risk of flooding entirely, it 

will reduce the frequency and intensity of flood events (Maslen Environmental 2011). 
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The ecological impact of the project was addressed by installing artificial pools and crevices in the 

breakwater surface by drill-coring Evans et al. (2015) (Figure 8.4). Evans et al. (2015) found that 

there was greater species richness in the artificial rock pool habitats than the surrounding rock 

surfaces after only a few months, and after 18 months there was no significant difference between 

the artificial and natural rock pools in terms of species richness. Crevices and rock pools for this 

purpose were not included in the original design for the breakwater, groynes and sea wall, but as 

demonstrated by Evans et al. (2015), they can be installed retrospectively.  

Figure 8.3. New defences built at Tywyn, including a detatched breakwater (A) and a rock 

revetment (B). Photographs Copyright Penny Mayes 

A 

B 
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Figure 8.4. Evidence of ecological engineering features retroactively installed onto Tywyn 

breakwater by Evans et al. (2015). 
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The construction of the ecological engineering project is predicted to have impacted beach and 

marine species through sediment disturbance, noise and vibration (McDougall and Boyd 2009). Firth 

et al. (2013b) warn that introducing new areas of hard substrate into areas without natural rocky 

substrate can allow new, potentially invasive species to colonise the area. However, as this stretch of 

coastline has had artificial hard substrate for over a century, the new developments are unlikely to 

create any additional risk. The role of ecological engineering projects such as this in sustainable 

coastal management is discussed further in 8.4.1. 

8.3.2 Dysynni Low Level Drain 

This section discusses the Dysynni Low Level Drain (DLLD), a drainage scheme undertaken by local 

wealthy estates in the 18th and 19th centuries, and the way that this infrastructure was used and 

managed both in the past and present. This expands upon the discussion of the drainage scheme in 

sections 4.4.8 and 5.2.2. In the 1740s, the Peniarth and Ynysymaengwyn estates established a 

construction project to develop an extensive low-level drainage system in the Dysynni valley, 

including tidal gates and outfalls which are still extant today, and became the DLLD (Dunderdale and 

Morris 1996; Smith 2005). The scheme was completed in the 1860s, and allowed large areas of land, 

previously underwater for much of the year, to be used productively for farming (North Wales Daily 

Post 2004). This network of drainage ditches, culverts and drains remains an important feature of 

the current landscape, in terms of both its visual character and the economic productivity of the land 

(Smith 2004a; Wales Farmer 2017). 

Despite the DLLD, archive research (section 5.2) revealed that there were continuing problems with 

flooding in the low-lying areas of the Dysynni valley during the 20th century. A letter from the 

Ministry for Agriculture and Fisheries to the River Dysynni Catchment Board dating to 8th December 

1942 states that the drains in the area were badly choked and required excavation, and that a 

number of sluices were obstructed and required maintenance.  In order for the required work to be 

funded centrally as part of the existing outfall scheme, the affected watercourses were ‘mained’. 

This means that they were officially considered part of the River Dysynni main channel, so the work 

could be funded under Section 55 of the Land Drainage Act 1930 (Gardner 1950a). This eased the 

financial burden of management from the landowners (Houghton 1944).  Subsequently, six further 

watercourses were added to the River Dysynni main channel between 1944 and 1950, including 

channels near Tywyn, Llanegryn, Pont Dysynni and Peniarth (see Figure 5.3) (Houghton 1944; 

Dobson 1944; Gardner 1950a,b). Minutes from a meeting of Merioneth Rivers Catchment Board in 

1948 state that 23 farms on the Peniarth Estate were subject to flooding, and that conditions had 

deteriorated significantly in the previous few years.  

In the 1990s, research was undertaken into the DLLD for the National Rivers Authority (NRA) by 



196 
 

Dunderdale and Morris (1996). At this time, 25% of the area served by the drainage system was still 

often or permanently waterlogged during the spring, with the figure rising to 63% during the 

autumn. This was attributed to high water level in the DLLD due to high rainfall events, and weeds 

and blockages in the channel.  

Despite the significant efforts to improve the drainage network and reduce the incidents of flooding 

during the 20th century, recent reports indicate that standing water in fields and weak flow in ditches 

due to weed congestion is still, or has once again become, an issue in the Dysynni valley (see Figure 

8.5) (Wales Farmer 2017). The fourth most vulnerable LCA, Regular Drained Land, is characterised by 

the DLLD and associated drains, ditches and culverts. The existence of this drainage infrastructure is 

instrumental in the existence of a key LCA in the study area, and without continual or increased 

maintenance of the DLLD system there is a risk that this LCA could return to marshland. Not only 

would the economic consequences of this be disastrous for the area, but the character of the 

Dysynni historic landscape lowlands would be dramatically affected. 

Other maintenance work carried out to reduce flood risk includes the removal of gravel from the 

Dysynni valley. In 2015, a build-up of gravel reduced the river flow and increased water levels 

around three miles upstream, as far as Bryncrug (DredgingToday 2015). In response, NRW removed 

Figure 8.5. Evidence of waterlogging in a field in the Dysynni Valley. Copyright NorthWalesLive 2017 
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60,000 tonnes of gravel from the river as it entered Broadwater in order to protect 26 properties 

from flooding (ITV 2015). This clearance was previously undertaken in 2012, and the recurrence of 

the gravel is attributed to winter storms and high-tides carrying gravel into the estuary (ibid.).  

8.3.3 Future coastal management policy planning in the UK: Shoreline Management 

Plans 

The British coastline is divided into sediment cells based on patterns of erosion, transportation and 

deposition of sediments (Cooper and Pontee 2006). The coast of England and Wales comprises 11 

cells, each of which can be further partitioned into subcells (see Figure 8.6). SMPs are non-statutory 

policy documents developed by local councils and the Environment Agency, designed to inform 

strategic coastal planning and management (South East Coastal Group 2010). SMPs develop a policy 

framework for coastal management, based on an assessment of the threats posed by changing 

coastlines to society and the natural, developed and historic environment (ibid.). The first round of 

SMPs was developed in the earlier 21st century, and since then additional guidance published by 

Defra (2011) and new understandings of coastal processes and threats led to the updated SMP2s. 

The SMP2 process has involved greater stakeholder engagement throughout the process (Earlie and 

Brunner 2012). 

A key characteristic of SMPs is the focus on the interaction of coastal processes between areas and 

across different spatial and temporal scales (Guthrie and Clipsham 2011). They consider the impact 

of management processes on sediment transport systems, which could change erosion or 

sedimentation patterns elsewhere along the coast (ibid.). 

In the SMPs, the coastline is divided into sediment cells, which are the subdivided into Policy 

Development Zones (PDZs). Each PDZ is subdivided into Management Areas, which are further 

divided into Policy Units (Earlie et al. 2012b). The Dysynni valley coastline is within the West of 

Wales Sediment Cell, and PDZs 10 and 11. The northern shore of the Dyfi valley and the coastline up 

to Tonfanau is within Management Area 20, and constitutes Policy Units 10.10-10.19 (see Figure 8.7) 
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Figure 8.6. Sediment cell divisions along the coast of England and Wales. The Dysynni valley 

study area falls into Sediment Cell 9, between St David’s Head and Bardsey Sound. Source: 

Ministry of Agriculture, Fisheries and Food 1995. 
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Shoreline Management Plan approaches 

SMPs are based on the view that coastal management should be as ‘sustainable’ as possible, and 

that the defence options pursued should be those that do not tie future generations into expensive, 

long-term defence projects (Guthrie and Clipsham 2011). Some consider the most sustainable 

approach to coastal defence to be ‘no active intervention’ (NAI), as this allows the coastline to 

respond dynamically to natural processes (ibid.). The high cost of building and maintaining defensive 

structures means that the Welsh Assembly Government is promoting alternative flood risk 

strategies, such as increasing the flood resilience of individual properties and establishing an 

effective flood warning system (ibid.).  

 

 

Figure 8.7: SMP2 policy divisions that apply to the Dysynni valley (red square in inset). Policy Unit 

divisions indicated by blue dashed lines. Source: Earlie et al. 2012b, c, d. 
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For each different PDZ, several management scenarios are explored. An ‘Unconstrained Scenario’ is 

assessed, in which the behaviour of the coast is modelled as if no man-made defences existed. This 

is a purely theoretical standpoint, but is used to give an insight into how the existing defence 

structures may already be influencing coastal processes (Earlier et al. 2012b). There are then four 

generic coastal defence options that can be considered for each Management Area (Environment 

Agency 2013): Hold the Line (HTL); Managed Realignment (MR); Advance the Line; No Active 

Intervention (NAI). Advance the line involves the construction of defences further out to sea in order 

to reclaim land. This is very expensive and extremely uncommon, so is not discussed further in this 

thesis.  

Hold the Line 

The aim of this approach is to maintain the position of the existing shoreline. This is achieved 

through either hard engineering solutions, such as sea walls, breakwaters, and groynes, or soft 

engineering solutions like beach nourishment, and is mainly employed along shorelines with 

valuable assets, such as business, industry or significant urban development.  

HTL approaches can allow a business-as-usual approach to land-use, and provide reassurance for 

residents whose homes have been protected. However, there are significant financial costs 

associated with the construction and maintenance of defences, making them unsuitable for low-

value coastal areas (King and Lester 1995; Ledoux et al. 2005; Milligan and O’Riordan 2007; Westley 

et al. 2011). Furthermore, significant changes to tidal range, wave height and power, and storm 

surge frequency due to climate change may require engineered defences to be upgraded in the 

future, which would further increase the cost (Hallegatte 2009; Temmerman et al. 2013).  

There are numerous environmental impacts of fixed coastal defences. Firstly, the prevention of 

sediment erosion and transport by hard defences causes sediment starvation within the sediment 

cell. This can cause an increase in erosion along other areas of coastline within the sediment cells 

which are undefended (Airoldi et al. 2005; Bromhead and Ibsen 2006). Therefore, the threat of 

erosion has not been reduced overall, merely displaced. Coastal squeeze is another phenomenon 

caused by sea walls, whereby wetland habitats seaward of the defence, such as saltmarsh, are 

eroded as they are unable to accrete and migrate landwards in response to sea-level rise (Bromhead 

and Ibsen 2006; Pontee 2013). For instance, the fixed coastal defences along the Essex coastline 

have resulted in the loss of 1000 ha of saltmarsh between 1973 and 1998, with up to 75% of the 

remaining saltmarsh predicted to be lost by 2050 (Parrott and Burningham 2008). Finally, the 

replacement of soft-bottomed habitats with hard-bottomed conditions due to the construction of 

defences could cause a reduction in biodiversity or a change in the species mix (Airoldi et al. 2005). 
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Beach nourishment can also cause environmental issues; sand extraction can damage ecosystems 

and affect erosion and sedimentation patterns within the sediment cell of the mine site. Moreover, 

the additional available sediment can cause siltation of offshore ecosystems, while the deposition of 

the sand with heavy machinery can damage sand-dwelling species (Greene 2002). 

Despite these economic and environmental limitations, HTL has still been a popular approach in 

many areas. This is partly due to the high value of protected assets in some areas, but can also be 

politically motivated. As political cycles are relatively short in the UK, coastal defence policy may be 

geared towards solutions that gain favour in the short term, despite a lack of sustainability in the 

long term (Bray et al. 1997). Although the government is not obliged to construct flood and erosion 

defences, there is often an assumption that public authorities will provide protection for settlement 

areas (Mulligan and O’Riordan 2007). A reduction in the amount of coastal defence provided by 

authorities could result in public anger towards, or distrust of, authorities (Few et al. 2007a; Stocker 

et al. 2012).  It is likely that HTL approaches will become less widely used, due to the high costs 

involved; Ledoux et al. (2005) calculated that the amount currently spent on the maintenance of 

defences would have to double in order to maintain the shoreline along all defended coastlines. 

Managed Realignment 

Also known as Managed Retreat, this is where existing defences are removed, breached, or allowed 

to breach naturally, in order to allow the shoreline to retreat (Esteves and Williams 2017). This can 

create saltmarsh habitat behind the breached defence, solving the issue of habitat loss due to 

coastal squeeze (Bray et al. 1997; Dafforn et al. 2015). Sometimes a new line of defence is erected 

shoreward of the breached defences in order to maintain protection for certain assets further inland 

(Esteves 2013). 

Saltmarsh can attenuate wave energy, store flood waters, and accrete in line with sea-level rise, so 

the creation of intertidal habitats can provide a level of flood protection (Bray et al. 1997; Ibàñez et 

al. 1997; Milligan et al. 2009; Sutton-Grier et al. 2015; Masselink et al. 2017). This approach is 

favoured by conservationists as the newly created habitat can be beneficial for coastal ecosystems. 

However, Temmerman et al. (2013) argue that, as few MR projects have been carried out and 

monitored, the effectiveness of MR along different types of coastline is not yet well understood. One 

of the reasons that so few MR projects have been undertaken is the lack of popularity with land-

owners. Under the Environmental Stewardship Scheme, there are subsidies available for land-

owners who create saltmarsh through MR on their land. The permanence of this change in land use, 

and the 20-year limit on subsidies, has made this a very unpopular option compared to other agri-

environment schemes (Ledoux et al. 2005; Parrott and Burningham 2008). 
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No Active Intervention 

NAI is a hands-off approach, in which no further defence for flooding or erosion are invested in, 

regardless of whether built defences exist there already. This approach is generally chosen for 

stretches of coastline that are either not threatened by flooding or erosion (e.g. hard rock cliffs), or 

those in which there are no valuable assets at risk. While popular with conservationists, as it allows 

natural processes to act unhindered in the coastal system, NAI can be very unpopular with residents 

of rural coastal areas who risk losing their homes. The UK Government has no obligation to provide 

compensation to people who lose their property as a result of coastal flooding or erosion. This can 

cause anger, distrust and conflict between the public and coastal management authorities (Ledoux 

et al. 2005; O’Riordan et al. 2008). 

SMP2 policy for the Dysynni coastline 

The West of Wales SMP2 covers the area of this research. The SMP2 is divided into Policy 

Development Zones (PDZs), which are further divided into Management Areas (MAs), then Policy 

Units (PUs) (see Figure 8.7). The southern section of the coastline included in the study area of this 

research, from the Dyfi estuary to Tonfanau, is included in PDZ 10, MA 20, PU10.11-10.19. The 

northern section of the study area, from Tonfanau to just south of Llwyngwril, is included in PDZ 11, 

MA 21, PU 11.1(see Figure 8.7).   For each PU, policy plans were developed for the short-, medium-, 

and long-term (2011-2025; 2025-2055; 2055-2105). It is worth noting that the allocation of different 

policy approaches in the SMP2 does not indicate that funding for these policies has been secured, 

they are just guidance for local authorities 

The SMP2 policy plan is summarised in Table 8.1 and Figure 8.8. The main considerations in 

developing the SMP2 for this area were the small coastal towns of Tywyn and Aberdyfi, and the 

railway line that is situated in close proximity to the shoreline in some areas, as it is particularly 

important for transport in the region. HTL was chosen as the policy for all time periods for the 

following areas (Earlie et al. 2012 c, d): 

 - The north shore of the Dyfi estuary from Gogarth Hall to Aberdyfi (PU 10.11-10.13) 

 - Tywyn frontage (PU 10.16) 

 - Morfa Gwyllt (the gravel spit seaward of Broadwater, along which the railway line is situated). (PU 

10.17) 

 - Rola (the stretch of land north of Tonfanau) (PU 11.1) 
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Most of the areas in which the Hold the line policy is proposed on the Dysynni coastline already have 

coastal defence structures. The north shore of the Dyfi estuary (PU10.11-10.12) is protected by a sea 

wall, and Aberdyfi town (PU 10.13) is fronted by a harbour. The Tywyn coastal frontage (PU 10.16) is 

dominated by a promenade protected by a sea wall, wooden and rock groynes, a breakwater and 

rock revetments. Along the shoreline in front of Tywyn sewage works and Morfa Gwyllt (PU 10.17), 

the railway line is protected by a coastal embankment and rock armour, although the spit extending 

to the mouth of the Dysynni (also PU 10.17) is only protected by a natural shingle bank. Further 

north, Rola (PU 11.1) is protected naturally by a coastal cliff (Lle 2016). In order to maintain the 

coastline in its current position in these areas, the existing defences along this coastline will be 

maintained. In addition, areas that are not currently protected by engineered defences may need 

further investment in the near future to maintain the standard of protection. Earlie et al. (2012d) 

predict that the Rola cliffs may erode by 10-20m by 2100, which would potentially impinge upon the 

railway line. Furthermore, Earlie et al. (2012b) predict that sea-level rise may cause the shingle 

shoreline barrier across the mouth of the Dysynni to breach. These areas will need additional 

defence in order to meet the Hold the Line policy.   

MR was the chosen policy plan for the following areas (Figure 8.8) (Earlie et al. 2012b): 

 - Aberdyfi dunes seaward of the golf course (PU 10.14) 

 - Penllyn frontage (PU 10.15) 

 - Tonfanau (with a move to NAI in the 2055-2105 epoch) (PU 10.19) 

 

Table 8.1: Summary of the SMP2 policy plan information for the Dysynni coastline 

Policy Unit Policy Plan 

Present - 2025 2025-2055 2055-2105 

10.11 Gogarth HTL HTL HTL 

10.12 Dyfi North HTL HTL HTL 

10.13 Aberdyfi HTL HTL HTL 

10.14 Aberdyfi Dunes MR MR MR 

10.15 Penllyn MR MR MR 

10.16 Tywyn HTL HTL HTL 

10.17 Morfa Gwyllt HTL HTL HTL 

10.18 Dysynni Estuary HTL MR MR 

10.19 Tonfanau MR MR NAI 

11.1 Rola HTL HTL HTL 

Key: HTL – Hold the Line; MR – Managed Realignment; NAI – No Active Intervention 
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The policy plan for the Dysynni Estuary, which comprises Broadwater and the stretch of the river to 

Pont Dysynni (PU 10.18), is HTL for the short-term but changes to MR from 2025-2105 (Earlie et al. 

2012b). The land that would be suitable for a MR scheme at the Dysynni Estuary covers around 

250ha and is located mainly to the south of the river and existing estuary, Broadwater. There are 

Figure 8.8. SMP policy plans for each PU along the Dysynni coastline and estuary for 2011-2025 (A), 

2025-2055 (B) and 2055-2105 (C). Crown copyright and database right 2019 Ordnance Survey 

100025252 
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currently embankments protecting this low-lying ground from inundation from the river, as well as a 

low-level drainage system. The other areas earmarked for MR by the SMP2 in the study area are just 

less than 5km long in total, and comprise the Penllyn frontage (PU 10.15) and the sand dune system 

to the south (PU 10.14), which currently acts as a coastal barrier for Aberdyfi golf club. Behind the 

low coastal barrier at Penllyn, there is a low-lying area of around 200ha that could be suitable for a 

MR scheme should the existing barrier be breached. 

With this proposed management plan, Earlie et al. (2012a) predict that coastal erosion would cause 

no damage to commercial or residential properties in the next 100 years. However, the economic 

damage of a 1-in-10 year tidal flood would increase from £36,000 (217 properties affected) in 2010, 

to £216,000 (365 properties) by 2110.   

8.3.4 Summary 

As evidenced by this section, the dominant approach to coastal management in the study area has 

been through hard defence construction, particularly along the Tywyn frontage. In most areas that 

are currently defended, a HTL approach will continue to be used, while in other areas the proposed 

approach is MR or NAI. The current flood risk infrastructure in the study area, the DLLD, seems to 

have been underperforming for around the last century  

The purpose of Chapter 8 was to develop a sustainability assessment methodology to apply to 

different coastal and flood-risk management approaches in the study area. One of the approaches 

that was assessed using the methodology is the current SMP2 policy plan described in this section. 

Other approaches included in the sustainability assessment are identified in 8.4.  

8.4 Sustainable Coastal Management, and Developing an ‘Innovative 

Sustainable’ Option  

Section 8.4 develops an ‘Innovative Sustainable’ (IS) option to compare to the SMP2 policy plan. The 

IS option is comprised of new or innovative sustainable management techniques for estuarine, 

riverine and coastal areas. The main purpose of creating this IS option is to test the sustainability 

assessment methodology and how well it compares between different alternatives based on 

conflicting criteria.  

Prior to the establishment of which management approaches were included in the IS option, there is 

a brief discussion regarding what sustainable coastal and flood risk management entails (8.4.1). 

Subsequently, there is a review of several different sustainable coastal and flood risk management 
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techniques, including evidence of the strengths and weaknesses of each (8.4.1). This was used to 

identify the techniques that were included in the IS option.  

8.4.1 Sustainable coastal and flood risk management 

For a project to be sustainable, it must incorporate consideration of social, economic and 

environmental factors, and aim to provide a solution that is equitable across both present and future 

generations (Brundtland and Khalid 1987; Stocker et al. 2012; Sánchez-Arcilla et al. 2016). 

Sustainable coastal management would “provide the maximum possible social and economic 

resilience against [threats such as erosion and] flooding, by protecting and working with the 

environment, in a way which is fair and affordable, both now and in the future” (Werritty 2006, 

p.19). 

While this section and the sustainability assessment focuses on specific management tools (such as 

sea walls, beach nourishment, and MR projects), it is acknowledged that the overall governance 

frameworks in place influence the sustainability of coastal and flood risk management. Firstly, 

conflict and inefficient use of resources can occur when there are overlaps in jurisdiction and 

confusion of responsibilities between organisations and authorities that have different levels of 

power, such as the Environment Agency, local and regional flood defence committees and drainage 

districts, DEFRA, and landowners (Shi et al. 2001; Ledoux et al. 2005; Flatman 2009; Hall et al. 2016). 

Scale issues can cause limitations in the efficiency and efficacy of coastal management. Decisions on 

coastal defence strategy are usually made on a national level, while the design and implementation 

of coastal management occurs on a local level. There can be difficulties in translating the national 

frameworks into individual project plans, due to the context-specific nature of coastal issues, and 

limited local budgets (Few et al. 2007a; Milligan and O’Riordan 2007; Tribbia and Moser 2008). SMPs 

are designed to align with the location of sediment cells, in order to address the scale mismatch 

between the jurisdictional scale of coastal management and the spatial scale of environmental 

processes (Milligan et al. 2009; Termeer et al. 2010). Finally, the establishment of national strategies 

and SMPs in a top-down approach can result in unforeseen conflicts with other stakeholders 

(Guariguata et al. 2012), so this may not be the most socially sustainable method for controlling the  

governance of coastal zones.  

In terms of management tools, a move from fixed, hard defences towards more flexible strategies is 

often suggested as a way to reduce the cost and environmental impact of coastal management 

(Turner et al. 2007). Hallegatte (2009) promotes no-regret strategies, such as working with natural 

processes, restricting land-use planning away from flood-prone areas, enhancing drainage systems, 

and developing warning and evacuation schemes. The idea behind these is that they would be useful 
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even if climate change did not occur, and so will provide benefits regardless of the realised emission 

scenario (see also Turner et al. 1998; National Trust 2015b). The following section reviews several 

different sustainable, innovative, no-regret coastal and flood risk management tools that could be 

included in the IS option, namely ecological engineering, sand engine beach nourishment, controlled 

tidal restoration, and floodplain reconnection. This includes reference to the impacts of each tool on 

the archaeological resource, as well as social, environmental and economic considerations.  

Ecological engineering 

Ecological engineering exploits the characteristics of natural processes by creating or manipulating 

ecosystems to provide coastal defence or other socio-economic benefits (Firth et al. 2014). Research 

by Firth et al. (2013a, b, 2014) indicates that species diversity on artificial structures can be increased 

by creating crevices and surface roughness on structures. Many species are more likely to colonise 

the structure if it has a heterogeneous surface like a natural rocky shore. Water retaining features, 

emulating the characteristics of rock pools, can be designed into the defence structure, or fitted 

retroactively. These water retaining features provide refugia for intertidal organisms at low tide, and 

have been shown to have greater biodiversity than emergent substrata (Firth et al. 2013a). However, 

other than the ecological benefits, these structures still cause the same problems as traditional hard 

defences (see 8.3.3). Ecological engineering has been retro-fitted to the breakwater defence in 

Tywyn by the drilling of small rock pools (see 8.3.1, Figure 8.4)  

A more drastic approach to ecological engineering is to use natural structures like coral reefs or 

oyster reefs to attenuate wave height and energy in a similar way to submerged or low-crested 

breakwaters (Dafforn et al. 2015; Cunnliff 2016; Morris et al. 2018). Coral reefs have been shown to 

reduce wave height by 70%, comparable to wave reduction rates of low-crested breakwaters 

(Ferrario et al. 2014; Narayan et al. 2016). Research indicates that oyster reefs reduce wave height 

by 25%, but when used in conjunction with saltmarshes, they can provide wave height attenuation 

of 67.3% (Garvis 2012; Morris et al. 2018). Piazza et al. (2005) argue that although oyster reefs can 

reduce erosion along low-energy shorelines, they are less effective along high-energy shorelines. A 

key weakness of hard built defences is that, due to sea-level rise, the level of defence provided will 

reduce over time unless costly upgrades are undertaken (Nørgaard et al. 2013). In contrast, oyster 

reefs can grow in height quickly enough to keep pace with projected sea-level rise, so the level of 

defence that they provide remains constant (Sutton-Grier et al. 2015). Research by Sumer et al. 

(2002) showed that the permeability of reefs caused less reflection than traditional breakwaters, 

and therefore less scour on the bed seaward of the structure. This means that utilising natural reefs 

could have less potential impact on submerged archaeological features such as wrecks, fish-traps, 
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and submerged landscapes. Furthermore, the natural appearance of such reefs would have little 

impact on the character of the coastal historic landscape.  

In terms of the economic aspect, natural reefs are cheaper to create than standard built defences; 

oyster reef breakwaters cost around $1m per mile (≈£460,163 per km) whereas rock breakwaters 

cost $1.5-3m per mile (≈£690,245 - £1,380,490 per km) (Cunnliff 2016). Utilising oyster reefs in 

coastal defence also gives a higher return on investment than traditional built defences, as 

additional ecosystem services such as biodiversity and water filtration are provided alongside the 

coastal protection (Cunnliff 2016). In the Gulf of Mexico, a 5.6km-long oyster reef was installed as a 

submerged breakwater and provided over 3 tonnes of catch per year (Sutton-Grier et al. 2015). The 

oyster reef also removed 1.9 tonnes of nitrogen per year from the surrounding waters, which helped 

reduce the risk of eutrophication behind the breakwater (ibid.). These secondary benefits could help 

coastal communities in the areas in which coastal defences are installed (Morris et al. 2018). 

However, this oyster reef was comprised of Crassostrea virginica, or Eastern Oyster, which is mainly 

distributed in warm waters along the east coast of North and South America (Kemp and Hanson 

2007; La Peyre et al. 2014). Reef building species that are found in British waters may not provide 

the same level of protection, the same economic benefit, or the same rate of water purification 

shown by this study. Furthermore, there is still some uncertainty about how ecosystems may react 

to climate change, for instance coral is at risk of bleaching due to ocean acidification and sea-level 

rise (Morris et al. 2018). There is a seasonal variation in the biomass in coral reefs, so the level of 

protection available may vary (ibid.). This level of uncertainty can form a barrier to the wider use of 

natural systems for coastal defence.   

There are a few disadvantages to using natural systems for coastal defence. Primarily, as mentioned 

above, the exact level of protection provided by natural reefs or dunes is not as well defined as that 

of built defences, as it can be influenced by the ecosystem maturity and species density, among 

other things (Sutton-Grier et al. 2015). This means that there is generally lower confidence in natural 

defences in areas with high value land and assets, such as urban waterfronts. It can take some time 

for the ecosystem to become properly established, meaning that the area of coastline is undefended 

at the beginning of the project (ibid.) Sutton-Grier et al. (2015) suggest that natural and built 

defences can be used in conjunction in order to benefit from the strengths of each approach. For 

instance, when combining an offshore oyster or coral reef with a sea wall, the sea wall provides 

coastal protection while the reef is developing, and when established the reef reduces the height 

and power of waves reaching the sea wall, thus reducing structural damage and maintenance 

requirements. Hybrid approaches like this can have the same disadvantages as both natural and 

hard defences, such as negative impacts on sediment transport, and biodiversity (ibid.).  
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Due to the uncertainty surrounding the potential for oyster or coral species to recruit and survive in 

the study area, and whether the conditions would be suitable to grow an oyster or coral reef, this 

technique is not included in the IS option for comparison against the SMP2 option. Furthermore, a 

key threat to the study area is the flood risk to the lowlands and a reef breakwater would mainly 

provide protection against erosion rather than high water levels. 

Beach nourishment and sand engines  

Beach nourishment reduces the impacts of coastal erosion by depositing sediment on the intertidal, 

dune, or nearshore subtidal area, which widens beaches, dissipates wave energy, reduces beach 

profile lowering, and improves visual amenity (Phillips and Jones 2006; Ostrowski et al. 2013; 

Marinho et al. 2017). 

Research by Marinho et al. (2017) shows that the same equilibrium state is reached on beaches 

following nourishment regardless of where on the beach profile the sand is deposited. This means 

that near-shore nourishment is just as effective as intertidal and dune nourishment but is much 

cheaper, and as the construction process can happen by sea it is less intrusive to the beach 

environment and has greater public acceptance (Stive et al. 2013; Burcharth et al. 2015). In the 

short-term, dune nourishment can provide protection against flooding, as dunes are often higher 

than sea walls, so can protect against high water levels (Rhind and Jones 2009).  Research by Bayas 

et al. (2013) indicated that dunes are slightly less effective than sea walls at reducing flood risk, but 

dunes reduced wave strength so the resulting floods caused less structural damage than those at sea 

walls (Morris et al. 2018). Grey dunes (fixed dunes with a herbaceous vegetation cover) are at less 

risk of erosion compared to unvegetated dunes, and are a Biodiversity Action Plan (BAP) priority 

habitat, and so must be conserved under the European Commission’s Habitats Directive (Rhind and 

Jones 2009). Restoring grey dunes therefore provides defence against coastal erosion and storm 

surges, as well as meeting conservation targets. Other secondary benefits of sand dunes include 

space for grazing, visual amenity, and recreation. Dune restoration is likely to have less of a direct 

impact on any archaeological remains compared to the construction of fixed defences, as there is no 

disruption of the subsurface.  

Generally beach nourishment schemes have a design life of 3-5 years, although in some areas it is 

undertaken annually, so the cost of management is ongoing (Stive et al. 2013). There is a novel 

beach nourishment project, called the Sand Engine, which utilises natural coastal processes to help 

provide the coastal protection. The project commenced in 2011 on the Delfland Coast in South 

Holland (see Figure 8.9).  It is considered a mega-nourishment scheme, as it involved the deposition 

of 21.5 million m3 of sand, ten-times greater than most nourishment projects (Stive et al. 2013; 
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Vikolainen et al. 2017). All of the sand was placed in a single area and will be redistributed along the 

coast by longshore drift over the next 20 years (Stive et al. 2013; Vikolainen et al. 2017). This 

provides the same benefit as normal beach nourishment projects, such as wider beaches and 

erosion protection, but causes less ecological stress in the receiving coastline as it only needs to be 

undertaken every 20 years. In the Dutch Sand Engine project, the sand was deposited in a hook-

shaped peninsula, which has created a shallow lagoon to support organisms such as flatfish (see 

Figure 8.9; Stive et al. 2013).  

It is expected that the Sand Engine will stabilise 10km of the Dutch shoreline for 20 years, and 

monitoring of the first 18 months using satellite imagery has shown that almost all of the observed 

retreat of the peninsula has been compensated for by accretion in the adjacent coastline (De 

Schipper et al. 2016).  The Sand Engine is one of the approaches that was assessed by the MAVT 

sustainability assessment for its suitability for the Dysynni valley. A wide, sandy beach and dune 

system already characterises a significant section of the study area coastline, so the establishment of 

a wider beach along the entire coastline would not dramatically alter or damage the character of the 

historic landscape in the coastal area. It would also provide protection against erosion for 

Figure 8.9. Photographs of the initial sand engine deposition in the Netherlands in 2011 (top-left), and 

subsequent evolution of the sand peninsula. Photographs Copyright Julian Brobbel 
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archaeological features that are currently seaward of the hard defences at Tywyn, such as fish-traps, 

peat cuttings and submerged forest, and reduce the erosion pressure on the existing defences. The 

trajectory of the sand engine towards an equilibrium on the coastline means that this project would 

not cause policy lock-in, and is essentially a no-regret option.  

Controlled tidal restoration  

A relatively new technique that can be used as a form of MR in both coastal and estuarine/riverine 

areas is controlled tidal restoration (CTR), often referred to as regulated tidal exchange (RTE) or 

controlled reduced tide (CRT). In CTR the existing line of defence is maintained, and the tidal flow is 

restored into an embanked area (flood control area – FCA) behind the defence by creating sluices 

and culverts (see Figure 8.10) (Johnstonova 2009; Environment Agency 2010; Esteves and Williams 

2017). CTR can be used as a precursor to defence removal, as it allows sedimentation to raise the 

elevation of the land behind the defence, as land that is too low-lying is unsuitable for saltmarsh 

development (Esteves 2013). Some CTR systems use sluices and tide-gates to control the amount of 

water entering the FCA, however there can be mechanical faults and high maintenance costs 

associated with these methods (Beauchard et al. 2011; Masselink et al. 2017). Other CTR projects 

use high inlet culverts and low outlet valves to recreate the tidal regime within the FCA (ibid.). Using 

CTR reduces flood risk as the tidal influx is dampened by the temporary storage of water in the FCA, 

while the secondary embankments can protect valuable land behind the FCA (Cox et al. 2006; Jacobs 

et al. 2009).  

As with other MR schemes, the creation of wetlands or intertidal habitats using CTR can lead to the 

provision of many ecosystem services alongside flood mitigation, including biodiversity, 

biogeochemical cycling, habitat provision, and recreation (e.g. birdwatching) (Cox et al. 2006). 

Furthermore, CTR and FCAs can be used in places where breaching defences or reconnecting 

floodplains is not possible due to land scarcity or valuable infrastructure nearby (ibid.).  

However, as the wetland created is not naturally functioning, there can be limitations with the CTR 

in terms of habitat succession and ecosystem service provision. Research by Masselink et al. (2017) 

into a CTR system in Dorset showed that sedimentation rates in the FCA were ten times lower than 

in a natural saltmarsh nearby. This would reduce the ability of the saltmarsh to adapt to rising sea 

levels like natural marshes, as the sediment supply and water levels are controlled by the inlets 

rather than by the site elevation relative to the tidal frame (Oosterlee et al. 2018). Moreover, due to 

the nature of the inlet and outlet valves, and the lower tidal range, the duration of high tide is 

greater in the FCA than the surrounding coastline (Beauchard et al. 2011). This extended flood 
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duration compared to natural marshes could cause waterlogging or prevent succession to a mature 

saltmarsh community (Cox et al. 2006; Masselink et al. 2017; Oosterlee et al. 2018). 

 

In terms of archaeology, CTR is incompatible with in situ preservation of any remains that are within 

the area of surrendered land. The subsurface environment will change due to more frequent 

inundation, so it is not possible to maintain the static conditions required for in situ preservation. 

Any above-ground features are also likely to be affected by frequent inundation. Salt water is more 

damaging to some archaeological materials than freshwater, and causes corrosion of metals, calcium 

carbonate concretions on materials, rapid deterioration when exposed to the air, and the saturation 

of artifacts with salts (which leads to crystalisation, flaking and disintegration) (Hamilton 1996; 

Storch 1997; Hamilton 1999; Nautical Archaeology Programme 1999; Minnesota Historical Society 

2006). Therefore, any features affected by CTR would have to be excavated and preserved by record 

as a precaution. 

Finally, as the habitat within FCAs is subject to different hydrological conditions compared to 

exposed intertidal areas, it is possible that the climax community that would develop would be 

different to that of a natural intertidal community in the same area (Cox et al. 2006; Maris et al. 

Figure 8.10. Diagram showing how a CRT system prevents flooding behind the defence (ring dike) by 

controlling the amount of water that can enter the embanked area. A wetland ecosystem can be 

created in the embanked area (polder) through the gradual deposition of sediment, and protection from 

erosion. Source: Ecosystem Management Research Group, University of Antwerp (CC BY-SA 4.0) 
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2007; Oosterlee et al. 2018). This could impact the ecological functioning of the created habitat, and 

the potential ecosystem services that it could provide (Oosterlee et al. 2018). Oosterlee et al. (2018) 

suggest that more research should be done on the implications of CRT projects on ecosystem service 

provision. 

Due to the various limitations cited above, the CTR tool is not included in the IS option for 

comparison against the SMP2 policy plan. CTR requires the construction of significant infrastructure 

which would be very costly, and could have negative environmental impacts, meaning that it is not a 

no-regret option, and is not necessarily sustainable. There is no stretch of the Dysynni coastline for 

which it would be suitable, as either an area already fronted by a sea wall would have to be 

sacrificed for the creation of wetland, or a hard defence structure would have to be built in an area 

that is currently undefended. Furthermore, if it were employed in the Dysynni estuary, it would 

require investment in significant defensive infrastructure and sluice systems which would disrupt 

some of the natural estuary processes occurring there.  

Floodplain reconnection 

Floodplain reconnection is a less controlled method of MR than CTR. Rather than water being 

introduced into a single area, all river embankments are removed in order to reconnect the river 

channel to the natural floodplain (Environment Agency 2010). This allows the river water to extend 

over the floodplain during periods of high water, thus reducing the risk of flash-flooding 

downstream, for instance in urban areas (Wharton and Gilvear 2007; Risc-Kit 2017a). Floodplain 

reconnection can also include the re-naturalisation, or re-meandering, of river channels that have 

been channelised (Wharton and Gilvear 2007; Environment Agency 2010). Recreating river 

meanders effectively makes the river longer, and delays the time that peak flow reaches 

downstream (Environment Agency 2010). The creation of new wetland floodplain habitat provides 

ecological benefits, for instance by providing habitat for invertebrates, wading birds and fish 

nurseries (Opperman et al. 2009; Paillex et al. 2009; Guida et al. 2014). Reconnection can improve 

biogeochemical fluxes and river water quality as channel erosion is reduced, and nutrients and 

pollutants are sequestered or stored in sediments and vegetation within the floodplain rather than 

kept within the river channel (Volk et al. 2004; Johnstonova 2009; Paillex et al. 2009; Ledford and 

Lautz 2015). This reduces the risk of eutrophication in the river and estuary (Ebert et al. 2009). 

Overbank deposition and the development of floodplain wetland habitats can also increase carbon 

sequestration (Tilman et al. 2006). 

Another benefit of floodplain reconnection is that it can increase the level of flood protection to 

protected areas, as larger areas are provided for water storage, and the river channel is not 
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channelised and at risk of overtopping during storm surges or high water (Wharton and Gilvear 

2007; Environment Agency 2010; Rick-Kit 2017). This removes the requirement for periodic 

maintenance and updating of defence and levee systems (Zhu et al. 2007).    

Finally, much of the floodplain may only be needed to attenuate flood waters a few times a year, so 

land will not be completely unprofitable to farmers, unlike with coastal managed retreat projects 

(ibid.). Morris et al. (2008) state that extensive grazing on washland (i.e. areas occasionally flooded) 

compared to grassland would not reduce the net margin of combined beef and sheep farming (the 

main type of farming in the Dysynni valley), although the net margin of beef farming alone would 

reduce by £80ha-1a-1. Furthermore, outdoor recreation and tourism industries can be developed in 

an area following floodplain reconnection (Sparks and Braden 2007). This diversifies local livelihoods, 

leading to a more robust local economy (Ebert et al. 2009). Schwartz et al. (2006) estimate that the 

value of the ecosystem services generated by floodplain restoration can be much greater than the 

cost of the project itself, while Guida et al. (2016) state that the value of wetland habitat can be 

greater than the profits from agriculture in some areas. Therefore, in spite of significant upfront cost 

and economic losses, the long-term economic impact of floodplain reconnection can be positive. 

Despite this, public acceptance is often low in the areas immediately affected by reconnection 

schemes, as landowners worry about financial losses, and individual properties outside urban areas 

may be more at risk from flooding than before (Esteves and Williams 2017; Rulleau and Rey-Valette 

2017).  

In terms of archaeology, areas that become permanently waterlogged due to a floodplain 

reconnection scheme may result in greater levels of preservation of archaeological remains. This is 

particularly important in areas that are extensively drained, such as the Dysynni valley, as the 

lowering of groundwater due to both drainage and climate change, and subsequent desiccation of 

subsurface features, could cause significant damage to the archaeological resource.  However, the 

introduction of new water into a previously stable burial environment can initiate or exacerbate 

decay of archaeological deposits. Therefore, the overall impact is context specific and may be 

difficult to predict. The re-meandering of river channels may threaten any buried archaeological 

remains nearby, as the excavation of a new river channel may disturb deposits, or introduce oxygen 

or water into the burial environment (del Val and Domínguez-Rodrigo 2017). Allowing a river 

channel to naturally migrate within a floodplain may also expose and erode subsurface deposits, as 

the river banks erode and accrete (Speakman and Johnson 2006). In terms of the historic landscape, 

reconnection of the floodplain and re-naturalisation of the river channel may return the lowland 

areas to the state that they were in prior to the 19th century, and may give the landscape a more 

‘natural’ character. Whether this is a positive or negative (or neutral) impact depends on the 
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landscape in question and opinions on the importance of ‘naturalness’/environmental authenticity 

or the importance of respecting all human influence on the landscape, both recent and historical. 

Floodplain reconnection was included alongside the sand engine approach in the IS option. The 

Dysynni River could be a promising candidate for floodplain reconnection; a section upstream of the 

Peniarth Estate has been channelised, and the lowest 10km of the river from Broadwater is 

embanked on at least one side. The DLLD scheme requires maintenance more frequently than is 

currently possible, so low-lying fields are already waterlogged or inundated during wet periods (see 

section 5.2). Farming practices and land use are evidently already being affected by wet conditions. 

Although re-meandering of the canalised stretch may require more investment, floodplain 

reconnection requires little engineering works, so floodplain reconnection costs could be relatively 

low. The water quality is poor along several stretches of the River Dysynni, and there is a 

requirement for periodic dredging (see Campaign for the Protection of Welsh Fisheries 2009; NRW 

2016b), so floodplain reconnection that allows overbank deposition may ameliorate these issues. 

Finally, floodplain reconnection is a no-regret option, as its lifespan is essentially infinite, and would 

mainly require the blockage of drainage ditches, which could easily be reversed.  

8.4.2 Innovative sustainable option 

Section 8.4.1 has provided a brief overview of different innovative coastal and flood risk 

management approaches which may be seen to be more sustainable than traditional defence 

techniques. The purpose of this was to identify some techniques that could be included in the IS 

option, which was compared against the SMP2 policy option using a MAVT sustainability assessment 

methodology. The methods chosen to include in the IS option are as follows:  

a) A Sand Engine project along the coast of the study area for coastal erosion and flood 

defence 

b) Floodplain reconnection in the lower reaches of the Dysynni valley for flood defence 

The following section (8.5) applies a MAVT methodology to the IS option and SMP2 policy option. 

The MAVT method determines which approach is most sustainable for managing the threat posed 

by climate change to the most vulnerable LCAs in the Dysynni Valley, as well as including economic, 

environmental, and social considerations. This method scores each approach on a variety of 

different economic, environmental and socio-cultural variables, and can include both qualitative and 

quantitative factors. The approaches are then ranked by their overall score, but they can also be 

ranked based on their score for different types of variable (e.g. the most environmentally 

sustainable, or the most socially sustainable approaches).  
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8.5  Application of the Multi-Attribute Value Theory to the Dysynni 

valley  

The sustainability assessment method chosen for the research proposed is MAVT, a type of multi-

criteria decision analysis (see 8.2). This approach was chosen because there are a discrete set of 

alternatives that must be assessed based on conflicting objectives, namely achieving management of 

the impacts of climate change in an economically, socio-culturally and environmentally sustainable 

way. In this chapter, ‘alternative’ refers to each of the different coastal management approaches 

being compared in the MAVT, namely the SMP2 policy option and the Innovative Sustainable (IS) 

option (see 8.4.2).  

8.5.1 Methodology 

The structure of the MAVT methodology is based on recommendations from Van Herwijnen (2006), 

Giove et al. (2010) and Ferretti et al. (2014), and involves the following steps: 

1. Define the overall objectives and desired attributes for the ‘best’ potential option out of the 

alternatives that will be compared. 

2. Identify the alternatives that will be compared  

3. Select and define the criteria that will be used to assess each alternative, based on the 

objectives 

4. Select and define the attributes that will be used to measure each criterion  

5. Select and define the parameters that will be used to measure each attribute 

6. Give scores to each alternative for each parameter 

7. Aggregate the scores to calculate the overall score and separate criteria scores for each 

alternative 

8. Rank the alternatives based on their overall score.  

Steps 1 and 2 were completed in 8.2-8.4. This section describes the MAVT methodology used in this 

thesis in more detail. The scoring system is explained, followed by a definition of the criteria, 

attributes and parameters that were used (Steps 3-5). The results are detailed in section 8.6 (steps 6-

8).  

Multi-attribute value theory framework 

The structure, or framework, of the MAVT assessment that was used in this thesis is based on that 

developed by Giove et al. (2010), which uses MAVT to compare two options for the sustainable re-

use of a historic area of Venice. This decision was made because the focus of Giove et al. (2010)’s 
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study was on achieving economic, socio-cultural and environmental sustainability in the 

rejuvenation and re-use of a coastal area, which mirrors the aim of this study.  

Table 8.2 demonstrates the hierarchic MAVT framework that was used in this thesis. Four criteria 

were determined for assessing the sustainability of the alternatives: Economic sustainability, Socio-

cultural sustainability, Environmental sustainability, and Functionality. Each criterion is divided into 

several attributes, each of which is defined by one or more parameters. The criteria, attributes and 

parameters are defined in more detail below.  

Scoring System 

This research uses the same scoring method as Giove et al. (2010), who score each parameter on a 

scale from 0-100, with 0=worst/strongly negative, 50=medium/neutral, and 100=optimal/strongly 

positive. The attribute score is calculated as the average of the parameter scores, and the criteria 

scores are the average of the attribute scores. The overall sustainability score for each alternative 

can be calculated as the average of the criteria scores. The alternatives can also be compared by 

their score for each attribute, for instance to identify the option that is ‘best’ from a functionality 

perspective, or in terms of environmental impact.  

 

Criteria  Attributes Parameters 

Economic 

sustainability 

Financial feasibility Cost compared to approved project for Dysynni 

valley 

Maintenance requirements 

Impact on local 

businesses 

Impact on the tourist industry 

Impact on farming practices 

Impact on other local industry 

Socio-cultural 

sustainability 

Public perception Impact on current way of life 

Impact on space available/opportunities for 

recreation activities 

Impact on the historic 

landscape 

Impact of construction on LCAs with ‘High’ or 

‘Very High’ vulnerability 

Table 8.2: Multi-attribute value theory framework adapted from Giove et al. (2010) 
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 Impact of the finished project on the historic 

character of the immediate vicinity of the 

project 

 

Impact of the finished project on the historic 

character of the Dysynni landscape as a whole 

Accessibility of historic sites and features 

following the project 

Level of protection for LCAs with ‘High’ or ‘Very 

High’ vulnerability 

Environmental 

sustainability 

Ecological impact Impact on existing terrestrial ecosystems 

Impact on existing intertidal ecosystems 

Impact on existing marine ecosystems 

Potential for new ecosystem creation 

Sustainability of sourced 

materials 

Locality of materials used 

Environmental impact of material 

extraction/production 

Impact on carbon 

emissions 

Is the project a net source or net sink of carbon 

emissions? 

Functionality Impact on flood risk Impact on terrestrial/inland flash-flood risk 

Impact on coastal flash-flood risk 

Impact on long-term inundation of inland areas 

Impact on long-term inundation of coastal 

areas. 

Impact on coastal erosion Impact on coastal erosion 

Flexibility Can the project be altered if new conditions or 

information come to light? 

Longevity Lifespan of project 

Amount of maintenance required 

Likelihood of failure 
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Assessment criteria 

Four criteria were used in this MAVT (see Table 8.2): Economic sustainability, Socio-cultural 

sustainability, Environmental sustainability, and Functionality. As a sustainability assessment, the 

MAVT incorporates the three pillars of sustainability. In order to include cultural aspects, such as the 

impact on archaeology and the historic landscape, ‘socio-cultural sustainability’ was used instead of 

‘social sustainability’. Functionality was also included to ensure that the coastal management 

approach was being assessed based on its ability to perform its primary function as a defence 

against the impacts of climate change, as well as its sustainability. This section explains and justifies 

the choice of each of the attributes for each criterion.  

Criterion: Economic sustainability 

Attribute: Financial feasibility 

The financial feasibility of an alternative is of critical importance, as a management approach cannot 

be implemented if it is unaffordable. On the coastal frontage of Tywyn, several coastal management 

projects were recently rejected due to the projected cost, and only one was approved (see 8.3.1). 

The potential cost of each alternative was based on the costs of similar projects elsewhere. This 

estimated cost was compared to the cost of the approved project along Tywyn and the projected 

cost of the MR scheme at Penllyn, in order to establish whether it would be considered an 

acceptable cost.  

Another aspect of financial cost is the management requirements of each alternative. Projects with 

frequent or high intensity maintenance requirements may be less financially feasible. The acceptable 

or ‘neutral’ level of maintenance requirement was based on the current level of maintenance of the 

coastal defence infrastructure and the Dysynni Low Level Drainage scheme. Managed realignment 

schemes may require subsidies for participating/affected land-owners, which would  increase the 

total cost of the project. 

Attribute: Impact on local business 

Coastal management projects can have secondary economic impacts. For instance, an alternative 

that increases space for recreational activities and improves the amenity of the area could result in 

an increase in tourism, which would benefit local business such as shops, hotels, and restaurants. 

However, an alternative that would reduce beach accessibility could result in a reduction in tourism, 

which would have negative economic impacts on the area. Local construction companies would 
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benefit economically from being commissioned for work. An alternative that would cause a loss or 

change in land use would impact the ability of the landowner to continue that land-use practice, for 

instance farming, and therefore result in economic losses.  

Criterion: Socio-cultural sustainability 

Attribute: Public perception 

The public perception of an alternative is an important consideration, as a lack of acceptance of an 

alternative may lead to conflict and mistrust in local authorities (POST 2009). Public perception can 

be affected by the influence that the project may have on current ways of life and the way people 

are able to interact with their landscape or coastline. The impact of an alternative on recreation is 

also considered to be particularly important for the public acceptance of a project (see Myatt-Bell et 

al. 2002). Recreation can include activities such as golf, bird-watching, beach activities, walking and 

hiking, water sports, and horse-riding. Ideally, public perception parameters would be generated, 

and the alternatives assessed, through public participation measures such as public forums and 

interviews. This could be undertaken if this method was applied to another area in the future. It is 

acknowledged that the impact of alternatives on the character of the area and wider landscape can 

be important for the public perception, but this parameter is included in the Impact on historic 

landscape attribute.   

Attribute: Impact on the historic landscape 

The impact of alternatives on the historic landscape was focussed on the LCAs that were found to be 

most vulnerable to the impacts of climate change, namely Wetland and Beach, Maritime Industry, 

and Military. This includes the impact of construction, which could be visually and physically 

damaging or disruptive, and may alter the relationship of some features to others or to the 

landscape as a whole. It also includes the level of protection against climate change that each 

alternative may provide to the LCAs. Accessibility of the historic sites and features within each LCA is 

another important consideration, as it affects how people are able to interact with the historic 

landscape. Alternatives may have a lasting impact on the character and integrity of the historic 

landscape, both in the immediate vicinity of the project, and the Dysynni landscape as a whole.  

The scores given for this attribute assume that full mitigative actions would be undertaken for 

archaeological sites and features that would be damaged by the construction, or by subsequent 

erosion or inundation, due to the choice of alternative. This mitigation would be in the form of either 

excavation or full recording of a site. Preservation by record through archiving or 3D data capture 

may provide some level of accessibility, as it could be available in museums. However, this would not 

fully offset the damage that a loss of a feature would have on the integrity of the historic landscape 
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and certain LCAs. If some of the pillboxes on Tywyn beach were at risk of destruction, the excavation 

or detailed recording of them would not compensate for the loss of integrity of the defensive coastal 

landscape that they create as a group. In the UK, in situ preservation for archaeological remains is 

prioritised where possible (Corfield 1996; Gearey and Chapman 2006). However, climate change will 

necessitate additional coastal and flood risk management in many areas, which may take 

precedence over the in situ preservation of some remains. Furthermore, in situ preservation is not a 

viable option for all archaeological remains. Footprints preserved in mudflats or ancient peat are 

usually located on beaches or coastal areas, for example those discovered in Low Hauxley, 

Northumberland, and are highly vulnerable to erosion (see Figure 2.4; Cosgrove 2015; Bennett et al. 

2010). Simply burying the features in sediment is not a permanent solution, particularly along 

destructive coastlines, and attempting to harden the surface with resin could cause cracking 

(Bennett et al. 2010). In cases like these, preservation by record may be the only way to protect the 

archaeological information at risk. 

Criterion: Environmental sustainability 

Attribute: Ecological impact 

The construction of hard defences in coastal management projects can have significant impacts on 

ecosystems shoreward and landward of the defences themselves (see 8.3.3). Construction activities 

can destroy ecosystems, and the change to coastal processes following the establishment of a new 

method of defence can alter the suitability of the area for different species. Managed realignment 

projects result in the creation of more intertidal saltmarsh, but at the loss of terrestrial habitat 

(Harman et al. 2002). Hard defences can provide additional area for hard substrate intertidal species 

such as bivalves, which may be seen as positive or negative; it creates the potential for new 

ecosystems to establish, but could cause the introduction of non-native and potentially invasive 

species into the area. 

Attribute: Sustainability of sourced materials 

The environmental impact of the creation and sourcing of materials used in coastal management 

projects is an important consideration when assessing their sustainability. The environmental impact 

of materials is influenced by the distance that they have travelled; materials sourced from far away 

result in higher carbon emissions, while those sourced locally have lower transport-related carbon 

emissions. The production or extraction process of materials can also have significant environmental 

impacts. Quarrying, mining and dredging can result in habitat destruction, whereas using recycled 

materials has less of an impact on the environment.  
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Attribute: Impact on carbon emission 

Some aspects of the alternatives could result in systems that may become a carbon sink, such as salt 

marshes created in SMP2 policy MR projects, or the floodplain wetlands created in the IS option 

(Chmura et al. 2003; Laffoley and Grimsditch 2009; Artigas et al. 2015). Reconnecting floodplains 

would also result in the creation of areas of wetland, a known carbon sink. There is evidence to 

suggest, however, that wetlands can be a source of methane (CH4) emissions (Whiting and Chanton 

2003). This would make a coastal management project less environmentally sustainable, as it would 

contribute to the GHG emissions causing climate change.  

Criterion: Functionality 

Attribute: Impact on flood risk 

It is essential that coastal management projects meet functional aims as well as providing secondary 

benefits. Different alternatives will have different levels of impact on the existing risk of flash-

flooding, both in terrestrial and coastal areas. It is important to consider the impact of different 

alternatives on the long-term risk of flooding and inundation, as well as flash-flooding. While sea 

walls may reduce the short-term risk of flooding, unlike saltmarsh and dune systems, they are 

unable to migrate with rising sea levels. Therefore, both long- and short-term factors must be 

considered.  

Attribute: Impact on coastal erosion 

Different alternatives provide differing levels of protection from erosion, and the spatial variability in 

erosion protection is also different depending on the alternative chosen. Hard defences provide 

shoreline erosion protection, but their presence can exacerbate beach lowering or displace shoreline 

erosion further down the shore (Drummond et al. 2017; Beuzen et al. 2018). In contrast, beach 

nourishment or managed retreat schemes allow some erosion but protect important infrastructure 

and reduce the financial impact of the erosion that occurs.  

Attribute: Flexibility 

A defining feature of climate change is that its trajectory and impacts in the mid- to distant future 

are not known entities. Policy-makers aim to avoid making decisions that will result in ‘policy lock-

in’, in which it is impossible or very difficult to change or reverse the chosen management approach 

if new information comes to light. Built defences are often thought to result in policy lock-in as, once 

built, they must be maintained and cannot be removed without significant cost.  

Attribute: Longevity 

The final attribute of the Functionality criterion is longevity, or how long the alternative will last 

before it must be renewed. Alternatives with a short lifespan will require further decisions and 



223 
 

investment after only a short amount of time has elapsed. The amount of necessary maintenance is 

also important, as it dictates the amount of effort and investment that is required additional to the 

initial cost of the alternative. Finally, the likelihood of failure of an alternative, whether that be with 

regards to coastal erosion, flash-flooding, or inundation, must be taken into account. An alternative 

with a high likelihood of failure may have a shorter lifespan in reality than its projected lifespan, as 

once a defence has failed, or been damaged or destroyed, it will need significant updating or 

rebuilding.  For instance, damage to the sea wall and promenade in Aberystwyth during the winter 

storms of 2014 resulted in the need for an £11 million coastal defence renewal project (BBC News 

2018). 

Limitations 

The main limitation with the methodology as described above is the lack of stakeholder or expert 

involvement. As MAVT considers a wide range of often conflicting criteria, the participation of 

decision-makers, stakeholders and/or ‘experts’ is often an integral part of MAVT methods. Firstly, it 

can highlight context-specific issues or requirements that may not have been considered or valued 

as highly by an external researcher (Stefanopoulous et al. 2013). The inclusion of stakeholders in 

MAVT methods has been shown to improve the acceptance of the results (Hostmann et al. 2005). 

Using a range of experts or stakeholders helps to avoid any potential bias that may occur if one or no 

stakeholders are involved.  

Some studies involve ‘experts’ or decision-makers in the initial stage of defining the evaluation 

criteria and attributes (e.g. Giove et al. 2010; Bottero et al. 2014), whereas others use ‘experts’ from 

a range of backgrounds to help with the scoring process (e.g. Hostmann et al. 2005; Stefanopoulos et 

al. 2013; Ferretti et al. 2014). Despite the cited importance of having a range of opinions and 

expertise when undertaking a MAVT assessment, the criteria and scoring of the MAVT assessment in 

this thesis were based solely on available grey and academic literature. Time and financial 

constraints meant that conducting interviews or focus groups with a range of stakeholders from the 

study area would not be feasible. Brandão Cavalcanti et al. (2017) found that they had limited access 

to decision makers in the relevant field. They instead used online resources such as humanitarian 

organisation websites and academic literature to inform their choice of criteria and scoring. 

Therefore, this is not a completely unorthodox approach to MAVT. 

The purpose of this thesis is to develop and demonstrate a framework for the sustainable 

assessment and management of historic landscapes in relation to their vulnerability to climate 

change. Therefore, the MAVT assessment carried out here is not for informing and enacting actual 

landscape management policy in the study area. Rather, the aim is to create and exemplify a 
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framework that can be used by decision-makers, applied to other coastal historic landscapes, and 

adapted for use in other types of historic landscape. Using academic and grey literature is sufficient 

for the scoring process in this example. It is strongly suggested that any future application of this 

framework for historic landscape management purposes should involve stakeholders and consult 

‘experts’ during the scoring process, in order to get the fairest and most reliable results. 

Summary 

A MAVT tool for sustainability assessment has been developed here to aid in the comparison of 

different coastal and flood-risk management alternatives. The overall aim is to develop a tool that 

can be applied to any historic coastal landscape in the UK and beyond as part of the Landscape 

Vulnerability Framework. This tool has been applied to the two alternatives developed for the 

Dysynni valley study area (the SMP2 policy option and the IS option) in order to trial the methods 

and identify any further limitations. The results of this are discussed in the following section (8.6).  

8.6 Results 

This section discusses the results of the MAVT assessment for each criterion and attribute 

(summarised in Table 8.11).  

8.6.1 Criterion: Economic sustainability 

The IS option scored higher than the SMP2 policy plan for the Economic Sustainability criterion 

(SMP2 = 47.1, IS = 65.1), and on all parameters other than ‘impact on farming practices’ and ‘impact 

on other local industry’ parameters (attribute: Impact on local business) (See Tables 8.5 and 8.6). 

The IS option scored twice as highly for the Financial Feasibility attribute, as the projected initial cost 

was lower and the projected maintenance costs were negligible. The scores for Impact on local 

business attribute were very similar (SMP2 = 56.7, IS = 57.5), although the scores for different 

parameters within this attribute varied. The IS option scored higher for the ‘Impact on tourist 

industry’ parameter (SMP2 = 50, IS= 80), however SMP2 option scored higher for the ‘Impact on 

other local industry’ parameter (SMP2 = 75, IS = 50). Both options were calculated to have a similar 

impact on farming practices.  
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8.6.2 Criterion: Socio-cultural sustainability 

The IS alternative scored higher than SMP2 for the socio-cultural sustainability criterion (SMP2= 48, 

IS = 57.88) (see Table 7.3). The scores for the ‘Public perception’ attribute were similar (SMP2 = 60, 

IS = 63.75), but were generated by different scores for each parameter. The SMP2 option scored 

highly (85) for the ‘impact on current way of life’ parameter, for which the IS option scored only 

47.5. In contrast, the SMP2 option scored low (35) on ‘Impact on space available for recreation’, for 

which the IS option got a high score (80) (see Tables 8.7 and 8.8).  The IS option scored more highly 

than the SMP2 option for the ‘Impact on the historic landscape’ attribute (SMP2 =36, IS = 52), and 

scored more highly on all associated parameters other than ‘Impact of the finished project on the 

historic character of the Dysynni landscape as a whole’, although the scores for this are similar 

(SMP2 = 50, IS = 47.5). 

 

Table 8.3: Multi-attribute value theory scores for the Economic Sustainability criterion for 

the SMP2 option 

Criterion: Economic Sustainability  Score: 47.1 

Attribute: Financial Feasibility 37.5 

Parameters Initial Cost (compared to recent Tywyn protection scheme - 
£7m) 

35 

Maintenance costs  40 

Attribute: Impact on local business 56.7 

Parameters: Impact on tourist industry 50 

Impact on farming practices 45 

Impact on other local industry 75 

 

Table 8.4 Multi-attribute value theory scores for the Economic Sustainability criterion for the 

floodplain reconnection (FR) and sand engine (SE) elements of the Innovative Sustainable (IS) Option 

Criterion: Economic Sustainability  FR SE  IS  

Scores 65.4 64.6 65.1 

Attribute: Financial Feasibility 82.5 62.5 75 

Parameters Cost compared to recent Tywyn 
protection scheme (£7m) 

75 25 50 

 Maintenance requirements  90 100 100 

Attribute: Impact on local business 48.3 66.7 57.5 

Parameters: Impact on tourist industry 60 100 80 

 Impact on farming practices 35 50 42.5 

 Impact on other local industry 50 50 50 
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Table 8.5 Multi-attribute value theory scores for the Socio-cultural Sustainability criterion for 

the SMP2 option 

Criterion: Socio-cultural Sustainability  Score: 48 

Attribute: Public perception 60 

Parameters Impact on current way of life 85 

 Impact on space available/opportunities for recreation 
activities 

35 

Attribute: Impact on the Historic Landscape 36 

Parameters: Impact of construction on LCAs with ‘High’ or ‘Very High’ 
vulnerability 

25 

 Impact of the finished project on the historic character of 
the immediate vicinity of the project 
 

40 

 Impact of the finished project on the historic character of 
the Dysynni landscape as a whole 

50 

 Accessibility of historic sites and features following the 
project 

35 

 Level of protection for LCAs with ‘High’ or ‘Very High’ 
vulnerability 

30 

 

Table 8.6 Multi-attribute value theory scores for the Socio-cultural Sustainability criterion for the 

floodplain reconnection (FR) and sand engine (SE) elements of the Innovative Sustainable (IS) Option 

Criterion: Socio-cultural Sustainability  FR  SE IS 

Scores 42 73.75 57.88 

Attribute: Public perception 45 82.5 63.75 

Parameters Impact on current way of life 30 65 47.5 

 Impact on space available/opportunities 
for recreation activities 

60 100 80 

Attribute: Impact on the Historic Landscape 39 65 52 

Parameters Impact of construction on LCAs with 
‘High’ or ‘Very High’ vulnerability 

40 65 52.5 

 Impact of the finished project on the 
historic character of the immediate 
vicinity of the project 
 

40 80 60 

 Impact of the finished project on the 
historic character of the Dysynni 
landscape as a whole 

35 60 47.5 

 Accessibility of historic sites and features 
following the project 

35 40 37.5 

 Level of protection for LCAs with ‘High’ or 
‘Very High’ vulnerability 

45 80 62.5 
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8.6.3 Criterion: Environmental sustainability 

The IS option scored significantly higher than the SMP2 option for the Environmental Sustainability 

criterion (SMP2 = 42.9, IS = 64.38) (see Table 8.3). The IS option had a higher score for every 

parameter under the ‘Ecological impact’ attribute (SMP2 = 43.75, IS = 69.38) and the ‘Sustainability 

of sourced materials’ attribute (SMP2 = 35, IS = 73.75). For the ‘Impact on carbon emissions’ 

attribute, both options scored 50 because the data on whether saltmarsh and reconnected 

floodplain acts as a carbon source or sink is conflicting (see Tables 8.9 and 8.10). 

 

 

 

 

 

 

 

 

 

Table 7.9 Multi-attribute value theory scores for the Environmental Sustainability criterion 
for the SMP2 option 

Criterion: Environmental Sustainability  Scores: 42.9 

Attribute: Ecological Impact 43.75 

Parameters Impact on existing terrestrial ecosystems 35 

 Impact on existing intertidal ecosystems 40 

 Impact on existing marine ecosystems 40 

 Potential for new ecosystem creation 60 

Attribute: Sustainability of sourced materials 35 

Parameters Locality of materials used 40 

 Environmental impact of material extraction/production 30 

Attribute: Impact on carbon emissions 50 

Parameters Is the project a net source or net sink of carbon 
emissions? 

50 

 

Table 8.7: Multi-attribute value theory scores for the Environmental Sustainability criterion 

for the SMP2 option 

Table 8.8 Multi-attribute value theory scores for the Environmental Sustainability criterion for the 

floodplain reconnection (FR) and sand engine (SE) elements of the Innovative Sustainable (IS) Option 

Criterion: Environmental Sustainability   FR SE  IS  

Scores 75.4 53.3 64.375 

Attribute: Ecological Impact 76.25 62.5 69.375 

Parameters Impact on existing terrestrial ecosystems 75 80 77.5 

 Impact on existing intertidal ecosystems 50 60 55 

 Impact on existing marine ecosystems 90 50 70 

 Potential for new ecosystem creation 90 60 75 

Attribute: Sustainability of sourced materials 100 47.5 73.75 

Parameters Locality of materials used 100 60 80 

 Environmental impact of material 
extraction/production 

100 35 67.5 

Attribute: Impact on carbon emissions 50 50 50 

Parameters Is the project a net source or net sink of 
carbon emissions? 

50 50 50 
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8.6.4 Criterion: Functionality 

As with the other criteria, the IS alternative scored higher than the SMP2 policy plan for the 

functionality criterion (SMP2 = 47.6, IS = 74.9) and all but one attribute (see Tables 8.3, 8.11 and 

8.12). The SMP2 policy plan scored higher for the ‘Impact on flood risk’ attribute (SMP2 = 63.75, IS = 

58.75), primarily due to the significantly higher score for the ‘Impact on coastal flash flood risk’ 

parameter (SMP2 = 90, IS = 65). For the other parameters of this attribute, the IS option scored the 

same or slightly higher than the SMP2 option. For the ‘Flexibility’ attribute, the IS option scored 

more than twice as high as the SMP2 option (SMP2 = 30, IS = 87.5). For the parameters within the 

‘Longevity’ attribute, both options scored highly for ‘Lifespan of the project’ (SMP2 = 70, IS = 82.5), 

but the IS option scored significantly higher for the ‘Maintenance required’ (SMP2 = 30, IS = 95) and 

‘Likelihood of failure’ (SMP2 = 40, IS = 80) parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.11 Multi-attribute value theory scores for the Functionality criterion for the SMP2 
option 

Criterion: Functionality Scores: 47.6 

Attribute: Impact on flood risk 63.75 

Parameters Impact on terrestrial/inland flash-flood risk 65 

 Impact on coastal flash-flood risk 90 

 Impact on long-term inundation of inland areas 40 

 Impact on long-term inundation of coastal areas. 60 

Attribute: Impact on coastal erosion 50 

Parameters Will this result in an increase or decrease in overall 
coastal erosion 

50 

Attribute: Flexibility 30 

Parameters Can the project be altered if new conditions or 
information come to light? 

30 

Attribute: Longevity 46.7 

Parameters Lifespan of project 70 

 Amount of maintenance required 30 

 Likelihood of failure 40 

 

Table 8.9: Multi-attribute value theory scores for the Functionality criterion for the SMP2 

option  
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8.6.5 Overall Results 

A summary of the overall scores for each option and for each criterion can be seen in Table 8.11. The 

IS option, combining a sand engine project on the coast and a floodplain reconnection project in the 

valley, scored higher than the SMP2 policy plan for both overall sustainability, and across each 

criterion. As the scores for the Innovative Sustainable (IS) option are the mean of the scores for a 

floodplain reconnection (FR) scheme and a sand engine (SE) project, the separate scores for each 

element are also listed (summarised in Table 8.12). 

 

Table 7.3: Multi-attribute value theory scores for each criteria for both the SMP2 and IS 
options 

Criterion SMP2 option IS option 

Overall Score 46.4 65.5 

Economic Sustainability 47.10 65.00 

Socio-cultural Sustainability 48.00 57.88 

Environmental Sustainability 42.90 64.38 

Functionality 47.60 74.90 

Table 8.11: Multi-attribute value theory scores for each criteria for both the SMP2 and IS 

options 

Table 8.10 Multi-attribute value theory scores for the Functionality criterion for the floodplain 

reconnection (FR) and sand engine (SE) elements of the Innovative Sustainable (IS) Option 

Criterion: Functionality  FR  SE IS 

Scores 68 81.8 74.9 

Attribute: Impact on flood risk 53.75 63.75 58.75 

Parameters Impact on terrestrial/inland flash-flood risk 80 50 65 

 Impact on coastal flash-flood risk 50 80 65 

 Impact on long-term inundation of inland 
areas 

35 50 42.5 

 Impact on long-term inundation of coastal 
areas. 

50 75 62.5 

Attribute: Impact on coastal erosion 50 85 67.5 

Parameters Will this result in an increase or decrease 
in overall coastal erosion 

50 85 67.5 

Attribute: Flexibility 75 100 87.5 

Parameters Can the project be altered if new 
conditions or information come to light? 

75 100 87.5 

Attribute: Longevity 93.3 78.3 85.8 

Parameters Lifespan of project 100 65 82.5 

 Amount of maintenance required 90 100 95 

 Likelihood of failure 90 70 80 
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8.7 Explanation of Results 

8.7.1 Introduction 

The results of this MAVT assessment indicate that the combined Innovative Sustainable (IS) option 

(comprising a sand engine project and a floodplain reconnection project), would be a more 

sustainable coastal and flood risk management approach than the current SMP2 policy plan. This 

section provides an explanation of the scores for each of the attributes and criteria for both options, 

informed by examples of the use of each tool in other areas, as well as a review of relevant 

literature.  

8.7.2 Explanation of multi-attribute value theory scores 

The IS option scored higher than the SMP2 option across all criteria (Economic sustainability, Socio-

cultural sustainability, Environmental sustainability, and Functionality), although the SMP2 scored 

more highly on the Impact on flood risk attribute, and equal on several parameters (Impact on 

carbon emissions, Impact on farming practices, impact on other local industry, Impact on current 

way of life, Impact on the historic character of the Dysynni landscape, impact on terrestrial flash 

flood risk, and impact on coastal flash flood risk). This section provides an explanation for the scores 

given to each option across all criteria and attributes (see Results, 8.6). 

Criterion: Economic sustainability 

The higher score for the IS option compared to the SMP2 option is mainly due to the high 

maintenance cost associated with the SMP2 policy plan, whereas the IS methods require little to no 

expenditure following establishment. The benefit of the IS option on the tourist industry is the 

economic benefit for the study area. The following section provides detailed justification of the 

scores given for each attribute. 

 

Table 7.4: Multi-attribute value theory score for the floodplain reconnection (FR) and sand engine 
(SE) elements of the Innovative Sustainable option 

Criterion IS option  FR   SE  

Overall Score 65.9 63.3 68.4 

Economic Sustainability 65.00 65.40 64.60 

Socio-cultural Sustainability 57.88 42.00 73.75 

Environmental Sustainability 64.38 75.40 53.30 

Functionality 74.90 68.00 81.80 

Table 8.12: Multi-attribute value theory scores for the floodplain reconnection (FR) and 

sand engine (SE) elements of the Innovative Sustainable option 
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Attribute: Financial feasibility 

The financial feasibility attribute assesses whether the overall cost of the alternatives is feasible, 

taking account of both short-term investment and long-term maintenance requirements. To assess 

feasibility, the estimated cost of each option is compared to the successful project of updating the 

sea wall and groynes at Tywyn in 2011, which cost £7.6m. Other proposed projects protected a 

wider area including the golf course and railway embankment, or included additional features, but 

were unsuccessful due to the proposed costs (£11m and £23m in 2017 terms: Stevens 2002; Maslen 

Environmental 2011).  

The SMP2 option would require further construction of hard defences along up to 5km of the 

coastline in order to maintain the current shoreline position. Hard defences already protect almost 

5km of the coastline, which require maintenance work and updating due to erosion and rising sea 

levels. Based on estimates by Hudson et al. (2015), the protection of currently undefended Hold the 

Line areas on the Dysynni coastline, maintaining the standard of protection along currently defended 

stretches, and renewing the groynes on Tywyn beach could cost between £14.4m and £155.18m. 

Maintenance costs could be around £17,000 – £51,000 per year for the existing groynes, and 

£400,000 per year for the sea walls and rock armour (Hillen et al. 2010; Hudson et al. 2015).  

MR would be a relatively cheap option as it would require little maintenance. Initial costs can be as 

low as £1,500 per hectare (Tinch and Ledoux 2006). However, ABPmer state that the cost of MR 

schemes can reach over £100,000 per ha (Scott 2015), with other estimates reaching up to £675,000 

per ha (Pontee 2014). The final cost of MR schemes depends on the groundworks required, and 

whether the land used would be bought outright or whether landowners would receive subsidies. 

This wide range of potential costs makes it very difficult to determine the economic impact of a MR 

scheme on the Dysynni coastline or estuary. The area of Penllyn and the Aberdyfi dunes is 285ha, 

and the area that could be included in a MR scheme at Broadwater is around 250ha. Based on the 

information above, the cost of MR in the areas proposed by SMP2 could be between £802,500 and 

£361m. Both of these values are extremes, and it is unlikely that any scheme would use all of the 

available land in each area. This highlights the importance of using a range of experts and 

stakeholders when carrying out the MAVT. 

The cost of the sand engine element of the IS option would be between £20m and £70m, based on 

the costs of other similar projects at Bacton (Norfolk) and The Hague (South Holland). This would be 

a significant initial investment (Oppla 2014; Waterbranche 2017; Hannant 2018; North Norfolk 

District Council 2018). 
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The floodplain reconnection element of the IS option would have lower initial costs than a sand 

engine. In the Dysynni valley, only a 1km stretch would need to be re-meandered, and a maximum 

of 7km2 of floodplain reconnected (involving 10km of the river), although not all of the available 

floodplain would have to be included.  Based on the costs of various projects in the UK and Europe 

(see Schwartz et al. 2006; Ebert et al. 2009; Environment Agency 2010; Guida et al. 2014; Tero 

2014), the cost of a floodplain reconnection project in the Dysynni valley could be between £140,000 

and £2,700,000. This is assuming that the entire low-lying area of the Dysynni valley would be 

reconnected, but the cost would be lower if a smaller area were reconnected. Re-meandering the 

short, canalised stretch of the Dysynni would be the most expensive part, but blocking drainage 

ditches and removing stretches of embankment would be low-cost. Both elements of the IS option 

would have few or no maintenance costs, the only expense being any subsidies paid to landowners 

in compensation for the more frequent flooding of their land. This may not be an insignificant sum, 

depending on the value of the affected land, but it could be paid over a long period of time through 

an agri-environment payment scheme (e.g. Turner et al. 2007). 

Attribute: Impact on local business 

Under the SMP2 scenario, the continuing maintenance of the shoreline along the Tywyn and 

Aberdyfi frontages would protect any businesses or industry, including cafes, hotels and caravan 

parks. However, Booth (2010) suggests that hard defences can reduce the visual amenity of beaches 

and take up beach space, which could impact tourism. Allowing MR to occur along the Aberdyfi 

dunes would also endanger and potentially destroy Aberdyfi Golf Club, which is an important tourist 

destination. The loss of this business could affect the number of tourists who choose to stay in the 

Trefeddian hotel adjacent to the golf club. Aberdyfi is a popular location for holiday homes and 

second homes (Wales Online 2013), so this industry may experience an impact with the loss of the 

golf course as a local amenity. Local construction industries would benefit economically from 

increased business due to the maintenance requirements of coastal defences constructed for HTL 

stretches.  

Most of the fields at Penllyn and those near the Dysynni estuary are currently used for extensive 

grazing of sheep and some cattle, which could potentially continue following the breaching or 

removal of defences. There are several instances in the UK of coastal marshland being used for 

grazing, for instance Frampton Marsh, Lincolnshire (Ausden et al. 2005). Therefore, a MR scheme at 

Penllyn and Broadwater may not result in dramatic land-use change or economic losses at first, if the 

saltmarsh established successfully. 
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The IS option would likely benefit the tourist industry through both the creation of new wetland 

habitat, which would attract birds and wildlife enthusiasts, and the creation of an extremely wide 

beach on which recreational activities like windsurfing and sunbathing could take place. As the 

beach at Tywyn is currently dramatically lowered and narrow, with poor visual amenity (see Figure 

8.2), it is likely that the creation of a larger beach would attract more tourists to the area. Evidence 

from the Dutch sand engine project indicates that tourists visit the sand engine as a feature of 

interest, as well as for a beach holiday; there are now several restaurants, a surf school, kite surf 

hire, and 40 beach houses to rent on or near the sand engine (Strandhuisjes Kijkduin 2017).  A sand 

engine would provide protection from erosion to Aberdyfi dunes and golf course, which is an 

important tourist attraction.  

Floodplain reconnection could have significant impacts on agricultural productivity on the affected 

land. Extensive pastoral agriculture can often still be undertaken on wet ground, and floodplain 

reconnection means that the land would only be flooded for short periods, and more during the 

winter than summer. Some farmers would have the majority of their land in the floodplain 

reconnection scheme if all of the low-lying land was included, so they would have to find places to 

store their livestock during the winter or during freak flood events, which could be costly. The threat 

of flooding and its impact on farming practices is also likely to become more severe in the coming 

decades due to climate change.   

Many rivers, including the Dysynni, act as property boundaries. If channelisation is reversed and the 

river allowed to migrate laterally across the floodplain, it may result in the loss of property on one 

side of the river, and an increase in land on the other bank due to accretion, leading to property 

disputes. Furthermore, the re-establishment of land as floodplain may cause it to lose value, for 

which landowners may expect compensation (Zhu et al. 2007). Much of the research on the loss of 

land value and agricultural profits focuses on arable agriculture, which can be significantly affected 

by flooding (Remo et al. 2017). Pastoral agriculture can still take place on floodplains, just less 

intensively (ibid.), so agricultural profits in the Dysynni valley may be less affected.  

Floodplain reconnection can create more space for outdoor recreation and tourist industries (Sparks 

and Braden 2007). This diversifies local livelihoods, leading to a more robust local economy (Ebert et 

al. 2009). 

Criterion: Socio-cultural sustainability 

The IS alternative scored higher than SMP2 for all socio-cultural sustainability parameters other than 

‘Impact on current way of life’ (Attribute: public perception) and ‘Impact of the finished project on 
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the historic character of the Dysynni landscape as a whole’ (Attribute: Impact on the historic 

landscape). 

Attribute: Public perception 

In maintaining the defensive line along the stretches of coastline with important infrastructure, 

business and properties, the SMP2 scenario would maintain the current ways of life for most people 

in the study area. The only people directly affected would be those associated with Aberdyfi Golf 

Club, and any landowners affected by MR schemes in the Dysynni estuary and at Penllyn. Grazing 

could still be undertaken on the saltmarsh and in periodically flooded areas, so this would not 

impact the farming practices too significantly. 

Hard defences and other HTL tools can have high public support, due to the reassurance they 

provide for homeowners and businesses (de la Vega-Leinert and Nicholls 2008). Research in New 

Jersey indicated that some beach users prefer the presence of groyne structures as they act as wind 

breaks, sun-traps, and provide an enclosed area for children’s play, and because they are a familiar 

part of some beaches (Williams et al. 2005). Other studies have shown a negative public perception 

of hard defences; on Wisemans Bridge beach in South Pembrokeshire, which is backed by a sea-wall, 

most visitors indicated that they would have been willing to pay a small amount to use an alternative 

method of coastal defence due to the impact that the seawall had on scenic quality (Blakemore et al. 

2008). There is also an issue of health and safety; the way that groynes interact with longshore 

currents can cause rip currents to form around a groyne field. On Boscombe beach, Bournemouth, 

strong offshore-directed rip currents were detected on the updrift side of the groynes due to the 

deflection of the longshore current, which can cause a bathing hazard (Scott et al. 2016). There are 

even several accounts in recent years of people being caught by strong rip tides on Tywyn beach and 

requiring rescuing, with two deaths occurring as a result (Misstear 2015; ITV 2016; Dailyin 2018; 

Evans 2018; Jones 2018). Hard defences along Tywyn frontage are currently and will continue to 

cause beach lowering, resulting in a narrow beach with little space for recreation. 

Although some new wetland habitat could attract environmental tourists, a MR scheme at Aberdyfi 

dunes would eventually threaten the existence of Aberdyfi Golf Club through erosion and flooding. 

Public acceptance of MR schemes is often mixed; for the Brancaster MR scheme, only around half of 

the locals supported the MR project (Myatt et al. 2003). A survey of UK participants indicated that 

76% of stakeholders and members of the British public did not consider MR as a good method for 

flood risk reduction or cost saving (Esteves 2014). This is due to a range of reasons, including the 

perception that defence maintenance would be cheaper or more effective, and a lack of trust of 
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organisations carrying out MR projects (Myatt et al. 2003; Roca and Villares 2012; Nordstrom et al. 

2015).   

The sand engine element of the IS scheme would not impact the way of life of local people, other 

than providing additional space for recreation, which would have a positive socio-cultural impact, as 

it increases opportunity to take part in outdoor activities (Stive et al. 2013). 

If a large area of floodplain is being reconnected, it could lead to the displacement of people who 

live there (Guida et al. 2014). This could have negative social consequences such as loss of 

communities. This is less of an issue in small floodplains such as the Dysynni, in which very few 

people live in areas that would be affected. However, a floodplain reconnection scheme could have 

a negative impact on the lowland farmers who rely on the affected land for their livestock. As well as 

an economic issue, farming practices form an important aspect of local cultural identity. Having to 

change farming practices, diversify, or change livelihoods would have a negative social impact on the 

local farmers, regardless of whether subsidies are provided (Lobley et al. 2005). The new habitat 

created would increase the space available for activities such as bird-watching and walking.  

Attribute: Impact on the historic landscape 

The MR scheme at Penllyn in the SMP2 policy plan would require the partial or total removal of the 

embankment there, on which several Military LCFs are located. The retreat of the shoreline along 

the Penllyn frontage and Aberdyfi dunes would also lead to further erosion of the line of pillboxes 

that characterise the Military LCA. Excavation and 3D digital recording could be used to preserve the 

archaeological information held within these features, but this would not prevent the loss of historic 

character to the LCAs, or improve the accessibility of any surviving remains after the MR project. The 

pillboxes in particular are a very visible and striking element of the coastal landscape, and the 

defensive Military LCA that they create as a unit would be markedly damaged if some of the 

pillboxes were destroyed. 

Aberdyfi beach is characterised by a wide sandy beach with high dunes. A loss of beach and dune 

area due to a MR scheme there would significantly impact the Wetland and Beach LCA. The wide, 

sandy beach at Aberdyfi can be seen from several vantage points in the study area, so a loss of this 

LCA would have an impact on the wider historic character of the valley. However, as Penllyn is 

already relatively rough ground, the development of saltmarsh in a MR scheme would not have a 

significant impact on the historic character of the local area. It would return the area to its former 

use, indicated by the lake visible on the Tithe map of the area (Figure 5.11; The National Library of 

Wales 2019), and the placename (Penllyn means ‘head of the lake’ or ‘top of the lake’ in Welsh). A 

MR project in the Dysynni estuary may not impact the Wetland and Beach LCA of Broadwater itself, 
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but could impact the wider historic character of the estuary area and lowlands. This includes the 

Regular Field Systems and Regular Drained Land LCAs, which are characterised by uniform, grid-

patterned drainage ditches and field boundaries, and are a result of the land reclamation schemes 

several centuries ago (Smith 2005).  

Hard defence construction causes direct erosion and damage to the beach, while current beach 

lowering at Tywyn due to the hard defences threatens features preserved in the intertidal zone, such 

as the peat cuttings and submerged forest, and causes a direct loss of the Wetland and Beach LCA. 

However, as hard defences have existed along much of the coastline for over a century, the historic 

character of the Dysynni landscape as a whole would not be dramatically altered by the 

maintenance or extension of the structures. The defences protect the Historic and Modern 

Settlement LCAs from flooding and erosion (although these LCAs are not considered vulnerable to 

climate change). They also protect several caravan parks, which are important for the Recreation 

and Tourism LCA in the study area.  

Like the MR scheme in the Dysynni estuary, the floodplain reconnection scheme in the IS scenario 

would have a considerable impact on the Regular Fieldsystems and Regular Drained Land LCAs. The 

regular pattern of drainage ditches and field boundaries that covers the flat valley bottom is a 

significant element of the historic character of the Dysynni valley, and one that links strongly to the 

current and historic economies. Although flooding may not be a regular occurrence, the drainage 

ditches would need to be blocked and some field boundaries removed to facilitate the natural 

function of the floodplain, which would have an impact on the historic character of the lowlands of 

the landscape. De-channelisation of a stretch of river would give the lowlands of the river valley a 

more natural character, but erase some of the recent historic features and character of the 

landscape. It could increase the risk of flooding at the Peniarth and Ynysymaengwyn estates, both of 

which have important historic features within their grounds. Cropmarks identified in the lowlands 

would become less accessible, and subsurface features may become waterlogged. This may increase 

the potential for the in situ preservation of archaeological remains, as waterlogging can provide 

anoxic conditions which reduce organic degradation (Douterelo et al. 2010). However, Gearey and 

Chapman (2006) warn that, even if an area is becomes waterlogged, any previous drainage may 

already have damaged archaeological remains. Furthermore, the introduction of water from a 

different source, which would occur during overbank flows, could change the pH, oxygen level, or 

salinity of the current burial environment (Holden et al. 2009). If in situ preservation was attempted 

in these areas, a regular monitoring system would be required to record changes and adjust the 

preservation approach if necessary (see Malim et al. 2015).   
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A sand engine project would not have much negative impact on vulnerable LCAs, and would increase 

the area and protection of the Wetland and Beach LCA. It would create a wider and higher beach 

along the whole coastline, with greater visual amenity, which would be more akin to what the beach 

may have been like prior to the beach lowering over the past few centuries. Evidence for a wider, 

higher beach than at present comes from the name ‘Tywyn’, which means ‘beach’, ‘seashore’, or 

‘sand-dune’ in Welsh. Moreover, the development of Tywyn into a major sea-side resort in the late 

19th century indicates that the beach may have had greater visual amenity at the time. As a sand 

engine approach would only affect the beach itself, there would be little impact on the overall 

historic character of the Dysynni valley. The historic character of the beach itself would be 

significantly altered. As well as an aesthetic change, an increase in beach volume could bury some of 

the features on the foreshore such as pillboxes, fish traps and peat cuttings. This would afford the 

features additional protection from erosion, but it would reduce their accessibility to the public and 

would alter the historic character of the shoreline. In terms of positive impacts, it would provide 

additional protection to other features that characterise the Military LCA, such as the rifle range and 

shooting butts at Penllyn, and the pillboxes along Aberdyfi beach.  

Criterion: Environmental sustainability 

The SMP2 policy plan scored lower on every environmental sustainability parameter than the IS 

alternative, other than the ‘Is the project a net source or net sink of carbon emissions?’ parameter 

(Attribute: Impact on carbon emissions), for which both scored 50. This is because the data on 

whether saltmarsh and reconnected floodplain act as carbon sources or sinks is conflicting.  

Attribute: Ecological impact 

The hard defences required for the SMP2 scenario are predicted to have a mainly negative 

environmental impact. Hard defences cause beach erosion, reducing the available area for intertidal 

habitats, which is evidenced by the beach lowering in front of the sea-wall at Tywyn (see Figure 8.2). 

The construction or maintenance of these defences can damage both marine and intertidal 

ecosystems due to heavy machinery and scour. Required maintenance of defence structures causes 

periodic disturbance to ecosystems on and around the structure (Airoldi et al. 2005; Firth et al. 

2013b; Sherrard et al. 2016). Regular disruption can cause an ecosystem to stay in the early stages of 

succession, rather than maturing into a climax community (Airoldi et al. 2005; Firth et al. 2014).  

Of the potential positive impacts, there is some potential for artificial reef habitat to be created on 

hard defences, as discussed in 8.4.1. This could increase biodiversity, however when hard defences 

are constructed in areas that are exclusively sandy coastlines, they can act as ‘stepping stones’ for 

hard substrate species to expand their range into previously inaccessible areas (Airoldi et al. 2005; 
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Firth et al. 2014). This could facilitate the spread of invasive species which require rocky habitat for 

colonisation (Firth et al. 2013b). Airoldi et al. (2005) warns that this could increase the gene flow 

within a species, thus reducing local adaptation and evolution, and also increase the potential 

spread of disease within a species. As the Dysynni valley includes sections of shingle beach and rocky 

cliff as well as sandy beach, and has had hard defence structures installed for several centuries, it is 

unlikely that the SMP2 policy plan would facilitate further invasive species colonisation in this way.  

MR is generally thought to be an ecologically-friendly coastal management approach. The expansion 

of intertidal or wetland habitat at both Penllyn and in the Dysynni estuary would provide more space 

for birds and fish nurseries, among other things. However, the MR at Aberdyfi dunes would cause a 

loss of coastal dune habitat, which is a BAP priority habitat (JNCC 2008). Saltmarsh can provide 

nutrient cycling, and increase the storage of sediment and pollutants, so MR at Broadwater could 

improve water quality in the estuary (Tinch and Ledoux 2006; Roca and Villares 2012). The area 

encompassing Broadwater, Morfa Gwyllt, and the river and banks between Broadwater and Pont 

Dysynni, is a designated SSSI due to the importance of the wetland for bird species. A MR project in 

the area could expand the area of important habitat. Saltmarsh establishment is not always 

successful; at Brancaster marsh in Norfolk, five years after a MR project was completed, large areas 

of the site were still unvegetated and the areas of vegetation had a very different community 

structure to natural reference marshes (Mossman et al. 2012). This difference can be caused by 

different soil redox potentials between natural and created marshes, seed availability, soil 

compaction, and sediment or organic matter input (Morgan and Short 2002; Wolters et al. 2005a; 

Mossman et al. 2012). MR schemes may not necessarily provide all of the environmental benefits of 

a natural saltmarsh habitat. 

The ecological impact of the IS option is more positive overall than the SMP2 option. Floodplain 

reconnection would allow the small areas of wetland in the valley to expand slightly, and floodplain 

meadows or floodplain wetlands may form. This would have ecological benefits such as providing 

habitat for migratory birds, pollinators, and wild flowers, and invertebrates, wading birds and fish 

nurseries respectively (Opperman et al. 2009; Paillex et al. 2009; Guida et al. 2014; Rothero et al. 

2016). Floodplain reconnection can also improve biogeochemical fluxes and river water quality due 

to an increase in overbank deposition of sediment (Volk et al. 2004; Johnstonova 2009; Paillex et al. 

2009; Ledford and Lautz 2015). Research in the Danube showed improved water quality and access 

for both drinking water and irrigation, and a reduction in eutrophication following a floodplain 

reconnection project (Ebert et al. 2009). The River Dysynni has poor water quality in places 

(Campaign for the Protection of Welsh Fisheries 2009; NRW 2016b) and reconnecting the floodplain 
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would address this as nutrients and sediments are deposited on floodplains during overbank flows 

(Johnstonova 2009). 

A sand engine could provide new habitat for fish, birds and intertidal species, for instance through 

creating shallow lagoons (Mulder and Tonnon 2011; Stive et al. 2013; De Schipper et al. 2016; New 

Civil Engineer 2017). Seals have been observed visiting the lagoon area created in the Dutch sand 

engine (Ecoshape 2017). The addition of a large amount of sand in the sediment cell would stimulate 

dune growth in Aberdyfi dunes. However, the deposition of sediment in beach nourishment 

schemes can smother existing intertidal ecosystems, which can take several years to recover 

(Wooldridge 2015). The long lifespan of a sand engine project compared to a traditional beach 

nourishment scheme means that there would be several decades between sediment depositions, 

allowing the intertidal ecosystems to recover. The use of natural processes to distribute sediment 

along the shoreline reduces the ecological impact of sand engine projects compared to traditional 

beach nourishment, which uses heavy vehicles such as tractors (Stive et al. 2013). A sand engine 

project would also reduce the need for the piecemeal nourishment of Aberdyfi dunes with sediment 

from Aberdyfi harbour, which impacts beach ecosystems much more frequently (Earlie et al. 2012b, 

c).   

Attribute: Sustainability of sourced materials 

In the most recent defence project at Tywyn, the wooden groynes were constructed from recycled 

timber in order to improve the environmental impact of the scheme. The timber was sourced from 

Scotland which, although better than being imported from abroad, caused more transport emissions 

than if it were sourced more locally. Some groynes in the study area, the detached breakwater, and 

a stretch of revetments, are all built from granite which was quarried, although the source of the 

granite is not known. Quarrying significantly impacts local habitats, and the transport of such large 

quantities of rock will have resulted in significant transport emissions. The sea-wall structure is made 

of cement, the manufacture of which contributes around 7% of global CO2 emissions. Therefore, the 

environmental impact of the hard defences required for the SMP2 option would have a wider 

footprint than the study area alone. The MR project would not require many additional materials, as 

any landward embankments could be constructed from local material.  

Similar to MR, floodplain reconnection would not require any significant materials, as any additional 

levees required could be made from the material from the embankments that are removed. 

Dredging is currently undertaken in Aberdyfi harbour, the sediment from which could be used for a 

sand engine project. A sand engine requires an immense volume of sediment to be sourced, and it is 

important that the sediment used is a similar size to that on the beach already. If a sufficient amount 
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cannot be sourced locally, the sediment must be transported a significant distance, which could 

increase the transport emissions associated with the project. Dredging can damage benthic 

ecosystems, and can cause changes to the oxygen gradient, salinity, hydrodynamic patterns and the 

amount of particle suspension (Van Dalfsen and Arninkhof 2009). This can impact the abundance of 

food for fish, birds and mammals, thus having a wider ecological impact (ibid.). Removing the 

amount of sediment required from one place could also have hydrodynamic impacts such as the 

creation of a trench in the sea floor (Van Dalfsen and Arninkhof 2009).  

Attribute: Impact on carbon emissions 

The hard defences, once constructed, will not act as either a carbon sink or source. There is the 

potential for saltmarsh developed in the MR scheme to create a carbon sink (Roca and Villares 

2012). This is dependent on a range of factors such as the rate of saltmarsh succession and the rate 

of sediment deposition, and so may not occur (ibid.). 

Overbank deposition and the development of floodplain wetland habitats can increase carbon 

sequestration (Tilman et al. 2006), so the floodplain reconnection project in the IS scenario could 

create a carbon sink. As with the MR project, this is dependent on the frequency of wet/dry cycles, 

which can reduce the capacity of soils to store carbon. The presence of a sand engine would not 

have any impact on carbon emissions. 

Criterion: Functionality 

As with the other criteria, the IS alternative scored higher than the SMP2 policy plan for almost all 

parameters. However, the SMP2 policy scored higher for the ‘Impact on coastal flash-flood risk’ 

parameter, and both alternatives scored 65 for ‘Impact on inland flash-flood risk’ (Attribute: Impact 

on flood risk). Overall, the SMP2 alternative scored higher for the ‘Impact on flood risk’ attribute. 

The lower overall score for the SMP2 was due to long-term issues such as displaced erosion, 

maintenance, and policy lock-in. A detailed justification of the scores for each attribute is provided in 

this section. 

Attribute: Impact on flood risk 

The sea walls at Tywyn and Aberdyfi provide a barrier protecting the towns from storm surges, 

although extreme sea level scenarios can lead to over-topping of defences (McDougall and Boyd 

2009; Guida et al. 2016). In the long term, hard defences will need to be updated and heightened at 

significant cost in order to maintain the same standard of protection against flooding, as sea-level 

rise will cause more frequent high-water levels (Guida et al. 2016). 
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MR at Penllyn could reduce the risk of overtopping in areas protected by sea walls, as the expanded 

saltmarsh would allow space for the tidal and wave energy to dissipate. The MR scheme in the 

estuary would reduce the risk of fluvial flooding further upstream, as the MR area allows flood 

waters to dissipate. Evidence from the MR project at Orplands, in the Blackwater Estuary, indicated 

that the created saltmarsh lessened the impact of storm tides and reduced the potential impact of 

floods elsewhere in the estuary (Tinch and Ledoux 2006). 

As some areas near Penllyn and behind the Aberdyfi dunes are below MHWS already, sea-level rise 

will result in a much greater risk of flooding beyond the MR area, unless higher embankments were  

built in front of the railway line. MR in the Dysynni estuary could, in the long term, result in the 

permanent inundation of some areas of land that were previously farmed, as well as Tywyn Sewage 

Works, which is located very close to Broadwater and the coast. At some point it may become 

unsustainable to protect the sewage works from inundation on all sides, so it would require 

relocating under the SMP2 policy plan. There would also need to be cooperation with landowners in 

order to prevent them carrying out private defensive works on their land, which would undermine a 

MR project.  

Another issue is that the groynes and sea wall at Tywyn act as a barrier to sediment transportation 

along the Dysynni coastline, reducing the available sediment at Penllyn and the Aberdyfi dunes. A 

sufficient sediment input is important for MR schemes to generate accretion on the developing 

saltmarsh (Wolters et al. 2005b). Without adequate sediment supply, the coastline may retreat or 

turn into intertidal flats following the breaching or removal of defences (Wolters et al. 2005b; Hanley 

et al. 2014). 

In the IS option, floodplain reconnection would provide inland flood risk benefits. There is robust 

evidence for the effectiveness of floodplain reconnection projects; the Sinderland Brook project in 

Cheshire managed to reduce the flood-risk to a neighbouring housing development from 1-in-35 

years to 1-in-75 years (Environment Agency 2010). Floodplain reconnection of the Long Eau and 

Great Eau in Lincolnshire also reduced flood risk in the towns of Great Carlton and Manby from 1-in-

20 years to 1-in-50 years (ibid.). Floodplain reconnection allows the river to diffuse its energy over 

the floodplain during periods of high discharge, rather than constraining the river and causing 

overtopping in the ‘wrong’ areas (Environment Agency 2010). Re-meandering would lengthen the 

river, which would provide more area for the water, thus delaying the time it takes to reach peak 

discharge (ibid). The deposition of sediment overbank means that the floodplain would be able to 

accrete, raising the level of the lowlands slightly. This makes the land less susceptible to sea-level 

rise (Johnstonova 2009). Reconnection of the floodplain would lead, in the long term, to a more 
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naturally functioning estuary system, in which the floodplain and a widened channel would reduce 

the impact of sea-level rise on the tidal prism (Holleman and Stacey 2014). In the Dysynni valley, 

under the present management scenario, maintaining the current level of protection would require 

the defences to be raised and a pumping system installed in the DLLD as sea level rises (Earlie et al. 

2012b). This would become increasingly unsustainable into the future as sea-level rise continues 

(ibid.).  Floodplain reconnection would allow the floodplain to be periodically flooded, and sediment 

deposition would cause the land to warp up, thus becoming less susceptible to sea-level rise (ibid.). 

If a sand engine project was undertaken on the Dysynni coastline, the initial sand deposition would 

occur on the beach and foreshore in front of Tywyn. The net drift of sediment on this coastline is 

divided, with a net drift from the southern end of Tywyn towards the Dyfi estuary, and a net drift 

from the northern end of Tywyn towards the Dysynni estuary and beyond towards Llwyngwril (see 

Figure 8.11) (Earlie et al. 2012c,d). This is corroborated by Figure 8.2, in the location of areas of 

shoreline retreat (along the Tywyn frontage) compared to areas of shoreline accretion (along the 

Tonfanau and Aberdyfi Dunes frontages) at the MLW mark. A sand engine here would provide 

sediment to protect the Penllyn and Aberdyfi frontage, the shingle bar at Morfa Gwyllt, and the 

railway line north of Tonfanau. Initial monitoring of the Dutch sand engine project indicated that 

6km of the adjacent coastline benefitted from accretion in the first year following the sand engines 

creation, which attenuates wave energy and reduces the risk of flooding and overtopping (Luijendijk 

et al. 2017). The greater width and height of the beach along the Dysynni coastline in a sand engine 

project would reduce the risk of overtopping defences, as the higher beach would attenuate some of 

the incoming wave energy. Any dune growth at Aberdyfi would also reduce the risk of high-water 

levels overtopping the dunes and damaging the golf course (Van Dalfsen and Arninkhof 2009). In the 

long term, the sand engine would gradually diminish, and the coastline would return to an 

equilibrium state, so there would be no long-term impact on flood risk. 
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Attribute: Impact on coastal erosion  

A main aim of the Hold the Line approach along several stretches of the Dysynni coastline is to 

prevent coastline retreat due to erosion. However, defence structures can reflect the wave energy 

back onto the beach, leading to erosion of the beach itself (Griggs 2005). Tywyn beach has reduced 

in elevation by around 3m in the last century (YGC 2011). This has also been recorded at seawall-

backed Slaughden beach in Suffolk, which is much narrower and steeper than other unprotected 

beaches in the vicinity (Pontee et al. 2004).  Dornbusch et al. (2007) argue that it is not just the 

presence, but also the construction, of sea walls and similar defences that result in long-term 

increases in erosion, due to compression and disruption from heavy machinery. The presence of 

groynes has also been linked with accelerated coastal retreat in downdrift areas, in this case Penllyn 

and the Aberdyfi dunes (Earlie et al. 2012b). Following groyne construction on Lady Robinsons 

Beach, Botany Bay, New South Wales, a downdrift area that used to accrete began to erode (Frost 

2011). Furthermore, on the coast of Suffolk, the rate of accretion on Dunwich beach was lower after 

groynes were constructed updrift at Kessingland (Pontee et al. 2004). This indicates that groynes 

disrupt longshore sediment transport and displace erosion, rather than preventing it completely. 

Figure 8.11. Direction of longshore sediment movement along the shoreline of the study area in PDZ 10 (A) 

and PDZ 11(B). The Dysynni study area is demarcated in red on each map. Source: Earlie et al 2012c, d.  
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Under the SMP2 policy option, displaced coastal erosion from groynes, combined with the MR 

approach along the Penllyn and Aberdyfi dune frontage, would likely result in an increased rate of 

erosion of the dune system and Penllyn saltmarsh. Furthermore, the reduction in sediment supply 

caused by hard defences could prevent the MR project at Penllyn from accreting sufficiently to form 

a functioning saltmarsh habitat that would be able to keep up with sea-level rise.  

The IS alternative would likely have a positive impact on coastal erosion. A sand engine project 

would widen the beach and therefore reduce the amount of erosion occurring at the base of cliffs 

and defensive structures, thus reducing the risk of undercutting and failure. Although the initial 

deposition of the sand engine would likely occur in front of Tywyn, coastal processes would 

redistribute the sand to both north and south, providing additional protection to Tonfanau, Rola, 

Penllyn and the Aberdyfi dunes. This approach does not cause sediment starvation elsewhere by 

preventing longshore drift, unlike seawalls and groynes (Bide 2014).  

Attribute: Flexibility 

Areas of the SMP2 for which HTL methods are proposed could experience policy lock-in, as defined 

in 8.1. For instance, the presence of sea walls would allow business and property development to 

continue in the coastal zone, as it is assumed that the defence structures would remain indefinitely. 

This would increase the value of the property and infrastructure that is being protected, and would 

worsen the potential cost of coastal flooding. Coastal managers would be obliged to keep 

maintaining and raising coastal defences to protect the new property, even at a much greater cost 

than would have originally been feasible. Furthermore, the decommissioning of defensive structures 

is expensive. MR projects would not necessarily cause policy lock-in, as if coastal embankments are 

breached for the project then they could also be repaired. If the defence were fully removed, or if 

mudflats developed instead of saltmarsh during the MR project, it would be more difficult to reverse 

the project and reclaim the land.  

Floodplain reconnection would be relatively easy to reverse, as unblocking the drainage channels 

and rebuilding riverbank levees would be unlikely to cost more than the original project. Re-

channelising the re-meandered stretch of river would be more costly. The cost of reversing a 

floodplain reconnection scheme would become more difficult and expensive over time, as areas of 

wetland are established and flooding occurs more frequently. A sand engine project would not cause 

policy lock-in, as it has a relatively short lifespan. Over time, the sand deposited would be 

redistributed along the coastline by wind and wave action, so the coastline would return to an 

equilibrium state and there would be no left-over structures to be renewed or removed.  
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Attribute: Longevity 

In the SMP2 policy plan, the existing or future hard defences would have to be replaced periodically, 

around every 15-25 years (groynes) to 50-100 years (sea walls). The structures would require more 

frequent maintenance due to erosion, undercutting and storm damage. Beach erosion could also 

worsen with sea-level rise, which would put increasing pressure on the hard defences and make 

them more likely to fail. Sea-level rise would increase the potential for flood defences to fail, as the 

standard of protection they provide decreases. In contrast, a MR scheme could have a long 

(potentially indefinite) lifespan if there was adequate sediment supply to allow the saltmarsh to 

accrete in line with sea-level rise. If sediment supply were insufficient at Penllyn and Aberdyfi dunes 

due to the hard defences updrift, the MR area could be inundated relatively quickly, or erode and 

require more defences to be built to protect the railway line. The likelihood of failure at MR schemes 

would be lower than hard defences, providing there was adequate sediment supply and that a 

functioning saltmarsh habitat develops, as a saltmarsh would attenuate wave energy and provide an 

area across which flood waters could disperse. This wave attenuation would reduce the pressure on 

hard defences nearby, and on the defences at the back of the marsh.  

Like the MR scheme, floodplain reconnection would be potentially indefinite, as it would allow the 

river to function as a more natural system. It would require very little management or maintenance, 

although new embankments could be required around some properties or on the edge of the 

floodplain if sea-level rise causes larger floods. In terms of failure, there is the potential that high 

water levels and high river discharge would cause a freak flood event that could overtop the new 

dykes at the edge of the floodplain. However, this would be less likely to happen than if the river 

remained channelised and the same event occurred.  

The lifespan of a sand engine project would depend on the coastal processes that redistribute the 

material along the coastline. As there have only been two previous sand engine projects, it is difficult 

to estimate the lifespan of one on the Dysynni coastline. The Dutch sand engine was originally 

projected to have a lifespan of 20 years, but it is redistributing less quickly than expected, and may 

last longer than anticipated (Buitenkamp 2016). This is still a shorter lifespan than most hard 

defences or MR projects. The likelihood of failure of a sand engine is difficult to estimate, as there 

are only two known projects and both are relatively recent. There is not yet any evidence of failure 

in other projects, and the wider and higher beach that would be created in the study area would 

reduce the likelihood of failure of the existing defences, as it would reduce undercutting and 

attenuate wave energy.  
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8.8 Evaluation of the multi-attribute value theory methods 

This discussion focuses on the MAVT methodology utilised in this research and its suitability for the 

assessment of the sustainability of coastal management approaches, based on the results for the 

Dysynni coastline. First the benefits of the hierarchical structure are discussed, followed by the 

efficacy of MAVT for addressing sustainability. Next, the scoring system is discussed, followed by the 

use of weighting parameters or attributes. The importance of involving stakeholders or expert 

opinion is then considered, including how the omission of consultation from this project may affect 

the Dysynni coastline results. Finally, the way that the MAVT method could be used within decision-

making, and the stage at which it would be used, is explored. 

8.8.1 Hierarchical structure  

The MAVT is structured in a hierarchical manner, so the overall scores are comprised of the scores of 

different criteria, which in turn are the composites of the scores from various attributes. This 

compares to other sustainability assessment methods, such as Analytical Hierarchy Process, which 

generate the overall score as a function of the individual parameters (e.g. Cinelli et al. 2014). 

Generating scores for each attribute and criteria, as well as an overall score, allows alternatives to be 

compared in terms of their economic sustainability, functionality, or ecological impact, for example, 

as well as for overall sustainability. The separation of criteria thus allows for more transparency as it 

is clear where a strong score in one area is compensating for a weaker score in another. It also 

reveals the specific areas of weakness for certain alternatives, which could be used to inform 

changes in the chosen alternative in the design stage.  

8.8.2 Sustainability 

MAVT has been criticised as a sustainability assessment method due to the compensatory rule, in 

which high scores for some criteria can balance out bad scores for other criteria. This could allow the 

compensation of poor environmental scores (indicating significant negative environmental impact) 

with high economic scores, resulting in substitutions between natural and man-made capital (Van 

Herwijnen 2006) and leading to MAVT assessments supporting weak sustainability. It implies that a 

lower score in a crucial parameter or attribute, such as the impact on flood risk, can be compensated 

for by higher scores in parameters that may not be as crucial for the successful functioning of a 

management approach, such as the maintenance cost. This can be seen in the Functionality criterion 

of this MAVT assessment, in which the IS alternative scored highest overall, despite having a lower 

score for the ‘Impact on flood risk’ attribute, as it scored highly for parameters such as ‘Maintenance 

required’ and ‘Flexibility’. It is important to remember that, although all attributes are given equal 

weighting within each criterion, one of the main reasons that coastal management approaches are 
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required is to reduce flood risk. Therefore, the importance of the flood protection that they provide 

may outweigh other parameters. This is not accounted for in the scoring system used here, unless it 

is weighted (see below). However, by dividing the MAVT into separate criteria, and maintaining 

transparency in the results through the hierarchical structure, any compensation between attributes 

or parameters remains evident.  

Within the IS option there were two separate MAVT assessments: a floodplain reconnection project 

and a sand engine project, which were combined into a single score. This may have resulted in some 

compensation, which is referred to as intrinsic compensation. For instance, the sand engine scored 

only 25 for the Initial Cost parameter, whereas the floodplain reconnection scored 75. The overall 

score was 50, indicating a neutral score, which implies that the overall cost of the IS alternative 

would be similar to that of the recent defensive scheme in Tywyn. Combining the scores of these 

approaches before undertaking the MAVT assessment was necessary to compare the overall IS 

alternative with the SMP2 alternative, however it creates intrinsic compensations or substitutions 

within the IS alternative scores. This is also the case for the SMP2 alternative, as the individual 

scores for MR projects would be different to those for the HTL projects. This difference is obscured 

as only one numerical score is generated for each parameter. To account for this, separate scores 

could be given for different types of project within each alternative for each parameter. 

8.8.3 Scoring system 

The scoring system used in this MAVT, allowing for both positive and negative scores, as well as a 

‘neutral’ or no impact score, was beneficial as it allowed the scores to represent the fact that not all 

impacts on the study area may be negative. Applying the same scoring system to each parameter, 

attribute and criterion made the process simple, and makes the results clearer to understand. In 

contrast, Ferretti et al. (2014) scored all attributes from 0-1, but divided each attribute’s scores 

differently. For instance, the Conservation Level attribute scores were divided thus: 0 = bad, 0.33 = 

discrete, 0.67 = good, 1= very good, whereas the Flexibility of the Building attribute scores were 

divided into 0=discrete, 0.5 = good, 1 = very good. This makes the results more difficult to 

understand for people using the data, and makes the methodology more difficult to follow for 

decision-makers.  

Generating a numerical score allows the alternatives to be compared with new alternatives in the 

future. This contrasts with the Analytical Hierarchy Process method, which makes pairwise 

comparisons between the alternatives for each criterion, and expresses these comparisons as ratios 

(Cinelli et al. 2014). This prevents a third alternative being directly compared with the original two 

alternatives, without having to undertake the whole assessment again. With the MAVT approach, a 
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third alternative could be assessed using this framework after the initial assessment, and directly 

compared with other alternatives that were previously subject to this assessment. This allows new 

information or potential management approaches to be included in the assessment at a later date.  

8.8.4 Weighting parameters 

None of the parameters, attributes or criteria were weighted above any other in this MAVT 

methodology, as the potential weightings given to different attributes are dependent on the specific 

context of the alternatives being compared. For projects located in ecologically important rural 

areas, the ‘Ecological impact’ attribute would be given greater weight than ‘Public perception’. In 

contrast, if applied to a project in a densely populated urban area, attributes such as ‘Public 

perception’, ‘Impact on flood risk’, and ‘Impact on local business’ may be weighted more highly than 

others. 

In the current study area, having unweighted attributes means that the ‘Impact on flood risk’ 

attribute is afforded the same value as ‘Impact on carbon emissions’ attribute. Both are important, 

however the purpose of undertaking coastal management on the Dysynni coastline is largely to 

control flood risk. Therefore, it is likely that the ‘Impact on flood risk’ attribute would be considered 

more important than some others. Evidently, weighting is something that should be decided for the 

individual MAVT assessment based on the specific context and project objectives. MAVT has the 

advantage of being a dynamic management tool, as the scores can be adjusted and weightings 

applied in subsequent iterations. 

8.8.5 Inclusion of stakeholders and consultation of experts 

Although a range of information and case studies were reviewed for each alternative, the more 

detailed aspects of the MAVT such as the initial cost, were based on broad estimates. These 

estimates were based on the cost of other projects and assumptions about the size of projects, for 

instance the area that would be involved in a MR or floodplain reconnection scheme. The estimated 

costs would be different if a smaller area were involved than assumed in this assessment. To remedy 

this, the inclusion of economic experts and local decision-makers in the assessment would reduce 

the reliance on guesswork and make the predicted costs would be more reliable. 

The impact of each option on local business was based on assumptions, such as an expected 

increase in tourism if the beach area increased, or that the local council would employ local 

businesses for hard defence construction. In order to gain a better idea of the potential impact of 

each alternative on the local economy and industry, it would be advisable to look at the local 

economy in greater detail, for instance the percentage based on primary industries compared to the 

tourist industry, and the percentage reliant on the areas potentially affected by each management 
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option. This would require the consultation of economic experts, and may benefit from the use of an 

economic model, so that the scores for the ‘Impact on local business’ parameters reflect the specific 

context of the Dysynni coastline and valley. 

Another finding of the research and MAVT assessment was that determining whether an alternative 

would be a carbon source or sink depends on too many factors (such as the frequency of wetting 

and drying, the temperature, and the rate of vegetation development) to assess it just based on 

similar projects. Accurately scoring this attribute would require modelling of the specific 

environment under each alternative to assess the rate of carbon sequestration or emission.  Such 

modelling would require expert consultation and the use of sophisticated terrestrial carbon cycle 

models. Another attribute that would require modelling to score accurately is the ‘Impact on coastal 

erosion’ attribute. The choice of coastal management alternative could impact rates of beach and 

cliff erosion both in the immediate vicinity of the project and further along the coastline. The score 

given for the alternatives in this MAVT for this attribute was based on theoretical research and 

review of case studies. To generate a score that is meaningful and accurate for the study area, a 

coastal erosion model would be useful to assess the impact of each alternative. This is also the case 

for the ‘Likelihood of failure’ parameter 

The requirement for more detailed information and models highlights the importance of 

understanding the local context, project objectives and management priorities for scoring and 

weighting attributes, and therefore indicates the value of consulting and including stakeholders, 

experts and decision-makers in the MAVT process. Assessing public perception and how a project 

might alter current ways of life cannot be accurately determined without public consultation. If this 

MAVT method were to be used for the Dysynni coastline or another area, it should involve 

significant stakeholder and public consultation throughout the process. 

8.8.6 Use within decision making  

This MAVT assessment has indicated the value of this methodology for directly comparing two or 

more alternatives based on a range of potentially conflicting objectives. The clear hierarchical 

structure allows the weaknesses in each alternative to be easily identified, allowing potential project 

designs to be altered accordingly. This MAVT assessment method could be undertaken at the very 

start of a planning/design process to initially determine the overall method of coastal management 

that should be used, as demonstrated here (for instance, by comparing two different approaches). It 

could also be used further along in the planning/design process to compare two or more similar 

projects in order to fine-tune the most sustainable approach. A MAVT carried out later in the 

planning process could include more detail than the initial MAVT, for instance on how much land 
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would be included in the floodplain reconnection or MR projects, how much sand would be used in 

the sand engine project, or more accurate costings for hard defences.  

8.8.7 Summary  

Undertaking this MAVT assessment demonstrated the simplicity of the methods, which would be 

easy to introduce to decision-makers with little training required. The results indicated that this 

approach provides a helpful and clear way to compare between two (or more) alternatives with 

conflicting objectives. Compiling the parameter scores into attributes, and then into criteria, makes 

it clear which areas are the strengths or weaknesses of each approach, rather than just compiling all 

parameters into a single overall score. This reveals where compensation is occurring, for instance 

where a strong score for one parameter is compensating for the weak score of another parameter 

within the same attribute.  

If this MAVT method were to be applied in reality, more detailed plans of the alternatives would be 

required, and a crucial addition would be public, stakeholder and expert consultation (see above). All 

MAVT literature reviewed either involved stakeholder/expert consultation (e.g. Giove et al. 2010; 

Bottero et al. 2014; Ferretti et al. 2014), or stated the importance of including decision-makers and 

expert opinion (e.g. Brandão Cavalcanti et al. 2017). Including a range of opinions and expertise 

would create a more reliable and robust score and analysis. As mentioned in the Results section, the 

use of models such as economic models, coastal erosion models and terrestrial carbon cycle models 

to assess the potential impacts of each alternative would allow the scores to be more reliable and 

based on the specific context of the project. Furthermore, public acceptance of coastal management 

projects is often greater if there is increased public participation. The weighting of attributes is 

another element of the methodology that was unexplored in this example, but which may be a 

valuable addition, as it would allow the decision-makers at each location to determine the priorities 

based on the project’s context, as well as aiming for an overall sustainable option.  

8.9 Conclusion 

Chapter 8 addressed Research Aim 3: establish a way to identify the most appropriate approach(es) 

for sustainably managing the coastal historic landscape in the face of climate change. The MAVT 

sustainability assessment method developed and established in this chapter forms the final part of 

the Landscape Vulnerability Framework that is being created throughout this study. MAVT, a type of 

multi-criteria decision analysis, was chosen as the most suitable method for several reasons, 

including its inclusion of both qualitative and quantitative data, its ability to involve conflicting 

objectives, and the ability to break the criteria down into thematic groups.  The division of criteria 
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into the three pillars of sustainability, and including functionality, was important for maintaining 

transparency about how each option scored. Several other sustainability assessment approaches 

attempt to create a single score, for instance cost-benefit analysis. This equating of ecological, social 

and economic factors (and discussing all factors in terms of their economic value) erases the intrinsic 

value of nature, land-use practices and tradition. In many studies (e.g. Gren et al. 1995; Schwartz et 

al. 2006; Kettunen and ten Brink 2006), ecological benefits of coastal and flood-risk management 

projects are discussed in terms of the economic benefit or loss to ecosystems. Research by Roca and 

Villares (2012) indicates that, despite the offer of subsidies and the economic benefit of wetland 

creation, local people do not necessarily consider this an equal trade for the loss of agricultural land. 

This highlights the fact that people place values on land that cannot necessarily fit into economic 

measures, and that the intrinsic value of land or land-use practices may be greater than anticipated 

by economic appraisals (ibid.). Using MAVT allows the intrinsic environmental and socio-cultural 

factors to be considered alongside, but separate to, economic valuation.  

In order to test the MAVT methodology on the Dysynni valley, two different coastal and flood-risk 

management scenarios were created which could be compared in the MAVT. One option, the SMP2 

policy option, was based on the current policy plan for the study area as defined by the West of 

Wales Shoreline Management Plan 2 (see Guthrie and Clipsham 2011; Earlie and Brunner 2012; 

Earlie et al. 2012a,b,c,d). The second option was an Innovative Sustainable (IS) alternative, based on 

two techniques that may be more environmentally friendly, but are less commonly used.  

The results of this MAVT assessment in terms of the Dysynni valley are discussed in depth in 8.8.1, 

but the most important conclusions from this chapter can be drawn from the evaluation of the 

MAVT methodology. A crucial finding from undertaking the MAVT was the importance of 

stakeholder and expert involvement in several stages of the process. Attributes such as public 

perception require consultation of local stakeholders to score correctly, as there are a multitude of 

factors that influence them and the reaction to management tools can be context specific. Other 

attributes, such as economic estimates of the initial or maintenance costs of projects were based on 

cost data from similar projects. The wide range of potential costs found indicated that numerous 

conditions affect both the initial and ongoing cost of any management project. Consultation of 

economic experts would be essential to accurately score this kind of attribute., as well as for 

predicting the ecological impacts and benefits of different options. Although there was not the time 

or budget to undertake stakeholder and expert consultation when applying the MAVT to the Dysynni 

valley, this methodology testing was important for informing the way that it should be applied to 

other landscapes when used in practice.  
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Using a landscape-scale VI to inform the creation and completion of this MAVT influenced both the 

methods and results. Planning processes such as Environmental Impact Assessments consider 

elements of landscape character. However, defining both the historic landscape character (through 

HLC) and its vulnerability (through a VI) provides greater clarification of the object of study and the 

ways in which it may be vulnerable to change. This facilitates the application of the MAVT as the 

meaning of historic landscape character and the vulnerability of different types of character is clearly 

defined and explained. It also acknowledges the impact that large coastal and flood-risk 

management projects can have on the visual, socio-cultural and historic character of rural and urban 

spaces. If the VI focussed only on archaeological features, the MAVT could only reliably consider the 

impact of different management approaches to these features, rather than to the landscape as a 

whole.  

In terms of its use in decision-making, MAVT can be used at any point in the policy process, both 

generally as a method to narrow down potential options at the start of a process, and as a more 

detailed way to refine management tools. It can be used more than once, and applied several times 

to a single option, to determine the level of improvement after adjustments have been made. The 

weighting of each attribute can be adjusted following stakeholder or expert consultation, or 

depending on the landscape that it is being applied to. These factors make MAVT a flexible tool, 

which allows the Landscape Vulnerability Framework to be applicable to other landscapes with 

different threats, environmental settings and economies.  
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Chapter 9 
Conclusions  
9.1 Introduction  

This research set out to develop a Landscape Vulnerability Framework, which would establish the 

vulnerability of the coastal historic landscape to climate change, and assess the sustainability of 

options for managing these changes. This overall research goal was developed in response to several 

factors: the increasing threat of the impacts of climate change on cultural heritage; the relative lack 

of research into the impact of climate change on material cultural heritage compared to other 

disciplines; the focus of archaeology vulnerability studies on discrete sites at the expense of the 

historic landscape; the disjointed way in which the vulnerability and management of the 

archaeological resource is currently undertaken in different areas; and the need to prioritise the 

archaeological resource for protection, due to the limited budgets of archaeological organisations 

and public bodies.  

Several of these factors were identified initially in 2015 through my undergraduate research on the 

direct and indirect impacts of climate change on British coastal archaeology (Cook 2015). During this 

initial research, there was a notable lack of material explicitly discussing the consequences of future 

climate change for archaeology, both in academic and grey literature. This indicated the vast 

potential for research into this topic and the pressing need for research to inform future heritage 

management policies.  

The concluding chapter of this study first provides a summary of the overall research. Next, it 

assesses the extent to which each of the research objectives were achieved. Subsequently, there is a 

discussion of the implications of this research, including ways in which it could influence 

archaeological management and policy. Finally, suggestions for future research are explored in 

relation to any questions or knowledge gaps that have been identified in this thesis.  

9.2 Thesis Summary  

This study began by outlining a range of potential impacts of climate change on archaeology 

(Chapter 2), although this did not constitute an exhaustive list of effects. Chapter 2 established the 

context of the study and highlighted the importance of research into this threat. Chapter 3 defined 

the conceptual framework that underpinned this research, including the focus on the concept of 

sustainability, the explicit acknowledgement of the scalar framework of this research, and the 

concept of the historic landscape. As well as to transfer the focus of vulnerability research from sites 
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to landscapes, the historic landscape concept and HLC methods were used to render the methods 

and results of this research ‘value-free’. One of the underlying principles of HLC is that it is value-

free, and therefore does not assign any weight or significance to any LCA over any other (Fairclough 

2006a; Fairclough and Herring 2016). This allows the output of the HLC to be versatile in its use. In 

contrast, the prioritisation of archaeological sites or features for management is often based (either 

wholly or partly) on their ‘value’ (e.g. Drury and McPherson 2008; Cassar 2009; Dawson 2010; 

Dawson 2013). This is problematic as different stakeholders may place greater value on different 

sites, or determine ‘value’ by different criteria. For instance, some stakeholders may consider the 

oldest remains as the most valuable, as they are the furthest removed from current society and 

there are no historic records to enhance our knowledge of ancient periods. In contrast, others may 

value more modern remains, such as those from the First and Second World Wars, as they have a 

tangible link to modern politics, culture and living people. Finally, the value of different types of 

archaeological feature for academic research is difficult to determine, as there are many research 

questions and techniques that have not yet been conceived. For this thesis, prioritisation of 

archaeology for management and protection was determined by the level of vulnerability, as 

informed by Daly (2013).  

Acknowledging the scalar framework of this research at the start and throughout was important, as 

it explicitly recognised the interconnectivity of different spatial levels within the landscape, and how 

each level can influence others. It was important to include the concept of sustainability as it informs 

management approaches in the environmental and social sectors, and therefore is an important 

consideration if archaeological management is to be included within mainstream climate change 

adaptation reports. Interestingly, no literature on archaeological preservation could be found that 

mentioned any potential environmental or ecological impacts of archaeological management 

techniques, or any secondary benefits. Furthermore, methods for maintenance of submerged sites 

discussed by some authors (e.g. Bruno et al. 2013) include chiselling off organisms like bivalves from 

archaeological remains. Allowing organisms to live on submerged artefacts can cause considerable 

damage. However, the ecological damage of these techniques, or the potential habitat impacts of 

excavation and site management, must be considered if archaeological management and protection 

is to become part of mainstream climate change adaptation or coastal management.  

During the development of the Landscape Vulnerability Framework, methods were tested on a case 

study, the Dysynni valley in Wales. This area was chosen for several reasons, such as the low-lying 

valley floor susceptible to flooding, and the range of archaeological time periods represented in the 

known archaeological resource. It was also a practical choice, as there are fieldwork and geophysical 

survey projects ongoing in the study area by the University of Sheffield Department of Archaeology. 
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This provided access to remote sensing data for the valley floor, which was considered at risk of 

future environmental change. 

A range of sources were used to analyse the study area, including geophysical survey, archive 

research and aerial photography (Chapter 5). The data collected were then used to inform a HLC of 

the Dysynni valley (Chapter 6). This HLC created the object of research for the vulnerability 

assessment, namely the LCAs. Chapter 7 included a literature review of vulnerability assessment 

studies in archaeology, identified several limitations with the most common approaches, and used 

this to inform the development of a landscape-scale VI. The data-collection techniques were piloted 

on a few sites in the Fenlands, and then the whole VI was tested on the Dysynni valley HLC.  

Once the threat to the historic landscape and the vulnerability of different LCAs was identified, the 

information was utilised in Chapter 8 to inform sustainable management approaches. Literature 

reviews of what sustainable coastal and flood risk management entails, and different tools that 

could be used in the study area, identified an Innovative Sustainable coastal management option. 

This was compared to the current approach to coastal management in the Dysynni valley, the SMP2 

policy plan, using a MAVT assessment tool. The outcomes of this study are discussed in greater detail 

in relation to the research aims and objectives in the following section.  

9.3 Achievement of Research Objectives 

The research aims and objectives that informed the approach taken in this thesis are outlined in 

section 1.4. The following section discusses the research findings in relation to each of the aims and 

objectives, and determines the extent to which the objectives and aims were met.  

9.3.1 Research Aim 1: identify a method of analysing and characterising the 

archaeological resource on a landscape level. 

Objective 1a: Collect information on the known archaeological resource in the Dysynni valley 

Several sources of existing archaeological data were available for study, including archaeological 

reports and DBAs for construction projects in the Dysynni valley (see Smith 2004a, 2005; Blackburn 

2011; Knight 2011; Frost 2012; Roseveare 2012; Wessex Archaeology 2012, 2014; Smith 2013; Cooke 

2014; Meek 2015). Section 4.4 synthesised the data available in these studies, providing an overview 

of the archaeological record from the Mesolithic period onwards. Geographically, the DBAs included 

in these reports focussed on areas of 1-2km around their study site (see Figure 9.1), although they 

also mentioned sites of high importance in the wider landscape.  As shown in Figure 9.1, these 

studies were predominantly located in or near low-lying urban areas and near the coast, as these are 

the areas most popular for development. The main source of data that the archaeological reports 
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cited were the HER and NMRW databases, and some included information from archives in NLW and 

the County Record Office, Dolgellau.  

 

 

To supplement the information found in the archaeological reports, the HER information for the 

whole study area was requested from Gwynedd Archaeological Trust and Dyfyd Archaeological 

Trust, and the NMRW records for the study area were requested from RCAHMW (section 5.2.1 and 

Figure 9.1. Location and extent of the various desk-based assessments carried out in the 

Dysynni valley for different development projects. Crown copyright and database right 2019 

Ordnance Survey 100025252 
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5.2.2). Having access to the raw point data for the HER and NMRW records meant that the data 

could be analysed in GIS rather than just recording the information stated in the DBAs. This allowed 

identification and removal of any duplicated points, compilation of the records into a single 

database, and addition of new data such as elevation. The distribution of HER and NMRW records in 

the Dysynni valley was more concentrated in sloped and upland areas, with relatively little coverage 

on the valley floor.  

Archive research provided a plentiful source of information (see section 5.2.2). The National Archives 

held several maps and documents relating to land-use and management during the 20th century, 

which provided a useful back-drop for understanding the current issues, such as flooding and 

waterlogging, faced by land-owners in the Dysynni valley (see Table 5.3). The archives in NLW held 

older maps of the study area, including those displaying land divisions, and 19th-century plans for 

new proposed train lines and viaducts (Table 5.4). These detailed plans for a new railway line across 

the Dyfi estuary were drawn up in 1865, the same year that the Talyllyn railway opened, which 

carried slate from Abergynolwyn to the standard-gauge railway at Tywyn. These sources indicate the 

importance of the study area during the industrial period for quarrying and trade with other regions, 

and the rapid development of the railway, as the railway line through Tywyn was only built in 1863 

(Quick 2012).  

Objective 1b: Use aerial photography and geophysical surveys to enrich the archaeological record of 

the Dysynni valley 

Additional archaeological research was required in the Dysynni valley to supplement the existing 

database and archive records, and ensure that the landscape characterisation would be based on as 

much information as possible. Excavation was not used as a method of archaeological research, as 

the focus of the study is on the historic landscape and its character, which are broader themes than 

can be addressed by excavating single features. Instead, aerial photography was used as a way to 

analyse large swathes of the study area and identify any cropmarks that may indicate historic or 

prehistoric land-use. Features identified as cropmarks in aerial photographs stretched from the 

coastline to near Castell y Bere, 12km inland, but were mainly located in low-lying areas along the 

valley floor. This finding indicates that the distribution of HER and NMRW records is a result of more 

archaeological survey and superior preservation in upland areas, rather than a lack of human activity 

in the lowlands in the past. The different level of preservation may be due to both environmental 

factors, such as increased flooding on the valley floor, and land-use factors, such as less intensive 

farming practices and greater public access to land in the upland areas.  
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The large number of previously-unknown cropmarks identified indicates a knowledge gap in the 

study area regarding land-use prior to the 18th and 19th century drainage schemes. It is not currently 

clear how long the lowlands of the Dysynni valley were uncultivable wetland, or whether they may 

have been occupied at some point previously. 

Geophysical surveys were used in some areas to deepen knowledge about the cropmarks and test 

adjacent areas where cropmarks were not visible. In the fields surveyed, the majority of cropmarks 

identified were revealed as subterranean features by magnetometry and/or resistivity. In some 

places, additional features were revealed that had not been visible as cropmarks in the aerial 

photographs. The various shapes of the cropmarks and geophysical features in close proximity to 

one another, including circular, square, linear and curvilinear, with several instances of features 

intersecting, suggests that these areas were used throughout different periods in history and hold 

rich archaeological information spanning several time periods from at least the Bronze Age to the 

early medieval period. Again, this indicates that there is the potential for further archaeological 

research into the Dysynni lowlands. 

Objective 1c: Use Historic Landscape Characterisation to characterise the historic landscape of the 

Dysynni valley. 

A review of HLC theory and methods provided a basis for applying HLC to the study area, and helped 

to identify the approach that would be most suitable (section 6.3). Although HLC had already been 

carried out in the Dysynni valley by GAT (see section 6.2), the method of characterisation used in 

Welsh HLC projects is much more specific, and each polygon is defined as a unique LCA. Research 

into English methods, such as those used in the Cornwall HLC (see Herring 1998), indicated that the 

thematic approach used, in which areas of the same LCA can be spread across the landscape, was 

more appropriate for the purposes of the thesis as a whole. The decision was made to allow the LCA 

polygons to overlap in the HLC, as in many areas the landscape displays features of more than one 

period or more than one character type. Allowing overlap between LCAs meant that the HLC 

represents the multiplicity of land-use over time, and does not exclude one type of character in 

favour of any other in any area.  

The research undertaken to satisfy research objectives 1a and 1b fed into the HLC, as the 

information gained from archaeological databases, archive research, aerial photographs, and 

geophysical surveys informed the creation and location of different LCAs. When applied to the 

Dysynni valley, the HLC revealed the distribution of different types of current and historic land-use. 

The results indicated that the upland and sloped areas of the valley are dominated by older features, 

such as those related to post-medieval extractive industries and farming, prehistoric activity, and 
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pockets of ancient woodland. In contrast, the valley floor is mainly characterised by more modern 

features such as regular field systems and drainage systems, and mobile home and caravan parks, 

while Maritime Industry, Wetland and Beach and Military Character areas are located along the 

coastline. The cropmark features identified in the lowlands for objective 1b meant that some areas 

of the valley floor could also be characterised as having ancient character.  

HLC is used to display the distribution of human activity and historic land-use decisions across a 

landscape. However, the distribution of different LCAs into defined geographical areas can also 

indicate the influence that the environment, geology and topography has had on human action and 

land-use decisions in the study area throughout history, as can be seen in the Dysynni valley (Figure 

5.13).  

The historic landscape is complex and multi-layered, and so critics of HLC may consider it a reductive 

process that over-simplifies a nuanced and dynamic system (Landscapes 2006; A Howard 2019, pers. 

comm. 25 April). However, HLC is not designed to replace in-depth archaeological study, but rather 

changes the scale of analysis by creating another framework within which more detailed research 

can be targeted. Herring (2009) states that HLC classifies cultural heritage in the landscape in the 

same way that ecological complexity is simplified using classifications such as community, biotope 

and habitat, and the way that defined time periods are applied to archaeological remains. HLC sorts 

and contains complex information in the same way, and in doing so it allows geographically larger 

patterns and trends to be studied and identified as well as more detailed studies (Herring 2009). 

Therefore, HLC is not mutually exclusive with any other type of archaeological research. 

Furthermore, landscape features that may not be included in archaeological research, such as 

hedgerows and field-boundaries, transport routes, and modern features, are all incorporated within 

HLC. Arguably, HLC is therefore more inclusive and acknowledges more complexity and time-depth 

in the historic landscape than other archaeological approaches.  

Summary of Research Aim 1 

The purpose of Research Aim 1 was to define the observational scale of this vulnerability study as 

the historic landscape as a continuity, rather than taking a discrete site focus. In order to achieve 

this, objective 1a and 1b provided a detailed understanding of the recorded and visible 

archaeological resource of the study area. This was essential for informing the LCA-type definition, 

as well as for undertaking the HLC. For objective 1c, the in-depth exploration of HLC as a landscape 

characterisation method, the different possible methodologies, and its various uses, allowed the 

most suitable approach for the Dysynni valley and the Landscape Vulnerability Framework to be 

identified. The methods chosen could easily be applied to another historic landscape, although the 
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LCA-types used may require some alteration. This is a simple process, and the definition of LCA-types 

unique to the study area is common across most HLC projects reviewed. One of the main aims was 

to have enough LCA-types to indicate trends and patterns of land-use and represent some of the 

complexity of the study area, while having few enough to make it clear and understandable, and 

feasible for use in a vulnerability assessment (Research Aim 2).  

9.3.2 Research Aim 2: develop a landscape-level archaeology vulnerability assessment 

methodology 

Objective 2a: Determine the potential climatic changes in the Dysynni valley in the 21st century based 

on the results of a variety of climate models 

An initial literature review of available climate model results, for instance from the UKCP18 project 

IPCC AR5 projections, gave an insight into the plurality of potential future climatic and weather 

conditions (see Figure 2.2). An online user interface run by the Met Office provided UKCP18 

projections at a higher spatial resolution for some variables, such as change in air temperature, 

humidity, cloud cover, precipitation rate, and wind speed (Met Office 2018). The terrestrial variable 

data is available as raw data, maps, plume plots, probability density functions and joint probability 

plots, although maps and plume plots were used for analysing data for this thesis (See Figures 6.2-

6.5). 

Although there is variation in the results of different climate models and for different scenarios, 

most projections for the study area and for western Britain follow the same general trends. 

Temperature rise is projected across all seasons, although the increase in average and daily 

maximum temperature will be greater in the summer than winter. Rainfall, an important variable for 

impacts such as drought, flooding and inland erosion, is projected to increase in the winter and 

decrease during the summer, although the rain that does fall will be in more intense, high 

magnitude events. This greatly increases the risk of flash-flooding and erosion, as drier soils are 

more vulnerable to intense rainfall events (Rothwell et al. 2005). Finally, both mean sea level and 

high water levels are projected to increase. As well as meeting objective 2a, the findings of this 

research were used to inform the VI developed as part of objective 2b.  

Objective 2b: Develop a vulnerability index for measuring and quantifying the vulnerability of historic 

landscapes, informed by the strengths and limitations of other archaeology vulnerability assessments 

The literature on vulnerability indices in archaeology revealed several trends that are followed 

across the majority of approaches, namely a focus on ‘sites’ as the object of study. This does not 

align with the overall conceptual framework of this research, as outlined in Chapter 3, as it does not 

consider the historic landscape or different spatial scales of the archaeological resource. To address 
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this, the VI methodology developed in Chapter 6 used the HLC LCAs the focal level. Another trend 

identified was a lack of recognition of the change to the threat to archaeology in the near future as a 

result of climate change. The majority of studies only considered past and current environmental 

conditions, rendering the results out-of-date in the near future. This highlighted the importance of a 

VI not only for the historic landscape, but also for addressing the changing threat to the 

archaeological resource. The climate change projections collated in section 7.3 were therefore used 

for establishing variables in the landscape-scale VI.    

The vulnerability indices studied used various different scoring methods, so a range of approaches 

informed the final VI methodology developed for objective 2b, including two separate equations for 

different spatial levels (influenced by Reeder-Myers 2015). This allowed the influence of individual 

features on the overall historic landscape character to be considered, while keeping LCAs as the focal 

level.  

Objective 2c: Test the methodology developed in 2b by applying the vulnerability assessment to the 

Historic Landscape Characterisation output for the Dysynni valley (objective 1c), to identify any 

weaknesses in the methodology developed 

A logistical and technological test carried out in the Fenlands was undertaken to identify any 

methodological or technological issues that could affect data collection in the Dysynni valley. The 

main implication from this test was that HER and NMRW location data is inaccurate, a critical 

consideration when allotting the amount of time to locate sites during the fieldwork. 

The main fieldwork for Stage 1 of the VI, which ground-truthed the HER and NMRW data in the study 

area, allowed the inclusion of additional features into the VI. This made the results more accurate 

and reliable. Following the application of Stage 2 of the VI to the Dysynni valley, the overall results 

indicate that LCAs in low-lying and coastal areas are most at risk from the impacts of climate change. 

However, the best way to classify and display the results was difficult to establish. A review of other 

VI studies revealed that a wide range of different methods can be used to classify results, the choice 

of which has an impact on the way the results may be perceived and used. This highlighted the 

importance of transparency when visually displaying VI results, for instance on a map. 

Summary of Research Aim 2  

The development of a historic landscape-focussed vulnerability index was the most important 

element of the Landscape Vulnerability Framework in this study in that it is a unique and novel 

contribution to the field of archaeological vulnerability. A similar approach did not exist before, as all 

other studies using this type of vulnerability assessment were focussing on sites independently. The 

VI created to satisfy Research Aim 2 can be applied to any coastal landscape as part of the Landscape 
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Vulnerability Framework, as evidenced by its application to the Dysynni valley. The methodology 

would also be suitable for applying to an inland landscape, as was trialled in the logistical and 

technological test, if some of the variables (e.g. Proximity to eroding shoreline) were removed or 

changed.  

9.3.3 Research Aim 3: establish a way to identify the most appropriate approach(es) 

for sustainably managing the coastal historic landscape in the face of climate change 

Objective 3a: Identify, through literature research, a sustainability assessment approach that could be 

used in the Landscape Vulnerability Framework 

A literature review identified many methods that are used to assess the sustainability of different 

types of systems and processes. Some of these methods translate all factors (economic, 

environmental, social) into the same metric to be compared, for instance ecological footprint 

analysis measures the land area that would be required to create a product or process and deal with 

the outputs. Similarly, cost-benefit analysis translates all impacts and outcomes of a project into 

monetary terms, so that the net benefits can be easily calculated. A limitation of both these 

approaches is that they assume that ecological, social and cultural values can be easily measured 

and quantified in economic or land-area terms. This neglects the intangible, immeasurable value 

associated with some elements of the historic or natural landscape. This type of approach can also 

only support weak sustainability, as it allows one type of value or capital (e.g. cultural) to be 

substituted for another type of capital (e.g. economic), as though they were interchangeable. This 

type of approach was not considered suitable for the Landscape Vulnerability Framework as the 

concepts that underpin it, such as sustainability and the historic landscape, are based on the idea 

that all cultural and natural elements of the landscape are valuable, and have intangible value that 

cannot be easily quantified alongside economics.  

Another requirement for the Landscape Vulnerability Framework sustainability assessment was the 

recognition that there would be several conflicting objectives that would have to be included and 

compared for each alternative. MCDA approaches were therefore considered most suitable as they 

can combine various qualitative and quantitative criteria and several objectives, and can be easily 

altered to suit specific contexts (Giove et al. 2010). This is particularly useful for the Landscape 

Vulnerability Framework, the purpose of which is to be applicable to any landscape, and therefore 

any context. Of the MCDA approaches reviewed, the MAVT approach was considered the most 

suitable, as it normalises criteria scores onto a common scale for easy comparison, and is most 

suitable when there are defined alternatives to be evaluated based on conflicting objectives (Dutta 

and Hussain 2009; Ferretti et al. 2014). MAVT sustainability assessments do not require the 
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substitution or translation of natural or cultural values into economic metrics. Furthermore, to avoid 

the trap of weak sustainability, the MAVT methodology chosen for this thesis was based on that by 

Giove et al. (2010), which divided variables into different categories (environmental, economic, 

socio-cultural). This meant that there was transparency around the scores for different categories, 

so alternatives could be compared on their environmental or socio-cultural sustainability, as well as 

on the overall score.  

Objective 3b: Review the current coastal and flood-risk management approaches in the Dysynni valley, 

and research innovative sustainable alternatives 

In order to develop alternatives that could be compared in the MAVT sustainability assessment, it 

was necessary to establish the current coastal and flood-risk management policy in the study area, 

as defined in the SMP2 documents (section 8.3; Guthrie and Clipsham 2011; Earlie and Brunner 

2012; Earlie et al. 2012a,b,c,d). A review of existing defence structures and the most recent coastal 

defence scheme also determined the types of defence in use, and the costs that are currently 

acceptable on the Dysynni coastline.  

To test the suitability of the MAVT methodology for the comparison of different management 

options, an ‘Innovative Sustainable’ (IS) alternative to the SMP2 policy plan was developed. A 

literature review of sustainable coastal and flood-risk management theory and methods identified 

two alternative tools, floodplain reconnection and a sand engine, which could feasibly be employed 

in the study area (section 8.4). These were combined to form the IS alternative that covered both 

coastal and estuarine areas, as the SMP2 policy plan does.  

Objective 3c: Test the suitability of the sustainability assessment methodology (objective 3a) by 

applying it to the output generated in Research Aim 2 and comparing the current management policy 

in the Dysynni valley with potential alternatives identified in Objective 3b.  

The two options identified for managing the Dysynni valley (SMP2 and IS alternatives) were 

compared using the MAVT sustainability assessment established in section 8.2, with reference to the 

LCA vulnerability scores for the study area (see section 7.5). The scoring system was easy to 

understand, and allowed for both negative and positive impacts to be included. The categorisation 

of variables into different criteria (economic, environmental, socio-cultural and functionality) meant 

that the results were displayed clearly, and the strengths and weaknesses of each option were 

evident, as well as the overall score. Transparency is important in policy decision-making, so an 

approach like this that clearly breaks down each constituent score, would provide explanation and 

clarity for stakeholders.  
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A significant amount of literature research was required to undertake the MAVT assessment, for 

instance into the costing and environmental impact based on similar projects. The difficulty in 

finding sufficient information for some attributes highlighted the need for expert and stakeholder 

consultation if this Landscape Vulnerability Framework is applied to other landscapes and used to 

inform management decision-making. Consultation would increase the time required and cost of 

using this Landscape Vulnerability Framework, however parameters such as ‘Impact on carbon 

emissions’ or ‘Impact on local economy’ require specific models and expert understanding to be 

reliable. Furthermore, it is impossible for an external researcher or even a heritage ‘professional’ to 

fully understand the local cultural significance of certain elements of the landscape, so local 

consultation would also be advised.  

Summary of Research Aim 3 

The purpose of Research Aim 3 was to make the Landscape Vulnerability Framework into a useful 

tool that could directly inform policy and decision-making, and specifically incorporate sustainability 

in its outputs, rather than just identifying vulnerability. Choosing MAVT as the sustainability 

assessment approach allowed both qualitative and quantitative information to be included, and 

removed the need for substitution or translation of one type of value for another. It is a flexible tool 

within the framework, so the parameters and variables used for the Dysynni valley could be altered 

should the context of another landscape require it.  

9.3.4 Overall Research Question: How can the vulnerability of cultural heritage to 

future climate change be assessed and managed at a landscape scale?. 

In answer to the research question posed for this thesis, the outputs of the three research aims 

discussed here are combined to create a Landscape Vulnerability Framework, which provides a 

methodology for assessing and addressing the vulnerability of historic landscapes to climate change. 

The three-part framework, as visualised in Figure 9.2, first characterises the historic landscape based 

on available archaeological, historical and cartographic data. The second part provides a 

vulnerability assessment method that considers the vulnerability of LCAs defined in the first part, 

rather than discrete sites. Finally, the third part assesses management alternatives using a 

sustainability assessment that takes into account the historic landscape and the vulnerability 

identified in the second part. This framework can therefore be used to inform the decision-making 

process for historic landscapes from the initial conceptualisation of a landscape as a continuous, 

dynamic artefact, through to the development and selection of management alternatives. 
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Figure 9.2. Visualisation of the three-part framework created in this research 
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9.4 Implications of Research Findings  

9.4.1 Research output 

Within this research, a three-step Landscape Vulnerability Framework was developed and applied to 

a case study, to address the limitations of current archaeological vulnerability assessments and site-

based heritage management. Each step of the framework was designed to be flexible and adaptable 

to different landscape conditions, to facilitate its application to other landscapes. Firstly, 

characterisation using HLC can be informed by a range of different historical, archaeological and 

cartographic data sources, so can be undertaken in different landscapes in which different types of 

survey have been undertaken. Secondly, the variables used in the two-stage VI were general and 

could be applied to any other coastal landscape. This would allow comparison of historic landscape 

vulnerability between landscapes. For use in an inland landscape, the VI variables could easily be 

changed or adjusted based on the most important climate change impacts in that context. Finally, 

the MAVT methodology adapted for this framework uses variables and parameters that are 

universal and applicable to any management approaches for coastal and inland landscapes. It could 

also be easily adjusted to include additional variables or parameters if they were deemed 

contextually important.  Applying the Landscape Vulnerability Framework to the Dysynni valley 

generated examples of the results from each step, to illustrate how the output of each step would 

be used to inform the subsequent step.  

9.4.2 Research contribution to the field  

Typically, research into (and management of) archaeological vulnerability to climate change and 

other environmental processes has taken a site-focussed perspective (Fitzpatrick et al. 2006; 

Westley et al. 2011; Chadwick-Moore 2014; Van Rensslelaer 2014; Reeder-Myers 2015). This is 

partly due to the prevalence of site-based and list-based management and legislation, such as Listed 

Buildings, HER, NMR, Scheduled Ancient Monuments, and even World Heritage Sites (King 2006). 

Characterisation of historic landscapes exists in various forms in the UK, and Fairclough (2006b) 

stated that HLC should be used as a management tool with sustainability in mind. However, 

Fairclough (2006b) only mentions the use of characterisation for management in terms of 

development risk, rather than environmental and climatic changes. 

A unique example of landscape characterisation methods being used in relation to climate change is 

by Natural Resources Wales (Berry et al. 2019). This report identified the impacts of climate change 

on broad landscape types as defined in the LANDMAP Visual and Sensory dataset. LANDMAP is a 

resource of landscape characteristics, which contains five spatial datasets: Geological Landscape, 

Landscape Habitats, Visual and Sensory, Historic Landscape, and Cultural Landscape. The Visual and 
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Sensory dataset characterises the physical attributes of the landscape as it is perceived through our 

senses, primarily visually (Lle 2019). Therefore, while taking a landscape-level perspective, Berry et 

al. (2019) focus on the impacts of climate change to the visual landscape, rather than considering 

historical, cultural, spiritual meaning or character in the landscape. Their research is also at a larger 

spatial extent; the landscapes classified are whole counties, and the character areas (here defined as 

Landscape Types) cover several thousand to hundreds of thousands of hectares. This makes it more 

difficult to understand the subtle and unique historic character of different areas of a landscape, and 

how climate change may differently affect areas in close proximity. In contrast, HLC allows various 

sources (including stakeholder consultation) to come together to inform the output, and therefore 

may include elements that would not be considered if only visual elements of the landscape were 

assessed. Finally, the report by Berry et al. (2019) explores only the potential level of impact of 

climate change on different character areas, and includes no consideration of how the impact data 

could or should be used, other than to say it could inform policy. In contrast, the Landscape 

Vulnerability Framework in this study explicitly included a methodology for incorporating landscape-

level vulnerability data into policy decision-making (see Chapter 7). The study by Berry et al. (2019) 

does, however, highlight the increasing recognition that landscape is a resource in itself, rather than 

just a canvas upon which natural and cultural resources are placed. 

Prior to this research, there had been little consideration of historic character and historic landscape 

in archaeological vulnerability studies relating to climate change (although some studies have 

addressed the potential impact of development on historic character (see Lambrick et al. 2013).This 

study represents a conceptual and methodological bridge between cultural heritage/archaeology 

vulnerability studies, and the increasingly landscape-focussed approach of natural and 

environmental heritage organisations (e.g. Berry et al. 2019). The techniques and approaches taken 

throughout were still informed by archaeological approaches, as the object of the study (namely 

archaeology and cultural heritage) has different characteristics that influence its vulnerability 

compared to the natural landscape. However, the conceptual framework of this research rejected 

the typical list-based approach to heritage management (see King 2006), and instead made the 

object of the study spatially continuous areas defined by their historic character. It also structured 

the object of study within a hierarchical framework that acknowledged the interaction and 

interdependence between and within spatial levels, rather than treating different features or areas 

as discrete. This addressed the scale mismatch identified in Chapter 6, between the scale of the 

impacts of climate change and mainstream management of those impacts on the one hand, and the 

scale of archaeological vulnerability assessments on the other.  
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The pursuit of landscape-level assessment and management in this thesis is not intended to suggest 

that the study and management of archaeological sites, monuments and historic buildings is less 

important or valuable than taking a landscape perspective. Much archaeological and scientific data 

crucial for understanding past societies can be found at the site level, and monuments can hold as 

much cultural significance as historic landscapes (Fairclough 2006a). A Landscape Vulnerability 

Framework can be used alongside, rather than instead of, site-focussed research.  

9.4.3 Implications for policy and practice:  

Landscape Vulnerability Framework as a transferable tool 

Applying the Landscape Vulnerability Framework to the Dysynni valley throughout this study 

enabled the development of the framework into a tool that could feasibly be applied to other 

landscapes. It also identified limitations, or ways in which the framework could be more robust, for 

instance through stakeholder and expert consultation during the sustainability assessment. Testing 

out the methods therefore informs future applications of the framework, which will be able to avoid 

the weaknesses identified.  

Changing the observational scale of heritage management 

In developing a methodology to assess the vulnerability of archaeology on a broader (landscape) 

scale, this research aims to shift the focus of archaeological vulnerability research and management 

towards the wider impact on cultural heritage and historic landscape, rather than looking only at 

sites out of context. This Landscape Vulnerability Framework allows consideration of a broader 

perspective on cultural heritage management, to identify the key areas of importance to local 

heritage (Landorf 2009). In terms of policy implications, the information generated from this type of 

approach is useful for informing a holistic approach to heritage management. This is because it 

considers the cultural heritage of the landscape as predominantly informed by the character of the 

historic landscape, and both the tangible and intangible heritage features within it, rather than just 

the archaeological sites. Protecting only the known or most ‘valuable’ archaeological features in a 

landscape ignores the historicity of the landscape itself, and the liminal spaces between sites.  

Integrating heritage management with other landscape-scale management 

 With an increasing threat to coastal archaeology from the impacts of climate change across Britain 

(and indeed worldwide), it is unlikely that heritage organisations have the resources or budget to 

protect all archaeological sites at risk. Moreover, historic landscapes occupy the same geographical 

space as natural, socio-cultural and economic landscapes. Employing a patch-matrix approach to 

vulnerability allows the outcomes to be compared and integrated with other landscape-scale 

assessments, such as those relating to ecology, habitat management, geology, land use, and 
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environmental designations. This is useful as the main focus of climate change impact and 

adaptation reports are social, economic and ecological systems, while archaeology and heritage get 

little mention (e.g. IPCC 2014a, b; ASC 2016; Defra 2018). The Landscape Vulnerability Framework 

developed in this study could allow archaeology and heritage to be more easily integrated into 

mainstream climate change adaptation policy plans 

Practical application of the Landscape Vulnerability Framework 

As the Landscape Vulnerability Framework is transferable and applicable to other landscapes, public 

sector organisations such as Cadw and Historic England could utilise it as a tool for creating regional 

or nationwide historic landscape vulnerability maps. It could also be applied to the coastal landscape 

at each SMP Policy Development Zone during the next round of SMP policy development, in order to 

test the sustainability of different coastal and flood-risk management alternatives with regards to 

the historic landscape.  

9.5 Suggestions for Future Research 

A number of potential future directions have emerged from the methodology and findings of this 

thesis, some of which are explored in this section.  

9.5.1 Inclusion of stakeholder and expert consultation  

A main limitation identified in the MAVT sustainability assessment, the third step of the Landscape 

Vulnerability Framework, was that expert and stakeholder consultation would be a necessary 

addition to the assessment process. In particular, it was not possible to determine economic 

appraisals, carbon fluxes, and local cultural values placed on LCAs through literature research alone.  

Engaging stakeholders, experts and locals during the MAVT assessment would make the results 

more reliable and context-specific, and therefore improve the usability of the MAVT results.  

The MAVT section of the Landscape Vulnerability Framework could therefore be altered to formally 

incorporate one or more consultation and participation methods, such as focus groups, participatory 

budgeting, opinion-polls, online questionnaires, and citizens’ juries (Andersson 2011). The levels of 

public participation developed by Arnstein (1969) range from Manipulation and Therapy (non-

participation) through Consultation (tokenism) to Partnership, Delegated power, and Citizen control 

(Citizen power) (see Figure 9.3). In order for the Landscape Vulnerability Framework to maintain 

sustainability as a core value, participation must support social sustainability through 

empowerment, inclusion and social learning (Geczi 2007; Garmendia and Stagl 2010). Public 

participation in development and policy design has been shown to increase the level of acceptance 

(e.g. Anderson et al. 2012).  
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HLC can also be carried out using public participation and consultation, as characterisation is 

essentially determining how the landscape appears and is perceived by those within it (Dalglish and 

Leslie 2016). Incorporating public perceptions and oral histories about the landscape from local 

people could make the resulting HLC more unique and culturally meaningful for those living and 

working within it (Historic England 2019). Future research could incorporate public participation 

methods within both Part 1 and Part 3 of the Landscape Vulnerability Framework.  

 

 

9.5.2 Determine the transferability of the Landscape Vulnerability Framework 

The Landscape Vulnerability Framework was designed specifically to be transferable across different 

landscapes, however it was only trialled in one study area. Applying the framework to a different 

coastal landscape within the UK would help determine how useful and useable it could be to UK 

heritage management policy. Additionally, research applying the framework to a landscape in a 

different environmental, economic and/or cultural context, such as in a developing country, an 

urban landscape, or a permafrost environment would test how easily adaptable it really is to 

different conditions.  

9.5.3 Adapt the Landscape Vulnerability Framework for different types of landscape 

As an extension of 9.5.2, different versions of the Landscape Vulnerability Framework could be 

developed for very different landscapes (for instance urban landscapes, desert/arid landscapes). This 

could involve including different variables in the VI depending on what the most significant threats 

Figure 9.3. A Ladder of Citizen Participation, developed by Arnstein (1969) 



271 
 

to the historic landscape are in different areas. The MAVT assessment could also be altered to 

include different parameters, or weight some parameters over others, based on the economic and 

environmental context of the landscape. Developing slightly different versions of the Landscape 

Vulnerability Framework would mean that it would not need adapting each time it was applied to a 

landscape with a different context. As a result, the adapted Landscape Vulnerability Framework 

results could still be compared between landscapes, which would be more difficult if it were slightly 

changed for each iteration by the different practitioners that were carrying it out. 

9.5.4 Consideration of the environmental impact of archaeological conservation 

Although not directly related to the Landscape Vulnerability Framework, this research highlighted a 

significant knowledge gap in archaeology, namely the ecological and environmental impact of 

archaeological conservation and management; no literature on this subject could be found. In 

literature on coastal and maritime archaeological management techniques, methods for 

maintenance of submerged sites discussed by some authors (e.g. Bruno et al. 2013) include 

chiselling off organisms like bivalves from archaeological remains. Within this article there was no 

acknowledgement of the potential negative ecological impacts that this could have, for instance 

whether the species may be endangered, or the effect that it could have on the wider ecosystem 

and food chain. There was also no available literature that recognised the potential impacts of 

archaeological excavations on terrestrial habitats and ecosystems, such as disrupting ground nesting 

birds or small mammal burrows. Reburial, and the introduction of new materials such as sand and 

geo-textiles into subterranean environments (e.g. Perez Mejia 2014; Stewart 2013), could have 

dramatic impacts on soil ecosystems and nutrient flows. 

Archaeology has been very active in encouraging social sustainability through participation (for 

instance through community archaeology). Furthermore, there have been significant efforts by 

organisations such as English Heritage/Historic England and National Trust to make historic buildings 

more energy efficient to reduce their carbon footprint (National Trust 2015b; Hermann 2017; 

Historic England 2018). However, archaeology seems oblivious to the physical impact that it can 

have on the natural world (see section 8.2). Future research should address the environmental and 

ecological impact of archaeological practice, in order to improve the sustainability of archaeology as 

an industry. 

9.6 Conclusion 

The Landscape Vulnerability Framework developed in this research is a useful tool for informing 

proactive coastal heritage and landscape decision-making for a future affected by climate change. 
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Although the potential impacts of climate change on the archaeological resource are beginning to be 

explored, there remains a disconnect between addressing the risks to archaeological sites and the 

mainstream approaches to climate change adaptation. The framework developed here goes some 

way towards addressing this disconnect, by altering the observational scale of archaeological 

vulnerability assessment and management so that it can be more easily integrated with, and 

compared to, landscape-scale approaches in other disciplines.  

The methodologies developed for each part of the framework were informed by extensive research 

into common approaches, limitations, and knowledge gaps in the corresponding subject areas. Using 

a case study to trial and exemplify the chosen methodologies provided an exemplar for informing 

future applications of the framework, and allowed limitations to be identified.  As a framework 

rather than a prescriptive model, future users are able to fit the methods to suit the context of their 

study area and available resources, for instance by using different types of data sources during the 

characterisation process, or altering some of the sustainability assessment parameters to account 

for specific local ecological conditions. The aim of this study was to create a framework that is 

flexible rather than restrictive in its approach, so that it is applicable to a range of landscapes. Public, 

expert and stakeholder participation was identified as a key limitation of the methods as 

demonstrated in the Dysynni valley case study. The research strongly indicates that, when applying 

this framework, heritage and landscape managers should include participation within both the HLC 

and MAVT processes, in order to generate more inclusive, robust, and accurate results.  

Climate change will affect every aspect of the human and natural world, including economies, 

agricultural ecosystems, and flooding regimes. We have an obligation to reduce our carbon 

emissions in order to mitigate the most extreme potential damage, however the warming trends for 

the next century at least have already been set in motion (NASA 2014). The expensive and life-

altering impacts on systems mentioned above are often given priority for research, management 

and adaptation, at the expense of less ‘vital’ resources. The archaeological record is finite, non-

renewable, and essential for our understanding of the present and future, as well as the past. 

However, there are great challenges to calculating and addressing the threat of climate change to 

archaeology, such as undiscovered archaeological resources, unknown preservation environments, 

and intangible or unquantifiable heritage values.  Widening the scope of climate change vulnerability 

assessments and management allows the intangible cultural elements of the landscape to be 

acknowledged, such as senses of place, traditional economies and lifeways, and the connection 

between communities and their natural environs. Importantly, developing a method that can be 

integrated with climate impact and adaptation plans from other sectors can allow archaeological 

management to become complementary with ecological, environmental and social management. 
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Appendix 1: Study area background and 
Landscape Analysis 
 

Table Ap1.1: Archaeological records and features mentioned in Chapter 4, in order of mention 

Table Ap1.2: Databases of archaeological sites and features provided by the Welsh heritage 

agencies, and the new database of compiled information 

Table Ap1.3: Changes made to the labelling system used in the new database, to facilitate searches 

Table Ap1.4: Results of archive research in The National Archives 

Table Ap1.5: Results of archive research in The National Library of Wales 

Table Ap1.6: Description of cropmark features discovered prior to this research, for instance by 

RCAHMW. Vectorised cropmark features are displayed in blue. Crown copyright and database right 

2019 Ordnance Survey 100025252 

Table Ap1.7: Description of cropmark and geophysical features discovered during this research. 

Vectorised cropmark features are displayed in blue, and geophysical survey features are displayed in 

pink. Grey polygons indicate the location of geophysical surveys. Crown copyright 

Figure Ap1.1: Location of the cropmarks (dark blue) and geophysical features (pink) described in 

Tables Ap1.6 and Ap1.7. 
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Name Identifier Type Form Description from 
source 

Source Location 
(x,y) 

Mesolithic (10,000 BC – 4,000 BC)  

Flint Pick PRN 
30899 

Findsp
ot 

Find only A flint pick from an 
unspecified location 
in Borth Bog. 

HER 260000, 
292000 

Flint Flakes PRN 
30907 

Findsp
ot 

Find only Many flints retrieved 
by a local 
fieldworker (R Evans) 
and reported to staff 
at the RCAHMW. 
There are no details 
of the circumstances 
of recovery, 
nor any accurate 
location details of 
the findspot(s). NAP 
2004. Toby Driver in 
his list of finds from 
the submerged 
forest not on the 
SMR, 
mentions 'Many 
flints' found on the 
foreshore at Borth-
Ynys Las by 
Richard Evans.  

HER 260000, 
292000 

Antler Tool PRN 
30894 

Findsp
ot 

Finds Findspot for a 
composite tool of 
antler, an axe or 
edge blade or sleeve 
for 
a flint blade or pick. 
Found on beach 
between Borth and 
Ynys-las. GW. 
1995. 

HER 260000, 
292000 

Neolithic (4,000 BC – 2,600 BC)  

Hearth, Ynyslas 
Beach 

NPRN 
506498 

Hearth Buried 
Features 

The hearth was 
discovered amongst 
peat deposits at 
Ynyslas and 
consisted primarily 
of charcoal and fire-
cracked stones. 

NMRW 260450, 
292850 

Table Ap1.1: Archaeological records and features mentioned in Chapter 4, in order of mention 
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Samples taken from 
the hearth were 
sieved for food 
debris, but no 
remains were 
identified. The 
scientific dating of 
the associated peats 
suggested a date of 
approximately 4,000 
BP. 

Two Neolithic 
Stone Axes, 
Findspot, Celmi 
Farm, nr Tywyn 

PRN 
4808 

Findsp
ot 

Find only Neolithic stone axe 
found in September 
1871 'in putting 
down a wall fence 
close to the house at 
Celmi. 

HER 259700, 
304700 

Bronze Age (2,600 BC – 800 BC)  

Waun Fach 
Stone 

NPRN 
302715 

Standi
ng 
Stone 

Structure Standing stone at 
Waun fach; 5ft 8ins 
high; on gently rising 
ground. The standing 
stone is 1.8m high, 
0.8m wide and 0.6m 
thick,  and packing 
stones are clearly 
visible on the N side.  

NMRW 259440, 
304870 

Clwt y Menhir 
Standing Stone 

PRN 
4938 

Standi
ng 
Stone 

Structure Standing stone 6 
foot high in use as a 
gatepost on Cae'r 
Berllan farm. It 
formerly stood on a 
piece of open 
ground called Clwt y 
Maenhir. Visited July 
1914. 

HER 266220, 
307970 

Bronze Axes 
findspot, Cefn 
Crib 

PRN 
4328 

Findsp
ot 

Find only Two looped and one 
unlooped bronze 
axes found about 
1916 'between 
Aberdovey and 
Machynlleth' 
[centred SN 6899]. 
The looped axes are 
dated to about 1000-
800 BC. Now in 
Grosevnor Museum 
Chester Acc. No. 
CC/278.1916.  

HER 268000, 
299000 
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Bronze Looped 
Axe Findspot, 
Dysynni 

PRN 
2982 

Findsp
ot 

Find Only Bronze looped axe 
found in 1873 near 
Hen Siop (SH 
601063) dated to 
C9th BC. Probable 
Irish type. In NMW.  

HER 260100, 
306300 

Bronze Tool 
(Axe), Findpot, 
Coed y Graig 

PRN 
3910 

Findsp
ot 

Find Only Socketed axe, found 
in hoard with bronze 
palstave PRN 3908.  

HER 264200, 
307800 

Bronze 
Spearhead, 
Findspot, 
Tywyn 
Seafront 

PRN 
4813 

Findsp
ot 

Find Only N/A HER 257700, 
300950 

Bronze 
Spearhead, 
Findspot, 
Tywyn 
Seafront 

PRN 
4816 

Findsp
ot 

Find Only N/A HER 257900, 
300200 

Craig yr Aderyn 
Cairn 

NPRN 
407753 

Cairn; 
Enclos
ure 

Structure Large stone cairn 
constructed of scree; 
with central robber 
pit; which lies some 
300m south-east of 
the prominent 
hillfort of Craig-yr-
Aderyn and stands at 
an altitude of 258m.  

NMRW 264700, 
306570 

Urn Burials 
Findspot, 
Pantyneudd 

PRN 
4805 

Finds  Several Middle 
Bronze Age 
cremations were 
found c.1884 during 
removal of a hedge 
in the garden of 
Pantyneuadd; 
Tywyn. Each urn 
containing a 
cremation had a 
Pygmy Cup inverted 
at its mouth. (Bowen 
& Gresham; 1967) 

HER 259380, 
300570 

Cremation Urn 
Findspot, 
Tywyn 
Seafront  

PRN 
4806 

  An overhanging rim 
urn with cremation 
found 'near Tywyn'; 
of Bronze Age date 
and now in the 
NMW. (Bowen & 
Gresham; 1967) 

HER 258000, 
300000 

Iron Age (800 BC – AD 43)  

Tal y Garreg 
Hillfort: 

NPRN 
302649 

Hillfort Earthwor
k 

Llechrwyd hillfort is a 
bow-shaped 

NMRW 257235, 
303165 
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Llechrwyd 
Hillfort 

enclosure; about 
130m north-east to 
south-west by up to 
45m; occupying a 
prominent ridge-end 
position. On the 
south-east it rests on 
steep natural slopes.  

Tal y Garreg 
Hillfort  

NPRN 
301736 

Hillfort Earthwor
k 

Tal-y-Gareg hillfort is 
an earthwork 
enclosure complex; 
of uncertain form 
and date; occupying 
a ridge-top position. 
A subcircular banked 
enclosure/feature 
about 22m in 
diameter is ditched 
on the south-west; 
where an additional 
bank and ditch cuts 
across it.  

NMRW 257415, 
303585 

Craig yr Aderyn 
Hillfort  

NPRN 
302862 

Hillfort Earthwor
k 

Craig yr Deryn - a 
promontory fort of 
two periods occupies 
a summit divided 
from the main massif 
by a 'col' 100ft 
lower. The earlier 
work consists of a 
right angle 
earthwork protecting 
the S and E sides and 
fading out where the 
ground becomes 
steep enough.  

NMRW 264513, 
306834 

Roman (AD 43 – AD 410)  

Roman coin Find no. 
672 

Findsp
ot 

Single 
coin 

Found at Borth Guest 
and 
Wells 
2007 

260900, 
289500 

Group of 
Roman coins 

Find no. 
1083 

Findsp
ot 

Group Five fourth century 
bronze coins found 
in 'beach material 
moved by a 
mechanical 
excavator' at Tywyn 
beach in 1988. 

Guest 
and 
Wells 
2007 

257600, 
300600 

Group of 
Roman coins 

Find no. 
1033 

Findsp
ot 

Group Two 
Greek/Hellenistic 

Guest 
and 

261300, 
296200 
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coins found in the 
Aberdovey area. 

Wells 
2007 

Group of 
Roman coins 

Find no. 
1061 

Findsp
ot 

Group Four coins found in 
the packing of a 
medieval well during 
clearance works 
within Castell-y-bere 
castle in 1951. The 
coins may have been 
contained in a 
mortarium, 
fragments of which 
lay near by. 

Guest 
and 
Wells 
2007 

266700, 
308500 

Hoard of 
Roman coins 

Find no. 
1077 

Findsp
ot 

Hoard An unspecified 
quantity of coins 
(five recorded) found 
on the site of Pennal 
fort, all known 
before 1693. 
'Besides the coyne 
there was found 
there a little gold 
chayne and a huge 
brass pan'. 

Guest 
and 
Wells 
2007 

270500, 
300100 

Hoard of 
Roman coins 

Find no. 
1062 

Findsp
ot 

Hoard Two (of 'some') coins 
found near Fynon 
Vawr well 'within a 
bow shot from the 
town' sometime 
before 1695. 

Guest 
and 
Wells 
2007 

272600, 
317560 

Early medieval (AD 410 – AD 1066)  

Croes Faen 
stone 

PRN 
1738 

Cross Structure The stone is a 
Scheduled Ancient 
Monument. It 
measures some 7ft 
6in in height and is 
thicker in the middle 
than at the base. In 
1914 it was noted to 
be broken at the top 
and to be leaning 
slightly. It was also 
suggested that the 
broken fragment 
may have had a cross 
incised upon it.  

HER 259680, 
301540 

Pascentius 
stone 

PRN 
4799 

Stone 
setting 

Documen
tary 

Rough pillar stone 
reported in Tywyn 
churchyard in the 
late C18th and now 
lost. Latin inscription 

HER 258820, 
300950 
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(incomplete) in one 
line reading 
vertically upwards: 
PASCENT[I] 
C5th to early C6th.  

St. Cadfans 
Inscribed 
Stone; Tywyn 
Church  

PRN 
4798 

Inscrib
ed 
Stone 

Structure St. Cadfan's stone is 
a tall; quadrangular 
pillar stone fractured 
in two pieces, of 
C7th - C9th date. At 
the top of one of the 
faces is a linear latin 
cross, measuring 
some 36cm in 
height. Both sides of 
the stone are 
inscribed with a total 
of four inscriptions, 
which are the 
earliest known 
examples of written 
Welsh and the only 
early medieval 
inscriptions (other 
than names) in Old 
Welsh 

HER 258820, 
300950 

Medieval (AD 1066 – AD 1540)  

Castell Cynfal, 
Bryn-Y-Castell 
Castle Mound 

NPRN 
302770 

Motte Earthwor
k 

Castell Cynfal is an 
isolated motte 
identified with a 
castle destroyed in 
1147 and probably 
established only a 
short time before. 
The castle mound is 
situated above a line 
of crags on the crest 
of an isolated ridge 
on the lower slopes 
of the mountains on 
the south side of the 
Dysynni vale.  
 
This is a circular 
ditched mound, 42m 
in diameter & 5.0m 
high. The rock-cut 
ditch is some 3.0m 
accross & 1.0m 
deep. The summit of 
the mound is dished, 

NMRW 261497, 
301609 
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producing an 
enclosed area about 
12.5-13.5m across 
defined by a 1.0m 
high bank. 

Castell y Bere NPRN 
93719 

Castle Ruins Castell y Bere was 
established by 
Llywelyn ab Iorwerth 
in 1221 on land 
seized from his son; 
Gruffudd. It was 
intended to secure 
Llywelyn's lordship 
and protect the 
southern periphery 
of his territory. 

NMRW 266769, 
308547 

Llanegryn 
Parish Church 
of St Egryn and 
St Mary 

NPRN 
43890 

Church Building St Mary and St 
Egryn’s Church is a 
Grade I listed 
building, and 
consists of a 
continuous nave and 
chancel, separated 
by a rood screen 
with a loft above, 
and is situated 
within a polygonal 
churchyard, which 
was extended 
eastward in 1883. 
The first known 
documentary 
reference to the 
church at Llanegryn 
dates to 1254.  

NMRW 259618, 
305786 

Talybont Castle 
Mound; 
Domen 
Ddreiniog 

NPRN 
302714 

Motte Earthwor
k 

Talybont Castle 
mound is a near 
circular mound 
identified as a 
medieval castle 
mount. Set at a 
former bridging 
point on the right 
bank of the Dysynni 
river, the mount may 
have been 
associated with a llys 
or princely court. 

NMRW 259690, 
303600 

Post-medieval (AD 1540 – AD 1901)  
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Ynysmaengwyn 
Estate 

NPRN 
54223 

Countr
y 
House 

Building 
(no 
longer 
extant) 

Ynysmaengwyn was 
a fine brick house 
rebuilt for the 
Corbett family from 
1758, with some 
earlier 18th-century 
agricultural buildings 
being retained, the 
whole forming an 
exceptionally fine 
'U'-plan group. The 
house, which had 
been left to the local 
authority, was 
neglected and 
demolished in 1964. 
The ballroom wing 
was demolished as 
late as 1989. For 
associated structures 
at Ynysymaengwyn, 
see NPRNs 41757, 
54224, 54225, 
28894, 28895 and 
265175. 

NMRW 259920, 
302300 

Dolau-Gwyn NPRN 
28341 

Countr
yside 
House 

Building Circa 1620, excellent 
Jacobean 
rubblestone, 2 
storey and attic, 
central gabled porch 
wing. Gabled left 
wing with dormer, all 
stepped, interior 
plaster ceiling, 
original stair; 1 
drawing room dated 
1656 bearing 
armorial bearings 
above fire, kitchen 
heraldic device 1628.  

NMRW 262320, 
303470 

Talyllyn 
Railway 

NPRN 
34946 

Railwa
y 

Complex Talyllyn Railway was 
opened in 1866 on a 
two foot three inch 
gauge and it was 
steam operated from 
the beginning. The 
railway runs seven 
and a quarter miles 
between Tywyn and 
Nant Gwernol, near 
Abergynolwyn. 

NMRW 258550, 
300450 
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Modern (AD 1901 – Present)  

Tywyn WW1 
Practice 
Trenches 

PRN 
58673 

Practic
e 
trench
es 

Buried 
Feature 

A system of WW1 
practice trenches; 
seen on 1940s RAF 
APs. 

HER 258006, 
300431 

Rifle Range, 
Tywyn 

PRN 
7287 

Firing 
Range 

Structure  Red-brick, concrete 
and earth shooting 
butts, target range 
and shelter that 
form part of Tywyn 
camp.  

HER 258650, 
298780 

Prisoner of 
War Camp, 
Tywyn 

PRN 
7879 

Prison
er of 
War 
Camp 

Documen
tary 

Modern HER 258500, 
309000 

Pillbox (Type 
FW3-23), 
Towyn 

NPRN 
270340 

Pillbox Building Remains of pillbox 
affected by coastal 
erosion. This consists 
of two 
compartments, the 
seaward half is 
roofed; and there is 
a single embrasure in 
each face, 5m x 4m. 
(Dutton & Gwyn; 
1996) 

NMRW 258710, 
298460 

Pillbox (Type 
FW3-23), 
Towyn 

NPRN 
270341 

Pillbox Building Remains of pillbox 
affected by coastal 
erosion.  

NMRW 258860, 
298460 

Pillbox (Type 
FW3-23), 
Towyn 

NPRN 
270342 

Pillbox Building Remains of pillbox 
affected by coastal 
erosion. Main 
chamber has open 
court yard area 
attached via which 
entry is obtained.  

NMRW 259340, 
296800 

Pillbox (Type 
FW3-23), 
Towyn 

NPRN 
270343 

Pillbox Building Remains of pillbox 
affected by coastal 
erosion. A pillbox, L-
shaped in plan, and 
with a smaller open 
compartment to the 
rear.  Iron rings are 
still visible.  (Dutton 
& Gwyn; 1996) 

NMRW 259000, 
297760 

Pillbox, Towyn NPRN 
270344 

Pillbox Building Remains of pillbox 
affected by coastal 
erosion; almost 
totally covered by 
sand. Rectangular 
plan, 5m by 4m, 

NMRW 259150, 
297290 
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entirely roofed 
except for access at 
the NE corner. 
(Dutton & Gwyn; 
1996)  

Pillbox, Towyn NPRN 
270345 

Pillbox Building Remains of pillbox 
affected by coastal 
erosion. Main 
chamber has 
entrance to the rear. 
There are 3 
embrasures.  

NMRW 2660100, 
295700 

Pillbox: (TYPE 
FW3-24), 
Fairbourne 
Anti-Invasion 
Defences 

NPRN 
270355 

Pillbox Building Type 24 pillbox, of 
brick construction, 
double skinned, with 
bricked up entrance 
and embrasures. 
Ricochet wall has 
been removed as has 
front to walls to 
create opening for 
present use as a 
beach shelter. 
Internal height 
2.12m, reinforced 
concrete roof 0.22m 
thick. Walls 440mm 
thick, of twin courses 
of brick, with 230mm 
concrete infill. The 
pillbox has been 
painted white. 

NMRW 261100, 
312130 

Pillbox: (TYPE 
FW3-24), 
Fairbourne 
Anti-Invasion 
Defences 

NPRN 
270356 

Pillbox Building Type 24 pillbox, of 
brick construction, 
double skinned. 
Internal anti-ricochet 
wall has been 
removed, exterior 
was painted white 
(probably not 
originally), but most 
of the paint now 
flaked and 
weathered.  

NMRW 261140, 
312530 

PillboxL Mos 
Ee Aa Ynyslas 

NPRN 
408400 

Pillbox Ruin An area of rubble 
including slabs of 
concrete which 
suggest the potential 
of another wartime 
installation (pillbox 
or observation 

NMRW 260550, 
292820 
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post?) now 
demolished. 

Pillbox  NPRN 
411783 

Pillbox Building Intact pillbox sited 
on shifting sands of a 
dune; with door 
protected by blast 
wall at rear. 

NMRW 259540, 
296350 

Pillbox: 
Northeast Of 
Morfa Raf 
Base, Tywyn 

NPRN 
421484 

Pillbox Documen
tary 

A unique pillbox type 
documented here. 

NMRW 258336, 
301483 

Pillbox: 
YNYSLAS 
NATURE 
RESERVE 
FIRING RANGE 

NPRN 
506532 

Pillbox Ruin RAF aerial 
photographs dating 
to 1959 show a 
pillbox in amongst 
the sand dunes. No 
remains are visible 
today except a few 
pieces of weathered 
bricks and concrete 
fragments. The 
concrete roof lies 
upside down a few 
metres away 
suggesting that the 
pillbox may have 
been blown up by 
the military after the 
end of the war.  

NMRW 260770, 
290950 

Morfa Towyn 
Airfield, Morfa 
Raf Base, 
Tywyn 

NPRN 
309967 

Airfield Complex The airfield opened 
on 8 September 
1940 and consisted 
of a grass landing 
area; Nissen and 
Maycrete huts; and 
two Besonneau 
canvas hangars. Two 
Bellman hangars and 
two Blister hangars 
were later added 
with concrete 
aprons. Most of the 
wartime buildings 
have been 
demolished and only 
parts of the concrete 
aprons remain 

NMRW 258000, 
301300 

Air Crash Site: 
UNNAMED 
AIRCRAFT, 
BORTH SANDS 

NPRN 
506393 

Air 
Crash 
Site 

Documen
tary 

Aerial photographs 
dating to 1 July 1940 
(RAF Medenham 
series) show a twin-

NMRW 260522, 
292977 
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engined aircraft on 
the beach. The 
aircraft is tail closet 
to the sand dunes 
(facing towards the 
water) and two 
items of wreckage lie 
to the south 
between the aircraft 
and the tideline.  

Air Crash Site: 
SUPERMARINE 
SPITFIRE BL518 

NPRN 
515290 

Air 
Crash 
Site 

Wreck The site of the 
impacts is uneven 
and heather-covered 
but fragments of 
wreckage have been 
reported; including a 
glycol header tank; a 
fragment of rudder 
bar and part of a 
Merlin engine 
plumbing. Without 
serial numbers, it is 
impossible to 
identify which 
remains are that of 
NPRN 515290, NPRN 
515291, NPRN 
515292 

NMRW 267500, 
303500 

Air Crash Site: 
SUPERMARINE 
SPITFIRE VB 
BM573 

NPRN 
515291 

Air 
Crash 
Site 

Wreck The site of the 
impacts is uneven 
and heather-covered 
but fragments of 
wreckage have been 
reported; including a 
glycol header tank; a 
fragment of rudder 
bar and part of a 
Merlin engine 
plumbing. Without 
serial numbers, it is 
impossible to 
identify which 
remains are that of 
NPRN 515290, NPRN 
515291, NPRN 
515292 

NMRW 267500, 
303500 

Air Crash Site: 
SUPERMARINE 
SPITFIRE R7296 

NPRN 
515292 

Air 
Crash 
Site 

Wreck The site of the 
impacts is uneven 
and heather-covered 
but fragments of 
wreckage have been 

NMRW 267500, 
303500 
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reported; including a 
glycol header tank; a 
fragment of rudder 
bar and part of a 
Merlin engine 
plumbing. Without 
serial numbers; it is 
impossible to 
identify which 
remains are that of 
NPRN 515290, NPRN 
515291, NPRN 
515292 

Air Crash Site: 
VICKERS 
WELLINGTON 
IC R1068 

NPRN 
515293 

Air 
Crash 
Site 

Wreck Small fragments of 
wreckage remain; 
mainly airframe and 
exploded cartridge 
cases. The remains 
of this aircraft are 
designated as a 
Protected Place 
under the Protection 
of Military Remains 
Act 1986.  

NMRW 268800, 
302500 

Air Crash Site: 
VICKERS 
WELLINGTON 
X9666 

NPRN 
515306 

Air 
Crash 
Site 

Documen
tary 

This Wellington was 
assigned to 21 OTU 
and had just 
completed a 
bombing exercise 
near Aberdyfi. It was 
flying north across 
the Dyfi estuary and 
descending through 
a gap in the cloud.  
Unfortunately they 
descended slightly 
too late approaching 
the high ground. The 
aircraft banked 
sharply to port, but 
the port wing struck 
the ground, the 
fuselage broke in 
two and the aircraft 
caught fire. Two of 
the five crew 
members survived. 
Archaeological 
remains associated 
with the loss of this 
aircraft are not 

NMRW 263200, 
297700 
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confirmed as present 
at this location, but 
may be in the 
vicinity. 

Air Crash Site: 
DE HAVILLAND 
TIGER MOTH II 
N6933 

NPRN 
515320 

Air 
Crash 
Site 

Documen
tary 

Event and Historical 
Information: 
On 7 May 1948, the 
Tiger Moth took off, 
but its engine cut out 
soon after and on 
approach to a forced 
landing it collided 
with the mountain 
slope which rises 
from the shore at 
Llwyngwril. The 
airman survived, but 
the aircraft was a 
write off. The engine 
was recovered and 
then the remains 
were set on fire. 
Archaeological 
remains associated 
with the loss of this 
aircraft are not 
confirmed as present 
at this location, but 
may be in the 
vicinity. 

NMRW 259522, 
310500 

Air Crash Site: 
HAWKER 
HENLEY III 
L3297 

NPRN 
515444 

Air 
Crash 
Site 

Documen
tary 

Event and Historical 
Information: 
On 4 February 1943, 
the aircraft crashed 
on the shore 3 miles 
north of Towyn 
(?Tywyn). 
Archaeological 
remains associated 
with this loss are not 
confirmed as present 
at this location, as 
the aircraft was 
reported salvaged. 

NMRW 256478, 
305856 

Air Crash Site: 
SUPERMARINE 
SPITFIRE VB 
BL317 

NPRN 
515476 

Air 
Crash 
Site 

Documen
tary 

Event and Historical 
Information: 
 On 11 May 1942, 
the aircraft's engine 
cut out and it belly-
landed on the beach 

NMRW 255987, 
304398 
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at Tonfanau, 8 miles 
south of Barmouth. 
Archaeological 
remains associated 
with the loss of this 
aircraft are not 
confirmed as present 
at this location, but 
may be in the 
vicinity. 

Air Crash Site: 
HAWKER 
HENLEY I L3276 

NPRN 
515490 

Air 
Crash 
Site 

Documen
tary 

Event and Historical 
Information: 
The pilot was trying 
to reach airfield with 
a failing engine.  
When he found he 
could not make it, he 
decided to land at 
the mouth of the 
Dysynni but lost 
control at the last 
minute.  The aircraft 
lost power and 
control was lost on 
approach to a forced 
landing. The aircraft 
crashed into a river 
near Dysynni, 
Merioneth on 28 
February 1945.  The 
pilot's body was 
recovered and 
buried at Chester. 
 
Archaeological 
remains associated 
with the loss of this 
aircraft are not 
confirmed as present 
at this location, but 
may be in the vicinity 

NMRW 258400, 
302900 

Air Crash Site: 
HAWKER 
HENLEY I L3386 

NPRN 
515491 

Air 
Crash 
Site 

Documen
tary 

Event and Historical 
Information: 
The aircraft's engine 
lost power and it 
belly-landed 2 miles 
east-0northeast of 
Ynyslas on 4 January 
1944. 
Archaeological 
remains associated 

NMRW 264910, 
295379 
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with the loss of this 
aircraft are not 
confirmed as present 
at this location, but 
may be in the 
vicinity. 

Air Crash Site: 
MILES 
MARTINET I 
MS528 

NPRN 
515654 

Air 
Crash 
Site 

Documen
tary 

Event and Historical 
Information: 
The aircraft's engine 
lost power and 
bellylanded at 
Towyn on 17 June 
1949. 
Archaeological 
remains associated 
with the loss of this 
aircraft are not 
confirmed as present 
at this location, but 
may be in the 
vicinity. 

NMRW 258000, 
301500 
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Name Source Format Information 
within it 

Fields Number of 
entries 

NMRW_ 
RCAHMW 

NMRW Microsoft 
Access 
Database 

Information on 
the sites 
recorded by 
the National 
Monuments 
Record of 
Wales in the 
study area 

NPRN, Name, 
Broadclass, Type, 
Period, Form, Entry 
Date, Last Updated, 
KMSquare, X, Y, 
Community, Council, 
Old County, Long Text 
(description), URL 

1625 

GATHER 
783_ Core 

HER Microsoft 
Excel 
Worksheet 

Information on 
the sites 
recorded in the 
Historic 
Environment 
Record for the 
part of the 
study area 
located in 
Gwynedd 

PRN, Site Name, 
Summary, Description, 
URL, Form, Period, 
Type, Broadclass, 
Condition, Evidence, 
Status Grade, Status 
Ref, Unitary Authority, 
Community, NGR, 
Map Sheet, Easting, 
Northing,  

1074 

HER_DAT HER Microsoft 
Excel 
Worksheet 

Information on 
the sites 
recorded in the 
Historic 
Environment 
Record for the 
part of the 
study area 
located in 
Dyfed  

PRN, NGR, Easting, 
Northing, Community. 
(information on the 
Name, Type, Period, 
Condition, Status, 
Evidence and 
Description were 
provided in an 
accompanying 
Gazeteer) 

1076 

New 
Database 

HER 
and 
NMRW 

Microsoft 
Access 
Database 

Compiled 
information 
from the three 
databases 
provided 

ID, PRN/NPRN, Source 
(HER/NMRW), Name, 
Type, Form, Period, 
Council, Community, 
X-Coordinate, Y-
Coordinate, Elevation 
Description 

3271 (1529 
following 
processing 

 

 

 

 

 

Table Ap1.2: Databases of archaeological sites and features provided by the Welsh heritage 

agencies, and the new database of compiled information 
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Original categories (FORM) New category (FORM) 

Buried Vessel Structure 
Wreck 

Wreck 

Fieldname 
Place name 
Placename 
Placename Evidence 

Placename Evidence 

Finds 
Find 
Find only 

Finds 

Ruined Building 
Building - Ruined 

Building - Ruined 

Ruin 
Ruins 

Ruins 

Sub-Surface Deposit 
Buried Features 

Buried Features 

Original Categories (TYPE) New category (TYPE) 

Shelter,Sheep Fold 
Building, Sheep Fold 
Sheepfold 

Sheep Fold 

Agricultural Building; Farmhouse 
Farmhouse 
Farmhouse 

Farmhouse 

Agricultural Building 
Farm Building 

Farm Building 

Farmstead 
Dwelling;Farmstead 
Dwelling, Farmstead 

Farmstead 

Finds 
Findspot 

Findspot 

Bank and Ditch 
Bank (earthwork); Ditch 

Bank (earthwork); Ditch 

Settlement 
Town 
Village 
Settlement, Town 
Settlement, Village 

Settlement 

Pillbox 
Pill Box 
Pillbox (TYPE FW3/23) 
Pillbox (TYPE FW3/24) 

Pillbox 

Spoil Tip 
Spoil Heap 

Spoil Heap 

Cow House 
Cow Shed 
Cowshed 

Cow shed 

Incised Stone Inscribed Stone 

Table Ap1.3: Changes made to the labelling system used in the new database to facilitate 

searches 
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Cross Incised Stone 
Inscribed Stone 

Deserted Settlement 
Deserted Rural Settlement 

Deserted Settlement 

Flood Defence 
Flood Defences 

Flood Defences 

Defended Enclosure; Hillfort 
Hillfort 

Hillfort 

Defended Enclosure; Fort 
Fort 

Fort 

School House 
School 

School 

Original Categories (PERIOD) New Category (PERIOD) 

Bronze Age,Medieval 
Bronze Age;medieval 

Bronze Age, Medieval 

Bronze Age;unknown 
Unknown;Bronze Age 
Unknown,Bronze Age 

Bronze Age 

Multiperiod 
MULTI-PERIOD 

Multi-period 

Medieval,Post-Medieval 
Medieval;Post-Medieval 
Post Medieval,Medieval 

Medieval, Post-Medieval  

Post Medieval 
Post-Medieval  

Post-Medieval 

Post-Medieval,Modern 
Post-Medieval/Modern 
Post-Medieval;Modern 

Post-Medieval, Modern 

20th Century 
21st Century 
Modern 
Unknown;Modern 

Modern 

Prehistoric 
Mesolithic,Neolithic,Bronze Age 

Prehistoric 
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Record 
no. 

Reference 
no.  

Date Description Map 
included? 

1 MAF 
77/258 

02/12/1957 Dysynni Valley Drainage District 
This is an order from the Gwynedd River 
Board to alter the boundaries of the 
Dysynni Valley Drainage District and the 
‘Towyn’ Drainage District, however it 
does not include a map to indicate where 
the original boundaries are, or where the 
proposed new boundaries would be. 

no 

Gwynedd River Board, 1957. Dysynni Valley Drainage District [document]. MAF – Agriculture, 
Fisheries and Food Departments. MAF 77/258. Kew: The National Archives 

2 MAF 
77/257 

14/07/1931 
– 
19/05/1950 

Dysynni Catchment Area: showing 
watershed and main river 
Map that outlines the Dysynni Catchment 
Area, and indicates which channels and 
watercourses are part of the ‘main river’, 
and therefore under the jurisdiction of 
the local authority rather than the 
landowner (according to the Agriculture 
Act 1937 and the Land Drainage Act 
1930). Another watercourse was 
included in the ‘main river’ on 28th 
September 1944, and a further 4 
watercourses were included under the 
title of ‘main river’ on 19th May 1950.  

Yes 

Ministry of Agriculture and Fisheries, 1950. Dysynni Catchment Area: showing watershed and 
main river [map]. MAF – Agriculture, Fisheries and Food Departments. MAF 77/257. Kew: The 
National Archives 

3 MAF 
112/100 

1942-1952 Dysynni Catchment Board land drainage 
proposals  
This item was a collection of minutes 
from the meetings of the Dysynni 
Catchment Board  and the Merioneth 
Rivers Catchment Board. Several letters 
within this item describe areas of land in 
the Peniarth estate being subject to 
flooding to the point that farming 
economy and activity was seriously 
affected. They mention the appointment 
of an engineer to improve the drainage 
scheme. There is also correspondence 
from 1948 between Colonel J Williams 
Wynne of Peniarth and Sgd C. H. Wake of 
the Dysynni Catchment Board, stating 
that the financial deficit of the Peniarth 
Estate was too great to maintain the 
drainage ditches on the land.  

no 

Table Ap1.4: Results of archive research in The National Archives 
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Merioneth Rivers Catchment Board, 1952. Dysynni Catchment Board land drainage proposals 
[meeting minutes]. MAF – Agriculture, Fisheries and Food Departments. MAF 112/100. Kew: 
The National Archives 

4 MAF 
136/36 

1942-1950 River Dysynni Catchment Board 
variation of map of main river 
 
This item includes a letter to the River 
Dysynni Catchment Board, dated to 1942, 
which stated that the Air Ministry was 
unhappy with the drainage conditions in 
some areas of the valley. Under the 
Agriculture Act 1937, grant-aid for land 
drainage could only cover up to 50% of 
the cost. Therefore, the writer of this 
letter suggested that the watercourses in 
question should be ‘mained’, i.e. included 
within the jurisdiction of the ‘main river’, 
then the cost of drainage would be 
funded as part of the main river, as under 
Section 55 of the Land Drainage Act 
1930. – 
Therefore, the watercourses in these 
maps and in the map in item MAF 77/257 
being included as pater of the main river 
was for the purpose of easing the 
financial burden of management and 
drainage from the landowners onto the 
local authority.  

3 maps: The  
two maps 
from 1944, 
on a six-inch 
scale, are 
part of the 
same 
proposal and 
have 
watercourses 
near Morfa 
Barracks 
highlighted 
in blue, 
which are 
also 
proposed to 
become part 
of the ‘main 
river’. A 
single map, 
Titled “River 
Dysynni 
Catchment 
Board – Map 
Showing 
Proposed 
Additions to 
“Main River”, 
made by J. 
Olav 
Williams, 
Engineer to 
the Board 
Dros-y-Mor, 
Harlech, 7 
Jan 1950, has 
6 
watercourses 
marked in 
green that 
were 
proposed to 
become part 
of the “Main 
River”. 
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River Dysynni Catchment Board, 1950. River Dysynni Catchment Board variation of map of 
main river [file]. MAF – Agriculture, Fisheries and Food Departments. MAF 136/36. Kew: The 
National Archives 

5 RAIL 
1033/389 

1887 O.S. Map (1 inch to 880 feet) of 
Aberdovey and rural areas of Ffridd 
Cerfn-isaf  
This record only includes a map of 
Aberdovey and surrounding land and 
coastline. Superimposed on the map in 
red are the limits of the Aberdyfi 
Piermaster on the River Dyfi.  

Yes 

Cambrian Railway’s Engineers Office, 1887. O.S. Map (1 inch to 880 feet) of Aberdovey and 
rural areas of Ffridd Cerfn-isaf [map]. RAIL. 1033/389. Kew: The National Archives 

6 MT 19/4, 
Folder 11 

1835-1862 Aberdyfi Harbour 
This item contains letters and a map 
relating to Aberdyfi Harbour and the 
River Dysynni. Two notes (12/01/1860 
and 14/01/1860) discusses the issue of 
ships depositing ballast and limestone in 
Aberdyfi Harbour, which can cause a 
hazard to other ships, cause additional 
sand to accumulate and reduce the 
depth of the harbor. 
Other letters (16/11/1862 and 
05/12/1862) from the Aberystwyth & 
Welsh Coast Railway Company to the 
Admiralty discusses the plans of a 
proposed bridge over the River Dysynni, 
and that the Admiralty want the bridge 
to have a wide span so that, should the 
sand bar that currently covers most of 
the entrance to the river be scoured 
away, the bridge, would not impede the 
access of small vessels. 
At the time this was written, they say the 
bar had been impassable for 40 years 

Yes, a 1835 
map of 
Aberdyfi 
harbor with 
all buoys and 
passable 
water 
channels 
marked on.  

 Aberdyfi Harbour, c.1836-1862. [letters]. Ministries of Transport, MT 19/4. Kew: The National 
Archives 

7 BT 356/77 1890-1920 Dysynni Valley Drainage District, 
Merionethshire  

The only item in this record is a map 
indicating the boundaries of the Dysynni 
Valley Drainage District. The areas 
covered are only the very low-lying areas 
from the coast, up the river valley, to just 
past Craig-yr-Aderyn. The boundaries 
follow the 5m contour line up to Craig-yr 
Aderyn, and then extend to the end of 
the 10m contour line around 1km further 
up the valley. 

Yes, one map 
depicting the 
boundaries 
of the 
Dysynni 
Valley 
Drainage 
District.  
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Dysynni Valley Drainage District, 1920. [map]. Board of Trade, BT 356/77. Kew: The National 
Archives 

8 CRES 
49/4582 

1931-1949 Land Drainage Act 1930: Orders 
relating to Borth Drainage District 
and catchment areas of rivers Prysor, 
Dysynni, Tawe and Caermarthenshire 
rivers 
This item includes letters between the 
Ministry of Agriculture and Fisheries, and 
the River Dysynni Catchment Board. The 
Catchment Board made an application to 
include some watercourses near Gwalia 
Road, which flow into the Dysynni, as 
part of the definition of the ‘main river’. 
It says that the change in the extent of 
the watercourses classed as part of the 
‘main river’ was for the purpose of Part II 
of the Land Drainage Act 1930. This 
relates to the lines added to the map in 
source MAF 77/257 
 

No  

Ministry of Agriculture and Fisheries, 1949. Land Drainage Act 1930: Orders relating to Borth 
Drainage District and catchment areas of rivers Prysor, Dysynni, Tawe and Caermarthenshire 
rivers [letters]. Crown Estate, CRES 49/4582. Kew: The National Archives 
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Record 
no.  

Reference no. Name Date Description 

9 MS ESTATE 
MAPS Peniarth 
Map 21 
139/6/6 

Lands at Aber 
Dysynni, Towyn 
Parish 

May 
1833 

A hand-drawn map, which is a copy 
of the plan on the grant from the 
Crown dated 24th May 1833. It 
indicates the lands belonging to 
The Reverend William Domville, to 
the south of Broadwater. The map 
does not recognize Broadwater as 
an estuary or a lagoon or part of 
the river, but instead just indicates 
a terrestrial area of ‘Mudlands 
overflown by each tide’. The 
extended sand bar in front of the 
mouth of the Dysynni that exists 
today does not seem to be present 
on this map. It also indicates that 
the sluice running south from the 
point that the River Dysynni meets 
Broadwater already existed in the 
early 19th century.  

Lands at Aber Dysynni, 1833. [map] MS ESTATE MAPS Peniarth Map 21 139/6/6. Aberystwyth: 
The National Library of Wales 

10 MAP 
Accession:MAP 
7719 

Aberdyfi harbor 
cartographic 
material 

ca. 1880 Map of Aberdyfi harbour, some 
nearby buildings in block-plan and 
the route of the railway line (in red 
ink) between the harbour and 
Penhelyg, one mile to the east 
along the Dyfi River estuary.  

Aberdyfi harbor cartographic material, c.1880. [map]. MAP Accession, MAP 7719. 
Aberystwyth: The National Library of Wales 

11 MAP RAILWAY 
PLANS BRN 
1827 141/5/6 

Aberystwith and 
Welsh Coast 
Railway: crossing 
of Aberdovey 
Estuary 

1865 This item includes three figures:  
a) A plan of the Dyfi estuary 

including the trainline, a 
proposed second trainline 
crossing the Dyfi estuary at 
Pennelig/Penhelyg, and the 
line of a railway along the 
sand of the south side of 
the estuary from Ynyslas, 
connecting to a ferry line 
across the river to 
Aberdovey.  

b) A cross-section of the Dyfi 
estuary and northern 
approach to the proposed 
viaduct 

Table Ap1.5: Results of archive research in The National Library of Wales 
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c) A cross-section of the 
estuary and northern 
approach with differing 
lengths of viaduct and 
embankment.  

Aberyswith and Welsh Coast Railway, 1865. Crossing of Aberdovey estuary [cartographic 
material].  MAP RAILWAY PLANS BRN 1827 141/5/6. Aberystwyth: The National Library of 
Wales 

12 MAP MS.MAPS 
Vol. 93 
028/7/10 

Lands at Towyn 
in the parish of 
Towyn, in the 
country of 
Merioneth: 
belonging to John 
Edwards Esqr 
(Map 5) 

ca. 1820 Plan showing field with field 
numbers and adjoining landowners 
and properties. Table included 
shows field names, acreages, land 
use and rent charges associated 
with each field.  
The map is too sparse and lacking 
in detail to be georeferenced onto 
a modern map.  

Lands at Towyn, c.1820. Lands at Towyn in the parish of Towyn, in the country of Merioneth: 
belonging to John Edwards Esqr [maps]. MAP MS.MAPS Vol. 93 028/7/10. Aberystwyth: The 
National Library of Wales 

13 MAP (ATLAS 
Ab 1043) 

Aberdovey in 
Welch Aber Dyfi 
in Meirioneth 
Shire 
[cartographic 
material] / by 
Lewis Morris; 
Nath'l. Hill Sc. 

1748 One of 24 map plates, all drawn by 
Lewis Morris of sections of the 
Welsh Coastline. This one is Plate 
16, a hand-drawn map of the Dyfi 
estuary, available to view online. 

Morris, L., 1743. Aberdovey in Welch Aber Dyfi in Meirioneth Shire [map]. MAP ATLAS Ab 
1043. Aberystwyth: The National Library of Wales 
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Feature 
Number 

Vectorised Features Description 

A 

 

Defended enclosure 
measuring 52m x 40m, 1km 
south west of Castell y Bere. 
It comprises an outer 
enclosure with several 
entrances. In the southern 
end of the enclosure is a 
smaller double-ringed 
enclosure around 25m 
square, also including several 
gateways. A small square 
structure lies at the centre, 
7m square. RCAHMW date 
this structure to the Iron Age 
or Roman period. 
NPRN: 423305 
Source: Driver 2018; 
BDC_05_11 

B 

 

A single circular enclosure 
identified by Glyn Davies and 
Jonathan Brentnall, c.35m in 
diameter, located in Cwm 
Maethlon or Happy Valley. It 
is 280m northeast of a 
prehistoric tumulus or round 
barrow (NPRN 303602). The 
break in its eastern wall may 
be due to its intersection 
with a field boundary (not 
visualised on this map). 
NPRN: 424021 
Source: Ryder 2019; 
BDC_03_01_02  

Table Ap1.6: Description of cropmark features discovered prior to this research, for instance by 

RCAHMW. Vectorised cropmark features are displayed in blue. Crown copyright and database 

right 2019 Ordnance Survey 100025252 
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C 

 

Several cropmark features 
around 350m north-
northeast of the findspot of 
the medieval Croes Faen 
cross (NPRN 302713). The 
long linear feature may be a 
modern feature such as a 
pipeline. The four square 
features, measuring 5-10m 
square, are thought to be 
early medieval square 
barrows.  
NPRN: 310263 
Source: RCAHMW 2012a; 
AP_2006_2903 

D 

 

Cropmark complex identified 
by RCAHMW 300m west of 
Bryncrug. Several of the 
identified features overlap; 
the circular enclosure in the 
centre, c.30m in diameter, is 
intersected by a smaller 
circular enclosure, a 
curvilinear feature, and a 
rectilinear feature. This 
rectilinear feature may be 
associated with the 45m 
square, double-ditched 
enclosure to the north of the 
circular enclosure. The 
intersection of features and 
varying morphology indicates 
that these features resulted 
from different periods of 
occupation during the 
prehistoric and roman 
period. The linear features 
that cut across the complex 
may be the remains of later 
field boundaries.  
NPRN: 420685 
Source: Driver 2014; 
AP_2006_2909 
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E 

 

There is a complex array of 
cropmark features 200m 
northeast of Bryncrug, 
extending several hundred 
metres in each direction. The 
complex includes linear and 
rectilinear features, and 
circular enclosures of various 
sizes. The most prominent 
feature is the largest circular 
enclosure, 75m in diameter. 
The linear feature running 
towards the south-west 
connects with the linear 
feature in the northeast 
corner of the map in feature 
F  
NPRN: 406318 
Source: Wiles 2007c; 
CUCAP_BUB_61, 
CUCAP_BUB_63_7775 

F 

 

Cropmark complex identified 
450m northwest of Bryncrug, 
including a large circular 
enclosure 62m in diameter, 
intersected by a smaller 
subrectangular enclosure. 
RCAHMW estimate that this 
dates to the later prehistoric 
period. It is connected with a 
linear feature that extends 
200m northwards, towards 
the features discussed in 
feature E. This could 
represent a trackway, 
boundary wall, or field 
boundary. Smaller circular 
and rectangular features to 
the north may be associated 
with the existing farm 
building indicated on the 
map. 
NPRN: 275900 
Source: Wiles 2007a; 
CUCAP_BUB_64  
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Feature 
Number 

Vectorised Features Description 

1 

 

Cropmark features c.600m north of 
Tonfanau station, either side of a 
road. The group of curvilinear and 
circular features to the east span 
90m altogether. They may be 
related to the former military 
training camp that was situated here 
between 1938 and the 1980s (PRN 
7281), although no extant above-
ground features are visible in this 
area. 
The group of rectilinear and 
rectangular features to the west, 
each spanning around 30-40m, may 
also be related to the former 
military camp, although they could 
also be the remains of post-
medieval or modern agricultural 
buildings.  
Source: Oblique_2003_5047_58 and 
Oblique_2003_5047_57 

2 

 

Three circular features identified 
200m north of Tonfanau station, 8-
18m in diameter. These may be 
related to the nearby modern 
military activity (see feature number 
1) 
 
Source: Oblique_2003_5047_59 

Table Ap1.7: Description of cropmark and geophysical features discovered during this research. 

Vectorised cropmark features are displayed in blue, and geophysical survey features are 

displayed in pink. Grey polygons indicate the location of geophysical surveys. Crown copyright 

and database right 2019 Ordnance Survey 100025252 
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3  Rectilinear cropmark c.90m in length 
located 300m north east of Dysynni 
Bridge. Morphology indicates a two-
roomed building with an additional 
external wall. Possibly the remains 
of the external walls of a post-
medieval farmstead or agricultural 
buildings. 
Source: OS_71_323_888 

4 

 

Three circular cropmark features 
near Rhoslefain, 15-25m in 
diameter, with associated linear 
features. The most westerly feature 
has an east-facing entrance, and is 
surrounded by rectilinear features, 
may indicate a walled enclosure 
with a circular structure inside. 
Source: OS_71_323_728 
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5  Six circular features near 
Llangelynin, spread across land 
above 100m aOD that slopes down 
towards the coast in the west. The 
features measure between 10m and 
55m in diameter. Prehistoric 
features such as a burnt mound 
(PRN 60834) and the remains of a 
stone hut circle (PRN 4089) are 
located 80m and 500m north of this 
group of features, respectively. This 
indicates the presence of prehistoric 
activity in the immediate vicinity, 
suggesting that these features could 
be prehistoric in date. 
Source: OS_71_323_638 and 
OS_71_323_639 

6 

 

Rectilinear and rectangular 
cropmark features 900m north of 
Llanegryn. Proximity to extant 
agricultural and domestic buildings 
(also featured in image) suggests 
that these features may have been 
post-medieval farmstead buildings 
c.15m in length, with an external 
surrounding wall 
Source: OS_71_323_724 
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7  Single rectilinear cropmark feature, 
c.45m in length, identified 200m 
from the main buildings of the 
Peniarth estate. Peniath estate was 
established over 600 years ago, so 
the proximity of this cropmark to 
Peniarth suggests that it may be a 
feature associated with the earlier 
estate buildings  
Source: Oblique_935065_02 

8 

 

Circular and irregular oval cropmark 
features located near a post-
medieval or modern drainage ditch. 
The oval feature is c.65m in length, 
and the circular feature is 23m in 
diameter. These features are just 
over 1km north of the prehistoric 
cropmark complex identified at 
Bryncrug (see Table Ap1.6 feature 
E), and so may date to the same 
period. However, they may also be 
the result of the construction of the 
drainage ditches nearby 
Source: RAF_1468_6011 
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9  Cropmark feature identified 120m 
west of Glanywern farm buildings. 
The rectilinear feature measures 
40m by 48m, and has a dividing wall. 
The shape, size and proximity to an 
existing farm suggests that this 
feature may be the remains of a 
post-medieval agricultural structure 
Source: RAF_1468_3012 

10 

 

This cropmark feature includes a 
circular enclosure c.30m in diameter 
with an opening to the south-west, 
and a surrounding rectilinear 
feature. It is located c.60m from the 
foot of Craig yr Aderyn, a 
promontory upon which there is an 
Iron Age hillfort (NPRN 302862), a 
Bronze Age cairn (NPRN 407753), 
and a post-medieval quarry (PRN 
20561). This feature may therefore 
relate in period to one of the nearby 
known remains 
Source: Slide_89_CS_59 
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11 

 

Aerial photographs 
Several rectilinear and curvilinear 
cropmark features were identified 
around Castell y Bere. These may be 
related to a medieval burgh 
reported to have been built near 
Castell y Bere (see Morris 1901).  
Source: Oblique_895008_17 and 
Oblique_995099 
Geophysical surveys: 
Both gradiometry and resistivity 
surveys were undertaken to the 
north of Castell y Bere (see Figure 
5.2D), but only a few short linear 
features were revealed. 
 

Castell y Bere 
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12 

 

Geophysical surveys 
Magntometry undertaken at 
Gwyddelfynydd confirmed the 
presence of some of the cropmarks 
identified by RCAHMW (see Table 
Ap1.6 feature E). In particular, the 
large circular enclosure is around 
75m in diameter, and displays at 
least two entrances. The curvilinear 
feature, which could represent field 
boundaries, runs close but does not 
appear to intersect the circular 
feature, indicating that they may 
have been contemporaneous. The 
smaller circular feature, 10m in 
diameter, may predate the possible 
field boundary, as the former is 
intersected by the latter.  The other 
cropmarks in Table Ap1.6 feature E 
were not within the extent of the 
geophysical survey. 
 

13 

 

Aerial Photographs 
A circular cropmark 20m in 
diameter, with associated linear 
features was identified 300m south 
of the complex , and two circular 
features were identified in close 
proximity to the cropmark complex 
identified by RCAHMW (see Table 
1.6 feature D). 
 
Geophysical Survey 
Geophysical surveys confirmed the 
presence of some of the cropmarks 
identified by RCAHMW west of 
Bryncrug, such as the intersecting 
circular, rectilinear  and curvilinear 
features, and th double-ditched 
enclosure (see Table 1.6 feature D), 
as well as the small circular and 
associated linear feature identified 
to the south.  
In addition, magnetometry 
undertaken in fields south of the 
cropmark complex revealed a 
curvilinear feature with a small 
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circular feature, and a possible 
rectilinear enclosure. These surveys 
did not reveal the circular cropmark 
features identified in aerial 
photographs 
Sources: AP_2006_2908, 
AP_2006_2909, AP_2006_2910 

14 

 

Geophysical Survey 
Gradiometer surveys confirmed the 
presence of the large circular 
enclosure identified northwest of 
Bryncryg (see Table 1.6 feature F). 
The circular enclosure has two 
entrances, to the south and 
northeast, and is intersected by a 
subrectangular feature. The 
associated linear features appear on 
the geophysical survey, but the size 
of the surveys did not allow for the 
full extent of the linear feature to be 
explored.    
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15 

 

Three circular features located 200m 
from the Penowern cropmark 
complex (see Table Ap1.6 feature 
D). Each measures 20-30m in 
diameter. The density of remains in 
the cropmark complexes nearby 
indicate that these features may 
date to the same period of 
occupation likely prehistoric) 
Source: RAF_1468_2008 

16 

 

This group of features includes two 
circular enclosures 15-20m in 
diameter, surrounded by linear and 
rectilinear features. These are 1.3km 
southeast from the Gwyddelfynydd 
cropmark complex (see Table Ap1.6 
feature E). One of the linear features 
lines up with a drainage ditch, and 
others are perpendicular, so these 
may be a more modern feature. The 
circular features and surrounding 
rectilinear enclosure could be 
contemporaneous, or the rectilinear 
structure could post-date the 
circular features.  
Source: RAF_1468_2011 
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17 

 

This is a single cropmark feature 
consisting of a double-ringed 
circular enclosure 32m in diameter. 
This is located 250m northeast of 
the post-medieval Ynysmaengwyn 
estate (NPRN 28895), but may also 
predate this.  
Source: Oblique_935065_10 (next to 
Ynysmaengwyn) 

18 

 

Aerial Photographs 
Several cropmark features were 
identified near Croes Faen and in 
the fields surrounding the square 
barrow complex identified by the 
RCAHMW (see Table Ap1.6 feature 
C). 
Circular enclosures to the southwest 
and northeast of the map measure 
between 12m and 55m in diameter, 
and a larger curvilinear enclosure in 
the northwest corner of the map 
measures 73x62m and has a 
southwest entrance. The other 
features are rectangular or 
rectilinear, and all measure around 
55x80m. Some or all of these 
features may be associated with the 
square barrow complex or the 
standing stone discovered at Croes 
Faen. 
Geophysical surveys 
Geophysical surveys confirmed the 
presence of subterranean square 
barrow features identified as 
cropmarks by RCAHMW. Further 
linear features and a circular 
enclosure 22m in diameter were 
revealed in geophysical surveys to 
the southwest of the square 
barrows. Additional surveys south of 
the main road only revealed a few 
small linear features.   
Source: Oblique_995093_51, 
Oblique_935065_14, 
OS_71_323_805, 
RAF_1468_2007, 
RAF_1450_3006, 
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Oblique_AP_2006_2904 

19  Five circular or curvilinear features, 
with diameters between 20m and 
65m, were identified just south of 
Tywyn, and around 200m east of 
Penllyn farm. Tywyn was founded 
during the early medieval period, so 
these features could be associated 
with the early settlement here.   
Source: OS_73_323_734, 
RAF_1468_4004 

20 

 

Cropmark complex extending 700m 
by 400m including rectangular, 
rectilinear, and circular features, 
1km south of Penllyn farm. This may 
be associated with the Second 
World War rifle range (NPRN 
525491) 300m to the west, or the 
documented flour mill 500m to the 
south (NPRN 421390). 
Source: RAF_1450_4142 
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21 

 

Two circular closures 800m 
southeast from the centre of Tywyn, 
located on sloping ground. These 
features are 15m and 25m in 
diameter, and may be related to the 
many post-medieval granite and 
slate quarry features within a few 
hundred metres (e.g. PRNs 20397; 
20398; 20498). Alternatively, they 
may be associated with the 
prehistoric flint axe found 180m 
southwest of the smaller feature 
(PRN 4928) 
Source: RAF_1450_3069, 
RAF_1468_4004 

22  Two circular features, 10m and 20m 
in diameter, 100m from Dysefin 
farm in the further inland stretches 
of the Dysynni valley floodplain. 
These are located only 300m 
southeast of the findspot of several 
Bronze Age axes (PRNs 2985; 3908; 
3910) and 500m southeast of 
another likely-prehistoric circular 
structure in the uplands north of the 
Dysynni floodplain (PRN 5617), so 
may date to the prehistoric period. 
Source: RAF_58_2649_166_F21 
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Figure Ap1.1. Location of the cropmarks (dark blue) and geophysical features (pink) described 

in Tables Ap1.6 and Ap1.7.  Crown copyright and database right 2019 Ordnance Survey 

100025252 
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Appendix 2: Historic Landscape 
Characterisation 
 

Table Ap2.1: Descriptions and examples of how each Landscape Character Area is defined 

Figure Ap2.1-17: Separate LCAs displayed on maps of the Dysynni Valley 
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Ancient 
The Ancient LCA-type is defined by the presence of LCFs dating to the medieval period or earlier, such 
as Iron Age hillforts, medieval barrows, Bronze Age cairns, or prehistoric cropmarks.  

 

Historic Industry 
Although other HLC projects combine all industrial activity into one LCA type (e.g. Herring 2008), this 
project separates the industrial type into three different LCAs, due to their different visual character 
and origins. The Historic Industry type is defined by the LCFs that are the remnants of extractive 
industries from the post-medieval period, predominantly features associated with quarrying and 
mining (e.g. levels, shafts, spoil heaps, open quarries, and the Tallylyn railway).  

 

Modern Industry 

Table Ap2.1: Descriptions and examples of how each Landscape Character Area is defined.  Crown 

copyright and database right 2019 Ordnance Survey 100025252 
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Modern industrial activity in the study area is no longer based on extractive industries, but rather is 
confined to a sewage works near Broadwater and an industrial estate on the outskirts of Tywyn.  

 

Maritime Industry 
The maritime industry LCA is defined by areas with LCFs that are remnants of maritime industrial 
activity, such as fishing, shipbuilding and seafaring. This includes features like harbours, shipyards, 
jetties, shipwrecks, and medieval and post-medieval fish traps.  

 

Regular Field Systems 
Regular field systems are those that have straight, often parallel boundaries and right angles, and are 
indicative of a large-scale planned group of fields. These are characteristic of agricultural land 
established in the post-medieval and modern period 
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Irregular Field Systems 
Irregular field systems are here defined as field systems with small fields, irregular angles, some 
curved boundaries, and no clear layout, indicative of the gradual establishment of individual fields 
over time, rather than a planned field system 

 

Regular Drained Land  
These areas were created by the land improvement projects that took place in 18th-20th century. This 
LCA is defined by areas of land with regular, perpendicular and right-angled drainage ditches, often 
serving as field boundaries 

©IanKing2019 

©Google2019 
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Irregular Drained Land  
This is characterised by areas of land with irregular drainage ditches, often serving as (or following) 
field boundaries of irregular field systems. Unlike the regular drainage ditches, these do not have 
straight, parallel sides or regular angles. Often on slightly more hilly areas than Regular Drained Land 

 

 

Ancient Woodland 
Areas of wood that appear to originate from before AD1600 based on their name, location, nature of 
surrounding enclosure, and the presence of indicator species, have been classified as ancient 
woodland (ibid.). 

©Google2019 

Drainage ditch 

©Google2019 
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Modern Woodland 
Areas of Modern Woodland LCA were identified as areas of woodland on the OS basemap that were 
not included in the Ancient Woodland inventory. While ancient woodland consisted mainly of 
deciduous species, the areas of modern woodland are predominantly coniferous plantations 

  

Rough Pasture 
The Rough Pasture LCA type is characterised by scrub, bracken, heath or rough grassland, and is 
located in areas of high elevation and/or high relief as indicated by the contour lines in the OS 
basemap. It also includes areas of scree, rocky outcrops and loose rock. In terms of the LCFs, post-
medieval agricultural remains such as sheep folds, clearance cairns and farmsteads characterise rough 
pasture areas 

©Google2019 
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Military 
The Military LCA type refers to areas that maintain a character influenced by military activity, 
predominantly from the Second World War. The LCFs that characterise the Military LCA include 
practice trenches, rifle ranges, an RAF airfield, pillboxes, camps, and several air crash sites. 

 

Ornamental 
The Ornamental LCA is areas or park, garden or estate that has been deliberately designed, for 
instance the lands, gardens or deer park of a country estate. The LCFs that characterise the 
Ornamental LCA are those associated with the previous estate, for instance outbuildings, boat 
houses, cottages, and mansions 
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Wetland and Beach 
This LCA includes the land and intertidal zone by the coastline and water courses that is comprised of 
sand, shingle, marsh, reeds or saltings. 

 

Tourism and Recreation  
The Recreation and Tourism LCA is characterised by LCFs that are for tourists and leisure activities, 
such as camp sites, caravan and mobile home parks, golf courses, and theme parks. These are often 
on the borders of settlements or along the coast. 

©GAT 2016 
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Modern Settlement 
The Modern Settlement LCA type is defined as areas of settlement that are present on the modern OS 
basemap that were not present on the 1853-1904 1:2,500 County Series 1st Edition map. 

 

Historic Settlement 
The areas of Historic Settlement LCA in the Dysynni valley were defined as the large and small 
settlements included on the 1853-1904 1:2,500 County Series 1st Edition map. This included clusters 
of farms and farm buildings, but not single farmsteads 

©PeniarthEstate 

2019 

©Jaggery (cc-by-sa/2.0) 
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Figure Ap2.1. Map to indicate the areas of the Dysynni valley characterised as Ancient LCA.  

Crown copyright and database right 2019 Ordnance Survey 100025252 

Figure Ap2.2. Map to indicate the areas of the Dysynni valley characterised as Historic 

Industry LCA. Crown copyright and database right 2019 Ordnance Survey 100025252  
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Figure Ap2.3. Map to indicate the areas of the Dysynni valley characterised as Modern Industry LCA.  

Crown copyright and database right 2019 Ordnance Survey 100025252 

Figure Ap2.4. Map to indicate the areas of the Dysynni valley characterised as Maritime Industry LCA. 

Crown copyright and database right 2019 Ordnance Survey 100025252 
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Figure Ap2.6. Map to indicate the areas of the Dysynni valley characterised as Irregular 

Fieldsystem LCA.  Crown copyright and database right 2019 Ordnance Survey 100025252 

Figure Ap2.5 Map to indicate the areas of the Dysynni valley characterised as Regular Fieldsystems 

LCA. Crown copyright and database right 2019 Ordnance Survey 100025252  
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Figure Ap2.8. Map to indicate the areas of the Dysynni valley characterised as Irregular 

Drained Land LCA. Crown copyright and database right 2019 Ordnance Survey 100025252 

Figure Ap2.7. Map to indicate the areas of the Dysynni valley characterised as Regular 

Drained Land LCA. Crown copyright and database right 2019 Ordnance Survey 100025252 
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Figure Ap2.9. Map to indicate the areas of the Dysynni valley characterised as Ancient Woodland LCA. 

Crown copyright and database right 2019 Ordnance Survey 100025252 

Figure Ap2.10. Map to indicate the areas of the Dysynni valley characterised as Modern Woodland LCA. 

Crown copyright and database right 2019 Ordnance Survey 100025252 
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Figure Ap2.11. Map to indicate the areas of the Dysynni valley characterised as Rough Pasture 

LCA. Crown copyright and database right 2019 Ordnance Survey 100025252 

Figure Ap2.12. Map to indicate the areas of the Dysynni valley characterised as Military LCA.  

Crown copyright and database right 2019 Ordnance Survey 100025252 
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Figure Ap2.13. Map to indicate the areas of the Dysynni valley characterised as Ornamental LCA. 

Crown copyright and database right 2019 Ordnance Survey 100025252 

Figure Ap2.14. Map to indicate the areas of the Dysynni valley characterised as Wetland 

and Beach LCA.  Crown copyright and database right 2019 Ordnance Survey 100025252 
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Figure Ap2.15. Map to indicate the areas of the Dysynni valley characterised as Tourism 

and Recreation LCA. Crown copyright and database right 2019 Ordnance Survey 100025252 

Figure Ap2.16. Map to indicate the areas of the Dysynni valley characterised as Modern 

Settlement LCA.  Crown copyright and database right 2019 Ordnance Survey 100025252 
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Figure Ap2.17. Map to indicate the areas of the Dysynni valley characterised as Historic 

Settlement LCA.  Crown copyright and database right 2019 Ordnance Survey 100025252 
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Appendix 3: Vulnerability Assessment 
Table Ap3.1: Sites visited during the logistical and technical test 

Table Ap3.2: Scores for each variable for the pilot study features 

Table Ap3.3: Landscape Character Features sampled for each Landscape Character Area 

Table Ap3.4: Number of sites that characterise each Landscape Character Area 

Table Ap3.5: Stage 1 Vulnerability Index results for each Landscape Character Feature assessed, in 

ascending order of Stage 1 score 
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ID Record 
Number 

Name Type Form Period Parish 

1 11049 Trackway Trackway earthwork/soil 
mark 

Roman Whittlesey 

2 2741 Suet Hills Barrow  Barrow earthwork Bronze Age Whittlesey 

3 2814 Whittlesey Butter 
Cross 

Market 
Cross 

Standing 
monument 

Post-
medieval 

Whittlesey 

4 2928 St Mary's Church Church Building Medieval Whittlesey 

5 3917 Whitecross Stone standing 
stone 

monument Medieval Whittlesey 

6 50457 Pillbox Pillbox building Modern Whittlesey 

7 1380 Outbuilding Building Ruined 
Building 

Medieval Fletton 

8 01411 St Margarets Church Parish 
Church  

Building, 
structure 

Medieval Fletton 

9 2973 Fletton Churchyard 
Cross 

Cross Standing 
Monument 

Medieval  Fletton 

10 50585 Saxon Villas Building Buildings Post-
medieval 

Fletton 

11 53704 Fletton Playing Fields Ridge 
and 
Furrow 

Earthwork Medieval Fletton 

12 53820 The Nene Viaduct 
(Great Northern 
Bridge 184) 

Railway 
Bridge 

Structure Post-
medieval 

Fletton 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table Ap3.1: Sites visited during the logistical and technical test 
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ID PRN/N
PRN 

Name Level of 
Preserva
tion (1-
5) 

Resista
nce of 
Remai
ns (1-
5) 

Resistanc
e of 
Substrate 
(1-5) 

Suscepti
bility to 
tempera
ture 
change 
(1-5) 

Susceptibi
lity to 
Precipitati
on 
Change 
(1-5) 

Vulner
ability 
Score 

3 2814 Whittlesey 
Butter Cross 

2 1 3 1 1 
1.6 

4 2928 St Mary's 
Church 

1 1 3 1 1 
1.4 

5 3917 Whitecross 
Stone 

2 1 3 1 1 
1.6 

6 50457 Pillbox 2 1 1 1 1 1.2 

8 

1411 

St 
Margaret’s 
Church  1 1 1 1 1 

1 

10 
50585 

Saxon Villas 
(5) 1 1 3 1 1 1.4 

11 

53704 

Fletton 
Playing 
Fields Ridge 
and Furrow 
(1) 1 3 1 2 3 2 

12 

53820 

The Nene 
Viaduct 
(Great 
Northern 
Bridge 184) 
(6) 1 1 1 1 4 1.6 

Table Ap3.2: Scores for each variable for the logistical and technical test features 
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Identifier Name Type Form Location 
(x,y) 

Type of 
Assessment 

Ancient LCA 

PRN 1740 Domen Ddreiniog; 
Motte; Dyffryn 
Dysynni 

Motte Earthwork 259690, 
303600 

Visit 

Aerial Photograph 
CUCAP_BUB_63_
7775   

Feature 7 Cropmark Complex Buried 
features 

260846, 
303557 

Visit 

Aerial Photograph 
Oblique_2006_29
09 

Feature 4 Cropmark Square 
enclosure 

Buried 
features 

260490, 
303198 

Visit 

NPRN 501068 Allt-Lwyd, Pillow 
Mound V 
 

Pillow 
mound 

Earthwork 260388, 
307232 

Visit 

PRN 4931 Castell y Bere 
 

Castle Building 266750, 
308540 

Visit 

NPRN 301736 
 

Tal-Y-Gareg Hillfort 
 

Hillfort Earthwork 257415, 
303585 

Visit 

NPRN  310263 
 

Square Barrow 
Cemetery, Croes 
Faen 
 

Barrow 
Cemetery 

Buried 
Features 

259820, 
301860 

Visit 

NPRN 524780 Submerged Forest, 
Tywyn 
 

Submerged 
Forest 

Topography 258511, 
298584 

Visit 

PRN 16601 Peat Exposured, 
Tywyn 
 

Peat 
Deposit 

Buried 
Features 

258550, 
298530 

Visit 

NPRN 302862 
 

Craig-Yr-Aderyn, 
Hillfort, Birds Rock 
 

Hillfort Earthwork 264513, 
306834 

Visit 

NPRN 407753 
 

Craig Yr Aderyn, 
Cairn 

Cairn, 
Enclosure 

Structure 264700, 
306570 

Visit 

PRN 2977 Enclosure, Hut Circle, 
Allt Lwyd 

Enclosure Structure 260630, 
307420 

Desk-Based 

PRN 5382 Burnt Mound, Happy 
Valley 

Burnt 
Mound 

Structure 261220, 
299700 

Desk-Based 

PRN 4852 Cairn, Trum Gelli Cairn Structure 265560, 
301430 

Desk-Based 

NPRN 500914 Cwm-Llwyd, Possible 
Cairn Iv 
 

Cairn Earthwork 261964, 
308763 

Desk-Based 

NPRN 286634 
 

Stone Circle, Trum 
Gelli Se Slopes 

Stone 
Circle 

Structure 266275, 
300173 

Desk-Based 

Table Ap3.3: Landscape Character Features sampled for each Landscape Character Area 
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PRN 4938 Standing Stone, 
Llanfihangel Y 
Pennant 

Standing 
Stone 

Structure 266220, 
307970 

Desk-Based 

Historic Industry LCA 

NPRN 501054 Allt-Lwyd, Stone 
Quarry Vii 

Stone 
Quarry 

Earthwork 260461, 
307137 

Visit 

NPRN 501053  Allt-Lwyd; Stone 
Quarry Iii 

Stone 
Quarry 

Earthwork 260496, 
307118 

Visit 

PRN 21875 Pant Y Cae Mine, 
Tywyn 

Lead Mine Earthwork 261800, 
299200 

Visit 

PRN 20563 Level, Foel Ty'r 
Gawen 

Level Structure 262200, 
307100 

Visit 

PRN 26339 Quarry, Tirgawen Quarry Earthwork 262243, 
307174 

Visit 

PRN 20561 Quarry, Wern Quarry Earthwork 264400, 
307000 

Visit 

NPRN 500993 
 

Twllydarren, 
Trackway Iv 

Trackway Earthwork 262587, 
308933 

Desk-Based 

NPRN 500889 Peniarth Slate 
Quarry, Path 

Path Earthwork 262596, 
309140 

Desk-Based 

NPRN 286508 Shaft, Cwm Pandy Shaft Earthwork 262970, 
302235 

Desk-Based 

NPRN 500855 Bodwylan, Causeway Causeway Earthwork 260817, 
309322 

Desk-Based 

PRN 9237 Cwmcwm Incline 
Drumhouse, 
Llanfihangel-Y-
Pennant 

Winder 
House 

Building – 
Ruin 

269130, 
305230 

Desk-Based 

PRN 9207 Bryn Eglwys Quarry 
Slate Mill, 
Llanfihangel-Y-
Pennant 

Slate Mill Ruins 268960, 
305710 

Desk-Based 

NPRN 500888 Peniarth Slate 
Quarry, Caban 

Quarry 
Building 

Ruins 262565, 
309128 

Desk-Based 

PRN 9254 Bryn Eglwys Quarry 
Building 4, 
Llanfihangel-Y-
Pennant 

Quarry 
Building 

Building -
Ruins 

269280, 
305090 

Desk-Based 

NPRN 41337 Rhyd-Yr-Onen 
Station 

Railway 
Station 

Building 261510, 
302190 

Desk-Based 

PRN 20746 Dolgoch Viaduct, 
Talyllyn 

Viaduct Structure 265050, 
304500 

Desk-Based 

PRN 9211 Beudynewydd 
Incline, Llanfihangel-
Y-Pennant 

Inclined 
Plane 

Earthwork 269200, 
305720 

Desk-Based 

NPRN 500869 Cwm-Llwyd, Spoil 
Heap I 

Spoil Heap Earthwork 262850, 
309365 

Desk-Based 

Modern Industry LCA 

NPRN 525497 
 

Engine Shed And 
Works, Ton-Fanau 
Quarry 

Engine 
Shed; 

Building 256919, 
303275 

Visit 
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Engineering 
works 

NPRN 525492 
 

Granite Quarry, Ton-
Fanau 

Quarry Earthwork 257161, 
303324 

Visit 

PRN 9271 
 

Bryn Eglwys Quarry 
Reservoir 1, 
Llanfihangel-Y-
Pennant 

Reservoir Structure 269890, 
303940 

Desk-Based 

PRN 20495 
 

Granite Quarry, Bach 
Y Sil Nr Towyn 

Granite 
Quarry 

Structure 257000, 
303500 

Desk-Based 

Maritime Industry LCA  

PRN 59667 
 

Line Of Boulders, 
Aberdyfi 

Feature Structure 260180, 
295950 

Visit 

NPRN 525477 
 

Boathouse, 
Ynysmaengwyn 

Boat House  Structure 259691, 
302499 

Visit 

NPRN 518856 
 

Aberdyfi Fish Trap 1 Fish Trap Structure  260201, 
295815 

Visit 

NPRN 518857 
 

Aberdyfi Fish Trap 2 Fish Trap Structure  260087, 
268874 

Visit 

PRN 59658 
 

Structure, Remains 
Of, NW Of Coed Y 
Gweddill 

Structure Structure 257735, 
308543 

Desk-Based 

NPRN 411279 
 

Concrete Slipway, 
Fron-Goch 

Slipway Structure 266380, 
297140 

Desk-Based 

PRN 25085 
 

Wharf, Aberdyfi Wharf Structure 261713, 
295988 

Desk-Based 

409087 Llangelynin Fish Trap Fish Trap Other 
Structure 

256870, 
307300 

Desk-Based 

59661 
 

Structure, Remains 
Of, NW Of Cae-Du 

Structure Structure 256820, 
306200 

Desk-Based 

411870 
 

Peat Cuttings, 
Submerged Forest, 
Towyn 

Peat 
cutting 

Structure 258400, 
298800 

Desk-Based 

Regular Fieldsystems 

Aerial Photograph 
CUCAP_BUB_63_
7775   

Feature 7 Cropmark Complex Buried 
features 

260846, 
303557 

Visit 

Aerial Photograph 
Oblique_2006_29
09 

Feature 4 Cropmark Square 
enclosure 

Buried 
features 

260490, 
303198 

Visit 

NPRN  310263 
 

Square Barrow 
Cemetery, Croes 
Faen 
 

Barrow 
Cemetery 

Buried 
Features 

259820, 
301860 

Visit 

Aerial Photograph  
Oblique_995093_
51 

Feature 17 Cropmark Buried 
Feature 

260099, 
301969 

Visit 

NPRN 275900 Bryn-Crug Cropmark 
Complex, South-
West Area 

Complex Buried 
features 

260390, 
303420 

Visit 
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PRN 59660 Ty Coch Farm, 
Remains Of, W Of 
Bodgadfan 

Farmstead Complex 257010, 
306540 

Desk-Based 

PRN 59658 Structure, Remains 
Of, NW Of Coed Y 
Gweddill 

Structure Structure 257735, 
308543 

Desk-Based 

NPRN 302238 Cil- Cemmaes House Building 262120, 
304960 

Desk-Based 

PRN 59786 Wall, Remains Of, 
Ynysmaengwyn 

Wall Buried 
Features 

260100, 
301990 

Desk-Based 

Irregular Fieldsystems LCA 

NPRN 409817 Tollgate Cottage, 
Tywyn 

Toll House Building 259723, 
299484 

Visit 

PRN 4932 Cairn, Site Of, 
Llanfihangel Y 
Pennany 

Cairn Structure 267040, 
308780 

Visit 

NPRN 412911 Llanfendigaid 
Earthworks 

Defended 
Enclosure 

Earthworks 256684, 
304845 

Visit 

Aerial Photograph 
RAF_1450_3006 

Feature 16 Circular 
Enclosure 

Buried 
feature 

259849, 
302061 

Visit 

PRN 1739 Castell Mawr Hillfort, 
S Of Rhoslefain 

Hillfort Earthwork 258020, 
304780 

Desk-Based 

PRN 3820 Tomen Cil Y Parc, 
Tumulus/Motte, Site 
Of, Dysynni 

Barrow Earthwork 261020, 
302530 

Desk-Based 

PRN 38117 Cattle Shed, Mynydd 
Pencoed 

Cow shed Building 267680, 
309880 

Desk-Based 

NPRN 409398 Llanfihangel-Y-
Pennant, Ruin To 
East Of Village 

Farmhouse Ruins 267510, 
308930 

Desk-Based 

NPRN 409397 Maes-Y-Llan Stone 
Spread 

Stone Pile Buried 
feature 

267030, 
309150 

Desk-Based 

Regular Drained Land LCA 

Aerial Photograph  
Oblique_935065_
14 

Feature 10 Circular 
enclosure 

Buried 
Feature 

259206, 
302279 

Visit 

Aerial Photograph  
Oblique_995093_
51 

Feature 17 Cropmark Buried 
Feature 

260099, 
301969 

Visit 

Aerial Photograph 
RAF_1468_4004 

Feature 46 Cropmark Buried 
Feature 

258907, 
299873 

Visit 

PRN 18387 
 

Afon Dyffryn 
Channel, Flood Banks 
And Main Drain, 
Tywyn 

Flood 
Defences 

Earthwork 258700, 
299450 

Visit 

PRN 4811 
 

Cropmark, N Of 
Croes Faen 

Cropmark Buried 
feature 

259530, 
301970 

Desk-Based 

PRN 4812 
 

Cropmark, N Of 
Croes Faen 

Cropmark Buried 
feature 

259660, 
301810 

Desk-Based 

Irregular Drained Land LCA 
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PRN 34190 Glan Y Morfa, 
Bryncrug 

Farmstead Building 261190, 
304100 

Visit 

PRN 4932 Cairn, Site Of, 
Lanfihangel Y 
Pennany 

Cairn Structure 267040, 
308780 

Visit 

NPRN 412911 Llanfendigaid 
Earthworks 

Defended 
Enclosure 

Earthworks 256684, 
304845 

Visit 

Aerial Photograph  
RAF_1450_3006 

Feature 16 Circular 
enclosures 

Buried 
featuers 

259849, 
302061 

Visit 

NPRN 40913 Caethle Mill Woollen 
Mill 

Not recorded 259720, 
299350 

Desk-Based 

Ancient Woodland 

PRN 57995 Building And Walled 
Garden, E Of Bod 
Talog 

Walled 
Garden 

Structure 260183, 
299536 

Visit 

Ancient 
Woodland 
Inventory 

Tirgawen Ancient 
Woodland 

Ancient 
Woodland 

Ancient 
Woodland 

262732, 
306896 

Visit 

PRN 26309 Bank, Tirgawen Bank Earthwork 262716, 
306813 

Visit 

PRN 2986 Ffynnon Y Fron, 
Dysynni 

Well Structure 260940, 
306370 

Desk-Based 

PRN 26326 Wall, Tirgawen Wall Structure 262779, 
306953 

Desk-Based 

PRN 57954 Cormorant Cottage, 
E Of Peniarth-Uchaf 

Building Building 263486, 
307371 

Desk-Based 

PRN 57957 Building, W Of 
Coach-House And 
Stables At Peniarth-
Uchaf 

Building Building 263254, 
307432 

Desk-Based 

PRN 26307 Building Platform, 
Tirgawen 

Building 
platform 

Structure 262724, 
306820 

Desk-Based 

Modern Woodland LCA 

2016 OS Map Bwlch Modern 
Woodland 

Modern 
Woodland 

woodland 256966, 
305350 

Visit 

PRN 26330 Path, Tirgawen Path Earthwork 262736, 
307503 

Visit 

NPRN 302615 Bwlch, Field 
Boundary Marker 

Boundary 
Stone 

Structure 256980, 
305270 

Visit 

PRN 26328 Boundary Bank, 
Tirgawen 

Boundary 
Bank 

Earthwork 262711, 
307282 

Desk-Based 

PRN 26329 Gateway, Tirgawen Gateway Structure 262687, 
307274 

Desk-Based 

3037 Hafotty-Hendre Farmstead Building 267680, 
306340 

Desk-Based 

9191 Moelfre Trough, 
Llanfihangel-Y-
Pennant 

Trough Structure 268160, 
305470 

Desk-Based 

Rough Pasture LCA 

PRN 26323 
 

Drystone Wall, 
Tirgawen. 

Wall Structure 262574, 
307077 

Visit 
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PRN 26317 
 

Barn, Tirgawen Barn Structure 262550, 
307057 

Visit 

PRN 20563 
 

Level, Foel Ty'r 
Gawen 

Level Structure 262200, 
307100 

Visit 

L1 Survey, Porter 
2017 

Feature 22 Sheepfold Structure 264874, 
306928 

Visit 

L1 Survey, Porter 
2017 

Feature 23 Farmstead Structure 264842, 
306922 

Visit 

NPRN 286569 
 

Peat Cutting, Trum 
Gelli 

Peat 
cutting 

Earthwork 265478, 
301704 

Desk-Based 

PRN 9208 
 

Bryn Eglwys Quarry 
Bridge 2, 
Llanfihangel-Y-
Pennant 

Bridge Structure  269050, 
305700 

Desk-Based 

NPRN 286621 
 

Boundary Bank, 
Braich Ddu Se Peak 

Boundary 
Bank 

Earthwork 267944, 
300897 

Desk-Based 

NPRN 501077 
 

Allt-Lwyd, Bank Xi Bank  Earthwork 260237, 
307733 

Desk-Based 

NPRN 286541 
 

Boundary, Nant 
Braich-Y-Rhiw N 
Slopes 

Boundary Earthwork 262905, 
302180 

Desk-Based 

NPRN 501127 
 

Cwm-Llwyd, Sheep 
Wash Ii 

Sheep 
wash 

Structure 261683, 
308774 

Desk-Based 

NPRN 501117 
 

Cwm-Llwyd, Sheep 
Pen Vi 

Sheep Pen Earthwork 261530, 
308561 

Desk-Based 

NPRN 501211 
 

Bodwylan, Clearance 
Cairn Iii 

Clearance 
Cairn 

Structure 261466, 
309532 

Desk-Based 

PRN 26343 
 

Sheepfold, Tirgawen Sheep fold Structure 262238, 
307006 

Desk-Based 

NPRN 500985 
 

Cwm-Llwyd, Sheep 
Pen Iii 

Sheep pen Earthwork 262427, 
309638 

Desk-Based 

NPRN 286512 
 

Clearance Cairn, 
Nant Braich-Y-Rhiw 
N Slopes 

Clearance 
Cairn 
  

Earthwork 263250, 
301240 

Desk-Based 

NPRN 286544 
 

Sheep Fold, Nant Y 
Bala 

Sheep fold Ruins 263887, 
301160 

Desk-Based 

NPRN 286506 
 

Ditch, Nant Braich-Y-
Rhiw N Slopes 

Ditch Earthwork 263206, 
301778 

Desk-Based 

NPRN 286533 
 

Sheep Fold, Dolau-
Gwyn 

Sheep fold Ruins 265162, 
302464 

Desk-Based 

Military LCA  

NPRN 411783 Pillbox, The Crossing, 
Aberdyfi 

Pillbox Building 259540, 
296350 

Visit 

PRN 7281 Military Camp, 
Tonfanau 
 

Complex Buried 
features 

256500, 
304300 

Visit 

NPRN 301971 Tywyn Memorial 
Hospital  

Hospital Building 259100, 
300506 

Visit 

NPRN 404790 Neptune Hall, 
Neptune Road, 
Tywyn 

House Building 258061, 
299926 

Visit 
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PRN 7287 Rifle Range, Tywyn Firing 
Range 

Structure 258650, 
298780 

Visit 

PRN 18395 Pill-Box, Tywyn 
 

Pillbox Structure 258530, 
298860 

Visit 

PRN 29514 Shooting Butt, Tywyn Shooting 
Stand 

Earthwork 258680, 
298840 

Desk-Based 

NMRW 270343 Pillbox (Type Fw3-
23), Towyn 

Pillbox Building 259000, 
297760 

Desk-Based 

Ornamental LCA 

PRN 4420 Peniarth Gardens, 
Llanegryn 

Garden Landscape 261200, 
305400 

Visit 

PRN 11886 Dovecote, 
Ynysmaengwyn, 
Tywyn 

Dovecote Structure 259816, 
302328 

Visit 

NPRN 525477 Boathouse, 
Ynysmaengwyn 

Boat House Structure 259691, 
302499 

Visit 

NPRN 54224 Ynysmaengwyn;Ynys
-Y-Maengwyn, 
Structures On South 
Side Of Yard 
Northwest Of Ruined 
Mansion, Bryn-Crug 

Cottage Building 259860, 
302330 
 

Desk-Based 

NPRN 28635 Peniarth Estate 
Office 

Estate 
Office 

Building 261200, 
305440 

Desk-Based 

PRN 12431 Peniarth House, 
Dysynni 

House Building 261215, 
305401 

Desk-Based 

NPRN 28716 Rhowniar 
 

Mansion Building 259991, 
298220 

Desk-Based 

Wetland and Beach LCA 

PRN 59667 
 

Line Of Boulders, 
Aberdyfi 

Feature Structure 260180, 
295950 

Visit 

PRN 997 Pont Dysynni Bridge 
 

Bridge Structure 259904, 
303848 

Visit 

PRN 18385 Afon Dyffryn Gwyn 
Outfall, Tywyn. 
 

Outfall 
Sewer 

Structure 258250, 
299350 

Visit 

NPRN 524780 Submerged Forest, 
Tywyn 
 

Submerged 
Forest 

Topography 258511, 
298584 

Visit 

NPRN 518856 
 

Aberdyfi Fish Trap 1 Fish Trap Structure  260201, 
295815 

Visit 

NPRN 518857 
 

Aberdyfi Fish Trap 2 Fish Trap Structure  260087, 
268874 

Visit 

PRN 16601 Peat Exposured, 
Tywyn 
 

Peat 
Deposit 

Buried 
Features 

258550, 
298530 

Visit 

NPRN 411870 
 

Peat Cuttings, 
Submerged Forest, 
Towyn 

Peat 
Cutting 

Structure 258400, 
298800 

Visit 

NPRN 409087 Llangelynin Fish Trap 
 

Fish Trap Structure 256870, 
307300 

Desk-Based 
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PRN 24002 Sea Bank, Dysynni 
Marshes 
 

Sea 
Defences 

Structure 256698, 
302603 

Desk-Based 

PRN 59661 
 

Structure, Remains 
Of, NW Of Cae-Du 

Structure Structure 256820, 
306200 

Desk-Based 

PRN 59658 
 

Structure, Remains 
Of, NW Of Coed Y 
Gweddill 

Structure Structure 257735, 
308543 

Desk-Based 

Tourism and Recreation 

PRN 25077 Golf Course Aberdyfi 
 

Golf Course Designed 
Landscape 

259510, 
296652 

Visit 

NPRN 409862 Brynffynon; Bryn-Y-
Ffynnon 

House Building 261875, 
303615 

Visit 

PRN 11886 Dovecote, 
Ynysmaengwyn, 
Tywyn 

Dovecote Structure 259816, 
302328 

Visit 

NPRN 404790 Neptune Hall, 
Neptune Road, 
Tywyn 

House Building 258061, 
299926 

Visit 

PRN 25069 Railway Bridge, 
Aberdyfi 

Railway 
Bridge 

Structure 261124, 
295988 

Desk-Based 

NPRN 28714 Rhowniar, Cruck Hall House Building 259720, 
298240 

Desk-Based 

NPRN 28551 Maengwyn Street 
5,6,7 

Dwelling Building 258000, 
300000 

Desk-Based 

Modern Settlement LCA 

NPRN 421672 
 

Christ The King 
Catholic Church, 
Aberdyfi 
 

Church Building 260958, 
296012 

Visit 

NPRN 301971 
 

Tywyn Memorial 
Hospital  
 

Hospital Building 259100, 
300506 

Visit 

PRN 7285 
 

Promenade, Tywyn 
 

Promenade Complex 257850, 
300360 

Visit 

NPRN 420927 
 

Marconi 
Bungalowws, Tywyn 
 

Settlement Building 259505, 
300183 

Visit 

888 
 

Marconi Wireless 
Station Site Of 
Tywyn, Tywyn 
 

TELEGRAPH 
STATION 

Building - 
Roofed 

259500, 
300100 

Desk-Based 

409657 
 

Plas Penhelig 
 

House Building 262139, 
296333 

Desk-Based 

Historic Settlement 

NPRN 308288 Pont Fathew, 
Bryncrug 

Bridge Structure 260900, 
303320 

Visit 

NPRN 409862 Brynffynon; Bryn-Y-
Ffynnon 

House Building 261875, 
303615 

Visit 
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25084 Literary Institute, 
Former Bath House, 
Aberdyfi308288 

Literary 
And 
Scientific 
Institute 

Building 261707, 
295997 

Visit 

25117 No. 2 Mervinia 
Terrace, Aberdyfi 

Terraced 
House 

Building 261838, 
296096 

Visit 

NPRN 43861 St Cadfan's Church, 
Tywyn 

Church Building 258824, 
300951 

Visit 

405304 The Vicarage, 
Outbuilding, 
National Street 

Coach 
House 

Building 258862, 
300798 

Visit 

28396 Frankwell Street; 16-
17; Almshouses 
Tywyn 

Almshouse Building 258950, 
300860 

Visit 

34946 Talyllyn Railway; Tal-
Y-Llyn Railway 

Railway Complex 258550, 
300450 

Visit 

NPRN 404790 Neptune Hall, 
Neptune Road, 
Tywyn 

House Building 258061, 
299926 

Visit 

4804 St. Cadfan's Chapel, 
Site Of, Tywyn 
Churchyard 

Chapel Earthwork 258830, 
300960 

Desk-Based 

4798 St. Cadfan's Inscribed 
Stone, Tywyn Church 

Inscribed 
Stone 

Structure 258820, 
300950 

Desk-Based 

28250 Cae'r Berllan: Gate 
Piers And Wall 

Gate Post Structure 266300, 
307800 

Desk-Based 

4408 Caeberllan Garden, 
Llanfihangel-Y-
Pennant 

Garden Landscape 266297, 
307786 

Desk-Based 

41620 Corbett Arms Hotel - 
Coach Hse 

Out-
Building 

Building 258870, 
300998 

Desk-Based 

4800 Stone Setting, Tywyn 
Churchyard 

Stone 
Setting 

Structure 258770, 
300940 

Desk-Based 
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LCA Number of LCFs LCFs assessed in 
Vulnerability Index 

Percentage of LCFs 
included in Vulnerability 
Index (%) 

Ancient 218 17 8 

Historic Settlement 161 15 9 

Modern Settlement 10 6 60 

Historic Industry 263 18 7 

Modern Industry 5 4 80 

Maritime Industry 43 10 23 

Regular Fieldsystems 46 9 20 

Irregular Fieldsystems 49 9 18 

Regular Drained Land 22 7 32 

Irregular Drained Land 17 5 29 

Ornamental 25 7 28 

Tourism and Recreation 24 7 29 

Ancient Woodland 46 8 17 

Modern Woodland 22 7 32 

Rough Pasture 702 19 3 

Wetland and Beach 26 12 46 

Military 28 8 29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table Ap3.4: Number of sites that characterise each LCA 

 



396 
 

Table Ap3.5: Stage 1 Vulnerability Index results for each Landscape Character Feature assessed, in 

ascending order of Stage 1 score 

 

PRN/NPRN Name Level of 
Preservat
ion (1-5) 

Resista
nce of 
Remain
s (1-5) 

Resistance 
of 
Substrate 
(1-5) 

Susceptibili
ty to 
Temperatur
e Change 
(1-5) 

Susceptibil
ity to 
Precipitati
on Change 
(1-5) 

Stage 1 
Score 

LCA 

421672 Christ The 
King 
Catholic 
Church, 
Aberdyfi 

1 1 1 1 1 1 Modern 
Settlement 

28714 Rhowniar, 
Cruck Hall 

1 1 1 1 1 1 Tourism and 
Recreation 

409657 Plas 
Penhelig 

1 1 1 1 1 1  Modern 
Settlement 

308288 Pont 
Fathew, 
Bryncrug 

1 1 3 1 1 1.4 Historic 
Settlement 

34190 Glan Y 
Morfa, 
Bryncrug 

1 1 1 1 3 1.4 Irregular 
Drained Land 

25117 No. 2 
Mervinia 
Terrace, 
Aberdyfi 

1 1 2 1 2 1.4 Historic 
Settlement 

525497 Engine 
Shed And 
Works, 
Ton-Fanau 
Quarry 

1 1 2 1 2 1.4 Modern 
Industry 

43861 St Cadfan's 
Church, 
Tywyn 

1 1 3 1 1 1.4 Historic 
Settlement 

301971 Tywyn 
Memorial 
Hospital  

1 1 3 1 1 1.4 Modern 
Settlement; 
Military 

404790 Neptune 
Hall, 
Neptune 
Road, 
Tywyn 

1 1 3 1 1 1.4 Tourism and 
Recreation; 
Military; 
Historic 
settlement 

28250 Cae'r 
Berllan: 
Gate Piers 
And Wall 

2 2 1 1 1 1.4  Historic 
Settlement 

28635 Peniarth 
Estate 
Office 

1 1 3 1 1 1.4 Historic 
Settlement; 
Ornamental  

41337 Rhyd-Yr-
Onen 
Station 

1 1 3 1 1 1.4  Historic 
Industry 

41620 Corbett 
Arms Hotel 
- Coach Hse 

1 1 3 1 1 1.4 Historic 
Settlement 

20746 Dolgoch 
Viaduct, 
Talyllyn 

1 1 2 1 2 1.4 Historic 
Industry 

12431 Peniarth 
House, 
Dysynni 

1 1 3 1 1 1.4 Historic 
Settlement; 
Ornamental 

25085 Wharf, 
Aberdyfi 

1 1 2 1 2 1.4  Maritime 
Industry 

997 Pont 
Dysynni 
Bridge 

2 1 3 1 1 1.6 Wetland and 
Beach 
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25084 Literary 
Institute, 
Former 
Bath 
House, 
Aberdyfi 

1 1 2 2 2 1.6 Historic 
Settlement 

301736 Tal-Y-Gareg 
Hillfort 

1 2 2 2 1 1.6 Ancient 

11886 Dovecote, 
Ynysmaeng
wyn, Tywyn 

2 1 3 1 1 1.6 Ornamental; 
Tourism and 
Recreation 

405304 The 
Vicarage, 
Outbuilding
, National 
Street 

1 1 3 1 2 1.6 Historic 
Settlement 

28396 Frankwell 
Street; 16-
17; 
Almshouse
s Tywyn 

1 1 3 1 2 1.6 Historic 
Settlement 

34946 Talyllyn 
Railway; 
Tal-Y-Llyn 
Railway 

1 1 4 1 1 1.6 Historic 
Settlement 

7285 Promenade
, Tywyn 

1 1 4 1 1 1.6 Modern 
Settlement 

420927 Marconi 
Bungalows, 
Tywyn 

1 1 3 1 2 1.6 Modern 
Settlement 

28551 Maengwyn 
Street 5,6,7 

1 1 4 1 1 1.6 Tourism and 
Recreation 

28716 Rhowniar 1 1 4 1 1 1.6 Ornamental 

57953 Cormorant 
Cottage, E 
Of 
Peniarth-
Uchaf 

3 1 2 1 1 1.6  Ancient 
Woodland 

25069 Railway 
Bridge, 
Aberdyfi 

1 1 4 1 1 1.6  Tourism and 
Recreation 

24002 Sea Bank, 
Dysynni 
Marshes 

2 1 3 1 1 1.6 Wetland and 
Beach 

409862 Brynffynon; 
Bryn-Y-
Ffynnon 

1 1 2 1 4 1.8 Historic 
Settlement; 
Tourism and 
Recreation 

501054 Allt-Lwyd, 
Stone 
Quarry Vii 

3 2 2 1 1 1.8 Historic 
Industry 

4931 Castell Y 
Bere 

3 1 3 1 1 1.8 Ancient 

18385 Afon 
Dyffryn 
Gwyn 
Outfall, 
Tywyn. 

2 1 4 1 1 1.8 Wetland and 
Beach 

286512 Clearance 
Cairn, Nant 
Braich-Y-
Rhiw N 
Slopes 

2 2 2 2 1 1.8 Rough 
Pasture 

286544 Sheep Fold, 
Nant Y Bala 

3 2 2 1 1 1.8 Rough 
Pasture 

302238 Cil- 
Cemmaes 

2 1 3 1 2 1.8 Regular 
Fieldsystems 
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888 Marconi 
Wireless 
Station Site 
Of Tywyn, 
Tywyn 

1 1 3 1 3 1.8 Military; 
Modern 
Settlement 

26343 Sheepfold, 
Tirgawen 

3 2 2 1 1 1.8 Rough 
Pasture  

4798 St. Cadfan's 
Inscribed 
Stone, 
Tywyn 
Church 

2 2 3 1 1 1.8  Historic 
Settlement 

4938 Standing 
Stone, 
Llanfihange
l Y Pennant 

2 2 3 1 1 1.8  Ancient 

411783 Pillbox, 
Tywyn 

3 1 4 1 1 2 Military; 
Wetland and 
Beach 

501053 Allt-Lwyd; 
Stone 
Quarry Iii 

3 2 2 1 2 2 Historic 
Industry 

501068 Allt-Lwyd, 
Pillow 
Mound V 

1 1 2 2 4 2 Ancient 

409817 Tollgate 
Cottage, 
Tywyn 

1 1 3 1 4 2 Irregular 
Fieldsystems 

21875 Pant Y Cae 
Mine, 
Tywyn 

4 2 2 1 1 2 Historic 
Industry 

4932 Cairn, Site 
Of.  

1 1 1 2 5 2 Irregular 
Drained Land; 
Irregular 
Fieldsystems 

525492 Granite 
Quarry, 
Ton-Fanau 

3 2 3 1 1 2 Modern 
Industry 

302615 Bwlch, 
Field 
Boundary 
Marker 

3 2 2 1 2 2 Modern 
Woodland; 
Regular 
Fieldsystems 

3037 Hafotty-
Hendre 

3 2 3 1 1 2 Modern 
Woodland 

54224 Ynysmaeng
wyn;Ynys-
Y-
Maengwyn, 
Structures 
On South 
Side Of 
Yard 
Northwest 
Of Ruined 
Mansion, 
Bryn-Crug 

4 1 3 1 1 2 Historic 
Settlement; 
Ornamental 

286634 Stone 
Circle, 
Trum Gelli 
Se Slopes 

3 2 2 1 2 2  Ancient 

9208 Bryn Eglwys 
Quarry 
Bridge 2, 
Llanfihange
l-Y-Pennant 

4 2 1 1 2 2  Rough 
Pasture 

9254 Bryn Eglwys 
Quarry 
Building 4, 
Llanfihange
l-Y-Pennant 

3 2 3 1 1 2  Historic 
Industry 
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9271 Bryn Eglwys 
Quarry 
Reservoir 1, 
Llanfihange
l-Y-Pennant 

3 1 1 1 4 2  Modern 
Industry 

57957 Building, W 
Of Coach-
House And 
Stables At 
Peniarth-
Uchaf 

3 1 2 1 3 2  Ancient 
Woodland 

38117 Cattle 
Shed, 
Mynydd 
Pencoed 

3 2 3 1 1 2 Irregular 
Fieldsystems 

4800 Stone 
Setting, 
Tywyn 
Churchyard 

3 2 3 1 1 2  Historic 
Settlement 

412911 Llanfendiga
id 
Earthworks 

1 3 2 2 3 2.2 Irregular 
Drained Land; 
Irregular 
Fieldsystems 

26339 Quarry, 
Tirgawen 

5 2 2 1 1 2.2 Historic 
Industry 

7287 Rifle Range, 
Tywyn 

3 1 4 1 2 2.2 Military 

0 Feature 23 4 2 2 1 2 2.2 Rough 
Pasture 

302862 Craig-Yr-
Aderyn, 
Hillfort;Bird
s Rock 

4 2 2 1 2 2.2 Ancient; 
Rough 
Pasture 

407753 Craig Yr 
Aderyn, 
Cairn 

4 2 3 1 1 2.2 Ancient; 
Rough 
Pasture 

286533 Sheep Fold, 
Dolau-
Gwyn 

3 2 2 1 3 2.2 Rough 
Pasture 

270343 Pillbox 
(Type Fw3-
23), Towyn 

3 1 5 1 1 2.2 Military 

501127 Cwm-
Llwyd, 
Sheep 
Wash Ii 

2 2 3 1 3 2.2 Rough 
Pasture 

9207 Bryn Eglwys 
Quarry 
Slate Mill, 
Llanfihange
l-Y-Pennant 

4 2 2 1 2 2.2 Historic 
Industry 

4852 Cairn, Trum 
Gelli 

3 2 2 2 2 2.2 Ancient 

26329 Gateway, 
Tirgawen 

3 2 3 1 2 2.2 Modern 
Woodland 

9191 Moelfre 
Trough, 
Llanfihange
l-Y-Pennant 

2 2 2 1 4 2.2 Modern 
Woodland 

59667 Line Of 
Boulders, 
Aberdyfi 

3 3 4 1 1 2.4 Maritime 
Industry; 
Wetland and 
Beach 

0 Feature 7 1 3 3 2 3 2.4 Regular 
Fieldsystems; 
Ancient 

0 Feature 4 1 3 3 2 3 2.4 Regular 
Fieldsystems; 
Ancient 
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4420 Peniarth 
Gardens, 
Llanegryn 

1 3 1 4 3 2.4 Ornamental 

26317 Barn, 
Tirgawen 

3 2 2 1 4 2.4 Rough 
Pasture 

0 Feature 10 1 3 3 2 3 2.4 Regular 
Drained Land 

310263 Square 
Barrow 
Cemetery, 
Croes Faen 

1 3 3 2 3 2.4 Regular 
Fieldsystems; 
Ancient 

0 Feature 16 1 3 3 2 3 2.4 Irregular 
Fieldsystems; 
Irregular 
Drained Land 

0 Feature 17 1 3 3 2 3 2.4 Regular 
Fieldsystems; 
Regular 
Drained Land 

18395 Pill-Box, 
Tywyn 

4 2 4 1 1 2.4 Military; 
Wetland and 
Beach 

40913 Caethle 
Mill 

3 2 3 1 3 2.4 Irregular 
Drained Land 

275900 Bryn-Crug 
Cropmark 
Complex, 
South-West 
Area;Bryncr
ug 
Cropmarks, 
South-West 

1 3 3 2 3 2.4 Regular 
Fieldsystems 

286506 Ditch, Nant 
Braich-Y-
Rhiw N 
Slopes 

1 3 2 2 4 2.4 Rough 
Pasture 

286541 Boundary, 
Nant 
Braich-Y-
Rhiw N 
Slopes 

4 3 2 2 1 2.4 Rough 
Pasture 

409397 Maes-Y-
Llan Stone 
Spread 

4 2 3 2 1 2.4 Irregular 
Fieldsystems 

409398 Llanfihange
l-Y-
Pennant, 
Ruin To 
East Of 
Village 

3 2 2 1 4 2.4 Irregular 
Fieldsystems 

411279 Concrete 
Slipway, 
Fron-Goch 

3 2 3 1 3 2.4 Ancient 

1739 Castell 
Mawr 
Hillfort, S 
Of 
Rhoslefain 

2 3 2 2 3 2.4 Irregular 
Fieldsystems 

4811 Cropmark, 
N Of Croes 
Faen 

1 3 3 2 3 2.4 Regular 
Drained Land 

4812 Cropmark, 
N Of Croes 
Faen 

1 3 3 2 3 2.4 Regular 
Drained Land 

59658 Structure, 
Remains 
Of, NW Of 
Coed Y 
Gweddill 

3 2 4 1 2 2.4 Regular 
Fieldsystems; 
Wetland and 
Beach  
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1740 Domen 
Ddreiniog;
Motte;Dyffr
yn Dysynni 

2 3 3 2 3 2.6 Ancient 

57995 Building 
And Walled 
Garden, E 
Of Bod 
Talog 

2 1 4 4 2 2.6 Ancient 
Woodland 

0 Tirgawen 
Ancient 
Woodland 

2 3 2 4 2 2.6 Ancient 
Woodland 

26323 Drystone 
Wall, 
Tirgawen. 

4 2 3 1 3 2.6 Rough 
Pasture 

20563 Level, Foel 
Ty'r Gawen 

5 2 2 2 2 2.6 Historic 
Industry 

0 Feature 46 1 3 3 2 4 2.6 Regular 
Drained Land 

18387 Afon 
Dyffryn 
Channel, 
Flood 
Banks And 
Main Drain, 
Tywyn 

2 3 4 1 3 2.6 Regular 
Drained Land 

20561 Quarry, 
Wern 

5 2 3 1 2 2.6 Historic 
Industry 

500985 Cwm-
Llwyd, 
Sheep Pen 
Iii 

5 2 2 1 3 2.6 Rough 
Pasture 

286621 Boundary 
Bank, 
Braich Ddu 
Se Peak 

4 3 2 2 2 2.6 Rough 
Pasture 

500888 Peniarth 
Slate 
Quarry, 
Caban 

3 2 4 1 3 2.6 Historic 
Industry 

500889 Peniarth 
Slate 
Quarry, 
Path 

2 3 3 2 3 2.6 Historic 
Industry 

500914 Cwm-
Llwyd, 
Possible 
Cairn Iv 

3 2 2 2 4 2.6 Ancient 

501211 Bodwylan, 
Clearance 
Cairn Iii 

1 2 4 2 4 2.6 Rough 
Pasture 

2986 Ffynnon Y 
Fron, 
Dysynni 

2 2 3 3 3 2.6 Ancient 
Woodland 

20495 Granite 
Quarry, 
Bach Y Sil 
Nr Towyn 

3 2 3 1 4 2.6 Modern 
Industry 

4804 St. Cadfan's 
Chapel, Site 
Of, Tywyn 
Churchyard 

5 2 3 2 1 2.6 Historic 
Settlement 

59786 Wall, 
Remains 
Of, 
Ynysmaeng
wyn 

3 2 3 1 4 2.6 Regular 
Fieldsystems 

0 Feature 46 1 3 3 2 4 2.6 Regular 
Drained Land 
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0 Feature 22 4 2 5 1 2 2.8 Rough 
Pasture 

286508 Shaft, Cwm 
Pandy 

4 3 2 2 3 2.8 Historic 
Industry 

26328 Boundary 
Bank, 
Tirgawen 

2 3 3 2 4 2.8 Modern 
Woodland 

26307 Building 
Platform, 
Tirgawen 

4 2 4 2 2 2.8 Ancient 
Woodland 

4408 Caeberllan 
Garden, 
Llanfihange
l-Y-Pennant 

1 3 1 4 5 2.8 Historic 
Settlement 

9237 Cwmcwm 
Incline 
Drumhouse
, 
Llanfihange
l-Y-Pennant 

4 2 3 1 4 2.8 Historic 
Industry 

59660 Ty Coch 
Farm, 
Remains 
Of, W Of 
Bodgadfan 

3 2 5 1 3 2.8 Regular 
Fieldsystems 

7281 Military 
Camp, 
Tonfanau 

4 4 3 1 3 3 Military; 
Irregular 
Drained Land 

500855 Bodwylan, 
Causeway 

4 3 3 2 3 3 Historic 
Industry 

500869 Cwm-
Llwyd, Spoil 
Heap I 

3 4 2 2 4 3 Historic 
Industry 

500993 Twllydarren
, Trackway 
Iv 

3 3 3 2 4 3 Historic 
Industry 

501077 Allt-Lwyd, 
Bank Xi 

4 3 2 2 4 3 Rough 
Pasture 

501117 Cwm-
Llwyd, 
Sheep Pen 
Vi 

3 2 4 2 4 3 Rough 
Pasture 

9211 Beudynewy
dd Incline, 
Llanfihange
l-Y-Pennant 

4 3 3 2 3 3 Historic 
Industry 

2977 Enclosure, 
Hut Circle, 
Allt Lwyd 

3 3 2 2 5 3 Ancient 

29514 Shooting 
Butt, Tywyn 

4 3 3 2 3 3 Military 

3820 Tomen Cil Y 
Parc, 
Tumulus/M
otte, Site 
Of, Dysynni 

4 3 3 2 3 3 Irregular 
Fieldsystems 

26326 Wall, 
Tirgawen 

4 2 4 2 3 3 Ancient 
Woodland 

0 Bwlch 
Modern 
Woodland 

3 3 3 4 3 3.2 Modern 
Woodland 

26330 Path; 
Tirgawen 

3 3 3 3 4 3.2 Modern 
Woodland 

5382 Burnt 
Mound, 
Happy 
Valley 

1 3 2 5 5 3.2 Ancient 

26309 Bank, 
Tirgawen 

4 3 4 2 4 3.4 Ancient 
Woodland 
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59661 Structure, 
Remains 
Of, NW Of 
Cae-Du 

4 4 4 2 3 3.4 Wetland and 
Beach; 
Maritime 
Industry 

25077 Golf Course 
Aberdyfi 

1 4 4 4 5 3.6 Recreation/W
etland 

525477 Boathouse, 
Ynysmaeng
wyn 

5 4 4 5 1 3.8 Ornamental; 
Maritime 
Industry 

518856 Aberdyfi 
Fish Trap 1 

5 5 3 3 3 3.8 Maritime 
Industry; 
Wetland and 
Beach 

16601 Peat 
Exposured, 
Tywyn 

5 5 3 3 3 3.8 Wetland and 
Beach; 
Ancient 

411870 Peat 
Cuttings, 
Submerged 
Forest, 
Towyn 

5 5 3 3 3 3.8 Wetland and 
Beach; 
Maritime 
Industry 

409087 Llangelynin 
Fish Trap 

5 4 4 3 3 3.8 Wetland and 
Beach 

524780 Submerged 
Forest, 
Tywyn 

5 5 4 3 3 4 Wetland and 
Beach; 
Ancient 

286569 Peat 
Cutting, 
Trum Gelli 

3 5 4 5 3 4 Rough 
Pasture 

518857 Aberdyfi 
Fish Trap 2 

5 5 4 3 4 4.2 Maritime 
Industry; 
Wetland and 
Beach 

 

 


