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To my wife, Parisa,
And
The dancing seconds
Never-ending on the Homian rocks.

1My birthplace.
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Abstract

Quantum key distribution (QKD) is fundamentally different from
most classical key distribution schemes, such as Diffie-Hellman key
exchange, in the sense that no computational complexity assumption
is required on the power of adversaries to prove its security. QKD
relies on basic laws of quantum physics and it is proven that it can en-
able highly secure data communication. Such achievements, however,
are facing technological problems that have to be resolved in order to
provide a viable solution to a large group of customers. While there
are discrete-variable QKD schemes, which rely on encoding data in
discrete degrees of freedom, such as polarization of single photons,
in this thesis, we focus on the continuous-variable QKD (CV-QKD)
protocols, in which data is encoded on the quadratures of light. Cur-
rently, one of the major drawbacks of CV-QKD is its poor perform-
ance at long distances. Nevertheless, such a limitation in CV-QKD
can be overcome with the assistance of quantum repeaters that rely
on entanglement distillation via noiseless linear amplifiers (NLAs).
Such systems can, in principle, offer large secret key rates over long
distances. In this thesis, we aim to provide a realistic analysis of a CV-
QKD protocol running over quantum scissors (QSs) as realistic NLAs.
We will report the obstacles that one could face in realizing CV-QKD
in such a scenario. A review of CV-QKD and QS-based NLAs will be
given, based on which QS-assisted CV-QKD is proposed. We, partic-
ularly, focus on the modelling of the QSs’ structure and their effect
on the secret key rate aiming to find operational regimes where the
performance of the QKD scheme is enhanced. This study paves the
way for implementing long-distance CV-QKD protocols that rely on
QS/NLA devices over CV quantum repeaters.

In this thesis, we also consider and account for a realistic analysis of
a CV-QKD protocol with non-Gaussian modulation, which is assisted
by the means of QSs. We will show that, while we have to deal with
similar obstacles as in the Gaussian modulation, we can potentially
improve performance of the non-Gaussian modulation protocol.
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As an alternative approach to extend the secure distance of CV-QKD
protocols, the last part of this thesis is devoted to presenting realistic
threat models for satellite QKD, wherein we consider several eaves-
dropping scenarios by limiting eavesdroppers’ access to the trusted
ground and/or satellite stations. In such scenarios, the eavesdropper
has only limited access to the sender and/or receiver stations. For
example, we will explore the case where an eavesdropper can only
receive an attenuated version of the transmitted signals. As well, we
will focus on the case where Eve’s signals would reach the receiver
via a lossy channel inaccessible to the eavesdropper. We show that,
in the case of both Gaussian and non-Gaussian protocols, this lim-
itation would allow trusted parties to achieve higher key rates than
what can be achieved when unrestricted eavesdropping is possible.
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Abbreviations

CM Covariance Matrix
CV Continuous-Variable (States/Systems/Protocols)
CV-QKD Continuous-Variable Quantum Key Distribution
DR Direct Reconciliation
DV Discrete-Variable (States/Systems/Protocols)
DV-QKD Discrete-Variable Quantum Key Distribution
EB Entanglement-Based (QKD)
GG02 Grosshans and Grangier 2002 (CV-QKD Protocol)
Het Hetrodyne Detection
Hom Homodyne Detection
LEO Low-Earth-Orbit (Satellites)
MB-NLA Measurement-Based NLA
NLA Noiseless Linear Amplifier
P&M Prepare-and-Measure (QKD)
QKD Quantum Key Distribution
QM Quantum Memory
QPSK Quadrature-Phase-Shift-Keying (CV-QKD Protocol)
QR Quantum Repeater
QS Quantum Scissor
RL-NLA T. C. Ralph & A. P. Lund Noiseless Linear Amplifier
RR Reverse Reconciliation
SNR Signal-to-Noise Ratio
SNU Shot Noise Units
SPS Signal Photon Source
TMSV Two-Mode Squeezed Vacuum
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with input modes â1− â3 and ân and four output modes b̂1− b̂3 and b̂n.
The transformation matrix of the system is given by (3.7). . . . . . . 51

xiv



LIST OF FIGURES

3.4 (a) The exact success probability of a single QS (lower red), Psucc, and
that based on input intensity approximations (upper blue), PRL

succ. (b)
The exact success probability of a single QS (red), Psucc, and that of
an ideal NLA (grey), upper bounded by 1/g2, versus average photon
number and amplification gain. In all cases, ε = 0 and T = 1. . . . . . 54

3.5 Fidelity of QS’s output with the target amplified state |gα〉 versus input
intensity. In both cases, ε = 0 and T = 1. . . . . . . . . . . . . . . . 55

3.6 (a) The output distribution at the receiver side (solid black), which
comprises Gaussian (dashed blue) and non-Gaussian (dot-dashed red)
parts. Here, VA = 0.05, g = 2, ε = 0, and T = 1. (b) The non-Gaussian
part of the distribution for several different values of modulation vari-
ance and amplification gain. . . . . . . . . . . . . . . . . . . . . . . 57

3.7 The quantum channel and the QS are considered as a combined system
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tem, with input modes â1 − â3, and ân, and output modes b̂1 − b̂3, and
b̂n. The initial state of modes represented by â0 − â1 is given by |Ψ〉01.
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Chapter 1

Introduction

Cryptography is a set of techniques that allow for secure communication where
non-legitimate parties, also called adversaries or eavesdroppers, are present. For
instance, an arbitrary plain text message can be converted into a seemingly
balderdash cipher text via encryption. In order to encrypt a message, a secret
key, which is a piece of random information, is often shared between the two ends
of a communications link. Decryption is then used by the receiver to recover the
plaintext by using the key. See The Code Book by Singh [2002] for the history of
cryptography.

Cryptography has recently been expanded to include new paradigms that
rely on the new field of quantum information science. This new field, known
as quantum cryptography, contains some of the most well-known applications of
quantum communications. The most mature of such applications is quantum
key distribution (QKD), which allows two parties to securely exchange a secret
key through a quantum channel Gisin et al. [2002]. The latter is a physical me-
dium, which is used to send quantum states. The term “quantum” indicates
that in such a key distribution protocol quantum properties such as entangle-
ment and/or non-orthogonality are utilized. Although the key is created using
quantum features, it can also be used for secure transmission of classical informa-
tion, e.g., by using the one-time pad encryption technique, which is known as the
only information-theoretically secure means of encrypting information in the his-
tory of cryptography Shannon [1949]. The significant attribute of QKD, as a key
distribution protocol, is that it does not make any assumption on the power of the

1



eavesdroppers except that they are restricted by the laws of quantum mechanics.
In contrast, classical key distribution techniques are often only secure against
certain groups of adversaries with limited computational power. In this sense,
QKD methods are said to be unconditionally secure Renner [2005]. More import-
antly, QKD offers future-proof security, in the sense that future advancement of
technology would not affect its security.

A potential, and viable, candidate for sending quantum information is light.
In fact, the very first QKD protocol, the so-called BB84 after Bennett & Brass-
ard [1984, 2014], is based on encoding data on the polarization of single photons.
BB84, along with some other methods that use polarization or other degrees of
freedom of single photons (or weak coherent light), are typically called discrete-
variable quantum key distribution (DV-QKD). In contrast, continuous-variable
quantum key distribution (CV-QKD) protocols exploit aspects of light with con-
tinuous representation, such as the amplitude and/or the phase of the electro-
magnetic field.

The recent progress in CV-QKD systems Jouguet et al. [2013] has placed
them in a competitive position with their conventional DV counterparts. For
instance, contrary to DV-QKD protocols, which require single-photon detectors,
CV-QKD systems use coherent detection techniques to measure light quadratures.
Such measurements can be faster and more efficient than single-photon detection.
Moreover, CV-QKD protocols might be the better choice over short distances
Pirandola et al. [2015b].

Continuous-variable QKD at long distances is not, however, as easy as it
sounds. Despite the above progress, once it comes to long distances, CV-QKD
has its own challenges to go beyond hundreds of kilometres Jouguet et al. [2011].
The main physical limitations, apart from imperfection of transmitter and re-
ceiver devices, are path loss and environmental noise. In response to the above
concerns, attractive candidates have been introduced for long-distance QKD that
can be examined. For instance, similar to DV systems, one can think of using
quantum repeaters (QRs) Briegel et al. [1998]. In fact, a CV version of QRs
has recently been proposed by Dias & Ralph [2017], which relies on CV tele-
portation techniques Braunstein & Kimble [1998], Pirandola et al. [2015a] and
noiseless linear amplifiers (NLAs) Caves et al. [2012]. In this dissertation, we will
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1.1 Continuous-variable quantum key distribution: Overview

study the performance of CV-QKD systems that run over components of such
continuous-variable QRs (CV QRs).

The alternative approach to enabling long-distance CV-QKD, in order to in-
crease the secure distance of QKD, is to use satellite-based communications links
Bonato et al. [2009], Bourgoin et al. [2014], Liao et al. [2017b]. Here, the scenarios
such as ground-to-satellite Liao et al. [2017a], satellite-to-ground Ren et al. [2017],
and/or satellite-to-satellite quantum communications channels can be considered.
Satellite-based QKD, in company with a reliable QR infrastructure, can then be
seen as a part of a global solution to quantum cryptography networks Razavi
[2018] that enables quantum internet Kimble [2008], Azuma [2019].

In the following, we present an overview of CV-QKD as well as the CV QR
scheme and satellite-based QKD. Next, at the end of the chapter, we introduce
research objectives and the scope of this study.

1.1 Continuous-variable quantum key distribu-
tion: Overview

Key distribution is a technique that is used by two parties, traditionally named
Alice and Bob, to share a random sequence of bits, such that no adversary, Eve,
can get any information about the values of the light sent. Such a key can then
be used to encrypt and decrypt data between Alice and Bob in “classical” crypto-
graphic protocols, e.g., the one-time pad encryption. QKD is a key distribution
method that relies on the laws of quantum physics, based on which Eve may
not gain information about the key without disturbing the system. This feature,
which can make her presence exposed to the other parties, is studied under the
no-cloning theorem Gisin et al. [2002]. QKD requires two kinds of channel: a
quantum channel and a classical one. The former is used to send quantum states
and the latter to perform classical post-processing, such as error correction and
privacy amplification.

Every QKD protocol relies on certain encoding and decoding techniques,
which in the case of CV-QKD are often called modulation and demodulation,
respectively. Most of CV-QKD protocols use Gaussian modulation to encode and
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1.1 Continuous-variable quantum key distribution: Overview

coherent quadrature measurements to decode the information. Gaussian modu-
lation involves choosing quantum states, such as squeezed or coherent states of
light, by using Gaussian distributions to be sent over a quantum channel. Early
CV-QKD protocols relied on the discrete modulation of Gaussian states Ralph
[1999] or the modulation of squeezed states Cerf et al. [2001]. Subsequently, the
so-called GG02 protocol, which relies on the Gaussian modulation of coherent
states and homodyne detection, was proposed by Grosshans & Grangier [2002],
and developed by Grosshans et al. [2003]. Another CV-QKD scheme that uses
coherent states is called no-switching, in which heterodyne detection is used to
perform the encoding Weedbrook et al. [2004].

In this thesis, we mostly focus on the GG02 protocol (it is schematically
sketched in figure 2.7, in chapter 2, where we will communicate more detail). In
order to implement GG02, Alice chooses coherent states, using a Gaussian mod-
ulation with mean zero and a certain variance, and sends them to Bob through
a quantum channel. Then, using homodyne detection, Bob randomly measures
one of the quadratures of the received signal. These constitute the quantum
phase of the GG02 protocol, which distributes correlated data between Alice and
Bob. In the next stage of the protocol, classical post-processing techniques are
used by Alice and Bob to reconcile the correlated data and establish a secret key,
where the data obtained by measuring both quadratures of light are used for key
extraction.

Although the protocol has successfully been implemented in several exper-
iments, its implementation over long distances faces many technological chal-
lenges. For example, a few works so far successfully demonstrated long-distance
CV-QKD with positive key rates over a channel length of 80-100 km Jouguet
et al. [2013], Huang et al. [2016]. This compares with over 400 and 1200 km
for DV-QKD with optical fibre Boaron et al. [2018] and satellite-to-ground links
Liao et al. [2017a], respectively. This limitation in secure distance is mainly
caused by, apart from communication loss, the existence of excess noise in the
quantum channel and non-ideal reconciliation efficiency. Excess noise can be a
result of interacting with the environment and/or loss in the optical channels,
which also decreases the signal-to-noise ratio (SNR). A received signal with a low
SNR would only reproduce a noisy version of the transmitted signal. In addition,
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1.2 Long-distance continuous-variable quantum key distribution

the reconciliation efficiency highly relies on the SNR Jouguet et al. [2013]. Low
SNR values make reconciliation difficult and reduce its efficiency, which is the
Achilles heel of the Gaussian-modulated CV-QKD. One solution to fight back
this limitation is to realize a discrete-modulated version of the protocol such as
quadrature-phase-shift-keying (QPSK) protocol Leverrier & Grangier [2009].

In order to be able to use CV-QKD over long distances, one may think of QRs
and/or satellites. Such scenarios can, in principle, allow for several thousand of
kilometres of secure distance Razavi [2018]. But, the loss in a satellite link is
typically more than what a CV-QKD system can tolerate, and it is not clear if
CV QRs would be possible at realistic values of noise in the system. This thesis
is an attempt to address such issues by providing a realistic account of system’s
performance when CV-QKD is run over CV QRs as well as finding practical
regimes of operation when satellite-based CV-QKD is possible.

We will further discuss the mathematical groundwork of CV systems, as well
as the Gaussian and non-Gaussian CV-QKD protocols in chapter 2.

1.2 Long-distance continuous-variable quantum
key distribution

1.2.1 Quantum amplifiers and repeaters: Overview

In principle, CV-QKD can be implemented by using coherent states of light.
However, the channel loss, along with the excess noise in the system, which
are the two main impediments that affect the performance of CV-QKD, prevent
perfect realization. As we mentioned earlier, both loss and excess noise affect
the SNR of the received states. One may think of using QRs to overcome these
issues. Several QR proposals have been proposed for both DV and CV quantum
communications Briegel et al. [1998], Dias & Ralph [2017], Furrer & Munro [2018].
The majority of these protocols are proposed for DV systems, while there is less
work towards designing CV QRs and their use in CV-QKD.

The recent probabilistic CV QR scheme proposed by Dias & Ralph [2017]
relies on teleportation of CV states and NLAs Ralph & Lund [2009], Caves et al.
[2012]. This protocol, in principle, can dramatically compensate for the loss
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1.3 Scope of this study

in communication channels; hence, allowing to send quantum data over longer
distances. Nevertheless, this result may not be valid in the presence of noise in the
channels. In addition, NLA operation must be accurately modelled for realistic
devices. Note that building an NLA can be a challenging task. For instance, the
NLA setup in Ralph & Lund [2009] requires on-demand single photon sources
among other circumstances.

Chapter 3 deals with the building block of the CV QR that uses NLAs, in this
thesis quantum scissors, as its innermost part. We further discuss the use of a
quantum scissor in Gaussian and non-Gaussian modulation CV-QKD protocols
in chapters 4 and 5, respectively.

1.2.2 Satellite-based quantum communications: Overview

Similar to classical communication implementations, an alternative to achieve
noticeable rates over long distances is to take advantage of satellites. By launch-
ing a network of satellites, accompanied by a corresponding number of ground
stations, we can overcome large terrestrial losses. In addition, we can avoid large
amounts of excess noise since the noisy part of the free-space communication link
is limited to roughly the first ten kilometres of the atmosphere.

In the last few years, several satellite-based quantum protocols have been
studied both theoretically and experimentally, including quantum teleportation
Ren et al. [2017] and QKD Bonato et al. [2009], Meyer-Scott et al. [2011], Nauerth
et al. [2013], Vallone et al. [2015], Bedington et al. [2017], Liao et al. [2017a,b].
Note that the security proofs for the satellite-equipped QKD protocols are akin
to that of ground-based scenarios, though proper adjustments may need to be
applied.

We further delve into some scenarios that consider realistic threat models of
satellite CV-QKD and review the results obtained for each scenario in chapter 6.

1.3 Scope of this study

Continuous-variable QKD is a promising technique that allows unconditionally
secure communication over a certain distance. In practice, it is, however, limited
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to short distances in comparison to DV-QKD schemes Pirandola et al. [2015b].
This work investigates the possibility of merging existing CV-QKD proposals such
as GG02 with QRs and satellites, hoping to attain large secret key rates at long
distances.

In this thesis, we are aiming to provide a complete and realistic analysis
of the CV QR protocol in Dias & Ralph [2017] and explore if they would, in
practice, enable long-distance CV-QKD. We will model the system by considering
a realistic model of the QS-based NLA setup in Ralph & Lund [2009], where we
need to consider a model for sources that inject single photons into the QSs. We
believe a device based on quantum dots can be a suitable candidate. We also
would include the inevitable excess noise in the telecom channels in our study.
Moreover, we estimate the success probability of the NLA setup based on more
realistic assumptions. That is needed to evaluate the success probability of the
whole CV QR setup. This can eventually pave the way to compare CV QR results
with that of DV QR systems and also to make a cost study. Ultimately, whether
the QS-based CV-QKD protocol would succeed in boosting secret key rates over
long distances is what we investigate in our work. Particularly, we investigate
the performance of a specific CV-QKD system, the GG02 protocol, and its non-
Gaussian discrete modulation version, using a QS at the receiver.

In the second part of this thesis, we look at realistic threat models in satellite
CV-QKD, where we put limitations on eavesdroppers’ power. This is expected to
result in higher key rates than what can be obtained when unrestricted eavesdrop-
ping is assumed. By applying assumptions made on physical channels between
the satellite and the eavesdropper and that with the ground station, which can
be verified by certain detection systems, such as LIDAR, we study the security
of satellite QKD in several settings. Again, we investigate the security proofs of
both Gaussian- and discrete-modulated GG02 protocols.

1.4 Main contributions of this thesis

In chapter 3, we derive exact input-output relationship and exact success probab-
ility for a QS for input coherent and two-mode squeezed vacuum (TMSV) states.
We also investigate the building block of the CV QR, for TMSV input states
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and thermal-loss channels, followed by a QS. We then extend the above to input
thermal states, by means of which we explore the non-Gaussian behaviour of the
QS-assisted channel.

In chapter 4, by focusing on the prepare-and-measure (entanglement-based)
scheme of our QS-assisted CV-QKD system, we work out its exact mutual in-
formation (an upper bound on its Holevo information). We, therefore, lower
bound the secret key rate of the QS-assisted CV-QKD system under Gaus-
sian attacks. We show that secret key rate of the QS system beats the no-
QS one at certain regimes of operation. Our results drafted in chapter 3 and
4 have been published in IEEE Journal of Selected Topics in Quantum Elec-
tronics (DOI: 10.1109/JSTQE.2020.2964395); and made available on the arXiv
[arXiv:1808.01617]. They have also been presented in The Seventh Conference
on Quantum Cryptography (QCrypt17), Cambridge, UK (2017); International
Conference on Quantum, Atomic, Molecular and Plasma Physics (QuAMP17),
Glasgow, UK (2017); and CLEO/Europe, Munich, Germany (2017). Also, rel-
evant to this thesis, a part of our results is published in Journal of the Optical
Society of America B 35, 487-499 (2018), which is not presented here.

In chapter 5, we perform a similar study as in chapter 4 on the QPSK
protocol, whose receiver unit is equipped with a QS. The results presented in
chapter 5 have been published in IEEE Journal on Selected Areas in Commu-
nications (DOI: 10.1109/JSAC.2020.2969058); and made available on the arXiv
[arXiv:1907.13405].

In chapter 6, we model a satellite-to-ground QKD link, by assuming non-ideal
links between (i) Alice and Eve; and (ii) Eve and Bob. By using such a model, we
limit Eve’s access to Alice and/or Bob stations. Next, based on the above model,
we introduce several scenarios that we may need to deal with in a real-world setup.
We work out bounds on the secret key rate for the majority of the scenarios, in
which we examine both GG02 and QPSK protocols. We show that Alice and Bob
can obtain higher key rates as compared to when an unrestricted Eve is assumed.
We observe that as Eve’s access to the transmitted signal becomes less and less,
we approach a classical limit, at which Alice and Bob can exchange secret keys.
Our findings drafted in chapter 6 have been presented in The Ninth Conference
on Quantum Cryptography (QCrypt19), Montreal, Canada (2019).
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1.5 Thesis outline

1.5 Thesis outline

Chapter 2 of this thesis briefly introduces the basic concepts of CV systems as well
as CV-QKD. It gives a sketch of the security proof and the secret key rate of the
coherent-state CV-QKD scheme, GG02, as well as its non-Gaussian modulation
version. In chapter 3, NLAs are discussed. It also details the QS-based NLA
setup. Also, we describe the building blocks of the CV QR in full and provide
an exact model. In chapters 4 and 5, we analyse, respectively, the integration of
the Gaussian- and discrete-modulated CV-QKD and NLAs. It explains how the
NLA techniques can, in principle, increase the distance range of the CV-QKD
scheme. In chapter 6, we study CV-QKD protocols in satellite-to-ground links,
where, considering several eavesdropping scenarios, realistic threat models are
examined. The thesis is summarized in chapter 7, where we also present future
work.
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Chapter 2

Continuous-variable quantum key
distribution

In this chapter, we review the key concepts and techniques in the continuous-
variable systems. Here we consider Gaussian systems as they are most relevant
to our study. Subsequently, we present a well-known protocol of CV-QKD, which
uses coherent states, i.e., the so-called GG02 protocol, as well as its discrete
modulation version. For such protocols, we assess the possible use of quantum
scissors for long-distance CV-QKD in chapters 4 and 5, and study realistic threat
models for satellite CV-QKD in chapter 6.

2.1 Nomenclature for continuous-variable quantum
systems

In this section, we define the notation that will be used in this manuscript. A
continuous-variable system of M bosonic modes is described by a Hilbert space
H = ⊗M

j=1Hj, where each Hj represents an infinite-dimensional single-mode Fock
space. Each bosonic mode j is described by a pair of bosonic field operators
Glauber [1963], Gerry & Knight [2005], the so-called annihilation and creation
operators, denoted, respectively, by âj and â†j, satisfying the following canonical
commutation relation

[âj, â†k] = δjk1∞, (2.1)
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2.1 Nomenclature for continuous-variable quantum systems

where δjk is the Kronecker delta function. Note that throughout this dissertation
we identify the identity operator by the notation, 1d, where d specifies the di-
mension of the corresponding Hilbert space. The infinite-dimensional single-mode
Hilbert space Hj is spanned by Fock basis {|nj〉}∞nj=1 satisfying

n̂j|nj〉 = nj|nj〉, (2.2)

where n̂j = â†j âj is the number operator. The action of annihilation and creation
operators on the Fock number states are given by

âj|nj〉 = √nj |nj − 1〉 and â†j|nj〉 =
√
nj + 1 |nj + 1〉, (2.3)

with âj|0〉 = 0, where |0〉 is the so-called vacuum state.
Alternatively, an M -mode CV system can be represented by a general vector

Â := (â1, â
†
1, . . . , âM , â

†
M)T , (2.4)

where ÂT is the transpose of the quadrature vector and [Âj, Â†k] = Ωjk1∞, j, k =
1, . . . ,M . In above, Âj is the ith element of the vector Â, and Ωjk is the element
of the jth row and kth column of the so-called symplectic matrix

Ω =
M⊕
m=1

ωm, ωm =
(

0 1
−1 0

)
∀ m, (2.5)

where ⊕ is the block-diagonal direct sum over ωms.
The quadrature representation is another way to describe CV systems Braun-

stein & van Loock [2005]. It is based on the position, X̂j, and momentum, P̂j,
quadratures of a quantum harmonic oscillator Gerry & Knight [2005]. The quad-
ratures are related to the bosonic field operators as follows

âj = X̂j + iP̂j
2 and â†j = X̂j − iP̂j

2 , (2.6)

which implies the quadrature commutation relation [X̂j, P̂k] = 2iΩjk1∞, where
we have chosen the reduced Planck constant ~ ≡ 2 (the value is in accord with
normalizing vacuum noise to 1, as we will shortly explain). One can also introduce
the eigenstates of the quadrature operators |Xj〉 and |Pj〉 by X̂j|Xj〉 = Xj|Xj〉
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2.1 Nomenclature for continuous-variable quantum systems

and P̂j|Pj〉 = Pj|Pj〉, where Xj, Pj ∈ R are continuous eigenvalues for the position
and momentum eigenstates, which are related via the following Fourier transforms

|Xj〉 = 1√
π

∫
dPje

iXjPj |Pj〉 and |Pj〉 = 1√
π

∫
dXje

−iXjPj |Xj〉. (2.7)

The integration above is from −∞ to +∞, as will be the case for all integrals here-
after unless stated otherwise. For each optical mode j, the position-momentum
pairs (Xj, Pj) can be associated with a Cartesian coordinate system and make
the so-called phase space.

Furthermore, the quadrature representation can easily be extended to describe
an M -mode CV system. Similar to (2.4), we can define

Q̂ := (X̂1, P̂1, . . . , X̂M , P̂M)T (2.8)

having Q̂|Q〉 = Q|Q〉, where |Q〉 := (|Q1〉, . . . , |Q2M〉)T , with the commutation
relation [Q̂j, Q̂k] = 2iΩjk holding between each pair of Q̂.

We now define two notions that are used to describe CV states. The first,
which is called the displacement vector, is the mean value of the quadratures of
the CV state ρ̂, given by Q̄ = (Q1, . . . , Q2M), where

Qj := tr(ρ̂Q̂j), j = 1, . . . , 2M, (2.9)

and Q̂j is the jth element of Q̂. The second is called the covariance matrix (CM),
denoted by V , which is a 2M × 2M real and symmetric matrix defined as

Vjk ≡ V (Q̂j, Q̂k) := 1
2〈Q̂jQ̂k + Q̂kQ̂j〉 − 〈Q̂j〉〈Q̂k〉. (2.10)

The mean vector and CM elements are also called the first and second statistical
moments of quantum states, respectively. The variance of a single quadrature
Q̂j, V (Q̂j) ≡ V (Q̂j, Q̂j), is a diagonal element of the CM, i.e.,

V (Q̂j) = 〈Q̂2
j〉 − 〈Q̂j〉2. (2.11)

The symplectic matrix and the CM must satisfy the following relation V+iΩ ≥
1 Simon et al. [1994]. From the diagonal elements of such an inequality we can find
the typical Heisenberg relation for position and momentum, i.e., V (X̂j)V (P̂j) ≥ 1.
We define Aj = V (X̂j)V (P̂j) as the uncertainty area of a single-mode quantum
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2.1 Nomenclature for continuous-variable quantum systems

state. As an example, for the vacuum state we have V (X̂) = V (P̂ ) = 1; hence,
the uncertainty area of such a state is A0 = 1. With this result and the fact that
its mean value reads Q̄ = (0, 0), we can now “visualize” the vacuum state on the
position-momentum phase space; see figure 2.1.

In addition, if a real matrix, E, exists such that Ω = EΩET , then for a Gaussian
quantum state, corresponding to the CM V , we have

V = EV diagET , V diag =
M⊕
m=1

vm12, (2.12)

where vms are the symplectic eigenvalues of the CM. In fact, for any CM V , there
exists a proper symplectic transformation, E, that diagonalizes the CM. It implies
that the Gaussian quantum state associated with the CM is decomposed into M
thermal states; see section 2.1.2. This fact makes computing Holevo information,
as a crucial part in key rate analysis of CV-QKD protocols, manageable as we
show in section 2.2.3.

2.1.1 Characteristic functions and quasi-probability dis-
tributions

Mathematical objects such as characteristic functions are tools that help us to
describe quantum systems. As we will see later, it is convenient to introduce
characteristic functions, whereby we can uniquely define an arbitrary quantum
state. The most common ones are normally-, symmetric-, and antinormally-
ordered characteristic functions, which, for the single-mode state ρ̂ are defined,
respectively, as follows:

χρ̂N(ξ) =tr(ρ̂D̂N(â, ξ)),

χρ̂S(ξ) =tr(ρ̂D̂(â, ξ)),

χρ̂A(ξ) =tr(ρ̂D̂A(â, ξ)), (2.13)

where, for ξ ∈ C, D̂(â, ξ) = eξâ
†−ξ∗â is the displacement operator Glauber

[1963] and D̂N(â, ξ) = eξâ
†
e−ξ

∗â and D̂A(â, ξ) = e−ξ
∗âeξâ

† are its normally- and
antinormally-ordered versions, respectively.
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2.1 Nomenclature for continuous-variable quantum systems

Knowing one of the above functions, one can uniquely find its associated
quantum state. For instance, by using the antinormally-ordered characteristic
function one can work out the state in the optical mode â, as follows

ρ̂ =
∫ d2ξ

π
χρ̂A(ξ)D̂N(â, ξ), (2.14)

where
∫
d2ξ ≡

∫
dξr

∫
dξi, assuming that ξ = ξr+iξi with ξr = Re(ξ) and ξi = Im(ξ)

being the real and imaginary parts of the complex number ξ, respectively.
The Fourier transform of the above functions are also ubiquitously used in

quantum optics, so that they have their own given names. Perhaps the most
well-known of which is the Wigner function, Wρ̂(β), defined by using marginal
(reduced) position and momentum probability distributions1 Leonhardt [1997].
Also, one can show that Wigner function is related to the symmetric characteristic
function via the following Fourier transform:

Wρ̂(β) =
∫ d2ξ

(2π)2χ
ρ̂
S(ξ)e 1

2 (βξ∗−β∗ξ), (2.15)

where ξ∗ is the complex conjugate of ξ. Wigner functions characterize the statist-
ics of the field components X and P in the phase space, and help to visualize the
quantum state of light Leonhardt [1997]. However, such functions can take neg-
ative values and/or become ill-behaved; hence, they represent quasi-probability
distribution functions.

The other two known quasi-probability distributions are Glauber-Sudarshan
Pρ̂(β) Glauber [1963], Sudarshan [1963] and Husimi Qρ̂(β) Husimi [1940] distri-
bution functions, which are defined based on normally- and antinormally-ordered
characteristic functions, respectively. Note that, similar to Wigner functions,
Pρ̂(β) and Qρ̂(β) can also become ill-behaved for some optical quantum states,
e.g., a single-photon Fock state.

1Assuming a Wigner function Wρ̂(β) ≡ Wρ̂(X,P ), marginal distributions fX(X) =∫
dPWρ̂(X,P ) and fP(P ) =

∫
dXWρ̂(X,P ) can, respectively, be defined for position and mo-

mentum.
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2.1 Nomenclature for continuous-variable quantum systems

Such a formulation in (2.13) and (2.14) can be straightforwardly extended
to M -mode systems. For later use in this thesis, we focus on the antinormally-
ordered functions. For a joint M -mode state ρ̂, the antinormally-ordered charac-
teristic function is given by

χρ̂A(ξ1, . . . , ξM) = tr
(
ρ̂
M⊗
j=1

D̂A(âj, ξj)
)
. (2.16)

The density matrix ρ̂ and its antinormally-ordered characteristic function are
then related via the following Fourier-like transformation relationship:

ρ̂ =
∫ d2ξ1

π
· · ·

∫ d2ξM
π

χρ̂A(ξ1, . . . , ξM)
M⊗
j=1

D̂N(âj, ξj). (2.17)

2.1.2 Gaussian states

An optical state is called Gaussian if its Wigner function on the quantum phase
space has a Gaussian form Leonhardt [1997], Weedbrook et al. [2012]. The va-
cuum state |0〉 is a well-known Gaussian state with W0(β) = 2

π
e−|β|

2 . In fact,
majority of optical quantum states that are currently available in laboratories
are Gaussian. In the following, we will introduce the ubiquitously used Gaussian
states in quantum information and communications theory.

We would like to remark that a Gaussian CV state can be completely described
by only its first-order (mean value) and second-order (CM) moments. This can
be seen by the fact that the Wigner function of Gaussian states can uniquely be
written by using only its mean value Q̄ and covariance matrix V , as follows:

Wρ̂(Q) = 1
(2π)2M

√
detV

exp{−1
2(Q− Q̄)TV −1(Q− Q̄)}, (2.18)

where Q = (Q1, . . . , QM) and V −1 is inverse of the CM.
Hereafter, we will consider only single-mode and two-mode CV systems unless

we need to deal with more optical modes.
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Figure 2.1: The vacuum state with uncertainty area A0 = 1 is represented at the
centre of the phase space. A coherent state |α〉 is in fact a displaced vacuum state,
with uncertainty area Aα = A0.

Coherent states

In a single-mode Hilbert space H, the eigenstates of the annihilation operator â,
denoted by |α〉s, are defined as coherent states, i.e.,

â|α〉 = α|α〉, (2.19)

where α ∈ C. As an important property, one can then find the mean photon
number of a coherent state: n̄ = tr(|α〉〈α|n̂) = |α|2. Also, in the Fock basis, a
coherent state is written as the following Gerry & Knight [2005]:

|α〉 =
∞∑
n=0

Fn(α)|n〉, (2.20)

where Fn(α) = αne−|α|
2/2

√
n! is a Poissonian distribution.

A coherent state can also be defined as a result of applying the displacement
operator on the vacuum state, i.e., D̂(â, α)|0〉 = |α〉. We note that for a coherent
state the variance of both quadratures are unity and equal to those of the vacuum
state. As its name indicates, the displacement operator only shifts a coherent
state in the phase space; see figure 2.1.

The set of coherent states is overcomplete over H, meaning that∫
d2α|α〉〈α| = π1∞; (2.21)

therefore, any quantum state ρ̂ can be written in the basis of coherent states as
follows

ρ̂ =
∫
d2αPρ̂(α)|α〉〈α|, (2.22)

where Pρ̂(α) is the Glauber-Sudarshan P function of ρ̂ Walls & Milburn [2008].
For example, one can easily check that for a coherent state |β〉 we have that
P|β〉(α) = δ2(α− β), where δ2(ξ) = δ(ξr)δ(ξi).
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Vacuum state

Vacuum state is perhaps the most important state in quantum physics. It is
involved in a fairly large number of physical phenomena, such as spontaneous
emission, Lamb shift, and Casimir effect, to name a few. In quantum optics,
vacuum state is the only coherent state with zero photons, i.e., n̄|0〉 = 0. The cov-
ariance matrix of the, single-mode, vacuum state reads V|0〉 = 12. Also, as earlier
mentioned, the vacuum state has the minimum variance in both quadratures, i.e.,
V|0〉(X̂) = V|0〉(P̂ ) = 1, the shot noise unit (SNU). We briefly explain how it can
be measured in section 2.1.4.

Thermal states

A thermal state (also known as chaotic light) is a quantum state with no phase
dependence1, which in the Fock basis has the form

ρ̂th = 1
1 + n̄

∞∑
n=0

( n̄
1 + n̄)n|n〉〈n|, (2.23)

where n̄ = tr(ρ̂thn̂) is the mean photon number of the state. One can also write
such a state in the basis of coherent states by using its P function as below:

ρ̂th =
∫
d2α

e−
|α|2

n̄

πn̄ |α〉〈α|, (2.24)

with the same mean photon number as in (2.23). One can show that the un-
certainty area for the thermal state is proportional to its mean photon number
squared; in fact, Ath = (1 + 2n̄)2, which is blown up compared to that of coherent
states with unity uncertainty area; see figure 2.2(a).

Thermal states are crucial in CV-QKD using coherent stats as these are ex-
actly the states that are provided by the sender when she uses a Gaussian mod-
ulation. We will see later how this can be shown from (2.24).

1In quantum optics Gerry & Knight [2005], Walls & Milburn [2008], a phase distribution,
P(φ), can be associated with a density operator, ρ̂, such that P(φ) = 1/(2π)〈φ|ρ̂|φ〉, where
|φ〉 =

∑∞
n=0 e

inφ|n〉. For a thermal state we have that P(φ) = 1/(2π).
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Figure 2.2: (a) A thermal state has an uncertainty area Ath > A0. (b) A squeezed
state can have less variance in one quadrature than the vacuum state, yet Asq ≥ A0.

Single-mode squeezed states

Squeezed states were introduced while quantum physicists where trying to find
states with minimum uncertainty Stoler [1970], Caves [1981]. They were eager to
answer this fundamental question whether or not it is possible to have quantum
states with lower uncertainty values than that of coherent states A0 = 1 (upon
simultaneous measurement of both quadratures) Leonhardt [1997]. The answer
was no. However, it was shown that while we cannot have a state with an uncer-
tainty area less than A0, we can indeed attain a state with less uncertainty/noise
in only one of the quadratures. In fact, one quadrature can have reduced noise
compared to the vacuum while, in consequence, the other quadrature will have
increased noise, with the product of both still saturating the lower bound on the
Heisenberg uncertainty relation. This means that the uncertainty area is squeezed
in one direction, while Asq ≥ A0; see figure 2.2(b). Therefore, A0 was introduced
as the standard quantum limit for noise level.

The way to attain such squeezed states is to apply the single-mode unitary
squeezing operator, Ŝ1(r) = e

r
2 (â2−â†2), on quantum states, where r ≥ 0 is the

squeezing parameter. For example, we obtain a squeezed vacuum state by apply-
ing the squeezing operator on the vacuum state, i.e., Ŝ1(r)|0〉, where r specifies
how squeezed the resultant state is.
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Two-mode squeezed states

The single-mode squeezing idea can also be applied to multi-mode quantum
states, where an operator can jointly act on more than one mode Caves & Schu-
maker [1985]. Such an operation involves two or more optical modes that can pos-
sibly result in creating correlations between them. This is therefore of particular
importance for quantum information and quantum communication applications.
We are here particularly interested in the case where two modes A and B, repres-
ented, respectively, by â and b̂, are involved. The associated two-mode squeezing
operator is defined as Ŝ2(r) = er(âb̂−â

†b̂†) Walls & Milburn [2008]. Of particu-
lar interest is when Ŝ2(r) is applied to the double vacuum state, |0〉A|0〉B. This
operation will generate the so-called two-mode squeezed vacuum state (TMSV):

|TMSV〉 :=Ŝ2(r)|0〉A|0〉B

=
√

1− κ2
∞∑
n=0

(−κ)n|n〉A|n〉B, (2.25)

where κ = tanh(r) ∈ [0, 1]. Such a TMSV state can experimentally be ob-
tained by pumping a non-linear crystal through the process of parametric down-
conversion Villar et al. [2005].

Note that this state is a two-mode CV state with two pairs of quadratures for
modes â = (X̂A, P̂A) and b̂ = (X̂B, P̂B). In fact, assuming Q̂ = (X̂A, P̂A, X̂B, P̂B)T ,
one can show that a TMSV state is a Gaussian CV state with the mean value
zero and the following CM

VTMSV =
(

V 12
√
V 2 − 1 σz√

V 2 − 1 σz V 12

)
, (2.26)

where V = cosh(2r) and σz = diag(1,−1).
The existence of quantum correlation between modes A and B is clear in the

Fock representation of a TMSV state given in (2.25). The correlation between
quadratures of modes A and B can also be revealed by defining the following
operators Weedbrook et al. [2012]

x̂ := X̂A − X̂B√
2

and p̂ := P̂A + P̂B√
2

. (2.27)
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By using (2.11) and (2.26), we can show that the variance of x̂ and p̂ obey (note
that [x̂ , p̂] = 0)

V (x̂ ) = V (p̂) = e−2r. (2.28)

We see that at the limit of infinite squeezing, i.e., r →∞ (corresponds to κ→ 1 in
(2.25)), we have that X̂A = X̂B and P̂A = −P̂B. These perfect correlations allow
to teleport a CV state, such as a coherent state, using a TMSV state Braunstein
& Kimble [1998].

It is interesting to remark that by tracing over one mode of a TMSV state
(2.25), the other mode collapses to a thermal state in the form of (2.24), with a
mean photon number

n̄ = κ2

1− κ2 . (2.29)

In fact, this is the ground where equivalence between prepare-and-measure (P&M)
and entanglement-based (EB) schemes for CV-QKD lays. We will later come back
to this fact in section 2.2. In addition, parameters κ and n̄ are linked with that
of the CM picture, i.e., V . One can work out that κ =

√
(V − 1)/(V + 1) and

n̄ = (V − 1)/2.
As we earlier discussed, any quantum state can uniquely be specified by its

characteristic functions. Since we build some of our analysis based on these func-
tions, we would like to here represent a TMSV state in the terms of antinormally-
ordered characteristic functions. Using (2.17), we can then write a TMSV state
in the following form Razavi [2006]:

ρ̂TMSV =
∫ d2λa

π

∫ d2λb
π

χTMSV
A (λa, λb)D̂N(â, λa)D̂N(b̂, λb), (2.30)

where

χTMSV
A (λa, λb) = e−δ

2(|λa|2+|λb|2)−2δ
√
δ2−1 Re(λ∗aλ∗b ) (2.31)

is its antinormally-ordered characteristic function, with δ = − sinh(r) = −(V −
1)/2 = κ2/(κ2 − 1).

20



2.1 Nomenclature for continuous-variable quantum systems

2.1.3 Continuous-variable modulation

In a P&M CV-QKD protocol, the sender (referred to as Alice) should encode
her key bits into quantum states. Coherent states are natural choices for such a
purpose as information can be encoded in their amplitude and phase, or, altern-
atively, in their two quadratures.

There are different ways to choose what coherent states to use for this encod-
ing, or, “modulation” task. In classical optical communications, we often use a
finite set of states in the form of a constellation. While this technique is extend-
able to CV-QKD, and we will consider it in this thesis, CV-QKD started with a
rather strange encoding that covers the entire phase space; that is the transmitted
signals can be any coherent state. In order to benefit from the optimality of Gaus-
sian distributions when it comes to the channel capacity, Gaussian modulation is
extensively used in CV-QKD; see figure 2.3(a). To put is precisely, Alice uses a
pair of zero-mean independent Gaussian variables with an equal variance. The
variance is considered as a free parameter, which at the end is optimised such that
the communication rate is maximum. We remark that a Gaussian-modulated set
of coherent states has a well-known physical realization: a thermal state sim-
ilar to that given in (2.24). Nevertheless, in practice, the Gaussian-modulated
assumption we make can be impossible to achieve since we are bounded by the
resolution of our devices, and the set of coherent states that can be generated
may be discrete. Fortunately, it is shown that this is not practically significant
Jouguet et al. [2012]. Moreover, an unavoidable laser diode phase noise at Alice
can occur during the preparation stage of the protocol. This means that in each
run Alice prepares a thermal state instead of a coherent state. However, it is
again shown that by precise characterization and calibration, this can even lead
to an increased secret key generation rate Jouguet et al. [2012].

As was mentioned earlier, there is another, rather broad, class of modulation
techniques that can be used in CV-QKD, known as non-Gaussian or discrete
modulation; see figure 2.3(b). Such techniques have their own advantages such as
offering high error reconciliation efficiencies Leverrier & Grangier [2009, 2011]. In
such a modulation, a finite set of coherent sates is considered, from which Alice
can choose. For example, a set of four and eight coherent states, with a fixed
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Figure 2.3: (a) Gaussian modulation of coherent states makes a thermal state with
a certain variance (VA). (b) A discrete, or non-Gaussian, modulation that is made of
only four different coherent states. This specific modulation is also called quadrature-
phase-shift-keying (QPSK) modulation, whose variance is a function of α.

amplitude are studied in Leverrier & Grangier [2011] and Zhang et al. [2018a].
We will consider this class of modulation, which is also known as quadrature-
phase-shift-keying (QPSK) modulation, in section 2.3 as well as chapter 5.

2.1.4 Continuous-variable measurements

In any CV-QKD protocol, at some point, we need to perform measurements. In
DV-QKD protocols, where we need to measure polarization, photon number, or
other discrete degrees of freedom, one can use single photon detectors. How-
ever, in order to measure other—continuous—properties of the light, such as its
quadratures, one would need a different technique. Such measurement methods
are called coherent detection and include homodyne detection and heterodyne
detection Leonhardt [1997].

Homodyne detection is applied to measure a specific quadrature, e.g., X̂s

or P̂s, of the signal field âs. In order to do so, the signal is combined with
a highly stable reference beam, the so-called local oscillator (LO), at a 50:50
beam splitter; see figure 2.4. The local oscillator must be in the matching mode
to what âs represents. Alternatively, the local oscillator effectively filters the
incoming signal by only measuring the mode that is matched, temporally and
spectrally, to itself. Two photodetectors are then used to measure the intensity
of light in each of them. It can then be shown that the difference between the
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Figure 2.4: Homodyne detection. An on-off phase shifter allows to choose which
quadrature to measure.

resulting photocurrents provides us with a value proportional to a measurement
on quadrature Q̂s(φ) = eiφâ†s + e−iφâs, where φ is phase of the local oscillator.
In above, we assumed a balanced homodyne detection, meaning that the beam
splitter used in figure 2.4 is 50:50. One can then choose which quadrature, X̂s or
P̂s, to measure by setting the phase φ to either 0 or π/2, respectively. Note that
running a homodyne detection can face imperfections in practice; we refer to the
recent work by Qin et al. [2018].

Also, the fundamental physical phenomenon of minimum amount of uncer-
tainty/noise, which belongs to the vacuum state, can be measured by means of
homodyne detection. For that the signal port is blocked and kept clear of any
environment photons Kunz-Jacques & Jouguet [2015]. It is worth mentioning
that, in the above, a semi-quantum model of homodyne detection is considered,
i.e., the local oscillator is assumed to behave as a classical field. A fully quantum
picture of coherent detection is studied in Zhou et al. [2018], where the local
oscillator is modelled with a pure coherent state.

Now let us assume that one aims to simultaneously measure both position and
momentum quadratures (or, alternatively, phase and amplitude) of light. Such a
coherent detection task can be performed by using heterodyne detection Walker
& Carroll [1984]. Heterodyne measurement is basically assembled by means of
two homodyne detection modules. To do so, the signal is split to two parts via
a 50:50 beam splitter. Then, one homodyne module measures X̂s and the other
measures P̂s of the optical field âs. Using a 50:50 beam splitter, however, adds at
least a minimum amount of noise, the vacuum noise coming from the signal-free
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part of the beam splitter, to the signals. In fact, this is the reason why one cannot
measure both quadratures simultaneously without adding extra noise.

It is also interesting to remark that by performing a heterodyne measurement
on one part of a TMSV state, the other part collapses to a thermal state, as dis-
cussed in section 2.1.2. This is the same state generated by Gaussian modulation.
We will use this fact to find correspondence between P&M and EB CV-QKD.

Homodyne efficiency and electronic noise

A realistic homodyne detection module, which includes both optical and elec-
tronic equipment, may attenuate the input signal that it is going to measure. We
assume that this attenuation happens by a factor ηD, which is called efficiency
of the homodyne measurement. The measurement module can also add thermal
noise to the photoelectric currents. This basically originates from the detection
electronics; hence, called electronic noise and denoted by νelec. In CV-QKD, both
ηD and νelec are assumed to be inaccessible to the eavesdropper, and are measured
and calibrated by the receiver prior to the quantum communication runs.

We would also like to take this opportunity to mention that in CV-QKD all
kinds of noise are reported in SNU, which is the noise associated with the vacuum
state. As well, electronic noise expressed in SNU and is typically on the order
of 10−2 SNU. In Kumar et al. [2015] is reported electronic noise values as low as
0.003 SNU.

In addition, for the purposes of CV-QKD, a realistic/noisy homodyne detec-
tion can be modelled by using a TMSV state that interferes with an incoming
signal at a beam splitter Garćıa-Patrón & Cerf [2009].

2.1.5 Quantum communication channels

Quantum communication enables two distant parties to communicate over a
quantum channel. Since optical signals are used for encoding data, a bosonic
channel is considered for signal transmission. The most important example of
such channels are Gaussian quantum channels, which, by definition, preserve
Gaussianity of their (Gaussian) inputs. In CV-QKD, it is often assumed that the
quantum communication channel between trusted parties, i.e., the sender (Alice)
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and receiver (Bob), is characterized by a Gaussian channel. The reason is that,
for a given set of observation, it is shown that the optimal collective attack by
the eavesdropper (Eve) is the one that corresponds to a Gaussian channel Garćıa-
Patrón & Cerf [2006], Navascués et al. [2006]. Therefore, we can assume that, in
the worst case scenario, Eve’s attack leaves us with a Gaussian channel. Thus,
if we assume that the original channel is also Gaussian, Alice and Bob can then
assume that their quantum channel is a Gaussian thermal-loss channel, which
can be modelled by using a beam splitter, with transmissivity T , that couples a
thermal state to the input state (which, in the case of coherent-state CV-QKD,
is another thermal state).

Figure 2.5 shows a schematic of a thermal-loss channel. We use the fact that
the variance of the output state, ṼB, is the summation of variances of two input
thermal states (VA and ε) that are coupled using a beam splitter; hence, the
following relationship holds:

ṼB = TVA + (1− T )ε. (2.32)

The corresponding variance upon a homodyne measurement is then given by

VB =ṼB + 1

=T (VA + 1)︸ ︷︷ ︸
V

+ (1− T )︸ ︷︷ ︸
vacuum noise

+ (1− T )ε︸ ︷︷ ︸
Tεtm

=T (V + χline), (2.33)

where χline = 1−T
T

+ εtm is the so-called channel noise and εtm is the excess noise,
referred to the channel input and expressed in SNU. Channel excess noise corres-
ponds to quantum bit error rate in DV-QKD. It is named excess noise because
it is added by the adversaries, beyond the fundamental shot noise and any other
kind of noise that trusted parties expect—often called trusted noise. If a ho-
modyne measurement is going to happen at the end of the channel, one can also
take into account detection noise and efficiency, which gives: VB = ηDT (V +χtot),
where χtot = χline + χHom

T
, with χHom = 1−ηD

ηD
+ νelec

ηD
. The parameters T and εtm

that characterize the quantum channel are estimated at the end of the CV-QKD
protocol. In our numerical simulations, for a channel with length L, we assume
that T = 10−αL/10, where α, measured in dB/km, is the channel loss factor.
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Figure 2.5: Schematic of a thermal-loss channel. It couples a thermal state, with
variance ε, with an input state (here another thermal state with variance VA). The
thermal-loss channel reduces to a pure-loss channel for ε = 0.

We would like to also introduce the notion of signal-to-noise ratio (SNR) for a
channel. It is basically a measure for comparing the received power to the noise
power added during the channel and is defined as the ratio of the signal variance
to the added noise variance, often expressed in decibels (dB). Signal-to-noise
ratio also quantifies, or more precisely, bounds, the Shannon mutual information
between the sender and the receiver. In the case of a loss-less thermal-loss channel,
Alice and Bob have, respectively, stored a set of correlated quadratures XA and
XB = XA+XN, where XN represents (Gaussian) added noise, in registers XA and
XB, of a Gaussian channel; see figure 2.6. By following the definition of Shannon
mutual information, i.e.,

I(XA : XB) = H(XB)−H(XB|XA), (2.34)

one can show that

I(XA : XB) = 1
2 log2(1 + SNR), (2.35)

where SNR = VA
VN

, with VA and VN being the variance of the signal quadrature,
XA, and added noise quadrature, XN, respectively. In above, it is assumed that
the added noise quadrature is independent of the signal one, and that a Gaussian

distribution fX(X) = e
− X2
V/2√
πV/2

has a Shannon entropy as H(X) = 1
2 log2(πeV/2)

Cover & Thomas [2006].
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Figure 2.6: Schematic of a Gaussian channel with added noise.

2.2 Continuous-variable QKD using Gaussian mod-
ulation of coherent states

Continuous-variable QKD is a technique which enables secret key exchange by
modulating and demodulating information in CV states. The final aim of a CV-
QKD protocol is for the two legitimate parties to agree on a secret key. Any
other party is desired to be unable to learn the key. In fact, if she does, the
trusted parties should be able to detect her presence. The first CV-QKD pro-
tocols utilized squeezed states of light Ralph [1999], Cerf et al. [2001]. Soon
after, Grosshans and co-workers introduced a CV-QKD protocol that relied on
coherent states Grosshans & Grangier [2002], Grosshans et al. [2003]. These
protocols mostly use homodyne detection to decode information, where the re-
ceiver randomly measures one of the light quadratures. No-switching CV-QKD is
another method that uses coherent states, yet the receiver performs heterodyne
detection, where both quadratures are measured simultaneously Weedbrook et al.
[2004]. All the mentioned protocols above are based on the Gaussian modulation
in the quadratures X̂ and P̂ .

Continuous-variable QKD protocols can be classified into two categories, called
prepare-and-measure (P&M) and entanglement-based (EB) CV-QKD, details of
which are discussed in the following.

2.2.1 Prepare-and-measure scheme

A typical CV-QKD protocol using coherent states is sketched in figure 2.7. It runs
along the same lines as the protocol first proposed by Grosshans and Grangier in
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Figure 2.7: Schematic of a P&M CV-QKD protocol with Gaussian modulation (also
known as GG02). The GM box prepares Gaussian-modulated coherent states X+iP as
inputs to the quantum channel. The states are assumed at Eve’s disposal immediately
after they leave Alice’s realm (this might not be the case in, e.g., a realistic satellite
QKD link; see chapter 6). To her benefit, Eve can couple her states to Alice’s states.
Bob then measures the received signals that might have been transmitted by either
Alice, Eve, or both.

2002 (GG02) Grosshans & Grangier [2002]. In GG02, the sender, Alice (A), pre-
pares a coherent state |α〉, where α = XA + iPA, with XA, PA ∈ R, is randomly
chosen and modulated by a pair of zero-mean independent Gaussian variables
{XA,PA}, with variance VA. This variance determines the power that Alice can
use in running the system. In order to reach the optimal and asymptotic perform-
ance, usually very large power values, i.e., large modulation variance is assumed1

Grosshans et al. [2003].
The prepared modulated coherent state is then sent to the receiver, Bob (B),

through a quantum channel, which can be manipulated by a potential eaves-
dropper, Eve (E). Under the optimal Gaussian attack assumptions, Eve’s attack
would be to make herself entangled to the transmitted signal, possibly, without
being detected. In order to do so, as schematically shown in figure 2.7, she can
couple one arm of a TMSV state, generated by Eve with variance Z, with Alice’s
output signal. This is called entangling quantum cloner Navascués & Aćın [2005].
See section 2.2.2 for the details of such a quantum cloner.

1Note that the optimal modulation variance is not necessarily infinity. In particular, for a
less-than-unity reconciliation efficiency, which we will shortly acquaint with, VA ≈ 2.5 optimizes
the key rate.
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Next, upon receiving a signal, Bob detects the state through either a single
quadrature measurement (a homodyne detection, denoted by Hom) or a joint
measurement of X̂ and P̂ (a heterodyne detection, denoted by Het). To put
it precisely, in the homodyne measurement, Bob randomly measures one of the
quadrature X̂ or P̂ and subsequently obtains a real outcome XB or PB. In a
heterodyne protocol, however, Bob simultaneously measures both quadratures,
obtaining two real outcomes XB and PB. In principle, Bob’s outcomes are cor-
related to the encoded signals XA or PA sent by Alice, which might have been
manipulated by Eve along the way. We restrict ourselves to only homodyne
detection in this dissertation.

Finally, Alice and Bob have shared correlated classical information, i.e., two
sets of variables {XA,XB} and/or {PA,PB}, which is called a raw key. Their
obtained data might have also been jointly correlated to Eve’s quantum states
Maurer [1993], Navascués & Aćın [2005]. In this way, Eve can potentially obtain
some information exchanged by Alice and Bob over the quantum channel. Since
both quadratures are treated the same, we consider only the X one.

From the correlated data, Alice and Bob can extract a secret key using classical
communication over a public channel and applying post-processing techniques.
The extraction stage is usually divided into three steps. First, by revealing a
random sample of the raw key, Alice and Bob evaluate the characteristics of the
quantum channel Jouguet et al. [2012]. Based on observed values of channel loss
and excess noise, the amount of information that is leaked to Eve can be bounded.
Second, the two parties correct the transmission errors via error correction meth-
ods. In fact, reconciliation is a technique that allows trusted parties to obtain
an identical random string from their correlated data by means of classical com-
munication. We remark that there are two reconciliation strategies: direct and
reverse. In direct reconciliation (DR), Alice’s key is the main key and Bob tries to
correct his raw key to become identical to Alice’s. In reverse reconciliation (RR),
however, Bob’s key is the main key and Alice corrects her key to make it similar
to that of Bob. The third step is privacy amplification, through which, Alice and
Bob extract a secret key which is unknown to Eve within a failure probability
Bennett et al. [1995]. In fact, privacy amplification is a technique for obtaining a
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secret key string from the identical random strings obtained in the reconciliation
step.

A physical quantity that can characterize the information shared by Alice
and Bob’s variables is Shannon mutual information I(XA : XB) Cover & Thomas
[2006]. This quantity can be estimated by Alice and Bob sharing part of their
data. One can also bound this quantity, using Gaussian assumptions, once excess
noise and channel loss are derived from their observations. Moreover, they would
be able to bound the potentially leaked information to Eve when direct or reverse
reconciliation is used. In DR, where Eve tries to guess Alice’s message, the max-
imum amount of information Eve can obtain is denoted by χAE. In the RR case,
Eve needs to guess Bob’s measurement outcomes. The amount of information
that Eve gains in this case is denoted by χBE. As χAE and χBE are the upper
bounds on the amount of information obtained by Eve at each case, they are,
by definition, named Holevo information Holevo [1973]. Note, however, that the
amount of information Alice and Bob can share is the same for both DR and RR.
Indeed, it is assumed that Eve has access to all classical channels and that she
interacts as much as she wishes with the quantum states, yet being limited by
the laws of quantum mechanics.

Therefore, the secret key rate1, i.e., the accessible secret information, is given
by

RDR = βI(XA : XB)− χAE (2.36)

for direct reconciliation and by

RRR = βI(XA : XB)− χBE (2.37)

for reverse reconciliation, where β ≤ 1 is the reconciliation efficiency. Note that
the term βI(XA : XB) simply quantifies the amount of information Alice and Bob
are able to extract.

1In physics, usually, rate refers to the change of a quantity in a certain amount of time. For
instance, velocity is the rate of change of position in a time interval. Here, however, by rate we
mean a quantity with dimension bits per pulse (and not bits per unit of time). Notwithstanding,
when multiplied by the clock rate, at which a transmitter can generate pulses, the rate would
have the dimension of bits per unit of time.
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Figure 2.8: Asymptotic secret key rate of CV-QKD protocols using Gaussian modu-
lation of coherent states and homodyne detection over a pure-loss channel. Here we
assume β = 1.

Figure 2.8 shows asymptotic, i.e., when VA → +∞, secret key rates versus
distance simulated for both direct and reverse reconciliation methods. These
are the security bounds against collective Gaussian attacks. Here we assume
a pure-loss channel with loss factor α = 0.2 dB/km corresponding to optical
fibres (homodyne measurement is assumed ideal). For the sake of comparison
the ultimate secrete key rate for a repeaterless QKD, the so-called PLOB bound
Pirandola et al. [2017], is also shown in figure 2.8. As can be seen, the DR rate
cannot exceed 15 km, which is known as the 3 dB limit. In contrast, the RR rate,
in principle, never vanishes.

In this dissertation, we will focus on and consider mostly the reverse recon-
ciliation. The reason is that at high-loss regimes, where an amplifier can be
advantageous, its performance outperforms direct reconciliation, as seen in fig-
ure 2.8. In addition, we limit ourselves to only protocols with homodyne detection
at the receiver side.
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Figure 2.9: Schematic of an EB CV-QKD protocol, equivalent to the setup in figure 2.7.

2.2.2 Entanglement-based scheme

We now turn to the entanglement-based (EB) version of the protocol in figure 2.7,
as it is often the scheme that is used in security proofs. This equivalence is at
the heart of security proofs for this type of QKD protocols, because theoretical
analysis of the EB scheme is more convenient in comparison to the P&M version,
though its experimental realization is more difficult.

Therefore, as an alternative, we consider the equivalent EB scheme of fig-
ure 2.9, where Alice’s source in figure 2.7 is substituted with a TMSV source,
characterized by variance V . In the EB version, Alice measures one mode of a
TMSV state in (2.26) by heterodyne detection and sends the other mode through
a channel to Bob. The origin of the equivalence relies on the fact that, as we
discussed in section 2.1.2, heterodyne detection on one mode reduces the other
mode of a TMSV state to a bi-Gaussian modulation (thermal) state with a certain
variance. Thus, from the point of view of Bob and Eve a Gaussian combination
of coherent states, i.e., a thermal state, is leaving Alice’s box.

Entangling quantum cloner

In the security proofs for QKD protocols, one typically considers a purifica-
tion of Eve’s state, ρ̂E, with that of Alice and Bob, ρ̂AB. It means that their
global tripartite state can be represented as a pure state, |Ψ〉ABE, such that
ρ̂AB = trE(|Ψ〉ABE〈Ψ|). Upon such a purification, optimality of Gaussian attacks
is proven Garćıa-Patrón & Cerf [2006], Navascués et al. [2006], where Eve’s in-
formation was shown maximized for Gaussian attacks. Therefore, by having only
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Figure 2.10: Schematic of an EB CV-QKD protocol, equivalent to the setup in fig-
ure 2.7. The QM box represents Eve’s quantum memories.

first and second momenta of the involved quadratures, Alice and Bob can then
the amount of information that can potentially leak to Eve.

A Gaussian attack as such can be realized by Eve using an entangling quantum
cloner Navascués & Aćın [2005], which perfectly simulates a thermal-loss chan-
nel; see figure 2.10. This device combines Alice’s output with one mode of a
TMSV state, with variance Z, by using a beam splitter with transmissivity t.
She then stores one output, along with the other mode of her TMSV state, in
her quantum memories, while allowing Bob to have the other (with exactly the
same statistics as the Alice-Bob channel) through a lossless channel to Bob. It
is shown that Eve can simulate the channel by simply placing t = 1 − T and
Z = 1+Tεtm/(1−T ), where T and εtm are, respectively, the observer parameters
for channel transmissivity and input excess noise.

2.2.3 Secret key rate analysis

Based on limitations imposed on Eve, one can come up with different secret
key rate analyses. Such limitations, in fact, define the type of attacks that an
eavesdropper can manage to perform. Based on Eve’s interaction with the sig-
nals, three types of attacks are defined: individual Grosshans & Cerf [2004],
Grosshans et al. [2003], collective Garćıa-Patrón & Cerf [2006], Navascués et al.
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[2006], and coherent Renner & Cirac [2009] attacks (we provide another classific-
ation on eavesdropper limitations in the context of satellite QKD; see chapter 6).
In an individual attack, Eve overlaps each transmitted signal with an ancillary
state and, subsequently, measures each output ancilla system. In a delayed-choice
strategy, Eve may prefer to postpone her individual measurements, so as to op-
timizes over Alice and Bob’s classical communication. In a collective attack, Eve
stores output of each ancillary system in a quantum memory but she waits until
Alice and Bob’s classical communication is finished. She then performs a col-
lective measurement on her memory registers. In a general/coherent attack, it is
assumed that the signal and ancilla systems undergo a joint unitary process. Eve
then stores the ancillary output in her quantum memories. We here review the
security proofs against collective attacks, which we will use in this dissertation.
Note that, in the asymptotic scenario, coherent attacks were shown to not be
necessarily more powerful than collective attacks Kraus et al. [2005], Renner &
Cirac [2009]. We also assume that Eve does not have access to Bob’s apparatus
and that Alice and Bob use reverse reconciliation.

The security proof against collective attacks is based on the EB scheme of
GG02, shown in figure 2.10. Based on this model, the final secret key that
Alice and Bob can extract is given by (2.37). It is assumed that the part of
the signals that are not received by Bob is available to Eve. In the case of
reverse reconciliation, in order to estimate the secret key rate against collective
attacks, we need to evaluate Eve’s accessible information bounded by the Holevo
information χBE Holevo [1973], which, as we discuss in the following, can be
computed using channel purification and optimality of Gaussian attacks. We,
therefore, can achieve a lower bound on the secret key rate given in (2.37).

The Holevo quantity between Bob’s variable and Eve’s quantum memories is
expressed through the von Neumann entropies, defined as HvN(ρ̂) := tr(−ρ̂ log2 ρ̂)
Nielsen & Chuang [2000], as follows:

χBE = HvN(ρ̂E)−HvN(ρ̂E|B), (2.38)

where ρ̂E is the density matrix of Eve’s state and

HvN(ρ̂E|B) =
∫
dXBp(XB)HvN(ρ̂XBE ), (2.39)
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with p(XB) being the probability distribution of Bob’s homodyne outcome XB

and ρ̂XBE is the state of Eve’s system conditional on XB. As stated in section 2.2.2,
the best Eve can do is to purify the global state between herself, Alice, and Bob.
Such a purification of the system implies that HvN(|ΨABE〉) = 0, which, follow-
ing the Araki-Lieb triangle inequality Araki & Lieb [1970], directly asserts that
HvN(ρ̂E) = HvN(ρ̂AB). Similarly, when Bob (Alice) performs a projective meas-
urement on the respective sub-state ρ̂B (ρ̂A), the state of the system ρ̂AE (ρ̂BE) is
pure1, which follows that HvN(ρ̂E|B) = HvN(ρ̂A|B) (HvN(ρ̂E|A) = HvN(ρ̂B|A)). This
allows us to calculate the Holevo bound from the entropic aspects of the state
shared between Alice and Bob Garćıa-Patrón & Cerf [2006], Navascués et al.
[2006]:

χBE = HvN(ρ̂AB)−HvN(ρ̂A|B). (2.40)

This is practically important, compared to the expression in (2.39), since Alice
and Bob can now estimate the amount of leaked information to Eve by processing
their own data statistics. The entropy HvN(ρ̂AB) is calculated from the symplectic

eigenvalues, Λjs, of the shared CM between Alice and Bob, VAB =
(

σA σAB
σTAB σB

)
(see section 2.1):

HvN(ρ̂AB) =
∑
j

g(Λj), (2.41)

where g(x) = (x+1
2 ) log2(x+1

2 ) − (x−1
2 ) log2(x−1

2 ). Note that we assume that the
channel is Gaussian; thus, the bipartite state between Alice and Bob is described
only by its first and second order moments. Even if the actual channel is non-
Gaussian, optimality of Gaussian attacks allows us to upper bound Holevo in-
formation.

It turns out that the symplectic eigenvalues are the roots of the following
equation: Λ4−∆Λ2− detVAB = 0, where ∆ = detσA + detσB + 2 detσAB. Also,
the term HvN(ρ̂A|B) can be obtained from the eigenvalue of the conditional CM
of Alice’s mode conditioned on the Bob’s homodyne measurement, i.e.,

VA|B =σA − σAB(ΠXσBΠX)MPσTAB, (2.42)
1The conditional states remain pure because we assume a projective measurement is per-

formed on the tripartite—pure—state.
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where ΠX =
(

1 0
0 0

)
and SMP is the Moore-Penrose pseudo-inverse of the singu-

lar matrix S. Based on this description, when the effect of imperfect homodyne
detection is also considered Garćıa-Patrón & Cerf [2009], it is shown that for
a link shown in figure 2.9 we have: σA = V 12, σAB =

√
ηDT (V 2 − 1) σz, and

σB = T (V + χtot)12, where χtot = χline + χHom
T

, with χline = 1−T
T

+ εtm and
χHom = 1−ηD

ηD
+ νelec

ηD
. The Holevo bound then reads:

χBE = g(Λ1) + g(Λ2)− g(Λ3)− g(Λ4), (2.43)

where

Λ1/2 =
√

1
2
(
A±
√
A2 − 4B2

)
and Λ3/4 =

√
1
2
(
C ±
√
C2 − 4D

)
, (2.44)

with 

A = V 2(1− 2T ) + 2T + T 2(V + χline)2

B = T (1 + V χline)
C = V B+T (V+χline)+AχHom

T (V+χtot)

D = B(V+BχHom)
T (V+χtot) .

(2.45)

In addition, the mutual information between Alice’s and Bob’s quadratures
for the protocol is given as a function of total noise and input variance:

I(XA : XB) = 1
2 log2

(
V + χtot

1 + χtot

)
. (2.46)

2.3 Continuous-variable QKD using discrete mod-
ulation of coherent states

As discussed in section 2.1.3, Alice and Bob can use a finite number of coherent
states. Such a decision relies on the poor error reconciliation efficiency for the
Gaussian modulation compared to that of a discrete modulation Leverrier &
Grangier [2011]. We review here the well-known protocol of this type, which was
first studied by Leverrier & Grangier [2009]. All steps of this protocol are the same
as GG02 except for the modulation part, where a quadrature-phase-shift-keying
(QPSK) modulation is used.
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Figure 2.11: CV-QKD with discrete modulation. (a) P&M and (b) EB schemes.

More precisely, the P&M scheme of the protocol runs as follows. First, Alice
randomly chooses a coherent state from the finite set {|αk〉 = |α̇e(2k+1)iπ/4〉}3

k=0,
with α̇ ∈ R+, and sends it to Bob through a quantum channel; see figure 2.11(a).
Such a constellation can be generated by the rotation of a coherent state in
position-momentum phase space. The parameter α̇ can be optimized to give the
maximum secret key rate. The prepared quantum state from the viewpoint of
Bob and Eve is:

ρ̂ = 1
4

3∑
k=0
|αk〉〈αk|. (2.47)

In addition, we assume αk = (XAk + iPAk)/2, k = 0, . . . , 3, with parameters
XAk, PAk ∈ R being chosen randomly according to the following uniform probab-
ility mass functions: fXA(XAk) = fPA(PAk) = 1/4. At the receiver, Bob randomly
measures one quadrature, X̂B = â†B + âB or P̂B = i(â†B − âB), using homodyne
detection.

Here again, in order to establish a security proof of the protocol, one can
switch to the equivalent EB version shown in figure 2.11(b). In this picture, Alice
would provide and send to Bob one leg of the following bipartite state Leverrier
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& Grangier [2011]:

|Ψ〉01 =
3∑

k=0

√
λk |φk〉0|φk〉1

=1
2

3∑
k=0
|ψk〉0|αk〉1, (2.48)

where

|φk〉j =
− α̇2

2√
λk

∞∑
n=0

(−1)n α̇4n+k√
(4n+ k)!

|4n+ k〉j, j = 0, 1,

and

|ψk〉0 = 1
2

3∑
m=0

e(2k+1)imπ/4|φm〉0

are orthogonal non-Gaussian states, with

λ0,2 =e
−α̇2/2

2
(

cosh
(
α̇2
)
± cos

(
α̇2
))
,

λ1,3 =e
−α̇2/2

2
(

sinh
(
α̇2
)
± sin

(
α̇2
))
. (2.49)

The subscripts 0 and 1 refer to the optical modes represented by â0 and â1,
respectively. In the end, the equivalence of P&M and EB schemes of the pro-
tocols is obtained via a proper projective measurement in {|ψk〉0}, k = 0, . . . , 3,
basis. Note that upon Alice’s projective measurement on the orthogonal states
{|ψk〉0}3

k=0, the bipartite state collapses to the thermal-like state in (2.47).

2.3.1 Secret key rate analysis

The security analysis of discrete-modulation CV-QKD has turned out to be more
challenging than its Gaussian counterpart. The reported analysis in Leverrier &
Grangier [2009] relies on the linearity of the channel for its security. But, the
authors admit that this is not an easy condition to verify. In order to rectify this
problem, in Leverrier & Grangier [2011], they come up with a modified scheme in
which they can relax the assumption on the channel linearity by requiring Alice
to send three types of signals: Gaussian modulated ones for channel estimation,
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discrete-modulation ones for key generation, and a range of decoy states to conceal
the discrepancy between the latter two in the eyes of an eavesdropper. The decoy
states would, effectively, make the modulated signals to look Gaussian, which
makes the security analysis more manageable. This approach, however, to a large
extent, takes away the practical aspects of discrete-modulation CV-QKD. Very
recently, new analyses have emerged, which rely on numerical optimization of
the key rate based on certain constraints obtained from the measurement results
Ghorai et al. [2019], Lin et al. [2019]. In this dissertation, we focus only on the key
generation part, which results from the state in (2.48), and do not consider the
parameter estimation task, for which we should either send Gaussian modulated
states Leverrier & Grangier [2011], or use numerical techniques Ghorai et al.
[2019].

Security of the QPSK protocol against collective attacks has been proven by
Leverrier & Grangier [2011], where the relevant CM of the protocol was found as
follows:

VAB =
(

Vα̇12
√
T Z4σz√

T Z4σz T (Vα̇ + χtot)12

)
, (2.50)

where Vα̇ = VA(α̇)+1, with VA(α̇) = 2α̇2 being the variance of the prepared state
in (2.47). The parameter

Z4 = 2α̇2
3∑

k=0

λ
3/2
k−1

λ
1/2
k

(2.51)

characterizes the amount of correlation of the bipartite state in (2.48) and can
be compared to that of a TMSV state with the same variance, ZG =

√
V 2
α̇ − 1 ,

where ‘G’ stands for Gaussian as opposed to the non-Gaussian case (Z4). We
have that Z4 < ZG, but their difference is negligible for small values of α̇. As
discussed in Leverrier & Grangier [2011], this difference can be interpreted in
terms of excess noise so that εZ4

tm = zεtm + (z − 1)VA, where z = (Z4/ZG)2. Note
that the difference of the excess noise is very small for small values of α̇ (note also
that values as small as α̇ ≈ 0.3 maximizes the key rate of the QPSK protocol).

We can then numerically compute the secret key rate of the QPSK protocol
using the set of equations (2.43)-(2.46), and performing an optimization over
input intensity, α̇2.
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2.4 Summary

In this chapter, the basic physics of CV quantum systems as well as a CV-
QKD protocol, GG02, were presented, and its secret key rate was discussed.
Notwithstanding the significant improvements in CV-QKD during the last two
decades Jouguet et al. [2013], the realization of CV-QKD over long distances is
still challenging due to optical loss and environmental noise in free-space and
optical fibres. As the loss scales exponentially with the length of the fibre, over
a rather long distance it makes the input signal too weak that its information
content cannot be recovered at the receiver in the presence of noise. Therefore, one
should make use of CV quantum repeaters Dias & Ralph [2017] and/or establish
satellite-based QKD protocols Bonato et al. [2009] to overcome this limitation,
thereby improving the performance of CV-QKD over long distances. As we will
later discuss in chapter 3, a CV quantum repeater uses noiseless linear amplifiers
(NLAs) in their design. We will also see that one prominent implementation of
such NLAs has quantum scissors (QSs) as its inmost essential component. In
fact, QSs are “tiny NLA” devices that can amplify input signals very nearly, but
not perfectly, noiselessly. Hence, we investigate QSs, upon which we study the
building block of such CV quantum repeater in chapters 4 and 5 and see that
under what conditions they would enhance the performance of Gaussian- and
discrete-modulated CV-QKD protocols over noisy channels and at long distances.
In addition, in chapter 6, by assuming realistic restrictions on Eve’s power, we
evaluate the security of several real-world threat models for satellite-based CV-
QKD.
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Chapter 3

Quantum scissors, quantum
amplifiers, and quantum
repeaters

In this chapter, we review the physics of signal amplification, in general, and
noiseless linear amplification, in particular. We will also review and analyse
quantum scissors (QSs) as well as the noiseless linear amplifier (NLA) that is
built based on them. Moreover, we represent CV quantum repeaters (CV QRs)
that can be built by using NLAs.

Our main contributions in this chapter

• We derive exact input-output relationship for a QS as well as probability of
success for input coherent and two-mode squeezed vacuum (TMSV) states.

• We analyse, in detail, the building block of a CV QR, for TMSV input states
and thermal-loss channels, followed by a QS.

• We extend the above to input thermal states, for which we calculate the
output distribution function and show how far it can get from Gaussian
distributions.
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3.1 Linear quantum amplification

Optical amplifiers, or simply amplifiers, are well known in the context of classical
optical communications. They allow to increase the amplitude of an input signal,
|Amp|in. The amplitude value of the output of an amplifier, |Amp|out, is hence
boosted by a real factor g > 1 defined as:

g := |Amp|out

|Amp|in
, (3.1)

which is called amplifier’s gain. Alternatively, one may define G = g2 to be the
power gain of an amplifier. Amplifiers inevitably add noise to the signals that
they amplify. However, in classical communications, the amount of the added
noise may not be as important as in quantum systems. There are fundamental
restrictions in amplifying quantum states of light. In this regard, we follow Caves
and colleagues Caves [1982], Caves et al. [2012], Pandey et al. [2013], in order to
classify quantum amplifiers.

The so-called canonical quantum amplifier, i.e., the one that obeys the ca-
nonical commutation relation in [â, â†] = 1∞, is called a phase-preserving linear
amplifier. Its objective is to take an input bosonic mode, represented by âin,
and amplify it to an output field, represented by âout, while leaving the phase
intact; in fact, 〈â†out〉 = g〈â†in〉 is desired. Nevertheless, a perfect linear amplifier
would perform this task while preserving the signal to noise ratio. One may think
that, in the Heisenberg picture, the creation operator of the primary mode (and
not just its expectation value) should follow â†out = gâ†in. However, this does not
respect commutation relation, for [âout, â

†
out] = g2

1∞ 6= 1∞. Therefore, in order
to resolve this problem, we may add the noise operator Ĵ to the output field
operator, such that:

â†out = gâ†in + Ĵ , (3.2)

which results in the following total output noise, normalized by g2,

Vout

g2 = Vin + VJ
g2 := Vin + Vadd, (3.3)
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where V is the variance of the quadratures of its corresponding optical mode. If
the amplifier is to respect commutation relation [âout, â

†
out] = 1∞, (3.2) would

imply that [Ĵ , Ĵ†] = (g2 − 1)1∞; hence, an uncertainty principle for operator Ĵ
asserts Vadd ≥ 1 − 1

g2 . Also, if we prefer to deal with an added-noise number
that has the gain dependence removed, we consider Vadd/(1− 1

g2 ) ≥ 1. Thus, the
minimum added noise, in excess of the input noise, is unity: the shot-noise unit.

It is discussed by Combes et al. [2016] that any phase-preserving amplifier
on the input state ρ̂A can be modelled via a device, whose input includes a
state ρ̂A and an ancillary state π̂B. Output of such a device, represented by
quantum map E, is shown to be E(s)ρ̂A ⊗ π̂BE†(s), with output amplified state
trB(E(s)ρ̂A⊗π̂BE†(s)). The amplification gain of the amplifier is quantified by the
parameter s: g = cosh(s). In addition, the amount of output noise is computed:

Vout

g2 = Vin + µ2(1− 1
g2 ), (3.4)

where µ is the parameter that characterizes the ancilla state π̂B. In fact, it turns
out that π̂B is a thermal state with mean photon number n̄ = µ2−1. By removing
the gain dependence, we have Vadd/(1− 1

g2 ) ≥ µ2.
One can then classify phase-preserving amplifiers in four types, which corres-

pond to various values of µ2: (i) non-ideal linear amplifier, which is physical and
corresponds to µ2 > 1; (ii) ideal linear amplifier, which is physical and corres-
ponds to µ2 = 1; (iii) perfect linear amplifier, which is unphysical and corresponds
to µ2 = 1/2; and (iv) immaculate linear amplifier, which is unphysical and cor-
responds to µ2 = 0. Note that a non-deterministic NLA may add no noise to
input signals. We also remark that unphysicality is associated to the ancillary
states π̂B with negative mean photon numbers n̄ = µ2 − 1. It means that such
an amplification cannot be performed deterministically.

When µ2 < 1, it turns out that these devices work effectively only over a
restricted region of phase space and with some less-than-unity success probability
Menzies & Croke [2009]. In fact, the quantum limits for µ2 devices are not
characterized by the amount of added noise, but rather by three properties of the
system Pandey et al. [2013]:

a) the operating region of phase space over which the amplifier can effectively
amplify input states;
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b) the fidelity to target coherent states; and
c) the success probability.
If the input region is taken to be the entire phase plane and the fidelity to the

target state is one, i.e., an immaculate amplifier that works on the entire phase
plane, the probability that such a device works is strictly zero Menzies & Croke
[2009], Pandey et al. [2013]. Even should one restrict the input coherent states
to a circle in phase space centred at the origin, while we demand unity fidelity to
the amplified target state, one can show that the success probability is zero. For
instance, for the optimal model of an NLA, when the input coherent states are
restricted to the disk of complex amplitudes |α| <

√
n̄c /g, where n̄c is a cutoff,

the fidelity of the amplifier output to |gα〉 is unity, but the success probability
scales as Psucc(α, n̄c) ∝ e−|α|

2

g2n̄c .
There are only a handful of realistic proposals to implement an NLA Ralph &

Lund [2009], Barbieri et al. [2011], Eleftheriadou et al. [2013]. One important class
of NLAs is proposed by Ralph & Lund [2009], whose operation is based on optical
state truncation by using single-photon inputs Pegg et al. [1998] (the two-photon
version of such an NLA is studied by Jeffers [2010]). Such truncation devices are
widely known as quantum scissors (QSs) in the literature. The Ralph and Lund
NLA (RL-NLA) is classified as an immaculate quantum amplifier Pandey et al.
[2013]; it non-deterministically does noiseless linear amplification. Below, we will
briefly review the structure of the RL-NLA.

3.2 Quantum-scissor based NLA

Ralph & Lund [2009] proposed a setup, shown in figure 3.1(a), to implement an
NLA, which relies on the QS module in figure 3.1(b). An N -splitter (NS) first
splits the input coherent state |β〉 into N weak coherent states |α〉, where α =
β/
√
N . Next, each |α〉 is individually amplified using a QS. At the core of a QS,

there is a partial Bell-state measurement module, with a balanced beam splitter
followed by two single-photon detectors, in the space spanned by number states
|0〉 and |1〉. This Bell-state measurement module is driven by an asymmetric
Bell state |ψ〉 = √µ |1〉ĉ|0〉b̂3 +

√
1− µ |0〉ĉ|1〉b̂3 , generated by a single photon that

goes through a beam splitter with transmittance µ; see figure 3.1(b). For an input
state in the |0〉-|1〉 space, the QS could then offer an asymmetric teleportation
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3.2 Quantum-scissor based NLA

Figure 3.1: Schematic of the QS-based quantum amplifier. (a) Ralph and Lund NLA.
(b) Structure of a quantum scissor.

functionality, whenever the Bell-state measurement operation is successful, i.e.,
when only one of D1 or D2 detector in figure 3.1(b) clicks. For instance, in
the particular case of a weak coherent state input |α〉â1 ≈ |0〉â1 + α|1〉â1 , with
|α| � 1, a single click could come from the single-photon component in the
entangled state |ψ〉 and/or the input state. In that case, the output state, after
renormalization, can be approximated by |0〉b̂3 + αg|1〉b̂3 ≈ |αg〉b̂3 , for |gα| � 1,
where g =

√
(1− µ)/µ represents the amplification gain of the QS, with µ being

the main parameter in the heart of the QS module. Under these assumptions, the
success probability for the QS operation is given by PRL

succ(α) ≈ µ + (1 − µ)|α|2.
Note that, in the above description, the essential assumption for a QS to possibly
operate as an NLA is that |α| � 1 and |gα| � 1.

Upon successful operation in all QS modules, the second N -splitter is designed
to congregate all the light into a single output port. The NLA is assumed suc-
cessful in amplifying input state |β〉 providing that there are no clicks after the
second N -splitter in other N − 1 output ports. For N � g|α|, RL-NLA does the
following:

|β〉 −→ e|β|
2(g2−1)/2

(g2 + 1)N/2 |gβ〉. (3.5)

Success probability of the NLA is then given by Psucc(β) = e|β|
2(g2−1)/(g2 + 1)N .

In order to have a gain greater than unity, we must choose µ < 1/2.
Although it is shown that RL-NLA can succeed in amplifying an input co-

herent state, it might face challenges in an actual realization, where an exper-
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3.2 Quantum-scissor based NLA

imentalist has to consider practical issues. First, for a given N , the RL-NLA
setup needs N single-photon states to be injected into the QSs. “On-demand”
single-photon sources are then needed. Such a source can be supplied by quantum
dots Ding et al. [2016]. In order to have a full analysis, one needs to provide a
proper model for the single-photon source. Second, inefficiency of the detectors,
when the detector does not click while there exists a photon, as well as the dark
count in the detectors, when the detector clicks while there is no photon, should
be taken into account and modelled. Third, in the main setup, it is assumed
that the QS’ inputs are truncated coherent states, in a superposition of |0〉 and
|1〉 number states. This assumption is not generally true since the actual input
states into the QSs are coherent states and, in principle, could even be arbitrary
states. As a result, the probability of success would change. Finally, in order to
have a more realistic model of the NLA, we need to model the N -splitters as well.
The N -splitters can be built using typical 50/50 beam splitters, imperfection of
which should also be considered.

Another point to remark is that the probability of success of RL-NLA is input-
dependent and exponentially increasing with the input mean photon number |α|2.
Nonetheless, this fact is restricted by the assumption N � g|α|. Therefore, a
trade-off holds here: for a fixed N , we cannot have large input power and large
amplification gains at the same time.

While considering a QS-based CV-QKD system, we should take into account
the following concerns. First, note that the output state of a QS is always in
the space spanned by single-photon and vacuum states. By approximating the
output state as a coherent state, we are introducing some errors, which can affect
the security of the system. More precisely, the transition from a coherent state
to a single-photon state is a non-Gaussian one, whose effect must be carefully
considered in the security analysis. Secondly, for the purpose of CV-QKD, where,
in principle, an arbitrary modulation variance may be required, which can result
in large-amplitude coherent states, an approximation to the output state of the
QSs/RL-NLA may not be satisfactory. In other words, in the GG02 protocol, the
coherent states are chosen randomly via Gaussian distributions; hence, the input
states to the QS may not necessarily satisfy the assumption |α| � 1.

Therefore, in order to resolve the above issues, we present, in section 3.4, the
exact output state and probability of success for not only an arbitrary coherent
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3.3 Continuous-variable quantum repeaters

state, but also arbitrary TMSV and thermal states, at the input of a QS. Before
that we discuss the use of NLAs in a repeater setup. It is also worth mention-
ing that one can implement a QS/NLA which truncates input states to first N
Fock states Jeffers [2010], McMahon et al. [2014]. In this thesis, however, we
limit ourselves to the single-photon truncation. In section 4.2, we will apply our
findings to the key rate analysis of a QS-equipped CV-QKD system. For sim-
plicity, we assume that the required single-photon source in the QS is ideal and
on-demand. Single-photon detector efficiencies are also assumed to be unity. Our
analysis can, nevertheless, be extended to account for the imperfections in the
source and detectors.

3.3 Continuous-variable quantum repeaters

In quantum communication channels, existence of loss and noise imposes limita-
tions on transferring quantum information. The input signal gets more and more
attenuated as it goes to longer distances. Therefore, loss, along with noise in
quantum channels, restrict the CV-QKD protocols to limited distances and low
secret key rates. Similar to DV systems Briegel et al. [1998], one can then think
of using quantum repeaters (QRs) for CV systems.

An immediate application of NLAs is to make use of them in the structure
of QRs, which can outperform conventional bounds on quantum communication
rates Pirandola et al. [2017], Pirandola [2019]. A CV version of QRs has recently
been proposed by Dias & Ralph [2017], which relies on CV teleportation tech-
niques and NLAs, with the ultimate goal of increasing the transmission distance.
Our analysis in this dissertation will provide insights into the applicability of such
proposals for CV QRs Dias & Ralph [2017], Furrer & Munro [2018], Seshadreesan
et al. [2018] particularly for QKD purposes. This is achieved by studying the ele-
mentary repeater (error correction) link used in the repeater setups by Dias &
Ralph [2017] and Seshadreesan et al. [2018].

The CV QR proposed by Dias and Ralph operates as follows. It contains a
chain of N identical single-link modules, as its building block, as shown in fig-
ure 3.2. Each module contains a TMSV state, represented by V , a quantum chan-
nel with transmittance T , and an NLA with amplification gain g. The module is
ready to operate, i.e., to get linked to the other blocks of the repeater network,
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3.3 Continuous-variable quantum repeaters

Figure 3.2: Schematic of a single-node CV quantum repeater setup. It consists of two
building blocks. A Dual Hom box is used to connect neighbouring building blocks of
the repeater network by coupling the signals at a balanced beam splitter followed by
two homodyne detection modules, of which one measures X quadrature while the other
measures P . At the Displacement box, based on information received from the Dual
Hom module, X+ + iP−, proper adjustments are performed on the final state.

upon a successful NLA operation. If all N building-block links are ready, dual ho-
modyne units—also known as CV Bell detection relays—are performed to connect
neighbouring modules. Otherwise, the end-to-end states of each primary module
should be stored in quantum memories (QMs), as shown in figure 3.2, and wait
until successful NLA operation is announced for adjacent modules. The informa-
tion obtained by dual homodyne units are then sent through a classical channel,
where a proper displacement operation is applied (displacement operations can
be done at each stage or they can be postponed for a global displacement at the
end).

It is shown that the above QR setup can offer an effective channel trans-
mittance of T for the repeater network, where the total transmittance for the
no-repeater link would be TN. Assuming that high-efficacy QMs are available,
the success probability of the QR scales polynomially with the single-link prob-
ability of success, P (1)

succ, as follows

PQR
succ = (P (1)

succ)log2(2N), (3.6)

while it scales exponentially, (P (1)
succ)N, for the no-QR case.
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3.4 A comprehensive study of quantum scissors

In the context of CV-QKD, the building block in figure 3.2 is previously stud-
ied with an ideal NLA Blandino et al. [2012]. It was shown that an NLA can
indeed increase the secure distance of CV-QKD. However, there, the NLA was
essentially considered as a “black-box”, whose innermost structure is not known,
except that it does |α〉 → |gα〉 without adding excess noise. They have also as-
sumed the maximum success probability for such an ideal NLA, i.e., 1/g2. Thus,
the use of realistic devices, such as QSs and/or QS-based NLAs, is one step to-
wards a real-world implementation of such systems. When considering a QS as
an NLA, previous studies have worked out some features of the system, such
as output variance, for a pure-loss channel Dias & Ralph [2017], Seshadreesan
et al. [2018]. However, they mostly rely on the very weak input assumption;
hence, giving only an approximate output state and success probability for the
QS-amplified primary building block. In addition, channel excess noise, which
can get amplified via the NLA device, is assumed zero. One of the key objectives
of this thesis is to account for an exact calculation of the QR building block, when
a QS is in use, to offer a realistic study of the building-block operation. We sim-
ultaneously account for both loss and excess noise. As well, in the next chapters,
we show the benefit of using a QS-assisted receiver in CV-QKD protocols.

We remark that one could use the heralded quantum state comparison ampli-
fier proposed by Eleftheriadou et al. [2013] and experimentally demonstrated by
Donaldson et al. [2015]. However, such an NLA can effectively amplify coherent
states chosen from a finite set. While state comparison amplifier can be helpful
for discrete-modulated CV-QKD protocols, where a finite set of coherent states
is used, it might not be the case in a Gaussian-modulated scenario. In this thesis,
we focus on the use of QSs, in both the Gaussian- and discrete-modulated CV-
QKD protocols. The case of state comparison amplifiers remains open and is left
for future work.

3.4 A comprehensive study of quantum scissors

In this section, we obtain the exact input-output relationship for a QS driven
by a coherent state. At the same time, we first let the coherent state to travel
through a thermal-loss channel. We use characteristic functions, described in
section 2.1.1, to represent the involved states. Using such a formulation, we then
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3.4 A comprehensive study of quantum scissors

analyse the QR building block in figure 3.2, which includes a QS driven by an
arbitrary TMSV state through a thermal-loss channel with transmissivity T and
excess noise ε.

3.4.1 Pre-measurement state for input coherent states

Consider figure 3.3, where we replace the NLA in the building block of figure 3.2
with a QS. We can use the well-known relationships for beam splitters Kok et al.
[2007] to relate the four input modes to the four output modes; see figure 3.3. The
dashed box Γ is a linear optics circuit, for which such input-output relationships
can be obtained. In particular, considering the input modes represented by AT =
[â1 â2 â3 ân] and output modes BT = [b̂1 b̂2 b̂3 b̂n], we find B = ΓA, where the
transformation matrix

Γ =



√
T
2

√
µ
2 −

√
1−µ

2

√
1−T

2

−
√

T
2

√
µ
2 −

√
1−µ

2 −
√

1−T
2

0
√

1− µ √
µ 0

−
√

1− T 0 0
√
T

 (3.7)

is a unitary matrix, i.e., ΓT = Γ−1. The output antinormally-ordered character-
istic function can then be expressed in terms of the input one by

χout
A (ξ1, ξ2, ξ3, ξn) =

〈 3∏
m=1

D̂A(b̂m, ξm)D̂A(b̂n, ξn)
〉

=
〈 3∏
m=1

D̂A(âm, λm)D̂A(ân, λn)
〉

=χin
A(λ1, λ2, λ3, λn), (3.8)

where [λ1 λ2 λ3 λn]T = ΓT [ξ1 ξ2 ξ3 ξn]T . In above, we made use of the facts that
D̂A(sâ, ξ) = D̂A(â, sξ), where s ∈ R, and 〈D̂A(â, ξ1)D̂A(â, ξ2)〉 = eξ1ξ

∗
2 〈D̂A(â, ξ1 +

ξ2)〉.
Next, we consider the particular input state

ρ̂A =|α〉â1〈α| ⊗ |1〉â2〈1| ⊗ |0〉â3〈0| ⊗
∫
d2βfε(β)|β〉ân〈β| (3.9)

to the system, where fε(β) = e
−|β|

2
ε/2

πε/2 , with ε quantifying the noise level in ân port,
represents a Gaussian thermal noise. Note that the part |1〉â2〈1| ⊗ |0〉â3〈0| is
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Figure 3.3: The quantum channel and the QS are considered as a combined system with
input modes â1− â3 and ân and four output modes b̂1− b̂3 and b̂n. The transformation
matrix of the system is given by (3.7).

required as input for the QS operation. The input state in (3.9) corresponds to
a Gaussian attack by Eve, which we later use in forthcoming sections. For the
above set of input states, the output antinormally-ordered characteristic function
can be found using (3.8) as follows

χout
A (ξ1, ξ2, ξ3, ξn) =χin

A(λ1, λ2, λ3, λn)
=tr

[
ρ̂AD̂A(â1, λ1)D̂A(â2, λ2)D̂A(â3, λ3)D̂A(ân, λn)

]
, (3.10)

which, by using the transformation matrix Γ, can be re-written in the following
form

χout
A (ξ1, ξ2, ξ3, ξn) =e−T2 |ξ1−ξ2−

√
2 τξn|2e

√
2T iIm[ᾱ(ξ1−ξ2−

√
2 τξn)]

× e−
1−T

2 (1+ ε
2 )|ξ1−ξ2+

√
2
τ
ξn|2e−

1−µ
2 |ξ1+ξ2−

√
2
g
ξ3|2e−

µ
2 |ξ1+ξ2+

√
2 gξ3|2

×
(

1− µ

2 |ξ1 + ξ2 +
√

2 gξ3|2
)
, (3.11)

where g =
√

(1− µ)/µ and τ =
√

(1− T )/T . Therefore, using (2.17), the joint
state of the output modes is then given by

ρ̂B =
∫ d2ξ1

π

∫ d2ξ2

π

∫ d2ξ3

π

∫ d2ξn

π
χout
A (ξ1, ξ2, ξ3, ξn)

D̂N(b̂1, ξ1)D̂N(b̂2, ξ2)D̂N(b̂3, ξ3)D̂N(b̂n, ξn). (3.12)
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We can next trace out mode b̂n to obtain the joint state of the modes b̂1 − b̂3:

ρ̂out =
∫ d2ξ1

π

∫ d2ξ2

π

∫ d2ξ3

π
χout
A (ξ1, ξ2, ξ3, 0)D̂N(b̂1, ξ1)D̂N(b̂2, ξ2)D̂N(b̂3, ξ3),

(3.13)

where we made use of the identity tr(D̂N(a, ξ)) = πδ2(ξ), and

χout
A (ξ1, ξ2, ξ3, 0) =e−F1|ξ1−ξ2|2e

√
2T iIm[ᾱ(ξ1−ξ2)]e−

µ
2 |ξ1+ξ2+

√
2 gξ3|2e−

1−µ
2 |ξ1+ξ2−

√
2
g
ξ3|2

×
(
1− µ

2 |ξ1 + ξ2 +
√

2 gξ3|2
)
, (3.14)

with F1 = 1
2 + 1

4(1 − T )ε. Note that εrec = (1 − T )ε is the amount of excess
noise at the end of the quantum channel; thus, we have F1 = 1

2 + 1
4Tεtm, where

εtm = εrec/T is the equivalent amount of excess noise at the transmitter side.

3.4.2 Post-selected state for input coherent states

Following Ralph & Lund [2009], we consider a QS successful if only one detector
of the QS, corresponding to modes b̂1 and b̂2 in figure 3.3, clicks. In order to model
such measurements we use the following non-resolving measurement operator

M̂ = (12 − |0〉b̂1〈0|)⊗ |0〉b̂2〈0|, (3.15)

which corresponds to the case where photons are found in mode b̂1, but not in
mode b̂2. The post-selected state, ρ̂PS

out, is then given by Nielsen & Chuang [2000]:

ρ̂PS
out =

trb̂1b̂2(ρ̂outM̂)
tr(ρ̂outM̂)

= 1
P PS

∫ d2ξ1

π

∫ d2ξ2

π

∫ d2ξ3

π
χout
A (ξ1, ξ2, ξ3, 0)(πδ2(ξ1)− 1)D̂N(b̂3, ξ3), (3.16)

where P PS = tr(M̂ρ̂out) is the corresponding (success) probability to measurement
M̂, which will be calculated in section 3.4.3.

Because the truncated post-measurement state lives in the qubit subspace
spanned by number states {|0〉b̂3 , |1〉b̂3}, the output state has the form

ρ̂PS
out(α) =ρ00(α)|0〉b̂3〈0|+ ρ01(α)|0〉b̂3〈1|+ ρ10(α)|1〉b̂3〈0|+ ρ11(α)|1〉b̂3〈1|, (3.17)
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where ρjk(α) = b̂3
〈j|ρ̂PS

out(α)|k〉b̂3 , for j, k = 0, 1. We then obtain


ρ00(α) = 2[2F1(2F1+1)+T |α|2]
(g2+1)PPS(α)(2F1+1)3 e

−T |α|2
2F1+1

ρ01(α) = −2g
√
T α

(g2+1)PPS(α)(2F1+1)2 e
−T |α|2

2F1+1 = ρ∗10(α)

ρ11(α) = 2g2

(g2+1)PPS(α)

(
e
−T |α|2

2F1+1

2F1+1 − e
−T |α|

2
2F1

4F1

)
.

(3.18)

We remark that in the case that no photon is found in mode b̂1 while a photon
is observed in mode b̂2, the QS is still considered successful. After working out
the post-selected output state, we find that the result has the same form as in
(3.17), but we only need to replace α with −α in (3.18). In practice, in a QKD
setup, Bob can negate its measurement results whenever this happens. One can
also use a unitary operation to correct the output state so that we always end up
with (3.17) as the post-selected state.

We also note that the post-measurement state is Hermitian and positive-semi-
definite, as expected. Moreover, in the limit of |gα| � 1, we can verify that the
post-selected state of the single QS approaches the weak coherent state |gα〉;
hence, reducing to the results by Ralph & Lund [2009].

3.4.3 Probability of success

The probability of post-selection for measurement M̂ and input |α〉, P PS(α), is
given by

P PS(α) =tr(ρ̂outM̂)

=
∫ d2ξ1

π

∫ d2ξ2

π
χout
A (ξ1, ξ2, 0, 0)(πδ2(ξ1)− 1). (3.19)

By substituting (3.11) into the above expression, we obtain the exact QS prob-
ability of success

Psucc(α) =2P PS(α)

=
4
(
g2(2F1 + 1)2 + 2F1(2F1 + 1) + T |α|2

)
e
−T |α|2

2F1+1

(g2 + 1)(2F1 + 1)3 − g2e
−T |α|

2
2F1

(g2 + 1)F1
,

(3.20)
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Figure 3.4: (a) The exact success probability of a single QS (lower red), Psucc, and
that based on input intensity approximations (upper blue), PRL

succ. (b) The exact success
probability of a single QS (red), Psucc, and that of an ideal NLA (grey), upper bounded
by 1/g2, versus average photon number and amplification gain. In all cases, ε = 0 and
T = 1.

which is the total probability of success for the QS module, i.e., when either
of D1 or D2 detector clicks. As expected, Psucc(α) approaches, to first-order
approximation, to PRL

succ(α) = µ+(1−µ)|α|2 = (1+ |gα|2)/(1+g2), when |α| � 1,
at ε = 0 and T = 1. This approximation is, however, invalid even when we
slightly deviate from the limiting condition on |α|, as can be seen in figure 3.4(a).
Here, we have plotted the exact probability of success, Psucc(α), versus |α|2 and
g, and compared it with the asymptotic value obtained by Ralph and Lund,
PRL

succ(α). It can be seen that the exact probability of success is always lower
than the asymptotic value, and the difference is visible at all values of g. The
success probability also increases with the decrease in g. For |α| � 1, the success
probability approaches its maximum possible value of 1/g2 Pandey et al. [2013].
But, again, as can be seen in figure 3.4(b), we quickly deviate from this ideal
regime when |α| increases. This indicates that we cannot operate at maximum
possible success probability for all possible inputs, as assumed in Blandino et al.
[2012], if we use a QS as an NLA.

In figure 3.4(b), the maximum possible success probability, 1/g2, divides the
plot into two regions. There is a region in which the success probability is above
the maximum possible for an NLA. This implies that the QS operation should
be very noisy in this region, hence breaking the assumption on the noise-free
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Figure 3.5: Fidelity of QS’s output with the target amplified state |gα〉 versus input
intensity. In both cases, ε = 0 and T = 1.

operation of the NLA. If we want to work in the region that Psucc(α) < 1/g2, we
will then have to deal with limitations on the maximum gain that we can choose
for the range of input states we may expect. This indicates a trade-off between
the amount of noise that the QS may add to the signal versus its gain and success
probability. We will later address this issue, in the context of CV-QKD, in our
numerical results when we optimize the secret key generation rate over system
parameters.

3.4.4 Fidelity of the amplified state

To gain more insight into the behaviour of QSs, we can look at other properties
of them. For instance, a measure that can show how good a QS can be in
amplifying an input coherent state, |α〉, is the fidelity of the target amplified
state, |gα〉, which can be obtained, with what a QS is actually offering at its
output, i.e., ρ̂PS

out(α) given in (3.17). By definition Nielsen & Chuang [2000], the
fidelity is calculated from

F (α) = 〈gα|ρ̂PS
out(α)|gα〉. (3.21)
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We have plotted this quantity versus α for two fixed values of g in figure 3.5.
As expected, it shows that a QS can amplify a relatively weak coherent state
signal with a fidelity approaching unity. As the input intensity goes up, the QS
is incapable of offering a fidelity close to one. In addition, figure 3.5 indicates
that we should expect from a QS with a larger amplification gain to give low
values of fidelity when compared with a low-gain QS. We also see that there is an
overshoot on the curves. The reason probably is that the output state is a highly
non-linear function of the input state’s intensity, |α|2. We note that, as long as
Psucc(α)F (α) < 1/g2, this behaviour is allowed by quantum mechanics; for more
detail we refer to Pandey et al. [2013].

3.4.5 Non-Gaussian behaviour of quantum scissors

Before involving QSs in a CV-QKD system, it is necessary to better understand
the nature of a quantum channel that includes a QS module. This is important
because majority of results on the secret key rate of CV-QKD systems rely on
Gaussian characteristics of the channel Garćıa-Patrón & Cerf [2006], Lodewyck
et al. [2007]. This is not, however, the case for a QS-equipped channel as we see
in this section.

In order to examine the non-Gaussian behaviour of the QS output, let us focus
on the distribution of homodyne measurement results on quadrature X̂B. Let us
also consider an input coherent state |α〉, with α = XA + iPA as distributed by

fXA(XA) = e
−

X2
A

VA/2√
πVA/2

and fPA(PA) = e
−

P2
A

VA/2√
πVA/2

, (3.22)

at the port â1, which results in a thermal state, characterized by variance VA.
After performing similar calculations, where in the input state given by (3.9) we
replace the coherent state in mode â1 with a thermal state with variance VA, the
post-selected state will be given by

σ̂PS
out(VA) =σ00(VA)|0〉b̂3〈0|+ σ11(VA)|1〉b̂3〈1|, (3.23)

where σ00(VA) = 8F2
(g2+1)(2F2+1)2Psucc(VA)

σ11(VA) = 4g2

(g2+1)Psucc(VA)

(
1

2F2+1 −
1

4F2

)
,

(3.24)
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Figure 3.6: (a) The output distribution at the receiver side (solid black), which
comprises Gaussian (dashed blue) and non-Gaussian (dot-dashed red) parts. Here,
VA = 0.05, g = 2, ε = 0, and T = 1. (b) The non-Gaussian part of the distribution for
several different values of modulation variance and amplification gain.

with success probability given by

Psucc(VA) = 4
(g2 + 1)

(
g2(2F2 + 1) + 2F2

(2F2 + 1)2 − g2

4F2

)
. (3.25)

Note that here parameter F2 = 1
2 + 1

4T (VA + εtm) is slightly different from F1.
The probability distribution for obtaining a real number XB after measuring

X̂B, conditional on the success of the QS, is then given by

fXB(XB) = tr(σ̂PS
out(VA)|XB〉〈XB|)

=
(
σ00(VA) + 2σ11(VA)X2

B

)e−X2
B

√
π
, (3.26)
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where X̂B|XB〉 = XB|XB〉.
The expression for fXB(XB) will then have two components: one is a Gaus-

sian term in XB proportional to σ00(VA), and the other is a non-Gaussian term
proportional to σ11(VA). Figure 3.6(a) shows the contribution of each of these
components in making fXB(XB) at VA = 0.05 and g = 2. We notice that even
for such a small modulation variance, which corresponds mostly to small values
of |α|, and a small amplification gain the non-Gaussian term is quite distinct.
As can be seen in figure 3.6(b), higher amplification gains and higher values of
modulation variance could even result in more deviation from a Gaussian state.
This non-Gaussian behaviour would have ramifications on the key rate analysis
of a QS-based system as we see in the next two chapters.

3.4.6 Pre-measurement state for input TMSV states

We use a similar approach to section 3.4.1 in using characteristic functions to find
an input-output relationship when the QS is successful in figure 3.7, where now
a TMSV state is at the input. As discussed in chapter 2, this analysis can ease
calculation of Holevo information.

By using (2.16) and the transformation matrix Γ, we can write the full output
antinormally-ordered characteristic function, including the mode â0, in terms of
the input one, i.e., χout

A (ξ0, ξ1, ξ2, ξ3, ξn) = χin
A(λ0, λ1, λ2, λ3, λn), where we have

[ξ0 ξ1 ξ2 ξ3 ξn] =
 1 0

0 Γ

 [λ0 λ1 λ2 λ3 λn]

and

χin
A(λ0, λ1, λ2, λ3, λn) = χTMSV

A (λ0, λ1)× χin
A(λ2, λ3, λn). (3.27)

The function χTMSV
A (λ0, λ1) is the antinormally-ordered characteristic function

of the TMSV state, given in (2.31) and described by a single parameter δ.
The term χin

A(λ2, λ3, λn) is calculated for an input state |1〉â2〈1| ⊗ |0〉â3〈0| ⊗∫
d2βfε(β)|β〉ân〈β|, as seen in section 3.4.1.

Putting all this together, we then find the pre-measurement antinormally-
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Figure 3.7: The quantum channel and the QS are considered as a combined system with
input modes â1− â3 and ân and four output modes b̂1− b̂3 and b̂n. The transformation
matrix of the system is given by (3.7).

ordered characteristic function for modes â0, b̂1 − b̂3, and b̂n, as follows:

χout
A (ξ0, ξ1, ξ2, ξ3, ξn) =e−δ2|ξ0|2e−

δ2T
2 |ξ1−ξ2−

√
2 τξn|2e−δ

√
2T (δ2−1) Re[ξ∗0(ξ∗1−ξ∗2)]

× e−
1−T

2 (1+ ε
2 )|ξ1−ξ2+

√
2
τ
ξn|2e−

1−µ
2 |ξ1+ξ2−

√
2
g
ξ3|2e−

µ
2 |ξ1+ξ2+

√
2 gξ3|2

×
(

1− µ

2 |ξ1 + ξ2 +
√

2 gξ3|2
)
. (3.28)

Having obtained the output antinormally-ordered characteristic function (3.28),
we use (2.17) to find the corresponding output state:

ρ̂out
0123n =

∫ d2ξ0

π

d2ξ1

π

d2ξ2

π

d2ξ3

π

d2ξn

π
χout
A (ξ0, ξ1, ξ2, ξ3, ξn)

D̂N(â0, ξ0)D̂N(b̂1, ξ1)D̂N(b̂2, ξ2)D̂N(b̂3, ξ3)D̂N(b̂n, ξn). (3.29)

In the following, we show how the shared state between Alice and Bob is found
step-by-step. We first trace out mode b̂n to obtain

ρ̂out
0123 =

∫ d2ξ0

π

d2ξ1

π

d2ξ2

π

d2ξ3

π
χout
A (ξ0, ξ1, ξ2, ξ3, 0)

D̂N(â0, ξ0)D̂N(b̂1, ξ1)D̂N(b̂2, ξ2)D̂N(b̂3, ξ3). (3.30)

Next, by applying the QS measurements, given in (3.15), we find the post-selected
state:

ρ̂PS
03 = tr12(ρ̂out

0123M̂)
tr(ρ̂out

0123M̂)
= %̂PS

03
P PS

EB
, (3.31)
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where

%̂PS
03 =

∫ d2ξ0

π

d2ξ3

π
χ̃A(ξ0, ξ3)D̂N(â0, ξ0)D̂N(b̂3, ξ3) (3.32)

with

χ̃A(ξ0, ξ3) :=
∫ d2ξ1

π

d2ξ2

π
χout
A (ξ0, ξ1, ξ2, ξ3, 0)

(
πδ2(ξ1)− 1

)
. (3.33)

Also, P PS
EB = P succ/2 is the corresponding post-selection probability to measure-

ment M̂:

P PS
EB = χ̃A(0, 0) =

∫ d2ξ1

π

d2ξ2

π
χout
A (0, ξ1, ξ2, 0, 0)

(
πδ2(ξ1)− 1

)
. (3.34)

By using the bivariate state given in (3.31), we can now compute its statistical
characteristics such as its corresponding covariance matrix (between modes â0 and
b̂3 of the module given in figure 3.7), which we postpone to the next chapter when
we present secret key rate analysis for the QS-equipped CV-QKD protocol. Also,
in the EB scheme, we find the corresponding parameter δ in our TMSV state,
which gives the same output statistics for the signal that goes to Bob, when Alice
does a heterodyne measurement on her state. It turns out that to get an identical
output state we should satisfy δ =

√
(V + 1)/2 , where V = VA + 1.

Furthermore, in the case of discrete modulation, where the TMSV state in
figure 3.7 is replaced with the equivalent bipartite state to the quadrature-phase-
shift-keying modulation, shown in figure 2.11, a similar route can be taken to work
out the end-to-end state and its covariance matrix. This will fully be presented
in chapter 5.

3.5 Summary

In this chapter, we reviewed the basic physics of quantum noiseless linear amp-
lifiers (NLAs), which are intrinsically probabilistic. We also discussed how such
amplifiers can be used in the design of a continuous-variable quantum repeater,
whose probability of success scales polynomially with success probability of its
building block. As a possible realization, we focused on a building block that has
a quantum scissor (QS), as a non-deterministic NLA, at its core. We fully studied
the module by working out its exact output as well as exact success probability
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3.5 Summary

for an arbitrary coherent state as its input. We, furthermore, extended our calcu-
lations to an arbitrary input two-mode squeezed vacuum state. In the next two
chapters, we combine our knowledge of CV-QKD protocols and QS-based NLAs.
We will study the use of a QS at the receiver side of the Gaussian modulated, in
chapter 4, and discrete modulation, in chapter 5, CV-QKD protocols, and see if
this would increase their secret key rates.
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Chapter 4

Continuous-variable quantum key
distribution with quantum
scissors

In this chapter, we provide a realistic account of what a quantum scissor (QS)
can offer within a CV-QKD setup. In particular, using an exact model for the
QS setup, see chapter 3, we analyse the secret key rate of a Gaussian modulated
protocol, whose receiver unit is equipped with a QS. One of the implications of
our exact modelling for the QS is that we cannot directly apply standard key rate
calculation techniques that rely on the Gaussianity of the output states. This will
make the exact calculation of the key rate cumbersome. We manage this problem
by using relevant bounds for certain components of the key rate. We investigate
the extent to which the use of QSs can increase the security distance in CV-QKD
systems.

One of our key incentives for carrying out the above analysis is to provide
insights into the applicability of recent proposals for CV quantum repeaters
(CV QRs) Dias & Ralph [2017], Furrer & Munro [2018], Seshadreesan et al. [2018]
particularly for QKD operation. The QS-equipped CV-QKD link that we con-
sider here contains the elementary repeater (error correction) link used in the
repeater setup of Dias & Ralph [2017], and as such a poor performance for this
basic building block could cast shadow on the usefulness of any larger quantum
repeater setup that relies on such elementary links. In the repeater setup of Dias
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Figure 4.1: A two-leg quantum repeater module as proposed by Dias & Ralph [2017].
Each leg is composed of a TMSV source generating two-mode squeezed vacuum states,
a quantum scissor (QS), and two quantum memory (QM) units. Beam splitters with
transmissivity T characterize the loss in each leg, with excess noise represented by ε.
Upon successful operation of the QS in each leg, the output of the QS and the TMSV
source are stored in respective QMs. When both legs are ready, a joint dual homodyne
(Dual Hom) measurement is performed on the quantum states stored in QM2 and QM3,
which swaps entanglement to QM1 and QM4.

& Ralph [2017], CV teleportation is used to swap entanglement between already
entangled links, in a set of quantum memories (QMs), represented by QM1-QM2
and QM3-QM4 in figure 4.1. Each of such links have been entangled by send-
ing one half of a two-mode squeezed vacuum state, represented by TMSV boxes,
through a thermal-loss channel. The received signal will then be amplified, in
a probabilistic way, by the QS module, and will be stored in the corresponding
QM. Note that, considering the non-deterministic behaviour of the QS, use of QM
modules is necessary if we aim to achieve any rate enhancement from the CV QR
setup. The dual homodyne module will then effectively perform entanglement
swapping in the CV domain once both links have had successful QS operations.

We remark that the above repeater setup must use a physical noiseless linear
amplifier (MLA) implementation, such as a QS, and not a virtual one, in order
to offer any rate advantage. That is, the class of measurement-based NLA (MB-
NLA) implementations Chrzanowski et al. [2014], Fiurášek & Cerf [2012], Walk
et al. [2013], which rely on data post-selection, would not be suitable for such CV
repeaters. Due to reliance of MB-NLAs on classical post-selection, the state of
QM2 and QM4 must inevitably be measured before the entanglement swapping
can be done. Even if we do not consider the applications of our considered setup in
CV repeater settings, one must be cautious with typically poor success probability
of MB-NLAs compared to that of physical NLAs Zhao et al. [2017]. This suggests
that the use of physical NLAs in CV-QKD systems is still of interest, and, in fact,
one may favour a physical realization of an NLA over its virtual post-measurement
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implementation due to restrictions on the MB-NLA Bernu et al. [2014]. Our study
here would shed more light into the applicability of such physical realizations by
offering an accurate analysis of the underlying system.

We would also like to point out that there are certain practical aspects that
one should consider before using QSs in CV-QKD. One assumption that we make
throughout this dissertation is that on-demand single-photon sources are avail-
able for our scheme. There are two practical issues, in this regard, that affect
the performance of the QS-based system. The first is the rate at which single-
photons are generated. The success rate of such sources directly affect the key rate
achievable. Secondly, we should be cautious about the purity of the single-photon
source output. Multiple-photon components, in particular, could be damaging to
the performance of the QS. The good news is that the current available tech-
nology for quantum-dot sources has made a substantial progress to meet both
above requirements. In particular, quantum dot sources with efficiencies over
80% and second-order coherence values < 0.004 have already been demonstrated
Müller et al. [2014], Senellart et al. [2017]. Additionally, one issue is the reliance
on single-photon detectors, which will make CV-QKD systems, in terms of re-
quirements, as expensive as their discrete-variable counterparts. But, paying such
prices may be unavoidable if one wants to have long-distance CV-QKD and/or
CV repeaters.

In the following, we describe details of the proposed system. Next, we present
the key rate analysis of the CV-QKD link with a single QS as part of its receiver.
We then discuss the numerical results.

Our main contributions in this chapter

• We calculate exact mutual information for our QS-assisted CV-QKD system,
by focusing on its prepare-and-measure (P&M) scheme.

• We find an upper bound for the Holevo information for our QS-assisted CV-
QKD system, by focusing on its entanglement-based (EB) scheme.

•We provide a lower bound on the key rate of the QS-assisted CV-QKD system
under Gaussian attacks.
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4.1 System description

•We show that secret key rate of the QS system can outperform the no-QS one
at certain regimes of operation.

4.1 System description

In this section, we describe our proposed setup for the QS-amplified CV-QKD
protocol.

4.1.1 Prepare-and-measure scheme: Preparing to calcu-
late mutual information

We assume that Alice is connected to Bob via a quantum channel; see fig-
ure 4.2(a). The protocol runs along the same lines as proposed by Grosshans
and Grangier in 2002 (GG02), as described in section 2.2. That is, in every
round, Alice transmits a coherent state |α〉 to Bob, where α = XA + iPA, with
XA, PA ∈ R being chosen randomly according to the following Gaussian probab-
ility density functions:

fXA(XA) = e
−

X2
A

VA/2√
πVA/2

and fPA(PA) = e
−

P2
A

VA/2√
πVA/2

, (4.1)

where VA is the modulation variance in the shot-noise units; therefore, the state
that Alice prepares is a thermal state in the following form:

ρ̂th =
∫
d2α

e
− |α|

2
VA/2

πVA/2
|α〉〈α|. (4.2)

At the receiver, however, we equip Bob with a single QS before the homodyne
module used in GG02. Upon a successful QS operation, Bob randomly chooses to
measure X̂B = âB+ â†B or P̂B = (âB− â†B)/i, where âB represents the annihilation
operator for the output mode of the QS. During the sifting stage, Bob would then
publicly declare his measurement choices as well as the rounds in which the QS
has been successful. By using post-processing techniques, Alice and Bob extract
a key from the subset of data for which the QS has been successful.

In chapter 3, for an arbitrary input state, we calculated the exact post-selected
state and success probability for the QS-amplified channel. That will indeed help
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4.1 System description

Figure 4.2: (a) Schematic view of P&M CV-QKD link with an additional quantum
scissor at the receiver. (b) EB CV-QKD protocol equivalent to (a). Hom and Het
represent, respectively, the homodyne detection and heterodyne detection modules.

to compute the mutual information between Alice and Bob, as we will see shortly,
in section 4.2.1.

4.1.2 Entanglement-based scheme: Preparing to calculate
Holevo information

Alternatively, one can use the equivalent EB scheme of the protocol, shown in
figure 4.2(b), where Alice’s source is replaced with a TMSV source followed by
a heterodyne detection on one of the two modes of the state. She sends the
other mode to Bob through the quantum channel (in either P&M or EB case, we
assume that Bob can reconstruct, in an error-free way, the phase reference for the
local oscillator used in his homodyne detection). Note that the setup sketched
in figure 4.2(b) is the same building block of the CV QR as in figure 3.2. We,
thus, aim to work out the relevant calculations of the core module in the CV QR
proposal by Dias & Ralph [2017]. In particular, for the Holevo information,
following the results that we obtained in section 3.4.6, we work out the conditional
covariance matrix (CM) between Alice and Bob, upon a successful QS operation;
see section 4.2.2. The obtained CM is then used to calculate Holevo information.
In this way, we will be able to analyse secret key rate of the proposed system.
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4.2 Secret key rate analysis

4.1.3 Quantum channel

The trusted parties are assumed to use a thermal-loss channel with transmissivity
T and an excess noise ε; see section 2.1.5. A potential model for such a channel
is given by a beam splitter, with transmissivity T , that mixes Alice’s signals and
the eavesdropper’s thermal state, given by the following expression:

ρ̂th =
∫
d2β

e−
|β|2
ε/2

πε/2 |β〉ân〈β|, (4.3)

where ân is the annihilation operator corresponding to the noise port. The equi-
valent excess noise at the input to the channel is then given by εtm = (1−T )ε/T .
In principle, the parties cannot tell what kind of channel they have without proper
parameter estimation. The assumption of a thermal-loss channel corresponds to
the case of a Gaussian attack, which may not be optimal for our non-Gaussian
system. However, as long as the system does not deviate considerably from the
Gaussian framework, the results obtained will provide us with a reasonable es-
timate of the potential key rate that can be obtained by a more rigorous analysis
He et al. [2018]. We use the above model to calculate the relevant parameters of
the CM when QSs are in use.

4.2 Secret key rate analysis

Here, we use the results in section 3.4 to determine the secret key rate of the GG02
protocol when Bob uses a single QS before his homodyne measurement. We find
the secret key rate under Gaussian eavesdropping attacks Pirandola et al. [2008].
This corresponds to a thermal-loss channel with transmissivity T , modelled by a
beam splitter, and an excess noise at the transmitter side εtm; see section 2.1.5.
Such an attack may not be the optimal one for our non-Gaussian channel. But,
based on our analysis on non-Gaussianity behaviour of the QS, see figure 3.6,
at the low-modulation-variance and low-amplification-gain regimes, the results
obtained for this particular channel should not be far away from that obtained
in an optimal attack He et al. [2018]. The secret key rate of CV-QKD protocols
in the asymptotic limit of infinitely many signals is given by (2.37), which for
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4.2 Secret key rate analysis

clarity, we repeat here:

RRR = βI(XA : XB)− χBE, (4.4)

where here β is reconciliation efficiency.
In our proposed setup, since the QS operation is non-deterministic, the whole

key rate formula should be multiplied by the average success probability of the
QS, P succ, where the averaging is performed over all possible inputs. Therefore,
the secret key rate reads

RRR ≥ P succ(βI?(XA : XB)− χ?BE), (4.5)

where ‘?’ indicates that the mutual and Holevo information terms are calculated
for the post-selected data when the QS is successful. The measurement results
corresponding to unsuccessful QS events will be discarded at the sifting stage.

The fact that we only use the post-selected data for key extraction implies
that we have to account for the non-Gaussianity of the QS output states. Un-
fortunately, the non-Gaussian behaviour of the QS makes conventional methods
for key rate calculation inapplicable. In order to take the non-Gaussian effects
into account, we calculate the exact mutual information by directly using the
conditional distribution of the QS output. Ideally one could also look for the
exact calculation of the Holevo information term as well. But, this turns out to
be extremely cumbersome. Instead, here, we find an upper bound for the Holevo
information term by finding the CM of the output state from the total channel
and then calculate the Holevo information for a Gaussian state with the same
CM. The reason is that Gaussian collective attacks are proven to be optimal in
the sense that they maximize the Holevo quantity Garćıa-Patrón & Cerf [2006]
of a fixed CM for the output shared state. Given the generality of the results
by Garćıa-Patrón & Cerf [2006], in a real experiment, once we obtain the CM
terms from the measurement results, we can use the same methodology to obtain
a lower bound on the key rate.

In the following, we provide more detail on how each of the terms in (4.5) can
be calculated.
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4.2 Secret key rate analysis

4.2.1 Mutual information

The mutual information between two random variables XA and XB, corresponding
to post-selected data on Alice’s and Bob’s sides, is the difference between the
entropy function H(XB) and the conditional entropy function H(XB|XA) Cover
& Thomas [2006]:

I?(XA : XB) = H(XB)−H(XB|XA), (4.6)

where

H(XB) = −
∫
dXB fXB(XB) log2 fXB(XB), (4.7)

and

H(XB|XA) =−
∫ ∫

dXAdXBf(XA, XB) log2 fXB(XB|XA), (4.8)

with f(XA, XB) = fXA(XA)fXB(XB|XA) being the joint probability density func-
tion.

Here, fXB(XB) can be obtained by using (3.26), while the conditional output
distribution fXB(XB|XA) can be obtained as follows:

fXB(XB|XA) = tr(ω̂PS
out(XA)|XB〉〈XB|), (4.9)

where the conditional output state ω̂PS
out(XA) is given by (A.1) in appendix A.

In our study, we numerically carry out the above integrals for a given set of
parameters.

4.2.2 Holevo information

In order to calculate the Holevo information term, χ?BE, we use the EB description
of the protocol, where one part of a TMSV state travels through the quantum
channel and is amplified by a QS, while the other is measured by Alice; see fig-
ure 3.7. In order to upper bound χ?BE, what we need is then the CM of Alice-Bob
bipartite state. We derived the exact post-selected joint state in subsection 3.4.6,
from which the CM parameters can be obtained. As shown in figure 3.7, we
also account for the effect of the quantum channel loss and excess noise in our
calculations.
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4.3 Numerical results

Following the results in section 3.4.6, appendix B provides the detailed cal-
culations of the corresponding CM parameters. It turns out that the CM of the
shared bipartite state between Alice and Bob has the form

VAB =
 Vx12 Vxyσz

Vxyσz Vy12

 , (4.10)

where

Vx = δ2

(g2 + 1)P succ

(8[γ2T +
(
2F3 + 1− γ2T

)(
g2(2F3 + 1) + 2F3

)
]

(2F3 + 1)3

− g2(2F3 − γ2T )
F 2

3

)
− 1,

Vy = 4
(g2 + 1)P succ

(4[g2(2F3 + 1) + F3]
(2F3 + 1)2 − g2

F

)
− 1,

Vxy = 8δγ
(g2 + 1)P succ(2F3 + 1)2 g

√
T , (4.11)

with F3 = 1
2 + 1

4T (2(δ2 − 1) + εtm) and

P succ = 1
g2 + 1

(
4[(2F3 + 1)g2 + 2F3]/(2F3 + 1)2 − g2/F3

)
. (4.12)

It is interesting to make the following observation. If the TMSV state is
assumed totally uncorrelated, which happens when its squeezing parameter goes
to zero, both parts of the state are left with vacuum states. Thus, if the QS is
successful, the output state of mode b̂3 should be a vacuum state as well. This
means that the CM of the end-to-end state is the identity. We verify that in the
case of having a totally uncorrelated TMSV state, corresponding to δ = 1 and
γ = 0 (see section 2.1.2), the CM will indeed result in the identity matrix; that
is, we obtain Vx = Vy = 1 and Vxy = 0.

In addition, as a result of the statistical equivalence between EB and P&M
schemes, where δ =

√
(V + 1)/2 , with V = VA + 1, we conclude that F3 = F2.

Now that the CM is known, we can find an upper bound to the Holevo information
by using (2.43).

4.3 Numerical results

In this section, we present numerical simulations of the secret key rate of the
QS-amplified GG02 protocol and compare it with that of the conventional one.
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We find the maximum value for the lower bound in (4.5) by optimizing, at each
distance, the modulation variance, VA, or, equivalently, the parameter δ in the
EB scenario, as well as the QS parameter, µ, which specifies the QS amplification
gain. We also account for the excess noise, as discussed in previous sections. We
assume that the quantum channel between the sender and receiver is an optical
fibre with loss factor α, whose transmittance is given by T = 10−αL/10, where
L is the channel length and the loss factor is α = 0.2 dB/km corresponding to
standard low-loss telecom optical fibres. Also, we assume β = 1 and that ideal
homodyne detection, with no electronic noise, is performed at the receiver.

We first highlight the importance of accounting for the non-Gaussian beha-
viour of the QS by comparing the difference between the exact value of the mutual
information function I?(XA : XB), given by (4.6), and that obtained by Gaussian
approximation, i.e.,

IG(XA : XB) = 1
2 log2

VxVy
VxVy − V 2

xy

. (4.13)

Figure 4.3 shows both curves, versus distance, at no excess noise. It is clear that
the Gaussian approximation would have overestimated the mutual information
between Alice and Bob at all distances considered, and that could have resulted
in wrong bounds for the key rate of QS-based systems.

Figure 4.4 shows the optimized secret key rates of both conventional (solid
lines) and the QS-assisted (dashed lines) GG02 protocol versus distance, as well
as that of the PLOB bound for a repeaterless thermal-loss channel (labelled TL-
PLOB). This is the bound given in (23) of Pirandola et al. [2017] at an equivalent
mean thermal photon number, n̄ = εtmT/(2(1− T )), to our receiver excess noise
(here at εtm = 0.05). There are several interesting observations that can be
made in this figure. First, we note that in all considered cases, there exists a
crossover distance at which the QS-assisted curves surpass their corresponding
no-QS curves. At εtm = 0, this happens at around 200 km. By increasing εtm, the
crossover distance would drop and reaches around 175 km at εtm = 0.05. This
proves the key objective of our study that, by using realistic NLAs, there would
be certain regimes where NLA-based systems improve the performance and the
distance at which secure keys can be exchanged.

It can be seen, in figure 4.4, that QS-equipped receivers may not support high
key rates at short distances. In fact, except for the case of εtm = 0, we may
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Figure 4.3: The exact mutual information function as compared to its Gaussian ap-
proximation versus distance at ε = 0. All other parameters have been optimized.

not be able to exchange any secret keys at very short distances for the QS-based
system. Even for the no excess noise case, there are over two orders of magnitude
difference between the no-QS and QS-based curves at L = 0. This is attributed
to multiple factors. First, the trade-off between the choice of modulation variance
and noise level in the system, would require us to use very small values of VA at
short distances, otherwise the QS will not operate at its low-noise regime. For
instance, at L = 0, the optimum value of VA for the QS-based system is 0.04. A
no-QS system with such a low value of VA also offers a low key rate of 2.83×10−2,
which is comparable to what we obtain for the QS-based system. Another factor
is the success probability that at L = 0 is around 0.5, and it almost linearly goes
down to around 0.15 at 200 km. One last factor is the fact that the QS is not
entirely noise free. The additional noise by the QS would further decrease the
rate at L = 0. In addition to this, if we have non-zero values of excess noise, a
combination of the above effects plus the external noise drive the key rate to zero
at very short distances. This is by itself not a practical dilemma, as, for a given
channel length, one, in advance, can figure out whether to use a QS or not. But,
this can affect the applicability of QS modules in a CV quantum repeater system.
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Figure 4.4: The optimized secret key rate for the QS-amplified CV-QKD protocol
versus distance, as compared to the rate of conventional GG02, and the upper bound
for a repeaterless thermal-loss channel (TL-PLOB) at a mean thermal photon number
of εrec/(2(1− T )). The solid lines represent the no-QS case with top curve at εtm = 0,
and the bottom one at εtm = 0.05, and the middle curves covering εtm = 0.01− 0.04

.

Another observation in figure 4.4 is that, at long distances, the key rate for
QS-based systems follows a parallel trend to that of the TL-PLOB curve. For
instance, at εtm = 0.05, the key rate remains roughly one order of magnitude
below the PLOB bound for long distances. We have numerically verified that,
by optimizing system parameters, even for longer distances than shown on the
graph, we can obtain positive key rates, albeit quiet low, for QS-assisted systems.
The post-selection mechanism in the QS seems to be the key to obtaining positive
key rates at long distances. At such distances, the channel loss naturally prepares
low-intensity inputs to the QS, which allows us to use larger values of VA, as shown
in table 4.1. That would also enable us to use higher gains without necessarily
increasing the QS noise. A higher-than unity gain for the post-selected states
would then offer a better signal-to-noise ratio at long distances, which allows us
to achieve positive secret key rates at longer distances than can otherwise be
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Table 4.1: Optimized values for modulation variance and amplification gain at zero
excess noise for the QS-based system.

Distance (km) Optimized VA Optimized gain, g
0 0.05 1.00

100 0.8 1.36
200 3.5 2.38
300 11.5 4.36
400 12.5 14.1
500 13.5 100

achieved for a no-QS system.
Figure 4.4 also shows that our QS-amplified system cannot beat the existing

upper bound for repeaterless systems Pirandola et al. [2017]. This agrees with the
fact that any post-processing at the receiver side does not change the repeaterless
nature of the link, even though a form of amplification is in use. But, it will be
interesting to see if, based on the above results, we can assess the practicality of
the proposed CV quantum repeater setups as proposed by Dias & Ralph [2017].
On the positive side, we can see that there exists a regime of operation where
the slope of QS-based curves offer a square root advantage as needed in repeater
systems. On the downside, however, this behaviour only appears in a limited
range of distance, and only up to a maximum value of excess noise. In our
simulations, we were not able to obtain any positive secret key rates at εtm = 0.06,
or higher. It seems that once the starting distance at which QS-based curves offer
positive key rates lies above the maximum security distance for no-QS systems,
it is no longer possible to get a positive key rate for QS-assisted systems. This
may suggest that similar limitations might affect the suitability of CV repeater
systems for QKD applications, which needs further investigation.

4.4 Summary

In this chapter, we studied the performance of the GG02 protocol where the
received signal was amplified by a quantum scissor (QS). We showed that the QS
would turn a Gaussian input state into a non-Gaussian one. That would make the
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conventional techniques to estimating the key rate not directly applicable to our
case. We instead directly calculated the mutual information between Alice and
Bob by working out the probability distribution function of the quadratures after
the QS. Also, in order to calculate the leaked information to Eve, we obtained
the exact covariance matrix of the bipartite state shared between sender and
receiver labs in the particular case of a Gaussian attack. We then found the
Holevo information corresponding to a Gaussian shared output state with the
same covariance matrix, which gives an upper bound for the Holevo term in the
case considered. We optimized the key rate over input modulation variance and
amplification gain. Our results showed that, for a certain range of excess noise,
the QS-enhanced system could reach longer distances than the no-QS system.
Finally, note that while the original NLA proposal by Ralph and Lund relies
on multiple QS modules, in our scheme, we find using one QS is optimal as
it minimizes the noise while we can adjust the signal level by optimizing the
modulation variance. This also agrees with the results reported in Seshadreesan
et al. [2018], where they have shown that the reverse coherent information Garćıa-
Patrón et al. [2009], Pirandola et al. [2009], as the figure of merit, is maximum
when only one QS is used.
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Chapter 5

Discrete-modulation
continuous-variable quantum key
distribution with quantum
scissors

In chapter 4, we showed that quantum scissors (QSs), as non-deterministic amp-
lifiers, can enhance the performance of Gaussian-modulated CV-QKD in noisy
and long-distance regimes of operation. In this chapter, we extend this result to
a non-Gaussian CV-QKD protocol with discrete modulation. We show that, by
using a proper setting, the use of QSs in the receiver of such discrete-modulation
protocols would allow us to achieve positive secret key rates at high loss and high
excess noise regimes of operation, which would have been otherwise impossible.
This also keeps the prospect of running discrete-modulation CV-QKD over CV
quantum repeaters alive.

We consider all enabling factors within a single setup to study the rate-versus-
distance behaviour for a discrete-modulation CV-QKD system, discussed in sec-
tion 2.3, that uses QSs at its receiver. As pointed out, this is effectively the main
building block in the CV quantum repeater setup proposed by Dias & Ralph
[2017], which is now used for discrete-modulation CV-QKD. A realistic analysis
of our setup could then be used to assess the practicality of the proposed repeater
setups. It has already been shown that, by using an ideal non-deterministic noise-
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less linear amplifier (NLA) at the receiver’s side, one can increase the maximum
transmission distance and tolerable excess noise of the quadrature-phase-shift-
keying (QPSK) protocol Xu et al. [2013]. However, a study that accounts for a
realistic NLA, such as a QS, is missing. This is important, because one of the key
incentives for using discrete-modulation CV-QKD is its similarity with existing
coherent optical communications systems, which possibly makes its adoption and
implementation more straightforward.

Our main contributions in this chapter

• We work out exact mutual information for our QPSK-modulated QS-assisted
CV-QKD system, by focusing on its prepare-and-measure (P&M) scheme.

•We upper bound the Holevo information for our QPSK-modulated QS-assisted
CV-QKD system, by focusing on its entanglement-based (EB) scheme.

•We provide a lower bound on the key rate of the QS-assisted CV-QKD system.

• We show that secret key rate of the QS system can beat the no-QS one at
certain regimes of operation.

5.1 System description

In this section, we present our proposed P&M QS-amplified CV-QKD protocol
with discrete modulation and its equivalent EB version. Both schemes are de-
picted in figure 5.1. Different components of the system are described below. In
a conventional discrete modulation protocol, a particular finite constellation of
coherent states is considered and used for encoding data. The QPSK modulation
protocol was described in section 2.3, where its security proof was also discussed.
Our QS-added protocol runs exactly the same as described there, except that
Bob’s receiver is now equipped with a QS. The trusted parties keep the detection
results only if the QS operation is successful in the respective round; that is, only
one of detectors D1 or D2, in figure 3.1(b), clicks. By doing reconciliation and
privacy amplification, the parties can then obtain a common string of secret bits.

In order to calculate exact amount of mutual information, we use the P&M
scheme of the protocol. We first, using our exact solution for the QS system with
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5.1 System description

Figure 5.1: System description. (a) Schematic view of discrete-modulation CV-QKD
protocol equipped with a QS as a part of its receiver. Here, the four yellow circles
at the sender side represent the constellation of the four coherent states used at the
encoder. The quantum channel is modelled by a beam splitter with transmissivity T

and the excess noise represented by ε. (b) The EB CV-QKD protocol equivalent to (a).
|Ψ〉01, QS, and P̂ box, respectively, represent the bipartite entangled state in (2.48),
a probabilistic QS as seen in figure 3.1(b), and the projective measurement module in
{|ψk〉0} basis.

coherent state inputs, given in section 3.4, find the output state for the QPSK
input; see section 5.2. Next, using such an output state, we work out the mutual
information in section 5.3.

On the other hand, as earlier discussed, in order to calculate the Holevo in-
formation term, it is often easier to consider the equivalent EB scheme, which is
shown in figure 5.1(b). In the EB version, instead of randomly choosing and send-
ing single-mode coherent states, Alice measures one mode of a bipartite entangled
state, and sends the other one to Bob. Note that in the Gaussian modulation
case, the employed entangled state is a TMSV state, and Alice’s measurement is
a heterodyne detection. In the case of the QPSK protocol, it has been shown that
one can start with a TMSV state, and apply a certain measurement to obtain the
bipartite state |Ψ〉01 in (2.48); see section 2.3 and Leverrier & Grangier [2011] for
more detail.

In addition, we consider the same thermal-loss channel described in sec-
tion 4.1.3.
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5.2 Quantum-scissor assisted channel with discretely modulated
inputs

5.2 Quantum-scissor assisted channel with dis-
cretely modulated inputs

We analysed QSs in detail in chapter 3. Here, we obtain the output state of the
QS, upon successful operation, for an input QPSK state,

ρ̂ = 1
4

3∑
k=0
|αk〉〈αk|, (5.1)

to the thermal-loss channel described in section 4.1 (note that |αk〉 = |α̇e(2k+1)iπ/4〉,
with α̇ ∈ R+). In order to do so, we use the results reported in chapter 3. The
output state of such a setup for an arbitrary coherent state, |α〉, at the input has
been derived in section 3.4, which, for clarity, we repeat the final results here:

ρ̂PS
out(α) =a(α)|0〉1〈0|+ b(α)|0〉1〈1|+ b∗(α)|1〉1〈0|+ c(α)|1〉1〈1|, (5.2)

where 

a(α) = 4[2F1(2F1+1)+T |α|2]
(g2+1)Psucc(α)(2F1+1)3 e

−T |α|2
2F1+1

b(α) = −4g
√
T α

(g2+1)Psucc(α)(2F1+1)2 e
−T |α|2

2F1+1

c(α) = 4g2

(g2+1)Psucc(α)

(
e
−T |α|2

2F1+1

2F1+1 − e
−T |α|

2
2F1

4F1

)
,

(5.3)

with F1 = 1
2 + 1

4(1− T )ε and

Psucc(α) =
4
(
g2(2F1 + 1)2 + 2F1(2F1 + 1) + T |α|2

)
e
−T |α|2

2F1+1

(g2 + 1)(2F1 + 1)3 − g2e
−T |α|

2
2F1

(g2 + 1)F1
.

(5.4)

In the case of QPSK modulation, the input state in (5.1) is an equi-probable
mixture of four coherent states. Therefore, the output state is also a linear
mixture of four states, i.e., ρ̂PS

out(α̇) = (1/4)∑3
k=0 ρ̂

PS
out(αk), which can be simplified

to the following state

ρ̂PS
out(α̇) = a(α̇)|0〉1〈0|+ c(α̇)|1〉1〈1|, (5.5)

where a(α̇) and c(α̇) are given by (5.3).
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inputs

Similar to the results obtained in section 3.4.5 for Gaussian distributed inputs,
an interesting observation from (5.5) is that the output state of the QS is non-
Gaussian. This is not just because we have used a non-Gaussian modulation, but
even for a single coherent state at the input, as discussed in chapters 3 and 4, the
output state is in the subspace spanned by {|0〉, |1〉}. There are two implications
for this behaviour. First, the QS amplification cannot be noise free, as in an
ideal NLA, but the amount of noise can vary based on the input signal and the
amplification gain. Further, this non-Gaussianity can complicate the security
analysis of the protocol. In our study, we manage this additional complexity by
restricting the eavesdropper to collective Gaussian attacks Pirandola et al. [2008],
as discussed in the previous chapter.

The non-Gaussianity of the channel manifests itself in the statistics that we
can obtain from Bob’s homodyne measurement. In particular, using similar tech-
niques as in chapter 3 (equation (3.26)), the output probability distribution of
X̂B quadrature can be calculated as follows:

fXB(XB) = tr
(
ρ̂PS

out(α̇)|XB〉〈XB|
)

=
(
a(α̇) + 2c(α̇)X2

B

)
e−X

2
B

√
π
, (5.6)

with X̂B|XB〉 = XB|XB〉. As can be seen in (5.6), similar to the Gaussian
modulation case, the output probability distribution function is composed of a
Gaussian and a non-Gaussian term. In the regime where a(α̇) � c(α̇), we are
very close to a fully Gaussian system. For this to happen α̇ needs to be small.
In the other extreme, when c(α̇) � a(α̇), we get a bimodal form for the output
distribution, which is clearly non-Gaussian.

Similar to the calculation in appendix A, we can work out the conditional
output probability distribution:

fXB(XB|XAk) = tr[ρ̂PS
out,c(XAk)|XB〉〈XB|], (5.7)

where

ρ̂PS
out,c(XAk) =ac(XAk)|0〉1〈0|+ bc(XAk)|0〉1〈1|+ b∗c(XAk)|1〉1〈0|+ cc(XAk)|1〉1〈1|

(5.8)
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is the QS output state conditioned on Alice sending a signal with X quadrature
XAk and observing a click on D1. In this case,

ac(XAk) =
2µ
(

4F1(2F1+1)+T (α̇2+2X2
Ak)
)

(2F1+1)3PPS
c (XAk) e

−
T (α̇2+2X2

Ak
)

2(2F1+1)

bc(XAk) = − 2
√
µ(1−µ)T XAk

(2F1+1)2PPS
c (XAk)e

−
T (α̇2+2X2

Ak
)

2(2F1+1)

cc(XAk) = 1− ac(XAk)

(5.9)

and

P PS
c (XAk) =2(2F1 + 1)2 − 2µ(2F1 + 1) + µT (α̇2 + 2X2

Ak)
(2F1 + 1)3 e

−
T (α̇2+2X2

Ak
)

2(2F1+1)

− 1− µ
2F1

e
−
T (α̇2+2X2

Ak
)

4F1 . (5.10)

We will later use the above expressions in order to calculate the mutual inform-
ation between the legitimate parties.

5.3 Secret key rate analysis

In this section, we present the key rate analysis for our QS-equipped CV-QKD
system. We calculate the secret key generation rate for our system under the
assumption that the eavesdropper is limited to Gaussian attacks. In this case,
we can assume that the effective channel between the parties is a thermal-loss
channel as we described in section 4.1. Note that the key rate obtained in this
case is not necessarily an exact lower bound on the key rate because the optimal
attack by an eavesdropper can be non-Gaussian. As it has been pointed out in
He et al. [2018], however, the key rate obtained in our case is expected to be a
close approximation to a true lower bound on the key rate.

In the asymptotic limit of many runs of the protocol, the secret key rate of a
CV-QKD protocol under collective attacks is given by a similar equation to (4.5):

RRR ≥ P succ(βI?(XA : XB)− χ?BE), (5.11)

In our protocol, the same as in the QS-amplified GG02 protocol, we discard data
associated with the unsuccessful QS events and use only the post-selected data
in order to produce a secret string of bits (we are using ‘?’ to emphasize this
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point). In the following, we first derive the exact value for mutual information
I?(XA : XB) and an upper bound for χ?BE for the thermal-loss channel, upon
successful QS events.

5.3.1 Mutual information

By definition, the mutual information of two random variables XA and XB is
the difference between the entropy function H(XB) and the conditional entropy
H(XB|XA):

I?(XA : XB) = H(XB)−H(XB|XA), (5.12)

where

H(XB) = −
∫
dXB fXB(XB) log2 fXB(XB) (5.13)

and

H(XB|XA) = −1
4

3∑
k=0

∫
dXB fXB(XB|XAk) log2 fXB(XB|XAk). (5.14)

Functions fXB(xB) and fXB(XB|XAk) are given in (5.6) and (5.7), using which
and the above equations, we numerically calculate the mutual information. We
note that the input quadrature is a discrete random variable whereas the output
is, in principle, continuous.

5.3.2 Holevo information

We upper bound the leaked information, χ?BE, by calculating the Holevo term for
a Gaussian channel with the same covariance matrix (CM) as that of our system
Garćıa-Patrón & Cerf [2006], Navascués et al. [2006]. In order to work out the
corresponding CM, we first need to find the bipartite state between Alice’s mode
â0 and Bob’s mode b̂3 for our QPSK setup in figure 5.2. This is akin to figure 3.7,
except that the initial TMSV state is now replaced by the bipartite state in (2.48):

|Ψ〉01 = 1
2

3∑
k=0
|ψk〉0|αk〉1. (5.15)
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Figure 5.2: Entanglement-based version of the QS-amplified CV-QKD scheme. The
noisy quantum channel and the QS are considered as a combined system, with input
modes â1 − â3, and ân, and output modes b̂1 − b̂3, and b̂n. The initial state of modes
represented by â0 − â1 is given by |Ψ〉01. The initial state of the modes represented by
operators â2, â3, and ân is, respectively, given by a single photon, a vacuum, and the
thermal state in (4.3).

The quantum channel, QS operation, and the detection are the same as in the
Gaussian-modulation study presented in chapter 4. In doing so, we let mode â1

of the above state to propagate through the thermal-loss channel, which couples
Alice’s signal to the thermal state given by (4.3):

ρ̂th =
∫
d2β

e−
|β|2
ε/2

πε/2 |β〉ân〈β|, (5.16)

and subsequently undergoes the QS operation.
Next, in order to calculate the joint state of modes â0 and b̂3, we follow the

same procedure as in the previous chapter that relies on finding input-output
characteristic functions for the module Γ, given in figure 5.2. Upon a successful
QS operation, i.e., measurement M̂ = (12−|0〉b̂1〈0|)⊗|0〉b̂2〈0| in (3.15), we obtain

ρ̂03 = 1
4P PS

3∑
k=0

3∑
l=0
|ψk〉0〈ψl| ⊗ Ω̂kl

3 , (5.17)

where

Ω̂kl
3 =

∫ d2ξ3

π
ζklA (ξ3)D̂N(b̂3, ξ3) (5.18)

83



5.3 Secret key rate analysis

is the state that Bob measures. Here,

ζklA (ξ3) =
∫ d2ξ1

π

d2ξ2

π
χklA (ξ1, ξ2, ξ3) (5.19)

where, for |αk〉1〈αl| as the input state,

χklA (ξ1, ξ2, ξ3) =e−F |ξ1−ξ2|2e
√

T
2 [α∗l (ξ1−ξ2)−αk(ξ∗1−ξ∗2)]

× e−
µ
2 |ξ1+ξ2+

√
2 gξ3|2e−

1−µ
2 |ξ1+ξ2−

√
2 /gξ3|2

× (πδ2(ξ1)− 1)
(
1− µ

2 |ξ1 + ξ2 +
√

2 gξ3|2
)

(5.20)

is the antinormally-ordered characteristic function of the output states in fig-
ure 5.2 after tracing over the noise mode b̂n, which belongs to a potential eaves-
dropper. Also, success probability for measurement M̂ is given by

P PS =1
4

3∑
k=0

∫ d2ξ1

π

d2ξ2

π
χkkA (ξ1, ξ2, 0)

=1
4

3∑
k=0

ζkkA (0)

=ζ00
A (0), (5.21)

where ζklA (0) is given by (C.2) in appendix C. This result exactly matches that of
the P&M scheme, given in (5.4). We remark that the total success probability is
given by Psucc = 2P PS = 2ζ00

A (0), which also accounts for the case of D2 clicking
and D1 not clicking.

Finally, in order to find a lower bound on the secret key rate, we use the
optimality of Gaussian collective attacks in the asymptotic limit for a given CM.
Now that the bipartite state between Alice and Bob is known, and given by (5.17),
we can work out the first and second order moments in the CM, which turns out
to be in the standard symplectic form:

VAB =
 Vx12 Vxyσz

Vxyσz Vy12

 . (5.22)

We derive the closed form expression of the triplet (Vx, Vxy, Vy) in appendix C.
Note that the obtained CM for vacuum state at the input, i.e., when α̇ = 0,
results in identity CM, i.e., VAB = 12 ⊗ 12, as one would expect. Having found
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5.3 Secret key rate analysis

the CM, one can then work out a bound on Holevo information using the set
of equations given in section 2.2.3. But, before delving into the secret key rate
analysis, we would like to make a comment on the CM and correlation shared
between Alice and Bob.

Correlation factor

An important feature of the CM in (5.22) is its correlation parameter, which
characterizes the amount of correlation between the parties’s quadratures upon a
successful QS operation. It is defined as Z(QS)

4 = Vxy/
√
T , where Vxy is given in

(C.10). Figure 5.3 compares Z(QS)
4 in our QS-based system with that of the no-QS

setup, Z4 Leverrier & Grangier [2011], and then compares both with that of the
Gaussian modulation case without (ZG) and with (Z(NLA)

G ) an ideal NLA. In the
case of Gaussian modulation without an NLA, instead of |Ψ〉01, we start with
a TMSV state given by

√
1− λ2 ∑∞

n=0 λ
n|n〉0|n〉1, for which the corresponding

CM is given by
 (VA + 1)12 ZGσz

ZGσz (VA + 1)12

, with ZG =
√
V 2
A + 2VA , where

VA = 2λ2/(1 − λ2) is its corresponding modulation variance. The parameter λ
would ideally change to gλ once one arm of the TMSV state goes through an ideal
NLA with gain g Ralph & Lund [2009], Blandino et al. [2012]. The corresponding
correlation term, Z(NLA)

G , can then be calculated by Z
(NLA)
G =

√
(V ′A)2 + 2V ′A ,

where V ′A = 2g2λ2/(1− g2λ2).
Figure 5.3 compares the above four correlation parameters as a function of

VA. In the case of the QPSK protocol, VA = 2α̇2. We can see that Z(QS)
4 , with

g = 2, overtakes the two no-NLA curves at a VA around 0.13. This suggests that
the amount of correlation between Alice and Bob signals has been enhanced by
the use of a QS. This may imply that higher key generation rates can be obtained
in certain regimes of operation. One should, however, note that by increasing VA,
hence α̇, we may reduce the success probability of the QS system, and may make
the amplified output noisy. Furthermore, by increasing α̇, Eve’s Gaussian attack
would be further away from her optimal attack. Hence, a trade-off involves here.
We will discuss this point in our numerical results when we optimize the secret
key rate over system parameters. One final interesting point in figure 5.3 is that
the correlation term for the ideal NLA is always better than the QS system. This
may suggest that the earlier analysis that rely on an ideal NLA may overestimate
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Figure 5.3: Correlation factor for the Gaussian modulation CM (solid black), the
four coherent-state constellation without (solid blue) and with (dashed red) a QS with
amplification gain g = 2. The solid red curve belongs to the TMSV state amplified via
an ideal NLA (g = 2); see text for more information. Here, the channel is assumed
loss-less and without any excess noise.

what can be achieved with a realistic NLA system.

5.4 Numerical results

In this section, we present some numerical results for the secret key rate of our
QS-amplified QPSK CV-QKD system and compare it with that of the no-QS
protocol, as well as its Gaussian modulated variants. To that end, we solve a
dual optimization problem. We find the maximum value for the lower bound in
(5.11) by optimizing over α̇, which specifies the modulation variance, and the QS
parameter g, which specifies the QS amplification gain. In our numerical results,
for a channel with length L, we assume that T = 10−αL/10, where α = 0.2 dB/km
is the loss factor for optical fibres. Also, we nominally assume a reconciliation
efficiency equal to one and that Bob, upon successful QS events, uses an ideal
homodyne detection, with no electronic noise and no loss, to measure the received
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Figure 5.4: Numerical results of the optimized secret key rate for QS-equipped QPSK
CV-QKD protocol versus distance (dashed lines), as compared to that of the protocol
with no-QS (solid lines). The ultimate thermal-loss PLOB bound is shown at the top.

signals.
Figure 5.4 shows the optimized key rates for the no-QS and QS-equipped

QPSK protocols versus distance. We observe that the behaviour of the different
curves shown in figure 5.4 is very much akin to that of the Gaussian modula-
tion QS-equipped CV-QKD presented in chapter 4. In particular, the QS-based
systems are capable of beating their no-QS counterparts after a certain distance,
and considerably increase the maximum security distance achievable by the un-
derlying QKD protocol. The crossover distance at an input excess noise equal to
zero and 0.01 SNU is, respectively, around 120 km and 110 km. In the case of
εtm = 0.05, the no-QS system has a very low reach, whereas, by using a QS, the
system can now provide positive secret key rates at distances over 140 km. It
can also be seen that the QS-based system offers either zero or very low secret
key rates at short distances. This, as pointed out in chapter 4, can be because of
the additional noise by the QS, especially, for large inputs, which requires us to
use much lower values of α̇ that would be used in the no-QS system. This could
make the signal component of the signal, at short distances, less than the excess
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noise part, hence resulting in no secure keys.
The opposite effect is seen at long distances where QS-based systems are

offering a key rate parallel to the fundamental bounds for secret key generation
rate for a thermal-loss channel (labelled by TL-PLOB). This is the bound given
in (23) of Pirandola et al. [2017] at an equivalent mean thermal photon number,
n̄ = εtmT/(2(1 − T )), to our receiver excess noise (here at εtm = 0.05). This
extended security distance suggests that once the input to the QS is low enough,
which is at long distances, the post-selection offered by the QS can improve
the signal-to-noise ratio to a level that positive secret key rates are distillable.
We have numerically verified that positive key rates are indeed achievable for
εtm < 0.09 for the QS-based system.

The QS-equipped discrete modulation system seems to offer more resilience
to excess noise and channel loss than its Gaussian modulation counterpart con-
sidered in chapter 4. For instance, the maximum tolerable excess noise in the
latter case is around 0.06 SNU as compared to 0.09 SNU in the former case. The
secret key rate obtained at a high excess noise value of 0.05 SNU is also higher for
the discrete modulation versus Gaussian modulation case. This has been shown
in figure 5.5, where the secret key rate for both systems, in the presence and
absence of a QS, has been shown. This result is, however, counter-intuitive, and
must be taken with caution. There is a fundamental difference between the Gaus-
sian modulation and discrete modulation cases in that the latter is not a Gaussian
one especially for large values of α̇. As shown in figure 5.6, the optimal value of α̇
is around 0.7 at εtm = 0.05. In our analysis, we have, however, assumed that Eve
is restricted to a Gaussian attack, which will become less optimal as the input
modulation deviates further from a Gaussian one. What our numerical results
would then suggest is that for a Gaussian Eve, it is better to use a non-Gaussian
modulation as this would make Eve’s attack even less optimal.

If we want to obtain a more realistic account of what a non-restricted Eve
could achieve in our system, we should then cap the choice of α̇ in our optimiz-
ation to a value that preserves the Gaussianity of the input signal to some good
extent. A suggested cap for α̇ is given by Ghorai et al. [2019] to be around 0.5.
The lower curve in figure 5.5 shows the secret key rate under this constraint,
while the corresponding optimal value of g is shown in figure 5.6. It is now clear
that the rate obtained for the discrete modulation case, at β = 1, is lower than
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Figure 5.5: Numerical results of the optimized secret key rate for discrete modulation
(DM) CV-QKD protocol versus distance, as compared to that of the Gaussian mod-
ulated (GM) GG02 protocol with and without a QS at εtm = 0.05. The lower curve
represents the result of optimized key rate when α is capped at 0.5. The rates are
obtained at β = 1.

that of the Gaussian modulation case. The no-QS Gaussian modulation system
will, however, offer no positive key rate for β < 0.98, which implies that, if one
considers the more efficient reconciliation techniques for discrete modulation sys-
tems, there would be regimes of operation where the discrete modulation system
outperforms the Gaussian modulation case. Note that, as shown in figure 5.6, by
capping α̇, larger values of gain are needed by the QS to achieve the optimal key
rate.

In our optimization, in order to achieve the highest possible rates, we find that
values of amplification gain as large as g = 30 are required; see figure 5.6. We
note, however, that this might not be practically attainable. The reason is that a
QS that can offer a large amount of amplification gain, e.g., g = 30, requires an
imbalanced beam splitter, with µ = 1/(g2 + 1) ≈ 0.0011, which is hard to make,
if not impossible.

Finally, we would like to comment on the suitability of quantum scissors in
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Figure 5.6: Optimized input amplitude (marked by circles) and optimized amplifica-
tion gain (marked by diamonds) versus channel length at εtm = 0.05 with and without
a cap (0.5, not shown on the graph) on α̇.

CV quantum repeaters (QRs). One of the objectives of calculating the key rate
of a QS equipped CV-QKD system was the similarity of the setup to what was
proposed, as the main building block, in recent proposals for CV QRs Dias &
Ralph [2017], Seshadreesan et al. [2018]. Our intuition was that if a realistic QS
could not offer any advantage over the no-QS one, then the prospect of a CV QR
that relies on such QS devices would also be questionable. Our results suggest
that there are regimes of operation that QS-based systems offer some advantage.
We are, however, short of a convincing argument that such regimes of operation
would be those in which repeater systems could operate as well. In fact, while
our results keep the prospect of functioning CV QRs open, they also highlight
the importance of considering all noise effects before jumping to any conclusions.
Our analysis could then be used to further study the proposed repeater setups
and assess how, in practice, they can perform.
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5.5 Summary

In this chapter, we studied the performance of a CV-QKD system that used
quadrature-phase-shift-keying modulation at the encoder and a certain optical
state truncation device, i.e., a quantum scissor (QS), before its homodyne re-
ceiver. The objective was to find if and to what extent the use of QS, as a
non-deterministic amplifier, could improve the rate behaviour of the system at
long distances. We showed that, by optimizing the relevant system paramet-
ers, the QS-equipped system could tolerate more excess noise than the no-QS
discrete-modulation system, and therefore could reach longer distances at posit-
ive values of excess noise. This effect was similar to that of a Gaussian-modulated
CV-QKD system, as seen in the previous chapter, but in the discrete-modulation
case we observed additional tolerance against excess noise if only Gaussian at-
tacks are considered, or assume lower reconciliation efficiencies for the Gaussian
modulation case, as is often the case. This enables us to extend the reach of CV-
QKD systems provided that we supplement them with additional devices such as
single-photon sources Senellart et al. [2017] and single-photon detectors Cahall
et al. [2017]. This, at first, may sound counterproductive as it takes away some
of the practical advantages of CV-QKD systems. But, one should note that these
additional equipment are only needed at the receiver end of the link, which, in
a practical setup, can represent a shared network node in a quantum network.
Moreover, our analysis would specify the range of distances for which the use of a
QS could be beneficial. Over shorter distances, one should still use a conventional
system. Eventually, QRs are needed to reach arbitrarily long distances, for which
the QS-based system studied here serves as a building block.
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Chapter 6

Satellite-based
continuous-variable quantum key
distribution

In this chapter, with the ultimate goal of achieving a long-distance continuous-
variable quantum key distribution (CV-QKD) system, we consider an alternative
to setups assisted by noiseless linear amplifiers and/or quantum repeaters, that
is, satellite-based CV-QKD. Satellite-based CV-QKD links can be part of a global
solution to QKD networks Razavi [2018]. In the absence of practical quantum
repeaters, fibre-based QKD links are limited to a distance of a few hundred kilo-
metres Zhang et al. [2018b]. In contrast, free-space QKD relying on ground-
to-satellite, satellite-to-ground, and/or satellite-to-satellite quantum communica-
tions links can potentially offer secure key exchange over thousands of kilometres
Liao et al. [2017a, 2018]. That, however, comes at an additional price for launch-
ing and operating satellites, as well as with some restrictions on the achievable
key rate and noise sensitivity. This chapter seeks solutions that can enhance the
benefits reaped from investing in this technology by looking into relevant realistic
threat models that would apply to satellite QKD. Continuous-variable QKD is
not the obvious choice when it comes to space communications. The satellite-
to-ground loss in typical settings that rely on low-Earth-orbit (LEO) satellites is
often over 30 dB, at which CV-QKD systems have a poor performance. Here, we
look at the specifics of a satellite link to come up with more realistic models for
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6.1 Necessity of a realistic account for satellite-based CV-QKD

eavesdropping attacks, based on which new security analysis are developed. The
results suggest that under this new restrictive regimes for Eve, CV-QKD can see
a considerable boost in its performance, making it a viable potion for QKD in
space.

Our main contributions in this chapter

•We model a satellite-to-ground QKD link, by assuming non-ideal links between
(i) the sender and the eavesdropper; and (ii) the eavesdropper and the
receiver. In this way, we limit Eve’s access to Alice and/or Bob stations.

• Based on our model, we introduce several scenarios that we may need to deal
with in practice.

• We find bounds on the secret key rate for majority of the scenarios, where we
consider both Gaussian and non-Gaussian modulation protocols.

• We show that higher key rates can be achieved as compared to when unres-
tricted eavesdropping is possible.

• We observe that as Eve’s access to the transmitted signal becomes less and
less, we approach a classical limit that the legitimate parties can exchange
secret keys up to the capacity of the channel connecting them.

6.1 Necessity of a realistic account for satellite-
based CV-QKD

Satellite-based QKD has been considered in many theoretical Bonato et al. [2009],
Moli-Sanchez et al. [2009], Meyer-Scott et al. [2011], Bourgoin et al. [2014], Boone
et al. [2015], Bedington et al. [2017], Hosseinidehaj et al. [2019] and experimental
Nauerth et al. [2013], Wang et al. [2013] , Bourgoin et al. [2015], Vallone et al.
[2015] studies. The successful launch of the Chinese QKD satellite in 2017, and
the experiments carried out since then Liao et al. [2017a,b, 2018], Ren et al.
[2017], has nevertheless been a game changer in bringing the field into a new
exciting development phase while a substantial global effort is directed at finding
practical solutions to the wide-scale deployment of QKD systems.
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Before the above development phase can be carried out, certain technological
challenges must be addressed. For instance, a secure satellite-based QKD system
must combat loss and noise effects in the link. Current experimental demon-
strations suggest that a typical LEO satellite-to-ground link would suffer around
30-40 dB of loss for a modest-size receiver telescope Liao et al. [2017a], and with
night operation only in order to minimize the noise. This would imply that
DV-QKD protocols may be the most efficient option for distributing keys from
satellites to terrestrial stations. Other options, such as CV-QKD, which is known
to be more resilient to noise in low-loss regimes, or even entanglement-based or
measurement-device-independent QKD, with a satellite as the middle node, are
likely to be less practical or efficient. In the latter two cases, whilst we would
not need to trust the satellite node, the total loss could exceed 80 dB (unless we
use larger telescopes Günthner et al. [2017]), which makes these options possibly
inefficient and/or expensive, if not infeasible.

We note, however, that the above limitations are partly because of the as-
sumptions made in our security analysis, e.g., that the channel in its entirety is
assumed to be under the control of a potential eavesdropper. Whether such an
assumption is necessary/realistic in the satellite QKD scenario, which relies on
line-of-sight links, needs to be scrutinized. Relaxing this assumption could open
up new opportunities that have been discounted, but which, if proved to be viable,
could offer additional options for implementation and commercial exploitation.

One of the distinctive features of a satellite link, as compared to a fibre link,
is that it is a line-of-sight link; see figure 6.1. While it may not be possible,
for a link of around 500 km of length in the LEO case, to fully monitor the
channel between Alice and Bob, one can employ monitoring techniques, such as
LIDAR, to detect objects of a certain minimum size along the path. In fact,
the same system and the corresponding optics that are being used for tracking
and acquisition purposes can also be used to detect unwanted objects along the
beam. The minimum object size that LIDAR can detect grows with a power four
of distance between the object and the LIDAR source. That said, our preliminary
calculations suggest that for a 500-km-long satellite link, and for LIDAR used at
both Alice and Bob stations, the largest undetected object within the beam width
of our LIDAR sources is around a few centimetres wide; see appendix D1. This

1We credit the information presented in appendix D to Carlo Liorni at Institute für The-
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Figure 6.1: Schematic view of a satellite QKD link, where an eavesdropper can arrange
an attack between the satellite and ground station. Due to the nature of such a link,
the possibility of designing a powerful attack might be restricted. We refer to the
explanatory text in section 6.2 to elaborate on scenarios (a)-(c).

is important because for any effective eavesdropping activity, Eve requires (i)
to somehow collect the signals transmitted by Alice, and/or (ii) to somehow be
able to send her own signals towards Bob’s receiver. In the satellite scenario,
power collection requires telescopes of decent size, and manipulation of Bob’s
receiver might need powerful laser sources, especially if Eve’s source is not fully
aligned with Bob’s telescope. This implies that the combination of limited size
telescopes for Eve and a monitored/protected zone around Alice box could restrict
Eve to only receiving a fraction of what Alice has sent. This would be the
first departure point from a maximally powerful Eve. In the second case, where
Eve cannot replace the channel between herself and Bob with an ideal channel,
any resend/hacking attack by Eve will be affected by a lossy channel that the
protection zone around receiver would enforce. This could also restrict Eve in
implementing her attack scenario.

In the following, we study the security of satellite-based CV-QKD in several
settings, where certain assumptions are made about the physical channel between
the satellite and the ground station as well as capabilities of Eve in an attack. We
classify, in section 6.2, different scenarios that reflect such limitations and model
each class with generic models for which new security analyses can be developed.

oretische Physik III, Heinrich Heine Universität, Düsseldorf, Germany.
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Figure 6.2: Atmospheric windows for space communications.

The rest of the chapter is then devoted to provide lower and/or upper bounds
for several regions of interest where Eve’s access to Alice’s and/or Bob’s sites is
through lossy channels for CV-QKD protocols.

Atmospheric loss and light windows to/from space

In our everyday life, we see that visible light, in the range of wavelengths about
380-740 nm of the electromagnetic spectrum, passes through the Earth’s atmo-
sphere. This is why we can see the sun, moon, and stars, at least in a non-cloudy
sky. However, not all the light in the electromagnetic spectrum can pass through
the atmosphere; see figure 6.2. This is because some portion of the spectrum is
absorbed by components of the atmosphere, such as water vapour, oxygen, and
carbon dioxide molecules. The atmosphere is then said to be opaque for this class
of wavelengths and transparent for, e.g., visible light. In fact, apart from visible
light, there are only few other free-space optical communications windows of the
electromagnetic spectrum that are open to space. This is a portion of the infrared
spectrum band in the interval of roughly 750-2500 nm, as shown in figure 6.2.
Indeed, when doing satellite QKD, the absorption band of the spectrum must be
avoided.
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6.2 Scenario classification for satellite CV-QKD

In this section, we model the restrictions imposed by our detection systems by
lossy channels between Alice and Eve, and between Eve and Bob. In particular,
we assume that a lossy channel with transmissivity ηAE connects Alice to Eve,
and that Eve has no access to the signals lost on this channel. Similarly, we
assume that every signal sent by Eve to Bob would go through a lossy channel
with transmissivity ηEB, where neither Eve nor Bob has access to the lost signals
on this channel. We investigate how these two restrictions affect the performance
of a CV-QKD system run on such a link.

There are different scenarios that one can consider with the above generic
restrictions. One possible scenario, shown in figure 6.1(a), is when Eve’s telescope
is large enough to capture all signals that would end up on Bob’s telescope, but
too small to capture the entire signal sent by Alice. This case corresponds to
ηAE < 1, but possibly with ηEB close to one. Another possibility is when Eve’s
telescope is assumed to be too small to capture the entire signal that would be
received by Bob, in which case part of Alice’s signal may reach Bob without Eve’s
intervention; see figure 6.1(b). Finally, another case is shown in figure 6.1(c),
when Eve is simply a passive receiver of Alice’s signal without sending anything
to Bob.

All these cases, and more, can be captured in the diagram shown in figure 6.3.
In this diagram, for a simulated/observed total channel transmissivity of η, we
have introduced multiple regions and boundaries that could represent the above
mentioned scenarios. For instance, region 1, R1, where ηAEηEB ≥ η, corresponds
to the case in figure 6.1(a), whereas region 2, R2, for which ηAEηEB < η, cor-
responds to the scenario in figure 6.1(b). Cases like that of figure 6.1(c) would
correspond to boundary 4, B4, in figure 6.3. The uppermost-right case, with
ηAE = ηEB = 1, represents the typical unrestricted Eve, whereas the lowermost-
left case, with ηAE = ηEB = 0, is a rather benign eavesdropper.

Among the above scenarios, the worst case could correspond to the case where
any signals received by Bob has gone through Eve’s apparatus. In this case, Eve
will have full control over a channel with transmissivity η/(ηAEηEB) < 1, while
Alice and Bob each can be thought of having extended encoder/decoder boxes.
In this case, i.e., region R1, we might be able to modify existing security proofs
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Figure 6.3: Different regions and boundaries of interest. R1 represents the region
where η ≤ ηAEηEB. That is, there could be part of the channel with transmissivity
η/(ηAEηEB) ≤ 1, which is fully under control of Eve. In R2, η > ηAEηEB, which
implies that there could be part of the signal that reaches Bob without going through
Eve. B1–B6 represent boundaries of interest, where B1 and B2 are for the special case
of ηEB = 1, in, respectively, regions R1 and R2. For B3, ηAE = 0, whereas in B4,
ηEB = 0. Finally, B5 and B6 cover the case of ηAE = 1, in, respectively, regions R2
and R1. The graph is depicted at η = 0.1.

to obtain the secret key generation rates. Region R2 would then cover scenarios
when η > ηAEηEB. In this region, Eve should either introduce new signals to cover
for the difference η − ηAEηEB, which would be detected by Alice and Bob due to
increase in the error rate, or let part of the signal gets to Bob uninterrupted. In
the latter case, she can effectively apply her attack only on the part that she has
received from Alice. We have also specified six boundaries, B1–B6, in figure 6.3,
where each represent a particular case of interest.

Our calculations in appendix D suggest that by using LIDAR systems on
both the satellite and ground station, with a reasonable power budget, we can
find maximum values for ηAE and ηEB in the event that the eavesdropping object
is undetectable by the LIDAR system. If a certain object is detected by the
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6.3 Restricted Eve’s access to encoder outputs

monitoring system, we can use its estimated size to bound ηAE and ηEB. It turns
out that while, by using LIDAR, ηAE can be estimated to be only a few percent,
ηEB could easily get close to 1. That implies that the most relevant scenarios
could be those for which ηAE < 1 and ηEB ≈ 1.

Here, our aim is to find bounds on key rate of relevant CV-QKD protocols
with Gaussian and discrete modulations of coherent states, discussed in chapter 2,
ideally in each region and boundary in figure 6.3, and, if possible, design and
study new protocols that capitalize on Eve’s imposed restrictions. In all cases,
the satellite is assumed to have the QKD encoder and the terrestrial station would
decode the received signals. In the following, we study the operation of CV-QKD
protocols under such different scenarios.

6.3 Restricted Eve’s access to encoder outputs

In this section, we study Gaussian- and discrete-modulated CV-QKD protocols,
where Eve’s access to the signals sent by Alice is restricted. We model this
scenario via a beam splitter with transmissivity ηAE, as shown in figure 6.4(a).
That is, the channel between Alice and Eve is no longer lossless. As earlier
discussed, when Eve is restricted to receive only a fraction of the incoming light
from Alice, we might expect to gain higher key rates. Therefore, in the reverse
reconciliation case, the information that Alice and Bob can share could be higher
than that of Eve and Bob.

Here, the implicit assumption is that in the optimal collective Gaussian attack,
Eve only takes control over a channel with transmissivity η/ηAE ≤ 1, where η is
the total transmittance of the Alice-Bob link. As long as the channel is assumed
Gaussian, the best Eve can do is to apply an entangling cloner Navascués &
Aćın [2005] to the part of the channel she has access to, i.e., the A′B link in
figure 6.5. In this way, Eve would attach herself to A′B, hiding behind the
excess noise observed by Alice and Bob. In the entangling cloner, Eve would
overlap the signal with one leg of her two-mode squeezed vacuum (TMSV) state,
characterized by Z as its variance, sends one of the resultant outputs to Bob and
stores the other in her quantum memories (QMs). The first problem that the
restriction ηAE < 1 imposes on Eve is that she would now require more intense
TMSV states, with larger Zs, to mimic the channel, in order to produce the same
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Figure 6.4: Schematic view of a realistic satellite-to-ground entanglement-based CV-
QKD link, with Eve’s limited access to the (a) encoder and (b) decoder modules.
Alice’s and Bob’s modules each can be seen as an extended encoder/decoder boxes, see
text for details. This model is valid only for η/ηAEηEB < 1.

amount of excess noise as before. In fact, we show that at a fixed input excess
noise, εtm, and channel loss, η, we have

Z = 1 + ηεtm

1− η/ηAE
. (6.1)

In addition, as discussed, Eve can simulate only the part of the channel she
has control over. Input excess noise for this part of the channel, starting at point
A′ in figure 6.5, should be ηAEεtm to match the observed value of εtm at Alice’s
box. Also, given that the signal that leaves Alice box has been attenuated by
ηAE before reaching point A′, Eve can only manipulate a channel of transmissivity
η/ηAE. Thus, in order to estimate the key rate for the limited Eve in figure 6.4(a),
we would do the following transformation in the secret key rate recipe, given in
chapter 2: η → η/ηAE and εtm → ηAEεtm. Note that the obtained key rates are
valid only when ηAE ≥ η.

Some numerical results are plotted in figure 6.6 for the GG02 protocol. We
assume modulation variance VA = 4 SNU, reconciliation efficiency β = 0.95,
efficiency of Bob’s homodyning ηD = 0.6, and electronic noise at his side νelec =
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Figure 6.5: Quantum entangling cloner, using which Eve simulates the second part of
the channel she has control over. Transmissivity of this part is given by η/ηAE , with
excess noise ηAEεtm at its input, A′.

0.01 SNU. In figure 6.6(a), we plot the key rate versus η for different values of
ηAE. It is seen that the smaller fraction of Alice signals reach Eve’s realm, i.e.,
the smaller ηAE, the larger key rates Alice and Bob can share. In other words, the
lower ηAE is, the higher channel losses can be tolerated by our CV-QKD system.
Figure 6.6(b) shows secret key rates versus ηAE for a total of 40 dB of channel loss,
at several excess noise values. Note that, at εtm = 0.1 SNU, the parties cannot
extract any key rate, unless Eve receives signals that have undergone nearly 0.4
or more loss. This indicates higher resilience to noise when ηAE restriction is
imposed on Eve. We also mention that the results in figure 6.6(b) are not valid
for ηAE < 10−4, where our assumption η/ηAE < 1 is broken.

We have similarly found secret key rates for the discrete-modulated CV-QKD
protocol Leverrier & Grangier [2009]. Our numerical results in figure 6.7 show
similar trends of improvement in key rates when a non-ideal channel is connecting
Alice to Eve. Comparing to the Gaussian-modulated GG02, in order to obtain
any key rate advantage, Eve should be more restricted. This indicates that the
advantage becomes clear for smaller values of ηAE (assuming other parameters
unchanged). This is partly because of the security proof limitations of the discrete
modulation protocol Leverrier & Grangier [2011]. Using more advanced trans-
mitted techniques one may be able to get around this problem. Figure 6.7(b)
shows key rate versus ηAE at a fixed 40 dB channel loss and several values of
excess noise. We observe that at εtm = 0.1 SNU, we need ηAE < 0.09 to generate
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Figure 6.6: Gaussian-modulated GG02 protocol at ηEB = 1. (a) Key rates versus
distance for different values of ηAE and 0.1 SNU excess noise. (b) The key rate versus
ηAE for a fixed channel loss of 40 dB. The parameters VA = 4 SNU, β = 0.95, ηD = 0.6,
and νelec = 0.01 SNU are used in the plots.

positive key rates. The rate rapidly grows below this threshold value. Here again,
the results are valid only for ηAE > 10−4.

6.4 Restricted Eve’s access to decoder inputs

In this section, we study Gaussian- and discrete-modulated CV-QKD protocols,
where Eve is restricted to transmit her own signals towards Bob’s receiver. By
considering a similar scenario, we model this case via a beam splitter with trans-
missivity ηEB, as shown in figure 6.4(b). In other words, we restrict Eve’s power
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Figure 6.7: Discrete-modulated GG02 protocol at ηEB = 1. (a) Key rates for different
values of ηAE and 0.1 SNU channel excess noise. (b) The key rate versus ηAE for a
fixed channel loss of 40 dB. The parameters β = 0.95, ηD = 0.6, and νelec = 0.01 SNU
are used in the plots.

by considering a non-ideal channel between her and Bob (we assume that Eve
has no access to the outputs of ηEB). Therefore, in a sense, we have an expanded
Bob’s box, so that the loss occurred by ηEB can be seen as part of an imperfect
homodyne detection; hence, it can be assumed trusted. It is worth mentioning
that it is shown that trusted noise at the receiver, as well as the transmitter side,
can in fact improve the key rate of a CV-QKD protocol with reverse reconciliation
Usenko & Filip [2016].

Here, we compute the secret key rate for the restricted Eve in figure 6.4(b).
By giving a similar reasoning to that of section 6.3, we need to do η → η/ηEB
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Figure 6.8: Satellite CV-QKD secret key rates with restricted Eve’s access to decoder
input versus ηEB for fixed channel loss of 40 dB for (a) Gaussian-modulated and (b)
discrete-modulated protocols. The parameters β = 0.95, ηD = 0.6, and νelec = 0.01
SNU and ηAE = 1 are used in the plots.

and ηD → ηEBηD, where detection noise is now assumed to be composed of two
terms (note that εtm does not get modified since at the entrance of Eve’s realm
it has not changed).

Numerical results are plotted in figure 6.8 for both Gaussian- and discrete-
modulated GG02 protocols, assuming a channel with 40 dB of loss. Here, as well,
the outcomes are valid only for the values of ηEB where η/ηEB ≤ 1 holds. In
contrast to ηAE, in both cases, ηEB should take very small values (being on the
order of the channel loss, 40 dB) in order to let the parties exchange secret bits.
The reason is that in this case Eve has “full” access to Alice’s signals; hence, she
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can apply a more powerful attack than that of ηAE-restricted.

6.5 Extending regimes of operation

So far, our analysis works only for η < ηAEηEB, so that we can cover only the
region R1 of the ηAE − ηEB map in figure 6.3. Although the above analysis can
cover a relatively vast area of operation in a real-world experiment, one can study
some extreme cases, including the boundaries B2 and B3, in more detail. In these
cases, ηAE < η, which means that the signals that Eve receives many not contain
much information about Alice’s signal. It may then make sense to use direct
reconciliation (DR) to extract secret keys. According to (2.36),

RDR = βI(XA : XB)− χAE. (6.2)

The mutual information, I(XA : XB), is an observable in an experiment. Hence
we simulate its value by assuming that the channel between Alice and Bob is a
pure-loss channel as shown in figure 6.9(a). I(XA : XB) is then given by (2.46) for
this channel that is assumed inaccessible to Eve. This channel is characterized
by transmissivity η and excess noise εtm.

For the Holevo information, χAE, we consider a channel characterized by
transmissivity ηAE, shown in figure 6.9(b), and the same excess noise at Alice’s
side, εtm. We then use the definition of Holevo information in the DR case:

χAE = HvN(ρ̂E)−HvN(ρ̂E|A), (6.3)

where HvN(ρ̂E) is von Neumann entropy of Eve’s state, which is a thermal state
with variance VE = ηAE(V + εtm) + (1 − ηAE), and HvN(ρ̂E|A) is Eve’s state
conditional on Alice’s measurement.

The termHvN(ρ̂E) is a function of symplectic eigenvalues of ρ̂E; see sections 2.1
for more detail. We then use the fact that the only symplectic eigenvalue of a
single-mode thermal state is indeed its variance, i.e., Λ1 = VE. Hence,

HvN(ρ̂E) = g(VE), (6.4)

where g(x) = (x+1
2 ) log2(x+1

2 )− (x−1
2 ) log2(x−1

2 ).
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Figure 6.9: Schematic of the proposed model for the case where ηAE < η.

Similarly, the term HvN(ρ̂E|A) is a function of conditional symplectic eigenval-
ues of ρ̂E. For that we need the eigenvalues of the conditional CM. Having that
the covariance matrix of Alice-Eve link is as follows

VAE =
 V 12

√
ηAE(V 2 − 1) σz√

ηAE(V 2 − 1) σz VE12

 , (6.5)

the conditional covariance matrix can be calculated from (2.42), whose eigenvalue
is given by Λcond =

√
VE − ηAE(V 2−1)

V
.

Therefore, an upper bound on χAE can be calculated from the following

χAE ≤ g(Λ1)− g(Λcond). (6.6)

Figure 6.10 shows the key rate versus ηAE for an Alice-Bob channel with fixed
40 dB loss. In the case where ηAE is strictly zero, i.e., Eve receives no signal
at all, she can do no better than a random guesser. Theoretically speaking,
she can apply her quantum entangling cloner in figure 6.5 on the small signal
coming from Alice. But, what Eve does by influencing Bob’s input/measurement
outcomes would effectively translate to excess noise at Alice’s side, where the
key is decided. As such, Eve would still obtain no information about Alice’s key,
and the Alice-Bob channel reduces to a “classical” one, whose key rate is given
by RDR = βI(XA : XB) (note that here we use direct reconciliation, where, for
ηAE = 0, Eve obtains no information). It this case, the key rate in our simulated
case of figure 6.9(a) goes to infinity at the asymptotic limit VA → ∞; however,
the growing happens very slowly (e.g., for a variance as large as VA = 1020, the
key rate is only about 25).
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Figure 6.10: Key rate at boundaries B2 and B3 for the model in figure 6.9 for a
fixed channel loss of 40 dB. The parameters εtm = 0.1 SNU, β = 0.95, ηD = 0.6, and
νelec = 0.01 SNU are used in the plot.

6.6 Summary

In summary, we discussed a real-world threat model most relevant to satellite-
based CV-QKD protocols. We relaxed the rather strong assumptions on the
eavesdropper’s unrestricted capabilities in receiving and re-transmitting QKD
signals. Our analysis showed that this could in fact be the case for low-Earth-
orbit satellites, which was recently exploited in the Chinese Misius QKD mission.
Based on eavesdropper’s restrictions in collecting and re-sending light, we clas-
sified several possible scenarios, for many of which we bounded secret key rates.
We showed that, in all cases, restricting the eavesdropper’s power can increase
the key rate, as one would expect. Moreover, we highlighted that as Eve’s access
to the sent signals becomes less and less, we approach a classical limit that Alice
and Bob can exchange secret keys up to the channel capacity connecting them.

107



Chapter 7

Conclusions and future work

Notwithstanding the immense impact of the communication technology on our
lives since the mid-twentieth century, security of information is still a big chal-
lenge. In fact, powerful eavesdroppers can compromise the secrecy of data since
most of the (classical) cryptographic methods rely on computational complexity,
for which a security proof does not exist. Hence, in order to achieve absolute data
security, we need a rather strong cryptographic scheme that can provide secure
communication and/or secure key distribution.

During the last three decades, several communications and key distribution
techniques, which relied on the fundamental quantum physics principals, have
been proposed theoretically and examined experimentally. Such promising schemes
offer unconditional security as a result of laws of quantum mechanics. Luckily,
they can be implemented with the current optical technologies.

In general, quantum key distribution (QKD) schemes are classified into two
main categories, namely, discrete-variable QKD (DV-QKD) and continuous-variable
QKD (CV-QKD), both of which have been studied extensively. Although DV-
QKD has its own advantages, CV-QKD schemes are more compatible with the
current optical network equipment. However, they do not efficiently support se-
cure communications over long distances. This restriction may be surpassed by
using continuous-variable quantum repeaters (CV QRs). The integration of CV-
QKD and CV QR protocols has not yet been well studied. In fact, the practicality
of the implementation would be a great challenge due to the probabilistic nature
of the noiseless linear amplifiers (NLAs), which may be needed at the heart of
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CV QRs.
In this thesis, we studied the performance of a CV-QKD scheme running over

the building-block of CV QR proposed by Dias & Ralph [2017].The secret key
rate of a CV-QKD protocol, when an ideal NLA is used just before the receiver,
is evaluated in Blandino et al. [2012]. The results indicated an increase in the
secret key rates showing that, in principle, NLAs can be useful in CV-QKD. We,
however, worked out the secret key rate for a realistic NLA device by replacing
it with a quantum scissor (QS). We found the achievable bounds on key rate of
the Gaussian-modulated (GG02) and a specific discrete-modulation (quadrature-
phase-shift-keying) CV-QKD protocols, which are functions of both amplification
gain and modulation variance of the sender’s states. By optimizing over system
parameters, we could enhance the secret key rates; hence, it turned out that the
secure distance could, in principle, be increased via QSs.

Using QRs and NLAs is not the only way that could make a global QKD net-
work viable. In fact, satellites that are equipped with QKD transmitters/receivers
can also help. The second part of this thesis was devoted to satellite-based CV-
QKD systems. Because of the nature of a satellite-to-ground and/or ground-to-
satellite links, which can be monitored by means of RADAR or LIDAR systems,
we were able to consider more realistic eavesdropping scenarios. That includes
eavesdroppers who are restricted in collecting light and/or re-sending optical sig-
nals. By proposing proper models, we then showed that such limitations on the
eavesdropper’s power would increase the secret key rates of a satellite-to-ground
CV-QKD protocol. In fact, we showed that one could benefit from CV-QKD in
certain regimes that were not possible via direct strict security assumptions.

Future work: Quantum-repeater-based CV-QKD

The research conducted here can be further extended in several directions. Our
study would, in particular, be highly relevant to analysing the performance of
recently proposed continuous-variable quantum repeater systems in Dias & Ralph
[2017], which rely on a similar building block as we studied in this work. In their
proposal, dual homodyne detections are used to connect different blocks in the
system. Considering the sensitivity to the excess noise in each leg of the system, it
would be interesting to find out the regimes of operation in which a multi-hop CV
repeater can be used for QKD purposes. One can compare the obtained key rates
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in this case with the already known benchmarks for the repeaterless links, i.e.,
the PLOB bound Pirandola et al. [2017], as well as multi-node repeater setups
Pirandola [2019].

Another possible avenue for future work is to find better NLA schemes than
QSs. In fact, an alternative to NLAs/QSs exists that works based on comparing
the input coherent state with a known coherent state; hence, called quantum
comparison amplifier Eleftheriadou et al. [2013], Donaldson et al. [2015]. Such
a noiseless amplifier is non-deterministic; however, it does not need quantum
resources, such as single photon sources. Especially, since a quantum comparison
amplifier can only amplify states that are chosen from a pre-known finite set of
coherent states, it can possibly be the better choice for a discrete-modulation
protocol, where the number of transmitted coherent states is finite.

When it comes to studying QR-assisted CV-QKD, in particular, and QKD
protocols, in general, one may face a cumbersome hierarchical structure of math-
ematical equations that are hard to solve exactly. In order to do a reliable key
rate analysis, one possible research path that we suggest is to use numerical tech-
niques Ghorai et al. [2019], Lin et al. [2019] to alleviate the analysis, which could
have been otherwise impossible.

Future work: Satellite-based CV-QKD

Our theoretical model for satellite-based QKD, when the eavesdropper’s capab-
ilities are limited, could benefit from further investigation in several directions.
As discussed in chapter 6, we did not cover all possible scenarios in a realistic
satellite-based CV-QKD. For instance, region R2 in figure 6.3 can benefit from
more detailed analysis to provide us with relevant lower/upper bounds on the
key rate. Numerical techniques for rate analysis could also be tried and imple-
mented. Also, for the wiretap channel, boundary B4, where Eve can (partially)
collect light but she is unable to re-transmit signals, one can propose and study a
more explicit model (some attempts have been made in Pan et al. [2019]). Such
a model could result in a tighter bound on the key rate.

Another direction for this project would be to consider other restrictions that
are realistic in the satellite setting. For instance, the current analysis assumes
that Eve is capable of aligning her satellite with that of Alice, while being in
a different orbit. This may not be technologically easy to achieve, which opens
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another avenue for investigation. In the end, the combination of physical layer
security assumptions with that of QKD is a less explored territory, which could be
expanded to all sorts of QKD protocols and implementations. This can produce
a range of products with different pricing and performance and may prove crucial
in the commercial success of QKD.
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Appendix A

Conditional output state ω̂PS
out(XA)

In order to find the conditional output state when Alice has used an X quadrature
value of XA, we start with the input state in (3.9), and take an average over PA
with the input Gaussian distribution of fPA(PA) = e

−
P2
A

VA/2/
√
πVA/2 . As a result,

the output characteristic function in (3.11) will also be averaged out and result
in the following output state:

ω̂PS
out(XA) =ω00(XA)|0〉b̂3〈0|+ ω01(XA)|0〉b̂3〈1|+ ω10(XA)|1〉b̂3〈0|+ ω11(XA)|1〉b̂3〈1|,

(A.1)

where 
ω00(XA) = ω̃00(XA)

PPS
c (XA)

ω01(XA) = ω∗10(XA) = ω̃01(XA)
PPS
c (XA)

ω11(XA) = ω̃11(XA)
PPS
c (XA) ,

(A.2)

with 

ω̃00(XA) = 8F1(2F1+1)2+TVA(8F 2
1 +6F1+1)+2T (TVA+4F1+2)X2

A

(g2+1)(2F1+1)5/2(TVA+4F1+2)3/2

×
√

2 e−
TX2

A
2F1+1

ω̃01(XA) = − 2g
√

2T XA
(g2+1)(2F1+1)3/2√TVA+4F1+2 e

−
TX2

A
2F1+1

ω̃11(XA) = g2

g2+1

(
2
√

2 e
−
TX2

A
2F1+1√

(2F1+1)(TVA+4F1+2)
− e

−
TX2

A
2F1√

F1(TVA+4F1)

)
,

(A.3)

and P PS
c (XA) = ω̃00(XA) + ω̃11(XA).
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Appendix B

Parameters of the covariance
matrix elements (Gaussian
modulation system)

We here work out the covariance matrix to the bipartite post-selected state ρ̂PS
03

given in (3.31). In doing so, we need to work out the triplet (Vx, Vxy, Vy) of
the corresponding covariance matrix as follows. By definition, assuming that X̂0

represents the X quadrature of mode â0, we have

Vx = 〈X̂2
0 〉ρ̂03 =〈X̂

2
0 〉%̂03

P PS
EB

= tr(%̂03X̂
2
0 )

P PS
EB

, (B.1)

where

tr(%̂03X̂
2
0 ) =

∫ d2ξ0

π

d2ξ3

π
χ̃A(ξ0, ξ3)

× tr[X̂2
0D̂N(â0, ξ0)]× tr[D̂N(b̂3, ξ3)]

=
∫ d2ξ0

π
χ̃A(ξ0, 0)× tr(D̂N(â0, ξ0)X̂2

0 ), (B.2)

with χ̃A(ξ0, ξ3) given in (3.33).
Assuming that ξ0 = x + iy, we can show that tr(D̂N(â0, ξ0)X̂2

0 ) = πδ2(ξ0) +
2πyδ(x) d

dy
δ(y)− πδ(x) d2

dy2 δ(y); thus,

tr(%̂03X̂
2
0 ) =− χ̃A(0, 0)− d2

dy2 χ̃A(0, y, ξ3 = 0)
∣∣∣∣
y=0

, (B.3)
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where we made use of the identity
∫
dzf(z) d

dz
δ(z) = −

∫
dz d

dz
f(z)δ(z). Therefore,

Vx = −1−
d2

dy2 χ̃A(0, y, ξ3 = 0)
∣∣∣∣
y=0

χ̃A(0, 0) . (B.4)

In a similar way, assuming ξ0 = x+ iy and ξ3 = u+ iv, we show that

Vy = tr(%̂03X̂
2
3 )

χ̃A(0, 0) = −1−
d2

dv2 χ̃A(ξ0 = 0, 0, v)
∣∣∣∣
v=0

χ̃A(0, 0) (B.5)

and

Vxy = tr(%̂03X̂0X̂3)
χ̃A(0, 0) =

d
dv

[
d
dy
χ̃A(0, y, 0, v)

∣∣∣∣
y=0

]∣∣∣∣
v=0

χ̃A(0, 0) . (B.6)

Having the integrals in (3.33) taken, we are able to calculate the triplet (Vx, Vxy, Vy),
thus, the covariance matrix. Using maple, we obtain the closed form expressions
as summarized in (4.11).
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Appendix C

Parameters of the covariance
matrix (non-Gaussian modulated
system)

In this appendix, we calculate the triplet elements that quantifies the covariance
matrix of our discrete modulation QS system, given in (5.22).

C.1 Variance at Alice’s side (Vx)

By definition, and using the bipartite state in (5.17), we have:

Vx = tr(ρ̂03X̂
2
0 ) = 1

4P PS

3∑
k=0

3∑
l=0

GklHkl, (C.1)

where X̂0 = â0+â†0, corresponding to mode â0, in figure 5.2, Gkl := tr(|ψk〉0〈ψl|X̂2
0 )

and Hkl := tr(Ω̂kl
3 ) = ζklA (0). We then find that:

Hkl = ζklA (0) = akle
−
Tαkα

∗
l

2F+1 − 1− µ
2F e−

Tαkα
∗
l

2F

akl = 2
(2F + 1)3

(
(2F + 1)2 − µ(2F + 1) + µTαkα

∗
l

)
. (C.2)
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C.2 Variance at Bob’s side (Vy)

One can then use the set of identities in (C.12) to work out the following expres-
sion:

Vx =1 + α̇2

ζ00
A (0)

(
δ1
[
− A sinh

(
T α̇2

2F + 1

)
+B cosh

(
T α̇2

2F + 1

)
+ C sinh

(
T α̇2

2F

)]
+ δ2

[
A cosh

(
T α̇2

2F + 1

)
−B sinh

(
T α̇2

2F + 1

)
− C cosh

(
T α̇2

2F

)]
+ δ3

[
− A sin

(
T α̇2

2F + 1

)
+B cos

(
T α̇2

2F + 1

)
+ C sin

(
T α̇2

2F

)]
/2

− δ4
[
A cos

(
T α̇2

2F + 1

)
+B sin

(
T α̇2

2F + 1

)
− C cos

(
T α̇2

2F

)]
/2
)
, (C.3)

where

A = 2
(2F + 1)3

(
(2F + 1)2 − µ(2F + 1)

)
, B = 2µT α̇2

(2F + 1)3 , C = 1− µ
2F

δ1 = λ0

λ1
+ λ2

λ3
, δ2 = λ1

λ2
+ λ3

λ0
, δ3 = λ0

λ1
− λ2

λ3
, δ4 = λ1

λ2
− λ3

λ0
. (C.4)

Note that for α̇ = 0, Vx = 1 is obtained.

C.2 Variance at Bob’s side (Vy)

The variance at the receiver’s side can be computed as follows:

Vy = tr(ρ̂03X̂
2
3 ) = 1

4P PS

3∑
k=0

Lkk, (C.5)

where, assuming ξ3 = z + it,

Lkk =tr(Ω̂kk
3 X̂

2
3 )

=− ζkkA (0, 0)− d2

dt2
ζkkA (0, t)

∣∣∣∣
t=0

d2

dt2
ζkkA (0, t)

∣∣∣∣
t=0

=− bke−
T |αk|

2

2F+1 + 2(1− µ)
F

e−
T |αk|

2

2F , (C.6)

with X̂3 = b̂3 + b̂†3 in figure 5.2 and bk = 8
(2F+1)3

(
(2F + 1)2 − µ(2F 2 + 3F + 1) +

µT |αk|2
)
; hence,

Vy = L00

ζ00
A (0)

= 1
ζ00
A (0)

(
bke
−T |αk|

2

2F+1 − 2(1− µ)
F

e−
T |αk|

2

2F

)
− 1. (C.7)

116



C.3 Covariance between Alice and Bob (Vxy)

Note that for α̇ = 0, Vy = 1 is obtained.

C.3 Covariance between Alice and Bob (Vxy)

By definition, the covariance between Alice and Bob is given by:

Vxy = tr(ρ̂03X̂0X̂3) = 1
4P PS

3∑
k=0

3∑
l=0

NklSkl, (C.8)

where Nkl := tr(|ψk〉0〈ψl|X̂0) is given in (C.12) and

Skl =tr(Ω̂kl
3 X̂3)

=− i d
dt
ζklA (0, t)

∣∣∣∣
t=0

=
2
√
µ(1− µ)T (αk + α∗l )

(2F + 1)2 e−
Tαkα

∗
l

2F+1 . (C.9)

One can then conclude that:

Vxy =
2
√
µ(1− µ)T α̇2

P PS(2F + 1)2

[
ω1 cosh

(
T α̇2

2F + 1

)
− ω2 sinh

(
T α̇2

2F + 1

)

+ ω3 cos
(

T α̇2

2F + 1

)
− ω4 sin

(
T α̇2

2F + 1

)]
, (C.10)

where

ω1 =
√
λ0

λ1
+
√
λ2

λ3
, ω2 =

√
λ1

λ2
+
√
λ3

λ0
,

ω3 =
√
λ0

λ1
−
√
λ2

λ3
, ω4 =

√
λ1

λ2
−
√
λ3

λ0
. (C.11)

It is seen that for α̇ = 0, Vxy = 0 is obtained.

117



C.3 Covariance between Alice and Bob (Vxy)

In the calculations of Gkl and Nkl we made use of the following identities:

|ψ0〉 =1
2
[
|φ0〉+ eiπ/4|φ1〉+ eiπ/2|φ2〉+ e3iπ/4|φ3〉

]
â|ψ0〉 = α̇2

[
eiπ/4

√
λ0

λ1
|φ0〉+ eiπ/2

√
λ1

λ2
|φ1〉+ ei3π/4

√
λ2

λ3
|φ2〉 −

√
λ3

λ0
|φ3〉

]
â2|ψ0〉 = α̇

2

2
[
eiπ/2

√
λ0

λ2
|φ0〉+ ei3π/4

√
λ1

λ3
|φ1〉 −

√
λ2

λ0
|φ2〉 − eiπ/4

√
λ3

λ1
|φ3〉

]
|ψ1〉 =1

2
[
|φ0〉+ ei3π/4|φ1〉+ ei3π/2|φ2〉+ eiπ/4|φ3〉

]
â|ψ1〉 = α̇2

[
ei3π/4

√
λ0

λ1
|φ0〉+ ei3π/2

√
λ1

λ2
|φ1〉+ eiπ/4

√
λ2

λ3
|φ2〉 −

√
λ3

λ0
|φ3〉

]
â2|ψ1〉 = α̇

2

2
[
ei3π/2

√
λ0

λ2
|φ0〉+ eiπ/4

√
λ1

λ3
|φ1〉 −

√
λ2

λ0
|φ2〉 − ei3π/4

√
λ3

λ1
|φ3〉

]
|ψ2〉 =1

2
[
|φ0〉+ e−i3π/4|φ1〉+ eiπ/2|φ2〉+ e−iπ/4|φ3〉

]
â|ψ2〉 = α̇2

[
e−i3π/4

√
λ0

λ1
|φ0〉+ eiπ/2

√
λ1

λ2
|φ1〉+ eiπ/4

√
λ2

λ3
|φ2〉 −

√
λ3

λ0
|φ3〉

]
â2|ψ2〉 = α̇

2

2
[
eiπ/2

√
λ0

λ2
|φ0〉+ e−iπ/4

√
λ1

λ3
|φ1〉 −

√
λ2

λ0
|φ2〉 − e−i3π/4

√
λ3

λ1
|φ3〉

]
|ψ3〉 =1

2
[
|φ0〉+ e−iπ/4|φ1〉+ ei3π/2|φ2〉+ e−3iπ/4|φ3〉

]
â|ψ3〉 = α̇2

[
e−iπ/4

√
λ0

λ1
|φ0〉+ ei3π/2

√
λ1

λ2
|φ1〉+ e−i3π/4

√
λ2

λ3
|φ2〉 −

√
λ3

λ0
|φ3〉

]
â2|ψ3〉 = α̇

2

2
[
ei3π/2

√
λ0

λ2
|φ0〉+ e−i3π/4

√
λ1

λ3
|φ1〉 −

√
λ2

λ0
|φ2〉 − e−iπ/4

√
λ3

λ1
|φ3〉

]
.

(C.12)
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Appendix D

Bounding Eve’s accessibility to a
satellite-to-ground link

In this appendix, we present calculations that lead to finding nominal values
for parameters ηAE and ηEB, as discussed in chapter 6. We assume that the
trusted parties are equipped with LIDAR technology for monitoring and detecting
possible adversaries’ objects.

We assume Alice is located on a Low Earth Orbit (LEO) satellite, travelling
in a circular orbit at an altitude L above the ground. She is equipped with a
telescope of aperture radius rA. Bob, who is located at the terrestrial station,
collects the incoming light from Alice using a telescope with radius rB. For the
Chinese satellite Micius, the values rA = 15 cm, rB = 50 cm, and L = 500 km are
used. On the other hand, we assume that Eve, who is located at distance z from
the satellite, is represented by a spacecraft equipped with two telescopes, both
of radius rE, of which one is pointed towards Alice and used for light collection,
and one is pointed towards Bob for signal transmission.

By assuming that Alice’s telescope transmits Gaussian beams, with initial
width W0 = rA and wavelength λ, we have that

ηAE(z) = 1− exp
(
− 2 r

2
E(z)

W 2(z)
)
, (D.1)

where W (z) is the beams’ width at z. In above, we have also assumed that
the signals impinge at the centre of Eve’s collecting aperture, with radius rE(z),
which is chosen by Eve based on her distance from the satellite station. Similarly,
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Figure D.1: Alice-to-Eve and Eve-to-Bob channel losses when a 4 Watt LIDAR system
is used. Here, reflectivity of Eve’s spacecraft is assumed 0.1.

we can show that
ηEB(z) = 1− exp

(
− 2 r2

B

W 2
E(z)

)
, (D.2)

where WE(z) is beam width at Bob’s side as re-transmitted by Eve and rB is
radius of the Bob’s collecting aperture.

By making some assumptions on, e.g., the reflectivity of Eve’s object, we can
also find a maximum value for rE(z), under which Eve cannot be detected by a
LIDAR and/or RADAR monitoring systems. The fact that Eve’s spacecraft, i.e.,
telescope, size cannot be arbitrary large—while it remains undetected—would
restrict her collecting and re-transmitting efficiencies, which are, respectively,
represented by ηAE and ηEB in (D.1) and (D.2), respectively. Figure D.1 shows
ηAE and ηEB as a function of z, when a LIDAR system is in use. The plots imply
that, in a realistic regime of operation similar to the Chinese satellite Micius, ηAE
can be on the order of a few percent, whereas ηEB can be close to one. As we
show in chapter 6, this is the value of ηAE that matters most in improving the
performance of CV-QKD systems under such restricted regimes.
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Garćıa-Patrón, R. & Cerf, N.J. (2009). Continuous-Variable Quantum Key
Distribution Protocols over Noisy Channels. Phys. Rev. Lett., 102, 130501.
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