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ABSTRACT 
The ability to accurately and efficiently simulate cardiovascular dynamics has the 

opportunity to improve the diagnosis and intervention of vascular disease. Due to a 

reducing number of donor hearts, left ventricular assist devices (LVAD - mechanical 

blood pumps) are gaining prevalence in the treatment of severe left ventricular 

dysfunction. The interaction of the LVAD and native cardiovascular system is the 

main focus of this thesis. Computational fluid dynamic (CFD) models, of varying 

complexity and structure, are applied to a patient-specific aorta in the presence of a 

left ventricular assist device. The downstream boundary conditions of the CFD 

model are described initially as a simple Windkessel model before embedding the 

3D domain in a closed loop 0D description of the entire cardiovascular system, 

incorporating models of the heart valves, chambers and the blood pump. It is shown 

that a turbulence model is required to simulate the haemodynamics of the assisted 

aorta and a compressible fluid, tuned to produce a desired wave speed, gives an 

accurate and efficient approximation of the wave propagation effects induced by the 

interaction between the blood and the elastic vessel wall. A series of CFD 

simulations, employing the complex 0D description of the assisted cardiovascular 

system, investigated the conditions under which the aortic valve opens during left 

ventricular support. It is found that, for a patient with moderate heart failure, the 

aortic valve will open when the Berlin Heart INCOR LVAD is operating at speeds of 

less than or equal to 5000 rpm.  
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Chapter 1  
INTRODUCTION & 
LITERATURE REVIEW 
MOTIVATION 1.1 

The ability to accurately simulate cardiovascular dynamics has already improved the 

efficiency of design and development strategies, used within the medical device 

industry. The next milestone in this exciting field is to identify whether these 

technologies are robust and efficient enough to be translated to the clinic, where their 

impact could improve both diagnostic and interventional medicine.  

HEART FAILURE 1.1.1 

Cardiovascular disease (CVD) is responsible for 1 in 3 of all deaths in the UK, 

corresponding to approximately 191,000 deaths in 2008 [1]. Cardiomyopathy is a 

form of CVD which causes detrimental changes, remodelling, to the structure and 

contractility of the heart muscle (the myocardium). These changes result in a reduced 

cardiac output and often leave the native heart unable to generate sufficient output to 

adequately perfuse the peripheral organs and extremities. At the present time the 
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principal long-term treatment for cardiomyopathy is heart transplantation but with 

numbers of donor hearts decreasing every year (18% less heart donors in 2008 than 

2007 in the UK [2]) there is a need for an alternative treatment option.  

VENTRICULAR ASSIST DEVICES 1.2 

A ventricular assist device (VAD) is a mechanical blood pump that supports a 

diseased ventricle, maintaining an adequate supply of blood to the patient’s body and 

organs. VADs are principally used to support the left ventricle and as such this will 

be the configuration considered in this thesis. VADs are also used to support the 

right side of the heart in cases of right ventricular dysfunction although this is far 

rarer. However, in left ventricular cardiomyopathy there is a backup of fluid in the 

pulmonary system, which causes an increase in pulmonary pressure that can often be 

the cause of the right ventricular dysfunction. Implantation of a left ventricular assist 

device (LVAD) reduces the pulmonary pressure and in turn the load on the right 

ventricle, which may reverse the dysfunction and negate the need for a right 

ventricular assist device (RVAD).  

Early designs of VADs involved relatively large and hence extracorporeal 

displacement pumps, such as the Berlin Heart EXCOR (Figure 1-1), aimed to mimic 

the contractility of the native heart. In order to achieve this the device required 

mechanical valves and other moving parts [3], which have the potential to fail. 

However, since these are extracorporeal devices, they can be replaced with relative 

ease should failure or dysfunction occur. 

The second generation of VADs were simpler rotary pumps, here the only moving 

part is the impellor itself [4]. Rotary pumps have seen a steady increase in popularity 

over the last 10 years. The primary advantages are their small size (they are 

completely contained within the chest cavity, reducing the risk of infection), the 

minimal number of moving parts and their low power consumption [5]. Although it 

is possible to produce pulsatile flow from a rotary pump the current clinical protocol 

is to run the device at a constant rate of rotation (continuous mode) to prevent 

regurgitant flow through the VAD. Experience has shown that a layer of cells form 
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on the impeller and in some patients localised thrombi are also found on the impeller 

blades but cause no adverse effect. In the event of regurgitant flow (this is where 

blood moves backwards through the pump towards the heart) these thrombi can be 

dislodged, due to the change in the fluid forces, producing emboli which may block a 

downstream vessel leading, in the worst case scenario, to a stroke and even death.   

The design of the third and current generation of VADs, such as the Berlin Heart 

INCOR (Figure 1-2), was motivated in part by a clinical demand for long term use. 

These have a magnetically levitated impeller. The magnetic bearing maximises 

pump efficiency and removes any mechanical wear associated with the mechanical 

bearing employed by second generation VADs, thereby improving the life-

expectancy of the pump [4] [6].  

 

 

 

 

 

 

FIGURE 1-1 – ILLUSTRATION OF BERLIN HEART EXCOR DISPLACEMENT VAD 

The Berlin Heart INCOR VAD (Figure 1-2) is the particular focus of this thesis. It 

measures just 120mm in length and has a diameter of 30mm. There are two fixed 

vanes located at the inlet and outlet of the pump, either side of the magnetically 

suspended impeller (Figure 1-1), which reduce the degree of damage to the blood as 

it moves through the device. To reduce further the effects of blood damage and 

thrombus formation all blood contacting surfaces of the pump are coated with the 

heparin-based Carmeda BioActive Surface. The INCOR is controlled to operate 

within the range of 3000 to 10,000 rpm and is able to produce a flow rate of between 

4-5 litres per minute when operating at 7,500 rpm against a pressure of 100mmHg. 

Inlet 
Outlet 

Mechanical Valves 

Flexible Membrane 



CHAPTER 1 – INTRODUCTION & LITERATURE REVIEW 

4 

 

 

FIGURE 1-2 - ILLUSTRATION OF BERLIN HEART INCOR ROTARY VAD 

VADs are an excellent example of where computational techniques are already being 

used in the medical device industry to improve current designs [7]. The spacing 

between the impeller and the pump housing as well as the impeller design is known 

to influence the magnitude of the shear stresses experienced by the blood cells as 

they move through the pump. Computational studies allow engineers to evaluate 

different gap distances, under a wide range of flow rates, to identify the optimal 

design.   

INTERACTION OF LVAD AND CARDIOVASCULAR SYSTEM 1.2.1 

Both displacement and rotary LVADs are connected to the ventricle in a parallel 

arrangement via inflow and outflow cannulas [4, 5]. The inflow cannula is attached 

to either the apex of the left ventricle or to the left atrium, while the outflow cannula 

is connected to the ascending or descending aorta. Numerical and experimental 

studies have investigated the merits of alternative locations for both inflow and 

outflow anastomoses.  

Vandenberghe et al. and Koakianitis et al. demonstrated, using a lumped parameter 

model, that locating the inflow cannula of a rotary pump at the ventricular apex 

resulted in a reduction of the ventricular wall tension and the ventricular volume 

when compared to cannulating the atrium [8, 9]. While an in vivo study in calves 

concluded that, for displacement type VADs, under severe heart failure conditions, 

Stationary Guide Vanes 

Rotating Impeller 
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the atrial configuration produced a greater stroke volume and required a less invasive 

procedure. However, in less severe heart failure conditions the ventricular 

configuration produced the largest stroke volume. An important factor to be 

considered is the clinical aim. In order to promote myocardial recovery it is 

important for the myocardium to receive a good supply of blood. Good myocardial 

perfusion is achieved with ventricular cannulation but not with atrial cannulation. 

These factors have led to the ventricular apex being the favoured site for the inflow 

cannula. Recent 3D numerical studies have concentrated on the influence of cannula 

design on the ventricular flow field [10]. 

The location of the outflow anastomosis has also been investigated in both numerical 

and experimental studies. DiGiorgi et al. and Litwak et al employed a mock 

circulation loop to investigate aortic haemodynamics with the outflow cannula 

located in the ascending aorta (AA) and the descending aorta (DA), under both 

displacement or rotary pump support [11, 12].  Both studies reported regions of 

stagnant fluid in the ascending aorta and the aortic arch when the cannula was 

connected to the DA, which were not apparent in the AA configuration. Dye 

washout periods were found to be at least 5 times greater in the DA configuration, 

under VAD support of 4 litres per minute [12]. These findings have been confirmed 

in a number of computational studies [13]. Kar et al. employed a 2D steady state 

model of the aorta to compare the AA and DA anastomotic sites, reporting turbulent 

structures in both models with stagnant fluid apparent in the ascending aorta of the 

DA configuration [13]. May-Newman et al. demonstrated that it is not only the 

location of the anastomosis but also the angle of insertion that significantly 

influences the structures within the flow field, concluding that a smaller angle 

between the cannula and aorta produces fewer secondary flow structures [14].  

Laumen et al. conducted an experimental study of a steady state, patient-specific 

assisted aorta to validate a numerical model which was then used to simulate 

numerous cannula locations [15]. The group reported an error in the computed flow 

field of less than 10%, which is within the accuracy of the experimental technique 

used (particle image velocimetry). The location of the outflow cannula was seen to 

influence the distribution of flow within the aorta [15]. However, the use of constant 

pressure boundary conditions suggests these differences may be due to the dynamic 
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pressures in the system and in the physiological condition one would expect the 

natural homeostatic mechanisms to preserve the required flow distributions. In work 

conducted as part of this PhD Brown et al. performed a transient analysis of a 3D 

patient-specific assisted aorta with the outflow cannula located in the AA, the DA 

and the aortic arch [16]. The authors concluded that the AA configuration not only 

prevented fluid stagnation in the aorta but also reduced the magnitude of wall shear 

stress resulting from the jet of blood impacting on the aortic wall adjacent to the 

anastomosis. 

Another area that has the potential to improve the prognosis of LVAD implantation 

is the design of the outflow cannula itself. For cardiopulmonary bypass (CPB) 

Minakawa et al. investigated, in vitro, the effects of cannula end design, on the 

turbulence and flow patterns in the aorta, concluding that patient specific cannula 

choice was as important as the cannulation site in terms of preserving physiological 

flow patterns [17]. Stühle et al. compared three commercially available 

cardiopulmonary bypass cannulae end designs in a numerical study, reporting that 

the outlet design has a high influence on flow distribution and wall shear stress 

magnitudes [18]. However, as in [15], the use of a constant pressure boundary 

condition means the influence on flow distributions may be somewhat exaggerated. 

To the best of the author’s knowledge there have been no publications relating to this 

in the context of VADs which is certainly surprising. 

CLINICAL COMPLICATIONS 1.2.1 

The most desirable use for an LVAD is as a bridge to recovery, negating the need for 

a donor heart. However, a major complication/limitation in the successful 

explantation of an LVAD in this scenario, is aortic valve fusion [19, 20]. There is an 

extremely high incidence of aortic valve fusion in continuous flow LVAD’s. This is 

a direct consequence of reduced transvalular flow. In a recent study, Mudd et al. 

found that 8 out of 9 patients under continuous ventricular support showed signs of 

aortic valve fusion, even after a relatively short period (one patient showing mild 

valve fusion after just 33 days) [21]. At LVAD explantation, if the aortic valve 

commissures are found to be fused, there are two courses of action; an artificial 

valve may be implanted, resulting in increased levels of patient trauma, or 
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alternatively the explantation procedure is abandoned [22]. An intuitive method for 

reducing the occurrence of valve fusion is to ensure the aortic valve opens and closes 

periodically. The Berlin Heart INCOR VAD has a mechanism to promote just this 

[23]. The rotational speed of the impeller is slowed periodically to help the 

weakened ventricle overcome the aortic pressure and open the valve. 

Flow related thrombus formation within the aorta is an uncommon complication of 

ventricular support [24]. However, the consequences of such a thrombus are 

potentially serious, including occlusion of downstream vessels and possible 

myocardial infarction. The primary cause of aortic thrombosis is stagnant blood 

which remains undisturbed for long periods, allowing platelet aggregation. This is 

clearly to be avoided and CFD simulations can help to identify configurations of the 

VAD and vasculature which may avoid the development of such regions.   

Nishimura et al. investigated morphological changes in the aortic wall induced by 

long term VAD support [25]. Healthy goats were divided into three groups; the first 

had their left ventricle supported by a rotary blood pump, the second with a pulsatile 

blood pump and the third were employed as a control group. After approximately 

100 days of support the three groups were sacrificed and the descending aortas 

removed. The aortic wall thickness was found to have reduced by approximately 

30% in the rotary pump group, when compared to the pulsatile pump and control 

group. The morphology of the aortic wall was also altered in the rotary pump group, 

with the amount of smooth muscle cells (SMC) seen to reduce. It was suggested that 

this decrease in SMCs would lead to reduced contractility which could impair the 

vessel’s ability to respond to changes in the local environment (i.e. the range of 

vasodilation and constriction may be reduced). No investigation of the material 

properties was conducted, although clearly they are likely to have changed.    
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MODELLING THE CARDIOVASCULAR SYSTEM 1.3 

The study of haemodynamics has been a subject of interest and investigation dating 

back as far as the ancient Greeks and Aristotle [26]. In more recent times researchers 

have produced both analytical descriptions [27, 28] and numerical models [29, 30] to 

approximate the behaviour of blood flow in the cardiovascular system. Due to the 

complex nature of the governing fluid equations, analytical solutions have only been 

derived for relatively simple systems. The most well-known analytical solutions are 

probably those derived by Womersley. In 1955 Womersley published a general 

solution to describe the velocity profile in a rigid tube under pulsatile conditions [31, 

32], he went on to extend this solution to consider a longitudinally tethered elastic 

tube [27]. These and other analytical solutions have aided researchers in their 

understanding of cardiovascular flows but are limited to descriptions of the local 

flow field characteristics in simple geometries. In order to explore more global 

effects or the flow field characteristics in more realistic geometries one must employ 

some form of numerical model. Numerical models vary widely in complexity from 

relatively simple lumped-parameter models or one dimensional analyses to complex 

three dimensional analyses which may include both the fluid dynamics and the 

motion of the vessel wall. One dimensional models are not reviewed in this thesis 

but an interested reader is referred to van de Vosse and Stergiopulos [33] for a 

comprehensive review.    

LUMPED PARAMETER MODELS 1.3.1 

Lumped parameter models enable a simplified description of the global behaviour of 

the cardiovascular system (see Shi et al. for a comprehensive review [34]). The 

vasculature can be divided into any number of compartments depending on the level 

of detail required. A limitation of this approach is the assumption that the 

distribution of the variable of interest (generally pressure and flow) is uniform within 

a single compartment. That is to say, if you represent the entire cardiovascular 

system with a single compartment then you are making the assumption that the 

pressure and flow is the same at all points within the vasculature. Clearly this is not 

true, as it is well known that pressure, flow and displacement waves propagate 
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through the circulatory system with a finite wave speed [35]. However, it may be an 

acceptable assumption for a specific research question. 

The behaviour of an individual compartment is often described using an electrical 

circuit analogy. In electrical circuits it is the voltage difference that drives the current 

around an electric circuit, while in fluid mechanics the pressure difference drives the 

flow. Electrical components, namely capacitors, resistors and inductances, produce 

an electrical impedance which in fluid mechanics is comparable to the effects of 

vessel wall compliance, frictional losses (viscous dissipation) and fluid inertia, 

respectively. The most commonly applied compartment model is the Windkessel. 

This representation has been modified over the years from a simple two-element 

model, first proposed by Stephen Hales in 1733 [36] and later represented 

mathematically by Otto Frank in 1899 [36, 37]. The original two-element 

Windkessel model (Figure 1-3) consists of a capacitor in parallel with a resistor. The 

capacitor characterises the compliance of the vessel walls and hence the ability of the 

vessel to store blood, while the resistor represents the pressure drop across the 

system due primarily to the arterioles and capillaries resistance to flow [38, 39].  The 

two element Windkessel is able to accurately predict the behaviour of the arterial 

system at low frequencies but becomes erroneous at higher frequencies [40-42]. 

 

 

 

FIGURE 1-3 – TWO ELEMENT (LEFT) AND THREE ELEMENT (RIGHT) WINDKESSEL ELEMENTS 

Landes added a third element (Figure 1-3) to the basic model in 1943 to improve the 

response at higher frequencies [34, 43]. This addition is often attributed to 

Westerhoff who did a considerable amount of work characterising the response of 

the three element Windekessel [44]. As such the three element Windkessel (Figure 

1-3) is also known as the Westkessel [45, 46]. It becomes important to remember 

that in the three element model it is the total resistance, i.e. the sum of the two 

resistors, which represents the vascular resistance.  
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A further development to the Windkessel model came in 1982 when Burattini et al. 

proposed the incorporation of a fourth element, inductance, into the compartment 

model [47]. The inductance relates directly to the inertial properties of the blood and 

has since been incorporated into the three element Windkessel in both series and 

parallel arrangements (Figure 1-4) [47, 48]. Deswysen et al. compared the relative 

performance of the two, three and the four element Windkessel models and found the 

four element, with inductance connected in series (the parallel configuration was not 

considered), to produce the most physiologically accurate response [49]. Sharp et al. 

arrived at the same conclusion, finding that the four element Windkessel, with an 

in-series inductance (the parallel configuration was also considered in this study), 

produced the closest approximation to the aortic input impedance in children [50].     

 

 

 

 

FIGURE 1-4 – TWO CONFIGURATIONS OF THE FOUR ELEMENT WINDKESSEL MODEL, 

SERIES CONNECTION (LEFT) AND PARALLEL CONNECTION (RIGHT)  

At this point it is worth noting that, as the number of elements in the Windkessel 

model increases, so in turn do the number of possible element combinations. Perhaps 

even more importantly, as the complexity of the compartment model increases so 

does the resource needed to tune each component, as they no longer directly 

represent anatomical parameters and have to be computed via iterative or 

optimisation schemes. 

Single compartment models make up one subgroup of lumped parameter models 

used in the field of cardiovascular mechanics. As mentioned previously, the major 

limitation of such models is the assumption that the pressure and flow waveforms are 

the same at all points throughout the vasculature. It is possible to improve the 

accuracy of the single compartment models by linking a number of these 

compartments, each representing a specific region of the cardiovascular system. 

L 
Pi 

 

Qi 

QC 

QR R 

C 

Ri 

QL 
Pi 

 

QRi 

QC 

QR R 

C 

Ri 

L 



CHAPTER 1  

11 

 

Many researchers have used this approach and the number of individual 

compartments used is purely dependent on the requirements of the research question 

[8, 9, 29, 51-55]. Tsuruta et al. employed a four compartment system to evaluate the 

use of drug treatments in heart failure [54]. The lumped model comprised a 

compartment describing each side of the heart and the pulmonary and systemic loops 

were also described by separate compartment models. The group employed a three 

element Windkessel model, for both the pulmonary and systemic compartments. Shi 

et al. employed a more complex multi compartment model to investigate the 

cardiovascular response to pulsatile and continuous flow LVADs [53]. The group 

divided the systemic circulation into 5 compartments (aortic root, arteries, arterioles, 

capillaries and veins) and chose a different combination of electrical components to 

describe the different properties of the 5 systems. For example, as the capillaries are 

responsible for a large proportion of the vascular resistance and have a relatively 

steady blood supply (i.e. minimal inductance or compliance effects), they can be 

modelled as a purely resistive compartment, whilst other regions, such as the 

arteries, require a resistor, inductor and capacitor to accurately represent their 

behaviour [53].  

THREE DIMENSIONAL COMPUTATIONAL FLUID DYNAMICS 1.3.2 

Lumped parameter models characterise the gross behaviour of the cardiovascular 

system but are unable to describe the local haemodynamics in a region of interest. In 

order to predict these detailed flow structures one must employ a technique known as 

computational fluid dynamics (CFD). CFD allows the prediction of two or three 

dimensional flow fields by solving the governing equations of fluid motion, namely 

the Navier-Stokes and Continuity equations (which for an incompressible fluid are 

shown in Equations 1-1 and Equation 1-2) [56]. 
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𝜌
𝜕𝑢
𝜕𝑡

+ ∇ ∙ (𝜌𝑢𝑼) = −
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𝜕𝜏𝑥𝑥
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𝜌
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+ ∇ ∙ (𝜌𝑣𝑼) = −
𝜕𝑝
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𝜕𝜏𝑦𝑦
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𝜕𝜏𝑧𝑦
𝜕𝑧  

𝜌
𝜕𝑤
𝜕𝑡

+ ∇ ∙ (𝜌𝑤𝑼) = −
𝜕𝑝
𝜕𝑧 +

𝜕𝜏𝑥𝑧
𝜕𝑥 +

𝜕𝜏𝑦𝑧
𝜕𝑦 +

𝜕𝜏𝑧𝑧
𝜕𝑧  

EQUATIONS 1-1 

∇ ∙ 𝑼 = 0 

EQUATION 1-2 

Where 𝜌 is the fluid density, 𝑢, 𝑣 and 𝑤 are the components of velocity in the 𝑥,𝑦 and 𝑧 

directions. 𝑝 is the pressure, 𝑡 is time, 𝑼 is the velocity  vector and 𝜏 is the shear stress. 

The Navier-Stokes equations are partial differential equations (PDEs) which must be 

transformed into a system of non-linear algebraic equations that can then be solved 

iteratively. To construct the system of equations the region of interest must be 

spatially and temporally discretised and a set of boundary conditions assigned, to 

identify any walls and describe the upstream and downstream environment. Spatial 

discretisation is achieved by dividing the region of interest into a number of finite 

areas/volumes, known as the computational mesh, over which the equations are 

solved. Temporal discretisation is achieved by selecting a time-marching scheme, 

which is used to incrementally progress towards the end of the solution time. The 

degree of spatial and temporal discretisation can have a significant impact on the 

accuracy of the numerical results, thus it is good practise to conduct both mesh and 

time-step convergence studies to ensure the solution is not influenced by either of 

these factors.  

Researchers have employed CFD models to predict the flow field in numerous 

geometries from curved tubes [57] to models that consider the interaction of the 

blood and the vessel wall (termed fluid structure interaction models or simply FSI) in 

such intricate structures as the aortic valve [58]. As the complexity of cardiovascular 

simulation improves, due in part to the advances in modern day computing, research 
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has moved to characterising patient-specific flow fields with the ultimate objective 

of improving diagnostic and interventional medicine. An important factor in 

successfully achieving this aim is the application of appropriate boundary conditions. 

It is of no use to conduct comprehensive studies that employ complex modelling 

strategies with highly refined spatial and temporal discretisation but have poorly 

defined boundary conditions. In this case, one is ultimately left with a very 

numerically accurate solution for the wrong problem. Multi-scale models, when used 

appropriately, can ensure that boundary conditions are physiologically realistic. This 

is especially important in FSI simulations, where the speed of the propagating wave 

will influence the correct relative alignment of the boundary conditions. If the 

alignment is poorly represented spurious reflections occur in the system, which are 

not representative of the in-vivo condition.   

MULTI-SCALE MODELLING 1.3.3 

The term ‘multi-scale modelling’ has become somewhat of a buzz word in the 

cardiovascular CFD community.  

Multi-scale modelling is the coupling of different order numerical models at a 

common interface across which they can communicate. This is important in 

cardiovascular mechanics because the response of the circulatory system occurs over 

a range of time and length scales. An example of this is a stenosis, i.e. the narrowing 

of a vessel lumen. A stenosis produces local changes in the flow field, increasing the 

fluid velocities and wall shear stresses. Although these effects are localised they also 

result in global changes to the pressure and flow waveforms which propagate 

through the entire system. In order to capture these multi-scale changes one must 

explicitly model the local and global scales. This can be achieved by coupling zero 

dimensional lumped parameter compartment models, representing the global 

response of the vasculature, to two or three dimensional models of the region of 

interest. 

Vignon-Clementel et al. demonstrated the importance of using coupled boundary 

conditions in an idealised iliac bifurcation with a stenosis in one branch [59]. The 

group compared the predicted distributions of flow and pressure in the model under 

three outlet boundary conditions; a constant pressure, a resistance and an impedance. 
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The alternative conditions resulted in significantly different flow distributions, with 

the impedance boundary producing physiologically reasonable predictions.  

The use of coupled multi-scale models to describe the interaction of a region of 

interest and the downstream impedance of the cardiovascular system is clearly the 

most appropriate method for simulating vascular flow fields. In the specific 

application of aortic haemodynamics the use of lumped parameter compartment 

models is gaining prevalence to achieve this (and is discussed further in Section 

1.4.2) [60-63] . Yet there are still authors work being published which draws 

conclusions based on the results of simulations with constant pressure boundary 

conditions [15, 18]. These, in truth, bear little semblance to reality. 

AORTIC HAEMODYNAMICS 1.4 

The main focus of this thesis is to characterise the changes in aortic haemodynamics 

induced by the presence of an LVAD. To do this one must first understand the 

characteristics of the native flow field.  

IN VIVO CHARACTERISATION 1.4.1 

Flow in the healthy human aorta (Figure 1-5) is pulsatile, due to the periodic 

contraction of the heart. The compliance of the vessel wall results in pressure, flow 

and displacement waves propagating out from the heart with a finite speed, 

determined by the wall dimensions, the fluid and structural material properties and 

the external tissue support. Blood ejected from the heart is rotated through at least 

180 degrees over a distance of approximately 10cm, moving through a non-planar 

(right handed twist) and tapering curvature [64]. This motion produces complex 

structures in the flow field and occurs at Reynolds numbers that can be described as 

transitional, further complicating the haemodynamics [65].  
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FIGURE 1-5 – HUMAN AORTIC ANATOMY 

Phase contrast Magnetic Resonance Imaging (MRI) angiography has enabled 

researchers to non-invasively capture the 4D flow field of the human aorta, shedding 

light on the detailed haemodynamics of both diseased and healthy individuals [64-

67]. Flow in the aorta is dominated by helical structures which become most 

prominent during the deceleration phase of systole and can remain throughout 

diastole [64]. Depending on the anatomy of the individual there is either; a single 

right handed helical structure within the ascending aorta and the arch or two counter 

rotating helical structures, often referred to as Dean vortices, after the mathematician 

who first described the general phenomenon [55-58]. The central core of these 

structures was reported by Kilner et al. to be mobile through the cardiac cycle, 

observing a general movement from the inner wall of the ascending aorta to the 

subjects right side [64]. The high velocity jet of blood is seen to detach from the wall 

as it moves through the aortic arch somewhere around the ductus diverticulum 

(Figure 1-5), where a recirculating vortex is formed. In the descending aorta there is 
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significantly more variation between subjects, with some preserving the right handed 

helical structures observed in the ascending aorta, whilst in others the structures 

reverse forming left handed helical structures. 

It is proposed that the creation of such swirling flows is in fact an evolutionary trait, 

since helical structures minimise the chance of flow separation, reduce the rate of 

energy decay and hence improve the efficiency of the system [68].  

NUMERICAL CHARACTERISATION 1.4.2 

The understanding that pressure, flow and displacement waves propagate through the 

cardiovascular system with a finite wave speed drives us to employ complex 

modelling strategies, such as FSI, to simulate aortic haemodynamics; arguably the 

most sophisticated simulations of the aorta are those published by the research 

groups at Stanford University (USA) and INRIA (France) [60-62].   

Kim et al. from the Stanford group used 0D compartment models to describe the 

inlet and outlet boundary conditions in both a healthy and diseased patient-specific 

aorta [61]. While Feinstein et al. used the same configuration of boundary conditions 

to investigate alternative intervention options in a patient with an aortic coarctation 

[62]. The inlet boundary condition employed a representation of the left side of the 

heart, with the ventricle based on the variable elastance model initially proposed by 

Suga et al. [69]. In this model the pressure is assumed to have a linear relationship to 

the ventricular volume and the ventricular elastance. The volume is computed from 

the difference in the flow into and out of the ventricle and the elastance is given as a 

function of time. The compartment models coupled to the outlet boundaries 

contained a three element Windkessel, with the parameters of all components tuned 

to approximate the measured response in the patient. The interaction of the fluid and 

structural mechanics of the aorta were considered using the coupled momentum 

method described by Figueroa et al. [70]. In both cases the vessel wall properties 

were chosen to lie within the physiological range and the aortic structures were 

constrained with fixed supports at the inlet and at all the outlets. The use of fixed 

mechanical constraints is not physiologically accurate and illustrates one of the 

major limitations of FSI models.  In an attempt to improve the representation of the 

in-vivo structural support Moireau et al. proposed the use of dashpot and spring 
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constraints across the entire aortic wall, to represent the external tissue support. Data 

assimilation methods were used to compute the characteristics of the dashpots and 

springs, such that the computed displacements better approximated the clinically 

acquired 4D image data. The validity of the approach was demonstrated in an 

Arbitrary Lagrangian–Eulerian (ALE) implementation as well as in a coupled 

momentum method approach.   

The most comprehensive simulation of an aorta under left ventricular support was 

described by Bazilevs et al. who employed an FSI model to evaluate the flow field 

changes brought about by the inclusion of an LVAD [63]. Three configurations were 

considered, no support (all flow through the aortic valve), partial LVAD support 

(flow through both the aortic valve and the LVAD cannula) and full support (all flow 

through the LVAD cannula). The inlet flow rates were prescribed and the outlet 

pressures are described by resistance boundary conditions. The LVAD cannula was 

attached to the descending aorta and was defined as having a rigid wall. The vessel 

wall was further supported by fixed constraints enforced at the inlet and outlet 

boundaries. The results demonstrated that during complete ventricular support 

regions of stagnant fluid were apparent in the ascending aorta, which could 

predispose to thrombus formation and valve fusion, as well as regions of excessively 

high wall shear stress around the anastomosis.  

THESIS OUTLINE 1.5 

The following Chapters describe the undulating scenery that has comprised my work 

over the last three years. Each Chapter begins with a ‘Motivation’ section which 

clarifies why the subject matter is of consequence and its place within the bigger 

picture already outlined in Section 1.1. 

Chapter 2 describes the validation of the CFD code used throughout this thesis. The 

work was conducted as part of an initiative led by the Food and Drug Administration 

(FDA) who seek to develop a gold standard protocol for CFD simulations of 

cardiovascular devices, which may then be accepted as part of the substantial dossier 

required for FDA certification. The following Chapter (3) describes an analytical 
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solution for a 1D tube coupled to the 0D representation of a 2 or 3 element 

Windkessel model. A technique is developed to optimise the Windkessel parameters 

to produce a desired pressure response for a known flow waveform. The approach is 

validated in an analytical system, where the desired parameters are known, before 

being applied to patient-specific data. Chapter 4 aims to identify the importance of 

the interaction of the vessel wall and the fluid and presents a compressible fluid 

model, which can capture the gross dynamics of the propagating waves, as a possible 

alternative to full FSI simulations. These analysis strategies are considered in three 

geometries; a uniform cylinder, a patient-specific aorta and the same aorta with the 

inclusion of a left ventricular assist device. In Chapter 5 the long standing debate, 

whether a turbulence model is required to accurately capture aortic haemodynamics, 

is explored in both the native and assisted case.  

Results and findings from the first four analysis Chapters are brought together in 

Chapter 6 to investigate the influence of the LVAD outflow cannula position on the 

aortic flow field. Chapter 7 presents the most comprehensive multi-scale model of 

the assisted vasculature to date. The model is used to investigate under what 

conditions the aortic valve may open during LVAD support, which, as discussed 

previously, is important to prevent aortic valve fusion. Finally Chapter 8 summarises 

the findings documented within this thesis. 

An Appendix has also been included that contains copies of all first author 

publications associated with this PhD thesis. 



 

 

Chapter 2  
FOOD & DRUG 
ASSOCIATION CFD 
BENCHMARK  
MOTIVATION 2.1 

Any form of numerical simulation requires careful and comprehensive validation to 

give confidence in the accuracy of the computed results. Validation is especially 

important in   computational fluid dynamics (CFD), where there are a large number 

of operator dependent decisions that must be made. The user must choose the density 

of the computational mesh, the size of the time-step, the criteria of convergence as 

well as many other variables. 

There are two general forms of validation; comparison with an analytical solution 

and comparison with, in vitro or in vivo, measured data. In the case of fluid 

mechanics only the most simple, idealised, systems have mathematically derived 

analytical solutions and so the use of experimentally measured data is important.  

CHAPTER 2 
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THE BENCHMARK 2.2 

The Food and Drug Administration (FDA) have identified the need for well 

validated CFD simulations to support applications for medical device approval. A 

clear concern is the distinct lack of what might be termed a ‘Gold Standard’ protocol 

for the computation of CFD flow field predictions. In an attempt to remedy this, the 

FDA have begun a “Critical Path Initiative” to construct such a methodology [71]. 

To do this the FDA designed a fluid flow benchmark with features relevant to many 

complex cardiovascular devices. A challenge was put to the CFD community, in the 

world of both academia and industry, to employ their skills to predict the flow field 

within the benchmark for a number of given flow rates. Whilst the computational 

community were conducting simulations, the FDA commissioned three independent 

laboratories to perform in vitro studies of the benchmark, using particle image 

velocimetry (PIV) and pressure sensors to characterise the flow field. Comparisons 

were then made between the computational predictions and the experimental data, 

with the view of identifying a Gold Standard CFD methodology. 

The benchmark has an idealised, three dimensional geometry, constructed from three 

cylinders (Figure 2-1) and is designed so that it can be implemented with the fluid 

moving in either direction. In the case where the flow moves from left to right, in 

regard to Figure 2-1, the fluid will encounter a conical concentrator, a constricted 

region and a sudden expansion. From here on, this case is referred to as the ‘Sudden 

Expansion model/geometry’. In the alternative case, where the flow moves from 

right to left, the fluid encounters a sudden constriction, followed by a conical 

diffuser. Only the results for the Sudden Expansion geometry are reported here 

allowing a more in-depth analysis of the experimental and computational results. 

Conical diffusers/concentrators and sudden expansions/contractions are 

characteristic features found in a wide range of medical equipment, from complex 

haemodialysis machines to simple IV fluid delivery systems, and importantly in the 

context of this thesis, LVAD cannulas. The ability to predict accurately the flow 

structures within these types of geometries provides an exciting, cost effective, 

possibility for improving their design through simulation based development.  
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FIGURE 2-1 – THE FDA FLUID FLOW BENCHMARK 

MODEL CONSTRUCTION 2.2.1 

The FDA specified the precise geometry (Figure 2-2) of the constriction, the diffuser 

and the expansion, but chose not to define an inlet or an outlet length or what 

boundary conditions to impose. It is believed this was done to assess how the CFD 

community constructed a problem of this type and whether any conclusions could be 

drawn as to the necessary domain length or application of the boundary conditions.  

Steady, laminar flow in a cylindrical domain will reach an equilibrium state, at a 

distance (known as the entrance or development length) along the cylinder, where 

the force due to the pressure difference across the domain, equals the flow retarding, 

viscous force [72]. At this point the flow is said to be fully developed and the 

velocity profile takes the form of a parabola. It was deemed appropriate that the inlet 

velocity profile of the FDA benchmark took a fully developed, parabolic form.  

An advantage of CFD simulations is the ability to enforce specific constraints on the 

fluid at the boundaries, so, a developed velocity profile was enforced at the inlet, 

negating the requirement of an entrance length that is necessary for in vitro studies. 

An inlet length of 5 diameters (5Di –Figure 2-2) was used in the construction of the 

CFD model. 

The mathematical representation of a fully developed laminar flow profile in a rigid 

cylindrical domain of uniform cross-section can be shown to be: 

𝑤(𝑟) = 𝑤𝑚𝑎𝑥 �1 − �
𝑟

𝑟𝑚𝑎𝑥
�
2
� 

EQUATION 2-1  

Where 𝑟 is the radial distance from the centreline, 𝑟𝑚𝑎𝑥 is the radius of the cylinder 

and 𝑤𝑚𝑎𝑥 is the maximum fluid velocity at the inlet: 
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𝑤𝑚𝑎𝑥 =
2𝑄

𝜋𝑟𝑚𝑎𝑥2
 

EQUATION 2-2 

Where 𝑄 is the volume flow rate. 

It is important that the outlet boundary condition has no influence on the flow field 

in the region of interest. In an effort to find the appropriate outlet length for a 

problem of this kind the current literature, on simulating flows over a backward 

facing step and in conical diffusers, was inspected. A Gold Standard outlet length of 

approximately 20 diameters (20Do Figure 2-2) was identified [73, 74]. In accordance 

with this finding an outlet length of 20 diameters was employed in the CFD model. 

A constant relative pressure of 0Pa was applied at the outlet boundary. Since the 

system has rigid walls the chosen value of pressure is purely a reference value and it 

is the change in pressure along the benchmark which is of interest. 

The flow rates of interest (Table 2.1) and the fluid properties were also specified by 

the FDA. The fluid was classified as incompressible and Newtonian, with a density 

and viscosity of 1056 kgm-3 and 0.0035 Pas respectively, to represent human blood 

flowing in large vessels (large relative to the size of a red blood cell, > 1 mm 

diameter, so negating the Fahraeus-Lindquist effect [75]). From the prescribed flow 

rates, the equivalent maximum inlet velocities were computed (Table 2.1), using 

Equation 2-2.  

These values were subsequently used to describe the parabolic form of the inlet 

velocity profile (Equation 2-1). 
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FIGURE 2-2 - GEOMETRY OF THE BENCHMARK, AS SPECIFIED BY THE FDA  

Flow rate (m3s-1) Reynolds Number (= ρwDc/µ) wmax (ms-1) 

5.20624x10-6 500 0.0921 

2.08250x10-5 2000 0.368 

3.64437x10-5 3500 0.644 

5.20624x10-5 5000 0.921 

6.76811x10-5 6500 1.20 

TABLE 2.1 - FLOW RATES OF INTEREST, AS DEFINED BY THE FDA  

AND THE CORRESPONDING MAXIMUM VELOCITIES 

MESH CONSTRUCTION 2.2.2 

A hexahedral mesh was constructed in ANSYS classic (ANSYS, Canonsburg, PA, 

USA) by means of a parameterised script file. The density of the mesh was non-

uniform, with increased element density in areas of interest and regions of high 

gradients such as the near wall region.  

The benchmark flow rates span the laminar, transitional and turbulent regions and as 

such a turbulence model (the theory of which is described in Section 2.3) may be 

required at the higher flow rates. Turbulence models often employ wall functions to 

predict accurately the flow field near the wall and require certain conditions to be 

met in terms of the mesh size. Large Eddy Simulations (LES) and Shear Stress 

Transport (SST) turbulence models require that the first grid point be located at a 
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distance from the wall such that the y+ value is no greater than 2. The y+ value is a 

non dimensional measure of wall distance which depends on the fluid properties, the 

frictional velocity at the nearest wall and the distance to this wall (Equation 2-3).  

𝑦+ =
𝑢∗𝑦𝑤𝜌
𝜇

 

EQUATION 2-3 

Where 𝑢∗ is the fictional velocity and 𝑦𝑤 is the distance to local wall. 

One can approximate the required distance to the first grid point to obtain a desired 

value of 𝑦+ using the following relation: 

𝑦𝑛 = 𝐷𝑦+√80𝑅𝑒(−13 14)⁄  

EQUATION 2-4 

Since the y+ value depends on the Reynolds number all meshes had a yn value such 

that the y+ of the highest Reynolds number simulation was approximately 2. 

LES models are known to be strongly sensitive to variations in mesh density and 

elemental aspect ratios. As such, care was taken to minimise sudden changes in these 

parameters. Four meshes were constructed for the sudden expansion benchmark 

geometry. Table 2.2 contains information on the parameters of each mesh and Figure 

2-3 illustrates the variation of the mesh density in Mesh SE-2. 

Mesh Name Number of 

Elements 

Max Element 

Volume (m3) 

SE-1 437,424 6.33x10-10 

SE-2 1,629,072 1.49x10-10 

SE-3 3,021,392 8.18x10-11 

SE-4 6,992,700 4.09x10-11 

TABLE 2.2 - MESH INFORMATION FOR THE FDA BENCHMARK 
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FIGURE 2-3 - ILLUSTRATION OF MESH DENSITY (SE-2): MESH PROFILES AT INLET AND OUTLET  

THEORETICAL DESCRIPTION OF THE 
NUMERICAL MODELS 2.3 

The flow rates of interest, for the described benchmark, encompass laminar, 

transitional and turbulent regimes. In principal the Navier-Stokes and Continuity 

equations fully describe the flow features in all of these cases. However, transitional 

and turbulent flow fields contain varying length and time scales [76], all of which 

must be resolved by the appropriate mesh and time-step size in order to accurately 

capture the dynamics of these regimes. A numerical simulation that can achieve this 

is termed a Direct Numerical Simulation (DNS). Kolmogorov derived a number of 

formulae [76, 77] that identify the spatial (Equation 2-5) and temporal (Equation 

2-6) resolution required to perform a DNS.   

𝜂 = �
𝜈3

𝜖
�
1/4

 

EQUATION 2-5 
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𝑡𝜂 = �
𝜐
𝜖
�
1/2

 

EQUATION 2-6 

Where 𝜐 is the kinematic viscosity (𝜇 𝜌⁄ ) and 𝜖 is the average energy dissipation per 

unit mass, which can be approximated by: 

𝜖 = �
𝑢�3

 𝐿𝑅𝑒𝑓
� 

EQUATION 2-7 

Where 𝑢� is the average velocity in the domain and 𝐿𝑅𝑒𝑓 is the reference length, in 

this case the diameter. 

Applying these relations to the second case of interest (Reynolds number 3500), one 

would require approximately 740 million elements in the constriction alone and a 

time-step size of 0.023 ms to achieve DNS. These requirements far outweigh the 

computing resources that are currently available locally and so an alternative 

approach is needed.  

Fortunately, turbulence is a stochastic process and as such, statistical models have 

been developed to compute the averaged quantities of velocity and pressure. 

However, these statistical models suffer from what is known as the closure problem, 

that is, there are more unknowns than there are equations and so further assumptions 

are needed to facilitate the solution of the problem [76]. 

The following sections describe the theory of the different numerical models, be it a 

laminar or statistical turbulence model, which have been employed to predict the 

flow field of the FDA benchmark in this thesis.  

LAMINAR THEORY 2.3.1 

Implementation of a laminar model requires the standard transient incompressible 

Navier-Stokes (Equations 1-1) and Continuity (Equation 1-2) equations to be solved 

for the described system. This form of the equations consider the temporal changes 
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in the flow field and can be further simplified, for the benchmark problem, to the 

steady form of the equations (Equations 2-10).  

𝜌
𝜕𝑢
𝜕𝑡

+ ∇ ∙ (𝜌𝑢𝑼) = −
𝜕𝑝
𝜕𝑥+

𝜕𝜏𝑥𝑥
𝜕𝑥 +

𝜕𝜏𝑦𝑥
𝜕𝑦 +

𝜕𝜏𝑧𝑥
𝜕𝑧  

𝜌
𝜕𝑣
𝜕𝑡

+ ∇ ∙ (𝜌𝑣𝑼) = −
𝜕𝑝
𝜕𝑦+

𝜕𝜏𝑥𝑦
𝜕𝑥 +

𝜕𝜏𝑦𝑦
𝜕𝑦 +

𝜕𝜏𝑧𝑦
𝜕𝑧  

𝜌
𝜕𝑤
𝜕𝑡

+ ∇ ∙ (𝜌𝑤𝑼) = −
𝜕𝑝
𝜕𝑧 +

𝜕𝜏𝑥𝑧
𝜕𝑥 +

𝜕𝜏𝑦𝑧
𝜕𝑦 +

𝜕𝜏𝑧𝑧
𝜕𝑧  

EQUATIONS 2-8 

∇ ∙ 𝑼 = 0 

EQUATION 2-9 

∇ ∙ (𝜌𝑢𝑼) = −
𝜕𝑝
𝜕𝑥 +

𝜕𝜏𝑥𝑥
𝜕𝑥 +

𝜕𝜏𝑦𝑥
𝜕𝑦 +

𝜕𝜏𝑧𝑥
𝜕𝑧  

∇ ∙ (𝜌𝑣𝑼) = −
𝜕𝑝
𝜕𝑦+

𝜕𝜏𝑥𝑦
𝜕𝑥 +

𝜕𝜏𝑦𝑦
𝜕𝑦 +

𝜕𝜏𝑧𝑦
𝜕𝑧  

∇ ∙ (𝜌𝑤𝑼) = −
𝜕𝑝
𝜕𝑧 +

𝜕𝜏𝑥𝑧
𝜕𝑥 +

𝜕𝜏𝑦𝑧
𝜕𝑦 +

𝜕𝜏𝑧𝑧
𝜕𝑧  

EQUATIONS 2-10 

These equations have been employed to investigate whether the different flow fields 

have any significant temporal fluctuations. 

SHEAR STRESS TRANSPORT THEORY 2.3.2 

As mentioned above, statistical turbulence models solve the problem in terms of 

averaged flow quantities. To do this the equations of motion are modified to give the 

Reynolds Averaged Navier-Stokes (RANS) equations. The velocity can be 

decomposed into a time averaged velocity, 𝑼� , and a velocity fluctuation, 𝒖�, such 

that: 
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𝑼 = 𝑼� + 𝒖� 

EQUATION 2-11 

By decomposing each variable as described (this is known as Reynolds 

decomposition), substituting them into the transient incompressible Navier-Stokes 

and Continuity equations and averaging we find the RANS equations (Equation 2-12 

and Equation 2-13). Note for convenience they have been written in Cartesian form. 

𝜌 �
𝜕𝑼�𝑖
𝜕𝑡

+ 𝑼�𝑗
𝜕𝑼�𝑖
𝜕𝑥𝑗

� = −
𝜕𝑃�
𝜕𝑥𝑖

+
𝜕
𝜕𝑥𝑗

�𝜇
𝜕𝑼�𝑖
𝜕𝑥𝑗

− 𝜌𝒖�𝚤𝒖�𝚥������� 

EQUATION 2-12 

𝜕𝑼�𝑖
𝜕𝑥𝑗

= 0 

EQUATION 2-13 

The RANS equations include a term, 𝜌𝒖�𝒊𝒖�𝒋������, which is a pseudo stress known as the 

Reynolds Stress. It is this Reynolds Stress term that causes the closure problem, 

since the 𝜌𝒖�𝒊𝒖�𝒋������ term is an unknown. In laminar flow, of a Newtonian fluid, the shear 

stress is a product of the velocity gradient, 𝜕𝑼𝒊
𝜕𝑥𝑗

, and the fluid viscosity (Equation 

2-14). 

𝜏𝑙𝑎𝑚𝑖𝑛𝑎𝑟 = 𝜇
𝜕𝑼𝑖

𝜕𝑥𝑗
 

EQUATION 2-14 

Boussinesq’s hypothesis, which he proposed in 1877, describes the Reynolds 

Stresses in a similar form to the laminar relation, as a product of the turbulent eddy 

viscosity, 𝜇𝑡, and the averaged velocity gradient, 𝜕𝑼
�𝑖

𝜕𝑥𝑗
: 

𝜌𝒖�𝚤𝒖�𝚥������ = 𝜇𝑡
𝜕𝑼�𝑖
𝜕𝑥𝑗

 

EQUATION 2-15 
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The turbulent eddy viscosity is an unknown quantity and so this hypothesis still 

suffers from a closure problem. Modern day turbulence models employ different 

formulations to describe the turbulent eddy viscosity, thereby closing the equations 

and allowing flow field predictions to be computed.  

The Shear Stress Transport (SST) turbulence model solves a combination of the 

𝑘 − 𝜔 and 𝑘 − 𝜀 two equation turbulence models, depending on the local position 

with relation to a wall and the flow parameters [78]. Two equation turbulence 

models solve an additional two partial differential equations that describe the 

transport of the turbulent velocity scale and the turbulent length scale. 𝑘 describes 

the turbulent kinetic energy, while 𝜔 and 𝜀 represent the turbulent frequency and the 

turbulent eddy dissipation respectively. In the 𝑘 − 𝜔 turbulence model the turbulent 

eddy viscosity is characterised as a function of the turbulent kinetic energy and the 

turbulent frequency (Equation 2-16), hence the name 𝑘 − 𝜔. In a similar manner the 

turbulent eddy viscosity is described by Equation 2-17 in the 𝑘 − 𝜀 model.  

𝜇𝑡 = 𝜌
𝑘
𝜔

 

EQUATION 2-16 

𝜇𝑡 = 0.09𝜌
𝑘2

𝜀
 

EQUATION 2-17 

Both the 𝑘 − 𝜔 and 𝑘 − 𝜀 models have well documented short comings. The 𝑘 − 𝜔 

implementation is sensitive to the prescribed levels of turbulence in the free stream 

(i.e. what is defined at the inlet) but is advantageous in the near wall region where 

the equations better represent the near wall effects [79, 80]. While the 𝑘 − 𝜀 model 

performs poorly in complex flow systems where adverse pressure gradients should 

result in flow separation but can in the worst case be completely missed but 

outperforms the 𝑘 − 𝜔 model in the free stream regions [80].  

The SST model of Menter [79] employs a blending function which results in the 

𝑘 − 𝜔 model dominating in the near wall region and the 𝑘 − 𝜀 model dominating in 

the free stream region. There is also the inclusion of an additional limiter on the 
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turbulent eddy viscosity, which considers the transport of the turbulent shear 

stresses, producing even more accurate predictions of the separation and 

reattachment locations. 

A further variant of this standard SST model is the consideration of transitional 

effects [80].  A correlation based model, which depends on the local flow variables, 

is available in ANSYS-CFX [78]. The model solves an additional two transport 

equations (in addition to the turbulent length and velocity scale equations), one for 

intermittency and another for the onset criteria of the transition. In the event that the 

transitional model is activated the result is to limit the turbulent viscosity to some 

degree, based on the experimental correlations. It is important to note that the 

transitional model does not try to capture the true physics of the flow.  

The transitional variant of the SST turbulence model was selected for use in the 

investigation of the FDA benchmark because of its ability to accurately compute the 

location and degree of flow separation within transitional flow regimes. In the 

benchmark problem there are regions, such as the conical diffuser and sudden 

expansion, within which the accurate prediction of flow separation is vital to the 

accurate computation of the flow structures. 

LARGE EDDY SIMULATION THEORY 2.3.3 

As discussed previously, transitional and turbulent flow fields contain a wide range 

of both length- and time-scales. Eddies with the largest length- and time-scales are 

the most energetic and have the greatest influence on the global flow structures. 

Large Eddy Simulations (LES) solve a set of filtered Navier-Stokes equations to 

spatially and temporally resolve the largest, most energetic, eddies and employ a 

statistical model to predict what are termed the sub-grid scale (SGS) eddies. LES 

models require a far higher spatial resolution than the RANS turbulence models and 

of course, resolves temporal fluctuations. Therefore, LES models require a large 

number of time-steps to achieve a time averaged solution. 

The Navier-Stokes equations are spatially filtered based on the size of the 

computational mesh used to discretise the fluid domain. A variable, 𝑼 , is 

decomposed into a resolved portion, 𝑼� , and an unresolved portion, 𝑼′, where: 
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𝑼 = 𝑼� +  𝐔′ 

EQUATION 2-18 

The spatially filtered Navier-Stokes equations, for an incompressible fluid, take the 

form: 
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�� −
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EQUATION 2-19 

Where 𝜏𝑖𝑗 are the SGS stresses, described by: 

𝜏𝑖𝑗 = 𝑼𝚤𝑼𝚥� −𝑼�𝑖𝑼�𝑗 

EQUATION 2-20 

Spatial filtering of the Navier-Stokes equations again results in a turbulent closure 

problem. As in the RANS situation, Boussinesq’s hypothesis is employed to close 

the equations. Unlike the RANS case, the statistical model need only calculate the 

SGS eddy viscosity. This quantity is related to the SGS stresses and the fully 

resolved strain rate tensor as shown: 

�𝜏𝑖𝑗 −
𝛿𝑖𝑗
3
𝜏𝑘𝑘� = 2𝜇𝑠𝑔𝑠 �

𝜕𝑈�𝑖
𝜕𝑥𝑗

+
𝜕𝑈�𝑗
𝜕𝑥𝑖

� 

EQUATION 2-21 

Where 𝜇𝑠𝑔𝑠 is the SGS eddy viscosity. 

Within the CFD package, ANSYS-CFX (ANSYS, Canonsburg, USA), there are 

three different SGS models that can be employed to describe the SGS eddy viscosity 

[78]. The Wall Adapted Local Eddy viscosity (WALE) model is recommended in the 

user documentation, as it has improved eddy viscosity predictions in wall bounded 

laminar flows (i.e. the turbulent viscosity reduces to zero whereas this is not the case 

in the alternative Smagorinsky model). This suggests that it is the best model to 

accurately resolve the transition from laminar to turbulent flow, which is likely to 
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occur in the FDA benchmark. For full details of the mathematical description of the 

WALE model see Nicoud and Durcros [81]. 

SCALE ADAPTIVE SIMULATION THEORY 2.3.4 

The Scale Adaptive Simulation – Shear Stress Transport (SAS-SST) turbulence 

model is a class of Unsteady Reynolds Averaged Navier Stokes (URANS) models. 

The SAS-SST model solves the RANS equations for stationary flow fields (in the 

case of interest this is the transitional variant of the SST model described in section 

2.3.2). However, in regions where the flow exhibits temporal fluctuations the model 

reduces 𝜇𝑡  based on the length scale of the resolved eddies. Assessment of the 

resolved eddy size is based on the von Kármán length scale (𝜅): 

𝐿𝑣𝑘 = 𝜅 �
𝜕𝑼𝑖

𝜕𝑥𝑗
𝜕2𝑼
𝜕𝑥𝑗𝜕𝑥𝑗

� � 

EQUATION 2-22 

The von Kármán length scale is incorporated into the transport equation of the 

turbulent eddy frequency as shown: 
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EQUATION 2-23 

Where 𝜎𝜔 and 𝜎𝜔2 are the values for the 𝑘 − 𝜀 regime of the SST model and: 
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 EQUATION 2-24 

For full details of the mathematical representation and the model parameters chosen 

for the SAS-SST model see Egorov and Menter [82]. 
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SUDDEN EXPANSION RE 500: 
RESULTS AND DISCUSSION 2.4 

The following sections describe and compare the flow field predictions computed by 

each of the numerical models discussed. Although for the FDA initiative all flow 

rates, have been simulated in both the Sudden Expansion and Conical Diffuser 

geometry, only two flow rates within the Sudden Expansion geometry are analysed 

in detail here, due to size restrictions placed on this thesis. The flow rates that will be 

analysed in detail correspond to a Reynolds Number, in the constriction, of 500 and 

3500. These were chosen because they correspond to flow regimes which are 

laminar (Reynolds number 500) and transitional (Reynolds number 3500).  

The focus of the latter part of this thesis is on computing flow fields within patient-

specific aortas, both with and without the inclusion of the Berlin Heart (Berlin, 

Germany) INCOR, left ventricular assist device. The INCOR is attached to the 

native aorta via an outflow cannula with a constant diameter of 12mm and is 

commonly set to supply a flow rate of around 4-5 litres per minute, depending on the 

condition of the patient. Under these conditions the Reynolds number within the 

cannula is around 3200. This is very close to the FDA benchmark at a Reynolds 

number of 3500 and hence it is likely to be the most valuable study for this thesis.  

ANALYTICAL SOLUTION 2.4.1 

Although there is no derived analytical solution for this system, it is possible to 

gauge a gross first approximation of the total pressure drop across the benchmark 

using a combination of Bernoulli's equation (Equation 2-25) and Poiseuille’s law 

(Equation 2-26). Poiseuille’s law allows the calculation of the pressure drop across a 

uniform cylinder with a fully developed laminar flow field, such as within the inlet 

region of the benchmark. One can also make the assumption that this is true for the 

outlet and constriction of the benchmark, although admittedly this is likely to be a 

source of error. Bernoulli’s equation is based on the conservation of energy 

momentum, but it can be interpreted as stating that the sum of the kinetic and 

potential energy remains constant along a fluid streamline. This equation is valid for 

steady flow of an inviscid fluid. Whilst the fluid within the benchmark is not itself 
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inviscid, the viscous effects are likely to be small and so it is deemed appropriate for 

use as a first order prediction. Bernoulli’s equation is used to compute the pressure 

drop through the conical constrictor and to give a range of pressure recovery through 

the expansion. 

1
2� 𝑣2 + 𝑔𝑧 +

𝑃
𝜌

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

EQUATION 2-25 

Where 𝑣 is the velocity of the fluid, 𝑔 is gravitational acceleration, 𝑧 is the elevation, 

𝑃 is the pressure and 𝜌 is the fluid density. 

∆𝑃 =
8𝑄𝜇𝐿
𝜋𝑟𝑚𝑎𝑥4 

EQUATION 2-26 

Where 𝑄 is the volume flow rate, 𝜇 is the fluid viscosity, 𝐿 is the length and 𝑟𝑚𝑎𝑥 is 

the radius of the cylinder. 

Applying these rules to the benchmark, at a Reynolds number of 500, results in a 

calculated pressure drop of 2.15 Pa along the inlet cylinder, 89.5 Pa through the 

constrictor, 116 Pa across the constriction, and 8.6 Pa along the outlet cylinder. At 

the sudden expansion one can apply Bernoulli’s equation to approximate the upper 

bound of the pressure recovery. However, it is known that under adverse pressure 

gradients and in regions of flow recirculation Bernoulli’s principal is unable to 

capture the associated energy losses. As such an upper and lower bound of the 

pressure recovery, through the sudden expansion, has been computed. Based on the 

described principals the range of the total pressure drop across the benchmark is 126-

216 Pa (Figure 2-4).  
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FIGURE 2-4 - ANALYTICAL PREDICTION OF PRESSURE AT RE500  

ASSESSMENT OF NUMERICAL CONVERGENCE 2.4.2 

Convergence of the CFD simulations was assessed by monitoring the root mean 

squared (RMS) residuals of pressure and momentum, in all three dimensions. In the 

documentation for ANSYS-CFX (ANSYS, Canonsburg, USA) the default 

convergence criteria, of 1x10-4, is described as offering “relatively loose 

convergence, but may be sufficient for many engineering applications” [78]. 

To ensure that the choice of convergence criteria had no effect on the predicted flow 

field a simple study was conducted in the Sudden Expansion geometry, employing 

the coarse mesh at the lowest flow rate. Five, steady laminar simulations were 

conducted with convergence criteria for the RMS residuals of 1x10-3, 1x10-4, 1x10-5, 

1x10-6 and 1x10-7. The distribution of the predicted axial velocity and pressure along 

the centreline and the variation of the wall shear stress (WSS) along the length of the 

domain are shown in Figure 2-5 and Figure 2-6. 
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FIGURE 2-5 - ASSESSMENT OF CONVERGENCE CRITERIA:  

AXIAL VELOCITY AND PRESSURE ALONG THE CENTRELINE  

 

FIGURE 2-6 - ASSESSMENT OF CONVERGENCE CRITERIA: 

SHEAR STRESS ALONG THE WALL 

The computed axial velocities and pressures along the centreline and the computed 

shear stresses along the wall are identical for simulations with RMS residuals ≤ 

1x10-5.  

-0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.2

0

0.2

0.4

0.6

0.8
Investigation of RMS Convergence Criteria

Distance along the centreline (m)

A
xi

al
 V

el
oc

ity
 (m

/s
)

 

 

RMS value 1x10-3

RMS value 1x10-4

RMS value 1x10-5

RMS value 1x10-6

RMS value 1x10-7

-0.1 -0.05 0 0.05 0.1 0.15 0.2
-100

0

100

200

300
Investigation of RMS Convergence Criteria

Distance along the centreline (m)

Pr
es

su
re

 (P
a)

 

 

RMS value 1x10-3

RMS value 1x10-4

RMS value 1x10-5

RMS value 1x10-6

RMS value 1x10-7

    

    

 
 

 

 

 

  
  
  
  
  

-0.1 -0.05 0 0.05 0.1 0.15 0.2
-2

0

2

4

6

8

10

Distance along the centreline (m)

W
al

l S
he

ar
 S

tre
ss

 (P
a)

Investigation of RMS Convergence Criteria

 

 

RMS value 1x10-3

RMS value 1x10-4

RMS value 1x10-5

RMS value 1x10-6

RMS value 1x10-7



CHAPTER 2 

37 

 

Based on these findings, all CFD simulations detailed in this thesis are assumed to 

have reached a converged solution once the RMS residuals of pressure and 

momentum reach a value of less than 1x10-5. 

ASSESSMENT OF MESH CONVERGENCE 2.4.3 

In all CFD simulations it is important to ensure that the computational mesh 

employed to discretise the spatial domain has no influence on the resulting flow field 

predictions. As such it is essential that a mesh sensitivity study be conducted to 

ensure the results are independent of this discretisation.  

There are any number of methods for assessing mesh convergence, from evaluating 

the percentage change between different mesh densities, to ‘eyeballing’ the variation. 

In this thesis a more formal method, known as Richardson’s extrapolation [83, 84], is 

used to predict the error in the numerical solution. Richardson’s extrapolation 

method requires the solution of a problem on at least three mesh densities [83]. The 

reference length (ℎ𝑖) of each computational mesh and the numerical solutions (𝑓𝑖) are 

then extrapolated to compute the solution, assuming a reference length of zero.  

Consider a set of computational meshes, the refinement ratio of which is defined by: 

𝑟𝑚𝑒𝑠ℎ =
ℎ2
ℎ1

=
ℎ3
ℎ2

 

EQUATION 2-27 

Where 𝑖 = 1 denotes the finest mesh density. 

The order (𝑝𝑠𝑜𝑙) of the numerical solution is simply: 

𝑝𝑠𝑜𝑙 =
ln{(𝑓3 − 𝑓2)/(𝑓2 − 𝑓1)}

ln(𝑟𝑚𝑒𝑠ℎ)
 

EQUATION 2-28 

From these an estimate of the exact solution (𝑓𝑒𝑥) can be obtained and in turn a 

measure of the relative error associated with the numerical prediction. 
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𝑓𝑒𝑥 = 𝑓1 +
(𝑓1 − 𝑓2)

𝑟𝑚𝑒𝑠ℎ𝑝𝑠𝑜𝑙 − 1
 

EQUATION 2-29 

Due to the nature of the parameter values of interest (i.e. pressure, axial velocity etc) 

it is important to define a relative error that produces meaningful values. For 

example percentage error can be a good indicator of agreement if the values of 

interest are non-zero. However, when the real value of the parameter is zero 

compared to a non zero estimated parameter, the percentage error becomes infinite. 

As such a more reliable formulation of a relative error is used in this Chapter, the 

absolute error between the real and predicted parameter is normalised based on the 

mean amplitude of the real parameter (Equation 2-30). 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
(𝑓𝑖 − 𝑓𝑒𝑥)
1
𝑛∑ 𝑓𝑒𝑥𝑛

𝑗=1

× 100 

EQUATION 2-30 

Where 𝑛 is the number of points in Richardson’s exact solution. 

A solution is said to be converged when the mean value of this relative error is less 

than 2 and the maximum error value in the computed pressure and velocity is less 

than 5. This method and the given criteria are used throughout this Chapter, unless 

otherwise stated, to ensure the accuracy of the computational results.  

 

LAMINAR RESULTS 2.4.4 

The flow rate within the benchmark, at a Reynolds number of 500, is clearly laminar. 

This value relates to the fluid moving through the constriction, which corresponds to 

a Reynolds number of 166 in the inlet and outlet regions. For this reason a steady 

laminar simulation was believed to be the most appropriate for computing the flow 

field. 
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An initial mesh sensitivity study was conducted that employed all four mesh 

densities reported in Table 2.2. The centreline axial velocity and pressures (Figure 

2-7) showed good agreement and the more sensitive parameters of shear strain rate 

and wall shear stress also demonstrated good agreement (Figure 2-8). Application of 

Richardson’s extrapolation method demonstrated that the results for all mesh 

densities had a mean relative error (Equation 2-30) of less than 1.8 and a maximum 

relative error of 4.68 (Table 2.3). These results clearly illustrate that the results of all 

the mesh densities are mesh independent. 

 

FIGURE 2-7 - COMPARISON OF CENTRELINE AXIAL VELOCITY AND PRESSURE COMPUTED ON A NUMBER 

OF MESH DENSITIES. STEADY LAMINAR SIMULATIONS AT RE500 

The numerically computed pressure drop across the benchmark is 280.6 Pa, 

compared with the upper bound of the analytical prediction of 216 Pa. Although 

there is a variation in the predictions the combination of Bernoulli’s and Poiseuille’s 

principals support a reasonable first order approximation of the pressure drop. 
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FIGURE 2-8 - COMPARISON OF CENTRELINE SHEAR STRAIN RATE AND WALL SHEAR STRESS COMPUTED 

ON A NUMBER OF MESH DENSITIES. STEADY LAMINAR SIMULATIONS AT RE500  

 

 

Mesh 

 

Axial Velocity 

Mean  (Max) 

Pressure 

Relative   Error (ε) 

Shear Strain Rate 

 

Wall Shear Stress 

SE-1 0.25 (1.10) 1.16 (4.68) 1.20 1.73 

SE-2 0.15 (0.64) 0.56 (2.30) 0.80 1.41 

SE-3 0.11 (0.47) 0.41 (1.70) 1.17 1.21 

SE-4 0.07 (0.27) 0.19 (0.79) 0.60 0.68 

TABLE 2.3- EVALUATION OF THE MEAN AND MAX (SHOWN IN BRACKETS) RELATIVE ERROR (ε) 

 FOR THE VARYING MESH DENSITIES AGAINST THE RICHARDSON’S PREDICTION.  
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EXPERIMENTAL VS NUMERICAL RESULTS 2.4.5 

Experimental results for the sudden expansion benchmark have been made available 

by the FDA, allowing detailed comparisons to be made between the numerical 

predictions and the experimental measurements. All comparisons have been made 

using the numerical results from mesh SE-1. 

The range of experimental variation is interesting. All data sets demonstrate good 

agreement in terms of the centreline axial velocity, while the variation in the 

centreline pressure is far more significant (Figure 2-9). 

 

FIGURE 2-9 - COMPARISON OF CENTRELINE AXIAL VELOCITY AND PRESSURE,  

EXPERIMENTAL VS. NUMERICAL AT RE500. 

The numerical results show extremely good agreement with the axial velocity, both 

in terms of the centreline velocity and the velocity profiles (Figure 2-9 and Figure 

2-10). The CFD model predicts a slightly greater velocity in the inlet domain, which 

can be seen most clearly in the velocity profile at an axial position of -0.064 m 
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conical constrictor, the sudden expansion and in the outlet domain (z=-0.048 m, 0 m 

and 0.24 m respectively) are indicative of the numerical model’s ability to accurately 

capture the flow field. The experimental data has a greater variation in the region 

where the fluid is developing within the outlet domain, suggesting that during this 

transition to a fully developed laminar profile the flow field is highly sensitive. 

 

FIGURE 2-10 - COMPARISON OF AXIAL VELOCITY PROFILES AT A NUMBER OF LOCATIONS,  

EXPERIMENTAL VS. NUMERICAL AT RE500. 

The mean experimental pressure drop is 305 Pa, with a range of 132 Pa to 413 Pa. 

Both the numerical and analytical approximations lie within this range, with the CFD 

model producing a close approximation to the mean experimental drop. The 

experimental results are in complete agreement that the pressure is fully recovered 

within the benchmark at an axial position of 0.032 m. The CFD simulation predicts 

the pressure is fully recovered at an axial position of 0.2 m, much further 

downstream than the experimental data suggests.  

Finally a comparison between the experimental and numerical jet widths, as a 
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as the width of the profile, at the point where the axial velocity is half the peak. That 

is to say if the peak axial velocity is 1 ms-1 then the jet width is the width of the 

profile where the axial velocity is 0.5 ms-1 (Figure 2-12).   

 

FIGURE 2-11 - COMPARISON OF JET WIDTH, EXPERIMENTAL VS. NUMERICAL AT RE500. 

There is almost no variation in the experimental jet widths (Figure 2-11), with the 

exception of a point within the conical constrictor, where there appears to be a split 

in the experimental data. It would seem that it is not simply an anomalous result 

since three sets are in agreement. However, it may be that these three sets of results 

all come from the same experimental laboratory (the experimental data is 

anonymous) where the geometry may have been subtly different. It was reported that 

the benchmark geometries were within a 1% geometrical tolerance, but with highly 

sensitive flow rates these slight variations may be significant. 
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FIGURE 2-12 - ILLUSTRATION OF JET WIDTH CALCULATION 

SUDDEN EXPANSION RE 3500: 
RESULTS AND DISCUSSION 2.5 

ANALYTICAL SOLUTION 2.5.1 

As in the previous case a gross first approximation of the pressure drop was 

computed using a combination of Poiseuille’s and Bernoulli’s principals. The 

calculated range of the total pressure drop was found to be between 881 Pa and 

5273 Pa, with the pressure drop associated with each geometrical effect shown in 

Figure 2-13. The upper bound of the pressure recovery through the sudden expansion 

is known to be overestimated by Bernoulli, as discussed previously. The relative 

pressure drop associated with the conical constrictor is significantly larger at this 

Reynolds number when compared to the Reynolds number 500 case (Figure 2-4).  
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FIGURE 2-13 - ANALYTICAL PREDICTION OF PRESSURE AT RE3500 

LAMINAR RESULTS 2.5.2 

Although the Reynolds number in the constriction is 3500, suggesting turbulent flow 

(since 3500 > 2000), the Reynolds number in the larger, inlet and outlet, cylinders is 

approximately 1100, suggesting flow within the laminar regime.  

As a first step a steady laminar simulation was conducted, on both SE-1 and SE-2 

computational meshes. The simulations diverged in both cases.  

Divergence of the steady laminar simulation implied that the flow field had 

significant temporal fluctuations. In an attempt to capture these temporal fluctuations 

a transient laminar simulation was conducted. The coarse computational mesh (SE-

1) was used to conduct a simple time-step sensitivity test and it was identified that a 

very small time-step of 1x10-4s was required to ensure time accuracy.  

Employing this time-step, transient laminar simulations were conducted on the three 

coarsest meshes (SE-1, SE-2 and SE-3). Unfortunately, due to the increased 

computational expense of a transient analysis, it was beyond the available computing 

power to conduct such a simulation on the finest mesh (SE-4).  

The transient laminar analyses were run until the results became steady, i.e. not 

changing with time. This was found to occur after approximately 1.5 seconds of 

simulated physical time1. All simulations resolved temporal fluctuations in the flow 

                                                 
1 Mesh SE-1 required 5 days, 10 hours and 49 minutes to simulate 1.5 seconds of physical time. 
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field, downstream of the sudden expansion. Figure 2-14 shows the instantaneous 

axial velocity (SE-2) on a planar cross-section through the length of the domain, at a 

number of instances in time. The flow shows strong fluctuation at the tip of the jet, 

identifying the cause of the divergent steady laminar simulations.  

 

FIGURE 2-14 - INSTANTANEOUS AXIAL VELOCITY ON A PLANAR CROSS-SECTION THROUGH THE LENGTH 

OF THE BENCHMARK AT A NUMBER OF POINTS IN TIME (SE-2). 

Evaluation of the time averaged axial velocity and pressure along the centreline 

illustrates the sensitivity of the transient laminar results to the mesh density (Figure 

2-15). The coarse mesh predicts the onset of strong flow disturbance to occur at an 

axial location of approximately 0.022 m, while SE-2 and SE-3 predict the 

disturbance to occur around 0.05 m and 0.062 m respectively.  

                                                                                                                                          
Mesh SE-2 required 12 days, 18 hours and 9 minutes to simulate 1.5 seconds of physical time. 
Mesh SE-3 required 34 days, 22 hours and 18 minutes to simulate 1.5 seconds of physical time. 
Simulations were solved on a Dell PowerEdge T710 using 4, 2.93 GHz Intel Xeon X5570 processors.  
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FIGURE 2-15 - COMPARISON OF TIME AVERAGED CENTRELINE AXIAL VELOCITY AND PRESSURE 

COMPUTED ON A NUMBER OF MESH DENSITIES. TRANSIENT LAMINAR SIMULATIONS AT RE3500 

Clearly, without the ability to employ finer meshes, which approach the 

requirements for DNS the transient laminar simulation is unable to resolve the spatial 

length scales that contribute to the flow field at this Reynolds number. However, it is 

suggested that given the sensitivity of the flow even resolved DNS simulations may 

show a degree of statistical variation which may be described as a manifestation of 

the butterfly effect as defined in chaos theory. 

STEADY STATE SHEAR STRESS TRANSPORT RESULTS 2.5.3 

To fully close the governing equations of the SST model a turbulent intensity must 

be specified at the inlet and outlet boundaries of the computational domain. In 

ANSYS-CFX (ANSYS, Canonsburg, USA) there are a number of options as to how 

the intensity is defined. Since there was no experimental data available to indicate 

the degree of turbulent intensity within the benchmark, an assumption had to be 

made. The Reynolds number within the inlet cylinder was relatively low (1100) and 

so a low turbulent intensity (1%) was set. At the outlet a zero gradient turbulent 
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intensity condition was applied, which is appropriate for fully developed turbulent 

flows such as one might expect at the downstream boundary.  

As in the Reynolds number 500 case, a mesh sensitivity study was conducted 

including each mesh density reported in Table 2.2. All the computational meshes 

show a good level of agreement in terms of the centreline axial velocity and pressure 

(Figure 2-16). This is also true for the wall shear stress and centreline shear strain 

rate (Figure 2-17), although there is a greater degree of variation in the shear strain 

rate as the fluid mores through the sudden expansion and the fluid becomes 

disturbed.  

 

FIGURE 2-16 - COMPARISON OF CENTRELINE AXIAL VELOCITY AND PRESSURE COMPUTED ON A NUMBER 

OF MESH DENSITIES. SST SIMULATIONS AT RE3500 

The centreline axial velocity has a much faster drop off after the sudden expansion 

than in the Reynolds 500 case (Figure 2-7). This is due to turbulence and the 

associated loss of energy which occurs at the higher flow rates. The turbulence is 

also responsible for the rapid recovery in pressure, which is seen in the higher 

Reynolds number flows (Figure 2-16). A further indication of the onset of turbulence 
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is the peak in the centreline shear strain rate, after the sudden expansion (Figure 

2-17). After this peak the fluid rapidly becomes fully developed (i.e. the centreline 

shear strain rate returns to zero). This is not true in the Reynolds number 500 case, 

where the shear strain rate never truly returns to zero and as such the flow must not 

be fully developed even after such a long outlet domain.   

 

FIGURE 2-17 - COMPARISON OF CENTRELINE SHEAR STRAIN RATE AND WALL SHEAR STRESS COMPUTED 

ON A NUMBER OF MESH DENSITIES. SST SIMULATIONS AT RE3500 

The dependence of the flow field solution on the computational mesh was assessed 

using Richardson’s extrapolation method and the predicted solution for each variable 

of interest has been plotted (Figure 2-16 and Figure 2-17). The mean and maximum 

relative error associated with each computational mesh is summarised in Table 2.4. 
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Mesh 

 

Axial Velocity 

Mean (Max) 

Pressure 

Relative Error  

Shear Strain Rate 

 

Wall Shear Stress 

SE-1 0.17 (2.71) 0.22 (1.48) 0.29 0.11 

SE-2 0.17 (0.77) 0.42 (1.50) 0.17 0.19 

SE-3 0.23 (1.04) 0.60 (2.41) 0.15 0.27 

SE-4 0.09 (0.39) 0.30 (1.21) 0.08 0.14 

TABLE 2.4 - EVALUATION OF THE MEAN AND MAXIMUM RELATIVE ERROR FOR THE VARYING MESH 

DENSITIES AGAINST THE RICHARDSON’S PREDICTION. SST AT RE3500 

All meshes achieved the predefined criteria for mesh convergence. However, the 

coarsest mesh (SE-1) produced a maximum relative error in the centreline shear 

strain rate of 18.7, which is apparent in Figure 2-17. For this reason the comparisons 

between the experimental and numerical results have been made using mesh SE-2. 

LARGE EDDY SIMULATION RESULTS 2.5.4 

As discussed in Section 2.3.3 the Large Eddy Simulation solves the spatially filtered 

time varying Navier Stokes equations (Equation 2-19) employing the WALE SGS 

model. As in the transient laminar simulations the increase in computational expense 

required to conduct a transient analysis meant the finest mesh was not considered 

and after running the two coarse meshes the second finest mesh was also not 

employed since the time averaged plots of centreline velocity and pressure for the 

LES models (Figure 2-18) illustrate a similar trend to the transient laminar 

simulations.  

The simulations predicted the onset of turbulence to occur further and further 

downstream of the sudden expansion as the mesh was refined producing results that 

are entirely dependent on the mesh density. This is perhaps not all that surprising 

since the underlying solution of the LES is a spatially filtered version of the 

equations which are solved in the transient laminar case.  
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FIGURE 2-18 - COMPARISON OF TIME AVERAGED CENTRELINE AXIAL VELOCITY AND PRESSURE 

COMPUTED ON A NUMBER OF MESH DENSITIES. LES SIMULATIONS AT RE3500 

SCALE ADAPTIVE SIMULATION – SST RESULTS 2.5.5 

The SAS-SST model is a transient implementation of the SST model and so only the 

three coarsest meshes were considered. The SAS-SST simulations achieved a time 

averaged solution in approximately half the simulated physical time required for the 

transient laminar or LES simulations and required no additional computational 

effort2. This is believed to be because the SAS-SST model employs the SST (steady 

state turbulence model) to describe the steady components of the flow field. 

The results of the different mesh densities (Figure 2-19 and Figure 2-20) demonstrate 

that unlike the transient laminar and LES models the SAS-SST simulations achieve 

mesh independence with the described meshes.  

                                                 
2 Mesh SE-3 required 17 days, 4 hours and 36 minutes to simulate 0.8 seconds of physical time. 
Solved on a Dell PowerEdge T710 using 4, 2.93 GHz Intel Xeon X5570 processors. 
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FIGURE 2-19 - COMPARISON OF TIME AVERAGED CENTRELINE AXIAL VELOCITY AND PRESSURE 

COMPUTED ON A NUMBER OF MESH DENSITIES. SAS-SST SIMULATIONS AT RE3500 

The mean and maximum relative errors (Table 2.5) illustrate that all but the coarsest 

mesh achieves the pre-defined criteria of convergence for each variable of interest.  
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FIGURE 2-20 - COMPARISON OF TIME AVERAGED CENTRELINE SHEAR STRAIN RATE AND WALL SHEAR 

STRESS COMPUTED ON A NUMBER OF MESH DENSITIES.  

SAS-SST SIMULATIONS AT RE3500 

 

Mesh 

 

Axial Velocity 

       Mean (Max) 

Pressure 

Relative Error 

Shear Strain Rate 

 

Wall Shear Stress 

SE-1 0.62 (8.31) 0.83 (2.69) 0.55  0.33 

SE-2 0.39 (4.76) 0.48 (1.54) 0.31 0.24 

SE-3 0.13 (1.56) 0.19 (0.63) 0.06 0.17 

TABLE 2.5 - EVALUATION OF THE MEAN AND MAXIMUM RELATIVE ERROR FOR THE VARYING MESH 

DENSITIES AGAINST THE RICHARDSON’S PREDICTION. SAS-SST AT RE3500 

Interestingly, in the steady SST model the coarsest mesh (SE-1) underestimated the 

centreline shear strain rate in the turbulent region downstream of the sudden 

expansion (Figure 2-17). This is not the case in the SAS-SST model where all the 

meshes are in good agreement as to the peak shear strain rate in this region (Figure 
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2-20). However, the coarsest SAS-SST simulation predicts the onset of turbulence to 

occur earlier than the finer meshes (Figure 2-19), which relates to a peak relative 

error in the centreline velocity of 8.31 (Table 2.5). In consequence, the mesh SE-2 

has been used in the following comparison with the experimental data. 

EXPERIMENTAL VS NUMERICAL RESULTS 2.5.6 

When comparing the numerical predictions with the experimental results only the 

models with mesh converged solutions have been considered (i.e. SST and SAS-SST 

models).  

The numerical and experimental centreline axial velocities and pressures have been 

compared in Figure 2-21. The spread in the experimental pressure data is far better 

than in the laminar case (Figure 2-9). The numerical models accurately predict the 

axial velocity in the inlet cylinder, the conical constrictor and through the 

constriction and sudden expansion. However, both the SST and SAS-SST models 

predict the onset of turbulence (and associated drop in axial velocity) to occur at a 

distance of approximately 0.02m downstream of the sudden expansion, whereas the 

experimental data shows it to occur at around 0.03m. This is believed to be because 

the numerical models overpredict the degree of turbulence and do not accurately 

capture the complex transitional flows that occur in this system. 

The analytical (assuming no pressure recovery through the sudden expansion) and 

numerical pressure drops differ by approximately 20 percent in the Reynolds number 

3500 case which is comparable to the percentage difference in the Reynolds number 

500 case. The mean experimental pressure drop is 8260 Pa, with a range of 7671 Pa 

to 9568 Pa. Both the numerical and analytical solutions produce smaller pressure 

drops than those observed experimentally, with the numerical prediction varying 

from the mean experimental by approximately 20%. The simulation results also 

predict a region of negative pressure within the constriction and also as the fluid 

moves through the sudden expansion, while the experimental data are in agreement 

that the pressure remains positive through the constriction. The experimental 

pressures are seen to fully recover at an axial location of 0.032 m which is in 

agreement with the numerical results (Figure 2-21). 
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FIGURE 2-21 - COMPARISON OF CENTRELINE AXIAL VELOCITY AND PRESSURE,  

EXPERIMENTAL VS. NUMERICAL AT RE3500. 

The numerical and experimental axial velocity profiles have been compared in 

Figure 2-22, at a number of points along the benchmark. The results confirm that the 

numerical models are in good agreement with the experimental data until the point 

where the turbulent structures are predicted in the outlet cylinder. This is further 

emphasised in Figure 2-23 where the experimental and numerical jet widths (as 

described in Figure 2-12) are compared along the length of the benchmark. 
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FIGURE 2-22 - COMPARISON OF AXIAL VELOCITY PROFILES AT A NUMBER OF LOCATIONS,  

EXPERIMENTAL VS. NUMERICAL AT RE3500. 

 

FIGURE 2-23 - COMPARISON OF JET WIDTH, EXPERIMENTAL VS. NUMERICAL AT RE3500. 

It is also important to note that the SST and SAS-SST models are in near perfect 

agreement (Figure 2-21, Figure 2-22 and Figure 2-23), suggesting that the SST 

model is the most efficient and appropriate method for simulating highly sensitive 

steady flow fields of this type. The SAS-SST does not offer any advantages in this 
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steady flow system but could be of merit in transient flow fields such as those found 

in the aorta, which is a focus of the final half of this thesis.  

RESULTS FROM THE CFD COMMUNITY 

A number of figures published by the FDA [85] relating to this benchmark have been 

included, with permission, to demonstrate how important these validation studies are 

and how user-dependent CFD simulations can be.  

The axial velocity profiles at a number of locations along the benchmark and the 

centreline axial velocity for the Reynolds number 500 case (Figure 2-24) and the 

Reynolds number 3500 case (Figure 2-25) are shown below.  

 

FIGURE 2-24 – AXIAL VELOCITY AT A NUMBER OF PROFILES AND ALONG THE CENTRELINE  

OF THE FDA BENCHMARK RE500. (THE LINES REPRESENT THE CFD RESULTS  

WITH THE LINE COLOUR CORRESPONDING TO THE SELF DEFINED USER  

LEVEL AND THE POINTS DENOTING THE EXPERIMENTAL DATA.) 

The variation in the CFD results are quite shocking, with many alleged “Expert” and 

“Intermediate” users producing flow field predictions which deviate significantly 

from the experimental data and with what one might describe as very unusual and 

highly unlikely velocity profiles.  
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FIGURE 2-25 - AXIAL VELOCITY AT A NUMBER OF PROFILES AND ALONG THE CENTRELINE  

OF THE FDA BENCHMARK RE3500. (THE LINES REPRESENT THE CFD RESULTS  

WITH THE LINE COLOUR CORRESPONDING TO THE SELF DEFINED USER  

LEVEL AND THE POINTS DENOTING THE EXPERIMENTAL DATA.) 

There is a very clear requirement for well validated CFD protocols before these 

techniques are likely to gain routine use in medical device certification.  

CONCLUSIONS 2.7 

An idealised benchmark described by the FDA has been studied at two Reynolds 

numbers. The first corresponds to a laminar flow field (Re500), while the second 

(Re3500) is considered transitional. 

The steady Navier-Stokes and Continuity equations were shown to produce very 

good approximations for the laminar flow field when compared to the experimental 

data. The numerical pressure drop across the benchmark was within the range 

measured in the experimental studies, as was a first order approximation using a 

combination of Poiseuille’s and Bernoulli’s principals.   

Five alternative numerical models were used to solve the more complex transitional 

flow field. The steady laminar simulation diverged due to temporal fluctuations and 

the spatial resolution of the transient laminar and LES models was not sufficient to 

capture the important turbulent length scales, producing mesh-dependent solutions. 

The steady SST and transient SAS-SST models produced the closest approximation 
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of the transitional flow field, although both models over-predicted the degree of 

turbulence and in turn energy losses within the system.   

The importance of experimental validation of both a CFD code and a methodology is 

clearly demonstrated from the wide variation in numerical results both presented in 

this chapter and submitted to the FDA’s CFD benchmark under the “Critical Path 

Initiative”.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 



 

 

Chapter 3  
TUNING STRATEGY FOR THE 
COUPLED WINDKESSEL   
MOTIVATION 3.1 

There is a strong drive within the cardiovascular engineering community to 

personalise computational models to an individual patient, thereby facilitating the 

use of simulations for intervention planning.  

A challenge of this ambitious aim is the application of patient specific boundary 

conditions. The current state of the art is to couple complex 3D models to lower 

order 1D or 0D descriptions of the cardiovascular system, commonly termed multi-

scale modelling. In doing this one incorporates an additional set of unknowns, 

associated with the lower order models. In the example of a 0D Windkessel element 

coupled to a 3D CFD model there are a number of 0D parameters which must be 

tuned to produce the desired response.  

CHAPTER 3 
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The following work documents an analytical strategy for this tuning process, which 

might otherwise be conducted in a trial and error manner. This becomes extremely 

computationally expensive since one must solve the fully coupled system at each 

iteration. 

ANALYTICAL SOLUTIONS 3.2 

To develop a strategy for tuning the parameters of a 0D Windkessel it is first 

important to understand the mathematics describing the isolated 0D system and 

subsequently the coupled system.    

TWO ELEMENT WINDKESSEL 3.2.1 

The two element Windkessel, as discussed in the introduction, comprises a resistive 

and a capacitance element (Figure 3-1).  

 

 

 

FIGURE 3-1 - TWO ELEMENT WINDKESSEL  

The governing equation for this system is: 

𝑄𝑖 = 𝑄𝐶 + 𝑄𝑅 = 𝐶
𝑑𝑃𝑖
𝑑𝑡

+
𝑃𝑖
𝑅

 

EQUATION 3-1 

Where 𝑄 refers to flow, 𝑅 is the value of resistance, 𝐶  is the capacitance and  𝑃𝑖  
refers to the pressure (Figure 3-1). 

THREE ELEMENT WINDKESSEL 3.2.2 

The three element Windkessel has an additional resistor (Figure 3-2), referred to 

from here on in as the input resistance. 
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FIGURE 3-2 - THREE ELEMENT WINDKESSEL 

The governing equation of the three element Windkessel is: 

𝑄𝑖 = 𝑄𝐶 + 𝑄𝑅 = 𝐶
𝑑(𝑃𝑖 − 𝑄𝑖𝑅𝑖)

𝑑𝑡
+
𝑃𝑖 − 𝑄𝑖𝑅𝑖

𝑅
 

EQUATION 3-2 

Where the input resistance is referred to as 𝑅𝑖. 

WINDKESSEL COUPLED TO A TUBE - ALGEBRA 3.2.3 

The latter part of this thesis focuses on the prediction and characterisation of flow in 

the human aorta, which in its simplest form is essentially a straight tube through 

which pressure information is transmitted. In the following work the algebra of the 

two and three element Windkessel are expanded upon to incorporate the description 

of a 1D tube at the upstream terminal of the Windkessel (Figure 3-3). By analytically 

studying this simplified system there is the potential to understand the fundamental 

behaviour and physics.  

 

 

 

 

 

 

FIGURE 3-3 - ILLUSTRATION OF THE 1D TUBE COUPLED TO THE  

TWO AND THREE ELEMENT WINDKESSEL 
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It is necessary to consider initially the 1D domain in isolation. The inlet boundary 

condition (at z=0m) is assumed to be a harmonic flow wave of the form: 

𝑄(0, 𝑡) = 𝑄0𝑐𝑐𝑜𝑠(𝜔𝑡) + 𝑄0𝑠𝑠𝑖𝑛(𝜔𝑡) 

EQUATION 3-3 

The solution throughout the 1D domain can be written in the following form in 

which the forward and backward travelling waves are fully described. 

𝑄(𝑧, 𝑡) = {𝑄1𝑐𝑜𝑠(𝑘𝑧 − 𝜔𝑡) + 𝑄2𝑠𝑖𝑛(𝑘𝑧 − 𝜔𝑡)}

+ {𝑄3𝑐𝑜𝑠(𝑘𝑧 + 𝜔𝑡) + 𝑄4𝑠𝑖𝑛(𝑘𝑧 + 𝜔𝑡)} 

       EQUATION 3-4 

Note: (𝑄1 + 𝑄3) = 𝑄0𝑐 and (−𝑄2 + 𝑄4) = 𝑄0𝑠. 

In Equation 3-4 k is the wave number which for an inviscid fluid, is defined as: 

𝑘 =
𝜔
𝑐

 

EQUATION 3-5 

Where 𝑐 is the wave speed, calculated from the Moens-Kortweg relation, modified 

for plane strain (assuming longitudinal tethering) (Equation 3-6). 

𝑐 = �
𝐸ℎ

2𝜌𝑟0(1 − 𝜐2)
 

EQUATION 3-6 

Where ℎ is the thickness of the vessel wall, 𝐸 is the Young’s Modulus, 𝜌 is the fluid 

density, 𝑟0 is the initial radius and 𝜐 is the Poisson’s ratio of the vessel wall. 

At the outlet of the 1D domain (z=L), Equation 3-4 expands to: 
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𝑄(𝐿, 𝑡) = {(𝑄1 + 𝑄3)𝑐𝑜𝑠(𝑘𝐿) + (𝑄2 + 𝑄4)𝑠𝑖𝑛(𝑘𝐿)}𝑐𝑜𝑠(𝜔𝑡)

+ {(𝑄4 − 𝑄2)𝑐𝑜𝑠(𝑘𝐿) + (𝑄1 − 𝑄3)𝑠𝑖𝑛(𝑘𝐿)}𝑠𝑖𝑛(𝜔𝑡) 

EQUATION 3-7 

In the same way, the outlet pressure (z=L) can be described by:  

𝑃(𝐿, 𝑡) = {(𝑃1 + 𝑃3)𝑐𝑜𝑠(𝑘𝐿) + (𝑃2 + 𝑃4)𝑠𝑖𝑛(𝑘𝐿)}𝑐𝑜𝑠(𝜔𝑡)

+ {(𝑃4 − 𝑃2)𝑐𝑜𝑠(𝑘𝐿) + (𝑃1 − 𝑃3)𝑠𝑖𝑛(𝑘𝐿)}𝑠𝑖𝑛(𝜔𝑡) 

EQUATION 3-8 

Now since: 

𝑃1
𝑄1

=
𝑃2
𝑄2

= −
𝑃3
𝑄3

= −
𝑃4
𝑄4

= �𝐿
′

𝐶′
 

EQUATION 3-9 

Where 𝐿′ and 𝐶′ represent the inertance and capacitance of the 1D domain, per unit 

length. 

The pressure at the outlet can be written in terms of the flow components: 

𝑃(𝐿, 𝑡) = �𝐿
′

𝐶′
��(𝑄1 − 𝑄3)𝑐𝑜𝑠(𝑘𝐿) + (𝑄2 − 𝑄4)𝑠𝑖𝑛(𝑘𝐿)�𝑐𝑜𝑠(𝜔𝑡)

+  �(−𝑄2 − 𝑄4)𝑐𝑜𝑠(𝑘𝐿) + (𝑄1 + 𝑄3)𝑠𝑖𝑛(𝑘𝐿)�𝑠𝑖𝑛(𝜔𝑡)� 

  EQUATION 3-10 

Consider now the inclusion of a two element Windkessel at the outlet of the 1D 

domain (Figure 3-3). If the boundary conditions are defined as: 

𝑄(𝐿, 𝑡) = 𝑄𝑖 = 𝑄𝑖𝑐𝑐𝑜𝑠(𝜔𝑡) + 𝑄𝑖𝑠𝑠𝑖𝑛(𝜔𝑡)  ∶   𝑃(𝐿, 𝑡) = 𝑃𝑖 = 𝑃𝑖𝑐𝑐𝑜𝑠(𝜔𝑡) + 𝑃𝑖𝑠𝑠𝑖𝑛(𝜔𝑡) 

Then from the governing equation (Equation 3-1) of the two element Windkessel it 

can be shown that under these boundary conditions the differential equation is 

satisfied if: 
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𝑃𝑖𝑐 =
𝑅

1 + 𝑅2𝐶2𝜔2 (𝑄𝑖𝑐 − 𝑅𝐶𝜔𝑄𝑖𝑠)   ∶    𝑃𝑖𝑠 =
𝑅

1 + 𝑅2𝐶2𝜔2 (𝑅𝐶𝜔𝑄𝑖𝑐 + 𝑄𝑖𝑠) 

Substituting in the equations for flow and pressure, in terms of the flow components, 

at the outlet of the 1D domain (Equation 3-7 and Equation 3-10) and collecting like 

terms, one arrives at the following set of equations: 

��
𝐿′

𝐶′
𝑐𝑜𝑠(𝑘𝐿) +

𝑅
1 + 𝑅2𝐶2𝜔2 �−𝑐𝑜𝑠(𝑘𝐿) + 𝑅𝐶𝜔𝑠𝑖𝑛(𝑘𝐿)��𝑄1

+ ��
𝐿′

𝐶′
𝑠𝑖𝑛(𝑘𝐿) +

𝑅
1 + 𝑅2𝐶2𝜔2 �−𝑠𝑖𝑛(𝑘𝐿)− 𝑅𝐶𝜔𝑐𝑜𝑠(𝑘𝐿)��𝑄2

+ �−�
𝐿′

𝐶′
𝑐𝑜𝑠(𝑘𝐿) +

𝑅
1 + 𝑅2𝐶2𝜔2 �−𝑐𝑜𝑠(𝑘𝐿)− 𝑅𝐶𝜔𝑠𝑖𝑛(𝑘𝐿)��𝑄3

+ �−�
𝐿′

𝐶′
𝑠𝑖𝑛(𝑘𝐿) +

𝑅
1 + 𝑅2𝐶2𝜔2 �−𝑠𝑖𝑛(𝑘𝐿) + 𝑅𝐶𝜔𝑐𝑜𝑠(𝑘𝐿)��𝑄4 = 0 

��
𝐿′

𝐶′
𝑠𝑖𝑛(𝑘𝐿) +

𝑅
1 + 𝑅2𝐶2𝜔2 �−𝑅𝐶𝜔𝑐𝑜𝑠(𝑘𝐿)− 𝑠𝑖𝑛(𝑘𝐿)��𝑄1

+ �−�
𝐿′

𝐶′
𝑐𝑜𝑠(𝑘𝐿) +

𝑅
1 + 𝑅2𝐶2𝜔2 �−𝑅𝐶𝜔𝑠𝑖𝑛(𝑘𝐿) + 𝑐𝑜𝑠(𝑘𝐿)��𝑄2

+ ��
𝐿′

𝐶′
𝑠𝑖𝑛(𝑘𝐿) +

𝑅
1 + 𝑅2𝐶2𝜔2 �−𝑅𝐶𝜔𝑐𝑜𝑠(𝑘𝐿) + 𝑠𝑖𝑛(𝑘𝐿)��𝑄3

+ �−�
𝐿′

𝐶′
𝑐𝑜𝑠(𝑘𝐿) +

𝑅
1 + 𝑅2𝐶2𝜔2 �−𝑅𝐶𝜔𝑠𝑖𝑛(𝑘𝐿)− 𝑐𝑜𝑠(𝑘𝐿)��𝑄4 = 0 

EQUATIONS 3-11 

These, when combined with the conditions (𝑄1 + 𝑄3) = 𝑄0𝑐  and (−𝑄2 + 𝑄4) =

𝑄0𝑠 , produce a solution for all components of the flow waveform. Which, when 

incorporated into Equation 3-4 and the equivalent description of pressure, fully 
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describes the forward and backward travelling pressure and flow waveforms within 

the coupled 1D-0D domain. 

This same derivation process can be applied to the three element Windkessel with 

the resulting set of equations taking the form: 

���
𝐿′

𝐶′
− Ri� 𝑐𝑜𝑠(𝑘𝐿) +

𝑅
1 + 𝑅2𝐶2𝜔2 �−𝑐𝑜𝑠(𝑘𝐿) + 𝑅𝐶𝜔𝑠𝑖𝑛(𝑘𝐿)��𝑄1

+ ���
𝐿′

𝐶′
− Ri� 𝑠𝑖𝑛(𝑘𝐿) +

𝑅
1 + 𝑅2𝐶2𝜔2 �−𝑠𝑖𝑛(𝑘𝐿) − 𝑅𝐶𝜔𝑐𝑜𝑠(𝑘𝐿)��𝑄2

+ ��−�
𝐿′

𝐶′
− Ri� 𝑐𝑜𝑠(𝑘𝐿) +

𝑅
1 + 𝑅2𝐶2𝜔2 �−𝑐𝑜𝑠(𝑘𝐿) − 𝑅𝐶𝜔𝑠𝑖𝑛(𝑘𝐿)��𝑄3

+ ��−�
𝐿′

𝐶′
− Ri� 𝑠𝑖𝑛(𝑘𝐿) +

𝑅
1 + 𝑅2𝐶2𝜔2 �−𝑠𝑖𝑛(𝑘𝐿) + 𝑅𝐶𝜔𝑐𝑜𝑠(𝑘𝐿)��𝑄4 = 0 

 

���
𝐿′

𝐶′
− Ri� 𝑠𝑖𝑛(𝑘𝐿) +

𝑅
1 + 𝑅2𝐶2𝜔2 �−𝑅𝐶𝜔𝑐𝑜𝑠(𝑘𝐿) − 𝑠𝑖𝑛(𝑘𝐿)��𝑄1

+ ��−�
𝐿′

𝐶′
− Ri� 𝑐𝑜𝑠(𝑘𝐿) +

𝑅
1 + 𝑅2𝐶2𝜔2 �−𝑅𝐶𝜔𝑠𝑖𝑛(𝑘𝐿) + 𝑐𝑜𝑠(𝑘𝐿)��𝑄2

+ ���
𝐿′

𝐶′
− Ri� 𝑠𝑖𝑛(𝑘𝐿) +

𝑅
1 + 𝑅2𝐶2𝜔2 �−𝑅𝐶𝜔𝑐𝑜𝑠(𝑘𝐿) + 𝑠𝑖𝑛(𝑘𝐿)��𝑄3

+ ��−�
𝐿′

𝐶′
− Ri� 𝑐𝑜𝑠(𝑘𝐿) +

𝑅
1 + 𝑅2𝐶2𝜔2 �−𝑅𝐶𝜔𝑠𝑖𝑛(𝑘𝐿) − 𝑐𝑜𝑠(𝑘𝐿)��𝑄4 = 0 

EQUATIONS 3-12 
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NUMERICAL COUPLING STRATEGY 3.3 

Two coupling strategies have been implemented in the commercially available CFD 

software package ANSYS-CFX (ANSYS Inc, Canonsburg, USA), which is used 

throughout this thesis to solve the governing equations of the fluid. The 3D domain 

is coupled to a two or three element Windkessel model via a FORTRAN user 

subroutine (Figure 3-4). In both approaches the 3D domain passes flow (Q3D) to the 

0D domain and receives a value of pressure (P0D) in return. The governing equations 

of the 0D model are solved in an implicit manner using a first order backward Euler 

algorithm.  

 

 

 

FIGURE 3-4 - ILLUSTRATION OF THE 0D-3D COUPLING,  

QI IS THE INITIAL GUESS FROM ANSYS-CFX (ANSYS INC, CANONSBURG, USA) 

The first coupling technique, from here on referred to as the explicit coupling 

approach, passes the 3D flow to the FORTRAN routine at the end of a time-step, at 

which point the governing equations of the 0D model are solved and the computed 

pressure is applied to the 3D domain for the next time-step calculation. 

The second technique, from here on termed the implicit coupling approach, passes 

the 3D flow to the FORTRAN routine at the end of every iteration of the 3D solve 

(i.e. multiple times within a time-step). At each point the governing equations of the 

0D model are solved and the calculated pressure is applied to the 3D domain.  

In the explicit coupling approach the 3D boundary condition is essentially a time-

step behind and so the size of the time-step becomes a limiting factor (if it is too 

large the resulting solution of the coupled system may be incorrect or unstable). 

However, an advantage to this approach is that it is simple to implement. In the 

implicit coupling approach there is no such dependence on the time-step which 

means in general the solution is more stable. A disadvantage is that since the 

FORTRAN subroutine: 

 0D Model  3D 

Q3D 

P0D 

Qi 
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boundary conditions of the 3D domain are varying within each time-step the solution 

may require additional iteration loops to reach a converged solution. 

Unless otherwise stated the explicit coupling approach is used throughout this thesis. 

ANALYTICAL VS. NUMERICAL COUPLING 3.4 

A comparison, between the derived analytical solutions (Equations 3-11 and 

Equations 3-12) and a 3D CFD model coupled to a 0D Windkessel termination, is 

conducted to check the validity of the analytical derivations and that of the numerical 

coupling strategy.  

MODEL PARAMETERS 3.4.1 

This thesis focuses on simulating aortic flow fields. As such the comparison employs 

an idealised vessel with dimensions and material properties similar to those of a 

healthy human aorta. 

The idealised vessel has a length of 200 mm, a radius of 10 mm and a wall thickness 

of 0.8 mm (Figure 3-5). The wall is assumed to be linear elastic, with a Young’s 

Modulus of 1x106 Pa, a density of 1000 kgm-3 and a Poisson’s ratio of 0.49.  

 

 

 

 

FIGURE 3-5 – ILLUSTRATION OF 3D/1D VESSEL GEOMETRY  

The parameter values of the 2 and 3 element Windkessel models are documented in 

Table 3.1. These parameters are chosen to produce a comparable pressure magnitude 

and range to the clinical measurements, which are discussed presently. A single 

frequency (1 Hz), sinusoidal, flow waveform is applied at the inlet of the vessel with 

an amplitude of 5x10-4 m3s-1.  

10 mm 

0.8 mm 

200 mm 
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 R (kgm-4s-1) C (m4s2kg-1) Ri (kgm-4s-1) 

Parameter 

Value 
1.45x108 1.45x10-8 1.1x107 

TABLE 3.1 – WINDKESSEL PARAMETER VALUES  

COMPRESSIBLE FLUID METHODOLOGY 3.4.2 

To allow comparisons to be made within a reasonable time scale the wave 

propagation effects, in the CFD model, are approximated using a compressible fluid. 

This methodology assumes that the compressibility of the fluid is analogous to the 

compliance of the vessel wall, thereby allowing investigation of wave propagation 

effects without the computational expense of a full FSI simulation [86, 87]. The 

accuracy of this assumption is the focus of Chapter 4.    

The compressible fluid model employs the ideal gas law (Equation 3-13) to describe 

the density variation in the fluid. The wave speed can be defined as a function of 

pressure and density (Equation 3-14).  

𝑃 =
𝑅𝑐𝑇𝜌
𝑀

 

EQUATION 3-13 

Where 𝑅𝑐 is the universal gas constant, T is the temperature in Kelvin and M is the 

molar mass of the fluid. 

𝑐2 = 𝛾
𝑃
𝜌

 

EQUATION 3-14 

Combining Equation 3-13 and Equation 3-14 with the assumption of an isothermal 

process (𝛾 = 1) a relationship between pressure and density (Equation 3-15) is 

reached, such that the values of temperature and molar mass can be altered to 

produce a wave speed and density analogous to the system of interest. 
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𝑃 =
𝑅𝑐𝑇𝜌
𝑀

= 𝑐2𝜌 

EQUATION 3-15 

In the idealised aorta the temperature is set to a constant value of 310 K. The wave 

speed is calculated, using the Moens-Kortweg equation (Equation 3-6), to be 

7.08 ms-1 and the corresponding molar mass is 51.71 kg mol-1. 

A time-step of 5 ms is employed and each time-step is assumed to be numerically 

converged once the RMS residuals are below a value of 1x10-5. This criterion was 

shown in Chapter 2 to result in numerically converged solutions. 

The pressure within the 3D domain is initialised with the inlet pressure value from 

the analytical solution at time zero. This is done in an attempt to minimise the 

initialisation effects and reduce the computational time required to reach a periodic 

solution.  

TWO ELEMENT WINDKESSEL RESULTS 4.4.3 

Numerical analysis of the 3D vessel, coupled to the two element Windkessel, 

suffered from oscillations (Figure 3-6 - middle) that reduced in magnitude as the 

solution progressed. The underlying waveform is at the forcing frequency and is 

comparable, in its magnitude and form, to that of the analytical solution (Figure 3-6 - 

top). To ensure that the oscillations are a real phenomenon of the system, rather than 

a numerical oscillation caused by the explicit coupling approach, the implicit 

coupling scheme was developed and the system of interest is simulated (Figure 3-6 - 

bottom). The implicit coupling scheme, as in the explicit scheme, experienced high 

frequency oscillations which are damped over time. The use of an implicit coupling 

scheme increases the damping of the oscillations and achieves comparable results to 

the analytical solution after a shorter time period.  
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FIGURE 3-6 – PRESSURE AGAINST TIME AT A NUMBER OF AXIAL POSITIONS, 

ANALYTICAL AND NUMERICAL TUBE COUPLED TO A TWO ELEMENT WINDKESSEL USING AN EXPLICIT 

AND AN IMPLICIT COUPLING APPROACH 

The oscillations are believed to be the result of the initial conditions, i.e. the 

assumption that the fluid is initially at rest and that the pressure is constant along the 

length of the domain. The reducing amplitude of the oscillations (with time) is due to 

the damping effect of the fluid viscosity. A time varying fluid viscosity, described by 

the exponential function in Equation 3-16 (and shown graphically in Figure 3-7), is 

applied in an attempt to reduce the magnitude of the initial oscillations.  

𝜇 = 0.35e(−5t) + 0.0035 

EQUATION 3-16 
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The variable viscosity is applied to the explicitly coupled system, effectively 

damping the oscillations and producing smooth sinusoidal pressure variations in time 

(Figure 3-7). As the viscosity is reduced the oscillations do not return, further 

demonstrating that it is indeed the initial conditions that cause the oscillations.  

 

FIGURE 3-7 – VARIABLE VISCOSITY APPLIED TO THE COUPLED NUMERICAL SIMULATION AND THE 

RESULTING PRESSURE AGAINST TIME AT A NUMBER OF AXIAL POSITIONS. 

The analytical and damped numerical solutions for the pressure variation, both along 

the vessel and in time, show good agreement (Figure 3-8). The peak variation occurs 

at the inlet with a relative error, normalised by the peak pressure, of 3.56. The use of 

this relative error is more appropriate than a percentage difference measure, for this 

case, since the pressure wave moves through the x-axis. The small differences seen 

in Figure 3-8 are attributed to the assumptions inherent in the analytical solution. The 

analytical solution assumes the fluid is inviscid and although the given system is 

predominantly governed by the inertial effects (with a Womersley number of 13.8) 

this approximation will introduce a degree of variation between the numerical and 

analytical solutions. However, the results clearly demonstrate not only the validity of 

the compressible fluid analogy, but also the coupling strategy adopted. 
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FIGURE 3-8 - ANALYTICAL VS. NUMERICAL COUPLING, TWO ELEMENT WINDKESSEL 

Aortic flow and pressure waveforms are composed of multiple frequency 

components. The two element Windkessel is known to behave poorly at high 

frequencies, which may also introduce oscillations into the system. The use of a 

variable viscosity will damp the effects associated with the initial conditions but is 

not expected to remove oscillations due to high frequency signals.    

This hypothesis is tested, with the sinusoidal flow waveform replaced by a clinical 

waveform extracted from 2D MRI flow data (Figure 3-9). The system is initially 

damped using the variable viscosity strategy to minimise the oscillations due to the 

initial conditions (Figure 3-7). The high frequency components give rise to 

significant oscillations in the system (Figure 3-9). This is perhaps not so surprising if 

we consider the frequency response of the two element Windkessel. At high 

frequencies the impedance modulus of the Windkessel approaches zero causing a 

significant mismatch in the impedance of the 3D/1D domain and the 0D domain 

[88]. As a quick check the analytical solution is modified, under the assumption that 

the flow and pressure waveforms can be expressed as a sum of their harmonic 

components, to consider a true cardiac waveform. The analytical solution also 

contained oscillations, at the same frequency as the numerical analysis (Figure 3-9). 

This approach is used to validate further the 3D solutions and coupling approach in 

Chapter 4. These findings identify a serious limitation in the use of two element 

Windkessel models as a downstream condition for CFD simulations: the interface 
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between the tube and the 0D termination produces strong pressure reflections in the 

domain. 

 

FIGURE 3-9 – PRESSURE AGAINST TIME AT A NUMBER OF AXIAL POSITIONS IN A 

TUBE COUPLED TO A TWO ELEMENT WINDKESSEL; NUMERICAL  

PREDICTION (MIDDLE), ANALYTICAL SOLUTION (BOTTOM)   

AND REAL CLINICAL FLOW WAVEFORM (TOP) 

THREE ELEMENT WINDKESSEL RESULTS 3.4.4  

Analytical and numerical analyses of the 1D/3D vessel, coupled to a three element 

Windkessel model, demonstrate good agreement (Figure 3-10). The inclusion of the 

input resistance has a damping effect on the system and prevents the oscillations, 

apparent in the numerical model with a two element Windkessel termination (Figure 
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3-6), due to the initial conditions. For completeness and to demonstrate that the 

additional resistance is able to stabilise the system, not only for a low frequency 

sinusoidal waveform, but also when the inlet signal contains higher frequencies, a 

numerical simulation is conducted with the same clinical flow wave shown in Figure 

3-9. The resulting system has no unrealistic oscillations (Figure 3-10). 

As with the two element Windkessel there is a small difference between the 

analytically and numerically calculated pressure plots (Figure 3-11). The greatest 

variation occurs at the outlet with a relative error, normalised to the maximum local 

pressure, of 3.55%. The source of the disparity has been discussed previously in 

relation to the two element model, these arguments also hold in the current 

comparison. 
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FIGURE 3-10 - PRESSURE AGAINST TIME AT A NUMBER OF AXIAL POSITIONS, 

ANALYTICAL AND NUMERICAL TUBE COUPLED TO A THREE ELEMENT WINDKESSEL AND THE 

NUMERICAL TUBE WITH A CLINICAL FLOW WAVEFORM APPLIED. 

The predicted pressure waveforms for the low frequency inlet signal are similar in 

both the two and three element Windkessel terminations (Figure 3-8 and Figure 

3-11). The inclusion of an input resistance produces a phase shift, with the peak inlet 

pressure occurring 0.14 seconds earlier than in the two element Windkessel. There is 

also an increase in the magnitude of the pressure wave. The two element Windkessel 

results in a peak inlet pressure of 22.21 mmHg compared to a peak value of 

46.15 mmHg in the three element model. These effects are of course governed by the 

relative ratio of 𝑅𝑖/𝑅 and the parameters can be changed to elicit a desired response. 
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FIGURE 3-11 – ANALYTICAL VS. NUMERICAL COUPLING, THREE ELEMENT WINDKESSEL 

CONCLUSIONS 3.4.5 

The analytical solutions have been derived for a 1D vessel coupled to a two and 

three element Windkessel model. A methodology, that employs a compressible fluid 

to approximate the compliance of the vessel wall, has been presented and the results 

compared to the analytical solution. The results demonstrate that, at frequencies 

around 1Hz, the two element termination suffers from initialisation effects that result 

in oscillations which are damped with time by the viscosity of the fluid. Assuming 

the inlet flow waveform is smooth and continuous these oscillations can be removed 

by using a variable viscosity which prevents their formation and the system remains 

stable as the viscosity is subsequently reduced. However, if the inlet flow waveform 

contains high frequency components, such as in a real cardiac waveform, the system 

suffers from oscillations, caused by wave reflections from the 1D/3D-0D interface. 

The inclusion of an input resistance (the three element Windkessel) produces similar 

pressure responses to the two element Windkessel, at low frequencies, but without 

the need to artificially damp oscillations associated with the initialisation of the 

system. More importantly the three element Windkessel does not suffer from 

oscillations (induced by wave reflections) when the input signal contains high 

frequency components. 

As a result of these findings the work which follows focuses on the three element 

Windkessel as the downstream condition for the numerical simulations.  
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FURTHER CHARACTERISATION OF THE THREE 
ELEMENT WINDKESSEL 3.5 

ANALYTICAL DERIVATION 3.5.1 

It is possible to further characterise the dynamics of the three element Windkessel 

model in terms of the dimensionless parameters; 𝑅𝑖
𝑅

, 𝐶𝑅𝜔 and 1
𝑅
. For the following 

derivation it is convenient to take the interface of the 1D and 0D domain as the 

reference position (Figure 3-12). 

 

 

 

FIGURE 3-12 - COUPLED THREE ELEMENT WINDKESSEL,  

REFERENCE POINT (Z=0) AT THE INTERFACE  

Substituting 𝑃𝑖 = 𝑃𝑖𝑐𝑐𝑜𝑠(𝜔𝑡) + 𝑃𝑖𝑠𝑠𝑖𝑛(𝜔𝑡)  and subsequently 𝑄𝑖 = 𝑄𝑖𝑐𝑐𝑜𝑠(𝜔𝑡) +

𝑄𝑖𝑠𝑠𝑖𝑛(𝜔𝑡), into the governing equation of the three element Windkessel (Equation 

3-2) results in the following relations (Equation 3-17 and Equation 3-18 

respectively): 

𝐶𝑅𝑖
𝑑𝑄𝑖
𝑑𝑡

+ �𝑅𝑖
𝑅

+ 1�𝑄𝑖 = �𝑃𝑖𝑠𝐶𝜔 + 𝑃𝑖𝑐
𝑅
� 𝑐𝑜𝑠(𝜔𝑡) + �−𝑃𝑖𝑐𝐶𝜔 + 𝑃𝑖𝑠

𝑅
� 𝑠𝑖𝑛(𝜔𝑡)  

EQUATION 3-17 

�𝐶𝑅𝑖𝜔𝑄𝑖𝑠 + �
𝑅𝑖
𝑅

+ 1�𝑄𝑖𝑐� 𝑐𝑜𝑠(𝜔𝑡) + �−𝐶𝑅𝑖𝜔𝑄𝑖𝑐 + �
𝑅𝑖
𝑅

+ 1�𝑄𝑖𝑠� 𝑠𝑖𝑛(𝜔𝑡)

= �𝑃𝑖𝑠𝐶𝜔 +
𝑃𝑖𝑐
𝑅
� 𝑐𝑜𝑠(𝜔𝑡) + �−𝑃𝑖𝑐𝐶𝜔 +

𝑃𝑖𝑠
𝑅
� 𝑠𝑖𝑛(𝜔𝑡) 

EQUATION 3-18 

Equating coefficients produces a set of equations (Equations 3-19) for the 

Windkessel: 

Pi 

 
L z 

Qi 

QC 

QR R 

C 

Ri 
P 
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�𝑅𝑖
𝑅

+ 1�𝑄𝑖𝑐 + 𝐶𝑅𝑖𝜔𝑄𝑖𝑠 = 𝑃𝑖𝑐
𝑅

+ 𝑃𝑖𝑠𝐶𝜔   :   −𝐶𝑅𝑖𝜔𝑄𝑖𝑐 + �𝑅𝑖
𝑅

+ 1�𝑄𝑖𝑠 = −𝑃𝑖𝑐𝐶𝜔 + 𝑃𝑖𝑠
𝑅

 

EQUATIONS 3-19 

Solving Equations 3-19 for flow, in terms of the predefined parameters of interest 

gives: 

𝑄1 + 𝑄3 = 𝑄𝑖𝑐 =  
��1
𝑅 �

𝑅𝑖
𝑅 + 1� + 1

𝑅
𝑅𝑖
𝑅 𝐶2𝑅2𝜔2� ∙ 𝑃𝑖𝑐 + 1

𝑅 𝐶𝑅𝜔 ∙ 𝑃𝑖𝑠�

��𝑅𝑖𝑅 + 1�
2

+ �𝑅𝑖𝑅 �
2
𝐶2𝑅2𝜔2�

 

−𝑄2 + 𝑄4 = 𝑄𝑖𝑠 =
�− 1

𝑅 𝐶𝑅𝜔 ∙ 𝑃𝑖𝑐 + �1
𝑅 �

𝑅𝑖
𝑅 + 1� + 1

𝑅
𝑅𝑖
𝑅 𝐶2𝑅2𝜔2� ∙ 𝑃𝑖𝑠�

��𝑅𝑖𝑅 + 1�
2

+ �𝑅𝑖𝑅 �
2
𝐶2𝑅2𝜔2�

 

EQUATIONS 3-20 

And then for pressure: 

𝑃1 + 𝑃3 = 𝑃𝑖𝑐 =
���𝑅𝑖𝑅 + 1� + 𝐶2𝑅2𝜔2 𝑅𝑖

𝑅 � ∙ 𝑄𝑖𝑐 + �𝐶𝑅𝜔𝑅𝑖𝑅 − 𝐶𝑅𝜔 �𝑅𝑖𝑅 + 1�� ∙ 𝑄𝑖𝑠�

�1𝑅 + 𝐶2𝑅2𝜔2 1
𝑅�

 

−𝑃2 + 𝑃4 = 𝑃𝑖𝑠 =
��𝐶𝑅𝜔 ∙ �𝑅𝑖𝑅 + 1� − 𝐶𝑅𝜔 ∙ 𝑅𝑖𝑅 � ∙ 𝑄𝑖𝑐 + ��𝑅𝑖𝑅 + 1� + 𝐶2𝑅2𝜔2 ∙ 𝑅𝑖𝑅 � ∙ 𝑄𝑖𝑠�

�1𝑅 + 𝐶2𝑅2𝜔2 1
𝑅�

 

EQUATIONS 3-21 

The amplitudes of the flow and pressure waveforms are then: 

|𝑄𝑖| =
1

��𝑅𝑖𝑅 + 1�
2

+ �𝑅𝑖𝑅 �
2
𝐶2𝑅2𝜔2�

∙ �
��

1
𝑅
�
𝑅𝑖
𝑅

+ 1� +
1
𝑅
𝑅𝑖
𝑅
𝐶2𝑅2𝜔2� ∙ 𝑃𝑖𝑐 +

1
𝑅
𝐶𝑅𝜔 ∙ 𝑃𝑖𝑠�

2

+

�−
1
𝑅
𝐶𝑅𝜔 ∙ 𝑃𝑖𝑐 + �

1
𝑅
�
𝑅𝑖
𝑅

+ 1� +
1
𝑅
𝑅𝑖
𝑅
𝐶2𝑅2𝜔2� ∙ 𝑃𝑖𝑠�

2 
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and 

|𝑃𝑖|

=
1

�1𝑅 + 𝐶2𝑅2𝜔2 ∙ 1
𝑅�

∙

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓
���

𝑅𝑖
𝑅 + 1� + 𝐶2𝑅2𝜔2 𝑅𝑖

𝑅 � ∙ 𝑄𝑖𝑐 + �𝐶𝑅𝜔
𝑅𝑖
𝑅 − 𝐶𝑅𝜔 �

𝑅𝑖
𝑅 + 1�� ∙ 𝑄𝑖𝑠�

2

+

��𝐶𝑅𝜔 �
𝑅𝑖
𝑅 + 1� − 𝐶𝑅𝜔

𝑅𝑖
𝑅 � ∙ 𝑄𝑖𝑐 + ��

𝑅𝑖
𝑅 + 1� + 𝐶2𝑅2𝜔2 𝑅𝑖

𝑅 � ∙ 𝑄𝑖𝑠�
2  

EQUATIONS 3-22 

The amplitude ratio of flow and pressure (also known as the admittance of the three 

element Windkessel) at the 1D-0D interface can then be calculated, in terms of the 

predefined parameters, from Equation.3-23. 

|𝑄𝑖|
|𝑃𝑖|

=
1
𝑅
∙
���𝑅𝑖𝑅 + 1� + 𝑅𝑖

𝑅 𝐶2𝑅2𝜔2�
2

+ 𝐶2𝑅2𝜔2

��𝑅𝑖𝑅 + 1�
2

+ �𝑅𝑖𝑅 �
2
𝐶2𝑅2𝜔2�

 

EQUATION.3-23 

The inverse of the admittance provides a solution for the impedance of the three 

element Windkessel.  

Having described the pressure and flow amplitudes it is now possible to calculate the 

relative phase (𝜙𝑄𝑃) of the waves. If we consider a purely cosine wave, such that: 

𝑃𝑖 = |𝑃𝑖|COS (𝜔𝑡) 

EQUATION 3-24 

The relative phase of the travelling waves can be described by:  

𝑄𝑖 = |𝑄𝑖| cos�𝜔𝑡 − 𝜙𝑄𝑃� = |𝑄𝑖|𝑐𝑜𝑠�𝜙𝑄𝑃�𝑐𝑜𝑠(𝜔𝑡) + |𝑄𝑖|𝑠𝑖𝑛�𝜙𝑄𝑃�𝑠𝑖𝑛(𝜔𝑡) 

EQUATION 3-25 
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In terms of the predefined parameters: 

|𝑄𝑖|𝑐𝑜𝑠�𝜙𝑄𝑃� =
��1
𝑅 �

𝑅𝑖
𝑅 + 1� + 1

𝑅
𝑅𝑖
𝑅 𝐶2𝑅2𝜔2� ∙ 𝑃𝑖𝑐�

��𝑅𝑖𝑅 + 1�
2

+ �𝑅𝑖𝑅 �
2
𝐶2𝑅2𝜔2�

 

|𝑄𝑖|𝑠𝑖𝑛�𝜙𝑄𝑃� =
�− 1

𝑅 𝐶𝑅𝜔 ∙ 𝑃𝑖𝑐�

��𝑅𝑖𝑅 + 1�
2

+ �𝑅𝑖𝑅 �
2
𝐶2𝑅2𝜔2�

 

EQUATION 3-26 

Then the relative phase is simply: 

𝜙𝑄𝑃 = 𝑡𝑎𝑛−1 �
−𝐶𝑅𝜔

�𝑅𝑖𝑅 + 1� + 𝑅𝑖
𝑅 𝐶2𝑅2𝜔2

� 

EQUATION 3-27 

The relative phase shift between Qi and Pi is entirely determined by the value of the 

dimensionless parameters 𝑅𝑖
𝑅

 and 𝐶𝑅𝜔. However, the magnitude ratio of the flow and 

pressure is also affected by the 1
𝑅
 term. The effect of the 1

𝑅
 term is purely a scaling 

factor on the response of the system (Equation.3-23). 

ANALYTICAL RESULTS 3.5.2 

Matlab (MathWorks, UK) is used to evaluate the influence of the dimensionless 

parameters �𝑅𝑖
𝑅

 and 𝐶𝑅𝜔� on the relative magnitude ratio and phase shift of the flow 

and pressure waveforms. The results are plotted as a 2D surface, representing the 

solution space of the admittance (Figure 3-13) and the relative phase shift (Figure 

3-14).   

The effect of increasing 𝑅𝑖
𝑅

 is to reduce the magnitude ratio at all frequencies, moving 

asymptotically towards a value close to zero (Figure 3-13). In contrast, increasing the 

value of this parameter results in a smaller, less negative, phase shift between the 
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flow and pressure waves (Figure 3-14).  For values of  𝑅𝑖
𝑅

 greater than 0.1 the effect 

on the magnitude ratio and phase difference is minimal (Figure 3-13 and Figure 

3-14).  

There is a peak in the magnitude ratio of flow and pressure as 𝑅𝑖
𝑅

 becomes small and 

CRω becomes large (Figure 3-13). However, moving away from small values of 𝑅𝑖
𝑅

 it 

can be seen that there is only a small decline in the magnitude ratio as the value of 

CRω reduces.  

There is a significant trough in the solution space of the relative phase shift, running 

along all values of 𝑅𝑖
𝑅

 when CRω is approximately 1.6. Moving away from this 

trough the variation in phase shift as a function of CRω is fairly small, although there 

is a general reduction (less negative) in the phase shift as CRω increases. 

The solution space for the magnitude ratio and phase difference of the flow and 

pressure suggest that when it comes to tuning the 0D parameter values to elicit a 

specific response there may be a number of parameter sets (𝑅𝑖
𝑅

 and CRω) that can 

produce the desired response. That is to say that the solution space is likely to be 

relatively flat.    
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FIGURE 3-13 - ILLUSTRATION OF HOW |Q|/|P| (ADMITTANCE) VARIES WITH  

THE DIMENSIONLESS PARAMETERS RI/R AND CR𝜔 

 

 

FIGURE 3-14 - ILLUSTRATION OF HOW 𝜙𝑄𝑃VARIES WITH  

THE DIMENSIONLESS PARAMETERS RI/R AND CR𝜔 
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TUNING STRATEGY 3.6 

The application of lower order models as boundary conditions for higher order 

models is only useful if the lower order models elicit the desired response. In the 

case of the three element Windkessel there are three parameters that can be tuned to 

alter the given response. The tuning process may be approached on a trial and error 

basis but this would involve the solution of the coupled system for each new set of 

parameters, which is computationally expensive and extremely time consuming. An 

alternative approach is to approximate the parameters required to achieve a desired 

response based on some simple relations. The total value of resistance (𝑅𝑖 + 𝑅) can 

be approximated from:  

𝑅𝑖 + 𝑅 =
𝑃
𝑄

 

EQUATION 3-28 

Where 𝑃 is the average desired pressure and 𝑄 is the average flow. 

The input resistance can be defined as the characteristic impedance of the 1D/3D 

vessel [88]: 

𝑅𝑖 =
𝜌𝑐
𝐴

 

EQUATION 3-29 

Where 𝐴 is the cross-sectional area of the 1D/3D vessel. 

 While the compliance can be approximated from the diastolic pressure decay [88]:   

𝜏 = 𝑅𝐶 

EQUATION 3-30 

Where 𝜏 is the time constant associated with the diastolic pressure decay.  

However, the most accurate approach to calculating the parameters required to elicit 

a desired response is to employ a formal optimisation strategy. 
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The following section describes the creation and implementation of an optimisation 

scheme, written within Matlab, using a number of the inbuilt algorithms, to compute 

a set of fitted values for; 𝑅𝑖
𝑅

, 𝐶𝑅 and  1
𝑅

, given a desired response (Note that the 

parameter 𝐶𝑅𝜔 has been reduced to 𝐶𝑅 because for multiple frequency signals 𝜔 is 

not constant). When using clinical data to tune the Windkessel it is unlikely that 

there will be an exact solution and so the process must be approached as an 

optimisation problem.  

TUNING METHODOLOGY 3.6.1 

Given the desired flow and pressure as the input to the Windkessel, it is possible to 

write 𝑛 equations that describe the pressure at 𝑛 points in time, as a function of the 

predefined parameters of interest and the amplitude of the harmonic flow 

components. So long as 𝑛 is greater or equal to the number of unknowns, in this case 

3, then the solution is said to be fully determined (or over-determined). 

Matlab (The MathsWorks Inc. USA) has a number of pre-defined algorithms, such 

as the ‘Trust Region Reflective’ [89] and ‘Levenberg-Marquardt’ [90] algorithms 

that use conjugate gradient techniques to approximate parameter values in such 

problems. In the following work the ‘Trust Region Reflective’ algorithm is employed 

because it offers improved convergence for problems with a bounded solution space. 

In the following work the solutions of the fitted parameter values are constrained to 

be positive. 

Starting from the governing equations of the three element Windkessel (Equations 

3-19) one can write the solution to the pressure components in terms of the flow 

(Equations 3-21). Substituting these into 𝑃𝑖(𝑡) = 𝑃𝑖𝑐𝑐𝑜𝑠(𝜔𝑡) + 𝑃𝑖𝑠𝑠𝑖𝑛(𝜔𝑡) gives the 

following relation which describes the time varying pressure at the Windkessel in 

terms of the harmonic flow amplitudes and the predefined parameters of interest. 
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𝑃𝑖(𝑡)

=
���𝑅𝑖𝑅 + 1� + 𝐶2𝑅2𝜔

2 𝑅𝑖
𝑅� ∙ 𝑄𝑖𝑐 + �𝐶𝑅𝜔𝑅𝑖𝑅 − 𝐶𝑅𝜔�𝑅𝑖𝑅 + 1�� ∙ 𝑄𝑖𝑠�

�1𝑅 + 𝐶2𝑅2𝜔
2 1
𝑅�

𝑐𝑜𝑠(𝜔𝑡)

+
��𝐶𝑅𝜔 ∙ �𝑅𝑖𝑅 + 1� − 𝐶𝑅𝜔 ∙ 𝑅𝑖𝑅� ∙ 𝑄𝑖𝑐 + ��𝑅𝑖𝑅 + 1� + 𝐶2𝑅2𝜔

2
∙ 𝑅𝑖𝑅� ∙ 𝑄𝑖𝑠�

�1𝑅 + 𝐶2𝑅2𝜔
2 1
𝑅�

𝑠𝑖𝑛(𝜔𝑡) 

EQUATION 3-31 

The optimisation code goes through a number of stages before arriving at a set of 

fitted parameter values (Figure 3-15). The first step involves decomposing the flow 

waveform into 𝑘 harmonic frequencies, using the Fast Fourier Transform (FFT), and 

extracting the flow components (𝑄𝑖𝑐  and 𝑄𝑖𝑠 ) for each harmonic. As a check the 

signal is then reconstructed and plotted against the original flow waveform. The 

pressure wave is then sampled at 𝑛 points in time and the corresponding set of, 𝑛, 

algebraic equations are constructed (from Equation 3-31). An initial guess is then set 

for the parameters which are to be optimised. The choice of the initial guess is often 

a cause of divergence when using conjugate gradient methods and so must be 

carefully chosen. The minimisation algorithm is then run and finally the forward 

problem (using the fitted parameter values) is solved and the resulting pressure trace 

compared with the desired pressure response (Figure 3-15). 
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FIGURE 3-15 – FLOW CHART ILLUSTRATING THE OPTIMISATION STAGES 

IDEALISED APPLICATION 3.6.2 

The optimisation process is tested initially on a set of pressure and flow data 

produced from the numerical model coupled to a three element Windkessel. The 

simulation previously described (Section 3.4.4), which employed a clinical flow inlet 

boundary condition, is used (Figure 3-10) although with slightly different 

Windkessel parameters (Table 3.2). Since there is an exact solution to the set of 

equations constructed in the optimisation process it represents a problem with a 

minimum which is equal to zero. 
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As mentioned previously, initialisation of the parameters is critical. A poor initial 

guess can cause the conjugate gradient method to converge to a local minimum 

rather than the global minimum. In an attempt to avoid this problem an initialisation 

strategy was developed. A bounded region was defined for the initial guess of each 

parameter (Table 3.2) and a granularity for sampling the range was set. The 

optimisation code then ran the minimisation process for every possible combination 

of initial values and subsequently, based on the RMS residual, identified the set of 

fitted parameters which best approximated the desired pressure waveform.  

Parameter  Bounds Analytical Value Simple Rules Fitted Value 

Ri/R 0.001-1 0.1 0.124 0.0925 

1/R (m4s/kg) 10-10 - 10-5 1x10-8 5.41 x10-9 9.92x10-9 

CR (s) 0.01-10 0.5 0.675 0.497 

TABLE 3.2 – BOUNDS OF INITIAL PARAMETER VALUES, ANALYTICAL WINDKESSEL VALUES AND THE 

CALCULATED WINDKESSEL VALUES FROM SIMPLE RULES AND THE OPTIMISATION APPROACH  

The granularity of the initial guess range is set to a value of 4, that is to say 64 (43) 

initial value combinations are solved. The desired pressure trace is sampled at 200 

instances in time, correlating to 200 equations of the form Equation 3-31. The 

resulting optimisation problem is solved and the minimum RMS residual of pressure 

is 0.377 mmHg. The optimised scheme produces a close approximation to the known 

parameter values, with the largest difference being the prediction for 𝑅𝑖
𝑅

 (Table 3.2). 

The parameter values are also calculated based on the simple relations (Equation 

3-28 to Equation 3-30) and although they give a rough approximation of the true 

values the associated errors range from 24 % to 46 %.  

The output of the optimisation procedure is shown in Figure 3-16. The reconstructed 

fast Fourier transformation (FFT), of the flow waveform demonstrates that the 

decomposition was accurate and the normalised spectral energy plot shows that it is 

the first 15 harmonics which most strongly contribute to both the flow and pressure 

signals (the first 20 harmonics are considered for the optimisation procedure). A 

comparison of the desired pressure response and that computed from the fitted 
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parameters show good agreement, although there is a slight variation in the rising 

edge and around the dicrotic notch. In general the results demonstrate that the 

optimisation strategy is capable of tuning the Windkessel parameters to elicit a 

specific response.  

 

FIGURE 3-16 – OUTPUT FROM THE OPTIMISATION PROCEDURE 

To investigate how the initial guess affects the corresponding fitted parameter 

values, a 3D plot of movement is included (Figure 3-17). The final fitted parameters 

are plotted as a solid red triangle. There is a clustering of the optimised parameters 
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around the correct values of 1
𝑅

 and 𝐶𝑅  but there is a significant variation in the 

prediction of 𝑅𝑖
𝑅

. This may suggest that 𝑅𝑖
𝑅

 has a small effect on the resulting pressure 

waveform, or that the solution space around this region is relatively flat with 

numerous local minimums. Figure 3-17 clearly shows the presence of an additional 

local minimum (where 𝑅𝑖
𝑅
≈ 1,𝐶𝑅 ≈ 0 and 1

𝑅
≈ 0), which is drawing a number of the 

initial guesses to converge within it, rather than to the global minima. 

 

FIGURE 3-17 – ILLUSTRATION OF PARAMETER VALUE MOVEMENT: INITIAL VALUE TO FITTED VALUE 

(RED TRIANGLE) AFTER OPTIMISATION PROCESS 

To identify whether the variation in 𝑅𝑖
𝑅

 is a result of numerous local minima, or an 

indication of its negligible effect on the pressure trace, the forward problem is solved 

for each set of fitted parameters. Figure 3-18 shows there are two distinct groups of 

wave shape, one far closer to the desired pressure response. These are found to 

correlate directly with the two areas of convergence apparent in Figure 3-17. The 

large cluster of waveforms (Figure 3-18), correlate directly to the group of fitted 

parameters which vary predominantly in 𝑅𝑖
𝑅

. Considering the significant variation of 

these waveforms it might be surmised that this area of the solution space is relatively 
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flat and populated by numerous local minima, rather than 𝑅𝑖
𝑅

 having a negligible 

effect on the pressure waveform.      

 

FIGURE 3-18 – INFLUENCE OF INITIAL GUESS ON THE PRESSURE WAVEFORM.  

COMPUTED FROM THE FITTED PARAMETER VALUES 

The use of an idealised pressure and flow response has been used to demonstrate that 

the described optimisation strategy is able to accurately predict the Windkessel 

parameters required to produce a desired response. The work also identified the 

importance of the initial guess and demonstrates the usefulness of evaluating a 

matrix of initial values.  

CLINICAL APPLICATION 3.6.3 
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clinical application described below employs data from a patient with a mild aortic 

coarctation (Figure 3-19) and three supra-aortic vessels; the brachiocephalic (BCA), 

the left common carotid (LCC) and the left subclavian artery (LSUB) (Figure 3-19).  

Ethical approval for use of this data was obtained in September 2009 from the Local 

Research Ethics Committee of the Guy’s, King’s and St Thomas’ NHS Trust. The 

title of the approved protocol is “Patient-specific cardiovascular modelling and 

simulation in vascular and aortic disease” and the R&D REC number is 

08/H0804/134. Informed consent was obtained from all patients according to the 

approved ethics. For obvious ethical reasons it is not possible to obtain invasive 

pressure measurements for a normal aorta. 

 

 

 

 

 

 

 

 

 

FIGURE 3-19 – GEOMETRY OF PATIENT-SPECIFIC AORTA USED IN THE  

CLINICAL APPLICATION OF THE TUNING METHODOLOGY  

A second complication concerns the acquisition and accuracy of the clinical data. 

The pressure data used in the following work was taken from a patient under general 

anaesthetic. Pressure catheters were located in the ascending and descending aorta 

and recordings were made simultaneously for approximately 30 seconds. Even in an 

anaesthetised patient the peak, range and baseline pressures vary from cycle to cycle 

(Figure 3-20). For the purposes of the tuning and simulation work the pressure traces 

were cut, averaged and filtered, by Cristina Staicu, to ensure the pressure waveform 

BCA LCC LSUB 

Ascending Aorta 

Descending Aorta 

Mild Coarctation 
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was periodic. The flow measurements were taken over a longer period of 

approximately 5 minutes and automatically extracted from 2D phase contrast MR 

sequences. The flow measurements were acquired at a different time to the pressure 

although the patient remained anaesthetised.  

It is also worth noting that unlike the idealised application there is no guarantee that 

the cost function constructed for the clinical application will have a minimum that is 

zero, in fact it is highly unlikely. 

 

FIGURE 3-20 – RAW CLINICAL PRESSURE DATA FROM AN ANAESTHETISED PATIENT 

Unfortunately the inconsistency in the data collection is unavoidable and, since there 

was no frame of reference (for example an ECG trace), the waveforms required 

manual alignment. The optimisation scheme assumes the pressure and flow are taken 

at a coincident point, with this in mind it was decided that waveforms should be 

aligned assuming that the rising edges occur simultaneously (Figure 3-21).  

 

FIGURE 3-21 – MANUAL ALIGNMENT OF THE NORMALISED PRESSURE AND FLOW WAVEFORMS, AT THE 

DIAPHRAGM LEVEL IN THE DESCENDING AORTA 
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The clinical pressure recordings were made at only two points within the vessel; the 

ascending and descending aorta. The optimisation scheme requires the pressure and 

flow to be known at each of the outlets requiring a Windkessel termination. An 

assumption is made that the pressure at the outlets of the supra-aortic vessels are 

equal to that in the ascending aorta. 

The Windkessel parameters for the descending aorta boundary are tuned employing 

the same optimisation settings, as described for the idealised application. 

Comparison of the clinical pressure and that predicted from the fitted parameter 

values is not so good, with the RMS residual computed as 8.89 mmHg. The 

corresponding plot of parameter value movement shows that in every case the fitted 

value of 1
𝑅
 moves below 1x10-7, suggesting that the initial guess range is larger than 

necessary. The initial guess range, for 1
𝑅
, is reset as 1x10-10 m4s kg-1 to 1x10-6 m4s kg-

1 and the optimisation process rerun. The granularity of the initial guess matrix is 

also varied, following identification of the importance of the initial guess in the 

previous example (Figure 3-17 and Figure 3-18).  

The resulting RMS residuals and solution times for the different initial guess 

granularities are summarised in Table 3.3. With the exception of the lowest 

granularity the trend, as one would expect, shows an improved RMS residual value 

as the granularity of the initial guess matrix is refined. The plots of parameter 

movement are similar to that of the previous, idealised problem, with the fitted 

values of 1
𝑅

 and 𝐶𝑅  being relatively consistent while the values of 𝑅𝑖
𝑅

 vary 

significantly (Figure 3-22 - left, a matrix granularity of 5 was plotted as for higher 

values of granularity the individual lines of movement become hard to distinguish). 

Evaluation of the pressure waveforms, based on the given flow and fitted parameters, 

illustrates that the variation in 𝑅𝑖
𝑅

 is due to a relatively flat solution space, with 

numerous local minima which the optimisation scheme is converging to, rather than 
𝑅𝑖
𝑅

 having a negligible effect on the shape and magnitude of the pressure wave 

(Figure 3-22 - right).  
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Granularity Number of Initial Guesses RMS residual (mmHg) Solution time (s) 

4 64 3.30 462 

5 125 10.42 881 

6 216 7.18 1171 

7 343 3.20 1841 

8 512 2.95 5039 

TABLE 3.3 – SUMMARY OF THE OPTIMISATION RESULTS AS THE GRANULARITY OF THE  

INITIAL GUESS MATRIX WAS ALTERED. DESCENDING AORTA WINDKESSEL TUNING 

 

FIGURE 3-22 – PARAMETER MOVEMENT AND INFLUENCE OF INITIAL GUESS ON THE PRESSURE 

WAVEFORM, COMPUTED FROM THE FITTED PARAMETER VALUES (GRANULARITY 5).  

DESCENDING AORTA WINDKESSEL TUNING 

The final output of the optimisation process is shown in Figure 3-23. The fitted 

pressure waveform is unable to capture the double peak in the clinical pressure. This 

phenomenon is common in patients with coarctation, but is not apparent in patients 

with normal aortae [75]. It is suggested that to accurately capture this feature one 

would need additional elements in the 0D model. However, for this work it is not 

deemed necessary to capture these complex features, but rather it is the gross 

response of the pressure wave that is important in this context. It is certainly true that 

the gross response, i.e. the baseline and pressure range, as well as the gradient of 

decay and to a degree the dicrotic notch, are all suitably captured by the fitted 

Windkessel model (Figure 3-23).   
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FIGURE 3-23 - OUTPUT FROM THE OPTIMISATION PROCEDURE (GRANULARITY 7). 

 DESCENDING AORTA WINDKESSEL TUNING 

The optimisation process is run for each set of pressure and flow data associated with 

the supra-aortic arteries. The resulting RMS residuals are shown in Table 3.4. An 

initial guess matrix granularity of 7 is used in each case since the apparent 

improvement in the fitted descending aorta waveform (difference in the RMS 

residual of 0.25 mmHg) is not sufficient to justify the additional solution time (Table 

3.3). The parameter values for each optimised Windkessel boundary are documented 

in Table 3.5. 
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 RMS Residual (mmHg) Solution time (s) 

BCA 12.00 1926 

LCC 13.38 1438 

LSUB 21.65 1345 

TABLE 3.4 – SUMMARY OF THE RMS RESIDUALS FOR THE FITTED  

PRESSURES AT THE SUPRA-AORTIC VESSELS 

It is interesting to note that the optimisation scheme did not perform well for the 

supra-aortic arteries (Table 3.4). This is attributed to the poor resolution of the 

measured flow data at these boundaries and the lack of a corresponding pressure 

trace measured at the same location.    

 𝑹𝒊
𝑹

 
𝟏
𝑹

 (𝐦𝟒𝐬 𝐤𝐠−𝟏) 𝑪𝑹 (𝐬) 

DescAo 0.06882 4.851x10-9 4.100 

BCA 0.05009 1.376 x10-9 0.7266 

LCC 0.1279 4.286x10-10 2.815 

LSUB 0.0669 4.608x10-10 3.480 

TABLE 3.5 – SUMMARY OF THE FITTED PARAMETER VALUES 

As discussed previously, an additional complication when using the prescribed 

tuning method in a multiple outlet model is that the Windkessel parameters directly 

determine the distribution of flow. Since the optimisation scheme tackles each 

boundary in isolation it is unable to ensure the resulting flow distributions are 

appropriate. In addition the poor resolution of the flow measurements cumulate in a 

significant error. For the case of interest there is a mismatch of approximately 16% 

in the measured flow moving into the aorta, when compared to the flow measured 

leaving the aorta (Table 3.6). Since the pressure described by the Windkessel 

element is intimately coupled to the flow (Equation 3-31) it is accepted that an 



CHAPTER 3 

99 

 

additional stage of tuning is required to achieve the desired pressure response in a 

full CFD simulation. For comparison purposes the error in the clinical outlet flows 

was assumed to be evenly distributed across all outlets (Table 3.6 – Corrected Data). 

 QBCA QLCC QLSUB QDescAo QAscAo 

Clinical Data 

Corrected Data 

0.18 

0.22 

0.052 

0.093 

0.046 

0.087 

0.56 

0.60 

1 

1 

CFD – Initial Opt 0.20 0.063 0.067 0.67 1 

CFD – Final Opt 0.23 0.092 0.088 0.59 1 

TABLE 3.6 – COMPARISON OF CLINICAL AND NUMERICAL FRACTIONAL FLOW DISTRIBUTION 

The initial optimisation process achieves a reasonable first approximation of the 

Windkessel parameters. An iterative process is then started which involves solving a 

CFD simulation, using the compressible fluid methodology described previously, 

with the fitted Windkessel parameters (Figure 3-24 and Figure 3-25). Assuming the 

resulting flow distributions are approximately correct the optimisation process is 

repeated with the numerical flow waveforms and the resulting fitted parameters fed 

back into the CFD simulation. This process is repeated until a reasonable agreement 

between the numerical and clinical data is achieved. This process is illustrated in the 

flowchart shown in Figure 3-26. 
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FIGURE 3-24 - COMPARISON OF CLINICAL PRESSURE DATA AND THE NUMERICAL PRESSURE RESPONSE. 

COMPUTED WITH THE INITIAL TUNED WINDKESSEL PARAMETERS 

 

 

FIGURE 3-25 - COMPARISON OF CLINICAL FLOW DATA AND THE NUMERICAL FLOW DISTRIBUTION. 

COMPUTED WITH THE INITIAL TUNED WINDKESSEL PARAMETERS 
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FIGURE 3-26 – FLOWCHART REPRESENTATION OF THE FINAL OPTIMISATION  

STRATEGY WHEN TUNING FOR CLINICAL DATA  

The final sets of Windkessel parameters, for the presented aorta, are shown in Table 

3.7. The numerical pressure and flow waveforms have been compared to the clinical 

data in Figure 3-27 and Figure 3-28, with the flow distributions included in Table 

3.6. 
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 𝑹𝒊
𝑹

 
𝟏
𝑹

 (𝐦𝟒𝐬 𝐤𝐠−𝟏) 𝑪𝑹 (𝐬) 

DescAo 0.05889 4. 502x10-9 3.578 

BCA 0.02382 1.675x10-9 2.060 

LCC 0.1127 7.107 x10-10 2.253 

LSUB 0.03817 6.382x10-10 3.308 

TABLE 3.7 - SUMMARY OF THE FINAL FITTED PARAMETER VALUES 

The numerically predicted pressure (Figure 3-27) and flow waveforms (Figure 3-28) 

are well matched to the clinical measurements. The increased flow rates apparent in 

the great arteries have been discussed in detail and are explained by the poor 

resolution of the clinical flow acquisition. A detailed analysis of the numerical 

results is presented in the following Chapter.    

   

FIGURE 3-27 – COMPARISON OF CLINICAL PRESSURE DATA AND THE NUMERICAL PRESSURE RESPONSE. 

COMPUTED WITH THE FINAL TUNED WINDKESSEL PARAMETERS 

0 0.5 1
40

60

80

100

Time (s)

Pr
es

su
re

 (m
m

H
g)

AscAo

 

 

0 0.5 1
40

60

80

100

Time (s)

Pr
es

su
re

 (m
m

H
g)

BCA

 

 

0 0.5 1
40

60

80

100

Time (s)

Pr
es

su
re

 (m
m

H
g)

LCC

 

 

0 0.5 1
40

60

80

100

Time (s)

Pr
es

su
re

 (m
m

H
g)

LSUB

 

 

0 0.5 1
40

60

80

100

Time (s)

Pr
es

su
re

 (m
m

H
g)

DescAo

 

 

Clinical data
Numerical prediction



CHAPTER 3 

103 

 

 

FIGURE 3-28 - COMPARISON OF CLINICAL FLOW DATA AND THE NUMERICAL FLOW DISTRIBUTION. 

COMPUTED WITH THE FINAL TUNED WINDKESSEL PARAMETERS 

CONCLUSIONS 3.7 

An analytical solution, which describes a 1D tube coupled to a 0D Windkessel 

model, was derived. The solution was used to validate the coupling approach 

employed to terminate 3D CFD simulations in a 0D Windkessel element. The use of 

a two and three element Windkessel model was investigated. The work demonstrates 

that the numerical analyses of a tube coupled to a two element Windkessel becomes 

unstable if there are high frequency components present in the applied flow wave 

(such as is found in real cardiac waveforms). The inclusion of an input resistance, 

producing a three element Windkessel, damps these oscillations and results in a more 

stable downstream condition for CFD simulations. 

A minimisation scheme has been presented to tune the parameters of a three element 

Windkessel model to produce a desired pressure response under a known flow. The 

approach was applied to an idealised set of pressure and flow data where it 

performed well and converged to the correct parameter values. The method was 

subsequently tested on clinically acquired data from a patient specific aorta. The 
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clinical case was substantially more complex. Not only was there no analytical 

solution but there was the additional complication of multiple branches. To achieve 

reasonable predictions of the Windkessel parameters the optimisation strategy had to 

be revised to include a CFD simulation of the aorta and a feedback loop. However, 

with these alterations it was shown that, given a known flow and a required pressure 

response, a best fit set of Windkessel parameters could be calculated.  

  



 

 

Chapter 4  
ANALYSIS STRATEGIES 
MOTIVATION 4.1 

A major objective for the engineering simulation community is to translate its 

technologies into clinical application. The use of CFD to characterise 

haemodynamics in vascular systems has the potential to assist diagnostic and 

prognostic processes. However, any model that is intended for clinical application 

must capture the important physiological characteristics of the flow, but should be no 

more complex than necessary. State of the art simulations of aortic dynamics 

consider not only the motion of the fluid but also the motion of the vessel wall. 

These fluid-structure interaction (FSI) simulations are expensive in their 

computational requirements. The following chapter considers three cases; a uniform 

cylinder, a native patient-specific aorta and an assisted patient-specific aorta. The 

flow fields of these cases are predicted using three increasingly complex analysis 

strategies, namely: 

1. Rigid Walled, Incompressible Fluid with Windkessel Outlets. 

2. Rigid Walled, Compressible Fluid with Windkessel Outlets. 

CHAPTER 4 
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3. Fluid-Structure Interaction, Incompressible Fluid with Windkessel Outlets. 

The subsequent results are analysed and compared with a focus on clinical 

translation.  

Throughout this chapter it is assumed that the standard time-varying Navier-Stokes 

and Continuity equations are able to capture the flow fields of interest without the 

need for a turbulence model. The laminar assumption is investigated in Chapter 5. 

However, irrespective of the need for a turbulence model, the conclusions drawn 

from this chapter are believed to be valid since they offer a comparative study and 

hence the results are transferable to turbulent simulations.     

FLUID-STRUCTURE INTERACTION 
METHODOLOGY 4.2 

FSI simulations can be approached in a fully coupled or iterative manner [91-93]. In 

the fully coupled approach the equations that describe the motion of the fluid and the 

structure are solved simultaneously and the approach is often referred to as a 

monolithic technique. Following the iterative approach a fluid and a structural solver 

are dynamically coupled, with the equations of motion (for the fluid and for the 

structure) solved in isolation. In general, the fluid equations are solved for the initial 

geometry and the resulting pressures at the interface are passed to the structural 

solver which then computes the deformation of the geometry. The deformed 

geometry is passed back to the fluid solver to calculate the new pressure distribution. 

The process continues in this way until a predefined criterion of convergence is 

achieved, at which point the solution is said to be converged and the simulation 

moves on to the subsequent time-step (Figure 4-1). 

The fluid structure interaction simulations presented in this thesis are conducted 

within ANSYS-CFX (ANSYS, Canonsburg, PA, USA) which employs an implicit, 

time marching iterative coupling approach to solving the FSI problem.  
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FIGURE 4-1 – ILLUSTRATION OF AN ITERATIVE FSI APPROACH. 

FLUID STRUCTURE INTERACTION STABILITY CRITERIA 4.2.1 

Causin et al identified an inherent numerical stability problem in the implicit, time 

marching, coupling scheme [94] such as is used in ANSYS-CFX (ANSYS, 

Canonsburg, PA, USA). The effect is known as the “added mass effect” and arises 

when modelling incompressible fluids within compliant structural domains. Causin 

et al derived, for a simple cylindrical system, a relation that identifies the necessary 

relaxation factor that must be applied to variables passed across the FSI interface to 

ensure numerical stability [94]. Surprisingly, the required relaxation factor is not 

only dependent on the time-step and material properties but also on the length of the 

domain. A discovery described by the authors as “quite amazing”. The analytical 

relaxation factor (𝜔) is described by Equation 4-1.  

Fluid Solver                                          
Calculates Pressure at 

the interface 

No 

Deformation 

Initial conditions                             
or                                                     

Conditions from previous 
time-step 

Solid Solver                                  
Calculates Deformation 

from Pressure 

Time-step complete 

Pressure 

 
Convergence 
criteria met? 

 Yes 
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2
 

EQUATION 4-1 

Where 𝜌𝑠 is the density of the solid, ℎ is the wall thickness, 𝑑𝑡 is the time-step, 𝜌 is 

the fluid density, 𝐿 is the length of the cylinder, 𝑟𝑚𝑎𝑥 is the radius, 𝐸 is the Young’s 

Modulus of the wall and 𝜈 is its Poisson’s ratio. 

The application of a relaxation factor, to quantities passed across the FSI interface, 

results in a reduction in their magnitude. At each coupling iteration the given 

variable is increased by the difference in magnitude of the true and applied variable, 

multiplied by the relaxation factor. This process gives rise to an asymptotic approach 

to the true variable value as the number of coupling iterations increase. An example 

of this is shown in Figure 4-2, where a relaxation factor of 0.5 is applied to a variable 

of magnitude 1. By the seventh coupling iteration 99.2% of the true variable is 

applied at the FSI interface.   

 

FIGURE 4-2 - ILLUSTRATION OF HOW A RELAXATION FACTOR AFFECTS THE  

VARIABLE BEING PASSED ACROSS THE FSI INTERFACE 

To ensure that at the end of the time-step the true magnitude of the variable is passed 

across the FSI interface a minimum number of coupling iterations (which depends on 

the relaxation factor) must be specified. Equation 4-2 is used to calculate the number 
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of iterations needed and ensures that the difference between the applied and true 

variable value is less than 1%. 

  𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =  −2
log 10(1−𝜔)

 

EQUATION 4-2 

As well as defining the minimum number of coupling iterations, the ANSYS-CFX 

coupling code (MFX) assesses the convergence of each time-step via L2 norm 

residuals. The convergence criteria set for the MFX solver is a residual value, for 

each variable (Pressure and Displacement), of less than 0.005. This is equivalent to 

the variable value changing by a factor of less than 0.5% in consecutive coupling 

iterations. 

FLUID STRUCTURE INTERACTION LIMITATION 4.2.2 

In the current ANSYS-CFX FSI methodology it is not possible to reliably use a fluid 

mesh which contains prism elements at the wall. The problem arises from the way 

that the geometric deformation is applied to the fluid mesh and often results in the 

following error message: 

“A negative ELEMENT volume has been detected. This is a fatal error 
and execution will be terminated” 

The deformation of the fluid mesh is determined by a Mesh Motion Model which 

essentially diffuses the nodal displacements at the boundary throughout the entire 

computational mesh [78]. This diffusion is described by Equation 4-3.  

∇ ∙ (Γstiff ∇𝛿) = 0 

EQUATION 4-3 

Where Γstiff  is the local mesh stiffness and 𝛿  is the displacement relative to the 

previous mesh. 

The method is designed to preserve the distribution of the mesh. However, in 

systems , such as in the human aorta, where there are large wall displacements that 

occur rapidly small elements at the wall can become inverted resulting in the error 

described above. A possible solution to this problem is to re-mesh the fluid domain 
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when the prism elements become inverted but at present this function is not 

implemented in the ANSYS-CFX FSI methodology. 

Having identified the problem of using prism elements in an FSI simulation a 

pragmatic approach was taken in the analysis strategies employed in the work which 

follows. To allow fair comparisons to be made and conclusions to be drawn between 

the three methodologies proposed no prism elements were used in the simulations 

presented in this Chapter.   

EVALUATION PARAMETERS 4.3 

An important and challenging consideration when evaluating transient flow fields is 

the description of meaningful and informative parameters. The most simple and 

obvious comparisons consider the differences in the periodic pressure and flow 

waveforms. However, when comparing alternative analysis techniques and their 

ability to capture the important characteristics of the flow field it is not acceptable to 

consider these waveforms in isolation. It is also important to investigate how the 

predicted internal flow structures vary between the different modelling approaches. 

In an attempt to quantify the differences in the flow fields a number of parameters 

have been considered. The most commonly quoted evaluation parameters, in 

cardiovascular fluid mechanics, are the fluid velocity and wall shear stress (WSS) 

[63, 95, 96]. 

Another parameter which is less commonly used is the helical flow index (HFI). The 

HFI is a measure of the degree of helical flow within a fluid domain [97] and can be 

defined, in an Eulerian manner, as shown in Equation 4-4. Morbiducci et al. 

calculated the HFI of a healthy aorta from MR flow data [66]. The group computed 

the HFI in a Lagrangian sense, along a number of streamlines, and reported values 

ranging from 0.372 to 0.464 with a cycle averaged HFI of 0.414.    

 

 



CHAPTER 4 

111 

 

  𝐻𝐹𝐼 = ∫ �𝑼∙(∇×𝑼)
𝑼|∇×𝑼| � 𝑑𝑉                    0 ≤ 𝐻𝐹𝐼 ≤ 1𝑉   

EQUATION 4-4  

Where 𝑼 and (∇ × 𝑼) are the vectors of velocity and vorticity and 𝑉  is the fluid 

volume. 

A further parameter, which is also useful in cardiovascular fluid mechanics, is 

residence time. This is the time that it takes a massless particle, released into the 

flow field at a given point, to move through the fluid domain. It can also be thought 

of as a representation of the ‘age’ of the fluid i.e. how long the fluid has resided in 

the computational domain. Ensight v9.1 (CEI Inc. USA) was used to compute the 

particle path-lines. In the following work a 30x30 grid of particles was released from 

a grid, superimposed on the inlet boundary, into the flow field at the start of a cardiac 

cycle and the residence times recorded. This method of particle tracking is a 

powerful post processing tool and clearly illustrates recirculation zones and other 

gross features or structures within a transient flow field.  

UNIFORM CYLINDER 4.3 

To appreciate fully the effect of the alternative methodologies on the characteristics 

of the flow field it is important to study their influence in both a simple and complex 

geometry.  

The following section compares the different analysis strategies when applied to a 

uniform cylinder with dimensions similar to those of a human aorta (Figure 4-3).  

 

 

 

 

FIGURE 4-3 – DIMENSIONS OF THE UNIFORM CYLINDER 

z 

x 
R = 10x10-3 m 

h=0.8 x10-3 m 

L = 0.2 m 
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FLUID AND STRUCTURAL PROPERTIES 4.3.1 

RIGID WALLED, INCOMPRESSIBLE FLUID PROPERTIES 4.3.1.1 

The rigid walled, incompressible fluid properties are defined, as they have been 

throughout this thesis, as Newtonian, with a constant density and viscosity of 

1056kgm-3 and 0.0035 Pas respectively.  

RIGID WALLED, COMPRESSIBLE FLUID PROPERTIES 4.3.1.2 

The compressible fluid model is tuned (as described in Chapter 3) to produce a 

realistic aortic wave speed of 6.83 ms-1 [98]. The temperature is set to a constant 

value of 310.15 K, which, when combined with the required wave speed and 

universal gas constant, results in a molar mass of 55.28 kg mol-1. 

FSI MECHANICAL AND FLUID PROPERTIES 4.3.1.3  

The FSI fluid is defined as incompressible with properties identical to the rigid 

walled, incompressible fluid model (Section 4.3.1.1). In the following FSI 

simulations the wall is assumed to be linear elastic with a thickness of 0.8 mm, a 

density of 1000 kgm-3, a Poisson’s ratio of 0.49 and a Young’s Modulus of 1x106 Pa. 

This results in an analytical wave speed, calculated from the Moen-Kortweg 

equation, of 7.06 ms-1. In truth the offset pressure value will dilate the vessel and thin 

the wall, thereby reducing the wave speed.  

One can approximate the change in radius of a uniform cylinder, assuming plane 

strain, under a known pressure by Equation 4-5 [75].  

𝜕𝑟 =  
2𝑃𝑟𝑎2(1 − 𝜈2)𝑟𝑏
𝐸(𝑟𝑏2 − 𝑟𝑎2)

 

EQUATION 4-5 

Where 𝑟𝑎  is the inner radius, 𝑟𝑏is the outer radius, 𝐸 is the Young’s Modulus and  

𝜈 is the Poisson’s Ratio. 
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Assuming the change in wall thickness is negligible and predicting the offset 

pressure from the choice of Windkessel parameters ( 𝑃𝑜𝑓𝑓𝑠𝑒𝑡 ≈ 65 𝑚𝑚𝐻𝑔 ) the 

corrected analytical wave speed is 6.83 ms-1, the same as that for the compressible 

fluid solution. 

FLUID AND MECHANICAL BOUNDARY CONDITIONS 4.3.2 

FLUID BOUNDARY CONDITIONS 4.3.2.1 

A flat velocity profile, which follows the flow waveform extracted from MR data in 

the ascending aorta (as described in Chapter 3), is applied to the inlet of the cylinder 

(Figure 4-4). The outlet pressure is described by a 3 element Windkessel model with 

parameters chosen to produce a physiological pressure response as in Chapter 3 

(Table 4.1). In all simulations a non-slip condition is enforced at the wall. 

 

 

 

 

 

 

 

FIGURE 4-4 – ILLUSTRATION OF THE FLUID BOUNDARY CONDITIONS  

IN THE UNIFORM CYLINDER 

 Ri [kg·m-4·s-1] C [m4·s2·kg-1] R [kg·m-4·s-1] 

Windkessel  

Parameters 
1.1x107 1.45x10-8 1.45x108 

TABLE 4.1 – WINDKESSEL PARAMETERS FOR THE UNIFORM CYLINDER 
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FSI MECHANICAL CONSTRAINTS 4.3.2.2  

The nodes at the inlet and outlet of the uniform cylinder are fixed in the axial (z) 

direction i.e. longitudinally tethered.  Additional constraint equations are applied at 

the inlet and outlet boundaries to ensure that the average displacement in the planar x 

and y direction is zero i.e. the cylinder is free to dilate but unable to translate. To 

prevent the structure from spinning along its axis all nodes have a fixed z rotation. 

MESH CONSTRUCTION 4.3.3 

The cylinder is constructed and meshed in ICEM CFD (ANSYS Inc, Canonsburg, 

USA). As discussed previously the FSI implementation employed in ANSYS-CFX is 

unable to perform remeshing which restricts the use of prism elements at the wall. 

Due to this the fluid domain is discretised using only tetrahedral elements. A 

maximum element edge length of 1.5x10-3 m is prescribed and the resulting mesh 

contained approximately 260,000 elements. 

The structural mesh is also created in ICEM CFD (ANSYS INC, CANONSBURG, 

USA) using tri noded shell elements. The same edge length is used and the resulting 

mesh contained approximately 16,000 elements.   

SOLUTION SETTINGS 4.3.4 

All simulations are solved with a time-step of 5 ms. The rigid walled incompressible 

and compressible simulations produced consistent results when compared to a run 

with a time-step of 1ms (the average percentage difference in the predicted pressure 

waveforms is less than 1%) and so the temporal discretisation is deemed accurate. 

CFD VS. ANALYTICAL 4.3.5 

The analytical solution for a 1D tube coupled to a 0D three element Windkessel 

model, presented in Chapter 3, is expanded upon, under the assumption that the flow 

and pressure waveforms can be expressed as a sum of their harmonic components, to 

consider a true cardiac waveform. 

The flow waveform, shown in Figure 4-4, was decomposed and the normalised 

energy of each component was calculated in Chapter 3 (Figure 3-16) to identify the 
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number of harmonic frequencies that should be considered in the analytical solution. 

The main contribution to the flow wave comes from the first 15 harmonics. 

However, to ensure the waveform is accurately represented, the first 20 harmonics 

are considered. This choice is verified in Figure 4-5, Figure 4-6 and Figure 4-9 

where the reconstructed analytical mass flow waveforms can be seen to match the 

waveform applied in the CFD simulations.  

To approximate the rigid walled incompressible fluid the wave speed in the 

analytical solution is made large. A wave speed of 6.83x107 ms-1 is found to produce 

exactly the same pressure and flow response as a wave speed of 6.83x1012 ms-1 and 

so the solution with the former is considered to represent the rigid walled 

incompressible fluid case. 

The pressure and mass flow predictions for the incompressible fluid simulations are 

compared to the corresponding analytical solution in Figure 4-5. The inlet and outlet 

mass flow waveforms are identical, as they must be for a rigid walled system with an 

incompressible fluid. The peak pressure at the inlet is 90.31 mmHg in the CFD 

model compared to 88.83 mmHg in the analytical solution, a difference of 1.67%. 

Some variation is not unexpected since the analytical solution assumes the fluid is 

inviscid, while the CFD model considers the viscous effects. During periods of high 

acceleration one would expect the solutions to be in close agreement since the 

system is dominated by inertia, while during periods of low or zero acceleration (at 

peak flow for example) one would expect the viscous effects to be more dominant 

and hence the pressures in the CFD analyses to be elevated when compared to the 

analytical solution. These effects are clearly apparent in Figure 4-5. It is not 

surprising that the viscous effects are small in this system since the Womersley 

number is approximately 13, illustrating that the flow is dominated by inertial 

effects.  

In an attempt to replicate more accurately the analytical solution the fluid viscosity is 

reduced to 1x10-6 Pas and the simulation rerun. The RMS residuals of the ‘inviscid’ 

CFD simulation are poorly converged with values reaching 1x10-4 during the 

deceleration region of the inlet flow waveform. However, the predicted pressure at 

the inlet and outlet are in very good agreement with the analytical solution (Figure 
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4-5) with a maximum pressure at the inlet of 89.13 mmHg compared to 88.83 mmHg 

in the analytical, a difference of just 0.34%.  

 

FIGURE 4-5 - INCOMPRESSIBLE FLUID CFD VS. ANALYTICAL SOLUTION:  

INLET AND OUTLET PRESSURE AND MASS FLOW WAVEFORMS 

The pressure and mass flow predictions for the compressible fluid simulations are 

compared to the corresponding analytical solution in Figure 4-6. As in the 

incompressible fluid an ‘inviscid’ simulation is run to approximate better the 

analytical solution. Once again the numerical and analytical systems are in close 

agreement, demonstrating the accuracy of the CFD solution. The results also 

demonstrate that the compressible fluid model is able to capture the propagation of 

the travelling waves (which is not possible in the incompressible fluid model) and is 

in complete agreement with the analytical solution in terms of the time lag.  
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FIGURE 4-6 – COMPRESSIBLE FLUID CFD VS. ANALYTICAL SOLUTION:  

INLET AND OUTLET PRESSURE AND MASS FLOW WAVEFORMS  

The apparent wave speed in the vessel is defined by Equation 4-6 as a function of the 

time (dt) it takes for the pressure wave to propagate a distance (dz) along the vessel. 

In the results of the analytical and numerical models shown in Figure 4-6 the 

apparent wave speed is approximately 4.5ms-1, 34% slower than the Moens-Kortweg 

wave speed (6.83 ms-1). However, if the outlet condition is described as the 

characteristic impedance of the 1D/3D domain (i.e. effectively a non-reflecting 

boundary condition) the apparent and the Moens-Kortweg wave speeds are in 

complete agreement. This indicates that the reduced apparent wave speed is a 

product of the backward travelling waves and suggests that in the presence of wave 

reflections the rate of propagation alone cannot be used to infer the material 

properties of the vessel wall.   
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To investigate this phenomenon further an equation for wave speed was derived 

based on the analytical description of pressure (Equation 3-8). For convenience it is 

included below. 

𝑃(𝑧, 𝑡) = {(𝑃1 + 𝑃3)𝑐𝑜𝑠(𝑘𝑧) + (𝑃2 + 𝑃4)𝑠𝑖𝑛(𝑘𝑧)}𝑐𝑜𝑠(𝜔𝑡)

+ {(𝑃1 − 𝑃3)𝑠𝑖𝑛(𝑘𝑧) + (𝑃4 − 𝑃2)𝑐𝑜𝑠(𝑘𝑧)}𝑠𝑖𝑛(𝜔𝑡) 

EQUATION 4-7 

At time (𝑡 + 𝑑𝑡) the pressure is: 

𝑃(𝑧, 𝑡 + 𝑑𝑡) = {(𝑃1 + 𝑃3)𝑐𝑜𝑠(𝑘𝑧) + (𝑃2 + 𝑃4)𝑠𝑖𝑛(𝑘𝑧)}𝑐𝑜𝑠�𝜔(𝑡 + 𝑑𝑡)�

+ {(𝑃4 − 𝑃2)𝑐𝑜𝑠(𝑘𝑧) + (𝑃1 − 𝑃3)𝑠𝑖𝑛(𝑘𝑧)}𝑠𝑖𝑛�𝜔(𝑡 + 𝑑𝑡)� 

EQUATION 4-8 

Assuming 𝑑𝑡  is small one can say 𝑐𝑜𝑠(𝜔𝑑𝑡) ≈ 1  and 𝑠𝑖𝑛(𝜔𝑑𝑡) ≈ 𝜔𝑑𝑡  so the 

expression for pressure can be simplified to: 

𝑃(𝑧, 𝑡 + 𝑑𝑡) = {(𝑃1 + 𝑃3)𝑐𝑜𝑠(𝑘𝑧) + (𝑃2 + 𝑃4)𝑠𝑖𝑛(𝑘𝑧)}(𝑐𝑜𝑠𝜔𝑡 − 𝜔𝑑𝑡. 𝑠𝑖𝑛𝜔𝑡)

+ {(𝑃4 − 𝑃2)𝑐𝑜𝑠(𝑘𝑧) + (𝑃1 − 𝑃3)𝑠𝑖𝑛(𝑘𝑧)}(𝑠𝑖𝑛𝜔𝑡 + 𝜔𝑑𝑡. 𝑐𝑜𝑠 𝜔𝑡) 

EQUATION 4-9 

The peak amplitude of the wave occurs at 𝑧 when 𝑑𝑃
𝑑𝑧

= 0. By differentiation it can be 

shown at time 𝑡 this occurs when: 

𝑡𝑎𝑛(𝑘𝑧) =
(𝑃2 + 𝑃4) 𝑐𝑜𝑠 𝜔𝑡 + (𝑃1 − 𝑃3) 𝑠𝑖𝑛𝜔𝑡
(𝑃1 + 𝑃3) 𝑐𝑜𝑠 𝜔𝑡 − (𝑃2 − 𝑃4) 𝑠𝑖𝑛𝜔𝑡

 

EQUATION 4-10 

The peak pressure at time (𝑡 + 𝑑𝑡) occurs at (𝑧 + 𝑑𝑧) thus in the same manner it can 

be shown that: 

𝑡𝑎𝑛(𝑘𝑧 + 𝑘𝑑𝑧) =  
(𝑃2 + 𝑃4)(𝑐𝑜𝑠𝜔𝑡 − 𝜔𝑑𝑡. 𝑠𝑖𝑛𝜔𝑡) + (𝑃1 − 𝑃3)(𝑠𝑖𝑛𝜔𝑡 + 𝜔𝑑𝑡. 𝑐𝑜𝑠 𝜔𝑡)
(𝑃1 + 𝑃3)(𝑐𝑜𝑠𝜔𝑡 − 𝜔𝑑𝑡. 𝑠𝑖𝑛𝜔𝑡) − (𝑃2 − 𝑃4)(𝑠𝑖𝑛𝜔𝑡 + 𝜔𝑑𝑡. 𝑐𝑜𝑠 𝜔𝑡)

 

EQUATION 4-11 
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Assuming 𝑑𝑧 is small (tan(𝑘𝑑𝑧) ≈ 𝑘𝑑𝑧) and applying a double angle formula then:  

𝑑𝑧 =
1
𝑘
𝑡𝑎𝑛(𝑘𝑧 + 𝑘𝑑𝑧) − 𝑡𝑎𝑛 (𝑘𝑧)

1 + 𝑡𝑎𝑛(𝑘𝑧) 𝑡𝑎𝑛 (𝑘𝑧 + 𝑘𝑑𝑧)
 

EQUATION 4-12 

The apparent wave speed is then: 

𝑐 =
1
𝑘𝑑𝑡

𝑡𝑎𝑛(𝑘𝑧 + 𝑘𝑑𝑧) − 𝑡𝑎𝑛 (𝑘𝑧)
1 + 𝑡𝑎𝑛(𝑘𝑧) 𝑡𝑎𝑛 (𝑘𝑧 + 𝑘𝑑𝑧)

 

EQUATION 4-13 

Substituting in the two tan terms (Equation 4-9 and Equation 4-11) the apparent 

wave speed can be described, under the assumption that 𝑑𝑡 is vanishingly small, in 

terms of the forward and backward components of pressure:  

𝑐 =
𝜔
𝑘
∙

𝑃12 + 𝑃2
2 − 𝑃32 − 𝑃42

�𝑃12 + 𝑃22+𝑃32 + 𝑃42 + 2(𝑃1𝑃3 + 𝑃2𝑃4) 𝑐𝑜𝑠 2𝜔𝑡+2(𝑃1𝑃4 − 𝑃2𝑃3) 𝑠𝑖𝑛 2𝜔𝑡�
 

EQUATION 4-14 

Equation 4-14 is a general solution for the apparent wave speed in a cylindrical 

vessel. In a system where there are no backward travelling waves (𝑃3 = 𝑃4 = 0) the 

solution simplifies to 𝜔
𝑘

, the fundamental wave speed (i.e. Moens-Kortweg wave 

speed), and when the system has only backward travelling waves (𝑃1 = 𝑃2 = 0) the 

solution simplifies to −𝜔
𝑘

. Also in the special case that produces standing waves 

(𝑃1 = 𝑃2 = 𝑃3 = 𝑃4) the apparent wave speed is zero.  

Equation 4-14 demonstrates that the apparent velocity of a propagating wave is not 

only dependent on the characteristics of the forward and backward travelling waves 

but also on time. This result is by no means intuitive and has potentially far reaching 

implications.  

Aortic wall stiffness is often extrapolated from the apparent wave speed (measured 

most commonly using the foot to foot method). However, Equation 4-14 suggests 

that the apparent wave speed is not only related to the material properties but also on 
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the reflection characteristics of the system and the positions at which the pressure is 

measured (since the apparent wave speed is dependent on time the wave does not 

appear to travel at a constant speed if measured by the transmission of the pressure 

trace). It also has implications in terms of FSI simulations. In models where the 

boundary conditions are described as pressure and flow waves a time lag must be 

incorporated into the outlet boundary condition to account for the propagation of the 

wave. In general this time lag will be approximated from the distance to the outlet 

and the fundamental wave speed in the given system. However, Equation 4-14 

illustrates that this may not be a reasonable approach and could instead introduce 

spurious wave reflections into the computational domain, further illustrating the 

merits of reduced order boundary conditions.  

In the system of interest it is important to understand whether the apparent wave 

speed is governed predominantly by the reflection characteristics, the effects of time 

or a combination of both. The relative energy and phase shift associated with the 

forward and backward travelling pressure waves, at the first 10 harmonics, are 

compared in Figure 4-7. The average magnitude ratio of the forward and backward 

travelling waves is 0.34 (Table 4.2). This corresponds to the relative decrease in the 

apparent wave speed when compared to the fundamental wave speed (34% 

reduction), suggesting that the apparent wave speed is strongly governed by the 

relative strength of the reflected waves. To investigate the influence of time on the 

apparent wave speed a pragmatic approach is taken. The pressure wave is plotted at 

five evenly spaced points along the cylindrical vessel (Figure 4-8) and the associated 

apparent wave speeds are compared. Qualitatively the wave appears to be moving at 

a constant speed, while a comparison of the apparent wave speeds gives a variation 

of approximately 6% along the length of the cylinder. This is deemed to be 

negligible and suggests that in the context of aortic fluid mechanics the apparent 

wave speed can be assumed to be constant with time. 
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FIGURE 4-7 – COMPARISON OF THE NORMALISED ENERGY IN THE FORWARD  

AND BACKWARD TRAVELLING PRESSURE WAVES  

 

Harmonic  

number 

Magnitude  

Ratio 

 Harmonic  

number 

Magnitude  

Ratio 

1 0.455  6 0.320 

2 0.363  7 0.319 

3 0.339  8 0.319 

4 0.328  9 n/a 

5 0.325  10 0.318 

TABLE 4.2 – RATIO OF ENERGY IN THE FORWARD AND BACKWARD  

TRAVELLING WAVES FOR THE FIRST 10 HARMONIC FREQUENCIES   
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FIGURE 4-8 – ANALYTICAL PRESSURE WAVE AT A NUMBER OF EVENLY  

SPACED POINTS ALONG THE CYLINDER 

The pressure and mass flow predictions for three FSI configurations are compared to 

the analytical solution in Figure 4-9. The first model (FSI-Real) aims to capture the 

true physics of the system, thereby including all non-linear geometrical effects. The 

second model (FSI-Ana) aims to replicate the analytical solution as closely as 

possible. The transient (inertial) effects and the bending stiffness of the structure are 

found to have a negligible impact on the solution. However, neglecting the non-

linear geometrical effects produces a marked improvement in the agreement between 

the FSI and analytical solution. Thus the only difference between FSI-Real and FSI-

Ana is that the non-linear geometrical effects are not considered in the latter. Finally 

the third model combined the FSI-Ana configuration with an apparent inviscid fluid 

(viscosity of 1x10-6 Pas, termed FSI-Ana-Inviscid). The results demonstrate good 

agreement with the analytical solution when the non-linear geometric effects are 

neglected but a greater variation is seen when these effects are considered (Figure 

4-9). In both FSI models the inlet pressure wave form appears to be clipped, at 

approximately 0.07 s (Note: the clipping appears to occur later in the FSI-Real 

configuration), when compared to the analytical solution. It is proposed that this 

pressure clipping is the result of a wave reflection from the Windkessel termination. 

This would also explain why the clipping occurs later in FSI-Real as the wave speed 

in the system will be lower due to the effects of wall thinning. Considering FSI-Ana, 

the propagating wave must travel 0.4 m in approximately 0.07 s, relating to a wave 

speed of 4.44 ms-1. The apparent wave speed (Equation 4-6) in the FSI cylinder, 

calculated from the transmission of the pressure waves, is 4.44 ms-1. This variation in 
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the apparent and fundamental wave speeds has been discussed previously. One might 

argue that both the compressible and the analytical solutions capture the forward and 

backward travelling waves and thus should predict any pressure clipping associated 

with a reflected wave. However, the reflection characteristics at the outlet boundary 

are subtly different in the three systems. In both the compressible and analytical 

solution the characteristic impedance of the cylinder is constant (cross-sectional area 

and fundamental wave speed are constant in both models).  In contrast the 

deformation of the wall, in the FSI simulations, changes the impedance of the vessel 

with time, thereby changing the reflection characteristics of the FSI-Windkessel 

interface.    

 

FIGURE 4-9 – FLUID STRUCTURE INTERACTION CFD VS. ANALYTICAL SOLUTION: 

INLET AND OUTLET PRESSURE AND MASS FLOW WAVEFORMS 

Results demonstrate that the incompressible and compressible fluid simulations are 

performing as the analytical solution giving confidence in the CFD predictions in 

more complex geometries for which there is no analytical solution. The results also 

identify a possible limitation in the compressible fluid analogy as, in systems that 

undergo large deformations, it may not be able to accurately capture the reflection 

characteristics of a full FSI simulation.  
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COMPARISON OF ANALYSIS STRATEGIES 4.3.6 

The flow field of a uniform cylinder, with dimensions similar to that of a human 

aorta (Figure 4-3), has been solved using three, increasingly complex, analysis 

strategies. The rigid walled simulations required 3 heart cycles3 to reach a periodic 

solution while the FSI model required 2 cycles, which involved two simulations. The 

geometry was pressurised in an initial simulation, before being restarted with the 

appropriate inlet flow wave. The most complex methodology required approximately 

30 times more computational time per cycle than the rigid walled models.  

 FSI Compressible Fluid Incompressible Fluid 

Number of Cycles  

to reach Periodicity 
2 3 3 

Computational Time 

to reach Periodicity 
60hrs 24mins 3hrs 25mins4 2hrs 48mins 

TABLE 4.3 - SUMMARY OF COMPUTATION EXPENSE FOR THE UNIFORM CYLINDER 

The pressure and mass flow waveforms for each analysis method are compared in 

Figure 4-10. The results are for a fluid with a viscosity appropriate to blood and the 

FSI configuration is that which best captures the true physics of the system (FSI-

Real). The greatest variation in the predicted pressures arise at the inlet, with the 

incompressible and compressible fluid models resulting in an over-prediction of 

18.87% and an 11.05% respectively when compared to the FSI results. These 

differences occur at around 0.07 seconds when there is believed to be a wave 

reflection which is not fully captured by the rigid walled models (as discussed 

previously). The outlet mass flow and pressure waveforms have a similar form in all 

analysis methods but their peak magnitudes vary (Figure 4-10). The incompressible 

fluid model predicts the largest values of pressure, while the FSI model predicts the 

lowest and the compressible fluid model falls between the two.  

                                                 
3 All simulations were solved on a Dell PowerEdge T710 with 2 quad core 2.93 GHz Intel Xeon 
X5570 processors. 
4  The speed up maybe somewhat exaggerated since the Incompressible and Compressible fluid 
models were run on 2 processors, while the FSI model was run on 4 processors. To account for this 
difference a linear scaling was applied to the solver time of the rigid models. 
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FIGURE 4-10 - COMPARISON OF PRESSURE AND MASS FLOW RATE AT THE INLET AND OUTLET, 

 AS PREDICTED BY THE DIFFERENT CFD METHODOLOGIES  

The trends seen in the pressure and mass flow curves (Figure 4-10) are also apparent 

in the peak and domain averaged velocities evaluated at a number of points across 

the cardiac cycle (Figure 4-11). As one would expect, the greatest variation is seen at 

peak systole when the volume of the FSI fluid domain is at its largest (Figure 4-11 - 

B) while during diastole the predicted velocities are in closer agreement. 
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FIGURE 4-11 - COMPARISON OF MAXIMUM AND AVERAGE VELOCITY AS PREDICTED BY EACH CFD 

METHODOLOGY, AT A NUMBER OF POINTS IN THE CARDIAC CYCLE: 

(A = EARLY SYSTOLE, B = PEAK SYSTOLE, C = LATE SYSTOLE, 

 D = MID DIASTOLE AND E = END DIASTOLE). 

As one would expect analysis of the maximum and wall averaged WSS values across 

the cardiac cycle (Figure 4-12) have a similar trend to the velocity. 

Although both rigid walled approaches overpredict the computed variables, 

compared to the FSI simulation, it has been demonstrated that the compressible fluid 

model is able to capture some of the wave propagation effects (such as accurately 

predicting the pressure lag) and, in doing so, offers an improved rigid walled 

analysis method.  

It now remains to investigate these analysis strategies in realistic geometries with 

more complex flow structures.    
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FIGURE 4-12 - COMPARISON OF MAXIMUM AND AVERAGE WALL SHEAR STRESS AS PREDICTED BY EACH 

CFD METHODOLOGY, AT A NUMBER OF POINTS IN THE CARDIAC CYCLE: 

(A = EARLY SYSTOLE, B = PEAK SYSTOLE, C = LATE SYSTOLE, 

 D = MID DIASTOLE AND E = END DIASTOLE). 

NATIVE AORTA 4.4 

To investigate the influence of a complex geometry the patient-specific aorta, 

previously presented in Chapter 3, is employed in the following section to 

investigate the three methodologies described above. 

All FSI implementations from here on consider nonlinear geometric effects such as 

wall thinning.  

FLUID AND STRUCTURAL PROPERTIES 4.4.1 

The incompressible fluid and structural material properties were kept the same as for 

the uniform cylinder.  

RIGID WALLED, COMPRESSIBLE FLUID PROPERTIES 4.4.1.1 

The compressible fluid model was tuned (as described in Chapter 3) to produce a 

wave speed of 7 ms-1 which is the same as the approximated average wave speed in 
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the FSI aorta model. The temperature was set to a constant value of 310.15 K, which 

when combined with the required wave speed and universal gas constant, resulted in 

a molar mass of 52.60 kg mol-1. 

FLUID AND MECHANICAL BOUNDARY CONDITIONS 4.4.2 

FLUID BOUNDARY CONDITIONS 4.4.2.1 

As for the cylinder, the patient-specific flow waveform is applied at the inlet as a flat 

velocity profile and the outlet pressures are described by 3 element Windkessel 

models. The Windkessel parameters (Table 4.4) are those tuned in Chapter 3 to 

match the patient specific clinical data.  

 Ri [kg·m-4·s-1] C [m4·s2·kg-1] R [kg·m-4·s-1] 

BCA 1.422x107 5.970x108 3.451x10-9 

LCC 1.585x108 1.407x109 1.601x10-9 

LSUB 5.981x107 1.567x109 2.111x10-9 

DescAo 1.308x107 2.221x108 1.611x10-8 

TABLE 4.4 – WINDKESSEL PARAMETERS FOR THE PATIENT-SPECIFIC AORTA 

FSI MECHANICAL CONSTRAINTS 4.4.2.2 

The aorta is longitudinally tethered at each of the fluid boundaries, while a number 

of physiological constraints are applied to the inlet, outlets and at 3 additional rings, 

evenly distributed (and normal to the centreline) along the descending aorta (Figure 

4-13). As for the cylinder the constraints ensure that the average displacement in the 

local x and y direction, on each constraint plane, is zero i.e. the aorta is free to pulse 

about the centreline but is not able to translate, which in reality would be prevented 

by the external tissue support. The ascending aorta and aortic arch are intentionally 

left free from such constraints, due to the reduced tissue support in these regions 

[60]. No attempt has been made to simulate the motion of the inlet plane due to the 

motion of the heart. 
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FIGURE 4-13 - ILLUSTRATION OF THE NATIVE AORTA MODEL  

WITH APPLIED BOUNDARY CONDITIONS AND MESH DENSITY 

MESH CONSTRUCTION 4.4.3 

As in the cylindrical geometry, the fluid domain is meshed with tetrahedral elements 

in ICEM CFD (ANSYS Inc, Canonsburg, USA). The maximum element edge length 

is set to 1x10-3 m resulting in a computational grid of approximately 500,000 

elements (Figure 4-13).  

The structural mesh has the same element edge length as the fluid domain and 

contains approximately 40,000 elements.   
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SOLUTION SETTINGS 4.4.4 

A time-step of 5 ms is used and once again the results for the incompressible and 

compressible fluid analyses are consistent with those obtained using a smaller time-

step of 1ms. 

COMPARISON OF ANALYSIS STRATEGIES 4.4.5 

The flow field of a patient-specific aorta is predicted using the three CFD 

methodologies discussed previously. As the focus of this chapter is on translation to 

the clinic Table 4.5 summarises the number of cardiac cycles required to reach a 

periodic state for each methodology and the corresponding run times. The most 

advanced methodology (FSI) requires 7 cycles to reach a period state or 145.5 hours, 

while the incompressible and compressible fluid models requires only 3 cycles and 

takes just 6.8 and 7.8 hours respectively (Table 4.5). It is clear immediately that for a 

clinical application the use of an FSI model is limited, by time constraints, for use in 

elective surgery cases. However, the computational and temporal expense of a 

compressible fluid or incompressible fluid model suggests they may be more feasible 

for clinical use.  

 FSI Compressible Fluid Incompressible Fluid 

Number of Cycles  

to reach Periodicity 
7 3 3 

Computational Time 

to reach Periodicity 
145 hrs 30 mins 7 hrs 48 mins 6 hrs 48 mins 

TABLE 4.5 – SUMMARY OF COMPUTATION EXPENSE FOR THE NATIVE AORTA 

The computed pressures and mass flow rates for each of the methodologies are 

compared at the model boundaries, all give comparable results (Figure 4-14). This 

does not appear to support the commonly held belief that the propagation effects due 

to the compliance of the aortic wall have a significant effect on the form and 

magnitude of the travelling waves. The peak pressure in the ascending aorta of the 

rigid-walled incompressible fluid simulation is 85.13 mmHg, 3.8% higher than that 
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in the ‘gold-standard’ FSI simulation. The compressible fluid analogy, in capturing 

some of the wave transmission characteristics, reduces the error to 1.2%.  There is a 

noticeable time-lag between the pressure and flow waveforms at the outlets, 

compared with those at the inlet, in both the FSI and compressible fluid 

methodologies. This is, of course, absent in the incompressible fluid methodology. 

The peaks of the pressure and flow waves in the branches (Figure 4-14 – B, C and D) 

in the FSI model occur marginally earlier than in the compressible fluid model. This 

is a known limitation of the compressible fluid methodology. The wave speed is 

related to the compressibility of the fluid, which is constant throughout the domain, 

while in the FSI case (and in reality) the wave speed will increase in the branches 

due to the reduction in vessel radius. 
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FIGURE 4-14 - COMPARISON OF PRESSURE AND MASS FLOW RATE AT THE BOUNDARIES, 

 AS PREDICTED BY THE DIFFERENT CFD METHODOLOGIES 
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The FSI model gives a maximum change in radius of 0.6mm (corresponding to a 6% 

change in radius), while the analytical approximation (Equation 4-5) gives a change 

in radius of 0.58 mm.  The agreement between analytical and numerical results 

suggest that the FSI deformations are accurate and reasonable. 

It is important to not only understand whether the periodic forms of the flow and 

pressure waves are captured accurately by the alternative methodologies but also to 

know if the complex features within the flow field are accurately resolved by the 

simplified model. If the aim is to answer a clinical question one must fully 

understand each model’s strengths and limitations in order to determine the most 

appropriate for a specific case. In an attempt to compare the more complex features 

of the flow field the fluid velocity, helical flow index (HFI), wall shear stress (WSS) 

and residence times are evaluated.  

Figure 4-15 and Figure 4-16 summarise the maximum and average velocity and HFI 

at a number of points in the cycle.  

 

FIGURE 4-15 – COMPARISON OF MAXIMUM AND AVERAGE VELOCITY AS PREDICTED BY EACH CFD 

METHODOLOGY, AT A NUMBER OF POINTS IN THE CARDIAC CYCLE: 

(A = EARLY SYSTOLE, B = PEAK SYSTOLE, C = LATE SYSTOLE, 

 D = MID DIASTOLE AND E = END DIASTOLE). 

As one might expect, the simplified models over-predict the maximum velocities in 

the fluid domain during systole (Figure 4-15). This is a direct result of vessel dilation 

and the resulting increase in the volume of the FSI fluid domain. Both the 
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compressible and incompressible fluid models show good agreement with the peak 

velocities during diastole (when the difference in the fluid volume is minimised). In 

contrast the HFI shows better agreement during systole, which could be explained by 

the elastic recoil of the aorta producing increased helical flow during diastole (Figure 

4-16). 

 

FIGURE 4-16 – COMPARISON OF HFI AS PREDICTED BY EACH CFD METHODOLOGY AT A NUMBER OF 

POINTS IN THE CARDIAC CYCLE: INCLUDING THE RANGE REPORTED FOR  

A HEALTHY AORTA BY MORBIBUCCI ET AL. (A = EARLY SYSTOLE,  

B = PEAK SYSTOLE, C = LATE SYSTOLE, D = MID DIASTOLE  

AND E = END DIASTOLE). 

Table 4.6 summarises the maximum and average residence times for the different 

methodologies. The maximum residence time is less for the FSI model than for the 

rigid-walled simulations. However, the average residence time is greater in the FSI 

simulation when compared to the rigid walled models. There is a 33% and 36% 

difference in the average residence time predicted by the compressible and 

incompressible fluid simulations respectively compared to the FSI model. This is not 

surprising since both the average and peak velocities for the rigid models are greater 

than for the FSI simulation (Figure 4-15). What is surprising is that even though the 

maximum and average velocities are larger, suggesting that the particles should 

move through the domain faster, the maximum residence time in the rigid walled 

models is greater than the FSI simulation. One possible explanation for this is that 
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the motion of the wall in the FSI model prevents particles remaining in the near wall, 

low velocity, region. 

 FSI Compressible Fluid Incompressible Fluid 

Max Residence time (s) 1.537 2.116 2.108 

Average Residence Time (s) 0.336 0.225 0.214 

TABLE 4.6 – SUMMARY OF RESIDENCE TIME. 

COMPARISON OF CFD METHODOLOGIES 

In cardiovascular fluid dynamics, for reasons explained later, it is common to use 

wall shear stress (WSS) as an evaluation parameter in selecting alternative 

intervention options or in device design. Figure 4-17 evaluates the maximum and 

domain averaged WSS in each model at a number of points throughout the cardiac 

cycle, while Figure 4-18 and Figure 4-19 depict the distribution of WSS at peak 

systole, and end diastole, respectively. The magnitude of WSS in the FSI simulation 

differs from the alternative approaches by up to 29% at peak systole. However, the 

distribution of WSS peak systole is comparable in all three models, with regions of 

high WSS on the lesser curvature of the aortic arch and through the slight 

constriction (Figure 4-19 - Box) in the upper section of the descending aorta, whilst 

regions of low WSS are predicted at the entrance to the left subclavian artery (Figure 

4-18). This region of low wall shear stress is also apparent at end diastole (Figure 

4-19) suggesting the flow detaches from the wall in this area at peak systole and end 

diastole. 
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FIGURE 4-17 - COMPARISON OF MAXIMUM AND AVERAGE WALL SHEAR STRESS AS PREDICTED BY EACH 

CFD METHODOLOGY, AT A NUMBER OF POINTS IN THE CARDIAC CYCLE: 

(A = EARLY SYSTOLE, B = PEAK SYSTOLE, C = LATE SYSTOLE, 

 D = MID DIASTOLE AND E = END DIASTOLE.) 

Although errors in the absolute magnitudes of WSS in the rigid-walled models are as 

much as 29% for this specific patient geometry, this might nevertheless be within the 

bounds of our ability to interpret the results in the clinical context. It is likely that 

trends and changes, associated with prospective interventions for example, will be 

well-predicted by the simpler analyses, and this might be very important if 

simulations for a range of alternatives configurations need to be performed.  

A particularly relevant example is identifying the optimal anastomotic location for 

the outflow cannula of an LVAD. In the following section the comparison of the 

three analysis methods is extended to a patient-specific aorta with the inclusion of an 

LVAD cannula.  
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FIGURE 4-18 - COMPARISON OF WALL SHEAR STRESS AT PEAK SYSTOLE  

(FSI – LEFT, COMPRESSIBLE FLUID – MIDDLE AND INCOMPRESSIBLE FLUID – RIGHT) 
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FIGURE 4-19 - COMPARISON OF WALL SHEAR STRESS AT END DIASTOLE  

(FSI – LEFT, COMPRESSIBLE FLUID – MIDDLE AND INCOMPRESSIBLE FLUID – RIGHT) 
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ASSISTED AORTA 4.5 

To simulate the flow field of an assisted aorta under the action of an LVAD (the 

Berlin Heart INCOR® LVAD) an idealised representation of the outflow cannula 

was created in ICEM CFD (ANSYS Inc., Cannonsburg, USA). The cannula was 

attached to the ascending aorta of the patient-specific aortic geometry, used in the 

previous section. The ascending aorta was chosen as the anastomotic site as this has 

been shown to be the most benficial location in both numerical and mock circulation 

models [11]. The assisted aortic geometry is shown in Figure 4-20. 

All fluid and structural properties are chosen to be consistent with the native 

condition. 

FLUID AND MECHANICAL BOUNDARY CONDITIONS 4.5.1 

FLUID BOUNDARY CONDITIONS 4.5.1.1 

The Windkessel parameter values are those used in the native condition (Table 4.4) 

and the inlet flow waveform (Figure 4-20) is taken from a previously validated 0D 

model of the cardiovascular system under support from the Berlin Heart INCOR® 

LVAD [53].  The LVAD rotating rate is tuned, using the 0D model, to produce the 

same integral volume flow rate as in the native case (ω=6500 rpm) and the scale 

used to plot the mass flow in Figure 4-20 is the same as that used in the native case 

to illustrate the near steady flow of the assisted aorta. The small degree of residual 

pulsatility is due to the weak contraction of the native heart.   

In previously published work the author demonstrated the importance of applying a 

real LVAD velocity profile when evaluating the flow field of an assisted aorta [16]. 

For this reason the velocity profile of the INCOR® [23] is scaled to follow the given 

flow rate and is employed in all methodologies (Figure 4-20). The aortic valve is 

modelled as a wall, simulating a severely diseased left ventricle, as might apply 

immediately after LVAD implantation. 
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FIGURE 4-20 – ILLUSTRATION OF THE ASSISTED AORTIC GEOMETRY  

WITH APPLIED BOUNDARY CONDITIONS 

FSI MECHANICAL CONSTRAINTS 4.5.1.2 

The mechanical constraints applied at the inlet of the native aorta are not 

physiologically realistic for the assisted case. The fluid in the ascending aorta is no 

longer moving parallel to the aortic wall but instead is directed across the aorta and 

impacts on the inner wall. This flow direction results in a non-uniform displacement 

of the wall and hence the average displacement in the local x and y direction would 

not be expected to be zero.  However, the application of average zero displacement 

constraints are believed to be realistic at the outlets and down the descending aorta 

(Figure 4-20) as the flow becomes more organised and develops a parabolic type 

profile. The LVAD cannula and the aortic inlet are fixed in space and time. Although 

this is not exactly physiological it is believed to be a reasonable approximation. 
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MESH CONSTRUCTION 4.5.2  

The computational domain was discretised in the same manner as the native aorta, 

with the fluid domain consisting of approximately 750,000 tetrahedral elements and 

the structural domain composed of approximately 50,000 triangular shell elements.  

COMPARISON OF ANALYSIS STRATEGIES 4.5.3 

The assisted aortic flow field is solved using the three CFD methodologies described 

earlier in this chapter. A summary of the computational expense for each simulation 

method is tabulated in Table 4.7. The FSI methodology required more cycles to 

reach a periodic state, although the difference in the number of required cycles is 

reduced in the assist case when compared to the native case (Table 4.5). The FSI 

simulation requires approximately 20 times more computational time than the rigid 

models. The increased computational time of all assisted cases when compared to the 

native case, is due to the increased number of elements rather than any difficulties 

associated with numerical convergence. 

 FSI Compressible Fluid Incompressible Fluid 

Number of Cycles  

to reach Periodicity 
8 6 6 

Computational Time 

to reach Periodicity 
288 hrs 12 mins 15 hrs 31 mins 10 hrs 58 mins 

TABLE 4.7 - SUMMARY OF COMPUTATION EXPENSE FOR THE ASSISTED AORTA 

The computed pressure and mass flow waveforms, at the model boundaries, are 

shown in Figure 4-21. The plot scales are preserved from the native case to illustrate 

the differences induced by the LVAD.  
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FIGURE 4-21 – COMPARISON OF PRESSURE AND MASS FLOW RATE IN THE ASSISTED AORTA 

(RED – FSI, BLUE – COMPRESSIBLE FLUID, GREEN – INCOMPRESSIBLE FLUID) 
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As one would expect in a system with minimal pulsatility the three methodologies 

produce very closely matched results (Figure 4-21). The largest differences appear in 

the predicted inlet pressure waveform with a maximum percentage difference of less 

than 2% when comparing the rigid walled models to the ‘Gold Standard’ FSI 

simulation.  

The maximum and domain averaged velocities and wall shear stresses are also 

closely matched in all three cases (Figure 4-22 and Figure 4-23). The largest 

variation in peak velocity occurs in the compressible fluid model at peak flow, where 

the percentage difference compared to the ‘Gold Standard’ FSI model is 1.7% 

(Figure 4-22). Both incompressible and compressible fluid models over-predict the 

average velocity in the domain by maximum percentage differences of 10% and 

11.4% respectively. These differences may appear large but they are in fact well 

within the range of physiological variation and, if one considers the magnitude of the 

velocities, it is apparent that the differences are small (maximum error in the mean 

velocity is approximately 0.03 ms-1).  

 

FIGURE 4-22 - COMPARISON OF MAXIMUM AND AVERAGE VELOCITY AS PREDICTED BY EACH CFD 

METHODOLOGY, AT A NUMBER OF POINTS IN THE CARDIAC CYCLE: 

(A = PEAK FLOW, B = MINIMUM FLOW, C = END OF CYCLE.) 

The peak and mean wall shear stresses demonstrate a similar trend, with peak values 

well-predicted by all the models and the rigid systems over-predicting the mean wall 
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shear stresses. However, the compressible fluid model produces consistently better 

approximations of the averaged wall shear stress. A maximum percentage difference 

in the peak wall shear stress, of 0.99%, occurs in the compressible fluid model at 

peak flow, while the maximum percentage difference in the mean wall shear stress of 

13.1% occurs in the incompressible fluid model at minimum flow. Wall shear stress 

is an important parameter when considering the haemodynamics of an assisted aorta. 

It is a recognised factor associated with the development of atherosclerosis and could 

be important when considering the potential for endothelial cell or wall damage 

induced by continuous flow LVADs [25].  

 

FIGURE 4-23 - COMPARISON OF MAXIMUM AND AVERAGE WALL SHEAR STRESS AS PREDICTED BY EACH 

CFD METHODOLOGY, AT A NUMBER OF POINTS IN THE CARDIAC CYCLE: 

(A = PEAK FLOW, B = MINIMUM FLOW, C = END OF CYCLE.) 

As well as reporting the average and maximum values of wall shear stress Figure 

4-25 and Figure 4-24 compare the predicted distribution of wall shear stress both at 

peak flow and at the end of the cardiac cycle respectively. All models have a similar 

trend, with the highest wall shear stresses occurring in the ascending aorta and 

reducing in magnitude along the length of the aorta. The peak magnitudes of wall 

shear stress do not occur directly opposite the cannula anastomosis but instead occur 

slightly upstream on the lesser curvature of the aortic arch. This may be a result of 

applying a real LVAD profile which has a strong radial velocity component causing 

the fluid in the cannula to swirl.  
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All three methodologies illustrate there are regions of high wall shear stress in the 

ascending aorta, under the aortic arch and in the aortic valve region at the end of the 

cycle. However, the incompressible fluid model predicts the location of the high wall 

shear stress on the valve plane to occur at a different position compared to the 

alternative methodologies (Figure 4-25 - rectangles).  Regions of low wall shear 

stress are apparent around the cannula anastomosis, at the branching point of the left 

common carotid and the left subclavian artery, and in the aortic valve region, at both 

points in the cardiac cycle. All three methodologies resolve these regions of low 

shear, which could be indicative of sites prone to the development of atherosclerosis 

(Figure 4-24 and Figure 4-25).  

In general, the compressible fluid model results in a better approximation of the wall 

shear stress distribution, assuming the FSI model to be the ‘Gold Standard’. 
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FIGURE 4-24 - COMPARISON OF WALL SHEAR STRESS AT PEAK FLOW  

(FSI – LEFT, COMPRESSIBLE FLUID – MIDDLE AND INCOMPRESSIBLE FLUID – RIGHT) 
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FIGURE 4-25 - COMPARISON OF WALL SHEAR STRESS AT THE END OF THE CARDIAC CYCLE  

(FSI – LEFT, COMPRESSIBLE FLUID – MIDDLE AND INCOMPRESSIBLE FLUID – RIGHT) 
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The HFI for each methodology, computed at three points in the cardiac cycle, is 

depicted in Figure 4-26. At each point in time, the HFI is greater than, or at the upper 

bound of, the range reported by Morbiducci et al. for healthy individuals [66]. This 

is perhaps unsurprising since there is a significant amount of swirl generated as the 

jet of blood leaving the cannula is propelled against the aortic wall. The 

compressible fluid model produces a better prediction of the FSI HFI than the 

incompressible fluid model, suggesting that the helical nature of the flow field is 

more accurately captured by the compressible fluid. Of course, a limitation of the 

HFI is that it is a domain averaged measure and so, although two systems may have 

the same value of HFI, they may have quite different internal flow structures.  

 

FIGURE 4-26 - COMPARISON OF HFI AS PREDICTED BY EACH CFD METHODOLOGY AT A NUMBER OF 

POINTS IN THE CARDIAC CYCLE: INCLUDING THE RANGE REPORTED  

FOR A HEALTHY AORTA BY MORBIBUCCI ET AL.  

(A = PEAK FLOW, B = MINIMUM FLOW, C = END OF CYCLE.) 

In an attempt to identify whether this is the case in the assisted aorta, a comparison 

of the particle path-lines is depicted in Figure 4-27. A grid of 10x10 massless 

particles were released from the cannula inlet at the start of a cardiac cycle and 

followed through the fluid domain over time. As one would expect, the path-lines 

demonstrate that all three methodologies predict similar structures within the flow 

field. A chaotic region is apparent in the ascending aorta where the blood impacts 

onto the aortic wall, while downstream, through the arch and in the descending aorta, 
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the flow becomes more ordered (Figure 4-27). It is also apparent from the path-lines 

that the compressible fluid model better approximates the distribution of particles to 

the upper branches.  

The residence times for particles seeded from the inlet of the cannula (30x30 grid) 

are summarised in Table 4.8. All three methodologies are in close agreement, with a 

maximum difference of less than 2.5% in each case. The trends in residence time are 

consistent with those of velocity; the compressible fluid model generally under-

predicted the peak velocities (Figure 4-22) and consequently the maximum residence 

time is greater.  

 FSI Compressible Fluid Incompressible Fluid 

Max Residence time (s) 1.918 1.962 1.952 

Average Residence Time (s) 0.793 0.776 0.782 

TABLE 4.8- SUMMARY OF RESIDENCE TIME. 
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FIGURE 4-27 – COMPARISON OF MASSLESS PARTICLE PATH-LINES, RELEASED  

FROM THE CANNULA INLET, IN EACH OF THE METHODOLOGIES  

(10X10 GRID OF PARTICLES RELEASED). 

A final comparison of the three methodologies employs an isosurface at peak flow 

(Figure 4-28). The isosurface illustrates regions of the flow field where the fluid 

velocity is 0.85 ms-1. The surfaces are comparable in all cases, with the 

incompressible fluid predicting larger regions of high velocity fluid than the 
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compressible and FSI models. This is to be expected and further demonstrates that 

the compressible fluid model is a useful approximation for the more computationally 

demanding FSI simulation. 

The isosurfaces also illustrate why the maximum values of wall shear stress are not 

located opposite the anastomosis. The fluid entering the aorta has a significant 

degree of swirl, causing the jet of blood to disperse and sending the higher fluid 

velocities towards the lesser curvature of the aortic arch (Figure 4-28). This effect is 

likely to be further enhanced by the fluid recirculating in the region of the aortic 

valve (Figure 4-27). 

 

 

 

 

 

 

 

 

 

FIGURE 4-28- ISOSURFACE OF VELOCITIES GREATER THAN 0.85 MS-1 AT PEAK FLOW 

(RED – FSI, BLUE – COMPRESSIBLE FLUID AND GREEN – INCOMPRESSIBLE FLUID) 

CONCLUSIONS 4.6 

Three CFD methodologies, of varying levels of complexity, were evaluated in; a 

cylindrical vessel, a native patient-specific aorta and a patient-specific aorta under 

left ventricular support. The results were compared and considered for potential 

clinical practicality. 
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In all cases investigated the compressible fluid model, tuned to produce the desired 

wave speed, was able to capture the gross effects of the propagating waves that could 

not be predicted by the standard incompressible fluid simulation and with a much 

reduced computational overhead than a full FSI analysis.  

In the cylindrical vessel, the compressible fluid model accurately predicted the time-

lag associated with the propagating waves but was unable to capture fully the 

reflection characteristics of the FSI simulation. This resulted in different predicted 

forms for the inlet pressure wave. In both the compressible and FSI simulations the 

apparent wave speed, computed from the propagating pressure waves, was 

significantly lower than the fundamental wave speed. A brief analytical investigation 

demonstrated that the apparent wave speed is in fact dependent on not only the 

material properties of the vessel and the fluid but also on the relative magnitude of 

the backward travelling waves and on time. However, in the context of aortic 

simulations, where the wavelength is long compared to the length of the domain, it 

was shown that the apparent wave speed can be assumed constant throughout the 

domain. 

In the patient-specific aorta all analysis strategies produced similar pressure and flow 

waves, suggesting that the magnitude and form of these waves are not significantly 

dependent on the compliance of the aortic wall. This is in contrast to the results from 

the cylindrical vessel and may be due to the curved and tapered geometry of the 

aorta. The predicted waveforms from the compressible fluid model were closer to 

those obtained from the full FSI analysis than to those produced by the more 

common incompressible fluid analysis. Both rigid walled models over-estimate the 

magnitude of the wall shear stress during systole but were able capture the relative 

distribution. 

The assisted aortic flow field has a relatively small degree of pulsatility and as such 

the pressure and flow waveforms were extremely well-predicted by all three 

methodologies. However, the incompressible fluid was found to predict poorly the 

degree of helical flow within the domain, when compared to the FSI analysis. Peak 

values of wall shear stress were in close agreement for all models but the averaged 

wall shear stresses were over-estimated in the rigid walled simulations. As in the 
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native aorta the relative distribution of wall shear stress was captured by the rigid 

models with the compressible fluid analysis resulting in the closest approximation of 

the FSI simulation. 

In general, the compressible fluid analyses, by capturing the gross dynamics of the 

propagating waves, were able to produce reasonable approximations of the pressure 

and flow waveforms when compared to the ‘Gold Standard’ FSI results (especially 

in the physiological geometries). Although the magnitudes of peak and averaged 

wall shear stresses were generally over-estimated the relative distributions were well 

approximated. These results suggest the compressible fluid methodology may offer a 

computationally viable alternative to a full FSI model for diagnosis and, in 

particular, for interventional planning where the analysis of multiple options is 

required. 

 

  



 

 

 



 

 

 

Chapter 5  
LAMINAR VS. TURBULENT 
MOTIVATION 5.1 

A long-standing question, when considering the 3D simulation of aortic 

haemodynamics, is whether a turbulence model is required to predict accurately the 

flow field. If one considers the results presented in Chapter 2, where systems with a 

peak Reynolds number of 3500 are shown to require a turbulence model, it might be 

concluded that a turbulence model is important in the aorta where the Reynolds 

numbers fall above this threshold [75]. However, the FDA benchmark is an idealised 

geometry with features that are known to create complex flow structures (for 

example a sudden expansion), while the curvature of the aorta has a stabilising effect 

[99]. However, it is worth noting that if there is significant torsion in the aortic 

geometry, this will have a destabilising effect on the flow [100, 101]. Additionally, 

the flow waveform in a healthy aorta is pulsatile, whereas the FDA benchmark is a 

steady state system. Turbulence requires time to develop and so it is not clear 

CHAPTER 5 
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whether the turbulent structures would have time to form in a healthy aorta with 

pulsatile flow.   

To illustrate the divided opinion within the scientific community Table 5.1 contains 

a summary of the most recently published papers that predict aortic haemodynamics 

for both healthy and diseased cases. Until 2009 no groups used a turbulence model to 

simulate aortic flows. Since then there has been a difference of opinion, with 

approximately one third of authors reporting the use of a turbulence model. Tan et al. 

conducted a detailed analysis of transient laminar and turbulent simulations, 

compared to in vivo flow measurements in an aortic aneurysm [102]. This group 

demonstrated that the transitional variant of the shear stress transport (SST) 

turbulence model gave a better correlation to the observed flow field than the 

laminar model. In an assisted aorta, Kaufmann et al. showed that a steady state SST 

model was able to capture the flow field to an accuracy of 10%, when compared to 

their in vitro study [103, 104]. The use of a turbulence model agrees with the 

experimental study published by Minakawa et al., where different cardiopulmonary 

bypass cannula designs were compared and turbulence was always apparent in the 

aorta [17]. Feinstein et al. investigated alternative intervention options in a patient 

with aortic coarctation and were able to circumvent the potential requirement for a 

turbulence model by performing a direct numerical simulation [62]. The numerical 

results were compared to in vivo data of flow and area change, with the model 

producing a reasonable approximation. In truth, the application of a direct numerical 

simulation (DNS) is the ideal solution. However, to conduct a DNS Feinstein et al. 

employed 2,208 computational cores, this is far beyond the computing resources 

available to most researchers. 

Table 5.1 includes information on the number of elements used to discretise the fluid 

domains. It is emphasised that this information be viewed with caution, since 

information as to the accuracy of the different element formulations was not always 

available in the literature and thus is not included.    
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Geometry CFD Code Steady/ 
Transient 

Reynolds  
Number 

Laminar/ 
Turbulent 

Number of 
Elements 

Author & 
Date 

Assisted Aorta ANSYS-CFX 
v12.0 

Transient 2230 (mean) 
2550 (peak) 

SAS-SST 3.2 million Brown et al. 
2012 

Thoracic Aorta ANSYS-CFX 
v12.0 

Transient 1037 (mean) 
5833 (peak) 

Laminar 500,000 Brown et al. 
2012 

Idealised Aorta:  
Healthy and assisted 

Fluent 
v6.3 

Both 1140 (mean healthy) 
6155 (mean assisted) 

SST 350,000 Benim et al. [105] 
2011 

Assisted Aorta: 

Cardio bypass 

ANSYS-CFX 

v12.0 

Steady 103 SST 700,000 Stühle et al. [18] 
2011 

Aortic Coarctation: 
Pre and Post surgery 

Non-commercial Transient Not stated DNS 2 million Feinstein et al. [62]  
2011 

Idealised: 
Aortic Coarctation 

Fluent  
v6.3 

Both Not stated k-ω model 450,000 Kadem et al. [106] 
2011 

Aortic Dissection ADINA  
v8.6 

Transient 2866 (peak) Laminar 115,000 Tse  et al. [107] 
2011 

Assisted Aorta ANSYS-CFX  
v12.0 

Transient 970 (peak asc) 
1582 (peak desc) 

Laminar  1.6 million Brown et al. [16] 
2011 

Healthy Aorta Fluent  Both Not stated Laminar Not stated Liu et al.[108]  
2011 

Aortic Dissection: Fluent Transient Not stated Laminar Not stated Karmonik et al. [109] 
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Pre and Post Stent Graft 2011 

Thoracic Aorta Non - commercial Transient Not stated Laminar 110,000 Moireau et al. [60] 
2011 

Thoracic Aorta ACE + Transient 1315 (mean) Laminar 98,000 Wen et al [95] 
2010 

Aortic Dissection ANSYS-CFX  
v11 

Transient 3150 (peak) 
1230 (mean) 

SST 2.7 million Xu et al. [110] 
2010 

Assisted Aorta Star CCM+  
v3.04 

Steady Not Stated Laminar Not stated Osorio et al. [111] 
2010 

Thoracic Aortic 
 Aneurysm 

ANSYS-CFX  
v11 

Transient 400-4000 
(mean 1000) 

Laminar & SST 1.9 million Tan et al. [102] 
2009 

Assisted Aorta ANSYS-CFX 
v11 

Steady Not Stated SST 4.5 million Kaufmann et al. [104] 
2009 

Healthy Aorta and  
Aortic Coarctation 

Non-commercial Transient Not Stated Laminar 1.9 million 
2.6 million 

Kim et al [61] 
2009 

Assisted Aorta Non-commercial Transient Not Stated Laminar 45,000 Bazilevs et al. [63] 
2009 

Thoracic Aorta ADINA Transient Not Stated Laminar 77,000 Markl et al. [112] 
2008 

Assisted Aorta Acusolve Steady Not Stated Laminar 1.5 million Tokuda et al.[113] 
2008 

   TABLE 5.1 – SUMMARY OF AORTIC SIMULATIONS PUBLISHED IN THE LAST 3 YEARS 
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In the following chapter the turbulent question is explored in both a native and an 

assisted aortic geometry. Steady state simulations are employed to conduct mesh 

sensitivity studies under peak flow conditions, with the understanding that this is a 

‘worst case’ scenario. The converged meshes are subsequently used in a transient 

analysis to evaluate the influence of a turbulence model on a pulsatile flow field.  

This approach is clearly valid in the assisted case where the LVAD flow waveform is 

close to steady state. However, it is acknowledged that the use of a steady state 

simulation is a simplification in the native case, where the period of turbulence, if 

present, is likely to be short. 

All steady state turbulent simulations employ the transitional variant of the SST 

which was shown in Chapter 2 to produce good approximations for flows with 

similar Reynolds numbers. It is also the turbulence model of choice for aortic 

simulation (Table 5.1). The transient turbulent simulations all employ the SAS 

version of the transitional SST model. Once again, this model performed well in the 

FDA benchmark (Chapter 2) and has been shown to produce good agreement with 

experimental data when used to solve the flow field in a stenosed vessel [114]. 

NATIVE AORTA – STEADY STATE 5.2 

The patient-specific aortic geometry, described in Chapters 3 and 4, is employed in 

the following work. In an attempt to isolate the effects of the chosen numerical 

model the simplest CFD methodology, a rigid walled incompressible fluid 

simulation, is used. The rigid walled assumption was shown, in Chapter 4, to have a 

relatively small effect in the native aorta model and an even smaller influence in the 

assisted case.  

MODEL CONSTRUCTION 5.2.1 

Steady state simulations are performed at peak flow with an evenly distributed 

velocity profile applied at the inlet, corresponding to a mass flow rate of 0.349 kg/s. 

Flow boundary conditions are applied to the outlets of the supra-aortic arteries, with 

the distribution extracted from clinical flow data (Table 5.2). To ensure the problem 



CHAPTER 5 – LAMINAR VS. TURBULENT 

160 

 

is not over constrained a constant pressure of 65.12 mmHg (corresponding to the 

clinical pressure at peak flow) is applied at the descending aorta outlet. 

 BCA LCC LSUB 

Flow Distribution 0.24 0.08 0.12 

TABLE 5.2 – FRACTION OF FLOW DISTRIBUTION TO THE UPPER BRANCHES  

The peak Reynolds number in the system is approximately 5800 and occurs in the 

ascending aorta.  

MESH CONSTRUCTION 5.2.2 

ICEM CFD (ANSYS, Canonsburg, PA, USA) is used to spatially discretise the fluid 

domain. Tetrahedral elements are used in the core of the fluid domain with prism 

elements employed at the wall, to improve the resolution of the boundary layer.  

Three computational meshes are created using a global scaling factor, which altered 

the maximum element edge length but did not affect the thickness, perpendicular to 

the wall, of the prism layer. A summary of the native aorta meshes is shown in Table 

5.3.  

Mesh Name Number of  

Elements 

Max Element Edge  

Length (m) 

Max Element  

Volume (m3) 

NA-1 236,234 1.5x10-3 2.43x10-9 

NA-2 1,418,809 0.75x10-3 3.81x10-10 

NA-3 9,782,501 0.375x10-3 8.28x10-11 

TABLE 5.3 – MESH INFORMATION FOR THE NATIVE AORTA 

As in the FDA benchmark the distance from the aortic wall to the first computational 

node (y) is defined such that the y+ value is less than 2 (in the native aorta y = 

0.097 mm), thereby ensuring the requirements of the turbulent wall functions are 

met. Six prism layers were defined with an expansion ratio of 1.2. The number of 
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layers and the expansion ratio are chosen to ensure that the tetrahedral mesh does not 

become overly distorted in the branching vessels where the radius is small.    

STEADY STATE LAMINAR 5.2.3 

The two finest steady state laminar simulations failed to achieve the pre-defined 

convergence criteria. This phenomenon was also seen in the FDA benchmark and is 

attributed to transient features developing in the flow field, which are not resolved by 

the spatial resolution of NA-1. 

STEADY STATE SHEAR STRESS TRANSPORT 5.2.4 

All computational meshes achieved the required convergence criteria when solved 

using the steady state SST model. The centreline pressures and resulting solution of 

the Richardson’s extrapolation method are compared in Figure 5-1. The largest 

deviation from the Richardson’s solution is apparent in NA-1, with a mean and 

maximum relative error of 0.60 and 2.82. This demonstrates that all simulations 

produce mesh converged results in terms of the pressure distribution. 

 

FIGURE 5-1 – CENTRELINE PRESSURE, NATIVE AORTA, STEADY SST 

The peak and domain averaged values of velocity vary by a maximum of 4.41%, 

while the peak magnitudes of wall shear stress show more significant variation 

(Figure 5-2). The coarse meshes under-predict the peak wall shear stress by 36.9% 

and 23.8%, illustrating that although NA-1 and NA-2 accurately capture the pressure 

and general trends of velocity they cannot be considered converged if the parameter 
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of interest is the maximum value of wall shear stress (Figure 5-2). Analysis of the 

wall shear stress distribution, in NA-3, illustrates a local region of high wall shear on 

the inner curvature of the aortic arch, which is not accurately captured by NA-1 or 

NA-2 (Figure 5-3). However, neglecting this region, NA-2 produces comparable 

magnitudes and distributions of wall shear stress, while NA-1 shows larger 

discrepancies, especially in the descending aorta, on the inner curvature of the aortic 

arch and around the bifurcation to the left subclavian artery. In the context of this 

thesis mesh NA-2 is considered to be mesh converged and is used in the transient 

comparisons.    

 

FIGURE 5-2 - COMPARISON OF THE MEAN AND MAXIMUM VELOCITY AND WALL SHEAR STRESS,  

AS COMPUTED BY THE DIFFERENT MESHES AND MODELS IN THE NATIVE AORTA.   
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FIGURE 5-3 - COMPARISON OF WALL SHEAR STRESS DISTRIBUTION, NATIVE AORTA, SST 

(THE POOR RENDERING OF NA-3 OCCURS DUE TO THE LARGE NUMBER OF ELEMENTS) 

STEADY STATE: LAMINAR VS. TURBULENT 5.2.5 

Although only the coarse mesh produced numerically converged results when using 

the steady laminar model, a comparison of the laminar and turbulent results is 

included (Figure 5-2, Figure 5-4 and Figure 5-5). Both models predict a similar trend 

in the centreline pressure (Figure 5-4).  

The laminar model predicts a pressure in the ascending aorta of 83.86 mmHg 

compared to 80.1 mmHg in the turbulent simulation; a difference of 4.5%. However, 

since the outlet pressure is prescribed and has no influence on the flow field (except 

to act as a reference pressure), a more realistic comparison of the methods is to 

consider the pressure drop across the domain, in which case the discrepancy is larger 

with the laminar model predicting a 25% greater pressure drop. The peak and 
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domain averaged velocities are more closely matched with a maximum difference of 

3.7% (Figure 5-2). 

 

FIGURE 5-4 – COMPARISON OF LAMINAR AND TURBULENT CENTRELINE PRESSURE, NATIVE AORTA 

Comparison of the velocity contours (Figure 5-5), at a number of planes along the 

aorta, show that both the laminar and turbulent simulations are in agreement as the 

fluid moves through the ascending aorta but the flow field predictions begin to 

diverge in the descending aorta. The contours are orientated such that the right hand 

side of the plane corresponds to the inner surface of the aortic arch. At plane H the 

turbulence model predicts the development of two secondary flow structures, while 

the laminar model resolves only one structure. Further investigation shows that this 

is due to the spatial resolution of NA-1 (only one secondary structure is observed in 

NA-1 when using the SST model) and it could be these complex structures that result 

in the laminar models, with a finer spatial resolution, failing to converge. 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
55

60

65

70

75

80

85

90
Native Aorta, Laminar vs. Turbulent , Centerline Pressure

Distance along the centerline (m)

Pr
es

su
re

 (m
m

H
g)

 

 
Laminar - NA-1
Turbulent  - NA-2



CHAPTER 5 

165 

 

 

FIGURE 5-5 - COMPARISON OF PLANAR VELOCITY CONTOURS AS PREDICTED BY THE STEADY STATE 

LAMINAR (NA-1) AND TURBULENT (NA-2) SIMULATIONS, AT PEAK FLOW. 

At this point it is important to remind oneself that these results consider the worst 

case scenario and in truth these flow rates only occur for a short period during 

systole. It is suggested that there are two important questions that remain 

unanswered: 

1. Under pulsatile conditions is the period of high flow sufficient for 

transitional or turbulent structures to develop in the aorta? 

2. Is a turbulence model appropriate for the periods of the cardiac cycle 

when the flow is in the laminar regime?  

In an attempt to address the second point, i.e. whether the SST model is able to 

accurately capture a laminar flow field, a steady state simulation was performed at a 

peak Reynolds number of approximately 1150. This corresponds to one fifth of the 

peak cardiac flow rate and is within 10% of the average flow rate over the cardiac 

cycle. Mesh NA-2, which was shown to produce mesh independent results at peak 

flow, was used. In this case the laminar model converged and is considered the 
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‘correct’ solution, enabling us to quantify the error associated with using the SST 

model to compute a laminar flow field. 

The centreline pressures are compared in Figure 5-6. The greatest variation is 

apparent in the ascending aorta. The difference in the predicted pressure drop across 

the aorta is 0.1mmHg (less than 10% of the total pressure drop). The centreline 

pressures show the same trend in the ascending aorta and become overlaid at 

approximately 0.08m along the aorta. 

 

FIGURE 5-6- COMPARISON OF LAMINAR AND TURBULENT CENTRELINE PRESSURE,  

NATIVE AORTA AT ONE FIFTH THE PEAK FLOW RATE 

Contours of velocity, at cross-sections along the aorta, are compared for the laminar 

and turbulent predictions under the reduced flow condition (Figure 5-7). The results 

clearly illustrate that, unlike the steady state simulations at peak flow, the laminar 

and turbulent model predict the same structures to occur at all points throughout the 

flow field. This clearly shows that the SST turbulence model is capable of capturing 

the characteristics of a laminar flow field as well as resolving any turbulent 

structures, as shown in Chapter 2 for the FDA benchmark case. 
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FIGURE 5-7 - COMPARISON OF PLANAR VELOCITY CONTOURS AS PREDICTED BY THE STEADY STATE 

LAMINAR AND TURBULENT SIMULATIONS, AT ONE FIFTH OF THE PEAK FLOW (NA-2). 

NATIVE AORTA – TRANSIENT 5.3 

It has been shown that under steady state conditions, the SST model is able to 

capture the characteristics of a laminar flow field (maximum Reynolds number of 

1150) and that at peak aortic flow a turbulence model is required to produce 

numerically converged results. However, it is certainly not clear whether, in the 

physiological case, the period over which these large flow rates occur is sufficient 

for the development of transitional or turbulent structures. 

MODEL CONSTRUCTION 5.3.1 

To investigate this question the transient flow field was solved using the standard 

time-varying Navier-Stokes equations and the SAS-SST model described in Chapter 

2. NA-2, which was shown to produce mesh independent results in the steady state 

analyses, is employed in the following investigation. 
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The transient models are setup as described in Chapter 4, with a prescribed flow rate 

enforced at the inlet and the outlet boundary conditions determined by tuned three 

element Windkessel models. An incompressible, rigid walled simulation with a time-

step of 5ms is used.    

TRANSIENT: LAMINAR VS. TURBULENT 5.3.2 

Pressure and mass flow rates, at the model boundaries, are compared for the laminar 

and turbulent simulations (Figure 5-8). In general the magnitude and form of the 

pressure and mass flow waves are very closely matched, with the greatest variation 

apparent in the ascending aortic pressure. As demonstrated in the steady state case 

this does not mean that the computed internal flow structures are the same in both 

the laminar and turbulent simulations. Velocity contours, at three points in time, on 

planes along the aorta (located as shown in Figure 5-5 and Figure 5-7) have been 

compared in Figure 5-9.  
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FIGURE 5-8 - COMPARISON OF PRESSURE AND MASS FLOW RATE IN THE NATIVE AORTA 

(BLUE – LAMINAR SIMULATION, RED – TURBULENT SIMULATION) 
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At peak systole the two numerical models are in close agreement, with high 

velocities predicted along the inner wall of the arch (Figure 5-9 – C) before the fluid 

detaches from the wall around the ductus diverticulum, resulting in a region of low 

velocity, recirculating fluid (Figure 5-9 - D). The laminar model computes a slightly 

larger region of low velocity fluid in this area when compared to the turbulent 

prediction. At late systole (0.3s), during the deceleration phase, the flow fields of the 

laminar and turbulent simulations show a slight variation as the fluid enters the 

descending aorta but in general the structures are comparable. The largest variation 

is apparent at mid diastole (0.95s). Plane A is the only contour which shows similar 

structures in both the laminar and turbulent simulation at this point in time. In the 

upper region of the descending aorta the laminar model computes an annulus of high 

velocity fluid with a low velocity core, while the turbulent model predicts a more 

evenly distributed profile (Figure 5-9 - E). Further downstream, the turbulence 

model computes a high velocity region near the centre of the cross-section, while the 

laminar model predicts a localised region of low velocity fluid (Figure 5-9 - G). It is 

worth noting that these differences are accentuated in the figure by the small velocity 

scale used to illustrate the velocity distribution at mid diastole.  

To investigate the influence of this variation in the computed velocity fields during 

diastole the cycle averaged wall shear stress was calculated (Figure 5-10).  

The use of a turbulence model results in a lower estimation of the peak cycle 

averaged wall shear stress by 18.6%, when compared to the laminar results. 

However, if the predicted distributions are considered, both the laminar and SAS-

SST model produce very similar results. This is reinforced by a close agreement of 

the planar velocity contours during systole (Figure 5-9). As has been suggested 

throughout this thesis it is the accurate computation of the wall shear stress 

distribution which is considered to be of greatest importance, rather than the absolute 

values which we are arguably unable to draw meaningful conclusions from. 
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FIGURE 5-9 – COMPARISON OF PLANAR VELOCITY CONTOURS AS PREDICTED BY THE LAMINAR  

AND TURBULENT SIMULATIONS AT PEAK SYSTOLE (0.15S),  

LATE SYSTOLE (0.3S) AND MID DIASTOLE (0.95S). 
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FIGURE 5-10 – CYCLE AVERAGED WALL SHEAR STRESS AS PREDICTED BY THE LAMINAR (LEFT)  

AND TURBULENT (RIGHT) NUMERICAL MODELS, NATIVE AORTA, NA-2. 

Considering the results presented in Section 5.3 it is proposed that, when simulating 

aortic flow fields the SAS-SST turbulence model should be used. This model is able 

to capture the important characteristics of a laminar flow field, but more importantly, 

is able to compute the onset, if indeed there is an onset, of turbulence. This is 

extremely important in patients with high flow rates, geometrical abnormalities and 

under exercise conditions when the use of a numerical model which can span the 

laminar and turbulent regimes is vital. 

ASSISTED AORTA – STEADY STATE 5.4 

MODEL CONSTRUCTION 5.4.1 

Unfortunately there is no clinical data available to inform the boundary conditions of 

the assisted aorta case. A pragmatic approach is taken, which uses the computational 

results from Chapter 4 to identify the relative distribution at peak flow. The resulting 

flow distributions (Table 5.4) are similar to those observed clinically (Table 5.2), 

which suggests that the use of Windkessel parameters, tuned to capture the correct 

flow distributions in the native system, is a valid method of describing the boundary 
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conditions in the assisted case. If the flow distributions were significantly altered in 

vivo one might expect the body’s homeostatic systems, such as the cerebral 

autoregulation mechanism, to alter the downstream vessel impedance in an attempt 

to recover the required flow distribution. 

 BCA LCC LSUB 

CFD Flow Distribution 0.25 0.082 0.085 

TABLE 5.4 - FLOW DISTRIBUTION TO THE UPPER BRANCHES,  

EXTRACTED FROM CFD RESULTS IN CHAPTER 4 

Steady state simulations are performed at peak flow with the real INCOR LVAD 

velocity profile applied at the cannula inlet, corresponding to a mass flow rate of 

0.084 kg/s. Flow boundary conditions are applied to the outlets of the great arteries, 

with the distributions computed as described previously (Table 5.4). The reference 

pressure, applied at the descending aorta boundary, is equal to the value used in the 

native case since it has only an additive effect on the computed pressure and does not 

influence the flow field. 

The peak Reynolds number in the cannula is approximately 2550. 

MESH CONSTRUCTION 5.4.2 

Meshes for the assisted aorta are constructed as for the native aorta, with the distance 

to the first node, to ensure a y+ value of less than 2, calculated as 0.075 mm. A 

summary of the computational meshes is included in Table 5.5. 
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Mesh Name Number of  

Elements 

Max Element Edge  

Length (m) 

Max Element  

Volume (m3) 

AA-1 380,999 1.5x10-3 2.633x10-9 

AA-2 2,163,443 0.75x10-3 4.915x10-10 

AA-3 14,132,236 0.375x10-3 1.178x10-10 

AA-2.5 4,651,197 0.5625x10-3 2.427x10-10 

TABLE 5.5 – MESH INFORMATION FOR THE ASSISTED AORTA 

STEADY STATE LAMINAR 5.4.3 

None of the steady state laminar simulations achieved the pre-defined convergence 

criteria, suggesting that the steady laminar model is not appropriate for the assisted 

aortic flow field. 

STEADY STATE SHEAR STRESS TRANSPORT 5.4.4 

The coarsest mesh, AA-1, failed to reach the pre-defined convergence criteria, with 

the RMS residuals of momentum in all three dimensions reaching a plateau at a 

value of 1x10-4. The two finer meshes did achieve the required criteria, suggesting 

that the spatial resolution of the coarse mesh is not sufficient to capture the complex 

features of the flow field.  

In ANSYS-CFX it is possible to output the maximum residual values, which are 

visualised as an isosurface in Figure 5-11 (left – AA-1: SST, left and inset AA-1: 

Laminar). The regions encapsulated by the surfaces represent areas which did not 

reach the convergence criteria, with the different colours denoting the three 

directions of the momentum residuals. As might be intuitively expected, the 

problematic area is as the fluid moves through the anastomosis and encounters a 

feature similar to a sudden expansion (as seen in the FDA benchmark – Chapter 2). 

Velocity vectors, on a plane through the anastomosis, are compared in the 

unconverged (AA-1: SST) and converged (AA-2: SST) solutions (Figure 5-11). It is 
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apparent that the large residual values in AA-1 occur primarily in a region where two 

recirculation zones interact, which is an area of high velocity gradients.    

If a set of residual isosurfaces are created for the steady state laminar simulation on 

mesh AA-1 the entire ascending aorta and aortic arch are filled with regions of 

unconverged momentum residuals (Figure 5-11 – left inset), providing further 

evidence against the use of a steady state laminar simulation to compute the flow 

field of an assisted aorta.  

 

 

 

 

 

 

 

FIGURE 5-11 – ILLUSTRATION OF UNCONVERGED REGIONS OF THE SST (AND LAMINAR - INSET) AA-1 

FLOW FIELD (LEFT) AND A COMPARISON OF THE VELOCITY VECTORS ON A PLANE THROUGH THE 

ANASTOMOSIS WITH AA-2 (RED = U-MOMENTUM, BLUE = V-MOMENTUM AND GREEN = W-MOMENTUM 

RESIDUAL) 

The Richardson’s extrapolation method requires the flow field solution for at least 

three mesh densities. In order to apply this method to the steady state SST model an 

additional mesh was produced with a maximum edge length of 0.5625 mm (halfway 

between that of AA-2 and AA-3). The mesh contained approximately 4.6 million 

elements (Table 5.5) and resulted in a numerically converged solution. The 

centreline pressures, predicted by the different meshes and the resulting 

Richardson’s solution are compared in Figure 5-12. The maximum relative error was 

apparent in AA-2 with a value of 0.228, illustrating that all meshes are converged in 

terms of centreline pressures.  

Isosurface of  

Non-converged Residuals 

Velocity Vectors 

AA-1 

Velocity Vectors 

AA-2 
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FIGURE 5-12 - CENTRELINE PRESSURE, ASSISTED AORTA, STEADY SST 

The peak and domain averaged velocities are depicted in Figure 5-13 and 

demonstrates a good agreement across all the models, with a maximum percentage 

error of 0.98%. In the assisted aorta a key parameter of interest is wall shear stress, 

due to its role in the development of atheroma and vessel wall lesions. The peak and 

wall averaged shear stresses (Figure 5-13) and the predicted distribution, in the 

region of the anastomosis, are evaluated (Figure 5-14). Mesh AA-2 over predicts the 

peak wall shear stress by 6.53%, while the error in mesh AA-2.5 is just 0.53%.  

 

FIGURE 5-13 - COMPARISON OF THE MEAN AND MAXIMUM VELOCITY AND WALL SHEAR STRESS, 

 AS COMPUTED BY THE DIFFERENT MESHES IN THE ASSISTED AORTA. 

Analysis of the wall shear stress distribution shows that, although AA-2 over-

predicts the peak wall shear stress, the general agreement between the three meshes 

is good (Figure 5-14). There are a number of low wall shear stress regions apparent 

around the aortic valve and in the ascending aorta, suggesting areas of flow 
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detachment which could be prone to atherosclerosis. However, it is worth noting that 

the real system is transient and so these regions of low wall shear stress may move 

throughout the cardiac cycle. If this is the case, parameters which capture this 

transient variation, such as the cycle averaged wall shear stress and oscillatory shear 

index (OSI), become important. OSI is not considered in this thesis as the primary 

focus is to simulate aortic haemodynamics in the presence of an LVAD, in which the 

flow field is relatively steady. However, for interest, OSI can be conceptualised as 

the period of the cardiac cycle during which the orientation of the instantaneous 

WSS is different from the average [16, 115].  

 
FIGURE 5-14 – COMPARISON OF WALL SHEAR STRESS DISTRIBUTION, ASSISTED AORTA, SST 

(THE POOR RENDERING OF AA-3 OCCURS DUE TO THE LARGE NUMBER OF ELEMENTS)  

All numerically converged results accurately capture the centreline pressure, the 

global trends in velocity and the distribution of wall shear stress. Although AA-2 

over predicts the peak value of wall shear stress by 6.53%, it is considered that all 

the numerically converged meshes accurately capture the flow field to a higher level 

of detail than with which we are currently able to analyse the results. Thereby all the 

meshes, excluding AA-1, are considered mesh converged and AA-2 will be used in 

the transient comparisons.  
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ASSISTED AORTA – TRANSIENT 5.5 

MODEL CONSTRUCTION 5.5.1 

The following transient simulations were conducted as described in Chapter 4. 

Windkessel elements describe the pressure at the outlet boundaries and a prescribed 

flow wave, in the form of a real LVAD velocity profile, is applied at the cannula 

inlet. An incompressible, rigid walled model is solved on mesh AA-2 and the 

predicted flow fields, when using a transient laminar and SAS-SST model, are 

analysed. 

TRANSIENT: LAMINAR VS. TURBULENT 5.5.2 

The predicted pressure and mass flow rates at the model boundaries are shown in 

Figure 5-15. The laminar model produces a greater amplitude and peak pressure at 

the inlet of the cannula, when compared to the turbulent simulation, with a peak and 

mean relative error (as described in Chapter 2) of 1.64 and 0.593, while the pressures 

at the descending aorta outlet are in closer agreement, with a peak and mean relative 

error of 0.154 and 0.003. The mass flow rate and pressure waveforms in the laminar 

case have an oscillating component which is most noticeable at the boundary to the 

LCC. The source of these oscillations is believed to be a result by the high Reynolds 

number flow. The grid resolution is such that the laminar model resolves some of the 

larger turbulent structures, producing what appears to be chaotic flow in the aorta. 

This is further support of the results presented in Chapter 4, where the flow field 

predictions on a mesh of lower spatial resolution have no such oscillations. It is 

suggested that the LCC suffers most noticeably because there is a smaller volume of 

fluid in the branch and so the inertia of the fluid is smaller resulting in more apparent 

oscillations. However, it is felt that the general agreement, in terms of pressure and 

mass flow rate, is reasonable. 

The maximum and domain averaged velocities are evaluated at three points in the 

cardiac cycle; the start of the cardiac cycle, at peak flow and at minimum flow 

(Figure 5-16). The laminar and turbulent simulations produce similar trends in 

velocity with a maximum variation of less than 5% occurring in the mean velocity at 
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peak flow. The variation in wall shear stress is more pronounced, with a difference 

of 17.5% at peak flow. As discussed previously this may be within the limits of our 

ability to interpret these results (Figure 5-16). However, evaluation of the wall shear 

stress distribution, at peak flow (Figure 5-17), demonstrates that it is not just a 

difference in the maximum value, but that the predicted distributions are also 

different when using a laminar or turbulent numerical model.  
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FIGURE 5-15 – COMPARISON OF PRESSURE AND MASS FLOW RATE IN THE ASSISTED AORTA 

(BLUE – LAMINAR SIMULATION, RED – TURBULENT SIMULATION) 
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FIGURE 5-16 - COMPARISON OF MAXIMUM AND AVERAGE VELOCITY (LEFT) AND  

WALL SHEAR STRESS (RIGHT) AS PREDICTED BY THE LAMINAR AND TURBULENT SIMULATIONS,   

AT A NUMBER OF POINTS IN THE CARDIAC CYCLE (A = START OF CYCLE, 

 B = PEAK FLOW, C = MINIMUM FLOW.) 

 

 

 

 

 

 

 

 

FIGURE 5-17 - COMPARISON OF WALL SHEAR STRESS DISTRIBUTION AT PEAK FLOW  

AS PREDICTED BY THE TRANSIENT LAMINAR AND TURBULENT SIMULATIONS 

The Helical Flow Index is also calculated for the two models, with the laminar 

simulation predicting greater helical flow within the domain at all three given 

instances in time (Figure 5-18). These results, combined with the variation in the 

predicted wall shear stress distributions and previous experience in the native aorta 

case, suggest that the internal flow structures computed by the laminar and turbulent 

models are likely to be different. 
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FIGURE 5-18 - COMPARISON OF HFI AS PREDICTED BY THE LAMINAR (BLUE) AND  

TURBULENT (RED) SIMULATIONS, AT A NUMBER OF POINTS IN THE CARDIAC CYCLE 

(A = START OF CYCLE, B = PEAK FLOW AND C = MINIMUM FLOW). 

To investigate these claims, velocity contours, on planes normal to the centreline, are 

compared for the laminar and turbulent simulations at peak and minimum flow 

(Figure 5-19). The velocity contours show completely different flow patterns 

occurring in the two simulations. The laminar simulation predicts regions of high 

velocity in the ascending aorta which extend into the aortic arch, while the turbulent 

simulation has smaller regions of high velocity in the ascending aorta which reduce 

in magnitude more rapidly as it moves along the aortic arch. This is of course 

unsurprising since the turbulence model includes a turbulent viscosity which acts to 

further damp the system, thereby simulating the energy loss due to the turbulence. 

The greatest variation in the predicted flow fields can be seen within the aortic arch 

on planes D and E.  At peak flow the turbulence model predicts regions of low fluid 

velocity near the greater curvature of the aortic arch (Figure 5-19 - D), which are not 

seen in the laminar case. On plane E, at both peak and minimum flow, the turbulent 

simulation shows a small region of low velocity fluid that is associated with flow 

detachment as the fluid moves around the arch and into the descending aorta. In 

contrast the laminar simulation shows regions of high velocity close to the minor 

curvature of the arch, suggesting the fluid remains attached, with a further region of 

high fluid velocity in the centre of the cross-section. At minimum flow the fluid 

appears detached (as in the turbulent model) but there is also a low velocity region in 

the centre of the vessel. 
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As a consequence of the steady state laminar model being unable to achieve 

numerical convergence in neither the assisted aorta nor the FDA benchmark (at a 

Reynolds number of 3500), it is proposed that the use of turbulence model is 

essential to accurately simulate aorta flow fields in the presence of a left ventricular 

assist device.  
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FIGURE 5-19 – COMPARISON OF PLANAR VELOCITY CONTOURS AS PREDICTED BY THE  

LAMINAR AND TURBULENT SIMULATIONS, AT PEAK (0.3S) AND MINIMUM FLOW (0.5S). 
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CONCLUSIONS 5.6 

The requirement of a turbulence model has been investigated in a healthy and 

assisted aortic geometry under both steady state and transient conditions.  

In the native aorta at peak flow, the steady state laminar model was unable to achieve 

numerical convergence in the finer meshes. This is believed to be due to transient 

vortex shedding in the flow field. All the steady state SST models achieved 

numerical convergence, with NA-2 producing mesh converged results. The 

converged laminar solution predicted a 25% greater pressure drop across the aorta 

than the SST model and analysis of the velocity contours showed significant 

variation in the internal flow field structures in the descending aorta. 

Physiological flow in the aorta is pulsatile and so it is important that any numerical 

model chosen to predict aortic haemodynamics is able to capture laminar, 

transitional and potentially turbulent flow fields. Steady laminar simulations at peak 

flow were unable to achieve numerical convergence, while the SST model converged 

at high Reynolds numbers and was shown to give results that were in agreement with 

the steady state laminar simulation at a low Reynolds number of 1150. However, it is 

known that turbulence requires time to develop and this effect is not captured with a 

steady state simulation. Thus, a transient analysis was conducted to compare the 

laminar and SAS-SST models under physiological conditions. The laminar and 

turbulent simulations showed close agreement, especially during systole, suggesting 

that, in this case, the laminar model is sufficient to capture the important 

characteristics of the flow field. However, since the SAS-SST model also captured 

the important features and is able to resolve turbulent structures, which may occur in 

patients with higher flow rates, abnormal geometries or under exercise conditions, it 

is clearly the solution method of choice. 

The steady state laminar model was unable to produce numerically converged results 

in the assisted aorta and it was found that a high spatial resolution was required for 

numerical convergence of the steady SST model. These results are due to the 

complex flow features that occur in the system as the fluid moves through the 

anastomosis. The near steady state environment of the physiological condition 
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suggests that, if the steady state laminar model is unable to converge, it is unlikely to 

be able to produce accurate results in the transient system. Although there is no 

experimental data to confirm this in the current geometry, the results presented in 

Chapter 2 agree with this statement.  

The SAS-SST model is able to capture both the turbulent and laminar features of the 

native aortic flow field and, based on the results presented here and in Chapter 2, it is 

also believed to be the correct model to compute an assisted aortic flow field. 

  



 

 

 

Chapter 6  
ANASTOMOSIS DESIGN 
MOTIVATION 6.1 

The work up until this point has been carried out in order to describe and justify the 

use of certain models and modelling techniques to predict the aortic flow field in 

both a native and assisted vasculature. The following chapter applies these models to 

a real engineering problem and, by doing so, demonstrates their potential. 

The interaction between an LVAD and the cardiovascular system is a complex 

problem but is essentially governed by two factors; the characteristics of the LVAD 

and the physiology of the patient. Clearly there is no way, from a design perspective, 

to alter the physiology of the patient and so one must concentrate on the LVAD. The 

characteristics of an LVAD are governed by: 

1. Pump design  

2. Operating condition  

3. Cannula design 

4. Anastomosis design 

CHAPTER 6 
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The design of the INCOR pump investigated in this work has been carefully 

engineered (by Berlin Heart GmbH, Germany) to minimise the fluid shear stresses, 

while maintaining a clinically appropriate cardiac output and is not a parameter that 

should be altered. The operating condition (assuming the pump is run in continuous 

mode, which is the current clinical operation mode) depends entirely on the output 

requirements of the patient, therefore cannot be varied. The design of the cannula is 

an important factor that could be optimised to improve the interaction of the LVAD 

and the native vasculature. However, this is not within the scope of the current work 

and has not been attempted. Finally we have the configuration of the anastomosis. 

This will be the focus of the current chapter. 

The configuration of the anastomosis is essentially governed by three degrees of 

freedom (any variation of the insertion angle would require a redesign of the 

cannula): 

1. Anatomical location 

2. Radial position  

3. Planar position 

Constraints of the surgical approach mean there are only two regions of the aorta that 

are practical for the anastomosis; the ascending aorta and a region of the descending 

aorta. As discussed in Chapter 1, experimental and numerical studies have 

demonstrated that the ascending aorta is the optimal anatomical location as it 

prevents stagnant regions of fluid in the aortic root [13, 16]. Further anatomical 

constraints, namely the location of the pulmonary artery and the heart itself, mean 

that only a very small degree of radial variation is possible for the ascending aortic 

anastomosis and thus for the purposes of this chapter any variation in the radial angle 

has been neglected. Local positioning of the cannula has received very little attention 

in the literature and the work conducted has employed either simplified geometries 

[14] (two intersecting pipes) or non-physiological boundary conditions [15] (steady 

flow with uniform outlet pressures). 

The following work aims to build on these initial studies, investigating the effects of 

planar anastomosis position in two aortic geometries; the first model (Figure 6-1 – 

Aorta A) is that used in previous Chapters, while the second model represents the 
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geometry from a healthy volunteer. This only became available in the latter stages of 

this project (Figure 6-1 – Aorta B). Although no invasive pressure data is available 

for the healthy geometry, for obvious ethical reasons, there is non-invasive flow data 

obtained in the ascending and descending aorta. The clinical data will be used to 

ensure that the distribution of flow, resulting from the choice of Windkessel 

parameters, is reasonable. 

 

     

 

 

 

 

FIGURE 6-1 – ILLUSTRATION OF THE TWO AORTIC GEOMETRIES 

To analyse the results a technique to visualise and quantify the degree of mixing in 

the assisted aorta, through the use of an information entropy measure, is employed. 

The approach was developed initially for chaotic micromixers [116] and has more 

recently been applied to blood flowing in helical geometries [117, 118]. This 

approach is used to offer an additional means for quantitatively evaluating transient 

flow fields, which in the author’s opinion is a complex and much neglected problem. 

METHODOLOGY 6.2 

MODEL CONFIGURATION 6.2.1 

The model setup combines the work documented in Chapters 4 and 5, utilising the 

compressible fluid model and the SAS-SST turbulence model to produce what is 

believed to be the most efficient and accurate modelling strategy described in this 

thesis, for the assisted aorta.  

Aorta A Aorta B 
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A representation of the Berlin Heart INCOR cannula is connected to the aortic 

geometries at a number of planar locations on a cross-section through the ascending 

aorta (Figure 6-2). The flow waveform, applied at the inlet of the cannula, is 

calculated (using a standalone 0D compartment model of the assisted vasculature 

[53]) to represent the VAD operating at 7300 rpm, matched to a clinical case.  The 

resulting waveform supplies a flow rate of 4.56 L/min. Once again the real INCOR 

velocity profile is scaled to follow the inlet flow rate [16]. The outlet pressure 

conditions are described by Windkessel elements with the parameters used 

throughout this thesis. Before conducting this work it was believed that the 

parameters would require tuning for the new patient-specific case, to ensure the 

native flow distribution was preserved. However, after running some preliminary 

studies it was discovered that the current parameter values produced comparable 

distributions of flow to the clinically acquired data (within a 2.7% error range), 

which was deemed appropriate for the current research question. 

The compressible fluid properties are the same as those used in Chapter 4, producing 

a uniform wave speed of 7 ms-1.  

The computational mesh is constructed as described in Chapter 5, with tetrahedral 

elements in the core and prism elements at the wall to improve the near wall 

resolution and ensure the requirements of the turbulence model are met. The distance 

to the first computational node, to achieve a y+ < 2, is 0.11 mm. A maximum edge 

length of 0.75 mm, shown in Chapter 5 to produce mesh converged solutions in the 

assisted aorta, is also employed here. 

As throughout this thesis a time-step of 5 ms is used in all simulations.  
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FIGURE 6-2 – ILLUSTRATION OF THE ANASTOMOSIS LOCATIONS INVESTIGATED 

 IN THE TWO AORTIC GEOMETRIES 

ENTROPIC MEASURE OF MIXING 6.2.2 

In 1948 Shannon first proposed the concept of information entropy, which is 

essentially a measure of disorder [119]. An interesting implementation of this was 

described by Kang and Kwon [116] to quantify the degree of particle mixing in a 

micromixer and was later used by Cookson et al. [117, 118] when modelling blood 

flow in a helical geometry. The process involves three stages: 

1. Computation of the periodic flow field of interest, 

2. Computation of the trajectory of a number of species (e.g. different 

colours) of massless particles, through the flow field, and 

3. Superimposing a uniform grid at a cross-section within the flow field and 

using Equation 6-1 to calculate the information entropy due to mixing.  

Centred Offset-Left Offset-Right 
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𝑆 = ��𝑤𝑖�(𝑛𝑖,𝑘𝑙𝑜𝑔𝑛𝑖,𝑘)
𝑁𝑠

𝑘=1

�
𝑁𝑐

𝑖=1

 

EQUATION 6-1 

Where 𝑖 is the cell index, 𝑘 is the species index, 𝑤𝑖 is the weighting factor for each 

cell, 𝑁𝑐 is the number of cells, 𝑁𝑠 is the number of species and 𝑛𝑖,𝑘 is the particle 

number fraction of the 𝑘𝑡ℎ species in the 𝑖𝑡ℎ cell. The weighting factor is set such 

that it becomes zero if the cell contains no particles or only particles of a single 

species and one if there are multiple species in a single cell i.e. indicating that 

mixing has occurred. 

The computed value of entropy is, on its own, rather meaningless and so Kang and 

Kwong defined a relative entropy (Equation 6-2) which quantifies the increase or 

decrease in information entropy at the cross-section of interest in relation to the 

initial distribution of the particle species and the maximum possible value of 

information entropy (i.e. perfect mixing).  

𝜅 =
𝑆 − 𝑆0

𝑆𝑚𝑎𝑥 − 𝑆0
 

EQUATION 6-2 

Where 𝑆0  is the entropy of the initial particle distribution, 𝑆𝑚𝑎𝑥  is the entropy 

assuming perfect mixing and 𝑆 is the entropy at the region of interest.  

As discussed by Cookson et al. [117, 118] care must be taken when selecting the 

number of particles and cells used in this analysis method. The value of entropy is 

strongly governed by 𝑁𝑐 and in fact as 𝑁𝑐 → ∞ the calculated entropy goes to zero. 

In the following work approximately 20,000 particles are released from a planar 

cross-section at the start of an LVAD-cardiac cycle and 225 cells of uniform size are 

used to evaluate the information entropy at any given cross-section. Two particle 

species are used, which for the purposes of graphical representation have been 

coloured red and blue. The initial distribution of particles is defined such that a 

central circular area within the cross-section contains half the released particles, 

which are coloured blue. While the outer annulus contains the remaining particles, 
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coloured red. An idealised representation of the initial distribution for a cylindrical 

tube, including a uniform grid of cells used in the computation of the information 

entropy measure (the number of cells have been reduced for illustration purposes), is 

shown in Figure 6-3.  

 

FIGURE 6-3 – ILLUSTRATION OF INITIAL PARTICLE DISTRIBUTION,  

WITH A REDUCED NUMBER OF CELLS OVERLAID 

For the present investigation the particle release plane is located in the aortic valve 

region as it is an area prone to regions of fluid stagnation, and therefore the influence 

of cannula position on the mixing of these particles is of particular interest. 

RESIDENCE TIME VIA SPECIES TRANSPORT 6.2.3 

In previous chapters the average and maximum residence times were computed as a 

post-processing operation by solving the advection of massless particles through the 

flow field. In the following work an alternative approach is adopted, which results in 

a more informative representation of the fluid residence time. At the start of the 

simulation a massless, non-reacting species is defined throughout the fluid domain 

and given an initial value of 0. An additional transport equation (Equation 6-3) is 

solved, during the solution process, to describe the advection of the species 

(residence time) through the flow field. A volumetric source term of 1s-1 is defined 

throughout the domain to describe the age of the fluid and all new fluid entering the 

domain is assigned an initial species value of 0.   
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𝜕(𝜌∅)
𝜕𝑡

+ ∇ ∙ (𝜌𝑼∅) = 𝑆∅ 

EQUATION 6-3 

Where ∅ is the additional species and 𝑆∅ is the volumetric source term. 

In turbulent simulations, such as employed in the current chapter, the additional 

transport equation, which describes the residence time, must be written in terms of 

the Reynolds-averaged quantities (Equation 6-4). 

𝜕(𝜌∅)
𝜕𝑡

+ ∇ ∙ (𝜌𝑼�∅) = 𝑆∅ 

EQUATION 6-4 

Where 𝑼�  is the averaged velocity components.  

As well as the described measure of mixing and the new approach to computing 

residence time, mass flow distributions, velocity contours, the HFI and wall shear 

stress distributions are presented to evaluate the influence of planar cannula location 

on the assisted flow field. 

RESULTS AND DISCUSSION: 6.3 

The predicted mass flow waveforms, for each of the cannula configurations of Aorta 

A and Aorta B are shown in Figure 6-4 and Figure 6-5 respectively. The form of the 

mass flow waves are similar for all configurations, with the greatest variation seen in 

the left common carotid artery of Aorta A (Figure 6-4 – B). It is worth noting that the 

individual plots have different scales to clearly demonstrate the local variation at 

each boundary. The use of three element Windkessel models as the downstream 

termination ensures that the distribution of flow is within 2.7% of the clinical data in 

both cases and importantly maintains this distribution in all three configurations 

(Figure 6-4 and Figure 6-5). If the predicted distribution of flow was significantly 

altered by the position of the cannula this would suggest the model had inappropriate 

boundary conditions and was not faithfully representing the physiological condition. 
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In the human cardiovascular system homeostatic mechanisms, such as cerebral 

autoregulation, are in place to preserve the required flow rates. 

The maximum difference in the predicted flow distributions in Aorta A and Aorta B 

is just 0.5%, suggesting that the aortic geometry has a negligible influence and is 

instead governed by the Windkessel parameters. This statement is only valid for 

relatively normal aortic geometries. Aortas suffering from severe geometrical 

malformations are likely to have a more significant effect on the flow distribution. 

 

 

 

 

 

 

FIGURE 6-4 – INFLUENCE OF CANNULA LOCATION ON THE 

 MASS FLOW WAVEFORMS AND FRACTIONAL DISTRIBUTION, AORTA A 
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FIGURE 6-5 – INFLUENCE OF CANNULA LOCATION ON THE 

 MASS FLOW WAVEFORMS AND FRACTIONAL DISTRIBUTION, AORTA B 

Cycle averaged velocity contours, with vectors overlaid, have been plotted at a 

number of cross-sections along the length of the aortic geometries (Figure 6-6). As is 

the case throughout this thesis, the orientation of the cross-sections are such that the 

right hand side of each plane is associated with the lesser curvature of the aortic arch. 

The position of the cannula is shown to significantly alter the structures within the 

flow field, in both Aorta A and Aorta B. Offsetting the cannula to the right results in 

higher fluid velocities in the region of the aortic valve (Figure 6-6 – Plane A) and is 
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configuration both aortic models result in the peak velocities in the region of the 

anastomosis to be located within the centre of the aortic cross-section (Figure 6-6 – 

Plane B). This is in contrast to the Offset-Right configuration where, as one might 

expect, the peak velocities are offset to the right. The INCOR VAD imparts a 

rotational velocity to the fluid in a clockwise direction (see Chapter 4 and Chapter 

5). This swirling motion is maintained through the cannula, although it is 

significantly distorted by the geometry of the cannula (see isosurfaces shown in 

Chapter 4). As the fluid enters the aorta it retains a clockwise swirling motion with 

the distorted profile having greater velocities to the right hand side. In the Offset-

Right configuration this promotes the fluid to attach to the aortic wall where its 

momentum propels the fluid around the circumference of the aorta. The distorted 

profile has the opposite effect in the Offset-Left configuration, directing the high 

velocity fluid into the centre of the aorta inhibiting attachment to the wall. This 

effect is also seen in the Centred configuration (most noticeably in Aorta A) where 

the region of high velocity fluid is shifted towards the posterior wall of the aorta 

(Figure 6-6 – Plane B). Flow attachment is advantageous and certainly to be 

encouraged in cardiovascular flow fields as it reduces regions of stagnant fluid and 

areas of low wall shear stress, both of which should be avoided to maintain 

cardiovascular health.   

In the Offset-Right configuration the fluid in the descending aorta maintains the anti-

clockwise rotation apparent in the ascending aorta. This is consistent with in vivo 

studies of human blood flow where there is predominantly a right handed helix 

which forms in the ascending aorta and is maintained in the descending aorta [64]. 

This is also apparent in the Centred configuration of Aorta B, although the 

magnitudes of the rotational velocities are significantly smaller. In the Offset-Left 

configuration of Aorta B the fluid in the ascending and descending aorta have a 

clockwise rotation, producing left handed helical structures throughout the aorta. The 

Offset-Left configuration of Aorta A also has a predominantly clockwise rotation, 

again producing left handed helical structures, apart from in the aortic valve region 

where the fluid has an anti-clockwise motion.  

There is a core of slow moving fluid located at the centre of the ascending aorta in 

all configurations of Aorta B but is only clearly distinguishable in the Offset-Right 
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configuration of Aorta A (Figure 6-6). This is believed to be due to the smaller 

geometric size of Aorta A, the radius of the ascending aorta (in the valve region) is 

approximately 22 mm compared to approximately 29 mm in Aorta B. In all cases the 

extent of the low velocity region is most pronounced in the ascending aorta, reducing 

in size as the fluid moves through the aortic arch and by the time the fluid enters the 

descending aorta the low velocity region is significantly reduced in all models and is 

no longer apparent in Aorta A or the Centred location of Aorta B (Figure 6-6 – Plane 

F).  
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FIGURE 6-6 - COMPARISON OF PLANAR CYCLE AVERAGED VELOCITY CONTOURS;  

AORTA A – LEFT, AORTA B - RIGHT, IN THE THREE ALTERNATIVE ANASTOMOSIS CONFIGURATIONS. 
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The HFI is summarised in Figure 6-7 and is evaluated at three points throughout the 

cardiac-LVAD cycle. As one would expect in a system with such a small degree of 

pulsatility, the HFI is relatively stable across the cycle, with the largest variation 

occurring in the Centred configuration in both Aorta A (4.6% cycle variation) and 

Aorta B (7% cycle variation). In Aorta A the Offset-Left configuration consistently 

results in the largest values of HFI while the Offset-Right configuration results in the 

minimum. This is in direct contrast to Aorta B where the Offset-Left configuration 

produces the smallest values of HFI, while the Offset-Right produces the largest. 

With the exception of the Offset-Left configuration in Aorta A, the HFI in both 

aortas fall within the range reported by Morbiducci et al [66], which illustrates that 

the assisted flow fields contain a similar degree of helical flow, even if the form of 

the structures may differ, to the native haemodynamics of the aorta. As discussed 

previously the HFI is a valuable quantitative measure of the domain averaged helical 

flow but its greatest limitation is the lack of detailed information on the form of these 

helical structures.  

 

FIGURE 6-7 - COMPARISON OF HFI IN THE ALTERNATIVE CANNULA CONFIGURATIONS OF  

AORTA A (TOP) AND AORTA B (BOTTOM) AT A NUMBER OF POINTS IN THE CARDIAC CYCLE  

(A = START OF CYCLE, B = PEAK FLOW AND C = MINIMUM FLOW). 
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Comparison of the cycle-averaged wall shear stress (avWSS) distributions further 

illustrates the influence of cannula position on the haemodynamics of the assisted 

aorta (Figure 6-8 and Figure 6-9). In the Offset-Right configuration of both Aorta A 

and Aorta B, the rapid attachment of the fluid to the wall of the ascending aorta 

results in increased magnitudes of avWSS when compared to the alternative 

configurations. In contrast the lower velocities around the aortic valve in the Centred 

and Offset-Left configurations result in regions of low avWSS which could be at risk 

of stasis and the development of atherosclerosis (Figure 6-8 and Figure 6-9).  

It has been noted by Nishimura et al. that long term continuous VAD support results 

in morphological changes to the aortic wall [25], which may suggest high regions of 

avWSS are also to be avoided. However, there are no clinical case studies which 

report problems with the integrity of the aortic wall. This is supported by 

communications with Berlin Heart, who suggest it is the regions of low avWSS that 

are of greatest concern.   

Based on this understanding it is suggested that the Offset-Left position is the least 

favourable with the largest regions of low avWSS in the aortic valve region and 

throughout the ascending aorta. The Offset-Right configuration is the most 

advantageous with consistently smaller regions of low avWSS throughout the aorta 

(Figure 6-8 and Figure 6-9).      
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FIGURE 6-8 - COMPARISON OF CYCLE AVERAGED WALL SHEAR STRESS 

 IN THE THREE ANASTOMOSIS CONFIGURATIONS, AORTA A. 
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FIGURE 6-9 - COMPARISON OF CYCLE AVERAGED WALL SHEAR STRESS 

 IN THE THREE ANASTOMOSIS CONFIGURATIONS, AORTA B. 
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QUANTIFICATION OF MIXING AND RESIDENCE TIME 6.3.1 

As discussed in section 6.2.2, a quantitative measure of particle mixing may be 

useful for characterisation and comparison of assisted aortic flow fields. In the 

following section the results of the relative information entropy and the residence 

time analysis are presented for the three cannula locations in both aortic geometries. 

To put into perspective the degree of mixing that occurs in the assisted aorta an 

additional simulation, with patient-specific clinical flow measurements applied at the 

inlet of the aorta (i.e. native flow), was conducted in both aortae and the degree of 

mixing computed. 

The distribution of the coloured particles is shown at a number of cross-sections 

(located at the same positions as the velocity contours in Figure 6-6) along the two 

aortae (Figure 6-10 and Figure 6-11). Flow in the assisted aorta is highly complex, 

with numerous helical structures and recirculating regions. Thus, when computing 

the degree of information entropy only the first intersection of the path-line and 

plane of interest is considered. The resulting relative entropy values (Equation 6-2) 

are shown graphically in Figure 6-12.  

In the native flow configurations no mixing occurs in the ascending aorta, in fact the 

relative entropy of the cross-sections decrease when moving through the aorta due to 

the reduced number of boxes contributing to the entropic measure (Figure 6-12). The 

particle distributions remain ordered throughout the aorta, with the only variation 

occurring due to particles moving into the brachiocephalic and other supra-aortic 

vessels (Figure 6-10 and Figure 6-11). It is acknowledged that the application of a 

flat velocity profile in the native flow simulations is a simplification and in truth the 

profile will induce a degree of particle mixing. However for the purposes of this 

comparison a flat profile is believed to be an appropriate assumption. In contrast the 

assisted configurations produced highly disordered (i.e. mixed) particle distributions  

by the second plane of interest (Figure 6-10 and Figure 6-11 – Plane B). Somewhat 

surprisingly, the use of this analysis method in the assisted aorta results in regions of 

some cross-sections to be devoid of any intersecting particle. This effect is most 

clearly apparent in the ascending aorta, especially in the Offset-Right models (Figure 

6-10 and Figure 6-11). Animation of the particles demonstrates that these empty 
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regions are real and result from the high velocity, tight helical structures that form in 

the ascending aorta. These structures draw the particles into the swirling vortex and 

the near steady flow field ensures there is only a small area through which the 

particles can intersect the plane. As the fluid moves through the arch and enters the 

descending aorta the particles become more evenly distributed throughout the cross-

section but areas devoid of particles remain. The unusual distributions and local 

concentrations of the intercepting particles beg the question; ‘Is there stagnant fluid 

in the regions devoid of particle intersections or is the fluid coming directly from the 

cannula?’. This question of stagnation is best answered by investigating the results 

of residence time and is explored subsequently. 

The flow fields with the cannula offset to the right are dominated by a single 

secondary vortex which is also visible in the vectors overlaying the velocity contours 

in Figure 6-6. In Aorta A the flow field of the Offset-Left configuration is composed 

of two secondary vortices, one of which gains dominance as the fluid moves through 

the arch. There is no indication of such vortices in the flow field of the Centred 

location but the particles appear well mixed, which is confirmed by the relative 

entropy measure (Figure 6-12). In Aorta B two secondary vortices are apparent in the 

Centred and Offset-Left configurations, although the minor vortex in the Offset-Left 

position is no longer present as the fluid moves into the descending aorta.   

In both aortae the Centred configuration results in the highest values of relative 

entropy, although in Aorta B the Offset-Left position produce qualitatively similar 

degrees of mixing (Figure 6-12) but with a maximum percentage difference of 

23.4%, occurring at plane D. In general, the Offset-Right location results in the 

smallest value of relative entropy. This is believed to be due to the particles 

intercepting the planes of interest through a comparatively small area. This effect is 

clear in the Offset-Right location of Aorta B, where the relative mixing increases at 

planes E and F which corresponds to a more even distribution of intercepting 

particles (Figure 6-11). 
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FIGURE 6-10 – ILLUSTRATION OF THE PARTICLE MIXING IN EACH OF THE  

ALTERNATIVE CANNULA CONFIGURATIONS, AORTA A 
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FIGURE 6-11 - ILLUSTRATION OF THE PARTICLE MIXING IN EACH OF THE  

ALTERNATIVE CANNULA CONFIGURATIONS, AORTA B 
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FIGURE 6-12 – NORMALISED INFORMATION ENTROPY (Κ) IN AORTA A AND B FOR ALL CONFIGURATIONS 

To investigate further the question previously posed: ‘Is there stagnant fluid in the 

regions devoid of particle intersections?’, isovolumes of residence time have been 

depicted to show the age of the fluid in the aorta, which in turn demonstrate the 

influence of cannula location on vascular washout (Figure 6-13 and Figure 6-14). 

The domain averaged residence time of the fluid within each configuration is 

reported in Table 6.1.  

In Aorta A the Offset-Right position produces the most rapid washing out of the 

ascending aorta (Figure 6-13) and as such has the lowest domain averaged residence 

time (Table 6.1). As discussed previously in this configuration the fluid attaches to 

the wall and it is clear from the isovolume showing fluid with a residence time 

greater than or equal to 0.4s that this results in a rapid washing out of the fluid 

around the aortic wall of the ascending aorta. A central core of older fluid remains in 

the ascending aorta, the majority of which is cleared by 0.5 s and is fully removed by 

0.75 s.  The Centred position in Aorta A performs worst in terms of vascular 

washout, with the largest domain averaged residence time and the greatest regions of 

high residence time isovolumes (Table 6.1 and Figure 6-13). However, the difference 

between the best and worst domain averaged residence time is just 1.77% suggesting 

that, although the Offset-Right configuration is the most advantageous, all the 

cannula locations presented result in an acceptable degree of vascular washout. 

In Aorta B the period over which the ascending aorta is completely washed out is 

greater (1.5 s) and, in turn, the domain averaged residence times are also greater 

(Table 6.1). This is to be expected, as since the geometry is larger, the velocities in 
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the domain will be reduced for the same flow rate. This can be seen in the velocity 

contours (Figure 6-6) where the velocities in Aorta B are generally lower. The 

phenomenon, seen in the Offset-Right configuration, due to the fluid attaching to the 

aortic wall, leaving a core of older fluid, is also apparent in Aorta B in the isovolume 

with a residence time of greater than or equal to 0.5s. Interestingly, the trends in the 

domain averaged residence time are not the same as in Aorta A but are in fact 

completely reversed. The fluid in the Offset-Right configuration has the largest 

average residence time, 2.96% greater than the Centred configuration which has the 

lowest (Table 6.1).  However, as discussed in relation to Aorta A all configurations 

produce an acceptable degree of vascular washout. Perhaps more important is the 

finding that, in regard to the analysis of particle mixing, the regions of a cross-

section which are devoid of particle interceptions do NOT, in the case of the assist 

aorta, correlate to regions of stagnant fluid. 

This work has demonstrated the importance of using multiple analysis techniques to 

fully investigate a flow field of interest. It is vital that conclusions are not drawn 

based on a limited knowledge. 
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FIGURE 6-13 – ISOVOLUMES OF FLUID RESIDENCE TIME, AORTA A 
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FIGURE 6-14 – ISOVOLUMES OF FLUID RESIDENCE TIME, AORTA B 
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TABLE 6.1 – DOMAIN AVERAGED RESIDENCE TIME 

CONCLUSIONS 6.4 

In this chapter a number of anastomotic configurations have been investigated in two 

patient-specific aortae. The results have been analysed using standard measures 

employed in the analysis of haemodynamics (i.e. velocity contours, avWSS and 

residence time) as well as presenting the first use of a quantitative entropic measure 

of mixing applied to a realistic cardiovascular geometry. 

The results demonstrate that the planar location of the LVAD cannula connection to 

the ascending aorta significantly alters the haemodynamics.  

For the specific cases presented the Offset-Right configuration is the only position 

which facilitates fluid attachment to the wall almost immediately at the site of the 

anastomosis. The attachment is believed to be a result of the orientation of the 

velocity profile as the fluid moves through the anastomosis. This itself is a product 

of the LVAD profile and the geometry of the cannula. Fluid that becomes attached to 

the wall has the advantage of reducing regions of low avWSS which are thought to 

be prone to the development of atherosclerosis.  

All cannula positions resulted in good levels of mixing, especially when compared to 

that of the native configuration, with the Centred configuration producing the largest 

degree of mixing in both geometries. Analysis of residence time showed that all 

configurations perform similarly in terms of vascular washout and there are no 

regions of the ascending aorta which suffer from prolonged fluid stagnation.  

 Average Residence Time (s) 

 Centred Offset-Left Offset-Right 

Aorta A 0.453 0.446 0.445 

Aorta B 
 

0.787 0.804 0.811 



CHAPTER 6  

213 

 

Based on the finding presented in this chapter it is suggested that when connecting 

the Berlin Heart INCOR VAD to the ascending aorta, with the specific design of 

outflow cannula described, it is beneficial to offset the cannula to the right, thereby 

promoting wall attachment and minimizing the risk of low wall shear stress regions.  

 

  



 

 

  



 

 

 

Chapter 7  
FULLY COUPLED MODEL 
MOTIVATION 7.1 

A natural progression from employing 0D models at the outlet boundary, of a CFD 

simulation, is to also describe the inlet boundary condition in terms of a lumped 

parameter model. In the following chapter this concept is taken a step further by 

embedding the 3D model in a closed loop description of the entire vasculature. The 

fully coupled model has the advantage of being able to predict the system wide 

response as well as interrogating the detailed flow characteristics in the chosen 

region of interest, offering the possibility of a powerful predictive tool. 

The coveted outcome of VAD support is complete ventricular recovery, to the extent 

that the pump can be successfully explanted. However, a common and well-

documented complication of LVAD (2nd and 3rd generation) support is aortic valve 

commissural fusion [19-22, 120]. Valve fusion is caused by the lack of flow through 

the aortic valve during ventricular support, resulting in fibrous tissue being laid 

down across the leaflets, fixing them together. In the event of myocardial recovery 

the explantation procedure can be complicated by valve fusion necessitating 

CHAPTER 7 
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replacement of the damaged valve with an artificial valve, exposing an already 

fragile patient to the trauma of further heart surgery. 

In the following work the fully coupled model is used to explore the hypothesis that 

by reducing the operating speed of the pump the aortic valve will open, changing the 

flow field, inhibiting fusion of the valve commissaries and additionally improving 

left ventricular washout.  

METHODOLOGY 7.2 

A comprehensive 0D model of the assisted cardiovascular system [53, 121] was 

modified to incorporate the supra-aortic arteries and coupled to a 3D model of an 

assisted aorta (Figure 7.1).  

0D SYSTEM MODEL 7.2.1 

The 0D description of the cardiovascular system, designed and coded by Dr Yubing 

Shi, is composed of five main compartments; the aortic sinus, the systemic 

circulation, the heart, the pulmonary sinus and the pulmonary circulation. The 

systemic and pulmonary circulation compartments can be further decomposed into 

elements that represent the arteries, arterioles, capillaries and veins. Each 0D element 

is designed to capture the gross behaviour of the system it represents. For example 

the capillaries have a mainly resistive effect and thus are modelled as a single 

resistor, while the venous system has a significant compliance and are represented 

using a two element Windkessel (Figure 7-1). A comprehensive review by Shi et al. 

provides further details [34]. An additional compartment is incorporated to describe 

the Berlin Heart INCOR LVAD. The pump inlet is connected to the apex of the left 

ventricle and the outlet to the 3D representation of the outflow cannula. The 

characteristics of the pump are expressed as a polynomial function (Equation 7-1), 

derived from experimental data that describes the pressure-flow relationship of the 

INCOR pump under different operating speeds. The explicit details of this function 

are not included for commercial reasons.   
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∆𝑃 = 𝑃(𝑄,𝜔) 

EQUATION 7-1 

 

FIGURE 7-1- ILLUSTRATION OF THE FULLY COUPLED 0D-3D MODEL 

The mechanics of the individual chambers of the heart are each described by the 

commonly used elastance model, proposed by Suga et al. [69] with one way diodes 

controlling the direction of flow. The variable elastance model (as described in 

Chapter 1) assumes the pressure within a chamber can be described by a linear 

relationship between the chamber volume and elastance, with the instantaneous 
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change in volume computed from the difference between the flow rate into and out 

of the chamber (Equation 7-2). 

𝑑𝑉𝑖
𝑑𝑡

= 𝑄𝑖,𝑖𝑛 − 𝑄𝑖,𝑜𝑢𝑡 

EQUATION 7-2 

Where 𝑉𝑖 is the volume of the 𝑖𝑡ℎchamber, while 𝑄𝑖,𝑖𝑛 and 𝑄𝑖,𝑜𝑢𝑡 are the volume flow 

into and out of the 𝑖𝑡ℎchamber respectively. 

The chamber elastance is a time-varying function, with a period equal to that of the 

heart cycle, which describes the action of the heart (Equation 7-3). 

𝑒𝑖(𝑡) = 𝐸𝑖,𝑑 +
𝐸𝑖,𝑠 − 𝐸𝑖,𝑑

2
∙ 𝑒𝚤�(𝑡) 

EQUATION 7-3 

Where 𝐸𝑖,𝑑 and 𝐸𝑖,𝑠 are the characteristic elastance of the 𝑖𝑡ℎchamber at diastole and 

systole respectively and 𝑒𝚤�(𝑡) is an activation function, which for the ventricles takes 

the form shown in Equation 7-4 and for the atria Equation 7-5. 

𝑒𝚤,𝑣𝑒𝑛𝑡𝑟𝚤𝑐𝑙𝑒�������������(𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧1 − cos �

𝑡
𝑇𝑠
𝜋�                                ∶            0 ≤ 𝑡 ≥ 𝑇𝑠           

1 + cos�
𝑡 − 𝑇𝑠

3
2� 𝑇𝑠 − 𝑇𝑠

𝜋�              ∶            𝑇𝑠 ≤ 𝑡 ≥ 3
2� 𝑇𝑠  

0                                                       ∶           3
2� 𝑇𝑠 ≤ 𝑡 ≥ 𝑇    

 

EQUATION 7-4 

𝑒𝚤,𝑎𝑟𝑡𝚤𝑎��������(𝑡) =

⎩
⎪
⎨

⎪
⎧ 0                                                             ∶                       0 ≤ 𝑡 ≥ 𝑇𝑝𝑤𝑏         

1 − cos�
𝑡 − 𝑇𝑝𝑤𝑏
𝑇𝑝𝑤𝑤

𝜋�                         ∶      𝑇𝑝𝑤𝑏 ≤ 𝑡 ≥ (𝑇𝑝𝑤𝑤 + 𝑇𝑝𝑤𝑏) 

0                                                              ∶     (𝑇𝑝𝑤𝑤 + 𝑇𝑝𝑤𝑏) ≤ 𝑡 ≥ 𝑇         

 

EQUATION 7-5 

Where 𝑇 is the period of the cardiac cycle and 𝑇𝑠,  𝑇𝑝𝑤𝑏 and 𝑇𝑝𝑤𝑤 are time constants 

that correspond to the contraction period of the heart chambers. 
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The chamber pressure is then calculated as the sum of the pressure at the previous 

time-step and the product of the instantaneous elastance and the change in chamber 

volume (Equation 7-6). 

𝑃𝑖(𝑡) = 𝑃𝑖(𝑡 − 1) + 𝑒𝑖(𝑡)(𝑉𝑖(𝑡) − 𝑉𝑖(𝑡 − 1)) 

EQUATION 7-6 

Where 𝑃𝑖is the pressure within the 𝑖𝑡ℎchamber. 

The heart valves are modelled in either a fully open or fully closed position, with the 

fully open configuration modelled as a resistive component (Equation 7-7).  

𝑄𝑗 = �𝐶𝑉𝑗 ∙ �𝑃𝑑𝑜𝑤𝑛 − 𝑃𝑢𝑝      ∶         𝑃𝑑𝑜𝑤𝑛 > 𝑃𝑢𝑝
0                                       ∶        𝑃𝑑𝑜𝑤𝑛 ≤ 𝑃𝑢𝑝 

       

EQUATION 7-7 

Where 𝐶𝑉𝑗 is the flow coefficient of the 𝑗𝑡ℎ heart valve. 

PARAMETER VALUES 7.2.2 

The parameter values for the 0D system (Table 7.1) have been chosen to elicit a 

physiologically realistic response for a patient suffering from left heart failure [9, 52-

54, 121]. The primary mechanisms of left heart failure are the reduced peak systolic 

contractility of the left ventricle, which in this case is represented by the systolic left 

ventricular elastance (𝐸𝑙𝑣,𝑠), an increase in ventricular end diastolic wall stiffness, 

which in this case is represented by the diastolic left ventricular elastance (𝐸𝑙𝑣,𝑑) and 

systemic vasoconstriction, with the purpose of maintaining systemic blood pressure. 

Researchers have employed alternative approaches to simulate the characteristics of 

left heart failure. Shi et al. defined the systolic left ventricular elastance as 25% of 

that in the healthy condition (𝐸𝑙𝑣,𝑠 = 6.67 × 107  kgm-4s-2 in heart failure), while 

leaving all other parameters unchanged [52, 53, 121, 122]. Tsuruta et al. described a 

number of categories of left heart failure from A-D with the systolic and diastolic 

ventricular elastance values ranging from 31.6-52.5% and 140.5-220.2% of the 

healthy case respectively [54]. They also quantify the decrease in systolic left 
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ventricular elastance (27.9% of healthy) such that the model simulates a patient with 

Class IV heart failure as described by Forrester’s classification [123]. Hanson et al. 

reduced the contractility of both the left and right ventricles by 50% to simulate 

ischaemic heart disease while also increasing the peripheral resistance to simulate 

vasoconstriction [124]. Wu et al. modified the contractile strength of both the left 

and right ventricles as well as increasing the heart rate and the peripheral resistance 

[125]. Morley et al. investigated the effects of partial ventricular support and 

characterised three categories of heart failure; mild, moderate and severe [126]. In all 

categories the heart rate and systemic resistance were increased and the elastance 

values of all heart chambers were reduced, with the systolic left ventricular elastance 

defined as 28%, 17% and 13% of the healthy condition. These corresponded to mild, 

moderate and severe left heart failure respectively.    

In the following work left ventricular failure is characterised by a reduction in the 

left ventricular peak systolic contractility and an increase in the end diastolic wall 

stiffness. The peripheral resistance is not altered. This is justified by the inclusion of 

an LVAD, which will maintain the blood pressure within a physiological range 

thereby removing the stimulus that initiates vasoconstriction. The systolic left 

ventricular elastance is reduced to approximately 30% of the healthy condition, 

relating to class IV heart failure as described by Forrester et al. and mild heart failure 

according to Morley et al. [54, 126]. The value is proposed to represent a patient 

who has received LVAD support for a period of time such that the left ventricle has 

partially recovered.  

3D MODEL 7.2.3 

The 3D model, embedded in the closed loop description of the cardiovascular 

system, is the patient-specific normal aorta introduced in Chapter 6. The 

representation of the Berlin Heart INCOR LVAD cannula is attached in the Offset-

Right configuration, following the results of the investigation into the anastomosis 

design (Chapter 6).  

The model configuration is as described in Section 6.2.1, with the SAS-SST 

turbulence model used to solve the Reynolds Averaged Navier-Stokes equations and 

a compressible fluid employed to capture the gross characteristics of the propagating 
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waves. To ensure stability of the fully coupled system a 3D time-step of 1x10-3s is 

required.    

COUPLING STRATEGY 7.2.4 

The 0D model was coded in FORTRAN by a colleague, Dr Yubing Shi. The model 

is coupled to the 3D domain via an explicit coupling scheme which passes 

information between the 3D and 0D models at the end of every time-step of the 3D 

model (as described in Chapter 3, Section 3.3). The governing equations of the 0D 

model are no longer solved using an implicit method and instead are solved using an 

explicit first order scheme (forward Euler), with a time-step of 1x10-4 s. Therefore at 

the end of every 3D time-step calculation the 0D model solves 10 time-steps before 

passing the appropriate parameters to the 3D domain. 

The 3D model receives flow at all inlets and pressure at all outlets from the 0D 

model, while the 0D model receives pressure at all inlets and flow at all outlets from 

the 3D model. 

 

 

 

 

 

 

 

 

 

 



CHAPTER 7 – FULLY COUPLED MODEL 

222 

 

Heart Compartment Parameters 

Parameter Value Parameter Value Units 

CVao 9.00x10-7 CVmi 1.50x10-6 m3.5 kg0.5 

CVpa 9.00x10-7 CVti 1.50x10-6 m3.5 kg0.5 

Elv,s 9.99x107 Elv,d 9.33x106 kg m-4s-2  

Ela,s 3.73x107 Ela,d 2.40x107 kg m-4s-2 

Erv,s 1.53x108 Erv,d 9.33x106 kg m-4s-2  

Era,s 3.33x107 Era,d 2.00x107 kg m-4s-2 

T 1 Ts 0.3 s 

Tpwb 0.92 Tpww 0.09 s 

Aortic Sinus Compartment Parameters 

Rsas 6.67x105   kg m-4s-1 

Csas 1.50x10-9   m4s2 kg-1 

Lsas 5.60x103   kg m-4 

Systemic Loop Compartment Parameters 

Rbcai 2.67x107 Rbcaa 4.93x108 kg m-4s-1 

Rbcav 2.93x108 Rlcci 2.67x107 kg m-4s-1 

Rlcca 9.7.x108 Rlccv 6.67x108 kg m-4s-1 

Rlsbi 2.67x107 Rlsba 1.06x109 kg m-4s-1 

Rlsbv 5.87x108 Rdai 4.93x107y kg m-4s-1 

Rsat 1.33x107 Rsar 6.03x107 kg m-4s-1 

Rscp 6.03x108 Rsvn 6.67x106 kg m-4s-1 

Cbcaa 4.45x10-9 Cbcav 3.75x10-9 m4s2 kg-1 

Clcca 1.50x10-9 Clccv 3.00x10-9 m4s2 kg-1 

Clsba 3.00x10-9 Clsbv 3.38x10-9 m4s2 kg-1 

Csat 7.50x10-9 Csvn 1.54x10-7 m4s2 kg-1 

Lbca 8.93x104 Llcc 2.75x105 kg m-4 

Llsb 7.33x104 Lsat 2.67x104 kg m-4 

Pulmonary Loop Compartment Parameters 

Rpas 2.67x105 Rpat 1.33x107 kg m-4s-1 

Rpar 6.67x106 Rpcp 9.33x106 kg m-4s-1 

Rpvn 8.00x105   kg m-4s-1 

Cpas 1.35x10-9 Cpat 2.85x10-8 m4s2 kg-1 

Cpvn 1.54x10-7   m4s2 kg-1 

Lpas 6.93x103 Lpat 2.27x105 kg m-4 

VAD Compartment Parameters 

Ω 3000-8000   rpm 

TABLE 7.1 – SUMMARY OF 0D MODEL PARAMETERS 
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RESULTS AND DISCUSSION 7.3 

A three dimensional assisted aorta has been embedded in a 0D description of the 

cardiovascular system to investigate flow through the aortic valve under different 

LVAD operating conditions. Table 7.2 summarises the predicted response of the 

system, identifying whether the aortic valve opens (AV flow) and showing the time 

averaged left ventricular (LV) load and total cardiac output, which is defined as a 

combination of the flow through the LVAD and the aortic valve. As a reference, the 

healthy cardiac output for this particular patient, obtained from 2D MR flow data (as 

described in Chapter 3), is 4.54 Lmin-1. The coupled model predicts the native valve 

will open when the pump is operating between 3000-5000 rpm. However, an 

appropriate cardiac output is only achieved when the pump is operating at 8000 rpm 

(Table 7.2). The average mechanical loading of the LV reduces as the pump 

operating rate is increased and importantly the volume remains positive, suggesting 

there is no ventricular suction in these configurations.  

LVAD operation  

(rpm) 

AV flow? Average LV load  

Volume (L)/Pressure (mmHg) 

Cardiac Output  

(Lmin-1) 

3000 Yes 0.1494/31.11 2.56 

4000 Yes 0.1434/30.01 2.70 

5000 Yes 0.1317/27.97 2.94 

6000 No 0.1167/24.96 3.21 

7000 No 0.0840/17.40 3.80 

8000 No 0.0442/9.24 4.42 

TABLE 7.2 – SUMMARY OF FULLY COUPLED LVAD SIMULATIONS 

A detailed comparison of the systemic cardiovascular response, at four LVAD 

operating rates (4000, 5000, 6000 and 8000 rpm), are presented in Figure 7-2.  

At pump rotation rates of ≤ 5000 rpm the ventricular pressure rises above the aortic 

pressure and the aortic valve opens (Figure 7-2). During this period flow through the 
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LVAD reduces and at rotation rates of ≤ 4000 rpm regurgitant flow is observed 

through the pump (Figure 7-2). The polynomial description of the LVAD is valid for 

negative flows but it is a phenomenon to be avoided as it is potentially detrimental to 

the patient. During ventricular support small thrombi/biological material builds up in 

regions of the impeller where the shear rates are insufficient to prevent adhesion. 

These deposits are generally asymptomatic and remain within the LVAD. However, 

in the event of regurgitant flow the distribution of the fluid shear stresses are altered 

and the deposits may become dislodged, passing into the systemic circulation and in 

the worst case resulting in a stroke or tissue ischemia due to the occlusion of an 

upstream vessel. Left ventricular pressure decreases as the pump rotation rate is 

increased, while the systemic pressure is seen to increase (Table 7.2 and Figure 7-2). 

The mechanical unloading (pressure and volume) of the LV has been identified as a 

positive factor in the reverse remodelling process of the myocardium [127, 128], and 

it thus important in achieving the end goal of pump explantation.  

The work done by the LV can be computed from the area encompassed by the 

ventricular pressure-volume loop (Figure 7-3 - left), while the meridional LV wall 

stress (Figure 7-3 - right) can be approximated based on Laplace’s law for thin 

walled structures (Equation 7-8) [52, 129, 130].  

𝜎𝜃 =
𝑃𝑙𝑣𝐷𝑙𝑣2

4ℎ𝑙𝑣
2 − 4𝐷𝑙𝑣ℎ𝑙𝑣

 

EQUATION 7-8 

Where 𝑃𝑙𝑣 , 𝐷𝑙𝑣  and ℎ𝑙𝑣  are the left ventricular pressure, diameter and thickness 

respectively. It is assumed that ℎ𝑙𝑣 is 10mm and uniform throughout the chamber. 

As the rotational rate of the pump is increased there is a reduction in the amount of 

work done by the LV (Figure 7-3 - left). There is a significant reduction in area and a 

change in the shape of the pressure-volume loops observed at pump speeds greater 

than 5000 rpm. The loops become narrower and more cone-like and correlate to 

configurations where the aortic valve no longer opens. This result suggests that 

although it is beneficial to open the aortic valve, to prevent aortic valve fusion and 

improve washout of the LV, in doing so the unloading of the LV and the cardiac 
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output is compromised. This presents a set of conflicting requirements which the 

engineers at Berlin Heart have attempted to resolve by developing an automatic 

speed reduction algorithm. The speed reduction strategy ensures good mechanical 

unloading of the LV and an appropriate total cardiac output is maintained for the 

majority of the time. However, the algorithm periodically reduces the pump rotation 

rate to encourage opening of the aortic valve. It is suggested that the current fully 

coupled modelling approach could be used to identify the reduction in speed 

necessary to ensure flow through the aortic valve, while preventing regurgitant flow 

in the LVAD. 

The stresses experienced by the impaired myocardium follow a similar trend to the 

ventricular work and the ventricular pressure (Figure 7-2), reducing as the LVAD 

rotation rate is increased.       
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FIGURE 7-2 – COMPARISON OF SYSTEMIC RESPONSE AT DIFFERENT PUMP SPEEDS  
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FIGURE 7-3 – LEFT VENTRICULAR PRESSURE-VOLUME LOOPS FOR THE DIFFERENT PUMP SPEEDS (LEFT) 

AND THE CIRCUMFERENTIAL WALL STRESS IN THE LEFT VENTRICLE (RIGHT)  

An evaluation of the local haemodynamics in the assisted aorta is presented for at 

least two rates of rotation, namely 5000 rpm and 8000 rpm (Figure 7-5). Pump 

speeds of 5000 rpm and 8000 rpm were chosen as they represent conditions where 

the aortic valve opens but without regurgitant flow through the pump (5000 rpm) and 

where the patients required cardiac output is achieved (8000 rpm).  

Figure 7-4 illustrates the influence of LVAD rotation rate on the fractional 

distribution of the blood and the form of the mass flow waveforms at the 3D model 

outlet boundaries. In all configurations where the aortic valve opens (3000-5000 

rpm) the waveforms contain a significant degree of pulsatility. There is a delay of 

approximately 0.04 s between the opening of the aortic valve and the foot of the 

waveform reaching the descending aorta (Figure 7-2 and Figure 7-4). The length of 

the aorta is approximately 0.28 m, corresponding to a wave speed of 7 ms-1. 

Although this is to be expected, since the properties of the compressible fluid were 

chosen to produce a wave speed of 7 ms-1, the result gives further confidence in the 

results of the coupled simulation. It is worth noting that the apparent delay in the 

flow waveform, when the LVAD is operating at 5000 rpm compared to 3000/4000 

rpm, is not due to a reduced wave speed in the aorta but rather the aortic valve opens 

later due to the increased aortic pressure. The fractional distribution of blood is 

maintained to within 1% in all model configurations. This result is similar to that 

reported in Chapter 6, where the use of a simple Windkessel termination ensured that 

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
0

20

40

60

80

100

120

140

Volume (L)

Pr
es

su
re

 (m
m

H
g)

Pressure-Volume Loops

 

 

3000 rpm
4000 rpm
5000 rpm
7000 rpm
6000 rpm
8000rpm

0 0.25 0.5 0.75 1
0

20

40

60

80

100

120

140

Time (s)

Pr
es

su
re

 (m
m

H
g)

Meridional Wall Stress

 

 

3000 rpm
4000 rpm
5000 rpm
7000 rpm
6000 rpm
8000rpm



CHAPTER 7 – FULLY COUPLED MODEL 

228 

 

the local cannula position had little effect on the distribution of blood and further 

illustrates the merit of employing reduced order boundary conditions.  

Cycle averaged velocity contour plots, at a number of cross-sections along the aorta 

and with vectors overlaid, are shown in Figure 7-5. In the 8000 rpm model the 

magnitudes are significantly higher than in the model with a slower operating speed 

(5000 rpm). This is to be expected since the cardiac output is lower in the 5000 rpm 

model. However, the vectors illustrate that, even in the presence of flow through the 

valve, the time averaged structure of the flow field is comparable to the 

configuration where the aortic valve does not open. It is stressed that this may not 

hold true as the heart undergoes reverse remodelling and hence the amount of flow 

through the valve increases. It is also not clear from the velocity contours whether 

the mixing of the fluid in the aorta is comparable at different pump speeds.  
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FIGURE 7-4 – INFLUENCE OF LVAD OPERATING CONDITIONS ON THE  

MASS FLOW WAVEFORMS AND FRACTIONAL DISTRIBUTION, FULLY COUPLED MODEL. 
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FIGURE 7-5 – COMPARISON OF CYCLE AVERAGED VELOCITY CONTOURS AS PREDICTED BY THE  

FULLY COUPLED MODEL, WITH THE LVAD OPERATING AT 5000 RPM AND 8000 RPM. 

The quantitative measure of mixing, presented initially in Chapter 6, is employed to 

compare the degree of mixing in the assisted aorta under the varying levels of LVAD 

support. As before the particles are released from a plane located in the aortic valve 

region (Figure 7-5, plane A). Figure 7-6 illustrates the relative entropy at a number 

of planes of interest, for all LVAD operating conditions, and the particle 

distributions are shown in Figure 7-7. Visualisation of the particle distribution 

clearly illustrates the differences in the aortic flow field under the varying degrees of 

LVAD support. With the LVAD operating at 3000 rpm the particle distributions are 

similar to those of the native flow field (Figure 6.11) and the fluid moving up into 

the supra-aortic arteries appears to come from the central core of fluid (blue 

particles). In contrast, as the LVAD rotation rate is increased to 4000 rpm and 5000 

rpm the distribution of particles appears visibly more mixed (this observation is 

supported by the relative entropy measure, Figure 7-6) and the fluid moving up into 

the supra-aortic arteries now appears to have come from both the central core and the 

annulus of fluid near the wall of the aorta (blue and red particles respectively). The 
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point at which the aortic valve no longer opens is clearly identifiable from the 

particle distributions. In configurations where the LVAD is operating at greater than 

5000 rpm the particles in the ascending aorta are no longer distributed across the 

entire plane but instead cluster around the wall (Figure 7-7). This phenomenon was 

explored in Chapter 6 and is a result of the fluid attaching to the wall, forming a fast 

moving spiral structure that remains attached as it moves along the ascending aorta 

and through the arch.  

In simulations where the aortic valve remains closed the relative entropy or mixing 

increases to a plateau in the ascending aorta, which reduces to a minimum in the 

aortic arch (Figure 7-6 - plane D) before rising again as it enters the descending 

aorta. In the models where the aortic valve opens (excluding 3000 rpm) there is a 

slower steady increase in the relative entropy as the fluid moves through the aorta 

before reaching a peak in the descending aorta. Once again with the exception of the 

slowest rotation rate, the quantitative degree of mixing appears to be converging for 

all LVAD rotation rates at the final plane (Figure 7-6 - plane F).      

 

FIGURE 7-6 – NORMALISED INFORMATION ENTROPY (𝜅) IN THE ASSISTED AORTA 

AT THE DIFFERENT LVAD ROTATION RATES. 
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FIGURE 7-7 – ILLUSTRATION OF THE PARTICLE MIXING IN THE ASSISTED AORTA  

AT THE DIFFERENT LVAD ROTATION RATES (PLANE LOCATIONS CORRESPOND TO FIGURE 7.5).  
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CONCLUSIONS 7.4 

A three dimensional model of a patient-specific thoracic aorta has been embedded in 

a comprehensive 0D description of the assisted vasculature. The fully coupled 

simulation has been used to identify under what LVAD operating conditions the 

aortic valve will open. This is particularly important to inhibit aortic valve fusion and 

has the additional advantage of improving the washout of the left ventricle.  

The entropic measure of mixing, initially introduced in Chapter 6, was used to 

evaluate the degree of mixing in the aortic flow field under the different LVAD 

operating conditions. The higher pump speeds resulted in greater immediate levels of 

fluid mixing in the ascending aorta, which decayed rapidly through the aortic arch. 

In contrast the lower operational speeds produced shallower gradients of the mixing 

quantity in the ascending aorta but grew steadily along the length of the aorta. 

The fully coupled simulations demonstrated that in the particular case investigated, 

i.e. a patient suffering from mild left ventricular failure, LVAD (Berlin Heart 

INCOR) rotation rates of 5000 rpm or less resulted in flow through the aortic valve. 

In order, to prevent regurgitant flow through the pump the rotation rate must be 

greater than 4000 rpm. At a pump speed of 5000 rpm the total cardiac output is 

2.94 Lmin-1. This is 1.6 Lmin-1 lower than the required cardiac output and is clearly 

insufficient to ensure adequate perfusion of the peripheral vasculature. To achieve 

the required output the LVAD must operate at approximately 8000 rpm, in which 

case the aortic valve remains closed. These two goals present conflicting 

requirements. To overcome this, the Berlin Heart INCOR LVAD implements an 

automatic speed reduction algorithm that periodically reduces the pump speed to 

allow the aortic valve to open. It is proposed that the described model presents an 

exciting opportunity to tune the speed reduction algorithm to ensure the aortic valve 

will open but without the occurrence of regurgitant flow through the pump. 

 

  



 

 

 

  



 

 

 

Chapter 8  
CONCLUSIONS 
The aim of this thesis was to characterise the local aortic and systemic 

haemodynamics in the presence of a left ventricular assist device. 

The first step in achieving this goal was to assess the accuracy of the local flow field 

predictions using CFD (ANSYS-CFX). An idealised benchmark, designed by the 

FDA to replicate flow fields relevant to the cardiovascular system and specifically to 

cardiovascular devices, was simulated at a number of flow rates and the results 

compared to data acquired experimentally. The CFD predictions were in close 

agreement to the experimental data whilst the flow remained laminar but were found 

to vary downstream of the sudden expansion as the flow field became turbulent. The 

CFD predictions for the transitional and turbulent flow fields, when compared to the 

experimental data, were found to be overly dissipative as the fluid moved through 

the sudden expansion. It was proposed that this variation would be reduced in an 

aortic geometry. Numerical prediction of the onset location of turbulence in an 

unimpeded jet of fluid is notoriously difficult, especially in symmetrical systems 

with such sensitive flow rates. In the case of the aorta any jet of blood that rises from 

the flow field will interact with a wall after a relatively short distance.  

CHAPTER 8 
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A challenging aspect of CFD simulation is the application of appropriate and 

realistic boundary conditions. In this thesis a minimisation approach was developed 

and implemented in Matlab to tune the parameters of a simple 0D representation of 

the downstream vasculature to elicit a desired response. The approach was tested in a 

single outlet system with an exact solution and performed well. The added 

complexity posed by a real situation in terms of multiple branches and the lack of an 

exact solution, for the 0D parameters, was shown to require multiple iterations of 

both the 3D solution and the optimisation algorithm before a reasonable match to the 

clinical data could be achieved. 

To faithfully represent the local haemodynamics of the cardiovascular system one 

should employ numerical simulations which consider the interaction of the blood 

with the elastic vessel wall. However, these simulations suffer from high 

computational requirements and the need for detailed information regarding wall 

thickness, material properties and external support that may not be available. An 

alternative approach, employing a compressible fluid to capture the gross wave 

propagation effects, was compared to a full FSI simulation and a rigid walled 

incompressible fluid model in three geometries: 

1. Uniform cylindrical vessel with properties similar to the aorta 

2. Patient-specific aorta 

3. Patient-specific aorta in the presence of an LVAD 

The compressible fluid model accurately captured the time lag associated with the 

propagating waves and required approximately 1/20th of the computational time 

needed to perform an FSI simulation. As one might expect, rigid walled models were 

unable to accurately predict the FSI WSS magnitudes but the compressible fluid 

model produced comparable distributions of WSS. As such it is suggested that the 

compressible fluid model offers a computationally efficient alternative to full FSI 

models especially in situations where multiple configurations require testing (e.g. 

LVAD cannula placement). 

The peak Reynolds number in the human aorta is reported to range from 400-8900 

[75], encompassing both laminar and turbulent regimes. However, aortic flow is 

pulsatile and since turbulence requires time to develop there is a divided opinion in 
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the scientific community as to whether a turbulence model is required, or if current 

models are appropriate for the transitional state, to accurately simulate aortic 

haemodynamics. In this thesis the influence of a turbulence model was assessed in 

both steady state and transient simulations of a native and assisted patient specific 

aorta. Mesh sensitivity studies were conducted for both the assisted and unassisted 

case, employing steady state analyses. It was concluded that to ensure mesh 

independence in both native and assisted aortas a maximum edge length of ≤ 0.75 

mm is required, correlating to a number of elements of the order 106. 

Steady state laminar simulations of the native aorta at peak flow failed to converge, 

while the laminar and turbulent simulations demonstrated close agreement under 

steady state conditions at a Reynolds number of approximately 1000. Under transient 

conditions the laminar and turbulent simulations are also in agreement with the same 

structures predicted by both numerical models. In this specific case the laminar 

model is appropriate. However, since the turbulent model can capture the 

characteristics of the flow field under both low and high Reynolds number 

conditions it is suggested that it should be the analysis method of choice.  

In the assisted aorta the steady laminar simulations also failed to converge but unlike 

the native aorta the transient laminar simulations predicted different structures in the 

flow field when compared to the turbulent simulation. Based on the findings in 

Chapter 2 and the results for the native aorta the turbulence model is considered 

imperative when simulating assisted aortic flow fields. 

The finding described in Chapters 4 and 5 were combined in Chapter 6 to investigate 

the influence of the local LVAD outflow cannula position on the aortic flow field. A 

turbulent simulation, with a compressible fluid, was used to simulate the different 

flow fields and an entropic measure was employed to evaluate the degree of mixing 

in each cannula configuration. It was discovered that by offsetting the cannula to the 

right, on a transverse plane normal to the axis of the ascending aorta, the fluid 

swiftly attached to the vessel wall, resulting in a more rapid washout of the 

ascending aorta and reduced regions of low wall shear stress, which are associated 

with the development of atherosclerosis.     
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To fully achieve the aim of this thesis, i.e. “to characterise the local and systemic 

haemodynamics in the presence of a LVAD”, a 3D model of patient-specific assisted 

aorta was embedded in a comprehensive 0D description of the assisted 

cardiovascular system. The fully coupled model allows detailed interrogation of the 

local flow features in the assisted aorta while modelling the gross behaviour of the 

systemic and pulmonary loops as well as the function of the heart. This model was 

employed to identify conditions under which the aortic valve opened, thereby 

reducing the risk of aortic valve fusion and improving washout of the left ventricle. 

In the specific case investigated, a patient with mild left heart failure simulating 

partial recovery of the myocardium, blood flowed through the aortic valve when the 

LVAD was operating at 5000 rpm or less. However, to achieve a reasonable cardiac 

output the LVAD was required to operate at 8000 rpm. The Berlin Heart INCOR 

LVAD incorporates an automatic speed reduction algorithm which periodically 

reduces the pump speed to encourage the aortic valve to open while maintaining a 

reasonable cardiac output for the rest of the time. It is proposed that the fully coupled 

model could compliment this control strategy by quantifying the degree of speed 

reduction necessary for a specific patient’s aortic valve to open.  

FUTURE WORK 8.1 

Although attempts have been made to ensure the numerical models faithfully 

represent the physics of the system (FDA benchmark, analysis strategies and laminar 

vs. turbulent work), further experimental validation within a realistic aortic or 

assisted aortic geometry would give further confidence in the local flow field 

predictions and the subsequent conclusions that are drawn. 

In the author’s view an even more important continuation of this work is the 

evaluation of the fully coupled model as a tool to improve LVAD control strategies 

for individual patients. In this thesis the 0D model of the cardiovascular system was 

tuned to elicit a generic response in a patient suffering from left ventricular failure. 

As such the results, although demonstrating the potential of the tool, are at present 

purely academic. Detailed patient data would allow the parameters of the 0D model 
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to be personalised, enabling the simulations to offer a truly useful and informative 

tool. 

Another area that would benefit from further study is the effect of backward 

travelling waves on the apparent wave speed (i.e. the rate at which a pressure or flow 

wave propagates) in an elastic vessel. Currently the apparent aortic wave speed is 

often used to infer the mechanical properties of the aortic wall. However, the 

analytical investigation of a uniform cylinder, presented in Chapter 4, demonstrates 

that the relative magnitude of the forward and backward travelling waves also 

influences the apparent wave speed.    
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