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Abstract

This thesis is concerned with problems in two related areas of statistical shape analysis in two dimensional

landmarks data and directional statistics in various sample spaces.

Directional observations can be regarded as points on the circumference of a circle of unit radius in two

dimensions or on the surface of a sphere in three dimensions. Special directional methods and models are

required which take into account the structure of these sample spaces. Shape analysis involves methods

for the study of the shape of objects where location, scale and orientation are removed. Specifically, we

consider the situation where the objects are summarized by points on the object called landmarks. The

non-Euclidean nature of the shape space causes several problems when defining a distribution on it. Any

distribution which could be considered needs to be tractable and a realistic model for landmark data.

One aim of this thesis is to investigate the saddlepoint approximations for the normalizing constants of

some directional and shape distributions. In particular, we consider the normalizing constant of the CBQ

distribution which can be expressed as a one dimensional integral of normalizing constants for Bingham

distributions. Two new methods are explored to evaluate this normalizing constant based on saddlepoint

approximations namely the Integrated Saddlepoint (ISP) approximation and the Saddlepoint-Integration

(SPI) approximation.

Another objective of this thesis is to develop new simulation methods for some directional and shape

models. We propose an efficient acceptance-rejection simulation algorithm for the Bingham distribution on

unit sphere using an angular central Gaussian (ACG) density as an envelope. This envelope is justified using

inequalities based on concave functions. An immediate consequence is a method to simulate 3× 3 matrix

Fisher rotation matrices. In addition, a new accept-reject algorithm is developed to generate samples from

the complex Bingham quartic (CBQ) distribution.

The last objective of this thesis is to develop a new moment method to estimate the parameters of the

wrapped normal torus distribution based on the sample sine and cosine moments.
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Chapter 1
Introduction

The work contained in this thesis falls into the two related areas of statistical shape analysis and

directional statistics. Let us start by introducing the fields involved in this thesis. Basic definitions

referred to through out the text are given.

1.1 Directional Statistics

There are various statistical problems which arise in the analysis of data when the observations are

directions. Directional data are often met in astronomy, biology, geology, medicine and meteorol-

ogy, such as in investigating the origins of comets, solving bird navigational problems, interpreting

palaeomagnetic currents, assessing variation in the onset of leukaemia, analysing wind directions,

etc.

The directions are regarded as points on the circumference of a circle in two dimensions or on

the surface of a sphere in three dimensions. In general, directions may be imagined as points on the

surface of a hypersphere but observed directions are obviously angular measurements.

The difficulty in the statistical analysis of directional data stems from the disparate topology of

the circle and the straight line: if angles are recorded in radians in the range [−π, π), then directions

close to the opposite end-points are near neighbours in a metric which respects the topology of the

circle, but maximally distant in a linear metric. Thus, many standard statistical procedures are

inappropriate for modelling directional data (Coles [10]).

1
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1.1.1 Circular Models

A large number of circular probability models exists; like linear probability models, they may be

either discrete or continuous. Several of the more important are discussed in this thesis.

Many useful and interesting circular models may be generated from probability distributions on

the real line or on the plane, by a variety of mechanisms. We describe a few such general methods

(Jammalamadaka and SenGupta [31], p. 30):

(1) By wrapping a linear distribution around the unit circle. Any linear random variable X on

the real line may be transformed to a circular random variable by reducing it modulo 2π i.e.

using θ = X(mod 2π). The wrapped normal and the wrapped Cauchy distributions are of

interest in this thesis.

(2) Through characterizing properties such as maximum entropy, etc. It is often instructive to

ask if there are distributions on the circle which enjoy certain desirable properties. For in-

stance, one may ask which distribution has the maximum entropy subject to having non-zero

trigonometric moments. The uniform and von Mises (Circular Normal) distributions have the

maximum entropy (Mardia and Jupp [70]. p. 42) where the entropy of a distribution on the

circle with probability density function f is defined as

H(f) = −
∫ 2π

0

f(θ) log f(θ)d θ.

This is one way of measuring the closeness of a distribution to the uniform distribution. von

Mises distribution is of interest in this thesis. Moreover, if we ask which distribution on

the circle has the property that the sample mean direction and the length of the resultant

vector are independent, then the uniform or isotropic distribution is the answer (see Kent et.

al. [47] and Jammalamadaka and SenGupta [31], p. 32). This characterization of the uniform

distribution is similar to, and as important as, that of the normal distribution on the line as

the only one in which the sample mean and sample variance are independent.

(3) By transforming a bivariate linear random variable to just its directional component, the so-

called offset distributions. This is done by accumulating probabilities over all different lengths

for a given direction. We transform the bivariate random vector (X, Y ) into polar co-ordinates

(r, θ) and integrate over r for a given θ. If f(x, y) denotes the joint distribution of a bivariate
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distribution on the plane, then the resulting circular offset distribution, say g(θ), is given by

g(θ) =

∫ ∞
0

f(r cos θ, r sin θ)rd r.

(4) One may start with a distribution on the real line, and apply a stereographic projection that

identifies points x with those on the circumference of the circle, say θ. This correspondence is

one-to-one except for the fact that the mass if any, at both +∞ and −∞, are identified with π

(Jammalamadaka and SenGupta [31], p. 31). Such a correspondence is shown in Figure 1.1.

Figure 1.1: Stereographic projection

1.1.2 Spherical Models

Much of the theory of spherical statistics is analogous to that for circular statistics. Further, one can

consider directions in p dimensions, i.e. unit vectors in p-dimensional Euclidean space Rp. Directions

in p dimensions can be represented as unit vectors x, i.e. as points on Sp−1 =
(
x : xTx = 1

)
, the

(p − 1)-dimensional sphere with unit radius and centre at the origin. Some spherical distributions

are of interest in this thesis namely, von Mises-Fisher, Fisher, Fisher-Bingham (Kent) distributions

for the spherical data and the Bingham and the angular central Gaussian (ACG) distributions for

the axial data.
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1.1.3 Special Orthogonal Rotation Matrices and Torus Models

In the previous subsections we have considered mainly observations which are unit vectors (di-

rections) or axes. However, other types of observations occur in directional statistics, the most

important of these from the practical point of view being rotations, orthonormal frames and torus.

An orthonormal r-frame in Rp is a set (x1,x2, . . . ,xp) of orthonormal vectors in Rp. The space

of orthonormal r-frame in Rp is called the Stiefel manifold Vr(Rp). In terms of p × r matrices

X, Vr(Rp) =
{
X : XTX = Ir

}
. An orthonormal p-frame is equivalent to an orthogonal matrix,

so Vr(Rp) = O(p), the orthogonal group consisting of all orthogonal p × p matrices. Moreover,

an orthogonal (p − 1)-frame (x1,x2, . . . ,xp−1) can be extended uniquely to an orthogonal p-frame

(x1,x2, . . . ,xp) with matrix of determinant 1, so Vr(Rp) = SO(p), the special orthogonal group

consisting of all p × p rotation matrices (Mardia and Jupp [70], p. 285). The matrix Fisher

distribution on a group SO(3) of all rotations of R3 is of interest in the simulation chapters in this

thesis.

In geometry, a torus is a surface of revolution generated by revolving a circle in three dimensional

space about an axis coplanar (all the points lie in the same geometric plane) with the circle. In

topology, a torus is homeomorphic to the Cartesian product of two circles: T2 = S1 × S1 (Nikulin

and Shafarevich [78], p. 110). Sometimes it is necessary to consider the joint distribution of two

circular random variable θ1 and θ2. Then (θ1, θ2) take values on the unit torus. In the uniform

distribution on the torus, θ1 and θ2 are independent and uniformly distributed. Some interested

distributions on the torus are the bivariate von Mises (sine and cosine) distribution and the wrapped

multivariate normal distribution.

1.2 Statistical Analysis of Shapes

1.2.1 Shapes and Landmarks

Shape is all the geometrical information that remains when location, scale and rotational effects are

filtered out from an object.

According to this, definition of shape is invariant under Euclidean similarity transformations

of translation, scaling and rotation as follows. The simplest type of object which can be studied

consists of a labelled set of k points in Rm (where k ≥ m = 1), represented as a k ×m matrix, X,
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say. Then for any location vector γ ∈ Rm, orthogonal m×m rotation matrix Γ satisfying det(Γ) = 1

and ΓTΓ = ΓΓT = Im, and a scale β > 0, X has the same shape as βXΓ+1kγ
T (Euclidean similarity

transformation of X). Similarity transformations in R2 can also use complex notation. Consider

k ≥ 3 landmarks in C, zo = (zo1, z
o
2, . . . , z

o
k)
T which are not all coincident. The Euclidean similarity

transformations of zo are βeiθzo + 1kξ where β ∈ R+ is the scale, 0 ≤ θ < 2π is the rotation angle

and ξ ∈ C is the translation.

A related concept to shape is form. It is the geometrical information that remains when location

and rotational effects are filtered out from an object. In other words two objects have the same

size-and-shape (form) if they can be translated and rotated to each other so that they match exactly,

i.e if the objects are rigid body transformations of each other.

The next question that naturally arises is: How should one describe a shape? One way to

describe a shape is by locating a finite number of points on the outline. Consequently, the concept

of a landmark is adopted by Dryden and Mardia [18].

A landmark is a point in two or three-dimensional space that corresponds to the position of a

particular feature on an object of interest. For example, in the study of osteological remains, a

landmark might be defined as the point that marks the scar of a muscle insertion on a bone, the

intersection of two or more bones at a cranial suture, or the foramen that marks the path of a

neurovascular bundle. We choose to focus on landmark data because we want to analyze data for

which points on one object have an unambiguous correspondence to points on another object (Lele

and Richtsmeier [56], p. 14).

Dryden and Mardia [18] split landmarks into three subgroups:

1. Anatomical landmarks: Points assigned by an expert that correspond between organisms in

some biologically meaningful way.

2. Mathematical landmarks: Points located on an object according to some mathematical or

geometrical property, i.e. high curvature or an extremum point.

3. Pseudo-landmarks: Constructed points on an object either on the outline or between land-

marks.
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1.2.2 Configurations

A mathematical representation of a k-point shape in m dimensions could be created by concatenate

each dimension into a km-vector. The vector representation x for planar shapes (m = 2) would

then be:

x = [x1, x2, . . . , xk, y1, y2, . . . , yk]
T .

Alternatively, we may recast a km-vector as a configuration matrix with k rows and m columns.

Thus, the configuration matrix X for planar shapes (m = 2) would then be:

X =


x1 y1

x2 y2

...
...

xk yk

 .

To perform a shape analysis, a biologist traditionally selects ratios of the distances between

landmarks or angles, and then submits these to a multivariate analysis. This approach has been

called multivariate morphometrics or the traditional method. Another approach is to consider a

shape space obtained directly from the landmark coordinates, which retains the geometry of a point

configuration, this has been called geometric shape analysis or the geometrical method.

Shape variables are features constructed from the configuration X that are unchanged under

similarity transformations (translation, scaling and rotation). Similarly size-and-shape or form

variables are unchanged under rigid body motions (translation and rotation). Size variables are

form variables that are invariant under scaling changes; that is, if β > 0 is some constant, the size

variable for βX must be β times the size variable for X.

1.2.3 Shape and Pre-Shape Spaces

Shape space is the set of all possible shapes. Formally, the shape space Σk
m is the orbit space of

the non-coincident k point set configurations in Rm under the action of the Euclidean similarity

transformations.

The pre-shape, Z, of a configuration matrix X has all the information about location and scale

removed. it is usually constructed by centring the configuration and then dividing by size. The
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pre-shape is given by

Z =
H X

‖H X‖

where H is a (k−1)×k Helmert matrix without the first row and it is called the Helmert sub-matrix.

The centred pre-shape, ZC = C X/‖C X‖ is another pre-shape representation where C = Ik− 1
k
1k1

T
k

is centred matrix and also an idempotent (CTC = C, C2 = C) (Dryden and Mardia [18], p.55).

Note that Z is a (k− 1)×m matrix whereas ZC is a k×m matrix and the relationship between the

pre-shape and centred pre-shape is ZC = HTZ. Both pre-shape representations are equally suitable

for the pre-shape space which has real dimension km− 1. The advantage in using Z is that it is of

full rank and its dimension is less than that of ZC . On the other hand, the advantage of working

with the centred pre-shape ZC is that a plot of the Cartesian coordinates gives a correct geometrical

view of the shape of the original configuration (Dryden and Mardia [18], p.55).

Pre-shape space is the space of all possible pre-shapes. Formally, the pre-shape space Skm is the

orbit space of the non-coincident k point set configurations in Rm under the action of translation

and isotropic scaling.

If we remove translation from the original configuration then the resulting landmarks are called

Helmertized. Filtering scale from those Helmertized landmarks yields pre-shape whereas eliminating

rotation from them should create size-and-shape. Again, removing rotation from pre-shape or

removing scale from size-and-shape should result shape and after removing reflection for these shape

landmarks the result is reflection shape (Dryden and Mardia [18], p.55). Figure 1.2 gives a diagram

indicating the hierarchies of the different spaces.

Complex arithmetic when m = 2 enables us to deal with shape analysis very effectively. The

advantage of using complex notation is that rescaling and rotation of an object in two dimensions

can be obtained by complex multiplication by a complex number; for example, λz = r exp(i θ)z has

the same shape as z, although being rescaled by r and rotated anticlockwise by θ radians about the

origin (Mardia [63]).

Consider k ≥ 3 landmarks in C, zo = (zo1, z
o
2, . . . , z

o
k) which are not all coincident. Location is

removed by pre-multiplying by the Helmert sub-matrixH giving the complex Helmertized landmarks

zH = Hzo. The centroid size is

S(zo) = {(zo)∗C zo}1/2 = ‖zH‖ =
√

(zH)∗zH ,

where (zo)∗ denotes the complex conjugate of the transpose of zo. Hence the complex pre-shape z
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Figure 1.2: The hierarchies of the various spaces (after Goodall and Mardia [26]).

is obtained by dividing the Helmertized landmarks by the centroid size,

z = zH/S(zo), z ∈ Sk2

We see that the pre-shape space Sk2 is the complex sphere in k − 1 complex dimensions

CSk−2 = {z : z∗z = 1, z ∈ Ck−1},

which is the same as the real sphere of unit radius in 2k − 2 real dimensions, S2k−2. In order to

remove rotation we identify all rotated versions of z with each other, i.e. the shape of zo is

[zo] = {zeiθ : 0 ≤ θ < 2π}

The complex sphere CSk−2 which has points z identified with zeiθ (0 ≤ θ < 2π) is the complex

projective space CP k−2. Hence, the shape space for k points (Dryden and Mardia [18], pp. 58-59)

in two dimensions is

Σk
2 = CP k−2



1.2. STATISTICAL ANALYSIS OF SHAPES 9

1.2.4 Shape Models

The current work on the shape analysis in this thesis focuses on the distributions of shape analysis in

two dimensions. There are several issues to consider and there are various difficulties to overcome.

Since the shape space is non-Euclidean special care is required. Our main emphasis will be on

distributions on CP k−2. Any distribution which could be considered needs to be tractable and a

realistic model for landmark data.

Suitable ways of obtaining shape distributions (Dryden and Mardia [18], p. 109):

(1) Consider distributions in configuration space, conditional on size. This proposal is called the

conditional approach, where the non-directional variables are held constant.

(2) Consider distributions in configuration space, with the similarity transformations integrated

out. This proposal is called the marginal approach, where we integrate out the non-directional

variables e.g. offset normal shape distribution (Dryden and Mardia [18], p. 124) and Mardia-

Dryden distributions (Mardia and Dryden [66] and Dryden and Mardia [17]).

(3) Consider distributions on the pre-shape space which are invariant under rotations.

(4) Consider distributions based on shape distances.

(5) Consider distributions in the tangent space.

Recently these approaches have produced useful shape distributions, starting with the distribu-

tions of Mardia and Dryden [67] following the marginal approach. Kent [41] adapted the conditional

approach and introduced the complex Bingham (CB) distribution. The complex Watson distribu-

tion is another shape model for the landmark data (Mardia [62] and Dryden and Mardia [18], p.

118). For triangles k = 3 it is the same as the complex Bingham (CB) distribution (Mardia and

Dryden [67], p. 119). Kent [41] suggests the complex angular central Gaussian ACG distribution

for shape data. Kent et al. [46] suggest also the complex Bingham quartic (CBQ) distribution on

the unit complex sphere in Ck−1. The CBQ distribution is an extension to the complex Bingham

distribution. Under high concentrations the complex Bingham distribution has a complex normal

distribution. By adding a quartic term to the complex Bingham density the CBQ distribution is

obtained, which allows a full normal distribution under high concentrations. Our major contribution

in this thesis concentrates on the complex Bingham (CBQ) distribution.
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1.2.5 Relationship between Directional Statistics and Shape Analysis

We can construct shape distributions directly from directional distributions themselves.

(1) For the triangle case, k = 3, the identification of CP 1 to S2 allows immediately a shape

distribution using the isometric transformation

x = |z1|2 − |z2|2, y = 2 Re(z̄1z2), z = 2 Im(z̄1z2)

to any spherical distribution. Here z̄ is the complex conjugate of z. In fact, this mapping is

isometric (Σ3
2 = CP 1 = S2(1

2
)), so we may call such distributions the isometric distributions

(Kendall et. al. [38], pp. 4-12 and Kendall, [36]).

(2) For k > 3, we can use a directional distribution z on a preshape CSk−2 and integrate out, say, ψ

in zp = r exp(i ψ), r > 0, 0 < ψ ≤ 2π, to obtain a shape density. However, a simpler approach

is to take a density on the preshape z ∈ CSk−2 which satisfies the rotational symmetry, so

integrating out over ψ is not necessary. In particular, complex symmetric distributions with

the density of the form f(z∗A z) are automatically shape distributions (Mardia [63], Kent [41]

and Mardia and Dryden, [67]).

Table 1.1 and Figure 1.3 give the relationship between some of common directional and shape

distributions. Here κ is a concentration parameter, µ is a mean direction, β is an ovalness parameter

for FB5 distribution, A is a symmetric p× p matrix with trace A = 0 and B is a (k − 2)× (k − 2)

negative positive complex matrix for the CBQ distribution in terms of the partial Procrustes tangent

co-ordinates (Kume and Wood [54], Kent [41], Dryden and Mardia [18], Mardia and Jupp [70],

Fisher et. al [22], Watson [96], Mardia [62], Kent [40], Kent et al. [46] and Mardia and Dryden [66]).

The diagram describes the relationship between some common shape distributions themselves, the

relationship between some famous directional distributions themselves and the relationship between

both the shape and directional models. It is clear from the diagram that there is a direct link between

the von Mises-Fisher distribution and the uniform, the von Mises and the Fisher distributions.

Another link can be observed between the Fisher-Bingham, the Bingham, the von Mises-Fisher,

the Fisher, the Kent and the 2-Wrapped distributions. On the other hand, there is a third link

between some famous shape models. For the triangle case and presence just two distinct eigenvalues

in the parameter matrix A (a single distinct largest eigenvalue and all other eigenvalues being

equal), the complex Watson distribution is a special case of the complex Bingham distribution. The
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complex Bingham distribution is also a special case of the complex Bingham quartic distribution if

the (k − 2) × (k − 2) negative positive complex matrix B = 0 (in terms of the partial Procrustes

tangent co-ordinates). In the triangle case (k = 3), there is a fourth link between some common

shape and directional distributions. In particular, the complex Bingham distribution tends to the

Fisher distribution and the the complex Bingham quartic distribution becomes the Kent (FB5)

distribution.

1.3 Outline of the Thesis

The title of this thesis is Estimation and Simulation in Directional and Statistical Shape Models.

The material discussed divides naturally into three major parts namely, saddlepoint approximations

as statistical tools of estimation, rejection simulation techniques and method of estimation for torus

data.

1.3.1 Part I: Saddlepoint Approximations

In Chapter 2 we begin by looking at some basic principles of approximation using the familiar

tool of Taylor expansion. The underlying strategy of the approximation carries through to more

sophisticated saddlepoint approximation. Although the theory of saddlepoint approximations is

quite complex, use of the approximations is fairly straightforward. The saddlepoint method provides

an accurate approximation to the density or the distribution of a statistic, even for small tail

probabilities and with very small sample sizes. This accuracy is seen not only in numerical work, but

also in theoretical calculations. We apply this technique to the normalizing constants of some circular

directional distributions such as von Mises distribution as well as to approximate the normalizing

constants for some suitable distributions for spherical and axial data such as the Fisher and the

Bingham distributions.

Chapter 3 starts with a review of some numerical integration methods. The normalizing constant

of the CBQ distribution has no closed form and therefore we provide an approximation procedure

based on saddlepoint approximations for finite mixtures of distributions. Calculating the normalizing

constant for the CBQ distribution is based on numerical methods of quadrature (uniform nodes).

Two methods are explored to evaluate this normalizing constant based on saddlepoint approximation

of Bingham densities namely, the Integrated Saddlepoint (ISP) approximation and the Saddlepoint-
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Integration (SPI) approximation. One notable drawback of numerical quadrature is the need to pre-

compute (or look up) the requisite weights and nodes. The uniform nodes are not a suitable choice

to compute the integrand function for the normalizing constant of the CBQ distribution numerically

especially under high concentration. An initial change of variable treatment is suggested instead.

1.3.2 Part II: Rejection Simulation Techniques

The second part divides into two subparts namely simulation techniques based on concave functions

and general rejection schemes.

Chapter 4 discusses some new simulation methods. The main purpose of this chapter is to develop

an efficient accept-reject simulation algorithm for the Bingham distribution on the unit sphere in

Rp using an ACG envelope. The presentation proceeds in several stages. Firstly a review is given

for the general A/R simulation algorithm. Secondly a general class of inequalities is given based on

concave functions. These inequalities are illustrated for the multivariate normal distribution in Rp

by finding two envelopes, viz., the multivariate Cauchy and the multivariate bilateral exponential

distributions, respectively. An inequality similar to that is used to show that the ACG density

can be used as an envelope for the Bingham density. The Bingham distribution on S3 is identified

to the matrix Fisher distribution on SO(3). Hence the method of simulation from the Bingham

distribution coincide to a method for simulating the matrix Fisher distribution.

Chapter 5 considers general simulation techniques from some directional and shape distributions.

An A/R algorithm based on Bingham density is developed to generate samples from the von Mises

distribution on the circle. Ulrich’s simulation algorithm from the von Mises-Fisher distribution with

an envelope proportional to Beta distribution is investigated. For the circular case, a comparison is

given between the efficiency of the Ulrich’s algorithm and that of the Best-Fisher scheme. A review

is given of the Kent-Hamelryck simulation algorithm to sample from the FB5 distribution. Two

other simulation methods are developed to generate samples from the 5 parameter Fisher-Bingham

(FB5) using uniform and Bingham envelopes. In this chapter we also propose an acceptance-rejection

simulation algorithm from the CBQ distribution. The problem of simulating from this complex shape

distribution reduces to simulation from a mixture of two standard multivariate normal distributions.

The efficiency rate is approximately 50% under high concentration.
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1.3.3 Part III: Methods of Estimation for Torus Data

In Chapter 6 we review the sine and cosine bivariate distributions on torus. Maximum likelihood

(ML) and pseudolikelihood (PL) estimators for the sine distribution are discussed. A comparison is

also given between three bivariate sine and cosine models based on contours of the log-densities. For

each of the three models, the parameters are chosen to match any positive definite inverse covariance

matrix. For the wrapped normal torus distribution, we investigate a moment method to estimate

the parameters based on the sample variance-covariances.

Chapter 7 gives a summary study and some potential work on the current fields in the future.
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Shape Models Directional Models

Complex Bingham distribution. Real Bingham distribution: The (k − 2)-dimensional

complex Bingham (CB) distribution can be regarded as

a special case of a (2k−2)-dimensional real Bingham dis-

tribution (Dryden and Mardia [18], p.113 and Kent [41],

p. 287).

Complex Bingham distribution. Fisher distribution: For the triangle case, the shape

space is the 2-sphere of radius one-half and the com-

plex Bingham (CB) distribution on CS1 is equivalent to

using Fisher distribution on S2 (Kent [41]).

Complex Bingham quartic (CBQ)

distribution.

Fisher-Bingham (FB5) distribution: For the triangle

case, k = 3, the complex Bingham quartic (CBQ) dis-

tribution on CS1 is equivalent to using Fisher-Bingham

(FB5) distribution on S2 (Kent et al. [46]).

Complex Watson distribution:

Special case of the complex Bing-

ham (CB) distribution when k =

3 and there are just two distinct

eigenvalues in A (a single distinct

largest eigenvalue and all other

eigenvalues being equal) (Dryden

and Mardia [18], p.118).

von Mises-Fisher distribution: The central role that the

von Mises-Fisher distribution plays in directional data

analysis is played by the complex Watson distribution

for two dimensional shape analysis. For the triangle

case, k = 3, the complex Watson distribution on CS1

is equivalent to using Fisher distribution on S2 (Dryden

and Mardia [18], p.123).

Complex angular central Gaus-

sian (CACG) distribution.

Angular central Gaussian (ACG) distribution: The

(k − 2)-dimensional complex angular central Gaussian

(CACG) distribution can be regarded as a special case of

a (2k− 2)-dimensional angular central Gaussian (ACG)

distribution.

Mardia-Dryden distribution. Fisher distribution: For lower κ→ 0 and higher κ→∞

concentrations and for triangle case, k = 3, Mardia-

Dryden distribution on shape sphere behaves like the

Fisher distribution (Mardia [61]).

Table 1.1: Relationship between some common directional and shape distributions.
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Chapter 2
Saddlepoint Approximations in Circular

and Spherical Models

2.1 Introduction

Modern statistical methods use models that require the computation of probabilities from compli-

cated distributions, which can lead to intractable computations. Saddlepoint approximations can

be the answer (Butler [9]). Although the theory of saddlepoint approximations is quite complex,

use of the approximations is fairly straightforward. The saddlepoint method provides an accu-

rate approximation to the density or the distribution of a statistic, even for small tail probabilities

and with very small sample sizes. This accuracy is seen not only in numerical work, but also in

theoretical calculations. The basis of this method is to overcome the inadequacy of the normal

approximation in the tails by tilting the random variable of interest in such a way that the normal

approximation is evaluated at a point near the mean (Paolella [79], pp. 170-171). In this chapter

we apply this technique to the normalizing constants of some circular directional distributions such

as the von Mises distribution as well as to approximate the normalizing constants for some suitable

distributions for spherical and axial data such as Fisher and Bingham distributions. The Fisher-

Bingham distribution, for instance, is obtained when a multivariate normal vector is conditioned to

have unit length; its normalizing constant can be expressed as an elementary function multiplied by

the density, evaluated at 1, of a linear combination of noncentral χ2
1 random variables. Hence we

may approximate the normalizing constant by applying a saddlepoint approximation to this density

(Kume and Wood [54]).

17
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We begin by looking at some basic principles of saddlepoint approximation, using the familiar

tool of the Taylor expansion. As we will see, the underlying strategy of this approximation carries

through to more sophisticated approximations.

2.2 Background Ideas

We recall that for a probability density function f(x) on (−∞,∞), the moment generating function

(MGF), or the cumulant transform, MX(u) is defined as

MX(u) = eKX(u)

= E[exp(uX)] =

∫ +∞

−∞
exp(ux)f(x)dx, (2.1)

over values of u for which the integral converges. With real values of u, the convergence is always

assured at u = 0. In addition, we shall presume that M(u) converges over an open neighbourhood

of zero designated as (−u1, u2), and that, furthermore, (−u1, u2) is the largest such neighbourhood

of convergence. This presumption is often taken as a requirement for the existence of the MGF

(MX(u) <∞). The function KX(u) in (2.1) is called the cumulant generating function and defined

as

KX(u) = log
(
MX(u)

)
. (2.2)

From MX(u) we can obtain f(x) by using the Fourier inversion formula (Feller [21], Ch. XV

and Billingsley [6], sec. 26)

f(x) =
1

2π

∫ +∞

−∞
MX(iu) exp(−iux)du

=
1

2π

∫ +∞

−∞
φX(u) exp(−iux)du

=
1

2π

∫ +∞

−∞
exp
{
KX(iu)− iux

}
du

=
1

2πi

∫ +i∞

−i∞
exp
{
KX(z)− zx

}
dz

=
1

2πi

∫
C

exp
{
KX(z)− zx

}
dz, (2.3)

where z = iu, du = dz/i and i =
√
−1 is the imaginary unit and we have defined φX(u) = MX(iu)

as a characteristic function where we assume that it is integrable. The limits of integration in (2.3)
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indicate a contour integral up the imaginary axis C and this formula becomes of use by the methods

of complex integration which permit us to replace the path C by any other path starting and ending

at the same place i.e. by any contour running up a line like Re(z) = û, (see Stalker [90], p.77

& Wintner [97], p.14). The value of û has to be one for which MX(û) < ∞. This is called the

Fourier-Mellin integral and is a standard result in the theory of Laplace transforms, (see Schiff [87],

Ch. 4). Thus the integral in (2.3) can also be expressed as

f(x) =
1

2πi

∫ û+i∞

û−i∞
exp
{
KX(z)− zx

}
dz. (2.4)

2.3 Simple Saddlepoint Approximations

We will provide a brief review of the saddlepoint method, which originated with Daniels [14], before

specializing the results to our context of circular and spherical models. We look at the saddle-

point approximation through the inversion of a Fourier transformation and the use of the cumulant

generating function.

The key to the saddlepoint method is to choose the path of integration, i.e. û in (2.4). Consider

the following choice: set û = û(x) ∈ R that satisfies the following saddlepoint equation

K
′

X(u)− x = 0. (2.5)

In the univariate case, Daniels [14] proves that under general conditions the saddlepoint function

K
′
(u) = ξ, say, has a unique real root û in the legitimate support −u1 < u < u2 where 0 6 u1 <∞

and 0 6 u2 < ∞ for every a < x < b such that the CDF has a support 0 < F (x) < 1. We shall

write

M(u) = eK(u) =

∫ +∞

−∞
exp(ux)dF (x) and M(u, ξ) = eK(u)−uξ =

∫ +∞

−∞
exp{u(x− ξ)}dF (x).

When a < ξ < b, M
′
(−∞, ξ) = −∞ and M

′
(∞, ξ) = ∞, and M

′
(u, ξ) is strictly increasing with

u since M
′′
(u) > 0. So for each a < ξ < b there is a single root û of M

′
(u, ξ) = 0 and hence of

K
′
(u) = ξ. Also K

′′
(û) = M

′′
(û, ξ)/M(û, ξ) so that 0 < K

′′
(û) < ∞ (convex), and û is a simple

root and K
′
(û) is a strictly increasing function of û. This implies that the saddlepoint given by

(2.5) must fall in the set of u where K
′
(û) a strictly increases, and this is an important fact to find

the appropriate boundary for u.
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Expanding the function g(z) = KX(z)−zx (x fixed) of the exponent in (2.4) around its minimum

û, say, using Taylor series expansion gives

g(z) = KX(z)− zx ≈ g(û) +
g
′
(û)

1!
(z − û) +

g
′′
(û)

2!
(z − û)2

= KX(û)− ûx+
1

2
K
′′

X(û)(z − û)2, (2.6)

where g
′
(û) = K

′

X(û) − x = 0. Incidentally, the name saddlepoint comes from the shape of the

right-hand side of (2.6) for u in a neighborhood of û. If z− û is the complex number c = a+ ib, then

the real part of the right-hand side of (2.6) is of the form (a, b) 7→ α+β(a2− b2), where α and β are

real-valued constants. This function has the shape of a saddle (Sahalia and Yu [86]). Viewing as a

point in the complex plane and by the convex analysis, KX(z) − zx has a minimum at û for real

z, the modulus of the integrand must have a maximum at û on the chosen path, (see, for example,

Daniels [14] and Goutis and Casella [27]) and hence û is neither a maximum nor a minimum but a

saddlepoint of KX(z)− zx.

On the path of integration relevant for (2.4), set z = û + iv with v ∈ R, hence z − û = iv is a

purely imaginary complex term and we can rewrite (2.4) in the form

f(x) =
1

2π

∫ +∞

−∞
exp
{
KX(û+ iv)− (û+ iv)x

}
dv, (2.7)

and (2.6) becomes

KX(z)− zx ≈ KX(û+ iv)− (û+ iv)x = KX(û)− ûx− 1

2
K
′′

X(û)v2. (2.8)

Taking the exponential terms for both sides of (2.8), we get

exp
{
KX(û+ iv)− (û+ iv)x

}
≈ exp

{
KX(û)− ûx

}
exp
{
−1

2
K
′′

X(û)v2
}
. (2.9)

We then substitute (2.9) in (2.7) to find the saddlepoint approximation for f(x). Here we have

that

f(x) ≈ 1

2π
exp
{
KX(û)− ûx

}∫ +∞

−∞
exp
{
−1

2
K
′′

X(û)v2
}
dv. (2.10)

Setting v = w/
[
K
′′

X(û)
]1/2

, the saddlepoint approximation for f(x) in (2.10) becomes

f(x) ≈
exp
{
KX(û)− ûx

}
2π[K

′′

X(û)
]1/2 {∫ +∞

−∞
exp
(
−1

2
w2
)
dw

}
=

exp
{
KX(û)− ûx

}
2π[K

′′

X(û)
]1/2 (√

2π
)

=
1√

2πK
′′

X(û)
exp
{
KX(û)− ûx

}
. (2.11)
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2.4 Refined Saddlepoint Approximations and Motivation

The saddlepoint approximation is optimal in the sense that it is based on the highly efficient numer-

ical method of steepest descents and this efficiency can be improved using higher order expansions.

Higher-order saddlepoint expansions can be obtained by expanding the function g(z) in (2.6) around

û to a higher order using Taylor series expansion as follows:

g(z) = KX(z)− zx = g(û) +
g
′
(û)

1!
(z − û) +

g
′′
(û)

2!
(z − û)2 +

g(3)(û)

3!
(z − û)3

+
g(4)(û)

4!
(z − û)4 +

g(5)(û)

5!
(z − û)5 +O

(
(z − û)6

)
= KX(û)− ûx+

1

2
K
′′

X(û)(z − û)2 +
1

6
K

(3)
X (û)(z − û)3

+
1

24
K

(4)
X (û)(z − û)4 +

1

120
K

(5)
X (û)(z − û)5 +O

(
(z − û)6

)
, (2.12)

where g
′
(û) = K

′

X(û)− x = 0. Setting z − û = iv with v ∈ R, the expansion in (2.12) becomes

KX(û+ iv)− (û+ iv)x = KX(û)− ûx− 1

2
K
′′

X(û)v2 − 1

6
K

(3)
X (û)iv3

+
1

24
K

(4)
X (û)v4 +

1

120
K

(5)
X (û)iv5 +O

(
v6
)
. (2.13)

Next, stopping the expansion (2.13) at order 4 in v and taking the exponential terms for both sides,

we get

exp
{
KX(û+ iv)− (û+ iv)x

}
≈ exp

{
KX(û)− ûx

}
exp
{
−1

2
K
′′

X(û)v2
}

· exp
{
−1

6
K

(3)
X (û)iv3

}
exp
{ 1

24
K

(4)
X (û)v4

}
= exp

{
KX(û)− ûx

}
exp
{
−1

2
K
′′

X(û)v2
}

·
{

1− 1

6
K

(3)
X (û)iv3 − 1

72

(
K

(3)
X (û)

)2

v6 + . . .

}
·
{

1 +
1

24
K

(4)
X (û)v4 +

1

1152

(
K

(4)
X (û)

)2

v8 + . . .

}
≈ exp

{
KX(û)− ûx

}
exp
{
−1

2
K
′′

X(û)v2
}

{
1− 1

6
K

(3)
X (û)iv3 +

1

24
K

(4)
X (û)v4 − 1

72

(
K

(3)
X (û)

)2

v6

}
, (2.14)

where the last term in (2.14) comes from the quadratic term in expanding ex = 1 +x+ 1
2
x2 +O(x3).
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We then substitute (2.14) in (2.7) to find the saddlepoint approximation for f(x). Here we have

f(x) ≈ 1

2π
exp
{
KX(û)− ûx

}∫ +∞

−∞
exp
{
−1

2
K
′′

X(û)v2
}

{
1− 1

6
K

(3)
X (û)iv3 +

1

24
K

(4)
X (û)v4 − 1

72

(
K

(3)
X (û)

)2

v6

}
dv

=
exp
{
KX(û)− ûx

}
2π

{∫ +∞

−∞
exp
(
−1

2
K′′X(û)v2

)
dv

− 1

6
K

(3)
X (û)i

∫ +∞

−∞
exp
(
−1

2
K
′′

X(û)v2
)
v3dv

+
1

24
K

(4)
X (û)

∫ +∞

−∞
exp
(
−1

2
K
′′

X(û)v2
)
v4dv

− 1

72

(
K

(3)
X (û)

)2
∫ +∞

−∞
exp
(
−1

2
K
′′

X(û)v2
)
v6dv

}
. (2.15)

Setting v = w/
(
K
′′

X(û)
)1/2

, the saddlepoint approximation for f(x) in (2.15) becomes

f(x) =
exp
{
KX(û)− ûx

}
2π[K

′′

X(û)
]1/2 {∫ +∞

−∞
exp
(
−1

2
w2
)
dw

− 1

6

(
K
′′

X(û)
)−3/2

K
(3)
X (û)i

∫ +∞

−∞
exp
(
−1

2
w2
)
w3dw

+
1

24

(
K
′′

X(û)
)−2

K
(4)
X (û)

∫ +∞

−∞
exp
(
−1

2
w2
)
w4dw

− 1

72

(
K
′′

X(û)
)−3(

K
(3)
X (û)

)2
∫ +∞

−∞
exp
(
−1

2
w2
)
w6dw

}
=

exp
{
KX(û)− ûx

}
2π[K

′′

X(û)
]1/2 {√

2π − 0 +
1

24

(
K
′′

X(û)
)−2

K
(4)
X (û)3

√
2π

− 1

72

(
K
′′

X(û)
)−3(

K
(3)
X (û)

)2
15
√

2π

}
=

1√
2πK

′′

X(û)
exp
{
KX(û)− ûx

}{
1 +

1

8

K
(4)
X (û)(

K
′′

X(û)
)2 −

5

24

(
K

(3)
X (û)

)2

(K
′′

X(û)
)3

}

=
1√

2πK
′′

X(û)
exp
{
KX(û)− ûx

}{
1 +

1

8
κ4(û)− 5

24
κ2

3(û)
}
, (2.16)

where κj(û) = K(j)(û)/[K
′′
(û)]j/2, j = 3, 4 and the result follows from the facts that∫ +∞

−∞
exp
(
−1

2
w2
)
dw =

√
2π,

∫ +∞

−∞
exp
(
−1

2
w2
)
w3dw = 0∫ +∞

−∞
exp
(
−1

2
w2
)
w4dw = 3

√
2π,

∫ +∞

−∞
exp
(
−1

2
w2
)
w6dw = 15

√
2π. (2.17)
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The function

1√
2πK

′′

X(û)
exp
{
KX(û)− ûx

}
= f̂1(x), say, (2.18)

in (2.16) is often called the unnormalized first-order saddlepoint density approximation to f(x).

Its error of approximation is much better than the Taylor series approximation to a function. The

saddlepoint is also second-order asymptotics, and can have decreased error term, which yields a big

improvement in accuracy for the approximation of some function, (see, Goutis & Casella [27]). The

unnormalized second-order saddlepoint density approximation to f(x) is given by,

f̂2(x) = f̂1(x)(1 + T ), (2.19)

where

T =
1

8
κ4(û)− 5

24
κ2

3(û). (2.20)

The first order saddlepoint functions in (2.18) and in (2.19) will not, in general, integrate to one,

although it will usually not be far off and can be improved by renormalization, that is by computing

numerically the normalization constant c where

c =

∫ ∞
−∞

f̂1(x)dx =

∫ ∞
−∞

1√
2πK

′′

X(û)
exp
{
KX(û)− ûx

}
dx 6= 1, (2.21)

and the normalized first order saddlepoint density approximation f̄(x) to f(x) is given by

f̄(x) =
f̂1(x)∫
f̂1(x)dx

= c−1 1√
2πK

′′

X(û)
exp
{
KX(û)− ûx

}
, (2.22)

which is a proper density and integrates to one. Note that choosing û = û(x)) in (2.5) is an

application of a method called steepest ascent (Huzurbazer [30]). This method takes advantage of

the fact that, since û(x) is an extreme point, the function is falling away rapidly as we move away

from this point (Kolassa [50]).



2.5. TILTING AND SADDLEPOINT APPROXIMATIONS 24

2.5 Tilting and Saddlepoint Approximations

The saddlepoint approximation is used to overcome the inadequacy of the normal approximation in

the tails by tilting the random variable in such away that the normal approximation is evaluated

at a point near the mean (Paolella [79], pp. 170-171) i.e. by using the normal distribution to

approximate the true distribution of the tilted random variable. Let Tu be a random variable

having density

fTu(x;u) =
exp{ux}f(x)

MX(u)
=

exp{ux}f(x)

exp{KX(u)}
= exp

{
ux−KX(u)

}
f(x), (2.23)

for some u ∈ (a, b). This collection of densities define a tilted regular exponential family indexed by

u. Density fTu(x;u) is the u-tilted density and Tu is used as a tilted random variable. The mean and

variance of the canonical sufficient Xu are E(Xu) = K
′

X(u) and V ar(Xu) = K
′′

X(u), respectively.

The Esscher [19] tilting method is an indirect Edgeworth expansion that consists of two steps:

(i) First f(x) is written in terms of fTu(x;u) using (2.23) i.e.

f(x) = exp
{
KX(u)− ux

}
fTu(x;u), (2.24)

and then (ii) f(x;u) is Edgeworth expanded for a judicious choice of u ∈ (a, b). We say indirect

because the Edgeworth expansion is not for f(x) directly when u = 0, but for this specially chosen

u-tilted member of exponential family. Step (ii) entails a choice for u such that the Edgeworth

approximation for f(x;u) is as accurate as possible. We know that, in general, the normal approx-

imation to the distribution of a random variable X is accurate near the mean of X, but degrades

in the tails. As such, we are motivated to choose an u such that x is close to the mean of the tilted

distribution. In particular, we would like to find a value u so that the Edgeworth expansion of

f(x;u) is centred its mean. Formally, this amounts to choosing u = û to solve

E(Xu) = K
′

X(û) = x, (2.25)

or the saddlepoint equation. The Edgeworth expansion for f(x;u) at its mean, K
′

X(û), is given by

fTu(x; û) ≈ 1√
2πK

′′

X(û)

{
1 +

1

8
κ4(û)− 5

24
κ2

3(û)
}
, (2.26)

(Butler [9], p. 157). Hence substitute (2.26) into (2.24) yields

f(x) = exp
{
KX(û)− ûx

}
fTu(x; û)

≈ 1√
2πK

′′

X(û)
exp
{
KX(û)− ûx

}{
1 +

1

8
κ4(û)− 5

24
κ2

3(û)
}
, (2.27)
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which is the second-order saddlepoint version.

We illustrate the unnormalizing first order saddlepoint approximations and normalizing second

order saddlepoint approximations for obtaining accurate expression for the noncentral chi-square

density. We explicitly use the unnormalizing first order saddlepoint approximations and the unnor-

malizing second order saddlepoint approximations for obtaining highly accurate approximations for

the normalizing constant and the mean resultant length of the von Mises distribution on the circle,

the normalizing constants for the Fisher and the real Bingham distributions on the sphere in the

following sections.

2.6 Noncentral Chi-square Distribution

Suppose that the function we wish to approximate via the saddlepoint technique is a noncentral

chi-square density function with k = 2 degrees of freedom and noncentrality parameter α. The

noncentral chi-square variable is derived from p normal random variable. Let X1 and X2 be mutually

stochastically independent random variables. When

x = (X1, X2)T ∼ N2

([
κ

0

]
,

[
1 0

0 1

])
(2.28)

It is known that s = xTx = x2
1 + x2

2 is distributed as a noncentral chi-square random variable with

k = 2 degrees of freedom and noncentrality parameter α =
∑2

i=1(µi)
2 = κ2 ≥ 0. To show this fact,

consider the moment generating function of the random variable S, MS(u), as follows:

MS(u) = E
(
euS
)

= E
(
eu

∑2
i=1X

2
i

)
=

2∏
i=1

E
(
euX

2
i

)
. (2.29)

E
(
euX

2
i

)
in (2.29) is rewritten as follows:

E
(
euX

2
i

)
=

∫ +∞

−∞
exp
(
ux2

i

) 1√
2π

exp
{
−1

2

(
xi − κ

)2
}
dxi

=
1√
2π

∫ +∞

−∞
exp

{
−1

2
(1− 2u)x2

i + xiκ−
1

2
κ2 − uκ2

1− 2u
+

uκ2

1− 2u

}
dxi

= exp
{ uκ2

1− 2u

}∫ +∞

−∞

1√
2π

exp

{
−1

2
(1− 2u)

(
xi −

κ

1− 2u

)2}
dxi

=
1√

1− 2u
exp
{ uκ2

1− 2u

}∫ +∞

−∞

1√
2π(1/

√
1− 2u)

exp

{
−1

2

(
xi − κ

1−2u

(1/
√

1− 2u)

)2}
dxi (∗)

= (1− 2u)−1/2 exp
{ uκ2

1− 2u

}
, u < 1/2. (2.30)
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Note that the integration in (∗) is equal to one, because the function in the integration corresponds

to the probability density function of the normal distribution with mean κ/(1 − 2u) and variance

1/(1− 2u). Accordingly, the moment generating function of S is given by:

MS(u) =
2∏
i=1

E
(
euX

2
i

)
= E

(
euX

2
1

)
E
(
euX

2
2

)
= (1− 2u)−1/2 exp

{ uκ2

1− 2u

}
(1− 2u)−1/2 exp

{ u× 0

1− 2u

}
= (1− 2u)−1 exp

{ κ2u

1− 2u

}
, u < 1/2, (2.31)

which is equivalent to the moment generating function of a noncentral chi-square distribution with

2 degrees of freedom and noncentrality parameter equal to α where α =
∑2

i=1(µi)
2 = κ2 ≥ 0. The

exact noncentral chi-square density has no closed form, and is usually written (Ravishanker and

Dipak [81], p.165 and Tanizaki [91], p.118)

f(s) =
1

2
exp{−(s+ α)/2}I0(

√
αs), s > 0

=
1

2
exp{−(s+ α)/2}

∞∑
j=0

(
αs/4

)j
[Γ(j + 1)]2

, (2.32)

where I0(·) is a modified Bassel function of the first kind and order ν = 0 (see, for example,

Abramowitz & Stegun [1], p.376, Mardia [59], p.57 and Mardia & Jupp [70], p.349). From (2.31)

the cumulant generating function KS(u) for s is given by

KS(u) = log
(
MS(u)

)
= log

exp{αu/(1− 2u)}
1− 2u

=
αu

1− 2u
− log(1− 2u), u ∈

(
−∞, 1

2

)
. (2.33)

Figure (2.1) plots KS(u) versus u for the noncentral chi-square distribution with noncentrality

parameter α equal to unity. The values of the graph range from −∞ as u ↓ −∞ to∞ as u ↑ 1
2
, and

the function KS(u) is always a strictly convex function when evaluated over (−∞, 1/2) so K
′′

S(u) > 0

and the square root is well-defined.

The saddlepoint that is associated with s can be obtained as follows. The first derivative of
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Figure 2.1: The cumulant generating function KS(u) for noncentral Chi-square distribution versus u.

KS(u) is given by

K
′

S(u) =
(1− 2u)α + 2αu

(1− 2u)2
+

2

(1− 2u)

=
α− 2αu+ 2αu+ 2(1− 2u)

(1− 2u)2

=
α + 2− 4u

(1− 2u)2
. (2.34)

Solve K
′

S(u(s)) = s for u(s) in terms of s we get,

K
′

S(u(s))− s = 0

α + 2− 4u(s)

(1− 2u(s))2
− s = 0

α + 2− 4u(s)− s(1− 2u(s))2

(1− 2u(s))2
= 0

α + 2− 4u(s)− s+ 4su(s)− 4s
(
u(s)

)2
= 0

4s
(
u(s)

)2
+ 4u(s)− 4su(s)− 2 + s− α = 0

4s
(
u(s)

)2
+ 4s

(1− s
s

)
u(s) + (−2 + s− α) = 0(

u(s)
)2

+
(1− s

s

)
u(s) +

(−2 + s− α
4s

)
= 0. (2.35)
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The equation (2.35) is a quadratic and we may use the completing the square technique to solve

it. Move the constant to the other side, add the square of half the coefficient of u(s) to both sides,

factor the trinomial square and finally take the square root of both sides we get,

û(s) = −1− s
2s
±
√

(4 + 4sα)

4s
. (2.36)

Hence

û(s) =
−2 + 2s+

√
(4 + 4sα)

4s
or û(s) =

−2 + 2s−
√

(4 + 4sα)

4s
. (2.37)

The positive root in (2.37) is not feasible since û(s) would take values greater than 1/2 as s > 0.

The cumulant generating function KS(u) is only defined for u < 1/2 and hence the saddlepoint û(s)

is the negative root of the quadratic equation (2.35),

û(s) = û(s, α) = − 1

4s

{
2− 2s+

√
(4 + 4sα)

}
, s > 0 and α > 0. (2.38)

The plot of the saddlepoint û(s) versus s is shown in Figure (2.2) where the noncentrality parameter

α is equal to 1.

Figure 2.2: Saddlepoint function û(s) versus s

The cumulant generation function and the second derivative of KS(u) about the saddlepoint
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û(s) are given by

KS(û(s)) =
αû(s)

1− 2û(s)
− log(1− 2û(s))

=
−α
4s

[
2− 2s+

√
(4 + 4sα)

]
1 + 1

2s

[
2− 2s+

√
(4 + 4sα)

] − log
{

1 +
1

2s

[
2− 2s+

√
(4 + 4sα)

]}
, (2.39)

and

K
′′

S(û(s)) =
−4(1− 2û(s))2 + 4(α + 2− 4û(s))(1− 2û(s))

(1− 2û(s)4

=
−4(1− 2û(s)) + 4(α + 2− 4û(s))

(1− 2û(s))3

=
−4 + 8t̂(s) + 4α + 8− 16t̂(s)

(1− 2û(s))3

=
4α + 4− 8û(s)

(1− 2û(s))3

=
4α + 4− 8û(s){

1 + 1
2s

[
2− 2s+

√
(4 + 4sα)

]}3 . (2.40)

The unnormalized first-order saddlepoint density approximation to f(s) is given by

f̂1(s) =
1√

2πK
′′

S(û)
exp
{
KS(û)− ûs

}
. (2.41)

Figure (2.3), for instance, shows comparative plots of the true density f(s) (solid line) with the

unnormalized first-order saddlepoint density approximation f̂1(s) (dashed line) with various values

of the noncentrality parameter. Note that when increasing the values of the noncentrality parameter

the relative error of each approximation stays bounded under suitable asymptotic regimes.

Note that when α = 0, the distribution reduces to the centrality case and the exact proba-

bility density function for the noncentral distribution reduces to an exponential density with rate

parameter 1
2
,

f(s) =
1

2
exp

{
−1

2
s

}
, s > 0. (2.42)

For the saddlepoint approximation, we find

û(s) = û(s, α) = − 1

4s
(4− 2s) = − 1

2s
(2− s) = − 1

2s
η, s > 0, (2.43)

where η = 2− s. The cumulant generating function KS(t) and the second derivative of KS(t) about

the saddlepoint û(s) are given by

KS(û(s)) = − log(1− 2û(s)) = − log

(
1 +

1

s
η

)
, (2.44)
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Figure 2.3: Exact f(s) (solid curve) and first-order saddlepoint density approximation f̂1(s) (dashed line) versus s

for noncentral chi-square distribution with various values of the noncentrality parameter α = 0, 1, 2, 3, 5 and 7.
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and

K
′′

S(t̂(s)) =
4− 8û(s)(
1− 2û(s)

)3

=
4(

1− 2û(s)
)2 , (2.45)

so that for s > 0 and α = 0, the unnormalized first order saddlepoint density approximation to f(s)

is given by

f̂1(s) =

[(
1− 2û(s)

)2

8π

]1/2

exp
{
− ln(1− 2û(s))− û(s)s

}
=

1

2

(
1− 2û(s)

)( 1

2π

)1/2

exp{− ln(1− 2û(s))} exp{−û(s)s}

=
1

2

(
1− 2û(s)

)( 1

2π

)1/2 1(
1− 2û(s)

) exp{−û(s)s}

=
( 1

2π

)1/2 1

2
exp
{
−
(
− 1

2s
(2− s)

)
s
}

=
( 1

2π

)1/2 1

2
exp{

(1

2
(2− s)

)
}

=
Γ(1)

√
2π11− 1

2 e−1

1

2
exp
{
−1

2
s
}
. (2.46)

The shape of f̂1(s) in (2.46) is the same as that of f(s) in (2.42) but differs from f(s) in the

normalization constant. Using Stirling’s approximation for Γ(β),

Γ̂(β) =
√

2πββ−
1
2 e−β, (2.47)

and puting β = 1, we find

f̂1(s) =
Γ(1)

Γ̂(1)
f(s) = 0.92214f(s). (2.48)

This first order saddlepoint approximation to the noncentral chi-square density is also accurate

for large α. Assume, for example, two large values for the noncentrality parameter, α = 10 and

α = 14 and use the R integrate function (see Crawley [11], p. 275 and Rizzo [85], p. 330) in the

stats package, the numerical integration for f̂1(s) after converting it to a one-dimensional function

by fixing û(s), KS(û(s)) and K
′′

S(û(s)), yields a numerical value for the normalization constant c

given by 1.035951 under α = 10 with absolute error less than 4.7e-06 and 1.018552 under α = 14

with absolute error less than 3.6e-07. Figure (2.4) shows a comparative plot of the true density

f(s) (solid line) with the unnormalized first order saddlepoint density approximation f̂1(s) (dashed



2.7. VON MISES (CIRCULAR NORMAL) DISTRIBUTION 32

line) and the normalized first order saddlepoint density approximation f̄(s) (dotted line). Here, the

unnormalized first order saddlepoint and the renormalized saddlepoint saddlepoint are remarkably

accurate. The graphical difference between the normalized saddlepoint approximation f̄(s) and

the exact density f(s) is slight since the unnormalized first order saddlepoint density f̂1(s) mostly

captures the proper shape of f(s) but not the correct scaling.

Figure 2.4: Exact f(s) (solid curve), unnormalized first-order saddlepoint density approximation f̂1(s) (dashed

curve) and the normalized first-order saddlepoint density approximation f̄(s) (dotted curve) versus s for noncentral

chi-square distribution.

2.7 von Mises (Circular Normal) Distribution

2.7.1 Background

A unit random vector x on the circle in R2 has the von Mises distribution, VM(µ, κ), with probability

density function given by

f(x;µ, κ) =
{
c(κ)

}−1
exp
{
κµTx

}
=

{
2πI0(κ)

}−1
exp
{
κµTx

}
, κ > 0, (2.49)

where ‖x‖ = 1, ‖µ‖ = 1, κ is known as a concentration parameter, µ is known as a mean di-

rection parameter and I0(κ) denotes the modified Bessel function of the first kind and order zero

(Jammalamadaka and SenGupta [18], p. 35 and Mardia and Jupp [70], p. 36).
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If we write x and µ in circular polar coordinates as

x = (cos θ, sin θ)T

µ = (cosµ, sinµ)T , (2.50)

then the probability density of θ is

g(θ;µ, κ) =
1

2πI0(κ)
exp{κ[cos θ cosµ+ sin θ sinµ]}

=
1

2πI0(κ)
exp{κ cos(θ − µ)}, κ > 0, (2.51)

where the Jacobian of this transformation is unity and the modified Bessel function of the first kind

and order zero I0(κ) can be defined by

I0(κ) =
1

2π

∫ 2π

0

exp{κ cos θ}dθ

=
∞∑
j=0

(
κ2
)j

4j[j!]2
. (2.52)

For simplicity let the circular random variable θ have a von Mises (Circular Normal) distribution

VM(θ; 0, κ) on (−π, π) with probability density function given by

g(θ; 0, κ) =
1

2πI0(κ)
exp{κ cos θ}, κ > 0. (2.53)

The von Mises distribution is related to the bivariate normal distribution as follows. Let X1 and

X2 be independent normal variables as in (2.28). The joint probability density function of X1 and

X2 is given by

f(x1, x2) = f(x1).f(x2)

=
1√
2π

exp

{
−1

2
(x1 − κ)2

}
.

1√
2π

exp

{
−1

2
x2

2

}
=

1

2π
exp
{
−1

2

[
(x2

1 + x2
2)− 2κx1 + µ2

]}
, −∞ < xi <∞, i = 1, 2. (2.54)

Switch to polar coordinates (r, θ),

x1 = r cos θ, and x2 = r sin θ. (2.55)

Here x2
1 + x2

2 = r2 and θ = atan2(x2, x1). The two-argument function atan2 is a variation of the

arctangent function, so that θ is the angle in [0, 2π) satisfying (x1, x2) ∝ (cos θ, sin θ). The one-

argument arctangent function atan does not distinguish between diametrically opposite directions
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whereas the atan2 function takes into account the signs of both vector components, and places the

angle in the correct quadrant.

The Jacobian of this transformation is given by

J =

∣∣∣∣∣∣
∂x1
∂r

∂x1
∂θ

∂x2
∂r

∂x2
∂θ

∣∣∣∣∣∣ =

∣∣∣∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣∣ = r cos2 θ + r sin2 θ = r, (2.56)

and the true joint probability density function of the polar variables (r, θ) is

f(r, θ) =
1

2π
r. exp

{
−1

2
(r2 − 2κr cos θ + κ2)

}
0 < r <∞, 0 ≤ θ < 2π. (2.57)

Since the range of r does not depend on θ, the conditional distribution of θ given r = 1 is von Mises

VM(0, κ) i.e.

f(r) =

∫ 2π

0

f(r, θ)dθ

= r. exp
{
−1

2
(r2 + κ2)

}[ 1

2π

∫ 2π

0

exp
{
κr cos θ

}
dθ
]

= r. exp
{
−1

2
(r2 + κ2)

}
I0(κr), (2.58)

and the conditional distribution of θ for a given r is given by

f(θ | r) =
f(r, θ)

f(r)

=
1

2π
r. exp

{
−1

2

(
r2 − 2κr cos θ + κ2

)}
r. exp

{
−1

2
(r2 + κ2)

}
I0(κr)

=
exp
{
κr cos θ

}
2πI0(κr)

. (2.59)

If r = 1, the conditional distribution of θ in (2.59) becomes

f(θ | r = 1) =
1

2πI0(κ)
exp{κ cos θ}, (2.60)

which is the probability density function for VM(0, κ). Here the exact normalizing constant for the

von Mises distribution is given by

c(κ) = 2πI0(κ), (2.61)

(see also Mardia,[59], p. 248, Jammalamadaka, and SenGupta[31], p. 35 and Mardia,[65], p. 14).
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2.7.2 Saddlepoint Approximations for the Normalizing Constant

The saddlepoint approximation for the noncentral chi-square distribution can be used to approximate

the normalizing constant for von Mises distribution. Firstly we need to represent the normalizing

constant as follows. The joint probability density function of the polar variables (r, θ) can be written

as

f(r, θ) = f(θ | r) · f(r), (2.62)

with respect to drdθ. Here, a convenient and accurate method for estimating f(r) in (2.62) is to

use a saddlepoint density approximation f̂1(s) in (2.41) and put r =
√
s = 1, hence (2.62) becomes

f(1, θ) ≈ f(θ | 1) · f̂1(1)

=
{
c(κ)

}−1
exp{κ cos θ} · f̂1(1). (2.63)

Then the saddlepoint approximation for the normalizing constant c(κ) is

c(κ) ≈ exp{κ cos θ} f̂1(1)

f(1, θ)

= exp{κ cos θ} f̂1(1)

1
2π

exp
{
−1

2
(1− 2κ cos θ + κ2)

}
= 2π exp{κ cos θ} f̂1(1)

exp
{
−1

2
(1 + κ2)

}
exp
{
κ cos θ

}
= 2πf̂1(1) exp

{1

2
(1 + κ2)

}
= 2π

(
2πK

′′

S(û(1))
)−1/2

exp
{
KS(û(1))− û(1)

}
exp
{1

2
(1 + κ2)

}
=

(
2π
)1/2
(
K
′′

S(û(1))
)−1/2

exp
{
KS(û(1))− û(1) +

1

2
(1 + κ2)

}
= ĉ(κ), say, (2.64)

where the saddlepoint function in (2.38) is

û(1) = û(1, κ) = −1

4

(√
4 + 4κ2

)
= −1

4
D, (2.65)

whereD = (4+4κ2)1/2. Moreover, the cumulant generating function KS(u) and the second derivative

of KS(u) about the saddlepoint û(1, κ) in (2.39) and (2.40), respectively become

KS(û(1, κ)) =
−1

4
κ2D

1 + 1
2
D
− ln(1 +

1

2
D), (2.66)
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and

K
′′

S(û(1, κ)) =
4κ2 + 4 + 2D(

1 + 1
2
D
)3 . (2.67)

Table (2.1) shows the accuracy of the unnormalizing first order saddlepoint approximations ĉ01(κ) =

{ĉ(κ)}−1 and the unnormalizing second order saddlepoint approximations ĉ02(κ) = {ĉ(κ)}−1(1 + T )

for the normalizing constant of the von Mises distribution versus the true normalizing constant

c01(κ) = {c(κ)}−1 with various values of the concentration parameter κ and a second order correction

term T given in (2.20). It turns out that for the von Mises distribution, the limiting relative errors of

the saddlepoint approximations are zero as concentration goes to infinity, provided the distribution

is unimodal. As κ tends to infinity, the limiting behaviour of the saddlepoint approximations

tends to unity i.e. the saddlepoint approximations for the normalizing constants of the von Mises

distribution closely resembles the true values. Numerical results show that the unnormalizing second

order saddlepoint approximations do even better than the unnormalizing first order saddlepoint

approximations and these results agree with that for Kume and Wood [54] i.e.

lim
κ→∞

ĉ01(κ)

c01(κ)
= 1 and lim

κ→∞

ĉ02(κ)

c01(κ)
= 1. (2.68)

For small values of the concentration parameter κ, the limiting behaviour of the first order

saddlepoint approximation for the normalizing constant of von Mises converges to Γ(1)/Γ̂(1) =

0.92214 (Kume and Wood [54]). Note that when κ = 0, the von Mises distribution VM(0, κ) is the

uniform distribution and its normalizing constant reduces to 1
2π

= 0.15916. In this case, D = 2,

t̂(1, 0) = −1
2
, K

′′
S(t̂(1, 0)) = 1, KS(t̂(1, 0)) = − ln(2) = −0.69315 and the saddlepoint approximation

for the normalizing constant of von Mises distribution reduces to 0.14677.

2.7.3 Saddlepoint Approximations for the Mean Resultant Length

The saddlepoint approximation is also extremely accurate for approximating the derivative of the

log function of the normalizing constant for the von Mises distribution with respect to κ. The log

function for c(κ) can be written as

log c(κ) = log
(

2πI0(κ)
)

= log 2π + log I0(κ). (2.69)

Differentiating (2.69) with respect to κ and take the absolute value gives

∂ log c(κ)

∂κ
=

1

I0(κ)
I
′

0(κ) =
I1(κ)

I0(κ)
= A(κ), (2.70)
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κ Exact c01(κ) SPA ĉ01(κ) ĉ01(κ)/c01(κ) SPA ĉ02(κ) ĉ02(κ)/c01(κ)

0.0 0.15916 0.14677 0.92215 0.14891 0.93559

0.2 0.15606 0.14548 0.93221 0.14722 0.94336

0.4 0.15376 0.14311 0.93074 0.14521 0.93559

0.6 0.14908 0.13887 0.93154 0.13983 0.93795

0.8 0.14592 0.13653 0.93567 0.13703 0.93909

1.0 0.12571 0.11782 0.93722 0.11818 0.94009

5.0 0.00584 0.00549 0.94077 0.00553 0.94626

10 5.652380e-05 5.450647e-05 0.96431 5.517005e-05 0.97605

100 1.482232e-43 1.466921e-43 0.98967 1.470404e-43 0.99202

Table 2.1: Numerical unnormalizing first order saddlepoint approximations and unnormalizing second order sad-

dlepoint approximations for the normalizing constant of the von Mises distribution with various values of the con-

centration parameter κ.

where A(κ) = I1(κ)/I0(κ) = ρ, the mean resultant length for the von Mises distribution measures

the length of the centre of mass vector x, 0 ≤ ρ ≤ 1, and I
′
0(κ) = I1(κ) (see Mardia and Jupp [70],

p. 36). The function I1(κ) is the modified Bessel function of the first kind and order one and can

be defined by

I1(κ) =
1

2π

∫ 2π

0

cos θ exp{κ cos θ}dθ

=
∞∑
j=1

1

Γ(j + 2)Γ(j + 1)

(
κ

2

)2j+1

=
(κ/2)

Γ(3
2
)Γ(1

2
)

∫ 1

−1

exp{κt}(1− t2)1/2dt, (2.71)

and the function A(κ) has the power series expansion

A(κ) =
κ

2

{
1− 1

8
κ2 +

1

48
κ4 − 11

3072
κ6 + . . .

}
, (2.72)

which is useful for small κ (Appendix 1 in Mardia and Jupp [70], p. 350). The joint probability



2.7. VON MISES (CIRCULAR NORMAL) DISTRIBUTION 38

density function of the polar variables (r, θ) in (2.63) can be written as

f(1, θ) ≈
1

2πI0(κ)
exp{κ cos θ}.f̂1(1). (2.73)

Then

I0(κ) ≈ 1

2π
exp{κ cos θ} f̂1(1)

f(1, θ)

=
1

2π
exp{κ cos θ}

(
2πK

′′

S(û(1))
)−1/2

exp
{
KS(û(1))− û(1)

}
1

2π
exp
{
−1

2
(1− 2µ cos θ + µ2)

}
= exp{κ cos θ}

(
2πK

′′

S(û(1))
)−1/2

exp
{
KS(û(1))− û(1)

}
exp
{
−1

2
(1 + κ2)

}
exp
{
κ cos θ

}
=

(
1

2πK
′′

S(û(1))

)1/2

exp
{
KS(û(1))− û(1) +

1

2
(1 + κ2)

}
= Î0(κ), say, (2.74)

Next differentiating (2.74) with respect to κ yields

Î
′

0(κ) =

[(
1

2πK
′′

S(û(1))

)1/2(
K
′

S(û(1, κ))− û′(1, κ) + κ

)
− 1

2

(
K

(3)
S

2(û(1, κ))

2πK
′′

S
3(û(1, κ))

)1/2]
. exp

{
KS(û(1, κ))− û(1, κ) +

1

2
(1 + κ2)

}
= Î1(κ), say, (2.75)

and the derivative of the saddlepoint function in (2.38) with respect to κ is given by

û
′
(1, κ) = − κ√

4 + 4κ2
= − 1

D
κ, (2.76)

where D = (4 + 4κ2)1/2. Moreover, the first derivative of the cumulant generating function KS(u)

and the third derivative of KS(u) about the saddlepoint û(1, κ), respectively become

K
′

S(û(1, κ)) =
κ2 + 2 +D(

1 + 1
2
D
)2 , (2.77)

and

K
(3)
S (û(1, κ)) =

(
1 + 1

2
D
)(

8κ+ 8
D
κ
)
−
(
4κ2 + 4 + 2D

)
6
D
κ(

1 + 1
2
D
)4 . (2.78)

An analysis of this saddlepoint approximation method A(κ) is given in Table 2.2. It shows numerical

comparisons between the true value of the mean resultant length of the von Mises distribution

Â(κ) = Î1(κ)/Î0(κ) and both the unnormalizing first order saddlepoint approximations Â1(κ) =
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Î1(κ)/Î0(κ) and the unnormalizing second order saddlepoint approximations Â2(κ) = Â1(κ)(1 + T )

with various values of the concentration parameter κ and a second order correction term T given

in (2.20). The table also shows that as the concentration parameter κ increases the ratio between

the two version of saddlepoint approximations and the true values of A(κ) approaches 1, that is

the saddlepoint approximation becomes more accurate, but that the unnormalizing second order

saddlepoint approximations Â2(κ) do even better.

κ Exact A(κ) SPA Â1(κ) Â1(κ)/A(κ) SPA Â2(κ) Â2(κ)/A(κ)

0.2 0.09950 0.08665 0.87082 0.08761 0.88051

0.4 0.19610 0.17255 0.87989 0.17289 0.88164

0.6 0.28726 0.25778 0.89739 0.25825 0.89902

0.8 0.37108 0.33438 0.90111 0.33605 0.90561

1.0 0.44639 0.41069 0.92002 0.41221 0.92342

5.0 0.89338 0.84185 0.94232 0.84632 0.94733

10 0.94860 0.91038 0.95971 0.91297 0.96244

100 0.99499 0.98271 0.98766 0.98511 0.99007

200 0.99750 0.98977 0.99225 0.99402 0.99652

Table 2.2: Numerical unnormalizing first order saddlepoint approximations and unnormalizing second order sad-

dlepoint approximations for the mean resultant length of the von Mises distribution with various values of the

concentration parameter κ.

2.8 Fisher Distribution on the Sphere

2.8.1 Background

A unit random vector x has the (p − 1)-dimensional von Mises-Fisher (Langevin) distribution

Mp(µ, κ) with probability density function given by

f(x;µ, κ) =
{
cp(κ)

}−1
exp{κµTx} =

κp/2−1

(2π)p/2Ip/2−1(κ)
exp{κµTx}, (2.79)
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where ‖x‖ = 1, ‖µ‖ = 1, κ > 0 is known as a concentration parameter, µ is known as a mean

direction parameter and Iv(κ) denotes the modified Bessel function of the first kind and order v

defined by

Iv(κ) =
1

2π

∫ 2π

0

cos vθ exp{κ cos θ}dθ =
∞∑
j=0

1

Γ(v + j + 1)Γ(j + 1)

(κ
2

)2j+v

, (2.80)

(Abramowitz and Stegun [1], p. 375). If p = 2 the distribution reduces to the von Mises distribution

on the circle and if p = 3 the distribution is called Fisher distribution F (µ, κ) on the sphere with

probability density function given by

f(x;µ, κ) =
{
c2(κ)

}−1
exp{κµTx}

=

[
(2π)3/2I1/2(κ)

κ1/2

]−1

exp{κµTx}

=

[
4π sinhκ

κ

]−1

exp{κµTx} =
κ

2π(e2κ − 1)
exp{κµTx}, κ > 0, (2.81)

where I1/2(κ) = (2 sinhκ)/(2πκ)1/2 (Mardia et al. [72], p. 431) and sinhκ = (eκ − e−κ)/2 =

(e2κ − 1)/2.

If we write x and µ in spherical polar coordinates as

x = (x1, x2, x3)T = (cos θ, sin θ cosφ, sin θ sinφ)T

µ = (µ1, µ2, µ3)T = (cosα, sinα cos β, sinα sin β)T , (2.82)

where θ is the colatitude, 0 ≤ θ < π, and φ is the longitude, 0 ≤ φ < 2π, (α, β) is the mean

direction and κ a measure of the concentration about the mean direction. The Jacobian of this

transformation is given by

J =

∣∣∣∣∣∣∣∣∣
∂x1
∂r

∂x1
∂θ

∂x1
∂φ

∂x2
∂r

∂x2
∂θ

∂x2
∂φ

∂x3
∂r

∂x3
∂θ

∂x3
∂φ

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
cos θ − sin θ 0

sin θ cosφ cos θ cosφ − sin θ sinφ

sin θ sinφ cos θ sinφ − sin θ cosφ

∣∣∣∣∣∣∣∣∣ = sin θ, (2.83)

and

µTx = cos θ cosα + sin θ cosφ sinα cos β + sin θ sinφ sinα sin β

= cos θ cosα + sin θ sinα
(
cosφ cos β + sinφ sin β

)
= cos θ cosα + sin θ sinα cos(φ− β). (2.84)
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Under r = 1, the probability density function of (θ, φ) for Fisher distribution F
(
(α, β), κ

)
is

g(θ, φ;α, β, κ) =

[
4π sinhκ

κ

]−1

exp
{
κ
[
cos θ cosα + sin θ sinα cos(φ− β)

]}
sin θ

=

[
2π(eκ − e−κ)

κ

]−1

exp
{
κ
[
cos θ cosα + sin θ sinα cos(φ− β)

]}
sin θ, (2.85)

where 0 ≤ θ, α < π, 0 ≤ φ, β < 2π and κ > 0.

For simplicity let the spherical random variables (θ, φ) have Fisher (Langevin) distribution

F
(
(0, 0), κ

)
on 0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π with probability density function given by

g(ω; 0, 0, κ) = g(θ, φ; 0, 0, κ) =
{
C3(κ)

}−1
exp
{
κ cos θ

}
sin θ

=

[
4π sinhκ

κ

]−1

exp
{
κ cos θ

}
sin θ

=

[
2π(eκ − e−κ)

κ

]−1

exp
{
κ cos θ

}
sin θ, (2.86)

where ω = (θ, φ), so that with α = β = 0 as the pole µ = (1, 0, 0)T , the colatitude θ and the

longitude φ are independent. Then the probability density function of θ is

g(θ, κ) =
κ

2π sinhκ
exp
{
κ cos θ

}
sin θ, (2.87)

on [0, π) and φ is uniform on the unit circle with probability density function

g(φ) =
1

2π
(2.88)

see, for example, Mardia and Jupp [70], p. 170 and Fisher et al. [23].

2.8.2 Saddlepoint Approximations for the Normalizing Constant

Let the random vector x = (x1, x2, . . . , xp)
T follow a multivariate normal distribution with mean

vector µ = (κ, 0, 0, . . . , 0)T ∈ Rp and variance covariance matrix Σ = I where xi, i = 1, 2, . . . , p are

independent, so that

f(x) =
1

(2π)p/2|I|1/2
exp

{
−1

2

(
x− µ)T I−1(x− µ)

)}
. (2.89)

Then the distribution of s = xTx = x2
1 + x2

2 + . . . + x2
p is noncentral chi-square with noncentrality

parameter α = µTµ =
∑p

i=1 µ
2
i = κ2 and probability density function given by

f(s) =
1

2
exp{−(s+ α)/2}

(
s

α

)(p/4)−(1/2)

I(p/2)−1(
√
αs), s > 0

=
1

2
exp{−(s+ α)/2}

(
s

α

)(p/4)−(1/2) ∞∑
j=0

(√
αs/2

)((p−2)/2
)

+2j

j!Γ(j +
(
(p− 2)/2

)
+ 1

, (2.90)
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(see, for example, Ravishanker and Dipak [81], p.177 and Paolella [79], p. 344) where Iν(.) is

a modified Bassel function of the first kind and order ν. The moment generating function of a

noncentral chi-square distribution with p degrees of freedom and noncentrality parameter equal to

α is given by

MS(u) =
exp{uµ2/(1− 2u)}

1− 2u
= (1− 2u)−p/2 exp

( αu

1− 2u

)
, u < 1/2, (2.91)

and the cumulant generating function KS(u) for s is given by

KS(u) = log MS(u) = ln
exp{αu/(1− 2u)}(

1− 2u
)p/2

=
αu

1− 2u
− p

2
log(1− 2u), u ∈

(
−∞, 1

2

)
. (2.92)

The saddlepoint associated with s can be obtained by solving K
′

S(u)− s = 0, i.e.,

K
′

S

(
u(s)

)
− s = 0

α

1− 2u(s)
+

2αu(s)

(1− 2u(s))2
+

p

(1− 2u(s))
− s = 0

α + p− 2pu(s)

(1− 2u(s))2
− s = 0

4s
(
u(s)

)2 − 2(2s− p)u(s)− (p+ α− s) = 0. (2.93)

The equation (2.93) is a quadratic and we may use completing the square technique to solve it.

Move the constant to the other side, add the square of half the coefficient of u(s) to both sides,

factor the trinomial square and finally take the square root of both sides. Solving this quadratic

equation gives the following two roots

û(s) =
−p+ 2s+

√
(p2 + 4sα)

4s
or û(s) =

−p+ 2s−
√
p2 + 4sα)

4s
. (2.94)

Rearranging and using the facts that (i) the constraint u < 1/2 from (2.91), (ii) α ≥ 0 and (iii)

the interior of the support of s is R (i.e., s > 0), easily shows that the negative root is always the

correct solution. Then the saddlepoint function is

û(s) = û(s, α) = − 1

4s

{
p− 2s+

√
(p2 + 4sα)

}
, s > 0 and α > 0. (2.95)

In the case (p = 3) the joint probability density function for X1, X2 and X3 is given by

f(x1, x2, x3) = f(x1).f(x2).f(x3)

=
1(

2π
)3/2

exp

{
−1

2

[
(x2

1 + x2
2 + x2

3)− 2κx1 + 2κ2
]}
. (2.96)
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Switch to spherical polar coordinates, we get

x2
1 + x2

2 + x2
3 = r2 cos2 θ + r2 sin2 θ cos2 φ+ r2 sin2 θ sin2 θ

= r2
[
cos2 θ + sin2 θ(cos2 φ+ cos2 φ)

]
= r2 = s, (2.97)

where the Jacobian is equal to r2 sin θ. The true joint probability density function of the spherical

polar variables (r, ω) is given by

f(r, ω) = f(r, θ, φ) =
1

2π
√

2π
.r2 sin θ exp

{
−1

2

[
r2 − 2rκ cos θ + 2κ2

]}
=

1(
2π
)3/2

.r2 sin θ exp
{
rκ cos θ

}
· exp

{
−1

2

[
r2 + 2κ2

]}
, (2.98)

where ω = (θ, φ) and it can be written as

f(r, ω) = f(ω | r) · f(r), (2.99)

with respect to drdω. A convenient and accurate method for estimating f(r) in (2.99) is to use a

saddlepoint density approximation f̂1(s) in (2.41) and put s = r2 = 1. The equation (2.99) then

becomes

f(1, ω) ≈ f(ω | 1).f̂1(1)

=
{
c2(κ)

}−1
exp
{
κ cos θ

}
sin θ.f̂1(1), (2.100)

and the first order saddlepoint approximation for the normalizing constant c2(κ) is

c2(κ) ≈ exp
{
κ cos θ

}
sin θ

f̂1(1)

f(1, ω)

= exp
{
κ cos θ

}
sin θ

f̂1(1)(
2π
)−3/2

. sin θ exp
{
κ cos θ

}
exp
{
−1

2

[
1 + 2κ2

]}
=

(
2π
)3/2 · f̂1(1) exp

{
1

2

(
1 + 2κ2

)}
=

(
2π
)(

K
′′

S(û(1))
)−1/2

exp
{

KS(û(1))− û(1) +
1

2

(
1 + 2κ2

)}
= ĉ2(κ), say. (2.101)

Here the saddlepoint function is given by

û(1) = û(1, κ) = −1

4

{
1 +

√
(9 + 4κ2)

}
, (2.102)

and the cumulant generating function KS(û(1)) and the second derivative of K
′′

S(û(1)) about the

saddlepoint û(1) are given by

KS

(
û(1)

)
=

κ2û(1)

1− 2û(1)
− 3

2
log
(
1− 2û(1)

)
, (2.103)
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and

K
′′

S

(
û(1)

)
=

4κ2 + 6− 12û(1)

(1− 2û(1))3
. (2.104)

The second order saddlepoint approximation for the normalizing constant of the Fisher distribution

ĉ3(κ), say, can be obtained as

ĉ3(κ) = ĉ2(κ)(1 + T ),

where T is the second order correction term T in (2.20).

An approximate maximum likelihood estimate for the concentration parameter κ of the Fisher

distribution can be obtained using the second order saddlepoint approximation (Kume and Wood [54]).

The sample size indicator can also be used to show the accuracy of the second order saddlepoint

approximations. Table 2.3 shows the accuracy of the first order and second order saddlepoint ap-

proximations for the normalizing constant of the Fisher distribution with various values of the

concentration parameter κ where c02(κ) = {c(κ)}−1, ĉ02(κ) = {ĉ2(κ)}−1 and ĉ03(κ) = {ĉ3(κ)}−1.

Note that the relative error of each saddlepoint approximation stays bounded and converges to a

given limit. As κ tends to infinity, the ratio between the first order saddlepoint approximation

ĉ02(κ) and the second order saddlepoint approximations ĉ03(κ), and the true values of c02 tends to

unity. Numerical results show that the first order saddlepoint approximation is accurate, but that

the second order saddlepoint approximation do even better. The final column in Table 2.3 gives the

sample size required for the difference between the true κ and κ̂3. The table shows that κ̂3 provides

highly accurate approximation in all cases considered.

2.9 Bingham Distribution on the Sphere

2.9.1 Background

Consider the situation when the observations are not directions but axes; that is, the unit vectors x

and −x define the same axis. An important distribution for dealing with axial data is the Bingham

distribution where the probability density function satisfies the antipodal symmetry property

f(x) = f(−x). (2.105)

The real Bingham distribution can be obtained by conditioning p-variate normal distribution on

‖x‖ = xTx = 1. Let x have an Np

(
0, (2A)−1

)
distribution. Then the conditional distribution of x
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given that xTx = 1 is Bingham with a symmetric parameter matrix A. The real Bingham distribu-

tion Bing(A) has the probability density function with respect to wp(dx), the surface measure on

unit sphere

f(x; A) =
(
cBing(A)

)−1
exp
(
−xTAx

)
, (2.106)

where the normalizing constant cBing(A) = 1F1

(
1
2
; p

2
; A
)

is the hypergeometric function of matrix

argument (Mardia and Jupp [59], p. 289). Further, A is identifiable only up to the addition of

a multiple of the identity matrix. That is, because of the constraint xTx = 1, the matrix A and

A + αIp for any real number α define the same real Bingham distribution with cBing(A + αIp) =

exp(α)cBing(A) and for a rotation matrix Γ, cBing(ΓAΓT ) = cBing(A). Moreover, since A is a positive

definite and symmetric, it can be factored by spectral decomposition as A = ΓΛΓT =
∑p

i=1 λiγ(i)γ
T
(i),

where Λ is a diagonal matrix of λi > 0, i = 1, 2, . . . , p, and Γ is an orthogonal matrix (ΓTΓ = ΓΓT =

I) whose columns are standardized eigenvectors, γ(i), i = 1, 2, . . . , p. It follows that Λ = ΓTAΓ

is symmetric and its eigenvalues are all real. Therefore, there is a nonsingular orthogonal linear

transformation of x, y = ΓTx, such that

xTAx = yTΓTAΓy = yTΓTΓΛΓTΓy = yTΛy =

p∑
i=1

λiy
2
i . (2.107)

Thus the quadratic form Q(x) = xTAx has the same distribution as Q(y) = yTΛy =
∑
λiy

2
i , where

yi are independent standard normal variables and λ1 ≥ λ2 ≥ . . . ≥ λp = 0 denote the eigenvalues of

A (Scheffé [92], Kuonen [55] and Mardia et al. [72], p. 474-475). So, without loss of generality, we

assume that A = Λ = diag(λ1, λ2, . . . , λp) (Mardia et al. [72], p. 181 and Kume and Walker [52]).

Further, if

f(x; Λ) =
1

cBing(Λ)
exp
(
−

p∑
i=1

λiy
2
i

)
,

and

f(x; Λ + αIp) =
1

cBing(Λ + αIp)
exp
(
−

p∑
i=1

(λi + α)y2
i

)
=

exp(α)

cBing(Λ + αIp)
exp
(
−

p∑
i=1

(λi)y
2
i

)
,

If xTx = 1, then f(x; Λ) = f(x; Λ + αIp) and cBing(Λ) exp(α)/cBing(Λ + αIp) equal to unity. Hence

cBing(Λ + αIp) = exp(α)cBing(Λ).
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2.9.2 Saddlepoint Approximations for the Normalizing Constant

It is clear that x2
i ∼ λiχ

2
1, i = 1, 2, . . . , p. Thus under the simplest case A = I, xTx = x2

1 +

x2
2 + . . . + x2

p = r2, say, follows a convolution of weighted central chi-squared χ2
1 variables i.e.,

r2 =
∑p

i=1 x
2
i ∼

∑p
i=1 λiχ

2
1. The moment generating function for r2, MR2(u), is given by

MR2(u) =

p∏
i=1

(
1− u

λi

)−1/2

, (2.108)

and the cumulant generating function for r2, KR2(u), is given by

KR2(u) = log
[ p∏
i=1

(
1− u

λi

)−1/2]
= −1

2

p∑
i=1

log
(

1− u

λi

)
, u < λ1, (2.109)

(Johnson and Kotz [33], p. 152). The first derivative of KR2(u) is

K
′

R2(u) =

p∑
i=1

[
(0.5)

(
1− u

λi

)−3/2( 1

λi

) p∏
j 6=i=1

(
1− u

λj

)−1/2
]

p∏
i=1

(
1− u

λi

)−1/2
. (2.110)

Once the saddlepoint equation K
′

R2(u)−r2 = 0 is solved numerically, the saddlepoint approximation

for the probability density function of r2, f̂R2

(
r2; A

)
, can be obtained after computing K

′′

R2(u) and

using (2.41).

Switch to polar coordinates of p dimensions

x = rq(Θ), Θ = (θ1, θ2, . . . , θp−1)T , (2.111)

where

qi(Θ) = cos θi

i−1∏
j=1

sin θj, sin θ0 = cos θp = 1, (2.112)

and

0 ≤ θj ≤ π, j = 1, 2, . . . , p− 2, 0 ≤ θp−1 < 2π, r > 0. (2.113)

The Jacobian of the transformation from (r,Θ) to x is given by

J = rp−1

p−1∏
i=2

sinp−i θi−1, (2.114)
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(Mardia et al. [72], p. 35-36). The normalizing constant for the Bingham distribution cBing(A) can

be written as a function proportional to the probability density function of r2, fR2

(
r2; A

)
, as follows.

The true joint probability density function of p independent random variables x1, x2, . . . , xp follow

a multivariate normal distribution with mean vector µ = (0, 0, . . . , 0)T , say, and covariance matrix

Σ = (2A)−1, can be written in terms of marginal probability density function of r2 and conditional

probability density function of Θ given r2 (Θ/r2) as

(2π)−p/2|2A|1/2 exp
{
−xTAx

}
dx = fR2

(
r2; A

){
cBing

(
r2A

)}−1
exp
{
−r2

(
q(Θ)

)T
A
(
q(Θ)

)}
× rp−1

p−1∏
i=2

sinp−i θi−1 dΘ dr. (2.115)

When r2 = 1, any θ, the normalizing constant for the real Bingham distribution is given by

cBing

(
A
)

= β
(
A
)
fR2

(
1; A

)
(2.116)

where

β
(
A
)

=
(2π)p/2

|2A|1/2
. (2.117)

The second order saddlepoint approximation for the normalizing constant of real Bingham dis-

tribution is then given by

ĉBing

(
A
)

= β
(
A
)
f̂R2

(
1; A

)
=

(
2π2p−3

)1/2
[
K(2)(û(1))

]−1/2
{2p−2∏

i=1

(λi − û(1))

}−1/2

exp(−û(1) + T ), (2.118)

where û(1) is the saddlepoint function which is the unique solution in (−∞, λ1) to the saddlepoint

equation K(1)(u(s)) = 1 and

T =
1

8
ρ̂4 −

5

24
ρ̂2

3, ρ̂j =
K(j)

(
û(s)

)[
K(2)

(
û(s)

)]j/2 . (2.119)

In the case p = 2 it is known that the real Bingham distribution is a 2-wrapped von Mises by

doubling angles (Mardia and Jupp [70], p. 54 and p. 182). So, the symmetric parameter matrix

A can be chosen as A = diag(λ, 0) and the normalizing constant of the von Mises distribution is a

double angled version of a particular real Bingham distribution, that is

cBing

(
κ
)

= [2π I0(κ)]−1, (2.120)
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where κ = λ/2. Hence, the second order saddlepoint approximation for the normalizing constant of

the real Bingham distribution can be obtained by recalling the saddlepoint approximation for the

modified Bessel function of the first kind and order zero I0(κ) in (2.74), that is

ĉ2Bing

(
κ
)

= ĉBing

(
κ
)
(1 + T )

= [2π Î0(κ)]−1(1 + T ), (2.121)

where T is the second order correction term for the saddlepoint approximation in (2.119). Table 2.4

gives the second order saddlepoint approximation for the normalizing constant of the real Bingham

distribution with varying the concentration parameter κ = λ/2. It is clear from the table that

as κ tends to infinity, the limiting behaviour of the second order saddlepoint approximation tends

to unity. The numerical results for the second order saddlepoint approximations show that they

are more accurate than the saddlepoint approximation obtained in Table 2.1 for the normalizing

constant of the von Mises distribution.

λ κ Exact cBing

(
κ
)

SPA ĉ2Bing

(
κ
)

ĉ2Bing

(
κ
)
/cBing

(
κ
)

0.0 0.0 0.15916 0.14788 0.92912

0.4 0.2 0.15906 0.14805 0.93078

0.8 0.4 0.15876 0.14837 0.93456

1.2 0.6 0.15670 0.14835 0.94671

1.6 0.8 0.13892 0.13159 0.94723

2.0 1.0 0.12571 0.11931 0.94911

10 5.0 0.00584 0.00556 0.95111

20 10 5.652380e-05 5.470826e-05 0.96788

200 100 1.482232e-43 1.467513e-43 0.99007

Table 2.4: Numerical results for the second order saddlepoint approximations for the normalizing constant of the

real Bingham distribution with varying κ.



Chapter 3
Saddlepoint Approximations for the

Complex Bingham Quartic Distribution

3.1 Introduction

The complex version of the Bingham distribution is defined on the unit complex sphere in Ck−1

and it is relevant for the statistical shape analysis of landmark data in two dimensions i.e. it is

a suitable distribution for modeling shapes. Under high concentrations the complex Bingham has

a complex normal distribution. By adding a quartic term to the complex Bingham density gives

the complex Bingham quartic (CBQ) distribution, which allows a full normal distribution under

high concentrations. The normalizing constant of the complex Bingham quartic (CBQ) distribution

has no closed form and therefore we provide an approximation procedure based on saddlepoint

approximations for finite mixtures of the normalizing constants of Bingham distribution. Two new

methods are explored to evaluate this normalizing constant namely, the Integrated Saddlepoint (ISP)

approximation and the Saddlepoint-Integration (SPI) approximation. Calculating the normalizing

constant for the CBQ distribution is based on numerical methods of quadrature.

3.2 Quadrature Methods

Numerical integration methods can be adaptive or non-adaptive. Non-adaptive methods apply the

same rules over the entire range of integration. The integrand is evaluated at a finite set of points

and a weighted sum of these function values is used to obtain the estimate. The numerical estimate

50
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of
∫ b
a
f(x)dx is of the form

∑n
i=1 wif(xi), where xi are points in the interval [a, b] and usually called

nodes (abscissas) and wi are suitable weights.

We now describe some of the quadrature methods one of which will be used when evaluating

the normalizing constant of the complex Bingham quartic (CBQ) distribution whereas others could

be explored in future work. There are many methods of numerical integration such as Trapezoidal,

adaptive Simpson quadrature, Gauss-Legendre quadrature and Gauss-Hermite quadrature. Trape-

zoidal rule is the simplest numerical integration method but it used more time as many function calls

than the adaptive Simpson quadrature and it gives exact results if the function f is a constant or

a linear function, otherwise there will be an error, corresponding to the extent that our trapezoidal

approximation overshoots the actual graph of f (Jones, et al. [35], p. 189). When an integrand

behaves well in one part of the range of integration, but not so well in another part, it helps to treat

each part differently. Adaptive methods choose the subintervals based on the local behavior of the

integrand (Rizzo [85], p. 331). The adaptive quadrature rule may be most efficient for non-smooth

integrands or needle-shaped functions (Germund, D. and Björck [24], p. 561). The main benefit of

Gaussian quadrature is very high-order accuracy with very few points (typically less than 10). How-

ever, the Gaussian quadrature methods quickly become cumbersome as the dimensions increases,

especially in the complex Bingham quartic (CBQ) distribution.

3.2.1 Trapezoidal Rule

This approach divides the interval [a, b] into n equal length subintervals length h = (b − a)/n,

with endpoints x0, x1, . . . , xn, and uses the area of the trapezoid to estimate the integral over each

subinterval. If we suppose equally spaced nodes then the i-th node is given by xi = a+ ih, that is

x0 = a, x1 = a+ h, x2 = a+ 2h, . . . , xn = a+ nh = b.

The estimate on (xi, xi+1) is
(
f(xi) + f(xi+1)

)
(h/2), and the numerical estimate of

∫ b
a
f(x)dx is

h

2
f(a) + h

n−1∑
i=1

f(xi) +
h

2
f(b). (3.1)

Note that we get a better approximation if we take more trapezoids. This method will be encountered

when evaluating the normalizing constant of the complex Bingham quartic (CBQ) distribution.
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3.2.2 Recursive Adaptive Simpson Quadrature

In adaptive quadrature, the approximation is also obtained by approximating the area under the

function f(x) over subintervals. The subinterval width h is not constant over the interval [a, b], but

instead adapts to the function. The key observation is that h only needs to be small where the

integrand is steep. Adaptive quadrature automatically allows the interval width h to vary over the

range of integration, using a recursive algorithm. The basic idea is to apply Simpson’s rule using

initial h and h/2. If the difference between the two estimates is less than some given tolerance ε,

say, then we are done. If not we split the range of integration [a, b] into two parts [a, c] and [c, b]

and on each part we apply Simpson’s rule using interval width h/2 and h/4 and a tolerance ε/2. If

the error on each subinterval is less than ε/2, then the error of the combined estimates will be less

than ε. By increasing h we improve the accuracy. If the desired tolerance is not met on a given

subinterval then we split it further, but we only do this for the subintervals that do not achieve the

desired tolerance (Jones et al, [35], p. 194).

3.2.3 Gauss-Legendre Quadrature

Gauss-Legendre quadrature approximates the integral

I =

∫ 1

−1

f(x)dx. (3.2)

The general N -point Gauss-Legendre rule is exact for polynomial functions of degree ≤ 2N − 1, i.e.

for any function of the form

f(x) =
2n−1∑
i=0

cix
i, (3.3)

where ci are integers. The integral in (3.2) is approximated by the summation

I ≈
n∑
i=1

wif(xi), (3.4)

where xi is the i-th zero of the Legendre polynomial Pl(x) (abscissas or nodes), see Abramowitz and

Stegun [1], p. 775 and p. 188, defined as

Pl(x) =
1

2n

l/2∑
m=0

(−1)m

n

m

2n− 2m

n

xn−2m, (3.5)

with weights

wi =
2

(1− x2
i )[p

′
l(xi)]

2
. (3.6)
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Let a and b each be finite, a < b. By the change of variables

x =
2

b− a
(t− a)− 1, (3.7)

so that

t =
b− a

2
(x+ 1) + a and dt =

b− a
2

dx. (3.8)

The N -point Gauss-Legendre quadrature rule over the interval [a, b] is given by

I =

∫ b

a

f(t)dt =
b− a

2

∫ 1

−1

f
(b− a

2
(x+ 1) + a

)
dx

≈ b− a
2

n∑
i=1

wif
(b− a

2
(xi + 1) + a

)
. (3.9)

3.3 Saddlepoint Approximations for Finite Mixtures

3.3.1 Background on Finite Mixtures

A mixture distribution is a compounding of statistical distributions, which arises when sampling

from inhomogeneous populations (or mixed populations) with a different probability density function

in each component.

For a random variable X taking values in R, finite mixture models decompose a probability

density function f(x) into the sum of probability density functions from l classes. A general density

function f(x) is considered semiparametric, since it may be decomposed into l components. Let

fi(x) denote the probability density function for the i−th class. Then the finite mixture model with

l components is

fX(x) =
l∑

i=1

wifi(x), (3.10)

where

0 ≤ wi ≤ 1, i = 1, . . . , l; w1 + w2 + . . .+ wl = 1. (3.11)

The parameters w1, . . . , wl will be called the mixing weights or mixing proportions and f1(.), . . . , fl(.)

the component densities of the mixture. Furthermore, the moment generating function of the

mixture distribution associated with the random variable X is defined as

MX(u) =
l∑

i=1

wiMi(u), (3.12)



3.3. SADDLEPOINT APPROXIMATIONS FOR FINITE MIXTURES 54

over values of u for which the integral converges. With real values of u the convergence is always

assured at u = 0. In addition, we shall presume that M(u) converges over an open neighborhood of

zero designated as (u1, u2) with u1 < 0 and u2 > 0, and that, furthermore, (u1, u2) is the smallest

such neighborhood of convergence. This assumption is often taken as a requirement for the existence

of the MGF (MX(u) <∞) (Huzurbazer [30], Butler [9], p. 8 and Reid [82]).

3.3.2 Saddlepoint Approximations

A key element in the saddlepoint approximation is the cumulant generating functions Ki(u) =

log
(
Mi(u)

)
for i = 1, 2, . . . , l. The cumulant generating functions are convex (0 < K

′′

i (u) <∞, i =

1, 2, . . . , l) and the cumulant generating function K(u) of the mixture distribution associated with

the random variable X is given by

K(u) = log
[ k∑
i=1

wiMi(u)
]

= log
[ k∑
i=1

wi exp{Ki(u)}
]
. (3.13)

The first derivative of K(u) in (3.13) is given by

K
′
(u) =

∑k
i=1wiM

′

i(u)∑k
i=1wiMi(u)

=

∑k
i=1wiMi(u)K

′

i(u)∑k
i=1wiMi(u)

, (3.14)

and the second derivative is also computed as

K
′′
(u) =

[∑k
i=1 wiMi(u)

][∑k
i=1wiM

′′

i (u)
]
−
[∑k

i=1wiM
′

i(u)
]2

[∑k
i=1wiMi(u)

]2

=

[∑k
i=1 wiMi(u)

][∑k
i=1 wiMi(u)

(
K
′′

i (u) + K
′

i
2(u)

)]
−
[∑k

i=1wiMi(u)K
′

i(u)
]2

[∑k
i=1 wiMi(u)

]2 , (3.15)

where M
′

i(u) = Mi(u)K
′

i(u) and M
′′

i (u) = Mi(u)
(
K
′′

i (u) + K′2i (u)
)

and whence K(u) is also convex

since K
′′
(u) > 0.

The probability density function fX(x) for the mixtures defined in (3.10) may then be approxi-

mated using the following second order saddlepoint approximation

f̂X(x) =
[
2πK

′′
(û)
]−1/2

exp
{
K(û)− ûx

}
(1 + T ), (3.16)
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where T is the second order correction term defined in (2.119) and the saddlepoint û are defined

implicity through the saddlepoint equation K
′
(u) = x, which is solved numerically using a root

finder and the second order saddlepoint approximation in (3.16) is subsequently computed.

3.3.3 Application to Gamma Mixture Distribution

We illustrate the foregoing saddlepoint approximation by applying to a gamma mixture distribution.

Let

f(x;α1, θ1, α2, θ2) = wf1(x;α1, θ1) + (1− w)f2(x;α2, θ2), (3.17)

be the density of a two component gamma mixture, where 0 ≤ w ≤ 1 is the mixing proportion and

for i = 1, 2,

f(x;αi, θi) =
[
θαi
i Γ(αi

]−1
x(αi−1) exp(−x/θi) x > 0, αi > 0 θi > 0, (3.18)

is the probability density function of gamma random variable with shape parameter αi and scale

parameter θi (Everitt and Hand [20], p. 102 and Gharib [25]). The moment generating function

Mi(u), i = 1, 2 is given by

Mi(u) = (1− θiu)−αi , u < 1/θi. (3.19)

Then with parameters (α1 = 5, θ1 = 1), (α2 = 10, θ2 = 2) and w = 0.30 computed for sample size

n = 1, the moment generating function of the mixture distribution associated with the random

variable X is given by

MX(u) = wM1(u) + (1− w)M2(u)

= (0.30)(1− u)−5 + (0.70)(1− 2u)−10. (3.20)

The cumulant generating function is also given by

K(u) = log
[
(0.30)(1− u)−5 + (0.70)(1− 2u)−10

]
, u < 1/2, (3.21)

and Figure 3.1 plots the cumulant generating function K(u) in (3.21) versus u for the gamma

mixture distribution under consideration. The values of the graph range from −∞ as u ↓ −∞

to ∞ as u ↑ 1
2
. The function K(u) is then always a strictly convex function when evaluated over(

−∞, 1/max(θi)
)
.
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Figure 3.1: The cumulant generating function K(u) for the gamma mixture versus u.

The first and the second derivatives of K(u) can be calculated as

K
′
(u) =

(1.50)(1− u)−6 + (14.00)(1− 2u)−11

(0.30)(1− u)−5 + (0.70)(1− 2u)−10
, (3.22)

and

K
′′
(u) =

(9.00)(1− u)−7 + (308.00)(1− 2u)−12

(0.30)(1− u)−5 + (0.70)(1− 2u)−10
−

[
(1.50)(1− u)−6 + (14.00)(1− 2u)−11

]2

[
(0.30)(1− u)−5 + (0.70)(1− 2u)−10

]2 . (3.23)

The saddlepoint equation K
′
(u)−x = 0 is then solved numerically by finding its root using any root-

finding methods such as Brent’s method (see for example, Brent [8] and Rizzo [85], p. 329) which

is implemented in the R function uniroot or using Newton-Raphson method (see, for example,

(Kolassa [51], p. 84 and Jones et al, [35], p. 174).

Figure 3.2 shows the curve of the exact gamma mixture density (solid line) as well as the second

order saddlepoint approximation (dashed line). The exact and the second order saddlepoint approx-

imation are indistinguishable in the tails. The second order saddlepoint density approximation does

a good job of capturing the general shape in the center of the distribution and gives a sense of the

bimodality of the density function.



3.4. COMPLEX BINGHAM QUARTIC DISTRIBUTION 57

Figure 3.2: Gamma mixture random variable: Exact density and saddlepoint approximation.

3.4 Complex Bingham Quartic Distribution

The complex Bingham (CB) distribution described by Kent [41] is a suitable distribution for mod-

elling shapes. Under high concentrations the complex Bingham has a complex normal distribution

with isotropy (Σ = σ2 I2k−2). By adding a quartic term to the complex Bingham distribution we get

the complex Bingham quartic (CBQ) distribution. The motivation behind the complex Bingham

qrartic (CBQ) distribution was to develop a distribution centred at the complex Bingham (CB) dis-

tribution which includes anisotropy i.e. a full normal distribution under high concentrations. This

is the same as the Fisher-Bingham (FB5) model of Kent [40]. This extended the Fisher distribution

on S2 to include anisotropy. The complex Bingham quartic (CBQ) distribution provides suitable

shape parameters to include anisotropy.

We begin by looking at a background on the complex Bingham quartic distribution, some proper-

ties and motivation and a representation of the normalizing constant based on normalizing constants

for the real Bingham distribution. The normalizing constant of the complex Bingham quartic (CBQ)

distribution does not have a simple closed form representation and therefore we provide two new

approximation procedures based on the saddlepoint approximations.
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3.4.1 Background

Let CSk−2 ≡ S2k−3 = {z = (z1, z2, . . . , zk−1)T :
∑k−1

j=1 |zj|2 = 1} ⊂ Ck−1 denote the unit complex

sphere in Ck−1. The complex Bingham quartic (CBQ) density on CSk−2, which is written CBQ(µ,Ω)

depends on a (k−1)-dimensional unit complex location vector µ ∈ CSk−2 and a (2k−4)× (2k−4)-

dimensional real symmetric reduced concentration matrix Ω. The density (with respect to the

uniform measure on CSk−2) is a function of a unit complex vector z ∈ CSk−2. Let Ik−1 denote

the (k − 1)-dimensional identity matrix with columns e1, . . . , ek−1. To simplify the presentation of

distributions on CSk−2 (or CP k−2), it is often useful to rotate them to a standard form so that

the modal direction (or axis) is given by ek−1. For analytical purposes, it is convenient to define a

mapping G : CSk−2 ⇒ U(k−1) taking a unit complex vector µ ∈ CSk−2 to a (k−1)×(k−1) unitary

matrix G(µ). An example of the unitary function G(µ) is given in Kent et al. [46]. An important

representation for a point z in CSk−2 is given by the partial Procrustes tangent projection of z with

respect to µ ∈ CSk−2.

First define the rotated version of z,

G(µ)∗z = w = (w1, . . . , wk−1)T , say, (3.24)

If µ∗z = e∗k−1w = wk−1 6= 0, we define the (k − 2)-dimensional complex partial Procrustes tangent

vector TPP(z;µ) = v, say, to be the first k − 2 coordinates of w after first aligning w with respect

to ek−1, i.e. set

TPP(z;µ) = v = exp(−iφ)(w1, . . . , wk−2)T

= exp(−iφ)G\k−1(µ)∗z, (3.25)

where φ = arg(wk−1) = arg(µ∗z) and G\k−1(µ) denote the (k − 1) × (k − 2) submatrix of G(µ)

without its last column. Then w and z can be written in terms of v as

w = exp(−iφ)

{
cos(ρ)ek−1 +

 v

0

}
z = exp(−iφ)

{
cos(ρ)µ+G\k−1(µ)v

}
, (3.26)

where

cos(ρ) = |e∗k−1w| = |µ∗z| =
√

1− v∗v ∈ (0, 1], (3.27)
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with ρ ∈ [0, π/2). Note that (vT , 0)T is orthogonal to ek−1 and 0 6 v∗v < 1. Also, v is unchanged

if z is replaced by exp(iψ)z or µ is replaced by exp(iψ)µ, so v represents a tangent projection on

CP k−2 (Kent et al. [46]).

3.4.2 Decomposition of Quadratic Forms

Consider a (2k − 4) × (2k − 4)-dimensional real symmetric matrix Ω. Such a matrix can be used

(Kent et al. [46]) to construct a quadratic form involving the real and imaginary parts of a (k− 2)-

dimensional complex vector. If Ω is partitioned as

Ω =

Ω11 Ω12

Ω21 Ω22

 , (3.28)

in terms of (k−2)×(k−2) submatrices, then a rotated version of Ω (corresponding to multiplication

of the complex vector by i) can be defined by

Ω(rot) =

 Ω22 −Ω21

−Ω12 Ω11

 . (3.29)

The information in the parameter matrix Ω can be summarized in terms of two real matrices

encoding the complex symmetric and anti-complex symmetric information,

Ω(cs) =
1

2
(Ω + Ω(rot)) =

1

2

Ω11 + Ω22 Ω12 − Ω21

Ω21 − Ω12 Ω11 + Ω22

 , (3.30)

and

Ω(as) =
1

2
(Ω− Ω(rot)) =

1

2

Ω11 − Ω22 Ω12 + Ω21

Ω21 + Ω12 Ω22 − Ω11

 , (3.31)

Note that Ω = Ω(cs) + Ω(as) and it is assumed that Ω is positive semidefinite (dTΩd ≥ 0 for all

non-zero vectors d with real entries, d ∈ R), which in turn implies that Ω(cs) = 1
2
(Ω + Ω(rot)) is also

positive semidefinite (Kent et al. [46]).

The expression for the probability density function of the complex Bingham qrartic (CBQ)

distribution is conveniently expressed in terms of the partial Procrustes tangent coordinates v =

TPP(z;µ) by

f(z) = cCBQ(Ω)−1 exp
{
v∗Av + (1− v∗v)Re(vTBv)︸ ︷︷ ︸

Quartic Term

}
, (3.32)
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with respect to d
[
Re
(
v
)]
d
[
Im(v

)]
), the uniform measure on CSk−2. The information in the param-

eter matrix Ω can be coded by two (k − 2)× (k − 2) complex matrices A and B,

A = −1

4

{
Ω11 + Ω22 + i(Ω21 − Ω12)

}
(3.33)

B = −1

4

{
Ω11 − Ω22 − i(Ω21 + Ω12)

}
. (3.34)

The probability density function for the CBQ distribution is also expressed in terms of (2k− 4)-

dimensional real coordinates (real tangent representation)

x = (Re(v)T , Im(v)T )T , (3.35)

by

f(z) = cCBQ(Ω)−1 exp
{
−1

2

(
xTΩ(cs)x + (1− xTx)xTΩ(as)x

)}
= cCBQ(Ω)−1 exp

{
−1

2

(
xTΩx− (xTx)xTΩ(as)x

)}
. (3.36)

3.4.3 Some Properties and Motivation

(a) Simplification: If B = 0 then the complex Bingham quartic (CBQ) distribution reduces to the

complex Bingham (CB) distribution with reduced concentration matrix A.

(b) Role of the quartic parameters: In the real tangent representation (3.36), it might be thought

that the essential properties of the density could be captured by the quadratic form xTΩx and

the quartic terms could be dropped. In a sense this is true under high concentration because

the quartic terms become negligible. However, in general the quartic terms cannot be ignored

because the PDF would then become discontinuous as |v| = |x| → 1, i.e. as z∗µ → 0, and

the model would be less appealing. The reason for the discontinuity is that, when |v| = 1,

the tangent vectors v and exp(iψ)v define the same point on CP k−2, and the quadratic form

Re(vTBv) = xTΩ(as)x changes if v is replaced by exp(iψ)v. In contrast the quadratic form

v∗Av = xTΩ(cs)x is unchanged if v is replaced by exp(iψ)v (Kent et al. [46]).

(c) Special case: For the triangle case, k = 3, the complex Bingham quartic (CBQ) distribution

reduces to the 5 parameter Fisher-Bingham (FB5) or Kent distribution on the sphere.

(d) Complex symmetry: Since replacing z by exp(iθ)z does not change the Procrustes tangent

vector v in equation (3.25), the CBQ density clearly has complex symmetry.

Other properties and motivation are given in Kent et al. [46] and McDonnell [77].
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3.4.4 Representation of the Normalizing Constant

If x = s1/2w, where w is a real unit (2k − 4)-dimensional vector and 0 < s < 1, the normalizing

constant for the complex Bingham quartic (CBQ) distribution can be derived as

cCBQ(Ω) =

∫
|x|<1

exp
{
−1

2
(xTΩx− xTxxTΩ(as)x)

}
dx

= π

∫ 1

0

[∫
S2k−5

exp
{
−1

2

(
wT sΩw−wT s2wwTΩ(as)w

)}
dw

]
sk−3ds

= π

∫ 1

0

[∫
S2k−5

exp
{
wTΨ(s)w

}
dw
]
sk−3ds

= π

∫ 1

0

cBing

(
Ψ(s)

)
sk−3ds, (3.37)

where

Ψ(s) = −1

2
(sΩ− s2Ω(as)), 0 < s < 1, (3.38)

is also a real symmetric (2k − 4) × (2k − 4) matrix and cBing(·) is the normalizing constant of the

real Bingham distribution on S2k−5. Thus the normalizing constant has been reduced to a one

dimensional integral of normalizing constants for the Bingham distribution (Kent et al. [46]).

In practice we use the quadrature rules to approximate the definite integral in (3.37) by a

summation

cCBQ(Ω) ≈ π
n∑
i=1

wicBing

(
Ψ(si)

)
sk−3
i , (3.39)

where s1, s2, . . . , sn are distinct nodes and w1, w2, . . . , wn are the corresponding weights (Germund,

D. and Björck [24], p. 561 and Abramowitz and Stegun [1], p. 886-887). For the moment we have

used equally-spaced nodes (abscissas) with constant weights. Other choices will be explored in the

future.

It is clear from the expression (2.116) that the normalizing constant for the Bingham distribution

cBing(A) is proportional to the probability density function of a convolution central scaled chi-

squared χ2
1 variates, f(r2; A) at r2 = v = 1 with cumulant generating function given in (2.109).

More specifically, when A = Ψ(s), the normalizing constant for the real Bingham distribution is

given by

cBing

(
Ψ(s)

)
= β

(
Ψ(s)

)
fR2

(
1; Ψ(s)

)
, (3.40)
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where

β
(
Ψ(s)

)
=

(2π)(k−1)/2

|2Ψ(s)|1/2
. (3.41)

Thus the normalizing constant for the CBQ distribution in (3.37) becomes

cCBQ(Ω) = π

∫ 1

0

β
(
Ψ(s)

)
fR2

(
1; Ψ(s)

)
sk−3ds

≈ π
n∑
i=1

wiβ
(
Ψ(si)

)
fR2

(
1; Ψ(si)

)
sk−3
i . (3.42)

Notice that the normalizing constant for the CBQ distribution in (3.42) has been written as a

weighed mixture of probability density functions for r2, fR2

(
1; Ψ(s)

)
.

Two new methods are explored to evaluate the normalizing constant of the CBQ distribution in

(3.42) based on the saddlepoint approximation of Bingham densities namely, the Integrated Sad-

dlepoint (ISP) approximation (saddlepoint approximation first and then numerical integration) and

the Saddlepoint-Integration (SPI) approximation (numerical integration first and then saddlepoint

approximation). Even though both methods are based on second order saddlepoint approximations,

nevertheless in practice the Integrated Saddlepoint (ISP) approximation is more accurate than the

Saddlepoint-Integration (SPI) approximation but the latter could be used for all concentration pa-

rameters of the complex Bingham quartic distribution with a slight reduction in computer time.

3.4.5 Saddlepoint Approximations for the Normalizing Constant:

Integrated Saddlepoint Approximations Approach

Kent et al. [46] proposed an integrated saddlepoint (ISP) approximation for the normalizing constant

of the complex Bingham quartic (CBQ) distribution in which cBing in (3.37) is approximated by its

saddlepoint approximation i.e. we firstly evaluate the saddlepoint approximation of cBing and then

integrate the resulting function numerically. That is,

ĉCBQ, ISP(Ω) = π

∫ 1

0

ĉBing

(
Ψ(s)

)
sk−3ds

≈ π

n∑
i=1

wiĉBing

(
Ψ(si)

)
sk−3
i

= π

n∑
i=1

wiβ
(
Ψ(si)

)
f̂R2

(
1; Ψ(si)

)
sk−3
i , (3.43)
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where ĉBing

(
Ψ(s)

)
is second-order saddlepoint approximation for the normalizing constant of the

Bingham distribution and it takes the following form for a concentration matrix Ψ(s):

ĉBing

(
Ψ(s)

)
=
(
2π2k−5

)1/2
[
K(2)(û(s))

]−1/2
{2k−4∏

i=1

(λi − û(s))

}−1/2

exp(−û(s) + T ), (3.44)

where û(s) is the unique solution in (−∞, λ1) to the saddlepoint equation K(1)(u(s)) = 1 and the

correction term T is given in (2.119). The λi are the eigenvalues of −Ψ. The cumulant generating

function K is given by

K(u; Ψ) = −1

2

k−1∑
i=1

log
(

1− u

λi

)
, u < λ1, (3.45)

(Kent et al. [46] and Kume and Wood [54]). Moreover, the first and the higher derivatives for the

cumulant generating function are given by

K(j)(u; Ψ) =
(j − 1)!

2

k−1∑
i=1

1

(λi − u)j
, j ≥ 1. (3.46)

When implementing this saddlepoint approximation, there is a simple one-dimensional search

to find û for each s. This approximation works well over the whole range of choices for Ψ (Kent et

al. [46]). Thus the (2k − 4)-dimensional integral for normalizing constant of the complex Bingham

quartic (CBQ) has been reduced to a simple one-dimensional integral. A numerical example will be

given later.

It is also possible to evaluate the normalizing constant for the complex Bingham quartic (CBQ)

distribution by using multivariate numerical integration such as Gauss-Legendre and Gauss-Hermite

quadratures (McDonnell [77]). However, these multivariate numerical methods become cumbersome

under high dimensions, and in general the saddlepoint approximation is both simpler and more

reliable (Kent et al. [46]).

3.4.6 Saddlepoint Approximations for the Normalizing Constant:

Saddlepoint of Integration Approximations Approach

An alternative to the integrated saddlepoint (ISP) approximation is to integrate first and then

evaluate the saddlepoint approximation. We will call this the saddlepoint of integration (SPI)

approximation. Let

g(1) = cCBQ(Ω) = π
n∑
i=1

wigi
(
1; Ψ(si)

)
, (3.47)



3.4. COMPLEX BINGHAM QUARTIC DISTRIBUTION 64

where

gi
(
1; Ψ(si)

)
= β

(
Ψ(si)

)
fR2

(
1; Ψ(si)

)
sk−3
i , 0 ≤ wi ≤ 1,

n∑
i=1

wi = 1, 0 < s < 1. (3.48)

The second order saddlepoint approximation for the normalizing constant of the CBQ distribu-

tion is given by

ĉCBQ, SPI(Ω) = ĝ(1) =
(

2πK
′′

g(û(s))
)−1/2

exp
{
Kg(û(s))− û(s)

}(
1 + T

)
, (3.49)

where the second order correction term T is given in (2.119) and the saddlepoint û(s) is computed

numerically by solving the saddlepoint equation K
′

g(u(s); Ψ) = 1 (see, for example, Kolassa [51], p.

84 and Jones et al, [35], p. 174). The moment generating function for g(1) is given by

Mg(u; Ψ) = π

n∑
i=1

wiβ
(
Ψ(si)

)
Mi(u; Ψ(si))s

k−3
i , (3.50)

and the cumulant generating function Kg(u) is computed as

Kg(u; Ψ) = log
[
π

n∑
i=1

wiβ
(
Ψ(si)

)
Mi(u; Ψ(si))s

k−3
i

]
= log

[
π

n∑
i=1

wiβ
(
Ψ(si)

)
exp
{
Ki(u; Ψ(si))

}
sk−3
i

]
. (3.51)

3.4.7 Change of Variables

One notable drawback of numerical quadrature is the need to pre-compute (or look up) the requisite

weights and nodes. Uniform nodes are not a suitable choice to compute the integrand function for

the normalizing constant of the complex Bingham quartic (CBQ) distribution numerically, especially

for k > 3 and under high concentrations. Instead let us try uniform nodes with a change of variable.

Notice that r2 =
∑k−1

j=1 λjχ
2
1 = v, say, is also approximated by λ̄χ2

k−1 with probability density

function given by

f(v) =
1

2(k−1)/2Γ((k − 1)/2)
v

k−1
2
−1 exp

(
−1

2
v
)
, (3.52)

and the cumulative distribution function of λ̄χ2
k−1 is also given by

F (v) =

∫ v

0

w
k−1
2
−1 exp(−1

2
w) dw

Γ((k − 1)/2)2(k−1)/2
=

γ(k−1
2
, v

2
)

Γ((k − 1)/2)
= P

(
k − 1

2
,
v

2

)
, (3.53)

where Γ(·) is the gamma function, and

γ
(k − 1

2
,
v

2

)
=

(
v/2

(k − 1)/2

)
Γ

(
k − 1

2

)
exp
(v

2

) ∞∑
j=1

(v/2)j

Γ
[
((k − 1)/2) + j + 1

] , (3.54)
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is the lower incomplete gamma function and P (·, ·) is the regularized Gamma function (Abramowitz

and Stegun [1], p. 260).

Next the normalizing constant expression for the complex Bingham quartic (CBQ) distribution

can be written as

cCBQ(Ω) = π

∫ 1

0

cBing

(
Ψ(s)

)
sk−3

f(s)
f(s)ds

= π

∫ 1

0

h(s)f(s)ds. (3.55)

Let τ = F (s) and dτ = f(s) ds. We need to choose the probability density function f(s) so that

the function h(s) will be nearly constant. A good test case is Ω(as) = 0 and Ω = c I, a multiple of

the identity matrix with c > 0. The expression (3.55) can be reexpressed as

cCBQ(Ω) = π

∫ 1

0

h
(
s(τ)

)
dτ. (3.56)

In practice we use the quadrature rules to approximate the definite integral in (3.56) by a

summation of the form

cCBQ(Ω) ≈ π
n∑
i=1

wih
(
Ψ(si)

)
, (3.57)

where

h
(
Ψ(si)

)
=
cBing

(
Ψ(si)

)
sk−3
i

f(si)
. (3.58)

The normalizing constant expression for the real Bingham distribution (3.45) can be simplified

as

cBing

(
Ψ(si)

)
= β

(
Ψ(si)

)
fR2

(
1; Ψ(si)

)
≈ (2π)(k−1)/2

|2Ψ(si)|1/2
1

2(k−1)/2Γ(p/2)

(
λ̄(Ψ(si))

) k−1
2
−1

exp
(
−1

2
λ̄(Ψ(si))

)
. (3.59)

Let α = tr(Ω) and

λ̄i =
1

k − 1
trace(Ψ(si))

=
1

k − 1
trace(−1

2
(siΩ− s2

iΩ
(as))

= − si
2(k − 1)

trace(Ω) = − α

2(k − 1)
si, (3.60)
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where tr(Ω(as)) = 0. Moreover,

|2Ψ(si)|1/2 =
√

2| − 1

2
(siΩ− s2

iΩ
(as))|1/2

≈
√

2| − 1

2
(siΩ)|1/2

=
√

2
(
−si

2

)(k−1)/2

|Ω|1/2

=
√

2
(
−si

2

)(k−1)/2
p∏
i=1

λ
1/2
i

=
√

2
(
−si

2

)(k−1)/2 1

2
trace(Ω) =

√
2
(
−si

2

)(k−1)/2 1

2
α, (3.61)

and the normalizing constant expression in (3.59) becomes

cBing

(
Ψ(si)

)
=

π(k−1)/2

√
2
(
si
2

)−(k−1)/2 1
2
ᾱΓ((k − 1)/2)

( α

2(k − 1)
si

) (k−1)
2
−1

exp
(
− 1

4(k − 1)/α
si

)
= cgs

k−2
i exp

(
−1

δ
si

)
, (3.62)

where δ = 4(k − 1)/α and the constant cg is given by

cg =

√
2π(k−1)/2

(
α

2(k−1)

) (k−1)
2
−1

αΓ((k − 1)/2)
. (3.63)

Notice that the final expression of cBing

(
Ψ(si)

)
in (3.62) is the same as the probability density

function of Gamma distribution with scale and shape parameters k − 1 and δ, respectively. Thus,

the normalizing constant for the complex Bingham quartic (CBQ) distribution reduces to

cCBQ ≈ π

n∑
i=1

wih
(
Ψ(si)

)
= π

n∑
i=1

wi

√
2π(k−1)/2

(
α

2k−2

) (k−1)
2
−1

αΓ((k − 1)/2)
s2k−5
i exp

(
− 1

4(k − 1)/α
si

)
. (3.64)

Note that the last expression for h(s) in (3.64) is also the same as the probability density function

of Gamma distribution with scale and shape parameters 2k − 5 and 1
4(k−1)/α

, respectively. So, the

integral of a Gamma density over the interval (0, 1) is less than 1. Then the probability density

function needed is a truncated Gamma distribution h∗
(
Ψ(si)

)
, say, with density

h∗
(
Ψ(si)

)
=
h
(
Ψ(si)

)
H(1)

=

√
2π(k−1)/2

(
α

2k−2

) (k−1)
2
−1

αΓ((k − 1)/2)
s(2k−4)−1 exp

(
− 1

4(k − 1)/α
s
)

∫ 1

0

√
2π(k−1)/2

(
α

2k−2

) (k−1)
2
−1

αΓ((k − 1)/2)
w(2k−4)−1 exp

(
− 1

4(k − 1)/α
w
)
dw

, (3.65)



3.4. COMPLEX BINGHAM QUARTIC DISTRIBUTION 67

and a distribution function H∗
(
Ψ(si)

)
= H

(
Ψ(si)

)
/H(1). Again, for the purpose of numerical

integration we have used equally weights wi = 1
n
, i = 1, 2, . . . , n with the following suggested

uniform nodes

si = H∗−1(τi) = H∗−1

(
i− 0.5

n

)
. (3.66)

The cumulative distribution function H∗(s) is strictly increasing. Then the equation

H∗(s) = τ, 0 < τ < 1, (3.67)

has a unique solution, say s = ξτ , andH∗−1(τ) is the unique quantile of order τ for the scaled/truncated

Gamma distribution and it is increasing in (0, 1) (see David and Nagaraja [15], p.159). Figure 3.3

plots the function h(s) versus s with k = 3, λ1 = 100, λ2 = 900 and α = tr(Ω) = 1000.

Figure 3.3: The function h
(
Ψ(s)

)
versus s.

For change of variable the second order integrated saddlepoint (ISP) approximations for the

normalizing constant of the complex Bingham quartic (CBQ) distribution ĉCBQ, CVISP(Ω), say, can

be evaluated by finding firstly the saddlepoint approximation for the truncated Gamma density in

(3.65) and then evaluating the numerical integration for the saddlepoint approximation obtained.

Let

g(1) = cCBQ = π
n∑
i=1

wih
∗
i

(
Ψ(si)

)
, (3.68)
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where h∗
(
Ψ(si)

)
is defined in (3.65). The moment generating function for g(1) is given by

Mg(u; Ψ) = π
n∑
i=1

wiMi(u; Ψ(si))s
k−3
i , (3.69)

and the cumulant generating function Kg(u) is computed as

Kg(u; Ψ) = log
[
π

n∑
i=1

wiMi(u; Ψ(si))
]

= log
[
π

n∑
i=1

wi exp
{
Ki(u; Ψ(si))

}]
. (3.70)

The second order saddlepoint approximation of integration (SPI) approximation with change of vari-

able for the normalizing constant of the complex Bingham quartic (CBQ) distribution ĉCBQ, CVSPI(Ω),

say, is then given by

ĉCBQ,CVSPI(Ω) = ĝ(1) =
(

2πK
′′

g(û(s))
)−1/2

exp
{
Kg(û(s))− û(s)

}(
1 + T

)
. (3.71)

3.4.8 Performance Assessment for Mixture Saddlepoint Approxima-

tions Approaches

Let λi > 0, i = 1, 2 be the eigenvalues for the symmetry parameter matrix A of the real Bingham

distribution satisfy λ1 ≤ λ2. The moment generating function for r2 =
∑2

i=1 x
2
i , MR2(u), is given

by

MR2(u) =
2∏
i=1

(
1− u

λi

)−1/2

, (3.72)

and the cumulant generating function for r2, KR2(u), is given by

KR2(u) = log
[(

1− u

λ1

)−1/2(
1− u

λ2

)−1/2]
, u < λ1. (3.73)

Figure 3.4 plots the cumulant generating function KR2(u) in (3.73) versus u with λ1 = 8 and λ2 = 72.

The values of the graph range from −∞ as u ↓ −∞ to ∞ as u ↑ 8. and the function K(u) is then

always a strictly convex function when evaluated over (−∞, 8). The corresponding u-values on the

horizontal axis are the associated saddlepoints spanning (−∞, 8), the convergence neighbourhood

of KR2(u).
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Figure 3.4: The cumulant generating function KR2(u) versus u.

The first and the second derivatives of KR2(u) are

K
′

R2(u) =

[
(0.5)

(
1− u

λ2

)−1/2(
1− u

λ1

)−3/2( 1

λ1

)
+ (0.5)

(
1− u

λ1

)−1/2(
1− u

λ2

)−3/2( 1

λ2

)]
(

1− u

λ1

)−1/2(
1− u

λ2

)−1/2

=
(0.5)(λ1 + λ2 − 2u)

(u− λ1)(u− λ2)
, (3.74)

and

K
′′

R2(u) =
(0.5)

(
λ2

1 + λ2
2 − 2u(λ1 + λ2) + 2u2

)
(u− λ1)2(u− λ2)2

. (3.75)

Once the saddlepoint equation K
′

R(u) = r2 = 1 is solved numerically to compute the saddle-

point û(s), the saddlepoint approximation for the probability density function of r2, f̂R2(r2) can be

computed as

f̂R2

(
1; Ψ(s)

)
=
(

2πK
′′

R2(û(s))
)−1/2

exp
{
KR2(û(s))− û(s)

}
. (3.76)

Switch to the two-dimensional polar coordinates (r, θ),

x1 = r cos θ, and x2 = r sin θ, r > 0, 0 ≤ θ < 2π. (3.77)
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The Jacobian of this transformation is given by

J =

∣∣∣∣∣∣
∂x1
∂r

∂x1
∂θ

∂x2
∂r

∂x2
∂θ

∣∣∣∣∣∣ =

∣∣∣∣∣∣cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣∣ = r cos2 θ + r sin2 θ = r. (3.78)

As we mentioned the normalizing constant for Bingham distribution cBing(A) can be written as

a proportional function to the probability density function of r2, fR2

(
r2; A

)
. When r2 = 1, any θ,

the equation (2.114) becomes

(2π)−1|2A|1/2 exp
{
−xTAx

}
= fR2

(
1; A

){
cBing

(
A
)}−1

exp

{cos θ

sin θ

T

A

cos θ

sin θ

}, (3.79)

and when A = Ψ(s), the normalizing constant for the real Bingham distribution is given by

cBing

(
Ψ(s)

)
=

2π

|2Ψ(s)|1/2
fR2

(
1; Ψ(s)

)
, (3.80)

and the second order saddlepoint approximation for the normalizing constant of the Bingham dis-

tribution is then given by

ĉBing

(
Ψ(s)

)
=

2π

|2Ψ(s)|1/2
(

2πK
′′

R2(û(s))
)−1/2

exp
{
KR2(û(s))− û(s)

}
(1 + T ), (3.81)

where T is the second order correction term T in (2.119). Note that for each s, 0 < s < 1, we have

moment generating function MR2(u; s) and cumulant generating function KR2(u; s), say. For tri-

angle case, k = 3, Figure 3.5 plots the second-order saddlepoint approximation for the normalizing

constant of the Bingham distribution, ĉBing

(
Ψ(s)

)
versus s with λ1 = 8 and λ2 = 72 (low concen-

tration) and λ1 = 400 and λ2 = 3600 (high concentration). Under low concentrations, the uniform

nodes are suitable to evaluate the integrand in equation (3.37) numerically. On the other hand, fur-

ther care is needed under high concentrations to suit the behaviour of the function ĉBing

(
Ψ(s)

)
sk−3

in (3.37). Notice that under high concentrations, ĉBing

(
Ψ(s)

)
sk−3 gets steeper/has a sharp peak and

we need a smaller subinterval width h over the interval [0, 1] or using change of variable, to achieve

acceptable accuracy.

In our case, k = 3, the (2k − 4) × (2k − 4)-dimensional real symmetric matrix Ω reduces to a

diagonal 2× 2 matrix of the form,

Ω =

(
λ1 0

0 λ2

)
. (3.82)
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Figure 3.5: The saddlepoint approximation for the real Bingham distribution ĉBing

(
Ψ(s)

)
versus s.

Moreover, the anti-complex symmetric matrix Ω(as) also reduces to

Ω(as) =
1

2
(Ω− Ω(rot)) =

1

2

λ1 − λ2 0

0 λ2 − λ1

 , (3.83)

the complex symmetric matrix Ω(cs) reduces to

Ω(cs) =
1

2
(Ω + Ω(rot)) =

1

2

λ1 + λ2 0

0 λ1 + λ2

 , (3.84)

and Ψ(s) becomes

Ψ(s) = −1

2

[
s

λ1 0

0 λ2

− s2

λ1 − λ2 0

0 λ2 − λ1

]

= −1

2

λ1s
(
1− s

)
+ λ2s

2 0

0 λ2s
(
1− s

)
+ λ1s

2

 , 0 < s < 1. (3.85)

Since there is no closed form for the exact values of the normalizing constant of the complex

Bingham quartic distribution, instead we may use its relationship with that of the Kent (FB5)

distribution

cCBQ(Ω) =
π

2
exp(−κ)cFB5(κ, β), (3.86)

where κ ≥ 0 represents the concentration parameter given by

κ =
1

8
(λ1 + λ2), (3.87)
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and 0 ≤ β ≤ κ/2 (unimodality case) describes the ovalness of the distribution given by

β =
1

16

(
λ2 − λ1

)
. (3.88)

Moreover, the normalizing constant of the Kent distribution cFB5(κ, β) is given by

cFB5(κ, β) = 2π
∞∑
j=1

Γ(j + 1
2
)

Γ(j + 1)
β2j
(1

2
κ
)−2j− 1

2 I2j+ 1
2
(κ)

≈ 2π exp(κ)
[
(κ− 2β)((κ+ 2β)

]−1/2

, (for large κ), (3.89)

(see, for example, Kent [40] and Kent et al. [46]). Evaluating the exact values for the normalizing

constant of the Kent distribution cFB5(κ, β) in (3.76) is carried out using the R function fb5.series

which accompanies Kent [40].

Table 3.1 shows a comparison between the true values of the normalizing constant of the complex

Bingham quartic distribution, cCBQ(Ω), the accuracy of the second order integrated saddlepoint

(ISP) approximation ĉCBQ, ISP(Ω) and the second order saddlepoint approximation of integration

(SPI) approximation ĉCBQ, SPI(Ω) with various values of κ , β = 0.4κ, λ1, λ2 and n = 1000. The

table shows that both ĉCBQ, ISP(Ω) and ĉCBQ, SPI(Ω) approximations for the normalizing constant

of the complex Bingham quartic distribution give less precise estimates when the concentration

parameter κ tends to zero. The table also illustrates that as λ1, λ2 and the number of terms in

the approximating integral on (0, 1) increase, the ratios between both ĉCBQ,ISP(Ω) and ĉCBQ,SPI(Ω)

with the true values of cCBQ(Ω) approach 1. This point is further illustrated in Figure(3.6). R

provides the system.time function, which times the evaluation of its argument. It can be used as

a rough benchmark to compare the performance of the integrated saddlepoint (ISP) approximation

and the saddlepoint approximation of integration (SPI) approximation. With increasing λ1 and

λ2, the approximation ĉCBQ,ISP(Ω) seems to be more accurate than that of ĉCBQ,SPI(Ω), though the

latter method is close to twice as fast under low and high concentrations.

For k > 3, a simple closed form representation for the true cCBQ(Ω) is not available. Under

higher concentrations, the integrated saddlepoint (ISP) approximation, the saddlepoint approxi-

mation of integration (SPI) and also asymptotic multivariate normal (AMN) approximations are

valid to approximate cCBQ(Ω). For k = 4, we have four concentration parameters λ1, λ2, λ3 and

λ4 since the real symmetric matrix Ω has (2k − 4) × (2k − 4) dimensions. Table 3.2 shows also

a comparison between the numerical results of the second order integrated saddlepoint (ISP) ap-

proximations ĉCBQ, ISP(Ω) and the second order saddlepoint approximation of integration (SPI)
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Figure 3.6: The ratio ĉCBQ(Ω)/cCBQ(Ω) against the concentration parameter κ.

approximation ĉCBQ, SPI(Ω) without change of variable and the second order integrated saddlepoint

(ISP) approximation ĉCBQ, CVISP(Ω) and the second order saddlepoint approximation of integration

(SPI) approximation ĉCBQ, CVSPI(Ω) subject to change of variable with λ1, λ2, λ3 and λ4 varying

and with n = 1000. Both methods work well with/without change of variable. With increased

values of the concentration parameters the difference between the numerical results of the second

order saddlepoint approximation of integration (SPI) approximation and the second order inte-

grated saddlepoint (ISP) approximation with/without change of variable tends to zero. However,

the differences between the numerical results of ĉCBQ, CVISP(Ω) and ĉCBQ, CVSPI(Ω) are closer than

the numerical outcomes of the second order saddlepoint approximations without change of variable.

For large κ the bulk of the probability mass is concentrated in the region x = O(κ−1/2),

and the contribution to the logarithm of the probability density function from the quartic forms,

(xTx)xT
(
κΩ(as)

)
x = O(κ−1), converges to 0. Thus the distribution of y = κx converges to a

multivariate normal distribution N2k−4(0,Σ), where Σ = Ω−1. Hence,

ĉCBQ, AMN(κΩ) ≈ (2π)|2πκ−1Σ|1/2 = (2π)2k−3|κ−1Ω−1|1/2, as κ→∞. (3.90)

This asymptotic multivariate normal estimator makes it clear that the number of parameters (k−1)
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λ1 λ2 κ β cCBQ ĉCBQ ĉCBQ ĉCBQ/cCBQ ĉCBQ/cCBQ

Exact ISP SPI ISP SPI

0.4 3.6 0.5 0.2 19.898 12.568 11.890 0.631 0.598

1.6 14.4 2 0.8 8.2246 5.4117 5.0678 0.658 0.616

4 36 5 2 3.2898 2.3496 2.2189 0.714 0.691

8 72 10 4 1.6449 1.2902 1.2208 0.784 0.742

12 108 15 6 1.0966 0.9010 0.8462 0.821 0.771

20 180 25 10 0.6579 0.5684 0.5467 0.863 0.832

60 540 75 30 0.2193 0.2040 0.2038 0.930 0.929

80 720 100 40 0.1644 0.1562 0.1546 0.950 0.940

100 900 125 50 0.1315 0.1252 0.1242 0.952 0.944

140 1260 175 70 0.0939 0.0903 0.0892 0.961 0.949

160 1440 200 80 0.0822 0.0793 0.0781 0.964 0.950

200 1800 250 100 0.0657 0.0637 0.0627 0.969 0.954

220 1980 275 110 0.0598 0.0581 0.0572 0.971 0.956

400 3600 500 200 0.0328 0.0326 0.0325 0.993 0.989

Table 3.1: Numerical results for true value of the normalizing constant of the complex Bingham quartic distribution

cCBQ(Ω): The second order integrated saddlepoint ĉCBQ,ISP(Ω) approximations and the second order saddlepoint of

integration ĉCBQ, SPI(Ω) approximations with various values of κ , β = 0.4κ, λ1, λ2 and n = 1000.

for the complex Bingham quartic distribution is the same as for (2k − 4)-dimensional multivariate

normal distribution. Indeed, the main reason that the complex Bingham quartic distribution has

the number and choice of quartic terms that it does is so that it can match the general multivariate

distribution under high concentrations (Kent et al. [46]).
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λ1 λ2 λ3 λ4 ĉCBQ ĉCBQ Difference ĉCBQ(Ω) ĉCBQ(Ω) Difference

ISP SPI ISP & SPI CVISP CVSPI CVISP & CVSPI

1 0 0 0 15.249 13.221 2.028 16.044 14.911 1.133

1 1 0 0 14.912 12.911 2.001 14.986 13.885 1.101

1 1 1 0 14.548 12.571 1.977 14.684 13.626 1.058

10 0 0 0 3.1121 2.2101 0.902 3.1372 2.2852 0.852

10 10 0 0 2.8551 2.2041 0.651 2.9112 2.3102 0.601

10 10 10 0 2.5337 2.0097 0.524 2.6703 2.1613 0.509

25 0 0 0 1.0024 0.8734 0.129 1.0608 0.9368 0.124

25 25 0 0 0.9742 0.8532 0.121 1.0087 0.8937 0.115

25 25 25 0 0.9155 0.8175 0.098 0.9306 0.8386 0.092

50 0 0 0 0.5124 0.4214 0.091 0.5308 0.4448 0.086

50 50 0 0 0.5077 0.4207 0.087 0.5186 0.4356 0.083

50 50 50 0 0.5004 0.4194 0.081 0.5082 0.4322 0.076

100 0 0 0 0.1406 0.1266 0.014 0.1477 0.1367 0.011

100 100 0 0 0.1277 0.1187 0.009 0.1297 0.1227 0.007

100 100 100 0 0.1182 0.1142 0.004 0.1193 0.1163 0.003

Table 3.2: Numerical results for the second order integrated saddlepoint ĉCBQ,ISP(Ω) and the second order saddle-

point of integration ĉCBQ, SPI(Ω) approximations with/without change of variable, with λ1, λ2, λ3 and λ4 varying

and with n = 1000.
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Chapter 4
Simulation of the Bingham Distribution

Using an Inequality for Concave

Functions

4.1 Introduction

Modern Markov chain Monte Carlo (MCMC) methods of simulation-based inference have renewed

the need for effective simulation algorithms for wide classes of random variables. In particular,

directional distributions play an important role in many geometric problems such as computer

vision and protein structure.

Over the years many specialized simulation methods have been developed for specific directional

distributions, but little methodology has been produced for the directional distributions on higher

dimensional manifolds and shape distributions.

The main purpose of this chapter is to develop an efficient acceptance-rejection (A/R) simulation

algorithm for the Bingham distribution on unit sphere in Rq using an angular central Gaussian

(ACG) envelope. Three special cases are then discussed.

The presentation proceeds in several stages. Firstly a review is given for the general A/R

simulation algorithm. Secondly a general class of inequalities is given based on concave functions.

These inequalities are illustrated for the multivariate normal distribution by finding two envelopes,

viz., the multivariate Cauchy and the multivariate Bilateral exponential distributions, respectively.

An inequality similar to that is used to show that the angular central Gaussian (ACG) density can

77
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be used as an envelope for the Bingham density.

There are three special cases of interest in which the unit sphere Sq−1 in Rq can be mapped

to another space. In the first case, the circle on S1 is identified with itself via a 2-to-1 mapping

based on angle doubling (see Mardia and Jupp [70], pp 54 and pp 182). Under this mapping the

Bingham distribution becomes the von Mises and the angular central Gaussian becomes the wrapped

Cauchy (Tyler [93], Kent and Tyler [44] and Auderset et. al. [3]). It turns out that the simulation

strategy developed with an ACG envelope for the Bingham distribution is identical to the simulation

algorithm of Best-Fisher for the von Mises density (Best and Fisher [5]).

In the second special case, S3 is identified with SO(3), the space of special orthogonal group of all

3× 3 rotation matrices, via a 2-to-1 mapping (see Prentice [80] and Mardia and Jupp [70], p. 285).

Further, the Bingham distribution on the unit sphere S3 becomes the matrix Fisher distribution on

SO(3). Hence our simulated Bingham random vector via the ACG envelope can be transformed

into simulated matrix Fisher rotation matrices.

In the third special case, there is an isometric mapping between the shape space for labelled

triangles in a plane, Σ3
2 and the complex projective space CP 1 which is identical to the sphere in

three dimensions with radius 1
2

i.e. Σ3
2 = CP 1(4) = S2(1/2) (Kent [41], Kendall [37] and Dryden

and Mardia [18], p.69). Further, the Fisher and FB5 distributions defined on S2 map to the complex

Bingham (CB) and the complex Bingham quartic (CBQ) distributions defined on CP 1, respectively.

This mapping is discussed in more details in the next chapter, where a method is given to simulate

from the complex Bingham quartic distribution.

The motivation in the current chapter is to develop simulation techniques which are (a) simple

to program and (b) efficient for a wide range of the parameters of the Bingham distribution.

4.2 Principles of Acceptance-Rejection Simulation Scheme

The principal simulation approach in this chapter is based on the acceptance-rejection algorithm to

simulate observations from a density f when a method is available to simulate from another density

g on some space X with respect to some base measure µ(dx). If X = R, we usually let µ(dx) = dx

as a Lebesgue measure. If X = Sq−1, the unit sphere Sq−1 in Rq, we usually let µ(dx) = ω(dx) as a

surface area.
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Let

f = cff
∗, g = cgg

∗, (4.1)

be two densities where cf and cg are (possibly unknown) normalizing constants and the starred

version does not involve these constants. Note that the starred version is not uniquely defined: if

f ∗ is multiplied by some factor then cf is divided by the same factor. The key assumption is that

f ∗ ≤M∗g∗, (4.2)

where M∗ is a known bound. If it is possible to simulate from g, then we can simulate from f as

follows:

(1) Simulate X from g and U ∼ U(0, 1), independently of each other.

(2) If U 6 f ∗(X)/{M∗g∗(X)} accept X; otherwise reject X and repeat from step 1.

The efficiency of the algorithm is defined by M−1 where M ≥ 1 is the expected number of

iterations of the algorithm required until X is successfully generated from g. For the method to be

useful,

(a) it must be easy to generate a realization from the envelope density,

(b) the efficiency should be as close to 1 as possible, and

(c) in particular, the efficiency should be bounded away from zero over a wide range of parameters.

Note that it is not necessary to know the normalizing constants cf and cg in order to apply the

simulation algorithm; all that is needed is the starred bound M∗. However, the full bound M =

cfM
∗/cg is needed to give a theoretical assessment of the efficiency of the algorithm. Note also that

the inequality f ∗ ≤M∗g∗ is equal to the inequality f ≤Mg.

The A/R algorithm can be justified as follows.

P (accept|X ∈ (x, x+ dx)) = P

(
U ≤ f ∗(X)

M∗g∗(X)
|X ∈ (x, x+ dx)

)
=

f ∗(x)

M∗g∗(x)
=

f(x)

Mg(x)
,

and

P (accept) =

∫
R
P
(
accept|x

)
g(x)µ(dx)

=

∫
R

f(x)

Mg(x)
g(x)dx

=
1

M

∫
R
f(x)dx =

1

M
,
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(See e.g. Kotz [39], p. 186, Rizzo [85], p. 56 and Dagpunar [12], p. 54). To see that the accepted

sample has the same density f , apply Bayes’ Rule,

P (X ∈ (x, x+ dx)|accept) =
P (accept|X ∈ (x, x+ dx))g(x)dx

P (accept)

=

[
f(x)/

(
Mg(x)

)]
g(x)dx

1/M

= f(x)dx.

Note that the proportion of X-values in the population which lie in the elemental range between

x and x + dx, in other words the probability P (x ≤ X ≤ x + dx), is f(x)dx and it is called the

probability density element (pde) of X and f(x) is the probability density function (pdf) of X

(Fisher et. al [22], p. 67).

The accuracy of the simulated efficiencies is assessed using their standard errors. The standard

errors for the simulated efficiencies can be evaluated as
√
δ(1− δ)/n where δ is the reciprocal of full

efficiency bound δ = 1/M of the algorithm (Walker [95]).

4.3 Envelopes Based on Concave Functions

Let ϕ(u) be a twice-differentiable increasing strictly concave function on u > 0, satisfies the following

properties

(a) ϕ(0+) = 0,

(b) ϕ
′
(u) > 0 for all u > 0 and ϕ

′
(u)→ 0 as u→∞,

(c) 0 < ϕ
′
(0+) ≤ ∞,

(d) ϕ
′′
(u) < 0 for all u > 0.

Suppose we wish to majorize this concave function ϕ(u) by a linear function ψ(u) = a+u, u > 0

of slope 1 where the intercept a is to be chosen as small as possible. For the majorization we need

ψ(u) = a+ u ≥ ϕ(u) or equivalently

−u ≤ −ϕ(u) + a for all u ≥ 0. (4.3)
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There are two cases to consider. If ϕ
′
(0) ≤ 1, the smallest feasible value of a is a = 0 and the two

curves touch at u0 = 0. We will call this the Type I case and the left side in the Figure (4.1) displays

this situation.

On the other hand, if ϕ
′
(0) > 1, there is a unique u0 > 0 for which the slope ϕ

′
(u0) = 1 since ϕ

′

is a decreasing function. In this case the linear function ψ(u) is tangent to the function ϕ(u) at u0.

That is, ψ(u) = ϕ(u0) + ϕ
′
(u0)(u− u0). We will call this the Type II case and the right side in the

Figure (4.1) displays this second case.

Example 1

Let q > 0, b > 0 and consider the logarithm function

ϕ(u) =
q

2
log
(

1 +
2u

b

)
, u ≥ 0, (4.4)

Note that ϕ(0) = 0, ϕ
′
(u) =

[
q/(b+2u)

]
→ 0 as u→∞, ϕ

′
(0) = q/b and ϕ

′′
(u) =

[
−2q/(b+2u)2

]
<

0. Suppose we wish to majorize this function by the linear function ψ(u) = a + u, u ≥ 0. For

ϕ
′
(0) = q/b ≤ 1, b ≥ q, so we have the Type I case and the minimum value of a is a = 0. In this

case the inequality (4.3) becomes

−u ≤ −q
2

log
(

1 +
2u

b

)
, b ≥ q, u ≥ 0. (4.5)

Figure 4.1: The concave function ϕ(u) and the linear function ψ(u) versus u. In the left panel b = 15 and q = 10.

In the right panel b = 10, q = 30 and u0 = 10.

If ϕ
′
(0) = q/b > 1, b < q, so we have the Type II case and we can find a unique u0 > 0 with slope

ϕ
′
(u0) = 1, namely u0 = 1

2
(q − b). Choosing a so that the two curves touch at u0,

[
ϕ(u0) = ψ(u0)

]
,
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yields

a0 =
q

2
log
(q
b

)
− 1

2
(q − b). (4.6)

Putting these pieces together into the inequality (4.3) yields

−u ≤ −q
2

log
(

1 +
2u

b

)
+
q

2
log
(q
b

)
− 1

2

(
q − b

)
, u ≥ 0, b < q. (4.7)

Example 2

Let b > 0 and consider the squared root function

ϕ(u) = bu1/2, (4.8)

Note that ϕ
′
(u) = (1/2)bu−1/2 so that ϕ

′
(0+) =∞, limϕ

′
(u) as u→∞ and ϕ

′′
(u) = −(1/4)bu−3/2 <

0. For all b > 0 and ϕ
′
(0+) > 1, we are in the type II case. Also, there is a unique u0 > 0 with

slope ϕ
′
(u0) = 1, namely u0 = 1

4
b2. Choosing a so that ϕ(u) touch at u0 with ψ(u) = a+ u, u ≥ 0,

yields a0 = 1
2
b2 and the inequality (4.3) gives a majorization of the form

−1

2
u ≤

(1

4
b2 − 1

2
bu1/2

)
for all u ≥ 0. (4.9)

The concave inequality (4.3) can be used to obtain an A/R envelope for dominating a function

f on sample space X. Let u = h(x) be a given function of x and suppose the two starred densities

take the form f ∗(x) = exp(−h(x)) and g∗(x) = exp(−ϕ(h(x)). Then the inequality (4.3) implies

that

exp(−h(x))︸ ︷︷ ︸
f∗(x)

≤ exp(a) exp(−ϕ(h(x))︸ ︷︷ ︸
g∗(x)

u ≥ 0. (4.10)

and gives a starred bound M∗ = exp(a). If ϕ
′
(0+) ≤ 1, the inequality yields an envelope of Type

I with starred bound M∗ = 1 whereas if ϕ
′
(0+) > 1, the inequality yields an envelope of Type II

with starred bound M∗ = exp(a0) and u0 can be calculated using ϕ
′
(u0) = 1.

In the next sections we give more advanced examples of this strategy of simulation.
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4.4 Simulation from the Multivariate Normal Distribution

with Multivariate Cauchy Envelope

We can use the inequality (4.7) to dominate a multivariate normal density in p ≥ 1 dimensions. The

multivariate normal density MVNp(Σ) with mean 0 and variance-covariance matrix Σ has probability

density function,

f(x) = (2π)−p/2|Σ|−1/2 exp
(
−1

2
xTΣ−1x

)
= cMN f

∗(x), (4.11)

where cMVN = (2π)−p/2|Σ|−1/2 is the constant of normalization. The multivariate Cauchy density

MVCp(Φ) centered at the origin with definite positive matrix Φ has probability density function,

g(x) =
Γ[(p+ 1)/2]

π(p+1)/2
|Φ|−1/2

(
1 + xTΦ−1x

)−(p+1)/2

= cMC g
∗(x), (4.12)

where cMVC = Γ[(p+ 1)/2]/π(p+1)/2|Φ|−1/2 (Johnson and Kotz [33], p. 294).

Suppose Σ is given. Let b > 0 be an arbitrary constant and let Φ = bΣ. Also if we set q = p+ 1,

u =
1

2
xTΣ−1x, so that xTΦ−1x = 2u/b and |Φ|−1/2 = b−(p+1)/2|Σ|−1/2, then for b ≥ q the inequality

(4.5) yields

−1

2
xTΣ−1x ≤ −(p+ 1)

2
log
(

1 + xTΦ−1x
)
. (4.13)

Exponentiating this inequality yields the Type I envelope

exp
(
−1

2
xTΣ−1x

)
︸ ︷︷ ︸

f∗(x)

≤
(

1 + xTΦ−1x
)−(p+1)/2

︸ ︷︷ ︸
g∗(x)

, (4.14)

with starred bound M∗ = exp(0) = 1.

For b < q the inequality (4.7) yields

−1

2
xTΣ−1x ≤ −(p+ 1)

2
log
(

1 + xTΦ−1x
)

+
p+ 1

2
log
(p+ 1

b

)
− 1

2

[
(p+ 1)− b

]
. (4.15)

Exponentiating this inequality yields the Type II envelope

exp
(
−1

2
xTΣ−1x

)
︸ ︷︷ ︸

f∗(x)

≤
(p+ 1

b

)(p+1)/2

exp
(
−1

2
((p+ 1)− b)

)(
1 + xTΦ−1x

)−(p+1)/2

︸ ︷︷ ︸
g∗(x)

, (4.16)

with starred bound

M∗ =
(p+ 1

b

)(p+1)/2

exp
(
−1

2
((p+ 1)− b)

)
. (4.17)
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Since the normalizing constants for both multivariate distributions are known, we can evaluate

the full bound of this A/R simulation scheme,

M(b, p) =
cMVN

cMVC

M∗

=
cMVN

cMVC

{(p+ 1)

b

}(p+1)/2

exp

{
−1

2

(
(p+ 1)− b

)}

= b−1/2 exp
(1

2
b
)

(2π)−p/2
(

(p+ 1)

b

) (p+1)
2 exp

(
−1

2
((p+ 1)− b)

)
Γ[(p+ 1)/2]

= cpb
− (p+2)

2 exp(b), say, (4.18)

where

cp = (2π)−p/2
(
p+ 1

) (p+1)
2

exp
[
−1

2
(p+ 1)

]
. (4.19)

Minimizing logM(b, p) with respect to b shows that the minimum value is attained when b = (p+2)/2

and

M(p) = (2π)−p/2
(
p+ 2

2

)−1/2(
2(p+ 1)

p+ 2

) (p+1)
2 exp

(
−1

2
(p+ 1)

)
Γ[(p+ 1)/2]

. (4.20)

Table 4.1 gives some values of the full bound M with various values of p and b = (p+ 2)/2. For the

values of p of typical interest in applications (e.g. p = 1, 2, 3), these bounds are entirely satisfactory.

In passing, we note that this section describes a theoretical method rather than practical inter-

est. In practice we usually use other efficient simulation algorithms to generate samples from the

multivariate normal density e.g. the Box-Muller method (Jones et. al. [35], pp. 347-348, Kennedy

and Gentle [39], pp. 200-202 and Rizzo [85], pp. 70-76).

4.5 Bilateral Exponential Envelope for Standard Normal

Distribution

Another example for generating the MVN density is to use the multivariate Bilateral exponential

(MBLE) density as an envelope. We limit attention here to the case p = 1. Let f denote the

probability density function of the standard normal distribution N(0, 1),

f(x) = cf exp
(
−1

2
x2
)

= cff
∗(x), −∞ < x <∞. (4.21)
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p b M Efficiency Rate

1 1.5 1.52 66%

2 2.0 1.91 52%

3 2.5 2.24 45%

4 3.0 2.52 40%

5 3.5 2.78 36%

10 6.0 3.81 26%

50 26 8.30 12%

100 51 11.70 9%

Table 4.1: Analytical efficiencies for Multivariate Normal/Multivariate Cauchy Envelope A/R simulation with

various values of p and b.

with the normalizing constant cf = (2π)−1/2. Consider the bilateral exponential density (Laplace

distribution) with scale parameter α > 0 of the form

g(x) = gf exp(−α|x|) = cfg
∗(x), x > 0. (4.22)

with the normalizing constant cg = 1
2
α. Figure 4.2 plots these functions with various values of α.

Figure 4.2: The unnormalized standard normal function f∗(x) and the unnormalized bilateral envelope function

g∗(x) versus x. In the left panel α = 0.3 whereas in the right panel α = 1.0.

Let b > 0 be an arbitrary constant and let α = 1
2
b. Also if we set u = x2, then the inequality
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(4.9) yields

−1

2
x2 ≤

(
α2 − α|x|

)
. (4.23)

Exponentiating this inequality yields the Type II envelope

exp
(
−1

2
x2
)︸ ︷︷ ︸

f∗(x)

≤ exp(α2) exp
(
−α|x|

)︸ ︷︷ ︸
g∗(x)

, (4.24)

with starred bound

M∗ = exp(α2). (4.25)

Moreover, since the normalizing constants for both distribution are known we can calculate the full

bound of the simulation

M(α) =
cf
cg
M∗

=
( 2

π

)1/2

α−1 exp(α2). (4.26)

If we minimize M with respect to α we find α =
√

1/2, with optimal bound M = 1.315489. Note

that the bilateral exponential is slightly more efficient than the Cauchy envelope.

4.6 Simulation from the Real Bingham Distribution with

ACG Envelope

The Bingham distribution Bingq(A) lies on the unit sphere Sq−1 in Rq and is parameterized by q×q

symmetric concentration matrix A. The density of a directional random vector x with respect to

the surface measure wq(dx) on Sq−1 is given by

fBing(x; A) = 1F1

(
1

2
;
q

2
; A

)−1

exp
(
−xTAx

)
= cBing(A) f ∗Bing(x; A), (4.27)

where the normalizing constant cBing(A) = 1F1

(
1
2
; q

2
; A
)

is the hypergeometric function of matrix

argument (Mardia and Jupp [59], p. 289). Further, for simulation purposes, we can assume that

A = Λ = diag(λ1, λ2, . . . , λq) where λ1 ≥ λ2 ≥ . . . ≥ λq = 0 (Mardia et al. [72], p. 181 and Kume

and Walker [52]). Because of the constraint xTx = 1, the matrix A and A+αIq for any real number

α, define the same real Bingham distribution with cBing(A + αIq) = exp(α)cBing(A).
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The family of angular central Gaussian (ACG) distributions is an alternative to the family of

Bingham distributions for modelling antipodal symmetric directional data (Tyler [93]). An angular

central Gaussian (ACG) distribution on the (q − 1)-dimensional sphere Sq−1 can be generating by

projecting a multivariate Gaussian distribution in Rq, q ≥ 2 with mean zero onto Sq−1 with radius

one. That is, if y has a multivariate normal distribution in Rq with mean vector zero and variance

covariance matrix Ψ, then x = y/‖y‖ has an ACG distribution on Sq−1 with q × q symmetric

positive definite parameter matrix Ψ (Mardia and Jupp [70], p. 46 and p. 182). The probability

density density for x which is denoted by ACGq(Ψ) is given by

gACG(x; Ψ) = w−1
q |Ψ|−1/2

(
xTΨ−1x

)−q/2
= cACG(Ψ) g∗ACG(x), (4.28)

with respect to the surface measure on Sq−1. The constant wq = 2πq/2/Γ(q/2) represents the surface

area on Sq−1, cACG(Ψ) = w−1
q |Ψ|−1/2 is the normalizing constant (Tyler [93] and Kent and Tyler [44])

and Ψ is a q × q symmetric positive-definite parameter matrix. Note that Ψ is only identifiable up

to multiplication by a positive scalar since for any c > 0, gACG(x; Ψ) = gACG(x; cΨ).

Next we show that a possible choice of an envelope for the Bingham distribution in an A/R

algorithm is the angular central Gaussian (ACG) distribution. Set u = xTAx and Ψ−1 = Iq + 2
b
A,

so that xTΨ−1x = 1 + 2
b
xTAx. Then for b < q, the inequality (4.7) yields

−xTAx ≤ −q
2

log
(
xTΨ−1x

)
+
q

2
log
(p
b

)
− 1

2

(
q − b

)
. (4.29)

Exponentiating this inequality yields the type II envelope

exp
(
−xTAx

)
︸ ︷︷ ︸

f∗Bing(x;A)

≤
(q
b

)q/2
exp
[
−1

2

(
q − b

)] (
xTΨ−1x

)−q/2
︸ ︷︷ ︸

g∗ACG(x;Ψ)

, (4.30)

with starred bound

M∗(q, b) =
(q
b

)q/2
exp
[
−1

2

(
q − b

)]
, (4.31)

and full bound

M(q, b; A,Ψ) =
cBing(A)

cACG(Ψ)
M∗(q, b)

=
2πq/2

1F1

(
1
2
; q

2
; A
)
|Ψ−1|1/2Γ

(
q
2

)(q
b

)q/2
exp
[
−1

2

(
q − b

)]
. (4.32)
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It is well-known that under high concentration the Bingham distribution Bingq(A) is asymptoti-

cally multivariate normal MVNp(Σ) where A = 1
2
Σ−1 and the angular central Gaussian distribution

ACGq(Ψ) with definite positive matrix Ψ is asymptotically multivariate Cauchy MVCp(Φ) with

definite positive matrix Φ (Tyler [93] and Auderset et. al. [3]). So, we expect their efficiencies to be

similar for the same b.

The inequality (4.30) involves a tuning constant b. This can be found analytically for the

multivariate normal distribution with a multivariate Cauchy envelope, and this value can be used

as an approximate optimal value of b for the Bingham distribution with an ACG envelope. The

optimal value of b is then approximately b = (q+ 2)/2. The true optimal value of b for the Bingham

distribution with an ACG envelope can be found by simple numerical optimization.

It is known in the case q = 2 that the Bingham distribution is a 2-wrapped von Mises by doubling

angles (Mardia and Jupp [70], p. 54 and p. 182). That is, for a 2 × 2 symmetric matrix A in R2,

the exponent term for the Bingham density in the polar co-ordinates (1, θ), becomes

−xT A x =
[
cos θ sin θ

]  λ 0

0 0

 cos θ

sin θ

 = −λ cos2 θ = −λ
2

(
1 + cos 2θ

)
, (4.33)

where we used the double angle formula cos2 θ = (1 + cos 2θ)/2. Thus the Bingham distribution

becomes

fBing(x; A) ∝ exp
(
−xTAx

)
∝ exp

(
−λ

2
cos 2θ

)
= exp

[λ
2

cos
(

2θ − π
)]

= exp
[
κ cos

(
2θ − π

)]
, (4.34)

which is the doubly-wrapped von Mises distribution with mode or mean direction at µ = π and a

normalizing constant cBing(κ) = [2π I0(κ)]−1 and κ = λ/2.

Next it is possible analytically to find the optimal value of b that minimizes M as follows.

The inverse of the 2 × 2 symmetric positive definite parameter matrix Ψ−1 is Ψ−1 = I2 + 2
b
A =

diag(1 + 4
b
κ, 1) and |Ψ−1| = 1 + 4

b
κ. Hence the full bound in (4.32) becomes

M(b, κ) =
1

I0(κ)
√

1 + 4
b
κ

(2

b

)
exp
[
−1

2

(
2− b

)]
. (4.35)

The log of the full bound M can be written as

logM(b, κ) = log
(2

b

)
− 1

2

(
2− b

)
− log

[√
1 +

4

b
κ
]
− log I0(κ). (4.36)
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Minimizing logM(b, κ) with respect to b shows that the optimal value of b is

b(κ) = 1 +
√

1 + 4κ2, (4.37)

and M(κ) ≥ 1 becomes

M(κ) =
1

I0(κ)

(
2

1 +
√

1 + 4κ2

)(
1 +
√

1 + 4κ2

1 +
√

1 + 4κ2 + 4κ

)1/2

exp
[
−1

2

(
1−
√

1 + 4κ2
)]
. (4.38)

For the case q ≥ 3, it is not easy in practice to calculate the full bound of the algorithm M since

the normalizing constant for the Bingham distribution involves the multivariate hypergeometric

function which is analytically cumbersome. R functions to implement this simulation scheme are

available in Appendix A. Overall, we have the following accept-reject algorithm.

(1) For given q × q symmetric concentration matrix A find Ψ.

(2) Generate q-vectors from the angular central Gaussian (ACG) distribution on the sphere,

g∗ACG(x) with parameter matrix Ψ in equation (4.28).

(3) Generate a random variable U from the Uniform(0, 1) distribution.

(4) If U 6
f ∗Bing(x; A)

M∗g∗ACG(x; Ψ)
, accept x; otherwise reject x and repeat from step 1.

Table 4.2 gives some values of the simulated efficiencies with various values of λ1, λ2, λ3 and

b = 2.5 < q = 3. The simulated efficiency rate under this A/R algorithm is found satisfactory for

generating pseudo random sample of size n = 10000 from the real Bingham distribution with low

and high concentration parameters. The simulated efficiency rates are very reasonable under low

concentrations. Under high concentrations, λ1 = λ2 = 100 and λ3 = 0, the simulated efficiency rate

is close to the efficiency rate in Table 4.1 for simulating the multivariate normal distribution with a

multivariate Cauchy envelope.
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λ1 λ2 λ3 Simulated Efficiency Rate Standard Errors

1 0 0 91.2% 0.00283

1 1 0 89.7% 0.00304

10 0 0 84.1% 0.00366

10 1 0 81.7% 0.00387

10 10 0 77.4% 0.00418

100 0 0 57.6% 0.00494

100 10 0 53.4% 0.00497

100 100 0 46.1% 0.00499

Table 4.2: Simulated efficiencies rates and their standard errors for Bingham/Angular central Gaussian (ACG)

Envelope A/R simulation with n = 10000 and various values of λ1, λ2 and λ3 = 0.

4.7 Simulation from the von Mises Distribution with

a Wrapped Cauchy Envelope

For the special case on the circle, q = 2, consider the von Mises distribution on the unit circle with

zero mean direction and probability density function given by

f(θ; 0, κ) = cf exp{κ cos θ} =
1

2πI0(κ)
exp{κ cos θ}, κ > 0, −π ≤ θ ≤ π, (4.39)

where κ is known as a concentration parameter, cf =
[
2πI0(κ)

]−1
is the normalizing constant and

I0(κ) denotes the modified Bessel function of the first kind and order zero.

Best and Fisher [5] use a wrapped Cauchy distribution WC(0, ρ),

g(θ; 0, ρ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos θ
, −π ≤ θ ≤ π, (4.40)

where ρ represents to a scale parameter with 0 ≤ ρ < 1. As indicated by its name, the location-scale

family of wrapped Cauchy distribution is generated by wrapping the location-scale family of Cauchy

distributions on the line about the unit circle, or in other words by expressing the latter mod(2π).

The distribution function of the wrapped Cauchy distribution is

G(θ) =
1

2π
cos−1

{
(1 + ρ2) cos θ − 2ρ

1 + ρ2 − 2ρ cos θ

}
, −π ≤ θ ≤ π (4.41)
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The optimal value of ρ, and the associated sampling efficiency, M−1, are determined by

M(ρ, κ) = min
ρ

max
θ
{f(θ)/g(θ)}

= min
ρ

max
θ

{
exp{κ cos θ}(1 + ρ2 − 2ρ cos θ)

(1− ρ2)I0(κ)

}

=

(
2ρ/κ

)
exp
[
κ(1 + ρ2)/2ρ− 1

]
(
1− ρ2

)
I0(κ)

, (4.42)

where ρ =
(
τ − (2τ)1/2

)
/2κ and τ = 1 +

(
1 + 4κ2

)1/2
. The corresponding (θ, ρ) is therefore a

saddlepoint of f(θ)/g(θ). Best and Fisher [5] showed that

Mg(θ) =
(2ρ/κ) exp

{
κ(1 + ρ2)/2ρ− 1

}
2πI0(κ)(1 + ρ2 − 2ρ cos θ)

, (4.43)

is the best upper envelope for the von Mises density f(θ) in (4.39) and that the choice of ρ maximizes

the acceptance ratio M−1 of this acceptance rejection scheme.

Take γ(θ) = exp{κ cos θ}(1 + ρ2 − 2ρ cos θ) where −π ≤ θ ≤ π. An optimal value of ρ will be

determined below. Hence

γ
′
(θ) = 2ρ sin θ exp{κ cos θ} − (1 + ρ2 − 2ρ cos θ)κ sin θ exp{κ cos θ}, (4.44)

and thus γ
′
(θ) = 0 when sin θ = 0 or cos θ = (1 + ρ2 − (2ρ/κ))/2ρ. By examining γ

′′
(θ), we find

that γ(θ) has a local maximum value γ1 ≡ (1− ρ)2 exp(κ) at sin θ = 0 if

2ρ/(1− ρ)2 < κ, (4.45)

and a local maximum value γ2 ≡ (2ρ/κ) exp
{
κ(1 + ρ2)/2ρ− 1

}
at cos θ = (1 + ρ2 − (2ρ/κ))/2ρ, if

2ρ/(1 + ρ)2 < κ < 2ρ/(1− ρ)2. (4.46)

In order to choose the best value of ρ each of the above maxima will now be examined to determine

the value of ρ, in terms of κ, which minimizes M . Best and Fisher [5] computed the reciprocals of

acceptance ratios for the two maxima. For sin θ = 0 the reciprocal of acceptance ratio A1(ρ1), say,

attains its minimum value at ρ = ρ1 = (κ+ 1− (1 + 2κ)1/2)/κ. For cos θ = (1 + ρ2− (2ρ/κ))/2ρ the

reciprocal of acceptance ratio A2(ρ2), say, attains its minimum value at ρ = ρ2 =
(
τ − (2τ)1/2

)
/2κ

where τ = 1 +
(
1 + 4κ2

)1/2
. Finally A2(ρ2) < A1(ρ1), that is, the reciprocal of the acceptance ratios

in the algorithm is minimized by choosing ρ = ρ2 and Mg(θ) = γ2/
{

2πI0(κ)(1 + ρ2 − 2ρ cos θ)
}

is

the best envelope for this ρ.
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Figure 4.3: The von Mises function f(θ) and the the simulation proportional envelope of the wrapped Cauchy

distribution MgΘ(θ). In the left panel κ = 1.0, τ = 3.236, ρ = 0.346 and M = 1.152 whereas in the right panel

κ = 10, τ = 21.02, ρ = 0.727 and M = 1.481.

Figure 4.3 plots the target probability function fΘ(θ) and the simulation proportional envelope

MgΘ(θ) with various values of κ, τ , ρ and M .

For large κ, one can use an asymptotic expansion approximation for I0(κ) (see Mardia & Jupp

[70], p. 40) with q = 2.

I0(κ) ∼= exp(κ)/
√

2πκ (4.47)

and the full bound M becomes

M(ρ, κ) =
2
√
π/κ exp

{(
κ(1 + ρ2)/2ρ− 1

)
− κ
}

1− ρ2
. (4.48)

4.8 Link Between the Best-Fisher Method and the

Concave Inequality

The majorizing inequality (4.3) for the Best-Fisher method can also be obtained from our concave

inequality (4.7). Firstly note that there are at least 3 expressions for the probability density function

of the wrapped Cauchy distribution. The first expression is given in (4.38) and the second expression
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can be written as

fWC(θ; 0, α) =
1− ρ2

2π(1 + ρ2)

1

1− 2ρ
1+ρ2

cos θ

∝ 1

1− α cos θ
, 0 ≤ α ≤ 1, −π ≤ θ ≤ π, (4.49)

where α = 2ρ/1 + ρ2. Moreover, if we substitute α by β/1 + β we get the third expression of the

probability density function for the wrapped Cauchy distribution

fWC(θ; 0, β) ∝ 1

1 + β − β cos θ
, 0 ≤ β <∞, −π ≤ θ ≤ π. (4.50)

The angular central Gaussian density can be transformed to a wrapped Cauchy distribution (Tyler [93],

Kent and Tyler [44] and Mardia and Jupp [70], p. 52). Here we have

xTΨ−1x =
[
cos θ sin θ

]  ψ11 0

0 ψ22

 cos θ

sin θ


=

[
cos θ sin θ

]  1 + 4κ
b

0

0 1

 cos θ

sin θ


=

(
1 +

4κ

b

)
cos2 + sin2 θ = ψ11 cos2 θ + ψ22 sin2 θ, (4.51)

where Ψ−1 = diag(ψ11, ψ22) = I2 + 2
b
A and A = diag(2κ, 0). Hence the angular central Gaussian

density becomes

gACG(x; Ψ) ∝ 1

xTΨ−1x

=
1

ψ11 cos2 θ + ψ22 sin2 θ

=
1

α1(1 + cos 2θ) + α2(1− cos 2θ)

=
1

(α1 + α2) + (α1 − α2) cos 2θ

=
1

(α1 + α2)− (α1 − α2)(cos 2θ − π)

∝ 1

1− α(cos 2θ − π)
, 0 ≤ α ≤ 1, (4.52)

where we used the double angle formulas sin2 θ = (1− cos 2θ)/2 and cos2 θ = (1 + cos 2θ)/2, ψ = 2θ,

ω1 = ψ11/2 = (b + 4κ)/2b, ω2 = ψ22/2 = 1/2 and α = α1 − α2/(α1 + α2) = 2κ/(b + 2κ). Note that

the last expression of the probability density function of the angular central Gaussian distribution is
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proportional to the second expression (4.49) of the doubly-wrapped Cauchy distribution with mode

or mean direction at µ = π. Further, α = 2ρ/1 + ρ2 = 2κ/(b + 2κ) and solving this equality with

respect to ρ yields

ρ(κ, b) =
b−
√

2b

2κ
=

1 +
√

1 + 4κ2 −
(

1 +
√

1 + 4κ2
)1/2

2κ
. (4.53)

Note that both the values of ρ(κ) and b(κ) in (4.53) and (4.37), respectively, are identical to the

values of ρ(κ) and τ(κ) for the Best-Fisher rejection algorithm to simulate random samples from

the von Mises distribution with a wrapped Cauchy envelope.

We can use the strategy of simulation from the Bingham distribution with ACG envelope to link

to the Best-Fisher method of simulation from the von Mises distribution with a wrapped cauchy

envelope as follows. Set q = p = 2, u = xTAx = κ(1 − cos 2θ) and Ψ−1 = I2 + 2
b
A, so that

xTΨ−1x = 1 + 2
b
u = 1 + 2κ

b

(
1 − cos 2θ

)
and finally return 2θ back to θ. Then the inequality (4.7)

yields

−κ+ κ cos θ ≤ log

[
1 +

2κ

b

(
1− cos θ

)]−1

+ log
(2

b

)
− 1

2

(
2− b

)
. (4.54)

Exponentiating this inequality yields the Type II envelope

exp(−κ) exp
(
κ cos θ

)
≤
(2

b

)
exp
[
−1

2

(
2− b

)][ 1

1 + 2κ
b
− 2κ

b
cos θ

]
. (4.55)

Multiply both sides of the inequality by 1/2πI0(κ) and exp(κ) where I0(κ) is the modified Bessel

function we get

1

2πI0(κ)
exp
(
cos θ

)
≤

{
2 exp

[
−1

2

(
2− b

)
+ κ
]

b I0(κ)

}
1

2π

[
1

1 + 2κ
b
− 2κ

b
cos θ

]
. (4.56)

Set β = 2κ/b, where κ ≥ 0 and β ≥ 0 and multiply and divide the right hand side of the inequality

(4.56) by (1− β
)

we get

1

2πI0(κ)
exp
(
cos θ

)
︸ ︷︷ ︸

f(θ;0,κ)

≤

{(
β/κ

)
exp
[
κ(1 + β)/β − 1

]
(1− β) I0(κ)

}
︸ ︷︷ ︸

M

1

2π

[
1− β

1 + β − β cos θ

]
︸ ︷︷ ︸

g(θ;0,β)

, (4.57)

which is identical to the results of Best-Fisher method of simulation from the von Mises distribution

with the first expression of a wrapped Cauchy envelope, that is,

1

2πI0(κ)
exp
(
cos θ

)
︸ ︷︷ ︸

f(θ;0,κ)

≤

(
2ρ/κ

)
exp
[
κ(1 + ρ2)/2ρ− 1

]
(
1− ρ2

)
I0(κ)︸ ︷︷ ︸

M

1

2π

1− ρ2

1 + ρ2 − 2ρ cos θ︸ ︷︷ ︸
g(θ;0,ρ)

. (4.58)
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4.9 Simulation from the Matrix Fisher Distribution

4.9.1 The Matrix Fisher Probability Density Function

Let SO(3) denote the space of 3 × 3 orthogonal matrices with positive determinant. In geometric

terms, SO(3) consists of the proper rotations of three dimensional space.

The probability density function for the matrix Fisher distribution can be written as

f(X; F) =

{
0F1

(
3

2
;
1

4
FTF

)}−1

exp
{

trace(FXT )
}

= cMF(F) exp
{

trace(FXT )
}
, X ∈ SO(3), (4.59)

with respect to [dX], the Haar measure scaled to have unit mass. Here cMF(F) is the normalizing

constant, F is a 3× 3 parameter matrix and X is a 3× 3 rotation matrix so that XTX = XXT = I3

with |X| = 1, where I3 is the identity matrix (Downs [16], Mardia and Jupp [59], p. 289 and Green

and Mardia [28]). Moreover, 0F1 is the hypergeometric function of matrix argument defined as

0F1

(
3

2
;
1

4
FTF

)
=

∫
SO(3)

exp
{

trace(FXT )
}

[dX]. (4.60)

4.9.2 Simulation Scheme

Let x ∈ S3 be distributed as Bingham with parameter matrix Λ = diag(λ1, λ2, λ3, λ4), B(Λ), where

λ1 ≥ λ2 ≥ λ3 ≥ λ4 = 0 (Mardia et al. [72], p. 181 and Kume and Walker [52]), so that x has the

density

gBing(x; Λ) = 1F1

(
1

2
; 2; Λ

)−1

exp
(
−xTΛx

)
= 1F1

(
1

2
; 2; Λ

)−1

exp
(
−

4∑
j=1

λjx
2
j

)
, (4.61)

with respect to [dx], the surface measure on S3 in R4.

There is a 2-to-1 mapping from the sphere S3 in R4 to the rotation group SO(3) which sends

±x = ±(x1, x2, x3, x4)T in S3 to

X =


x2

1 + x2
4 − x2

2 − x2
3 2(x1x2 − x3x4) 2(x2x4 + x1x3)

2(x1x2 + x3x4) x2
2 + x2

4 − x2
1 − x2

3 2(x2x3 − x1x4)

2(x1x3 − x2x4) 2(x2x3 + x1x4) x2
3 + x2

4 − x2
1 − x2

2

 , (4.62)
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a 3 × 3 rotation matrix with trace 4x2
4 − 1 and |X| = 1. Also x is uniformly distributed on a unit

hemisphere in R4 if and only if X is uniformly distributed on SO(3) (Prentice [80] and Wood [99]).

An alternative expression for X is

X = I3 + 2x1B(y) + 2B(y)2, (4.63)

(Mardia and Jupp [59], pp. 285-286) where y = (x2, x3, x4)T and

B(y) =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (4.64)

Let

F = UDφV
T (4.65)

be the singular value decomposition (SVD) of the parameter matrix F of the matrix Fisher distri-

bution in (4.59), where U and V are orthogonal matrices on SO(3) and Dφ = diag(φ1, φ2, φ3) is

definite matrix with φ1 ≤ φ2 ≤ φ3. With these parameters, the density of matrix Fisher X ∼ MF(F)

can be written as

f(X|U,Dφ,V) ∝ exp
{

trace(VDφU
TX)

}
= exp

{
trace(DφU

TXV)
}

= exp
{

trace(DφY)
}
, (4.66)

where Y = UTXV ∼ MF(Dφ) since the Haar measure is invariant under the rotation matrices U

and V. Note also that the density in (4.59) is maximized at X = UVT , which can be interpreted

as the modal orientation of samples from the population. The entries of Dφ can be interpreted as

concentration parameters, describing how close the samples are to the mode M, say, where M is the

polar part of F (Hoff [29]). As a consequence we may, without loss of generality, take U = V = I3,

where I3 is the 3× 3 identity matrix so that F = Dφ = diag(φ1, φ2, φ3) (Wood [99]). Thus,

cMF(F;SO(3)) = cMF(Dφ;SO(3)) = 0F1

(
3

2
;
1

4
D2
φ

)
. (4.67)

Next the Bingham distribution on the unit sphere S3 in R4 becomes the matrix Fisher distribution

on SO(3) (Prentice [80] and Wood [99]). Hence our simulated Bingham random vector via the ACG

envelope can be transformed into a simulated matrix Fisher rotation matrix.
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The link between parameterizations of the matrix Fisher and Bingham densities can be con-

structed as follows. Given φ1 ≤ φ2 ≤ φ3 we are looking for c ∈ R and λ1 ≥ λ2 ≥ λ3 ≥ λ4 = 0 such

that

trace(DφX + c) = −xTΛx. (4.68)

If so, then

MF(Dφ) ≡ B(Λ). (4.69)

Using (4.62) we note that the left hand side in (4.68) is simplified as

trace(DφX + c) = φ1

(
x2

1 + x2
4 − x2

2 − x2
3 + c

)
+φ2

(
x2

2 + x2
4 − x2

1 − x2
3 + c

)
+φ2

(
x2

3 + x2
4 − x2

1 − x2
2 + c

)
= x2

1

(
φ1 − φ2 − φ3 + c

)
+ x2

2

(
−φ1 + φ2 − φ3 + c

)
+x2

3

(
−φ1 − φ2 + φ3 + c

)
+ x2

4

(
φ1 + φ2 + φ3 + c

)
. (4.70)

If we set c = −φ1 − φ2 − φ3, then the the left hand side in (4.68) becomes

trace(DφX + c) = −2x2
1

(
φ2 + φ3

)
− 2x2

2

(
φ1 + φ3

)
−2x2

3

(
φ1 + φ2

)
+ x2

4(0). (4.71)

Moreover, the right hand side in (4.68) is simplified as

−xTΛx = −
{
λ1x

2
1 + λ2x

2
2 + λ3x

2
3 + (0)x2

4

}
. (4.72)

Hence the relationship between the seven parameters of both distributions is stated as

λ1 = 2(φ2 + φ3), λ2 = 2(φ1 + φ3), λ3 = 2(φ1 + φ2), λ4 = 0. (4.73)

Overall, the simulation procedure is summarized as follows:

(1) For a given φ1 ≤ φ2 ≤ φ3, obtain F = Dφ = diag(φ1, φ2, φ3).

(2) Compute λ1, λ2, λ3 and λ4 = 0 as in (4.73).

(3) Sample x = (x1, x2, x3, x4)T from the real Bingham distribution with concentration parameter

matrix A = Λ = diag(λ1, λ2, λ3, λ4). This can be done by simulating from the angular central

Gaussian (ACG) distribution with matrix Ψ as described in section (4.6).
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(4) Evaluate X and the resulting X has the target matrix Fisher density.

Table 4.3 gives some values of the simulated efficiencies and their standard errors for matrix

Fisher/Angular central Gaussian (ACG) Envelope A/R simulation with various values of φ1, φ2,

φ3, λ1, λ2, λ3 and λ4 = 0. The simulated efficiency rates under this A/R algorithm are found

satisfactory for generating pseudo random sample of size n = 1000 from the matrix Fisher distribu-

tion with low and high concentration parameters. Under high concentrations the rejection scheme

suggested gives efficiency rates close to 50%.

φ1 φ2 φ3 λ1 λ2 λ3 λ4 Simulated Efficiency Rate Standard Errors

1 1.5 2.0 7 6 5 0 90.1% 0.00944

1 2.0 2.5 9 7 6 0 87.4% 0.01049

1 2.5 3.0 11 8 7 0 84.3% 0.01150

10 15 20 70 60 50 0 81.1% 0.01238

10 20 25 90 70 60 0 79.5% 0.01277

10 25 30 110 80 70 0 75.3% 0.01363

50 75 80 310 260 250 0 73.1% 0.01402

50 80 90 340 280 260 0 70.4% 0.01444

50 90 100 380 300 280 0 68.8% 0.01465

100 110 120 460 440 420 0 59.2% 0.01557

100 120 130 500 460 440 0 51.7% 0.01580

100 130 150 560 500 460 0 47.6% 0.01579

Table 4.3: Simulated efficiencies rates and their standard errors for matrix Fisher/Angular central Gaussian (ACG)

Envelope A/R simulation with n = 1000 and various values of φ1, φ2, φ3, λ1, λ2, λ3 and λ4 = 0.



Chapter 5
General Techniques of Simulation from

Directional and Shape Models

5.1 Introduction

The main goals in this chapter are (1) to review some standard existing methods for simulation from

some directional and shape distributions, (2) to link and compare some new simulation methods

from some directional densities to those in the last chapter and (3) to develop new envelope for

an acceptance-rejection method which is both simple to program and fast for all the values of the

parameters of the complex Bingham quartic (CBQ) distribution.

A developed accept-reject algorithm based on Bingham density as an envelope is given to generate

samples from the von Mises distribution on the circle. Ulrich’s simulation algorithm from the von

Mises-Fisher distribution with an envelope proportional to Beta distribution is stated. For the

circular case, a comparison is given between the efficiencies of the modified Ulrich’s algorithm

(Wood [100]), the Bingham envelope and that of the Best-Fisher scheme.

Two methods of simulation based on the acceptance-rejection principle are discussed for the

five parameter Fisher-Bingham (FB5) distribution. A comparison is given between their efficiencies

and the efficiency of the Kent and Hamelryck [45] simulation algorithm with truncated double

exponential envelope.

For the shape models for two dimensional landmark data, a simulation scheme from a complex

Bingham distribution (truncation to the simplex) is reviewed. Further, so far no simulation method

is produced for the complex Bingham quartic (CBQ) distribution for two dimensional landmark

99
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shaped data. In this chapter we propose an acceptance-rejection simulation algorithm from the

complex Bingham quartic (CBQ) distribution. The problem of simulating from this complex shape

distribution reduces to simulation from a mixture of two standard multivariate normal distributions

with reasonable efficiency.

5.2 A Brief Historical Survey of Simulation Methods

This section surveys the literature relating to the historical simulation methods for some interesting

directional and shape distributions.

(1) von Mises distribution: Best and Fisher [5] proposed a rejection scheme to generate samples

from the von Mises distribution using an envelope proportional to the wrapped Cauchy dis-

tribution. It can be used efficiently for all κ. The acceptance ratio tends to unity as κ tends

to zero and, as κ → ∞, tends to 0.66. They found this to be faster than a uniform target

distribution method, suggested by Seigerstetter [88]. Seigerstetter’s method employs a crude

envelope function which is reasonable only for κ < 1. The acceptance ratio for this method

is exp(−κ)I0(κ) which tends to zero as κ→∞. For κ = 0 the acceptance ration is unity, for

κ = 1 it is 0.47 and for κ = 10 it is 0.13. Mardia [59](pp. 66-67) suggested an approximate

method using pseudo-random variate from the wrapped normal WN(0, V ), with mean zero

and variance V chosen to be −2 ln
[
I1(κ)/I0(κ)

]
. This approximate method is good in the

extreme cases as κ → 0 and κ → ∞ but the situation for intermediate κ values is not so

clear (Best and Fisher [5]). Dagpunar [13] developed a rejection algorithm using Forsythe’s

method. For κ ≤ 0.5, only one interval is required and the procedure was the fastest of all

methods investigated, whether κ was fixed or reset between calls. When κ > 0.5, several

intervals are required, necessitating numerical integrations. Although faster when κ is fixed

between calls the numerical component of this algorithm makes it more difficult to implement.

Yuan and Kalbeisch [101] suggested a rejection algorithm using the beta distribution as an

envelope. Yuan and Kalbeisch’s method requires Bessel
(
generate X ← Bessel(0, κ)

)
and

beta
(
generate B ← beta(X + 1/2, 1/2)

)
random variates. The acceptance ratio for this

method is 1/
(
1 + exp(−2κ

√
B)
)
. The expected time of the algorithm is uniformly bounded

over all choices of κ. Under high concentration this method is not efficient. Thus so far Best

and Fisher’s method is standard and recommended when reasonable speed, efficient and ease
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of implementation are all of importance.

(2) von Mises-Fisher distribution: Ulrich [94] proposed a general method for simulating unit vector

from rotationally symmetric unimodal distributions on the (p− 1)-sphere such as von Mises-

Fisher distribution. The basic idea is ingenious, but Wood [100] discovered empirically that

Ulrich’s algorithm VMF does not work correctly and it is not obvious what corrections are

required to make the algorithm work. Therefore, Wood [100] suggested a modified specification

to Ulrich’s algorithm with high efficiency rate even under high concentration.

(3) Bingham distribution: Johnson [32] developed a rejection scheme to generate samples from

the Bingham distribution in R3 using Atkinson’s [2] bipartite method by dividing the range

of the random variable θ into two parts and then using a different envelope for each part.

This method has reasonable efficiency rate under low concentration but not under high con-

centration. Wood [100] developed a rejection method for simulating the Bingham distribution

in R4 by adapting the modified specification of Ulrich’s algorithm the von Mises-Fisher dis-

tribution. Kume and Walker [52] proposed a general simulation method to generate samples

from the Bingham distribution on the unit sphere Sp−1 in Rp based on the Gibbs sampler.

If x = (x1, x2, . . . , xp)
T is a random vector from the Bingham distribution with parameter

matrix A such that xTx = 1 then x2 = (x2
1, x

2
2, . . . , x

2
p)
T lies on a simplex. They suggested

to transform x to variables (ω, s) and studied the marginal and conditional distributions of

ω and s, where si = x2
i and ωi = xi/‖xi‖, so ω can either be 1 or −1. They started the

Gibbs sampler by first sampling s1, s2, . . . , sp−1 from some suitable density function and intro-

ducing two latent variables (v, w) where the full conditional densities f(v|w, s) and f(w|v, s)

can be sampled via uniform random variables. While straightforward, such an approach can

result in a slowly mixing Markov chain because the full conditionals are so highly constrained.

Therefore, Hoff [29] introduced an alternative Markov chain Monte Carlo (MCMC) version.

(4) Fisher-Bingham distribution: Wood [98] considered rejection procedures in the Fisher-Bingham

subfamily known as FB4, FB5 and FB6 using different types of envelopes. The 4-parameter

Fisher-Bingham and the 5-parameter Fisher-Bingham distributions are bounded by an enve-

lope proportional to a mixture of two Fisher densities with a specific mixing proportion. The

6-parameter Fisher-Bingham is bounded by an envelope proportional to a mixture of two FB4

densities with a specific mixing proportion. He also suggested simulating samples from the
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full Fisher-Bingham (FB8) using an envelope proportional to an appropriately chosen FB6

density. Kent and Hamelryck [45] suggested a high efficient simulation method to simulating

the 5-parameter Fisher-Bingham (FB5) distribution based on a truncated double exponential

envelope. Kume and Walker [53] introduced a sampling method to generate samples from

the Fisher-Bingham in Rp by introducing two latent variables (v, w), say; they used Gibbs

sampling to draw samples using the conditional distributions of these latent variables.

(5) Matrix Fisher distribution: The matrix Fisher distribution on SO(3) is equivalent to the

Bingham distribution in R4 on the unit sphere S3 (Prentice [80]). Hence the rejection algorithm

of Wood [100] for simulating the Bingham distribution on the unit sphere S3 can be used to

generate samples from the matrix Fisher distribution on SO(3). Hoff [29] introduced general

methods to generate samples from matrix Fisher density based on a uniform envelope. Green

and Mardia [28] and Hoff [29] introduced general methods to generate samples from the matrix

Fisher density based on Gibbs sampling. R functions to implement Hoff’s MCMC method are

available in the R package rstiefel.

(6) Complex Bingham distribution: Kent et al. [43] proposed a rejection scheme to generate sam-

ples from the complex Bingham distribution. They found that the problem of simulating

from this distribution reduces to simulation from a truncated multivariate exponential distri-

bution. They described three possible simulation methods namely truncation to the simplex,

acceptance-rejection on the simplex and uniform on simplex and truncated Gamma on [0, 1].

(7) Complex Bingham quartic distribution: So far no suggested simulation method is given to

generate random samples from this distribution.

5.3 Simulation from the von Mises and von Mises-Fisher

Distributions

5.3.1 von Mises Distribution with Real Bingham Envelope

The standard simulation method is the Best-Fisher method, based on an envelope proportional to

wrapped Cauchy distribution which was discussed in the previous chapter. As another proposal we
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use the real Bingham distribution as an envelope to generate samples from the von Mises distribution.

A comparison between their efficiencies is also stated.

For p = 2, the probability density function for the Bingham distribution reduces to the doubly

wrapped von Mises distribution obtaining by doubling the angles (Mardia and Jupp [70], p. 54

and p. 182) i.e. for θ = 2φ and concentration parameter equals to κ/4; the Bingham distribution

(Bingham [7]) has a doubled von Mises distribution with probability density function

g(θ; 0, κ/4) = cg exp
{κ

4
cos 2θ

}
=

1

2πI0(κ/4)
exp
{κ

4
cos 2θ

}
, κ > 0, −π ≤ θ ≤ π. (5.1)

We can use the trigonometric double angle formula of cosine to link it to the simulation inequality

f ∗ ≤M∗g∗ as follows.

cos 2θ = 2 cos2 θ − 1

cos2 θ =

(
1 + cos 2θ

2

)
. (5.2)

First note that (cos θ − 1)2 = cos θ2 − 2 cos θ + 1 ≥ 0 can be written as

cos θ ≤ 1

2
+

1

2
cos2 θ. (5.3)

Hence

κ cos θ ≤ κ

2
+
κ

2

[
1 + cos 2θ

2

]
exp
(
κ cos θ

)
≤ exp

(3κ

4

)
exp

(
κ

4
cos 2θ

)
1

2πI0(κ)
exp
(
κ cos θ

)
≤

exp
(

3κ
4

)
2πI0(κ)

2πI0(κ/4).
1

2πI0(κ/4)
exp
(κ

4
cos 2θ

)
. (5.4)

From the last result it is clear that f(θ) follows the von Mises distribution VM(θ;κ, 0) and g(θ) re-

duces also to Bingham distribution which is a von Mises distribution of doubled angles VM(2θ;κ/4, 0).

We can directly compute the starred bound M∗ and the full bound M which is needed to give

a theoretical assessment of the efficiency of the algorithm. Figure 5.1 plots the target probability

function f(θ) of the von Mises distribution and the proportional simulation envelope of Bingham

distribution Mg(θ) with κ = 0.5 and M = 1.20.

The expected number of iterations of the algorithm required until θ is successfully generated

from g∗ is exactly the bounding constant M = suph(θ) = sup
(
f(θ)/g(θ)

)
and given by

M(κ) =
I0(κ/4)

I0(κ)
exp

(
3κ

4

)
. (5.5)
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Figure 5.1: Envelope rejection for the von Mises function f(θ) with Bingham target distribution g(θ) for κ = 5.0

and M = 1.20.

Note that M(0) = 1. For large κ, one can use asymptotic expansion approximation for I0(κ) in

(4.46) and the full bounding constant M becomes

M = exp

(
3κ

4

) √
2πκ exp(κ/4)√

2π(κ/4) exp(κ)
= 2. (5.6)

For high concentration note that the mean number of trials to success this simulation is approx-

imately M = 2 i.e. to produce one von Mises random variable, this A/R algorithm requires on

the average 2 Bingham variables. The probability of acceptance of this simulation under Bingham

candidate is given by M−1 = 0.50 i.e. the efficiency rate for this simulation is around 50%. Overall,

for high concentration it is recommended to use the simulation algorithm strategy of Fisher-Best to

simulate the von Mises density via a wrapped Cauchy envelope (Best and Fisher [5]).

5.3.2 von Mises-Fisher Distribution with Beta Envelope

Let x be a unit random vector of dimension p × 1 with unit length (i.e. xTx = 1). This p

vector has von Mises-Fisher distribution with concentration parameter κ ≥ 0, modal direction

µ = (1, 0, . . . , 0, 0)T and probability density function with respect to uniform measure on a sphere

Sp−1

f(x;κ, µ) = Γ
(p

2

)(κ
2

)1−(p/2)

I(p/2)−1(κ)−1 exp
(
κxTµ

)
, (5.7)
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(see Mardia and Jupp [70], p. 168). κ ≥ 0 and µTµ = 1. It follows from Ulrich [94] Theorem 1 that

the unit p-vector x has a von Mises-Fisher distribution (5.7) with mean direction µ = (1, 0, . . . , 0, 0)T

if and only if xT = ((1−W 2)1/2v;W ) where v is a unit (p−1)-vector which is uniformly distributed

(v ∼ Up−1), and W is a scalar random variable with probability density function

f(w) = cW(p, κ)−1
(
1− w2

)(p−3)/2
exp(κw), −1 ≤ w ≤ 1, (5.8)

where cW(p, κ) is a constant of normalization and it is given by.

cW(p, κ) =

∫ 1

−1

exp(κw)
(
1− w2

)(p−3)/2
dw

=
Γ(1/2)Γ

[
((p− 2)/2) + 1/2

](
k/2
)(p−2)/2

Γ(1/2)Γ
[
((p− 2)/2) + 1/2

](
k/2
)(p−2)/2

∫ 1

−1

exp(κw)
(

1− w2
)( p−2

2
− 1

2

)
dw

= Γ

(
1

2

)
Γ

(
p− 1

2

)(
κ

2

)1− p
2

I(p/2)−1(κ)

= B

(
1

2
,
p− 1

2

)
Γ

(
p

2

)(
κ

2

)1− p
2

I(p/2)−1(κ), (5.9)

since

B

(
1

2
,
p− 1

2

)
=

Γ
(

1
2

)
Γ
(
p−1

2

)
Γ
(
p
2

) . (5.10)

Ulrich [94] proposed an acceptance-rejection technique to generate random sample from von

Mises-Fisher density f(x;κ, µ). The entire procedure is repeated until a variate is accepted so there

is an average of M trials required for each accepted x. The following probability density function is

suggested to use as an envelope to generate samples from (5.7).

g(x, b) =
2b(p−1)/2

B
(
p−1

2
, p−1

2

) (1− x2)(p−3)/2[
(1 + b)− (1− b)x

]p−1 , −1 ≤ x ≤ 1, 0 ≤ b ≤ 1. (5.11)

For this envelope we want to choose the value of b to minimize the expected number of trials M

(efficiency Bound). It is quite smooth to generate from g(x, b) since if Y ∼ Beta(1
2
(p− 1), 1

2
(p− 1)),

then X ∼ g(x, b) if and only if X =
(
1−(1+b)Y

)
/
(
1−(1−b)Y

)
(Ulrich [94]). Ulrich calculated the

value of x0 which maximizes the function
(
1 − x2

)(p−3)/2
exp(κx) and also the corresponding value

of b0 as

x0 =
−(p− 1) + (4κ2 + (p− 1)2)1/2

2κ2
, (5.12)
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and

b0 =
1− x0

1 + x0

=
−2κ+ (4κ2 + (p− 1)2)1/2

p− 1
. (5.13)

Moreover, the optimal bound M , say, is given by

MUW = Γ

(
p

2

)(
κ

2

)1− p
2

exp
(
κx0

)
(1− x0)(p−1)/2. (5.14)

Table 5.1 gives some values of the full bounds M for the three methods of simulation from von

Mises distribution (p = 2) with various values of κ, τ , ρ (function of κ) and x0. The acceptance

ratio tends to unity as κ tends to zero, as κ→∞, tends around 0.66 for the Best-Fisher and Ulrich-

Wood methods. These simulation schemes have high efficiencies under lower concentration since the

acceptance ratio of this simulation scheme tends to unity as κ→ 0 as well as being easy to generate

a realization angle θ. On the other hand, under high concentrations the efficiency of a Bingham

envelope is around 50%. Overall, Best-Fisher and Ulrich-Wood methods are more reasonable than

that of the Bingham envelope under high concentrations.

Wood [100] suggested the following modified accept-reject algorithm for simulation from the von

Mises-Fisher distribution.

1. Calculate b0 =
[
−2κ+ (4κ2 + (p− 1)2)1/2/p− 1

]
,

2. Put x0 = (1− b0)/(1 + b0) and c = κx0 + (p− 1) ln(1− x2
0).

3. Generate Z ∼ Beta(p−1
2
, p−1

2
), U ∼ U(0, 1) and calculate

W =
1− (1 + b0)Z

1 + (1− b0)Z

4. If κW + (p− 1) ln(1− x0W )− c < ln(U) then go to step 3.

5. Generate an (p− 1)× 1 spherical uniform vector v, and return xT = ((1−W 2)1/2v;W ).

Then x has the von Mises-Fisher distribution with modal direction (1, 0, . . . , 0, 0)T and concentration

parameter κ ≥ 0. In Figure(5.2) two random samples, 200 random points each, have been drawn

from the von Mises-Fisher distribution with p = 3 around µ = [1 0 0] and κ = 2, 10 from left to

right, respectively. The effect of the concentration parameter κ is clearly illustrated.
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Figure 5.2: Spherical plot of two random samples with 200-points each from von Mises-Fisher distribution around

µ = [1 0 0] and κ = 2, 10 from left to right, respectively.

5.4 Bipartite Rejection Scheme for the Real Bingham Dis-

tribution on the Sphere

In terms of the polar co-ordinates (θ, φ), consider the Bingham distribution on the unit sphere S2

in R3 with probability density function

fBing(θ, φ;κ) =
[
4πd(κ)

]−1
exp
[
(κ1 cos2 φ+ κ2 sin2 φ) sin2 θ

]
sin θ

= cBing f
∗
Bing(θ, φ;κ) 0 ≤ θ < π, 0 ≤ φ < 2π, (5.15)

where κ1 ≥ 0 and κ2 ≥ 0 are concentration parameters, κ = 1
2

(
κ1 + κ2

)
, the proportionality

constant d(κ) = 1F1

(
1
2
; 3

2
;κ
)

, the confluent hypergeometric function with matrix argument κ and

cBing =
[
4πd(κ)

]−1
is the normalizing constant. Note that the two angles θ and φ determine a point

on the surface of the sphere (Bingham [7]). The confluent hypergeometric function with matrix

argument κ is also known as the Kummer function M
(

1
2
; 3

2
;κ
)

which is the normalizing constant

for the Watson distribution (Watson [96], Mardia and Jupp [70], p. 351 and Abramowitz and

Stegun [1], p. 505).

We can apply Atkinson’s bipartite rejection scheme (Atkinson [2]) by firstly dividing the range

of the random variable θ into two parts. Recognize that fBing(π/2 − θ, φ) = fBing(π/2 + θ, φ), so



5.4. BIPARTITE REJECTION SCHEME FOR THE REAL BINGHAM DISTRIBUTION ON THE SPHERE 109

that f is symmetric about θ = π/2. Splitting the interval (0, π/2) into the two intervals (0, π/3]

and (π/3, π/2), the possible two envelopes (Johnson [32], p. 47) are

g1(θ, φ;κ) = exp(κ sin2 θ) sin(2θ), 0 ≤ θ ≤ π/3, (5.16)

and

g2(θ, φ;κ) = exp(κ) sin(θ), π/3 ≤ θ ≤ π/2, (5.17)

where κ = max(κ1, κ2). Note that f ∗Bing(θ, φ;κ) ≤ g1(θ, φ;κ) and f ∗Bing(θ, φ;κ) ≤ g2(θ, φ;κ).

The function g1(θ, φ;κ) approximates fBing(θ, φ;κ) and Θ can be generated by inverting the

distribution function. Solving G1(θ, φ;κ) = U1 for θ yields

θ = sin−1
√
κ−1 ln

[
U1(exp(3κ/4)− 1)

]
, (5.18)

where U1 is uniform (0, 1) (Johnson [32], p. 48). Since φ does not enter explicitly in either dominating

function, we recognize its distribution to be uniform on (0, 2π) and independent of θ. Hence, a variate

(Θ,Φ) is generated from g1(θ, φ;κ) for Θ as in (5.18) and for Φ as Φ = 2πU2 where U2 is also uniform

(0, 1).

The function g2(θ, φ;κ) also approximates fBing(θ, φ;κ) and Θ can be generated directly from

sin θ.

Atkinson’s bipartite rejection scheme requires the calculation of the following quantities.

∆1 =

∫ 2π

0

∫ π/3

0

g1(θ, φ;κ)dθdφ =
2π
[
exp(3κ/4)− 1

]
κ

, (5.19)

∆2 =

∫ 2π

0

∫ π/3

0

g2(θ, φ;κ)dθdφ = π exp(κ), (5.20)

S1 = sup
θ,φ

f ∗Bing(θ, φ;κ)

g1(θ, φ;κ)
= 1 (5.21)

S2 = sup
θ,φ

f ∗Bing(θ, φ;κ)

g2(θ, φ;κ)
= exp(−κ). (5.22)

The starred bound of the algorithm is

M∗ = S1∆1 + S2∆2 =
2π
[
exp(3κ/4)

]
+ π(κ− 2)

κ
, κ > 0, (5.23)
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and the efficiency of the algorithm is

M−1 =
1

cBingM∗ =
2π
[
exp(3κ/4)

]
+ π(κ− 2)

κ
[
4πd(κ)

]−1 . (5.24)

Table 5.2 gives some values of the full bound M with various values of κ = max(κ1, κ2). We use

the R kummerM function in the fAsianOptions package to calculate the confluent hypergeometric

function of the 1st kind with matrix argument κ, d(κ) = 1F1

(
1
2
; 3

2
;κ
)

. It is clear that Atkinson’s

bipartite rejection scheme is efficient under low concentrations but inefficient as κ tends to infinity.

κ M Efficiency Rate

0.1 1.14 87.9%

0.2 1.17 85.5%

0.3 1.24 80.6%

0.4 1.31 76.7%

0.5 1.56 64.1%

1.0 1.79 55.9%

5.0 2.09 47.9%

10.0 3.14 31.8%

100.0 4.88 20.5%

Table 5.2: Analytical efficiencies for Bingham/Bipartite Envelopes A/R simulation with various values of κ.

5.5 Simulation from the Fisher Distribution with Bingham

Envelope

The Fisher density on the unit sphere in R3 takes the standardised form

f(θ, φ) =
κ

4π sinhκ
exp
{
κ cos θ

}
, 0 ≤ θ ≤ π, 0 ≤ φ < 2π

=
κ

2π(eκ − e−κ)
exp
{
κ cos θ

}
=

κ

2π(1− e−2κ)
exp
{
κ(cos θ − 1)

}
= cF f

∗(θ, φ), (5.25)
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with respect to sin θdθdφ. Here κ > 0 is the concentration parameter (Mardia and Jupp [70], p. 170

and Fisher et. al [23], p.86-87) and cF = κ/2π(1− e−2κ) is the normalizing constant 1.

A possible type of envelope, g(θ, φ), is the real Bingham distribution on the unit sphere in R3

with concentration matrix A, that is,

g(θ, φ) =
1

4π 1F1

(
1
2
; 3

2
;κ
) exp

{
xT A x

}
=

1

4π 1F1

(
1
2
; 3

2
;κ
) exp

[κ
2

(cos2 θ)
]

=
eκ/2

4π 1F1

(
1
2
; 3

2
;κ
) exp

[κ
2

(cos2 θ − 1)
]

= cBing g
∗(θ, φ), (5.26)

with respect to sin θdθdφ. Here 1F1

(
1
2
; 3

2
;κ
)

is the confluent hypergeometric function with matrix

argument κ, cBing. is the normalizing constant. Note that for a 3× 3 symmetric matrix A in R3, the

exponent term for the Bingham density in the polar co-ordinates (θ, φ), becomes

xT A x =
[
cos θ sin θ cosφ sin θ sinφ

]


κ
2

0 0

0 0 0

0 0 0




cos θ

sin θ cosφ

sin θ sinφ

 =
κ

2
cos2 θ. (5.27)

Note that

2(cos θ − 1) ≤ cos2 θ − 1 (5.28)

holds, hence

κ(cos θ − 1) ≤ κ

2

(
cos2 θ − 1

)
κ

2π(1− e−2κ)
exp
[
κ(cos θ − 1)

]
︸ ︷︷ ︸

f(θ,φ)

≤
2κ 1F1

(
1
2
; 3

2
;κ
)

(1− e−2κ)

eκ/2

4π 1F1

(
1
2
; 3

2
;κ
) exp

[κ
2

(
cos2 θ − 1)

]
︸ ︷︷ ︸

g(θ,φ)

.

(5.29)

The last inequality satisfies the main simulation scheme as describes in section (4.2). The expected

number of iterations of the algorithm required until θ and φ are successfully generated from g is

1A direct approximation is possible for the normalizing constant of the Fisher distribution in (5.25) using the

standard second order saddlepoint approximations.
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exactly the bounding constant M where

M =
2κ 1F1

(
1
2
; 3

2
;κ
)

(1− e−2κ)
. (5.30)

Note that, when p = 3 and if we use spherical polar coordinates then θ and φ are independent and

φ is uniform on the unit circle (Mardia and Jupp [70], p. 170). Moreover, under high concentrations

the efficiency rate with a Bingham envelope is around 50% and Ulrich-Wood method with a beta

envelope is more reasonable than that of Bingham envelope.

5.6 Simulation from the Fisher-Bingham (FB5) Distribu-

tion

In this section we consider two methods to sample from the FB5 distribution. One of interest is using

the uniform envelope and another with an envelope proportional to the real Bingham distribution.

Their A/R efficiencies are compared. Kent and Hamelryck [45] suggested simulation approach based

on truncated double exponential distribution.

5.6.1 Background

The 5-parameter Fisher-Bingham FB5 distribution, otherwise known as the Kent distribution, be-

longs to the family of spherical distributions in directional statistics. In particular the FB5 serves

as an extension of the von Mises-Fisher (VMF) distribution. The FB5 is more flexible since it has

oval density contours as opposed to the VMF’s circular contours. Therefore the Fisher distribution

will not succeed in describing data that have originated from oval density contours. However, the

FB5 distribution will be capable of describing data that have originated from a distribution with

circular density contours i.e. the VMF distribution (Mammasis and Stewart [57]).

The five parameter Fisher-Bingham (FB5) distribution is defined by the probability density

function

f(x; Θ) = c(κ, β)−1 exp
{
κγT1 x + β[(γT2 x)2 − (γT3 x)2]

}
, x ∈ Ω3 (5.31)

where Ω3 = {x ∈ R3 : x2
1 +x2

2 +x2
3 = 1} denotes the unit sphere in R3 and c(κ, β) is the normalizing

constant. We use the notation FB5(κ, β,Γ) to define the distribution. Here Θ = (κ, β, γ1, γ2, γ3)T
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is the parameter vector. The parameters can be interpreted as follows: κ ≥ 0 represents the

concentration, β with 0 ≤ 2β < κ determines the ovalness or the ellipticity of the contours of equal

probability and a (3 × 3) orthogonal matrix Γ = (γ1, γ2, γ3)T . The parameter γ1 is the vector of

the directional cosines that define the mean direction or pole or centre of the distribution. The

parameters γ2 and γ3 relate to the orientation of the distribution. If we visualize the elliptical

contours of the distribution on the surface of the sphere, then γ2 and γ3 define the directions of the

major and minor axes, respectively, of the ellipses. Also, if β = 0 then (5.31) reduces to a Fisher

density (Kent [40]).

In order to sample from the FB5 distribution we can without loss of generality consider the

density rotated to the standard frame of reference (Kent [40]). In terms of the polar coordinates

(θ, φ) defined by

x1 = cos θ, x2 = sin θ cosφ, x3 = sin θ sinφ, (5.32)

and the probability density function of the FB5 distribution takes the form

f(θ, φ) = c(κ, β)−1 exp
{
κ cos θ + β sin2 θ cos 2φ

}
sin θ

= c(κ, β)−1 exp
{
κ cos θ + β sin2 θ[cos2 φ− sin2 φ]

}
sin θ, (5.33)

with respect to dθdφ where 0 ≤ θ ≤ π, 0 ≤ φ < 2π.

5.6.2 FB5 Distribution with Uniform Envelope

Let f(θ, φ) take the form

f(θ, φ) = cff
∗(θ, φ), (5.34)

where

f ∗(θ, φ) = exp
{
κ cos θ + β sin2 θ cos 2φ

}
sin θ. (5.35)

A possible choice of an envelope, g(θ, φ), is the uniform density on the sphere,

g(θ, φ) = cg g
∗(θ, φ)

=
Γ
(

3
2

)
2π3/2

sin θ =
1

4π
sin θ, (5.36)
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where g∗(θ, φ) = sin θ and Γ(n+ 1
2
) = (2n− 1)! 2−n

√
π (Abramowitz and Stegun [1]). The expected

number of iterations of the algorithm required until θ and φ are successfully generated from g(θ, φ)

is exactly the bounding constant M = suph(θ, φ). Note that

h∗(θ, φ) =
f ∗(θ, φ)

g∗(θ, φ)
= exp

{
κ cos θ + β sin2 θ cos 2φ

}
, (5.37)

and we compute its maximum; which must occur at those values of θ and φ which maximize the

exponent in (5.37). Then the starred bound M∗ is given by

M∗ = suph∗(θ, φ) = exp
(
κ+ β

)
, (5.38)

and the full bound M is

M =
cfM

∗

cg

=
c(κ, β)−1M∗

(4π)−1

=
4π exp

(
κ+ β

)
c(κ, β)

=
4π exp

(
κ+ β

)
2π
∑∞

j=1

Γ(j+ 1
2

)

Γ(j+1)
β2j
(

1
2
κ
)−2j− 1

2 I2j+ 1
2
(κ)

≈
4π exp

(
κ+ β

)
2πeκ[(κ− 2β)(κ+ 2β)]−1/2

, (large κ with 2β/κ < 1 fixed)

= 2
[
eβ(κ− 2β)(κ+ 2β)

]1/2

, (5.39)

(see, for example, Kent [40], p. 73 and Kent et al. [46]). Note that M depends upon the normalizing

constant of the five parameter Fisher-Bingham (FB5) distribution. Note also that c(0, 0) = 4π,

the surface area of the sphere, M = 1 and c(κ, 0) = 4πκ−1 sinhκ, the normalizing constant for the

Fisher distribution.

5.6.3 FB5 Distribution with Truncated Exponential Envelope

In this subsection we consider the Kent-Hamelryck method to sample from the FB5 distribution

otherwise known as the Kent distribution (Kent and Hamelryck [45]). For the purpose of simulation

it is helpful to use an equal area projection. Set

x1 = r cos θ, x2 = r sin θ, r = sin(θ/2), (5.40)
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so that (2x1, 2x2) represents an equal-area projection of the sphere.

In (x1, x2) coordinates, the Jacobian factor sin θ disappears and the pdf (with respect to dx1dx2

in the unit disk x2
1 + x2

2 < 1) takes the form

f(x1, x2) ∝ exp
{
− 2κr2 + 4β(r2 − r4)(cos2 φ− sin2 φ)

}
= exp

{
− 2κ(x2

1 + x2
2) + 4β[1− (x2

1 + x2
2)(x2

1 − x2
2)]
}

= exp
{
− 1

2
[ax2

1 + bx2
2 + γ(x4

1 − x4
2)]
}
, (5.41)

where the new parameters

a = (4κ− 8β), b = (4κ+ 8β), γ = 8β, (5.42)

satisfy 0 ≤ a ≤ b and γ ≤ b/2. Here we have used the double angle formulas, cos θ = 1−2 sin2(θ/2),

sin θ = 2 sin(θ/2) cos(θ/2).

Note that the pdf splits into a product of a function of x1 alone and x2 alone. Hence x1 and

x2 would be independent except for the constraint x2
1 + x2

2 < 1. The Kent-Hamelryck method of

simulation, as sketched below, will be to simulate |x1| and |x2| separately by acceptance-rejection

using a truncated exponential envelope g(x),

g(x) =
α exp(αx)

1− exp(−α)
, 0 ≤ x ≤ 1, α > 0, (5.43)

and then additionally to reject any values lying outside the unit disk. The starting point of the

Kent-Hamelryck’s simulation method is the inequality

1

2
(σ|w| − τ)2 ≥ 0 (5.44)

for any parameters σ, τ > 0 and for all w, hence

−1

2
σ2w2 ≤ 1

2
τ 2 − στ |w|. (5.45)

After exponentiation, this inequality provides the basis for simulating a Gaussian random variable

from a double exponential random variable by acceptance-rejection criteria. For x1 we need to apply

(5.45) twice, first with σ = γ1/2, τ = 1 and w = x2
1, and the second with σ = (a + 2γ1/2)1/2, τ = 1

and w = x1, to get

−1

2
(ax2

1 + γx4
1) ≤ 1

2
− 1

2
(a+ 2γ1/2)x2

1 (5.46)

≤ c1 − λ1|x1|, (5.47)
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where c1 = 1 and λ1 = (a + 2γ1/2)1/2. Again, to develop a suitable envelope for x2 recall that

0 ≤ 2γ ≤ b. To begin with suppose b > 0. From (5.46) with σ = (b− γ)1/2, τ = (b/(b− γ))1/2 and

w = x2
2,

−1

2
(bx2

2 + γx4
2) ≤ −1

2
(a− γ)x2

2 ≤ c2 − λ2|x2|, (5.48)

where c2 = b/{2(b− γ)} ≤ 1 and λ2 = b1/2. If b = 0 and so γ = 0 then (5.48) continues to hold with

λ2 = 0 and c2 = 0.

For β = 0 the Fisher-Bingham (FB5) distribution reduces to the Fisher distribution (Kent [40]).

Table 5.3 gives numerical results for the analytical simulation bounds of the three methods of

simulation from the Fisher-Bingham (FB5) distribution with various values of κ and β < κ/2. Under

low concentrations all the three methods are efficient. On the other hand, under high concentration

the rejection simulation method of uniform envelope is not efficient. The real Bingham envelope has

a good efficiency bound close to 1.00 as κ → 0 and it is expected to has an efficiency bound close

to 2.00 as κ → ∞. The Kent-Hamelryck method is more reasonable than both other simulation

methodologies in which the efficiencies are high for any range of various values of κ and β. This

simulation scheme has high efficiency either under low or high concentrations since the acceptance

ratio of this simulation scheme tends to unity as κ→ 0 as well as it is easy to generate the realization

angles θ and φ.

5.7 Simulation from the Complex Bingham Distribution

5.7.1 The Complex Bingham Density Function

First of all we consider the case where we have the probability distribution on the pre-shape sphere

Sm(k−1)−1, corresponding to k landmarks in m dimensions (k − 1). For the m = 2 dimensional case

and using complex notation we have seen that S2k−3 ≡ CSk−2. The pre-shape z = (z1, . . . , zk−1)T

lies on the unit complex sphere CSk−2, where z∗z =
∑k−1

j=1 |zj|2 = 1. One way of constructing

an appropriate distribution is by conditioning the complex multivariate normal distribution with

probability density function proportional to exp(−1
2
z∗Σ−1z) where Σ is Hermitian (i.e. Σ = Σ∗).

Conditioning it on z∗z = 1 gives rise to the following complex Bingham distribution (Dryden and

Mardia [18], pp. 111-112). The complex Bingham distribution with canonical parameter matrix A
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κ β MKH MU MBing

0.10 0.00 1.01 1.09 1.05

0.25 0.10 1.04 1.34 1.09

0.30 0.12 1.05 1.57 1.15

0.60 0.24 1.12 2.36 1.36

1.00 0.40 1.15 4.09 1.45

1.50 0.60 1.18 8.19 1.67

3.00 1.20 1.21 68.7 1.82

10 4.00 1.28 103.9 1.94

20 8.00 1.35 273.1 2.02

Table 5.3: Analytical efficiencies for the FB5 distribution based on the Kent-Hamelryck, the uniform and the real

Bingham envelopes A/R simulation with various values of κ and β (κ > 2β).

has probability density function

f(z) = c(A)−1 exp(z∗Az), z ∈ CSk−2, (5.49)

where the (k − 1)× (k − 1) matrix A is Hermitian and c(A) is the normalizing constant. We write

z ∼ CBk−2(A). (5.50)

A complex random vector z is said to have complex symmetry if its distribution is invariant

under scalar rotation, so that z and exp(iθ)z have the same distribution for all θ i.e. f(z) = f(eiθz),

the complex Bingham distribution has this property. This property therefore makes the distribution

suitable for statistical shape analysis (location and scale were previously removed because z is on

the pre-shape sphere). The complex Bingham distribution provides a very elegant framework for

the analysis of two dimensional shape data (see Kendall, [42]; Kent, [41]).

Since z∗z = 1 for z in CSk−2, the parameter matrices A and A + αI define the same complex

Bingham distribution and c(A + αI) = c(A) expα for any complex number α. It is convenient to

remove this non-identifiability by setting λmax(A) = 0, where λmax(A) denotes the largest eigenvalue

of A. Hence, without loss of generality, we may shift the eigenvalues of A so that they are nonpositive

with the largest one equalling 0. Let λ1 ≥ λ2 ≥ . . . ≥ λk−1 = 0 denote the eigenvalues of−A. Denote
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the corresponding standardized eigenvectors by the columns of the unitary matrix Γ = (γ1, . . . γk−1),

with Γ∗Γ = I. Write λ = (λ1, . . . , λk−2) for the vectors of the first k − 2 eigenvalues. The {λj} can

be thought of as concentration parameters.

5.7.2 Simulation Schemes

In order to simulate from CBk−2(A), it is convenient to rotate to principal axes. Kent [41] proposed

some non-standard polar coordinates on the pre-shape sphere. Given a point (z1, . . . , zk−1)T on

CSp−1,
∑k−1

j=1 |zj|2 = 1, we transform to (s1, s2, . . . , sk−2, θ1, θ2, . . . , θk−1), where

Re(zj) = s
1/2
j cos θj, Im(zj) = s

1/2
j sin θj. (5.51)

Hence the components z = (z1, z2, . . . , zk−1)T can be expressed as

zj = s
1/2
j cos θj + i s

1/2
j sin θj

= s
1/2
j [cos θj + i sin θj]

= s
1/2
j eiθj , (5.52)

for j = 1, 2, . . . , k−1, sj = |zj|2 ≥ 0, 0 ≤ θj = arg(zj) < 2π and sk−1 = 1−
∑k−2

j=1 sj. The coordinates

s1, s2, . . . , sk−2 are on the k − 2 dimensional unit simplex, Sk−2, where

Sk−2 =
{
s = (s1, s2, . . . , sk−2)T ∈ Rk−2 :

k−2∑
j=1

sj ≤ 1
}
. (5.53)

Under the complex Bingham distribution θ1, . . . , θk−1 are uniformly distributed on [0, 2π) inde-

pendently of one another and of s = (s1, . . . , sk−2), which has a truncated multivariate exponential

distribution (Kent et al. [43]) with probability density function

f(s) = d(λ)−1 exp
(k−2∑
j=1

−λjsj
)
, s ∈ Sk−2, (5.54)

where the normalizing constants in (5.49) and (5.54) is related by c(A) = 2πk−1d(λ).

Initially, (k − 2) truncated exponentials are generated subject to a linear constraint, and then

these random variables are expressed in polar coordinates to deliver a complex Bingham distribution.

Consider the continuous random variable X has exponential distribution truncated to the interval

[0, 1] and denoted by TExp(λ) with probability density function

f(x) = λ exp(λx)
(
1− exp(−λ)

)−1
, 0 ≤ x ≤ 1. (5.55)
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Here λ is the rate parameter λ > 0 and its cumulative distribution function is given by

F (x) =
(
1− exp(−λx)

)(
1− exp(−λ)

)−1
. (5.56)

One way to do the simulation from TExp(λ) is by the inversion method. If U ∼ U [0, 1], then

X = F−1(U) = −(1/λ) log
(
1− U(1− e−λ

)
, (5.57)

has truncated exponential distribution and we can use the following algorithm.

Step 1 Simulation of TExp(λ)

(1) Simulate uniform random variable U [0, 1].

(2) Calculate X = −(1/λ) log
(
1− U(1− e−λ

)
.

The method for simulating the complex Bingham distribution uses (p−1) truncated exponentials

to generate a p vector with a complex Bingham distribution. We can use the following algorithm.

Step 2 Simulation of the complex Bingham distribution CBp−1(A)

(1) Generate S = (S1, . . . , Sk−2) where where Sj ∼ TExp(λj), j = 1, 2, . . . , k − 2 are independent

random variables simulated using Algorithm 1 with Sj = −(1/λj) log
(
1− U(1− e−λj

)
.

(2) If
∑k−2

j=1 Sj < 1, write Sk−1 = 1−
∑k−2

j=1 Sj. Otherwise, return to step 1.

(3) Generate independent angles θj ∼ U [0, 2π), j = 1, 2, . . . , k − 1.

(4) Calculate Zj = S
1/2
j eiθj , j = 1, 2, . . . , k − 1.

The algorithm delivers a (k − 1) vector (Z1, Z2, . . . , Zk−1)T ; which has a complex Bingham dis-

tribution. Note that (S
1/2
j ; θj) are essentially polar coordinates for complex number Zj. If we

define the truncation probability pT =
∫
X
g(x)dx, then the number of iteration NT , say, of the

algorithm required until S and θ are successfully generated from TExp and U [0, 2π) is exactly

the boundary constant (efficiency) and has a geometric distribution with parameter pT . That is,

P (NT = p) = qp−1
T pT , 1 ≤ k − 1 ≤ ∞, with E(NT ) = p−1

T . For all the eigenvalues of A are equal
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λ1 = . . . = λk−2 = λ and λk−1 = 0, Kent et al. [43] calculated the probability of acceptance under

this simulation scheme as

pT =

{
eλ −

k−3∑
j=0

λj

j!

}
e−λ. (5.58)

In each cycle the number of uniform random variables used is p−1. Thus if we let M be the number

of uniform random variable needed in this algorithm, then

M = (k − 2)p−1
T = (k − 2)eλ

{
eλ −

k−3∑
j=0

λj

j!

}−1

. (5.59)

Further, M is bounded by (k − 1) × (k − 1) as λ → ∞. Kent et al. [43] suggested also two other

simulation methods from the complex Bingham distribution. One of them is an acceptance-rejection

on the simplex and the other is uniform on simplex and truncated gamma on [0, 1]. Generally, the

simulation scheme described in this section (truncation to the simplex) will be preferred for large

concentrations and the acceptance-rejection on the simplex for small concentrations.

The (k − 2) dimensional complex Bingham distribution can be regarded as a special case of a

(2k − 3) dimensional real Bingham distribution (Dryden and Mardia [18], p. 113). So, we can

use the angular central Gaussian distribution as an envelope to generate random samples from the

complex Bingham distribution and compare the efficiency of the new method of section (4.6) with

that of a truncated multivariate exponential envelope. Table 5.4 gives some numerical values for the

simulated bound M of the rejection simulation method of Kent et al. [43] and for the rejection scheme

of the angular central Gaussian (ACG) envelope with k varying and with a common concentration

value λ. It is clear from the table that the rejection scheme of a truncated multivariate exponential

envelope is more efficient than that of the ACG envelope with various values of k and with a common

concentration value λ.

5.8 Simulation from the Complex Bingham Quartic

Distribution

Let CSk−1 = {z = (z1, z2, . . . , zk−1)T :
∑k−1

j=1 |zj|2 = 1} ⊂ Ck−1 denote the unit complex sphere

in Ck−1. The complex Bingham quartic (CBQ) density centred at the north pole (0, 0, . . . , 1)T on

CSk−2 with concentration symmetric matrix Ω can be written in the form

fCBQ(z) = cCBQ(Ω)−1 exp
{
−1

2

(
xTΩx− (xTx)xTΩ(as)x

)}
, 0 ≤ |x| ≤ 1. (5.60)
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Truncated Multivariate Exponential Envelope

k λ = 0.01 λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 20

3 1.12 1.14 1.17 1.21 1.32 1.36

4 1.16 1.18 1.28 1.34 1.59 1.68

5 1.27 1.38 1.46 1.57 1.85 1.97

Angular Central Gaussian (ACG) Envelope

k λ = 0.01 λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 20

3 1.17 1.19 1.22 1.25 1.41 1.66

4 1.18 1.23 1.39 1.44 1.71 1.91

5 1.23 1.43 1.58 1.74 1.98 2.11

Table 5.4: Simulated efficiencies M of truncated multivariate exponential envelope and angular central Gaussian

envelope needed for the simulation methods from the complex Bingham distribution with k varying and with a

common concentration value λ.

where Ω is positive semidefinite (Kent et al. [46]). The complex symmetric and anti-complex sym-

metric matrices are defined in (3.35) and (3.36), respectively, such that Ω = Ω(cs) + Ω(as).

Let

Ω⊥ = Ω(cs) − Ω(as), Ψ(s) = −1

2
(sΩ− s2Ω(as)) and Ψ⊥(s) = −1

2
(sΩ + s2Ω(as)), (5.61)

where Ω⊥ is also positive semidefinite, |Ω| = |Ω⊥|, Ψ(s) and Ψ⊥(s) are also real symmetric (2k −

4) × (2k − 4) matrices with 0 < s < 1. Then, the probability density function for the complex

Bingham quartic distribution becomes proportional to

f ∗CBQ(x) = exp

{
−1

2

[
xTΩx− (xTx)xTΩ(as)x

]}
= exp

{
−1

2

[
xT (Ω(cs) + Ω(as))x− (xTx)xTΩ(as)x

]}
= exp

{
−1

2

[
xTΩ(cs)x + xTΩ(as)x− (xTx)xTΩ(as)x

]}
= exp

{
−1

2

[
xTΩ(cs)x + (1− xTx)xTΩ(as)x

]}
, ‖x‖ < 1

≤ exp
{
−1

2

[
xTΩ(cs)x + xTΩ(as)x

]}
+ exp

{
−1

2

[
xTΩ(cs)x− xTΩ(as)x

]}
, ∀ x ∈ R2k−4

= exp

(
−1

2
xTΩx

)
+ exp

(
−1

2
xTΩ⊥x

)
. (5.62)
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To justify the inequality note that if −1
2
xTΩ(as)x ≥ 0, then

−1

2
(1− xTx)xTΩ(as)x ≤ −1

2
xTΩ(as)x, (5.63)

whereas, if −1
2
xTΩ(as)x ≤ 0, then

−1

2
(1− xTx)xTΩ(as)x ≤ 0 ≤ −1

2
xTΩ(as)x. (5.64)

A possible choice of an envelope, gMMN(x), is a simple mixture of two multivariate normal

densities truncated to the unit disc with variance-covariance matrices Ω and Ω⊥, respectively, that

is,

gMMN(x) =
1

2
|2πΩ|−1/2 exp

(
−1

2
xTΩx

)
+

1

2
|2πΩ⊥|−1/2 exp

(
−1

2
xTΩ⊥x

)
. (5.65)

Under high concentrations the complex Bingham quartic (CBQ) distribution converges to the

multivariate normal density i.e. fCBQ(x; Ω) ≈ N2k−4(0,Σ) where Σ = Ω−1 and gMMN(x) ≈
1
2

[
N2k−4(0,Σ) +N2k−4(0,Σ⊥)

]
. Thus, letting g∗MMN(x; Ω, Ω⊥) denote the probability density func-

tion in (5.65) without the normalizing constants |2πΩ|−1/2 and |2πΩ⊥|−1/2, then (5.62) can be recast

as

exp
{
−1

2

(
xTΩx− (xTx)xTΩ(as)x

)}︸ ︷︷ ︸
f∗CBQ(x; Ω)

≤ 2

[
exp
(
−1

2
xTΩx

)
+ exp

(
−1

2
xTΩ⊥x

)]
︸ ︷︷ ︸

g∗MMN(x; Ω, Ω⊥)

, (5.66)

for all x ∈ R2k−4. The simulation bound for this algorithm is so cumbersome to compute analyt-

ically. Instead the simulated bounds can be calculated within the simulated R functions for the

CBQ distribution. The efficiency rate with an envelope of mixture multivariate normal densities is

around 50% under high concentrations. Overall, we have the following accept-reject algorithm.

Step 1 Simulation of the mixtures of two multivariate normals αN2k−4(0,Ω) + (1−α)N2k−4(0,Ω⊥)

(Rizzo [85], p. 78)

(1) Generate U ∼ Uniform[0, 1].

(2) If U ≤ α generate x from N2k−4(0,Ω). Otherwise generate x from N2k−4(0,Ω⊥) with arbitrary

α = 1
2
.

Step 2 Simulation of the complex Bingham quartic distribution
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(1) Generate x from the mixture of normal densities, g∗MMN(x) with parameter matrices Ω and

Ω⊥, respectively.

(2) Generate a random variable U from the Uniform(0, 1) distribution.

(3) If U 6
f ∗CBQ(x)

2g∗MMN(x)
, accept x; otherwise reject x (In particular, reject any value lying outside

the unit disk (‖x‖ = xTx > 1) and repeat from step 1.

When k = 3, the complex projective CP 1 can be isometrically identified with a sphere of radius 1
2

in

R3. Thus, up to factor of 1
2
, CP 1 can be identified with S2. The expression of this mapping is given

in Kent [41] and Kent et al. [46]. Kent [41], and Dryden and Mardia [18], p. 117, showed that the

CB distribution on CP 1 (with quadratic terms in the exponent of the probability density function)

can be identified with the Fisher distribution (which has linear terms in the the exponent of the

probability density function). Kent et al. [46] showed also that the complex Bingham quartic (CBQ)

distribution on CP 1 can be identified with the FB5 distribution on S2 (which has linear and quadratic

terms in the the exponent of the probability density function). The complex Bingham quartic

(CBQ) interpretation of the FB5 distribution has turned out to be useful for the simulation. Two

simulation methods are proposed namely, rejection scheme with the mixture multivariate normals

envelope truncated to the unit disc and the Kent-Hamelryck method. The Kent-Hamelryck [45]

algorithm is clearly better under high concentration. If k > 3, only one method with efficiency

approximately 50% under high concentration.

In our case k = 3, the 2× 2-dimensional real symmetric matrix Ω, the anti-complex symmetric

matrix Ω(as), the complex symmetric matrix Ω(cs) and Ψ(s) reduce to the expressions (3.83), (3.84),

(3.85) and (3.86), respectively. Further, Ω⊥ becomes

Ω⊥ =
1

2

λ1 + λ2 0

0 λ1 + λ2

− 1

2

λ1 − λ2 0

0 λ2 − λ1

 =

λ2 0

0 λ1

 , (5.67)

Ψ⊥(s) reduces to

Ψ⊥(s) = −1

2

[
s

λ1 0

0 λ2

+ s2

λ1 − λ2 0

0 λ2 − λ1

]

= −1

2

λ1s
(
1 + s

)
− λ2s

2 0

0 λ2s
(
1 + s

)
− λ1s

2

 , 0 < s < 1, (5.68)
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and the concentration parameter κ ≥ 0 and the ovalness parameter 0 ≤ β ≤ κ/2 are given by

κ =
1

8
(λ1 + λ2), β =

1

16

(
λ2 − λ1

)
, (5.69)

(Kent et al. [46]). For k = 3, Table 5.5 gives some values of the simulated efficiencies with various

values of κ, β, λ1 and λ2 with fixing β < κ/2. The simulated efficiency rate under this A/R

algorithm is found satisfactory for running a loop of R functions to generate pseudo random sample

of size n = 10000 from the complex Bingham quartic (CBQ) distribution with lower and higher

concentration parameters. Overall, it is clear from the table that the Kent-Hamelryck method with

truncated double exponential envelope is more efficient than the rejection scheme with a mixture

multivariate normals envelope truncated to the unit disc.

For k = 4, Table 5.6 gives some values of the simulated efficiencies with various values of λ1,

λ2, λ3 and λ4. The simulated efficiency rate under this A/R algorithm is also found satisfactory

for generating pseudo random sample of size n = 1000 from the complex Bingham quartic (CBQ)

distribution with lower and higher concentration parameters. Overall, it is clear from the table that

the rejection scheme with a mixture multivariate normals envelope truncated to the unit disc has

efficiencies approximately 50% under high concentration.
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λ1 λ2 λ3 λ4 Simulated Efficiency Rate (MMN) S.E. (MMN)

1 0 0 0 91.1% 0.00900

1 1 0 0 89.8% 0.00957

1 1 1 0 88.6% 0.01005

10 0 0 0 86.2% 0.01091

10 10 0 0 85.4% 0.01117

10 10 10 0 82.3% 0.01204

25 0 0 0 79.1% 0.01285

25 25 0 0 75.8% 0.01354

25 25 25 0 71.5% 0.01427

50 0 0 0 68.4% 0.01470

50 50 0 0 62.1% 0.01534

50 50 50 0 57.6% 0.01563

100 0 0 0 53.7% 0.01576

100 100 0 0 47.1% 0.01578

100 100 100 0 45.2% 0.01573

Table 5.6: Simulated efficiencies rates and their standard errors for the complex Bingham quartic (CBQ) distribu-

tion/Mixture Multivariate Normals envelope in the case k = 4 with various values of λ1, λ2, λ3, λ4 and a sample of

size n = 1000.
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Chapter 6
Methods of Estimation for Torus Data

6.1 Introduction

In this chapter we review the moments of the sine model on the torus. Maximum likelihood (ML)

and pseudolikelihood (PL) estimators for the sine distribution are briefly discussed. A comparison is

given between the three bivariate sine and cosine models based on contours of the log-densities. For

each of the three models, the parameters are chosen to match any positive definite inverse covariance

matrix.

The multivariate wrapped normal has all marginals wrapped normal as well as the marginal

bivariate distributions wrapped normal, and thus has a theoretical advantage. One disadvantage

of the wrapped normal torus distribution is that it does not form an exponential family, unlike

the sine and cosine models. Another disadvantage of the bivariate wrapped normal is that if we

wrap cθ1, cθ2 instead of θ1, θ2 then the two wrapped distributions are different though the original

correlation is invariant. Furthermore, the maximum likelihood estimators of the parameters, even

for the univariate case are not computationally feasible, as is well known, and one has to resort to

selecting some moment estimators which are not clear-cut for the bivariate parameters. Instead we

calculate the moments for the wrapped normal torus distribution based on the sample variances

covariances.
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6.2 Bivariate von Mises Torus Distribution

Motivated by problems of modeling torsional angles in molecules, Singh et al. [89] proposed a

bivariate circular distribution which is a natural torus analogue of the bivariate normal distribution.

The general form is proposed by Mardia [60] and Mardia and Patrangenaru [74] but this particular

case has some attractive properties among the minimal redundancy class. Let Θ1 and Θ2 be two

circular random variables. The proposed probability density function is of the form

f(θ1, θ2) = {c(κ1, κ2,A)}−1 exp
{
κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2)

+[cos(θ1 − µ1), sin(θ1 − µ1)]A[cos(θ2 − µ2), sin(θ2 − µ2)]T
}
, (6.1)

where θ1, θ2 ∈ (−π, π] lie on the torus, a square with opposite sides identified, κ1, κ2 > 0, −π ≤ µ1,

µ2 < π, the matrix A = (aij) is 2 × 2 and c(·) is a normalization constant. This model has

eight parameters and allows for dependence between the two angles. Various submodels with five

parameters have appeared (Singh et al. [89]) to mimic the bivariate normal distribution. Three

submodels are the sine and cosine models with positive interaction, and the cosine model with

negative interaction. We will mainly concentrate on the sine model where a11 = a12 = a21 =

0, a22 = η. The sine model has the density (Singh et al. [89] and Rivest [84])

f(θ1, θ2) = {c(κ1, κ2, η)}−1 exp
{
κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2) + η sin(θ1 − µ1) sin(θ2 − µ2)

}
.(6.2)

The parameter −∞ < η <∞ is a measure of dependence between θ1 and θ2. If η = 0, then Θ1 and

Θ2 are independent with each having univariate von Mises distributions.

Singh et al. [89] obtained an expression for the normalization constant in (6.2) as

c(κ1, κ2, η) = 4π2

∞∑
m=0

 2m

m

(η
2

)2m

κ−m1 Im(κ1)κ−m2 Im(κ2). (6.3)

This distribution has a natural generalization allowing multiple modes in the marginal distributions

which is obtained by replacing by (θi−µi) by τi(θi−µi), i = 1, 2, in (6.2) where τ1 and τ2 are positive

integers (Mardia et al. [68]).

For the cosine model with positive interaction the density is given by (Mardia et al. [64] and

Mardia and Voss [73])

f(θ1, θ2) ∝ exp
{
κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2) + γ1 cos(θ1 − µ1 − θ2 − µ2)

}
. (6.4)
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For the cosine model with negative interaction the density is given by (Kent et al. [48])

f(θ1, θ2) ∝ exp
{
κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2) + γ2 cos(θ1 − µ1 + θ2 − µ2)

}
, (6.5)

where γ1 ≥ γ2 ≥ 0 are the correlation parameters. This distribution is approximately bivariate

normal when the fluctuations in the circular variables are small.

For µ1 = µ2 = 0 and under high concentration the density function of the Sine distribution in

(6.2) becomes

fsin(θ1, θ2) ∝ exp
{
κ1 cos θ1 + κ2 cos θ2 + η sin θ1 sin θ2

}
≈ exp

{
κ1

(
1− θ2

1

2

)
+ κ2

(
1− θ2

2

2

)
+ ηθ1θ2

}
,

≈ exp
(
κ1 + κ2

)
exp
{
−1

2

(
κ1θ

2
1 + κ2θ

2
2 + 2ηθ1θ2

)}
≈ c1 exp

{
−1

2

[
θ1 θ2

] κ1 −η

−η κ2

θ1

θ1

}

≈ c1 exp
(
−1

2
ΘTΣ−1

1 Θ
)
, (6.6)

since

cos θi = 1− θ2
i

2!
+
θ4
i

4!
+O(θ6

i ) ≈ 1− θ2
i

2
and sin θi = θi −

θ3
i

3!
+
θ5
i

5!
+O(θ7

i ) ≈ θi (6.7)

for i = 1, 2 up two terms approximation. For Σ1 to exist and be positive definite matrix we require

κ1 > 0, κ2 > 0 and κ1κ2 > η2 (unimodal).

The cosine model with positive interaction in (6.4) also becomes

fcos(θ1, θ2) ∝ exp
{
κ1 cos θ1 + κ2 cos θ2 + γ1 cos(θ1 − θ2)

}
≈ exp

{
κ1

(
1− θ2

1

2

)
+ κ2

(
1− θ2

2

2

)
+ γ1

(
1− (θ1 − θ2)2

2

)}
,

≈ exp
(
κ1 + κ2 + γ1

)
exp
{
−1

2

(
κ1θ

2
1 + κ2θ

2
2 + γ1(θ2

1 + θ2
2 − 2θ1θ2

)}
≈ c2 exp

{
−1

2

[(
κ1 + γ1

)
θ2

1 +
(
κ1 + γ1

)
θ2

2 − 2γ1θ1θ2

]}

≈ c2 exp

{
−1

2

[
θ1 θ2

] κ1 + γ1 −γ1

−γ1 κ2 + γ1

θ1

θ1

}

≈ c2 exp
(
−1

2
ΘTΣ−1

2 Θ
)
. (6.8)
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For Σ2 to exist and be a positive definite matrix we require κ1 + γ1 > 0, κ2 + γ1 > 0 and (κ1 +

γ1)(κ2 + γ1) > γ2
1 (Mardia et al. [68]) i.e., γ1 < κ1κ2/(κ1 + κ2) (unimodal case). So, under high

concentrations about (θ1, θ2) = (0, 0), each of the models behaves as a bivariate normal distribution

with inverse covariance matrix of the form

Σ−1
1 =

κ1 −η

−η κ2

 , Σ−1
2 =

κ1 + γ1 −γ1

−γ1 κ2 + γ1

 Σ−1
3 =

κ1 − γ2 γ2

γ2 κ2 − γ2

 . (6.9)

The geometry of the torus implies that it is not possible to get a single fully satisfactory analogue

of the bivariate normal distribution. Some interim comparison between the cosine and sine models

follow.

1. By construction, each of the sine and cosine models is symmetric, f(θ1, θ2) = f(−θ1,−θ2).

However, for each of the three models, f has a further symmetry since it is a continuous

function on the torus,

f(θ1, π) = f(θ1,−π), f(π, θ2) = f(−π, θ2).

This latter property means that an elliptical pattern in the contours of constant probability

for f will generally become distorted as (θ1, θ2) approaches the boundary of the square on

which f is defined. In particular, this distortion complicates the development of efficient

simulation algorithms using a 2-dimensional envelope since the density will not necessarily

be monotonically decreasing on the rays from the origin to the edge of the square (Kent et

al. [48]).

2. In most situations there is little difference between the sine and cosine models. Further, under

high concentration, using either model is equivalent to fitting a bivariate normal distribution

in a tangent plane.

3. For routine applications the sine model is somewhat easier to use, since it can be matched

to any positive definite matrix Σ−1, whereas the cosine models are limited to the dominated

covariance case.

4. The sine and cosine models on the bivariate torus can be easily extended to a higher dimen-

sional torus. It seems the sine model may be more suitable since the multivariate extension is

attractive (Mardia et al. [75], Mardia et al. [64] and Kent et al. [48]).
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6.2.1 Marginal and Conditional Models

In this subsection, the conditional and marginal probability densities of the random variables

(Θ1,Θ2) will be derived for the sine and cosine models in (6.2) and (6.4). When µ1 = µ2 = 0,

the densities of the sine and cosine with positive interaction, and cosine with negative interaction

models are given by

fsin(θ1, θ2) =
{
c(κ1, κ2, η)

}−1

exp
{
κ1 cos θ1 + κ2 cos θ2 + η sin θ1 sin θ2

}
,

fcosinePI(θ1, θ2) =
{
c(κ1, κ2, γ1)

}−1

exp
{
κ1 cos θ1 + κ2 cos θ2 + γ1 cos(θ1 − θ2)

}
,

fcosineNI(θ1, θ2) =
{
c(κ1, κ2, γ2)

}−1

exp
{
κ1 cos θ1 + κ2 cos θ2 + γ2 cos(θ1 + θ2)

}
, (6.10)

respectively.

Let (Θ1,Θ2) be distributed according to the probability density function of the sine distribution

in (6.10). When the fluctuations in Θ1 and Θ2 are sufficiently small, so that

cos(θi) ≈ 1− 1

2
θ2

1, sin θi = θi (i = 1, 2), (6.11)

then it follows that (Θ1,Θ2) has approximately a bivariate normal distribution with parameters

σ2
1 =

κ2

κ1κ2 − η2
, σ2

2 =
κ1

κ1κ2 − η2
, ρ =

η
√
κ1κ2

. (6.12)

For these bivariate normal parameters to be meaningful, only the condition η2 < κ1κ2.

Define new parameters α and β by κ2 = α cos β and η sin θ1 = α sin β, so that

α =
(
κ2

2 + η2 sin2 θ1

)1/2

, tan β = (η/κ2) sin θ1. (6.13)

Write α = α(θ1) and β = β(θ1) to emphasize the dependence on θ1. Then the marginal probability

density function of Θ1 for the sine model in (6.10) is given by

fsin(θ1) =

∫ π

−π
fsin(θ1, θ2) d θ2

=

∫ π

−π

{
c(κ1, κ2, η)

}−1

exp
{
κ1 cos θ1 + κ2 cos θ2 + η sin θ1 sin θ2

}
d θ2

=
{
c(κ1, κ2, η)

}−1

2πI0(α(θ1)) exp{κ1 cos θ1} (−π ≤ θ1 < π), (6.14)

where I0(·) is a modified Bessel function of the first kind of order ν = 0 (see, for example, Abramowitz

and Stegun [1], p.376, Mardia [59], p.57 and Mardia and Jupp [70], p.349). The marginal probability

density function of Θ2 is obtained in a similar way.
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Given that Θ1 = θ1, the conditional probability density function of Θ2 is

fsin(θ2/θ1) =
fsin(θ2, θ1)

fsin(θ1)

=
1

2πI0

(
α(θ1)

) exp

{
α(θ1) cos

(
θ2 − β(θ1)

)}
. (6.15)

Thus the conditional probability density function of Θ2, given that Θ1 = θ1, is a von Mises distribu-

tion with the concentration parameter α(θ1) and mean angle β(θ1). If κ2 →∞ and η →∞ so that

η/κ2 → ζ, then the concentration parameter α(θ1) of the conditional von Mises distribution tends

to infinity for each given θ1 (Singh et al. [89] and Mardia et al. [76]).

The marginal probability density function of Θ2 for the cosine model in (6.10) is also given by

fcos(θ2) =

∫ π

−π
fcos(θ1, θ2) d θ1

=

∫ 2π

0

{
c(κ1, κ2, γ1)

}−1

exp
{
κ1 cos θ1 + κ2 cos θ2 + γ1 cos(θ1 − θ2)

}
d θ1

=
{
c(κ1, κ2, γ1)

}−1

2πI0

(
α(θ2)

)
exp{κ2 cos θ2}, (6.16)

where α(θ2) =
(
κ2

1 + γ2
1 − 2κ1γ1 cos θ2

)1/2
. Further, the conditional probability density function

fcos(θ1/θ2) is a von Mises distribution with the concentration parameter α(θ2), mean angle β(θ2)

and tan β(θ2) =
(
γ1/(κ1 − γ1 cos θ2)

)
(which means that −π/2 < θ2µ < π/2).

6.2.2 Comparing Models using Log-Densities

The bivariate densities can be represented by contour plots which can be used to illustrate various

statements of comparison. However, the key features are more easily compared by plotting the log

of the density and omitting the normalizing constant. The reason for this is that the logarithm

of the exponential family does not change if we multiply it by a constant and the plots of the log

densities will be clear even in the tails. The contour plots of the joint density provide insight into

the manner in which the parameters indexes the amount of probability that concentrates along the

curve. For each of the three models, it is possible to choose the parameters to match any positive

definite inverse covariance matrix. Figures 6.1 and 6.2 plot the contours for the sine and cosine with

positive interaction log-densities and cosine with negative interaction models for κ1 = κ2 = 3 and

for a range values of η, γ1 and γ2. Figures 6.3 and Figures 6.4 illustrate the 3D perspective plots of

the three models with a range of their parameters. In comparing the three models we will note:
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(a) Changing the sign of η in the sine model causes a reflection in the axes.

(b) It is clear from the 3D perspective plots that the bimodality of the sine model occurs only if

κ1κ2 < η2.

(c) The bimodality for the cosine model with positive interaction occurs only if (κ1+γ1)(κ2+γ1) <

γ2
1 .

(d) Changing the sign of small γ1 give an approximate reflection.

(e) For small η ≈ −γ1 the two models are approximately the same.

(f) For large γ1 = −γ2 the cosine models with positive interaction is similar to that of negative

interaction.

(g) Transforming (θ1, θ2) to (θ2,−θ1) is equivalent to changing the sign of η in the sine model,

but also allows for rotations of the cosine model contour plots (which cannot be achieved by

changing γ1 (Mardia et al. [75]).

6.3 Moments and Correlations Under High Concentration

Another approach for comparing the sine and cosine models is to examine their moments. Character-

istic functions can be used to estimate the moments of the two distributions and we can numerically

compute the correlations for the cosine and sine models in order to study their behaviour in relation

to the parameters η and γ2.

Let φ be the characteristic function for the bivariate directional model and let Esin

(
cos(pθ1+qθ2)

)
and Ecos

(
cos(pθ1+qθ2) are the real parts of the characteristic function for the sine and cosine models,

respectively. When p = q = 1 the components of the real part of the first moments are of interest,

namely E
(
cos(θ1) sin(θ2)

)
, E
(
cos(θ1) cos(θ2)

)
and E

(
sin(θ1) sin(θ2)

)
.

If fsin(θ1, θ2) is the probability density function for the sine model in (6.10), and since fsin(θ1, θ2)

is reflection symmetric about x and y axes, then

E
(
cos θ1 sin θ2

)
= 0.
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Figure 6.1: Contour plots of log-densities (normalizing constant omitted) for the sine, cosine with positive interaction

and cosine with negative interaction models. Captions indicate the vector of parameters: κ1, κ2, η (Positive) for the

sine model, κ1, κ2, γ1 (Positive) for the cosine model with positive interaction model and κ1, κ2, γ2 (Positive) for

cosine with negative interaction models.
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Figure 6.2: Contour plots of log-densities (normalizing constant omitted) for the sine, cosine with positive interaction

and cosine with negative interaction models. Captions indicate the vector of parameters: κ1, κ2, η (Negative) for the

sine model, κ1, κ2, γ1 (Negative) for the cosine model with positive interaction model and κ1, κ2, γ2 (Negative) for

cosine with negative interaction models.
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Figure 6.3: 3D perspective plots of the log-densities (normalizing constant omitted) for the sine, cosine with positive

interaction and cosine with negative interaction models. Captions indicate the vector of parameters: κ1, κ2, η(Positive)

for the sine model, κ1, κ2, γ1 (Positive) for the cosine model with positive interaction model and κ1, κ2, γ2 (Positive)

for cosine with negative interaction models.
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Figure 6.4: 3D perspective plots of the log-densities (normalizing constant omitted) for the sine, cosine with positive

interaction and cosine with negative interaction models. Captions indicate the vector of parameters: κ1, κ2, η(Positive)

for the sine model, κ1, κ2, γ1 (Positive) for the cosine model with positive interaction model and κ1, κ2, γ2 (Positive)

for cosine with negative interaction models.



6.3. MOMENTS AND CORRELATIONS UNDER HIGH CONCENTRATION 139

Under high concentration

E
(
sin θ1 sin θ2

)
≈ E(θ1θ2)

=

∫ π

−π

∫ π

−π
θ1θ2 exp

{
κ1 cos θ1 + κ2 cos θ2 + η sin θ1 sin θ2

}
dθ1 dθ2

=

∫ π

−π

∫ π

−π
exp
{
κ1θ1θ2 cos θ1 + κ2θ1θ2 cos θ2 + ηθ1θ2 sin θ1 sin θ2

}
dθ1 dθ2,

which resembles covariance and

E
(
cos θ1 cos θ2

)
≈ E

[(
1− θ2

1

2

)(
1− θ2

2

2

)]

≈ E

[
1− θ2

1

2
− θ2

2

2

]
= 1− 1

2
E
(
θ2

1 + θ2
2

)
= 1− 1

2

∫ π

−π

∫ π

−π

(
θ2

1 + θ2
2

)
exp
{
κ1 cos θ1 + κ2 cos θ2 + η sin θ1 sin θ2

}
dθ1 dθ2,

which resembles the squared covariance. These expectations can be used to obtain the correlations

between θ1 and θ2 for the sine and cosine moments. It is also of interest to empirically explore

the relationship between the bivariate normal distribution and the cosine and sine models when

the data are highly concentrated. We estimate the correlation under the assumption of normality

induced by high concentrations. We compare this estimated correlation under the assumption of

normality with the explicit correlation evaluated from the distributions by integration. Under high

concentrations, Mardia et al. [75] obtained an approximate correlation between θ1 and θ2, for the

cosine model with negative interaction, as

ρcosineNI =
−γ2√

(κ1 − γ2)(κ2 − γ2)
∼= corr(sin θ1, sin θ2). (6.17)

For the sine model, Singh et al. [89] obtained the correlation as

ρsin =
η

√
κ1κ2

(6.18)

Mardia et al. [76] gave numerical comparisons between the sine and cosine models according to

the correlations between θ1 and θ2. Using some selected values of κ1 and κ2, they observed that

the correlation between cos θ1 and cos θ2 and between sin θ1 and sin θ2 were seen to be (mostly)

decreasing functions of γ2 for the cosine model, whereas for the sine model the correlation between

sin θ1 and sin θ2 was a monotonic increasing function of η and between cos θ1 and cos θ2 was always

non-negative and has a U-shaped relationship with η.



6.4. APPROACHES TO ESTIMATION 140

6.4 Approaches to Estimation

6.4.1 Maximum Likelihood Method

The usual maximum likelihood estimators (MLE) for the parameters of the sine model of zero means

in (6.10) are obtained by maximizing the likelihood function given by

{c(κ1, κ2, η)}−n exp
{
κ1

n∑
i=1

cos(θ1i) + κ2

n∑
i=1

cos(θ2i) + η

n∑
i=1

sin(θ1i) sin(θ2i)
}
. (6.19)

Mardia et al. [68] computed the maximum likelihood estimators for κ1, κ2 and η. The algorithm

may start with

κ̂1 = A−1
1 (R̄1) and κ̂2 = A−1

1 (R̄2), (6.20)

where Av(y) = Iv(y)/I0(y), Iv(·) is the Bessel function and

R̄1 =
1

n

n∑
r=1

cos θ1r and R̄2 =
1

n

n∑
r=1

cos θ2r. (6.21)

The value of η̂ is obtained from E
(
sin(θ1) sin(θ2)

)
using these values of κ̂1, κ̂2 through (6.3). The

values of κ̂2 and η̂ are used in E
(
cos(θ1)

)
to obtain new κ̂1. Using this new value of κ̂1 and the

value of η̂, the new value of κ̂2 is obtained using E
(
cos(θ2)

)
. The procedure is continued till the

convergence to the solution is achieved. They proved that the maximum likelihood estimators and

the moment estimators coincide for the parameters of the bivariate sine model.

For the maximum likelihood estimators (MLE), the standard errors are calculated from the

Hessian matrix (by taking the square roots of the diagonal elements of the inverse of the Hessian),

which is obtained numerically by the nlm estimation routine in R. The Hessian matrix H for the

Sine distribution is obtained as follows (Mardia et al. [75]). Letting g = log(f(θ1, θ2) we obtain

Gθ1 =
∂g

∂θ1

= −κ1 sin θ1 + η cos θ1 sin θ2

Gθ2 =
∂g

∂θ2

= −κ2 sin θ2 + η sin θ1 cos θ2,

Gθ1θ1 =
∂2g

∂θ1∂θ1

= −κ1 cos θ1 − η sin θ1 sin θ2,

Gθ2θ2 =
∂g

∂θ2∂θ2

= −κ2 cos θ2 − η sin θ1 cos θ2,

Gθ1θ2 = Gθ2θ1 =
∂2g

∂θ1∂θ2

= η cos θ1 cos θ2. (6.22)
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The Hessian matrix H is then given by

H =

Gθ1θ1 Gθ1θ2

Gθ1θ2 Gθ1θ2

 =

−κ1 cos θ1 − η sin θ1 sin θ2 η cos θ1 cos θ2

η cos θ1 cos θ2 −κ2 cos θ2 − η sin θ1 cos θ2.

 (6.23)

6.4.2 Maximum Pseudolikelihood Method

Define the pseudolikelihood (Besag [4]), based on a random sample of n observations of Θ = (θ1, θ2)T ,

by

PL =

p∏
j=1

n∏
1

gj(Θji|(Θ1i,Θ2i, . . . ,Θpi); q) (6.24)

where gj(·| . . . ; q) is the conditional distribution whose parameters will depend on j and q is an

unknown parameter of length r. For the sine distribution with zero means we have

PL = (2π)−2p

2∏
1

n∏
1

[
I0

(
κ

(i)
1.rest

)]−1

exp
{
κ

(i)
j.rest cos(θji)

}
(6.25)

where

κ
(i)
j.rest =

{
κ2
j +

[
η sin(θj)

]2
}1/2

. (6.26)

Parameter estimation based on the pseudo-likelihood approach proceeds by maximizing the PL in

(6.24) with respect to the p + p(p + 1)/2 = 5 unknown parameters (Mardia el. al. [68]). Here we

have 3 unknown parameters κ1, κ2 and η since we assume that µ1 = µ2 = 0.

Under high concentrations, the sine distribution is asymptotically bivariate normal with mean

0 and inverse covariance matrix Σ−1
1 as in (6.9). For the pseudo-likelihood estimators (PLE), the

standard errors are calculated from a jackknife estimate of the covariance matrix (Mardia el. al. [68]

and Mardia and Kent [71]).

Mardia et al. [69]) studied the efficiency of pseudo-likelihood method for bivariate von Mises

torus distribution. They found that the efficiency tends to unity with increasing concentrations.

Simulations support the numerical calculations obtained. With the exception of the bimodal case

studied, it is seen that the bias of the pseudolikelihood estimator is very similar to that of the

maximum likelihood estimator, and for one parameter configuration, the bias is smaller.
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6.5 Wrapped Normal Torus Distribution

6.5.1 Overview and Background

Suppose that Θ is a vector of angles following a wrapped normal torus distribution; that is,

Θj = Xj mod 2π, (6.27)

for j = 1, 2, . . . , p where X has the multivariate probability density function with zero mean vector

and p× p symmetric positive definite variance covariance matrix Σ

f(x; Σ) = (2π)−p/2|Σ|−1/2 exp
(
−1

2
xTΣ−1x

)
, x ∈ Rp. (6.28)

For a p×1 vector with integer coefficients, δ ∈ Rp, and i =
√
−1 the characteristic function φX(δ) for

the multivariate normal distribution (Mardia et al. [72], p. 74, Manley [58], p. 17 and Rencher [83],

p. 85) is given by

φX(δ) = E
[
exp(iδTX)

]
= E

[
cos(δTX)

]
+ iE

[
sin(δTX)

]
= exp

(
−1

2
δTΣδ

)
. (6.29)

The density corresponding to a p-variate wrapped normal density is given by

fw(Θ; Σ) =
∞∑
t1

∞∑
t2

. . .
∞∑
tp

f [(Θ + 2π)k; Σ] (6.30)

where the vector of angles, Θ = (θ1, θ2 . . . θp)
T ∈ [0, 2π)p and k = (k1, k2, . . . , kp)

T is set of integers

(Coles [10], Johnson and Wehrly [34]).

In the case p = 2, suppose that the random variables X1 and X2 have the bivariate normal

distribution with zero mean vector, variance-covariance matrix (σ11 = σ22 = σ2 and σ12 = σ21 = ρσ2,

say)

Σ =

 σ2 ρσ2

ρσ2 σ2

 . (6.31)

Simulation from the wrapped normal torus distribution is straightforward: Xj is simulated from

f(x; Σ) in (6.28) and then Θj formed componentwise by (6.27) and this is repeated to obtain a

sample of size n. Figures 6.5, 6.6 and 6.7 illustrate the effect of wrapping. For each figure both
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the simulated X = (x1, x2)T and Θ = (θ1, θ2)T values are shown. The aim of the inference can be

thought of as inferring the bivariate normal structure of data X plotted in each of the (a) figures,

from the corresponding wrapped data Θ, plotted in the (b) figures. This is rather more challenging

in the case of large variance and weak correlation since the original sample produce a more uniform

scatter of points in the wrapped sample from which it would be difficult to guess at the structure

in the pre-wrapped data (Coles [10]).

Figure 6.5: Simulated bivariate normal torus data with small variance σ2 = 1.0 and strong correlation ρ = 0.90 for

a sample of size n = 100. (a) before wrapping; (b) after wrapping.

Figure 6.6: Simulated bivariate normal torus data with large variance σ2 = 50 and strong correlation ρ = 0.90 for

a sample of size n = 100. (a) before wrapping; (b) after wrapping.



6.5. WRAPPED NORMAL TORUS DISTRIBUTION 144

Figure 6.7: Simulated bivariate normal torus data with large variance σ2 = 50 and weak correlation ρ = 0.50 for a

sample of size n = 100. (a) before wrapping; (b) after wrapping.

6.5.2 Moments for the Wrapped Normal Torus Distribution

One reason for choosing the wrapped normal torus distribution is that the trigonometric moments

have straightforward explicit expressions. If δ is p× 1 vector with integer coefficients, then

E
[
cos(δTΘ)

]
= exp

(
−1

2
δTΣδ

)
E
[
sin(δTΘ)

]
= 0. (6.32)

In particular, for j, k = 1, 2, . . . , p, the first order trigonometric moments are

E
[
cos(θj)

]
= exp

(
−1

2
σjj

)
= ci, say

E
[
sin(θj)

]
= 0,

E
[
cos(θj ± θk)

]
= exp

(
−1

2
(σjj ± 2σjk + σkk)

)
,

E
[
sin(θj ± θk)

]
= 0. (6.33)

Let the vector c = (c1, c2, . . . , cp)
T and write D = diag(c). Combining the two versions of the last

two equations yields (Kent and Mardia [49])

E
[
cos(θj) + cos(θk)

]
= cjck cosh(σjk) = ajk, say,

E
[
sin(θj) + sin(θk)

]
= cjck sinh(σjk) = bjk, say, (6.34)

E
[
sin(θj) + cos(θk)

]
= 0.
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where

cosh(σjk) =

(
e2σjk + 1

2eσjk

)
and sinh(σjk) =

(
e2σjk − 1

2eσjk

)
. (6.35)

With the coefficients {ajk} and {bjk} stored in the matrices

A =


a11 a12 · · · a1p

...
. . .

...
...

ap1 ap2 · · · app

 and B =


b11 b12 · · · b1p

...
. . .

...
...

bp1 bp2 · · · bpp

 . (6.36)

In matrix form the covariance matrices for the cosines and sines take the form

var(cos Θ) = DAD− ccT ,

var(sin Θ) = DBD,

cov(cos Θ, sin Θ) = 0. (6.37)

Thus Σ can be recovered from the trigonometric moments through the equation

ΣΘ = sinh−1(D−1var(sin Θ)D−1). (6.38)

Here the notation sinh−1(·) applied to a matrix that the inverse sinh function, sinh−1(u) = log(u+
√
u2 + 1, is applied to each element of the matrix (Kent and Mardia [49]).

These results suggest a method to estimate Σ from an n× p matrix of torus data.

(1) Calculate the sample first order trigonometric moments for the p angles, and rotate each angle

so that the resultant vector points towards the positive horizontal, x-axis.

(2) Calculate the sample second trigonometric moments corresponding to (6.31) and use (6.35) to

produce an estimate of ΣΘ (Kent and Mardia [49]).

If Σ is small (formally, write Σ = εΣ0 for a fixed positive definite matrix Σ0 and let ε get

small), then cj ≈ 1 for all j and ΣΘ ≈ B. Further the three p-dimensional vectors sin Θ ≈ Θ are

approximately the same as one another (treating each angle θj as a number in [−π, π], and hence

all have approximately the same covariance matrix (Kent and Mardia [49]).

The novelty in this work from Kent and Mardia [49] is to represent the first order and the

second order trigonometric moments for the p angles in matrix notation as well as to implement

this new method for assessing the efficiency with the application. Table 6.1 displays the simulated
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moment estimations for the wrapped bivariate normal torus distribution with various values of

σ11 = σ22 = σ2, ρ and n = 100. It is clear from the results that for small or large variances

and strong correlations the values of the moment estimators seem close to the true values for the

parameters of the wrapped bivariate normal torus distribution.

Parameter Truth Moment Estimation Parameter Truth Moment Estimation

σ2, ρ 1.00, 0.05 0.87, 0.03 σ2, ρ 10.0, 0.50 9.11, 0.41

σ2, ρ 1.00, 0.30 0.89, 0.21 σ2, ρ 10.0, 0.90 9.26, 0.88

σ2, ρ 10.0, 0.05 8.15, 0.03 σ2, ρ 50.0, 0.50 45.7, 0.44

σ2, ρ 10.0, 0.30 8.57, 0.19 σ2, ρ 50.0, 0.90 48.6, 0.87

Table 6.1: Simulated moment estimations for the parameters of the wrapped bivariate normal torus distribution

with a sample of size n = 100.



Chapter 7
Conclusions and Future Directions

We subdivided this thesis into three parts or major topics namely, the saddlepoint approximation,

new simulation techniques based on concave functions and estimation methods for torus data.

7.1 Saddlepoint Approximation

7.1.1 Motivation

In the first topic we considered the saddlepoint approximations. The motivation for using such

an approximation technique is that the saddlepoint approximation has been a valuable tool in

the asymptotic analysis and provides an accurate approximation to the density or the distribution

of a statistic, even for small tail probabilities and with very small sample sizes. Possibilities of

improving the accuracy of the saddlepoint approximation by determining a multiplicative correction

to normalize the approximate density to integrate to unity were considered. Another advantage of

saddlepoint methods is that the required computational times are essentially negligible compared

to simulation (Butler [9], p. 3).

7.1.2 Critical Summary

In Chapter 2 we gave the background to the saddlepoint approximation and we this technique to the

normalizing constants of some circular directional distributions such as the von Mises distribution

as well as to the normalizing constants for some suitable distributions for spherical and axial data

such as the Fisher and the real Bingham distributions.

147
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In a more general setting, it is not always possible to derive an explicit formula for the normalizing

constants of some complex shape distributions. In particular, the normalizing constant for the

complex Bingham quartic (CBQ) distribution has no known form. In Chapter 3 we explored how

the methodology introduced in Chapter 2 can be used to approximate the normalizing constant for

the complex Bingham quartic (CBQ) distribution. Two new methods were explored to evaluate this

normalizing constant based on the saddlepoint approximations of the Bingham densities namely, the

Integrated Saddlepoint (ISP) approximation and the Saddlepoint-Integration (SPI) approximation.

Calculating the normalizing constant for the CBQ distribution is based on numerical methods of

quadrature.

7.1.3 Future Work

One notable drawback of numerical quadrature is the need to pre-compute (or look up) the requisite

weights and nodes. The uniform nodes are not a suitable choice to compute the integrand func-

tion for the normalizing constant of the complex Bingham quartic (CBQ) distribution numerically

especially under high concentrations. Future work could involve a saddlepoint approximation for

the normalizing constant of the complex Bingham quartic (CBQ) distribution using other choices

of nodes and weights such as abscissas of the Legendre polynomials and weights depending upon

the Legendre polynomials of Gauss-Legendre quadrature method.

7.2 Simulation Techniques

7.2.1 Motivation and Limitation

In the second major topic we attempted to find more efficient simulation methods for sampling

from some directional and shape models. Rejection schemes based on concave inequalities are both

simple to implement and more reliable. However, the concave inequalities are limited to a critical

number of directional models.

7.2.2 Critical Summary

In Chapter 4 we first reviewed the general A/R simulation algorithm. Secondly a general class

of inequalities was given based on concave functions. These inequalities were illustrated for the
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multivariate normal distribution in Rp by finding two envelopes, that is the multivariate Cauchy

and the multivariate Bilateral exponential distributions. An inequality similar to that was used to

show that the angular central Gaussian (ACG) density can be used as an envelope for the Bingham

density. The Bingham distribution on S3 was identified with the matrix Fisher distribution on

SO(3). Hence the method of simulation from Bingham distribution analytically gave a method for

simulating the matrix Fisher distribution.

The work in Chapter 5 on simulation was carried out to introduce new A/R simulation methods

to generate random samples from the von Mises distribution with a Bingham envelope, the Fisher

distribution with a Bingham envelope and also the Fisher-Bingham distribution with a Bingham en-

velope. We also proposed an acceptance-rejection simulation algorithm from the complex Bingham

quartic (CBQ) distribution. The problem of simulating from this complex shape distribution re-

duced to simulation from a mixture of two standard multivariate normal distributions with sensible

efficiency.

7.2.3 Future Work

Future work could be done to investigate new simulation methods for the multivariate directional

distributions on higher dimension manifold spaces. In particular, distributions on Cartesian products

of d copies of spheres Sp−1
d , say, such as the Fisher-Bingham distribution on Sp−1

d .

7.3 Estimation Methods for Torus Data

7.3.1 Motivation

In the third major topic we attempted to find a new estimation method for the parameters of the

wrapped normal torus distribution based on the sample variance-covariances. One reason of choosing

the wrapped normal torus distribution is that the trigonometric moments have straightforward

explicit expressions.

7.3.2 Critical Summary

In Chapter 6 we considered a review on the sine and cosine bivariate distributions on torus. A

comparison was given between three bivariate sine and cosine models based on the contours of the
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log-densities. For the wrapped normal torus distribution we developed a new method to estimate

the parameters based on the sample sine and cosine moments.

7.3.3 Future Work

Future work could involve a study of the efficiency of the method of sine-cosine moments for the

wrapped normal torus distribution compared to other methods such as the maximum likelihood

estimators.



Appendix A
Appendix A

A.1 R Functions for Simulating Bingham Distribution us-

ing ACG Envelope

racg=function(n,PhiI) {

# simulate n q-vectors from the angular central gaussian distribution

# by simulating from N_p(0, Sigma) and projecting onto unit sphere

# PhiI -- inverse covariance matrix, assumed to be symmetric and positive definite

if(length(PhiI)==1) break("PhiI must have dimension at least 2, as vector or matrix")

else if(is.vector(PhiI)) Sigmah=diag(sqrt(1/PhiI))

ee=eigen(PhiI); eval=ee$values; evec=ee$vectors

Sigmah=evec%*%diag(sqrt(1/eval))%*%t(evec)

q=nrow(PhiI)

Y=matrix(rnorm(q*nsim),ncol=q)

Y=Y%*%Sigmah

size=sqrt(as.vector((Y^2)%*%rep(1,q)))

Y=Y*(matrix(1/size,nrow=n,ncol=q)) # Simulation from ACG Density

Y

}

151
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rbing=function(n,A) {

# simulate n q-vectors from the Bingham distribution with minus concentration

# matrix A (smallest eigenvalue assumed equal to 0)

if(is.vector(A)) A=diag(A)

q=nrow(A); PhiI=diag(q)+2*b^(-1)*A; b = (q + 1)/2; bound=(q/b)^(q/2)*exp(-(q-b)/2)

accept=0; Yout=matrix(0,nrow=0,ncol=q); rat1=0; nsimtot=0; maxrat=0

while(accept&nsim) {

n=nsim-accept; nsimtot=nsimtot+n

Y=racg(n,PhiI)

U=runif(n)

qf1=(Y*(Y%*%A))%*%rep(1,q); qf2=(Y*(Y%*% PhiI))%*%rep(1,q)

ratio=exp(-qf1)*(qf2^(q/2))/bound; rat1=rat1+sum(ratio&gt)

maxrat=max(maxrat,max(ratio))

ar=(U&ratio); Yout=rbind(Yout,Y[ar,]); accept=nrow(Yout)

}

cat("rat1:\n")

cat("maxrat:\n")

cat("nsimtot = tot number of simulations:\n")

print(apply(Yout^2,2,mean))

Yout

}

rbingham.ver3=function(nsim=1,alpha,verbose=FALSE) {

# compute acceptance ratio for Bingham simulations in R^q.

alpha=c(alpha,0); q=length(alpha)

beta=1+2*alpha

Sigv=1/beta; Sigvh=1/sqrt(beta)

Y=matrix(rnorm(n*q),ncol=q); U=runif(nsim)

Y=Y*(matrix(1,nrow=n,ncol=1)%*%t(Sigvh))

size=sqrt(as.vector((Y^2)%*%rep(1,q)))

Y=Y*(matrix(1/size,nrow=n,ncol=q)) # Simulation from ACG Density

qf1=(Y^2)%*%alpha; qf2=(Y^2)%*%beta
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bound=exp(-qf1+(q-1)/2)*(qf2/q)^(q/2)

ar=bound

if(verbose==TRUE) {

print(alpha)

print(beta)

print(Sigv)

print(Sigvh)

print(cbind(Y,Y^2%*%rep(1,p)))

print(cbind(qf1,qf2,exp(-qf1),qf2^(-q/2),bound))

print(sum(bound & gt,1))

}

sum(ar)

}

A.2 R Functions for Best-Fisher algorithm of the von Mises

Distribution

rvm <- function (n, mean, k)

{

vm <- c(1:n)

a <- 1 + (1 + 4 * (k^2))^0.5

b <- (a - (2 * a)^0.5)/(2 * k)

r <- (1 + b^2)/(2 * b)

obs <- 1

while (obs <= n) {

U1 <- runif(1, 0, 1)

z <- cos(pi * U1)

f <- (1 + r * z)/(r + z)

c <- k * (r - f)

U2 <- runif(1, 0, 1)
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if (c * (2 - c) - U2 > 0) {

U3 <- runif(1, 0, 1)

vm[obs] <- sign(U3 - 0.5) * acos(f) + mean

vm[obs] <- vm[obs]%%(2 * pi)

obs <- obs + 1

}

else {

if (log(c/U2) + 1 - c >= 0) {

U3 <- runif(1, 0, 1)

vm[obs] <- sign(U3 - 0.5) * acos(f) + mean

vm[obs] <- vm[obs]%%(2 * pi)

obs <- obs + 1

}

}

}

vm

}

Best.Fisher.efficiency=function(kappa) {

# analytically compute Best-Fisher efficiency

tau=1+sqrt(1+4*kappa^2); rho=(tau-sqrt(2*tau))/(2*kappa)

kr2=2*rho/kappa; omr2=1-rho^2; opr2=1+rho^2; I0=besselI(kappa,0)

M=(kr2*exp(opr2/kr2-1))/(omr2*I0); Efficiency = 1/M

cbind(kappa,tau,rho,I0,M, Efficiency)

}

A.3 MATLAB Functions for Simulating von Mises-Fisher

Distribution

The MATLAB-implemented functions for simulation from VMF distribution and plotting the sample

data on a sphere according to Wood’s approach are given as follows:
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function a=vmises3rnd(n,k)

% Generates N directions with spherical von Mises-Fisher distribution (m = 3)

% around the North pole, with concentration K.

% The data matrix A is in standard format.

%

if nargin~=2

error(’Must have two arguments’);

end

a=zeros(n,2);

if k<=0

error(’invalid k.’);

else

b=(-2*k+sqrt(4*k^2+4))/2;

x0=(1-b)/(1+b);

c=k*x0+2*log(1-x0^2);

for i=1:n

z=betarnd(1,1); u=rand(1); w=(1-(1+b)*z)/(1-(1-b)*z);

while k*w+2*log(1-x0*w)-c < log(u)

z=betarnd(1,1); u=rand(1); w=(1-(1+b)*z)/(1-(1-b)*z);

end

v=rand(1,2); v=[1,1]-2*v;

v=sqrt(1-w^2)*v;

[a(i,1),a(i,2),r]=cart2sph(v(1,1),v(1,2),w);

end

a=a*180/pi; a=convlat(a); a=convazi(a);

end

function as=convazi(a)

% Converts azimuth data A in [-180, 180]
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% to longitude in [0, 360]

%

n=size(a,1); as=a;

for i=1:n

if as(i,1)<0

as(i,1)=360+as(i,1);

end

end

function as=convlat(a)

% Converts latitude data A(:,2) in [-90, 90]

% to co-latitude in [0, 180] and vice-versa.

%

n=size(a,1); as=a;

for i=1:n

as(i,2)=90-as(i,2);

end

function polar3d(azi,elev)

% POLAR3D(AZI,ELEV) plots spherical data on the unitary sphere.

% using polar coordinates AZImuth E [0,360[ and ELEVation E [-90, 90].

%

% POLAR3D(COORD) plots spherical data on the unitary sphere

% using polar coordinates given by COORD. COORD is a matrix with

% two columns with the following meaning:

% - COORD(:,1) are the longitudes E [0,360[.

% - COORD(:,2) are the colatitudes E [0,180].

%

% Creates toggle buttons for picture rotation and axes labeling.

%
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if (nargin == 1)

if size(azi,2) ~= 2

error(’Input argument must be a 2-column matrix’);

end

elev= 90-azi(:,2);

azi= azi(:,1);

elseif nargin == 2

if isstr(azi)

polar3d_call(azi,elev);

return;

end

else

error(’Requires 1 or 2 input arguments.’)

end

if isstr(azi) | isstr(elev)

error(’Input arguments must be numeric.’);

end

if ~ishold

newplot;

end

h= gcf;

p=get(h, ’position’);

p=[p(1) p(2)+p(4)-p(3) p(3) p(3)];

set(h, ’position’,p);

% define equator % 101 points %

th = (0:100)’/100*2*pi;

phi= zeros(size(th));

[xequ, yequ, zequ]= sph2cart(th,phi,1);

equ=[xequ yequ zequ];



A.3. MATLAB FUNCTIONS FOR SIMULATING VON MISES-FISHER DISTRIBUTION 158

% define meridian % 101 points %

th= [zeros(1,50) ones(1,51)*pi]’;

phi= [(-25:25)/50*pi (24:-1:-25)/50*pi]’;

[xmer, ymer, zmer]= sph2cart(th,phi,1);

mer=[xmer ymer zmer];

% define second meridian % 101 points %

th= [-ones(1,50) ones(1,51)]’*pi/2;

phi= [(-25:25)/50*pi (24:-1:-25)/50*pi]’;

[xmer2, ymer2, zmer2]= sph2cart(th,phi,1);

mer2=[xmer2 ymer2 zmer2];

% Conversion from degrees to radians

azi= azi*pi/180;

elev= elev*pi/180;

% transform data to Cartesian coordinates.

[x,y,z]= sph2cart(azi,elev,1);

data=[x(:) y(:) z(:)];

% set view to 3-D and save data as userdata in current axes

view(3);

ud.equ=equ; ud.mer=mer; ud.mer2=mer2; ud.data=data;

set(gca,’userdata’,ud);

% create togglebutton for rotation, if don’t exist

ui= findobj(gcf,’type’,’uicontrol’,’tag’,’rotpol3’);

if isempty(ui)

ui=uicontrol(’units’,’normalized’, ’position’, [0.90 0.90 0.05 0.05], ...

’style’,’togglebutton’, ’callback’, ’polar3d(’’button’’,gcbo)’, ...

’tag’,’rotpol3’,’String’,’R3D’);

end
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% create togglebutton to display axes-labels, if don’t exist

ui= findobj(gcf,’type’,’uicontrol’,’tag’,’labelpol3’);

if isempty(ui)

ui=uicontrol(’units’,’normalized’, ’position’, [0.90 0.84 0.05 0.05], ...

’style’,’togglebutton’, ’String’,’Label’,’tag’,’labelpol3’, ...

’callback’, ’polar3d(’’label’’,gcbo)’);

end

% draw data

polar3d_draw;

return;

function polar3d_draw()

% sub function to draw the plot

% define color to draw ALL objects

col= ’k’;

% get data from userdata of current axes

ud= get(gca, ’userdata’);

% based on view matrix get points in front and back of "monitor"

aa= allchild(gcf);

a= findobj(aa,’flat’,’type’, ’axes’, ’tag’, ’rotaObj’);

% get current view transformation matrix

if ~isempty(a)

vv=get(a,’view’);

else

vv=get(gca,’view’);

end
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v=(vv-[90 0])*pi/180;

[x,y,z]=sph2cart(v(1),v(2),2);

nn=[x y z]’;

d=ud.equ*nn;

ind=find(d>=0);

ind=polar3d_ind(ind);

plot3(ud.equ(ind,1),ud.equ(ind,2),ud.equ(ind,3),col)

hold on

ind=find(d<0);

ind=polar3d_ind(ind);

plot3(ud.equ(ind,1),ud.equ(ind,2),ud.equ(ind,3),[col ’.’],’markersize’,1)

d=ud.mer*nn;

ind=find(d>=0);

ind=polar3d_ind(ind);

plot3(ud.mer(ind,1),ud.mer(ind,2),ud.mer(ind,3),col)

ind=find(d<0);

ind=polar3d_ind(ind);

plot3(ud.mer(ind,1),ud.mer(ind,2),ud.mer(ind,3),[col ’.’],’markersize’,1)

d=ud.mer2*nn;

ind=find(d>=0);

ind=polar3d_ind(ind);

plot3(ud.mer2(ind,1),ud.mer2(ind,2),ud.mer2(ind,3),col)

ind=find(d<0);

ind=polar3d_ind(ind);

plot3(ud.mer2(ind,1),ud.mer2(ind,2),ud.mer2(ind,3),[col ’.’],’markersize’,1)

%countour of the sphere

t=viewmtx(vv(1),vv(2));
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d=inv(t)*[ud.equ(:,1)’; ud.equ(:,2)’; zeros(2, size(ud.equ,1))];

plot3(d(1,:),d(2,:),d(3,:), col)

d=ud.data*nn;

ind=find(d>=0);

h=plot3(ud.data(ind,1),ud.data(ind,2),ud.data(ind,3),[col ’o’]);

ind=find(d<0);

plot3(ud.data(ind,1),ud.data(ind,2),ud.data(ind,3),[col ’o’]);

set(h,’markerfacecolor’,get(h,’color’));

%draw axes

plot3([0 1.15 nan 0 0 nan 0 0],[0 0 nan 0 1.15 nan 0 0], [0 0 nan 0 0 nan 0 1.15])

[x,y,z]=cylinder(1:-1:0,20);

x=x/40; y=y/40; z=z/10;

surface(1.15+z,y,x,zeros(2,21,3));

surface(x,1.15+z,y,zeros(2,21,3));

surface(x,y,1.15+z,zeros(2,21,3));

a= findobj(aa,’flat’,’type’, ’uicontrol’, ’tag’, ’labelpol3’);

polar3d(’label’,a);

hold off;

axis([-1.1 1.1 -1.1 1.1 -1.1 1.1]), axis off;

set(gca,’dataaspectratio’,[1 1 1]);

set(gca, ’view’, vv);

set(gca, ’userdata’,ud);

function polar3d_call(com, handl)

% Processing callback from rotate button

switch (com)

case ’button’

if get(handl,’value’)

rotate3d on;

fig=gcbf;
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set(fig,’WindowButtonUpFcn’, ...

[get(fig,’WindowButtonUpFcn’) ’; polar3d(’’rot’’,gcbf)’])

s=which(’scribefiglisten’);

if ~isempty(s)

scribefiglisten(gcbf,’off’);

end

else

rotate3d off;

end

case ’rot’

polar3d_draw;

case ’label’

h= findobj(gca,’type’, ’text’, ’tag’, ’xyzlabel’);

if (get(handl,’value’)==get(handl,’max’)) % show axis labels

if isempty(h) % create labels

h(1)=text(0,1.40,0,’Y’,’HorizontalAlignment’,’center’,’tag’,’xyzlabel’);

h(2)=text(1.40,0,0,’X’,’HorizontalAlignment’,’center’,’tag’,’xyzlabel’);

h(3)=text(0,0,1.40,’Z’,’HorizontalAlignment’,’center’,’tag’,’xyzlabel’);

end

set(h,’visible’,’on’);

else % hide axis labels

if ~isempty(h)

set(h,’visible’,’off’);

end

end

otherwise

disp(’Command unknown’);

end

function ind2=polar3d_ind(ind)

% Reordena indices
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dind= diff(ind);

i= find(dind > 1);

if ~isempty(i)

ind2=ind([(i+1):length(ind) 1:i]);

else

ind2=ind;

end

A.4 Evaluate E
(
cos θ1 sin θ2

)
= 0 for the Bivariate Sine Dis-

tribution

If fsin(θ1, θ2) is the probability density function for the sine model in (6.11) then

E
(
cos θ1 sin θ2

)
=

∫ π

−π

∫ π

−π
cos θ1 sin θ2 exp

{
κ1 cos θ1 + κ2 cos θ2 + η sin θ1 sin θ2

}
dθ1 dθ2

=

∫ π

0

∫ π

0

cos θ1 sin θ2 exp
{
κ1 cos θ1 + κ2 cos θ2 + η sin θ1 sin θ2

}
dθ1 dθ2

+

∫ π

0

∫ 0

−π
cos θ1 sin θ2 exp

{
κ1 cos θ1 + κ2 cos θ2 + η sin θ1 sin θ2

}
dθ1 dθ2

+

∫ 0

−π

∫ π

0

cos θ1 sin θ2 exp
{
κ1 cos θ1 + κ2 cos θ2 + η sin θ1 sin θ2

}
dθ1 dθ2

+

∫ 0

−π

∫ 0

−π
cos θ1 sin θ2 exp

{
κ1 cos θ1 + κ2 cos θ2 + η sin θ1 sin θ2

}
dθ1 dθ2,

since fsin(θ1, θ2) is reflection symmetric about x and y axes. If we change the circular variable θ1 to

−θ1, we get ∫ π

0

∫ π

0

cos θ1 sin θ2 exp
{
κ1 cos θ1 + κ2 cos θ2 + η sin θ1 sin θ2

}
dθ1 dθ2

=

∫ π

0

∫ π

0

− cos θ1 sin θ2 exp
{
κ1 cos θ1 + κ2 cos θ2 − η sin θ1 sin θ2

}
dθ1 dθ2.

If we change the circular variable θ2 to −θ2, we get∫ 0

−π

∫ π

0

cos θ1 sin θ2 exp
{
κ1 cos θ1 + κ2 cos θ2 + η sin θ1 sin θ2

}
dθ1 dθ2

=

∫ π

0

∫ π

0

cos θ1 sin θ2 exp
{
κ1 cos θ1 + κ2 cos θ2 − η sin θ1 sin θ2

}
dθ1 dθ2.
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If we change both the circular variable (θ1, θ2) to (θ1,−θ2), we get∫ 0

−π

∫ 0

−π
cos θ1 sin θ2 exp

{
κ1 cos θ1 + κ2 cos θ2 + η sin θ1 sin θ2

}
dθ1 dθ2

=

∫ π

0

∫ π

0

− cos θ1 sin θ2 exp
{
κ1 cos θ1 + κ2 cos θ2 + η sin θ1 sin θ2

}
dθ1 dθ2.

Thus, the sum of the four integrals gives

E
(
cos θ1 sin θ2

)
= 0.
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