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ABSTRACT 

 

It is widely acknowledged that the alteration of landscape structure affects the provision of 

ecosystem services. Many studies have been conducted to simulate land cover changes based 

on scenarios and to assess the impact of changes in the environment using modelling. However, 

the assessments of how land cover changes influence streamflow regimes are still lacking. This 

research aims to investigate potential landscape structure scenarios of Ci Kapundung and Ci 

Sangkuy upper water catchment areas. The two watersheds are located in Bandung Basin, Java 

Island, Indonesia. This thesis addresses the ongoing needs of comparative studies on landscape 

planning to support ecosystem services using sites with different biophysical environment.  

An integrated Cellular Automata-Markov (CA-Markov) model was used in this research to 

simulate the land cover change and to project the future land cover compositions and 

distributions based on four scenarios (e.g. Status Quo, existing policy-based scenario, ecological 

design-based scenario, and Backcasting scenario). The model used land cover maps, which 

have been developed from the multi-resolution of satellite imagery. Although CA-Markov models 

have been broadly used to simulate urban growth, the applications to model forest cover are 

still rare. Moving average analysis was conducted to assess the impact of land cover change to 

flood regulation. The CA-Markov model was coupled with the MIKE SHE hydrologic model to 

assess the flow metric responses across the four future development scenarios and to 

investigate the types of vegetation that can improve flood regulation.  

In this research, potential approaches in the land cover map development, the land change 

modelling, and the hydrologic modelling have been evaluated through iterative processes. The 

outcomes from the three iterations of the map development process show that the backdating 

and updating procedure can mitigate the data gaps in satellite imagery caused by continuous 

cloud coverage. It is argued that different methods chosen and assumptions made during the 

process affect the map accuracies. The results of the land change modelling suggest that ‘the 

likelihood of land cover change’ is the most influential driver of land cover alteration in the study 

areas. The problems of mixed pixels in the satellite imagery are prominent, contributing to 

uncertainty in land change modelling.  

The results from the land cover change and moving average analyses indicate that the 

increasing trend of annual Ci Kapundung River discharge (2001-2017) was more influenced by 

the land cover change rather than the precipitation trend. On the other hand, the declining trend 

of Ci Sangkuy River discharge (2001-2017) was caused by the increasing percentage of forest 

cover and the decreasing precipitation rates in 16 years.  
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The results from iterative MIKE SHE modelling demonstrate how the compositions and 

distributions of land cover in the two study areas affect the river discharges and overland flow. 

Scenario 4 (Backcasting scenario) in the first case study area has the lowest peak discharge 

among all scenarios in spite of higher accumulated surface runoff than scenario 1 (Status Quo) 

and scenario 3 (ecological design-based scenario). On the other hand, scenario 2 in the second 

case study area generates the least volume of surface runoff and accumulated overland outflow 

compared with other scenarios. It is argued that this result is due to the higher percentage of 

areas covered with conifers and mixed vegetation on clayey soil.  

The results from the vegetation analysis using 64 hypothetical catchments confirm that runoff 

generation process is not only affected by the plant characteristics (e.g. canopy interception) 

but also by the rainfall trend, slope gradients and soil types. In general, overland outflow from 

the catchments with clay soil is higher than the outflow from other scenarios with different soil. 

It is also found that the catchments covered by conifers on four soil types generate the lowest 

volume of overland flow under low-intensity rainfall. The simulated overland flow is slightly lower 

than the outflow from the catchments with mixed vegetation. This analysis also has shown that 

conifers on clay, silty loam, and loam, and mixed vegetation on sandy loam, generate the lowest 

volume of runoff on both slope gradients under a continuous heavy rainfall (100 mm/day).  

This study offers plausible approaches to integrate hybrid data sources in the land change and 

hydrologic models, by mitigating the data gaps in satellite imagery and the limited spatial data, 

which is required by the two models. The research discusses how models provide opportunities 

for researchers and practitioners to assess the effects of landscape planning in a water 

catchment area to flooding.  
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Chapter 1 Introduction 

The concept of ecosystem services has become a research focus that is related to biodiversity 

and an environmental context, as well as ecological processes and human activities (Bennett et 

al., 2015; Chaudhary et al., 2015; Abson et al., 2014). According to the Millennium Ecosystem 

Assessment (2005), the term ‘ecosystem services’ is defined as “the benefits ecosystem 

provide to human wellbeing” (p.V), and is divided into four categories (e.g. supporting, 

provisioning, regulating, and cultural services). This research is focused on the flood regulation 

service provided by watershed ecosystems. According to Stürck et al. (2014), ‘flood regulation’ 

refers to the ecosystem service to reduce flood risk prompted by rainfall events with a high 

precipitation level. 

It is argued that landscape structure affects the provision of ecosystem services. Landscape 

structure and ecological processes generate a capacity for ecosystems to provide services 

(Kangas et al., 2018). Landscape structure, which is described as “the spatial relationships 

among distinctive ecosystems or element present” (Forman & Godron, 1986 p.11), can be 

altered by natural processes and human activities (Sohel, Mukul, & Burkhard, 2015; Forman, 

1995). Extensive agriculture practices in newly cleared forests and the massive development of 

new settlements in riparian areas are some examples of anthropogenic activities which change 

the landscape structure and have become a threat to the sustainability of ecosystem services. 

However, it cannot be denied that high demand for new settlement areas and agricultural land 

farms has been a prevalent issue for a local government land-use planning.  

This research aims to investigate potential landscape structure scenarios of two upper water 

catchment areas1 in Bandung Basin, Indonesia. The objectives of this study are to simulate land 

cover changes using a land change model, to assess the changes on flood regulation using a 

hydrologic model, and to determine the types of vegetation that can improve flood regulation in 

each upper water catchment area. 

 

1.1 Research background 

Bandung Basin is a lacustrine plain in the Ci Tarum watershed in West Java Province. Among all 

provinces in Indonesia, West Java is considered to be the most susceptible province to drought 

and flood events during El Nino and La Nina respectively (the Directorate of Plant Protection 

2000 cited in Boer et al., 2012). The Bandung Basin covers an area of 338,394 hectares and 

is surrounded by mountains and hills where nine protected areas are located (Figure 1-1).   

                                                      
1 Chow, Maidment, & Mays (1988) define the term catchment or watershed as “the area of land draining into a 

stream at a given location”. 
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Figure 1-1 Bandung Basin in the West Java province. Inset map shows the location of West Java in 

Indonesia (Indonesia and province maps from BIG (Badan Informasi Geospasial/ Indonesia Geospatial 

Agency), the Ministry of Home Affairs, Ministry of Foreign Affairs, Ministry of Defence, Ministry of 

Maritime Affairs and Fisheries, DITTOP TNI-AD, DISSURPOTRUD TNI-AU, and DISHIDROS TNI-AL. Source 

of background image: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, 

Aerogrid, IGN, and the GIS User Community) 

Floods which occur in the Bandung Basin are affected by the regulating services degradation of 

the water catchment areas and heavy sedimentation in its main rivers. Natural landscape 

fragmentation in the water catchment areas derives from the high demand for new settlement 

and agricultural land farms which prompts the degradation of ecosystem services to accelerate. 

According to Haryanto et al. (2007), runoff coefficients for all water catchment areas in Bandung 

Basin were increased over the period 1983-2002 and contributed to the occurrence of floods. 

The floods were affected by the land-use changes in the basin from permeable to impervious 

surfaces; the forest area was reduced by 21.89% while the urban area increased by 6.36% 

during the same period. 

The occurrence of flood events in Bandung Basin has been recorded since the beginning of the 

20th century. Newspaper archives (e.g. Bataviaasch Nieusblad, Het Nieuws van den dag, 

Arnhemsche Courant, Provinciale Overijsselsche en Zwolsche Courant, De vrije pers, Java-bode, 

Pikiran Rakyat, and Kompas) from 1916 to 2015 described flood events in various parts of 

Bandung city and Bandung regency caused by the overflowing of the Ci Kapundung, Ci Tarik, 

and Ci Tarum Rivers. In addition, a report from BNPB (Badan Nasional Penanggulangan 

Bencana/ Indonesian National Board for Disaster Management) showed that at least 13 flood 

events occurred in Bandung Basin in 2014-2015.  

A river improvement project has been proposed and implemented in the Bandung Basin by JICA 

(Japan International Cooperation Agency) to increase the flow capacity of Ci Tarum River in 

1987-2010. After the first two stages of the project (1987-2007), the inundated areas during 
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the major floods were reported as decreasing, compared with the flooded areas in 1986. 

According to the data from JICA (2010), the total flooded area in 1986 was 71 km2, whereas the 

inundated areas in 2005, 2006, and 2007 decreased to 22.1 km2, 25.2 km2, and 32.6 km2 

respectively. However, although a river improvement project has been conducted, the floods still 

occur in the area due to the heavy sedimentation and extreme runoff from the upper catchment 

areas in the basin (JICA, 2010). Therefore, the proposed scenarios of landscape structure, which 

can contribute to minimising the runoff to the main rivers in the basin, are required.  

This study assesses landscape structure and the provision of flood regulation from two case 

studies in the Bandung Basin. The two case studies are located in the Ci Kapundung and the Ci 

Sangkuy upper water catchment areas. The watersheds encompass areas of 102.86 sq km and 

204.99 sq km and are situated in the northern and southern parts of the basin respectively. Ci 

Kapundung is the fastest degrading catchment area, and it has the highest runoff coefficient 

among all the catchment areas in the Bandung Basin in 1983-2002 (Haryanto, Herwanto, & 

Kendarto, 2007). On the other hand, Ci Sangkuy River has high fluctuation in terms of the 

maximum and minimum discharge, high rates of erosion (182 ton/Ha/year) and sedimentation 

in Saguling reservoir (3.02 – 4.32 mil m3/year) (Sarminingsih 2007 cited in Subarna 2015).  

Both case study areas have different landscape scales and depict distinctive environmental 

settings. The southern part of the Ci Kapundung upper water catchment area is located in 

Bandung city. New settlements and tourism facilities were mostly built in the central part of the 

watershed in recent years, whereas the eastern part of the area is conserved as a protected 

area (i.e. Taman Hutan Raya2 Ir. H. Djuanda). On the other hand, Ci Sangkuy watershed is 

located in a rural area. The landscapes are predominantly covered by agricultural areas, 

settlements, and forests. There is also a protected area (i.e. Cagar Alam3 Tilu Mt.) in this upper 

water catchment area, which is located in the western part of the area.  

Previous studies have been conducted to assess the impact of land-use changes on the runoff 

generation process in different catchment areas in Indonesia. These studies analysed the 

influences of land-use changes on the magnitude of the river and the runoff in the Way Kuala 

Garuntang water catchment area, Bandar Lampung (Yuniarti, 2013), and the Kali Gata water 

catchment area, Surakarta (Sudarto, 2009), as well as in Jakarta (Wiryawan, 2017). Other 

studies were conducted in the upper Ci Tarum watershed (Lasco & Boer 2006; Djuwansah 

2009; Mulyadi 2010; Adrionita 2011; Tommi 2011; Wahdani 2011; Hidayat et al. 2013), the 

Ciwidey watershed (Putri, 2016), the Ci Sangkuy watershed (Subarna, 2015), the upper Citanduy 

watershed (Karim, 2014), the Bandung Regency (Warmerdam, 2014), and the Cipopokol water 

catchment area, the Bogor Regency (Arini et al., 2007) using hydrologic models to predict the 

                                                      
2 The term Taman Hutan Raya is equal to category V of protected area (Protected Landscape/Seascape), according 

to IUCN (International Union for Conservation of Nature) 
3 The term Cagar Alam is equal to category Ia of protected areas which have the highest protection among all types 

of protected area. 
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watershed hydrological conditions. However, these studies did not specify particular types of 

vegetation which could reduce the runoff, or their potential composition and spatial distribution 

in each case study. Therefore, the study of vegetation characteristics in Indonesia, which could 

benefit flood regulation on a watershed scale, is still needed. In particular, there is a need to 

assess the impact of land-use changes on the hydrological process (DeFries & Eshleman, 2004 

cited in Amatya et al., 2013).  

 

1.2 Scope of the thesis 

This research project was conducted within the context of landscape ecology and ecosystem 

services discourse (Figure 1-2). Within the broader study of landscape ecology, this thesis 

focuses on the assessment of landscape structure and change (Forman & Godron, 1986). 

Whereas in the concept of ecosystem services, this study specifically analyses the provision of 

flood regulation, as part of regulating services in water catchment areas.  

 

Figure 1-2 Scope of the thesis (the diagram was created based on literature review: 1Forman (1986); 
2Millenium Ecosystem Assessment (2005); 3Forman (1995); 4La Notte et al. (2017); 5Peterson et al. 

(2003); 6Refsgaard & Storm (1996), Verburg et al. (2013), Vliet et al. (2016); 7Turner (2013); 8Brown et 

al. (2014))  
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Land change and hydrologic models were used to explore potential future landscape structure 

scenarios which aim to maintain the sustainability of flood regulation. Scenarios are described 

as “hypothetical results of events which are designed to highlight the consequences of certain 

decisions” (Rotmans et al. 2000 cited in Rosenberg et al. 2014 p.2). The assessment of factors 

which influence the sustainability of ecosystem services is expected to contribute to landscape 

ecology discourse, as suggested by Turner et al. (2013). In this context, the sustainability 

concept refers to the state of ecological integrity and the availability of resources to meet basic 

human needs (Forman, 1995).  

The term landscape structure can also be defined as a landscape pattern, which is determined 

by various factors, including the arrangement and distribution of landscape elements (Walz, 

2011). In this research project, the physical surface materials (land cover) were identified and 

mapped as a spatial unit using remote sensing, GIS (Geographic Information Systems), and 

auxiliary data (Figure 1-3).  

 

 

Figure 1-3 The assessment of landscape structure in this research (Sources: 1Walz (2011); 2Forman 

(1986); 3Fisher, Comber, & Wadsworth (2005); 4Lillesand, Kiefer, & Chipman (2008)) 
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1.3 Research questions  

This research was conducted in response to the following questions: 

(1) How does the land cover alteration in the Ci Kapundung and Ci Sangkuy upper water 

catchment areas affect flood regulation in the Bandung Basin? 

Ci Kapundung and Ci Sangkuy upper water catchment areas have different biophysical 

characteristics and scales. The biophysical characteristics include the land cover composition 

and distribution in the catchments, geomorphology, hydrology, and the geology of the sites. The 

first research question specifically assesses the effects of land cover alteration in both case 

study areas on flood regulation in Bandung Basin.  

(2) What are the most effective scenarios of landscape structure for the two upper water 

catchment areas which can benefit flood regulation? 

This research assesses the potential scenarios of landscape structure (i.e. land cover 

composition and spatial distribution, given the particular types of soil, the geomorphology and 

geology of the case study areas, and the river networks). Assumptions and uncertainties in the 

development of land change scenarios, land change simulations, and the parameters for 

hydrologic simulations are addressed in this thesis.  

(3) Which types of vegetation can improve flood regulation in each upper water catchment 

area? 

Hydrologic simulations were performed using scenarios of landscape structure with different 

types of vegetation. Vegetation with different parameters, such as the Leaf Area Index (LAI) and 

root depth, were assigned, and the results from hydrologic model provide an insight into how 

particular types of vegetation can contribute significantly to minimalising surface runoff in the 

upper catchment areas.   

 

This thesis contributes to filling the gap of the study found in the literature review (Figure 1-4). 

This study used an integrated Cellular Automata (CA) and Markov (CA-Markov) model to simulate 

the future land change in the two case study areas. Despite wide applications of the modelling 

to predict urban growth in various studies, the application of CA-Markov to model forest cover is 

understudied (Ghosh et al., 2017). Approximately 48% and 43% of total areas of Ci Kapundung 

and Ci Sangkuy upper water catchment areas, respectively, are still covered by forests in 20154. 

Therefore, this study attempted to examine the forest cover change along with the urban growth 

in both areas using the CA-Markov model (Gap 1).  

                                                      
4 The land cover compositions were retrieved from land cover maps (2015) developed from SPOT 6 satellite 

imagery.  
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Hydrology modelling was employed in this study as part of the method to address the second 

and third research questions by predicting streamflow in each development scenario. It is 

argued that only a few studies reviewed the capacities of different development scenarios to 

support the streamflow regimes (Wu et al., 2015) (Gap 2). Land change and the runoff 

generation process in catchments in Indonesia have been assessed in at least fifteen studies, 

listed in the first sub-chapter. However, types of vegetation found to be influencing surface 

runoff have not yet been explored (Gap 3). This research also responded to a call for a study to 

assess how the provision of ecosystem services might change with different landscape 

characteristic and scale (Jones et al., 2013) (Gap 4). 

 

Figure 1-4 Gaps in knowledge addressed in this thesis (the diagram was created based on literature 

review: 1Ghosh et al. (2017); 2Wu et al. (2015); 3Jones et al. (2012)) 

 

1.4 Thesis structure 

The thesis was conducted in three phases of study: developing the land cover maps of Ci 

Kapundung and Ci Sangkuy upper water catchment areas, simulating the future landscape 

structure of the case study areas based on development scenarios, and conducting flood risk 

analysis and hydrologic modelling. This thesis consists of seven chapters, which describe the 

PhD project to assess the three research questions (Figure 1-5).  

(1) Chapter 1 Introduction 

The first chapter of this thesis gives the background for conducting the PhD study, the research 

questions, and the thesis structure.  
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(2) Chapter 2 Literature review 

The second chapter presents an overview of flood regulating service, the development of land 

cover maps using remote sensing, the description of scenarios and land change models, and 

the review of hydrologic models.  

 
Figure 1-5 Thesis structure  
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This chapter also summarises the challenges in map developing process and model uncertainty 

from the literature. Conclusions to the literature review are given at the end of the chapter to 

provide a background of land change and hydrologic models selected.   

 

(3) Chapter 3 Study areas 

The third chapter of this thesis introduces the context and environmental conditions of Bandung 

Basin and the case study areas; the Ci Kapundung and the Ci Sangkuy upper water catchment 

areas.  

 

(4) Chapter 4 Methodology 

The fourth chapter presents the processes to develop land cover maps and scenarios, the 

selected methods to address the three research questions, the decision tree diagrams, and the 

boundaries in the research. Figure 1-6 shows the workflow in each phase of research as an 

iterative process, and the decision trees to address the three research questions.  

 
 

 

 

 

Figure 1-6 Structure for Chapter 4 Methodology 
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(5) Chapter 5 Results 

The fifth chapter provides the results from land cover map development (research phase 1), and 

the outcomes from land change and hydrologic modelling to address the three research 

questions (research phase 2 and 3 respectively).  

 

(6) Chapter 6 Discussion 

The sixth chapter discusses the principal factors that influence the accuracy of land cover maps, 

including land cover change and hydrologic simulations. This covers the arguments regarding 

the outcomes from each research phase. The chapter also outlines the factors which influence 

the changes in flow regimes in the catchments. The following part presents reviews of future 

landscape structure scenarios in each case study area which can benefit flood regulation. The 

types of vegetation, which could be used to improve flood regulation, are discussed in the last 

section of this chapter.   

 

(7)  Chapter 7 Planning recommendation 

The results from the final iteration of land change and hydrologic modelling are presented and 

discussed in this chapter.  

 

(8) Chapter 8 Conclusions and outlook 

The eighth chapter restates the novelty of the research and concludes the thesis with empirical 

findings from the research. The conclusions include the answers to the research questions, the 

contribution from research, the limitations and boundaries of the research, including 

suggestions for potential future studies on landscape structure and flood risk.   
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Chapter 2 Literature review 

Chapter 2 covers the review of literature on flood regulating services of water catchment areas, 

the development of land cover maps and scenarios, and the land change and hydrological 

modelling. Examples of previous research projects that have applied similar methods and the 

gaps of research are also provided in this chapter. 

 

2.1 Flood regulating service of water catchment areas 

Regulating services is one of four categories in ecosystem services (Millennium Ecosystem 

Assessment, 2005). The services are provided from the interactions between biotic and abiotic 

elements in the ecosystems (La Notte et al., 2017). It is argued that ecosystem services are 

interrelated with the concepts in ecological theory, such as ecological integrity and complexity 

(Kremen, 2005 cited in La Notte et al., 2017). One of the regulating services that becomes the 

focus of this research is the flood regulating service.  

2.1.1 Ecological integrity in a river ecosystem 

Ecological integrity is a critical factor to sustain the regulating services in a river ecosystem. The 

ecological integrity is regulated by flow regimes, which refer to the patterns of river flow variation 

and are influenced by river size, climate, geology, topography, and vegetation (Poff et al., 1997). 

Poff et al. (1997) describe the five components of flow regimes with the following definitions. 

The magnitude of flow refers to the volume of water per unit time (m3/s or ft3/s), which is 

affected by climate and the size of a watershed. Frequency is defined with the number of 

occurrence of flows exceeding a particular magnitude, while duration is described as a period 

when a specific flow condition occurs. The timing of flows is associated with the regularity of 

occurred flow discharges. The rate of change shows how quickly a flow changes from one 

magnitude to another.  

Various elements, such as climate, geology, topography, soils, and vegetation, affect the amount 

of inflow water and the runoff pathway to the river (Poff et al., 1997). Land cover and land-use 

changes influence the rates of surface runoff in a watershed (Sajikumar & Remya, 2015), thus 

increasing the stream flashiness (Poff et al., 1997), and could potentially contribute to flooding 

(Schüler, 2007 cited in Hümann et al. 2011).  

It is argued that modelling is needed to assess the flood regulating services provided by 

ecosystems functioning (Liquete et al. 2016 cited in La Notte et al. 2017). An identified 

landscape structure could be a basis for producing a scenario-based future landscape 

development. Turner et al. (2013) state that further studies are needed to examine possible 

scenarios of landscape development, and factors that influence the ecosystem services 

sustainability.   
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2.1.2 Vegetation to improve flood regulation 

This research assesses different types of vegetation to improve flood regulation in case studies. 

Different types of vegetation have different rates of rainfall interception. Rainfall interception is 

argued to be a significant factor in the water balance of catchments (Liu et al., 2014). Merriam 

(1960) describes interception as a process involving a canopy to catch the rainfall, which is 

distributed to the ground, evaporated to the atmosphere, or absorbed into the plant. The 

evaporated rainfall or the absorbed water from this process is defined as interception loss 

(Merriam, 1960).  

A study of rainfall interception in two types of forest in Eastern Tibet, China, shows that conifers 

have more interception loss than mixed forest due to the evapotranspiration of small water 

droplets from the coniferous leaves (Liu et al., 2014). A study was also conducted by Zabrett 

and Sraj (2015), assessing the rainfall interception of coniferous and deciduous trees in 

Slovenia. The result suggests that conifers intercept more rainfall than deciduous tree canopies. 

There are three groups of factors influencing the rainfall interception; the tree characteristics, 

the meteorological factors and the rainfall factors (Xiao et al., 2000). The tree characteristics 

include the species, shape, and surface roughness of the tree. The meteorological factors 

comprise of wind speed, wind direction, solar radiation, and air temperature. The last factor is 

specifically related to the intensity, magnitude, and duration of rainfall. The rainfall interception 

rates also vary with geographical location (Venkatraman & Ashwath, 2016).  

The characteristics of leaves are related to the Leaf Area Index (LAI). John Monteith & Unsworth 

(1973) defined the LAI as the area of one-sided leaves per unit of ground area. The definition 

can be applied for broad flat leaves. However, a different definition is needed to describe LAI for 

non-flat leaves (Chen & Black, 1992). Chen and Black (1992) later defined the LAI for non-flat 

leaves as “the total intercepting area per unit ground surface” (p.421). LAI is believed to affect 

rainfall interception (Herbert & Fownet 1999 cited in Konôpka et al. 2016). The leaf shape is 

one of the factors which influence the canopy water storage capacity and the estimation of 

interception loss (Chen & Li, 2016). A study on LAI of a subtropical broad-leaved forest in Taiwan 

conducted by Chen and Li (2016) showed that LAI has a positive correlation with the mean 

storage capacity. The outcome is in line with results retrieved by Zheng et al. (2018), who 

concluded that plants with higher LAI have higher percentages of interception loss.  

There are different methods for LAI estimations; the direct methods and indirect methods 

(Bréda, 2003). The direct techniques include harvesting, allometry and litter collection. The 

collected litter is dried and weighted to estimate the dry mass of litter, which will be converted 

into LAI by multiplying the value with SLA (specific area index). Litter collection traps were used 

in many studies to measure LAI (e.g. Cotter, 2017; Isihara, 2011).  

On the other hand, indirect methods consist of the transmission of radiation measurements and 

gap-fraction methods (Bréda, 2003). The gap-fraction measures have been applied in various 
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studies using canopy analysers, such as LAI-2000 (Chen & Li, 2016; Mason et al., 2012), or 

hemispherical image analysis (Basuki, 2015; Park & Cameron, 2008). However, it is argued that 

the indirect methods do not estimate the actual LAI, because the measurements also include 

not only the leaves but also other canopy elements, such as branches and stems (Bréda, 2003).  

The development of technology in remote sensing has prompted the use of remotely sensed 

vegetation indices to estimate LAI. The LAI value can be obtained from one of the spectral 

vegetation indices  (i.e. NDVI/ normalised difference vegetation index5) (Gigante et al., 2009). 

However, the LAI measurements of plants with complex canopies (i.e. forest with a high value of 

LAI) using vegetation indices still do not provide suitable results (Bréda, 2003).  

Another LAI estimation method is the measurement using a 3D point cloud image (Hosoi & 

Omasa, 2009). In their study, Hosoi and Omasa (2009) used a portable LiDAR (light detection 

and ranging) scanner to obtain contact frequencies of laser beams on leaves and to estimate 

LAD (Leaf Area Density). The LAI, then, was calculated based on the LAD data.   

In this research, the LAI values of different plants were estimated using allometric equations 

from previous studies, which were conducted on the same plant species or forest types in 

Indonesia and other tropical countries. One limitation identified from this method is that the LAI 

value resulted from the equations cannot be transferred to different areas (Deblonde, Penner, 

& Royer, 1994). This method is applied based on the premise that LAI correlates with the tree 

biomass, as suggested by Albaugh et al. (1998). Diameter at breast height (DBH) of the tree 

samples is measured, in which the results are used to estimate biomass6 for each tree using a 

specific allometric equation. According to Siregar & Heriyanto (2010), DBH is known as one of 

the factors which affect biomass7. Then, using different equations, LAI values were calculated 

based on the biomass data.  

 

2.2 Land cover map development using remote sensing 

According to Fisher et al. (2005), land cover is defined as “the physical material at the surface 

of the Earth” (p.2). Land cover is one of the spatial units used to delineate landscape elements 

(e.g. patches, corridors, and matrices), in which their size, shape, arrangement and distribution 

determine the pattern of landscape (i.e. landscape structure) (Walz, 2011). Examples of the 

land cover are grasses, asphalt, trees, and water bodies. The term land cover is different from 

land-use. Land-use is a term to describe how people use the land (e.g. sports grounds and 

residential land). Land cover is identified by direct observation, while land-use can be classified 

                                                      
5 NDVI is one of the widely used vegetation indices to measure vegetation biomass within a pixel. The NDVI value is 

the ratio of NIR-R (subtraction of the values in NIR band with the Red band) and NIR+R (added values of NIR and 

Red bands) (Champbell & Wynne, 2011). 
6 Biomass can be defined as “the total weight or mass of living organisms in an area” (Forman & Godron, 1986). 

Biomass can be calculated using direct methods, such as harvesting and weighting fresh and dried tree 

components, and indirect methods, such as using LiDAR (Beets et al., 2011). 
7 Other factors include tree height, stand density, and soil fertility. 
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based on the activities that occur on the land (Fisher, Comber, & Wadsworth, 2005). This sub-

section covers the process of land cover identification and the procedures to develop land cover 

maps (e.g. image preprocessing, masking, and image classification) using remote sensing.  

2.2.1 Land cover identification  

The application of remote sensing for mapping land cover has enabled many studies on 

monitoring the availability of ecosystem services (de Araujo Barbosa, Atkinson, & Dearing, 

2015). According to Lillesand, Kiefer & Chipman (2008 p.1-2), remote sensing is a technique to 

collect environmental data from a distance using sensors. The sensors detect electromagnetic 

energy from the Earth surface, which reflects and emits the radiation (Lillesand, Kiefer, & 

Chipman, 2008 p.1-2). Reflectance is the brightness of a surface and is affected by the 

wavelength of incident radiation and the surface materials (Champbell & Wynne 2011 p.52; Zhu 

2016;). As shown in Figure 2-1, vegetation, soils, and water bodies have distinct characteristics 

of spectral reflectance.  

 

Figure 2-1 Spectral reflectance of vegetation, soils, and water bodies (Source: Lillesand, Kiefer & 

Chipman, 2008) 

Chlorophyll absorbs radiation in blue and red bands for photosynthesis. Thus more green light 

is reflected, causing the living vegetation to appear as green to human eyes (Champbell & 

Wynne, 2011). Most of the infrared radiation is either reflected by surfaces or transmitted. 

Therefore, in the infrared images, vegetation would appear very bright, compared to clear water. 

Thus the images are often used to distinguish land cover classes (Zhu, 2016; Champbell & 

Wynne, 2011). 
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Dimopoulous, et al. (2014), classified sensors into four types: sensors with very high spatial 

resolution8 (e.g. IKONOS, QuickBird, GeoEye, WorldView-2), sensors with medium-to-high 

spatial/ temporal resolution (e.g. Landsat, IRS, SPOT), sensors with coarse spatial resolution 

and very high temporal resolution (e.g. MODIS, AVHRR), hyperspectral sensors (e.g. HyMAP, 

CASI, Hyperion), Laser Scanning (LiDAR), and active microwave sensors. Spatial resolution is the 

size of a pixel in the imagery (Zhu, 2016). On the other hand, temporal resolution is related to 

the ability of remote sensing to record sequences of images (Champbell & Wynne 2011, p.286). 

Consistent historical time series data has been provided by remote sensing using satellite 

imagery since 1960 (Herold, Goldstein, & Clarke, 2003). Land cover maps can be generated 

from remotely sensed data using remote sensing and geographic information systems (GIS) 

(Keshtkar & Voigt, 2016).  

It is argued that the image resolutions influence the level of detail and accuracy of generated 

land cover maps (Toure et al., 2018). Townsend et al. (2009) suggest that coarse-scale imagery, 

such as Landsat with 30 metres of resolution, can be used to identify landscape pattern at a 

broad scale. Images retrieved from hyperspectral sensors, on the other hand, are not suitable 

for mapping large areas. SPOT imagery with medium spatial resolutions is appropriate for 

developing land cover maps of moderately sized areas. In a forest image with a resolution of 6 

metres, a local variance can be detected easier than in the imagery with higher spatial 

resolution, where each pixel might represent both trees and their surroundings area (Woodcock 

& Strahler, 1987). 

According to Helmer et al. (2012), despite the rapid development of remote sensing to map 

vegetation in various landscapes in the world, there are potential problems when mapping land 

cover in tropical areas. First, most of the images covering tropical forests have clouds as a data 

gap. Second, similar features of some types of vegetation viewed from the satellite imagery are 

prone to be misinterpreted at first glance. Third, a gap-filling process produces residual errors 

which make an overlap to different forest types. Fourth, there is limited reference data as 

training samples for image classification. Therefore, the data gap should be filled in with other 

image data from different dates and combined with data retrieved from field works (Helmer et 

al., 2012).  

One method to fill the data gap during the image classification process is the backdating and 

updating method (Linke et al., 2009). A land change analysis is incorporated in the procedure 

by projecting a base map backwards and forwards. Therefore, only the area showing the land 

cover change in the previous or later imagery is classified, thus increasing the efficiency of the 

analysis. The backdating and updating method can be used to develop maps with multi-spatial 

                                                      
8 Champbell & Wyne (2011 p.285) define the resolution as the remote sensing capacity to capture images and to 

show their spatial, spectral, and radiometric information.  
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resolution data. The method is particularly useful when there is limited access to get a high 

resolution of imagery at the start of the commercial satellite era (circa 2000) (Toure et al., 2018).  

 

2.2.2 Satellite image preprocessing 

Image preprocessing is required during the analysis of remote sensing data because the raw 

data may be distorted due to sensor-Earth geometry variations, or has deficiencies (Zhu, 2016). 

In the context of remote sensing data analysis, the term preprocessing refers to the operations 

which are required before conducting the principal analysis (Champbell & Wynne 2011, p.305).  

The two types of image preprocessing are geometric and radiometric calibration (Zhu 2016, 

p.245). Zhu (2016) describe the geometric calibration as a process to project the distorted 

coordinates of an image to correct coordinates (Figure 2-2). On the other hand, radiometric 

calibration is conducted to correct the brightness values which might be altered due to sensor 

malfunctions and atmospheric scattering (Zhu, 2016; Champbell & Wynne, 2011). 

 

Figure 2-2 Superimposing a geometrically correct image on a distorted image (Source: Zhu 2016) 

 

Pixel values, which appear as digital numbers (DNs) in the satellite images, do not represent the 

brightness of the actual object. Using the DNs, the brightness of an image cannot be examined 

over time, or compared with different scenes. The DNs, therefore, should be converted into the 

radiance to get the objects’ original brightness (Champbell & Wynne, 2011 p.311). 

In remote sensing analysis (e.g. the assessment of vegetation index), the biophysical information 

of objects can be acquired from reflectance values or properties of objects which are observed 

by a sensor. A radiance-to-reflectance conversion should be conducted during the radiometric 

correction process to get the objects’ reflectance values (Zhu, 2016).  

The radiometric correction also includes the applications of a sun elevation correction and an 

Earth-Sun distance correction. The first correction accounts for the variation of solar elevation 

angle during different times, which can affect the object illumination. One way to conduct the 
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sun elevation correction is to calculate the solar zenith, which is 900 minus the solar elevation 

angle. The Earth-Sun distance correction, on the other hand, normalises the length alteration 

between the Earth and the Sun. Both of the correction processes do not account for the 

atmospheric and topographic corrections in the image data (Lillesand, Kiefer, & Chipman, 

2008).     

Two corrections in the image preprocessing are described as follows. 

(1) Atmospheric correction 

There is a high possibility that the brightness values recorded by sensors do not represent the 

objects’ reflectance values due to atmospheric scattering. The term scattering refers to the 

transmission process of electromagnetic energy by particles in the atmosphere. Three types of 

scattering include the Rayleigh scattering, Mie scattering, and the nonselective scattering. The 

Rayleigh scattering occurs in a perfectly clean atmosphere, where there are atmospheric 

particles with a microscopic diameter (e.g. dust or atmospheric gasses such as nitrogen and 

oxygen). Mie scattering is influenced by the occurrence of large atmospheric particles (e.g. 

pollen, smoke, and water droplets), in which the diameter of particles is nearly equal to the 

wavelength of scattered radiation. Nonselective scattering can be observed in the imagery as 

haze, which is caused by particles larger than the scattered radiation, such as airborne dust 

(Champbell & Wynne, 2011 p.39-41). Atmospheric correction is required when working with 

multitemporal or multisensor data (Lu & Weng, 2007). However, the procedure is not essential 

for an individual image (Song 2001 cited in Lu & Weng 2007). 

There are three board categories of atmospheric correction; the correction using radiative 

transfer code (RTC) models, image-based atmospheric correction, and the dark object 

subtraction (DOS) method (Champbell & Wynne, 2011, p. 306). Champbell & Wynne (2011) 

defines the first models as a tool to demonstrate the physical performance of solar radiation 

passing through the atmosphere. Advantages of using the models include the high accuracy and 

broad scope of application, whereas the disadvantages found during data acquisition required 

by the models consist of the difficulty to retrieve in situ atmospheric data at the same time with 

the acquired satellite images. 

The image-based atmospheric correction involves the assessment of brightness values due to 

atmospheric effects in the multispectral imagery, based on the image itself. The dark object 

subtraction (DOS) is recognised as the simplest method to conduct the atmospheric correction 

(Chavez 1975 cited in Champbell & Whyne 2011, p.308). The method is applied by identifying 

objects in the imagery with known brightness (i.e. dark object with brightness at or near zero, 

for example, clear water). It is often found that in the imagery, these objects have a larger value 

due to the atmospheric scattering. Therefore, the atmospheric correction using the DOS method 

is applied by subtracting the brightness values of all pixels in each band.  
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Four examples of the advanced models for atmospheric corrections are the modified DOS 

methods, MODTRAN (MODerate resolution atmospheric TRANsmission), ATCOR, and 6S (Second 

Simulation of the Satellite Signal in the Solar Spectrum) (Champbell & Wynne, 2011, p. 308-

311). Notable modified DOS methods were proposed by Gilabert et al. (1994), Teillet and 

Fedosejevs (1995), and Song et al. (2001). The MODTRAN (MODerate resolution atmospheric 

TRANsmission) model was invented by the U.S. Air Force and the Spectral Science Corporation, 

to calculate the atmospheric transmission under different atmospheric conditions. The third 

model, ATCOR, was developed by the German Aerospace Center (DLR) to implement the 

correction for various sensors.  

Among all radiative transfer models, 6S is the most widely applied in the preprocessing of 

satellite imagery (Champbell & Wynne 2011). The 6S model was developed by Vermote et al. 

(1997) to simulate the observed signal from both Lambertian and BRDF (bidirectional 

reflectance distribution function) conditions. It incorporates the three processes which affect 

the electromagnetic radiation (i.e. absorption, scattering, and emission) into the correction 

process.  

 

(2) Topographic correction 

Land cover is prone to be misinterpreted due to a topographic effect, which alters the radiance 

values recorded by the satellite sensors (Ediriweera et al., 2013). The problem is prominent, 

especially when conducting a land cover classification in rugged terrain landscapes, such as 

mountainous areas (Veraverbeke et al. 2010 cited in Vanonckelen et al. 2013). Veraverbeke et 

al. (2010) further stated that different illumination on the slopes causes distinct reflectance 

values for similar land cover, affecting the accuracy of land cover maps.  

Different topographic correction methods have been widely used in various studies. Sola et al. 

(2016) argued that the correction performance is affected by the illumination conditions that 

are shown on the imagery. The correction methods include C-Correction and Statistical-Empirical 

(Teillet, Guindon, & Goodenough, 1982), a modified sun-canopy-sensor/SCS+C (Soenen, 

Peddle, & Coburn, 2005), and pixel-based Minnaert (Lu et al. 2008, cited in Vanonckelen et al. 

2013). The performances of these four methods to correct the SPOT5 images of a case study 

area in a mountain range in Spain were evaluated by using multi-criteria analysis (Sola, 

González-Audícana, & Álvarez-Mozos, 2016). The study also includes six other topographic 

correction methods, such as Smoothed C-Correction, Minnaert, Enhanced Minnaert, Modified 

Minnaert, Two-stage normalisation, and Slope-Matching. The study concludes that C-Correction, 

Statistical-Empirical, and SCS+S methods could reduce the topographic effects compared with 

the other methods.  
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In particular, SCS+C is arguably an effective topographic correction method for satellite imagery 

in forested areas and on steep slopes (Soenen, Peddle, & Coburn, 2005). The model normalises 

the sun-canopy-sensor (SCS) and adds a semiempirical moderator (C) proposed by Teillet, 

Guindon, & Goodenough (1982). Therefore, SCS+C is used as the selected topographic 

correction method in this research.   

 

2.2.3 Cloud, shadow, and water masking 

All radiation reflected from the Earth’s surface can be blocked by clouds, causing no at-surface 

reflectance from objects beneath the clouds could be retrieved by the satellite sensors (Lu 2007 

cited in Liu et al. 2011). Different methods were developed to detect clouds, shadows, and water 

bodies in satellite imagery. Cloud masking plugins for open-source image processing software 

packages, such as QGIS and SAGA (System for Automated Geoscientific Analyses) GIS, are 

available especially for the types of satellite imagery which are widely used (e.g. Landsat, 

Sentinel, and MODIS). The plugins use the assigned parameters of filters and the thresholds for 

specific bands. Examples of masking methods in the open-source GIS software packages are 

described as follows.  

Cloud masking can be performed in SAGA GIS using Automated Cloud-Cover Assessment (ACCA) 

for Landsat 7 Enhanced Thematic Mapper Plus (ETM+) imagery based on the method from Irish 

(2000). The weaknesses of ACCA include the missing thin cirrus clouds over water (Irish et al., 

2006). The CloudMasking plugin in QGIS provides a different procedure of cloud masking using 

five cloud filters (i.e. Fmask, Blue Band, Cloud QA, Aerosol, and Pixel QA), which can be chosen 

depending on the type of Landsat imagery. 

Thermal band9 in satellite imagery is commonly used to detect clouds, whereas SWIR 

(Shortwave Infrared) band can be used to differentiate clouds from open areas. However, cloud 

detection using these two bands could not be performed in satellite imagery with a limited 

number of spectral bands, such as SPOT images. In the absence of the thermal and SWIR bands 

in SPOT imagery, the cloud masking can be conducted using the reflectance and geometric 

approach (Candra, Kustiyo, & Ismaya, 2014).  

A study on cloud masking conducted by Candra, Kustiyo, & Ismaya (2014) shows that the 

reflectance and geometric approach can be used to detect medium and small clouds on SPOT 

6 data. A high percentage of accuracy (>97%) was retrieved when detecting clouds and shadows 

in the imagery. A verification based on location is performed when particular small-size objects 

(less than 500 pixels) are surrounded by large-size pixels identified as clouds or shadows. 

Verifications based on distance and total area use specific thresholds of pixels, to reassign the 

                                                      
9 Thermal bands in Landsat imagery show land surface temperature at 100-meter resolution, which is resampled 

into 30-meter. Pixels with dark colour represent areas with cool temperatures, whereas bright colour pixels depict 

hot temperature (USGS n.d.).  
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‘uncertain clouds’ as ‘clouds’ class and the ‘uncertain shadows’ as ‘shadows’ class (Candra, 

Kustiyo, & Ismaya, 2014).  

 

2.2.4 Image classification and accuracy assessment 

Lu & Weng (2007) summarise the essential measures of image classification. The measures 

include the selection of remotely sensed data, training samples, data preprocessing, feature 

extraction, a suitable classification procedure, post-classification processing, and an accuracy 

assessment.    

In the digital image classification process, pixels are assigned to classes (Champbell & Wynne 

2011).  Champbell and Wynne (2011) categorise the classification processes into several types 

(e.g. unsupervised classification, supervised classification, fuzzy clustering, Artificial Neural 

Networks (ANNs), and object-based classification). The unsupervised classification requires no 

prior knowledge of the case study. Classes are automatically created during the classification 

process.  

Supervised classification uses samples of pixels with identified land cover, which are located 

within training areas, to classify other pixels with no land cover data. Training data can be 

retrieved from the plots distributed across the study area in which their locations have been 

recorded using GPS (Global Positioning System). Errors in the classification process can be easily 

detected by the examination of training areas. However, when the training areas are manually 

selected, the spectral data of pixels in different classes are not often clearly distinctive 

(Champbell & Wynne, 2011). 

The most common classifier in the supervised classification process is the maximum likelihood 

classifier (Lu & Weng, 2007). The maximum likelihood classifier uses a probability model to 

define the decision regions. The classifier computes the probability of an unknown pixel to be a 

part of a particular class, and based on the results, the classifier assigns the pixel to the class 

that has the highest probability (Zhu, 2016).  

The supervised and unsupervised classification methods to categorise different types of 

vegetation have been applied in various studies. Two examples of the works were conducted in 

semiarid Mediterranean saline wetlands (Martínez-López et al., 2014), and in the tropical forest 

of the Western Ghats of India (Nagendra & Gadgil 1999, cited in Nagendra 2001). 

Fuzzy clustering uses a different classification logic where a specific pixel may not be assigned 

to a single class. The value for one class varies from 0 for a non-member to 1.0 for a member 

of the class, and the intermediate values indicate the partial membership in one or more classes 

(Champbell & Wynne, 2011).  
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Artificial Neural Networks (ANNs) simulate the process of a human brain to learn through the 

establishment of pathways between input data and output data. In the image classification 

process, ANNs use the remote sensing data in different bands, which are acquired from several 

dates, as the input data. The output layer from the process is the land cover classes. ANNs 

develop one or more hidden layers with specific weight for each layer for classifying unknown 

spectral values (Champbell & Wynne, 2011)  

Object-based image analysis (OBIA) uses both spectral and spatial patterns of objects in the 

image for the classification process (Lillesand, Kiefer, & Chipman, 2008). Firstly, discrete 

objects are developed during the segmentation process, which is influenced by the scale of 

objects. Secondly, objects are classified based on their characteristics (i.e. spectral properties, 

texture, and shape), and the connectivity and proximity to objects.  

In contrast with the OBIA, pixel-based image classification distinguishes different land cover 

classes only based on the spectral characteristics (Casals-Carrasco et al. 2000 cited in Gao & 

Mas 2008). ‘Salt and pepper’ effects are generated when using the traditional pixel-based 

classifiers (Lu & Weng, 2007). Pixels do not represent the actual geographical objects, and the 

current pixel-based image analysis does not count into the spatial photo-interpretive elements, 

such as texture, context, and shape. Furthermore, the complex variables within the imagery with 

high spatial resolution affect the performance of the classification process, resulting in lower 

classification accuracy (Hay & Castilla, 2006).  

It is argued that the results from OBIA have higher accuracy than that of pixel-based image 

classification, especially in imagery with high resolution (Gao & Mas, 2008). An experiment 

conducted by Gao & Mas (2008) showed that OBIA using SPOT 5 imagery produced higher 

accuracy than that obtained by pixel-based maximum likelihood and nearest neighbour 

classifiers. Another example of OBIA application is a study conducted by Moreira & Valeriano 

(2014) who evaluated the classification accuracy on a Landsat 5 TM image after performing 

topographic corrections.  

A classification error matrix, or a confusion matrix, is widely used for estimating the accuracy of 

image classification (Foody, 2002). It is only suitable for ‘hard’ classification (Lu & Weng, 2007). 

The matrices compare the reference data (ground truth) and the results of an automated 

classification (Lillesand, Kiefer, & Chipman, 2008). An error matrix describes not only the overall 

accuracy but also the accuracy of an individual class (Congalton, 1991).  

After the error matrix has been generated, other accuracy assessment elements can be derived, 

such as overall accuracy and Kappa coefficient (Lu & Weng, 2007), as well as the producer’s 

and user’s accuracies (Story & Congarton 1986 cited in Congalton 1991). The “producer’s 

accuracy” shows how accurate one particular area can be classified, while the “user’s accuracy” 

provides information on how one classified pixel represents the class on the ground (Story & 

Congarton 1986 cited in Congalton 1991).  
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Specific thresholds for the minimum percentage of a class to be allocated correctly were 

proposed by Thomlinson et al. (1999), who appointed a target of 85% for an overall accuracy 

with no class to have accuracy lower than 70% (Foody, 2002). Another approach for the accuracy 

assessment is to have more than one measure in the image accuracy assessment process 

(Muller et al. 1998 cited in Foody, 2002).  

 

2.2.5 Uncertainty factors in a land cover mapping process 

Uncertainty in the context of land cover map development from remotely sensed imagery could 

be defined as a “quantitative statement about the probability of error” (Dungan 2002, p.26). A 

map is considered as a model or generalisation which contains errors, and there is a possibility 

that the land cover might have been classified correctly by chance (Foody 2002). Therefore, it is 

essential to identify the processes in remote sensing, which cause uncertainty (Woodcock 2002, 

p.22).  

Accumulated uncertainties are often retrieved from the development process of GIS data from 

raw remotely sensed images (Gahegan & Ehlers 2000 cited in Zhang & Goodchild, 2002). 

Statistical methods and tools are used to assess the error that causes uncertainty, despite the 

doubt of how effective they are (Zhang & Goodchild, 2002).   

There is no single measure of classification accuracy derived from a confusion matrix (Lark 1995 

& Stehman 1997a cited in Foody 2002). Although a Kappa coefficient is considered as a 

standard measure to assess the image accuracy, some problems arise when using the Kappa 

coefficient (Foody, 1992). Therefore, it is essential to adopt more than one measure in the 

accuracy assessment, as well as to describe the classification accuracy using a confusion matrix 

(Foody, 2002).  

The uncertainty in the accuracy assessment also stems from many factors, such as sampling 

design, preprocessing of satellite imagery, the accuracy of reference data, the spatial 

distribution of error, and the occurrence of mixed pixels (Foody, 2002). The contribution of each 

factor to the inaccuracy of a map is described as follows. Problems in the sampling process 

include the insufficient number of sampling points, which leads to classes could not be 

represented in the accuracy assessment, budget constraint, and accessibility to reach the site, 

especially when using a simple random sampling. An issue in the preprocessing of satellite 

images is the mislocation of pixels caused by various issues, including the properties of sensors 

and ground, and the methods used in the image preprocessing. The ground or reference data is 

prone to inaccuracy because it also contains errors in the development process. When the data 

is used for validating maps, there is uncertainty in the accuracy assessment result. A confusion 

matrix could not provide information regarding the location where the error occurs on the map. 

A mixed pixel contains two or more classes, which are often misclassified when using a standard 

(hard) classifier. Tools, such as uncertainty analysis and sensitivity analysis, have been 
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developed to assess the uncertainty in maps generated from remotely sensed images (Crosetto, 

Moreno Ruiz, & Crippa, 2001). 

 

2.3 The development of scenarios and land change models 

This sub-chapter provides a description and types of scenario, the overview of Pareto-frontier to 

optimise the scenario development, the types of land change models, and the uncertainty in 

land change modelling.  

2.3.1 Scenario definition and types of scenario 

Scenarios are defined as “archetypal descriptions of alternative images of the future, created 

from mental maps or models that reflect different perspectives on past, present and future 

developments” (Rotmans, 1998). Scenarios are developed to provide an understanding of 

drivers of change and propose alternatives of action (Peterson, Cumming, & Carpenter, 2003). 

Scenarios of alternative developments are used to test options of landscape structure using 

models, based on selected assumptions for future land-use (Hulse et al., 2009).  

Bӧrjeson et al. (2006) propose nine typologies of scenario which were developed based on the 

principal questions researchers would like to know about the future; “What will happen?”, “What 

can happen?”, and “How can a specific target be reached?”. The questions are responded to by 

specific categories of scenario, which are described by Bӧrjeson et al. (2006) as follow. 

Predictive scenarios respond to the question of “What will happen?”, based on two distinct 

conditions which may apply. Forecast scenarios are related to the condition of what will happen 

if the most likely development occurs, whereas what-if scenarios take into account the 

conditions of some particular events when predicting the future (Figure 2-3).    

 

 

 

 

 

Figure 2-3 The six types of scenario (the diagram was redrawn from Bӧrjeson et al. 2006) 

 

The explorative scenarios are divided into two groups: the external scenarios and the strategic 

scenarios. The external scenarios are used to assess the factors which could not be controlled 

by the relevant actors, by providing a framework for developing and evaluating policies and 

strategies. The strategic scenarios are developed to provide possible consequences from 

Scenarios 

Explorative Predictive Normative 

External Strategic Preserving Transforming What-if Forecast 
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specific strategic decisions. Target variables are described, and the different policies are 

evaluated, including their impacts on the target variables (Bӧrjeson et al., 2006). 

The normative scenarios use normative starting points and take into consideration the future 

conditions and the way they could be realised. Two types of scenario in this category are the 

preserving scenarios and the transforming scenarios. Preserving scenarios seek the most 

efficient method to achieve a specific target, usually by utilising some optimising modelling. In 

regional planning, for example, the preserving scenarios are often used to define the most 

efficient way to reach one or several environmental targets. Transforming scenarios, on the 

other hand, aim to reach a high-level target, which would not be achieved if the current 

development continues (Hӧjer 2000 cited in Bӧrjeson et al. 2006). Backcasting is one example 

of transforming scenarios which provide new paths for the development to occur (Hӧjer & 

Matson 2000 cited in Bӧrjeson et al. 2006). 

Backcasting is defined as “developing and assessing the relative feasibility of alternative 

futures” (Robinson 1980 cited in Voorn et al. 2012). In the backcasting scenarios, specific goals 

and constraints are stated, the policy measures are defined, and the implications of the 

scenarios are assessed (Robinson, 1982). The backcasting approach has been applied in 

various studies. The first example is the development of transition pathways of scenario to 

sustain the future ecosystem services provision in Switzerland (Brunner, Huber, & Grêt-

Regamey, 2016). The second case is the assessment of climate strategies in the coastal region 

in South Africa using backcasting scenarios (van der Voorn, Pahl-Wostl, & Quist, 2012). The last 

example is the integration of the agent-based model with the backcasting approach to propose 

sustainable land-use planning in Austria (Haslauer, Biberacher, & Blaschke, 2016). Backcasting 

approaches can also be integrated with participatory methods to explore alternative futures 

using 3D visualisation tools criteria and indicators, as shown in a study conducted by Robinson 

et al. (2011) in Canada.  

 

2.3.2 Pareto-frontier 

Scenarios have been frequently used in many studies in assessing plausible futures, including 

the integration of the models with optimisation algorithms, which examine ecosystem functions 

and possible management options. The examination of possible scenarios can be performed by 

implementing Pareto-frontier or Pareto optimality (Seppelt, Lautenbach, & Volk, 2013).   

Pareto-frontier has been used in many studies to project optimal land-use allocation. Gong et al. 

(2012) examined the land-use optimisation, which could provide both economic and ecological 

benefits in the urban fringe in Guangzhou, China. In this study, a performance evaluation of a 

land-use allocation model was conducted using Pareto-frontier by comparing the possible 

tradeoffs, which could be acquired by the land-use allocation.  
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Another study of land-use optimisation was conducted using a model which combined multiple 

zoning objectives with land-use constraints in Loess Plateau (Xia et al., 2014). Five scenarios 

were developed, and Pareto-frontier was used to search the optimal solution for the land-use 

allocation. The concept of Pareto-frontier was also applied by Verstegen et al. (2017) to redesign 

the land-use policies in the Business-as-Usual scenario after the impact of this scenario to 

ethanol production in a region in Brazil had been evaluated.  

 

2.3.3 The development of land change models  

Turner et al. (2001 p.47) defined a model as “an abstract representation of a system or 

process”. Models represent real-world systems which are responsive to the simulations of 

system changes (Clarke, 2014). Models are used to investigate particular issues on landscape 

structure and dynamics in a large and complex landscape in ecology studies. Models are also 

often employed to explore conditions which cannot be implemented in the field (e.g. severe 

disturbances, forest fire, and spatial arrangement of animals) (Turner et al. 2001). One example 

of models is land change modelling (Turner, 1989). 

In response to the needs of sustainable land-use development, land change models have been 

developed to assess the factors influencing the land change, to simulate the future development 

scenarios, and to analyse the effects of changes (Verburg et al., 2004). Six categories of land 

change modelling approaches proposed by Brown et al. (2014) include the machine-learning 

and statistical, cellular, sector-based economic, spatially disaggregated economic, agent-based, 

and hybrid approaches. Two other distinguished models are Markov chains and system dynamic 

models. The integration of different models (i.e. hybrid models) is proposed to simulate the 

complexity of land change (Dang & Kawasaki, 2016). The timeline for the hybrid model 

development is shown in Figure 2-4.  

Among the six categories of land change models mentioned by Brown et al. (2014), two 

modelling approaches are recognised for their performance and accuracy for simulating regional 

systems (i.e. cellular automata (CA) models and agent-based models (ABM)). Initial conditions 

and calibration procedures are required by the models. CA are often chosen to model land 

change with identified states of cells on a geographic grid and a known transition probability 

(Clarke, 2014). 
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Figure 2-4 The timeline of land change model development and integration (Source: Dang & Kawasaki 

2016) 

CA are defined as “discrete spatiotemporal dynamic systems based on local rules” (Miller, 

2009). The model was developed by S. Ulan and J. von Neumann in the late 1940s (Santé et al 

2010), and it was first introduced in the geographical modelling by Tobler (1979) (White & 

Engelen 2000). CA models are known for their simplicity and the way they employ local 

interaction among cells to simulate extraordinarily complex behaviour (Batty 2000 cited in 

Clarke 2014). Spatially distributed process simulations, such as spread and dispersal, can be 

best simulated using CA, especially when the geometry, scale, and basic system behaviour are 

known (Clarke, 2014). CA use transitions rules to define the state of a cell at time t + Δt based 

on the states of neighbour cells at time t (Miller, 2009). Historic LULC (land-use/land cover) 

maps, which could be derived from satellite data, as well as other data such as topography, road 

networks, and zones with limited development,  are required as the input datasets for CA models 

(Clarke, 2014). CA models have been used to simulate land cover changes in many case studies 

(e.g. Feng & Liu 2016; Jafari 2016; Liu & Feng 2016). 

On the other hand, ABM models mimic the actual object or people, in which the independent 

agents interact with each other and the surroundings (Steinitz, 2012). The models simulate the 

impact of one agent or a behaviour type on the system, without no prior precedent and past data 

(Clarke, 2014). The term ‘agent’ in ABM refers to a particular independent unit which has a set 

of goals to fulfil (Miller, 2009). The remaining challenge of ABM is to look into sets of rules to 

represent human beliefs and desires (Bithell et al. 2008 cited in Clarke 2014). The applications 

of ABM models in land change studies include the scenario modelling of the Willamette river 

basin development in Oregon (Hulse et al., 2009), and the impact assessment on urban 

expansion into farmlands and forests (Guzy et al., 2008). One example of ABM models is the 

Envision model, which was developed by Oregon State University. The application of this model 
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has been tested in many studies (e.g. Waldick et al., 2015; Wu et al., 2015; Bolte & Vache, 

2012; Munguia et al., 2009). 

Compared to ABM, CA models have a better performance in the simulations of ecological and 

biogeophysical phenomena (Parker et al., 2003). However, they are limited to simulating land 

changes when human decisions are integrated into the models (Ghosh et al., 2017).  

Four other categories of land change models, which are also proposed by Brown et al. (2014) 

(e.g. machine-learning and statistical, sector-based economic, spatially disaggregated 

economic, and hybrid approaches) are described as follows. The machine-learning and 

statistical model requires the past land-use changes data to calibrate parametric and non-

parametric relationships between factors which initiate the changes, and spatially and 

temporally related predictors. The sector-based economic approach focuses on the supply and 

demand for land by economic sectors. The spatially disaggregate economic model aims to 

assess the relationships which influence the spatial equilibrium in land systems. The last 

category, the hybrid approach, combines different models into one modelling framework.  

Uncertainty in real-world systems manifests a challenge when using traditional methods (e.g. CA 

and Markov model) to model the land change (Ghosh et al., 2017). Brown et al. (2014) argue 

that hybrid models offer an opportunity to modellers to select the modelling procedure from 

each model based on practical needs. In this research, the integration between CA and Markov 

models with multi-layer perceptron (MLP) is used to simulate the land change in the two case 

study areas based on developed scenarios. The coupled CA-Markov model is the most 

acknowledged model for simulating trends and growth patterns, and the integration of the two 

models can eliminate the shortcoming of each model (Hamdy et al., 2016).  Two examples of 

studies using the hybrid models of CA and Markov include the land-use scenario simulation in 

Ethiopia (Gidey et al., 2017), and the forest cover changes model of Bannerghatta National Park 

in India (Adhikari & Southworth, 2012).  

The Markov model simulates land change based on historical trends (Brown et al., 2014), 

without considering the spatial patterns of land cover (Ghosh et al., 2017). A transition matrix 

computed in a Markov model shows the transition probabilities of one land cover type to change 

to another (Brown et al., 2014). The model assumes the transition is stationary within the 

simulation period, although a land change in the real-system is a non-stationary process (Baker, 

1989). Changes in the endogenous variables (e.g. natural processes and age of a particular 

landscape structure), and the exogenous variables (e.g. socioeconomic factors and climatic 

conditions) in the landscapes affect the transition probabilities among land cover types (Boerner 

et al., 1996).  

Although the CA-Markov models have been extensively used to predict urban growth, the 

applications to model forest cover change have rarely been explored (Ghosh et al., 2017). The 

models have at least two limitations: the assumption of factors which cause the land-use 
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changes will remain the same in the future, and the missing variables of human decision which 

are not integrated into the models (Ghosh et al., 2017).  

The coupled CA-Markov model has been used to assess land change in various case study areas, 

including in Indonesia (e.g. Kusratmoko, Albertus, & Supriatna, 2017; Mujiono et al., 2017; 

Marko, Zulkarnain, & Kusratmoko, 2016a; Yulianto et al., 2016; Akbar AS et al., 2015; Nurmiaty, 

Baja, & Arif, 2014; Susilo, 2011; Wassahua, 2010; Wen, 2008; Mulianta & Hariadi, 2004). 

However, none of the research has been conducted in the Ci Kapundung and Ci Sangkuy upper 

catchments.  

 

2.3.4 Uncertainty factors in land change modelling 

Land change models are influenced by human preferences, in which the cognitive process of all 

actors cannot be assessed (van Vliet et al., 2016). Random variations in a model could produce 

a different outcome in each simulation (Brown et al. 2005 cited in van Vliet et al., 2016). van 

Vliet et al. (2016) summarise the sources of uncertainty in land change modelling from various 

studies. The sources include the physical and socioeconomic factors, the equifinality in open 

systems, the uncertainty in observations, and the nonstationary of land change processes. The 

risk of uncertainty is higher in the modelling where the simulation period is longer than the 

calibration and validation periods (Chaudhuri & Clarke 2014 cited in van Vliet et al., 2016).     

According to Rykiel (1996), calibration can be defined as a process to increase model accuracy 

by estimating and modifying the model parameters. The procedure is often used to assess 

unknown parameter values in the model. Validation shows the model ability to provide a high 

accuracy of prediction, which is assessed by comparing the simulation output with observation 

data.    

Other sources of uncertainty in land change modelling stem from the uncertainty in input data 

and model parameters (Brown et al., 2014; Verburg, Tabeau, & Hatna, 2013). An assessment 

of land change using maps as input data, which were developed from different dates, might 

produce sliver patches or objects due to the misalignments between maps. This problem can 

distort the rate of land cover change and/or alter the direction of change (Linke et al., 2009). 

Venburg et al. (2013) suggested that better observation data and model parameterisation can 

reduce model uncertainty. Plotting the uncertainties at a macro level in spatial patterns of land 

change provides an insight into how uncertainty can affect the model input. 

 

2.4 Flood risk assessment and the development of hydrologic models 

This subchapter provides a literature review on the flood risk assessment, the development of 

hydrologic models and the description of the selected model used in this research. Uncertainty 

elements in hydrologic modelling are presented in the last part of this subchapter. 
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2.4.1 Flood risk assessment 

Apel et al. (2008) define flood risk as “the exceedance probability of events of a given magnitude 

and a given loss” (p. 149). The flood risk assessments consist of a hazard assessment (i.e. the 

analysis on the extent and magnitude of massive floods), and a vulnerability assessment which 

focuses on the effects of flooding on particular objects, such as building, infrastructure, or 

people. The uncertainty in the flood risk assessment is related to the flood frequencies analysis 

(Apel et al. 2008). In this section, the descriptions of flood frequency, flood discharge, and 

effective rainfall analyses as part of the flood risk assessment are presented.  

(1) Flood frequency analysis 

A flood frequency analysis can be conducted using probability distributions. The outputs from 

this analysis are often used for assessing flood control structures, delineating flood plain, and 

analysing the effects of land change on a flood plain (Chow, Maidment, & Mays, 1988). One of 

the applications of flood frequency analysis is the assessment of a discharge return period.   

Chow, Maidment, & Mays (1988) summarised seven types of probability distributions for fitting 

hydrologic data. They are Normal, Lognormal, Exponential, Gamma, Pearson Type III, Log 

Pearson Type III, and the Extreme Value Type I distributions. Among seven probability 

distributions, Pearson Type III and Log Pearson Type III were listed as the common procedures 

to assess flood peak.    

 

(2) Flood discharge analysis 

There are at least three models which can be used to estimate the flood discharge; Manning 

equation, Kinematic wave parameter, and SCS curve number (Roy & Mistri, 2013). Manning 

equation is commonly applied to estimate discharges for a specified depth of flow, based on the 

roughness of bed channel (Chow, Maidment, & Mays, 1988 p.428). Manning’s n number varies 

between 0 and 1, with typical values of the coefficient for surfaces covered with concrete and 

dense trees are 0.012 and 0.1, respectively (Chow 1956 cited in Chow, Maidment, & Mays, 

1988). Kinematic wave model shows the flow distribution as a function of distance (x) and time 

(t), with no acceleration in flow rate (Chow, Maidment, & Mays, 1988 p.282 & 287). SCS was 

developed by the Soil Conservation Service (1972) to calculate abstractions and excesses from 

storm rainfall. Curve number (CN) has been generated from plotting the total rainfall and rainfall 

excess from many water catchments, in which the numbers are ranging from 0 to 100 (Chow, 

Maidment, & Mays, 1988 p. 147-149).  

Roy & Mistri (2013) suggest that Manning’s equation is considered to be an accurate and 

reliable method to estimate river discharge when there is limited data availability. The equation 

is used to compute water velocity, which takes into account the river hydraulic radius, or the 

proportion of channel cross-sectional area and wetted perimeter, the slope of water surface, 
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and the Manning resistance coefficients. Bankfull discharges, then, can be estimated by 

multiplying the bankfull width and depth, and velocity when the river is at full capacity (Dunne & 

Leopold, 1978).  

 

(3) Effective rainfall contributing to flooding 

The volume of floods can be estimated by calculating the direct runoff in a watershed caused 

by effective rainfall (Viessman et al., 1977 cited in Dasanto, et al., 2014). An example of 

effective rainfall estimation has been conducted by Dasanto et al. (2014) using a case study in 

Ci Tarum watershed (i.e. Bandung Basin). This study is part of research assessing the flood-

prone area in the basin under historical and future rainfall scenarios. Historical rainfall data 

from 2000-2011, Ci Tarum river daily discharge data from 2000-2009, and information on flood 

events in the Bandung Basin (2000-2010) were collected to conduct the study. The result 

showed that the duration of effective rainfall, which has high possibility to cause flooding in the 

Bandung Basin, was the rainfall accumulation for four days before the peak of direct runoff 

(DROp) occurred in each flood event (with R2 = 0.625).  

The assessment of effective rainfall requires the estimated rainfall rates at the day when the 

highest direct runoff (DROp) occurred during the flood events and the accumulated areal rainfall 

(Dasanto et al., 2014). Chow (1964) proposed the continuity equation to model a hydrologic 

system (Equation 2-1). In this system, a watershed is viewed as a model where precipitation is 

the input, whereas streamflow from a specific watershed within the model is the output (Figure 

2-5).  

𝑑𝑆

𝑑𝑡
= 𝐼(𝑡) − 𝑄(𝑡) Equation 2-1 

where 𝑑𝑆/𝑑𝑡, 𝐼(𝑡), and 𝑄(𝑡) denote the time rate of change of storage, the water input and 

output to the river, respectively.  

Areal rainfall can be estimated using at least four different methods; the arithmetic-mean 

method, Thiessen method, the isohyetal method, and the reciprocal-distance-squared method 

(Chow, 1964 p.78). The arithmetic-mean method is used by calculating the rainfall rates from 

all gauges divided by the number of weather stations in a watershed. This method works the 

best when the distribution of all gauges is uniform and no extreme discrepancies of the mean 

values recorded by individual gage. The Thiessen method refers to the process to define the 

area of precipitation over a catchment with a non-uniform distribution of rain gauges (Fetter, 

1988). Thiessen polygons are created over a catchment in which the polygon boundaries are 

perpendicular to the lines joining every two gauges (Figure 2-6a). The isohyetal method includes 

the development of isohyets, in which the rainfall data recorded by gauges are used and 

interpolated (Figure 2-6b) (Chow, 1964 p.79). The last method, the reciprocal-distance-squared 
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method, involves the calculation of rainfall at an ungauged point in the process (Wei & 

McGuinness, 1973 cited in Chow, 1964 p.79). 

 
Figure 2-5 A watershed which is viewed as a hydrologic system (Source: Chow, 1964) 

  
(a) (b) 

Figure 2-6 (a-b) Aerial rainfall calculation by Thiessen and isohyetal methods (Source: Chow, 1964) 

 

2.4.2 The development of hydrologic models and model categorisation 

Various kinds of models are utilised to assess the potential effects of landscape structure 

changes on ecosystem services, including the hydrologic models, graph theory, circuit theory, 

landscape genetics, and meta-analysis (Stürck, Poortinga, & Verburg, 2014; Jones et al., 2013). 

Particularly, there is a need to study the impact of land-use changes on the hydrological process 

(DeFries & Eshleman, 2004 cited in Amatya, et al., 2015).  

Several studies using hydrologic models have been conducted to assess the hydrological 

impacts of future possible land-use change scenarios. Beckers, Smerdon & Wilson (2009) 

reviewed 25 hydrologic models for predicting the impact of forest management and climate 

change on hydrologic metrics. The models are categorised based on five criteria: 

(1) Model functionality; the ability to simulate a specific hydrologic process based on the 

availability of data, the model discretisation (e.g. lumped models, semi-distributed 
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models, and distributed models), and the time step to perform the simulation. The model 

discretisation is described as follows (Kampf & Burges 2007 cited in Beckers et al. 

2009). Lumped models do not include the spatial distribution of parameters (e.g. 

vegetation and soils) in a site. In the semi-distributed models, a watershed is divided 

into several units, which have similarities in their hydrologic properties, such as terrain, 

land cover, and/or soil types. The distributed models require the watershed to be equally 

divided into a specific size of grid cells, and the spatial distribution of parameters is 

taken into account in the model.  

(2) Model complexity (e.g. the requirement of data, resources, and time to simulate a 

hydrologic model). Low-complexity models are usually utilized for a screening-level study, 

which requires low-level data input (e.g. monthly temperature and precipitation data) 

and produces limited accuracy output. Medium-complexity and high-complexity models 

have higher requirements for data input.  

(3) Model applicability to simulate hydrological processes in particular climatic and 

physiographic settings (e.g. terrain setting, watershed sizes, and a specific hydrologic 

process modelling). 

(4) Model ability to provide outputs (e.g. full hydrograph, peak flow, low flow, 

evapotranspiration, water balance, soil moisture, infiltration, water table, overland flow, 

subsurface hillslope runoff, groundwater, road flow, and watershed runoff). 

(5) Model adaptability to represent the future watershed conditions (e.g. forest growth, 

landscape structure changes, climate prediction). 

Based on the criteria above, the MIKE SHE model is selected in this study. MIKE SHE is a 

distributed model and requires high requirements for data input (Beckers, Smerdon, & Wilson, 

2009). This research assesses potential scenarios for future land cover composition and 

distribution in water catchment areas, in which the spatial distribution of hydrologic properties 

should be considered as the main factor influencing the modelling output. MIKE SHE model has 

been extensively used in several studies in water catchment areas and can assess the most 

important hydrological processes (Ma et al., 2016). These include the runoff generation process 

and river flow, which are required in this research. There is a large user community around the 

world who use the model, including in the United Kingdom.  

Previous studies using the MIKE SHE model include the simulation of water levels in a riparian 

wetland based on climate models in Berkshire, United Kingdom (House, Thompson, & Acreman, 

2016), and the assessment of hydrological responses to changes in a lowland wet grassland, in 

southeast England (Thompson et al., 2004). Various studies have also been done in other 

countries in Europe (Moussoulis, Zacharias, & Nikolaidis, 2016; Refsgaard et al., 2016; 

Dimitriou et al., 2009), Asia (Gorantiwar et al., 2015; Keilholz, Disse, & Halik, 2015; Zhang et 

al., 2008), and America (Dai et al., 2010; Larsen, et al., 2016) using the MIKE SHE model. In 
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Indonesia, hydrological modelling using MIKE SHE has been conducted in various studies, 

including the assessment of flood risk in Jakarta (Wiryawan, 2017).  

The development of hydrologic models has prompted the emerging study on assessing the 

impact of climate change and/or future land cover scenarios. However, most flood risk analyses 

focused on assessing either climate change or land cover, rather than the combination of both 

factors (Chang & Franczyk, 2008). Chang and Franczyk (2008) suggest that the uncertainty from 

unknown future precipitation trends and hydrological model parameters for future land cover 

will remain in the modelling process. Despite their difficulty to predict the future rainfall trend at 

a local scale, most studies rely on the general circulation models (GCMs) to simulate 

precipitation rate, which can lead to misleading results.  

In this research, a coupled Cellular Automata (CA) and Markov modelling is integrated with the 

application of MIKE SHE to project the future landscape structure in the two case study areas 

and to evaluate the impact of land cover changes on river flow regimes. Although many studies 

have used CA and hydrological models to assess flood risk in watersheds, the application of an 

integrated CA-Markov with MIKE SHE model is rare in the environmental studies (e.g. Wijesekara 

2013 and Farjad et al. 2017), and none of the studies were conducted in Indonesia.  

 

2.4.3 MIKE SHE hydrologic model  

MIKE SHE is a physically-based hydrologic model, which was developed by the Danish Hydraulic 

Institute (DHI). MIKE SHE works based on the hydrological cycle (Figure 2-7). In the cycle, a 

proportion of the rainfall is intercepted by tree canopies or infiltrates to the soil and groundwater, 

which discharges to rivers as baseflow. When the soil is saturated, water runs off directly to 

rivers, which flows to the oceans. Water evaporates from the oceans, rivers, lakes, or other water 

surfaces, and from the soil and is transpired by plants. In the atmosphere, the water vapour 

condenses and falls down as rainwater. MIKE SHE can model the water movement in the 

hydrological cycle, including the evapotranspiration process, unsaturated flow, overland flow, 

channel/ river flow, and saturated flow (Danish Hydraulic Institute 2017b).  
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Figure 2-7 MIKE SHE model structure (Source: Danish Hydraulic Institute 2017b) 

 

(1) Evapotranspiration (𝐸𝑇) 

The modelling of evapotranspiration in MIKE SHE includes the rainfall interception process by 

the canopy, surface water runoff and water absorption by the soil surface, water 

evapotranspiration from the upper part of the root zone or uptake by plant roots, and the water 

infiltration to the saturated zone10. MIKE SHE calculates the crop evapotranspiration (𝐸𝑇crop) 

based on reference evapotranspiration and crop coefficient (Danish Hydraulic Institute, 2017b).  

Reference evapotranspiration (𝐸𝑇0) refers to the rate of evapotranspiration from a reference 

surface with an unlimited amount of water (Allen et al., 1998). The reference surface is 

described by FAO (Food and Agriculture Organization of the United Nations) as a hypothetical 

surface, which is equal to a surface of green grass on the ground with sufficient water. There 

are at least three methods to estimate the 𝐸𝑇0; the Penman equation, Monteith equation, and 

the FAO Penman-Monteith equation.   

Crop coefficient (𝐾𝑐) is determined by dividing the actual/crop evapotranspiration (𝐸𝑇crop) with 

the reference evapotranspiration (𝐸𝑇0). While 𝐸𝑇0 values denote the climatic conditions in a 

particular area, 𝐾𝑐 only depends on the crop or plant characteristics. Thus the coefficient is 

transferable between different locations and climate. The values of 𝐾𝑐 vary in different stages 

of plant growth, which are depicted in the crop coefficient curve (Figure 2-8) (Allen et al., 1998). 

                                                      
10 In the saturated zone, water is extracted directly by roots near the water table, or indirectly by the movement of 

water to the unsaturated zone to replace water uptake by plant roots 
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The evapotranspiration process is mainly modelled using the equation from Kristensen and 

Jensen (1975).  The Kristensen and Jensen method assumes that the actual evapotranspiration 

will not exceed the reference evapotranspiration (i.e. evapotranspiration rate of a surface with 

an unlimited amount of water). The actual evapotranspiration is affected by water scarcity in the 

root zone, and the plant density (LAI/Leaf Area Index) (Danish Hydraulic Institute, 2017b).  

 

Figure 2-8 Crop coefficient curve (Source: R.G. Allen et al., 1998) 

A simplified ET model in the ET/UZ two-layer water balance method is provided in MIKE SHE as 

an alternative to the Kristensen and Jensen method. The ET/UZ two-layer method uses a formula 

from Yan and Smith (1994) to simulate the evapotranspiration process and the water movement 

to the saturated zone (Danish Hydraulic Institute, 2017b). The two-layer method is also part of 

one method to simulate unsaturated flow in MIKE SHE.  

  

(2) Unsaturated flow (UZ) 

In the unsaturated zone, water flows from the soil surface to the water table, before it infiltrates 

to the saturated zone as groundwater, or absorbed by the plant roots. The vertical flow in the 

unsaturated zone is calculated using the Richard Equation, Gravity Flow, or the Two-Layer Water 

Balance methods. The first option offers the most accurate calculation for a dynamic 

unsaturated flow, but it is the most computationally intensive among all methods. Water flows 

from the soil to the upper layer of saturated zone where water could also flow from this zone to 

the soil. The second option is suitable to estimate groundwater recharge based on precipitation 

and evapotranspiration. The vertical gradient is assumed to be uniform, and capillary forces are 

ignored. The last method is suitable for an unsaturated flow calculation where the water table 

is shallow, and groundwater recharge is mainly influenced by water uptake by plants in the root 

zone.  
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(3) Overland flow 

Overland flow occurs when soil is saturated; thus, water from rainfall ponds on the ground 

surface and flows downhill towards the river network. The flow direction and volume are affected 

by the topography, flow resistance, and the evapotranspiration and infiltration process along the 

path. The overland flow can be estimated in MIKE SHE using the finite difference method.  Two 

numerical solvers provided in this method are successive over-relaxation and explicit numerical 

solutions. The two solvers use the Diffusive Wave Approximation to the St Venant Equations 

(Danish Hydraulic Institute, 2017b). 

Surface roughness (the Strickler roughness coefficient) and slope gradients affect the overland 

flow. The surface roughness of each land cover type is the first parameter of overland flow and 

is derived from Manning’s equation (Danish Hydraulic Institute, 2017b). The calculation 

assesses the velocity of open channel flow based on the roughness coefficient n (Chow, 

Maidment, & Mays, 1988). The second parameter of overland flow is detention storage. The 

storage determines the amount of water flowing from one cell to its adjacent cell. The last 

parameter is the initial and boundary condition (Danish Hydraulic Institute, 2017b).  

 

(4) River flow 

River flow can be simulated in MIKE SHE by linking the model to MIKE 11 or MIKE Hydro via 

river links. The links are located on the edges between grid cells in MIKE SHE. MIKE Hydro is the 

Graphical User Interface framework which was developed by DHI to model water resources in a 

basin and river networks (Danish Hydraulic Institute, 2017c).  In particular, MIKE Hydro requires 

various datasets, such as the parameters for river hydrodynamics and the rainfall-runoff model.  

 

(5) Saturated flow 

In MIKE SHE, the saturated flow modelling is integrated with other hydrologic components (e.g. 

evapotranspiration, overland flow, river flow, and unsaturated flow). Two available methods to 

calculate the saturated flow in MIKE SHE are the 3D finite difference method and the linear 

reservoir method. The finite difference method provides the flexibility of flow to shift between 

unconfined and confined conditions of a heterogeneous aquifer. The linear reservoir method, 

on the other hand, is often selected when available data is limited to model a complex 

hydrological response at the catchment scale (Danish Hydraulic Institute, 2017a).  

 

In physical-based models, such as MIKE SHE, a calibration is required to find an optimal set of 

parameter values which can accurately simulate the hydrological metrics (Sooroshian & Gupta 

1995 cited in Sahoo et al. 2006). A validation process is also needed to see the capability of a 
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calibrated model to make accurate predictions for the selected hydrological metric in a period 

other than the calibration period (Refsgaard, 1997). Results from the calibration and validation 

processes can be evaluated using visual graphical techniques and statistical measures (e.g. 

root mean square error (RMSE), correlation coefficient (R), and mean error (ME)) (Sahoo, Ray, & 

de Carlo, 2006). 

 

2.4.4 Uncertainty factors in hydrologic modelling 

In hydrological modelling, all spatial and temporal variants of flows and state variables are not 

possible to be measured, and there would be errors in the measurements. Therefore, the output 

from modelling contains uncertainty because models use data with sampling errors. Thus, it is 

argued that the model uncertainty should be assessed when the outcome might affect the 

decision-making for flood mitigation (Beven et al. 2014). It should be noted that a hydrologic 

modelling program is not a complete product. It is always improved by the feedback from users 

(Floyd 1987 cited in Refsgaard & Storm, 1996). 

Various studies have been done to identify the sources of uncertainty in hydrology modelling. 

According to Refsgaard & Storm (1996), the sources include errors in the input data (e.g. 

precipitation rates, temperature) and recorded data (e.g. river discharges), errors caused by non-

parameter values, and errors caused by an incomplete or biased model structure (Refsgaard & 

Storm, 1996). Merz & Thieken (2005) argued that there are two types of uncertainty: the natural 

and epistemic uncertainties. Natural uncertainty occurs because of the different variables in the 

stochastic processes. On the other hand, the epistemic uncertainty is caused by the lack of 

understanding of the modelling process. In particular, Beven et al. (2015) pointed out the 

sources of uncertainty in flood inundation mapping, which include aleatory and epistemic 

uncertainties.  

Figure 2-9 illustrates an example of the source-pathway-receptor framework of the primary 

sources of uncertainty for mapping flood inundation (Beven et al., 2015). The sources of 

uncertainty at the beginning of studies may include the decisions whether the design flood 

magnitude and the impact of climate change and land change should be incorporated in the 

process. It is also important to identify several factors, such as the uncertainty elements along 

the flood inundation mapping process, the uncertainty features on receptors, the 

implementation of uncertainty analysis, and the observation conditions.  

Multiple viewpoints, including various methods and assumptions, should be considered in the 

flood mapping, and the output from uncertainty analysis should be communicated. Some 

communication methods include scenario modelling, an assessment to determine limitations in 

the model, and a comparative analysis of the outputs (Teng et al. 2017). The assessment of 

model uncertainty is also essential to interpret the output from model validation tests. Different 

methods of validation will give different uncertainty levels  (Refsgaard, 1997).   
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Figure 2-9 The primary sources of uncertainty in flood risk mapping (the diagram was redrawn from 

Beven et al. 2014 cited in Beven et al. 2014)  

 

2.5 Conclusion to the literature review 

In this research, land cover maps of the two upper water catchment areas and the land change 

scenarios were developed following the selected methods from the literature. Based on the 

model ability to simulate the future land cover scenarios, a combined CA-Markov is selected as 

the land change model in this research. Although the hybrid model has been widely used in the 

land change modelling, the applications for simulating forest cover change have rarely been 

explored (Ghosh et al., 2017). The CA-Markov model has also been applied in many case studies 

in Indonesia. However, none of the studies have been conducted in Ci Kapundung and Ci 

Sangkuy upper water catchments, in which parts of the two case study areas are covered by 

forest plantations and natural forests.  

Criteria to select a hydrologic model to assess the hydrological impacts on land change have 

also been mentioned in this chapter, and MIKE SHE was chosen in this study. Despite the 

extensive applications of CA and hydrologic models to assess land change and flood risk in 

watersheds, a combination of CA-Markov to model the land cover change, and MIKE SHE to 

project future flow regimes is rare, and none of the projects were conducted in Indonesia. 
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Chapter 3 Case study areas 

This chapter provides an overview of Bandung Basin and the two case study areas; the Ci 

Kapundung and Ci Sangkuy upper water catchment areas. The two catchments were selected 

as the case study areas because they have contrasting biophysical settings and scales, and 

demonstrate as useful indicators of flood risk in the Bandung Basin. Bandung Basin and its 

catchment areas were delineated from the digital elevation model (DEM) from BIG (Badan 

Informasi Geografi/ Indonesian Geospatial Agency), using a hydrology toolbox in ArcGIS.  

 

3.1 Bandung Basin  

There are four ways in which the perimeter of Bandung Basin can be defined (Figure 3-1) 

(Brahmantyo 2004). The first perception sees the Bandung Basin as a plateau. The area of the 

basin covers the large plain which is located in the southern Bandung city.  

  
(a) (b) 

  
(c) (d) 

Figure 3-1 (a-d) Bandung Basin area delineation according to the four arguments (the delineation was 

drawn based on the original images from Brahmantyo, 2004). Source of background image: Esri, USGS, 

NOA. Source of inset map: A modified map from JICA 2010) 

The second viewpoint proposes the area of Ci Tarum upper water catchment as a part of the 

basin. It encompasses the hills and peaks of Mt. Tangkuban Perahu, Mt. Burangrang, Mt. 

Bukittunggul, and Mt. Manglayang in the north, Mt. Bukitjarian, Mt. Dusung, and Mt. Geulis in 
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the east, and Mt. Mandalawangi, Mt. Malabar, Mt. Patuha, and Mt. Tilu in the south, as well as 

the Selacau and Lagadar hills in the western part of the basin.  

The third perception includes the Saguling reservoir as a part of the Bandung Basin. This 

delineation is based on the geological history of Bandung Basin. In this viewpoint, Sanghyang 

Tikoro11, a place which was once assumed to be the area where the outflow of ancient Bandung 

Lake was located, is included in its delineation. The last definition includes the whole area of 

West Bandung regency as part of Bandung Basin. This research uses the second perspective to 

define the area of Bandung Basin. In this viewpoint, the area is seen as a basin with lacustrine 

sediments surrounded by volcanos (Brahmantyo 2004). 

An overview of the Bandung Basin development, the environmental conditions, the land cover 

changes over a period of time, the history of flood events, the current spatial planning policies, 

and the regulations of different protected areas in Indonesia are presented as follows.  

 

3.1.1 Bandung Basin development  

Early documentation of the environment of Bandung Basin was done by Franz Wilhelm Junghuhn 

in 1857, who wrote books depicting Java’s mountain characteristics, including Preanger (the 

mountainous area in West Java, Indonesia) (Setiawan & Sabana, 2015). In other publications in 

1845 and 1850-1854, Junghuhn also provided detailed descriptions of the natural vegetation 

in Java, and how those pristine conditions were destroyed by the increasing demand for 

agriculture (van Steenis & Schippers-Lammerste, 1965). Other documentation, written by L. van 

der Pijl in 1933, was about the undisturbed condition of limestone forest in Padalarang, which 

is located in the northern part of Bandung Basin (Whitten, Afiff, & Soeriaatmadja, 1996).  

The distribution of rainfall throughout the year and altitude have created a condition which 

characterised flora in Java (van Steenis & Schippers-Lammerste, 1965). According to Whitten, 

Afiff, & Soeriaatmadja (1996), the natural vegetation of Java can be classified into six types: 

evergreen rain forests, semi-evergreen rain forests, moist deciduous forests, dry deciduous 

forests, aseasonal montane forests, and seasonal montane forests12. In addition, there are five 

types of forest which occupy small areas; mangrove forest, swamp forest, lower montane forest, 

                                                      
11 Sanghyang Tikoro is located near the water body which is known as Saguling reservoir at the present time.  
12 Whitten et al. (1996) describe the difference between the evergreen rain forests and the semi-evergreen rain 

forests is that the latter can be found in the area with two to four dry months each year and almost half of the tree 

species are deciduous. Moist deciduous forests in Java are located in the region with four to six dry months and the 

annual rainfall of 1,500-4,000 mm. Whereas rainfall in the dry deciduous forests is less than 1,500 mm/year with 

more than six dry months. Fewer species are found in the deciduous forests than in the rain forests. The types of 

vegetation on mountain slopes differ with the increasing altitude.  

Whitten et al. (1996) summarise the characteristics of plants in different forests on mountains based on the works 

from Raunkier (1934) and Webb (1959). More trees with canopy height or more than 25 metres and emergent with 

height up to 67 metres are found in the lowland forests. Shorter trees and less massive plant communities are 

more common with the increasing altitude. Tree buttresses are usually absent and creepers are very rare in the 

upper montane forests (1,800 - 3,000 m asl). However, epiphytes (e.g. moss, lichen) are usually abundant in this 

forest.   
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upper montane forest, subalpine vegetation, dry evergreen forest, lowland forest and thron 

forest.  

Another vegetation classification was proposed by van Steenis in 1950. The proposed 

categories include the submerged littoral vegetation, mangrove, beach formations, barringtonia 

formation, dunes, lowland swamp forests, hydrophytic vegetation, rheophytic vegetation, mixed 

lowland and hill rain-forest on dry land, montane everwet rain-forest, mountain swamps and 

lakes, subalpine vegetation, and monsoon forest (van Steenis & Schippers-Lammerste, 1965). 

Coffee was first cultivated in Preanger in 1707, and plantations were mainly located on the lower 

slope of mountainous areas, particularly in the areas where primary forests were cleared (Knaap 

1986 cited in Zakaria 2012). Among the regencies in Preanger, Bandung was the top coffee 

production area in 1832-1864 because of its suitability for growing coffee (Zakaria 2012). On 

the other hand, the construction of Grote Postweg (Great Post Road) across Java in the early 

19th century initiated the development of towns in the island (Siregar, 1990). Siregar (1990) 

further described that during this time, there were scattered settlements in the Bandung Basin. 

The opening of the railway in 1884 connecting Bandung to Batavia (former name of Jakarta) 

has accelerated economic growth in the region. In 1906, Bandung received its municipality 

status along with the other ten cities/towns in Java and other islands. Initially covering an area 

of 900 Ha, Bandung area had increased to 2,130 Ha in 1911.  

A study of the Bandung expansion plan (Uitsbreidingspan Bandoeng-Noord) was proposed by 

the Department of Public Works in Bandung and the AIA Architecture Bureau of Batavia in 1917. 

The plan focused on the development of the north-east and north-west side of Bandung following 

the concept of ‘garden-city’. It has transformed the town structure into a radio-concentric 

pattern, although the design was only partially implemented (Siregar, 1990).    

Further development in southern Bandung was initiated by the kampong improvement project 

in 1925. The city densification continued after the independence of Indonesia. The first 

masterplan of Bandung city was developed in 1965, including for the satellite towns (e.g. 

Lembang and Cimahi in northern Bandung, and Ujung Berung and Dayeuh Kolot in southern 

Bandung). New dispersed settlements were started to be built in the regencies surrounding 

Bandung city in the early 1980s. At the same time, densification phenomena inside the city 

could be seen, particularly in the southern and north-western side of the city  (Siregar, 1990).   

 

3.1.2 Environmental conditions of Bandung Basin  

In this section, six aspects of the environmental conditions of the Bandung Basin are explored. 

The aspects are the climate, topography, soil, hydrology, geology, and hydrogeology aspects, 

which characterise the landscapes of the basin. All the figures on Bandung Basin in this section 
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were retrieved from five different departments and research projects13, which show two different 

perimeters of the basin. However, the analysis part of this research uses only one version of 

basin delineation (i.e. the basin as Ci Tarum upper water catchment area). The delineations are 

shown in red in all basin maps in the following sections.  

(1) Climate 

Many studies have suggested that rainfall patterns in Indonesia are generally affected by 

different climate drivers, such as the El Nino-Southern Oscillation (ENSO), the Indian Ocean 

Dipole (IOD), and monsoon (e.g. Qalbi, Faqih, & Hidayat, 2017; Aldrian & Dwi Susanto, 2003).  

ENSO is affected by the sea surface temperature anomalies (SSTA) in the Pacific Ocean, 

whereas IOD is a climate mode of SSTA variability in the Indian Ocean (Webster et al. 1999 & 

Saji et al. 1999 cited in Stuecker et al., 2017). The monsoon wind is generated by the different 

physical air properties between the ocean and continent and is affected by solar radiation 

(Tjasyono H. K. et al., 2008).  

Indonesia can be divided into three climatic regions based on the characteristics of rainfall 

variability and the correlation between rainfall and the occurrence of ENSO and the monsoon 

(Figure 3-2) (Aldrian & Susanto, 2003).  Region A, where the Bandung Basin is located, is 

influenced by two monsoons; the wet northwest and the dry southeast, which occur from 

November to March and May to September respectively. Region B is located in northwest 

Indonesia and experiences two peaks in rainfall with the highest precipitation rates every year 

from October to November and March to May. Region C covers the eastern part of the country, 

with one peak rainfall event in June-July.      

The impact of climate change on rainfall patterns in four stations in Indonesia (1876–1996) 

were assessed using the moving average analysis (Lasco & Boer, 2006). The four stations are 

located in Jakarta, Kupang, Ambon, and Maulaboh, representing the regions with three different 

rainfall patterns in Indonesia; monsoon, equatorial, and local. The results show that the rainfall 

patterns in Jakarta and Kupang14 affected by monsoon had decreased before the pre-industrial 

era (1900s-1920s). The rainfall intensity then gradually increased from the 1940s. The rainfall 

pattern in Ambon15 is the local type, which indicates an opposite pattern from the monsoonal 

type. Maulaboh16 is located in a region with the equatorial rainfall type. This rainfall pattern had 

gradually decreased until the early 1940s before it increased steeply in the following few years, 

and then decreased steadily from the early 1950s.  

                                                      
13  The five departments and research projects are Bakosurtanal, UNPAD and Indonesia Power, Soil and 

Agroclimate Centre (1993), Brahmantyo (2005), Nurliana & Widodo (2009), Haryanto (2007), and JICA (2010) 
14 Jakarta and Kupang are located in Java and the East Nusa Tenggara islands respectively, in the southern part of 

Indonesia 
15 Ambon is the capital city of Maluku province, which is located in the eastern part of Indonesia 
16 Maulaboh is a city in Aceh province, which is located in the northwest part of Indonesia 
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Figure 3-2 The climatic regions in Indonesia (Source: Aldrian & Dwi Susanto 2003) 

 

The Bandung Basin climate is not only affected by the monsoon circulation, but also the 

topography of West Java province and the elevation of the basin (Brahmantyo 2005). A study 

was conducted to assess the influence of ENSO on the rainfall patterns in seven cities in 

Indonesia, including Bandung city, using precipitation data from 1970-1997 (Lasco & Boer, 

2006). The analysis shows that the chance of rainfall anomalies occurring in Bandung City 

during La Nina events, which is indicated by strong positive SOI (Southern Oscillation Index (SOI), 

is more than 40%. However, the impact of ENSO on the local climate in Bandung might be less 

due to its location in the valley of Bandung Basin, compared with other cities. 

  

Figure 3-3 Annual precipitation rates in Bandung Basin (The map was redrawn from Bakosurtanal, 

UNPAD and Indonesia Power. The delineation of the Bandung Basin is shown in red) 
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The annual precipitation rates per year in Bandung Basin, which vary with elevation, are shown 

in Figure 3-3 (Bakosurtanal, UNPAD, and Indonesia Power). BMKG (the Indonesian Agency for 

Meteorology, Climatology and Geophysics) forecasts changes in the rainfall patterns in 

Indonesia caused by climate change. More intense rainfall with precipitation rates over 50 

mm/day is predicted to occur in Bandung Basin in the future, while the trends of wet spells will 

also increase (BMKG, 2017).  

 

(2) Topography 

A topography map of Bandung Basin was created from DEM (Digital Elevation Model), and is 

illustrated in Figure 3-4. The map shows that the basin was surrounded by highlands with steep 

slopes on the northern, eastern, and southern parts of the region. The highest and lowest 

altitudes in the basin are 2,595 metres and 638 metres respectively. Lembang fault is located 

in the Ci Kapundung catchment in the northern part of Bandung Basin. The fault breaks at the 

centre of the upper catchment where the Ci Kapundung River flows.  

 

Figure 3-4 Topography of Bandung Basin (Source: a surface analysis using DEM from BIG (Badan 

Informasi Geografi/Indonesian Geospatial Agency)) 

 

(3) Soil 

The Soil and Agroclimate Research Centre (1993) identified the composition of clay, sand, and 

silt of soil types in Bandung Basin and the northwest side of the basin, excluding the area of 

Bandung city. The soil has been classified into 6 orders, which comprise of 8 suborders, 19 great 

groups, and 40 subgroups, based on Soil Taxonomy (Soil Survey Staff, 1999). The region was 

Lembang fault 
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divided into 78 zones based on the landform, soil compositions, and lithology. The soil map 

shows that the dominant soil types in the basin are Typic Tropaquepts and Aeric Tropaquepts, 

which were generated from lacustrine sediments. The soil is mostly located at the centre of the 

basin (Figure 3-5).  

  

Figure 3-5 Soil map of Bandung Basin (Source: Soil and Agroclimate Research Centre 1993) 

The landslide risk maps of Bandung City, Bandung Regency, and West Bandung Regency, where 

the two case study areas were located, were retrieved from the Center for Vulcanology and 

Geological Hazard Mitigation, Ministry of Energy and Mineral Resources (Figure 3-6). Each 

municipality is divided into four zones based on the level of landslide risk. The characteristics of 

the four zones are described as follows.  

The first zone has very low susceptibility to landslides. The zone is mainly located in areas with 

a gradient of slopes less than 15% and is not formed by landslide deposits, filling material or 

plastic and swelling clay. The second zone has low susceptibility to landslides. There are traces 

of the occurrence of small landslides, especially near the rivers or gullies with gentle to steep 

slopes. The steep slope areas are mostly composed of rock with a thin layer of soil and are 

covered with dense vegetation. The third zone has a moderate susceptibility to landslides. This 

zone includes the areas along rivers, scarps, roadcuts, and disturbed slopes. The recurrence of 

landslides might be induced by high precipitation rates and erosion. The fourth zone has a high 

susceptibility to landslides. Landslides occur in the areas with moderate to very steep slopes, 

depending on the physical and engineering properties of rocks, as well as the soil formed from 

the weathering process.     
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(a) (b) 

.

 

 

 

 

 

(c) (d) 

Figure 3-6 Landslide risk maps for (a) Bandung regency; (b) West Bandung regency; (c) Bandung city; (d) 

The location of each case study area in the three municipalities (Source: The Center for Vulcanology and 

Geological Hazard Mitigation, Ministry of Energy and Mineral Resources) 

 

(4) Hydrology 

Thirteen water catchment areas in Bandung Basin were delineated based on the DEM using a 

hydrology toolbox in ArcGIS. The thirteen watersheds are the Ci Widey, Ci Tepus, Upper Ci Tarum, 

Ci Tarik, Ci Sangkuy, Ci Pamokolan, Ci Mahi, Ci Keruh, Ci Kapundung, Ci Durian, Ci Cadas, Ci 

Bolerang, and Ci Beureum watersheds (Figure 3-7). All river networks from these watersheds 

flow to the Ci Tarum River, at the centre of the basin. Water from rivers in the Bandung Basin is 

extracted for drinking water, irrigation, industry, and electricity. There are three hydroelectric 

power plants in the Ci Kapundung and Ci Sangkuy watersheds (i.e. Bengkok, Lamajan, and 

Plengan hydroelectric power plants).  

The impact of ENSO on the Ci Tarum River discharge in the Bandung Basin was assessed using 

long-term historical data (Lasco & Boer, 2006). The result suggests that the river flow increased 

by 0.37 m3/s and 0.24 m3/s for every 10-unit increase in SOI (Southern Oscillation Index) in 

May-July and August-October, respectively.  

Legend 

Zone 1 

Zone 2 

Zone 3 

Zone 4 
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Figure 3-7 The watersheds in Bandung Basin (Source: catchment delineation analysis in ArcGIS using 

DEM. The overlaid river network image from Indonesian Geospatial Portal)  

At a bigger scale, Bandung Basin can be seen as the upper catchment of Ci Tarum River (Figure 

3-8). The river runs outside the basin to the Java Sea on the northern part of Java Island. Three 

reservoirs were built alongside the river, Jatiluhur, Cirata, and Saguling reservoirs, in which the 

Inflow to the dams are affected by the ENSO. During El Nino events, the inflow could decrease 

up to 40% of the regular inflow to the three dams (Lasco & Boer, 2006). 

 

Figure 3-8 Ci Tarum water catchment area (A modified map from JICA 2010) 
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(5) Geology 

The geologic structure of Bandung Basin is characterised by the volcanic and tectonic activities 

during the Oligo-Miosen until early-middle Quaternary (approximately 30 million to 18 million 

years ago). The geomorphological structure of Bandung Basin consists of volcanic mountains 

and hills, alluvial fan and lacustrine plain, and anticline (Figure 3-9) (Brahmantyo, 2005). The 

volcanoes and hills are located in the northern, eastern, and southern parts of the basin. River 

networks on the hills of old volcanoes are characterised by the rough texture of the river bed. 

Approximately 85% of springs are located on the hills of Bandung Basin.  

The alluvial fan and lacustrine plain are located at the centre part of Bandung Basin. The alluvial 

fan was developed when sediments from volcanoes flowed into the rivers on the mountains and 

were deposited when they reached the lacustrine plain. The lowest part of the plain is located 

in the elevation of 650 metres above sea level. The delineation of this lacustrine plain is the 

contour line of 700 metres above sea level. This alluvial plain is a floodplain area of the Ci Tarum 

River, which flows slowly in the relatively flat terrain with a slope of 2%. An intrusive rock as a 

natural dam in Selacau and Lagadar hills in the western part of the basin also affects the flow 

of Ci Tarum River (Brahmantyo 2005).  

 

Figure 3-9 Geomorphological structures of Bandung Basin (Source: Brahmantyo 2005) 

The anticline is spread out in the north-west part of the basin. The geology of the area can be 

classified into two parts; the hogback and homocline of Pasir Kiara-Halimun Mt. and the karst 

of Citatah-Tagogapu. Many cascades and waterfalls are found in the hogback and homocline. 

This area is assumed to be the location of the outflow which led to the creation of the ancient 

Bandung Lake 16,000 years ago.     
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Figure 3-10 The earthquake hazard map for Bandung Basin (A modified map from The Center for 

Vulcanology and Geological Hazard Mitigation, Ministry of Energy and Mineral Resources 2008) 

 

According to the earthquake hazard map of Bandung Basin (2008) (Figure 3-10), the basin is 

located in the high and moderate hazard zones. The first zone is prone to earthquakes with an 

intensity of VII-VIII MII (Modified Mercalli Intensity) scale, ground fissures, liquefaction, and 

landslides on the steep slope areas. The area is located near the hypocentre at shallow depths, 

which is composed of Quaternary deposits, such as alluvium and young volcanic sediments. The 

second zone has a moderate risk of earthquakes with an intensity of VI MMI scale. Ground 

fissures, liquefaction, and landslides might occur on a smaller scale. The area is mostly 

composed of Tertiary and Quarternary deposits. The hypocentre in this zone is located 35-90 

km below ground level.  

 

(6) Hydrogeology 

There are two types of aquifers in Bandung Basin which have different lithology, conductivity, 

and transmissivity (i.e. the aquifer in the centre part of the basin and the aquifer in the northern, 

southern, and eastern parts of the basin). The first aquifer was developed from young and old 

volcano deposits, as well as from lake deposits. The lake deposits are located on top of the 

young volcano deposits (Cibeureum formation) (Figure 3-11). The second aquifer was composed 

by the deposits from young volcanoes (Cikidang and Cibeureum formations) and 

Tangkubanperahu Mt. (Cikapundung formation) in the north, deposits from Malabar Mt. and 

Wayang Mt. in the south, and the deposits from Mandalawangi Mt. in the east (Nurliana & 

Widodo, 2009).   

High earthquake hazard zone 

Moderate earthquake hazard zone 
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Figure 3-11 The aquifer in Bandung Basin (the image was modified to include an English translation. 

The original image was retrieved from Nurliana & Widodo (2009), who developed the aquifer model 

based on Priowirjanto (1985), IWACO & WASECO (1990), and Department of Mines and Energy, West 

Java province and LPPM-ITB (2002 & 2006)) 

 

3.1.3 Land cover change in Bandung Basin over a period of time 

The assessment of a land cover changes in Bandung Basin, including the area where the 

Saguling reservoir is located (Figure 3-12), shows that there was an increase of the runoff 

coefficient in all catchments within the period of 1983-2002 (Haryanto, Herwanto, & Kendarto, 

2007). The analysis was conducted using the table of runoff coefficients for different types of 

land cover from Chow et al. (1988). Higher runoff coefficients show a lower ability of the surface 

to absorb runoff water. The result of the assessment is presented in Table 3-1.  

   
(1983) (1993) (2002) 

 

  

Figure 3-12 Land cover in Bandung Basin (1983-2002) (Source: BPLHD West Java Province cited in 

Haryanto, 2007) 

 

 

 

(North) 

(South) 

(Cikidang formation) 

(Kosambi formation) 

(Cibeureum formation) 

(Cikapundung formation) 

(Cilanang formation) 

(Lava) 

(Compacted Cibeureum formation) 
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Table 3-1 Runoff coefficients of all water catchments in Bandung Basin in 1983, 1993, and 2002 

(Source: Haryanto et al. 2007) 

 

Catchments 

Runoff coefficient 

1983 1993 2002 

Ci Kapundung 0.18 0.26 0.37 

Ci Keruh 0.01 0.09 0.15 

Ci Tarik 0.05 0.08 0.13 

Ci Sarea 0.06 0.08 0.09 

Ci Sangkuy 0.06 0.08 0.12 

Ci Widey 0.06 0.08 0.11 

 

3.1.4 The history of flood events in the basin and the river improvement project 

Intense and prolonged rainfall and saturated soil to increase the rates of overland flow have 

caused the overflowing of major rivers in Bandung Basin. Figure 3-13 shows the total flood areas 

in the basin within the period of 1990-2002. The analysis from Lasco & Boer (2006) reveals 

that there was a chance of approximately 75% of floods occurring in the basin with flows of more 

than 200 m/s3, while massive floods were likely to happen when the flows are more than 250 

m/s3.  

 

Figure 3-13 Total flooded areas in Bandung and recorded Ci Tarum River flows (1990-2002) (Source: 

Lasco & Boer, 2006) 

To minimise flood damage in the basin, JICA (Japan International Cooperation Agency) proposed 

a series of flood mitigation plans from the 1980s. The Master Plan for flood control in nine 

tributaries (i.e. Ci Tarum upstream, Citarik upstream, Cimande, Cikijing, Cikeruh, Cibeusi, Ci 

Sangkuy upstream, Citagulung, and Ciputat) was generated in 1987-1988 (Figure 3-14), which 

was followed by the Feasibility Study, Detailed Design (D/D), and construction work within the 

period of 1992-2007 (JICA, 2010).  The 2007 Detailed Design (D/D) comprises an improvement 

plan for the nine tributaries. The D/D includes the estimated design discharge, design river 

alignment, profile, and cross-sections. The river improvement project made a contribution to the 

decrease in the area affected by major floods in 1986-2007.  
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Figure 3-14 The location of nine tributaries for the river improvement project in the Bandung Basin 

(Source: JICA, 2010) 

 

 
(a) 



53 
 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figure 3-15 (a-e) The inundated areas during major flood events in the Bandung Basin in 1986, 2005, 

2006, 2007, and 2010 respectively (the figures were redrawn from original images from JICA 2010; 

Source of background image: Esri, Garmin, HERE, DeLorme, Intermap, increment P Corp., GEBCO, 

USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, METI, © OpenStreetMap 

contributors, and the GIS User Community)  

Figure 3-15a shows the inundated area in Bandung Basin during a flood event in 1986 before 

the river improvement project was conducted. The total inundated area in the basin during the 

1986 flood was 71 km2, as recorded by JICA. Higher precipitation caused by a strong La Nina 

event in 1998 (Null, 2018) resulted in the increased areas of flooding in the basin (Figure 3-13). 

The flooded areas during 2005, 2006, and 2007 flood events were gradually shrinking, 

compared with conditions in 1986 (Figure 3-15b-d). However, the lack of sufficient mitigation 

measures and heavy sedimentation from the upstream areas in the Bandung Basin prompted 
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recurrent floods in the area because of the decreasing flow capacity of Ci Tarum River (JICA, 

2010).  

 

3.1.5 Current spatial planning policies for municipalities in Bandung Basin  

Every city and regency in Indonesia has a spatial plan (RTRW), which is developed from the plans 

at national and province levels. Based on the RTRW, municipalities develop more detailed 

spatial plans (RDTR). RTRW provides policies for spatial planning, land-use, and establishment 

of strategic areas, as well as strategies to control land utilisation. The land-use policies regulate 

the development of settlements, agriculture, public facilities and infrastructure in the area, 

including the protection of specific sites, such as the conservation areas, and areas prone to 

landslides, earthquakes, and volcanic activities. In this research, the two case studies are 

located in three municipalities in Bandung Basin (i.e. Bandung City, Bandung Regency, and West 

Bandung Regency). Each of these municipalities has a different spatial policy. Figure 3-16 shows 

the spatial plan for Bandung city and the two regencies.  

  

  

(a) (b)   

  

  

(c) (d)   

Figure 3-16 Spatial plans for (a) Bandung regency; (b) West Bandung regency; (c) Bandung city; (d) The 

location of each case study area in the three municipalities (Sources: Bandung regency, 2008; West 

Bandung regency, 2009; Bandung city, 2011) 
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In 2018, the government of Indonesia released a presidential regulation for Bandung Basin17 

spatial policy. The regulation proposes the spatial arrangements for seven different types of 

conservation areas (e.g. protected forests, recharge areas, areas providing protection to specific 

landscape features, protected areas, areas with specific geological features, cultural heritage 

sites, and other conservation areas), and the built-up areas. The original spatial plan is divided 

into 46 maps in an A4-size. Figure 3-17 shows the maps which have been georeferenced, and 

the area of Bandung Basin delineated from the DEM.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-17 Spatial plan for Bandung Basin (Georeferenced maps of Bandung Basin spatial plan from 

the Indonesian presidential regulation no 45/2018. Boundary line in black is the basin delineation used 

in this research) 

 

3.1.6 Protected areas in Bandung Basin  

There are nine protected areas which are located in the mountainous areas surrounding the 

Bandung Basin; Cagar Alam (CA) Burangrang Mt (2,700 Ha), CA Tangkuban Perahu Mt. (1,290 

Ha), Taman Wisata Alam (TWA) Tangkuban Perahu Mt. (370 Ha), and Taman Hutan Raya (THR) 

Ir. H. Djuanda  (526.98 Ha) in the northern part of the basin, CA Kawah Kamojang (7,763.19 

Ha), TWA Kawah Kamojang (535 Ha), CA Papandayan Mt. (6,807 Ha), TWA Papandayan Mt. 

(225 Ha) and CA Tilu Mt. (7,478.86 Ha), in the southern part of the basin. These protected areas 

were established with distinct purposes and management objectives, and demonstrate typical 

problems found in tropical forest protected areas in an urbanised region. 

According to the Indonesian Law of Natural Resources and Ecosystem Conservation (1990) and 

the Indonesian Law of Forest (1999), Cagar Alam (CA) is a protected area where typical plants, 

                                                      
17 In this regulation, the term of Bandung Basin refers to a region covering the whole area of Bandung city, Bandung 

regency, West Bandung regency, Cimahi city, and some parts of Sumedang regency. 
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wildlife, and the ecosystem are required to be conserved. Taman Wisata Alam (TWA) is a 

protected area which is dedicated mainly for nature-based tourism and recreation activities. 

Taman Hutan Raya (THR) is a protected area to display a collection of both indigenous and exotic 

plants and wildlife, which is dedicated to research, education, and tourism activities.  

Based on the IUCN (International Union for Conservation of Nature) protected areas categories 

system, the term CA depicts the IUCN category Ia. This category refers to the protected areas 

that are established to protect biodiversity and geological/geomorphological features, where 

human activities in the areas are controlled to preserve nature. The term TWA is equal to the 

category VI of the protected area. In this category, most parts of the area are in a natural 

condition where the public can access for recreational purposes while conserving the natural 

resources. THR is equal to category V (Protected Landscape/Seascape). Protected areas in this 

category conserve the sustainability of ecological, biological, cultural and scenic value of an area 

where people and nature have interacted over time.  

 

3.2 Case study areas as indicators of water catchments to cause flooding in 

Bandung Basin 

A preliminary study has been conducted to select two watersheds in Bandung Basin as the case 

study areas in this research. One of the criteria is the possibilities of the watersheds to cause 

flooding in Bandung Basin. The analysis was performed by assessing the runoff coefficients of 

all watersheds in Bandung Basin within the period of 2008-2016. A similar analysis has been 

done in the Bandung Basin using land cover data in 1983, 1993, and 2002, and the list of 

runoff coefficient for different land cover from Chow, Maidment, & Mays (1988) (Haryanto, 

Herwanto, & Kendarto, 2007). In this research, the assessment of runoff coefficients was 

conducted using the rainfall data and the estimated volume of direct runoff (2008-2016).   

A runoff coefficient (C) denotes the proportion of runoff to rainfall over a period (Chow, 

Maidment, & Mays, 1988). It is common to use storm rainfall and the runoff data to assess the 

runoff coefficient. However, the coefficients can also be derived from monthly or annual rainfall 

and streamflow data. Direct runoff is generated by rainfall, which is not absorbed into the soil 

and is affected by the land cover and soil types. A watershed with high rates of change in runoff 

coefficients has a high proportion of permeable areas which have been converted to impervious 

surfaces. Thus there is a chance of the catchment to generate a high volume of direct runoff, 

especially during an intense and long-duration rainfall event.  

Runoff coefficients can be estimated using Equation 3-1 (Chow, Maidment, & Mays, 1988). The 

original units of rainfall and river discharge retrieved from the weather stations and river gauges 

respectively are in metric. Therefore, the analysis was conducted using the same unit system. 
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𝐶 =
𝑟𝑑

∑ 𝑅𝑚
𝑀
𝑚=1

 Equation 3-1 

where  

C   : runoff coefficient (dimensionless)  

∑ 𝑅𝑚
𝑀
𝑚=1   : total rainfall (in) 

𝑟𝑑   : the corresponding depth of runoff (in) 

In this study, the Thiessen-weighted averages of the daily rainfall data from rainfall gauges in all 

water catchment areas in Bandung Basin were computed. Then, the total annual rainfall in each 

watershed in 2008, 2010, 2013, and 2016, was calculated. The depth of runoff (𝑟𝑑) was 

estimated using Equation 3-2. The volume of direct runoff (𝑉𝑑) is the accumulated direct runoff 

(𝑄𝑛) within a period of time (∆𝑡) (Equation 3-3), which was calculated by subtracting the 

observed streamflow with the baseflow. Streamflow and rainfall datasets were derived from 10 

river gauges and 13 weather stations respectively in eight watersheds in 2008-2016. The eight 

watersheds are Ci Kapundung, Ci Sangkuy, Ci Bereum, Ci Keruh, Ci Mahi, Ci Tarik, Ci Widey, and 

Upper Ci Tarum watersheds. Due to limited streamflow data, five other catchments in the basin 

were excluded from the analysis. 

𝑟𝑑 =
𝑉𝑑

𝑤𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 𝑎𝑟𝑒𝑎
 Equation 3-2 

𝑉𝑑 = ∑𝑄𝑛∆𝑡

365

𝑛=1

 
Equation 3-3 

 

Baseflow for rivers in the basin was estimated based on the river discharges data (2008-2016) 

of each river, following the method from Oregon State University, which is explained in chapter 

4. The results are presented in Table 3-2.  

Table 3-2 Estimated baseflow of eight rivers in the Bandung Basin  

Rivers  River gauges Estimated baseflow (m3/s) 

Ci Kapundung Pasir Luyu 0.64 

Ci Sangkuy Pataruman 3.06 

Ci Beureum Cihideung 0.25 

Ci Keruh Cikuda 0.22 

Ci Mahi Cicangkuang 0.42 

Ci Tarik B Cangkuang 0.46 

Ci Widey Cigenteng 6.47 

Upper Ci Tarum Majalaya 2.03 

 

The estimated runoff coefficients of the eight watersheds in 2008, 2010, 2013, and 2016 are 

shown in  
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Table 3-3 and Figure 3-18. The result shows that runoff coefficients in the Ci Sangkuy water 

catchment area have the highest rate of change within the period of 2008-2016, compared with 

the other seven catchment areas in Bandung Basin. A further assessment has been performed 

to analyse the runoff coefficient in the Ci Kapundung upper water catchment area, although the 

regression line of coefficient in the whole catchment area shows the decreasing linear trend. Ci 

Kapundung had the fastest rate of land cover change in the basin in 1983-2002 (Haryanto, 

Herwanto, & Kendarto, 2007)18. Therefore, the analysis was done to discover how rapid land 

cover changes in the upper catchment has influenced the increasing volume of surface runoff, 

given the rainfall variability in the upstream.  

Table 3-3 Estimated runoff coefficients for the eight watersheds in the Bandung Basin (2008-2016) 

 

Watersheds 

 Runoff Coefficient  

2008 2010 2013 2016 

Ci Kapundung 0.1639 0.0437 0.0313 0.0095 

Ci Sangkuy 0.1360 0.6419 0.8365 0.6139 

Ci Beureum 0.0061 0.0238 0.0454 0.0656 

Ci Keruh 0.0392 0.1160 0.0895 0.0634 

Ci Mahi 0.0403 0.0175 0.0547 0.0775 

Ci Tarik 0.0738 0.0297 0.0246 0.0398 

Ci Widey 0.4473 0.3405 0.6275 n/a 

Upper Ci Tarum 0.2429 0.1702 0.2641 0.2870 

 

 

Figure 3-18 Runoff coefficients for the watersheds in Bandung Basin (2008-2016)   

                                                      
18 Haryanto et al. (2007) divided the Bandung Basin into six main catchments area in their study (i.e. Ci Kapundung, 

Ci Keruh, Ci Sarea, Ci Sangkuy, Ci Tarik, and Ci Widey catchments. Other watersheds, which are identified in this 

PhD research (i.e. Ci Mahi, Ci Beureum, Ci Tepus, Ci Cadas, Ci Durian, and Ci Pamokolan) were classified as part of 

Ci Kapundung watershed, whereas the Ci Bolerang was recognised as part of Ci Sangkuy watershed.  
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The linear trend of runoff coefficients in the Ci Kapundung upper water catchment area (2008-

2016) with an R2 value of 0.917 is illustrated in Figure 3-19. The outcome suggests that runoff 

coefficient had increased within the period of eight years, indicating rapid land cover changes 

in the area. This result might also be affected by the high precipitation in the catchment. As seen 

from Table 3-4, Thiessen-weighted average daily rainfall in the upstream and downstream of Ci 

Kapundung catchment (2008-2016) indicates that Ci Kapundung catchment in the upstream 

received higher precipitation than the downstream in 2008, 2009, 2011, 2002 and 2006.  

 
Figure 3-19 Linear trend of runoff coefficients in the Ci Kapundung upper water catchment area (2008-

2016) 

Table 3-4 Annual rainfall rates in Ci Kapundung upper catchment and the downstream (Source: analysis 

on rainfall data from PSDA) 

 Annual rainfall rates 

Year Ci Kapundung upper catchment (mm) Downstream (mm) 

2008 2,840.01 1,679.02 

2009 2,889.20 1,729.47 

2010 3,172.46 3,556.43 

2011 1,988.29 1,394.72 

2012 2,305.41 1,697.58 

2013 2,251.79 2,541.68 

2014 1,954.84 2,100.24 

2015 1,777.25 2,214.28 

2016 2,625.77 2,581.01 

 

 

3.3 Ci Kapundung upper water catchment area 

The upper catchment covers an area of 102.86 sq km and consists of rugged terrain with 

elevation varying between 760 and 2,206 metres above sea level and the maximum slope of 
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620. The watershed is located at the latitude coordinates of 6045’50”S – 6053’20”S and the 

longitude coordinates of 107035’27”E – 107044’57”E (Figure 3-20). 

 

Figure 3-20 Map of Ci Kapundung upper water catchment area (Source: Protected area management 

2008; PTPN 2016; Background image from Esri, DigitalGlobe, GeoEye, Earthstar Geographics, 

CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, and the GIS User Community) 

Precipitation in Ci Kapundung upper catchment area is recorded by five weather stations, which 

are located in and around the case study area (i.e. Kayu Ambon, Dago Pakar, Cipeusing, 

Margahayu, and Cibiru). Figure 3-21 shows the fluctuation annual precipitation rates recorded 

by the five meteorological stations (gaps in the graph lines indicate no complete data taken in a 

year). The average daily temperature in Bandung city in 1990-2015 is 23.30C (BMKG 2015).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-21 Annual precipitation in Ci Kapundung upper water catchment area (2004-2017) and the 

location of five meteorological stations in the area (Source: Author’s analysis of precipitation data from 

PSDA 2017)  
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3.2.1 Land cover of Ci Kapundung upper water catchment area 

Landscapes in the area are dominated by forests, agriculture, and developed areas. State-

owned forests are located in the northern part of the area, which comprises of conifers, broad-

leaved trees (e.g. Agathis borneensis, Eucalyptus, Cinnamomum), and mixed vegetation. 

Bamboo, Caliandra, and low shrubs are often found in the riparian areas of Ci Kapundung 

watershed. Agricultural areas are mostly located in undulated terrains. Settlements were built 

as the expansion of urban development of Bandung city in the south and West Bandung Regency 

in the western part of the area (Figure 3-22). 

In the 1950s, conifers were planted in the eastern part of the catchment area, which was later 

managed as Ir. H. Djuanda protected area since 1985. The protected area is categorised as 

Taman Hutan Raya (THR), which has a lower protection level compared to other protected areas 

in Indonesia, thus is prone to landscape changes. The area was part of the Pulosari protected 

forest in 1922 before it was established as a botanical garden in 1965, a nature-based tourism 

area in 1980, and as the first protected area in Indonesia in 1985. THR Ir. H. Djuanda comprises 

an area of 526.98 Ha which is located at the latitude coordinates of 6049’22”S – 6052’0”S and 

the longitude coordinates of 107032’2”E–107040’33”E, and in the elevation of 770-1,350 m 

asl. The dominant vegetation in the protected area includes Pine (Pinus merkusii), Caliandra 

(Calliandra calothyrsus), Mahogany (Switenia sp.), Bamboo (Bambussa sp.), Kiriyuh 

(Euphatorium sp.), and Ficus sp.  

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 3-22 Six land covers in the Ci Kapundung upper water catchment area; (a) developed area; (b) 

agricultural area; (c) mixed woodland; (d) conifers; (e) broad-leaved woodland; (f) water body (Source: 

Author’s documentation) 
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3.2.2 River networks in the Ci Kapundung upper water catchment area 

The river networks in the Ci Kapundung upper water catchment area form a dendritic river 

system (Figure 3-23a). The river water outtake scheme (Figure 3-23b) shows that water from 

the Ci Kapundung River has been extracted for various purposes such as drinking water, 

irrigations, and water supply to Dago Pakar and Bengkok hydroelectric power plants. It is 

estimated that the water outtake from the river is approximately 0.492 m3/s. There are three 

stream gauges which are located in the watershed to record the river discharges (i.e. the 

Cigulung, Maribaya, and Gandok). This research used the river discharge record from the 

Gandok gauge for the hydrologic simulations.  

 

 

 
(a) (b) 

Figure 3-23 (a) Upper Ci Kapundung river networks; (b) Water supply and demand of the Ci Kapundung 

River (in m3/s) (background image a: DEM (30,9 metre); image b is redrawn from the original diagram 

provided by PSDA, 2016) 

 

3.4 Ci Sangkuy upper water catchment area 

The second case study is an area of 204.99 sq km, which is located in the elevation between 

661 and 2,337 metres above sea level with a maximum slope of 540. Coordinates of the 

watershed’s boundary are 702’29”S–7013’53”S and 107028’56”E–107038’47”E (Figure 

3-244).    

Four weather stations are located in and around the Ci Sangkuy upper catchment area (i.e. 

Ciherang, Cisondari, Cileunca, and Cibeureum). The annual precipitation rates for the case study 

area (2004-2017) recorded by the four weather stations are presented in Figure 3-25 (gaps in 

the graph lines indicate no complete data taken in a year).  
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Figure 3-24 Ci Sangkuy upper water catchment area (Source: BKSDA, 2016; PTPN 2016; Background 

image from Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, 

Getmapping, Aerogrid, IGN, IGP, and the GIS User Community) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-25 Annual precipitation in Ci Sangkuy upper water catchment area (2004-2017) and the 

location of four meteorological stations in the area (Source: Author’s analysis of precipitation data from 

PSDA 2017)  

 

3.3.1 Land cover of Ci Sangkuy upper water catchment area 

Forests, agriculture, and tea plantations are the predominant landscapes in the area (Figure 

3-26). Developed areas are mainly located along the main roads in relatively flat terrains. 

Productive forests in the western and eastern parts of the area are managed by a state-owned 

forest enterprise. Conifers and broad-leaved trees, such as Altingia excelsa and Eucalyptus, are 
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the dominant plant species in the forests. Meanwhile, mixed vegetation are found in the forests 

and within the Tilu Mt. protected area.  

    
(a) (b) (c) (d) 

   

 

(e) (f) (g)  

Figure 3-26 Seven land covers in the Ci Sangkuy upper water catchment area; (a) developed area; (b) 

agricultural area; (c) plantation; (d) mixed woodland; (e) conifers; (f) broad-leaved woodland; (g) water 

body (Source: Author’s documentation) 

 

Tilu Mt. protected area is categorised as Cagar Alam, in which the use of the area is strictly 

controlled and limited for conservation purposes. The Cagar Alam comprises an area of 

approximately 8,000 Ha and is managed by BKSDA/Nature Conservation Agency, under the 

Ministry of Environment and Forestry of Indonesia since 1978. The area is located at the latitude 

coordinates of 702’17”S–7016’5”S and the longitude coordinates of 107027’E–107032’E, and 

in the elevation between 1,030 and 2,140 m asl. The ecosystem in the area is a highland 

rainforest, and the dominant tree species are Saninen (Castanopsis argentea), Rasamala 

(Altingia excels), Kiputri (Podocarpus nerifolius), Pasang (Quercus lineata), Puspa (Schima 

walichii), Kondang (Ficus variegate), and Tunggeureuk (Castanipsis tunggurut).  

The tea plantations are managed by PTPN (state-owned agriculture enterprise in Indonesia) and 

some private companies. Distinct reflectance values of the tea plantation areas prompted them 

to be categorised as one land cover type separated from forests or agriculture areas. 

 

3.3.2 River networks in the Ci Sangkuy upper water catchment area 

A dendritic river system defines the river network in the Ci Sangkuy watershed (Figure 3-27a). 

Water from the two lakes in the area (i.e. Cipanunjang and Cileunca Lakes) runs into Ci Sangkuy 

River and provides water supply for the Plengan, Lamajan, and Cikalong hydroelectric power 



66 
 

plants (Figure 3-27b). Water from the hydropower turbines flows back to the Ci Sangkuy River. 

Two river gauges are located in the watershed to record the Ci Sangkuy river discharges. The 

discharge data used in the hydrologic simulation in this research was taken from the Kamasan 

river gauge, which is located at the northern part of the case study area. The water extractions 

include a supply for irrigation and drinking water in the Ci Sangkuy watershed. Estimated water 

extraction from the river is approximately 34,665 L/s or 34.66 m3/s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
(a) (b) 

Figure 3-27 (a) River networks in the Ci Sangkuy upper water catchment; (b) Water supply from 

tributaries and demand of the Ci Sangkuy River (in m3/s and L/s) (background image a: DEM (30,9 

metre); image b is redrawn from the original diagram provided by PSDA, 2016) 
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3.5 Summary of Chapter 3 

(1) Two case study areas were used in this research to compare the provision of flood 

regulating service in different catchments with distinct biophysical conditions and 

characteristics. The southern part of Ci Kapundung upper water catchment area is 

located in Bandung city, whereas the whole part of Ci Sangkuy watershed is located in a 

regency, in which the landscapes are predominantly covered by agriculture and forests. 

The two watersheds have protected areas with different levels of protection.   

(2) The first case study area was selected based on a study conducted by Haryanto, 

Herwanto, & Kendarto (2007), who concluded that the Ci Kapundung had the fastest 

rate of land cover change compared with the other catchments in Bandung Basin in 

1983-2002. Although the runoff coefficient for the catchment showed a decreasing 

trend in 2008-2016, the upper catchment has an increasing trend. 

(3) The second case study area was selected because Ci Sangkuy River has high fluctuation 

in terms of the maximum and minimum discharge, high rates of erosion, and 

sedimentation in Saguling reservoir (Sarminingsih 2007 cited in Subarna, 2015). The 

catchment had an increasing trend of runoff coefficient in 2008-2015.   
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Chapter 4 Methodology 

This chapter presents the procedures of the land cover map development process and the 

methods to assess the three research questions in an iterative process. The methods include 

the use of land change and hydrologic modelling to project the future land cover maps and to 

assess the impact of land cover change to flood regulation. Decision tree diagrams and the 

limitations and boundaries of the research are given at the end of this chapter. 

4.1 The development of land cover maps (research phase 1) 

In this research, the development of land cover maps of Ci Kapundung and Ci Sangkuy upper 

water catchment areas was done in three iterative processes (Figure 4-1).  

 

 Figure 4-1 The iterative process of developing land cover maps in this study  
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The first two iterations were conducted to select appropriate approaches to generate land cover 

maps using SPOT imagery. Atmospheric correction was not applied to the satellite imagery. 

Based on the results from these processes, the final iteration of land cover map development 

was conducted using SPOT and Landsat images. Both atmospheric and topographic correction 

procedures were performed before the object-based image classification was conducted. This 

sub-chapter presents the process to develop land cover maps, which consists of data collection, 

image preprocessing, masking processes, atmospheric and topographic corrections of the 

images, and the object-based image classification. 

 

4.1.1 Data collection for the development of land cover maps 

The land cover maps of Ci Kapundung and Ci Sangkuy upper water catchment areas were 

developed using SPOT 6 and Landsat 7 satellite images, based on field surveys, visual 

interpretation of satellite imagery with higher resolutions, and the updating-backdating method 

(Linke et al. 2009).  

SPOT (Satellite Pour L’Observation de la Terre) 6 is a commercial satellite from Airbus Defence 

& Space, which was launched on 9 September 2012. The SPOT imagery consists of four spectral 

bands with the resolution of 6 metres, and one panchromatic band with a resolution of 1.5 

metres. The four spectral bands are a blue band (450 – 525 nm), a green band (530 – 590 

nm), a red band (625 – 695 nm), and a near-infrared band (760 – 890 nm). SPOT 6 images 

were used to develop land cover maps in the case study areas because local variance can be 

observed in forest images at a 6-m resolution. In the imagery with higher resolution, pixels show 

a mix of trees and background (Woodcock & Strahler 1987). In this study, SPOT 6 imagery from 

2013, 2015, and 2017 was used for the development of land cover maps. Although there are 

SPOT 5 images taken before 2012, no completed imagery was available for the first case study 

area.  

On the other hand, Landsat imagery with a 30-m resolution was used to generate land cover 

maps on a broad scale. Landsat 7 is a satellite from the National Aeronautics and Space 

Administration (NASA), which was launched on 15 April 1999. Landsat 7 imagery has seven 

spectral bands (30-metre resolution), and one panchromatic band (15-metre). In this study, four 

spectral bands of Landsat 7 was used to develop infrared images for the image classification 

process. The four bands of Landsat 7 are band 1 or blue (450 – 520 nm), band 2 or green (520 

– 600 nm), band 3 or red (630 – 690 nm), and band 4 or near-infrared (770 – 900 nm).  

Each band of satellite imagery is an individual greyscale image with a number of pixels which 

have different brightness values called digital numbers (DNs). In the image analysis and 

interpretation processes, the bands are combined as colour composites. A composite with 

natural colour can be developed using the visible blue, green, and red bands. A false colour or 
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infrared image, on the other hand, is composed by blending the green, red, and near-infrared 

(NIR).  

Infrared imagery is used to develop the land cover maps because plants can be clearly 

differentiated in the NIR band (Figure 4-2) (Champbell & Wynne, 2011). Deciduous (broad-

leaved) and coniferous (needle-shaped leaves) trees have different spectral reflectance in the 

NIR band, and not many differences in the reflectance values in other bands (Lillesand, Kiefer 

& Chipman, 2008, p.15). Conifers, which have cone-like crowns and needle-shaped leaves, 

absorb more NIR wave than deciduous trees do (Ranson & Williams 1992 cited in Walker & 

Kenkel 2000). So, little NIR radiation is reflected. 

 
Figure 4-2 Different reflectance value in the NIR band between three vegetation classes (Source: 

Lillesand, Kiefer & Chipman, 2008) 

The SPOT 6 satellite images were purchased from Airbus Defence and Space. The 2013 and 

2015 images were taken on 10 June 2013 and 20 September 2015, with solar elevation angles 

of 59.37o and 47.64o respectively (Figure 4-3 and Figure 4-4). Due to the unavailability of the 

complete data from Airbus and the severe cloud cover over the area, two images were used to 

develop the land cover map in 2017 for the first case study area. The two images were retrieved 

on 22 July and 3 August 2017 with solar elevation angles of 45.66o, and 48.66o respectively). 

The 2017 images for the second case study area were taken on 1 July 2017, with a solar 

elevation angle of 46.50o. The geometric calibration was done previously by Airbus. 

The Landsat imagery was retrieved from the USGS EROS website 

(https://earthexplorer.usgs.gov/). Earth Resources Observation and Science (EROS) Center 

manages the Landsat satellite program with NASA and provides a collection of satellite imagery 

around the world. Images used in this study were taken on 19 December and 3 December 2000 

for developing the land cover maps of the Ci Kapundung and Ci Sangkuy watersheds respectively 

(Figure 4-5). The images were acquired by the Enhanced Thematic Mapper Plus (ETM+), the 

sensor of Landsat 7 satellite. 
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(a) (b) 

  
(c) (d) 

Figure 4-3 Infrared images developed from the raw satellite data of Ci Kapundung watershed; (a) the 

2013 image; (b) the 2015 image; (c-d) the 2017 images (Analysis from SPOT 6 images © AIRBUS DS 

(2013, 2015, 2017)) 

  
(a) (b) 
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(c)  

Figure 4-4 Infrared images developed from the raw satellite data of Ci Sangkuy watershed; (a) the 2013 

image; (b) the 2015 image; (c) the 2017 image (Analysis from SPOT 6 images © AIRBUS DS (2013, 

2015, 2017)) 

 

 

 

  

 

 
 

(a) (b) 

Figure 4-5 (a-b) The 2000 infrared images of Ci Kapundung and Ci Sangkuy watersheds (Source: USGS 

EROS) 

Forest maps from Perhutani (a state-owned forest enterprise in Indonesia) and tea plantation 

maps from PTPN (an agriculture enterprise in Indonesia), were used during the identification of 

land cover types in the two sites. Data from OpenStreetMap is used to map the street networks. 

OpenStreetMap is an open-sourced medium for contributors to generate accurate street maps 

using areal imagery and GPS devices (Haklay & Weber 2008). 
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The digital elevation model (DEM) was retrieved from BIG (Badan Informasi Geografi/ 

Indonesian Geospatial Agency) with a spatial resolution of 0.27-arcsecond or 8.34 metre 

(http://tides.big.go.id/DEMNAS/). The DEM raster was resampled into a pixel size of 6 metres 

and 30 metres to match the resolution of SPOT and Landsat datasets respectively. Cubic 

convolution was used as the preferred resampling method for DEM because it can produce the 

smoothes output images among other three available techniques in ArcGIS (i.e. nearest, 

bilinear, and majority), while keep preserving DEM accuracy and terrain characteristics (USGS 

n.d.). The DEM data was required in the topographic correction process of satellite images, as 

well as in the catchment area delineation process.  

  

4.1.2 Field surveys 

Field surveys were conducted on July-mid September 2016 and August-September 2017 to 

identify the land cover types and to record the physical properties of main trees in the case study 

areas. The methods, the list of recorded data and identified land cover types are described as 

follows.    

(1) Methods 

The identification of land cover types in the Ci Kapundung and Ci Sangkuy upper water 

catchment areas was conducted during the field surveys. Maps of the two case study areas from 

BIG (Badan Informasi Geospatial/ Geospatial Information Agency) with a scale of 1:25,000 were 

used for orientation during field surveys. The maps provide on-site information, such as contour 

lines, the location of road networks, buildings, water bodies, vegetated areas, and village 

boundary lines.  

There were 203 points assigned in both upper water catchment areas during the field surveys, 

in which the locations of the points were recorded through transect walks. The method is 

selected because there is limited access, mainly in the forests and steep slope areas (Figure 

4-6 ). Maps from Perhutani and PTPN were georeferenced and overlaid with Esri’s base maps. 

Then, samples were assigned on each land cover type based on the slope condition and site 

accessibility. During the field surveys, the dominant tree species along the transect pathways 

were identified. Tree trunks’ diameter at breast height (DBH) of the trees in the sample plots 

were also recorded.  
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(a) (b) 

Figure 4-6 (a) Limited access inside the Cikole forest in the Ci Kapundung upper water catchment area; 

(b) Small pathway on a steep slope in the Ci Sangkuy upper water catchment area (Source: Author’s 

documentation) 

 

(2) List of recorded data 

The datasets which were acquired during the field surveys, included: 

a. The coordinates of trees and sample points on different land cover types, which were 

recorded using GPS (Global Positioning System). The location of all samples was mapped 

using ArcGIS.   

b. The photos of trees and landscapes.  

c. Tree trunks’ diameter at breast height (DBH).  

 

 

(3) Land cover classes 

The land cover of the area was classified into seven broad classes based on the site surveys, 

and the forest and plantation maps. Pixels representing the land cover classes in the satellite 

images have a specific range of reflectance values. Therefore, each land cover type has a 

distinct colour in the infrared image. The seven land cover classes are: 

a. Developed areas, which are mainly located at a relatively flat landscape, comprise of 

settlements, industry area, streets, and other impervious areas (Figure 4-7a). These objects 

appear in pixels with light blue or white colour in the infrared image (Figure 4-7b).  
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(a) (b) 

  
(c) (d) 

Figure 4-7 (a-b) Developed area in the Ci Kapundung upper water catchment area; (c-d) Developed 

areas in the Ci Sangkuy upper water catchment area (Source: Author’s documentation and the pan-

sharpened infrared images of SPOT 6 from © AIRBUS DS 2015) 

 

b. Bare land and cultivated land, which are located in rural areas in the two upper catchment 

areas, including the steep slopes. The second land cover type appears in two different 

colours in the infrared imagery (Figure 4-8a-d). Objects with a bright red colour represent 

grasses and agricultural plants in their full growth cycle, whereas the objects with grey 

colour are bare land.  

  
(a) (b)  
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(c) (d) 

Figure 4-8 (a-b) Cultivated land in the first case study area; (c-d) Bare land and cultivated land at the 

beginning of growth cycle in the second case study area (Source: Author’s documentation and the pan-

sharpened infrared images of SPOT 6 from © AIRBUS DS 2015) 

c. Tea plantations, which are located in the Ci Sangkuy upper water catchment area. The areas 

are shown as bright-pink objects in the infrared image of SPOT 6 (Figure 4-9a and b). A map 

from the PTPN was also used along with the results from the field surveys to identify the tea 

plantation in the case study area.  

  
(a) (b)  

Figure 4-9 Tea plantations in the Ci Sangkuy upper water catchment area (Source: Author’s 

documentation and a pan-sharpened infrared image of SPOT 6 from © AIRBUS DS 2015) 

d. Conifers, refer to the plants with needle-shapes leaves. According to the forest maps from 

Perhutani, conifers in the Ir. H. Djuanda protected area was planted in the 1960s, while 

conifers in Perhutani forests in the northern part of Ci Kapundung upper water catchment 

area were planted in 1962-2008. Conifers planted in the second case study area were 

mostly planted in 1995. Coffee plantations were often found under the canopy of conifer 

forest in the second case study area. Seedlings and ground cover as understory were 

identified in both sites.  

In the infrared imagery, conifers show different shades of grey and red colours, depending 

on the age of plants (Figure 4-10). Figure 4-10a and b show the identification of conifers in 

the Ir. H. Djuanda protected area using the infrared image of the first case study area, in 

contrast with the Caliandra (i.e. the broad-leaved plants which are mostly found in the steep 
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slopes near the river in the protected area). Conifers appear as objects with dark grey 

colours, while Caliandra is represented in the image as objects with bright red colour. 

  
  (a) (b) 

  
(c) (d) 

Figure 4-10 (a-b) Conifers in the Ir. H. Djuanda protected area in the Ci Kapundung upper water 

catchment area; (c-d) Conifers in the Ci Sangkuy upper water catchment area; (Source: Author’s 

documentation and the pan-sharpened infrared images of SPOT 6 from © AIRBUS DS 2015) 

On the other hand, conifers in the second case study area are shown as dark red pixels 

(Figure 4-10c and d). The pixels have different reflectance values compared with those 

representing the tea plantations and other land cover types (e.g. developed areas and bare 

land).  

e. Broad-leaved plants.  The land cover type is mostly found in the arboretum of Ir. H. Djuanda 

protected area (e.g. Khaya anthotheca, Pterigota hoesfieldii, and Meopsis eminii), the 

Cikole research forest (e.g. Agathis damara), and along the streets and rivers (e.g. 

Swietenia macrophylla and Bambusa sp.) in the first case study area (Figure 4-11).   
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 4-11 (a-b) Broad-leaved trees in the arboretum of Ir. H. Djuanda protected area ;(c-d) Agathis 

damara in the Cikole research forest; (e-f) Broad-leaved trees along the streets; (g-h) Broad-leaved 

plants in the riparian of the Ci Kapundung watershed (Source: Author’s documentation and the pan-

sharpened infrared images of SPOT 6 from © AIRBUS DS 2015) 
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In the second case study area, broad-leaved trees can be identified in the cultivated forests, 

along the streets, near the Ciluenca Lake and the tea plantations. Two-layer broad-leaved 

trees are common in the watershed consist of tall trees (e.g. Melaleuca leucadendra and 

Agathis damara) and plantations, such as coffee (Figure 4-12 a-b). Melaleuca leucadendra 

(cajeput tree or weeping paperbark) is also one of the dominant tree species, which is found 

along the streets and is scattered in the Ci Sangkuy watershed (Figure 4-12 c-f).  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4-12 (a) Cultivated forests near the Mt. Tilu protected area in the second case study area; (b) 

Melaleuca leucadendra trees along the streets and are scattered in the second case study area; (c-f) 

Broad-leaved plant trees near the tea plantations (Source: Author’s documentation and the pan-

sharpened infrared images of SPOT 6 from © AIRBUS DS 2015) 

 

f.  
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g. Mixed vegetation, which consists of both conifers and broad-leaved trees in one specific 

area. Mixed trees are mainly found in the forests owned by Perhutani and natural forests, 

such as inside the Tilu Mt. protected area (Figure 4-13). Due to steep slopes and high 

difficulty to access the forests, the identification of mixed plants was conducted using the 

maps from Perhutani and the results from site surveys in the forest periphery.  

  
(a) (b) 

Figure 4-13 Mixed woodland in the Mt. Tilu protected area (Source: Author’s documentation and a pan-

sharpened infrared image of SPOT 6 from © AIRBUS DS 2015) 

 

h. Water bodies, which consist of ponds and natural lakes in the case study areas. One pond 

used as a recreational facility is located at the western part of Ci Kapundung watershed, 

and a small reservoir for a hydroelectric dam is situated inside the Ir. H. Djuanda protected 

area (Figure 4-14 a and b). The water bodies in the second case study area, on the other 

hand, consist of two lakes which are located in the southern part of the watershed. These 

lakes are used by PLN (the government owned-corporation dealing with the generation and 

distribution of electricity in Indonesia) and for recreational activities (Figure 4-14 c and d). 

  
(a) (b) 
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(d) (e) 

Figure 4-14 (a-b) A reservoir inside the Ir. H. Djuanda protected area in the first case study area; (c-d) 

Cileunca Lake in the second case study area (Source: Author’s documentation and the pan-sharpened 

infrared images of SPOT 6 from © AIRBUS DS 2015) 

In the areas covered with conifers and broad-leaved trees, only plants with the highest canopies 

can be identified from the satellite images. However, it should be noted that different land cover 

types may exist under the plant canopies. For examples, there are pathways made from bricks 

under the canopies of conifers and broad-leaved trees in the protected areas, and bare land 

under the dense canopies.  

 

4.1.3 Catchment delineation process 

The delineation of case study areas, as well as the whole area of Bandung Basin was conducted 

using the Hydrology toolset in ArcGIS, based on a DEM with 6m resolution. At the beginning of 

the process, the Fills tool was used to correct the errors on DEM due to the image resolution or 

the rounding of elevations to integer values (ESRI, 2016). The tool can fill a sink or remove a 

peak on a DEM, based on the elevation of the surrounding surface. After the DEM had been 

corrected, a raster of flow direction was created according to the conditions of eight 

neighbouring cells. Then, using the output from flow direction analysis, the delineation of 

watersheds was created by finding pixels which belong to the similar watershed. Figure 4-15 a 

and b present a sample of works to define the flow of direction of each cell in the first case study 

area, and the watershed delineation process, respectively.  

Streams in both case study areas were identified using the Flow Accumulation toolbox, based 

on the output from the flow direction analysis. The area of Ci Kapundung and Ci Sangkuy upper 

catchments, then, were defined based on the results from the watershed delineation procedure 

and the location of streams (Figure 4-16). The same procedures were taken to delineate the 

other catchments in Bandung Basin.  
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(a) (b) 

Figure 4-15 (a) An example of works defining flow direction in the first case study area; (b) the basin 

delineation process (Source: an analysis using the Hydrology toolset in ArcGIS) 

 

 
 

(a) (b) 

Figure 4-16 (a) An example of works defining streams in the first case study area; (b) the area of Ci 

Kapundung upper catchment (Source: an analysis using the Hydrology toolset in ArcGIS) 

 

4.1.4 Satellite image preprocessing 

The SPOT and Landsat satellite images have a different coordinate system from the system used 

in this study. Therefore, the properties of all images were checked at the beginning of image 

preprocessing, and their spatial data were projected to WGS (World Geodetic System) 1984 UTM 

Zone 48S. Methods to conduct the radiometric correction, which consists of radiometric 

calibration, atmospheric correction, and topographic correction, are presented as follows.  

(1) Radiometric calibration 

During the radiometric calibration, the digital number (DNλ) for a specific band 𝜆 of the SPOT 

satellite images were calibrated to at-satellite radiance (𝐿𝑠,𝜆). The at-satellite radiance (𝐿𝑠,𝜆) is 

the value which is directly measured by sensor, and can be estimated using Equation 4-1. 

Information on gain and offset can be retrieved from the satellite metadata for each band. The 
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radiance values, then, were converted to at-surface reflectance (ρ𝑇,𝜆), or the actual value of an 

object, using Equation 4-2 (Chander, Markham, & Helder, 2009). 

𝐿𝑠,𝜆 = 𝐷𝑁𝜆/𝑔𝑎𝑖𝑛 + 𝑜𝑓𝑓𝑠𝑒𝑡 
Equation 4-1 

𝜌𝑇,𝜆 =
𝜋 𝐿𝑠,𝜆 𝑑

2

𝐸𝑆𝑈𝑁𝜆 cos 𝜃𝑠 
 Equation 4-2  

where  

𝜋  : constant value equal to 3.14159 [unitless] 

𝑑 : Earth-sun distance for the day of image acquisition [astronomical units] 

𝐸𝑆𝑈𝑁𝜆  : Solar irradiance at the top of the atmosphere [W/(m2 μm)] 

𝜃𝑠   : the solar illumination (zenith) angle [radians which is converted from degrees] 

 

The values of gain, offset, and solar irradiance for each band can be retrieved from the image 

metadata. The solar illumination (zenith) angle (𝜃𝑠), which is described as the angle between 

the Sun and the vertical line from an object, can be calculated using the information on sun 

elevation angle provided in the metadata (𝜃𝑠= 90 – sun elevation). The zenith angle is converted 

from degrees to radians using multiplication of π/180 before it can be used to estimate the 

irradiance on an object (E).  

The Earth-Sun distance (d) was estimated based on the date when the images were taken. 

Based on the tabulated data of d in astronomical units throughout the year in Chander et al. 

(2009), the Earth-Sun distance for the 2013 and 2015 images are 1.00430 and 1.01664 

astronomical units respectively, whereas the distance for the 2017 images taken on day 203, 

215, and 182 of Julian date calendar are 1.01601, 1.01471, and 1.01667 respectively.  

The conversion of Digital Number (DN) to Radiance in the Landsat imagery was conducted 

following the method from USGS (https://landsat.usgs.gov/), using Equation 4-3. 

𝐿𝜆 = 𝑀𝐿 × 𝑄𝑐𝑎𝑙 + 𝐴𝐿 
Equation 4-3  

where 𝑀𝐿 and 𝐴𝐿 are a multiplicative and an additive rescaling factors from Landsat metadata 

for a specific band L. 𝑄𝑐𝑎𝑙 is the Digital Number (DN). The Landsat images with radiance value, 

then, were used in the atmospheric correction process.  

 

(2) Atmospheric correction 

In this study, atmospheric correction (AC) was conducted in the last iteration of the map 

development process because multi-resolution satellite images were used in the procedure (Lu 

& Weng, 2007). AC was applied using the i.atcorr module in GRASS GIS (Geographical 

Resources Analysis Support System) 7.4.2, through QGIS 3.4.3, and GRASS 7.0.5 in QGIS 

2.18.2. The module performs atmospheric correction using the 6S (Second Simulation of the 



84 
 

Satellite Signal in the Solar Spectrum) algorithm. In this study, 6S is used as the selected 

atmospheric correction method because the model is widely used among other radiative 

transfer models (Champbell & Wynne 2011 p. 311).  

The required input data for conducting the 6S atmospheric correction include four elements. 

The elements are the geometrical condition (i.e. the name of satellite, coordinates of the case 

study area, date and hour when the imagery was taken), the atmospheric model (e.g. tropical, 

mid-latitude summer, midlatitude winter, etc), the aerosol model (e.g. continental model, 

maritime model, urban model, etc), the aerosol concentration model, the target and sensor 

altitude, and the sensor band. The output from i.atcorr is a raster map with reflectance values, 

which were rescaled to a range of 0-1. This raster map, then, was used as one of the input 

datasets for the topographic correction process.  

 

(3) Topographic correction 

A modified sun-canopy-sensor (SCS+C) as a topographic correction procedure (Soenen, Peddle, 

& Coburn, 2005) was applied to the SPOT and Landsat satellite images of Ci Kapundung and Ci 

Sangkuy upper water catchment areas, to improve the image classification accuracy. Pixels 

representing clouds and cloud shadows were excluded in the topographic correction process. 

Spatial models were generated in ArcGIS based on the SCS+S equation from Soenen et al. 

(2005) to develop the corrected images. SCS+C was performed using imagery with reflectance 

values after the atmospheric correction had been applied before (Equation 4-4). The correction 

procedure requires the value of the cosine of the incidence angle (i), which is estimated using 

Equation 4-5 (Teillet et al. 1982).  

ρ𝐻,𝜆 = ρ𝑇,𝜆
cos 𝜃𝑡 cos𝜃𝑠 + 𝐶𝜆

cos 𝑖 + 𝐶𝜆
 Equation 4-4 

with 

cos 𝑖 =  cos 𝜃𝑠  cos𝜃𝑡 + sin𝜃𝑠 sin 𝜃𝑡 cos(∅𝑠 − ∅𝑡) 

 

 

 

Equation 4-5 

where 

ρ𝐻,𝜆 : at-surface reflectance (the actual object’s reflectance value) 

i  : Solar incident angle  

𝜃𝑡 : Slope angle 

𝜃𝑠 : Solar zenith angle (900 – sun elevation angle) 

∅𝑠  : Solar azimuth angle  

∅𝑡 : Aspect angle 

𝐶𝜆 : Empirical parameters  
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Solar zenith and azimuth angle for Landsat 7 and SPOT 6 images was retrieved from the image 

metadata. The values of solar zenith should be converted from degrees into radians 

(Zenith_rad). The azimuth angle was changed into a mathematical unit (Azimuth_math) before 

it was converted into radians (Azimuth_rad).  

A slope image depicts the rate of change of one cell to its neighbours, while an aspect image 

shows the slope direction (Burrough & McDonell 1998). Slope and aspect images of the two 

case study areas were derived from DEM as the input dataset for conducting the topographic 

corrections. Slope and aspect images derived from DEM with the 30-m resolution are presented 

in Figure 4-17 and Figure 4-18. Colours in the slope and aspect images represent different slope 

degrees and the direction of downslopes respectively.  

  
(a) (b) 

Figure 4-17 (a-b) Slope and aspect images from DEM with a 30-m resolution of the first case study area 

(Source: Analysis using ArcGIS) 

  
(a) (b) 

Figure 4-18 (a-b) Slope and aspect images from DEM with a 30-m resolution of the second case study 

area (Source: Analysis using ArcGIS) 
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𝐶𝜆 is an empirical parameter of c=a/b, where c is a function of the regression slope (b) and 

intercept (a). 𝐶𝜆 was assessed by calculating the slope and coefficient of the linear regression 

between cos i and reflectance value (ρ𝑇,𝜆) of each band. In this study, the SPSS statistic software 

was used to compute the linear regression. 6,500 and 13,000 random sample points were 

assigned on each band in both types of satellite imagery of the first and the second case study 

areas respectively with different terrain and illumination condition, to derive cos i values. Due to 

the constant cloud coverages in the watersheds, the locations of sample points were different 

for each set of satellite images. No sample point was assigned on areas where clouds and cloud 

shadows are located in the images.  

Following the formula to develop the linear regression (Reflectance = m cos i + b), the slope and 

intercept values for each band in all Landsat and SPOT imagery of the first and second case 

study areas were defined based on the regression analysis of cos i and reflectance of Blue, 

Green, Red, and NIR bands for each scene. Figure 4-19 and Figure 4-20 show the samples of 

linear regression to retrieve the slope (b) and intercept (m) values from the 2015 Landsat 

imagery, and the slope and aspect maps.  

  

  
Figure 4-19 Samples of the linear regression of cos i and reflectance for Band 2 (Blue), Band 3 (Green), 

Band 4 (Red), and Band 4 (NIR) of Landsat images of the first case study area retrieved on 28 June 

2015 (Source: Analysis from SPSS) 



87 
 

  

  
Figure 4-20 Samples of the linear regression of cos i and reflectance for Band 2 (Blue), Band 3 (Green), 

Band 4 (Red), and Band 4 (NIR) of Landsat images of the second case study area retrieved on 12 June 

2015 (Source: Analysis from SPSS)    

After the C coefficients had been estimated (C=b/m), the C values were used to perform the 

SCS+C topographic correction. ModelBuilder in ArcGIS was used to develop the corrected image 

based on Equation 4-4 and Equation 4-5. Raster calculator was incorporated in the model to 

calculate the cos i and to compute the topographic correction.  

   

4.1.5 Masking process in SPOT and Landsat imagery 

In this study, masking was conducted to identify pixels which should be excluded in the image 

classification process, to classify water bodies, and to differentiate the land cover of small 

objects with the adjacent land cover. Cloud coverages in the imagery cause the reflectance 

values of land cover types could not be retrieved by satellite sensors (Lu 2007 cited in Liu et al. 

2011). Whereas reflectance values of pixels covered with cloud shadows are altered. Thus they 

could not be included in the image classification process.  

The diagram of the masking process is shown in Figure 4-21. Cloud, cloud shadow and water 

masking processes were conducted using two different methods for SPOT and Landsat imagery 

(Masking A). However, the process for each scene can be done simultaneously (i.e. every 

masking process can generate masks for clouds, cloud shadows, and water bodies). Pixels 

located inside the water masks were automatically classified as water bodies. The area of the 
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water body is changing depending on seasons. There is usually less water in the lakes during 

the dry season. Thus there would be more open areas surrounding the water. Therefore, it is 

assumed that the area of water bodies would not change during the land change simulation 

period.   

 
Figure 4-21 Masking and the image classification process for an individual map 

During the road masking process (Masking B), pixels showing the road networks in the raster 

images were defined using the information from OpenStreetMap. The road width is determined 

based on the policies from the Ministry of Public Works, Indonesia, for each road class. The 

width for the arterial, collector and local roads are 11 metres, 9 metres, and 6.5 metres 

respectively. The detailed descriptions of cloud, cloud shadow, and water masking procedures 

in SPOT and Landsat imagery are presented as follows.  

 (1) Cloud, cloud shadow, and water masking process in SPOT imagery   

During the image acquisition, not all parts of the case study areas are free from clouds and 

cloud shadows. According to the SPOT image metadata, the percentages of cloud coverage for 

the first case study area19 are 7.13% and 1.12% in 2013 and 2015 respectively (Figure 28a 

and 28b), and 64.45% and 3.17% in 2017 for the images of the whole watershed and eastern 

part of the watershed respectively (Figure 28c and 28d). Approximately 5.51% of the total 

second case study area is covered with clouds in the 2013 image, whereas the 2015 and 2017 

images are free from clouds during the image acquisition. 

Cloud, cloud shadow and water body masking processes for the SPOT images were conducted 

in the imagery with reflectance value, following the masking method from Candra et al. (2014), 

                                                      
19 The SPOT 6 satellite images provided by Airbus also include the surrounding areas of the Ci Kapundung and Ci 

Sangkuy upper catchments, approximately 30% of the total area of the watersheds. The cloud coverage was 

estimated by Airbus based on the delineation of case study areas and their surroundings. Therefore, the 

percentages of cloud coverage presented here may not represent actual coverage in the two watersheds, as the 

clouds may cover parts of the surrounding watersheds.  
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as shown in Figure 4-22. In the process, specific thresholds for the near-infrared (NIR) and blue 

bands were used to identify the cloud objects. Shadows and water bodies were also identified 

using the same method based on the reflectance values of NIR and green bands.  

 
Figure 4-22 Cloud, cloud shadow and water masking process (Source: Candra et al. 2014) 

The reflectance approach often produces results with salt-and-pepper effects. In this case, the 

filter minority method was applied to mitigate the problem. Small-size pixels, which were 

automatically defined as clouds and shadows, are erased and reassigned as the same class as 

the pixels surrounding them. Small objects categorised as clouds and cloud shadows were 

reclassified as the same land cover types as the surrounding pixels. An example of results from 

the cloud and cloud shadow masking for the Ci Kapundung upper water catchment area using 

the 2015 SPOT imagery is shown in Figure 4-23. The output for water masking for the Ci Sangkuy 

upper water catchment area using the 2015 SPOT imagery is illustrated in Figure 4-24. 

  
(a) (b) 

Figure 4-23 (a) The SPOT infrared imagery of the first case study area (20 September 2015); (b) 

Samples of cloud and cloud shadow masks indicated by the black and grey polygons respectively 

(Source: © AIRBUS DS 2015 and image masking analysis) 
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(a) (b) 

Figure 4-24 (a) The infrared imagery of the second case study area (20 September 2015); (b) Samples 

of water mask indicated by the blue polygons (Source: © AIRBUS DS  and image masking 2015) 

 

 (2) Cloud, cloud shadow, and water masking process in Landsat imagery 

The masking of clouds, shadows, and water bodies in the Landsat images was performed using 

CloudMasking, a QGIS plugin for detecting and masking clouds, cloud shadow, cirrus, aerosols, 

ice/snow and water.  

In this study, Fmask was used as the filter method to identify clouds, cloud shadows, and water 

bodies in the Landsat 7 and 8 images. This method was chosen because it had an average 

accuracy of 96.4% when it was tested in a globally distributed set of reference data in tropical 

countries (Zhu & Woodcoc 2011). Input datasets for this procedure are the Landsat Top of 

Atmosphere (TOA) reflectance and brightness temperature. The required datasets for masking 

include the Landsat metadata files and the parameters for the filters, such as cloud and shadow 

buffers, cloud probability threshold, and cirrus probability ratio. 

According to the Landsat metadata, the percentages of cloud coverage for the scene taken on 

3 December 2000 is 27%. Clouds and cloud shadows in the imagery of Ci Kapundung watershed 

are located in the northern part of the site (Figure 4-25a). On the other hand, the imagery of the 

second site taken on 19 December 2000 is almost cloud-free. Figure 4-25b shows the output 

from the cloud and cloud shadow masking process for the first case study area. A new TIFF 

raster showing clouds, cloud shadows, and water bodies with a value of 2 (black colour), 3 (grey 

colour), and 5 (white colour) respectively was generated in the process. Other pixels in the raster 

(i.e. where there is no cloud, cloud shadow, and water present in the imagery) were classified 

with the value of 255.  
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(a) (b) 

Figure 4-25 (a) The Landsat infrared imagery of the first case study area (19 December 2000); (b) Cloud 

and cloud shadow masking indicated by black and grey polygons respectively (Source: Landsat imagery 

from USGS 2000 and image masking analysis) 

 

(3) The fluctuating water level in the Ci Sangkuy upper water catchment area 

The fluctuating water level in lakes in the second case study area can be seen in the Landsat 

imagery on 3 December 2000, and the SPOT images on 20 September 2015 and 1 July 2017. 

Figure 4-26 illustrates the delineation of lakes in 2015 which is overlaid on the 2000 and 2017 

images. In this study, it is assumed that there were no significant changes in the area of water 

bodies in both case study areas within the simulation period (2000-2015), although in reality, 

the water levels would vary depending on the seasons. The 2000 and 2015 images were taken 

when the water receded. Thus the areas identified as water bodies were smaller and the bare 

land surrounding the lakes were more prominent than those in the 2017 imagery. Water bodies 

were excluded in the land change simulations; there is no change from and into water bodies 

simulated in the CA-Markov modelling.  

The final delineation of water bodies in 2000 and 2015 was generated using water masks in 

the 2015 images. An exception was made when developing the 2017 map from SPOT imagery. 

Water bodies in this map were delineated based on the actual condition in 2017 since this map 

was only used in the validation process of land change modelling, and not in the simulations20.   

                                                      
20 This study use the integrated Cellular Automata and Markov model which works based the information on the 

previous states of pixels to project the future land change. Therefore, it would not be relevant if the water bodies 

are included in the land change simulations, because the area of the lakes is changed depending on the seasons 

(the change is non-stationary, thus it cannot be simulated using the CA-Markov model).  
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(a) (b) 

 Figure 4-26 (a-b) The 2000 and 2017 infrared imagery of the second case study areas overlaid by the 

delineation of water bodies in 2015 (Source of background images: Landsat imagery from USGS (2000) 

and SPOT imagery from AIRBUS DS (2017) 

 

4.1.6 Image classification and accuracy assessment 

The first iteration of the map development process was conducted using the uncorrected images 

and corrected images21 of the first case study area, and the southern part of the second case 

study area using the object-based image classification in ArcGIS (Rani et al., 2017). The 

classifications were only performed using SPOT imagery retrieved in 2015 without applying the 

updating and backdating method. Radiometric calibration and SCS+C topographic correction 

were applied on all bands of infrared images. No atmospheric correction was applied in the 

satellite imagery.  

The results showed that the classification accuracy could be improved by applying the 

topographic correction without atmospheric correction was conducted before (the interpretation 

of this initial assessment are presented in Chapter 6). Based on the results from the accuracy 

assessment of the land cover maps, the second iteration of the land cover development process 

was conducted using different software to ascertain if there is an improvement of the accuracy.   

The subsequent object-based classifications were conducted in SAGA (System for Automated 

Geoscientific Analyses) using segmented satellite images (iteration 2 in Figure 4-1). Segmented 

images were developed from the SPOT infrared images (i.e. composite imagery using green, red 

and NIR bands), in which the preprocessing and the masking procedures had been conducted 

before. Samples were assigned for all land cover types in each segmented imagery. 

                                                      
21 The uncorrected and corrected images in this context refer to the raw image and the image after topographic 

correction had been applied to respectively. 
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The second iteration of the classification process was done only using the SPOT images of Ci 

Kapundung upper water catchment area, which were retrieved in 2013, 2015, and 2017. Small 

road lines could not be distinguished from the surrounding land cover types in the segmentation 

process, for example, bare land and broad-leaved trees, due to the short width of the road and 

the spatial resolution of SPOT 6 imagery (i.e. 6 metres). Therefore, the street networks had been 

masked out before the classification process for SPOT 6 imagery was conducted (Figure 4-27).  

 

Figure 4-27 Sample of segments developed in the infrared imagery of the first case study area (Analysis 

using satellite images from © AIRBUS DS (2015) and road networks data from © OpenStreetMap) 

Training samples were assigned to each land cover type. Maximum likelihood was chosen as 

the classifier in the classification process because of its robustness compared to the other 

classifiers (Lu & Weng, 2007). In the absence of information on the land cover beneath the 

clouds and land cover covered with shadows, the land cover data from previous years and the 

maps from Perhutani were used to define the land cover in the areas with no pixel/data. 

The results from the second iteration of classification were used as the input data for the initial 

analysis of land change (LCM 1). The 2013, 2015, and 2017 images were developed 

individually, affecting the results from the first iteration of land change simulations. The outputs 

from the classification and land change simulation are presented in Chapter 5 and are 

discussed in Chapter 6. Based on the results, the third iteration of the image classification 

process was conducted using Landsat and SPOT imagery of the two case study areas. 

In the third iteration, the updating and backdating method (Linke et al. 2008) was used to 

achieve better classification and land change modelling accuracies than those in the previous 

iterations (Figure 4-28). The backdating and updating method required a series of assumptions 

along the process, which were addressed in this study. The first assumption is that the 2015 

maps developed from SPOT images can be used as base maps, because they have the complete 

information on land cover, compared with the 2013 and 2017 satellite images. The second 

assumption was adopted from Toure et al. (2018) who assessed the method to increase land 

cover maps from multi-temporal satellite imagery, assuming that the unbuilt areas in later years 

were also not built in the previous years. 

(road line) 

(pond) 
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Figure 4-28 The updating and backdating process in this study 

SPOT satellite images taken in 2013 and 2015 were used to develop the 2015 land cover maps 

after atmospheric and topographic corrections had been conducted. Unbuilt areas in 2015 were 

identified as unbuilt in 2013. If there are areas covered with clouds and shadow clouds22 in the 

2015 imagery, then, the missing information regarding the land cover will be retrieved from the 

2013 satellite images. It was assumed that unbuilt areas and vegetation would remain the same 

from 2013 through 2015. Therefore, the development of 2013 land cover maps was focused 

on the classification of unbuilt areas.  

Based on the classification results from previous iterations and visual validation using high 

resolution of ESRI’s base maps, there are no buildings and impervious land in the areas where 

the clouds and cloud shadows in the 2015 imagery are located. Therefore, to increase the 

computation speed, pixels identified as built-up areas in 2015 are excluded in the object-based 

classification (OBIA) process. It should be noted that these pixels are both developed and 

undeveloped areas in 2013. Not all buildings identified in 2015 were already built in 2013. Thus 

there is still a possibility that these pixels can be classified as undeveloped/ unbuilt in 2013. 

However, since they are located outside the cloud and cloud shadow masks in the 2015 

imagery, then, it is assumed that the results of OBIA which were used to develop the 2015 maps 

would not be affected.   

No information on the land cover can be retrieved in the areas with constant cloud and cloud 

shadow coverages in 2013, 2015, and 2017 in the SPOT images. Therefore, the forest map 

from Perhutani was used to identify the forest cover in c.2015.  

                                                      
22 Areas covered with clouds and cloud shadows are mainly located in the forests and are resulted the developed 

maps to have voids or no data. 
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Landsat images (2000) of the two case study areas were taken regularly by the ETM (Enhanced 

Thematic Mapper) satellite. However, most of the images have cloud coverages, which limit the 

options to choose the suitable imagery for the classification process. The information of land 

cover in circa 2015 (c.2015) retrieved from SPOT imagery was used to develop the 2000 maps 

using the backdating method (Figure 4-28). Firstly, the unbuilt area in c.2015 was assigned as 

unbuilt in 2000. The remaining unbuilt area in 2000 was defined from NDVI analysis on the 

Landsat imagery. The analysis was conducted to separate the non-vegetation class (e.g. 

developed areas and bare land), and vegetation classes. Secondly, OBIA was performed to 

identify two land cover types in the first case study area (e.g. bare land and cultivated land, and 

vegetation), and three land cover types in the second case study area (e.g. bare land and 

cultivated land, tea plantations, and vegetation). At this stage, the three types of trees cannot 

be differentiated. Therefore, the information regarding the trees was retrieved from 2015 land 

cover maps. No street map in 2000 can be retrieved from the OpenStreetMap. Thus no existing 

street network could be shown in the developed maps.  

 The accuracy of land cover maps was calculated using the point-based accuracy assessment, 

with the consideration that there is another method of assessment which could be used and is 

more appropriate for assessing the accuracy of land cover maps developed using OBIA (i.e. area-

based assessment) (Lei Ma et al. 2017). In this study, the accuracy assessment was conducted 

using the ‘Compute Confusion Matrix’ option of the Segmentation and Classification toolbox in 

ArcGIS. Five hundred accuracy assessment points were assigned in each map, and the ‘stratified 

random’ option was selected as the sampling scheme. In this scheme, the assessment points 

are distributed randomly within a class, and the number of points is proportional to its relative 

area (ESRI 2016).  

Confusion matrices were constructed to assess the image accuracy. Historical maps in Google 

Earth and maps from Perhutani and PTPN were used to calculate the accuracy in the c.2000 

maps. Whereas land cover identification during field surveys, maps from Perhutani and PTPN, 

as well as the high resolution of ESRI’s base maps, which were visually interpreted, were used 

to estimate the c.2015 and c.2017 image accuracies. The latter method was chosen because 

visitation to a large number of sites in the case study areas is not feasible due to the steep 

slopes and no accessibility in most parts of the areas.  

The data considered as ground truth is submitted and compared with the land cover data from 

the classified maps. The confusion matrix, then, was computed in each map to derive a kappa 

index23 of agreement between the classified land cover types and the ground truth.  

 

                                                      
23 Kappa statistic is often used to assess the percentage of predicted land cover types compared with the ground 

truth data (Visser and de Nijs 2006 cited inFu et al. 2018) 
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4.2 Scenario development and land change modelling (research phase 2) 

The future composition and distribution of land cover in each case study area were simulated 

under different scenarios. The process was conducted in three iterations (Figure 4-29). After the 

land cover maps of the first case study area had been developed in the second iteration of the 

map development process, the output was used in the initial land change simulation (LCM1). 

Based on the results from LCM 1, the second iteration of land change modelling was conducted 

using maps from Landsat and SPOT imagery (LCM 2). The output from hydrologic modelling 

(MIKE SHE 2) provided feedback for the last iteration of land change modelling (LCM 3).  

 

Figure 4-29 The iterative process of land change simulations in this study 

 

4.2.1 Data collection for the land change simulations 

The datasets for the land change simulation were collected from government offices in 

Indonesia, and from the spatial analyses using GIS. The following list is the datasets required 

for the land change simulations: 

(1) The existing land cover maps developed from SPOT 6 and Landsat imagery.  

(2) Elevation and slope maps created from the DEM using ArcGIS. 

(3) Landslide hazard maps for Bandung City, Bandung Regency, and West Bandung 

Regency collected from the Ministry of Energy and Mineral Resources, Indonesia. 

(4) The spatial data of river networks in each water catchment area developed from DEM 

using the hydrology toolbox of ArcGIS. 

(5) The existing development policies and the spatial plan for Bandung City, Bandung 

Regency, and West Bandung Regency as an input dataset to make possible scenarios 

for future development in the two sites. The policies consist of guidelines (e.g. land 
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slope, accessibility and location to the area prone to hazard) for each land-use 

development.  

(6) Spatial data (e.g. coordinates of enclave and park boundaries) and the existing 

management policies for Ir. H. Djuanda and Tilu Mt. protected areas retrieved from each 

management office.  

(7) The forest and tea plantation maps from Perhutani and PTPN, respectively.  

(8) Road network from OpenStreetMap. 

(9) Population density map in 2015 from WorldPop (2018).  

 

4.2.2 Scenario development 

The development of scenarios in this study is related to the second research question: “what 

are the most effective scenarios of landscape structure for the two upper water catchment areas 

which can benefit flood regulation in Bandung Basin?” and the third research question: “which 

types of vegetation can improve flood regulation in each upper water catchment area?”. The 

potential optimum solutions were assessed using the initial Pareto-frontier analysis to answer 

the two research questions. First, the desired vision for the future development of case study 

areas was defined. Then, scenarios were developed, and the future land cover for each scenario 

was simulated using Land Change Model (LCM).  

(1) Scenarios for the land change model  

Three scenarios were developed in the first iteration of land change modelling (LCM 1) to project 

the future land cover maps in 2030. The three scenarios are the Status Quo scenario, existing 

policy-based scenario, and the ecological design-based scenario (Figure 4-30). The capacity of 

each scenario to reduce surface runoff in the watersheds was simulated in the hydrologic 

modelling. Based on the outcomes from hydrologic modelling, a backcasting scenario was 

developed from the third scenario. In this study, the year of 2015 is selected as the benchmark 

for the land change and hydrologic simulations, whereas 2030 is chosen as the end of 

simulation period following the end of existing spatial policies, which were implemented in one 

of the scenarios (i.e. the existing policy-based scenario). 

The type of Status Quo scenario is predictive (forecast), which is created based on the 

development trend in the area. There are spatial policies which have not been implemented yet 

in the area. Thus the current trend does not comply with the existing spatial policies. Future 

demand for the new settlements and agriculture in 2030 was estimated based on the current 

development trend in each municipality. The information regarding the development trends was 

retrieved from BPS (Badan Pusat Statistik/ The Indonesian Central Bureau of Statistics). In the 

first scenario, there is no specific allocation for all land cover types and no restriction to develop 

riparian and lake buffer.  
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Figure 4-30 Scenario development in this research 

 

The second scenario is a predictive (what-if scenario) scenario, which was developed based on 

the current spatial planning policies in the respective municipalities. In this scenario, spatial 

constraints will be developed based on existing spatial policies. The development of a scenario 

for the Ci Kapundung watershed incorporates the spatial plans for Bandung City (2015-2035), 

Bandung Regency (2007-2027), and West Bandung Regency (2009-2029), while the scenario 

for the Ci Sangkuy watershed includes the existing spatial plans for Bandung Regency (2007-

2027). In this research, the newly published Bandung Basin spatial planning policy was not used 

in the development of the second scenario because it comprises a plan for a large-scale region. 

Therefore, there is no detailed spatial plan for each case study area.  

The existing spatial policies include the land-use zoning and the guidelines for developing new 

settlements and agriculture based on the slope condition, distance from main roads, rivers and 

lakes, as well as the development restriction of particular areas, such as protected areas, 

disaster-prone areas, and forests. The policies for both watersheds are summarised in Table 

4-1.  
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Table 4-1 The existing spatial plans for Bandung City, Bandung regency, and West Bandung Regency 

(Sources: the existing spatial planning of Bandung city (2011-2031), Bandung Regency (2007-2027), 

and West Bandung Regency (2009-2029) 

 Municipalities 

Policies Bandung City Bandung Regency West Bandung Regency 

New housing Built in the areas with a 

slope less than 15%, 

more vertical housing, 

should not be built in the 

areas dedicated as 

cultural heritage sites 

and conservation areas. 

Regulation for specific 

Building Coverage Ratio 

(BCR), Floor Area Ratio 

(FAR) and green area 

ratio.  

 

Built in the areas with a 

slope less than 15%, is 

not located at the 

disaster-prone area and 

area with high 

permeability soil and good 

accessibility. Non-landed 

houses near the district 

centre, and low-density 

housing in rural areas 

 

Regulation for 

settlements in the 

northern part of Bandung 

city (e.g. low-density 

buildings, specific 

engineering methods with 

can conserve the 

hydrological processes, 

specific Building Coverage 

Ratio (BCR)) 

Agricultural areas 

 

Land intensification 

 

 

 

 

Development criteria 

based on different types 

of agricultural practices 

(e.g. irrigated farming, 

dryland farming, 

perennial plantation) 

 

Areas with different range 

of slope are allocated for 

specific types of 

agricultural practices 

Conservation areas 

 

Include the recharge 

areas (e.g. slope less 

than 15%, soil with 

percolation more than 

1m/day), areas which 

protect specific 

landscape features (e.g. 

river buffers, open 

spaces along the 

railways, areas 

surrounding springs), 

green open space, 

cultural heritage sites, 

and disaster-prone 

areas. 

Prohibited for land-use in 

which the activities 

occurred would disrupt 

the conservation, are 

allowed for infrastructure 

development with 

maximum BCR of 2% 

 

Include the areas which 

provide protection to 

other areas and specific 

landscape features (e.g. 

forests conservations, 

areas with slope of 40% 

or more, permeable 

areas, river buffers, areas 

surrounding lakes and 

springs), protected areas, 

disaster-prone areas (e.g. 

areas with soil movement, 

200 metres from an 

active fault, volcanic 

eruption zone) and the 

cultural heritage sites 

 

Include the forest 

conservation areas, areas 

which protect other areas 

and specific landscape 

features (e.g. river 

buffers, areas 

surrounding lakes and 

springs), protected areas, 

disaster-prone areas, and 

areas with specific 

geological features 

River and lake 

buffer 

Designated width of lake 

and river buffer 

Designated width of lake 

and river buffer 

Designated width of lake 

and river buffer 

 

The third scenario was developed using the ecological design principles, including the protection 

to riparian, forests, and protected areas. The river and lake buffer was proposed to protect the 
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river ecosystem and reduce runoff flowing into the river. No further development in areas with 

high-permeability soils to maximize the capacity of catchment to absorb runoff. All criteria for 

the three scenarios were used to develop constraint maps required by the land change model. 

The maps show the restricted areas for new development in the two upper water catchment 

areas in the future.   

The fourth scenario is the backcasting scenario, which was generated to address the Pareto 

optimality (i.e. reducing flood risk in Bandung Basin). Evaluation pathways were conducted as 

part of the backcasting modelling. If the results from flood risk simulation could not meet the 

desired vision of the area, new constraint maps for the two case study areas would be proposed. 

This would generate new simulated maps with different land cover distributions. Then, the 

hydrology simulation would be conducted again. 

 

(2) Allocated areas for future development in the case study areas 

The allocated areas for new settlements and agriculture in each case study area in 2030 were 

estimated based on the projection of population growth rates in West Java Province (Table 4-2). 

The estimation assumes that the rates can represent the population growth in the three 

municipalities. Based on the projection of population growth rates, the number of population in 

2030 in each municipality was predicted.  

Table 4-2 West Java Province population growth projection (2010-2035) (Source: BPS) 

Year Population growth rates 

2010-2015 1.56 

2015-2020 1.34 

2020-2025 1.12 

2025-2030 0.90 

2030-2035 0.69 

 

Most areas in the Ci Kapundung watershed are located at three different districts (i.e. the 

Cidadap in Bandung City, Cimenyan district in Bandung Regency, and the Lembang district in 

West Bandung Regency), whereas Ci Sangkuy watershed is situated at two districts in the 

Bandung Regency (i.e. the Pangalengan and Cimaung districts). According to BPS (Badan Pusat 

Statistik/ the Indonesian Central Agency of Statistics), the number of population in the Bandung 

City, Bandung Regency, and West Bandung Regency in 2015 is 2,481,469, 3,534,111, and 

1,636,316 respectively. The proportion of the population in the districts inside the watersheds 

compared to other districts in a municipality was calculated to represent the projected 

population in each watershed (Table 4-3).   
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Table 4-3 Population in the four districts in the watersheds (2015 and 2017) (Source: BPS) 

Watersheds Districts Population in the 

districts (2015) 

Population in the 

districts (2017) 

Ci Kapundung Cidadap (BC) 58,426  58,700 

Ci Kapundung Sukasari (BC) 82,012 82,600 

Ci Kapundung Coblong (BC) 132,002 133,100 

Ci Kapundung Cimenyan (BR) 115,475 119,360 

Ci Kapundung Cilengkrang (BR) 52,359 54,076 

Ci Kapundung Lembang (WBR) 187,815 196,690 

Ci Sangkuy Pangalengan (BR) 148,353 152,735 

Ci Sangkuy Banjaran (BR) 124,233 128,691 

Ci Sangkuy Kertasari (BR) 69,793 71,755 

Ci Sangkuy Pacet (BR) 109,084 112,197 

Ci Sangkuy Pasir Jambu (BR) 85,294 87,932 

Notes: BC (Bandung City), BR (Bandung Regency), WBR (West Bandung Regency) 

After the future population in each municipality had been estimated, the projected population 

in the seven districts (i.e. Cidadap, Sukasari, Coblong, Cimenyan, Cilengkrang, Lembang, 

Pangalengan, and Cimaung) in 2030 was calculated. This estimation was used to validate the 

outputs from land change modelling.  

 

4.2.3 Land change simulations  

(1) Land Change Modeler (LCM) module of Terrset   

In this study, the land change simulation was conducted using Land Change Modeler (LCM) from 

Terrset. LCM is one of the modules in the software, which was developed by Clark University in 

Worchester MA, USA. LCM applies a combined cellular automata and Markov model (CA-

Markov), and a multilayer perceptron (MLP) neural network to run the simulation. Cellular 

Automata (CA) simulate the future land change based on the previous state of each cell as well 

as the phase of its adjacent neighbours, following a particular rule. A standard form of Cellular 

Automata is presented as (Equation 4-6): 

𝑆𝑡+1 = 𝑓(𝑆𝑡, 𝑁) Equation 4-6 

where S is possible states of the Cellular Automata model at the time t, N is the values of 

neighbouring cells, f is a transition function that determines the changes from time t to t+1 (Li 

& Yeh, 2000). Markov analysis calculates the transition probabilities of each land cover type 

(Table 4-4). Pij  (i rows and j columns) denotes the probability of one land cover type (S) to change 

into another (Clark, 1965).  
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Table 4-4 Transition probability matrix (Source: Clark, 1965)  

 

The CA-Markov model in LCM generates probability maps used to simulate future land-use/land 

cover (Adhikari & Southworth, 2012; Eastman, 2006). LCM module from Terrset is selected in 

this research because the model construction is easier than other CA-Markov models, such as 

the CA_Markov in Terrset, CLUE, and DINAMICA (Mas et al., 2014).  

The MLP neural network is able to simulate the non-linear relationships between different 

variables which influence the transition, such as the land cover change related to the proximity 

to urban centre or roads. Furthermore, it can also model several or all transitions at once by 

making a group of transitions with the same explanatory variable (Eastman, 2016). Pixels 

assigned as water bodies were excluded in the land change simulation process with an 

assumption that the pixels will not change into different land cover throughout the simulation 

period. 

MLP is one of the common models of Artificial Neural Network which is used in machine learning 

(Gallant, 1993). Machine learning algorithms mimic biological learning systems using artificial 

intelligence tools. The algorithm develops a relationship between the land-use patterns and the 

explanatory variables in an iterative process by adjusting the model parameters (Baker, 1989). 

MLP neural network consists of three layers; the input layer, the hidden layer, and the output 

layer (Figure 4-31). The input layer has nodes which represent the site attributes (i.e. variables 

that cause the land change). The hidden layer is located between the input layer and the output 

layer. The number of nodes in the hidden layer can be estimated using Kolmogorov's theorem 

(Hecht-Nielsen, 1987). The theorem suggests that the number of nodes in the middle layer is 

2n+1, where n is the number of input nodes. A higher number of hidden nodes can increase the 

MLP accuracy. However, it also increases the training time without achieving a significant 

improvement in accuracy (Wang, 1994). Wang (1994) later demonstrated how an MLP network 

with 2n/3 hidden nodes could obtain almost the same accuracy level but with less training time. 

Therefore, the number of hidden nodes for the MLP neural networks in this research was 

determined using the latter method.   
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Figure 4-31 An artificial neural network structure with multiple output neurons (Source: Li & Yeh 2002) 

The explanatory variables in the transitions include static and dynamic variables. Static 

components are the basic suitability factors for the transitions and unchanging over time, 

whereas the dynamic components are time-dependent variables that will be recalculated over 

time (Eastman, 2016). Anthropogenic disturbances to the areas are affected by several 

variables, such as the distance from roads, urban centres, areas prior to disturbance, elevation, 

and slope. The development of new settlements tends to occur near roadways, urban centres, 

and areas which have been disturbed before. Elevation and slope data could be used to allocate 

suitable land for settlements and agriculture.  

Maps showing the driver variables which influence the land change were developed in the land 

change modelling, and the explanatory power of each variable was evaluated using Cramer’s V 

test. The results from Cramer’s V test show how good the potential explanatory value of the 

variable is. Variables with Cramer’s values of 0.4 or higher are considered as good, whereas 

values of about 0.15 or higher are useful variables. Based on the test, the driver variables with 

high Cramer’s value were selected to be included in the modelling process. The types of variable, 

then, were specified in the transition sub-model structure as static or dynamic components. 

Variables are considered as static if they are unchanging during a period. On the other hand, the 

dynamic components are changing over time (e.g. the development of roads) (Eastman, 2006).  

LCM uses a list of constraints and incentives to assess the impacts of specific policies on land 

change. A constraint map for each transition provides a guide in the change prediction process 

by multiplying the transition potentials by the values in the incentives or constraints maps. Value 

of 0 on the map represents an absolute constraint to the changes, whereas the value of 1 shows 

no impact. Values between 0 and 1 are seen as disincentives, and values above 1 are incentives 

to changes (Eastman, 2016). 

An example of LCM is the simulation of urban growth in the Greater Cairo, Egypt (Megahed et 

al., 2015). In this study, three land cover maps (1984, 2003, and 2014) were developed from 

satellite images, and the land cover transitions to urban were simulated to predict the future 

scenarios for the year 2025. The research on land cover change simulation was also conducted 
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by Rodríguez Eraso et al. (2013), who assessed land changes between 1985 and 2008 in the 

Colombian Andes. LCM was also used to assess the drivers of the deforestation in Ecuador 

(Rajan, 2007), and to predict the future growth of Muzaffarpur city in India (Mishra, Rai, & 

Mohan, 2014).  

 

(2) Land change simulations of the two case study areas 

In this study, the land change simulations were conducted using the four scenarios where 

different constraints maps were applied (Figure 4-32). The MLP process produces maps of 

transitions from one land cover type to another to model the future land cover composition and 

distribution. The simulation results, then, show the model accuracy.  

 

Figure 4-32 Land change simulation process 

An initial simulation (LCM 1) was performed based on the land cover maps in 2013, 2015, and 

2017, which were developed from SPOT 6 imagery. In this simulation, the 2017 land cover map 

in the first scenario (Status Quo) was first simulated using the 2013 and 2015 land cover maps, 

in which the result was validated using the actual 2017 map. Four land change drivers (e.g. 

distance from disturbance, distance from existing roads, distance from existing streams, and 

likelihood to change) were included at the beginning of the simulation process.  

A map showing the distance from disturbance was computed in Terrset by extracting the existing 

developed areas in the earlier map (i.e. 2013 land cover map), removing extraneous pixels, and 

calculating the distance from the developed areas. Distance from existing roads and streams 

maps were generated using a road network map from OpenStreetMap and the stream networks 
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developed in ArcGIS respectively. The ‘likelihood to change’ driver was mapped based on the 

information on the land change in 2013-2015. Based on the Cramer’s V test, the ‘distance from 

existing streams’ variable was excluded in the final LCM 1 simulation.  

The second simulations (LCM 2) were conducted using the land cover maps in c.2000, c.2015, 

and c.2017 generated from SPOT 6 and Landsat 7 imagery. Six land change driver variables 

were used in the modelling and are divided into two groups. The first group is the demographic-

economic drivers (e.g. likelihood to change, distance from disturbance, and population density). 

The second group is the environmental drivers (e.g. elevation, slopes, and distance from 

streams). 

Maps showing the likelihood to change, the distance from disturbance and streams used in LCM 

2 were generated the same way as the driver maps used in LCM 1. The only difference in the 

process is the base maps utilised in LCM 2; the 2000 and 2015 maps resulted from the final 

iteration of map generation process were used instead of the base maps used in LCM 1. The 

population density map was retrieved from WorldPop (2018). The original map has 100-m 

resolution, and each pixel in the map shows the number of population estimated by the United 

Nations. The map had been resampled into 6 metres before it was used in the modelling. The 

elevation and slope maps were developed from the DEM in ArcGIS.  

During the simulation process, the c.2000 and c.2015 maps were used as the input dataset for 

the LCM model to project the 2017 and 2030 land cover maps. The accuracy of the projected 

2017 land cover map was calculated using Kappa statistics.  

 

4.3 The impact of land cover change to flood regulation and the assessment 

of flood risk (research phase 3) 

The impact of land cover change in the two case study areas to flood regulation was assessed 

using the Moving average (MA) analysis. The output from the MA analysis was interpreted to 

address the first research question assessing how land cover alteration in the two case study 

areas affects flood regulation in the Bandung Basin.  

A flood risk assessment was conducted to analyse the characteristics of floods occurred in 

Bandung Basin. The assessment includes the analysis of flood frequency, flood discharge, and 

the effective rainfall that cause flooding. The river discharges of Ci Kapundung and Ci Sangkuy 

rivers, which have high possibility to cause floods in the basin, were also estimated to provide a 

benchmark to define the minimum volume of river discharges the catchments would have in the 

future development scenarios to cause the floods. The benchmark was used to evaluate the 

results from MIKE SHE hydrologic modelling, addressing the second research question. 
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4.3.1 Moving average analysis 

A 5-year moving average (MA) analysis was performed to model the trends of Ci Tarum, Ci 

Kapundung, and Ci Sangkuy annual river discharges and annual precipitation in each case study 

area. The outputs from the MA analysis were used to assess how historical land cover change 

in both case study areas influenced the flood regulation. The analysis was also conducted to 

ascertain whether the precipitation rates also affected flood regulation.  

Moving averages can be used to identify patterns in data in which the actual trend is covered by 

noise (Montgomery et al. 1990). The simple moving average used in this study computes the 

average of the most recent N observations (Equation 4-7). 

𝑀𝑇 =
𝑥𝑇  +  𝑥𝑇−1 +  𝑥𝑇−2 + .  .  .  + 𝑥𝑇−𝑁+1

𝑁
 Equation 4-7 

where 𝑀𝑇 is the simple moving average, 𝑁 is the period of the moving average, 𝑥 is the data at 

a specific time 𝑇. 

The moving average analyses of discharges, rainfall, baseflow, and runoff coefficient were 

conducted to assess the change of hydrological regime in the Ci Kapundung water catchment 

area24 (1978-2012) by Pradiko et al. (2015). The change of the hydrological regime was 

evaluated by analysing the relationship between the trend of river discharges with the rainfall 

and land conversion (runoff coefficient). The study used the 5-year moving average because the 

land cover changes can be seen clearly after five years (Ridwan 2001 cited in Pradiko et al. 

2015). 

4.3.2 Flood frequency estimation  

The probability analysis of floods in the Bandung basin was conducted using the Log-Pearson 

Type III distribution, following the method which is described by the Oregon State University 

(http://streamflow.engr.oregonstate.edu/analysis/floodfreq/index.htm). The type of 

distribution was chosen because it was used in many studies for fitting a curve to data and 

mainly produces good results for flood peak data (Chow et al., 1988). The equation for 

calculating the Log-Pearson Type III distribution is 

log 𝑥 = 𝑙𝑜𝑔̅̅ ̅̅ 𝑥 + 𝐾𝜎𝑙𝑜𝑔𝑥 Equation 4-8  

where  

x : flood discharge of a specific return period 

𝑙𝑜𝑔 ̅̅ ̅̅ ̅𝑥 : mean of the log x value  

K : a frequency factor 

𝜎 : the standard deviation of the log x values 

                                                      
24 The site used in the research conducted by Pradiko et al. (2015) comprises of the whole Ci Kapundung 

watershed, which is larger than the first study site used in this PhD research.  
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The values of frequency factors (K) vary depending on the skewness coefficient (Cs) and flood 

return period, and the values can be seen from the table of frequency factor for the Log-Pearson 

Type III (Chow et al. 1988). Skew coefficient (Cs) can be calculated using Equation 4-9, while the 

standard deviation of the log x values (𝜎) is estimate using Equation 4-10. 

𝐶𝑠 =
𝑛∑(log 𝑥 − log 𝑥̅̅ ̅̅ ̅̅ )

3

(𝑛 − 1)(𝑛 − 2)(𝜎𝑙𝑜𝑔𝑥)
3 

 

Equation 4-9 

𝜎𝑙𝑜𝑔𝑥 = √
∑(log 𝑥 − log 𝑥̅̅ ̅̅ ̅̅ )2

𝑛 − 1
 

Equation 4-10 

 

where n is the number of entries, and x is the flood discharge. 

Based on the availability of data, the flood frequency analysis was conducted using the 

maximum average daily discharges of Ci Tarum River throughout 1974-1988 and 1990-2016 

(there is no data for the water year 1989). The data was collected from PSDA (Pusat Sumber 

Daya Air/ Water Resource Management in West Java Province).  The flood frequency of Ci Tarum 

River, then, was computed based on the following steps.    

Firstly, the maximum daily discharges of the river (Q) for each water year were ranked and 

converted from m3/s to ft3/s. Secondly, skew coefficient and standard deviation were calculated 

using Equation 4-9 and Equation 4-10 respectively, based on the maximum daily discharge on 

each water year (in this study, there are 42 water years). Thirdly, the k values for the 2, 5, 10, 

25, 50, 100, and 200 flood recurrence interval were estimated based on the skew coefficients. 

Finally, the discharge in each recurrence interval was calculated, and a graph of the flood return 

period was generated.     

 

4.3.3 Flood discharge estimation 

This research focuses on the assessment of landscape changes in the Ci Kapundung and Ci 

Sangkuy upper water catchment areas, and the impact of the changes on the Ci Kapundung 

and Ci Sangkuy river discharges. The flood risk is examined by assessing the river discharges of 

both rivers which can affect the occurrence of flood in the basin. However, the fluctuation of Ci 

Tarum river discharge is affected not only by the two rivers but also by the discharges of rivers 

from other catchments in the basin. Therefore, it is also important to include the river discharges 

from other catchments in the analysis. The workflow of this assessment can be seen in Figure 

4-33. 

Firstly, the bankfull discharge of Ci Tarum River was calculated to estimate the flood discharge. 

Floods will occur if the river discharge at one particular time (t) is higher than the bankfull 
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discharge (Qbkf). The estimation of Ci Tarum bankfull/ flood discharge is presented in the first 

section of this subchapter.  

 

Figure 4-33 Diagram of the workflow to estimate flood discharge 

Secondly, the flood event data from BNPB (Indonesian National Board for Disaster 

Management) was used to define the river discharges from all catchments in the basin which 

might affect the occurrence of floods in the region. Due to the limited river discharge data from 

the Ci Sangkuy upper water catchment area, the analysis was conducted using the data from 

2008-2016. The calculation of river discharges from the Ci Kapundung watershed (Q1), Ci 

Sangkuy watershed (Q2), and other catchments (Q3) at the day when the basin was flooded, is 

described in section 2. Lastly, the discharges of Ci Kapundung and Ci Sangkuy rivers during 

flood events in the basin (2008-2016) were identified. 

 

(1) Estimating the bankfull/ flood discharge of Ci Tarum River 

In this study, the Manning’s equation is selected as a method to predict the bankfull discharge 

of the Ci Tarum River because the method is considered to be more accurate and reliable than 

two other methods (i.e. Kinematic wave and SCS curve number) according to Roy & Mistri 

(2013). The Manning equation from Chow et al. (1988) was used to estimate the velocity of Ci 

Tarum River flow (Equation 4-11). Then, bankfull discharge is estimated using Equation 4-12 

(Dunne & Leopold, 1978).   

𝑢 =
1.49 𝑅2/3𝑆1/2

𝑛
 Equation 4-11 

where 

𝑢 : water velocity [ft/sec] 

Note the day when 
𝑄 𝑙𝑜𝑜𝑑 ≥ 𝑄   

𝑄1 and 𝑄2 were high and there were floods

𝑄1 o  𝑄2 was high and there were floods

1Citarum bankfull discharge (𝑄   )

Ci Tarum discharges when floods 
occured = 𝑄   or more

3

Flood events recorded by BNPB 
(Indonesian National Board for 

Disaster Management)

Estimating river discharges from case 
study area 1 (𝑄

1
), 2 (𝑄

2
),and other 

catchments (𝑄 ), at the day when the 

basin flooded (𝑄𝑓𝑙𝑜𝑜𝑑)

𝑄𝑓𝑙𝑜𝑜𝑑 = 𝑄1 +𝑄2 + 𝑄 

2
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R : hydraulic radius, the ratio of the cross-sectional area of flowing water to the wetted 

perimeter, A/wp 

S : the slope of the water surface 

𝑛 : the Manning resistance coefficient [ft1/6] (refer to Chow (1964) p.35 to get the 

coefficients for different channel surfaces) 

𝑄   = 𝑤    𝑥 𝑢    𝑥 𝑑    Equation 4-12 

where 

𝑄    : discharge at bankfull or when a channel is at capacity [cfs] 

𝑤    : bankfull width [ft] 

𝑢    : velocity [ft/sec]  

𝑑    : bankfull depth [ft] 

 

A cross-sectional area (A) of the river was calculated, and the wetted perimeter for the cross-

section (wp) was estimated based on the DEM (Digital Elevation Model) with 6 metres of 

resolution. Secondly, the hydraulic radius (R) can be estimated by dividing A with wp. Using the 

Manning equation, water velocity when the river is at full capacity was calculated (𝑢   ). In this 

study, the slope of water surface (S) was retrieved from literature (Brahmantyo 2005). Manning 

resistance coefficients were derived from the table of Manning’s n values from Chow et al. 

(1988).  After the water velocity (𝑢   ) was computed, then, the bankfull discharge of the Ci 

Tarum River (𝑄   ) in each river section was estimated, based on the bankfull width (𝑤   ) and 

bankfull depth (𝑑   ).   

 

(2) River discharges from the catchments during flood events 

River discharges from the Ci Kapundung and Ci Sangkuy upper water catchment areas during 

flood events in the Bandung Basin (2008-2015) were examined to get the estimated flood 

discharges from both watersheds. The estimated river discharges, then, were used as the 

thresholds for determining whether the land change in particular future development scenarios 

in each case study area contribute to the flooding in the basin. For example, if the projected 

river magnitudes in the two case study areas are above the thresholds, then, there is a high 

possibility that the discharges from the two watersheds cause the flooding in the basin.  

The data of historical flood events in the basin was retrieved from BNPB (Indonesian National 

Board for Disaster Management). The analysis was conducted by determining the river 

discharges from the Ci Kapundung and Ci Sangkuy upper water catchment areas (i.e. Q1 and Q2 

respectively), and from other catchments in the basin (Q3), during the flood events. Q3 was 
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estimated by subtracting the Ci Tarum discharges when the basin was flooded (Qflood) with Q1 

and Q2. The river discharges data was retrieved from PSDA. The recorded data from Dago 

Bengkok and Kamasan gauges was used to assess the river discharges of Ci Kapundung and Ci 

Sangkuy rivers respectively. The data from the Nanjung gauge was analysed to determine the Ci 

Tarum flood discharges during the flood events in the basin.  

 

4.3.4 Effective rainfall to cause flooding in the Bandung Basin 

The assessment of the correlation between direct runoff (DRO) and rainfall events in Bandung 

Basin was conducted to determine the effective rainfall which causes the floods, following the 

same method used by Dasanto et al. (2014). In this assessment, the direct runoff was identified 

by subtracting the Ci Tarum river discharges with the baseflow.  

The next analysis processes include the estimation of the rainfall magnitude at the day of peak 

direct runoff (DROp) during the flood events, the calculation on rainfall accumulation, and the 

development of regression models between the DROp and the rainfall accumulation. The 

information on flood events in the basin was retrieved from the BNPB, Bandung Regency official 

website25, and the online local newspapers during the data collection process. 

 

(1) Calculating the Ci Tarum baseflow 

The Ci Tarum baseflow is estimated following the guidelines to analyse the streamflow duration 

from Oregon State University. The total number of time step intervals (day) was computed using 

the river magnitude data of Ci Tarum River (1 January 2001 – 31 December 2016). Then, the 

discharge data was ranked by magnitude, and the per cent of the time that each discharge is 

equalled or exceeded was calculated using Equation 4-13.  

𝑃 = 100 ∗ [𝑀/(𝑛 + 1)] Equation 4-13 

where 

P : the probability that specific river flow will be equalled or exceeded [%] 

M : the rank on the list  

n : the number of events for one period  

Samples of the Ci Tarum streamflow data within the period of 2001-2016 and the rank of river 

magnitude were used to estimate the river baseflow. According to Dasanto et al. (2014), 

baseflow can be estimated using the flow duration curve by defining the river discharge, which 

has a probability value of 90%. 

                                                      
25 Floods in the Bandung Basin were mostly occurred in the centre part of the region, which is located in the 

Bandung regency. The municipality website (www.bandungkab.go.id) provides the latest and archived news related 

to many aspects including the disaster management in the area.  
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(2) Determining the rainfall magnitude at the day of peak direct runoff (DROp) in the 

Bandung Basin 

In this study, the rainfall magnitude on each day from 1 January 2008 to 31 December 2016 

was calculated as the sum of Thiessen-weighted average rainfall for all weather stations in the 

basin, following the method described by Chow (1964). The rainfall datasets from 13 weather 

stations were used in this analysis. Each station has different availability of recorded rainfall 

data. However, the completed datasets were available from 2008 onwards. Therefore, the 

analysis could only be conducted using the rainfall data from 2008-2016.   

The direct runoff (DRO) of all catchments in the basin was calculated using the continuity 

equation (Chow, 1964). In a watershed system, DRO can be viewed as the water storage which 

varies over time (i.e. dS/dt). DRO can be computed by subtracting the rainfall, as the input to 

the system, with river magnitude, as the output from the watershed system. The information on 

flood events in the basin was used to identify the day when the highest direct runoff (DROp) 

occurs, and to determine the precipitation rate that day. 

 

(3) Estimating rainfall accumulation 

The rainfall accumulation was calculated during the peak of direct runoff (DROp) in each flood 

event in Bandung Basin (R0) within the period of 1 January 2008 – 31 December 2016, until six 

consecutive days before the highest DROp in one flood event occurred, using Equation 4-14. R1 

until R6 are the accumulated rainfall total during 1 day to 6 days before DROp respectively. 

𝑅0 = 𝑅𝑡  

𝑅1 = 𝑅𝑡 + 𝑅𝑡−1  

𝑅2 = 𝑅𝑡 + 𝑅𝑡−1 + 𝑅𝑡−2  

𝑅3 = 𝑅𝑡 + 𝑅𝑡−1 + 𝑅𝑡−2 + 𝑅𝑡−3  

𝑅4 = 𝑅𝑡 + 𝑅𝑡−1 + 𝑅𝑡−2 + 𝑅𝑡−3 + 𝑅𝑡−4  

𝑅5 = 𝑅𝑡 + 𝑅𝑡−1 + 𝑅𝑡−2 + 𝑅𝑡−3 + 𝑅𝑡−4 + 𝑅𝑡−5      

 𝑅6 = 𝑅𝑡 + 𝑅𝑡−1 + 𝑅𝑡−2 + 𝑅𝑡−3 + 𝑅𝑡−4 + 𝑅𝑡−5 + 𝑅𝑡−6  

 

 

 

 

 

 

Equation 4-14 

  

 (4) Developing regression models 

After the accumulated rainfall during DROp (R0), as well as the sum of rainfall rates during 1 

day to 6 days before DROp occurred (i.e. R0, R1, R2, R3, R4, R5, and R6) had been calculated, a 

regression model was developed (Equation 4-15). The regression model is adopted from 

Dasanto et al. (2014) to illustrate the correlation between direct runoff (DRO) and the rainfall 

rates.  
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𝐷𝑅𝑂𝑖 = 𝑏0 + 𝑏𝑖𝑅ℎ𝑖 Equation 4-15 

where 𝐷𝑅𝑂𝑖 is the peak of direct runoff during flood events i, 𝑏0 and 𝑏𝑖 are the constants, and 

𝑅ℎ𝑖 denotes the accumulated rainfall rates in h days during flood events i in the basin.  

 

4.4 Hydrologic modelling (research phase 3) 

MIKE SHE model was used to simulate the future flow regimes (i.e. the patterns of river flow 

variation) of the two case study areas under different development scenarios and to assess the 

types of vegetation that can improve the flood regulation (Figure 4-34). The two modelling 

objectives address the second and third research questions.  

 

Figure 4-34 The iterative process of hydrologic simulations in this study 

At the beginning of hydrologic modelling, the outputs from the first iteration of land change 

modelling (LCM 1) (i.e. projected 2030 land cover maps) were used to develop base maps for 

the first MIKE SHE model (MIKE SHE 1). In this process, overland flow (OL), unsaturated flow 

(UZ), and uniform value of evapotranspiration (ET) were included in the water movement 
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simulations. Saturated flow (SZ) was excluded in the simulations. The outcome of this process 

is the depth of overland flow (i.e. an initial phase of runoff). The result provides an indication 

during the parameterisation in the second iteration of hydrologic modelling (MIKE SHE 2).  

In MIKE SHE 2, the river discharges were estimated from the simulated P Flux and Q Flux26. The 

water balance on each site was also projected in addition to the river discharges. The 2015 land 

cover maps from the last iteration of the map development process and the 2030 maps from 

the three scenarios in LCM 2 were used as base maps in the MIKE SHE 2 model. The model 

outputs (i.e. simulated discharges and water balance) were evaluated to determine the 

benchmark to develop the backcasting scenario (LCM 3).  

The last hydrologic modelling (MIKE SHE 3) was conducted using the backcasting scenario. In 

MIKE SHE 3, river discharges and water balance analysis was also conducted to evaluate the 

landscape structure scenario to support flood regulation.    

4.4.1 Data collection for the hydrologic modelling  

The following list shows the datasets required by the MIKE SHE model: 

(1) Historical rainfall data from nine weather stations in Ci Kapundung and Ci Sangkuy 

upper water catchment areas collected from PSDA (Water Resource Management in 

West Java Province). The data availability varies for each station (Figure 4-35). 

Therefore, only rainfall data from 2008-2015 was used in the modelling.  

 
Figure 4-35 The availability of precipitation data  

(2) The temperature and wind speed data of Bandung City to estimate the reference 

evapotranspiration. The data was retrieved from BMKG (the Indonesian Agency for 

Meteorology, Climatology and Geophysics) and BPS (The Indonesian Central Bureau of 

Statistics). 

                                                      
26 P Flux and Q Flux (m3/s/m) represents the flux density in x-direction and y-direction respectively. Q (discharge) to 

the x or y direction can be estimated by multiplying the flux with the model resolution.  
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(3) The land cover maps of Ci Kapundung and Ci Sangkuy upper water catchment areas 

from 2015 and the simulated 2030 land cover maps.  

(4) Leaf Area Index (LAI) of each land cover class. The LAI was estimated using the allometric 

equations from various studies based on the estimated biomass of each sample tree.  

Allometric equations show the relationships of specific properties of plants, such as 

biomass and LAI, with another property, and are presented in logarithm forms. This 

method is used in this research because it is not destructive. Therefore, it is suitable to 

be conducted in the case study areas, especially when estimating LAI values of trees 

inside the two protected areas and the forests, where harvesting trees are prohibited by 

law. The allometric equations for estimating the biomass and LAI were derived from 

references (e.g. Siregar 2007, Malhado et al. 2009, Ahmad et al. 2014, Das 2014), in 

which the case study areas are located in West Java Province, Indonesia or other regions 

in the tropics. 

(5) The root depth and crop coefficients of various plants (Allen et al., 1998; Djaenuddin 

et al., 1994). 

(6) Manning’s M values of different land cover types retrieved from the literature review 

(e.g. Kouwen & Fathi-Moghadam 2000; Kalyanapu et al. 2009; Rossman & Huber 

2016). 

(7) River magnitude data of Ci Kapundung and Ci Sangkuy Rivers (2008-2015) retrieved 

from PSDA to calibrate and validate the hydrologic model. 

(8) Digital elevation model (DEM) from BIG (Indonesian Geospatial Agency) with a spatial 

resolution of 0.27-arcsecond or 8.34 metres. The DEM was developed by BIG from 

IFSAR (5-metre resolution), TERRASAR-X (5-metre resolution), and ALOS PALSAR 

(11.25-metre resolution) data with added mass point data from stereo-plotting. In this 

study, the DEM coordinate system was projected from the original system EGM2008 to 

WGS_1984_UTM_Zone_48S. 

(9) The delineation of water catchments in Bandung Basin generated from DEM with a 

spatial resolution of 6 metres using the hydrology toolbox of ArcGIS. 

(10) The soil distribution map of Bandung Basin and the soil properties data (e.g. the 

composition of clay, silt, and sand) retrieved from the Indonesian Soil and Agroclimate 

Research Centre (1993). 

(11) Parameters for geological layers from literature (e.g. Darul et al., 2016; Nurliana & 

Widodo, 2009; Maria, 2008; Morris & Johnson, 1967).  

 

4.4.2 MIKE SHE modelling parameter estimation 

Model parameters which could not be acquired from the field surveys, government offices, and 

literature, were estimated in this research. The estimation of the parameters is presented below.   
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(1) Evapotranspiration 

The FAO (Food and Agriculture Organisation of the United Nations) Penman-Monteith method 

was used to calculate reference evapotranspiration (𝐸𝑇0)27 for the case studies (Equation 4-16). 

This approach is chosen because the method is widely used (Danish Hydraulic Institute, 2017b) 

and is suitable to be used in data-short situations (Allen et al., 1998). The Penman-Monteith 

method estimates the evapotranspiration from an open water surface using climatological data 

such as solar radiation, air temperature, humidity, and wind speed.  

𝐸𝑇0 =
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 27 

𝑈2(𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 0. 4𝑢2)
 

 

Equation 4-16 

 

Where 

𝐸𝑇0 : reference evapotranspiration [mm day-1] 

𝑅𝑛 : net radiation at the crop surface [MJ m-2day-1] 

G : soil heat flux density [MJ m-2day-1] 

T : mean daily air temperature at 2 m height [oC] 

𝑈2 : wind speed at 2 m height [m s-1] 

 𝑒𝑠 : saturation vapour pressure [kPa] 

𝑒𝑎 : actual vapour pressure [kPa] 

𝑒𝑠 − 𝑒𝑎 : saturation vapour pressure deficit [kPa] 

∆ : slope of saturation vapour pressure curve at air temperature T [kPa0C-1] 

 

R.G. Allen et al. (1998) describe the required climatological datasets for estimating the 

evapotranspiration using the above equation as follows. The net radiation (𝑅𝑛) is the balance 

between the absorbed, reflected, and emitted energy by the Earth’s surfaces. The soil heat flux 

(G) is the energy for heating the soil. 

The actual vapour pressure (𝑒𝑎) refers to “the vapour pressure exerted by the water in the air”. 

The saturation vapour pressure deficit (𝑒𝑠 − 𝑒𝑎) describes the air actual evaporative capacity. 

The value of vapour pressure is commonly derived from dewpoint temperature (the temperature 

which can make the air saturated). If no humidity data was recorded, the actual vapour pressure 

(𝑒𝑎) can be derived by assuming the dewpoint temperature is near the daily minimum 

temperature 𝑇min. The equation requires the data of saturation vapour pressure at the air 

temperature T(𝑒0). The value of 𝑒𝑎 can also be derived from the table of saturation vapour 

pressure for different temperatures (T) in the guideline for computing crop evapotranspiration 

                                                      
27 Reference evapotranspiration (𝐸𝑇0) is defined as the highest value of evapotranspiration derived from a fully 

watered grass surface (Danish Hydraulic Institute, 2017b p.38) 



116 
 

(Allen et al., 1998).  The guideline book also provides the estimation of the slope of the vapour 

pressure curve (D) for different temperatures (T).  

There is no temperature data available for the Ci Kapundung and Ci Sangkuy upper water 

catchment areas. Therefore, the daily maximum and minimum temperature data of Bandung 

City (1 January 2002-6 September 2015 or 4712 days) was used to estimate 𝐸𝑇0 (mm/day) in 

each case study area. However, there are missing temperature data in 2013-2015. Therefore, 

the assessment was conducted using the data from 4,502 days. The weather station that 

records the temperature in Bandung city is located at approximately 700 m asl. Daily wind speed 

data was estimated from the mean monthly data retrieved from BPS (Badan Pusat Statistik/ 

The Indonesian Central Bureau of Statistics), assuming that the wind speed was similar every 

day in a month. The highest and lowest daily temperature in Bandung City had been corrected 

to represent the temperature of each case study area using the Earth Atmosphere model from 

NASA (2015). For elevation less than 11,000 m asl (Troposphere), the air temperature can be 

estimated as T = 15.04 – 0.00649 h, where T is the temperature (oC) and h is altitude (m) 

(National Aeronautics and Space Administration (NASA), 2015). 

Regression analyses were performed using the computed 𝐸𝑇0 and river discharges. The output 

from regression analyses can be used to estimate the missing 𝐸𝑇0 data based on the recorded 

river discharges. The river discharge unit was converted from m3/s to mm/day.  

 

(2) Leaf Area Index (LAI) 

In this study, the biomass of the dominant trees in the two case study areas (e.g. Pinus merkusii, 

Switenia mahogany, Eucalyptus urophylla) was estimated from the tree trunks’ diameter at 

breast height (DBH) using allometric equations. Based on the biomass, the LAI was predicted 

using the other allometric equations, which show the relationships between biomass and LAI of 

various vegetation. All the allometric equations were derived from studies on biomass and LAI 

of the conifers, broad-leaved plants, and mixed plants in Indonesia and other countries (Table 

4-5).  

Table 4-5 Allometric equations to estimate biomass and LAI from various plant species  

Plant species Location Allometric Equations References 

Pinus merkusii North Sumatera, 

Indonesia 

Biomass = 0,2451(DBH)^2,2757 

(suitable for DBH<45 cm) 

(Ahmad et al., 2014) 

 

 

Pinus merkusii West Java, 

Indonesia 

Biomass = 0,1031(DBH)^2,4587 

(suitable for DBH 45-120 cm) 

(Siregar, 2007) 

 

 

Pinus taeda L. North Carolina Biomass = 2.33+(7.26*LAI) (Albaugh et al., 

1998) 
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Plant species Location Allometric Equations References 

Switenia 

mahogany 

Bangladesh SLA = LA/drymass (cm2/g) 

Biomass = 

0.052574*DBH^2.25004 

LAI = Biomass*SLA 

 

(Das, 2014) 

 

Eucalyptus 

urophylla 

 

North eastern 

Brazil 

Foliage Biomass = 

0.0034*(DBH)^2.5722 

(Stape, Binkley, & 

Ryan, 2004) 

 

 

Eucalyptus 

urophylla 

Eucalyptus grandis 

 

South China Biomass = -1.0081(LAI)^2 - 

2.948(LAI) + 4.5839 

or 

LAI = 2.948 + ((2.948)^2-4*-

1.0081*(4.5839-Biomass))^0.5 

 

(Wen et al., 2009) 

Secondary forest 

(Acacia mangium 

with understory 

plants) 

West Java, 

Indonesia 

 

 

Biomass = 0.1969V^2.0611 (Siregar & Heriyanto, 

2010) 

Secondary forest Amazon forest, 

Brazil 

 

SLA = 8.16 m2/kg or 81.6 cm2/g 

LAI = Biomass*SLA 

 

(Malhado et al., 

2009) 

Grass (barley) 

 

Spain LAI = 0.0299 x Ground cover (%) 

(if ground cover (%) < 97) 

(Ramirez-Garcia, 

Almendros, & 

Quemada, 2012) 

    

 

The LAI for mixed plants, tea plantations, grass and agricultural plants were derived from the 

literature review. The LAI value for developed areas and water bodies is 0 because there is no 

vegetation in the two land cover classes. The LAI of 6.2 is assigned for mixed plants, following 

the study conducted by (Dietz et al. 2006), who estimated the LAI of natural forest in Central 

Sulawesi, Indonesia using hemispherical photos. LAI for tea plantations (Camellia sinensis) is 

between 5 to 6 (Tanton, 1979).  

The LAI values of the three types of forests (i.e. conifers, broad-leaved plants, and mixed forests) 

were estimated, assuming that the LAI of all trees within the same age group and species is 

relatively similar (Table 4-6). The information on the age of trees was retrieved from Perhutani.  

Table 4-6 Estimated mean value of LAI of plant species in the case study areas 

Group Plant species Site Age Mean value of LAI 

A Pinus merkusii The southern part of Ir. H. 

Djuanda protected area  

 

n/a 9.56 

B Pinus merkusii The northern part of Ir. H. 

Djunada protected area 

 

n/a 10.62 

C Pinus merkusii North Bandung city 

 

n/a 9.39 

D1 Pinus merkusii Perhutani forest (site 1) 16 years 6.55 
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Group Plant species Site Age Mean value of LAI 

D2 Pinus merkusii Perhutani forest (site 2) 46 years 15.63 

D3 Pinus merkusii Perhutani forest (site 3) 50 years 13.29 

D4 Pinus merkusii Perhutani forest (site 4) 51 years 16.86 

D5 Pinus merkusii Perhutani forest in the Ci 

Kapundung watershed outside 

areas in the Perhutani forest with 

Pines age of 16, 46, 50, and 51 

 

9-55 years Estimated from 

the regression eq. 

(Figure 4-36) 

E Eucalyptus Perhutani forest (site 5) 

 

n/a 7.63 

F Broad-leaved trees  Ir. H. Djuanda protected area 

 

n/a 3.62 

G Mahogany North Bandung city 

 

n/a 3.78 

H Pinus merkusii Forest (site 6) 

 

n/a 10.89 

I Pinus merkusii Outside forest (site 7) 

 

n/a 8.76 

J Eucalyptus Forest (site 8) 

 

n/a 8.45 

K Broad-leaved trees Ci Sangkuy watershed 

 

n/a 4.79 

M Camellia sinensis Ci Sangkuy watershed 

 

n/a 5 

L Mixed plants  All sites 

 

n/a 6.2 

N Grass All sites n/a 2.09 

  

Pine trees (Pinus merkusii) in the Perhutani forest in the northern part of Ci Kapundung upper 

water catchment area were planted in 1951-2008. Thus the trees have a different range of DBH, 

biomass, and LAI value. Due to the technical difficulty to access all parts of the forest, only 

sixteen samples were taken from four age groups (i.e. conifers which were planted in 1966, 

1967, 1971, and 2001). Therefore, the LAI for pine trees from other age groups in the Perhutani 

forest was estimated from a linear regression. Figure 4-36 shows the relationship between 

estimated the LAI and the age of Pine trees in the Perhutani forest in the Ci Kapundung 

watershed. The straight line indicates the regression equation of Y = 2.5 + 0.26*X, where Y is 

the LAI and X is the age of trees.  

The DBH of eleven tree samples of Eucalyptus in the Perhutani forest (site 5) was measured to 

estimate the LAI. Twenty samples of Pine trees and broad-leaved trees were assigned in the Ir. 

H. Djuanda protected area, whereas twenty-three samples were taken in the North Bandung City 

outside the protected area.  
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Figure 4-36 Linear regression of LAI and age of Pine trees in the Perhutani forest in the Ci Kapundung 

watershed 

The DBH data of eight samples of Pine trees and eleven samples of Eucalyptus and other broad-

leaved trees were collected in the Perhutani forest (site 6, 7, and 8) in the Ci Sangkuy upper 

water catchment area. Due to the difficulty to access the site, samples taken could not represent 

plants in all age groups. After the LAI of all plants had been estimated, the mean value of LAI 

was calculated.  

 

 (3) Soil parameters 

The soil map was retrieved from the Soil and Agroclimate Research Centre (1993). The research 

centre divided the area of Bandung Basin and the northwest side of the basin into 78 zones 

based on the landform and characteristics of soil in each zone. The soil taxonomy and the 

content of sand, silt, and clay were identified according to the Soil Taxonomy (Soil Survey Staff, 

1999). The soil maps for the two watersheds are shown in Figure 4-37 (a-b). Since Bandung city 

was not part of the research area conducted by the research centre, the area is not included on 

the map (Figure 4-37a). Therefore, a geological map of Bandung Basin with a scale of 1:100.000 

from the Directorate of Environmental Geology (1993) was referred to derive the soil data for 

Bandung City. 

The soil types of the two watersheds are presented in Table 4-7 and Table 4-8. In this study, the 

soil compositions for dominant soil type in each zone (marked with the letter D) are derived from 

Soil and Agroclimate Research Centre 1993), and various studies in Bandung Basin (Adrionita, 

2011), Bandung city (Rahmaniar & Kamil, 2015), and North Bandung (e.g. Djaenudin 2004; 

Ichwan 2009).  
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(a) (b) 

Figure 4-37 The soil map of (a) Ci Kapundung and (b) Ci Sangkuy upper water catchment areas overlaid 

with the boundary of case study areas (Source of soil map: Soil and Agroclimate Research Centre 1993) 

Table 4-7 The composition of each soil type in the Ci Kapundung upper water catchment area (Sources: 

Soil and Agroclimate Research Centre 1993; Djaenudin 2004; Ichwan 2009; Adrionita 2011; 

Rahmaniar & Kamil 2015) 

Zone Soil sub-groups Sand Silt Clay References 

6 Aquic Eutropepts (D) 22.25% 31.50% 46.25% (Adrionita, 2011) 

 Aeric Tropaquepts 

    

 

20 Typic Humitropepts 78.25% 

 

5.50% 

 

16.25% 

 

(Soil and Agroclimate Research Centre 

1993) 

23 Thapic Hapludands (D) 65.86% 23.57% 10.57% (Soil and Agroclimate Research Centre  

 Typic Melanudands 

    

1993) 

25 Eutric Hapludands  

 

22.50% 68.50% 9.00% (Ichwan, 2009) 

31 Typic Hapludands (D) 32.00% 48.14% 19.86% (Djaenudin, 2004) 

 Eutric Hapludands 

    

 

41 Cumulic Haplodolls (D) 19.10% 28.62% 52.28% (Adrionita, 2011) 

 Andic Eutropepts 

    

 

56 Typic Hapludalfs 

 

14.00% 28.30% 57.70% (Adrionita, 2011) 

0 Soil from Cikidang f. 14.00% 67.00% 19.00% (Rahmaniar & Kamil, 2015) 
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Table 4-8 The composition of each soil type in the Ci Sangkuy upper water catchment area (Sources: 

Soil and Agroclimate Research Centre 1993; Singh & Kundu 2010; Adrionita 2011) 

Zone Soil sub-groups Sand Silt Clay References 

5 Typic Tropaquepts (D) 8.03% 43.20% 48.77% (Singh & Kundu, 2010) 

 Vertic Tropaquepts     

 Vertic Eutropepts 

    

 

8 Typic Eutropepts (D) 19.50% 31.00% 49.50% (Adrionita, 2011) 

 Typic Tropaquepts     

 Fluventic Dystropepts 

    

 

19 Typic Humitropepts (D)  15.57% 31.34% 53.00% (Soil & Agroclimate Research Centre,  

 Aquic Eutropepts    1993) 

 Typic Eutropepts 

    

 

21 Typic Humitropepts (D) 39.93% 33.67% 27.00% (Soil & Agroclimate Research Centre,  

 Typic Eutropepts 

    

1993) 

22 Oxic Humitropepts (D) 19.00% 24.60% 56.40%  (Soil & Agroclimate Research Centre,  

 Typic Eutropepts 

    

1993) 

24 Thapic Hapludands (D) 28.55% 37.30% 34.15% (Soil & Agroclimate Research Centre,  

 Eutric Hapludands 

    

1993) 

27 Eutric Hapludands (D) 10.80% 29.60% 59.60% (Soil & Agroclimate Research Centre,  

 Typic Kandiudalfs 

    

1993) 

28 Eutric Hapludands 10.80% 29.60% 59.60% (Soil & Agroclimate Research Centre, 

     1993) 

30 Eutric Hapludands 10.80% 29.60% 59.60% (Soil & Agroclimate Research Centre, 

1993) 

33 Typic Hapludands (D) 37.71% 39.00% 23.29% (Soil & Agroclimate Research Centre,  

 Eutric Hapludands 

    

1993) 

36 Typic Melanudands (D) 89.00% 9.00% 2.00% (Adrionita, 2011) 

 Eutric Hapludands 

    

 

37 Typic Melanudands (D) 89.00% 9.00% 2.00% (Adrionita, 2011) 

 Eutric Hapludands 

    

 

43 Typic Hapludolls (D) 25.25% 25.25% 49.50% (Adrionita, 2011) 

 Typic Eutropepts 

    

 

44 Typic Hapludolls (D) 14.42% 28.21% 57.38% (Soil & Agroclimate Research Centre,  

 Andic Hapldolls    1993) 

 Oxic Dystropepts 

    

 

58 Typic Hapludalfs (D) 7.80% 21.80% 70.40% (Soil & Agroclimate Research Centre, 

 Typic Eutropepts    1993) 

 

The soil properties for the MIKE SHE model are described as follows (Danish Hydraulic Institute, 

2017a). Soil water content at saturation is the maximum volume of water in the soil. Water 

content at field capacity can be reached during a dry period. Water content at the wilting point 
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is the minimum volume of water that plants can extract from the soil. Saturated hydraulic 

conductivity refers to the soil infiltration rate.  

In this study, the soil parameters were estimated based on the soil composition data using 

Hydrus-1D software. Hydrus-1D was used in many soil and hydrology studies to derive soil 

moisture and to model water flow and solute transport in the soil and groundwater (Tárník & 

Igaz, 2017). 

 

4.4.3 Initial parameters of the MIKE SHE models  

Parameterisation of the hydrologic model was conducted at the beginning of the modelling 

process to determine preliminary values for each input data. The initial parameterisation for 

hydrologic modelling is presented as follows. 

(1) Model grid size and simulation specification 

An initial simulation for the first case study area (MIKE SHE 1) was performed based on the data 

from 1 January 2013 00:00:00 to 1 January 2016 00:00:00 (1095 days) (Figure 4-34). This 

simulation provides an indication of how the model works and an examination of potential errors 

in the simulation. The errors might be caused by inputting different data types and units in the 

file properties or defining wrong computational control parameters.  

Model grid size in MIKE SHE 1 is 6 metres, following the resolution of land cover maps used in 

the model. The run times required by the model is more than 8 hours (with an Intel Core i5-

4210U 1.70GHz 2.40GHz processor). Therefore, the modelling was conducted only to assess 

the depth of overland flow at the day with the highest daily precipitation rate in 2013-2015. A 

seven-day long simulation was performed instead of conducting the initial three-year-long 

modelling. Three observation points were assigned in the model. The three points are located in 

the area with different land cover, soil types, and slope gradients (Rani, Lange, Cameron, et al., 

2019).  

MIKE SHE 2 modelling was run for the calibration from 1 January 2008 00:00:00 to 1 January 

2012 00:00:00 and the validation from 1 January 2012 00:00:00 to 1 January 2016 00:00:00. 

The base maps were changed into the projected 2030 land cover maps generated from the last 

iteration of land change modelling of the case study areas (LCM 2). Model grid size for MIKE 

SHE 2 and 3 is 120m to decrease the computational time.  

Time steps and the computational control parameters of overland flow (OL) and unsaturated 

flow (UZ) were defined at the beginning of the simulation. The time step for MIKE SHE modelling 

is 24 hours. The maximum allowed OL and UZ time steps are 24 hours for both layers. Overland 

flow (OL) is solved using Successive Overrelaxation (SOR) because the method is faster than the 
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other method (i.e. Explicit Numerical Solution), which requires smaller time steps (Danish 

Hydraulic Institute, 2017b).   

The overland and saturated flow were computed using the Finite Difference method. The 2-Layer 

water balance was first selected as the method to simulate the unsaturated flow in MIKE SHE 1 

and at the beginning of MIKE SHE 2. Examination of the MIKE SHE results suggested that 

Richards equation performed better than the 2-Layer water balance method. Thus, the method 

was used to compute the unsaturated flow in the final hydrologic simulations.   

 

(2) Topography 

The Digital Elevation Model (DEM) with a resolution of 6 metres was used in the MIKE SHE 

model. There are 2,876,014 and 5,691,053 points derived from the DEM of Ci Kapundung and 

Ci Sangkuy watersheds respectively and interpolated in the MIKE SHE to create the ground 

surface of the case study areas (Figure 4-38). The grid size for each map in the model, then, was 

adjusted to define the model resolution. 

 
 

(a) (b) 

Figure 4-38 (a-b) The topography of Ci Kapundung and Ci Sangkuy watersheds  

 

(3) Precipitation 

MIKE SHE model requires the climatic data either is recorded as the precipitation data 

[mm/hour] (i.e. accumulated rainfall water divided by length of the observation period), or the 

rainfall data [mm] (i.e. accumulated rainfall water). Thiessen polygons were created to map the 

spatial distribution of rainfall data in the two case study areas based on the location of weather 

stations in and around the areas (Figure 4-39 a and b).  
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(a) (b) 

Figure 4-39 (a-b) The spatial distribution of rainfall in the Ci Kapundung and the Ci Sangkuy watersheds 

(the dots representing the location of rain gauges in each case study area) 

 

(4) Reference evapotranspiration 

In MIKE SHE, the reference evapotranspiration (𝐸𝑇0) is multiplied by crop coefficient to retrieve 

the crop reference evapotranspiration (Danish Hydraulic Institute, 2017a). Logarithmic and 

inverse regression analyses were performed to identify the trend of 𝐸𝑇0 in the two upper 

catchment areas.  

The computed regression equation for the first case study area is Y = 6.568 - 0.694*ln(X) with 

R square of 0.155. Whereas the regression equation for estimating 𝐸𝑇0 for the second case 

study area is Y = 5.581 + (0.535/X) with R square of 0.116. X is discharges/ Q (mm/day) and Y 

is estimated 𝐸𝑇0 (mm/day) (Figure 4-40 and  Figure 4-42). The estimated 𝐸𝑇0 in the Ci 

Kapundung and Ci Sangkuy upper water catchment areas (1/1/2008 – 31/12/2015) are 

presented in Figure 4-41 and Figure 4-43, respectively. Grey lines represent the calculated ETo 

based on the Penman-Monteith equation, whereas the black lines represent the estimated ETo 

from the missing temperature data.  
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Figure 4-40 Logarithmic regression of 𝐸𝑇0(mm/day) and Q mm/day) for the Ci Kapundung upper water 

catchment area 

 
Figure 4-41 Estimated reference evapotranspiration in the Ci Kapundung upper water catchment area 

(1/1/2008 - 31/12/2015)  

 

 

 Figure 4-42 Inverse regression of 𝐸𝑇0(mm/day) and Q mm/day) for the Ci Sangkuy upper water 

catchment area  
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Figure 4-43 Estimated reference evapotranspiration in the Ci Sangkuy upper water catchment area 

(1/1/2008 - 31/12/2015)  

 

(5) Leaf Area Index (LAI) 

Table 4-9 presents the estimated LAI for all land cover types in the Ci Kapundung and Ci Sangkuy 

watersheds. There are eleven groups of land cover in the first case study area, five groups in the 

second case study area, and four groups in both case study areas. LAI values were assigned in 

the 2015 and 2030 land cover maps. The distribution of the new land cover classes with a 

similar range of LAI in both case study areas in 2015 can be seen in Figure 4-44 and Figure 

4-45.  

Table 4-9 The list of estimated LAI values for reclassified land cover types 

Location Vegetation Group Age Mean value of LAI 

Perhutani forest 

and Ir.H.Djuanda 

protected area in 

the Ci Kapundung 

watershed 

 

Conifer (Pinus merkusii) 1 <16 years 5.83 

 2 17-26 years 8.09 

 3 27-36 years 10.88 

 4 >37 years 

 

14.98 

Outside Perhutani 

forest and 

Ir.H.Djuanda 

protected area 

 

Conifer (Pinus merkusii) 5 n/a 6.23 

Perhutani forest in 

the Ci Kapundung 

watershed 

Broad-leaved trees (e.g. 

Eucalyptus sp., Schima 

wallichii) 

 

6 n/a 7.63 

Ir.H.Djuanda 

protected area 

Broad-leaved trees (e.g. 

Mahagony, Artocarpus 

7 n/a 3.7 
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Location Vegetation Group Age Mean value of LAI 

and north 

Bandung City 

elasticus, Pterygota 

horsfieldii) 

 

Perhutani forest in 

the Ci Sangkuy 

watershed 

 

Conifer (Pinus merkusii) 8 n/a 10.89 

Outside forest in 

the Ci Sangkuy 

watershed 

 

Conifer (Pinus merkusii) 

 

9 n/a 8.76 

Perhutani forest in 

Ci Sangkuy 

watershed 

 

Broad-leaved trees  

 

10 n/a 8.45 

Outside forest in 

Ci Sangkuy 

watershed 

 

Broad-leaved trees  

 

11 n/a 4.79 

Tea plantation Camellia sinensis 12 n/a 5 

     

All watersheds Mixed trees 13 n/a 6.2 

 Bare land and cultivated 

land 

14 n/a 2.09 

 Developed areas 15 n/a 0 

 Water bodies 16 n/a 0 

 

Figure 4-44 The distribution of new land cover classes with a similar range of LAI in the Ci Kapundung 

watershed in 2015 
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Figure 4-45 The distribution of new land cover classes with a similar range of LAI in the Ci Sangkuy 

watershed in 2015 

 

(6) Crop coefficient (Kc) and root depth 

Crop coefficient (Kc) is used in MIKE SHE to adjust the reference evapotranspiration (ETo) for 

different types of vegetation. The data of Kc values of various vegetation during the three growth 

stages and water bodies was retrieved from literature (Allen et al., 1998). For agricultural plants, 

the values of Kc vary in the initial, mid-season, and late-season stages. At the beginning of MIKE 

SHE 2, it was assumed that the Kc for bareland and cultivated plants is equal to grass. After 

evaluating the results from the iterative simulations, Kc values which vary in during the growing 

season were assigned in the final MIKE SHE 2 model. The Kc value of 0 is assigned for 

developed areas, assuming there is no vegetation, or only small parts of the pixel of 6 metres 

showing developed areas in the SPOT 6 satellite images, is covered by vegetation. 

The root depth of different vegetation in the case study areas was determined based on the data 

of potential soil depth of agricultural areas to plant crops and trees, such as rice paddy, tea, 

conifers, and fruit trees (Djaenudin, et al., 2011). The parameters of crop coefficient and root 

depth assigned in the MIKE SHE models are presented in Table 4-10.   
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Table 4-10 Crop coefficient (Kc) and root depth of all land cover types in the two case study areas 

Land cover Kc Root depth (mm) 

Developed areas 0 0 

Bare land and cultivated land  0.90 800 

Tea plantations 1.00 100 

Conifers in all age groups  1.00 1000-1200 

Broad-leaved vegetation 0.90 1000-1200 

Mixed vegetation 1.00 1000-1200 

Water bodies 0 0 

 

(7) Overland flow 

In this research, the finite difference method is chosen in the MIKE SHE model to simulate the 

overland flow because it is the most common method used in the modelling (Danish Hydraulic 

Institute, 2017b). Manning’s M number of each land cover type is required (Table 4-11) to 

estimate the overland flow. The numbers are equivalent to the Stickler roughness coefficient 

ranging between 10 (for thickly vegetated channels) and 100 (smooth channels). Manning’s M 

value of 18 is assigned for tea plantations, assuming that the land cover map has similar 

characteristic of surface roughness as agriculture. A uniform value of 0 metres is assigned as 

the initial water depth (the depth of water on the ground at the beginning of simulation).   

Table 4-11 Manning’s N and M values of land cover used in the MIKE SHE model 

Land cover  N M References 

Developed areas 0.011 90 (Engman 1986 cited in Rossman & Huber 2016) 

Bare land and cultivated land 0.055 18 (Yen 2001 cited in Rossman & Huber 2016) 

Tea plantations  18  

Mixed vegetation 0.40 2.5 (Kalyanapu, Burian, & McPherson, 2009) 

Conifers 0.1 10 (Kouwen & Fathi-Moghadam, 2000)  

Broad-leaved vegetation 0.32 3 (Yen, 2001 cited in Rossman & Huber 2016) 

Water Bodies  99  

 

(8) Unsaturated zone 

The 2-Layer water balance method was selected to calculate the water flow in the unsaturated 

zone in MIKE SHE 1 and at the beginning of MIKE SHE 2 simulations. Then, the Richards 

equation was used in the final MIKE SHE modelling. The soil types and distributions in each case 

study area were identified from the soil map retrieved from the Indonesian Soil and Agriclimate 

Research Centre (soil map in Chapter 3). The soil parameters required in the unsaturated flow 

simulation were estimated based on the compositions of clay, silt, and sand of each soil type.  

Due to a large number of soil categories in the case study areas, the soil was reclassified based 

on the content of sand-silt-clay, because soil with relatively the same composition has the same 

soil properties. The soil compositions of the new soil categories were calculated from the mean 

values of sand-silt-clay composition of each soil category. Table 4-12 and Table 4-13 show the 
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soil reclassification in the Ci Kapundung and Ci Sangkuy upper water catchment areas, 

respectively. The distribution of reclassified soil types in both watersheds can be seen in Figure 

4-46.   

Table 4-12 Soil reclassification in the Ci Kapundung upper water catchment area 

No Dominant soil sub-groups New soil category Sand Silt Clay 

A1 Aquic Eutropepts  Soil A 18.53% 29.47% 52.07% 

A2 Cumulic Haplodolls      

A3 Typic Hapludalfs     

      

B1 Eutric Hapludands  Soil B 18.25% 67.75% 14.00% 

B2 Soil from Cikidang f.     

      

C1 Typic Humitropepts Soil C 72.05% 14.53% 13.41% 

C2 Thapic Hapludands      

      

D Typic Hapludands  Soil D 32.00% 48.14% 19.86% 

 

Table 4-13 Soil reclassification in the Ci Sangkuy upper water catchment area 

No Dominant soil sub-groups New soil category Sand Silt Clay 

E1 Typic Eutropepts  Soil E 13.59% 28.23% 58.18% 

E2 Typic Humitropepts     

E3 Oxic Humitropepts     

E4 Eutric Hapludands     

E5 Eutric Hapludands     

E6 Eutric Hapludands     

E7 Typic Hapludolls     

E8 Typic Hapludalfs     

      

F1 Typic Hapludolls Soil F 25.25% 25.25% 49.50% 

      

G1 Typic Melanudands Soil G 62.01% 20.40% 17.59% 

G2 Typic Melanudands     

G3 Typic Tropaquepts     

      

H1 Typic Humitropepts Soil H 35.20% 36.66% 28.15% 

H2 Thapic Hapludands     

H3 Typic Hapludands     
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(a) (b) 

Figure 4-46 New soil maps of the Ci Kapundung and Ci Sangkuy upper water catchment areas 

Eight soil categories identified in the Ci Kapundung upper water catchment area were 

reclassified into four new soil categories (Table 4-14). In the first case study, four soil categories 

with the dominant soil sub-groups of Aquic Eutropepts, Cumulic Haplodolls, and Typic Hapludalfs 

are classified as one group (Soil A) because they have a relatively high percentage of clay 

(52.07%), compared with other soil categories. Eutric Hapludands and soil from Cikidang 

formation are grouped as soil category B because they are mainly composed of silt (67.75%). 

The other soil categories, Typic Humitropepts and Thapic Hapludands have a high composition 

of sand (72.05%) (Soil C). The last soil type (Soil D), Typic Hapludands has relatively balance 

compositions of sand and silt. Thus it is not regrouped with the other soil types.  

Table 4-14 Soil parameters for the Ci Kapundung hydrology model 
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Soil A 0.0965 0.4835 0.0173 1.2663 17.61 2.038194e-6 0.403626 0.183273 

Soil B 0.0613 0.4390 0.0045 1.6918 23.24 2.689815e-6 0.405052 0.0810226 

Soil C 0.0496 0.3805 0.0332 1.4226 40.41 4.677083e-6 0.239252 0.0730275 

Soil D 0.0645 0.4146 0.0064 1.5748 16.07 1.859954e-6 0.366793 0.0890997 
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In the Ci Sangkuy upper water catchment area, there are thirteen different soil categories, which 

can be reclassified into four soil categories (Table 4-15). Soil E is the new soil type, which is 

formed from six different soil categories in the area with high percentages of clay (58.18%). 

Eutric Hapludands is mentioned twice in the table because it is the dominant soil sub-group in 

the soil category number 27, while it is the only content in the soil category number 28. Soil F 

consists of only one soil category which has the same percentage of sand and silt. Soil G, which 

was formed by three soil categories, has a high composition of sand (62.01%). The last soil 

category (Soil H) is composed of three soil categories, in which the compositions of sand, silt, 

and clay are relatively similar.   

Table 4-15 Soil parameters for the Ci Sangkuy hydrology model 
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Soil E 0.0997 0.4977 0.0182 1.2403 23.09 2.672454e-6 0.419324 0.201712 

Soil F 0.093 0.4668 0.0189 1.2578 14.26 1.650463e-6 0.387004 0.178929 

Soil G 0.0554 0.3855 0.0272 1.3669 23.13 2.677083e-6 0.270557 0.0910445 

Soil H 0.0758 0.4259 0.0115 1.4409 7.430 8.59954e-7 0.349974 0.111068 

 

The residual moisture content (Qr), saturated moisture content (Qs), alpha, n, and the hydraulic 

conductivity (Ks)28 were estimated based on the soil composition, using Hydrus 1D. The 

estimated values were submitted to the MIKE Zero UZ soil properties model to retrieve the other 

required soil parameters for the MIKE SHE model (e.g. water content at field capacity and water 

content at the wilting point29). The uniform soil depth of 150 m was assigned in the model for 

computing the unsaturated flow using Richards equation. 

 

(9) Saturated zone 

The 3D finite difference method was used to model the water movement in the saturated zone 

in the two case study areas. The required datasets required in the 3D finite difference method 

include the hydrogeologic parameters of the lower level, horizontal and vertical hydraulic 

conductivity, specific yield, and specific storage. In general, there are three geological layers in 

                                                      
28 Residual moisture content (Qr), saturated moisture content (Qs), and hydraulic conductivity (Ks) are defined as 

follows (Danish Hydraulic Institute, 2017a). Qr is the minimum amount of water in the soil at high absorption 

conditions. Qs is the maximum amount of water in the soil. Ks is maximum soil infiltration rate.  
29 Water content at field capacity is measured in a soil that is completely drained. Water content at wilting point can 

is the amount of water when plants cannot absorb the water and starting to wilt.  
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the two case study areas identified from the study conducted by Nurliana & Widodo (2009) (refer 

to Figure 3-11). The three layers are Cibeureum formation (Aquifer), Cikapundung formation, 

and Cilanang Formation. Only the first two layers that were included in the MIKE SHE modelling, 

due to the incomplete geological dataset for the Cilanang Formation. The initial parameters 

assigned in the model is presented in Table 4-16.  

Table 4-16 Geological layer parameters for the Ci Kapundung hydrology model 

Parameters Geological layers References 

 Cibeureum formation CiKapundung formation  

Lower level 100 m 400 m (Nurliana & Widodo, 

2009) 

Horizontal hydraulic 

conductivity 

1e-6 m/s 4e-6 m/s (Darul et al., 2016; 

Maria, 2008) 

Vertical hydraulic 

conductivity 

 

1e-6 m/s 4e-6 m/s 

Specific yield 

 

0.02 0.21 (Maria, 2008; Morris & 

Johnson, 1967) 

Specific storage 0.02 0.21  

 

Table 4-17 Geological layer parameters for the Ci Sangkuy hydrology model 

Parameters Geological layers References 

 Cibeureum formation CiKapundung formation  

Lower level 150 m 450 m (Nurliana & Widodo, 

2009) 

Horizontal hydraulic 

conductivity 

1e-6 m/s 4e-6 m/s (Darul et al., 2016; 

Maria, 2008) 

Vertical hydraulic 

conductivity 

 

1e-6 m/s 4e-6 m/s 

Specific yield 

 

0.02 0.21 (Maria, 2008; Morris & 

Johnson, 1967) 

Specific storage 0.02 0.21 (Maria, 2008; Morris & 

Johnson, 1967) 

 

4.4.4 Calibration and validation procedures 

Three calibration procedures in hydrological modelling are trial-and-error with manual parameter 

adjustment, automatic with numerical parameter optimisation, and a combination of trial-and-

error and automatic methods. The first method is widely applied in hydrologic modelling, and it 

is beneficial for complicated models. The second method requires a numerical algorithm to 

assess the maximum and minimum variables of a particular parameter. The third method 

employs the trial-and-error method to find a range of initial parameter values, which are then, 

adjusted using automatic optimisation (Refsgaard & Storm, 1996). 

The trial-and-error method was used to calibrate the hydrologic models in this research. Initial 

parameters were applied in the uncalibrated model. Then, alterations on the parameters were 
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done during the calibration process. In a validation process, the calibrated model was tested 

using a different set of data used in the calibration stage.  

The calibration process was performed using the observed and predicted river discharges 

(m3/s). The P Flux and Q Flux values (i.e. fluxes at the x- and y-directions) at the area where the 

water gauges are located on both sites were simulated. Discharges at four cells were calculated 

following the method described in the MIKE SHE model manual (Figure 4-47). The discharge 

from one cell can be calculated as the sum of discharges across the four boundaries of the cell 

(∑𝑄 = 𝑄𝑁 +𝑄𝑆 + 𝑄𝐸 + 𝑄𝑊) (Danish Hydraulic Institute, 2017b).  

 

 

 

 

 

 

 

 

Legend  

Δy and Δx : cell size 

QN             : discharge across the northern boundary 

QW             : discharge across the western boundary 

QE             : discharge across the eastern boundary 

QS             : discharge across the southern boundary 

Figure 4-47 A grid system used in MIKE SHE model (Source: Danish Hydraulic Institute, 2017b) 

 

MIKE software provides the calculation to assess the model performance. The analyses include 

Mean Error (ME), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Index of 

Agreement. The final simulations to assess the impact of land cover alteration to flood regulation 

in each watershed were conducted using the calibrated model.  More than 20 simulations have 

been conducted to calibrate each MIKE SHE model. The calibrated parameters for Ci Kapundung 

and Ci Sangkuy models are presented in Appendix A. 

 

4.4.5 Landscape structure scenarios to support flood regulation   

Iterative hydrologic simulations were conducted to assess landscape structure scenarios that 

can support the flood regulation in each case study area (the second research question). MIKE 

SHE 1 and 2 were performed with specific constraints to assess the research question, and are 

described as follows.  

(1) MIKE SHE 1 modelling  

MIKE SHE 1 was conducted on the first case study area using the 2015 and the 2030 land cover 

maps (the Status Quo and Ecological design-based scenarios in LCM 1) to assess the depth of 

overland flow. It should be noted that there is no actual depth of overland flow recorded at the 
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site. Thus, no calibration and validation process has been done in the first iteration of hydrologic 

simulations. The results, therefore, were interpreted only based on the available data or 

parameters assigned.  

 

(2) MIKE SHE 2 modelling and the initial phase of Pareto-frontier analysis 

Q Flux and P Flux were simulated in MIKE SHE 2 modelling to estimate the river discharges in 

each case study area. The existing 2015 land cover maps generated from the last iteration of 

the land cover map development process and the three scenarios of 2030 land cover maps 

from LCM 2 were used in this process. In addition to the river discharge simulations, water 

balance analysis was also performed under all scenarios. One of the outputs from water balance 

simulations is the estimated overland outflow.  

The influence of precipitation rates and the three physical attributes of landscape (e.g. land 

cover, slopes and soil types) to flood regulation was further analysed. The assessment involved 

parameterisation in MIKE SHE 2 model and the water balance analysis. The output from this 

process was used as the criteria to develop the backcasting scenario in LCM 3. The method to 

conduct the analysis is presented in the next part of this subchapter (4.4.6). 

A Pareto-frontier concept was used to assess the capacity of all landscape structure scenarios 

for reducing runoff in the two case study areas (Figure 4-48). The criteria of two impact indicators 

were determined at the beginning of the initial Pareto-frontier analysis. The first indicator is the 

overland (OL) outflow estimated from the water balance analysis (y-axis). Lower overland outflow 

surface storage means that the site has a lower volume of runoff flowing outside the catchment. 

The second indicator is the composition of an area that falls within a specific category30, which 

arguably can reduce overland outflow effectively (x-axis).  

 
Figure 4-48 The implementation of Pareto-frontier analysis in the study 

                                                      
30 This category was determined based on the results from the vegetation and soil analysis on the two case study 

areas (refer to 4.4.6 for the detailed methods to conduct the analysis and 6.3 for the results from the analysis).   
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Two more scenarios with extreme land cover conditions were used as benchmarks for the 

Pareto-frontier assessment. All parts of case study areas are covered by bare land and cultivated 

land in Scenario A, and conifers in Scenario B, except for the water bodies (Figure 4-49 and 

Figure 4-50). Other model parameters, such as precipitation, evapotranspiration, and soil types, 

were not altered during this process.  

Bare land-cultivated land (A) Conifers (B) 

  
  

Figure 4-49 Distribution of land cover classes in the Ci Kapundung upper water catchment area 

Bare land-cultivated land (A) Conifers (B) 

  
  

Figure 4-50 Distribution of land cover classes in the Ci Sangkuy upper water catchment area 

 

Water balance analysis for the two case study areas was performed under Scenario A and B. 

The values of OL outflow estimated from the water balance analysis were mapped in a graph to 

assess the capacity of each scenario to support flood regulation in the catchments. It should be 

noted that the Pareto-frontier assessment in this study was only limited to comparing the results 

from MIKE SHE 2, and to ascertain how close or far the modelling outputs are from the desired 

outcome. In this case, the desired outcome is to retrieve a possible option for landscape 

planning that can support flood regulation. In this study, there is no assessment using 

optimization algorithms or models which are often used by studies related to Pareto optimality 

(e.g. Seppelt, Lautenbach and Volk, 2013; Xia et al., 2014). 
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(3) MIKE SHE 3 modelling  

The outcomes from MIKE SHE 2 modelling (e.g. simulated river discharges and water balance) 

were used to develop the Backcasting scenario of the two case study areas in the third land 

change simulations (LCM 3). In MIKE SHE 3, Q Flux and P Flux were also simulated to calculate 

the river discharges. Water balance analysis was performed based on the backcasting scenarios 

of the two watersheds to evaluate the proposed landscape planning.  

 

4.4.6 The capacity of vegetation to reducing surface runoff 

The capacity of different vegetation types to reducing surface runoff in the case study areas was 

tested to address the third research question.  

(1) MIKE SHE 1 modelling 

In MIKE SHE 1, the depth of overland flow at three sample points in the first case study area 

was simulated using the 2030 land cover map developed from the ecological design-based 

scenario generated in LCM 1. The three points are located in the area with the same 

precipitation trend but in the different type of soil and land cover. The types of vegetation in the 

2030 land cover maps used in the modelling were altered. Thus, each land cover map only has 

a single vegetation type. The compositions and distributions of other land cover classes 

remained the same.  

 

(2) MIKE SHE 2 modelling  

Two assessments were conducted to test the vegetation capacity to reduce runoff on slopes 

with different gradients in high and low precipitation rates. The output was used to generate 

guidelines to develop the backcasting scenario (e.g. where to plant specific types of vegetation 

on the two sites). In the first assessment, there are sixteen scenarios with the combinations of 

four land cover (e.g. broad-leaved vegetation, conifers, mixed vegetation, and cultivated land) 

and four soil types in the first case study area (Figure 4-51). One soil type and one land cover 

type were assigned in each scenario. The modelling was conducted based on existing 

precipitation rates from five weather stations (2008-2015), the initial ETo and the initial soil 

parameters. The 2-Layer water balance was used as the selected method to compute the 

unsaturated flow. A water balance analysis was performed to estimate the accumulated 

overland boundary outflow from each scenario. 
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Figure 4-51 Sixteen combinations of soil and land cover types the first case study area  

Based on the outcomes from the first assessment, the second analysis was performed by adding 

two more variables (e.g. precipitation and slope gradients) into the process (Figure 4-52). There 

are two categories of precipitation rates tested in this analysis; low precipitation (5 mm/day) 

and high precipitation (100 mm/day). New topography maps showing two slope gradient classes 

were added; flat-moderate slopes (0-15%) and moderate to steep (>15%). These maps were 

generated by dividing the existing DEM of the area into the two gradient classes. Since the first 

case study area are dominated by areas with steep slopes (67.1%), only approximately half of 

the area was included in the process (0% slope gradient was assigned in the other parts of the 

area). Thus, the two new topography maps cover almost 33% area with two slope conditions and 

around 67% of the flat area. The second analysis used the Richards equation method and the 

calibrated parameters (Appendix A).  

 

Figure 4-52 Sixty-four combinations of precipitation, slope, soil and land cover classes in the first case 

study area 

It is assumed that the results from this analysis can also be used to evaluate the MIKE SHE 

results from the second case study area since there are no actual parameters assigned in the 

model except for the soil. Soil A in the first catchment has a high composition of clay, which is 

similar to Soil E and F in the second catchment. Soil C and F are sandy loam, whereas Soil D 

and H are loam (refer to Table 4-12 and Table 4-13). 
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4.5 Decision tree diagrams and boundaries of research 

In this research, series of the decision to choose particular methods in each research phase (i.e. 

development of land cover maps, land change simulations, and hydrological simulations) were 

made to answer the three research questions. Figure 4-53 - Figure 4-56 show the decision tree 

diagrams of the study used in the final iteration of analysis. The selected methods can be seen 

in the grey boxes.    

 

Figure 4-53 Decision tree diagram for the first phase of research 
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Figure 4-54 Decision tree diagram for the second phase of research to answer research question 2 

 

Figure 4-55 Decision tree diagram for the third phase of research to answer research question 2 
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Figure 4-56 Decision tree diagram for the third phase of research to answer research question 3 

 

4.6 Summary of Chapter 4 

(1) The final land cover maps for the two case study areas in 2000, 2015, and 2017 were 

generated from Landsat 7 and SPOT 6 satellite imagery, after 6S and SCS+C as 

correction methods had been applied, and the backdating and updating method (Linke 

et al., 2009) had been implemented. The development of land cover maps was 

conducted using the object-based image classification.  

(2) Moving average analysis was used to assess the impact on land cover change in the two 

sites (2000-2017) to flood regulation.  

(3) The CA-Markov-MLP model was coupled with MIKE SHE model to simulate the river 

discharges and water balance based on three future development scenarios. The 

application of CA-Markov to model forest cover is understudied (Ghosh et al., 2017). The 

capacity of vegetation to reducing runoff was analysed using the 64 hypothetical 

catchments.    
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 Results 

This chapter presents the outcomes from the development of land cover maps of the Ci 

Kapundung and Ci Sangkuy upper water catchment areas and the results from the land change 

and hydrologic modelling (scenario 1, 2, and 3). Results from the modelling are presented based 

on the way they were interpreted to answer the three research questions.    

 

5.1 Land cover maps of the case study areas 

The land cover maps of Ci Kapundung and Ci Sangkuy upper water catchment areas were 

developed using the object-based image classification. The classification accuracies were 

assessed, in which the results are shown in the confusion matrices. All developed land cover 

maps and the accuracies of image classification are presented in the following subchapters. 

5.1.1 Results from the image classification process of the first case study area 

The object-based image classification for the first case study area was conducted three times 

(Figure 4-1). In the first iteration, the uncorrected and corrected land cover maps were 

developed using the SPOT 6 imagery taken in 2015 (Rani et al., 2017). The generated land 

cover maps are presented in Figure 5-1. The overall accuracies for the uncorrected and 

corrected maps are 74.25% and 77% respectively. The detailed confusion matrices computed 

for assessing the accuracy are given in Appendix B. Based on the results from this process, the 

second iterative process of land cover map development was conducted using SAGA GIS.   

  
(a) (b) 

Legend: 

 

 

Figure 5-1 (a) The uncorrected map; (b) The corrected land cover map for the Ci Kapundung upper water 

catchment area in 2015 (Source: Rani et al., 2017) 

 



143 
 

In the second iteration, the 2013, 2015, and 2017 land cover maps were developed as 

individual maps. Although information for missing data due to the cloud coverages could be 

retrieved from other imagery or the auxiliary data, mixed pixels located near the clouds and/or 

cloud shadows were still misclassified (Figure 5-2a-c). Visible misclassified pixels can be clearly 

seen in the eastern part of the site in the 2013 land cover map (red box in Figure 5-2a). This 

part of the site was covered by a thin layer of cloud. The reflectance values were altered, thus 

the pixels were mostly classified as bare land.  

The accuracies of image classification were assessed after the pixels containing information on 

water bodies, road networks, and pixels that are covered by clouds and cloud shadows were 

excluded. The confusion matrices for the 2013, 2015, and 2017 land cover maps of the first 

case study area, which were developed in the first iteration of land cover classification, are 

presented in Table 5-1, Table 5-2, and Table 5-3. 

The overall accuracies for the 2013, 2015, and 2017 land cover maps are 78.64%, 87.40%, 

and 86.40% respectively. The land cover ‘developed areas’ has higher producer’s accuracies 

(92.31% - 97.22%) and bare land and cultivated land has higher user’s accuracies (96.75% - 

97.54%), compared with other land cover types in all maps. The three vegetation types have 

lower producer’s and user’s accuracies (51.85% - 86.59%), in comparison to developed areas 

and bare land and cultivated land (Table 5-1 - Table 5-3).    

 
(a) 
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(b) 

 
(c) 

Figure 5-2 (a-c) The results from the second iteration of image classification for the Ci Kapundung upper 

water catchment area in 2013, 2015, and 2017 respectively using SPOT imagery 
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Table 5-1 Confusion matrix for the 2013 land cover map of the Ci Kapundung watershed (second 

iteration) 

  Reference dataset 

Classified image Dev. 

Bare land 

cultivated 

land 

Mixed 

vegetation Conifers 

Broad-

leaved 

vegetation Total 

User 

Acc. (%) 

Developed areas 50 8 0 0 1 59 84.75 

Bare land & cultv. land 2 195 1 1 2 201 97.01 

Mixed vegetation 0 6 42 24 9 81 51.85 

Conifers 0 19 6 55 10 90 61.11 

Broad-leaved veg. 0 5 6 7 52 70 74.29 

Total 52 233 55 87 74 501 0.00 

Producer Accuracy (%) 96.15 83.69 76.36 63.22 70.27 0.00 78.64 

Overall Accuracy: 

78.64%        

Kappa statistic: 0.71         

 

Table 5-2 Confusion matrix for the 2015 land cover map of the Ci Kapundung watershed (second 

iteration) 

  Reference dataset 

Classified image Dev. 

Bare land 

cultivated 

land 

Mixed 

vegetation Conifers 

Broad-

leaved 

vegetation Total 

User 

Acc. (%) 

Developed areas 48 13 0 0 0 61 78.69 

Bare land & cultv. land 4 198 0 0 1 203 97.54 

Mixed vegetation 0 0 71 9 2 82 86.59 

Conifers 0 6 6 66 4 82 80.49 

Broad-leaved veg. 0 6 8 4 54 72 75.00 

Total 52 223 85 79 61 500 0.00 

Producer Accuracy (%) 92.31 88.79 83.53 83.54 88.52 0.00 87.40 

Overall Accuracy: 

87.4%        

Kappa statistic: 0.83         

 

Table 5-3 Confusion matrix for the 2017 land cover map of the Ci Kapundung watershed (second 

iteration) 

  Reference dataset 

Classified image Dev. 

Bare land 

cultivated 

land 

Mixed 

vegetation Conifers 

Broad-

leaved 

vegetation Total 

User 

Acc. (%) 

Developed areas 70 7 0 0 0 77 90.91 

Bare land & cultv. land 2 179 2 0 2 185 96.75 

Mixed vegetation 0 0 40 16 8 64 62.50 

Conifers 0 2 6 74 7 89 83.14 

Broad-leaved veg. 0 5 9 2 69 85 81.17 

Total 72 193 57 92 86 500 0.00 

Producer Accuracy (%) 97.22 92.74 70.17 80.43 80.23 0.00 86.40 

Overall Accuracy: 

86.4%        

Kappa statistic: 0.82         
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The 2013 and 2015 land cover maps generated from the second iteration of the map 

development process were used in the first land change modelling (LCM1). Based on the land 

change modelling outputs31, the third iteration of image classification was conducted. The 

updating and backdating method (Linke et al., 2009) was implemented to develop the 2000, 

2015 and 2017 land cover maps (Figure 5-3a-c).  

The accuracy assessment matrices for the land cover maps, which were developed in the second 

iterative image classification, are shown in Table 5-4 and Table 5-532. The results show that the 

overall accuracies for the 2015 and 2017 maps are 87.42%, and 81% respectively. Developed 

areas, bare land and cultivated land, and broad-leaved vegetation have the producer’s 

accuracies of more than 90% in the 2015 land cover map. Another essential point to make is 

the high user’s accuracy of bare land and cultivated land in the 2015 land cover map (98.39%). 

Conifers and mixed vegetation have lower producer’s accuracies in the 2017 land cover map, 

compared with the 2015 map. The ‘bare land and cultivated land’ class has the highest user’s 

accuracy among other land cover types (92.93%).    

 

 
(a) 

                                                      
31 Results from the first iteration of land change modelling (LCM1) are presented in the third part of Subchapter 5.3 
32 The number of sample is proportional to its relative area. Thus, the number for a particular class in two 2015 and 

2017 images, which were developed in the second and third iteration, can be different depending on the size of the 

land cover class in each image.  
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(b) 

 
(c) 

Figure 5-3 (a-c) The results from the third iteration of image classification for the Ci Kapundung upper 

water catchment area in c.2000, 2015 and 2017 respectively using SPOT and Landsat imagery 
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Table 5-4 Confusion matrix for the 2015 land cover map of the Ci Kapundung watershed (third iteration) 

  Reference dataset 

Classified image Dev. 

Bare land 

cultivated 

land 

Mixed 

vegetation Conifers 

Broad-

leaved 

vegetation Total 

User 

Acc. (%) 

Developed areas 55 16 0 0 0 71 77.46 

Bare land and cult land 3 183 0 0 0 186 98.39 

Mixed vegetation 0 0 67 7 1 75 89.33 

Conifers 1 0 14 62 6 83 74.70 

Broad-leaved vegetation 0 0 11 4 71 86 82.56 

Total 59 199 92 73 78 501 0.00 

Producer Accuracy (%) 93.22 91.96 72.83 84.93 91.03 0.00 87.42 

Overall Accuracy: 

87.42%        

Kappa statistic: 0.83                

 

Table 5-5 Confusion matrix for the 2017 land cover map of the Ci Kapundung watershed (third iteration) 

  Reference dataset 

Classified image Dev. 

Bare land 

cultivated 

land 

Mixed 

vegetation Conifers 

Broad-

leaved 

vegetation Total 

User 

Acc. (%) 

Developed areas 74 24 0 0 1 99 74.75 

Bare land and cult land 5 171 2 3 3 184 92.93 

Mixed vegetation 0 0 55 19 1 75 73.33 

Conifers 0 1 12 56 5 74 75.67 

Broad-leaved 

vegetation 0 0 9 10 49 68 72.06 

Total 79 196 78 88 59 500 0.00 

Producer Accuracy (%) 93.67 87.24 70.51 63.64 83.05 0 81.00 

Overall Accuracy: 

81.00%        

Kappa statistic: 0.7496                

 

5.1.2 Results from the image classification for the second case study area  

The first iteration of map development process for the second case study area was conducted 

to map the land cover in the southern part of the watershed. Similar methods conducted in the 

first iteration of Ci Kapundung watershed map development process had been performed before 

the object-based image classification was conducted. The uncorrected and corrected land cover 

map (2015) are presented in Figure 5-4. The overall accuracy for uncorrected and corrected 

images are 80.44% and 87.58% respectively. The confusion matrices to compute the accuracy 

are given in Appendix B.   
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(a) (b) 

Legend: 

 

 

Figure 5-4 The uncorrected map; (b) The corrected land cover map for the Ci Sangkuy upper water 

catchment area in 2015 (Source: Rani et al., 2017) 

 

The updating and backdating method (Linke et al., 2009) was also used in the second iterative 

process to develop land cover maps of the second case study area (Figure 5-5). The accuracies 

of land cover maps (2015 and 2017) for the second case study area are presented in Table 5-6 

and Table 5-7.  

 
(a) 
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(b) 

 
(c) 

Figure 5-5 (a-c) The results from the second iteration of image classification for the Ci Sangkuy upper 

water catchment area in c.2000, 2015 and 2017 respectively using SPOT and Landsat imagery 
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The overall accuracies for the 2015 and 2017 land cover maps of the Ci Sangkuy upper 

watershed are 74.80% and 75.40% respectively. ‘Plantations’ is the class which has the highest 

producer accuracy among all land cover classes according to the confusion matrices of all maps 

of the two case study areas. Bare land and cultivated land and mixed vegetation are two land 

cover types that have the highest user accuracies among all classes. Conifers class has the 

lowest user accuracy, which may be caused by the relatively similar range of reflectance values 

of other forest types (i.e. mixed and broad-leaved woodlands).  

Table 5-6 Confusion matrix for the 2015 land cover map of the Ci Sangkuy watershed 

   Reference dataset 

Classified image Dev. 

Bare- 

cultv 

land 

Planta 

tions 

Mixed 

veg. Conifers 

Broad-

leaved 

veg. Total 

User 

Acc. (%) 

Developed areas 24 21 0 0 0 0 45 0.5333 

Bare land & cultv. land 11 153 0 2 1 2 169 0.9053 

Plantations 0 15 48 1 1 1 66 0.7273 

Mixed vegetation 0 1 0 68 1 4 74 0.9189 

Conifers 0 0 0 24 10 1 35 0.2857 

Broad-leaved vegetation 0 3 0 32 5 71 111 0.6396 

Total 35 193 48 127 18 79 500 0 

Producer Accuracy (%) 0.6857 0.7927 1 0.5354 0.5556 0.8987 0 0.748 

Overall Accuracy: 

74.80%    

 

    

Kappa statistic: 0.675                 

 

Table 5-7 Confusion matrix for the 2017 land cover map of the Ci Sangkuy watershed 

   Reference dataset 

Classified image Dev. 

Bare- 

cultv 

land 

Planta 

tions 

Mixed 

veg. Conifers 

Broad-

leaved 

veg. Total 

User 

Acc. (%) 

Developed areas 35 46 0 1 0 0 82 0.4268 

Bare land & cultv. land 0 134 4 2 0 2 142 0.9437 

Plantations 0 16 56 1 0 1 74 0.7567 

Mixed vegetation 0 0 0 68 0 3 71 0.9577 

Conifers 0 0 0 20 10 1 31 0.3226 

Broad-leaved vegetation 0 1 0 21 4 74 100 0.7400 

Total 35 197 60 113 14 81 500 0 

Producer Accuracy (%) 1 0.6802 0.9333 0.6018 0.7143 0.9136 0 0.754 

Overall Accuracy: 

75.40%    

 

    

Kappa statistic: 0.689                 

 

5.2 The impact of land cover change in the two case study areas on flood 

regulation in Bandung Basin 

The alteration of land cover and flood regulation in the two case study areas have been 

examined to answer the first research question: “How does the land cover alteration in Ci 

Kapundung and Ci Sangkuy upper water catchment areas affect flood regulation in Bandung 
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Basin?”. This subchapter provides an insight into how the land cover has changed in the case 

study areas. The characteristics of floods and the effective rainfall to cause floods in the 

Bandung Basin are also presented to describe the existing condition of flood regulation in the 

region. Land cover alteration in each watershed has been assessed to determine whether the 

land change was the only influential factor to the occurrence of flood in the basin, or if there is 

another factor (e.g. rainfall trend).  

5.2.1 Land cover change assessments  

The land change of Ci Kapundung upper water catchment area from 2013-2015 was assessed 

in the first iteration of land change modelling (LCM 1). Based on the results, the second iteration 

of modelling for the two sites was conducted using the 2000 and 2015 land cover maps (LCM 

2).  

(1) Land cover change in the Ci Kapundung upper water catchment area 

The result from LCM 1 for the first case study area (2013-2015) is presented in Figure 5-6. It 

can be seen that the land cover that changed the most is bare land and cultivated land. The 

coverage of developed areas increased from 12.66% in 2013 to 13.48% in 2015. Bare land 

and cultivated land also had a bigger area from approximately 37.61% to 40.09% within the 

same period of simulation.  

 (km2) 
(a) 

 (km2) 
(b) 

Figure 5-6 (a) Gains and losses of six land cover types in the first case study area between 2013 and 

2015 (km2); (b) the contribution of all land cover types to the increasing developed areas in 2015 

(Source: Analysis using the LCM module of Terrset) 

 

In LCM 2, the land cover alteration of the first case study area within the period of 2000-2015 

was assessed (Figure 5-7). There was increasing coverage of developed areas from 4.93% in 

2000 to 14.90% in 2015. The composition of bare land and cultivated land in 2015 has also 

Broad-leaved vegetation 

Conifers 

Mixed vegetation 

Bare land and cultivated land 

Developed areas 

 

Broad-leaved vegetation 

Conifers 

Mixed vegetation 

Bare land and cultivated land 

Developed areas 
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risen from 31.66% to 36.82%. Higher coverages of conifers were identified in 2015 with 16.30% 

compared with the condition in 2000 (i.e. 14.42%). In contrary, the compositions of broad-

leaved vegetation and mixed vegetation decreased within the same period. A visualisation of six 

land cover transitions from 2000 to 2015 in the case study area is presented in Figure 5-8. 

 (km2) 

(a) 

 (km2)  
(b) 

Figure 5-7 (a) Gains and losses of six land cover types in the first case study area between 2000 and 

2015 (km2); (b) the contribution of all land cover types to the increasing developed areas in 2015 

(Source: Analysis using the LCM module of Terrset)  

 

 Figure 5-8 Change map of the first case study area (2000-2015)  

 

(2) Land cover change in the Ci Sangkuy upper water catchment area 

The analysis of land cover change in the second case study area has been conducted using the 

land cover maps in 2000 and 2015. The results indicate that the coverage of developed areas 

increased from 3.40% in 2000 to 8.97% in 2015. Bare land and cultivated land had the highest 

rate of loss among all land cover types, and it contributed the most to the increasing percentage 

of developed areas in 2015 (Figure 5-9). Although the coverage of broad-leaved vegetation 

Bare land and cultivated land to Developed areas 

Broad-leaved vegetation to Developed areas 

Mixed vegetation to Bare land and cultivated 

Broad-leaved vegetation to Bare land and cultivated land 

Bare land and cultivated land to Conifers 

Bare land and cultivated land to Broad-leaved vegetation 
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decreased by approximately 20 km2 due to the land change to developed areas and plantations 

outside the forests, the coverage increased particularly inside the forest (Figure 5-5). A land 

change map showing nine land cover transitions on the site is illustrated in Figure 5-10.  

 (km2) 

(a) 

 (km2) 

(b) 

 Figure 5-9 Gain and losses of six land cover types in the second case study area between 2000 

and 2015 (km2); (b) the contribution of all land cover types to the increasing developed areas in 2015 

(Source: Analysis using the LCM module of Terrset) 

 

Figure 5-10 Change map of the second case study area (2000-2015) 

 

5.2.2 Flood frequency analysis 

In this study, the flood frequency of Ci Tarum River was assessed to analyse the possible flood 

discharges and return periods, which may occur in the Bandung Basin in the future. The 

Bare land and cultivated land to Developed areas 

Broad-leaved vegetation to Developed areas 
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Broad-leaved vegetation to Bare land and cultivated land  
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assessment was conducted using Log-Pearson Type III analysis based on the daily average 

maximum Ci Tarum river discharge data (1974-2016).  

The result of flood frequency analysis can be seen in Table 5-8 and Figure 5-10. During the 

analysis process, the unit for discharge was converted to cfs (cubic feet per second). The unit, 

then, was converted back to m3/s. Floods with river discharges of approximately 292.34 m3/s 

and 374.81 m3/s have return periods of two and five years respectively. A discharge of 429.25 

m3/s has a possibility not to be equalled or exceeded in nine years out of ten. Floods with a 

return period of 25 and 50 years are projected to occur with river discharges of 498.16 m3/s 

and 549.56 m3/s respectively, while the discharge of 601.39 m3/s is indicated as one per cent 

high flood or the hundred-year flood. It should be noted that the calculation of flood frequency 

in this study was conducted only based on the Ci Tarum River discharges from 1974 to 2016 

using the Log-Pearson Type III analysis. Different time length used in the estimation or method 

might affect the outcomes (e.g. JICA (2010)). 

Table 5-8. The predicted return periods and discharges of Ci Tarum River 

Return Period (Tr) Q (cfs) Q (m3/s) 

2 10,323.92 292.34 

5 13,236.35 374.81 

10 15,158.97 429.25 

25 17,592.35 498.16 

50 19,407.43 549.56 

100 21,237.85 601.39 

200 23,094.15 653.95 

  

5.2.3 Flood discharge analysis 

The flood discharges of Ci Kapundung and Ci Sangkuy Rivers were estimated to determine the 

river discharge of each river, which has a high possibility to affect the occurrence of floods in 

the Bandung Basin in the future. During the analysis, the bankfull/ flood discharge of Ci Tarum 

River, as well as the discharges from the two case study areas at the day when floods occurred 

in the basin (2008-2015) were assessed. 

Two cross-sections of the Ci Tarum River have been generated using DEM, and the cross-

sectional area (A) of the river was calculated. Hydraulic radius (R) was calculated based on the 

cross-sectional area (A) and wetted perimeter (wp). The slope of the river bed (S) for the Ci Tarum 

River is approximately 0.02 (Brahmantyo, 2005). The Manning resistance coefficient (n) for 

winding natural streams with rocky beds and rivers with variable sections and some vegetation 

along banks is 0.040-0.050 (Chow, Maidment, & Mays, 1988). In this study, the n value used in 

this analysis is 0.050. The bankfull width (𝑤   ) and the bankfull depth (𝑑   ) were estimated 

according to the cross-sections.  
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The cross-sections of the Ci Tarum River and the detailed estimation of flood discharge at 

bankfull (Qbkf) are provided in Appendix C. From the two samples of bankfull discharge 

estimations, the initial value for the flood discharge for the Ci Tarum River is approximately 

187.4 m3/sec – 195.4 m3/sec.  

The analysis of river discharges from the Ci Kapundung and Ci Sangkuy upper water catchment 

areas (i.e. Q1 and Q2 respectively), and from other catchments in the Bandung Basin (Q3) during 

the flood events in the Bandung Basin (2008-2015) has been conducted. The highest Ci Tarum 

River discharge during the flood events was 544.9 m3/s on 20 March 2010. On this day, the 

daily discharge of Ci Sangkuy River that flowed outside the upper catchment (Q2) was 96 m3/s, 

the highest discharge during all flood events in 2008-2015. The Ci Kapundung river discharge 

on the same day (Q1) was recorded at 4.08 m3/s. River discharge from other catchments in the 

basin (Q3) was 444.82 m3/s.   

During the flood event on 9 December 2015, Ci Kapundung has the highest river discharge at 

14.3 m3/s. On the same day, the daily Ci Sangkuy river discharge was 6.07 m3/s. However, the 

basin was still flooded with the Ci Tarum river discharge recorded at 200.8 m3/s.    

In this study, the thresholds of flood discharges from the two case study areas that were used 

to assess the results from the MIKE SHE model have been defined. The estimated daily river 

discharges for the Ci Kapundung River and the Ci Sangkuy River flowing from the upper 

catchments are 14.3 m3/s and 96 m3/s respectively. It is assumed that the daily river discharges 

from other catchments in the basin will not exceed 173.1 m3/s and 91.4 m3/s when simulating 

the river discharge from the first and the second case study area, respectively.   

 

5.2.4 Effective rainfall analysis 

(1) Calculating the Ci Tarum baseflow 

The Ci Tarum baseflow has been estimated following the guidelines to assess the stream flow 

duration from the Oregon State University, which has been previously described in Subchapter 

4.3. Based on the samples of the Ci Tarum streamflow data within the period of 2008-2015 

(Table 5-9), the streamflow was ranked according to the probability to exceed a certain 

percentage, and the Ci Tarum baseflow was estimated. Table 5-9 and the flow duration curve 

(Figure 5-11) show that from the assessment on flow duration of Ci Tarum river discharge (2008-

2015), the baseflow for the river is 12.3 m3/s. 
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Table 5-9. Samples of the Ci Tarum streamflow data and the rank within the period of 2008-2015; 

Source for the streamflow data: PSDA (Pusat Sumber Daya Air/ Water Resource Management in West 

Java province). 

Date 

Streamflow 

(m3/s) Rank Percent Exceeded 

20/03/2010 544.9 1 0.034211427 

21/03/2010 542.5 2 0.068422853 

24/03/2010 542.5 3 0.10263428 

09/12/2010 542.5 4 0.136845706 

04/12/2010 537.8 5 0.171057133 

10/12/2010 537.8 6 0.20526856 

19/02/2010 530.9 7 0.239479986 

11/12/2010 530.8 8 0.273691413 

22/03/2010 519.2 9 0.30790284 

08/12/2010 516.9 10 0.342114266 

. . . . . . 
. . . . . .  

27/09/2014 12.3 2629 89.94184057 

18/10/2014 12.3 2630 89.976052 

23/10/2014 12.3 2631 90.01026343 

10/09/2015 12.3 2632 90.04447485 

28/10/2015 12.3 2633 90.07868628 

. . . . . . . . . . . . 

21/09/2008 7.54 2913 99.65788573 

24/07/2008 7.36 2914 99.69209716 

26/07/2008 7.36 2915 99.72630859 

29/07/2008 7.19 2916 99.76052001 

22/09/2008 7.19 2917 99.79473144 

23/09/2008 7.19 2918 99.82894287 

02/11/2013 7.15 2919 99.86315429 

27/07/2008 7.01 2920 99.89736572 

17/10/2011 6.79 2921 99.93157715 

31/05/2013 0.22 2922 99.96578857 

MAX VALUE 544.9 2922 100 

MIN VALUE 0.22  0 

COUNT 3288   

Note: the highlighted row shows the estimated river discharge that is equal to baseflow due to 

the occurrence of 90% of the time (2008-2015).   
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Figure 5-11 Flow duration curve for the Ci Tarum River (2008-2015) 

 

Following the diagram of workflow to estimate the Ci Kapundung and Ci Sangkuy flood discharge 

(Subchapter 4.3), the direct runoff to the Ci Tarum River, which has high possibility to cause 

floods in the Bandung Basin can be estimated based on the calculations of the Ci Tarum bankfull 

discharge (Qbkf) and the Ci Tarum baseflow. According to the previous calculations, the Ci Tarum 

bankfull discharge (Qbkf) is approximately 187.4 m3/sec – 195.4 m3/sec, whereas the Ci Tarum 

baseflow is 12.3 m3/s. Therefore, the overland flow to the Ci Tarum River that has an effect on 

the occurrence of floods in the Bandung Basin (OFbkf) is estimated at 175.1 m3/sec – 183.1 

m3/sec.  

The regression models have been generated to show the relation between direct runoff (DROp) 

and the rainfall events in the Bandung basin during the day the flood events occurred in the 

basin (R0), until 6 consecutive days before the events (R6), within the period of 1 January 2008 

– 31 December 2015.  The correlation diagrams can be seen in Figure 5-12. 
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(c) (d) 

  
(e) (f) 

 

 

(g)  

Figure 5-12 The regression diagrams showing the correlation between peak direct runoff and rainfall 

events in Bandung Basin (2008-2015) 

 

Based on the analysis, the regression model of DROp and R4 has the highest value of R-squared. 

The R-squared is used to assess the data fitness to the regression line as well as to measure 

the accuracy of the models. As seen in the diagrams, the value of R2 increased from 0.059 

during the rainfall day (R0) to 0.337 after the fourth consecutive days (R4), before it decreased 

on the fifth and sixth day (R5 and R6). It can be concluded that the effective rainfall, which has a 

high possibility to cause flooding in the Bandung Basin, is the accumulated rainfall total from 

the fourth day before the flood events occurred.  
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5.2.5 The impact of land cover change to river discharges 

The moving average (MA) analysis has been conducted to assess the trend of Ci Tarum, Ci 

Kapundung, and Ci Sangkuy river discharges. The pattern of increasing coverages of impervious 

surface in both case study areas has also been plotted to evaluate the effects of the land cover 

change to the river discharge. The precipitation trend has been estimated using the MA analysis 

to ascertain if this factor also contributes to the trend of annual river discharge in the two 

watersheds.  

(1) The trend of Ci Tarum River discharges (2001-2017) 

A 5-year Moving Average (MA) analysis was performed to assess the trend of Ci Tarum River 

discharges. Rivers from all thirteen catchments in the Bandung Basin are flowing to the Ci Tarum 

River. Thus, the assessment of Ci Tarum River discharge trend provides an insight into the 

condition of flood regulation in the basin (2001-2017). The output from MA analysis shows that 

the rate of discharge trend is likely to increase (y = 2.3665x – 4673.9). The highest annual 

discharge was recorded at 237.95 m3/s in 2010. The annual discharge reached another peak 

in 2016 (122.89 m3/s) before it dropped to 78.13 m3/s in the following year (Figure 5-13).  

 

 
Figure 5-13 The 5-year Moving Average of Ci Tarum annual river discharge  

 

(2) Land cover change and the impact on the trend of Ci Kapundung River discharges 

The result from the 5-year Moving Average analysis (Figure 5-14) suggested that there was an 

increasing trend of annual river discharge in the Ci Kapundung upper water catchment area 

within the period of 2001-2017 (y = 0.2107x + 419.27). Based on the land cover maps in 2000, 

2015, and 2017, it can be seen that the composition of developed areas has increased (Figure 

5-15).    
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Figure 5-14 The 5-year Moving Average of annual river discharge in the Ci Kapundung upper water 

catchment area 

 

Figure 5-15 The composition of land cover in the Ci Kapundung upper water catchment area 

 

The average annual precipitation rates were likely to increase in most parts of the site except 

for the area in which the precipitation rates were recorded by Margahayu station (Figure 5-16). 

However, the linear regression analysis of the MA for Thiessen-weighted average rainfall shows 

a decreasing trend (y = -0.0592x + 6.8075).  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5-16 The 5-year Moving Average of precipitation rates from; (a) Thiessen-weighted polygons; (b) 

Kayu Ambon station; (c) Dago Pakar station; (d) Cipeusing station; (e) Margahayu station; and (f) Cibiru 

station 

 

(3) Land cover change and the impact on the trend of Ci Sangkuy River discharges 

Figure 5-17 presents the results from the MA analysis to assess the trend of Ci Sangkuy river 

discharge (2001-2017), indicating the decreasing trend of river discharges (y = -0.3329x + 

680.4). Similar to the first case study area, the compositions of built-up areas and vegetation 

cover on the second case study area shows an increasing trend, whereas the coverages of 

plantations, bare land and cultivated land decreased (Figure 5-18).  
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Figure 5-17 The 5-year Moving Average of annual river discharge in the Ci Sangkuy upper water 

catchment area 

 

 Figure 5-18 The composition of land cover in the Ci Sangkuy upper water catchment area 

 

Further analysis to the precipitation trend on the site reveals that the Thiessen-weighted average 

rainfall and the precipitation rates as recorded by the four weather stations (e.g. Cileunca, 

Ciherang, Cisondari, and Cibeureum) have decreased (Figure 5-19). The regression line of 

precipitation rates as recorded by the Cisondari station has the steepest slope among all 

weather stations (-0.5723), indicating how significant the decreasing trend was.  
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(a) (b) 

 

 

 

 
(c) (d) 

 

 

(e)  

Figure 5-19 The 5-year Moving Average of precipitation rates from; (a) Thiessen-weighted polygons; (b) 

Cileunca; (c) Ciherang; (d) Cisondari; (e) Cibeureum 

 

5.3 Landscape structure scenarios for the two case study areas to support 

flood regulation 

The development scenarios of the two case study areas have been generated and simulated in 

the land change modeler (LCM) module of Terrset. The outputs from land change modelling were 

used as part of the input datasets for MIKE SHE modelling. This subchapter presents results 

from the assessment related to the second research question: “What are the most effective 

scenarios of landscape structure for the two upper water catchment areas which can benefit 

flood regulation?”. This subchapter begins with the general description of constraints on future 
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land development in the two case study areas. Then, the results for two iterative land change 

modelling and hydrologic modelling are given.  

5.3.1 Constraints on future land development  

Constraints on future land development in the two case study areas are related to land 

availability and the allocated areas to build new settlements and to develop agricultural areas. 

Constraints maps were used in the land change modelling to allocate new development that will 

occur. The estimated population in the case study areas was used to check the outputs from 

LCM, whether the simulated land cover composition can provide the required land to build in 

the future. 

(1) Estimated population in the two case study areas 

Allocated areas for new settlements and agriculture was estimated based on the projected 

population in each case study area in 2030. Based on the projected population growth rates in 

West Java (2015-2035) developed by BPS (2015), the population in Bandung city, Bandung 

regency, and West Bandung Regency in 2030 was estimated (Table 5-10). This estimation, as 

well as the population data in the eleven districts in the case study areas, were used to predict 

the estimated population in the case study area (Table 5-11).  

Table 5-10. Existing and projected population in Bandung city, Bandung regency, and West Bandung 

regency  

Municipalities Year Population  Population increase 

(2015-2030) 

Bandung city  2015 2,481,469 84,303 

 2030 2,565,772  

Bandung regency 2015 3,534,111 120,064 

 2030 3,654,175  

West Bandung regency 2015 1,636,316 55,590 

 2030 1,691,906  

 

Table 5-11 The estimated population in five districts in the two case study areas (2015 and 2030) 

Districts and 

the area of 

districts (km2) 

District areas 

within the 

watersheds 

and the 

percentages 

of area 

relative to the 

districts (a) 

Population in 

the district 

(2015) (b) and 

the 

percentages of 

area relative to 

the  

municipalities 

Estimated 

population in 

each district 

(2015) within 

the watershed 

(a*b) 

Estimated 

population in 

each district 

(2017) within 

the watershed 

 

Population 

increase in 

each district 

within the 

watersheds 

(2015-2030) 

Cidadap in 

Bandung city - 

case1 (6.11 

km2) 

6.11 km2  

(100%) 

58,426 

(2.35%) 

58,426 58,700 1,984 

Sukasari in 

Bandung city - 

1.01 km2 

(23.48%) 

82,012 

(3.30%) 

19,256 19,394 654 
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Districts and 

the area of 

districts (km2) 

District areas 

within the 

watersheds 

and the 

percentages 

of area 

relative to the 

districts (a) 

Population in 

the district 

(2015) (b) and 

the 

percentages of 

area relative to 

the  

municipalities 

Estimated 

population in 

each district 

(2015) within 

the watershed 

(a*b) 

Estimated 

population in 

each district 

(2017) within 

the watershed 

 

Population 

increase in 

each district 

within the 

watersheds 

(2015-2030) 

case1 (4.30 

km2) 

Coblong in 

Bandung city- 

case1 (7.35 

km2) 

1.77 km2 

(24.08%) 

133,002 

(5.36%) 

32,026 32,050 1,088 

Cimenyan in 

Bandung 

regency-case1 

(53.08 km2) 

 

8.10 km2 

(15.26%) 

115,475 

(3.27%) 

17,621 18,214 598 

Cilengkrang in 

Bandung 

regency-case1  

(30.12 km2) 

 

5.25 km2  

(17.43%) 

52,359 

(1.48%) 

9,126 9,425 310 

Lembang in 

West Bandung 

regency - case 

1 (95.56 km2) 

 

79.82 km2 

(83.53%) 

187,815 

(11.48%) 

156,881 164,295 5.329 

Pangalengan 

in Bandung 

regency-case2 

(195.41 km2) 

 

152.40 km2 

(77.99%) 

148,353 

(4.20%) 

115,700 

 

 

119,118 3,930 

Banjaran in 

Bandung 

regency-case2 

(42.92 km2) 

 

36.35 km2 

(84.69%) 

124,233 

(3.52%) 

 

45,581 47,216 1,548 

Kertasari in 

Bandung 

regency-case2 

(152.07 km2) 

 

3.38 km2 

(1.56%) 

69,793 

(1.97%) 

1,088 1,119 36 

Pacet in 

Bandung 

regency-case2 

(91.94 km2) 

 

2.34 km2  

(2.54%) 

109,084 

(3.09%) 

2,770 2,849 94 

Pasir Jambu in 

Bandung 

regency-case2 

(239.58 km2) 

10.57 km2 

(0.04%) 

85,294 

(2.41%) 

34 35 1 

 

Based on the calculation of population in each district within the watersheds (Table 5-11), the 

estimated number of inhabitants in 2015 in Ci Kapundung and Ci Sangkuy upper water 

catchment areas are 293,336 and 165,173 respectively. In 2017, these number increase to 

302,078 and 170,337 for the first and the second case study area, respectively. It is expected 

that the population in urban and rural areas will increase by 3,726 and 6,237 people, 
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respectively, in the first case study area in 2030. On the other hand, the population increase of 

5,609 people in the second case study area will live in the rural area in 2030.   

The population data in 2015 and 2017 from Bandung city, Bandung regency, and West Bandung 

regency was used as a benchmark to project the number of people living in the watersheds in 

2030 and to estimate the required land for new development in 2017 and 2030. According to 

the results from the second iteration of land cover map development, the estimated developed 

areas in Ci Kapundung and Ci Sangkuy upper water catchment areas in 2015 are 15.42 km2 

(14.90% of total area) and 19.38 km2 (9.46% of total area) respectively.   

It can be estimated that the required area per-person is approximately 52.57 m2 and 117.36 

m2 in the first case study area and the second case study area respectively (including the 

housing, public facilities and infrastructure). Based on the estimated number of people living in 

2017, the percentages of built-up areas in the first and the second case study areas are 15.34% 

and 9.75% respectively, assuming that the required area per-person in 2017 is similar to the 

area required in 2015. These numbers were used to validate the outcomes from land cover map 

development and land change modelling (see Subchapters 5.1, 5.3.2, and 5.3.3). 

  

(2) Constraint maps for each development scenario 

The first scenario is intended to project the future based on the current development trends in 

the case study areas. In the first iteration of land change modelling (LCM1), no constraint map 

was included in the simulation process for the first scenario (Status Quo). Based on the 

simulation results33, one constraint map was assigned on the first scenario in the second 

iterative modelling process (LCM2). The map shows the restriction to develop inside the 

protected area and forests (Figure 5-20a).  

Constraints maps in scenario 2 (existing policy-based scenario) and scenario 3 (ecological 

design-based scenario) were developed based on a set of maps related to particular policies 

(Figure 5-20b-e). Two constraints maps showing the areas restricted to the new development of 

settlements and agriculture areas have been created for each scenario. The results from the 

land change modelling for the third scenario have been tested in the hydrologic model (MIKE 

SHE 1), to assess the impact of the land change in this scenario to the runoff generation in the 

two case study areas (the result is presented in Subchapter 5.3.4).  

 

 

 

 

 

 

                                                      
33 The result is presented in the next part of this subchapter. The reasons why constraint maps were proposed in 

the second iterative modelling is discussed in Chapter 6. 
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(scenario 1) 

 
(a)  

(scenario 2) 

 

 

 
(b) (c) 

 

(scenario 3) 

 

 

 

 
(d) (e) 

Figure 5-20 (a-e). Constraints maps which delineate areas restricted to the further development of 

settlements and agriculture in scenario 1, 2, and 3 in the Ci Kapundung watershed 

There are also three scenarios developed for the land change modelling of the second case 

study area. In the first scenario, one constraint map was applied in the model. The map indicates 

areas inside the forests and protected area that is restricted to be built up. The second and third 

scenarios were developed based on the existing spatial policies and ecological design principles, 

respectively. Constraint maps for the three development scenarios of the second case study 

area are presented in Figure 5-21.  

: Area restricted to further 

development 

Legend: 
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(scenario 1) 

 

 

(a)  

(scenario 2) 

 

 

 
(b) (c) 

(scenario 3) 

 

 

 
(d) (e) 

Figure 5-21 (a-e). Constraints maps which delineate areas restricted to the new development of 

settlements and agriculture in scenario 1, 2, and 3 in the Ci Sangkuy watershed 

 

: Area restricted to further 

development 

Legend: 
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5.3.2 The first iteration of land change simulation (LCM 1) 

In the first iteration of land change modelling of the first case study area, four variables causing 

the land change have been assessed using MLP to show the potential explanatory power of each 

variable. The outputs were indicated in an overall Cramer’s V. The four drivers are the distance 

from existing disturbance, road and river networks, and the likelihood of change (Figure 5-22). 

Thirteen simulations have been conducted to test the variables. The model accuracy for the first 

simulation is 49.27%, with the third variable (i.e. river network) to have the least influence to 

the modelling. It is suggested that the model accuracy should to be roughly 50%, and the model 

should be rerun when the accuracy is lower than 50% (Eastman, 2016). Therefore, subsequent 

simulations were conducted to achieve an accuracy of more than 50%.  

The output from the second simulation also indicated that the ‘distance from the river network’ 

'variable has the least influence on the model. Therefore, starting from the third simulation, this 

variable was excluded in the simulation. The result from the 13th MLP process shows that there 

was an increase in the modelling accuracy to 52.86%. Likelihood of change became the variable 

that has the most influence on the land change in 2013-2015.  

  
(a) (b) 

  
(c) (d) 

Figure 5-22 Four drivers of land change in the first case study area: (a) existing disturbance; (b) existing 

road networks; (c) river networks; (b) the likelihood of area to change 

The 2017 land cover map has been simulated under the Status Quo scenario using the 

transition probability maps and the Markov matrix (2015-2017) in which the weighting factors 

have been applied before. The allocations for developed areas, bare land and cultivated land, 

mixed vegetation, conifers, and broad-leaved vegetation are 17.59%, 33.95%, 16.01%, 16.01%, 
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and 16.44% respectively. Model validation has been performed to assess model accuracy. There 

are 500 accuracy assessment points assigned to the predicted and actual land cover maps 

(2017). The validation result shows image accuracy of 60.52%.  

Weighting factors have also been applied in the Markov matrix to generate transition probability 

(2015-2030) based on different spatial policies in each scenario. The results from land change 

simulations of the first case study area using three scenarios (e.g. Status Quo, existing policy-

based scenario, and Ecological Design scenario) can be seen in Figure 5-23(a-c). 

 
(a) 
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(b) 

 
(c) 

Figure 5-23 (a-c) Initial simulation results for the 2030 land cover of Ci Kapundung upper water 

catchment area based on scenario 1, 2, and 3 (Source: Modified images from Rani et al., 2018) 



173 
 

In the first scenario (Status Quo) (Figure 5-23a), disperse settlements are projected to occur in 

the watershed, including the area with steep slopes and inside the river buffers. The agriculture 

practices still exist inside the forests. In the second scenario (the existing spatial policies-based 

scenario), the new settlements will be allocated according to the existing spatial policies from 

each municipality. The development of new settlements is projected to occur in steep slopes in 

the western part of the area because there are no restrictions in the existing spatial policies to 

build in such area. In the last scenario, no development will occur inside the forest, protected 

area, and the river buffer, as shown in the constraints map.  

There is no difference in the compositions of land cover in scenario 1 and 2 (Table 5-12). 

Weighting factors added to the transition probability matrix in scenario 3 has resulted to the 

different percentages of land cover compositions, particularly for bare land and cultivated land 

(31.40%) and broad-leaved vegetation (18.74%).  

Table 5-12 Land cover composition in the Ci Kapundung upper water catchment area for each scenario  

Land cover types Predicted land cover composition in 2030 

 Scenario 1 Scenario 2 Scenario 3 

Developed areas 17.58% 17.58% 17.58% 

Bare land and cultivated land 33.94% 33.94% 31.40% 

Mixed vegetation 16.01% 16.01% 16.25% 

Conifers 16.01% 16.01% 16.01% 

Broad-leaved vegetation 16.44% 16.44% 18.74% 

Water bodies 0.02% 0.02% 0.02% 

 

5.3.3 The second iteration of land change simulation (LCM 2) 

Based on the outputs from the first iteration of land change simulation, the final 2030 land 

cover maps of the two case study areas have been modelled in the second iteration of land 

change modelling. The c.2000 and 2015 land cover maps were used in the modelling.  

 (1) Land change simulation of the Ci Kapundung upper water catchment area 

Another series of MLP processes have been conducted in the second iteration of land change 

modelling for the first case study area. In these processes, more drivers were included (Figure 

5-24). The drivers were divided into two groups; the demographic-economic drivers (e.g. 

likelihood to change, distance from disturbance, and population density), and environmental 

drivers (e.g. elevation, slopes, and distance from streams). In general, all three demographic-

economic drivers have higher values of Cramer’s V values compared with the environmental 

drivers. Likelihood to change has the highest value (0.5675) among all variables, indicating the 

most influential driver for land change in the area. Distance from disturbance and population 

density (2015) are the second and third most significant drivers with the overall Cramer’s V of 

0.4120 and 0.3869, respectively. Elevation, slopes, and distance from streams have the overall 
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Cramer’s values of 0.3463, 0.2396 and 0.0663, respectively (Rani, Lange, Schroth, et al., 

2019).  

 

  
(a) (b) 

  

(c) (d) 

  
(e) (f) 

Figure 5-24 Driver variables in the land change modelling for the first case study area; (a) likelihood to 

change; (b) distance from disturbance; (c) population density; (d) elevation; (e) slopes; (f) distance from 

streams (Rani, Lange, Schroth, et al., 2019) 
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Table 5-13 Driver variables of land change in the first case study area (Rani, Lange, Schroth, et al., 

2019) 

 

 Types of driver Cramer’s V 

Demographic-economic 

drivers: 

Likelihood to change (LC) 0.5675 

Distance from disturbance (DD) 0.4120 

Population density (2015) (PD) 0.3869 

Environmental drivers: Elevation (EL) 0.3463 

 Slopes (SL) 0.2396 

 Distance from streams (DS) 0.0663 

 

An iterative MLP process and the projection of 2017 land cover maps have been conducted 

using different groups of driver variables; all drivers, the demographic-economic drivers, and the 

environmental drivers. The results show that the MLP accuracy of 55.70% was achieved when 

all drivers were included in the iteration process. Lower accuracy was retrieved by the model if 

other groups of variables were used. The 2017 land cover maps of the first case study area were 

projected based on the land cover changes in 2000-2015 and the transition potential maps 

resulted from the MLP process under the Status Quo scenario.  

The transition probability matrix (2000-2015) to model the land cover map in 2017 is presented 

in Table 5-14. The probability of land cover change from bare land and cultivated land to 

developed areas in 2015-2017 is 0.0872. It is expected that broad-leaved vegetation will be 

converted as bare land by 0.2512. There are still possibilities of change for one type of forest to 

another.  

The actual 2017 land cover map, then, was used to validate the projected 2017 maps. The 

model accuracies were estimated using confusion matrices. There are 500 points assigned 

randomly in the imagery to compute the model accuracy. From Table 5-15, it can be seen that 

the model accuracy of 81.76% was achieved when only three demographic-economic drivers 

were included in the MLP process. This number is higher than the model accuracies when other 

combinations of driver variables were incorporated into the model.  

Table 5-14 Transition probability matrix to simulate the 2017 land cover map of the first study area 

(Rani, Lange, Schroth, et al., 2019) 

 

Developed 

areas 

Bare land 

cultiv. land Mixed veg. Conifers 

Broad-

leaved veg. 

Developed areas 0.9841 0.0138 0.0000 0.0000 0.0021 

Bare land and cultiv. land 0.0872 0.8509 0.0137 0.0237 0.0246 

Mixed veg. 0.0000 0.0380 0.9558 0.0028 0.0034 

Conifers 0.0000 0.0000 0.0059 0.9734 0.0207 

Broad-leaved veg. 0.0000 0.2512 0.0000 0.0000 0.7488 
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Table 5-15 Model accuracy retrieved from the validation process (Rani, Lange, Schroth, et al., 2019) 

Drivers Model accuracy from validation  

All drivers 81.36% 

LC, DD, PD, EL 79.35% 

3 demographic-economic drivers 81.76% 

3 environmental drivers 81.36% 

 

The potential transition and the projected 2017 maps simulated using three demographic-

economic drivers are shown in Figure 5-25(a-b). The potential transition map shows the 

magnitude or possibility of land change. Area restricted to new development is shown in black 

(e.g. forests and protected area). Whereas the probabilities of land cover change in other areas 

are shown in the gradation of blue to red with red indicates a higher possibility of an area to 

change in 2017. The land cover compositions for the developed areas, bare land and cultivated 

land, mixed vegetation, conifers, and broad-leaved vegetation in the simulated 2017 map are 

18.09%, 36.65%, 14.62%, 17.14%, and 13.49% respectively. Pixels identified as water bodies 

(0.02%) were excluded in the modelling, thus no change in the composition for this particular 

land cover.  

  
(a) (b) 

 Figure 5-25 (a) Potential transition map in 2017; (b) Projected 2017 land cover map based on the 

Status Quo scenario (modified images from Rani, Lange, Schroth, et al., 2019) 

 

Model validation was conducted again by comparing the coverages of the developed areas in 

the 2017 map generated from the satellite imagery, the output 2017 map from LCM, and the 

estimation based on the increasing population in the watersheds (2015-2017). The output map 

from LCM used in the validation is the map generated using the three drivers under the Status 

Quo scenario. The estimated increasing population has been given in the previous subchapter 

(5.3.1). Based on the 2017 land cover map, 19.82% of the total area is classified as the 

developed areas. However, only 18.09% of the total area was projected to be built in the 

watershed in 2017. A lower percentage of developed areas is estimated based on the number 
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of population (15.34%). Thus, it can be seen that there are discrepancies of the estimated 

composition of developed areas with the predicted maps. 

The 2030 land cover maps were modelled based on the three development scenarios and the 

transition probability matrix (Table 5-16). There is a possibility of 0.2572 that bare land and 

cultivated land will be converted to built-up areas in 2030. Another land cover alteration is also 

expected to occur on the site. Areas covered by broad-leaved vegetation outside the forests will 

be altered as newly cultivated land with the probability of 0.4482 (Table 5-16). 

 Table 5-16 Transition probability matrix to simulate the 2030 land cover map of the first study area 

 

Developed 

areas 

Bare land 

cultv. land Mixed veg. Conifers 

Broad-

leaved veg. 

Developed areas 0.9325 0.0561 0.0000 0.0023 0.0090 

Bare land and cultiv. land 0.2572 0.6013 0.0353 0.0663 0.0399 

Mixed veg. 0.0061 0.1481 0.7824 0.0425 0.0208 

Conifers 0.0070 0.0475 0.0365 0.8493 0.0596 

Broad-leaved veg. 0.0607 0.4482 0.0070 0.0370 0.4471 

 

The results from the land change simulation of the first case study area (2030) are presented 

in Figure 5-26 (a-d). Scenario 1, 2, and 3 were developed based on the same principles as the 

three scenarios used in the first iterative land change modelling. Based on the interpretation of 

results from hydrologic modelling, the fourth scenario was generated, as part of the backcasting 

process in this research (refer to Subchapter 6.3). 

It is expected that the new development of settlements and other built-up areas in all future 

scenarios will occur near the existing developed areas. Different constraint maps applied in each 

scenario affect the distribution of land cover. For example, new settlements are built scattered 

on the site in the first scenario because the restriction to develop inside the forest and protected 

area is the only development constraints applied. Therefore, it is expected that the new 

development also occurs in the area with steep slopes near the streams. The spatial policies of 

each municipality have been applied in the second scenario. In the third scenario, new buildings 

are more concentrated in relatively flat terrain away from the streams.  
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(a) 

 
(b) 



179 
 

 
(c) 

Figure 5-26 (a-d) The projected 2030 land cover maps of the first case study area based on scenario 1, 

2, 3, and 4 

The land cover compositions in 2030 are presented in Table 5-17. There is no difference with 

the percentage of for land cover types in each development scenario.  

Table 5-17 Land cover composition in the Ci Kapundung upper water catchment area for each scenario  

Land cover types Predicted land cover composition in 2030 

 Scenario 1 Scenario 2 Scenario 3 

Developed areas 25.38% 25.38% 25.38% 

Bare land and cultivated land 33.23% 33.23% 33.23% 

Mixed vegetation 12.94% 12.94% 12.94% 

Conifers 18.71% 18.70% 18.70% 

Broad-leaved vegetation 9.72% 9.72% 9.72% 

Water bodies 0.02% 0.02% 0.02% 

 

 (2) Land change simulation of the Ci Sangkuy upper water catchment area 

After the land changes of the two case study areas from 2013-2015 had been assessed and 

the constraints maps for scenario 1, 2, and 3 had been created, the number of land cover 

transitions were specified in the development of transition potential maps. The six types of driver 
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variable as used in the LCM model of the first case study area were also evaluated in the land 

change modelling of the second case study area (Figure 5-27).  

The potential explanatory power of each driver is summarised in Table 5-18. The ‘likelihood to 

change’ driver has the highest Cramer’s V value among all drivers (0.4680). The elevation driver 

has the second-highest rate of value (0.4046) and is the highest in the environmental drivers. 

The distance from streams driver has the least influence on the land change on the site 

(0.0909).   

 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 5-27 Driver variables in the land change modelling for the second case study area; (a) likelihood 

to change; (b) distance from disturbance; (c) population density; (d) elevation; (e) slopes; (f) distance 

from streams 

 

Table 5-18 Driver variables of land change in the second case study area 

 Types of driver Cramer’s V 

Demographic-economic 

drivers: 

Likelihood to change (LC) 0.4680 

Distance from disturbance (DD) 0.3636 

Population density (2015) (PD) 0.3397 

Environmental drivers: Elevation (EL) 0.4046 

 Slopes (SL) 0.2490 

 Distance from streams (DS) 0.0909 

 

Different combinations of driver variables were used to model the transition probability in an 

iterative MLP process. An accuracy of 44.77% was retrieved from the MLP process when all six 

driver variables were incorporated in the modelling. Lower MLP accuracies were estimated when 

only three demographic-economic variables were included (27.25%), and when only three 

environmental variables were used (16.91%). The 2017 land cover maps were modelled using 

transition probability maps generated from different groups of driver variables under the Status 

Quo scenario. The results, then, were validated using the 2017 land cover map generated from 

satellite imagery.  

LCM modelled the transition probability matrix (2000-2015) to project the 2017 land cover map. 

The matrix indicates that bare land and cultivated land is the only land cover that would change 

into developed areas with a probability of 0.0336. Approximately 27% of areas with broad-leaved 

trees are expected to alter into bare land and cultivated land in 2017 (Table 5-19). Possibility of 

one type of forest to change into another is described in the following chapter.  

 



182 
 

Table 5-19 Transition probability matrix to simulate the 2017 land cover map of the second study area 

 

Developed 

areas 

Bare land 

cultiv. land 

Plantations Mixed 

veg. Conifers 

Broad-

leaved veg. 

Developed areas 0.9999 0.0001 0.0000 0.0000 0.0000 0.0000 

Bare land and cultiv.  0.0336 0.7024 0.0430 0.0068 0.0168 0.1974 

Plantations 0.0000 0.0567 0.9430 0.0001 0.0002 0.0000 

Mixed veg. 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

Conifers 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 

Broad-leaved veg. 0.0000 0.2774 0.0090 0.0000 0.0000 0.7136 

 

All 2017 maps simulated from LCM using three combinations of driver variables (e.g. all drivers, 

three demographic-economic drivers, and three environmental drivers) were validated using the 

actual 2017 land cover map. A total of 500 points were also assigned in the maps to estimate 

the model accuracy. As seen from Table 5-20, the highest accuracy was retrieved when only 

three demographic-economic drivers were included in the MLP process (70.80%). Therefore, the 

following simulations were conducted based on the outcome from the MLP using the three land 

change drivers.   

Table 5-20 Model accuracy retrieved from the validation process 

Drivers Model accuracy from validation  

All drivers 68.00% 

3 demographic-economic drivers 70.80% 

3 environmental drivers 66.00% 

 

The potential transition map in 2017 and the predicted map simulated using the three 

demographic-economic driver variables under the Status Quo scenario are illustrated in Figure 

5-28. Areas near the existing disturbance have high potential to change in 2017, as indicated 

by the red and orange pixels in the potential transition map. The simulation outcomes show that 

the compositions of developed areas, bare land and cultivated land, plantations, mixed 

vegetation, conifers, and broad-leaved vegetation in the simulated 2017 map are 10.57%, 

30.22%, 13.88% 14.82%, 7.46%, and 22.14%. There is no change in the coverage of water 

bodies (0.90%) because the pixels have been excluded before the land change simulations were 

conducted34.   

                                                      
34 The output from land cover map development process from satellite imagery suggest that the area of lakes in the 

Ci Sangkuy upper water catchment in 2017 (1.46%) is larger than the area in the 2015 map (0.90%). LCM used the 

c.2000 and c.2015 maps to project the future land cover compositions and distributions in 2017 and 2030. Pixels 

identified as water bodies were excluded in the simulations. Therefore, the coverage of water bodies in the output 

from LCM (i.e. simulated 2017 and 2030 maps) is similar to the composition in the 2000 and 2015 base maps (i.e. 

0.90% of total area).  
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(a) (b) 

Figure 5-28 (a) Potential transition map in 2017; (b) Projected 2017 land cover map based on the 

Status Quo scenario 

 

The compositions of developed areas in the 2017 map generated from the satellite imagery and 

in the simulated 2017 map were compared as part of model validation. This process was also 

performed by using the estimated increasing number of people living in the watersheds in 2015-

2017 (refer to section 5.3.1). The coverage of developed areas in the 2017 map is 16.14% of 

the total area. The simulated map shows that the coverage of this land cover class is lower 

(10.57%). Based on the estimated population number on the site, only 9.75% of the region is 

built.  

The actual 2030 land cover change was simulated based on the transition probability matrix 

(Table 5-21) and the transition maps generated from the MLP process using the three 

demographic-economic driver variables. It is expected that bare land and cultivated land is 

altered into developed areas with the probability of 0.1005. Bare land is also changed into other 

land cover classes, such as plantations and the three types of vegetation. Within the same 

period, the likelihood of areas covered by broad-leaved vegetation to change into bare land and 

cultivated land is 36.37%. There is a chance that bare land could change into plantation areas 

and vice versa in fifteen years. A possible explanation for this is given in Chapter 6.      

A similar approach to scenario development applied in land change simulations of the first case 

study area was used in this process. The results from land change modelling in the second case 

study area under three development scenarios are shown in Figure 5-29. The compositions of 

seven land cover types in each scenario in 2030 are presented in Table 5-22. 
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Table 5-21 Transition probability matrix to simulate the 2030 land cover map of the second study area 

 

Developed 

areas 

Bare land 

cultiv. land 

Plantations Mixed 

veg. Conifers 

Broad-

leaved veg. 

Developed areas 0.9996 0.0004 0.0000 0.0000 0.0000 0.0000 

Bare land and cultiv.  0.1005 0.5056 0.1070 0.0163 0.0405 0.2301 

Plantations 0.0158 0.1583 0.7679 0.0083 0.0194 0.0303 

Mixed veg. 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

Conifers 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 

Broad-leaved veg. 0.0504 0.3637 0.0848 0.0000 0.0000 0.5011 

 

 

 
(a) 
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(b) 

 
(c) 

Figure 5-29 (a-d) The projected 2030 land cover maps of the second case study area based on scenario 

1, 2, and 3 
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Table 5-22. Land cover compositions in the Ci Sangkuy upper water catchment area for each scenario  

Land cover types Predicted land cover composition in 2030 

 Scenario 1 Scenario 2 Scenario 3 

Developed areas 13.91% 13.91% 13.91% 

Bare land and cultivated land 26.85% 26.85% 26.85% 

Plantations 16.35% 16.35% 16.35% 

Mixed vegetation 15.14% 15.14% 15.14% 

Conifers 8.26% 8.26% 8.26% 

Broad-leaved vegetation 18.60% 18.60% 18.60% 

Water bodies 0.90% 0.90% 0.90% 

 

It can be seen from the table that the compositions of all land cover types are similar in the 

three scenarios. However, the distribution of land cover is different. In general, the new 

development of settlements and infrastructure are concentrated near the existing disturbance 

on the north. In the first scenario, a scattered settlement pattern is expected to occur in the 

region, including areas near the streams. It is expected that more built-up areas occur 

surrounding the lakes in the second scenario, following the constraint maps developed using 

the existing spatial policies. However, the new settlements are also built on steep slopes area 

(5.17% of total area). In the third scenario, the new development is more dispersed in the centre 

of the watershed, and there is less percentage of the area will be built on steep terrain (4.13% 

of total area).  

 

5.3.4 The first iteration of hydrologic modelling (MIKE SHE 1) 

MIKE SHE 1 was conducted to assess the depth of overland flow (m) and the capacity of different 

types of vegetation to reduce surface runoff in the first case study area using the 2015 and 

2030 base maps (Rani et al. 2019). Three observation points were assigned to record the depth 

of overland flow on the day with the highest precipitation in 2013-2015 (Figure 5-30). Point 1 

and 3 are located at the riparian with different types of plant, whereas Point 2 is located at the 

cultivated land near the riparian area. Saturated flow was excluded in the MIKE SHE simulations. 

Therefore, the results should be interpreted only based on the datasets used in the simulations 

(e.g. DEM, precipitation rate (2013-2015), reference evapotranspiration, projected 2030 land 

cover map, LAI, Manning’s M numbers, and soil map and properties).  
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Figure 5-30 The location of three observation points in the Ci Kapundung upper water catchment area in 

MIKE SHE 1 model (Source: Rani et al. 2019) 

 

The results from the first simulation of MIKE SHE 1 are presented in Table 5-23. It can be seen 

that the depth of overland flow in 2015 is relatively similar to the flow in 2030 in the Status Quo 

and the ecological design-based scenarios. The highest depth of overland flow in 2015 and in 

the two scenarios was recorded at Point 3. This point is located in the area dominated by clay 

soil (52.07%) and on the area with steeper slope (12.650) compared with the other two points.   

Table 5-23 The estimated depth of overland flow (mm) from the first iteration of hydrologic simulations 

of the Ci Kapundung upper water catchment area (Source: Rani et al. 2019) 

 

Land cover maps 

Depth of overland flow (mm) 

Point 1 Point 2 Point 3 

Existing 2015 land cover map 14.584 11.764 17.863 

Projected 2030 map (Status Quo) 14.576 11.511 16.463 

Projected 2030 map (Ecological Design) 11.697 12.244 17.146 

    

Dominant soil types:  clay silt clay  

Slope gradient: 4.760 10.680 12.650 

 

5.3.5 The second iteration of hydrologic modelling (MIKE SHE 2) 

The second iterative hydrologic modelling (MIKE SHE 2) was performed to estimate the river 

discharges and the water balance.  

(1) Model calibration and validation  

MIKE SHE was used to simulating the P Flux and Q Flux at the observation points using the 

uncalibrated 120m models of Ci Kapundung and Ci Sangkuy watersheds. The initial model 

parameters described in the previous chapter were assigned in the MIKE SHE model. The 
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simulated P Flux and Q Flux had been multiplied by the model resolutions, and the base flow35 

had been added before the values were used in the model performance analysis. The 

uncalibrated Ci Kapundung and Ci Sangkuy models are presented in Figure 5-31 and Figure 

5-32, respectively. 

 

Figure 5-31 Simulated discharges (2008-2015) in the Ci Kapundung upper water catchment area 

(uncalibrated model)  

 

 

Figure 5-32 Simulated discharges (2008-2015) in the Ci Sangkuy upper water catchment area 

(uncalibrated model)  

 

Model parameters (e.g. precipitation correction, canopy interception, and ET surface depth) 

were adjusted during the calibration process using the trial-and-error method. After the models 

had been calibrated (1/1/2008 00:00 – 01/01/2012 00:00), model validation (01/01/2012 

                                                      
35 The estimation of baseflow of Ci Kapundung and Ci Sangkuy Rivers (2008-2015) can be seen in Appendix D.  
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00:00 – 01/01/2016 00:00) was performed. The model calibration and validation for the two 

case study areas can be seen in Figure 5-33 and Figure 5-34. The calibrated and validated 

models, then, were used to project the river discharges in the three scenarios.  

 

Figure 5-33 Simulated discharges (2008-2015) in the Ci Kapundung upper water catchment area 

(calibrated model)  

 

Figure 5-34 Simulated discharges (2008-2015) in the Ci Sangkuy upper water catchment area 

(calibrated model) 

 

(2) Projected discharges in the three future development scenarios 

The projected Ci Kapundung and Ci Sangkuy River discharges in the three scenarios are 

illustrated in Figure 5-35 and Figure 5-36, respectively.   
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Figure 5-35 Projected discharges in the Ci Kapundung upper water catchment area 

 

Figure 5-36 Projected discharges in the Ci Sangkuy upper water catchment area  

 

The highest volume of discharges from the two rivers in the three scenarios was defined from 

the simulated discharges (Table 5-24). The results were evaluated against the observed 

discharges (2008-2015) to determine one of the benchmarks for the development of scenario 

4 (i.e. backcasting scenario)36. The thresholds of flood discharges for the two rivers defined in 

                                                      
36 The development of scenario 4 is presented in Chapter 7. Another benchmark for scenario 4 is the outcome from 

the water balance analysis as part of the initial phase of Pareto-frontier assessment.  
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the Subchapter 5.2 were used as part of the criteria to assess the capacity of each scenario to 

reduce peak discharges in each watershed.  

The estimation of flood discharges in both rivers is presented in the third section of Subchapter 

5.2. It is assumed that the discharges from other catchments in the Bandung Basin on the same 

day will not exceed 173.1 m3/s and 91.4 m3/s when conducting the simulations for the first and 

the second case study area, respectively.  

Table 5-24 The highest observed and simulated discharges in the Ci Kapundung and Ci Sangkuy upper 

water catchment areas in each scenario  

 Discharges 

Scenario Ci Kapundung River Ci Sangkuy River 

Simulated existing condition 35.42 m3/s 42.26 m3/s 

Scenario 1 (Status Quo) 18.08 m3/s 27 14 m3/s 

Scenario 2 (Existing policy) 24.32 m3/s 23 71 m3/s 

Scenario 3 (Ecological Design) 21.69 m3/s 25.13 m3/s 

The highest observed discharges: 20.6 m3/s (14/12/2012) 96.6 m3/s (28/02/2010) 

Estimated flood discharges:  14.3 m3/s 96 m3/s 

 

(3) Water balance  

Water balance from the existing conditions (2008-2015) and the three future scenarios of the 

two case study areas has been estimated (Table 5-25 and Table 5-26). The results suggest that 

all scenarios have lower surface runoff compared with the existing condition. Scenario 1 has the 

highest rate of evapotranspiration (10,913.80 mm), and scenario 3 has the lowest overland (OL) 

boundary outflow (2,415.17 mm) among all future scenarios in the Ci Kapundung upper 

catchment area.  

Table 5-25 Accumulated water balance of Ci Kapundung upper water catchment area (2008-2015) 

(mm) 

 Basemap Scenario 1 Scenario 2 Scenario 3 

Precipitation -31,791.50 -31,791.50 -31,791.50 -31,791.50 

Canopy storage ch 0.18 0.17 0.17 0.18 

Evapotranspiration 10,909.70 10,913.80 10,801.90 10,772.80 

OL storage change 954.52 838.69 882.10 803.19 

OL boundary outflow 4,624.89 2,590.24 3,173.42 2,415.17 

Subsurface storage ch 120.88 119.58 120.11 119.14 

Total error -15,181.40 -17,329.10 -16,813.90 -17,681.10 
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Similar to the first case study area, the simulated overland outflow from scenario 1, 2, and 3 is 

lower than the flow from the existing condition. The highest rate of evapotranspiration was 

retrieved from scenario 2 (11,778.20 mm). The high number of evapotranspiration has a 

correlation with the lowest overland outflow from scenario 2 (64,554.60 mm), in comparison 

with scenario 1 (70,933.10 mm) and scenario 3 (69,187.20 mm).  

Table 5-26 Accumulated water balance of Ci Sangkuy upper water catchment area (2008-2015) (mm) 

 Basemap Scenario 1 Scenario 2 Scenario 3 

Precipitation -240,866.00 -240,866.00 -240,866.00 -240,866.00 

Canopy storage ch 2.45 2.55 2.85 2.52 

Evapotranspiration 10,967.70 11,130.30 11,778.20 11,097.80 

OL storage change 2,299.51 1,898.55 3,311.83 1,838.20 

OL boundary outflow 134,450.00 70,933.10 64,554.60 69,187.20 

Subsurface storage ch 20.18 19.66 21.12 19.56 

Total error -93,126.50 -156,882.00 -161,197.00 -158,721.00 

 

Water balance analysis was also conducted using the maps with uniform land cover (e.g. bare 

land and cultivated land and conifers) for the initial phase of Pareto-frontier analysis (Table 5-27 

and Table 5-28). Ci Kapundung upper catchment with conifers as the land cover type area 

generates less runoff volume (4,616.01 mm) compared with bare land and cultivated land 

(6,444.69 mm). Conifers in the Ci Sangkuy upper water catchment area also have a lower 

volume of overland outflow (713,180.00 mm) than that of bare land and cultivated land 

(831,341.00 mm).  

Table 5-27 Accumulated water balance of Ci Kapundung upper water catchment area with a uniform 

land cover type (2008-2015) (mm) 

 Bare land-cultivated land Conifers  

Precipitation -31,791.50 -31,791.50 

Canopy storage ch 0.00 2.65 

Evapotranspiration 8,850.32 13,264.50 

OL storage change 1,220.49 1,041.51 

OL boundary outflow 6,444.69 4,616.01 

Subsurface storage change 123.95 120.34 

Total error -15,152.20 -12,746.60 
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Table 5-28 Accumulated water balance of Ci Sangkuy upper water catchment area with a uniform land 

cover type (2008-2015) (mm) 

 Bare land-cultivated land Conifers  

Precipitation -240,866.00 -240,866.00 

Canopy storage ch 0.0008 8.27 

Evapotranspiration 9,492.48 13,195.40 

OL storage change 17,510.80 14,320.70 

OL boundary outflow 831,341.00 713,180.00 

Subsurface storage change 33.93 38.69 

Total error 614,322.00 503,068.00 

 

5.4 Types of vegetation to improve flood regulation 

The capacity of vegetation to reduce surface runoff was assessed in the first and second 

iteration of hydrologic simulations to address the third research question: “Which types of 

vegetation can improve flood regulation in each upper water catchment area?”. The results from 

MIKE SHE 1 and 2 to assess the vegetation capacity to reducing runoff are presented as follows.  

5.4.1 Vegetation analysis in MIKE SHE 1  

In MIKE SHE 1, the third research question was addressed by simulating the depth of overland 

flow (mm) using the altered 2030 land cover map of Ci Kapundung watershed. The map was 

developed from the ecological design-based scenario (scenario 3 in LCM 1). There is only one 

type of vegetation in each map. The three observation points assigned in the previous MIKE SHE 

1 simulations (Figure 5-30) were used again to record the depth of overland flow (Table 5-29).  

The result suggests that runoff at the second point has the lowest level compared with the other 

two points despite the different type of vegetation assigned on the maps. The depth of overland 

flow on the map with conifers as the single vegetation are 7.574 mm and 8.356 mm recorded 

at the first and third points respectively. These values are lower than the runoff recorded at the 

same points when broad-leaved or mixed vegetation was assigned on the maps (Rani, Lange, 

Cameron, et al., 2019).  

Table 5-29 The depth of overland flow (mm) estimated from the 2030 land cover map of Ci Kapundung 

watershed with a single type of vegetation (MIKE SHE 1) (Source: Rani et al. 2019) 

 

Vegetation 

Depth of overland flow (mm) 

Point 1 Point 2 Point 3 

Conifers  7.574 5.103 8.356 

Broad-leaved vegetation  7.949 5.044 8.364 

Mixed vegetation  7.949 5.044 8.364 

    

Dominant soil types:  clay silt clay  

Slope gradient: 4.760 10.680 12.650 
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5.4.2 Vegetation analysis in MIKE SHE 2 

Iterative MIKE SHE simulations and water balance analyses have also been performed to assess 

the capacity of vegetation on different soil types to reduce runoff. Figure 5-37 summarises the 

total overland boundary outflow in the first case study areas, as the output from the first 

assessment of vegetation analysis. The detailed results from the initial water balance analysis 

of the first case study area are given in Appendix E.  

The outcome from the first analysis suggests that scenarios with cultivated plants in the four 

soil types generate the least total outflow (379.22 – 864.18 mm). Areas with broad-leaved 

vegetation and soil C has the highest total outflow (13,015.20 mm) in the catchment compared 

with the other fifteen scenarios. The possible reasons for this unexpected outcome are further 

discussed in the preceding chapter. Based on this result, the second vegetation analysis was 

performed. 

 

Figure 5-37 Accumulated overland boundary outflow of Ci Kapundung upper water catchment area with 

16 combinations of different land cover and soil types (2008-2015) (mm)  

 

The second vegetation analysis using a hypothetical catchment was then conducted based on 

the evaluation to the result from the previous analysis. The analysis included an additional two 

variables that arguably affect the runoff generation process (e.g. precipitation rates and slope 

gradients), in addition to land cover and soil types. The simulated overland outflow under low 

and high precipitation rates are presented in Figure 5-38 and Figure 5-39, respectively.  

It is apparent from the two graphs that overland outflow from the forested catchments on 

moderate and steep slopes is almost similar under the low rainfall but varies under higher 
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rainfall (refer to Appendix E). Overland flow values from the catchment covered by conifers on 

all four soil types are the lowest among all scenarios under low rainfall (5,699.80 – 5,733.35 

mm). These values are slightly lower than the overland flow in the four mixed vegetation 

scenarios (5,707.39 – 5,741.17 mm).   

 

Figure 5-38 Accumulated overland boundary outflow of a hypothetical catchment with 32 combinations 

of different land cover, soil types, and slope gradients under low rainfall event (2008-2015) (5 mm/day)  

 

In general, surface runoff could not be absorbed effectively on steep slopes in all scenarios 

during high precipitation (Figure 5-39). Overland outflow from four hypothetical catchments with 

soil A is higher than the outflow from other scenarios. It was also found that conifers on soil A, 

B, and D, and mixed vegetation on soil C generate the lowest volume of surface runoff on both 

slope gradients under heavy rainfall (146,003 - 235,694 mm).   

Overall, these results indicate that land cover, soil types, and slope gradients are the influential 

variables in flood regulation, particularly during heavy rainfall.  The effects of each variable in 

flood regulation are further discussed in the following chapter, which underlies the development 

of proposed landscape planning in the two upper water catchment areas. 
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Figure 5-39 Accumulated overland boundary outflow of a hypothetical catchment with 32 combinations 

of different land cover, soil types, and slope gradients under high rainfall event (2008-2015) (100 

mm/day)  

 

5.5 Summary of Chapter 5 

(1) The modelling outcomes from 64 hypothetical catchments show that the overland flow is 

not only affected by the plant characteristics, but also by the rainfall trend, slope and soil 

conditions.   

(2) The increasing trend of Ci Kapundung River discharge in 2001-2017 was influenced by the 

land cover change. The declining trend of Ci Sangkuy River discharge in the same period 

was caused by the increasing percentage of forest cover and the decreasing precipitation 

rates.  

(3) The composition and distribution of land cover in each case study areas affect the river 

discharge and overland flow.  
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 Discussion  

The first part of this chapter reviews the challenges and the works to improve the accuracy of 

land cover maps, the land change model and the hydrologic model. The subsequent three 

subchapters present arguments regarding the results from the analyses to address the three 

research questions.  

 

6.1 Accuracy of land cover maps, land change, and hydrologic models 

6.1.1 Challenges in developing highly accurate land cover maps 

Five sources of uncertainty in the accuracy assessment of land cover maps have been identified 

in this study (e.g. sampling design, image processing, ground or reference data, the spatial 

distribution of error, and mixed pixels). The sources of uncertainty and the assumptions made 

during the land cover map development process are described as follows: 

(1) Sampling design 

In this study, transect walk was chosen as the method to conduct the field surveys, because of 

the limited access in the case study areas, especially in the forests and areas with steep slopes. 

Consequently, the sampling points could not be distributed evenly on the site. This problem 

caused pixels in the imagery might be classified incorrectly, affecting the image accuracy, 

especially in the forest classification. Therefore, maps from Perhutani were used to select 

samples of segments representing different forest types during the image classification process. 

It is assumed that the forest types were not changed in 2000-2017. However, when the forests 

were changed into other types of land cover (e.g. developed areas or agriculture), these changes 

were identified by referring the SPOT pan-sharpened infrared satellite imagery and the ESRI’s 

base maps with higher resolution.  

 

(2) Image processing 

Image pre-processing for the SPOT and Landsat imagery was conducted using the i.atcorr plugin 

in GRASS GIS for the atmospheric correction (AC), and the SCS+C equation for topographic 

correction (TC) procedure. The TC model was manually developed using the ModelBuilder tool 

in ArcGIS based on the SCS+C equations (Soenen, Peddle, & Coburn, 2005). Thus there is a 

possibility to have uncertainties in the image processing because of this manual process. 

Nevertheless, the abstraction of geographical information (data modelling) could not be done 

with perfect accuracy because of its complexity process (Zhang & Goodchild, 2002). 

The image pre-processing in this study was only conducted using one selected method for each 

image correction procedure. It is argued that different AC and TC methods applied can provide 
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distinct outcomes from the image classification process. The applications of other AC and TC 

and their effects on image accuracy have been covered in other studies (e.g. Vanonckelen et al. 

2013; Sola et al. 2016), and are not the scope of this thesis.    

In the image classification process, different pieces of software might give different results 

depending on the way they were set up. An example of the result from the image classification 

process of the same area using two GIS programs is further reviewed in the next part of this 

subchapter. Another challenge in the development of land cover maps is the clouds and cloud 

shadows which are often found in the satellite imagery of tropical regions. This issue has been 

solved in the last iteration of the map development process. Constant cloud coverage becomes 

a potential problem when classifying vegetation in these areas (Toure et al., 2018; Helmer et 

al., 2012). 

 

(4) Ground or reference data 

The high resolution of satellite imagery in the ESRI base maps was used as a reference dataset 

during the accuracy assessments of land cover maps. ESRI provides satellite imagery for base 

maps in ArcGIS from various resources. The satellite imagery for the two case study areas is 

WorldView 3 from DigitalGlobe taken in 2015. However, it is vital to identify the uncertainty 

factor in the accuracy assessment process. There is a possibility to have an error in the satellite 

imagery with higher resolution as reference data for validation of image classification (Foody 

2002). This imperfect ground reference dataset increases the inaccuracy of maps (Foody 2010).  

The pan-sharpened infrared SPOT images with a spatial resolution of 1.5m were also used to 

assess the accuracy for land cover maps. The images are clear enough to visually differentiate 

the main land cover types, such as developed areas, bare land and cultivated land, plantations, 

and water bodies. However, it is still difficult to differentiate the three types of forest (i.e. 

conifers, broad-leaved woodland, and mixed woodland). Therefore, the forest maps from 

Perhutani were also used in the assessment process.  

 

(5) The spatial distribution of error 

The error of land cover classification is mostly found in the boundary of classes because of mixed 

pixels, which is also addressed by Foody (2002). In this study, the error also occurred in the land 

cover classes next to clouds and/or cloud shadows. In the SPOT imagery, although the pixels 

showing clouds and cloud shadows have been delineated and masked out before the image 

classification process was conducted, many mixed pixels contain brightness from clouds/cloud 

shadows and the land cover next to them (Figure 6-1). As a result, these mixed pixels could not 

be masked out when the original values of thresholds for NIR and Blue bands for cloud masking 
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(Candra, Kustiyo, & Ismaya, 2014) were used. Therefore, the pixels were manually delineated 

and masked out in ArcGIS. Otherwise, those pixels would be assigned as other land cover 

classes with higher reflectance value, such as developed areas, as seen in the area inside the 

orange circle in Figure 6-1. 

  

 Legend:  

 
(a) (b) 

Figure 6-1 (a) Infrared image of the forest in Ci Kapundung watershed; (b) Distribution of error 

surrounding clouds (orange circle) (Source: SPOT imager from © AIRBUS DS 2015) 

 

(6) Mixed pixels 

Two types of satellite imagery with different spatial resolutions were used in the second iteration 

of the land cover map development process in this study. Although SPOT 6 imagery has a 6-m 

resolution and is higher than the resolution for Landsat imagery (30m), mixed pixels can still be 

found in the SPOT imagery. An example can be seen in pixels showing small roads next to 

agriculture. These pixels contain brightness of impervious areas (in this study, they belong to a 

land cover type called ‘developed areas’), and the ‘bare land and cultivated land’, which were 

often be classified as one object during the image segmentation process. The procedures to 

solve this problem are discussed in the second section of this subchapter.   

The problem of mixed pixels was also found in the Landsat imagery when there might be two or 

more land cover types are shown in one pixel. Therefore, the way the pixels were classified 

causes uncertainty. NDVI analyses were performed as part of the backdating process to classify 

the vegetation and non-vegetation objects in the 2000 Landsat imagery. The problem of mixed 

pixels in the Landsat imagery is illustrated in Figure 6-2. Although the NDVI analysis was not 

conducted for classifying the land cover in 2015, Figure 6-2 was created to show how pixels 

near the cultivated areas in the imagery could not be identified as developed areas due to the 

resolution of Landsat image. It can be seen from the pan-sharpened infrared image from SPOT 
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6 imagery that many pixels of Landsat imagery were not included in the ‘developed area’ class. 

This result could be affected by the lower resolution of Landsat images (30m). Pixels surrounding 

the identified developed areas are mixed pixels, containing the reflectance values of both 

developed areas and other land cover types. In this study, the thresholds for NDVI to identify the 

developed areas in Landsat images were determined only to cover the non-mixed pixels. 

Therefore, the mixed pixels surrounding the developed areas were identified as the other 

dominant land cover types next to developed areas.  

 

Figure 6-2. White pixels identified as developed areas in the 2015 Landsat imagery of the first case 

study area (Source: NDVI analysis using Landsat imagery from EROS USGS. Background image from © 

Airbus DS (2015))  

It is argued that the uncertainty factors above have affected the classification accuracies for all 

generated land cover maps. The percentages of built-up areas in each case study were predicted 

based on the estimation of population number in 2017 (Subchapter 5.3) and the area required 

per-person, as part of a validation process for the 2017 land cover maps. It is expected that the 

coverages of built-up area based on the estimated population number in the first and the second 

case study areas in 2017 are approximately 15.88 km2 (15.34% of total area) and 19.99 km2 

(9.75% of total area) respectively. However, the actual coverages derived from the 2017 

generated maps are 19.82% for the Ci Kapundung watershed, and 16.14% for the Ci Sangkuy 

watershed.  

The discrepancies of percentages of developed areas calculated based on the estimated 

population number and from the 2017 maps might be caused by the mixed pixels. There is a 

possibility that mixed pixels in each image were classified as different types of land cover, 

depending on which segments were chosen as training data during the image classification 

procedure. 

Another factor which may partially affect the results is the application of the backdating and 

updating method in this study. The development of 2017 maps relied on the 2015 maps. 

Pixels identified as 

‘developed areas’ 

Mixed pixels classified 

as ‘bare land and 

cultivated land’ 
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Therefore, any errors in the 2015 maps would be reflected in the generated 2017 maps. For 

example, it is assumed that the developed areas in 2015 would not change into other land cover 

types in 201737. Thus, built-up areas in the c.2017 maps were assigned based on this 

assumption and the built-up areas identified in the individual 2017 maps. However, not all pixels 

classified as developed areas in 2015 are representing the actual developed areas, as 

suggested by the outcomes from the accuracy assessments.   

 

6.1.2 Improving classification accuracy and consistency of multi-temporal land cover 

maps 

(1) The land cover classification process 

At the beginning of the land cover map development process of the first case study area using 

ArcGIS, pixels identified as water bodies had not been masked out before the image 

classification process was conducted. Therefore, the parts of the image identified as forests 

were classified as water bodies. This outcome could be caused by high moisture in the forests. 

Thus the pixels were mistakenly classified as water bodies. This classification problem was 

solved by excluding pixels identified as water bodies in the subsequent image classification 

processes by applying water masks to the images.  

The problem of mixed pixels was found during the image classification of small size or thin 

objects, such as road lines near bare land or forests. In the object segmentation process in SAGA 

GIS, the pixels identified as road lines, which should be classified as developed areas, were 

often grouped with pixels next to them (e.g. bare land and cultivated land and forests). The 

problem occurred because the width of road lines is smaller than the spatial resolution of SPOT 

6 images, which were used in the classification process (i.e. one pixel of a SPOT 6 image with 6 

metres of spatial resolution can contain brightnesses from two or more land cover types). 

Therefore, the shapefiles of road networks in the case study areas retrieved from 

OpenStreetMap were used to mask out the road lines before the classification process was 

conducted.  

During the third iteration of the land cover classification process, NDVI was used to classify 

vegetation and non-vegetation in the 2000 Landsat imagery, which could increase the 

computational speed. A specific threshold of NDVI has been assigned in each map. Due to a 

similar range of reflectance values, the non-vegetation class may contain both developed areas 

and bare land. Pixels identified as a non-vegetation class in the first level of classification were 

                                                      
37 The backdating and updating method was used in the last iterations of land cover map generation process 

because of its efficiency and its capability to solve the problem found during the first iteration of land change 

modelling. In the LCM 1 of the first case study area, the coverages of all land cover types were changed significantly 

during the simulation period (2013-2015). Based on the land outcome from land change analysis, each land cover 

class gained and lost the total coverage of more than 4 km2. This result suggested that many mixed pixels were 

classified inaccurately.    
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put together with the ‘cultivated land’ sub-class, into the ‘bare land and cultivated land’ class at 

the second level of process (Chapter 4). 

(2) Image classification accuracies 

Two initial image classification processes had been conducted using the object-based image 

classification in ArcGIS and SAGA GIS before the last iteration of the classification process was 

performed. The aim of these two preliminary studies is to test different approaches to conduct 

the image classification, in order to get higher accuracy of classification. It is important to have 

a relatively high accuracy of land cover maps, because it affects the accuracy of land change 

models, as suggested by Zubair & Ji (2015).  

In the first preliminary study, only two forest types were classified (e.g. conifers and mixed 

forest38). Therefore, there are only five and six types of land cover in the first and second case 

study areas, respectively39. A modified sun-canopy-sensor correction (SCS+C) as topographic 

correction method (Soenen, Peddle, & Coburn, 2005) was applied to the satellite images of the 

Ci Kapundung watershed and half area of the Ci Sangkuy watershed (2015). The image 

classification process was conducted in ArcGIS. In this preliminary study, no atmospheric 

correction was applied to the imagery. This analysis was performed only to test the applicability 

of SCS+C as the selected topographic correction method in this study. The results showed that 

the correction method could improve the overall accuracies of image classification for the first 

and the second case study areas from 74.25% to 77% and from 80.44% to 87.58% respectively 

(Rani et al., 2017).  

The second preliminary study was conducted using the 2015 imagery of the first case study 

area. The SCS+C topographic correction was applied to the imagery. No atmospheric correction 

was performed. In this study, the object-based image classification tool from SAGA GIS was used, 

instead of ArcGIS, and three forest types were classified during the process (i.e. conifers, broad-

leaved plants, and mixed plants). The overall accuracy for the classified image for Ci Kapundung 

watershed is 87.40% with Kappa statistics of 0.83, and it is higher than the previous result of 

classification using ArcGIS (77%). These preliminary studies show that different parameters 

chosen in each type of GIS software affect the accuracy results40. Therefore, based on this result, 

the object-based image classification in SAGA was used in the final works on developing the 

land cover maps. 

                                                      
38 The forests in the two case study areas were classified into two different types (i.e. conifers and non-conifers). 

The term mixed plants used in this initial study refers to the plants which are not solely composed of conifers, 

although in reality, mixed plants consist of both conifers and broad-leaved plants.  
39 The number of land cover classes is different with the actual land cover types identified in this PhD research, 

because only two types of forest were classified during this preliminary study. The five types of land cover in the first 

case study area are the developed areas, agriculture, conifers, mixed forest, and water bodies, whereas the six 

types of land cover in the second case study area are the developed areas, agriculture, tea plantations, conifers, 

mixed forest, and water bodies.  
40 The overall accuracy for the image classification of the second case study area has also been assessed in the 

second preliminary study. However, the result cannot be compared with the one generated from the first preliminary 

work (Rani et al., 2017), because they have different delineation of area.  
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(3) Multitemporal land cover maps 

Multitemporal land cover maps (i.e. maps developed from SPOT and Landsat satellite images) 

were used in this research as one of the input datasets for the second iteration of land change 

and hydrologic simulations (LCM 2 and MIKE SHE 2). The image classification process of the 

first case study area was conducted for each satellite image individually at the beginning of this 

research. For example, the development of the 2015 land cover map was performed without 

relating the process with the result from the 2013 land cover map. As a consequence, the maps 

of 2013, 2015, and 2017 show apparent land cover change within two years (Figure 5-6).  

It is argued in this research that the apparent land change, which occurred between 2013-2015 

and 2015-2017 in the two case study areas can be caused by many factors, such as the 

contaminated images41 which affect to the misclassification, and the exogenous factors (e.g. 

socio-economic and climatic factors). The possibilities to have misclassification in each land 

cover map in this study stem from the missing data of land cover underneath the clouds. Clouds 

block all radiation reflected from the Earth’s surfaces (Lu, 2007 cited in Liu et al. 2011) and the 

altered reflectance values of objects by cloud shadows. The overall accuracies of all land cover 

maps developed using SPOT 6 imagery show relatively high percentages (Table 6-1). However, 

only parts of images, which are free from clouds and cloud shadows, were included in the 

accuracy assessment. The pixels with missing data, then, were classified using the information 

on land cover in the previous year (i.e. the land cover in 2013 maps were used to fill in the 

missing data in the 2015 maps), because the images retrieved in different dates in the same 

year are not available.  

The updating and backdating method (Linke et al., 2009) was implemented in this study in the 

last iteration of the land cover map development process. In the redevelopment of maps from 

SPOT 6 imagery, pixels with missing data were also classified based on the information on land 

cover in the previous year. SPOT images were purchased from Airbus, with a limited number of 

images that can be chosen due to the constant cloud coverage. Among all SPOT images taken 

in 2013, 2015, and 2017 for the two case study areas, the 2015 images have the least 

percentages of cloud coverage (i.e. 1.12% and 0% for the first and the second case study areas 

respectively). This constraint affected the selection of land cover maps to be used as base maps.  

Table 6-1 The overall accuracies of individual land cover maps generated from SPOT 6 imagery 

Images Ci Kapundung watershed 

2013 78,64% 

2015 87.40% 

2017 86.40% 

  

                                                      
41 Clouds and cloud shadows in a satellite image can alter the actual reflectance values of pixels, thus leads to the 

misinterpretation and misclassification.  
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In this study, the distribution of land cover types in 2015 was used as a benchmark for the 

development of land cover maps in 2000 (backdating process) and 2017 (updating process).It 

is assumed that the types of forest with old trees did not change in 17 years (2000-2017). 

However, there is a possibility that the areas identified as bare land and cultivated land and/or 

developed areas in 2015 and 2017 were still covered by trees in 2000. In this case, it is 

assumed that the plants outside the forests are broad-leaved plants, whereas the vegetation 

inside the forests can be classified based on the forest map from Perhutani.  

The land change analysis for the first case study area in LCM 2 shows that there are lower gains 

and losses of one vegetation type to another in 2000-2015, compared with the previous analysis 

using the individual 2013 and 2015 land cover maps in LCM 1. The validation of 2017 projected 

land cover map in LCM 2 shows higher accuracy in comparison to the result from LCM 1, 

suggesting that the backdating and updating method can improve the quality of land cover 

maps.  

 

6.1.3 Uncertainty factors in the land change analysis 

A preliminary land change simulation has been conducted using the 2013, 2015, and 2017 

land cover maps of the first case study area (LCM 1). The study used the transition probabilities 

of land cover in 2013-2015 to predict the future land cover composition and distribution in 2017 

and 2030 under different scenarios. Results from the validation using the actual 2017 land 

cover map suggested that the transition of land cover change from 2013-2015 and 2015-2017 

is not stationary, which is indicated by the low accuracy in the validation result (i.e. 60.52%).  

The land change analysis from 2013 to 3015 (LCM 1) shows high percentages of gains and 

losses of each land cover type in the first case study area. For example, the coverage of 

developed areas has increased by more than 4 km2 within two years, but it was also altered to 

other land cover classes of approximately 4 km2 (Figure 5-6). The contributors to the net change 

in developed areas are bare land and cultivated land class (approximately 0.62 km2) and the 

three types of vegetation (approximately 0.20 km2). This result indicated how fluctuate the land 

change identified in the model is. One of the base maps used in LCM 1 has an accuracy of 

87.40% (the 2015 map), which can be considered as high according to the criteria given by 

Thomlinson et al. (1999 cited in Foody, 2002)42. However, the 2013 map has an accuracy of 

78.64% (Table 6-1). There is still a possibility that the mixed pixels influenced the image 

classification; the same land cover type in 2013 and 2015 might be classified into two different 

classes.   

                                                      
42 The minimum accuracy required for the image classification is 85% for an overall accuracy and no less than 70% 

for each class (Foody, 2002).    
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Changes in natural and socioeconomic processes are the examples of endogenous and 

exogenous variables which can alter the transition probability of land cover (Boerner et al. 1996; 

van Vliet et al., 2016). This suggests that the Markov model is not stationary. Other factors which 

can influence the validation result are the uncertainty in input data and model parameters 

(Brown et al., 2014; Verburg, Tabeau, & Hatna, 2013), and the short time scale (2013-2015) 

for the land change simulation, thus there is not enough training data that the LCM can learn 

from. Therefore, the subsequent land change modelling (LCM 2) was conducted using a longer 

simulation period (2000-2015).  

The estimation of population number in 2017 and the area required per-person in each case 

study area (Subchapter 5.3) was also used to validate the outcomes from land change 

simulations (LCM 2). The LCM 2 results for the first case study area shows that approximately 

18.70 km2 or 18.09% of the total area is predicted to be built in 2017 under the Status-Quo 

scenario43. The percentage is higher than the expected coverage of the built-up area in the same 

year (i.e. 15.34%). It seems possible that this result is influenced by the high discrepancy of 

percentages of developed areas in 2000 and 2015 (i.e. 4.92% and 14.90% respectively). 

Therefore, due to the stationary nature of the Markov model to project the future land cover 

compositions, the model predicted more built-up areas in the simulated 2017 map than it has 

been expected. 

A similar outcome was also achieved from LCM 2 for the second case study area. Only 9.75% of 

the total area is expected to be built in 2017. However, the output from land change modelling 

under the Status Quo scenario shows 10.57% would be built in the same year44.  

Land cover change is a complex process characterised with uncertainty. Thus any land change 

models could not yield accurate results (van Vliet et al., 2016). “Geographical systems, despite 

being governed by largely deterministic processes, have open, undetermined futures” (White & 

Engelen, 2000). There is also a need to have a further interpretation of how the land cover would 

change. For example, the change from bare land to the tea plantations and vice-versa in the 

second case study area, as indicated in the table of transition probability. There might be a 

planting cycle that caused the land change identified by the model, although, in reality, the land-

use (as tea plantations) remains unchanged.  

This study only explored the use of one land change model (i.e. the LCM module of Terrset) to 

project the future land cover of the two case study areas. Different results might be achieved 

when using other land change models, and it is not covered in this research. A comparative 

                                                      
43&40 This result was retrieved from the LCM simulation based on the transition probability maps generated from the 

MLP process using only three demographic-economic drivers (e.g. likelihood to change, distance from disturbance, 

and population density). 
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study of different land change models has been conducted by Mas et al. (2014). The study 

suggested that although the construction of LCM is easier and faster than other CA-Markov 

models, such as CA_MARKOV from Terrset/IDRISI, CLUE, and DINAMICA, the modification of 

model behaviour in the LCM is difficult. 

It should be noted that the CA-Markov model has its limitations, compared with the other types 

of land change models. The two assumptions are incorporated in the model; the same factors 

that influenced the land change in the past would cause the land change in the future, and no 

human decision is integrated into the model (Ghosh et al. 2017). Therefore, the outputs from 

land change modelling in this study should be interpreted according to the two limitations. It is 

assumed that there are no other endogenous and exogenous factors in the land change 

modelling during the period of simulation (2016-2030), which influence the land change other 

than the factors that have been identified before (2000-2015). The land cover transition 

probabilities, which were modelled in the LCM are stationary, although, in reality, the transitions 

are non-stationary (Boerner et al., 1996).  

The future land change was projected based on the transition probabilities, which were derived 

from the historical land change in both case study areas (2000-2015), and the states of 

surrounding cells at one time. No human decision can affect the land change. However, the LCM 

module from Terrset provides an option to include constraints and incentives to specific areas 

in the model, which can be used to investigate the effects of policies on land change (Eastman 

2016). In this research, a set of constraint maps has been developed based on the future 

development scenarios to project the composition and distribution of land cover types in the two 

upper water catchment areas.  

Different combinations of land change drivers were used to model the potential transition maps 

in LCM 2. Three drivers within the demographic-economic group (e.g. likelihood to change, 

distance from disturbance, and population density) were selected to be included in the final 

iteration of the MLP process. It is argued that different drivers used in the MLP process produce 

different suitability maps. It should also be noted that the projected 2017 and 2030 maps 

presented in Chapter 5 are only the plausible options from the suitability maps and not the 

definite land cover maps in the respective years.   

Due to the multi-resolutions of SPOT and Landsat images, the c.2000 and 2015 land cover 

maps have a different number of pixels. Therefore, there is a possibility of one forest type to 

change to another type during the simulation time (less than 0.0034), as suggested in the 

transition probability matrices (Table 5-14, Table 5-16, Table 5-19, and Table 5-21). The map 

projection process in Terrset is also arguably affecting the results. This process was conducted 

to set the map projection and the number pixels in columns and rows so that the 2000 and 

2015 maps can be compared and analysed in LCM. 
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6.1.4 Approaches for improving land change simulations 

The initial land change simulation for the first case study area had been done under different 

development scenarios (LCM 1) before LCM 2 were conducted. In LCM 1, weighting factors were 

applied to the transition probabilities, which varied in different scenarios, and different 

constraint maps were used in each scenario. The transition probabilities and constraint maps 

had been used to simulate 2017 land cover, in which the result was validated using the actual 

2017 map. The findings indicated that the future land cover under the different scenarios in 

2030 have relatively the same composition of land cover when no weighting factors applied, but 

have a different spatial arrangement (Rani et al., 2018). It also showed that the Markov model 

in the LCM affected only the composition and not the spatial arrangement of land cover.  

MLP generates different transition probabilities in each run in LCM 1. In the initial simulations, 

MLP was run thirteen times, and the transition probabilities were generated based on the run 

with the highest accuracy among all MLP results (52.86%). Different results from MLP 

procedures might be caused by random variations which imply the uncertainty in the land-

change process. Thus, different outcomes could be generated every run, and high accuracy from 

the LCM might be achieved by chance (Brown et al. 2005; van Vliet et al. 2016). 

The low accuracy of modelling validation in LCM 1 for the first case study area was resolved by 

expanding the time period for calibration in the land change modelling in LCM 2 into 15 years 

(i.e. 2000-2015). The accuracy of the projected 2017 map for the first case study area could be 

improved from 60.52% in LCM 1 to 81.76% in LCM 2. It shows that the simulation period, the 

base maps, and the land change driver variables used in the modelling affected the modelling 

outcomes and accuracy. Although there is no accuracy assessment for the 2000 map, there is 

a slight improvement on the accuracy of the 2015 map of the first case study area (i.e. from 

87.40% to 87.42%).  

A procedure to determine the number of hidden nodes in MLP from Wang (1994) was used in 

LCM 2. It is proven that the method could generate almost the same MLP accuracy level for 

modelling the first case study area as when applying the Kolmogorov's theorem (Hecht-Nielsen, 

1987), but with less simulation time. 

The transition probability from the land change analysis (2000-2015) and the suitability maps 

resulted from the MLP was used to project the 2017 and 2030 land cover in both case study 

areas. The 2000 maps have been generated from SPOT and Landsat imagery using the 

backdating method, in which the issues from this process has been addressed in section 6.1.2. 

Therefore, it should be noted that the base maps might not represent the actual condition in 

2000.  

The outcomes from the land change modelling show how stationary the CA-Markov model is. 

The LCM 2 model suggested that more areas allocated for cultivated land are needed in the 

future due to the massive change from broad-leaved trees to bare land and cultivated land in 
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the first case study area that have been identified in 2000-2015. However, the land change 

could not be accommodated unless another type of land cover was assigned to change.  

 

6.1.5 Factors influencing the uncertainty in hydrologic models 

The factors influencing the uncertainties in the hydrologic modelling are presented as follows. 

(1) Input data for MIKE SHE  

The list of input data for MIKE SHE has been mentioned in the first section of Subchapter 4.4. 

Among all input datasets used in the models, rainfall and river discharges are the only datasets 

which were measured directly in the two upper catchment areas by the Indonesian 

governmental agency. However, there might be errors in the input data, and this could influence 

the accuracy in the calibration process (Refsgaard & Storm, 1996). 

In MIKE SHE, land cover maps were used as base maps to develop maps with values of Leaf 

Area Index (LAI) and Manning’s M. Nevertheless, the land cover distributions, as shown in the 

land cover maps, are subject to uncertainty. The values of LAI were estimated based on the 

allometric equations, which were developed by various studies conducted in different regions in 

Indonesia and other tropical countries. The main limitation of this method is that the LAI values 

retrieved from the literature can be different from the actual LAI values in the two case study 

areas because the previous studies were conducted in different sites, using tree species in 

different ages (Deblonde, Penner, & Royer, 1994). There is a limited number of studies on the 

LAI of tropical rain forests due to their complexity in forest structure compared with forests in 

sub-tropical regions (Mcwilliam et al., 1993). 

No evapotranspiration rate data is available to be directly used in the MIKE SHE models. So, the 

values were calculated using the Penman-Monteith equation, which requires the maximum and 

minimum temperature on the sites. However, the historical temperature data on the sites is also 

not available. Thus the daily temperature data from Bandung City (2000-2015) had been used 

and corrected to estimate the temperature in each case study area before the reference 

evapotranspiration was computed. 

Hydrus 1D and the calculation made in the UZ (unsaturated zone) Soil Property module in MIKE 

SHE were utilised to estimate the soil parameters. Although the soil map of Bandung Basin 

provides reliable information on the soil distribution and the composition of sand, silt, and clay 

for each soil type, no data regarding other soil parameters are available (e.g. moisture content 

and saturated hydraulic conductivity). The estimated soil parameters might be different 

depending on the formula chosen for the estimation. For example, soil hydraulic conductivity 

can be calculated in MIKE SHE using two different equations; Van Genuchten and Champbell. 

Each equation has variables which differ from the other equation. This study used the Van 
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Genuchten formula to compute the hydraulic conductivity because it is widely used in hydrologic 

modelling (Danish Hydraulic Institute, 2017b).  

 

(2) Model parameterisation 

In this study, the model parameters which could not be retrieved from the field surveys and 

governmental offices in Indonesia (e.g. soil properties and reference evapotranspiration) were 

derived directly from literature or were estimated using software and allometric equations. 

Therefore, there might be a possibility of incorrect parameters were used in the model because 

of miscalculation. The parameters could not be validated because there is no such data taken 

directly from the field. For example, reference evapotranspiration (ETo) was estimated for the 

whole area of the two sites. However, the values may vary depending on the altitudes and land 

cover types. 

A trial-and-error procedure was used in the calibration process, implying little certainty in the 

model input. However, the trial-and-error using manual calibration is the most widely used 

among all calibration procedures and is recommended for complicated hydrologic models 

(Refsgaard & Storm, 1996).   

 

(3) Approaches in MIKE SHE modelling 

MIKE Hydro River from DHI can be an option to be coupled with the MIKE SHE model because 

MIKE Hydro can explicitly simulate the river flow. The module also provides an option to include 

the information on available dams and other river structures on site. However, MIKE model is a 

fully distributed hydrologic model, which relies heavily on the measured field data. In the case 

of MIKE SHE model in this study, the input data, such as evapotranspiration, vegetation and soil 

properties, can be estimated and retrieved from the literature review. On the other hand, MIKE 

Hydro River requires various data related to the boundary conditions of each river branch, wave 

approximation module, and data for the runoff-rainfall model (Danish Hydraulic Institute, 

2017c). Such data for the two case study areas are not available, and could not be generated 

from the secondary data. Therefore, only MIKE SHE model was used in this study without a link 

to MIKE Hydro River. Thus, it is important to note that the results from the MIKE SHE model were 

generated from the limited datasets, and no dams and other river structures were included in 

the modelling. Due to the limitations of MIKE SHE model, P Flux and Q Flux (m3/s/m) were 

simulated and used to calculate the river discharges (m3/s) in each watershed.  

Different methods are offered in the MIKE SHE model to simulate evapotranspiration, overland 

flow and unsaturated flow. All options use different approaches and equations to model the flow. 

For example, MIKE SHE includes three options to calculate unsaturated flow; the full Richards 
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equation, a gravity flow procedure, and a simple 2-Layer water balance (Danish Hydraulic 

Institute, 2017b).  

The simple 2-Layer water balance was used in MIKE SHE 1 and at the beginning of MIKE SHE 

2. The method was selected because it does not require high computational capacity. However, 

there was an issue with the outcomes from the water balance analysis in MIKE SHE 2. The 

problem was prominent, especially when interpreting the results from the sixteen additional 

scenarios to assess the combination of land cover and soil types that can potentially reduce 

surface runoff (Appendix E). The canopy storage was estimated differently for four scenarios 

with the same land cover but different soil types. This result was retrieved given the same 

vegetation parameters assigned in the MIKE SHE model. The issue was solved by changing the 

method to compute the unsaturated flow to Richards equation. Due to the limited soil data, all 

parts of the area were assumed to have only one soil layer in the unsaturated zone, although 

the spatial distribution varies.  

In this study, rainfall trend in 2008-2015 was also used in MIKE SHE to calibrate and validate 

the model and to assess the effect of future land cover change in each site in 2030 based on 

scenarios. A potential improvement for the model development is to integrate the future rainfall 

trend into hydrologic modelling. Available methods to project the future rainfall include the use 

of the Global Climate Models (GCMs) (e.g. Wilby et al. 1999 cited in Chang & Franczyk, 2008), 

time series analysis (e.g. Wang et al. 2013), and ANFIS/ Adaptive Neuro-Fuzzy Inference System 

(e.g. Tjasyono & Gernowo 2008).  

 

6.1.6 Improvement of the hydrologic model performance 

The performance of the uncalibrated 120-m models was assessed at the beginning of MIKE SHE 

2 modelling. The result suggests that the model parameters need to be adjusted during the 

calibration process. In this study, the judgement on model performance mainly only relies on the 

output from the Root Mean Square Error (RMSE) analysis.  

The results from the model performance analysis suggest that the simulated discharges, 

particularly in the Ci Sangkuy watershed, could not be projected correctly, which can be seen 

from the high RMSE (14.55). As seen from Figure 5-36, the observed discharges in 2008-mid 

2011 were significantly higher than the simulated discharges during calibration in the same 

period. One possible reason for this is the unsaturated condition of the soil in the model. The 

portion of rainfall that is not intercepted by the vegetation canopy will reach the soil surface and 

generate surface runoff or infiltrate to the unsaturated zone. Therefore, more time is required 

for the soil to be fully saturated until overland flow is generated on the catchments and flowing 

to the river.  
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MIKE SHE provides an option to set up an additional model (i.e. the HotStart model) that can 

accurately simulate the river discharges and water balance at the beginning of the actual 

simulations. The land cover map before 2015 (e.g. map in 2000) can be included in the 

additional model. Thus, the model begins with relatively saturated soil at the beginning of the 

actual simulation (2008). It is expected that the model can predict the simulated river 

discharges with higher accuracy. However, this option is not feasible to be performed in this 

study because of the incomplete precipitation data before 2008.    

The performance of the model was slightly improved during the calibration process. The 

adjustment of model parameters, such as the vegetation and soil properties, is essential to 

increase the accuracy of the calibrated models. At the beginning of this study, soil parameters 

were estimated only based on the compositions of clay, silt, and sand (Table 4-12 and Table 4-

13) using Hydrus 1D software. The results from Hydrus 1D (e.g. moisture content and hydraulic 

conductivity) were used to compute the other soil parameters in the MIKE Zero UZ soil properties 

model (e.g. water content at field capacity and wilting point).  

The outcomes from the sixteen additional simulations of the first case study area indicate that 

the vegetated catchments with clayey soil generate the least accumulated volume of surface 

runoff (2008-2015) compared with other types of soil. Although the soil was unsaturated (fully 

dried) at the beginning of the simulations, the graph of the time-varying overland outflow from 

the catchment shows that clayey soil keeps generating a lower outflow over time (Appendix E). 

This result is on the contrary to the conclusion made by Nassif & Wilson (1975) who argued that 

different slope gradients with impermeable soil have low infiltration capacity. Therefore, the 

initial soil parameters in MIKE SHE model in this study were corrected by assigning the bulk 

density into the calculation of soil parameters in Hydrus 1D45. The bulk density for each soil type 

in the case study areas was estimated using the guidelines from Ad-hoc-AG-Boden (2005, as 

cited in FAO, 2006).  

As has been described in the previous section, there was also an issue with the model that 

predicted different canopy storage for the same vegetation (Appendix E). This issue was solved 

after changing the method for modelling the unsaturated flow from the 2-Layer water balance 

into the Richards equation. The vegetation analysis was then conducted again with more 

scenarios involved; 64 hypothetical scenarios with the combinations of four land cover, four soil 

types, two slope gradient classes, and two uniform precipitation rates. The decision to include 

more variables into the simulation process was made after examining the results from the 

previous sixteen simulations. The initial modelling outcomes show that cultivated land could 

reduce more surface runoff than the forests when the actual precipitation and slope gradients 

of the first case study area were used in the model. It is argued that the model of Ci Kapundung 

watershed is complex; it receives accumulated precipitation of 0 to 181 mm/day during the 

                                                      
45 The soil parameters used in the final MIKE SHE model are presented in Appendix A.  
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simulation period, and it has slopes ranging from 0 to 650. This information implies that 

precipitation and slope gradients, the two variables which were not involved in the previous 

simulations, have a significant influence on the overland outflow.  

 

6.2 Land cover alteration and flood regulating service 

This sub-chapter discusses the research findings related to the first research question; “How 

does the land cover alteration in Ci Kapundung and Ci Sangkuy upper water catchment areas 

affect flood regulation in Bandung Basin?”. 

Results from the 5-year Moving Average analyses suggested that the annual river discharge of 

Ci Tarum showed an increasing trend in 2001-2017 (y = 2.3665x 4673.9). The trend of Ci 

Kapundung River discharge also increased in 2001-2017 (y = 0.2107x + 419.27). On the other 

hand, the Ci Sangkuy River discharges tend to decrease in the same period (y = -0.3329x + 

680.4). This subchapter discusses the trend of Ci Tarum River discharge and how the rainfall 

variability in the Bandung Basin might affect the trend. Then, the examination of the impact of 

land cover change to the provision of flood regulation service in the two case study areas 

(Research Question 1) is presented. 

6.2.1 Rainfall variability  

The variability of Thiessen-weighted precipitation in Bandung Basin and the variability of annual 

precipitation in the case study areas were analysed to see their correlation with the global 

climate variations (e.g. sea surface temperatures over the tropical Pacific Ocean). Although the 

trend of Ci Tarum discharges can be assessed using data from 2001-2017, the precipitation 

data for Bandung Basin is only available for 2008-2016.  

The trend of Thiessen-weighted precipitation and the annual average precipitation rate in the 

Bandung Basin is illustrated in Figure 6-3. There is a high possibility that the rainfall variability 

was affected by ENSO (El Niňo-Southern Oscillation). SST (sea surface temperature) anomaly 

data from NOAA (National Oceanic and Atmospheric Administration)46 shows that La Niňa events 

occurred in 2010-2011 (strong La Niňa), 2011-2012 (moderate La Niňa), and 2008-2009 

(weak La Niňa). On the other hand, El Niňo happened in 2015-2016 (very strong El Niňo), 2009-

2010 (moderate El Niňo), and 2014-2015 (weak El Niňo) (Golden Gate Weather Services, 

2019). It can be argued that the strong La Nina event in 2010 had an impact on the high annual 

discharge (237.95 m3/s) of Ci Tarum River. In February and March 2010, floods occurred in the 

basin with the peak discharge at the Nanjung water station of over a 10-year return period (JICA, 

                                                      
46 NOAA uses the Oceanic Niño Index (ONI) to identify El Niño and La Niña events. The strength levels of El Niño and 

La Niña include Weak level (with a 0.5 to 0.9 SST anomaly), Moderate level (1.0 to 1.4 SST), Strong level (1.5 to 

1.9), and Very Strong (more than 2.0). The list of Weak, Moderate, Strong, and Very Strong El Niño and La Niña 

events was retrieved from Golden Gate Weather Services (2019) at https://ggweather.com/enso/oni.htm 
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2010)47. JICA (2010) reported that the total inundated area during the flood event in 2010 was 

91.8 km2, and was bigger than the flooded area in 1986 (71 km2).  

 

Figure 6-3 The annual trend of Ci Tarum River discharges and the precipitation in Bandung Basin 

A further assessment of the Thiessen-weighted precipitation trend in the Ci Kapundung and Ci 

Sangkuy upper catchment areas (Figure 6-4) indicates that the annual precipitation rates in the 

areas increased during the La Nina events. In 2010, six stations in the two case study areas 

recorded high precipitation rates of more than 3,000 mm/year (strong La Nina). A weak La Nina 

in 2016 also caused the annual rainfall in both watersheds increased. A very strong El Niňo 

occurred in 2015 and affected the low precipitation rates in the two case study areas.  

Precipitation rates in the two case study areas in 2004-2017 also varied with the location and 

altitudes. Mountainous areas at higher latitude receive high precipitation than the other parts 

of watersheds (Whitten, Afiff, & Soeriaatmadja, 1996), showing the orographic effect. One of the 

mechanisms of air mass lifting in the formation of precipitation is orographic lifting. A mountain 

range causes an air mass to rise and pass the top of the mountain (Chow, Maidment, & Mays, 

1988). In this study, Thiessen polygons in both case study areas have been generated based on 

the locations of weather stations in the Bandung Basin and the surrounding area. The highest 

volume of rainfall was recorded by Margahayu and Cibeureum weather stations, which are 

located at the highest points of the first and second case study areas respectively.  

 

                                                      
47 According to JICA (2010), the capacity of Ci Tarum River in 2010 was able to accommodate the 5-year return 

period (510 m2/s). However, the peak discharge during the 2010 flood was over the 10-year return period. Thus, 

the basin was heavily flooded. The estimated 5-year return period mentioned in this subchapter (510 m2/s) was 

calculated by JICA, and is different from the estimation of flood discharge provided in the third section of 

Subchapter 5.2. (i.e. 374.81 m3/s). 
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Figure 6-4. Annual precipitation rates recorded by nine weather stations in the two case study areas and 

the indication of strong La Nina and very strong El Nino events (Source: NOAA 2018 and author’s 

analysis on precipitation data from PSDA 2017) 

 

In this study, the direct surface runoff from precipitation in the Bandung Basin was assessed to 

see the effects of rainfall variability in the Ci Tarum river discharges. Regression models between 

the direct runoff (DROp) and the rainfall accumulation in Bandung Basin (2008-2015) were 

developed to assess the effects of rainfall variability in the river discharges. From the analysis, 

it can be concluded that the direct surface runoff in the basin is related to the accumulation of 

rainfall from the first day of rainfall event (R0) until the fourth consecutive days (R4) (R2 = 0.337). 

This result is similar with the previous research done by Dasanto et al. (2014) who assessed the 

effective rainfall which caused the flooding in Bandung Basin using Ci Tarum discharge data for 

2000-2009 and the record of flood events in the region. 

The moving average (MA) analysis was conducted to model the historical precipitation trends to 

assess the factors that affected the flood regulation. Results from the 5-year MA analyses of 

average precipitation rates in the Ci Kapundung upper water catchment area show that the 

precipitation rate in the area declined in 2008-2016 (y = -0.0592x + 6.8075). Rainfall rate in 

the Ci Sangkuy upper water catchment area (2008-2016) also decreased (y = -0.2412x + 

6.3675). 
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6.2.2 Impact of land cover alteration on flood regulation in Bandung Basin  

Based on the result from the initial assessment of case study areas as indicators of water 

catchments presented in Subchapter 3.2, it is argued that the alteration of land cover in the two 

sites influences the flood regulation in Bandung Basin. Runoff coefficients in the Ci Sangkuy 

water catchment area have the highest rate to change in 2008-2016 compared with the other 

catchment in the basin. On the other hand, the upper part of Ci Kapundung catchment has a 

positive linear trend in the same period. Therefore, the impact of land cover change in the two 

case study areas to the flood regulation in the basin was examined to address the first research 

question. 

Land change analysis using the land cover maps in 2000, 2015, and 2017 suggested that the 

coverages of developed areas in both sites have increased. However, the trends of land change 

for bare land and cultivated land and forest cover in the two upper catchments were different.  

In the case of Ci Kapundung upper water catchment area, an incline regression line from the 

Moving Average (MA) analysis was derived from the trend of river discharge in 2001-2017. The 

flood regulation in the first case study area was more likely affected by the land cover alteration 

in the area compared with weather conditions. The results from the MA for Thiessen-weighted 

average rainfall indicates a decreasing trend of precipitation rates (y = -0.0592x + 6.8075). All 

five stations inside and surrounding the site recorded the increasing trend of precipitation rates, 

except for the Margahayu station. There was a rapid land cover change in the first case study 

area in 2000-2017. The total coverage of developed areas and bare land and cultivated land in 

the area in 2000 was 4.93%, and it increased to 19.83% in 2017. The area of bare land and 

cultivated land also increased from 31.66% to 36.88% within 17 years. In contrast, the forest 

cover has decreased from 63.41% to 43.30% during the same period. Therefore, it can be 

concluded that the increasing trend of river discharges was mostly influenced by the land cover 

changes in the Ci Kapundung upper water catchment area.  

In the Ci Sangkuy upper water catchment area, there was a declining trend of river discharges 

throughout 2001-2017. A possible explanation for this might be related to the higher percentage 

of forest coverage in 2015 (43.30%) compared with the coverage in 2000 (39.27%), although 

the percentage decreased in 2017 (39.76%). Forest maps from Perhutani show that parts of 

the forests in the upper catchment were planted in the late 1990s to 2000s. Therefore, these 

areas appear to have more bare land than tree canopies in 2000. Within 2001-2017, the total 

built-up area increased from 3.37% to 16.14%. Another plausible reason for the tendency of 

river discharge to decrease over time is the declining trend of precipitation rates in the area, as 

described in the previous section. This finding raises a possibility that the precipitation trend 

and the increasing forest coverage in the area had an impact on the decreasing trend of river 

discharges (y = -0.3329x + 680.4), despite the increasing percentages of developed areas at 

the same time on the site.   
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6.3 Effective scenarios of landscape structure to support flood regulation 

This sub-chapter discusses the outcomes from assessments related to the second research 

question; “What are the most effective scenarios of landscape structure for the two upper water 

catchment areas which can benefit flood regulation?”. Three development scenarios were 

applied in the second iteration of land change modelling (LCM 2) in this study. The outcomes 

from the modelling were used as the input data for the MIKE SHE 2 model to project the flow 

metric responses across the different scenario.  

6.3.1 Driving forces and the rates of land cover changes  

There were six land change drivers included in the LCM 2 of both case study areas (e.g. likelihood 

to change, distance from existing disturbance, population density, elevation, slopes, and 

distance from streams). Many studies have suggested that other variables can also affect the 

land change process, such as Gross Domestic Product (GDP) (Ju et al., 2016) and social data 

(Overmars & Verburg, 2005). However, the variables used in this study are limited to six because 

of two limitations. Firstly, there is no available road network map in 2000 could be retrieved at 

the time the analysis was conducted. Thus, a map showing the ‘distance from roads’ variable 

could not be generated in LCM 248. This condition is in contrast with the LCM 1 process, where 

the same variable could be included in the MLP procedure. In LCM 1, the road network in 2013 

could be retrieved from OpenStreetMap. Secondly, the spatial social data for creating the land 

change driver maps is limited, especially in the developing countries (Herold, Goldstein, & 

Clarke, 2003).  

This study found that ‘likelihood to change’ is the most influential driver variable of land change 

in the two case study areas (2000-2015). The variable has Cramer’s V values of 0.5675 and 

0.4680 for the first and second case study area, respectively. On the other hand, the ‘distance 

from stream’ is the least significant factor of land alteration during the same period. The variable 

in the modelling of the first and second case study areas have low Cramer’s V values of 0.0663 

and 0.0909, respectively. This finding suggests that new development on both sites were more 

affected by the location of existing built-up areas rather than the other driving factors. The 

development of riparian areas still occurred during the simulation period (2000-2015).  

Markov modelling within the coupled CA-Markov model simulates the future land change based 

on the historical trend of change (Brown et al., 2014). The 2000 and 2015 land cover maps of 

both watersheds had been used in the LCM 2 modelling to project the land cover in 2017, which 

later were validated using the actual 2017 maps. The model assumes that the land change is 

stationary. Thus it employs the information regarding the historical rate of change (2000-2015) 

to predict the 2017 land cover composition. However, in reality, the transition is not stationary 

                                                      
48 This ‘distance from road’ variable used in the land change modelling was mapped based on the road network 

map in earlier simulation time. In LCM 2, the earlier time is 2000.  
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(Baker 1989). As a consequence, there are discrepancies between the land cover compositions 

in the predicted and actual 2017 maps. 

The results from the land change modelling confirm that the nature of land cover alteration in 

the two case study areas is non-stationary. In the second land change simulation (LCM 2) of the 

first case study area, the percentage of developed areas in 2017 (18.09%) is predicted lower 

than the actual composition in the same year (19.82%). On the other hand, the predicted and 

actual percentages of built-up areas in the second case study area in 2017 are 10.57% and 

16.14% respectively. It is argued that there are exogenous and endogenous factors that caused 

this discrepancy. These factors could not be assessed in the CA-Markov model and were not 

included in the simulations.   

The transition probability matrices of the two case study areas (2000-2015) suggested that the 

likelihood of bare land and cultivated land to be converted to developed areas in Ci Kapundung 

watershed in 2017 (0.0872) is higher than the probability in Ci Sangkuy watershed (0.0336). 

This finding can explain as to why the rate of change is different in each watershed. The 

estimation of land cover composition shows that the coverage of developed areas in the first 

and second case study areas in 2000-2017 increased by 14.89% and 12.77% respectively, 

indicating the different level of land change on the two sites.  

No differences were found in the percentages of area for each land cover in the projected 2030 

maps in the three scenarios of both case study areas (Table 5-17 and Table 5-22). This outcome 

is likely to be related to the same transition probability matrix (2000-2015) used to compute the 

future land cover in the three scenarios. Therefore, only the spatial arrangement of the future 

land cover in is different, unless if the probability of land cover change in the Markov matrix is 

altered.  

  

6.3.2 The comparison of results from MIKE SHE 2 

This section discusses the outcomes from MIKE SHE 2 to predict the Ci Kapundung and Ci 

Sangkuy river discharges and water balance based on the three future development scenarios49. 

Only one base map derived from the 2015 land cover map was used to generate the LAI and 

surface roughness maps of each case study area, although the model runs from 1/1/2008 

00:00:00 to 1/1/2016 00:00:00. No land cover maps at the beginning of the simulation (i.e. 

2008) were included in this study. Only the trends of precipitation, reference evapotranspiration 

and the vegetation parameters related to plant growth (e.g. root depth and LAI) were adjusted 

in the models. As a result, lower river discharges were predicted at the beginning of simulations. 

                                                      
49 The results from MIKE SHE 1 are not discussed in this section because the modelling was conducted only using 

the first case study area. Thus, the results could not be compared with the hydrologic simulations for the second 

case study area.  
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It is argued that the MIKE SHE modelling begins with dry soil conditions. Thus, the infiltration 

rates were high at the beginning of simulations.  

Another boundary for the simulations conducted in this study is that there was no future rainfall 

trend (2016-2030) included in MIKE SHE. Therefore, the results from MIKE SHE 2 should be 

interpreted based on these circumstances. 

(1) Projected river discharges  

The evaluation of MIKE SHE model to project the river discharges was conducted by referring to 

the estimated flood discharges (see the third section in Subchapter 5.2). If the projected 

discharges are below the estimated flood discharges, then, it can be concluded that the 

proposed scenario(s) can support the flood regulation by reducing surface runoff flowing to the 

rivers. However, it is worth noting that flood discharges can be computed using a different 

method and the time span of data. Japan International Cooperation Agency (JICA) (2010) used 

the rational formula to calculate the Design discharge (2007) for Ci Tarum Rivers and its 

tributaries in the Bandung Basin, based on the rainfall pattern in 1986 (Figure 6-5). According 

to the proposed plan, the river discharges during the 5-year return period flood (Q5) and the 20-

year return period flood (Q20) at the Nanjung station50 are 510 m3/s and 630 m3/s respectively. 

As seen in Figure 6-5, the proposed design discharges for Ci Tarum River and its branches are 

different depending on the location and the river width. For example, the Q5 and Q20 for the Ci 

Tarum River near Dayeuh Kolot (a village which is often inundated during flood events in the 

basin) are 390 m3/s and 490 m3/s respectively.   

In this study, the Q5 of Ci Tarum River was estimated at 374.81 m3/s, or slightly lower than the 

Q5 in Dayeuh Kolot. On the other hand, the flood discharge was calculated at 187.4 m3/s – 

195.4 m3/s. The flood discharge calculation in this research relied heavily on DEM (Digital 

Elevation Model). There is a possibility that the DEM used might not represent the actual depth 

of the river because of its resolution and the river sedimentation that can affect the elevation 

showed on each DEM pixel. Therefore, the estimated flood discharges are lower than the Q5. 

However, the estimation was still referred to when evaluating the MIKE SHE model. The purpose 

of this study is to assess if the proposed scenarios of landscape structure in both case study 

areas can support the flood regulation anytime in the future, not only during the 5-year return 

period flood.    

                                                      
50 Nanjung station is the water station where the Ci Tarum River discharge data is collected from.  
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Figure 6-5 The proposed Design discharges for Ci Tarum and its tributaries in 2007 (Source: JICA 2010)  

  

The results from MIKE SHE 2 suggested that all scenarios of the future land cover maps 

generate different trend of river discharges. The proportions of land cover in each case study 

area are almost similar in scenario 1, 2, and 3. Therefore, it can be argued that the simulated 

river discharges from both sites are more affected by the rainfall trend in particular areas on the 

sites and the distributions of land cover on different soil types and slope conditions. 

Based on the estimated Ci Kapundung and Ci Sangkuy river discharges (Subchapter 5.2), there 

is a possibility that floods might occur in the basin if the river discharges from the first and 

second case study areas are higher than 14.3 m3/s and 96 m3/s, and if the discharges from 

the other catchments do not exceed 173.1 m3/s and 91.4 m3/s respectively.  

The outcomes from the river discharge simulations show that the existing Ci Kapundung and Ci 

Sangkuy upper water catchment areas have the highest peak discharges of 35.45 m3/s and 

42.26 m3/s, respectively. The simulated Ci Kapundung River peak discharge is higher in 

comparison with the actual discharge observed from the river gauge (20.60 m3/s). On the other 

hand, the simulated Ci Sangkuy River peak discharge is lower than the actual discharge (96.60 

m3/s). This suggests that the two models could not represent the actual river regimes, as 

indicated by the high RMSE (3.24 and 12.82 for Ci Kapundung and Ci Sangkuy models 

respectively). Therefore, all findings from the MIKE SHE model must be interpreted with caution.   

Scenario 1 of Ci Kapundung watershed generates the lowest peak discharge (18.08 m3/s) in 

comparison to the other two scenarios. On the other hand, the lowest peak discharges of Ci 

Sangkuy River was retrieved from scenario 2 (23.70 m3/s). Based on this result, scenario 4 was 

proposed, and MIKE SHE 3 was conducted with the aim of reducing the peak discharge.    
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(2) Water balance from hypothetical catchments 

This study has demonstrated how different combinations of vegetation, soil types, slope 

gradients, and rainfall trends in 64 hypothetical catchments influence the overland flow (see 

5.4.2). In general, the model projected a higher overland flow generated from cultivated land in 

the four soil types on moderate and steep slopes under low-intensity rainfall (Figure 5-38). This 

result might be related to lower evapotranspiration that the cultivated land has, compared with 

conifers, broad-leaved and mixed vegetation.  

In accordance with the previous study from Nassif & Wilson (1975), MIKE SHE model in this 

research predicted a higher volume of overland flow on clay soil, particularly under the heavy 

rainfall (100 m/day), in contrast to other soil types. The volume is even higher in areas with 

steeper slopes. Nassif & Wilson (1975) concluded from their study using a rainfall simulation 

that slopes with fine clay soil have a lower infiltration rate than the slopes with standard soil 

under a similar rainfall intensity. It is argued from the study that water infiltration and surface 

runoff are also influenced by the rainfall intensity, catchment slopes, and land cover. Bare land 

with a standard soil type (permeability of 0.13 – 0.54 m/day) on a slope up to 16% and 

grassland with the same soil type on a slope up to 24% have a substantial effect on the surface 

runoff compared with the similar land cover and soil conditions in more flat slopes.  

 

(3) Landscape physical attributes that influence the flood regulation 

Results from the water balance analysis vary with different future development scenarios in 

each case study area despite the similar composition of each land cover. It is argued that the 

land cover distributions on specific soil types and slope gradients affected the river discharges 

and water balance (2008-2015) in the two case study areas.  

The compositions of each land cover on the flat-moderate slopes (<15%) and steep slopes 

(>15%) in 2015 (existing condition) and 2030 (three scenarios) were estimated in this 

research51. The slope analysis for the three scenarios of Ci Kapundung and Ci Sangkuy upper 

water catchment areas shows that although the land cover compositions are similar in each 

scenario, their distributions on the two slope conditions vary (Figure 6-6 and Figure 6-7). For 

example, it is expected that 25.38% of the total area of Ci Kapundung watershed in 2030 will 

be built as developed areas in the three scenarios. However, most of the developed areas in the 

Ecological design-based scenario (scenario 3) will be built in the relatively flat and moderate 

slopes or 19.40% of the total area. This percentage is higher than those in the first and second 

scenarios (16.89% and 16.11% respectively).  

                                                      
51 The approximate threshold for classifying the slope gradients for analysing the landscape physical attributes in 

this research was adopted from the study from Nassif & Wilson (1975).  
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Figure 6-6 Land cover compositions of Ci Kapundung upper water catchment area on flat-moderate and 

steep slopes 

On the other hand, 13.91% of the total area of Ci Sangkuy watershed is projected to be built in 

2030 in the three scenarios (Figure 6-7). Less impervious areas will be built on the steep slopes 

in the third scenario (4.13%), compared with the other two scenarios. In contrast to scenario 1 

and 2, scenario 3 has more coverages of conifers, broad-leaved, and mixed vegetation on the 

steep slopes (33.46%). The discrepancy of land cover compositions on the two slope conditions 

is due to the different constraint maps assigned in each scenario. 
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 Figure 6-7 Land cover compositions of Ci Sangkuy upper water catchment area on flat-

moderate and steep slopes  

 

The soil distributions on the flat-moderate (<15%) and moderate-steep (>15%) slopes in both 

case study areas also vary in the existing condition and each future scenario (Figure 6-8 and 

Figure 6-9). It can be seen that most parts of the two case study areas are located on steep 

slopes; 67.10% of total Ci Kapundung catchment area, and 66.64% of total Ci Sangkuy 

catchment area.  

 

 

Figure 6-8 Soil compositions in the Ci Kapundung upper water catchment area on flat-moderate and 

steep slopes 

 

 Figure 6-9 Soil compositions in the Ci Sangkuy upper water catchment area on flat-moderate 

and steep slopes 

 

The soil types in the Ci Kapundung and Ci Sangkuy upper water catchment areas have different 

soil properties, including hydraulic conductivity, which is related to the soil permeability. A study 

conducted by Archer et al. (2013) showed that soil hydraulic conductivity is influenced by land 

cover types. Archer et al. (2013) employed sample points which are located in the area with the 
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same parent material. The study concluded that forests have higher field saturated hydraulic 

conductivities than grassland cover. However, there might be a case where the soil hydraulic 

conductivity (Ks) in grassland and woodland is similar due to the higher gravel in the grassland. 

There is a continuous supply of organic material which develops as the organic horizon on the 

soil in the forest. But, the soil composition and organic colloids might have an effect on the soil 

permeability. Lower Ks in conifers can be caused by the organic colloids produced by pine 

needles.  

In this research, the soil hydraulic conductivities (Ks) were estimated from the compositions of 

sand, silt, and clay of each soil type on the sites. The soil in the Ci Kapundung and Ci Sangkuy 

upper catchments was composed by different parent materials (e.g. alluvium, volcanic ridges, 

and volcanic plain). Only the dominant soil types were used to estimate the soil compositions. 

The soil classes were then reclassified from eight and fifteen groups in the first and second case 

study areas respectively, to four on each site to reduce the simulation time. Therefore, it should 

be noted that the Ks estimated from the soil compositions might not represent the spatial 

specific soil characteristics, as indicated by Archer et al. (2013). Soil properties, including Ks, 

had been determined before land cover types in each scenario (2030) were assigned. Thus, the 

effect of different tree species to Ks could not be assessed in this study.  

Water balance analysis for the Ci Kapundung upper water catchment area shows that scenario 

1, 2, and 3 have lower overland outflow (2,590.24 mm, 3,173.42 mm, and 2,415.17 mm 

respectively), compared with the simulation of the existing condition (4,624.89 mm). This is an 

unexpected result, given the three scenarios have less vegetated areas (41.37%) compared with 

the 2015 condition (48.27%). A further examination on the daily precipitation rates estimated 

in MIKE SHE shows that there is no single day with precipitation that exceeds 100 mm/day 

during the simulation period (2008-2015). Therefore, this outcome might be due to the lower 

percentage of areas covered with conifers in 2015 (16.30%) than in the three scenarios 

(18.70%). This argument is supported by the outcomes from the water balance analysis of 

hypothetical catchments. It is suggested that conifers can generate the least volume of overland 

outflow in comparison to cultivated land, broad-leaved and mixed vegetation under the low-

intensity rainfall (5 mm/day).  

The accumulated volume of surface runoff from the Ci Sangkuy upper water catchment area 

generated from the existing condition (134,450 mm) is higher than the overland outflow from 

scenario 1, 2, and 3. This result is similar to the condition in the first case study area. An 

important point to make is that a precipitation lapse rate of 100% was used in the calibrated Ci 

Sangkuy model in this study (see Appendix A). Thus, a very high value was estimated for the 

accumulated rainfall volume (mm) in the eight-year simulations (approximately seven times 

higher than the estimated total rainfall in the first case study area), to generate a closer 

predicted river discharges during the calibration process. There are more than 780 days from 
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the eight-year simulations that have precipitation of more than 100 mm/day. This has resulted 

in the high simulated overland flow flowing outside the catchment, particularly in the existing 

condition.  

A possible reason of the lower volume of surface runoff in the three scenarios of Ci Sangkuy 

upper water catchment is because that more areas are predicted as conifers in the future 

(8.26%) than in the existing 2015 condition (6.91%). The outcomes from the water balance 

analysis of the hypothetical catchments indicate that conifers generate less surface runoff, not 

only under the low precipitation (5 mm/day), but also high precipitation (100 mm/day) on soil 

A, B, and D (clay, silt loam, and loam), which are similar to soil E, F, and H in the second case 

study area.   

The bigger size of coniferous woodland in the second case study area in the future scenarios 

(8.26%) is due to its increasing composition from 4.78% in 2000 to 6.91% in 2015. The CA-

Markov model uses the historical trends of change to predict future land cover composition. 

Therefore, the model predicted that there would be more areas with conifers in all future 

scenarios. Consequently, the MIKE SHE model projected a much lower accumulated overland 

flow in the three scenarios (less than 71,000 mm), in contrast with the surface runoff in the 

existing condition (134,450 mm).  

 

6.3.3 Optimization of land cover distributions 

The parameters for three physical landscape attributes (e.g. land cover, soil, and slope 

gradients), as the x-axis in the scenario projection in the Pareto-frontier analysis, were 

determined based on the outcomes from MIKE SHE modelling of the hypothetical catchments. 

The result suggests that catchments with conifers on all soil and slope conditions have less 

volume of surface runoff under a low uniform precipitation rate. However, this outcome is not 

significantly different from the overland outflow from mixed woodland.  

In general, steeper slopes with all land cover types generate more overland flow during heavy 

rainfall. Conifers on clayey, silt loamy, and loamy soil (e.g. Soil A, B, D, E, F, and H) reduce the 

higher volume of surface runoff under such rainfall condition. On the other hand, mixed 

vegetation planted on sandy loam (e.g. Soil C and G) can positively influence the flood regulation. 

The reason for this is that sandy loam has a higher saturated hydraulic conductivity compared 

with other types of soil on the sites, resulting in less surface runoff because more water 

infiltrates to the soil layer.   

After reviewing these outcomes, then, the initial analysis of Pareto optimization was conducted 

by determining the criteria to assess the flood regulation in each scenario. In this case, the 

criteria for the x-axis on the scenario projection graph is the area with clayey soil covered by 

conifers and mixed vegetation. The percentage of area that falls within such criteria was 
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estimated, and the overland flow from each scenario was mapped on the graph to evaluate the 

capacity of each scenario to support flood regulation in the two upper catchments.  

 

(1) Ci Kapundung upper water catchment area 

The criteria for the physical landscape attributes (e.g. slope gradients, land cover and soil types) 

on the scenario projection graph for the first case study area can be seen in Figure 6-10. The 

total coverage of areas with such criteria was calculated from the land cover maps (Figure 6-11). 

The percentage of an area within the criteria in the 2015 land cover map generated from the 

remote sensing data is 3.01%. This number is lower than the percentages in the three scenarios.   

 

Figure 6-10 Rainfall and the physical attributes influencing the flood regulation in the Ci Kapundung 

upper water catchment area 

 

Figure 6-11 Total areas on flat-moderate slopes and are covered by vegetation in the Ci Kapundung 

upper water catchment area 
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Figure 6-12 shows the overland outflow simulated from the MIKE SHE model of the first case 

study area, based on the existing and the future conditions in each scenario. Two more scenarios 

with the uniform land cover of bare land and cultivated land (scenario A) and conifers (scenario 

B) have been added to the graph.  It can be seen that scenario 1, 2, and 3 have lower overland 

outflow, compared with the conditions in 2015. This finding can be explained by the increasing 

coverage of areas covered with conifers and mixed vegetation on clayey soil from 3.01% in 2015 

to more than 4.00% in 2030 in all future scenarios.  

 

 

Figure 6-12 Scenario projection of overland flow in the Ci Kapundung upper water catchment area 

 

 

(2) Ci Sangkuy upper water catchment area 

The initial Pareto-frontier analysis for the second case study area was also focused on the areas 

covered with conifers and mixed vegetation on clayey soil (soil E and F) (Figure 6-13). The 

percentages of such areas in the existing and simulated land cover maps are shown in Figure 

6-14. 
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Figure 6-13 Rainfall and the physical attributes influencing the flood regulation in the Ci Sangkuy upper 

water catchment area 

 

Figure 6-14 Total areas on flat-moderate slopes and are covered by vegetation in the Ci Sangkuy upper 

water catchment area 
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Figure 6-15 Scenario projection of overland flow in the Ci Sangkuy upper water catchment area 
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time. Therefore, the interception capacity from bark might be significant, depending on the tree 

species.  

The water balance analysis conducted in the second iteration of MIKE SHE modelling (2008-

2015) shows that the total evapotranspiration for the first case study area covered with conifers 

(13,264.50 mm or 1,658.06 mm/year) is higher than when broad-leaved vegetation was 

assigned (11,655.40 mm or 1,456.92 mm/year)52. The total evapotranspiration for the second 

case study area also shows a similar condition with that of the first case study area; the 

catchment covered with conifers has higher evapotranspiration (13,195.40 mm or 1,649.42 

mm/year) than the site with broad-leaved vegetation (11,412.60 mm or 1,426.57 mm/year). It 

is important to note that the total evapotranspiration estimated from the MIKE SHE model is the 

sum of evaporation from the canopy interception, evaporation from ponded water, vegetation 

root transpiration, and the evaporation from saturated zone.  

The finding supports the conclusion made by Siswamartana et al. (2002) who reported that the 

evapotranspiration rate of Pinus merkusii in other study sites in Indonesia is higher than the 

values in other forests with broad-leaved vegetation, such as Schima wallichii and Agathis sp. 

Evapotranspiration rate of Pinus merkusii at a study site in Banyumas, Central Java, for example, 

was recorded at 1,002 – 1,253 mm/year or 29-67% of total rainfall (Soedjoko et al., 1998 cited 

in Siswamartana et al., 2002).  

This finding also reflects the arguments from Swank & Douglass (1974), who stated that 

evapotranspiration of coniferous forests is higher than the broad-leaved forests in Coweeta, US. 

However, this conclusion is contrary to the work of other research conducted by Komatsu, 

Tanaka, & Kume (2007). The research concluded that evapotranspiration of conifers is relatively 

similar or lower than that of broad-leaved forests in Japan. It is argued that the 

evapotranspiration rates of broad-leaved and coniferous forests are affected by rainfall 

seasonality (Komatsu, Tanaka, & Kume, 2007).  

In this research, the total evapotranspiration slightly varies in scenario 1, 2, and 3 in each case 

study area. The variation on the evapotranspiration can be caused by the distributions of 

vegetation on different soil types in the catchments, although the land cover compositions in 

each scenario are similar (refer to 5.1.2 for the land cover compositions). This argument is 

supported by the modelling outcomes from the iterative 64 simulations, which show that the 

evapotranspiration for vegetation on Soil A (clayey soil) is generally lower than the similar 

vegetation on other soil types.  

Reference evapotranspiration (ETo) was used in MIKE SHE model to compute the crop reference 

evapotranspiration by multiplying the ETo with crop coefficient (Danish Hydraulic Institute, 

2017b). It should be noted that ETo is the evapotranspiration from a reference surface where 

                                                      
52 The assessment of water balance analysis of the catchments covered by broad-leaved vegetation is further 

elaborated in Appendix F.  
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water is abundant (Allen et al., 1998). Therefore, the model assumes that there is unlimited 

water during the simulations, but in reality, water is limited. Evapotranspiration fluctuates during 

the day depending on the climate. 

In this study, the reference evapotranspiration (ETo) in each case study area was estimated from 

the corrected temperature data and the wind speed in Bandung City. The first and second case 

study areas are located at the altitudes between 760 to 2,206 m asl and 661 to 2,337 m asl 

respectively. Areas at the higher altitudes have a lower temperature than the area at the lower 

altitudes. However, the temperature to estimate the ETo was assumed to be similar across the 

area. Therefore, the ETo assigned in the models could not represent the actual data on the sites.  

 

6.4.2 Canopy interception  

Interception of rainfall by canopy was modelled in MIKE SHE as part of the evapotranspiration 

simulations. This section discusses how the characteristics of the tree canopy have an effect on 

the outcomes from MIKE SHE modelling.  

Results from MIKE SHE 1 suggest that the depth of overland flow at the two sample points in 

the first case study area with conifers as a single type of plant is lower than when the broad-

leaved and mixed vegetation were assigned. The plant capacity to intercept the rainfall is related 

to the canopy structure, which can be characterized by many factors, such as maximum tree 

height, Branch Area Index (BAI), total Plant Area Index (PAI), and Leaf Area Index (LAI) (Parker, 

1995). In general, conifers have a higher LAI (Leaf Area Index) compared with broad-leaved 

vegetation. Plants with a high LAI have a higher density of foliage (Ghazoul & Sheil, 2010) and 

a high interception loss (Zheng et al., 2018). According to Merriam (1960), an interception loss 

can be defined as the precipitation that is evaporated or absorbed into the plant.  

Canopy structure in evergreen forests changes over the year due to the growing tree crowns. 

When the crowns are close to the adjacent tree canopies, the understory and shade-tolerant 

plants grow and create another vegetation layer. The canopy closure is one of the crown and 

canopy characteristics that influence rainfall retention and redistribution53 (Parker, 1995).  

An understory and ground layer (e.g. seedlings and herbaceous vegetation) were found under 

the canopy of broad-leaved trees and conifers in the case study areas. However, only the 

reflectance of tree crowns (overstory) can be captured by the satellite. Thus, the LAI of broad-

leaved vegetation and conifers used in the model can only represent the LAI of overstory 

because the value was derived from the studies that estimated LAI from single trees without the 

understory (e.g. Das, 2014; Albaugh et al., 1998). 

                                                      
53 Other crown and canopy characteristics include the tree species, branch, leaf shape and texture, bark surface 

and canopy height (Parker, 1995). 
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The LAI of mixed woodlands used in the MIKE SHE models was derived from the research 

conducted by Dietz et al. (2006) in a lower montane forest in Central Sulawesi, Indonesia (800 

– 1,140 m asl). Based on the 2015 land cover maps, mixed vegetation in the Ci Kapundung and 

Ci Sangkuy upper water catchments is located in the areas at 1,137 – 2,201 m asl and 788 – 

2,334 m asl respectively. It can be assumed that only the mixed woodlands on mountain slopes 

below about 1,200 m asl in the case study areas have the similar characteristics with the 

vegetation in the study by Dietz et al. (2006) because they grow at the similar altitudes. 

Whitemore (1984) and Grubb (1977) argued that trees at the higher altitude in the lower 

montane forest (1,200 – 1,800 m asl) are shorter (15 – 33 m) and less abundant. The upper 

montane forest (1,800 – 3,000 m asl) has a high occurrence of epiphytes and trees with 

microphyll leaves (as cited in Whitten, Afiff, & Soeriaatmadja, 1996). However, it should be noted 

that plant communities found in one mountain could be different from the other mountain 

because of the slope aspect and the age of soil (Whitten, Afiff, & Soeriaatmadja, 1996).   

MIKE SHE 2 simulations showed that conifers have a higher capacity to intercept rainfall than 

broad-leaved vegetation during the simulation period (2008-2015). This conclusion is supported 

by the findings from the simulated of canopy evaporation, throughfall, and canopy storage of 

conifers and broad-leaved vegetation in the two case study areas. The accumulated canopy 

evaporation for the model with conifers as the uniform land cover in the first case study area is 

9,171.88 mm and is higher than broad-leaved vegetation (4,260.12 mm). A similar result was 

also achieved from the water balance analysis of the second case study area. The interception 

loss of conifers and broad-leaved vegetation in the area is 8,939.46 mm and 6,564.89 mm 

respectively (Appendix F).  

An implication of this outcome is the lower amount of throughfall for conifers compared with the 

values for broad-leaved vegetation. Approximately 71% of total rainfall flows as throughfall in 

areas covered by conifers, whereas broad-leaved trees have more throughfall (86.60%) in the 

first case study area. In the second case study area, the estimated amount of water that passed 

through the conifer canopies is 96.28% of total rainfall and is slightly lower than that of broad-

leaved vegetation (97.27%). These high percentages of throughfall can be explained by referring 

to the simulated total precipitation (2008-2015) in the area that is also high (240,866 mm) 

because the precipitation lapse rate was assigned on the MIKE SHE model. Throughfall is the 

source of water that flows as surface runoff or infiltrates to the soil layer. Plants with a higher 

volume of throughfall have less capacity to intercept rainfall, thus more water reaches the 

ground.  

Conifers have higher accumulated canopy storage than broad-leaved plants in the two 

watersheds. MIKE SHE simulates the canopy interception process by estimating the interception 

storage, which varies with different vegetation types. Interception storage will be filled with 
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precipitation before stem flow occurs. The estimated canopy storage depends on LAI and the 

interception coefficient assigned in the model (Danish Hydraulic Institute, 2017b).  

This result reflects a study in the Walat Mt. research forest, West Java, Indonesia in 1999-2001 

(Mulyana 2002 cited in Siswamartana et al., 2002). The study concluded that Pinus merkusii 

has a higher interception loss (15.7%) compared with broad-leaved trees (e.g. Agathis 

loranthifolia) (14.7%). Pine has a high interception stemflow (0.07-12.33 mm/month) and 

throughfall (1.53-45.83 mm/month). Therefore, Pinus merkusii54 is recommended to be planted 

in the areas with high precipitation (>2000 mm/year). They should be planted along with other 

trees, which have a lower capacity to evaporate, such as Schima wallihii and Agathis sp., in the 

area 1500-2000 mm/year. Otherwise, the tree species can cause drought in the area.  

  

6.4.3 Implication of the findings to the proposed landscape planning for the two case 

study areas 

Water movement in a catchment is a complex process which is affected by various factors. 

Evapotranspiration, for example, is modelled in MIKE SHE based on the canopy interception, 

water infiltration to the soil, water evaporation from soil and transpiration from plant roots, and 

water infiltration to the saturated zone. Plant characteristics that influence the process include 

canopy structure, which determines the interception loss, and root density, as one of the factors 

that affect the vegetation transpiration55 (Danish Hydraulic Institute, 2017b).     

Each vegetation type has a uniform root depth that was assigned in the MIKE SHE model 

regardless the soil types where the plants are located. The logarithmic relations between root 

depth and evapotranspiration employed in MIKE SHE indicate that plants with shallow roots are 

estimated to have higher rates of transpiration from the upper soil layer because a larger 

proportion of roots are located in this zone, compared with the deep-root plants (Danish 

Hydraulic Institute, 2017b).  

Root growth is affected by physical soil conditions (Bengough et al., 2006). Soil parameters (e.g. 

moisture content at field capacity and wilting point) were included in the estimation on actual 

transpiration in MIKE SHE (Danish Hydraulic Institute, 2017b). In this study, the soil moisture 

was computed based on the compositions of clay, sand, and silt, and the estimated bulk density. 

Therefore, there is a high possibility that the same type of vegetation on the sites have different 

rates of transpiration, thus affecting the total evapotranspiration.  

All the findings and discussions regarding plant characteristics were considered during the 

development of constraint maps for the Backcasting scenario of the two catchments (refer to 

Chapter 7). Based on the outcomes from the MIKE SHE modelling, it can be concluded that the 

                                                      
54 Pinus merkusii Jung et de Vriese is the common Pine species in Java that was widely planted in 1970s 

(Siswamartana et al., 2002).  
55 Other factors that influence the vegetation transpiration include the LAI and soil moisture.  
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model predicted high canopy evaporation and low volume of throughfall when a high number of 

Leaf Area Index (LAI) was assigned. This means that conifers have a higher capacity to reduce 

the portion of rainfall reaching to the ground from the canopy because it has a higher value of 

LAI, which characterises the canopy interception, compared with broad-leaved and mixed 

vegetation. Although the LAI of conifers in both case study areas varies depending on the 

estimated age of sample trees, the values can be as high as 14.98 in the 37-year-old forests in 

the first case study area.   

In this study, there are only two sub-classes of broad-leaved vegetation in each watershed (e.g. 

trees located inside and outside the protected areas). The sub-classes were mainly determined 

by observing the dominant trees during the field surveys. Therefore, the vegetation parameters 

assigned for the two sub-classes in MIKE SHE model are the generalization of plant 

characteristics from the diverse broad-leaved tree species on the sites. An improvement in the 

future hydrologic modelling may include the identification and classification of trees on the site 

in more detail.  

Water balance analysis for the hypothetical catchments demonstrates that one vegetation type 

has a distinct capacity to reduce surface runoff on different soil, particularly during heavy rainfall 

(100 mm/day). This finding indicates the importance of considering the evaluation of soil 

properties and the soil distributions on the sites during the landscape planning process. In this 

study, the outcomes from the water balance analysis were used as one of the indications to 

develop the guidelines for developing constraint maps for land change modelling. It is important 

to note that the outcomes from the analysis are not site-specific. However, although the analysis 

was performed under uniform precipitation and reference evapotranspiration rates, the model 

used the existing soil and vegetation properties on the sites. Therefore, the outcomes should be 

interpreted based on these conditions.  

 

6.5 Summary of Chapter 6 

(1) Land cover maps and the results from the land change and hydrologic modelling were 

influenced by the uncertainty factors in each step of analysis (e.g. map accuracy and 

model parameters). Selected approaches were performed to improve the accuracy of 

land cover maps and modelling.  

(2) The case study areas have different levels of land change (2000-2015). The likelihood 

of land cover to change is the most influential driver of land change in both watersheds.   

(3) The scenario projection graphs have been presented to show the capacity of each 

scenario of landscape structure (e.g. the distribution of land cover on different soil types) 

to support flood regulation in the watersheds. The results show how any alteration of 

landscapes can affect the provision of flood regulation.   
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 Planning recommendation 

Chapter 7 presents the Backcasting scenario for the landscape structure of Ci Kapundung and 

Ci Sangkuy upper water catchment areas. The scenario was generated based on the results 

from MIKE SHE 2 modelling and the initial phase of Pareto-frontier analysis for the first three 

scenarios of landscape planning for the sites.  

This last scenario was developed to propose optimal solutions to landscape planning in the two 

case study areas. In this case, the planning outcome is to support flood regulation in the 

catchments while accommodating the needs of areas for settlements and agricultural areas for 

inhabitants in the future. No assessment on other types of ecosystem services in the catchment 

areas has been conducted and integrated into the development of landscape planning in this 

study.  

 

7.1 Land change modelling of Backcasting scenario (LCM 3) 

The outcomes from MIKE SHE 2 suggest that a new development guideline should be added 

when developing the constraint maps for scenario 4. The proposed planning guideline include: 

(1) Replantation of conifers in the existing bare land located above 1,500 m asl outside the 

protected areas. This planning guideline was developed based on the premise that the 

mountain slopes above 1,500 m asl  receive higher precipitation rates compared to the 

adjacent lowlands (Whitten, Afiff, & Soeriaatmadja, 1996). Another reason is that 

conifers have high evapotranspiration rates. Thus, it is recommended to plant conifers 

along with the existing broad-leaved vegetation to avoid drought in the area 

(Siswamartana et al., 2002). 

(2) Replantation of mixed vegetation in the existing bare land located below 1,500 m asl, 

especially on the slopes with clayey soil. 

(3) Cultivated areas on relatively flat to moderate slopes (<15%) to reduce surface runoff.  

This plan is proposed in addition to the existing constraint map for agriculture in 

Scenario 3.  

 

7.1.1 Landscape planning for the Ci Kapundung upper water catchment area 

Figure 7-1 shows the new constraint maps for the first case study area (scenario 4). Constraint 

maps showing the areas restricted to the new development of settlements and agriculture in 

scenario 3 were still be used in scenario 4. Mixed vegetation is proposed to be planted in the 

areas below 1,500 m asl, which also include the existing Perhutani forest. However, this 

guideline does not apply to the protected area due to the restriction to change the landscape by 

law. On the other hand, bare land inside the forest is planted with conifers. Conifers have high 
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canopy interception, which can reduce the throughfall. Thus it is expected that less surface 

runoff is generated from the area. Mixing conifers with the existing vegetation in the forest would 

also reduce the possibility of drought in the catchment.  

  
(a) (b) 

  
(c) (d) 

Figure 7-1 Constraints maps which delineate: (a-b) areas restricted to the new development of 

settlements and agriculture; (c-d) outside the area to be planted with conifers and mixed vegetation 

 

The probability of bare land and cultivated land to change into mixed vegetation was added to 

the list of transition probability that was computed by MLP in LCM 2. A new Markov matrix to 

simulate the land cover maps of the first case study area is shown in Table 7-1. Weighting factors 

were applied to alter the probability of land cover change based on the proposed landscape 

planning guideline. No alteration to the original probability of land cover to be changed to 

developed areas, because one of the aims for backcasting scenario is to propose landscape 

planning that not only can reduce surface runoff, but also accommodate the needs for 

settlements.  
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Table 7-1 The altered Markov matrix to simulate the 2030 land cover map of the first study area 

 

Developed 

areas 

Bare land 

cultv. land Mixed veg. Conifers 

Broad-

leaved veg. 

Developed areas 0.9325 0.0561 0.0000 0.0000 0.0000 

Bare land & cultiv. land 0.2572 0.5513 0.1415 0.0500 0.0000 

Mixed veg. 0.0061 0.1481 0.8458 0.0000 0.0000 

Conifers 0.0070 0.0475 0.0000 0.9455 0.0000 

Broad-leaved veg. 0.0607 0.4482 0.0070 0.0000 0.4911 

 

The outcome from LCM 3 for the backcasting scenario of Ci Kapundung upper water catchment 

area is illustrated in Figure 7-2. More riparian areas in the catchment are covered by mixed 

vegetation, as a result of assigning related constraint maps in the model.  

 

Figure 7-2 The projected 2030 land cover map of the first case study area based on scenario 4 

 

The implication of the altered Markov matrix used in the land change modelling can also be seen 

in the land cover compositions (Table 7-2). There is a change in the coverage of mixed 

vegetation, from 12.94% in scenario 1, 2, and 3, to 18.16% in scenario 4. The land cover map 

in scenario 4 has lower percentages of broad-leaved vegetation (8.25%) and bare land and 

cultivated land (30.09%) in comparison to the first three scenarios.   
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Table 7-2 Land cover composition in the Ci Kapundung upper water catchment area in scenario 4 

compared to the other scenarios 

Land cover types Predicted land cover composition in 2030 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Developed areas 25.38% 25.38% 25.38% 25.38% 

Bare land and cultivated land 33.23% 33.23% 33.23% 30.09% 

Mixed vegetation 12.94% 12.94% 12.94% 18.16% 

Conifers 18.71% 18.70% 18.70% 18.10% 

Broad-leaved vegetation 9.72% 9.72% 9.72% 8.25% 

Water bodies 0.02% 0.02% 0.02% 0.02% 

 

The lower proportions of broad-leaved vegetation and bare land in scenario 4, compared with 

the condition in scenario 1, 2, and 3, could be associated with the transition probability of land 

cover assigned in the Markov matrix (Table 7-1). There is a higher possibility for bare land in the 

lowland areas in 2015 to change into mixed vegetation, as a response to the proposed planning 

guideline for scenario 4. However, the land cover transition from broad-leaved vegetation to bare 

land was also computed in the CA-Markov model. As has been discussed earlier, the Markov 

model in the integrated CA-Markov works based on the historical trend of land cover change in 

the area. In this case, the transition from broad-leaved vegetation to bare land has been 

identified from the two historical land cover maps (e.g. 2000 and 2015 maps) that were used 

to compute the transition probability of land cover change. Therefore, the model will assign a 

portion of broad-leaved woodland in the catchment (2015) to be altered into bare land and 

cultivated land (0.4482). At the same time, the model also changes another part of bare land 

and cultivated land into mixed vegetation (0.1415).  

 

7.1.2 Landscape planning for the Ci Sangkuy upper water catchment area 

Constraint maps to project the 2030 land cover maps of Ci Sangkuy upper water catchment 

area based on the backcasting scenario is shown in Figure 7-3. The approach to developing the 

constraint maps for the first case study area was also applied in the land change modelling of 

the second case study area. The orographic effect influences the precipitation rates in the area. 

Thus mountainous area may receive a higher rate of precipitation compared to the other parts 

of the watershed. Conifers and mixed vegetation were proposed to be planted in the existing 

bare land depending on the altitudes.  
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(a) (b) 

  
(c) (d) 

Figure 7-3 Constraints maps which delineate areas restricted to the new development of settlements 

and agriculture (a-b) and areas to be planted with broad-leaved trees and conifers (c-d) in scenario 4 

 

The Markov matrix used to simulate the 2030 land cover maps in the first three scenarios was 

altered to project the land cover in the fourth scenario. The new Markov matrix is shown in Table 

7-3. A higher probability of bare land to change into mixed vegetation was assigned from 0.0163 

in the original Markov matrix to 0.2934, to increase the coverage of mixed vegetation in the 

lowland.  

 

 

 

 

 



239 
 

Table 7-3 The altered Markov matrix to simulate the 2030 land cover map of the second study area 

 

Developed 

areas 

Bare land 

cultiv. land 

Plantations Mixed 

veg. Conifers 

Broad-

leaved veg. 

Developed areas 0.9996 0.0004 0.0000 0.0000 0.0000 0.0000 

Bare land and cultiv.  0.1005 0.5056 0.0500 0.2934 0.0405 0.0100 

Plantations 0.0158 0.1583 0.7679 0.0386 0.0194 0.0000 

Mixed veg. 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

Conifers 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 

Broad-leaved veg. 0.0504 0.3637 0.0848 0.0000 0.0000 0.5011 

 

The land cover map from the last land change modelling (LCM 3) for the second case study area, 

which was simulated based on the backcasting scenario is presented in Figure 7-4. More areas 

on the catchment are covered with mixed vegetation, compared with the conditions in scenario 

1, 2, and 3.  

 

Figure 7-4 The projected 2030 land cover map of the second case study area based on scenario 4 

  

Similar to the finding in the previous land change modelling for the first case study area, the 

alteration of transition probability from particular land cover types in the second case study area 

also affects their compositions in the watershed (Table 7-4). The composition of mixed 

vegetation increases from 15.14% in the first three scenarios to 24.39% in scenario 4. Less 

probability for land change to broad-leaved vegetation (Table 7-3) has influenced the decreasing 
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composition of broad-leaved vegetation in the area from 18.60% in scenario 1, 2, and 3, to 

11.25% in scenario 4.  

Table 7-4 Land cover composition in the Ci Sangkuy upper water catchment area in scenario 4 

compared to the other scenarios 

Land cover types Predicted land cover composition in 2030 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Developed areas 13.91% 13.91% 13.91% 13.91% 

Bare land and cultivated land 26.85% 26.85% 26.85% 26.85% 

Plantations 16.35% 16.35% 16.35% 14.44% 

Mixed vegetation 15.14% 15.14% 15.14% 24.39% 

Conifers 8.26% 8.26% 8.26% 8.26% 

Broad-leaved vegetation 18.60% 18.60% 18.60% 11.25% 

Water bodies 0.90% 0.90% 0.90% 0.90% 

 

Developed areas and cultivated land have similar compositions with the same land cover in the 

previous scenarios. This is due to the same probabilities assigned in the initial Markov matrix 

from the two land cover types which were still used in scenario 4. However, there is also no 

change in the percentage of area covered with conifers in scenario 4, compared with the other 

three scenarios, despite different transition probability from other land cover types to conifers 

assigned in the Markov matrix. A possible explanation for this issue is that the alteration of all 

types of land cover in the case study area occurs at the same time.  

 

7.2 Implication of landscape planning to flood regulation (MIKE SHE 3) 

MIKE SHE 3 was conducted using the output from land change modelling based on the 

backcasting scenario (LCM 3) to assess the capacity of each case study area to reducing surface 

runoff. It was expected that the maximum discharges from the two catchments in the fourth 

scenario (2008-2015) would not exceed the estimated flood discharges. Based on the 

estimation, the flood discharges for the Ci Kapundung and Ci Sangkuy Rivers are 14.3 m3/s and 

96 m3/s respectively.     

7.2.1 Simulated river discharges and water balance in the Ci Kapundung upper water 

catchment area (MIKE SHE 3) 

The projected Ci Kapundung River discharges from the backcasting scenario are illustrated in 

Figure 7-5. The estimated peak discharge is 16.90 m3/s, which is lower than the highest river 

magnitude recorded from the site (20.60 m3/s) and in the three future scenarios. However, the 

number is still higher than the estimated flood discharge (14.3 m3/s). It means that the 

projected river discharge from Ci Kapundung watershed might still give an influence to the 

occurrence of floods in Bandung Basin if the river discharges from other catchments exceed 

173.1 m3/s (refer to 5.2.3).  
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Figure 7-5 Simulated discharges (2008-2015) in the Ci Kapundung upper water catchment area  

 

The result from the water balance analysis from the MIKE SHE model suggests that the 

accumulated overland flow is 2,740.02 mm, or is still higher than the total outflow from scenario 

1 and 3 (Table 7-5). It was expected that a higher composition of mixed vegetation in the 

catchment could reduce the accumulated surface runoff within the simulation period. This 

argument was developed based on the results from the previous MIKE SHE 2 modelling of 

scenario 1, 2, and 3 and from the hypothetical catchments (refer to 6.3.3). Therefore, it is argued 

that the higher accumulated overland outflow can also be caused by the changes of 

compositions from other land cover types.  

Table 7-5 Simulated water balance of Ci Kapundung upper water catchment area (2008-2015) (mm)  

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Precipitation -31,791.50 -31,791.50 -31,791.50 -31,791.50 

Canopy storage ch 0.17 0.17 0.18 0.18 

Evapotranspiration 10,913.80 10,801.90 10,772.80 11,083.80 

OL storage change 838.69 882.10 803.19 827.89 

OL boundary outflow 2,590.24 3,173.42 2,415.17 2,740.02 

Subsurface storage ch 119.58 120.11 119.14 119.45 

Total error -17,329.10 -16,813.90 -17,681.10 -17,020.20 

 

 

7.2.2 Simulated river discharges and water balance in the Ci Sangkuy upper water 

catchment area (MIKE SHE 3) 

Figure 7-6 shows the simulated Ci Sangkuy River discharges from scenario 4 and the 

comparison with the discharges from other scenarios. The projected peak discharge from the 

backcasting scenario is 26.94 m3/s, which is still higher than the maximum river magnitudes in 
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scenario 2 and 3. However, the number is much lower than the highest recorded discharge from 

the river gauge on the site in 2008-2015 (96.6 m3/s), and the estimated flood discharge (96 

m3/s).  

The possible reasons for this significant discrepancy in the projection of river discharges are 

described as follows. It is highly likely that the model used for projecting the river discharges in 

each catchment is not fully calibrated. There is uncertainty in the model. Thus any output from 

the model should be interpreted with caution.    

 

 

Figure 7-6 Simulated discharges (2008-2015) in the Ci Sangkuy upper water catchment area (scenario 

4)  

The result from water balance analysis reveals that more accumulated overland outflow is 

projected in scenario 4 than the outflow from the three scenarios. The proposed guidelines for 

landscape planning in the area have been applied in the last iteration of land change modelling 

(LCM 3) for the area. However, the outcomes from water balance analysis suggest that a high 

volume of overland outflow is generated from the catchment56. Therefore, further research 

should be undertaken to investigate potential variables that affected the results.  

 

 

 

 

                                                      
56 A high rate of precipitation lapse has been applied into the model during the calibration process of MIKE SHE 

model for the second case study area (refer to Appendix A).  
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Table 7-6 Simulated water balance of Ci Sangkuy upper water catchment area (2008-2015) (mm)  

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Precipitation -240,866.00 -240,866.00 -240,866.00 -240,866.00 

Canopy storage ch 2.55 2.85 2.52 2.52 

Evapotranspiration 11,130.30 11,778.20 11,097.80 11,200.00 

OL storage change 1,898.55 3,311.83 1,838.20 2,307.77 

OL boundary outflow 70,933.10 64,554.60 69,187.20 75,302.40 

Subsurface storage ch 19.66 21.12 19.56 20.10 

Total error -156,882.00 -161,197.00 -158,721.00 -152,033.00 

 

 

7.3 Summary of Chapter 7 

(1) Backcasting scenarios were proposed to support the provision of flood regulation service 

in the two case study areas. The scenarios were developed based on the results from 

the previous MIKE SHE modelling using the first three scenarios and the hypothetical 

catchments.  

(2) The MIKE SHE modelling outcomes indicate that the Backcasting scenario can reduce 

the peak discharge of Ci Kapundung River. The second scenario of the land cover 

composition and distribution in the Ci Sangkuy watershed has the lowest peak discharge 

compared with the other scenarios. 

(3) It was expected that the plantation of conifers in the uplands and mixed vegetation in 

the lowlands, and the restriction for cultivated land on the steep slopes could lower the 

peak discharges in the two case study areas. However, the results from MIKE SHE 3 for 

the second case study could not provide the best outcome. The actual MIKE SHE models 

are highly complicated compared with the hypothetical catchments, and the hydrologic 

modelling was conducted with limitations.  
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 Conclusions and outlook 

This chapter draws the conclusions of research based on the results and discussion provided in 

the preceding chapters. Research novelty, main empirical and methodological findings, and 

research outlook are presented in this chapter.  

 

8.1 Research novelty 

This research aimed to examine potential landscape structure scenarios of Ci Kapundung and 

Ci Sangkuy upper water catchment areas in Bandung Basin, Indonesia. The novelty of this 

research can be seen from the four gaps of study that were addressed in this thesis. The first 

research gap is related to the land change model chosen. The coupled Cellular Automata (CA) 

and Markov model was used to model the future land change in the two watersheds, where 

more than 40% of the total areas were still covered by forest in 2015. According to Ghosh et al. 

(2017), although the CA-Markov models have been applied to predict urban growth in many 

studies, the applications of the model to simulate changes in forest cover have rarely been 

explored (Gap 1). 

Different scenarios of landscape structure in the case study areas to support the streamflow 

regimes were evaluated using hydrology modelling. This approach was taken to investigate the 

research gap mentioned by Wu et al. (2015). In their paper, Wu et al. (2015) argued that there 

are only a few studies that had assessed the development scenarios to support the streamflow 

regimes (Gap 2).  

At least fifteen studies have been conducted to investigate the impact of land-use changes on 

runoff generation process in Indonesia. However, none of these studies assessed particular 

types of vegetation, including the composition and spatial distribution, to reduce surface runoff 

in catchment areas (Gap 3). This research demonstrated how the distribution of vegetation in 

both case study areas influences flood regulation. The research findings arguably contribute to 

filling in the third research gap.  

This research project responds to a call for a study to assess how the rate of ecosystem services 

changes with different landscape settings and scales (Jones et al. 2012). This thesis addresses 

the ongoing needs of comparative studies using case study areas with the different biophysical 

environment when integrating the land change and hydrologic models (Gap 4). 

 

 



245 
 

8.2 Main empirical findings  

The empirical findings from this study can be described to answer the research questions as 

follows.  

(1) Research question 1: How does the land cover alteration in Ci Kapundung and Ci 

Sangkuy upper water catchment areas affect flood regulation in Bandung Basin? 

The final generated land cover maps of Ci Kapundung and Ci Sangkuy upper water catchment 

areas in 2000, 2015, and 2017 indicate that the coverage of developed areas has increased in 

both watersheds. Further analysis on land cover alteration concluded that the two case study 

areas experienced a different level of land change. Land cover alteration in both sites (2000-

2015) was more influenced by the likelihood of land cover to change than the other identified 

driver variables (e.g. the distance from existing disturbance, population density, elevation, 

slopes, and the distance from streams).  

The output from the moving average (MA) analysis suggests that the increasing trend of annual 

Ci Kapundung River discharge (2001-2017) was influenced by the land cover change in the 

upper water catchment. The trend of Thiessen-weighted average rainfall shows a decreasing 

linear regression, indicating that the precipitation factor may not have a significant influence on 

the trend of Ci Kapundung river discharge.  

A declining trend of Ci Sangkuy River discharge in the second case study area (2001-2017) may 

be caused by the increasing percentage of forest cover from 39.27% in 2000 to 43.30% in 2015 

due to the reforestation program, although the forest cover decreased in 2017 to 39.76%. The 

decreasing precipitation rates are argued to be the other factor that affected the trend of river 

discharge.  

These findings suggest that land change is a significant factor that affected flood regulation in 

both case study areas. This problem is due to the increasing demands for new settlements and 

agricultural land in the areas. Therefore, planning guidelines to address the issue and to mitigate 

the flooding issue are required.  

   

(2) Research question 2: What are the most effective scenarios of landscape structure for 

the two upper water catchment areas which can benefit flood regulation? 

Results from the iterative MIKE SHE modelling confirm that the compositions and distributions 

of land cover affect the flood regulation (e.g. river discharges and overland flow) in the Ci 

Kapundung and Ci Sangkuy upper water catchment areas. This study concludes that the 

proposed landscape structure for the Ci Kapundung upper water catchment area in the scenario 

4 (Backcasting scenario) has the lowest peak discharge under the weather conditions in 2008-

2015 (16.90 m3/s), compared with the other scenarios. However, the simulated total overland 
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outflow from the catchment under the fourth scenario is still higher than the outflow from 

scenario 1 and 3. On the other hand, scenario 2 (existing policy-based scenario) provides is the 

most effective landscape planning for the Ci Sangkuy upper water catchment area to support 

flood regulation, by reducing the peak discharge and the accumulated surface runoff during the 

simulation period (2008-2015).   

Constraint maps for scenario 4 were generated based on the feedback from the MIKE SHE 2 

modelling outcomes, which comprise of the results from the iterative simulations on 64 

hypothetical catchments. It was expected that the replantation of conifers in the uplands and 

mixed trees in the lowlands, and the restriction for cultivated land on the steep slopes could 

lower the peak discharges in the two case study areas. However, the hydrologic models used in 

this study were developed with limitations.  

Uncertainty factors in the development of land cover maps using remote sensing data, the land 

change modelling, and the model parameterisation have an influence on the MIKE SHE model 

to accurately simulate the river discharges and water balance in each scenario. Therefore it is 

important to identify and mitigate the source of uncertainty in every stage of the analysis 

process.   

 

(3) Research question 3: Which types of vegetation can improve flood regulation in each 

upper water catchment area? 

The capacity of vegetation to reducing surface runoff in the case study areas is not only related 

to the plant characteristics (e.g. canopy interception and root transpiration), but also to the 

rainfall trends and the physical landscape attributes (e.g. slope gradients and soil types). The 

findings from the water balance analyses of the hypothetical catchments indicate that conifers 

on moderate and steep slopes with the four types of soils can effectively reduce overland outflow 

under low precipitation (5 mm/day). This is due to the higher canopy interception and 

evapotranspiration from conifers compared to the other vegetation types.  

The second part of the vegetation analysis reveals that the simulated overland outflow differs 

significantly in the 64 scenarios during heavy rainfall. In general, more overland outflow is 

generated from the steep slopes and clayey soil. This study has found that conifers on clay, silt 

loam, and loam soil, and mixed vegetation on sandy loam soil have the lowest volume of 

overland outflow. The findings provide insights into the development of landscape planning 

guidelines for the Ci Kapundung and Ci Sangkuy upper water catchment areas in response to 

the needs for a flood mitigation plan in the Bandung Basin.   
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8.3 Main methodological findings 

This research provides a framework to conduct a similar topic of research using case studies 

with data gaps. In this case, decision tree diagrams are presented in this thesis to show a range 

of possible methods to develop land cover maps using remote sensing data and to conduct the 

land change and hydrologic modelling with limitations and boundaries.  

Data gaps in satellite imagery caused by a persistent cloud cover in the case study areas were 

mitigated by applying the backdating and updating method when developing the land cover 

maps (Linke et al., 2009). It is found that the method could improve the quality of the maps, 

which then were used in the second iteration of land change modelling to project the 2017 

maps. The validation for the simulated land cover map (2017) for the first case study area was 

conducted using the 2017 map generated from the remote sensing data. The validation result 

shows that the model accuracy increased from 60.52% (before applying the method) to 81.76% 

(after applying the method) (Rani, Lange, Schroth, et al., 2019). This indicates the applicability 

of the backdating and updating method to mitigate data gaps in satellite imagery.  

This study also shows that heterogeneous data sources can be integrated into land change 

modelling (Brown et al., 2014). The data includes the spatial demographic datasets, remotely 

sensed data, and the digital elevation model (DEM). Limited studies related to vegetation and  

soil in the case study areas have prompted the estimation of missing data for the hydrologic 

modelling using allometric equations and a software program (Hydrus1D).  

 

8.4 Research outlook 

This thesis demonstrates how land change and hydrologic modelling can be used by researchers 

and practitioners to quantify the implications of landscape planning in a water catchment area 

to flood regulation. Further studies can be conducted to minimalize the uncertainty variables in 

the development of land cover maps and the simulations of land change and flood risk in a 

catchment area. There is a potential to include more land change drivers in the land change 

modelling (LCM), providing more information for the MLP neural network to model the transition 

probability maps. Therefore, it is crucial to mitigate the problem regarding the limited spatial 

social data, especially when conducting similar research in developing countries.  

A future rainfall trend analysis and the simulation of saturated flow can be incorporated in the 

hydrologic model. On-site measurement can be done to collect the data that could not be 

retrieved in this study, such as evapotranspiration and Leaf Area Index (LAI). Another site survey 

can also be conducted to identify the sources of discharges for each tributary. This would provide 

a possibility to integrate particular modules of MIKE software to explicitly simulate river 

discharges from catchments (e.g. MIKE Hydro and MIKE 11). 
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It is vital to note that the planning recommendation for the two case study areas was proposed 

only to support the flood regulating service. A further study can be conducted to include multiple 

ecosystem services in the analysis to provide a more comprehensive planning recommendation 

in the catchment areas. Social systems (e.g. human intervension in ecosystems) can be 

integrated into the analysis, and the assessment on the implication of the work for the actual 

landscape can be performed.  
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Appendix 

A. Calibrated parameters for MIKE SHE 2 models 

The calibrated MIKE SHE parameters for the Ci Kapundung and Ci Sangkuy models are 

presented in Table A-1 and Table A-2, respectively. Only parameters that were altered for the 

final simulations are shown in the following tables. Other parameters stated in Subchapter 4.4 

were still used in the calibrated models.  

Table A-1 Calibrated parameters for Ci Kapundung model 

Parameter  Calibrated value 

Climate (Precipitation lapse rate) 

 

 5% 

Vegetation    

(Evapotranspiration) Canopy interception 1 mm 

   

(Bareland-cultived land properties) LAI ini/ LAI mid/ LAI end 0/ 1/ 2.09 

 Root ini/ Root mid/ Root end 800/ 800/ 0 mm 

 Kc ini/ Kc mid/ Kc end 0/ 1.15/ 0.65 

   

Overland flow (Detention storage) Water bodies 2-3 m 

 Other areas 

 

0 m 

Unsaturated zone    

(Soil A) Residual moisture content (Qr) 0.0737 

 Saturated moisture content (Qs) 0.3091 

 Alpha 0.0234 

 n 1.1540 

 Saturated hydraulic conductivity 8.33e-8 m/s 

   

(Soil B) Residual moisture content (Qr) 0.0600 

 Saturated moisture content (Qs) 0.4043 

 Alpha 0.0050 

 n 1.6839 

 Saturated hydraulic conductivity 3.02e-6 m/s 

   

(Soil C) Residual moisture content (Qr) 0.0710 

 Saturated moisture content (Qs) 0.7090 

 Alpha 0.0338 

 n 1.3108 

 Saturated hydraulic conductivity 1.96e-05 m/s 

   

(Soil D) Residual moisture content (Qr) 0.0699 

 Saturated moisture content (Qs) 0.4343 

 Alpha 0.0062 

 n 1.6228 

 Saturated hydraulic conductivity 2.47e-06 
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Table A-2 Calibrated parameters for Ci Sangkuy model 

Parameter  Calibrated value 

Climate (Precipitation lapse rate) 

 

 100% 

Vegetation (Evapotranspiration) Canopy interception 

 

1 mm 

(Bareland-cultived land properties) LAI ini/ LAI mid/ LAI end 0/ 1/ 2.09 

 Root ini/ Root mid/ Root end 800/ 800/ 0 mm 

 Kc ini/ Kc mid/ Kc end 0/ 1.15/ 0.65 

   

Overland flow (Detention storage) Water bodies 2-3 m 

 Other areas 0 m 

 

Unsaturated zone 

  

(Soil E) Residual moisture content (Qr) 0.0776 

 Saturated moisture content (Qs) 0.3138 

 Alpha 0.0221 

 n 1.1557 

 Saturated hydraulic conductivity 8.80e-8 m/s 

   

(Soil F) Residual moisture content (Qr) 0.0790 

 Saturated moisture content (Qs) 0.3531 

 Alpha 0.0212 

 n 1.1800 

 Saturated hydraulic conductivity 2.22e-7 m/s 

   

(Soil G) Residual moisture content (Qr) 0.0130 

 Saturated moisture content (Qs) 0.7067 

 Alpha 0.0229 

 n 1.3438 

 Saturated hydraulic conductivity 2.97e-5 m/s 

   

(Soil H) Residual moisture content (Qr) 0.0801 

 Saturated moisture content (Qs) 0.4648 

 Alpha 0.0101 

 n 1.5015 

 Saturated hydraulic conductivity 2.61e-6 m/s 
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B. Land cover maps for the Ci Kapundung and Ci Sangkuy watersheds (first 

iteration) 

Appendix B presents the result from the accuracy assessment for the first iteration of land cover 

map development for the first case study area and the southern part of the second case study 

area. The complete description of this process was presented as a conference paper (Rani et 

al., 2017). In the first iterative land cover map development process, there are four land cover 

classes in the Ci Kapundung watershed (e.g. developed areas, bare land and cultivated land, 

conifers, and mixed vegetation). On the other hand, there are five land cover classes in the Ci 

Sangkuy watershed (e.g. developed areas, bare land and cultivated land, plantations, conifers, 

and mixed vegetation).  

The classification accuracy for the uncorrected and corrected maps of Ci Kapundung upper 

water catchment area (2015) can be seen in Table B-1 and Table B-2, respectively. In this 

assessment, the uncorrected map refers to the land cover map developed from satellite imagery 

where no atmospheric and topographic correction procedures were applied. On the other hand, 

the corrected map is the land cover map developed from satellite imagery where the topographic 

correction (i.e. SCS+S) was applied into.  

 Table B-1 Confusion matrix for the 2015 uncorrected land cover map of the Ci Kapundung 

watershed (first iteration) 

 

The uncorrected and corrected land cover maps for the first case study area have overall 

accuracies of 74.25% and 77% respectively. ‘Conifers’ has the lowest user and producer 

accuracy in both maps. ‘Developed areas’ and ‘bare land and cultivated land’ are the two 

classes that have higher percentages of user and producer accuracy compared to other land 

cover classes. This result implies the difficulty to differ the two forest types (e.g. conifers and 

mixed vegetation) on the satellite images. 

The confusion matrices showing the accuracy for the uncorrected and corrected land cover 

maps of the South Ci Sangkuy watershed are given in Table B-3 and Table B-4, respectively. The 

overall accuracies for the two maps are 80.44% and 87.58%. ‘Mixed vegetation’ has the least 

 Reference dataset 

Classified image Dev. 

Bare land 

cultivated 

land Conifers 

Mixed 

vegetation Total 

User Acc. 

(%) 

Developed areas 49 11 0 1 61 80.33 

Bare land and cult land 15 156 2 12 185 84.32 

Conifers 0 15 38 29 82 46.34 

Mixed vegetation 0 15 29 129 173 74.57 

Total 64 197 69 171 501 0.00 

Producer Accuracy (%) 76.56 79.19 55.07 75.44 0.00 77.00 

Overall Accuracy: 74.25%       

Kappa statistic: 0.63       
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percentages of user and producer accuracy (i.e. 25%-37.50%), indicating that the land cover 

type was often mistakenly classified as the other land cover types.  

Table B-2 Confusion matrix for the 2015 corrected land cover map of the Ci Kapundung watershed (first 

iteration) 

 

Table B-3 Confusion matrix for the 2015 uncorrected land cover map of the South Ci Sangkuy 

watershed (first iteration) 

 

Table B-4 Confusion matrix for the 2015 corrected land cover map of the Ci South Sangkuy watershed 

(first iteration) 

 

 Reference dataset 

Classified image Dev. 

Bare land 

cultivated 

land Conifers 

Mixed 

vegetation Total 

User Acc. 

(%) 

Developed areas 46 12 0 0 58 79.31 

Bare land and cult land 9 162 7 7 185 87.57 

Conifers 0 12 48 28 88 54.55 

Mixed vegetation 1 20 19 129 169 76.33 

Total 56 206 74 164 500 0.00 

Producer Accuracy (%) 82.14 78.64 64.86 78.66 0.00 77.00 

Overall Accuracy: 77%       

Kappa statistic: 0.67        

  Reference dataset 

Classified image Dev. 

 

Planta 

tions 

Bare land 

cultivated 

land Conifers 

Mixed 

vegetation Total 

User Acc. 

(%) 

Developed areas 22 0 0 11 0 33 66.67 

Plantations 1 74 2 19 2 98 75.51 

Bare land and cult land 0 2 152 24 5 183 83.06 

Conifers 6 9 10 152 0 177 85.88 

Mixed vegetation 0 0 6 1 3 10 30.00 

Total 29 85 170 207 10 501 0.00 

Producer Accuracy (%) 75.86 87.06 89.41 73.43 30.00 0.00 80.44 

Overall Accuracy: 80.44        

Kappa statistic: 0.72        

  Reference dataset 

Classified image Dev. 

 

Planta 

tions 

Bare land 

cultivated 

land Conifers 

Mixed 

vegetation Total 

User Acc. 

(%) 

Developed areas 24 1 1 4 0 30 80.00 

Plantations 0 92 6 14 1 113 81.42 

Bare land and cult land 0 2 171 2 4 179 95.53 

Conifers 4 11 3 147 0 165 89.09 

Mixed vegetation 0 0 9 0 3 12 25.00 

Total 28 106 190 167 8 499 0.00 

Producer Accuracy (%) 85.71 86.79 90.00 88.02 37.50 0.00 87.58 

Overall Accuracy: 87.58        

Kappa statistic: 0.82        
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C. The flood discharge (Qbkf) of Ci Tarum River 

The flood discharge of Ci Tarum River was estimated as part of the assessment to determine 

the discharges of Ci Kapundung and Ci Sangkuy Rivers that have high possibility to affect the 

occurrence of floods in Bandung Basin. At the beginning of the analysis, two sections were drawn 

across the Ci Tarum River (Figure C-1). Then, the hydraulic radius (R) was calculated based on 

the cross-sectional area (A) and wetted perimeter (wp). The discharge at bankfull was estimated 

by multiplying the bankfull width with the water velocity and the bankfull depth. The estimations 

of flood discharge at the two sections are described as follows.  

(1) Section A-A’ of Ci Tarum River 

 
(a) 

 

(b) 

Figure C-1 (a-b). Section A-A’ of Ci Tarum River (662.039 – 664.00 m asl); Sources for background 

image: ESRI, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, 

IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, 

OpenStreetMap, GIS User Community 

 

Cross-sectional area (A) = 54.45 m2  

Wetted perimeter (wp)  = 103.37 m  

Hydraulic radius (R) = A/wp. Thus, R = 0.527 m or 1.729 ft 

The velocity (𝑢   ) can be estimated using the information on the hydraulic radius (R) and the 

slope of the water surface (S), and the Manning resistance coefficient (n) as: 

𝑢   =
1.49 𝑅2/3𝑆1/2

𝑛
 

 

 

𝑢   =
1.49 1.7292/30.021/2

0.05
 = 6.08 ft/sec 
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where bankfull width (𝑤   ) is 51.59 m or 169.25853 ft, and bankfull depth (𝑑   ) is 1.96 m 

or 6.430446 ft. Therefore, the discharge at bankfull or when the channel is at the full capacity 

can be calculated as: 

𝑄   = 𝑤    𝑥 𝑢    𝑥 𝑑     

𝑄   = 169.2585  𝑓𝑡 𝑥 6.08
 𝑡

𝑠𝑒𝑐
𝑥 6.4 0446𝑓𝑡 = 6,617.52 ft3/sec or 187.387298659 m3/sec 

(2) Section B-B’ of Ci Tarum River 

 

(a) 

 

(b) 

Figure C-2 (a-b). Section B-B’ of Ci Tarum River (661.00 – 662.7827 m asl); Sources for background 

image: ESRI, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, 

IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, 

OpenStreetMap, GIS User Community 

Section B-B’ 

Cross-sectional area (A) = 41.6624 m2  

Wetted perimeter (wp)  = 74.1045 m  

Hydraulic radius (R) = A/wp. Thus, R = 0.562 m or 1.84 ft 

The velocity (𝑢   ) can be estimated using the information on the hydraulic radius (R) and the 

slope of the water surface (S), and the Manning resistance coefficient (n) as: 

𝑢   =
1.49 𝑅2/3𝑆1/2

𝑛
 

 

𝑢   =
1.49 1.842/30.021/2

0.05
 = 6.34 ft/sec 
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where bankfull width (𝑤   ) is 51.59 m or 169.25853 ft, and bankfull depth (𝑑   ) is 1.96 m 

or 6.430446 ft. Therefore, the discharge at bankfull or when the channel is at the full capacity 

can be calculated as: 

𝑄   = 𝑤    𝑥 𝑢    𝑥 𝑑     

𝑄   = 169.2585  𝑓𝑡 𝑥 6. 4
 𝑡

𝑠𝑒𝑐
𝑥 6.4 0446𝑓𝑡 = 6,900.5 ft3/sec or 195.4 m3/sec 
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D. Baseflow of Ci Kapundung and Ci Sangkuy Rivers  

 

Baseflow of Ci Kapundung and Ci Sangkuy Rivers (2008-2015) were calculated using the river 

discharge data as part of the estimation of discharges from the MIKE SHE modelling. Baseflow 

was defined from a flow duration curve following Dasanto et al. (2014). It is assumed that 

baseflow has a probability of exceeding the flow by 90%. The results from the assessment are 

presented as follows.  

(1) Baseflow of Ci Kapundung River 

The streamflow data (2008-2015) was ranked by the magnitude and the percentages that each 

discharge to exceed a certain level were calculated and mapped (Table D-1 and Figure D-1). The 

result shows that the baseflow of Ci Kapundung River is 1.71 m3/s.  

Table D-1 Samples of the Ci Kapundung streamflow data and the rank within the period of 2008-2015; 

Source for the streamflow data: PSDA (Water Resource Management in West Java province). 

Date 

Streamflow 

(m3/s) Rank Percent Exceeded 

14/12/2012 20.6 1 0.034211427 

19/12/2012 16.5 2 0.068422853 

10/11/2011 15.6 3 0.10263428 

16/01/2012 14.7 4 0.136845706 

10/12/2012 14.7 5 0.171057133 

20/12/2012 14.7 6 0.20526856 

7/12/2015 14.5 7 0.239479986 

9/12/2015 14.3 8 0.273691413 

28/12/2013 13.7 9 0.30790284 

23/12/2014 

. . . 

13.5 

. . . 

10 

. . . 

0.342114266 

. . . 

17/11/2010 1.71 2629 89.94184057 

21/11/2010 1.71 2630 89.976052 

22/11/2010 1.71 2631 90.01026343 

27/11/2010 1.71 2632 90.04447485 

29/11/2010 

. . . 

1.71 

. . . 

2633 

. . . 

90.07868628 

. . . 

5/12/2010 0.98 2913 99.65788573 

7/12/2010 0.98 2914 99.69209716 

8/12/2010 0.98 2915 99.72630859 

12/12/2010 0.98 2916 99.76052001 

21/12/2010 0.98 2917 99.79473144 

22/12/2010 0.98 2918 99.82894287 

23/12/2010 0.98 2919 99.86315429 

27/12/2010 0.98 2920 99.89736572 

7/11/2009 0.8 2921 99.93157715 

8/11/2009 0.68 2922 99.96578857 

MAX VALUE 20.6 2922 100 

MIN VALUE 0.68  0 

COUNT 2922   
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Figure D-1 Flow duration curve for the Ci Kapundung River (2008-2015) 

 

(2) Baseflow of Ci Sangkuy River 

The baseflow of Ci Sangkuy River (2008-2015) was also estimated using a similar method when 

calculating the baseflow for the Ci Kapundung River. The samples of streamflow data and the 

flow duration curve are given in Figure  D-2 and Table D-2, respectively. From the estimation, it 

can be concluded that the baseflow for the Ci Sangkuy River (2008-2015) is 2 m3/s.  

Table D-2 Samples of the Ci Sangkuy streamflow data and the rank within the period of 2008-2015; 

Source for the streamflow data: PSDA (Water Resource Management in West Java province). 

Date 

Streamflow 

(m3/s) Rank Percent Exceeded 

18/02/2010 96.6 1 0.034211427 

20/03/2010 96 2 0.068422853 

19/02/2010 91.5 3 0.10263428 

05/12/2010 90.4 4 0.136845706 

16/03/2008 87.7 5 0.171057133 

15/02/2010 82.4 6 0.20526856 

08/12/2010 82.4 7 0.239479986 

09/12/2010 80.3 8 0.273691413 

03/12/2010 79.8 9 0.30790284 

16/02/2010 

. . . 

75.3 

. . . 

10 

. . . 

0.342114266 

. . . 

11/09/2013 2 2629 89.94184057 

20/09/2013 2 2630 89.976052 

29/09/2013 2 2631 90.01026343 

13/10/2013 2 2632 90.04447485 

17/10/2013 

. . . 

2 

. . . 

2633 

. . . 

90.07868628 

. . . 

01/11/2014 1.01 2913 99.65788573 

03/11/2013 1 2914 99.69209716 
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Date 

Streamflow 

(m3/s) Rank Percent Exceeded 

20/08/2013 0.9 2915 99.72630859 

26/09/2013 0.9 2916 99.76052001 

22/08/2013 0.88 2917 99.79473144 

24/08/2013 0.88 2918 99.82894287 

27/09/2013 0.88 2919 99.86315429 

05/07/2011 0.84 2920 99.89736572 

07/07/2011 0.84 2921 99.93157715 

23/10/2011 0.84 2922 99.96578857 

MAX VALUE 96.6 2922 100 

MIN VALUE 0.84  0 

COUNT 2922   

 

 

Figure D-2 Flow duration curve for the Ci Sangkuy River (2008-2015) 
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E. Vegetation analysis  

 

The initial vegetation analysis was conducted by simulating the water balance from sixteen 

combinations of four land cover and four soil types in the first case study area. The results from 

the analysis can be seen in Table E-1 The calculation was conducted from the MIKE SHE 2 model 

that used the Richards equation for modelling the unsaturated flow and the calibrated 

parameters in Table  A-1, without applying the precipitation correction rate. The OL boundary 

inflow is 0 for all scenarios. Refer to Subchapter 4.4 for the categorisations of soil types.  

Table E-1 Initial results from water balance analysis for the Ci Kapundung upper water catchment area 

(mm) (2008-2015) 

Scenarios 

Precipita-

tion 

Canopy 

intercept

-tion 

Evapotransp

iration 

OL storage 

change 

OL 

boundary 

outflow 

Sub-

surface 

storage 

change Total error 

BL-Soil A -19,168.10 0.0322 12,558.80 961.35 2,809.71 72.27 -2,765.93 

BL-Soil B -19,168.10 0.0258 12,668.70 1,072.79 8,296.30 57.10 2,926.85 

BL-Soil C -19,168.10 0.0550 12,725.80 1,016.51 13,015.20 84.34 7,673.78 

BL-Soil D -19,168.10 0.0337 12,535.50 977.90 2,898.43 62.56 -2,693.64 

        

Con-Soil A -19,168.10 0.2248 13,416.60 753.13 733.12 66.05 -4,198.98 

Con-Soil B -19,168.10 0.2267 13,485.90 794.29 1,294.08 50.04 -3,543.53 

Con-Soil C -19,168.10 1.2914 13,606.10 878.60 2,188.85 80.10 -2,413.16 

Con-Soil D -19,168.10 1.2327 13,611.90 949.01 2,525.33 58.93 -2,021.76 

        

Mix-Soil A -19,168.10 -0.0003 13,542.50 927.62 2,449.63 69.84 -2.178.43 

Mix-Soil B -19,168.10 0.1401 13,511.60 1,044.14 3,877.48 54.08 -680.62 

Mix-Soil C -19,168.10 0.1364 13,771.60 1,044.97 5,314.45 83.30 1,046.38 

Mix-Soil D -19,168.10 0.0029 13,524.40 1,040.02 3,022.77 61.50 -1,519.44 

        

BC-Soil A -19,168.10 0.0001 12,759.00 767.16 705.24 59.40 -4,877.13 

BC-Soil B -19,168.10 0.0188 12,802.90 769.64 666.13 40.95 -4,888.50 

BC-Soil C -19,168.10 0.0002 12,909.30 789.78 1,466.64 79.34 -3,914.08 

BC-Soil D -19,168.10 0.0003 12,739.10 748.26 600.03 45.00 -5,035.77 

Notes: BL (Broad-leaved vegetation), Con (Conifers), Mix (Mixed vegetation), BC (Bareland and cultivated 

land) 

 

A detailed examination was done to assess the fluctuation of overland outflow on the Ci 

Kapundung upper catchment covered by one vegetation type (broad-leaved plants). The 

outcome (Figure E-1) shows that Scenario BL-C (broad-leaved vegetation on Soil C) generates 

the highest volume of runoff despite a high percentage of sand (72.05%) compared with the 

other three scenarios. Figure E-1Figure  also illustrates how dry the soil was at the beginning of 

the simulation, which is indicated by the low ouflow values on the graph.   
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Figure E-1 Simulated overland outflow from Ci Kapundung catchment covered by broad-leaved 

vegetation with soil A, B, C, and D  

 

The final results from water balance analysis for the hypothetical catchment are presented in 

Table  E-2. 

Table E-2 Final results from the water balance analysis for the Ci Kapundung upper water catchment 

area (mm) (2008-2015) 

Scenarios 

Precipita-

tion 

Canopy 

inter-

ception 

Evapotran

spiration 

OL storage 

change 

OL 

boundary 

outflow 

Sub-

surface 

storage 

change Total error 

L-S1-BL-A -14,605.00 1.00 7,886.92 0.74 6,617.21 118.58 19.05 

L-S1-BL-B -14,605.00 1.00 7,886.92 0.74 6,619.85 115.88 19.00 

L-S1-BL-C -14,605.00 1.00 7,886.92 0.74 6,586.16 149.14 18.57 

L-S1-BL-D -14,605.00 1.00 7,886.92 0.74 6,618.17 117.49 18.92 

        

L-S1-C-A -14,605.00 11.98 8,763.00 0.33 5,730.86 118.57 19.56 

L-S1-C-B -14,605.00 11.98 8,763.00 0.33 5,733.35 115.87 19.35 

L-S1-C-C -14,605.00 11.98 8,763.00 0.33 5,699.80 149.14 19.06 

L-S1-C-D -14,605.00 11.98 8,763.00 0.33 5,731.68 117.48 19.28 

        

L-S1-M-A -14,605.00 3.20 8,763.00 0.76 5,738.50 118.57 19.13 

L-S1-M-B -14,605.00 3.20 8,763.00 0.76 5,741.17 115.88 19.11 

L-S1-M-C -14,605.00 3.20 8,763.00 0.76 5,707.39 149.14 18.58 

L-S1-M-D -14,605.00 3.20 8,763.00 0.76 5,739.63 117.48 19.18 

        

L-S1-BC-A -14,605.00 0.00 5,605.19 0.20 8,896.01 118.56 14.97 

L-S1-BC-B -14,605.00 0.00 5,646.97 0.20 8,857.50 115.87 15.54 

L-S1-BC-C -14,605.00 0.00 5,652.85 0.20 8,818.54 149.13 15.72 

L-S1-BC-D -14,605.00 0.00 5,647.02 0.20 8,855.92 117.47 15.62 

        

L-S2-BL-A -14,605.00 1.00 7,886.92 0.28 6,612.21 114.90 10.21 

L-S2-BL-B -14,605.00 1.00 7,886.92 0.28 6,614.67 112.50 10.28 
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Scenarios 

Precipita-

tion 

Canopy 

inter-

ception 

Evapotran

spiration 

OL storage 

change 

OL 

boundary 

outflow 

Sub-

surface 

storage 

change Total error 

L-S2-BL-C -14,605.00 1.00 7,886.92 0.28 6,583.96 142.09 9.15 

L-S2-BL-D -14,605.00 1.00 7,886.92 0.28 6,613.12 113.93 10.15 

        

L-S2-C-A -14,605.00 11.98 8,763.00 0.12 5,727.48 113.67 11.12 

L-S2-C-B -14,605.00 11.98 8,763.00 0.12 5,729.91 111.28 11.15 

L-S2-C-C -14,605.00 11.98 8,763.00 0.12 5,698.67 140.86 9.50 

L-S2-C-D -14,605.00 11.98 8,763.00 0.12 5,728.40 112.70 11.08 

        

L-S2-M-A -14,605.00 3.20 8,763.00 0.28 5,735.25 113.67 10.39 

L-S2-M-B -14,605.00 3.20 8,763.00 0.28 5,737.67 111.28 10.42 

L-S2-M-C -14,605.00 3.20 8,763.00 0.28 5,706.75 140.86 9.07 

L-S2-M-D -14,605.00 3.20 8,763.00 0.28 5,736.01 112.70 10.18 

        

L-S2-BC-A -14,605.00 0.00 4,958.42 0.10 9,564.55 116.02 34.09 

L-S2-BC-B -14,605.00 0.00 5,485.61 0.08 9,037.48 114.85 33.04 

L-S2-BC-C -14,605.00 0.00 5,539.71 0.08 8,955.39 145.28 35.44 

L-S2-BC-D -14,605.00 0.00 5,494.55 0.08 9,027.06 116.26 32.94 

        

H-S1-BL-A -292,100 0.00 38,458 6.86 253,536 107.48 12.52 

H-S1-BL-B -292,100 0.00 88,560 5.99 203,471 116.61 59.80 

H-S1-BL-C -292,100 0.00 131,402 5.13 160,574 149.71 35.23 

H-S1-BL-D -292,100 0.00 109,549 5.61 182,507 118.14 68.54 

        

H-S1-C-A -292,100 0.00 60,968 3.28 235,694 107.48 4,680.40 

H-S1-C-B -292,100 0.00 110,776 2.71 181,847 116.50 644.18 

H-S1-C-C -292,100 0.00 146,001 2.35 146,003 149.63 63.46 

H-S1-C-D -292,100 0.00 131,851 2.50 160,359 118.03 233.15 

        

H-S1-M-A -292,100 0.00 47,596 7.49 244,399 107.48 10.68 

H-S1-M-B -292,100 0.00 97,142 6.52 194,890 116.58 59.32 

H-S1-M-C -292,100 0.00 146,007 5.40 145,971 149.66 33.11 

H-S1-M-D -292,100 0.00 117,893 6.08 174,156 118.11 71.72 

        

H-S1-BC-A -292,100 0.00 60,869 2.93 238,875 119.33 7,765.85 

H-S1-BC-B -292,100 0.00 61,803 2.97 237,950 116.64 7,773.20 

H-S1-BC-C -292,100 0.00 93,399 1.64 205,013 149.56 6,463.55 

H-S1-BC-D -292,100 0.00 76,200 2.65 223,016 118.17 7,237.65 

        

H-S2-BL-A -292,100 0.00 28,208 3.35 271,280 106.27 7,488.88 

H-S2-BL-B -292,100 0.00 78,999 2.72 217,430 116.61 4,437.50 

H-S2-BL-C -292,100 0.00 131,401 2.18 160,713 149.68 160.72 

H-S2-BL-D -292,100 0.00 100,423 2.48 194,241 118.14 2,684.47 

        

H-S2-C-A -292,100 0.00 59,809 2.88 240,166 106.27 7,990.88 

H-S2-C-B -292,100 0.00 109,373 2.23 188,861 116.50 6,256.70 

H-S2-C-C -292,100 0.00 146,000 1.75 150,843 149.63 4,908.80 

H-S2-C-D -292,100 0.00 130,279 1.96 167,233 118.03 5,535.68 

        

H-S2-M-A -292,100 0.00 35,550 3.36 261,158 106.27 4,719.10 

H-S2-M-B -292,100 0.00 86,436 2.85 205,797 116.58 253.38 

H-S2-M-C -292,100 0.00 146,009 2.29 146,025 149.63 75.08 
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Scenarios 

Precipita-

tion 

Canopy 

inter-

ception 

Evapotran

spiration 

OL storage 

change 

OL 

boundary 

outflow 

Sub-

surface 

storage 

change Total error 

H-S2-M-D -292,100 0.00 107,889 2.66 184,261 118.11 170.21 

        

H-S2-BC-A -292,100 0.00 55,302 2.86 244,969 116.73 8,290.53 

H-S2-BC-B -292,100 0.00 61,316 2.76 238,672 116.64 8,007.19 

H-S2-BC-C -292,100 0.00 93,306 1.51 205,474 149.56 6,831.20 

H-S2-BC-D -292,100 0.00 75,866 2.48 223,609 118.17 7,495.65 

Notes: L (Low precipitation), H (High precipitation), S1 (Slope <15%), S2 (Slope >15%), BL (Broad-leaved 

vegetation), Con (Conifers), Mix (Mixed vegetation), BC (Bareland and cultivated land) 
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F. Additional water balance analysis 

Water balance analyses were also conducted using the MIKE SHE model with broad-leaved 

vegetation as the single land cover in the first and second case study areas. The aim of this 

assessment is mainly to identify the characteristics of broad-leaved vegetation (e.g. total 

evapotranspiration, canopy evaporation, and throughfall). Table F-1 and Table F-2 present the 

results from water balance analysis for catchments covered by conifers and broad-leaved 

vegetation. 

Table F-1 Accumulated water balance of Ci Kapundung upper water catchment area with a uniform land 

cover type (2008-2015) (mm) 

 Conifers Broad-leaved vegetation 

Precipitation -31,791.50 -31,791.50 

Canopy storage change 2.65 0.08 

Evapotranspiration 13,264.50 1,649.00 

OL storage change 1,041.51 1,161.11 

OL boundary outflow 4,616.01 7,923.42 

Subsurface storage change 120.34 123,99 

   

Throughfall 22,617.00  

Canopy evaporation 9,171.88  

Total error -12,746.60 -10,933.90 

 

Table F-2 Accumulated water balance of Ci Sangkuy upper water catchment area with a uniform land 

cover type (2008-2015) (mm) 

 Conifers Broad-leaved vegetation 

Precipitation -240,866.00 -240,866.00 

Canopy storage change 8.27 3.14 

Evapotranspiration 13,195.40 11,412.60 

OL storage change 17,510.80 3,027.00 

OL boundary outflow 713,180.00 151,514.00 

Subsurface storage change 38.69 21.87 

   

Throughfall 231,922.00 234,303.00 

Canopy evaporation 8,939.46 6,564.89 

Total error 503,068.00 -74,887.30 

 


