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Abstract

Understanding the physics of the neoclassical tearing mode (NTM) onset and its
stabilisation is one of the key issues in providing successful operation of future power
plants. The latter, in turn, requires a well developed predictive theory of the tearing mode

threshold in order to specify and optimise control schemes.

A new drift kinetic theory is presented to calculate the plasma response to the NTM
magnetic island. Small magnetic islands compared to the tokamak minor radius are
assumed but island widths, w, comparable to the ion banana orbit width, py;, are treated
accurately, retaining finite orbit width effects. To provide dimensionality reduction,
streamlines, S, are derived that can be interpreted as a generalised radial coordinate.
Adopting a low collisionality plasma, the distribution function is found to be constant
on contours of constant S when collisions are neglected. Proceeding to next order, and
introducing collisions, the dependence of the particle distribution on S and pitch angle,
A, is determined. S contours reproduce the magnetic island geometry but have a radial
shift of a few poloidal gyro-radii, py. This radial shift is found only for passing particles
and is in opposite directions for V| = 0, V| is the parallel component of velocity. The
distribution function being flattened across these S islands rather than the magnetic
island restores the pressure gradient across a magnetic island of width w < py;, which
provides a physics basis for the NTM threshold by suppressing the NTM drive. Collisions
cannot be treated perturbatively near the trapped-passing boundary in pitch angle, and
thus here a thin collisional boundary layer is identified. This layer matches the passing
and trapped solutions outside the layer and being the dominant source of dissipation

provides the island propagation frequency.

The solution provides a threshold island width, w. (below which magnetic islands are
healed), which arises from the passing particle dynamics, and the relevant parameter is

the ion poloidal gyro-radius, py;: w. = 3py;.
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Chapter 1

1 Introduction

1.1 World energy problem

The world population and its growth rate determine energy consumption. According to

the recent United Nations (UN) estimates (as of May 2019), the current world population

is over 7.7 billion people [1] and is still growing (see Fig.1.1). In the best case scenario,

it will start decreasing by 2075. The "high" UN scenario predicts that the population

of 10 billion people will be exceeded by 2050 and will continue growing. This, in turn,

results in a rapid increase in the demand of energy and the necessity of its production.

Currently, fossil fuels solve the problem
of the energy demand. Petroleum,
coal and natural gas (up to 85% in
total) form the primary world sources
of energy. However, they are limited
and products of their burning have a
significant impact on the atmosphere
leading to climate changes. In Fig.1.2
we show the global average long-term
concentration of C'Oy in the atmosphere
[3] and global annual fossil fuel CO,
emissions according to the Carbon

Dioxide Information Analysis Center

(CDIAC) [4]. The CO4 emissions have

increased rapidly over the past century.

The global emission of carbon dioxide

had been reported to be saturated from
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Figure 1.1: Time evolution of the total world

population [1]| (left) and the corresponding energy
consumption in Mtoe, million tonnes of oil equivalent
[2] (right). The probabilistic population up to
2100 based on "high" (upper95 and upper80) and
"low" (lower95 and lower80) UN projections is
indicated by thin/thick dashed and dotted blue
curves, respectively. The "medium" projection is
indicated by blue circle markers. Inset: zoom in a
region from 1971 to 2015.

2014 to 2017. However, the recent report provided by the Global Carbon Project stated a

2.7% emission growth in 2018 [5]. The amount of carbon dioxide in the atmosphere has
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grown significantly since 1700s, which correlates directly with its emission and explained
by the global industrialisation that began in 17th-18th centuries. The atmospheric
carbon residence time is around five years but is much greater in the ocean. Carbon
Capture and Storage (CCS) might be able to reduce the future emitted carbon dioxide
but cannot decrease its current amount, which is 411 ppm as of 2019 according to the

latest measurement [6] (300 ppm level has never been exceeded till the last century).

On the other hand, taking into

account the current production rates,

—
g_400- — EU , 100 we have known resources of coal, oil
o == Europe (other) ‘ g
o 375{ == USA 8 & and natural gas for 114, 51 and 53
2 —— Middle East a :
T 3504 Africa 6 g years, respectively. Although these
+) .
c India o ..
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S = Asia and Pacific O the economical situation and on the
O 300 ' ®

=] . . .
S c consumption rate, they still provide
O 2751 = o S

1750 1800 1850 1900 1950 2000 the perspective picture. An energy

time, years e . .
transition is unavoidable. There is a

Figure 1.2: Time evolution of the atmospheric
concentration of carbon dioxide, CO2, in parts per
million, ppm (3] (left) and its emission in billion energy sources that potentially can

tonnes (Gt) per year [4] (right). A time interval from . .
1751 to 2015 is covered. provide long-term energy production:

small number of alternative, non-fossil

energy generated from renewable
resources, nuclear fission and nuclear fusion. The main concern about renewable energy
is its strong time dependence, which requires energy to be stored and thus results in
additional costs and technical challenges. Fission waste is highly radioactive with long
life-times but its amount is relatively low. Leaving the safety problem beyond the scope
of this discussion, we have to highlight that the lifetime of the uranium isotope reserves
with the current types of reactors is around 70-80 years, i.e. comparable to that of fossil
fuels. The latter, fusion energy, is less understood and developed and represents the focus

of this study.
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1.2 Nuclear Fusion

The Sun is the main energy source in our solar system. It releases 384.6 yotta watts
or around 4.26 million metric tons each second according to mass-energy equivalence
Einstein’s formula. There are two main concepts to bring fusion to Earth: magnetic
confinement fusion (MCF) in tokamaks and stellarators (or reversed field pinches) and laser
or beam induced inertial confinement fusion (ICF). Here we focus on MCF in tokamak

devices. The current goal is to achieve controlled fusion through the DT fusion reaction:
D +T —3 He(3.5MeV) + n°(14.1MeV) + 17.6MeV.

The corresponding mass defect can

be calculated as Am = mp + mp —

=

2
N
~

<m%He + mno) and gives 3.1 - 10~%%kg

=

9
N
©o

of mass loss per reaction, or the energy

release of AE = Amc? = 17.6MeV,

=
|

w

_

i.e. 3.5MeV per nucleon is released in
— D+T

cross section, m?
[
e

this reaction. In contrast, at the high 107 D+D*
atomic mass end of the curve of binding 107371 : g:;-*/;
energy 10° 10 102 103
E, keVv
U +n’ — Figure 1.3: Cross section of main MCF fusion

reactions. E is energy in keV.

—50 K1 +i5* Ba + 3n" + 210MeV

produces 0.9MeV per nucleon. Other popular fusion reactions are

D+ D — T(1.01MeV) + p*(3.02MeV)*
— SHe(0.82MeV) + n"(2.45MeV)"™;

D +3 He —5 He(3.6MeV) + pT(14.7MeV).

In Fig.1.3 we compare their cross sections. The DD and D3He cross sections are relatively
lower than that of DT. The reaction reactivity plotted as a function of temperature is 1-2

orders of magnitude larger for the DT reaction than DD and D3®He in an interval from 1
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to 100keV and has a maximum. This, in turn, provides an optimum temperature. The
reaction cross section is one of the reasons why the DT fusion reaction is considered as
the most preferable nowadays. Fusion in this form has potentially inexhaustible resources.
Deuterium produced by nature is abundant in the ocean. Tritium is radioactive with a
half-life of around 12.3 years. Thus, tritium is rare and has to be produced. $Li + n°,
ILi+n° B + n® have tritium in their products. The following reaction is to be tested

on ITER
8Li +n° —3 He(2.05MeV) + T(2.75MeV)

in a breeder blanket for testing tritium production (lithium-6 is 7.5% of natural lithium,
the rest 92.5% is lithium-7). We have to note here that while ITER will be valuable for
testing tritium breeding blankets, its operation will not rely on tritium production. The
alpha particle generated by the DT reaction carries about 1/5 of total fusion energy. It
is charged and therefore is able to interact with fuel ions. Neutrons carry about 4/5 of
the produced fusion energy and being uncharged tend to escape the fuel. To collect the
neutrons, capture their energy and breed tritium, the blanket modules are placed around
the plasma in front of the vacuum vessel inner wall. They therefore provide a shield for
the wall from the fusion generated highly energetic neutrons and in-vessel heat loads.
Inside the blanket modules, the neutrons are to be slowed down and their energy is to
be gathered by a coolant (e.g. water or helium coolants) in the form of heat [7]. The
blankets contain $Li to breed tritium that is then to be used in the DT reaction providing
the self-sustaining mechanism. This breeding blanket concept is to be tested on ITER
and is then to be applied to DEMO.

1.3 Ignition criteria

The power balance can be written as Py, = P, + dW/dt. Here P, is the heating power,
Py is the power that leaks out of the plasma and W is the thermal energy of the plasma.
P, has two components: external heating, Py, and the heating provided by the fusion
produced alpha particles, P,. External heating sources such as neutral beam injection

(NBI), ion and electron cyclotron heating (ICRH and ECRH) are required to achieve
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plasma temperatures necessary to start fusion. Defining the energy confinement time, 75,
as W/ Pp, we write in steady state: Py = [3nT /1e — n? (cV)E,/4]V, where n and T are
the plasma density and temperature, &, is energy of alpha particles, (cV') is the reaction
reactivity and )V is the characteristic volume of the system. Py > 0 defines a burning

plasma, while Py < 0 provides the ignition condition:

1272
T — 1.1

also known as the Lawson criteria [8]. One can also introduce the fusion gain factor, @, as
the ratio of the fusion power output to the power necessary to keep the plasma in steady
state, i.e. external heating power. () = oo corresponds to ignition. The burning plasma
regime starts at Q = 5. The ITER goal in its inductive regime is @) = 10. We have to stress
here that for future power plants, the actual "engineering" () factor is much lower as it takes
into account the fact that fusion energy extracted from the reactor has to be converted into
electricity and the heating systems are not 100% efficient. Eq.1.1 implies a pure plasma in
the absence of any impurities. Considering the Lawson parameter, n7g, as a function of
temperature, we find that it has a minimum around 25keV and thus ignition is easier to
achieve at this temperature. This is to be used in ICF. In MCF including the temperature
dependence, we obtain a good fit for 10keV < T' < 20keV: (V) = 1.1 - 10" T m?s L.
Thus, for the hydrogen (DT) plasma, Eq.1.1 gives 3 - 102 'm—keVs. The left hand side of
Eq.1.1 is called the fusion triple product. The Lawson criteria of the form Eq.1.1 is usually
applied to magnetically confined plasmas. ICEF usually operates with n7g or pry,, where p
is the mass density and r, is the radius of fuel pellet. Estimating the energy confinement
time as r,/Vr; with V; being the ion thermal velocity, we write pr, > 0.6kgm~2 for the
ignition requirement. So the aim of ICF is to achieve the maximum density within a finite,
very short period of time, while MCF tends to reach the maximum energy confinement
time keeping the density low. In ICF the inertia plays a key role keeping the fuel together.
In MCF the plasma is held by the magnetic fields. The latter is the subject of this study.
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1.4 Physics of plasmas

Not every ionised gas can be treated as a plasma. A plasma is quasi-neutral, i.e. ion and
electron densities are nearly equal. However, the charge imbalance is still sufficient for
the electromagnetic effects to play a role. To estimate the charge difference, we write
Poisson’s equation

e

AO = —— (Zznz — ne) i (12)
0}

where ® is the electrostatic potential, n, /. is the ion/electron density and eZ; is the ion
charge. Estimating the electrostatic potential as ~ T, /e (T, is the electron temperature)
and the left hand side of Eq.1.2 through A® ~ ®/L? with L being the characteristic

length of the considered system, we obtain:

ni —mne| 1%
i = el | ID o
Ne L2 <

with rp = \/W being the Debye radius. Z; = 1 has been assumed here. L can
be understood as |V, In n\_l, the density gradient length scale. Quasi-neutrality holds
only outside the Debye sphere, i.e. a sphere of radius rp. Hence, to behave as a plasma,
an ionised gas must satisfy the requirement: L > rp. The second characteristic feature
of plasma is its collective behaviour. The number of particles in the Debye sphere is
Np = (47/3)n.r?, > 1. Np is also called the plasma parameter. In plasma, collisions
between charged and neutral particles must not be dominant and can be considered as
being infrequent. Charged particles can be neutralised colliding with neutrals due to
the charge exchange process. Charged particles have to remain charged within a period
~ Q7! for a gas to be defined as a plasma in addition to the conditions described above
(€2 here is a characteristic frequency of plasma oscillations). This requirement reads as
7 > 1 with 7 being the time between charged particle and neutral collisions. Therefore,
the plasma should be dense enough and its temperature is high enough so that only a

relatively few numbers of neutrals could exist.

Let us start with a brief discussion of motions of each individual particle and then consider

the effects of collective motion. Each charged particle in the magnetic field experiences
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the Lorentz force in accordance with

v

m. i
Todt

:€Zj [Vj XB] +€ZjE7 (13)

where eZ; and m; are the particle charge and mass, respectively. E is the electric field,
B is the magnetic field and V; is the velocity of the particle. j is used to label particle
species. In the absence of the electric field, the particle experiences a magnetic force
that is orthogonal to B and thus it gyrates around the magnetic field line. The particle
trajectory becomes helical provided the component of velocity parallel to the magnetic
field, V|, is non-zero. The radius of this circular motion is called the Larmor radius and
is defined as p.; = V| Jwej. wej = eZ;B/m; is the corresponding cyclotron frequency of
a species j. The component of velocity perpendicular to the magnetic field lines, V|,
being estimated through the thermal velocity of a species, provides p.; ~ m;Vr;/eZ;B.
Defining the guiding centre as the point or line around which a charged particle gyrates,
we note that this line follows the B field line provided the magnetic field is homogeneous
and its field lines are straight. The particle drift effects force the guiding centre to drift
away from a certain field line. Replacing eZ;F in Eq.1.3 with F', where F' is a constant
homogeneous force, allows one to define individual particle drifts. The parallel component
of F' simply accelerates the charge along the field line, while its perpendicular components,

F || provide a constant drift velocity,

_FJ_XB

- 1.4
Vi eZ,;B? (1.4)

If the force is associated with the electric field, then Eq.1.4 gives the expression for the
E x B drift, Vi = [E x B] /B?, that is independent of particle properties and thus does
not generate a current. Taking into account the fact that the magnetic field lines are not
straight, we have to introduce the centrifugal force in Eq.1.4. Therefore, we derive V., =
(m;Vit/eZ;B?) [R. x B]/R? for the so called curvature drift. R, is the radius of curvature
of the particle trajectory along the field lines. The magnetic field has a spatial dependence,
i.e. is not homogeneous, in most cases, and then the gyrating particle has to experience a
varying magnetic field. This provides the VB drift with Viyp = (p.;V1/2) [B x VB] /B
In a tokamak, VB/B = —VR/R and hence the above expressions for the curvature
and VB drifts can be combined to give Vi, = (m;/eZ;B)(V|} + V/2) [B x VB] / B? for
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the total magnetic drift. It has no mass dependence® but being charge dependent it
provides a current. The electric field can vary in time, which results in the polarisation
drift. Its velocity is given by Vo = (m;/eZ; B*)OE/0t. Tt is charge dependent, and the

corresponding current is known as the polarisation current.

All the above drifts are associated with motion of each individual charged particle in the
electro-magnetic field. However, charges also move relative to each other. According to
Poisson’s equation, this can modify the applied electric field due to changes in charge
density. In addition, this can modify the magnetic field in accordance with - Ampére’s
law as moving charged particles generate a current. Treating plasma as a fluid (more
detailed information can be found in the following section), we can derive drifts related to
the particle collective motion. The force balance equation reads

de 8uj

njmj% =n;m; W + ('U,j . V) ’le = —ij -V Hj + ’I’Lj€Zj [E +Uj X B] (15)
(to be derived in Sec.1.5). The left hand side is the ion/electron inertia (the latter is
usually neglected as m. < m;). The first term on the right hand side of Eq.1.5 is the
ion/electron pressure gradient, the second term represents the divergence of the viscosity
tensor. u; is the ion/electron flow velocity. Crossing both sides of Eq.1.5 with B, we

obtain

_ExB m; {BX%}+Bprj+B><V.Hj

ULj B2 + €ZjB2 dt TL]'BZ]'BQ njerBQ .

The first term on the right is the E x B drift introduced above. The second term
corresponds to the inertial drift. We note that if acceleration results from a change in the
electric field, the inertial drift is called the polarisation drift. The third term provides
the diamagnetic drift, while the fourth term gives the viscosity drift. Both of them are
in opposite directions for electrons and ions and thus provide a current perpendicular to
the magnetic field. The diamagnetic and viscosity drifts cannot be introduced from the
picture of each individual particle. They result from the plasma collective behaviour being

associated with the ion/electron density /temperature gradient or the viscosity gradient.

Having defined plasma and its main drifts, we have to introduce two main approaches

if V| ~ V| ~ Vrj provided the electron and ion temperatures are comparable.
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used for its description. This is the subject of the forthcoming section.

1.5 Plasma description

In the previous section, we have considered the dynamics of a single charged particle in the
electro-magnetic field. However, to describe a multi-particle system such as plasma or gas,
we have to take into account that the particle motions and the electric and magnetic fields
are coupled. Hence, the problem becomes self-consistent: the particle trajectories must be
calculated self-consistently with the fields and vice versa. One would need to solve a set of
coupled equations of motion to determine the interaction between charged particles and
add Maxwell’s equations to keep the solution consistent with the electro-magnetic field.
These calculations might be possible but computationally are very expensive. Moreover,
the convergence of such a solution is not guaranteed. In a typical tokamak plasma, the
number of particles is around 10 — 10%° per cubic meter. The inertial plasma is even

more dense. To simplify the problem, a statistical approach is implemented.

In a gas or plasma, particles are determined by position and velocity at a certain moment
of time, i.e. {t,r,V}. We define the particle distribution function as the density in 6D
phase space:

dnj = fj (’I", V) dv. (16)

The total density is then to be introduced as the particle distribution function integrated
over velocity space, n;(t,r) = [ f;(t,r,V)dV, and represents its Oth moment. j here can
be used not only to label electrons and ions, but also different quantum states of atoms
and molecules (the latter is usually applied to a gas). The particle distribution function,

fj, satisfies the following 6D continuity equation:

Of; = 0 L9 :
T Do W+ gy (01) =0 (17)

(dot here denotes the derivative with respect to time). The right hand side represents the
collision operator for species j. V; is the acceleration connected with external forces. In a

plasma this is associated with the Lorentz force in accordance with Eq.1.3. Therefore,
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Eq.1.7 reduces to

df; _ 9f; ¢4 .
=% +V V. f;i + - [E+V xB]-Vyf; =C,. (1.8)

Here V, v f; denotes the gradient of the distribution function in r/V space. Eq.1.8 is a
kinetic equation (or the Boltzmann equation) in its general form. If its right hand side
is zero, then it is known as the Vlasov equation. It can be written for any generalised
coordinate, ¢;, and momentum, p;, in accordance with the Hamiltonian formalism. When
collisions are taken into account, the particle distribution function is no longer constant

along the phase space trajectory. The collision operator is to be understood as
Cj = chk (fj?fk):
k

where j and k denote the colliding particle species. The Boltzmann collision integral is
given by
do
Cothindi) = [ [ (1ifi= 138) S5 Vs = Vil Ve, (19)
v, Jo ds

where f; = f; (V;) and f; = fix (V}). Vjx and V}; denote velocities before and after the
collision, respectively. do is the differential size of the corresponding cross section, df?2
is the solid angle element [9, 10]. Thus, the Boltzmann equation becomes an integro-
differential equation that includes all colliding particle distribution functions. To solve
it in its general form is much of the challenge. The great complication comes from the
collision integral. However, in a number of problems it can be simplified or replaced with
a model form. Indeed, the Boltzmann collision integral is not convenient to describe the
Coulomb collisions that are governed by small angle scattering events [9, 11|. Instead, the

Landau collision integral is employed:

2 , ,
Cik (f5, i) = EAZZC) O /Uoﬁ ( fi Ofx _ Ji O

J3 G Tk Gl gy 1.1
m; oV, my OV m]ﬁVg)dV’ (1.10)

where the tensor U,z is defined as U,z = dop/u" —ugug/(ur)?’ withu" =V, =V, v = [u"].
In A is the Coulomb logarithm and d,3 denotes the Kronecker delta. The Landau collision
integral can be further simplified. For example, assuming a small fraction of heavy particles

in a plasma, n; < ny, we write df;/0Vy = —(my/Ty)V3f1., where the background has
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been assumed to be Maxwellian. Therefore, Eq.1.8 with Eq.1.10 reduces to

dfy 0 T 0f;
at ~ Fov (fo % (L11)

with

12mm)* In N(Z; Zpe?) g,
3/2
3m, T

Vi =

Eq.1.11 is called the Fokker-Planck equation [9, 12, 13]. Generally, the Fokker-Planck
operator can be applied when changes in the electron velocity or energy are small [14].
Despite being linear, even in this form the equation is written in 6D phase space and
thus is still computationally expensive. Further simplifications are required to reduce the
dimension of the problem. One of the examples is called the drift kinetic equation, i.e.
a kinetic equation averaged over the gyro-scale (its detailed derivation can be found in
[15, 16, 17]). Indeed, in the electro-magnetic field we split the charged particle motion into
the fast gyro-motion and the motion of the guiding centre. Taking L as a characteristic size
of the system, we impose (5JDK = pej/L < 1 and wy/we; ~ (5]DK < 1, where wy = Vp;/L
is a characteristic frequency of the system we consider. Each term in the drift kinetic
equation is assumed to be of order 5jDK . This approximation does not allow any fast

variations and requires relatively slow E x B motion (compared to gyration). It reads

af; 1[ 0B ez af;
SV AV eV AV fit §+—(v|b+vb) B 5L =C(f). (112)

This drift kinetic approach” and the kinetic equation of the form Eq.1.12 are to be applied

"Schematically, the initial kinetic equation can be written as w.; 8fj/3¢|r7lc’u + af; =0 with ¢ being
the gyro-angle, K = V2/2 and p = VZ/2B for f; = f;(t,r,V) = f;(t,7,K, 1, ¢), where 7 = r+V x B/ Bw,;.
& represents the rest of the differential/integral operators that act on f;. The collision operator, C;, in & is
assumed to be of order 5]’-3ch]» or smaller. Expanding the particle distribution, f; =3 f;n)(éf’K)n, we

write we; 0 f;o) /0¢ = 0 for the leading order equation and hence we learn that f;o) is ¢-independent.
"'7 ’/‘l’

Proceeding to next order, we have w,; (‘3f;1)/3¢ . + df(O) = 0. To annihilate the first term, we
K.

integrate this equation over the gyro-angle to obtain (a);’C’”f 9 — 0. Here ()ZLK” denotes the gyro-

phase averaging operator at fixed r, K, u. The latter provides Eq.1.12 in the absence of plasma drifts

§DK)

across the field lines. To capture the guiding centre drift, we solve the O( J equation for f;l) written

as a function of f;o). Either perturbative or recursive techniques are allowed. The (9(5D K equation is

equivalent to we; 8f;1)/8¢ o =—(&- <a>;K’“)f( ) Integrating the latter over ¢ provides f( ) as a

function of £, Substituting this distribution function into the solvability condition, (& f; ko = 0, i.e.
J e
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to the neoclassical tearing mode in this work and thus this notation is to be maintained
throughout the study.® Here || denotes a vector component along the magnetic field lines,
Vi=b-V,b=B/B. Vg =[ExB]/B? with E = —-V® — 9A/0t, where A is the
magnetic vector potential, and V, = =V x V (VH / wcj) are the E x B and magnetic drift
contributions, respectively. V includes VB and curvature drifts. A low beta plasma
approximation is employed. All spatial derivatives are taken at fixed magnetic moment,
pu = V2/2B, and kinetic energy, K = V?/2, | denotes a vector component perpendicular
to the magnetic field lines. The explicit representation of the collision integral in Eq.1.12 is
to be derived by gyro-averaging the Fokker-Planck collision operator but is usually replaced
with a model for a particular problem. In this study, C; is the momentum-conserving

collision operator introduced below.

Although the drift kinetic approach is widely used to describe plasma instabilities, plasma
equilibrium and transport, it can also be important to include the electro-magnetic field
spatial variations on the scale of Larmor radius. This is the subject of the gyro-kinetic
theory. As the gyro-kinetics is not to be applied below, we leave its description beyond

the scope of this work. A more detailed information can be found in [17, 18|.

Before we move further, let us briefly discuss the plasma magnetohydrodynamic (MHD)
description. A set of equations for moments of the particle distribution function can be
obtained by multiplying the initial kinetic equation, Eq.1.8, by powers of the velocity.
The plasma fluid theory typically focuses on the first three moments of the particle
distribution and consists of five scalar equations. Multiplying both sides of Eq.1.8 by V)
and integrating over velocity space yields

on;

5L HVT =0 (1.13)

in the absence of any particle sinks and sources. I'; is the particle flux defined as I'; = nju;
with u; = (1/n;) [ V f;dV being the flow velocity of species j. n; and I'; represent the
Oth and 1st moment of the distribution function, respectively. We note that the right

hand side of Eq.1.13 is non-zero if inelastic collisions such as ionisation and recombination

the initial drift kinetic equation in the absence of plasma drifts to leading order, we obtain Eq.1.12 for
f ©), f;o) here is to be replaced with f; for simplicity unless otherwise stated.

8(du/dt)0f; /0w is omitted as a higher order correction since dy/dt = O(éj’?KB), i.e. terms proportional
to 0/0t in dp/dt do not contribute in the island rest frame, and p.jb-V x b ~ 6JDK6.
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are considered. Eq.1.13 represents conservation of a total number of particles and is to be
solved for n;. However, the particle flow is unknown at this stage and is to be determined
from the next moment equation. Multiplying both sides of Eq.1.8 by m;V,, and integrating

over V, after some algebra we obtain

ou,;

n;m; 8—; + (’Ulj . V) Uj = —ij — V . Hj + anZj [E +’U,j X B] —I—R] (114)
Eq.1.14 is a generalisation of the equation of motion, Eq.1.3, introduced above to consider
plasma drifts. The plasma pressure, p;, is defined as

Tn;n; 2
by = Y ), =0T,
where (...);, denotes integration over V' with weight f;(¢,r,V). The viscosity tensor, II;,
is given by
Mjop = 50 = v, 14 %08 (1 _ )2
jas = Wjpa = njm;{ (Va — uja) (Vs — ujp) — —=(V —u;)

3 v

The last term on the right hand side of Eq.1.14 is the friction force of species j. It

originates from the collision integral being defined as
Rio= [ mVaCy (1) av.

Like the collision operator, the friction force is also additive, i.e. R; =), Rj; (j and
k denote particle species). p;, II; and R; are unknown in Eq.1.14. Thus, higher order
moments of the particle distribution are required to provide the equations to determine
them. However, every following moment will generate additional unknowns. So the
starting kinetic equation, Eq.1.8, is equivalent to the infinite system of equations for the
moments of the distribution function. Therefore, at some stage we have to introduce a
closure relation to loop the system. For example, if we started with the Vlasov equation
and worked in the absence of plasma viscosity, then the plasma pressure only would be
left unknown in Eq.1.14. Imposing the adiabatic plasma behaviour, pV? = const (y here
denotes Poisson’s constant), we close the system. Keeping the plasma viscosity and the

friction force, we introduce the second moment. Integrating Eq.1.8 with weight m;V?/2,
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we find the energy balance equation:

a [nm 3
E( ]2 ]u2+2n3T]>+

0 n;m 5
+ 8_7“a {( 12 Ju2 + 2nJT) Ujo + 05 + Qi | = njeZjEqtijo + Rjgtjo + Q.

(1.15)

Here

g = LV —w)* (V —uy),

represents the heat flux and
1 2
=5 [ m(V —w)°C; (fy)dV

is the energy gain of species j due to collisions with species k, i.e. Q; = >, Qjx. Eq.1.15
can be combined with Eqs.1.13,1.14 to give the heat balance equation:

3 0 ou
L% (u; V)}T +n;T;V - u; +H]a68 +V.-q; =Q;. (1.16)

Eqgs.1.15,1.16 include p;, II; and R; but introduce additional unknowns, ¢; and @;. To
close a system of Eqs.1.13,1.14,1.15/1.16, I1,, R;, q; and @; have to be written in terms of
n;, w;, T; and their spatial derivatives. This procedure is provided by the hydrodynamic
approximation with the sufficiently large characteristic spatial and time scales and when

collisions are frequent. The criteria is as follows:
Amppg K Ly pe < L

where L is the characteristic size of the system, A, ; is the mean free path of species j.
L is usually understood as the density/temperature gradient length scale, i.e. |L, 1| =
|V, Inn, T]_l. The characteristic time, 7, is assumed to be greater than the time between
collisions, V;j}jk (7 and k denote the colliding particle species), or the inverse cyclotron
frequency, wc_jl. In a fully ionised plasma, the electric field is assumed to be weak

compared to ~ 4mwe®In An;/T,.(4meg)?, the Dreicer field [9]. In the non-homogeneous
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magnetic field the criteria has to include drifts of the Larmor orbits [9]. In regions
of plasma with low density, the collisionality is low and thus the kinetic approach is
required. In the hydrodynamic approach, 1, R;, q;, @Q; and VT}, T; — T}, u; — uy,
Wiag = Oja/0x5+0ujz/0xs — (2/3)00pV -u; (introduced to denote shifts of temperature
and flow velocity from the equilibrium) are linearly connected. The latter, in turn, can be
linearly expressed through the perturbed part of the particle distribution function (its
equilibrium contribution is assumed to be Maxwellian), fjl. Thus, the problem reduces to
the determination of fjl. Once, it is known, the transport coefficients can be calculated. A
set of Eqs.1.13,1.14,1.15/1.16 with known transport coefficients is called the Braginskii fluid
equations [9, 19]. One of the approaches to find fj1 is considered in the Chapman-Enskog
theory [9, 20].

Eqgs.1.13,1.14 written for the ion and electron plasma components form the so called
plasma two-fluid MHD equations. The electron inertia is usually neglected as m, < m;.
The ion/electron pressure and temperature are connected via the adiabatic law. Summing
the ion and electron continuity equations, we obtain

dp B

where the mass density p ~ n;m;. Similarly, we obtain the force balance equation,

du,
mi— = —V J] x B,
n;m 7 p+J X

from Eq.1.14 written for ions and electrons. J is the plasma current density defined as
J = eZnu; — enu,. pis the total plasma pressure. According to Ohm’s law, the current
and the electric field are related via E +u x B = J (7 is the plasma resistivity tensor).
The MHD theory is then called resistive MHD. If /) = 0, it reduces to the ideal MHD.

The two fluid MHD can be rewritten in the form that excludes the explicit representation
of the electric field and currents in it [9]:

OB 1

— =VxuxB]—-—Vx (67" [VxB]),
ot Ho

du B? 1
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on;

p=p(n).
This is referred to as a single fluid MHD. Here u = u;, n; = n. = n;, ¢ is the conductivity

tensor, 6 = 7~ L.

The last equation implies the adiabatic law. B?/2puq is called the
magnetic field pressure. The first term on the right hand side of the first equation in
Eq.1.17 is called the frozen in contribution. If this term is dominant, the first equation of
Eq.1.17 provides the frozen in condition. Plasma and fields evolve together to conserve
the magnetic flux, i.e. the flux is frozen into the plasma, provided 1 = 0 [9, 12]. The

second term describes the magnetic field diffusion through the plasma. The ratio of these

two terms,

|V X [u x B]| IV x[uxB]| _polLca

S = ~ ~ )
15"V (61 [V-B))|  |nuy V2B 77

is known as the Lundquist number. c4 = \/anmi) is the Alfvén velocity (note: it
can be estimated from the second equation in Eq.1.17). L is the characteristic length
scale. 7 has been replaced with a scalar n for simplicity. When S < 1, the resistivity
plays a significant role’. When the current diffusion term dominates (or comparable to
the frozen in term), the magnetic field topology can be reformed. This is the subject to
the magnetic field line reconnection theory [25]. The event when the magnetic field lines
approach and reconnect might be accompanied by the formation of magnetic islands. The
magnetic reconnection can be forced in experiments and can occur spontaneously, being
triggered by plasma instabilities. Such a plasma instability is called a tearing mode and is

to be considered in the current work.

Although the kinetic plasma theory is used throughout this study, it was important to
provide a brief introduction to the plasma fluid theory. Firstly, it justifies the choice of
the kinetic approach to consider tearing modes in low collisionality plasmas. Secondly,
it introduces the main terminology applied below. The tokamak plasma equilibrium is
determined by the Grad-Shafranov equation (e.g. |9, 12]). As this is not the subject of

the current study, we do not discuss it here. A pioneering work by Grad and Shafranov

9In some cases, even for very large S, resistivity can be important.
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can be found in [21, 22, 23, 24].

1.6 Tokamak concept

In MCF a magnetic field is applied to hold the plasma. Let us consider a cylinder
of plasma. To avoid end-losses (e.g. they occur in magnetic mirror systems [26],
pinches [9]), it is bent around on itself. This creates a closed loop system (see
Fig.1.4) and can be achieved by placing a set of toroidal magnetic field coils around
the plasma or by passing a current carrying rod through the centre of the torus.
The first technique is implemented in

the conventional tokamak configuration imer okl

toroidal magnetic field coils ol Curfent outer poloidal
(e.g.  T10, DIILD, JET, the

magnetic Iﬁehd wils magnetic field coils

ITER tokamak that is now under
construction). It is shown in Fig.1.4.
The second technique is applied in
spherical tokamaks (STs, e.g. MAST, s

NSTX, Globus-M). STs are compact
) i ) Figure 1.4: Sketch of a conventional tokamak
but topologically there is no difference (source: [27]). A set of the toroidal field coils, the

between conventional and spherical inner/outer set of the poloidal field coils, the vacuum
‘ ‘ _ vessel region are indicated. The toroidal and poloidal
devices. Using a single large conductor magnetic field components form the total, helical

inside the torus to generate the toroidal 18ReHC field.

magnetic field, B, around it allows the

aspect ratio, A, to be reduced (note: the tokamak aspect ratio is defined as Ry/a, where
Ry is the major radius of the torus and a is its minor radius), A ~ 1. This reduces the
total cost of the fusion reactor. Therefore, STs can in principle allow one to achieve the
same triple product factor as conventional devices but with only ~ 1/10 of the total
magnetic field. Furthermore, a different plasma shaping allows one to avoid certain types
of plasma instabilities improving the plasma stability. Indeed, the plasma is more stable
on the inner section of the tokamak [9]. In a large aspect ratio tokamak with circular
poloidal cross section, the plasma particles spend approximately the same amount of time
on the inboard and outboard sides of the torus (slightly less in the inner region due to

shorter radius). In contrast, in STs plasma spends more time on the inside of the torus.
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This results in a great stability improvement. However, in modern conventional tokamak
devices the circular cross section has been replaced with a D-shaped poloidal cross section
where the inside surface of the torus is expanded. This shaping is typically more extreme
in an ST. The ST experimental results including operational limits are discussed in 28]
and the features of the ST plasma in [29]. In our current work, we impose conventional
tokamak geometry with circular cross section. The effects of elongation, triangularity
and the Shafranov shift can be introduced in our model. However, as we shall see in the
forthcoming sections, corrections of order €? and higher (¢ = A™! is the inverse aspect
ratio) would contribute only to the curvature term in the modified Rutherford equation
that is negligible in any conventional tokamaks and thus would not provide any significant

changes to the final results.

The toroidal magnetic field component
only is not sufficient to maintain the
pressure in the plasma due to the

consequencies of the VB and curvature

ion drift
\

drifts. In a tokamak, the magnetic

field is not homogeneous, B, x 1/R,

where R is a varying major radius of a

tokamak (R is its value at the magnetic
. . . Figure 1.5: Sketch of a conventional tokamak
axis, see Fig.1.6), and thus there is (source: [30]). The origin of the E x B drift in

a gradient of the magnetic field that tokamak plasmas is demonstrated.

points inwards (in the direction of the

high magnetic field side, see Fig.1.5). This, in turn, generates the VB plasma drift
orthogonal to the main magnetic field (i.e. vertically). Being charge dependent, this drift
is in opposite directions for the ions and electrons. The charge separation then forms a
vertical electric field. The toroidal magnetic field and the vertical electric field generate
an F x B drift that points outwards resulting in a loss of confinement. Therefore, the
additional, poloidal magnetic field component, By, is required to provide a zero average
of the VB and curvature drifts, and thus to confine charged particles in the toroidal
magnetic field configuration. The total magnetic field is helical (see Fig.1.4). Roughly,
B, : By : By =100 : 10 : 1 in the conventional device (note: By is the vertical magnetic

field component provided by the vertical coils to shape the plasma and control its position;
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a total poloidal field includes the poloidal component itself as well as the vertical magnetic
field contribution), while the toroidal and poloidal components are almost comparable in
STs. There are two main concepts to generate the poloidal magnetic field. In the first
concept, the poloidal field component is produced by the toroidal current through the
plasma (see Fig.1.4). This is a tokamak concept. To summarise, in a tokamak the plasma
is confined by the magnetic field generated by external coils around the torus/by passing
a current through the rod at the centre of the torus (toroidal magnetic field) and the
magnetic field resulted from the current in the plasma itself (poloidal magnetic field). The
tokamak was invented by I. Tamm and A. Sakharov in the 1950s in the Soviet Union.
The second, stellarator concept is to hold the plasma by an external single coil set. There
is no (or very little) current in the plasma itself and thus stellarators are more suitable
for steady state operation, while tokamaks require auxiliary facilities to achieve steady
state. The magnetic coils and hence the plasma shape are complicated in stellarators and
they are not easy to build. The stellarator was invented by L. Spitzer in 1951 [31]. The

tokamak and stellarator plasma are compared in [32].

Low field side

A(r)

High field side

I Ry =

Figure 1.6: A schematic representation of the conventional tokamak circular poloidal cross
section. r and R are the minor and major radii of the tokamak (r = a at the plasma edge and
R = Ry at the magnetic axis). A = A(r) denotes the Shafranov shift of the magnetic flux
surfaces in the direction of the low magnetic field side. 1 is the poloidal angle.

Focusing on a tokamak plasma, let us briefly discuss the heating and current drive
techniques. A toroidal current used to generate the poloidal field component is induced

by varying the magnetic flux through the plasma centre. This is known as inductive
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current drive and significantly limits the plasma performance by a pulsed mode. To
achieve continuous operation of a tokamak, alternative, non-inductive current drive
schemes [33, 34| are required. Furthermore, the non-inductive methods allow the plasma
current density profile to be shaped to control the plasma MHD instabilities. One of the
possibilities is to drive waves at the ion/electron cyclotron frequency (i.e. ion/electron
cyclotron current drive, I/ECCD) or lower hybrid resonance frequency (i.e. lower hybrid
current drive, LHCD). Another option is to inject highly energetic neutral particle beams
(energies ~ several 100keV — 1MeV required to penetrate the plasma of ~ 10% particles
per cubic meter are estimated for ITER) [33]. This method is known as neutral beam
injection (NBI). The bootstrap current [35] that occurs in a low collisionality regime
generates itself in the plasma and hence is considered to be a crucial part of the steady
state additional current drive. The wave resonances (ion cyclotron, lower hybrid and
Alfvén wave heating) as well as NBI are also to be applied to heat the plasma towards
fusion conditions. Indeed, the Ohmic heating (OH) is not sufficient to reach plasma
temperatures required for ignition according to Lawson’s criteria. Firstly, the OH power
being proportional to plasma resistivity decreases with the electron temperature as 1,32
(as the plasma conductivity is inversely proportional to the collision frequency and hence
the parallel component of the conductivity tensor, o) o T / 2, in the fully ionised plasma).
Secondly, MHD instabilities (such as neoclassical tearing modes to be addressed in the
following chapters) set the current and pressure limits and can terminate the tokamak

discharge in a disruption.

1.7 Overview

In this chapter we have briefly discussed the fundamental principles required to develop
the novel neoclassical tearing mode theory that is discussed in the forthcoming sections.
Chapter II introduces a neoclassical tearing mode (NTM) in tokamak plasmas and
describes the existing approaches used for its understanding. Here we also derive the NTM
drift kinetic (DK) equation for the small inverse aspect ratio tokamak low collisionality
plasma that is then used to determine the NTM marginal magnetic island width (a
detailed derivation is presented in Appendix D). This is already sufficient for an accurate

calculation of the bootstrap current drive to the NTM magnetic island growth. However,
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the polarisation current contribution also requires the knowledge of the island propagation
frequency that is determined by plasma dissipation processes. Leaving the effects of
error fields and plasma sheared flows beyond the scope of this study, we note that the
only source of dissipation is the collisional dissipation from a thin boundary layer in the
vicinity of the trapped-passing boundary in pitch angle space. Here collisions become
comparable to the parallel streaming and thus we solve a 2D boundary layer problem
employing the momentum-conserving collision operator. This is addressed in Chapter
III. The full solution of the NTM DK problem derived in Chapter II is presented in
Chapters III and IV and includes the regions inside and outside the magnetic island
as well as a narrow layer in the vicinity of the island separatrix. This is crucial for an
accurate determination of the polarisation current contribution. The solution technique
implemented in the "RDK-NTM" (reduced drift kinetic NTM solver) code is discussed in
Chapter IV (a numerical scheme is derived in Appendices D and E). The results follow. In
Chapter V we use a similar approach and adopt RDK-NTM to solve a different problem -
we analyse stability of secondary modes driven by an island in phase space. A summary

and conclusions are given in Chapter VL.
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Chapter 11

2 Neoclassical tearing modes

Tokamak confinement is provided by the fact that to Oth order plasma electrons and ions
follow the field lines that are located on the toroidally symmetric flux surfaces. Certain
kinds of instabilities in a tokamak plasma though change their geometry, and this can
significantly limit the plasma performance. The tearing mode is one of such instabilities

136].

Neoclassical tearing modes are classified as large scale resistive magnetohydrodynamic
plasma instabilities [37]. They arise due to a filamentation of the plasma current density
parallel to the magnetic field lines. This filamentation changes the topology of the
magnetic flux surfaces, forming magnetic islands (their schematic representation is shown
in Fig.2.1 and Figs.2.2,2.3, and their formation mechanism is discussed in Appendix A).
They occur when a poloidal beta'®
threshold is exceeded (e.g. Fig.2.4),
and are usually triggered by another
MHD perturbation (e.g. sawtooth

oscillations, fishbone modes, edge

localised modes etc.) that creates a

Figure 2.1: Formation of magnetic islands in large
seed island for NTMs. According to aspect ratio circular cross section tokamak geometry.
Poloidal cross section in the absence of NTM activity
(left); in the presence of NTM magnetic islands
absence of heat/particle sources, the (right). O and X denote the magnetic island O-
and X-points, respectively. Green arrow is in the
poloidal direction (figure courtesy of H. Wilson).

the conventional theory [38], in the

plasma pressure gradient in a region
inside the island and hence the total
plasma pressure in the core are reduced due to the enhanced particle and heat transport
across the island (see Fig.2.5). This flattening of the pressure profile, in turn, leads to a
hole in the bootstrap current near the island O-point. As the bootstrap current density
rises with beta, the island width also grows with beta, resulting in a degradation of

confinement [39, 40, 41|. Along with the fact that NTMs define operational limits of a

10Plasma beta is plasma pressure divided by the magnetic field pressure and hence the toroidal /poloidal
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0 >
y Figure 2.3: Same as Fig.2.2 but in the

. . ) . presence of NTM magnetic islands. The O-
Figure 2.2: A ring of toroidal plasma in point at the centre of the island and the X-
slab geometry in the absence of NTM activity.

{z,y, z} correspond to {r, ¥, ¢} with r being
the radial coordinate, ¥ the poloidal angle
and ¢ the toroidal angle, respectively (figure
courtesy of H. Wilson).

point at the separatrix are indicated. The red
curve indicates the magnetic island separatrix,
i.e. the last closed magnetic flux surface of the
island (note: a similar structure can be seen
in the poloidal cross section of a takamak with
double-null divertor). Here poloidal/toroidal
mode numbers are m = 2/n = 1, respectively
(figure courtesy of H. Wilson).

magnetically confined plasma system, they can also lead to plasma disruptions through
mode locking, threatening the structural integrity of the first wall of a tokamak-reactor.
NTMs occur in the standard ELMy H-mode as well as in advanced scenarios. Hence,
understanding the physics of the NTM onset and its suppression is a key problem in
achieving controlled fusion. One of the most promising NTM control techniques is to
generate microwaves at the electron cyclotron frequency to drive current inside the island
to replace the missing bootstrap current. This O-point electron cyclotron current drive
(ECCD) has demonstrated complete NTM stabilisation on a number of machines [41] and
is to be applied to drive the island width down to mitigate the confinement degradation
and /or suppress the NTM in fusion devices such as ITER. However, an issue here is to
determine how much of the ECCD current is required for the NTM stabilisation and how
localised it must be, which leads to a necessity for a more detailed understanding of the
threshold physics. Experimentally, this threshold is related to a critical beta and a critical
island width. The latter is the subject of this study.

The NTM magnetic islands can either grow or shrink, depending on the current density

perturbation parallel to the magnetic field, .Jj. According to the modified Rutherford

beta is 2u0p/Bi/19.
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Figure 2.4: The Globus-M shot
26148 (saturated plasma current,
I, = 200kA, B, = 04T).
Time traces of the plasma current,
chord-averaged density, nl, magnetic
field perturbation obtained by the
Mirnov coil system and poloidal
beta reconstructed by EFIT. Arrows
indicate the beginning of the NTM
activity (at plasma beta By ~ 0.25).

Figure 2.5: Confinement loss due to the tearing mode
occurrence. Dashed curve indicates the radial plasma
pressure profile in the absence of the magnetic island.
Solid curve corresponds to the pressure profile in the
presence of the NTM. The pressure flattening inside
the island results in its reduction in a core. If plasma
temperature is constant, the bootstrap current density
is o g1/ 2B1; 1¥,p and hence has a hole inside the island
(figure courtesy of H. Wilson).

theory [41, 42, 43|, the island time evolution is described by

27 dw

where Tz ~ pga®/n is the resistive diffusion time, 7 is local plasma resistivity, w is the island
half-width and r, is the radius of the rational surface, i.e. denotes position of the magnetic
island. A’ is the classical tearing mode stability parameter [44, 45, 46|. It arises due to
a discontinuity in the perturbed magnetic flux gradient near the rational surface!! and
measures the free magnetic energy in the equilibrium current density to drive instability!2.
In Rutherford’s original work [52], only the induced current associated with the island

growth contributes to J. Adding tokamak neoclassical effects, denoted by the second term

1 The reconnection event occurs when resistivity is non-zero in the first equation of Eq.1.17, otherwise
the field line structure is conserved. Around the rational surface, there is a narrow boundary layer where
the ideal MHD theory can no longer be applied and should be replaced with resistive MHD. Outside
the layer, ideal MHD is valid. Solving Ampére’s law for the poloidal flux function, v, we have to match
solutions from inside/outside the layer. Hence, we find that V.4 has a jump across the island, which is
characterised by A’: A’ = 6}i_r>noow_l (Vothl,—s — Vil __s,.) , Yor > 0.

125ee Appendix A. Eq.A.7/A.8 multiplied by r¢) and integrated over r provides the magnetic energy
related to the destabilising effect due to the equilibrium current density gradient. See also [12] for a more
detailed derivation.
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on the right hand side of Eq.2.1 (g here is a tuple of generalised coordinates), leads to the
modified Rutherford equation (MRE). MRE’s main contributions come from the bootstrap
[47, 48], curvature [49] and polarisation [50, 51| currents and are denoted by Aps, Ay
and A, respectively. The perturbed bootstrap current exists in the banana regime in a
tokamak (i.e. trapped particles execute complete orbits before experiencing a collision)
and is written through a linear combination of the electron/ion density and temperature
gradients [34]. In the island region, the plasma pressure (i.e. density/temperature) can
be considered as a flux surface function due to the rapid parallel transport. Hence, the
pressure gradient and the bootstrap current perturbation tend to be excluded from the
inside of the island in the absence of any sinks and sources there. Outside the island, the
bootstrap current still exists [36]. For larger w'3, Ay, ~ e'/2(L,/L,) (Bs/w) [43, 53] and
hence is destabilising, except for reversed magnetic shear discharges. [y is poloidal beta;
the safety factor and pressure length scales are L;; = £V,Ing,p > 0. The saturated
island width, obtained by balancing A, with A’, is then found to be proportional to
Py that sets a soft beta limit in a tokamak. When w becomes comparable to a (which
can occur for modes with lower poloidal numbers), the plasma discharge terminates in a
disruption. However, there is much additional physics must be included for smaller w.
According to experimental observations [54, 55|, small magnetic islands heal themselves.
This fact suggests the existence of the tearing mode threshold mechanism that, as we shall
see later in this study, restores the density/temperature gradient in the island, weakening
the bootstrap drive, or introduces a new current density perturbation that opposes the
bootstrap current. This originates from the effects of finite radial diffusion [38, 56| and
finite orbit widths [50, 53, 57, 58, 59, 60, 61, 62, 63, 64]. The heat transport model
provides the threshold island width, w,, when the radial diffusion can compete with the
transport along the magnetic field (or with free streaming in a hot plasma in the absence
of collisions). This threshold can be estimated through the ratio of heat conductivities
perpendicular and parallel to the magnetic field lines to the quarter power [38] and thus

has a strong dependence on the model used for the perpendicular conductivity.

Another source of concern comes from the finite orbit width effects. For small magnetic
islands of width comparable to the ion banana orbit width, py;, the polarisation current

plays a key role. When w ~ pp;, the electrons and ions respond in a different way to

BIslands much bigger than the ion poloidal Larmor radius.
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the magnetic perturbation: the ion response is determined by the E x B drift, while the
electron response comes from free streaming along the field lines. Hence, an electrostatic
potential needs to be generated to maintain plasma quasi-neutrality. It is localised to the
island vicinity as the electrons and ions stay unaffected by the tearing mode perturbation
far from the island. In toroidal geometry, trapped ions experience the potential averaged
over their banana orbits. In contrast, electrons experience the local potential as their

/2 narrower than those of the ions [36]. This causes a difference

banana orbit is ~ (m./m;)"
in their E x B drifts and hence generates the neoclassical polarisation current across the
magnetic field lines. This current is not divergence-free. Thus, an electric field is required
to drive a current along the field lines that contributes to the island time evolution.
This contribution is denoted by A,y and tends to zero for w >> p;, because then the
orbit-averaged and local electric fields are comparable. According to previous works
[64, 56], the polarisation current consists of an external contribution that comes from
the region outside the island and the layer part from the island separatrix vicinity. They
have been found to be comparable for small p.;/w but acting in opposite directions'*.
For larger p.;/w, the layer part exceeds that from outside the boundary layer [64]. In
the current work, both the inside and outside island contributions are considered. A,
previously derived from the drift kinetic theory has been found to be oc 1/w3, provided

w > py; [43, 53]. In [65] a heuristic model was proposed to provide threshold behaviour

at small island widths.

We define A, to be the stabilising curvature contribution introduced by Glasser, Greene
and Johnson [49], which describes the tokamak curvature effects on the evolution of the
island width [66]. In large aspect ratio tokamaks, the curvature contribution is much less
than the bootstrap drive and hence is usually omitted. In spherical tokamaks though,

these two contributions can be comparable [67].

With all these effects taken into account, the MRE reads as

27 dw By Ly  w? Lo\ wpz.

SARTT A okt P . » Za) P

7“2 dt (w> + ab € w Lp w2 + w)z( + ap lg (57 1% 7(")) 619 Lp w4 + IOZLZ (2 2)
1 )

+ Aeur DR + Agcep.

(w? + 0.65w2)"?

4 This makes the calculation of Apo challenging. To address the layer contribution, the accurate
treatment of the boundary layer around the island separatrix is required.
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The terms in aps, Gpor and @y, correspond to the bootstrap (Ay), polarisation (A,y) and
curvature (A.,) neoclassical contributions, respectively. Agccop is the impact of the
ECCD current drive required for the NTM stabisation. Here as, @y and ac,, are order
one numerical constants. ays and a,, are assumed to be positive, while a.,, < 0, making
Aps/ Ay destabilising /stabilising, respectively. Dy is the resistive interchange parameter
that is estimated as (¢28y/s) (L,/L,) (1 — ¢?) [66], where s is the magnetic shear and ¢
is the safety factor. This £ dependence makes A, negligible in conventional tokamaks.
Whether A, has stabilising/destabilising effect on the island evolution depends on the
sign of ¢g. ¢, in turn, depends on the island propagation frequency, w [53, 68|, the ion
collision frequency, v; [60, 69], and e. The existing theory of NTMs requires the island
width to be much larger than the ion banana orbit width. There is no theory developed
for the polarisation contribution for w < py; (pye,; is the electron/ion poloidal Larmor
radius)'®. The MRE form we use in Eq.2.2 is continued heuristically to a region where
w < py;. However, there is no rigorous theoretical justification for it. In [71] it has been
shown that the marginal island width below which the NTM is removed, i.e. dw/dt < 0,
is about 2p;; in both ECCD and beta rampdown discharges, and is about 3pp; in [72].
This is exactly the region where the existing theory breaks down. Thus, a new theory is
required to determine all the MRE neoclassical contributions allowing the limit of w ~ py;
(in this study, we find that it is py; = e/ 2py; that is responsible for the magnetic island
threshold), which is crucial in providing the NTM threshold island width scaling for ITER

and other future conventional tokamak devices.

The first and the main focus of this study is on the role of finite orbit width effects on the
neoclassical'® contributions to the island growth and determination of the NTM threshold
width. Here we take [53| as a starting point and extend our previous results [73, 74],
obtained in the island rest frame (w = 0), by treating the electrons in a way similar to
ions, i.e. resolving length scales of ~ py., and by adding the polarisation term. One can

say that removing the assumption w > py. is not crucial since the NTM islands below

15 Although some of the previous works, e.g. [70], allow w < py; and propose the form of g numerically,
they impose a model potential. At w < py;, there is no complete theory for the MRE neoclassical
contributions.

16The main focus is on the bootstrap contribution. The polarisation contribution is also to be addressed
in the forthcoming chapters. However, its determination was not the purpose of this work. Regarding
the curvature contribution, we have to note that concentrating on a large aspect ratio tokamak we do
not keep all the terms of order 2. An accurate A.,, calculation requires these higher order corrections.
However, A.,, being ~ &2 does not provide any significant contribution to our final results.
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the marginal width self-heal and shrink away; and the marginal island width as stated
above is expected to be ~ p;;. However, such a treatment ensures we capture physics
associated with narrow boundary layers even for islands of width ~ py; > pge. Inclusion
of the polarisation contribution is significant in the NTM threshold calculation since all
the tokamak neoclassical effects that we keep in Eq.2.2 play a role in experiments and
have to be taken into consideration. Earlier works have achieved a limit of w ~ py; in
solving the drift kinetic equation through a particle-in-cell computational modelling |75|
and by addressing the problem analytically [76]. They both confirmed that the ion density
gradient is not removed from the region inside the island. However, they focused on the ion
plasma response only, omitting the electron component and hence neglecting the effects of
the plasma quasi-neutrality condition. |76] omitted the effects of trapped particles as well.
Our analytic approach explains the physical origin of the density gradient across the island
and provides a new NTM threshold physics that arises from both, ion and electron plasma
components, and the self-consistent potential required for quasi-neutrality. When w > py;,
the electron and ion distribution functions reproduce the results of the original paper
[53]. However, when pp. < w ~ py;, the electron and ion solutions localised to the island
vicinity differ significantly, which results in a difference in the electron and ion densities,
if the electrostatic potential, ®, is neglected. Therefore, we should stress the importance
of deriving ® self-consistently from plasma quasi-neutrality, which is implemented in our
model. Once the plasma responses are found, we proceed to the NTM threshold width
calculation determining the total perturbed current density along the field lines. In this
study, we include contributions to the localised current density that come from the inner

and outer island regions, while the original paper [53| kept the outer contribution only.

The second focus of this study is on the polarisation contribution to the island time
evolution and hence on the island propagation frequency. Since A, is expected to have a
strong w dependence, its effect on the NTM island cannot be found until w is calculated.
The earlier theory [77| approached the problem in the two-fluid MHD limit keeping
plasma rotation and the parallel component of the ion viscosity tensor. In [53| the low
collision frequency limit of v; < ew (j labels particle species) has been considered using
the drift-kinetic model. The NTM mode frequency in that model was found to be in the
direction of the electron diamagnetic frequency, wgiq ., and the corresponding polarisation

current contribution stabilising. However, [53| provides the analysis valid only outside
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the NTM magnetic island and requires island widths greater than €/2py,. In this study,
we allow the magnetic islands being around the threshold and include the inner island
region as well as the island seperatrix layer, which is crucial in determining A,,. The
island mode frequency comes from the dissipation processes in a tokamak plasma [78|
and/or can be defined by error fields, i.e. non-axisymmetric component of the vacuum
magnetic field. Once the mode frequency is sufficiently low, the NTM (usually with lower
m/n, i.e. poloidal/toroidal mode number) can be locked, i.e. stop rotating. The Mirnov
magnetic signal becomes zero, but the island still exists and grows to a large saturated
level, terminating the discharge in a disruption. Here we follow [53| and neglect the effects
of error fields as well as plasma sheared flows, focusing on collisional dissipation that

arises in a narrow layer in pitch angle in the vicinity of the trapped-passing boundary.

The remainder of this chapter is organised as follows. Section 2.1 introduces the magnetic
geometry and the mode dispersion relation. In Sections 2.2 and 2.3 we calculate the
plasma response to the NTM magnetic perturbation. The drift magnetic island concept is
described in Section 2.4. The self-consistent electrostatic potential is found in Section
2.5. We calculate the neoclassical contributions to the modified Rutherford equation
and determine the threshold magnetic island width in the next chapters. The island

propagation frequency is the subject of the following chapters as well.

2.1 Magnetic topology and NTM dispersion relation

A small inverse aspect ratio tokamak with circular poloidal cross section is considered. A
3-tuple of spatial variables {1, ¢, ¥} provides an orthogonal set of coordinates according
Vo x Vi = rByV1, where 9 is the poloidal flux function, ¢ and ¢ are the toroidal and

poloidal angles, respectively. The equilibrium magnetic field is given by
By=1()Vp+Vpx Vi, (2.3)

where I = RB,, is the poloidal current. As ¢ < 1 and By/By ~ ¢, By = B, + O (¢?),
where By = |By|. The safety factor!” and B, are approximated as ¢ ~ rB,/RBy and

17 A number of times the magnetic field line travels around the tokamak in the toroidal direction to
wrap it around once in the poloidal direction.
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By (¢,9) = By (¢) (1 — e cos 1), respectively. We employ a low beta approximation and to
keep zero divergence of the total magnetic field, a magnetic field perturbation associated

with the tearing mode is taken to be of the form
31 =V x (A”b) (2.4)

with b = By/By being a unit vector in the direction of the equilibrium magnetic field.
Aj| is the parallel component of the vector potential connected to the NTM poloidal flux
function perturbation, 41, via

RA| = —&v) (2.5)

with ¢ = g[}f (£). € here is a helical angle in the island rest frame defined as

£=¢—q, (2.6)

where ¢, = m/n is the safety factor evaluated at the rational surface, 1) = 1, around
which the magnetic island is centered. f describes a form of the perturbation in &
space and is taken as f = cosn& provided a single isolated NTM island is considered.
QZ = (wi/él) (¢./qs) is the NTM perturbation amplitude with wy, being the island half-
width in ¢ space related to w in r space via w = wy/ (RBy) (note: in ¢ space we work
in terms of wy,, and hence the ¢ index is to be omitted for simplicity in the forthcoming
sections, unless otherwise stated). ¢, denotes dq/01 evaluated at the resonant surface,
1 = 1. For further analysis, it is convenient to switch from the coordinate system
{1, p,9} introduced above to {1,£,9}. To describe the magnetic island geometry, we
introduce a perturbed flux surface function 2 that satisfies B - VQ2 = 0:

2
0= 2(¢ _2¢s)

Wy,

— cosné. (2.7)

The tearing mode introduces the radial component of the magnetic field that is required
to generate the island. Hence, Eq.2.7 can be obtained by integrating a field line trajectory
with €2 being a constant of the integration and ¢ Taylor expanded about the rational
surface. Here & € [—m,7]. The surfaces of constant 2 describe the topology of the
magnetic island. 2 = 1 describes the separatrix and {2 = —1 is at the island O-point.

Eq.2.7 implies a constant 1) approximation and also requires the island to be sufficiently
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small that a Taylor expansion of equilibrium quantities is valid in its vicinity. Introducing
¢ as a function of r [79] and keeping a more realistic radial g profile provide non-symmetric

islands in the radial direction [80, 81].

To derive the dispersion relation for the NTM, we address the Gauss-Ampére law that
reads as 0, F“? = 119J?, where F is the electromagnetic tensor, J is the four-current and
0 represents the four-gradient. It is equivalent to finding the extremum of the functional
L= —(1/4p0) F*PF,5 — A,J* with respect to A, the four-potential. As the magnetic
perturbation is given by the parallel component of the vector potential according to Eq.2.4

with Eq.2.5, the Lagrangian density reduces to

1 2 1 2

p here is the charge density. ¢ is to be understood as {1, &, 9}, which is equivalent to
{Q,&,9; 04} with oy being a sign of 1) — 1),. Seeking the extremum of this functional for
any given Aj/®, we obtain the parallel component of Ampére’s law/Poisson’s equation.
Restricting the analysis to a single harmonic in &, i.e. o< e~ in accordance with the
cosné form of €2 and taking the cos ¢ and sin & components in the parallel component of

Ampeére’s law, we provide integration through the island area'® to obtain

1~ o
mAw—/Rdl/z _ﬂd&J” cos& =0, (2.9)

/dw /ﬂ d¢Jysin& = 0, (2.10)
R -

and Poisson’s equation reads

00y = —p. (2.11)

The electrostatic potential is to be found to keep plasma quasi-neutral, i.e.

Z 6Zj7lj = 0.

J

18Tn Chapter V we will use £ = % <50|E|2 - L \B\Q) +dJ-A* — p®* integrated through the phase space

Ho
island. Now we concentrate on the collisional dissipation, omitting any external dissipative contributions
(e.g. [78]) and take the perturbation of the form, Eq.2.5, and hence a complex conjugated pair, (A*, ®*),
is to be replaced with (A, ®).
9Below we restrict the analysis to the 2/1 NTM for simplicity, and hence n is to be replaced with
n=1.
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Here summing over j represents a sum over all the species; eZ; and n; are charge
and density of a species. J) is the J-average of Jj, [dg = [ d¢ [, dy =
Wy 400 dQ . . o .

oG Z% op $d [ Oreos ) 72 which results from Eq.2.7 with n = 1. At fixed €, outside
the magnetic island © > 1, we simply integrate over a period in &, i.e. [—m,7|. Inside the
island, i.e. —1 < € < 1, we have to integrate over £ between bounce points, given by

& = +arccos (—), and sum over the two streams, o, = +1, to provide continuity at

each bounce point.

Eqs.2.9-2.11 represent a system for the threshold magnetic island half-width, w.., the island
propagation frequency and the electrostatic potential. A’ results from the integration
through the island, as J41 is not smooth across the island, and represents the classical
tearing mode stability parameter. Deriving Eq.2.10, we neglected any external dissipation
forces (the island interaction with a resistive wall is considered in [77, 82, 83, 7§|).
Eqs.2.9,2.10 reproduce the nonlinear tearing mode dispersion relation [84, 53, 59|. This
system provides w. and w, once the perturbed current localised about the island, J|, is
obtained. This is to be calculated from the ion and electron distribution functions, which

we find in the following sections.

2.2 Ion response

The ion/electron response to the NTM magnetic perturbation is described by the drift
kinetic equation that is given by Eq.1.12 for each particle species, j.2° The 9/dt term
vanishes in the island rest frame. A system of two particle species is addressed: plasma
electrons and ions?'. ® is the electrostatic potential localised about the island vicinity
and is associated with a difference in the electron and ion responses to the magnetic
perturbation. It is to be determined below from plasma quasi-neutrality. All spatial
derivatives are calculated at fixed magnetic moment, y = V2/2B, and kinetic energy,
K = V2/2. In velocity space, following [53], it is convenient to introduce a triple of velocity
variables as {\,V;o}, where A = 2u/V? is the pitch angle, V is the absolute value of

velocity and o = V};/ ‘V”’ is the sign of the parallel component of velocity. Hence, the

20p = B/B. In Eq.2.4 the unit vector is introduced in the direction of the equilibrium field lines.
21The energetic particle/ impurity contribution will be introduced as the third particle species in the
secondary mode stability analysis, Chapter V.
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velocity space integral and V| become

BT
dV =B / v%zv/ — 2.12
/ ; R+ o (1—AB)Y? (2.12)

Vi =oV(1—AB)"2 (2.13)

Thus, the trapped-passing boundary in pitch angle space is at the inverse of the maximum
value of the magnetic field, i.e. A\, = 1/By (1 + ¢) for the equilibrium given in Sec.2.1.
A € [0, \.] for passing and A € (Ac, Agin] with Apiy, = 1/By (1 — ¢) for trapped particles.

Assuming a Maxwell-Boltzmann equilibrium plasma, we write f; = f ]M B 4+ g; with

ﬁ”wo=ﬁ%%%%ewmﬁw (2.14)
denoting the Maxwell-Boltzmann distribution of a species j. negn is the equilibrium
Boltzmann density, i.e. Negm = 1o (1 — eZ;®/T}) provided eZ;® < T}. Vip; = (2Tj/mj)1/2
is the thermal velocity of a species. The first term in f; is the classical Maxwell-Boltzmann
contribution, while the second term describes the perturbation in the particle distribution
due to the tearing mode occurrence. Seeking the solution localised to the magnetic island,

we Taylor expand the Maxwellian around the rational surface, ¥ = 1, i.e.

GZJ‘(D M .
bZ(P@H%QL(%Hw, (2.15)

where fM = ng (ws)ﬂ*3/2VT_j3 (@DS)G_VZ/VTQJ‘(%) and the electrostatic potential being

/

expanded around the rational surface, i.e. ¢ = @eqm‘ - (

Y — 1) + 6P (prime denotes
the derivative with respect to ¢), and thus ® (¢5) = 6®. ®., is the equilibrium potential
in the absence of the island, and 0 is the perturbation associated with the tearing mode.
The perturbed distribution, g;, then must be linear in ¢ far from the island to match to

the Maxwellian equilibrium, dg;/0¢|, . = 9y SN (ahs).

To solve Eq.1.12 for g;, we define a small parameter A = w/a < 1. The following
orderings are assumed: eZ;®/T; ~ A, g;/fM ~ A, 6&/® ~ A. Then By/By ~ eA?,
where B; = |By| (see Appendix B for more detail). Considering Eq.27 for electrons
and Eq.39 for ions from the original paper [53], we notice that the dimension of the

problem can be reduced by switching from {v,&,9,\,V;0} to {p,, &, 0, A\, V;o}, where
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Py = — s — IV} /w,; is the toroidal component of the canonical angular momentum (a
more detailed explanation can be found in Appendix C). IV]//w,; is the excursion of a
particle orbit from the reference flux surface. As w < a, plasma is toroidally symmetric
to leading order and thus the toroidal component of p, is constant on a particle orbit.

Thus, to O(A') Eq.1.12 for g; becomes

Vi I 1% B2 9d -
Vi 2{1_12 ( n)%_ﬁ_ 9g; N
BogR 9 \Wej o £ ov oV
1% L) dg.
+{B”(B1V o)+ = }% +
0
v ) TRy (2.16)
Vil I 1V 5 0 4 2 O 4
) Y > 1 ' B2
* {B R2qs (p + wcj) + 0 aw 9 \Wej v (919 W Wej
_o0 1 9 _ﬁlia_@’ 99| _ i)
gv'& 85 p&ﬂv'&vuvv quv BO R2 619 p<P7£ av p#ﬂﬂxfnu ’ ’

Here m — ng has been Taylor expanded about the rational surface; ¢ denotes 09/0¢ =

*2B;Q(V¢ - V¥). The derivatives of g; in the Vlasov part of Eq.2.16 are taken at fixed
i. At this stage, the form of the collision operator has not been specified. (B; - V1)
and (B - V&) have been neglected as higher order terms in the limit of small magnetic
islands. We note that 9/9¢,p, ~ R~'By'9/0r on equilibrium quantities and 9/9v, p, ~
R™1B;'9/0w on perturbed quantities (9p,/9y = 1 to leading order in py;/a). To solve

Eq.2.16 for g;, we employ an expansion in A:

Z g A, (2.17)

The O(A®) equation is
(0)
[VH ag.
2D, 819 =0. (2.18)

p%ﬂg

The V, - Vg, and Vi - Vg; parts of the first term of Eq.2.16 are ~ A and hence do not

contribute??. Working in the banana collisionality regime, we assume that the collision

operator on the right hand side of Eq.2.16 is order A smaller than the free streaming.

Hence we learn that the leading order distribution function, g(.o)

;5 1s U-independent at fixed

Por i€ g\ (Do &1, V) = g1 (,0,€, 1. V).

22A step by step derivation of the final NTM drift kinetic equation is presented in Appendix D.
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Proceeding to next order in A and multiplying both sides of Eq.2.16 by R*B,/IV|, we

obtain an equation for gj(-o):

199" +
q 819 D&\ Vo

[ R R2B, 08| | 9g'
+ | =(B1-Vpy) + —— == ] : +

1 Vi 08 ly| Ope 9EAVia

q. IVI\ , R?Bj 0 141 R*Bj , 0 Vi

s i Ve 1 Yy — 2.1
" q <p<p * Weg i I 0|y \we i I 0|, \wey 210
BBy 9| | 9y, _ % 09| 95, +

_[‘/H ad) £ a€ PoONVio quv 819 Pp,& 8‘/ P60, M50

cZ; 0 Aag](.o)
m;qV? 0v Pt O\

= (gﬂ' )
Pp,&,9, V0 H

To employ the collision operator from [53], we have switched from {u, V'} to {\,V;o} in
the Vlasov part of Eq.2.16.

1 . . .
;, Integrating the equation over

To solve Eq.2.19 for gj(-o), we have to eliminate a term in g( )
¥. This is equivalent to an orbit-averaging procedure at fixed p,, (see Fig.2.6). For passing
particles, g; is periodic in ¥ and thus we simply integrate over a period in ¥ assuming
gj (—m) = g; (7). Trapped particles oscillate between bounce points, £, defined from
ABy(¥p) = 1, where V) tends to zero. The requirement on their distribution function is

that
9;(0 = £y, 0 = +1) = g;(0 = £, 0 = —1).

Thus, we integrate between +v;, and sum over o. As continuity is required at each bounce

point, this annihilates the 6’g](-1) /0Y|  term. Thus, an orbit-averaged form of Eq.2.19 is

Py
/ 0 (0) R2 Py o (0)
Ly O (A=A +wp —wpg| {5 (B V) |
q I 9 9 ®
P9,V i0
RQB ) Py
-(mra ), -

9,6,A\,Vio
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where
g /IVi\" 1 0 AR 0 i\
tz—S<—> + > ( R*B* ~ ( ) + - ( R*B3vY — ( ) , (2.21)
q\wej /[y 1 N |ge \Wej ) I 0|y \Wej )
1/ rR2Bov| \”
wpe = = — (2.22)
5 I< Vi ov “975>19
and »
1/ R?B 0® ’
wgr = = — (2.23)
I < Vi o€ ¢,ﬁ>ﬁ

are the magnetic and E x B drift frequencies in £ and radial directions, respectively. ©
denotes the Heaviside step function. The last term in wp provides ~ €2 correction for the

small inverse aspect ratio, circular cross section tokamak approximation. The ¥-averaging

operator at fixed p,, is defined as

LT,

(=1 N
EZO’O’ff’&b dﬁ,

In Eq.2.20 & has been assumed to be periodic
in . Using Eq.2.4, we find (R*(B;-Vp,))y =
—(R?BydA/d€)y + O(A?).
dA/d¢ = —(P/R)df JdE.
magnetic island, this simply reads dAj/d§ =
(@Z/ R)nsinné. Eq.2.20 is the final J-averaged non-

Due to Eq.2.5,

For a single isolated

normalised equation for the ion/electron plasma

component to O(A') in {p,, &, A\, V;0} space.

Following [53], we close our system by taking
a collision operator that conserves particles and

momentum, Cj, of the form:

N AB)Y? 0

Ci(9:) = Cii (91) = v (V) B o\

— )\B)l/

(2a
¥

- (2.24)

at constant p,,
passing > -

trapped
constant ¥

Figure 2.6: Projections of passing

and trapped particle trajectories

shown in a tokamak poloidal cross

section (figure courtesy of K. Imada).

2 0g: > .
o\ "

Viwyi(g:)
|

(2.25)
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with Vii (V) = Vj; (VTz) (VvTZ/‘/)3 and

- 3ri/2 V||g<

1
uy == [ Vg, 227)

7 = e, 1. Ton-electron collisions are small and hence to be neglected.

2.3 Electron response

The procedure described in Sec.2.2 is also to be applied to the electrons. We arrive

at Eq.2.20 for the leading order electron distribution function, géo), with the following

collision integral:

Ce (ge) = Cee (9e) + Cei (ge) (2.28)
with

(1-AB)* 9

Cee (ge) = Vee (V) B 5

oA\

</\(1 _ap)2 0%
P

Ve (ge) M]
4 Al g 2.29

and

N AB)Y? 0

Cei (ge) = vei (V) 5 £

oA

(A(l _ap)/2 99
P

2 M
> + 3z Vi (9:) [ ] :
¥ Te
(2.30)
For electrons, collisions with ions and like-particle collisions must be retained. Here
Ve (V) = ve; (Vo) (Ve V), 5 = e, i ) and u; are introduced according to Eqs.2.26,2.27.
Eq.2.20 with Eqgs.2.25/2.28 for ions/electrons is to be further reduced, which is discussed

in the following section.

2.4 Drift magnetic islands

To modify Eq.2.20 further, we introduce the following dimensionless system:

N IVTj _ ¢ — ws
pPY; = ) r=——"
Wej W w
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= iy v
VT]-’ VTJ’
— C]; r—1 % 0B N w 7 ¢
Lt=2% L' =2 = — ==L 2.31
q q wsa B B awv w w57 ’I7Z} w ( )
- eZ;P R o~
¢ = (ws) b =12 pﬁjv”

(note: A is kept non-normalised, w normalised to v;/rs denotes the magnetic island

half-width in ¢ /r space, respectively). Then Eq.2.20 becomes

W 8g-(0)
ﬁ_m *O (A = A) = Poip — W e 82’ +
q Do, 0\, Vo
1 <B0 0 df>”“” Lo | o
—{ = Opr| 2 =
4\ B, Ly ds 9 Pe DENV o
o P (2.32)
" 2 (9 1/2 R ag
y v< ox|, \ A AT "
9

Y
3 B71 Pe
V2< Bgz /dV/O gi(o)d)\>]
9

for ions (with V' being normalised to Vr;) and

w

D= O (Ae = A) — Poeop —@E,s]
1/ Bywdf\"" ] ag®
— ) +Wps| =
4 B, L d§ " 0D,
2/ 0
= (f/ee + lA/ei) A_<_
)
Ve " .
3 .. 2 oom )
—V2 . 2 ¥ 0
+ e e BZ /+dv€/ ged/\ +
NI 322 dVV3 (O)dA )
7T1/2€ mi Vez 0 j

9

q p¢7197)‘7v;0'

ﬁ7£7A7V;U

1/2 E aggo)
B, O\

oA(1 — \B) > n (2.33)

9

for electrons (with V./V; being normalised to Vr./Vyp;). Here 0 = v;/Vp; and 0y =

Vej/Vre, j = €,1. Dimensionless drift frequencies are
) W jore [ B2a [ v |\
WD:_A<VH> tNm Vit B|)
Lq v B‘P L B 2‘/“ 9
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Py N Pe
1/ B2y 00 >
s WEr =3 52 7 A . (234)
5,«9> 2<B9" vy o vl g

0
Employing the conventional large aspect ratio, circular cross section tokamak

w = =<\ 55 ~ —~
T2\ BLV 0)

1<B2 po; 0D
2

approximation, we write B, ~ B, ~ B as stated in Sec.2. As 5@/01/3‘ =
€9
<8ﬁ¢, / 8@) Od /0P, S and using the fact that the orbit-averaging at fixed p, and 0/0p,,
é,
are commutative, we have
>P<p B @ < ﬁﬁj (i) >ps0
= 5 !

Here we have assumed that the fastest p, variation is in ® and hence we note 9p,,/ 02[) =1
to leading order in py;/a. Similarly, we obtain®

<p_8_<1>

Vi oy

<p_a_<1> >’°L 9 <p¢>
V|| 85 RVY . aé PV ‘/” 9

This allows Eq.2.32/Eq.2.33 to be rewritten in the form:

: NGO
0 1 : dg;
Aﬂﬁnp O (Ae—A) = pojwp — 5| = Poi Ji +
Lq 9Py 02\ V] ¢ .
’ 19 p&pzﬂ))\vv7a (2 35)
s AP g (0) :
1 - 1 0g; ~
+[§ —<@<I>> —Zf” sing-@()\c—)\)] agA =C,
oo\ Vi /, e Pe Lo eavio

where 5j represents the right hand side of Eq.2.32/Eq.2.33 for ions/electrons, respectively

(note: to simplify the analysis below we take n = 1, unless otherwise stated). Eq.2.35 is

R p
1<@¢>> ] 99,”
2\ Vi [/, ] %

equivalent to

(T o 0
[E—p@'@(&—)\) — P9jWp — %

q

C;  (2.36)

S\ Vio

with

Zp,, is &-independent at any fixed 1 and hence 8/5‘§|w719 = 3/85\1)%19.
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We note that S is v-independent and is to be treated as a new radial coordinate.

0.200 0.25
0.175 0.20
0.150

0.125 0.15
0.100

0.075 0.10
0.050 0.05
0.025

0.000 0.00

(l.U - Ws)/W (lﬂ - WS)/W
(a) w > pgi, w=0.02r,, pg; = 1.0- 10737, (b) w = pyi, w = 0.02rg, py; = 8.0 - 10737,

Figure 2.7: Contours of constant S in the (z,£) plane in the absence of the electrostatic
potential, ® = 0, for w > pyi (left) and w 2 py; (right). A =0.84, e =0.1, V = Vg, 0 = +1,
qu = 1. White dashed line indicates the position of the magnetic island separatrix, @ = 1. The
S island separatrix is at /4L, (black dashed line).

Eqs.2.36,2.37 complete the transition from {p,,&, A, V;0} to {S,,\,V;0}, and the
particle distribution function is to be found as g](o) = gj(o) (S,€,\,V;0). According to its
definition, S is a function of py, £, A and V for each o, and depends on the form of the
electrostatic potential, which is, in turn, a function of ¥, £ and 9. For passing particles in
the absence of the electrostatic potential, i.e. when the E x B drift effects are ignored, the
contours of constant S reproduce the magnetic island structure given by Eq.2.7 but have
a radial shift by the amount wp ﬁﬁjf}q Jw + ,619]-‘7” 24 proportional to the poloidal Larmor
radius (see Figs.2.7a,2.7b). This shift arises due to the VB and curvature tokamak drifts,
and as wp is o-dependent in the passing branch, the shift is in opposite directions for
Vi 2 0. These S island structures in the contours of constant S are to be referred to as
drift islands. A similar drift island structure in view of plasma tokamak transport has

been identified by Kadomtsev in [85], where the chains of islands much smaller than py;

but larger than py. are considered.

In Figs.2.7a,2.7b we plot S contours in the (z,£) plane for passing ions at different py;/w.
We also note that wp being a function of A\ provides the v; dependence of the radial
shift as we approach the trapped-passing boundary?®. For trapped particles, S is simply
proportional to p, when ® = 0, and is o-independent due to the summation over o in

the orbit-averaging operator, Eq.2.24. Inclusion of ®, in principle, might modify the

24Here j,, has been written in terms of ¢ in Eq.2.37.
25This is to be explained in the next chapter.
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S structure significantly. However, as we will see in the forthcoming sections, the self-
consistent electrostatic potential obtained from plasma quasi-neutrality does not add any
significant quantitative modifications to the form of S, keeping the surfaces of constant
S closed for passing and open for trapped particles. Moving from p, to S as the radial
coordinate leads to the perturbed passing particle distribution function being found as
a superposition of two solutions: localised in the vicinity of 0 = +1 and o = —1 drift
islands rather than the actual magnetic island. As we shall see later, this creates new

physics for islands of width ~ py;.

To solve Eq.2.36 for g](.O) as a function of S, we employ weak collisional dissipation. In the
reference frame in which the equilibrium radial electric field is zero, this is equivalent to
imposing 0; = v;;/ew < 1 for ions and 6, = v,j/cw < 1 for electrons. Treating the system

perturbatively, similar to Eq.2.17, and applying an expansion in d;, we come to

23

=0 (2.38)
S9,\, Vo

to leading order. Here we learn that g](p’o) is ¢-independent at fixed S, i.e. g](-o’o) =

g](o,o) (S,\, Vo) = (0.0) (P, &, A, V;0). Proceeding to next order in §; and introducing

J
.. . . (0,0
collisions, we derive an equation for g;

0,1
agj. )

A= —C, <g§0’0)> , (2.39)
S, 9\, Vo
where A denotes the coefficient in front of 89](-0) /O ‘ on the left hand side of Eq.2.36.
S, 9\, Vo
(0,1

To eliminate the term in g ), we divide both sides of Eq.2.39 by A and introduce the

J
annihilation operator similar to Eq.2.24 to provide &-averaging at fixed S. As the particle
distribution is periodic in £, we integrate Eq.2.39 over a period in £ outside the .S island for
passing particles. Inside the drift island, i.e. S < S, (S. denotes the S island separatrix),
we integrate between the {-bounce points given by &9 = &2 (S, ppo, A, V;0), where
Do is the stationary point of S = S (p,) for each £, A\, V and o. In the absence of the
electrostatic potential, puo = &ppyg;Le/w and & 5 = + arccos <—S AL,/ ﬁ;) but generally
there is no analytic form for them. S as a function of p, has two branches for each A, V' and

o. Hence, inside the drift island we also sum over the two streams, o, = £1, where o, is
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the sign of p, — p,o. This annihilates (’9g](-0’1) /O due to the continuity requirement
S9NV o

at both bounce points. The above procedure is also
10° gi(o,o)= gi(0,0)()‘ )@W= 002, po,i =103

144 < o= +1, passing branch

to be applied to trapped particles. In the absence of

the island-like structure, we integrate over a period o'=-1, passing branch
167 trapped branch
in ¢, imposing a periodic boundary condition (note: ~ -1.8 o=sign(y) A=W
2.0 o
the self-consistent electrostatic potential does not 29 K|
22 ;
provide closed contours of constant S in the trapped — -2.41
. _ 26/ —_
branch in ranges of parameters we consider). Thus, 28- H
Eq.2.39 reduces to 0 02 0.'4/10.'6 08 1.0
6], § ©0.0) Figure 2.8: Leading order ion
A g; =0 (2.40)  gistribution function gl(0,0) vs. pitch
3 angle, A, at p, = 183, £ = 0.

w = 0.02rs, py; = 1.0 - 1073r,, ion
with the -averaging operator at fixed S being collisionality v = 107% 26, ¢ = 0.1,
L, = 1. 9(0’0) is normalised to

fi q %
defined as no/(732V3). Inset: a full solution of
Eq.2.36 in a collisional layer around A..

L fﬂ dE, S>S. Vv* represents the width of the layer

S or J—m
<>§ ), €0 with v* = v;; /ew. The trapped branch
4r ZUW Tpe &1 - dE, S <S5 solution is o-independent due to the

(2.41)  summation over o in Eq.2.24.

for passing and

(.)% ! /W .d¢ (2.42)

€T on L
for trapped particles. While collisions are neglected in Eq.2.36, the combined effect of the
parallel flow, VB and curvature drifts would force the particle distribution to be flattened
inside the drift islands. Introducing collisions at next order provides a full solution for
the perturbed distribution function. However, the perturbative approach we apply breaks
down in a dissipation layer, i.e. a narrow region in pitch angle space in the vicinity of
the trapped-passing boundary, A = A. (see Fig.2.8). Here collisional dissipation becomes
comparable to parallel streaming, ~ A0/0¢|4, due to the steep gradient in A, and thus a
full solution of Eq.2.36 is required in the layer. We solve Eq.2.36 for g](-o) in this collisional
layer in the following chapter to calculate the island propagation frequency as this layer
provides the dominant source of the collisional dissipation. This solution is then used to
(0,0)

provide boundary conditions to match g; " across the trapped-passing boundary and thus

*The plasma collisionality is defined as v} = vj; /ei/m;/ T;e3/2¢R, where j labels electrons and ions.
For electrons, ve; & vee.
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to solve Eq.2.40 for g](.o’o) in external regions, i.e. A € [0, Ae — VI U [/\c + Vv, )\fm]- A
detailed description of the solution technique can be found in Chapters III and IV.

4_
T 29
o
—
- 0-
S
= 5]
_4-
Po Po
(a) w > pgi, w = 0.02r,, pg; = 1.0- 10737, (b) w = pyi, w = 0.02r, pg; = 8.0-1073r,

Figure 2.9: Sketch of the ion distribution function vs. p, at A = 0.89, £ = 0 for w >> py; (left)

and w 2, py; (right). gi(o) is normalised to ng/(73/2V3,). e = 0.1, L, = 1. Ton density/temperature

length scales, Lyo/Lr; = 1. py(0) = o&D(U)ﬁijq/w. Dashed lines indicate the o = %1 passing
ion distribution function, gZ(O)’U, while solid line represents % Yoo gEO)’U. The o = +1 drift islands
are centered around p,(0c = #1). The magnetic island is located between them; p, = +1
corresponds to the separatrix of the magnetic island.

In Figs.2.9a,2.9b we show how the ion distribution function varies with p, at A, — Vv,
where the radial shift in S is maximum in the external region for given py; and w. The
radial shift, @D(a),@%ﬁq/w + ,519]“7”, is proportional to o and hence the ¢ = +1 shift is
equal but opposite to the o = —1 shift. Constructing the ion/electron density, we have to
sum the passing distributions over o according to Eq.2.12. As the areas of the distribution
profile flattening are shifted in opposite directions for ¢ = +1, summation over ¢ provides
a substantial ) g§°)’” /density /temperature gradient inside the NTM magnetic island
for w ~ py; (see Fig.2.9b). When py;/w < 1, the profile flattening is maintained inside
the magnetic island as the o = +1 shift is kept relatively small (see Fig.2.9a). This
is to be referred to as finite orbit width effects and is explained in more detail in the
forthcoming sections?”. As py. is a factor (me/ mi)l/ 2 smaller than py;, this effect is less
significant for electrons in the absence of the electrostatic potential and thus would create
a significant difference in the electron and ion responses for w ~ py;. However, as plasma

is quasi-neutral, the electrostatic potential adjusts to provide the same density gradient

27see "Contributions to the modified Rutherford equation"
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for electrons as we have for the ions. This is to be discussed in the following section?®.

In Figs.2.10a,2.10b we plot a sum of the ¢ = +1 leading order ion distribution functions
against y = /S — Syin, where Sy, is a minimum value of S as a function of p,, &, A, 14
for each o and is given by —1/(4L,) in the absence of ®. y is chosen as an extra variable
to provide a Neumann boundary far from the island. gi(o) shown in Figs.2.10a,2.10b takes
into account the electrostatic potential found from the plasma quasi-neutrality condition.
The 0,, = +1 branch is used to reconstruct the particle distribution in a region of p, > 0,
while o,,, = —1 provides the distribution function in a region of p, < 0. In accordance
with the drift island effects described above, > gi(o) “ (which is a measure of density due
to Eq.2.12) is flattened inside the magnetic island for w = 0.02r,, py; = 1.0 - 10~3. For

w = 0.02r,, py; = 8.0-1073, the > gz(o)’a gradient is restored in the magnetic island

region.

bc?

>  0.011

C)

©°  0.004

S

(o)
IQIND -0.01"

00 01 02 03 04 00 01 02 03 04
y y
(a) w > pgi, w = 0.02rg, pg; = 1.0- 10737, (b) w = pyi, w = 0.02rg, py; = 8.0 - 1073,

Figure 2.10: Sum of the 0 = +1 leading order ion distribution functions plotted against
Y = /S — Smin at A = 0.89, £ = 0 for w > py; (left) and w = py; (right). gz(o) is normalised
to no/(w3/2V3). e = 0.1, Ly = 1. Ly, = Lo/ (1 4+ &g) with L, = 1 being the density gradient
length scale, O = m@’eqm/qswdw?e =0. ;= Ly/Lr; = 1. Lyj is the ion/electron temperature
gradient length scale. Dashed line represents the analytic limit far from the island in the absence
of ®.

Let us now return to the electrostatic potential localised to the island vicinity, which we
consider neglecting the global plasma flows around the magnetic island. Its calculation is

the subject of the following section.

285ee "Plasma quasi-neutrality and electrostatic potential”
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2.5 Plasma quasi-neutrality and electrostatic potential

Technically speaking, the electrostatic potential is to be determined from Poisson’s equation
implying plasma quasi-neutrality?®. We adopt a Maxwell-Boltzmann equilibrium plasma

and so we obtain

hy=1— 6D + 60, (2.43)

for ions and

fe = 14 00 + 0n, (2.44)

for the electron density integrating Eq.2.15

1.061 .
over V. Here n; = n;/ng, 0n; = dn;/ny and Loa
06 = e6®/T; provided Z; = Land T, = T,
(this assumption is maintained throughout the %1 00
c z
study unless otherwise stated). ¢n; is the IS 0051 + ps,i=1.0-1073r
) . ) ' o —e— pg;=5.0-1073r,
perturbed density associated with g; and hence ‘ po "
0.96 Po,i=7.0-1073rs
is given by 0.94 —— ps,;=8.0-1073r;
' -2 0 2
o (,€.7) = W=l
, B! 9; (0, 6,9\, Vo) dA Figure 2.11: Radial density profile across
WBZ Vadv NG /2 - the magnetic island O-point (¢ = 0) for
o JRT 0 (1=AB) different py;. w = 0.02rg, ¢ = 0.1, L, =
1, ion collisionality v = 1073. Dashed
Thus, balancing the electron and ion densities, line indicates the equilibrium density profile,
we find o L;luﬁw, wg = 0. Here negm is the
5 5 equilibrium density, i.e. in the absence of
5d = % (2.45) the magnetic island.

As mentioned in the previous section, the electron and ion responses to the NTM magnetic
perturbation differ in the absence of the electrostatic potential, especially for w ~ py;.
Indeed, when w/py; > 1, both the electron and ion density profiles would be flattened
inside the magnetic island and then the role of ® is not crucial. When w ~ py;, the
ion density becomes steepened in the vicinity of the magnetic island O-point, while the

electron density is still flattened in the absence of ®. So the strong electron parallel flow

29We consider length scales greater than the Debye length, and thus we can impose quasi-neutrality.
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tends to keep their density flattened across the magnetic island. However, to maintain
plasma quasi-neutrality, ® is to be generated and adjusts to provide equal full ion and
electron densities. Its form is more complicated than Eq.2.45 suggests as both the electron
and ion responses, 07, ;, depend on ®. We iterate over ® until n; and n. become equal to
a specified numerical error. So in contrast to [75], we state that the restoration of the
density /temperature gradient across the magnetic island is influenced not only by ions
but by the electrons as well. This goes beyond the Boltzmann plasma approximation and

is valid as long as the plasma quasi-neutrality is incorporated in a model.

To illustrate the above, in Fig.2.11 we plot the full density, Eq.2.43/Eq.2.44, against
1. The corresponding self-consistent electrostatic potential differentiated with respect
to ¢ in the (¢, &) plane is shown in Figs.2.13a,2.13b,2.13¢,2.13d and its cross-section
across the magnetic island O-point in Fig.2.12. The electron/ion distribution function

is normalised to ng/(7*2V4;). Thus, its limit far from the island reads df;/0x =
T—Fo00

W [L;l + (VQ — 3/2) L;}] e V?, where f; = Jim*2VE Ing. Ly, and Ly; are the density

and temperature length scales defined

as L' = (1/Teqm) (ONeqm/OV),

Lyi = (1/T;)(0T;/0¢).  negm is the 41

Boltzmann  equilibrium  density, ie. r;_': 2

Negm o no(l — eZ;®/T;) provided S o

eZ;0/T; < 1. Hence, L' = L} — eZ,8' T, <§ N

with L} = (1/n0)(Ong/0v)  and

o = 0d&/0y. Normalising the second - -2 0 2

(w - WS)/ w
term to the electron diamagnetic frequency,
Figure 2.12: Radial derivative of the

Wdia,e = mT.ng/ (—eqsno), we have electrostatic potential, 8@/8@2}, across the
. - . _ ic island O-point (£ = 0) for different
L' = Lo (14 Z;wg /whiae) With wg = m®’ magnetic Is b
" n0 (1+ 2w [ Waia.c) E /s py; (notations are the same as used in
(prime denotes the derivative with respect Fig.2.11). w = 0.02rs, ¢ = 0.1, L, =
30 I . B 1, ion collisionality v = 1073, The
to )™ Thus according  to q.2.45, equAilibrium density profile o< L., h, &g = 0.
P WpL,3wy far from the magnetic island, 81[,‘1’7/;_&00 =0.
Wg = wE/wdz‘a,e-

Working in the island rest frame (w = 0), we require an equilibrium radial electric field

30 As the electrostatic potential is Taylor expanded about the rational surface, i.e. ® = & ,,,| =p (v—
Ps) + 0@ with 6®[,__ — 0, wg =m®,,,,/q..
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Figure 2.13: Contours of constant §® /9 in the (z, €) plane for a different ion poloidal Larmor
radius value. € = 0.1, L, = 1, w = 0.02r, ion collisionality v} = 1073, The equilibrium density

R P A & —
profile o< L, w1, wg = 0. aw%ﬁoo =0

to be retained. We can move to any other reference frame via toroidal rotation (note:
the effects of centrifugal and Coriolis forces are neglected). As E +V x B is constant,
we write AE = AV x B = —RV, V¢ x B for the variation of the electric field, where
V., is the toroidal component of velocity. Due to Eq.2.3, we deduce AE = (V,,/R)V.
Setting AE = — (0P g /0v)V1, we obtain @ = —V, /R for the equilibrium potential
gradient far from the magnetic island (prime denotes the derivative with respect to ).
We define wy to be the island propagation frequency in the reference frame where the

radial component of the electric field is zero far from the magnetic island. In any other

frame rotating relative to this, we have

_+ﬁ£ :_(w_i_mvgo)ﬁ 31
ot~ R Jpl,, Rqs ) 0€1,
where w is the island propagation frequency in that frame. Denoting wp = —mV,,/Rqs =

m®’ cym/qs in accordance with the above expression, we note w — wg is independent of

31The helical angle here is defined as in [53]. With the definition given in Sec.2.1, we have 9/9t +
(Vo/R)8/0¢l,, 5 = (—w + Vo /R) 9/0E],, -
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frame. Thus, moving to the reference frame where w = 0, we require V,, = wRg;/m, and
thus @', = —wgqs/m or wy = —wg. Therefore, the wg dependence in the island rest
frame provides the w dependence in the reference frame, in which the equilibrium electric

field is zero far from the magnetic island.

In Figs.2.14-2.28 we show contours of constant S for passing and trapped particles in
the (p,,€) plane in the presence of the electrostatic potential. As can be seen from
Figs.2.14-2.18, an island-like structure is maintained in the presence of ® even at A close
to the trapped-passing boundary where the radial shift in Eq.2.37 is maximum??. For
trapped particles, contours of constant S are open in a whole range of \ variation®® for
considered input parameters. This justifies a choice of Eq.2.42 for the £-averaging operator

in the region of trapped particles.

2.6 Summary

In this chapter we have introduced the neoclassical tearing mode and magnetic islands
whose formation always accompanies NTMs in tokamak plasmas. To predict the NTM
behaviour, one has to know the plasma response to the NTM magnetic perturbation.
This plasma response is written through the ion/electron distribution function that in
this study is to be found as a solution of the drift kinetic equation in the vicinity of the
magnetic island. To reduce the dimension of the problem we switched from the poloidal
flux, v, to the toroidal canonical momentum, p,, and then from p, to S for the radial
coordinate. This S island concept mathematically explains why the density gradient is
not removed across the magnetic island for w ~ py; as previously found in large scale PIC
simulations for small magnetic islands [75]. Moreover, this introduces the ion poloidal
Larmor radius rather than the ion banana orbit width as a key parameter to estimate a

threshold, i.e. a marginal magnetic island width below which NTMs are suppressed.

The technique discussed in this chapter is valid while collisions can be treated perturbatively.

The low collisionality plasma regime is justified as the bootstrap current exists in the

32p9; = 5.0-10~3r, is sufficient to provide partial steepening of the density profile across the magnetic
island.

33X\ = 0.84 and X\ = 0.97 for given ¢ and ion collisionality are located at the edges of a boundary
dissipation layer where collisions play a role. For A € (0.84,0.97), a layer solution is required, which is
the subject of the following chapter.
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banana regime. However, to match the passing and trapped distribution functions across
the trapped-passing boundary, \., we require consideration of the thin boundary dissipative
layer around A.. Furthermore, as this layer provides the dominant source of dissipation
in our problem, it also allows one to determine the island propagation frequency and
thus the corresponding dependence of the polarisation current contribution to the island

evolution. This is to be addressed in the following chapters.
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Figure 2.14: Contours of constant S in
the (P, &) plane in the presence of the self-
consistent electrostatic potential. A = 0.84
()\c = 0.91), g = 0.1, V = VTi) g = —1,
L, = 1, w = 0.02ry, pg; = 1.0 - 10737,
ion collisionality v} = 1073. Grey contour
lines represent contours of constant S in the
absence of the potential for the same input

parameters.
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Figure 2.16: Same as Figs.2.14,2.15
except for the ion poloidal Larmor radius
value, pg; = 5.0 - 10 3r,.
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Figure 2.18: Same as Figs.2.14,2.15
except for the ion poloidal Larmor radius
value, pg; = 8.0 - 10 3r,.
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Figure 2.15: Contours of constant S in
the (P, &) plane in the presence of the self-
consistent electrostatic potential. A = 0.84
()\c = 0.91), g = 0.1, V = VTz‘, o = —1,
Ly = 1, w = 0.02rs, pg; = 2.0 - 10737,
ion collisionality v = 1073. Grey contour
lines represent contours of constant .S in the
absence of the potential for the same input
parameters.
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Figure 2.17: Same as Figs.2.14,2.15
except for the ion poloidal Larmor radius
value, pg; = 7.0 - 107 3r,.
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Figure 2.19: Same as Figs.2.14,2.15
except for A = 0.98, ¢ = oy, py; = 1.0 -
107 3r,.
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Figure 2.20: Same as Figs.2.14,2.15
except for A = 0.98, 0 = o4, pyi = 2.0 -

Figure 2.21: Same as Figs.2.14,2.15
except for A = 0.98, ¢ = o4, pyi = 5.0 -
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Figure 2.23: Same as Figs.2.14,2.15
except for A = 0.98, 0 = o4, py; = 8.0 -

Figure 2.22: Same as Figs.2.14,2.15
except for A = 0.98, 0 = oy, py; = 7.0 -
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Figure 2.24: Same as Figs.2.14,2.15
except for A\ = Ay, 0 = oy, pgi = 1.0 -
107 3r,.

Figure 2.25: Same as Figs.2.14,2.15
except for A\ = Ay, 0 = oy, pgi = 2.0 -
10 3r,.
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Figure 2.28: Same as Figs.2.14,2.15 except for A
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3 Boundary layer solution in the vicinity of

the trapped-passing boundary

Earlier we have identified a narrow dissipation layer in pitch angle space around the
trapped-passing boundary where collisional dissipation is no longer negligible and modifies
the electron /ion distribution function (see Fig.2.8). This layer provides the dominant
source of the collisional dissipation and hence is the only contribution to the island
propagation frequency in this study. We have to stress here that the effects of error fields
and plasma sheared flows are not considered. To calculate w and the corresponding w
dependence of the polarisation contribution to the magnetic island time evolution, we
have to address a system of Eqs.2.9-2.11. Projecting out the cos¢ and sin ¢ components
of Jy in Ampere’s law written along the field lines and providing the integration through
the island, we obtain Eqs.2.9,2.10. Eq.2.10 is equivalent to the toroidal torque balance.
This set of equations provides a system for the magnetic island threshold, w. (Eq.2.9), w
(Eq.2.10) and ® that has been determined from the plasma quasi-neutrality condition in

the previous section3*.

The dominant contribution to the component of Jj that is in phase with the magnetic
perturbation, o cos &, comes from external regions, i.e. outside the dissipative layer. The
contribution to this from the dissipation layer is two orders less. In contrast, around
99.(9)% % of the out-of-phase current, o sin &, comes from the layer around ). and hence
determines w. The electron layer width is a factor ~ (v /v;)/? larger than the ion
layer width. In a fully ionised plasma, ve ~ Ve = (4v/27/3)(nee* In A/ml*T2/?) and
Vi = (4y/7/3)(nee* In A/m, / 2Ti3/ %) (from Braginskii’s original derivations in cgs). Thus,

the electron layer width dominates by a factor (m;/m,)/* provided T, = T;.

In this thin boundary region collisions cannot be treated perturbatively and hence a full

34The integral form of Eq.2.11, in principle, can be used to find the mode frequency if the potential is
determined by a model. The latter will be applied to the secondary mode stability analysis in Chapter V.

35The dissipative layer width is estimated through ./ Vjijei/€w, and thus the corresponding layer
contribution depends on the ratio, v;;/.;/ew. j labels the particle species, j = e, .
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solution of Eq.2.36 is required. Following [53], we impose the matching conditions

> ogi" =0,
op lol,t
> 9" =2, (3.1)

(99}7”’

2

(e

o|,t
8gj‘v |

O\

(]

(]

at the trapped-passing boundary to provide continuity of the particle distribution
function and its first A\ derivative across the boundary. Here indices p and ¢ denote
the passing and trapped regions, respectively. These matching conditions can be
treated as the particle conservation law as we cross the boundary. The first two
conditions of Eq.3.1 are introduced to match g; across A. keeping the trapped particle
|o] ¢

distribution function, g

;" o-independent. The third condition provides the same rate

for passing/trapped particles scattered into trapped/passing orbits, respectively. We
note that originally matching is imposed at fixed 1. However, moving from ¢ to S
for the new radial coordinate and solving Eq.2.40 at the Oth iteration in ®, we find
gj(-o’o) = gj(-o’o) S\, Vi0) = j(o,O) (S (P, &, A\, Vi50), A, V; 0] for the leading order passing
and gj(p,o) = gj(o,o) (S,\,Vi0) = gj(p,o) 1S (pp, A, V;0) , A, V; 0] for the leading order trapped
particle distribution (here we have used the S definition for passing/trapped particles,
Eq.2.37). The continuity of the particle distribution across the trapped-passing boundary
at fixed p, /1 simply cannot be provided without introducing the layer as the definition of
S is different as A — A\, £ 0 (e.g. the trapped particle solution is -independent at fixed
D,/ in the absence of ®, while the passing distribution function is a function of £). The

introduction of this layer allows g; to vary on S contours, and hence enables the matching

conditions, Eq.3.1. This explains mathematically the necessity of the dissipation layer.

The calculation of the ion/electron distribution function in the layer is presented in the
following section. Once a full solution of the ¥-averaged drift kinetic equation to leading
order in A (Eq.2.35 in the dissipative layer and Eq.2.40 outside the layer) with the
electrostatic potential calculated self-consistently from plasma quasi-neutrality is found,
we return to Eq.2.9,2.10 to determine w. and wg, respectively. We note that Jj is to be
¥-averaged as integrands in Eq.2.9,2.10 have to be integrated over all spatial variables to

provide w, and wg.
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3.1 Dissipative layer solution

We start with Eq.2.35, the v-averaged drift kinetic equation for the leading order
distribution function in A in {p,,&, A\, V; 0} space and seek its general solution of the
form:

0 0 N
=6V +cp, (3.2)

with C being the limit of the distribution function far from the island introduced
in the previous chapter. The particle distribution is normalised to no/(7*?V};) as
= 0 and thus 8G§0) JOS?P = 0 for passing and

r—+o00 SP—+o00

8G§0) /OS" = 0 for trapped particles (here SP/* denotes S in the passing/trapped

St—+oco

region, Eq.2.37). C - p,, is the drive term that reads

stated previously. (9G§»0) /0x

1 (4L, Gppo; L
O-p@ 5 (—Sp—'—COSg) % .C
for passing and —CS*/wppy; for trapped particles in the absence of the electrostatic

potential. At the end of each iteration in ®, the transcendental equation SP/* =

s/t (ﬁwfv A, V§‘7> is to be solved for p, = p, (Sp/t,f,)\, V;a). Eq.2.35 for G§0) then

reads
R Py (0)
w . 0 1 . oG
=Dy O (A = A) = pojply T 95 < ‘I)> aé +
L, Pelen2 \ Vi [, - Pe AV
Py N (0)
1 1 0G":
aﬁ pﬂﬂq>> - Z—lismg@ua—x) - + (3.3)
9 I Lq Pe lyeavio
Py
a h ~
+_ p“”cp —gismg-@(xc—x):q— :
V| 9 4 Lq Ap/t

Ap/t

where taking into account the narrowness of the dissipation layer, we have fixed all the

coefficients in Eq.2.35 at A\, = A F €. € is the width of the layer and is to be introduced
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later in this section®®. Eq.3.3 is equivalent to

N Py (0)
w ~ A 0 1 Py G
7, OV m = oy, — 5 < qu)> ¢ -
q ® 519 I 9 Ix, S9NVio 34
o1 /py\" 0
—0 -2 Z(Pug n (e — )
with
. 2
. d oppe; L
§=-" |2 p, - LRLUZ —cosE| O (A — A) — Dol PO (A — A) —
4L, w N (35)

S is M-independent, i.e. S =S (Py, &, V5 0) (note: Eq.2.36 reduces to Eq.3.4 with S being
Taylor expanded around A/, S = S+ 0,9 Mot ()\ - A /t)). Employing the thinness of the

layer again, we write

o1 91 _9
aAw_ a)\pw_ 8)\3
and thus
S oGy 2 92GV"
a(semro) SE| aden T -
S, 9\ Vo g

0

23

Py
Py 9 2 ‘/H 9

for the final equation to be solved in the layer. a is defined as <0/\(1 - )\B)l/QR/B@>Zw

Ap/t

v is to be understood as ©;; for ions and 7. + ¥; for electrons. As e < 1, the collision
operator is dominated by 9%/0\?| , and the momentum-conservation term, o ; Juy;, can

be dropped. Imposing

G\ = /s, / s’ + G, (3.7)

S £, Ap/t,v 0>

36Earlier, v* has been introduced just to provide an estimation of its width.
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we come to

oG
J
9¢

2 092G
= Ve (Aose) -

A (S € AV a) (3.8)

S9NV S

for G§O)’l. The first term on the right hand side of Eq.3.7 provides the drive in Eq.3.6.

In the absence of the electrostatic potential, it equals —o,, \/ % (%SP + cos 5) - C for
passing particles and is independent of £ and equals CS*/&ppy; in the trapped branch

(note: S. =1 in the absence of the separatrix). Eq.3.8 can be reduced to a simple diffusion

equation
(0),t (0),0
+/t 2 | :
Ozt N g

where D*/t = ﬁj%a (Ap/t) for passing, ¢ = £1, and trapped branches. To simplify the

calculations below, we have introduced a new variable, */*, instead of ¢:

3 de!
pout(E)/t _ W"pwdg / : § (3.10)
f—wm 0 A(S,ﬁ’,V;J)

for trapped particles and for passing particles outside the S island. For passing particles

inside the S island,

. 1 € ae’
et = — " / - 3 . 0y, >0 (3.11)
—& m 0 -A <S,€/,V; 0)
and
, 1 ¢ ¢’
e e / . § . 0y, <0, (3.12)
ffgb m 0 A (57 5,7 v70->

Here we note

o 2t/

increases monotonically with ¢ along the passing/trapped trajectory at given
S. It varies from —7/2 to /2 for € € [—&:&)], and from 7/2 to 37/2 on the way
back, i.e. £ € [&; —&] (& reduces to m outside the S island as well as in the trapped

branch).

£/t

e z=/' is an angle variable since it spans [—m/2;37/2] along the closed passing

trajectory.
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e the choice grants that & = 5(5’, 2*/!) is an odd function of x*/*. It also satisfies
(S, x/; op, = +1) = £(S,m — x/t; 0p, = —1). Hence, the relation between z*/*
and &, given above, can be inverted. Therefore, we find it convenient to express
Ggo)’l as a function of S and z*/!

According to Barrow’s theorem, we have <A’1>dei/ t'=d¢/ A for both passing and

trapped branches. <A_1>§ =0y, |, 4 inside and (A~ >S =op, |7 outside

| Al 13 T 2T |A|
the S island.

only; 2*/* also contains the information on Opy-

).l

e This procedure guarantees that if G(O is treated as a function of z%/* instead of &,

it is continuous at £ = &, i.e. /! =7/2.

A= [(A—lyﬂ e (A — ) is a new pitch angle variable. A = 0 defines the trapped/passing
boundary; A < 0 corresponds to the passing/trapped region, respectively. In contrast to
[53], our layer solution includes both regions inside and outside the magnetic island. Eq.3.9
allows the analytic solution of the following form: Ggp),z = ano cEl te%\/ﬁe’mi/t
and thus

G(.O)’i _ Z{aiemcos {nxi + Q’%X] —bi VipF  gin {nxij: QngX] }—i—Hia

(3.13)

(0)7t _ - t)‘ n )\ n —
G, = Z {afle V 20t” cos {nxt - /\} — bhe Vap'tgin {nzt — @/\} } + H".

2Dt
n>0
(3.14)

Here H*/! represents a sum of the drive term /contribution from outside the layer (first term

of Eq.3.7) and the Oth harmonic, ao/ The width of the dissipation layer, €, is estimated
as € ~ VDt~ \[2a () /V ¥, Provided v ~ v, = 22T jizlfgj\z, vy~ 2T ﬁ;@g
and T, ~ T}, Uy ~ U ~ Uy. However, as vV = V/Vrj, the electron dissipation layer

width dominates by a factor ~ (mi/me)1/4. In Egs.3.13,3.14, the increasing branch of the

solution has been dropped as we require 8XG§.O)’I B = 0. This implies the boundary
A—Foo
(0)

conditions that g:

;- has to match the external solutions outside the dissipation layer, i.e.

37In the layer all the coefficients are considered to be localised in the vicinity of the trapped-passing
boundary due to its thinness associated with the assumption of the low collisionality plasma. Thus, wp is
to be evaluated at A/, in the layer for passing/trapped particles. In the layer, the radial shift of the drift
S islands being proportional to wp is then found to be a function of the ion/electron collision frequency
through A,/
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A € [0, \)] U [At, Apin]. The Fourier coefficients, azlt, bt (n > 0), are unknown and to be

found from matching at A = 0, Eq.3.1:

H" + Z {a) cosnz® — b} sinna™} = H + Z {a, cosnz™ — by, sinnz™} =

n

n>0 n>0
— Ht—i—Z{achosnxt — b}, sinna'},
n>0
n , n
gcosnﬁ 5DT [a,) = bt] — sinna™ 3+ [a)} + b ]+ (3.15)
+2;)cosm:1/2,% la,, + by, ] + sinna™ 2,% la, —b,] =
n>
= QZcosnaﬂ / % [bfl - ai} —i—sinnaz‘t,/% [al, +bL].
n>0

Eq.3.15 is a set of three equations for 6N + 3 unknowns, n € [0, N]. Due to a difference

in z*/t, matching at fixed Y /p, cannot be provided in n space in the presence of ®.

+ +/t

However, 2%/t and n are conjugated variables, and z*/* is connected with ¢ via Eqs.3.10-

3.12. Thus, taking a number of points in £ space N = 2N + 1 and treating /'t =
xr/t <S,§, V> = gF/t [S (P, €, V) L&, V], we can solve Eq.3.15 numerically for a’*, b2/",
providing matching at fixed p, and £. Here we have to stress the importance of including
drive in Eq.3.15 to avoid trivial solutions for the Fourier coefficients. Substituting the
obtained Fourier coefficients into Eqs.3.13,3.14 and taking into account Eq.3.2 provides

the layer electron/ion distribution function, which is then to be used to calculate the

external solution, g<0’0), (see Chapter IV for more detail). The distribution function in

j
the layer, g(-o)

; is calculated as a function of p,, § and A for each o (here V is considered

as a parameter) and is then to be rewritten as a function of S, ¢ and A, i.e. gj(-o) =

g](-o) (ﬁw,ﬁ, )\,\7; a) = ](.O) [ﬁ@ (S,f, )\p/t,f/;a) JEG A, V;a}, to solve Eq.2.40 for gj(o,o) in
the regions outside the layer. To illustrate the above solution, in Figs.3.1-3.20 we plot g](.o)

against A for small and large py; inside and outside the magnetic island separatrix.
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Figure 3.1: gj(.o) vs. X at p, =
—4.5, £ =0,V = Vp;. w = 0.02r,
poi = 1.0 - 1073r,, ion collisionality
b =104 e =01, L, = 1. g¥
is normalised to no/(7%/?V3;). Red
line indicates the trapped-passing
boundary.
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Figure 3.3: Same as Figs.3.1,3.2
except for p, = —2.52.
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Figure 3.5: Same as Figs.3.1,3.2
except for p, = —1.26.
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Figure 3.2: gj(p) vs. A at p, = 4.5,
€ =0,V = Vp. w = 0.02r,
poi = 1.0 - 1073r,, ion collisionality
b = 1074 e = 0.1, L, = 1. g
is normalised to no/(7%/2V3;). Red
line indicates the trapped-passing
boundary.
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Figure 3.4: Same as Figs.3.1,3.2
except for p, = 2.52.
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Figure 3.6: Same as Figs.3.1,3.2
except for p, = 1.26.
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Figure 3.7: Same as Figs.3.1,3.2
except for p, = —1.08.
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Figure 3.9: Same as Figs.3.1,3.2
except for p, = —0.36.
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Figure 3.11: Same as Figs.3.1,3.2
except for pg; = 8.0-1073r,.
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Figure 3.13: Same as Figs.3.1,3.2
except for p, = —2.52, py; = 8.0 -
107 3r,.
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Figure 3.8: Same as Figs.3.1,3.2
except for p, = 1.08.
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Figure 3.10: Same as Figs.3.1,3.2
except for p, = 0.36.
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Figure 3.12: Same as Figs.3.1,3.2
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Figure 3.15: Same as Figs.3.1,3.2

except for p, = —1.26, py; = 8.0 -
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Figure 3.18: Same as Figs.3.1,3.2
except for p, = 1.08, py; = 8.0 -
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3.2 Summary

In this chapter we have determined the particle distribution function in a boundary layer
in the vicinity of the trapped-passing boundary, A., required to match external passing,

A < A, and trapped, A > ), solutions across A.. Now we return to external regions

where collisions can be treated perturbatively and solve Eq.2.40 for g(o,o)

FE The solution

technique is described in Chapter IV.
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Chapter 1V

4 Solution technique and the RDK-NTM

results

The numerical solution technique for the orbit averaged drift kinetic equation, Eq.2.35 in
the dissipation layer, i.e. A € [A,, AcJU (Ae, A¢], and Eq.2.40 in external regions outside the
layer, i.e. A € [0, \p]U[As, Afin], with matching conditions at the trapped/passing boundary,
A = A, given by Eq.3.1, is presented in this chapter. In previous sections we have identified
a narrow collisional boundary layer in pitch angle around the trapped-passing boundary
of width oc 4/ 7,/ V. In this region, collisions cannot be treated perturbatively and S no
longer describes the streamlines. In Chapter III we have provided the solution to the 2D

+/t

boundary layer problem, {x ,)\} inside and outside the drift S island, employing the

momentum-conserving collision operator (its pitch angle scattering contribution dominates
due to the layer thinness), allowing us to rigorously connect the trapped (A > \;) and
passing (A < ),) regions. The layer solution, g(-o)

J
construct the external solution, gj(p,o)

is then used as a starting point to
, outside the layer. The rest of the chapter focuses

on the obtained results.

4.1 Numerical algorithm

A

Eq.2.40 is a 3D integro-differential equation in {Si/t,)\, f/;a} space. V appears as
a parameter at the Oth iteration in the momentum conservation term, oc @;, in the
collisional operator. ; is evaluated at fixed 1&, and the corresponding 1% dependence
appears through the S function, Eq.2.37. Writing the left hand side of Eq.2.40 explicitly,
we derive the collisional constraint in S space given by Eq.D.60 for the ion and Eq.D.61
for the electron plasma component®®. To provide the Maxwellian behaviour far from

=0 [L,‘Ll + (‘72 — 3/2) L;}] e=*, where

the magnetic island, we require 0 fj [0z
r—+o00

fj = fj7r3/ 2V7?3j /no. To set the Neumann boundary in the passing and trapped regions,

38 A detailed step by step derivation is presented in Appendix D
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it is convenient to introduce an extra variable, y*/*, such that y* = \/S* — ST, in the
passing and y* = S in the trapped branch®’. In the absence of the perturbed electrostatic

potential, this translates into

af; o 3 oo 2L
# = Op, W [Lﬁl + (V2 - 5) LE}} e wq (4.1)
yi—>+oo
for A < A, and
afj w -1 o 3 1| —V?
_t = — . + ﬁﬁj . pr—l — |:Ln + V — 5 LT] e (42)
yt—+oo Wp Py T<7H> no WWE
9

for A > \;, and is to be updated at each iteration in ®, provided the inverse function,
Yt =y (py), exists for each &, A, V and 0. The bottom boundary condition in the

passing branch in y space is
of;

5t =0 (4.3)

y==0
due to the flattening requirement inside the S island. Due to Eq.2.15, both fj and

(0,0

9; W3/2V1§j/n0 satisfy Eqs.4.1-4.3 (L, is to be replaced by Ly in the condition for g(®?).

In X\ space we require the distribution function and its first derivative to be finite at
A =0 and A = Ay, where Agy, is given by 1/By(1 — ¢) in accordance with Sec.2.2.
As the coefficient of the term in 9*/9)N? vanishes at A = 0 and A = A\, we impose
Eq.D.60/Eq.D.61 evaluated at A = 0, i.e.

R Py 1 S ag(ovo)
<UB_> <71> 2
Yl 13 A=0

Py s A 2% S 0 (,0’0)
o), (A, ), ), o) | 5
B./y \AOA|, o/ N2 7/, \Adp, /| 95

+U(g"") =0,

(4.4)

for the boundary condition at the deeply passing end and similarly Eq.D.60/Eq.D.61
evaluated at A\ = Ay, for the boundary condition at the deeply trapped end. Here U

39A different definition of y*/* is justified as both passing and trapped external regions, i.e. A €
[0, Ap] U [A¢, Afin], are not connected directly but via a dissipative layer where the perturbative approach
becomes invalid.
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represents the momentum conservation term. To solve Eq.D.60/Eq.D.61, we apply a
shooting method %° in A direction, reducing Eq.D.60/Eq.D.61 to a matrix equation at
each A grid point. Applying the finite difference scheme in A space (central difference to
the equation and forward/backward difference at the edges of A space), we obtain the

following matrix equation:

o
2/t _op/t : /t 0’, /t 2/t _op/t op/t O 1 2 No22 Nozt Nps
P 3 g]fl +Q : 8 +R " gj pl +A]p _0 0,P A0, P | ) i 101, t ~JO tl ‘
a, B | a, B
for the vector solution, 9; op/t , we seek at each /_// : —
A grid point, j. 0 = %1 for the passing and g”* : g
: ) ] >

= |o]| for the trapped branches. P7" /" 0 1 2 NN Ny "
() (A) (A
Q7" ' and R7" /' are square tri-diagonal )
p Figure 4.1: A schematic representation of

matrices of size N, x N,, and A7"" is the the solution technique.4!

right hand side vector; both, g?’p /" and A?’p / g
are of length N, (N, is a total number of points in y direction, i.e. inside and outside
the S island/in the trapped region; note: the number of points can be different in y*/

direction as the +/t branches become independent once the layer solution is found).

The left boundary in its general form in A space (i.e. for deeply passing particles at j = 0)
reads

Prgs” + Q3 g7” + Ri"g5” + ASY = 0. (4.6)

To set the j = Oth element, we assume a linear relation between g7 at jth and (j + 1)th

grid points, and hence we write

97" =ai gt + B (4.7)

from the side of passing particles. Here " is the square matrix of N, x N, and 7" is a

vector of length N,. Combining Eqs.4.5,4.7, we obtain the following recurrence relation:

a®? = _[Q7P + Rmp op 11 PP,
J [Q a;— 1} 1 J (4.8)
B = (@7 + B7agn) ! (RIS, AT

40see Appendix E.
4l Courtesy of A. Doroshenko for her assistance with the sketch 4.1 implementation.
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Combining Eqs.4.6-4.8, we calculate aj” and B” at the deeply passing end. Then using
Eq.4.8 we find all @]*"s and 87"s up to the point where perturbative approach described
in Chapter II breaks down, A = X\, (j = N,1), as shown in Fig.4.1. We apply the exact
same algorithm to the trapped branch. The right boundary condition, i.e. for deeply
trapped particles at j = N, is

ol,t _|o|,t o, t _|o|,t ol|,t _|o|,t o t
PRGR + Qg+ R, + AR (4.9)
Employing
o alt lo o (Begin)
gl] ‘t B a| |tg‘] ‘f +’B‘] ‘,t’ (41()) generate grids

i

‘ layer solver for g’ ‘

calculate ai and i for
passing and trapped particles
T

external solver for gi*”
calculate Ui

and substituting this into the initial equation,

Eq.4.5, we come to

Solve for ions

ot — _ [P\Ult |ol;t Qlfflt] R\jfflyt7

J

ot _ ,
ﬁj - calculate a. and B for
passing and trapped particles
—1 T
lol,t g lol:t |of,t o]t plol,t lof,t
[P a;; +Q; PR+ A

(4.11)

‘ layer solver for g ‘

Solve for electrons

Combining Eqs.4.9-4.11, we calculate a'N‘ " and

B lg' ¢ . at the deeply trapped end and using Eq.4.11
we find all as and B7Ms back to A =\, (j =
0) from the trapped side (in accordance with

calculate £, Anco,

Fig.4.1). Once the layer solution is calculated

(see Chapter III) and all a}” /*s and B;" /s are

obtained from the passing and the trapped sides,

Figure 4.2: A schematic block diagram
we reconstruct the remaining solution elements of the RDK-NTM solver.42

outside the layer from Eqs.4.7 and 4.10 up to the

trapped /passing edges. The described solution

technique is illustrated in Fig.4.1. We note that in the problem, matching at the trapped-
passing boundary, Eq.3.1, is provided by the layer solution found in Chapter III.

42Courtesy of A. Doroshenko for her assistance with the sketch 4.2 implementation.
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To implement the algorithm described above, a new code, RDK-NTM (Reduced Drift
Kinetic Neoclassical Tearing Mode solver) has been developed in Python 3. A detailed
derivation of the numerical scheme can be found in Appendix E. A schematic block
diagram of the drift kinetic solver is shown in Fig.4.2 and Fig.E.1 of Appendix E.7. We
have checked that the obtained solution converges and satisfies the equation and the

boundary conditions.

43Python 2.7.12, NumPy 1.12.0, SciPy 0.18.1, Matplotlib 2.0.0, numba 0.42.1.
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4.2 The ion/electron distribution function and its

density and flow moments

In previous sections we have calculated the solution of the orbit-averaged drift kinetic
equation to leading order in A for ions and electrons that takes into account the electrostatic
potential found self-consistently from the plasma quasi-neutrality condition. Before we

move further and calculate the parallel current density perturbation in the vicinity of the

rational surface, let us briefly discuss the distribution function behaviour.

x DK-NTM:o= +1,E=n
3 o

x DK-NTM: o= +1,§=n

0.015+ DK-NTM: 0= - 1,E=n “ﬁ’ 0.015- DK-NTM: 0= —1,E=n
x DK-NTM: 0= +1,6=m/2 3§ x  DK-NTM: o= +1,§=n/2 A
x  DK-NTM: 0= —1,£=m/2 x DK-NTM: 0= —1,E=m/2 oAl
DK-NTM: 0= +1,6=0 & DK-NTM: 0= +1,=0 3
s 0.0101 x DK-NTM: o= _1,f=0$ 5 0.01091 x DK-NTM: o= -1,6=0 e
2. === eqm X o. === eqm
S 'ﬁs S
0.005 0.005 )
// ) == RDK-NTM: 0= +1,0, = +1 //",3* == RDK-NTM: 0= +1,0, = +1
RO == RDK-NTM: 0= —1,05, = +1 -~ 4 == RDK-NTM: 0= —1,0,, = +1
0.000 | smmens ‘ - 0.000+ M ‘ ‘ .
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
y y

(a) at A=0,0p, >0

(b) in the dissipative layer, o), > 0

Figure 4.3: The leading order ion distribution function plotted against y. Dashed curves

correspond to 950,0)7 i.e. the RDK-NTM solution. Markers indicate the solution of Eq.2.35

[73, 74, 93], which is a function of p,, £ and A and keeps collisions to leading order for a full
range of \ variation (to be referred to as the DK-NTM solution). v} = 1072, py;/w = 0.05,

7
w/rs = 0.02. The distribution function is normalised to ng/(73/2V3;).44

In Figs.4.3a,4.3b we show the ion distribution function plotted against y at the deeply
passing end, A = 0, and in the collisional dissipation layer in pitch angle space. In the
RDK-NTM solver, we drop collisions to leading order at A < A, and A > )\, and learn
that the particle distribution is flattened across the drift or .S islands but not the real
magnetic island. Then proceeding to next order in 4, and adding collisions, we reconstruct

the actual form of the particle distribution function, 9(0,0) = gj(p’o)(S, A\ Vo), ie. g(-o’o)

J

is independent of ¢ at fixed S. In the vicinity of the trapped-passing boundary, though,

collisions are comparable to parallel streaming, and so we predict g(»o’0

{9 will depend on ¢ at

fixed S. Thus, here we solve Eq.2.36 in full, exploiting the collisional layer thinness, and

44 EPS conference on Plasma Physics 2019. Benchmarking of the drift kinetic model for the NTM
threshold.
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provide matching at . at fixed p, as was discussed in the previous chapter. In the layer,
the particle distribution is a function of S, i.e. S localised around ). in accordance with
Chapter III, £, A\, V and o and hence is a function of p,, £, A\, V and 0. To leading order,
the S dependence is introduced parametrically. In Figs.4.3a and 4.3b we also plot the
full solution of Eq.2.35, gj(-o) = gj(o) (pe, €, A, V;0), for the ion component [94]. In Fig.4.4
we plot the DK-NTM solution outside and inside the collisional dissipative layer around
the trapped-passing boundary. As we can see from Figs.4.3a,4.3b,4.4 the £ dependence
of g](.o) in y/S space is indeed weak at the deeply passing end and becomes significant
only when A approaches ),, i.e. the collisional dissipation layer. Both solutions match
the equilibrium gradient far from the magnetic island and demonstrate flattening in the
vicinity of the S island O-point. At v} = 1072, the (R)DK-NTM solutions agree well even

in the vicinity of the S island separatrix. If we decrease v}, a small discrepancy near the

S island separatrix appears and continues to grow with decreasing ion collisionality.

e This collisionality dependence can be explained by the fact that the pitch angle
scattering outside the dissipative layer is small, and is dominated by A0/0¢|y. v
is a factor in front of the pitch angle scattering operator, and v} < 1073 is already
difficult to resolve in a full DK-NTM solver, where all terms are treated on an equal
footing. In contrast, the RDK-NTM solver requires the low collisionality, v < 1072,

)

to implement the layer solution discussed in Chapter III.

e Another source of the discrepancy near the separatrix is a difference in the boundary
conditions used in (R)DK-NTM. Indeed, the RDK-NTM solver deals with the S
island directly accounting for a difference in S contours inside and outside the drift
island and providing the R! continuity®® for the coefficients in Eq.2.40 across the S
island separatrix. In contrast, the DK-NTM solution requires the Neumann boundary
at p, — oo [73, 74, 93|. Potentially, the latter implies the R” (n > 1) continuity.
On the other hand, since DK-NTM does not introduce the island explicitly, it might
not capture the vicinity of the island separatrix with sufficient accuracy, and thus

higher resolution would be required there.

e The discrepancy around the S island separatrix close to A = )\, might arise due to

the narrowness of the dissipative layer implemented in the layer solution. The is no

45The coefficients of Eq.2.40 and their first derivatives have been matched at the drift island separatrix.



71

4.2 The ion/electron distribution function and its density and flow moments

‘qgy'eg §sS1] ul se are swxrewt :(1)-(0) ‘0= dm ‘7 =0ug 1 =Py =2
0T = f1 Cug_01-0'T = "0d “ug00 = m “(*LAgek)/Ou 0y postpeurion st dem -ouerd-jrey tomor/1oddn oy ut (o > / < “4o Krepunoq Suissed-poddery
oy Je St () (g ST Ul UMOYS ST PUR[ST YIIp ) JO AHIUmIa o) ut wooz) 1okel dAryedisstp o) 9pIsUT (1)-(J) pue oprsino (9)-(d) -puerst oYy jo
9oULsqe |1} Ul wnuqImbs a1y ST sul] paysep As18 oy, - 89@@ ‘uornjos N ILN-MOY °Y? 0 puodser100 SeAInd paysep ([+ = 0) an[q pue ([— = 0) pal
oY, "uormios NLN-M( 93 9I10Uap SIoqIew (T+ = 0) MO[[PA pue ([— = 0) UaI3 JYJ, "oul] [ed1eA Ao18 o) Aq pajousp ‘1°() = fi ‘Xujeredss puefsrt

?

G 9} Jo Aumdia oY) ul wooz :(q)‘(e) 'Y JUuLIePIp e fi jsurede pajjord Svm ‘uonounj UONJLIISIP U0l I8pIo Surpes] N LN-MJ °UL :F'§F 2In3I1q

A A
vyo €0 <¢0 TO0O OO0 . o €0 <¢0 TO0O 00
Zu=3T-=0:WINda X WD\I Zu=3"T- =0:NINMa X MD\I
jatiieliol fl AULUIIC e (100 =
& u=3T+=0:MINNT X éﬂn u=3T+=0:MINNA X
*v& Who = == &i [ -
606°0=VY ‘(Y) €68°0=VY ‘(b)
_ _ _ e 000 _ _ _ e
R e X e e 1600°0
N Zu=3T-=0:WINda X WD\I nnﬁ Zu=3"T- =0 WINdT X VD\I
e e X LT0°0 TS ™ itewes X 10TO0 S
&/ /& :nw.:nm_z_.ﬂ‘_ﬂn_w .XI i&iﬂ,& =nw.:na”s:ﬁﬂm .XI | AI.J_.—”O.O
€v8'0=Vv ‘(}) Z19'0=Y ‘(39)
_ _ _ =000 _ _ _
&.&&.n& Zu=3"T- =0:NINMa X WD\) &mﬁ&mﬁ» TU=3T- =0:NINMD X I moo O WD\)
%x&&x e X1 TO0 2 x&xx« wosmemowno X LOTQ'Q 2
u& : U=3'T+ =0WINDA X m& U=3T+ =0:WINMT X .
*% wha = mm *% wha = == [~ AI.—IHO o
_vSzo=Y'(p) . . G50°0=V ‘() .
9T'0 ¥1°0 ZI'0 OT'0 800 9T'0 ¥I0 ZI0 0T0
SRS RmE - 50007 .fufuguuhuunm.mmw.uu-----.moo ”
TTsZ5EEEme0000 O ~-33%330000 "
RS St ° T °
n,.q...ummnim|hn..|n.||||||.|||| -S00°0 ?!!!!!lllx“ﬂd.uwrhwﬁl|||||||....|- S00°0
€rg8'0=v (q) 0'0=Y ‘(e)



"IF = 0 10§ UOHOUNY P[SIoM O} 10] UdNR} 3800 + G/ /G A [IM UOSIYID G [opoul
o) Ym uonmos N LN-MAY U} 9edIpul SIoYIeW PUOWRIP U9dI3/SoAIND o3uelo pue onjq JYSI[ oy [, "Xijeredos pue[st o1jouseul o) opIsino *¢d jrews

m pue m d8Ie[ Jo JTWI] Y} Ul pIfea st (33)y ‘A[pardadsal ‘T = o 10§ (p)‘(0) fi 09 10adsa1 )M pajeriuaIafIp pue (q)‘(e) fi Jo surrey ur ueyImal [eg| (15)y
m ‘uorynjos o1pATeue Ue juasaldal soaInd 96 ordind pue yurg -jutod-() pur[sl § 9y} SSoIde pajussald are s)nsal N IN-M{ ‘XuIyeredss pue[st § oY)
m JO UOIJROO[ 9} $9JeDIIPUI UI[ A2I8 PI[OS oY, “wbha Aq pojousp JuaIpels wnuqmbo o1 ‘PUeSI O1JoUFeW 9} WOIJ IeJ JIWI[ d1A[eUR Ue 0} Spuodssriod
. our] A018 poysep oy, ‘0 = dm ‘T = 0%g T = @\N T0=2'%-01= in “Sue 0101 = d .A,@wm\»m\mkv\o: 0} POSIBRULIOU ST dem ‘(ourerd-Jrey 1omor/1oddn
= oy st 0 > / < “o ‘stoyrew-x/soamd poysep pox pue oniq) (p) pue (q) ‘A =y je pue ‘(9) pue () ‘g =\ ‘puo Sussed Ldoop oYy ye Sug( ) = M PP
X3
m JO pue[sI o1jouSeU oY) JO AJUIDIA 91} 0} posifedo] ‘ |/ 8,8&@ ‘OATYRALIOD fI ST pue ¢ Aodwm ‘uoroUNJ UONJLIISIP UOT I9PIO SUIPRI oY, :G'F 2INILq
Z
= A A
g v0 €0 Z0 TO0 00 ¥0 €0 70 TO0 00
2] X x X X
= Y rT°0— X 10—
= 25 oK
nna 2‘%& éx
x U x X 3
m X x 00 MD) I-="'7T-=0 X £ x 0°0 MD)
= 1-="bT—=0 X % r o 4 =% - =0 ? 0N o
Lm T+="%o'1-=0 X WPX 2 MI Qnn.m+nb H Fx e
P e - e B T ————————tronn. e ~—
= X oY) = = X o)
e T+ ="0'T+ =0 < T - =0'(se/esp)se/es XK <
nnu“ T- =o'(selespselesp x . T+ =0'(5e/3503 +5\)Se/e 3502+ 5/ © K .
= T+ =0'(5e/e3500 +SM)Se/e3502 + SN © x X B H O T+ =0'96H xv%A i H O
] T+ =0'96H XX T— =0'06H ==
m Wb = = X X Wha = = XX
—
Z (P) ®)
o
g A A
5 v0 €0 70 TO0 00 ¥0 €0 70 TO0 00
<} dprp— =p
—_ [ I—=%'[—=p 1 =m ny :nboTub,s_Eo_n X
= Bl TR .
m J'u&b.a+ub - |HO.OI :usu.:ua"s:z.va‘- -Ho OI
o T+ uiy"'l T+ =0°(Se/03503 +5 \)Se/e 3503 + S o”'
Q T+ =0'(50/@ 3500 + S ))Se/@3500 + S\ o'”l 1- =0'(se/esp)se/es) "
“ 1~ =0'(sefes pse/es) S Q e = lll Q
T+ =0'96H owvlﬁl“le 000 S T- =006 = t00°0 S
~ whba Iloo““\\\\\ o who = k)
<f 00972 o‘ =" IR
SOt L Qo
o > ““\ | . o oﬁw@&* | .
ooooh‘.“.‘ 100 - mwwmw@‘ 100
.I‘ x%ﬁkm
= (q) (e)




73

4.2 The ion/electron distribution function and its density and flow moments

"I9ATOS N LN-MY °U) 07 IR[IWIS [9POUT 91} 0} SUOIII[O [edlownu sppe ([euoisiaoxd) N LN-MJ
‘le6 ‘7L ‘gL] 03 yseIuoD Ul ‘10A0MOY [ ‘FL ‘€L] GE g PH Jo wonmos oy sojousp N IN-M [e1IU00d D13eISOI0[e OY3 JO 90USqe dY)} UL PUR[S]
drjeUFEM Ay WOy Tej Y] dnAeue oY) sjussardor sul[ patsep par oy, (0 = I ‘= 0% ‘[ ="P7 ‘70 =301 =/ e 0101 =" Cugo0=m

("N g jgk) /Ou 0y postewniou st 6y poxy je ?d jsureSe pojjo[d sUOOUNY UOHMLISIP UOL 10PIO SuIpeo] [F = 0 oy} Jo wng :9') oanSiq

(0‘0)
oq od
90°0 ¥0°0 z0°0 000 Z00— +00— 900— 90°0 ¥0°0 Z0°0 000 Z00— ¥0'0— 90°0—
o ST0°0- B ST00-
(5e/e 3502 + S )\)Se/e3500 + 5 A .c._me (Se/e 3502 + S))Se/e 3500 + 5 A &me
) L 010°0- o L 0T0'0—
(selesp)se/es ) ‘365 (se/esp)se/es ) ‘36T
L 5000— NIF - so0'0— NI
aM aM
L0000 —q L0000  —q
5z S e S
WLN-MQY ‘GOYT ) WIN-DQY Oy .
w psoo0 T w Lso00 S
WIN-QY ‘6 s NIN-QY ‘0
WIN-QY 6 = | 07070 WINNQY /5 - 0100
(jeuoisinoid) WIN-MA ,b.dwm — (jeuoisinoid) WIN-MA .b._mwm —
L ST00 FGT0'0
. _ ‘S . e . — ‘S . "
6€8°0 = ¥V 41000 ='6d 6190 = ¥ “JT00'0="'°¢0
oq od
90°0 ¥0°0 z0°0 000 Z00— ¥0'0— 90°0— 90°0 ¥0'0 z0°0 000 Z0'0— ¥0'0— 90°0—
B ST0°0— B c100—
(5e/e 3502 + 5\)Se/e 3500 + 5 A ﬁme (Se/e 3502 + S ))Se/e 3500 + 5 A .maWW
P L 010"0- o L 0T0'0—
(sefesp)se/esp ‘J6L5 (se/esp)seres ) ‘36
L g00'0— NI L g00°0— NIF
oM aM
. Q . Q
L0000 —q L0000 =g
152 m 6 5z m
WLN-NQY DY e ) NIN-NQY p0] )
M Fso00 L w_ rso00 S
WAIN-NQY ‘6 WAN-IQY 6
WLN-YMQY /6 === L 0700 WIN-NQY ‘6 === | 07070
(jeuorsinoid) WIN-XA _u_mwm — (jeuoisinoid) WIN-MA .n&Nm —
L 5100 L ST0°0

90%'0 = v ‘41000 ="'"6d

00 =Y “J100°0="'"°0




4.2 The ion/electron distribution function and its density and flow moments

74

.m\Oﬁ =
¢d

900 ¥0°0 200 000 <¢00— V00—

2
.1 10} 1daoxe

90°0—

(Se/e3s00 + 5 M)se/e 3500 + 5 A .mmwm

(se/es p)se/es p .%wm

0

WIN¥QY ‘965
WLN-QY ‘6
WLN-JQY /6
(leuoisinoid) WIN-XQ * QWH

FSTO0'0—

r0T0'0—

FS00°0—

0000

FS00°0

r0T00

FSTO0

L88°0 = YV ‘“4T00°'0="'"60
bof

900 ¥0°0 200 00’0 <¢00— V00—

90°0—

(50/03502 + 5 ))Se/e 3500 + 5 A .%Wm

(sefes p)se/es ) ‘46

WLN-YQY ‘6
WLN-ay /6

o0
WLN-QY ‘J6Z%

(leuorsinoud) WIN-YA .nswm

FST0'0—

90%'0 = Y ‘°4100'0="'"6d

9§31, se oweg :)'§ 9anSI ]

<
T

od
900 ¥0°0 200 000 00— V00—

90°0—

(Se/e3s00 + 5 M)se/e 3500 + 5 A .mmwm

(se/es p)se/es .%wm

0

WIN-¥QY ‘965
WLN-QY ‘6
WLN-JQY /6
(leuoisinoad) WLN-XQ * QWH

619°0 = ¥ *J100°0="°0
od

900 ¥0°0 200 000 ¢0'0— V00—

90°0—

(5003502 + 5 ))Se/e 3502 + 5 A .%Wm

(sefes p)se/es ) ‘46

WLN-YQY ‘6
WLN-ay /6

o0
WLN-QY ‘J6Z%

(leuorsinoud) WIN-YA .nswm

0'0 =V ‘J100°0='"°d

FSTO0'0—

F0T0'0—

FST0'0—



75

4.2 The ion/electron distribution function and its density and flow moments

'Ge 0 = m/*d 0y Sutpuodsor1od “Cu, (T - ('L = *d 10§ 3deox0 ) FS1,] se oweg :g'F 9INS1g

od

900 700 00 000 00— ¥0'0—

90°0—

F 0T0'0—

FS00°0— pofim
- M
4
1pS 2 - 000°0 muo
WINMQY 'J0ZF mme A
ko)
< 1552 o
s (Se/esp)sefesp '4bZE - 5000
NIN-NQY 16 e .
. L 0100
¢ NLN-NQY 10 e
. _ ‘S . E
1€6'0 =V “4,00°0="'°6d

od

900 ¥0°0 00 000 00— ¥0'0—

90°0—

0
WIN->Qy ‘36%

0
(Sefesp)se/es ) ‘abL%
WLIN-QY ‘b
IWLN-3QY * /6

- 010°0—
FS00°0— pujis
oM
- 0000 .mDD
——
o
S
L0000 ~
- 0100

90%'0 = Y ‘°4,00°0=""°d

od

900 v0°0 <00 000 ¢0'0—  v0'0— 90°0—

- 0T0'0—
FS00°0— o
- oM
- Q
152 0000 -~
WINNQY ‘S0LF =2
jo]
12T . <
(sefesp)selesp 567 Fs000  ~—
WIN-NQY D e
L L0100
WLINQY ‘(D e
. _ ‘S . "
619°0 = ¥ */L00°0="'"°0d
od
900 t0°0 ¢0°0 000 ¢0'0— ¥0'0— 90°0—
F0T0'0—
G000~ o
aM
Q
PP 0000 -
WINIQY GOF e 2
> S
(Sefes p)sefes 36Z% L5000~
WANDIQY 16 e .
. - 0T0°0
WANDIQY ‘{6 e

00 “1/00°0=""°d

Il
~<



76 4.2 The ion/electron distribution function and its density and flow moments

A variation in .S in the leading order solution. This does not play a significant role

inside the layer but can cause a small difference when A — A, + 0.

e In the vicinity of the S island separatrix, there is a region where S derivatives can be
comparable to parallel streaming, which would invalidate the perturbative treatment
of collisions in RDK-NTM. This region then is to be treated in a way similar to the

disspative layer solution discussed in the previous chapter.

However, as we can see from Fig.4.4(a),(b), the last three points are not crucial, and the

main source of difference is caused by the plasma collisionality limitations.

The curvature of the distribution function in the vicinity of the island separatrix is
determined by the diffusion terms in Eq.2.40/Eq.2.35 that arise from switching from
¥ to S/p, in the pitch angle scattering collision operator.’® These diffusion terms are
proportional to 8"3/85’“|A’g or 8"3/8]7’;|/\’5 (k =1,2), respectively. In Fig.4.5 we compare
the RDK-NTM solution plotted against y at A = 0 (a) and A = A, (b) for plasma and
tokamak parameters considered in Figs.4.3a,4.3b,4.4 and an analytic solution valid in the
limit of large islands outside the magnetic island separatrix [53]. The latter is denoted by
H96. The corresponding leading order ion distribution differentiated with respect to y
and plotted against y at A =0 and A = ), is shown in Fig.4.5 (c) and (d), respectively.

H96 is derived from a model diffusion of the form I'y = —D0dn/0y, where T, is the
particle flux in the radial direction and D is the diffusion coefficient that has been assumed
to be a slowly varying function across the magnetic island O-point. The model diffusion is
sufficient for the accurate determination of the bootstrap drive at large w. However, it does
not provide a full polarisation current contribution to the magnetic island growth/decay.
Indeed, as we shall see later in this chapter, a significant amount of the polarisation
drive comes from the vicinity of the magnetic island separatrix. In Fig.4.5 we also show
the solution of Eqs.D.60,D.61 where the S diffusion terms, i.e. terms proportional to
oF /88’“‘ e (
imposes 92/9y? or v/S0/0S(v/S3/0S) at fixed A and ¢ and is obtained by replacing

k = 1,2), have been replaced with a model S diffusion. The first model

46The pitch angle scattering collision operator is introduced at fixed 1. To solve Eq.2.40/Eq.2.35 in
S/p, space, one has to rewrite the X differentials at fixed S/p,, respectively. In the dissipative layer
around A, the 92/0)\? term is dominant and hence the S differentials have been dropped to leading order.
However, we have to stress here that the leading order curvature around the S island separatrix is still
included via the drive, H*/t. The S dependence of H*/t is parameteric and is found from matching at
Ac at fixed p, as discussed in the previous chapter.
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Do = Dp(S,€, A, V;0) with apso\/QI:qSi/uA). In the dissipation layer, the drive term then
has to be replaced with o,/ 2L,S* /i as well. This v/S diffusion model with a constant
diffusion coefficient excludes the spectrum in &, and hence leaves the solution unperturbed
outside the magnetic island separatrix (see Fig.4.5(c),(d)). The second model imposes
the S diffusion weighted by /.S + cos € and hence reproduces the H96 solution at large w
outside the island*™*8. Replacing the actual S diffusion in Eqs.D.60,D.61 with a model,
either v/S or /S + cos &, removes a significant fraction of the perturbation right outside

the separatrix. Keeping all the terms o 9*/9S* k =1,2), we obtain a full solution

‘,\,5 (
of Eqs.D.60,D.61. As we can see from Fig.4.4(a),(b), the full RDK-NTM solution in S
space and the full DK-NTM solution in p, space agree well in the vicinity of the .S island
separatrix. Therefore, we stress that the curvature of the distribution function around
the separatrix is governed by the actual S diffusion in Eqs.D.60/D.61 and is necessary
for the accurate calculation of the polarisation term in the MRE. In Figs.4.6,4.7 we plot
the same solutions but in p, space. The DK-NTM (provisional*”) solution denotes the
DK-NTM solution that includes the numerical electrons, i.e. treats the electron component

numerically in a way similar to the RDK-NTM solver (see Fig.4.2). In Fig.4.8 we show
the RDK-NTM results for larger py;/w < 1.

In Fig.4.9 we plot the ion distribution function against p, and A at certain py;/w and

4TThese model solutions have been introduced to benchmark the RDK-NTM solutions against known
analytic limits and to demonstrate the importance of the S diffusion.

48The starting equation schematically reads ViVygi+Lg; = viiDagj+D D?g;/00? |£, where L represents
the rest of the differential operators that act on g; in the left hand side of the drift-kinetic equation. D)
is the pitch angle scattering operator and D is a constant diffusion coefficient. Dropping the drift effects,
Lyg;, and replacing v;;Dyg; with the Krook collisions, we obtain Eq.7 of [64]. Treating the right hand
side perturbatively outside the island at A < A,, and solving [(Vii/VH)D)\ +(D/V)) 62/81/,2’6} gJ(_O) =0,
we obtain H96 for the leading order distribution. Similarly, the dominant contribution in S space

w

S/
reads fs/uq Ch <<\/§ (@S/ + cos §>> ) dS’ in the absence of the electrostatic potential and the
3

w

s
momentum conservation term. Here <\/§ (4%5 + cos §)> = ? %S —-1-F (— ), where F
3

24
45481
20
45481
integration to be determined to match to the equilibrium Maxwellian gradient far from the island. In
Fig.4.5 we show that the model /S + cos ¢ RDK-NTM solution matches this analytic solution. Away
from the island, S reduces to 2 and hence the latter reproduces H96. Dropping the ¢ dependence
in the diffusion term on the right hand side of this model kinetic equation, we obtain the v/S model

diffusion solution outside the island, i.e. o} W [L:Ll + (f/z - 3/2) L;H eV’ \/4ﬁq/ﬁ; {y - \/11)/41%} in

agreement with Fig.4.5.
49To be further tested for larger Pi-

is the complete elliptic integral of the second kind. E (— ) — 5,5 — o0o. (1 is a constant of
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ion collisionality. A sum of the ion distribution functions over ¢ = %1 is found to be
flattened in the vicinity of p, = 0 and thus inside the magnetic island for small py,/w.
Due to Eq.1.6 and Eq.2.12, this results in flattening of the ion density profile around the
magnetic island O-point for py;/w < 1. In contrast, when the radial shift of the drift S
islands compared to the magnetic island (which is proportional to pyg;) becomes significant,
the flattening of ) g§°’°)"’ and hence the density flattening are removed from inside the
magnetic island. pg; = 5.0 - 1073r, is sufficient to partially restore the density gradient
across the magnetic island of width w = 0.02r,. If py;/w 2 1, the profile will be further
steepened across the O-point. This explains the density profiles we demonstrate in Fig.2.11
of Chapter II and in Fig.4.11. The gradient inside the magnetic island is a consequence of

the drift island structures, and is a property of the passing (but not trapped) particles.

For electrons, the radial shift in Eq.2.37 is

small as py. < py; (e.g. see Fig.4.10). Hence,

1.06 . cry - . ..
e the drift island effect is less significant for the
1.041
electron distribution function. This creates a
1.024
g significant difference in the electron and ion
Y 1.00
§ density profiles especially at large py; in the
0.981
L, 10-10-3 absence of the electrostatic potential. Indeed,
0.961 o0 = P,i=1.0-107"r
/' —— pgi=8.0-1073r, when py; /w < 1, the ion and electron density
0.94 1
-2 0 2 gradients are both removed from inside the
(W —ws)lw

magnetic island. In contrast, when py; and w
Figure 4.11: Same as Fig.2.11 except for

the ion collisionality v* — 104 are comparable, a non-zero, finite ion density
Z‘ -_— .

gradient is sustained around the magnetic
island O-point, while the electron density gradient is still removed in the absence of
any potential due to the strong electron parallel streaming and py. < w. However,
to keep plasma quasi-neutral, the electrostatic potential is required. It adjusts to
provide n; =~ n.. Hence, the ion density steepening at large py; is explained by the
radial shift in S given by Eq.2.37, while the sustainability of the electron density
gradient is associated with the self-consistent electrostatic potential. nggi,om is
responsible for the parallel flow profile due to Eq.2.27 with Eqs.2.12,2.13. The main
contribution to the flow is provided by passing particles due to the summation over

o in the VY-averaging operator introduced for trapped particles, Eq.2.24. " 091(0,0),0—
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is shown in Fig.4.9 and Fig.4.10 for different py;/w. However, we have to note
that the trapped branch also contributes to Eq.2.27 as the integration in Eq.2.27
is imposed at fixed 1, and gi(o’o)’t = gz@’o)’t(ﬁw,&,)\, V) = gz-(o’o)’t(zﬂ,f,ﬂ, 2V o) with

Po =7 — poiV) = 1 — 0pgV /1 — AB(9).

ZUQ,-U, ps,i=1.-1073r zogf’, Pe,i=7.-1073r,

0.0010 0.006
0.0041
0.0005
0.0021
0.0000 0.000
—— g;",|[RDK-NTM —— g, RDK-NTM
—— ;" ,[RDK-NTM —0.0027 —— g7, RDK-NTM
—0.0005 ;
—— %grg,v”r RDK-NTM —0.004 —_— 7§og,", RDK-NTM
—0.050-0.025 0.000 0.025 0.050 —0.050—0.025 0.000 0.025 0.050
pq) p(p
(a) pyi/w =0.05 (b) pyi/w = 0.35

Figure 4.12: The ion flow moment, )" _og?, plotted against p, at A = 0.0873, { = 0 for
w = 0.02r5, pg; = 1.0 - 10737, (left) and w = 0.02r, py; = 7.0 - 10737 (right), e = 0.1, L, = 1,
Lyoo=1 & =0,n =1and 7, = 10~*. The grey lines in Fig.4.12a correspond to Py = w, which
is close to the magnetic island separatrix for small py;/w. The red dashed line in Figs.4.12a,4.12b
corresponds to the equilibrium gradient, i.e. in the absence of the NTM island.

In Figs.4.12a,4.12b we compare the ion flow moments at small and large pg;/w. In
Fig.4.12a ) _og? is flattened and zero across the magnetic island O-point in accordance
with the conventional picture when the bootstrap flow experiences a hole around the island
O-point. In Fig.4.12b, corresponding to larger py;/w, there is a non-zero contribution to
>, 097 in the island centre which as we shall see in the following section provides the

basis for an NTM threshold.

/

eqm» describes the

In Sec.2.5 of Chapter II we have defined wg, which being proportional to
electrostatic potential gradient away from the magnetic island, provided @ is localised to
the island vicinity. Therefore, as wg appears through the equilibrium electrostatic potential
far from the NTM island, its effect on the radial distribution function/density profile has
to be similar to that from py;. Indeed, provided the electrostatic potential is localised
around the resonant surface, S* = (i /4L,) [2(p, — P,)” — cos ¢l - (1/2)<,519j6<i>/‘7” >Z¢
with p, = po;(Le/w)(0p + <1/2‘7\|>Z¢&EL’_LOIID)' Thus, wp and its sign also result in the

radial shift along with py;.°° However, this contribution, being also w dependent, is

50 A similar effect has been addressed in [92] in the drift kinetic approximation for the model electrostatic
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one-two orders of amplitude less than the effect of the ion poloidal Larmor radius. We

also notice that the reduction in w results in more rapid changes in the radial shift of S

in p, space, denoted by p,, as p, X pgi/w = poitls /W

potential.
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We can now move to Eq.2.1 and consider the parallel current density perturbation

localised around the resonant surface, Jj,
that contributes to the time evolution
of the magnetic island width. The
second term on the right hand side
of Eq.2.1 adds tokamak neoclassical
effects to the Rutherford equation, i.e.
bootstrap, curvature and polarisation
contributions to w = w(t). We note
that Eq.2.9 is equivalent to Eq.2.1 if a
single isolated stationary N'TM magnetic
island is considered. Thus, when the
island is stationary, the classical tearing
mode stability parameter, A’ is balanced

against the sum of all the neoclassical

contributions, A" + A,.., = 0, where

po R "o
Dpeo = ——= | dp d&J)cosé.
2w R - |
(4.12)
Here jH is the d-average of J.

(Abs + Acur)/ﬂa, a.u. vs. W/fs

250 1 s
"
SR gy =
250 4 g/ —6— pg,;=1.00-1073
=1.35-10"3
~5001 = poi
0.0151 Ps,i=1.50-107
—750 1 v —A— pg,;=2.00:1073
£ 0.0101 Poi
—7 pg,;=3.00-10"3
—10001 0.005 {
: —6— pg,;=5.00-10"3
_1250] & 0.002 0.004 e wlw
T T pa L T T T
0.00 0.02 0.04 0.06 0.08

Figure 4.13: The sum of the bootstrap and
curvature contributions to the modified Rutherford
equation normalised to poloidal beta, (Aps +
Acur)/ By, vs. w/rs for different values of the
ion poloidal Larmor radius, py;. The dashed line
is the analytic result for the bootstrap current
contribution, valid in the limit of large magnetic
island widths. Here w, defined as a solution of
Aps + Acyr = 0 represents a magnetic island
threshold, also called a critical magnetic island
half-width. Inset: w. vs. pg;. € = 0.1, i}q =1,
ion collisionality v = 1074, The equilibrium
density and temperature gradients are L1 = 1
with &g =0, L;jl =1.

Substituting the obtained ion/electron distribution function into FEq.2.27, yields
the expression for the ion/electron parallel flow, u ;, with Jjy =" €2y Defining the
polarisation current density as the part of the parallel current density perturbation that

flux surface averages to zero, we write

R T -
Aps + Ay = _ ot dw/ d§<JH>§ cos& (4.13)
277D R —T
for the sum of the bootstrap and curvature contributions and hence
Apol = Aneo - (Abs + Acur) (414)
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for the polarisation term. Here the &-averaging operator at fixed €2 is defined as

()8 = $..(2 +cos &) Vg

S (Q+cos&) Ve (4.15)

similar to Eq.2.41. As we mentioned earlier, we focus on a large aspect ratio, circular cross
section tokamak approximation. Thus, some of the terms of order €2 are neglected. An
accurate calculation of the curvature contribution requires these higher order corrections.
However, as A, = O(g?), it does not provide a significant contribution to the threshold
nor to the island propagation frequency results discussed below. Thus, Ay, + Ay used
here is just a symbolic representation of all the MRE contributions that do not flux surface
average to zero. To O(g), this reduces to the bootstrap current contribution for magnetic

islands of large widths, w > py;. In Fig.4.13 we plot (Aps + Acur) /By against w/rs. In

=~ 0.001 =
S S
. —-0.25 ey
5 5 ki
& —0.50] —— s, =1.00- & 050/ —o— pgi=1.00-1073r,
+ ‘ - pg,i=1.35-1073rg + - ps,i=1.35-1073r
a —0.751 v —— p,i=1.50-1073r 2-0.751 / —— pg,i=1.50-1073r,
s 1.00- —~— pg,,-=2.00-10‘3r5 S —~ p@,,-=2.00-10‘3r5
' —A— pg.;=3.00-1073r, -1.001 | —A— pg,i=3.00-1073r,
05 1.0 15 20 25 05 10 15 20 25
lg(w/pg, i) lg(w/pg, )
(a) Oth iteration in ® (b) self-consistent ®

Figure 4.14: A sum of the bootstrap and curvature contributions, Aps + Acyr, plotted
against w/py; for different py; at the end of the Oth iteration in ® (left) and with self-consistent
electrostatic potential ® (right) (green: electrons, blue: ions, red: total; markers denote the
corresponding value of py;). € = 0.1, f/q =1, 7; = 1074, The equilibrium density and temperature
gradients are L1 =1, L;]l = 1. The ion/electron distribution function has been calculated with

the model o v/S diffusion.

the limit of w > pyi, Aps + Acyr s inversely proportional to w, which is expected from
the existing analytic theory (e.g. Eq.(85) of [53]). When w tends to zero, Aps + Acyr
becomes negative providing a threshold for NTMs, i.e. a value of w below which the
mode is stable, Ay, + Acyr < 0. This value is denoted by w, and is to be referred to
as the critical magnetic island half-width. w, is different for each ion poloidal Larmor
radius and hence can be scaled by py;. This kind of behaviour at w ~ py; is the direct

result of the inclusion of the drift islands in our model and is in qualitative agreement
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with experimentally observed self-healing of small magnetic islands below the threshold
(e.g. [72]) °!. As we learned from the previous section, the plasma density gradient is
not removed across the magnetic island at small w. This, in turn, restores the bootstrap

current near the island O-point.

To compare the electron and ion contributions to the drive, in Figs.4.14a,4.14b,4.15
we plot Ay + Agyr as a function of lgw/py; at the Oth iteration in the electrostatic
potential®® and also with ® found self-consistently from the plasma quasi-neutrality
condition. In Figs.4.14a,4.14b the S diffusion terms in Eqs.D.60,D.61 have been replaced
with a model, i.e. the o v/S diffusion addressed in the previous section. In accordance
with the previous section, this solution almost reproduces the H96 solution (see Fig.4.5)
outside the island but also captures the region inside the magnetic island separatrix.

In both cases, the electron and ion

contributions match the analytic limit

at large w in accordance with [53].

As can be seen from Figs.4.14a,4.14b

)

Q
< —©— Ps,i=1.00" . .

48 0.5 B po,i=1.35-1073r, both, ions and electrons, contribute to
+ ~O ps,i=1.50-107r; the threshold in the limit of w ~
a —— pg,i=2.00-107%r;

g Lo A pg;=3.00-107r, pgi in the absence of the actual S

' —&— pg,i=5.00-1073r;

diffusion. Keeping the actual S diffusion,
solving Eqs.D.60,D.61 in full, we

05 10 15 20 25 '
lg(wips, i) -
Figure 4.15: Same as Fig.4.14b but based on obtain Ags + Acyr shown in Fig.4.15. In
the full RDK-NTM solution. contrast to Figs.4.14a,4.14b, here the
electron component dominates the plasma
response at small w. Physically, this might be explained by the fact that m. < m; and thus
P9i > Poe OF pui > ppe. Therefore, at w < pp; the ion plasma component averages over
the electro-magnetic field generated by the island, while electrons due to the narrowness of
their banana orbits still respond to the local value of the field. This is in agreement with

the DK-NTM solution presented in [73, 93, 74| 53. However, we highlight that the origin of

the electron/ion behaviour at w < py; is still an open question and is the subject of further

51To provide the quantitative agreement, one has to include the classical tearing mode stability
parameter, A’

52§ = Qp L, in) is taken for the initial guess unless otherwise stated.

53In [73, 93, 74|, the electrons are treated analytically at the Oth iteration in the electrostatic potential
due to m, < m;.
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investigations. Mathematically, we stress the importance of the distribution function

curvature around the magnetic island separatrix provided by the radial S diffusion.

To compare the NTM threshold with its experimental value, we have to keep all the
neoclassical contributions, A,,.,, and thus the contribution of the polarisation current is
required. In Fig.4.16 we show Ay + A, and A,y as a function of w/r, for different
puvi- Ape is calculated in accordance with Eq.4.14. Working in the island rest frame,
w = 0, we determine A, as the residual contribution to the island evolution. The
actual polarisation current contribution will require the island propagation frequency
dependence. The polarisation contribution is inversely proportional to w?® at large w in
agreement with previous analytic results (e.g. [53, 43|, note: Eq.(85) of [53] is obtained in
the reference frame in which the equilibrium radial electric field is zero, while we work
in the island reference frame)®®. For smaller w comparable to the ion poloidal Larmor
radius, there is a threshold similar to one obtained for the "bootstrap" drive, Ays + Acysr-
However, as the "bootstrap" drive dominates over the polarisation term as we can see
from Fig.4.16 in a range of parameters we consider, A,., reproduces the form of the
(Aps + Acur) = (Aps + Aeyr) (w) curve providing self-healing (e.g. see Fig.F.1 of Appendix

In Fig.4.17 we define w, as a solution of A,,.,(w) = 0 to find w,. & 3py; in the conventional
tokamak geometry with € = 0.1 in the absence of the Shafranov shift, plasma elongation
and triangularity (equilibrium density and temperature gradients are L' = 1 with &g = 0,
Lyj=1,7=1T,/T, =1). We emphasise that this threshold physics is related to passing
particle dynamics, and not the finite banana width effects of the trapped particles. A
basis for the threshold is the result of the radial shift of drift islands described by the S
function, Eq.2.37, and, in particular, the pressure gradient restoration across the magnetic
island O-point at w ~ py;. As discussed in the previous section, the latter mainly arises
from the behaviour of the o-dependent part of the ion distribution function, ) g§°’°)’”,

at small w. In this sense, the relevant parameter for w, is the ion poloidal Larmor radius,

poi, and not the ion banana orbit width, py,;.

We have to stress here that at this stage we still cannot consider the contribution of the

polarisation current as being fully determined. Fig.4.16 shows the residual contribution to

54The impact of the polarisation contribution from the vicinity of the magnetic island separatrix is
addressed in Sec.4.4.
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Figure 4.16: The sum of the bootstrap
and curvature contributions, Aps + Ay, (filled
markers, extremum in the upper half-plane)
and the polarisation contribution, Ay, (un-
filled markers, extremum in the lower half-
plane) against w/r, for different py; with self-
consistent ®. The dashed black line o< 1/w and
the dashed grey line o 1/w? indicate the limit
of large magnetic island width. € = 0.1, f/q =1,
ion collisionality v} = 1073, The equilibrium
density and temperature gradients are L, ! = 1,
Ly =1
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Figure 4.17: The full critical magnetic island
width, w,, defined as a solution of Ajco(w) =10
as a function of the ion poloidal Larmor radius,
pgi- The red dashed line is the best fit line that
provides the approximation. w. and pg; are
normalised to the radius of the rational surface,
rs. € = 0.1, f/q = 1, ion collisionality v =
10~%. The equilibrium density and temperature
gradients are L, ! =1 with &g = 0, L:F]l = 1.

0.002

the island evolution, A, when the island propagation frequency, w, is zero. To conclude

if the polarisation term is stabilising or destabilising, we have to find its w dependence

and its sign at the island propagation frequency which will be addressed in the following

section.
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4.4 Polarisation contribution and island propagation

frequency

To determine the island propagation frequency, we return to the system of Eqs.2.9,2.10.
Eq.2.9 provided the marginal magnetic island half-width, w.. Eq.2.10 represents the
toroidal torque balance [53| and thus makes the island propagation frequency dependent
on the dissipation processes in the plasma included in a model. Following [53], we leave the
effects of error fields and plasma sheared flows beyond the scope of this work. Therefore,
the only source of dissipation in this study is the collisional dissipation around the trapped-
passing boundary in pitch angle space, which provides a dominant contribution to the

island propagation frequency.

9-

Once a full solution of the

averaged drift kinetic equation to

leading order in A is determined 0.00171

(Eq.2.35 in the dissipative layer 0.000 |

[0L/0A | ]°
[0L£/00]

and Eq.2.40 outside the layer) with ~0.001

the electrostatic potential calculated

-1.5 -1.0 -05 0.0

wE/wdia, e

0.5 1.0 15

self-consistently from plasma quasi-

Figure 4.18: (left) The integrated through the island

neutrality, we calculate the current
sine component of 9L/ JA| plotted against wp with the

density perturbation parallel to the
field lines, J|, and then substitute

5

self-consistent electrostatic potential. (right) 0£/0®,
integrated through the island region, plotted against
wp for the model potential, ® = L:)ELr_Lolﬁ)IZJ (circle red
markers). The Lagrangian density, £, is given by Eq.2.8.

it into Eq.2.10 to determine wg.’
Solutions of [0L/0A]° (w) = 0 and [0£/0®] (w) = 0
match at wg = —0.93wgiqe. lon collisionality v =
107% ¢ = 0.1, L, = 1. The equilibrium density and
temperature gradients are Lgol =1, L;Jl =1.

Eq.2.10 is the integrated through

the island siné component of
Ampére’s law written along to the
field lines. The left hand side of Eq.2.10 is denoted by [0£/8A||]5, i.e. the integrated
through the island sine component of 0£/0A;. It is a function of wp and thus is a function
of w, and a root of [85 / GAH]S (w) = 0 provides the island propagation frequency, wy. In
Fig.4.18, we plot [8£/ 8AH]S against wg. The Lagrangian is calculated based on the full

distribution function. However, as stated above, the layer 9(0)

; provides the dominant

55 As noted above, w — wg is independent of the reference frame. Thus, wg in the island rest frame
provides the w dependence in the frame, in which the radial electric field is zero far from the island.
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contribution to Eq.2.10.

As we can see from Fig.4.18, there is a number of roots that satisfy the equation:
wp ={...—1.28,-0.93,0,0.94,1.29, ...}. We note that these values are obtained for the
self-consistent electrostatic potential that provides plasma quasi-neutrality. wy is one
of the roots of [0L/0A]° (w) = 0. Although, multiple solutions of [0L/04)]" (w) =0
provide an array of possible wy values®®, this is still sufficient to analyse the stability of the
polarisation current contribution, as we shall see later in this section. In [53], the island
propagation frequency has been found to be in the direction of the electron diamagnetic
frequency with wy = 1.25wgiqe at Lo = 1., Lye = 1. In [86], the island propagation
frequency is also found to be in the direction of wg;, . but scales as (1 — 1. )waiqc, Where

e = Lno/Lr.. Both solutions are located within the range of possible roots for wg
determined above. In contrast, in [87] the island propagation frequency has been found
to be in the direction of the ion diamagnetic frequency, wgq,i, in experiments with the
co-injected NBI beam. Substituting ¢ = 0.1 and 7; = 1 into the scaling presented in [87],

we obtain wy = 1.11wgiq;i-

Before we consider the polarisation current as a function of the island propagation
frequency, let us discuss the polarisation current that arises from a narrow layer in the
vicinity of the magnetic island separatrix relative to its external contribution that comes
from the region outside the magnetic island. [53] provides the analysis valid outside the
magnetic island separatrix and requires island scale lengths greater than £'/2py;. This then
excludes the separatrix layer from the analysis (e.g. Fig.F.3), being though still sufficient
for the accurate determination of the bootstrap drive in the limit of large islands. The
polarisation current contribution has been found to be negative, i.e. stabilising at wy (see
Eq.85 of [53]). A thin boundary layer that surrounds the separatrix of the magnetic island

has been shown to provide a significant contribution to the polarisation current [82, 68, 61|

56The NTM is associated with the perturbation of the vector potential parallel to the magnetic field
lines, A, and wp has to satisfy Eq.2.10, i.e. [BL/ﬁA”]S (w) = 0. In the following chapter we analyse
the stability of secondary modes associated with the electrostatic perturbation and employ Eq.2.11,
OL/0P = 0, integrated over space to provide the dispersion relation and to calculate the eigen frequency.
In Fig.4.18 we plot 0L/0® integrated through the island as a function of wg, [0L/0P](wE), imposing
& = QpL i) for the electrostatic potential just as an illustration. [9L/0®](wg) = 0 has two roots:
wg = {-0.93,0}. Omitting the trivial solution, we have wg = —0.93wgiq. in the island rest frame.
The interesting fact is that sets of solutions of [8L/ 04 ] * (w) = 0 with the self-consistent electrostatic

potential and sets of solutions of [0£/8®] = 0 with & = &L, 1) overlap.
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and to invert its sign making the polarisation contribution, A, destabilising [50, 88, 89].
[82, 50, 88, 89| investigate the effect of the polarisation current employing the plasma fluid
description, i.e. imposing the Pfirsch-Schluter regime, while the low collisionality plasma
has been assumed in this study®”. [61] employs the gyro-kinetic model to determine
the island propagation frequency dependence of the MRE polarisation contribution, also
covering the coupling to the electron drift waves, i.e. allowing 0 < w/wgie < 1. The
polarisation current was also calculated in [90, 91| from the drift kinetic theory, and in
[63, 64] from the gyro-kinetics and then compared to the perturbative analytic results.
Although the listed works include the layer contribution to A, they all impose a model
potential. This is crucial, as the polarisation current is associated with a difference in
the electron and ion responses to the magnetic perturbation and thus is determined by
the electric field required to keep plasma quasi-neutral. In this study, the electrostatic

potential is determined from plasma quasi-neutrality as discussed in Chapter II.

4.4.1 The polarisation current contribution with the model x v/S

diffusion

As mentioned above, H96 imposes a model radial diffusion and captures only the region
outside the magnetic island separatrix, and hence excludes the separatrix layer contribution
to the parallel current density from the analysis (e.g. see Fig.F.3). In [53]|, A,
—w [w — Waiae(1 +n;)] <0, i.e. has been found to be stabilising in the limit of large w.
[63, 64] still imposes I'y, = —D0On/dy but captures the region around the island separatrix.

The latter makes A, destabilising at certain w.

In this subsection we address the model o< /S diffusion introduced in Sec.4.2. In Fig.4.19,
Table 4.1, Table 4.2 we compare the contributions to the cosine component of the parallel
current density perturbation, i.e. the space integral on the right hand side of Eq.4.12,
from inside and outside the separatrix of the magnetic island for different py;, w and 7

for this case.

57To investigate the bootstrap drive, the low collisionality plasma is required.
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[ (Jy cos € dQ vs. [ (J) cos €) a0
poi S (Teosg)iae || [ (Fyeos ) da, | [ (Jjcos€), dQ,
maz(P) = 2.9, | maz(y) = 10.,
w = 0.02r, w = 0.02r,
1.0- 10737, 0.0801884964943 —0.0401392885124 —0.08379370129052
2.0-1073r, 0.0733667684839 —0.0388039440297 —0.08197527291581999
3.0 - 10737, 0.0595189600977 —0.0523387088605 —0.10990103866624
4.0-1073r, | 0.0550939317948 —0.0485169637716 —0.10056931082046
5.0 - 107 3r, 0.055130353552 —0.0406898886297 —0.08276866300038
6.0 - 107 3r, 0.0517537477945 —0.0474968529734 —0.09396710170214001
7.0 - 10737, 0.0469708166399 —0.051688518276 —0.09846639999317999
8.0-1073r, 0.0395467334553 —0.0600175912761 —0.11050108250526

Table 4.1: Area under the <jH cos §>? curve inside, —1 < Q < 1, and outside the magnetic

island, €2 > 1 for a different right limit, i.e. maximum value of U/w. 1& = 2.9 corresponds to
1.45 island widths, and ) = 10 corresponds to 5 island widths. w = 0.02rs, 7; = 1074, ¢ = 0.1,
Ly =1, n; = 1.The presented data corresponds to Fig.4.19, (a).

In Fig.4.19 the contribution from inside the separatrix is finite and decreases with the
ion poloidal Larmor radius. In contrast, a spike outside the separatrix increases with py;,
which makes both (inside and outside the separatrix) contributions comparable at large
poi even at the distance of ~ 1 — 2 island widths from the separatrix. In contrast, when
poi is small, the layer contribution dominates the external contribution at the distance of
~ 2 island widths from the separatrix and is almost balanced by the external contribution
at ~ 5 island widths from the separatrix. An increase in 7; from 10~% to 1072 reduces the
layer contribution inside the separatrix in this model as well as the outer contribution at
small py; (see Fig.4.19, (e) and Tables 4.1,4.2). At large py; though, both inner and outer
contributions compensate each other. Changes in Jj cos¢ due to the reduction in w (see

Fig.4.19, (f)) are more rapid as the radial shift of S in p, space is p, X py; /W = pgiths/w?.

The results presented in Fig.4.19 and Tables 4.1,4.2 are obtained for the model diffusion.
However, even this simplified case shows the significance of the separatrix layer contribution.
In [64] it has been concluded that the current density contribution from a thin boundary
layer in the vicinity of the island separatrix and the external contribution from outside
the island almost cancel out at large w. Roughly, we also can see this in Tables 4.1,4.2 for
the model diffusion. At small w though, the layer contribution is found to be dominant in
[64]. [64] treats diffusion perturbatively outside the magnetic island and drops collisions

in the separatrix layer keeping the diffusion and parallel streaming to leading order. The
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[ (Jy cos € dQ vs. [ (J) cos €) a0
poi S (Teosg)iae || [ (Fyeos ) da, | [ (Jjcos€), dQ,
maz(P) = 2.9, | maz(y) = 10.,
w = 0.02r, w = 0.02r,
1.0- 10737, 0.0772334825588 —0.027573515526 —0.0576922054224
2.0-1073r, 0.0712222449229 —0.0331705387838 —0.06993131861773999
3.0 - 10737, 0.0592157718941 —0.0398634783683 —0.0839597436284
4.0-1073ry | 0.0547498468307 —0.0480637058615 —0.10007060513102001
5.0 - 107 3r, 0.0555873563479 —0.0426389885447 —0.08762728862948001
6.0 - 107 3r, 0.0542500573304 —0.0438184246256 —0.0883043616248
7.0 - 10737, 0.0507779220968 —0.050239549732 —0.09923754891568
8.0-1073r, 0.0477558648903 —0.0540243193465 —0.10368453130371999

Table 4.2: Same as Table 4.1, except for ; = 1073.

tokamak drift effects are excluded from the model in [64] 5. In [64] the diffusion coefficient
is assumed to be constant, however, the drive term in the particle distribution function
takes into account the ¢ dependence at fixed ). The latter is crucial for the distribution
function curvature right outside the separatrix. Therefore, a more accurate treatment
of the region around the magnetic island separatrix is required in our analysis. In the
following subsection we address the parallel current density based on the full solution of

Eqgs.D.60,D.61, i.e. retaining the actual S diffusion terms.

4.4.2 The polarisation current contribution based on the full

RDK-NTM solution

Similar to Fig.4.19, in Fig.4.20 we plot the cosine component of the orbit averaged parallel
current density perturbation against {2 but based on a full solution of Eq.2.36 localised
around ). in the collisional dissipative layer and Eq.2.40 outside the layer in pitch angle
space. As we can see from Fig.4.20, there is an additional destabilising layer contribution
to J) right outside the magnetic island separatrix similar to that shown in Fig.2 of [63].
However, this part of the separatrix layer contribution was not allowed in the model we
took in Sec.4.4.1. At small py;/w, the separatrix layer contribution now slightly dominates
the plasma response. As we increase the ion poloidal Larmor radius and approach the

NTM threshold, the contribution around the island separatrix grows and dominates over

58In accordance with Chapter II, the radial shift in S is associated with the magnetic drift in a
tokamak.
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the contribution outside this layer (e.g. see Fig.4.20(e)). This is in agreement with [64].

In Fig.4.21 we plot the contribution of the
polarisation current against wg °. As we

can see from the figure, the set of solutions

of [0£/04)]" (w) = 0 provides A,y > 0, i.e.

destabilising polarisation term. This kind

of behaviour can be explained as follows:

as was mentioned above, the effect of wg
is similar to that from py;, as it appears
via the equilibrium electrostatic potential
away from the island. The increase in py;
increases the separatrix layer contribution
to Jj cos&. wg acts in a similar way making
A, more destabilising. A, scales as w¥,
except for the region in the vicinity of wg =
0. The w% behaviour is consistent with
previous works: [53] outside the magnetic
island separatrix at large w, [68] without

and [61] with included coupling to the

Apol, a.U.

0.0 0.5 1.0

WE/Wyia, e

-0.5

Figure 4.21: The polarisation contribution
to the evolution of the magnetic island vs. wg
(note: region of A,y < 0 is stable). The wg
dependence in the island rest frame provides the
wp dependence in the reference frame, where the
radial electric field is zero far from the island.
Inset: zoom in a region A,q(wg) = 0. Red
curves indicate a parabolic approximation. The
w% behaviour is predicted in the analytic limit
of large w. Ion collisionality v = 1074, ¢ =
01, Ly = 1, Lg = —0.1. 0 < wp < Waige
corresponds to a region of coupling to electron
drift waves. For these parameters: wo/wgiq,e €
{...,—1.04,-0.93,0,0.92, ...}.

electron drift wave in gyro-kinetics, [90, 91] in the drift kinetic approach at large w
and |63, 64] in the slab formulation %°-®'. However, the behaviour of A, around wg = 0
is more complicated and is beyond the main purpose of the current NTM threshold
study. The similar island propagation frequency dependence of A, has been obtained
in [68, 61, 90, 91, 63, 64]. |68, 63, 64] excludes 0 < w < wWgiae. In [91] the sign change in
range —1 < wg < 1 is explained by the competition of the toroidal precession and the

island propagation frequency.

59There is no polarisation current at the zero island propagation frequency and hence this point has
been excluded from the dependence.

60They all impose a model potential.

61Roughly, the electrostatic potential is proportional to wg. Dropping the pressure and viscosity
gradients in the force balance and replacing the velocity with the E x B drift velocity, we obtain
J1 pot X w% for the polarisation current.
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4.5 Summary

The first part of this chapter describes the solution technique used to solve the reduced
drift kinetic equation for the NTM problem in the conventional tokamak approximation.
The technique is based on the shooting method employed to solve a 3D integro-differential
equation in {S £/, V; a} space. The momentum conservation term in the pitch angle
scattering collision operator as well as the electrostatic potential have been introduced
iteratively. The first one is required for an accurate calculation of the "bootstrap" current
drive. Indeed, as has been demonstrated in [53|, the momentum conservation term
eliminates the island propagation frequency dependence of the bootstrap current. The
electrostatic potential is determined to provide the plasma quasi-neutrality. The algorithm
has been implemented in a new code, RDK-NTM, developed in Python. It has been
checked that the solution converges and satisfies the equation, Eq.2.35 in the dissipation
layer, i.e. A € [\, AJ U (Ae, A, and Eq.2.40 in external regions outside the layer, i.e.
A € [0, A\, U [At, Afin], with matching conditions at the trapped/passing boundary, A = A,
given by Eq.3.1, and the boundary conditions as well as the plasma quasi-neutrality
requirement. The obtained numerical results for moments of the particle distribution
function have been successfully benchmarked against an analytic solution provided by the
conventional tokamak neoclassical theory valid in the limit of large islands (e.g. Figs.F.3
and 4.13,4.16,4.21). It has been checked that the RDK-NTM solution matches the analytic
limit of large magnetic islands (compared to the ion poloidal Larmor radius) and that the
island propagation frequency dependence of the polarisation current is consistent with
the earlier theoretical results obtained in the presence of the layer polarisation current
contribution. The latter arises in the vicinity of the magnetic island separatrix. The code
has been tested®® and then adopted to solve the secondary mode problem that will be the
subject of the following chapter®.

The second part of the chapter focuses on the obtained results. Employing weak collisional

52The reduced drift kinetic NTM (RDK-NTM) solver has been tested: it has been checked that
the solution (its layer and external contributions) converges and provides the plasma quasi-neutrality
condition. The solver module has been tested for a number of simplified problems that allow an analytic
solution (homogeneous/non-homogeneous equations with constant /factorised /non-factorised coefficients).

63The RDK-NTM code has been adopted to analyse the stability of secondary modes in a tokamak.
The corresponding solution has been benchmarked against the conventional bump-on-tail problem and
the COBBLES results in a pure diffusion case and in the presence of the dynamical friction. They are
found to be in good agreement.
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dissipation, we solve the drift kinetic equation. The perturbative approach we apply
breaks down in a narrow region in pitch angle space in the vicinity of the trapped-passing
boundary. In this region, collisional dissipation is no longer negligible and S cannot be
used to describe the ion/electron streamlines. Here we employ the momentum-conserving
collision operator (which is dominated by the pitch angle scattering contribution due
to the dissipation layer thinness) and solve the 2D boundary layer problem to match
solutions in the trapped and passing regions provided by the perturbative theory. Once
the electron/ion solution of the orbit-averaged drift kinetic equation consistent with
plasma quasi-neutrality is obtained, we calculate the parallel current density perturbation
localised around the resonant surface, J, that contributes to the time evolution of the
magnetic island width. We have calculated contributions of neoclassical "bootstrap" and
"polarisation" currents to the magnetic island evolution and have demonstrated that the
plasma response to the NTM magnetic perturbation is stabilising in a certain range of
w. For the small inverse aspect ratio circular cross section tokamak plasma, a threshold
island width below which the tearing mode is stable is w < w. = 2.67py; [73, 93, 74|
and w < w,. = 3.16py; from full orbit-averaged (DK-NTM) and low collisionality plasma
orbit-averaged (RDK-NTM) solutions, respectively. This result, w. = 3py;, provides the
experimentally observed self-healing of small magnetic islands. The island propagation
frequency dependence of the polarisation contribution has been determined. The analysis
includes the contribution to the polarisation current that comes from a narrow separatrix
layer around the magnetic island as well as the outer contribution that arises outside the
island separatrix. They act in opposite directions and depend on py;, w, wg and ¥; for
certain equilibrium density and temperature gradients, L,o and Lp;. All these results are
novel in tokamak geometry and include physics inside and outside the magnetic island.
They provide a new understanding of how finite orbit width effects influence the island

threshold and are crucial for the NTM stabilisation on ITER and future tokamak devices.

The next chapter focuses on the stability analysis of secondary modes driven by an island
in phase space. Despite having a different physical origin, this problem being associated

with the island-like structure shares the mathematical basis with the NTM problem.
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Chapter V

5 Stability analysis of secondary modes,

driven by a phase space island

In this chapter® we discuss a new theoretical approach that is based on the Hamiltonian
formalism and employed to investigate the stability of islands in phase space, generated
by trapping of energetic particles (EPs) in plasma waves in a tokamak [95, 96]. Working
in terms of the Hamiltonian function allows for a reduction in dimensionality from a 6D
dynamics in phase space to a 2D dynamics of a phase space island. Depending on the
form of the Hamiltonian, the results produced below can be applied to a reduced pure
electrostatic slab problem or can be extended further to a tokamak case with the magnetic
field included. We find this approach convenient to describe the stability of EP-MHD
modes, i.e. MHD modes that are driven by EPs (e.g. toroidal Alfvén eigenmodes or
TAEs, EP-driven geodesic acoustic modes or EGAMs, fishbones). The problem of a single
isolated EP-MHD mode then reduces to a 2D Hamiltonian dynamics system around a
phase space island. The latter is usually introduced to describe the conventional Langmuir

wave/bump-on-tail problem.

We solve the Fokker-Planck equation in the presence of an effective velocity space drag
and diffusion to calculate a perturbed equilibrium associated with these phase space islands.
[ts stability is then investigated through the Vlasov/Fokker-Planck — Poisson system. The
Lagrangian of this system provides the secondary mode dispersion relation® and allows
one to estimate the mode onset. The secondary instabilities have been found in a certain
range of primary mode numbers and primary island widths. The maximum secondary
mode growth rate is obtained when the associated resonant velocity is in the vicinity of
the primary island separatrix. Hence, the onset of the secondary mode can be prevented

if the primary mode number is the lowest available.

64The work and results presented in this chapter have previously been published in A. V. Dudkovskaia,
X. Garbet, M. Lesur, H. R. Wilson J. Phys.: Conf. Ser. 1125 (2018) 012009 and A. V. Dudkovskaia, X.
Garbet, M. Lesur, H. R. Wilson Nucl. Fusion 59 (2019) 086010.

65Here we have to address Eq.2.11 integrated through the phase space island as instabilities we consider
are now associated with the perturbations of the electrostatic potential, while Eqs.2.9,2.10 provide the
NTM dispersion relation.
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5.1 Specification of the problem

Interactions between particles and waves play a crucial role in a number of applications.
In the burning plasma of a reactor, EPs are considered for additional heating and
current drive. They can be generated by NBI or resonance frequency (RF) heating, or
produced by fusion reactions. These EPs can excite Alfvén eigenmodes resonating with
plasma waves. This, in turn, results in EP losses degrading heating and confinement.
Since the alpha particles generated by the DT reaction are expected to be the main
heating source in a future tokamak reactor, the EP losses have to be predicted and
suppressed /prevented in an optimal situation. In the simplest case, this problem
becomes the bump-on-tail problem with the Maxwellian thermal electron background
neutralised by steady ions, and the fraction of fast electrons described by a shifted
Maxwellian (see Fig.5.1). The latter is localised in the vicinity of a beam velocity, V.
This is a 2D problem, {z,V}, where = is

the spatial coordinate and V' is the velocity

variable. The electron distribution function

experiences a positive slope around V}, making

the mode unstable, provided V} is large enough.

In the original work [97], this was applied

to Langmuir waves, and also allows to be

extended to a tokamak case, e.g. to consider Figure 5.1: Sketch of the bump-on-tail
toroidal Alfvén modes [98, 99]. The drive for ﬁi;ﬁ;g;ji(;?oif;t‘ig n he local maximumn is
the bump-on-tail instability is provided by the

particle-wave resonance that occurs when the particle velocity matches the phase velocity
of the wave, V,, = wo/ko with wy being the mode pulsation frequency and kq its wave
number. There is a number of scenarios of the evolution of a single mode (wy, ko) {100, 101]
depending on the dissipation rate. The saturation towards steady state occurs as a result
of the island formation in the vicinity of the resonant velocity, V' = V,;,, provided the
dissipation is sufficient. The particle distribution is then found to be flattened inside the
island, which decreases the drive. Around the island separatrix though, the distribution

function gradient experiences steepening which is prone to instabilities. Saturation is also

allowed in the collisionless plasma via the plateau formation in velocity space inside the
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island, and the onset of O’Neil-Mazitov oscillations [102, 103, 104]. Here the analysis is
restricted to the case of finite dissipation. The primary mode here is to be understood
as an unstable wave (wy, ko) that evolves towards the phase space island formation [96].
Within the island, a plateau forms surrounded by the separatrix. Secondary modes are
then expected to arise at the edges of this plateau, i.e. near the island separatrix. Their
onset in the vicinity of the phase space island is the subject of the current chapter, where

we exploit some mathematical similarities with our study of NTMs in earlier chapters.

Seeking secondary instabilities, we address the conventional Vlasov/Fokker-Planck —
Poisson system, i.e. a system of Vlasov/Fokker-Planck equations for each particle species,

7, coupled to Poisson’s equation
V0 =—) eZ / £;dV. (5.1)
, R
j

Here we assume a system of three particle species: j labels thermal background of electrons
and ions, as well as a fraction of EPs, i.e. energetic electrons/ions that trigger the bump-
on-tail instability [96]. In toroidal coordinates, the particle distribution, f;, is to be
treated as f; = f; (t,9,9,(, V), where ¢ is the poloidal flux, ¥ and ¢ are the poloidal and
helical angles, respectively. ( is defined accroding to mgd — ngp — wot, where mg/ng is the
poloidal /toroidal primary mode number, ¢ is the toroidal angle, and wy is the primary

mode frequency.

The starting Vlasov/Fokker-Planck equation allows to be rewritten through Hamilton’s
equations for a pair of angular and action variables, {a, J} [105, 96]. In the plasma of a
tokamak, the components of J are represented by three adiabatic invariants of motion of
charged particles. Imposing a single perturbation, associated with the phase space island,
we write Ho (J,a,t) = Hoo (J) + hcos (na — wyt) for the full primary Hamiltonian. Here
Hoo is the unperturbed Hamiltonian, i.e. in the absence of the island, and n = (ny, ng, n3) is
a triplet of integers. We set & = na—wyqt to define a resonant surface by Z?:1 1 (J) = wo
with da/dt = Q (J). The action vector then reads J = J,.s +nl near the resonant surface,
where J,..; spans the resonant surface and I measures the distance to it (see Fig.5.2). Then
one can verify that Ho (J,a,t) = Hoo (Jres) + C1?/2 + hcos&, where C is the Hessian of

the Hamiltonian on the resonant surface. To simplify the algebra below, we assume that
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Figure 5.3: Sketch of Hy against &

at p = 0 [96]. & varies from —7 to
g 7 outside the phase space island and
between the bounce points, & 2, given
by Hy = —wg cos §p1,2, inside the island
region.

Figure 5.2: A phase space island near the
resonant surface, n - Q(J) = 0 [96].

h varies slowly over the island width. Setting p = C'I, we find
Hy = p*/2 — wicos& (5.2)

for a new full primary Hamiltonian. wy, is the bounce frequency of deeply trapped particles
(i.e. particles trapped in phase space, see Fig.5.3) defined as w? = —Ch. Here we highlight
that a 6D dynamics in phase space can be reduced to a 2D dynamics of a phase space

island, if two invariants of motion are located on the resonant surface.

In slab geometry in the absence of tokamak drifts, the starting equation simply reads

8fj 8f] _ BZ]' 0o 8fj o '
ot v or  m; 0z OV i (fs) + 6, (5:3)

where a combination of the collision operator, C;, and the source, S, is to be introduced
below. The kinetic equation is to be solved for f;, a time dependent particle distribution
function, treated as a function of position, {¢,9,(}/z, and velocity, V/V in the
toroidal /slab formulation, respectively. The electrostatic potential, @, is to be considered
as a function of position and time. For simplicity, we reduce the analysis to the (¢, x)
plane. Assuming that a primary wave has been developed and saturated towards an
island-like structure, we impose ® (z,t) = ® cos (koz — wot) for the potential. Then we
find it convenient to work in the wave reference frame and define a new spatial coordinate

¢ = kor — wot conjugated to a momentum, p = 9§/0t = koV' — wy. Hence, we obtain
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Hy (2,V) = (koV —wo)?/2 — k2 (eZ;/m;) ®q cos (kox — wot) for the Hamiltonian. Tt is
equivalent to p as a velocity space variable, if the sign of p, denoted by o,, is kept as an
extra variable. Defining the bounce frequency in the limit of deeply trapped particles
as wi = kieZ;®y/m;, we obtain Eq.5.2 for the full primary Hamiltonian in the (p,¢)
plane. Replacing Hy (z, V') with Hy (¢, ¢, 0, V) = V||2/2—|—MB—|—6Z]~<I> (1, @, 0) [105], where
pu = V2/2B is the magnetic moment and B is the total magnetic field, we provide a
generalisation of the problem to a magnetic configuration with toroidal geometry. Here
® = dycos( (the ¢ dependence of ®y has been omitted for simplicity). We highlight
that the guiding centre equations of motion that fully account for the magnetic drifts as
well as their reduced formulation in slab geometry allow the Hamiltonian formulation.
Thus, from a mathematical point of view EP-MHD problems, Langmuir wave and the
TAE problems, become identical in the toroidal and slab cases, provided they are written

through the Hamiltonian function.

Contours of constant Hy plotted in the (p, ) plane describe an island-like structure and
thus are to be referred to as an island in phase space. A new equilibrium, described by

fo,j, is to be determined from the Fokker-Planck equation, which now reads

9 fo,

5~ U fog} = Ci(foy) + 6. (5.4)
Here curly brackets denote the conventional Poisson bracket, i.e. {f, g} = g—gg—g — g_;];g_?

Once fo; is found, we analyse the stability of this new perturbed equilibrium, i.e. the
stability of secondary waves, taken of the form ®,e**~®* 1 c.c., where k and w are
their wave number and frequency, respectively. In the frame of the primary wave, these
waves are ®p,ee"0% 4 cc with | = k/kg and dw = w — lwy. We note that [ is not
necessarily integer. If the electrostatic potential has a form @ (z,t) = ®,e”“" + c.c.,
then the full Hamiltonian and the full EP distribution read H (§,p) = Hy (§,p) + 0H and
fi (&,p) = fo; (&, p) +0f; with 0H = hy, (&,p) e @ 4 c.c. and §f; = fiu, (€,p) et + c.c,
respectively. Here Hy (€, p) and fy; (€, p) represent the new primary equilibrium, while

dH and 4 f; are perturbations associated with the secondary modes. h, = kieZ;®,,/m; is
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he, (&, p) = hiee™® . Following Sec.2.1 of Chapter II, we introduce the Lagrangian®’:
€0 g 2 g
Lw) =7 / da|vau[* =) eZ, / da / fio (€P) L (Ep) V. (55)
0 ; 0 R

Here L is the characteristic length, chosen as a multiple of the primary period, koL = 27,
where jy is an integer. Poisson’s equation is equivalent to the condition, where the
Lagrangian density of the electro-magnetic field is extremum for any ® variation. £(w)

of the form given by Eq.5.5 will provide the secondary mode dispersion relation.

Rewriting Eq.5.5 in terms of {p, £}, we have
L(w, D)= —=Llh*+ ) L; (w) (5.6)
J

with

g =y [ 52 [ g 1)
being the Lagrangian of a given particle species, and w,; is the plasma frequency of a
species, ng = n]-(er)2 /eom;. The first term on the right hand side of Eq.5.6 represents
the field contribution. The distribution function is normalised to density of a considered
species, nj, in p coordinates, and hence fR fidp = 1. hy, = kieZ Py, /m; is the perturbed

68

Hamiltonian®®. The perturbed distribution, fj,, is then a solution of the linearised

Fokker-Planck equation that reads

- Z.6("-)fju.) - {H07 fjw} = {hw, fU,j} : (58)

fo; is a non-trivial function of Hy (p,€), and hence the Poisson brackets {Hy, fj,} and
{hw, fo;} generate multiples of the basic harmonic, {§ —dwt. Away from the island though,
Hy ~ p*/2, and the corresponding solution becomes trivial. The system then behaves as if
there is no interaction between primary and secondary waves. This illustrates the thermal

background, provided thermal resonances occur far from the EP resonances. The second

66k has to be replaced with m1 — n¢ for the toroidal formulation, where m /n is the poloidal /toroidal
secondary wave number.

67The Lagrangian is the Lagrangian density integrated over space, i.e. £ = [ Ldg. Note: in this
chapter the notation £ will be used to denote the Lagrangian.

68 A constant normalisation factor has been omitted here for convenience. In our set of variables,
{x,koV — wp} instead of conventional {x,m;V}, the scaling factor is egkdL/A?, where A = eZ;k%/m;.
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approach, which is to be run numerically, is to maintain the basic harmonics only, i.e.

— 6w f = {Ho, fiu} = {hus (o) } (5.9)

An angular bracket here indicates an averaging operator over £ to be defined below.
Finally, a full nonlinear solution can be calculated by switching from {&, p} to {£, Ho;0,}
and will be discussed at the end of this chapter.

5.2 Primary equilibrium

We start with a calculation of a new primary equilibrium, described by fo;. fo; is a
solution of Eq.5.4 and represents the plasma response to an isolated phase space island,
associated with the bump-on-tail instability. Imposing the Maxwellian behaviour for the
background plasma, we solve Eq.5.4 for the EP fraction only, i.e. fast electrons/ions,

whose population is small compared to the bulk plasma.

The right hand side of Eq.5.4 is represented by the Fokker-Planck collision operator that
includes collisions on fast particles by the thermal, Maxwellian background. The initial

form of this collision operator that acts on the EP distribution is

Ci+8=

(1-B)'* 9
B O\

= QVJ

1 0 3 Al 0
T2y lv <”“°“’+ 2 Vavﬂ ’

(5.10)

0
1-AB)* =
JA( AB)2 %

(]

where v}, V40, and v are the pitch angle scattering, slowing down and parallel velocity
diffusion rates, respectively. Following [106, 107], we project Eq.5.10 on the rational phase
space surface to replace it with a combination of operators in p space. This reduces the
dimension of the collision operator from 2D to 1D in velocity space. The Jacobian of the
corresponding coordinate transformation can be found in [106]. After this procedure, we
obtain

0? 0

Ci (fo;) +S=D (foj — feqmj) + Viv g,
¢

P o 2 (f 7j_feqm,j)- 5.11
op* | 0 (5.11)
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Here D, and vy, are the diffusion and dynamical friction coefficients in p space, related
to the diffusion v4y and friction vy rates in velocity space through D, = v (ko/ k)?
and vy, = 7y (ko/k), respectively [95, 96]. fegm,; is the unperturbed distribution being
introduced in the absence of the island in phase space, and appears as a dotted line in

Fig.5.4. The Vlasov part of the Fokker-Planck equation [111] is

dfo; _ 0fo, Afo; | Ofo
9= S0 0uHy — (0Ho)e| SO+ pS 12
with J denoting the action variable,
0 defined as
104 _ 15p=50.,|3f=0. BK%Y//
P = Dp= @"x/’/ d
| D, =50., Vr=40. ((\}/./ J(Ho’t) — f %p (t7€7H0; o'p)7

and 7 being the bounce period,

d
T = %%pl (tafa HUa Up)

10

(an angular bracket denotes the
Figure 5.4: The EP distribution function fo
plotted against p across the island O-point, i.e. £ =0,
for arbitrary ﬁp and 7f,. The solution, fO,j7 is later in this section). Working in the
localised to the island vicinity, which allows the
initial equilibrium distribution function to be Taylor
expanded around the resonant surface. The dashed time-independent solution, we rewrite
lines indicate the position of the phase space island
separatrix, Hy = obg. Hats indicate the normalisation
that has been chosen as in [95].5

average over ¢ and is to be introduced

wave reference frame and seeking the

a system of Eqs.5.4,5.11,5.12 as

. afO,j _ 2 . d”
p (&, H07Up> = Dyp (¢, HOvo-p) PYED) (fo,j - feqm,j)
ok |y O0H; ¢
0 5 (5.13)
+ [Dy + vy pp (&, Ho; 0p)] O H, . (fog — feqm.j)

where p has been replaced with a pair {Hy; 0, } and is considered as a function of £ and H
for each o,. We find it convenient to define gy ; = fo; — feqm,; to measure a shift from the
equilibrium state. go ; represents a full solution of Eq.5.13. To solve Eq.5.13, we introduce

a small parameter ¢ that characterises the ratio of time scales and comes from Eq.5.12,

P -1 - A N

% fo; = foi - (0feqm/Opl,es)” > D=1/ (L = va), Ho = Ho/(vz = 7a)*, Dp = Dy/ (72 — 7a)*, 05 =
vip/ (VL — 74)* and @, = wy/ (7 — 7a). Here vz is the EP contribution to the growth rate of the wave,
while 74 is the wave damping rate due to dissipation processes.
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provided the right hand side of the equation is given by Eq.5.11. Using d; ~ 1/w, and
implying weak collisional dissipation, we obtain § = max (D,/w}, v;,/wi) < 1. We solve

Eq.5.13 by an expansion in 4,
L (04)504
do,j = E 90,9 s

to find gé?} , i.e. the leading order EP distribution function. The leading order equation

reads ©
390, J

23

— 0. (5.14)

Hy

Thus, we learn that g(()?} is independent of ¢ at any fixed Hy, i.e. g(()?} = g[()?j? (Ho; 0p).

Introducing collisions at next order, we determine an exact form of g(()?} from the collisional

constraint. The O (§') equation is

995, )
p(&aHOQUp) 857 = Dypp (faHO;Up)

Hy

0
&gs)

OH?

9gs)
+ 1Dy +vpap (& Hos o)) 5

3 3

. (5.15)

(1)
0,57

To annihilate the term in g, ;, we divide both sides of Eq.5.15 by p and integrate over
¢ at fixed Hy. To consider particles outside the phase space island™, i.e. Hy > w? (see
Fig.5.3), we integrate over a period in £, imposing go; (—7) = go; (7). For particles
trapped within the island, —w? < Hy < w?, we have to integrate between bounce points,
given by &, = =+ arccos (—Hp/w?), and, in general, sum over the two streams, o, = +1, to

ensure continuity at both bounce points. Therefore, we introduce

()e = o s Hoz e, (5.16)
e = |
ir 2y O _&;b g, —wi < Hy < wi

Hy = w} is the separatrix of the phase space island. Applying Eq.5.16 to Eq.5.15, we

obtain ©
2
9o,

¢ OH?

(Dyp (&, Ho; 0p)) =0, (5.17)

(0)
D 90,
+(—— +vV > -
¢ <p(£>H0§ Up) T ¢ a}[O ¢
(0) 2

to be solved for g, ;. To provide matching across the trapped-passing boundary, Hf = wy,

we impose » , 0,9 =0, 32, g7 = 2¢g' and >0, 097 JOHy = 20g' /OH, similar to Eq.3.1

"0They are also to be referred to as passing particles in phase space.
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of Chapter III for our NTM analysis. Here indices p and ¢t denote passing and trapped

particles, respectively.

Away from the island, fy; matches the Maxwellian equilibrium and thus is linear in p.
Since fo; = feqm,; + 90,5, go,; must satisfy apgo,j|p o too = 0. We solve this numerically for
g(()?; as a function of Hy at each o0,. D,, v, and w;, are arbitrary parameters. fé?j) vs. Hy

is shown in Fig.5.5 for passing and trapped particles™. The trapped particle solution is

(b)

\/Flo+of)§

7 = 0y, y

HOFo(p, €))

Figure 5.5: (top) The leading order EP distribution function vs. y = y/Hy + w} for two

branches of the stream, o, = £1 for (a) a case of pure diffusion, (b) when velocity diffusion and
drag are comparable and (c) when the drag term is dominant. The dotted line represents the
trapped-passing boundary, 1, = V2. y > 1y, and 0 < y < 1, correspond to the passing and
trapped regions, respectively. The trapped particle solution is o,-independent and hence both o,

branches match in the trapped region. (bottom) Contours of constant fé?j) in the (p, &) plane,
which reproduce the phase space island structure; w, = 1. Hats indicate the normalisation that
has been chosen as in [95].5

op-independent due to Eq.5.16. Once féf)j) = fég) (Ho; 0p) is calculated, we immediately
find fég-) in p space, i.e. fé?j) (Ho (&,p):0p).

Similar to the NTM problem, we have to identify the dissipation layer, where ¢ is no
longer small. Eq.5.17 becomes invalid in a thin region of phase space in the vicinity of
the phase space island separatrix. Here collisional dissipation is not negligible to leading
order in ¢ but comparable to ~ pd/J¢, and thus we must find a full solution of Eq.5.13.
Solving Eq.5.13 with the boundary conditions in Hj space given above and applying

"IThe numerical scheme can be found in the appendix and in [96].
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foi (=&) = foj (&) ™ in &, we obtain fo; = fo; (&, Ho (§,p);0,). fo; vs. pis illustrated
in Fig.5.4 for arbitrary ﬁp and 7y,. As can be seen from Fig.5.4, the EP distribution

function remains flattened across the island O-point in a pure diffusion case.

fo; approaches the solution provided by Zakharov and Karpman [97], but includes a more
detailed treatment of the separatrix vicinity. Adding drag creates a hole around the island
O-point, which grows with growing vs,. The destabilising effect of dynamical friction
has been demonstrated by Lilley [107] in slab geometry. In [107] it was shown that the

slowing down effect might be dominant over the collisional diffusion near the resonance.

0.040 -

A Vav(ke\2 _ 5 A _ Vivko _
—_ DP—E(E) =1.6-107, by, =72 =0

>
ik

3
©
o
w
[l

—— Vg,v/Wpe = 0.01, v v/wpe = 0.0216

Vg, v/Wpe = 0.01, Vr, v/Wpe = 0
0.0301

0.025 -

(fo.iwpe/(koneqm) >

0.020 1
wWp/wpe =0.1

—0.4 —0.2 0.0 02 04
Plwpe = koV/wpe

Figure 5.6: The £-averaged EP distribution function, (f07j>§, vs. p for arbitrary D, and vy,
wp = 0.1wpe. fo,; is normalised to Negmko/Wpe, Negm 1s the equilibrium density. Thick lines indicate
the solution of Eq.(14), which is localised to the island vicinity. Thin lines indicate the COBBLES
distribution function. Diffusion and friction rates in velocity space are vy = 0.01wye and vy =0
(blue curves), vgy = 0.0lwpe and vy = 0.0216wye (red curves). In p space, these correspond
to diffusion D, = Vg’v(]fo/k‘l)Q =1.6-107%w, and drag vy, = V?’V(ko/kl) = 0/4.0 - 10*w2,,
respectively. vyy /vgy = 2.16.

0.0375 .
— Dp=1.6-10"0¢,=0 / o
| —25 b | Wp/wpe = 0.
0:0350 Dp=1.6-10"%, i, =4.0-107% 0.028 o
X0.0325] = Va,v/wpe =0.01, vr v/wpe = 0.0216 ™ o
é_ —— Vg,v/Wpe =0.01, vf,y/Wpe =0 /—g\- .
g 0.0300 §
5 < 0.026
e X
S 0.0275 £
3 S 0.025
3 0.0250 £ h A
= = — Dp=1.6:-1072,Vrp, =0
< ¥ 0.024 .
~ 0.0225 o — B,=16-10-5, ;,=4.0-10-
= —— Vg, v/Wpe = 0.01, Vs y/Wpe = 0.0216
0.0200 Wp/wpe =0.07 0.023 | e e
—— Vg, v/wpe =0.01, vr,y/wpe = 0

—0.4 —0.2 0.0 02 04 -03 -02 -01 00 01 02 03
p/wpe = kOV/wpe p/wpe = kOV/wpe

Figure 5.7: Same as Fig.5.6 except for the Figure 5.8: Same as Fig.5.6 except for the
bounce frequency value, wy, = 0.07wpe. bounce frequency value, wy = 0.05wpe.

72¢, reduces to 7 for passing particles
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In Figs.5.6-5.8 we benchmark fj; against the full-f approach, provided by COBBLES
[96, 99, 108, 109, 110]. Two scenarios are considered: (1) pure diffusion and (2) vy 2 vav.
The friction/diffusion ratio vy /gy S 1in a typical NBI discharge and vy /gy 2 1 in
the vicinity of the TAE resonance (v, /vgy = 2.16 chosen in our model). The behaviour
in the island vicinity is found to be in good agreement with the COBBLES simulation

results. The discrepancy away from the island was expected due to the difference in the

boundary conditions we apply.

5.2.1 Self-consistency

The perturbed Hamiltonian has to be consistent with a system of Maxwell’s equations.
In accordance with the cos & dependence of the perturbed Hamiltonian, we keep the first

harmonic only in £ in the particle distribution function. Thus, we define:

d —i
9o (Jit) = ﬁgo,j(&aﬁt)e : (5.18)

in w space. A set of Ampére’s law and Poisson’s equation is equivalent to finding an
extremum of the Lagrangian density of the electro-magnetic field with respect to the
vector potential A* and electrostatic potential ®*. We split the electro-magnetic field

Lagrangian into £ (w) = LU () 4 L)) () with LU and LPe heing defined as

(field) () fp gp_ lp . p 1
LU (1) / dx( VB, .~ B. Bw) (5.19)
and

£ () = [ do G- AL = p B2), (5.20)

where E, is the electric field, B, is the magnetic field, j,, and p,, are the current and
charge densities, respectively. Solving the bump-on-tail problem, we omit the contribution

of the magnetic field and thus

L0 () = =) / dzdpgy ;h, (5.21)

J
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with h, = eZ;®, being the perturbed Hamiltonian™, and V' = p/m; the unperturbed
velocity. j denotes the particle species. Eqs.5.19,5.21 reduce to Eqs.5.6,5.7. When
dw < wy, the Lagrangian allows the form £ (w) = Ly (w) + £4 (w) [96] (and references
therein), where L is related to the MHD energy, while £; corresponds to weak resonant

interactions between the perturbed electro-magnetic field and plasma.

L= /dzdpgfijhz,

provided one resonant species is considered. To leading order, we find a dispersion relation

that reads £y (wp) = 0. The next order provides

9y 250

R [0w + 4 (7 + 7a)] = —2woLs. (5.22)

w=wq

Defining A, = wy9dLy/0w| we obtain the following constraint

w=wq’

S = —%%ﬁl,
o (5.23)
= —A—wgﬁl - Vd-

The first equation of Eq.5.23 is responsible for the frequency shift, dw, while the second
one is used for the mode growth/decay rate, v. An ad-hoc damping rate, 4, has been
introduced in Eq.5.23. If there was a second stabilising species in the problem, this would

correspond to an energy sink associated with the Landau damping. Switching to {¢, p},

we have™
& fomcon
L ol = L & pt)e ™,
where
dg§ d¢ dH, d¢ dJ
—dp = —— = —— .24
27Tp 0227r P UZQWTp (5:24)

"3Keeping the A,, component, we write h, = eZ; (®,, — V - A,) for the perturbed Hamiltonian.
"note: dId¢ = dpd¢/C = —hdpdé Jw}, h = —h,, in relation to the present notations.
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Then Eq.5.23 reduces to

h Jmax
ow = wo | Z/ J{go.; cos &),

_ ﬂlhw’
wi A,

(5.25)

Jmax
Z/ dJ(go;sin &) — Va,
0

where Ji.x has been chosen to provide the integration over the entire phase space, inside
and outside the island, i.e. Jya.x = 00. (...) ¢ represents the ¢ average operator with the

corresponding weight functions taken in accordance with Eq.5.24. This is also valid for the

Ofeqm.j

hol® oq i [112, 113
ap T as 11 [ s ],

Tes

Zakharov and Karpman solution [97]. Defining v, = mwy

we obtain the main result of [112, 113]:

—0w 1 <8feqm,]
2
fyd

> Z / gy [0 eose (5.26)

gU,j Sil’l €>§

™ Wy,

where Jy,ax corresponds to the separatrix of a hole/clump, and gy ; has to be understood
as fo; — feqmjl,es = (Ofeqm.i/OD)|, 0P ™. ~ has been assumed to be zero provided there is
no exponential growth/decay. v, has no amplitude dependence since the mode energy

density A, is proportional to |h,|* ™.

5.3 Stability analysis. Secondary modes

5.3.1 Filtered solution

Let us consider the situation when fj ; is independent of . This is valid for the thermal

background since p > wy, or for fj ; being averaged over £ space. The latter corresponds

"SHere res indicates the position of the resonant surface.
76Tt can be demonstrated that vy is the linear growth rate in the absence of any dissipation, i.e.

. 2
74 = 0. Indeed, the linear solution of the Vlasov equation is gg; = —% 8%‘1% pf#, and thus
res

h QBem,'
SLy = el [ dpSgo; = — 5 |he|® Mg

v =L — 'yd, where vy, is defined above. v = 1, when 4 = 0, so that vy might be understood as the
linear growth rate in the absence of dissipation processes.

. Substituting this into Eq.5.23 provides the growth rate
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to the filtered solution. Then the solution of Eq.5.8 reads

B l 0fo.;
f],kw - Sw — lp—{—20+< 8]7 >£hkw- (527)

Substituting this into Eq.5.6 with Eq.5.7 yields

dfo, 2
£{wb) = [ r- Z p]/5w—lp+20+< apj>5dp] e (5.28)

_1/2V1:jle—V2/2V72“j, where Vp; = \/W

is the thermal velocity. Therefore, we derive the following dispersion relation

For the background plasma, we impose fo; = (27)

(.UtJC
1— =0
Z wi; 1/2 W — wyjs + 10t

Jj=e,
from £ (éw,l) = 0 for thermal electrons and ions. Here w;; = kVp; is the transit frequency.

If the mode is close to marginality v = Sw < w,, = Rw, and in the limit of large frequency

W ~ Wyj > Wy, one can employ the Sokhotski-Plemelj formula to find

1 1 WtiS .
~ = (1 —J> — i (w — wr
w—wis +i0t T w < + im0 (w = wyjs)

where 0 is the Dirac delta function. Thus, the dispersion relation for the Maxwellian

background reduces to
2
Wpj T\ 2Wwy, —w? 2w |
-2 [F‘Z<§> N

This can be further expanded with respect to y/w, < 1 to deduce that w, =~ wpe
3

and v = —v, with v, = %(%)1/ 2wpe%e—wge/ 20fe 7T This is known as the conventional
te

expression for the Landau damping rate of the Langmuir wave. Thus, the thermal particle

contribution to the total Lagrangian is

2
L;(6w,1) = 12 (w”f +2 Z%) |- (5.29)

pJ

""Here Wpe > wp; has been implied.
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j = e, here denotes main electrons/ions. The EP contribution is then

z fo.
Lory (Ow,l) = =y [/]R b —Ip+ z’0+< 8109] >§dp] Lo (5:30)

In Eq.5.30 j = fe, fi corresponds to the fast electrons/ions that provide the drive for
the bump-on-tail instability. The total Lagrangian, Eq.5.6, is of the form £ (dw,l) =

D (6w, 1) |hys|?, where D is the dispersion function. Therefore, the dispersion relation is

w2
_ pj W5 Wi ! dfo,; _
1+ E ( + 2 > E 2 /Hgéw—lp+i0+< o >£dp—0. (5.31)

j=esi j=re.fi

5.3.2 Full solution of the Vlasov/Fokker-Planck — Poisson system

Formal solution of the Vlasov/Fokker-Planck equation

Let us rewrite Eq.5.8 for the perturbed distribution function as

. f]w . fOJ
i0wfj, +p o€ =1lp oH, e (5.32)

where fj, and p are considered as functions of £ and H, for each o,, while hy,, is taken
to be constant. fy; describes the primary equilibrium calculated in the previous section.
To simplify the analysis below, let us split the perturbed distribution into the adiabatic

response and the resonant contribution:

f ;
fro = a[;;h ko€ + G- (5.33)
Solving Eq.5.32 for gj,,, we obtain
$dE e s
Gjuw = 10w 8@gh ei0wQ {/5 ?%ellf —0wQ 1 O (oy)] (5.34)
b

where p’ and Q' denote p (§', Ho; 0,) and Q (¢, Hy; 0,), respectively™. We have defined Q
as

3 /
Q(f,Ho;Up):/ ( i (5.35)

o P 5/7 H(), 0-10)7

8¢, is to be replaced with 7 in the passing branch.
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which can also be written through the incomplete elliptic integral of the first kind,

_ 2w3
20, (Ho +w2) 7P (&, 20
V20, (Ho + ) 2" Ho +w}
C (0,) is a constant of integration and is different on each branch of o,. Its calculation

will be the subject of the next section. Applying

s df +oo dfl

J Sp— E H >

/de/_WQW /_Uﬂ g Oj 21 p’
op b

we rewrite the EP Lagrangian as

£Ep’j (&u, l) = w;j Z/

—+o0
2
Wy

d€ 1 * —1
dH, 7{ oy fiwhi e . (5.36)
Substituting Eq.5.33 into Eq.5.36, we split the Lagrangian into the adiabatic and resonant
contributions, Lgp; (6w, ) = Laaj (0w, 1)+ Lyesj (dw,l). At this stage, C' (o)) still remains

to be calculated.
Matching conditions

We have found the perturbed EP distribution, gj,,, in terms of the arbitrary constant,

C' (0,), whose calculation is addressed in this subsection.

Let us define —¢&; as a starting point in £ space. The passing particle distribution must
have the same value at { = =y and £ = &, for each 0,. However, for trapped particles the
matching condition is less convenient if written in terms of £. Indeed, their distribution
must match at both & = & after half a bounce on the interval [—&y;&] and again at
§ = =& at the end of the way back to the starting bounce angle. We note that o, > 0
when a particle moves from —¢; to &, and o, < 0 on the return branch, from &, to
—&o. Thus, both branches, o, = +1, have to be connected at fixed Hy. To avoid the
cumbersome calculations in the trapped branch, we find it convenient to replace £ with
the following variable o ™ for trapped particles:
3 d¢’

Ot:Qb K
o P

p>0 (5.37)

"This is similar to the matching provided in Chapter III.
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and

Ed/
a=7— —€ p <0, (5.38)
0

-1 .
where €, (Hp) = o de is the bounce frequency®. « has the same features as z™(+)
o 7lp|

introduced in Sec.3.1.

The perturbed distribution function, g;,, then becomes:

. af[),' ia ¢ dad lg' -2 o

Gjw = 10w 0H; hiwe % [/W/z Q—be (1=55e) +C(op)] . (5.39)
which is valid in range —7/2 < a < 37/2. Providing continuity at £ = —¢, after one

bounce, i.e. g, (Ho, @ = —7/2) = g, (Hop, o = 37/2), we immediately obtain

fﬂ ?Z_aei<l§fg—‘:a>
C=2rf . (5.40)
—2mi &>
9 — 1

Here we have implied that the limits of integration can be shifted for a periodic function,

integrated over its period 8. Eq.5.40 allows an equivalent representation via

X gnhide 1
Z e Q= W (541)
k=1 e QQ — 1

(see [96] for more detail). Rewriting the resonant part of the EP Lagrangian in « space,

we have

Eres,j (5&), l) =

T G Hy [T dadfo; —ifie_se O Aol (e e
. 2 2 0 0,5 AW a S o
arina-siel [ G [ e | et vew)

2
)

(5.42)

for trapped particles with C' (o,) given by Eq.5.40. Here both, a and ', have been shifted
by /2 for convenience. We stress that o’ can be redefined as an extended angle in
the domain (—oo; 7], and hence an integral over o/ € [—7/2,a] can be replaced with

o' € (—o0; a.

For passing particles, the o, = £1 branches are not connected. Nevertheless, we can still

80y, is its value in the limit of deeply trapped particles, i.e. Hy — —w3.

81Periodicity in « space is provided by our choice of a, while periodicity in & space is not required.
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define:
3 de!
o= Qb/ —%, (5.43)
0

-1
where Qy, (Hy) = 0, < ffﬂ %%) is the transit frequency. The properties of a (€, Hy; o)
for passing and trapped particles are the same. The bounce frequency €2, < 0 when
op, = —1, and hence § and « rotate in opposite directions. Thus, the final expression for

the resonant Lagrangian reads:

Liesj (0w, 1) = 2mij|h;w|

400 dHO dw T da af()j —z( —‘L*’a) +00 do/ i(lﬁ’—g—wa’) /
Z/ Q[ _7r27r8H0€ b [/_ on € v" ) O o, (a— )]+ C(oy)].

[e.9]

(5.44)

The sum over o, applies only to the passing branch with o, being the sign of 2,. This
convention will be used throughout the study, unless otherwise stated. To ensure the
validity of Eq.5.44, we can consider the limit when the contribution of trapped particles is
negligible, and £ becomes a linear function of «, i.e. the limit of deeply passing particles.
In this case, Eq.5.44 in its resonant %2 and non-resonant forms reduces to Eq.5.28 at the
deeply passing end, Hy > w?. Eq.5.28, in turn, provides the conventional expression for
the Landau damping rate of the Langmuir wave as well as the bump-on-tail dispersion

relation.

Explicit form of the resonance Eq.5.44 allows the representation where resonances
are introduced explicitly. As secondary modes are expected when the gradient of fy ; (Hp)
is the largest, a new form of Eq.5.44 should be valid in entire phase space. Technically
speaking, we have to rewrite Eq.5.34/Eq.5.39 and hence the functional given by Eq.5.44
in a resonant form. This transition is not obvious but becomes straightforward if we note
that o is an angle for both trapped and passing branches and thus we can search for g;,

as a Fourier series in o
gjw (CK, HO; ap) = Z gj,nw <H07 Up) eina’ (545)

where the o, dependence is to be applied to passing branch. As noted above, the perturbed

82Tts resonant formulation is addressed in the following subsection.
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Hamiltonian is an exponential function of £ with only one harmonic in £ space and hence

it is an exponential function of o but with an infinite number of harmonics, i.e.
. +Oo .
hy = hp,e'™® = Z hne (Ho; 0p) €7 (5.46)

n=—oo

Applying da /€, = d€/p according to Barrow’s theorem, we obtain

ow 8f0 j
i = — : P 5.47
95 dw — nfly, + 10T 0H, ( )
and the corresponding resonant Lagrangian:
+oo dHO ow 8fg j

Lres; (0w,1) L) h| 5.48
3 (0w, ) mn_z_:oo;/ Qy 6w — Gy 07 O, ! (548)

where the perturbed Hamiltonian Fourier components, h,,,, are given by

da

B = hiw / 7€ ile—na) (5.49)

Here £ is to be treated as a function of a and Hj at each 0,. n matches [ at the deeply
passing end, Hy — 400, where a = £. In the appendix and in [96], we prove that
both representations, Eq.5.44 and Eqs.5.48,5.49 are equivalent. Including the adiabatic

contribution, we obtain

T dH, nfdy 0fo,; 2
Lppj(w,l) = —w?, Z Z/ S Tt 307 O, P (5.50)

n=—oo 0op

for the full EP Lagrangian. Eq.5.50 has a form similar to Eq.5.30 still being the exact

solution of the problem.
Full secondary mode dispersion relation

To summarise, the final form of the dispersion function that takes into account the island
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formation in phase space is

D — ]2 2 pj 2(’07]
(8w, 1) l+l2( +2i—

j=e,i Pj
0 8f (5.51)
niiy 0,j
h'nw
IR e = L
j=fe,fi n=—00 0op
with the coefficients h,,, given by
_ L
hnw = —¢!llé—na) 5.52
= 552
in its resonant formulation. Its equivalent non-resonant representation is
) 2 wpy e dHO afOJ
pes=-rrr S (Fenp) e ¥ g% [ g
J=€n j=fe,fi
teo dHO ow 8f0 do _ (lg_fLw )
2 el ’ 5.53
m] ;fz mZ/ Q|| 0H, / 2" - (553)
toda () o
| [ TR By (0 - e+ Clo) |

Here we highlight that Eqs.5.51,5.52/Eq.5.53 reduce to Eq.5.31 in the limit of deeply
passing particles, i.e. when Hy > w?. dw is complex, i.e. can be written as dw + 77,
where v is the secondary mode growth/decay rate. D here is the dispersion function
defined according to £(dw,l) = D(0w,!)|hw|’. D (6w,~) = 0 provides the dispersion
relation of a secondary mode. To analyse its stability, we have to address contours of
constant | D (dw,y)| in the (0w, ) plane |95, 96]. Any root of |D (dw,~y)| appears as a pole
of | D (dw, 7)|_1. If it is located in the upper/lower half-plane, it provides the secondary
mode growth /decay rate, v, respectively. For simplicity, we keep the energetic electron
component only, dropping the background ion contribution in Eqs.5.51,5.52/FEq.5.53, as
Wpi <K Wpe, Provided the plasma quasi-neutrality requirement is met. The EP fraction is

kept small by default.

In Fig.5.9 we plot ~y as a function of | = k/kg, based on the full secondary mode dispersion
relation, Eqs.5.51,5.52/Eq.5.53, with fy; being the solution of Eq.5.13 and shown in
Fig.5.6. According to Fig.5.9, secondary modes are stable for [ < [, and | > [,, where [,

and [, are defined as roots of 7 = (l) and hence they determine the secondary mode
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Figure 5.9: The normalised secondary mode growth/decay rate as a function of [ in a pure
diffusion case (diamond markers) and in the presence of drag (circle markers). Solid lines represent
the best fit line for each case. The bounce frequency at the deeply trapped end is wy/wp e = 0.1.
The D, and vy ), values and normalisation correspond to Figs.5.6-5.8, i.e. D, = 1.6 - 10_5w;’e,
vip=4.0- 10*4%%6/0. The regions of negative y are stable.

stability region(s).

Due to a larger number of poles of |D|_1 in the decreasing region of v as a function
of [, we define two decreasing branches. This provides two maximum values of v as
a function of [. Indeed, if wy/ky and w/k are the primary island and the secondary
mode resonant velocities, we can estimate the [ value that corresponds to the maximum
growth rate of the secondary wave from w/k ~ wg/ko £ 2wy/ko. We would expect to see
the maximum of the growth rate when the secondary wave resonant velocity is close to
the boundary of the primary island, +2wj,/ko, i.e. where the gradient of the primary
equilibrium distribution function is the largest. This is associated with the steepening
of the electron (ion) distribution near the primary island separatrix, which, in turn,
results from its flattening across the island O-point in the absence of drag (blue curves in
Figs.5.6-5.8). When drag is included, this would be associated with a hole in the particle

distribution in the vicinity of the O-point (red curves in Figs.5.6-5.8).

As w & wy & wpe to Oth order, the latter condition roughly becomes 1+ 2wy,/wpe = ko/k =
1/1, which provides an estimation for [ at a given island half-width, w, (0.83 and 1.25 for
wp = 0.1, respectively). Fig.5.9 shows that 7 is a non-monotonic function of [ with maxima
being in accordance with these estimates. Inclusion of dynamical friction results in a
hole at the island O-point and thus shifts the largest gradient of the particle distribution

function closer to the island centre, decreasing the stationary point of v = ~(I).
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Figure 5.10: The normalised secondary mode growth/decay rate as a function of the bounce
frequency of the deeply trapped particles, wy, in the presence of slowing down, v¢,, (solid lines
represent the best fit line for each case). The p space diffusion is kept fixed, D, = 1.6 - 10_5“}3@
The primary/secondary wave number ratio, [ = 1.25. The D, and v¢, normalisation correspond
to Figs.5.6-5.8. In each case arrows indicate roots of v = y(wp). The first root, wy ., denotes a
critical island half-width, below which the secondary mode stability is achieved. The second root,
wp,s corresponds to the saturation level, above which the secondary mode is stable. The regions
of negative v are stable.

Varying the bounce frequency at the deeply trapped end, w,, we determine v as a
function of wy, for different slowing down rates (see Fig.5.10) and in the absence of drag at
different densities of bulk plasma (see Fig.5.11). v = v(wp) is found to be non-monotonic.
This allows one to define a region of the secondary mode marginal stability. v grows
monotonically with wy, crossing v = 0; reaches a maximum and then decreases, crossing

~v = 0 for the second time.

The above solution has been benchmarked against the full- f approach. In Fig.5.11 we plot
v against wj, for different equilibrium plasma density, n., and the ad-hoc damping rate,
Ya0- An analytic solution is provided by Eqs.5.51,5.52/Eq.5.53, while the full-f version of
the COBBLES code (see [96] and the references therein for more detail) has been adopted
for the numerical simulations. Both solutions are found to be in good agreement. The

benchmarking details are presented in [96]. %

83wy & 0.15wp, for given plasma parameters is approximately the point above which the comparison

is no longer allowed. This corresponds to longer times, when the effects beyond the secondary mode
stability analysis become crucial such as the mode non-linear saturation and the mode-mode coupling.
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Figure 5.11: The secondary mode growth/decay rate vs. wy in a pure diffusion case, D, =
1.6- 1()*50‘126 (D, value and normalisation correspond to Figs.5.6-5.8). The primary/secondary
mode number ratio, ko/k = 4/5. An analytic solution (square and diamond markers) is
calculated based on Eqgs.5.51,5.52/Eq.5.53. Solid lines indicate the COBBLES growth /decay
rates. The regions of negative v are stable.

5.4 Summary

To conclude, the purpose of the work described in this chapter is to identify the conditions
under which a phase space island, generated by trapping of EPs in a plasma wave, is
subject to secondary instabilities in the presence of collisions. The initial equilibrium
distribution function, i.e. in the absence of the island, is described by a Maxwellian.
Being localised to the island vicinity, the latter appears as a straight line near the beam
velocity, V,. The EP fraction forms a phase space island. The shape of the total particle
distribution is then governed by the competition of the effective velocity diffusion and
slowing down rates in p space. The diffusion is responsible for the distribution function
steepening in the separatrix boundary layer 8¢, while drag results in its hole across the
island O-point. The numerical solution of Eq.5.13/Eq.5.17 ¥ with the boundary conditions
described in Sec.5.2 has been successfully benchmarked against the COBBLES simulations
[96] (and the references therein). The stability of this new, perturbed, equilibrium is then
addressed through the Vlasov/Fokker-Planck — Poisson system. Secondary modes have

been found to be unstable in a certain range of plasma and wave parameters.

The obtained results are relevant to plasma MHD instabilities that are excited by

84This is due to the distribution function flattening inside the phase space island.
85In contrast to the NTM problem, a full equation, Eq.5.13, has been solved in the entire range of Hy
to add the collisional dissipation to the model.
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EPs in a tokamak. However, we stress that the impact of this work goes beyond a
conventional problem of Alfvén modes in tokamak plasmas. The particle dynamics in
toroidal magnetised plasmas can be described by a set of action-angle variables in 6D
phase space. An isolated perturbation of the Hamiltonian forms an island in the vicinity
of the rational surface. The dynamics close to the phase space island allows to be reduced
to 2D provided two invariants of motion are located on the rational surface. Therefore,
a problem of an isolated EP-MHD mode can be treated as a reduced 2D Hamiltonian
dynamics in the vicinity of the phase space island. This can be applied to the fishbone
modes, EGAMs or TAEs.

Here we have investigated the stability of the dissipative primary equilibrium, associated
with a single island in phase space, with no restrictions on the island width. Generally,
there can be a number of resonant harmonics. They can be resonant on same resonant
surface, and hence the island configuration will be maintained but deformed at the
separatrix. On the other hand, when they are resonant on different rational surfaces, a
number of islands is formed and can overlap in accordance with the Chirikov criteria.
This, in principle, can prevent the occurrence of secondary modes in the stochastic layer.

This case is beyond the scope of this work and is left for future investigation.
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Chapter VI

6 Summary and Conclusions

The presence of neoclassical tearing mode magnetic islands is anticipated for the ITER
baseline scenario as well as advanced tokamak scenarios. They limit the plasma
performance causing a loss of core pressure and hence reducing the fusion power output,
and sometimes result in plasma disruptions through mode locking. At large island widths
and in the absence of local sources, the pressure profile is flattened across the island
leading to a hole in the bootstrap current in the vicinity of the island O-point. This local
reduction in the bootstrap current density provides the main drive for NTMs. Based on
the conventional modified Rutherford equation (e.g. [114]), the saturated island width
is proportional to (8y/2m)rs. Thus, increasing plasma beta, we also increase the island
width, resulting in a soft beta limit. As has been demonstrated in a number of devices, this
beta limit is well below the Troyon ideal MHD beta limit. This argument also explains why
NTMs with lower poloidal mode number are most dangerous and can lead to a discharge
termination in a disruption. Alongside seed island control, two main control techniques
have been proposed and successfully implemented. One is NTM stabilisation, which uses
local O-point electron cyclotron current drive to compensate the missing bootstrap current
and appears to be more preferable due to its high radial localisation. Another possibility
is to modify A’, making it more negative, i.e. stabilising, by altering the global current
density profile. The latter has been implemented by LHCD on COMPASS-D successfully
providing complete NTM stabilisation [115]. A key parameter for the NTM stabilisation
is the magnetic island threshold width denoted above by w,, below which magnetic islands

self-heal. The calculation of w, has been a main aim of the work of this dissertation.

The original paper [53| determined the NTM threshold island width by balancing the
destabilising bootstrap drive and stabilising polarisation current contribution. w,. was
then found to be proportional to £'/2py; and dependent on the equilibrium density and

temperature gradients. However, [53| is subject to some significant limitations:

e A model radial diffusion is imposed, i.e. I'y = —D9dn/dy. As we saw in Chapter IV,

this provides the correct gradient of the particle distribution function away from the
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island and thus is sufficient to determine the conventional bootstrap drive. However,
it excludes a significant amount of the parallel current density right outside the

magnetic island separatrix.

e It captures only the region away from the magnetic island separatrix and hence
does not consider the above-mentioned separatrix layer contribution (its inner
and outer parts) to the current density parallel to the magnetic field lines. This
boundary layer contribution and the contribution outside the layer act in opposite
directions and are of comparable size. Their relative size influences the island
rotation frequency dependence of the polarisation contribution found in [53], which

is especially important when pg; < w 5.

e [53] imposes a model form for the electrostatic potential, which nevertheless satisfies
quasi-neutrality at large w. However, as we saw in Chapter II, the drift island effect
will make the electrostatic potential, required to ensure plasma quasi-neutrality,

dependent on py;.

e [53] provides the NTM dispersion relation, Eq.85 of [53], valid at large w. To
solve the drift kinetic equation for the ion plasma component, [53| introduces two
small parameters: w/a 8 and £'/2py;/w = py;/w. The latter condition excludes

self-healing of small magnetic islands observed in experiments.

Following [53], we have employed the drift kinetic approach to determine the ion/electron
plasma response to the NTM magnetic perturbation, assuming small magnetic islands
relative to the tokamak minor radius but accurately treating the limit w ~ py; to keep the
effects of finite orbit widths. To reduce the dimension of the problem, we have derived
the streamlines, described by the S function, which is to be treated as a new radial
coordinate. Treating collisions perturbatively, we learn that the particle distribution
function is constant along these streamlines in the absence of collisions. Proceeding to
next order and introducing collisions, we reconstruct the actual form of the ion/electron
distribution, i.e. its S and pitch angle, A, dependence. In the absence of the electrostatic

potential, S reproduces the shape of the magnetic island in {v, £} space but has a radial

86The inclusion of the separatrix layer contribution inverts the island rotation frequency dependence
of the polarisation term.

87Small magnetic islands compared to the tokamak minor radius are also considered in the current
study.



125

shift by an amount proportional to py,/./w. The electrostatic potential, which is calculated
iteratively to ensure plasma quasi-neutrality, only slightly modifies the contours of constant
S in the (¢, ) plane. The radial shift in S is introduced for the passing particle branch
only and plays a key role in the NTM threshold physics. This shift is in opposite directions
for Vi < 0 (corresponding to S +). The particle distribution function being flattened across
these S* islands but not the actual magnetic island provides a gradient in the pressure
profile across magnetic islands of width w 2 py; and keeps pressure flattened across larger
islands of width w > py; in agreement with the conventional theory. As pg. < py;, this
effect is less significant for the electron distribution function, although the electron density
is influenced by the ion physics via their response to the potential which arises from the
plasma quasi-neutrality requirement. The fact that the pressure gradient is not removed
across the magnetic island O-point at w 2 py; provides the physics that influences the

NTM threshold.

The perturbative treatment of collisions becomes invalid in a thin boundary layer in pitch
angle that surrounds the trapped-passing boundary. Here we have employed the pitch
angle scattering collision operator with the momentum conservation term and solved
the 2D boundary layer problem to rigorously match the passing and trapped solutions
from outside this layer. This collisional layer being the dominant source of dissipation in
our problem is responsible for the island rotation frequency and hence the polarisation
current contribution to the island evolution. From our calculations, the plasma response
to an NTM magnetic perturbation has been found to be stabilising at w < 3py; for a

small inverse aspect ratio, circular cross section tokamak approximation with ¢ = 0.1,

L,/Lr; =1 and wg = 0.
To summarise

e A new drift kinetic theory of magnetic islands, valid for w ~ py;, has been developed

in a low collisionality plasma.

e The electron/ion distribution function is flattened across drift islands, which are

radially shifted by a value o py.;/w compared to the magnetic island.

e As a result, the pressure (density/temperature) gradient is sustained across the

magnetic island of w < py;.
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— At w < py;, the finite ion density gradient is sustained around the magnetic

island O-point due to the drift island effect, i.e. the radial shift in .S,

— the electron density gradient is also not removed across the island O-point due
to the plasma quasi-neutrality requirement and the electron response to the

electrostatic potential.

This suppresses the NTM drive when w is small providing the NTM threshold.

We highlight that this threshold physics arises from the passing particle dynamics,
and not the finite banana width of trapped particles.

Therefore, the relevant parameter for w, is the ion poloidal Larmor radius, and not

the ion banana orbit width: we find w. = 3py; for large aspect ratio.

This NTM threshold result is mostly governed by the electron component® in the

presence of the S diffusion. Roughly, this can be explained by the fact that m. < m;,
and hence at w — 0 the ions average over the electro-magnetic field associated
with the island, while electrons still respond to the field as their banana orbits are

narrow.89

e The island propagation frequency dependence of the polarisation current
contribution” has been determined at certain v}, pg;, w, Lo and Ly;. There
are two main contributions to the parallel current density that act in opposite
directions: one is in a layer in the vicinity of the island separtrix, and the one is

outside this layer.

— At w > py;, the contribution to the parallel current density around the magnetic

island separatrix only slightly dominates over that outside the island.

— At w 2 py;, the separatrix layer contribution is dominant and exceeds the

contribution outside the layer.

e The island propagation frequency is determined by the dissipation processes in

88This is in agreement with the DK-NTM solution with analytic electrons [73, 93, 74].

89We stress that the origin of this behaviour at small w is still an open question and is to be further
investigated.

90 At large frequencies, A, oc w?, i.e. is parabolic, which is consistent with previous analytic/numerical
works. The behaviour of A,, near w = 0 including the region of coupling to the drift waves is more
complicated and its explanation is to be a part of future investigations. In [90, 91] the sign change in this
area has been explained by the competition of the island rotation and the toroidal precession.
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a tokamak plasma and/or might be influenced by error fields or coupling to a

191, Neglecting any external torques, we find that the dominant source of

resistive wal
dissipation is the collisional dissipation arising from a layer near the trapped-passing
boundary in pitch angle. Employing the component of Ampére’s law which is out-
of-phase with the magnetic island provides an equation for the island propagation

frequency. A set of solutions has been found. A,; evaluated at these values of w

provides A,y > 0, i.e. destabilising, at given v}, py;, w, Lyo and Lyp;.

Chapter V of this dissertation addresses a different problem: here we investigate the
stability of an island in phase space, generated by trapping of energetic particles in plasma
waves. The Hamiltonian formalism has been employed to provide the dimensionality
reduction to a 2D dynamics of a phase space island. This problem shares the mathematical

basis with the NTM problem to reveal the dynamics of an island-like structure.

e Solving the Fokker-Planck equation in the presence of the effective velocity space
diffusion and drag, we find a perturbed equilibrium associated with these phase space

islands.

e To investigate its stability, we then address the Vlasov/Fokker-Planck — Poisson
system. The Lagrangian of this system provides the secondary mode dispersion
relation.

"in the (éw,~) plane, where D is the

e Considering contours of constant |D(dw,~)|”
secondary mode dispersion function, dw and v are the real and imaginary parts
of the mode frequency, we search for poles of |D(dw,~)|”". Being located in the

upper /lower half-plane, they provide the secondary mode growth/decay rate.

e Secondary instabilities have been found in a certain range of mode numbers and

primary island widths.

e 7 becomes positive above some marginal island width, grows to a maximum value,
as the island width increases, and then decays crossing the zero level for the second

time. This dependence is in agreement with the time dependent numerical simulation

provided by COBBLES.

e The maximum growth rate of secondary modes is obtained when the accessible

91These effects have been previously investigated, e.g. [77, 78].



128 6.1 Future work

resonant phase velocity is near the separatrix of the primary island. This result is
anticipated as the instability is driven by a positive slope of the distribution function,

and its gradient is the steepest at the edge of the island in a pure diffusion case.

We note that the impact of the work presented in Chapter V and in [95, 96| goes beyond a
conventional problem of Alfvén modes in tokamak plasmas. It can be applied to EP-MHD

modes such as TAEs, fishbones or EGAMs.%?

6.1 Future work

Although the limitations of [53] have been eliminated in the presented work, it still can be
further improved. Alongside 890, the effects of plasma shaping can be added to the model
(see Appendix E.7). These effects on NTMs are generally weak in conventional tokamaks.
Since the curvature term A, o< €2, it can provide a significant contribution only in
spherical tokamaks [67, 116]. However, plasma shaping affects the global confinement
properties and hence the pressure and current density profiles [41], which results in changes
in A, Ay and A,,. Furthermore, plasma shaping can influence MHD instabilities that
create a seed for NTMs. The latter is not to be considered as a part of the future NTM

work, but is subject to possible NTM trigger mechanisms®.

The RDK-NTM solution presented in this dissertation as well as the DK-NTM solution
with model analytic electrons discussed in |73, 93, 74] give w. = 3py; for the NTM magnetic
island threshold. This result is obtained for the small inverse aspect ratio circular cross
section tokamak approximation at certain ¢, L,, Lrj, L, and plasma collisionality in the
magnetic island rest frame. It is based on the neoclassical contributions to the island
evolution only ? and does not account for the Rutherford term, A’. The equilibrium
density and temperature gradients as well as the safety factor profile have been assumed

to be localised (constant)® near the rational surface. Although, the RDK-NTM generally

92Possible asides are discussed in "Stability of an island in phase space", Festival de Théorie, Aix-en-
Provence, France, 2019 (presentation).

93ECCD has shown a complete NTM stabilisation on a number of machines even with the sawtooth
oscillations or fishbone modes in a discharge [41]. However, with ECCD being turned off, triggers generate
the NTM again.

94Some of the terms of O(¢?) have been dropped as higher order contributions.

9The actual density, temperature, ¢ profiles/equilibrium profiles reconstructed by equilibrium codes,
e.g. EFIT, can be added to the primary equilibrium model. However, this is an order w/a affect, and
hence the terms of O(w/a) would also have to be introduced.
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allows the poloidal magnetic field variation, it has not been included in the current result.

h 89,90

Therefore, along wit we consider

e Plasma shaping with the poloidal magnetic field variation are to be accounted for.
The accurate determination of the curvature contribution will require corrections of

order €2 and higher added to Eqs.2.35,2.36.

e RDK-NTM treats both, electrons and ions, numerically. The DK-NTM solution
presented in |73, 93, 74| includes numerical ions and analytic electrons due to the
fact that py. < py;. A new version of the DK-NTM code that adds the drift island
effects to the electron component and solves Eq.2.35 for electrons as well is under
development. Its initial results for the ion component? benchmarked against the
RDK-NTM ion distribution function are presented in Sec.4.2. The comparison of

both solutions is to be further updated when a new version of DK-NTM is available.

o At vf ~ 1072, the (R)DK-NTM solutions are in agreement in the vicinity of the S
island separatrix in the entire range of A variation even with the following limitations

of the reduced drift kinetic approach:

— In the RDK-NTM solver, we introduce a thin boundary layer around the
trapped-passing boundary to match passing and trapped solutions outside the
layer. Employing the layer thinness, we exclude any A variations from S to

leading order.

— At any A in the passing branch, S diffusion and free streaming can be of the
same order near the S island separatrix (this situation was modelled in [64]).
Perturbative treatment implemented in the RDK-NTM approach would not be
valid, and one would require a full solution of the drift kinetic equation near
the separatrix. However, it will not influence our magnetic island threshold
result associated with the bootstrap contribution. Furthermore, even with this
possible limitation, the RDK-NTM and DK-NTM solutions are in agreement

close to the S separatrix”7.

as a part of further improvements.

96The electrostatic potential is found from the plasma quasi-neutrality requirement with the electron
density being calculated from the electron solution of Eq.2.35.

9"Note that both, RDK-NTM and DK-NTM, treat collisions perturbatively compared to (V||/Rq)9/90,
but allow k V) ~ uj82 /OA? in the collisional dissipation layer/for the full range of ), respectively.
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Appendix

A Formation of magnetic islands

In this appendix we describe the formation of magnetic islands. For simplicity, we
focus on the slab non-tokamak formulation similar to that addressed in Figs.2.2,2.3.

Let wus assume that the main

unperturbed magnetic field, Bg(x), O - point ; -
is in y direction *® (see Fig.A.1) and = point . e
x o
Iu - .k
changes with = with B})(0) = 0, which X AT I B
. >, K < 2MR
corresponds to the neutral layer. This = g
g —1 TR V4
magnetic field is generated by o M
L 21
0 —>
JO _ iaBy y

z

o O .
Figure A.1: A ring of toroidal plasma in the

resence of the NTM magnetic islands.
The equilibrium state is described by P &

op’ 0 70
e + B,J,; = 0.

Introducing the magnetic field perturbation in z direction, B} o exp(—iwt + iky), we

write

OB, | .
o7 +zk:By:O

due to divB = 0. The time varying B! generates the electric field in z direction:

0B,  OE]
ot Oy’

This electric field, in turn, leads to the plasma E x B drift with

El
ul =22 (A.1)
By

98To address a conventional tokamak case, we have to keep the dominant toroidal magnetic field
component, i.e. BY. In spherical tokamaks, B? ~ Bg roughly.
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in z direction as shown in Fig.A.1. In the vicinity of the neutral layer, ul — oo as

the unperturbed magnetic field 32 — 0 when x — 0. In this region, the finite plasma

conductivity has to be taken into account, and hence we replace the above expression for

ul with
El  nJ!
1 _ z z
Y Yy

The latter is Ohm’s law in resistive MHD. Here n = a[l = 0.51mve;/nee® for a hydrogen
plasma. B! being positive in the vicinity of the neutral layer, where BS = 0, leads the
magnetic field line away from = = 0 into the region of positive . Away from the neutral
layer, BS becomes non-zero leading the field line in y direction. When the phase of the
perturbed field, B!, changes, the field line approaches * = 0 and then passes into the

region of negative x. Here Bg is non-zero, and thus the field line progresses in the —y

direction, closing the loop to form an island as shown in Fig.A.1.

This simple example illustrates the mechanism of magnetic island formation provided the
BS component is dominant. In a tokamak though, there is a strong magnetic field in z
direction that has to be accounted for. Everywhere in a plasma, except for the resistive

layer in the vicinity of the rational surface, we write
JxB=Vp
and hence rot [J x B] = 0. The latter reads
J-VB-B-VJ=0 (A.3)

since divB = 0 and divJ = 0. Imposing the small inverse aspect ratio circular cross
section tokamak approximation, we write BY ~ 532 for equilibrium magnetic fields and
Jg ~ eJ) for equilibrium currents. For perturbations, we impose B} ~ eB} ~ eBj and

eJ) ~ Jy ~ J} (similar to the above example). Therefore, Eq.A.3 reduces to

B’ VJ,+B'-VJ;=0 (A4)
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provided JY - VBg < BY. VJg. divB = 0 now reads

0 0

Defining v as

Bl — 19
T r o
G (A.5)
9T or

we obtain

.19 0w 1%

0 —

= 2or ar ' r2ov? (A.6)

from Ampeére’s law. Replacing the form of the perturbation o< exp(—iwt + iky) with

x exp(imid — inp) and combining Eqs.A.4,A.5,A.6, we write

1 mBg nt deO
J— is _— ——‘p — [‘.
Lo [ r R v r dr ¥=0 (A7)

where A is the Laplacian given by the right hand side operator of Eq.A.6. Eq.A.7 can be

further reduced using the expression for the safety factor in the cylindrical approximation:

_o_m_dJ;
Ad = BYm —nq dr v (4-8)

Eq.A.7/A.8 for ¢ is valid in the entire plasma volume in the limit of large aspect ratio
circular cross section tokamak, except for the layer in the vicinity of the rational surface,
where plasma conductivity has to be treated as being finite. Indeed, a singularity appears
in Eq.A.8 at r = r, (or ¢ = 1 if ¢ is taken for the radial coordinate), i.e. q(¢s) =m/n
similar to Eq.A.1 in the slab formulation. In the resistive layer, imposing E+V x B = nJ

and taking its rotor return

98,  p.wv,— "B,
ot Ho

where V, is the radial component of velocity. Taking o exp(yt + imd — inp) for the

perturbation and using Eq.A.5 to obtain B, = —im/r, we come to

poBy m —ng

A =y +

V. A9
. p (A.9)
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Here A & d?i)/dr* due to layer thinness. As we can see from Eq.A.9, the singularity
at ¢ = m/n is now removed. Eq.A.9 has to be coupled to the equation of motion to

determine V.

Eq.A.9 is to be solved for ¢ in the layer, while Eq.A.7/A.8 is to be applied in the region
outside the layer, i.e. r > r, and r < r,. Solutions at » > r, and r < r, provide a
jump of V,1) across the magnetic island. This jump is referred to as the classical tearing
mode stability parameter. The matching is provided by the resistive layer, i.e. solutions
of Eq.A.7/A.8 at r = ry and Eq.A.9 in the layer and their derivatives have then to be
matched. The solution for ¢ in the layer is close to a constant [12|, and the constant v
approximation is imposed in the majority of problems. Here we have briefly discussed
the tokamak case and the calculation of A’. As the focus of the current study is on the
neoclassical bootstrap and polarisation contributions to the island time evolution, we omit

further details regarding A’. A more detailed derivation can be found in [12].
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B Magnetic island perturbation

We decompose Eq.2.4 to write

B, = (VA”) X b+ AHV x b,

where
ni m
VA = - sin né ( w— ;V??) ,
and hence
(VA) x b= " inng (Vgo - Tw) ¥ (IV o + Vo x Vi) =
Bo n
_ ma) B, n rBy\ . B
= “R'B, B (1 + mRB<p) sinnéVy =

o omy 2) .
— rR2B§SIHn€vw+O(€)’

b 1
AV xb= —%cosnﬁ <§OV X By —

1
ﬁVBO X Bo) =

0

__Y cos né &Jo 2V30 X (IVp+Vp x Vw)} =
R | By
9 (o, 1 (0B 0B 0B
= Rcosnf _BOJO (5¢ IV x V90+—|V@/J| VS0+_619 IVY x Vo
9 [ 1 ( B, 0By, , 8B0 2 12 0B
= RCOSTLf _BOJO Bg (T‘RBlg_a’ﬁ V@Z) _820 ITBﬁVﬁ—f—R Bﬂ awVQD

Estimating each term, we obtain

0
|(VAY) X B ~ e VY] ~
combination of the term that contains the poloidal component of Jy and the second term

in round brackets of AHV x b is of order

¢ 0 U
Bﬁaw ( ) |V19| —TBﬁaw Eu
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the term that contains the toroidal component of J; is of order

b1 8 Y10 R*By
Eg_w(rag) [V x V| ~ Bpmgy (rBo) == V| ~
¢ B gﬂ.

rRBO rR’

the first and the last terms in round brackets of AV x b are of order

v 1 B, 0B, Vi ~ b 1 B,
RBQTRB 09 RB2RB rR
and
¥ 1 25 aBo &B P
RBQR |v | R|V |~ e,

respectively. Therefore,

B, Y w?RB%¢, w?RB? 1 w By o
By, rRB, rBy ¢ rBy rRBy 1% By

Thus, the total magnetic field becomes

B=1)Vy+Vpx Vi—

b

— mipsinnEVY x Vo + — Rﬁw

( ! ) cosnéEVe x Vi + (9( QAQBO) )

Aside: in the limit of circular poloidal cross section in the absence of the Shafranov shift

keeping terms up to O(¢A2By) in B, we write

_Boj w0 (1
B-Vy " 79 (B())cosnf],
_ B
B.-Vp= o
By _m_@é@ I
B -V¢ = e nR_&/} (—B())cosnf]

provided ¢ = (By - V) /(B - V) = [J/R? and |V¥| = 1/r. J is defined as in Sec.D.1.
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C Switching from poloidal flux function, 9, to

toroidal canonical momentum, p,

In the above derivations, Eq.1.12 for the perturbed distribution function has been rewritten
in {p,,&, Y, \,V;0} space directly. In this appendix we explain why it is convenient to
switch from the poloidal flux, 9, to the toroidal canonical momentum, p,, and consider

P, as the new radial coordinate.

To solve Eq.1.12, we expand the particle distribution function, g;, in A and obtain Eq.2.18
for the leading order distribution, g](-o), at fixed p,. If we worked in {9, £, 9, A\, V; 0} space,

we would obtain

v | dg”
R2QBO ov

(0)
0 (Vi | _
1819 (wc]) oy | 0 (G-1)

1/)767)‘7‘/

for the leading order equation. This is equivalent to Eq.2.18 with

1V,
pcp:w_d}s_ ”

=

Introducing p, allows one to reduce the dimension of the problem by stating that the
leading order particle distribution is ¥-independent provided p,, is fixed. Eq.2.18 represents
the combination of free streaming along unperturbed magnetic field lines and the leading

contribution of the magnetic drift. It describes how the particles follow orbits to preserve

Pe-
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D Derivation of the drift magnetic island

kinetic equation

D.1 Some useful identities

The Grad-Shafranov notations are

VR=ep V= %’, VZ=ey. (D.1)
{1, ¢, x} provides the orthogonal toroidal coordinate system, i.e.
V¢ -Vo=Vi-Vxy=Vp -Vy=0.
Here x corresponds to the poloidal direction. The corresponding Jacobian, 7, is
Vo xVy=7TBVy, J '=[VpxVy|-Vy. (D.2)
In conventional toroidal coordinates, {1, ¢, 9},

Vi -V =V -Vi=0, (D.3)

V-V #£ 0, i.e. the basis is non-orthogonal. ¥ here is the poloidal angle. The Jacobian
of this system, J, is

J 1 =Vy [V x V.

Thus, the following useful identities are

1 1
VY| = RBy, IV¢|=E, V| = ——, |Vx|=

JBy’
vy

Vo x V[ x Vo = —7,
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¥ and x are connected via

1 /X
Y= —/ vdy' (D.5)
q
with v = (By - Vy)/(Bo-Vx) = 1J/R?. From Eq.D.5,

Vi =9 Vx +9,V, (D.6)
according to Barrow’s theorem, ¥, = 09/0x = v(x)/q = 1T /qR*. V), = 09/0) =
R™2B;*(Vy - V).

The vector cross product
div[Ax B|=V - -[AxB] =¢;,0;A;B,=[VxA]-B—A-[V xB|,

rot[Ax B|]=V x[AxB|=A(V-B)—-B(V-A)+(B-V)A—(A-V)B= (D.7)
—(V-B+B-V)A—(V-A+A -V)B,

€iji 1s the three dimensional Levi-Civita symbol.

Addition and multiplication

(A-B)=(B-A)
[A x B] = — [B x A]

(D.8)
A- [BxC]|=B-|CxA]=C-[AxB]

Ax[BxC]=B(A-C)-C(A-B),

where A, B and C' are vectors.

D.2 Derivation of the NTM orbit averaged drift kinetic

equation

We solve Eq.1.12 in the island rest frame for the ion/electron response to the NTM
perturbation of the magnetic field. j denotes main electrons and ions. As discussed in the

main part, we assume the Maxwell-Boltzmann plasma and thus impose

f=(1-22) e (D.9)

J
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provided eZ;® < T; and fM(¥) = ng (1) 7r*3/2VT_j3 (¥) e~ V* Vi) being the Maxwellian
of a species j. ng is the equilibrium density, i.e. negm = no(1 — eZ;®/T;) with ney, being
the Boltzmann density, and Vp; = (27}/ mj)l/ ? is the thermal velocity of a species. g;
is the perturbed distribution function associated with the tearing mode and is to be
determined to provide the NTM threshold physics and the island propagation frequency.
As we seek the solution localised to the vicinity of the magnetic island, we Taylor expand
the Maxwell-Boltzmann term and the electrostatic potential about the resonant surface.
Hence, fJM (1s) has no spatial dependence, only the velocity dependence. This provides

the Neumann boundary as ¢ — co.

Substituting Eq.D.9 Taylor expanded around the rational surface into Eq.1.12 gives

e g
ViVig; + Ve - Vg +V, - Vg = —— [V @ +V, - VO] 3—3} = Cj (g;)+
J

7
+ Tf(qjs)ffﬂ (1) ViV @+ V- VO +V, - VO] +
er €Zj(1)(77f)3) 8fJM (%) €qu)(¢s)
o e v ve] (1= ) S o (- 0 4 o)

Since the E x B drift is perpendicular to F = —V® and B,

ExB'V(I):BxVCI)

Vi V== —

Vo =0.

¢, {(1 - TZW‘I’)) p wS)} _ (1 - %)O £ )] =0,

as the collision operator acts in velocity space, and the Maxwellian is collisionless by its
definition, i.e. the Maxwellian eliminates Eq.1.9 in its general form. In particular, the
pitch angle scattering collision operator employed in Sec.2.2 acts in A space at fixed
and thus eliminates the Maxwellian (the momentum conservation term is eliminated due

to the summation over o at fixed v).

7. dq;
ViVigi +VE Vg +V,-Vg; — ;ij/ Vivi2 + V- Ve 8_% -
J

@) V@ + V- VO] +

GZJ

T (¢s)

= Cy(g) +
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+ ;JZ\J/ [Viv@+V, - Vel (1 - %ff))) 7t <_7%’V)) |

Since the highlighted terms cancel out, we obtain

Z; 9a.
ViVig; + Vi - Vg +V,- Vg — ni]v [ViV® +V, - Vo] _agvj =
P ’ (D.10)
6 .
=Cj(g;) + (T, ( p )) FM () [VIV) @ + V- VO] D(1,).
J s

Note: later we introduce the orderings: eZ;®/T; ~ A, g;/fM ~ A, 6&/® ~ A, and thus
Eq.D.10 will reduce to

eZ; dg; _
— Ve +V, VO] S8 = Ci(g) (D)

J

V||V||gj + VE . ng —|—Vb . ng —

to be solved for g;. Eq.1.12/D.10/D.11 is the drift kinetic equation in 5D phase
space, {r,u,K}/{r,\,V;0}. Here r is a 3-tuple of spatial coordinates. The gyro-
angle dependence is averaged out at fixed r. The time dependence is omitted as we
work in the island rest frame, i.e. w = 0. Working in a tokamak geometry, we seek
g (r,\, Vo) = g; (¢,&,9,\,V;0). Furthermore, as we mentioned in the main part, it
is convenient to switch from the poloidal flux function, 1, to the toroidal canonical
momentum, p,, given by ¥ — 1y — IV]/w.;j, to reduce the dimension of the problem.
Thus, g; is to be considered as g; = g; (py, &, 9, A, V;0). To rewrite Eq.D.10/D.11 in
{py, &, U, N\, V; 0} space, let us consider the following identities: By -V, By -Vp,, By - VE.

Using the expression for the equilibrium magnetic field, Eq.2.3,

By -V = [IVp + Vo x V| - VI = [V x Vi - Vi) =

and substituting Eq.D.6 and then Eq.D.2 | we obtain

I I

Using the definition of p,, we write

BO‘Vm:Bo-V{w—wS—IV”} :Bo-Vw—Bo.V<IV”> _

wcj Wcj
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as the equilibrium magnetic field is given by Eq.2.3, By - Vi) = 0, and hence
Vi 0 Vi 0 1V
:—IBO-V< ”) — —IB,- V9 — < ”) — By V¢ — ( ”)
Wej oV WP Wej 8¢ 9 \ Wej
D.13
[P (W) _p v (1
| gR? 819w Wej —P0r VP
(note: Eq.D.12 has been applied).
I s 1 m
By VE=By Vo —q¢By- VI=— |1-L|=| 2 [q——] — B, Vel (D14)

R? q

where By -V = I/R?.

Now let us consider B; - V¥, By - Vp,,, B, - V. Using the expression for the magnetic

field perturbation, Eq.2.4, and the second relation in Eq.D.7, we write

B, -V9=[Vx (Ab)] - VI =V [A4bx VI] + Ap[V x V] =

=V. [A”b X Vlﬂ ,

B,

B,-Vi=V- [AHE
0

xVﬁ].

Similar to Eq.D.15, we write

B
B,-Vp,=V- [A”E? xvp@}
and
Bl-V§:V- |:A||% XV§:| .
0

From Appendix B, we learn

Bl -V 31 Vp<p Bl V§
B, V0 By-Vp, By V¢

~ A?,

(D.15)

(D.16)

(D.17)

We have introduced scalar products between B and the basis vectors. Now let us consider
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the corresponding cross products:

By x VO =1IVp x VI + [V x V] x V9. (D.18)
As i = Uy dyp + 1 dy;, the first term of Eq.D.18 can be written as

IV x VI =10, TBjVx + 10,V x Vy.

To obtain an expression for Vi x V, let us cross both sides of the first relation in Eq.D.2

with V:
JTBV e x Vx =Vy x [Vp x Vi =
v
= Vo (Vi Vy) ~ Vo[Vl = — 27
and thus
_ VY

The second term of Eq.D.18 is

— VI x[Vpx V] ==V (Vi -Vi)+V (Vi V) =
=~V VY| = —0,R* B}V .
Therefore, Eq.D.18 becomes

Vi

2g Vi
— 19 [By— IVy] — —= — Y R2B2Vy =
V" [By ©] R TR VR*ByV

ngVx:VLpXVdJ
— VB, — 'R [B% + B2 Vo — B—iw
¢ qR?B: "’

2

19'By — 0 R2B2V g — —22 7 — By x Vi (D.19)
0 ovy — quBg w = Do X . .

The toroidal field function is I = RB,, by its definition. Prime denotes the derivative with
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respect to 1. Using the expression for the equilibrium magnetic field, we derive

By x V¢ = IV x Vi| = Vi x [V x Vy| = By — R’B3Vp

—~ — (D.20)
Bo—1Vey Vo Vy|?=Vi(Vy-V)
Therefore,
1V,
Bopr¢:B0wi—B0xV(w—”) =
cj
i, (57, (5)
=By xViy—Byx | — Vi + — V| =
0 X V¥ = Bo [awﬂ(wcj v 00|, \ wes
o (1M 0| (Vi
=|1— — B - — B )
1, ()] o am(wcj Box Vi
and substituting Eqs.D.19,D.20, we obtain
1V
By x Vp, = |1— 9 ” [IBy — R*B{V ] —
@w 9 Wej
9 v B2 (D.21)
v I 'R /P22 _ @
5] () frm- s )
Therefore, we deduce
Vi 0 0 0
ViVigi = —= | (B-V1) — +(B-Vp,) —| +(B-V¢) — ;=
I ”gJ B [( ) 819 Pt ( ‘P) ap(p o ( 5) aé— pwﬁ] g]
Vi dg; dg; dg;
=— |(Bo-VVY) =L +(By-Vp,) ===| +(By-V¢&) =L +
BO ( 0 ) 679 ot ( 0 pap) apgp o ( 0 é) aé- po
9y; 2\ _
+(B1-Vp,) 22| | +0(A?) = (D.22)
e |ge
_Vi| 1 oy 2 0| (Vi) 99 I 9g;
By | qR? OV Pt qR? 0V » \Wej Op., 9. nqR? (m —ng) 0¢ p%ﬂ—i_
Oa.
+(B1-Vp,) 22| | +0(AY).
Op, 0.€

The B, -Vp, contribution is maintained as 0/0 ~ (1/RBy)0/0w on perturbed quantities.

To rewrite the F x B and magnetic drift contributions in Eq.1.12, let us consider

v v v
V,-Vp, = — [V x V (w”)} -Vp, = _B%l) {Bo x V (J)} -Vp, =
cj cJ
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— B V] v (1) -

CL)CJ'

Here the third identity of Eq.D.8 has been applied. Now we substitute the expression for

B, x Vp, given by Eq.D.21 to write:

VII 0 I VH 2 12 VH
= 11— = IBy — R°B2V | - —
By { [ 9 (wcj [ oM Ovy] v Wej
1V, Vi ) A Vi
4 < UBWV(J)+WH%30 (')V@V<”>+
Wej Wej ov Wej Wej

— I —
B 0 v,
R232 a9 (WCJ) Ve v("dcy)}_

o

As

Vi 0

v (wCJ) o

the highlighted terms vanish and thus
Vi V)

=—< |1-

BO Wej

9 ( 1V )
p \Wej

LG vl (@)
Wej Wej

( )B v+ 12 (V')B v
Wej ﬁ/d 8¢0 Wej
I/qR?

||
(wq) o), (6) 7 (%)}:

(V')\ vl =

N——
eV Y-Vy+ FIV-Vy

Vi
a7 ( | ) R2Bi97
9 \Wej
and substituting this into the previous expression, we obtain
VY m, 2 ﬂ ] V| I’ 0
o BO 801 9 \Wej QR2 oY

I’ 9 <”/>59 <V> _
Wb Wej a/(//’ 9 Wej

TR

= <ﬂ) vo.ve o+ 2
P

(V>+
v \Wej
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Here we have taken into account that I = RB,, is ¥-independent but is a function of .

Highlighted terms cancel out. By definition, I’ = 01/0. Therefore,

EANAANRACINAAY
ov W Wej 2 819 Wej

The second term in Eq.D.23 is to be neglected in a low beta approximation. Similarly, we

I? V|
qu By

= Vb . Vp@ . (D23)

consider

Vb-W:K[BOxw]-v(ﬂ) _
By

wcj

in accordance with Eq.D.19

v\ 0 i\ I B 0 Vi B 0 V]
19— — £ V' R?B? g R’B?
v (wcj) qR?  qR?B3 09|, \w,  qR?B2 9|, \we 7
rZviol (v
~Fiwm () D24
For V- V&, we have
Vi v
Vb-vgz—[Boxvg]~v(—”). (D.25)
By Wej

Let us now consider

Boxvngoxw—TBoxw:

= [IVg0+Vg0><V1/J] x Vi ——BOXV19—

=—Vp(Ve- vw)+vw|w| =Vy/R?

Substituting Eq.D.19 into the previous line yields

1 m B2 / /

Then Eq.D.25 becomes

V)1 B§+m—ani
By | R2\ B2 ng B2

R?B2 —

,3' (VII) 9
¥ — + —
819w Wej 9

(=)
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146
, 0 Vi , 0 Vi I
_ _[ _ _[ S
V3l (o) Beove- Sl (Gn)
0
Vi Vi
+— My g2 03 V-V + 19R2 2 0 LYwe . vy b =
819 Wej Af—/ Wej ) N—=—~—
0 0
Vi > ng 9 |4 5 g ¢ O Vi
- 1B B2 —| (L B _
By [( 0 ngq “") |, (wcj + 0 + ng V55 819 Wej
_mgBe 01 (V)| Z
noq 9|, \we /)|

Y 9 —ng 0 Vi , 0 Vi B
=5 (BO t ) 35, (wcj + /B2 — i, o =V, V¢l (D.27)
Since
Vy,-Vg, = |(V,-V )i +(v.vq9)2 +(V Vf’)— . (D.28)
b g; = b Py 3p¢ oe b 90 b b - f i, .

we combine Eqs.D.22,D.28 with Eqs.D.23,D.24,D.27 to write

V] I v -
s 0 ( “)+Bl-v19 99;
9 i S—— o

ViV V, Vg, =
R A T TR B o
~— -~ 0(A2) @
0(1) o(A)
) low beta
- I 0 Vi dg;
+| Bi-Vp, ——== =+
——  qR?2 M Wy |g.¢
O(A):  B1Vy N _~ .
O(A)
I m — ng 9, |
— - B} B | — V' B3
nqR? (m —ng) + \,0-/+ nq 2| ovl, (wc]) Uy 819’¢ (wcj)
s ~- on) S———— -~
o) 0(A?) o)
Oa.
+B,-V¢ | X
. 85 ptpvﬁ
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The ordering of termsis 1 : A : A2 A A A A A2 A A2

As an example, in a large aspect ratio tokamak with circular poloidal cross section, A(r) = 0, we

estimate each term in the above expression as follows

BoqR2 99~ By ngJ 9
Vi o (Vy\odg; Vi I Vrj Vrj
- = () 2 47(61/2>Agj ~ 8((E,l/Q)TJAgj ~ (61/2)—]A2 ]M7

‘/” I angVT] VTj N@AfM
]’

B() qR2 aw Wej o B() qu R
where €!/2 is a fraction of trapped particles.
dg; { <IV)] oY dg;
B,-V =B, - |Vy -V =
(B1-VPo) 5, oloe v wej )] Opp 00|,
~ o (Y o (Y 0y,
= Bvo- iz (G ) eove-ig (5L B W] %0y

Op, /0y =1 to leading order in py;/a. Here

Vi
By

ag]

Mo (Y 99,
By 04 ( >(Bl V9 30,

Vi o (Vv dg;
Bo 90 (w B9 By

Opy; Vi g; 9j T T
20p9j VIj 9i 3oy asvs 90 32\ VTP a2 3/2L33
~ A 59 1w e(e’9)A VTJU) e(e??) . A%g; ~e(e??)—=-A ,

Vi B g oV

B, —2gi ~
(B1- V) Bom r RByw w 95~ €

Virj Vi
I Ng: ~ 21T A2 M
r o9 R I

Virj Virj
5(51/2)7]A29j ~ (61/2)#A3 jMa
VT] RB VVI=AB\ Byv 8 (RB,\ g

‘Paﬂ

9.6

Wej r R @ RByw

Wej

and thus only the By - Vi contribution is to be maintained. Since

/
Dy ST Wl W (D.29)

qs qs r

1—

we have

Vi I 393 Vr; Vr; Vi,
— ~ —LAqg; ~ JA‘NJMM

Vige 0 (Vi 8 Vrj 1/2 1/2\ VT Vi

1B i 7N By A /2 IAG: ~ 1/2 JA2M

- 8w(w g, ~ () B ag, ~ @2 T a2 g,
5 0

o€ I
VHm Jg; 1/2 Vrj (2 1/2\ Vrj
~ ZLIA2,. o (/2L A3 M
B Do (g ) B R~ A
2 O 8 || 893 - @ v apﬁjg e(e 3/2)AVT] By
wej ) 06 By RByr ¥ 09 J R By
1% 1%
() Agy ~ () AN

o Y9

99With no restrictions on beta, the second term in 095/0pyl ¢ averages out over 9 at fixed py.
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As we seek the solution localised to the island vicinity, we Taylor expand m — ng around

the rational surface, ¢ = ¢, = m/n,

v
m—ng=m—nlg+dq. (-] = —ng. (¥ — ) = —nd. (pwrwu).

cj

Thus,
ViJ[L 12 o] (V)] 9
ViVigi +Vy-Vyg; = — {———— ( = +
112 ’ ! Bo{ qR?  qR? Oy 9 \Wcj oy PorE
g,
+(By-Vp,) 25| +
( 1 90) 8pg0 "
I, 1V 5 0 i 12 0 i 9yg; 2
— B — WV By — == O(A9).
+ qR2qs (pip + Wej + 0 a¢ 5 \Wej + 9 oY “ Wej aé poid + ( )
(D.30)
To rewrite the E x B drift contribution to Eq.1.12, we consider
E xB
Vg V= 2 Vi =
provided E = —grad®,
1 1
Substituting the expression for By x V¥ given by Eq.D.19, we have
1 B? 0D
=—— 1 |I¥By- VI -9 R*BiVp -V — —F -V —
Bg \_OVV_./ Ovi,_/ qR2B129 M oY b
1/qR2 0 0!, |V +0, Vip Vx= ’
—9'R2B2
_ B Od
+ [IV'By -V — 0 R* BN - Vi) — — 2 |Vy]*| —| +
HO/_/ T qRQBﬁ oY 9.6
B2 0P
+ [IV'By-VE —0'R’B} Vp-V¢ ——2= V¢-VE | — =
—— —_—— qR?Bj ~—— o0& v
2 (a—as) VoV (p—20)= V-V (o—20)=
i =|Ve?=1/R? ——29'R*B | )
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as ¢ = O(¢, 9, ) and hence

— _L _B_z’ 8_(1) — ’Bg a_<1>
Bj q Oy D€ 73 0,0
Thus, we obtain
B2 00 V' B2 00
Vg -Vi=—5_— Ul D.31
eV imal, T B %, (D3
Similarly,
1 1
Ve -V =—— [BxVyY].-VO = —— [B; x V] . V& =
B? B
Substituting the expression for By x Vi, Eq.D.20, we write
0P

0P

_ 1 VI — R2BVy - v 22 V- BBV, vyl 22
=5 {[IBO Vi — R*BiV - V1] 59| [IBo - V¢ — R°BiVy - V] 5% M+
dm?} -

€
I? m od
2 emym ) )
Wi [qRQ( n> 0 o€ w.d

[1 B2 ng — m] oD
€ Bg nq 73

P
+ [IBo - V& — R°BiVy - V¢] g—f

T OB qRZ 9

1| 12 90
Bj

B2 9%

w?ﬂ

In a similar way we consider

1

0
Substituting the expression for By x V¢ from Eq.D.26, we have
2

1 m m B? m—nqg B
- __[/ ol 232 %% . @:
"By + 0B 0W+(Rng+ - R2B§)w} v

B§
1 m m B2 m—nq B2 od
= —— < | ——I¥By- VI + —9R*B:Vy -V ) Vy -V | —
Bg n HO,_/—*— n Oio,_/—f_ RQBI% T ng RQB?S i/_z/ o ¢f+
9 R2B2 '

I/qR?
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m m 2 m—nqg B2 0P
——1IV¥'By - — ' R*BiVp - ¢ | —
+ n 0 V¢+n OVSO v¢+(Rng+ ng RQB§)|V¢| &D q9§+
| 0 0 RQVBg ,
B? —ng B P
+ |-219' By VE + S0 R B2V - VE + S M e Y wyve | S
n ~e——  n —— R2B; ng R*Bj)~—~~—1| 0¢|,y
I (g_m 1/R? — My R2 B2 ’
qR2(q ’ﬂ) n ¥
B2 0® m —ng B3] 0®
— =2 == |1 2 =—=| =Vg V&l D.33
B 00, “ ng Bg}am,ﬁ ooV (D39
Combining Eqs.D.31,D.32, we obtain
1V
Vi -Vp,=Vi-V (w—ws— » ',') =
cj
D.34)
0 1V 0 1V (
=[1- — Vg- - = V-V
=gl (&) ve el () e
Combining Eqs.D.31,D.32,D.33 and Eq.D.34, we write
0 0
p(p 9,€ Pg;,ﬁ g ptﬂuﬂ
_ [1_ﬂ <Wﬂ _Bpoel | _Bing—m|oe| |
0P|y \ wej qB2 99 b B2 ng o0& w.b
i O(A2)
2 (M| o e | o)
0|, \ we; qBZ O £ B2 0¢ 0.9 Wy |g.¢
0(A?)
| moe omoe foy) |
qB2 o > B2 0¢ v | 0V poié
i 0(A2)
|- B2y moma B 08) | Dy
0 901, ng By ) Oles| 9810
i O(A2) 0(A?)

As an example, in a large aspect ratio tokamak with circular poloidal cross section, A(r) = 0, we
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estimate each term in the above expression as follows

B2 9% 9g; 1 T Vrj Voj o poj Bo Va Vi
p Y2 Y95 2 Ags ~ T3 JA P95 20 "Ti Ao no e 2T A
qB2 99 dp, wrB, e & WWej T w By r 9i ™ em o
32 P Vi
2] 9 H 9 89] -~ 5(53/2)ﬂA2gj7
gB§ 0 \we;j EX) Opy r
where £1/2 corresponds to a fraction of trapped particles, T ~ T, ~ T
0P 893' 1 T 1 V
— =~ —Ag; ~ —A ~ ]A
0 Op, RByw e 93 rByw e 9~ ¢ 95>
\% d Og;
12 0 < Il ) 87% ~ 6(63/2)@A2_gj,
oY \wej ) 0§ Opy, r
—m B2 9® dg; Vrj m rngq V ;
ng —m Py 9j Tj Tj A2
— ——1)A A ;
ng B2 0§ Op, T ng ( ) 93~ 97>
B d Virs
ng —m 2] 8 || 8 agj ~ 8(53/2)£A3gj,
ng Bf 0y \we 3§ Op, r
B2 9 [V} 0® g, RB, T 1 T o
Ze 9 I 995 (-3/2 Ags ~ (1/2 L Ags ~ (32 XTI A
qB2" 09 <wc] B Opy =) R232 2P037 29I ol Bow e 9; ~ &(e™") 7

B2 8 |\ 0P 0g; Vip;
19/ ( > 995 3(7/2) Y Ti A2
819 wej ) OE Op, (=7 ro

B2 , ,
7@282% NE@A%’
qBg 0y 09 r

B2 0% g, Vr;
I L it R M ) O

BZocow " ° Ty T

B2 9® 0g; Vs
W02 29T BRI N2,

BZovoc ° Ty 90
92 9g;
oY O¢
m — ngq Bg, 0P 8gj VTj

ZLIANZ,
ng B2 Oy O¢ T 93

V .
gﬂAgP
r

Keeping the O(A") and O(A!) terms only, we have

B2 9d o B? IV o
VE'vj 89] __9"28_ _|_8_ __9023 < >8 +
Op,, 9. qB; 819 o0& v 450 oY » \ Wej £ (D.35)
B2 90| dy; 0 agj '
A?).
+q320¢waﬁ T, o), +0(4%)
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Substituting Eqs.D.30,D.35 into Eq.D.11 yields

B2 -
Vi1 o 0 Vi + 0o dg;
By qR? 9 \Wej a9 |,

lig, g, ot +8_<1> Cm (M)a@ o,
Y qBZ OY ve 9|49 qBZ 09 Wej ) OV ey Opy

r [V| 28 /
(e 20) + 88, () e, (G

qR?*™
dg;

9g;
£ 0& oV "
Vi 6® VT

el; 2
(Tj (125)) f (7/15)[ ||V||<I)+Vb V‘I)] D (1)g) ~ 7$Agj A2

+

0,€

0o eZ;

- m;V

[V|V||CI) +V,- VCI)} = Oj (gj) .

The term

in Eq.D.10, and hence is to be omitted.

Let us consider a combination of terms in velocity space,

V V
V|V||(I) +V, -V = V|VHCI> - — [B x V (w >] Vo (D.37)
cj

w?ﬁ]

) By x V] -V

with

I 09
qR? 0¥ "

14 Vi I L
V®=—- B, V= —
iV BBO B

+qﬁ(CJ—qs)

v Vi
{BOXV< “)}-W:ﬂ‘ ( ”)[Boxw] vo+ L
(Jch 8'[91!} wcj

(V
:_3’ <ﬂ) vl 00
8197/’ Wej

qR2 8¢ 9.
o, (2)
9 \Wej 9 ,

I* 09 I? 09
where we have applied Eqs.D.12-D.14 and Eqs.D.19,D.20. Substituting these into Eq.D.37

+

m 0P
== il ) RB2==
o0 R0, y (q ”)
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and then into Eq.D.36, we obtain

__ezjﬂ% [ 0% _|_L(_ )a_@ +
m;V B, oV |, | aR2 00|, e " o,
+ 3 V” I_2 a_CI) + 8(1) _
oY » \Wej qR? O 9.
o (Vi ) 2 oo 0o my 0P
- - 4+ — — ) - Bf—
) (wcj (B2 00|, qR?OE|,, <q ) |,

for the last term on the left hand side of Eq.D.36. The ordering of terms here is as follows
A A2 AA? A2 AN

As an example, in a large aspect ratio tokamak with circular poloidal cross section, A(r) = 0, we

estimate each term in the above expression as follows

2 Vi I 000y e Ve BRT, Vi,
m;V By qR? 99 0V mJVﬁJ By qR? ¢ P
eZ; V) I 0P dg;  Vrj .o
mVBoaie T oy TR A

V .
gﬂA2gj’
r

ez Vi 1* 0 < >5<1>39J o3y Vi I poj

m;V By qR? 99|, o OV By qR2? RByw

Wej

~ (61/2)%Agj ~ 5(53/2)%Agj,

eZi V| oo 0 Vi 0299 3 72,V a2
B ~ e (€)= =A%,

m;V By " 00|, \we ) 06 OV

eZ; Vi I 9| (V) 0% dg; 32 V1j \2
| ~ LI A2,

m; Wej 99 OV e(=) r 97>

eZ; V| I? my\ O Vi\ 0®0 Vr; Vr;
M < > < Il ) og; N (81/2)ﬂA39j -~ 5(53/2)%A3gj’

m;V By qR? wej ) 0 OV R

eZ; V) 9 i 8(1) 99, 12\ V15 A2 3/2\ VTj
g2 =~ I D= A ZLIA2, / I A2q.

sV B0 00|y ey ) GE Y T ) TR A0 EET) T AT

Therefore, the velocity contribution becomes

0 (vu) o0
) wcj 8¢
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dg;
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eZ; Vi I 9% 9y 5
= — A
m;V Bo g2 99|, OV ¢+O( ) (D-38)
where
0P 0P oYl 0P
— === + ==X == (D.39)
oY - o » ov o
with
ool o) (M) o) (M), 2 o) (D4
oY po o o \Wej ov » \Wej oY - 0P|y \ wej
2 (WH) L9 (IVII) 9 (IVH)
o " Wej oY Po Wej 9 Wej

in accordance with the definition of p,. The last term in 9vy /09| - does not contribute to
O(A'). Indeed,

mjV Bo QR2 oY Po

VTJ 1 0 V] i
By Rwr 819 Wej 9

eZ; Vi 1 0 (Wn)ﬁ

I 00 0y,
Wej 8@[)8‘/
1V, Vr; 0
( ”)Ang e(e)—2

wcj

wcj

IV,
( ) Ag;
Wej

by
~¢e(e )%AQQj

to leading order (terms of order O(A?) and higher order corrections are neglected).

Therefore, Eq.D.36 reads
M P 99;
By qR? Wej 99 |,
995
} Op €+
v (D.40)

v
+ {g'(')Bl pr

I, IV| 5 0 4

EQS (peo+ We ) + By o~ (wcj Bﬁ 619 wc]

I
By
0%\ | 9g; 09;
30 3

0P
where the term in 0g, /Op,, has been rearranged using Eq.D.39, and the velocity contribution

_|_
75

} B2 o®
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e

eZ; Vi 1 9%

m;qV By R? 0V

=Cj(95),

P«p:ﬂ papaf 8V Py

has been rewritten as

0
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+_
v\

0 Op,,
ov
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with Op,/0V|, = —(I/wcj)m/”/@‘/wﬁ# = —([/we;)(V/V]) (note: here we have used
the definition of p,, Eq.2.13 and V? = VH2 + V2= VH2 + 2uB, and thus 2V8V\WM =
2V0V) ‘W?,u)'

Eq.D.40 is a full drift kinetic equation in toroidal geometry to O(A') in a low beta limit,
written in {p,,&, 9, u, V'} space.!® At this stage we have not specified a form of the
collision operator. To employ the collision operator from [53], we switch from {u, V'} to
{\,V;co} in velocity space, where A = 2u/V? is the pitch angle and o = V}/ ‘V”! To

rewrite Eq.D.40 in {p,, &, 9, A\, V;0} space, we use

o) ol o
av|, = av|, T av|,on,
with ON/OV|, = —4p/V? and thus Eq.D.40 becomes
1% 1% B2 9d :
_HLZ{l_[i ( ”)%_ga_ 99; N
By gR 0|y \wej qB§ oy £ oY Pk Vo

Vi 0P g,
+{B wp,+ | L +

By Ny ] Melyervie

Vil 1 v 2 0| (Y 2 0 (V)

I B — VB2 ) = D.41
+{BO ot (o D) o 2] () wom 2 (L (D41
_92| | 9y _ G_Zjiia_@‘ 995 N

OWleg) 08 lpoave MaV Bo B2 V|, OV, 50

eZ;, Vi I 99 99,

o211 - 22 \ZH =C;(g;).
P B R 00|, 0N, gy )

Eq.D.41 is the final drift kinetic equation in toroidal geometry to O(A!) in a low beta
approximation with completed transition from {1, &, 9, 1, V'} to {p,,&, 9, A, V; 0} space.

D.3 Perturbative treatment

As we noted in the main part, to solve Eq.D.41 for g;, we define a small parameter
A = w/a < 1 with the following orderings: eZ;®/T; ~ A, gj/f]M ~ A JP/P ~ A,
Employing an expansion in A, we write g; = > gj(-a)A‘”‘. To O(A®) we have Eq.2.18.

Thus, we deduce that the leading order distribution function in A, g](.o), is 1-independent

100The derivatives in the Vlasov part of Eq.D.40 are taken at fixed pu.
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at fixed p,. Multiplying both sides of Eq.D.40 by R*B,/IV and proceeding to O(A'),

we come to an equation for g§0):

19, o) 10| (1) o9,
qg 0¥ . VHqBQ o eo 4 0 9 \Wej oY P AV

[ R? R2B, 0@ 9g"”
+ _B]_ . Vpso + —0 . g] _|_

L I I‘/H 85 ¥, ap(p 4E NV o

g i\  RB:O| (V) RB}, 9| (Y

= 0 2 L) Ry = - D.42
* g (pw—l- Wej * I 0Y|, \we + 1 09 » \Wej ( )
_R*B,0®| | 99" ez, 09| g .

vy oy £ o0& oAV m;qV 09 Pt ov b

cZ; 0% Aagj.‘”
m;qV? 0V Pk oA

_ R;iio C (g;o)) ‘

pw,ﬁ,ﬁ,V;O’

The highlighted term equals zero due to Eq.2.18, and thus Eq.D.42 reduces to Eq.2.19.

D.4 Orbit averaging

To eliminate a term in g(.l)

i in Eq.2.19, we have to integrate the equation over ¢, which

is equivalent to orbit-averaging at fixed p,. The annihilation operator is introduced as

follows:
L f7r ...d, A< A\

ve ) 2)or
(=

Bl 1 ) (D.43)
520 m‘[ﬁbl dﬁ, A Z )\c-

The second condition approximately can be rewritten as ﬁ >0 fil;b ...dd. Here we have
applied symmetry of the bounce points provided by the form of the equilibrium magnetic
field we impose (see Sec.2.1 of Chapter II) and the fact that the A dependence of ¥, , is
weak for this equilibrium magnetic field.!°* Thus, Eq.D.43 reduces to Eq.2.24. As the

particle distribution function, g;, is required to be periodic in ¥, we have
1) Py
1 99; = 0.
q OV
P65\ Vol

191The X dependence of ¥y, , is assumed to be faster than of ¥y, — Uy, .
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Note: 1/q and (...)5¥ are not necessarily commutative. However, as we seek the solution

localised to the island vicinity, we can pull 1/¢ through the averaging operator. Thus, the

0
8g](- )

Op,

orbit-averaged form of Eq.2.19 for gj(p) reads
+

2 Py ZB ) Py

(o) (521
v I %o/, 9ENV 0

! IV \P? R2B2 0 Vi Pe R?B% O

o 2 (R L) (5P

q Wej / o I oYy \we/) /g 1 o

B R2BO a_q) P agj(p) - €Zj a_q) Py 89](-0)
en/ o0& m;iqV \ 0V Pk oV

I‘/” aw Do, %\, V 0 )
R®By ., (
_< v i <gj

p
oL <a<1> >“’A89§°) 0)>>”f
v

a2\ oY
miqV?\ Ov ot/ O\
The electrostatic potential is periodic in ¥ as the distribution function requires periodicity.

<aq) >Pv> 0
819 P> 9

Then the ¥-averaged equation to O(A!) becomes Eq.2.20 with drift frequencies defined

+

()

pk/%é-?’ﬂv)‘;o-

pkpvév'&?v;g

Therefore,

as Egs.2.21,2.22,2.23. Since in {p,,{, Y, \,V;0} space the orbit averaging procedure

, the only V' dependence comes from the collision
Py

operator and is parametric. £q.2.20 is to be solved for gj(.o) = gj(p) (pp,&, A V) at each o

eliminates the term in 8g§0) JOV

(o0 = +£1 for passing particles and o = oy for trapped particles). Before we proceed further

Py
9

and introduce the normalised quantities, let us rearrange (R* (By - Vp,))
We highlight that Eq.2.20 with Eqs.2.21,2.22,2.23 is obtained to O(A!) in the drift kinetic
approximation in the low beta plasma limit. It contains terms of order 2. However, as
we choose the equilibrium magnetic field from Sec.2.1 (e.g. to calculate bounce points
for trapped particles), i.e. we exploit a large aspect ratio circular poloidal cross section

tokamak approximation, terms of order £? provide higher order corrections and hence can

be omitted.
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D.5 The (R*(B; -Vp¢)>g¢ term

Since 0/0v is estimated via (1/RByd/0w) on perturbed quantities, the leading order
B, - V¢ term from B; - Vp, does contribute to the Vlasov part of the drift kinetic
equation. As shown above, 19 (V]/w.;) /0¥ (By - V) and 10 (V] /we;) /09 (By - VV)
provide corrections of order A% and hence are to be omitted. In accordance with Eq.2.4,
we write

Py Pe
(R (B, -Vp)) = (R [V x 4,20 vy} = (v |4 B Vee
BO 9 B() 9

In a large aspect ratio tokamak with circular poloidal cross section, we estimate each term

of Eq.D.21 as follows

[IBo| ~ |R*BiVy| ~ B{R
d| [(1V] Kl
(Z1) 180l ~

9 \ Wej

oY
/ 3/2 22 Bo
19 |Bo| ~ e(%?)py; BER® ———

9
oY RB@’I“

(=)
9 ([ V') ' R?B2 V| ~ ('/*)AB2R,
(=)

(I ) |R?BiVy| ~ ('*)AB3R,

~ (eY*)AB?R,

o

9
0

B2

quBzvlb ~e(e*?)ABSR.

Then we have

(R*(By-Vp,))y = <32v. {[IBO — R’°B*Vy] %!}Xw Lo -

+ <R2 [IBy — R°B*Vp| -V (%!) >: +0O(A?%) =

Py
<R2AV (1B, — RQBQV¢}>

By )

= <32 [IB, — R*B*Vy] -V (%) >W +0(A%) =

0 9

as the magnetic field is divergence free.

2 Py Py
<}; [IBy — R*B*Vy| VA|> <R2A” [IBy — R°B*V¢| -V (é)> +0(A?) =
0 0/ 7w
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since the NTM perturbation is introduced through 1 or A connected via Eq.2.5 with
Eq.2.6

i 1B, - BBV - “ve g
By U0 s ">/,

Py Py
+ IA”RZBO-V i - BZR4A||V(,0 -V i + O(AQ) =
N’

— By *Vp-VBy=0

9
The third term vanishes due to Eq.D.3 and toroidal symmetry.
Py
R? dA
BO § ——
|V<P|2 9
Py
0 1 8 1
TAR*| = By,-Vv + By- O(A?) =
Bo-V(l/Bo) 9

By - V¢ provides the higher order correction in A due to Eq.D.29. Substituting Eq.D.12,

we obtain

Py

<R2B dd/é”> +<I2 "019‘¢5<_)> +0(A%) =

9

As1/By o< 1+ecos¥, 0B,/ 819‘ ve X sin ¥ and hence the second term does not contribute.

Thus, we deduce

dAH

(R*(B1-Vp,))y = <RQB° dé

> + O(A?). (D.44)
Due to Eq.2.5, dA;/d¢ = —(/R)f', f' = df /d¢. For a single isolated magnetic island,
this reduces to dA;/d¢ = (/R)nsinné.

D.6 Normalisation

The normalised quantities are given by Eq.2.31. ) is non-normalised; w? is defined as

4@Zq5/qg. Let us multiply both sides of Eq.2.20 by v, /w. For the first term of Eq.2.20 we
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have

g ‘w Ly

q; 1/}5 — [@D ¢s_ [Vh E] :f/_1|: A
q

w wejw Vrj

To normalise wp we consider

q_; [VH so¢ _ i1 I‘/ll @ re :IA/_1<,5 ‘V>p</>
q\Wej /g w T \Nwew Vi / @ NPT

To rewrite the second term in wp, we rearrange

21 ()= 2| (IBY 080 (LAY
Wl \B) 00|, B 00 0B\ B
__Lob 1y

Boy \2V, ' B

and hence
BB O (M % /BB m; 108 (W2 V\\"w
I Wy \we) [ w I eZ;Boy \2Vj " B)/, w
[ EBEmy vy (A AN
I €Zj w[:B 2‘/||VT] B 9

o RZB(Z) m; Vi ﬂ N )\VZVTQJ, Py B

A ~ Py
_ RZBS mj VTj ﬂ 4 /\V2 _
I €Zj wlp B 2‘/” s
~ ~ Py R ~ Pe
_ BORQBS ImjVTj L ﬂ i )\Vv2 _ B_g@ ‘7” 4 )\BV2 .
I? eZ;Byw [z \ B 2V] 5 B2 Ly 2V )

The last term in wp is a higher order term in the small inverse aspect ratio circular

poloidal cross section tokamak approximation and hence is to be omitted.

R? ey, JRBydA\" 4, | RB "
< (B - Vp@)> E__< 7 —>§E—< ¢f> E

9 dg

_<RBOqusws> @][/w 1 % 1RBO
SN T 4gs w/y, I 4L, Uy
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as dA)/d§ = —(¢/R)df /d¢. Here f' = df/d¢. Now let us consider the E x B drift

frequencies:

w

e I'\ V

>w_£1 _ <RQBo b, 0b

, w ez V] E%

Py 71] B
BZ]'VT]' N
[

>p¢
&9l y

B 1<R2B§ vy 00| 2Tym; 1 >p“° B 1<R2B0 poj acp
T2 w2 9o m; 2

IVH w2 O S’ﬁGZjBOVTj m; N Py, w aw

N >p4,
&9l

_ L/ Bf py; 00
2\ BZ Vijw oy
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w

by 1<R280 0P
- 9%

W 7
I

p“"% /BB 0d| \T 21y 1omy
" w2 IVII w O " eZ BOVT] m;

" 0 Poj 0 "
o

/RSB 9%
T, "o

0

Now we have to rewrite the right hand side of Eq.2.20.

D.6.1 Ion-ion and electron-electron/ion collision operator

Employing Eq.2.25, we write

ws RZBO Py B

<Vu' (V) 2%2

B OAl,
uy; is given by Eq.2.26.

oA

()\( )\8)1/2 agl

V (A 1
>+ |Uu2(g) A
VT'L

Ui(9i) | B°Bo\
)* i), T

Vi fM 3ml/? / V||9i
n Ve [ av =12
>m+% &

Vi [ 2 0 1/2 agz
= (| =577 ~\B
w< aVB@A¢<A( MBI

. Vii [ 2 8 1/2 891
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Before we move further, let us consider the integral term:

3rl/2 Vi9i 3r3/2 dA ‘A/”g'
uyi(g:) = av =2 = B V24V AR Ve
uwi(9:) 20 / s 2no Z/ / (1- )\B)uz s T

Here we have used the expression for the velocity space integral, Eq.2.12. The Maxwellian is

to be evaluated at the rational surface, 1 = 1, i.e. fM = ng () 32V52 (g )e™ V2 V(W)

and hence

fM 31 / ) / d Vg
- B§ [ Vv =
VE T o (1-AB)"? V3

Substituting this into (Cy; (g;) R2B0/1VH>§“’ gives

RQBO Py ws Vg]
<ij (95) I—VH> Pl

9

3 _pe 2 m V|gj
+5e ~BZU:/+VdV/ ABW s

2 0
oV B OA

()\(1 - )\B)I/Q%

Py
R2B, >
I
9

with 0;; = v;;/Vr; and VII = oV (1= AB)"?. j =i forions; V and V| are normalised to the

) .
v (D.45)

ion thermal velocity, V. <Cee (g¢) R*By/I VHX;“O repeats Eq.D.45 with j = e. Ton-electron
collisions are small and hence to be neglected. Electron-electron and electron-ion collisions

are comparable and thus we consider:

¢s RZBO pw_
o) -

1V
R2B,\"" 1
—<Vez(V) ¢> ngeVWHl(gz)f IV|> -
9

1-AB)'? 9 9.
QUZABT 0N (3 apy2%9
with C,; and wu); given by Eq.2.30 and Eq.2.27, respectively. Let us consider

B OAl, oA

(2/VE )i (g:) f2 with f2 being the Maxwellian localised around the rational surface.

2
erMUIIi (9:) =

D ) B =
=T Je —T i i i9i P
VTEe n > JRT 0 (1 — )\B)l/2 | r

2 1
erMn—O/dVV]gi—

0

2 o N /B‘l . VA1
= e B> | VA, — Vgl
w72 —~ Jr+ o (1—AB)? 1+ Vie Ve
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with V; = V;/Vp; and VIIJ’ = V};/Vrj. Substituting this into (C; (g.) R*Bo/IV]| >S‘P provides
¢S R2B Pe
—( Cei (ge) ’ =
w 9

1V
ﬁei 2 8 1/2 age
== | [AM1-)\B
5 < ( ( ) + (D.46)
A (m N\ B2B,\"
Ve 2 AN /AP 0
1/2 BZ/ v dv/ 1 —ap) 2 9 (m) I >19

oV.B OA 8)\
with D = ve;/Vre. We have to note that the momentum-conservation term does not

contribute to the trapped particle solution to leading order in py;/a ' due to the

summation over ¢ in the ¥-averaging operator.

D.6.2 Orbit averaged drift kinetic equation in normalised form

Substituting the normalised terms derived above into Eq.2.20 and multiplying both sides
by @ = w/1s, we obtain Eq.2.32 for ions and Eq.2.33 for electrons with normalised
drift frequencies defined in accordance with Eq.2.34. Here dp, = wdp,. We note
that the 9/0A|, and (...)y* are not commutative. Employing the conventional tokamak
approximation and noting that the fastest p,, variation is in the electrostatic potential, we

come to Eq.2.35, provided a single isolated magnetic island is considered.

D.7 S island formalism.

Drift kinetic equation in S space

In the main part we noted that Eq.2.35 in {p,,{, A\, V; 0} space is equivalent to Eq.2.36
written in {S,£, A\, V; 0} space, where S is given by Eq.2.37. In this appendix we prove
that both representations are equivalent. We use Eq.2.37 and

0

3

0
0Py ¢

L 9pe

% (D.47)

102The trapped particle solution is independent of o at fixed pe. However, Eq.2.26 and Eq.2.27 are to
be calculated at fixed .
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164 Drift kinetic equation in § space
to write
S W . Gppeily\ 9P, _
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o¢ p¢2 VH 9 ¢ Sapw 52 VH 9

This, in turn, reads
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w - O |1/ pojs Py
—0,0 (Ae = A) = Wppp; [OAe = A)+O AN =A)] — =—| = (= —£ =
N 9 1 ~ Py
wo. PYj 2
=——5s8in- 0\ — )+ — —<A(I>>
4L, 9¢ p¢2 i 9
and hence we obtain the following expression for dp,/0¢|:
_ b oging _ o 1 /b0g\"
op,| i sing - O (A — A) + 7 52 < ” <I>>19 D
R A 5o~ \ Pe :

Substituting Eqs.D.47,D.48 into Eq.2.36, we obtain Eq.2.35.

Employing weak collision dissipation, we solve Eq.2.36 by an expansion in ;. From
the O(A'49) equation we learn that the leading order ion/electron distribution function,

g](-o’o), is independent of & at fixed S. Proceeding to O(A'd;) provides an equation to be

, £q.2.39. To eliminate the term in g](.o’l), we introduce an annihilation

solved for gj(o’o)

operator, Eq.2.41/Eq.2.42, similar to Eq.2.24. Due to the periodicity requirement in &,

0,1 .
89( ) /O averages to zero, and we write
] 7
S, 9\, Vo

s =~ [ 00), 7 ~\ S
agj(O,l) Co0- Cj (gj ) _ g 9(070)
¢ SOV A A o
WA Vio 3 £

1
This provides Eq.2.40. Here we have used the fact that gﬁo’o) is not a function of £ at

any fixed S. Now let us derive an explicit representation for Eq.2.40. Note: Eq.2.36
is to be solved for g](-o) = g](»o) (&,5,)\) at each V and o, while Eq.2.40 is to be solved
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for gj(-o’ (00 (S,A) at each V and 0. As we noted above, 0/9A|, and (...)} are not
commutative and thus we have to rewrite C’j, the right hand side of Eq.2.32/Eq.2.33 for

ions/electrons, using

) ) ‘ ap,| 0
2| =2 2 2 (D.49)
x|, ~ oA DYRTAR
and
) o as| o
o), =, "ol asl, (D.50)
with
| . oV B _ .
x|, "oa—ap WA V)

(note: the direct transition from 1 to S is also allowed. However, the factorisation of the

¥ and £ averages is not straightforward in this case). Let us consider

¢7£7197V;U)

9
)

0

O\

o/ 3B %9
ed e B, O\

Substituting Eq.D.49, we obtain

I B R
oA, " op,

R
] (J)\\/l—)\ B—(p

P
)

T Px
b Py

A

<am/1 5% ) 0
Py

(am/1 - /\B—p,\ 99

x| B,ox|, ) T oal, B ap,
R g 0 R  0Og
AV1—A AWV1—AB— =
+p/\aﬁ<px<a B, Xl >+p/\aﬁ<px(g pAaAeo ,\)

(note: &, 0, V and o are kept fixed). Expanding the brackets, we write

R g 2 3\B R g
— oM/1 — \B— LoD v 9
SO | T T B B, aA‘A -
I (O’)\\/l - /\B—pA) 99 1 L AT = AB—pA— ( %9 ) +
X De Bw @ﬁw A 8)\ aﬁ«p A

+ o1 — AB—mi @ +oM1—)\ —pi
op oA, B,

)
apcp A
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Inserting the expression for pj,

R 9% 2-3)\B R dy
— oMW1 AB—~
-7 B, |, " "oyT—AB B, 0A|,
R g pw R 0 dg
Poj \y =
2 B o, T 2 VB, 0, apm+
R 9| (o9 W VQB2A R 0%
B, 0y, \ OA|, 4 VI_ABB, 03,

9/0A|,, and 0/9p,|, are commutative

0

oA\

9
Py aﬁ""

_ 9
x o 9P

M|,

2
A
in accordance with Schwartz’s theorem (note: it is not necessarily valid for p, written

as a function of S, and thus these two terms are to be considered separately to provide

transition from p, to S space) and thus we come to

R 3% 2-3\B R dyg
— oAVT — AB— s 0
-7 B,ox|, " "2yT BB, &\L;F
pj V2B2\ R82 PR 9 L R 0 (ag )
"4 VI_ BB, ap“ 2 " B, 0p,|, Pai B, X[, \0p,|,)

The annihilation operator, (...)y*, and 9/09A|; eovior 0/0Dyly ¢ 9y, are commutative and

hence we can write

<a
oM,

» 829(0)
1—-)\B J
< B¢>ﬁ | T
Pe

Py

>:

9
< 2 — 3\B R>p“°ag]

0)
12 R 9g;

B, oA

oA(1 — AB)

2V1-\BB B))
v (D.51)
o 900
+ <@VR> S
R 2 9 0Dy \

V

p,g] 72B2n R\ 0%
4 \I- BB, , 905
09"
) O (T )
0D R

7 = e,i. Here the large aspect ratio circular cross section tokamak approximation has

been applied, B ~ B,. Eq.D.51 allows Eqs.2.32,2.33 to be written in p, space. Now

we have to move from p, to S space to reduce the dimension of the problem replacing
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8/8§|ﬁ¢ with 0/0¢|g. Applying Eq.D.50, we write
Py 82
<O')\ V 1—-AB— > W
» 8 2 2
<U>\\/1 —AB— > o5il, < MW= AB— > ( ) s% +
Mo (Ds2)
0 os| 0 0S dg
iz B 2 %9
<”A A [a ( ) " oA, 08 <8>\ )] 38|, "

12l oa/I = )\B o5 &y
g OX|, 9205,

for the first term of Eq.D.51. Here we have used the fact that the following operators are

commutative:

0

O\

0

409

0

NRCE

0

L O

S

The second term of Eq.D.51 gives

<02—3)\B £>p“’@ _<02—3)\B £> 2 +§ i
WWI—ABB,/y O, « \ 2V1=ABB,/, \Og, 0A|, 0S|, g
(D.53)
To rewrite the third term we use
99 - (as ) % (D.54)
aﬁ%’ £9,\,Vio aﬁ@ ENVo a5 £\ Vio
Note:
dp, = ‘?gf ds + apg a6 + 5 We i
for each o. Therefore, we obtain
Py v R\" 0|
4 VI-ABB, , 1,
_ [ #h VB\ R p‘°<§) 9 (85‘) o) (D.55
4 V1- BB, s NP0/ e vio 0515 e \Op ) ¢ 5 vis 05 |\ .

[P ey RA” (ﬁ) ]
4 \/1—)\BB p Mo ) ¢ rvie 057 g
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for the third term, and hence for the fourth term:

(o - Coonf (), o
9 P | 9 NP/ eavie U9 Ine
The mixed derivative contribution becomes
;<pWVRA> 68/\ (gi A,g) N
o), [a% REIR-NIE=R e
;<pﬂfvm>ﬂ 88)\ o (ggi ) a_g o 1<%VRA>19 gzi aig]s .
* %%Vmﬁ gi 35, (apg; _g ”WVRA>Z¢2_§ N gg;i M% .
(D.57)
and
Hovm) | (% ) _
<%VRA>W gi Uai*zm‘ * (D-58)
+%< RA>:0 5’p@ gAas e <% m) g_g e
# 3l 5 s éAaA 2292 \
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Thus, writing all the above contributions, Eq.D.52-D.58, together we come to

)

< 2—3)\B R >”‘P g\

Py

0 1/238%
<5 oMl =AB) B, 0\

R Py 829
W1 —A\B— .
(W),

_l’_
o 2T _ABB,/, 0 .
2
R\ (8 v 0S| 98
1A (22
* [< A B@>19 (ax . 5) (o VA, N, Oy
2, ey R\ [ as| \'| 0%
+Ho=l — Y ’ +
4 V1-ABB, [ e | ¢ 052 e
R\™ (o] [os as| o
Vi—aB2) (2] (&2
* <0A A B¢>19 (8)\ S,E< A, >+8)\ IR ( ))
+<02—3>\B £>W@ L[ P V2B R\ 0S oS | .,
21— ABB,/, O\, . 1 VI- BB, 3p¢ uas Op,
1 0 oS | e as
“{po;VRAY VRA
+3(0VRN), 53 S£<apq, w) 3PV R, |, as ((9]7@ )
1, . wadS| a| (oS poi e \Pe 0S| | 9g”
oV 5o 35, (m m) +< : VR> Foles 95
Pe oS ~ Pe OS 829~
WI B 2 59,V RA )
<” > M|, <’”JVR >19 T, |c| DADS|

(D.59)

J = e, 1. Here the validity of Schwartz’s theorem has been assumed. Substituting FEq.D.59
into Eqs.2.36 gives the orbit-averaged equation written in terms of S. Substituting

Eq.D.59 into Eq.2.40 and multiplying both sides of Eq.2.40 by \7/2% provides the
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collisional constraint in S space:

+
8¢

S
)+
5)‘ é‘
S
e\ ie) [

R Py 62 (00
(=) (5), %

H
oy (2] >2>S
b i (5] )>€
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S.¢ )‘

2-3\B R > < > 99"
O —F—

2v/1—\B B ¢ o\

108 oS

AN, . Op,
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3
(0 0)
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Pe 1 0
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2—3\B R 108
<"m3> AN
1
3

> 108 @
*\Aar .93
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+ >+
p(P?{ §
2 2 °
X Ul V2B’\ R la_s i 05 -+
4 VI=ABB, [ \A0pl|.,05],¢\ 0yl c

9
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(), (G

S
1 S Py 198
Y ey (42
) 5 Pe
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se \ 9Dy

08
e \ 9P

S
£7A &

S S
1/, . r/10S| 0 oS po;~ \" /1 98 9gl¥
“{po; VRAY " = — - PIyvRY (= 2
+2<Pﬂa >19 <A O |¢ 2 05 |, ¢ (m m) >§ +< 9 >19 <A 9P, 5”\>£ 93 A7§+
198 ° . \» /108 | 52400
W1 —\B— b0 VRAY (= i
* <“ > <A x|, > PV R <A8A¢, §,A>§ 9705 5*
V 7 (0,0) S_
+2<AU( »5_0
(D.60)

with Uy (g*") = %6_‘72<RBQ 3,0 frr dV fOB_l g§°’0’dA>Z“° for ions. Here we have taken
into account that the following operators are commutative: 9%/ 8)\k| e and oF/ 85'“’ e
(k =1,2) with (...)? ¢» and the fact that the leading order distribution function, g(o 04

&-independent at fixed S. As 1 is a function of V' only, it has been pulled through the &
average. Eq.D.60 is the final equation to be solved for the ion plasma component in the
external regions where collisions are small, i.e. A < A, and A > \;. We note that Eq.D.60

does not contain the collision frequency dependence. Instead it is to be provided by a thin

boundary layer in the vicinity of A\. where collisions play a role. Similarly, multiplying
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both sides of Eq.2.40 by Ve /2 and dividing by 7. + 7; we obtain the following equation

for electrons:

R\" / 1\ 9¢" 2-3\B R g’
a)\\/l—)\B—> <_> i +< > <_> e N
< By /g NASe 03 | 21— \B B, e 0N |,
r\*/1(0s] \*\ 1as| as| \’
W1 —-AB— —| = VR
+ <a B¢>§ <A<8/\ m@) >5 <Pﬁy > <_A Xy ¢ Do | >£+
S
P e ’\ 1 (o5 V| 2|
4 V1- BB, A 9 ler) [ | 95,
(/10| [os * J1oes| a| (oS i
i @m > 19 (- >> +< 9 (- >> +
[ B,/, ( AN \or,e) /. AON|, (0S|, \ 0N, ,5
S
. <U 2~ 3\B R> 195 )
VI=ABB,/, \A0X; /
2 2 S
P2 VBN R 19S| a oS
T\ —— a0 - +
4 VI BB,| \A0p,| 05|\ 0p,

1 10 053 i oS i
+ ={po,VRAY "{ = = - +1 VRA - +
2<p19] > <A O\ s <8p@ 57)\> >E 2 pﬂ] < a e (apw or >§
+1<A ‘A/'R)\>pw<1 oS 0 (88 >> pﬂ]f/> < >S agéom )

5\ P — = — —_—
5 \Pi 0 \ A 0Py, 5], \ OX|, Adbeler/ | 95|,
S
R\" /108 2,00
2 oMWT-AB—) (=22 A A
" <“ B¢>ﬁ <A Am’£>£ (poiV R < > DT

V. v/ 0o\ _
+§<AU6( )>§+5<ZU”“'(9" )> =0

(D.61)

VeetVe;

2
%/26*‘/62 (%) Fei <B¢ B3>, 0 [y dv;V;? fo 2(00 d/\> . Here we have taken into

Vee +Vez

with Oul™) = 3670 22 (B B for Ve 92 0)) and Uiats™) =

account that ge 9 does not have the helical angle dependence. As 7., and 7,; have the
velocity dependence only, they have been pulled through the £-averaging operator at fixed
S. Eq.D.61 is the final equation to be solved for the electrons in the external regions
where collisions can be treated perturbatively. We have to note that the integral terms in

Eqs.D.60,D.61 average to zero over ¢ at fixed p, (but not ¢) for trapped particles due
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to the summation over ¢ in the orbit averaging operator. Eqs.D.60,D.61 are final v-, &-
averaged equations for ions/electrons to O(Alé}) in a large aspect ratio circular cross
section tokamak. The solution technique is the subject of Chapter IV and the following

sections of this appendix.

D.7.1 Direct switch from 9 to S

The explicit representation of the final reduced drift kinetic equation equivalent to
Eqs.D.60,D.61 can be obtained by switching directly from % to S in the collision operator.

Since S is not a function of ¥ at fixed p,, 9% /ON* and 9%/0S*k (k =1,2) are

‘5,5,19 })\,5,19

commutative with (...)%?, and hence

21\ % 02" 2-3XAB R\"/1\°84"
) G, e
<J 50>19< >§ 75 1—ABBy/y \A/; OA
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S,£,9,Vio S,£,9,Vio
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MW1— )\B — i
9 I3 AW Vo
2-3\B R as‘ dS
({2 o1 = = |+
<< 21— \B B, 9\ B 8)\ <6>\ w)
R 0S| 0 oS 1\ 99l
W1 - B——| —| [ 22 -
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9 13 NEY, Vo
Py S N
R 89S 1\ 9200 V/1o oo\’
201 — = i Vi (g0 _
<< oA B, oA ¢> A> IADS 3 <AUZ (o >>£ 0
[ £ £ Vio
(D.62)

for ions. For electrons, the last term is to be replaced with

‘7 S V S
2 <AU”6( 600))> 2 <AU””< i00)>> |

3 3

Ujis Uje and Uj,; are defined as in Egs.D.60,D.61. As 9/0A, and (..)j" are not
commutative,'% to solve the drift kinetic equation in a form Eq.D.62 is computationally
more expensive than Eqs.D.60,D.61, where ¥- and &-averages are factorised. Thus, the

representation Eqs.D.60,D.61 is considered below. It can be proved mathematically

103Here a function of py,, Y, &, A has to be averaged over 9, while in Eqs.D.60,D.61 a function of 9, A
only is to be averaged over ¥ holding p,, fixed.
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that coefficients in Eq.D.62 can be rewritten in a form given in Eqs.D.60,D.61. These
derivations are routine and left beyond the scope of this work. The numerical scheme

described in Chapter IV and in Appendix E could also be applied to solve Eq.D.62.
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E  Numerical scheme

E.1 B coefficients

The following functions are defined:

a(\) = <O—Am%>:p,

<02—3>\B R>
2\/1—/\BB¢ 5
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B \/1—)\BB ’
N Do
_ [Py -1_ 1
<19 > h_<2v3>0, A= A

{i,j,k,m,n} (Vi,j,k,m,n € Z) are used to enumerate {S,\, 0,&,9}, respectively. The

following B coefficients are introduced:
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for ions and

for electrons. Then Eqs.D.60,D.61 read

0%y g &g
Bla)\2 S€+B28)\ +Bgas2 )\E—i-
), - (E.1)
Bl 4By—Y | yU=0
+; 5 N X

with g = gl((l ). Let us consider the passing branch first. Taking into account Eq.2.37
(note: S is ¥-independent at any fixed p,), we write
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Here we have taken into account that the electrostatic potential is a function of spatial
variables only, i.e. {1, & 9} or & = ® (x,£,0).
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1o 9 00 & "
20M[g 05\ V] ) ’

where we have taken into account that p, is a function of X if written in terms of S and

the fact that &p has the velocity dependence only, i.e. is a function of A at each V and o.

(3], ) -l [l 52,3 (50), )
95 A 2 PR3 95 A "\ w 2 Per& 20X 2R3 VII 9
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Here p,, is to be understood as p, = p,, (S, N, \7; a).
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A/ . Do
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For trapped branch, we write
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The last term here is to be understood as a function of (}5@ (S, &N, V; a) JEA, \7; 0).
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The electrostatic potential term, —3 <(,619j / VH)<I>> " is considered as a function of Doy €, A,
9

V and o and thus (ﬁ({, (S,f,)\, V;J) JEA, V;J). wp is a function of V.= (A, V, o) only
and hence dwp/OA|, = Owp/OA[, = Owp/OA[s.

Now we have calculated all the auxiliary coefficients required to find B;_13 in Eq.E.1. The

next step is to introduce the boundary conditions in A and S space and implement them

in the numerical scheme.
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E.2 Boundary conditions in A and S space

To provide the Maxwellian behaviour far from the magnetic island, we require

0f;/0x = w [L;Ll - (VZ — 3/2) L}ﬂ e™V?, where f; = fim*2VE Ing. To solve

r—F00

Eq.E.1, this condition has to be rewritten in S space for both passing and trapped
particles. As we noted in the main part, the electrostatic potential does not provide an

island-like structure in the trapped region and thus we find it convenient to introduce an

extra variable y®/*, such that y* = \/S* — SE._ 2yFdy* = dS* for passing and y* = S,

+/t is justified as both passing

dy; = dS; for trapped particles. A different definition of y
and trapped external regions, i.e. A € [0, \p] U [A¢, Apin], are not connected directly but
via a dissipation layer where the perturbative approach becomes invalid. In the absence
of the electrostatic potential, this Neumann boundary condition translates into Eq.4.1 for
A <\, and Eq.4.2 for A > \;, and is to be updated at each iteration in ®, provided the

inverse function, y*/* = y*/* (p,), exists at each &, A, V and o.

As there are no closed flux surfaces in S space for trapped particles (in range of plasma
and tokamak parameters we consider), we simply require the Neumann boundary at
y' — £oo updated at each iteration in ®. For passing particles, we require the Neumann
boundary at y* — +oo for o, , = 1. However, an additional condition is required at
yT = 0. We introduce Eq.4.3 due to the flattening requirement inside the S island. Here
we have to note that flattening inside the S island is not obvious from O(4;). It comes
from O(67), but O(6;) might provide an additional dependence, which is weak compared
to flattening from (’)(6?). However, a zero gradient inside the S island can be justified in
a different way. In the layer, where the radial shift is maximum, i.e. at A = \,;, at each
pwj, we work in terms of p, with the Neumann boundary at p, — £oo with no flattening
requirement inside the S island. However, we still find the distribution function to be
partially flattened even for large py;. Moving from A = )\, to A = 0, we move in the
direction of reduction in the radial shift (i.e. S approaches the real magnetic island) and
thus there still should be partial flattening. Thus, we set a zero gradient at the S island
O-point. In addition, Eq.4.3 ensures continuity of 9 f]/ Oy* across the S island O-point at

each o,,.

In ) space we require the distribution function and its first derivative to be finite at A = 0
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and A = A;,. As the term in §%/0A? vanishes at A = 0 and A = Ay, we impose Eq.E.1
evaluated at A = 0 for the boundary condition at the deeply passing end and similarly
Eq.E.1 evaluated at A = Ay, for the boundary condition at the deeply trapped end. This

results in a mixed boundary at A = 0 and A = A,.

Note: if ® provided the island-like structure for trapped particles, they had to be considered
such as passing particles. The subroutine is added that checks if the solution of y* = y* (p,,)
is unique at each &, A, V.

E.3 First and second order derivatives

We use the following approximations:

Central difference for passing branch

0,0), o o, o,
ag]( ezp _ ag P o gi,jﬁ-l - gi,jp—l O A)\Q
o T | T am, ToBN),
Se S P
82930 S)Zp — 8290',]3 o gZﬁ,—l - 291 + gz,] 1 + 0 (A)\Z)
2 2 o 2 4
o\ se o\ s AN
Central difference for trapped branch
8 (0 U a |a’|,t \o‘| t - |o'| t
] =e, — g _ gzg—H gz,] 1 O (A)\2>
O\ N g 20N\, v
S,§ ;
o|,t o|,t o|,t
Pgrit g e — 207" + 9 +0 (AN)
ON? se 0N e AA? /e

AN, is a step in the passing/trapped region.

Central difference in S (main regions)

00,p

ag 8g0717 gq,p e g‘.’;p

Jj=ei — _ Jitly i—1,j +0 AS

0,0), p o,
829]( ezp _ 829 P . gi—l—pl] - 291 + gz 1,] O (AS )
- in/out

08 | 082, AS2, ot /

0,0),t . ol,t ol|,t
ag_;:e?i ag' It _ g’|L+‘1,_] o gzl Il,] O (AS )

oS 9S 2A S jout in/out

A = /
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0,0),t o aht gl
G BT B V.Y (I TP
_ _ in/out) *
052 052 Ag ASizn/out /

)

ASin/out 1s a step inside/outside the S island. In a code, AS;, = ASpy.
Backward in S (top boundary)

p/t_ p/t

(0,0),p/t t 955 —Y9i—1,5 ]
agj:w- o 8gp/ —Asin/aut —+ O (ASm/Out) s
Y /t p/t D/t
0S 0S 39?3‘ _491'—1,]""91'—2,]' 2
A€ & 2A8,5 /out +0 ASin/out
dgP/? dgP/?
2 (0,0),p/t 2 o/t L — + O (AS;
0 9iZei _ 2 gP/ ) RS | 05, 95 |;_1; ( M/out) B
2 2 o 2gP 5P/t pagPlt P/t -
35’ e 35 M\E i, i—1,5 1—22,3 i—3,7 + O <AS7,2n/out>
(ASin/out)
p/t P/t p/t
9;5 —29;21, ;7929 ;
1 I 1 O (ASimjout
AT (ASin/ou)
2075 597" 49ty —ablS Lo ( AS2 >
= :
(Asin/out) in/out

Backward for passing branch (trapped/passing boundary)
note: also to be applied to the trapped branch at the deeply trapped end

p/t_ _p/t

Ogiei” OgP/! P O (M)
o _ ot !

O o o\ o 392/.’5—495’,/,’: +g§/i )
s Ml M o (ax)

dagP/t dagP/t
2 (0,0),p/t 9 it L g — % + O (AN
0% i _ Py _ A)\p/t/ 8>\/ i o i1 (ANe) _
A2 A2 2970 —5gPLt +aghlt gt
0 ¢ 0 S.¢ ¥ =1 J 2 Zii=3 4 ) A)\Q/t
’ (Axpe) p
p/t p/t p/t
9ij —29i5-119 5o
AN, +0 (A/\p/t)
t t t t
297 5} L a9l s—gll AN2
3 + O AX /t
(Ax¢) P

Forward for trapped branch (trapped/passing boundary)
note: also to be applied to the passing branch at the deeply passing end

p/t p/t

0,0), 9i5+1 Y955
ot g | TR0 (Ah).,
O\ TN g, | ot -sel) 2
Sg 54 a0 (A)\p/t>
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1 dgP/t dgP/t
2 (0,0),p/t - A
a9 = TAay2 - /t /t /t /t =
ON? 0N? S, *9§j+3+4g£j+2*5g§j+1*2951' +0 (A)\Z >
(A/\p/t) P/t
p/t p/t v/t
Yij+2"29i j1119
AxZ +0 (A)‘p/t)
t t t t
o0l 549l o 59T 1 4207

() + O (A)\f) /t>

Mized derivatives are

aQQ(OvO)rp/t 829(070)vp/t

Jj=et _ j=ezt

ON|g OS]y ¢ B OS[y ¢ O ¢ B

= gﬁl’jﬂ — gﬁlvﬂ'—l _ gfﬁl,jﬂ + gle,j—l + O (AS, g AN )
4A)‘p/tASin/out in/out? p/t) -

for passing and trapped particles.

E.4 C coefficients

To provide the Maxwellian behaviour far from the island, we have introduced y instead of

S:

Y =/5% — Sum-©O (A — A+ SO (A= \)

for 0 = 4+1/0; as a new radial variable. Hence, Eq.E.1 becomes

0? 0 B3 0?
By =9 + By 29 + = 29
ON? . OA|, ¢ 492 Oy? e
(S B Bs\og| L Bu &9,
— 2y 4y3 | Oy e 2y Pl ¢
for passing and
0%g dg 0%g
B —= By — By —
tane| TN TPl T
y:€ S Ag
11 ag 829 (EB)
B; — —_— U=0
T2 PGyl e aAayL -
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E.5 A coefficients

for trapped particles. Thus, we find it convenient to introduce C' coefficients as follows:

Ci =

Cy

Cs =

Cy =

Cs

for passing and

BIJ

= B,

Bs
4_y2 )
Bs
Ay
Bip
2y

11

2

1=4

B;

Ol - Bla
CQ = BQ)
03 = B3a

11
Ci=) B
=4

Cs = B2

2y

)

for trapped particles. Note: both B and C' coefficients are to be defined inside and outside

the S island in the passing region.

E.5 A coeflicients

Employing a second order central difference approximation in A and y direction, we rewrite

Eqgs.E.2,E.3 in the following form:

ik op ik op ik N
[4A)‘pAyiN/0ut1 JitLger ¥ LA)‘pAym/out} Jimri-1 * |:4A/\PAyin/out:| Jimrg1
_ijk

" _4A)\pAiz/ouJ gitrgt
. [ ik ik, - ik - ik, o7 4

_Ayzzn/out 20Yinjout | AyiQn/out 20Yinjout | 7
+ "G ijkcﬂ 977 {ﬂ - ijkcﬂ P TG 237G g +UP =0

LANZ T 2A0, ] T AN 2AN, | T AN A2 | ij

Y
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which is equivalent to

U?p U?p 07p 07p G7p U’p U?p
A1ijgi+1,j+1 + Alijgi—l,j—l + A3ijgi—1,j+1 + A3ijgi+1,j—1+ (E.A)

op,op op o.p o.p_0,p o.p_0,p o.p_0.p op (.0p\ _
+ A5ijgi+1,j + Aﬁijgi—l,j + A?z’jgi,j—‘rl + ASijgi,j—l + A9ijgi,j + AlOz’j (gi,j ) =0,

ATR (97) = [P, 0 = +1, AT = Al = —ASH = — A for passing particles. Similarly,

we obtain for trapped branch:

ik Jelt ik gy ikl g _iih g
AANAY | TN AN Ay | T T [AANAY | TR T AN Ay | T
[5G 2 gy [ 2 o

Ay + oAy | Tt A2 20y 9i—1;+

PO TG el [TRC TG o 2UC; 2R o1

[ 171 _ 1715 . - o], U |.o:"t —0
+ |:A)\? + 2A)‘t:| gZ,]-‘rl + |:A)\? 2A>\t:| 4,j—1 |: A)\% Ay2 :| g,L’] + [ ]Z] s

which is equivalent to
o]t |ol.t ol |o],t lolt |o],t lolt |o],t
Alz’j Giv1j+41 T Alij Gi—1,j-1 T A3ij Gi—1j41 T A3ij Jiv1j-171
lolt o]t ol |o].t lolt |o].t lolt _lol.t o]t ||t ot ( lolt) _
+ A5ij Jit1; T AGz’j 9i—1,; T A?ij 9ijk1 ASij 9ij-1 T A9ij 9 + AlOij 95 )= 0

(E.5)

4i5 i

with o; = |o] = +1, and Aﬂt = A'Qiy = —Agﬁ’t = — Al We note, A'l‘g'i’; (g'””) =
U ]';‘t = 0 due to the summation over ¢ in the orbit-averaging operator only to leading
order in py;/a. [U]lf;l’t # 0 in a code, since the integration in Eqs.2.26,2.27 is provided at
fixed ¢. Here {i, j, k} are used to enumerate {y, \,o}. y is to be understood as y* for
passing and y = y' for trapped particles. Ay, o and Ay = Ay’ are steps in y direction

inside /outside the S island for passing particles and for trapped particles, respectively.

E.6 In terms of P, Q and R

Eqgs.E.4,E.5 for the passing/trapped branch can be rewritten in the matrix form as

PITgTL, + Q77g)” + BTG + AT (577) =0 (E6)
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and

P\ja\,tgﬂ,lt +Q\ja\,tg|ja|,t +RLU\,tgLaJ,f _I_A|ja\,t <g|ja|,t> —0, (E.7)

respectively. As we mentioned earlier, the momentum conservation term does not

contribute only to leading order in the trapped region. However, to provide a general

lol.t

solution we keep the free term in Eq.E.7. Here g?’p /g; " is a vector solution of length N,

in the passing/trapped region at each A grid point, j. P?’p/la"t, Q?’p/|a|’t and R;”p/w"t are
square tri-diagonal matrices of size N, x IN,,, and A?p /ol ig the right hand side vector of
length N,. N, is a total number of points in y direction, i.e. inside and outside the S
island. We note that a number of points can be different in y*/* direction as the o = £1/0,

branches become independent once the layer solution is found. P7”, Q7", R and A7

are constructed as

a,p __ o,p a,p — o,p a,p — o,p y

Pm = A7,i,j7 Pi,z'+1 = Al,i,j? Pi,i—l = A3,z',j> i€fl,N,—1)
TP __ AOP ;o

Fyy = A7’07j, 1=10

a,p — a,p N _ .
PNy = Ay, =Ny = L

ag,p J— a,p ag,p - a,p a,p — ag,p o
Qi =Agi;, Qi1 =451 Qi1 = Agiy i€[l, N, —1)
a,p __ a,p a,p __ a,p a,p .
00 = Agoys  Qoi = Asp; + Ay =0

o,p — o,p o,p — o,p o,p ) — .
C2Ny—17Ny—1 = A9,Ny—1,j> QNy—l,Ny—z = AS,Ny—l,j + AG,Ny—l,j7 =Ny, -1

P AOD op  _ AOD op  __ A0D :
RV = A, R = AS,i,j? R = Al,i,jv i€[l, N,—1)
a,p __ a,p > —
R070 — A8,07j7 1 = 0
o.p _Aop -
RNyfl,Nyfl = As,Nyq,ja =N, —1

and

AT (977) = AWy (07) i€ (LN, =)

Ag? (ggj‘)) = ATE)Z,)OJ (gg,’f) —2Ay - CY - A’é,’g,j, =0

a,p a,p — a,p a,p . 4 . o,p y — _
ANyfl <9Ny71,j) = AlO,Nyfl,j <gNy71,j) +2Ay - Gy AS,Nyfl,j’ =N, —1
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at each j for each k. Here Ay;, = Ayous = Ay. CV = 0 sets a zero gradient inside the S
island. C¥ provides the gradient of the distribution function far from the magnetic island,

i.e. Eq.4.1 for the full distribution function and

8A(‘070) ~ 3 (72 2[:
CP = ;ﬂy . = 0,0 [L;& + (v2 — 5) L;}] eV . (E.8)
yF—+o0

for the perturbation in the absence of the electrostatic potential. Q(-O’O) is normalised, i.e.

J
gj(-o’o)ws/QVﬁj/no. This condition is to be updated at each iteration in ®. For trapped

particles, we write

lolt _ plolit lolt _ glolt loft _ glolt :

Pi,i - A?,i,j7 P’i,i+1 - Al,i,j’ Pi,ifl - A3,i,j7 (S [17 Ny - 1)
o|,t o|,t .

P = Al =0

‘0‘7t —_ ‘U"t s .
PNy—1,Ny—1 = A7 N,—15 LT Ny —1;

Q'Fi'vt _ Ala"vt Q‘0‘7t1 — A“ﬂ:t Q‘U‘7t _ A‘O'Ift Z e [1’ Ny _ 1)

i 179,4,50 2,14 5,1,77 1,1—1 — “76,4,5)
|U|7t I |U|7t |U|7t — |U|7t ‘Ulrt y
00 = Aggy Qoi” = Asg;+Aggy =0
|0|7t J— IUlvt |0—‘7t — |0|7t |0'|7t y — .
Ny—1,Ny—1 — ‘19N, —1,5 Ny—1,Ny,—2 — AS,Ny—l,j + Aﬁ,Ny—l,jv =Ny, — 1
‘U‘vt P |O"7t |U|7t — ‘Ulvt |0-‘7t R |U|1t y
Ri,i = A&i,j? i+l — A3,i,j7 Rm‘—l = Al,i,j’ (S [17 Ny — 1)

o|,t o|,t .
Ri],(‘) = Al&(‘),jv i1=0
lo,t gl .
RNyfl,Nyfl = AS,Nyfl,jW =N, —1
and
ot ot ot o|,t .
AL | <9l,j‘ ) = A|10|,z‘,j (gl,jl ) , i€[l,N,—1)
A‘U‘vt o]t _ A|U|vt lo|,t —92A t Ot A1) - AUaP =0
0 90,5 ) = “*10,0,5 \ Y0, Y 1 (AL 60, =
A“ﬂ?t ‘Ulvt — A‘Ulvt |0‘|,t + QA t . Ct ()\ [ ]) . A‘U‘vt N— N _ 1
Ny—1 \IN,—1,5 10,N,—1,5 \ 9N, -1, Yy Lo AL 5N,—1j> L y :
Here Ay’ is a step in y' direction not necessarily equal to Ay, /ou. Ny is a total number

of points in y* direction. As both external branches (passing and trapped) are connected

through the layer solution, N, is allowed to be different in the passing and trapped regions.
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However, we note that N, has to be the same for passing and trapped particles in phase
space in the secondary mode problem [95, 96|, Chapter V, as there is no layer solution
in this case and both external branches are connected directly. C? and C% provide the
gradient of the trapped particle distribution function far from the magnetic island, i.e. at
+o00. In the absence of the electrostatic potential, this is provided by Eq.4.2 for the full

distribution function and

A

of; f . 3 .
cl=cl = a_fi - — w1  — [Ln(} + (V2 — 5) LT;] eV
Y yt—too WppPy; + %<V—“>ﬁ L wwg

(E.9)
for its perturbed part. C} and C% are different at each step in A, i.e. at each j. This

condition is to be updated at each iteration in .

E.6.1 Left boundary (passing branch)

The solution and its first derivative have to be finite at the deeply passing end, A = 0,
i.e. j = 0. Since the term in 9?/9\? vanishes at A = 0, we impose Eq.D.60,D.61/Eq.E.2
evaluated at A = 0 for the boundary condition at the deeply passing end, i.e. Eq.4.4. Let

us introduce

Thus, Eq.4.4 reads
PErgi + Qg + Rygs” + b (957) = 0 (E:10)

Here we have applied a central difference scheme in S/y direction and one-sided difference
in A direction. Pg”, Q¢”, Ry* and hj” are introduced in a way similar to matrices that

represent the equation and also contain the information about the limit far from the
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magnetic island:

: —3hity - 260 7 250
por — 2 L0 pow 7200 pop 200 o N
2,0 QA)\p 7,0+1 2Ay 1,0—1 2Ay ? [ Y )
A0_7p _ _3h[17:370 Z _ 0
00 2AN,
. —3hTN, 10
PRy N1 = —QA):; , =Ny =1
. 4h7P
o,p 1,4,0 .
P — ———— §¢]0, N,
Q’L,’L 2A>\p ? [ ? y) )
. —h{?
a,p 1,7,,0
P — , € 0, N,
1,0 2A)\p ¢ [ y)

and

WP =U (¢7), i€[l, N,—1)

)

he" =U (g75) +CT - h3fo, =0

)

h?\}ffl =U (9%7) +C¥ - hg:%y—l,m i=N,— 1.
To set a j = Oth element, we impose the following linear approximation:
7 = a6 B

and thus
g;’f’l — a?’_lg?’p + ﬂ;’fl, (E.12)

where aj" is the square matrix of N, x N, and 87" is a vector of length N, at each j.

Substituting Eq.E.12 into Eq.E.6, we have

PIUgrY, + Q) + Ri“as%] g} + BB, + A7 (677) =0,

j—
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We define M" = Q7" + R} a " and hence we can write
MPgo? — —PTg7" — RITBIY, — AT (g?,p) ’
op __ o, o, o,p\ —1 o,p QO, o, o,
97" = —(M7?) " Pyrgrh — (M77) T [RITBTY + AT” (g57)]
Comparing the latter expression with Eq.E.11, we obtain the following recurrence relation:

a’? = —(M°? *1Pq,p’

B = (M) [RBT + A (637)].
Once " and B7" are determined at certain j, they will be automatically determined at
each j by Eq.E.13. Going back to the left boundary, we write

90" =97 + Bg”,
’ (E.14)

O. PR 7p o'!p O-7p
97" =ai’gy” + B

and hence
95" = (o) lg7" — BT"). (£.15)

Substituting Eq.E.15 into Eq.E.10 gives
Pirge” + |Q57 + Ry (af”) ! 67" — RS (o) BT 4 K57 (457) = 0

and thus

o,p O.D L7 Ao »oP, op\—1| op >O.p 1 Ao o.p\—1 po,p >O.p -1 op /0P
gi" = —(Pg") @ + B ern) Mgt + (P57) BT BT - (P) g (a5,

J/

~~ ~~
o,p o,p
(e %%) 0

Comparing this expression for gg* with Eq.E.14, we obtain aj” in terms of a{”:

og7 = —(B5) [+ BgPasn) ] (E.16)
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On the other hand, from the recurrence relation, Eq.E.13, we have

of” = ~[Q7" + R{"ag"| ' P{”,
ai”(PT") " = —[Q7" + R{"ag"] ",
af”(PT7) 1 Q7" + R"ay"] = —€,

(P7")" Q7 + Bi"a§") = ~(af")"

where & is a 2D array with ones on the main diagonal and zeros elsewhere. Substituting

this expression for (aJ?)~" into Eq.E.16, we derive
-1 -1
o, Do, Ao, No, DO, o,p\—1 o, o,p 0,
o = _(Pop> Q7 + <Pop> RP(PTP) 7 [Q7F + R{Pag?],
al? =ag?€ =Eaf? =
. N1, A R DA
= —(P5) Q¢+ (P) BGP(PITYIQIT+ (PRY) RET(PTY)RTTeGY.
i N1 o N1 4 . N1
£ (P) Rt R 0 - (P) Q5 (P) RPNy
the following expression for ag™”:
o,p o, -1 PP/ po,p\—1 po,p - Do.p -1 Ao,p o, -1 Do.p/ Do,p\—1o.p
0‘0:5_<P0)R0(P1)R1 _<P0)Qo +<P0) RV (PT?) Q77|

(E.17)

Now we use the relation for 87" that comes from the above expression for gg*:
g7 = (B5) Ryriar)'er - (PEY) h (g, (E15)
From Eq.E.16 we derive
~(R) " [Brragr + Q5] = (a7
From the recurrence relation, Eq.E.13, we obtain

BI = ~IQ7" + Ri"a§") ! [RIVB] + AT (677)].
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Substituting the latter expression for (a?)™" into Eq.E.18:
o,p o, -1 po.p [ Do.p -1 DO.D . T, Ao,p o,p DT, -1 op [ O,D
B = _<P0’ ) Ry (Ro’ ) [Po’ o’ +Qq },31’ - (Po’ ) hg” (95")
——_— ——
£

and then the latter expression for 77, we find

B = (P5) " [Piai” + Q5] Q1" + Riai") [RI"B5" + AT (677) -
- (P5) k" ai).
(B57) " [Prracr + Q57 Qe + Revar RE €] 477 -
= (B) mem (g — (Bg7)[Boragt + Q7] Q7 + REvagr T AT (477)
and hence the final expression for 87"

-1

g7 = |(Pe7) ' [Prra + Q5] Qe + RV R
(B e - () [Pra Q5] @07 + REvag ) A )|
(E.19)

Now we have found ag” and B7*, Eqs.E.17,E.19, at the deeply passing end, j = 0. Then
employing the recurrence relation, Eq.E.13, we calculate all a}”s and B7"s at each j
up to the point where the perturbative approach breaks down and collisions cannot be
considered perturbatively. Note: in the secondary mode problem [95, 96| we calculate all
alphas and betas up to the trapped-passing boundary. In addition, aJ” and BJ” let us

determine gg*. Indeed, we immediately calculate
aclf,p — —[Q‘f’p + erf,pag,p]—l P‘f’p
and

BI = ~IQ5" + Bi'ay") ! [RYBS + A7 (")
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from af” and B7". Eq.E.14 provides

77 = (@) gt~ B3]
and Eq.E.15. Also, we have to employ Eq.E.6 evaluated at j = 1:
Py7gy" + Q191" + Ri"gq" + A" (977) = 0
Substituting the above expression for g57, Eq.E.15, into Eq.E.6 at j =1
[Prag?) !+ @57 g7 — PEPlaq”) 57 + BTG 4 AT (65) =0

and then inserting the latter expression for g7, we obtain the final expression for gg”

-1

6" = [P @) +Q57 (ofn) ! + Ry

([Prrerny ™ + Q77 (o5 B3 4+ Pr7al?) BT — AT (677)]

Note: AT (g7") is the integral term and does not contribute at the Oth iteration in the
parallel flow. This expression for gJ” can be used as an additional test of the validity of
the total solution, g;-”p reconstructed at each j based on the linear approximation, Eq.E.11,

in the absence of U.

The similar procedure is to be applied to the trapped region.

E.6.2 Right boundary (trapped branch)

The solution and its first derivative also have to be finite at the deeply trapped end,
A = Afin, 1.e. j = Njo. Since the term in 9%/9A* also vanishes at A = Ag;,, we impose
Eq.D.60,D.61/Eq.E.3 evaluated at A = Ay, for the boundary condition at the deeply

trapped end:
plolt ol lof,t lolt \Jlt |o],t lolt (lolt) _
PNpgngg + QN gngg 1 + R Np2 2 + thz (ng2> - 0 (EQO)

Here we have applied a central difference scheme in S/y space and one-sided difference in

plolt Alolt plolt IJ\ t P, Ao DO.P
A space. P Npo Q Npo R N, Al nd h) " are defined in a way similar to P o, Ry and
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hy? and contain the information about the distribution function gradient far from the

magnetic island. Here we assume

g|JU\t a|0'| tg\;flt IB\ja\,t (E.21)
and thus
o|,t o, t _|o|,t o|,t
.‘]Hl = O‘HL‘)L — ﬁ‘j+|1> (E.22)
where oz| b is the square matrix of N, x NN, and ,B;UH is a vector of length N, at each j

(N, is allowed to be different in the passing and trapped regions when the dissipative layer
solution is introduced to provide matching. In [95, 96|, N, has to be the same for passing
and trapped particles in phase space). Substituting Eq.E.22 into Eq.E.7, we obtain

Plrltgloht o Qlele] glett 4 plritgiolt | Rlrlegiolt | A|o|t< w) _o

Jj+1 J

We define M‘f't P|0|t |G| Q'U‘ * and hence derive

Mldlt Iolt _PIUI tﬁl;jrllt _ R|f7| tg\jﬂllt A\jﬂl,t (g\ff\»t) ’

J
g|ja|t <M|ja|,t> R|a| tg\]a|lt <M|jg,t>1 [PLU|,tﬁLﬂ,f+ALU|,t <g\]a|t>}

ol,t

Comparing this expression for g|j with Eq.E.21, we derive the following recurrence

relation:
Q7 _(Mm,t) ' plolt
’ s y (E.23)
lolt |o|,t lol,t plol.t lol,t ol,t
B = _<Mj ) [Pj Bivi +4; (gj )} :
Once a|»0|’t and ﬂ 71t are found at certain 7, they will be determined automatically at each

Jj by Eq.E.23. At j = Ny and j = Ny — 1 Eq.E.21 reads

o|,t crtcrt o|,t

gn, 2 2—1 Np2>
? Ne g (E.24)
o1t a"" gkt glelt

INp—1 = ON 19N, —2 Nyp—1

and hence

o|,t ol|,t - o|,t ol|,t
giis = (ol 1> g AR (E.25)
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Substituting Eq.E.25 into Eq.E.20, we have

t t o]t t t -1 it t it t it
PG + {QNQ A }g"p R (ol ) B R (g) = 0
and thus
t ot by t t t
o= () o A () o
"
Np2
-1 - -1
plol,t plolt( lolt o]t plolt lolt [ lolt
+ (P N,,2> Rsz (aNp2—1> Npa—1 — <P N,,2> hNPQ (ng2>'
Io).¢
Npa

Comparing this expression for g Wlth the first expression in Eq.E.24, we obtain a‘al ¢

3 ‘U‘vt
in terms of « Npo

a%\,t _ _(13|]¢\7[1|D§> |:Q|0|t+R|U|t< ‘]‘\2; 1>_1:| . (E.26)

p2

On the other hand, from the recurrence relation, Eq.E.23, we write

lo|,t lolt  lolt lo|,t |o,t
aNpgfl PN p2— 1aNp2 + Qszfl RNp2717
-1 -1
|o,t lof,t lof,t ol lo,t
AN -1 RNp2—1 — P, 1N, +QN,,2 1
o}t lolt ) lolt _lolt |of,t _
aNpg 1 RNpgfl PN p2— laNpg + Qszfl - _S’

—1 -1
|ol.t lolt lolt lol,t !t
(RNpg—l PNPQ 1 sz + QNPQ— Np2 1 :

-1
Substituting this expression for < ﬁ't > into Eq.E.26 provides

-1
|ot plolt IU\ by plolt plolit [ plolt lolt - lolt |ot
ay, ——(PNIQ) Q < 2) RNp2 (RNprl) [PNQ . N2_|_QNP271 ,
and thus we derive the following expression for a|N|t
okt _ |g _ (plolt\ ' plole(plolt Y ' plole |
ay,, = Np2 Npz \L¥N,—1 Npz—1
(E.27)

ey m = (pi) "R i
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Now we use the relation for B}y lo lt that comes from the above expression for glﬁl’;

B = (P) R (o) B - (PR) R (a) maw)
From Eq.E.26 we derive
() [Pkt + QR = (a)
From the recurrence relation for trapped particles, Eq.E.23, we obtain
R =~ [PRE el + QL (PR AR ()]
at j = Np2 — 1. Substituting the latter expression for (a‘;lt >_1 into Eq.E.28:

’3|](\7[1|); _ _<P|]$l2t> fglolt(R%lg:) ) [P\a\ it ot +Q\a|t] ﬁli‘,;—l _ (p\jg;) hla\ it <g|]$z|7;>

£

and then the latter expression for ,Blﬁi’;l, we find

-1
lolt _ [ plolt lolt lo],t \U\t plalt globt lol.t
Npa — PN,,Q PN 2 ON +Q N2 10N, +QNP2—1 :

o]t o]t o]t o]t plolt lolt [ lolt
. [PNpTlﬁsz +ANP2*1 <9N2 1)} N (PNP2) thz <ng2>

and hence the final expression for B la‘ ‘.

-1 -1 -1
lo|,t _ plol.t plolt ot Alol,t \Jl t \U\ t \UI o]t
ﬂNPQ = {5 - <PNp2> [PN,,QQNPQ +QNPQ} [ Npp—1QnN,, T + QN } PNPQJ :
plolt lol,t _|ol,t o]t ot IU\ t ot o]t o]t
' |:(PNp2) [PN 2 XN, +Q } [PN 21N, +QNp2*1} A Np2—1 (gNm*l) -

_<p|§\,2t) h|a|t (Q\J@ t)} '

(E.29)

lol.t

Now we have determined a'ﬁl’; and B Npo Eqs.E.27,E.29, at the deeply trapped end,
J = Np2. Then applying the recurrence relation, Eq.E.23, we find all a‘fl’ts and ,Bljd’ts
up to A = A (j = 0) from the trapped side (see Fig.4.1). Note: in the secondary mode
problem [95, 96] we determine all alphas and betas in the trapped and passing regions up
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to the trapped-passing boundary (the values of the coefficients in the equation evaluated
exactly at the trapped-passing boundary are excluded from the derivations). In addition,

o and ,Blﬁlﬂt allows g‘]@; to be determined. Indeed, we find

Np2
ol olt lolt | Qo ol
Q1= — P21 +Qp21 RP21
and
o] P ot 4@l THplote glalt | glele (ol
Npp—1 = — [FNp—1Q Npo—1P Ny, T AN -1 9Nt

immediately from a' Npo and By |U|t For the distribution function we write

o|,t o|,t -1 o|,t o|,t
g‘N‘2 1= <0“NZ|,2) [H ﬂ' |]

at j = Ny — 1 from the first expression in Eq.E.24 and Eq.E.25 at j = Ny, — 2. Also, we

employ the equation, Eq.E.7, evaluated at j = Ny — 1:

lof,t ot lol,t o]t lol,tlol.t lol.t |ol.t _
P Qle2+QN2 lgNg 1+RN21N2 2+ApglgN _O

Substituting the above expression for g'ﬁl’;_Q, Eq.E.25, into Eq.E.7 at j = Ny — 1

|o|,t |o],t

|o|,t lfflt |o],t o).t
Py Npa—19 N, QNp2—1 +RNp2—1 ay., 1 IN,,—

ot |o|,t lo,t Alolt o]t _
RNI,QA aNn,,—1 ﬂNQ 1t Ngfl In,,-1) =0

and then inserting the latter expression for g N o1 W€ find the final expression for gla‘ s
-1 -1~
ot _ | plolt lo].t lo].t |o].t lo].t
N, = [P 1t [Q w1 TRy, 1<O‘Np271> } (O‘Np2> }
—1
lo].t Rl |o] ¢ |o] ¢ \U\ b Rlolt lo].t lo |t
HQN 1T Ry a1 (aNpgfl) ] (aN 2> Bx Ry a—1 <aN - 1) IBN,,Q 1
lol,t lol,t
~AG (e8]
lolt o4

This expression for g N" can be used to test the solution in the trapped region, gJ

each point in A, j, reconstructed from the linear approximation, Eq.E.21.
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Once the layer solution is found and all a;” /lolts and B;" /7115 are obtained from the passing
and the trapped sides, we reconstruct the rest solution elements from Eqs.E.11,E.21 up to
the passing/trapped external edges, i.e. A = \,(j = Np1) / A = A\(j = 0), respectively.
The described solution technique is illustrated in Fig.4.1 of Chapter IV. Note: in the
NTM problem, matching at the trapped-passing boundary, Eq.3.1, is provided by the
layer solution found in Chapter III.

E.6.3 Matching at the trapped-passing boundary

In the vicinity of A. collisional dissipation becomes important, and the perturbative
approach becomes invalid. Thus, we introduce the collisional dissipation layer to provide
o,

matching between g7* and g;

5 in external regions. The layer solution calculated at A,

(j = Np1) is used as a starting point to reconstruct g?’p from Eq.E.11 up to the deeply
passing end, gg”. The trapped part of the layer solution at A = A, (j = 0) is a starting

|o .t

point to determine g‘ja"t from Eq.E.21 up to the deeply trapped end, g Npo-

The technique described above is also to be applied to the secondary mode problem.
Here matching is provided exactly at the trapped-passing boundary. To make the above
derivations of the numerical grid consistent, we keep the already introduced notations
in this subsection. However, we have to highlight that the passing region in the NTM
problem, i.e. A < A, corresponds in this derivations to the region of particles trapped in

phase space in the secondary mode problem, i.e. Hy < H§ and vice versa.

The function and its first derivative are required to be continuous across the trapped-

passing boundary, i.e. g; and f; should be of class C'. Matching is given by Eq.3.1, which

reads

g =gn?,
g + ot = 290"

pl pl )

1, 1, 1, 1, 1, 1, - - -
3.‘];1,1]) - 49;1,1])—1 + g—iz\_fplp—Q + 3ng1p - 49Np1p—1 + nglp—Q _ 9 —9‘2 It + 4g|1 bt _ 3g(|) ¢
2A\, B 2A )\
(E.30)

Here j = N,y / j = 0 corresponds to the trapped-passing boundary as shown in Fig.A1 of
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96| (note: in the NTM problem 5 = N,; corresponds to A = \,). The first two conditions
P P

provide

g =g\ =g = g.. (E.31)

Inserting Eq.E.31 into Eq.E.30, we obtain

6[1+mp} 28N o 8AN e 1y

AN AN A AN, g, A — g (E32)

Now we apply the linear approximation, Eq.E.11, at j = N,; —1 and j = N,; — 2 in the
passing region and Eq.E.21, at j = 1 and j = 2 from the side of trapped particles to write

JR— — O'?p
ng1 1 aNpl 1ng1 _'_ﬁNplfl _aNplflgC—i_ﬂNpl 1

a,p

91\},,1—2:0‘ Nyp1— ngpl 1+13Np1 2

with ¢ = £+1 and

olt _ gloltglalt | glole _ glole ot
g +B1 =ay; g+ B,

lolt ___lolt ot o]t
gy =ay g+ By

First, substituting ¢%? ., and g/"" into Eq.E.32, we write
89N, —2 92

AAp o QAAP ‘0",1& SA)\p |o’|,t
o |1 o= [t e o
_ _ 200, o _
46— el g+ 48 — el g - B B B
(E.33)

Then we substitute g(]’\}f 1 and g|f|’t into Eq.E.33 to obtain the trapped-passing boundary

element of the solution:

AN 8AN, 2A)\
. = 1 14 /4 |U|7t |U|7t
g [6( + AAt> ( AN AN )@
—1
- (48 - a}i’lp_2> a}llp 1 <48 - a]_vi’lp_2> a]_vilp 1] -
200\, |, SAN -
’ |:(_ A)\tpa|2 . + A)\tp) |1 . + <4g - a]—’\_lej;p*2> ﬁj\_fi;p 1 + (48 aN )ﬁNpl 1

2A/\

lo|,t +1,
g g, B } -

(E.34)
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This expression can be simplified provided A\, = A);. In the secondary mode problem
Eq.E.34 is used to provide matching across the trapped-passing boundary. g. is a starting
|o] t

point to construct g7”/g;

;" up to the deeply passing/trapped end from Eq.E.11/Eq.E.21,

respectively.

To solve the reduced equation, Eq.18, in [96], Eq.E.34 is to be applied in its scalar form.
g?’p and gg»‘ﬂ’t become scalars at each point in Hy, j. To solve Eq.14 in [96], we have to
keep both ¢ branches in the trapped region in Hy space and thus Eq.E.30 is to be replaced
by Eq.A.8 of [96]. Note: in the secondary mode problem, o, p is to be replaced by |o|, ¢ in
Eq.E.34 and vice versa.

E.7 Block diagram

A detailed block diagram is presented in Fig.E.1.
e Step 1: generate grids in phase space and enter input parameters. INPUTS:
SPLINE SETTINGS for RectBivariateSpline

MAGNETIC FIELD: By, toroidal and poloidal field components. The poloidal
field component is to be introduced in a large aspect ratio, shifted circular
model/finite aspect ratio non-circular model for the poloidal cross section %4

(included in a code but left beyond the scope of the presented study) [117].

TOKAMAK PARAMETERS: ¢, Ry, a in a small inverse aspect ratio circular
cross section conventional tokamak approximation; Shafranov shift A(r),
elongation k, triangularity J, 0,1, Sk, S5 from Miller’s model (included in

a code but left beyond the scope of the presented study) [117].

ADDITIONAL EQUILIBRIUM SETTINGS: internal inductance [; and
tokamak poloidal beta Sy required for 0, Ry from Miller’s model

CHARACTERISTIC LENGTH SCALES and VELOCITY: L, Ly, Lr;, Lp,
1; = Luo/Lrj. V

104 A Jarge aspect ratio, shifted circular model is fully implemented in a code, while the finite aspect
ratio non-circular model requires a more detailed treatment of corrections of order £ and higher. Terms
of order £2 do not provide a significant impact on our current results but are important to study the
curvature effects.
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FREQUENCIES: 7;, wg, mass ratio m;/me

POLOIDAL LARMOR RADIUS AND MAGNETIC ISLAND WIDTH: py;, w,
Vs

e Step 2: introduce a model form of the electrostatic potential that is to be used at
the Oth iteration in ®. ¢ o wgy corresponds to its equilibrium distribution, i.e.
in the absence of the magnetic island. Calculate the electrostatic potential term,

N Dy
(—1/2)<p19j4>/v||>19 , for passing and trapped particles.

e Step 3: (re)define the S grid. S depends on the form of the electrostatic potential
and thus is to be updated at each iteration in ®. For passing particles, the location
of the S island separatrix is updated. For trapped particles, we check if there is
an island-like structure for certain ®. If the answer is positive, we apply the same
technique we use for passing particles to trapped particles. If the answer is negative,

we repeat the procedure we use at the Oth iteration in ® when S is proportional to

105
Do -

e Step 4: replace ST/t with y*/* to provide Neumann boundary at infinity, far from

the magnetic island.

e Step 5: calculate the inverse function, p, = pw(yi/ t), i.e. solve the transcendental
equation y*/t = y*/t(p,) for p, at each &, A\ and V 6. The y*/* grid is to be

updated at each iteration in the electrostatic potential.
e Step 6: calculate the A coefficient for o = +/t.

e Step 7: find layer solution (including moments of the particle distribution function

and the electro-magnetic field Lagrangian in the layer).

e Step 8: The LAYER_SOLVER provides matching at fixed p, and thus determines
the ion/electron distribution function as a function of p,, £ and A. To move further
and use the layer solution as a starting point to find the external solution in
{S,\,V; 0} space, we have to switch from p,, to S in the layer solution. g; = g;(p,)

is equivalent to two branches of g; = g;(.5), i.e. for g,,, = 0.

105There is no island structure in the trapped branch for plasma and tokamak parameters we consider.

106The existence of this function is not generally guaranteed. The INVERSE FUNCTION subroutine
has been tested: in the absence of the electrostatic potential and for certain model forms of ®, the
numerical solution of y*/t = y+/ t(py) for p, matches known analytic expressions.
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Step 9: find coefficients of Eqs.D.60,D.61 07,

Step 10: Use the procedure described above in Appendix E to reconstruct the
external solution in passing and trapped regions up to the deeply passing/trapped

ends.

Step 11: find solution as a function of y and A for each o, , o and V inside and

outside the drift island.

+/t

Step 12: switch from y=/* to p, and then from p, to 1) to reconstruct the flows.

Step 13: calculate the momentum conservation term in the collision operator. We

iterate over it until it converges.
Step 14: save results for the ion plasma component.

Step 15: repeat the above procedure (steps 2-14) for electrons. The electron solution
depends on the ion distribution function since the electron-electron collisions are

comparable to the electron-ion collisions.
Step 16: calculate density perturbations.

Step 17: calculate the electrostatic potential from the plasma quasi-neutrality
condition. We have to iterate over it until it converges. A total number of iterations
depends on py;/w and wg as both provide steepening of the particle distribution

inside the magnetic island.
Step 18: calculate total density and flows. Jy = eZ;u; — euje.
Step 19: calculate the total Lagrangian and the MRE contributions.

Step 20: determine the critical magnetic island width and the island propagation
frequency. Check if the polarisation current contribution is stabilising/destabilising

at given w.

107Steps 7 and 9 are simultaneous.
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F Figures not included in the main part

200
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Figure F.1: The neoclassical MRE contributions to the island time evolution for different py;.
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G Stability analysis of secondary modes,

driven by a phase space island: appendix

G.1 Resonant and non-resonant forms of the secondary

mode dispersion relation

In this appendix we demonstrate that Eqs.5.51,5.52 and Eq.5.53 are equivalent. The most
convenient way is to compare resonant contributions with the perturbed EP distribution
function, gj,, given by Eqs.5.34/5.39 with Eq.5.40 and Eqs.5.45,5.47. Substituting
Eqs.5.47,5.49 into Eq.5.45 yields

ow dfo. ’ do! e
" H, — »J h " no i(lg' —na ) G.1
Gy (@, Hoj 0p) Zéw—nQb+20+8H0 b /_W P (G-1)
Applying the Landau relation, which reads
L = —i/ ¢! 0w=mh)o gy (G.2)
dw — ny + 10+ R+ ’

and then employing the following expression for the Shah function:

Z pinla—a'=Q0) _ o Z §(a— o — Qo — 27k) (G.3)

neZ keZ

we rewrite the above formula to obtain

. Ofo; / /’T da’ e
(o, Hy;0,) =2 § — ! EH0w) 5 (o — of — Qo — 2
9jw (a, Hy; 0p) Ti0wW 9, P » do B 27Te d(a—« po — 27N,
(G.4)

which, in turn, can be written as

Jjw (Oé,Ho;Up) =

dw 0 fy /3”/2doz a—do +2mn a—ao +2mn
2mi— P — l ow—— | | - — .
ZQb 8H0 F Z Wexp £+ Qb © Qb

—7/2
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Here we have shifted the limits of integration in accordance with the limit operation for a
periodic function, and replaced n with —n due to periodicity. Let us take €, > 0 1%, As
a, o € [—m/2;31/2], a — o/ € [—2m;2w]. For n < —1 the Heaviside function returns zero.
If n =0, then o € [-7/2;a]. If n = 1, the Heaviside function returns one. Thus,

Ow foj “ dd , a—ao
Gjw (o, Hoy 0p) = 2mQ—b GH(Z P /M2 o, &XP |1 1€ + dw o +

ow O fo ; X7 do! a—o +2mn (G-6)
2mi———L hy,, — | 1+ dw——rn—r | |.
meﬁHoan:;/_W%TeXp[Z(é—i_w o )]
Employing Eq.5.41, we finally obtain
Ow 0 fo ¢ dd , a— o
gjw (o, Hy; 0p) = 2mQ—b 0H; P {/_W/2 o €Xp |1 1€+ ow o +
7, exp [ (1 + bt )] (1)

exp (—27?2’%“2) -1

which is exactly Eqs.5.39,5.40.

108The same analysis can be produced when € < 0.
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Abbreviations

DK-NTM Drift kinetic NTM solver: finds a solution of the orbit-averaged drift kinetic
equation to leading order in A, i.e. Eq.2.35 for a full range of the pitch angle variation.
The electrostatic potential is calculated self-consistently from the plasma quasi-
neutrality condition. DK-NTM with model analytic electrons has been developed
in [73, 93, 74]. Its numerical scheme and numerical algorithm can be found in [74].
DK-NTM that treats electrons similar to RDK-NTM is under development by K.

Imada.

ECCD Electron cyclotron current drive
ECRH Electron cyclotron resonance heating

EP Energetic particle

H96 An analytic drift kinetic solution valid in the limit of large islands outside the
magnetic island separatrix. It implies a model radial diffusion. It has been found in
[53].

ICCD Ion cyclotron current drive

ICF Inertial confinement fusion

ICRH Ion cyclotron resonance heating
LHCD Lower hybrid current drive

MCF Magnetic confinement fusion

MHD Magnetohydrodynamics

NBI Neutral beam injection

NTM Neoclassical tearing mode
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OH Ohmic heating

RDK-NTM Reduced drift kinetic NTM solver: finds a solution of the reduced orbit-
averaged drift kinetic equation to leading order in A, i.e. Eq.2.35 in the dissipative
layer and Eq.2.40 outside the layer. The electrostatic potential is calculated self-
consistently from the plasma quasi-neutrality condition. RDK-NTM has been
developed in this dissertation. Its numerical scheme and numerical algorithm can

be found in Sec.4 and Appendix E.
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