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Abstract

Understanding the physics of the neoclassical tearing mode (NTM) onset and its

stabilisation is one of the key issues in providing successful operation of future power

plants. The latter, in turn, requires a well developed predictive theory of the tearing mode

threshold in order to specify and optimise control schemes.

A new drift kinetic theory is presented to calculate the plasma response to the NTM

magnetic island. Small magnetic islands compared to the tokamak minor radius are

assumed but island widths, w, comparable to the ion banana orbit width, ρbi, are treated

accurately, retaining finite orbit width effects. To provide dimensionality reduction,

streamlines, S, are derived that can be interpreted as a generalised radial coordinate.

Adopting a low collisionality plasma, the distribution function is found to be constant

on contours of constant S when collisions are neglected. Proceeding to next order, and

introducing collisions, the dependence of the particle distribution on S and pitch angle,

λ, is determined. S contours reproduce the magnetic island geometry but have a radial

shift of a few poloidal gyro-radii, ρϑ. This radial shift is found only for passing particles

and is in opposite directions for V‖ ≷ 0, V‖ is the parallel component of velocity. The

distribution function being flattened across these S islands rather than the magnetic

island restores the pressure gradient across a magnetic island of width w . ρϑi, which

provides a physics basis for the NTM threshold by suppressing the NTM drive. Collisions

cannot be treated perturbatively near the trapped-passing boundary in pitch angle, and

thus here a thin collisional boundary layer is identified. This layer matches the passing

and trapped solutions outside the layer and being the dominant source of dissipation

provides the island propagation frequency.

The solution provides a threshold island width, wc (below which magnetic islands are

healed), which arises from the passing particle dynamics, and the relevant parameter is

the ion poloidal gyro-radius, ρϑi: wc = 3ρϑi.
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n0 ŵψ̂ (circle red markers). The Lagrangian density, L, is given by Eq.2.8.

Solutions of
[
∂L/∂A‖

]s
(ω) = 0 and [∂L/∂Φ] (ω) = 0 match at ωE = −0.93ωdia,e.

Ion collisionality ν∗i = 10−4, ε = 0.1, L̂q = 1. The equilibrium density and
temperature gradients are L−1

n0 = 1, L−1
Tj = 1. . . . . . . . . . . . . . . . . . . 88

4.19 (a) The cosine component of the ϑ-averaged parallel current density perturbation
integrated over ξ at fixed Ω,

〈
J̄‖ cos ξ

〉Ω

ξ
, plotted against Ω for different ρϑi. The

in-phase component of the ion (b)/electron (c) parallel flow averaged over ϑ and
over ξ at fixed Ω plotted against Ω for different ρϑi. (d) Zoom of (a) outside
the magnetic island separatrix, i.e. Ω ≥ 1. (e)

〈
J̄‖ cos ξ

〉Ω

ξ
for different ν̂i. (f)〈

J̄‖ cos ξ
〉Ω

ξ
for different w. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.20 (a) The cosine component of the ϑ-averaged parallel current density perturbation
integrated over ξ at fixed Ω,

〈
J̄‖ cos ξ

〉Ω

ξ
, plotted against Ω for different ρϑi. The

in-phase component of the ion (b)/electron (c) parallel flow averaged over ϑ and
over ξ at fixed Ω plotted against Ω for different ρϑi. (d) Same as (a) except for
ν̂i = 10−3. (f)

〈
J̄‖ cos ξ

〉Ω

ξ
at small and large ρϑi. . . . . . . . . . . . . . . . 94

4.21 The polarisation contribution to the evolution of the magnetic island vs. ωE
(note: region of ∆pol < 0 is stable). The ωE dependence in the island rest frame
provides the ω0 dependence in the reference frame, where the radial electric
field is zero far from the island. Inset: zoom in a region ∆pol(ωE) = 0. Red
curves indicate a parabolic approximation. The ω2

E behaviour is predicted in
the analytic limit of large w. Ion collisionality ν∗i = 10−4, ε = 0.1, L̂q = 1,
L−1
n0 = −0.1. 0 ≤ ωE ≤ ωdia,e corresponds to a region of coupling to electron

drift waves. For these parameters: ω0/ωdia,e ∈ {...,−1.04,−0.93, 0, 0.92, ...}. . 95
5.1 Sketch of the bump-on-tail distribution function. The local maximum is localised

around Vb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 A phase space island near the resonant surface, nnn ·ΩΩΩ(JJJ) = 0 [96]. . . . . . . . . 101
5.3 Sketch of H0 against ξ at p = 0 [96]. ξ varies from −π to π outside the phase

space island and between the bounce points, ξb1,2, given by H0 = −ω2
b cos ξb1,2,

inside the island region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 The EP distribution function f̂0,j plotted against p̂ across the island O-point,

i.e. ξ = 0, for arbitrary D̂p and ν̂f,p. The solution, f̂0,j , is localised to the island
vicinity, which allows the initial equilibrium distribution function to be Taylor
expanded around the resonant surface. The dashed lines indicate the position of
the phase space island separatrix, Ĥ0 = ω̂2
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Chapter I

1 Introduction

1.1 World energy problem

The world population and its growth rate determine energy consumption. According to

the recent United Nations (UN) estimates (as of May 2019), the current world population

is over 7.7 billion people [1] and is still growing (see Fig.1.1). In the best case scenario,

it will start decreasing by 2075. The "high" UN scenario predicts that the population

of 10 billion people will be exceeded by 2050 and will continue growing. This, in turn,

results in a rapid increase in the demand of energy and the necessity of its production.

Figure 1.1: Time evolution of the total world
population [1] (left) and the corresponding energy
consumption in Mtoe, million tonnes of oil equivalent
[2] (right). The probabilistic population up to
2100 based on "high" (upper95 and upper80) and
"low" (lower95 and lower80) UN projections is
indicated by thin/thick dashed and dotted blue
curves, respectively. The "medium" projection is
indicated by blue circle markers. Inset: zoom in a
region from 1971 to 2015.

Currently, fossil fuels solve the problem

of the energy demand. Petroleum,

coal and natural gas (up to 85% in

total) form the primary world sources

of energy. However, they are limited

and products of their burning have a

significant impact on the atmosphere

leading to climate changes. In Fig.1.2

we show the global average long-term

concentration of CO2 in the atmosphere

[3] and global annual fossil fuel CO2

emissions according to the Carbon

Dioxide Information Analysis Center

(CDIAC) [4]. The CO2 emissions have

increased rapidly over the past century.

The global emission of carbon dioxide

had been reported to be saturated from

2014 to 2017. However, the recent report provided by the Global Carbon Project stated a

2.7% emission growth in 2018 [5]. The amount of carbon dioxide in the atmosphere has
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grown significantly since 1700s, which correlates directly with its emission and explained

by the global industrialisation that began in 17th-18th centuries. The atmospheric

carbon residence time is around five years but is much greater in the ocean. Carbon

Capture and Storage (CCS) might be able to reduce the future emitted carbon dioxide

but cannot decrease its current amount, which is 411 ppm as of 2019 according to the

latest measurement [6] (300 ppm level has never been exceeded till the last century).

Figure 1.2: Time evolution of the atmospheric
concentration of carbon dioxide, CO2, in parts per
million, ppm [3] (left) and its emission in billion
tonnes (Gt) per year [4] (right). A time interval from
1751 to 2015 is covered.

On the other hand, taking into

account the current production rates,

we have known resources of coal, oil

and natural gas for 114, 51 and 53

years, respectively. Although these

numbers are provisional and depend on

the economical situation and on the

consumption rate, they still provide

the perspective picture. An energy

transition is unavoidable. There is a

small number of alternative, non-fossil

energy sources that potentially can

provide long-term energy production:

energy generated from renewable

resources, nuclear fission and nuclear fusion. The main concern about renewable energy

is its strong time dependence, which requires energy to be stored and thus results in

additional costs and technical challenges. Fission waste is highly radioactive with long

life-times but its amount is relatively low. Leaving the safety problem beyond the scope

of this discussion, we have to highlight that the lifetime of the uranium isotope reserves

with the current types of reactors is around 70-80 years, i.e. comparable to that of fossil

fuels. The latter, fusion energy, is less understood and developed and represents the focus

of this study.
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1.2 Nuclear Fusion

The Sun is the main energy source in our solar system. It releases 384.6 yotta watts

or around 4.26 million metric tons each second according to mass-energy equivalence

Einstein’s formula. There are two main concepts to bring fusion to Earth: magnetic

confinement fusion (MCF) in tokamaks and stellarators (or reversed field pinches) and laser

or beam induced inertial confinement fusion (ICF). Here we focus on MCF in tokamak

devices. The current goal is to achieve controlled fusion through the DT fusion reaction:

D + T →4
2 He(3.5MeV) + n0(14.1MeV) + 17.6MeV.

Figure 1.3: Cross section of main MCF fusion
reactions. E is energy in keV.

The corresponding mass defect can

be calculated as ∆m = mD + mT −(
m4

2He
+mn0

)
and gives 3.1 · 10−29kg

of mass loss per reaction, or the energy

release of ∆E = ∆mc2 = 17.6MeV,

i.e. 3.5MeV per nucleon is released in

this reaction. In contrast, at the high

atomic mass end of the curve of binding

energy

235
92 U + n0 →

→89
36 Kr +144

56 Ba+ 3n0 + 210MeV

produces 0.9MeV per nucleon. Other popular fusion reactions are

D +D → T (1.01MeV) + p+(3.02MeV)
∗

→ 3
2He(0.82MeV) + n0(2.45MeV)

∗∗
;

D +3
2 He→4

2 He(3.6MeV) + p+(14.7MeV).

In Fig.1.3 we compare their cross sections. The DD and D3He cross sections are relatively

lower than that of DT. The reaction reactivity plotted as a function of temperature is 1-2

orders of magnitude larger for the DT reaction than DD and D3He in an interval from 1
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to 100keV and has a maximum. This, in turn, provides an optimum temperature. The

reaction cross section is one of the reasons why the DT fusion reaction is considered as

the most preferable nowadays. Fusion in this form has potentially inexhaustible resources.

Deuterium produced by nature is abundant in the ocean. Tritium is radioactive with a

half-life of around 12.3 years. Thus, tritium is rare and has to be produced. 6
3Li + n0,

7
3Li+ n0, 10

5 B + n0 have tritium in their products. The following reaction is to be tested

on ITER

6
3Li+ n0 →4

2 He(2.05MeV) + T (2.75MeV)

in a breeder blanket for testing tritium production (lithium-6 is 7.5% of natural lithium,

the rest 92.5% is lithium-7). We have to note here that while ITER will be valuable for

testing tritium breeding blankets, its operation will not rely on tritium production. The

alpha particle generated by the DT reaction carries about 1/5 of total fusion energy. It

is charged and therefore is able to interact with fuel ions. Neutrons carry about 4/5 of

the produced fusion energy and being uncharged tend to escape the fuel. To collect the

neutrons, capture their energy and breed tritium, the blanket modules are placed around

the plasma in front of the vacuum vessel inner wall. They therefore provide a shield for

the wall from the fusion generated highly energetic neutrons and in-vessel heat loads.

Inside the blanket modules, the neutrons are to be slowed down and their energy is to

be gathered by a coolant (e.g. water or helium coolants) in the form of heat [7]. The

blankets contain 6
3Li to breed tritium that is then to be used in the DT reaction providing

the self-sustaining mechanism. This breeding blanket concept is to be tested on ITER

and is then to be applied to DEMO.

1.3 Ignition criteria

The power balance can be written as Pin = PL + dW/dt. Here Pin is the heating power,

PL is the power that leaks out of the plasma and W is the thermal energy of the plasma.

Pin has two components: external heating, PH , and the heating provided by the fusion

produced alpha particles, Pα. External heating sources such as neutral beam injection

(NBI), ion and electron cyclotron heating (ICRH and ECRH) are required to achieve
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plasma temperatures necessary to start fusion. Defining the energy confinement time, τE,

as W/PL, we write in steady state: PH = [3nT/τE − n2 〈σV 〉Eα/4]V , where n and T are

the plasma density and temperature, Eα is energy of alpha particles, 〈σV 〉 is the reaction

reactivity and V is the characteristic volume of the system. PH > 0 defines a burning

plasma, while PH < 0 provides the ignition condition:

nTτE >
12T 2

〈σV 〉 Eα
, (1.1)

also known as the Lawson criteria [8]. One can also introduce the fusion gain factor, Q, as

the ratio of the fusion power output to the power necessary to keep the plasma in steady

state, i.e. external heating power. Q =∞ corresponds to ignition. The burning plasma

regime starts at Q = 5. The ITER goal in its inductive regime is Q & 10. We have to stress

here that for future power plants, the actual "engineering" Q factor is much lower as it takes

into account the fact that fusion energy extracted from the reactor has to be converted into

electricity and the heating systems are not 100% efficient. Eq.1.1 implies a pure plasma in

the absence of any impurities. Considering the Lawson parameter, nτE, as a function of

temperature, we find that it has a minimum around 25keV and thus ignition is easier to

achieve at this temperature. This is to be used in ICF. In MCF including the temperature

dependence, we obtain a good fit for 10keV < T < 20keV: 〈σV 〉 = 1.1 · 10−24T 2m3s−1.

Thus, for the hydrogen (DT) plasma, Eq.1.1 gives 3 · 1021m−3keVs. The left hand side of

Eq.1.1 is called the fusion triple product. The Lawson criteria of the form Eq.1.1 is usually

applied to magnetically confined plasmas. ICF usually operates with nτE or ρrp, where ρ

is the mass density and rp is the radius of fuel pellet. Estimating the energy confinement

time as rp/VT i with VT i being the ion thermal velocity, we write ρrp > 0.6kgm−2 for the

ignition requirement. So the aim of ICF is to achieve the maximum density within a finite,

very short period of time, while MCF tends to reach the maximum energy confinement

time keeping the density low. In ICF the inertia plays a key role keeping the fuel together.

In MCF the plasma is held by the magnetic fields. The latter is the subject of this study.
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1.4 Physics of plasmas

Not every ionised gas can be treated as a plasma. A plasma is quasi-neutral, i.e. ion and

electron densities are nearly equal. However, the charge imbalance is still sufficient for

the electromagnetic effects to play a role. To estimate the charge difference, we write

Poisson’s equation

∆Φ = − e

ε0

(Zini − ne) , (1.2)

where Φ is the electrostatic potential, ni/e is the ion/electron density and eZi is the ion

charge. Estimating the electrostatic potential as ∼ Te/e (Te is the electron temperature)

and the left hand side of Eq.1.2 through ∆Φ ∼ Φ/L2 with L being the characteristic

length of the considered system, we obtain:

|ni − ne|
ne

∼ r2
D

L2
� 1

with rD =
√
ε0Te/nee2 being the Debye radius. Zi = 1 has been assumed here. L can

be understood as |∇r lnn|−1, the density gradient length scale. Quasi-neutrality holds

only outside the Debye sphere, i.e. a sphere of radius rD. Hence, to behave as a plasma,

an ionised gas must satisfy the requirement: L� rD. The second characteristic feature

of plasma is its collective behaviour. The number of particles in the Debye sphere is

ND = (4π/3)ner
3
D � 1. ND is also called the plasma parameter. In plasma, collisions

between charged and neutral particles must not be dominant and can be considered as

being infrequent. Charged particles can be neutralised colliding with neutrals due to

the charge exchange process. Charged particles have to remain charged within a period

∼ Ω−1 for a gas to be defined as a plasma in addition to the conditions described above

(Ω here is a characteristic frequency of plasma oscillations). This requirement reads as

τΩ� 1 with τ being the time between charged particle and neutral collisions. Therefore,

the plasma should be dense enough and its temperature is high enough so that only a

relatively few numbers of neutrals could exist.

Let us start with a brief discussion of motions of each individual particle and then consider

the effects of collective motion. Each charged particle in the magnetic field experiences
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the Lorentz force in accordance with

mj
dVVV j

dt
= eZj [VVV j ×BBB] + eZjEEE, (1.3)

where eZj and mj are the particle charge and mass, respectively. EEE is the electric field,

BBB is the magnetic field and VVV j is the velocity of the particle. j is used to label particle

species. In the absence of the electric field, the particle experiences a magnetic force

that is orthogonal to BBB and thus it gyrates around the magnetic field line. The particle

trajectory becomes helical provided the component of velocity parallel to the magnetic

field, V‖, is non-zero. The radius of this circular motion is called the Larmor radius and

is defined as ρcj = V⊥/ωcj. ωcj = eZjB/mj is the corresponding cyclotron frequency of

a species j. The component of velocity perpendicular to the magnetic field lines, V⊥,

being estimated through the thermal velocity of a species, provides ρcj ∼ mjVTj/eZjB.

Defining the guiding centre as the point or line around which a charged particle gyrates,

we note that this line follows the BBB field line provided the magnetic field is homogeneous

and its field lines are straight. The particle drift effects force the guiding centre to drift

away from a certain field line. Replacing eZjEEE in Eq.1.3 with FFF , where FFF is a constant

homogeneous force, allows one to define individual particle drifts. The parallel component

of FFF simply accelerates the charge along the field line, while its perpendicular components,

FFF⊥, provide a constant drift velocity,

VVV ⊥ =
FFF⊥ ×BBB
eZjB2

. (1.4)

If the force is associated with the electric field, then Eq.1.4 gives the expression for the

EEE ×BBB drift, VVV E = [EEE ×BBB] /B2, that is independent of particle properties and thus does

not generate a current. Taking into account the fact that the magnetic field lines are not

straight, we have to introduce the centrifugal force in Eq.1.4. Therefore, we derive VVV cur =

(mjV
2
‖ /eZjB

2) [RRRc ×BBB] /R2
c for the so called curvature drift. Rc is the radius of curvature

of the particle trajectory along the field lines. The magnetic field has a spatial dependence,

i.e. is not homogeneous, in most cases, and then the gyrating particle has to experience a

varying magnetic field. This provides the ∇B drift with VVV ∇B = (ρcjV⊥/2) [BBB ×∇∇∇B] /B2.

In a tokamak, ∇∇∇B/B = −∇∇∇R/R and hence the above expressions for the curvature

and ∇B drifts can be combined to give VVV b = (mj/eZjB)(V 2
‖ + V 2

⊥/2) [BBB ×∇∇∇B] /B2 for
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the total magnetic drift. It has no mass dependence6 but being charge dependent it

provides a current. The electric field can vary in time, which results in the polarisation

drift. Its velocity is given by VVV pol = (mj/eZjB
2)∂EEE/∂t. It is charge dependent, and the

corresponding current is known as the polarisation current.

All the above drifts are associated with motion of each individual charged particle in the

electro-magnetic field. However, charges also move relative to each other. According to

Poisson’s equation, this can modify the applied electric field due to changes in charge

density. In addition, this can modify the magnetic field in accordance with - Ampère’s

law as moving charged particles generate a current. Treating plasma as a fluid (more

detailed information can be found in the following section), we can derive drifts related to

the particle collective motion. The force balance equation reads

njmj
duuuj
dt
≡ njmj

[
∂uuuj
∂t

+ (uuuj · ∇∇∇)uuuj

]
= −∇∇∇pj −∇∇∇ · Πj + njeZj [EEE + uuuj ×BBB] (1.5)

(to be derived in Sec.1.5). The left hand side is the ion/electron inertia (the latter is

usually neglected as me � mi). The first term on the right hand side of Eq.1.5 is the

ion/electron pressure gradient, the second term represents the divergence of the viscosity

tensor. uuuj is the ion/electron flow velocity. Crossing both sides of Eq.1.5 with BBB, we

obtain

uuu⊥j =
EEE ×BBB
B2

+
mj

eZjB2

[
BBB × duuuj

dt

]
+
BBB ×∇∇∇pj
njeZjB2

+
BBB ×∇∇∇ · Πj

njeZjB2
.

The first term on the right is the EEE × BBB drift introduced above. The second term

corresponds to the inertial drift. We note that if acceleration results from a change in the

electric field, the inertial drift is called the polarisation drift. The third term provides

the diamagnetic drift, while the fourth term gives the viscosity drift. Both of them are

in opposite directions for electrons and ions and thus provide a current perpendicular to

the magnetic field. The diamagnetic and viscosity drifts cannot be introduced from the

picture of each individual particle. They result from the plasma collective behaviour being

associated with the ion/electron density/temperature gradient or the viscosity gradient.

Having defined plasma and its main drifts, we have to introduce two main approaches

6if V⊥ ∼ V‖ ∼ VTj provided the electron and ion temperatures are comparable.
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used for its description. This is the subject of the forthcoming section.

1.5 Plasma description

In the previous section, we have considered the dynamics of a single charged particle in the

electro-magnetic field. However, to describe a multi-particle system such as plasma or gas,

we have to take into account that the particle motions and the electric and magnetic fields

are coupled. Hence, the problem becomes self-consistent: the particle trajectories must be

calculated self-consistently with the fields and vice versa. One would need to solve a set of

coupled equations of motion to determine the interaction between charged particles and

add Maxwell’s equations to keep the solution consistent with the electro-magnetic field.

These calculations might be possible but computationally are very expensive. Moreover,

the convergence of such a solution is not guaranteed. In a typical tokamak plasma, the

number of particles is around 1019 − 1020 per cubic meter. The inertial plasma is even

more dense. To simplify the problem, a statistical approach is implemented.

In a gas or plasma, particles are determined by position and velocity at a certain moment

of time, i.e. {t, rrr,VVV }. We define the particle distribution function as the density in 6D

phase space:

dnj = fj (rrr,VVV ) dVVV . (1.6)

The total density is then to be introduced as the particle distribution function integrated

over velocity space, nj(t, rrr) =
∫
fj(t, rrr,VVV )dVVV , and represents its 0th moment. j here can

be used not only to label electrons and ions, but also different quantum states of atoms

and molecules (the latter is usually applied to a gas). The particle distribution function,

fj, satisfies the following 6D continuity equation:

∂fj
∂t

+
3∑
i=1

∂

∂ri
(fjVi) +

3∑
i=1

∂

∂Vi

(
fjV̇i

)
= Cj (1.7)

(dot here denotes the derivative with respect to time). The right hand side represents the

collision operator for species j. V̇i is the acceleration connected with external forces. In a

plasma this is associated with the Lorentz force in accordance with Eq.1.3. Therefore,
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Eq.1.7 reduces to

dfj
dt
≡ ∂fj

∂t
+ VVV · ∇∇∇rrrfj +

eZj

mj

[EEE + VVV ×BBB] · ∇∇∇VVV fj = Cj. (1.8)

Here ∇∇∇rrr/VVV fj denotes the gradient of the distribution function in rrr/VVV space. Eq.1.8 is a

kinetic equation (or the Boltzmann equation) in its general form. If its right hand side

is zero, then it is known as the Vlasov equation. It can be written for any generalised

coordinate, qi, and momentum, pi, in accordance with the Hamiltonian formalism. When

collisions are taken into account, the particle distribution function is no longer constant

along the phase space trajectory. The collision operator is to be understood as

Cj =
∑
k

Cjk (fj, fk),

where j and k denote the colliding particle species. The Boltzmann collision integral is

given by

Cjk (fj, fk) =

∫
VVV k

∫
Ω

(
f ′jf

′
k − fjfk

) dσ
dΩ
|VVV j − VVV k| dΩdVVV k, (1.9)

where f ′j = fj
(
VVV ′j
)
and f ′k = fk (VVV ′k). Vj,k and V ′j,k denote velocities before and after the

collision, respectively. dσ is the differential size of the corresponding cross section, dΩ

is the solid angle element [9, 10]. Thus, the Boltzmann equation becomes an integro-

differential equation that includes all colliding particle distribution functions. To solve

it in its general form is much of the challenge. The great complication comes from the

collision integral. However, in a number of problems it can be simplified or replaced with

a model form. Indeed, the Boltzmann collision integral is not convenient to describe the

Coulomb collisions that are governed by small angle scattering events [9, 11]. Instead, the

Landau collision integral is employed:

Cjk (fj, fk) = −2π ln Λ(ZjZke
2)

2

mj

∂

∂Vα

∫
Uαβ

(
fj
mk

∂f ′k
∂V ′β
− f ′k
mj

∂fj
∂Vβ

)
dV ′V ′V ′, (1.10)

where the tensor Uαβ is defined as Uαβ = δαβ/u
r−urαurβ/(ur)

3 with uuur = VVV j−VVV k, ur = |uuur|.

ln Λ is the Coulomb logarithm and δαβ denotes the Kronecker delta. The Landau collision

integral can be further simplified. For example, assuming a small fraction of heavy particles

in a plasma, nj � nk, we write ∂f ′k/∂V ′β = −(mk/Tk)V
′
βf
′
k, where the background has
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been assumed to be Maxwellian. Therefore, Eq.1.8 with Eq.1.10 reduces to

dfj
dt

= ν̃jk
∂

∂VVV

(
VVV fj +

Tk
mk

∂fj
∂VVV

)
(1.11)

with

ν̃jk =
4
√

2πm
1/2
k ln Λ(ZjZke

2)
2
nk

3mjT
3/2
k

.

Eq.1.11 is called the Fokker-Planck equation [9, 12, 13]. Generally, the Fokker-Planck

operator can be applied when changes in the electron velocity or energy are small [14].

Despite being linear, even in this form the equation is written in 6D phase space and

thus is still computationally expensive. Further simplifications are required to reduce the

dimension of the problem. One of the examples is called the drift kinetic equation, i.e.

a kinetic equation averaged over the gyro-scale (its detailed derivation can be found in

[15, 16, 17]). Indeed, in the electro-magnetic field we split the charged particle motion into

the fast gyro-motion and the motion of the guiding centre. Taking L as a characteristic size

of the system, we impose δDKj = ρcj/L � 1 and ω0/ωcj ∼ δDKj � 1, where ω0 = VTj/L

is a characteristic frequency of the system we consider. Each term in the drift kinetic

equation is assumed to be of order δDKj . This approximation does not allow any fast

variations and requires relatively slow EEE ×BBB motion (compared to gyration). It reads

∂fj
∂t

+V‖∇‖fj+VVV E ·∇∇∇fj+VVV b·∇∇∇fj+
1

V

[
µ
∂B

∂t
+
eZj
mj

(
V‖bbb+ VVV b

)
·EEE
]
∂fj
∂V

= Cj (fj) . (1.12)

This drift kinetic approach7 and the kinetic equation of the form Eq.1.12 are to be applied

7Schematically, the initial kinetic equation can be written as ωcj ∂fj/∂φ|rrr,K,µ + α̂fj = 0 with φ being
the gyro-angle, K = V 2/2 and µ = V 2

⊥/2B for fj = fj(t, rrr,VVV ) = fj(t, r̃rr,K, µ, φ), where r̃rr = rrr+VVV ×BBB/Bωcj .
α̂ represents the rest of the differential/integral operators that act on fj . The collision operator, Cj , in α̂ is
assumed to be of order δDKj ωcj or smaller. Expanding the particle distribution, fj =

∑
n f

(n)
j (δDKj )

n, we

write ωcj ∂f
(0)
j /∂φ

∣∣∣
rrr,K,µ

= 0 for the leading order equation and hence we learn that f (0)j is φ-independent.

Proceeding to next order, we have ωcj ∂f
(1)
j /∂φ

∣∣∣
rrr,K,µ

+ α̂f
(0)
j = 0. To annihilate the first term, we

integrate this equation over the gyro-angle to obtain 〈α̂〉rrr,K,µφ f
(0)
j = 0. Here 〈...〉rrr,K,µφ denotes the gyro-

phase averaging operator at fixed rrr,K, µ. The latter provides Eq.1.12 in the absence of plasma drifts
across the field lines. To capture the guiding centre drift, we solve the O(δDKj ) equation for f (1)j written
as a function of f (0)j . Either perturbative or recursive techniques are allowed. The O(δDKj ) equation is

equivalent to ωcj ∂f
(1)
j /∂φ

∣∣∣
rrr,K,µ

= −(α̂− 〈α̂〉rrr,K,µφ )f
(0)
j . Integrating the latter over φ provides f (1)j as a

function of f (0)j . Substituting this distribution function into the solvability condition, 〈α̂fj〉rrr,K,µφ = 0, i.e.
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to the neoclassical tearing mode in this work and thus this notation is to be maintained

throughout the study.8 Here ‖ denotes a vector component along the magnetic field lines,

∇‖ = bbb · ∇∇∇, bbb = BBB/B. VVV E = [EEE ×BBB] /B2 with EEE = −∇∇∇Φ − ∂AAA/∂t, where AAA is the

magnetic vector potential, and VVV b = −VVV ‖ ×∇∇∇
(
V‖/ωcj

)
are the EEE ×BBB and magnetic drift

contributions, respectively. VVV b includes ∇B and curvature drifts. A low beta plasma

approximation is employed. All spatial derivatives are taken at fixed magnetic moment,

µ = V 2
⊥/2B, and kinetic energy, K = V 2/2, ⊥ denotes a vector component perpendicular

to the magnetic field lines. The explicit representation of the collision integral in Eq.1.12 is

to be derived by gyro-averaging the Fokker-Planck collision operator but is usually replaced

with a model for a particular problem. In this study, Cj is the momentum-conserving

collision operator introduced below.

Although the drift kinetic approach is widely used to describe plasma instabilities, plasma

equilibrium and transport, it can also be important to include the electro-magnetic field

spatial variations on the scale of Larmor radius. This is the subject of the gyro-kinetic

theory. As the gyro-kinetics is not to be applied below, we leave its description beyond

the scope of this work. A more detailed information can be found in [17, 18].

Before we move further, let us briefly discuss the plasma magnetohydrodynamic (MHD)

description. A set of equations for moments of the particle distribution function can be

obtained by multiplying the initial kinetic equation, Eq.1.8, by powers of the velocity.

The plasma fluid theory typically focuses on the first three moments of the particle

distribution and consists of five scalar equations. Multiplying both sides of Eq.1.8 by V 0
α

and integrating over velocity space yields

∂nj
∂t

+∇∇∇ ·ΓΓΓj = 0 (1.13)

in the absence of any particle sinks and sources. ΓΓΓj is the particle flux defined as ΓΓΓj = njuuuj

with uuuj = (1/nj)
∫
VVV fjdVVV being the flow velocity of species j. nj and ΓΓΓj represent the

0th and 1st moment of the distribution function, respectively. We note that the right

hand side of Eq.1.13 is non-zero if inelastic collisions such as ionisation and recombination

the initial drift kinetic equation in the absence of plasma drifts to leading order, we obtain Eq.1.12 for
f
(0)
j . f (0)j here is to be replaced with fj for simplicity unless otherwise stated.

8(dµ/dt)∂fj/∂µ is omitted as a higher order correction since dµ/dt = O(δDKj β), i.e. terms proportional
to ∂/∂t in dµ/dt do not contribute in the island rest frame, and ρcjbbb · ∇∇∇× bbb ∼ δDKj β.
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are considered. Eq.1.13 represents conservation of a total number of particles and is to be

solved for nj . However, the particle flow is unknown at this stage and is to be determined

from the next moment equation. Multiplying both sides of Eq.1.8 by mjVα and integrating

over VVV , after some algebra we obtain

njmj

[
∂uuuj
∂t

+ (uuuj · ∇∇∇)uuuj

]
= −∇∇∇pj −∇∇∇ · Πj + njeZj [EEE + uuuj ×BBB] +RRRj. (1.14)

Eq.1.14 is a generalisation of the equation of motion, Eq.1.3, introduced above to consider

plasma drifts. The plasma pressure, pj, is defined as

pj =
njmj

3

〈
(VVV − uuuj)2〉

VVV
= njTj,

where 〈...〉VVV denotes integration over VVV with weight fj(t, rrr,VVV ). The viscosity tensor, Πj,

is given by

Πjαβ = Πjβα = njmj

〈
(Vα − ujα) (Vβ − ujβ)− δαβ

3
(VVV − uuuj)2

〉
VVV

.

The last term on the right hand side of Eq.1.14 is the friction force of species j. It

originates from the collision integral being defined as

RRRjα =

∫
mjVαCj (fj) dVVV .

Like the collision operator, the friction force is also additive, i.e. Rj =
∑

k Rjk (j and

k denote particle species). pj, Πj and RRRj are unknown in Eq.1.14. Thus, higher order

moments of the particle distribution are required to provide the equations to determine

them. However, every following moment will generate additional unknowns. So the

starting kinetic equation, Eq.1.8, is equivalent to the infinite system of equations for the

moments of the distribution function. Therefore, at some stage we have to introduce a

closure relation to loop the system. For example, if we started with the Vlasov equation

and worked in the absence of plasma viscosity, then the plasma pressure only would be

left unknown in Eq.1.14. Imposing the adiabatic plasma behaviour, pVγ = const (γ here

denotes Poisson’s constant), we close the system. Keeping the plasma viscosity and the

friction force, we introduce the second moment. Integrating Eq.1.8 with weight mjV
2/2,
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we find the energy balance equation:

∂

∂t

(
njmj

2
u2
j +

3

2
njTj

)
+

+
∂

∂rα

[(
njmj

2
u2
j +

5

2
njTj

)
ujα + Πjαβujβ + qjα

]
= njeZjEαujα +Rjαujα +Qj.

(1.15)

Here

qqqj =
njmj

2

〈
(VVV − uuuj)2 (VVV − uuuj)

〉
VVV

represents the heat flux and

QQQj =
1

2

∫
mj(VVV − uuuj)2Cj (fj) dVVV

is the energy gain of species j due to collisions with species k, i.e. Qj =
∑

kQjk. Eq.1.15

can be combined with Eqs.1.13,1.14 to give the heat balance equation:

3

2
nj

[
∂

∂t
+ (uuuj · ∇∇∇)

]
Tj + njTj∇∇∇ · uuuj + Πjαβ

∂ujα
∂rβ

+∇∇∇ · qqqj = QQQj. (1.16)

Eqs.1.15,1.16 include pj, Πj and RRRj but introduce additional unknowns, qqqj and QQQj. To

close a system of Eqs.1.13,1.14,1.15/1.16, Πj , RRRj , qqqj and QQQj have to be written in terms of

nj, uuuj, Tj and their spatial derivatives. This procedure is provided by the hydrodynamic

approximation with the sufficiently large characteristic spatial and time scales and when

collisions are frequent. The criteria is as follows:

λmfp,j � L, ρcj � L,

where L is the characteristic size of the system, λmfp,j is the mean free path of species j.

L is usually understood as the density/temperature gradient length scale, i.e. |Ln,T | =

|∇r lnn, T |−1. The characteristic time, τ , is assumed to be greater than the time between

collisions, ν−1
jj/jk (j and k denote the colliding particle species), or the inverse cyclotron

frequency, ω−1
cj . In a fully ionised plasma, the electric field is assumed to be weak

compared to ∼ 4πe3 ln Λnj/Te(4πε0)
2, the Dreicer field [9]. In the non-homogeneous
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magnetic field the criteria has to include drifts of the Larmor orbits [9]. In regions

of plasma with low density, the collisionality is low and thus the kinetic approach is

required. In the hydrodynamic approach, Πj, RRRj, qqqj, QQQj and ∇Tj, Tj − Tk, uuuj − uuuk,

Wjαβ = ∂ujα/∂xβ +∂ujβ/∂xα− (2/3)δαβ∇∇∇·uuuj (introduced to denote shifts of temperature

and flow velocity from the equilibrium) are linearly connected. The latter, in turn, can be

linearly expressed through the perturbed part of the particle distribution function (its

equilibrium contribution is assumed to be Maxwellian), f 1
j . Thus, the problem reduces to

the determination of f 1
j . Once, it is known, the transport coefficients can be calculated. A

set of Eqs.1.13,1.14,1.15/1.16 with known transport coefficients is called the Braginskii fluid

equations [9, 19]. One of the approaches to find f 1
j is considered in the Chapman-Enskog

theory [9, 20].

Eqs.1.13,1.14 written for the ion and electron plasma components form the so called

plasma two-fluid MHD equations. The electron inertia is usually neglected as me � mi.

The ion/electron pressure and temperature are connected via the adiabatic law. Summing

the ion and electron continuity equations, we obtain

∂ρ

∂t
+∇∇∇ · (ρuuuj) = 0,

where the mass density ρ ≈ nimi. Similarly, we obtain the force balance equation,

nimi
duuui
dt

= −∇∇∇p+ JJJ ×BBB,

from Eq.1.14 written for ions and electrons. JJJ is the plasma current density defined as

JJJ = eZiniuuui − eneuuue. p is the total plasma pressure. According to Ohm’s law, the current

and the electric field are related via EEE + uuu×BBB = η̂JJJ (η̂ is the plasma resistivity tensor).

The MHD theory is then called resistive MHD. If η̂ = 0, it reduces to the ideal MHD.

The two fluid MHD can be rewritten in the form that excludes the explicit representation

of the electric field and currents in it [9]:

∂BBB

∂t
=∇∇∇× [uuu×BBB]− 1

µ0

∇∇∇×
(
σ̂−1 [∇∇∇×BBB]

)
,

njmi
duuu

dt
= −∇∇∇

(
p+

B2

2µ0

)
+

1

µ0

(BBB · ∇∇∇)BBB,
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∂nj
∂t

+∇∇∇ · (njuuu) = 0,

p = p (nj) .

(1.17)

This is referred to as a single fluid MHD. Here uuu = uuui, nj = ne ≈ ni, σ̂ is the conductivity

tensor, σ̂ = η̂−1. The last equation implies the adiabatic law. B2/2µ0 is called the

magnetic field pressure. The first term on the right hand side of the first equation in

Eq.1.17 is called the frozen in contribution. If this term is dominant, the first equation of

Eq.1.17 provides the frozen in condition. Plasma and fields evolve together to conserve

the magnetic flux, i.e. the flux is frozen into the plasma, provided η̂ = 0 [9, 12]. The

second term describes the magnetic field diffusion through the plasma. The ratio of these

two terms,

S =
|∇∇∇× [uuu×BBB]|∣∣µ−1

0 ∇∇∇ · (σ̂−1 [∇∇∇ ·BBB])
∣∣ ≈ |∇∇∇× [uuu×BBB]|∣∣ηµ−1

0 ∇∇∇2BBB
∣∣ ≈ µ0LcA

η
,

is known as the Lundquist number. cA =
√
B2/(µ0njmi) is the Alfvén velocity (note: it

can be estimated from the second equation in Eq.1.17). L is the characteristic length

scale. η̂ has been replaced with a scalar η for simplicity. When S . 1, the resistivity

plays a significant role9. When the current diffusion term dominates (or comparable to

the frozen in term), the magnetic field topology can be reformed. This is the subject to

the magnetic field line reconnection theory [25]. The event when the magnetic field lines

approach and reconnect might be accompanied by the formation of magnetic islands. The

magnetic reconnection can be forced in experiments and can occur spontaneously, being

triggered by plasma instabilities. Such a plasma instability is called a tearing mode and is

to be considered in the current work.

Although the kinetic plasma theory is used throughout this study, it was important to

provide a brief introduction to the plasma fluid theory. Firstly, it justifies the choice of

the kinetic approach to consider tearing modes in low collisionality plasmas. Secondly,

it introduces the main terminology applied below. The tokamak plasma equilibrium is

determined by the Grad-Shafranov equation (e.g. [9, 12]). As this is not the subject of

the current study, we do not discuss it here. A pioneering work by Grad and Shafranov

9In some cases, even for very large S, resistivity can be important.
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can be found in [21, 22, 23, 24].

1.6 Tokamak concept

In MCF a magnetic field is applied to hold the plasma. Let us consider a cylinder

of plasma. To avoid end-losses (e.g. they occur in magnetic mirror systems [26],

pinches [9]), it is bent around on itself. This creates a closed loop system (see

Fig.1.4) and can be achieved by placing a set of toroidal magnetic field coils around

the plasma or by passing a current carrying rod through the centre of the torus.

Figure 1.4: Sketch of a conventional tokamak
(source: [27]). A set of the toroidal field coils, the
inner/outer set of the poloidal field coils, the vacuum
vessel region are indicated. The toroidal and poloidal
magnetic field components form the total, helical
magnetic field.

The first technique is implemented in

the conventional tokamak configuration

(e.g. T10, DIII-D, JET, the

ITER tokamak that is now under

construction). It is shown in Fig.1.4.

The second technique is applied in

spherical tokamaks (STs, e.g. MAST,

NSTX, Globus-M). STs are compact

but topologically there is no difference

between conventional and spherical

devices. Using a single large conductor

inside the torus to generate the toroidal

magnetic field, Bϕ, around it allows the

aspect ratio, A, to be reduced (note: the tokamak aspect ratio is defined as R0/a, where

R0 is the major radius of the torus and a is its minor radius), A ∼ 1. This reduces the

total cost of the fusion reactor. Therefore, STs can in principle allow one to achieve the

same triple product factor as conventional devices but with only ∼ 1/10 of the total

magnetic field. Furthermore, a different plasma shaping allows one to avoid certain types

of plasma instabilities improving the plasma stability. Indeed, the plasma is more stable

on the inner section of the tokamak [9]. In a large aspect ratio tokamak with circular

poloidal cross section, the plasma particles spend approximately the same amount of time

on the inboard and outboard sides of the torus (slightly less in the inner region due to

shorter radius). In contrast, in STs plasma spends more time on the inside of the torus.
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This results in a great stability improvement. However, in modern conventional tokamak

devices the circular cross section has been replaced with a D-shaped poloidal cross section

where the inside surface of the torus is expanded. This shaping is typically more extreme

in an ST. The ST experimental results including operational limits are discussed in [28]

and the features of the ST plasma in [29]. In our current work, we impose conventional

tokamak geometry with circular cross section. The effects of elongation, triangularity

and the Shafranov shift can be introduced in our model. However, as we shall see in the

forthcoming sections, corrections of order ε2 and higher (ε = A−1 is the inverse aspect

ratio) would contribute only to the curvature term in the modified Rutherford equation

that is negligible in any conventional tokamaks and thus would not provide any significant

changes to the final results.

Figure 1.5: Sketch of a conventional tokamak
(source: [30]). The origin of the EEE × BBB drift in
tokamak plasmas is demonstrated.

The toroidal magnetic field component

only is not sufficient to maintain the

pressure in the plasma due to the

consequencies of the ∇B and curvature

drifts. In a tokamak, the magnetic

field is not homogeneous, Bϕ ∝ 1/R,

where R is a varying major radius of a

tokamak (R0 is its value at the magnetic

axis, see Fig.1.6), and thus there is

a gradient of the magnetic field that

points inwards (in the direction of the

high magnetic field side, see Fig.1.5). This, in turn, generates the ∇B plasma drift

orthogonal to the main magnetic field (i.e. vertically). Being charge dependent, this drift

is in opposite directions for the ions and electrons. The charge separation then forms a

vertical electric field. The toroidal magnetic field and the vertical electric field generate

an EEE ×BBB drift that points outwards resulting in a loss of confinement. Therefore, the

additional, poloidal magnetic field component, Bϑ, is required to provide a zero average

of the ∇B and curvature drifts, and thus to confine charged particles in the toroidal

magnetic field configuration. The total magnetic field is helical (see Fig.1.4). Roughly,

Bϕ : Bϑ : BV = 100 : 10 : 1 in the conventional device (note: BV is the vertical magnetic

field component provided by the vertical coils to shape the plasma and control its position;



1.6 Tokamak concept 19

a total poloidal field includes the poloidal component itself as well as the vertical magnetic

field contribution), while the toroidal and poloidal components are almost comparable in

STs. There are two main concepts to generate the poloidal magnetic field. In the first

concept, the poloidal field component is produced by the toroidal current through the

plasma (see Fig.1.4). This is a tokamak concept. To summarise, in a tokamak the plasma

is confined by the magnetic field generated by external coils around the torus/by passing

a current through the rod at the centre of the torus (toroidal magnetic field) and the

magnetic field resulted from the current in the plasma itself (poloidal magnetic field). The

tokamak was invented by I. Tamm and A. Sakharov in the 1950s in the Soviet Union.

The second, stellarator concept is to hold the plasma by an external single coil set. There

is no (or very little) current in the plasma itself and thus stellarators are more suitable

for steady state operation, while tokamaks require auxiliary facilities to achieve steady

state. The magnetic coils and hence the plasma shape are complicated in stellarators and

they are not easy to build. The stellarator was invented by L. Spitzer in 1951 [31]. The

tokamak and stellarator plasma are compared in [32].

Figure 1.6: A schematic representation of the conventional tokamak circular poloidal cross
section. r and R are the minor and major radii of the tokamak (r = a at the plasma edge and
R = R0 at the magnetic axis). ∆ = ∆(r) denotes the Shafranov shift of the magnetic flux
surfaces in the direction of the low magnetic field side. ϑ is the poloidal angle.

Focusing on a tokamak plasma, let us briefly discuss the heating and current drive

techniques. A toroidal current used to generate the poloidal field component is induced

by varying the magnetic flux through the plasma centre. This is known as inductive
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current drive and significantly limits the plasma performance by a pulsed mode. To

achieve continuous operation of a tokamak, alternative, non-inductive current drive

schemes [33, 34] are required. Furthermore, the non-inductive methods allow the plasma

current density profile to be shaped to control the plasma MHD instabilities. One of the

possibilities is to drive waves at the ion/electron cyclotron frequency (i.e. ion/electron

cyclotron current drive, I/ECCD) or lower hybrid resonance frequency (i.e. lower hybrid

current drive, LHCD). Another option is to inject highly energetic neutral particle beams

(energies ∼ several 100keV − 1MeV required to penetrate the plasma of ∼ 1020 particles

per cubic meter are estimated for ITER) [33]. This method is known as neutral beam

injection (NBI). The bootstrap current [35] that occurs in a low collisionality regime

generates itself in the plasma and hence is considered to be a crucial part of the steady

state additional current drive. The wave resonances (ion cyclotron, lower hybrid and

Alfvén wave heating) as well as NBI are also to be applied to heat the plasma towards

fusion conditions. Indeed, the Ohmic heating (OH) is not sufficient to reach plasma

temperatures required for ignition according to Lawson’s criteria. Firstly, the OH power

being proportional to plasma resistivity decreases with the electron temperature as T−3/2
e

(as the plasma conductivity is inversely proportional to the collision frequency and hence

the parallel component of the conductivity tensor, σ‖ ∝ T
3/2
e , in the fully ionised plasma).

Secondly, MHD instabilities (such as neoclassical tearing modes to be addressed in the

following chapters) set the current and pressure limits and can terminate the tokamak

discharge in a disruption.

1.7 Overview

In this chapter we have briefly discussed the fundamental principles required to develop

the novel neoclassical tearing mode theory that is discussed in the forthcoming sections.

Chapter II introduces a neoclassical tearing mode (NTM) in tokamak plasmas and

describes the existing approaches used for its understanding. Here we also derive the NTM

drift kinetic (DK) equation for the small inverse aspect ratio tokamak low collisionality

plasma that is then used to determine the NTM marginal magnetic island width (a

detailed derivation is presented in Appendix D). This is already sufficient for an accurate

calculation of the bootstrap current drive to the NTM magnetic island growth. However,
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the polarisation current contribution also requires the knowledge of the island propagation

frequency that is determined by plasma dissipation processes. Leaving the effects of

error fields and plasma sheared flows beyond the scope of this study, we note that the

only source of dissipation is the collisional dissipation from a thin boundary layer in the

vicinity of the trapped-passing boundary in pitch angle space. Here collisions become

comparable to the parallel streaming and thus we solve a 2D boundary layer problem

employing the momentum-conserving collision operator. This is addressed in Chapter

III. The full solution of the NTM DK problem derived in Chapter II is presented in

Chapters III and IV and includes the regions inside and outside the magnetic island

as well as a narrow layer in the vicinity of the island separatrix. This is crucial for an

accurate determination of the polarisation current contribution. The solution technique

implemented in the "RDK-NTM" (reduced drift kinetic NTM solver) code is discussed in

Chapter IV (a numerical scheme is derived in Appendices D and E). The results follow. In

Chapter V we use a similar approach and adopt RDK-NTM to solve a different problem -

we analyse stability of secondary modes driven by an island in phase space. A summary

and conclusions are given in Chapter VI.
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Chapter II

2 Neoclassical tearing modes

Tokamak confinement is provided by the fact that to 0th order plasma electrons and ions

follow the field lines that are located on the toroidally symmetric flux surfaces. Certain

kinds of instabilities in a tokamak plasma though change their geometry, and this can

significantly limit the plasma performance. The tearing mode is one of such instabilities

[36].

Neoclassical tearing modes are classified as large scale resistive magnetohydrodynamic

plasma instabilities [37]. They arise due to a filamentation of the plasma current density

parallel to the magnetic field lines. This filamentation changes the topology of the

magnetic flux surfaces, forming magnetic islands (their schematic representation is shown

in Fig.2.1 and Figs.2.2,2.3, and their formation mechanism is discussed in Appendix A).

Figure 2.1: Formation of magnetic islands in large
aspect ratio circular cross section tokamak geometry.
Poloidal cross section in the absence of NTM activity
(left); in the presence of NTM magnetic islands
(right). O and X denote the magnetic island O-
and X-points, respectively. Green arrow is in the
poloidal direction (figure courtesy of H. Wilson).

They occur when a poloidal beta10

threshold is exceeded (e.g. Fig.2.4),

and are usually triggered by another

MHD perturbation (e.g. sawtooth

oscillations, fishbone modes, edge

localised modes etc.) that creates a

seed island for NTMs. According to

the conventional theory [38], in the

absence of heat/particle sources, the

plasma pressure gradient in a region

inside the island and hence the total

plasma pressure in the core are reduced due to the enhanced particle and heat transport

across the island (see Fig.2.5). This flattening of the pressure profile, in turn, leads to a

hole in the bootstrap current near the island O-point. As the bootstrap current density

rises with beta, the island width also grows with beta, resulting in a degradation of

confinement [39, 40, 41]. Along with the fact that NTMs define operational limits of a

10Plasma beta is plasma pressure divided by the magnetic field pressure and hence the toroidal/poloidal
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Figure 2.2: A ring of toroidal plasma in
slab geometry in the absence of NTM activity.
{x, y, z} correspond to {r, ϑ, ϕ} with r being
the radial coordinate, ϑ the poloidal angle
and ϕ the toroidal angle, respectively (figure
courtesy of H. Wilson).

Figure 2.3: Same as Fig.2.2 but in the
presence of NTM magnetic islands. The O-
point at the centre of the island and the X-
point at the separatrix are indicated. The red
curve indicates the magnetic island separatrix,
i.e. the last closed magnetic flux surface of the
island (note: a similar structure can be seen
in the poloidal cross section of a takamak with
double-null divertor). Here poloidal/toroidal
mode numbers are m = 2/n = 1, respectively
(figure courtesy of H. Wilson).

magnetically confined plasma system, they can also lead to plasma disruptions through

mode locking, threatening the structural integrity of the first wall of a tokamak-reactor.

NTMs occur in the standard ELMy H-mode as well as in advanced scenarios. Hence,

understanding the physics of the NTM onset and its suppression is a key problem in

achieving controlled fusion. One of the most promising NTM control techniques is to

generate microwaves at the electron cyclotron frequency to drive current inside the island

to replace the missing bootstrap current. This O-point electron cyclotron current drive

(ECCD) has demonstrated complete NTM stabilisation on a number of machines [41] and

is to be applied to drive the island width down to mitigate the confinement degradation

and/or suppress the NTM in fusion devices such as ITER. However, an issue here is to

determine how much of the ECCD current is required for the NTM stabilisation and how

localised it must be, which leads to a necessity for a more detailed understanding of the

threshold physics. Experimentally, this threshold is related to a critical beta and a critical

island width. The latter is the subject of this study.

The NTM magnetic islands can either grow or shrink, depending on the current density

perturbation parallel to the magnetic field, J‖. According to the modified Rutherford

beta is 2µ0p/B
2
ϕ/ϑ.
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Figure 2.4: The Globus-M shot
26148 (saturated plasma current,
Iϕ = 200kA, Bϕ = 0.4T).
Time traces of the plasma current,
chord-averaged density, nl, magnetic
field perturbation obtained by the
Mirnov coil system and poloidal
beta reconstructed by EFIT. Arrows
indicate the beginning of the NTM
activity (at plasma beta βϑ ≈ 0.25).

Figure 2.5: Confinement loss due to the tearing mode
occurrence. Dashed curve indicates the radial plasma
pressure profile in the absence of the magnetic island.
Solid curve corresponds to the pressure profile in the
presence of the NTM. The pressure flattening inside
the island results in its reduction in a core. If plasma
temperature is constant, the bootstrap current density
is ∝ ε1/2B−1

ϑ ∇rp and hence has a hole inside the island
(figure courtesy of H. Wilson).

theory [41, 42, 43], the island time evolution is described by

2τR
r2
s

dw

dt
= ∆′ (w) +

∫
J‖dqqq, (2.1)

where τR ∼ µ0a
2/η is the resistive diffusion time, η is local plasma resistivity, w is the island

half-width and rs is the radius of the rational surface, i.e. denotes position of the magnetic

island. ∆′ is the classical tearing mode stability parameter [44, 45, 46]. It arises due to

a discontinuity in the perturbed magnetic flux gradient near the rational surface11 and

measures the free magnetic energy in the equilibrium current density to drive instability12.

In Rutherford’s original work [52], only the induced current associated with the island

growth contributes to J‖. Adding tokamak neoclassical effects, denoted by the second term

11The reconnection event occurs when resistivity is non-zero in the first equation of Eq.1.17, otherwise
the field line structure is conserved. Around the rational surface, there is a narrow boundary layer where
the ideal MHD theory can no longer be applied and should be replaced with resistive MHD. Outside
the layer, ideal MHD is valid. Solving Ampère’s law for the poloidal flux function, ψ, we have to match
solutions from inside/outside the layer. Hence, we find that ∇rψ has a jump across the island, which is
characterised by ∆′: ∆′ = lim

δr→∞
ψ−1

(
∇rψ|r=δr − ∇rψ|r=−δr

)
,∀δr > 0.

12see Appendix A. Eq.A.7/A.8 multiplied by rψ and integrated over r provides the magnetic energy
related to the destabilising effect due to the equilibrium current density gradient. See also [12] for a more
detailed derivation.
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on the right hand side of Eq.2.1 (qqq here is a tuple of generalised coordinates), leads to the

modified Rutherford equation (MRE). MRE’s main contributions come from the bootstrap

[47, 48], curvature [49] and polarisation [50, 51] currents and are denoted by ∆bs, ∆cur

and ∆pol, respectively. The perturbed bootstrap current exists in the banana regime in a

tokamak (i.e. trapped particles execute complete orbits before experiencing a collision)

and is written through a linear combination of the electron/ion density and temperature

gradients [34]. In the island region, the plasma pressure (i.e. density/temperature) can

be considered as a flux surface function due to the rapid parallel transport. Hence, the

pressure gradient and the bootstrap current perturbation tend to be excluded from the

inside of the island in the absence of any sinks and sources there. Outside the island, the

bootstrap current still exists [36]. For larger w13, ∆bs ∼ ε1/2 (Lq/Lp) (βϑ/w) [43, 53] and

hence is destabilising, except for reversed magnetic shear discharges. βϑ is poloidal beta;

the safety factor and pressure length scales are L−1
q,p = ±∇r ln q, p > 0. The saturated

island width, obtained by balancing ∆bs with ∆′, is then found to be proportional to

βϑ that sets a soft beta limit in a tokamak. When w becomes comparable to a (which

can occur for modes with lower poloidal numbers), the plasma discharge terminates in a

disruption. However, there is much additional physics must be included for smaller w.

According to experimental observations [54, 55], small magnetic islands heal themselves.

This fact suggests the existence of the tearing mode threshold mechanism that, as we shall

see later in this study, restores the density/temperature gradient in the island, weakening

the bootstrap drive, or introduces a new current density perturbation that opposes the

bootstrap current. This originates from the effects of finite radial diffusion [38, 56] and

finite orbit widths [50, 53, 57, 58, 59, 60, 61, 62, 63, 64]. The heat transport model

provides the threshold island width, wχ, when the radial diffusion can compete with the

transport along the magnetic field (or with free streaming in a hot plasma in the absence

of collisions). This threshold can be estimated through the ratio of heat conductivities

perpendicular and parallel to the magnetic field lines to the quarter power [38] and thus

has a strong dependence on the model used for the perpendicular conductivity.

Another source of concern comes from the finite orbit width effects. For small magnetic

islands of width comparable to the ion banana orbit width, ρbi, the polarisation current

plays a key role. When w ∼ ρbi, the electrons and ions respond in a different way to

13Islands much bigger than the ion poloidal Larmor radius.
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the magnetic perturbation: the ion response is determined by the EEE ×BBB drift, while the

electron response comes from free streaming along the field lines. Hence, an electrostatic

potential needs to be generated to maintain plasma quasi-neutrality. It is localised to the

island vicinity as the electrons and ions stay unaffected by the tearing mode perturbation

far from the island. In toroidal geometry, trapped ions experience the potential averaged

over their banana orbits. In contrast, electrons experience the local potential as their

banana orbit is ∼ (me/mi)
1/2 narrower than those of the ions [36]. This causes a difference

in their EEE ×BBB drifts and hence generates the neoclassical polarisation current across the

magnetic field lines. This current is not divergence-free. Thus, an electric field is required

to drive a current along the field lines that contributes to the island time evolution.

This contribution is denoted by ∆pol and tends to zero for w � ρbi, because then the

orbit-averaged and local electric fields are comparable. According to previous works

[64, 56], the polarisation current consists of an external contribution that comes from

the region outside the island and the layer part from the island separatrix vicinity. They

have been found to be comparable for small ρci/w but acting in opposite directions14.

For larger ρci/w, the layer part exceeds that from outside the boundary layer [64]. In

the current work, both the inside and outside island contributions are considered. ∆pol

previously derived from the drift kinetic theory has been found to be ∝ 1/w3, provided

w � ρbi [43, 53]. In [65] a heuristic model was proposed to provide threshold behaviour

at small island widths.

We define ∆cur to be the stabilising curvature contribution introduced by Glasser, Greene

and Johnson [49], which describes the tokamak curvature effects on the evolution of the

island width [66]. In large aspect ratio tokamaks, the curvature contribution is much less

than the bootstrap drive and hence is usually omitted. In spherical tokamaks though,

these two contributions can be comparable [67].

With all these effects taken into account, the MRE reads as

2τR
r2
s

dw

dt
= ∆′ (w) + absε

1/2βϑ
w

Lq
Lp

w2

w2 + w2
χ

+ apolg (ε, νii, ω) βϑ

(
Lq
Lp

)2
wρ2

bi

w4 + ρ4
bi

+ acurDR
1(

w2 + 0.65w2
χ

)1/2
+ ∆ECCD.

(2.2)

14This makes the calculation of ∆pol challenging. To address the layer contribution, the accurate
treatment of the boundary layer around the island separatrix is required.
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The terms in abs, apol and acur correspond to the bootstrap (∆bs), polarisation (∆pol) and

curvature (∆cur) neoclassical contributions, respectively. ∆ECCD is the impact of the

ECCD current drive required for the NTM stabisation. Here abs, apol and acur are order

one numerical constants. abs and apol are assumed to be positive, while acur < 0, making

∆bs/∆cur destabilising/stabilising, respectively. DR is the resistive interchange parameter

that is estimated as (ε2βϑ/s) (Lq/Lp) (1− q−2) [66], where s is the magnetic shear and q

is the safety factor. This ε2 dependence makes ∆cur negligible in conventional tokamaks.

Whether ∆pol has stabilising/destabilising effect on the island evolution depends on the

sign of g. g, in turn, depends on the island propagation frequency, ω [53, 68], the ion

collision frequency, νii [60, 69], and ε. The existing theory of NTMs requires the island

width to be much larger than the ion banana orbit width. There is no theory developed

for the polarisation contribution for w . ρϑi (ρϑe,i is the electron/ion poloidal Larmor

radius)15. The MRE form we use in Eq.2.2 is continued heuristically to a region where

w < ρbi. However, there is no rigorous theoretical justification for it. In [71] it has been

shown that the marginal island width below which the NTM is removed, i.e. dw/dt < 0,

is about 2ρbi in both ECCD and beta rampdown discharges, and is about 3ρbi in [72].

This is exactly the region where the existing theory breaks down. Thus, a new theory is

required to determine all the MRE neoclassical contributions allowing the limit of w ∼ ρϑi

(in this study, we find that it is ρϑi = ε−1/2ρbi that is responsible for the magnetic island

threshold), which is crucial in providing the NTM threshold island width scaling for ITER

and other future conventional tokamak devices.

The first and the main focus of this study is on the role of finite orbit width effects on the

neoclassical16 contributions to the island growth and determination of the NTM threshold

width. Here we take [53] as a starting point and extend our previous results [73, 74],

obtained in the island rest frame (ω = 0), by treating the electrons in a way similar to

ions, i.e. resolving length scales of ∼ ρϑe, and by adding the polarisation term. One can

say that removing the assumption w � ρϑe is not crucial since the NTM islands below

15Although some of the previous works, e.g. [70], allow w . ρϑi and propose the form of g numerically,
they impose a model potential. At w . ρϑi, there is no complete theory for the MRE neoclassical
contributions.

16The main focus is on the bootstrap contribution. The polarisation contribution is also to be addressed
in the forthcoming chapters. However, its determination was not the purpose of this work. Regarding
the curvature contribution, we have to note that concentrating on a large aspect ratio tokamak we do
not keep all the terms of order ε2. An accurate ∆cur calculation requires these higher order corrections.
However, ∆cur being ∼ ε2 does not provide any significant contribution to our final results.
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the marginal width self-heal and shrink away; and the marginal island width as stated

above is expected to be ∼ ρbi. However, such a treatment ensures we capture physics

associated with narrow boundary layers even for islands of width ∼ ρϑi � ρϑe. Inclusion

of the polarisation contribution is significant in the NTM threshold calculation since all

the tokamak neoclassical effects that we keep in Eq.2.2 play a role in experiments and

have to be taken into consideration. Earlier works have achieved a limit of w ∼ ρϑi in

solving the drift kinetic equation through a particle-in-cell computational modelling [75]

and by addressing the problem analytically [76]. They both confirmed that the ion density

gradient is not removed from the region inside the island. However, they focused on the ion

plasma response only, omitting the electron component and hence neglecting the effects of

the plasma quasi-neutrality condition. [76] omitted the effects of trapped particles as well.

Our analytic approach explains the physical origin of the density gradient across the island

and provides a new NTM threshold physics that arises from both, ion and electron plasma

components, and the self-consistent potential required for quasi-neutrality. When w � ρbi,

the electron and ion distribution functions reproduce the results of the original paper

[53]. However, when ρbe � w ∼ ρbi, the electron and ion solutions localised to the island

vicinity differ significantly, which results in a difference in the electron and ion densities,

if the electrostatic potential, Φ, is neglected. Therefore, we should stress the importance

of deriving Φ self-consistently from plasma quasi-neutrality, which is implemented in our

model. Once the plasma responses are found, we proceed to the NTM threshold width

calculation determining the total perturbed current density along the field lines. In this

study, we include contributions to the localised current density that come from the inner

and outer island regions, while the original paper [53] kept the outer contribution only.

The second focus of this study is on the polarisation contribution to the island time

evolution and hence on the island propagation frequency. Since ∆pol is expected to have a

strong ω dependence, its effect on the NTM island cannot be found until ω is calculated.

The earlier theory [77] approached the problem in the two-fluid MHD limit keeping

plasma rotation and the parallel component of the ion viscosity tensor. In [53] the low

collision frequency limit of νj < εω (j labels particle species) has been considered using

the drift-kinetic model. The NTM mode frequency in that model was found to be in the

direction of the electron diamagnetic frequency, ωdia,e, and the corresponding polarisation

current contribution stabilising. However, [53] provides the analysis valid only outside
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the NTM magnetic island and requires island widths greater than ε1/2ρϑi. In this study,

we allow the magnetic islands being around the threshold and include the inner island

region as well as the island seperatrix layer, which is crucial in determining ∆pol. The

island mode frequency comes from the dissipation processes in a tokamak plasma [78]

and/or can be defined by error fields, i.e. non-axisymmetric component of the vacuum

magnetic field. Once the mode frequency is sufficiently low, the NTM (usually with lower

m/n, i.e. poloidal/toroidal mode number) can be locked, i.e. stop rotating. The Mirnov

magnetic signal becomes zero, but the island still exists and grows to a large saturated

level, terminating the discharge in a disruption. Here we follow [53] and neglect the effects

of error fields as well as plasma sheared flows, focusing on collisional dissipation that

arises in a narrow layer in pitch angle in the vicinity of the trapped-passing boundary.

The remainder of this chapter is organised as follows. Section 2.1 introduces the magnetic

geometry and the mode dispersion relation. In Sections 2.2 and 2.3 we calculate the

plasma response to the NTM magnetic perturbation. The drift magnetic island concept is

described in Section 2.4. The self-consistent electrostatic potential is found in Section

2.5. We calculate the neoclassical contributions to the modified Rutherford equation

and determine the threshold magnetic island width in the next chapters. The island

propagation frequency is the subject of the following chapters as well.

2.1 Magnetic topology and NTM dispersion relation

A small inverse aspect ratio tokamak with circular poloidal cross section is considered. A

3-tuple of spatial variables {ψ, ϕ, ϑ} provides an orthogonal set of coordinates according

∇∇∇ϕ×∇∇∇ψ = rBϑ∇∇∇ϑ, where ψ is the poloidal flux function, ϕ and ϑ are the toroidal and

poloidal angles, respectively. The equilibrium magnetic field is given by

BBB0 = I (ψ)∇∇∇ϕ+∇∇∇ϕ×∇∇∇ψ, (2.3)

where I = RBϕ is the poloidal current. As ε � 1 and Bϑ/B0 ∼ ε, B0 = Bϕ + O (ε2),

where B0 = |BBB0|. The safety factor17 and B0 are approximated as q ≈ rBϕ/RBϑ and

17A number of times the magnetic field line travels around the tokamak in the toroidal direction to
wrap it around once in the poloidal direction.
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B0 (ψ, ϑ) ≈ B0 (ψ) (1− ε cosϑ), respectively. We employ a low beta approximation and to

keep zero divergence of the total magnetic field, a magnetic field perturbation associated

with the tearing mode is taken to be of the form

BBB1 =∇∇∇×
(
A‖bbb
)

(2.4)

with bbb = BBB0/B0 being a unit vector in the direction of the equilibrium magnetic field.

A‖ is the parallel component of the vector potential connected to the NTM poloidal flux

function perturbation, δψ, via

RA‖ = −δψ (2.5)

with δψ = ψ̃f (ξ). ξ here is a helical angle in the island rest frame defined as

ξ = ϕ− qsϑ, (2.6)

where qs = m/n is the safety factor evaluated at the rational surface, ψ = ψs, around

which the magnetic island is centered. f describes a form of the perturbation in ξ

space and is taken as f = cosnξ provided a single isolated NTM island is considered.

ψ̃ =
(
w2
ψ/4
)

(q′s/qs) is the NTM perturbation amplitude with wψ being the island half-

width in ψ space related to w in r space via w = wψ/ (RBϑ) (note: in ψ space we work

in terms of wψ, and hence the ψ index is to be omitted for simplicity in the forthcoming

sections, unless otherwise stated). q′s denotes ∂q/∂ψ evaluated at the resonant surface,

ψ = ψs. For further analysis, it is convenient to switch from the coordinate system

{ψ, ϕ, ϑ} introduced above to {ψ, ξ, ϑ}. To describe the magnetic island geometry, we

introduce a perturbed flux surface function Ω that satisfies BBB · ∇∇∇Ω = 0:

Ω =
2(ψ − ψs)2

w2
ψ

− cosnξ. (2.7)

The tearing mode introduces the radial component of the magnetic field that is required

to generate the island. Hence, Eq.2.7 can be obtained by integrating a field line trajectory

with Ω being a constant of the integration and q Taylor expanded about the rational

surface. Here ξ ∈ [−π, π]. The surfaces of constant Ω describe the topology of the

magnetic island. Ω = 1 describes the separatrix and Ω = −1 is at the island O-point.

Eq.2.7 implies a constant ψ approximation and also requires the island to be sufficiently
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small that a Taylor expansion of equilibrium quantities is valid in its vicinity. Introducing

ψ̃ as a function of r [79] and keeping a more realistic radial q profile provide non-symmetric

islands in the radial direction [80, 81].

To derive the dispersion relation for the NTM, we address the Gauss-Ampère law that

reads as ∂αFαβ = µ0J
β, where F is the electromagnetic tensor, J is the four-current and

∂ represents the four-gradient. It is equivalent to finding the extremum of the functional

L = − (1/4µ0)FαβFαβ − AαJα with respect to A, the four-potential. As the magnetic

perturbation is given by the parallel component of the vector potential according to Eq.2.4

with Eq.2.5, the Lagrangian density reduces to

L =
1

2

(
ε0|∂qqqΦ|2 −

1

µ0R2
|∂qqqδψ|2

)
+ J‖A‖ − ρΦ18. (2.8)

ρ here is the charge density. qqq is to be understood as {ψ, ξ, ϑ}, which is equivalent to

{Ω, ξ, ϑ;σψ} with σψ being a sign of ψ − ψs. Seeking the extremum of this functional for

any given A‖/Φ, we obtain the parallel component of Ampère’s law/Poisson’s equation.

Restricting the analysis to a single harmonic in ξ, i.e. ∝ e−inξ, in accordance with the

cosnξ form of Ω and taking the cos ξ and sin ξ components in the parallel component of

Ampère’s law, we provide integration through the island area19 to obtain

1

µ0R
∆′ψ̃ −

∫
R
dψ

∫ π

−π
dξJ̄‖ cos ξ = 0, (2.9)

∫
R
dψ

∫ π

−π
dξJ̄‖ sin ξ = 0, (2.10)

and Poisson’s equation reads

ε0∂
2
qqqΦ = −ρ. (2.11)

The electrostatic potential is to be found to keep plasma quasi-neutral, i.e.

∑
j

eZjnj = 0.

18In Chapter V we will use L = 1
2

(
ε0|EEE|2 − 1

µ0
|BBB|2

)
+JJJ ·AAA∗−ρΦ∗ integrated through the phase space

island. Now we concentrate on the collisional dissipation, omitting any external dissipative contributions
(e.g. [78]) and take the perturbation of the form, Eq.2.5, and hence a complex conjugated pair, (AAA∗,Φ∗),
is to be replaced with (AAA,Φ).

19Below we restrict the analysis to the 2/1 NTM for simplicity, and hence n is to be replaced with
n = 1.
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Here summing over j represents a sum over all the species; eZj and nj are charge

and density of a species. J̄‖ is the ϑ-average of J‖,
∫
dqqq =

∫ π
−π dξ

∫
R dψ =

wψ
2
√

2

∑
σψ
σψ
∮
dξ
∫ +∞
−1

dΩ

(Ω+cos ξ)1/2 , which results from Eq.2.7 with n = 1. At fixed Ω, outside

the magnetic island Ω ≥ 1, we simply integrate over a period in ξ, i.e. [−π, π]. Inside the

island, i.e. −1 ≤ Ω < 1, we have to integrate over ξ between bounce points, given by

ξΩ
b = ± arccos (−Ω), and sum over the two streams, σψ = ±1, to provide continuity at

each bounce point.

Eqs.2.9-2.11 represent a system for the threshold magnetic island half-width, wc, the island

propagation frequency and the electrostatic potential. ∆′ results from the integration

through the island, as ∂qqqψ is not smooth across the island, and represents the classical

tearing mode stability parameter. Deriving Eq.2.10, we neglected any external dissipation

forces (the island interaction with a resistive wall is considered in [77, 82, 83, 78]).

Eqs.2.9,2.10 reproduce the nonlinear tearing mode dispersion relation [84, 53, 59]. This

system provides wc and ω, once the perturbed current localised about the island, J‖, is

obtained. This is to be calculated from the ion and electron distribution functions, which

we find in the following sections.

2.2 Ion response

The ion/electron response to the NTM magnetic perturbation is described by the drift

kinetic equation that is given by Eq.1.12 for each particle species, j.20 The ∂/∂t term

vanishes in the island rest frame. A system of two particle species is addressed: plasma

electrons and ions21. Φ is the electrostatic potential localised about the island vicinity

and is associated with a difference in the electron and ion responses to the magnetic

perturbation. It is to be determined below from plasma quasi-neutrality. All spatial

derivatives are calculated at fixed magnetic moment, µ = V 2
⊥/2B, and kinetic energy,

K = V 2/2. In velocity space, following [53], it is convenient to introduce a triple of velocity

variables as {λ, V ;σ}, where λ = 2µ/V 2 is the pitch angle, V is the absolute value of

velocity and σ = V‖/
∣∣V‖∣∣ is the sign of the parallel component of velocity. Hence, the

20bbb = BBB/B. In Eq.2.4 the unit vector is introduced in the direction of the equilibrium field lines.
21The energetic particle/ impurity contribution will be introduced as the third particle species in the

secondary mode stability analysis, Chapter V.
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velocity space integral and V‖ become

∫
dVVV = πB

∑
σ

∫
R+

V 2dV

∫ B−1

0

dλ

(1− λB)1/2
, (2.12)

V‖ = σV (1− λB)1/2. (2.13)

Thus, the trapped-passing boundary in pitch angle space is at the inverse of the maximum

value of the magnetic field, i.e. λc = 1/B0 (1 + ε) for the equilibrium given in Sec.2.1.

λ ∈ [0, λc] for passing and λ ∈ (λc, λfin] with λfin = 1/B0 (1− ε) for trapped particles.

Assuming a Maxwell-Boltzmann equilibrium plasma, we write fj = fMB
j + gj with

fMB
j (ψ) =

neqm (ψ)

π3/2V 3
Tj(ψ)

e−V
2/V 2

Tj(ψ) (2.14)

denoting the Maxwell-Boltzmann distribution of a species j. neqm is the equilibrium

Boltzmann density, i.e. neqm = n0 (1− eZjΦ/Tj) provided eZjΦ� Tj . VTj = (2Tj/mj)
1/2

is the thermal velocity of a species. The first term in fj is the classical Maxwell-Boltzmann

contribution, while the second term describes the perturbation in the particle distribution

due to the tearing mode occurrence. Seeking the solution localised to the magnetic island,

we Taylor expand the Maxwellian around the rational surface, ψ = ψs, i.e.

fj =

(
1− eZjΦ

Tj (ψs)

)
fMj (ψs) + gj, (2.15)

where fMj = n0 (ψs)π
−3/2V −3

Tj (ψs)e
−V 2/V 2

Tj(ψs) and the electrostatic potential being

expanded around the rational surface, i.e. Φ = Φ′eqm
∣∣
ψ=ψs

(ψ − ψs) + δΦ (prime denotes

the derivative with respect to ψ), and thus Φ (ψs) = δΦ. Φeqm is the equilibrium potential

in the absence of the island, and δΦ is the perturbation associated with the tearing mode.

The perturbed distribution, gj, then must be linear in ψ far from the island to match to

the Maxwellian equilibrium, ∂gj/∂ψ|ψ→±∞ = ∂ψf
M
j (ψs).

To solve Eq.1.12 for gj, we define a small parameter ∆ = w/a � 1. The following

orderings are assumed: eZjΦ/Tj ∼ ∆, gj/fMj ∼ ∆, δΦ/Φ ∼ ∆. Then B1/B0 ∼ ε∆2,

where B1 = |BBB1| (see Appendix B for more detail). Considering Eq.27 for electrons

and Eq.39 for ions from the original paper [53], we notice that the dimension of the

problem can be reduced by switching from {ψ, ξ, ϑ, λ, V ;σ} to {pϕ, ξ, ϑ, λ, V ;σ}, where
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pϕ = ψ − ψs − IV‖/ωcj is the toroidal component of the canonical angular momentum (a

more detailed explanation can be found in Appendix C). IV‖/ωcj is the excursion of a

particle orbit from the reference flux surface. As w � a, plasma is toroidally symmetric

to leading order and thus the toroidal component of pϕ is constant on a particle orbit.

Thus, to O(∆1) Eq.1.12 for gj becomes

{
V‖
B0

I

qR2

[
1− I ∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)]
+

B2
ϕ

qB2
0

∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

}
∂gj
∂ϑ

∣∣∣∣
pϕ,ξ,µ,V

+

+

{
V‖
B0

(BBB1 · ∇∇∇pϕ) +
∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

}
∂gj
∂pϕ

∣∣∣∣
ϑ,ξ,µ,V

+

+

{
V‖
B0

[
I

qR2
q′s

(
pϕ +

IV‖
ωcj

)
+B2

0

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
+ ϑ′B2

ϑ

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)]
−

− ∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

}
∂gj
∂ξ

∣∣∣∣
pϕ,ϑ,µ,V

− eZj
mjqV

V‖
B0

I

R2

∂Φ

∂ϑ

∣∣∣∣
pϕ,ξ

∂gj
∂V

∣∣∣∣
pϕ,ϑ,ξ,µ

= Cj (gj) .

(2.16)

Here m− nq has been Taylor expanded about the rational surface; ϑ′ denotes ∂ϑ/∂ψ =

R−2B−2
ϑ (∇∇∇ψ · ∇∇∇ϑ). The derivatives of gj in the Vlasov part of Eq.2.16 are taken at fixed

µ. At this stage, the form of the collision operator has not been specified. (BBB1 · ∇∇∇ϑ)

and (BBB1 · ∇∇∇ξ) have been neglected as higher order terms in the limit of small magnetic

islands. We note that ∂/∂ψ, pϕ ∼ R−1B−1
ϑ ∂/∂r on equilibrium quantities and ∂/∂ψ, pϕ ∼

R−1B−1
ϑ ∂/∂w on perturbed quantities (∂pϕ/∂ψ = 1 to leading order in ρϑj/a). To solve

Eq.2.16 for gj, we employ an expansion in ∆:

gj =
∑
α

g
(α)
j ∆α. (2.17)

The O(∆0) equation is
IV ‖
qR2B0

∂g
(0)
j

∂ϑ

∣∣∣∣∣
pϕ,ξ

= 0. (2.18)

The VVV b · ∇∇∇gj and VVV E · ∇∇∇gj parts of the first term of Eq.2.16 are ∼ ∆ and hence do not

contribute22. Working in the banana collisionality regime, we assume that the collision

operator on the right hand side of Eq.2.16 is order ∆ smaller than the free streaming.

Hence we learn that the leading order distribution function, g(0)
j , is ϑ-independent at fixed

pϕ, i.e. g
(0)
j (pϕ, ξ, µ, V ) = g

(0)
j (ψ, ϑ, ξ, µ, V ).

22A step by step derivation of the final NTM drift kinetic equation is presented in Appendix D.
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Proceeding to next order in ∆ and multiplying both sides of Eq.2.16 by R2B0/IV ‖, we

obtain an equation for g(0)
j :

1

q

∂g
(1)
j

∂ϑ

∣∣∣∣∣
pϕ,ξ,λ,V ;σ

+

+

[
R2

I
(BBB1 · ∇∇∇pϕ) +

R2B0

IV‖

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

]
∂g

(0)
j

∂pϕ

∣∣∣∣∣
ϑ,ξ,λ,V ;σ

+

+

[
q′s
q

(
pϕ +

IV‖
ωcj

)
+
R2B2

0

I

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
+
R2B2

ϑ

I
ϑ′

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
−

−R
2B0

IV‖

∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

]
∂g

(0)
j

∂ξ

∣∣∣∣∣
pϕ,ϑ,λ,V ;σ

− eZj
mjqV

∂Φ

∂ϑ

∣∣∣∣
pϕ,ξ

∂g
(0)
j

∂V

∣∣∣∣∣
pϕ,ξ,ϑ,λ;σ

+

+ 2
eZj

mjqV 2

∂Φ

∂ϑ

∣∣∣∣
pϕ,ξ

λ
∂g

(0)
j

∂λ

∣∣∣∣∣
pϕ,ξ,ϑ,V ;σ

=
R2B0

IV‖
Cj

(
g

(0)
j

)
.

(2.19)

To employ the collision operator from [53], we have switched from {µ, V } to {λ, V ;σ} in

the Vlasov part of Eq.2.16.

To solve Eq.2.19 for g(0)
j , we have to eliminate a term in g(1)

j , integrating the equation over

ϑ. This is equivalent to an orbit-averaging procedure at fixed pϕ (see Fig.2.6). For passing

particles, gj is periodic in ϑ and thus we simply integrate over a period in ϑ assuming

gj (−π) = gj (π). Trapped particles oscillate between bounce points, ±ϑb, defined from

λB0(ϑb) = 1, where V‖ tends to zero. The requirement on their distribution function is

that

gj(ϑ = ±ϑb, σ = +1) = gj(ϑ = ±ϑb, σ = −1).

Thus, we integrate between ±ϑb and sum over σ. As continuity is required at each bounce

point, this annihilates the ∂g(1)
j /∂ϑ

∣∣∣
pϕ

term. Thus, an orbit-averaged form of Eq.2.19 is

[
q′s
q
pϕ ·Θ (λc − λ) + ωD − ωE,ξ

]
∂g

(0)
j

∂ξ

∣∣∣∣∣
pϕ,ϑ,λ,V ;σ

+

[〈
R2

I
(BBB1 · ∇∇∇pϕ)

〉pϕ
ϑ

+ ωE,r

]
∂g

(0)
j

∂pϕ

∣∣∣∣∣
ϑ,ξ,λ,V ;σ

=

〈
R2B

IV‖
Cj

(
g

(0)
j

)〉pϕ
ϑ

, (2.20)
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where

ωD =
q′s
q

〈
IV‖
ωcj

〉pϕ
ϑ

+
1

I

〈
R2B2 ∂

∂ψ

∣∣∣∣
ϑ,ξ

(
V‖
ωcj

)〉pϕ

ϑ

+
1

I

〈
R2B2

ϑϑ
′ ∂

∂ϑ

∣∣∣∣
ψ,ξ

(
V‖
ωcj

)〉pϕ

ϑ

, (2.21)

ωE,ξ =
1

I

〈
R2B

V‖

∂Φ

∂ψ

∣∣∣∣
ϑ,ξ

〉pϕ

ϑ

(2.22)

and

ωE,r =
1

I

〈
R2B

V‖

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

〉pϕ

ϑ

(2.23)

are the magnetic and EEE ×BBB drift frequencies in ξ and radial directions, respectively. Θ

denotes the Heaviside step function. The last term in ωD provides ∼ ε2 correction for the

small inverse aspect ratio, circular cross section tokamak approximation. The ϑ-averaging

operator at fixed pϕ is defined as

〈...〉pϕϑ =

 1
2π

∫ π
−π ...dϑ, λ ≤ λc

1
4π

∑
σ σ
∫ ϑb
−ϑb

...dϑ, λ ≥ λc.
(2.24)

Figure 2.6: Projections of passing
and trapped particle trajectories
shown in a tokamak poloidal cross
section (figure courtesy of K. Imada).

In Eq.2.20 Φ has been assumed to be periodic

in ϑ. Using Eq.2.4, we find 〈R2 (BBB1 · ∇∇∇pϕ)〉pϕϑ =

−
〈
R2B0dA‖/dξ

〉pϕ
ϑ

+ O(∆2). Due to Eq.2.5,

dA‖/dξ = −(ψ̃/R)df /dξ. For a single isolated

magnetic island, this simply reads dA‖/dξ =

(ψ̃/R)n sinnξ. Eq.2.20 is the final ϑ-averaged non-

normalised equation for the ion/electron plasma

component to O(∆1) in {pϕ, ξ, λ, V ;σ} space.

Following [53], we close our system by taking

a collision operator that conserves particles and

momentum, Ci, of the form:

Ci (gi) = Cii (gi) = νii (V )

[
2

(1− λB)1/2

B

∂

∂λ

∣∣∣∣
ψ

(
λ(1− λB)1/2 ∂gi

∂λ

∣∣∣∣
ψ

)
+
V‖u‖i(gi)

V 2
T i

fMi

]
(2.25)
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with νii (V ) = νii (VT i) (VT i/V )3 and

u‖j =
3π1/2

2n0

V 3
Tj

∫
dVVV

V‖gj
V 3

, (2.26)

u‖j =
1

n0

∫
dVVV V‖gj, (2.27)

j = e, i. Ion-electron collisions are small and hence to be neglected.

2.3 Electron response

The procedure described in Sec.2.2 is also to be applied to the electrons. We arrive

at Eq.2.20 for the leading order electron distribution function, g(0)
e , with the following

collision integral:

Ce (ge) = Cee (ge) + Cei (ge) (2.28)

with

Cee (ge) = νee (V )

[
2

(1− λB)1/2

B

∂

∂λ

∣∣∣∣
ψ

(
λ(1− λB)1/2 ∂ge

∂λ

∣∣∣∣
ψ

)
+
V‖u‖e(ge)

V 2
Te

fMe

]
(2.29)

and

Cei (ge) = νei (V )

[
2

(1− λB)1/2

B

∂

∂λ

∣∣∣∣
ψ

(
λ(1− λB)1/2 ∂ge

∂λ

∣∣∣∣
ψ

)
+

2

V 2
Te

V‖u‖i (gi) f
M
e

]
.

(2.30)

For electrons, collisions with ions and like-particle collisions must be retained. Here

νej (V ) = νej (VTe) (VTe/V )3, j = e, i. u‖e and u‖i are introduced according to Eqs.2.26,2.27.

Eq.2.20 with Eqs.2.25/2.28 for ions/electrons is to be further reduced, which is discussed

in the following section.

2.4 Drift magnetic islands

To modify Eq.2.20 further, we introduce the following dimensionless system:

ρ̂ϑj =
IVTj
ωcjw

, x =
ψ − ψs
w

,
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V̂‖ =
V‖
VTj

, V̂ =
V

VTj
,

L̂−1
q =

q′s
q
ψs, L̂−1

B =
ψs
B

∂B

∂ψ
, ŵ =

w

ψs
, ψ̂ =

ψ

w

Φ̂ =
eZjΦ

Tj (ψs)
, p̂ϕ = x− ρ̂ϑjV̂‖

(2.31)

(note: λ is kept non-normalised, w normalised to ψs/rs denotes the magnetic island

half-width in ψ/r space, respectively). Then Eq.2.20 becomes

[
ŵ

L̂q
p̂ϕ ·Θ (λc − λ)− ρ̂ϑiω̂D − ω̂E,ξ

]
∂g

(0)
i

∂ξ

∣∣∣∣∣
pϕ,ϑ,λ,V ;σ

+

+

[
1

4

〈
B0

Bϕ

ŵ

L̂q

df
dξ

〉pϕ

ϑ

+ ω̂E,r

]
∂g

(0)
i

∂p̂ϕ

∣∣∣∣∣
ϑ,ξ,λ,V ;σ

=

= ν̂ii

 2

V̂

〈
∂

∂λ

∣∣∣∣
ψ

σλ(1− λB)1/2 R

Bϕ

∂g
(0)
i

∂λ

∣∣∣∣∣
ψ

〉pϕ

ϑ

+

+
3

2
e−V̂

2

〈
R

Bϕ

B2
0

∑
σ

σ

∫
R+

dV̂

∫ B−1

0

g
(0)
i dλ

〉pϕ

ϑ

]
(2.32)

for ions (with V being normalised to VT i) and[
ŵ

L̂q
p̂ϕ ·Θ (λc − λ)− ρ̂ϑeω̂D − ω̂E,ξ

]
∂g

(0)
e

∂ξ

∣∣∣∣∣
pϕ,ϑ,λ,V ;σ

+

+

[
1

4

〈
B0

Bϕ

ŵ

L̂q

df
dξ

〉pϕ

ϑ

+ ω̂E,r

]
∂g

(0)
e

∂p̂ϕ

∣∣∣∣∣
ϑ,ξ,λ,V ;σ

=

= (ν̂ee + ν̂ei)
2

V̂e

〈
∂

∂λ

∣∣∣∣
ψ

σλ(1− λB)1/2 R

Bϕ

∂g
(0)
e

∂λ

∣∣∣∣∣
ψ

〉pϕ

ϑ

+

+
3

2
e−V̂

2
e ν̂ee

〈
R

Bϕ

B2
0

∑
σ

σ

∫
R+

dV̂e

∫ B−1

0

g(0)
e dλ

〉pϕ

ϑ

+

+
2

π1/2
e−V̂

2
e

(
me

mi

)2

ν̂ei

〈
R

Bϕ

B2
0

∑
σ

σ

∫
R+

dV̂iV̂
3
i

∫ B−1

0

g
(0)
i dλ

〉pϕ

ϑ

(2.33)

for electrons (with Ve/Vi being normalised to VTe/VT i). Here ν̂ii = νii/VT i and ν̂ej =

νej/VTe, j = e, i. Dimensionless drift frequencies are

ω̂D = − ŵ
L̂q

〈
V̂‖

〉pϕ
ϑ

+

〈
B2

B2
ϕ

ŵ

L̂B

[
V̂‖ +

λV̂ 2

2V̂‖
B

]〉pϕ

ϑ

,
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ω̂E,ξ =
1

2

〈
B2

B2
ϕ

ρ̂ϑj

V̂‖

∂Φ̂

∂ψ̂

∣∣∣∣∣
ξ,ϑ

〉pϕ

ϑ

, ω̂E,r =
1

2

〈
B2

B2
ϕ

ρ̂ϑj

V̂‖

∂Φ̂

∂ξ

∣∣∣∣∣
ψ,ϑ

〉pϕ

ϑ

. (2.34)

Employing the conventional large aspect ratio, circular cross section tokamak

approximation, we write Bϕ ≈ B0 ≈ B as stated in Sec.2. As ∂Φ̂/∂ψ̂
∣∣∣
ξ,ϑ

=(
∂p̂ϕ/∂ψ̂

)
∂Φ̂/∂p̂ϕ

∣∣∣
ξ,ϑ

, and using the fact that the orbit-averaging at fixed pϕ and ∂/∂p̂ϕ

are commutative, we have〈
ρ̂ϑj

V̂‖

∂Φ̂

∂ψ̂

∣∣∣∣∣
ξ,ϑ

〉pϕ

ϑ

=
∂

∂p̂ϕ

∣∣∣∣
ξ,ϑ

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

Here we have assumed that the fastest pϕ variation is in Φ and hence we note ∂p̂ϕ/∂ψ̂ = 1

to leading order in ρϑj/a. Similarly, we obtain23

〈
ρ̂ϑj

V̂‖

∂Φ̂

∂ξ

∣∣∣∣∣
ψ,ϑ

〉pϕ

ϑ

=
∂

∂ξ

∣∣∣∣
pϕ,ϑ

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

.

This allows Eq.2.32/Eq.2.33 to be rewritten in the form:

[
ŵ

L̂q
p̂ϕ ·Θ (λc − λ)− ρ̂ϑjω̂D −

∂

∂p̂ϕ

∣∣∣∣
ξ,ϑ

1

2

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

]
∂g

(0)
j

∂ξ

∣∣∣∣∣
pϕ,ϑ,λ,V ;σ

+

+

[
∂

∂ξ

∣∣∣∣
pϕ,ϑ

1

2

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

− 1

4

ŵ

L̂q
sin ξ ·Θ (λc − λ)

]
∂g

(0)
j

∂p̂ϕ

∣∣∣∣∣
ϑ,ξ,λ,V ;σ

= C̃j,

(2.35)

where C̃j represents the right hand side of Eq.2.32/Eq.2.33 for ions/electrons, respectively

(note: to simplify the analysis below we take n = 1, unless otherwise stated). Eq.2.35 is

equivalent to[
ŵ

L̂q
p̂ϕ ·Θ (λc − λ)− ρ̂ϑjω̂D −

∂

∂p̂ϕ

∣∣∣∣
ξ,ϑ

1

2

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

]
∂g

(0)
j

∂ξ

∣∣∣∣∣
S,ϑ,λ,V ;σ

= C̃j (2.36)

with

S =
ŵ

4L̂q

2

(
p̂ϕ −

ω̂Dρ̂ϑjL̂q
ŵ

)2

− cos ξ

Θ (λc − λ)− ω̂Dρ̂ϑj p̂ϕΘ (λ− λc)−
1

2

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

.

(2.37)

23pϕ is ξ-independent at any fixed ψ and hence ∂/∂ξ|ψ,ϑ = ∂/∂ξ|pϕ,ϑ.
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We note that S is ϑ-independent and is to be treated as a new radial coordinate.

(a) w � ρϑi, w = 0.02rs, ρϑi = 1.0 · 10−3rs (b) w & ρϑi, w = 0.02rs, ρϑi = 8.0 · 10−3rs

Figure 2.7: Contours of constant S in the (x, ξ) plane in the absence of the electrostatic
potential, Φ̂ = 0, for w � ρϑi (left) and w & ρϑi (right). λ = 0.84, ε = 0.1, V = VT i, σ = +1,
L̂q = 1. White dashed line indicates the position of the magnetic island separatrix, Ω = 1. The
S island separatrix is at ŵ/4L̂q (black dashed line).

Eqs.2.36,2.37 complete the transition from {pϕ, ξ, λ, V ;σ} to {S, ξ, λ, V ;σ}, and the

particle distribution function is to be found as g(0)
j = g

(0)
j (S, ξ, λ, V ;σ). According to its

definition, S is a function of pϕ, ξ, λ and V for each σ, and depends on the form of the

electrostatic potential, which is, in turn, a function of ψ, ξ and ϑ. For passing particles in

the absence of the electrostatic potential, i.e. when the EEE×BBB drift effects are ignored, the

contours of constant S reproduce the magnetic island structure given by Eq.2.7 but have

a radial shift by the amount ω̂Dρ̂ϑjL̂q/ŵ + ρ̂ϑjV̂‖
24, proportional to the poloidal Larmor

radius (see Figs.2.7a,2.7b). This shift arises due to the ∇B and curvature tokamak drifts,

and as ω̂D is σ-dependent in the passing branch, the shift is in opposite directions for

V‖ ≷ 0. These S island structures in the contours of constant S are to be referred to as

drift islands. A similar drift island structure in view of plasma tokamak transport has

been identified by Kadomtsev in [85], where the chains of islands much smaller than ρϑi

but larger than ρϑe are considered.

In Figs.2.7a,2.7b we plot S contours in the (x, ξ) plane for passing ions at different ρϑi/w.

We also note that ω̂D being a function of λ provides the νii dependence of the radial

shift as we approach the trapped-passing boundary25. For trapped particles, S is simply

proportional to p̂ϕ when Φ = 0, and is σ-independent due to the summation over σ in

the orbit-averaging operator, Eq.2.24. Inclusion of Φ, in principle, might modify the

24Here p̂ϕ has been written in terms of ψ̂ in Eq.2.37.
25This is to be explained in the next chapter.
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S structure significantly. However, as we will see in the forthcoming sections, the self-

consistent electrostatic potential obtained from plasma quasi-neutrality does not add any

significant quantitative modifications to the form of S, keeping the surfaces of constant

S closed for passing and open for trapped particles. Moving from pϕ to S as the radial

coordinate leads to the perturbed passing particle distribution function being found as

a superposition of two solutions: localised in the vicinity of σ = +1 and σ = −1 drift

islands rather than the actual magnetic island. As we shall see later, this creates new

physics for islands of width ∼ ρϑi.

To solve Eq.2.36 for g(0)
j as a function of S, we employ weak collisional dissipation. In the

reference frame in which the equilibrium radial electric field is zero, this is equivalent to

imposing δi ≡ νii/εω � 1 for ions and δe ≡ νej/εω � 1 for electrons. Treating the system

perturbatively, similar to Eq.2.17, and applying an expansion in δj, we come to

∂g
(0,0)
j

∂ξ

∣∣∣∣∣
S,ϑ,λ,V ;σ

= 0 (2.38)

to leading order. Here we learn that g(0,0)
j is ξ-independent at fixed S, i.e. g

(0,0)
j =

g
(0,0)
j (S, λ, V ;σ) = g

(0,0)
j (pϕ, ξ, λ, V ;σ). Proceeding to next order in δj and introducing

collisions, we derive an equation for g(0,0)
j :

A
∂g

(0,1)
j

∂ξ

∣∣∣∣∣
S,ϑ,λ,V ;σ

= C̃j

(
g

(0,0)
j

)
, (2.39)

where A denotes the coefficient in front of ∂g(0)
j /∂ξ

∣∣∣
S,ϑ,λ,V ;σ

on the left hand side of Eq.2.36.

To eliminate the term in g(0,1)
j , we divide both sides of Eq.2.39 by A and introduce the

annihilation operator similar to Eq.2.24 to provide ξ-averaging at fixed S. As the particle

distribution is periodic in ξ, we integrate Eq.2.39 over a period in ξ outside the S island for

passing particles. Inside the drift island, i.e. S < Sc (Sc denotes the S island separatrix),

we integrate between the ξ-bounce points given by ξb1,2 = ξb1,2 (S, pϕ0, λ, V ;σ), where

pϕ0 is the stationary point of S = S (pϕ) for each ξ, λ, V and σ. In the absence of the

electrostatic potential, p̂ϕ0 = ω̂Dρ̂ϑjL̂q/ŵ and ξb1,2 = ± arccos
(
−S · 4L̂q/ŵ

)
but generally

there is no analytic form for them. S as a function of pϕ has two branches for each λ, V and

σ. Hence, inside the drift island we also sum over the two streams, σpϕ = ±1, where σpϕ is
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the sign of pϕ− pϕ0. This annihilates ∂g
(0,1)
j /∂ξ

∣∣∣
S,ϑ,λ,V ;σ

due to the continuity requirement

Figure 2.8: Leading order ion
distribution function g

(0,0)
i vs. pitch

angle, λ, at p̂ϕ = 1.83, ξ = 0.
w = 0.02rs, ρϑi = 1.0 · 10−3rs, ion
collisionality ν∗i = 10−4 26, ε = 0.1,
L̂q = 1. g

(0,0)
i is normalised to

n0/(π
3/2V 3

T i). Inset: a full solution of
Eq.2.36 in a collisional layer around λc.√
ν∗ represents the width of the layer

with ν∗ = νii/εω. The trapped branch
solution is σ-independent due to the
summation over σ in Eq.2.24.

at both bounce points. The above procedure is also

to be applied to trapped particles. In the absence of

the island-like structure, we integrate over a period

in ξ, imposing a periodic boundary condition (note:

the self-consistent electrostatic potential does not

provide closed contours of constant S in the trapped

branch in ranges of parameters we consider). Thus,

Eq.2.39 reduces to

〈
C̃j
A

〉S

ξ

g
(0,0)
j = 0 (2.40)

with the ξ-averaging operator at fixed S being

defined as

〈...〉Sξ =

 1
2π

∫ π
−π ...dξ, S ≥ Sc

1
4π

∑
σpϕ

σpϕ
∫ ξb,2
ξb,1

...dξ, S < Sc
(2.41)

for passing and

〈...〉Sξ =
1

2π

∫ π

−π
...dξ (2.42)

for trapped particles. While collisions are neglected in Eq.2.36, the combined effect of the

parallel flow, ∇B and curvature drifts would force the particle distribution to be flattened

inside the drift islands. Introducing collisions at next order provides a full solution for

the perturbed distribution function. However, the perturbative approach we apply breaks

down in a dissipation layer, i.e. a narrow region in pitch angle space in the vicinity of

the trapped-passing boundary, λ = λc (see Fig.2.8). Here collisional dissipation becomes

comparable to parallel streaming, ∼ A∂/∂ξ|S, due to the steep gradient in λ, and thus a

full solution of Eq.2.36 is required in the layer. We solve Eq.2.36 for g(0)
j in this collisional

layer in the following chapter to calculate the island propagation frequency as this layer

provides the dominant source of the collisional dissipation. This solution is then used to

provide boundary conditions to match g(0,0)
j across the trapped-passing boundary and thus

26The plasma collisionality is defined as ν∗j = νjj/ei
√
mj/Tjε

−3/2qR, where j labels electrons and ions.
For electrons, νei ≈ νee.
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to solve Eq.2.40 for g(0,0)
j in external regions, i.e. λ ∈

[
0, λc −

√
ν∗
]⋃ [

λc +
√
ν∗, λfin

]
. A

detailed description of the solution technique can be found in Chapters III and IV.

(a) w � ρϑi, w = 0.02rs, ρϑi = 1.0 · 10−3rs (b) w & ρϑi, w = 0.02rs, ρϑi = 8.0 · 10−3rs

Figure 2.9: Sketch of the ion distribution function vs. p̂ϕ at λ = 0.89, ξ = 0 for w � ρϑi (left)
and w & ρϑi (right). g

(0)
i is normalised to n0/(π

3/2V 3
T i). ε = 0.1, L̂q = 1. Ion density/temperature

length scales, Ln0/LT i = 1. p̄ϕ(σ) = ω̂D(σ)ρ̂ϑiL̂q/ŵ. Dashed lines indicate the σ = ±1 passing
ion distribution function, g(0),σ

i , while solid line represents 1
2

∑
σ g

(0),σ
i . The σ = ±1 drift islands

are centered around p̄ϕ(σ = ±1). The magnetic island is located between them; p̂ϕ = ±1
corresponds to the separatrix of the magnetic island.

In Figs.2.9a,2.9b we show how the ion distribution function varies with p̂ϕ at λc −
√
ν∗,

where the radial shift in S is maximum in the external region for given ρϑi and w. The

radial shift, ω̂D(σ)ρ̂ϑiL̂q/ŵ + ρ̂ϑjV̂‖, is proportional to σ and hence the σ = +1 shift is

equal but opposite to the σ = −1 shift. Constructing the ion/electron density, we have to

sum the passing distributions over σ according to Eq.2.12. As the areas of the distribution

profile flattening are shifted in opposite directions for σ = ±1, summation over σ provides

a substantial
∑

σ g
(0),σ
i /density/temperature gradient inside the NTM magnetic island

for w ∼ ρϑi (see Fig.2.9b). When ρϑi/w � 1, the profile flattening is maintained inside

the magnetic island as the σ = ±1 shift is kept relatively small (see Fig.2.9a). This

is to be referred to as finite orbit width effects and is explained in more detail in the

forthcoming sections27. As ρϑe is a factor (me/mi)
1/2 smaller than ρϑi, this effect is less

significant for electrons in the absence of the electrostatic potential and thus would create

a significant difference in the electron and ion responses for w ∼ ρϑi. However, as plasma

is quasi-neutral, the electrostatic potential adjusts to provide the same density gradient
27see "Contributions to the modified Rutherford equation"
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for electrons as we have for the ions. This is to be discussed in the following section28.

In Figs.2.10a,2.10b we plot a sum of the σ = ±1 leading order ion distribution functions

against y =
√
S − Smin, where Smin is a minimum value of S as a function of p̂ϕ, ξ, λ, V̂

for each σ and is given by −ŵ/(4L̂q) in the absence of Φ. y is chosen as an extra variable

to provide a Neumann boundary far from the island. g(0)
i shown in Figs.2.10a,2.10b takes

into account the electrostatic potential found from the plasma quasi-neutrality condition.

The σpϕ = +1 branch is used to reconstruct the particle distribution in a region of pϕ > 0,

while σpϕ = −1 provides the distribution function in a region of pϕ < 0. In accordance

with the drift island effects described above,
∑

σ g
(0),σ
i (which is a measure of density due

to Eq.2.12) is flattened inside the magnetic island for w = 0.02rs, ρϑi = 1.0 · 10−3. For

w = 0.02rs, ρϑi = 8.0 · 10−3, the
∑

σ g
(0),σ
i gradient is restored in the magnetic island

region.

(a) w � ρϑi, w = 0.02rs, ρϑi = 1.0 · 10−3rs (b) w & ρϑi, w = 0.02rs, ρϑi = 8.0 · 10−3rs

Figure 2.10: Sum of the σ = ±1 leading order ion distribution functions plotted against
y =

√
S − Smin at λ = 0.89, ξ = 0 for w � ρϑi (left) and w & ρϑi (right). g

(0)
i is normalised

to n0/(π
3/2V 3

T i). ε = 0.1, L̂q = 1. Ln ≡ Ln0/(1 + ω̂E) with Ln0 = 1 being the density gradient
length scale, ω̂E ≡ mΦ′eqm/qsωdia,e = 0. ηi ≡ Ln/LT i = 1. LTj is the ion/electron temperature
gradient length scale. Dashed line represents the analytic limit far from the island in the absence
of Φ.

Let us now return to the electrostatic potential localised to the island vicinity, which we

consider neglecting the global plasma flows around the magnetic island. Its calculation is

the subject of the following section.

28see "Plasma quasi-neutrality and electrostatic potential"



2.5 Plasma quasi-neutrality and electrostatic potential 45

2.5 Plasma quasi-neutrality and electrostatic potential

Technically speaking, the electrostatic potential is to be determined from Poisson’s equation

implying plasma quasi-neutrality29. We adopt a Maxwell-Boltzmann equilibrium plasma

and so we obtain

n̂i = 1− δΦ̂ + δn̂i (2.43)

for ions and

n̂e = 1 + δΦ̂ + δn̂e (2.44)

Figure 2.11: Radial density profile across
the magnetic island O-point (ξ = 0) for
different ρϑi. w = 0.02rs, ε = 0.1, L̂q =
1, ion collisionality ν∗i = 10−3. Dashed
line indicates the equilibrium density profile,
∝ L−1

n ŵψ̂, ω̂E = 0. Here neqm is the
equilibrium density, i.e. in the absence of
the magnetic island.

for the electron density integrating Eq.2.15

over VVV . Here n̂j = nj/n0, δn̂j = δnj/n0 and

δΦ̂ = eδΦ/Tj provided Zi = 1 and Te = Ti

(this assumption is maintained throughout the

study unless otherwise stated). δnj is the

perturbed density associated with gj and hence

is given by

δnj (ψ, ξ, ϑ) =

πB
∑
σ

∫
R+

V 2dV

∫ B−1

0

gj (ψ, ξ, ϑ, λ, V ;σ) dλ

(1− λB)1/2
.

Thus, balancing the electron and ion densities,

we find

δΦ̂ =
δn̂i − δn̂e

2
. (2.45)

As mentioned in the previous section, the electron and ion responses to the NTM magnetic

perturbation differ in the absence of the electrostatic potential, especially for w ∼ ρϑi.

Indeed, when w/ρϑi � 1, both the electron and ion density profiles would be flattened

inside the magnetic island and then the role of Φ is not crucial. When w ∼ ρϑi, the

ion density becomes steepened in the vicinity of the magnetic island O-point, while the

electron density is still flattened in the absence of Φ. So the strong electron parallel flow

29We consider length scales greater than the Debye length, and thus we can impose quasi-neutrality.
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tends to keep their density flattened across the magnetic island. However, to maintain

plasma quasi-neutrality, Φ is to be generated and adjusts to provide equal full ion and

electron densities. Its form is more complicated than Eq.2.45 suggests as both the electron

and ion responses, δn̂e,i, depend on Φ. We iterate over Φ until ni and ne become equal to

a specified numerical error. So in contrast to [75], we state that the restoration of the

density/temperature gradient across the magnetic island is influenced not only by ions

but by the electrons as well. This goes beyond the Boltzmann plasma approximation and

is valid as long as the plasma quasi-neutrality is incorporated in a model.

To illustrate the above, in Fig.2.11 we plot the full density, Eq.2.43/Eq.2.44, against

ψ. The corresponding self-consistent electrostatic potential differentiated with respect

to ψ in the (ψ, ξ) plane is shown in Figs.2.13a,2.13b,2.13c,2.13d and its cross-section

across the magnetic island O-point in Fig.2.12. The electron/ion distribution function

is normalised to n0/(π
3/2V 3

Tj). Thus, its limit far from the island reads ∂f̂j/∂x
∣∣∣
x→±∞

=

ŵ
[
L−1
n +

(
V̂ 2 − 3/2

)
L−1
Tj

]
e−V̂

2 , where f̂j = fjπ
3/2V 3

Tj/n0. Ln and LTj are the density

Figure 2.12: Radial derivative of the
electrostatic potential, ∂Φ̂/∂ψ̂, across the
magnetic island O-point (ξ = 0) for different
ρϑi (notations are the same as used in
Fig.2.11). w = 0.02rs, ε = 0.1, L̂q =
1, ion collisionality ν∗i = 10−3. The
equilibrium density profile ∝ L−1

n ŵψ̂, ω̂E = 0.
∂ψ̂Φ̂

ψ̂→±∞
= 0.

and temperature length scales defined

as L−1
n = (1/neqm)(∂neqm/∂ψ),

L−1
Tj = (1/Tj)(∂Tj/∂ψ). neqm is the

Boltzmann equilibrium density, i.e.

neqm ∼= n0(1 − eZjΦ/Tj) provided

eZjΦ/Tj � 1. Hence, L−1
n
∼= L−1

n0 − eZjΦ′/Tj
with L−1

n0 = (1/n0)(∂n0/∂ψ) and

Φ′ = ∂Φ/∂ψ. Normalising the second

term to the electron diamagnetic frequency,

ωdia,e = mTen
′
0/ (−eqsn0), we have

L−1
n = L−1

n0 (1+ZjωE/ωdia,e) with ωE ≡ mΦ′/qs

(prime denotes the derivative with respect

to ψ)30. Thus according to Eq.2.45,

Φ̂ ∝ ω̂EL
−1
n0 ŵψ̂ far from the magnetic island,

ω̂E = ωE/ωdia,e.

Working in the island rest frame (ω = 0), we require an equilibrium radial electric field

30As the electrostatic potential is Taylor expanded about the rational surface, i.e. Φ = Φ′eqm|ψ=ψs
(ψ−

ψs) + δΦ with δΦ|ψ→∞ → 0, ωE ≡ mΦ′eqm/qs.
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(a) ρϑi = 1.0 · 10−3rs (b) ρϑi = 8.0 · 10−3rs

(c) ρϑi = 5.0 · 10−3rs (d) ρϑi = 7.0 · 10−3rs

Figure 2.13: Contours of constant ∂Φ̂/∂ψ̂ in the (x, ξ) plane for a different ion poloidal Larmor
radius value. ε = 0.1, L̂q = 1, w = 0.02rs, ion collisionality ν∗i = 10−3. The equilibrium density
profile ∝ L−1

n ŵψ̂, ω̂E = 0. ∂ψ̂Φ̂
ψ̂→±∞

= 0.

to be retained. We can move to any other reference frame via toroidal rotation (note:

the effects of centrifugal and Coriolis forces are neglected). As EEE + VVV ×BBB is constant,

we write ∆EEE = ∆VVV ×BBB = −RVϕ∇∇∇ϕ ×BBB for the variation of the electric field, where

Vϕ is the toroidal component of velocity. Due to Eq.2.3, we deduce ∆EEE = (Vϕ/R)∇∇∇ψ.

Setting ∆EEE = −(∂Φeqm/∂ψ)∇∇∇ψ, we obtain Φ′eqm = −Vϕ/R for the equilibrium potential

gradient far from the magnetic island (prime denotes the derivative with respect to ψ).

We define ω0 to be the island propagation frequency in the reference frame where the

radial component of the electric field is zero far from the magnetic island. In any other

frame rotating relative to this, we have

∂

∂t
+
Vϕ
R

∂

∂ϕ

∣∣∣∣
ψ,ϑ

= −
(
ω +

mVϕ
Rqs

)
∂

∂ξ

∣∣∣∣
ψ,ϑ

31,

where ω is the island propagation frequency in that frame. Denoting ωE = −mVϕ/Rqs =

mΦ′eqm/qs in accordance with the above expression, we note ω − ωE is independent of

31The helical angle here is defined as in [53]. With the definition given in Sec.2.1, we have ∂/∂t +
(Vϕ/R)∂/∂ϕ|ψ,ϑ = (−ω + Vϕ/R) ∂/∂ξ|ψ,ϑ.
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frame. Thus, moving to the reference frame where ω = 0, we require Vϕ = ωRqs/m, and

thus Φ′eqm = −ωqs/m or ω0 = −ωE. Therefore, the ωE dependence in the island rest

frame provides the ω dependence in the reference frame, in which the equilibrium electric

field is zero far from the magnetic island.

In Figs.2.14-2.28 we show contours of constant S for passing and trapped particles in

the (p̂ϕ, ξ) plane in the presence of the electrostatic potential. As can be seen from

Figs.2.14-2.18, an island-like structure is maintained in the presence of Φ even at λ close

to the trapped-passing boundary where the radial shift in Eq.2.37 is maximum32. For

trapped particles, contours of constant S are open in a whole range of λ variation33 for

considered input parameters. This justifies a choice of Eq.2.42 for the ξ-averaging operator

in the region of trapped particles.

2.6 Summary

In this chapter we have introduced the neoclassical tearing mode and magnetic islands

whose formation always accompanies NTMs in tokamak plasmas. To predict the NTM

behaviour, one has to know the plasma response to the NTM magnetic perturbation.

This plasma response is written through the ion/electron distribution function that in

this study is to be found as a solution of the drift kinetic equation in the vicinity of the

magnetic island. To reduce the dimension of the problem we switched from the poloidal

flux, ψ, to the toroidal canonical momentum, pϕ, and then from pϕ to S for the radial

coordinate. This S island concept mathematically explains why the density gradient is

not removed across the magnetic island for w ∼ ρϑi as previously found in large scale PIC

simulations for small magnetic islands [75]. Moreover, this introduces the ion poloidal

Larmor radius rather than the ion banana orbit width as a key parameter to estimate a

threshold, i.e. a marginal magnetic island width below which NTMs are suppressed.

The technique discussed in this chapter is valid while collisions can be treated perturbatively.

The low collisionality plasma regime is justified as the bootstrap current exists in the

32ρϑi = 5.0 · 10−3rs is sufficient to provide partial steepening of the density profile across the magnetic
island.

33λ = 0.84 and λ = 0.97 for given ε and ion collisionality are located at the edges of a boundary
dissipation layer where collisions play a role. For λ ∈ (0.84, 0.97), a layer solution is required, which is
the subject of the following chapter.
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banana regime. However, to match the passing and trapped distribution functions across

the trapped-passing boundary, λc, we require consideration of the thin boundary dissipative

layer around λc. Furthermore, as this layer provides the dominant source of dissipation

in our problem, it also allows one to determine the island propagation frequency and

thus the corresponding dependence of the polarisation current contribution to the island

evolution. This is to be addressed in the following chapters.
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Figure 2.14: Contours of constant S in
the (p̂ϕ, ξ) plane in the presence of the self-
consistent electrostatic potential. λ = 0.84
(λc = 0.91), ε = 0.1, V = VT i, σ = −1,
L̂q = 1, w = 0.02rs, ρϑi = 1.0 · 10−3rs,
ion collisionality ν∗i = 10−3. Grey contour
lines represent contours of constant S in the
absence of the potential for the same input
parameters.

Figure 2.15: Contours of constant S in
the (p̂ϕ, ξ) plane in the presence of the self-
consistent electrostatic potential. λ = 0.84
(λc = 0.91), ε = 0.1, V = VT i, σ = −1,
L̂q = 1, w = 0.02rs, ρϑi = 2.0 · 10−3rs,
ion collisionality ν∗i = 10−3. Grey contour
lines represent contours of constant S in the
absence of the potential for the same input
parameters.

Figure 2.16: Same as Figs.2.14,2.15
except for the ion poloidal Larmor radius
value, ρϑi = 5.0 · 10−3rs.

Figure 2.17: Same as Figs.2.14,2.15
except for the ion poloidal Larmor radius
value, ρϑi = 7.0 · 10−3rs.

Figure 2.18: Same as Figs.2.14,2.15
except for the ion poloidal Larmor radius
value, ρϑi = 8.0 · 10−3rs.

Figure 2.19: Same as Figs.2.14,2.15
except for λ = 0.98, σ = σt, ρϑi = 1.0 ·
10−3rs.
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Figure 2.20: Same as Figs.2.14,2.15
except for λ = 0.98, σ = σt, ρϑi = 2.0 ·
10−3rs.

Figure 2.21: Same as Figs.2.14,2.15
except for λ = 0.98, σ = σt, ρϑi = 5.0 ·
10−3rs.

Figure 2.22: Same as Figs.2.14,2.15
except for λ = 0.98, σ = σt, ρϑi = 7.0 ·
10−3rs.

Figure 2.23: Same as Figs.2.14,2.15
except for λ = 0.98, σ = σt, ρϑi = 8.0 ·
10−3rs.

Figure 2.24: Same as Figs.2.14,2.15
except for λ = λfin, σ = σt, ρϑi = 1.0 ·
10−3rs.

Figure 2.25: Same as Figs.2.14,2.15
except for λ = λfin, σ = σt, ρϑi = 2.0 ·
10−3rs.
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Figure 2.26: Same as Figs.2.14,2.15
except for λ = λfin, σ = σt, ρϑi = 5.0 ·
10−3rs.

Figure 2.27: Same as Figs.2.14,2.15
except for λ = λfin, σ = σt, ρϑi = 7.0 ·
10−3rs.

Figure 2.28: Same as Figs.2.14,2.15 except for λ = λfin, σ = σt, ρϑi = 8.0 · 10−3rs.
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Chapter III

3 Boundary layer solution in the vicinity of

the trapped-passing boundary

Earlier we have identified a narrow dissipation layer in pitch angle space around the

trapped-passing boundary where collisional dissipation is no longer negligible and modifies

the electron/ion distribution function (see Fig.2.8). This layer provides the dominant

source of the collisional dissipation and hence is the only contribution to the island

propagation frequency in this study. We have to stress here that the effects of error fields

and plasma sheared flows are not considered. To calculate ω and the corresponding ω

dependence of the polarisation contribution to the magnetic island time evolution, we

have to address a system of Eqs.2.9-2.11. Projecting out the cos ξ and sin ξ components

of J‖ in Ampère’s law written along the field lines and providing the integration through

the island, we obtain Eqs.2.9,2.10. Eq.2.10 is equivalent to the toroidal torque balance.

This set of equations provides a system for the magnetic island threshold, wc (Eq.2.9), ω

(Eq.2.10) and Φ that has been determined from the plasma quasi-neutrality condition in

the previous section34.

The dominant contribution to the component of J‖ that is in phase with the magnetic

perturbation, ∝ cos ξ, comes from external regions, i.e. outside the dissipative layer. The

contribution to this from the dissipation layer is two orders less. In contrast, around

99.(9)% 35 of the out-of-phase current, ∝ sin ξ, comes from the layer around λc and hence

determines ω. The electron layer width is a factor ∼ (νei/νii)
1/2 larger than the ion

layer width. In a fully ionised plasma, νee ∼ νei = (4
√

2π/3)(nee
4 ln Λ/m

1/2
e T

3/2
e ) and

νii = (4
√
π/3)(nee

4 ln Λ/m
1/2
i T

3/2
i ) (from Braginskii’s original derivations in cgs). Thus,

the electron layer width dominates by a factor (mi/me)
1/4 provided Te = Ti.

In this thin boundary region collisions cannot be treated perturbatively and hence a full

34The integral form of Eq.2.11, in principle, can be used to find the mode frequency if the potential is
determined by a model. The latter will be applied to the secondary mode stability analysis in Chapter V.

35The dissipative layer width is estimated through
√
νjj/ei/εω, and thus the corresponding layer

contribution depends on the ratio, νjj/ei/εω. j labels the particle species, j = e, i.
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solution of Eq.2.36 is required. Following [53], we impose the matching conditions

∑
σ

σgσ,pj = 0,

∑
σ

gσ,pj = 2g
|σ|,t
j ,

∑
σ

∂gσ,pj
∂λ

∣∣∣∣
ψ

= 2
∂g
|σ|,t
j

∂λ

∣∣∣∣∣
ψ

(3.1)

at the trapped-passing boundary to provide continuity of the particle distribution

function and its first λ derivative across the boundary. Here indices p and t denote

the passing and trapped regions, respectively. These matching conditions can be

treated as the particle conservation law as we cross the boundary. The first two

conditions of Eq.3.1 are introduced to match gj across λc keeping the trapped particle

distribution function, g|σ|,tj , σ-independent. The third condition provides the same rate

for passing/trapped particles scattered into trapped/passing orbits, respectively. We

note that originally matching is imposed at fixed ψ. However, moving from ψ to S

for the new radial coordinate and solving Eq.2.40 at the 0th iteration in Φ, we find

g
(0,0)
j = g

(0,0)
j (S, λ, V ;σ) = g

(0,0)
j [S (pϕ, ξ, λ, V ;σ) , λ, V ;σ] for the leading order passing

and g(0,0)
j = g

(0,0)
j (S, λ, V ;σ) = g

(0,0)
j [S (pϕ, λ, V ;σ) , λ, V ;σ] for the leading order trapped

particle distribution (here we have used the S definition for passing/trapped particles,

Eq.2.37). The continuity of the particle distribution across the trapped-passing boundary

at fixed pϕ/ψ simply cannot be provided without introducing the layer as the definition of

S is different as λ→ λc ± 0 (e.g. the trapped particle solution is ξ-independent at fixed

pϕ/ψ in the absence of Φ, while the passing distribution function is a function of ξ). The

introduction of this layer allows gj to vary on S contours, and hence enables the matching

conditions, Eq.3.1. This explains mathematically the necessity of the dissipation layer.

The calculation of the ion/electron distribution function in the layer is presented in the

following section. Once a full solution of the ϑ-averaged drift kinetic equation to leading

order in ∆ (Eq.2.35 in the dissipative layer and Eq.2.40 outside the layer) with the

electrostatic potential calculated self-consistently from plasma quasi-neutrality is found,

we return to Eq.2.9,2.10 to determine wc and ωE, respectively. We note that J‖ is to be

ϑ-averaged as integrands in Eq.2.9,2.10 have to be integrated over all spatial variables to

provide wc and ωE.
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3.1 Dissipative layer solution

We start with Eq.2.35, the ϑ-averaged drift kinetic equation for the leading order

distribution function in ∆ in {pϕ, ξ, λ, V ;σ} space and seek its general solution of the

form:

g
(0)
j = G

(0)
j + C · p̂ϕ (3.2)

with C being the limit of the distribution function far from the island introduced

in the previous chapter. The particle distribution is normalised to n0/(π
3/2V 3

Tj) as

stated previously. ∂G(0)
j /∂x

∣∣∣
x→±∞

= 0 and thus ∂G(0)
j /∂Sp

∣∣∣
Sp→+∞

= 0 for passing and

∂G
(0)
j /∂St

∣∣∣
St→±∞

= 0 for trapped particles (here Sp/t denotes S in the passing/trapped

region, Eq.2.37). C · p̂ϕ is the drive term that reads

σpϕ

√√√√1

2

(
4L̂q
ŵ
Sp + cos ξ

)
· C +

ω̂Dρ̂ϑjL̂q
ŵ

· C

for passing and −CSt/ω̂Dρ̂ϑj for trapped particles in the absence of the electrostatic

potential. At the end of each iteration in Φ, the transcendental equation Sp/t =

Sp/t
(
p̂ϕ, ξ, λ, V̂ ;σ

)
is to be solved for p̂ϕ = p̂ϕ

(
Sp/t, ξ, λ, V̂ ;σ

)
. Eq.2.35 for G(0)

j then

reads ŵ
L̂q
p̂ϕ ·Θ (λc − λ)− ρ̂ϑjω̂D|λp/t −

∂

∂p̂ϕ

∣∣∣∣
ξ,ϑ

1

2

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

∣∣∣∣∣
λp/t

 ∂G
(0)
j

∂ξ

∣∣∣∣∣
pϕ,ϑ,λ,V ;σ

+

+

 ∂

∂ξ

∣∣∣∣
pϕ,ϑ

1

2

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

∣∣∣∣∣
λp/t

− 1

4

ŵ

L̂q
sin ξ ·Θ (λc − λ)

 ∂G
(0)
j

∂p̂ϕ

∣∣∣∣∣
ϑ,ξ,λ,V ;σ

+

+
∂

∂ξ

∣∣∣∣
pϕ,ϑ

C
2

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

∣∣∣∣∣
λp/t

− C
4

ŵ

L̂q
sin ξ ·Θ (λc − λ) = C̃j

∣∣∣
λp/t

,

(3.3)

where taking into account the narrowness of the dissipation layer, we have fixed all the

coefficients in Eq.2.35 at λp/t ≡ λc ∓ ε. ε is the width of the layer and is to be introduced
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later in this section36. Eq.3.3 is equivalent to ŵ
L̂q
p̂ϕ ·Θ (λc − λ)− ρ̂ϑjω̂D|λp/t −

∂

∂p̂ϕ

∣∣∣∣
ξ,ϑ

1

2

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

∣∣∣∣∣
λp/t

 ∂G
(0)
j

∂ξ

∣∣∣∣∣
Ŝ,ϑ,λ,V ;σ

=

= C̃j

∣∣∣
λp/t

− ∂

∂ξ

∣∣∣∣
pϕ,ϑ

C
2

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

∣∣∣∣∣
λp/t

+
C
4

ŵ

L̂q
sin ξ ·Θ (λc − λ)

(3.4)

with

Ŝ =
ŵ

4L̂q

2

p̂ϕ − ω̂Dρ̂ϑjL̂q
ŵ

∣∣∣∣∣
λp

2

− cos ξ

Θ (λc − λ)− ω̂Dρ̂ϑj|λt p̂ϕΘ (λ− λc)−

− 1

2

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

∣∣∣∣∣
λp/t

.

(3.5)

Ŝ is λ-independent, i.e. Ŝ = Ŝ (p̂ϕ, ξ, V ;σ) (note: Eq.2.36 reduces to Eq.3.4 with S being

Taylor expanded around λp/t, S = Ŝ + ∂λSλp/t
(
λ− λp/t

)
). Employing the thinness of the

layer again, we write

∂

∂λ

∣∣∣∣
ψ

' ∂

∂λ

∣∣∣∣
pϕ

=
∂

∂λ

∣∣∣∣
Ŝ

and thus

A
(
Ŝ, ξ, λp/t, V ;σ

) ∂G(0)
j

∂ξ

∣∣∣∣∣
Ŝ,ϑ,λ,V ;σ

= ν̂j
2

V̂
a
(
λp/t
) ∂2G

(0)
j

∂λ2

∣∣∣∣∣
Ŝ

−

− ∂

∂ξ

∣∣∣∣
pϕ,ϑ

C
2

〈
ρϑj

V̂‖
Φ̂

〉pϕ

ϑ

∣∣∣∣∣
λp/t

+
C
4

ŵ

L̂q
sin ξ ·Θ (λc − λ)

(3.6)

for the final equation to be solved in the layer. a is defined as
〈
σλ(1− λB)1/2R/Bϕ

〉pϕ
ϑ
.

ν̂j is to be understood as ν̂ii for ions and ν̂ee + ν̂ei for electrons. As ε� 1, the collision

operator is dominated by ∂2/∂λ2|ψ and the momentum-conservation term, ∝ u‖j/u‖j , can

be dropped. Imposing

G
(0)
j = −

√
Sc

∫ Ŝ C

A
(
Ŝ ′, ξ, λp/t, V ;σ

)dŜ ′ +G
(0),l
j , (3.7)

36Earlier, ν∗ has been introduced just to provide an estimation of its width.
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we come to

A
(
Ŝ, ξ, λp/t, V ;σ

) ∂G(0),l
j

∂ξ

∣∣∣∣∣
Ŝ,ϑ,λ,V ;σ

= ν̂j
2

V̂
a
(
λp/t
) ∂2G

(0),l
j

∂λ2

∣∣∣∣∣
Ŝ

(3.8)

for G(0),l
j . The first term on the right hand side of Eq.3.7 provides the drive in Eq.3.6.

In the absence of the electrostatic potential, it equals −σpϕ
√

1
2

(
4L̂q
ŵ
Sp + cos ξ

)
· C for

passing particles and is independent of ξ and equals CSt/ω̂Dρ̂ϑj in the trapped branch

(note: Sc = 1 in the absence of the separatrix). Eq.3.8 can be reduced to a simple diffusion

equation
∂G

(0),l
j

∂x±/t

∣∣∣∣∣
Ŝ

= D±/t
∂2G

(0),l
j

∂λ
2

∣∣∣∣∣
Ŝ

, (3.9)

where D±/t = ν̂j
2

V̂
a
(
λp/t
)
for passing, σ = ±1, and trapped branches. To simplify the

calculations below, we have introduced a new variable, x±/t, instead of ξ:

xout(±)/t =
σpϕ∫ π
−π

dξ
2π|A|

∫ ξ

0

dξ′

A
(
Ŝ, ξ′, V ;σ

) (3.10)

for trapped particles and for passing particles outside the Ŝ island. For passing particles

inside the Ŝ island,

xin(±) =
1∫ ξb

−ξb
dξ
π|A|

∫ ξ

0

dξ′

A
(
Ŝ, ξ′, V ;σ

) , σpϕ > 0 (3.11)

and

xin(±) = π − 1∫ ξb
−ξb

dξ
π|A|

∫ ξ

0

dξ′

A
(
Ŝ, ξ′, V ;σ

) , σpϕ < 0. (3.12)

Here we note

• x±/t increases monotonically with ξ along the passing/trapped trajectory at given

Ŝ. It varies from −π/2 to π/2 for ξ ∈ [−ξb; ξb], and from π/2 to 3π/2 on the way

back, i.e. ξ ∈ [ξb;−ξb] (ξb reduces to π outside the Ŝ island as well as in the trapped

branch).

• x±/t is an angle variable since it spans [−π/2; 3π/2] along the closed passing

trajectory.
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• the choice grants that ξ = ξ(Ŝ, x±/t) is an odd function of x±/t. It also satisfies

ξ(Ŝ, x±/t;σpϕ = +1) = ξ(Ŝ, π − x±/t;σpϕ = −1). Hence, the relation between x±/t

and ξ, given above, can be inverted. Therefore, we find it convenient to express

G
(0),l
j as a function of Ŝ and x±/t only; x±/t also contains the information on σpϕ .

According to Barrow’s theorem, we have 〈A−1〉Ŝξ dx±/t = dξ/A for both passing and

trapped branches. 〈A−1〉Ŝξ = σpϕ
∫ ξb
−ξb

dξ
π|A| inside and 〈A−1〉Ŝξ = σpϕ

∫ π
−π

dξ
2π|A| outside

the Ŝ island.

• This procedure guarantees that if G(0),l
j is treated as a function of x±/t instead of ξ,

it is continuous at ξ = ξb, i.e. x±/t = π/2.

λ =
[
〈A−1〉Ŝξ

]−1/2

(λ− λc) is a new pitch angle variable. λ = 0 defines the trapped/passing

boundary; λ ≶ 0 corresponds to the passing/trapped region, respectively. In contrast to

[53], our layer solution includes both regions inside and outside the magnetic island. Eq.3.9

allows the analytic solution of the following form: G(0),l
j =

∑
n≥0C

±/t
n e

i+1√
2

√
n

D±/t
λ
einx

±/t

and thus

G
(0),±
j =

∑
n>0

{
a±n e
√

n
2D+ λ cos

[
nx± ±

√
n

2D+
λ

]
− b±n e

√
n

2D+ λ sin

[
nx± ±

√
n

2D+
λ

]}
+H±,

(3.13)

and

G
(0),t
j =

∑
n>0

{
atne

−
√

n
2Dt

λ cos

[
nxt −

√
n

2Dt
λ

]
− btne

−
√

n
2Dt

λ sin

[
nxt −

√
n

2Dt
λ

]}
+H t.

(3.14)

HereH±/t represents a sum of the drive term/contribution from outside the layer (first term

of Eq.3.7) and the 0th harmonic, a±/t0 . The width of the dissipation layer, ε, is estimated

as ε ∼
√
D±/t ≈

√
ν̂j2a (λc) /V̂

37. Provided νei ∼ νee ≈ 4
√

2π
3

nee4 ln Λ
√
meT

3/2
e

, νii ≈ 4
√
π

3
nee4 ln Λ
√
miT

3/2
i

and Te ∼ Ti, ν̂ii ∼ ν̂ee ∼ ν̂ei. However, as V̂ = V/VTj, the electron dissipation layer

width dominates by a factor ∼ (mi/me)
1/4. In Eqs.3.13,3.14, the increasing branch of the

solution has been dropped as we require ∂λG
(0),l
j

∣∣∣
λ→±∞

= 0. This implies the boundary

conditions that g(0)
j has to match the external solutions outside the dissipation layer, i.e.

37In the layer all the coefficients are considered to be localised in the vicinity of the trapped-passing
boundary due to its thinness associated with the assumption of the low collisionality plasma. Thus, ωD is
to be evaluated at λp/t in the layer for passing/trapped particles. In the layer, the radial shift of the drift
Ŝ islands being proportional to ωD is then found to be a function of the ion/electron collision frequency
through λp/t.
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λ ∈ [0, λp] ∪ [λt, λfin]. The Fourier coefficients, a±/tn , b±/tn (n ≥ 0), are unknown and to be

found from matching at λ = 0, Eq.3.1:

H+ +
∑
n>0

{
a+
n cosnx+ − b+

n sinnx+
}

= H− +
∑
n>0

{
a−n cosnx− − b−n sinnx−

}
=

= H t +
∑
n>0

{
atn cosnxt − btn sinnxt

}
,

∑
n>0

cosnx+

√
n

2D+

[
a+
n − b+

n

]
− sinnx+

√
n

2D+

[
a+
n + b+

n

]
+

+
∑
n>0

cosnx−
√

n

2D+

[
a−n + b−n

]
+ sinnx−

√
n

2D+

[
a−n − b−n

]
=

= 2
∑
n>0

cosnxt
√

n

2Dt

[
btn − a

t

n

]
+ sinnxt

√
n

2Dt

[
atn + btn

]
.

(3.15)

Eq.3.15 is a set of three equations for 6N + 3 unknowns, n ∈ [0, N ]. Due to a difference

in x±/t, matching at fixed ψ/pϕ cannot be provided in n space in the presence of Φ.

However, x±/t and n are conjugated variables, and x±/t is connected with ξ via Eqs.3.10-

3.12. Thus, taking a number of points in ξ space Nξ = 2N + 1 and treating x±/t =

x±/t
(
Ŝ, ξ, V

)
= x±/t

[
Ŝ (p̂ϕ, ξ, V ) , ξ, V

]
, we can solve Eq.3.15 numerically for a±/tn , b±/tn ,

providing matching at fixed pϕ and ξ. Here we have to stress the importance of including

drive in Eq.3.15 to avoid trivial solutions for the Fourier coefficients. Substituting the

obtained Fourier coefficients into Eqs.3.13,3.14 and taking into account Eq.3.2 provides

the layer electron/ion distribution function, which is then to be used to calculate the

external solution, g(0,0)
j , (see Chapter IV for more detail). The distribution function in

the layer, g(0)
j is calculated as a function of p̂ϕ, ξ and λ for each σ (here V̂ is considered

as a parameter) and is then to be rewritten as a function of S, ξ and λ, i.e. g
(0)
j =

g
(0)
j

(
p̂ϕ, ξ, λ, V̂ ;σ

)
= g

(0)
j

[
p̂ϕ

(
S, ξ, λp/t, V̂ ;σ

)
, ξ, λ, V̂ ;σ

]
, to solve Eq.2.40 for g(0,0)

j in

the regions outside the layer. To illustrate the above solution, in Figs.3.1-3.20 we plot g(0)
j

against λ for small and large ρϑi inside and outside the magnetic island separatrix.
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Figure 3.1: g
(0)
j vs. λ at p̂ϕ =

−4.5, ξ = 0, V = VT i. w = 0.02rs,
ρϑi = 1.0 · 10−3rs, ion collisionality
ν̂i = 10−4, ε = 0.1, L̂q = 1. g

(0)
i

is normalised to n0/(π
3/2V 3

T i). Red
line indicates the trapped-passing
boundary.

Figure 3.2: g(0)
j vs. λ at p̂ϕ = 4.5,

ξ = 0, V = VT i. w = 0.02rs,
ρϑi = 1.0 · 10−3rs, ion collisionality
ν̂i = 10−4, ε = 0.1, L̂q = 1. g

(0)
i

is normalised to n0/(π
3/2V 3

T i). Red
line indicates the trapped-passing
boundary.

Figure 3.3: Same as Figs.3.1,3.2
except for p̂ϕ = −2.52.

Figure 3.4: Same as Figs.3.1,3.2
except for p̂ϕ = 2.52.

Figure 3.5: Same as Figs.3.1,3.2
except for p̂ϕ = −1.26.

Figure 3.6: Same as Figs.3.1,3.2
except for p̂ϕ = 1.26.
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Figure 3.7: Same as Figs.3.1,3.2
except for p̂ϕ = −1.08.

Figure 3.8: Same as Figs.3.1,3.2
except for p̂ϕ = 1.08.

Figure 3.9: Same as Figs.3.1,3.2
except for p̂ϕ = −0.36.

Figure 3.10: Same as Figs.3.1,3.2
except for p̂ϕ = 0.36.

Figure 3.11: Same as Figs.3.1,3.2
except for ρϑi = 8.0 · 10−3rs.

Figure 3.12: Same as Figs.3.1,3.2
except for ρϑi = 8.0 · 10−3rs.

Figure 3.13: Same as Figs.3.1,3.2
except for p̂ϕ = −2.52, ρϑi = 8.0 ·
10−3rs.

Figure 3.14: Same as Figs.3.1,3.2
except for p̂ϕ = 2.52, ρϑi = 8.0 ·
10−3rs.
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Figure 3.15: Same as Figs.3.1,3.2
except for p̂ϕ = −1.26, ρϑi = 8.0 ·
10−3rs.

Figure 3.16: Same as Figs.3.1,3.2
except for p̂ϕ = 1.26, ρϑi = 8.0 ·
10−3rs.

Figure 3.17: Same as Figs.3.1,3.2
except for p̂ϕ = −1.08, ρϑi = 8.0 ·
10−3rs.

Figure 3.18: Same as Figs.3.1,3.2
except for p̂ϕ = 1.08, ρϑi = 8.0 ·
10−3rs.

Figure 3.19: Same as Figs.3.1,3.2
except for p̂ϕ = −0.36, ρϑi = 8.0 ·
10−3rs.

Figure 3.20: Same as Figs.3.1,3.2
except for p̂ϕ = 0.36, ρϑi = 8.0 ·
10−3rs.
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3.2 Summary

In this chapter we have determined the particle distribution function in a boundary layer

in the vicinity of the trapped-passing boundary, λc, required to match external passing,

λ ≤ λp, and trapped, λ ≥ λt, solutions across λc. Now we return to external regions

where collisions can be treated perturbatively and solve Eq.2.40 for g(0,0)
j . The solution

technique is described in Chapter IV.
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Chapter IV

4 Solution technique and the RDK-NTM

results

The numerical solution technique for the orbit averaged drift kinetic equation, Eq.2.35 in

the dissipation layer, i.e. λ ∈ [λp, λc]∪ (λc, λt] , and Eq.2.40 in external regions outside the

layer, i.e. λ ∈ [0, λp]∪[λt, λfin], with matching conditions at the trapped/passing boundary,

λ = λc, given by Eq.3.1, is presented in this chapter. In previous sections we have identified

a narrow collisional boundary layer in pitch angle around the trapped-passing boundary

of width ∝
√
ν̂j/V̂ . In this region, collisions cannot be treated perturbatively and S no

longer describes the streamlines. In Chapter III we have provided the solution to the 2D

boundary layer problem,
{
x±/t, λ

}
inside and outside the drift S island, employing the

momentum-conserving collision operator (its pitch angle scattering contribution dominates

due to the layer thinness), allowing us to rigorously connect the trapped (λ > λt) and

passing (λ < λp) regions. The layer solution, g(0)
j is then used as a starting point to

construct the external solution, g(0,0)
j , outside the layer. The rest of the chapter focuses

on the obtained results.

4.1 Numerical algorithm

Eq.2.40 is a 3D integro-differential equation in
{
S±/t, λ, V̂ ;σ

}
space. V̂ appears as

a parameter at the 0th iteration in the momentum conservation term, ∝ u‖j, in the

collisional operator. u‖j is evaluated at fixed ψ̂, and the corresponding V̂ dependence

appears through the S function, Eq.2.37. Writing the left hand side of Eq.2.40 explicitly,

we derive the collisional constraint in S space given by Eq.D.60 for the ion and Eq.D.61

for the electron plasma component38. To provide the Maxwellian behaviour far from

the magnetic island, we require ∂f̂j/∂x
∣∣∣
x→±∞

= ŵ
[
L−1
n +

(
V̂ 2 − 3/2

)
L−1
Tj

]
e−V̂

2 , where

f̂j = fjπ
3/2V 3

Tj/n0. To set the Neumann boundary in the passing and trapped regions,

38A detailed step by step derivation is presented in Appendix D
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it is convenient to introduce an extra variable, y±/t, such that y± =
√
S± − S±min in the

passing and yt = St in the trapped branch39. In the absence of the perturbed electrostatic

potential, this translates into

∂f̂j
∂y±

∣∣∣∣∣
y±→+∞

= σpϕŵ

[
L−1
n +

(
V̂ 2 − 3

2

)
L−1
Tj

]
e−V̂

2

√
2L̂q
ŵ

(4.1)

for λ ≤ λp and

∂f̂j
∂yt

∣∣∣∣∣
yt→±∞

= − ŵ

ω̂Dρ̂ϑj +
ρ̂ϑj
2

〈
1

V̂‖

〉pϕ
ϑ
L−1
n0 ŵω̂E

[
L−1
n +

(
V̂ 2 − 3

2

)
L−1
Tj

]
e−V̂

2

(4.2)

for λ ≥ λt, and is to be updated at each iteration in Φ, provided the inverse function,

y±/t = y±/t (p̂ϕ), exists for each ξ, λ, V̂ and σ. The bottom boundary condition in the

passing branch in y space is
∂f̂j
∂y±

∣∣∣∣∣
y±=0

= 0 (4.3)

due to the flattening requirement inside the S island. Due to Eq.2.15, both f̂j and

g
(0,0)
j π3/2V 3

Tj/n0 satisfy Eqs.4.1-4.3 (Ln is to be replaced by Ln0 in the condition for g(0,0)).

In λ space we require the distribution function and its first derivative to be finite at

λ = 0 and λ = λfin, where λfin is given by 1/B0(1 − ε) in accordance with Sec.2.2.

As the coefficient of the term in ∂2/∂λ2 vanishes at λ = 0 and λ = λfin, we impose

Eq.D.60/Eq.D.61 evaluated at λ = 0, i.e.

〈
σ
R

Bϕ

〉pϕ
ϑ

〈
1

A

〉S
ξ

∂g
(0,0)
j

∂λ

∣∣∣∣∣
λ=0

+

+

〈σ R
Bϕ

〉pϕ
ϑ

〈
1

A
∂S

∂λ

∣∣∣∣
pϕ,ξ

〉S

ξ

+

〈
ρ̂ϑi
2
V̂ R

〉p̂ϕ
ϑ

〈
1

A
∂S

∂pϕ

〉S
ξ

 ∂g
(0,0)
j

∂S

∣∣∣∣∣
λ=0

+ U(g
(0,0)
j ) = 0,

(4.4)

for the boundary condition at the deeply passing end and similarly Eq.D.60/Eq.D.61

evaluated at λ = λfin for the boundary condition at the deeply trapped end. Here U

39A different definition of y±/t is justified as both passing and trapped external regions, i.e. λ ∈
[0, λp] ∪ [λt, λfin], are not connected directly but via a dissipative layer where the perturbative approach
becomes invalid.
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represents the momentum conservation term. To solve Eq.D.60/Eq.D.61, we apply a

shooting method 40 in λ direction, reducing Eq.D.60/Eq.D.61 to a matrix equation at

each λ grid point. Applying the finite difference scheme in λ space (central difference to

the equation and forward/backward difference at the edges of λ space), we obtain the

Figure 4.1: A schematic representation of
the solution technique.41

following matrix equation:

PPP
σ,p/t
j ggg

σ,p/t
j+1 +QQQ

σ,p/t
j ggg

σ,p/t
j +RRR

σ,p/t
j ggg

σ,p/t
j−1 +AAA

σ,p/t
j = 0

(4.5)

for the vector solution, gggσ,p/tj , we seek at each

λ grid point, j. σ = ±1 for the passing and

σ = |σ| for the trapped branches. PPP
σ,p/t
j ,

QQQ
σ,p/t
j and RRR

σ,p/t
j are square tri-diagonal

matrices of size Ny × Ny, and AAA
σ,p/t
j is the

right hand side vector; both, gggσ,p/tj and AAAσ,p/tj ,

are of length Ny (Ny is a total number of points in y direction, i.e. inside and outside

the S island/in the trapped region; note: the number of points can be different in y±/t

direction as the ±/t branches become independent once the layer solution is found).

The left boundary in its general form in λ space (i.e. for deeply passing particles at j = 0)

reads

P̂̂P̂P σ,p
0 gggσ,p0 + Q̂̂Q̂Qσ,p

0 gggσ,p1 + R̂̂R̂Rσ,p
0 gggσ,p2 + Â̂ÂAσ,p0 = 0. (4.6)

To set the j = 0th element, we assume a linear relation between gggσ,pj at jth and (j + 1)th

grid points, and hence we write

gggσ,pj = ααασ,pj gggσ,pj+1 + βββσ,pj (4.7)

from the side of passing particles. Here ααασ,pj is the square matrix of Ny ×Ny and βββσ,pj is a

vector of length Ny. Combining Eqs.4.5,4.7, we obtain the following recurrence relation:

ααασ,pj = −
[
QQQσ,p
j +RRRσ,p

j ααασ,pj−1

]−1
PPP σ,p
j ,

βββσ,pj = −
[
QQQσ,p
j +RRRσ,p

j ααασ,pj−1

]−1 [
RRRσ,p
j βββσ,pj−1 +AAAσ,pj

]
.

(4.8)

40see Appendix E.
41Courtesy of A. Doroshenko for her assistance with the sketch 4.1 implementation.
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Combining Eqs.4.6-4.8, we calculate ααασ,p0 and βββσ,p0 at the deeply passing end. Then using

Eq.4.8 we find all ααασ,pj s and βββσ,pj s up to the point where perturbative approach described

in Chapter II breaks down, λ = λp (j = Np1), as shown in Fig.4.1. We apply the exact

same algorithm to the trapped branch. The right boundary condition, i.e. for deeply

trapped particles at j = Np2, is

P̂̂P̂P
|σ|,t
Np2
ggg
|σ|,t
Np2

+ Q̂̂Q̂Q
|σ|,t
Np2
ggg
|σ|,t
Np2−1 + R̂̂R̂R

|σ|,t
Np2
ggg
|σ|,t
Np2−2 + Â̂ÂA

|σ|,t
Np2

= 0. (4.9)

Employing

Figure 4.2: A schematic block diagram
of the RDK-NTM solver.42

ggg
|σ|,t
j = ααα

|σ|,t
j ggg

|σ|,t
j−1 + βββ

|σ|,t
j , (4.10)

and substituting this into the initial equation,

Eq.4.5, we come to

ααα
|σ|,t
j = −

[
PPP
|σ|,t
j ααα

|σ|,t
j+1 +QQQ

|σ|,t
j

]−1

RRR
|σ|,t
j ,

βββ
|σ|,t
j =

−
[
PPP
|σ|,t
j ααα

|σ|,t
j+1 +QQQ

|σ|,t
j

]−1 [
PPP
|σ|,t
j βββ

|σ|,t
j+1 +AAA

|σ|,t
j

]
.

(4.11)

Combining Eqs.4.9-4.11, we calculate ααα|σ|,tNp2
and

βββ
|σ|,t
Np2

at the deeply trapped end and using Eq.4.11

we find all ααα|σ|,tj s and βββ|σ|,tj s back to λ = λt (j =

0) from the trapped side (in accordance with

Fig.4.1). Once the layer solution is calculated

(see Chapter III) and all ααασ,p/tj s and βββσ,p/tj s are

obtained from the passing and the trapped sides,

we reconstruct the remaining solution elements

outside the layer from Eqs.4.7 and 4.10 up to the

trapped/passing edges. The described solution

technique is illustrated in Fig.4.1. We note that in the problem, matching at the trapped-

passing boundary, Eq.3.1, is provided by the layer solution found in Chapter III.

42Courtesy of A. Doroshenko for her assistance with the sketch 4.2 implementation.
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To implement the algorithm described above, a new code, RDK-NTM (Reduced Drift

Kinetic Neoclassical Tearing Mode solver) has been developed in Python 43. A detailed

derivation of the numerical scheme can be found in Appendix E. A schematic block

diagram of the drift kinetic solver is shown in Fig.4.2 and Fig.E.1 of Appendix E.7. We

have checked that the obtained solution converges and satisfies the equation and the

boundary conditions.

43Python 2.7.12, NumPy 1.12.0, SciPy 0.18.1, Matplotlib 2.0.0, numba 0.42.1.
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4.2 The ion/electron distribution function and its

density and flow moments

In previous sections we have calculated the solution of the orbit-averaged drift kinetic

equation to leading order in ∆ for ions and electrons that takes into account the electrostatic

potential found self-consistently from the plasma quasi-neutrality condition. Before we

move further and calculate the parallel current density perturbation in the vicinity of the

rational surface, let us briefly discuss the distribution function behaviour.

(a) at λ = 0, σpϕ > 0 (b) in the dissipative layer, σpϕ > 0

Figure 4.3: The leading order ion distribution function plotted against y. Dashed curves
correspond to g(0,0)

i , i.e. the RDK-NTM solution. Markers indicate the solution of Eq.2.35
[73, 74, 93], which is a function of pϕ, ξ and λ and keeps collisions to leading order for a full
range of λ variation (to be referred to as the DK-NTM solution). ν∗i = 10−2, ρϑi/w = 0.05,
w/rs = 0.02. The distribution function is normalised to n0/(π

3/2V 3
T i).

44

In Figs.4.3a,4.3b we show the ion distribution function plotted against y at the deeply

passing end, λ = 0, and in the collisional dissipation layer in pitch angle space. In the

RDK-NTM solver, we drop collisions to leading order at λ < λp and λ > λt, and learn

that the particle distribution is flattened across the drift or S islands but not the real

magnetic island. Then proceeding to next order in δj and adding collisions, we reconstruct

the actual form of the particle distribution function, g(0,0)
j = g

(0,0)
j (S, λ, V ;σ), i.e. g(0,0)

j

is independent of ξ at fixed S. In the vicinity of the trapped-passing boundary, though,

collisions are comparable to parallel streaming, and so we predict g(0,0)
j will depend on ξ at

fixed S. Thus, here we solve Eq.2.36 in full, exploiting the collisional layer thinness, and

44EPS conference on Plasma Physics 2019. Benchmarking of the drift kinetic model for the NTM
threshold.
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provide matching at λc at fixed pϕ as was discussed in the previous chapter. In the layer,

the particle distribution is a function of Ŝ, i.e. S localised around λc in accordance with

Chapter III, ξ, λ, V and σ and hence is a function of pϕ, ξ, λ, V and σ. To leading order,

the Ŝ dependence is introduced parametrically. In Figs.4.3a and 4.3b we also plot the

full solution of Eq.2.35, g(0)
j = g

(0)
j (pϕ, ξ, λ, V ;σ), for the ion component [94]. In Fig.4.4

we plot the DK-NTM solution outside and inside the collisional dissipative layer around

the trapped-passing boundary. As we can see from Figs.4.3a,4.3b,4.4 the ξ dependence

of g(0)
j in y/S space is indeed weak at the deeply passing end and becomes significant

only when λ approaches λp, i.e. the collisional dissipation layer. Both solutions match

the equilibrium gradient far from the magnetic island and demonstrate flattening in the

vicinity of the S island O-point. At ν∗i = 10−2, the (R)DK-NTM solutions agree well even

in the vicinity of the S island separatrix. If we decrease ν∗i , a small discrepancy near the

S island separatrix appears and continues to grow with decreasing ion collisionality.

• This collisionality dependence can be explained by the fact that the pitch angle

scattering outside the dissipative layer is small, and is dominated by A∂/∂ξ|S. ν∗i
is a factor in front of the pitch angle scattering operator, and ν∗i . 10−3 is already

difficult to resolve in a full DK-NTM solver, where all terms are treated on an equal

footing. In contrast, the RDK-NTM solver requires the low collisionality, ν∗i . 10−2,

to implement the layer solution discussed in Chapter III.

• Another source of the discrepancy near the separatrix is a difference in the boundary

conditions used in (R)DK-NTM. Indeed, the RDK-NTM solver deals with the S

island directly accounting for a difference in S contours inside and outside the drift

island and providing the R1 continuity45 for the coefficients in Eq.2.40 across the S

island separatrix. In contrast, the DK-NTM solution requires the Neumann boundary

at pϕ → ±∞ [73, 74, 93]. Potentially, the latter implies the Rn (n > 1) continuity.

On the other hand, since DK-NTM does not introduce the island explicitly, it might

not capture the vicinity of the island separatrix with sufficient accuracy, and thus

higher resolution would be required there.

• The discrepancy around the S island separatrix close to λ = λp might arise due to

the narrowness of the dissipative layer implemented in the layer solution. The is no

45The coefficients of Eq.2.40 and their first derivatives have been matched at the drift island separatrix.
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λ variation in S in the leading order solution. This does not play a significant role

inside the layer but can cause a small difference when λ→ λp + 0.

• In the vicinity of the S island separatrix, there is a region where S derivatives can be

comparable to parallel streaming, which would invalidate the perturbative treatment

of collisions in RDK-NTM. This region then is to be treated in a way similar to the

disspative layer solution discussed in the previous chapter.

However, as we can see from Fig.4.4(a),(b), the last three points are not crucial, and the

main source of difference is caused by the plasma collisionality limitations.

The curvature of the distribution function in the vicinity of the island separatrix is

determined by the diffusion terms in Eq.2.40/Eq.2.35 that arise from switching from

ψ to S/pϕ in the pitch angle scattering collision operator.46 These diffusion terms are

proportional to ∂k/∂Sk
∣∣
λ,ξ

or ∂k/∂pkϕ
∣∣
λ,ξ

(k = 1, 2), respectively. In Fig.4.5 we compare

the RDK-NTM solution plotted against y at λ = 0 (a) and λ = λp (b) for plasma and

tokamak parameters considered in Figs.4.3a,4.3b,4.4 and an analytic solution valid in the

limit of large islands outside the magnetic island separatrix [53]. The latter is denoted by

H96. The corresponding leading order ion distribution differentiated with respect to y

and plotted against y at λ = 0 and λ = λp is shown in Fig.4.5 (c) and (d), respectively.

H96 is derived from a model diffusion of the form Γψ = −D∂n/∂ψ, where Γψ is the

particle flux in the radial direction and D is the diffusion coefficient that has been assumed

to be a slowly varying function across the magnetic island O-point. The model diffusion is

sufficient for the accurate determination of the bootstrap drive at large w. However, it does

not provide a full polarisation current contribution to the magnetic island growth/decay.

Indeed, as we shall see later in this chapter, a significant amount of the polarisation

drive comes from the vicinity of the magnetic island separatrix. In Fig.4.5 we also show

the solution of Eqs.D.60,D.61 where the S diffusion terms, i.e. terms proportional to

∂k/∂Sk
∣∣
λ,ξ

(k = 1, 2), have been replaced with a model S diffusion. The first model

imposes ∂2/∂y2 or
√
S∂/∂S(

√
S∂/∂S) at fixed λ and ξ and is obtained by replacing

46The pitch angle scattering collision operator is introduced at fixed ψ. To solve Eq.2.40/Eq.2.35 in
S/pϕ space, one has to rewrite the λ differentials at fixed S/pϕ, respectively. In the dissipative layer
around λc, the ∂2/∂λ2 term is dominant and hence the S differentials have been dropped to leading order.
However, we have to stress here that the leading order curvature around the Ŝ island separatrix is still
included via the drive, H±/t. The Ŝ dependence of H±/t is parameteric and is found from matching at
λc at fixed pϕ as discussed in the previous chapter.
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pϕ = pϕ(S, ξ, λ, V ;σ) with σpϕ
√

2L̂qS±/ŵ. In the dissipation layer, the drive term then

has to be replaced with σpϕ
√

2L̂qS±/ŵ as well. This
√
S diffusion model with a constant

diffusion coefficient excludes the spectrum in ξ, and hence leaves the solution unperturbed

outside the magnetic island separatrix (see Fig.4.5(c),(d)). The second model imposes

the S diffusion weighted by
√
S + cos ξ and hence reproduces the H96 solution at large w

outside the island47,48. Replacing the actual S diffusion in Eqs.D.60,D.61 with a model,

either
√
S or

√
S + cos ξ, removes a significant fraction of the perturbation right outside

the separatrix. Keeping all the terms ∝ ∂k/∂Sk
∣∣
λ,ξ

(k = 1, 2), we obtain a full solution

of Eqs.D.60,D.61. As we can see from Fig.4.4(a),(b), the full RDK-NTM solution in S

space and the full DK-NTM solution in pϕ space agree well in the vicinity of the S island

separatrix. Therefore, we stress that the curvature of the distribution function around

the separatrix is governed by the actual S diffusion in Eqs.D.60/D.61 and is necessary

for the accurate calculation of the polarisation term in the MRE. In Figs.4.6,4.7 we plot

the same solutions but in pϕ space. The DK-NTM (provisional49) solution denotes the

DK-NTM solution that includes the numerical electrons, i.e. treats the electron component

numerically in a way similar to the RDK-NTM solver (see Fig.4.2). In Fig.4.8 we show

the RDK-NTM results for larger ρϑi/w . 1.

In Fig.4.9 we plot the ion distribution function against p̂ϕ and λ at certain ρϑi/w and

47These model solutions have been introduced to benchmark the RDK-NTM solutions against known
analytic limits and to demonstrate the importance of the S diffusion.

48The starting equation schematically reads V‖∇‖gj+L̂gj = νiiDλgj+D∂2gj/∂ψ2
∣∣
ξ
, where L̂ represents

the rest of the differential operators that act on gj in the left hand side of the drift-kinetic equation. Dλ
is the pitch angle scattering operator and D is a constant diffusion coefficient. Dropping the drift effects,
L̂gj , and replacing νiiDλgj with the Krook collisions, we obtain Eq.7 of [64]. Treating the right hand
side perturbatively outside the island at λ < λp, and solving

[
(νii/V‖)Dλ + (D/V‖)∂

2/∂ψ2
∣∣
ξ

]
g
(0)
j = 0,

we obtain H96 for the leading order distribution. Similarly, the dominant contribution in S space

reads
∫ S
ŵ/4L̂q

C1

(〈√
1
2

(
4L̂q

ŵ S′ + cos ξ
)〉S′

ξ

)−1
dS′ in the absence of the electrostatic potential and the

momentum conservation term. Here
〈√

1
2

(
4L̂q

ŵ S + cos ξ
)〉S

ξ

=
√
2
π

√
4L̂q

ŵ S − 1 ·E
(
− 2ŵ

4L̂qS−1

)
, where E

is the complete elliptic integral of the second kind. E
(
− 2ŵ

4L̂qS−1

)
→ π

2 , S → ∞. C1 is a constant of
integration to be determined to match to the equilibrium Maxwellian gradient far from the island. In
Fig.4.5 we show that the model

√
S + cos ξ RDK-NTM solution matches this analytic solution. Away

from the island, S reduces to Ω and hence the latter reproduces H96. Dropping the ξ dependence
in the diffusion term on the right hand side of this model kinetic equation, we obtain the

√
S model

diffusion solution outside the island, i.e. σpϕŵ
[
L−1n +

(
V̂ 2 − 3/2

)
L−1Tj

]
e−V̂

2
√

4L̂q/ŵ

[
y −

√
ŵ/4L̂q

]
in

agreement with Fig.4.5.
49To be further tested for larger ρϑi.
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ion collisionality. A sum of the ion distribution functions over σ = ±1 is found to be

flattened in the vicinity of p̂ϕ = 0 and thus inside the magnetic island for small ρϑi/w.

Due to Eq.1.6 and Eq.2.12, this results in flattening of the ion density profile around the

magnetic island O-point for ρϑi/w � 1. In contrast, when the radial shift of the drift S

islands compared to the magnetic island (which is proportional to ρ̂ϑi) becomes significant,

the flattening of
∑

σ g
(0,0),σ
i and hence the density flattening are removed from inside the

magnetic island. ρϑi = 5.0 · 10−3rs is sufficient to partially restore the density gradient

across the magnetic island of width w = 0.02rs. If ρϑi/w & 1, the profile will be further

steepened across the O-point. This explains the density profiles we demonstrate in Fig.2.11

of Chapter II and in Fig.4.11. The gradient inside the magnetic island is a consequence of

the drift island structures, and is a property of the passing (but not trapped) particles.

Figure 4.11: Same as Fig.2.11 except for
the ion collisionality ν∗i = 10−4.

For electrons, the radial shift in Eq.2.37 is

small as ρϑe � ρϑi (e.g. see Fig.4.10). Hence,

the drift island effect is less significant for the

electron distribution function. This creates a

significant difference in the electron and ion

density profiles especially at large ρϑi in the

absence of the electrostatic potential. Indeed,

when ρϑi/w � 1, the ion and electron density

gradients are both removed from inside the

magnetic island. In contrast, when ρϑi and w

are comparable, a non-zero, finite ion density

gradient is sustained around the magnetic

island O-point, while the electron density gradient is still removed in the absence of

any potential due to the strong electron parallel streaming and ρϑe � w. However,

to keep plasma quasi-neutral, the electrostatic potential is required. It adjusts to

provide ni ≈ ne. Hence, the ion density steepening at large ρϑi is explained by the

radial shift in S given by Eq.2.37, while the sustainability of the electron density

gradient is associated with the self-consistent electrostatic potential.
∑

σ σg
(0,0),σ
i,e is

responsible for the parallel flow profile due to Eq.2.27 with Eqs.2.12,2.13. The main

contribution to the flow is provided by passing particles due to the summation over

σ in the ϑ-averaging operator introduced for trapped particles, Eq.2.24.
∑

σ σg
(0,0),σ
i
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is shown in Fig.4.9 and Fig.4.10 for different ρϑi/w. However, we have to note

that the trapped branch also contributes to Eq.2.27 as the integration in Eq.2.27

is imposed at fixed ψ, and g
(0,0),t
i = g

(0,0),t
i (p̂ϕ, ξ, λ, V̂ ) = g

(0,0),t
i (ψ̂, ξ, ϑ, λ, V̂ ;σ) with

p̂ϕ = x− ρ̂ϑiV̂‖ = x− σρ̂ϑiV̂
√

1− λB(ϑ).

(a) ρϑi/w = 0.05 (b) ρϑi/w = 0.35

Figure 4.12: The ion flow moment,
∑

σ σg
σ
i , plotted against pϕ at λ = 0.0873, ξ = 0 for

w = 0.02rs, ρϑi = 1.0 · 10−3rs (left) and w = 0.02rs, ρϑi = 7.0 · 10−3rs (right), ε = 0.1, L̂q = 1,
Ln0 = 1, ω̂E = 0, ηi = 1 and ν̂i = 10−4. The grey lines in Fig.4.12a correspond to pϕ = w, which
is close to the magnetic island separatrix for small ρϑi/w. The red dashed line in Figs.4.12a,4.12b
corresponds to the equilibrium gradient, i.e. in the absence of the NTM island.

In Figs.4.12a,4.12b we compare the ion flow moments at small and large ρϑi/w. In

Fig.4.12a
∑

σ σg
σ
i is flattened and zero across the magnetic island O-point in accordance

with the conventional picture when the bootstrap flow experiences a hole around the island

O-point. In Fig.4.12b, corresponding to larger ρϑi/w, there is a non-zero contribution to∑
σ σg

σ
i in the island centre which as we shall see in the following section provides the

basis for an NTM threshold.

In Sec.2.5 of Chapter II we have defined ωE, which being proportional to Φ′eqm, describes the

electrostatic potential gradient away from the magnetic island, provided Φ is localised to

the island vicinity. Therefore, as ωE appears through the equilibrium electrostatic potential

far from the NTM island, its effect on the radial distribution function/density profile has

to be similar to that from ρϑi. Indeed, provided the electrostatic potential is localised

around the resonant surface, S± = (ŵ/4L̂q)
[
2(p̂ϕ − p̄ϕ)2 − cos ξ

]
− (1/2)

〈
ρ̂ϑjδΦ̂/V̂‖

〉pϕ
ϑ

with p̄ϕ = ρ̂ϑj(L̂q/ŵ)(ω̂D +
〈

1/2V̂‖

〉pϕ
ϑ
ω̂EL

−1
n0 ŵ). Thus, ω̂E and its sign also result in the

radial shift along with ρϑi.50 However, this contribution, being also w dependent, is
50 A similar effect has been addressed in [92] in the drift kinetic approximation for the model electrostatic
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one-two orders of amplitude less than the effect of the ion poloidal Larmor radius. We

also notice that the reduction in w results in more rapid changes in the radial shift of S

in pϕ space, denoted by p̄ϕ, as p̄ϕ ∝ ρ̂ϑi/ŵ = ρϑiψs/w
2.

potential.
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4.3 Contributions to the modified Rutherford equation

We can now move to Eq.2.1 and consider the parallel current density perturbation

Figure 4.13: The sum of the bootstrap and
curvature contributions to the modified Rutherford
equation normalised to poloidal beta, (∆bs +
∆cur)/βϑ, vs. w/rs for different values of the
ion poloidal Larmor radius, ρϑi. The dashed line
is the analytic result for the bootstrap current
contribution, valid in the limit of large magnetic
island widths. Here wc defined as a solution of
∆bs + ∆cur = 0 represents a magnetic island
threshold, also called a critical magnetic island
half-width. Inset: wc vs. ρϑi. ε = 0.1, L̂q = 1,
ion collisionality ν∗i = 10−4. The equilibrium
density and temperature gradients are L−1

n = 1
with ω̂E = 0, L−1

Tj = 1.

localised around the resonant surface, J‖,

that contributes to the time evolution

of the magnetic island width. The

second term on the right hand side

of Eq.2.1 adds tokamak neoclassical

effects to the Rutherford equation, i.e.

bootstrap, curvature and polarisation

contributions to w = w(t). We note

that Eq.2.9 is equivalent to Eq.2.1 if a

single isolated stationary NTM magnetic

island is considered. Thus, when the

island is stationary, the classical tearing

mode stability parameter, ∆′, is balanced

against the sum of all the neoclassical

contributions, ∆′ + ∆neo = 0, where

∆neo = −µ0R

2ψ̃

∫
R
dψ

∫ π

−π
dξJ̄‖ cos ξ.

(4.12)

Here J̄‖ is the ϑ-average of J‖.

Substituting the obtained ion/electron distribution function into Eq.2.27, yields

the expression for the ion/electron parallel flow, u‖,j, with J‖ =
∑

j eZju‖j. Defining the

polarisation current density as the part of the parallel current density perturbation that

flux surface averages to zero, we write

∆bs + ∆cur = −µ0R

2ψ̃

∫
R
dψ

∫ π

−π
dξ
〈
J̄‖
〉Ω

ξ
cos ξ (4.13)

for the sum of the bootstrap and curvature contributions and hence

∆pol = ∆neo − (∆bs + ∆cur) (4.14)
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for the polarisation term. Here the ξ-averaging operator at fixed Ω is defined as

〈...〉Ωξ =

∮
...(Ω + cos ξ)−1/2dξ∮
(Ω + cos ξ)−1/2dξ

(4.15)

similar to Eq.2.41. As we mentioned earlier, we focus on a large aspect ratio, circular cross

section tokamak approximation. Thus, some of the terms of order ε2 are neglected. An

accurate calculation of the curvature contribution requires these higher order corrections.

However, as ∆cur = O(ε2), it does not provide a significant contribution to the threshold

nor to the island propagation frequency results discussed below. Thus, ∆bs + ∆cur used

here is just a symbolic representation of all the MRE contributions that do not flux surface

average to zero. To O(ε), this reduces to the bootstrap current contribution for magnetic

islands of large widths, w � ρϑi. In Fig.4.13 we plot (∆bs + ∆cur)/βϑ against w/rs. In

(a) 0th iteration in Φ (b) self-consistent Φ

Figure 4.14: A sum of the bootstrap and curvature contributions, ∆bs + ∆cur, plotted
against w/ρϑi for different ρϑi at the end of the 0th iteration in Φ (left) and with self-consistent
electrostatic potential Φ (right) (green: electrons, blue: ions, red: total; markers denote the
corresponding value of ρϑi). ε = 0.1, L̂q = 1, ν̂i = 10−4. The equilibrium density and temperature
gradients are L−1

n = 1, L−1
Tj = 1. The ion/electron distribution function has been calculated with

the model ∝
√
S diffusion.

the limit of w � ρϑi, ∆bs + ∆cur is inversely proportional to w, which is expected from

the existing analytic theory (e.g. Eq.(85) of [53]). When w tends to zero, ∆bs + ∆cur

becomes negative providing a threshold for NTMs, i.e. a value of w below which the

mode is stable, ∆bs + ∆cur < 0. This value is denoted by wc and is to be referred to

as the critical magnetic island half-width. wc is different for each ion poloidal Larmor

radius and hence can be scaled by ρϑi. This kind of behaviour at w ∼ ρϑi is the direct

result of the inclusion of the drift islands in our model and is in qualitative agreement
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with experimentally observed self-healing of small magnetic islands below the threshold

(e.g. [72]) 51. As we learned from the previous section, the plasma density gradient is

not removed across the magnetic island at small w. This, in turn, restores the bootstrap

current near the island O-point.

To compare the electron and ion contributions to the drive, in Figs.4.14a,4.14b,4.15

we plot ∆bs + ∆cur as a function of lgw/ρϑi at the 0th iteration in the electrostatic

potential52 and also with Φ found self-consistently from the plasma quasi-neutrality

condition. In Figs.4.14a,4.14b the S diffusion terms in Eqs.D.60,D.61 have been replaced

with a model, i.e. the ∝
√
S diffusion addressed in the previous section. In accordance

with the previous section, this solution almost reproduces the H96 solution (see Fig.4.5)

outside the island but also captures the region inside the magnetic island separatrix.

Figure 4.15: Same as Fig.4.14b but based on
the full RDK-NTM solution.

In both cases, the electron and ion

contributions match the analytic limit

at large w in accordance with [53].

As can be seen from Figs.4.14a,4.14b

both, ions and electrons, contribute to

the threshold in the limit of w ∼

ρϑi in the absence of the actual S

diffusion. Keeping the actual S diffusion,

i.e. solving Eqs.D.60,D.61 in full, we

obtain ∆bs + ∆cur shown in Fig.4.15. In

contrast to Figs.4.14a,4.14b, here the

electron component dominates the plasma

response at small w. Physically, this might be explained by the fact thatme � mi and thus

ρϑi � ρϑe or ρbi � ρbe. Therefore, at w � ρbi the ion plasma component averages over

the electro-magnetic field generated by the island, while electrons due to the narrowness of

their banana orbits still respond to the local value of the field. This is in agreement with

the DK-NTM solution presented in [73, 93, 74] 53. However, we highlight that the origin of

the electron/ion behaviour at w . ρϑi is still an open question and is the subject of further

51To provide the quantitative agreement, one has to include the classical tearing mode stability
parameter, ∆′.

52Φ̂ = ω̂EL
−1
n0 ŵψ̂ is taken for the initial guess unless otherwise stated.

53In [73, 93, 74], the electrons are treated analytically at the 0th iteration in the electrostatic potential
due to me � mi.
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investigations. Mathematically, we stress the importance of the distribution function

curvature around the magnetic island separatrix provided by the radial S diffusion.

To compare the NTM threshold with its experimental value, we have to keep all the

neoclassical contributions, ∆neo, and thus the contribution of the polarisation current is

required. In Fig.4.16 we show ∆bs + ∆cur and ∆pol as a function of w/rs for different

ρϑi. ∆pol is calculated in accordance with Eq.4.14. Working in the island rest frame,

ω = 0, we determine ∆pol as the residual contribution to the island evolution. The

actual polarisation current contribution will require the island propagation frequency

dependence. The polarisation contribution is inversely proportional to w3 at large w in

agreement with previous analytic results (e.g. [53, 43], note: Eq.(85) of [53] is obtained in

the reference frame in which the equilibrium radial electric field is zero, while we work

in the island reference frame)54. For smaller w comparable to the ion poloidal Larmor

radius, there is a threshold similar to one obtained for the "bootstrap" drive, ∆bs + ∆cur.

However, as the "bootstrap" drive dominates over the polarisation term as we can see

from Fig.4.16 in a range of parameters we consider, ∆neo reproduces the form of the

(∆bs + ∆cur) = (∆bs + ∆cur)(w) curve providing self-healing (e.g. see Fig.F.1 of Appendix

F).

In Fig.4.17 we define wc as a solution of ∆neo(w) = 0 to find wc ≈ 3ρϑi in the conventional

tokamak geometry with ε = 0.1 in the absence of the Shafranov shift, plasma elongation

and triangularity (equilibrium density and temperature gradients are L−1
n = 1 with ω̂E = 0,

LTj = 1, τ ≡ Te/Ti = 1). We emphasise that this threshold physics is related to passing

particle dynamics, and not the finite banana width effects of the trapped particles. A

basis for the threshold is the result of the radial shift of drift islands described by the S

function, Eq.2.37, and, in particular, the pressure gradient restoration across the magnetic

island O-point at w ∼ ρϑi. As discussed in the previous section, the latter mainly arises

from the behaviour of the σ-dependent part of the ion distribution function,
∑

σ g
(0,0),σ
i ,

at small w. In this sense, the relevant parameter for wc is the ion poloidal Larmor radius,

ρϑi, and not the ion banana orbit width, ρbi.

We have to stress here that at this stage we still cannot consider the contribution of the

polarisation current as being fully determined. Fig.4.16 shows the residual contribution to

54The impact of the polarisation contribution from the vicinity of the magnetic island separatrix is
addressed in Sec.4.4.
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Figure 4.16: The sum of the bootstrap
and curvature contributions, ∆bs + ∆cur, (filled
markers, extremum in the upper half-plane)
and the polarisation contribution, ∆pol, (un-
filled markers, extremum in the lower half-
plane) against w/rs for different ρϑ,i with self-
consistent Φ. The dashed black line ∝ 1/w and
the dashed grey line ∝ 1/w3 indicate the limit
of large magnetic island width. ε = 0.1, L̂q = 1,
ion collisionality ν∗i = 10−3. The equilibrium
density and temperature gradients are L−1

n = 1,
L−1
Tj = 1.

Figure 4.17: The full critical magnetic island
width, wc, defined as a solution of ∆neo(w) = 0
as a function of the ion poloidal Larmor radius,
ρϑi. The red dashed line is the best fit line that
provides the approximation. wc and ρϑi are
normalised to the radius of the rational surface,
rs. ε = 0.1, L̂q = 1, ion collisionality ν∗i =
10−4. The equilibrium density and temperature
gradients are L−1

n = 1 with ω̂E = 0, L−1
Tj = 1.

the island evolution, ∆pol, when the island propagation frequency, ω, is zero. To conclude

if the polarisation term is stabilising or destabilising, we have to find its ω dependence

and its sign at the island propagation frequency which will be addressed in the following

section.
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4.4 Polarisation contribution and island propagation

frequency

To determine the island propagation frequency, we return to the system of Eqs.2.9,2.10.

Eq.2.9 provided the marginal magnetic island half-width, wc. Eq.2.10 represents the

toroidal torque balance [53] and thus makes the island propagation frequency dependent

on the dissipation processes in the plasma included in a model. Following [53], we leave the

effects of error fields and plasma sheared flows beyond the scope of this work. Therefore,

the only source of dissipation in this study is the collisional dissipation around the trapped-

passing boundary in pitch angle space, which provides a dominant contribution to the

island propagation frequency.

Figure 4.18: (left) The integrated through the island
sine component of ∂L/∂A‖ plotted against ωE with the
self-consistent electrostatic potential. (right) ∂L/∂Φ,
integrated through the island region, plotted against
ωE for the model potential, Φ̂ = ω̂EL

−1
n0 ŵψ̂ (circle red

markers). The Lagrangian density, L, is given by Eq.2.8.
Solutions of

[
∂L/∂A‖

]s
(ω) = 0 and [∂L/∂Φ] (ω) = 0

match at ωE = −0.93ωdia,e. Ion collisionality ν∗i =

10−4, ε = 0.1, L̂q = 1. The equilibrium density and
temperature gradients are L−1

n0 = 1, L−1
Tj = 1.

Once a full solution of the ϑ-

averaged drift kinetic equation to

leading order in ∆ is determined

(Eq.2.35 in the dissipative layer

and Eq.2.40 outside the layer) with

the electrostatic potential calculated

self-consistently from plasma quasi-

neutrality, we calculate the current

density perturbation parallel to the

field lines, J‖, and then substitute

it into Eq.2.10 to determine ωE.55

Eq.2.10 is the integrated through

the island sin ξ component of

Ampère’s law written along to the

field lines. The left hand side of Eq.2.10 is denoted by
[
∂L/∂A‖

]s, i.e. the integrated

through the island sine component of ∂L/∂A‖. It is a function of ωE and thus is a function

of ω, and a root of
[
∂L/∂A‖

]s
(ω) = 0 provides the island propagation frequency, ω0. In

Fig.4.18, we plot
[
∂L/∂A‖

]s against ωE. The Lagrangian is calculated based on the full

distribution function. However, as stated above, the layer g(0)
j provides the dominant

55As noted above, ω − ωE is independent of the reference frame. Thus, ωE in the island rest frame
provides the ω dependence in the frame, in which the radial electric field is zero far from the island.
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contribution to Eq.2.10.

As we can see from Fig.4.18, there is a number of roots that satisfy the equation:

ω̂E = {...− 1.28,−0.93, 0, 0.94, 1.29, ...}. We note that these values are obtained for the

self-consistent electrostatic potential that provides plasma quasi-neutrality. ω0 is one

of the roots of
[
∂L/∂A‖

]s
(ω) = 0. Although, multiple solutions of

[
∂L/∂A‖

]s
(ω) = 0

provide an array of possible ω0 values56, this is still sufficient to analyse the stability of the

polarisation current contribution, as we shall see later in this section. In [53], the island

propagation frequency has been found to be in the direction of the electron diamagnetic

frequency with ω0 = 1.25ωdia,e at Ln0 = 1., LTe = 1. In [86], the island propagation

frequency is also found to be in the direction of ωdia,e but scales as (1− ηe)ωdia,e, where

ηe = Ln0/LTe. Both solutions are located within the range of possible roots for ωE

determined above. In contrast, in [87] the island propagation frequency has been found

to be in the direction of the ion diamagnetic frequency, ωdia,i, in experiments with the

co-injected NBI beam. Substituting ε = 0.1 and ηi = 1 into the scaling presented in [87],

we obtain ω0 = 1.11ωdia,i.

Before we consider the polarisation current as a function of the island propagation

frequency, let us discuss the polarisation current that arises from a narrow layer in the

vicinity of the magnetic island separatrix relative to its external contribution that comes

from the region outside the magnetic island. [53] provides the analysis valid outside the

magnetic island separatrix and requires island scale lengths greater than ε1/2ρϑi. This then

excludes the separatrix layer from the analysis (e.g. Fig.F.3), being though still sufficient

for the accurate determination of the bootstrap drive in the limit of large islands. The

polarisation current contribution has been found to be negative, i.e. stabilising at ω0 (see

Eq.85 of [53]). A thin boundary layer that surrounds the separatrix of the magnetic island

has been shown to provide a significant contribution to the polarisation current [82, 68, 61]

56The NTM is associated with the perturbation of the vector potential parallel to the magnetic field
lines, A‖, and ω0 has to satisfy Eq.2.10, i.e.

[
∂L/∂A‖

]s
(ω) = 0. In the following chapter we analyse

the stability of secondary modes associated with the electrostatic perturbation and employ Eq.2.11,
∂L/∂Φ = 0, integrated over space to provide the dispersion relation and to calculate the eigen frequency.
In Fig.4.18 we plot ∂L/∂Φ integrated through the island as a function of ωE , [∂L/∂Φ](ωE), imposing
Φ̂ = ω̂EL

−1
n0 ŵψ̂ for the electrostatic potential just as an illustration. [∂L/∂Φ](ωE) = 0 has two roots:

ω̂E = {−0.93, 0}. Omitting the trivial solution, we have ωE = −0.93ωdia,e in the island rest frame.
The interesting fact is that sets of solutions of

[
∂L/∂A‖

]s
(ω) = 0 with the self-consistent electrostatic

potential and sets of solutions of [∂L/∂Φ] = 0 with Φ̂ = ω̂EL
−1
n0 ŵψ̂ overlap.
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and to invert its sign making the polarisation contribution, ∆pol, destabilising [50, 88, 89].

[82, 50, 88, 89] investigate the effect of the polarisation current employing the plasma fluid

description, i.e. imposing the Pfirsch-Schluter regime, while the low collisionality plasma

has been assumed in this study57. [61] employs the gyro-kinetic model to determine

the island propagation frequency dependence of the MRE polarisation contribution, also

covering the coupling to the electron drift waves, i.e. allowing 0 ≤ ω/ωdia,e ≤ 1. The

polarisation current was also calculated in [90, 91] from the drift kinetic theory, and in

[63, 64] from the gyro-kinetics and then compared to the perturbative analytic results.

Although the listed works include the layer contribution to ∆pol, they all impose a model

potential. This is crucial, as the polarisation current is associated with a difference in

the electron and ion responses to the magnetic perturbation and thus is determined by

the electric field required to keep plasma quasi-neutral. In this study, the electrostatic

potential is determined from plasma quasi-neutrality as discussed in Chapter II.

4.4.1 The polarisation current contribution with the model ∝
√
S

diffusion

As mentioned above, H96 imposes a model radial diffusion and captures only the region

outside the magnetic island separatrix, and hence excludes the separatrix layer contribution

to the parallel current density from the analysis (e.g. see Fig.F.3). In [53], ∆pol ∝

−ω [ω − ωdia,e(1 + ηi)] < 0, i.e. has been found to be stabilising in the limit of large w.

[63, 64] still imposes Γψ = −D∂n/∂ψ but captures the region around the island separatrix.

The latter makes ∆pol destabilising at certain ω.

In this subsection we address the model ∝
√
S diffusion introduced in Sec.4.2. In Fig.4.19,

Table 4.1, Table 4.2 we compare the contributions to the cosine component of the parallel

current density perturbation, i.e. the space integral on the right hand side of Eq.4.12,

from inside and outside the separatrix of the magnetic island for different ρϑi, w and ν̂i

for this case.

57To investigate the bootstrap drive, the low collisionality plasma is required.



4.4 Polarisation contribution and island propagation frequency 91

F
ig
u
re

4.
19

:
(a
)
T
he

co
si
ne

co
m
po

ne
nt

of
th
e
ϑ
-a
ve
ra
ge
d
pa

ra
lle

lc
ur
re
nt

de
ns
it
y
pe

rt
ur
ba

ti
on

in
te
gr
at
ed

ov
er
ξ
at

fix
ed

Ω
,〈 J̄ ‖

co
s
ξ〉 Ω ξ

,p
lo
tt
ed

ag
ai
ns
t

Ω
fo
r
di
ffe

re
nt
ρ
ϑ
i.

T
he

in
-p
ha

se
co
m
po

ne
nt

of
th
e
io
n
(b
)/
el
ec
tr
on

(c
)
pa

ra
lle

lfl
ow

av
er
ag
ed

ov
er
ϑ
an

d
ov
er
ξ
at

fix
ed

Ω
pl
ot
te
d
ag
ai
ns
t

Ω

fo
r
di
ffe

re
nt
ρ
ϑ
i.

(d
)
Zo

om
of

(a
)
ou

ts
id
e
th
e
m
ag

ne
ti
c
is
la
nd

se
pa

ra
tr
ix
,i
.e
.

Ω
≥

1
.
(e
)
〈 J̄ ‖c

os
ξ〉 Ω ξ

fo
r
di
ffe

re
nt
ν̂ i
.
(f
)
〈 J̄ ‖c

o
s
ξ〉 Ω ξ

fo
r
di
ffe

re
nt
w
.



92 4.4 Polarisation contribution and island propagation frequency

∫ 1

−1

〈
J̄‖ cos ξ

〉Ω

ξ
dΩ vs.

∫ Ωfin
1

〈
J̄‖ cos ξ

〉Ω

ξ
dΩ

ρϑi
∫ 1

−1

〈
J̄‖ cos ξ

〉Ω

ξ
dΩ

∫ Ωfin
1

〈
J̄‖ cos ξ

〉Ω

ξ
dΩ,

max(ψ̂) = 2.9,
w = 0.02rs

∫ Ωfin
1

〈
J̄‖ cos ξ

〉Ω

ξ
dΩ,

max(ψ̂) = 10.,
w = 0.02rs

1.0 · 10−3rs 0.0801884964943 −0.0401392885124 −0.08379370129052
2.0 · 10−3rs 0.0733667684839 −0.0388039440297 −0.08197527291581999
3.0 · 10−3rs 0.0595189600977 −0.0523387088605 −0.10990103866624
4.0 · 10−3rs 0.0550939317948 −0.0485169637716 −0.10056931082046
5.0 · 10−3rs 0.055130353552 −0.0406898886297 −0.08276866300038
6.0 · 10−3rs 0.0517537477945 −0.0474968529734 −0.09396710170214001
7.0 · 10−3rs 0.0469708166399 −0.051688518276 −0.09846639999317999
8.0 · 10−3rs 0.0395467334553 −0.0600175912761 −0.11050108250526

Table 4.1: Area under the
〈
J̄‖ cos ξ

〉Ω

ξ
curve inside, −1 ≤ Ω ≤ 1, and outside the magnetic

island, Ω ≥ 1 for a different right limit, i.e. maximum value of ψ/w. ψ̂ = 2.9 corresponds to
1.45 island widths, and ψ̂ = 10 corresponds to 5 island widths. w = 0.02rs, ν̂i = 10−4, ε = 0.1,
L̂q = 1, ηi = 1.The presented data corresponds to Fig.4.19, (a).

In Fig.4.19 the contribution from inside the separatrix is finite and decreases with the

ion poloidal Larmor radius. In contrast, a spike outside the separatrix increases with ρϑi,

which makes both (inside and outside the separatrix) contributions comparable at large

ρϑi even at the distance of ≈ 1− 2 island widths from the separatrix. In contrast, when

ρϑi is small, the layer contribution dominates the external contribution at the distance of

≈ 2 island widths from the separatrix and is almost balanced by the external contribution

at ≈ 5 island widths from the separatrix. An increase in ν̂i from 10−4 to 10−3 reduces the

layer contribution inside the separatrix in this model as well as the outer contribution at

small ρϑi (see Fig.4.19, (e) and Tables 4.1,4.2). At large ρϑi though, both inner and outer

contributions compensate each other. Changes in J‖ cos ξ due to the reduction in w (see

Fig.4.19, (f)) are more rapid as the radial shift of S in pϕ space is p̄ϕ ∝ ρ̂ϑi/ŵ = ρϑiψs/w
2.

The results presented in Fig.4.19 and Tables 4.1,4.2 are obtained for the model diffusion.

However, even this simplified case shows the significance of the separatrix layer contribution.

In [64] it has been concluded that the current density contribution from a thin boundary

layer in the vicinity of the island separatrix and the external contribution from outside

the island almost cancel out at large w. Roughly, we also can see this in Tables 4.1,4.2 for

the model diffusion. At small w though, the layer contribution is found to be dominant in

[64]. [64] treats diffusion perturbatively outside the magnetic island and drops collisions

in the separatrix layer keeping the diffusion and parallel streaming to leading order. The
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∫ 1

−1

〈
J̄‖ cos ξ

〉Ω

ξ
dΩ vs.

∫ Ωfin
1

〈
J̄‖ cos ξ

〉Ω

ξ
dΩ

ρϑi
∫ 1

−1

〈
J̄‖ cos ξ

〉Ω

ξ
dΩ

∫ Ωfin
1

〈
J̄‖ cos ξ

〉Ω

ξ
dΩ,

max(ψ̂) = 2.9,
w = 0.02rs

∫ Ωfin
1

〈
J̄‖ cos ξ

〉Ω

ξ
dΩ,

max(ψ̂) = 10.,
w = 0.02rs

1.0 · 10−3rs 0.0772334825588 −0.027573515526 −0.0576922054224
2.0 · 10−3rs 0.0712222449229 −0.0331705387838 −0.06993131861773999
3.0 · 10−3rs 0.0592157718941 −0.0398634783683 −0.0839597436284
4.0 · 10−3rs 0.0547498468307 −0.0480637058615 −0.10007060513102001
5.0 · 10−3rs 0.0555873563479 −0.0426389885447 −0.08762728862948001
6.0 · 10−3rs 0.0542500573304 −0.0438184246256 −0.0883043616248
7.0 · 10−3rs 0.0507779220968 −0.050239549732 −0.09923754891568
8.0 · 10−3rs 0.0477558648903 −0.0540243193465 −0.10368453130371999

Table 4.2: Same as Table 4.1, except for ν̂i = 10−3.

tokamak drift effects are excluded from the model in [64] 58. In [64] the diffusion coefficient

is assumed to be constant, however, the drive term in the particle distribution function

takes into account the ξ dependence at fixed Ω. The latter is crucial for the distribution

function curvature right outside the separatrix. Therefore, a more accurate treatment

of the region around the magnetic island separatrix is required in our analysis. In the

following subsection we address the parallel current density based on the full solution of

Eqs.D.60,D.61, i.e. retaining the actual S diffusion terms.

4.4.2 The polarisation current contribution based on the full

RDK-NTM solution

Similar to Fig.4.19, in Fig.4.20 we plot the cosine component of the orbit averaged parallel

current density perturbation against Ω but based on a full solution of Eq.2.36 localised

around λc in the collisional dissipative layer and Eq.2.40 outside the layer in pitch angle

space. As we can see from Fig.4.20, there is an additional destabilising layer contribution

to J‖ right outside the magnetic island separatrix similar to that shown in Fig.2 of [63].

However, this part of the separatrix layer contribution was not allowed in the model we

took in Sec.4.4.1. At small ρϑi/w, the separatrix layer contribution now slightly dominates

the plasma response. As we increase the ion poloidal Larmor radius and approach the

NTM threshold, the contribution around the island separatrix grows and dominates over

58In accordance with Chapter II, the radial shift in S is associated with the magnetic drift in a
tokamak.
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the contribution outside this layer (e.g. see Fig.4.20(e)). This is in agreement with [64].

Figure 4.21: The polarisation contribution
to the evolution of the magnetic island vs. ωE
(note: region of ∆pol < 0 is stable). The ωE
dependence in the island rest frame provides the
ω0 dependence in the reference frame, where the
radial electric field is zero far from the island.
Inset: zoom in a region ∆pol(ωE) = 0. Red
curves indicate a parabolic approximation. The
ω2
E behaviour is predicted in the analytic limit

of large w. Ion collisionality ν∗i = 10−4, ε =
0.1, L̂q = 1, L−1

n0 = −0.1. 0 ≤ ωE ≤ ωdia,e
corresponds to a region of coupling to electron
drift waves. For these parameters: ω0/ωdia,e ∈
{...,−1.04,−0.93, 0, 0.92, ...}.

In Fig.4.21 we plot the contribution of the

polarisation current against ωE 59. As we

can see from the figure, the set of solutions

of
[
∂L/∂A‖

]s
(ω) = 0 provides ∆pol > 0, i.e.

destabilising polarisation term. This kind

of behaviour can be explained as follows:

as was mentioned above, the effect of ωE

is similar to that from ρϑi, as it appears

via the equilibrium electrostatic potential

away from the island. The increase in ρϑi

increases the separatrix layer contribution

to J‖ cos ξ. ωE acts in a similar way making

∆pol more destabilising. ∆pol scales as ω2
E

except for the region in the vicinity of ωE =

0. The ω2
E behaviour is consistent with

previous works: [53] outside the magnetic

island separatrix at large w, [68] without

and [61] with included coupling to the

electron drift wave in gyro-kinetics, [90, 91] in the drift kinetic approach at large w

and [63, 64] in the slab formulation 60,61. However, the behaviour of ∆pol around ωE = 0

is more complicated and is beyond the main purpose of the current NTM threshold

study. The similar island propagation frequency dependence of ∆pol has been obtained

in [68, 61, 90, 91, 63, 64]. [68, 63, 64] excludes 0 ≤ ω ≤ ωdia,e. In [91] the sign change in

range −1 . ω̂E . 1 is explained by the competition of the toroidal precession and the

island propagation frequency.

59There is no polarisation current at the zero island propagation frequency and hence this point has
been excluded from the dependence.

60They all impose a model potential.
61Roughly, the electrostatic potential is proportional to ωE . Dropping the pressure and viscosity

gradients in the force balance and replacing the velocity with the EEE × BBB drift velocity, we obtain
J⊥,pol ∝ ω2

E for the polarisation current.
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4.5 Summary

The first part of this chapter describes the solution technique used to solve the reduced

drift kinetic equation for the NTM problem in the conventional tokamak approximation.

The technique is based on the shooting method employed to solve a 3D integro-differential

equation in
{
S±/t, λ, V̂ ;σ

}
space. The momentum conservation term in the pitch angle

scattering collision operator as well as the electrostatic potential have been introduced

iteratively. The first one is required for an accurate calculation of the "bootstrap" current

drive. Indeed, as has been demonstrated in [53], the momentum conservation term

eliminates the island propagation frequency dependence of the bootstrap current. The

electrostatic potential is determined to provide the plasma quasi-neutrality. The algorithm

has been implemented in a new code, RDK-NTM, developed in Python. It has been

checked that the solution converges and satisfies the equation, Eq.2.35 in the dissipation

layer, i.e. λ ∈ [λp, λc] ∪ (λc, λt] , and Eq.2.40 in external regions outside the layer, i.e.

λ ∈ [0, λp] ∪ [λt, λfin], with matching conditions at the trapped/passing boundary, λ = λc,

given by Eq.3.1, and the boundary conditions as well as the plasma quasi-neutrality

requirement. The obtained numerical results for moments of the particle distribution

function have been successfully benchmarked against an analytic solution provided by the

conventional tokamak neoclassical theory valid in the limit of large islands (e.g. Figs.F.3

and 4.13,4.16,4.21). It has been checked that the RDK-NTM solution matches the analytic

limit of large magnetic islands (compared to the ion poloidal Larmor radius) and that the

island propagation frequency dependence of the polarisation current is consistent with

the earlier theoretical results obtained in the presence of the layer polarisation current

contribution. The latter arises in the vicinity of the magnetic island separatrix. The code

has been tested62 and then adopted to solve the secondary mode problem that will be the

subject of the following chapter63.

The second part of the chapter focuses on the obtained results. Employing weak collisional

62The reduced drift kinetic NTM (RDK-NTM) solver has been tested: it has been checked that
the solution (its layer and external contributions) converges and provides the plasma quasi-neutrality
condition. The solver module has been tested for a number of simplified problems that allow an analytic
solution (homogeneous/non-homogeneous equations with constant/factorised/non-factorised coefficients).

63The RDK-NTM code has been adopted to analyse the stability of secondary modes in a tokamak.
The corresponding solution has been benchmarked against the conventional bump-on-tail problem and
the COBBLES results in a pure diffusion case and in the presence of the dynamical friction. They are
found to be in good agreement.
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dissipation, we solve the drift kinetic equation. The perturbative approach we apply

breaks down in a narrow region in pitch angle space in the vicinity of the trapped-passing

boundary. In this region, collisional dissipation is no longer negligible and S cannot be

used to describe the ion/electron streamlines. Here we employ the momentum-conserving

collision operator (which is dominated by the pitch angle scattering contribution due

to the dissipation layer thinness) and solve the 2D boundary layer problem to match

solutions in the trapped and passing regions provided by the perturbative theory. Once

the electron/ion solution of the orbit-averaged drift kinetic equation consistent with

plasma quasi-neutrality is obtained, we calculate the parallel current density perturbation

localised around the resonant surface, J‖, that contributes to the time evolution of the

magnetic island width. We have calculated contributions of neoclassical "bootstrap" and

"polarisation" currents to the magnetic island evolution and have demonstrated that the

plasma response to the NTM magnetic perturbation is stabilising in a certain range of

w. For the small inverse aspect ratio circular cross section tokamak plasma, a threshold

island width below which the tearing mode is stable is w ≤ wc = 2.67ρϑi [73, 93, 74]

and w ≤ wc = 3.16ρϑi from full orbit-averaged (DK-NTM) and low collisionality plasma

orbit-averaged (RDK-NTM) solutions, respectively. This result, wc = 3ρϑi, provides the

experimentally observed self-healing of small magnetic islands. The island propagation

frequency dependence of the polarisation contribution has been determined. The analysis

includes the contribution to the polarisation current that comes from a narrow separatrix

layer around the magnetic island as well as the outer contribution that arises outside the

island separatrix. They act in opposite directions and depend on ρϑi, w, ωE and ν̂i for

certain equilibrium density and temperature gradients, Ln0 and LTj. All these results are

novel in tokamak geometry and include physics inside and outside the magnetic island.

They provide a new understanding of how finite orbit width effects influence the island

threshold and are crucial for the NTM stabilisation on ITER and future tokamak devices.

The next chapter focuses on the stability analysis of secondary modes driven by an island

in phase space. Despite having a different physical origin, this problem being associated

with the island-like structure shares the mathematical basis with the NTM problem.
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Chapter V

5 Stability analysis of secondary modes,

driven by a phase space island

In this chapter64 we discuss a new theoretical approach that is based on the Hamiltonian

formalism and employed to investigate the stability of islands in phase space, generated

by trapping of energetic particles (EPs) in plasma waves in a tokamak [95, 96]. Working

in terms of the Hamiltonian function allows for a reduction in dimensionality from a 6D

dynamics in phase space to a 2D dynamics of a phase space island. Depending on the

form of the Hamiltonian, the results produced below can be applied to a reduced pure

electrostatic slab problem or can be extended further to a tokamak case with the magnetic

field included. We find this approach convenient to describe the stability of EP-MHD

modes, i.e. MHD modes that are driven by EPs (e.g. toroidal Alfvén eigenmodes or

TAEs, EP-driven geodesic acoustic modes or EGAMs, fishbones). The problem of a single

isolated EP-MHD mode then reduces to a 2D Hamiltonian dynamics system around a

phase space island. The latter is usually introduced to describe the conventional Langmuir

wave/bump-on-tail problem.

We solve the Fokker-Planck equation in the presence of an effective velocity space drag

and diffusion to calculate a perturbed equilibrium associated with these phase space islands.

Its stability is then investigated through the Vlasov/Fokker-Planck – Poisson system. The

Lagrangian of this system provides the secondary mode dispersion relation65 and allows

one to estimate the mode onset. The secondary instabilities have been found in a certain

range of primary mode numbers and primary island widths. The maximum secondary

mode growth rate is obtained when the associated resonant velocity is in the vicinity of

the primary island separatrix. Hence, the onset of the secondary mode can be prevented

if the primary mode number is the lowest available.

64The work and results presented in this chapter have previously been published in A. V. Dudkovskaia,
X. Garbet, M. Lesur, H. R. Wilson J. Phys.: Conf. Ser. 1125 (2018) 012009 and A. V. Dudkovskaia, X.
Garbet, M. Lesur, H. R. Wilson Nucl. Fusion 59 (2019) 086010.

65Here we have to address Eq.2.11 integrated through the phase space island as instabilities we consider
are now associated with the perturbations of the electrostatic potential, while Eqs.2.9,2.10 provide the
NTM dispersion relation.
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5.1 Specification of the problem

Interactions between particles and waves play a crucial role in a number of applications.

In the burning plasma of a reactor, EPs are considered for additional heating and

current drive. They can be generated by NBI or resonance frequency (RF) heating, or

produced by fusion reactions. These EPs can excite Alfvén eigenmodes resonating with

plasma waves. This, in turn, results in EP losses degrading heating and confinement.

Since the alpha particles generated by the DT reaction are expected to be the main

heating source in a future tokamak reactor, the EP losses have to be predicted and

suppressed/prevented in an optimal situation. In the simplest case, this problem

becomes the bump-on-tail problem with the Maxwellian thermal electron background

neutralised by steady ions, and the fraction of fast electrons described by a shifted

Maxwellian (see Fig.5.1). The latter is localised in the vicinity of a beam velocity, Vb.

Figure 5.1: Sketch of the bump-on-tail
distribution function. The local maximum is
localised around Vb.

This is a 2D problem, {x, V }, where x is

the spatial coordinate and V is the velocity

variable. The electron distribution function

experiences a positive slope around Vb making

the mode unstable, provided Vb is large enough.

In the original work [97], this was applied

to Langmuir waves, and also allows to be

extended to a tokamak case, e.g. to consider

toroidal Alfvén modes [98, 99]. The drive for

the bump-on-tail instability is provided by the

particle-wave resonance that occurs when the particle velocity matches the phase velocity

of the wave, Vph = ω0/k0 with ω0 being the mode pulsation frequency and k0 its wave

number. There is a number of scenarios of the evolution of a single mode (ω0, k0) [100, 101]

depending on the dissipation rate. The saturation towards steady state occurs as a result

of the island formation in the vicinity of the resonant velocity, V = Vph, provided the

dissipation is sufficient. The particle distribution is then found to be flattened inside the

island, which decreases the drive. Around the island separatrix though, the distribution

function gradient experiences steepening which is prone to instabilities. Saturation is also

allowed in the collisionless plasma via the plateau formation in velocity space inside the
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island, and the onset of O’Neil-Mazitov oscillations [102, 103, 104]. Here the analysis is

restricted to the case of finite dissipation. The primary mode here is to be understood

as an unstable wave (ω0, k0) that evolves towards the phase space island formation [96].

Within the island, a plateau forms surrounded by the separatrix. Secondary modes are

then expected to arise at the edges of this plateau, i.e. near the island separatrix. Their

onset in the vicinity of the phase space island is the subject of the current chapter, where

we exploit some mathematical similarities with our study of NTMs in earlier chapters.

Seeking secondary instabilities, we address the conventional Vlasov/Fokker-Planck –

Poisson system, i.e. a system of Vlasov/Fokker-Planck equations for each particle species,

j, coupled to Poisson’s equation

ε0∇2Φ = −
∑
j

eZj

∫
R
fjdVVV . (5.1)

Here we assume a system of three particle species: j labels thermal background of electrons

and ions, as well as a fraction of EPs, i.e. energetic electrons/ions that trigger the bump-

on-tail instability [96]. In toroidal coordinates, the particle distribution, fj, is to be

treated as fj = fj (t, ψ, ϑ, ζ,VVV ), where ψ is the poloidal flux, ϑ and ζ are the poloidal and

helical angles, respectively. ζ is defined accroding to m0ϑ−n0ϕ−ω0t, where m0/n0 is the

poloidal/toroidal primary mode number, ϕ is the toroidal angle, and ω0 is the primary

mode frequency.

The starting Vlasov/Fokker-Planck equation allows to be rewritten through Hamilton’s

equations for a pair of angular and action variables, {ααα,JJJ} [105, 96]. In the plasma of a

tokamak, the components of JJJ are represented by three adiabatic invariants of motion of

charged particles. Imposing a single perturbation, associated with the phase space island,

we write H0 (JJJ,ααα, t) = H00 (JJJ) + h cos (nnnααα− ω0t) for the full primary Hamiltonian. Here

H00 is the unperturbed Hamiltonian, i.e. in the absence of the island, and nnn = (n1, n2, n3) is

a triplet of integers. We set ξ = nnnααα−ω0t to define a resonant surface by
∑3

i=1 niΩi (JJJ) = ω0

with dααα/dt = ΩΩΩ (JJJ). The action vector then reads JJJ = JJJres +nnnI near the resonant surface,

where JJJres spans the resonant surface and I measures the distance to it (see Fig.5.2). Then

one can verify that H0 (JJJ,ααα, t) = H00 (JJJres) + CI2/2 + h cos ξ, where C is the Hessian of

the Hamiltonian on the resonant surface. To simplify the algebra below, we assume that
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Figure 5.2: A phase space island near the
resonant surface, nnn ·ΩΩΩ(JJJ) = 0 [96].

Figure 5.3: Sketch of H0 against ξ
at p = 0 [96]. ξ varies from −π to
π outside the phase space island and
between the bounce points, ξb1,2, given
byH0 = −ω2

b cos ξb1,2, inside the island
region.

h varies slowly over the island width. Setting p = CI, we find

H0 = p2/2− ω2
b cos ξ (5.2)

for a new full primary Hamiltonian. ωb is the bounce frequency of deeply trapped particles

(i.e. particles trapped in phase space, see Fig.5.3) defined as ω2
b = −Ch. Here we highlight

that a 6D dynamics in phase space can be reduced to a 2D dynamics of a phase space

island, if two invariants of motion are located on the resonant surface.

In slab geometry in the absence of tokamak drifts, the starting equation simply reads

∂fj
∂t

+ V
∂fj
∂x
− eZj
mj

∂Φ

∂x

∂fj
∂V

= Cj (fj) + S, (5.3)

where a combination of the collision operator, Cj, and the source, S, is to be introduced

below. The kinetic equation is to be solved for fj, a time dependent particle distribution

function, treated as a function of position, {ψ, ϑ, ζ}/x, and velocity, VVV /V in the

toroidal/slab formulation, respectively. The electrostatic potential, Φ, is to be considered

as a function of position and time. For simplicity, we reduce the analysis to the (t, x)

plane. Assuming that a primary wave has been developed and saturated towards an

island-like structure, we impose Φ (x, t) = Φ0 cos (k0x− ω0t) for the potential. Then we

find it convenient to work in the wave reference frame and define a new spatial coordinate

ξ = k0x − ω0t conjugated to a momentum, p = ∂ξ/∂t = k0V − ω0. Hence, we obtain
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H0 (x, V ) = (k0V − ω0)2/2 − k2
0 (eZj/mj) Φ0 cos (k0x− ω0t) for the Hamiltonian. It is

equivalent to p as a velocity space variable, if the sign of p, denoted by σp, is kept as an

extra variable. Defining the bounce frequency in the limit of deeply trapped particles

as ω2
b = k2

0eZjΦ0/mj, we obtain Eq.5.2 for the full primary Hamiltonian in the (p, ξ)

plane. Replacing H0 (x, V ) with H0 (ψ, ϕ, ϑ,VVV ) = V 2
‖ /2+µB+eZjΦ (ψ, ϕ, ϑ) [105], where

µ = V 2
⊥/2B is the magnetic moment and B is the total magnetic field, we provide a

generalisation of the problem to a magnetic configuration with toroidal geometry. Here

Φ = Φ0 cos ζ (the ψ dependence of Φ0 has been omitted for simplicity). We highlight

that the guiding centre equations of motion that fully account for the magnetic drifts as

well as their reduced formulation in slab geometry allow the Hamiltonian formulation.

Thus, from a mathematical point of view EP-MHD problems, Langmuir wave and the

TAE problems, become identical in the toroidal and slab cases, provided they are written

through the Hamiltonian function.

Contours of constant H0 plotted in the (p, ξ) plane describe an island-like structure and

thus are to be referred to as an island in phase space. A new equilibrium, described by

f0,j, is to be determined from the Fokker-Planck equation, which now reads

∂f0,j

∂t
− {H0, f0,j} = Cj (f0,j) + S. (5.4)

Here curly brackets denote the conventional Poisson bracket, i.e. {f, g} = ∂f
∂ξ

∂g
∂p
− ∂f

∂p
∂g
∂ξ
.

Once f0,j is found, we analyse the stability of this new perturbed equilibrium, i.e. the

stability of secondary waves, taken of the form Φkωe
ikx−iωt + c.c., where k and ω are

their wave number and frequency, respectively. In the frame of the primary wave, these

waves are Φkωe
ilξ−iδωt + c.c. with l = k/k0 and δω = ω − lω0. We note that l is not

necessarily integer. If the electrostatic potential has a form Φ (x, t) = Φωe
−iωt + c.c.,

then the full Hamiltonian and the full EP distribution read H (ξ, p) = H0 (ξ, p) + δH and

fj (ξ, p) = f0,j (ξ, p) + δfj with δH = hω (ξ, p) e−iδωt + c.c. and δfj = fjω (ξ, p) e−iδωt + c.c.,

respectively. Here H0 (ξ, p) and f0,j (ξ, p) represent the new primary equilibrium, while

δH and δfj are perturbations associated with the secondary modes. hω = k2
0eZjΦω/mj is
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hω (ξ, p) = hkωe
ilξ 66. Following Sec.2.1 of Chapter II, we introduce the Lagrangian67:

L (ω) =
ε0

2

∫ L

0

dx|OΦω|2 −
∑
j

eZj

∫ L

0

dx

∫
R
fjω (ξ, p) Φ∗ω (ξ, p) dV . (5.5)

Here L is the characteristic length, chosen as a multiple of the primary period, k0L = 2πj0,

where j0 is an integer. Poisson’s equation is equivalent to the condition, where the

Lagrangian density of the electro-magnetic field is extremum for any Φ∗ω variation. L(ω)

of the form given by Eq.5.5 will provide the secondary mode dispersion relation.

Rewriting Eq.5.5 in terms of {p, ξ}, we have

L (ω, l) = −l2|hkω|2 +
∑
j

Lj (ω) (5.6)

with

Lj (ω) = ω2
pj

∫ π

−π

dξ

2π

∫
R
fjh
∗
ωdp (5.7)

being the Lagrangian of a given particle species, and ωpj is the plasma frequency of a

species, ω2
pj = nj(eZj)

2/ε0mj. The first term on the right hand side of Eq.5.6 represents

the field contribution. The distribution function is normalised to density of a considered

species, nj , in p coordinates, and hence
∫
R fjdp = 1. hkω = k2

0eZjΦkω/mj is the perturbed

Hamiltonian68. The perturbed distribution, fjω, is then a solution of the linearised

Fokker-Planck equation that reads

− iδωfjω − {H0, fjω} = {hω, f0,j} . (5.8)

f0,j is a non-trivial function of H0 (p, ξ), and hence the Poisson brackets {H0, fjω} and

{hω, f0,j} generate multiples of the basic harmonic, lξ− δωt. Away from the island though,

H0 ' p2/2, and the corresponding solution becomes trivial. The system then behaves as if

there is no interaction between primary and secondary waves. This illustrates the thermal

background, provided thermal resonances occur far from the EP resonances. The second

66kx has to be replaced with mϑ−nϕ for the toroidal formulation, where m/n is the poloidal/toroidal
secondary wave number.

67The Lagrangian is the Lagrangian density integrated over space, i.e. L =
∫
Ldqqq. Note: in this

chapter the notation L will be used to denote the Lagrangian.
68A constant normalisation factor has been omitted here for convenience. In our set of variables,

{x, k0V − ω0} instead of conventional {x,mjV }, the scaling factor is ε0k20L/A2, where A = eZjk
2
0/mj .
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approach, which is to be run numerically, is to maintain the basic harmonics only, i.e.

− iδωfjω − {H0, fjω} =
{
hω, 〈f0,j〉ξ

}
. (5.9)

An angular bracket here indicates an averaging operator over ξ to be defined below.

Finally, a full nonlinear solution can be calculated by switching from {ξ, p} to {ξ,H0;σp}

and will be discussed at the end of this chapter.

5.2 Primary equilibrium

We start with a calculation of a new primary equilibrium, described by f0,j. f0,j is a

solution of Eq.5.4 and represents the plasma response to an isolated phase space island,

associated with the bump-on-tail instability. Imposing the Maxwellian behaviour for the

background plasma, we solve Eq.5.4 for the EP fraction only, i.e. fast electrons/ions,

whose population is small compared to the bulk plasma.

The right hand side of Eq.5.4 is represented by the Fokker-Planck collision operator that

includes collisions on fast particles by the thermal, Maxwellian background. The initial

form of this collision operator that acts on the EP distribution is

Cj + S =

= 2νj
(1− λB)1/2

B

∂

∂λ

∣∣∣∣
ψ

[
λ(1− λB)1/2 ∂

∂λ

∣∣∣∣
ψ

]
+

1

V 2

∂

∂V

[
V 3

(
νslow +

ν‖
2
V

∂

∂V

)]
,

(5.10)

where νj, νslow and ν‖ are the pitch angle scattering, slowing down and parallel velocity

diffusion rates, respectively. Following [106, 107], we project Eq.5.10 on the rational phase

space surface to replace it with a combination of operators in p space. This reduces the

dimension of the collision operator from 2D to 1D in velocity space. The Jacobian of the

corresponding coordinate transformation can be found in [106]. After this procedure, we

obtain

Cj (f0,j) + S = Dp
∂2

∂p2

∣∣∣∣
ξ

(f0,j − feqm,j) + νf,p
∂

∂p

∣∣∣∣
ξ

(f0,j − feqm,j) . (5.11)
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Here Dp and νf,p are the diffusion and dynamical friction coefficients in p space, related

to the diffusion νd,V and friction νf,V rates in velocity space through Dp = ν3
d,V (k0/k)2

and νf,p = ν2
f,V (k0/k), respectively [95, 96]. feqm,j is the unperturbed distribution being

introduced in the absence of the island in phase space, and appears as a dotted line in

Fig.5.4. The Vlasov part of the Fokker-Planck equation [111] is

df0,j

dt
≡ ∂f0,j

∂t
− τ

[
∂tH0 − 〈∂tH0〉ξ

] ∂f0,j

∂J
+ p

∂f0,j

∂ξ
(5.12)

Figure 5.4: The EP distribution function f̂0,j

plotted against p̂ across the island O-point, i.e. ξ = 0,
for arbitrary D̂p and ν̂f,p. The solution, f̂0,j , is
localised to the island vicinity, which allows the
initial equilibrium distribution function to be Taylor
expanded around the resonant surface. The dashed
lines indicate the position of the phase space island
separatrix, Ĥ0 = ω̂2

b . Hats indicate the normalisation
that has been chosen as in [95].69

with J denoting the action variable,

defined as

J (H0, t) =

∮
dξ

2π
p (t, ξ,H0;σp),

and τ being the bounce period,

τ =

∮
dξ

2π
p−1 (t, ξ,H0;σp)

(an angular bracket denotes the

average over ξ and is to be introduced

later in this section). Working in the

wave reference frame and seeking the

time-independent solution, we rewrite

a system of Eqs.5.4,5.11,5.12 as

p (ξ,H0;σp)
∂f0,j

∂ξ

∣∣∣∣
H0

= Dpp
2 (ξ,H0;σp)

∂2

∂H2
0

∣∣∣∣
ξ

(f0,j − feqm,j)

+ [Dp + νf,pp (ξ,H0;σp)]
∂

∂H0

∣∣∣∣
ξ

(f0,j − feqm,j) ,
(5.13)

where p has been replaced with a pair {H0;σp} and is considered as a function of ξ and H0

for each σp. We find it convenient to define g0,j = f0,j − feqm,j to measure a shift from the

equilibrium state. g0,j represents a full solution of Eq.5.13. To solve Eq.5.13, we introduce

a small parameter δ that characterises the ratio of time scales and comes from Eq.5.12,

69f̂0,j = f0,j ·
(
∂feqm/∂p|res

)−1, p̂ = p/ (γL − γd), Ĥ0 = H0/(γL − γd)2, D̂p = Dp/(γL − γd)3, ν̂f,p =

νf,p/(γL − γd)2 and ω̂b = ωb/ (γL − γd). Here γL is the EP contribution to the growth rate of the wave,
while γd is the wave damping rate due to dissipation processes.
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provided the right hand side of the equation is given by Eq.5.11. Using ∂J ∼ 1/ωb and

implying weak collisional dissipation, we obtain δ = max (Dp/ω
3
b , νf,p/ω

2
b )� 1. We solve

Eq.5.13 by an expansion in δ,

g0,j =
∑
α

g
(α)
0,j δ

α,

to find g(0)
0,j , i.e. the leading order EP distribution function. The leading order equation

reads
∂g

(0)
0,j

∂ξ

∣∣∣∣∣
H0

= 0. (5.14)

Thus, we learn that g(0)
0,j is independent of ξ at any fixed H0, i.e. g

(0)
0,j = g

(0)
0,j (H0;σp).

Introducing collisions at next order, we determine an exact form of g(0)
0,j from the collisional

constraint. The O (δ1) equation is

p (ξ,H0;σp)
∂g

(1)
0,j

∂ξ

∣∣∣∣∣
H0

= Dpp
2 (ξ,H0;σp)

∂2g
(0)
0,j

∂H2
0

∣∣∣∣∣
ξ

+ [Dp + νf,pp (ξ,H0;σp)]
∂g

(0)
0,j

∂H0

∣∣∣∣∣
ξ

. (5.15)

To annihilate the term in g(1)
0,j , we divide both sides of Eq.5.15 by p and integrate over

ξ at fixed H0. To consider particles outside the phase space island70, i.e. H0 ≥ ω2
b (see

Fig.5.3), we integrate over a period in ξ, imposing g0,j (−π) = g0,j (π). For particles

trapped within the island, −ω2
b ≤ H0 < ω2

b , we have to integrate between bounce points,

given by ξb = ± arccos (−H0/ω
2
b ), and, in general, sum over the two streams, σp = ±1, to

ensure continuity at both bounce points. Therefore, we introduce

〈...〉ξ =

 1
2π

∫ π
−π ...dξ, H0 ≥ ω2

b

1
4π

∑
σp
σp
∫ ξb
−ξb

...dξ, −ω2
b ≤ H0 < ω2

b

(5.16)

H0 = ω2
b is the separatrix of the phase space island. Applying Eq.5.16 to Eq.5.15, we

obtain

〈Dpp (ξ,H0;σp)〉ξ
∂2g

(0)
0,j

∂H2
0

∣∣∣∣∣
ξ

+

〈
Dp

p (ξ,H0;σp)
+ νf,p

〉
ξ

∂g
(0)
0,j

∂H0

∣∣∣∣∣
ξ

= 0, (5.17)

to be solved for g(0)
0,j . To provide matching across the trapped-passing boundary, Hc

0 = ω2
b ,

we impose
∑

σp
σpg

p = 0,
∑

σp
gp = 2gt and

∑
σp
∂gp/∂H0 = 2∂gt/∂H0 similar to Eq.3.1

70They are also to be referred to as passing particles in phase space.
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of Chapter III for our NTM analysis. Here indices p and t denote passing and trapped

particles, respectively.

Away from the island, f0,j matches the Maxwellian equilibrium and thus is linear in p.

Since f0,j = feqm,j + g0,j, g0,j must satisfy ∂pg0,j|p→±∞ = 0. We solve this numerically for

g
(0)
0,j as a function of H0 at each σp. Dp, νf,p and ωb are arbitrary parameters. f (0)

0,j vs. H0

is shown in Fig.5.5 for passing and trapped particles71. The trapped particle solution is

Figure 5.5: (top) The leading order EP distribution function vs. y =
√
Ĥ0 + ω̂2

b for two
branches of the stream, σp = ±1 for (a) a case of pure diffusion, (b) when velocity diffusion and
drag are comparable and (c) when the drag term is dominant. The dotted line represents the
trapped-passing boundary, yb =

√
2ω̂b. y ≥ yb and 0 ≤ y < yb correspond to the passing and

trapped regions, respectively. The trapped particle solution is σp-independent and hence both σp
branches match in the trapped region. (bottom) Contours of constant f̂ (0)

0,j in the (p̂, ξ) plane,
which reproduce the phase space island structure; ω̂b = 1. Hats indicate the normalisation that
has been chosen as in [95].69

σp-independent due to Eq.5.16. Once f (0)
0,j = f

(0)
0,j (H0;σp) is calculated, we immediately

find f (0)
0,j in p space, i.e. f (0)

0,j (H0 (ξ, p) ;σp).

Similar to the NTM problem, we have to identify the dissipation layer, where δ is no

longer small. Eq.5.17 becomes invalid in a thin region of phase space in the vicinity of

the phase space island separatrix. Here collisional dissipation is not negligible to leading

order in δ but comparable to ∼ p∂/∂ξ, and thus we must find a full solution of Eq.5.13.

Solving Eq.5.13 with the boundary conditions in H0 space given above and applying

71The numerical scheme can be found in the appendix and in [96].
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f0,j (−ξb) = f0,j (ξb)
72 in ξ, we obtain f0,j = f0,j (ξ,H0 (ξ, p) ;σp). f0,j vs. p is illustrated

in Fig.5.4 for arbitrary D̂p and ν̂f,p. As can be seen from Fig.5.4, the EP distribution

function remains flattened across the island O-point in a pure diffusion case.

f0,j approaches the solution provided by Zakharov and Karpman [97], but includes a more

detailed treatment of the separatrix vicinity. Adding drag creates a hole around the island

O-point, which grows with growing νf,p. The destabilising effect of dynamical friction

has been demonstrated by Lilley [107] in slab geometry. In [107] it was shown that the

slowing down effect might be dominant over the collisional diffusion near the resonance.

Figure 5.6: The ξ-averaged EP distribution function, 〈f0,j〉ξ, vs. p for arbitrary Dp and νf,p,
ωb = 0.1ωpe. f0,j is normalised to neqmk0/ωpe, neqm is the equilibrium density. Thick lines indicate
the solution of Eq.(14), which is localised to the island vicinity. Thin lines indicate the COBBLES
distribution function. Diffusion and friction rates in velocity space are νd,V = 0.01ωpe and νf,V = 0
(blue curves), νd,V = 0.01ωpe and νf,V = 0.0216ωpe (red curves). In p space, these correspond
to diffusion Dp = ν3

d,V (k0/k1)2 = 1.6 · 10−5ω3
pe and drag νf,p = ν2

f,V (k0/k1) = 0/4.0 · 10−4ω2
pe,

respectively. νf,V /νd,V = 2.16.

Figure 5.7: Same as Fig.5.6 except for the
bounce frequency value, ωb = 0.07ωpe.

Figure 5.8: Same as Fig.5.6 except for the
bounce frequency value, ωb = 0.05ωpe.

72ξb reduces to π for passing particles
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In Figs.5.6-5.8 we benchmark f0,j against the full-f approach, provided by COBBLES

[96, 99, 108, 109, 110]. Two scenarios are considered: (1) pure diffusion and (2) νf,V & νd,V .

The friction/diffusion ratio νf,V /νd,V . 1 in a typical NBI discharge and νf,V /νd,V & 1 in

the vicinity of the TAE resonance (νf,V /νd,V = 2.16 chosen in our model). The behaviour

in the island vicinity is found to be in good agreement with the COBBLES simulation

results. The discrepancy away from the island was expected due to the difference in the

boundary conditions we apply.

5.2.1 Self-consistency

The perturbed Hamiltonian has to be consistent with a system of Maxwell’s equations.

In accordance with the cos ξ dependence of the perturbed Hamiltonian, we keep the first

harmonic only in ξ in the particle distribution function. Thus, we define:

gω0,j (J, t) =

∮
dξ

2π
g0,j (ξ, J, t) e−iξ (5.18)

in ω space. A set of Ampère’s law and Poisson’s equation is equivalent to finding an

extremum of the Lagrangian density of the electro-magnetic field with respect to the

vector potential AAA∗ω and electrostatic potential Φ∗ω. We split the electro-magnetic field

Lagrangian into L (ω) = L(field) (ω) + L(part) (ω) with L(field) and L(part) being defined as

L(field) (ω) =

∫
dxxx

(
ε0

2
EEEω ·EEE∗ω −

1

2µ0

BBBω ·BBB∗ω
)

(5.19)

and

L(part) (ω) =

∫
dxxx (jjjω ·AAA∗ω − ρω · Φ∗ω), (5.20)

where EEEω is the electric field, BBBω is the magnetic field, jjjω and ρω are the current and

charge densities, respectively. Solving the bump-on-tail problem, we omit the contribution

of the magnetic field and thus

L(part) (ω) = −
∑
j

∫
dxxxdpppgω0,jh

∗
ω (5.21)
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with hω = eZjΦω being the perturbed Hamiltonian73, and VVV = ppp/mj the unperturbed

velocity. j denotes the particle species. Eqs.5.19,5.21 reduce to Eqs.5.6,5.7. When

δω � ω0, the Lagrangian allows the form L (ω) = L0 (ω) + L1 (ω) [96] (and references

therein), where L0 is related to the MHD energy, while L1 corresponds to weak resonant

interactions between the perturbed electro-magnetic field and plasma.

L1 =

∫
dxxxdpppgω0,jh

∗
ω,

provided one resonant species is considered. To leading order, we find a dispersion relation

that reads L0 (ω0) = 0. The next order provides

2ω0
∂L0

∂ω

∣∣∣∣
ω=ω0

[δω + i (γ + γd)] = −2ω0L1. (5.22)

Defining Λω = ω0∂L0/∂ω|ω=ω0
, we obtain the following constraint

δω = − ω0

Λω

<L1,

γ = − ω0

Λω

=L1 − γd.
(5.23)

The first equation of Eq.5.23 is responsible for the frequency shift, δω, while the second

one is used for the mode growth/decay rate, γ. An ad-hoc damping rate, γd, has been

introduced in Eq.5.23. If there was a second stabilising species in the problem, this would

correspond to an energy sink associated with the Landau damping. Switching to {ξ, p},

we have74

L1 =
|hω|2

ω2
b

∫ π

−π

dξ

2π

∫
dpg0,j (ξ, p, t) e−iξ,

where
dξ

2π
dp =

∑
σp

dξ

2π

dH0

p
=
∑
σp

dξ

2π

dJ

τp
. (5.24)

73Keeping the AAAω component, we write hω = eZj (Φω − VVV ·AAAω) for the perturbed Hamiltonian.
74note: dIdξ = dpdξ/C = −hdpdξ/ω2

b , h = −hω in relation to the present notations.
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Then Eq.5.23 reduces to

δω = −ω0

ω2
b

|hω|2

Λω

∑
σp

∫ Jmax

0

dJ〈g0,j cos ξ〉ξ,

γ =
ω0

ω2
b

|hω|2

Λω

∑
σp

∫ Jmax

0

dJ〈g0,j sin ξ〉ξ − γd,
(5.25)

where Jmax has been chosen to provide the integration over the entire phase space, inside

and outside the island, i.e. Jmax =∞. 〈...〉ξ represents the ξ average operator with the

corresponding weight functions taken in accordance with Eq.5.24. This is also valid for the

Zakharov and Karpman solution [97]. Defining γL = πω0
∂feqm,j
∂p

∣∣∣
res

|hω |2
Λω

as in [112, 113],

we obtain the main result of [112, 113]:

−δω
γd

 =
1

π

γL
ω2
b

(
∂feqm,j
∂p

∣∣∣∣
res

)−1∑
σp

∫ Jmax

0

dJ

〈g0,j cos ξ〉ξ
〈g0,j sin ξ〉ξ

, (5.26)

where Jmax corresponds to the separatrix of a hole/clump, and g0,j has to be understood

as f0,j − feqm,j|res − (∂feqm,j/∂p)|resp
75. γ has been assumed to be zero provided there is

no exponential growth/decay. γL has no amplitude dependence since the mode energy

density Λω is proportional to |hω|2 76.

5.3 Stability analysis. Secondary modes

5.3.1 Filtered solution

Let us consider the situation when f0,j is independent of ξ. This is valid for the thermal

background since p� ωb, or for f0,j being averaged over ξ space. The latter corresponds

75Here res indicates the position of the resonant surface.
76It can be demonstrated that γL is the linear growth rate in the absence of any dissipation, i.e.

γd = 0. Indeed, the linear solution of the Vlasov equation is g0,j = − 1
2
∂feqm,j

∂p

∣∣∣
res

ω2
b

p−i0+ , and thus

=L1 = |hω|2
ω2

b

∫
R dp=g0,j = −π2 |hω|

2 ∂feqm,j

∂p

∣∣∣
res

. Substituting this into Eq.5.23 provides the growth rate
γ = γL − γd, where γL is defined above. γ = γL when γd = 0, so that γL might be understood as the
linear growth rate in the absence of dissipation processes.
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to the filtered solution. Then the solution of Eq.5.8 reads

fj,kω = − l

δω − lp+ i0+

〈
∂f0,j

∂p

〉
ξ

hkω. (5.27)

Substituting this into Eq.5.6 with Eq.5.7 yields

L (δω, l) =

[
−l2 −

∑
j

ω2
pj

∫
R

l

δω − lp+ i0+

〈
∂f0,j

∂p

〉
ξ

dp

]
|hkω|2. (5.28)

For the background plasma, we impose f0,j = (2π)−1/2V −1
Tj e

−V 2/2V 2
Tj , where VTj =

√
Tj/mj

is the thermal velocity. Therefore, we derive the following dispersion relation

1−
∑
j=e,i

ω2
pj

ω2
tj

∫
R

dς

(2π)1/2
e−ς

2/2 ωtjς

ω − ωtjς + i0+
= 0

from L (δω, l) = 0 for thermal electrons and ions. Here ωtj = kVTj is the transit frequency.

If the mode is close to marginality γ = =ω � ωr = <ω, and in the limit of large frequency

ω ∼ ωpj � ωtj, one can employ the Sokhotski-Plemelj formula to find

1

ω − ωtjς + i0+
' 1

ω

(
1 +

ωtjς

ω

)
− iπδ (ω − ωtjς) ,

where δ is the Dirac delta function. Thus, the dispersion relation for the Maxwellian

background reduces to

1−
∑
j=e,i

[
ω2
pj

ω2
− i
(π

2

)1/2ωω2
pj

ω3
tj

e−ω
2
pj/2ω

2
tj

]
= 0.

This can be further expanded with respect to γ/ωr � 1 to deduce that ωr ' ωpe

and γ = −γe with γe = 1
2

(
π
2

)1/2
ωpe

ω3
pe

ω3
te
e−ω

2
pe/2ω

2
te 77. This is known as the conventional

expression for the Landau damping rate of the Langmuir wave. Thus, the thermal particle

contribution to the total Lagrangian is

Lj (δω, l) = l2
(
ω2
pj

ω2
+ 2i

ωγj
ω2
pj

)
|hkω|2. (5.29)

77Here ωpe � ωpi has been implied.
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j = e, i here denotes main electrons/ions. The EP contribution is then

LEP,j (δω, l) = −ω2
pj

[∫
R

l

δω − lp+ i0+

〈
∂f0,j

∂p

〉
ξ

dp

]
|hkω|2. (5.30)

In Eq.5.30 j = fe, fi corresponds to the fast electrons/ions that provide the drive for

the bump-on-tail instability. The total Lagrangian, Eq.5.6, is of the form L (δω, l) =

D (δω, l) |hkω|2, where D is the dispersion function. Therefore, the dispersion relation is

− 1 +
∑
j=e,i

(
ω2
pj

ω2
+ 2i

ωγj
ω2
pj

)
−
∑

j=fe,fi

ω2
pj

l2

∫
R

l

δω − lp+ i0+

〈
∂f0,j

∂p

〉
ξ

dp = 0. (5.31)

5.3.2 Full solution of the Vlasov/Fokker-Planck – Poisson system

Formal solution of the Vlasov/Fokker-Planck equation

Let us rewrite Eq.5.8 for the perturbed distribution function as

− iδωfjω + p
∂fjω
∂ξ

= ilp
∂f0,j

∂H0

hkωe
ilξ, (5.32)

where fjω and p are considered as functions of ξ and H0 for each σp, while hkω is taken

to be constant. f0,j describes the primary equilibrium calculated in the previous section.

To simplify the analysis below, let us split the perturbed distribution into the adiabatic

response and the resonant contribution:

fjω =
∂f0,j

∂H0

hkωe
ilξ + gjω. (5.33)

Solving Eq.5.32 for gjω, we obtain

gjω = iδω
∂f0,j

∂H0

hkωe
iδωQ

[∫ ξ

−ξb

dξ′

p′
eilξ

′−iδωQ′ + C (σp)

]
, (5.34)

where p′ and Q′ denote p (ξ′, H0;σp) and Q (ξ′, H0;σp), respectively78. We have defined Q

as

Q (ξ,H0;σp) =

∫ ξ

0

dξ′

p (ξ′, H0;σp)
, (5.35)

78ξb is to be replaced with π in the passing branch.
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which can also be written through the incomplete elliptic integral of the first kind,

√
2σp
(
H0 + ω2

b

)−1/2
F

(
ξ

2
,

2ω2
b

H0 + ω2
b

)
.

C (σp) is a constant of integration and is different on each branch of σp. Its calculation

will be the subject of the next section. Applying

∫
R
dp

∫ π

−π

dξ

2π
=
∑
σp

∫ +∞

−ω2
b

dH0

∮
dξ

2π

1

p
,

we rewrite the EP Lagrangian as

LEP,j (δω, l) = ω2
pj

∑
σp

∫ +∞

−ω2
b

dH0

∮
dξ

2π

1

p
fjωh

∗
kωe
−ilξ. (5.36)

Substituting Eq.5.33 into Eq.5.36, we split the Lagrangian into the adiabatic and resonant

contributions, LEP,j (δω, l) = Lad,j (δω, l)+Lres,j (δω, l). At this stage, C (σp) still remains

to be calculated.

Matching conditions

We have found the perturbed EP distribution, gjω, in terms of the arbitrary constant,

C (σp), whose calculation is addressed in this subsection.

Let us define −ξ0 as a starting point in ξ space. The passing particle distribution must

have the same value at ξ = −ξ0 and ξ = ξ0 for each σp. However, for trapped particles the

matching condition is less convenient if written in terms of ξ. Indeed, their distribution

must match at both ξ = ξ0 after half a bounce on the interval [−ξ0; ξ0] and again at

ξ = −ξ0 at the end of the way back to the starting bounce angle. We note that σp > 0

when a particle moves from −ξ0 to ξ0, and σp < 0 on the return branch, from ξ0 to

−ξ0. Thus, both branches, σp = ±1, have to be connected at fixed H0. To avoid the

cumbersome calculations in the trapped branch, we find it convenient to replace ξ with

the following variable α 79 for trapped particles:

α = Ωb

∫ ξ

0

dξ′

p′
, p > 0 (5.37)

79This is similar to the matching provided in Chapter III.
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and

α = π − Ωb

∫ ξ

0

dξ′

p′
, p < 0, (5.38)

where Ωb (H0) =
(∫ ξ0
−ξ0

dξ
π|p|

)−1

is the bounce frequency80. α has the same features as xin(±)

introduced in Sec.3.1.

The perturbed distribution function, gjω, then becomes:

gjω = iδω
∂f0,j

∂H0

hkωe
i δω
Ωb
α

[∫ α

−π/2

dα′

Ωb

e
i
(
lξ′− δω

Ωb
α′

)
+ C (σp)

]
, (5.39)

which is valid in range −π/2 ≤ α < 3π/2. Providing continuity at ξ = −ξ0 after one

bounce, i.e. gjω (H0, α = −π/2) = gjω (H0, α = 3π/2), we immediately obtain

C =

∫ π
−π

dα
Ωb
e
i
(
lξ− δω

Ωb
α
)

e
−2πi δω

Ωb − 1
. (5.40)

Here we have implied that the limits of integration can be shifted for a periodic function,

integrated over its period 81. Eq.5.40 allows an equivalent representation via

+∞∑
k=1

e
2πki δω

Ωb =
1

e
−2πi δω

Ωb − 1
. (5.41)

(see [96] for more detail). Rewriting the resonant part of the EP Lagrangian in α space,

we have

Lres,j (δω, l) =

2πiδω · ω2
pj|hkω|

2

∫ +∞

−ω2
b

dH0

Ω2
b

∫ π

−π

dα

2π

∂f0,j

∂H0

e
−i

(
lξ− δω

Ωb
α
) [∫ α

−π/2

dα′

2π
e
i
(
lξ′− δω

Ωb
α′

)
+ C (σp)

]
(5.42)

for trapped particles with C (σp) given by Eq.5.40. Here both, α and α′, have been shifted

by π/2 for convenience. We stress that α′ can be redefined as an extended angle in

the domain (−∞; π] , and hence an integral over α′ ∈ [−π/2, α] can be replaced with

α′ ∈ (−∞; α] .

For passing particles, the σp = ±1 branches are not connected. Nevertheless, we can still

80ωb is its value in the limit of deeply trapped particles, i.e. H0 → −ω2
b .

81Periodicity in α space is provided by our choice of α, while periodicity in ξ space is not required.
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define:

α = Ωb

∫ ξ

0

dξ′

p′
, (5.43)

where Ωb (H0) = σp

(∫ π
−π

dξ
2π|p|

)−1

is the transit frequency. The properties of α (ξ,H0;σp)

for passing and trapped particles are the same. The bounce frequency Ωb < 0 when

σp = −1, and hence ξ and α rotate in opposite directions. Thus, the final expression for

the resonant Lagrangian reads:

Lres,j (δω, l) = 2πiω2
pj|hkω|

2

∑
σp

∫ +∞

−ω2
b

dH0

Ωb

δω

|Ωb|

∫ π

−π

dα

2π

∂f0,j

∂H0

e
−i

(
lξ− δω

Ωb
α
) [∫ +∞

−∞

dα′

2π
e
i
(
lξ′− δω

Ωb
α′

)
·Θ [σp (α− α′)] + C (σp)

]
.

(5.44)

The sum over σp applies only to the passing branch with σp being the sign of Ωb. This

convention will be used throughout the study, unless otherwise stated. To ensure the

validity of Eq.5.44, we can consider the limit when the contribution of trapped particles is

negligible, and ξ becomes a linear function of α, i.e. the limit of deeply passing particles.

In this case, Eq.5.44 in its resonant 82 and non-resonant forms reduces to Eq.5.28 at the

deeply passing end, H0 � ω2
b . Eq.5.28, in turn, provides the conventional expression for

the Landau damping rate of the Langmuir wave as well as the bump-on-tail dispersion

relation.

Explicit form of the resonance Eq.5.44 allows the representation where resonances

are introduced explicitly. As secondary modes are expected when the gradient of f0,j (H0)

is the largest, a new form of Eq.5.44 should be valid in entire phase space. Technically

speaking, we have to rewrite Eq.5.34/Eq.5.39 and hence the functional given by Eq.5.44

in a resonant form. This transition is not obvious but becomes straightforward if we note

that α is an angle for both trapped and passing branches and thus we can search for gjω

as a Fourier series in α:

gjω (α,H0;σp) =
∑
n

gj,nω (H0;σp) e
inα, (5.45)

where the σp dependence is to be applied to passing branch. As noted above, the perturbed

82Its resonant formulation is addressed in the following subsection.
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Hamiltonian is an exponential function of ξ with only one harmonic in ξ space and hence

it is an exponential function of α but with an infinite number of harmonics, i.e.

hω = hkωe
ilξ =

+∞∑
n=−∞

hnω (H0;σp) e
inα. (5.46)

Applying dα/Ωb = dξ/p according to Barrow’s theorem, we obtain

gj,nω = − δω

δω − nΩb + i0+

∂f0,j

∂H0

hnω (5.47)

and the corresponding resonant Lagrangian:

Lres,j (δω, l) = −ω2
pj

+∞∑
n=−∞

∑
σp

∫ +∞

−ω2
b

dH0

Ωb

δω

δω − nΩb + i0+

∂f0,j

∂H0

|hnω|2, (5.48)

where the perturbed Hamiltonian Fourier components, hnω, are given by

hnω = hkω

∫ π

−π

dα

2π
ei(lξ−nα). (5.49)

Here ξ is to be treated as a function of α and H0 at each σp. n matches l at the deeply

passing end, H0 → +∞, where α = ξ. In the appendix and in [96], we prove that

both representations, Eq.5.44 and Eqs.5.48,5.49 are equivalent. Including the adiabatic

contribution, we obtain

LEP,j (δω, l) = −ω2
pj

+∞∑
n=−∞

∑
σp

∫ +∞

−ω2
b

dH0

Ωb

nΩb

δω − nΩb + i0+

∂f0,j

∂H0

|hnω|2. (5.50)

for the full EP Lagrangian. Eq.5.50 has a form similar to Eq.5.30 still being the exact

solution of the problem.

Full secondary mode dispersion relation

To summarise, the final form of the dispersion function that takes into account the island
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formation in phase space is

D (δω, l) = −l2 + l2
∑
j=e,i

(
ω2
pj

ω2
+ 2i

ωγj
ω2
pj

)

−
∑

j=fe,fi

ω2
pj

+∞∑
n=−∞

∑
σp

∫ +∞

−ω2
b

dH0

Ωb

nΩb

δω − nΩb + i0+

∂f0,j

∂H0

∣∣hnω∣∣2 (5.51)

with the coefficients hnω given by

hnω =

∫ π

−π

dα

2π
ei(lξ−nα) (5.52)

in its resonant formulation. Its equivalent non-resonant representation is

D (δω, l) = −l2 + l2
∑
j=e,i

(
ω2
pj

ω2
+ 2i

ωγj
ω2
pj

)
+
∑

j=fe,fi

ω2
pj

∑
σp

∫ +∞

−ω2
b

dH0

Ωb

∂f0,j

∂H0

+

2πi
∑

j=fe,fi

ω2
pj

∑
σp

∫ +∞

−ω2
b

dH0

Ωb

δω

|Ωb|
∂f0,j

∂H0

∫ π

−π

dα

2π
e
−i

(
lξ− δω

Ωb
α
)
×

×
{∫ +∞

−∞

dα′

2π
e
i
(
lξ′− δω

Ωb
α′

)
·Θ [σp (α− α′)] + C (σp)

}
.

(5.53)

Here we highlight that Eqs.5.51,5.52/Eq.5.53 reduce to Eq.5.31 in the limit of deeply

passing particles, i.e. when H0 � ω2
b . δω is complex, i.e. can be written as δω + iγ,

where γ is the secondary mode growth/decay rate. D here is the dispersion function

defined according to L(δω, l) = D(δω, l)|hkω|2. D (δω, γ) = 0 provides the dispersion

relation of a secondary mode. To analyse its stability, we have to address contours of

constant |D (δω, γ)| in the (δω, γ) plane [95, 96]. Any root of |D (δω, γ)| appears as a pole

of |D (δω, γ)|−1. If it is located in the upper/lower half-plane, it provides the secondary

mode growth/decay rate, γ, respectively. For simplicity, we keep the energetic electron

component only, dropping the background ion contribution in Eqs.5.51,5.52/Eq.5.53, as

ωpi � ωpe, provided the plasma quasi-neutrality requirement is met. The EP fraction is

kept small by default.

In Fig.5.9 we plot γ as a function of l = k/k0, based on the full secondary mode dispersion

relation, Eqs.5.51,5.52/Eq.5.53, with f0,j being the solution of Eq.5.13 and shown in

Fig.5.6. According to Fig.5.9, secondary modes are stable for l < lc and l ≥ ls, where lc

and ls are defined as roots of γ = γ(l) and hence they determine the secondary mode
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Figure 5.9: The normalised secondary mode growth/decay rate as a function of l in a pure
diffusion case (diamond markers) and in the presence of drag (circle markers). Solid lines represent
the best fit line for each case. The bounce frequency at the deeply trapped end is ωb/ωp,e = 0.1.
The Dp and νf,p values and normalisation correspond to Figs.5.6-5.8, i.e. Dp = 1.6 · 10−5ω3

pe,
νf,p = 4.0 · 10−4ω2

pe/0. The regions of negative γ are stable.

stability region(s).

Due to a larger number of poles of |D|−1 in the decreasing region of γ as a function

of l, we define two decreasing branches. This provides two maximum values of γ as

a function of l. Indeed, if ω0/k0 and ω/k are the primary island and the secondary

mode resonant velocities, we can estimate the l value that corresponds to the maximum

growth rate of the secondary wave from ω/k ≈ ω0/k0 ± 2ωb/k0. We would expect to see

the maximum of the growth rate when the secondary wave resonant velocity is close to

the boundary of the primary island, ±2ωb/k0, i.e. where the gradient of the primary

equilibrium distribution function is the largest. This is associated with the steepening

of the electron (ion) distribution near the primary island separatrix, which, in turn,

results from its flattening across the island O-point in the absence of drag (blue curves in

Figs.5.6-5.8). When drag is included, this would be associated with a hole in the particle

distribution in the vicinity of the O-point (red curves in Figs.5.6-5.8).

As ω ≈ ω0 ≈ ωpe to 0th order, the latter condition roughly becomes 1± 2ωb/ωpe ≈ k0/k =

1/l, which provides an estimation for l at a given island half-width, ωb (0.83 and 1.25 for

ωb = 0.1, respectively). Fig.5.9 shows that γ is a non-monotonic function of l with maxima

being in accordance with these estimates. Inclusion of dynamical friction results in a

hole at the island O-point and thus shifts the largest gradient of the particle distribution

function closer to the island centre, decreasing the stationary point of γ = γ(l).
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Figure 5.10: The normalised secondary mode growth/decay rate as a function of the bounce
frequency of the deeply trapped particles, ωb, in the presence of slowing down, νf,p (solid lines
represent the best fit line for each case). The p space diffusion is kept fixed, Dp = 1.6 · 10−5ω3

pe.
The primary/secondary wave number ratio, l = 1.25. The Dp and νf,p normalisation correspond
to Figs.5.6-5.8. In each case arrows indicate roots of γ = γ(ωb). The first root, ωb,c, denotes a
critical island half-width, below which the secondary mode stability is achieved. The second root,
ωb,s corresponds to the saturation level, above which the secondary mode is stable. The regions
of negative γ are stable.

Varying the bounce frequency at the deeply trapped end, ωb, we determine γ as a

function of ωb for different slowing down rates (see Fig.5.10) and in the absence of drag at

different densities of bulk plasma (see Fig.5.11). γ = γ(ωb) is found to be non-monotonic.

This allows one to define a region of the secondary mode marginal stability. γ grows

monotonically with ωb, crossing γ = 0; reaches a maximum and then decreases, crossing

γ = 0 for the second time.

The above solution has been benchmarked against the full-f approach. In Fig.5.11 we plot

γ against ωb for different equilibrium plasma density, ne, and the ad-hoc damping rate,

γd,0. An analytic solution is provided by Eqs.5.51,5.52/Eq.5.53, while the full-f version of

the COBBLES code (see [96] and the references therein for more detail) has been adopted

for the numerical simulations. Both solutions are found to be in good agreement. The

benchmarking details are presented in [96]. 83

83ωb ≈ 0.15ωpe for given plasma parameters is approximately the point above which the comparison
is no longer allowed. This corresponds to longer times, when the effects beyond the secondary mode
stability analysis become crucial such as the mode non-linear saturation and the mode-mode coupling.
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Figure 5.11: The secondary mode growth/decay rate vs. ωb in a pure diffusion case, Dp =
1.6·10−5ω3

pe (Dp value and normalisation correspond to Figs.5.6-5.8). The primary/secondary
mode number ratio, k0/k = 4/5. An analytic solution (square and diamond markers) is
calculated based on Eqs.5.51,5.52/Eq.5.53. Solid lines indicate the COBBLES growth/decay
rates. The regions of negative γ are stable.

5.4 Summary

To conclude, the purpose of the work described in this chapter is to identify the conditions

under which a phase space island, generated by trapping of EPs in a plasma wave, is

subject to secondary instabilities in the presence of collisions. The initial equilibrium

distribution function, i.e. in the absence of the island, is described by a Maxwellian.

Being localised to the island vicinity, the latter appears as a straight line near the beam

velocity, Vb. The EP fraction forms a phase space island. The shape of the total particle

distribution is then governed by the competition of the effective velocity diffusion and

slowing down rates in p space. The diffusion is responsible for the distribution function

steepening in the separatrix boundary layer 84, while drag results in its hole across the

island O-point. The numerical solution of Eq.5.13/Eq.5.17 85 with the boundary conditions

described in Sec.5.2 has been successfully benchmarked against the COBBLES simulations

[96] (and the references therein). The stability of this new, perturbed, equilibrium is then

addressed through the Vlasov/Fokker-Planck – Poisson system. Secondary modes have

been found to be unstable in a certain range of plasma and wave parameters.

The obtained results are relevant to plasma MHD instabilities that are excited by

84This is due to the distribution function flattening inside the phase space island.
85In contrast to the NTM problem, a full equation, Eq.5.13, has been solved in the entire range of H0

to add the collisional dissipation to the model.
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EPs in a tokamak. However, we stress that the impact of this work goes beyond a

conventional problem of Alfvén modes in tokamak plasmas. The particle dynamics in

toroidal magnetised plasmas can be described by a set of action-angle variables in 6D

phase space. An isolated perturbation of the Hamiltonian forms an island in the vicinity

of the rational surface. The dynamics close to the phase space island allows to be reduced

to 2D provided two invariants of motion are located on the rational surface. Therefore,

a problem of an isolated EP-MHD mode can be treated as a reduced 2D Hamiltonian

dynamics in the vicinity of the phase space island. This can be applied to the fishbone

modes, EGAMs or TAEs.

Here we have investigated the stability of the dissipative primary equilibrium, associated

with a single island in phase space, with no restrictions on the island width. Generally,

there can be a number of resonant harmonics. They can be resonant on same resonant

surface, and hence the island configuration will be maintained but deformed at the

separatrix. On the other hand, when they are resonant on different rational surfaces, a

number of islands is formed and can overlap in accordance with the Chirikov criteria.

This, in principle, can prevent the occurrence of secondary modes in the stochastic layer.

This case is beyond the scope of this work and is left for future investigation.
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Chapter VI

6 Summary and Conclusions

The presence of neoclassical tearing mode magnetic islands is anticipated for the ITER

baseline scenario as well as advanced tokamak scenarios. They limit the plasma

performance causing a loss of core pressure and hence reducing the fusion power output,

and sometimes result in plasma disruptions through mode locking. At large island widths

and in the absence of local sources, the pressure profile is flattened across the island

leading to a hole in the bootstrap current in the vicinity of the island O-point. This local

reduction in the bootstrap current density provides the main drive for NTMs. Based on

the conventional modified Rutherford equation (e.g. [114]), the saturated island width

is proportional to (βϑ/2m)rs. Thus, increasing plasma beta, we also increase the island

width, resulting in a soft beta limit. As has been demonstrated in a number of devices, this

beta limit is well below the Troyon ideal MHD beta limit. This argument also explains why

NTMs with lower poloidal mode number are most dangerous and can lead to a discharge

termination in a disruption. Alongside seed island control, two main control techniques

have been proposed and successfully implemented. One is NTM stabilisation, which uses

local O-point electron cyclotron current drive to compensate the missing bootstrap current

and appears to be more preferable due to its high radial localisation. Another possibility

is to modify ∆′, making it more negative, i.e. stabilising, by altering the global current

density profile. The latter has been implemented by LHCD on COMPASS-D successfully

providing complete NTM stabilisation [115]. A key parameter for the NTM stabilisation

is the magnetic island threshold width denoted above by wc, below which magnetic islands

self-heal. The calculation of wc has been a main aim of the work of this dissertation.

The original paper [53] determined the NTM threshold island width by balancing the

destabilising bootstrap drive and stabilising polarisation current contribution. wc was

then found to be proportional to ε1/2ρϑi and dependent on the equilibrium density and

temperature gradients. However, [53] is subject to some significant limitations:

• A model radial diffusion is imposed, i.e. Γψ = −D∂n/∂ψ. As we saw in Chapter IV,

this provides the correct gradient of the particle distribution function away from the
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island and thus is sufficient to determine the conventional bootstrap drive. However,

it excludes a significant amount of the parallel current density right outside the

magnetic island separatrix.

• It captures only the region away from the magnetic island separatrix and hence

does not consider the above-mentioned separatrix layer contribution (its inner

and outer parts) to the current density parallel to the magnetic field lines. This

boundary layer contribution and the contribution outside the layer act in opposite

directions and are of comparable size. Their relative size influences the island

rotation frequency dependence of the polarisation contribution found in [53], which

is especially important when ρϑi . w 86.

• [53] imposes a model form for the electrostatic potential, which nevertheless satisfies

quasi-neutrality at large w. However, as we saw in Chapter II, the drift island effect

will make the electrostatic potential, required to ensure plasma quasi-neutrality,

dependent on ρϑi.

• [53] provides the NTM dispersion relation, Eq.85 of [53], valid at large w. To

solve the drift kinetic equation for the ion plasma component, [53] introduces two

small parameters: w/a 87 and ε1/2ρϑi/w = ρbi/w. The latter condition excludes

self-healing of small magnetic islands observed in experiments.

Following [53], we have employed the drift kinetic approach to determine the ion/electron

plasma response to the NTM magnetic perturbation, assuming small magnetic islands

relative to the tokamak minor radius but accurately treating the limit w ∼ ρbi to keep the

effects of finite orbit widths. To reduce the dimension of the problem, we have derived

the streamlines, described by the S function, which is to be treated as a new radial

coordinate. Treating collisions perturbatively, we learn that the particle distribution

function is constant along these streamlines in the absence of collisions. Proceeding to

next order and introducing collisions, we reconstruct the actual form of the ion/electron

distribution, i.e. its S and pitch angle, λ, dependence. In the absence of the electrostatic

potential, S reproduces the shape of the magnetic island in {ψ, ξ} space but has a radial

86The inclusion of the separatrix layer contribution inverts the island rotation frequency dependence
of the polarisation term.

87Small magnetic islands compared to the tokamak minor radius are also considered in the current
study.
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shift by an amount proportional to ρϑi/e/w. The electrostatic potential, which is calculated

iteratively to ensure plasma quasi-neutrality, only slightly modifies the contours of constant

S in the (ψ, ξ) plane. The radial shift in S is introduced for the passing particle branch

only and plays a key role in the NTM threshold physics. This shift is in opposite directions

for V‖ ≶ 0 (corresponding to S±). The particle distribution function being flattened across

these S± islands but not the actual magnetic island provides a gradient in the pressure

profile across magnetic islands of width w & ρϑi and keeps pressure flattened across larger

islands of width w � ρϑi in agreement with the conventional theory. As ρϑe � ρϑi, this

effect is less significant for the electron distribution function, although the electron density

is influenced by the ion physics via their response to the potential which arises from the

plasma quasi-neutrality requirement. The fact that the pressure gradient is not removed

across the magnetic island O-point at w & ρϑi provides the physics that influences the

NTM threshold.

The perturbative treatment of collisions becomes invalid in a thin boundary layer in pitch

angle that surrounds the trapped-passing boundary. Here we have employed the pitch

angle scattering collision operator with the momentum conservation term and solved

the 2D boundary layer problem to rigorously match the passing and trapped solutions

from outside this layer. This collisional layer being the dominant source of dissipation in

our problem is responsible for the island rotation frequency and hence the polarisation

current contribution to the island evolution. From our calculations, the plasma response

to an NTM magnetic perturbation has been found to be stabilising at w ≤ 3ρϑi for a

small inverse aspect ratio, circular cross section tokamak approximation with ε = 0.1,

Ln/LTj = 1 and ωE = 0.

To summarise

• A new drift kinetic theory of magnetic islands, valid for w ∼ ρϑi, has been developed

in a low collisionality plasma.

• The electron/ion distribution function is flattened across drift islands, which are

radially shifted by a value ∝ ρϑe,i/w compared to the magnetic island.

• As a result, the pressure (density/temperature) gradient is sustained across the

magnetic island of w . ρϑi.
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– At w . ρϑi, the finite ion density gradient is sustained around the magnetic

island O-point due to the drift island effect, i.e. the radial shift in S,

– the electron density gradient is also not removed across the island O-point due

to the plasma quasi-neutrality requirement and the electron response to the

electrostatic potential.

• This suppresses the NTM drive when w is small providing the NTM threshold.

• We highlight that this threshold physics arises from the passing particle dynamics,

and not the finite banana width of trapped particles.

• Therefore, the relevant parameter for wc is the ion poloidal Larmor radius, and not

the ion banana orbit width: we find wc = 3ρϑi for large aspect ratio.

• This NTM threshold result is mostly governed by the electron component88 in the

presence of the S diffusion. Roughly, this can be explained by the fact that me � mi,

and hence at w → 0 the ions average over the electro-magnetic field associated

with the island, while electrons still respond to the field as their banana orbits are

narrow.89

• The island propagation frequency dependence of the polarisation current

contribution90 has been determined at certain ν∗i , ρϑi, w, Ln0 and LTj. There

are two main contributions to the parallel current density that act in opposite

directions: one is in a layer in the vicinity of the island separtrix, and the one is

outside this layer.

– At w � ρϑi, the contribution to the parallel current density around the magnetic

island separatrix only slightly dominates over that outside the island.

– At w & ρϑi, the separatrix layer contribution is dominant and exceeds the

contribution outside the layer.

• The island propagation frequency is determined by the dissipation processes in

88This is in agreement with the DK-NTM solution with analytic electrons [73, 93, 74].
89We stress that the origin of this behaviour at small w is still an open question and is to be further

investigated.
90At large frequencies, ∆pol ∝ ω2, i.e. is parabolic, which is consistent with previous analytic/numerical

works. The behaviour of ∆pol near ω = 0 including the region of coupling to the drift waves is more
complicated and its explanation is to be a part of future investigations. In [90, 91] the sign change in this
area has been explained by the competition of the island rotation and the toroidal precession.
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a tokamak plasma and/or might be influenced by error fields or coupling to a

resistive wall91. Neglecting any external torques, we find that the dominant source of

dissipation is the collisional dissipation arising from a layer near the trapped-passing

boundary in pitch angle. Employing the component of Ampère’s law which is out-

of-phase with the magnetic island provides an equation for the island propagation

frequency. A set of solutions has been found. ∆pol evaluated at these values of ω

provides ∆pol > 0, i.e. destabilising, at given ν∗i , ρϑi, w, Ln0 and LTj.

Chapter V of this dissertation addresses a different problem: here we investigate the

stability of an island in phase space, generated by trapping of energetic particles in plasma

waves. The Hamiltonian formalism has been employed to provide the dimensionality

reduction to a 2D dynamics of a phase space island. This problem shares the mathematical

basis with the NTM problem to reveal the dynamics of an island-like structure.

• Solving the Fokker-Planck equation in the presence of the effective velocity space

diffusion and drag, we find a perturbed equilibrium associated with these phase space

islands.

• To investigate its stability, we then address the Vlasov/Fokker-Planck – Poisson

system. The Lagrangian of this system provides the secondary mode dispersion

relation.

• Considering contours of constant |D(δω, γ)|−1 in the (δω, γ) plane, where D is the

secondary mode dispersion function, δω and γ are the real and imaginary parts

of the mode frequency, we search for poles of |D(δω, γ)|−1. Being located in the

upper/lower half-plane, they provide the secondary mode growth/decay rate.

• Secondary instabilities have been found in a certain range of mode numbers and

primary island widths.

• γ becomes positive above some marginal island width, grows to a maximum value,

as the island width increases, and then decays crossing the zero level for the second

time. This dependence is in agreement with the time dependent numerical simulation

provided by COBBLES.

• The maximum growth rate of secondary modes is obtained when the accessible

91These effects have been previously investigated, e.g. [77, 78].
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resonant phase velocity is near the separatrix of the primary island. This result is

anticipated as the instability is driven by a positive slope of the distribution function,

and its gradient is the steepest at the edge of the island in a pure diffusion case.

We note that the impact of the work presented in Chapter V and in [95, 96] goes beyond a

conventional problem of Alfvén modes in tokamak plasmas. It can be applied to EP-MHD

modes such as TAEs, fishbones or EGAMs.92

6.1 Future work

Although the limitations of [53] have been eliminated in the presented work, it still can be

further improved. Alongside 89,90, the effects of plasma shaping can be added to the model

(see Appendix E.7). These effects on NTMs are generally weak in conventional tokamaks.

Since the curvature term ∆cur ∝ ε2, it can provide a significant contribution only in

spherical tokamaks [67, 116]. However, plasma shaping affects the global confinement

properties and hence the pressure and current density profiles [41], which results in changes

in ∆′, ∆bs and ∆pol. Furthermore, plasma shaping can influence MHD instabilities that

create a seed for NTMs. The latter is not to be considered as a part of the future NTM

work, but is subject to possible NTM trigger mechanisms93.

The RDK-NTM solution presented in this dissertation as well as the DK-NTM solution

with model analytic electrons discussed in [73, 93, 74] give wc = 3ρϑi for the NTM magnetic

island threshold. This result is obtained for the small inverse aspect ratio circular cross

section tokamak approximation at certain ε, Ln, LTj, Lq and plasma collisionality in the

magnetic island rest frame. It is based on the neoclassical contributions to the island

evolution only 94 and does not account for the Rutherford term, ∆′. The equilibrium

density and temperature gradients as well as the safety factor profile have been assumed

to be localised (constant)95 near the rational surface. Although, the RDK-NTM generally

92Possible asides are discussed in "Stability of an island in phase space", Festival de Théorie, Aix-en-
Provence, France, 2019 (presentation).

93ECCD has shown a complete NTM stabilisation on a number of machines even with the sawtooth
oscillations or fishbone modes in a discharge [41]. However, with ECCD being turned off, triggers generate
the NTM again.

94Some of the terms of O(ε2) have been dropped as higher order contributions.
95The actual density, temperature, q profiles/equilibrium profiles reconstructed by equilibrium codes,

e.g. EFIT, can be added to the primary equilibrium model. However, this is an order w/a affect, and
hence the terms of O(w/a) would also have to be introduced.
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allows the poloidal magnetic field variation, it has not been included in the current result.

Therefore, along with 89,90 we consider

• Plasma shaping with the poloidal magnetic field variation are to be accounted for.

The accurate determination of the curvature contribution will require corrections of

order ε2 and higher added to Eqs.2.35,2.36.

• RDK-NTM treats both, electrons and ions, numerically. The DK-NTM solution

presented in [73, 93, 74] includes numerical ions and analytic electrons due to the

fact that ρϑe � ρϑi. A new version of the DK-NTM code that adds the drift island

effects to the electron component and solves Eq.2.35 for electrons as well is under

development. Its initial results for the ion component96 benchmarked against the

RDK-NTM ion distribution function are presented in Sec.4.2. The comparison of

both solutions is to be further updated when a new version of DK-NTM is available.

• At ν∗i ∼ 10−2, the (R)DK-NTM solutions are in agreement in the vicinity of the S

island separatrix in the entire range of λ variation even with the following limitations

of the reduced drift kinetic approach:

– In the RDK-NTM solver, we introduce a thin boundary layer around the

trapped-passing boundary to match passing and trapped solutions outside the

layer. Employing the layer thinness, we exclude any λ variations from S to

leading order.

– At any λ in the passing branch, S diffusion and free streaming can be of the

same order near the S island separatrix (this situation was modelled in [64]).

Perturbative treatment implemented in the RDK-NTM approach would not be

valid, and one would require a full solution of the drift kinetic equation near

the separatrix. However, it will not influence our magnetic island threshold

result associated with the bootstrap contribution. Furthermore, even with this

possible limitation, the RDK-NTM and DK-NTM solutions are in agreement

close to the S separatrix97.

as a part of further improvements.
96The electrostatic potential is found from the plasma quasi-neutrality requirement with the electron

density being calculated from the electron solution of Eq.2.35.
97Note that both, RDK-NTM and DK-NTM, treat collisions perturbatively compared to (V‖/Rq)∂/∂ϑ,

but allow k‖V‖ ∼ νj∂2/∂λ2 in the collisional dissipation layer/for the full range of λ, respectively.
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Appendix

A Formation of magnetic islands

In this appendix we describe the formation of magnetic islands. For simplicity, we

focus on the slab non-tokamak formulation similar to that addressed in Figs.2.2,2.3.

Figure A.1: A ring of toroidal plasma in the
presence of the NTM magnetic islands.

Let us assume that the main

unperturbed magnetic field, B0
y(x),

is in y direction 98 (see Fig.A.1) and

changes with x with B0
y(0) = 0, which

corresponds to the neutral layer. This

magnetic field is generated by

J0
z =

1

µ0

∂B0
y

∂x
.

The equilibrium state is described by

∂p0

∂x
+B0

yJ
0
z = 0.

Introducing the magnetic field perturbation in x direction, B1
x ∝ exp(−iωt + iky), we

write

∂B1
x

∂x
+ ikB1

y = 0

due to divBBB = 0. The time varying B1
x generates the electric field in z direction:

∂B1
x

∂t
= −∂E

1
z

∂y
.

This electric field, in turn, leads to the plasma EEE ×BBB drift with

u1
x = −E

1
z

B0
y

(A.1)

98To address a conventional tokamak case, we have to keep the dominant toroidal magnetic field
component, i.e. B0

z . In spherical tokamaks, B0
z ∼ B0

y roughly.
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in x direction as shown in Fig.A.1. In the vicinity of the neutral layer, u1
x → ∞ as

the unperturbed magnetic field B0
y → 0 when x → 0. In this region, the finite plasma

conductivity has to be taken into account, and hence we replace the above expression for

u1
x with

u1
x = −E

1
z

B0
y

+
ηJ1

z

B0
y

. (A.2)

The latter is Ohm’s law in resistive MHD. Here η = σ−1
‖ = 0.51meνei/nee

2 for a hydrogen

plasma. B1
x being positive in the vicinity of the neutral layer, where B0

y = 0, leads the

magnetic field line away from x = 0 into the region of positive x. Away from the neutral

layer, B0
y becomes non-zero leading the field line in y direction. When the phase of the

perturbed field, B1
x, changes, the field line approaches x = 0 and then passes into the

region of negative x. Here B0
y is non-zero, and thus the field line progresses in the −y

direction, closing the loop to form an island as shown in Fig.A.1.

This simple example illustrates the mechanism of magnetic island formation provided the

B0
y component is dominant. In a tokamak though, there is a strong magnetic field in z

direction that has to be accounted for. Everywhere in a plasma, except for the resistive

layer in the vicinity of the rational surface, we write

JJJ ×BBB =∇∇∇p

and hence rot [JJJ ×BBB] = 0. The latter reads

JJJ · ∇∇∇B −BBB · ∇∇∇J = 0 (A.3)

since divBBB = 0 and divJJJ = 0. Imposing the small inverse aspect ratio circular cross

section tokamak approximation, we write B0
ϑ ∼ εB0

ϕ for equilibrium magnetic fields and

J0
ϑ ∼ εJ0

ϕ for equilibrium currents. For perturbations, we impose B1
ϕ ∼ εB1

r ∼ εB1
ϑ and

εJ1
ϕ ∼ J1

ϑ ∼ J1
r (similar to the above example). Therefore, Eq.A.3 reduces to

BBB0 · ∇∇∇J1
ϕ +BBB1 · ∇∇∇J0

ϕ = 0 (A.4)
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provided JJJ0 · ∇∇∇B0
ϕ � BBB0 · ∇∇∇J0

ϕ. divBBB = 0 now reads

∂

∂r

(
rB1

r

)
+

∂

∂ϑ
B1
ϑ = 0.

Defining ψ as B1
r = −1

r
∂ψ
∂ϑ

B1
ϑ = ∂ψ

∂r

, (A.5)

we obtain

µ0J
1
ϕ =

1

r2

∂

∂r
r
∂ψ

∂r
+

1

r2

∂2ψ

∂ϑ2
(A.6)

from Ampère’s law. Replacing the form of the perturbation ∝ exp(−iωt + iky) with

∝ exp(imϑ− inϕ) and combining Eqs.A.4,A.5,A.6, we write

1

µ0

[
mB0

ϑ

r
−
nB0

ϕ

R

]
∆ψ − m

r

dJ0
ϕ

dr
ψ = 0, (A.7)

where ∆ is the Laplacian given by the right hand side operator of Eq.A.6. Eq.A.7 can be

further reduced using the expression for the safety factor in the cylindrical approximation:

∆ψ =
µ0

B0
ϑ

m

m− nq
dJ0

ϕ

dr
ψ. (A.8)

Eq.A.7/A.8 for ψ is valid in the entire plasma volume in the limit of large aspect ratio

circular cross section tokamak, except for the layer in the vicinity of the rational surface,

where plasma conductivity has to be treated as being finite. Indeed, a singularity appears

in Eq.A.8 at r = rs (or ψ = ψs if ψ is taken for the radial coordinate), i.e. q(ψs) = m/n

similar to Eq.A.1 in the slab formulation. In the resistive layer, imposing EEE+VVV ×BBB = ηJJJ

and taking its rotor return

−∂Br

∂t
+BBB · ∇∇∇Vr = − η

µ0

∆Br,

where Vr is the radial component of velocity. Taking ∝ exp(γt + imϑ − inϕ) for the

perturbation and using Eq.A.5 to obtain Br = −imψ/r, we come to

∆ψ =
µ0

η
γψ +

µ0Bϑ

η

m− nq
m

Vr. (A.9)



133

Here ∆ψ ≈ d2ψ/dr2 due to layer thinness. As we can see from Eq.A.9, the singularity

at q = m/n is now removed. Eq.A.9 has to be coupled to the equation of motion to

determine Vr.

Eq.A.9 is to be solved for ψ in the layer, while Eq.A.7/A.8 is to be applied in the region

outside the layer, i.e. r > rs and r < rs. Solutions at r > rs and r < rs provide a

jump of ∇rψ across the magnetic island. This jump is referred to as the classical tearing

mode stability parameter. The matching is provided by the resistive layer, i.e. solutions

of Eq.A.7/A.8 at r ≷ rs and Eq.A.9 in the layer and their derivatives have then to be

matched. The solution for ψ in the layer is close to a constant [12], and the constant ψ

approximation is imposed in the majority of problems. Here we have briefly discussed

the tokamak case and the calculation of ∆′. As the focus of the current study is on the

neoclassical bootstrap and polarisation contributions to the island time evolution, we omit

further details regarding ∆′. A more detailed derivation can be found in [12].
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B Magnetic island perturbation

We decompose Eq.2.4 to write

BBB1 =
(
∇∇∇A‖

)
× bbb+ A‖∇∇∇× bbb,

where

∇∇∇A‖ =
nψ̃

R
sinnξ

(
∇∇∇ϕ− m

n
∇∇∇ϑ
)
,

and hence

(
∇∇∇A‖

)
× bbb =

nψ̃

RB0

sinnξ
(
∇∇∇ϕ− m

n
∇∇∇ϑ
)
× (I∇∇∇ϕ+∇∇∇ϕ×∇∇∇ψ) =

= − mψ̃

rR2Bϑ

Bϕ

B0

(
1 +

n

m

rBϑ

RBϕ

)
sinnξ∇∇∇ψ =

= − mψ̃

rR2Bϑ

sinnξ∇∇∇ψ +O
(
ε2
)

;

A‖∇∇∇× bbb = − ψ̃
R

cosnξ

(
1

B0

∇∇∇×BBB0 −
1

B2
0

∇∇∇B0 ×BBB0

)
=

= − ψ̃
R

cosnξ

[
µ0

B0

JJJ0 −
1

B2
0

∇∇∇B0 × (I∇∇∇ϕ+∇∇∇ϕ×∇∇∇ψ)

]
=

= − ψ̃
R

cosnξ

[
µ0

B0

JJJ0 −
1

B2
0

(
∂B0

∂ψ
I∇∇∇ψ ×∇∇∇ϕ+

∂B0

∂ψ
|∇∇∇ψ|2∇∇∇ϕ+

∂B0

∂ϑ
I∇∇∇ϑ×∇∇∇ϕ

)]
=

= − ψ̃
R

cosnξ

[
µ0

B0

JJJ0 −
1

B2
0

(
Bϕ

rRBϑ

∂B0

∂ϑ
∇∇∇ψ − ∂B0

∂ψ
IrBϑ∇∇∇ϑ+R2B2

ϑ

∂B0

∂ψ
∇∇∇ϕ
)]

.

Estimating each term, we obtain

∣∣(∇∇∇A‖)× bbb∣∣ ∼ mψ̃

rR2Bϑ

|∇ψ| ∼ ψ̃

rR
;

combination of the term that contains the poloidal component of JJJ0 and the second term

in round brackets of A‖∇∇∇× bbb is of order

ψ̃

R
rBϑ

∂

∂ψ

(
I

B0

)
|∇∇∇ϑ| ∼ ψ̃

rR
rBϑ

∂R

∂ψ
∼ ψ̃

rR
;
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the term that contains the toroidal component of JJJ0 is of order

ψ̃

R

1

B0

∂

∂ψ
(rBϑ) |∇∇∇ψ ×∇∇∇ϑ| ∼ ψ̃

R

1

B0

∂

∂ψ
(rBϑ)

R2Bϑ

r
|∇∇∇ϕ| ∼

ψ̃

rR

Bϑ

B0

∼ ε
ψ̃

rR
;

the first and the last terms in round brackets of A‖∇∇∇× bbb are of order

ψ̃

R

1

B2
0

Bϕ

rRBϑ

∂B0

∂ϑ
|∇∇∇ψ| ∼ ψ̃

rR

1

B2
0

Bϕ

RBϑ

εB0RBϑ ∼ ε
ψ̃

rR

and

ψ̃

R

1

B2
0

R2B2
ϑ

∂B0

∂ψ
|∇∇∇ϕ| ∼ ψ̃

rR

Bϑ

B0

R |∇∇∇ϕ| ∼ ε
ψ̃

rR
,

respectively. Therefore,

B1

B0

∼ ψ̃

rRB0

∼ w2RB2
ϑ

rB0

q′s
qs
∼ w2RB2

ϑ

rB0

1

rRBϑ

∼ w2

r2

Bϑ

B0

∼ ε∆2.

Thus, the total magnetic field becomes

BBB = I (ψ)∇∇∇ϕ+∇∇∇ϕ×∇∇∇ψ−

−mψ̃ sinnξ∇∇∇ϑ×∇∇∇ϕ+
ψ̃

R

∂

∂ψ

(
I

B0

)
cosnξ∇∇∇ϕ×∇∇∇ψ +O

(
ε2∆2B0

)
.

Aside: in the limit of circular poloidal cross section in the absence of the Shafranov shift

keeping terms up to O(ε∆2B0) in BBB, we write

BBB · ∇∇∇ψ = −mψ̃Bϑ

r
sinnξ,

BBB · ∇∇∇ϑ =
Bϑ

r

[
1 +

ψ̃

R

∂

∂ψ

(
I

B0

)
cosnξ

]
,

BBB · ∇∇∇ϕ =
Bϕ

R
,

BBB · ∇∇∇ξ =
Bϑ

r

[
q − m

n
− m

n

ψ̃

R

∂

∂ψ

(
I

B0

)
cosnξ

]

provided q = (BBB0 · ∇∇∇ϕ)/(BBB0 · ∇∇∇ϑ) = IJ/R2 and |∇∇∇ϑ| = 1/r. J is defined as in Sec.D.1.
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C Switching from poloidal flux function, ψψψ, to

toroidal canonical momentum, pϕpϕpϕ

In the above derivations, Eq.1.12 for the perturbed distribution function has been rewritten

in {pϕ, ξ, ϑ, λ, V ;σ} space directly. In this appendix we explain why it is convenient to

switch from the poloidal flux, ψ, to the toroidal canonical momentum, pϕ, and consider

pϕ as the new radial coordinate.

To solve Eq.1.12, we expand the particle distribution function, gj , in ∆ and obtain Eq.2.18

for the leading order distribution, g(0)
j , at fixed pϕ. If we worked in {ψ, ξ, ϑ, λ, V ;σ} space,

we would obtain

IV‖
R2qB0

 ∂g(0)
j

∂ϑ

∣∣∣∣∣
ψ,ξ,λ,V

+ I
∂

∂ϑ

(
V‖
ωcj

)
∂g

(0)
j

∂ψ

 = 0 (C.1)

for the leading order equation. This is equivalent to Eq.2.18 with

pϕ = ψ − ψs −
IV‖
ωcj

.

Introducing pϕ allows one to reduce the dimension of the problem by stating that the

leading order particle distribution is ϑ-independent provided pϕ is fixed. Eq.2.18 represents

the combination of free streaming along unperturbed magnetic field lines and the leading

contribution of the magnetic drift. It describes how the particles follow orbits to preserve

pϕ.
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D Derivation of the drift magnetic island

kinetic equation

D.1 Some useful identities

The Grad-Shafranov notations are

∇∇∇R = eeeR, ∇∇∇ϕ =
eeeϕ
R
, ∇∇∇Z = eeeZ . (D.1)

{ψ, ϕ, χ} provides the orthogonal toroidal coordinate system, i.e.

∇∇∇ψ · ∇∇∇ϕ =∇∇∇ψ · ∇∇∇χ =∇∇∇ϕ · ∇∇∇χ = 0.

Here χ corresponds to the poloidal direction. The corresponding Jacobian, J , is

∇∇∇ϕ×∇∇∇ψ = JB2
ϑ∇∇∇χ, J −1 = [∇∇∇ϕ×∇∇∇ψ] · ∇∇∇χ. (D.2)

In conventional toroidal coordinates, {ψ, ϕ, ϑ},

∇∇∇ψ · ∇∇∇ϕ =∇∇∇ϕ · ∇∇∇ϑ = 0, (D.3)

∇∇∇ψ · ∇∇∇ϑ 6= 0, i.e. the basis is non-orthogonal. ϑ here is the poloidal angle. The Jacobian

of this system, J , is

J−1 =∇∇∇ψ · [∇∇∇ϑ×∇∇∇ϕ] .

Thus, the following useful identities are

|∇∇∇ψ| = RBϑ, |∇∇∇ϕ| = 1

R
, |∇∇∇ϑ| = 1

JBϑ

, |∇∇∇χ| = 1

JBϑ

[∇∇∇ϕ×∇∇∇ψ]×∇∇∇ϕ =
∇∇∇ψ
R2

,

(D.4)
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ϑ and χ are connected via

ϑ =
1

q

∫ χ

νdχ′ (D.5)

with ν = (BBB0 · ∇∇∇ϕ)/(BBB0 · ∇∇∇χ) = IJ /R2. From Eq.D.5,

∇∇∇ϑ = ϑ′χ∇∇∇χ+ ϑ′ψ∇∇∇ψ, (D.6)

according to Barrow’s theorem, ϑ′χ ≡ ∂ϑ/∂χ = ν(χ)/q = IJ /qR2. ϑ′ψ ≡ ∂ϑ/∂ψ =

R−2B−2
ϑ (∇∇∇ψ · ∇∇∇ϑ).

The vector cross product

div [AAA×BBB] ≡∇∇∇ · [AAA×BBB] = εεεijk∂iAAAjBBBk = [∇∇∇×AAA] ·BBB −AAA · [∇∇∇×BBB] ,

rot [AAA×BBB] ≡∇∇∇× [AAA×BBB] = AAA (∇∇∇ ·BBB)−BBB (∇∇∇ ·AAA) + (BBB · ∇∇∇)AAA− (AAA · ∇∇∇)BBB =

= (∇∇∇ ·BBB +BBB · ∇∇∇)AAA− (∇∇∇ ·AAA+AAA · ∇∇∇)BBB,

(D.7)

εεεijk is the three dimensional Levi-Civita symbol.

Addition and multiplication

(AAA ·BBB) = (BBB ·AAA)

[AAA×BBB] = − [BBB ×AAA]

AAA · [BBB ×CCC] = BBB · [CCC ×AAA] = CCC · [AAA×BBB]

AAA× [BBB ×CCC] = BBB (AAA ·CCC)−CCC (AAA ·BBB) ,

(D.8)

where AAA, BBB and CCC are vectors.

D.2 Derivation of the NTM orbit averaged drift kinetic

equation

We solve Eq.1.12 in the island rest frame for the ion/electron response to the NTM

perturbation of the magnetic field. j denotes main electrons and ions. As discussed in the

main part, we assume the Maxwell-Boltzmann plasma and thus impose

fj =

(
1− eZjΦ

Tj

)
fMj + gj, (D.9)
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provided eZjΦ� Tj and fMj (ψ) = n0 (ψ)π−3/2V −3
Tj (ψ) e−V

2/V 2
Tj(ψ) being the Maxwellian

of a species j. n0 is the equilibrium density, i.e. neqm ∼= n0(1− eZjΦ/Tj) with neqm being

the Boltzmann density, and VTj = (2Tj/mj)
1/2 is the thermal velocity of a species. gj

is the perturbed distribution function associated with the tearing mode and is to be

determined to provide the NTM threshold physics and the island propagation frequency.

As we seek the solution localised to the vicinity of the magnetic island, we Taylor expand

the Maxwell-Boltzmann term and the electrostatic potential about the resonant surface.

Hence, fMj (ψs) has no spatial dependence, only the velocity dependence. This provides

the Neumann boundary as ψ →∞.

Substituting Eq.D.9 Taylor expanded around the rational surface into Eq.1.12 gives

V‖∇‖gj + VVV E · ∇∇∇gj + VVV b · ∇∇∇gj −
eZj
mjV

[
V‖∇‖Φ + VVV b · ∇∇∇Φ

] ∂gj
∂V

= Cj (gj) +

+
eZj

Tj (ψs)
fMj (ψs)

[
V‖∇‖Φ + VVV E · ∇∇∇Φ + VVV b · ∇∇∇Φ

]
+

+
eZj
mjV

[
V‖∇‖Φ + VVV b · ∇∇∇Φ

](
1− eZjΦ(ψs)

Tj (ψs)

)
∂fMj (ψs)

∂V
+ Cj

[(
1− eZjΦ(ψs)

Tj (ψs)

)
fMj (ψs)

]

Since the EEE ×BBB drift is perpendicular to EEE = −∇∇∇Φ and BBB,

VVV E · ∇∇∇Φ =
EEE ×BBB
B2

· ∇∇∇Φ =
BBB ×∇∇∇Φ

B2
· ∇∇∇Φ = 0.

Cj

[(
1− eZjΦ

Tj (ψs)

)
fMj (ψs)

]
=

(
1− eZjΦ

Tj (ψs)

)
Cj
[
fMj (ψs)

]
= 0,

as the collision operator acts in velocity space, and the Maxwellian is collisionless by its

definition, i.e. the Maxwellian eliminates Eq.1.9 in its general form. In particular, the

pitch angle scattering collision operator employed in Sec.2.2 acts in λ space at fixed ψ

and thus eliminates the Maxwellian (the momentum conservation term is eliminated due

to the summation over σ at fixed ψ).

V‖∇‖gj + VVV E · ∇∇∇gj + VVV b · ∇∇∇gj −
eZj
mjV

[
V‖∇‖Φ + VVV b · ∇∇∇Φ

] ∂gj
∂V

=

= Cj (gj) +
eZj

Tj (ψs)
fMj (ψs)

[
V‖∇‖Φ + VVV b · ∇∇∇Φ

]
+
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+
eZj
mjV

[
V‖∇‖Φ + VVV b · ∇∇∇Φ

](
1− eZjΦ(ψs)

Tj (ψs)

)
fMj (ψs)

(
− mjV

Tj(ψs)

)
.

Since the highlighted terms cancel out, we obtain

V‖∇‖gj + VVV E · ∇∇∇gj + VVV b · ∇∇∇gj −
eZj
mjV

[
V‖∇‖Φ + VVV b · ∇∇∇Φ

] ∂gj
∂V

=

= Cj (gj) +

(
eZj

Tj (ψs)

)2

fMj (ψs)
[
V‖∇‖Φ + VVV b · ∇∇∇Φ

]
Φ(ψs).

(D.10)

Note: later we introduce the orderings: eZjΦ/Tj ∼ ∆, gj/fMj ∼ ∆, δΦ/Φ ∼ ∆, and thus

Eq.D.10 will reduce to

V‖∇‖gj + VVV E · ∇∇∇gj + VVV b · ∇∇∇gj −
eZj
mjV

[
V‖∇‖Φ + VVV b · ∇∇∇Φ

] ∂gj
∂V

= Cj (gj) (D.11)

to be solved for gj. Eq.1.12/D.10/D.11 is the drift kinetic equation in 5D phase

space, {rrr, µ,K}/{rrr, λ, V ;σ}. Here rrr is a 3-tuple of spatial coordinates. The gyro-

angle dependence is averaged out at fixed rrr. The time dependence is omitted as we

work in the island rest frame, i.e. ω = 0. Working in a tokamak geometry, we seek

gj (rrr, λ, V ;σ) = gj (ψ, ξ, ϑ, λ, V ;σ). Furthermore, as we mentioned in the main part, it

is convenient to switch from the poloidal flux function, ψ, to the toroidal canonical

momentum, pϕ, given by ψ − ψs − IV‖/ωcj, to reduce the dimension of the problem.

Thus, gj is to be considered as gj = gj (pϕ, ξ, ϑ, λ, V ;σ). To rewrite Eq.D.10/D.11 in

{pϕ, ξ, ϑ, λ, V ;σ} space, let us consider the following identities: BBB0 ·∇∇∇ϑ, BBB0 ·∇∇∇pϕ, BBB0 ·∇∇∇ξ.

Using the expression for the equilibrium magnetic field, Eq.2.3,

BBB0 · ∇∇∇ϑ = [I∇∇∇ϕ+∇∇∇ϕ×∇∇∇ψ] · ∇∇∇ϑ = [∇∇∇ϕ×∇∇∇ψ] · ∇∇∇ϑ =

and substituting Eq.D.6 and then Eq.D.2 , we obtain

= [∇∇∇ϕ×∇∇∇ψ] · IJ
qR2
∇∇∇χ =

I

qR2
= BBB0 · ∇∇∇ϑ . (D.12)

Using the definition of pϕ, we write

BBB0 · ∇∇∇pϕ = BBB0 · ∇∇∇
[
ψ − ψs − I

V‖
ωcj

]
= BBB0 · ∇∇∇ψ −BBB0 · ∇∇∇

(
IV ‖
ωcj

)
=
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as the equilibrium magnetic field is given by Eq.2.3, BBB0 · ∇∇∇ψ = 0, and hence

= −IBBB0 · ∇∇∇
(
V‖
ωcj

)
= −IBBB0 · ∇∇∇ϑ

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
−BBB0 · ∇∇∇ψ

∂

∂ψ

∣∣∣∣
ϑ

(
IV‖
ωcj

)
= − I2

qR2

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
= BBB0 · ∇∇∇pϕ

(D.13)

(note: Eq.D.12 has been applied).

BBB0 · ∇∇∇ξ = BBB0 · ∇∇∇ϕ− qsBBB0 · ∇∇∇ϑ =
I

R2

[
1− qs

q

]
=

I

qR2

[
q − m

n

]
= BBB0 · ∇∇∇ξ , (D.14)

where BBB0 · ∇∇∇ϕ = I/R2.

Now let us consider BBB1 · ∇∇∇ϑ, BBB1 · ∇∇∇pϕ, BBB1 · ∇∇∇ξ. Using the expression for the magnetic

field perturbation, Eq.2.4, and the second relation in Eq.D.7, we write

BBB1 · ∇∇∇ϑ =
[
∇∇∇×

(
A‖bbb
)]
· ∇∇∇ϑ =∇∇∇ ·

[
A‖bbb×∇∇∇ϑ

]
+ A‖bbb [∇∇∇×∇∇∇ϑ] =

=∇∇∇ ·
[
A‖bbb×∇∇∇ϑ

]
,

BBB1 · ∇∇∇ϑ =∇∇∇ ·
[
A‖
BBB0

B0

×∇∇∇ϑ
]
. (D.15)

Similar to Eq.D.15, we write

BBB1 · ∇∇∇pϕ =∇∇∇ ·
[
A‖
BBB0

B0

×∇∇∇pϕ
]
. (D.16)

and

BBB1 · ∇∇∇ξ =∇∇∇ ·
[
A‖
BBB0

B0

×∇∇∇ξ
]
. (D.17)

From Appendix B, we learn

BBB1 · ∇∇∇ϑ
BBB0 · ∇∇∇ϑ

∼ BBB1 · ∇∇∇pϕ
BBB0 · ∇∇∇pϕ

∼ BBB1 · ∇∇∇ξ
BBB0 · ∇∇∇ξ

∼ ∆2.

We have introduced scalar products between BBB and the basis vectors. Now let us consider



142 D.2 Derivation of the NTM orbit averaged drift kinetic equation

the corresponding cross products:

BBB0 ×∇∇∇ϑ = I∇∇∇ϕ×∇∇∇ϑ+ [∇∇∇ϕ×∇∇∇ψ]×∇∇∇ϑ. (D.18)

As dϑ = ϑ′ψdψ + ϑ′χdχ, the first term of Eq.D.18 can be written as

I∇∇∇ϕ×∇∇∇ϑ = Iϑ′ψJB2
ϑ∇∇∇χ+ Iϑ′χ∇∇∇ϕ×∇∇∇χ.

To obtain an expression for∇∇∇ϕ×∇∇∇χ, let us cross both sides of the first relation in Eq.D.2

with ∇∇∇ϕ:

JB2
ϑ∇∇∇ϕ×∇∇∇χ =∇∇∇ϕ× [∇∇∇ϕ×∇∇∇ψ] =

=∇∇∇ϕ (∇∇∇ϕ · ∇∇∇ψ)−∇∇∇ψ|∇∇∇ϕ|2 = −∇
∇∇ψ
R2

and thus

∇∇∇ϕ×∇∇∇χ = − ∇∇∇ψ
JR2B2

ϑ

.

The second term of Eq.D.18 is

−∇∇∇ϑ× [∇∇∇ϕ×∇∇∇ψ] = −∇∇∇ϕ (∇∇∇ϑ · ∇∇∇ψ) +∇∇∇ψ (∇∇∇ϑ · ∇∇∇ϕ) =

= −∇∇∇ϕϑ′ψ|∇∇∇ψ|
2 = −ϑ′ψR2B2

ϑ∇∇∇ϕ.

Therefore, Eq.D.18 becomes

Iϑ′ψJB2
ϑ∇∇∇χ− Iϑ′χ

∇∇∇ψ
JR2B2

ϑ

− ϑ′ψR2B2
ϑ∇∇∇ϕ =

= Iϑ′ [BBB0 − I∇∇∇ϕ]︸ ︷︷ ︸
JB2

ϑ∇∇∇χ=∇∇∇ϕ×∇∇∇ψ

− I2J
qR2

∇∇∇ψ
JR2B2

ϑ

− ϑ′R2B2
ϑ∇∇∇ϕ =

= Iϑ′BBB0 − ϑ′R2
[
B2
ϑ +B2

ϕ

]
∇∇∇ϕ−

B2
ϕ

qR2B2
ϑ

∇∇∇ψ,

Iϑ′BBB0 − ϑ′R2B2
0∇∇∇ϕ−

B2
ϕ

qR2B2
ϑ

∇∇∇ψ = BBB0 ×∇∇∇ϑ . (D.19)

The toroidal field function is I = RBϕ by its definition. Prime denotes the derivative with
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respect to ψ. Using the expression for the equilibrium magnetic field, we derive

BBB0 ×∇∇∇ψ = I[∇∇∇ϕ×∇∇∇ψ]︸ ︷︷ ︸
BBB0−I∇∇∇ϕ

−∇∇∇ψ × [∇∇∇ϕ×∇∇∇ψ]︸ ︷︷ ︸
∇∇∇ϕ|∇∇∇ψ|2−∇∇∇ψ(∇∇∇ψ·∇∇∇ϕ)

= IBBB0 −R2B2
0∇∇∇ϕ (D.20)

Therefore,

BBB0 ×∇∇∇pϕ = BBB0 ×∇∇∇ψ −BBB0 ×∇∇∇
(
IV‖
ωcj

)
=

= BBB0 ×∇∇∇ψ −BBB0 ×

[
∂

∂ψ

∣∣∣∣
ϑ

(
IV‖
ωcj

)
∇∇∇ψ +

∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)
∇∇∇ϑ

]
=

=

[
1− ∂

∂ψ

∣∣∣∣
ϑ

(
IV‖
ωcj

)]
[BBB0 ×∇∇∇ψ]− ∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)
[BBB0 ×∇∇∇ϑ] .

and substituting Eqs.D.19,D.20, we obtain

BBB0 ×∇∇∇pϕ =

[
1− ∂

∂ψ

∣∣∣∣
ϑ

(
IV‖
ωcj

)] [
IBBB0 −R2B2

0∇∇∇ϕ
]
−

− ∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)[
Iϑ′BBB0 − ϑ′R2B2

0∇∇∇ϕ−
B2
ϕ

qR2B2
ϑ

∇∇∇ψ
]
.

(D.21)

Therefore, we deduce

V‖∇‖gj =
V‖
B

[
(BBB · ∇∇∇ϑ)

∂

∂ϑ

∣∣∣∣
pϕ,ξ

+ (BBB · ∇∇∇pϕ)
∂

∂pϕ

∣∣∣∣
ϑ,ξ

+ (BBB · ∇∇∇ξ) ∂

∂ξ

∣∣∣∣
pϕ,ϑ

]
gj =

=
V‖
B0

[
(BBB0 · ∇∇∇ϑ)

∂gj
∂ϑ

∣∣∣∣
pϕ,ξ

+ (BBB0 · ∇∇∇pϕ)
∂gj
∂pϕ

∣∣∣∣
ϑ,ξ

+ (BBB0 · ∇∇∇ξ)
∂gj
∂ξ

∣∣∣∣
pϕ,ϑ

+

+ (BBB1 · ∇∇∇pϕ)
∂gj
∂pϕ

∣∣∣∣
ϑ,ξ

]
+O

(
∆2
)

=

=
V‖
B0

[
I

qR2

∂gj
∂ϑ

∣∣∣∣
pϕ,ξ

− I2

qR2

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
∂gj
∂pϕ

∣∣∣∣
ϑ,ξ

− I

nqR2
(m− nq) ∂gj

∂ξ

∣∣∣∣
pϕ,ϑ

+

+ (BBB1 · ∇∇∇pϕ)
∂gj
∂pϕ

∣∣∣∣
ϑ,ξ

]
+O

(
∆2
)
.

(D.22)

TheBBB1 ·∇∇∇pϕ contribution is maintained as ∂/∂ψ ∼ (1/RBϑ)∂/∂w on perturbed quantities.

To rewrite the EEE ×BBB and magnetic drift contributions in Eq.1.12, let us consider

VVV b · ∇∇∇pϕ = −
[
VVV ‖ ×∇∇∇

(
V‖
ωcj

)]
· ∇∇∇pϕ ≡ −

V‖
B0

[
BBB0 ×∇∇∇

(
V‖
ωcj

)]
· ∇∇∇pϕ =
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=
V‖
B0

[BBB0 ×∇∇∇pϕ] · ∇∇∇
(
V‖
ωcj

)
=

Here the third identity of Eq.D.8 has been applied. Now we substitute the expression for

BBB0 ×∇∇∇pϕ given by Eq.D.21 to write:

=
V‖
B0

{[
1− ∂

∂ψ

∣∣∣∣
ϑ

(
IV‖
ωcj

)] [
IBBB0 −R2B2

0∇∇∇ϕ
]
· ∇∇∇
(
V‖
ωcj

)
−

− Iϑ′ ∂
∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)
BBB0 · ∇∇∇

(
V‖
ωcj

)
+ ϑ′R2B2

0

∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)
∇∇∇ϕ · ∇∇∇

(
V‖
ωcj

)
+

+
B2
ϕ

qR2B2
ϑ

∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)
∇∇∇ψ · ∇∇∇

(
V‖
ωcj

)}
=

As

∇∇∇
(
V‖
ωcj

)
=

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
∇∇∇ϑ+

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
∇∇∇ψ,

the highlighted terms vanish and thus

=
V‖
B0


[
1− ∂

∂ψ

∣∣∣∣
ϑ

(
IV‖
ωcj

)]I ∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
BBB0 · ∇∇∇ϑ︸ ︷︷ ︸
I/qR2

+ I
∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
BBB0 · ∇∇∇ψ

−
− Iϑ′ ∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)
BBB0 · ∇∇∇

(
V‖
ωcj

)
︸ ︷︷ ︸
I
qR2

∂
∂ϑ |ψ

(
V‖
ωcj

)
+

I2

qR4B2
ϑ

∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)
∇∇∇ψ · ∇∇∇

(
V‖
ωcj

)}
=

Also, we use

∇∇∇ψ · ∇∇∇
(
V‖
ωcj

)
=

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
∇∇∇ψ · ∇∇∇ϑ︸ ︷︷ ︸

∂ϑ
∂ψ
∇∇∇ψ·∇∇∇ψ+ ∂ϑ

∂χ
∇∇∇ψ·∇∇∇χ

+
∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
|∇∇∇ψ|2 =

= ϑ′
∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
R2B2

ϑ +
∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
R2B2

ϑ,

and substituting this into the previous expression, we obtain

=
V‖
B0

{[
1−I ∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
−
I ′V‖
ωcj

]
I2

qR2

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
+

+
I2

qR2

∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)
∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)}
=
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Here we have taken into account that I = RBϕ is ϑ-independent but is a function of ψ.

Highlighted terms cancel out. By definition, I ′ = ∂I/∂ψ. Therefore,

=
I2

qR2

V‖
B0

[
∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
− I ′

2

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)2
]

= VVV b · ∇∇∇pϕ . (D.23)

The second term in Eq.D.23 is to be neglected in a low beta approximation. Similarly, we

consider

VVV b · ∇∇∇ϑ =
V‖
B0

[BBB0 ×∇∇∇ϑ] · ∇∇∇
(
V‖
ωcj

)
=

in accordance with Eq.D.19

=
V‖
B0

[
Iϑ′

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
I

qR2
−

B2
ϕ

qR2B2
ϑ

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
ϑ′R2B2

ϑ −
B2
ϕ

qR2B2
ϑ

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
R2B2

ϑ

]
,

VVV b · ∇∇∇ϑ = − I2

qR2

V‖
B0

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
. (D.24)

For VVV b · ∇∇∇ξ, we have

VVV b · ∇∇∇ξ =
V‖
B0

[BBB0 ×∇∇∇ξ] · ∇∇∇
(
V‖
ωcj

)
. (D.25)

Let us now consider

BBB0 ×∇∇∇ξ = BBB0 ×∇∇∇ϕ−
m

n
BBB0 ×∇∇∇ϑ =

= [I∇∇∇ϕ+∇∇∇ϕ×∇∇∇ψ]×∇∇∇ϕ︸ ︷︷ ︸
=−∇∇∇ϕ(∇∇∇ϕ·∇∇∇ψ)+∇∇∇ψ|∇∇∇ϕ|2=∇∇∇ψ/R2

− m

n
BBB0 ×∇∇∇ϑ =

Substituting Eq.D.19 into the previous line yields

=
1

R2

(
1 +

m

n

B2
ϕ

qB2
ϑ

)
∇∇∇ψ − m

n
Iϑ′BBB0 +

m

n
ϑ′R2B2

0∇∇∇ϕ = BBB0 ×∇∇∇ξ . (D.26)

Then Eq.D.25 becomes

=
V‖
B0

{
1

R2

(
B2

0

B2
ϑ

+
m− nq
nq

B2
ϕ

B2
ϑ

)[
ϑ′

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
+

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)]
R2B2

ϑ −
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− m

n
Iϑ′

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
BBB0 · ∇∇∇ψ︸ ︷︷ ︸

0

− m

n
Iϑ′

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
I

qR2
+

+
m

n
ϑ′R2B2

0

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
∇∇∇ϕ · ∇∇∇ϑ︸ ︷︷ ︸

0

+
m

n
ϑ′R2B2

0

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
∇∇∇ϕ · ∇∇∇ψ︸ ︷︷ ︸

0

 =

=
V‖
B0

[(
B2

0 +
m− nq
nq

B2
ϕ

)
∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
+

(
B2

0 +
m− nq
nq

B2
ϕ

)
ϑ′

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
−

−m
n
ϑ′
B2
ϕ

q

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)]
=

since highlighted terms cancel out,

=
V‖
B0

[(
B2

0 +
m− nq
nq

B2
ϕ

)
∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
+ ϑ′B2

ϑ

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)]
= VVV b · ∇∇∇ξ . (D.27)

Since

VVV b · ∇∇∇gj =

[
(VVV b · ∇∇∇pϕ)

∂

∂pϕ

∣∣∣∣
ϑ,ξ

+ (VVV b · ∇∇∇ϑ)
∂

∂ϑ

∣∣∣∣
pϕ,ξ

+ (VVV b · ∇∇∇ξ)
∂

∂ξ

∣∣∣∣
pϕ,ϑ

]
gj, (D.28)

we combine Eqs.D.22,D.28 with Eqs.D.23,D.24,D.27 to write

V‖∇‖gj + VVV b · ∇∇∇gj =
V‖
B0


 I

qR2︸︷︷︸
O(1)

− I2

qR2

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
︸ ︷︷ ︸

O(∆)

+BBB1 · ∇∇∇ϑ︸ ︷︷ ︸
O(∆2)

 ∂gj
∂ϑ

∣∣∣∣
pϕ,ξ

+

+

 BBB1 · ∇∇∇pϕ︸ ︷︷ ︸
O(∆): BBB1·∇∇∇ψ

−

��
��

�
��

�
��
�* low beta

I2

qR2

I ′

2

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)2

︸ ︷︷ ︸
O(∆)

 ∂gj
∂pϕ

∣∣∣∣
ϑ,ξ

+

− I

nqR2
(m− nq)︸ ︷︷ ︸
O(∆)

+

 B2
0︸︷︷︸

O(∆)

+
m− nq
nq

B2
ϕ︸ ︷︷ ︸

O(∆2)

 ∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
+ ϑ′B2

ϑ

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
︸ ︷︷ ︸

O(∆)

+

+BBB1 · ∇∇∇ξ︸ ︷︷ ︸
O(∆2)

 ∂gj
∂ξ

∣∣∣∣
pϕ,ϑ

 .
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The ordering of terms is 1 : ∆ : ∆2 : ∆ : ∆ : ∆ : ∆ : ∆2 : ∆ : ∆2.99

As an example, in a large aspect ratio tokamak with circular poloidal cross section, ∆(r) = 0, we

estimate each term in the above expression as follows

V‖

B0

I

qR2

∂gj
∂ϑ
∼
VTj
B0

Bϕ
qR

gj ∼ ε
VTj
r
gj ∼

VTj
R

∆fMj ,

V‖

B0

I2

qR2

∂

∂ψ

(
V‖

ωcj

)
∂gj
∂ϑ
∼
VTj
B0

I

qR2
(ε1/2)∆gj ∼ ε(ε1/2)

VTj
r

∆gj ∼ (ε1/2)
VTj
R

∆2fMj ,

where ε1/2 is a fraction of trapped particles.

(BBB1 · ∇∇∇pϕ)
∂gj
∂pϕ

∣∣∣∣
ϑ,ξ

= BBB1 ·
[
∇∇∇ψ −∇∇∇

(
IV ‖

ωcj

)]
∂ψ

∂pϕ

∂gj
∂ψ

∣∣∣∣
ϑ,ξ

∼=

∼=
[
BBB1 · ∇∇∇ψ − I

∂

∂ψ

(
V‖

ωcj

)
BBB1 · ∇∇∇ψ − I

∂

∂ϑ

(
V‖

ωcj

)
BBB1 · ∇∇∇ϑ

]
∂gj
∂ψ

∣∣∣∣
ϑ,ξ

,

∂pϕ/∂ψ = 1 to leading order in ρϑj/a. Here

V‖

B0
(BBB1 · ∇∇∇ψ)

∂gj
∂ψ

∣∣∣∣
ϑ,ξ

∼
VTj
B0

mψ̃
Bϑ
r

gj
RBϑw

∼ ε∆2VTj
w
gj ∼ ε

VTj
r

∆gj ∼
VTj
R

∆2fMj ,

IV‖

B0

∂

∂ψ

(
V‖

ωcj

)
(BBB1 · ∇∇∇ψ)

∂gj
∂ψ

∣∣∣∣
ϑ,ξ

∼ ε(ε1/2)
VTj
r

∆2gj ∼ (ε1/2)
VTj
R

∆3fMj ,

IV‖

B0

∂

∂ϑ

(
V‖

ωcj

)
(BBB1 · ∇∇∇ϑ)

∂gj
∂ψ

∣∣∣∣
ϑ,ξ

∼
VTj
B0

RBϕ
∂

∂ϑ

(
V
√

1− λB
ωcj

)
Bϑ
r

ψ̃

R

∂

∂ψ

(
RBϕ
B0

)
gj

RBϑw

∼ ∆2∂ρϑj
∂ϑ

VTj
r

gj
w
∼ ε(ε3/2)∆3VTj

gj
w
∼ ε(ε3/2)

VTj
r

∆2gj ∼ ε(ε3/2)
VTj
R

∆3fMj ,

and thus only the BBB1 · ∇∇∇ψ contribution is to be maintained. Since

1− q

qs
∼= 1−

qs + wψq
′
s

qs
∼ w

r
, (D.29)

we have

V‖

B0

I

nqR2
(m− nq) ∂gj

∂ξ
∼
VTj
R

∆gj ∼ ε
VTj
r

∆gj ∼
VTj
R

∆2fMj ,

V‖

B0
B2

0

∂

∂ψ

(
V‖

ωcj

)
∂gj
∂ξ
∼
VTj
I
B0(ε1/2)∆gj ∼ (ε1/2)

VTj
R

∆gj ∼ (ε1/2)
VTj
R

∆2fMj ,

V‖

B0

m− nq
nq

B2
ϕ

∂

∂ψ

(
V‖

ωcj

)
∂gj
∂ξ
∼ (ε1/2)

VTj
R

∆2gj ∼ (ε1/2)
VTj
R

∆3fMj ,

V‖

B0
ϑ′B2

ϑ

∂

∂ϑ

(
V‖

ωcj

)
∂gj
∂ξ
∼
VTj
B0

ϑ

RBϑr
B2
ϑ

∂ρϑj
∂ϑ

gj ∼ ε(ε3/2)∆
VTj
R

Bϑ
B0

gj

∼ ε2(ε5/2)
VTj
R

∆gj ∼ ε2(ε5/2)
VTj
R

∆2fMj .

99With no restrictions on beta, the second term in ∂gj/∂pϕ|ϑ,ξ averages out over ϑ at fixed pϕ.
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As we seek the solution localised to the island vicinity, we Taylor expand m− nq around

the rational surface, q = qs ≡ m/n,

m− nq ∼= m− n [qs + q′s (ψ − ψs)] = −nq′s (ψ − ψs) = −nq′s
(
pϕ +

IV‖
ωcj

)
.

Thus,

V‖∇‖gj + VVV b · ∇∇∇gj =
V‖
B0

{[
I

qR2
− I2

qR2

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)]
∂gj
∂ϑ

∣∣∣∣
pϕ,ξ

+

+ (BBB1 · ∇∇∇pϕ)
∂gj
∂pϕ

∣∣∣∣
ϑ,ξ

+

+

[
I

qR2
q′s

(
pϕ +

IV‖
ωcj

)
+B2

0

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
+ ϑ′B2

ϑ

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)]
∂gj
∂ξ

∣∣∣∣
pϕ,ϑ

}
+O(∆2).

(D.30)

To rewrite the EEE ×BBB drift contribution to Eq.1.12, we consider

VVV E · ∇∇∇ϑ =
EEE ×BBB
B2

· ∇∇∇ϑ =

provided EEE = −gradΦ,

= − 1

B2
[BBB ×∇∇∇ϑ] · ∇∇∇Φ ∼= −

1

B2
0

[BBB0 ×∇∇∇ϑ] · ∇∇∇Φ =

Substituting the expression for BBB0 ×∇∇∇ϑ given by Eq.D.19, we have

= − 1

B2
0



Iϑ′BBB0 · ∇∇∇ϑ︸ ︷︷ ︸
I/qR2

− ϑ′R2B2
0∇∇∇ϕ · ∇∇∇ϑ︸ ︷︷ ︸

0

−
B2
ϕ

qR2B2
ϑ

∇∇∇ψ · ∇∇∇ϑ︸ ︷︷ ︸
ϑ′ψ |∇∇∇ψ|

2+ϑ′χ∇∇∇ψ·∇∇∇χ=

=ϑ′R2B2
ϑ

 ∂Φ

∂ϑ

∣∣∣∣
ψ,ξ

+

+

Iϑ′BBB0 · ∇∇∇ψ︸ ︷︷ ︸
0

− ϑ′R2B2
0∇∇∇ϕ · ∇∇∇ψ︸ ︷︷ ︸

0

−
B2
ϕ

qR2B2
ϑ

|∇∇∇ψ|2
 ∂Φ

∂ψ

∣∣∣∣
ϑ,ξ

+

+

Iϑ′BBB0 · ∇∇∇ξ︸ ︷︷ ︸
I
qR2 (q−qs)

− ϑ′R2B2
0 ∇∇∇ϕ · ∇∇∇ξ︸ ︷︷ ︸
∇∇∇ϕ·∇∇∇(ϕ−mn ϑ)=

=|∇∇∇ϕ|2=1/R2

−
B2
ϕ

qR2B2
ϑ

∇∇∇ψ · ∇∇∇ξ︸ ︷︷ ︸
∇∇∇ψ·∇∇∇(ϕ−mn ϑ)=

=−m
n
ϑ′R2B2

ϑ


∂Φ

∂ξ

∣∣∣∣
ψ,ϑ


=
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as Φ = Φ(ψ, ϑ, ξ) and hence

= − 1

B2
0

(
−
B2
ϕ

q

∂Φ

∂ψ

∣∣∣∣
ϑ,ξ

− ϑ′B2
ϑ

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

)

Thus, we obtain

VVV E · ∇∇∇ϑ =
B2
ϕ

qB2
0

∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

+
ϑ′B2

ϑ

B2
0

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

. (D.31)

Similarly,

VVV E · ∇∇∇ψ = − 1

B2
[BBB ×∇∇∇ψ] · ∇∇∇Φ ∼= −

1

B2
0

[BBB0 ×∇∇∇ψ] · ∇∇∇Φ =

Substituting the expression for BBB0 ×∇∇∇ψ, Eq.D.20, we write

= − 1

B2
0

{[
IBBB0 · ∇∇∇ϑ−R2B2

0∇∇∇ϕ · ∇∇∇ϑ
] ∂Φ

∂ϑ

∣∣∣∣
ψ,ξ

+
[
IBBB0 · ∇∇∇ψ −R2B2

0∇∇∇ϕ · ∇∇∇ψ
] ∂Φ

∂ψ

∣∣∣∣
ϑ,ξ

+

+
[
IBBB0 · ∇∇∇ξ −R2B2

0∇∇∇ϕ · ∇∇∇ξ
] ∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

}
=

= − 1

B2
0

{
I2

qR2

∂Φ

∂ϑ

∣∣∣∣
ψ,ξ

+

[
I2

qR2

(
q − m

n

)
−B2

0

]
∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

}
,

VVV E · ∇∇∇ψ = −
B2
ϕ

qB2
0

∂Φ

∂ϑ

∣∣∣∣
ψ,ξ

+

[
1−

B2
ϕ

B2
0

nq −m
nq

]
∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

. (D.32)

In a similar way we consider

VVV E · ∇∇∇ξ ∼= −
1

B2
0

[BBB0 ×∇∇∇ξ] · ∇Φ =

Substituting the expression for BBB0 ×∇∇∇ξ from Eq.D.26, we have

= − 1

B2
0

[
−m
n
Iϑ′BBB0 +

m

n
ϑ′R2B2

0∇∇∇ϕ+

(
B2

R2B2
ϑ

+
m− nq
nq

B2
ϕ

R2B2
ϑ

)
∇∇∇ψ
]
· ∇∇∇Φ =

= − 1

B2
0


−m

n
Iϑ′BBB0 · ∇∇∇ϑ︸ ︷︷ ︸

I/qR2

+
m

n
ϑ′R2B2

0∇∇∇ϕ · ∇∇∇ϑ︸ ︷︷ ︸
0

+

(
B2

R2B2
ϑ

+
m− nq
nq

B2
ϕ

R2B2
ϑ

)
∇∇∇ψ · ∇∇∇ϑ︸ ︷︷ ︸
ϑ′R2B2

ϑ

 ∂Φ

∂ϑ

∣∣∣∣
ψ,ξ

+
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+

−m
n
Iϑ′BBB0 · ∇∇∇ψ︸ ︷︷ ︸

0

+
m

n
ϑ′R2B2

0∇∇∇ϕ · ∇∇∇ψ︸ ︷︷ ︸
0

+

(
B2

R2B2
ϑ

+
m− nq
nq

B2
ϕ

R2B2
ϑ

)
|∇∇∇ψ|2︸ ︷︷ ︸
R2B2

ϑ

 ∂Φ

∂ψ

∣∣∣∣
ϑ,ξ

+

+

−mn Iϑ′ BBB0 · ∇∇∇ξ︸ ︷︷ ︸
I
qR2 (q−mn )

+
m

n
ϑ′R2B2

0∇∇∇ϕ · ∇∇∇ξ︸ ︷︷ ︸
1/R2

+

(
B2

R2B2
ϑ

+
m− nq
nq

B2
ϕ

R2B2
ϑ

)
∇∇∇ψ · ∇∇∇ξ︸ ︷︷ ︸
−m
n
ϑ′R2B2

ϑ

 ∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

 =

= −ϑ′B
2
ϑ

B2
0

∂Φ

∂ϑ

∣∣∣∣
ψ,ξ

−
[
1 +

m− nq
nq

B2
ϕ

B2
0

]
∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

= VVV E · ∇∇∇ξ . (D.33)

Combining Eqs.D.31,D.32, we obtain

VVV E · ∇∇∇pϕ = VVV E · ∇∇∇
(
ψ − ψs −

IV‖
ωcj

)
=

=

[
1− ∂

∂ψ

∣∣∣∣
ϑ

(
IV‖
ωcj

)]
VVV E · ∇∇∇ψ −

∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)
VVV E · ∇∇∇ϑ.

(D.34)

Combining Eqs.D.31,D.32,D.33 and Eq.D.34, we write

VVV E · ∇∇∇gj =

[
(VVV E · ∇∇∇pϕ)

∂

∂pϕ

∣∣∣∣
ϑ,ξ

+ (VVV E · ∇∇∇ϑ)
∂

∂ϑ

∣∣∣∣
pϕ,ξ

+ (VVV E · ∇∇∇ξ)
∂

∂ξ

∣∣∣∣
pϕ,ϑ

]
gj =

=


[
1− ∂

∂ψ

∣∣∣∣
ϑ

(
IV‖
ωcj

)]− B2
ϕ

qB2
0

∂Φ

∂ϑ

∣∣∣∣
ψ,ξ

+

1−
B2
ϕ

B2
0

nq −m
nq︸ ︷︷ ︸

O(∆2)

 ∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

−

− ∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

) B
2
ϕ

qB2
0

∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

+
ϑ′B2

ϑ

B2
0

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ︸ ︷︷ ︸

O(∆2)




∂gj
∂pϕ

∣∣∣∣
ϑ,ξ

+

+

 B
2
ϕ

qB2
0

∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

+
ϑ′B2

ϑ

B2
0

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ︸ ︷︷ ︸

O(∆2)

 ∂gj
∂ϑ

∣∣∣∣
pϕ,ξ

+

+

−ϑ′B
2
ϑ

B2
0

∂Φ

∂ϑ

∣∣∣∣
ψ,ξ︸ ︷︷ ︸

O(∆2)

−

1 +
m− nq
nq

B2
ϕ

B2
0︸ ︷︷ ︸

O(∆2)

 ∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

 ∂gj
∂ξ

∣∣∣∣
pϕ,ϑ

.

As an example, in a large aspect ratio tokamak with circular poloidal cross section, ∆(r) = 0, we
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estimate each term in the above expression as follows

B2
ϕ

qB2
0

∂Φ

∂ϑ

∂gj
∂pϕ

∼ 1

wrBϕ

T

e
∆gj ∼

VTj
wωcj

VTj
r

∆gj ∼
ρϑj
w

Bϑ
Bϕ

VTj
r

∆gj ∼ ε
VTj
r

∆gj ,

B2
ϕ

qB2
0

I
∂

∂ψ

(
V‖

ωcj

)
∂Φ

∂ϑ

∂gj
∂pϕ

∼ ε(ε3/2)
VTj
r

∆2gj ,

where ε1/2 corresponds to a fraction of trapped particles, Ti ∼ Te ∼ T .

∂Φ

∂ξ

∂gj
∂pϕ

∼ 1

RBϑw

T

e
∆gj ∼

1

rBϕw

T

e
∆gj ∼ ε

VTj
r

∆gj ,

I
∂

∂ψ

(
V‖

ωcj

)
∂Φ

∂ξ

∂gj
∂pϕ

∼ ε(ε3/2)
VTj
r

∆2gj ,

nq −m
nq

B2
ϕ

B2
0

∂Φ

∂ξ

∂gj
∂pϕ

∼ ε
VTj
r

m

nq

(nq
m
− 1
)

∆gj ∼ ε
VTj
r

∆2gj ,

nq −m
nq

B2
ϕ

B2
0

I
∂

∂ψ

(
V‖

ωcj

)
∂Φ

∂ξ

∂gj
∂pϕ

∼ ε(ε3/2)
VTj
r

∆3gj ,

B2
ϕ

qB2
0

I
∂

∂ϑ

(
V‖

ωcj

)
∂Φ

∂ψ

∂gj
∂pϕ

∼ ε(ε3/2)
RBϕ

qR2B2
ϑw

2
ρϑj

T

e
∆gj ∼ (ε1/2)

1

rBϕw

T

e
∆gj ∼ ε(ε3/2)

VTj
r

∆gj ,

ϑ′
B2
ϑ

B2
0

I
∂

∂ϑ

(
V‖

ωcj

)
∂Φ

∂ξ

∂gj
∂pϕ

∼ ε3(ε7/2)
VTj
r

∆2gj ,

B2
ϕ

qB2
0

∂Φ

∂ψ

∂gj
∂ϑ
∼ ε

VTj
r

∆gj ,

ϑ′
B2
ϑ

B2
0

∂Φ

∂ξ

∂gj
∂ϑ
∼ ε3VTj

r
∆2gj ,

ϑ′
B2
ϑ

B2
0

∂Φ

∂ϑ

∂gj
∂ξ
∼ ε3VTj

r
∆2gj ,

∂Φ

∂ψ

∂gj
∂ξ
∼ ε

VTj
r

∆gj ,

m− nq
nq

B2
ϕ

B2
0

∂Φ

∂ψ

∂gj
∂ξ
∼ ε

VTj
r

∆2gj .

Keeping the O(∆0) and O(∆1) terms only, we have

VVV E · ∇∇∇gj =
∂gj
∂pϕ

∣∣∣∣
ϑ,ξ

(
−
B2
ϕ

qB2
0

∂Φ

∂ϑ

∣∣∣∣
ψ,ξ

+
∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

−
B2
ϕ

qB2
0

∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)
∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

)
+

+
B2
ϕ

qB2
0

∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

∂gj
∂ϑ

∣∣∣∣
pϕ,ξ

− ∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

∂gj
∂ξ

∣∣∣∣
pϕ,ϑ

+O
(
∆2
)
.

(D.35)
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Substituting Eqs.D.30,D.35 into Eq.D.11 yields{
V‖
B0

I

qR2

[
1− I ∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)]
+

B2
ϕ

qB2
0

∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

}
∂gj
∂ϑ

∣∣∣∣
pϕ,ξ

+{
V‖
B0

BBB1 · ∇∇∇pϕ −
B2
ϕ

qB2
0

∂Φ

∂ϑ

∣∣∣∣
ψ,ξ

+
∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

−
B2
ϕ

qB2
0

∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)
∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

}
∂gj
∂pϕ

∣∣∣∣
ϑ,ξ

+

+

{
V‖
B0

[
I

qR2
q′s

(
pϕ +

IV‖
ωcj

)
+B2

0

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
+ ϑ′B2

ϑ

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)]
−

− ∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

}
∂gj
∂ξ

∣∣∣∣
pϕ,ϑ

− eZj
mjV

[
V‖∇‖Φ + VVV b · ∇∇∇Φ

] ∂gj
∂V

∣∣∣∣
ψ

= Cj (gj) .

(D.36)

The term

(
eZj

Tj (ψs)

)2

fMj (ψs)
[
V‖∇‖Φ + VVV b · ∇∇∇Φ

]
Φ(ψs) ∼

VTj
r

δΦ

Φ
∆gj ∼

VTj
r

∆2gj

in Eq.D.10, and hence is to be omitted.

Let us consider a combination of terms in velocity space,

V‖∇‖Φ + VVV b · ∇∇∇Φ = V‖∇‖Φ−
V‖
B0

[
BBB0 ×∇∇∇

(
V‖
ωcj

)]
· ∇∇∇Φ (D.37)

with

V‖∇‖Φ =
V‖
B0

BBB0 · ∇∇∇Φ =
V‖
B0

[
I

qR2

∂Φ

∂ϑ

∣∣∣∣
ψ,ξ

+
I

qR2
(q − qs)

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

]

and[
BBB0 ×∇∇∇

(
V‖
ωcj

)]
· ∇∇∇Φ =

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
[BBB0 ×∇∇∇ϑ] · ∇∇∇Φ +

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
[BBB0 ×∇∇∇ψ] · ∇∇∇Φ =

= − ∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)[
I2

qR2

∂Φ

∂ψ

∣∣∣∣
ϑ,ξ

+ ϑ′B2
ϑ

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

]
+

+
∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)[
I2

qR2

∂Φ

∂ϑ

∣∣∣∣
ψ,ξ

+
I2

qR2

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

(
q − m

n

)
−B2

0

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

]
,

where we have applied Eqs.D.12-D.14 and Eqs.D.19,D.20. Substituting these into Eq.D.37
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and then into Eq.D.36, we obtain

− eZj
mjV

V‖
B0

∂gj
∂V

∣∣∣∣
ψ

{
I

qR2

∂Φ

∂ϑ

∣∣∣∣
ψ,ξ

+
I

qR2
(q − qs)

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

+

+
∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)[
I2

qR2

∂Φ

∂ψ

∣∣∣∣
ϑ,ξ

+ ϑ′B2
ϑ

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

]
−

− ∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)[
I2

qR2

∂Φ

∂ϑ

∣∣∣∣
ψ,ξ

+
I2

qR2

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

(
q − m

n

)
−B2

0

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

]}

for the last term on the left hand side of Eq.D.36. The ordering of terms here is as follows

∆ : ∆2 : ∆ : ∆2 : ∆2 : ∆3 : ∆2.

As an example, in a large aspect ratio tokamak with circular poloidal cross section, ∆(r) = 0, we

estimate each term in the above expression as follows

eZj
mjV

V‖

B0

I

qR2

∂Φ

∂ϑ

∂gj
∂V
∼ e

mjV 2
Tj

VTj
B0

BϕR

qR2

T

e
∆gj ∼ ε

VTj
r

∆gj ,

eZj
mjV

V‖

B0

I

qR2
(q − qs)

∂Φ

∂ξ

∂gj
∂V
∼
VTj
R

∆2gj ∼ ε
VTj
r

∆2gj ,

eZj
mjV

V‖

B0

I2

qR2

∂

∂ϑ

∣∣∣∣
ψ

(
V‖

ωcj

)
∂Φ

∂ψ

∂gj
∂V
∼ ε(ε3/2)

VTj
B0

I2

qR2

ρϑj
RBϑw

∆gj

∼ (ε1/2)
VTj
R

∆gj ∼ ε(ε3/2)
VTj
r

∆gj ,

eZj
mjV

V‖

B0
ϑ′B2

ϑ

∂

∂ϑ

∣∣∣∣
ψ

(
V‖

ωcj

)
∂Φ

∂ξ

∂gj
∂V
∼ ε3(ε7/2)

VTj
r

∆2gj ,

eZj
mjV

V‖

B0

I2

qR2

∂

∂ψ

∣∣∣∣
ϑ

(
V‖

ωcj

)
∂Φ

∂ϑ

∂gj
∂V
∼ ε(ε3/2)

VTj
r

∆2gj ,

eZj
mjV

V‖

B0

I2

qR2

(
q − m

n

) ∂

∂ψ

∣∣∣∣
ϑ

(
V‖

ωcj

)
∂Φ

∂ξ

∂gj
∂V
∼ (ε1/2)

VTj
R

∆3gj ∼ ε(ε3/2)
VTj
r

∆3gj ,

eZj
mjV

V‖

B0
B2

0

∂

∂ψ

∣∣∣∣
ϑ

(
V‖

ωcj

)
∂Φ

∂ξ

∂gj
∂V
∼ (ε1/2)

VTj
R

∆2gj ∼ ε(ε3/2)
VTj
r

∆2gj .

Therefore, the velocity contribution becomes

− eZj
mjV

V‖
B0

I

qR2

[
∂Φ

∂ϑ

∣∣∣∣
ψ,ξ

+ I
∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
∂Φ

∂ψ

∣∣∣∣
ϑ,ξ

]
∂gj
∂V

∣∣∣∣
ψ

+O(∆2) =
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= − eZj
mjV

V‖
B0

I

qR2

∂Φ

∂ϑ

∣∣∣∣
pϕ,ξ

∂gj
∂V

∣∣∣∣
ψ

+O(∆2), (D.38)

where
∂Φ

∂ϑ

∣∣∣∣
pϕ

=
∂Φ

∂ϑ

∣∣∣∣
ψ

+
∂ψ

∂ϑ

∣∣∣∣
pϕ

∂Φ

∂ψ

∣∣∣∣
ϑ

(D.39)

with

∂ψ

∂ϑ

∣∣∣∣
pϕ

=
∂

∂ϑ

∣∣∣∣
pϕ

(
IV‖
ωcj

)
=

∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)
+
∂ψ

∂ϑ

∣∣∣∣
pϕ

∂

∂ψ

∣∣∣∣
ϑ

(
IV‖
ωcj

)
=

=
∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)
+

∂

∂ϑ

∣∣∣∣
pϕ

(
IV‖
ωcj

)
∂

∂ψ

∣∣∣∣
ϑ

(
IV‖
ωcj

)

in accordance with the definition of pϕ. The last term in ∂ψ/∂ϑ|pϕ does not contribute to

O(∆1). Indeed,

eZj
mjV

V‖
B0

I

qR2

∂

∂ϑ

∣∣∣∣
pϕ

(
IV‖
ωcj

)
∂

∂ψ

∣∣∣∣
ϑ

(
IV‖
ωcj

)
∂Φ

∂ψ

∂gj
∂V

∼ VTj
B0

1

Rwr

∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)
∂

∂ψ

∣∣∣∣
ϑ

(
IV‖
ωcj

)
∆gj ∼ ε(ε3/2)

VTj
r

∂

∂ψ

∣∣∣∣
ϑ

(
IV‖
ωcj

)
∆gj

∼ ε(ε2)
VTj
r

∆2gj

to leading order (terms of order O(∆3) and higher order corrections are neglected).

Therefore, Eq.D.36 reads{
V‖
B0

I

qR2

[
1− I ∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)]
+

B2
ϕ

qB2
0

∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

}
∂gj
∂ϑ

∣∣∣∣
pϕ,ξ

+

+

{
V‖
B0

BBB1 · ∇∇∇pϕ +
∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

}
∂gj
∂pϕ

∣∣∣∣
ϑ,ξ

+

+

{
V‖
B0

[
I

qR2
q′s

(
pϕ +

IV‖
ωcj

)
+B2

0

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
+ ϑ′B2

ϑ

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)]
−

− ∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

}
∂gj
∂ξ

∣∣∣∣
pϕ,ϑ

− eZj
mjqV

V‖
B0

I

R2

∂Φ

∂ϑ

∣∣∣∣
pϕ,ξ

∂gj
∂V

∣∣∣∣
pϕ

= Cj (gj) ,

(D.40)

where the term in ∂gj/∂pϕ has been rearranged using Eq.D.39, and the velocity contribution

has been rewritten as

∂

∂V

∣∣∣∣
ψ

=
∂

∂V

∣∣∣∣
pϕ

+
∂pϕ
∂V

∣∣∣∣
ψ

∂

∂pϕ

∣∣∣∣
V
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with ∂pϕ/∂V |ψ = −(I/ωcj)∂V‖/∂V
∣∣
ψ,ϑ,µ

= −(I/ωcj)(V/V‖) (note: here we have used

the definition of pϕ, Eq.2.13 and V 2 = V 2
‖ + V 2

⊥ = V 2
‖ + 2µB, and thus 2V ∂V |ψ,ϑ,µ =

2V‖∂V‖
∣∣
ψ,ϑ,µ

).

Eq.D.40 is a full drift kinetic equation in toroidal geometry to O(∆1) in a low beta limit,

written in {pϕ, ξ, ϑ, µ, V } space.100 At this stage we have not specified a form of the

collision operator. To employ the collision operator from [53], we switch from {µ, V } to

{λ, V ;σ} in velocity space, where λ = 2µ/V 2 is the pitch angle and σ = V‖/
∣∣V‖∣∣. To

rewrite Eq.D.40 in {pϕ, ξ, ϑ, λ, V ;σ} space, we use

∂

∂V

∣∣∣∣
µ

=
∂

∂V

∣∣∣∣
λ

+
∂λ

∂V

∣∣∣∣
µ

∂

∂λ

∣∣∣∣
V

with ∂λ/∂V |µ = −4µ/V 3 and thus Eq.D.40 becomes

{
V‖
B0

I

qR2

[
1− I ∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)]
+

B2
ϕ

qB2
0

∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

}
∂gj
∂ϑ

∣∣∣∣
pϕ,ξ,λ,V ;σ

+

+

{
V‖
B0

BBB1 · ∇∇∇pϕ +
∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

}
∂gj
∂pϕ

∣∣∣∣
ϑ,ξ,λ,V ;σ

+

+

{
V‖
B0

[
I

qR2
q′s

(
pϕ +

IV‖
ωcj

)
+B2

0

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
+ ϑ′B2

ϑ

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)]
−

− ∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

}
∂gj
∂ξ

∣∣∣∣
pϕ,ϑ,λ,V ;σ

− eZj
mjqV

V‖
B0

I

R2

∂Φ

∂ϑ

∣∣∣∣
pϕ,ξ

∂gj
∂V

∣∣∣∣
pϕ,ξ,ϑ,λ;σ

+

+ 2
eZj

mjqV 2

V‖
B0

I

R2

∂Φ

∂ϑ

∣∣∣∣
pϕ,ξ

λ
∂gj
∂λ

∣∣∣∣
pϕ,ξ,ϑ,V ;σ

= Cj (gj) .

(D.41)

Eq.D.41 is the final drift kinetic equation in toroidal geometry to O(∆1) in a low beta

approximation with completed transition from {ψ, ξ, ϑ, µ, V } to {pϕ, ξ, ϑ, λ, V ;σ} space.

D.3 Perturbative treatment

As we noted in the main part, to solve Eq.D.41 for gj, we define a small parameter

∆ = w/a � 1 with the following orderings: eZjΦ/Tj ∼ ∆, gj/fMj ∼ ∆, δΦ/Φ ∼ ∆.

Employing an expansion in ∆, we write gj =
∑

α g
(α)
j ∆α. To O(∆0) we have Eq.2.18.

Thus, we deduce that the leading order distribution function in ∆, g(0)
j , is ϑ-independent

100The derivatives in the Vlasov part of Eq.D.40 are taken at fixed µ.
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at fixed pϕ. Multiplying both sides of Eq.D.40 by R2B0/IV ‖ and proceeding to O(∆1),

we come to an equation for g(0)
j :

1

q

∂g
(1)
j

∂ϑ

∣∣∣∣∣
pϕ,ξ,λ,V ;σ

+

[
I

V‖qB0

∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

− I

q

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)]
∂g

(0)
j

∂ϑ

∣∣∣∣∣
pϕ,ξ,λ,V ;σ

+

+

[
R2

I
BBB1 · ∇∇∇pϕ +

R2B0

IV‖

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

]
∂g

(0)
j

∂pϕ

∣∣∣∣∣
ϑ,ξ,λ,V ;σ

+

+

[
q′s
q

(
pϕ +

IV‖
ωcj

)
+
R2B2

0

I

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)
+
R2B2

ϑ

I
ϑ′

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)
−

−R
2B0

IV‖

∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

]
∂g

(0)
j

∂ξ

∣∣∣∣∣
pϕ,ϑ,λ,V ;σ

− eZj
mjqV

∂Φ

∂ϑ

∣∣∣∣
pϕ,ξ

∂g
(0)
j

∂V

∣∣∣∣∣
pϕ,ξ,ϑ,λ;σ

+

+ 2
eZj

mjqV 2

∂Φ

∂ϑ

∣∣∣∣
pϕ,ξ

λ
∂g

(0)
j

∂λ

∣∣∣∣∣
pϕ,ξ,ϑ,V ;σ

=
R2B0

IV‖
Cj

(
g

(0)
j

)
.

(D.42)

The highlighted term equals zero due to Eq.2.18, and thus Eq.D.42 reduces to Eq.2.19.

D.4 Orbit averaging

To eliminate a term in g(1)
j in Eq.2.19, we have to integrate the equation over ϑ, which

is equivalent to orbit-averaging at fixed pϕ. The annihilation operator is introduced as

follows:

〈...〉pϕϑ =


1

2π

∫ π
−π ...dϑ, λ ≤ λc

1
2

∑
σ

σ
ϑb2−ϑb1

∫ ϑb2
ϑb1

...dϑ, λ ≥ λc.
(D.43)

The second condition approximately can be rewritten as 1
4π

∑
σ σ
∫ ϑb
−ϑb

...dϑ. Here we have

applied symmetry of the bounce points provided by the form of the equilibrium magnetic

field we impose (see Sec.2.1 of Chapter II) and the fact that the λ dependence of ϑb1,2 is

weak for this equilibrium magnetic field.101 Thus, Eq.D.43 reduces to Eq.2.24. As the

particle distribution function, gj, is required to be periodic in ϑ, we have

〈
1

q

∂g
(1)
j

∂ϑ

∣∣∣∣∣
pϕ,ξ,λ,V ;σ

〉pϕ

ϑ

= 0.

101The λ dependence of ϑb1,2 is assumed to be faster than of ϑb2 − ϑb1 .
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Note: 1/q and 〈...〉pϕϑ are not necessarily commutative. However, as we seek the solution

localised to the island vicinity, we can pull 1/q through the averaging operator. Thus, the

orbit-averaged form of Eq.2.19 for g(0)
j reads

[〈
R2

I
BBB1 · ∇∇∇pϕ

〉pϕ
ϑ

+

〈
R2B0

IV‖

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

〉pϕ

ϑ

]
∂g

(0)
j

∂pϕ

∣∣∣∣∣
ϑ,ξ,λ,V ;σ

+

+

[
q′s
q

〈
pϕ +

IV‖
ωcj

〉pϕ
ϑ

+

〈
R2B2

0

I

∂

∂ψ

∣∣∣∣
ϑ

(
V‖
ωcj

)〉pϕ
ϑ

+

〈
R2B2

ϑ

I
ϑ′

∂

∂ϑ

∣∣∣∣
ψ

(
V‖
ωcj

)〉pϕ

ϑ

−

−

〈
R2B0

IV‖

∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

〉pϕ

ϑ

]
∂g

(0)
j

∂ξ

∣∣∣∣∣
pϕ,ϑ,λ,V ;σ

− eZj
mjqV

〈
∂Φ

∂ϑ

∣∣∣∣
pϕ,ξ

〉pϕ

ϑ

∂g
(0)
j

∂V

∣∣∣∣∣
pϕ,ξ,ϑ,λ;σ

+

+ 2
eZj

mjqV 2

〈
∂Φ

∂ϑ

∣∣∣∣
pϕ,ξ

〉pϕ

ϑ

λ
∂g

(0)
j

∂λ

∣∣∣∣∣
pϕ,ξ,ϑ,V ;σ

=

〈
R2B0

IV‖
Cj

(
g

(0)
j

)〉pϕ
ϑ

.

The electrostatic potential is periodic in ϑ as the distribution function requires periodicity.

Therefore, 〈
∂Φ

∂ϑ

∣∣∣∣
pϕ,ξ

〉pϕ

ϑ

= 0.

Then the ϑ-averaged equation to O(∆1) becomes Eq.2.20 with drift frequencies defined

as Eqs.2.21,2.22,2.23. Since in {pϕ, ξ, ϑ, λ, V ;σ} space the orbit averaging procedure

eliminates the term in ∂g
(0)
j /∂V

∣∣∣
pϕ
, the only V dependence comes from the collision

operator and is parametric. Eq.2.20 is to be solved for g(0)
j = g

(0)
j (pϕ, ξ, λ;V ) at each σ

(σ = ±1 for passing particles and σ = σt for trapped particles). Before we proceed further

and introduce the normalised quantities, let us rearrange 〈R2 (BBB1 · ∇∇∇pϕ)〉pϕϑ .

We highlight that Eq.2.20 with Eqs.2.21,2.22,2.23 is obtained to O(∆1) in the drift kinetic

approximation in the low beta plasma limit. It contains terms of order ε2. However, as

we choose the equilibrium magnetic field from Sec.2.1 (e.g. to calculate bounce points

for trapped particles), i.e. we exploit a large aspect ratio circular poloidal cross section

tokamak approximation, terms of order ε2 provide higher order corrections and hence can

be omitted.



158 D.5 The 〈R2 (BBB1 · ∇∇∇pϕ)〉pϕϑ term

D.5 The
〈
R2 (BBB1 · ∇∇∇pϕ)

〉pϕ
ϑ

term

Since ∂/∂ψ is estimated via (1/RBϑ∂/∂w) on perturbed quantities, the leading order

BBB1 · ∇∇∇ψ term from BBB1 · ∇∇∇pϕ does contribute to the Vlasov part of the drift kinetic

equation. As shown above, I∂
(
V‖/ωcj

)
/∂ψ (BBB1 · ∇∇∇ψ) and I∂

(
V‖/ωcj

)
/∂ϑ (BBB1 · ∇∇∇ϑ)

provide corrections of order ∆2 and hence are to be omitted. In accordance with Eq.2.4,

we write

〈
R2 (BBB1 · ∇∇∇pϕ)

〉pϕ
ϑ

=

〈
R2

[
∇∇∇× A‖

BBB0

B0

]
· ∇∇∇pϕ

〉pϕ
ϑ

=

〈
R2∇∇∇ ·

[
A‖
BBB0 ×∇∇∇pϕ

B0

]〉pϕ
ϑ

In a large aspect ratio tokamak with circular poloidal cross section, we estimate each term

of Eq.D.21 as follows

|IBBB0| ∼
∣∣R2B2

0∇∇∇ϕ
∣∣ ∼ B2

0R,

∂

∂ψ

∣∣∣∣
ϑ

(
IV‖
ωcj

)
|IBBB0| ∼

∂

∂ψ

∣∣∣∣
ϑ

(
IV‖
ωcj

) ∣∣R2B2
0∇∇∇ϕ

∣∣ ∼ (ε1/2)∆B2
0R,

∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)
Iϑ′ |BBB0| ∼ ε(ε3/2)ρϑjB

2
ϕR

2 B0

RBϑr
∼ (ε1/2)∆B2

0R,

∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)
ϑ′R2B2

0 |∇∇∇ϕ| ∼ (ε1/2)∆B2
0R,

∂

∂ϑ

∣∣∣∣
ψ

(
IV‖
ωcj

)
B2
ϕ

qR2B2
ϑ

∇∇∇ψ ∼ ε(ε3/2)∆B2
0R.

Then we have

〈
R2 (BBB1 · ∇∇∇pϕ)

〉pϕ
ϑ

=

〈
R2∇∇∇ ·

{[
IBBB0 −R2B2∇∇∇ϕ

] A‖
B0

}〉pϕ
ϑ

+O(∆2) =

=

〈
R2A‖
B0

∇∇∇ ·
[
IBBB0 −R2B2∇∇∇ϕ

]〉pϕ
ϑ

+

〈
R2
[
IBBB0 −R2B2∇∇∇ϕ

]
·∇∇∇
(
A‖
B0

)〉pϕ
ϑ

+O(∆2) =

=

〈
R2
[
IBBB0 −R2B2∇∇∇ϕ

]
·∇∇∇
(
A‖
B0

)〉pϕ
ϑ

+O(∆2) =

as the magnetic field is divergence free.

=

〈
R2

B0

[
IBBB0 −R2B2∇∇∇ϕ

]
·∇∇∇A‖

〉pϕ
ϑ

+

〈
R2A‖

[
IBBB0 −R2B2∇∇∇ϕ

]
·∇∇∇
(

1

B0

)〉pϕ
ϑ

+O(∆2) =
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since the NTM perturbation is introduced through ψ or A‖ connected via Eq.2.5 with

Eq.2.6

=

〈
R2

B0

[
IBBB0 −R2B2∇∇∇ϕ

]
·
dA‖
dξ
∇∇∇ξ
〉pϕ
ϑ

+

+

〈
IA‖R

2BBB0·∇∇∇
(

1

B0

)〉pϕ
ϑ

−

〈
B2R4A‖∇∇∇ϕ · ∇∇∇

(
1

B0

)
︸ ︷︷ ︸
−B−2

0 ∇∇∇ϕ·∇∇∇B0=0

〉pϕ

ϑ

+O(∆2) =

The third term vanishes due to Eq.D.3 and toroidal symmetry.

= −

〈
R2

B0

R2B2dA‖
dξ
∇∇∇ϕ · ∇∇∇ξ︸ ︷︷ ︸
|∇∇∇ϕ|2

〉pϕ

ϑ

+

+

〈
IA‖R

2

[
∂

∂ϑ

∣∣∣∣
ψ

(
1

B0

)
BBB0·∇∇∇ϑ+

∂

∂ψ

∣∣∣∣
ϑ

(
1

B0

)
BBB0·∇∇∇ψ

]
︸ ︷︷ ︸

BBB0·∇∇∇(1/B0)

〉pϕ

ϑ

+O(∆2) =

BBB0 · ∇∇∇ξ provides the higher order correction in ∆ due to Eq.D.29. Substituting Eq.D.12,

we obtain

= −
〈
R2B0

dA‖
dξ

〉pϕ
ϑ

+

〈
I2

q
A‖

∂

∂ϑ

∣∣∣∣
ψ,ξ

(
1

B0

)〉pϕ

ϑ

+O(∆2) =

As 1/B0 ∝ 1+ε cosϑ, ∂B−1
0 /∂ϑ

∣∣
ψ,ξ
∝ sinϑ and hence the second term does not contribute.

Thus, we deduce

〈
R2 (BBB1 · ∇∇∇pϕ)

〉pϕ
ϑ

= −
〈
R2B0

dA‖
dξ

〉pϕ
ϑ

+O(∆2). (D.44)

Due to Eq.2.5, dA‖/dξ = −(ψ̃/R)f ′, f ′ ≡ df /dξ. For a single isolated magnetic island,

this reduces to dA‖/dξ = (ψ̃/R)n sinnξ.

D.6 Normalisation

The normalised quantities are given by Eq.2.31. λ is non-normalised; w2 is defined as

4ψ̃qs/q
′
s. Let us multiply both sides of Eq.2.20 by ψs/w. For the first term of Eq.2.20 we
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have

q′s
q
pϕ
ψs
w

= L̂−1
q

[
ψ − ψs
w

−
IV‖
ωcjw

VTj
VTj

]
= L̂−1

q

[
x− ρ̂ϑjV̂‖

]
= p̂ϕL̂

−1
q .

To normalise ωD we consider

q′s
q

〈
IV‖
ωcj

〉pϕ
ϑ

ψs
w

= L̂−1
q

〈
IV‖
ωcjw

VTj
VTj

〉pϕ
ϑ

= L̂−1
q

〈
ρ̂ϑjV̂‖

〉pϕ
ϑ
.

To rewrite the second term in ωD, we rearrange

∂

∂ψ

∣∣∣∣
ϑ,ξ

(
V‖
B

)
=

∂

∂ψ

∣∣∣∣
ϑ,ξ

(
σV
√

1− λB
B

)
= σV

∂B

∂ψ

∂

∂B

(√
1− λB
B

)
=

= − 1

B

∂B

∂ψ

(
λV 2

2V‖
+
V‖
B

)

and hence〈
R2B2

0

I

∂

∂ψ

∣∣∣∣
ϑ,ξ

(
V‖
ωcj

)〉pϕ

ϑ

ψs
w

= −
〈
R2B2

0

I

mj

eZj

1

B

∂B

∂ψ

(
λV 2

2V‖
+
V‖
B

)〉pϕ
ϑ

ψs
w

=

= −

〈
R2B2

0

I

mj

eZj

VTj

wL̂B

(
λV 2

2V‖VTj
+
V̂‖
B

)〉pϕ

ϑ

=

= −

〈
R2B2

0

I

mj

eZj

VTj

wL̂B

(
V̂‖
B

+
λV 2V 2

Tj

2V‖VTjV 2
Tj

)〉pϕ

ϑ

=

= −

〈
R2B2

0

I

mj

eZj

VTj

wL̂B

(
V̂‖
B

+
λV̂ 2

2V̂‖

)〉pϕ

ϑ

=

= −

〈
B0
R2B2

0

I2

ImjVTj
eZjB0w

1

L̂B

(
V̂‖
B

+
λV̂ 2

2V̂‖

)〉pϕ

ϑ

= −

〈
B2

0

B2
ϕ

ρ̂ϑj

L̂B

(
V̂‖ +

λBV̂ 2

2V̂‖

)〉pϕ

ϑ

.

The last term in ωD is a higher order term in the small inverse aspect ratio circular

poloidal cross section tokamak approximation and hence is to be omitted.〈
R2

I
(BBB1 · ∇∇∇pϕ)

〉pϕ
ϑ

ψs
w

= −
〈
R2B0

I

dA‖
dξ

〉pϕ
ϑ

ψs
w

=

〈
RB0

I
ψ̃f ′
〉pϕ
ϑ

ψs
w

=

=

〈
RB0

I
f ′
w2q′s
4qs

ψs
w

〉pϕ
ϑ

=

〈
RB0

I
f ′w

1

4L̂q

ψs
ψs

〉pϕ

ϑ

=

〈
1

4

RB0

I

ŵ

L̂q
f ′
〉pϕ

ϑ

ψs
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as dA‖/dξ = −(ψ̃/R)df /dξ. Here f ′ = df /dξ. Now let us consider the EEE × BBB drift

frequencies:

ωE,ξ
ψs
w

=
1

I

〈
R2B0

V‖

∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

〉pϕ

ϑ

ψs
w

eZj
Tj

Tj
eZj

=

〈
R2B0

IV̂‖

ψs
w

∂Φ̂

∂ψ

∣∣∣∣∣
ξ,ϑ

〉pϕ

ϑ

Tj
eZjVTj

=

=
1

2

〈
R2B2

0

IV̂‖

ψs
w2

∂Φ̂

∂ψ̂

∣∣∣∣∣
ξ,ϑ

2Tjmj

eZjB0VTj

1

mj

〉pϕ

ϑ

=
1

2

〈
R2B2

0

I2V̂‖

ρ̂ϑj
ŵ

∂Φ̂

∂ψ̂

∣∣∣∣∣
ξ,ϑ

〉pϕ

ϑ

=

=
1

2

〈
B2

0

B2
ϕ

ρ̂ϑj

V̂‖ŵ

∂Φ̂

∂ψ̂

∣∣∣∣∣
ξ,ϑ

〉pϕ

ϑ

and

ωE,r
ψs
w

=
1

I

〈
R2B0

V‖

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

〉pϕ

ϑ

ψs
w

=
1

2

〈
R2B2

0

IV̂‖

ψs
w

∂Φ̂

∂ξ

∣∣∣∣∣
ψ,ϑ

〉pϕ

ϑ

2Tj
eZjB0

1

VTj

mj

mj

=

=
1

2

〈
R2B2

0

I2V̂‖
ρ̂ϑj

∂Φ̂

∂ξ

∣∣∣∣∣
ψ,ϑ

〉pϕ

ϑ

ψs =
1

2

〈
B2

0

B2
ϕ

ρ̂ϑj

V̂‖

∂Φ̂

∂ξ

∣∣∣∣∣
ψ,ϑ

〉pϕ

ϑ

ψs

Now we have to rewrite the right hand side of Eq.2.20.

D.6.1 Ion-ion and electron-electron/ion collision operator

Employing Eq.2.25, we write

ψs
w

〈
Cii (gi)

R2B0

IV‖

〉pϕ
ϑ

=

=

〈
νii (V )

[
2

(1− λB)1/2

B

∂

∂λ

∣∣∣∣
ψ

(
λ(1− λB)1/2 ∂gi

∂λ

∣∣∣∣
ψ

)
+
V‖u‖i(gi)

V 2
T i

fMi

]
R2B0

IV‖

〉pϕ

ϑ

1

ŵ
=

u‖i is given by Eq.2.26.

=
νii
ŵ

〈[
2

σV B

∂

∂λ

∣∣∣∣
ψ

(
λ(1− λB)1/2 ∂gi

∂λ

∣∣∣∣
ψ

)
+
u‖i(gi)

V 2
T i

fMi

]
R2B0

I

〉pϕ

ϑ

=

=
νii
ŵ

〈[
2

σV B

∂

∂λ

∣∣∣∣
ψ

(
λ(1− λB)1/2 ∂gi

∂λ

∣∣∣∣
ψ

)
VT i
VT i

+
fMi
V 2
T i

3π1/2

2n0

V 3
T i

∫
dVVV

V‖gi
V 3

]
R2B0

I

〉pϕ

ϑ

.
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Before we move further, let us consider the integral term:

u‖i(gi) =
3π1/2

2n0

∫
dVVV

V‖gi

V̂ 3
=

3π3/2

2n0

B
∑
σ

∫
R+

V̂ 2dV̂

∫ B−1

0

dλ

(1− λB)1/2

V̂‖gi

V̂ 3
· V 4

T i.

Here we have used the expression for the velocity space integral, Eq.2.12. The Maxwellian is

to be evaluated at the rational surface, ψ = ψs, i.e. fMi = n0 (ψs)π
−3/2V −3

T i (ψs)e
−V 2/V 2

Ti(ψs)

and hence

fMi
V 2
T i

u‖i =
3

2

1

VT i
e−V̂

2 ·B
∑
σ

∫
R+

V̂ 2dV̂

∫ B−1

0

dλ

(1− λB)1/2

V̂‖gi

V̂ 3
.

Substituting this into
〈
Cii (gi)R

2B0/IV‖
〉pϕ
ϑ

gives

〈
Cjj (gj)

R2B0

IV‖

〉pϕ
ϑ

ψs
w

=
ν̂jj
ŵ

〈[
2

σV̂ B

∂

∂λ

∣∣∣∣
ψ

(
λ(1− λB)1/2 ∂gj

∂λ

∣∣∣∣
ψ

)
+

+
3

2
e−V̂

2 ·B
∑
σ

∫
R+

V̂ 2dV̂

∫ B−1

0

dλ

(1− λB)1/2

V̂‖gj

V̂ 3

]
R2B0

I

〉pϕ

ϑ

(D.45)

with ν̂jj = νjj/VTj and V̂‖ = σV̂ (1− λB)1/2. j = i for ions; V and V‖ are normalised to the

ion thermal velocity, VT i.
〈
Cee (ge)R

2B0/IV‖
〉pϕ
ϑ

repeats Eq.D.45 with j = e. Ion-electron

collisions are small and hence to be neglected. Electron-electron and electron-ion collisions

are comparable and thus we consider:

ψs
w

〈
Cei (ge)

R2B0

IV‖

〉pϕ
ϑ

=

=

〈
νei (V )

[
2

(1− λB)1/2

B

∂

∂λ

∣∣∣∣
ψ

(
λ(1− λB)1/2 ∂ge

∂λ

∣∣∣∣
ψ

)
+

2

V 2
Te

V‖u‖i (gi) f
M
e

]
R2B0

IV‖

〉pϕ

ϑ

1

ŵ

with Cei and u‖i given by Eq.2.30 and Eq.2.27, respectively. Let us consider

(2/V 2
Te)u‖i (gi) f

M
e with fMe being the Maxwellian localised around the rational surface.

2

V 2
Te

fMe u‖i (gi) =
2

V 2
Te

fMe
1

n0

∫
dV V‖gi =

=
2

V 2
Te

fMe
1

n0

πB
∑
σ

∫
R+

V̂ 2
i dV̂i

∫ B−1

0

dλ

(1− λB)1/2
V̂‖igi · V 4

T i =

=
2

π1/2
e−V̂

2
e B
∑
σ

∫
R+

V̂ 2
i dV̂i

∫ B−1

0

dλ

(1− λB)1/2
V̂‖igi·

V 4
T i

V 4
Te

1

VTe
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with V̂j = Vj/VTj and V̂‖j = V‖j/VTj. Substituting this into
〈
Cei (ge)R

2B0/IV‖
〉pϕ
ϑ

provides

ψs
w

〈
Cei (ge)

R2B0

IV‖

〉pϕ
ϑ

=

=
ν̂ei
ŵ

〈[
2

σV̂eB

∂

∂λ

∣∣∣∣
ψ

(
λ(1− λB)1/2 ∂ge

∂λ

∣∣∣∣
ψ

)
+

+
2

π1/2
e−V̂

2
e B
∑
σ

∫
R+

V̂ 2
i dV̂i

∫ B−1

0

dλ

(1− λB)1/2
V̂‖igi·

(
me

mi

)2
]
R2B0

I

〉pϕ

ϑ

(D.46)

with ν̂ei = νei/VTe. We have to note that the momentum-conservation term does not

contribute to the trapped particle solution to leading order in ρϑj/a
102 due to the

summation over σ in the ϑ-averaging operator.

D.6.2 Orbit averaged drift kinetic equation in normalised form

Substituting the normalised terms derived above into Eq.2.20 and multiplying both sides

by ŵ = w/ψs, we obtain Eq.2.32 for ions and Eq.2.33 for electrons with normalised

drift frequencies defined in accordance with Eq.2.34. Here dpϕ = wdp̂ϕ. We note

that the ∂/∂λ|ψ and 〈...〉pϕϑ are not commutative. Employing the conventional tokamak

approximation and noting that the fastest p̂ϕ variation is in the electrostatic potential, we

come to Eq.2.35, provided a single isolated magnetic island is considered.

D.7 S island formalism.

Drift kinetic equation in S space

In the main part we noted that Eq.2.35 in {pϕ, ξ, λ, V ;σ} space is equivalent to Eq.2.36

written in {S, ξ, λ, V ;σ} space, where S is given by Eq.2.37. In this appendix we prove

that both representations are equivalent. We use Eq.2.37 and

∂

∂ξ

∣∣∣∣
S

=
∂

∂ξ

∣∣∣∣
p̂ϕ

+
∂p̂ϕ
∂ξ

∣∣∣∣
S

∂

∂p̂ϕ

∣∣∣∣
ξ

(D.47)

102The trapped particle solution is independent of σ at fixed pϕ. However, Eq.2.26 and Eq.2.27 are to
be calculated at fixed ψ.
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to write

∂S

∂ξ

∣∣∣∣
S

= 0 =
ŵ

4L̂q

[
4

(
p̂ϕ −

ω̂Dρ̂ϑjL̂q
ŵ

)
∂p̂ϕ
∂ξ

∣∣∣∣
S

+ sin ξ

]
Θ (λc − λ)−

− ω̂Dρ̂ϑj
∂p̂ϕ
∂ξ

∣∣∣∣
S

Θ (λ− λc)−

− ∂

∂ξ

∣∣∣∣
p̂ϕ

1

2

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

− ∂p̂ϕ
∂ξ

∣∣∣∣
S

∂

∂p̂ϕ

∣∣∣∣
ξ

1

2

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

.

This, in turn, reads{
ŵ

L̂q
p̂ϕΘ (λc − λ)− ω̂Dρ̂ϑj [Θ (λc − λ) + Θ (λ− λc)]−

∂

∂p̂ϕ

∣∣∣∣
ξ

1

2

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

}
∂p̂ϕ
∂ξ

∣∣∣∣
S

=

= − ŵ

4L̂q
sin ξ ·Θ (λc − λ) +

∂

∂ξ

∣∣∣∣
pϕ

1

2

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

and hence we obtain the following expression for ∂p̂ϕ/∂ξ|S:

∂p̂ϕ
∂ξ

∣∣∣∣
S

=

− ŵ

4L̂q
sin ξ ·Θ (λc − λ) + ∂

∂ξ

∣∣∣
p̂ϕ

1
2

〈
ρ̂ϑj

V̂‖
Φ̂
〉pϕ
ϑ

ŵ

L̂q
p̂ϕΘ (λc − λ)− ω̂Dρ̂ϑj − ∂

∂p̂ϕ

∣∣∣
ξ

1
2

〈
ρ̂ϑj

V̂‖
Φ̂
〉pϕ
ϑ

(D.48)

Substituting Eqs.D.47,D.48 into Eq.2.36, we obtain Eq.2.35.

Employing weak collision dissipation, we solve Eq.2.36 by an expansion in δj. From

the O(∆1δ0
j ) equation we learn that the leading order ion/electron distribution function,

g
(0,0)
j , is independent of ξ at fixed S. Proceeding to O(∆1δ1

j ) provides an equation to be

solved for g(0,0)
j , Eq.2.39. To eliminate the term in g(0,1)

j , we introduce an annihilation

operator, Eq.2.41/Eq.2.42, similar to Eq.2.24. Due to the periodicity requirement in ξ,

∂g
(0,1)
j /∂ξ

∣∣∣
S,ϑ,λ,V ;σ

averages to zero, and we write

〈
∂g

(0,1)
j

∂ξ

∣∣∣∣∣
S,ϑ,λ,V ;σ

〉S

ξ

= 0 =

〈
C̃j

(
g

(0,0)
j

)
A

〉S

ξ

=

〈
C̃j
A

〉S

ξ

g
(0,0)
j .

This provides Eq.2.40. Here we have used the fact that g(0,0)
j is not a function of ξ at

any fixed S. Now let us derive an explicit representation for Eq.2.40. Note: Eq.2.36

is to be solved for g(0)
j = g

(0)
j (ξ, S, λ) at each V and σ, while Eq.2.40 is to be solved
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for g(0,0)
j = g

(0,0)
j (S, λ) at each V and σ. As we noted above, ∂/∂λ|ψ and 〈...〉pϕϑ are not

commutative and thus we have to rewrite C̃j, the right hand side of Eq.2.32/Eq.2.33 for

ions/electrons, using
∂

∂λ

∣∣∣∣
ψ

=
∂

∂λ

∣∣∣∣
p̂ϕ

+
∂p̂ϕ
∂λ

∣∣∣∣
ψ

∂

∂p̂ϕ

∣∣∣∣
λ

(D.49)

and
∂

∂λ

∣∣∣∣
p̂ϕ

=
∂

∂λ

∣∣∣∣
S

+
∂S

∂λ

∣∣∣∣
p̂ϕ

∂

∂S

∣∣∣∣
λ

(D.50)

with

∂p̂ϕ
∂λ

∣∣∣∣
ψ

= ρ̂ϑj
σV̂ B

2(1− λB)1/2
≡ pλ (ϑ, λ, V ;σ)

(note: the direct transition from ψ to S is also allowed. However, the factorisation of the

ϑ and ξ averages is not straightforward in this case). Let us consider

∂

∂λ

∣∣∣∣
ψ,ξ,ϑ,V ;σ

(
σλ
√

1− λB R

Bϕ

∂g

∂λ

∣∣∣∣
ψ,ξ,ϑ,V ;σ

)
=

Substituting Eq.D.49, we obtain

=

[
∂

∂λ

∣∣∣∣
p̂ϕ

+ pλ
∂

∂p̂ϕ

∣∣∣∣
λ

](
σλ
√

1− λB R

Bϕ

[
∂

∂λ

∣∣∣∣
p̂ϕ

+ pλ
∂

∂p̂ϕ

∣∣∣∣
λ

]
g

)
=

=
∂

∂λ

∣∣∣∣
p̂ϕ

(
σλ
√

1− λB R

Bϕ

∂g

∂λ

∣∣∣∣
p̂ϕ

)
+

∂

∂λ

∣∣∣∣
p̂ϕ

(
σλ
√

1− λB R

Bϕ

pλ
∂g

∂p̂ϕ

∣∣∣∣
λ

)
+

+ pλ
∂

∂p̂ϕ

∣∣∣∣
λ

(
σλ
√

1− λB R

Bϕ

∂g

∂λ

∣∣∣∣
p̂ϕ

)
+ pλ

∂

∂p̂ϕ

∣∣∣∣
λ

(
σλ
√

1− λB R

Bϕ

pλ
∂g

∂p̂ϕ

∣∣∣∣
λ

)
=

(note: ξ, ϑ, V̂ and σ are kept fixed). Expanding the brackets, we write

= σλ
√

1− λB R

Bϕ

∂2g

∂λ2

∣∣∣∣
p̂ϕ

+ σ
2− 3λB

2
√

1− λB
R

Bϕ

∂g

∂λ

∣∣∣∣
p̂ϕ

+

+
∂

∂λ

∣∣∣∣
p̂ϕ

(
σλ
√

1− λB R

Bϕ

pλ

)
∂g

∂p̂ϕ

∣∣∣∣
λ

+ σλ
√

1− λB R

Bϕ

pλ
∂

∂λ

∣∣∣∣
p̂ϕ

(
∂g

∂p̂ϕ

∣∣∣∣
λ

)
+

+ σλ
√

1− λB R

Bϕ

pλ
∂

∂p̂ϕ

∣∣∣∣
λ

(
∂g

∂λ

∣∣∣∣
p̂ϕ

)
+ σλ

√
1− λB R

Bϕ

p2
λ

∂2g

∂p̂2
ϕ

∣∣∣∣
λ

=



166
D.7 S island formalism.

Drift kinetic equation in S space

Inserting the expression for pλ,

= σλ
√

1− λB R

Bϕ

∂2g

∂λ2

∣∣∣∣
p̂ϕ

+ σ
2− 3λB

2
√

1− λB
R

Bϕ

∂g

∂λ

∣∣∣∣
p̂ϕ

+

+
ρ̂ϑj
2
V̂ B

R

Bϕ

∂g

∂p̂ϕ

∣∣∣∣
λ

+
ρ̂ϑj
2
λV̂ B

R

Bϕ

∂

∂λ

∣∣∣∣
p̂ϕ

(
∂g

∂p̂ϕ

∣∣∣∣
λ

)
+

+
ρ̂ϑj
2
λV̂ B

R

Bϕ

∂

∂p̂ϕ

∣∣∣∣
λ

(
∂g

∂λ

∣∣∣∣
p̂ϕ

)
+ σ

ρ̂2
ϑj

4

V̂ 2B2λ√
1− λB

R

Bϕ

∂2g

∂p̂2
ϕ

∣∣∣∣
λ

=

∂/∂λ|p̂ϕ and ∂/∂p̂ϕ|λ are commutative

∂

∂λ

∣∣∣∣
p̂ϕ

∂

∂p̂ϕ

∣∣∣∣
λ

=
∂

∂p̂ϕ

∣∣∣∣
λ

∂

∂λ

∣∣∣∣
p̂ϕ

in accordance with Schwartz’s theorem (note: it is not necessarily valid for p̂ϕ written

as a function of S, and thus these two terms are to be considered separately to provide

transition from p̂ϕ to S space) and thus we come to

= σλ
√

1− λB R

Bϕ

∂2g

∂λ2

∣∣∣∣
p̂ϕ

+ σ
2− 3λB

2
√

1− λB
R

Bϕ

∂g

∂λ

∣∣∣∣
p̂ϕ

+

+ σ
ρ̂2
ϑj

4

V̂ 2B2λ√
1− λB

R

Bϕ

∂2g

∂p̂2
ϕ

∣∣∣∣
λ

+
ρ̂ϑj
2
V̂ B

R

Bϕ

∂g

∂p̂ϕ

∣∣∣∣
λ

+ ρ̂ϑjλV̂ B
R

Bϕ

∂

∂λ

∣∣∣∣
p̂ϕ

(
∂g

∂p̂ϕ

∣∣∣∣
λ

)
.

The annihilation operator, 〈...〉pϕϑ , and ∂/∂λ|p̂ϕ,ξ,ϑ,V ;σ, ∂/∂p̂ϕ|λ,ξ,ϑ,V ;σ are commutative and

hence we can write

〈
∂

∂λ

∣∣∣∣
ψ

σλ(1− λB)1/2 R

Bϕ

∂g
(0)
j

∂λ

∣∣∣∣∣
ψ

〉pϕ

ϑ

=

=

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

∂2g
(0)
j

∂λ2

∣∣∣∣∣
p̂ϕ

+

〈
σ

2− 3λB

2
√

1− λB
R

Bϕ

〉pϕ
ϑ

∂g
(0)
j

∂λ

∣∣∣∣∣
p̂ϕ

+

+

〈
σ
ρ̂2
ϑj

4

V̂ 2B2λ√
1− λB

R

Bϕ

〉pϕ

ϑ

∂2g
(0)
j

∂p̂2
ϕ

∣∣∣∣∣
λ

+

〈
ρ̂ϑj
2
V̂ R

〉pϕ
ϑ

∂g
(0)
j

∂p̂ϕ

∣∣∣∣∣
λ

+

+
〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

∂

∂λ

∣∣∣∣
p̂ϕ

(
∂g

(0)
j

∂p̂ϕ

∣∣∣∣∣
λ

)
,

(D.51)

j = e, i. Here the large aspect ratio circular cross section tokamak approximation has

been applied, B ≈ Bϕ. Eq.D.51 allows Eqs.2.32,2.33 to be written in pϕ space. Now

we have to move from pϕ to S space to reduce the dimension of the problem replacing
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∂/∂ξ|p̂ϕ with ∂/∂ξ|S. Applying Eq.D.50, we write

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

∂2g

∂λ2

∣∣∣∣
p̂ϕ,ξ

=

=

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

∂2g

∂λ2

∣∣∣∣
S,ξ

+

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

(
∂S

∂λ

∣∣∣∣
p̂ϕ

)2
∂2g

∂S2

∣∣∣∣
λ,ξ

+

+

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

[
∂

∂λ

∣∣∣∣
S

(
∂S

∂λ

∣∣∣∣
p̂ϕ

)
+
∂S

∂λ

∣∣∣∣
p̂ϕ

∂

∂S

∣∣∣∣
λ

(
∂S

∂λ

∣∣∣∣
p̂ϕ

)]
∂g

∂S

∣∣∣∣
λ,ξ

+

+ 2

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

∂S

∂λ

∣∣∣∣
p̂ϕ

∂2g

∂λ∂S

∣∣∣∣
ξ

(D.52)

for the first term of Eq.D.51. Here we have used the fact that the following operators are

commutative:

∂

∂λ

∣∣∣∣
S

∂

∂S

∣∣∣∣
λ

=
∂

∂S

∣∣∣∣
λ

∂

∂λ

∣∣∣∣
S

.

The second term of Eq.D.51 gives

〈
σ

2− 3λB

2
√

1− λB
R

Bϕ

〉pϕ
ϑ

∂g

∂λ

∣∣∣∣
p̂ϕ,ξ

=

〈
σ

2− 3λB

2
√

1− λB
R

Bϕ

〉pϕ
ϑ

(
∂

∂λ

∣∣∣∣
S,ξ

+
∂S

∂λ

∣∣∣∣
p̂ϕ

∂

∂S

∣∣∣∣
λ,ξ

)
g.

(D.53)

To rewrite the third term we use

∂g

∂p̂ϕ

∣∣∣∣
ξ,ϑ,λ,V ;σ

=

(
∂S

∂p̂ϕ

)
ξ,λ,V ;σ

∂g

∂S

∣∣∣∣
ξ,ϑ,λ,V ;σ

. (D.54)

Note:

dp̂ϕ =
∂p̂ϕ
∂S

dS +
∂p̂ϕ
∂ξ

dξ +
∂p̂ϕ
∂λ

dλ+
∂p̂ϕ

∂V̂
dV̂

for each σ. Therefore, we obtain〈
σ
ρ̂2
ϑj

4

V̂ 2B2λ√
1− λB

R

Bϕ

〉pϕ

ϑ

∂2g

∂p̂2
ϕ

∣∣∣∣
λ

=

=

〈
σ
ρ̂2
ϑj

4

V̂ 2B2λ√
1− λB

R

Bϕ

〉pϕ

ϑ

(
∂S

∂p̂ϕ

)
ξ,λ,V ;σ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂p̂ϕ

)
ξ,λ,V ;σ

∂g

∂S

∣∣∣∣
λ,ξ

+

+

〈
σ
ρ̂2
ϑj

4

V̂ 2B2λ√
1− λB

R

Bϕ

〉pϕ

ϑ

(
∂S

∂p̂ϕ

)2

ξ,λ,V ;σ

∂2g

∂S2

∣∣∣∣
λ,ξ

(D.55)
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for the third term, and hence for the fourth term:

〈
ρ̂ϑj
2
V̂ R

〉pϕ
ϑ

∂g

∂p̂ϕ

∣∣∣∣
λ

=

〈
ρ̂ϑj
2
V̂ R

〉pϕ
ϑ

(
∂S

∂p̂ϕ

)
ξ,λ,V ;σ

∂g

∂S

∣∣∣∣
λ,ξ

. (D.56)

The mixed derivative contribution becomes

1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

∂

∂λ

∣∣∣∣
p̂ϕ,ξ

(
∂g

∂p̂ϕ

∣∣∣∣
λ,ξ

)
=

=
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

[
∂

∂λ

∣∣∣∣
S,ξ

+
∂S

∂λ

∣∣∣∣
p̂ϕ

∂

∂S

∣∣∣∣
λ,ξ

](
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

∂g

∂S

∣∣∣∣
λ,ξ

)
=

=
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

∂

∂λ

∣∣∣∣
S,ξ

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)
∂g

∂S

∣∣∣∣
λ,ξ

+
1

2
〈ρϑjV Rλ〉pϕϑ

∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

∂2g

∂λ∂S

∣∣∣∣
ξ

+

+
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

∂S

∂λ

∣∣∣∣
p̂ϕ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)
∂g

∂S

∣∣∣∣
λ,ξ

+
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

∂S

∂λ

∣∣∣∣
p̂ϕ

∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

∂2g

∂S2

∣∣∣∣
λ,ξ

.

(D.57)

and

1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

∂

∂p̂ϕ

∣∣∣∣
λ,ξ

(
∂g

∂λ

∣∣∣∣
p̂ϕ,ξ

)
=

=
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

∂

∂S

∣∣∣∣
λ,ξ

[
∂

∂λ

∣∣∣∣
S,ξ

+
∂S

∂λ

∣∣∣∣
p̂ϕ

∂

∂S

∣∣∣∣
λ,ξ

]
g =

=
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

∂2g

∂S∂λ

∣∣∣∣
ξ

+

+
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂λ

∣∣∣∣
p̂ϕ

)
∂g

∂S

∣∣∣∣
λ,ξ

+

+
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

∂S

∂λ

∣∣∣∣
p̂ϕ

∂2g

∂S2

∣∣∣∣
λ,ξ

.

(D.58)
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Thus, writing all the above contributions, Eq.D.52-D.58, together we come to

〈
∂

∂λ

∣∣∣∣
ψ

σλ(1− λB)1/2 R

Bϕ

∂g
(0)
j

∂λ

∣∣∣∣∣
ψ

〉pϕ

ϑ

=

=

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

∂2g
(0)
j

∂λ2

∣∣∣∣∣
S,ξ

+

〈
σ

2− 3λB

2
√

1− λB
R

Bϕ

〉pϕ
ϑ

∂g
(0)
j

∂λ

∣∣∣∣∣
S,ξ

+

+

〈σλ√1− λB R

Bϕ

〉pϕ
ϑ

(
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

)2

+
〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

+

+

〈
σ
ρ̂2
ϑj

4

V̂ 2B2λ√
1− λB

R

Bϕ

〉pϕ

ϑ

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)2
 ∂2g

(0)
j

∂S2

∣∣∣∣∣
λ,ξ

+

+

[〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

(
∂

∂λ

∣∣∣∣
S,ξ

(
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

)
+
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

))
+

+

〈
σ

2− 3λB

2
√

1− λB
R

Bϕ

〉pϕ
ϑ

∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

+

〈
σ
ρ̂2
ϑj

4

V̂ 2B2λ√
1− λB

R

Bϕ

〉pϕ

ϑ

∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)
+

+
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

∂

∂λ

∣∣∣∣
S,ξ

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)
+

1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

∂S

∂λ

∣∣∣∣
p̂ϕ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)
+

+
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂λ

∣∣∣∣
p̂ϕ

)
+

〈
ρ̂ϑj
2
V̂ R

〉pϕ
ϑ

∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

]
∂g

(0)
j

∂S

∣∣∣∣∣
λ,ξ

+

+

[
2

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

+
〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

]
∂2g

(0)
j

∂λ∂S

∣∣∣∣∣
ξ

,

(D.59)

j = e, i. Here the validity of Schwartz’s theorem has been assumed. Substituting Eq.D.59

into Eqs.2.36 gives the orbit-averaged equation written in terms of S. Substituting

Eq.D.59 into Eq.2.40 and multiplying both sides of Eq.2.40 by V̂ /2ν̂ii provides the
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collisional constraint in S space:

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

〈
1

A

〉S
ξ

∂2g
(0,0)
i

∂λ2

∣∣∣∣∣
S,ξ

+

〈
σ

2− 3λB

2
√

1− λB
R

Bϕ

〉pϕ
ϑ

〈
1

A

〉S
ξ

∂g
(0,0)
i

∂λ

∣∣∣∣∣
S,ξ

+

+

〈σλ√1− λB R

Bϕ

〉pϕ
ϑ

〈
1

A

(
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

)2〉S

ξ

+
〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

〉S

ξ

+

+

〈
σ
ρ̂2
ϑj

4

V̂ 2B2λ√
1− λB

R

Bϕ

〉pϕ

ϑ

〈
1

A

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)2〉S

ξ

 ∂2g
(0,0)
i

∂S2

∣∣∣∣∣
λ,ξ

+

+

〈σλ√1− λB R

Bϕ

〉pϕ
ϑ

〈 1

A
∂

∂λ

∣∣∣∣
S,ξ

(
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

)〉S

ξ

+

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

)〉S

ξ

 +

+

〈
σ

2− 3λB

2
√

1− λB
R

Bϕ

〉pϕ
ϑ

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

〉S

ξ

+

+

〈
σ
ρ̂2
ϑj

4

V̂ 2B2λ√
1− λB

R

Bϕ

〉pϕ

ϑ

〈
1

A
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)〉S

ξ

+

+
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

〈
1

A
∂

∂λ

∣∣∣∣
S,ξ

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)〉S

ξ

+
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)〉S

ξ

+

+
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

〈
1

A
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂λ

∣∣∣∣
p̂ϕ

)〉S

ξ

+

〈
ρ̂ϑj
2
V̂ R

〉pϕ
ϑ

〈
1

A
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

〉S

ξ

 ∂g
(0)
i

∂S

∣∣∣∣∣
λ,ξ

+

+

2

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

〉S

ξ

+
〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

〈
1

A
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

〉S

ξ

 ∂2g
(0,0)
i

∂λ∂S

∣∣∣∣∣
ξ

+

+
V̂

2

〈
1

A
Ū‖i(g

(0,0)
i )

〉S
ξ

= 0

(D.60)

with Ū‖i(g
(0,0)
i ) = 3

2
e−V̂

2
〈
RB0

∑
σ σ
∫
R+ dV̂

∫ B−1

0
g

(0,0)
i dλ

〉pϕ
ϑ

for ions. Here we have taken

into account that the following operators are commutative: ∂k/∂λk
∣∣
S,ξ

and ∂k/∂Sk
∣∣
λ,ξ

(k = 1, 2) with 〈...〉Sξ , and the fact that the leading order distribution function, g(0,0)
i is

ξ-independent at fixed S. As ν̂ii is a function of V only, it has been pulled through the ξ

average. Eq.D.60 is the final equation to be solved for the ion plasma component in the

external regions where collisions are small, i.e. λ ≤ λp and λ ≥ λt. We note that Eq.D.60

does not contain the collision frequency dependence. Instead it is to be provided by a thin

boundary layer in the vicinity of λc where collisions play a role. Similarly, multiplying
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both sides of Eq.2.40 by V̂e/2 and dividing by ν̂ee + ν̂ei we obtain the following equation

for electrons:

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

〈
1

A

〉S
ξ

∂2g
(0,0)
e

∂λ2

∣∣∣∣∣
S,ξ

+

〈
σ

2− 3λB

2
√

1− λB
R

Bϕ

〉pϕ
ϑ

〈
1

A

〉S
ξ

∂g
(0,0)
e

∂λ

∣∣∣∣∣
S,ξ

+

+

〈σλ√1− λB R

Bϕ

〉pϕ
ϑ

〈
1

A

(
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

)2〉S

ξ

+
〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

〉S

ξ

+

+

〈
σ
ρ̂2
ϑj

4

V̂ 2B2λ√
1− λB

R

Bϕ

〉pϕ

ϑ

〈
1

A

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)2〉S

ξ

 ∂2g
(0,0)
e

∂S2

∣∣∣∣∣
λ,ξ

+

+

〈σλ√1− λB R

Bϕ

〉pϕ
ϑ

〈 1

A
∂

∂λ

∣∣∣∣
S,ξ

(
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

)〉S

ξ

+

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

)〉S

ξ

 +

+

〈
σ

2− 3λB

2
√

1− λB
R

Bϕ

〉pϕ
ϑ

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

〉S

ξ

+

+

〈
σ
ρ̂2
ϑj

4

V̂ 2B2λ√
1− λB

R

Bϕ

〉pϕ

ϑ

〈
1

A
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)〉S

ξ

+

+
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

〈
1

A
∂

∂λ

∣∣∣∣
S,ξ

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)〉S

ξ

+
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)〉S

ξ

+

+
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

〈
1

A
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂λ

∣∣∣∣
p̂ϕ

)〉S

ξ

+

〈
ρ̂ϑj
2
V̂ R

〉pϕ
ϑ

〈
1

A
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

〉S

ξ

 ∂g
(0,0)
e

∂S

∣∣∣∣∣
λ,ξ

+

+

2

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

〉S

ξ

+
〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

〈
1

A
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

〉S

ξ

 ∂2g
(0,0)
e

∂λ∂S

∣∣∣∣∣
ξ

+

+
V̂e
2

〈
1

A
Ū‖e(g

(0,0)
e )

〉S
ξ

+
V̂e
2

〈
1

A
U‖ei(g

(0,0)
i )

〉S
ξ

= 0

(D.61)

with Ū‖e(g
(0,0)
e ) = 3

2
e−V̂

2
e ν̂ee
ν̂ee+ν̂ei

〈
B2

0
R
Bϕ

∑
σ σ
∫
R+ dV̂e

∫ B−1

0
g

(0,0)
e dλ

〉pϕ
ϑ

and U‖ei(g
(0,0)
i ) =

2
π1/2 e

−V̂ 2
e

(
me
mi

)2
ν̂ei

ν̂ee+ν̂ei

〈
R
Bϕ
B2

0

∑
σ σ
∫
R+ dV̂iV̂

3
i

∫ B−1

0
g

(0,0)
i dλ

〉pϕ
ϑ
. Here we have taken into

account that g(0,0)
e does not have the helical angle dependence. As ν̂ee and ν̂ei have the

velocity dependence only, they have been pulled through the ξ-averaging operator at fixed

S. Eq.D.61 is the final equation to be solved for the electrons in the external regions

where collisions can be treated perturbatively. We have to note that the integral terms in

Eqs.D.60,D.61 average to zero over ϑ at fixed pϕ (but not ψ) for trapped particles due
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to the summation over σ in the orbit averaging operator. Eqs.D.60,D.61 are final ϑ-, ξ-

averaged equations for ions/electrons to O(∆1δ1
j ) in a large aspect ratio circular cross

section tokamak. The solution technique is the subject of Chapter IV and the following

sections of this appendix.

D.7.1 Direct switch from ψψψ to SSS

The explicit representation of the final reduced drift kinetic equation equivalent to

Eqs.D.60,D.61 can be obtained by switching directly from ψ to S in the collision operator.

Since S is not a function of ϑ at fixed p̂ϕ, ∂k/∂λk
∣∣
S,ξ,ϑ

and ∂k/∂Sk
∣∣
λ,ξ,ϑ

(k = 1, 2) are

commutative with 〈...〉pϕϑ , and hence

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

〈
1

A

〉S
ξ

∂2g
(0,0)
i

∂λ2

∣∣∣∣∣
S,ξ,ϑ,V̂ ;σ

+

〈
σ

2− 3λB

2
√

1− λB
R

Bϕ

〉pϕ
ϑ

〈
1

A

〉S
ξ

∂g
(0,0)
i

∂λ

∣∣∣∣∣
S,ξ,ϑ,V̂ ;σ

+

+

〈〈
σλ
√

1− λB R

Bϕ

(
∂S

∂λ

∣∣∣∣
ψ

)2〉pϕ

ϑ

1

A

〉S

ξ

∂2g
(0,0)
i

∂S2

∣∣∣∣∣
λ,ξ,ϑ,V̂ ;σ

+

+

〈〈
σ

2− 3λB

2
√

1− λB
R

Bϕ

∂S

∂λ

∣∣∣∣
ψ

+ σλ
√

1− λB R

Bϕ

∂

∂λ

∣∣∣∣
S

(
∂S

∂λ

∣∣∣∣
ψ

)
+

+σλ
√

1− λB R

Bϕ

∂S

∂λ

∣∣∣∣
ψ

∂

∂S

∣∣∣∣
λ

(
∂S

∂λ

∣∣∣∣
ψ

)〉pϕ

ϑ

1

A

〉S

ξ

∂g
(0,0)
i

∂S

∣∣∣∣∣
λ,ξ,ϑ,V̂ ;σ

+

+

〈〈
2σλ
√

1− λB R

Bϕ

∂S

∂λ

∣∣∣∣
ψ

〉pϕ

ϑ

1

A

〉S

ξ

∂2g
(0,0)
i

∂λ∂S

∣∣∣∣∣
ξ,ϑ,V̂ ;σ

+
V̂

2

〈
1

A
Ū‖i

(
g

(0,0)
i

)〉S
ξ

= 0

(D.62)

for ions. For electrons, the last term is to be replaced with

V̂e
2

〈
1

A
Ū‖e
(
g(0,0)
e

)〉S
ξ

+
V̂e
2

〈
1

A
U‖ei

(
g

(0,0)
i

)〉S
ξ

.

Ū‖i, Ū‖e and U‖ei are defined as in Eqs.D.60,D.61. As ∂/∂λ|ψ and 〈...〉pϕϑ are not

commutative,103 to solve the drift kinetic equation in a form Eq.D.62 is computationally

more expensive than Eqs.D.60,D.61, where ϑ- and ξ-averages are factorised. Thus, the

representation Eqs.D.60,D.61 is considered below. It can be proved mathematically
103Here a function of p̂ϕ, ϑ, ξ, λ has to be averaged over ϑ, while in Eqs.D.60,D.61 a function of ϑ, λ

only is to be averaged over ϑ holding p̂ϕ fixed.
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that coefficients in Eq.D.62 can be rewritten in a form given in Eqs.D.60,D.61. These

derivations are routine and left beyond the scope of this work. The numerical scheme

described in Chapter IV and in Appendix E could also be applied to solve Eq.D.62.



174

E Numerical scheme

E.1 B coefficients

The following functions are defined:

a(λ) =

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

,

b(λ) =

〈
σ

2− 3λB

2
√

1− λB
R

Bϕ

〉pϕ
ϑ

,

f(λ) =

〈
σ
ρ̂2
ϑj

4

V̂ 2B2λ√
1− λB

R

Bϕ

〉pϕ

ϑ

,

g(λ) =
〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ
, h =

〈
ρ̂ϑj
2
V̂ R

〉pϕ
ϑ

, A−1 = Ā.

{i, j, k,m, n} (∀i, j, k,m, n ∈ Z) are used to enumerate {S, λ, σ, ξ, ϑ}, respectively. The

following B coefficients are introduced:

ijkB1 =

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

〈
1

A

〉S
ξ

= a(λ)

〈
1

A

〉S
ξ

,

ijkB2 =

〈
σ

2− 3λB

2
√

1− λB
R

Bϕ

〉pϕ
ϑ

〈
1

A

〉S
ξ

= b(λ)

〈
1

A

〉S
ξ

,

ijkB3 =

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

〈
1

A

(
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

)2〉S

ξ

+
〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

〉S

ξ

+

+

〈
σ
ρ̂2
ϑj

4

V̂ 2B2λ√
1− λB

R

Bϕ

〉pϕ

ϑ

〈
1

A

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)2〉S

ξ

=

= a(λ)

〈
1

A

(
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

)2〉S

ξ

+ g(λ)

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

〉S

ξ

+ f(λ)

〈
1

A

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)2〉
,

ijkB4 =

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

〈
1

A
∂

∂λ

∣∣∣∣
S,ξ

(
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

)〉S

ξ

= a(λ)

〈
1

A
∂

∂λ

∣∣∣∣
S,ξ

(
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

)〉S

ξ

,

ijkB5 =

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

)〉S

ξ

=

= a(λ)

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

)〉S

ξ

,
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ijkB6 =

〈
σ

2− 3λB

2
√

1− λB
R

Bϕ

〉pϕ
ϑ

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

〉S

ξ

= b(λ)

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

〉S

ξ

,

ijkB7 =

〈
σ
ρ̂2
ϑj

4

V̂ 2B2λ√
1− λB

R

Bϕ

〉pϕ

ϑ

〈
1

A
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)〉S

ξ

=

= f(λ)

〈
1

A
∂S

∂p̂ϕ
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ξ,λ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)〉S

ξ

,

ijkB8 =

〈
ρ̂ϑj
2
V̂ R

〉pϕ
ϑ

〈
1

A
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

〉S

ξ

= h

〈
1

A
∂S

∂p̂ϕ
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ξ,λ
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ξ

,

ijkB9 =
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

〈
1

A
∂

∂λ

∣∣∣∣
S,ξ

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

)〉S

ξ

=
1

2
g(λ)

〈
1

A
∂

∂λ
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S,ξ

(
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ
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,

ijkB10 =
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

〈
1

A

∂S

∂λ
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∂

∂S

∣∣∣∣
λ,ξ

(
∂S
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∣∣∣∣
ξ,λ

)〉S

ξ

=

=
1

2
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〈
1

A
∂S

∂λ
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∂S
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λ,ξ

(
∂S
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)〉S

ξ

,

ijkB11 =
1

2

〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

〈
1

A
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂λ

∣∣∣∣
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)〉S

ξ

=

=
1

2
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〈
1

A
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

∂

∂S

∣∣∣∣
λ,ξ

(
∂S

∂λ

∣∣∣∣
p̂ϕ

)〉S

ξ

,

ijkB12 =2

〈
σλ
√

1− λB R

Bϕ

〉pϕ
ϑ

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

〉S

ξ

+
〈
ρ̂ϑjV̂ Rλ

〉pϕ
ϑ

〈
1

A
∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

〉S

ξ

=

= 2a(λ)

〈
1

A
∂S

∂λ

∣∣∣∣
p̂ϕ,ξ

〉S

ξ

+ g(λ)

〈
1

A

∂S

∂p̂ϕ

∣∣∣∣
ξ,λ

〉S

ξ

,

ijkB13 =U,

where

U =
V̂

2

〈
1

A
Ū‖i(g

(0,0)
i )

〉S
ξ
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for ions and

U =
V̂e
2

〈
1

A
Ū‖e(g

(0,0)
e )

〉S
ξ

+
V̂e
2

〈
1

A
U‖ei(g

(0,0)
i )

〉S
ξ

for electrons. Then Eqs.D.60,D.61 read

B1
∂2g

∂λ2

∣∣∣∣
S,ξ

+B2
∂g

∂λ

∣∣∣∣
S,ξ

+B3
∂2g

∂S2

∣∣∣∣
λ,ξ

+

+
11∑
i=4

Bi
∂g

∂S

∣∣∣∣
λ,ξ

+B12
∂2g

∂λ∂S

∣∣∣∣
ξ

+ U = 0

(E.1)

with g = g
(0,0)
i,e . Let us consider the passing branch first. Taking into account Eq.2.37

(note: S is ϑ-independent at any fixed p̂ϕ), we write

∂Sp

∂λ

∣∣∣∣
p̂ϕ,ξ

= −ρ̂ϑj

(
p̂ϕ −

ω̂Dρ̂ϑjL̂q
ŵ

)
∂ω̂D
∂λ

∣∣∣∣
p̂ϕ,ξ

− 1

2

∂

∂λ

∣∣∣∣
p̂ϕ,ξ

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

=

= −ρ̂ϑj

(
p̂ϕ −

ω̂Dρ̂ϑjL̂q
ŵ

)
∂ω̂D
∂λ

∣∣∣∣
p̂ϕ,ξ

−

− 1

2

∂

∂λ

∣∣∣∣
p̂ϕ,ξ

〈
ρ̂ϑj

V̂‖
Φ̂
(
p̂ϕ + ρ̂ϑjV̂‖, ξ, ϑ

)〉pϕ

ϑ

[
p̂ϕ

(
S, ξ, λ, V̂ ;σ

)
, ξ, λ, V̂ ;σ

]
.

Here we have taken into account that the electrostatic potential is a function of spatial

variables only, i.e. {ψ, ξ, ϑ} or Φ̂ = Φ̂ (x, ξ, ϑ).

∂Sp

∂p̂ϕ

∣∣∣∣
λ,ξ,ϑ

=
ŵ

L̂q

(
p̂ϕ −

ω̂Dρ̂ϑjL̂q
ŵ

)
− 1

2

∂

∂p̂ϕ

∣∣∣∣
λ,ξ,ϑ

〈
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V̂‖
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〉pϕ

ϑ

=
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ŵ

L̂q

(
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ω̂Dρ̂ϑjL̂q
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)
− 1

2

〈
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V̂‖

∂Φ̂
(
p̂ϕ + ρ̂ϑjV̂‖, ξ, ϑ

)
∂p̂ϕ

∣∣∣∣∣∣
λ,ξ,ϑ

〉pϕ

ϑ

.

Thus, we have

∂

∂λ

∣∣∣∣
S,ξ

(
∂Sp
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∣∣∣∣
p̂ϕ,ξ

)
=

∂

∂λ

∣∣∣∣
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∂λ

∣∣∣∣
p̂ϕ,ξ
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∣∣∣∣
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〈
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ϑ

]
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)
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−

− 1

2

∂

∂λ
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S,ξ

{
∂

∂λ

∣∣∣∣
p̂ϕ,ξ

〈
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V̂‖
Φ̂
(
p̂ϕ + ρ̂ϑjV̂‖, ξ, ϑ

)〉pϕ

ϑ

[
p̂ϕ

(
S, ξ, λ, V̂ ;σ

)
, ξ, λ, V̂ ;σ

]}
=
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= −ρ̂ϑj

(
∂p̂ϕ
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S,ξ

− ∂ω̂D
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ψ,ξ

ρ̂ϑjL̂q
ŵ

)
∂ω̂D
∂λ

∣∣∣∣
ψ,ξ

− ρ̂ϑj

(
p̂ϕ −

ω̂Dρ̂ϑjL̂q
ŵ

)
∂2ω̂D
∂λ2

∣∣∣∣
ψ,ξ

−

− 1

2

∂

∂λ

∣∣∣∣
S,ξ

∂

∂λ

∣∣∣∣
p̂ϕ,ξ

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

,

where we have taken into account that p̂ϕ is a function of λ if written in terms of S and

the fact that ω̂D has the velocity dependence only, i.e. is a function of λ at each V̂ and σ.

∂

∂S

∣∣∣∣
λ,ξ

(
∂Sp

∂λ

∣∣∣∣
p̂ϕ,ξ

)
=

∂

∂S

∣∣∣∣
λ,ξ

[
−ρ̂ϑj

(
p̂ϕ −

ω̂Dρ̂ϑjL̂q
ŵ

)
∂ω̂D
∂λ

∣∣∣∣
p̂ϕ,ξ

− 1

2

∂

∂λ

∣∣∣∣
p̂ϕ,ξ

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

]
=

= −ρ̂ϑj
∂p̂ϕ
∂S

∣∣∣∣
λ,ξ

∂ω̂D
∂λ

∣∣∣∣
p̂ϕ,ξ

−

− 1

2

∂

∂S

∣∣∣∣
λ,ξ

{
∂

∂λ

∣∣∣∣
p̂ϕ,ξ

〈
ρ̂ϑj

V̂‖
Φ̂
(
p̂ϕ + ρ̂ϑjV̂‖, ξ, ϑ

)〉pϕ

ϑ

[
p̂ϕ

(
S, ξ, λ, V̂ ;σ

)
, ξ, λ, V̂ ;σ

]}
=

= −ρ̂ϑj
∂p̂ϕ
∂S

∣∣∣∣
λ,ξ

∂ω̂D
∂λ

∣∣∣∣
p̂ϕ,ξ

− 1

2

∂

∂S

∣∣∣∣
λ,ξ

∂

∂λ

∣∣∣∣
p̂ϕ,ξ

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

Here p̂ϕ is to be understood as p̂ϕ = p̂ϕ

(
S, ξ, λ, V̂ ;σ

)
.

∂

∂S

∣∣∣∣
λ,ξ

(
∂Sp

∂p̂ϕ

∣∣∣∣
λ,ξ,ϑ

)
=

=
∂

∂S

∣∣∣∣
λ,ξ

 ŵ
L̂q

(
p̂ϕ −

ω̂Dρ̂ϑjL̂q
ŵ

)
− 1

2

〈
ρ̂ϑj

V̂‖

∂Φ̂
(
p̂ϕ + ρ̂ϑjV̂‖, ξ, ϑ

)
∂p̂ϕ

∣∣∣∣∣∣
λ,ξ,ϑ

〉pϕ

ϑ

 =

=
ŵ

L̂q

∂p̂ϕ
∂S

∣∣∣∣
λ,ξ

−

− 1

2

∂

∂S

∣∣∣∣
λ,ξ


〈
ρ̂ϑj

V̂‖

∂Φ̂
(
p̂ϕ + ρ̂ϑjV̂‖, ξ, ϑ

)
∂p̂ϕ

∣∣∣∣∣∣
λ,ξ,ϑ

〉pϕ

ϑ

[
p̂ϕ

(
S, ξ, λ, V̂ ;σ

)
, ξ, λ, V̂ ;σ

] =

=
ŵ

L̂q

∂p̂ϕ
∂S

∣∣∣∣
λ,ξ

− 1

2

∂

∂S

∣∣∣∣
λ,ξ

〈
ρ̂ϑj

V̂‖

∂Φ̂

∂p̂ϕ

∣∣∣∣∣
λ,ξ,ϑ

〉pϕ

ϑ

and

∂

∂λ

∣∣∣∣
S,ξ

(
∂Sp

∂p̂ϕ

∣∣∣∣
λ,ξ,ϑ

)
=
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=
∂

∂λ

∣∣∣∣
S,ξ

 ŵ
L̂q

(
p̂ϕ −

ω̂Dρ̂ϑjL̂q
ŵ

)
− 1

2

〈
ρ̂ϑj

V̂‖

∂Φ̂
(
p̂ϕ + ρ̂ϑjV̂‖, ξ, ϑ

)
∂p̂ϕ

∣∣∣∣∣∣
λ,ξ,ϑ

〉pϕ

ϑ

 =

=
ŵ

L̂q

(
∂p̂ϕ
∂λ

∣∣∣∣
S,ξ

− ∂ω̂D
∂λ

∣∣∣∣
S,ξ

ρ̂ϑjL̂q
ŵ

)
−

− 1

2

∂

∂λ

∣∣∣∣
S,ξ


〈
ρ̂ϑj

V̂‖

∂Φ̂
(
p̂ϕ + ρ̂ϑjV̂‖, ξ, ϑ

)
∂p̂ϕ

∣∣∣∣∣∣
λ,ξ,ϑ

〉pϕ

ϑ

[
p̂ϕ

(
S, ξ, λ, V̂ ;σ

)
, ξ, λ, V̂ ;σ

] =

=
ŵ

L̂q

∂p̂ϕ
∂λ

∣∣∣∣
S,ξ

− ρ̂ϑj
∂ω̂D
∂λ

∣∣∣∣
ψ,ξ

− 1

2

∂

∂λ

∣∣∣∣
S,ξ

〈
ρ̂ϑj

V̂‖

∂Φ̂

∂p̂ϕ

∣∣∣∣∣
λ,ξ,ϑ

〉pϕ

ϑ

.

For trapped branch, we write

∂St

∂λ

∣∣∣∣
p̂ϕ,ξ

=
∂

∂λ

∣∣∣∣
p̂ϕ,ξ

[
−ω̂Dρ̂ϑj p̂ϕ −

1

2

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

]
=

= −p̂ϕρ̂ϑj
∂ω̂D
∂λ

∣∣∣∣
p̂ϕ,ξ

− 1

2

∂

∂λ

∣∣∣∣
p̂ϕ,ξ

〈
ρ̂ϑj

V̂‖
Φ̂
(
p̂ϕ + ρ̂ϑjV̂‖, ξ, ϑ

)〉pϕ

ϑ

,

∂St

∂p̂ϕ

∣∣∣∣
λ,ξ,ϑ

=
∂

∂p̂ϕ

∣∣∣∣
λ,ξ,ϑ

[
−ω̂Dρ̂ϑj p̂ϕ −

1

2

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

]
=

= −ω̂Dρ̂ϑj −
1

2

〈
ρ̂ϑj

V̂‖

∂

∂p̂ϕ

∣∣∣∣
λ,ξ,ϑ

Φ̂
(
p̂ϕ + ρ̂ϑjV̂‖, ξ, ϑ

)〉pϕ

ϑ

.

The last term here is to be understood as a function of
(
p̂ϕ

(
S, ξ, λ, V̂ ;σ

)
, ξ, λ, V̂ ;σ

)
.

∂

∂λ

∣∣∣∣
S,ξ

(
∂St

∂λ

∣∣∣∣
p̂ϕ,ξ

)
=

∂

∂λ

∣∣∣∣
S,ξ

[
−p̂ϕρ̂ϑj

∂ω̂D
∂λ

∣∣∣∣
p̂ϕ,ξ

− 1

2

∂

∂λ

∣∣∣∣
p̂ϕ,ξ

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

]
=

= −ρ̂ϑj
∂ω̂D
∂λ

∣∣∣∣
p̂ϕ,ξ

∂p̂ϕ
∂λ

∣∣∣∣
S,ξ

− ρ̂ϑj
∂2ω̂D
∂λ2

∣∣∣∣
ψ,ξ

p̂ϕ−

− 1

2

∂

∂λ

∣∣∣∣
S,ξ

{
∂

∂λ

∣∣∣∣
p̂ϕ,ξ

〈
ρ̂ϑj

V̂‖
Φ̂
(
p̂ϕ + ρ̂ϑjV̂‖, ξ, ϑ

)〉pϕ

ϑ

[
p̂ϕ

(
S, ξ, λ, V̂ ;σ

)
, ξ, λ, V̂ ;σ

]}
=

= −ρ̂ϑj
∂ω̂D
∂λ

∣∣∣∣
p̂ϕ,ξ

∂p̂ϕ
∂λ

∣∣∣∣
S,ξ

− ρ̂ϑj
∂2ω̂D
∂λ2

∣∣∣∣
ψ,ξ

p̂ϕ −
1

2

∂

∂λ

∣∣∣∣
S,ξ

∂

∂λ

∣∣∣∣
p̂ϕ,ξ

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

,
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∂

∂S

∣∣∣∣
λ,ξ

(
∂St

∂λ

∣∣∣∣
p̂ϕ,ξ

)
=

∂

∂S

∣∣∣∣
λ,ξ

[
−p̂ϕρ̂ϑj

∂ω̂D
∂λ

∣∣∣∣
p̂ϕ,ξ

− 1

2

∂

∂λ

∣∣∣∣
p̂ϕ,ξ

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

]
=

= −ρ̂ϑj
∂ω̂D
∂λ

∣∣∣∣
p̂ϕ,ξ

∂p̂ϕ
∂S

∣∣∣∣
λ,ξ

−

− 1

2

∂

∂S

∣∣∣∣
λ,ξ

{
∂

∂λ

∣∣∣∣
p̂ϕ,ξ

〈
ρ̂ϑj

V̂‖
Φ̂
(
p̂ϕ + ρ̂ϑjV̂‖, ξ, ϑ

)〉pϕ

ϑ

[
p̂ϕ

(
S, ξ, λ, V̂ ;σ

)
, ξ, λ, V̂ ;σ

]}
=

= −ρ̂ϑj
∂ω̂D
∂λ

∣∣∣∣
p̂ϕ,ξ

∂p̂ϕ
∂S

∣∣∣∣
λ,ξ

− 1

2

∂

∂S

∣∣∣∣
λ,ξ

∂

∂λ

∣∣∣∣
p̂ϕ,ξ

〈
ρ̂ϑj

V̂‖
Φ̂

〉pϕ

ϑ

.

∂

∂S

∣∣∣∣
λ,ξ

(
∂St

∂p̂ϕ

∣∣∣∣
λ,ξ,ϑ

)
=

∂

∂S

∣∣∣∣
λ,ξ

[
−ω̂Dρ̂ϑj −

1

2

〈
ρ̂ϑj

V̂‖

∂

∂p̂ϕ

∣∣∣∣
λ,ξ,ϑ

Φ̂
(
p̂ϕ + ρ̂ϑjV̂‖, ξ, ϑ

)〉pϕ

ϑ

]
=

= −1

2

∂

∂S

∣∣∣∣
λ,ξ

{〈
ρ̂ϑj

V̂‖

∂

∂p̂ϕ

∣∣∣∣
λ,ξ,ϑ

Φ̂
(
p̂ϕ + ρ̂ϑjV̂‖, ξ, ϑ

)〉pϕ

ϑ

[
p̂ϕ

(
S, ξ, λ, V̂ ;σ

)
, ξ, λ, V̂ ;σ

]}
=

= −1

2

∂

∂S

∣∣∣∣
λ,ξ

〈
ρ̂ϑj

V̂‖

∂

∂p̂ϕ

∣∣∣∣
λ,ξ,ϑ

Φ̂

〉pϕ

ϑ

and

∂

∂λ

∣∣∣∣
S,ξ

(
∂St

∂p̂ϕ

∣∣∣∣
λ,ξ,ϑ

)
=

∂

∂λ

∣∣∣∣
S,ξ

[
−ω̂Dρ̂ϑj −

1

2

〈
ρ̂ϑj

V̂‖

∂

∂p̂ϕ

∣∣∣∣
λ,ξ,ϑ

Φ̂
(
p̂ϕ + ρ̂ϑjV̂‖, ξ, ϑ

)〉pϕ

ϑ

]
=

= −ρ̂ϑj
∂ω̂D
∂λ

∣∣∣∣
S,ξ

−

− 1

2

∂

∂λ

∣∣∣∣
S,ξ

{〈
ρ̂ϑj

V̂‖

∂

∂p̂ϕ

∣∣∣∣
λ,ξ,ϑ

Φ̂
(
p̂ϕ + ρ̂ϑjV̂‖, ξ, ϑ

)〉pϕ

ϑ

[
p̂ϕ

(
S, ξ, λ, V̂ ;σ

)
, ξ, λ, V̂ ;σ

]}
=

= −ρ̂ϑj
∂ω̂D
∂λ

∣∣∣∣
ψ,ξ

− 1

2

∂

∂λ

∣∣∣∣
S,ξ

〈
ρ̂ϑj

V̂‖

∂

∂p̂ϕ

∣∣∣∣
λ,ξ,ϑ

Φ̂
(
p̂ϕ + ρ̂ϑjV̂‖, ξ, ϑ

)〉pϕ

ϑ

.

The electrostatic potential term, −1
2

〈
(ρ̂ϑj/V̂‖)Φ̂

〉pϕ
ϑ
, is considered as a function of p̂ϕ, ξ, λ,

V̂ and σ and thus
(
p̂ϕ

(
S, ξ, λ, V̂ ;σ

)
, ξ, λ, V̂ ;σ

)
. ω̂D is a function of VVV = (λ, V, σ) only

and hence ∂ω̂D/∂λ|ψ = ∂ω̂D/∂λ|pϕ = ∂ω̂D/∂λ|S.

Now we have calculated all the auxiliary coefficients required to find B1−13 in Eq.E.1. The

next step is to introduce the boundary conditions in λ and S space and implement them

in the numerical scheme.
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E.2 Boundary conditions in λ and S space

To provide the Maxwellian behaviour far from the magnetic island, we require

∂f̂j/∂x
∣∣∣
x→±∞

= ŵ
[
L−1
n +

(
V̂ 2 − 3/2

)
L−1
Tj

]
e−V̂

2 , where f̂j = fjπ
3/2V 3

Tj/n0. To solve

Eq.E.1, this condition has to be rewritten in S space for both passing and trapped

particles. As we noted in the main part, the electrostatic potential does not provide an

island-like structure in the trapped region and thus we find it convenient to introduce an

extra variable y±/t, such that y± =
√
S± − S±min, 2y±dy± = dS± for passing and yt = St,

dyt = dSt for trapped particles. A different definition of y±/t is justified as both passing

and trapped external regions, i.e. λ ∈ [0, λp] ∪ [λt, λfin], are not connected directly but

via a dissipation layer where the perturbative approach becomes invalid. In the absence

of the electrostatic potential, this Neumann boundary condition translates into Eq.4.1 for

λ ≤ λp and Eq.4.2 for λ ≥ λt, and is to be updated at each iteration in Φ, provided the

inverse function, y±/t = y±/t (p̂ϕ), exists at each ξ, λ, V̂ and σ.

As there are no closed flux surfaces in S space for trapped particles (in range of plasma

and tokamak parameters we consider), we simply require the Neumann boundary at

yt → ±∞ updated at each iteration in Φ. For passing particles, we require the Neumann

boundary at y± → +∞ for σpϕ = ±1. However, an additional condition is required at

y± = 0. We introduce Eq.4.3 due to the flattening requirement inside the S island. Here

we have to note that flattening inside the S island is not obvious from O(δ1
j ). It comes

from O(δ0
j ), but O(δ1

j ) might provide an additional dependence, which is weak compared

to flattening from O(δ0
j ). However, a zero gradient inside the S island can be justified in

a different way. In the layer, where the radial shift is maximum, i.e. at λ = λp,t, at each

ρϑj , we work in terms of pϕ with the Neumann boundary at pϕ → ±∞ with no flattening

requirement inside the Ŝ island. However, we still find the distribution function to be

partially flattened even for large ρϑj. Moving from λ = λp to λ = 0, we move in the

direction of reduction in the radial shift (i.e. S approaches the real magnetic island) and

thus there still should be partial flattening. Thus, we set a zero gradient at the S island

O-point. In addition, Eq.4.3 ensures continuity of ∂f̂j/∂y± across the S island O-point at

each σpϕ .

In λ space we require the distribution function and its first derivative to be finite at λ = 0



E.3 First and second order derivatives 181

and λ = λfin. As the term in ∂2/∂λ2 vanishes at λ = 0 and λ = λfin, we impose Eq.E.1

evaluated at λ = 0 for the boundary condition at the deeply passing end and similarly

Eq.E.1 evaluated at λ = λfin for the boundary condition at the deeply trapped end. This

results in a mixed boundary at λ = 0 and λ = λfin.

Note: if Φ provided the island-like structure for trapped particles, they had to be considered

such as passing particles. The subroutine is added that checks if the solution of yt = yt (p̂ϕ)

is unique at each ξ, λ, V̂ .

E.3 First and second order derivatives

We use the following approximations:

Central difference for passing branch

∂g
(0,0),p
j=e,i

∂λ

∣∣∣∣∣
S,ξ

≡ ∂gσ,p

∂λ

∣∣∣∣
S,ξ

=
gσ,pi,j+1 − g

σ,p
i,j−1

2∆λp
+O

(
∆λ2

p

)
,

∂2g
(0,0),p
j=e,i

∂λ2

∣∣∣∣∣
S,ξ

≡ ∂2gσ,p

∂λ2

∣∣∣∣
S,ξ

=
gσ,pi,j+1 − 2gσ,pi,j + gσ,pi,j−1

∆λ2
p

+O
(
∆λ2

p

)
Central difference for trapped branch

∂g
(0,0),t
j=e,i

∂λ

∣∣∣∣∣
S,ξ

≡ ∂g|σ|,t

∂λ

∣∣∣∣
S,ξ

=
g
|σ|,t
i,j+1 − g

|σ|,t
i,j−1

2∆λt
+O

(
∆λ2

t

)
,

∂2g
(0,0),t
j=e,i

∂λ2

∣∣∣∣∣
S,ξ

≡ ∂2g|σ|,t

∂λ2

∣∣∣∣
S,ξ

=
g
|σ|,t
i,j+1 − 2g

|σ|,t
i,j + g

|σ|,t
i,j−1

∆λ2
t

+O
(
∆λ2

t

)
.

∆λp/t is a step in the passing/trapped region.

Central difference in S (main regions)

∂g
(0,0),p
j=e,i

∂S

∣∣∣∣∣
λ,ξ

≡ ∂gσ,p

∂S

∣∣∣∣
λ,ξ

=
gσ,pi+1,j − g

σ,p
i−1,j

2∆Sin/out
+O

(
∆S2

in/out

)
,

∂2g
(0,0),p
j=e,i

∂S2

∣∣∣∣∣
λ,ξ

≡ ∂2gσ,p

∂S2

∣∣∣∣
λ,ξ

=
gσ,pi+1,j − 2gσ,pi,j + gσ,pi−1,j

∆S2
in/out

+O
(
∆S2

in/out

)
,

∂g
(0,0),t
j=e,i

∂S

∣∣∣∣∣
λ,ξ

≡ ∂g|σ|,t

∂S

∣∣∣∣
λ,ξ

=
g
|σ|,t
i+1,j − g

|σ|,t
i−1,j

2∆Sin/out
+O

(
∆S2

in/out

)
,
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∂2g
(0,0),t
j=e,i

∂S2

∣∣∣∣∣
λ,ξ

≡ ∂2g|σ|,t

∂S2

∣∣∣∣
λ,ξ

=
g
|σ|,t
i+1,j − 2g

|σ|,t
i,j + g

|σ|,t
i−1,j

∆S2
in/out

+O
(
∆S2

in/out

)
.

∆Sin/out is a step inside/outside the S island. In a code, ∆Sin = ∆Sout.

Backward in S (top boundary)

∂g
(0,0),p/t
j=e,i

∂S

∣∣∣∣∣
λ,ξ

≡ ∂gp/t

∂S

∣∣∣∣
λ,ξ

=


g
p/t
i,j −g

p/t
i−1,j

∆Sin/out
+O

(
∆Sin/out

)
,

3g
p/t
i,j −4g

p/t
i−1,j+g

p/t
i−2,j

2∆Sin/out
+O

(
∆S2

in/out

)
∂2g

(0,0),p/t
j=e,i

∂S2

∣∣∣∣∣
λ,ξ

≡ ∂2gp/t

∂S2

∣∣∣∣
λ,ξ

=


1

∆Sin/out

[
∂gp/t

∂S

∣∣∣
i,j
− ∂gp/t

∂S

∣∣∣
i−1,j

]
+O

(
∆Sin/out

)
2g
p/t
i,j −5g

p/t
i−1,j+4g

p/t
i−2,j−g

p/t
i−3,j

(∆Sin/out)
2 +O

(
∆S2

in/out

) =

=


g
p/t
i,j −2g

p/t
i−1,j+g

p/t
i−2,j

∆S2
in/out

+O
(
∆Sin/out

)
2g
p/t
i,j −5g

p/t
i−1,j+4g

p/t
i−2,j−g

p/t
i−3,j

(∆Sin/out)
2 +O

(
∆S2

in/out

)

Backward for passing branch (trapped/passing boundary)

note: also to be applied to the trapped branch at the deeply trapped end

∂g
(0,0),p/t
j=e,i

∂λ

∣∣∣∣∣
S,ξ

≡ ∂gp/t

∂λ

∣∣∣∣
S,ξ

=


g
p/t
i,j −g

p/t
i,j−1

∆λp/t
+O

(
∆λp/t

)
,

3g
p/t
i,j −4g

p/t
i,j−1+g

p/t
i,j−2

2∆λp/t
+O

(
∆λ2

p/t

)
∂2g

(0,0),p/t
j=e,i

∂λ2

∣∣∣∣∣
S,ξ

≡ ∂2gp/t

∂λ2

∣∣∣∣
S,ξ

=


1

∆λp/t

[
∂gp/t

∂λ

∣∣∣
i,j
− ∂gp/t

∂λ

∣∣∣
i,j−1

]
+O

(
∆λp/t

)
2g
p/t
i,j −5g

p/t
i,j−1+4g

p/t
i,j−2−g

p/t
i,j−3

(∆λp/t)
2 +O

(
∆λ2

p/t

) =

=


g
p/t
i,j −2g

p/t
i,j−1+g

p/t
i,j−2

∆λ2
p/t

+O
(
∆λp/t

)
2g
p/t
i,j −5g

p/t
i,j−1+4g

p/t
i,j−2−g

p/t
i,j−3

(∆λp/t)
2 +O

(
∆λ2

p/t

)

Forward for trapped branch (trapped/passing boundary)

note: also to be applied to the passing branch at the deeply passing end

∂g
(0,0),p/t
j=e,i

∂λ

∣∣∣∣∣
S,ξ

≡ ∂gp/t

∂λ

∣∣∣∣
S,ξ

=


g
p/t
i,j+1−g

p/t
i,j

∆λp/t
+O

(
∆λp/t

)
,

−gp/ti,j+2+4g
p/t
i,j+1−3g

p/t
i,j

2∆λp/t
O
(

∆λ2
p/t

)
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∂2g
(0,0),p/t
j=e,i

∂λ2

∣∣∣∣∣
S,ξ

≡ ∂2gp/t

∂λ2

∣∣∣∣
S,ξ

=


1

∆λp/t

[
∂gp/t

∂λ

∣∣∣
i,j+1
− ∂gp/t

∂λ

∣∣∣
i,j

]
+O

(
∆λp/t

)
−gp/ti,j+3+4g

p/t
i,j+2−5g

p/t
i,j+1+2g

p/t
i,j

(∆λp/t)
2 +O

(
∆λ2

p/t

) =

=


g
p/t
i,j+2−2g

p/t
i,j+1+g

p/t
i,j

∆λ2
p/t

+O
(
∆λp/t

)
−gp/ti,j+3+4g

p/t
i,j+2−5g

p/t
i,j+1+2g

p/t
i,j

(∆λp/t)
2 +O

(
∆λ2

p/t

)
Mixed derivatives are

∂2g
(0,0),p/t
j=e,i

∂λ|S,ξ ∂S|λ,ξ
=

∂2g
(0,0),p/t
j=e,i

∂S|λ,ξ ∂λ|S,ξ
=

=
g
p/t
i+1,j+1 − g

p/t
i+1,j−1 − g

p/t
i−1,j+1 + g

p/t
i−1,j−1

4∆λp/t∆Sin/out
+O

(
∆S2

in/out,∆λ
2
p/t

)
.

for passing and trapped particles.

E.4 C coefficients

To provide the Maxwellian behaviour far from the island, we have introduced y instead of

S:

y =
√
S± − Smin ·Θ (λc − λ) + St ·Θ (λ− λc)

for σ = ±1/σt as a new radial variable. Hence, Eq.E.1 becomes

B1
∂2g

∂λ2

∣∣∣∣
y,ξ

+B2
∂g

∂λ

∣∣∣∣
y,ξ

+
B3

4y2

∂2g

∂y2

∣∣∣∣
λ,ξ

+

+

(
11∑
i=4

Bi

2y
− B3

4y3

)
∂g

∂y

∣∣∣∣
λ,ξ

+
B12

2y

∂2g

∂λ∂y

∣∣∣∣
ξ

+ U = 0

(E.2)

for passing and

B1
∂2g

∂λ2

∣∣∣∣
y,ξ

+B2
∂g

∂λ

∣∣∣∣
y,ξ

+B3
∂2g

∂y2

∣∣∣∣
λ,ξ

+

+
11∑
i=4

Bi
∂g

∂y

∣∣∣∣
λ,ξ

+B12
∂2g

∂λ∂y

∣∣∣∣
ξ

+ U = 0

(E.3)
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for trapped particles. Thus, we find it convenient to introduce C coefficients as follows:

C1 = B1,

C2 = B2,

C3 =
B3

4y2
,

C4 = − B3

4y3
+

11∑
i=4

Bi

2y
,

C5 =
B12

2y

for passing and

C1 = B1,

C2 = B2,

C3 = B3,

C4 =
11∑
i=4

Bi,

C5 = B12

for trapped particles. Note: both B and C coefficients are to be defined inside and outside

the S island in the passing region.

E.5 A coefficients

Employing a second order central difference approximation in λ and y direction, we rewrite

Eqs.E.2,E.3 in the following form:

[
ijkC5

4∆λp∆yin/out

]
gσ,pi+1,j+1 +

[
ijkC5

4∆λp∆yin/out

]
gσ,pi−1,j−1 +

[
−ijkC5

4∆λp∆yin/out

]
gσ,pi−1,j+1+

+

[
−ijkC5

4∆λp∆yin/out

]
gσ,pi+1,j−1+

+

[
ijkC3

∆y2
in/out

+
ijkC4

2∆yin/out

]
gσ,pi+1,j +

[
ijkC3

∆y2
in/out

−
ijkC4

2∆yin/out

]
gσ,pi−1,j+

+

[
ijkC1

∆λ2
p

+
ijkC2

2∆λp

]
gσ,pi,j+1 +

[
ijkC1

∆λ2
p

−
ijkC2

2∆λp

]
gσ,pi,j−1 +

[
−2ijkC1

∆λ2
p

− 2ijkC3

∆y2
in/out

]
gσ,pi,j + [U ]σ,pij = 0,



E.6 In terms of P, Q and R 185

which is equivalent to

Aσ,p1ijgi+1,j+1 + Aσ,p1ijg
σ,p
i−1,j−1 + Aσ,p3ijg

σ,p
i−1,j+1 + Aσ,p3ijg

σ,p
i+1,j−1+

+ Aσ,p5ijg
σ,p
i+1,j + Aσ,p6ijg

σ,p
i−1,j + Aσ,p7ijg

σ,p
i,j+1 + Aσ,p8ijg

σ,p
i,j−1 + Aσ,p9ijg

σ,p
i,j + Aσ,p10ij

(
gσ,pi,j
)

= 0,
(E.4)

Aσ,p10ij

(
gσ,pi,j
)

= [U ]σ,pij , σ = ±1, Aσ,p1ij = Aσ,p2ij = −Aσ,p3ij = −Aσ,p4ij for passing particles. Similarly,

we obtain for trapped branch:

[
ijkC5

4∆λt∆y

]
g
|σ|,t
i+1,j+1 +

[
ijkC5

4∆λt∆y

]
g
|σ|,t
i−1,j−1 +

[
−ijkC5

4∆λt∆y

]
g
|σ|,t
i−1,j+1 +

[
−ijkC5

4∆λt∆y

]
g
|σ|,t
i+1,j−1+

+

[
ijkC3

∆y2
+

ijkC4

2∆y

]
g
|σ|,t
i+1,j +

[
ijkC3

∆y2
−

ijkC4

2∆y

]
g
|σ|,t
i−1,j+

+

[
ijkC1

∆λ2
t

+
ijkC2

2∆λt

]
g
|σ|,t
i,j+1 +

[
ijkC1

∆λ2
t

−
ijkC2

2∆λt

]
g
|σ|,t
i,j−1 +

[
−2ijkC1

∆λ2
t

− 2ijkC3

∆y2

]
g
|σ|,t
i,j + [U ]|σ|,tij = 0,

which is equivalent to

A
|σ|,t
1ij g

|σ|,t
i+1,j+1 + A

|σ|,t
1ij g

|σ|,t
i−1,j−1 + A

|σ|,t
3ij g

|σ|,t
i−1,j+1 + A

|σ|,t
3ij g

|σ|,t
i+1,j−1+

+ A
|σ|,t
5ij g

|σ|,t
i+1,j + A

|σ|,t
6ij g

|σ|,t
i−1,j + A

|σ|,t
7ij g

|σ|,t
i,j+1 + A

|σ|,t
8ij g

|σ|,t
i,j−1 + A

|σ|,t
9ij g

|σ|,t
i,j + A

|σ|,t
10ij

(
g
|σ|,t
i,j

)
= 0

(E.5)

with σt = |σ| = +1, and A
|σ|,t
1ij = A

|σ|,t
2ij = −A|σ|,t3ij = −A|σ|,t4ij . We note, A|σ|,t10ij

(
g
|σ|,t
i,j

)
=

[U ]|σ|,tij = 0 due to the summation over σ in the orbit-averaging operator only to leading

order in ρϑj/a. [U ]|σ|,tij 6= 0 in a code, since the integration in Eqs.2.26,2.27 is provided at

fixed ψ. Here {i, j, k} are used to enumerate {y, λ, σ}. y is to be understood as y± for

passing and y = yt for trapped particles. ∆yin/out and ∆y ≡ ∆yt are steps in y direction

inside/outside the S island for passing particles and for trapped particles, respectively.

E.6 In terms of P, Q and R

Eqs.E.4,E.5 for the passing/trapped branch can be rewritten in the matrix form as

PPP σ,p
j gggσ,pj+1 +QQQσ,p

j gggσ,pj +RRRσ,p
j gggσ,pj−1 +AAAσ,pj

(
gggσ,pj
)

= 0 (E.6)
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and

PPP
|σ|,t
j ggg

|σ|,t
j+1 +QQQ

|σ|,t
j ggg

|σ|,t
j +RRR

|σ|,t
j ggg

|σ|,t
j−1 +AAA

|σ|,t
j

(
ggg
|σ|,t
j

)
= 0, (E.7)

respectively. As we mentioned earlier, the momentum conservation term does not

contribute only to leading order in the trapped region. However, to provide a general

solution we keep the free term in Eq.E.7. Here gggσ,pj /ggg|σ|,tj is a vector solution of length Ny

in the passing/trapped region at each λ grid point, j. PPP σ,p/|σ|,t
j , QQQσ,p/|σ|,t

j and RRRσ,p/|σ|,t
j are

square tri-diagonal matrices of size Ny ×Ny, and AAA
σ,p/|σ|,t
j is the right hand side vector of

length Ny. Ny is a total number of points in y direction, i.e. inside and outside the S

island. We note that a number of points can be different in y±/t direction as the σ = ±1/σt

branches become independent once the layer solution is found. PPP σ,p
j , QQQσ,p

j , RRRσ,p
j and AAAσ,pj

are constructed as

P σ,p
i,i = Aσ,p7,i,j, P σ,p

i,i+1 = Aσ,p1,i,j, P σ,p
i,i−1 = Aσ,p3,i,j, i ∈ [1, Ny − 1)

P σ,p
0,0 = Aσ,p7,0,j, i = 0

P σ,p
Ny−1,Ny−1 = Aσ,p7,Ny−1,j, i = Ny − 1;

Qσ,p
i,i = Aσ,p9,i,j, Qσ,p

i,i+1 = Aσ,p5,i,j, Qσ,p
i,i−1 = Aσ,p6,i,j, i ∈ [1, Ny − 1)

Qσ,p
0,0 = Aσ,p9,0,j, Qσ,p

0,1 = Aσ,p5,0,j + Aσ,p6,0,j, i = 0

Qσ,p
Ny−1,Ny−1 = Aσ,p9,Ny−1,j, Qσ,p

Ny−1,Ny−2 = Aσ,p5,Ny−1,j + Aσ,p6,Ny−1,j, i = Ny − 1;

Rσ,p
i,i = Aσ,p8,i,j, Rσ,p

i,i+1 = Aσ,p3,i,j, Rσ,p
i,i−1 = Aσ,p1,i,j, i ∈ [1, Ny − 1)

Rσ,p
0,0 = Aσ,p8,0,j, i = 0

Rσ,p
Ny−1,Ny−1 = Aσ,p8,Ny−1,j, i = Ny − 1

and

Aσ,pi
(
gσ,pi,j
)

= Aσ,p10,i,j

(
gσ,pi,j
)
, i ∈ [1, Ny − 1)

Aσ,p0

(
gσ,p0,j

)
= Aσ,p10,0,j

(
gσ,p0,j

)
− 2∆y · Cp

1 · A
σ,p
6,0,j, i = 0

Aσ,pNy−1

(
gσ,pNy−1,j

)
= Aσ,p10,Ny−1,j

(
gσ,pNy−1,j

)
+ 2∆y · Cp

2 · A
σ,p
5,Ny−1,j, i = Ny − 1
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at each j for each k. Here ∆yin = ∆yout ≡ ∆y. Cp
1 = 0 sets a zero gradient inside the S

island. Cp
2 provides the gradient of the distribution function far from the magnetic island,

i.e. Eq.4.1 for the full distribution function and

Cp
2 =

∂ĝ
(0,0)
j

∂y±

∣∣∣∣∣
y±→+∞

= σpϕŵ

[
L−1
n0 +

(
V̂ 2 − 3

2

)
L−1
Tj

]
e−V̂

2

√
2L̂q
ŵ

(E.8)

for the perturbation in the absence of the electrostatic potential. ĝ(0,0)
j is normalised, i.e.

g
(0,0)
j π3/2V 3

Tj/n0. This condition is to be updated at each iteration in Φ. For trapped

particles, we write

P
|σ|,t
i,i = A

|σ|,t
7,i,j, P

|σ|,t
i,i+1 = A

|σ|,t
1,i,j, P

|σ|,t
i,i−1 = A

|σ|,t
3,i,j, i ∈ [1, Ny − 1)

P
|σ|,t
0,0 = A

|σ|,t
7,0,j, i = 0

P
|σ|,t
Ny−1,Ny−1 = A

|σ|,t
7,Ny−1,j, i = Ny − 1;

Q
|σ|,t
i,i = A

|σ|,t
9,i,j, Q

|σ|,t
i,i+1 = A

|σ|,t
5,i,j, Q

|σ|,t
i,i−1 = A

|σ|,t
6,i,j, i ∈ [1, Ny − 1)

Q
|σ|,t
0,0 = A

|σ|,t
9,0,j, Q

|σ|,t
0,1 = A

|σ|,t
5,0,j + A

|σ|,t
6,0,j, i = 0

Q
|σ|,t
Ny−1,Ny−1 = A

|σ|,t
9,Ny−1,j, Q

|σ|,t
Ny−1,Ny−2 = A

|σ|,t
5,Ny−1,j + A

|σ|,t
6,Ny−1,j, i = Ny − 1;

R
|σ|,t
i,i = A

|σ|,t
8,i,j, R

|σ|,t
i,i+1 = A

|σ|,t
3,i,j, R

|σ|,t
i,i−1 = A

|σ|,t
1,i,j, i ∈ [1, Ny − 1)

R
|σ|,t
0,0 = A

|σ|,t
8,0,j, i = 0

R
|σ|,t
Ny−1,Ny−1 = A

|σ|,t
8,Ny−1,j, i = Ny − 1

and

A
|σ|,t
i

(
g
|σ|,t
i,j

)
= A

|σ|,t
10,i,j

(
g
|σ|,t
i,j

)
, i ∈ [1, Ny − 1)

A
|σ|,t
0

(
g
|σ|,t
0,j

)
= A

|σ|,t
10,0,j

(
g
|σ|,t
0,j

)
− 2∆yt · Ct

1 (λ [j]) · Aσ,p6,0,j, i = 0

A
|σ|,t
Ny−1

(
g
|σ|,t
Ny−1,j

)
= A

|σ|,t
10,Ny−1,j

(
g
|σ|,t
Ny−1,j

)
+ 2∆yt · Ct

2 (λ [j]) · A|σ|,t5,Ny−1,j, i = Ny − 1.

Here ∆yt is a step in yt direction not necessarily equal to ∆yin/out. Ny is a total number

of points in yt direction. As both external branches (passing and trapped) are connected

through the layer solution, Ny is allowed to be different in the passing and trapped regions.
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However, we note that Ny has to be the same for passing and trapped particles in phase

space in the secondary mode problem [95, 96], Chapter V, as there is no layer solution

in this case and both external branches are connected directly. Ct
1 and Ct

2 provide the

gradient of the trapped particle distribution function far from the magnetic island, i.e. at

±∞. In the absence of the electrostatic potential, this is provided by Eq.4.2 for the full

distribution function and

Ct
1 = Ct

2 =
∂f̂j
∂yt

∣∣∣∣∣
yt→±∞

= − ŵ

ω̂Dρ̂ϑj +
ρ̂ϑj
2

〈
1

V̂‖

〉pϕ
ϑ
L−1
n0 ŵω̂E

[
L−1
n0 +

(
V̂ 2 − 3

2

)
L−1
Tj

]
e−V̂

2

(E.9)

for its perturbed part. Ct
1 and Ct

2 are different at each step in λ, i.e. at each j. This

condition is to be updated at each iteration in Φ.

E.6.1 Left boundary (passing branch)

The solution and its first derivative have to be finite at the deeply passing end, λ = 0,

i.e. j = 0. Since the term in ∂2/∂λ2 vanishes at λ = 0, we impose Eq.D.60,D.61/Eq.E.2

evaluated at λ = 0 for the boundary condition at the deeply passing end, i.e. Eq.4.4. Let

us introduce

hσ,p1 =

〈
σ
R

Bϕ

〉pϕ
ϑ

〈
1

A

〉S
ξ

,

hσ,p2 =

〈
σ
R

Bϕ

〉pϕ
ϑ

〈
1

A

∂S

∂λ

∣∣∣∣
pϕ,ξ

〉S

ξ

+

〈
ρ̂ϑi
2
V̂ R

〉p̂ϕ
ϑ

〈
1

A

∂S

∂pϕ

〉S
ξ

.

Thus, Eq.4.4 reads

P̂̂P̂P σ,p
0 gggσ,p0 + Q̂̂Q̂Qσ,p

0 gggσ,p1 + R̂̂R̂Rσ,p
0 gggσ,p2 + hhhσ,p0 (gggσ,p0 ) = 0 (E.10)

Here we have applied a central difference scheme in S/y direction and one-sided difference

in λ direction. P̂̂P̂P σ,p
0 , Q̂̂Q̂Qσ,p

0 , R̂̂R̂Rσ,p
0 and hhhσ,p0 are introduced in a way similar to matrices that

represent the equation and also contain the information about the limit far from the



E.6 In terms of P, Q and R 189

magnetic island:

P̂ σ,p
i,i =

−3hσ,p1,i,0

2∆λp
, P̂ σ,p

i,i+1 =
hσ,p2,i,0

2∆y
, P̂ σ,p

i,i−1 = −
hσ,p2,i,0

2∆y
, i ∈ [1, Ny − 1)

P̂ σ,p
0,0 =

−3hσ,p1,0,0

2∆λp
, i = 0

P̂ σ,p
Ny−1,Ny−1 =

−3hσ,p1,Ny−1,0

2∆λp
, i = Ny − 1;

Q̂σ,p
i,i =

4hσ,p1,i,0

2∆λp
, i ∈ [0, Ny) ;

R̂σ,p
i,i =

−hσ,p1,i,0

2∆λp
, i ∈ [0, Ny)

and

hσ,pi = U
(
gσ,pi,0
)
, i ∈ [1, Ny − 1)

hσ,p0 = U
(
gσ,pi,0
)

+ Cp
1 · h

σ,p
2,0,0, i = 0

hσ,pNy−1 = U
(
gσ,pi,0
)

+ Cp
2 · h

σ,p
2,Ny−1,0, i = Ny − 1.

To set a j = 0th element, we impose the following linear approximation:

gggσ,pj = ααασ,pj gggσ,pj+1 + βββσ,pj (E.11)

and thus

gggσ,pj−1 = ααασ,pj−1ggg
σ,p
j + βββσ,pj−1, (E.12)

where ααασ,pj is the square matrix of Ny × Ny and βββσ,pj is a vector of length Ny at each j.

Substituting Eq.E.12 into Eq.E.6, we have

PPP σ,p
j gggσ,pj+1 +

[
QQQσ,p
j +RRRσ,p

j ααασ,pj−1

]
gggσ,pj +RRRσ,p

j βββσ,pj−1 +AAAσ,pj
(
gggσ,pj
)

= 0.
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We define MMMσ,p
j = QQQσ,p

j +RRRσ,p
j ααασ,pj−1 and hence we can write

MMMσ,p
j gggσ,pj = −PPP σ,p

j gggσ,pj+1 −RRR
σ,p
j βββσ,pj−1 −AAA

σ,p
j

(
gggσ,pj
)
,

gggσ,pj = −
(
MMMσ,p

j

)−1
PPP σ,p
j gggσ,pj+1 −

(
MMMσ,p

j

)−1 [
RRRσ,p
j βββσ,pj−1 +AAAσ,pj

(
gggσ,pj
)]

Comparing the latter expression with Eq.E.11, we obtain the following recurrence relation:

ααασ,pj = −
(
MMMσ,p

j

)−1
PPP σ,p
j ,

βββσ,pj = −
(
MMMσ,p

j

)−1 [
RRRσ,p
j βββσ,pj−1 +AAAσ,pj

(
gggσ,pj
)]
.

(E.13)

Once ααασ,pj and βββσ,pj are determined at certain j, they will be automatically determined at

each j by Eq.E.13. Going back to the left boundary, we write

gggσ,p0 = ααασ,p0 gggσ,p1 + βββσ,p0 ,

gggσ,p1 = ααασ,p1 gggσ,p2 + βββσ,p1

(E.14)

and hence

gggσ,p2 = (ααασ,p1 )−1 [gggσ,p1 − βββ
σ,p
1 ] . (E.15)

Substituting Eq.E.15 into Eq.E.10 gives

P̂̂P̂P σ,p
0 gggσ,p0 +

[
Q̂̂Q̂Qσ,p

0 + R̂̂R̂Rσ,p
0 (ααασ,p1 )−1

]
gggσ,p1 − R̂̂R̂R

σ,p
0 (ααασ,p1 )−1βββσ,p1 + hhhσ,p0 (gggσ,p0 ) = 0

and thus

gggσ,p0 = −
(
P̂̂P̂P σ,p

0

)−1 [
Q̂̂Q̂Q
σ,p

0 + R̂̂R̂R
σ,p

0 (ααασ,p1 )−1
]

︸ ︷︷ ︸
ααασ,p0

gggσ,p1 +
(
P̂̂P̂P σ,p

0

)−1

R̂̂R̂R
σ,p

0 (ααασ,p1 )−1βββσ,p1 −
(
P̂̂P̂P σ,p

0

)−1

hhhσ,p0 (gggσ,p0 )︸ ︷︷ ︸
βββσ,p0

.

Comparing this expression for gggσ,p0 with Eq.E.14, we obtain ααασ,p0 in terms of ααασ,p1 :

ααασ,p0 = −
(
P̂̂P̂P σ,p

0

)−1 [
Q̂̂Q̂Qσ,p

0 + R̂̂R̂Rσ,p
0 (ααασ,p1 )−1

]
. (E.16)
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On the other hand, from the recurrence relation, Eq.E.13, we have

ααασ,p1 = −[QQQσ,p
1 +RRRσ,p

1 ααασ,p0 ]−1PPP σ,p
1 ,

ααασ,p1 (PPP σ,p
1 )−1 = −[QQQσ,p

1 +RRRσ,p
1 ααασ,p0 ]−1,

ααασ,p1 (PPP σ,p
1 )−1 [QQQσ,p

1 +RRRσ,p
1 ασ,p0 ] = −EEE ,

(PPP σ,p
1 )−1 [QQQσ,p

1 +RRRσ,p
1 ααασ,p0 ] = −(ααασ,p1 )−1,

where EEE is a 2D array with ones on the main diagonal and zeros elsewhere. Substituting

this expression for (ααασ,p1 )−1 into Eq.E.16, we derive

ααασ,p0 = −
(
P̂̂P̂P σ,p

0

)−1

Q̂̂Q̂Qσ,p
0 +

(
P̂̂P̂P σ,p

0

)−1

R̂̂R̂Rσ,p
0 (PPP σ,p

1 )−1 [QQQσ,p
1 +RRRσ,p

1 ααασ,p0 ] ,

ααασ,p0 = ααασ,p0 EEE = EEEααασ,p0 =

= −
(
P̂̂P̂P σ,p

0

)−1

Q̂̂Q̂Qσ,p
0 +

(
P̂̂P̂P σ,p

0

)−1

R̂̂R̂Rσ,p
0 (PPP σ,p

1 )−1QQQσ,p
1 +

(
P̂̂P̂P σ,p

0

)−1

R̂̂R̂Rσ,p
0 (PPP σ,p

1 )−1RRRσ,p
1 ααασ,p0 ,[

EEE −
(
P̂̂P̂P σ,p

0

)−1

R̂̂R̂Rσ,p
0 (PPP σ,p

1 )−1RRRσ,p
1

]
ααασ,p0 = −

(
P̂̂P̂P σ,p

0

)−1

Q̂̂Q̂Qσ,p
0 +

(
P̂̂P̂P σ,p

0

)−1

R̂̂R̂Rσ,p
0 (PPP σ,p

1 )−1QQQσ,p
1

the following expression for ααασ,p0 :

ααασ,p0 =

[
EEE −

(
P̂̂P̂P σ,p

0

)−1

R̂̂R̂Rσ,p
0 (PPP σ,p

1 )−1RRRσ,p
1

]−1 [
−
(
P̂̂P̂P σ,p

0

)−1

Q̂̂Q̂Qσ,p
0 +

(
P̂̂P̂P σ,p

0

)−1

R̂̂R̂Rσ,p
0 (PPP σ,p

1 )−1QQQσ,p
1

]
.

(E.17)

Now we use the relation for βββσ,p0 that comes from the above expression for gggσ,p0 :

βββσ,p0 =
(
P̂̂P̂P σ,p

0

)−1

R̂̂R̂Rσ,p
0 (ααασ,p1 )−1βββσ,p1 −

(
P̂̂P̂P σ,p

0

)−1

hhhσ,p0 (gggσ,p0 ) . (E.18)

From Eq.E.16 we derive

−
(
R̂̂R̂Rσ,p

0

)−1 [
P̂̂P̂P σ,p

0 ααασ,p0 + Q̂̂Q̂Qσ,p
0

]
= (ααασ,p1 )−1.

From the recurrence relation, Eq.E.13, we obtain

βββσ,p1 = −[QQQσ,p
1 +Rσ,p

1 ααασ,p0 ]−1 [RRRσ,p
1 βββσ,p0 +AAAσ,p1 (gggσ,p1 )] .
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Substituting the latter expression for (ααασ,p1 )−1 into Eq.E.18:

βββσ,p0 = −
(
P̂̂P̂P σ,p

0

)−1

R̂̂R̂Rσ,p
0

(
R̂̂R̂Rσ,p

0

)−1

︸ ︷︷ ︸
EEE

[
P̂̂P̂P σ,p

0 ααασ,p0 + Q̂̂Q̂Qσ,p
0

]
βββσ,p1 −

(
P̂̂P̂P σ,p

0

)−1

hhhσ,p0 (gggσ,p0 )

and then the latter expression for βββσ,p1 , we find

βββσ,p0 =
(
P̂̂P̂P σ,p

0

)−1 [
P̂̂P̂P σ,p

0 ααασ,p0 + Q̂̂Q̂Qσ,p
0

]
[QQQσ,p

1 +RRRσ,p
1 ααασ,p0 ]−1 [RRRσ,p

1 βββσ,p0 +AAAσ,p1 (gggσ,p1 )]−

−
(
P̂̂P̂P σ,p

0

)−1

hhhσ,p0 (gggσ,p0 ) ,[(
P̂̂P̂P σ,p

0

)−1 [
P̂̂P̂P σ,p

0 ααασ,p0 + Q̂̂Q̂Qσ,p
0

]
[QQQσ,p

1 +RRRσ,p
1 ααασ,p0 ]−1RRRσ,p

1 −EEE
]
βββσ,p0 =

=
(
P̂̂P̂P σ,p

0

)−1

hhhσ,p0 (gggσ,p0 )−
(
P̂̂P̂P σ,p

0

)−1 [
P̂̂P̂P σ,p

0 ααασ,p0 + Q̂̂Q̂Qσ,p
0

]
[QQQσ,p

1 +RRRσ,p
1 ααασ,p0 ]−1AAAσ,p1 (gggσ,p1 )

and hence the final expression for βββσ,p0 :

βββσ,p0 =

[(
P̂̂P̂P σ,p

0

)−1 [
P̂̂P̂P σ,p

0 ααασ,p0 + Q̂̂Q̂Qσ,p
0

]
[QQQσ,p

1 +RRRσ,p
1 ααασ,p0 ]−1RRRσ,p

1 −EEE
]−1

·

·
[(
P̂̂P̂P σ,p

0

)−1

hhhσ,p0 (gggσ,p0 )−
(
P̂̂P̂P σ,p

0

)−1 [
P̂̂P̂P σ,p

0 ααασ,p0 + Q̂̂Q̂Qσ,p
0

]
[QQQσ,p

1 +RRRσ,p
1 ααασ,p0 ]−1AAAσ,p1 (gggσ,p1 )

]
.

(E.19)

Now we have found ααασ,p0 and βββσ,p0 , Eqs.E.17,E.19, at the deeply passing end, j = 0. Then

employing the recurrence relation, Eq.E.13, we calculate all ααασ,pj s and βββσ,pj s at each j

up to the point where the perturbative approach breaks down and collisions cannot be

considered perturbatively. Note: in the secondary mode problem [95, 96] we calculate all

alphas and betas up to the trapped-passing boundary. In addition, ααασ,p0 and βββσ,p0 let us

determine gggσ,p0 . Indeed, we immediately calculate

ααασ,p1 = −[QQQσ,p
1 +RRRσ,p

1 ααασ,p0 ]−1PPP σ,p
1

and

βββσ,p1 = −[QQQσ,p
1 +RRRσ,p

1 ααασ,p0 ]−1 [RRRσ,p
1 βββσ,p0 +AAAσ,p1 (gggσ,p1 )]
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from ααασ,p0 and βββσ,p0 . Eq.E.14 provides

gggσ,p1 = (ααασ,p0 )−1 [gggσ,p0 − βββ
σ,p
0 ]

and Eq.E.15. Also, we have to employ Eq.E.6 evaluated at j = 1:

PPP σ,p
1 gggσ,p2 +QQQσ,p

1 gggσ,p1 +RRRσ,p
1 gggσ,p0 +AAAσ,p1 (gggσ,p1 ) = 0

Substituting the above expression for gggσ,p2 , Eq.E.15, into Eq.E.6 at j = 1

[
PPP σ,p

1 (ααασ,p1 )−1 +QQQσ,p
1

]
gggσ,p1 −PPP

σ,p
1 (ααασ,p1 )−1βββσ,p1 +RRRσ,p

1 gggσ,p0 +AAAσ,p1 (gggσ,p1 ) = 0

and then inserting the latter expression for gggσ,p1 , we obtain the final expression for gggσ,p0 :

gggσ,p0 =
[[
PPP σ,p

1 (ααασ,p1 )−1 +QQQσ,p
1

]
(ααασ,p0 )−1 +RRRσ,p

1

]−1

·

·
[[
PPP σ,p

1 (ααασ,p1 )−1 +QQQσ,p
1

]
(ααασ,p0 )−1βββσ,p0 + P σ,p

1 (ααασ,p1 )−1βββσ,p1 −AAA
σ,p
1 (gggσ,p1 )

]
.

Note: AAAσ,p1 (gggσ,p1 ) is the integral term and does not contribute at the 0th iteration in the

parallel flow. This expression for gggσ,p0 can be used as an additional test of the validity of

the total solution, gggσ,pj reconstructed at each j based on the linear approximation, Eq.E.11,

in the absence of U .

The similar procedure is to be applied to the trapped region.

E.6.2 Right boundary (trapped branch)

The solution and its first derivative also have to be finite at the deeply trapped end,

λ = λfin, i.e. j = Np2. Since the term in ∂2/∂λ2 also vanishes at λ = λfin, we impose

Eq.D.60,D.61/Eq.E.3 evaluated at λ = λfin for the boundary condition at the deeply

trapped end:

P̂̂P̂P
|σ|,t
Np2
ggg
|σ|,t
Np2

+ Q̂̂Q̂Q
|σ|,t
Np2
ggg
|σ|,t
Np2−1 + R̂̂R̂R

|σ|,t
Np2
ggg
|σ|,t
Np2−2 + hhh

|σ|,t
Np2

(
ggg
|σ|,t
Np2

)
= 0. (E.20)

Here we have applied a central difference scheme in S/y space and one-sided difference in

λ space. P̂̂P̂P |σ|,tNp2
, Q̂̂Q̂Q|σ|,tNp2

, R̂̂R̂R|σ|,tNp2
and hhh|σ|,tNp2

are defined in a way similar to P̂̂P̂P σ,p
0 , Q̂̂Q̂Qσ,p

0 , R̂̂R̂Rσ,p
0 and
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hhhσ,p0 and contain the information about the distribution function gradient far from the

magnetic island. Here we assume

ggg
|σ|,t
j = ααα

|σ|,t
j ggg

|σ|,t
j−1 + βββ

|σ|,t
j (E.21)

and thus

ggg
|σ|,t
j+1 = ααα

|σ|,t
j+1ggg

|σ|,t
j + βββ

|σ|,t
j+1 , (E.22)

where ααα|σ|,tj is the square matrix of Ny ×Ny and βββ|σ|,tj is a vector of length Ny at each j

(Ny is allowed to be different in the passing and trapped regions when the dissipative layer

solution is introduced to provide matching. In [95, 96], Ny has to be the same for passing

and trapped particles in phase space). Substituting Eq.E.22 into Eq.E.7, we obtain

[
PPP
|σ|,t
j ααα

|σ|,t
j+1 +QQQ

|σ|,t
j

]
ggg
|σ|,t
j +PPP

|σ|,t
j βββ

|σ|,t
j+1 +RRR

|σ|,t
j ggg

|σ|,t
j−1 +AAA

|σ|,t
j

(
ggg
|σ|,t
j

)
= 0.

We define MMM |σ|,t
j = PPP

|σ|,t
j ααα

|σ|,t
j+1 +QQQ

|σ|,t
j and hence derive

MMM
|σ|,t
j ggg

|σ|,t
j = −PPP |σ|,tj βββ

|σ|,t
j+1 −RRR

|σ|,t
j ggg

|σ|,t
j−1 −AAA

|σ|,t
j

(
g
|σ|,t
j

)
,

ggg
|σ|,t
j = −

(
MMM
|σ|,t
j

)−1

RRR
|σ|,t
j ggg

|σ|,t
j−1 −

(
MMM
|σ|,t
j

)−1 [
PPP
|σ|,t
j βββ

|σ|,t
j+1 +AAA

|σ|,t
j

(
ggg
|σ|,t
j

)]
.

Comparing this expression for ggg|σ|,tj with Eq.E.21, we derive the following recurrence

relation:

ααα
|σ|,t
j = −

(
MMM
|σ|,t
j

)−1

RRR
|σ|,t
j ,

βββ
|σ|,t
j = −

(
MMM
|σ|,t
j

)−1 [
PPP
|σ|,t
j βββ

|σ|,t
j+1 +AAA

|σ|,t
j

(
ggg
|σ|,t
j

)]
.

(E.23)

Once ααα|σ|,tj and βββ|σ|,tj are found at certain j, they will be determined automatically at each

j by Eq.E.23. At j = Np2 and j = Np2 − 1 Eq.E.21 reads

ggg
|σ|,t
Np2

= ααα
|σ|,t
Np2
ggg
|σ|,t
Np2−1 + βββ

|σ|,t
Np2

,

ggg
|σ|,t
Np2−1 = ααα

|σ|,t
Np2−1ggg

|σ|,t
Np2−2 + βββ

|σ|,t
Np2−1

(E.24)

and hence

ggg
|σ|,t
Np2−2 =

(
ααα
|σ|,t
Np2−1

)−1 [
ggg
|σ|,t
Np2−1 − βββ

|σ|,t
Np2−1

]
. (E.25)
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Substituting Eq.E.25 into Eq.E.20, we have

P̂̂P̂P
|σ|,t
Np2
ggg
|σ|,t
Np2

+

[
Q̂̂Q̂Q
|σ|,t
Np2

+ R̂̂R̂R
|σ|,t
Np2

(
ααα
|σ|,t
Np2−1

)−1
]
ggg
|σ|,t
Np2−1 − R̂̂R̂R

|σ|,t
Np2

(
ααα
|σ|,t
Np2−1

)−1

βββ
|σ|,t
Np2−1 + hhh

|σ|,t
Np2

(
ggg
|σ|,t
Np2

)
= 0

and thus

ggg
|σ|,t
Np2

= −
(
P̂̂P̂P
|σ|,t
Np2

)−1
[
Q̂̂Q̂Q
|σ|,t
Np2

+ R̂̂R̂R
|σ|,t
Np2

(
ααα
|σ|,t
Np2−1

)−1
]

︸ ︷︷ ︸
ααα
|σ|,t
Np2

ggg
|σ|,t
Np2−1+

+
(
P̂̂P̂P
|σ|,t
Np2

)−1

R̂̂R̂R
|σ|,t
Np2

(
ααα
|σ|,t
Np2−1

)−1

βββ
|σ|,t
Np2−1 −

(
P̂̂P̂P
|σ|,t
Np2

)−1

hhh
|σ|,t
Np2

(
ggg
|σ|,t
Np2

)
︸ ︷︷ ︸

βββ
|σ|,t
Np2

.

Comparing this expression for ggg|σ|,tNp2
with the first expression in Eq.E.24, we obtain ααα|σ|,tNp2

in terms of α|σ|,tNp2
:

ααα
|σ|,t
Np2

= −
(
P̂̂P̂P
|σ|,t
Np2

)−1
[
Q̂̂Q̂Q
|σ|,t
Np2

+ R̂̂R̂R
|σ|,t
Np2

(
ααα
|σ|,t
Np2−1

)−1
]
. (E.26)

On the other hand, from the recurrence relation, Eq.E.23, we write

ααα
|σ|,t
Np2−1 = −

[
PPP
|σ|,t
Np2−1ααα

|σ|,t
Np2

+QQQ
|σ|,t
Np2−1

]−1

RRR
|σ|,t
Np2−1,

ααα
|σ|,t
Np2−1

(
RRR
|σ|,t
Np2−1

)−1

= −
[
PPP
|σ|,t
Np2−1ααα

|σ|,t
Np2

+QQQ
|σ|,t
Np2−1

]−1

,

ααα
|σ|,t
Np2−1

(
RRR
|σ|,t
Np2−1

)−1 [
PPP
|σ|,t
Np2−1ααα

|σ|,t
Np2

+QQQ
|σ|,t
Np2−1

]
= −EEE ,(

RRR
|σ|,t
Np2−1

)−1 [
PPP
|σ|,t
Np2−1ααα

|σ|,t
Np2

+QQQ
|σ|,t
Np2−1

]
= −

(
ααα
|σ|,t
Np2−1

)−1

.

Substituting this expression for
(
ααα
|σ|,t
Np2−1

)−1

into Eq.E.26 provides

ααα
|σ|,t
Np2

= −
(
P̂̂P̂P
|σ|,t
Np2

)−1

Q̂̂Q̂Q
|σ|,t
Np2

+
(
P̂̂P̂P
|σ|,t
Np2

)−1

R̂̂R̂R
|σ|,t
Np2

(
RRR
|σ|,t
Np2−1

)−1 [
PPP
|σ|,t
Np2−1ααα

|σ|,t
Np2

+QQQ
|σ|,t
Np2−1

]
,

and thus we derive the following expression for ααα|σ|,tNp2
:

ααα
|σ|,t
Np2

=

[
EEE −

(
P̂̂P̂P
|σ|,t
Np2

)−1

R̂̂R̂R
|σ|,t
Np2

(
RRR
|σ|,t
Np2−1

)−1

PPP
|σ|,t
Np2−1

]−1

·

·
[
−
(
P̂̂P̂P
|σ|,t
Np2

)−1

Q̂̂Q̂Q
|σ|,t
Np2

+
(
P̂̂P̂P
|σ|,t
Np2

)−1

R̂̂R̂R
|σ|,t
Np2

(
RRR
|σ|,t
Np2−1

)−1

QQQ
|σ|,t
Np2−1

] (E.27)
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Now we use the relation for βββ|σ|,tNp2
that comes from the above expression for ggg|σ|,tNp2

:

βββ
|σ|,t
Np2

=
(
P̂̂P̂P
|σ|,t
Np2

)−1

R̂̂R̂R
|σ|,t
Np2

(
ααα
|σ|,t
Np2−1

)−1

βββ
|σ|,t
Np2−1 −

(
P̂̂P̂P
|σ|,t
Np2

)−1

hhh
|σ|,t
Np2

(
ggg
|σ|,t
Np2

)
. (E.28)

From Eq.E.26 we derive

−
(
R̂̂R̂R
|σ|,t
Np2

)−1 [
P̂̂P̂P
|σ|,t
Np2
ααα
|σ|,t
Np2

+ Q̂̂Q̂Q
|σ|,t
Np2

]
=
(
ααα
|σ|,t
Np2−1

)−1

.

From the recurrence relation for trapped particles, Eq.E.23, we obtain

βββ
|σ|,t
Np2−1 = −

[
PPP
|σ|,t
Np2−1ααα

|σ|,t
Np2

+QQQ
|σ|,t
Np2−1

]−1 [
PPP
|σ|,t
Np2−1βββ

|σ|,t
Np2

+AAA
|σ|,t
Np2−1

(
ggg
|σ|,t
Np2−1

)]
.

at j = Np2 − 1. Substituting the latter expression for
(
ααα
|σ|,t
Np2−1

)−1

into Eq.E.28:

βββ
|σ|,t
Np2

= −
(
P̂̂P̂P
|σ|,t
Np2

)−1

R̂̂R̂R
|σ|,t
Np2

(
R̂̂R̂R
|σ|,t
Np2

)−1

︸ ︷︷ ︸
EEE

[
P̂̂P̂P
|σ|,t
Np2
ααα
|σ|,t
Np2

+ Q̂̂Q̂Q
|σ|,t
Np2

]
βββ
|σ|,t
Np2−1 −

(
P̂̂P̂P
|σ|,t
Np2

)−1

hhh
|σ|,t
Np2

(
ggg
|σ|,t
Np2

)

and then the latter expression for βββ|σ|,tNp2−1, we find

βββ
|σ|,t
Np2

=
(
P̂̂P̂P
|σ|,t
Np2

)−1 [
P̂̂P̂P
|σ|,t
Np2
ααα
|σ|,t
Np2

+ Q̂̂Q̂Q
|σ|,t
Np2

] [
PPP
|σ|,t
Np2−1ααα

|σ|,t
Np2

+QQQ
|σ|,t
Np2−1

]−1

·

·
[
PPP
|σ|,t
Np2−1βββ

|σ|,t
Np2

+AAA
|σ|,t
Np2−1

(
ggg
|σ|,t
Np2−1

)]
−
(
P̂̂P̂P
|σ|,t
Np2

)−1

hhh
|σ|,t
Np2

(
ggg
|σ|,t
Np2

)
and hence the final expression for βββ|σ|,tNp2

:

βββ
|σ|,t
Np2

=

[
EEE −

(
P̂̂P̂P
|σ|,t
Np2

)−1 [
P̂̂P̂P
|σ|,t
Np2
ααα
|σ|,t
Np2

+ Q̂̂Q̂Q
|σ|,t
Np2

] [
PPP
|σ|,t
Np2−1ααα

|σ|,t
Np2

+QQQ
|σ|,t
Np2−1

]−1

PPP
|σ|,t
Np2−1

]−1

·

·
[(
P̂̂P̂P
|σ|,t
Np2

)−1 [
P̂̂P̂P
|σ|,t
Np2
ααα
|σ|,t
Np2

+ Q̂̂Q̂Q
|σ|,t
Np2

] [
PPP
|σ|,t
Np2−1ααα

|σ|,t
Np2

+QQQ
|σ|,t
Np2−1

]−1

AAA
|σ|,t
Np2−1

(
ggg
|σ|,t
Np2−1

)
−

−
(
P̂̂P̂P
|σ|,t
Np2

)−1

hhh
|σ|,t
Np2

(
ggg
|σ|,t
Np2

)]
.

(E.29)

Now we have determined ααα
|σ|,t
Np2

and βββ
|σ|,t
Np2

, Eqs.E.27,E.29, at the deeply trapped end,

j = Np2. Then applying the recurrence relation, Eq.E.23, we find all ααα|σ|,tj s and βββ|σ|,tj s

up to λ = λt (j = 0) from the trapped side (see Fig.4.1). Note: in the secondary mode

problem [95, 96] we determine all alphas and betas in the trapped and passing regions up
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to the trapped-passing boundary (the values of the coefficients in the equation evaluated

exactly at the trapped-passing boundary are excluded from the derivations). In addition,

ααα
|σ|,t
Np2

and βββ|σ|,tNp2
allows ggg|σ|,tNp2

to be determined. Indeed, we find

ααα
|σ|,t
Np2−1 = −

[
PPP
|σ|,t
Np2−1ααα

|σ|,t
Np2

+QQQ
|σ|,t
Np2−1

]−1

RRR
|σ|,t
Np2−1

and

βββ
|σ|,t
Np2−1 = −

[
PPP
|σ|,t
Np2−1ααα

|σ|,t
Np2

+QQQ
|σ|,t
Np2−1

]−1 [
PPP
|σ|,t
Np2−1βββ

|σ|,t
Np2

+AAA
|σ|,t
Np2−1

(
ggg
|σ|,t
Np2−1

)]
immediately from ααα

|σ|,t
Np2

and βββ|σ|,tNp2
. For the distribution function we write

ggg
|σ|,t
Np2−1 =

(
ααα
|σ|,t
Np2

)−1 [
ggg
|σ|,t
Np2
− βββ|σ|,tNp2

]
at j = Np2 − 1 from the first expression in Eq.E.24 and Eq.E.25 at j = Np2 − 2. Also, we

employ the equation, Eq.E.7, evaluated at j = Np2 − 1:

PPP
|σ|,t
Np2−1ggg

|σ|,t
Np2

+QQQ
|σ|,t
Np2−1ggg

|σ|,t
Np2−1 +RRR

|σ|,t
Np2−1ggg

|σ|,t
Np2−2 +AAA

|σ|,t
Np2−1

(
ggg
|σ|,t
Np2−1

)
= 0.

Substituting the above expression for ggg|σ|,tNp2−2, Eq.E.25, into Eq.E.7 at j = Np2 − 1

PPP
|σ|,t
Np2−1ggg

|σ|,t
Np2

+

[
QQQ
|σ|,t
Np2−1 +RRR

|σ|,t
Np2−1

(
ααα
|σ|,t
Np2−1

)−1
]
ggg
|σ|,t
Np2−1−

RRR
|σ|,t
Np2−1

(
ααα
|σ|,t
Np2−1

)−1

βββ
|σ|,t
Np2−1 +AAA

|σ|,t
Np2−1

(
ggg
|σ|,t
Np2−1

)
= 0

and then inserting the latter expression for ggg|σ|,tNp2−1, we find the final expression for ggg|σ|,tNp2
:

ggg
|σ|,t
Np2

=

[
PPP
|σ|,t
Np2−1 +

[
QQQ
|σ|,t
Np2−1 +RRR

|σ|,t
Np2−1

(
ααα
|σ|,t
Np2−1

)−1
](
ααα
|σ|,t
Np2

)−1
]−1

·

·
[[
QQQ
|σ|,t
Np2−1 +RRR

|σ|,t
Np2−1

(
ααα
|σ|,t
Np2−1

)−1
](
ααα
|σ|,t
Np2

)−1

βββ
|σ|,t
Np2

+RRR
|σ|,t
Np2−1

(
ααα
|σ|,t
Np2−1

)−1

βββ
|σ|,t
Np2−1

−AAA|σ|,tNp2−1

(
ggg
|σ|,t
Np2−1

)]
.

This expression for ggg|σ|,tNp2
can be used to test the solution in the trapped region, ggg|σ|,tj at

each point in λ, j, reconstructed from the linear approximation, Eq.E.21.
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Once the layer solution is found and allααασ,p/|σ|,tj s and βββσ,p/|σ|,tj s are obtained from the passing

and the trapped sides, we reconstruct the rest solution elements from Eqs.E.11,E.21 up to

the passing/trapped external edges, i.e. λ = λp(j = Np1) / λ = λt(j = 0), respectively.

The described solution technique is illustrated in Fig.4.1 of Chapter IV. Note: in the

NTM problem, matching at the trapped-passing boundary, Eq.3.1, is provided by the

layer solution found in Chapter III.

E.6.3 Matching at the trapped-passing boundary

In the vicinity of λc collisional dissipation becomes important, and the perturbative

approach becomes invalid. Thus, we introduce the collisional dissipation layer to provide

matching between gggσ,pj and ggg|σ|,tj in external regions. The layer solution calculated at λp

(j = Np1) is used as a starting point to reconstruct gggσ,pj from Eq.E.11 up to the deeply

passing end, gggσ,p0 . The trapped part of the layer solution at λ = λt (j = 0) is a starting

point to determine ggg|σ|,tj from Eq.E.21 up to the deeply trapped end, ggg|σ|,tNp2
.

The technique described above is also to be applied to the secondary mode problem.

Here matching is provided exactly at the trapped-passing boundary. To make the above

derivations of the numerical grid consistent, we keep the already introduced notations

in this subsection. However, we have to highlight that the passing region in the NTM

problem, i.e. λ < λc, corresponds in this derivations to the region of particles trapped in

phase space in the secondary mode problem, i.e. H0 < Hc
0 and vice versa.

The function and its first derivative are required to be continuous across the trapped-

passing boundary, i.e. gj and fj should be of class CCC1. Matching is given by Eq.3.1, which

reads

ggg+1,p
Np1

= ggg−1,p
Np1

,

ggg+1,p
Np1

+ ggg−1,p
Np1

= 2ggg
|σ|,t
0 ,

3ggg+1,p
Np1
− 4ggg+1,p

Np1−1 + ggg+1,p
Np1−2 + 3ggg−1,p

Np1
− 4ggg−1,p

Np1−1 + ggg−1,p
Np1−2

2∆λp
= 2
−ggg|σ|,t2 + 4ggg

|σ|,t
1 − 3ggg

|σ|,t
0

2∆λt
.

(E.30)

Here j = Np1 / j = 0 corresponds to the trapped-passing boundary as shown in Fig.A1 of
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[96] (note: in the NTM problem j = Np1 corresponds to λ = λp). The first two conditions

provide

ggg+1,p
Np1

= ggg−1,p
Np1

= ggg
|σ|,t
0 ≡ gggc. (E.31)

Inserting Eq.E.31 into Eq.E.30, we obtain

6

[
1 +

∆λp
∆λt

]
gggc = −2∆λp

∆λt
ggg
|σ|,t
2 +

8∆λp
∆λt

ggg
|σ|,t
1 +4ggg+1,p

Np1−1−ggg
+1,p
Np1−2 +4ggg−1,p

Np1−1−ggg
−1,p
Np1−2. (E.32)

Now we apply the linear approximation, Eq.E.11, at j = Np1 − 1 and j = Np1 − 2 in the

passing region and Eq.E.21, at j = 1 and j = 2 from the side of trapped particles to write

gggσ,pNp1−1 = ααασ,pNp1−1ggg
σ,p
Np1

+ βββσ,pNp1−1 = ααασ,pNp1−1gggc + βββσ,pNp1−1,

gggσ,pNp1−2 = ααασ,pNp1−2ggg
σ,p
Np1−1 + βββσ,pNp1−2

with σ = ±1 and

ggg
|σ|,t
1 = ααα

|σ|,t
1 ggg

|σ|,t
0 + βββ

|σ|,t
1 = ααα

|σ|,t
1 gggc + βββ

|σ|,t
1 ,

ggg
|σ|,t
2 = ααα

|σ|,t
2 ggg

|σ|,t
1 + βββ

|σ|,t
2 .

First, substituting gggσ,pNp1−2 and ggg|σ|,t2 into Eq.E.32, we write

6

[
1 +

∆λp
∆λt

]
gggc =

[
−2∆λp

∆λt
ααα
|σ|,t
2 +

8∆λp
∆λt

]
ggg
|σ|,t
1 +

+
[
4EEE −ααα+1,p

Np1−2

]
ggg+1,p
Np1−1 +

[
4EEE −ααα−1,p

Np1−2

]
ggg−1,p
Np1−1 −

2∆λp
∆λt

βββ
|σ|,t
2 − βββ+1,p

Np1−2 − βββ
−1,p
Np1−2.

(E.33)

Then we substitute gggσ,pNp1−1 and ggg|σ|,t1 into Eq.E.33 to obtain the trapped-passing boundary

element of the solution:

gggc =

[
6

(
1 +

∆λp
∆λt

)
−
(

8∆λp
∆λt

− 2∆λp
∆λt

ααα
|σ|,t
2

)
ααα
|σ|,t
1

−
(

4EEE −ααα+1,p
Np1−2

)
ααα+1,p
Np1−1 −

(
4EEE −ααα−1,p

Np1−2

)
ααα−1,p
Np1−1

]−1

·

·
[(
−2∆λp

∆λt
ααα
|σ|,t
2 +

8∆λp
∆λt

)
βββ
|σ|,t
1 +

(
4EEE −ααα+1,p

Np1−2

)
βββ+1,p
Np1−1 +

(
4EEE −ααα−1,p

Np1−2

)
βββ−1,p
Np1−1−

−2∆λp
∆λt

βββ
|σ|,t
2 − βββ+1,p

Np1−2 − βββ
−1,p
Np1−2

]
.

(E.34)
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This expression can be simplified provided ∆λp = ∆λt. In the secondary mode problem

Eq.E.34 is used to provide matching across the trapped-passing boundary. gggc is a starting

point to construct gggσ,pj /ggg|σ|,tj up to the deeply passing/trapped end from Eq.E.11/Eq.E.21,

respectively.

To solve the reduced equation, Eq.18, in [96], Eq.E.34 is to be applied in its scalar form.

gggσ,pj and ggg|σ|,tj become scalars at each point in H0, j. To solve Eq.14 in [96], we have to

keep both σ branches in the trapped region in H0 space and thus Eq.E.30 is to be replaced

by Eq.A.8 of [96]. Note: in the secondary mode problem, σ, p is to be replaced by |σ| , t in

Eq.E.34 and vice versa.

E.7 Block diagram

A detailed block diagram is presented in Fig.E.1.

• Step 1: generate grids in phase space and enter input parameters. INPUTS:

SPLINE SETTINGS for RectBivariateSpline

MAGNETIC FIELD: B0, toroidal and poloidal field components. The poloidal

field component is to be introduced in a large aspect ratio, shifted circular

model/finite aspect ratio non-circular model for the poloidal cross section 104

(included in a code but left beyond the scope of the presented study) [117].

TOKAMAK PARAMETERS: ε, R0, a in a small inverse aspect ratio circular

cross section conventional tokamak approximation; Shafranov shift ∆(r),

elongation κ, triangularity δ, ∂rψ, Sκ, Sδ from Miller’s model (included in

a code but left beyond the scope of the presented study) [117].

ADDITIONAL EQUILIBRIUM SETTINGS: internal inductance li and

tokamak poloidal beta βϑ required for ∂rR0 from Miller’s model

CHARACTERISTIC LENGTH SCALES and VELOCITY: Lq, Ln0, LTj, LB,

ηj = Ln0/LTj, V̂j

104A large aspect ratio, shifted circular model is fully implemented in a code, while the finite aspect
ratio non-circular model requires a more detailed treatment of corrections of order ε2 and higher. Terms
of order ε2 do not provide a significant impact on our current results but are important to study the
curvature effects.
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FREQUENCIES: ν̂i, ωE, mass ratio mi/me

POLOIDAL LARMOR RADIUS AND MAGNETIC ISLAND WIDTH: ρϑi, w,

ψs

• Step 2: introduce a model form of the electrostatic potential that is to be used at

the 0th iteration in Φ. Φ ∝ ωEψ corresponds to its equilibrium distribution, i.e.

in the absence of the magnetic island. Calculate the electrostatic potential term,

(−1/2)
〈
ρϑjΦ̂/V‖

〉pϕ
ϑ
, for passing and trapped particles.

• Step 3: (re)define the S grid. S depends on the form of the electrostatic potential

and thus is to be updated at each iteration in Φ. For passing particles, the location

of the S island separatrix is updated. For trapped particles, we check if there is

an island-like structure for certain Φ. If the answer is positive, we apply the same

technique we use for passing particles to trapped particles. If the answer is negative,

we repeat the procedure we use at the 0th iteration in Φ when S is proportional to

pϕ
105.

• Step 4: replace S±/t with y±/t to provide Neumann boundary at infinity, far from

the magnetic island.

• Step 5: calculate the inverse function, pϕ = pϕ(y±/t), i.e. solve the transcendental

equation y±/t = y±/t(pϕ) for pϕ at each ξ, λ and V 106. The y±/t grid is to be

updated at each iteration in the electrostatic potential.

• Step 6: calculate the A coefficient for σ = ±/t.

• Step 7: find layer solution (including moments of the particle distribution function

and the electro-magnetic field Lagrangian in the layer).

• Step 8: The LAYER_SOLVER provides matching at fixed pϕ and thus determines

the ion/electron distribution function as a function of pϕ, ξ and λ. To move further

and use the layer solution as a starting point to find the external solution in

{S, λ, V ;σ} space, we have to switch from pϕ to S in the layer solution. gj = gj(pϕ)

is equivalent to two branches of gj = gj(S), i.e. for σpϕ ≷ 0.

105There is no island structure in the trapped branch for plasma and tokamak parameters we consider.
106The existence of this function is not generally guaranteed. The INVERSE_FUNCTION subroutine

has been tested: in the absence of the electrostatic potential and for certain model forms of Φ, the
numerical solution of y±/t = y±/t(pϕ) for pϕ matches known analytic expressions.
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• Step 9: find coefficients of Eqs.D.60,D.61 107.

• Step 10: Use the procedure described above in Appendix E to reconstruct the

external solution in passing and trapped regions up to the deeply passing/trapped

ends.

• Step 11: find solution as a function of y and λ for each σpϕ , σ and V inside and

outside the drift island.

• Step 12: switch from y±/t to pϕ and then from pϕ to ψ to reconstruct the flows.

• Step 13: calculate the momentum conservation term in the collision operator. We

iterate over it until it converges.

• Step 14: save results for the ion plasma component.

• Step 15: repeat the above procedure (steps 2-14) for electrons. The electron solution

depends on the ion distribution function since the electron-electron collisions are

comparable to the electron-ion collisions.

• Step 16: calculate density perturbations.

• Step 17: calculate the electrostatic potential from the plasma quasi-neutrality

condition. We have to iterate over it until it converges. A total number of iterations

depends on ρϑi/w and ωE as both provide steepening of the particle distribution

inside the magnetic island.

• Step 18: calculate total density and flows. J‖ = eZiu‖i − eu‖e.

• Step 19: calculate the total Lagrangian and the MRE contributions.

• Step 20: determine the critical magnetic island width and the island propagation

frequency. Check if the polarisation current contribution is stabilising/destabilising

at given ω.

107Steps 7 and 9 are simultaneous.
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F Figures not included in the main part

Figure F.1: The neoclassical MRE contributions to the island time evolution for different ρϑi.



205

F
ig
u
re

F
.2
:
Zo

om
of

F
ig
.4
.4
(c
)-
(h
)
in

th
e
vi
ci
ni
ty

of
th
e
S
is
la
nd

,σ
=
±

1
,σ

p
ϕ

=
+

1
.
T
he

ξ
de
pe

nd
en
ce

of
g

(0
)

i
fo
r
ea
ch

σ
is

w
ea
k
ou

ts
id
e
th
e

di
ss
ip
at
iv
e
la
ye
r,

(c
)-
(e
),

an
d
be

co
m
es

si
gn

ifi
ca
nt

cl
os
e
to

th
e
tr
ap

pe
d-
pa

ss
in
g
bo

un
da

ry
,(

f)
-(
h)
.



206

(a
)

(b
)

(c
)

(d
)

F
ig
u
re

F
.3
:
O
rb
it
-a
ve
ra
ge
d
pa

ra
lle

l
cu

rr
en
t
de
ns
it
y
pe

rt
ur
ba

ti
on

pl
ot
te
d
ag
ai
ns
t

Ω
in

th
e
vi
ci
ni
ty

of
th
e
m
ag
ne
ti
c
is
la
nd

se
pa

ra
tr
ix

fo
r
sm

al
l

ρ
ϑ
i/
w

=
0
.0

5
(a
)
an

d
la
rg
e
ρ
ϑ
i/
w

=
0
.3

3
(c
).

(b
)/
(d
)
Zo

om
of

(a
)/
(c
)
fa
r
fr
om

th
e
m
ag
ne
ti
c
is
la
nd

,r
es
pe

ct
iv
el
y.

B
lu
e
cu
rv
es

in
di
ca
te

an
an

al
yt
ic

lim
it
fa
r
fr
om

th
e
m
ag

ne
ti
c
is
la
nd

ob
ta
in
ed

in
[5
3]
.
H
er
e
th
e
m
ax

im
um

va
lu
e
of
ψ

is
2
.9
w
,i
.e
.

1.
4
5
is
la
nd

w
id
th
s.



207

G Stability analysis of secondary modes,

driven by a phase space island: appendix

G.1 Resonant and non-resonant forms of the secondary

mode dispersion relation

In this appendix we demonstrate that Eqs.5.51,5.52 and Eq.5.53 are equivalent. The most

convenient way is to compare resonant contributions with the perturbed EP distribution

function, gjω, given by Eqs.5.34/5.39 with Eq.5.40 and Eqs.5.45,5.47. Substituting

Eqs.5.47,5.49 into Eq.5.45 yields

gjω (α,H0;σp) = −
∑
n∈Z

δω

δω − nΩb + i0+

∂f0,j

∂H0

hkωe
inα

∫ π

−π

dα′

2π
ei(lξ

′−nα′). (G.1)

Applying the Landau relation, which reads

1

δω − nΩb + i0+
= −i

∫
R+

ei(δω−nΩb)σdσ, (G.2)

and then employing the following expression for the Shah function:

∑
n∈Z

ein(α−α′−Ωbσ) = 2π
∑
k∈Z

δ (α− α′ − Ωbσ − 2πk) (G.3)

we rewrite the above formula to obtain

gjω (α,H0;σp) = 2πiδω
∂f0,j

∂H0

hkω
∑
n∈Z

∫
R+

dσ

∫ π

−π

dα′

2π
ei(lξ

′+δωσ)δ (α− α′ − Ωbσ − 2πn),

(G.4)

which, in turn, can be written as

gjω (α,H0;σp) =

2πi
δω

Ωb

∂f0,j

∂H0

hkω
∑
n∈Z

∫ 3π/2

−π/2

dα′

2π
exp

[
i

(
lξ′ + δω

α− α′ + 2πn

Ωb

)]
·Θ
(
α− α′ + 2πn

Ωb

)
.

(G.5)
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Here we have shifted the limits of integration in accordance with the limit operation for a

periodic function, and replaced n with −n due to periodicity. Let us take Ωb > 0 108. As

α, α′ ∈ [−π/2; 3π/2], α− α′ ∈ [−2π; 2π]. For n ≤ −1 the Heaviside function returns zero.

If n = 0, then α′ ∈ [−π/2;α]. If n = 1, the Heaviside function returns one. Thus,

gjω (α,H0;σp) = 2πi
δω

Ωb

∂f0,j

∂H0

hkω

∫ α

−π/2

dα′

2π
exp

[
i

(
lξ′ + δω

α− α′

Ωb

)]
+

2πi
δω

Ωb

∂f0,j

∂H0

hkω

+∞∑
n=1

∫ π

−π

dα′

2π
exp

[
i

(
lξ′ + δω

α− α′ + 2πn

Ωb

)]
.

(G.6)

Employing Eq.5.41, we finally obtain

gjω (α,H0;σp) = 2πi
δω

Ωb

∂f0,j

∂H0

hkω

{∫ α

−π/2

dα′

2π
exp

[
i

(
lξ′ + δω

α− α′

Ωb

)]
+∫ π

−π
dα′

2π
exp

[
i
(
lξ′ + δωα−α′

Ωb

)]
exp

(
−2πi δω

Ωb

)
− 1

 ,

(G.7)

which is exactly Eqs.5.39,5.40.

108The same analysis can be produced when Ωb < 0.
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Abbreviations

DK-NTM Drift kinetic NTM solver: finds a solution of the orbit-averaged drift kinetic

equation to leading order in ∆, i.e. Eq.2.35 for a full range of the pitch angle variation.

The electrostatic potential is calculated self-consistently from the plasma quasi-

neutrality condition. DK-NTM with model analytic electrons has been developed

in [73, 93, 74]. Its numerical scheme and numerical algorithm can be found in [74].

DK-NTM that treats electrons similar to RDK-NTM is under development by K.

Imada.

ECCD Electron cyclotron current drive

ECRH Electron cyclotron resonance heating

EP Energetic particle

H96 An analytic drift kinetic solution valid in the limit of large islands outside the

magnetic island separatrix. It implies a model radial diffusion. It has been found in

[53].

ICCD Ion cyclotron current drive

ICF Inertial confinement fusion

ICRH Ion cyclotron resonance heating

LHCD Lower hybrid current drive

MCF Magnetic confinement fusion

MHD Magnetohydrodynamics

NBI Neutral beam injection

NTM Neoclassical tearing mode



210 Abbreviations

OH Ohmic heating

RDK-NTM Reduced drift kinetic NTM solver: finds a solution of the reduced orbit-

averaged drift kinetic equation to leading order in ∆, i.e. Eq.2.35 in the dissipative

layer and Eq.2.40 outside the layer. The electrostatic potential is calculated self-

consistently from the plasma quasi-neutrality condition. RDK-NTM has been

developed in this dissertation. Its numerical scheme and numerical algorithm can

be found in Sec.4 and Appendix E.
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