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Abstract 

Understanding how plant productivity responds to CO2 is crucial to understanding Earth 

System dynamics and therefore, predicting the Earth System’s response to anthropogenic 

forcing of atmospheric CO2. Free Air Carbon dioxide Enrichment (FACE) experiments test the 

CO2 response of semi-natural forest stands over the course of a decade of CO2 enrichment 

and this Thesis informs and develops global carbon cycle modelling using FACE data. 

Meta-analysis of FACE experiments showed maintained productivity gains, and no evidence 

of photosynthetic acclimate to elevated CO2, over nine years of enrichment. An artefact of 

FACE methods is that CO2 concentrations oscillate at high frequency (1 oscillation per 

minute) and high amplitude (400–900 µmol mol-1) with the potential to impact carbon 

assimilation. Chapter three demonstrated that carbon assimilation was increased in Quercus 

robur and Populus x euramericana compared to steady state CO2. 

Simulation of the Oak Ridge and Duke FACE experiments showed that both the Sheffield 

Dynamic Global Vegetation Model (SDGVM) and the Joint UK Land Environment Simulator 

(JULES) could reproduce Net Primary Productivity (NPP) with a reasonable degree of 

accuracy once Vcmax was accurately parameterised. This research highlights the necessity of 

rigorous model testing with observed data and shows the need to develop a strong, cross 

model, benchmarking system. 

A global meta-analysis assessed the response of Vcmax to leaf nitrogen and phosphorus 

showing that phosphorus reduced the sensitivity of Vcmax to nitrogen. Global simulation with 

the empirical Vcmax to leaf nitrogen and phosphorus relationship led SDGVM to over-predict 

Gross Primary Productivity (GPP) and biomass, yet lowered terrestrial CO2 sequestration 

over the course of the 20th and 21st century due to higher rates of soil respiration.  

Model bias and compensating factors are highlighted and correction of parameterisation 

error showed that more explicit process representation is necessary in SDGVM. Areas 

highlighted for model development were: nitrogen cycle simulation; Vcmax and Jmax; 

parameterisation; experimental quantification of the effect of soil water stress on forest 

productivity and the simulation of biomass and mortality. Accurate global datasets of 

biomass, NPP and leaf traits will help to uncover model bias and compensating factors and 

will help to develop model processes. 
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Chapter 1 Introduction 

We face a high CO2 world. By 2100, with current emission rates (Le Quéré et al. 2009), the 

atmospheric CO2 concentration is likely to be between 600 and 1050 µmol mol-1, or two to 

four-fold higher (Sitch et al. 2008) than the pre-industrial maxima of280 µmol mol-1 observed in 

ice-cores stretching back 800,000 years into the past (Wolff 2011). Given a particular projection 

of future CO2 emissions, much of the uncertainty in predicting future atmospheric CO2 trends 

has been due to uncertainties in the response of terrestrial ecosystems (vegetation and soils) to 

increased CO2 and changing climate (Friedlingstein et al. 2006). Negative feedback from the 

land surface, as well as negative feedback through physical and biological ocean pumps, has 

slowed the observed rise in global atmospheric CO2 concentration over the past 150 

years(Canadell et al. 2007). Approximately half the fossil fuel and land use change emissions 

have been sequestered by the terrestrial biosphere and the ocean’s and the majority of the 

annual variability in the CO2 sink is due to variability in the sink strength of the terrestrial 

biosphere (Canadell et al. 2007). 

Global climate is intimately linked to atmospheric CO2 and—if the majority of scientific 

literature and opinion is correct—consequences of increasing atmospheric CO2 are increasing 

global temperatures and changing patterns of climate (Solomon et al. 2007, Allen et al. 2009). 

Climate change is arguably the most politicised scientific issue of our day as it has the potential 

to face every person on the planet with changing and potentially unstable weather patterns 

(Parry et al. 2007). Scientists must provide accurate information, including the limitations of our 

understanding, to allow the global population, policy makers and businesses to decide on the 

risks posed to them by climate change and to plan for the future.  

An obstacle to understanding the global carbon cycle and climate change is that they are 

phenomena of the Earth-System as a whole. Principles of the scientific method are redundant 

when considering how the Earth System will respond to unprecedented change. Repeatable 

experimental testing of hypotheses using sampling and treatment replication is impossible, 

making falsification of competing hypotheses difficult. We have one replicate of one treatment 

– the historical and the future pattern of anthropogenic CO2 emission within our planetary 

system, confounded by anthropogenic forcing of other biogeochemical cycles and against a 
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background of incomplete knowledge of the state and dynamics of the Earth System before the 

anthropocene (Steffen et al. 2007). 

Computer simulation of the Earth-System is the only way that we can attempt to understand 

and quantify the future impacts of increasing atmospheric CO2 on Earth. However, the earth-

system is hugely complex and while computer modelling efforts have been commendably 

successful there are still many gaps in our knowledge. The terrestrial biosphere is particularly 

complex, integrating sub-cellular processes, such as photosynthesis, through the whole 

organism to the ecosystem and finally to regional scale carbon sequestration. Even for 

contemporary periods, there is significant uncertainty in precisely how the land surface is 

interacting with the full global carbon cycle (Le Quéré et al. 2009). 
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The Earth System, carbon dioxide and humans 

The carbon cycle 

Human activity has directly increased the carbon flux to the atmosphere by combusting fossil 

fuels and disturbing natural ecosystems through changing land-use. Anthropogenic 

modification of the global carbon cycle is by far the most likely cause of observed global climate 

change (IPCC 2007). 

In 2010 anthropogenic carbon emissions from fossil fuels were 9.14 Pg C yr-1 (Peters et al. 

2012), increasing at a mean rate of 3.4% yr-1 between 2000–2008 up from 1% yr-1 in the 

1990s(Le Quéré et al. 2009). Carbon emissions from land use change, primarily tropical 

deforestation, were estimated at 0.87 Pg C yr-1in 2010 (Peters et al. 2012) and at 1.5 Pg C yr-1 

from 1990–2005 (Le Quéré et al. 2009). Total anthropogenic carbon emissions from fossil fuel 

burning and land-use change, since pre-industrial times to 2000,were estimated at 244 Pg C 

(Denman and Lohmann 2007) with a total increase in atmospheric carbon estimated at 165 Pg 

C or 68%, known as the airborne fraction, indicating an increase in the carbon flux from the 

atmosphere (the carbon cycle is assumed to have been in equilibrium prior to the industrial 

revolution). 

The mean annual airborne fraction was 43% from 1959-2008 (Le Quéré et al. 2009) with mean 

annual ocean uptake estimated at 2.2±0.4 Pg C yr-1 and land uptake estimated at 2.6±0.7 Pg C 

yr-1 between 1990 and 2000. Denman and Lohmann (2007) estimated the total increment of 

the ocean carbon pool since pre-industrial times at 118 Pg C. Total loss of terrestrial carbon to 

the atmosphere due to human land use was estimated at 156 Pg C (Houghton 2003). To 

balance the cycle total atmospheric carbon uptake by the terrestrial biota was estimated at 101 

Pg C(Denman and Lohmann 2007), within the range of estimates by Sabine et al. (2004), given 

as 61 to 141 Pg C. The balance between carbon emissions and the strength of the ocean and 

land sinks has led to an increase in atmospheric CO2 concentration from 278 µmol mol-1 in the 

pre-industrial period to 392 µmol mol-1 at Mauna Loa, Hawaii in February 2012 (Tans and 

Keeling 2012).  
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Plant responses to CO2 and scaling to the Earth System 

CO2 fertilisation 

Atmospheric CO2 increase has been subject to negative feedback resulting from an increased 

flux of carbon from the atmospheric pool to the terrestrial and oceanic pools (Canadell et al. 

2007). Known as the ‘CO2 fertilisation effect’, higher rates of photosynthesis are translated into 

higher plant growth rates and terrestrial plant biomass (Taylor and Lloyd 1992). Higher levels of 

atmospheric CO2 increases photosynthetic carboxylation efficiency by relieving substrate 

limitation of the enzyme Ribulose 1-5 Bisphosphate Carboxylase/Oxygenase (RuBisCO) and 

increasing the carboxylation to oxygenation ratio of RuBisCO (Farquhar et al. 1980, Stitt 1991). 

Photosynthetic acclimation at elevated atmospheric CO2 

Many enclosure studies on the effect of elevated CO2 on photosynthesis have identified 

acclimation of the photosynthetic rate after a prolonged period of exposure to elevated 

atmospheric CO2 (Arp 1991, Stitt 1991, Kurasova et al. 2003, Xiao et al. 2008). Acclimation in 

this context describes down-regulation of the photosynthetic rate so that carbon use efficiency 

(CUE—carbon assimilation divided by the atmospheric CO2 concentration) of plants grown at 

elevated CO2is significantly lower than those of plants grown at ambient CO2 concentrations 

(Arp 1991, Woodward 2002). 

Experimental evidence has demonstrated that acclimation is related to both the Calvin Cycle 

and electron transport. Acclimation via the Calvin Cycle occurs via reductions in leaf nitrogen, 

which is a proxy for leaf RuBisCO concentrations, and carboxylation rates are therefore reduced 

(Stitt 1991).  

In order to incorporate increased carbohydrate due to higher photosynthetic rates under 

elevated CO2 into plant biomass, the extra carbon must be stoichiometrically balanced by other 

elements that are essential components of plant biomass (Elser et al. 2007). In nutrient limited 

systems it may not be possible for a plant to access more nutrients. Del Pozo et al. (2007) have 

also shown that nitrogen availability may be reduced at high atmospheric CO2 due to reduced 

soil mass flow caused by decreased stomatal conductance and reduced transpiration. 

Restricted nitrogen availability can limit carbon sink development causing an accumulation of 

carbohydrate in leaf cells. Accumulated carbohydrate can down-regulate levels of RuBisCO in 

the leaf (Arp 1991) and nitrogen may be remobilised for use in biomass synthesis in an adaptive 
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strategy that aims to balance source and sink strength. IndeedRogers and Humphries (2000) 

showed that acclimation of the photosynthetic rate was strongly correlated with a drop in 

Vcmax—the RuBisCO (i.e. nitrogen) limited maximum rate of photosynthesis, discussed below. 

Acclimation via electron transport is caused by increased competition for the reducing 

products, ATP and NADPH, used in the Calvin Cycle and the nitrite assimilation pathway (Searles 

and Bloom 2003, Yong et al. 2007). At high nitrogen levels it has been proposed by Yong et al. 

(2007) that photosynthesis acclimates due to higher nitrogen uptake under elevated CO2, 

presumably due to higher nitrogen demand. 

The exact processes behind acclimation of photosynthesis to elevated CO2 have not been fully 

analysed but a prevalence of nitrogen limitation, and therefore decreased leaf nitrogen 

concentrations, as a major cause of this phenomenon has been well documented (Arp 1991, 

Tocquin et al. 2006, Del Pozo et al. 2007). However this correlation did not necessarily mean 

nitrogen limitation was the cause of photosynthetic acclimation, but that RuBisCO activity was 

closely tied to the photosynthetic rate. 

Climate change 

Climate change is expected to impact on terrestrial ecosystems in multiple ways, and that are 

highly dependent on the particular alterations made by humans to atmospheric gases that are 

radiatively active (i.e. gases that influence climate but each gas having a different impact). 

Huntingford et al. (2011) demonstrate in a conceptual study, normalising the effect of each 

radiative forcing agent to a forcing of +1 Wm-2, how the physiological impacts on terrestrial 

ecosystems vary strongly between changes to CO2, non-CO2 greenhouse gases, ozone, 

decreasing sulphates – and any imposed climate change. In reality, it is radiative forcing 

associated with CO2that is the most important.  

The impacts of climate change on terrestrial vegetation are different, and often of opposite 

sign, to the direct impacts of elevated CO2. Temperature and precipitation change are likely to 

have the biggest impacts on vegetation through modification of ecosystem processes and 

characteristics and increases in frequency and magnitude of extreme events (Karl et al. 1995, 

Easterling et al. 2000, Beniston et al. 2007). Increases in storm severity and extreme climate 

events in general may have a large impact on mortality events in eco-systems (Fuhrer et al. 

2006, McDowell et al. 2011). Chronic changes in temperature are also impacting predation and 
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pathogen events in forest ecosystems by relieving predators and pathogens from cold mortality 

during winter months (Cullingham et al. 2011, Sturrock et al. 2011). 

Therefore, central to estimating future terrestrial ecosystem carbon stocks is the balance 

between the often detrimental effects of imposed climate change and photosynthetic 

fertilisation due to raised atmospheric CO2 concentrations. 
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Model predictions of atmospheric CO2 increase over the 21st century 

A key goal of climate research is to accurately predict the link between a range of different CO2 

emissions scenarios, and their impacts in terms of climate change. This link has two 

components – first, emissions must be balanced by other sources and sinks to determine the 

atmospheric CO2 pool and therefore atmospheric carbon dioxide concentrations, and then from 

here, associated changes in surface meteorology must be estimated. The 5th IPCC report 

recognises this differentiation and policy recommendations will be based predominantly on the 

Representative Concentration Pathways (RCPs;Moss et al. 2010).  

Translation of the RCPs to amounts of global warming will inform whether a particular pathway 

is compatible with a target threshold, such as keeping global warming below two degrees. RCPs 

need translating from emissions to allow socio-economists to state whether rates of 

decarbonisation required for particular pathways are feasible. Critical to this mapping are 

accurate predictions of how much CO2 the natural components of the Earth system 

(predominantly terrestrial ecosystems and the oceans) can “draw-down” and thus mitigate 

emissions. Hence, the stronger the natural sink, the higher the amount of “permissible 

emissions” to achieve a particular concentration pathway. 

Given a particular scenario of anthropogenic greenhouse gas emissions from fossil fuel burning, 

industrial activity and land use change (Nakicenovic et al. 2000), the terrestrial carbon cycle is 

the major driver of atmospheric CO2 concentration over the time-scale of decades (Cramer et 

al. 2001, Canadell et al. 2007). Through its influence on atmospheric CO2, the terrestrial carbon 

cycle will be a key driver of future climate change (Huntingford et al. 2009). Models ‘forced’ 

with various CO2 emissions scenarios taken from the Special Report on Emissions Scenarios 

(SRES - Nakicenovic et al. 2000) have predicted changes in the state and dynamics of 

atmospheric CO2 and the global carbon cycle that vary widely (Cramer et al. 2001, Friedlingstein 

et al. 2006, Denman and Lohmann 2007, Sitch et al. 2008, Huntingford et al. 2009). Predictions 

of future global change are generated by running these models. 

Model uncertainty 

Cramer et al. (2001) investigated the outcomes of HadCM2-SUL GCM predictions of climate 

change to drive six Dynamic Global Vegetation Models (DGVMs) using the IPCC IS92a scenario 

(Legget et al. 1992), a ‘business-as-usual scenario’ with regards to emissions. Ten-year mean 
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net ecosystem productivity (NEP, i.e. terrestrial land carbon uptake) by 2100 ranged from 0.3 

Pg y-1 to 6.8 Pg y-1. 

Sitch et al. (2008) demonstrated that different DGVMs created a range in atmospheric CO2 

prediction for the 21st century that was increased when feedback was considered between 

terrestrial carbon flux, atmospheric CO2 and climate change. They also demonstrated that the 

largest variability in the prediction of atmospheric CO2 came from the emissions scenario. 

Scholze et al. (2006) investigated the outcomes of 16 different GCMs coupled with a single 

DGVM, the Lund-Potsdam-Jena model (LPJ), under four different SRES scenarios. The models 

predicted a wide range of land ecosystem carbon uptake by the year 2100. For the A2 SRES the 

range of predicted carbon flux from the atmosphere to the land was from -4.1 Pg C y-1 (PCM 

model – also the 20 year mean) to 8.2 Pg C y-1 (HadCM3 model, although this was rather 

extreme – the 20 year mean for HadCM3 stood at 1.9 Pg C y-1). 

Friedlingstein et al. (2006) investigated the outcomes from 11 coupled earth-system models 

used by various research groups under the A2 SRES scenario. Each model consisted of one of 11 

GCMs, one of nine terrestrial carbon cycle models (4 DGVMs and 5 land surface schemes) and 

one of nine ocean carbon cycle models. Predicted land carbon uptake in 2100 ranged from -6.0 

Pg C y-1 to 11.0 Pg C y-1. 

Huntingford et al. (2009) used a simple climate carbon-cycle model to investigate the 

differences in the behaviour of 11 high-profile climate models. They demonstrated that 

although variability in GCM structure and parameters caused large uncertainty in prediction of 

future temperature increase, variability in carbon cycle structure and parameterisation also 

played an important role. 

Findings from Cramer et al. (2001), Friedlingstein et al. (2006), Scholze et al. (2006), Sitch et al. 

(2008) and Huntingford et al. (2011) demonstrate that there was large variability and therefore 

uncertainty in predictions of terrestrial-ecosystem carbon uptake by the year 2100. The range 

of terrestrial carbon uptake generated by DVGM or GCM choice was similar, 6.9 Pg y-1 (10 year 

mean) and 6.0 Pg y-1 (20 year mean) respectively. However, in the first instance the range was 

due to variation in predicted response of terrestrial vegetation to a single climate scenario 

whereas in the second instance the range was due to variation in predicted climate change 

scenario. 
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Currently the terrestrial biosphere exerts negative feedback on atmospheric carbon increases 

(Denman and Lohmann 2007). However, most modelling studies show that following an 

increase in magnitude, the strength of negative feedback on atmospheric carbon decreases and 

even has the potential to reverse resulting in runaway increases in atmospheric carbon; caused 

by forest mortality and loss of soil carbon, and leading to increased global temperatures and 

climate change (Cox et al. 2000, Cramer et al. 2001).  

Simulated carbon uptake should be nitrogen limited 

The strength of negative feedback on atmospheric CO2 rise by the terrestrial biosphere is 

limited by the capacity of the terrestrial biosphere to sequester more carbon. Stimulation of 

carbon sequestration by increased photosynthetic rates assumes that plant growth is carbon 

limited. Millard et al. (2007) propose that this is not the case and that plant growth, in the 

majority of cases, is nitrogen limited. 

Hungate et al. (2003) studied the nitrogen requirements of global vegetative biomass increases 

predicted by DGVMs, some of them components of the GCMs used in the last IPCC report. 

Using carbon-to-nitrogen ratios (C:N; tree = 200, soil = 15) they calculated an increased global 

nitrogen demand of 2.3 to 16.9 Pg by 2100, yet a supply of only 1.2 to 6.1 Pg nitrogen (based on 

estimates of deposition, volatisation, leaching and fixation). Only two (SDGVM and HYBRID) of 

six models fell within this range of future nitrogen supply—the two which explicitly simulate 

nitrogen uptake. Due to the low carbon to nitrogen ratios of the soil, nitrogen requirements to 

match additional carbon assimilation are sensitive to soil C:N. In the supplementary material, 

Hungate et al. (2003) qualify that an increase in soil C:N from 15 to 18.3 would be sufficient to 

bring all models’ nitrogen requirements into realistic projections of nitrogen availability. Gill et 

al. (2002) showed that in a chamber experiment soil C:N ratios and absolute carbon both 

increase at higher CO2 concentrations. 

A number of models have now been developed to simulate a full, mass-balanced nitrogen cycle 

(Thornton et al. 2007, Zaehle and Friend 2010) and even nitrogen and phosphorus cycles (Wang 

et al. 2007b) which show that CO2 fertilisation is reduced by nitrogen limitation. However, only 

Zaehle et al. (2010) extend their simulations to 2100 demonstrating that nitrogen limitation 

reduced CO2 fertilisation, resulting in atmospheric CO2 48 µmol mol-1 higher in 2100 than 

simulations without nitrogen limitation. 
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Model Calibration and Validation 

How much confidence can be placed in the predictions of a computer model? In order to be 

confident in the model predictions Rykiel (1996) emphasised the need to rigorously test 

ecological models for simulation accuracy within their domain of applicability. Confidence can 

be gained by looking at the success of the model’s calibration and validation. Calibration is the 

tuning of the processes simulated within the model using experimentally determined 

relationships between the driving variables and the variables that the model is trying to 

simulate. Validation is testing the accuracy of model predictions, once the processes have been 

calibrated, against an observed data set separate from the calibration dataset (Rykiel 1996). 

The processes of calibration and validation both need to measure the predicted data's 

goodness of fit (GOF) with the observed data. We can have confidence in a model when these 

GOF measurements are satisfactory. 

Rykiel (1996) stated that: 

Whenever validation is required, the modeller must specify three things: (1) the purpose 
of the model, (2) the criteria the model must meet to be acceptable for use and (3) the 
context in which the model is intended to operate. 

The purpose of dynamic global vegetation models is to simulate terrestrial carbon cycling. To be 

acceptable for use they must accurately simulate current terrestrial productivity and carbon 

stocks based on accurate simulation of carbon fluxes and vegetation biome boundaries. The 

context in which carbon cycle models are intended to operate is that of increasing atmospheric 

CO2 and change in global temperature, precipitation and radiation patterns and therefore 

models need to be able to simulate the response of terrestrial productivity and biomass to 

increased CO2 against a background of climate variability. 

DGVM validation 

There has been progress in developing, parameterising and validating terrestrial carbon cycle 

models (Pitman 2003). Considerable use has been made at the site scale of eddy correlation 

data which measure land-atmospheric fluxes of momentum, heat, water vapour and more 

recently, carbon dioxide, and all simultaneously with meteorological measurements (Blyth et al. 

2011). At the global scale various satellite derived products (which often depend upon a model 

of their own) (Lawrence and Chase 2007), land-cover datasets (Cramer et al. 2001, Woodward 

and Lomas 2004), and most recently a globally gridded map of GPP from the FLUXNET 
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community (Bonan et al. 2011b) have been used for validation, providing detailed spatial 

information on the extent and function of terrestrial ecosystems. CO2 flask measurements 

provide a global value of mean atmospheric CO2 and thus a constraint for carbon cycle models 

when analysing their ability to depict the contemporary period (Schwalm et al. 2010).  

DGVMS can also be forced with local observed climatic data at an individual experimental site. 

The FLUXNET experimental sites (Baldocchi et al. 2001) using the eddy covariance techniques 

are particularly useful for this kind of validation. Model outputs are then compared with 

experimentally observed factors such as net ecosystem CO2 exchange (NEE), latent heat fluxes 

and sensible heat fluxes (Mercado et al. 2007, Wang et al. 2007b, Zaehle and Friend 2010, Blyth 

et al. 2011).  

Until recently the effect of elevated CO2 in terrestrial carbon cycle models has been implicitly 

validated, rather crudely, on the basis that models reproduce with some degree of accuracy the 

observed global rise in atmospheric CO2 from pre-industrial times to the present day (Cramer et 

al. 2001). Although confounded by other factors, the models’ responses to CO2 were shown to 

be poorly represented due to the wide divergence of predicted CO2 concentrations into the 

future given the same forcing scenario (Friedlingstein et al. 2006, Sitch et al. 2008). Spatial and 

temporal variability in flask CO2 measurements contains seasonal and inter-annual information 

on continental-scale variations in CO2 fluxes. In a more sophisticated, explicit validation of the 

global CO2 flux, Cadule et al. (2010) compared the carbon fluxes of three Earth system models 

against instrumental atmospheric CO2 observations using a single atmospheric transport model 

to generate CO2 concentrations directly comparable at each measurement station. Their results 

showed that while models were generally reasonable at simulating the long-term trend in 

carbon fluxes, the models ranged in their ability to simulate carbon fluxes over seasonal and 

inter-annual cycles and at different sites. Cadule et al. (2010) results provide an excellent new 

framework for validating global model carbon fluxes simulated by fully coupled Earth System 

models. All of these measurements are for contemporary periods and allow only a limited 

understanding of physiological responses to raised (surface) atmospheric CO2 concentrations. 

Cadule et al. (2010) and Blyth et al. (2011) have set a strong precedent for using statistics of 

model goodness-of-fit (GOF) in the presentation of their validations, giving quantitative 

comparison of model accuracy. DGVMs appear to have performed well in some validation 

exercises but models are often not compared on a like-by-like basis i.e. their accuracy at the 
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same experimental sites has not been compared. It is clear from the discussion above that 

models diverge significantly in their prediction of future carbon fluxes in a high CO2 atmosphere 

(550+ µmol mol-1) for which validation has been difficult. 

Free Air Carbon Dioxide Enrichment (FACE) experiments present the opportunity to validate 

ecosystem scale CO2 responses to elevated CO2, 500-600 µmol mol-1, under the same climate. 

Laboratory-based experiments have been performed to assess the impact of increased ambient 

CO2 on photosynthesis and plant productivity (Arp 1991, Stitt 1991). FACE experiments examine 

the response of natural, semi-natural and agricultural ecosystems to elevated concentrations of 

atmospheric CO2 (Hendrey et al. 1993, Hendrey and Kimball 1994, Norby et al. 2010, Drake et 

al. 2011) over significant periods of time. For this reason, the emerging results from FACE 

experiments are essential and provide an unprecedented opportunity to validate components 

of terrestrial carbon cycle models.  
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Free Air Carbon Dioxide Enrichment 

The majority of research has implicated nitrogen limitation as the major cause of 

photosynthetic acclimation (Sage et al. 1989, Stitt 1991, Rogers and Humphries 2000). 

However, nitrogen limitation may well be a feature of experimental design as plants grown in 

pots are restricted in their capacity to respond to nitrogen limitation (Arp 1991, Woodward 

2002). Experiments in the field using enclosures or open top chambers have also demonstrated 

acclimation of photosynthetic rate under elevated CO2 (Ceulemans et al. 1997) but have 

themselves drawbacks and environmental influences mediated by experimental design. Free 

Air Carbon dioxide Enrichment experiments are designed to analyse the effect of elevated 

atmospheric CO2 on plants and the ecosystem in the most natural environment possible. 

Free Air Carbon dioxide Enrichment (FACE) experiments (Figure 1-1) enrich the local 

environment with CO2. Forest stand and field plots are fumigated with CO2using a wind-driven 

controlled release mechanism to disperse the CO2 and CO2 detection to feedback on the 

release mechanism. Atmospheric CO2 is maintained within 10% of the target concentration 90% 

of the time (based on one minute averages) at wind-speed above 0.4   ms-1 (Hendrey et al. 

1993). 

FACE experiments can address questions such as how plants respond to elevated levels of 

atmospheric CO2 under natural field conditions. Does plant photosynthetic apparatus acclimate 

to elevated CO2 in the field? And, how does photosynthetic acclimation affect biomass?  

FACE and nitrogen 

The theory of progressive nitrogen limitation (PNL) states that as woodland systems develop, 

an increasingly larger fraction of ecosystem nitrogen is locked up in the woodland biomass and 

therefore the system becomes progressively nitrogen limited (see Gill et al. 2006 for a 

comprehensive review of PNL). Increased growth under elevated atmospheric CO2could lead to 

accelerated PNL (Luo et al. 2006a) and Norby et al. (2010) and Garten et al. (2011) have shown 

that, in a forest system under going PNL, PNL is accelerated by elevated CO2.  

Gill et al. (2006) showed that in several temperate forests, nitrogen within forest system 

biomass often increases over and above that attributable to atmospheric deposition. Nitrogen 

increases in these forest systems have been attributed to biological fixation, uptake from deep 

soil zones and increased nitrogen scavenging efficiency.  
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Figure 1-1. Clockwise from topleft: The Liquidamabar styraciflua FACE experiment at 
Oak Ridge, Tennesse ©Oak Ridge National Laboratory, Oak Ridge, Tennessee.  Two FACE 
rings at DukeFACE near Chapel Hill, North Carolina ©Duke FACE project, Duke 
University, Durham, North Carolina. Layout of FACE rings at ASPENFACE in Populus 
tremuloides stands at Harshaw Experimental Forest near Rhinelander, Wisconsin 
©David F. Karnosky. The Pinus teada stand surrounded by mixed hardwood forest at 
DukeFACE ©Will Owens. All photographs reproduced with permission. 
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In some forest FACE systems increased biomass has been supported by increased nitrogen-use-

efficiency or increased nitrogen-scavenging-efficiency (Drake et al. 2011, Zak et al. 2011) and it 

could be that elevated CO2 increases a plant’s capacity to access nitrogen. 

In a synthesis of data from four tree-based FACE sites which all had significantly higher biomass 

at elevated CO2, Finzi et al. (2007)  showed that at all but one site biomass nitrogen content 

per-unit-area was increased at elevated atmospheric CO2 and NPP increased at all four sites. 

Interestingly the site which showed no change in tree nitrogen content was the only site not 

limited by nitrogen, indicating a counter-intuitive increase in nitrogen-use-efficiency 

(NPP/nitrogen uptake) even though nitrogen was readily available. Probably nitrogen uptake 

was beyond that necessary for growth at ambient CO2 and the similar nitrogen contents at both 

CO2 treatments show that nitrogen was pooled/accumulated beyond growth requirements at 

ambient CO2. 

At the other three nitrogen-limited sites nitrogen-use-efficiency did not increase, probably 

because these trees were already at their upper nitrogen-use-efficiency limit. However, overall 

nitrogen uptake increased at all three sites indicating that increases in NPP were used to 

increase the efficiency of nitrogen extraction from the soil. Finzi et al. (2006) demonstrated no 

significant difference in C:N ratio between ambient and elevated CO2 levels, a result in contrast 

to many previous findings (Liberloo et al. 2006, Ainsworth and Rogers 2007) probably due to 

increased nitrogen uptake at these sites yet no increase in nitrogen-use-efficiency. 

In an experimentally manipulated prairie system Reich et al. (2001) demonstrated that the 

magnitude of biomass responses to elevated CO2 and nitrogen addition was significantly 

increased with an increase in community diversity. In the same system Reich et al. (2006a) 

found a significant interaction between elevated CO2, nitrogen addition and the year of 

measurement. They demonstrated in the early years (1-3) of the experiment that the 

percentage increase in biomass caused by elevated CO2 was greater under the low nitrogen 

treatment. However, after several years (years 4-6) this reversed and the CO2 effect was 

greater under the high nitrogen treatment, indicating that nitrogen limitation became 

significant to the system over time. 

At current CO2 levels nitrogen (N) is partitioned to photosynthesis (i.e. RuBisCO) at a higher 

fraction of total N than under higher CO2 levels (Crous et al. 2008). That nitrogen is partitioned 
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away from photosynthesis at high CO2, indicates that carbon is limiting at current CO2 

concentrations. Also at higher CO2 levels biomass C:N ratios increase (Liberloo et al. 2006), if 

higher C:N ratios are non-damaging to plants then why do they not have higher C:N ratios at 

ambient CO2 levels? As CO2 levels rise it may be that plants shift from C limitation to N 

limitation.  

Liberloo et al. (2006) reported significant increases in aboveground and belowground plant 

nitrogen measured as both per-unit-area and per-unit-mass. In an interesting study relating leaf 

nitrogen on an area basis to photosynthetic rate (carbon fixation rate) Crous et al. (2008) 

demonstrated that in terms of nitrogen, carbon fixation efficiency of Pinus taeda (Loblolly Pine) 

increased under higher atmospheric CO2 levels. They also showed that later in the experiment 

under elevated CO2 (measurements at 8-9 years) Vcmax was reduced in relation to leaf nitrogen 

for one year old needles. The reduction in Vcmax in relation to leaf nitrogen indicated a larger 

proportion of nitrogen allocated to leaf structure.  

Meta-analyses of FACE experiments have demonstrated that photosynthesis is down-regulated 

and is related to plant nitrogen dynamics. In a meta-analysis of 124 primary FACE studies 

Ainsworth and Long (2005) calculated an overall mean increase in photosynthetic rate of 23% 

while recording a mean drop in Vcmax of 20% due to elevated atmospheric CO2 (although they 

do not quote the exact increase in CO2 that stimulates this response, most studies elevate by 

200 µmol mol-1 above ambient CO2 levels). A break-down of the Vcmax results showed a greater 

decline for grasses than trees and a particularly marked decline across all low nitrogen 

treatments. Conflicting results for plant nitrogen from meta-analyses have been reported. 

Ainsworth and Long (2005) showed a 15% drop in leaf nitrogen per unit mass but only a 5% 

drop per unit area, a figure which they propose is wholly accountable to a 20% drop in RuBisCO 

per unit area (assuming RuBisCO accounts for 25% total nitrogen). A meta-analysis of studies 

using a number of CO2 enrichment methods Taub et al. (2008) found a general decrease in crop 

grain protein content at elevated CO2, a decrease that was less marked under high nitrogen 

fertilisation treatments and close to insignificant for Glycine max (Soybean, a symbiotic 

biological nitrogen fixer). 

Limitations of FACE 

A goal of FACE experiments is to assess the impact of rising CO2 on the planet’s forest biomes. 

FACE experiments cover both agricultural and natural systems and a wide range of species and 
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plant functional types, however tropical and boreal systems are not represented (Hickler et al. 

2008). Also, forest FACE experiments are mostly sited in young forests. Bar one, all of the above 

mentioned systems are either agricultural, grassland/prairie or early stage forestry—there is 

only one old growth forest FACE experiment. Both young and old forests will be important in 

determining the response of the land surface to elevated CO2 although the mechanisms by 

which CO2 impacts these different age/successional stage systems will be different. For the only 

FACE experiment in an established, mixed species woodland, Asshoff et al. (2006) showed that 

only one of four species, Fagus sylvatica, had a significant increase of basal area increment in 

two out of four treatment years. Due to the nature of their experiment there was only one 

elevated CO2 replicate and individual trees were considered separate replicates, making it 

difficult to compare with other FACE experiments. It is recognised that conclusions on forest 

responses to elevated CO2 based on FACE data are limited to relatively young, temperate 

systems.  

FACE experiments simulate well the natural environment but are not without artefact. CO2 

concentrations in FACE experiments are not only raised but they oscillate strongly around the 

target concentration, 350 – 1100 µmol mol-1 in the original Brookhaven system (Nagy et al. 

1992). The response of assimilation to oscillating CO2 conditions has been tested in a few crop 

and tree species and results were varied. At oscillation frequencies similar to those found in 

FACE experiments, assimilation was stimulated (Evans and Hendrey 1992), remained the same 

(Hendrey et al.  1997) and was suppressed in comparison with steady state CO2 concentrations 

(Holtum and Winter 2003). Holtum and Winter (2003) found evidence that for seedlings of two 

tropical tree species, high-frequency (3 & 1.5 cycles per minute) oscillations of atmospheric 

carbon dioxide, characteristic of FACE experiments, can lead to a lower carbon fixation than 

when atmospheric CO2 is maintained constant. Hendrey et al. (1997) investigated this issue and 

found no reduction in electron transport (used as a surrogate for carbon fixed) under high-

frequency (1 cycle per minute) atmospheric CO2 oscillations.  

Whether FACE experiments are underestimating plant responses to CO2 or not they remain the 

closest experiment to natural conditions. Results from FACE experiments will be useful in 

testing the validity of DGVMs and in highlighting processes that are as yet poorly understood 

and hence poorly simulated. 



18 
 

Earth System modelling 

Current knowledge of global physical climatic processes, biogeophysical and biogeochemical 

processes are defined in empirical and theoretical mathematical relationships, which are 

synthesised into models that simulate the Earth System. There are three main modules of an 

earth system model: 

1) the General Circulation Model (GCM) describing atmosphere energy balance, ocean energy 

balance, physical cycles and climate.  

2) the land surface scheme describing biotic terrestrial interactions with the GCM and 

terrestrial carbon cycling.  

3) the ocean model describing marine biotic interactions with the GCM and the marine carbon 

cycle. 

These models are continually evolving and a full description of earth system climatic modelling 

would be too large for this review; see Pitman (2003), Denman and Lohmann (2007) and 

Randall and Taylor (2007) for an overview. This study focuses on the impacts of elevated CO2 on 

the carbon cycle component of the land surface scheme.  

Land surface and vegetation modelling 

The land surface plays a major role in the Earth System, interacting directly with the climate 

system (Zaehle et al. 2007, Pongratz et al. 2009, Pongratz et al. 2010) and, as described above, 

vegetation interacts with atmospheric CO2 in the global carbon cycle. The strength of terrestrial 

vegetation’s interaction in the global carbon cycle responds to elevated CO2 in the atmosphere 

and a number of other environmental factors. Previous generations of land surface schemes 

simulate carbon fluxes. These old land surface models geographically parameterise many 

properties of the terrestrial biosphere, such as leaf area index (LAI), plant distribution which 

restricts the full response of the terrestrial biosphere to CO2 and climate. The latest models that 

simulate the terrestrial carbon cycle are known as Dynamic Global Vegetation Models (DGVMs). 

DGVMs differ from the approach of previous land surface schemes to terrestrial carbon cycle 

modelling by moving towards a more process-based approach to simulating vegetation 

dynamics, growth, mortality, competition and distribution in response to climate and 

ecosystem parameters (Cox 2001, Woodward and Lomas 2004).  
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SDGVM and JULES 

The Sheffield Dynamic Global Vegetation Model (SDGVM) and the Joint UK Land Environment 

Simulator (JULES) are the UK’s primary global vegetation models. JULES (Cox 2001, Best et al. 

2011, Clark et al. 2011) is a dynamic vegetation land surface scheme used in the Met Office’s 

Unified Model, the various generations of the Hadley Centre models. SDGVM (Woodward et al. 

1995, Woodward and Lomas 2004) is a global dynamic vegetation model used primarily for 

carbon cycle studies. SDGVM does not have a full land surface radiation scheme and therefore 

cannot be used in a full Earth System model. However, SDGVM is driven by climate and 

atmospheric CO2 concentration allowing it to be coupled in a simple Earth System model with 

the GCM analogue model IMOGEN (Huntingford and Cox 2000, Huntingford et al. 2010) which 

uses the pattern-scaling technique to simulate the changing climate. 

Modelling the CO2 response 

Net Ecosystem Productivity and carbon sequestration 

The global carbon cycle is a system made up of pools and fluxes. Soil, wood, leaves and roots 

are all carbon pools within the terrestrial carbon cycle and each of these pools has properties 

which determine the residence time of carbon in the pools. Carbon flows between pools and 

carbon is sequestered if the flow into a pool exceeds outflow. Carbon fluxes into and out of 

pools are influenced by characteristics of that pool, the environment, and constraints on the 

capacity of the pool. Many factors influence these processes as represented in Figure 1-2. 

Net ecosystem productivity (NEP) is the balance between gross primary productivity (GPP, 

carbon fixed) and total ecosystem respiration (the sum of autotrophic and heterotrophic 

respiration) and carbon loses through disturbance events like fires and is the net value of the 

atmosphere to terrestrial biosphere flux. Global NEP represents annual carbon sequestration by 

the terrestrial biosphere and poses a problem to model as it is the sum of four fluxes which are 

much larger than NEP itself. Any small error in one of the three fluxes can strongly affect 

predictions of NEP. 
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Subtracting the respiration terms the respiration terms gives us net primary productivity (NPP), 

the balance between carbon assimilated by plants and that respired by plants over a given time 

period: 

 NPP = GPP – Ra 

and  

NEP = NPP – Rh – D  

where Ra is autotrophic respiration, Rh is heterotrophic respiration and D is carbon loses 

through disturbance. The first step in simulating GPP is calculating leaf-level photosynthesis, 

then scaling to estimate canopy photosynthesis and respiration. Assimilated carbon is then 

allocated to different biomass fractions; then processes with a longer temporal scale need to be 

simulated such as plant growth, mortality, ecological dynamics and disturbance events.  

 

Figure 1-2.A diagram of model processes that influence each other and eventually result in 
net ecosystem productivity. The dimension of influence not included in this diagram is that 
of climate, of which the main factors are atmospheric CO2, temperature and precipitation. 
We are interested in how changes in these climatic factors, particularly CO2 affect the 
relationships of the above system. C partitioning includes the respiratory fraction. PFT – 
Plant Functional Type. 
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Leaf carbon assimilation 

At the heart of terrestrial carbon cycle models are their leaf-level photosynthesis schemes. 

Leaf-level photosynthesis is the only route of entry for carbon into the terrestrial biosphere, 

determining the size of the initial pool which is then distributed to sub-components of the 

terrestrial carbon cycle. Simulation of leaf level photosynthesis is tightly constrained by 

biochemical theory and empirical observation (Pachepsky et al. 1996). Most vegetation models 

use the similar theoretical models of either Farquhar et al. (1980) or Collatz et al. (1992) which 

mechanistically simulate the biochemical processes of electron transport(Haehnel 1984), the 

Calvin Cycle and photorespiration (Benson et al. 1950, Calvin 1989). SDGVM uses the Farquhar 

et al. (1980) formulation while JULES uses the Collatz et al. (1992) formulation. 

The models of Farquhar et al. (1980) and Collatz et al. (1992) simulate carbon assimilation as 

the minimum of three rate limiting processes/factors minus leaf dark respiration: light levels 

and electron transport; the balance between the rate of carbon (photosynthetic carbon 

reduction—PCR cycle) and oxygen (photorespiratory carbon oxygenation—PCO cycle) fixation 

by RuBisCO; and the export rate of photosynthate. Farquhar et al. (1980) simulate carbon 

assimilation as the minimum of these rates while Collatz et al. (1992) smooth the minimisation 

of these three rates, effecting a co-limitation where two of the limiting rates are similar. Bonan 

et al. (2011a) have shown the co-limitation in the Collatz et al. (1992) model to have a 

significant impact on global Gross Primary Productivity (GPP). Both models simulate the balance 

between the rate of the PCR and PCO cycle in the same way: 

𝐴 =  𝑉𝑐𝑚𝑎𝑥
𝐶𝑖 − 𝛤∗

𝐶𝑖 + 𝐾𝑐(1 + 𝑂 𝐾𝑜) 
 

  (1-1) 

where A is total carbon assimilated (µmol m-2 s-1); Vcmax is the maximum carboxylation velocity 

(µmol m-2 s-1); Ci is the inter-cellular CO2partial pressure (µbar) and O is the O2partial pressure 

(mbar); Kc is the Michaelis constant for CO2 (µbar) and Ko is the Michaelis constant for O2 

(mbar) and Γ* is the compensation point (µbar) of the PCR and PCO cycles where net carbon 

assimilation is zero. 

The Farquhar et al. (1980) and Collatz et al. (1992) models differ in their simulation of the light 

limited rate of photosynthesis. Light energy is captured by the photosystems of the chloroplast 

to excite electrons to higher energy status and then these electrons are ‘transported’ back 
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down to their energy level at their rest state (Haehnel 1984). Electron transport provides the 

energy to synthesise the reducing product NADPH and the energy in ATP to regenerate 

Ribulose 1-5 Bisphosphate (the substrate to which RuBisCO fixes CO2) in the Calvin Cycle. 

Farquhar et al. (1980) simulate electron transport as follows: 

𝐽 =  0.5 1 − 𝑓 𝐼 

  (1-2) 

Where J is the maximum rate of electron transport (µEq m-2 s-1); f is the fraction of incident light 

not absorbed by the chloroplast and I is the incident light (µmol m-2 s-1). Electron transport is 

then converted to the light limited rate of carbon assimilation by: 

𝐽′ =  
𝐽

2(2 + 2𝜙)
 

  (1-3) 

where J’ is the maximum rate of carbon assimilation allowed by electron transport and 𝜙 is the 

ratio of oxygenation to carboxylation of the PCR and PCO cycles, which is a saturating function 

of internal CO2 concentration (Farquhar et al. 1980). Equation (1-2 simulates electron transport 

as a linear function of incident light, however Farquhar et al. (1980) assume that the light 

response of electron transport has a biochemical maximum that saturates at an upper limit, 

Jmax. Therefore they assume that J is the minimum of J calculated in equation(1-2 and Jmax (in 

practice their model smoothes this minimum function using a quadratic). Collatz et al. (1992) 

assume that electron transport does not light saturate, simulating light limited carbon 

assimilation as: 

𝐽′ =  𝑎. 𝛼. 𝐼
𝐶𝑖 − 𝛤∗
𝐶𝑖 + 2𝛤∗

 

  (1-4) 

Where a is leaf absorptance to incident PAR (1-f) and α is the intrinsic quantum efficiency for 

CO2 uptake.  

Both the RuBisCO limited rate of photosynthesis (Equation 1-1) and the light limited rate of 

photosynthesis (Equations 1-3 & 1-4) are functions of inter-cellular CO2 concentration. 

Increasing inter-cellular CO2 increases substrate availability to RuBisCO and, all else being equal, 
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RuBisoCO limited carbon assimilation is a saturating function of Ci (Equation 1-1).Increasing 

inter-cellular CO2 also increases the efficiency of RuBisCO by increasing the ratio of the PCR 

cycle to the PCO cycle which reduces the demand for products from electron transport per unit 

of carbon assimilated (Stitt 1991).Therefore, light limited carbon assimilation is also a 

saturating function of internal CO2 concentration (Equations 1-3 & 1-4). 

Parameters in Equations 1-1 to 1-4 above are derived from experimental observation and are, 

in some cases, sensitive to temperature. Vcmax is determined as a function of leaf nitrogen 

(Farquhar et al. 1980, Field and Mooney 1984) and Jmax is determined as a function of Vcmax 

(Wullschleger 1993, Beerling and Quick 1995).  

Water stress also impacts carbon assimilation and JULES and SDGVM simulate water stress in a 

similar way by determining a water stress multiplier—β, with a range of 0-1—as a function of 

soil water content below a ‘critical’ soil water content down to field capacity (Woodward et al. 

1995, Clark et al. 2011). In SDGVM Vcmax and stomatal conductance are multiplied by β, while in 

JULES β is applied by multiplying β with assimilation.  

Scaling of leaf-level photosynthesis to Gross Primary Productivity 

Gross Primary Productivity (GPP) is the carbon assimilation of a whole plant or ecosystem over 

a given time period. To scale photosynthesis from the leaf level to the whole plant it is 

necessary to account for assimilation through the canopy(Haxeltine and Prentice 1996). Light is 

attenuated as it penetrates the canopy. Light levels directly impact the calculation of carbon 

assimilation through the light limited scheme but also indirectly through the RuBisCO limited 

scheme. Leaf nitrogen is strongly related to leaf RuBisCO and, as a limiting resource, nitrogen 

should be distributed through the canopy to maximise carbon gain yet minimise canopy 

nitrogen allocation. To optimise carbon assimilation it was assumed that nitrogen should be 

distributed in a linear relationship to the light distribution through the canopy(Chen et al. 

1993). SDGVM allocates leaf nitrogen in a particular canopy layer as a proportion of total 

canopy nitrogen, using the Beer-Lambert law of exponential light attenuation using a 

coefficient of 0.5 for each canopy layer i.e. leaf nitrogen decreases exponentially through the 

canopy (Woodward et al. 1995). 

However, the Beer-Lambert law describes light attenuation through a homogeneous medium 

and plant canopies do not conform to this criterion. Through all the layers in a canopy a fraction 
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of leaves receive direct light from the sun. The Beer-Lambert law is insufficient to describe light 

coming from the sun passing through the atmosphere, as scattering by atmospheric aerosols 

splits the sun’s radiation into a direct and a diffuse component. Both of these simplifications 

are considered by SDGVM which uses the Spitters et al. (1986) formulation of canopy light 

interception. JULES also recognises these complications of canopy light interception and 

simulates interception using the Sellers et al. (1992) two-stream approach as described and 

modified by Mercado et al. (2007). Mercado et al. (2009) demonstrated the importance of 

simulating the diffuse light fraction on the global carbon balance. JULES also recognises that the 

distribution of nitrogen through the canopy is not according to the Beer-Lambert law and uses 

an exponential extinction coefficient of 0.78 (Mercado et al. 2007). 

Simulation of plant growth responses to nitrogen 

Nitrogen interacts with plant growth by stoichiometrically limiting sink production and 

determining the Vcmax (and therefore Jmax in the Farquhar formulation) parameter via leaf 

nitrogen. SDGVM simulates canopy nitrogen as a fixed proportion of nitrogen uptake 

determined by an availability-based function of soil carbon (per-unit-area), soil nitrogen (per-

unit-area) and temperature (Woodward and Smith 1994). Nitrogen concentration in the top 

canopy layer is a fixed input parameter in JULES. SDGVM and JULES do not partition nitrogen to 

other tissues and therefore nitrogen does not stoichiometrically limit biomass accumulation. 

Nitrogen directly affects carbon assimilation through its relationship with Vcmax (SDGVM and 

JULES) and Jmax (SDGVM only). 

Thornton et al. (2007) coupled a nitrogen cycle and growth limitation model (Biome BGC) to the 

Community Land Model 3.0 (CLM3) and found that carbon uptake was 74% less under a 

nitrogen limited simulation (to 2100, A2 SRES). 

Gutschick (2007) has developed a model integrating nitrogen uptake and photosynthesis using 

it to predict interspecific changes in fitness at elevated atmospheric CO2. They predict large 

relative changes in interspecific fitness due to heterogeneity of interspecific changes in nitrogen 

uptake rates at elevated atmospheric CO2. Changes in fitness are likely to have significant 

effects on biogeographic patterns influencing terrestrial carbon cycle dynamics.  

While Gutschick (2007) did not investigate global NPP in response to nitrogen and atmospheric 

CO2 increase, the results highlight the importance of considering nitrogen in carbon cycle 
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modelling. The work of Hungate et al. (2003) suggests that quantifying the interaction of carbon 

and nitrogen dynamics through plants and in particular soils is the major neglected element of 

terrestrial carbon cycle modelling.  

Plant respiration 

Simulated respiration is partitioned into maintenance respiration, which supports metabolism 

and maintains plant function, and growth respiration which provides carbon skeletons and 

energy as the raw materials for growth. In common with many DGVMs, both SDGVM and JULES 

simulate growth respiration as 25% of carbon allocated to growth. 

Maintenance respiration is simulated separately for each tissue type (leaf, root and sapwood) 

as a function of tissue nitrogen content, temperature (air or soil) and water stress (not all 

models). SDGVM simulates night-time leaf respiration (µmol m-2 s-1) as 0.17 multiplied by leaf 

nitrogen (g m-2). Root and stem respiration are taken from their respective biomass pools 

calculated as a function of their respective biomass and temperature: 

𝑅 = 𝑟. 𝛽. 𝐵(0.14𝑒0.02𝑡) 

  (1-5) 

Where R is respiration (µmol m-2 s-1); r is the proportion of biomass respired (µmol mol-1 s-1); β 

is the soil water limitation multiplier; B is the biomass (mol m-2) and t is temperature (oC). JULES 

simulates maintenance respiration as a function of nitrogen and temperature. Leaf ‘dark’ 

respiration (daytime mitochodrial respiration, termed ‘dark respiration’ to distinguish it from 

photorespiration as it is equivalent to the respiration that occurs only at night time) is 

suppressed in JULES when light levels exceed 10 µmol m-2 s-1, in line with current theory 

(Thornley and Cannell 2000). In the version of JULES used in this study (v2.1.2, canopy radiation 

model 4) dark respiration is simulated as a proportion of Vcmax meaning that the temperature 

sensitivity of respiration is not exponential but has a temperature optimum (Clark et al. 2011): 

𝑚𝑡 =
20.1(𝑡−25)

 1 + 𝑒0.3 𝑡−𝑡𝑢𝑝𝑝   (1 + 𝑒0.3 𝑡𝑙𝑜𝑤 −𝑡 )
 

  (1-6) 

Where mt is the temperature sensitive multiplier on the value of Vcmax and respiration at 25oC; t 

is temperature and tupp and tlow are PFT specific parameters. Whole plant respiration is then 
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scaled by proportion of root and stem nitrogen to canopy nitrogen, and canopy nitrogen is 

adjusted for soil water limitation: 

𝑅𝑝 =  0.012𝑅𝑑  𝛽 +  
𝑁𝑟 + 𝑁𝑠
𝑁𝑐

  

  (1-7) 

where Rp is whole plant respiration (kg C m-2 s-1); Rd is dark respiration (mol m-2 s-1) and N is the 

nitrogen content (kg m-2 s-1) of roots(r), stem(s) and canopy (c). While there is some 

controversy (Drake et al. 1999, Holtum and Winter 2003) it is generally thought that elevated 

atmospheric CO2 concentrations do not directly affect plant respiration rates (Tjoelker et al. 

1998) and models do not simulate any direct response of respiration to CO2. 

Carbon partitioning and biomass 

Scaling of plant level GPP and NPP to geographical unit level (grid-square level) varies from 

model to model. Some scale up photosynthesis based on fractional coverage of plant functional 

types over the whole grid-square (Sitch et al. 2003, Woodward and Lomas 2004). Others 

simulate all individuals in a small plot (e.g. 30m x 30m) (Friend et al. 1997, Sato et al. 2007) - 

mean of 10 stochastic plots), known as a gap model, and then multiply this up to grid-square 

scale. Moorcroft et al. (2001) use partial differential equations to approximate the average of 

an ‘ensemble’ of stochastic gap model runs. 

NPP must be partitioned to various plant tissue/biomass pools which have various residence 

times before mortality when they are transferred to the soil carbon pool. Through differing 

residence times and decomposition rates once part of the soil organic carbon pool the ratios of 

biomass pools determine the longevity of terrestrial carbon.  

NPP can be partitioned to the various biomass pools either proportionally (Cox 2001), 

allometrically with regards to leaf biomass (Sitch et al. 2003) or certain pools can be prioritized 

using a demand-based approach (Woodward and Smith 1994). ORCHIDEE (Krinner et al. 2005) 

allows only 80% of GPP to be allocated to respiration, leaving 20% available to be partitioned to 

growth. This 20% minimum carbon partition to growth allows the vegetation to respond to 

resource limitation because ORCHIDEE partitions carbon to various tissues for growth using a 

resource-limited demand-based approach. 
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Biomass in SDGVM (and SDGVM-Vc etc) is the result of flows into the biomass pools, namely 

NPP, and flows out of the biomass pools by mortality. Therefore biomass is determined by the 

simple equation: 

𝐵 =   𝑁𝑃𝑃 × 𝑀𝑅𝑇  

where B is biomass and MRT is the mean residence time of the biomass pool in question. Wood 

biomass is the major biomass pool due to the long MRT compared with that of leaves and roots 

(in SDGVM only fine roots are considered roots) and the MRT of wood is determined by wood 

mortality.  

In SDGVM wood mortality is caused by age and self thinning. Mortality caused by self-thinning 

is based on two model parameters—a minimum diameter increment (MDI) and wood carbon 

density, and three state variables—NPP allocation to stem, stem density and stem height. The 

MDI, current tree diameter and tree stem density is used to calculate the required minimum 

surface area increment (MSAI). MSAI is multiplied by tree height and wood density to obtain 

the minimum required carbon allocated to the stem. If there is sufficient labile carbon to meet 

this demand then there is no mortality, if carbon is insufficient then the stem density is 

reduced, by killing a fraction of the trees, to a density that will allow the MDI to be satisfied. At 

a given NPP and tree height, the self thinning algorithm will determine an equilibrium biomass 

which will be a function of stem density, stem height and the two input parameters (MDI and 

wood carbon density). 
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Hypotheses and research questions 

The research in this Thesis takes a broad approach to testing and informing global scale carbon 

cycle models (SDGVM and JULES) with data from FACE experiments. Data from the FACE 

experiments are analysed, followed by comparisons of the models with data at two FACE sites. 

Further chapters develop photosynthetic leaf trait relationships and, with findings from 

previous chapters, scale these relationships to the global land surface using SDGVM. 

As discussed above, the relationship between photosynthesis, carbon sequestration and plant 

nitrogen will be important for predicting terrestrial ecosystem carbon storage and dynamics. 

Yet the plasticity of plant carbon-to-nitrogen ratios and carbon to nitrogen dynamics over long-

term CO2 enrichment is not well known. In Chapter 2, this Thesis begins with a meta-analysis of 

FACE experiments to generalise the responses of ecosystems to elevated CO2. As discussed 

above, there have been a number of comprehensive meta-analyses; however, up to eight years 

of FACE experimentation has passed since data were collected for these previous meta-

analyses and the responses to FACE enrichment over longer time-scales is of interest. Chapter 2 

addresses the research questions: 

Does carbon assimilation and sequestration acclimate over long-term CO2 enrichment (using 

FACE methods)? 

How are model parameters affected by elevated CO2 (using FACE methods)? 

To test the accuracy of assimilation data from FACE experiments, Chapter 3 investigates the 

effect of oscillating CO2 concentrations on the temperate forest species Populus x 

euramericana and Quercus robur. The oscillations are of a similar frequency to those observed 

in FACE experiments and the results shed light on experimental artefacts and photosynthetic 

operation. As discussed above, methods in previous studies have been variable and results 

from previous studies have been contradictory. The experimental setup in Chapter 3 was 

designed to be as close to the FACE experiments as possible and it is hypothesised that 

oscillations in CO2 concentration will not impact assimilation without a stomatal response. 

Chapter 3 addresses the research questions: 

Is carbon assimilation in trees used in FACE experiments affected by oscillating CO2 

concentrations? 
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Are hypotheses used to explain previously observed responses to oscillating CO2 sufficient to 

explain observations of the assimilation response to oscillating CO2? 

In Chapter 4, the two UK carbon cycle models, SDGVM and JULES, are parameterised and driven 

with observed climate variables taken from the Oak Ridge and Duke FACE experiments. The 

ability of the models to capture NPP in response to elevated CO2 and climate is investigated and 

compared with observations. The models are run in various configurations to identify areas for 

model development. Variables governing inter-annual variability in the CO2 response of the two 

models are investigated. Results are compared with those from 10 other global carbon cycle 

models and ecosystem models that have been part of an inter-comparison project funded by 

the National Centre for Ecological Analysis and Synthesis (NCEAS) in the USA. As discussed 

above, results from Oak Ridge were affected by progressive nitrogen limitation and it is 

hypothesised that SDGVM and JULES are less likely to accurately reproduce NPP at Oak Ridge 

due to their relatively simple simulation of nitrogen dynamics. Chapter four addresses the 

research questions: 

Can SDGVM and JULES reproduce NPP from Oak Ridge and Duke FACE experiments? 

How can we develop SDGVM and JULES to improve their simulation accuracy at Oak Ridge and 

Duke FACE experiments? 

As a precursor to the development of SDGVM, Chapter 5 presents the results of a meta-analysis 

of the empirical relationships between the photosynthetic parameters Vcmax and Jmax and leaf 

nitrogen, leaf phosphorus and SLA. The Chapter develops these relationships in a global context 

and investigates the reason for the nature of the coupling between Vcmax and Jmax. It is 

hypothesised that due to the roles of leaf phosphorus in biochemical processes and machinery 

and the correlations of leaf functional structure with SLA, both SLA and leaf phosphorus will 

significantly modify the relationship of these photosynthetic parameters with leaf nitrogen. 

Chapter 5 addresses the research questions: 

Are leaf phosphorus and SLA important co-variates in the empirical relationship between Vcmax 

and leaf nitrogen, and Jmax and Vcmax? 

If so, is it possible to develop a single global relationship between Vcmax and leaf nitrogen, leaf 

phosphorus and SLA?   
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Chapter 6 integrates the findings from chapters 2, 4 and 5 in a global carbon cycle simulation 

with SDGVM. The relationships of Vcmax and Jmax to leaf nitrogen and leaf phosphorus, 

developed in Chapter 5, are incorporated into SDGVM. Photosynthetically Active Radiation 

(PAR) was taken from a dataset rather than calculated from latitude and SDGVM was re-

configured to simulate leaf nitrogen and phosphorus using empirical relationships to soil and 

climatic properties. The study represents an investigation of the impacts of photosynthetic 

parameters and PAR on the photosynthesis scheme scaled to longer-term ecosystem responses 

in SDGVM. These impacts are coupled to climate change and atmospheric CO2 increase using 

the IMOGEN GCM analogue model. Compared with the standard version of SDGVM, the re-

formulation of the simulation of photosynthetic parameters meant that they were revised 

upwards and it is therefore hypothesised that the modified version of SDGVM would increase 

GPP and this would be translated into lower rates of atmospheric CO2 increase over the 21st 

century. Chapter 6 addresses the research questions: 

How do findings and model developments impact the global simulation of the carbon cycle 

(using SDGVM)? 

Does correction of parameter and driving variable biases improve model predictions of the 

global carbon cycle?  

The first Chapters focus on the FACE experiments themselves and Chapter 2 generalises the 

response to CO2 with meta-analytical techniques investigating responses over longer time-

scales. Chapter 3 investigates potential experimental error in FACE experiments by testing the 

response of two tree species to oscillating CO2. Chapter 4 validates SDGVM and JULES with NPP 

data from Oak Ridge and Duke FACE experiment, identifying areas for model development. To 

develop the parameterisation of Vcmax and Jmax in SDGVM, Chapter 5 brings together leaf trait 

data in a meta-analysis of the empirical relationship of Vcmax and Jmax to leaf nitrogen 

phosphorus and SLA. Chapter 6 integrates findings from many of the previous Chapters into an 

assessment of their impacts on the simulation of the global carbon cycle. 

  



31 
 

Chapter 2 Plant and Ecosystem Productivity in Response to Elevated CO2. A 

Meta Analysis of Free Air Carbon Dioxide Enrichment (FACE) experiments. 

Introduction 

Increased atmospheric CO2 stimulates photosynthetic carbon assimilation over the short to 

medium terms (Arp 1991, Stitt 1991, Drake et al. 1997, Idso 1999,Norby et al. 2005). Increases 

in carbon assimilation are often translated into higher plant growth rates and larger biomass 

pools (Norby et al. 2005), sequestering carbon, creating a negative feedback mechanism in the 

Earth System which limits the rate of atmospheric CO2 increase (Taylor and Lloyd 1992, 

Canadell et al. 2007). The strength of the terrestrial photosynthetic negative feedback varies in 

response to limiting factors such as nutrient or water availability, climate and other direct and 

indirect plant responses to CO2 (Cao and Woodward 1998). Key questions are: 

Can increased photosynthesis and growth observed in growth chambers and greenhouse 

studies (Idso 1999) be maintained over longer time frames and in closed canopy, mature forest 

systems (Millard et al. 2007)? 

Are important carbon cycle model parameters affected by elevated CO2? 

These are not simple questions and they require experimental and modelling approaches. To be 

fully answered, long term experiments and observations need to be conducted across many 

ecosystems at early, mid and late successional stages with high replication and a multifactorial 

approach to treatments which is unrealistic, necessitating the use of models to extrapolate 

experimental findings. Modelling can be used to integrate observations across temporal and 

spatial scales but requires well founded parameters and validation based on experimental data. 

Experimental artefacts need to be minimised and quantified to produce accurate data on plant 

responses to increased atmospheric CO2. 

Free Air Carbon dioxide Enrichment (FACE) experiments have generated the most natural, 

medium-term (up to a decade long), large scale results to date on plant and ecosystem 

responses to an atmosphere enriched in CO2 (Ainsworth and Long 2005). FACE experiments are 

conducted in open soil systems allowing roots to grow unrestricted by pots in natural systems, 

completely in the open air, which removes the interference with radiation and air movement 

by some kinds of enclosure, minimising experimental artefacts associated with many CO2 
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enrichment experiments (Arp 1991, Hendrey 1992). A number of experiments have been 

conducted in forest plantations, varying from closed-canopy unmanaged systems to short 

rotation coppice systems (Miglietta et al. 2001b, Norby et al. 2001, Oren et al. 2001, Leuzinger 

and Korner 2007, Zak et al. 2011).                  

Previous meta-analyses of FACE experiments and plant responses to CO2 

Meta-analysis is a statistical technique that allows quantitative comparison of a number of 

primary studies’ sample means, standard deviations and replicate number (Gurevitch and 

Hedges 1999). Meta-analyses aim to generalise the effects of a treatment, such as increased 

CO2, by providing a quantitative, cross-study effect-size of an experimental treatment on a 

dependent variable (Gurevitch and Hedges 1999). Meta-analyses can be used to find the 

response of model parameters to elevated CO2 helping to improve the accuracy in simulating a 

high CO2 world. 

No review of meta-analyses of plant response to elevated CO2 is complete without mention of 

Curtis and Wang (1998) who developed the statistical methods to analyse effect sizes 

categorically in a manner analogous to ANOVA. While the vast majority of their data relates to 

non-FACE studies it is necessary to discuss their results relating to respiration as they were 

contrary to some of the findings of this study. In meta-analyses of plant responses to elevated 

CO2 Curtis (1996) and Curtis and Wang (1998) both showed a decline in dark respiration under 

elevated CO2. Dark respiration has been shown to correlate strongly with plant nitrogen (Ryan 

1991, Reich et al. 2006b) and both Curtis (1996) and Curtis and Wang (1998) showed similar 

declines in respiration and nitrogen when measured on a leaf mass basis. However, Curtis 

(1996) also observed a decline in respiration when measured on an area basis without an 

accompanying decline in nitrogen. Ryan (1991) concluded that CO2 may reduce respiration but 

that the impact of CO2, independent of changes in nitrogen were unknown and Tjoelker et al. 

(1999) showed no effect of CO2 on respiration in relationship to plant biomass.   

In a meta-analysis of Lolium perenne at the SwissFACE experiment Ainsworth et al. (2003) 

found that CO2 elevated to 600 µmol mol-1 stimulated daily carbon assimilation by 35% and 

increased light-saturated carbon assimilation by over 40%. They observed an 18% reduction in 

the maximum carboxylation capacity—Vcmax—and a 10% reduction in the maximum rate of 

electron transport—Jmax. Time after cutting the sward and cutting frequency (i.e. source to sink 

ratio) was a significant sub-treatment factor influencing Vcmax and both light-saturated and daily 
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carbon assimilation. Treatments that increased the source to sink ratio (carbon producing to 

carbon consuming tissue ratio) significantly decreased Vcmax and reduced carbon assimilation. 

There appeared to be an interactive effect of low nitrogen exacerbating the effect of high 

source to sink ratio (i.e. strengthening acclimation), however the results did not appear to be 

significant. Under a categorical analysis a significant response of Jmax was only observed at low 

source to sink ratio and low nitrogen. Nitrogen treatment had a significant effect only on Vcmax. 

Interestingly they found no change in plant responses to elevated CO2 over the 10 years of the 

study, presumably due to the fact that the experiment was fertilised and plant responses were 

not reliant on intrinsic ecosystem nitrogen.  

The largest meta-analysis of the Free Air Carbon dioxide Enrichment (FACE) experiments was 

that of Ainsworth and Long (2005). They covered 15 years of results up to 2003 and used data 

from 120 published articles covering 12 different large scale FACE sites.  The focus of their study 

was on photosynthetic parameters as well as some plant growth parameters and plant 

nutrition. They found an increase of 31% in net, light-saturated carbon-assimilation ranging 

from 11% (C4 plants) to 47% (trees) when analysed by functional group.  An actual increase of 

28% in diurnal carbon-assimilation was observed, ranging from a no change (C4 plants) to a 

46% increase (shrubs, dominated by results from the Nevada desert shrub ecosystem). 

Increased carbon-assimilation was associated with a 20% reduction in stomatal conductance 

ranging from a 12% (shrubs, again dominated by results from the water- stressed Nevada 

desert ecosystem) to 23% (legumes). 

Although carbon-assimilation increased at elevated CO2 concentrations it was accompanied by 

acclimation of the photosynthetic apparatus, such that both the maximum rate of carboxylation 

(Vcmax) and the maximum rate of electron transport (Jmax) were reduced by 13% and 5% 

respectively. Arp (1991) andStitt (1991) argued that optimisation of sink production and carbon 

gain reduces leaf nitrogen under high CO2 and is a key factor in the acclimation of 

photosynthesis to higher levels of atmospheric CO2.  Ainsworth and Long (2005) reported a 

decrease in leaf nitrogen of 13% on a leaf mass basis and 5% on a leaf area basis. They 

proposed that the 20% reduction in Ribulose Biphosphate Carboxylase/Oxygenase (RuBisCO) 

would account for all of the reduction in leaf nitrogen per unit area based on the reasonable 

assumption that RuBisCO at ambient CO2 accounts for 25% of leaf nitrogen. Ainsworth and 

Long (2005) observed a 21% (±18) increase in tree Leaf Area Index (LAI) but no change for C3 
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grasses or across all PFTs together. They also observed a 6% (±2) decrease in Specific Leaf Area 

(SLA) with no change in C4 plants. 

Luo et al. (2006) conducted a later meta-analysis on carbon and nitrogen pools in elevated CO2 

experiments. Plant carbon was converted from biomass and nitrogen was expressed on a whole 

plant basis. Both carbon and nitrogen were expressed per unit area. In the FACE experiments 

they found carbon-pool increases of 12% aboveground, 47% for belowground plant material, 

but an increase of only 4% on a whole plant basis, illustrating the sometimes contradictory 

nature of meta-analysis due to each result coming from a different sample of studies. They 

calculated a 5% increase in root to shoot ratio and a 6% increase in soil carbon. For plant 

nitrogen they found an increase of 21%, 28% and 26% aboveground, below ground and as a 

whole, respectively. There was no change in the soil nitrogen pool. These changes in pool sizes 

were reflected by increased carbon to nitrogen ratios of 10% aboveground and 5% in 

belowground plant material with no significant change in the soil. 

The results of Luo et al. (2006) demonstrated an increase in plant carbon and biomass and an 

absolute increase in plant nitrogen of similar magnitude. However, the carbon to nitrogen 

ratios increased, counter to that expected from the absolute increases, which were of similar 

magnitude.  

Ainsworth and Rogers (2007) focused on the photosynthetic response of a range of Plant 

Functional Types (PFTs) to elevated CO2. Light-saturated carbon assimilation was stimulated on 

average by 30%, Vcmax reduced by 10% and Jmax by 5% with significant differences, 

predominantly in the magnitude of these effects, between functional groups. Notably light-

saturated carbon assimilation did not change in C4, non-crop grasses while Jmax did not change 

in legumes and trees.  Trees had the highest rates of light-saturated carbon assimilation with 

concurrent lowest reductions in Vcmax. They also proposed that the functional types with lower 

increases in light-saturated carbon assimilation (shrubs, legumes and crops) were Ribulose 

Biphosphate (RuBP) limited at elevated CO2 indicating constraints on the up-regulation of the 

light harvesting biochemical machinery  (possibly as a result of an inability to increase LAI) or 

phosphorus limitation. 

The cut-off for inclusion of data in the most comprehensive meta-analysis to date (Ainsworth 

and Long 2005) was 2003, and later analyses are now also over five years old (Luo et al. 2006, 
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Ainsworth and Rogers 2007). The majority of data from the Ainsworth and Long (2005) analysis 

came from crop and grassland FACE experiments and the fate of the carbon cycle in a future 

high CO2 world will be dominated by the responses of forests to high CO2. These reasons 

prompted the meta-analysis in this chapter, which aims to broaden the meta-analysis of forest 

responses to FACE enrichment in contrast with other plant functional types. The longevity of 

FACE experiments at the time of data collection for this study allowed the subdivision of 

responses by the length of time since CO2 enrichment began, allowing the detection of any 

acclimation of the CO2 response observed in photosynthetic rates, productivity and biomass. 
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Methods 

Primary literature was searched on the Thompson Reuters Web of Knowledge database 

(Thompson Reuters) and a search of publications pages from each FACE website, or the 

Principal Investigators website. Data were acquired from tabulated or graphical data in 

published articles containing means, sample sizes and standard errors or standard deviations 

under ambient or elevated CO2. The search resulted in useful data being taken from 233 articles 

(Appendix I) from 24 different FACE experiments, although 9 experiments yielded only one or 

two articles (Table 2-1). Of the 233 articles which yielded data, 109 were post 2003, the cut off 

date for Ainsworth and Long (2005). Graphical data were digitised using digitising software 

Grab It! (Datatrend Software, Raleigh, NC USA).  

Data were recorded in a database and assigned categorical variables based on experimental 

treatments and types. The variables were Plant Functional Type (PFT); a qualitative assessment 

of nitrogen addition (a quantitative assessment was not used as it was assumed that the same 

amount of nitrogen addition would have different effects depending on the system studied); 

tree canopy level and the number of years after the beginning of CO2 enrichment. The PFT 

categorical variable classification was based on that used in land surface models such as the 

Sheffield Dynamic Vegetation Model SDGVM (Woodward and Lomas 2004). For PFT grasses, 

forbs and herbaceous legumes were grouped together as a ‘grass’ in line with how models 

would simulate this vegetation type. In experiments where improved cultivars of the 

agricultural pasture C3 grass species Lolium perenne were used it was included with the ‘crop’ 

PFT as this is used in intensive agricultural systems and pasture is generally viewed as cropland 

within model land vegetation maps. Contrary to model PFTs, needle leaf trees were included in 

the ‘tree’ category with broadleaves as the vast majority of results for needle leaf trees came 

from the Duke experiment. 

Nitrogen treatments were difficult to objectively categorise as nitrogen application, availability 

and requirements were different in each experiment. A plant focused approach was opted for 

with a ‘normal’ category for all unfertilised experiments in semi-natural vegetation and for all 

standard nitrogen addition rates (assessed in the literature) in the agricultural experiments. The 

high nitrogen category included any nitrogen addition treatments in semi-natural vegetation or 

higher than standard application rates in agricultural systems.  

Table 2-1. Description of the FACE sites which provided most of the data for this meta-
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analysis. 

FACE site Location lat lon CO2 other treatments experimental system year reference 

AspenFACE Wisconsin USA 45 -89 amb +200 O3 Aspen +mixed broadleaf 1998 Zak et al 2011 

Biocon Minnesota USA 45 -93 550 N, species diversity Prairie grassland 1998 Reich et al 2004 

China FACE China 31 120 amb +200 
 

cereals 2001 Chen 2005 

Duke FACE North Carolina USA 36 -71 amb +200 N Pine forest 1996 Drake et al 2011 

ETH FACE Switzerland 47 8 600 N, cutting Pasture 1993 Nijs 1996 

Maricopa Arizona USA 33 -112 amb +200 N, irrigation cereals and cotton 1989 Leavitt et al 1996 

NDFF Nevada USA 36 -116 550 
 

desert 1997 Huxman 1998 

NZ FACE New Zeland -40 175 475 N, warming Pasture 1997 Edwards 2001 

Oak Ridge Tennessee USA 36 -84 amb +200 
 

broadleaf plantation 1998 Norby et al 2001 

POPFACE Italy 42 12 amb +200 N broadleaf plantation 1999 Calfapietra 2001 

Rice FACE Japan 39 141 amb +200 
 

rice 1998 Koizumi 2001 

miniFACE Italy 43 11 600 N crops 1994 Miglietta 1996 

SCC Switzerland 47 7 520 
 

mature broadleaf forest 2001 Cech 2003 

SOYFACE Illinois USA 40 -88 550 
 

agriculture 2000 Kimbal 1995 

 

Years after commencement of the experiment were divided into three three year periods in an 

attempt to identify progressive features in plant responses to elevated CO2. Photosynthetic 

mode was divided into C3 and C4 photosynthesis and legumes. Although leguminous plants 

operate in the C3 mode, a major response of C3 plants to increased CO2 is a drop in leaf 

nitrogen which interacts with photosynthesis and we wanted to separate the effect of 

symbiotic nitrogen fixation on C3 photosynthesis. Any differences may be justification for 

including legumes as a separate PFT in the next generation of land surface vegetation models 

that will include nitrogen cycling.     

As discussed previously, meta-analyses require the data to be independent. After Ainsworth 

and Long (2005) we considered responses from different treatments (e.g. species, nitrogen 

addition, irrigation etc) and different years within a particular FACE experiment to be 

independent. However, in the case of ecophysiological responses, data from different 

days/months could possibly be considered independent due to environmental differences.  

Tissue concentrations expressed as a percentage and as milligrams per gram were analysed 

together as they are directly comparable when converted to proportional effect-sizes. Asat at a 

high (550 µmol mol-1 and above) common CO2 concentration was tested for any differences 

between the effect size when the CO2 was at the elevated concentration (550 – 600 µmol mol-1) 

or at saturating concentration (800+ µmol mol-1) and there was no significant difference, 
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therefore the results under both levels of CO2 were combined into the single analysis of Asat at a 

common elevated CO2 concentration. Leaf respiration per unit area was analysed for any 

differences when measured either as the daytime respiration (calculated using the Bernacchi et 

al. 2009 model) or when measured by gas exchange at night time and there was no significant 

difference. Hence results of leaf respiration per unit area were also combined into a single 

analysis. 

The meta-analytical software package METAWIN (Version 2.1 [release 4.8], Rosenberg et al. 

1997) was used to conduct the meta-analysis.  The effect-size metric used was the natural 

logarithm of the response ratio (rr) (Gurevitch and Hedges 1999). The response ratio is 

calculated as the treatment mean divided by the control mean. This metric was chosen as it has 

commonly been used in ecological studies and is easy to convert to a meaningful percentage 

change of dependent variable in response to a treatment. In all cases the number of plot 

replicates was used as the sample size for the meta-analysis but where it was necessary to 

convert standard error to standard deviation the reported sample size was used. The effect 

sizes were weighted in the standard METAWIN method as a function of the inverse of the 

standard deviation across sample plots. Confidence intervals were generated parametrically 

using the standard error of the weighted mean response ratio and by bootstrapping (re-

sampling with replacement). Confidence intervals were unbalanced around the mean response 

ratio due to anti-logging. A mixed effects model was assumed (Gurevitch and Hedges 1999). 

METAWIN provides tools for a categorical analysis similar to a one-way ANOVA after the 

methods of Curtis and Wang (1998) which was used to examine the significance of variation 

between factors within a single categorical variable. Categorical variables PFT and 

photosynthetic mode were analysed as random effects and nitrogen level, year, canopy and 

water were analysed as fixed effects. 

In the text results are reported as mean effect size percentage change ([rr-1] x 100) to zero 

decimal places. 95% confidence intervals are expressed in the text as percentages as the mean 

of the upper and lower bound. A significant effect of elevated CO2 on a particular dependent 

variable was determined at the 95% confidence level based on whether the span of the 

confidence intervals contained the 0% value. A significant effect of a categorical treatment was 

expressed based on the partitioning of variance method of Curtis and Wang (1998). ‘k’ is used 

to refer to the number of data points or sample size used in the meta-analysis, often referred to 
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as number of studies. However the number of studies is misleading as data were not always 

from separate studies or experiments.  
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Results 

Carbon Assimilation and Biomass Partitioning 

Instantaneous, light-saturated carbon assimilation (Asat) was stimulated by 28% ±3.3 on average 

and Plant Functional Type (PFT) and nitrogen were significant factors modifying the response.  

Trees had the highest increase in Asat at 38% ±10.6 with C4 grass and shrubs not significantly 

affected by elevated CO2, although only C4 grasses had a mean effect size near 0% and a 

reasonable sample size (k = 16).  Asat was lower in plants under high nitrogen treatments 

(nitrogen added in natural systems or higher than normal nitrogen addition rates in agricultural 

systems) than in zero (natural systems) or standard (agricultural systems) nitrogen addition 

treatments. Respiration expressed on a leaf area basis and also on a mass basis increased 

significantly by 10% ±6.8 and 15% ±7.6 respectively. PFT significantly (significance expressed 

always at the P<0.05 level) affected the CO2 effect of respiration with tree respiration 

unaffected but crop and grass respiration increased by 21% ±12.7 and 41% ±38.6 respectively, 

although the sample size was small (k = 9 & 4 respectively). 

Daily integrated carbon assimilation (A’) increased by 23% ±4.7 (Table 2-3). Increases in carbon 

assimilation translated to increases in production and biomass of a similar magnitude. Net 

Primary Productivity (NPP) increased 21% ±4.0 and, as with carbon assimilation, there was no 

significant influence of year and no apparent trend in the data. Total biomass increased by 22% 

±7.1 and the magnitude of increase was significantly different according to PFT. Trees had the 

largest total biomass gains at 41% ±9.8 while grasslands (mixed species grasslands) only 

increased total biomass by 9% ±7.1. 

Aboveground biomass was stimulated 16% ±2.5 by elevated CO2 and there were significant 

differences in this stimulation of aboveground biomass for different modes of photosynthesis. 

Legume aboveground biomass was stimulated the most highly at 48% ±12.4 while the biomass 

of C4 grasses and cereals was not significantly affected by elevated CO2. Aboveground biomass 

of C3 plants was stimulated by only 14% ±2.4, a markedly different response to nitrogen fixing 

C3 plants. By year, stimulation of aboveground biomass increased as the length of enrichment 

increased, an effect opposite to expectations. 

Aboveground tree biomass changes were composed of a 26% ±5.4 increase in canopy biomass; 

no change but wide confidence intervals in litter biomass and a 23% ±4.5 increase in wood 
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biomass. Wood biomass was significantly influenced by site/species (breakdown not shown) 

and the mean effect size was dominated by the 33% ±6 increase at AspenFACE (k = 31 of 46) 

with the rest of the results coming from the Duke FACE site. Canopy biomass increases were 

accompanied by a 10% ±2.9 increase in LAI and a 5% ±1.6 decrease in specific leaf area (SLA—

leaf area divided by leaf mass) indicating that the canopy has both increased in leaf layers and 

leaf thickness or density. The response of neither LAI nor SLA were significantly affected by PFT 

or nitrogen. 

Total belowground biomass increased 26% ±6.6 while fine root biomass increased 32% ±6.2. 

Root biomass (both total and fine) was significantly influenced by PFT with trees and crops 

showing the largest response and shrubs (the Nevada Desert site) showing no significant 

change. Root to shoot ratios were unchanged supporting the effect sizes of CO2 on 

aboveground and belowground biomass but contrary to findings at specific sites. 
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Table 2-2. The probability of ecological factor affecting the natural log of the response ratio 
of a plant/ecosystem response variable to elevated CO2 using the method of (Curtis and 
Wang 1998). The number of independent datapoints used in an analysis is represented by 
k; k total datapoints were used in the factorial analysis of PFT, C3/C4/C3 legume, nitrogen 
and year; while k canopy and k water datapoints were used in the factorial analysis of 
canopy and water respectively. The factors analysed for the effect on a particular variables 
response to elevated CO2 were PFT, mode of photosynthesis (C3), nitrogen, years after the 
beginning of CO2 enrichment (yr), canopy level and soil water. See method section for a 
description of the categories within each factor. *** represents significance at the P < 0.001 
level; ** represents significance at the P < 0.01 level; * represents significance at the P < 
0.05 level; - represents significance at the P < 0.1 level and n.s. represents P > 0.1. A blank 
cell means that there were insufficient studies for the factorial analysis or the factor was 
irrelevant to the variable. A’ – integrated daily carbon assimilation; Asat – instantaneous 
rate of light saturated carbon assimilation; Jmax – maximum rate of electron transport, Vc max 
– maximum rate of carboxylation by RuBisco; gs – stomatal conductance; NPP – net primary 
productivity; LAI – leaf area index; SLA – specific leaf area; TNC – total non-structural leaf 
carbon; C – carbon; N – nitrogen, PFT. 

  
K 

 
factor 

dependent variable total canopy water 
 

PFT C3/C4 nitrogen year canopy water 

            Gas  A' 44 4 
  

n.s. n.s. n.s. 
 

n.s. 
 Exchange Asat 238 87 33 

 
*** ** * n.s. n.s. n.s. 

 
Asat common CO2(ambient) 26 12 

  
n.s. 

 
n.s. n.s. n.s. 

 
 

Asat common CO2(elevated) 60 11 
  

*** * n.s. *** n.s. 
 

 
Jmax 91 59 8 

 
** n.s. n.s. n.s. n.s. n.s. 

 
Vcmax 99 61 12 

 
n.s. n.s. n.s. * n.s. n.s. 

 
Jmax/Vcmax 15 

   
n.s. n.s. n.s. 

   
 

Chlorophyll(area) 32 31 
  

n.s. n.s. 
  

n.s. 
 

 
Respiration(area) 41 

   
** n.s. n.s. n.s. 

  
 

RuBisco(area) 25 12 
  

n.s. 
 

n.s. n.s. n.s. 
 

 
gs 174 50 24 

 
** n.s. n.s. n.s. n.s. ** 

            Biomass NPP 41 
 

6 
 

* 
 

n.s. n.s. 
 

n.s. 

 
Total Biomass 73 

   
*** 

 
n.s. * 

  
 

Aboveground Biomass 366 
 

6 
 

n.s. *** * ** 
 

n.s. 

 
Wood Biomass 47 

   
n.s. 

  
n.s. 

  
 

Belowground Biomass 80 
   

** 
 

n.s. * 
  

 
Fine Root Biomass 110 

   
*** 

 
n.s. n.s. 

  
 

Root:Shoot 28 
   

n.s. 
 

n.s. 
   

 
Agricultural Yield 42 

 
12 

   
* 

  
** 

 
LAI 84 

 
14 

 
n.s. n.s. n.s. n.s. 

 
n.s. 

 
SLA 115 69 

  
n.s. n.s. n.s. n.s. n.s. 

 

            Carbon  Total Nitrogen(ground area) 58 
   

** 
 

n.s. n.s. 
  & Nitrogen Leaf Nitrogen(area) 111 45 

  
** n.s. n.s. n.s. n.s. 

 
 

Leaf Nitrogen(mass) 195 87 18 
 

* n.s. n.s. n.s. n.s. n.s. 

 
Leaf Protein (mass) 13 

   
n.s. n.s. n.s. 

   
 

Leaf Protein (area) 13 
   

n.s. n.s. 
    

 
Leaf Carbon(mass) 32 

   
n.s. 

 
** * 

  
 

TNC(mass) 26 12 
  

n.s. n.s. n.s. n.s. n.s. 
 

 
TNC(area) 20 

   
n.s. * n.s. 

   
 

Starch(area) 34 
 

4 
 

* 
 

* n.s. 
 

n.s. 

 
Starch(mass) 

 
7 

      
n.s. 

 
 

Sugar(area) 21 
 

4 
 

*** 
  

n.s. 
 

n.s. 

 
Leaf C:N 81 32 8 

 
*** n.s. *** n.s. n.s. n.s. 

 
Litter Nitrogen(mass) 61 

 
8 

 
n.s. 

 
n.s. n.s. 

 
n.s. 

 
Wood Nitrogen(mass) 17 

     
n.s. n.s. 
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Wood Nitrogen(ground area) 11 

      
* 

  
 

Wood C:N 17 
      

n.s. 
  

 
Root Nitrogen(mass) 8 

      
n.s. 

  
 

Plant Phosphorus 41 17 
  

n.s. n.s. n.s. ** ** 
 

 
Litter Phosphorus 22 

   
** 

                  

 

 

Figure 2-1.The response ratio of photosynthetic parameters and biomass to elevated CO2. The 
number of samples in the meta-analyses (k) is shown on the left hand side of the plots. R:S is 
the root to shoot ratio; A’ is daily integrated carbon assimilation; Asat is carbon assimilation at 
saturating light and growth CO2; Asat aCO2 is carbon assimilation at saturating light and low CO2; 
Asat aCO2 is carbon assimilation at saturating light and at saturating CO2.  
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Table 2-3. Mean effect size (response ratio) and confidence intervals of gas exchange 
variables in response to elevated CO2. Confidence intervals are expressed as the 95% 
interval based on the normal distribution (parametric) or from re-sampling with 
replacement  bootstrap . ‘k’ represents the number of data points used in each analysis. A 
red background in the low confidence interval column signifies that the lower boundary of 
the 95% confidence interval is above one and therefore the variable in question was 
significantly increased under elevated CO2 treatment. A blue background in the high 
confidence interval column signifies that the upper boundary of the 95% confidence 
interval is below one and therefore the variable in question was significantly decreased 
under elevated CO2 treatment. 

     
95% Confidence Interval 

Variable Factor Group k 
    
Mean 

Low 
Parametric 

High 
Parametric 

Low 
Bootstrap 

High 
Bootstrap 

A'            -            
 

43 1.23 1.186 1.280 1.185 1.287 
Asat  -            

 
237 1.28 1.245 1.312 1.236 1.316 

 
PFT  tree       111 1.38 1.328 1.427 1.313 1.436 

  
 grass      55 1.21 1.149 1.280 1.147 1.294 

  
 C4grass    16 1.01 0.907 1.130 0.929 1.116 

  
 crop       45 1.25 1.182 1.314 1.189 1.307 

  
 shrub      10 1.13 0.962 1.322 0.903 1.450 

 
C3  C3         199 1.31 1.272 1.346 1.260 1.348 

  
 legume     22 1.21 1.112 1.318 1.123 1.310 

  
 C4         16 1.01 0.903 1.137 0.926 1.109 

 
nitrogen  normal    184 1.31 1.276 1.351 1.267 1.357 

  
 high       44 1.14 1.069 1.206 1.059 1.211 

  
 mean       3 1.39 0.898 2.162 1.280 1.524 

  
 low        6 1.27 1.032 1.551 1.151 1.401 

Asat (ambient CO2)       -            
 

25 0.96 0.889 1.046 0.904 1.039 
Asat (elevated CO2)      -            

 
59 0.85 0.807 0.892 0.799 0.895 

 
PFT  tree       10 1.01 0.927 1.106 0.951 1.088 

  
 grass      28 0.73 0.678 0.781 0.680 0.775 

  
 C4grass    16 0.85 0.773 0.938 0.785 0.916 

  
 crop       5 0.95 0.838 1.086 0.862 1.040 

 
C3  C3         35 0.89 0.834 0.940 0.823 0.943 

  
 legume     8 0.72 0.615 0.832 0.610 0.794 

  
 C4         16 0.85 0.763 0.946 0.782 0.917 

 
year 7 to 9 2 0.96 0.322 2.851 0.917 0.990 

  
4 to 6 8 1.06 0.946 1.182 1.002 1.123 

  
1 to 3 49 0.80 0.757 0.839 0.754 0.839 

Jmax    -            
 

90 0.98 0.949 1.004 0.949 1.004 

 
PFT  tree       63 1.00 0.968 1.032 0.970 1.033 

  
 grass      16 0.95 0.883 1.014 0.890 1.020 

  
 crop       6 0.97 0.870 1.092 0.904 1.009 

  
 shrub      5 0.77 0.650 0.911 0.685 0.893 

Vc max  -            
 

98 0.92 0.887 0.959 0.884 0.961 

 
year 7 to 9 9 0.96 0.832 1.107 0.885 1.062 

  
4 to 6 25 1.00 0.931 1.077 0.938 1.060 

  
1 to 3 64 0.88 0.840 0.924 0.827 0.934 

Jmax/Vc max  -            
 

15 1.00 0.951 1.046 0.955 1.044 
Chlorophyll(area)  -            

 
31 1.00 0.964 1.043 0.963 1.042 

Chlorophyll(mass)  -            
 

19 0.83 0.778 0.884 0.777 0.899 
Respiration(area)  -            

 
40 1.10 1.036 1.172 1.044 1.171 

 
PFT  tree       26 1.01 0.949 1.078 0.959 1.064 

  
 crop       9 1.21 1.086 1.340 1.095 1.324 

  
 grass      4 1.41 1.073 1.845 1.211 2.290 

Respiration(mass)  -            
 

15 1.15 1.080 1.231 1.060 1.233 
RuBisco(mass)  -            

 
5 0.85 0.715 1.012 0.743 0.930 

RuBisco(area)  -            
 

24 0.83 0.716 0.954 0.728 0.939 
Gs  -            

 
173 0.79 0.762 0.816 0.762 0.816 

 
PFT  tree       74 0.85 0.806 0.889 0.812 0.883 
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 grass      45 0.77 0.720 0.831 0.726 0.831 

  
 C4grass    16 0.74 0.605 0.900 0.639 0.843 

  
 crop       33 0.72 0.670 0.767 0.666 0.763 

  
 shrub      5 0.75 0.570 0.995 0.634 0.908 

 
 water            dry        8 0.80 0.660 0.980 0.695 0.935 

  
 wet        16 0.63 0.560 0.716 0.578 0.679 

Sap flux(ground area)  -            
 

6 1.15 0.947 1.397 1.012 1.276 
Sap flux(wood area)  -            

 
4 1.01 0.808 1.260 0.873 1.121 
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Table 2-4. Mean effect size (response ratio) and confidence intervals of growth variables in 
response to elevated CO2. Confidence intervals are expressed as the 95% interval based on 
the normal distribution (parametric) or re-sampling with replacement  bootstrap . ‘k’ 
represents the number of data points used in each analysis. A red background in the low 
confidence interval column signifies that the lower boundary of the 95% confidence 
interval is above one and therefore the variable in question was significantly increased 
under elevated CO2 treatment. A blue background in the high confidence interval column 
signifies that the upper boundary of the 95% confidence interval is below one and 
therefore the variable in question was significantly decreased under elevated CO2 
treatment. 

     
95% Confidence Intervals 

Variable Factor Group k 
    
Mean 

Low 
Parametric 

High 
Parametric 

Low 
Bootstrap 

High 
Bootstrap 

NPP           -            
 

40 1.21 1.166 1.246 1.169 1.239 

 
PFT  tree       34 1.20 1.158 1.237 1.162 1.231 

  
 shrub      6 1.72 1.264 2.352 1.554 2.002 

Total Biomass      -            
 

72 1.22 1.150 1.292 1.163 1.284 

 
PFT  tree       32 1.39 1.299 1.493 1.301 1.482 

  
 bogmoss    4 1.03 0.743 1.418 0.874 1.161 

  
 grass      30 1.09 1.024 1.167 1.047 1.139 

  
 crop       6 1.43 1.166 1.760 1.123 1.817 

 
year 7 to 9 12 1.21 0.987 1.491 1.064 1.344 

  
4 to 6 13 1.38 1.214 1.567 1.216 1.556 

  
1 to 3 47 1.18 1.105 1.257 1.116 1.247 

Aboveground Biomass     -            
 

365 1.16 1.136 1.184 1.133 1.186 

 
 C3               C3         322 1.14 1.117 1.165 1.116 1.166 

  
 legume     37 1.48 1.363 1.609 1.357 1.624 

  
 C4         6 1.13 0.870 1.459 0.973 1.281 

 
nitrogen normal 315 1.14 1.119 1.171 1.117 1.173 

  
 high       43 1.23 1.159 1.305 1.170 1.319 

  
 low        5 1.18 0.977 1.435 1.059 1.300 

  
 mean       2 1.57 0.389 6.340 1.190 2.072 

 
year 7 to 9 62 1.28 1.207 1.366 1.189 1.384 

  
4 to 6 137 1.15 1.115 1.190 1.116 1.189 

  
1 to 3 166 1.14 1.103 1.173 1.101 1.177 

Canopy Biomass       -            
 

44 1.27 1.225 1.320 1.220 1.333 
Litter Biomass       -            

 
32 1.13 1.081 1.188 1.092 1.179 

Wood Biomass      -            
 

46 1.23 1.183 1.277 1.152 1.319 
Total Belowground Biomass        -            

 
79 1.26 1.191 1.324 1.184 1.320 

 
PFT  tree       35 1.32 1.232 1.422 1.229 1.425 

  
 grass      23 1.05 0.950 1.160 0.960 1.140 

  
 crop       21 1.40 1.249 1.574 1.259 1.561 

 
year 7 to 9 21 1.38 1.214 1.570 1.242 1.540 

  
4 to 6 28 1.32 1.231 1.426 1.208 1.437 

  
1 to 3 30 1.16 1.086 1.249 1.075 1.271 

Fine Root Biomass      -            
 

109 1.32 1.258 1.382 1.248 1.393 

 
PFT  tree       59 1.46 1.384 1.533 1.377 1.547 

  
 grass      23 1.05 0.955 1.154 0.969 1.148 

  
 crop       21 1.40 1.258 1.567 1.263 1.560 

  
 shrub      6 0.83 0.656 1.042 0.763 0.940 

Root:Shoot ratio          -            
 

21 1.01 0.943 1.072 0.955 1.068 
Agricultural Yield         -            

 
41 1.13 1.097 1.173 1.101 1.174 

 
nitrogen normal 29 1.10 1.058 1.142 1.058 1.141 

  
 high       7 1.21 1.110 1.308 1.141 1.278 

  
 low        5 1.21 1.076 1.371 1.124 1.318 

 
 water            dry        5 1.21 1.107 1.318 1.199 1.217 

  
 wet        7 1.05 1.000 1.113 1.001 1.100 

LAI           -            
 

83 1.10 1.071 1.130 1.072 1.129 
SLA           -            

 
115 0.94 0.932 0.958 0.931 0.959 
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Table 2-5. Mean effect size (response ratio) and confidence intervals of carbon, nitrogen 
and phosphorus variables in response to elevated CO2. Confidence intervals are expressed 
as the 95% interval based on the normal distribution (parametric) or re-sampling with 
replacement  bootstrap . ‘k’ represents the number of data points used in each analysis. A 
red background in the low confidence interval column signifies that the lower boundary of 
the 95% confidence interval is above one and therefore the variable in question was 
significantly increased under elevated CO2 treatment. A blue background in the high 
confidence interval column signifies that the upper boundary of the 95% confidence 
interval is below one and therefore the variable in question was significantly decreased 
under elevated CO2 treatment. 

     
95% Confidence Interval 

Variable Factor Group k     Mean 
Low 

Parametric 
High 

Parametric 
Low 

Bootstrap 
High 

Bootstrap 

Total N(ground area)  -            
 

58 1.05 1.015 1.080 1.006 1.091 

 
PFT  tree       40 1.07 1.039 1.108 1.034 1.119 

  
 crop       18 0.90 0.836 0.975 0.846 0.958 

Leaf N(area)  -            
 

110 0.96 0.932 0.980 0.937 0.976 

 
PFT  tree       48 0.99 0.960 1.023 0.966 1.020 

  
 grass      32 0.89 0.846 0.940 0.853 0.935 

  
 C4grass    16 0.97 0.862 1.092 0.881 1.048 

  
 crop       14 0.92 0.869 0.982 0.888 0.954 

Leaf N(mass)  -            
 

194 0.93 0.904 0.959 0.919 0.942 

 
PFT  tree       131 0.95 0.918 0.976 0.934 0.960 

  
 grass      19 0.87 0.801 0.953 0.818 0.919 

  
 crop       37 0.92 0.870 0.971 0.896 0.938 

  
 shrub      6 0.87 0.713 1.058 0.781 0.931 

Protein(mass)  -            
 

12 0.85 0.803 0.901 0.798 0.886 
Protein(area)  -            

 
12 0.91 0.799 1.032 0.809 1.011 

Plant Carbon(mass)  -            
 

32 1.00 0.997 1.004 0.997 1.004 

 
year 4 to 6 10 1.01 1.001 1.013 1.001 1.012 

  
1 to 3 21 1.00 0.995 1.002 0.996 1.001 

   
31 1.00 0.998 1.004 0.998 1.004 

TNC(mass)  -            
 

26 1.13 1.030 1.231 1.081 1.180 
TNC(area)  -            

 
20 1.05 0.947 1.169 0.958 1.158 

TNC(area)  C3               C3         17 1.01 0.907 1.122 0.926 1.098 
TNC(area) 

 
 legume     3 1.48 0.792 2.783 1.183 1.822 

Starch(mass)  -            
 

31 1.08 1.004 1.167 0.993 1.174 
Starch(area)  -            

 
34 1.45 1.267 1.653 1.256 1.665 

Starch(area) PFT  tree       26 1.29 1.120 1.483 1.107 1.507 
Starch(area) 

 
 crop       6 2.25 1.550 3.264 1.600 2.972 

Starch(area) 
 

 grass      2 1.72 0.083 35.846 1.325 2.280 
Starch(area) nitrogen normal 31 1.53 1.326 1.758 1.317 1.775 
Starch(area) 

 
 low        3 0.88 0.352 2.187 0.809 0.977 

Sugar(mass)  -            
 

11 1.04 0.993 1.090 0.994 1.073 
Sugar(area)  -            

 
21 2.76 1.342 5.680 1.658 4.520 

Sugar(area) PFT  tree       17 1.73 1.141 2.634 1.195 2.425 
Sugar(area) 

 
 crop       4 19.58 5.404 70.932 15.032 26.685 

Leaf C:N ratio    -            
 

80 1.10 1.072 1.122 1.077 1.119 

 
PFT  tree       47 1.04 1.022 1.068 1.024 1.065 

  
 grass      18 1.18 1.140 1.217 1.140 1.216 

  
 crop       8 1.14 1.083 1.207 1.090 1.216 

  
 shrub      6 1.16 1.073 1.249 1.115 1.222 

 
nitrogen normal 70 1.08 1.055 1.099 1.057 1.098 

  
 high       9 1.19 1.131 1.248 1.141 1.242 

Litter N(mass)  -            
 

60 0.93 0.899 0.963 0.899 0.962 
Litter C:N ratio   -            

 
25 1.09 1.046 1.140 1.045 1.138 
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Wood N(mass)  -            
 

16 0.95 0.912 0.994 0.920 1.005 
Wood N(area)  -            

 
10 1.09 1.078 1.105 1.074 1.102 

Wood C:N ratio     -            
 

16 0.99 0.972 1.002 0.978 0.998 
Root N(mass)  -            

 
7 1.03 0.931 1.137 0.969 1.108 

Root N(area)  -            
 

3 0.98 0.748 1.278 0.932 1.148 
Leaf Phosphorus(mass)  -            

 
40 1.02 0.977 1.069 0.991 1.054 

 
year 4 to 6 8 1.10 1.039 1.173 1.065 1.136 

  
1 to 3 32 0.99 0.953 1.024 0.954 1.029 

 
 canopy           upper      8 1.11 1.039 1.185 1.058 1.184 

  
 lower      5 1.03 0.900 1.179 1.000 1.063 

  

 
understorey 5 1.06 0.921 1.231 1.012 1.115 

Litter Phosphorus(mass)  -            
 

23 1.07 0.964 1.185 0.965 1.165 

 
PFT tree 11 1.20 1.040 1.392 1.107 1.291 

  
grass 10 0.95 0.765 1.175 0.861 1.051 

  
bogmoss 5 0.79 0.504 1.248 0.666 1.026 

                           

 

Photosynthetic acclimation and nitrogen stoichiometry 

Light saturated photosynthesis at a common CO2 concentration was unchanged when the 

common concentration was at ambient levels, but decreased by 15% ±4.3 at saturating 

CO2levels. At saturating CO2 concentrations; PFT, photosynthetic mode and years of enrichment 

all influenced the effect size. Trees and crops showed no reduction in assimilation, but 

assimilation was significantly reduced in C3 and C4 grasses with legumes showing the strongest 

reduction of 27% ±5.1.  Vcmax decreased 8% ±3.6 and Jmax was not significantly decreased 

although Jmax was reduced in shrubs. Both results were dominated by results from the tree PFT 

(65 of 98 and 63 of 90 data points respectively). Jmax/Vcmax was not significantly affected by 

elevated CO2 concentration. RuBisCO per unit leaf area decreased by 17% ±11.9. 

Leaf nitrogen per unit leaf area was significantly decreased by 4% ±2.5 and the response was 

significantly affected by PFT but neither trees nor C4 grasses showed a significant decrease in 

leaf nitrogen per unit area. Leaf nitrogen per unit mass decreased by 7% ±1.1, less of a decrease 

than in many previous studies, and was significantly affected by PFT ranging from a 5% ±1.4 

decrease for trees to a 17% ±10.4 for grasses.  The decrease in leaf nitrogen per unit mass was 

reflected by an increase in leaf carbon to nitrogen ratio of 10% ±2.5 also significantly influenced 

by PFT ranging from a 4% ±2.3 increase for trees to a 17% ±3.9 increase for grasses. 

Unsurprisingly nitrogen addition treatment significantly affected the effect size, however as 

with Asat at saturating CO2 concentration, the effect was opposite from that expected. ‘Normal’ 

nitrogen levels caused an 8% ±2.2 increase in leaf carbon to nitrogen ratio under elevated CO2 

while high nitrogen caused a 19% ±5.9 increase.    
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Both leaf chlorophyll concentration and protein concentration were significantly reduced by 

17% ±5.3 and 15% ±4.9 respectively, under elevated CO2, but were not significantly reduced on 

a leaf area basis. The lack of change in chlorophyll supports the results of no change in Jmax. 

Wood nitrogen concentration was reduced by 5% ±4.1 but this was not reflected by a change in 

the wood carbon to nitrogen ratio which was unaffected. Litter nitrogen decreased 7% ±3.4 and 

litter carbon to nitrogen ratio increased by 9% ±4.7. Root nitrogen concentration was not 

significantly affected by elevated CO2. Most plant nitrogen parameters decreased or remained 

unchanged while total plant nitrogen per unit of ground area significantly increased by 5% ±3.2. 

Leaf percentage carbon significantly increased four to six years after the beginning of the 

experiment by 1% ±0.6. On a mass basis total non-structural carbon in the leaf increased 13% 

±10.0, leaf starch increased 8% ±8.1 and sugar concentration was unchanged. Overall there was 

no change in leaf phosphorus concentration however in the later years of an experiment or in 

the upper canopy (studies mostly cross over both categories) leaf phosphorus was significantly 

increased by 10% ±6.7. There was a 20% ±17.6 increase in litter phosphorus under elevated 

CO2.  

Water Balance 

Stomatal conductance (gs) was decreased by 21% ±3 and was significantly influenced by PFT 

and water levels. gs of trees was reduced by 15% ±4.2 while the gs of grasses and shrub crops 

(cotton and soy) reduced 28% ±9.8 and 29% ±8.4. The gs of C4 grasses were also reduced by 

26% ±14.8. Soil water also influenced the effect size of gs, somewhat counter intuitively gs was 

more strongly reduced under irrigated or wet conditions, perhaps due to it being a relative 

effect and not an absolute effect. Sap flow expressed per unit of sapwood or ground area was 

unaffected by increased CO2. However, due to the low sample size, an effect may have gone 

undetected as the response of sap flow per unit of ground area appeared to have increased but 

the confidence intervals were wide. 
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Discussion 

Carbon Flux and Partitioning 

The increase in Asat and A’ were similar to those calculated by Ainsworth and Long (2005). The 

effect size on daily carbon assimilation and wood biomass were 23%, exactly the same as the 

number derived by Norby et al. (2005) for increases in NPP under elevated CO2. We calculated a 

similar mean increase in NPP at 19% ±4.0 and total biomass was increased by 22% ±7.1. These 

results indicate a consistent stimulation of the net drawdown of atmospheric carbon and 

sequestration in biomass although there were significant differences in total biomass by PFT.    

Respiration was increased under elevated CO2 on both a mass and leaf area basis. Respiration is 

strongly correlated with nitrogen concentration (Papale et al. 2006) and the calculated 

increases in respiration were unexpected as a drop in leaf nitrogen under elevated CO2 is a 

common phenomenon, a phenomenon backed up by the results of this meta-analysis and 

others (Medlyn and Jarvis 1999, Ainsworth and Long 2005, Taub et al. 2008). It is possible that 

respiration was increased due to the increases in leaf sugar and starch concentrations and 

Thornley and Cannell (2000) argued that carbon supply was an important driver of respiration. 

Increased quantities of labile carbon could be used by the plant if energy requiring processes 

are restricted and respiration has been shown to increase in a number of species when labile 

carbon has been increased (Farrar 1985). The results presented here indicate that respiration 

was not tied to nitrogen concentration and that increased labile carbon may stimulate 

respiration. This has implications for modelling; plant labile carbon should be tied to sink 

limitation and respiration.  For example, as with many carbon cycle models SDGVM and JULES 

simulate respiration as a function of plant nitrogen, and temperature (Woodward et al. 1995, 

Woodward and Lomas 2004, Best et al. 2011), with no consideration of the labile carbon pool. 

Labile carbon needs to be linked to sink limitation, for example, CLMCN (Thornton et al. 2007) 

reduces Gross Primary Productivity (GPP) according to soil nitrogen limitation rather than 

restricting plant growth, causing an increase in labile carbon. 

Consistent with previous studies (Arp 1991, Ainsworth and Long 2005,Iversen 2010) patterns of 

carbon allocation shifted under elevated CO2. Fine roots in particular had higher increases in 

biomass under elevated CO2 than aboveground biomass. Non-nitrogen fixing C3 plants had 

smaller increases in aboveground biomass than legumes, with trees and crops showing large 

increases in both total below ground biomass and fine root biomass, indicating that growth was 
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limited by soil resources and that plants were foraging for these resources. By contrast grasses 

showed no change in belowground biomass and had the largest decreases in leaf nitrogen, on 

both a mass and area basis indicating that grasses were unable to adapt allocation patterns in 

order to acquire additional nitrogen. Legumes showed the highest increases in aboveground 

biomass consistent with their nitrogen-fixing bacterial symbionts allowing them to avoid 

nitrogen limitation and further indicating that observed increases in root mass of non-legumes 

could be due to nitrogen limitation. Not enough data were available to quantify root allocation 

in legumes.     

The analysis of root to shoot ratio indicated no significant change, contrary to the analyses of 

biomass partitioning. Contradictions, like the one here between root and shoot biomass effect-

sizes and root to shoot ratio effect-sizes, are possible in meta-analysis due to each effect-size 

metric coming from a potentially different sample of studies. As with the biomass effect-size, it 

was likely that the root to shoot ratio response was variable across PFTs and there were 

insufficient root to shoot ratio data to subdivide the responses. Also sampling methods may 

have missed changes in the distribution of roots in the soil profile. Iversen (2010) showed that 

for trees there was an overall increase in root to shoot ratio under elevated CO2 but there was 

also a redistribution of roots in the soil profile with plants in many experiments having greater 

root mass at depth.  

Photosynthetic acclimation, plant nitrogen and sustainability of increased biomass 

production 

In this meta-analysis the responses of Asat, A’, biomass and NPP were not significantly affected 

by the time passed since the beginning of the experiment (Table 2-2). To maintain increased 

biomass production increased photosynthesis must be maintained. Down-regulation of the 

photosynthetic system in acclimation to elevated CO2 has been well researched and 

documented yet its causes are debated (Arp 1991, Stitt 1991, Woodward 2002) due to the 

multiple processes at several levels of organisation that interact with and regulate the 

photosynthetic system.  

Carbon assimilation at a common CO2 concentration was not affected by ambient 

measurement concentrations but was significantly reduced at elevated or saturating CO2 

measurement concentrations. This was an unexpected result as the effect sizes of Vc max and 

Jmax suggest that assimilation would be reduced at low CO2 (Vc max limited photosynthesis) and 
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remain the same at saturating CO2 (Jmax limited). These contrasting results were presumably 

due to the data coming from different studies, highlighting that photosynthetic acclimation to 

high CO2 was a result of species and ecosystem-specific interactions that were difficult to 

generalise with meta-analytical techniques. Acclimation of photosynthesis was less significant 

in trees, also observed by Ainsworth et al. (2007), probably due to the fact that leaf nitrogen 

per unit area was not decreased while in grasses there was a significant decrease.  

Overall we calculated a decrease in Vcmax (8%) and no change in Jmax yet no change in the 

Jmax/Vcmax ratio. Ainsworth and Long (2005) observed a larger decrease in Vcmax (14%), a slight 

decrease in Jmax (5%) and a decrease in Vcmax/Jmax ratio. The results from this meta-analysis were 

dominated by trees whereas the results of Ainsworth and Long (2005) were weighted towards 

results from grasses. This study showed a decrease in RuBisCO of similar magnitude as 

Ainsworth and Long (2005) and a decrease in chlorophyll was only significant when measured 

on a leaf mass basis (Figure 2-2). The decrease in chlorophyll only on a mass basis was 

consistent with no response in Jmax given the decrease in SLA under elevated CO2 as Jmax was 

measured on an area basis. Reductions in leaf nitrogen were also observed only on a mass basis 

for the tree PFT suggesting that changing SLA may be a strategy in maintaining leaf 

photosynthetic apparatus scaled to the leaf area, and therefore to incoming radiation. It could 

be argued that observed decreases in SLA were due to increases in leaf carbon, however 

increase in leaf sugar and starch were far greater on a leaf area than on a leaf mass basis 

(Figure 2-2).  

These results lend weight to the theory of controlled down-regulation of the photosynthetic 

apparatus, in particular RuBisCO, due to accumulation of photosynthetic products in the leaf as 

a result of low sink demand (Arp 1991, Stitt 1991). Indeed Ainsworth and Long (2005) observed 

a 17% increase in above-ground dry matter production, 10% lower than the observed increase 

in diurnal carbon assimilation. Optimisation theory suggests that a plant would adjust to these 

higher levels of carbohydrate and match carbon assimilation to sink demand, and if sinks were 

nitrogen limited, reallocating nitrogen locked in RuBisCO to sink production. Sink production 

may not always be nitrogen limited, Körner et al. (2005) show limited response to elevated CO2 

despite their forest system having been ‘well supplied by mineral nutrients’ (Asshoff et al. 

2006). 
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Figure 2-2. The response of plant traits to elevated CO2 when expressed on either a mass or 
area basis. The number of samples in the meta-analyses (k) is shown on the left hand side of 
the plots. 

The dominant theory for the cause of photosynthetic acclimation is that of limited sink 

production caused by nitrogen limitation (Arp 1991) although this is biased towards higher 

latitudes where phosphorus limitation is not significant (McGroddy et al. 2004, Mercado et al. 

2011). Sink limitation causes a decrease in the fraction of photosynthate exported from the leaf 

allowing carbon compounds to accumulate in the leaf. The accumulation of photosynthate 

under high CO2 was demonstrated by this analysis which showed increases in leaf 

concentrations of sugar, starch and total non-structural carbohydrates. The increase in leaf 

concentration of soluble carbohydrates is known to reduce the expression of RuBisCO genes 

causing a drop in the concentration of leaf RuBisCO (VanOosten and Besford 1996). If this is 

then translated into a drop in active RuBisCO concentration, Vcmax and photosynthesis would 

decrease. The drop in RuBisCO per unit of leaf area was accompanied by a drop in total leaf 

protein concentration (there were too few studies to find a significant decrease in protein per 

unit leaf area).  
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Interestingly high nitrogen treatments caused a significantly smaller increase in Asat than under 

‘normal’ nitrogen treatments. Stronger acclimation of photosynthesis under high nitrogen is in 

line with the mechanisms proposed by Searles and Bloom (2003) who ascribe the reduction in 

carbon assimilation to competition from nitrogen assimilation pathways for reducing products 

generated by electron transport through the photosystems. Competition between carbon 

assimilation and nitrogen assimilation (specifically nitrite assimilation which occurs in the 

chloroplast) for reducing products may account for some of the decrease in leaf nitrogen under 

high CO2 and would suggest that the decrease in leaf nitrogen may not be wholly adaptive. If 

competition between the carbon and nitrogen reducing cycles was significant one would expect 

the capacity for electron transport (Jmax) to be maintained and this was observed in this study.  

Results indicate that there was little flexibility in plant tissue stoichiometry other than in leaves. 

The proportional nitrogen requirements of roots in particular were relatively fixed. To optimise 

growth in situations where sink production is limited by nitrogen it appears logical to reduce 

nitrogen resources allocated to non-sink limiting carbon acquisition. Shifts in leaf stoichiometry 

suggest that nitrogen could have been re-mobilised. If the re-mobilisation was to wood which 

has a much higher C:N ratio then the ecosystem may be able to store more carbon per unit of 

nitrogen leading to increased carbon sequestration under elevated CO2 (Hungate et al. 2003). 

Long term sequestration of carbon in tree biomass requires increases in wood production. 

Wood production significantly increased by 23% overall demonstrating the potential for 

increased carbon storage in terrestrial vegetation in a high CO2 Earth. No changes in wood 

stoichiometry overall were observed. In contrast to this, wood nitrogen concentration 

decreased although the upper bound of the confidence interval was very close to one.  

Overall, total plant nitrogen actually increased per unit of ground area by 5% indicating that 

plants under elevated CO2 were accessing nitrogen either unavailable or accessed at a later 

date by plants under ambient CO2 conditions. This would be expected from the observations of 

increased fine root biomass which may reduce leaching from the system and mine nitrogen in 

the lower soil layers (Iversen 2010). Where does the extra nitrogen in plant biomass come from 

and does it come from a source that would normally become available to a plant growing at 

ambient CO2 at a later date? If the answer is yes, then increased biomass production in the 

early stages of forest succession maybe at the expense of biomass production as a forest 

system matures and may make age related decline in NPP (Hickler et al. 2006) more severe. 
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Indeed, a severe decline in NPP was observed at the Oak Ridge FACE experiment under both 

CO2 treatments (Iversen et al. 2011) and the decline was exacerbated by elevated CO2 (Garten 

et al. 2011). By contrast, Drake et al. (2011) observed continued CO2 enhancement of growth 

for over 12 years of CO2 enrichment at Duke and the results of the meta-analysis presented 

here show no sign of declining growth for up to a decade of CO2 enrichment.  

Results presented here show that neither leaf phosphorus nor litter phosphorus were reduced 

under elevated CO2 demonstrating that these systems were nitrogen limited. There are 

currently no FACE experiments in tropical ecosystems, which are predominantly phosphorus 

limited (McGroddy et al. 2004, Mercado et al. 2011). As with nitrogen in nitrogen limited 

systems, phosphorus limits biomass production stoichiometrically and the interaction of 

elevated CO2 with phosphorus will be important in determining the impact of CO2 fertilisation 

on ecosystem carbon sequestration. Cernusak et al. (2011) found that tropical seedling 

phosphorus concentration was correlated with transpiration and they proposed that elevated 

CO2 may reduce plant phosphorus due to reductions on stomatal conductance. A search of the 

Thompson Reuters database found no studies of the interaction of elevated CO2 and 

phosphorus on plant growth. While leaf nitrogen is of fundamental importance to 

photosynthesis, a number of studies have begun to show the importance of phosphorus in 

photosynthesis (Ordonez et al. 2009, Domingues et al. 2010, Cernusak et al. 2011) and any CO2 

interactions with phosphorus may also feedback directly on carbon assimilation. 

 



56 
 

Figure 2-3.The impact of time since the beginning of the experiment on the response to 
elevated CO2. Years since the beginning of the experiment were binned into three time periods 
of three years each (bin 1—years 1 to 3, bin 2—years 4 to 6, bin 3—years 7 to 9). The overall 
response is shown by solid symbols and the responses binned by year are shown by open 
symbols. The number of samples in the meta-analyses (k) is shown on the left hand side of the 
plots. T Biomass—total biomass, AG Biomass—above-ground biomass. 

 

Potential effects of CO2 on long-term biomass 

Where length of time since the beginning of the experiment significantly affected CO2 

responses, it was often counter to expectations based on acclimation (down-regulation) of the 

CO2 response over time (Figure 2-1 and Figure 2-3). The response of aboveground biomass was 

higher in years 7–9 than in the earlier years. Also any photosynthetic acclimation appeared to 

be reduced in the later years of the experiments. Asat at high CO2 and Vcmax were both 

decreased under elevated CO2 in the early years of the experiments but these reductions were 
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not apparent in the later years. The results presented here show evidence for acclimation of 

photosynthesis over only the short term (1–3 years) after which acclimation was not apparent. 

Only if increased NPP under elevated CO2 is sequestered in plant biomass or soil organic matter 

will the negative feedback on atmospheric CO2 be maintained. In a nitrogen-limited system and 

assuming stoichiometric shifts are sustainable, biomass will be higher under elevated CO2 

atmospheres as increased carbon to nitrogen ratios should allow vegetation to contain higher 

levels of carbon per unit nitrogen in the canopy and in woody tissues (suggested by wood 

nitrogen concentrations but not wood carbon to nitrogen ratios). If elevated CO2 also helps 

plants to access ecosystem nitrogen unavailable to plants at lower CO2 concentrations (Iversen 

2010, Drake et al. 2011) then these effects will be synergistic, promoting higher ecosystem 

biomass than in equivalent systems with lower atmospheric CO2. 

The data used in this meta-analysis were from relatively young forest systems which had not 

yet reached maturity. The effect size of elevated CO2 on basal area increment at the Swiss 

Canopy Crane (SCC) site (Körner et al. 2005), the only FACE experiment in a mature forest 

system, showed no significant change. The SCC site is unique in a number of ways in that it uses 

a unique CO2 enrichment method and only has a single replicate at the plot scale. However, the 

results are interesting as they suggest mature, fertile ecosystems cannot increase production in 

response to elevated CO2., although assimilation was increased at the SCC site and they cannot 

account for this additional carbon (Zotz et al. 2005). In mature systems the stoichiometry of 

longer lived plant tissues will only shift on generational timescales. Worth noting is that the SCC 

forest was growing on soil only 30 cm deep and this will limit the capacity of the soil as a 

nutrient and water reservoir, which could strongly limit any CO2 response.  

The data from Oak Ridge showed a general decline in NPP with the age of the experiment 

accompanied by a reduction of the proportional increase in NPP under elevated CO2 (Garten et 

al. 2011, Iversen et al. 2011). However, nitrogen limitation will give a competitive advantage to 

biological nitrogen fixers and these have been observed to increase in the understorey at Oak 

Ridge (Souza et al. 2010). Over generational timescales ecological shifts will become important 

and must be considered when modelling even though there is little experimental data for 

calibration and validation. 
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The availability of water to plants in closed canopy, equilibrium ecosystems is fundamental to 

canopy height (Ryan and Yoder 1997) and therefore the biomass that the system can support. 

Although stomatal conductance was strongly reduced at elevated CO2, with the implication of 

higher water use efficiency, plant sap flow was not reduced by high CO2 according to our 

results. Sap flow was not reduced at Duke as increases in LAI partly compensated reductions in 

stomatal conductance (Schafer et al. 2003). Elevated CO2 is known to enhance drought 

tolerance (Leakey et al. 2009) and our results for agricultural yield support this. However, 

Warren et al. (2011) has observed that reductions in stomatal conductance under elevated CO2 

caused leaves to senesce and abscise sooner in Liquidambar styraciflua in response to an 

extreme heat-wave in 2007.  

Conclusions 

The results presented here demonstrate that higher rates of photosynthesis were translated 

into higher rates of productivity and subsequently higher accumulation of biomass under high 

CO2. However, respiration was increased probably as a result of higher levels of labile leaf 

carbon. The results suggest that the nature of carbon partitioning under elevated CO2 was 

particular to PFTs and ecosystems and the nature of the limitations within those systems. 

Factors limiting to plant growth other than carbon may mean that initial biomass increases may 

not be maintained although longer term responses to elevated CO2 showed no evidence of 

acclimation. In later years of FACE experiments, photosynthetic rates and parameters were no 

different under ambient or elevated CO2, indicating a release from apparent acclimation in 

earlier years. The response of above-ground and total biomass in years 6-9 of FACE showed no 

evidence of decreasing. 

The results presented in this Chapter showed that LAI, a key parameter for scaling 

photosynthesis, responded to elevated CO2 and therefore accurate prognostic simulation of LAI 

and its response to elevated CO2 is necessary for carbon cycle simulation in a changing 

atmospheric environment. As with previous studies, leaf nitrogen was shown to decrease as 

was the important photosynthetic parameter Vcmax. As described by Ainsworth and Long (2005) 

the decrease in Vcmax was likely to be wholly attributable to the decrease in leaf nitrogen. 

Interestingly, Vcmax showed no response to elevated CO2 in the later years of FACE 

experimentation. SLA decreased under elevated CO2, possibly in response to decreasing leaf 

nitrogen concentration in order to maintain leaf nitrogen per unit area.  
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Processes requiring further investigation for carbon-cycle modelling are nutrient (both nitrogen 

and phosphorus) limited sink production; shifts in plant stoichiometry in response to elevated 

CO2 and the subsequent effects of changing nitrogen and phosphorus concentrations on 

photosynthesis; carbon allocation patterns and photosynthetic and respiratory responses to 

increased labile carbon.   
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Chapter 3 The effect of high frequency oscillations of atmospheric CO2 

concentration on plant carbon assimilation in Populus x euramericana, Quercus 

robur and Vicia faba 

Introduction 

Plant photosynthesis and respiration couple the biota of the Earth’s land surface and 

atmospheric CO2 (Denman and Lohmann 2007). Understanding plant responses to increased 

atmospheric CO2 is crucial to prediction of the trajectory of future atmospheric CO2 

concentration and climate change (Friedlingstein et al. 2006). It is also crucial to farmers, 

foresters, conservationists and those involved in land and biological resource management to 

understand how natural and managed ecosystems will respond to future changes in 

atmospheric CO2. 

Free Air Carbon dioxide Enrichment (FACE) (Hendrey and Kimball 1994) experiments have 

generated the most natural results to date on plant and ecosystem responses to an atmosphere 

enriched in CO2 (Ainsworth and Long 2005). FACE experiments have minimised experimental 

artefacts associated with many CO2 enrichment experiments. They are conducted in open soil 

systems allowing roots to grow unrestricted by pots which have affected many CO2 enrichment 

experiments.  They are subjected to all the elements, completely in the open air, which 

removes the interference with radiation and air movement that is caused by open top 

chambers (Evans and Hendrey 1992). 

However, FACE experiments have their own artefacts. Some artefacts are due to the cost of the 

CO2 itself - $1 million per year at the Oak Ridge site (Norby, pers. comm.) - and minimising its 

use such as often turning off the enrichment at night and enriching only the tree canopy in 

woodland ecosystems. Another artefact is related to the control of the elevated CO2 

concentration. CO2 concentrations are not only increased on average they also fluctuate 

strongly: 350 – 1100 µmol mol-1 in the original Brookhaven system (Nagy et al. 1992); 350 – 750 

µmol mol-1 at the Nevada Desert FACE Facility (Jordan et al. 1999); 350 – 850 µmol mol-1 for the 

MiniFACE system (Miglietta et al. 2001a); 350 – 1000 µmol mol-1 at the Japanese RiceFACE 

experiment (Okada et al. 2001) and 350 – 800 µmol mol-1 in the WebFACE system at the Swiss 

Canopy Crane site (Pepin and Körner 2002). The oscillations were of relatively high frequency as 

one minute integrals significantly reduced the range of CO2 concentrations and increased the 
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frequency of CO2 samples within ±10% of the mean concentration (Nagy et al. 1994). 

Oscillations may have been of a lower frequency at the Swiss WebFACE site as one minute 

integrals had less impact on the distribution of sampled CO2 concentrations (Pepin and Körner 

2002). 

High frequency oscillations in atmospheric CO2 concentration may influence plant carbon 

assimilation by altering the efficiency of assimilation (assimilation divided by CO2 

concentration) and could therefore bias the results of FACE experiments (Hendrey et al. 1997). 

Evans and Hendrey (1992) investigated the response of carbon assimilation (using labelled C14 

techniques) in cotton (Gossypium hirsuitum [L.]) leaves to a square wave oscillation (switching 

between two concentrations, 360 and 1090 µmol mol-1) in CO2 at oscillation periods of one, 

two, five and ten minutes. Plants were exposed to the oscillation treatments for two hours 

prior to a dose of labelled CO2 being added during the last oscillation cycle.  

For oscillation periods of two minutes and over Evans and Hendrey (1992) found an increase in 

the radioactivity of leaves exposed to oscillating CO2 concentration over those exposed to 

steady state CO2 concentration (700 µmol mol-1). They speculated that at 360 and 700 µmol 

mol-1 leaf carbon assimilation was limited by RuBisCO activity while at 1090 µmol mol-1 

assimilation was limited by availability of inorganic phosphate or ribulose- 1,5-bisphosphate 

(RuBP) regeneration. They proposed that the switching between the two states of limitation 

may have had a synergistic effect, boosting carbon assimilation under oscillating CO2 

conditions.  

Evans and Hendrey (1992) also investigated the response to 5 – 60 second pulse lengths of 

increased and decreased CO2 concentrations from 700 µmol mol-1. Carbon assimilation rates 

were unchanged at three pulse concentrations: 450, 750 and 1150 µmol mol-1 for pulse lengths 

up to 15 seconds and for pulse lengths up to 30 seconds in the 450 and 750 µmol mol-1 

treatments. At longer pulse lengths, assimilation rates increased with increasing pulse length. 

Assimilation rates at 1800 µmol mol-1 were significantly higher for pulse lengths between 5 and 

60 seconds and increased steadily with increasing pulse time. These results suggest that there 

may have been a diffusion-regulated lag-time between the change in atmospheric CO2 

concentration and the internal CO2 concentration at the chloroplast. Increasing the CO2 

differential would have reduced the lag-time before changes in assimilation were detectable.       
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Cardon et al. (1995) showed that in maize (Zea mays [L.]) oscillation in CO2 concentration 

between 150 – 500 µmol mol-1 with a six minute period did not affect mean carbon assimilation 

but increased transpiration compared with steady state CO2 concentration.  Cardon et al. 

(1995) also showed that in the common bean (Phaseolous vulgaris [L.]) oscillation in CO2 

concentration between 235 – 430 µmol mol-1, with a six minute period, slightly (their statistics 

were not presented) reduced both mean carbon assimilation and transpiration compared with 

steady state CO2 concentration. 

Hendrey et al. (1997) used chlorophyll fluorescence and electron transport as a proxy for 

carbon assimilation in Triticum aestivum (L.) seedlings. They tested a square wave oscillation 

between 425 and 850 µmol mol-1 with periods ranging between 2 and 240 seconds. They 

observed an oscillation of chlorophyll fluorescence (Ft) in phase with the oscillations in CO2 at 

periods above eight seconds. The oscillation in Ft reached its maximum amplitude at periods of 

32 seconds and above. At 32 second periods the oscillation in Ft was a triangle wave and not 

square wave. Both these results suggest that while oscillation in CO2 concentration was 

detectable at periods of eight seconds and above, there was a time lag between a change in 

atmospheric CO2 and its full influence upon the light harvesting systems in the thylakoid 

membranes of the chloroplast. 

In a low O2 atmosphere (to eliminate photorespiration) Hendrey et al. (1997) used rates of 

electron transport through photosystem II (J) as a proxy for carbon assimilation rates. They 

found that at oscillation periods of 60 seconds and below, carbon assimilation was not 

significantly affected. At periods of two minutes and four minutes they found that J (carbon 

assimilation) was significantly reduced by about 18%.  

Holtum and Winter (2003) tested the effect of oscillating CO2 concentrations (435 – 765 µmol 

mol-1) on the seedlings of two tropical tree species: teak (Tectonia grandis [L. f.]) and barrigon 

(Pseudobombax septenatum [Jacq.] Dug.). Carbon assimilation was calculated using an infra-red 

gas analyser (IRGA). They separated, in time, the reference measurement and the analysis 

measurement by conducting an experimental run once in the absence of plant material and 

then once in the presence of plant material. The recorded CO2 concentrations of the two runs 

were then used to calculate the mean carbon assimilation rate. A modified version of this 

approach has been used here. Holtum and Winter (2003) found a significant reduction in 

carbon assimilation under oscillating CO2 compared with steady state. For teak the reduction 
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was 7.6% and 4.1% under oscillation periods of 40 seconds and 80 seconds respectively. For 

barrigon, oscillating CO2 caused a reduction in carbon assimilation of 10.5% at an oscillation 

period of 40 seconds. 

The prevailing hypothesis for reduced assimilation was that oscillating atmospheric CO2 drives 

assimilation rates up and down the A-Ci /Ca curve (Hendrey et al. 1997, Holtum and Winter 

2003). When CO2 concentrations increase to levels where the regeneration of RuBP becomes 

the limiting factor and the curve approaches the asymptote then carbon assimilation is lower 

per unit of atmospheric CO2. This reduction in efficiency causes a reduction in mean carbon 

assimilation under oscillating CO2. Both these experiments switched CO2 from steady state to 

oscillation and elevated the CO2 concentration simultaneously. Therefore they were not testing 

simply oscillating CO2, they were testing the response to a step change in CO2 and then either 

steady state or oscillating CO2. This step change may have impacted stomatal activity and 

perhaps the stomatal response to a step change in CO2 concentration may have been different 

under oscillating CO2 compared to steady state.  

Understanding the potential bias caused by oscillating CO2 is necessary for proper 

interpretation of FACE results and for use of FACE results in model validation. To date, the 

literature has provided contradictory results. At oscillation frequencies similar to FACE 

experiments, some studies found a stimulation of photosynthesis (Evans and Hendrey 1992), 

others found no impact of oscillating CO2 (Hendrey et al. 1997) while others found decreases in 

assimilation rates (Holtum and Winter 2003).  

To date no tree species used in FACE experiments has been assessed under oscillating CO2 and 

results from previous experiments are mixed. Therefore, the responses of photosynthetic rates 

in trees to oscillations in atmospheric CO2 concentration have been investigated here using at 

least one species that has also been used in FACE experiments. The selected species were P. x 

euramericana (Dode), an amphistomatous, hybrid poplar used in the POPFACE (Calfapietra et 

al. 2001) experiment; Q. robur (L.) a hypostomatous, temperate, deciduous species and Vicia 

faba (L.) an amphistomatous annual crop. To our knowledge these are the only temperate trees 

to be investigated for their sensitivity to oscillating atmospheric CO2 concentration. 

As discussed above, previous experiments on the impact of oscillating CO2 did not pre-treat 

plants to elevated CO2 so were investigating the difference between a step change in CO2 to 
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either steady state CO2 or oscillating CO2. The method in this Chapter pre-treated plants to 

elevated atmospheric CO2 and so only the effect of oscillation in CO2 concentration was tested. 

It was assumed that this was more in keeping with the nature of the FACE experiments as 

plants would be acclimated to elevated CO2. 

This Chapter aims to quantify the impacts of oscillating CO2 on carbon assimilation in temperate 

tree species used in FACE experiments. Populus x euramericana (Dode) and Quercus robur (L.) 

were subjected to an atmosphere that oscillates in CO2 concentration and carbon assimilation, 

stomatal conductance and transpiration were measured with an Infra-Red Gas Analyser (IRGA). 

It was hypothesised that a stomatal response to oscillating CO2 would be key to understanding 

the assimilation response, therefore the two species used in the experiment presented in this 

Chapter were chosen for their contrasting stomatal characteristics. 

Hendrey et al. (1997) and Holtum and Winter (2003) proposed that oscillating CO2 caused 

reductions in assimilatory carbon use efficiency which were the cause of their observed 

reductions in assimilation under oscillating CO2. To test this hypothesis, an empirically 

determined A-Ca or A-Ci curve was used as a simple model to determine carbon assimilation at 

a given CO2 concentration. Using this A-Ci model with a time series of CO2 concentrations, 

oscillating as in this experiment and in that of Holtum and Winter (2003), gave quantifiable 

predictions of the Hendrey et al. (1997) hypothesis to compare with experimental data.  
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Methods 

Plant material and growth 

Hardwood cuttings of Populus x euramericana (Dode) (Salicaceae) were taken from 2-3 year old 

wood in June 2009 and again in June 2010. Cuttings were soaked in water for three days and 

were then transplanted, otherwise they were untreated. On 22nd June 2010, V. faba seeds were 

planted after soaking in water for 12 hours. Cell grown Q. robur plants were bought from a 

nursery and transplanted on the 23rd June, transplanted plants were selected by eye for 

uniformity in height and leaf mass. All plants were grown in 17.5 cm pots filled with a 1:1:1 M3 

peat based compost/sand/vermiculite mixture. 

Plants were grown at the University of Sheffield, Professor Sir David Read Controlled 

Environment Facility on a day/night cycle of 16/8 hours, 20/18 oC at a constant relative 

humidity of 60% and a constant CO2 concentration of 550 µmol mol-1 in 2009 and 620 µmol 

mol-1 in 2010. The plants were grown in a controlled environment growth chamber (Sanyo-

Gallenkamp PG1700H, Sanyo Electric Co. Ltd., Moriguchi, Japan) under eight 250w metal halide 

bulbs (MHN –TD Pro, Koninklijke Phillips Electronics N.V., Amsterdam, Netherlands) giving a 

photon flux density of 450-600 µmol m-2 s-1 in the upper canopy. Plants were moved around 

every two or three days to homogenise their light environment. Plants were tray watered every 

other day with half strength Rorison’s solution (Heinen et al. 2009) to eliminate water stress 

and nutrient stress.  

Oscillating CO2 system 

An airstream oscillating in its CO2 concentration was generated by mixing two air streams – one 

at a high CO2 concentration (1140 µmol mol-1 in the first experiment) and the other CO2-free 

air. The high CO2 stream was generated by mixing pure CO2 and CO2-free air in a gas mixer 

(GMA-2, Heinz Walz GmbH, Effeltrich, Germany). The CO2-free air supply to the Walz mixer was 

supplied by the in-house compressed air supply as the internal pump in the mixer was not 

capable of maintaining the required flow rate of 5 l min-1. The CO2-free air stream was also 

supplied from the in-house compressed air supply, filtered and passed through soda lime. 

Where practical all gas tubing was made of Teflon© (Polytetrafluoroethylene, PTFE) to minimise 

adsorption of CO2 in the gas path. 
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The high CO2 air stream was maintained at a flow rate of 5 l min-1 and the CO2-free air stream 

was mixed into it, at a variable flow rates of 2 – 8 l min-1, by a proportional solenoid valve (PSV; 

Christian Burkeart GmbH & Co KG, Ingelfingen, Germany) controlled by an AC signal generator 

(Thandar TG501, Thurby Thandar Instruments Ltd., Huntingdon, UK ). The mixing of a variable 

flow rate air stream with one of constant flow rate created an asymmetric wave-pattern with 

the CO2 concentration below the mean concentration for proportionally more time but the 

departure from the mean was less. As discussed above, the asymmetric wave pattern made the 

experimental conditions similar to those at the FACE sites. Similar to many of the FACE 

experiments, the oscillation amplitude was 430 – 770 µmol mol-1 in the first experiment, 500 – 

900 µmol mol-1 in the second and third experiments. 

Prior to mixing, the two air-streams were humidified by being bubbled through water and then 

passed through a cold trap built using a cold bath (HC & F40 Ultratemp 2000, Julabo 

Labortechnik GmbH, Seelbach, Germany) set at 12 oC to set the dew points of the air-streams 

and to maintain an RH of about 60% at the experimental temperatures (see Figure 3-1 for 

photos of the full system). In the growth chamber the two airstreams were mixed and then 

vented to atmosphere. An infra-red gas analyser (IRGA; CIRAS-1, PP Systems, Amesbury, MA, 

USA) was connected to the air-stream oscillating in its CO2 concentration just before the vent 

ensuring that the IRGA cells did not become pressurised. The IRGA’s external air supply pump 

was used to draw a constant flow rate air-stream at 500 ml min-1. The IRGA was internally 

modified to bypass its automatic control system for CO2 and water vapour in order to minimise 

the gas path length and hence minimise damping in the peaks of the CO2 oscillations. Within 

the IRGA a 100 ml min-1 air-stream was drawn from the supply to the reference cells and the 

remaining air-stream of 400 ml min-1 was pumped to the leaf cuvette (PLC4[n], PPSystems, 

Amesbury, MA, USA). Air within the leaf cuvette was mixed by an impeller to ensure the 

changing atmospheric CO2 concentration was experienced by the leaf. From the cuvette a 

sample of air was drawn and analysed by the analysis cell of the IRGA. The difference in time 

between analysis by the reference cell and the analysis cell was estimated at 5 seconds by 

aligning the peaks of the reference cell and analysis cell CO2 measurements and this agreed 

closely with the calculated time to flush the gas path between the outlet and inlet of the IRGA 

which was 4.3 seconds.  
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Figure 3-1.Photos of the experiment. Top left, P. x euramericana (A), V. faba (B) and Q. robur (C) in 

the growth cabinet. Top right, the IRGA (D) with a Q. robur leaf in th cuvette (E). Bottom, 

experimental equipment: Proportional solenoid valve (F), Walz gas mixer (G), signal generator and 

oscilloscope (H), cold bath and dew trap (I), flow meters (J).  
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Calculation of carbon assimilation 

IRGAs calculate carbon assimilation using the difference in the CO2 concentration of reference 

(pre leaf cuvette) IRGA cell and the analysis (post leaf cuvette) IRGA cell. In steady state studies 

the difference between these two cells is due mostly to CO2 removal by the plant. There is a 

certain amount of random error in the measurement of the IRGA cells. The IRGA was checked 

against certified standard gases (BOC, Linde AG, Munich, Germany) at two concentrations of 

264 and 807 µmol mol-1. Flow rates were verified using flow meters (Solartron Mobrey 1100, 

Emerson Electric Company, Ferguson, MO, USA). 

Additionally, the non-steady state nature of these experiments created a number of additional 

causes of the difference between the two cells which needed correction. There was a time-lag 

in the measurement between the two cells and diffusion of CO2 occurred during the 

measurement interim, reducing the amplitude of the oscillation. There was also some drift in 

the calibration between the two cells. 

To correct for diffusion between the two cells the relationship between the two cells based on 

a control run of oscillating CO2 with an empty cuvette (for either the increasing or decreasing 

wave) was determined. Firstly, the data from the analysis cell were timeshifted three 

measurement timesteps (each 1.6 s) to match the wave pattern of the reference cell. This 

generated a near linear fit between the concentrations measured in the analysis cell and the 

reference cell dependent on whether the concentration was increasing or decreasing (Figure 

3-2).  The relationship between the two cells was then described using the loess curve fitting 

function in R.  

Random error and slight drift in measurement calibration between the two cells caused some 

points to lie off the curve (Figure 3-2). To correct for the random error and drift, the curve was 

fit repeatedly over 4 iterations, at each step eliminating points from the analysis that were 

more than a given distance from the relationship and then re-fitting the curve. Typically less 

than 5% of points were removed and this gave an improved representation of the relationship 

between the two cells (Figure 3-2). The removal of these outliers was necessary, demonstrated 

by its application to control runs with no plant. Without this outlier removal step, the range of 

calculated assimilation for four control runs (assimilation should have been zero) was -0.745 to 

0.315 µmol m-1 s-2, with the outlier correction this range was reduced 37 fold to: -0.004 to 

0.025 µmol m-1 s-2. 
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 The corrected relationship of CO2 in the analysis cell to CO2 in the reference cell in a control 

run enabled prediction of pre-plant exposed CO2 in the analysis cell from the reference cell 

values of an experimental run with a leaf in the cuvette. No-plant control runs were conducted 

at the beginning of the day and after every two experimental runs. 

Finally, random error and calibration drift had to be corrected in the experimental run. Again 

reference cell measurements were timeshifted so the wave patterns matched. Random error 

and drift were corrected using the method above. The analysis cell to reference cell relationship 

was described by iteration of the loess function and removal of outliers. To clean random error 

and drift from the data any points more than ±8 µmol mol-1 from the loess relationship were 

recalculated using the loess relationship. That these outliers were caused by error and not 

caused by the plant was demonstrated by the need to control for these outliers in a control run 

conducted in the absence of plant material as described above.  

 

Figure 3-2. The relationship of CO2 concentration in the IRGA analysis cell (timeshifted) to 
that in the reference cell for a run with no plant material in the cuvette (runs with plant 
material in the cuvette looked qualitatively very similar). Points more than ±8 µmol mol-1 
off the loess line (points outside the grey lines) were excluded (<5%) from the line fitting 
to accurately portray the line upon which most (>95%) of the data lie. 
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These correction steps gave reference cell CO2 concentrations and analysis cell CO2 

concentrations with diffusion error, random machine error and calibration drift minimised 

allowing the best estimate of plant carbon assimilation. Carbon assimilation was calculated 

using the same formulas as the IRGA uses to calculate carbon assimilation (PPSystems 2003) 

and the above described corrections allowed us to make an accurate measurement of carbon 

assimilation almost instantaneously under oscillating CO2. 

Measurements of carbon assimilation and transpiration under experimental treatments 

All experiments were conducted in the centre of the growth chambers in the upper canopy of 

the plants at a photon flux density of 500 µmol m-2 s-1. Exploratory experiments were carried 

out: 1) to test the constancy of carbon assimilation over a day; 2) to test whether oscillation in 

CO2 affected subsequent assimilation at steady state; 3) to test for any changes in carbon 

assimilation over longer (one hour) runs of oscillating CO2 and 4) to see how quickly CO2 

assimilation reached steady state once a leaf was clamped in the cuvette.  

Assimilation rates peaked about 90 minutes after lights on and were relatively constant over 

the next four hours. Oscillating CO2 concentrations did not affect subsequent carbon 

assimilation rates at steady state CO2 concentration, implying that the order of measurement of 

control or experimental treatments was not critical. Assimilation rates were the same at the 

beginning of an hour long run of oscillating CO2 as they were at the end and therefore plants 

were not pre-treated to oscillating CO2. Under steady state CO2 concentration at 550 µmol mol-

1 (the same concentration as the growth chamber) assimilation rates of P. x euramericana 

reached steady state within two minutes of the leaf entering the cuvette. However, assimilation 

rates of Q. robur took 20 minutes to stabilise after entering the cuvette, so leaves were left in 

the cuvette for 20 minutes prior to the beginning of any treatment. 

Experiments were conducted in the four hour window of constant assimilation rates beginning 

90 minutes after lights on. In the first experiment, and on each day, 3-4 leaves on two P. x 

euramericana plants were investigated for assimilation rates at steady state CO2of 550 µmol 

mol-1. After 1 hour they were then tested again for assimilation rates under oscillating CO2 

concentrations with a mean of 550 µmol mol-1 and a range of 430 – 770 µmol mol-1. The hour 

time lag was necessary to reset the system from steady state to oscillating CO2 and to wait for 

the system to stabilise. Each oscillating run was conducted for 12 minutes.  
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The first experiment tested a single factor at four levels. Carbon assimilation under oscillation 

periods of 60, 120 or 300 seconds and a steady state control (with no oscillation). Plants were 

allocated to a treatment at random. Over three weeks leaf carbon assimilation was measured 

on a total of 78 leaves on 21 plants. The steady state measurements on each leaf were taken 

for two reasons; to ensure that there was no trend in carbon assimilation over the course of the 

experiment and to provide paired measurements. There was no trend in assimilation rates at 

steady state CO2 over the course of the experiment. 

The second and third experiments were designed to minimise the time-lag between the 

oscillating measurements and the steady state measurements that was a consequence of 

allowing the Walz gas-mixer to stabilise once the concentration had been reset. The 

stabilisation time of the Walz mixer was avoided by using it only for the oscillating CO2 

apparatus and using a bottle of gas at fixed CO2 concentration for the steady state air stream. 

After 20 minutes of stabilisation in the cuvette, leaves of either P. x euramericana, Q. robur or 

V. faba were subjected to five minutes of CO2 at 622 µmol mol-1; then 12 minutes of oscillating 

CO2 with a mean of 620 µmol mol-1 and a range from 500 – 850 µmol mol-1; followed by 

another 5 minutes of steady state CO2 at 620 µmol mol-1. The third round of experiments was 

conducted only on Q. robur. The two oscillations in the third round of experiments were of a 

period of 60 seconds (for 12 minutes) and 300 seconds (for 20 minutes) and the order of these 

oscillating periods alternated.  

A-Ci curves for P. x euramericana and Q. robur were generated in 2010 using a single leaf on 

three different plants. Assimilation rates were measured once steady state assimilation had 

been achieved. Assimilation measurements began at the growth CO2 concentration of 620 µmol 

mol-1 increasing in steps of 100 µmol mol-1 to 1000 µmol mol-1, then to 1200 and 1400 µmol 

mol-1. CO2 was decreased to 1000, then to 750 µmol mol-1 and then in steps of 100 µmol mol-1 

until 150 µmol mol-1. Stomatal conductance and transpiration were also recorded. 
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Modelling assimilation rates 

A Michaelis-Menton equation was fit to experimentally determined A-Ci data, using non-linear 

least squares regression fitting, creating a formula for assimilation as a function of Ci: 

𝐴 =  
𝑉𝑚𝑎𝑥 𝐶𝑖
𝑘𝑚 + 𝐶𝑖

+  𝑖 

where A is assimilation, Ci is internal CO2 concentration, i is the intercept, Vmax is the asymptote 

minus the intercept and km is the value of Ci when A, minus the intercept, is half Vmax. This 

equation, with the non-linear least squares derived coefficients, was used to predict carbon 

assimilation under oscillating CO2 from observed values of CO2. Ci was calculated from observed 

CO2 values, assimilation, stomatal conductance and transpiration.  

 

Figure 3-3. Comparison of coefficients (±SE) from a non-linear least squares regression of 
assimilation with internal leaf CO2 using a Michaelis-Menton curve. The three values of 
each coefficient are for curves for three Q. robur plants. The overlap of error bars in all 
coefficients but Vmax suggests that the A-Ci relationship from plant to plant changes only in 
Vmax and not Km nor the intercept. 

To account for the difference between the A-Ci curve of the leaves on which the A-Ci model was 

calculated and the A-Ci curve of the leaf in the experimental run, the Vmax coefficient was 

adjusted. The adjusted Vmax was calculated for the leaf by rearranging the Michaelis-Menton 

equation and using the mean assimilation and CO2 concentration from the experimental run to 
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calculate Vmax. It was assumed that km and the intercept did not change compared with that in 

the A-Ci model. This assumption was verified by comparison of the parameters of the non-

linear regressions of the three A-Ci curves fitted separately for each Q. robur leaf; only for the 

Vmax parameter did standard errors not overlap (Figure 3-3).This method was used to predict 

instantaneous assimilation rates. The A-Ci curve was also used to calculate assimilation under 

oscillating CO2 at different mean concentrations when driven by changes in Ci observed in an 

example experimental run. The A-Ca data of Holtum & Winter (2003) were digitised using Grabit 

XP (Build 10, Datatrend Software) in order to predict assimilation under oscillating CO2 from 

their A-Ca data and for their experiments. The oscillation in CO2 concentration generated by 

their experimental setup was a symmetrical sawtooth wave and to drive their model the 

oscillation in CO2 concentration was approximated by the trigonometric function: 

 

𝐶𝑎 =  
1

3
𝑟  sin−1 . sin 𝑡  

0.5𝑝

𝜋
 
−1

   +  𝐶𝑎  

Where, 𝐶𝑎  and 𝐶𝑎  are atmospheric CO2 concentration in µmol mol-1 and the mean respectively; 

ris the peak to peak amplitude and p is the period of the oscillation in seconds. 

Statistics 

All analyses were carried out using R version 2.13.0 (R Core Development Team et al. 2012). 

The first experiment was designed to be analysed with a one-way ANOVA on plant means. Leaf 

to leaf variation in carbon assimilation was high and a statistical power analysis (of a t-test) to 

detect a 10% change in carbon assimilation indicated that the number of required replicates 

would be impractical. Assimilation at steady state CO2 concentration for each leaf was 

measured so paired t-tests within each treatment were also conducted. There were 6 replicate 

plants in each treatment apart from the 120 second treatment which had 5. A total of 84 leaves 

had carbon assimilation measured, once at steady state CO2 and once under CO2 oscillating at 

one of the three treatment frequencies. To account for the high between leaf variation in 

assimilation rates and to take advantage of the full set of leaf measurements a mixed effects 

ANOVA model was also applied to the data (Pinheiro et al. 2011). The experiment was not 

designed for this kind of analysis and hence had many missing factor (treatment by plant) 

combinations as each plant was subjected to only the control treatment and a single oscillating 
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treatment. There are no clear methods to estimate the degrees of freedom using a mixed 

model ANOVA with missing treatment combinations so we were unable to calculate P values 

for the mixed model analysis of the first experiment.  

The second and third rounds of experiments were designed with a mixed model ANOVA in mind 

and hence all treatment combinations were analysed using mixed model analyses using the lme 

function, part of the nlme package (Pinheiro et al. 2011) which can calculate degrees of 

freedom and hence generate P-values.  
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Results 

The experiments in 2009 (Figure 3-4) suggested that carbon assimilation was not significantly 

affected (P>0.05) by oscillations in CO2 concentration between 430 and 770 µmol mol-1 when 

analysed by fixed-effects ANOVA on plant means (Table 1). Due to the high error variance we 

analysed the data using paired t-tests based on plant means and a mixed-effects ANOVA. Paired 

t-tests were also not significant. 

The mixed-effects ANOVA model analysed oscillation frequency as the fixed effect and leaf 

nested within plant as a random effects (Table 1). The experiments were designed for a fixed-

effects ANOVA and therefore there were missing treatment and plant leaf combinations 

meaning that degrees of freedom of the analysis could not be calculated. However, the F-

statistic of 3.6 and the largest t-value (between the control and 300 second oscillation) of -3.03 

(Table 3-2) suggests the possibility of an effect. This result, along with the high error variance 

motivated the experiments in 2010 that were designed for a mixed-effects analysis and to 

minimise the error variance caused by the experimental setup. Results for plant transpiration 

were non-significant when analysed by a fixed-effects ANOVA on plant means and a mixed-

effects ANOVA (data not shown). 

Figure 3-4. Mean (±1 SEM; based on plant means) assimilation and transpiration for 
Poplar at steady state CO2 concentration (green and dark blue) and CO2 oscillating with 
periods of 60, 120 and 300 seconds (yellow and light blue). An ANOVA on plant means 
showed that none of the treatments had a significant effect on either assimilation or 
transpiration. 
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Table 3-1. Fixed and mixed-effects ANOVA of plant carbon assimilation explained by the 
oscillation treatment. Data for each plant replicate in the fixed-effect model calculated as 
the mean of 3-5 measured leaves. 

Model type Term df Sum Sq Mean Sq F statistic P(>F) 

fixed Frequency    3 4.62 1.54 1.4783 0.2522 
 Residuals    19 19.78 1.04   
mixed Frequency 3 11.61 3.88 3.6001 na 

 

Chapter 1 Table 3-2.Parameters from the mixed-effects ANOVA on carbon assimilation 
(Table 3-1). Oscillation frequency as the fixed-effect and leaf nested within plant as the 
random-effects. Student’s t values are given for the contrasts of the control treatment with 
zero and for each frequency with the control treatment.  Note that despite the inability to 
estimate P-values, the t-values for the contrasts of the 60 second and 120 second oscillating 
treatments with the control treatment are too low to give a significant P value even with 
very large degrees of freedom. 

 Mean Std. Error t value P 

Control 11.18 0.208 53.8 na 
60 seconds 10.77 0.303 -1.35 na 
120 seconds 11.27 0.297 0.31 na 
300 seconds 10.09 0.359 -3.03 na 

 

Results from the cross species experiment (Figure 3-5) showed that there was a significant 

effect (P<0.001) of oscillation on carbon assimilation but not on transpiration or stomatal 

conductance (Table 3-3). There was a significant effect of species on mean rates of assimilation, 

stomatal conductance (gs) and transpiration (Table 3-3). There was no significant interaction 

between species and treatment for any of the response variables and so the results in Table 3-3 

are for additive models of treatment and species. Closer investigation of the effect of treatment 

on carbon assimilation (Table 3-4) showed that for Oak and Poplar carbon assimilation was 

significantly (P<0.001) higher (1.97 µmol m-2 s-1) under oscillation than under the first constant 

CO2 treatment but that there was no significant difference between the oscillating treatment 

and the second constant treatment. This effect was consistent across both Oak and Poplar. It 

was not possible to assess this effect for V. faba because of equipment malfunction. Consistent 

with the results for Oak and Poplar however, was that there was no difference in carbon 

assimilation (or any other response variable) between the oscillation CO2 treatment and the 

second constant CO2treatment. 
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The variable frequency experiment on Oak showed that neither carbon assimilation, 

transpiration nor stomatal conductance were affected (Table 3-5). There was no difference 

between either oscillating treatment and no difference between either constant CO2 

treatment. 

 

Figure 3-5. Mean (±1 SEM; based on plant means) assimilation (a), transpiration (b) and 
stomatal conductance (c) at steady state CO2 concentration (green and dark blue) and CO2 

oscillating with a period of 60 seconds (yellow and light blue) for Q. robur, P. x 
euramericana and V. faba. Each group of three bars represents, from left to right, oscillating 
CO2, the first constant CO2 treatment (measured before the oscillating treatment) and the 
second oscillating treatment (measured after the oscillating treatment). 

 

 

Table 3-3.Mixed-effects ANOVAs of carbon assimilation, transpiration and stomatal 
conductance explained by oscillation treatment and species. Due to the missing data for the 
first constant CO2 treatment of V. faba, these results are for only Oak and Poplar. 

Dependent variable term dfn dfd F statistic P 

Assimilation  Intercept 1 68 729.22 <0.001 
 Oscillation 2 68 11.55 <0.001 
 Species 1 13 33.55 <0.001 
Stomatal Conductance Intercept 1 68 104.38 <0.001 
 Oscillation 2 68 0.11 0.895 
 Species 1 13 42.34 <0.001 
Transpiration Intercept 1 68 394.62 <0.001 
 Oscillation 2 68 0.14 0.865 
 Species 1 13 66.43 <0.001 
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Table 3-4.Parameters from the ANOVA of assimilation shown in Table 3-3. The overall mean, the 

difference between the means of Poplar and Oak, the difference between the mean under oscillating 

CO2 and the first steady state run (Osc vs st1) and the difference between the mean under 

oscillating CO2 and the second steady state run (Osc vs st2). 

 Estimate se df t statistic P 

Overall mean 11.26 0.854 68 13.19 <0.001 
Poplar  vs Oak 6.52 1.126 13 5.79 <0.001 
Osc vs st1 1.972 0.205 68 4.81 <0.001 
Osc vs st2 -0.974 0.205 68 -2.73 0.026 

 

Figure 3-6. Mean (±1 SEM; based on plant means) assimilation (a), transpiration (b) and 
stomatal conductance (c) at steady state CO2 concentration (green and dark blue) and CO2 
oscillating with a period of 60 seconds or 300 seconds (yellow and light blue) for Oak. 
From left to right the constant CO2 treatments are the first treatment (measured before the 
first oscillating treatment) and the second treatment (measured in between the two 
oscillating treatments). 

 

Table 3-5.Mixed-effects ANOVAs of carbon assimilation, transpiration and stomatal 
conductance explained by oscillation treatment. 

Dependent variable term dfn dfd F statistic P 

Assimilation  Intercept 1 45 179.04 <0.001 
 Frequency 3 45 1.77 0.166 
Stomatal Conductance Intercept 1 45 96.67 <0.001 
 Frequency 3 45 1.32 0.277 
Transpiration Intercept 1 45 166.29 <0.001 
 Frequency 3 45 1.37 0.264 
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Discussion 

Results from the original experiment in 2009 suggested that there may be a reduction in carbon 

assimilation by P. x euramericana at oscillation periods of 300 seconds (Table 3-1). The 

suggested reduction in assimilation was not accompanied by any reduction in transpiration. 

These results were contradicted by the results from the third experiment where assimilation in 

Oak was not affected at oscillations of 300 seconds. The suggested reduction in assimilation in 

the first experiments was not detected by an ANOVA of plant means but came from a mixed-

effects analysis for which the experiment was not designed.  

There were a number of sources of error in the first experiment. Plants exhibited high 

variability in assimilation rates (although this was also the case in the second and third 

experiments). There was separation in time between assimilation measured under constant 

CO2 and oscillating CO2 which may have allowed error through diurnal variation in assimilation 

rates. Also the calculation of assimilation was not considered as good as for the second round 

of experiments as drift in the calibration between the two IRGA cells was not explicitly 

accounted for in each run. The first round of experiments really only suggested a possible effect 

that the second round was designed to investigate. Therefore conclusions are drawn from the 

second and third rounds of experiments. 

The second experiment showed an increase in assimilation under oscillating CO2 and for the 

following constant CO2 treatment. In preliminary experiments, changes in assimilation and gs 

were observed in relation to the time after enclosing the leaf in the cuvette, exhibiting first a 

drop and then a recovery of rates after enclosure in the cuvette. The observed increase in 

assimilation may have been due to this recovery of leaf physiological rates after an initial 

decline post enclosure in the cuvette. However, the leaf response to cuvette enclosure was 

accounted for in the method by maintaining leaves in the cuvette until steady states had been 

reached, including for gs (the major leaf response to cuvette enclosure) indicating that 

enclosure was not the cause of increased assimilation rates. If the increase in assimilation was a 

response to cuvette enclosure it should also have been observed in the third experiment. 

It was hypothesised that changes observed in assimilation may be due to non-steady state 

responses of stomata. However, there was no evidence to suggest stomatal responses were 

affected by oscillating CO2 and hence increased assimilation must have been due to factors not 

related to stomatal conductance. Non-stomatal responses could include changes in internal 
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conductance (gi) to CO2 diffusion (Flexas et al. 2008), uncoupled with changes in conductance 

(Heinen et al. 2009). It may be that for increases in assimilation under oscillating CO2 there was 

a synergistic effect of switching between carbon limited and light limited photosynthesis, as 

proposed by Evans and Hendrey (1992). The stimulation of assimilation by this synergy would 

have to last for more than five minutes after oscillation ceased to explain the higher rate of 

assimilation under steady state CO2 immediately after the experiment. 

The obvious difference between the two experiments was that assimilation was lower for all 

treatments in the third experiment. The drop in assimilation was likely a result of leaf age as the 

third experiment was conducted after the second and leaves were older. The leaves were also 

subject to powdery mildew which progressed as the plants aged and probably stressed the 

leaves reducing the photosynthetic potential. 

Due to the inverse relationship of Ci to assimilation, low assimilation rates meant that the lower 

bound of the Ci oscillation was higher at low assimilation rates than at high assimilation rates. It 

is proposed that assimilation rates were increased under oscillating CO2 due a synergy caused 

by switching between Vcmax and Jmax limited assimilation rates. Given lower assimilation rates, 

the lower bound of Ci under oscillating CO2 would be higher and perhaps not low enough to 

switch between the two rates. This effect could be exacerbated as lower assimilation rates 

suggest a lower Vmax of the simple Michaelis-Menton curve meaning a lower value of Ci at the 

knee of the curve, i.e. the point at which assimilation switches from Vcmax limitation to Jmax 

limitation. 

At medium to high rates of assimilation (>10 mol m-2 s-1) in healthy leaves, oscillating CO2 

appears to increase carbon assimilation in Q. robur and P. euramericana, probably by switching 

the photosynthetic rate limiting process between the PCA cycle and electron transport. 

Increases in carbon assimilation were observed by Evans and Hendrey (1992) in G. hirsuitum in 

response to oscillating CO2. These increases in carbon assimilation may occur in the field in 

FACE experiments and may influence carbon assimilation at the leaf level and with no change in 

stomatal conductance would also increase leaf level water use efficiency. However, when 

integrated at the ecosystem scale leaf-level changes are not necessarily translated into 

ecosystem level changes. For example, NPP at Oak Ridge FACE was strongly affected by 

ecosystem nitrogen dynamics (Garten et al. 2011, Iversen et al. 2011) and WUE response to 

increased CO2 at Duke FACE was balanced by the leaf area index response (Schafer et al. 2002). 
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Lag time 

Hendrey et. al. (1997) observed evidence to suggest that there was a diffusion-related timelag 

which damped the effect of oscillations in CO2 of high frequency. Hendrey et al. (2007) 

observed damping and smoothing of chlorophyll fluorescence (Ft) in comparison with the CO2 

oscillation at periods below 32 seconds indicating that the diffusion-related time lag under 

these conditions was significant. Diffusion-related lag times appeared not to be significant for 

teak and barrigon at oscillation periods of 40 and 80 seconds (Holtum and Winter, 2003). 

Holtum and Winter (2003) used a smoothly oscillating waveform and their results suggested 

that for smooth waveforms a diffusion-related timelag was not significant.   

Assimilation was calculated over short timesteps (16 seconds) for the course of the oscillation 

period. If diffusion related lag times were significant then the amplitude of the observed 

assimilation rates should be damped in comparison with the predicted assimilation rates. 

However, predictions and observations of instantaneous assimilation rates did not support this 

(Figure 3-7). The analysis of assimilation during the course of the oscillation show that observed 

assimilation rates were similar to those predicted by the A-Ci curve suggesting that the lag time 

was not slow enough to affect assimilation under these oscillation frequencies. The shape of 

the observed and predicted oscillations in assimilation rates were very similar and, in 

conjunction with a lack of stomatal response, adds weight to the hypothesis that it was the A-Ci 

curve driving the response to oscillating CO2 levels.  

Diffusion related lag times were not long enough to damp oscillations in internal CO2 

concentration when the oscillations were gradual and not square-wave. Therefore plants 

exposed to FACE methods are likely to experience oscillations in CO2 concentration at the 

chloroplast. However, given that the predicted reductions caused by the non-linearity of the A-

Ci curve were very small, it is concluded that assimilation in FACE experiments would not be 

reduced by oscillations in CO2 concentration if the study species have similar A-Ci curves and do 

not have a direct stomatal response. 
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Figure 3-7. Observed (black lines) and predicted assimilation (red and blue lines) 
smoothed with a moving 16 second average for Q. robur  under oscillating CO2 of two 
periods: 60 and 300 seconds, over a 10 and 20 minute run respectively. Predicted 
assimilation was based on internal leaf CO2 concentration (right scale) calculated from 
observations of stomatal conductance (light grey) and from predictions of stomatal 
conductance based on its relationship to CO2 under steady state conditions (darker grey). 

 

Figure 3-8. Assimilation against leaf internal CO2 concentration (Ci) measured at steady 
state for Q. robur and P. x euramericana. A-Ci curves were measured on single leaves of 
three different plants and these different plants are represented by the different symbols. 
The blue curves were fit for each individual plant using a non-linear least squares 
regression on the Michaelis-Menton equation. 
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Table 3-6. Carbon assimilation of P. x euramericana and T. grandis under steady state (SSA) 
CO2 conditions and the mean assimilation under oscillating (OA) CO2 conditions predicted 
by their respective A-Ca curves driven with the oscillating CO2 data from each experiment 
with an intercept term added to shift the mean concentration of the oscillation. There are 
no data for T. grandis for a mean of 750 µmol mol-1 and above as no A-Ca curve was 
available above 870 µmol mol-1. 

 P. x euramericana T. grandis 
Mean CO2 SSA OA  Difference SSA OA  Difference 
µmol mol-1 µmol m-2 s-1 % µmol m-2 s-1 % 

350 8.14 7.91 -2.82 4.86 4.74 -2.47 
450 10.27 10.04 -2.24 5.66 5.58 -1.41 
550 11.97 11.76 -1.75 6.31 6.23 -1.27 
650 13.29 13.09 -1.50 6.80 6.72 -1.18 
750 14.23 14.06 -1.19 - - - 
850 14.82 14.72 -0.67 - - - 
950 15.19 15.15 -0.26 - - - 
1050 15.49 15.43 -0.39 - - - 
1150 15.67 15.62 -0.32 - - - 

 

 

Changing carbon efficiency by changing CO2 concentration 

Hendrey et al (1997) and Holtum & Winter (2003) observed reductions in carbon assimilation 

under oscillating CO2, proposing that oscillating CO2 shifts assimilation rates up and down the 

A-Ci/Ca curve leading to a reduction in mean assimilation efficiency (carbon assimilated per unit 

of CO2) due to the non-linearity of the relationship. 

Hendrey et al. (1997) saw what looked like significant decreases in electron transport at 

oscillation periods of 60 seconds and above. They did not publish A-Ca curves nor assimilation 

rates (electron transport through photosystem II) at any of the mean, low or high steady state 

CO2 concentrations for the wheat used in their experiments. However, using A-Ca data from 

both this experiment and from Holtum and Winter (2003) the predicted relative reduction in 

assimilation was much less than the observed relative reduction in electron transport (results 

not shown).  

Integrated predicted assimilation rates based on the A-Ci/Ca curves of P. x euramericana in this 

experiment and teak from Holtum and Winter (2003) under oscillating and steady state CO2 

conditions are shown in Table 3-6. Under the respective amplitudes of the oscillations in CO2 

experienced by the plants in these studies, oscillations in CO2 concentration had only a minor 
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effect on carbon assimilation across a wide range of mean CO2 concentrations. For Poplar, 

oscillating CO2 conditions were predicted to reduce carbon assimilation by a maximum of 0.23 

µmol m-2 s-1 or under 3% compared to assimilation at steady state. The data from Holtum and 

Winter (2003) show that the reduction in assimilation rate that they observed cannot be 

predicted by their A-Ca curve. The predicted reduction was only 0.08 µmol m-2 s-1 compared to 

the 0.57 µmol m-2 s-1 reduction observed. Using the A-Ca model with Holtum and Winter’s 

(2003) data, mean predicted assimilation rates under oscillating CO2 were reduced but by much 

less than they observed.  

These predicted results indicate that the hypothesis relating reduction in assimilation under 

oscillating CO2 to reduced efficiency caused by shifting up and down the A-Ca curve is not 

sufficient to explain the reductions observed by Holtum and Winter (2003) and Hendrey et al 

(2007).  

The shape of the A-Ca curve and the stomatal response to translate the A-Ca curve into an A-Ci 

curve will form the major components of the response of plants to oscillations in atmospheric 

CO2. Assuming the response of stomata to oscillations in CO2 is unaffected or similar to the 

integrated response to CO2 under steady state conditions, the mean and amplitude of the 

oscillation will determine assimilation. Three species were chosen with very different stomatal 

characteristics to test this and no stomatal response was observed in any of them and 

concurrently with no reduction in carbon assimilation. For this reason, and the minimal 

reductions predicted by A-Ca curves it is concluded that previously observed reductions in 

assimilation under oscillating CO2 may have been caused by a differential stomatal response to 

a step change in CO2 when the step is to either steady state or oscillating CO2.  

Conclusions 

Under oscillating CO2 (with a 60 second period), a consistent increase in carbon assimilation of 

nearly 2 µmol m-2s-1 across both P. x euramericana and Q. robur was observed compared to 

assimilation under steady state CO2. This increase of over 15% in Poplar and nearly 20% in Oak 

has been observed by others (Evans and Hendrey 1992) and could significantly increase 

assimilation in FACE experiments. Evidence in this Chapter suggests that oscillations in CO2 may 

stimulate carbon assimilation, perhaps by switching between electron transport limitation and 

carboxylation limitation, although further work is needed to test the nature and causes of this 

stimulation. There was no response of stomatal conductance or transpiration to oscillating CO2. 



85 
 

Testing the hypothesis of Hendrey et al. (1997), that oscillating CO2 reduced assimilatory carbon 

use efficiency and hence reduced assimilation; assimilation rates were predicted to decrease 

based on modelling assimilation with A-Ci/Ca curves driven with CO2 data from the experiments, 

but only by a small percentage. Reductions in assimilation efficiency caused by non-linearity in 

the A-Ci curve appeared insufficient to explain previously observed reductions in assimilation 

under oscillating CO2. The data presented in this Chapter show no stomatal response to a 

switch from steady state CO2 to oscillating CO2 with the same mean CO2 concentration. We 

propose that previously observed reductions in assimilation under oscillating CO2 may have 

been caused by a different stomatal response to a step change in CO2 from steady state to 

either steady state or oscillating CO2, although this remains to be tested.  
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Chapter 4 The performance of carbon cycle models against Net Primary 

Productivity at Oak Ridge and Duke FACE 

Introduction 

There has been significant progress in developing, parameterising and validating terrestrial 

carbon cycle models. Considerable use has been made at the site scale of eddy co-variance data 

which measure land-atmospheric fluxes of momentum, heat, water vapour and more recently, 

carbon dioxide, and all simultaneously with meteorological measurements see Schwalm et al. 

(2010) and Lawrence et al. (2011) for examples. At the global scale various satellite derived 

products (Running et al. 2004), land-cover datasets (Woodward and Lomas 2004), and most 

recently a globally gridded product from the FLUXNET community (Beer et al. 2010) have been 

used for validation, providing very detailed spatial information on the extent and function of 

terrestrial ecosystems. Finally CO2 flask measurements provide a global value of mean 

atmospheric carbon dioxide and thus a constraint for carbon cycle models when analysing their 

ability to depict the contemporary period (Cadule et al. 2010). Until recently the effect of 

elevated CO2 in terrestrial carbon cycle models had been implicitly validated rather crudely on 

the basis that the models reproduce with some degree of accuracy the observed global rise in 

atmospheric CO2 over the long term. Although confounded by other factors, the models’ 

responses to CO2 were shown to be poorly constrained by the huge divergence of predicted 

CO2 concentrations into the future given the same forcing scenario (Friedlingstein et al. 2006). 

Differences in flask values at different points in space and time contain seasonal and inter-

annual information on continental-scale variations in CO2 fluxes. In a more sophisticated, 

explicit validation of the global CO2 flux, Cadule et al. (2010) compared the carbon fluxes of 

three Earth system models against instrumental atmospheric CO2 observations using a single 

atmospheric transport model to generate CO2 concentrations directly comparable at each 

measurement station. Their results showed that while models were generally reasonable at 

simulating the long-term trend in carbon fluxes, the models ranged in their ability to simulate 

carbon fluxes over seasonal and inter-annual cycles and at different sites. Cadule et al. (2010) 

results provide an excellent new framework for validating global model carbon fluxes simulated 

by fully coupled Earth System models. All of these measurements are for contemporary periods 

and allow only a limited understanding of physiological responses to raised (surface) 

atmospheric CO2 concentrations. 
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Free Air Carbon dioxide Enrichment (FACE) experiments present the opportunity to validate 

ecosystem scale CO2 responses to elevated CO2, 500-600 µmol mol-1, under the same climate. 

Laboratory-based experiments have been performed to assess the impact of increased ambient 

CO2 on photosynthesis and plant productivity (Arp 1991, Stitt 1991). However, these do not 

provide information on the long-term effects of such increase, and the applicability to natural 

systems of any acclimation of the CO2 response (a decrease over time of the initial boost to 

productivity) observed in these laboratory experiments has been questioned (Arp 1991, Stitt 

1991). FACE experiments examine the response of natural, semi-natural and agricultural 

ecosystems to elevated concentrations of atmospheric CO2 (Evans and Hendrey 1992, Hendrey 

and Kimball 1994) over significant periods of time. For this reason, the emerging results from 

FACE experiments are essential and provide an unprecedented opportunity to validate 

terrestrial carbon cycle models.  

Most forest FACE experiments are fully replicated at the stand scale. With the 

acknowledgement that global carbon cycle models are point models running at the stand level 

and scaled to a region, FACE experiments are suitable for direct comparison with large scale 

terrestrial carbon cycle models. While the impact of elevated CO2 will be important in both 

young and old growth forest and the mechanisms by which CO2 affects carbon sequestration in 

different age systems are likely to be quite different, the only FACE experiment in a mature 

system (Körner et al. 2005) was conducted at the individual tree scale and as such was less 

comparable with stand-scale carbon-cycle models. The FACE experiments used in this study 

represent the most natural, and oldest forest systems tested with FACE technology to date. This 

study uses data from the Oak Ridge (Iversen et al. 2011) and Duke (McCarthy et al. 2010, Drake 

et al. 2011) FACE experiments located in the South Eastern USA. They are both in relatively 

young but closed canopy and maturing, unmanaged plantation ecosystems. The two FACE sites 

are very similar climatically and the primary difference between these two sites is that Oak 

Ridge is deciduous broadleaf while Duke is evergreen needleleaf. McCarthy et al. (2010) found 

that the primary drivers of variability in the CO2 response of NPP at Duke FACE were nitrogen 

and the water balance.  

The two major UK DGVMs/LSMs are used in this study: the Sheffield Dynamic Global Vegetation 

Model (SDGVM; Woodward et al. 1995, Woodward and Lomas 2004) which is a stand-alone 

global carbon cycle model; and the Joint UK Land Environment Simulator (JULES; Best et al. 
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2011) which is the LSM used in the Hadley Centre’s Earth System model and is the updated 

version of the MOSES/TRIFFID model. SDGVM and JULES are the focus of the research in this 

Chapter due to access and to determine the ability of DGVMs to capture NPP dynamics under 

elevated CO2 with only a simple nitrogen model (SDGVM) or parameterisation of canopy 

nitrogen. JULES parameterises leaf nitrogen as a single value per PFT (Clarke et al. 2011) while 

SDGVM simulates canopy nitrogen as a function of soil decomposition rates (Woodward et al. 

1995).  The focus on the UK models was due to access and time constraints in modifying the 

models; ideally multiple variants of the models would be used to assess the importance of the 

nitrogen cycle in these experiments and simulations. 

Results are also presented from another 10 LSMs/DGVMs and ecosystem models. Along with 

SDGVM, these models were part of a US National Centre for Ecological Analysis and Synthesis 

(NCEAS) project and detailed comparisons of the water and nitrogen dynamics of these 

different models is the subject of (De Kauwe et al. In Prep, Zäehle et al. In Prep).  

This study was primarily a benchmarking/validation exercise, addressing the question: can a 

range of DGVMs reproduce NPP under ambient and elevated CO2 at the Oak Ridge and Duke 

FACE experiments? Furthermore, can models reproduce the response of NPP to elevated CO2? 

Models are compared using measures of model skill in reproducing the observed NPP at the 

FACE sites. To test whether models can also reproduce the relationship of NPP to climatic and 

biological drivers of NPP, models and observations are further compared using multiple linear 

regressions of NPP on precipitation, temperature, photosynthetically active radiation (PAR), 

canopy nitrogen and nitrogen uptake.  

SDGVM and JULES have simple nitrogen dynamics and it was hypothesised that using observed 

values of canopy nitrogen and the observed relationship of Vcmax to leaf nitrogen in the models 

would improve simulations of NPP. To test this, SDGVM and JULES were modified to be driven 

with observations of canopy nitrogen and the observed relationship of Vcmax to leaf nitrogen. 

SDGVM was also modified to take PAR as a driving variable as opposed to internal calculation of 

PAR based on latitude and time of year (the default SDGVM method).  

It was also hypothesised that soil water limitation would play a key role in the simulated CO2 

response and the impact of soil water limitation in the two models was assessed by running the 

models without soil water limitation.    
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This Chapter sheds light on what model process and parameter improvements are necessary 

for improved confidence in the ability of the models to inform policy-relevant questions, such 

as: how will terrestrial ecosystems respond to raised surface CO2 concentrations? 

 

Figure 4-1. Box and whisker plots showing the distribution of monthly climate values over 
the course of the Duke (black bars) and Oak Ridge (white bars) FACE experiments. 
Temperatures are expressed as the monthly means and precipitation and 
Photosynthetically Active Radiation (PAR) are monthly sums. Dots in the box represent the 
median of the monthly values, boxes are the inter-quartile range (IQR) and whiskers extent 
to the full range. 
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Methods 

FACE sites 

This study uses data from the Oak Ridge (Norby and Iversen 2006) and Duke (McCarthy et al. 

2007) FACE experiments over the long periods of years, 1998–2008 and 1997–2007 

respectively. The sites are in similar locations in the South Eastern USA. Oak Ridge FACE, 

Tennessee (35o54’ N; 84o20’ W) was composed of Sweetgum (Liquidambar styraciflua [L.]), 

planted in 1988 at the high density of 2800 trees ha-1 with the original purpose of biomass 

production. The plantation was unmanaged since establishment and showed little understory 

growth. The soil is an Aquic Hapludult (Wolftever Series) and the rooting depth is up to 2 m. 

Duke FACE, North Carolina (35o58’ N; 79o06’ W) was composed of Loblolly Pine (Pinus taeda 

[L.]), also unmanaged since establishment in 1983 but with a significant understory of native 

hardwoods, in some cases emerging into the canopy. Planting density was 1713 pines ha-1 and 

hardwoods established at 2589 trees ha-1. The soil is an Ultic Hapludalph (Enon series) with a 

depth of 0.75 m. Annual meteorological data and other site characteristics are presented in 

Table 4-1 and the monthly meteorological data is presented in Figure 4-1. 

Observed NPP and relative responses are shown in Figure 4-2. McCarthy et al. (2010) have 

shown that the mean magnitude of NPP (by block—replicate plots were blocked by soil fertility) 

was most strongly correlated with a soil nitrogen availability index with inter-annual variability 

determined by precipitation minus potential evapo-transpiration (P-PET) and disturbance 

events. The linear regression in this study showed that only temperature was a significant 

correlate with NPP (Table 4-2) suggesting that temperature was driving P-PET. 

In this study we use annual NPP to validate our models which was measured using detailed, on-

the-ground, inventory style methods (McCarthy et al. 2007, Norby RJ et al. 2008). At both sites 

NPP was calculated as the sum of wood and coarse root production, leaf production and fine 

root production. Wood and coarse root production was measured using trunk diameter 

allometrics and wood density measurements; leaf production was calculated from litter fall and 

fine root production was measured using mini-rhizotrons. NPP is the remainder of GPP once 

plant respiration has been subtracted and this is how the models simulate NPP. At the FACE 

sites, NPP allocated to plant biomass production was measured but not NPP allocated to root 

exudation and mycorhizal symbionts was not measured nor were changes in stored plant 
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carbon. Measured NPP represents annual plant growth, which is the major component of NPP, 

rather than NPP in its strictest sense. 

Table 4-1.Comparison of driving data and some input parameters at Duke and Oak Ridge. 
Data are the annual mean (1 SD). 

  

Duke  ORNL  

Location  

 

North Carolina, USA 
35

o
 58' N, 79

o
 05' W 

Tennessee, USA 
35

o
 54' N, 84

o
 20' W 

CO2 enrichment (ppmv)  
 

550  565  

Species  
 

Pinus taeda  Liquidambar styraciflua  

Plant Functional Types  

 

80% Evergreen Needleleaf 
20% Deciduous Broadleaf  

100% Deciduous Broadleaf  

Soil depth (m)  
 

0.75  2  

Precipitation (mm)  
 

1080  (180)  1230  (220)  

Temperature (
o
C)  

 
14.8  (0.63)  14.8  (0.90)  

PAR (mol m
-2

 yr
-1

)  
 

10600  (440)  10000  (1200)  

RH (%)  
 

74.7  (3.7)  75.9  (2.5)  

Maximum canopy nitrogen  amb  9.07  (0.72)  6.95  (0.71)  

     (g m
-2

 ground area)  elv  11.26  (1.55)  no sig diff  

 

 

Figure 4-2. Observations of mean annual NPP (±1 SEM, right plot) and relative response of 
NPP to elevated CO2 (left plot) at Duke and Oak Ridge FACE experiments, ambient CO2 
treatment (blue lines) and elevated CO2 treatment (orange lines). 
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Models 

The latest version of SDGVM from the 7th June 2007 and JULES v2.1.2 were used as the baseline 

models in these simulations. Both SDGVM and JULES represent similar fundamental processes 

that determine carbon cycling and water cycling but as yet neither of them explicitly model 

nitrogen or phosphorus cycling which are known to place limitations on NPP. SDGVM and JULES 

represent differently processes of water and carbon cycling, in particular plant mediated 

carbon cycling. 

Ten other models were run by their respective modelling groups as part of the US National 

Centre for Ecological Analysis and Synthesis model inter-comparison project. The models were: 

CABLE (Wang et al. 2007a), CLMCN (Thornton et al. 2007), DAYCENT (Del Grosso et al. 2009), 

EALCO (Wang et al. 2007a), ED2.1 (Moorcroft et al. 2001), GDAY (Medlyn et al. 2000), ISAM 

(Jain and Yang 2005), LPJ-GUESS (Hickler et al. 2004), OCN (Zaehle and Friend 2010) and TECO 

(Bell et al. 2007); and they represent a wide range of processes at various scales of application. 

Many of these models have a mass balance nitrogen cycle. As described below JULES and 

SDGVM were modified to take the observed maximum canopy nitrogen as a driving variable.  

Maximum annual canopy nitrogen was used as a driving variable. Maximum canopy nitrogen 

was scaled to daily canopy nitrogen using the following equation: 

 𝑁𝑐𝑎𝑛 ,𝑚 =  
𝐿𝐴𝐼𝑚

LAI max ,m
(𝑁𝑐𝑎𝑛 ,𝑚𝑎𝑥 ×

𝐿𝐴𝐼𝑚𝑎𝑥 ,𝑚

𝐿𝐴𝐼𝑚𝑎𝑥 ,𝑜
) (4-1) 

Where Ncan,m is the model canopy nitrogen in gm-2; Ncan,max is the observed annual maximum 

canopy nitrogen in gm-2; LAIm is the modelled LAI; LAImax,m is the maximum modelled LAI and 

LAImax,o is the annual maximum observed LAI.  The purpose of this scaling was twofold. One, to 

scale maximum canopy nitrogen, which occurs at maximum LAI, to canopy nitrogen at the LAI 

on a given day.Two, to maintain the ratio of maximum canopy nitrogen to maximum LAI, 

observed at the FACE sites. It was important to maintain the ratio of canopy nitrogen to LAI as 

nitrogen distribution through the canopy is a function of LAI and as such is an important factor 

in determining Vcmax and Jmax at each layer in the canopy. 

The observed relationship of Vcmax (µmol m-2 s-1) to leaf nitrogen on an area basis was included 

in the models and in SDGVM the relationship of Jmax to Vcmax (µmol m-2 s-1) was also coded into 

the model (both taken from the NCEAS protocol), as follows: 
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Duke: 

 𝑉𝑐𝑚𝑎𝑥 ,𝑖 = 22.29𝑁𝑎 𝑖 + 8.450 (4-2) 

 𝐽𝑚𝑎𝑥 ,𝑖 = 1.860𝑉𝑐𝑚𝑎𝑥 ,𝑖  (4-3) 

Oak Ridge: 

 𝑉𝑐𝑚𝑎𝑥 ,𝑖 = 20.497𝑁𝑎 𝑖 + 8.403  (4-3) 

 𝐽𝑚𝑎𝑥 ,𝑖 = 1.974𝑉𝑐𝑚𝑎𝑥 ,𝑖 + 13.691 (4-4) 

Replacing the functions for: 

SDGVM: 

 𝑉𝑐𝑚𝑎𝑥 ,𝑖 = 11𝑁𝑎 𝑖  (4-5) 

 𝐽𝑚𝑎𝑥 ,𝑖 = 1.64𝑉𝑐𝑚𝑎𝑥 ,𝑖 +  29.1 (4-6) 

JULES: 

 𝑉𝑐𝑚𝑎𝑥 ,𝑖 = 800𝑁𝑐 𝑖  (4-7) 

Where Na refers to leaf nitrogen on a ground area basis (gm-2) and Nc the leaf nitrogen to 

carbon ratio (top leaf N:C ratio nl0 in JULES—0.046 for broadleaved trees and 0.033 for 

needleleaf trees), the subscript i refers to canopy layer. The Jmax terms were not relevant to the 

JULES simulations as the equations for photosynthesis are based on the Collatz et al. (1991) 

scheme which does not assume a biochemical limit to electron transport. 

At Duke, canopy nitrogen for each PFT was reported on a plot area basis while the models 

assumed canopy nitrogen values were per the area occupied by the PFT, therefore observed 

canopy nitrogen values were scaled by the total plot area divided by the fraction of area 

occupied by a PFT, i.e. in the case of the broadleaved PFT, measured canopy nitrogen values 

were scaled by 1.0/0.2 to drive the model. 

SDGVM normally calculates Photosynthetically Active Radiation (PAR) based on latitude and 

time of year. SDGVM was also modified to take daily observed measurements of PAR as a 

driving variable. 
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Simulations 

SDGVM and JULES were initialised using the site-specific parameters (from the ambient 

treatment where relevant) presented in Table 4-1. Both models were spun up over 500 years 

using site-specific land-use histories, historical CO2 records (Boden 2011) and randomly 

repeated years of the driving variables measured during the experimental treatments. The 

simulations proper were started at the time of planting to the year prior to CO2 enrichment, 

1983-1996 and 1988-1997 at Duke and Oak Ridge respectively. In neither model were the land-

cover fractions dynamic (i.e. TRIFFID was turned off in JULES) and they were driven with 80% 

evergreen needleleaved trees and 20% deciduous broadleaved trees at Duke and 100% 

broadleaved trees at Oak Ridge. Two simulations, representing the two CO2 treatments, were 

then run over the years for which data were available, 1996-2007 and 1998-2008. 

As described above the models were able to be run with a number of additional driving 

variables. Initial simulations were run in the models’ standard configurations (hereafter 

referred to as just SDGVM or the standard run), as they would be in a global run, with the 

exception of soil depth, soil texture, field capacity and wilting point taken from the NCEAS 

protocol. 

Four additional  versions of SDGVM were run, all driven with observed annual maximum 

canopy nitrogen, the first with canopy nitrogen and the standard SDGVM Vcmax and Jmax to 

nitrogen parameterisations (canN). The second parameterised with the observed relationships 

of photosynthetic parameters (Vcmax and Jmax) to nitrogen (canN Vc) (Equation 4-2 to 4-5). The 

third and fourth simulations built on canN Vc using observed PAR (canN Vc PAR) and one with 

mean observed PAR (canN Vc xPAR). For JULES two simulations (additionally to the standard 

run) were driven with canopy nitrogen and with observed Vcmax and Jmax relationships, these 

simulations were run with both observed PAR (canN Vc – as using observed PAR is standard for 

JULES, the comparable SDGVM runs were termed canN Vc PAR) and mean observed PAR 

(results are not presented for the mean PAR as it differed very little from the inter-annually 

varying PAR run). 

The above simulations were also run with soil water limitation in the models turned off. Both 

models apply a soil water stress multiplier (β in JULES, kg in SDGVM—for consistency referred 

to as β hereafter) (Woodward et al. 1995, Best et al. 2011). β is reduced proportionally from 

one, when soil water drops below a critical volumetric soil water content (set as an input 
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parameter in JULES—known as the critical point, and determined by soil texture in SDGVM), to 

zero when the soil water content reaches wilting point (set as an input parameter in both 

SDGVM and JULES). In JULES, potential carbon assimilation is then multiplied by β to yield 

actual carbon assimilation. While in SDGVM, Vcmax, Jmax and stomatal conductance (gs) are 

multiplied by β. In the non-soil water stressed simulations β was maintained at 1 regardless of 

soil water content. 

Statistics 

All statistical tests were carried out in R (R Core Development Team 2011) using internal R 

functions. ‘Goodness of fit’ metrics were the coefficient of determination (R2 - the square of 

Pearson’s correlation coefficient); the single, absolute maximum error (ME); the root of the 

mean squared error (RMSE) and model efficiency (EF), a measure of how the simulated data 

compares with the mean of the observed values as a predictor of the observed values, 

calculated:- 

𝐸𝐹 =     𝑂  –  𝑂𝑖 
2

𝑛

𝑖=1

−  𝑃𝑖 − 𝑂𝑖 
2

𝑛

𝑖=1

   𝑂 –𝑂𝑖 
2

𝑛

𝑖=1

  

  (4-8) 

where Pi are the model predicted values, Oi are the observed values and n is the number of 

data. An EF value above zero indicates that the model predictions are a better fit to the 

observed data than the mean of the observations, with a value of one indicating a perfect fit. 

Below zero EF is un-bounded and indicates that the mean of the observations is a better 

descriptor of the observations than the predicted data. 

In a sensitivity analysis, multivariate linear regressions were used to detect correlations 

between annual values of NPP and climatic and biological driving variables—annual 

precipitation, mean annual temperature, mean annual relative humidity, annual PAR, annual 

maximum canopy nitrogen and for the models (NCEAS intercomparison 10) that simulated it – 

annual nitrogen uptake.NPP under elevated CO2 was detrended by the difference in mean 

between the two CO2treatments. Canopy nitrogen was also detrended in the same way to 

eliminate any differences in canopy nitrogen caused by the treatments. Interactions between 

driving variables were left out of the models due to the low number of data available (number 

of years by two treatments, n=22). The effect of CO2 as an interaction term was investigated 

and was found to be insignificant (results not shown) although there were perhaps insufficient 
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data (n=22 at each site) to detect any subtle interactions of CO2 concentration and driving 

variables on NPP. Statistical models (linear fixed-effects multiple regressions) were fitted to the 

data using all driving variables. If the regressions were significant then they were simplified by 

removing insignificant driving variables one by one until all driving variables were significant 

(P<0.1).  

Statistics presented were again the coefficient of determination for the entire statistical model 

(R2) and the corresponding P value; p values for each individual variable and a measure of the 

coefficient of determination (r2) for each individual variable. The coefficient of determination—

R2—measures the variance in the response variable explained by variance in the explanatory 

variables of a multiple regression. To tease out the contributions of each explanatory variable 

to the R2, a coefficient of determination—r2—can be calculated for each explanatory variable. 

Type I sums of squares coefficients of determination (Type I r2) (Sokal and Rohlf 1995) are 

calculated as the increase in R2 of the full regression model with the addition of the explanatory 

variable in question. The type I r2 value depends upon the order in which the explanatory 

variables are added to the model and, particularly for those variables added to the model first, 

could also include variance correlated with other explanatory variables. For this reason, when 

calculating Type I r2, variables were added to the model in reverse order of their correlation to 

other explanatory variables. 

Type II sums of squares coefficients of determination (Type II r2) (Sokal and Rohlf 1995) 

measure the variance in the response variable accountable to variance in the explanatory 

variable that is uncorrelated with the other explanatory variables. Type II r2 is the decrease in 

the R2 of the full regression when removing the explanatory variable in question and is 

independent of the order in which the variables are fitted to the statistical model. It is 

calculated as follows:   

 𝑟(𝐼𝐼)𝑦
2 = 𝑟𝑦

2 × 𝑡𝑦  (4-9) 

Where r(II)2
y is the Type II r2 of the explanatory variable y; ry is the Pearson correlation 

coefficient between explanatory variable y and the response variable and ty is the tolerance of 

explanatory variable y calculated: 

 𝑡𝑦 = 1 − 𝑅𝑦,𝑧
2  (4-10) 
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Where R2
y,z is the coefficient of determination of explanatory variable y regressed against the 

remaining set of explanatory variables. 
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Results 

At Duke, a multiple-regression of annual NPP on climatic driving variables (annual precipitation, 

mean annual temperature and PAR) and peak canopy nitrogen was not significant (Table 4-2). 

At Oak Ridge however, the multiple-regression of annual NPP was significant (P<0.001) with the 

multiple-regression explaining 79% of the inter-annual variation in NPP. The variable that 

accounted for the majority of the explained variation was canopy nitrogen (Table 4-2). 

 

Table 4-2.Results from multivariate linear regressions of the observed data. Detrended 
NPP was regressed on the measured driving variables at a site. r is the Pearson correlation 
coefficient. Tolerance is a measure of the independence of a driving variable from the other 
driving variables and is calculated as one minus the R2 from a multiple linear regression of 
the driving variable in question against all the other driving variables. The driving 
variables in the table are listed in order of tolerance. Part r2 (also known as semi-partial r2) 
is a measure of the variation in NPP explained by the driving variable in question. The p 
value, R2 and P are all taken from the multiple regression. 

run var 
explanatory 
variable r tolerance part  r

2
 (II) 

part  r
2
 

(I) p value 
multiple  

R
2
 

P of 
model 

Duke npp precipitation 0.23 0.88 0.05 0.03 0.308 0.30 0.175 

  
temperature -0.52 0.79 0.22 0.12 0.036 

  
  

canopy nitrogen 0.38 0.77 0.11 0.06 0.118 
  

  
PAR 0.35 0.76 0.09 0.09 0.154 

  
          ORNL npp temperature -0.29 0.89 0.07 0.14 0.016 0.82 0.000 

  
canopy nitrogen 0.64 0.65 0.26 0.62 0.000 

  
  

precipitation 0.06 0.62 0.00 0.03 0.646 
  

  
PAR -0.26 0.47 0.03 0.03 0.097 

  
          
 

npp canopy nitrogen  0.77 0.99 0.58 0.63 0.000 0.79 0.000 

  
temperature -0.29 0.90 0.07 0.12 0.018 

  
  

precipitation 0.18 0.89 0.03 0.03 0.120 
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SDGVM 

In its standard release, SDGVM under-predicted NPP at both sites (Figure 4-4), severely so at 

Duke (RMSE 455 gC m-2y-1), such that the mean of the observations was a better predictor of 

the observations than simulated NPP, indicated by a negative model efficiency (EF = -3.63). 

SDGVM captured the inter-annual variability in NPP at Duke with an R2 of 0.54 (P<0.001) and 

less well at Oak Ridge with an R2 of 0.36 (P<0.01). 

Adding canopy nitrogen and PAR as driving variables to the simulations and modifying 

photosynthetic parameters had a considerable impact on both the absolute values of NPP and 

the inter-annual variability of NPP. Using observed canopy nitrogen as a driving variable (canN) 

improved the R2 and EF at both sites (Table 4-3). At Duke, EF was strongly improved due to 

higher absolute values of NPP. The subsequent addition to the model of the observed 

relationships of Vcmax and Jmax to leaf nitrogen led to a marked over prediction of NPP at both 

sites, decreasing EF. The R2 at Oak Ridge was strongly increased in the canN Vc run as the 

observed photosynthetic parameters strongly increased model sensitivity to canopy nitrogen, 

shown to correlate strongly with NPP in the experiment (Iversen et al. 2011). 

The over-prediction of NPP when driving the model with observed nitrogen and photosynthetic 

relationships was corrected by using observed daily PAR as a driving variable. SDGVM over-

predicted the levels of photosynthetically active radiation (PAR) at the two sites (46% on an 

annual basis at Oak Ridge although the over-prediction was higher in the winter). At Oak Ridge 

however, the improved simulation accuracy of absolute values was at the cost of accurate 

simulation of inter-annual variability. Using the mean of the observed PAR (i.e. no inter-annual 

variability in PAR) as a driving variable improved both the R2 and model efficiency (although it 

remained below zero) at Oak Ridge. The mean PAR simulation at Duke had little impact on the 

R2 yet improved the model efficiency due to better simulation of absolute values. Unlike the 

Oak Ridge simulation, there was little change in simulation of inter-annual variability due to less 

inter-annual variation in PAR at Duke over the course of the experiment (Figure 4-1). 
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Figure 4-4. SDGVM simulations (solid lines) and observations (mean ± 1 SEM; faded lines) 
of NPP at Duke and Oak Ridge FACE experiment, ambient CO2 treatment (blue lines) and 
elevated CO2 treatment (orange lines). The results of five different configurations of the 
model are shown: the standard SDGVM release; using annual maximum canopy nitrogen as 
a driving variable (canN); using annual canopy nitrogen as a driving variable and observed 
relationships of Vcmax and Jmax to leaf nitrogen (canN Vc); using canopy nitrogen, Vcmax etc 
and observed PAR (canN Vc PAR); and using canopy nitrogen, Vcmax etc and the mean of 
observed PAR (canN Vc PAR). 

Table 4-3.Model skill statistics for SDGVM NPP at Oak Ridge and Duke FACE. The R2 and P 
value are from a linear regression of modelled NPP on observed NPP. The absolute 
maximum error [abs(ME)] and root mean square error (RMSE) are presented as well as 
model efficiency (ME), a measure of the models accuracy for both the variability and 
absolute values. A model efficiency of one indicates a perfect fit, while a value below zero 
indicates that the mean of the observations is a better predictor of the observations than 
the model predictions.P-values are colours from yellow to red with warmer colours 
indicating increasing significance. EF values are colour coded from yellow to red from zero 
to one, i.e. increasing model skill; and from yellow to blue from zero to minus one, i.e. 
decreasing model skill, and all values below minus one are coloured blue. 

 

 

 

 

 

The 

Site run CO2 R
2
 P abs(ME) RMSE EF 

Duke Standard all 0.54 0.000 633 455 -3.63 

 
canN all 0.67 0.000 330 154 0.47 

 
canN Vc all 0.68 0.000 405 183 0.25 

 
canN Vc PAR all 0.67 0.000 263 138 0.57 

 
canN Vc xPAR all 0.68 0.000 233 120 0.68 

        ORNL Standard all 0.36 0.003 479 188 0.19 

 
canN all 0.48 0.000 295 155 0.44 

 
canN Vc  all 0.68 0.000 652 435 -3.35 

 
canN Vc PAR all 0.12 0.108 559 284 -0.86 

 
canN Vc xPAR all 0.64 0.000 546 297 -1.04 
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relationship of NPP to driving variables represents an ad hoc sensitivity analysis, highlighting 

variables that are important drivers of NPP in the models. The assumption was that if inter-

annual variability in a model’s NPP prediction was sensitive to a particular driving variable then 

that variable was an important driver of NPP. This assumption holds where there was 

significant variability in NPP and the driving variable in question, however if there was little 

variability in either then this assumption breaks down. It is quite possible that the main driver 

of the absolute value of NPP may vary little over the course of the simulations and that inter-

annual variability was driven by a different variable which appears to have been the case for 

some of the models (results presented below) in this study. With this caveat in mind the 

relationship of NPP to driving variables is explored.  

Precipitation and temperature were significant correlates with detrended NPP for SDGVM 

throughout most of the model runs (Table 4-4) indicating that SDGVM was a model that 

responded to climate. Canopy nitrogen and PAR were significant correlates of NPP suggesting 

that the core photosynthesis model in SDGVM was a key driver of NPP. No correlation was 

found between canopy nitrogen and NPP in the canN run but the correlation in the canN Vc run 

suggests that it was light that limited photosynthesis and hence NPP in the canN run. There was 

a switch in NPP sensitivity from precipitation to temperature from the standard to the canN run 

at Oak Ridge.  

JULES 

Similar to SDGVM, the standard release of JULES (with vegetation dynamics—TRIFFID—turned 

off) strongly under-predicted NPP at Duke (Figure 4-5) with an RMSE of 423gC m-2y-1. At Oak 

Ridge JULES captured the mean NPP but significantly over-predicted NPP in the later years of 

the experiment (Table 4-5). Similar to SDGVM, JULES simulated the inter-annual variability in 

NPP more accurately at Duke (R2 = 0.61, P<0.001) than at Oak Ridge (R2 = 0.27, P<0.05). 

However, at neither site were the JULES simulations a better predictor of the observations than 

the mean of the observations themselves (EF = -2.99 & 0.00 at Duke and Oak Ridge 

respectively). 

Driving JULES with canopy nitrogen had little impact on NPP at Oak Ridge. At Duke the mean 

NPP was strongly increased bringing the simulated values in line with the observed values (EF = 

0.47). Unlike SDGVM, driving JULES with mean short wave radiation (which JULES linearly 

converts to PAR) had little impact on the inter-annual variability in simulated NPP (results not 
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shown). PAR was not an important driving variable of NPP in JULES, as seen in the Duke 

simulations where, although observed PAR was used as a driving variable, PAR was never a 

significant correlate of NPP (Table 4-4). Although PAR was a significant variable in the JULES 

simulations of Oak Ridge it was a significant variable even in simulation where mean PAR was 

used (results not shown). This was because PAR was correlated with precipitation at Oak Ridge, 

shown by the low tolerance of the two variables. 

Precipitation was the driving variable most correlated with NPP across the JULES runs. 

Comparison to simulations without soil water stress (β = 1) showed that soil water stress 

reduced NPP in JULES by 27% at DUKE and 25% at Oak Ridge (Figure 4-6). By contrast, the 

magnitude of soil water limitation in SDGVM was 5% at DUKE and 2% at Oak Ridge (Figure 4-6). 

The strength of soil water limitation in JULES indicates that inter-annual variability in, and to a 

large extent absolute, NPP was a product of soil water limitation. Soil water is the difference 

between precipitation and evapotranspiration. The strong correlation to precipitation indicates 

that precipitation was a major driver of soil water limitation at both sites. At Duke, temperature 

was also a major negative correlate with NPP and given the strength of soil water limitation in 

JULES it is likely that temperature driven changes in evapo-transpiration were important at 

Duke. 

Simulated inter-annual variability was strongly improved in the CanN Vc simulation at Duke but 

there was also a marked over-prediction of NPP in 2003, removal of the 2003 data improved 

the R2 to 0.68(P<0.001) and increased EF to 0.68. 2003 was a peculiar year for JULES due to an 

absence of soil water limitation which had a strong effect on NPP in other years (Figure 4-6). It 

was likely that the combination of low temperature (third lowest mean annual temperature—

14.3 oC) and high rainfall (second highest mean annual precipitation—1346 mm) maintained 

high levels of soil water in JULES during 2003 leading to an over-prediction of NPP. 

Table 4-4.Multivariate linear regressions of SDGVM NPP on driving variables (annual 
values). See Table 4-2 for an explanation of the metrics. 

site Run CO2 R
2
 P abs(ME) RMSE EF 

Duke Standard all 0.61 0.000 705 423 -2.99 

 
canN Vc all 0.49 0.000 645 215 0.47 

 
canN Vc -2003 all 0.68 0.000 363 155 0.68 

        ORNL standard all 0.27 0.014 430 208 0.00 

 
canN Vc all 0.26 0.015 549 280 -0.20 
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Table 4-5.Model skill statistics for JULES NPP at Oak Ridge and Duke FACE. See Table 4-3 
caption for further description. 

 

 

 

 

 

site run variable r tolerance Part r
2
 (II) 

Part r
2
  

(I)  p R
2
 P 

Duke Standard temperature -0.46 0.98 0.21 0.28 0.008 0.56 0.000 

  
precipitation 0.54 0.98 0.28 0.28 0.002 

  
          
 

canN temperature -0.51 0.96 0.25 0.25 0.000 0.75 0.000 

  
precipitation 0.65 0.89 0.37 0.22 0.000 

  
  

canopy nitrogen 0.57 0.88 0.28 0.28 0.000 
  

          
 

canN Vc temperature -0.54 0.96 0.28 0.28 0.000 0.74 0.000 

  
precipitation 0.64 0.89 0.36 0.22 0.000 

  
  

canopy nitrogen 0.52 0.88 0.23 0.23 0.001 
  

          
 

canN Vc PAR precipitation 0.47 0.88 0.20 0.13 0.002 0.75 0.000 

  
temperature -0.62 0.79 0.31 0.07 0.000 

  
  

canopy nitrogen 0.60 0.77 0.27 0.09 0.000 
  

  
PAR 0.78 0.76 0.46 0.46 0.000 

  
          
 

canN Vc  AR temperature -0.53 0.96 0.27 0.28 0.003 0.59 0.001 

  
precipitation 0.54 0.89 0.25 0.17 0.004 

  
  

canopy nitrogen 0.40 0.88 0.14 0.14 0.023 
  

          ORNL Standard temperature -0.15 0.90 0.02 0.13 0.382 0.50 0.001 

  
precipitation 0.64 0.90 0.37 0.37 0.001 

  
          
 

canN canopy nitrogen 0.12 0.99 0.01 0.03 0.473 0.52 0.004 

  
temperature -0.47 0.90 0.20 0.35 0.014 

  
  

precipitation 0.39 0.89 0.13 0.13 0.039 
  

          
 

canN Vc canopy nitrogen 0.67 0.99 0.45 0.51 0.000 0.84 0.000 

  
temperature -0.44 0.90 0.18 0.27 0.000 

  
  

precipitation 0.25 0.89 0.06 0.06 0.022 
  

          
 

canN Vc PAR temperature -0.14 0.89 0.02 0.06 0.386 0.62 0.002 

  
canopy nitrogen 0.52 0.65 0.18 0.01 0.011 

  
  

precipitation 0.86 0.62 0.46 0.16 0.000 
  

  
PAR 0.92 0.47 0.39 0.39 0.001 

  
          
 

canN Vc xPAR canopy nitrogen 0.29 0.99 0.08 0.11 0.056 0.65 0.000 

  
temperature -0.53 0.90 0.25 0.42 0.002 

  
  

precipitation 0.36 0.89 0.11 0.11 0.026 
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Figure 4-5. JULES simulations of NPP at Duke and Oak Ridge FACE experiments. See Figure 
4-4 for a description of the plots. The results of two configurations of the model are shown: 
the standard JULES release and JULES driven with observed annual canopy nitrogen and 
observed relationship of Vcmax to leaf nitrogen (canN Vc). 

 

Table 4-6.Multivariate linear regressions of JULES NPP on driving variables (annual values). 
SeeTable 4-2 for an explanation of the metrics. 

site run variable r tolerance Part r
2
 (II) 

Part r
2
  

(I)  p R
2
 P 

Duke Standard temperature -0.62 0.98 0.38 0.48 0.000 0.79 0.000 

  
precipitation 0.56 0.98 0.31 0.31 0.000 

  
          
 

canN Vc temperature -0.58 0.96 0.32 0.40 0.000 0.87 0.000 

  
precipitation 0.72 0.89 0.46 0.41 0.000 

  
  

canopy nitrogen 0.24 0.88 0.05 0.05 0.017 
  

          ORNL Standard PAR -0.48 0.72 0.17 0.50 0.009 0.63 0.000 

  
precipitation 0.42 0.72 0.13 0.13 0.019 

  
          
 

canN Vc PAR -0.40 0.72 0.11 0.45 0.025 0.64 0.000 

  
precipitation 0.52 0.72 0.19 0.19 0.005 
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All Models 

The broad range of ecosystem and dynamic vegetation models of the NCEAS inter-comparison 

project simulated NPP at the two FACE sites with a wide range of accuracy (Figure 4-7&Table 

4-7). With the exception of GDAY all models captured, with some degree of significance, the 

inter-annual variability at Duke while five out of the ten models failed to capture any of the 

inter-annual variability at Oak Ridge. The mean R2 at Duke was 0.46±0.23 (1 standard deviation) 

compared with 0.25±0.27 (1 SD) at Oak Ridge. Mean model efficiency was -3.04±4.95 (1 SD) at 

Duke while at Oak Ridge it was -6.77±6.53 (1 SD). 

With the exception of ISAM at Duke, simulated NPP of all models was significantly correlated to 

the models’ driving variables (Table 4-8). Important driving variables differed from model to 

model, but there were similarities, providing a criterion for grouping the models. The most 

strongly correlated variable was often the same at both sites for a particular model. This was 

counter to the observations where inter-annual variability was related to the water-balance 

and disturbance events at Duke (McCarthy et al. 2010) and declining nitrogen availability at Oak 

Ridge (Garten et al. 2011, Iversen et al. 2011). The propensity of the models to be dominated by 

the same process at both sites indicates that the models were not flexible enough to switch 

limiting factors as observed in nature. 

With the exception of DAYCENT, the central core of all the models used in this study is the 

Farqhuar et al. (1980) or Collatz et al. (1991) photosynthesis scheme, up-scaled to the canopy 

(Spitters et al. 1986, Sellers et al. 1992, Haxeltine and Prentice 1996). These models are 

effectively photosynthesis models with abiotic and biotic ecological factors directly acting on 

photosynthetic parameters and influencing allocation of the assimilated carbon to pools of 

various residence times. With strong correlation to PAR and/or canopy nitrogen, GDAY, LPJ-

GUESS, OCN, TECO (at Oak Ridge) and SDGVM (canN, canN Vc, canN Vc PAR) were primarily 

driven by their photosynthesis schemes. OCN showed little variability and the primary driver of 

NPP may be the tightly constrained simulation of nitrogen uptake (see Appendix A for canopy 

nitrogen values across the models). 
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Figure 4-6. The proportional reduction in mean annual NPP (±1 SEM) caused by soil water 
limitation. Means were calculated across simulation years and CO2 treatments. The 
reduction in NPP was calculated by dividing NPP in a soil water limited simulation by NPP 
in a simulation with soil water limitation turned off. 

 

The most important variable for the majority of models was nitrogen uptake, those models 

were: CABLE, CLMCN and ED2.1 at both sites; and DAYCENT, EALCO and TECO at Duke. The 

strong relationship to nitrogen uptake indicates that these models were driven by 

stoichiometric constraints on NPP. For the simulations nitrogen uptake was more important at 

Duke than at Oak Ridge whereas observations suggested that nitrogen limitation was more 

dominant at Oak Ridge. Interestingly, many of the models that were correlated with nitrogen 

uptake displayed reasonable prediction of NPP at Duke, indicating that simulated nitrogen 

uptake must have been driven to some extent by climate. 
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At Oak Ridge, where we expected nitrogen uptake to be the key driving variable, DAYCENT, 

EALCO, SDGVM and ISAM were most correlated to temperature, indicating a strong role for 

respiration in these models. DAYCENT is a growth driven model, not carbon assimilation driven 

model and temperature has a positive effect on growth, however the negative relationship with 

temperature indicates that respiration was more important. Temperature could also have been 

important in the water balance of these models although precipitation was only a correlate of 

NPP in SDGVM and JULES. These models could be considered more climatically driven. 

The decline in NPP at Oak Ridge 

ED2.1 was the only model that was driven by nitrogen uptake (Table 4-8) and that captured 

some of the decline in NPP at Oak Ridge. All of the other models that captured some of the 

inter-annual variability at Oak Ridge—EALCO, ISAM, OCN, SDGVM and JULES—were driven by 

other factors, primarily temperature. 

With the exception of EALCO, GDAY and perhaps OCN all models failed to capture the strong 

decline in NPP observed at Oak Ridge. EALCO captured the decline in NPP at Oak Ridge very 

well however, and as with the SDGVM simulation most consistent with observations (canN), by 

far the strongest correlate with simulated NPP was temperature. 

GDAY and OCN captured a decline in NPP at Oak Ridge but missed most of the inter-annual 

variability. Both models achieved accurate values of NPP in the final years of the experiment, 

indicating that their long-term response may be accurate but that the timing of the decline and 

the plant response to decreased nitrogen availability may be inaccurate. The decline at Oak 

Ridge was extreme and is perhaps unlikely to be seen in nature due to the very high planting 

density (the stand was originally planted as a biomass crop). The exact timing of the decline 

would be very hard to reproduce accurately within the models as it depends on accurate site 

management histories (Zäehle Pers. Comm.) and perhaps un-represented strategies of 

Sweetgum in coping with nitrogen stress like responsive root dynamics(Franklin et al. 2009, 

Iversen 2010). It appears that GDAY and OCN may have captured the more sustainable value of 

NPP at Oak Ridge, although they both under-predicted NPP at Duke and GDAY simulated a 

negative response to CO2 over most of the course of the experiment.  
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Figure 4-7. Simulations of NPP at Duke and Oak Ridge FACE experiment by ten LSMs. See 
Figure 4-4 for a description of the plots. 
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Table 4-7.Model skill statistics of the ten LSMs in simulating NPP at Duke and Oak Ridge. 
See Table 4-3 for further explanation. 

model site r2 p me rmse ef 

CABLE DUKE 0.32 0.004 442 205 -2.27 

 
ORNL 0.02 0.562 517 250 -16.69 

CLMCN DUKE 0.64 0.000 411 210 -2.79 

 
ORNL 0.01 0.613 639 367 -9.65 

DAYCENT DUKE 0.60 0.000 407 202 -0.52 

 
ORNL 0.10 0.157 449 204 -2.50 

EALCO DUKE 0.70 0.000 266 139 0.68 

 
ORNL 0.87 0.000 132 68 0.83 

ED2.1 DUKE 0.44 0.000 593 377 -2.79 

 
ORNL 0.45 0.001 626 428 -14.61 

GDAY DUKE 0.07 0.219 630 270 -9.13 

 
ORNL 0.10 0.178 507 222 -1.98 

ISAM DUKE 0.72 0.000 273 121 0.70 

 
ORNL 0.22 0.029 807 354 -4.76 

JULES DUKE 0.49 0.000 645 215 0.47 

 
ORNL 0.26 0.015 549 280 -0.20 

LPJGUESS DUKE 0.58 0.000 595 194 0.52 

 
ORNL 0.04 0.367 711 306 -1.91 

OCN DUKE 0.40 0.001 705 386 -14.38 

 
ORNL 0.46 0.001 580 288 -14.73 

SDGVM DUKE 0.61 0.000 399 180 0.20 

 
ORNL 0.49 0.000 277 151 0.02 

TECO DUKE 0.16 0.079 636 334 -0.38 

 
ORNL 0.18 0.081 449 211 -1.71 

 

 

 

Table 4-8.Multivariate linear regressions of simulated NPP on driving data of the ten LSMs. 
See Table 4-2 for an explanation of the metrics. 

Model Site variable r tolerance 
Part r

2
 

(II) 
Part r

2
  

(I)  p R
2
 P 

CABLE Duke temperature 0.13 1.00 0.02 0.02 0.002 0.97 0.000 

  
nitrogen uptake 0.98 1.00 0.95 0.95 0.000 

  
 

ORNL temperature -0.19 0.60 0.02 0.19 0.044 0.92 0.000 

  
canopy nitrogen -1.28 0.10 0.16 0.33 0.000 

  
  

nitrogen uptake 2.14 0.09 0.39 0.39 0.000 
            CLMCN Duke nitrogen uptake 0.88 0.91 0.71 0.92 0.000 0.98 0.000 

  
canopy nitrogen 0.25 0.91 0.06 0.06 0.000 

  
 

ORNL canopy nitrogen 0.67 0.88 0.40 0.42 0.000 0.93 0.000 

  
nitrogen uptake 0.63 0.88 0.35 0.48 0.000 

  
  

temperature -0.19 0.80 0.03 0.03 0.013 
            DAYCENT Duke temperature -0.41 0.86 0.15 0.46 0.000 0.89 0.000 

  
nitrogen uptake 0.71 0.86 0.43 0.43 0.000 

  
 

ORNL nitrogen uptake 0.38 0.89 0.13 0.08 0.025 0.64 0.001 

  
temperature -0.59 0.88 0.30 0.34 0.002 

  
  

precipitation -0.39 0.65 0.10 0.01 0.047 
  

  
PAR -0.56 0.65 0.21 0.21 0.006 

            EALCO Duke temperature -0.59 0.80 0.28 0.08 0.000 0.71 0.000 
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nitrogen uptake 0.50 0.79 0.20 0.47 0.001 

  
  

PAR 0.51 0.65 0.17 0.17 0.003 
  

 
ORNL temperature -0.69 0.82 0.39 0.68 0.000 0.84 0.000 

  
canopy nitrogen 0.43 0.80 0.15 0.09 0.001 

  
  

precipitation 0.30 0.70 0.06 0.06 0.022 
            ED2.1 Duke nitrogen uptake 0.97 0.62 0.58 0.75 0.000 0.89 0.000 

  
precipitation -0.29 0.58 0.05 0.02 0.009 

  
  

temperature -0.59 0.33 0.11 0.03 0.000 
  

  
canopy nitrogen -0.52 0.31 0.08 0.08 0.001 

  
 

ORNL precipitation 0.42 0.82 0.15 0.32 0.006 0.73 0.000 

  
canopy nitrogen -0.62 0.75 0.28 0.10 0.000 

  
  

nitrogen uptake 0.69 0.65 0.31 0.31 0.000 
            GDAY Duke canopy nitrogen 0.99 0.93 0.85 0.90 0.000 0.90 0.000 

  
PAR 0.24 0.93 0.05 0.05 0.004 

  
 

ORNL canopy nitrogen na na na na na 0.98 0.000 

          ISAM Duke temperature -0.10 0.98 0.01 0.02 0.627 0.11 0.308 

  
precipitation 0.29 0.98 0.08 0.08 0.174 

  
 

ORNL temperature -0.41 0.88 0.15 0.33 0.026 0.51 0.001 

  
precipitation 0.45 0.88 0.18 0.18 0.016 

            LPJGUESS Duke canopy nitrogen -0.24 0.69 0.04 0.24 0.010 0.91 0.000 

  
temperature -0.63 0.64 0.25 0.11 0.000 

  
  

PAR 0.72 0.61 0.32 0.54 0.000 
  

  
nitrogen uptake 0.23 0.52 0.03 0.03 0.024 

  
 

ORNL PAR 0.95 0.94 0.85 0.70 0.000 0.91 0.000 

  
canopy nitrogen -0.18 0.85 0.03 0.00 0.028 

  
  

temperature -0.51 0.81 0.21 0.21 0.000 
  OCN Duke PAR 0.44 0.75 0.15 0.02 0.015 0.63 0.002 

  
canopy nitrogen 0.31 0.69 0.07 0.39 0.086 

  
  

precipitation -0.33 0.67 0.07 0.00 0.078 
  

  
temperature -0.35 0.49 0.06 0.14 0.107 

  
  

nitrogen uptake 0.42 0.44 0.08 0.08 0.065 
  

 
ORNL temperature 0.38 0.95 0.14 0.04 0.012 0.66 0.000 

  
PAR -0.81 0.95 0.62 0.62 0.000 

            TECO Duke canopy nitrogen 0.37 0.91 0.13 0.35 0.003 0.83 0.000 

  
nitrogen uptake 0.72 0.91 0.47 0.47 0.000 

  
 

ORNL precipitation 0.29 0.75 0.06 0.42 0.051 0.79 0.000 

  
canopy nitrogen 0.71 0.75 0.37 0.37 0.000 
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NPP Response 

The proportional response of NPP to elevated CO2 (elevated NPP divided by ambient NPP) at 

Oak Ridge was lower and showed wider variability than at Duke. The magnitude of the 

response declined over the years of the experiment at Oak Ridge while there was no trend over 

the years at Duke (Figure 4-2). The models exhibited a very wide range of responses compared 

to the observations (Figure 4-8).  

At both sites, and as with all configurations of the model, SDGVM captured the mean response 

in NPP to elevated CO2. JULES over-predicted the NPP response to CO2and driving JULES with 

observed canopy nitrogen further increased the simulated response to CO2.As with SDGVM, 

JULES was unable to capture any of the inter-annual variability in the response to CO2. 

ED2.1 over-predicted the response at Oak Ridge, while many of the models under-predicted the 

response. CABLE and CLMCN showed practically no response at Oak Ridge. TECO and GDAY 

predicted a significant number of negative responses and CABLE, CLMCN and GDAY were so 

strongly dominated by nitrogen uptake or canopy nitrogen that there was virtually no response 

to elevated CO2 at Oak Ridge and a lower than observed response at Duke. 

Figure 4-8. Range of annual NPP responses observed at each site and for each model. No 
response is shown by the dotted line and the median observed response for each site is 
shown by the grey lines. The SDGVM and JULES simulations presented are the canN Vc 
xPAR and canN Vc respectively. 
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Few of the models could simulate the inter-annual variability in the relative response (Table 

4-9). GDAY, EALCO, JULES, DAYCENT, ISAM and CASA captured some of the inter-annual 

variability in the absolute response at Duke. Only LPJ approached capturing (R2 = 0.32, P = 

0.068) any of the inter-annual variability in the absolute response at Oak Ridge. Given the 

difficulty in simulating NPP in absolute terms, poorly simulated responses were to be expected. 

Of those models which did capture some of the inter-annual variability in response, half were 

unable to capture the absolute values of NPP indicating that perhaps the drivers of NPP were 

different to the drivers of the models’ response. Of the models that captured some of the inter-

annual variability in the response, only EALCO, ISAM and JULES simulated the absolute values of 

NPP with any accuracy, all at Duke. The models which captured the NPP response and absolute 

values of NPP were all correlated to different driving variables (Table 4-8). 

 

Table 4-9. Model skill statistics in reproducing the proportional response of NPP to 
elevated CO2. SDGVM and JULES results are for the canN Vc xPAR and the canN Vc runs 
respectively. 

  
relative 

 
absolute 

model site R
2
 P 

 
R

2
 P 

CABLE DUKE 0.55 0.005 
 

0.43 0.021 

 
ORNL 0.01 0.836 

 
0.00 0.927 

CLMCN DUKE 0.00 0.904 
 

0.00 0.872 

 
ORNL 0.08 0.397 

 
0.20 0.168 

DAYCENT DUKE 0.21 0.136 
 

0.53 0.007 

 
ORNL 0.08 0.406 

 
0.25 0.114 

EALCO DUKE 0.68 0.001 
 

0.76 0.000 

 
ORNL 0.03 0.662 

 
0.05 0.546 

ED2.1 DUKE 0.27 0.083 
 

0.06 0.456 

 
ORNL 0.09 0.363 

 
0.02 0.686 

GDAY DUKE 0.24 0.124 
 

0.77 0.000 

 
ORNL 0.01 0.753 

 
0.00 0.875 

ISAM DUKE 0.39 0.030 
 

0.51 0.009 

 
ORNL 0.05 0.514 

 
0.01 0.732 

JULES DUKE 0.10 0.328 
 

0.57 0.005 

 
ORNL 0.07 0.419 

 
0.00 0.955 

LPJ-GUESS DUKE 0.00 0.906 
 

0.34 0.045 

 
ORNL 0.19 0.180 

 
0.32 0.068 

OCN DUKE 0.10 0.312 
 

0.03 0.607 

 
ORNL 0.07 0.418 

 
0.09 0.366 

SDGVM DUKE 0.04 0.548 
 

0.18 0.166 

 
ORNL 0.00 0.964 

 
0.02 0.647 

TECO DUKE 0.08 0.434 
 

0.00 0.921 

 
ORNL 0.04 0.592 

 
0.03 0.671 
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Figure 4-9. The response of NPP (elevated divided by ambient values) in relation to the 
response of soil water limitation. Where significant (P<0.05), linear regression lines are 
plotted. Soil water limitation values are based on the reduction of NPP from an unlimited 
state caused by soil water limitation (as shown in Figure 4-6). As such elevated divided by 
ambient values over 1 represent a release from, not an increase in, soil water limitation 
under elevated CO2. 

Figure 4-10.The response of NPP in relation to the response of canopy nitrogen. Where 
significant (P<0.05), linear regression lines are plotted. 
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Drivers of the CO2 response in JULES and SDGVM 

For SDGVM and JULES there were two drivers of the simulated NPP response—the response of 

soil water limitation and the response of canopy nitrogen. The response of NPP to elevated CO2 

in JULES and SDGVM was positively correlated to the response of soil water limitation to 

elevated CO2 (Figure 4-9). In general, NPP was released from soil water limitation by elevated 

CO2 and the proportional release from soil water limitation was positively correlated to the NPP 

response. The correlation was significant for all JULES simulations other than canN Vc at Duke, 

while the correlation was only significant for the standard SDGVM simulation at Oak Ridge. For 

those simulations where the NPP response was not correlated to the soil water limitation 

response, the NPP response was correlated with the canopy nitrogen response (Figure 4-10). 

Drivers of the response were effectively the same as drivers of NPP, but it was the response of 

these drivers to elevated CO2 that was crucial. 

JULES NPP was strongly affected by soil water which translated through a release of soil water 

limitation by elevated CO2 and the magnitude of this release was directly correlated with the 

magnitude of the NPP response. For SDGVM, where soil water limitation was much weaker, the 

NPP response was only related to the release from soil water limitation at Oak Ridge in the 

standard run. The NPP response of SDGVM was more determined by the response of canopy 

nitrogen. 

Differences between the two models were down to structural differences in model process 

representation. JULES was only affected by the canopy nitrogen response at Duke when driven 

with observed canopy nitrogen as this was the only simulation in which canopy nitrogen was 

different between the two treatments. TRIFFID was turned off in JULES and therefore LAI was a 

constant for the needle-leaf PFT and a function of temperature for the broadleaf PFT (Best et al. 

2011). In contrast, SDGVM calculates LAI to optimise carbon assimilation (Woodward et al. 

1995). Elevated CO2 increased assimilation in the lower canopy while respiration was left 

unchanged, leading to higher LAI under elevated CO2 and a consequent impact on NPP. 
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Discussion 

As discussed in the methods, root exudates, plant-derived mycorrhizal carbon and changes in 

the labile and stored carbon pool were not measured at the FACE sites. Therefore observed 

NPP was more a measurement of growth. The observed values of NPP are GPP minus 

autotrophic respiration, minus root exudates, minus changes in stored carbon etc (McCarthy et 

al. 2007, Iversen et al. 2011),while the model calculations of NPP are the difference between 

GPP and autotrophic respiration. Therefore, observed NPP and modelled NPP were not 

expected to be exact. Notably, modelled NPP ought to have been higher than measured NPP, 

however there was no general over-prediction of NPP by the 12 models.  

NPP at Oak Ridge was driven mainly by (declining) nitrogen availability (Garten et al. 2011, 

Iversen et al. 2011) as a result of progressive nitrogen limitation (PNL) caused by stand 

development (Gill et al. 2006). PNL occurs as progressively more ecosystem nitrogen is 

immobilised in woody plant biomass reducing the amount of mobile nitrogen available for new 

plant growth and leading to a progressive reduction in NPP (Gill et al. 2006). As described in 

Norby et al. (2010)  we found that the major correlate of NPP was canopy nitrogen. We also 

found that temperature was negatively correlated to NPP, albeit less strongly, indicating a role 

of the water balance, or respiration, in NPP. 

While SDGVM and JULES in their standard versions were sensitive to the important drivers of 

the inter-annual variability at Duke, both under-estimated NPP for these warm temperate sites 

in the south eastern US. The other LSMs demonstrated a wide range of NPP simulation 

accuracy (Figure 4-7&Table 4-7) and differential sensitivity to driving variables (Table 4-8) as we 

would expect from the widely ranging predictions of future atmospheric and land surface 

change (Cramer et al. 2001, Friedlingstein et al. 2006, Blyth et al. 2011). 

It was encouraging that under the conditions in which we would expect SDGVM and JULES to 

perform (i.e. the non-stoichiometrically nitrogen limited system at Duke), with several 

additional driving variables, observed photosynthetic parameters and no arbitrary tuning, NPP 

was simulated with a good level of accuracy. At Duke, where NPP was driven primarily by 

climate, SDGVM, JULES and many of the other models simulated the inter-annual variability in 

NPP with a reasonable degree of accuracy. At Oak Ridge this did not appear to be the case, and 

most models tended to poorly simulate NPP at Oak Ridge. 
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SDGVM & JULES development 

At both sites, marked improvements were made to the simulation of NPP by SDGVM with the 

inclusion of extra, site-specific driving variables and parameters to the model (Figure 4-4 & 

Table 4-3). Canopy nitrogen was under-predicted by SDGVM and, with the default parameter 

set, was limited to an unrealistically narrow range. Using measured canopy nitrogen improved 

the simulation of NPP and the correlation with canopy nitrogen showed that nitrogen was 

clearly an important determinant of NPP. Leaf nitrogen was an important parameter for 

simulating carbon assimilation as most models simulate the Farqhuar et al. (1980) or Collatz et 

al. (1991) model parameter Vcmax (and consequently Jmax in the Farquhar model) as a linear 

function of leaf nitrogen (Evans 1989). The linear function is not always explicitly declared in 

modelling papers, often does not vary by PFT and has perhaps been used as a model tuning 

parameter (Bonan et al. 2011b). Kattge et al. (2009) have shown that the linear function of 

Vcmax and nitrogen varies by biome and Bonan et al. (2011b) have demonstrated the high 

sensitivity of global carbon cycle simulations with CLM4 to the Vcmax parameter. 

The results here demonstrate the sensitivity of carbon dynamics to the Vcmax and Jmax 

parameters and their relationship to leaf nitrogen. Using observed values of nitrogen and 

relationships to Vcmax strongly increased NPP at Oak Ridge with a mean error of 435 gC m-2yr-1 

(49%) above the observations. Similar increases were obtained by Bonan et al. (2011b) in a 

global study, using more realistic values of Vcmax in CLM4, simulated GPP was 40% higher than 

FLUXNET observations. Bonan et al. (2011b) determined that low Vcmax values, when compared 

with those from Kattge et al. (2009), were compensating for canopy scaling of light that over-

predicted carbon assimilation (Bonan et al. 2011a). 

PAR at the FACE sites was over-predicted by SDGVM, possibly as a result of the simple cloud 

cover parameterisation employed by SDGVM. At Duke, the addition of PAR as a driving variable 

significantly reduced NPP, improving SDGVM’s performance. At Oak Ridge mean values of NPP 

were very much improved. However, all skill was lost due to a strong model response to the 

inter-annual variability in PAR, probably due to the higher variance in PAR at Oak Ridge. In the 

standard version of SDGVM, low parameterisation of Vcmax was compensating the over-

prediction of PAR at these sites, highlighting model biases and compensating factors that are 

inherent in every model. Uncovering these errors and compensations is necessary for model 

development and should help to make models more realistic in their simulations.  
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To improve the simulation accuracy of absolute values and inter-annual variability of NPP, 

simulation of canopy nitrogen needs to be more accurate. Simulation of canopy nitrogen in 

SDGVM could be improved using either a process based approach as has been done by a 

number of groups (Thornton et al. 2007, Wang et al. 2007a, Migliavacca et al. 2011) or an 

empirical approach using global regressions of leaf nitrogen against climatic and edaphic 

variables such as those determined by Reich et al. (2007) and Ordonez et al. (2009). 

The way that clouds interact with solar radiation is complex and is influenced by the type of 

cloud, the elevation of the cloud and the sun, and the density and water droplet size within the 

cloud (Kazantzidis et al. 2011) which makes the simulation of the effect of cloud on radiation 

from simply cloud cover data difficult. Instead of attempting the simulation of the interaction of 

cloud with radiation, SDGVM could be driven directly with fields of PAR taken from an observed 

dataset, such asNew et al. (1999), and this is developed in a later chapter. Correct 

parameterisation of Vcmax and its relationship to nitrogen (and other leaf traits) will be a key 

improvement to SDGVM and later chapters investigate this further.  

Driving JULES with observed canopy nitrogen increased values of NPP closer to observed values 

of NPP at Duke. But in contrast to SDGVM, driving JULES with observed canopy nitrogen (and 

observed photosynthetic parameter relationships to nitrogen) had little effect on the inter-

annual variability in NPP at both FACE sites. The effect of declining canopy nitrogen was masked 

by the strong effect of soil water limitation (as discussed below) suggesting that perhaps high 

soil water limitation was compensating for overly high potential carbon assimilation in JULES, as 

highlighted by the extremely high value of NPP in 2003 when soil water limitation was very low. 

The switch in NPP sensitivity of SDGVM from precipitation to temperature in the standard to 

the canN run at Oak Ridge shows that model projections in response to climate change could 

be very different given the photosynthetic parameterisation of that model.   

The decline in NPP at Oak Ridge 

The poorer performance of SDGVM and JULES at Oak Ridge indicated that under certain 

circumstances growth at Oak Ridge was not limited by carbon assimilation (Körner 2009, Muller 

et al. 2011). At Oak ridge both the absolute NPP and the NPP response to elevated CO2 declined 

over the years of the experiment. Using leaf litter 15N as an indicator of soil nitrogen availability 

(Garten et al. 2011) show that the decline in absolute values of NPP and the response was likely 

to have been a result of progressive nitrogen limitation (PNL) caused by stand development 
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(Johnson 2006), which was accelerated by CO2 enrichment (Luo et al. 2006b). PNL occurs as 

progressively more ecosystem nitrogen is immobilised in woody plant biomass reducing the 

amount of mobile nitrogen available for new plant growth and leading to a progressive 

reduction in NPP (Johnson 2006). 

Of the models that were capable of simulating nitrogen limitation, NPP was again poorly 

simulated at Oak Ridge. Given that Duke and Oak Ridge shared very similar climates, neither of 

the major differences in simulations between Duke and Oak Ridge—Plant Functional Type and 

soil depth—were expected to so strongly affect the simulation of NPP that there could be such 

a difference in accuracy between the two sites. The poor representation of the inter-annual 

variability by almost all of the models at Oak Ridge yet accurate prediction at Duke suggests 

that the difference in simulation accuracy between the two sites was likely a result of missing, 

or poorly representing, nitrogen supply to the plant. 

Reduced nitrogen limits growth in two ways; one, there is less nitrogen available to 

stoichiometrically balance carbon fixed by photosynthesis hence there are not the resources 

available to construct the amino acid components of new tissue (Elser et al. 2007) and; two, as 

a consequence, leaf nitrogen is reduced leading to lower photosynthetic capacity and hence 

lower CO2 assimilation (optimisation theory suggests that nitrogen should be freed from the 

biochemical photosynthetic machinery in order to balance nitrogen limitation with carbon 

limitation) although there are likely to be physiological constraints on full optimisation (Lloyd et 

al. 2010).  

Neither SDGVM nor JULES simulate a full, mass-balanced nitrogen cycle and therefore could not 

reproduce the decline in NPP at Oak Ridge caused by progressive nitrogen limitation. Many of 

the other models do have, in one form or another, a process based approach to the nitrogen 

cycle, yet the other LSMs produced varying predictions of NPP and canopy nitrogen and few of 

them simulated a decline at Oak Ridge. 

Of the models that did simulate a decline in NPP, NPP was not necessarily correlated with 

nitrogen. Temperature was the major correlate for EALCO and SDGVM where a slight decline 

was simulated. Many of the other models showed a strong correlation of NPP to canopy 

nitrogen or nitrogen uptake. However, many of these models also lacked any skill in matching 

the observed NPP, indicating that although many of the models were strongly sensitive to 



119 
 

nitrogen, the simulation of the nitrogen cycle and its interaction with the carbon cycle were 

inaccurate. However, capturing the exact timing of the decline would require exact prediction 

of the dynamics of plant available nitrogen (PAN) which is partly dependent on accurate site 

history representation. In a modelling study and using an empirically derived estimate of PAN, 

Franklin (2007) showed that much of the variability in NPP at both Oak Ridge and Duke could be 

explained by variability in PAN and the different allocation strategies and parameters, 

particularly root lifespan, of the different species at the two sites. The models which captured 

NPP in the later few years of the experiment—OCN, GDAY and CABLE—also captured the 

response of NPP in the later years and perhaps give an accurate representation of a stable 

equilibrium between the carbon and nitrogen cycle.  

The scale and cost of the FACE experiments meant that only one factor was tested—CO2—and 

its interaction with temperature was not tested. However, the radiative forcing of CO2 in the 

atmosphere makes rising atmospheric CO2 a causal agent of rising surface temperatures (Allen 

et al. 2009). The FACE experiments can tell us little about the interaction of CO2 with 

temperature although the negative correlation of NPP with temperature at both sites indicates 

that increasing temperature is likely to reduce the stimulation of NPP by rising CO2. However, 

consistently warmer temperatures are likely to lead to higher rates of nitrogen mineralisation 

from organic matter in the soil (Beier et al. 2008) which could have compensated some of the 

nitrogen limitation at Oak Ridge, softening the observed decline. 

In systems that are nitrogen limited such as the Oak Ridge FACE experiment, over the longer 

term, ecological processes may also lead to increased nitrogen availability. Nitrogen fixers 

would be expected to have a competitive advantage leading to their establishment in the 

community. Indeed, the nitrogen fixer Elaeagnus umbellata (Thunb.) has been shown to be 

increasing in numbers in the Oak Ridge under-storey (Souza et al. 2010) although these did not 

have a significant impact on the NPP of the system by the end of the experiment. The under-

storey development at Oak Ridge and temperature related increases in nitrogen mineralisation 

highlight the timescale mismatch between models and even relatively long-term experiments.  

For SDGVM, the closest representation of the decline at Oak Ridge was when driven with 

observed canopy nitrogen. This was not surprising considering that NPP at Oak Ridge was 

strongly correlated with canopy nitrogen (Table 4-2).However, SDGVM did not capture the full 

extent of the decline. Canopy nitrogen drives gross carbon assimilation—the driver of growth in 



120 
 

the model—while at the site it is thought that growth was limited stoichiometrically, causing 

both the decline in NPP and reduced canopy nitrogen (Norby et al. 2010). NPP and canopy 

nitrogen were well correlated but the reduced NPP by photosynthetic nitrogen limitation was 

likely to be the secondary, not the primary cause as suggested by SDGVM.  

Abramowitz et al. (2008) describe a good method for generating a benchmark to assess model 

output. The benchmark is a neural-network based, best-prediction of a state variable using the 

information contained in the driving variables. However, if we used this benchmarking method 

on these FACE sites we would assume that models should be better able to simulate Oak Ridge 

than Duke, due to the stronger correlation of NPP to driving variables at Oak Ridge. In fact the 

opposite is the case due to the state variable (NPP) being strongly correlated with a driving 

variable (canopy nitrogen) but not strongly causally related. The strong correlation arises due to 

the correlation of both variables with the causal driving variable (nitrogen availability). To 

benchmark our models considering only canopy nitrogen as a driving variable and not nitrogen 

availability would make little sense at Oak Ridge and may lead to inaccurate conclusions. 

Sensitivity of NPP to soil water 

Annual precipitation was a consistently significant correlate with NPP in the JULES simulations 

(Table 4-4). To test the impact of soil water stress on NPP, SDGVM and JULES simulations were 

run with β always set at 1 (i.e. no soil water stress). The release from soil water limitation in 

JULES strongly increased NPP and reduced the amount of inter-annual variability across all 

simulations and at both sites. Regression analysis of the no β runs showed that precipitation 

was no longer a significant correlate of NPP (results not shown). The β factor explains the 

sensitivity of JULES to precipitation with soil water limitation being the main driver of inter-

annual variability. The strong correlation of JULES and observed NPP at Duke (standard & 

canN), indicates that annual NPP at Duke was sensitive to soil water status. The correlation of 

observed NPP at Duke to temperature indicates that it was vapour pressure deficit (VPD) that 

was the bigger driver of soil water status, while both temperature and precipitation were 

important for JULES. 

Duke was simulated with a shallower soil than Oak Ridge (0.75m as opposed to 2m), and given 

the very similar temperature climates at the two sites, the temperature correlation at Duke but 

not Oak Ridge indicated that it was temperature’s role in the water balance, and not 

respiration, that was key for JULES.  However, temperature was still a major correlate of NPP 
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when the β stress multiplier was removed, indicating that temperature was impacting NPP 

other than through the water balance—most likely via respiration. 

The strong correlation of JULES NPP with precipitation in these simulations and only limited 

correlation with temperature contrasts with the results of Cadule et al. (2010) which showed 

that NPP simulated by HADCM3 (of which MOSES/TRIFFID i.e. JULESv1.0 is the LSM) in the 

South and South Eastern US correlated strongly with temperature during El Niño and La Niña 

events. This was likely due to the sensitivity of JULESv1.0 to temperature due to the Q10 

relationship used to describe canopy ‘dark’ respiration as a function of temperature (Mercado 

et al. 2007), (Huntingford et al. Submitted). The Q10 relationship makes ‘dark’ respiration 

increase exponentially in response to temperature as opposed to JULESv2.1.2 (canopy radiation 

model 4—as used in these experiments) which simulates canopy ‘dark’ respiration as a function 

of Vcmax (i.e. has a temperature maximum and not exponentially increasing with temperature) 

and suppresses ‘dark’ respiration over 10 µmol m-2s-1 PAR (Mercado et al. 2007). 

The strong sensitivity of JULES to inter-annual variability in precipitation has implications for the 

prediction of Cox et al. (2000) andHuntingford et al. (2008) that the Amazon will die-back under 

realistic climate change scenarios. Given the sensitivity to precipitation of JULESv2.1.2, 

predicted Amazon dieback using JULESv1.0 (MOSES/TRIFFID) could have been extreme 

although predicted die-back has been shown to be far smaller when modelling respiration as a 

function of Vcmax (and therefore has a temperature optimum) rather than using an exponential 

Q10 style relationship (Huntingford et al. Submitted). Due to the precipitation sensitivity of 

JULESv2.1.2 there is a need to address the uncertainty and validate the strength of soil water 

limitation in models.  

The discrepancy between SDGVM and JULES of the strength of soil water limitation indicates 

that there is a large difference between the photosynthesis and respiration schemes of the 

models which is then balanced by the different magnitudes of soil water limitation. Either 

SDGVM was under-predicting potential carbon available for growth or JULES was over-

predicting. It is likely that the explanation is somewhere in between. There was evidence to 

suggest that JULES soil water limitation was too high. Model skill of the canN Vc run at Duke 

was improved by the removal of 2003 because there was practically no soil water limitation in 

2003 allowing the very high NPP set by the canopy photosynthesis and respiration scheme. 

Canopy nitrogen was expected to decrease NPP in the later years of the simulation at Oak Ridge 
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however NPP in JULES was not correlated with canopy nitrogen, only precipitation, again 

indicating that soil water limitation may have been overly strong. With realistic values of 

canopy nitrogen (and therefore Vcmax) it appears that JULES over-predicted carbon available for 

growth and that this was compensated by over-sensitivity to soil water stress. In contrast, 

Mercado et al. (2007) found that in non-water stressed simulations of the Amazon carbon 

assimilation was under-predicted when compared to observations. They ascribed this to 

reduction of respiration in the light, which was modelled in these FACE simulations and could 

have accounted for the over-prediction of carbon available for growth. To obtain Vcmax Mercado 

et al. (2007) used observations of leaf nitrogen concentration and observed relationships of 

area based Vcmaxto leaf nitrogen concentration in similar, local forest which could have been 

confounded by differences in SLA between the two forests. 

NPP Response 

McCarthy et al. (2010) showed that the main driver of the response, and NPP in general, 

observed at Duke was an index of nitrogen availability although the response to CO2 was 

associated with increased access to soil nitrogen under elevated CO2 (Drake et al. 2011). The 

absolute response, and NPP in general, was further modified by soil water status (measured as 

precipitation minus potential evapo-transpiration), although the relative response was little 

affected by soil water. Soil water status was unaffected by CO2 although the reasons for this 

were unclear (Schafer et al. 2002). There was evidence at Duke for increased soil nitrogen 

mobilisation under elevated CO2 (Drake et al. 2011) which maintained the NPP response to CO2. 

Unlike at Duke, Garten et al. (2011) showed the declining NPP and response to CO2 at Oak 

Ridge to be related to declining soil nitrogen availability as indicated by leaf δ15N 

concentrations. Garten et al. (2011) showed that the declining soil nitrogen status was 

accelerated by high CO2. Both these studies showed that the NPP response was directly related 

to drivers of NPP in general. At Oak Ridge the response of the drivers was important, while at 

Duke it was the overall values of these drivers that determined the response (i.e. CO2 did not 

affect these drivers). 

For SDGVM and JULES the modelled responses of NPP to elevated CO2 were driven by the 

response of the main drivers of NPP, i.e. canopy nitrogen/LAI and soil water respectively. The 

evidence from Oak Ridge supported this sensitivity of NPP response to driver response, while 

the evidence from Duke was a little more complex showing that the overall magnitude of the 
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NPP response was governed by soil nitrogen status (McCarthy et al. 2010) and that the NPP 

response was maintained over the course of the experiment by increased mobilisation of 

nitrogen under elevated CO2. Results from the simulation showed that soil water was the key 

driver of the NPP response in JULES, while the SDGVM response was mostly driven by increased 

LAI and canopy nitrogen. Results from the experiments suggest that soil nitrogen was the most 

important driver of the NPP response.  

Neither SDGVM nor JULES simulate stoichiometric nitrogen limitation and their inability to 

capture the decline at Oak Ridge suggests that a mass balanced nitrogen cycle is necessary. 

JULES’s general over-prediction of the NPP response suggests that the absence of a Jmax term in 

the Collatz et al. (1991) formulation may over-estimate CO2 responses. A number of models 

captured low values of NPP and the NPP response in the final years at Oak Ridge, however they 

also under-predicted the response at Duke. Many of the other models with stoichiometric 

nitrogen limitation could not capture the response at either site. Stoichiometric nitrogen 

limitation can only be represented using a full process-based nitrogen cycling model to predict 

plant available nitrogen—a model that is very hard to validate due to no available method for 

measuring plant available nitrogen, independent of plant growth. The processes which govern 

nitrogen availability are complex and have been shown to differ across both of these FACE sites 

with the associated mechanisms behind the differences still under investigation (Iversen 2010, 

Drake et al. 2011, Iversen et al. 2011). Stoichiometric growth limitation has been shown to be a 

major limitation to potential terrestrial carbon uptake over the 21st century (Hungate et al. 

2003) and the results of this study suggest that more work needs to be done before we can 

accurately predict the interaction of the carbon and nitrogen cycles. Specifically, the 

mechanisms governing mineralisation of soil nitrogen and strategies that plants use to 

influence mineralisation need to be formalised into mathematical functions and algorithms 

suitable for use in computer models. 

Conclusions 

Simulations of NPP in both JULES and SDGVM were improved by calibrating them with 

observed values of canopy nitrogen and the Vcmax to leaf nitrogen relationships (although 

SDGVM also required accurate values of PAR to achieve improved simulations of NPP). 

Furthermore, the process of adding canopy nitrogen, the Vcmax relationship to leaf nitrogen, 

PAR and running simulations without soil water limitation, demonstrated biases and 
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compensation of these biases in SDGVM and JULES. At the FACE sites, the default, low values of 

canopy nitrogen and Vcmax in SDGVM compensated over-prediction of PAR. While, JULES 

appeared to over-predict potential carbon assimilation (with correct Vcmax values), perhaps 

compensating this by having strong soil water limitation. Investigation of these biases and 

compensating factors is key to model process development and validation of these 

compensating factors, like the strength of soil water limitation in terrestrial ecosystems, 

presents a significant challenge calling for collaboration between modellers and 

experimentalists. 

Most models reproduced, with some degree of accuracy, NPP at the two FACE sites. However, 

there was a consistent difference across models in the simulation accuracy of NPP at the Oak 

Ridge and Duke FACE experiments. The poorer accuracy of the models at Oak Ridge was to be 

expected due to the progressive nitrogen limitation at that site (Garten et al. 2011) highlighting 

the difficulties in simulating plant available nitrogen. The need to accurately represent nitrogen 

dynamics is still a priority for terrestrial carbon cycle modelling and depends on site history and 

plant allocation strategies as well as soil nitrogen dynamics. 

Models were consistently better at reproducing the absolute values of NPP, under both 

elevated and ambient CO2, than the response to elevated CO2 (i.e. the absolute or proportional 

difference in NPP under ambient and elevated CO2). In this Chapter, the large range of 

predicted NPP responses to elevated CO2 across 12 models (most with a nitrogen cycle), 

suggests that the next generation of LSMs is unlikely to reduce the range of predicted future 

atmospheric CO2 seen in previous studies using models with a limited, or no, nitrogen cycle 

(Cramer et al. 2001, Friedlingstein et al. 2006, Sitch et al. 2008, Huntingford et al. 2009).  

However, we can have confidence in the fact that some models reproduced the average and 

range of responses and to increase confidence in future predictions, benchmarking methods to 

assess model performance should be used to give more weight to predictions from ‘better’ 

models. The responses to elevated CO2 at the FACE experiments provide unique data, suitable 

for benchmarking models as part of a wider benchmarking framework. 
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Chapter 5 A global meta-analysis of the photosynthetic traits Vcmax and Jmaxin 

relation to leaf traits nitrogen, phosphorus and SLA. 

Introduction 

Terrestrial photosynthesis is the proximal driver of the global carbon cycle over sub-daily to 

seasonal timescales (Canadell et al. 2007, Cadule et al. 2010) and is the core process of 

terrestrial carbon cycle models. The Farquhar et al. (1980) model of integrated photosynthetic 

processes is used in the majority of global carbon cycle models or Dynamic Global Vegetation 

Models (DGVMs – the acronym will be used below to refer to both global carbon cycle models 

with fixed and dynamic vegetation) with some models such as JULES (Clark et al. 2011) and 

CLM(Oleson et al. 2010) using the adaptation of the Farquhar model by Collatz et al. (1991). In 

the Farquhar model the rate of photosynthesis at the scale of a leaf is primarily determined by 

two physiological parameters and two environmental variables: the maximum rate of 

carboxylation by RuBisCO (Vcmax); the maximum rate of electron transport (Jmax); the 

concentration of CO2inter-cellular air space of the leaf (Ci) and the fraction absorbed of incident 

photosynthetically active radiation (fAPAR) (Farquhar et al. 1980). The Collatz et al. (1991) 

formulation does not include the Jmax term. Both models have a third physiological variable 

which limits carbon assimilation rate at high Ci and fAPAR levels. 

DGVMs are highly sensitive to the parameterisations of Vcmax and to a lesser extent Jmax 

(Chapter 4, Bonan et al. 2011b) yet their parameterisation in individual models varies widely 

suggesting that they may have been used as tuning parameters for the models (Chapter 4, 

Bonan et al. 2011b). The new generation of models now include a full nitrogen cycle (Calvin 

1989, Oleson et al. 2010, Zaehle and Friend 2010) and in some cases a phosphorus cycle (Wang 

et al. 2007b) so it will be important to apply realistic scaling relationships of photosynthetic 

parameters with leaf nutrient concentrations to these models.  

Many studies have shown the relationship of maximum photosynthetic rates (Amax) and 

photosynthetic parameters to leaf traits (Wullschleger 1993, Niinemets 1999, Wright et al. 

2004, Reich et al. 2007, Kattge et al. 2009, Reich et al. 2009). Vcmax in a leaf is determined by the 

active amount of the protein RuBisCO (Farquhar et al. 1980). As RuBisCO is such a large 

proportion of leaf protein the response of Vcmax to leaf nitrogen has been well researched and 

documented(Wullschleger 1993, Kattge et al. 2009). In a comprehensive study, Field and 
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Mooney (1984) showed the relationship of photosynthesis to leaf nitrogen in wild plants. 

Perhaps the focus on leaf nitrogen in relation to photosynthesis has also been due to the 

research bias in northern latitudes and the acknowledgement of nitrogen as the major limiting 

nutrient in northern ecosystems. Traditionally Jmax has been related to Vcmax on the basis that 

optimisation of resources allocated to photosynthesis would closely maintain the ratio of these 

two parameters (Wullschleger 1993). Many studies have been conducted measuring Vcmax and 

Jmax in individual species (Wullschleger 1993, Beerling and Quick 1995), in different 

environments (Kattge et al. 2009, Reich et al. 2009), and synthesised at higher 

taxonomical/functional scales (Kattge et al. 2009).  

Phosphorus is also a significant limiting factor in many biomes across the globe (Elser et al. 

2007, Reich et al. 2009, Quesada et al. 2011) and while leaf nitrogen slowly increases with 

latitude, phosphorus strongly increases with latitude driving a broad scale change in leaf N:P 

ratios (McGroddy et al. 2004, Reich and Oleksyn 2004). McGroddy et al. (2004) showed that in 

general terrestrial forest leaf phosphorus and leaf nitrogen scaled isometrically with carbon and 

with each other but that in some cases nitrogen and phosphorus increased in proportion to 

carbon at higher rates of primary production. In a broader study, Reich et al. (2010) showed 

that relationships of nitrogen to phosphorus follow a 2/3 scaling law across biomes and 

functional types. Phosphorus was shown to scale at a greater rate than nitrogen to growth rate 

proxies such as Specific Leaf Area (SLA – the ratio of leaf area to leaf mass) and Amax. They 

proposed that this relationship is driven by area to volume scaling and the coupling of nitrogen 

to leaf area while phosphorus is coupled to leaf mass(Reich et al. 2010).  

Research has begun to investigate the effect of leaf phosphorus on the two photosynthetic 

parameters. Phosphorus is the limiting nutrient across much of the tropics (Reich and Oleksyn 

2004, Wang et al. 2007a, Quesada et al. 2010, Quesada et al. 2011) and has roles in 

photosynthesis as a major component of Ribulose 1,5 Bisphosphate (RuBP), the sugar with 

which CO2 is compounded in the PCR cycle, and Adenosine Triose-Phosphate (ATP) necessary 

for transferring the energy captured from electron transport to the PCR cycle. Phosphorus also 

plays a role in more general cell metabolism, such as membrane function, which could also 

influence the rate of photosynthesis.  

Reich et al. (2009) showed that Amax (maximum photosynthetic rates) became increasingly 

sensitive to nitrogen at increasing levels of leaf phosphorus. Phosphorus was shown to be the 
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only nutrient of significance in a regression model with Vcmax while nitrogen was found to be the 

only nutrient of significance in a regression model with Jmax in tropical species of West Africa 

(Meir et al. 2007). In a factorial N and P addition to Pinus radiata (D. Don) experiment, Bown et 

al. (2007) introduced a regression framework based on the concept that photosynthetic 

parameters were limited by either N or P, dependent upon the leaf tissue being above or below 

a critical N:P ratio. They calculated the critical ratio to be 23 on a molar basis (a ratio of 10.4 on 

a mass basis), showing that at higher ratios P was a better correlate with photosynthetic 

parameters. In a conceptually similar analysis considering either N or P to be the sole limiting 

nutrient, Domingues et al. (2010) demonstrated that leaf phosphorus and SLA, along with leaf 

nitrogen, were important predictors of Vcmax and Jmax in seasonally dry forests of West Africa. 

They calculated a critical N:P ratio that varied between 13 and 20 on a mass basis depending 

chiefly on SLA. These results point at the need to simulate Vcmax and Jmax dynamically in 

response to leaf nitrogen, leaf phosphorus and SLA. No similar studies have been conducted for 

temperate biomes although N:P and Amax have been investigated by a number of authors 

(Wright et al. 2001, Reich et al. 2009).  

SLA (and its inverse Leaf Mass Area – LMA) is related to leaf nitrogen and phosphorus but more 

strongly on a mass basis (Niinemets 1999, Wright et al. 2004, Reich et al. 2007,Ordonez et al. 

2009). In a meta-analysis of 597 species, Niinemets (1999) demonstrated a strong relationship 

between LMA, leaf nitrogen and light-saturated carbon assimilation rates (Amax) on both mass 

and area based measurements. While in an analysis of the GLOPNET database, Wright et al. 

(2004) showed that the correlation of LMA to Amax was only significant for mass based 

measurements. Niinemets (1999) showed that the mass based relationship of Vcmax with leaf 

nitrogen was modified by leaf density (a component of LMA), due to a decreasing fraction of 

leaf nitrogen allocated to RuBisCO with increasing leaf density. SLA has also been shown to 

modify the ratio at which either leaf nitrogen or leaf phosphorus became limiting to Vcmax and 

Jmax (Domingues et al. 2010). Poorter et al. (2009) demonstrated the heterogeneous nature of 

LMA across biomes, plant functional types, and both spatially and temporally. LMA responds 

strongly to a number of environmental variables such as integrated radiation, temperature and 

water availability (Wright et al. 2005, Reich et al. 2007, Ordonez et al. 2009,Poorter et al. 2009). 

Several analyses of multivariate relationships between photosynthesis and leaf traits have 

taken an approach which assumes that either nitrogen or phosphorus is the limiting nutrient 
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and therefore only one of these nutrients limits Vcmax and Jmax in their model. While there is 

good reason to assume that a limiting nutrient will play a dominant role in determining Vcmax 

and Jmax, due to the nitrogen requirements of RuBisCO there is likely to be a relationship 

between Vcmax and nitrogen even at low levels of phosphorus and that a release from 

phosphorus limitation will manifest as a more sensitive coupling of Vcmax to nitrogen as 

demonstrated for Amax by Reich et al. (2009). For this reason our approach has been more 

similar to that of Reich et al. (2009) than that of Meir et al. (2007) and Domingues et al. (2010). 

There is some difference in the way that these leaf traits are measured and presented – either 

as a concentration or on a per unit leaf area basis. Concentration indicates the maximum 

carboxylation capacity per unit of leaf mass, while a leaf area basis indicates the leaf capacity 

per unit area which is a proxy for light absorption—an environmental factor which one would 

expect a plant to optimise photosynthetic resources against. At a given stomatal conductance 

and internal conductance (gi—which may relate to SLA), SLA indicates the diffusion rate of CO2 

to the site of carboxylation. Indeed, in West African tree species, SLA was shown to be the only 

significant correlate of Vcmax and Jmax in a multiple regression of these terms in conjunction with 

leaf nitrogen and phosphorus concentration (Meir et al. 2007). However, it was also shown that 

mass based measurements of leaf nutrients explained more variation in photosynthetic 

parameters than area based measurements, even when regressed in conjunction with LMA in 

West African species (Domingues et al. 2010). 

Across a broad range of plant species, many studies have demonstrated a positive, linear 

relationship between Vcmax, Jmax and leaf nitrogen (Wullschleger 1993, Beerling and Quick 1995) 

and that the slope and intercept of this relationship varies by biome (Kattge et al. 2009). More 

recent studies have demonstrated the significance of leaf phosphorus and SLA in relation to 

Vcmax at sites in tropical West Africa (Domingues et al. 2010) and Australia (Cernusak et al. 

2011). Using a broad database of plant traits, Reich et al. (2009) demonstrated that carbon 

assimilation became less sensitive to leaf nitrogen as leaf phosphorus decreased.  

Kattge et al. (2009) showed that in tropical biomes, where leaf phosphorus is expected to be 

lower, the slope of the Vcmax to nitrogen relationship was lower. The results from Reich et al. 

(2009) suggest that the variability observed by Kattge et al. (2009), in the Vcmax against N slope, 

may be due to leaf phosphorus. A global relationship between Vcmax, leaf nitrogen, leaf 
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phosphorus and SLA may exist and could explain the different relationships to leaf nitrogen by 

biome. 

 Previous studies investigating the effect of leaf phosphorus on Vcmax have adopted a limiting 

factors approach, assuming that only leaf nitrogen or leaf phosphorus determines Vcmax 

depending on which is the more limiting nutrient. We propose that due to the high fraction of 

leaf nitrogen that is in RuBisCO, leaf nitrogen will always have a relationship to Vcmax and so an 

approach that considers interactions between phosphorus and nitrogen was opted for in this 

Chapter. 

This Chapter aims to answer the question: is there a global relationship between Vcmax or Jmax 

and leaf nitrogen, leaf phosphorus and SLA? The approach was to collect data published in the 

literature, analysing either Vcmax or Jmax against leaf nitrogen, leaf phosphorus and SLA with 

mixed-model multiple regressions that include all interaction terms of the explanatory 

variables. More than a single data point was taken from each study and mixed-models were 

used to take account of the non-independence of the data taken from an individual study. 

Jmax has been shown to correlate strongly with Vcmax and the study in this Chapter assessed 

whether the Jmax to Vcmax relationship was modified by leaf nitrogen, leaf phosphorus or SLA. 

Mixed-model multiple regressions were used to assess this. It was hypothesised that the tight 

relationship between Jmax and Vcmax was due to optimal allocation of resources between these 

two parameters to optimise carbon assimilation. To test this hypothesis, biochemical models of 

photosynthesis were employed to assess the impact of the Jmax to Vcmax slope on carbon 

assimilation.  

The new generation of DGVMs now include a full nitrogen cycle (Calvin 1989, Oleson et al. 

2010, Zaehle & Friend 2010) and in some cases a phosphorus cycle (Wang, Houlton & Field 

2007) and empirical scaling relationships of the photosynthetic parameters Vcmax and Jmax with 

leaf nutrient concentrations will allow prognostic determination of these parameters by DGVMs 

in a changing environment. This Chapter makes a first attempt, to our knowledge, at a global 

meta-analysis of the relationships of Vcmax and Jmax with leaf N, P and SLA. 
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Methods 

Literature review & data collection 

In July 2011 the Thompson Reuters Web of Science database was searched for ‘photosynthesis’ 

or ‘carboxylation’ and either ‘nitrogen’, ‘phosphorus’ or ‘SLA’ as well as a number of other 

related search terms. The aim was to find papers that had simultaneously measured as many of 

the following parameters on a single leaf or for a species: Vcmax, Jmax, leaf nitrogen, leaf 

phosphorus and specific leaf area (SLA) or leaf mass to area ratio (LMA). Where LMA was 

reported, SLA was calculated as the reciprocal of LMA. While this is not a perfect conversion for 

mean values this error would have contributed to the residual error of the model which, while 

undesirable, was not a serious problem. There was a significant difference (P<0.05, Student’s t) 

in the means of SLA reported as SLA, or SLA calculated as the inverse of LMA. However, there 

was a large overlap in their ranges and there was no difference in their relationship to Jmax 

(results not shown). Data were copied from tables or digitised from graphics using Grab It! 

(Datatrend Software, Raleigh, NC USA). Minimum requirements for inclusion in this study were 

that either Vcmax or Jmax were measured along with two of the three leaf traits yielding data 

from 26 papers (Appendix J) and 118 species distributed globally (Figure 5-1). Some of these 

data were collected from trees in their natural environment and subject to natural 

environmental variation while other data were collected from lab grown plants (mostly tree 

species) subjected to experimental treatments. The majority of the species used in the 

greenhouses and labs were native to the area of the research centre. While we acknowledge 

that using data from lab experiments may push the range of traits outside those found in 

nature (Kattge et al 2009), we felt that the value of a larger dataset outweighed these concerns. 

Either species means or treatment means were collected leading to a dataset of 388 

species/treatment combinations. 

Statistics 

Our goal was to estimate the coefficients of a multiple regression between the photosynthetic 

parameters and several leaf traits, with data collected from numerous studies in the literature. 

To do this we used a novel method in the field of trait based relationships, similar to that of 

Ordonez et al. (2009), employing a linear mixed-model regression framework with leaf traits as 

fixed effects and the author of the paper from which the data were digitised (rather than 

geographical location) as the random effect. Using author as the random effect accounted for 
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the non-independence of data within a study. We acknowledge that in this study we did not 

account for the heteroscedasticity of sampling variances between different studies and 

therefore we did not weight the data. As the data from the papers are neither correlation 

coefficients nor results from experiments that allow a response ratio to be calculated, 

traditional methods of meta-analysis were not employed. 

 

Figure 5-1. Map of locations from which data for the original research were collected. 
Colouring of the points represents collection of leaf nitrogen data (red), leaf phosphorus 
data (blue) or both (purple). 

 

All statistical analyses were carried out using the open-source software package R, version 

2.13.0 (R Core Development Team 2011). Maximal models were fit to the data with the ‘lme’ 

function of the ‘nlme’ library (Pinheiro et al. 2011) using the author of the paper as a random 

effect and the leaf traits as fixed effects. All data were natural log transformed to achieve 

normality within each group and to eliminate heteroscedasticity in model residuals. Models 

were then simplified using the ‘dropterm’ function of the ‘MASS’ library (Venables and Ripley 

2002) to conserve marginality and the minimum adequate model was fine-tuned using t-test p-

values of the model coefficients and comparison of alternative models using the Akaike 

Information Criterion (AIC) and ANOVAs. The model with the lowest AIC value is the ‘best’, 

maximising the amount of information contained within the data accounted for by the model 

while minimising the number of parameters in the model. Each model was fit to a subset of the 

full dataset as mixed model analyses are unable to deal with missing values. As there is no 
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mixed-model equivalent of the fixed-effects model coefficient-of-determination a number of 

methods were used to indicate the variance explained by the fixed-effects in the model. The 

coefficient-of-determination (R2) of a linear regression of fitted values of a model against the 

response variable was calculated. Decreases in the intercept and residual variance from a null 

model represent increases in variance explained by the fixed effects. The intercept (between 

group) variance and residual (within group) variance are shown for each model along with the 

percentage decreases in these variances from a null model which includes only random effects 

(i.e. the response variable fit only to the intercept and the random effect of author).  

Modelling carbon assimilation 

Carbon assimilation was modelled using the equations from Farquhar et al. (1980) for perfectly 

coupled electron transport and Calvin cycles. The Sheffield Dynamic Vegetation model (SDGVM) 

canopy photosynthesis module was re-coded as a stand-alone model in R (R Core Development 

Team 2011). As with the current version of SDGVM, partitioning of light into direct and diffuse 

was based on (Spitters et al. 1986) and nitrogen was scaled through the canopy using Beer’s 

Law scaling. Leaf Area Index was kept constant at a value of five. Coefficients of the equations 

relating Vcmax to leaf nitrogen and Jmax to Vcmax were taken from the bivariate relationships 

presented in Table 5-4 and 5-5.  
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Results 

On an area basis, values of Vcmax and Jmax both varied roughly 25 fold ranging from 6.4 to 163.2 

and 18.0 to 429.1 µmol m-2s-1 respectively, while on a concentration basis, Vcmax and Jmax varied 

130 and 68 fold, respectively, from 0.09 to 11.71 and from 0.27 to 18.43 µmol g-1s-1. SLA ranged 

nearly 100 fold from 0.0025 to 0.2360 m2g-1. On an area basis leaf nitrogen and phosphorus 

ranged from 0.12 to 4.69 and from 0.004 to 0.535 g m-2, respectively, and on a concentration 

basis, from 0.012 to 0.059 and from 0.0004 to 0.0043 g g-1. Values of leaf phosphorus ranged 

134 fold measured on an area basis but only 12 fold on a mass basis, while leaf nitrogen varied 

39 fold on an area basis and 49 fold on a concentration basis. The large range of phosphorus on 

a leaf area basis while relatively low range on a concentration basis suggests that phosphorus 

was far more tightly coupled to leaf mass than leaf area, as noted by Reich et al. (2010). There 

was a suggestion that nitrogen may scale more closely with leaf area than mass although the 

difference was relatively small. 

On average, 13% more variation (measured using the R2 of model fitted values against observed 

values) in Vcmax and Jmax was described by leaf nitrogen and SLA when measurements were 

made on a leaf concentration basis compared with a leaf area basis (Table 5-1). Much of this 

difference in explained variation was due to the data from Meir et al (2007) which had 

especially high values of SLA (an order of magnitude higher than the rest of the dataset). 

Removal of their data from the analysis reduced the variance explained by concentration based 

measurements to within 2% and 4% of area based measurements for Vcmax and Jmax 

respectively.  

Reporting of Vcmax and Jmax in the literature has been primarily on an area basis and therefore 

there were less data available to analyse on a leaf concentration basis. The majority of data 

when analysing on a concentration basis, and including leaf phosphorus as a model term, came 

from the Domingues et al. (2010) paper. Therefore any concentration based analysis of Vcmax 

and Jmax on leaf phosphorus represented a less sophisticated reanalysis of the Domingues et al. 

(2010) data. As the relationship of leaf phosphorus to Vcmax and Jmax was a goal of this paper we 

focused our analyses on area based measurements. 

While the relationship of Vcmax to leaf nitrogen has often been expressed in the literature, Jmax is 

usually expressed in relation to Vcmax (Wullschleger 1993, Beerling and Quick 1995) as theory 

suggests that Jmax should be optimised with respect to Vcmax. Our data support this, showing 
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that 16% more variation in Jmax was described when regressing against Vcmax as opposed to leaf 

nitrogen. For this reason, the analyses of Jmax presented here include Vcmax as a primary 

explanatory variable. 

Table 5-1. Results from mixed-effects models of Vcmax and Jmax regressed on leaf nitrogen 
and SLA when the leaf traits Vcmax, Jmax and nitrogen were measured on a leaf area basis or 
leaf mass basis. A model of Jmax regressed on Vcmax and SLA is also shown for comparison. 
For direct comparison of leaf area based measurements with leaf concentration based 
measurements, the area or mass based models were applied to the same datasets. 
Reported are the number of observations used in the regression (N); the number of papers 
which the observations came from and that were used as the random-effects (Ng); the 
intercept variance (i.e. the variance associated with the random effect -  between group 
variance) and the residual variance (within group variance) from the model along with the 
percentage decrease in these variances from a null model in which the response variable 
was regressed only on the intercept and the random effects; the R2 of a linear fixed-effect 
regression of the fitted values from the model compared with the observed values, and the 
Akaike Information Criterion of the models (AIC). 

response 
variable explanatory variables N Ng 

Intercept 
variance 

%age 
residual 
variance %age R2 AIC 

log(Vcmax)area log(N)area 278 22 0.244 -39.694 0.104 25.365 0.71 236.9 
log(Vcmax)area log(N)area+log(SLA) 278 22 0.272 -56.096 0.103 26.451 0.71 237.5 
log(Vcmax)area log(N)area+log(SLA)+int 278 22 0.288 -64.936 0.102 26.788 0.71 239.4 

          log(Vcmax)conc log(N)conc 278 22 0.467 36.286 0.104 29.265 0.84 249.4 
log(Vcmax)conc log(N)conc+log(SLA) 278 22 0.267 63.566 0.102 30.172 0.84 236.3 
log(Vcmax)conc log(N)conc+log(SLA)+int) 278 22 0.224 69.422 0.100 31.477 0.84 229.8 

          log(Jmax)area log(N)area 226 18 0.208 0.189 0.075 23.744 0.75 123.6 
log(Jmax)area log(N)area+log(SLA) 226 18 0.256 -23.146 0.072 26.880 0.76 120.4 
log(Jmax)area log(N)area+log(SLA)+int 226 18 0.309 -48.450 0.071 28.168 0.76 121.9 

          log(Jmax)conc log(N)conc 226 18 0.498 36.513 0.077 29.927 0.88 143.5 
log(Jmax)conc log(N)conc+log(SLA) 226 18 0.251 67.946 0.072 34.946 0.89 118.0 
log(Jmax)conc log(N)conc+log(SLA)+int 226 18 0.195 75.179 0.069 37.321 0.89 107.9 

          log(Jmax)area log(Vcmax)area 226 18 0.067 67.996 0.016 83.788 0.95 -219.3 
log(Jmax)area log(Vcmax)area+log(SLA) 226 18 0.067 67.974 0.016 83.942 0.95 -219.3 
log(Jmax)area log(Vcmax)area+log(SLA)+int 226 18 0.070 66.426 0.015 84.410 0.95 -222.6 

          log(Jmax)conc log(Vcmax)conc 226 18 0.080 89.818 0.018 83.837 0.97 -194.4 
log(Jmax)conc log(Vcmax)conc+log(SLA) 226 18 0.067 91.505 0.016 85.573 0.97 -219.3 
log(Jmax)conc log(Vcmax)conc+log(SLA)+int 226 18 0.066 91.524 0.016 85.573 0.97 -217.3 

 

Vcmax in relation to leaf nitrogen, leaf phosphorus and SLA 

As expected, models of Vcmax regressed on leaf nitrogen and either SLA or leaf phosphorus 

explained a significant amount of variation in Vcmax (Table 5-3). When Vcmax was regressed on 

nitrogen and SLA, the minimum adequate model—defined as the model with the lowest AIC 

value—was that of nitrogen alone with an AIC of 236.9. This was not the case for a model using 

the same dataset and concentration rather than area based measurements of leaf nitrogen. 
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When nitrogen was measured on a concentration basis both SLA and the interaction of SLA 

with leaf nitrogen were significant model terms (Table 5-1).  

For Vcmax regressed on nitrogen and phosphorus, the maximal model—that with both 

explanatory variables and the interaction between them as model terms—was the minimum 

adequate model with the lowest AIC value of 42.5. The fitted values of Vcmax from these 

minimum adequate models accounted for, respectively, 71% and 72% of the variation in the 

observed values of Vcmax (measured using a linear fixed-effect regression of the fitted values on 

the observed values) when regressed on leaf nitrogen (for the nitrogen and SLA dataset) or leaf 

nitrogen and leaf phosphorus. 

Figure 5-2 and Figure 5-3 show that the assumptions of a mixed model analysis were satisfied 

by both these minimum adequate models; i.e. there was no heteroscedasticity in the model 

residuals; the observed values of Vcmax bore a linear relationship to model fitted values and the 

residuals, when separated by author, were normally distributed. 

Jmax in relation to Vcmax, leaf nitrogen, leaf phosphorus and SLA 

Outputs from four way mixed model relationships between Jmax, Vcmax, leaf nitrogen and either 

SLA or leaf phosphorus are shown in Table 5-4. Figure 5-2 and Figure 5-5 show that the 

assumptions of a mixed model analysis were satisfied for these minimum adequate models. 

Based purely on AIC values, minimum adequate models were harder to define as some model 

terms were often not significant. For Jmax against Vcmax, nitrogen and phosphorus, the model 

with the lowest AIC (-127.8), was that of Vcmax and phosphorus, however the model of Jmax 

against Vcmax alone had a very similar AIC of -127.6 and the explained variation was not 

significantly different than that with the lowest AIC (Table 5-2).  

For Jmax regressed against Vcmax, nitrogen and SLA, the model with the lowest AIC value (-227.3) 

was the maximal model, including all interaction terms. The three-way interaction was 

significant (P<0.01) but this is difficult to interpret and the variation explained by this model 

when compared with other simpler models was only fractionally higher. However, analysis of 

variance showed that other models, with similarly low AICs, explained significantly less 

variation than the maximal model (Table 5-2). Discounting the maximal model from the analysis 

due to its difficulty in interpretation, the simplest model without loss of explained variance was 

that of Vcmax, SLA and their interaction. 
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Figure 5-2.Plots showing that the assumptions of a mixed model have been met for the 
model of Vcmax against leaf nitrogen, SLA and the interaction between leaf nitrogen and SLA. 
Top left—model residuals against fitted values of the model; bottom left—observed values 
of Vcmax against the model fitted values and, right—model residuals plotted against 
quantiles of the normal distribution for each individual paper (random effect). 

 

Figure 5-3. Model assumption plots for Vcmax against leaf nitrogen, leaf phosphorus and the 
interaction between leaf nitrogen and leaf phosphorus, all measured on a leaf area basis. 
Plots as in Figure 5-2. 
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Table 5-2. ANOVA of variance explained by various models of Jmax regressed on Vcmax, SLA 
and leaf nitrogen. The Akaike Information Criteria (AIC) is also presented. The models in 
column one are labelled (a-d) which is used to identify the bi-model comparisons which 
yield the statistics presented in columns in 7–13. 

Model 
   

a b c d 

 
df AIC logLik L.Ratio p-value L.Ratio p-value L.Ratio p-value L.Ratio p-value 

Vcmax, SLA, N + all 
interactions (a) 

10 -227.3 123.7 NA NA NA NA NA NA NA NA 

Vcmax, SLA, N + 2 
interactions (b) 

8 -223.4 119.7 7.919 0.019 NA NA NA NA NA NA 

Vcmax, SLA, N + 1 
interaction (c) 

7 -222.9 118.4 10.424 0.015 2.505 0.113 NA NA NA NA 

Vcmax, SLA + 
interaction 
(d) 

6 -222.6 117.3 12.716 0.013 4.797 0.091 2.292 0.130 NA NA 

Vcmax only 4 -219.3 113.6 20.047 0.003 12.128 0.016 9.623 0.022 7.331 0.026 
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Table 5-3. Linear mixed model outputs regressing Vcmax on two explanatory variables either leaf nitrogen and SLA or leaf nitrogen and 
leaf phosphorus (both on a unit area basis). All data were log transformed using the natural logarithm. Models using the same dataset 
are shown in contiguous light grey with the minimum adequate model for that dataset highlighted in darker grey. Shown are the 
coefficients and standard errors for the model terms; the students t statistics for the model terms; the minimum and maximum values of 
the model terms; F statistics for the model terms; the intercept and residual variance (and their percentage decrease from a null model); 
the R2 of fitted values regressed on the response variable, and the Akaike Information Criterion (AIC). 

response 
variable explanatory variable Coefficient SE DF 

t 
statistic p min max numDF denDF 

F 
statistic p N Ng 

Intercept 
variance 

residual 
variance R2 AIC 

log(Vcmax)area intercept 3.27 0.35 253 9.38 0.000     1 253 1075.26 0.000 278 22 0.288 0.102 0.71 239.4 
  log(N)area 0.64 0.30 253 2.15 0.032 0.12 4.69 1 253 83.03 0.000     -64.9 26.8     
  log(SLA) -0.10 0.08 253 -1.32 0.188 0.00 0.24 1 253 1.69 0.195             
  log(N)area:log(SLA) 0.01 0.06 253 0.23 0.816     1 253 0.05 0.816             
                                      
log(Vcmax)area intercept 3.29 0.34 254 9.58 0.000     1 254 1137.05 0.000 278 22 0.272 0.103 0.71 237.5 
  log(N)area 0.57 0.07 254 7.58 0.000 0.12 4.69 1 254 82.65 0.000     -56.1 26.5     
  log(SLA) -0.10 0.08 254 -1.25 0.211 0.00 0.24 1 254 1.57 0.211             
                                      
log(Vcmax)area intercept 3.70 0.11 255 33.49 0.000     1 255 1266.85 0.000 278 22 0.244 0.104 0.71 236.9 
  log(N)area 0.60 0.07 255 9.00 0.000 0.12 4.69 1 255 81.07 0.000     -39.7 25.4     
                                      
log(Vcmax)area intercept 2.47 0.33 255 7.51 0.000     1 255 1427.64 0.000 278 22 0.212 0.128 0.64 286.6 
  log(SLA) -0.32 0.07 255 -4.48 0.000 0.00 0.24 1 255 20.09 0.000     -21.2 8.4     

                   log(Vcmax)area intercept 3.96 0.24 102 16.62 0.000     1 102 663.15 0.000 113 8 0.164 0.061 0.72 42.5 
  log(N)area 0.78 0.17 102 4.47 0.000 0.12 3.06 1 102 19.22 0.000     18.7 21.2     
  log(P)area 0.12 0.08 102 1.51 0.133 0.00 0.54 1 102 0.85 0.359             
  log(N)area:log(P)area 0.19 0.06 102 2.98 0.004     1 102 8.90 0.004             
                                      
log(Vcmax)area intercept 4.10 0.28 103 14.48 0.000     1 103 349.40 0.000 113 8 0.320 0.062 0.71 48.1 
  log(N)area 0.36 0.10 103 3.75 0.000 0.12 3.06 1 103 19.86 0.000     -58.8 19.3     
  log(P)area 0.11 0.08 103 1.37 0.174 0.00 0.54 1 103 1.87 0.174             
                                      
log(Vcmax)area intercept 3.83 0.18 104 21.24 0.000     1 104 452.01 0.000 113 8 0.248 0.064 0.70 47.8 
  log(N)area 0.39 0.09 104 4.36 0.000 0.12 3.06 1 104 19.00 0.000     -22.9 16.5     
                                      
log(Vcmax)area intercept 4.31 0.26 104 16.36 0.000     1 104 438.45 0.000 113 8 0.255 0.071 0.67 59.3 
  log(P)area 0.19 0.08 104 2.49 0.014 0.00 0.54 1 104 6.21 0.014     -26.4 7.0     
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Table 5-4. Linear mixed model outputs regressing Jmax on three explanatory variables: Vcmax and either leaf nitrogen and SLA or leaf 
nitrogen and leaf phosphorus (both on a unit area basis). All data were log transformed using the natural logarithm. The table is the 
same format as Table 5-3. 

response 
variable explanatory variable Coefficient SE DF 

t 
statistic p min max numDF denDF 

F 
statistic p N Ng 

Intercept 
variance 

residual 
variance R2 AIC 

log(Jmax)area intercept 1.23 0.63 94 1.94 0.055     1 94 1198.17 0.000 108 7 0.106 0.012 0.96 -121.5 
  log(Vcmax)area 0.88 0.17 94 5.13 0.000 14.90 123.97 1 94 453.73 0.000     63.454 82.727     
  log(N)area -0.16 0.79 94 -0.20 0.840 0.12 3.06 1 94 1.54 0.218             
  log(P)area 0.00 0.26 94 -0.01 0.990 0.00 0.23 1 94 1.28 0.260             
  log(Vcmax)area:log(N)area 0.02 0.21 94 0.10 0.917     1 94 0.88 0.352             
  log(Vcmax)area:log(P)area 0.01 0.07 94 0.20 0.845     1 94 0.08 0.781             
  log(N)area:log(P)area -0.14 0.28 94 -0.51 0.611     1 94 1.74 0.190             
  log(Vcmax)area:log(N)area:log(P)area 0.03 0.08 94 0.33 0.740     1 94 0.11 0.740             
                                      
log(Jmax)area intercept 1.27 0.62 95 2.04 0.044     1 95 1169.03 0.000 108 7 0.110 0.012 0.96 -123.3 
  log(Vcmax)area 0.87 0.17 95 5.16 0.000 14.90 123.97 1 95 458.42 0.000     62.153 82.748     
  log(N)area 0.07 0.33 95 0.22 0.828 0.12 3.06 1 95 1.54 0.218             
  log(P)area 0.02 0.25 95 0.10 0.924 0.00 0.23 1 95 1.29 0.258             
  log(Vcmax)area:log(N)area -0.04 0.08 95 -0.50 0.617     1 95 0.87 0.353             
  log(Vcmax)area:log(P)area 0.01 0.07 95 0.11 0.913     1 95 0.08 0.780             
  log(N)area:log(P)area -0.05 0.04 95 -1.34 0.182     1 95 1.81 0.182             
                                      
log(Jmax)area intercept 1.33 0.28 96 4.73 0.000     1 96 1194.41 0.000 108 7 0.109 0.012 0.96 -125.3 
  log(Vcmax)area 0.86 0.06 96 14.44 0.000 14.90 123.97 1 96 462.67 0.000     62.595 82.732     
  log(N)area 0.07 0.33 96 0.21 0.831 0.12 3.06 1 96 1.56 0.215             
  log(P)area 0.05 0.04 96 1.19 0.235 0.00 0.23 1 96 1.31 0.256             
  log(Vcmax)area:log(N)area -0.04 0.08 96 -0.50 0.620     1 96 0.88 0.349             
  log(N)area:log(P)area -0.05 0.04 96 -1.37 0.174     1 96 1.87 0.174             
                                      
log(Jmax)area intercept 1.39 0.25 97 5.48 0.000     1 97 1122.33 0.000 108 7 0.117 0.012 0.96 -127.1 
  log(Vcmax)area 0.84 0.04 97 19.01 0.000 14.90 123.97 1 97 467.55 0.000     59.770 82.776     
  log(N)area -0.09 0.09 97 -0.96 0.339 0.12 3.06 1 97 1.55 0.216             
  log(P)area 0.04 0.04 97 1.11 0.268 0.00 0.23 1 97 1.31 0.255             
  log(N)area:log(P)area -0.06 0.04 97 -1.62 0.108     1 97 2.64 0.108             
                                      
log(Jmax)area intercept 1.39 0.25 98 5.60 0.000     1 98 1404.22 0.000 108 7 0.094 0.012 0.95 -126.5 
  log(Vcmax)area 0.83 0.04 98 18.84 0.000 14.90 123.97 1 98 456.70 0.000     67.633 82.074     
  log(N)area 0.04 0.05 98 0.85 0.395 0.12 3.06 1 98 1.60 0.208             
  log(P)area 0.05 0.04 98 1.14 0.255 0.00 0.23 1 98 1.31 0.255             
                                      
log(Jmax)area intercept 1.37 0.25 99 5.57 0.000     1 99 1406.03 0.000 108 7 0.095 0.012 0.95 -127.8 
  log(Vcmax)area 0.84 0.04 99 19.86 0.000 14.90 123.97 1 99 457.90 0.000     67.363 81.950     
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  log(P)area 0.06 0.04 99 1.48 0.142 0.00 0.23 1 99 2.19 0.142             
                                      
log(Jmax)area intercept 1.51 0.51 98 2.99 0.004     1 98 1405.10 0.000 108 7 0.094 0.012 0.95 -125.9 
  log(Vcmax)area 0.80 0.13 98 6.24 0.000 14.90 123.97 1 98 453.83 0.000     67.657 81.957     
  log(P)area 0.12 0.22 98 0.57 0.572 0.00 0.23 1 98 2.17 0.144             
  log(Vcmax)area:log(P)area -0.02 0.06 98 -0.31 0.755     1 98 0.10 0.755             
                                      
log(Jmax)area intercept 1.15 0.20 100 5.81 0.000     1 100 1314.23 0.000 108 7 0.103 0.012 0.95 -127.6 
  log(Vcmax)area 0.86 0.04 100 21.30 0.000 14.90 123.97 1 100 453.84 0.000     64.723 81.648     
                                      
log(Jmax)area intercept 4.47 0.20 100 21.98 0.000     1 100 481.12 0.000 108 7 0.278 0.058 0.78 35.0 
  log(N)area 0.37 0.09 100 4.12 0.000 0.12 3.06 1 100 16.99 0.000     4.513 14.382     
                                      
log(Jmax)area intercept 5.21 0.29 100 17.68 0.000     1 100 441.48 0.000 108 7 0.303 0.060 0.78 38.2 
  log(P)area 0.28 0.08 100 3.67 0.000 0.00 0.23 1 100 13.50 0.000     -4.197 12.185     

                   log(Jmax)area intercept 3.47 0.94 201 3.70 0.000     1 201 5624.74 0.000 226 18 0.063 0.015 0.95 -227.3 
  log(Vcmax)area 0.27 0.24 201 1.14 0.255 6.40 163.22 1 201 1177.63 0.000     69.630 85.209     
  log(N)area 2.94 0.99 201 2.99 0.003 0.12 4.69 1 201 3.16 0.077             
  log(SLA) 0.45 0.22 201 2.03 0.043 0.00 0.24 1 201 0.83 0.364             
  log(Vcmax)area:log(N)area -0.70 0.25 201 -2.81 0.005     1 201 0.18 0.669             
  log(Vcmax)area:log(SLA) -0.12 0.06 201 -2.15 0.033     1 201 8.28 0.004             
  log(N)area:log(SLA) 0.61 0.22 201 2.71 0.007     1 201 1.02 0.313             
  log(Vcmax)area:log(N)area:log(SLA) -0.15 0.06 201 -2.60 0.010     1 201 6.75 0.010             
                                      
log(Jmax)area intercept 4.15 0.91 202 4.55 0.000     1 202 5208.05 0.000 226 18 0.069 0.015 0.95 -222.4 
  log(Vcmax)area 0.08 0.23 202 0.37 0.713 6.40 163.22 1 202 1150.57 0.000     66.987 84.820     
  log(N)area 0.44 0.21 202 2.08 0.039 0.12 4.69 1 202 3.05 0.082             
  log(SLA) 0.61 0.22 202 2.83 0.005 0.00 0.24 1 202 0.83 0.364             
  log(Vcmax)area:log(N)area -0.06 0.05 202 -1.34 0.182     1 202 0.17 0.682             
  log(Vcmax)area:log(SLA) -0.16 0.05 202 -3.02 0.003     1 202 8.13 0.005             
  log(N)area:log(SLA) 0.03 0.03 202 1.03 0.306     1 202 1.05 0.306             
                                      
log(Jmax)area intercept 3.91 0.88 203 4.43 0.000     1 203 5534.07 0.000 226 18 0.065 0.015 0.95 -223.4 
  log(Vcmax)area 0.15 0.22 203 0.70 0.486 6.40 163.22 1 203 1146.97 0.000     68.861 84.668     
  log(N)area 0.34 0.19 203 1.82 0.071 0.12 4.69 1 203 3.09 0.080             
  log(SLA) 0.56 0.21 203 2.66 0.008 0.00 0.24 1 203 0.80 0.372             
  log(Vcmax)area:log(N)area -0.07 0.05 203 -1.57 0.118     1 203 0.18 0.671             
  log(Vcmax)area:log(SLA) -0.15 0.05 203 -2.84 0.005     1 203 8.06 0.005             
                                      
log(Jmax)area intercept 3.43 0.83 204 4.14 0.000     1 204 5343.79 0.000 226 18 0.067 0.015 0.95 -222.9 
  log(Vcmax)area 0.27 0.21 204 1.33 0.185 6.40 163.22 1 204 1141.09 0.000     67.571 84.536     
  log(N)area 0.05 0.03 204 1.50 0.134 0.12 4.69 1 204 3.05 0.082             
  log(SLA) 0.43 0.19 204 2.21 0.028 0.00 0.24 1 204 0.81 0.370             
  log(Vcmax)area:log(SLA) -0.11 0.05 204 -2.41 0.017     1 204 5.78 0.017             
                                      
log(Jmax)area intercept 3.23 0.82 205 3.94 0.000     1 205 5189.51 0.000 226 18 0.070 0.015 0.95 -222.6 
  log(Vcmax)area 0.31 0.20 205 1.50 0.134 6.40 163.22 1 205 1136.04 0.000     66.426 84.410     
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  log(SLA) 0.40 0.19 205 2.05 0.042 0.00 0.24 1 205 2.02 0.157             
  log(Vcmax)area:log(SLA) -0.11 0.05 205 -2.31 0.022     1 205 5.36 0.022             
                                      
log(Jmax)area intercept 1.48 0.17 205 8.63 0.000     1 205 5622.41 0.000 226 18 0.064 0.016 0.95 -219.1 
  log(Vcmax)area 0.76 0.03 205 28.01 0.000 6.40 163.22 1 205 1113.35 0.000     69.124 84.035     
  log(N)area 0.05 0.03 205 1.35 0.178 0.12 4.69 1 205 3.04 0.083             
  log(SLA) -0.03 0.03 205 -0.87 0.384 0.00 0.24 1 205 0.76 0.384             
                                      
log(Jmax)area intercept 1.56 0.13 205 12.10 0.000     1 205 5804.03 0.000 226 18 0.062 0.016 0.95 -218.5 
  log(Vcmax)area 0.77 0.03 205 25.28 0.000 6.40 163.22 1 205 1108.63 0.000     70.133 83.945     
  log(N)area 0.13 0.17 205 0.73 0.465 0.12 4.69 1 205 3.06 0.082             
  log(Vcmax)area:log(N)area -0.02 0.04 205 -0.41 0.683     1 205 0.17 0.683             
                                      
log(Jmax)area intercept 1.59 0.12 206 13.35 0.000     1 206 5760.32 0.000 226 18 0.063 0.016 0.95 -220.3 

  log(Vcmax)area 0.77 0.03 206 28.49 0.000 6.40 163.22 1 206 1113.37 0.000     69.756 83.949     
  log(N)area 0.06 0.03 206 1.75 0.082 0.12 4.69 1 206 3.06 0.082             
                                      
log(Jmax)area intercept 1.51 0.11 207 13.51 0.000     1 207 5477.05 0.000 226 18 0.067 0.016 0.95 -219.3 
  log(Vcmax)area 0.79 0.02 207 33.25 0.000 6.40 163.22 1 207 1105.45 0.000     67.996 83.788     
                                      
log(Jmax)area intercept 4.49 0.11 207 40.22 0.000     1 207 1725.78 0.000 226 18 0.208 0.075 0.75 123.6 
  log(N)area 0.49 0.06 207 8.03 0.000 0.12 4.69 1 207 64.51 0.000     0.189 23.744     
                                      
log(Jmax)area intercept 3.12 0.31 207 10.04 0.000     1 207 1443.66 0.000 226 18 0.249 0.086 0.71 155.2 
  log(SLA) -0.35 0.07 207 -5.20 0.000 0.00 0.24 1 207 27.00 0.000     -19.578 12.571     
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Figure 5-4. Plots showing the assumptions of a mixed model have been met for the 
model of Jmax against Vcmax, leaf nitrogen, leaf phosphorus and the interaction of both leaf 
nitrogen and leaf phosphorus with Vcmax. All measured on a leaf area basis. Plots as in 
Figure 5-2. 

 

Figure 5-5. Plots showing the assumptions of a mixed model have been met for the 
model of Jmax against Vcmax, leaf nitrogen, SLA and the interaction of SLA with Vcmax. All 
measured on a leaf area basis. Plots as in Figure 5-2. 
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Discussion 

Vcmax, leaf phosphorus and SLA 

For the minimum adequate model of Vcmax against leaf nitrogen and phosphorus, leaf 

nitrogen was a significant correlate while leaf phosphorus alone was not. Leaf phosphorus 

was only significant in interaction with leaf nitrogen, modifying the nature of the correlation 

between Vcmax and leaf nitrogen. That leaf phosphorus was only significant in interaction 

with leaf nitrogen highlights the importance of considering interaction terms. The analysis of 

Vcmax and JmaxbyDomingues et al. (2010) concluded that leaf nitrogen and leaf phosphorus 

were best considered in terms of limiting factors; however, their conclusion was based on 

additive models and did not consider the interaction term between nitrogen and 

phosphorus in their standard regression model.  

The relationship between Vcmax and leaf nitrogen, and how it was modified by leaf 

phosphorus, is shown in Figure 5-8. Increasing phosphorus increases the sensitivity of Vcmax 

to nitrogen. The finding for phosphorus is similar to that of Reich et al. (2009) who found 

that, in a global analysis, increased leaf phosphorus increased the sensitivity of Amax to leaf 

nitrogen. The data presented in this Chapter show that phosphorus affects the Amax to leaf 

nitrogen relationship by modifying the Vcmax to nitrogen relationship, not the Jmax to Vcmax 

relationship. Due to phosphorus playing several roles in the regeneration of RuBP, it was 

unexpected that leaf phosphorus would not affect Jmax, although the lack of affect on the Jmax 

to Vcmax relationship may represent tight coupling between the two parameters rather than 

no impact of phosphorus on Jmax.  

Reich et al. (2009)showed this tightening of the relationship between Amax and leaf nitrogen 

to hold true across biomes with different N:P ratios. Kattge et al. (2009) found the 

relationship of Vcmax to leaf nitrogen to have a smaller slope parameter for tropical trees 

growing on the phosphorus poor oxisols. Although the tropics tend to have lower soil 

phosphorus (Quesada et al. 2010) and leaf phosphorus (McGroddy et al. 2004, Reich and 

Oleksyn 2004) than temperate regions, Kattge et al. (2009) calculated an only slightly lower 

slope for tropical trees on non-oxisols (26.19) than for temperate trees (29.81). The 

calculated slope parameter did however have a three-fold higher standard deviation for 

tropical trees on oxisols which may represent slope variation in response to varying leaf 

phosphorus. 
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Domingues et al. (2010) showed that SLA was important in models of Vcmax and Jmax on a 

concentration basis and our results support that finding (Table 5-1). Aranda et al. (2006) 

showed that SLA was significant when traits were measured on an area basis, reducing Vcmax 

per unit nitrogen as SLA increased. However, our results indicated that the area based 

relationship between Vcmax and leaf nitrogen was not affected by SLA. Alone, SLA was a 

significant correlate of Vcmax but the higher explained variance by leaf nitrogen and the 

insignificance of SLA when in conjunction with leaf nitrogen suggested that the correlation 

between SLA and Vcmax could be explained away by the covariance of SLA with leaf nitrogen. 

Also, Niinemets (1999) showed that the components of SLA—leaf thickness and leaf 

density—showed different relationships to Amax. That these two components of SLA were 

not correlated with each other but both correlated with SLA (Niinemets 1999) indicates that 

SLA may not have a consistent effect on photosynthesis and is dependent upon which of its 

components (thickness or density) is changing. SLA (or its inverse LMA) responds to multiple 

environmental and ecological factors and components of SLA (i.e. density and thickness) 

strongly correlate with nitrogen (Niinemets 1999, Poorter et al. 2009). It may be that 

changing SLA is a plant’s primary mechanism by which changes in leaf nitrogen are driven 

and our results suggest that leaf nitrogen is the proximal driver of Vcmax as established by 

many previous studies (Field and Mooney 1984, Wullschleger 1993, Reich et al. 2007, Kattge 

et al. 2009). Phosphorus also changes with leaf nitrogen and SLA, and as with SLA, in a 

bivariate relationship with Vcmax phosphorus is a significant covariate but that covariation is 

eroded away when analysed in conjunction with leaf nitrogen. However, and in contrast to 

SLA, leaf phosphorus modifies the nature of the relationship of Vcmax to nitrogen, indicating 

that as phosphorus limits biochemical processes, Vcmax becomes less sensitive to leaf 

nitrogen.  

Jmax and Vcmax 

Vcmax was the major determinant/covariate of Jmax accounting for 95% of the variation in Jmax 

for both the analyses including nitrogen and either phosphorus or SLA. We found the slope 

of the regression of log transformed Jmax on Vcmax to be 0.79 and 0.82 for the larger dataset 

on an area and concentration basis respectively (Table 5-4& Table 5-1). Similar to the 

analysis of Reich et al. (2010) for the scaling of leaf nitrogen with leaf phosphorus, this could 

represent the 2/3 scaling relationship expected by the allometric relationship of leaf area to 

leaf volume. In this case, Jmax would be more correlated to leaf area and Vcmax to leaf mass. 
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This can be interpreted as light harvesting complexes scaling with light capture and hence 

area, and carboxylation capacity scaling with the quantity of leaf tissue. Perhaps the higher 

values of the coefficient than 2/3 represents a more mixed relationship than Jmax scaling 

purely with area and Vcmax purely with mass, although the difference in the slope from 

exactly 2/3 could also represent error from the ‘true’ value due to the sample size (Reich et 

al. 2010). Indeed, in an early analysis of the relationship between Jmax and Vcmax, 

Wullschleger (1993) described a slope coefficient of 1.64 for un-transformed data. Digitising 

Wullschleger (1993) data we natural log-transformed Jmax and Vcmax and re-analysed it with a 

linear fit. We found that regression assumptions were not violated by the transformation 

and that the slope coefficient was 0.84 (with an R2 of 0.87). In an analysis of natural log 

transformed Jmax against Vcmax from the TRY database (Kattge et al. 2011), Jmax scaled against 

Vcmax with a slope parameter of 0.77 (and R2 of 0.81) Our results suggested that Jmax may be 

less sensitive to changes in Vcmax at higher levels of SLA although little extra variation was 

explained. The indication was that as SLA increases, the Jmax to Vcmax relationship approaches 

the pure allometric scaling law. This was somewhat counter-intuitive as we would assume 

the difference between volume and area to be more apparent in thicker leaves, not thinner 

ones with high SLA. In this study, in the analysis of the Kattge et al. (2011)data and in the re-

analysis of the Wullschleger (1993) data the log transformed Jmax to Vcmax slope was always 

above the 2/3 slope of area to volume scaling. If the Jmax to Vcmax relationship was 

determined by area to volume scaling it was expected that increasing SLA (i.e. thinner 

leaves) would increase the slope as area and volume approached unity. Counter to 

expectations, increasing SLA decreased the slope. There was no evidence to suggest that the 

relationship of Jmax to Vcmax was in any way modified by phosphorus, although the data 

presented here only represent 108 species/treatment combinations. 

To analyse the relationship of Jmax to Vcmax in more depth we investigated the effect of the 

slope parameter on carbon assimilation under various environmental conditions. Figure 6 

shows the effect of the slope parameter on a single leaf Farquhar model while Figure 7 

shows the effect on a full canopy photosynthesis model used by the Sheffield Dynamic 

Vegetation Model (SDGVM). The analyses show that the slope parameter, as would be 

expected, determines the point at which assimilation switches from light limitation to CO2 

and Vcmax (nitrogen) limitation. More interestingly, the analysis shows that for contemporary 

and historical CO2 concentrations, the value of the slope parameter that we calculated is 
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well above parameter values (0.6-0.75 dependent on CO2 and nitrogen) at which carbon 

assimilation becomes light saturated. Optimisation theory would suggest that the slope 

parameter should be minimised with respect to the light saturation point, as beyond light 

saturation Jmax has no impact on carbon assimilation yet represents higher investment of 

resources in the biochemical machinery that determine Jmax. High calculated values (beyond 

light saturation) of the slope parameter suggests that there may be a functional significance 

to a higher than expected Jmax.  

The analysis using the canopy model of SDGVM shows that our calculated value of the slope 

parameter would mean permanent light limitation. This is likely to be unrealistic and 

perhaps shows that SDGVM is generally light limited, a limitation observed in Chapter 3. 

However, the higher light limitation of the SDGVM canopy at observed values of the slope 

parameter may indicate that the higher slope parameter values than expected may be 

explained by optimisation of canopy carbon assimilation, not leaf level assimilation. Another 

hypothesis of the higher than expected values of Jmax is that electron transport is not really 

limiting, as suggested by Collatz et al. (1991), and that light, when CO2 and nitrogen are 

limiting carbon assimilation, can still be used to synthesise ATP and NADPH useful in other 

biochemical pathways, i.e. nitrite reduction by nitrite reductase which occurs in the 

chloroplast (Anderson and Done 1978). 

Leaf trait relationships by biome 

A number of studies have investigated the variation in Vcmax and Jmax, and the relationship of 

Vcmax to nitrogen, due to plant phenology and functional type (Wullschleger 1993, Beerling 

and Quick 1995, Kattge et al. 2009) and Vcmax and Jmax relationships to nitrogen, phosphorus 

and SLA by biomes along tropical rainfall gradients (Domingues et al. 2010, Cernusak et al. 

2011). The data in this Chapter were too few to investigate the effect of multiple leaf traits 

on photosynthetic parameters, particularly phosphorus, in different biomes. Also, data were 

sourced from a mixture of natural environments and experimental studies which meant 

comparison by biome may have been confounded by experimental manipulation putting 

trait values outside of the range found in their native biomes. The indication from Kattge et 

al. (2009) was that there are different slopes of the relationship between Vcmax and nitrogen, 

with biomes that are more likely phosphorus limited (Reich and Oleksyn 2004) showing 

lower slopes. Our analysis shows that Vcmax is less sensitive to nitrogen at low levels of 
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phosphorus and it is intriguing that these differences by biome may be explained away by 

the addition of leaf phosphorus to the regression analysis. 

The increase in explanatory power of these models 

While the analyses showed that leaf phosphorus was a significant addition to the model of 

Vcmax and indicated that SLA may be a significant addition to the model of Jmax, the analyses 

also indicated that the increase in explained variation achieved by their addition was 

minimal, particularly so for SLA in the model of Jmax. 

The dominant covariate of Jmax was Vcmax and the addition of an interaction term with SLA did 

not increase the variance explained when measured  by the R2 of the fitted values of Jmax 

with the observed values, and decreased the residual and intercept variation from that in 

the null model by only 1%. The increases in variation explained by the addition of SLA to a 

model of Jmax appear to be too small to warrant a change in the way that Jmax is currently 

simulated in global vegetation models.   

For the model of Vcmax phosphorus increased the R2 by 2% when compared with the bivariate 

model of Vcmax and nitrogen, reduced the residual variance by 6% of the null model values 

and reduced the intercept variance by 42%. This reduction in intercept variance indicated a 

shift from variance explained by random effects to variance explained by fixed effects. 

Phosphorus is likely to be an important variable relating to Vcmax and is worthwhile to 

consider it as a variable in global vegetation models. 

It was difficult to compare this small increase in explained variation with previous studies as 

directly comparable metrics have not been published. As demonstrated by (Kattge et al. 

2009) for different biomes across the globe and Domingues et al. (2010) in a gradient of 

biomes from open savannah to semi-deciduous forest in West Africa, Vcmax and Jmax were 

differentially sensitive to leaf traits in different biomes. It may be that the small increase in 

explained variation by adding phosphorus and, particularly, SLA to regression models may 

reflect the fact that these relationships may be more biome specific although there were 

insufficient data to test this. 
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Figure 5-6. The effect of the Jmax to Vcmax (both log transformed) slope parameter on assimilation (left hand plots) and light limitation to 
photosynthesis (right hand plots) using a single leaf Farquhar model. The slope parameter is on the x-axis and shortwave radiation on 
the y-axis. The panels are combinations of leaf nitrogen (gm-2—rows, increasing bottom to top) and internal CO2 partial pressure (Pa—
columns, increasing left to right). The value of the slope (thick vertical line) and the 95% confidence bounds (thin vertical lines). Leaf 
nitrogen effectively sets the log transformed Vcmax parameter using the relationships presented above (slope – 0.6 & intercept – 3.7), the 
Jmax to Vcmax intercept was maintained at 1.51. 
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Figure 5-7. The effect of the Jmax to Vcmax slope parameter on assimilation (left hand plots) and light limitation to photosynthesis (right 
hand plots) using the canopy photosynthesis model of SDGVM. The slope parameter is on the x-axis and shortwave radiation on the y-
axis. The panels are combinations of leaf nitrogen (gm-2—rows, increasing bottom to top) and ambient CO2 partial pressure (Pa—
columns, increasing left to right). The value of the slope (thick vertical line) and the 95% confidence bounds (thin vertical lines) are 
plotted. Leaf nitrogen sets the log transformed Vcmax parameter using the relationships presented above (slope – 0.6 & intercept – 3.7), 
the Jmax to Vcmax intercept was maintained at 1.51. The values of leaf nitrogen were chosen to preserve top leaf nitrogen values as those 
for the single leaf Farquhar model using Beer’s Law scaling and an LAI of 5. 
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Figure 5-8.The relationship of Vcmax to leaf nitrogen as modified by leaf phosphorus. 
Numbers in each panel represent the slope of the regression line calculated using the 
minimum adequate model as presented in Table 5-3. Panels are separated by increasing 
values of phosphorus (left to right, bottom to top). The separation of data was carried 
out to leave an equal number of points in each panel allowing overlap so a single data 
point can appear in more than one panel. The header at the top of each panel represents 
the full range of values of phosphorus and the dark grey fill in the header represents the 
range of phosphorus values in the particular panel. 

Figure 5-9. The relationship of Jmax to Vcmax as modified by SLA (right 4 panels) and leaf 
phosphorus (left 4 panels). Panels are separated by increasing values (left to right, 
bottom to top) of either SLA or phosphorus. Numbers in each panel represent the slope 
(SLA – top panels) or intercept (phosphorus – bottom panels) of the regression line 
calculated using the minimum adequate models as presented in Table 5-3. See Figure 5-
8 for further explanation of the Figures. 
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Conclusions 

Vcmax was most strongly correlated to leaf nitrogen. Leaf phosphorus, in interaction with 

nitrogen, had a significant relationship with Vcmax, and increasing leaf phosphorus increased 

the sensitivity of Vcmax to leaf nitrogen. We tentatively suggest that the differences in slope 

of the Vcmax to leaf nitrogen relationships developed by Kattge et al. (2009) may be explained 

by differences in leaf phosphorus and it will be interesting to test further as more leaf 

phosphorus data becomes available. 

There was an indication that SLA reduced the sensitivity of Jmax to Vcmax although the Jmax to 

Vcmax relationship remained tight. Higher than expected values of the Jmax to Vcmax slope 

parameter, based solely on optimisation of leaf carbon assimilation considered alone, were 

observed. We suggest that this may be due to investment in electron transport capacity to 

produce ATP and NADPH for biochemical pathways other than the PCA cycle.   

Phosphorus and SLA were only significant regression model variables in interaction with the 

primary driving variables and future studies are advised to be cautious when basing 

conclusions on additive models alone. The data and analysis presented in this Chapter 

suggest that interactions need to be considered and that considering the effect of nitrogen 

and phosphorus on Vcmax in terms of limiting factors may not be suitable for global scale 

analysis. 

Coefficients of the relationship between Vcmax, leaf nitrogen and leaf phosphorus and 

between Jmax, Vcmax and SLA, are tentatively presented. Although much of the data came 

from studies that manipulated leaf nitrogen and phosphorus and therefore present a good 

range of leaf nutrient concentrations, it is recognised that more data needs collection and 

from a more diverse range of biomes. This work builds on that of others and for the first 

time presents the significance of phosphorus and SLA in relation to Vcmax and Jmax in a global 

study. The relationships presented in this study can be used to parameterise Vcmax and Jmax in 

a more empirical and rigorous fashion using data-derived relationships, moving their 

parameterisation away from simple methods with limited variation (in some models they are 

fixed by PFT e.g. JULES) or limited grounding in the literature (there is evidence to suggest 

they have been used as model tuning parameters). 
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Chapter 6 Simulating terrestrial vegetation with revised Vcmax 

parameterisation 

Introduction 

Global carbon cycle models are highly sensitive to Vcmax and Jmax parameterisation and often, 

therefore, leaf nitrogen parameterisation. In a global study Bonan et al. (2011a) 

demonstrated the sensitivity of Gross Primary Productivity (GPP) in CLM4 (the US 

Community Land Model) to Vcmax, the structure of the photosynthesis scheme and the 

structure of the canopy radiation scheme. Bonan et al. (2011a) showed that revisions of the 

photosynthesis scheme (which included the addition of a Jmax term to the Collatz et al. (1991) 

formulation) and the canopy radiation and nitrogen scaling scheme reduced GPP from 165 

Pg C yr-1 to 130 Pg C yr-1. Kattge et al. (2009) developed a dataset of Vcmax by biome based on 

biome specific leaf nitrogen distributions and the relationship of Vcmax to leaf nitrogen in that 

biome—determined using a data assimilation technique. Kattge et al. (2009) showed that 

their Vcmax parameterisation, compared to the Beerling and Quick (1995) Vcmax 

parameterisation, reduced GPP in the tropics by 800 to >1600 g C m-2 yr-1 (a decrease of up 

to 30%) and increased GPP in the boreal region by 100 to 400 g C m-2 yr-1 (an increase of up 

to 80%). 

The version of CLM4 used by Bonan et al. (2011a) reduces Vcmax according to soil nitrogen 

availability and they showed that releasing Vcmax from this constraint increased GPP to 161 

Pg C yr-1. While this increase in GPP appeared to support the Vcmax constraint in CLM4, they 

also showed that the substitution of the CLM4 Vcmax parameterisation with that of Kattge et 

al. (2009) maintained GPP in CLM4 at 164 Pg C yr-1, close to the non-nitrogen limited value.  

The revision of the canopy light scheme in CLM4 showed that simulation of GPP was also 

sensitive to light levels. In an Amazonian FLUXNET site, under conditions that were not 

limited by soil water, Mercado et al. (2007) demonstrated the sensitivity of NPP in JULES 

(Joint UK Land Environment Simulator) to the canopy radiation scheme, and therefore light 

levels. Mercado et al. (2007) also demonstrated the sensitivity to top leaf values of Vcmax but 

relative insensitivity to the scaling of Vcmax through the canopy.  

Chapter 4 demonstrated that SDGVM under-predicted leaf nitrogen and had low 

parameterisation of Vcmax (and hence Jmax) at the Oak Ridge and Duke FACE experiments 
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located in the south-eastern US. It was also shown that PAR was over-predicted by SDGVM 

at Oak Ridge and Duke and that model predictions of NPP were highly sensitive to changes in 

these variables. Accurate PAR, canopy nitrogen and photosynthetic rate limiting parameters 

significantly improved the simulation of NPP in SDGVM.  

The photosynthesis scheme is at the heart of SDGVM, driving Net Primary Productivity 

(Chapter 4) and water use efficiency (De Kauwe et al. In Prep). Driving the photosynthesis 

scheme are Photosynthetically Active Radiation (PAR—a model forcing variable), canopy 

nitrogen and the relationships of the Farquhar et al. (1980) model rate limiting parameters 

—Vcmax and Jmax—to leaf nitrogen (Chapter 3). 

This Chapter assesses the impact of updated Vcmax and Jmax parameterisation, higher leaf 

nitrogen and short wave radiation driving data in SDGVM on a global scale and in response 

to future CO2 and climate change projections. The impact on the global carbon cycle of leaf 

phosphorus as a variable in the empirical calculation of Vcmax and Jmax was also assessed, to 

our knowledge for the first time. In contrast to Kattge et al. (2009) and Bonan et al. (2011b) 

who set Vcmax and Jmax as a PFT specific parameter, the study in this Chapter used an 

empirical approach (Reich et al. 2007, Ordonez et al. 2009) within the model to 

prognostically simulate leaf trait values. Top leaf values of nitrogen and phosphorus were 

based on empirical functions of climate (irradiance and precipitation) and soil carbon to 

nitrogen ratio. Subsequently leaf nitrogen and phosphorus were used in empirical equations 

of Vcmax as determined in Chapter 5. As Jmax was calculated as a function of Vcmax, leaf 

nitrogen and phosphorus also had an impact on Jmax.  

Chapter 4 demonstrated that in the South-Eastern US, SDGVM under-predicted Vcmax and it 

was proposed that this under-prediction compensated for over-prediction of PAR by 

SDGVM. This Chapter tests this in global scale simulations by correcting the under-prediction 

of Vcmax (and Jmax) using a trait regression method, and drives SDGVM with a global PAR 

dataset. It is hypothesised that SDGVM will over-predict GPP with the new Vcmax scheme but 

this will be corrected by using the new PAR dataset. 

This Chapter investigates how the evolution of atmospheric carbon is affected by the new 

Vcmax parameterisation and the PAR dataset, asking the question: does improved 

representation of Vcmax and PAR improve our confidence in predictions of the carbon cycle 

over the coming century? Confidence in predictions of the carbon cycle is assessed by 
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comparing simulated GPP and plant biomass with observed datasets. Soil carbon pools and 

dynamics are also analysed. 

Key to the simulated trajectory of atmospheric CO2 will be the capacity of the terrestrial 

biosphere to sequester carbon in biomass (Houghton 2009). This Chapter compares SDGVM 

predictions of biomass with a number of global biomass datasets and asks whether 

corrected Vcmax and PAR improve the simulation of biomass. To explain errors in biomass 

predictions, general relationships between biomass and GPP, biomass and NPP and the 

autotrophic respiration fraction of GPP and temperature were compared with observed 

datasets. 
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Methods 

The 7th June 2007 version of SDGVM was used as the baseline model for comparison and for 

investigation of alternative methods to simulate PAR, canopy nitrogen and the Vcmax and Jmax 

parameters. SDGVM was coupled to the Integrated Model Of Global Effects of climatic 

aNomalies (IMOGEN) (Huntingford and Cox 2000) General Circulation Model (GCM) 

analogue to generate scenarios of future climate change based on the patterns projected by 

a number of GCMs.  

IMOGEN uses an energy balance model to predict global temperature change based on the 

increase of CO2 and other greenhouse gases. Huntingford et al. (2010) showed that for a 

given GCM the predicted change in a climatic variable at a particular point on the globe was 

related to the predicted change in global temperature by a linear approximation. With a 

baseline climate and globally gridded fields of the relationship between a climatic variable 

and global temperature increase, IMOGEN mimics the climate predictions of a GCM at a 

fraction of the computational expense. Global temperatures predicted by IMOGEN are 

driven by global values of atmospheric CO2 which are augmented annually by the sum of a 

CO2 emissions scenario, the SDGVM predicted terrestrial biosphere CO2 flux and the CO2flux 

from a simple ocean model. IMOGEN couples the SDGVM CO2 flux with predicted climate 

change which allows for feedback between the carbon-cycle and climate change, but not 

other land surface processes (e.g. evapotranspiration/latent heat flux).  

Modification of SDGVM 

Vcmax, Jmax, leaf nitrogen and leaf phosphorus 

For the revised version of SDGVM (SDGVM-Vc) leaf nitrogen, phosphorus, Vcmax and Jmax 

were simulated using a leaf trait regression method. All leaf traits were calculated on an area 

basis and for the topleaf. For SDGVM, Vcmax and Jmax were already calculated using trait 

regression (Eq 4-5 & 4-6) and SDGVM-Vc used the empirical, linear equations, determined in 

Chapter 5, to calculate new values of Vcmax and Jmax. Vcmax was calculated as a function of leaf 

nitrogen and leaf phosphorus, and Jmax was calculated as a function of Vcmax: 

𝑉𝑐𝑚𝑎𝑥 =  𝑒 3.96+0.78 ln 𝑁 +0.12 ln 𝑃 +0.19 ln 𝑁 ln 𝑃   

  (6-1) 
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𝐽𝑚𝑎𝑥 =  𝑒(1.51+0.79ln⁡(𝑉𝑐𝑚𝑎𝑥 )) 

  (6-2) 

Where Vcmax and Jmax are the maximum carboxylation velocity of RuBisCO and the maximum 

rate of electron transport (µmol m-2 s-1);N is leaf nitrogen (gm-2) and P is leaf phosphorus in 

(gm-2).Leaf nitrogen and leaf phosphorus were calculated in SDGVM-Vc using empirical 

relationships to the soil carbon to nitrogen ratio, mean annual short wave radiation and 

mean annual precipitation updated from the Ordonez et al. (2009) data: 

𝑁 = 10(−14.03+4.00 log  𝑀𝐴𝑃 +7.94 log  𝐶:𝑁𝑠 +0.05MASWR −𝑖𝑛𝑡1−𝑖𝑛𝑡2−𝑖𝑛𝑡3) 

  (6-3) 

𝑃 = 100.67 log  𝑁 −0.37log ⁡(𝑀𝐴𝑃)) 

  (6-4) 

Where:- 

𝑖𝑛𝑡1 =  1.87 log 𝑀𝐴𝑃 log 𝐶:𝑁𝑠  

  (6-5) 

𝑖𝑛𝑡2 =  0.01 log 𝑀𝐴𝑃 𝑀𝐴𝑆𝑊𝑅 

  (6-6) 

𝑖𝑛𝑡3 =  0.01 log 𝐶:𝑁𝑠 𝑀𝐴𝑆𝑊𝑅 

  (6-7) 

where MAP is the 10 year mean annual precipitation (mm), C:Ns is the soil C:Nratio and 

MASWR is the 30 year mean annual downwards shortwave radiation (Wm-2). Soil carbon to 

nitrogen ratio was obtained from the ISRIC-WISE soils database (ver3.0) (Batjes 2005). 

Ordonez et al. (2009) used mean annual short wave radiation from New et al. (1999), 

obtainable from IPCC (2011), in their regression analysis and so these data were used in this 

study. To avoid extrapolation of the Ordonez et al. (2009) equations, they were only applied 

in the model when the independent variables of the equations fell within the calibration 

range of these variables. In practice, at sites where shortwave radiation exceeded 192 Wm-2 

or precipitation fell short of 300 mm yr-1, the default SDGVM method was used to calculate 

leaf nitrogen and Vcmax. Effectively this exclusion removed the desert regions of the world 
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from having leaf nitrogen etc calculated using the trait regression method (Figure 6-1). As 

climate changed over the years of the experiment, SDGVM-Vc sites could switch between 

the original and the trait regression method but in practice there was little change. 

 

Figure 6-1. Gridpoints which used either the SDGVM default method (red) or the trait 
regression method (blue) to calculate leaf nitrogen and Vcmax in 2010. 

 

Chapter two showed that a general plant response to increased CO2 was a decrease in leaf 

nitrogen concentration and a decrease in leaf nitrogen per unit area. To simulate this effect, 

an empirical equation was derived from the meta-analysis in Chapter two. When broken 

down by plant functional type (PFT), only leaf nitrogen in grasses was significantly affected 

by elevated CO2 so the function was fit only to grasses. Leaf nitrogen for grasses was 

calculated as: 

𝑁𝑔 = 𝑁(1.2144 − 0.0056𝐶𝑎)  

  (6-8) 

Where Ng is top-leaf nitrogen for grasses and Ca is atmospheric CO2 (Pa). The function 

preserved leaf nitrogen at a CO2 concentration of 38Pa dropping to 0.89 at a CO2 

concentration of 57.5 Pa. For comparison, a reduction in leaf nitrogen across all PFTs was 

implemented using the 4% reduction calculated in Chapter two: 

𝑁 = 𝑁(1.0780 − 0.0021𝐶𝑎) 

  (6-9) 
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Lloyd et al. (2010) demonstrated the similarity of canopy nitrogen and canopy phosphorus 

scaling. Therefore, canopy nitrogen and phosphorus were calculated from LAI and top leaf 

nitrogen, or phosphorus, by an inversion of the Beer’s Law canopy scaling function assuming 

a linear relationship of leaf nitrogen to light (Haxeltine and Prentice 1996). Although Lloyd et 

al. (2010) showed that the coefficient of the scaling function was likely to be somewhat 

lower than the Beer’s Law coefficient, investigating canopy scaling was not the purpose of 

this study and the Beer’s Law coefficient was maintained for consistent comparison with the 

standard version of SDGVM. 

Short wave radiation forcing data 

SDGVM normally calculates short wave radiation as a function of latitude and in Chapter 3 it 

was shown that, at the two simulated FACE sites located in the south eastern US, SDGVM 

over-predicted Photosynthetically Active Radiation (PAR). As described above, the leaf trait 

regressions of Ordonez et al. (2009) were based on the New et al. (1999) dataset of 

downward short wave radiation, therefore these data were necessary to accurately predict 

leaf nitrogen according to Ordonez et al. (2009). The globally gridded downward shortwave 

dataset from New et al. (1999), available to download at (IPCC 2011), was used as the 

baseline for IMOGEN, from where it was used to drive SDGVM. Figure 6-2 shows the 

difference between the SDGVM calculation of downwards short wave radiation and the New 

et al. (1999) dataset.  

The New et al. (1999) dataset provides monthly mean shortwave radiation. To smooth daily 

shortwave radiation from the stepped monthly values the mean preserving interpolation 

algorithm of Rymes and Myers (2001) was used. The algorithm uses recursive averaging to 

smooth the data and correction to preserve the mean. Initially the daily values within a 

month were set to the mean monthly values. The algorithm then cycled through each day as 

follows: 

  

𝑆𝑊𝑅(𝑚 𝑑)𝑖+1 =  
𝑆𝑊𝑅(𝑚 𝑑−1)𝑖 +  𝑆𝑊𝑅 𝑚 𝑑 𝑖 +  𝑆𝑊𝑅 𝑚 𝑑+1 𝑖

3
 

  (6-10) 
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Where SWR(m d)i is the value of shortwave radiation on day d in month m and iteration step i. 

The daily data over a given month were corrected by the mean deviation from the initial 

monthly mean value: 

𝐶𝑚 =   (𝑆𝑊𝑅𝑚 − 𝑆𝑊𝑅𝑚 𝑑)/360

𝑛

𝑑=1

 

  (6-11) 

Where Cm is the correction for month m, SWRm is the original mean value of short wave 

radiation in month m, n is the number of days in month m (for SDGVM in global monthly 

climate mode this happens to be 30 for all months) and SWRm d are the daily values of 

shortwave radiation in month m. 360 is the total number of days in the SDGVM year. The 

final step of the algorithm applied the correction, Cm, to the daily values: 

𝑆𝑊𝑅𝑚 𝑑 = 𝑆𝑊𝑅𝑚 𝑑 +  𝐶𝑚  

  (6-12) 

The iteration was carried out for the number of daily values in the year, in this case 360. 

Global simulations 

Simulations were run on a 3.75o x 2.5o grid. For each modified version of SDGVM a separate 

spin up run was conducted over 500 years. Land cover was fixed using the GLC2000 database 

(GLC2000 database 2003), interpreted for the SDGVM Plant Functional Types (PFTs) 

(Appendix B). CO2 concentration was fixed at 28.60 Pa. All spin-ups used the 1901–1910 

mean monthly precipitation, temperature and humidity of the CRU dataset (New et al. 

2000). Downwards shortwave radiation was either calculated by SDGVM as a function of 

latitude or forced using the New et al. (1999) data, as appropriate to the configuration of the 

model.  

Transient simulations were run from 1860–2100 forcing IMOGEN-SDGVM with historical 

fossil fuel and land-use change CO2 emissions until 2010 from the CDIAC database (Boden 

2011). Ten variants of the model were run to test the effects of the new leaf trait and 

photosynthesis schemes. The original model (SDGVM) and the new model (SDGVM-Vc) were 

run three times, each with no decrease in leaf nitrogen due to CO2 (SDGVM/SDGVM-Vc 

none), a decrease of leaf nitrogen in grasses only (SDGVM grass/SDGVM-Vc) and a decrease 
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of leaf nitrogen in all PFTs (SDGVM all/SDGVM-Vc all) according to the linear equations 

above. Four runs were conducted with leaf trait schemes that were intermediate between 

the standard version of SDGVM and the modified version; two with short wave radiation 

calculated by SDGVM, one with the standard SDGVM nitrogen calculation and modified Vcmax 

calculation (newV) and another with both nitrogen and Vcmax calculated by the modified 

scheme (newNV) and two with the New et al. (1999) data, one with the standard SDGVM 

nitrogen calculation and modified Vcmax calculation (newSWV) and another with both 

nitrogen and Vcmax calculated by the original SDGVM scheme (newSW). 

Simulations for the ten variants in model structure were conducted using the SRES A1F1 CO2 

emissions scenario (Nakicenovic et al. 2000) from 2010–2100 as we are currently following 

this emissions trajectory (Le Quere et al. 2009). The HadGEM1 climate patterns were used to 

predict climate in these runs as this represents a more up-to-date GCM version than 

HadCM3, the GCM pattern model used in previous IMOGEN studies (Sitch et al. 2008, 

Huntingford et al. 2009). 

In a climate prediction uncertainty analysis SDGVM and SDGVM-Vc were run using two 

emissions scenarios—SRES A1F1 & B2 (Nakicenovic et al. 2000) and the patterns from six 

GCMs—BCCR-BCMv2.0, CSIRO-mk3.5, MPI-ECHAM5, NCAR-CCSM3.0, UKMO-HadCM3 and 

UKMO-HadGEM1—derived by Zelazowski et al. (2011). The GCM patterns were chosen to 

give a representative range of the uncertainty in prediction of temperature and precipitation 

change (Appendix C).  

Validation data and statistics 

Climate data and productivity data from Earth’s major forest biomes were taken from Tables 

3–5 in Luyssaert et al. (2007). Mean annual temperatures were not presented by Luyssaert 

et al. (2007), only mean summer and winter temperatures. Mean annual temperatures were 

calculated as the mean of the summer and winter temperature for the Luysseart et al. (2007) 

data based on the assumption that spring and autumn temperatures add little variability to 

the mean annual temperature. Plant biomass was calculated as the sum of aboveground and 

belowground biomass and due to correlation between the two, the standard deviation of 

the aboveground biomass was used as the standard deviation for total plant biomass.  

Due to the non-normal distributions of climate data and model outputs (Appendix D), 

Spearman’s rank correlations and partial correlations (ρ) were used to establish correlations 
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between climate data and model outputs. All figures relating to carbon pools and fluxes are 

presented in carbon units. 
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Results 

Revised short wave radiation & photosynthetic parameters 

In comparison with the New et al. (1999) dataset, SDGVM over-predicted shortwave 

radiation across almost all regions of the globe (Figure 6-2). Globally, SDGVM over-predicted 

incident shortwave radiation by 6.5 PW or 32%. Regions especially affected were most of the 

tropics, particularly the rainforest regions, and south eastern China. Figure 6-2 clearly shows 

an over-prediction of >100 Wm-2, or nearly 100%, in short wave radiation over the rainforest 

regions of the world. The over-prediction was due to the simple cloud cover scheme 

adopted by SDGVM due to the complexity of data needed to accurately simulate the 

interaction of cloud with radiation and the importance of solar zenith angle (Kazantzidis et 

al. 2011) which is not applicable to a model with a daily timestep. Indeed, the New et al. 

(1999) data were derived using a model and appears to be low in comparison with another 

global calculation of incident shortwave radiation (Hatzianastassiou et al. 2005). 

Figure 6-2. Global downwards short wave radiation as calculated by SDGVM (left) and 
by (New et al. 1999) (right). 

However, simulation of GPP was unchanged by driving SDGVM with the New et al. (1999) 

dataset (124.1 Pg compared to 126.7 Pg— 

Figure 6-3). The revised parameterisation of Vcmax and Jmax resulted in a large increase in 

these variables, more so for Vcmax, leading to a very large increase in global GPP from 124.1 

Pg to 213.4 Pg from SDGVM to newV. Simulated GPP was reduced, but only to 192.2 Pg in 

newSWV. The majority of the reduction in GPP was in the tropical rainforest regions where 

SDGVM strongly over-predicted incident short wave radiation.  



163 
 

No change in GPP from SDGVM to the newSW simulation (Figure 6-3) demonstrates that 

SDGVM was not light limited in its standard configuration. It was not possible to disentangle 

the effect of Vcmax on Jmax and the consequent impact of Jmax on GPP. However, the large 

intercept of the Wullschleger (1993) Jmax to Vcmax relationship (which SDGVM uses by default) 

and the low values of Vcmax as predicted by SDGVM, meant that values of  Jmax were relatively 

much larger than Vcmax in the standard version of SDGVM than with the new 

parameterisations of these photosynthetic variables. Given low values of leaf nitrogen in 

SDGVM (Figure 6-4) and  the relatively insensitive parameterisation of Vcmax to leaf nitrogen 

(low slope coefficient), it appears that Vcmax was limiting photosynthesis in SDGVM and 

newV. However, once Vcmax became more realistic light became an important limiting factor, 

particularly in the tropics. 

 

Figure 6-3. Global GPP in 2010 simulated by SDGVM in its default state (topleft); with 
the (New et al. 1999) shortwave radiation data (topright); with the revised relationship 
of Vcmax to leaf nitrogen and Jmax to Vcmax (bottomleft) and both the revised 
photosynthetic parameters and the (New et al. 1999) dataset (bottomright). 
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Model prediction of leaf nitrogen and phosphorus 

With its standard canopy nitrogen scheme, SDGVM predicted maximum top-leaf nitrogen 

around 1.5 gm-2 which compares with observations from the TRY database of mean leaf 

nitrogen values by biome of 1.4 to 3.1 gm-2 with maxima above 6 gm-2 (Kattge et al. 2011). 

As demonstrated in the previous section these low values of leaf nitrogen contributed to a 

large insensitivity to light of SDGVM. 

Leaf nitrogen concentrations in SDGVM-Vc were increased by the trait regression method, 

especially in northern Russia, Scandinavia, Eastern Canada and much of the tropics, 

particularly Amazonia (Figure 6-4). Consequently, Vcmax and Jmaxof SDGVM-Vc were much 

higher in these regions although this was against a general background of increased Vcmax 

and Jmax. Maximum top-leaf values of Vcmax were below 20 µmol m-2 s-1 for SDGVM, while 

SDGVM-Vc predicted values up to 60 µmol m-2 s-1. The difference in Jmax was less apparent 

due to the high intercept term of the Wullschleger (1993) equations (Equation 4-6) 

compared to the intercept used in SDGVM-Vc.  

Top-leaf values of phosphorus were predicted between 0.04 and 0.2 g m-2 and showed 

similar distribution to leaf nitrogen in the temperate regions. In the tropics, leaf phosphorus 

was low, particularly in the Asian tropics. This had some impact on Vcmax predictions, 

lowering Vcmax in the tropics compared to expectations based solely on leaf nitrogen 

(compare south east China with the Asian tropics in Figure 6-4). Due to the lack of a global 

soil phosphorus map, leaf phosphorus was simulated as a function of leaf nitrogen and mean 

annual precipitation (Equation 6-4). Poor prediction of leaf phosphorus in the tropics was 

likely a result of using empirical equations that were not a function of soil 

phosphorus(Ordonez et al. 2009). 

Prediction of current GPP, respiration and NPP 

SDGVM-Vc predicted global GPP at 150 Pg C yr-1, 25.8 Pg C (20.8%) higher than SDGVM 

(Figure 6-5). NPP was predicted at 82.1 Pg C yr-1 and this was 15.7 Pg C (23.6%) higher than 

SDGVM. Plant respiration (less canopy respiration) was 9.7 Pg C yr-1 (19.7%) higher in 

SDGVM-Vc and canopy respiration was 8.6 Pg C yr-1 for SDGVM and 9 Pg C yr-1 for SDGVM-Vc 

(4.7% higher than SDGVM). The predicted increase in GPP of 192.2 Pg C yr-1 by the newSWV 

simulation was far higher than that of SDGVM-Vc, the only major difference between the 

two model runs being that nitrogen in SDGVM-Vc was calculated using the trait regression. 
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Figure 6-4. Global values of topleaf nitrogen (top panels), topleaf phosphorus (centre 
panel) and Jmax (bottom panels) as predicted in 2010 by SDGVM in its standard form 
(left panels) and with the revised parameterisation determined in Chapter 4 (right 
panels). Values are annual means for the top leaf and Vcmax values are at 25oC and are not 
adjusted for leaf age or soil water stress. Missing values of leaf phosphorus are because 
SDGVM has no default method to calculate leaf phosphorus. 
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Figure 6-5. Predictions of GPP (upper panels), NPP (middle panels) and plant 
respiration (not including canopy night time respiration—lower panels) in 2010 by 
SDGVM (left panels) and SDGVM-Vc (right panels). 
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SDGVM optimises carbon gain by incrementing maximum LAI up or down based on the 

carbon balance of the previous year’s lowest leaf layer. In the light limited lower canopy, 

high nitrogen causes higher respiration without increasing assimilation and therefore 

decreases the optimal LAI. LAI was significantly lower in the tropics for SDGVM-Vc compared 

with newSWV (Appendix F) and therefore GPP was lower for SDGVM-Vc, mainly in the 

tropics. 

Projections of CO2 increase 

The various versions of the model predicted atmospheric CO2 concentrations in 2010 with a 

range from 377–405 µmol mol-1 (Figure 6-6). SDGVM predicted atmospheric CO2 at the 

lower end of the range with 385 µmol mol-1 while SDGVM-Vc predicted CO2, at the highest 

value of all the model versions, at 405 µmol mol-1. By 2100 the predicted range was from 

987–1155µmol mol-1 with SDGVM predicting 992µmol mol-1and SDGVM-Vc 1155 µmol mol-1. 

All the SDGVM-Vc runs were similar in their predictions of CO2 concentrations as were all of 

the SDGVM runs until a third of the way into the 20th century where SDGVM (with no down-

regulation of nitrogen) began to sequester CO2 at a greater rate than all of the other models.  

The insets in Figure 6-6 show that all the models with the new nitrogen calculation 
scheme were in the upper range of predicted CO2 values indicating that canopy nitrogen 
was a major driver of net CO2 exchange. Contrary to expectations, higher canopy 
nitrogen led to decreased sequestration of carbon by terrestrial vegetation (and this is 
discussed below). Variability within the range of predictions from models using the 
same nitrogen scheme was caused by the different radiation fields (inset Figure 6-6). As 
expected, the higher predictions of incident short wave radiation by SDGVM caused 
greater draw-down of carbon by global vegetation than the New et al. (1999) radiation 
fields. Despite much greater values of GPP in the newV simulations ( 

Figure 6-3), predicted CO2 increase by newV was very similar to that of SDGVM indicating 

that autotrophic and heterotrophic respiration were largely driven by GPP and that there 

may be a maximum rate of CO2 drawdown, a rate largely independent of GPP and 

dependent upon the internal structure and parameterisation of the model. Key 

determinants within the model would be parameters and structure that influence residence 

times of carbon such as the fractions of live biomass required for maintenance respiration 

and the minimum biomass increment of the self-thinning algorithm.  
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Figure 6-6. CO2 increase from 1860–2100 as predicted by IMOGEN and various 
configurations of SDGVM driven with the A1F1 emissions scenario and Had-GEM1 
climate change patterns. CO2 trajectories in the main panel are coloured by model 
configuration. Trajectories in the inset are coloured by model configuration, the upper 
panel showing models that use the standard short wave radiation calculation and the 
(New et al. 1999) dataset and the lower panel showing models that use the default leaf 
nitrogen calculation and the revised leaf nitrogen calculation (newN). Hidden by the 
other lines, the black (newSWV), orange (SDGVM grass) and blue (SDGVM all) lines lie 
under the pink line (newSW). 

Figure 6-7. CO2increase from 1860–2100 as predicted by IMOGEN and either SDGVM or 
SDGVM-Vc. Simulations were driven with either the A1F1 or the B2 emissions scenario 
and the climate change patterns from 6 GCMS. CO2 trajectories in the main panel are 
coloured by the GCM pattern. Trajectories in the inset are coloured by model and 
emissions scenario. 
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Table 6-1. Mean and range of predicted atmospheric CO2 in 2100 by model version and 
emissions scenario. 

model Emissions Scenario mean range 

SDGVM A1F1 988 42 

 B2 661 22 

SDGVM-Vc A1F1 1182 74 

 B2 768 55 

 

The CO2 emissions scenario was the main determinant of variability in predictions of CO2 

increase in the uncertainty ensemble. The ensemble predicted mean CO2 (±1SD) in 2100 at 

1052 ± 100 µmol mol-1 for the A1F1 scenario and 714 ±59 µmol mol-1 for the B2 scenario. 

When analysed by model, mean CO2 was 824 ±171 µmol mol-1 for SDGVM and 905 ±209 

µmol mol-1 for SDGVM-Vc, 

Biomass accumulation 

Carbon in grass and crop biomass has a shorter residence time than in trees and as 

expected, plant biomass was higher at sites dominated by tree PFTs across all years of the 

simulation (Figure 6-8). Sites dominated by grass PFTs showed little change in biomass over 

the years of the simulation. For this reason, most of the following results and discussion 

focus on sites dominated by tree PFTs.  

Due to higher GPP, SDGVM-Vc simulated global plant biomass 337 Pg higher than SDGVM, 

putting the predictions of SDGVM-Vc outside the range of global vegetation carbon stocks 

estimated by (Houghton et al. 2009) (Table 6-2) and approaching three times the global 

forest carbon stock estimate of the Global Forest Resource Assessment (GFRA—FAO 2010). 

SDGVM-Vc simulated biomass 50 Pg higher than SDGVM in the tropics putting SDGVM-Vc 

outside the estimated range of Houghton et al. (2009) and again far higher than the GFRA 

estimate, while SDGVM was at the upper end of the Houghton et al. (2010) and Saatchi et al. 

(2011) estimates but 50% higher than the GFRA estimate. 

Most of the difference in biomass prediction between the two models was in the northern 

latitudes (>45o latitude) where SDGVM-Vc predicted vegetation biomass 212 Pg higher than 

SDGVM. The prediction of biomass in the northern latitudes by SDGVM-Vc was over 250 Pg 

higher than GFRA and McGuire et al. (2010) estimates of biomass in northern latitudes 

(Table 6-2). 
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High northern latitude biomass in SDGVM-Vc was a consequence of higher leaf nitrogen, 

Vcmax and therefore productivity. The over-prediction of northern latitude biomass by 

SDGVM-Vc yet reasonable simulation by SDGVM supports the negative feedback on plant 

nitrogen caused by increasing organic soil carbon (Woodward et al. 1995). However, leaf 

nitrogen values of SDGVM-Vc in the north were similar to those of Kattge et al. 

(2009)suggesting that the soil carbon feedback on plant nitrogen in SDGVM may be 

misrepresenting stoichiometric nitrogen limitation with photosynthetic nitrogen limitation. 

Also at these northern sites SDGVM and SDGVM-Vc inaccurately simulate the respiration 

fraction of GPP and this is discussed below.  

The relationship of biomass to productivity 

For tree sites, simulated biomass was shown to increase in a linear fashion with GPP (Figure 

6-9) and the sensitivity of the relationship in the SDGVM-Vc simulation varied by PFT, 

particularly for evergreen broadleaved trees. Biomass also followed a linear trend with NPP 

for both simulations. The different relationships between biomass and GPP across PFTs in 

the SDGVM-Vc simulation was not apparent in the relationships of biomass to NPP, 

indicating that it was differences in plant respiration which accounted for the variation in 

relationships to GPP. Causes of variability in PFT respiration will be discussed below. Biomass 

in SDGVM (and SDGVM-Vc etc) is the result of flows into the biomass pool, namely NPP, and 

flows out of the biomass pool by mortality. Therefore steady-state biomass is determined by 

the simple equation: 

𝐵 =   𝑁𝑃𝑃 × 𝑀𝑅𝑇  

where B is biomass and MRT is the mean residence time of the biomass pool in question. 

Wood biomass is the major biomass pool due to the long MRT compared with that of leaves 

and roots (in SDGVM only fine roots are considered roots) and the MRT of wood is 

determined by wood mortality. In SDGVM wood mortality is caused by age and self thinning 

(described in Chapter 1). 

An increase in NPP will lead to a new equilibrium biomass and that was demonstrated by the 

linear trend of simulated biomass to NPP. The global, linear trend suggests that NPP was the 

main driver of biomass at a site and was more important than tree height and density in 

determining equilibrium biomass. Over the years of the simulation, the response of biomass 
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to NPP did not appear to saturate although there did appear to be a drop in biomass at some 

evergreen needleleaved sites by 2100 (Figure 6-9 & Figure AE-1). 

 

Table 6-2.Estimates and predictions of vegetation carbon pools. All values are in Pg C 
and except where stated are for above and below ground biomass. Unless stated, 
estimated values are for tree/forest biomass only while simulated values are for the sum 
of forests, grasslands and croplands. Values in parentheses in the tropics are for 
Amazonia only. * – values for temperate and boreal forests, and boreal forests only in 
square brackets; † – Northern hemisphere value; ‡ – cryosphere values (>50o in the 
Americas and >45o in Europe and Asia) including non-tree biomass; ₣ –values are for 
aboveground biomass only. Data from Goodale et al. (2002), Malhi et al. (2006), 
Houghton et al. (2009), McGuire et al. (2010) and Saatchi et al. (2011).  Goodale et al. 
(2002) and McGuire et al. (2010) provide values for northern latitudes and Europe 
while Malhi et al. (2006) and Saatchi et al. (2011) provide values in the tropics. 

Region Estimate Model Year    

 
 

GFRA Houghton 
Saatchi/ 
Goodale 

Malhi/ 
Mcguire  

2000 1860 2100 change Model 
difference 

Change in 
last decade 

Tropics 203 
(74) 

175-340 222-271 
(105-134) 

(83-92) 
₣
 SDGVM 294 

(145) 
243 

(121) 
441 

(202) 
198 (81)  7 (0) 

   SDGVM-Vc 344 
(167) 

311 
(150) 

412 
(197) 

101 (47) 97 (34) 0 (-4) 

            
North 79 63-195 

[55]* 
90

†
 60-70 

‡
 SDGVM 115 95 182 77  6 

    SDGVM-Vc 327 290 383 93 -16 -5 
            

Europe 11 na 8.7  SDGVM 45 39 49 10  -2 
     SDGVM-Vc 120 113 81 -32 42 -10 
            

Globe 293 387-650   SDGVM 484 402 733 331  16 
     SDGVM-Vc 821 742 952 210 121 -6 

 

With notable exceptions, the simulated biomass to GPP or NPP relationships compared well 

with a comprehensive observed dataset (Luyssaert et al. 2007) of carbon pools and fluxes 

across the global range of forest biomes (Figure 6-9). The standard deviation of the 

observations for each biome was far higher for biomass than for GPP or NPP suggesting that 

although a global relationship between biomass and GPP and NPP may exist, there are likely 

to be more important factors affecting biomass variability within a particular biome. The 

biomass data also compared well with the dataset of Keeling and Phillips (2007). Keeling and 

Phillips (2007) show a hump-backed, quadratic relationship between biomass and NPP while 

for SDGVM the relationship is linear. However, the maximum biomass of the Keeling and 

Phillips (2007) relationship is at NPP values around 2400 gm-2 and the maximum NPP 

simulated by SDGVM is around 1500 gm-2; the Keeling and Phillips (2007) relationship is 

similar to the SDGVM relationship for values of NPP up to 1500 gm-2.  
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In comparison with global FLUXNET data, SDGVM-Vc over-predicted tropical GPP. However, 

in comparison with the Luyssaert et al. (2007) dataset both SDGVM and SDGVM-Vc under-

predicted GPP and over-predicted the biomass response to GPP of evergreen broadleaved 

trees in comparison with observations of the tropical humid evergreen biome. Both models 

over-estimated NPP for tropical humid evergreen forests. Other evergreen biomes of 

Luyssaert et. al. (2007)—temperate semi-arid evergreen and Mediterranean evergreen—are 

not categorised as broadleaved evergreen by GLC2000 (Appendix B) but observations for 

these biomes did fall within the overall spread of simulated data. 

SDGVM under-predicted GPP and was in the lower range of NPP and biomass observations 

for deciduous needleleaf forest (boreal semiarid deciduous in the Luyssaert et al. 2007 

classification), while SDGVM-Vc fell within the observed range of GPP but over-predicted 

biomass and NPP. As with sites predominantly composed of the tropical evergreen PFT, the 

ability to capture only GPP or NPP suggested a misrepresentation of respiration for 

deciduous needleleaf sites. That deciduous needleleaf biomass and NPP were accurately 

simulated by SDGVM was demonstrated by Quegan et al. (2011) and their estimates are 

similar to those of Luyssaert et al. (2007). However, Quegan et al. (2011) do not present 

estimates of GPP and it may be that SDGVM was capturing NPP and biomass at the expense 

of accurate GPP simulation. 

Evergreen needleleaves were represented by three of the biome classifications of Luyssaert 

et al. (2007)—boreal humid evergreen, boreal semiarid evergreen and temperate humid 

evergreen. SDGVM predicted the range of GPP and NPP at these sites well and captured the 

low biomass of the boreal sites, however biomass was predicted below the observed mean. 

On the other hand SDGVM-Vc reasonably captured GPP and biomass for the temperate 

evergreens (somewhat over-predicting NPP) but strongly over-predicted biomass, NPP and 

GPP of the boreal sites.  

Both SDGVM and SDGVM-Vc simulated a strong linear dependence of the fraction of GPP 

allocated to autotrophic respiration on mean annual temperature, and the relationship was 

invariant across PFTs (Figure 6-10) i.e. the temperature sensitivity of RuBisCO kinetic 

parameters did not offset the increase in respiration due to temperature. Maintenance 

respiration (of root and stem biomass) is simulated as a fraction of live biomass (invariant 

across PFTs) and temperature. Canopy maintenance respiration is simulated as a function of 
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canopy nitrogen. Canopy respiration was a smaller fraction of overall respiration and hence 

the strong global relationship of the respiration fraction of GPP to temperature was 

expected.  

As indicated by the Luyssaert et al. (2007) data in Figure 6-9, respiration was not accurately 

simulated for boreal or tropical evergreen forests. In particular, the fraction of GPP allocated 

to respiration was inaccurate, highlighted in the boreal zone by the ability of SDGVM to 

accurately simulate biomass while over-predicting NPP and under-predicting GPP. The 

comparison of the respiration fraction of GPP as a function of temperature shows that both 

versions of the model strongly under-predicted the respiration fraction of GPP at cold boreal 

sites, especially the semi-arid and deciduous sites (Figure 6-10).  

Both models under-predicted GPP for the tropical evergreen humid sites of Luyssaert et al. 

(2007) yet over-predicted NPP. Figure 6-10 shows that the respiratory fraction of GPP was 

under-predicted by both models but not as severely as at arid boreal sites. However, there 

were a number broadleaved evergreen sites where it appears that the general respiratory 

fraction to temperature relationship of the model did not apply and it was these sites where 

NPP was most strongly over-predicted. Even the revised photosynthesis parameterisation of 

SDGVM-Vc could not predict GPP observed by Luyssaert et al. (2007). Given the relatively 

slight reduction necessary for models to meet NPP observations and reasonable prediction 

of biomass, the measured GPP of Luyssaert et al. (2007) may be high. Indeed, their estimate 

of the mean at 3551 g C m-2yr-1appears to be high when compared with other estimates of 

GPP from FLUXNET data (Beer et al. 2010, Bonan et al. 2011b, Jung et al. 2011). The 

measurement scales are different between Luyssaert et. al. (2007) and Jung et. al. (2011) 

and the coarser resolution of the global grid generated by Jung et. al. (2011) would lead to 

reduction of high point-values of GPP. Despite this the mean Luyssaert et. al. (2007) value of 

3551 g C m-2 yr-1 seems high. 
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Figure 6-8.Distribution of plant biomass simulated by 
SDGVM and SDGVM-Vc broken down by PFT 
dominance and simulation year. 

Figure 6-9.The relationship of plant biomass to GPP (topleft plots) and NPP (other 3 plots) for SDGVM and 
SDGVM-Vc in 2010 (top panels) and 1860, 2010 and 2100 (bottom panels). Data are taken from sites 
dominated by tree PFTs and are colour coded by SDGVM PFT (based on phenology and leaf type). 
Superimposed on the plots are observed data (mean ±1SD) for various biomes from (Luyssaert et al. 2007) 
colour coded by SDGVM PFT, symbols represent the biome—boreal humid evergreen (yellow squares), 
boreal semiarid evergreen (yellow circles), boreal semiarid deciduous (brown squares), temperate humid 
evergreen (yellow triangles), temperate humid deciduous (green squares), temperate semiarid evergreen 
(red squares), Mediterranean evergreen (red circles) and tropical humid evergreen (red triangles). 
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Figure 6-10. Respiration as a fraction of GPP, broken down by PFT, as simulated by 
SDGVM and SDGVM-Vc. Superimposed on the plots are observed data (mean) for 
various biomes from (Luyssaert et al. 2007) colour coded by SDGVM PFT, symbols 
represent the biome—boreal humid evergreen (yellow squares), boreal semiarid 
evergreen (yellow circles), boreal semiarid deciduous (brown squares), temperate 
humid evergreen (yellow triangles), temperate humid deciduous (green squares), 
temperate semiarid evergreen (red squares), Mediterranean evergreen (red circles) and 
tropical humid evergreen (red triangles). 

By 2100 both models showed a large, and similar, increase in broadleaf evergreen biomass 

and while both models showed an increase in deciduous needleleaf vegetation biomass, 

SDGVM-Vc showed a larger increase (Figure 6-8). The increase in deciduous needleleaf 

biomass in both models was due to increased NPP arising from increased growing season 

length and higher CO2. At evergreen needleleaf and deciduous broadleaf sites biomass 

increased from 1860 to 2010 for SDGVM-Vc but not between 2010 and 2100 (although the 

upper quartile increased for evergreen needleleaf forests) while the opposite was the case 

for SDGVM. All increases in biomass were also associated with increases in the range in 

biomass such that the first biomass quartile only increased between 1860 and 2100 for 

deciduous boreal forests and actually decreased for evergreen broadleaved forests. These 

predictions suggest that deciduous boreal sites and tropical evergreen sites will be the 

strongest carbon sinks for atmospheric CO2 over the coming century although the high land 

area occupied by evergreen needleleaved forests means that they will also be an important 



176 
 

sink. Deciduous boreal biomass increases were due to increases in growing season length 

and although the respiration fraction of GPP compared poorly with the Luyssaert et al. 

(2007) database, GPP prediction by SDGVM-Vc was reasonable and with a revised 

respiration scheme would still predict increases in biomass. 

The increase in biomass by 2100 of evergreen needleleaf trees was within one standard 

deviation of the mean biomass for temperate humid evergreen forests in Luyssaert et al. 

(2007) (Figure 6-9) suggesting that the predicted increases were possible. By contrast, some 

evergreen broadleaved sites were predicted to increase biomass by over two standard 

deviations from the Luyssaert et al. (2007) mean. 

Global biomass trends 

There was a steadily increasing trend in vegetation biomass over the course of the SDGVM 

simulation (Figure 6-11). Rates of biomass accumulation were slower in the SDGVM-Vc 

simulation but SDGVM-Vc started from higher biomass in 1860, leading to higher plant 

biomass in a given simulation year than SDGVM. Higher initial biomass was due to higher 

rates of photosynthesis in the spin-up, resulting from the higher values of Vcmax and Jmax.  

Biomass in both simulations increased with increasing CO2 concentration, and began to 

saturate at high CO2. Biomass increased proportionally with GPP, shown by their linear 

relationship (Figure 6-11), and saturation of biomass in response to CO2 was likely due to the 

saturation of the CO2 effect on photosynthesis, hence GPP. However, for the SDGVM-Vc 

simulation, the relationship between biomass and GPP was not completely linear. There was 

some variability in the response caused by an oscillation in grass growth and mortality 

(Appendix G). More interestingly, global biomass response to GPP showed some saturation 

at values around 950 Pg (Figure 6-11). 

Saturation of biomass accumulation in SDGVM-Vc was not a consequence of feedback at 

higher rates of GPP as both SDGVM and SDGVM-Vc approached 180 Pg yr-1 GPP towards the 

end of the simulation. Global biomass did not saturate, even at 1100+ Pg for the newSWV 

simulation. In the last decade of the SDGVM-Vc simulation, global biomass began to 

decrease, despite a continued increase in GPP. As discussed above, the determinants of 

simulated biomass in 2010 were NPP as calculated by GPP and the respiratory fraction of 

GPP which was a function of temperature. NPP in 2100 was generally higher due to high CO2 

and biomass maintained a linear relationship with NPP at these higher values of NPP. 
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However, there were sites with much lower biomass than expected by their NPP (Figure 6-

9—note in the lower plots the sites with biomass below 10,000 gm-2 and NPP over 1,000 gm-

2).  

These, predominantly evergreen needleleaf, sites appear to have suffered mortality events 

which strongly reduced biomass. These sites were European and the loss in biomass towards 

the end of the SDGVM-Vc simulation was wholly attributable to a dieback of European forest 

(Table 6-2), particularly in Scandinavia (Appendix E). Similar mortality events appear to have 

occurred by 2100 with SDGVM (Figure 6-9) although their impact was not detected globally 

(Figure 6-11) probably as a result of their lower NPP and hence lower biomass ‘expected’ by 

the linear biomass to NPP relationship (Figure 6-9). The Scandinavian dieback was likely due 

to strong decreases in precipitation predicted by the Had-GEM1 model (Appendix C). 

The CO2 concentration at which SDGVM-Vc stopped accumulating and began to lose plant 

biomass indicates a ‘tipping-point’ where biomass accumulation became de-coupled from 

the CO2 response of GPP, possibly readjusting to a new relationship. However, given the 

locality of the dieback in Scandinavia and that the majority of the region’s biomass was lost 

by 2100, the biomass decrease may not continue unless dieback was triggered in another 

region. Had-GEM1 predicts a strong drying of the Amazon and there was a hint of the initial 

stages of Amazon dieback, a subject of much previous study (Cox et al. 2000, Huntingford et 

al. 2004, Huntingford et al. 2008), in SDGVM-Vc and a levelling of the Amazonian biomass 

increase in SDGVM (Table 6-2). 

Soil respiration 

In addition to lower rates of biomass accumulation in SDGVM-Vc, soil carbon decreased by 

the end of the SDGVM-Vc simulation. SDGVM predicted soil carbon in 1860 at 1364 Pg and 

in 2100 at 1494 Pg, a net gain of 130 Pg carbon; while SDGVM-Vc predicted soil carbon in 

1860 at 1966 Pg and in 2100 at 1800 Pg, a net loss of 166 Pg. By the end of the simulation, 

the difference between the two models in soil carbon sequestration was 296 Pg, more than 

double the differences in plant biomass sequestration. Predicted soil carbon stocks by 

SDGVM-Vc were higher than early estimates by Post et al. (1982) who placed global soil 

carbon at 1395 Pg although the upper limit of their cited ‘intermediate’ range was 2070 Pg. 
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Figure 6-11. Global biomass trend in Pg C for SDGVM (upper) and SDGVM-Vc (lower) 
over the course of the simulation (main plot). The relationship of global biomass to 
atmospheric CO2 concentration over the period (inset top) and the relationship of global 
biomass to global GPP over the period (inset bottom).  Note the difference in scale of the 
y-axis. 

More recently, McGuire et al. (2010) placed an estimate of soil carbon in the northern 

cryosphere alone at 1400–1850 Pg. The highest values of soil carbon predicted by SDGVM-Vc 

were in northern regions and reached 50 kg C m-2 which were more than double the highest 

values measured by Lindroth et al. (2008) in Swedish Spruce forest. However, a recent UNEP 

estimate of global carbon distribution suggests that maximum values of soil carbon are 

between 30–105 kg C m-2 and show a distribution similar to that of SDGVM-Vc (Scharlemann 

et al. 2010). 
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The loss of soil carbon in SDGVM-Vc was due to generally higher rates of soil respiration at a 

given GPP (Figure 6-12). Figure 6-12 shows that there was no obvious difference in the 

relationship of soil respiration to the soil carbon pool (on a log-log basis) between the two 

models and the reason for higher soil respiration rates was simply a matter of higher soil 

carbon at sites dominated by tree PFTs. It appeared that higher biomass in SDGVM-Vc was 

leading to higher soil carbon pools. However, the newSWV simulation had higher biomass 

than SDGVM-Vc yet maintained lower values of atmospheric CO2 which indicated that the 

trait regression for simulating canopy nitrogen must have affected soil respiration. 

Correlation analysis showed that for tree dominated sites SDGVM and newSWV had a 

negative correlation between plant biomass and soil carbon and that this correlation was 

removed by SDGVM-Vc (Figure 6-13). The trait regression of SDGVM-Vc removed the 

negative feedback of plant biomass on soil carbon in SDGVM, leading to higher soil 

respiration at high biomass, tree dominated sites and causing increased rates of atmospheric 

CO2 accumulation.  

Plant biomass and soil respiration were decoupled in SDGVM-Vc but not SDGVM nor 

newSWV due to the decoupling of leaf nitrogen from organic soil carbon in SDGVM-Vc. In 

SDGVM high soil carbon decreases plant nitrogen uptake (Woodward et al. 1995) leading to 

decreased rates of photosynthesis which reduces GPP and hence biomass, according to the 

relationship in Figure 6-9, and therefore reducing soil carbon inputs. A negative feedback 

loop exists between plant biomass and soil biomass. Using trait regression decoupled this 

feedback, allowing plant biomass to increase, leading to higher soil carbon at sites where 

plant biomass was a driver of soil carbon. This in turn led to the higher soil respiration rates 

in SDGVM-Vc and consequent higher rates of rising atmospheric CO2. It was likely that the 

increased rates of soil respiration leading to greater rates of CO2 increase and concomitant 

climate change was the factor restricting plant biomass accumulation in SDGVM-Vc. 



180 
 

Figure 6-12. Soil respiration as a fraction of GPP in relation to GPP (top panels), and the 
log-log relationship to soil carbon (bottom panels) for tree and grass dominated sites; as 
predicted by the SDGVM and SDGVM-Vc simulations. 

 

Figure 6-13. Spearman’s rank correlation coefficients  ρ  between vegetation biomass 
and soil carbon for grass dominated sites (left panels) and tree dominated sites (right 
panels) for the SDGVM, SDGVM-Vc and newSWV simulations and across three 
simulation years. 
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Drivers of GPP and plant respiration 

LAI was strongly correlated with NPP and GPP. As mentioned above, LAI is adjusted by 

SDGVM to optimise NPP and therefore carbon fluxes, GPP and NPP, and LAI are highly 

correlated. For this reason LAI was left out of driving variable analyses. 

There were differences between PFT growth habit, either tree or grass/crop, and the 

response of GPP to driving variables (Figure 6-14). For SDGVM, Spearman’s rank partial 

correlation showed that GPP of grasses and crops was most strongly correlated to 

precipitation with no changes in correlations over the years of the experiment. Tree GPP was 

most strongly correlated with temperature and to a lesser extent, leaf nitrogen. The strong 

correlation to temperature at tree dominated sites suggests that growing season was more 

important than annual precipitation. In contrast to grasses, the correlation to all driving 

variables analysed increased over the course of the simulation. In particular, the correlation 

to top-leaf nitrogen and short wave radiation increased in proportion to temperature 

indicating the increasing importance of the photosynthetic response.  

Grasses occupy regions of the planet with lower rainfall than trees and it could be supposed 

that the difference between the correlations of the two growth habits was due to grasses 

occurring only at sites where water limitation was important. However, separation of sites 

into wet and dry, using a rainfall cut-off at 500 mm yr-1 demonstrated somewhat different 

correlations to the tree and grass habits respectively. As expected, for low precipitation sites 

GPP was strongly correlated to precipitation with top-leaf nitrogen also showing high 

correlations (ρ>0.5), for wet sites GPP was still strongly correlated with precipitation but 

shortwave radiation and temperature showed similar correlations.  



182 
 

When analysed for SDGVM-Vc, tree growth habit showed very similar correlations of GPP to 

driving variables as SDGVM. Grass dominated sites were still strongly correlated to 

precipitation but top-leaf nitrogen also showed strong correlation and top-leaf nitrogen was 

the strongest correlate of GPP across the wet sites of SDGVM-Vc. Maintenance respiration 

was shown to be mostly driven by GPP although other driving variables were significant 

(Appendix H). However, and as shown above (Figure 6-10), the proportion of GPP that was 

maintenance respiration increased as a linear function of temperature for the tree growth 

habit. 

Figure 6-14. Barplots showing the Spearman’s partial rank correlation coefficient  ρ  of 
GPP with model driving variables—precipitation (blue bars), temperature (yellow bars), 
top leaf nitrogen (green bars) and shortwave radiation (black bars). Each panel shows 
correlations at the beginning and end of the simulation (1860 and 2100 respectively) 
and for the modern day  2010 . The top row shows ρ for all sites subdivided by PFT 
growth habit. The bottom row shows ρ for dry sites  annual precipitation below 500 
mm yr-1) and wet sites (annual precipitation above 500 mm yr-1). Each plot also shows 
the results from the SDGVM simulation and the SDGVM-Vc simulation. 
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Discussion 

In comparison with recent estimates (Beer et al. 2010, Bonan et al. 2011b, Jung et al. 2011), 

global GPP was accurately predicted by SDGVM while SDGVM-Vc strongly over-predicted 

GPP, predicting values similar to the empirical MIAMI modelling approach of Beer et al. 

(2010) which related GPP to climate. Similar to Bonan et al. (2011a) using CLM4, realistic 

values of Vcmax and Jmax contributed to extremely high values of GPP suggesting that Vcmax can 

be used as a parameter to down-tune global GPP. Bonan et al. (2011a) demonstrated that 

the canopy light scheme of CLM4 needed further re-formulation leading to estimates of GPP 

that were revised down.  

When compared with global GPP of Jung et. al. (2011) much of the over-prediction in GPP of 

SDGVM-Vc was due to over-prediction of GPP in the boreal and grassed regions of the 

planet. However, values of leaf nitrogen and Vcmax in the boreal zone were similar to those 

calculated by Kattge et al. (2009) and the over prediction of GPP was perhaps due to poor 

simulation of canopy structure and scaling of photosynthesis in boreal forests. For SDGVM-

Vc the tropics were a hotspot of GPP and in comparison with values of Vcmax calculated by 

Kattge et al. (2009), SDGVM-Vc over-predicted tropical Vcmax. Kattge et al. (2009) calculated 

the Vcmax based on observed distributions of leaf nitrogen within a biome and data-

assimilated, biome specific relationships of Vcmax to leaf nitrogen. Kattge et al. (2009) saw 

decreased GPP in the tropics with their updated Vcmax parameterisation. 

The Vcmax calculation of SDGVM-Vc used a global multiple-regression of Vcmax to leaf nitrogen 

and leaf phosphorus, where increasing values of leaf phosphorus increase the sensitivity of 

Vcmax to leaf nitrogen (Chapter 5). Predicted values of top-leaf nitrogen in the Amazon 

appeared reasonable in comparison with the tropical trees in the TRY database (Kattge et al. 

2009). The over-prediction of GPP in the tropics by SDGVM-Vc was likely a result of 

inaccurate representation of the impact of phosphorus on Vcmax. Top-leaf phosphorus 

concentrations in the Amazon were predicted to be between 0.1 and 0.2 gm-2 compared to 

an observed range of 0.05 to 0.15 gm-2 (Mercado et al. 2011) and prediction of leaf 

phosphorus would be improved with a global soil phosphorus database to drive the leaf 

phosphorus trait regression (Ordonez et al. 2009). Also, due to the shortage of data 

measuring Vcmax, leaf nitrogen and leaf phosphorus simultaneously the regressions were 

calculated with a limited dataset and could have under-predicted the sensitivity to leaf 

phosphorus. 
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Higher GPP meant that SDGVM-Vc predicted over one and a half times the vegetation 

biomass of SDGVM, pushing SDGVM-Vc predictions of global vegetation biomass outside the 

range of estimates of Houghton et al. (2009). Both SDGVM and SDGVM-Vc simulated carbon 

stocks far greater than the GFRA estimates (FAO 2010). GFRA estimates were forest biomass 

while model results were total biomass; however, for non-forest biomass account for the 

difference between SDGVM results and GFRA estimates, non-forest biomass would have to 

account for 40% of total biomass globally, which is unrealistic (Denman et al. 2007). 

If GFRA estimates are accurate then SDGVM over-predicts global biomass and SDGVM-Vc 

strongly over-predicts global biomass. The GFRA estimates of global biomass were low 

compared to other estimates (Table 6-2) and with no uncertainty bounds they are hard to 

compare. The results of SDGVM did fall within the range of the Houghton et al. (2009) 

estimates of biomass; however, Houghton et al. (2009) estimates were high compared to all 

other estimates of biomass (FAO 2010, Saatchi et al. 2011, Goodale et al. 2002) and non-

forest biomass would have to account for >50% of total global and northern latitude biomass 

to account for the difference between Houghton et al. (2009) and the GFRA. The importance 

of biomass carbon stocks in the global carbon cycle and large differences between these 

datasets highlights the need for accurate and precise, repeatable measurements of biomass 

stocks to enable monitoring and model validation.  

In comparison with the global forest database of Luyssaert et al. (2007), SDGVM-Vc also 

tended to over-predict vegetation biomass. However, there was some discrepancy between 

the globally gridded estimates of GPP (Beer et al. 2010) and the Luyssaert et al. (2007) 

dataset with SDGVM-Vc capturing the high rates of site based GPP of Luyssaert et al. (2007) 

but over-predicting GPP on a global grid. Both SDGVM and SDGVM-Vc captured the 

relationship of biomass to NPP across biomes observed by Luyssaert et al. (2007) but within 

biomes, biomass was still related to NPP, an effect not observed by Luyssaert et al. (2007). 

Indeed, SDGVM had to predict unrealistically high values of NPP to capture realistically high 

values of biomass (Figure 6-9).  

That within biome variability in NPP was much higher for the models than the Luyssaert et 

al. (2007) data could be due to more definite classification of sites by Luyssaert et al. (2007). 

On the other hand, NPP is very difficult to measure in the field requiring large inputs of 

labour. Allometric equations are necessary to measure aboveground NPP; belowground NPP 
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is difficult to assess due to turnover and heterogenous distribution of roots, mycorrhiza and 

root exudation and changes in stored carbon are also necessary to properly assess NPP. The 

low variance in observed NPP within a biome may reflect these difficulties and may not be a 

true representation of the range in NPP. While the database is the best we have on 

properties of mature forest ecosystems, it is still limited in its extent compared with the total 

forested land surface of the globe. In contrast to NPP, model predicted biomass tended to 

under-predict the range and often could not capture high biomass values at a given NPP. 

This was likely to be a result of the difficulty in accurately representing all of the processes, 

in particular mortality, which influence biomass at a given site (Goetz et al. 2005, Zhang et al. 

2008,Liu et al. 2009). 

Contrary to the results presented here, in a model (ORCHIDEE) data analysis of the NPP to 

biomass relationship in Amazon forests, Delbart et al. (2010) showed that observed wood 

NPP varied more than modelled wood NPP and vice versa for wood biomass. However, they 

also found a strong linear relationship between modelled biomass and NPP that was not 

apparent in the observed data. Delbart et al. (2010) demonstrated that the observed 

decoupling of biomass from NPP was due to variable rates of mortality and they 

implemented variable mortality rates as a function of NPP which improved the model-data 

comparison.  

The Delbart et al. (2010) function relating turnover to NPP was empirical and they caution 

that their function was unlikely to apply across biomes. In a global analysis in which all 

important forest biomes were represented, Keeling and Phillips (2007) demonstrated that 

the relationship between above-ground biomass (AGB) and above-ground productivity 

(AGNPP) was best explained by a hump-backed quadratic model. AGB reached a maximum 

of 30 kg m-2 at an AGNPP value of 2400 g m-2 yr-1, both of which are higher than any 

predictions of total biomass and NPP in 2010 by SDGVM and SDGVM-Vc which suggests that 

the model was close to reality in predicting a linear relationship between biomass and NPP. 

However, the difference between these model predictions and the values in Keeling and 

Phillips (2007) are probably due to the scale mismatch between the plot scale 

measurements of Keeling and Philips (2007) and the regional scale predictions of the model. 

Averaging plot scale data over a region comparable to that simulated by SDGVM would likely 

lower the maximum AGB and the maximum AGNPP found in the Keeling and Phillips (2007) 

data, also reducing the AGNPP at which the AGB maximum occurs. Were the data of a 
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comparable scale then SDGVM and SDGVM-Vc should probably be simulating a hump-

backed relationship between biomass and NPP. Regional-scale, observed datasets of the 

relationship between biomass and productivity will help to validate a develop how carbon 

cycle models simulate biomass. 

Process based models of mortality, including factors like disease, wind-throw, predation and 

xylem cavitation, would be ideal for accurate prediction of changes in vegetation biomass 

over the coming century, particularly in response to climate change as many of these factors 

are sensitive to climate. However ,process based models of mortality will be complex and 

empirical relationships between biomass and productivity, like that of Keeling and Phillips 

(2007), could serve to modify the implicit linear relationship between biomass and 

productivity that currently exists in SDGVM and other DGVMs in order to make biomass 

predictions more accurate. However, without empirical data existing at a comparable scale 

with simulated data, it will be difficult to introduce the correct empirical relationship into the 

models. 

Both SDGVM and SDGVM-Vc, showed a very similar relationship between the autotrophic 

respiration fraction of GPP and mean annual temperature and this relationship was 

consistent with observations byLuyssaert et al. (2007) at sites with a mean annual 

temperature above 0oC. Below 0oC, the models strongly under-estimated the respiratory 

fraction of GPP yet SDGVM-Vc reasonably predicted GPP, suggesting that the updated Vcmax 

parameterisation was necessary but that the respiration algorithm in boreal biomes needed 

re-evaluation. Hogg et al. (2008) demonstrated the importance of summer drought in 

Canadian boreal forest plots while Zhang et al. (2008) demonstrated the impact of drought 

on NPP across the whole of the boreal zone and Ma et al. (2007) demonstrated the 

reduction in biomass increment caused by summer drought in Canada. Winter ecosystem 

respiration was also shown to make up 5-10% of the annual total in boreal ecosystems 

(Wang et al. 2011) although the autotrophic component was not resolved. Boreal sites were 

important drivers of increasing biomass, particularly in SDGVM-Vc and the re-

parameterisation of the respiration algorithm would impact the global capacity to absorb 

atmospheric CO2. 

Variability in projections of CO2 increase was mostly determined by the emissions scenario 

as previously demonstrated by Sitch et al. (2008), followed by the model—SDGVM or 
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SDGVM-Vc—and finally by the GCM pattern used to simulate climate change in response to 

CO2. Higher GPP in SDGVM-Vc led to higher carbon accumulation in live plant biomass 

leading to higher soil carbon. The trait regression method to calculate leaf nitrogen 

decoupled a negative relationship between plant biomass and soil carbon which resulted in 

higher soil carbon and consequently higher rates of soil respiration. Soil carbon pools were 

higher in SDGVM-Vc due to decoupling of a negative feedback loop between soil carbon and 

GPP. The loading of soil carbon in the SDGVM-Vc runs during the spin up phase meant that 

SDGVM-Vc was left with a legacy of higher soil respiration rates which accelerated climate 

change and restricted biomass accumulation despite higher GPP than SDGVM. 

Both SDGVM-Vc and SDGVM predicted a drop in plant biomass in Europe, particularly in the 

last decade of the simulation and the drop in biomass was sufficient to reduce global 

biomass in the final decade of the SDGVM-Vc simulation. The possibility of tipping points 

was illustrated where the effect of CO2 on GPP and biomass accumulation was superseded 

by climate induced mortality. HadGEM1 predicts a decrease in European precipitation which 

leads to an almost complete loss in European forest biomass by the end of 2100, albeit that 

European forest carbon stocks were over-estimated by SDGVM-Vc. 

Houghton et al. (2009) emphasise the role of biomass change in predicting the role of 

vegetation in the global carbon cycle. The response of global biomass to CO2 in SDGVM was 

different to that of SDGVM-Vc, accumulating vegetation carbon at a slower rate despite 

higher GPP. Higher atmospheric CO2, caused by higher soil respiration, led to accelerated 

climate change and the associated impacts on plant respiration. Much of the soil carbon 

losses of SDGVM-Vc were from the high soil carbon, northern boreal regions. The biggest soil 

carbon losses occur in the Western US and this is where the pattern of SDGVM-Vc soil 

carbon deviates most from the Scharlemann et al. (2010) map. The stocks and therefore 

losses of soil carbon may be a product of the trait regression however, the consequences 

highlight an important issue—SDGVM accumulates soil carbon while SDGVM-Vc loses soil 

carbon. The impact of land-use change on soil carbon losses is well established and has long 

been recognised as a significant contributor to global CO2 emissions(Houghton 2003). 

However, the loss, or accumulation, of soil carbon in natural ecosystems under current 

climate change is less well established (Lal 2008). The major difference between SDGVM and 

SDGVM-Vc was in their predictions of soil carbon dynamics which led to a mean difference 

of 150 µmol mol-1in atmospheric CO2 by 2100. 
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Conclusions 

With higher leaf nitrogen and a more sensitive Vcmax and Jmax response to leaf nitrogen, as 

expected SDGVM-Vc had higher GPP than SDGVM. However, and similar to previous studies, 

more accurate representation of photosynthetic parameters did not improve the simulation 

of GPP and GPP was strongly over-predicted when compared with estimates for the 

contemporary period. This was partly due to over-prediction of Vcmax in the tropics by 

SDGVM-Vc resulting from poor prediction of leaf phosphorus. Improvement of leaf 

phosphorus simulation requires a global soil phosphorus database. 

It was hypothesised that the use of a PAR dataset would compensate the over-prediction of 

GPP, however this was not the case, even in regions where Vcmax was accurately predicted. 

Accurate PAR fields could not restore GPP accuracy in simulations with accurate Vcmax 

parameteristation suggesting that the old Vcmax parameteristation was also compensating for 

misrepresented processes, most likely canopy scaling of photosynthesis i.e. nitrogen and 

light. 

SDGVM-Vc predicted a higher rate of atmospheric CO2 increase than SDGVM. However, 

confidence in predictions of the CO2 trajectory over the coming century was not improved by 

SDGVM-Vc mainly because of over-prediction of GPP and plant biomass. Over-prediction of 

plant biomass led to high predictions of soil carbon, which although difficult to validate, 

appeared to compare well with some recent estimates of soil carbon. High soil carbon led to 

higher rates of soil respiration, increasing the rate of atmospheric CO2 increase, accelerating 

climate change, slowing biomass accumulation and accelerating soil respiration, 

demonstrating the potential positive feedback loop between atmospheric CO2 and soil 

respiration. 

Corrected Vcmax and PAR led to over-prediction of plant biomass resulting from over-

prediction of GPP and perhaps, mis-representation of mortality. The simulated relationship 

of plant biomass to NPP was a linear relationship, similar to that observed in Luyssaert et al. 

(2007) and Keeling a Phillips et al. (2007) suggesting that mortality was accurately simulated. 

However, Keeling and Phillips (2007) observed a decline in biomass above NPP values of 

2400 gm-2. Maximum SDGVM values of NPP were 1500 gm-2, 900 gm-2 less that the Keeling 

and Phillips (2007) value at which biomass peaked. However, lower NPP values in SDGVM 

were probably due to a scale mismatch between the plot-scale observed data and the 
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regional-scale model data. Correction of this mis-match would probably suggest that the 

simulated linear relationship across the whole range of NPP and biomass by SDGVM should 

have looked more like the Keeling and Phillips (2007) relationship, although this is only 

conjecture without datasets of biomass and NPP at a comparable scale to the model data. 

Regional datasets of biomass and NPP are necessary for validation of the biomass to 

productivity relationship and to accurately parameterise mortality in the absence of detailed 

process based models of mortaility.  
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Chapter 7 General Discussion 

Discussion 

The aim of this study was to use data from Free Air CO2 Enrichment (FACE) experiments to 

validate and inform the simulation of vegetation CO2responses with global carbon cycle 

models, primarily the Sheffield Dynamic Global Vegetation Model (SDGVM) and also the 

Joint UK Land Environment Simulator (JULES). FACE experiments are the most natural 

experiments on ecosystem responses to elevated CO2 (Arp 1991, Hendrey et al. 1993, 

Hendrey and Kimball 1994, Ainsworth and Long 2005) and their spatio-temporal scale is 

appropriate for comparison with terrestrial carbon cycle/ecosystem models. As discussed in 

Chapter 1, FACE experiments provide us with an excellent opportunity to validate carbon 

cycle models at the stand scale and to inform their development. However, quantification of 

experimental error is important for model-data comparison and FACE experiments are not 

without artefact. Chiefly, CO2 concentrations oscillate around the elevated target (Nagy et al. 

1994, Hendrey et al. 1997, Miglietta et al. 2001b, Pepin and Körner 2002) and 

experimentation to understand the effects of oscillating CO2 has determined that carbon 

assimilation was increased (Evans and Hendrey 1992, Cardon et al. 1995), unaffected (at 

oscillation frequencies similar to FACE experiments;Hendrey et al. 1997) and decreased 

(Holtum and Winter 2003). 

The study in Chapter 3 investigated the effect of CO2 oscillating in concentration (with a 

similar amplitude and frequency as FACE experiments) on leaf carbon assimilation and water 

loss. The results demonstrated that over 10 minutes of oscillating CO2carbon assimilation 

increased, similar to Evans and Hendrey (1992), while there was no change in stomatal 

conductance and hence transpiration. It was hypothesised that the increase in assimilation 

observed in Chapter 3 was explained by a synergy of shifting between Vcmax/CO2 limited 

assimilation and electron transport/Jmax limited assimilation and this hypothesis requires 

testing.  

Previously observed reductions in carbon assimilation (A) due to CO2 oscillations(Hendrey et 

al. 1997, Holtum and Winter 2003)were previously hypothesised to be caused by the non-

linearity of the A-Ci curve. However, modelling of assimilation based on A-Ca/Ci curves 

showed that reductions in A caused by the non-linearity of the A-Ci curve were of insufficient 
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magnitude to explain the reductions in carbon assimilation observed byHendrey et al. (1997) 

andHoltum and Winter (2003). 

Calculating assimilation was dependent upon several corrections of the raw data, however 

these corrections were shown to improve the accuracy of assimilation calculations in control 

experiments. Experiments were conducted at the leaf scale over tens of minutes making it 

difficult to translate observed increases in assimilation to changes in plant growth. It would 

be of interest to test the effect of oscillating CO2 at the growth chamber scale over a growing 

season to assess the impact of oscillating CO2 on plant growth. We caution that, as yet, we 

do not fully understand the reasons behind plant responses to oscillating CO2 and that any 

new FACE experiments should attempt to quantify the effects of oscillating CO2 on carbon 

assimilation and plant growth. 

The results of this study suggest that a standardised method should be developed to test the 

effects of oscillating CO2 on species used in future FACE experiments. The uncertainty in this 

potentially systematic error in FACE experiments highlights the need to be aware of 

experimental error, as well as sampling error, in observations when comparing them to 

model outputs. The results in Chapter 3 and of others (Evans and Hendrey 1992, Cardon et 

al. 1995, Hendrey et al. 1997, Holtum and Winter 2003) suggested that oscillating CO2 can 

affect short-term carbon assimilation although no agreement in the sign of this response and 

difficulty in scaling this response to longer term and larger scale productivity make it difficult 

to apply systematically and accurately to validation of annual model productivity. 

Site-scale model validation 

In their standard versions and with some site specific parameters, both SDGVM and JULES 

captured some of the inter-annual variability in Net Primary Productivity (NPP) at the Oak 

Ridge and Duke FACE sites (Figure 4-4, Table 4-3 & Table 4-5), as did a suite of other Carbon 

Cycle models and ecosystem models (Figure 4-7 & Table 4-7). Measured NPP at the sites was 

more a measure of growth than complete NPP due to difficulties in measurement and 

scaling of root exudates and carbon allocated to mycorrhiza. Therefore models were 

expected to over-predict NPP. Although JULES and SDGVM did over-predict NPP when driven 

with observations of canopy nitrogen and photosynthetic parameters, there was no general 

over-prediction of NPP across all the models. 
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NPP at Duke was relatively high (Inter Quartile Range IQR 944–1074gC m-2 yr-1) showing no 

trend over the course of the experiment while at Oak Ridge NPP was lower (IQR 698–954 g C 

m-2 yr-1)with a declining trend in NPP, particularly in the latter half of the experiment. 

Reasonable prediction of the inter-annual variability in NPP at Duke was encouraging as it 

suggested that models were responding in a similar way to drivers of inter-annual variability 

in the Duke forest. However, annual NPP at Duke appeared not to be related to annual 

climatic drivers in any simple way and different models were sensitive to different drivers 

which allowed them to be grouped into three general categories—those driven by nitrogen 

uptake, those driven by photosynthesis and those driven by climate. 

Model predictions were less successful at Oak Ridge reflecting the strong progressive 

nitrogen limitation at that site (Norby et al. 2010, Garten et al. 2011). For the few models 

that captured some of the inter-annual variability in NPP at Oak Ridge, NPP was correlated 

with temperature rather than nitrogen uptake (Table 4-4, Table 4-6 & Table 4-8) indicating 

that the decline in NPP may have been partly driven by climate or that the models may have 

been getting NPP right for the wrong reasons. OCN, CLM and GDAY captured the lower 

values of NPP and the lower response to CO2 at the end of the experiment, suggesting that 

while they could not reproduce the decline in NPP, they may have captured the longer term, 

sustainable rate of NPP and the CO2 response. 

Driving SDGVM and JULES with observed data that were non-standard inputs to the models 

improved the simulation of NPP at Duke and NPP was closer to expectations at Oak Ridge 

(i.e NPP was over-predicted due to the two models not simulating stoichiometric growth 

limitation). Observed data on canopy nitrogen, the relationship of Vcmax to leaf nitrogen and 

Photosynthetically Active Radiation (PAR—for SDGVM, JULES takes PAR as a standard input) 

used to drive the models demonstrated the importance of accurate representation of these 

leaf traits, and radiation, in accurate simulation of the carbon cycle. Future work needs to 

build on previous work to determine factors driving variation in leaf nitrogen(Reich et al. 

2007, Ordonez et al. 2009, Poorter et al. 2009), determining accurate global methods to 

simulate Vcmax and Jmax in relation to leaf traits (Chapter 5,Beerling and Quick 1995, Kattge et 

al. 2009) and accurate representation of incoming PAR and canopy PAR (Haxeltine and 

Prentice 1996, Mercado et al. 2007, Bonan et al. 2011b). 
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The NPP response to elevated CO2 proved to be more difficult to simulate. Many models 

captured the higher response at Duke compared with Oak Ridge but few models captured 

the median and the range of responses (Figure 4-8). Model predictions of annual CO2 

responses were broad and, similar to the global study of Sitch et al. (2008), demonstrated 

the variability across models in simulating the CO2 response in relation to climate variability. 

However, few models captured inter-annual variability in the responses (Table 4-9) which at 

Duke was shown to be related to nitrogen availability and the water balance (McCarthy et al. 

2010) and to the response of nitrogen availability at Oak Ridge (Garten et al. 2011). Although 

the NPP responses at Duke were shown to correlate with common values of nitrogen and 

the water balance across CO2 treatments, it was likely the response of nitrogen and soil 

water that determined the NPP response. Indeed, Drake et al. (2011) showed that elevated 

CO2 increased decomposition rates of soil organic matter allowing greater access to soil 

nitrogen under elevated CO2. Although a response of soil water to elevated CO2 was 

undetected at Duke, Schafer et al. (2002) hypothesised that soil water was higher under 

elevated CO2, probably due to reduced soil evaporation resulting from a deeper litter layer. 

In agreement with observations, regression showed that the key drivers of the NPP response 

to CO2in SDGVM and JULES were the response of canopy nitrogen and the response of soil 

water limitation, with SDGVM primarily driven by nitrogen and JULES primarily soil water 

(Figure 4-10). It was surprising that despite the importance of the role of nitrogen in both 

the observed and SDGVM responses, SDGVM could not capture any of the inter-annual 

variability in response seven when driven with the observed values of canopy nitrogen. On 

the other hand, when driven with canopy nitrogen JULES reproduced some of the inter-

annual variability in the NPP response at Duke. For the JULES simulations LAI was a constant 

under both CO2 treatments while in SDGVM LAI varied by treatment and year according to 

the LAI scheme and the inability of SDGVM to capture the NPP response to CO2 was possibly 

related to the variability in simulated LAI. 

Responses to FACE and global carbon cycle simulation 

In a meta-analysis of FACE experiments, Chapter 2 built on the previous work of Luo et al. 

(2006b) and Ainsworth et al. (2008) using the most up-to-date results from FACE 

experiments to detect any changes in the CO2 response over longer-term enrichment. In lab 

and greenhouse experiments, CO2 responses have often been shown to ‘acclimate’ (be 

down-regulated) (Stitt 1991), often as a consequence of restricted soil volumes (Arp 1991), 
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but also due to competition between the carbon assimilation and nitrite assimilation 

pathways (Searles and Bloom 2003).  

The meta-analysis in Chapter 2 had a greater sample of data from forest FACE experiments 

than Ainsworth and Long (2005) and showed less reduction in photosynthetic capacity than 

Ainsworth and Long (2005), manifested in lower decreases in leaf nitrogen and Vcmax, and no 

decrease in Jmax or leaf chlorophyll when expressed on a leaf area basis. When leaf nitrogen 

was analysed by Plant Functional Type (PFT) the decrease in grasses was far greater than for 

trees and was similar to that reported by (Ainsworth and Long 2005). In the global carbon 

cycle analysis of Chapter 6, it was demonstrated that the decrease in leaf nitrogen under 

elevated CO2 made very little difference to prediction of atmospheric CO2 increase over the 

coming century.  

Chapter 2 also demonstrated a recovery in the response of Vcmax to elevated CO2, such that 

Vcmax was unchanged between 4–9 years after CO2 enrichment began. This was reflected by 

what appeared to be increases in the response of aboveground biomass in years 7–9 after 

enrichment compared to earlier years. Although total biomass was not significantly 

increased in year 7–9 after enrichment, the mean response ratio was similar to that in 

previous years and the 95% confidence interval only just included no response. The 

variability in the response of total biomass after 7–9 years of CO2 enrichment, despite 

maintained photosynthetic rates, demonstrates the need for further experimentation to 

illuminate environmental and ecological factors that determine the longevity of the CO2 

response.  

Using non-structural carbohydrates as a measure of tree carbon limitation,Körner (2003) 

argued that trees are not generally limited by carbon and that CO2 would have little lasting 

impact on the terrestrial carbon cycle. Nitrogen was shown to be a factor limiting the 

response of NPP to CO2 (McCarthy et al. 2010, Norby et al. 2010, Garten et al. 2011) and the 

theory of Progressive Nitrogen Limitation (PNL) under elevated CO2 (Johnson 2006, Luo et al. 

2006b) was backed up by Garten et al. (2011), albeit in a strongly nitrogen limited system. 

However, PNL was shown not to be a consequence of CO2 enrichment at Duke and 

Rheinlander FACE with increased plant carbon leading to access to nitrogen unavailable to 

plants at ambient CO2 concentrations (Drake et al. 2011, Zak et al. 2011). Without proper 

understanding of these factors, the role of terrestrial vegetation in the global carbon cycle 
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under future global change will be difficult to quantify accurately. Chapter 6 demonstrated 

that reductions in leaf nitrogen observed in FACE experiments, and their consequent impact 

on photosynthesis, made little impact on the simulated trend in global atmospheric CO2 

increases over the coming century. 

Chapter 2 showed stronger reductions in leaf traits on a mass basis compared to an area 

basis and a decrease in Specific Leaf Area (SLA) in response to elevated CO2. Chapter 5 

showed little impact of SLA on Vcmax when traits were expressed on a leaf area basis but SLA 

was significant when traits were expressed on a concentration basis. These results hint that 

modifying SLA may be a central strategy of plants to optimise photosynthesis in response to 

increasing CO2. Indeed, SLA has been shown to respond to many environmental stimuli 

(Niinemets 1999, Poorter et al. 2009) and may be a central plant response to optimise 

canopy processes. 

Leaf traits and photosynthetic parameters 

The key photosynthetic parameters of the Farquhar et al. (1980) model have been shown to 

bear a strong relationship to leaf nitrogen (Field and Mooney 1984, Wullschleger 1993). 

Simulation of the FACE experiments in Chapter 4 demonstrated that accurate simulation of 

Vcmax and Jmax, and therefore leaf nitrogen, was necessary to accurately simulate NPP.A 

number of studies have generated biome averaged values of Vcmax and Jmax (Beerling and 

Quick 1995, Kattge et al. 2009) demonstrating clear differences between biomes in the 

relationship of Vcmax to leaf nitrogen.Kattge et al. (2009) demonstrated different 

relationships of Vcmax to leaf nitrogen in the tropics on low or high phosphorus soils. Recent 

studies demonstrated that leaf phosphorus modified the relationship of carbon assimilation 

to leaf nitrogen (Reich et al. 2009) and that Vcmax and Jmax were, in some cases, more strongly 

correlated with leaf phosphorus or even SLA (Domingues et al. 2010). 

It was hypothesised that the different relationships of Vcmax and Jmax to leaf nitrogen could be 

explained by leaf phosphorus and SLA. Chapter 5 shows the results of a meta-analysis which 

for the first time produced global relationships of Vcmax and Jmax to leaf nitrogen, phosphorus 

and SLA. In a mixed-model multiple-regression, measured on both a leaf area and 

concentration basis, much of the variation in Vcmax and Jmax was explained by variation inleaf 

nitrogen, leaf phosphorus and SLA. On a leaf area basis, Vcmax was most strongly related to 

leaf nitrogen with decreasing leaf phosphorus significantly reducing the slope of the 
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relationship. As the results of Kattge et al. (2009) andDomingues et al. (2010) suggested, leaf 

phosphorus was an important global determinant of Vcmax.  

The strongest correlate of Jmax was Vcmax with some indication that SLA modified this 

relationship. Both parameters were expected to be strongly related due to their mutual 

interaction through their photosynthetic coupling. Investigating the slope of the Jmax to Vcmax 

relationship with the Farquhar et al. (1980) model showed that the slope was higher than 

expected assuming that resources used to determine these biochemical capacities were 

allocated to Vcmax and Jmax in order to maximise carbon gain. Specifically Jmax was higher than 

expected and it is proposed that this may be due to use of the products from electron 

transport in biochemical processes other than carbon assimilation. 

These relationships augment existing global data on the Vcmax and Jmax parameters 

(Wullschleger 1993, Beerling and Quick 1995, Kattge et al. 2009)and it is recommended that 

these relationships are used to accurately simulate terrestrial vegetation and in model 

development exercises to illuminate model biases and compensating factors. Although the 

data came from all over the globe, limited published data on all five leaf traits meant that 

the relationships were limited in their extent and sample size and future meta-analyses will 

help to develop and refine these relationships. 

Compensating factors and missing processes 

SDGVM 

Simulating the FACE experiments revealed that SDGVM over-predicted Photosynthetically 

Active Radiation (PAR) and under-predicted leaf nitrogen. Leaf nitrogen was used to 

calculate Vcmax so under-prediction of leaf nitrogen would be expected to under-predict 

Vcmax. Additionally, the results in Chapter 4 demonstrate that Vcmax was also under-predicted 

due to low sensitivity to leaf nitrogen. Driving the model with observed values PAR, leaf 

nitrogen and the Vcmax relationship to leaf nitrogen improved model skill in simulating Net 

Primary Productivity (NPP). 

Modelled NPP was far higher than observed NPP when using observations of nitrogen and 

Vcmax but model calculated PAR (Figure 4-4), revealing that the under-prediction of leaf 

nitrogen and low parameterisation of Vcmax were compensating the over-prediction of PAR. 

Observed values of PAR brought simulated NPP close to observations and showed very 
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strong model skill at Duke. Despite closer mean values of NPP at Oak Ridge, all model skill 

was lost due to simulated NPP responding to strong inter-annual variability in PAR. The main 

driver of NPP at Oak Ridge was declining soil nitrogen (Norby et al. 2010, Garten et al. 2011) 

resulting from progressively larger amounts of ecosystem nitrogen being locked away in 

plant tissue(Johnson 2006), in this case roots and then less accessible soil organic matter 

(Franklin 2007), a process not simulated by SDGVM. SDGVM does not simulate a mass 

balanced nitrogen cycle and therefore could not be expected to simulate the Oak Ridge FACE 

experiment as accurately as Duke. Although Duke FACE experiment was nitrogen limited 

(McCarthy et al. 2010), the long lived root system of Pinus taeda was less demanding of soil 

nitrogen (Franklin 2007) and was able to increase access to soil nitrogen at elevated CO2 

(Drake et al. 2011) reducing the strength of the nitrogen limitation. The importance of soil 

nitrogen in the FACE experiments and simulating the experiments highlights the need for 

multi-factorial experiments of elevated CO2 and increased temperature as the increased 

temperatures expected with increased CO2 would accelerate soil nitrogen mineralisation 

(Sardans et al. 2008a, Sardans et al. 2008b). 

In a global analysis of CLM4 and similar to SDGVM, Bonan et al. (2011b) found that Vcmax was 

also low in comparison to values calculated from an observed, global dataset of leaf nitrogen 

and light saturated carbon assimilation (Kattge et al. 2009). Similar to SDGVM, Bonan et al. 

(2011b) found that realistic values of Vcmax strongly over-predicted productivity compared to 

observations (albeit GPP and not NPP) and Bonan et al. (2011a) demonstrated the sensitivity 

of the GPP prediction to scaling of canopy light levels. Improving the canopy radiation 

scheme reduced the over-prediction of GPP by CLM4 and accurate predictions of PAR 

improved predictions of NPP in SDGVM, although SDGVM was shown to be over-sensitive to 

variability in PAR (Figure 4-4&Table 2-1).  

In comparison with FLUXNET estimates of global GPP (Beer et al. 2010, Jung et al. 2011), 

SDGVM-Vc (with improved representation of PAR and Vcmax) showed that productivity was 

over-predicted while SDGVM accurately predicted global productivity. Much of the over-

prediction in GPP of SDGVM-Vc was due to over-prediction of GPP in the boreal and grassed 

regions of the planet, although there was some discrepancy between comparison with the 

globally gridded FLUXNET products of Beer et al. (2010) andJung et al. (2011) and the site 

based data of Luyssaert et al. (2007). A quantitative comparison with the globally gridded 
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FLUXNET product and a more detailed comparison with the Luyssaert et al. (2007) data will 

be useful to further develop SDGVM GPP simulation. 

Chapter 6, demonstrated a near linear relationship between modelled tree NPP and 

biomass, a relationship which was also shown in OCN for sites across the Amazon(Delbart et 

al. 2010). A global linear relationship was apparent in the Luyssaert et al. (2007) database 

although within a biome, variability suggested that a linear relationship of biomass to NPP 

was not apparent (Figure 6-9). However, Keeling and Phillips (2007) demonstrated a hump-

backed quadratic relationship between above-ground biomass and above-ground NPP, a 

relationship not apparent in the model. Keeling and Phillips were cautious in explaining the 

mechanisms behind the relationship but their relationship demonstrates that  biomass is not 

a simple, linear function of NPP and that this needs attention in SDGVM and global carbon 

cycle modelling more generally.  

Plant mortality is a key driver of site biomass and improved representation of mortality was 

shown to improve biomass simulation at the Amazon site simulations of Delbart et al. 

(2010). The empirical relationship observed by Keeling and Phillips could improve model 

biomass simulations while more mechanistic models of plant mortality are developed. 

Mortality depends on multiple interacting ecological factors and it will be necessary for 

experimentalists and ecologists to generate more data and hypotheses on drivers of plant 

mortality in order to develop mechanistic, process based models of mortality. 

Much of the over-prediction of biomass was in the boreal latitudes (Figure 6-11 and Table 6-

2) and Chapter 6 showed that, as a fraction of GPP, respiration was strongly under-predicted 

in boreal forests compared with the Luyssaert et al. (2007) dataset which led to over-

prediction of biomass, despite accurate prediction of GPP in SDGVM-Vc. Growth in these 

forests is limited stoichiometrically by nitrogen (Wang et al. 2007b) and the high observed 

respiration fraction may be related to this stoichiometric limitation. With SDGVM missing a 

full nitrogen cycle it is likely that, at the global scale and particularly in boreal regions where 

soil carbon is relatively high (McGuire et al. 2010), the empirical negative feedback of soil 

carbon on leaf nitrogen in SDGVM (Woodward and Smith 1994, Woodward et al. 1995) 

represents the complex process of nitrogen limited growth. 
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JULES 

There was evidence to suggest that there were also compensating factors in JULES. As with 

SDGVM, driving JULES with observations of canopy nitrogen increased carbon assimilation 

and improved the simulation of NPP. However, in 2003 JULES simulated an extremely high 

value of NPP because the combination of low temperature and high precipitation in that 

year resulted in JULES predicting very little soil water limitation. Further investigation 

revealed that soil water limitation reduced NPP by 27%, compared to 5% in SDGVM. The 

high value of NPP in 2003 suggested that under conditions not limited by soil water, JULES 

over-predicted NPP and the generally strong effect of soil water limitation was 

compensating the over-prediction of potential NPP.  

JULES uses the Collatz et al. (1991) formulation of C3 photosynthesis which has no 

biochemical limit to light limited photosynthesis—i.e. no Jmax term. CLM4 also uses the 

Collatz et al. (1991) formulation and Bonan et al. (2011b) demonstrated that CLM4 over-

predicted global GPP which was corrected by the inclusion of a Jmax term as well as a number 

of corrections to canopy light scaling. In the Amazon, Mercado et al. (2007) found no over-

prediction of NPP by JULES under conditions that were not soil water limited demonstrating 

that compensating over-prediction of potential NPP by strong soil water limitation is likely to 

apply only in certain regions.  
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General conclusions, key advances, limitations and future work 

Accurate prediction of changing biomass over the coming century will be the key to 

predicting the impact of terrestrial vegetation on the global carbon cycle (Houghton et al. 

2009) and results from a meta-analysis of FACE experiments in Chapter 2 showed that 

increases in forest biomass were maintained over a decade of CO2 enrichment. Chapter 2 

also showed that acclimation of photosynthetic rates (reductions in assimilation at a 

common CO2 concentration and Vcmax) under elevated CO2 observed in years 1-3 of 

enrichment disappeared in years 6-9 after enrichment. 

However, not all forest age classes and types have been subjected to FACE experiments. 

Therefore, mature forests were not represented in the meta-analysis nor were tropical or 

boreal systems. Mature forests, tropical forests and boreal forests will be key to determining 

the response of the land surface to future elevated CO2 concentrations. Long-term FACE 

experiments are urgently needed in these systems to understand their responses to CO2. 

Net Primary Productivity feeds into plant biomass pools. Chapter 4 showed that NPP and the 

mean CO2 response were accurately simulated at the Duke FACE experiment by SDGVM, 

JULES and a number of other carbon cycle models although inter-annual variability in the 

responses proved difficult for the models to reproduce. The variability in model simulations 

of the NPP response to CO2 and the difficulty in reproducing inter-annual variability in the 

CO2 response suggested that the large range in predicted atmospheric CO2 concentrations 

over the coming century (Cramer et al. 2001, Friedlingstein et al. 2006, Sitch et al. 2008) is 

unlikely to be reduced.  

Therefore, model benchmarking exercises should be developed to weight model predictions 

and help to reduce uncertainty in multi-model predictions of future Earth System dynamics. 

Due to data availability and time constraints, the model validation of plant CO2 responses in 

Chapter four used data from only two FACE experiments – both in similar systems with 

similar climates. Expansion of this benchmarking exercise to other FACE experiments would 

make the benchmarking more broadly applicable to global studies. 

In Chapter 4, similar to another study of model bias (Bonan et al. 2011b), simulation of NPP 

at the FACE experiments demonstrated that both SDGVM and JULES were subject to biases 

that were compensated for by parameterisation bias. However, correction of the 

Photosynthetically Active Radiation bias and the compensating Vcmax parameterisation bias 



201 
 

in SDGVM led to over-prediction of global GPP. This suggests that the Vcmax bias was also 

representing the process of stoichiometric nitrogen limitation to plant growth. Difficulties in 

representing stoichiometric nitrogen limitation were highlighted by the poorer simulation of 

Oak Ridge FACE compared with Duke by a number of carbon (and nitrogen) cycle models and 

further research into the development and validation of ecosystem nitrogen dynamics is 

needed. JULES and SDGVM had very different strengths of soil water limitation and 

experimental quantification of the strength of soil water limitation on plant growth is 

necessary. 

Model bias and compensation by model parameters shows the strong need for global 

parameter datasets and parameter relationships to be sure unrealistic parameter values are 

not used to tune models, potentially hiding model structural, parameter or driving data 

errors. Bonan et al. (2011b) suggested that improved simulation of canopy structure was 

necessary to correct the over-prediction of GPP in CLM4 and this may be the case with 

SDGVM; however, nitrogen limits NPP both photosynthetically and stoichiometrically and 

both SDGVM and CLM4 (in the work of Bonan et al. 2011b) do not include stoichiometric 

nitrogen limitation. DGVMs should include a full nitrogen cycle to be sure to capture the 

separate but inter-related processes of photosynthetic and stoichiometric nitrogen 

limitation to NPP.  

Chapter 3 showed that experiments, not only models, were biased. Assimilation was 

increased under oscillations in CO2 similar to those found in FACE experiments. It was 

hypothesised that this stimulation was due to switching between electron transport and 

carboxylation as the rate limiting cycles of carbon assimilation, preventing depletion of 

substrates supplying each cycle. Previous hypotheses explaining reductions in assimilation 

under oscillating CO2 were shown to be insufficient and we hypothesise that stomatal 

responses to a step change in CO2 may have been important in explaining these reductions. 

Experiments were conducted at the leaf scale over tens of minutes making it difficult to 

translate observed increases in assimilation to changes in plant growth. It would be of 

interest to test the effect of oscillating CO2 at the growth chamber scale over a growing 

season to assess the impact of oscillating CO2 on plant growth. 

Chapter 5 demonstrated the importance of phosphorus in modifying Vcmax and therefore 

limiting photosynthesis. It is cautiously suggested that the inclusion of leaf phosphorus with 
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leaf nitrogen in a multiple regression of Vcmax could provide a single empirical relationship 

suitable for modelling Vcmax at the global scale. Caution is applied due to the limited nature 

of the dataset and future work should broaden the dataset to cover more biomes. However, 

data were collected from natural systems and from nutrient manipulation experiments 

covering a wide range of leaf nitrogen and phosphorus concentrations. 

Similar to previous studies, Chapter 5 demonstrated tight coupling between Jmax and Vcmax, 

showing Jmax to be higher than expected assuming the relationship was optimised with 

regards to carbon assimilation. It was proposed that this may be due to the use of ATP and 

NADPH generated by electron transport in biochemical cycles other than the PCR/PCO cycle 

i.e. non-carbon photosynthesis. It would be interesting to see future work on the ratio of 

ATP and NADPH produced by electron transport used in the PCR/PCO cycle compared to use 

in other biochemical cycles. 

In Chapter 6, the trait regression method to simulate canopy nitrogen in SDGVM-Vc, 

decoupled an empirical relationship between soil carbon and plant productivity. The 

decoupling of this relationship led to high soil carbon stocks, soil respiration and accelerated 

rates of atmospheric CO2 increase. However, general conclusions about model structure and 

relationships between state variables could be drawn. 

More accurate representation of leaf nitrogen and photosynthetic parameters in SDGVM-Vc 

led to over-predictions of GPP suggesting that more work needs to be done on the 

photosynthesis scheme within SDGVM. Vcmax was over-predicted in the tropics by SDGVM-Vc 

and was probably due to over-prediction of leaf phosphorus due to the lack of a global soil 

phosphorus map to drive empirical equations of leaf phosphorus. Phosphorus is the major 

limiting nutrient in the tropics (Quesada et al. 2011) and probably also limits growth 

stoichiometrically. DGVMs should also consider representation of the phosphorus cycle as 

Wang et al. (2007b) has done, and work needs to be done to generate a global soil 

phosphorus map and to establish plant tissue phosphorus stoichiometry to parameterise 

DGVMs. 

Linear relationships were also shown between biomass and NPP and between the 

autotrophic respiration fraction of GPP and temperature. In the literature these relationships 

have been shown to be quadratic in nature. Modelled biomass showed a linear relationship 

to NPP (Chapter 6), a relationship that was maintained under CO2 increase leading to higher 
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global biomass by 2100. Indeed, Luyssaert et al. (2010) found a strong linear relationship 

between biomass and productivity for European forests. However, results from a global 

forest database (Luyssaert et al. 2007) suggested that within a biome, biomass appeared not 

to be related to NPP, albeit that the data were collected at a smaller spatial scale than the 

simulation scale of the global model. Keeling and Phillips (2007) showed that the relationship 

between biomass and NPP saturated and that biomass decreased at high values of NPP. It is 

likely that SDGVM should be demonstrating a similar non-linear relationship between 

biomass and productivity similar to that of Keeling and Phillips (2007). Future research is 

necessary to compare observed and simulated biomass to productivity relationships at the 

correct scale.  

The large variance in biomass and relatively small variance in NPP within a biome (Luyssaert 

et al. 2007) suggested that mortality played a central role in determining plant biomass. 

Delbart et al. (2010) showed a similar linear relationship of modelled biomass to NPP and 

demonstrated that improved representation of mortality improved predictions of biomass 

across a range of sites in the Amazon. Biotic and abiotic factors that underlie plant and tree 

mortality at the landscape scale are often stochastic disturbance events such as windthrow, 

fire, pest and pathogen outbreaks. Processes underlying the cause of death resulting from 

these factors are multiple as are the triggers of these events making modelling complex with 

resulting parameter and structural uncertainty. Mortality operates over long timescales 

(although some events can be extremely rapid, the frequency of their occurrence can be 

low) meaning that the data from observations and experimental manipulations are few. 

However, work needs to be done to improve the representation of mortality within 

SDGVM/carbon cycle models. 

While good progress is being made to estimate biomass at the landscape scale (Malhi et al. 

2006, Saatchi et al. 2007, Saatchi et al. 2011) much of this work focuses on the tropics. This 

study demonstrates the need to accurately map biomass carbon in Boreal forests as well as 

in the tropics. Until globally accurate maps of biomass are available, with repeatable 

accuracy and precision, it will be difficult to properly validate and develop algorithms that 

simulate terrestrial plant biomass. Accurate simulation of biomass and its determining 

factors will be essential for confidence in model predictions of future terrestrial vegetation 

responses to changing atmospheric CO2 and climate.  
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Appendix A Additional plots from Chapter 4 

Figure AA-1. JULES simulations showing the effect of inter-annual variability in 

Photosynthetically Active Radiation (PAR—standard run) or no inter-annual variability 
in PAR (mean PAR) at Oak Ridge (top panels) or Duke (bottom panels). 

Figure AA-2. Canopy nitrogen at Duke (left panel) and Oak Ridge (right panel) under 
ambient (white bars) and elevated (black bars) CO2 for the other LSM simulations of 
Chapter 4. 
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Appendix B SDGVM Plant Functional Type coverage from GLC2000 

 

 

 

Figure AB-1. Percentage cover of the 6 SDGVM Plant Functional Types interpreted from 
the GLC2000 database. 
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Appendix C Climate change of 16 GCMs interpreted by IMOGEN 

 

Figure AC-1. 2081-2100 mean precipitation change (mm) for 16 GCMs as interpreted by 
IMOGEN and SDGVM for the A1F1 SRES scenario. 
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Figure AC-2. 2081-2100 mean temperature change (0C) for 16 GCMs as interpreted by 
IMOGEN for the A1F1 SRES scenario. 
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Appendix D Model output and driving variable distributions from Chapter 6 

Figure AD-1. Variable distributions for SDGVM and SDGVM-Vc in 1860, 2010 and 
2100.GPP (top left), annual average top-leaf nitrogen concentration (antlfn—top right), 
precipitation (bottom left) and temperature (bottom right). 
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Appendix E European plant biomass simulated by SDGVM-Vc 

 

 

Figure AE-1. Vegetation biomass simulated by SDGVM-Vc in 1860, 2000, 2090 and 2100. 
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Appendix F SDGVM versus SDGVM-VC LAI  

 

 

Figure AB-1.Simulated LAI in 2010 for SDGVM-Vc and SDGVM-newSWV. 
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Appendix G Oscillations in SDGVM-Vc LAI 

For all models with the new nitrogen scheme in Chapter 6, the global flux from terrestrial 

vegetation oscillated with a four year period (Figure 6-6). The fluctuation occurred at points 

that contained the grass PFT, was most obvious in the tropics (see Figures AC-1-3) and was 

caused by the leaf area and life history dynamics of the grass PFT.  

SDGVM assumes that grasses have a high risk strategy, investing all of their stored carbon 

from the previous year’s productivity in leaf in the following year. With the trait regression 

nitrogen scheme, canopy nitrogen was higher promoting higher GPP and leading to a large 

stored pool of carbon for the following year’s growth. This led to high canopy investment 

and consequent LAI, which leads to higher canopy nitrogen and higher GPP leading to even 

higher carbon stocks which lead to maximal values of LAI (>10 m m-2) in the following year. 

At this point, instead of increasing GPP, the grass has over invested in LAI and GPP cannot 

balance respiration in the lower canopy layers.  

With no carbon remaining in the store the plant does not have sufficient carbon to supply 

the following years LAI increment and dies. GPP is therefore stopped and accumulated 

carbon in its biomass is released into the soil which quickly decomposes returning the bulk 

of the carbon back to the atmosphere in a single year. While affecting the dynamics over the 

scale of several years, this oscillation has little effect on the overall long-term dynamics of 

the system which continues to accumulate carbon. 
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Figure AC-1. Tropical LAI predicted by SDGVM-Vc for 2020 to 2023. 

 

 

 

 



231 
 

 

 

 

Figure AC-2. Tropical GPP predicted by SDGVM-Vc for 2020 to 2023. 
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Figure AC-3. Tropical soil respiration predicted by SDGVM-Vc for 2020 to 2023. 
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Appendix H Correlation analysis of maintenance respiration 

 

Figure AH-1. Barplots showing the Spearman’s partial rank correlation coefficient (ρ) of plant 

respiration with model driving variables—GPP (pale green bars), precipitation (blue bars), 

temperature (yellow bars), top leaf nitrogen (green bars) and shortwave radiation (black 

bars). Each panel shows correlations at the beginning and end of the simulation (1860 and 

2100 respectively) and for the modern day (2010). The top row shows Spearman’s partial ρ 

for all sites subdivided by PFT growth habit. The bottom row shows ρ for dry sites (annual 

precipitation below 500 mm yr-1) and wet sites (annual precipitation above 500 mm yr-1). 

Each plot also shows the results from the SDGVM simulation and the SDGVM-Vc simulation.  

 

  



234 
 

Appendix I References for meta-analysis in Chapter 2   

Adam, N. R., G. W. Wall, B. A. Kimball, P. J. Pinter, R. L. LaMorte, D. J. Hunsaker, F. J. Adamsen, T. 
Thompson, A. D. Matthias, S. W. Leavitt, and A. N. Webber. 2000. Acclimation response of 
spring wheat in a free-air CO2 enrichment (FACE) atmosphere with variable soil nitrogen 
regimes. 1. Leaf position and phenology determine acclimation response. Photosynthesis 
Research 66:65-77. 

Aeschlimann, U., J. Nosberger, P. J. Edwards, M. K. Schneider, M. Richter, and H. Blum. 2005. 
Responses of net ecosystem CO2 exchange in managed grassland to long-term CO2 
enrichment, N fertilization and plant species. Plant Cell and Environment 28:823-833. 

Ainsworth, E. A. and A. Rogers. 2007. The response of photosynthesis and stomatal conductance to 
rising [CO2]: mechanisms and environmental interactions. Plant Cell and Environment 
30:258-270. 

Ainsworth, E. A., A. Rogers, H. Blum, J. Nosberger, and S. P. Long. 2003. Variation in acclimation of 
photosynthesis in Trifolium repens after eight years of exposure to Free Air CO2 Enrichment 
(FACE). Journal of Experimental Botany 54:2769-2774. 

Ainsworth, E. A., A. Rogers, R. Nelson, and S. P. Long. 2004. Testing the "source-sink" hypothesis of 
down-regulation of photosynthesis in elevated [CO2] in the field with single gene 
substitutions in Glycine max. Agricultural and Forest Meteorology 122:85-94. 

Allard, V., P. C. D. Newton, M. Lieffering, H. Clark, C. Matthew, J. F. Soussana, and Y. S. Gray. 2003. 
Nitrogen cycling in grazed pastures at elevated CO2: N returns by ruminants. Global Change 
Biology 9:1731-1742. 

Allard, V., P. C. D. Newton, M. Lieffering, J. F. Soussana, R. A. Carran, and C. Matthew. 2005. 
Increased quantity and quality of coarse soil organic matter fraction at elevated CO2 in a 
grazed grassland are a consequence of enhanced root growth rate and turnover. Plant and 
Soil 276:49-60. 

Allard, V., P. C. D. Newton, M. Lieffering, J. F. Soussana, P. Grieu, and C. Matthew. 2004. Elevated 
CO2 effects on decomposition processes in a grazed grassland. Global Change Biology 
10:1553-1564. 

Allen, A. S., J. A. Andrews, A. C. Finzi, R. Matamala, D. D. Richter, and W. H. Schlesinger. 2000. Effects 
of free-air CO2 enrichment (FACE) on belowground processes in a Pinus taeda forest. 
Ecological Applications 10:437-448. 

Anten, N. P. R., T. Hirose, Y. Onoda, T. Kinugasa, H. Y. Kim, M. Okada, and K. Kobayashi. 2004. 
Elevated CO2 and nitrogen availability have interactive effects on canopy carbon gain in rice. 
New Phytologist 161:459-471. 

Asshoff, R., G. Zotz, and C. Korner. 2006. Growth and phenology of mature temperate forest trees in 
elevated CO2. Global Change Biology 12:848-861. 

Bazot, S., L. Ulff, H. Blum, C. Nguyen, and C. Robin. 2006. Effects of elevated CO2 concentration on 
rhizodeposition from Lolium perenne grown on soil exposed to 9 years of CO2 enrichment. 
Soil Biology & Biochemistry 38:729-736. 

Belote, R. T., J. F. Weltzin, and R. J. Norby. 2004. Response of an understory plant community to 
elevated [CO2] depends on differential responses of dominant invasive species and is 
mediated by soil water availability. New Phytologist 161:827-835. 

Bernacchi, C. J., C. Calfapietra, P. A. Davey, V. E. Wittig, G. E. Scarascia-Mugnozza, C. A. Raines, and S. 
P. Long. 2003. Photosynthesis and stomatal conductance responses of poplars to free-air 
CO2 enrichment (PopFACE) during the first growth cycle and immediately following coppice. 
New Phytologist 159:609-621. 

Bernacchi, C. J., P. B. Morgan, D. R. Ort, and S. P. Long. 2005. The growth of soybean under free air 
[CO2] enrichment (FACE) stimulates photosynthesis while decreasing in vivo Rubisco 
capacity. Planta 220:434-446. 

Bernhardt, E. S., J. J. Barber, J. S. Pippen, L. Taneva, J. A. Andrews, and W. H. Schlesinger. 2006. Long-
term effects of free air CO2 enrichment (FACE) on soil respiration. Biogeochemistry 77:91-
116. 



235 
 

Billings, S. A., S. F. Zitzer, H. Weatherly, S. M. Schaeffer, T. Charlet, J. A. Arnone, and R. D. Evans. 
2003. Effects of elevated carbon dioxide on green leaf tissue and leaf litter quality in an intact 
Mojave Desert ecosystem. Global Change Biology 9:729-735. 

Bindi, M., L. Fibbi, M. Lanini, and F. Miglietta. 2001. Free Air CO2 Enrichment (FACE) of grapevine 
(Vitis vinifera L.): I. Development and testing of the system for CO2 enrichment. European 
Journal of Agronomy 14:135-143. 

Blum, H., G. Hendrey, and J. Nosberger. 1997. Effects of elevated CO2, N fertilization, and cutting 
regime on the production and quality of Lolium perenne L. shoot necromass. Acta 
Oecologica-International Journal of Ecology 18:291-295. 

Borjigidai, A., K. Hikosaka, T. Hirose, T. Hasegawa, M. Okada, and K. Kobayashi. 2006. Seasonal 
changes in temperature dependence of photosynthetic rate in rice under a free-air CO2 
enrichment. Annals of Botany 97:549-557. 

Brooks, T. J., G. W. Wall, P. J. Pinter, B. A. Kimball, R. L. LaMorte, S. W. Leavitt, A. D. Matthias, F. J. 
Adamsen, D. J. Hunsaker, and A. N. Webber. 2000. Acclimation response of spring wheat in a 
free-air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes. 3. Canopy 
architecture and gas exchange. Photosynthesis Research 66:97-108. 

Bryant, J., G. Taylor, and M. Frehner. 1998. Photosynthetic acclimation to elevated CO2 is modified 
by source : sink balance in three component species of chalk grassland swards grown in a 
free air carbon dioxide enrichment (FACE) experiment. Plant Cell and Environment 21:159-
168. 

Calfapietra, C., B. Gielen, A. N. J. Galema, M. Lukac, P. De Angelis, M. C. Moscatelli, R. Ceulemans, and 
G. Scarascia-Mugnozza. 2003. Free-air CO2 enrichment (FACE) enhances biomass production 
in a short-rotation poplar plantation. Tree Physiology 23:805-814. 

Calfapietra, C., B. Gielen, M. Sabatti, P. De Angelis, G. Scarascia-Mugnozza, and R. Ceulemans. 2001. 
Growth performance of Populus exposed to "Free Air Carbon dioxide Enrichment" during the 
first growing season in the POPFACE experiment. Annals of Forest Science 58:819-828. 

Calfapietra, C., I. Tulva, E. Eensalu, M. Perez, P. De Angelis, G. Scarascia-Mugnozza, and O. Kull. 2005. 
Canopy profiles of photosynthetic parameters under elevated CO2 and N fertilization in a 
poplar plantation. Environmental Pollution 137:525-535. 

Cech, P. G., S. Pepin, and C. Korner. 2003. Elevated CO2 reduces sap flux in mature deciduous forest 
trees. Oecologia 137:258-268. 

Chen, G. Y., Z. H. Yong, Y. Liao, D. Y. Zhang, Y. Chen, H. B. Zhang, J. Chen, J. G. Zhu, and D. Q. Xu. 2005. 
Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-
1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration 
limitation. Plant and Cell Physiology 46:1036-1045. 

Conley, M. M., B. A. Kimball, T. J. Brooks, P. J. Pinter, D. J. Hunsaker, G. W. Wall, N. R. Adam, R. L. 
LaMorte, A. D. Matthias, T. L. Thompson, S. W. Leavitt, M. J. Ottman, A. B. Cousins, and J. M. 
Triggs. 2001. CO2 enrichment increases water-use efficiency in sorghum. New Phytologist 
151:407-412. 

Cotrufo, M. F., P. De Angelis, and A. Polle. 2005. Leaf litter production and decomposition in a poplar 
short-rotation coppice exposed to free air CO2 enrichment (POPFACE). Global Change 
Biology 11:971-982. 

Cousins, A. B., N. R. Adam, G. W. Wall, B. A. Kimball, P. J. Pinter, S. W. Leavitt, R. L. LaMorte, A. D. 
Matthias, M. J. Ottman, T. L. Thompson, and A. N. Webber. 2001. Reduced photorespiration 
and increased energy-use efficiency in young CO2-enriched sorghum leaves. New Phytologist 
150:275-284. 

Cousins, A. B., N. R. Adam, G. W. Wall, B. A. Kimball, P. J. Pinter, M. J. Ottman, S. W. Leavitt, and A. N. 
Webber. 2002. Photosystem II energy use, non-photochemical quenching and the 
xanthophyll cycle in Sorghum bicolor grown under drought and free-air CO2 enrichment 
(FACE) conditions. Plant Cell and Environment 25:1551-1559. 

Cousins, A. B., N. R. Adam, G. W. Wall, B. A. Kimball, P. J. Pinter, M. J. Ottman, S. W. Leavitt, and A. N. 
Webber. 2003. Development of C-4 photosynthesis in sorghum leaves grown under free-air 
CO2 enrichment (FACE). Journal of Experimental Botany 54:1969-1975. 



236 
 

Crous, K. Y. and D. S. Ellsworth. 2004. Canopy position affects photosynthetic adjustments to long-
term elevated CO2 concentration (FACE) in aging needles in a mature Pinus taeda forest. 
Tree Physiology 24:961-970. 

Crous, K. Y., M. B. Walters, and D. S. Ellsworth. 2008. Elevated CO2 concentration affects leaf 
photosynthesis-nitrogen relationships in Pinus taeda over nine years in FACE. Tree Physiology 
28:607-614. 

Daepp, M., D. Suter, J. P. F. Almeida, H. Isopp, U. A. Hartwig, M. Frehner, H. Blum, J. Nosberger, and 
A. Luscher. 2000. Yield response of Lolium perenne swards to free air CO2 enrichment 
increased over six years in a high N input system on fertile soil. Global Change Biology 6:805-
816. 

Davey, P. A., H. Olcer, O. Zakhleniuk, C. J. Bernacchi, C. Calfapietra, S. P. Long, and C. A. Raines. 2006. 
Can fast-growing plantation trees escape biochemical down-regulation of photosynthesis 
when grown throughout their complete production cycle in the open air under elevated 
carbon dioxide? Plant Cell and Environment 29:1235-1244. 

DeLucia, E. H., J. G. Hamilton, S. L. Naidu, R. B. Thomas, J. A. Andrews, A. C. Finzi, M. Lavine, R. 
Matamala, J. E. Mohan, G. R. Hendrey, and W. H. Schlesinger. 1999. Net primary production 
of a forest ecosystem with experimental CO(2) enrichment. Science 284:1177-1179. 

DeLucia, E. H. and R. B. Thomas. 2000. Photosynthetic responses to CO2 enrichment of four 
hardwood species in a forest understory. Oecologia 122:11-19. 

Dermody, O., S. P. Long, and E. H. DeLucia. 2006. How does elevated CO2 or ozone affect the leaf-
area index of soybean when applied independently? New Phytologist 169:145-155. 

Derner, J. D., H. B. Johnson, B. A. Kimball, P. J. Pinter, H. W. Polley, C. R. Tischler, T. W. Boutton, R. L. 
Lamorte, G. W. Wall, N. R. Adam, S. W. Leavitt, M. J. Ottman, A. D. Matthias, and T. J. Brooks. 
2003. Above- and below-ground responses of C-3-C-4 species mixtures to elevated CO2 and 
soil water availability. Global Change Biology 9:452-460. 

Dijkstra, F. A., S. E. Hobbie, P. B. Reich, and J. M. H. Knops. 2005. Divergent effects of elevated CO2, N 
fertilizattion, and plant diversity on soil C and N dynamics in a grassland field experiment. 
Plant and Soil 272:41-52. 

Edwards, G. R., H. Clark, and P. C. D. Newton. 2001a. The effects of elevated CO2 on seed production 
and seedling recruitment in a sheep-grazed pasture. Oecologia 127:383-394. 

Edwards, G. R., P. C. D. Newton, J. C. Tilbrook, and H. Clark. 2001b. Seedling performance of pasture 
species under elevated CO2. New Phytologist 150:359-369. 

Edwards, N. T., T. J. Tschaplinski, and R. J. Norby. 2002. Stem respiration increases in CO2-enriched 
sweetgum trees. New Phytologist 155:239-248. 

Eguchi, N., R. Funada, T. Ueda, K. Takagi, T. Hiura, K. Sasa, and T. Koike. 2005. Soil moisture condition 
and growth of deciduous tree seedlings native to northern Japan grown under elevated CO2 
with a FACE system. Phyton-Annales Rei Botanicae 45:133-138. 

Ellsworth, D. S. 1999. CO2 enrichment in a maturing pine forest: are CO2 exchange and water status 
in the canopy affected? Plant Cell and Environment 22:461-472. 

Ellsworth, D. S., R. Oren, C. Huang, N. Phillips, and G. R. Hendrey. 1995. Leaf and Canopy Responses 
to Elevated Co2 in a Pine Forest under Free-Air Co2 Enrichment. Oecologia 104:139-146. 

Ellsworth, D. S., P. B. Reich, E. S. Naumburg, G. W. Koch, M. E. Kubiske, and S. D. Smith. 2004. 
Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO(2) 
across four free-air CO2 enrichment experiments in forest, grassland and desert. Global 
Change Biology 10:2121-2138. 

Estiarte, M., J. Penuelas, B. A. Kimball, D. L. Hendrix, P. J. Pinter, G. W. Wall, R. L. LaMorte, and D. J. 
Hunsaker. 1999. Free-air CO2 enrichment of wheat: leaf flavonoid concentration throughout 
the growth cycle. Physiologia Plantarum 105:423-433. 

Finzi, A. C., A. S. Allen, E. H. DeLucia, D. S. Ellsworth, and W. H. Schlesinger. 2001. Forest litter 
production, chemistry, and decomposition following two years of free-air CO2 enrichment. 
Ecology 82:470-484. 

Finzi, A. C., E. H. DeLucia, J. G. Hamilton, D. D. Richter, and W. H. Schlesinger. 2002. The nitrogen 
budget of a pine forest under free air CO2 enrichment. Oecologia 132:567-578. 



237 
 

Finzi, A. C., D. J. P. Moore, E. H. DeLucia, J. Lichter, K. S. Hofmockel, R. B. Jackson, H. S. Kim, R. 
Matamala, H. R. McCarthy, R. Oren, J. S. Pippen, and W. H. Schlesinger. 2006. Progressive 
nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. 
Ecology 87:15-25. 

Finzi, A. C., R. J. Norby, C. Calfapietra, A. Gallet-Budynek, B. Gielen, W. E. Holmes, M. R. Hoosbeek, C. 
M. Iversen, R. B. Jackson, M. E. Kubiske, J. Ledford, M. Liberloo, R. Oren, A. Polle, S. Pritchard, 
D. R. Zak, W. H. Schlesinger, and R. Ceulemans. 2007. Increases in nitrogen uptake rather 
than nitrogen-use efficiency support higher rates of temperate forest productivity under 
elevated CO2. Proceedings of the National Academy of Sciences of the United States of 
America 104:14014-14019. 

Franzaring, J., P. Hoegy, and A. Fangmeier. 2008. Effects of free-air CO2 enrichment on the growth of 
summer oilseed rape (Brassica napus cv. Campino). Agriculture Ecosystems & Environment 
128:127-134. 

Frehner, M., A. Luscher, T. Hebeisen, S. Zanetti, F. Schubiger, and M. Scalet. 1997. Effects of elevated 
partial pressure of carbon dioxide and season of the year on forage quality and cyanide 
concentration of Trifolium repens L. from a FACE experiment. Acta Oecologica-International 
Journal of Ecology 18:297-304. 

Garcia, R. L., S. P. Long, G. W. Wall, C. P. Osborne, B. A. Kimball, G. Y. Nie, P. J. Pinter, R. L. Lamorte, 
and F. Wechsung. 1998. Photosynthesis and conductance of spring-wheat leaves: field 
response to continuous free-air atmospheric CO2 enrichment. Plant Cell and Environment 
21:659-669. 

Gielen, B., C. Calfapietra, M. Lukac, V. E. Wittig, P. De Angelis, I. A. Janssens, M. C. Moscatelli, S. 
Grego, M. F. Cotrufo, D. L. Godbold, M. R. Hoosbeek, S. P. Long, F. Miglietta, A. Polle, C. J. 
Bernacchi, P. A. Davey, R. Ceulemans, and G. E. Scarascia-Mugnozza. 2005. Net carbon 
storage in a poplar plantation (POPFACE) after three years of free-air CO2 enrichment. Tree 
Physiology 25:1399-1408. 

Gielen, B., C. Calfapietra, M. Sabatti, and R. Ceulemans. 2001. Leaf area dynamics in a closed poplar 
plantation under free-air carbon dioxide enrichment. Tree Physiology 21:1245-1255. 

Gielen, B., G. Scarascia-Mugnozza, and R. Ceulemans. 2003. Stem respiration of Populus species in 
the third year of free-air CO2 enrichment. Physiologia Plantarum 117:500-507. 

Grant, R. F., G. W. Wall, B. A. Kimball, K. F. A. Frumau, P. J. Pinter, D. J. Hunsaker, and R. L. Lamorte. 
1999. Crop water relations under different CO2 and irrigation: testing of ecosys with the free 
air CO2 enrichment (FACE) experiment. Agricultural and Forest Meteorology 95:27-51. 

Gunderson, C. A., J. D. Sholtis, S. D. Wullschleger, D. T. Tissue, P. J. Hanson, and R. J. Norby. 2002. 
Environmental and stomatal control of photosynthetic enhancement in the canopy of a 
sweetgum (Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment. Plant 
Cell and Environment 25:379-393. 

Guo, J. M., C. M. Trotter, and P. C. D. Newton. 2006. Initial observations of increased requirements 
for light-energy dissipation in ryegrass (Lolium perenne) when source/sink ratios become 
high at a naturally grazed Free Air CO2 Enrichment (FACE) site. Functional Plant Biology 
33:1045-1053. 

Hamerlynck, E. P., T. E. Huxman, T. N. Charlet, and S. D. Smith. 2002. Effects of elevated CO2 (FACE) 
on the functional ecology of the drought-deciduous Mojave Desert shrub, Lycium andersonii. 
Environmental and Experimental Botany 48:93-106. 

Hamerlynck, E. P., T. E. Huxman, R. S. Nowak, S. Redar, M. E. Loik, D. N. Jordan, S. F. Zitzer, J. S. 
Coleman, J. R. Seemann, and S. D. Smith. 2000. Photosynthetic responses of larrea tridentata 
to a step-increase in atmospheric CO2 at the Nevada desert FACE facility. Journal of Arid 
Environments 44:425-436. 

Handa, I. T., C. Korner, and S. Hattenschwiler. 2006. Conifer stem growth at the altitudinal treeline in 
response to four years of CO2 enrichment. Global Change Biology 12:2417-2430. 

Hansen, R. A., R. S. Williams, D. C. Degenhardt, and D. E. Lincoln. 2001. Non-litter effects of elevated 
CO2 on forest floor microarthropod abundances. Plant and Soil 236:139-144. 



238 
 

Hattenschwiler, S., I. T. Handa, L. Egli, R. Asshoff, W. Ammann, and C. Korner. 2002. Atmospheric CO2 
enrichment of alpine treeline conifers. New Phytologist 156:363-375. 

Hebeisen, T., A. Luscher, and J. Nosberger. 1997. Effects of elevated atmospheric CO2 and nitrogen 
fertilisation on yield of Trifolium repens and Lolium perenne. Acta Oecologica-International 
Journal of Ecology 18:277-284. 

Hendrix, D. L., J. R. Mauney, B. A. Kimball, K. Lewin, J. Nagy, and G. R. Hendrey. 1994. Influence of 
Elevated Co2 and Mild Water-Stress on Nonstructural Carbohydrates in Field-Grown Cotton 
Tissues. Agricultural and Forest Meteorology 70:153-162. 

Herrick, J. D. and R. B. Thomas. 1999. Effects of CO2 enrichment on the photosynthetic light response 
of sun and shade leaves of canopy sweetgum trees (Liquidambar styraciflua) in a forest 
ecosystem. Tree Physiology 19:779-786. 

Herrick, J. D. and R. B. Thomas. 2003. Leaf senescence and late-season net photosynthesis of sun and 
shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and 
ambient carbon dioxide concentrations. Tree Physiology 23:109-118. 

Hileman, D. R., G. Huluka, P. K. Kenjige, N. Sinha, N. C. Bhattacharya, P. K. Biswas, K. F. Lewin, J. Nagy, 
and G. R. Hendrey. 1994. Canopy Photosynthesis and Transpiration of Field-Grown Cotton 
Exposed to Free-Air Co2 Enrichment (Face) and Differential Irrigation. Agricultural and Forest 
Meteorology 70:189-207. 

Hill, P. W., C. Marshall, G. G. Williams, H. Blum, H. Harmens, D. L. Jones, and J. F. Farrar. 2007. The 
fate of photosynthetically-fixed carbon in Lolium perenne grassland as modified by elevated 
CO2 and sward management. New Phytologist 173:766-777. 

Holmes, W. E., D. R. Zak, K. S. Pregitzer, and J. S. King. 2006. Elevated CO2 and O-3 alter soil nitrogen 
transformations beneath trembling aspen, paper birch, and sugar maple. Ecosystems 9:1354-
1363. 

Holton, M. K., R. L. Lindroth, and E. V. Nordheim. 2003. Foliar quality influences tree-herbivore-
parasitoid interactions: effects of elevated CO2, O-3, and plant genotype. Oecologia 137:233-
244. 

Hoosbeek, M. R., N. van Breemen, F. Berendse, P. Grosvernier, H. Vasander, and B. Wallen. 2001. 
Limited effect of increased atmospheric CO2 concentration on ombrotrophic bog vegetation. 
New Phytologist 150:459-463. 

Hoosbeek, M. R., N. Van Breemen, H. Vasander, A. Buttler, and F. Berendse. 2002. Potassium limits 
potential growth of bog vegetation under elevated atmospheric CO2 and N deposition. 
Global Change Biology 8:1130-1138. 

Housman, D. C., E. Naumburg, T. E. Huxman, T. N. Charlet, R. S. Nowak, and S. D. Smith. 2006. 
Increases in desert shrub productivity under elevated carbon dioxide vary with water 
availability. Ecosystems 9:374-385. 

Hovenden, M. J. 2003. Photosynthesis of coppicing poplar clones in a free-air CO2 enrichment (FACE) 
experiment in a short-rotation forest. Functional Plant Biology 30:391-400. 

Hovenden, M. J., F. Miglietta, A. Zaldei, J. K. Vander Schoor, K. E. Wills, and P. C. D. Newton. 2006. 
The TasFACE climate-change impacts experiment: design and performance of combined 
elevated CO2 and temperature enhancement in a native Tasmanian grassland. Australian 
Journal of Botany 54:1-10. 

Hovenden, M. J., P. C. D. Newton, R. A. Carran, P. Theobald, K. E. Wills, J. K. V. Schoor, A. L. Williams, 
and Y. Osanai. 2008. Warming prevents the elevated CO2-induced reduction in available soil 
nitrogen in a temperate, perennial grassland. Global Change Biology 14:1018-1024. 

Huluka, G., D. R. Hileman, P. K. Biswas, K. F. Lewin, J. Nagy, and G. R. Hendrey. 1994. Effects of 
Elevated Co2 and Water-Stress on Mineral Concentration of Cotton. Agricultural and Forest 
Meteorology 70:141-152. 

Hunt, M. G., S. Rasmussen, P. C. D. Newton, A. J. Parsons, and J. A. Newman. 2005. Near-term 
impacts of elevated CO2, nitrogen and fungal endophyte-infection on Lolium perenne L. 
growth, chemical composition and alkaloid production. Plant Cell and Environment 28:1345-
1354. 



239 
 

Huxman, T. E., E. P. Hamerlynck, B. D. Moore, S. D. Smith, D. N. Jordan, S. F. Zitzer, R. S. Nowak, J. S. 
Coleman, and J. R. Seemann. 1998. Photosynthetic down-regulation in Larrea tridentata 
exposed to elevated atmospheric CO2: interaction with drought under glasshouse and field 
(FACE) exposure. Plant Cell and Environment 21:1153-1161. 

Huxman, T. E. and S. D. Smith. 2001. Photosynthesis in an invasive grass and native forb at elevated 
CO2 during an El Nino year in the Mojave Desert. Oecologia 128:193-201. 

Ineson, P., M. F. Cotrufo, R. Bol, D. D. Harkness, and H. Blum. 1996. Quantification of soil carbon 
inputs under elevated CO2:C-3 plants in a C-4 soil. Plant and Soil 187:345-350. 

Inubushi, K., W. G. Cheng, S. Aonuma, M. M. Hoque, K. Kobayashi, S. Miura, H. Y. Kim, and M. Okada. 
2003. Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. 
Global Change Biology 9:1458-1464. 

Isebrands, J. G., E. P. McDonald, E. Kruger, G. Hendrey, K. Percy, K. Pregitzer, J. Sober, and D. F. 
Karnosky. 2001. Growth responses of Populus tremuloides clones to interacting elevated 
carbon dioxide and tropospheric ozone. Environmental Pollution 115:359-371. 

Isopp, H., M. Frehner, J. P. F. Almeida, H. Blum, M. Daepp, U. A. Hartwig, A. Luscher, S. Suter, and J. 
Nosberger. 2000. Nitrogen plays a major role in leaves when source-sink relations change: C 
and N metabolism in Lolium perenne growing under free air CO2 enrichment. Australian 
Journal of Plant Physiology 27:851-858. 

Jasoni, R. L., S. D. Smith, and J. A. Arnone. 2005. Net ecosystem CO2 exchange in Mojave Desert 
shrublands during the eighth year of exposure to elevated CO2. Global Change Biology 
11:749-756. 

Kaakinen, S., K. Kostiainen, F. Ek, P. Saranpaa, M. E. Kubiske, J. Sober, D. F. Karnosky, and E. 
Vapaavuori. 2004. Stem wood properties of Populus tremuloides, Betula papyrifera and Acer 
saccharum saplings after 3 years of treatments to elevated carbon dioxide and ozone. Global 
Change Biology 10:1513-1525. 

Kammann, C., L. Grunhage, U. Gruters, S. Janze, and H. J. Jager. 2005. Response of aboveground 
grassland biomass and soil moisture to moderate long-term CO2 enrichment. Basic and 
Applied Ecology 6:351-365. 

Karnosky, D. F. 2003. Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: 
knowledge gaps. Environment International 29:161-169. 

Karnosky, D. F., K. S. Pregitzer, D. R. Zak, M. E. Kubiske, G. R. Hendrey, D. Weinstein, M. Nosal, and K. 
E. Percy. 2005. Scaling ozone responses of forest trees to the ecosystem level in a changing 
climate. Plant Cell and Environment 28:965-981. 

Keel, S. G., R. T. W. Siegwolf, and C. Korner. 2006. Canopy CO2 enrichment permits tracing the fate of 
recently assimilated carbon in a mature deciduous forest. New Phytologist 172:319-329. 

Kimball, B. A., P. J. Pinter, R. L. Garcia, R. L. LaMorte, G. W. Wall, D. J. Hunsaker, G. Wechsung, F. 
Wechsung, and T. Kartschall. 1995. Productivity and water use of wheat under free-air CO2 
enrichment. Global Change Biology 1:429-442. 

King, J. S., M. E. Kubiske, K. S. Pregitzer, G. R. Hendrey, E. P. McDonald, C. P. Giardina, V. S. Quinn, 
and D. F. Karnosky. 2005. Tropospheric O-3 compromises net primary production in young 
stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric 
CO2. New Phytologist 168:623-635. 

Knepp, R. G., J. G. Hamilton, J. E. Mohan, A. R. Zangerl, M. R. Berenbaum, and E. H. DeLucia. 2005. 
Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New 
Phytologist 167:207-218. 

Koizumi, H., T. Kibe, S. Mariko, T. Ohtsuka, T. Nakadai, W. H. Mo, H. Toda, N. Seiichi, and K. 
Kobayashi. 2001. Effect of free-air CO2 enrichment (FACE) on CO2 exchange at the flood-
water surface in a rice paddy field. New Phytologist 150:231-239. 

Korner, C., R. Asshoff, O. Bignucolo, S. Hattenschwiler, S. G. Keel, S. Pelaez-Riedl, S. Pepin, R. T. W. 
Siegwolf, and G. Zotz. 2005. Carbon flux and growth in mature deciduous forest trees 
exposed to elevated CO2. Science 309:1360-1362. 



240 
 

Kreuzwieser, J., H. Rennenberg, and R. Steinbrecher. 2006. Impact of short-term and long-term 
elevated CO2 on emission of carbonyls from adult Quercus petraea and Carpinus betulus 
trees. Environmental Pollution 142:246-253. 

Kubiske, M. E., V. S. Quinn, W. E. Heilman, E. P. McDonald, P. E. Marquardt, R. M. Teclaw, A. L. Friend, 
and D. F. Karnosky. 2006. Interannual climatic variation mediates elevated CO2 and O-3 
effects on forest growth. Global Change Biology 12:1054-1068. 

Lau, J. A., J. Peiffer, P. B. Reich, and P. Tiffin. 2008a. Transgenerational effects of global 
environmental change: long-term CO(2) and nitrogen treatments influence offspring growth 
response to elevated CO(2). Oecologia 158:141-150. 

Lau, J. A., J. Strengbom, L. R. Stone, P. B. Reich, and P. Tiffin. 2008b. Direct and indirect effects of 
CO2, nitrogen, and community diversity on plant-enemy interactions. Ecology 89:226-236. 

Leakey, A. D. B., C. J. Bernacchi, F. G. Dohleman, D. R. Ort, and S. P. Long. 2004. Will photosynthesis 
of maize (Zea mays) in the US Corn Belt increase in future [CO2] rich atmospheres? An 
analysis of diurnal courses of CO2 uptake under free-air concentration enrichment (FACE). 
Global Change Biology 10:951-962. 

Leakey, A. D. B., C. J. Bernacchi, S. P. Long, and D. R. Ort. 2005. Elevated CO, does not stimulate C-4 
photosynthesis directly, but impacts water relations and indirectly enhances carbon gain 
during drought stress in maize (Zea mays) grown under free-air CO2 enrichment (FACE). 
Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 141:S305-
S306. 

Leakey, A. D. B., C. J. Bernacchi, D. R. Ort, and S. P. Long. 2006. Long-term growth of soybean at 
elevated [CO2] does not cause acclimation of stomatal conductance under fully open-air 
conditions. Plant Cell and Environment 29:1794-1800. 

Leuzinger, S., G. Zotz, R. Asshoff, and C. Korner. 2005. Responses of deciduous forest trees to severe 
drought in Central Europe. Tree Physiology 25:641-650. 

Liberloo, M., C. Calfapietra, M. Lukac, D. Godbold, Z. B. Luos, A. Polle, M. R. Hoosbeek, O. Kull, M. 
Marek, C. Raines, M. Rubino, G. Taylor, G. Scarascia-Mugnozza, and R. Ceulemans. 2006. 
Woody biomass production during the second rotation of a bio-energy Populus plantation 
increases in a future high CO2 world. Global Change Biology 12:1094-1106. 

Liberloo, M., S. Y. Dillen, C. Calfapietra, S. Marinari, Z. Bin Luo, P. De Angelis, and R. Ceulemans. 2005. 
Elevated CO2 concentration, fertilization and their interaction: growth stimulation in a short-
rotation poplar coppice (EUROFACE). Tree Physiology 25:179-189. 

Liberloo, M., I. Tulva, O. Raim, O. Kull, and R. Ceulemans. 2007. Photosynthetic stimulation under 
long-term CO2 enrichment and fertilization is sustained across a closed Populus canopy 
profile (EUROFACE). New Phytologist 173:537-549. 

Lindroth, R. L., B. J. Kopper, W. F. J. Parsons, J. G. Bockheim, D. F. Karnosky, G. R. Hendrey, K. S. 
Pregitzer, J. G. Isebrands, and J. Sober. 2001. Consequences of elevated carbons dioxide and 
ozone for foliar chemical composition and dynamics in trembling aspen (Populus 
tremuloides) and paper birch (Betula papyrifera). Environmental Pollution 115:395-404. 

Liu, L. L., J. S. King, and C. P. Giardina. 2005. Effects of elevated concentrations of atmospheric CO2 
and tropospheric O-3 on leaf litter production and chemistry in trembling aspen and paper 
birch communities. Tree Physiology 25:1511-1522. 

Lukac, M., C. Calfapietra, and D. L. Godbold. 2003. Production, turnover and mycorrhizal colonization 
of root systems of three Populus species grown under elevated CO2 (POPFACE). Global 
Change Biology 9:838-848. 

Luo, Y. Q., D. F. Hui, and D. Q. Zhang. 2006. Elevated CO2 stimulates net accumulations of carbon and 
nitrogen in land ecosystems: A meta-analysis. Ecology 87:53-63. 

Luo, Z.-B., C. Calfapietra, G. Scarascia-Mugnozza, M. Liberloo, and A. Polle. 2008. Carbon-based 
secondary metabolites and internal nitrogen pools in Populus nigra under Free Air CO2 
Enrichment (FACE) and nitrogen fertilisation. Plant and Soil 304:45-57. 

Luscher, A. and J. Nosberger. 1997. Interspecific and intraspecific variability in the response of 
grasses and legumes to free air CO2 enrichment. Acta Oecologica-International Journal of 
Ecology 18:269-275. 



241 
 

Magliulo, V., M. Bindi, and G. Rana. 2003. Water use of irrigated potato (Solanum tuberosum L.) 
grown under free air carbon dioxide enrichment in central Italy. Agriculture Ecosystems & 
Environment 97:65-80. 

Maier, C. A., S. Palmroth, and E. Ward. 2008. Short-term effects of fertilization on photosynthesis and 
leaf morphology of field-grown loblolly pine following long-term exposure to elevated CO2 
concentration. Tree Physiology 28:597-606. 

Marchi, S., R. Tognetti, F. P. Vaccari, M. Lanini, M. Kaligaric, F. Miglietta, and A. Raschi. 2004. 
Physiological and morphological responses of grassland species to elevated atmospheric CO2 
concentrations in FACE-systems and natural CO2 springs. Functional Plant Biology 31:181-
194. 

Mauney, J. R., B. A. Kimball, P. J. Pinter, R. L. Lamorte, K. F. Lewin, J. Nagy, and G. R. Hendrey. 1994. 
Growth and Yield of Cotton in Response to a Free-Air Carbon-Dioxide Enrichment (Face) 
Environment. Agricultural and Forest Meteorology 70:49-67. 

McCarthy, H. R., R. Oren, K. H. Johnsen, A. C. Finzi, S. G. Pritchard, R. B. Jackson, C. W. Cook, and K. K. 
Treseder. 2007. Reassessment of carbon accumulation at the Duke free air CO2 enrichment 
site: Interactions of atmospheric CO2 with nitrogen and water availability and stand 
development. Ecological Society of America Annual Meeting Abstracts. 

McElrone, A. J., C. D. Reid, K. A. Hoye, E. Hart, and R. B. Jackson. 2005. Elevated CO2 reduces disease 
incidence and severity of a red maple fungal pathogen via changes in host physiology and 
leaf chemistry. Global Change Biology 11:1828-1836. 

Miglietta, F., A. Giuntoli, and M. Bindi. 1996. The effect of free air carbon dioxide enrichment (FACE) 
and soil nitrogen availability on the photosynthetic capacity of wheat. Photosynthesis 
Research 47:281-290. 

Miglietta, F., V. Magliulo, M. Bindi, L. Cerio, F. P. Vaccari, V. Loduca, and A. Peressotti. 1998. Free air 
CO2 enrichment of potato (Solanum tuberosum L.): development, growth and yield. Global 
Change Biology 4:163-172. 

Mohan, J. E., J. S. Clark, and W. H. Schlesinger. 2007. Long-term CO2 enrichment of a forest 
ecosystem: Implications for forest regeneration and succession. Ecological Applications 
17:1198-1212. 

Myers, D. A., R. B. Thomas, and E. H. Delucia. 1999. Photosynthetic capacity of loblolly pine (Pinus 
taeda L.) trees during the first year of carbon dioxide enrichment in a forest ecosystem. Plant 
Cell and Environment 22:473-481. 

Nagel, J. M., T. E. Huxman, K. L. Griffin, and S. D. Smith. 2004. Co-2 enrichment reduces the energetic 
cost of biomass construction in an invasive desert grass. Ecology 85:100-106. 

Natali, S., S. A. Sanudo-Wilhelmy, and M. Lerdau. 2009. Effects of elevated carbon dioxide and 
nitrogen fertilization on nitrate reductase activity in sweetgum and loblolly pine trees in two 
temperate forests. Plant and Soil 314:197-210. 

Natali, S. M., S. A. Sanudo-Wilhelmy, R. J. Norby, H. Zhang, A. C. Finzi, and M. T. Lerdau. 2008. 
Increased mercury in forest soils under elevated carbon dioxide. Oecologia 158:343-354. 

Naumburg, E. and D. S. Ellsworth. 2000. Photosynthesis sunfleck utilization potential of understory 
saplings growing under elevated CO2 in FACE. Oecologia 122:163-174. 

Nie, G. Y., S. P. Long, R. L. Garcia, B. A. Kimball, R. L. Lamorte, P. J. Pinter, G. W. Wall, and A. N. 
Webber. 1995. Effects of Free-Air Co2 Enrichment on the Development of the Photosynthetic 
Apparatus in Wheat, as Indicated by Changes in Leaf Proteins. Plant Cell and Environment 
18:855-864. 

Nijs, I., R. Ferris, H. Blum, G. Hendrey, and I. Impens. 1997. Stomatal regulation in a changing climate: 
a field study using Free Air Temperature Increase (FATI) and Free Air CO2 enrichment (FACE). 
Plant Cell and Environment 20:1041-1050. 

Nijs, I., F. Kockelbergh, H. Teughels, H. Blum, G. Hendrey, and I. Impens. 1996. Free air temperature 
increase (FATI): A new tool to study global warming effects on plants in the field. Plant Cell 
and Environment 19:495-502. 



242 
 

Nitschelm, J. J., A. Luscher, U. A. Hartwig, and C. VanKessel. 1997. Using stable isotopes to determine 
soil carbon input differences under ambient and elevated atmospheric CO2 conditions. 
Global Change Biology 3:411-416. 

Noormets, A., E. P. McDonald, R. E. Dickson, E. L. Kruger, A. Sober, J. G. Isebrands, and D. F. Karnosky. 
2001. The effect of elevated carbon dioxide and ozone on leaf- and branch-level 
photosynthesis and potential plant-level carbon gain in aspen. Trees-Structure and Function 
15:262-270. 

Norby, R. J. and C. M. Iversen. 2006. Nitrogen uptake, distribution, turnover, and efficiency of use in a 
CO2-enriched sweetgum forest. Ecology 87:5-14. 

Norby, R. J., J. Ledford, C. D. Reilly, N. E. Miller, and E. G. O'Neill. 2004. Fine-root production 
dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of 
the National Academy of Sciences of the United States of America 101:9689-9693. 

Norby, R. J., J. D. Sholtis, C. A. Gunderson, and S. S. Jawdy. 2003. Leaf dynamics of a deciduous forest 
canopy: no response to elevated CO2. Oecologia 136:574-584. 

Norton, L. R., L. G. Firbank, and H. Blum. 1999. Effects of free-air CO2 Enrichment (FACE) on 
experimental grassland communities. Functional Ecology 13:38-44. 

Novotny, A. M., J. D. Schade, S. E. Hobbie, A. D. Kay, M. Kyle, P. B. Reich, and J. J. Elser. 2007. 
Stoichiometric response of nitrogen-fixing and non-fixing dicots to manipulations of CO2, 
nitrogen, and diversity. Oecologia 151:687-696. 

Osborne, C. P., S. P. Long, R. L. Garcia, G. W. Wall, B. A. Kimball, P. J. Pinter, R. L. LaMorte, and G. R. 
Hendrey. 1995. Do shade and elevated CO2 concentration have an interactive effect on 
photosynthesis? An analysis using wheat grown under free-air CO2-enrichment (FACE). 
Photosynthesis: from Light to Biosphere, Vol 5:929-932. 

Pang, J., J. G. Zhu, Z. B. Xie, G. Liu, Y. L. Zhang, G. P. Chen, Q. Zeng, and L. Cheng. 2006. A new 
explanation of the N concentration decrease in tissues of rice (Oryza sativa L.) exposed to 
elevated atmospheric pCO(2). Environmental and Experimental Botany 57:98-105. 

Parsons, W. F. J., R. L. Lindroth, and J. G. Bockheim. 2004. Decomposition of Betula papyrifera leaf 
litter under the independent and interactive effects of elevated CO2 and O-3. Global Change 
Biology 10:1666-1677. 

Phillips, D. L., M. G. Johnson, D. T. Tingey, C. E. Catricala, T. L. Hoyman, and R. S. Nowak. 2006. Effects 
of elevated CO2 on fine root dynamics in a Mojave Desert community: a FACE study. Global 
Change Biology 12:61-73. 

Picon-Cochard, C., F. Teyssonneyre, J. M. Besle, and J. F. Soussana. 2004. Effects of elevated CO2 and 
cutting frequency on the productivity and herbage quality of a semi-natural grassland. 
European Journal of Agronomy 20:363-377. 

Pregitzer, K. S., A. J. Burton, J. S. King, and D. R. Zak. 2008. Soil respiration, root biomass, and root 
turnover following long-term exposure of northern forests to elevated atmospheric Co-2 and 
tropospheric O-3. New Phytologist 180:153-161. 

Prior, S. A., H. H. Rogers, G. B. Runion, and G. R. Hendrey. 1994. Free-Air Co2 Enrichment of Cotton - 
Vertical and Lateral Root Distribution Patterns. Plant and Soil 165:33-44. 

Reich, P. B., B. A. Hungate, and Y. Q. Luo. 2006. Carbon-nitrogen interactions in terrestrial 
ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology 
Evolution and Systematics 37:611-636. 

Reich, P. B., J. Knops, D. Tilman, J. Craine, D. Ellsworth, M. Tjoelker, T. Lee, D. Wedin, S. Naeem, D. 
Bahauddin, G. Hendrey, S. Jose, K. Wrage, J. Goth, and W. Bengston. 2001. Plant diversity 
enhances ecosystem responses to elevated CO2 and nitrogen deposition (vol 410, pg 809, 
2001). Nature 411:824-+. 

Rogers, A., D. J. Allen, P. A. Davey, P. B. Morgan, E. A. Ainsworth, C. J. Bernacchi, G. Cornic, O. 
Dermody, F. G. Dohleman, E. A. Heaton, J. Mahoney, X. G. Zhu, E. H. Delucia, D. R. Ort, and S. 
P. Long. 2004. Leaf photosynthesis and carbohydrate dynamics of soybeans grown 
throughout their life-cycle under Free-Air Carbon dioxide Enrichment. Plant Cell and 
Environment 27:449-458. 



243 
 

Rogers, A. and D. S. Ellsworth. 2002. Photosynthetic acclimation of Pinus taeda (loblolly pine) to long-
term growth in elevated pCO(2) (FACE). Plant Cell and Environment 25:851-858. 

Rogers, A., B. U. Fischer, J. Bryant, M. Frehner, H. Blum, C. A. Raines, and S. P. Long. 1998. 
Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by 
the capacity for assimilate utilization. Perennial ryegrass under free-air CO2 enrichment. 
Plant Physiology 118:683-689. 

Rogers, A., Y. Gibon, M. Stitt, P. B. Morgan, C. J. Bernacchi, D. R. Ort, and S. P. Long. 2006. Increased C 
availability at elevated carbon dioxide concentration improves N assimilation in a legume. 
Plant Cell and Environment 29:1651-1658. 

Ross, D. J., P. C. D. Newton, and K. R. Tate. 2004. Elevated [CO2] effects on herbage production and 
soil carbon and nitrogen pools and mineralization in a species-rich, grazed pasture on a 
seasonally dry sand. Plant and Soil 260:183-196. 

Saarnio, S., S. Jarvio, T. Saarinen, H. Vasander, and J. Silvola. 2003. Minor changes in vegetation and 
carbon gas balance in a boreal mire under a raised CO2 or NH4NO3 supply. Ecosystems 6:46-
60. 

Sasaki, H., T. Hara, S. Ito, S. Miura, M. M. Hoque, M. Lieffering, H. Y. Kim, M. Okada, and K. Kobayashi. 
2005. Seasonal changes in canopy photosynthesis and respiration, and partitioning of 
photosynthate, in rice (Oryza sativa L.) grown under free-air CO2 enrichment. Plant and Cell 
Physiology 46:1704-1712. 

Sasaki, H., T. Hara, S. Ito, N. Uehara, H. Y. Kim, M. Lieffering, M. Okada, and K. Kobayashi. 2007. Effect 
of free-air CO2 enrichment on the storage of carbohydrate fixed at different stages in rice 
(Oryza sativa L.). Field Crops Research 100:24-31. 

Schafer, K. V. R., R. Oren, D. S. Ellsworth, C. T. Lai, J. D. Herrick, A. C. Finzi, D. D. Richter, and G. G. 
Katul. 2003. Exposure to an enriched CO2 atmosphere alters carbon assimilation and 
allocation in a pine forest ecosystem. Global Change Biology 9:1378-1400. 

Schafer, K. V. R., R. Oren, C. T. Lai, and G. G. Katul. 2002. Hydrologic balance in an intact temperate 
forest ecosystem under ambient and elevated atmospheric CO2 concentration. Global 
Change Biology 8:895-911. 

Schneider, M. K., A. Luscher, M. Richter, U. Aeschlimann, U. A. Hartwig, H. Blum, E. Frossard, and J. 
Nosberger. 2004. Ten years of free-air CO2 enrichment altered the mobilization of N from 
soil in Lolium perenne L. swards. Global Change Biology 10:1377-1388. 

Seneweera, S., J. Conroy, and K. Kobayashi. 2002. Photosynthetic acclimation of rice to free air CO2 
enrichment (FACE) depend on carbon and nitrogen relationship during ontogeny. Plant and 
Cell Physiology 43:S68-S68. 

Senock, R. S., J. M. Ham, T. M. Loughin, B. A. Kimball, D. J. Hunsaker, P. J. Pinter, G. W. Wall, R. L. 
Garcia, and R. L. LaMorte. 1996. Sap flow in wheat under free-air CO2 enrichment. Plant Cell 
and Environment 19:147-158. 

Shimono, H., M. Okada, Y. Yamakawa, H. Nakamura, K. Kobayashi, and T. Hasegawa. 2007. Lodging in 
rice can be alleviated by atmospheric CO2 enrichment. Agriculture Ecosystems & 
Environment 118:223-230. 

Sholtis, J. D., C. A. Gunderson, R. J. Norby, and D. T. Tissue. 2004. Persistent stimulation of 
photosynthesis by elevated CO2 in a sweetgum (Liquidambar styraciflua) forest stand. New 
Phytologist 162:343-354. 

Sinclair, T. R., P. J. Pinter, B. A. Kimball, F. J. Adamsen, R. L. LaMorte, G. W. Wall, D. J. Hunsaker, N. 
Adam, T. J. Brooks, R. L. Garcia, T. Thompson, S. Leavitt, and A. Matthias. 2000. Leaf nitrogen 
concentration of wheat subjected to elevated [CO2] and either water or N deficits. 
Agriculture Ecosystems & Environment 79:53-60. 

Singsaas, E. L., D. R. Ort, and E. H. DeLucia. 2000. Diurnal regulation of photosynthesis in understory 
saplings. New Phytologist 145:39-49. 

Springer, C. J. and R. B. Thomas. 2007. Photosynthetic responses of forest understory tree species to 
long-term exposure to elevated carbon dioxide concentration at the Duke Forest FACE 
experiment. Tree Physiology 27:25-32. 



244 
 

Strengbom, J. and P. B. Reich. 2006. Elevated CO(2) and increased N supply reduce leaf disease and 
related photosynthetic impacts on Solidago rigida. Oecologia 149:519-525. 

Suter, D., J. Nosberger, and A. Luscher. 2001. Response of perennial ryegrass to free-air CO2 
enrichment (FACE) is related to the dynamics of sward structure during regrowth. Crop 
Science 41:810-817. 

Taylor, G., R. Ceulemans, R. Ferris, S. D. L. Gardner, and B. Y. Shao. 2001. Increased leaf area 
expansion of hybrid poplar in elevated CO2. From controlled environments to open-top 
chambers and to FACE. Environmental Pollution 115:463-472. 

Taylor, G., M. J. Tallis, C. P. Giardina, K. E. Percy, F. Miglietta, P. S. Gupta, B. Gioli, C. Calfapietra, B. 
Gielen, M. E. Kubiske, G. E. Scarascia-Mugnozza, K. Kets, S. P. Long, and D. F. Karnosky. 2008. 
Future atmospheric CO2 leads to delayed autumnal senescence. Global Change Biology 
14:264-275. 

Thayer, S. S., S. B. St Clair, C. B. Field, and S. C. Somerville. 2008. Accentuation of phosphorus 
limitation in Geranium dissectum by nitrogen: an ecological genomics study. Global Change 
Biology 14:1877-1890. 

Tissue, D. T., J. D. Lewis, S. D. Wullschleger, J. S. Amthor, K. L. Griffin, and R. Anderson. 2002. Leaf 
respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in 
ambient and elevated concentrations of carbon dioxide in the field. Tree Physiology 22:1157-
1166. 

Tognetti, R., A. Longobucco, A. Raschi, F. Miglietta, and I. Fumagalli. 1999. Responses of two Populus 
clones to elevated atmospheric CO2 concentration in the field. Annals of Forest Science 
56:493-500. 

Tognetti, R., L. Sebastiani, A. Minnocci, and A. Raschi. 2002. Foliar responses of olive trees (Olea 
europaea L.) under field exposure to elevated CO2 concentration. Proceedings of the Fourth 
International Symposium on Olive Growing, Vols 1 and 2:449-452. 

Tognetti, R., L. Sebastiani, C. Vitagliano, A. Raschi, and A. Minnocci. 2001. Responses of two olive tree 
(Olea europaea L.) cultivars to elevated CO2 concentration in the field. Photosynthetica 
39:403-410. 

Tricker, P. J., H. Trewin, O. Kull, G. J. J. Clarkson, E. Eensalu, M. J. Tallis, A. Colella, C. P. Doncaster, M. 
Sabatti, and G. Taylor. 2005. Stomatal conductance and not stomatal density determines the 
long-term reduction in leaf transpiration of poplar in elevated CO2. Oecologia 143:652-660. 

Wall, G. W. 2001. Elevated atmospheric CO2 alleviates drought stress in wheat. Agriculture 
Ecosystems & Environment 87:261-271. 

Wall, G. W., R. L. Garcia, B. A. Kimball, D. J. Hunsaker, P. J. Pinter, S. P. Long, C. P. Osborne, D. L. 
Hendrix, F. Wechsung, G. Wechsung, S. W. Leavitt, R. L. LaMorte, and S. B. Idso. 2006. 
Interactive effects of elevated carbon dioxide and drought on wheat. Agronomy Journal 
98:354-381. 

Warwick, K. R., G. Taylor, and H. Blum. 1998. Biomass and compositional changes occur in chalk 
grassland turves exposed to elevated CO2 for two seasons in FACE. Global Change Biology 
4:375-385. 

Weatherly, H. E., S. F. Zitzer, J. S. Coleman, and J. A. Arnone. 2003. In situ litter decomposition and 
litter quality in a Mojave Desert ecosystem: effects of elevated atmospheric CO2 and 
interannual climate variability. Global Change Biology 9:1223-1233. 

Wechsung, G., F. Wechsung, G. W. Wall, F. J. Adamsen, B. A. Kimball, R. L. Garcia, P. J. Pinter, and T. 
Kartschall. 1995. Biomass and growth rate of a spring wheat root system grown in free-air 
CO2 enrichment (FACE) and ample soil moisture. Journal of Biogeography 22:623-634. 

West, J. B., J. HilleRisLambers, T. D. Lee, S. E. Hobbie, and P. B. Reich. 2005. Legume species identity 
and soil nitrogen supply determine symbiotic nitrogen-fixation responses to elevated 
atmospheric [CO2]. New Phytologist 167:523-530. 

Winkler, J. B. and M. Herbst. 2004. Do plants of a semi-natural grassland community benefit from 
long-term CO2 enrichment? Basic and Applied Ecology 5:131-143. 

Wittig, V. E., C. J. Bernacchi, X. G. Zhu, C. Calfapietra, R. Ceulemans, P. Deangelis, B. Gielen, F. 
Miglietta, P. B. Morgan, and S. P. Long. 2005. Gross primary production is stimulated for 



245 
 

three Populus species grown under free-air CO2 enrichment from planting through canopy 
closure. Global Change Biology 11:644-656. 

Wullschleger, S. D. and R. J. Norby. 2001. Sap velocity and canopy transpiration in a sweetgum stand 
exposed to free-air CO2 enrichment (FACE). New Phytologist 150:489-498. 

Wustman, B. A., E. Oksanen, D. F. Karnosky, A. Noormets, J. G. Isebrands, K. S. Pregitzer, G. R. 
Hendrey, J. Sober, and G. K. Podila. 2001. Effects of elevated CO2 and O-3 on aspen clones 
varying in O-3 sensitivity: can CO2 ameliorate the harmful effects of O-3? Environmental 
Pollution 115:473-481. 

Xu, T., L. White, D. F. Hui, and Y. Q. Luo. 2006. Probabilistic inversion of a terrestrial ecosystem 
model: Analysis of uncertainty in parameter estimation and model prediction. Global 
Biogeochemical Cycles 20. 

Yang, L., H. Liu, Y. Wang, J. Zhu, J. Huang, G. Liu, G. Dong, and Y. Wang. 2009a. Impact of elevated 
CO(2) concentration on inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-
air field conditions. Field Crops Research 112:7-15. 

Yang, L. X., H. Y. Huang, H. J. Yang, G. C. Dong, H. J. Liu, G. Liu, J. G. Zhu, and Y. L. Wang. 2007. 
Seasonal changes in the effects of free-air CO2 enrichment (FACE) ion nitrogen (N) uptake 
and utilization of rice at three levels of N fertilization. Field Crops Research 100:189-199. 

Yang, L. X., J. Y. Huang, H. J. Yang, G. C. Dong, G. Liu, J. G. Zhu, and Y. L. Wang. 2006. Seasonal 
changes in the effects of free-air CO2 enrichment (FACE) on dry matter production and 
distribution of rice (Oryza sativa L.). Field Crops Research 98:12-19. 

Yang, L. X., H. J. Liu, Y. X. Wang, J. G. Zhu, J. Y. Huang, G. Liu, G. C. Dong, and Y. L. Wang. 2009b. 
Impact of elevated CO2 concentration on inter-subspecific hybrid rice cultivar Liangyoupeijiu 
under fully open-air field conditions. Field Crops Research 112:7-15. 

Zak, D. R., W. E. Holmes, K. S. Pregitzer, J. S. King, D. S. Ellsworth, and M. E. Kubiske. 2007. 
Belowground competition and the response of developing forest communities to 
atmospheric CO2 and O-3. Global Change Biology 13:2230-2238. 

Zhang, D. Y., G. Y. Chen, Z. Y. Gong, J. Chen, Z. H. Yong, J. G. Zhu, and D. Q. Xu. 2008. Ribulose-1,5-
bisphosphate regeneration limitation in rice leaf photosynthetic acclimation to elevated CO2. 
Plant Science 175:348-355. 

Zheng, X. H., Z. X. Zhou, Y. S. Wang, J. G. Zhu, Y. L. Wang, J. Yue, Y. Shi, K. Kobayashi, K. Inubushi, Y. 
Huang, S. H. Han, Z. J. Xu, B. H. Xie, K. Butterbach-Bahl, and L. X. Yang. 2006. Nitrogen-
regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fields. 
Global Change Biology 12:1717-1732. 

Zhu, C. W., J. G. Zhu, Q. Zeng, G. Liu, Z. B. Xie, H. Y. Tang, J. L. Cao, and X. Z. Zhao. 2009. Elevated CO2 
accelerates flag leaf senescence in wheat due to ear photosynthesis which causes greater ear 
nitrogen sink capacity and ear carbon sink limitation. Functional Plant Biology 36:291-299. 

  



246 
 

Appendix J References for meta-analysis in Chapter 5  

Aranda, X., C. Agusti, R. Joffre, and I. Fleck. 2006. Photosynthesis, growth and structural 
characteristics of holm oak resprouts originated from plants grown under elevated CO2. 
Physiologia Plantarum 128:302-312. 

Bauer, G. A., G. M. Berntson, and F. A. Bazzaz. 2001. Regenerating temperate forests under elevated 
CO2 and nitrogen deposition: comparing biochemical and stomatal limitation of 
photosynthesis. New Phytologist 152:249-266. 

Bown, H. E., M. S. Watt, P. W. Clinton, E. G. Mason, and B. Richardson. 2007. Partititioning 
concurrent influences of nitrogen and phosphorus supply on photosynthetic model 
parameters of Pinus radiata. Tree Physiology 27:335-344. 

Bruck, H. and S. W. Guo. 2006. Influence of N form on growth and photosynthesis of Phaseolus 
vulgaris L. plants. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur 
Pflanzenernahrung Und Bodenkunde 169:849-856. 

Carswell, F. E., D. Whitehead, G. N. D. Rogers, and T. M. McSeveny. 2005. Plasticity in photosynthetic 
response to nutrient supply of seedlings fr 

om a mixed conifer-angiosperm forest. Austral Ecology 30:426-434. 
Cernusak, L. A., L. B. Hutley, J. Beringer, J. A. M. Holtum, and B. L. Turner. 2011. Photosynthetic 

physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. 
Agricultural and Forest Meteorology 151:1462-1470. 

Deng, X., W. H. Ye, H. L. Feng, Q. H. Yang, H. L. Cao, K. Y. Hui, and Y. Zhang. 2004. Gas exchange 
characteristics of the invasive species Mikania micrantha and its indigenous congener M. 
cordata (Asteraceae) in South China. Botanical Bulletin of Academia Sinica 45:213-220. 

Domingues, T. F., P. Meir, T. R. Feldpausch, G. Saiz, E. M. Veenendaal, F. Schrodt, M. Bird, G. 
Djagbletey, F. Hien, H. Compaore, A. Diallo, J. Grace, and J. Lloyd. 2010. Co-limitation of 
photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant Cell 
and Environment 33:959-980. 

Grassi, G., P. Meir, R. Cromer, D. Tompkins, and P. G. Jarvis. 2002. Photosynthetic parameters in 
seedlings of Eucalyptus grandis as affected by rate of nitrogen supply. Plant Cell and 
Environment 25:1677-1688. 

Han, Q. M., T. Kawasaki, T. Nakano, and Y. Chiba. 2008. Leaf-age effects on seasonal variability in 
photosynthetic parameters and its relationships with leaf mass per area and leaf nitrogen 
concentration within a Pinus densiflora crown. Tree Physiology 28:551-558. 

Jach, M. E. and R. Ceulemans. 2000. Effects of season, needle age and elevated atmospheric CO2 on 
photosynthesis in Scots pine (Pinus sylvestris). Tree Physiology 20:145-157. 

Katahata, S. I., M. Naramoto, Y. Kakubari, and Y. Mukai. 2007. Photosynthetic capacity and nitrogen 
partitioning in foliage of the evergreen shrub Daphniphyllum humile along a natural light 
gradient. Tree Physiology 27:199-208. 

Kubiske, M. E., D. R. Zak, K. S. Pregitzer, and Y. Takeuchi. 2002. Photosynthetic acclimation of 
overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 
concentration: interactions with shade and soil nitrogen. Tree Physiology 22:321-329. 

Manter, D. K., K. L. Kavanagh, and C. L. Rose. 2005. Growth response of Douglas-fir seedlings to 
nitrogen fertilization: importance of Rubisco activation state and respiration rates. Tree 
Physiology 25:1015-1021. 

Meir, P., P. E. Levy, J. Grace, and P. G. Jarvis. 2007. Photosynthetic parameters from two contrasting 
woody vegetation types in West Africa. Plant Ecology 192:277-287. 

Merilo, E., K. Heinsoo, O. Kull, I. Soderbergh, T. Lundmark, and A. Koppel. 2006. Leaf photosynthetic 
properties in a willow (Salix viminalis and Salix dasyclados) plantation in response to 
fertilization. European Journal of Forest Research 125:93-100. 

Midgley, G. F., S. J. E. Wand, and N. W. Pammenter. 1999. Nutrient and genotypic effects on CO2-
responsiveness: Photosynthetic regulation in Leucadendron species of a nutrient-poor 
environment. Journal of Experimental Botany 50:533-542. 

Norby, R. J., E. H. DeLucia, B. Gielen, C. Calfapietra, C. P. Giardina, J. S. King, J. Ledford, H. R. 
McCarthy, D. J. P. Moore, R. Ceulemans, P. De Angelis, A. C. Finzi, D. F. Karnosky, M. E. 



247 
 

Kubiske, M. Lukac, K. S. Pregitzer, G. E. Scarascia-Mugnozza, W. H. Schlesinger, and R. Oren. 
2005. Forest response to elevated CO2 is conserved across a broad range of productivity. 
Proceedings of the National Academy of Sciences of the United States of America 102:18052-
18056. 

Porte, A. and D. Loustau. 1998. Variability of the photosynthetic characteristics of mature needles 
within the crown of a 25-year-old Pinus pinaster. Tree Physiology 18:223-232. 

Rodriguez-Calcerrada, J., P. B. Reich, E. Rosenqvist, J. A. Pardos, F. J. Cano, and I. Aranda. 2008. Leaf 
physiological versus morphological acclimation to high-light exposure at different stages of 
foliar development in oak. Tree Physiology 28:761-771. 

Sholtis, J. D., C. A. Gunderson, R. J. Norby, and D. T. Tissue. 2004. Persistent stimulation of 
photosynthesis by elevated CO2 in a sweetgum (Liquidambar styraciflua) forest stand. New 
Phytologist 162:343-354. 

Tissue, D. T., K. L. Griffin, M. H. Turnbull, and D. Whitehead. 2005. Stomatal and non-stomatal 
limitations to photosynthesis in four tree species in a temperate rainforest dominated by 
Dacrydium cupressinum in New Zealand. Tree Physiology 25:447-456. 

Turnbull, T. L., M. A. Adams, and C. R. Warren. 2007. Increased photosynthesis following partial 
defoliation of field-grown Eucalyptus globulus seedlings is not caused by increased leaf 
nitrogen. Tree Physiology 27:1481-1492. 

Warren, C. R. 2004. The photosynthetic limitation posed by internal conductance to CO2 movement 
is increased by nutrient supply. Journal of Experimental Botany 55:2313-2321. 

Wohlfahrt, G., M. Bahn, E. Haubner, I. Horak, W. Michaeler, K. Rottmar, U. Tappeiner, and A. 
Cernusca. 1999. Inter-specific variation of the biochemical limitation to photosynthesis and 
related leaf traits of 30 species from mountain grassland ecosystems under different land 
use. Plant Cell and Environment 22:1281-1296. 

Zhang, S. R. and Q. L. Dang. 2006. Effects of carbon dioxide concentration and nutrition on 
photosynthetic functions of white birch seedlings. Tree Physiology 26:1457-1467. 

 

 

 


