Appendix

Table A.1: Composition in wt. % of the two alloys used in the experimental reactors: Inconel 600 used in the ARE[1] and Hastelloy N used in the MSRE [2].

[1] una naster	iby in used		·					
	Nickel	Chromium	Molybdenum	Iron	Manganese	Carbon	Silicon	Others
Inconel	77	15		7	0.03	0.04-	0.22	Al- 0.15
600						0.06		Ti-0.25
Hastelloy	71	7	16	5	0.05	0.08	1	Co- 0.20
N								Cu-0.35
								W-0.5
								Al+Ti-0.35

Table A.2: Composition of alloys (wt. %) tested by Ouyang et al. [3].

	Ni	Cr	Мо	Fe	W	Со	Mn	Al	Ti	Si	С	Others
Hastelloy- N	71	7	16	3	0.5	0.2	0.8			1	0.08	Al+Ti: 0.35
												Cu: 0.35
Hastelloy-B3	65	1.5	28.5	1.5	3	3	3	0.5	0.2	0.1	0.01	
Haynes-242	65	8	25	2		2.5	0.8	0.5			0.03	Cu: 0.5
Haynes-263	52	20	6	0.7		20	0.6	0.6	2.4	0.4	0.06	Cu:0.2
TZM	0.005		99.4	0.01					0.4	0.005	0.04	

	Cr	Мо	W	Al	Ti	Fe	С	Со	Ni	Mn	Nb	Zr
Haynes-230	22.5	1.2	14.1	0.3		1.8	0.1	0.3	59	0.5		
Inconel 617	22.1	9.6		1.1	0.4	1.1	0.1	12.4	52.9	0.1		
Hastelloy N	6.3	16.1	0.1			4.0		0.2	47.5	0.5		
Hastelloy X	21.3	8.8	0.4	0.1		19.3	0.1	1.4	47.5	0.5		
Nb-1Zr											99	1
Incoloy-800H	20.4			0.5	0.6	45.3	0.1		31.6	0.8		
Ni-201									99.4	0.2		

Table A.3: Compositions in wt. % of the alloys examined by Olson et al. [4].

Table A.4: Elemental composition (wt. %) of the three Hastelloys used in Vignarooban et al.'s work [5].

	Ni	Со	Cr	Мо	W	Fe	Mn	Si	С
C-276	57	1	16	16	4	5	1	0.08	0.01
C-22	56	2.5	22	13	3	3	0.5	0.08	0.01
Ν	71	-	7	16	-	5	0.8	1	0.08

Table A.5: Elemental composition (wt. %) of nickel superalloys used in Cho et al.'s work [6].

I

	Ni	Cr	Fe	Со	С	Al	Ti	Nb	Мо
Inconel 713LC	74	11.57	0.1	0.08	0.05	6.05	0.76	1.95	4.15
Nimonic 80A	74.90	19.24	1.14	-	0.06	1.68	2.40	-	-
Nimonic 90	59.88	19.38	0.57	16.05	0.058	1.38	2.40	-	-

Table A.6: Composition (wt. %) and the structural type of stainless steel used in the study of Shinata et al. [7].

Steel	Туре	Fe	Cr	Ni	Мо	S	Р	Mn	Si	С
430	Ferritic	82.93	16.06	0.21	-	0.003	0.030	0.32	0.35	0.10
316	Austenitic	68.71	16.66	10.45	2.17	0.005	0.038	1.27	0.65	0.05
304	Austenitic	70.79	19.37	8.20	-	0.025	0.033	1.02	0.51	0.05
329J1	Duplex	68.92	23.76	5.27	1.23	0.002	0.030	0.48	0.28	0.03

Table A.7: Composition in wt. % of the three steels investigated by Polovov et al.[8].

Steel	С	Si	Mn	Cr	Ni	Ti	Mo	S	Р	Cu
AISI	<0.03	<0.4	1-2	16.8-18.3	13.5-15	-	2.2-2.8	0.02	0.03	-
316L										
AISI	<0.1	<0.8	<2	16-18	12-14	0.5-0.7	2-3	0.02	0.035	0.3
316Ti										
AISI	<0.12	<0.8	<2	17-19	9-11	0.5-0.8	-	0.02	0.035	0.3
321										

Table A.8: The compositions (wt. %) of the five stainless steels utilised by Cheng et al.[9].

	С	Si	Mn	Р	S	Cr	Мо	Ni	V	Fe
SB450	0.2	0.28	0.97	0.02	0.01	0.02	-	0.11	-	Bal.
T22	0.06	0.36	0.47	0.01	-	2.34	1.00	-	-	Bal.
T5	0.14	0.48	0.34	0.03	0.02	5.25	0.55	-	-	Bal.
Т9	0.09	0.36	0.4	0.02	-	8.25	0.93	-	-	Bal.
X20	0.21	0.25	0.49	0.02	0.01	11.08	0.87	0.79	0.26	Bal.

Table A.9: The elemental composition (wt. %) of the samples used in Kruizenga and Gill's work [10].

	Cr	Мо	Ni	Mn	Si	Fe	Cu	Ti	Nb
321SS	17.28	0.34	9.1	1.8	0.63	70.37	0.32	0.16	-
347SS	17.45	0.32	9.43	1.57	0.63	69.72	0.62 (max)	-	0.26 (max)

Table A.10: Composition (wt. %) of 254SMO [11], 316L [12] and 904L [13] investigated by Olsson and Wallen [14].

	Ni	Fe	Мо	Cr	Si	Р	Mn	С	Cu	S
AVESTA	17.5-	Balance	6-6.5	19.5-	0.80	0.03	1.0	0.02	0.5-	
254 SMO	18.5			20.5	max	max	max	max	1.0	
AISI 316	13.5-	Balance	2.2-	16.8-	<0.40	0.035	1-2	<0.03	0.3	0.02
	15		2.8	18.3						
904	23-28	Balance	4-5	19-23	1 max	0.045	2	0.020	1-2	0.035
						max	max	max		

I

Table A.11: Composition (wt. %) of different alloys used by Wallen et al. [15].

	Fe	С	Mn	Cr	Ni	Mo	Cu	N	Р	Si	S
AVESTA	Bal	0.017	2	24.3	22	7.30	0.43	0.452	0.021	0.29	0.001
654 SMO											
AVESTA	Bal	0.019	0.42	20	18.2	6.04	0.72	0.199	0.021	0.38	0.001
254 SMO											
316 AISI	Bal	0.017	1.6	17.2	12.6	2.60			0.031	0.43	0.001
AVESTA	Bal	0.014	0.39	24.9	7	2.60			0.012	0.20	0.001
SAF 2504											
Alloy 625		0.013	0.10	22.1	Bal	9.39			0.006	0.15	0.002
C276	7.6	0.006	0.21	15.9	Bal	16.5			0.005	0.02	0.004

Table A.12: Composition of 27-7MO (wt. %) used by Muro et al. [16].

	Ni	Cr	Мо	Cu	Mn	Fe	Ν	С	Si	S	Р
27-	26-28	20.5-23	6.5-8	0.5-1.5	3 max.	Bal	0.3-0.4	0.02	0.5	0.01	0.03
7MO								max	max	max	max

Literature cited

- 1. W.D. Manly, J. G. M. Adamson, J.H. Coobs, J.H. DeVan, D.A. Douglas, E.E. Hoffman, and P. Patriarca, *Airraft Reactor Experiment- Metallurgical Aspects*. 1957, Oak Ridge National Laboratory.
- 2. Haynes International, *Hastelloy N Information Sheet*. 2002: Haynes International.
- F.-Y. Ouyang, C.-H. Chang, B.-C. You, T.-K. Yeh, and J.-J. Kai, *Effect of moisture on corrosion of Ni-based alloys in molten alkali fluoride FLiNaK salt environments.* Journal of Nuclear Materials, 2013. 437(1–3): p. 201-207.
- 4. L.C. Olson, *Materials Corrosion in Molten LiF-NaF-KF Eutectic Salt*, in *Department of Engineering Physics*. 2009, University of Wisconsin-Madison.
- 5. K. Vignarooban, P. Pugazhendhi, C. Tucker, D. Gervasio, and A.M. Kannan, *Corrosion resistance of Hastelloys in molten metal chloride heat transfer fluids for concentrating solar power applications*. Solar Energy, 2014. **103**: p. 62.
- S.-H. Cho, J.-M. Hur, C.-S. Seo, and S.-W. Park, *High temperature corrosion of superalloys in a molten salt under an oxidizing atmosphere.* Journal of Alloys and Compounds, 2008. 452(1): p. 11-15.
- Y. Shinata, F. Takahashi, and K. Hashiura, *NaCl-induced hot corrosion of stainless steels*. Materials Science and Engineering, 1987. 87: p. 399-405.
- 8. I. Polovov, A. Abramov, O. I. Rebrin, V. Volkovich, E. Denisov, T. Griffiths, I. May, and H. Kinoshita, *Corrosion of Stainless Steels in NaCl-KCl Based Melts*. ECS Transactions, 2010. **33**: p.321-327.
- 9. W.-J. Cheng, D.-J. Chen, and C.-J. Wang, *High-temperature corrosion of Cr–Mo steel in molten LiNO₃–NaNO₃–KNO₃ eutectic salt for thermal energy storage. Solar Energy Materials and Solar Cells, 2015. 132: p. 563-569.*
- 10. A. Kruizenga and D. Gill, *Corrosion of iron stainless steels in molten nitrate salt*. Energy Procedia, 2014. **49**: p. 878-887.

- 11. National Special Alloys. *254 SMO Super Austenitic Stainless Steel UNS S31254*. 26.11.2013]; Available from: <u>http://www.nsalloys.com/products/stainless-steel-bar/duplex/254-smo</u>.
- 12. D.E. Holcomb and S.M. Cetiner, *An Overview of Liquid-Fluoride-Salt Heat Transport Systems* 2010, Oak Ridge National Laboratory.
- 13. ATI. *ATI 904L Super Austenitic Stainless Steel. Technical Data Sheet.* 2012; Available from: <u>http://www.atimetals.com/Documents/ati 904l tds_en.pdf</u>.
- 14. J. Olsson and B. Wallen, *Experience with a high molybdenum stainless steel in saline environments.* Desalination, 1983. **44**(1): p. 241-254.

I

- 15. B. Wállen, M. Liljas, and P. Stenvall, *A new high-molybdenum, high-nitrogen stainless steel.* Materials & Design, 1992. **13**(6): p. 329-333.
- 16. R. Muro, M. Neighbor, L. Shoemaker, and J. Crum, *An Advanced Super-Austenitic Stainless* Steel Offers Economical And Technical Advantages Over Nickel-Base Corrosion-Resistant Alloys In The Process Industries. 2010, NACE International.