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A B S T R A C T

Many-core devices are likely to become increasingly common in real-time and embedded
systems as computational demands grow and as expectations for higher performance can
generally only be met by by increasing core numbers rather than relying on higher clock
speeds.

Network-on-chip devices, where multiple cores share a single slice of silicon and employ
packetised communications, are a widely-deployed many-core option for system designers.
As NoCs are expected to run larger and more complex programs, the small amount of fast,
on-chip memory available to each core is unlikely to be sufficient for all but the simplest of
tasks, and it is necessary to find an efficient, effective, and time-bounded, means of accessing
resources stored in off-chip memory, such as DRAM or Flash storage.

The abstraction of paged virtual memory is a familiar technique to manage similar tasks in
general computing but has often been shunned by real-time developers because of concern
about time predictability. We show it can be a poor choice for a many-core NoC system as,
unmodified, it typically uses page sizes optimised for interaction with spinning disks and
not solid state media, and transports significant volumes of subsequently unused data across
already congested links.

In this work we outline and simulate an efficient partial paging algorithm where only those
memory resources that are locally accessed are transported between global and local storage.
We further show that smaller page sizes add to efficiency. We examine the factors that lead
to timing delays in such systems, and show we can predict worst case execution times at
even safety-critical thresholds by using statistical methods from extreme value theory. We also
show these results are applicable to systems with a variety of connections to memory.
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1 I N T R O D U C T I O N

�.� ��� ���� �� ��� ����-���� ��������

Real-time computing devices are those for which a timely, as well as a computationally
correct, outcome is a necessity for success1 and they are now essential tools of everyday
life: for instance, the World Bank reported that, in 2016, there were 101.6 mobile telephony
subscriptions - mobile phones probably being the most pervasive of real time computing
devices - for every 100 people globally, with 122 per 100 people in the United Kingdom2.
Analysts predict a continued decline in sales of general computing devices, leaving hardware
and software manufacturers alike looking to mobile (real time) devices, as well as the related
software, to support industry profits and growth (Figure 1.1).

Consumer expectations for these devices are high and rising: a demand for what have been
called “mobile supercomputers” [13]. Raw speed, though, is not the only demand as long
battery life and silent operation are also often essential.

The rise of the real-time machines is not limited to mobile phones. The “internet of things”,
with devices connected to data-gathering sensors and responding in real time to events, is
expected to grow extremely rapidly (cf., Figure 1.2). Aerospace and automotive manufacturers
are increasingly reliant on embedded computing for tasks which range from the safety critical,
such as management of flight control surfaces, to the merely business critical, such as in-flight
entertainment. Making efficient, including cost-efficient, and effective use of hardware and
software is an essential matter.

As the complexity and range of embedded computing tasks increases designs based on
isolated systems monitoring and controlling one function are unlikely to be cost-effective:
though up to now this has been the typical way in which embedded devices have been
employed. In future it is likely computing resources will need to be shared in all but those
cases where total physical isolation is regarded as essential to security.

In this thesis we explore the ways in which real-time devices, particularly those based
on network-on-chip designs, can effectively deploy the virtual memory abstraction3. Virtual
memory has been central to general computing’s approach to sharing memory resources and

1 We give a fuller definition of what we mean by “real time” in Section 1.2
2 http://data.worldbank.org/indicator/IT.CEL.SETS.P2 - accessed 3 October 2017.
3 We discuss virtual memory more fully in Chapter 3.
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Figure 1.1: Forecast of long-term decline in sales of general computing devices
(generated via Statista, 9 November 2017)

Figure 1.2: North American Internet of Things in healthcare, projected market growth by component
(billions of US dollars) 2012 - 2022 (via [59])
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enabling multi-computing for decades but its use has generally been avoided by real-time
developers. We will explore a novel scheme for the use of virtual memory which delivers
virtual memory’s well-understood advantages while also addressing the disadvantages that
have deterred deployment in real-time and embedded domains.

In the rest of this chapter we outline why the many-core designs seen in network-on-chip
systems are increasingly used for embedded and real-time systems before outlining a research
hypothesis and then a plan for the rest of this thesis. In 1.2 we define what we mean by real-
time computing. In 1.3 we set out the context of increased demands on real-time computing
devices and in 1.4 we present our research hypothesis. In 1.5 we describe the structure of the
rest of this thesis.

�.� ���� ���� ��������� ��� �������-��-���� �������

As described above, a real-time system is one where the success of the computational process
does not just depend on the logical outcome but also on it being completed in a timely manner.
Three broad categories of real-time systems exist [29]:

• Hard real time, where the whole system is rendered a failure if the computation fails to
complete inside the deadline. Such computations might typically be found in avionics,
where a failure to complete the computation in time would threaten operator safety.

• Firm real time, where an individual computation is rendered a failure if not completed
inside a deadline but where the application as a whole may continue. In such systems a
limited number of failures to complete processing by the deadline are acceptable even
though processing after the deadline is of no value. Such failures are likely to result
in a decline in the quality of service. A typical firm real-time system would be a video
decoder and playback device where delayed frames cannot be shown out of order, or
allowed to delay playback, and are skipped at the cost of picture quality.

• Soft real time, where computational results that have missed deadlines diminish quality
of service but may still be used. Typically these can be found in online transactional
systems.

Applications that “run on NoCs are typically composed of periodic or sporadic tasks that
communicate their results by sending messages over the network” while “[a]pplications
that are likely to benefit from networks on chip are complex embedded applications with
many communicating subsystems ... [a] significant proportion of embedded applications have
real-time requirements” [111]. Here we will simulate this domain of complex communicating
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subsystems by running multiple copies of benchmarks designed for real-time embedded
systems (with communication considered in terms of traffic to memory) and we will gather
data on timing performance to draw conclusions about real-time constraints and behaviour.

An embedded computing system is one which forms a part of a larger machine. Often
embedded software is concerned with only one aspect of the machine’s function, in other
cases it may perform multiple tasks. In this thesis we generally consider the case where an
embedded software process performs one task but shares hardware resources with many
other pieces of embedded software. This model is a growing domain for embedded systems
as computing systems relying on information from sensors replace mechanical and electro-
mechanical machines and systems.

Designers of real-time computing devices need to deliver systems which are both predictable
and efficient. For real-time systems a fast average execution time is of no particular use if the
worst-case execution time (WCET) - the maximum time any invoked process could require
to complete [29] - is many orders of magnitude greater than this average as the reliability
or even safety of the system depends on this worst case. Additionally a large gap between
the average timing and the worst case also implies a system that will often be idle and so
represent a poor return on investment.

�.� ������������ ������� ������� �� ����-���� ��� ��-
������ �������

Real-time systems are often deployed in an embedded context. We can expect a further, and
rapid, growth in embedded and real-time systems deployments, as personalised or wearable
devices and medical aids, and through self-driving vehicles and in commercial aeroplanes
[32]. These systems will have to deal with tasks of increased computational intensity placing
heavy demand on CPUs and memory [75].

Consumer expectations are of ever-faster devices, but it remains difficult to squeeze anything
like theoretical performance out of today’s processors. For while “Moore’s Law” [115] of
exponential increases in transistor numbers per integrated circuit (IC) seems likely to remain a
valid rule of thumb for some while longer, the phenomenon of “Dennard Scaling” [26] which
kept the power densities of ICs under control even as they were driven at faster and faster
speeds, has ended. Programmers no longer get what has been called a “free lunch” of faster
machines without the complication of handling multiple cores running in parallel.

To drive the performance increases which in turn keep the market healthy, system de-
signers and programmers have to deal with systems with multiple processing units. And
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these processors need to be physically close to ensure speed: electromagnetic signals take
a nanosecond to travel 30 centimetres and so even the wire lengths we might expect to see
inside a commodity device are not negligible for processors running at high frequencies. But
successfully operating computing devices which use many processors placed closely together
on a single piece of silicon necessitates being able to master systems with steep memory
hierarchies: for while on-chip memory can be supplied it is at a significant cost per bit and at
the expense of processor capacity or capability.

The growing difference between the performance of ever-faster microprocessor circuits
and memory access times has created the so-called memory gap. The gap is such that, as a
direct result, the Large Hadron Collider ’beauty’ (LHCb) experiment is estimated to lose
50% of its computing cycles to stalls caused by memory misses [4]. In general computing
this performance problem has been tackled through the use of caches [105], but in real-time
systems caches are a major, if not potentially the major, source of timing unpredictability,
particularly for multi-core systems [45]: for that reason they are generally avoided in real-time
systems and the question of how to build a multi- or many-core real time system that can
deliver predictable and efficient timing outcomes remains an open one [64, 165].

Modern many-core compute devices, whether based on network-on-chip (NoC) or graphics
processing units (GPU), do have small amounts of low-latency local memory on chip which
can come close to matching the performance of the core’s register file [159]. If memory accesses
could be limited to just this area then a real-time system would be easier to manage: “The
simplest way [to provide memory], and one to be used if possible, is to provide in the system
enough memory for each process to have its own unique area.” [9]

But such a low-latency nirvana is almost certainly out of reach: the last thirty years have
seen computing devices handle more complex inputs (such as structured documents) and
outputs (such as full colour graphics), all of which require more code and storage space.
It is also not just the complexity of the tasks being undertaken by computing devices that
is driving up program size, but also shifts in programming languages being used to allow
programmers easier access to abstractions [97].

Our proposal is founded on the need of today’s programmers to access a range of memory
resources much greater than that than can be stored simultaneously in locally available
low-latency storage. Because of this systems designers and implementors have to have some
mechanism that allows them to replace code and data in high-speed memory at a given time
with other code or data (i.e., a replacement policy).

We advocate the use of virtual memory not just because it is a well-understood abstraction
that can support an algorithmic replacement policy and a large address space, but also because
it brings other advantages in terms of security and resource sharing (we discuss this further
in Section 3.1). In particular we consider paged virtual memory (where the address space
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is divided into equal sized blocks called pages), both because this is the most commonly
hardware-supported form of virtual memory but also because it avoids external fragmentation
of a limited memory space that the alternative approach of segmentation might risk (this is
discussed further in Section 3.1.3).

The model we consider in Chapters 4 and 5 is of each core only running a single thread of
execution. With each NoC core only having a very limited local memory resource multiple
threads of execution (if using different virtual memory address mappings) would further
increase competition and possibly add to system delay as more threads are blocked waiting
for memory.

�.� �������� ����������

Using virtual memory risks very poor performance because of the phenomenon of thrashing,
where computing time is lost to the costs of the need to share the small amount of available
memory across multiple programs [48]. Further real-time programmers have typically avoided
its use because analysis is complex as performance depends on the past string of memory
references.

Thrashing is not a new challenge: in the 1960s an earlier generation of programmers,
experimenting with time-sharing computers and using virtual memory as a way to increase
the range of addressable memory while executing programs generated by the first generation
of high-level languages experienced severe performance difficulties as a result of thrashing.
The solutions we propose here draw on the lessons learned at that time, but where an earlier
generation of researchers sought a better page replacement algorithm as the answer to thrashing,
our conclusion is that fast memory on many-core systems is so limited that we must also rely
on a better page loading algorithm.

We propose to enable virtual memory [50] for such systems, using a novel form of paging
which, instead of transferring whole pages across the memory hierarchy, concentrates on
a minimal transfer of memory inside a paging scheme [110] - this is what we call we call
partial paging. In this scheme hard faults (i.e. attempts to access a memory address in a page
that is not present in local memory) still impose a significant penalty of lost cycles, but the
cost of paging in and out of memory is amortised across multiple memory reads and writes
as instead of a whole page being loaded on demand only a part (16 bytes aligned on the
16 byte boundary of the faulting address) is loaded. This avoids unnecessary transfer and
limits congestion in the memory interconnect, which we find to be a significant determinant
of program performance. Accessing other addresses in the page may raise a “small fault”
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causing the loading of a further part of the page. This system necessitates that each access to
a page is checked to see if the part of a page being sought is present and we suggest a bitmap
is used to record which parts of a page have been loaded.

One of the lessons of the 1960s was that maintaining a program’s working set in low latency
memory was the most effective way of limiting paging and thrashing [47]. Much research at
that time and into the 1970s and later concentrated on effective ways to maintain the working
set of pages in fast memory. Innovation continued into the 1990s (and beyond), for instance
with the 2Q algorithm in Linux [88]. Here, though, we establish that better performance in
embedded and real-time many-core systems is unlikely to come from an improved page
replacement algorithm but from a reorientation towards better management of the internals
of the pages.

We cannot eliminate the complexity caused by the dependence of performance on past
memory references, but instead we will argue that in many-core systems static analysis of
timing is, in-effect, ruled out by the system’s overall complexity and that we are driven, in any
case, to use statistical methods to determine worst-case timings. We believe we can show that
partial paging reduces the statistical complexity of the system and this lowered complexity
also delivers better WCETs. In this context entropy means (in analogue to its meaning in
thermodynamics) the range of available macrostates of the system, and we will show that
increased entropy (specifically in the connection between cores and the global memory pool)
increases the range of expected completion times for applications and hence increases WCETs
we can expect. We discuss entropy in more detail in Section 4.9.

Fifty years of research and engineering have ensured that general computing page replace-
ment policies, which often mix different approaches, are robust in the context of general
computing devices [109] but for real-time computing paging has often been avoided in the
hope of increasing timing certainty. With the decreasing cost of memory, much recent research
in general and high-performance computing has concentrated on using large page sizes, not
least to minimise TLB misses [18] but in our case we return to earlier research findings which
emphasise the efficiency of small pages on small systems.

In this thesis, therefore, we intend to explore the following hypothesis:
Paged virtual memory can be implemented in an effective manner for a many-core real-time system

in a way that minimises the worst case execution times for real-time tasks: not through the traditional
means of a better page replacement algorithm, but through a more efficient and real-time-appropriate
’partial page’ loading algorithm. Furthermore, this partial paging approach is most effective with smaller
page sizes and, by limiting queuing for memory service, partial paging reduces entropy in the system
and thus increases certainty about timing.
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In judging success we will compare the performance (as measured by average and maximum
execution times) of partial paging with a “traditional” whole-page approach, considering
different page sizes and page replacement policies.

�.� ������ ���������

To illustrate and elucidate the above points, the remainder of this thesis will be structured as
follows:

In Chapter 2 we review the literature that covers many-core systems in general, and network-
on-chip systems in particular along with questions of memory management in a many-core
system.

In Chapter 3, beginning on page 53, we look in depth at the theory of virtual memory and
consider what we mean by thrashing before considering the behaviour of simulated systems
using different page replacement algorithms and simulating the execution of a benchmark
from the PARSEC suite. These experiments build the case for using a partial paging approach
to the use of virtual memory as they show that a better page replacement algorithm does not
significantly improve performance.

In Chapter 4 on page 71 we describe a simulated partial paging system, with 1KB pages and
using a CLOCK page replacement policy. This shows significantly improved performance over
a traditional full-page paging approach. We also consider the results of a simple load control
mechanism, which is shown to deliver better results for some situations. In this chapter we
develop an entropy model of the system and consider the impact of entropy on the range of
completion times before using extreme value theory to make predictions about probabilistic
worst-case execution times.

In Chapter 5 on page 141 we consider how a partial paging system can be optimised,
considering smaller page sizes, FIFO page replacement and, finally, alternative memory
connection mechanisms. We show that smaller page sizes can deliver improved performance,
especially when we consider safety-critical limits, but that very small pages raise the fault
rate to such an extent that any advantage may be lost. We also show that while FIFO’s typical
performance may be similar to that of CLOCK, at safety-critical limits it can be much slower.
We also show that FIFO’s initial high degree of predictability is lost due to the injection of
entropy into the system. We show that alternative connection mechanisms tend to deliver
similar performance to the Bluetree memory tree we model in most simulations.

In Chapter 6 on page 201 we offer our conclusions and our argument as to why the research
hypothesis has been proved. We discuss the contributions this research has made and areas for
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future work and research, including using open source hardware to build cores that support
partial paging.

Appendix A on page 207 briefly outlines some experimental work we undertook to consider
using partial paging to support coherent parallel code. Here we find that the congestion in
the memory interconnect makes using large numbers of cores self-defeating.

Appendix B on page 213 offers more detail on the translation of traces to the XML we used
in the simulations. Further appendices offer additional detail on results referred to in the
main text. The bibliography then follows.





2 B A C KG R O U N D A N D R E L AT E D W O R K

In this chapter we will review the literature around many of the questions that are relevant to
memory management on a many-core network-on-chip (NoC) system. In doing so we will
first examine the motivational factors that have led to the creation of NoCs, before considering
practical NoC implementations as well as alternative, but closely related, designs such as
those found in graphics processing units (GPUs).

In this chapter we only briefly discuss virtual memory, paging and page replacement
policies, considering those in depth in Chapter 3.

In Section 2.2 we discuss the problems of increasing power density and in 2.3 we consider
the limits of bus-based connections. In 2.4 we discuss network-on-chip designs and in 2.5
we consider alternative many-core designs. In 2.6 we discuss the problems of memory
management in NoCs and in 2.7 review page replacement policies. In 2.8, we discuss the
limitations on parallel speed-up imposed on many-core devices by the need to execute code
in serial and we present a summary of this chapter in 2.9.

�.� ��� ������� : � ���� ��� ������ ����-���� ��������� ��
� ������� �����������

Commercial pressures as well as scientific enquiry continue to drive the search for faster
computing hardware and more efficient software, and there is a significant commercial
imperative behind delivering faster computing and what has been described as advance
through “technology jumping” [51]. However limitations of CMOS technology mean it is
no longer possible to make ever-faster single compute core CPUs [95, 153] and instead chip
manufacturers have concentrated on making multicore devices and software developers have
been tasked with finding and exploiting parallelism [122]. For real-time systems technological
advances open up the prospect of developing systems that will “transform how humans
interact with and control the physical world” [136] but multicore and many-core1 devices
pose some potentially significant problems for real-time tasks, such as:

1 There is no hard definition that separates these two categories but we follow e.g., [156] in taking many-core to
mean “10s” and upwards of computing cores.

31
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• Such devices typically have only relatively small amounts of fast memory available (as
cache or scratchpad memory) to each core.

• What code or data is available in such local memory is dependent on the often complex
interaction of past references and memory replacement policies.

• Replacing any local resource is likely to involve interaction with other cores as paths
to external resources are likely to be shared, and thus access contested, and may be of
different lengths.

All of these issues make it difficult to deliver efficient real-time services and to predict WCETs
in particular. In the rest of this chapter the genesis of, and problems facing, network on chip
systems, while in Chapter 3 we consider the problems of virtual memory as a solution to
these issues more closely.

�.� ������� ��� ����� ����

Since the late 1950s the number of transistors in central processing and similar units has
doubled every 12 - 24 months. Since the introduction of the integrated circuit this has meant
some combination of an increase in the size of silicon wafer and an increase in the density
(through a decrease in the size) of the transistors etched on to the wafer [115].

The barriers to the continuing diminution in size of transistors are daunting [127] but
have generally been surmounted by manufacturers. However, what was a long-sustained
parallel increase in computing speed has ended with the failure of the related phenomenon of
“Dennard Scaling” [26] which, by allowing the lowering of the voltage of operation, delivered
a constant energy density on the silicon even as the transistor size fell.

The transistor supply voltage (normally referred to as Vdd) has shown only minimal reduc-
tion as component size has decreased [53, 77]: the result has been to dramatically slow the rate
of decrease of energy required to drive a transistor. Dynamic power usage varies quadratically
with Vdd and so power density has risen, heating chips up and increasing static power losses
and so further increasing power density and threatening thermal runaway [92, 116].

By 2004 - 2005 manufacturers found it was no longer possible to continue to make faster
single CPU devices [95, 153]. Instead, as illustrated in Figure 2.1 on the next page (from [62]),
designs shifted towards multicore systems, and typically today’s general-use computers have
several processors or computing cores connected via a time-division multiplexed bus or some
similar shared medium of interconnection.
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Figure 2.1: As increases in processor performance diminish, designs switch to multiple processor
systems

Frequency varies approximately linearly with voltage of operation, so we can replace
a single high frequency, high voltage processor with two processors running at half the
voltage (and thus half the frequency) and, for a sufficiently parallel load, approach the same
computational outcome while using half the power.

�.� ���� ����� �� ��������-��-����

Using multiple processors raises the question of how they connect to each other and to
external resources (such as memory) and how such a connection deals with any issues of
contention. Buses have traditionally been deployed and, as they enable signal sharing, they
have been used on systems with small numbers of processors to implement, in hardware,
the “snoopy” caching paradigm [72]. This ensures efficient use of high speed caches and
so compensates for the fact that having a shared medium means only one processor may
“master” the bus at once. Snoopy caches use this broadcasting of memory reads and writes
to ensure that the caches of all connected processors are coherent. This has, in turn, enabled
the development of tightly coupled symmetric multiprocessing (SMP) systems which have
proved highly effective as a general computing design [143].

But buses are limited as connection media and bus-based designs are not a sustainable
means of delivering increasing computing performance as the number of processors connected
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on a bus grows. The one-at-a-time requirement is an increasing hindrance, particularly as bus
communications have a non-trivial set-up time. Further, the requirement that signals on the
bus reach all processors makes buses power hungry and, as they grow in size and increase in
capacitance, slower [22].

Taken together these factors impose a practical limit on bus size of around 20 processors [7]
and so the limits of buses as connection media have long been recognised [8, 25].

Network-on-chip (NoC) designs are a response to the inability of buses to scale. Instead
of using a bus, NoCs use packet networks embedded in the silicon itself. By placing mul-
tiple processors on a single wafer, NoCs exploit the technological advances in yield and
miniaturisation that have given us bigger processors with more transistors and, as NoCs
combine on-chip routers with the processors, they can multiplex packetised communications,
potentially lowering latency and allowing for greater parallelisation in communications [43].

A yet more radical alternative solution would be to find new materials or new states of
existing materials with which to build high density memories on-chip, but despite some
hopeful signs there is still no immediate prospect of this happening at a commercial scale
[30]. NoCs are, however, viable as a platform for a future generation of processors and are
already being used commercially. Many questions, though, about what constitutes effective
and efficient systems software for such systems remain open, especially when we consider
many-core systems.

�.� �������-��-���� ��������

Network-on-chip devices are not standardised, may be designed for a specialised domain of
operation and are likely to employ proprietary technology rather than open standards [46].
So here we will concentrate on the general characteristics of NoC devices, while illustrating
these with some specific NoC implementations.

�.�.� Network topologies

Many different network topologies are discussed in the literature, such as meshes, tori, trees
and hypercubes, as well as ad hoc structures. The mesh, torus and hypercube illustrated
in Figure 2.2 (respectively as items a, b and d) are shown here as direct networks where the
computing node is combined with a router (also referred to as a switch in the literature).
The fat tree illustrated in Figure 2.2(c), which is based on the SPIN network [6, 10], employs
dedicated routers and is not a direct network (i.e., it is an indirect network). This is called a
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NoC TOPOLOGIES

(a) Mesh (b) Torus
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(c) Tree, routers are marked in black, nodes in green

(d) Hypercube

Figure 2.2: Typical NoC topologies
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“fat” tree because the bandwidth is higher closer to the tree’s roots, so reducing the risk of
congestion [102].

In direct networks the node degree measures the number of channels (which are illustrated
in Figure 2.2 as lines) connecting a node with its neighbours, while the network diameter is the
maximum distance between two nodes in a network. A network is said to be regular when all
nodes have the same degree and symmetrical when all nodes look alike. A network’s bisection
width is the number of channels that would be cut if the network was divided into two equal
numbers of nodes. The bandwidth of these channels is referred to as the bisection bandwidth
and may be cited as a measure of the performance of a given network topology [46].

Routing packets through the network expends energy and longer routes add to communic-
ation latencies, so there is a performance advantage for networks with small diameters and
large bisection bandwidths. For manufacturers this is balanced by the high cost of producing
devices with many links and routers. Simple network designs are also the easiest to extend. For
instance, as Dobson points out [52], while in a hypercube average communication distances
only grow µ dlog2 ne (where n is the number of dimensions), as the node count grows as
2n, extending this topology by adding a further dimension requires changing node degree
for every node. Yet in a mesh one need only add new nodes at the edges. Meshes are also
relatively easy to fabricate on a two-dimensional slice of silicon, compared to the generally
higher performing topologies such as tori and hypercubes [69]. In [162] it is estimated that
a 2D torus increases wire length and wire congestion by a factor of two in comparison to a
mesh design.

Meshes are thus the most common design and are used in even the most powerful of NoC
systems [61]. But meshes are neither regular nor symmetric as there is a discontinuity at the
boundaries of the mesh. This adds to the energy cost of a mesh network and may cause a
local hotspot of traffic at the centre of the network or at edges connected to external devices,
such as memory controllers. The asymmetry matters when we consider timing questions, as
differing route lengths imply different connection times. The Bluetree memory tree, discussed
in 2.4.6, addresses this by using a non-mesh design for memory interconnect.

Ad hoc network topologies may be favoured for application specific integrated circuit (ASIC)
devices as, with the application already defined, knowledge of traffic patterns means that
redundant nodes may be removed. This makes the device cheaper to produce while reducing
power consumption and maintaining performance at the expense of limiting its general
usefulness. The Æthereal architecture, for instance, allows designers to specify irregular
networks when building NoCs for consumer electronics and similar domains [73]. This
removal of generality may limit the usefulness of such designs when considering systems
software and here we primarily consider what are nominally mesh-based homogeneous NoCs.
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Figure 2.3: Node (tile) on the Intel SCC

Figure 2.4: Tilera TILEPro64 schematic

�.�.� The nodes

Nodes on a NoC may vary in their constituents. The Intel Single-chip Cloud Computer
(SCC) [108], a 48 core experimental system (illustrated in Figure 2.3, from [108]), groups two
processors together in each node (referred to as a tile), along with two level 2 caches, a mesh
interface (which connects to a router) and a fast 16KB SRAM message passing buffer. In the
TILEPro64 [21], each of the 64 nodes consists of a processor, cache memory and a switch
(router) which connects to five different mesh networks, each carrying a different class of
traffic (Figure 2.4 from [21]).

The Sunway TaihuLight Supercomputer [61] uses a heterogeneous design to deliver what
was claimed to be the most powerful supercomputer of 2016, with its SW26010 processor con-
taining four core groups (CGs). Each CG contains a memory controller, a fully-capable “man-
agement processing element” RISC processor and a 64 element cluster of limited-capability
RISC processors ordered in a mesh. All CGs are linked as a NoC and each CG is linked to
main memory through its memory controller.

The TILEPro and the SCC include caches in each tile, but use them differently. The TILEPro
explicitly supports cache-coherent memory access to off-core DRAM by all cores through
the strict partitioning of memory, while the SCC in its default setting uses its off-core level
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2 (L2) caches to speed access to private memory only. Each SCC tile includes a message
passing buffer (MPB) and all processors can use the shared memory it supports as a means of
communication: all can write to any address in the shared 384KB (i.e., 48⇥8KB) address space
and the processors, based on second-generation Intel Pentium designs, support an additional
instruction to invalidate on-core level one (L1) cache lines (which cache the MPB memory)
and an additional “test&set” register to support atomic locking.

Across the SCC there are eight voltage domains: one for the on-chip memory controllers
(see 2.4.5), one for the mesh and six for the tiles (i.e., four tiles per voltage domain). Switching
voltage in any of these six domains incurs a significant latency of ⇠1ms (500,000 cycles). As a
faster, if less powerful, alternative, frequency may be set for any one tile or for all eight cores
in a voltage domain.

In each tile in the TILEPro the cache, processor, switch and the five networks are connected
via a crossbar so that traffic may flow between all. The designers of the TILEPro say the use
of five networks is only marginally more expensive than using one, as the majority of the
cost of the network is in buffer space and that the different classes of traffic would all require
separate buffering.

�.�.� Packets and switching

Routing and switching in NoCs are generally handled by proprietary hardware and routers,
or router-processor combinations and are often referred to as IP blocks (from “intellectual
property”) for this reason.

The switching methods employed in NoCs favour small packet sizes - of bits rather than
kilobytes - and although the speed of on-chip communication may be relatively high, there
is a premium on avoiding latency caused by communication. Contention and congestion
can spread through a NoC as a result of the switching methods chosen: if one node on the
network is subject to heavy traffic from another then even unrelated nodes could be affected
if routing paths coincide. Larger packets may block the network for longer, increasing average
latency. Routing packets around a hotspot may be possible, but could increase the worst case
execution time of running software. In [167] it is suggested that, for a given algorithm with
a known total inter-node communication demand, the different factors point to breaking
communications down to an optimised packet size rather than seeking to send as much data
as possible in a single packet.

Routing memory requests through the on-chip mesh ensures there may be many routes
between any core and a memory controller at the edge of the NoC, but also adds to the
problem of calculating WCETs as different routes will be of different lengths and complexity



�.� �������-��-���� �������� 39

[12]. Creating a separate mesh for memory packets means memory requests are no longer in
competition with other traffic but there will still be contention amongst the memory requests
themselves.

�.�.� Routers’ and on-chip networks’ power consumption

NoCs are used to overcome the “power wall” problem, but a NoC’s on-chip infrastructure is
quite likely to use significant amounts of power itself. In [16], a relatively early study of power
use in NoCs, the authors suggest standby power usage of on-chip routers could be around
50% of power usage under traffic and that the routers use around 3 - 5 times more power
than the on-chip wires. A more recent paper, [141], reports that, for various real-world NoC
designs the interconnect infrastructure can use between 10% and 36% of total available power
if all cores are being fully utilised. The authors state that routers typically cannot be switched
off even if cores are (as they need to be available to route packets) and that these proportions
rise even if opportunities are found to make cores ’dark’ to meet power constraints as a result.
Further, the authors outline how lowering voltages and smaller technology processes increase
the share of static power demands in on-chip routers.

�.�.� Off-chip communication

On-chip networks show significantly lower latency than traditional bus or ring networks, but
at the edges of the chip these signals must interact with a world filled with legacy devices.
Latency here remains problematic for computing efficiency. In many commercial designs high
speed device controllers are placed on the chip itself as a means of minimising latency. In
the Intel SCC four DDR3 memory controllers are placed on the edge of the chip, while a
field programmable gate array that provides an interface to PCI Express (PCIe) devices [34] is
placed immediately “off package”. In the TILEPro64 there are four DDR2 memory controllers,
as well as four PCIe interfaces and four network interfaces and general input-output controller
support [162] - all on the chip. One of the five networks on the chip, the “I/O Dynamic
Network”, handles input-output device communication. Another network, the “Memory
Dynamic Network”, handles external memory requests, which come exclusively from the
TILEPro’s cache blocks. In both devices the number of internal hops requests must make to
reach the relevant memory or device controller has a measurable effect on latency. In the SCC
latency is of eight cycles per mesh hop, while in the TILEPro each hop requires one cycle with
an additional cycle if the packet needs to change direction.
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Figure 2.5: Bluetree memory tree

�.�.� Shared memory trees

The gap between CPU and memory controller performance is growing and can be decisive
in overall system performance. While placing memory controllers directly on NoC silicon
allows direct connection to the on-chip network it also means router and other latencies
matter in determining overall performance [66]. In the examples cited above different cores
are different distances away from memory controllers and so even the fastest routes take
different amounts of time. An alternative is a separate network which connects to all NoC
tiles to grant equal access to shared, off-chip, memory such as Bluetree [12, 131, 66, 144].
Here requests for external memory negotiate a series of 2:1 multiplexors down a tree where
a memory management unit (MMU) lies at the root. Each tile is (if the tree is set up in this
way) an equal ’distance’ from this MMU. See Figure 2.5 for a representation of an 8 core NoC
connected to a Bluetree shared memory tree.

We discuss the memory connect in more detail in 4.2.4 and test alternatives to the Bluetree
model in 5.5.

The arbiters on Bluetree can be programmed at runtime to enact a priority scheme, allowing
this approach to be used with mixed criticality systems.

�.� ������������ �� ���� : �������� ���������� �����

In recent years graphics processing units (GPUs) have emerged as an alternative method of
handling massively parallel computing loads. GPUs offer hundreds or even thousands of
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cores, though at a lower frequency than would be expected with a CPU, and can deliver
superior performance for highly data parallel tasks [101]. Heterogeneous combinations of
GPUs and CPUs have been studied and used to maximise computing performance [114],
including tackling problematic levels of power consumption by GPUs [155].

GPUs generally have a different form of memory hierarchy from CPUs. In [121] NVIDIA
describe a how a 512 core GPU is divided into 16 streaming multiprocessors (SMs), each of
32 cores. Each SM shares 64KB of memory (which is typically partitioned between shared
memory and cache) and each SM also shares a register file (RF) of 32,768 32-bit registers. In
[159] the authors point out that later NVIDIA designs significantly increase RF size per SM
but hold or decrease level 1 data cache size and that thrashing of the cache is likely to be a
significant problem.

In [68] the authors note that future GPU designs will have to rely on greater amounts of
on-chip shared memory to avoid costly accesses to off-chip global DRAM. Currently, they
state, applications are tuned to match the GPU design and its limited supply of on-chip
memory, and that this is becoming more complex as GPUs are more widely deployed and
used for general computing tasks.

�.� �������� ������ ��� ��������� �������

At the heart of the problems we consider in this thesis is how to best manage systems which
have only small amounts of local quickly-accessible memory but which need to execute
programs that are stored in larger, but slower-to-access storage such as physical (volatile)
memory or secondary storage.

In the classic studies of the memory hierarchy problem (e.g., [19, 47]) such secondary
storage is invariably considered to be a rotating magnetised medium of some sort, but in
the last decade it has become increasingly likely that secondary storage will be provided
by a Flash memory based solid state drive (SSD) which has lower latency and shorter (and
essentially constant) mean read access times than spinning media [99].

Figure 2.6 on the following page shows a simplified schematic of a typical memory hierarchy
in an embedded real-time system. As we move down the latency of the storage increases and
it also becomes more difficult to calculate a WCET [12].

Although high in the hierarchy, caches present a particular problem for real-time system
design, as what is present in a cache is dependent on the string of previous memory references.
While the principle of locality [49] (discussed at greater length in 3.1.2 below) is likely to ensure
this means caches increase the average performance in general computing tasks, the average
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Figure 2.6: Memory hierarchy in typical real-time system [12]

case is not a safe basis of performance measurement in real-time systems design: the focus
must be on the worst case. The alternative of assuming that all attempted cache accesses result
in a miss is safe but likely to significantly over-estimate even the worst case execution time.
Accounting for cache behaviour is extremely complex [163].

In the case of a NoC, CPU cache may not be present and instead on-chip memory may be
managed as a scratchpad: here on-chip memory is mapped to a range of physical addresses
inside the global physical memory mapping. Typically the programmer, with compiler support,
ensures that needed resources are made available when needed in this scratchpad area.
Scratchpads avoid the timing uncertainties of caches: if an object is in the physical memory
range that is mapped to the scratchpad then it will be accessible in a fixed and known time,
while a cache-based access may incur a hit or a miss with the inherent uncertainty that
involves [151].

Scratchpads are more energy- and area-efficient than caches as they do not require an
associative array [23]: another reason why they are favoured by designers of network-on-chip
devices and multiprocessor system on a chip designers more generally [15]. An alternative
approach is to ’lock’ down lines in caches, effectively turning off replacement policies in the
cache (policies which are often opaque and poorly documented and so troublesome for WCET
determination in any case). This maintains the advantage of addressing being (relatively)
transparent to the programmer while potentially also offering certainty. It does not, however,
eliminate the issue of conflicts in cache line allocations (which are generated by the lower
order bits of a cached address matching) and cache pollution, but nevertheless generate similar
results to the use of scratchpads in terms of WCET [135].
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In a memory hierarchy where the total range of addresses which need to be accessed exceeds
the total space available in fast or local memory then a policy on replacement is required.
Such replacement can be under programmer control, often in the form of an explicit “overlay”
where blocks of code or data are removed and replaced. This technique was once widely used
in general computing but has now been superseded by virtual memory-based techniques. It
remains, though, an option for embedded programmers, especially where MMU support is
not available [125, 79], but here we discuss the principles of algorithmic page replacement,
with a fuller discussion of practical policies following in 3.1.4 on page 58.

�.�.� The working set

Short of an implementation of the “clairvoyant” optimal OPT (or MIN) policy which selects
which memory objects (typically pages) it would be most efficient to replace on the basis of
foreknowledge of future memory reference patterns [19], holding those pages currently in
use, the working set, is the best approach. A working set page replacement policy [47] holds a
variable number of pages in memory, removing them when the time since they were last used
exceeds a threshold.

This approach is claimed as the most efficient in general computing and best at avoiding the
thrashing phenomenon. Although, as we discuss below, it is generally not seen as a practical
approach itself, it serves to illustrate the qualities that an effective and efficient policy should
have and most practical policies are designed to be close analogues.

The working set of a program in execution is the set of pages that have been accessed by the
program in an arbitrary (but generally small) amount of time (the working set window, often
referred to as q). In the examples we illustrate here q is proxied for by instruction counts. In
Figure 2.7 [109], it can be seen that the working set size of a program, in this case a MySQL
daemon servicing a simple client open and close on Linux, can vary significantly.

Programs in execution go through phases of locality of reference. Spacial locality is seen when
future memory references are to made to the same location or to close-by locations. Temporal
locality occurs when spatial locality is observed in a short (but generally arbitrary) timeframe.

In Chapter 1 of [150] four bases for the principle of locality are set out and are presented
here in a shortened form:

• Program execution is generally sequential.
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Figure 2.7: Distribution of working set sizes for MySQL daemon

• It is rare for large numbers of procedure calls (which disrupt locality of execution) to
follow each other sequentially, so for a small enough time window execution in any
block of code is likely to be spatially localised.

• Iterative constructs (such as loops) tend to be small, and so execution of these produces
references which are concentrated spatially.

• Data structures are often in the form of sequential records (such as arrays) and so
iterating through them requires sequential access to addresses in much the same was as
instructions.

Studies of programs written in imperative high level languages, such as [145] which included
C, probably the most widely used language in real-time systems development [37], support
these arguments, though there is also the suggestion that the memory indirection used in
object-orientated languages and frameworks (such as Java) my disrupt locality [82] and that a
research effort has been undertaken to improve locality of reference in object-orientated code
[89].

In each phase locality can be strong and successive memory references are likely to be closely
clustered in space. In the transitions between one phase and another, however, successive
references may not be to the same locality. In those transition periods the working set is likely
to grow in size and so a working set policy relies on accessing a variable sized store of pages.

In reality working set policies are difficult to implement as they require hardware to monitor
the time of each memory access and software or hardware to maintain a list of pages ordered
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by access times. Paging policies in real world computing systems tend to be analogues of such
policies, typically based on a ’CLOCK’ policy [38] where pages are periodically checked to see
if they have been recently accessed and those pages which have not are marked as candidates
for replacement. In the Linux operating system this operates through a ’2Q’ policy [88], where
pages that are frequently accessed are placed on a higher priority list and thus become less
likely to be evicted.

For small memory systems such as those found in NoCs there is an additional impracticality
with a working set policy: we simply do not have enough free memory to implement it. Setting
a small q so that in periods of phase transition there is room for the number or retained pages
to grow means operating with an extremely high fault rate at other times as few pages are
retained. This is why, in these experiments, we used either CLOCK or FIFO page replacement.
In fact our general conclusion is that a better page replacement algorithm is less important
than a better page loading algorithm.

�.�.� FIFO and other policies

Algorithmic page replacement policies are based on the fact that memory references show this
spatial and timing locality: this is not a provable quality of programs but rather a consequence
of how they are written and produced [149]. Thus the algorithms used are typically founded
on observed program behaviour and also the behaviour of the hardware in use in any given
system [14]. Perhaps as a result there a plethora of different policies have been proposed
to manage replacement decisions: ten are named in [168] though even this list is far from
comprehensive, leaving out, for instance, First In First Out (FIFO).

As noted in the literature algorithmic policies may be divided orthogonally. Firstly as to
whether they are adaptive or non-adaptive (in the sense of whether they monitor which
objects are in use after their initial load and select candidates for replacement based on this
information), and secondly as to whether they are local or global policies.

FIFO is a non-adaptive policy: here memory objects are simply stored in a form of load-time
order and when space for a new memory object is required the oldest present object or objects
are evicted. FIFO may seem crude but in general it is simple to operate (it requires no scanning
of memory objects present nor sophisticated hardware support) and can still generate good
results [154] as, although the list of memory objects present is not updated to reflect use
patterns, locality is observed to go through phases [47] and so older objects may no longer
be needed. The simplicity of FIFO, despite its obvious drawbacks, is a reason it is commonly
used in hardware cache replacement [138] and even in sophisticated operating systems: in
the OpenVMS operating system a modified FIFO policy is used on Alpha-based systems
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where there is no explicit hardware support for marking page access [70]. A working set
list, effectively a circular queue, is maintained and pages (see 3.1.3 on page 55) are added in
their order of access. When the queue is full and a new page needs to be added at the end
it replaces the page at the start of the queue. (FIFO page replacement policies are subject,
though, to “Bélády’s anomaly” where increasing the number of page frames can lead to a
higher number of faults [20].)

The question of whether to operate a global or a local replacement policy occurs with
multiprogramming. Here local memory may hold objects which come from a number of
different programs and the question is whether a program in execution that needs more
space should face seeing a trim of its existing use of memory (a local policy) or whether all
memory objects should be available for replacement (a global policy). Any policy which aims
to securely hold in place those memory objects currently in use by the running program must,
by definition be “local” as it focuses on the program in execution. Local policies are likely to
deliver better results but global policies dominate in real-world usage because of their relative
simplicity [47, 87].

�.�.� Load control

In his formulation of the working set, Denning [47] emphasises the need to apply load control
to a multi-computing environment: warning that once the load (i.e. programs being executed)
reaches the point that programs cannot maintain their working sets in memory then adding
more programs results in a fall in processor utilisation as waiting for memory requests to be
serviced dominates performance.

Denning’s proposal is that when the number of jobs submitted exceeds a number (which
he labels M) which is determined to be a maximum limit of active jobs (this would be set
somewhat higher than the optimal multiprogramming point) then only M jobs could be active
and allowed to hold space in main (fast) memory and use the CPU or I/O devices. All other
jobs would be held in an inactive queue. This would prevent a catastrophic fall in efficiency as
more jobs are added.

This model presents difficulties for us. The severe constraints on local memory seen in a
NoC mean we are already adopting a one-process-per-core model, but even then (cf. 4.3.1)
it is unlikely that many programs could maintain anything like a working set in memory.
Additionally the real time criterion makes it difficult to suspend program execution for long
periods. We explore alternative load control mechanisms in 4.7 and subsequently.
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NoCs may appear to be ideally suited to tackle highly parallel tasks and in [90] Asinovich et
al. discuss 13 fundamental classes of parallel computing problems which they believe will
be important in future engineering and scientific computing and which, therefore, ought to
be prime use domains for highly parallel many-core computing systems. Yet we must also
account for the well-known limitation on parallel computing speed up known as “Amdahl’s
Law” [81]. This governs the limit on how much speed-up adding additional, parallel, resources
will bring. In its simplest form the law can be stated as:

S( f , N) =
1

(1� f ) + f
N

(2.1)

Where S is the fractional speed-up, f the fraction of the program that runs in parallel (and
1� f that which runs in serial) and N the number of processors attacking the parallel part.

But if we consider heterogeneous systems we should restate this as:

S( f , N, pS, pP) =
1

1� f
pS

+ f
NpP

(2.2)

Where pS is the measure of core performance when running serial code and pP core
performance when running parallel code2. For a homogeneous system our baseline assumption
should be pp = ps. Though we should note that cores may be heterogeneous, for instance as
in the case of the Cell Processor [91], or that it may be that small cores used to run parallel
tasks can be combined into a more powerful serial core or that we can use dynamic frequency
management to boost the performance of a single core when it is running a serial task.

Formula (2.2) is certainly a simplification: pS and pP will vary from application to application
as a result of memory access patterns, the effect of cache misses and so on but, at the price of
further approximation we can use (2.2) to model how a homogeneous NoC might perform.
From Esmaeilzadeh et al. [57] we have the cubic polynomial for the Pareto frontier3 that marks
the edge of the power/performance relationship for amd64 type cores at the 45nm production
node:

W(p) = 0.0002p3 + 0.0009p2 + 0.3859p� 0.0301 (2.3)

2 Esmaeilzadeh et al. [57] present an alternative, if related, formulation when considering future multicore per-
formance: S = 1/( f

Sparallel
+ 1� f

Sserial
), where Sparallel and Sserial are the speed-ups seen by future many-core designs in,

respectively, parallel and serial computing, in comparison to today’s “baseline” multicore (SMP) systems.
3 i.e., the observed limits for maximum efficient performance
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Number of cores Modelled SPECmark per core

1 35

2 22.76

4 13.41

8 7.26

16 3.77

32 1.94

64 1.01

128 0.55

256 0.31

512 0.20

1024 0.14

Table 2.1: Estimated effect of increasing core numbers on individual core performance for fixed power
budget at 45nm node

Where W is the power consumed (in Watts) and p is core performance (in SPECmarks4).
We can then use cubic splines to interpolate a value of p for a given W and, using the power
budget for an imaginary chip that performs at 35 SPECmarks on the Pareto frontier, which is
close to the observed maximum performance of any core, to model how a many-core NoC
system with an arbitrary number of homogeneous 45nm cores would perform for various
workloads that mix parallel and serial portions of code - as illustrated in Table 2.1 and in
Figure 2.8. It can be seen that increased performance is dependent on having highly parallel
tasks to run.

In the future, as we move further from the 45nm node, chip performance will improve
(even if not at the historic rate), and many-core systems may become progressively better
for handling less parallel tasks. But in their modelling of the move to many core chips
Esmaeilzadeh et al. suggest that even on an optimistic view of future core scaling little would
be gained by using much more than 32 cores on even highly parallel tasks. Figure 2.9 (from
[57]) shows their projections for the impact of Amdahl’s law in many-core systems, using
both conservative projections of the impact of further transistor scaling and the then extant

4 The general point is that the higher the SPECmark the better the core performance, see http://www.spec.org/
spec/glossary/#specmark and the Standard Performance Evaluation Corporation’s website more generally for
further information (link accessed 18 May 2013).
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Figure 2.8: Modelled effect of Amdahl’s Law for many core Network on Chip system
(Here f denotes the proportion of the code that is fully parallelisable)

projections from the International Technology Roadmap for Semiconductors (ITRS). They
conclude that the bulk of what they call “the dark silicon gap” - the difference between
continued historically achieved increases in performance projected forward and those we
can actually expect to see - is caused by a lack of realisable parallelism in tasks. However,
in real word usage they conclude that it will be power constraints - the need to stop chips
from overheating - that will contribute the most dark silicon, i.e., the proportion of a chip that
cannot be used at a given time due to constraints on power use.

We give outline a practical example of the difficulties of securing efficient computing for
highly parallel tasks with a many-core NoC in Appendix A. Our example appears to confirm
practical limits on many-core systems tackling highly parallel tasks but we cite congestion in
the memory connection as a key factor here.

This “dark silicon” problem - the inability to use all of a chip given limits on heat dissipation
- is a consequence of the increased power density as transistor sizes continue to decrease. It
may emerge as a dominant factor in designs of both future NoC hardware and system software.
For hardware designers it may suggest using chip space to implement heterogeneous designs
rather than seek to fill all the space with fast, high-energy-using, general processing capacity.
For system software design, managing heat issues and the need to managing halting or
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Figure 2.9: Esmaeilzadeh et al’s projections of the impact of Amdahl’s law in manycore systems
(The horizontal axis indicates the technology mode)

slowing a particular core while seeking both good performance and deterministic processing
will be challenging.

Figure 2.8 on the previous page is illustrative rather than definitive and is based on a
number of simplifying assumptions (such as the parallel portions - measured by f - of the
workloads being decomposable into a number of equal parallel sub-tasks that match processor
counts) but does illustrate the point that if the point of using more cores is only to speed
execution then the tasks will need to be highly parallel and all processors in use for the
maximum amount of time. Appendix A suggests this will be difficult or even impossible
to deliver with a congested connection to external memory for many-core devices. Instead,
in Chapters 4 and 5 we concentrate on multiple real-time tasks running concurrently but
independently.

�.� �������

In this chapter we have outline the factors that have seen multi- and many-core computing
grow and describe some of the new problems that growth has created for real-time systems
designers and programmers in particular.

In 2.1 and 2.2 we discuss how scientific advance and commercial pressures continue to make
faster computing at least theoretically possible, but note that the end of “Dennard Scaling”
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(the ability to maintain a constant power density even as chip frequency increased) means
that the long-followed option of ever-faster single core CPUs is no longer feasible. Instead
many-core designs are increasingly common and system designers and programmers must
look for ways to run code in parallel if performance increases consumers expect are to be
maintained.

In 2.3 we discuss why buses, while allowing for cache coherency between a small number
of cores, scale poorly for many-core designs and that, instead, packetised communications
through an on-chip network are increasingly preferred as core numbers grow.

A variety of such network-on-chip designs and topologies exist but we note that simple
mesh designs are most likely to be implemented (2.4.1) though these generally have poorer
performance characteristics than alternative designs, as they lack symmetry and bandwidth.
As a result resources can be significantly different distances from individual cores and traffic
on the on-core network can face bottlenecks, while the plethora of routes from cores to external
connections can complicate timing considerations. We illustrate some of these issues in a
discussion of commercial and experimental NoC systems (2.4.2).

Shared memory trees, which ensure that global memory is equidistant from all cores, offer
at least a partial answer to this problem and we introduce them in 2.4.6 (though they are not
discussed in depth until 4.2.4).

In 2.5 we briefly discuss the use of graphics processing units (GPUs) as a many-core
alternative to NoCs and note they face similar memory-bottleneck problems.

In 2.6 we discuss the problems of a memory hierarchy and note that using caches may
increase timing uncertainty in real-time contexts, or else force the use of excessively pessimistic
timing estimates, while in 2.7 we introduce the subject of memory replacement and the impact
different policies may have and how they typically aim to exploit locality of reference in
computer programs.

Finally, in 2.8, we use the findings presented in [57] to show that, in many-core designs,
very high levels of parallelism will be needed to see code speed-up: memory bottlenecks or
anything else which makes code more serial and less parallel could make many-core designs
less practical if the sole criterion for their use is speed-up of execution.





3 V I R T U A L M E M O R Y O N A M A N Y- C O R E
S Y S T E M

Virtual memory (VM) is ubiquitous in general computing but has generally been avoided in
embedded and real-time environments. In this chapter, in 3.1 we consider how virtual memory
can address the evolving challenges facing real-time developers, discussing segmentation but
concentrating on paged virtual memory. In 3.2 we consider thrashing - a problem seen with
VM implementations when memory replacement demands begin to overwhelm the system.
In 3.3 we discuss real paged program behaviour and how a novel approach to paged virtual
memory - partial paging - can reduce the number of memory requests in the system and so
mitigate thrashing. We summarise this chapter in 3.4.

�.� ��� ���� ��� ������� ������ �� ����-���� �������

�.�.� Real-time software is becoming bigger and more complex

The case for using virtual memory in real-time and embedded systems is under-pinned by the
growing complexity of the demands made on software in such systems. Embedded systems
are becoming bigger and are expected to do more and, in general, demands and expectations
are increasing more rapidly than resources.

A decade or so ago the most popular embedded computing devices were low-end mobile
phones. Something approaching 109 of these were being produced annually in 2009, each
typically using somewhat less than 106 object codes [54]. More recent figures suggest that
while the sales of mobile phone devices are of the same order as 2009 [158], the software they
are running is likely to be both modularised and several orders of magnitude bigger [106]. At
the higher end, code size and complexity are also growing: a Boeing Dreamliner, introduced
commercially in 2011, runs on 14 million lines of code, while the F-35 Lightning-II jet fighter,
deployed operationally from 2015 onwards, uses 24 million lines of code [166].

While embedded software deployed in real-time contexts is getting bigger and more
complex, the need to combine and concentrate computing centres in embedded systems for
reasons of practicality and cost control is growing. For instance, between 2002 and 2015 the
number of electronic control units (ECU) in the Volvo XC90 car increased from 38 to 108 [104].

53
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Combining ECU functionality to control hardware costs becomes increasingly important [63]
while that same process may increase software complexity and security requirements [107].

And, as the realm of real-time system deployment spreads (such as into driverless cars),
and more personal and sensitive data is handled by real-time systems, concerns about the
security of such systems are also growing.

�.�.� Virtual memory

Our principal contribution in this thesis is to propose a new approach to virtual memory that
allows embedded systems with small amounts of local, fast, memory to access the advantages
that VM offers whilst mitigating the performance and deterministic drawbacks that have
traditionally led to VM being avoided by embedded and real time systems designers [134].

Virtual memory offers [50]:

• a means to logically separate the physical and logical/virtual location of resources so
allowing more efficient use (generally in a way which is transparent to the programmer)
of limited, fast, memory.

• a way to make programs more generally useful, as they do not necessarily need to be
dependent on the layout of a given machine’s physical memory map.

• a mechanism to ensure resources are shared in a secure manner as well as means to
isolate errant or malicious programs.

In VM a program in execution presents a virtual (or logical) memory address of a resource
(whether code or data) to a processing unit. This must be translated into a physical address
that represents the absolute location of the sought resource. A logical address might simply
represent a mapping between physical addresses and some other range of addresses (or
differently ordered addresses) but is much more likely to cover a much larger range than
physical memory (or physical memory and memory-mapped devices) alone would support:
generally a virtual address space is likely to cover the whole of the space mappable by a
processor and this allows for programs which are much bigger than the available amount of
physical memory to be run. Using logical addresses allows each program being executed to
appear to have access to the full range of addresses supported in hardware.

The process of translation allows:

• For a hierarchy of resources - for instance at a given instant the virtual address of an
item being sought could translate to a location in storage medium other than volatile
memory or even to a resource currently stored on another system entirely.
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• For security - the necessity of address translation allows accesses to resources be
monitored and thus for resource protection (for instance limiting access to certain
addresses to systems software only).

• Resource sharing and multiprogramming - alongside security, translation allows for
sharing of virtual to physical mappings, and by partitioning the physical address space
can enable multi-computing.

• For modularity - by being freed from the need to use absolute resource locations
programs can be built from blocks which can, in effect, collaborate inside a shared
virtual address space.

Creating a hierarchy of resources can allow a system with small local memory to transparently
appear as of arbitrary size, though typically for a 32-bit processor we have a 4GB address
space (232 bytes) and for a 64-bit processor an address space of 2n where n might typically
be 42, 48 or some other number up to 64. This hierarchical system can still deliver efficient
computing because of the principle of locality [49]: address references tend to cluster in time
and space, so if the most accessible (i.e. fastest) part of a memory hierarchy contains resources
which are close in distance to other recently accessed resources the system is likely to be
efficient. For instance, traversing loops or accessing compact data structures are behaviours
typical of real-world computer programs.

�.�.� VM mechanisms: segmentation and paging

Mechanisms are required to implement VM and policies are needed to ensure these mechan-
isms are used efficiently [50]. In this subsection we consider the two fundamental mechanisms:
segmentation and paging.

Segmentation allows programmers to allocate variable sized blocks for code and data -
segments - and resources inside the segment can be accessed by referencing a segment
number (or address) and an offset within the segment. Each segment is linear and contiguous
in physical memory. In simplified terms the typical arrangement is that a segment has a base
address which can be looked up in a per process table stored in physical memory, perhaps as a
segment itself (typically a processor register points to the base of this table and this register
is loaded with this address when the execution of a particular process begins). The table
will also store other information about the segment, such as its extent (an attempt to access
beyond the segment’s length can then be trapped as an exception) and the access privileges
the current process enjoys (so, for instance, attempting to write to a read-only segment can be
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trapped as an exception). Segments can be shared amongst multiple processes using these
mechanisms.

Segmentation is not transparent to the programmer - segments are allocated under program
control - and this is one of the reasons segmentation is no longer widely used in modern
operating systems. Hardware constraints have also been a factor and Intel’s x86-64 architecture
only has very limited support for segmentation [84]. Segmentation is also prone to external
fragmentation because it can use variable and dynamically sized segments: this fragmentation
is highly undesirable where fast memory is in extremely short supply. While we note that
memory compaction approaches that are compatible with the demands of real-time systems
have been proposed [42], we do not examine segmentation any further here.

The alternative mechanism, on which we will concentrate in this thesis, is paging. In paging
the main or fast memory is divided into equal-sized blocks known as page frames into which
resources from remote locations are loaded, generally in portions of the same size as the page
frames. These portions are known as pages. We stipulate they are ’generally’ loaded at the
same size because in this thesis we explicitly adopt another approach of only loading a part
of a page.

As with segments a table - a page table - will hold information about the mapping between
the page frames and the pages as well as status information about page frames (such as
whether the mappings are valid). Historically page fames have tended to be of 4KB size:
seemingly chosen as a good trade off between magnetic disk throughput speeds and waiting
times for subsequent requests. More recently the trend in many general and server computing
devices has been towards bigger pages [161, 67].

Taking 4KB pages as an example, secondary memory can be regarded as being divided into
pages numbered by the lowest address in a page shifted right by 12 bits - hence the address
0x80074D would be in page 0x800 and so on. Similarly, a resource at this address would be at
offset 0x74D if loaded into a 4KB page frame.

Figure 3.1 on the facing page shows a simplified version of address translation - a virtual
address is broken into an offset (lower numbers) and a page number. The page number
functions as an index to a page table or a system of page tables, which returns a physical
page address which is recombined to with the offset to produce a physical address.

For large addresses page tables are usually found in several layers - as a full 64-bit address
space with 4KB pages would require over 1015 page table entries with a flat page table system.
For example, on a typical 32 bit Linux system on Intel hardware there are two levels of page
tables of 4KB pages, while on Linux on x86-64 hardware there are four (and even then only
the lower 48 bits of a virtual address are used) [28]. On such an x86-64 system the highest
level in the page table system is indexed by bits 47 - 39 and each of the 1024 table entries
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Figure 3.1: Paging - a virtual address is used to index entries in a page table

references a 128 GB region: those 128 GB regions not in use need only be marked as ’not
present’ at this level of the table, and do not require child tables lower down the hierarchy.

����������� ��������� ������� Page tables are dynamic and so any table in current
use has to be present in volatile memory. As each program in execution has its own virtual
address space and mappings, generally each must have its own page tables. To speed access to
the tables system a special hardware register usually points to the table at the very top of the
hierarchy. To avoid the need for a page table look up on on every instruction load or access to
data, page tables are typically supported in hardware by translation lookaside buffers (TLBs).
These TLBs cache page lookups and, by avoiding the need for a search through (multiple)
page tables on each instruction, can greatly speed execution. In [126] “typical” values for TLBs
are given as:

• TLB size: 16 - 512 entries

• Hit time: 0.5 - 1 clock cycle

• Miss penalty: 10 - 100 clock cycles

• Miss rate: 0.01% - 1%

As TLBs “run hot” - being accessed on every use of a VM address and likely to be using high
speed associative array circuits - they can also use a significant amount of power. In [146]
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the authors quote Intel as saying TLBs consume 13% of core power for “memory intensive
workloads” while in [117] a figure of 15 - 17% for cores designed for embedded systems is
quoted.

�.�.� VM policies: page replacement

The number of page frames available is limited and in most practical systems will be smaller
than the number of pages needed to execute the current workload to completion. Thus system
software needs to operate a page replacement policy, which may take various forms, to allow
new pages to replace those already present. A good policy is one that consistently removes
the page with the longest reuse distance (which may be infinite). Replacement may be a costly
process repeatedly picking the ’wrong’ page for replacement (i.e. a page with a shorter reuse
distance) will slow the system down and may lead to the phenomenon of thrashing (see 3.2)
where more and more time is lost to page replacement.

�.� ���������

In the proceeding 3.1 we reviewed the case for using virtual memory and some of the policies a
practical paging-based VM system must implement. Now we consider one of the fundamental
problems with VM: so-called thrashing.

Thrashing “turns a shortage of memory space into a surplus of processor time” [48]: this
surplus, though, generally manifests itself as idleness as the processor waits for a memory
request to be serviced elsewhere in the system. Thrashing is the situation when the delays
caused by waiting for such requests to complete come to dominate system performance. If
pages in the working set cannot be kept in memory then fault rates will be high and a shortage
of memory can be converted into an excess of CPU idle time as progress stalls.

We can model a simple system as an M/G/1 queue (cf. Chapter 4 in [35]) - i.e., as having
a Markovian distribution of arrival times into the system, a General distribution of service
times with 1 server [41, 40].

It will be noted that an M/G/1 system is not a perfect match to the system we simulate
from 4 onwards. At a basic level the queue in our system is not operating in continuous time
but in discrete units of time (i.e., CPU cycles). Further, as we discuss in 4.9.1, there is, in effect,
a queue-within-the-queue with a stochastic process governing which request gets to the head
of the queue (i.e., there is not a strict ordering of requests). Although the system we simulate
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processes four requests at once, for a queuing packet this is little different from a service
capable of faster processing yet only admits one request at a time.

Thus we believe it offers insight into behaviour and also shows why it is worthwhile trying
to reduce queue lengths even when queue lengths are well above the level generally accepted
as indicating thrashing.

�.�.� Modelling a queue for memory service

We here outline the basic findings for the length of a Markovian (M/G/1) queue for memory
service drawing on [40] and [35].

As in [35] we model arrivals with a Poisson process with parameter l, with X(t) measuring
how long a packet or customer arriving at time t will have to wait before service begins and
g(x) being the distribution of service times. Then, taking p0(t) to be the probability that at
time t the system is empty (and therefore that X(t) = 0), and p(z, t) to be the density for
X(t) > 0, we have for the distribution function of X(t):

F(x, t) = po(t) +
Z x

0
p(z, t)dz (3.1)

We measure the virtual waiting time of an arriving packet/customer and so assume that
waiting time is consumed in unit (virtual) time, hence if X(t) = Dt at time t and there are
no arrivals, then X(t + Dt) = 0. As arrivals are subject to a Poisson distribution then in time
Dt we expect lDt + o(Dt) arrivals (and conversely we expect the probability of there being
no arrivals to be 1� lDt + o(Dt): as is the convention, o(Dt) can be assumed to much more
rapidly converge to zero than Dt itself.

Hence:

p(x, t+Dt) = p(x+Dt, t)(1�lDt)+ p0(t)g(x)lDt+lDt
Z x

0
p(x� y, t)g(y)dy+ o(Dt)(3.2)

p0(t + Dt) = p0(t)(1� lDt) + p(0, t)Dt(1� lDt) + o(Dt) (3.3)

This gives us:

∂p(x, t)
∂t

=
∂p(x, t)

∂x
� lp(x, t) + lp0(t)g(x) + l

Z x

0
p(x� y, t)g(y)dy (3.4)

p00(t) = �lpo(t) + p(0, t) (3.5)

If the system is in equilibrium then p(x, t) = p(x) and p0(t) = p0 and any derivative with
respect to t is zero, hence 3.4 becomes:

0 = p0(x)� lp(x) + lp0g(x) + l
Z x

0
p(x� y)g(y)dy (3.6)
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and 3.5:

0 = �lp0 + p(0) (3.7)

Taking the Laplace transform of 3.6 with:

p⇤(s) =
Z •

0
e�sx p(x)dx (3.8)

g⇤(s) =
Z •

0
e�sxg(x)dx (3.9)

We get1:

0 = sp⇤(s)� p(0)� lp⇤(s) + lp0g⇤(s) + lp⇤(s)g⇤(s) (3.10)

From which (and 3.7):

p⇤(s) =
p(0)(1� g⇤(s))
s� l + lg⇤(s)

(3.11)

From 3.7 we have p(0) = lp0 and from 3.1, p0 here being a Dirac-delta:

p0 +
Z •

0
p(x)dx = p0 + p⇤(0) = 1 (3.12)

And so we can restate 3.11 as:

p⇤(s) =
l(1� p⇤(0))(1� g⇤(s))

s� l + lg⇤(s)
(3.13)

Let the traffic intensity (or utilisation2) r = lµb where µb is the mean service time: recalling
that p0 is the probability that the system is empty at any given time it can be seen that
r = 1� p0 and hence:

p⇤(s) =
l(1� r)(1� g⇤(s))

s� l + lg⇤(s)
(3.14)

From which:

p⇤(s) =
r

sµb
(1� r)(1� g⇤(s))

1� r
sµb

(1� g⇤(s))
(3.15)

From which we can see:

w⇤(s) = p0 + p⇤(s) =
1� r

1� rh⇤(s)
(3.16)

1 Using Laplace transform pair d f (t)
dt $ s f ⇤(s)� f (0�)

2 NB: We are considering a system that can only process one request at a time.
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Where:

h⇤(s) =
1� g⇤(s)

sµb
(3.17)

As a (double-sided) Laplace transform evaluated at �s is equivalent to a moment generating
function evaluated at s we can see that:

�w⇤0(0) = E{waiting� time} =
rµb(1 + c2)

2(1� r)
(3.18)

Where c is the co-efficient of variation of the service time (i.e., the ratio of the standard
deviation to the mean) and E{waiting� time} the expectation for waiting-time. This is the
Pollaczek-Khintchine formula.

Little’s law [98] states:

N = lW (3.19)

Where N is the (mean) total number of requests in the system, l the arrival rate as before,
and W the mean time taken to service a request.

We can see W = �w⇤0(0) + µb, so:

N = l
rµb(1 + c2)

2(1� r)
+ lµb (3.20)

And

N =
r2(1 + c2)
2(1� r)

+ r (3.21)

Two classic evaluations found in the literature are for c = 0 and c = 1 and both have their
applications in computing [35].

If we take c ⇡ 0, which is a reasonable assumption for a well-behaved memory management
unit dealing with DRAM:

N =
r(2� r)
2(1� r)

(3.22)

While for any device where the service times are exponentially distributed (a baseline
assumption for a magnetic disk [118]) we can (in virtual units) say c2 ⇡ 1 and so get :

N =
r

1� r
(3.23)

In our case (cf. 4.9) we have for the benchmarks chosen c ⇡ 0.35 (c2 ⇡ 0.122) and µb ⇡ 1.27.
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Figure 3.2: Waiting requests for modelled system with M/G/1 queue

Denning’s view is that thrashing - which brings “severe performance degradation” [48]-
begins when N = 1 [47] but Figure 3.2, which shows a semi-log plot of waiting requests for
our modelled system from r = 0.95 to r = 0.999 and suggests that when N > 1 there is still
log-linearity in performance. The elbow in this curve is an artefact of the scaling of the plot
but it does suggest catastrophic decline does not begin until traffic intensity becomes very
close to 1.

A linear regression gives us the approximation that for qu the queue length, qu ⇡ 8⇥
10�16 exp(36.559r) when r is between 0.95 and 0.99: indicating a substantial return in the
form of shorter queues and hence smaller waiting times for even a small decrease in r.

�.� �������� ������ ��������

To examine ways we might reduce r we considered the behaviour of a thrashing system.
From the PARSEC parallel computing benchmarks [24], we traced the memory access string,

using the Lackey program from Valgrind [119], of the x264 video encoding program3 when
configured for a maximum of 16 concurrent threads and running on Intel x86-64 commodity
hardware. Each memory reference was encoded as a line of XML4, as an instruction, a load
from a memory address, a store to a memory address or a modify (a combined load and

3 See http://wiki.cs.princeton.edu/index.php/PARSEC#X264 - accessed 20 December 2017
4 See https://github.com/mcmenaminadrian/lackey_xml - accessed 21 December 2017
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Figure 3.3: Working set size for PARSEC x264 benchmark, in 4KB pages

store). For instance, an lea (load effective address) instruction would generate two lines of
XML, the first for the instruction itself and the second a load for the address being accessed.

The benchmark program’s memory use is large, certainly in the context of typical real
time systems: static analysis shows it accesses a total of 14164 4KB pages, including both
instructions and data. Figure 3.3 shows the working set for the benchmark5 and it can be seen
it is consistently well above 300 pages for almost the whole benchmark’s life. The peak, at
1462 pages, is > 5.7 MB.

We simulated running this on a 16 core system where the cores shared 512KB of local
memory. In modelling how various page replacement policies worked we assumed a global
clock for the whole system and that any item resident in local memory (i.e., within the 512KB
of shared memory) could be reached in one tick of this clock by any core. In contrast, if a
page is not present then it will take 50 ticks per 16 byte ’line’ to load the page, so a 4KB page
will take 256⇥ 50 = 12800 ticks to load. However if a page is faulted in by another thread
while the waiting is going on then it will end as soon as that has happened. It can be seen
this model will significantly under-report the time taken to load memory as it ignores all the
problems of inter-process and processor communication and all issues of coherency. Nor does

5 The “working set window” here is chosen by the graphing software as 543218.1075 [sic] bytes of instructions as
the best fit for the chart size.
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Figure 3.4: OPT and LRU for 2KB pages compared

it allow for any congestion in the memory interlink. Further it assumes that pages that are
replaced can be written back to main memory without any timing cost.

Using the trace it is possible to model an OPT page replacement policy and this is the red
line in Figure 3.4. The effect of thrashing is shown in Figure 3.5: although multiple processors
join execution after around 3 billion ticks, the slope of the plot of lines (of XML) processed
remains constant: additional processors cannot speed up execution because performance is
dominated by the cost of transferring pages from the global store to local memory.

Figure 3.4 does show that smaller page sizes appear to work better in this constrained
memory environment with the performance of a least recently used (LRU) page replacement
algorithm with 2KB pages coming close to the performance of OPT with 4KB pages.

�.�.� Episodic and lifetime accesses to pages

Analysis (Figures 3.6 and 3.7) shows that, on average, only a small fraction of any page is used
during each time it is in memory, but that individual pages may be loaded and unloaded
hundreds or even thousands of times: there are 14,164 4KB pages referenced by the benchmark
but a total of 9,749,394 page loads referenced in our data for the 4KB LRU and 7,463,883
page loads referenced in our data for the 4KB OPT. Neither of these benchmarks were run to
completion but the data suggests that the mean number of times each individual page would
be loaded and unloaded will be ⇠ 103 times if the benchmark completed.
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Figure 3.5: Processor joins and leaves for OPT simulation

Figure 3.6: Bytes used in each page in simula-
tion

Figure 3.7: Frequency of page loads
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Figure 3.8: Page use over the whole life of the
benchmark

Figure 3.9: Frequency of different sized time-
contiguous memory accesses

�.�.� More efficient loading: partial paging

As Figure 3.8 shows, for many pages the benchmark eventually accesses the whole of a
referenced page or substantial proportion of a referenced page: the low use on each load is
because of a shortage of space. But with a standard paging mechanism a whole page is loaded
(and in our single threaded execution model all progress on the affected core is stalled while
this takes place), even though it is likely that only a very small portion will be used before the
page is then ejected. A more efficient page loading algorithm, preserving the advantages of
VM and page-based addressing, but not forcing the system to load a whole page on every
hard fault is sought.

Figure 3.9 shows the time-contiguous memory accesses (i.e., when a thread of execution
accesses a block of code of a particular length before a jump or when it allocates, modifies or
reads memory locations of a particular length before moving to a new locality) are typically
four or more orders of magnitude greater for allocations of 16 bytes or fewer than for any
other allocation size.

Therefore we propose to replace full page loading with partial paging.
In what we will call ’traditional’ paging a reference to an address in a page not mapped to

local memory as indicated by the page table - i.e. a hard fault - typically creates to following
pattern of operating system and program behaviour:

1. Program execution is interrupted and program state is saved (typically this will involve
pushing register contents on to the stack) and the processor switches to kernel mode
operation.
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2. Assuming no free page frames exist, a page must be selected for replacement, and
marked as invalid in the page table (and, if required, the page being replaced must be
written back to memory) - otherwise a free page frame can be used.

3. The page that contains the missing address is loaded into the selected (freed) page
frame.

4. The page table is updated to reflect the new mapping.

5. Program state is restored, execution returns to user mode and the instruction that
referenced the missing address is re-executed.

In partial paging when a reference to an unmapped address is made then the essential steps
to service a hard fault now become (this is an outline - we give a formal definition of a partial
paging algorithm in 4.2.2):

1. As before, program execution is interrupted and program state is saved.

2. As before, and assuming no free page frames exist, a page must be selected for replace-
ment and marked as invalid in the page table - otherwise a free page frame can be used.
If a page being replaced needs to be written back to main memory, only those parts of
the page which which we previously loaded need be written back. A bitmap, recording
which parts of the page were in use, is reset to a null state (all zeros).

3. Only that part (16 bytes) of the page that contains the missing address is loaded into
memory and the bitmap is updated (a bit switched to 1) to reflect that this is the only
valid part of the page.

4. The page table is updated to reflect the new mapping.

5. Program state is restored and the instruction that referenced the missing address is
re-executed.

In other words: a reference to a page that is not present in local memory generates a hard
fault as before (pages tables are updated and pages replaced as required) but instead of a
whole page being loaded only a 16-byte proportion is transferred. On subsequent accesses to
this page further 16-byte sections may need to be loaded: these ’small faults’ do not require the
page tables to be updated but a bitmap is maintained to track what portions of a page are
present. This necessitates that the bitmap also be checked on all memory references to see if
the part of the page being sought is present.

Small faults will require an interrupt to be raised and program state to be saved as with a
hard fault, but by saving on the time lost in loading parts of pages that are not referenced
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Figure 3.10: Performance of partial paging
simulated

Figure 3.11: XML lines processed per tick
with partial paging model

before they are replaced, we hope to show that partial paging is more efficient in such
memory-constrained environments.

As a proof-of-concept of such a partial paging approach we constrained the system described
above (3.3) to 30KB per core (for a total of 480KB of shared memory, with the ’missing’ memory
being used to notionally implement the logic needed for this approach) and used 2KB pages,
as with the earlier 2KB LRU model and again tested it with the trace from the PARSEC x264
benchmark. We increased the time required to access a block of memory that was present
to four ticks to allow for any additional time to check the bitmap. This was not, though, a
rigorous test, merely an attempt to illustrate the potential for partial paging.

A page replacement algorithm must still be used and a 2Q/LRU model, as used for the
2KB and 4KB LRU approaches described above, was applied.

The results of this simulation are shown in Figure 3.10 (cf. Figure 3.4) and Figure 3.11.
Figure 3.10 (cf. Figure 3.4) shows that the partial paging system performs much better than
any of the traditional paging systems and combined study of both shows that whilst adding
new processors sees the efficiency (each line of XML represents a memory reference) of any
individual processor fall, the overall system efficiency does rise and fall as processors join and
leave the execution.

�.� �������

Embedded real-time systems are being faced with more computationally complex and de-
manding tasks and many-core designs such as network-on-chip systems offer an opportunity
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to handle them efficiently with their access to multiple processing elements (3.1.1). The use of
virtual memory, a mature technology in general computing (3.1.2), will allow larger programs
to run as it is adapted to the memory hierarchy we see in NoCs and similar many-core
devices. VM-based systems will also be able to share resources more securely and isolate
poorly-written or malicious code.

However, NoCs and similar designs face a large “memory gap” as each processor only has
access to a very small amount of fast memory. We can see that this, if we use a traditional
paging-VM design, is likely to generate severe thrashing, with much time lost to loading
whole pages even though only small portions are likely to be used before the page must be
replaced (3.2). Thus we propose an alternative design: partial paging. This retains many of
the elements of a standard paging-VM design but instead of loading a whole page loads only
small portions of a page on demand (3.3.2).

When competition for limited fast memory is strong, partial paging is likely to diminish
rather than remove thrashing, but such diminution, if reflected in even small decreases in
demands for memory could still deliver worthwhile performance improvements (3.2.1).





4 M O D E L L I N G A PA R T I A L PA G I N G S Y S T E M

We have demonstrated a motivational case for using a system which, while retaining demand
paging mechanisms only loads a part of a page on demand (i.e., what we call ’partial paging’)
and now wish to model a system that more closely reflects the demands and constraints of
the real world. All this must be done in software as, as far as we are aware, no hardware that
implements a partial paging system currently exists.

In this chapter we outline the workings of, and the results from, the many-core NoC we
simulate in Sections 4.1 and 4.2. In doing so we describe the partial paging algorithm in some
depth in the latter (4.2.2). In 4.2.3 we discuss how partial paging might be implemented in
hardware.

In Section 4.3 we describe the benchmarks we use to test and measure the system and
in Section 4.4 we give the broad results of our simulation, while in Section 4.5 we show
how a ’traditional’ whole-page-loading paging VM system performs. Our results show that
performance is dominated by congestion in the link between the cores and the memory
management unit. The partial paging system performs better here but for both partial paging
and the ’traditional’ system the length of the queue for memory service (i.e. the amount of
’blocking’) is such that processors are typically idle more than half of the time.

In Section 4.6 we discuss the issues we must consider when comparing these results and
whether we can use partial paging’s superior performance in the simulations as a clear sign
that it would outperform traditional paging when using real hardware.

In 4.7 we discuss a simple load control mechanism (cf. 2.7.3) - which we call delayed partial
paging - implemented by assuming that the system is delayed on determining whether an
address being accessed is currently available in local memory (we do this by assuming there
is a delay in the reading of the bitmaps used in partial paging cf. 4.2.3). This delay, in effect,
devotes relatively more computing resources to requests already in the queue for memory
service than to actions that might generate further requests. We demonstrate that even this
simple load control mechanism could deliver better WCETs for a set of tasks, with the worst
case timing for what are likely to be the most demanding programs lowered at the expense of
increasing typical completion times for many or most other programs.

In Section 4.8 we outline the observed worst-case timings with partial paging before
considering in Section 4.9 how we can model the factors driving the worst case and predict

71
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worst case outcomes at safety-critical limits. In doing so we will demonstrate that partial
paging delivers better average performance because it reduces queue lengths (blocking) in the
memory system and also, for the same reason, lessens uncertainty about completion times,
allowing less-pessimistic WCETs to be used. We develop a model of entropy in the system
which offers an explanation for the greater certainty (smaller range) for completion times we
see with partial paging and we also use statistical-based extreme value theory methods to
consider completion times at safety critical levels.

Section 4.10 is a brief summary of this chapter.

�.� � ����-���� ��� ������

Many-core NoCs are likely to become more common and we simulate such a system here.
The predictions of the early 2010s that the time of widely-deployed 1024-core NoC-based

systems was imminent have proved false: for instance, pioneers Adapteva have had to abandon
their plans for a commercial 1024-core system and they have effectively ceased development1.
Core numbers in commercial products have have grown though, albeit at a slower rate than
once thought likely, and are expected to continue to grow in future years [17].

�.�.� NoCs versus GPUs

We concentrate here on NoCs rather than GPU designs. This is despite the fact that, over the
course of the last decade, GPUs have come to dominate both commercial and research efforts
to tackle highly parallel computing tasks [86]. GPUs are suited for regular parallel tasks such
as matrix multiplication rather than a wider range of general computing tasks and can even
under-perform with irregular parallel tasks (i.e., those where it is hard to find independent
sub-tasks) [120]. In Appendix A we simulate using a many-core NoC, with partial paging, to
compute a regular parallel task.

Although we concentrate on NoCs here, the issues we consider are relevant to GPUs:

• GPUs do not escape from the memory bottleneck problem: GPU designs restrict threads
to very small amounts of local memory, whether in the register file, cache or as scratchpad
and avoiding fetches from DRAM is important for both energy and speed reasons [68].

1 See http://www.adapteva.com/andreas-blog/adapteva-status/ - checked 13 January 2018
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• Support for virtual memory on GPU devices as part of heterogeneous cores is already
available on commercial hardware, though GPUs show much greater latency in handling
page faults than CPUs [157].

�.� �������� �� ��� ����������

Hardware to simulate a many-core NoC operating partial paging was not available and nor
were we aware of any commercial or public simulation system that would allow us to simulate
such a system (e.g., the Microblaze simulation we used in [110] could be easily modified to
simulate partial paging for a single core but not for multiple cores [123]).

Hence we needed to build our own simulation in software (using C++ with the GNU
toolset [60] along with the Qt SDK to provide user interface elements [36]). The simulation
is focused on handling memory references and does not compute the results of the code.
Instead it uses traces of memory references generated by Spike, the reference instruction set
simulator for the open RISC-V core technology originally developed at UC Berkeley [160].
Thus our concentration is on ensuring that the simulated memory operations - rather than
computations themselves - are correctly handled (though in Appendix A we also have to
ensure the computation is correct).

This correctness of the code was verified by stepping through it line by line using the GDB
debugger and in also ensuring that the stepping counts and fault counts matched expected
values.

�.�.� A 128-core homogeneous NoC

Our basic model is of a 128 core homogeneous NoC, with each tile having a single core and
16KB of local memory. As stated above each core runs single process.

�.�.� The partial paging algorithm

Algorithm 4.1 on the next page (with 4.2) provides an outline of the memory reading algorithm
used with partial paging when using 1KB pages.

Here a VPN suffix indicates the ’virtual page number’, PPN suffix indicates ’physical
page number’, i.e., the global memory physical page frame and PFN indicates ’page frame
number’ - i.e., the local page frame. The ’*’ in front of a memory address indicates memory
dereferencing.
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Algorithm 4.1 Simplified representation of memory read using partial paging on NoC
1: procedure ReadAddress(Address)

Input: Address
Output: ⇤MappedAddress

2: _VPN  ShiftRight(Address, 0x0A)
3: if _VPN 2 TLB_VPN then . Parallel lookup
4: return CheckBitmap(Address, TLB_PPN, TLB_PFN)
5: else

6: return HardFault(Address)
7: end if

8: end procedure

9: procedure CheckBitmap(Address, TLB_PPN, TLB_PFN)
10: LineNumber  ShiftRight(Address&0x3FF, 4)
11: BitMask ShiftLeft(1, LineNumber)
12: Bitmap  GetBitmapAddress(TLB_PFN)
13: if BitMask & ⇤ Bitmap then

14: PageFrameO f f set  ShiftLeft(TLB_PFN, 0x0A)
15: return *(PageFrameOffset + BaseAddressForLocalPages + Address & 0x3FF)
16: else

17: return SmallFault(Address, TLB_PPN, TLB_PFN)
18: end if

19: end procedure

20: procedure HardFault(Address)
21: _PFN  EvictPage()
22: Bitmap  GetBitmapAddress(_PFN)
23: ⇤Bitmap 0 . zero Bitmap for evicted page
24: _PPN  GlobalPageLookup(Address)
25: MapNewPage(Address, _PPN, _PFN)
26: return ReadAddress(Address)
27: end procedure

28: procedure SmallFault(MappedAddress, _PPN, _PFN)
29: FetchRemoteMemory(_PPN, _PFN, MappedAddress & 0x3F0)
30: UpdateBitmap(_PFN, MappedAddress & 0x3F0)
31: return *MappedAddress
32: end procedure
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Algorithm 4.2 Partial paging - supporting functions
1: procedure EvictPage
2: PageTableEntry PageReplacementOutcome() . e.g. CLOCK
3: Dirty ReadStatusFromPageTable(PageTableEntry[_PFN])
4: if Dirty then

5: WriteBackPage(PageTableEntry)
6: end if

7: InvalidateTLBEntry(PageTableEntry)
8: InvalidatePageTableEntry(PageTableEntry)
9: return PageTableEntry[_PFN]

10: end procedure

11: procedure WriteBackPage(PageTableEntry)
12: _PPN  GlobalPageLookup(PageTableEntry[_VPN]) . Enable page state update
13: for i 0, 0x3F do

14: Bitmap  GetBitmapAddress(PageTableEntry[_PFN])
15: if *Bitmap & ShiftLeft(1, i) then

16: ⇤(_PPN + i ⇤ 0x10) ⇤(PageTableEntry[_PFN] + i ⇤ 0x10)
17: end if

18: end for

19: end procedure

20: procedure MapNewPage(Address, _PPN, _PFN)
21: _VPN  ShiftRight(Address, 0x0A)
22: ⇤((PageTableBaseAddress + _PFN ⇤ SizeO f PTRec)[_VPN]) _VPN
23: ⇤((PageTableBaseAddress + _PFN ⇤ SizeO f PTRec)[_PPN]) _PPN
24: end procedure

25: procedure FetchRemoteMemory(_PPN, _PFN, LineNumber)
26: ⇤(_PFN + LineNumber ⇤ 0x10) ⇤(_PPN + LineNumber ⇤ 0x10)
27: end procedure

28: procedure UpdateBitmap(_PFN, LineNumber)
29: Bitmap  GetBitmapAddress(_PFN)
30: ⇤Bitmap ⇤(Bitmap|ShiftLeft(1, LineNumber))
31: end procedure

32: procedure GetBitmapAddress(_PFN)
33: return BitmapBaseAddress + SizeOfBitmap * _PFN
34: end procedure
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A call to ReadAddress leads (as in traditional paging systems) to a TLB lookup. If the
lookup fails then a HardFault is raised (in a system using CLOCK as page replacement a
walk of the page tables is likely to required first, but we have ignored all page replacement
mechanisms here). If the TLB lookup succeeds then a call to CheckBitmap is made (in fact we
would expect hardware to conduct the TLB check and the bitmap check in parallel - see 4.2.3).

If the TLB check passes but the bitmap check fails then a SmallFault is raised and only a
proportion of the page (16 bytes) is loaded, and the bitmap is updated accordingly

A missing page is handled by HardFault in a different way from a traditional paging
system: whilst the page tables and the TLB entries are updated, again, in effect, only 16 bytes
are loaded as with the SmallFault2. Subsequent accesses to the page may generate further
small faults. As information about which parts of a page are present are held in a per-page
bitmap, on a hard fault only those parts of a page that are marked as present in the bitmap
need be considered for write-back if required (as shown in EvictPage here). In our simplified
system pages marked as have been written to are marked as dirty and are written back and
pages not marked dirty are simply discarded on replacement. A page is initially loaded as
read-only (clean) if the first reference to it is an instruction or a load. A page first accessed
via a store is loaded as read-write (and marked as dirty). A page loaded as read-only will be
subsequently be promoted to read-write if a store is called on an address inside the page.

�.�.� Checking bitmaps

In 4.2.2 we state that the TLB check and the bitmap check should be done in parallel, and it
would also be our hope that such checking would be sub-cycle to ensure the maximum speed
of execution (though, as we discuss in 4.7 adding delay at this point could be used to enforce
load control). However, while this thesis is on the potential software impact of using partial
paging, we can outline at least one way that could be explored to deliver bitmap checking in
hardware.

Taking the 1KB pages example discussed in this chapter we know that our system has 16
pages and that each bitmap will then be 64 bits long (as we map in 16 byte lines). Of a full 48
bit address, bits 4 - 9 inclusive then give the ordinal number of the bit we need to check. Thus
we need a 6:64 decoder circuit to transform the binary coded line number into a high output
that can then be tested (via a logical AND) against a bit in the bitmap. In 4.1 a schematic for
part of a simple 6:64 decoder, using inverters and AND gates, is shown: for instance, if the

2 When counting hard faults and small faults we do not count the small fault generated here, but only the hard
fault.
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Figure 4.1: 6:64 decoder circuit (part)

coded line is 0 (i.e. all six input lines are held are held low) and then output line 0 (and only
output line 0) will be high3.

Figure 4.2 gives an outline of how a parallel check could work. Below we highlight the key
points in the process that correspond to the numbered panels is Figure 4.2 :

1. Virtual Address in: As discussed above bits 4 - 9 give the 16 byte line (here marked L)
for the address.

2. 64 bit output: a decoder (with input from the L bits) sets one of the 64 output lines out
to high (all the others are held low).

3. Bitmap comparison: there 64 input lines and for every bitmap line 0 will be compared
to bit 0 (using a logical AND), line 1 with bit 1 and so on. These results are output on 64
lines. Thus any bitmap where the bit coded in L is present will give a high output on
that line (and that line only).

4. Combine output: for each bitmap the 64 lines out are combined (via logical OR) so that
for each bitmap we have only a single high or low output.

5. TLB Output: As in a ’traditional’ system the comparison of the virtual address with the
data stored in the TLB generates an output, including a page frame number (there are

3 Typically decoders also have an additional input known as ’enable’ to drive the circuit. Enable can be thought of
as a third input to all the AND gates (as three input AND gates). For clarity we have not added this line here.
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Figure 4.2: Outline of parallel TLB and bitmap check

16 for the 1KB page system, coded in 4 bits) and V - a valid bit which indicates if the
TLB output is valid and thus usable.

6. Decode PFN: the PFN given by the TLB is passed through a 4:16 decoder, with one of
the 16 output lines corresponding to the returned PFN set to high (and all others held
low).

7. Mask for PFN: Each line from the PFN decoder is combined (with logical AND) with
the matching single output line from the bitmap. Thus we only have high output at this
stage if both the line coded in L and the PFN match.

8. Combine output: The output of the all the bitmap checks is combined (using logical
OR), giving either a single 0 (low) or 1 (high) output.

9. Check validity: the single output from the previous stage is then tested (via logical AND)
against V.

Two outputs are marked A and B. If A (i.e. V) is 1 (high) then the page has been loaded and
mapped and is in the TLB. If V is low then (subject to a page walk in a CLOCK or similar
page replacement environment where pages are removed from the TLB but retained in the
page tables) a hard fault is required to load and map the page. If A and B are both 1/high
then the line sought in the page is present and execution can continue. If A is high but B is
low then the page is present and mapped but the line sought is not and a small fault is raised.

It can be seen that to avoid further memory fetches on checking the bitmaps these will need
to be in something like the register file. As we have notionally allocated a page frame to the
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bitmaps it may make more sense to think of this in terms of lost chip real estate needed to
accommodate the fast circuitry needed to execute these checks.

�.�.� Connection to external memory

Notionally the tiles are arranged in a “Manhattan” type mesh network but we have avoided
considering questions of core-to-core (or more accurately, router-to-router) communications
here. A system that relied on router-to-router transport to connect to external resources such
as memory is potentially poorly suited to any safety-critical or hard real time operation as
connection routes are non-symmetric, with each core seeing external resources in a different
way and potentially having a multitude of routes (with different timing characteristics) through
which to access the resources [12]. Cores and tasks can be mapped to ensure they are in the
most advantageous position (though this is an NP-hard problem [132]) but optimising for the
typical case in this way, as well as being complex, may not produce the best results for real
time.

For real-time systems, there is a premium on timing predictability: such predictability
allows efficient use of the hardware and avoids overly-pessimistic estimates of the worst case
execution time (WCET) generated by adding time to observed or calculated WCETs to account
for unknowns. Thus predictability favours connecting cores to external memory (which is the
external resource we consider here) via a mechanism that ensures all cores see memory in the
same way.

In smaller multi-core systems, such connections are typically provided by a shared bus.
While only one core can master the bus at once, all have equal access and a bus also allows
other cores to see memory transactions and so maintain coherent caches. But buses scale
poorly (see 2.3 on page 33) and the complexities of analysing cache coherence in a many-core
system may lead towards a pessimistic WCET being assumed: if programs depend on variable
input data then static analysis will be unable to fully determine the contents of any caches
and as “unknown parts of the state lead to non-deterministic behavior” [164]. Pessimistic
bounds must be assumed for safety’s sake, so removing any advantage that we might assume
would come from caching.

Alternative approaches could include a crossbar where all cores can connect directly to the
external memory or a hierarchy of buses where a limited number of cores are connected to a
bus at a ’leaf’ and these leaf buses are themselves connected together, perhaps to just one bus
which also interfaces with the memory or to a deeper hierarchy of buses.

For both a crossbar approach and a bus-based approach it can be seen there must be some
sort of arbitration: only one core can be connected at once through the crossbar and only one
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processor (or lower tier bus) can master a bus at once. A typical, and widely-used, algorithm
to manage such collisions in packetised networks is exponential backoff [112], which involves
progressively doubling waiting delays from an initial semi-randomly selected delay. It can
be seen that a bus hierarchy would have to be combined with a system of buffers, as a core
might successfully master the leat bus but that packet might have to wait to make further
progress up the ’bus tree’. Similarly, some buffering system at the interface between either the
crossbar system and the memory management unit (MMU) or the root bus and the MMU
would also be sensible.

A third alternative - the one we principally study here - is a tree-like hierarchy of buffers
and binary multiplexors. Here each core is connected to a buffer able to hold a packet and
requests for external memory negotiate a series of 2:1 multiplexors down a tree where a
memory management unit (MMU) lies at the root. In this way each core is an equal distance
from the MMU and packets wait in the buffers for the way ahead to clear.

Intuitively we should expect all three of these methods to generate similar results. In each
the primary drivers of performance are (a) the speed and capacity of the MMU and (b) the
general level of demand for memory (i.e., competition for access to the MMU). The tree does
not have a backoff protocol and will have a large buffering capacity, but these need not be
significant advantages if the backoff algorithm applied for the buses and crossbar schemes is
reasonable and if there is enough buffering to ensure that the MMU does not lie idle while
memory is in demand. On the other hand the depth of the tree will slow down requests and
responses in comparison to the other schemes when demand for memory is low.

We demonstrate in Section 5.5 that the performance of all three schemes is broadly similar.

�.�.� A Bluetree-like memory connect

We used a modified version of the Bluetree memory tree described above in 2.4.6 and by
Garside in [64]. Figure 4.3 illustrates the general arrangement: although the NoC can be
thought of as an 8 x 16 Manhattan grid, the binary memory tree can be considered as
connecting to them in a serial order, so that column tiles 0 and 1 on the zeroth row of tiles are
connected to MUX 0 on the zeroth row of MUXes, tile 2 and 3 to the MUX 1 on the zeroth
row, and tiles 0 and 1 on the first row are connected to MUX 4 on the zeroth row and so on.
In this way tile 0 on the zeroth row is to the left of every other tile, while tile 1 on the zeroth
row is to the left of every tile except tile 0 on the zeroth row. And any tile on the 5th row is to
the right of all the 56 tiles on rows 0, 1, 2 and 3 and so on.

Garside describes a system with a static priority where “[b]y convention, the left-hand
input has priority over the right-hand side of the multiplexer”, we experimentally discovered
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Figure 4.3: NoC tiles and memory tree (one row of tiles’ paths to root and MMU highlighted)

that this approach produced grossly unfair results when the tree was connected to a very
large number of cores and when all those cores were active. It is the effective serial ordering
described above that makes this priority scheme extremely unfair.

In our experiments we ran the same eight benchmarks on each row of the NoC, so that tile
0 on row 0 was running the same benchmark as tile 0 on every other row and so on: making
the performance of the same tile on each row directly comparable.

As Figure 4.4 shows the ’rightmost’ processor takes several orders of magnitude more ticks
to complete the first run of the benchmark if we always give priority to the leftmost packet at
the mux4 if two packets arrive simultaneously. To give a fairer performance we must instead
model the muxes in our memory tree as though they have an internal flip flop or similar
mechanism to store 1 bit of information. This would be set to 0 at the start, indicating that (for
instance) the left hand input has initial priority and then flips on each packet, so that priority
alternates between left and right in the event of a clash. Such an approach is still initially
biased towards one direction, in that all muxes on the system begin with the same directional
priority, but in a tree with a lot of traffic this bias will be unlikely to be significant over the life
of the benchmark.

4 It should be noted that these tick counts are not directly comparable with the ticks in the fully developed model
described in the rest of this chapter - being based on an earlier prototype - and should be considered as illustrative
only.
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Figure 4.4: Simulated ticks taken to complete first run of benchmarks when using standard Bluetree
priorities
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The exception to this rule is at the connection to the MMU. We model a flash device capable
of handling four requests in parallel and at the MMU two requests can be accepted in parallel
(if they are coming from different buffers in the MUX and two slots are available in the MMU).

In [12] Audsley notes that our approach (or any approach that imposes an arbitrary priority
independently of the scheduling needs of the system) could lead to priority inversion and
that each mux can instead be programmed at runtime to acknowledge priority settings
encapsulated in each memory request, however we have not explored this approach here.

�.�.� Tile design and system memory structure

Our basic model is of a system with 128 tiles, each a single core and with 16KB of local
memory. We do not model any of this memory as shareable (in contrast, for instance, to
Intel’s SCC) or look to use such memory to build a shared operating system [96]. We assume
each tile’s memory is fully partitioned from all other tiles: our experiments concentrate on
reducing congestion in the memory interconnect and the demand on the MMU with a view
to delivering deterministic performance rather than on questions of memory sharing and
coherence. They reflect real world deployments where a single compute centre with multiple
cores will deal with inputs from many different devices (as discussed with the Volvo example
in 3.1.1 above).

We assume that global off-chip memory is addressable in a 48-bit address space and that
off-chip global page tables need to be read each time a mapping between local and global
memory is required, i.e., on a hard fault or when a page needs to be written back to global
memory. The 48-bit address space is indexed through a set of four level page tables.

Figure 4.5 illustrates how the four level page tables work when we use 1KB pages: bits 63
to 48 (inclusive) of a 64 bit virtual address are discarded and then the upper 11 remaining bits
(47 to 37) point to a reference in a single ’super directory’ table which itself points to one (of
many, theoretically) ’directory’ tables. The next 9 bits (36 to 28) of the virtual address then
provide an index within this directory table, which points to a ’super table’, and then bits 10
-18 point on to a ’table’, until the bottom 10 bits point us to an offset in a 1KB page that is
referenced by the offset in the table.

In a real device this system of global page tables would likely be maintained on a per
process basis and might itself be in-whole or in-part paged out of memory, so requiring parts
of the system to be restored from secondary storage and adding to the delays on a hard fault.
Here, though, we ignore these complications as our concentration is on the relation between
local and global memory and not on managing potential interaction with slower secondary
storage.



84 ��������� � ������� ������ ������

Figure 4.5: Four level page tables for 48 bit address space with 1KB pages
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Thus we model the time it takes for a request to a global page table to traverse the memory
tree and be processed by the MMU, but we do not look at questions of how the global page
tables should be managed.

Executing HardFault in Algorithm 4.1 requires four reads to the global page table. In the
context of partial paging these are the equivalent of four small faults in time cost: compared to
just the one memory-tree traversal that the hard fault itself costs. These accesses to the global
page table can therefore be delayed because of congestion on the memory tree interconnection,
and so the speed at which they are processed is directly related to the overall efficiency of
the partial paging system (more faults requires more reads and potentially longer delay): the
thing we are hoping to measure.

�.�.� Global memory as NAND flash

For a main memory store here we model a non-volatile random access device (as might be
provided by NAND flash or more advanced technologies) which takes 50 cycles for a read
of 16 bytes and 100 cycles for a write of 16 bytes and which can handle a maximum of four
requests in parallel. These values are essentially arbitrary but are chosen to loosely reflect the
capabilities of emerging solid-state memory technologies [128]. Higher latency here - which
would be more reflective of contemporary as opposed to future technologies - would likely
improve the relative performance of the partial paging system as it makes less demands on
the memory controller compared to a traditional full-paging approach.

We assume that the flash system can process four simultaneous requests. We believe this
to be a reasonable figure, but accept that our modelling of NAND Flash write times as fully
fixed may not reflect uncertainty in real devices (though this determinism is reasonable for
reads) [100].

�.�.� CPU behaviour

The processors require a minimum of one cycle per instruction or local memory read or write.
If the address sought is not in local memory then a fault is raised.

�.� ��� ����������

To test the system we used eight benchmarks from the TACLebench suite [58], which is
specifically designed to support research into worst-case execution times in real-time systems.
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Benchmark Name Description Code size (SLOC)

0 g723enc CCITT G.723 encoder - voice encoder 480

1 admpcm_dec ADPCM decoder 293

2 admpcm_enc ADPCM encoder 316

3 audiobeam Audio beam former 833

4 cjpegtransupp JPEG image transcoding routines 608

5 cjpegwrbmp JPEG image bitmap writing code 892

6 epic Efficient pyramid image coder 451

7 fmref Software FM radio with equaliser 680

Table 4.1: TACLebench benchmarks used

The benchmarks, which are all written in ISO C99, have no dependencies on operating system
code or on system specific header files and where input is simulated it is included as part of
the code and similarly library functions are provided as C source code. Hence the benchmarks
should be fully portable for testing on a wide variety of systems and in our case allows us to
focus on the efficiency of the memory management in partial compared to traditional rather
than being concerned if any other factor is likely to have an impact.

The full suite consists of over 50 benchmarks, divided into 5 series: a ’kernel’ series of
mathematical tasks, a ’sequential’ series described in [58] as designed to “implement large
function blocks, such as encoders and decoders, which are used in many embedded systems”,
a ’test’ series designed to test WCET analysis tools, two benchmarks form a ’parallel’ series
and two form an ’application’ series. To generate a broad range of comparable timings we
want to run an instance of each benchmark on every notional row of our (8 ⇥ 16) NoC and
so we are restricted to eight benchmarks and we picked from the “sequential” series as the
most appropriate to match our likely use case. There are 23 benchmarks in this series and we
picked a mixture based on code size and memory usage (see Tables 4.1 and 4.2).

We adapted each of these benchmarks to run on the RISC-V [11] Spike [160] simulator5.
These were to add makefiles, a C ’runtime’ (which provides entry point code that initialises the
registers and the stack for the processor) for RISC-V and code to support the Spike simulator’s
simple system call mechanisms (we do not use this code in production) and a linker script.
The C runtime code - which is common to all the compiled benchmarks can be seen as lines 3
- 89 of the assembly listed in Appendix B.

5 Modifications to the benchmarks needed to compile them on RISC-V can be seen at the Github repository at
https://github.com/mcmenaminadrian/taclebench-riscv-baremetal/tree/riscv
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Figure 4.6: Outline of how a benchmark is processed

These traces were then converted to XML (again using the LackeyML format6) which was
then processed by our simulator which parses the XML. So we get a single XML file for
each of the eight benchmarks but we process this in parallel 16 times while our simulation
(NOC-SIM) is running.

Appendix B gives more detail on the output of the conversion process. Instructions and
memory loads and stores generate separate lines of XML.

The benchmarks are all self-contained and make no library calls, so can be thought of as
running on “bare metal”. Table 4.2 shows detail of the code and of the range of memory
accessed for each benchmark. It can be seen how much switch to 1KB page sizes potentially
limits internal fragmentation of pages, with much more concentrated use of a page.

Some further data on the selected benchmarks7 can be found at https://www4.cs.fau.de/
Research/TACLeBench/. This shows that the Epic benchmark is the most complex with 471
different code paths, uses floating point arithmetic, has a maximum call stack depth of 5 and
has a total of 39 loops (of which 29 are nested). In contrast the Adpcm_dec program does not
use floats or loops, has 5 different code paths and a maximum call stack depth of 3.

Table 4.3 shows the theoretical minimum execution time for each benchmark, based on
each memory reference requiring one cycle: i.e. an instruction referencing an immediate or
a register takes one cycle (and produces one line of XML) while an instruction requiring a
memory load or store generates 2 lines of XML and will take two cycles to execute8.

6 The DTD for this is at https://github.com/mcmenaminadrian/lackey_xml/blob/master/lackeyml.dtd
7 The lint test for the fmref benchmark failed and so no data is available.
8 This assumes all instructions and memory references are aligned inside 16 byte boundaries - a reference that

crosses such a boundary would require a second cycle.
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Benchmark Instructions Stores Loads Minimum
execution

time (cycles)

Writes
(stores) as

share of
memory
accesses

0 867,294 114,153 280,845 1,262,292 9.0%

1 256,183 38,436 82,272 376,891 10.2%

2 257,102 38,560 82,618 378,280 10.2%

3 425,039 70,102 163,426 658,567 10.6%

4 5,468,071 764,038 2,063,754 8,295,863 9.2%

5 238,678 34,496 59,125 332,299 10.4%

6 10,619,893 90,596 2,727,093 13,437,582 0.7%

7 491,233 59,230 185,595 736,058 8.0%

Table 4.3: Theoretical minimum execution times (in cycles) for each benchmark

�.�.� Benchmark working set sizes

We can measure the working set of each of the benchmarks by choosing a working set “window
size” (a measure of execution time - which here we proxy for with bytes of instructions), and
a page size, and measuring how many pages were accessed in that space [47]. At the limit
the working set would be the full range of pages accessed: e.g., for benchmark 6, with 1KB
page sizes and a working set window of 42,479,572 bytes of instructions, we can see from
Table 4.2 that the working set would be 46 pages. More generally, with a smaller window size,
the working set size may on average be smaller, though the pages within it will change and
in periods of phase transition the working set size may significantly increase as pages from
different phases of locality are referenced.

Figures 4.7 - 4.14 show the working set sizes of the benchmarks (in 1KB pages) with a
working set window size of 100,000 bytes of instructions.

We can immediately see that benchmarks 0, 6 and 7 have working sets which exceed the
local memory capacity of our cores (even before we account for local page tables, stacks
and other essential calls on local memory) and so will likely display some characteristics of
thrashing.
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Figure 4.7: Working set size for benchmark 0 with 1KB pages
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With 1KB pages and 16KB of local memory we set aside one page frame of local memory
for notional operating system or systems management software (page frame 0), one page
frame for local page tables (page frame 1), one page frame for bitmaps (page frame 2) and
finally one page frame for a notional local stack or storage area for the systems software (page
frame 15) - so leaving 12KB of local memory for holding application code and data. This is
the scratchpad-like space into which we move remapped code and data from the global store.

At the beginning of execution we assume that all needed operating system or systems
software is present and that a pristine page table (with 12 empty and invalid entries) and
empty bitmaps are also present. No other code or data is present though: pages 3 - 14 are
marked as invalid in the page table and in TLBs and the bitmaps for these pages also mark
them as empty.

This means that the first instruction of every benchmark generates a hard fault as the
address for the code is not mapped. As a result 128 requests to read remote page tables are
issued and the tree quickly blocks. Each processor has to issue a further three requests to
read down the hierarchy of the remote page tables before each then issues a request to load
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Figure 4.8: Working set size for benchmark 1 with 1KB pages

some remote memory. The benchmark initialisation code (see Appendix B) quickly jumps to
another page, requiring a further read of the global page tables and a second hard fault. The
subsequent code is sequential, so generating many small faults: the tree remains congested
for some time - as is illustrated in Figure 4.15 before becoming less congested after around
300,000 notional cycles have elapsed.

Across a longer period of execution the number of blocks remains high and relatively stable
(see Figure 4.16). It should be noted that with the mean number of blocks in the tree is (as
marked9) ⇡ 80 then for 1.9⇥ 108 “wall clock” cycles a total of 2.4⇥ 1010 processor cycles will
have elapsed across our 128 core device but ⇡ 1.5⇥ 1010 (63%) are idle cycles due to blocking
in the tree.

Figure 4.17 shows plots for completion times against blocked packets for all eight bench-
marks and shows that, for each individual benchmark there is a strong linear relationship
between the number of blocked packets and the overall completion time for the benchmark.
Using the R programming language’s linear regression modelling we can see that a (statistic-
ally highly significant) linear relationship between blocks and overall performance exists for
all the benchmarks and that the coefficients are all similar (Table 4.4).

9 15,316,137,781 blocks over 192,454,954 ticks
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Figure 4.9: Working set size for benchmark 2 with 1KB pages

Here we model execution times as a dependent variable of the number of blocked packets
and it can be seen that each time a packet is blocked the execution time rises by approximately
1.1 cycles (1.0 in the case of benchmark 6). In Table 4.4 the intercept represents the modelled
time of execution if there were no blocks. Hence the proportion measure is to some degree a
benchmark of the crude efficiency of the CLOCK system but also of the locality of memory
accesses: if CLOCK minimises the need to load pages or if the reference string of the benchmark
is highly localised then the ratio will approach 1. The null hypothesis is that completion times
are independent of blocked packets and the significance measures give us good reason to
reject this. Plotting the relationship between blocks and completion times for all benchmarks
on a single chart (as in Figure 4.18) further illustrates this relationship.

�.�.� Fault rate and blocks per fault

Figure 4.19 shows that benchmark 4 has a significantly lower fault rate (calculated combining
hard and small faults) than the other benchmarks, but that each fault it causes is typically just
as expensive as those generated by other benchmarks: indeed the chart shows that the cost of
each fault, for any benchmark, is high.
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Instructions: 2125.185 per pixel. Working set memory: accessed in last 100000 instructions.

Figure 4.10: Working set size for benchmark 3 with 1KB pages

The number of blocks is dependent on the mix of dirty (written to) and clean (only read)
pages that are faulted out. Clean pages do not need to be written back to main memory on
replacement (and so don’t face a double-jeopardy effect in terms of tree congestion). Hence
the “blocks per fault” recorded here is effectively an upper limit on the cost of a fault. Tables
4.5 and 4.6 (specifically the high cost of servicing memory requests for the given fault count)
re-enforce the evidence there that Benchmark 3 replaces many dirty pages (and has the highest
cost per fault as a result).

The negative slope seen in Figure 4.19 for most benchmarks seems initially puzzling: a
lower fault rate leads to more blocks per fault when the lowered congestion might be expected
to deliver faster traversal of the tree. But as Figure 4.20 makes clear, the number of blocks per
fault is generally not dependent on the total number of faults and what we see in Figure 4.19
is that it is the additional time taken to process memory requests when blocking is high is
lengthening execution times and so lowering the fault rate as measured in faults per tick.
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Figure 4.11: Working set size for benchmark 4 with 1KB pages
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A comparison with the number of blocks seen with a traditional 1KB paging mechanism
illustrates the potential for performance improvements that come with partial paging (Figure
4.21): here the long-term mean number of blocked packets is higher at ⇡ 98 blocks12 on every
cycle - indicating processors are idle 76% of the time while waiting on blocks in the tree.

Figure 4.22 shows the excess (in comparison to partial paging) blocks using a traditional
whole page approach: in the first 190 million cycles the mean excess blocking in traditional
paging over partial paging is ⇡ 18.38 blocks per cycle.

Appendix C considers a linear model of benchmark performance for traditional paging (cf.
Table 4.4).

12 21,685,673,693 blocked packets over 221,592,468 cycles
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Instructions: 1193.39 per pixel. Working set memory: accessed in last 100000 instructions.

Figure 4.12: Working set size for benchmark 5 with 1KB pages
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While excess blocking with traditional paging is an indication of likely advantages of the
partial paging method, it is not sufficient to suggest partial paging will be more efficient.
Additional factors to be considered include the extra time required to handle the small faults
in the partial paging model, the difference in time taken to handle hard faults (in that the
partial paging model needs to also update bitmaps), the difference in service times at the
memory management unit (as the traditional approach has to serve all sixty-four 128-bit
’lines’ from the page) and the additional time it takes for these lines to return to the processor
(although they do not block they still incur a transport time).

We now examine the evidence we have collected on each of these factors.

�.�.� The cost of small faults

As discussed above (3.1.3), in a typical VM-using computer system every memory read or
write is checked for a TLB hit. In modern, fast, high-end, CPUs it does not always make sense
to think of a TLB look-up as sub-cycle as even a basic (L1) lookup in a very fast, pipelined
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Figure 4.13: Working set size for benchmark 6 with 1KB pages

processor could take more than one cycle and, with TLBs typically set out in a hierarchy, a
miss at L1 can prompt a more costly lookup at L2 or even L3 [140]. But our assumption here
is that we are using slower CPUs in a NoC environment with a small number of TLBs that
can manage sub-cycle lookup: our calculation tabulated in Table 2.1 suggests that cores in a
128 core NoC might run at around 1

64
thof the frequency of a single core (if we assume that

performance and frequency are linearly related), suggesting a single 3GHz core devolving to
128 cores each running at about 47 MHz and while this is a simplification the general rule
will be a many-core system will see substantial drops in processor frequency. The complex
circuitry likely to be used for such high-speed lookups do come with a high cost in energy
however [33].

If we want to make bitmap checking sub-cycle also, then we will need to check both the
page part of the address and the lower part of the address (at the granularity of the partial
page - in our case 16 bytes) in parallel. We do not consider the hardware question in any depth
here but, as discussed in 4.2.3 above, this would require additional circuitry and, if to be done
at speed this may have a high energy requirement. We might expect such specialised circuits to
consume a similar amount of power and chip area as TLBs. Alternatively power requirements
could be lowered at the cost of raw speed and, as we show in 4.7, in a highly-congested
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Figure 4.14: Working set size for benchmark 7 with 1KB pages

Figure 4.15: Congestion in the memory tree
as execution begins with partial
paging

Figure 4.16: Blocks across benchmark execu-
tion
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Figure 4.17: Completion times and blocked plackets for all eight benchmarks with partial paging

Figure 4.18: Completion times and blocked packets for all benchmarks
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Figure 4.19: Blocks per fault and faults per tick for 1KB partial paging

Figure 4.20: Blocks per fault and total faults compared for 1KB partial paging
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Figure 4.21: Blocks across benchmark execu-
tion with ’traditional’ paging

Figure 4.22: Excess blocks with traditional pa-
ging compared to partial paging
with 1KB pages

environment such a slow-down can also function as a form of load management and deliver
performance improvements in some circumstances.

As we note above in 4.2 we are not aware of any existing hardware that allows for the
small fault model and a software approach could be attempted. In [110], we made a simple
modification to the instruction-accurate OVPSim Microblaze simulator to model small faults as
interrupts handled in software. In that case 54 machine code instructions had to be executed13

when the accessed memory was already present and marked as such in the bitmap. In the case
when new memory has to be loaded this rises to 138 instructions - to both load the memory
and update the bitmap.

Although in that case, which involved a single processor and so no congestion in the
memory connect, the software-driven partial paging approach did, using a memory reference
pattern generated from a partial trace from the PARSEC benchmark suite (the same x264
video processing benchmark described in 3.3 on page 62 which has a very high fault rate
for small memories), deliver better estimated performance when normalised for the cost of
memory transport, such a 5400% increase in the cost of a typical instruction would not deliver
better performance in the many-core system with the benchmarks used here.

13 The code path from line 256 here https://github.com/mcmenaminadrian/mb_boot/blob/newmodel/startup.S
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Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 43361267 1428821 1400909 5760495 11037274 2072418 145291356 5012280

Mean 42368816 1416176 1388897 5646235 10964717 2026200 143276995 4733750

Service cost 1511834 29000 28575 238075 39044 80825 5996075 172184

Blocks 35921194 870627 844281 4364623 1088954 1446305 110996151 3420685

Count

Hard Faults 908.1 17.0 17.1 41.3 19.1 23.8 3118.5 103.0

Small Faults (and page table reads) 26570.6 563.0 553.2 1857.3 737.3 852.8 81605.8 2159.8

Share

Service 3.6% 2.0% 2.1% 4.2% 0.4% 4.0% 4.2% 3.6%

Blocks 84.8% 61.5% 60.8% 77.3% 9.9% 71.4% 77.5% 72.3%

Admin 8.7% 9.9% 9.9% 6.8% 14.1% 8.2% 9.0% 8.6%

Efficiency of execution 3.0% 26.6% 27.2% 11.7% 75.7% 16.4% 9.4% 15.5%

Table 4.5: Performance (means) of benchmarks with partial paging and 1KB pages: initial execution

�.�.� Other costs

Tables 4.5 and 4.6 show how the various benchmarks performed used partial paging: we
have separated the initial run, when every page must be faulted in at least once, from the
subsequent executions. The figures show the mean performance across all 16 instances of each
running benchmark, as well as the maximum time taken.

The cost of servicing memory requests at the MMU is separately accounted for and the
simple relationship in our simulation of one instruction taking one cycle (unless delayed
for other reasons) allows us to make some comparisons of the cost of partial paging and
traditional paging.

The fundamental weakness of the traditional paging approach in a low memory environ-
ment is the need to load (and also, in some cases, write-back) a whole page. If competition for
memory is intense then this adds to congestion in the memory interconnect (loading a 1KB
page in 16 byte lines requires 64 requests to traverse the network). As Table 4.2 suggests, even
if memory were unlimited, a full page loading system will load much memory which is not
required by the program. A traditional system will, though, be simpler in that there will be
no need to clear and manage a bitmap on a hard fault and the traditional system also has an
additional free page as no space is needed for bitmaps.

A key metric is “efficiency of execution” - which is the ratio between the number of lines of
XML (i.e. the number of memory references) and the total number of ticks taken to execute
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Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 44592927 1798061 1739293 5779890 11338555 2288311 5120014

Mean 42266895 1198274 1143068 5351357 10608943 1734867 NA 4526916

Service cost 1514750 25332 23258 238244 31100 75219 171796

Blocks 35831158 677368 626420 4074286 788357 1191021 3219209

Count

Hard Faults 899.2 12.5 12.1 35.2 9.1 13.5 96.4

Small Faults (and page table reads) 26459.6 412.8 385.1 1781.2 447.1 604.5 2120.7

Share

Service 3.6% 2.1% 2.0% 4.5% 0.3% 4.3% 3.8%

Blocks 84.8% 56.5% 54.8% 76.1% 7.4% 68.7% 71.1%

Admin 8.7% 9.9% 10.1% 7.1% 14.1% 7.9% 8.8%

Efficiency of execution 3.0% 31.5% 33.1% 12.3% 78.2% 19.2% 16.3%

Table 4.6: Performance (means) of benchmarks with partial paging and 1KB pages: subsequent execu-
tion

the benchmark. Each line should take a minimum of 1 tick, so this measure (shown as a mean)
provides an absolute performance comparison across the different paging methods. “Service”
is the mean proportion of time taken by the MMU to service memory requests (including
remote page lookups and page write-backs), “blocks” are cycles lost to congestion in the
memory tree, while “admin” is the mean cost of everything else such as servicing faults (other
than blocks in the tree and MMU costs) and page replacement mechanics.

Although subsequent runs of the benchmarks deliver better average performance, they
generally also show poorer worst case execution times. We consider this further in 4.8.

For partial paging benchmark 0 performs very poorly: as Figure 4.7 suggests the working
set size for this benchmark hovers just above and below 12KB. With 12 1KB page frames
available the fault rate is very high and processors spend over 80% of their time waiting on
memory requests that are blocked by congestion in the memory tree.

Tables 4.7 and 4.8 show the results for the traditional paging approach: for every case except
benchmark 0 the performance of the partial paging system is superior, with the traditional
approach generating more blocks and requiring a longer service time.

Figure 4.23 shows the relationship between blocking and efficiency in the traditional case
and the partial paging case (cf. Figure 4.17). Figure 4.24 compares the cost of servicing memory
requests at the MMU with overall efficiency. Under partial paging processors may wait a
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Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 6408101 3776618 3470041 10811973 13571638 4561929 21204161

Mean 5812902 3268085 3184537 9885640 13419937 4494424 >221592468 19630862

Service cost 155450 93925 89575 333350 117675 160800 774200

Blocks 4163688 2706769 2625695 8695001 3534232 3898527 17778595

Count

Hard Faults 24.1 17.3 17.1 41.8 19.7 24.0 86.0

Remote Page Table Reads 141.0 90.5 87.5 283.0 109.5 144.0 636.0

Share

Service 2.7% 2.9% 2.8% 3.3% 0.9% 3.6% 3.9%

Blocks 71.6% 82.8% 82.5% 88.0% 26.3% 86.7% 90.6%

Admin 4.0% 2.8% 2.9% 2.0% 11.0% 2.3% 1.7%

Efficiency of execution 21.7% 11.5% 11.9% 6.7% 61.8% 7.4% <6.1% 3.7%

Table 4.7: Performance (means) of benchmarks with traditional paging with 1KB pages: initial execu-
tion

Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 9012279 5697371 5463362 11269496 13822943 4405844 23926071

Mean 6031915 3118898 2994237 9299653 12583912 3021206 20496658

Service cost 161046 97891 93060 319420 94708 106592 827383

Blocks 4374973 2556600 2436348 8131958 2743201 2497983 18583541

Count

Hard Faults 16.1 9.8 9.3 31.9 9.5 10.7 82.7

Remote Page Table Reads 128.8 78.3 74.5 255.6 75.8 85.3 661.9

Share

Service 2.7% 3.1% 3.1% 3.4% 0.8% 3.6% 4.0%

Blocks 72.5% 82.0% 81.4% 87.4% 21.8% 82.7% 90.7%

Admin 3.9% 2.8% 2.9% 2.0% 11.5% 2.8% 1.7%

Efficiency of execution 20.9% 12.1% 12.6% 7.1% 65.9% 11.0% 3.6%

Table 4.8: Performance (means) of benchmarks with traditional paging with 1KB pages: subsequent
execution
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longer proportion of execution time waiting for memory requests to be served, but that reflects
an overall higher level of efficiency.

Figure 4.24 also shows the relatively fine grained memory access pattern of the partial
paging approach: in traditional paging the points on the chart are seen to be arranged in lines
(sloping from lower left to upper right) - each line represents a specific hard fault count and
the line slopes up to the right in reflection of the impact of blocking on performance (as the
absolute time of serving a number of hard faults is effectively fixed, low blocking leads this
time to take up a greater proportion of overall time of execution). For partial paging the mix
between hard and small faults means this sharp definition is absent (though a general ’tilt’
towards the right is still present).

The plots show how dominant blocking is, in general, in determining overall performance -
the small share of time taken up by servicing requests at the MMU is only a weak predictor
of overall efficiency of performance.

�.� ������ ���� ������� �� ������ ����� ��� ������ ����-
���

Denning’s [47] formulation of the practically-optimal page replacement policy - the working
set policy - emphasises the importance of load control. Too high a load can lead to a very
rapid decline in performance - as suggested by the near vertical section of Figure 3.2 at higher
levels of traffic intensity.

For our system, adding a cost for bitmap reading is a simple way to exercise some load
control as it effectively prioritises remote memory reads and writes over routine execution:
packets traverse the memory tree at the same rate as before (one hop per cycle if not blocked)
but other processes effectively run 100% slower and so the level of traffic in the memory tree
is reduced.

Tables 4.9 and 4.10 show the results of applying this simple discipline.
It can be seen that half of the benchmarks (namely 0, 3, 6 and 7) deliver lower observed

maximum completion times under this discipline (i.e., in comparison to undelayed partial
paging results tabulated in 4.7 and 4.6). The lower level of congestion in the memory tree (as
measured by the fall in blocking) allows them to complete more quickly: if we had scheduled
the benchmarks as a set then this simple system of load control would, it appears, be likely to
give us better results.

For a limited power budget these results suggest that, with programs that demand signific-
antly more memory than is available locally, the correct balance is likely to be in favour of a
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Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 31958315 1831453 1715321 5586937 20676042 2327423 126566200 4885999

Mean 29917689 1752262 1663821 5448885 20533809 2312829 125374957 4690612

Service cost 1381841 30772 28788 238522 38844 82550 5559178 149594

Blocks 23309538 765642 676825 3424605 921608 1338933 78290713 2549331

Count

Hard Faults 852.6 18.5 17.2 41.0 19.1 24.0 2808.1 90.3

Small Faults (and page table reads) 24817.0 575.6 554.4 1856.6 737.8 855.0 76672.8 1941.4

Share

Service 4.6% 1.8% 1.7% 4.4% 0.2% 3.6% 4.4% 3.2%

Blocks 74.6% 43.7% 40.7% 62.8% 4.5% 57.9% 62.4% 54.3%

Admin 16.6% 33.0% 34.9% 20.7% 54.9% 24.2% 22.4% 26.8%

Efficiency of execution 4.2% 21.5% 22.7% 12.1% 40.4% 14.4% 10.7% 15.7%

Table 4.9: Performance (means) of benchmarks with partial paging and 1KB pages with 1 tick cost for
bitmap reading: initial execution

Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 31698367 2002551 1922442 5416176 20636710 2317899 4952256

Mean 29666359 1452111 1404347 4924975 20292171 1836826 NA 4447703

Service cost 1385817 24920 22931 2344931 34401 72057 155958

Blocks 22056760 490272 445997 2919373 714056 907855 2300827

Count

Hard Faults 840.4 12.1 11.9 32.8 9.9 12.8 86.7

Small Faults (and page table reads) 24748 417.5 387.5 1738.9 512.1 574.7 1933.4

Share

Service 4.7% 1.7% 1.6% 4.8% 0.2% 3.9% 3.5%

Blocks 74.3% 33.8% 31.8% 59.3% 3.5% 49.4% 51.7%

Admin 16.7% 38.6% 39.7% 22.6% 55.4% 28.6% 28.2%

Efficiency of execution 4.3% 26.0% 26.9% 13.4% 40.9% 18.1% 16.5%

Table 4.10: Performance (means) of benchmarks with partial paging and 1KB pages with 1 tick cost
for bitmap reading: subsequent execution
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Figure 4.25: Blocks for 1KB page sized partial paging with a one cycle delay for bitmap access (moving
average plot)

faster (and more power-demanding) memory connection even if the price of that is slower
processors, as the lowered memory congestion may still deliver better results.

As Figure 4.25 shows, this delay reduces the overall blocking in the system: with an average
of 58.814 blocked processors (45.9%).

Appendix D considers a linear model of benchmark performance for partial paging with
bitmap-reading delay (cf. Table 4.4).

Figure 4.26 shows the use of the 1 cycle delay delivers a better minimum efficiency than
undelayed partial paging and Figure 4.27 shows delay cuts the number of cycles lost for each
hard fault by around 14000. A comparison of Tables 4.9 and 4.5 also shows a reduction in the
number of faults for benchmarks 0, 3, 6 and 7 (i.e., those which complete more quickly under
this regime). There appear to be several factors contributing to this picture:

• Less congestion in the memory connect: as one would expect, effectively increasing the cost
of executing a local memory read from one to two cycles - while holding constant the
cost of crossing an unblocked memory tree and servicing memory requests at the MMU
- reduces congestion in the memory tree.

• More efficient page replacement via CLOCK: We are using a simple CLOCK page re-
placement algorithm [38] and every 1000 cycles of normal execution (i.e., excluding
interrupted cycles), one page is marked as available for removal. If that page is sub-

14 7,508,642,841 blocked packets over 127,706,368 cycles
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Figure 4.26: Maximum, mean and minimum efficiencies seen with 1KB pages.

Figure 4.27: Maximum, mean and minimum number of blocked packets per hard fault seen with 1KB
pages.
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sequently accessed it is marked as unavailable for removal. Then, when a hard fault
occurs the page table is walked and, if available, an empty page slot is chosen, or if
none are available then a page marked for replacement is chosen. In periods when the
fault rate is high it may well be that all pages are marked as in use and so a page has
to be picked arbitrarily. Knuth [94] posits an algorithm to generate pseudo-random
numbers through a small range of integers but at our range this simply generates a linear
sequence which we cycle through. If this method is used frequently then it is quite likely
’bad’ pages will be chosen, further increasing the fault rate and adding to congestion in
the memory connect. As increasing the time cost of executing an instruction rises with
additional cost of bitmap manipulation then the effective number of cycles between each
’tick’ of the CLOCK shortens and so more pages are likely to be marked as available
for removal and bad sequential or pseudo-random choices are less likely to be made.
For benchmarks 6 and 7, for instance, there are around 10% more hard faults with the
undelayed partial paging approach than with the delayed method.

• Less efficient page replacement via CLOCK: Of course there is also a countervailing phe-
nomenon - as the effective time between pages being marked for replacement shortens
then, in some cases, the wrong page will be chosen and so the fault rate will be pushed
upwards as a page faulted out needs to be faulted back in. We can see some indications
of this with benchmark 1.

Together these factors suggest tuning an embedded system’s page replacement mechanisms
to fit the task and the overall scheduling needs (e.g., to improve the WCET of a typical task or
to improve the WCET of the slowest task) remains important.

Figure 4.28 shows, respectively, the number of blocks per hard fault and the recorded
maximum cost of completing the initial iteration of each benchmark across the partial paging,
traditional paging and partial paging with a one-cycle delay for bitmap access.

In conclusion we can see that a partial paging system used in a real time environment will
have a number of options for performance tuning. If memory demands greatly outstrip locally
available fast memory then tuning the page replacement mechanism to the task is likely to
be very important: bad decisions about which pages to replace will significantly degrade
performance. In cases where it is necessary to minimise the response time of a program that
makes high demands on external memory then a delay mechanism of the type discussed here,
which alternatively can be thought of as devoting more power to the connection tree and less
to the cores, could produce better overall results.
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Figure 4.28: Mean blocks per hard fault and maximum completion times compared across benchmarks
and paging approach for 1KB pages



�.� �������� ����� ��������� ����� ��� ������ ��������� 113

�.� �������� ����� ��������� ����� ��� ������ ���������

The discussion above generally considers the mean performance of the partial paging system
and compares it to a traditional paging system. It shows that for both a partial paging
system and a traditional system queuing for memory service - which we generally refer to as
’blocking’ in the memory tree - dominates performance (Tables 4.4 and C.1) and that there
is a strongly linear relationship between the level of blocking a program experiences and its
typical efficiency (see Figure 4.23).

Thus, as these results would lead us to expect, the lower level of blocking in the partial
paging system (see Figure 4.22) leads to faster average (and observed worst-case) execution
times in almost every case (see Figure 4.28 for a comparison of observed worst case timings).
In fact the results show that even if we assume a degree of delay in processing the bitmap
reading at the heart of the partial paging system, the lowered blocking (which is reduced
further by this delay), partial paging is faster than traditional paging in 6 of the 8 benchmarks
we consider (Figure 4.28).

But for real-time systems the degree of timing certainty, and specifically the worst case
execution time (WCET), rather than simply the average execution time, is likely to be more
important. And we cannot assume that even a sample of several thousand completion times
will capture the likely WCET for any program. In fact there is no general method to determine
the maximum execution time of a program: finding one would be the equivalent of solving
the halting problem [164]. Static analysis of multi- and many-core designs is also regarded
as “questionable” because of their inherent complexity [5]. Thus we concentrate on observed
program and system behaviour and what inferences we can draw from these observations.

The evidence we have shows we can expect a broad range of timing outcomes even for
individual benchmarks. ’Blocks per fault’ (BPF) is available to us as an approximation of a
normalised measure of the range of timing impacts of blocking on each benchmark and a
density plot of this is shown in Figure 4.29. We can only treat this only as an approximation
because of the potential differential impact of page write-backs on the ratio between faults
and blocks (cf. the discussion in 4.4.1 on page 92). Figure 4.29 (cf. Figure 4.20) shows a very
broad range of BPF and we see this reflected in the uncertainty in timing.

This measure is not available for the traditional approach (as there are only hard faults
and remote page reads to count) but Figures E.1 - E.8 in Appendix Eshow density plots for
the completion time of the various benchmarks when running under partial paging with no
delays for bitmap access, traditional whole-page paging and partial paging with an additional
1 cycle delay for bitmap access.
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Figure 4.29: Density plot of range of blocks per fault (hard and small) for 1KB partial paging with no
bitmap delay
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Figure 4.30: Overall cycle count and blocked packets for benchmark 0 with 1KB pages

Figures 4.30 - 4.37 show that not just the mean but also the range of completions times
to be a function of the number of blocks in the system - the larger the range of blocks, the
greater the range of completion times, regardless of which paging method is employed. They
also show - particularly in the case of traditional paging, but for partial paging also - that
completion times tend to be skewed to the right, suggesting there is an increased risk that
the true worst execution time may be substantially higher than the observed time. Again we
only have partial results for benchmark 6, as the traditional approach did not complete in the
available computing time.

The performance for benchmark 0 reflects its pathological character under partial paging
with 1KB page sizes: the traditional approach easily outstrips the partial paging implementa-
tions, even when only considering the observed worst execution time. In almost all other cases
partial paging approaches deliver better observed WCETs and in half of cases we can see the
undelayed partial paging approach outperforms the delayed version. However the density
plots shown here are computer-generated approximate polynomial fits to the underlying
data and as approximations and should not be taken as a precise guide to the extremes: we
compare the WCETs for different methods with more rigour in 4.9.2.1 and 4.9.2.2 below.

For benchmark 4 (see Figure 4.34), which makes fewer memory requests and so gains only
a relatively small advantage from the undelayed partial paging approach, traditional paging
easily out performs the delayed version of partial paging.
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Figure 4.31: Overall cycle count and blocked packets for benchmark 1 with 1KB pages

Figure 4.32: Overall cycle count and blocked packets for benchmark 2 with 1KB pages
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Figure 4.33: Overall cycle count and blocked packets for benchmark 3 with 1KB pages

Figure 4.34: Overall cycle count and blocked packets for benchmark 4 with 1KB pages
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Figure 4.35: Overall cycle count and blocked packets for benchmark 5 with 1KB pages

Figure 4.36: Overall cycle count and blocked packets for benchmark 6 with 1KB pages
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Figure 4.37: Overall cycle count and blocked packets for benchmark 7 with 1KB pages

We next model the factors behind the range of completion times as we consider how to
determine or predict WCETs for real-time systems using partial paging.

�.� ���������� ����� ���� ��������� �����

As noted above (1.2) a hard real time system fails completely if timing bounds are exceeded,
while in a firm real time system the output of any instance that exceeds timing boundaries
is useless: assuming that the observed maximum (or some simple multiple thereof or an
addition to) of a small set of measurements provides a reliable figure for a safe WCET will
certainly be mistaken. Instead we need to consider some form of statistical model for the
possible maximum values of the execution times [76].

The systems we are examining here are complex - the timing of any individual process
is not independent of others being executed and we are also seeking to estimate something
which is - because of its very rarity - almost certainly beyond the range of our observations
[56] in the form of an acceptable (e.g., in terms of safety) probabilistic upper value for the
execution time.
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In this section we consider first how uncertainty in the system state leads to uncertainty in
timing outcomes before looking at how we can apply statistical methods from extreme value
theory to generate probabilistic worst case execution times.

�.�.� Modelling system entropy

We cannot be certain of our system’s behaviour in terms of timing outcome. Packets compete
with one another to make progress through the memory tree and experience different waiting
times depending on the state of the system at any given moment. If the system’s state was
constant in the sense that it was fully ordered then every packet’s history would be similar
(depending only on a fixed relationship with other packets) and timing outcomes would fall
into a very narrow band. The broad range of timing outcomes actually seen thus suggest a
disordered system and the greater the disorder, the greater the likely range in outcomes.

We aim to measure this disorder through estimating the system’s entropy. Entropy in this
sense, as applied to an information-based system, is analogous to that found in thermodynamic
systems (and the formula shown below as 4.1 can be derived in the same way as the Gibbs
entropy formula for thermodynamic systems, though is rebased to use base 2 logarithms
and to eliminate Boltzmann’s constant [103]). Entropy in an information system is a scalar
quantity measured in ’bits’ which can be thought of as either the average uncertainty about
system state or, alternatively, as the average information (in the form of answers to yes or no
questions) required to describe the system state [27].

Reducing the entropy of our system is thus a way of increasing certainty about its timing
outcomes (though not necessarily delivering faster outcomes) and that is the reason we
consider its modelling here.

That lower entropy can potentially lead to a significant (non-linear) reduction in the
randomness of timing results in our system is also suggested by the asymptotic equipartition
property: this states that for an ensemble of N independent identically distributed random
variables, X = (X1, X2, . . . , XN) with sufficiently large N then the outcome x = (x1, x2, . . . , xN)

is almost certain to belong to a subset of outcomes having 2NH(X) members (where H(X)

is the entropy of the system) where each member of the subset has a probability close to
2�NH(X)[133, 39]. Hence when Hobserved ⌧ Hmaxthe outcome set is a very small fraction of the
total number of possible outcomes.

For a (distributed) computer or information system we have for entropy H [137]:

H =
k

Â
i=1

pi log2(
1
pi
) (4.1)
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Where the system can be in one of 1..k states and the probability of state i is pi. Entropy is
additive15, so in considering our system we can look at the entropy of one part of the system
and add it to the entropy of others to get a system-wide value.

We can identify two major sources of uncertainty (and thus entropy) in our system: the
CLOCK page replacement mechanism and blocking/queuing in the memory interconnect. The
performance of the CLOCK algorithm will depend on several factors, such as the reference
string of the application being run and the amount of blocking in the system. Other researchers
have found that the determining the entropy of a caching process (including demand paging)
may not allow us to make good predictions as to its performance [124] and we do not consider
it further here. Instead we seek to model the impact of queuing/blocking in the memory
connect, though we must accept this weakens the general power of our model.

If we consider the memory connection tree we can look at buffers one by one and then add
the entropies together to get a figure for the connection tree as a whole. In this sense (and in a
way that is analogous to thermodynamic entropy) can consider entropy to be a logarithmic
measure of the number of microstates in a system that result in the same macrostate. In our
case the states are differentiated by the waiting time for a packet.

In our system we can estimate that around 8.5% of requests are writes and about 91.5% are
read requests (from Table 4.3). However, one write marks a whole page as dirty and requires
all parts of that page in local memory to be written back when it is paged out and we find -
from observation - that around 27% of all requests received by the MMU are write requests.
Figure 4.38 shows write requests as a a share of all packets for 512 byte partial paging: it can
be seen an initial period when all requests are reads is followed by a surge of write requests
before the value moves through a narrower range.

As we are simulating a flash memory device, we assume write requests take twice as long
to service as read requests (a basic read request takes 50 cycles and a write thus takes 100
cycles). We can process 4 requests simultaneously and work on the assumption that blocks
are caused by queuing to access the MMU alone. Thus blocks occur when all the slots at the
MMU are in use. Thus the expected frequencies and maximum service times we can expect
are as in Table 4.1116.

As Figure 4.39 illustrates variation in system performance is closely correlated to variation
in the share of packets that are write requests.

15 Strictly this assumes the independence of the entropy of the systems being combined which is not fully the case
here as new requests from cores cannot be issued until old ones are dealt with, but we ignore this to present this
outline argument.

16 These expectation values are generated from the coefficients of the binomial expansion of (0.27w + 0.73r)4.
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Figure 4.38: Writes as a share of all packets processed by MMU (512 byte partial paging)

Figure 4.39: Mean wait times and write packet share at root mux (512 byte partial paging)
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Packet combination (in
MMU)

Maximum
waiting-time

(cycles)

Probability

All read-only 48 0.2840

One write, three read-only 48 0.4201

Two write, two read-only 49 0.2330

Three write, one read-only 49 0.0575

Four write 98 0.0053

Table 4.11: Idealised MMU waiting times and frequencies

The MMU can accept two requests simultaneously, which has the effect of raising the
theoretical maximum waiting time while lowering the mean waiting time17 .

Figure 4.40 shows the observed frequency of inter-arrival times. We find 1.82% of packets
have arrived at the root mux simultaneously, 4.39% one cycle after the previous packet and
4.42% two cycles after the previous packet, and so on.

Modelling the system is complex as waiting times are not independently distributed and
are dependent on previous packets. The observed waiting times at the root mux are shown
in Figure 4.41. This shows a sharp peak at around 50 cycles, reflecting the small average
inter-arrival time and the fact that we expect 75% of all packets to have a service time of 50
cycles and that 99.5% of all four packet combinations will generate a maximum waiting time
of 49 or 48 cycles.

As we are assuming blocks are caused only by queuing to access the MMU then blocked
buffers will be concentrated towards the root of the memory connection tree. Thus, if there
are 2 blocks then we assume that both those blocks are in the root mux, Thus we can generate
a probability function from Figure 4.41 and so calculate an entropy from this distribution of
probabilities of 5.78. As our assumption is that both buffers are blocked then the layer entropy
becomes 11.56.

For the next layer down (and for each successive layer) the volume of potential states for
an individual packet doubles (and the number of buffers also doubles). How this impacts
entropy depends on the spread of probabilities - if the distribution was as before then the
entropy of each buffer would increase by 1 (reflecting our use of base 2 logarithms).

However, what we actually see (Figure 4.42) is not just a doubling of the range of timing
delays but a slight falttening of the peak probabilities and calculation shows that the per

17 E.g., if four read-only requests were accepted in two sets of two requests immediately succeeding one another
then it would be 48, rather than 47, cycles before another request could be accepted.
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Figure 4.40: Observed frequency of inter-arrival times (with 512 byte partial paging)

Figure 4.41: Probability density function for waiting times at root mux (for 512 byte partial paging)
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Figure 4.42: Probability density function for waiting times at second layer muxes (512 byte partial
paging)

buffer entropy rises to 6.79, slightly more than 1. Assuming that the entropy per buffer rises
by 1.01 at each layer we can tabulate projected entropy - Table 4.12.

The entropy projections are graphed in Figure 4.43. The red line here represents the power
regression generated by R’s linear model of the results18. The dotted lines represent the
various observed mean blocking counts: blue for traditional with 97.9 blocks (with a projected
entropy of 928), while the orange is for 79.6 blocks as seen with partial paging (for a projected
entropy of 735 and a ratio between the two of 1.26), while purple is for 58.8 blocks and partial
paging with one delay (and an entropy of 521 and a ratio with undelayed partial paging of
1.41).

Entropy here gives us an intuitive insight into the physical processes that ensure additional
blocking, by increasing the volume of the number of paths through the memory a packet can
’experience’ (or alternatively, increasing the phase space19), lead to a greater uncertainty in
timing. But we must be wary of assigning it any predictive power (cf. the introductory remarks
in [130]), especially as we know that the CLOCK process will inject substantial randomness
into timings and our various assumptions underpinning the model have not been fully tested.
Certainly Figure 4.44, which compares the range of completion times for the different methods
and benchmarks (using a log scale to make the comparison of ratios clearer), suggests no clear
relationship between modelled entropy and the ratios of the range of completion times.

18 This is, for blocks B, entropy H ⇡ 5.19⇥ B1.1315. The value of F-statistic for the fit is high at 5.558⇥ 104 and p is
small at 1.942⇥ 10�9,suggesting a good fit

19 We take this idea from the discussion of cosmological entropy in [129]
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Layer Total blocked
packets

Maximum
wait

Buffer
entropy

Layer
entropy

Total
entropy

1 2 98 5.78 11.56 11.6

2 6 196 6.79 27.16 38.8

3 14 392 7.80 62.40 101.1

4 30 784 8.81 140.96 242.1

5 62 1568 9.82 314.24 556.3

6 126 3136 10.83 693.12 1247.4

Table 4.12: Modelled entropy values for blocks in memory tree

Figure 4.43: Modelling entropy in the memory tree - dotted blue line is mean blocking with traditional
paging, orange is partial paging and purple is partial paging with 1 cycle delay
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Figure 4.44: Spread of completion times of benchmarks with different paging methods

�.�.�.� Limitations of the entropy model
We suggest three possible reasons for the failure of the model to offer any predictive power:

1. The effect of entropy is systemic and attempting to measure it through individual benchmarks is
flawed. The benchmarks do not operate independently and a per benchmark measure-
ment (as in Figure 4.44) does not capture the system-wide impact of changed entropy.

2. Other sources of uncertainty in the system have a strong or even dominant effect in determining
the range of completion times. We have already mentioned the CLOCK page replacement
algorithm as a source of uncertainty and the delay process could be another (as it injects
proportionally more delay into processes that make less use of the memory interconnect
and so will also be dependent on cache state and reference string). These factors combine
to produce an underlying distribution of timings: this is almost certainly a factor here
(see the discussion that follows in 4.9.2).

3. The model is flawed in its assumption that blocking occurs only as a result of queuing to access
the MMU (and is thus concentrated towards the root of the tree): if blocks were spread
throughout the tree then in general entropy would be lower - as a packet thus blocked
might only have to wait 1 additional cycle to clear.
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Benchmark 0 1 2 3 4 5 6 7

1KB with partial paging 0.3361 7.532⇥ 10�5 1.311⇥ 10�8 0.002641 4.758⇥ 10�13 3.615⇥ 10�10 0.5616 0.6434

1KB with traditional paging 9.422⇥ 10�6 0.0001262 1.701⇥ 10�12 0.1408 5.736⇥ 10�10 8.387⇥ 10�12 NA 0.000821

1KB with 1 cycle delay 0.07281 9.031⇥ 10�8 1.735⇥ 10�12 1.287⇥ 10�7 0.001045 6.136⇥ 10�15 0.9917 0.7538

Table 4.13: Shapiro-Wilk test for normality p-values for different benchmarks and paging approaches
with 1KB pages

Further investigation would appear to allow us to dismiss a fourth reason that might seem
feasible: differing sampling windows. It is reasonable to believe that, as in a typical thermody-
namic system, we should expect the level of disorder to grow over time until an equilibrium
is reached. Certainly longer timing paths through the tree have a lower probability and are
more likely to be seen if we run the system for longer. The traditional paging system ran
for for around 222 million cycles and the partial paging system for 192 million cycles and it
is possible that this additional time extended the range of timings seen for the traditional
system. However this is easily corrected for by restricting our measurement of the range of
traditional paging timings to those benchmarks which completed inside the running length of
the partial paging system. This, though, only reduces the range of one of the benchmarks,
benchmark 0. It’s range now falls to 4169053, a range less than that seen with partial paging
(4187159). If instead we restrict the sampling window in such a way that all the benchmarks
have the same number of iterations then, in general, the ratios move further away from the
ratios of modelled entropy by growing larger (again with the exception of benchmark 0 where
the traditional range falls to 2462860.)

�.�.� Predicting worst case execution times

Figures 4.45 and 4.46 show the distribution of completion times for benchmark 4 and bench-
mark 5 shown as a quantile-quantile (QQ) plot against an expected normal (Gaussian)
distribution of completion times. These results are typical in that the fit, across the range of
all the completion times, is generally poor. Applying the Shapiro-Wilk test [147] suggests
(Table 4.13) that a Gaussian distribution is not the most likely observation in many (or even
most) cases when considering the overall distribution of completion times. In the test the null
hypothesis is a Gaussian distribution and for 1KB partial paging (at the 95% confidence level)
only benchmarks 0, 6 (with a very small sample) and 7 are passed as Gaussian. For traditional
paging only benchmark 3 is passed as Gaussian. While for partial paging with an additional
one cycle delay benchmarks 0, 6 (with a small sample) and 7 appear to exhibit normality.

However, we are not concerned here with predicting the spread of all completion times, but
only with measuring, or estimating, the worst-case times. We begin by considering whether
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Figure 4.45: Distribution of completion times (against expected Gaussian quantiles) for benchmark 4
with partial paging, traditional paging and partial paging with delay with 1KB pages

Figure 4.46: Distribution of completion times (against expected Gaussian quantiles) for benchmark 5
with partial paging, traditional paging and partial paging with delay with 1KB pages



130 ��������� � ������� ������ ������

we can model the delays in the memory interconnect, as we know from above that the level of
delay appears to dominate performance.

The model discussed in 4.9.1, shows we can assume there is a maximum waiting time in
the memory tree: at the top layer (for a packet in the non-priority buffer) this is 98 cycles and
it will double for each layer further down the tree, so rising to 1568 cycles if layers 1 - 5 were
blocked (62 blocked packets). The probability of a packet experiencing this delay at this level
of blocking would be extremely small, however: perhaps as small as the order of 10�22 (from
raising the probability of four writes in the MMU to the fifth power and multiplying this by a
0.01 chance of a zero inter-arrival time raised to the fifth power).

It can be seen that we could assign a correct worst case time for traversal of packets
across the memory connect using this data but that such a delay would be unlikely to ever
be observed, even on extreme timescales. Thus there is a strong argument to consider a
probabilistic worst case execution time (pWCET) in this case.

Furthermore, other sources of delay in the system do not lend themselves as easily to
analysis as the memory connect appears to do here, and so we have to look to other means
to determine an overall WCET/pWCET. In general the growing complexity of many-core
computer systems increasingly makes static analysis impossible in any practical sense [142, 93].
Moreover, a many-core system is unable to deliver the spatial and temporal partitioning that
designers of hard real-time systems seek [45]. Statistical methods are thus used to derive a
pWCET - and are generally based on extreme value theory (EVT) which was developed from
the examination of the extreme tail events of natural phenomena (such as flooding) [148].

Extreme Value Theory is a non-parametric statistical method and so does not require a
particular underlying distribution of data [31] but a practical application generally uses one
of the three specific distributions for extreme values (Gumbel, Fréchet and Weibull) rather
than the generalised extreme value (GEV) distribution [56].

The three limiting distributions are a particularisation of the GEV tail as signified by the
shape (x) parameter. A Weibull distribution (negative x) has an absolute cut off maximum and
is most useful in considering minima [56] (though could also be applied to the distribution of
completion times when an absolute WCET is known [113]) and we do not consider it further
here. A Gumbel distribution (zero x) has an exponential tail and a Fréchet distrubution
(positive x) has a heavy tail. Figure 4.47 illustrates the cumulative density function for a
Gumbel distribution and Fréchet distribution with similar parameters, illustrating the heavy-
tail effect with a Fréchet distribution.

We concentrate on the Gumbel distribution below and it, as a cumulative distribution
function, is of the form:

F(x; µ, b) = e�e�(x�µ)/b
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Figure 4.47: Cumulative distribution functions for Gumbel and Fréchet distributions with the same
(arbitrary) values for location (µ) and scale (b) parameters

Where µ is the mode of the distribution and the mean is µ + gb, where g is Euler’s constant.
The safe application of EVT to our system is open to question. The methods of EVT assume

that completion times are independently and identically distributed (i.d.d.) and that cannot be
the case in a system where multiple benchmarks compete for memory and where performance
depends on past reference strings.

In our system, after the initial iteration of the program subsequent behaviour and perform-
ance will depend upon which pages and parts of pages are already in memory and, of course
even for the initial distributions we are dependent on the behaviour of other programs in the
system (including other instances of the same benchmark). Basing a safety-critical decision on
statistical extreme value theory (EVT) when this i.d.d. property is not present may well be
unsafe [74]. However the i.d.d. criterion may be relaxed if the distribution is stationary [148]
and a GEV based distribution may provide a good fit in such cases [139].

Table 4.14 shows the results of Augmented Dickey-Fuller tests for stationarity [1]. Here the
null hypothesis is non-stationarity and it can be seen the alternative hypothesis of stationarity
is met for partial paging (at statistically significant levels), with and without delay, for
benchmarks 1, 2, 3, 4, 5 and 7 (the test fails on 6 because we only have one set of 16 completion
times). Benchmark 0 fails in both partial paging scenarios. For traditional paging benchmark
7 fails and we have no results at all for benchmark 6.

We thus propose here to use EVT to model completion times and to derive probabilistic
worst case execution times (pWCETs).
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Benchmark Partial paging:
p-value

Traditional paging:
p-value

Partial paging
with delay:

p-value

0 0.1745 <0.01 0.574

1 <0.01 <0.01 <0.01

2 <0.01 <0.01 <0.01

3 <0.01 <0.01 <0.01

4 0.03137 <0.01 0.0415

5 <0.01 <0.01 <0.01

6 NA No results NA

7 <0.01 0.15 0.04885

Table 4.14: Augmented Dickey-Fuller test results for stationarity for benchmarks with 1KB page sizes:
with lag of 16

(The question arises of how to determine a distribution of maximum completion times
for those benchmarks that do not show stationarity. Conceivably we could apply standard
methods to correct for any lack of stationarity in results or perhaps collect a much larger
sample size which may show stationary results over a longer range. We did not explore either
option here, but these results do suggest that for some class of programs in such many-core
systems where there may be no safe limit determinable by statistical methods.)

�.�.�.� Partial paging and traditional paging pWCETs
We first assess our data for goodness of fit with both Gumbel and Fréchet distributions (cf.
[55]): using ev.test from R’s goft package [71] we tested for the null hypothesises of both a
Gumbel and a Fréchet distribution. We used an algorithmic block-maxima based approach
(cf.[76]): we look at the maxima inside a block of fixed size (starting with 16, but moving on
to 24, 32, 48, 56 and 64) testing for a fit. If the fit test fails with the smaller block size we move
on a larger block size.

Table 4.15 shows the result of the goodness of fit (GOFT) tests for partial paging (without
delay). Benchmarks 0 is excluded as it failed the stationarity test and 6 has insufficient data.
Benchmark 4 does not generate a large enough range of samples (17 at a block size of 16)
to apply the test. Benchmark 2 does not pass the statistical test (i.e. p < 0.05) for either
distribution and the figures here are for illustrative purposes only. For benchmark 3 a block
size of 24 appears to pass for both distributions but the sample size we are left with - 23 -
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Benchmark p-value for
Gumbel

Block
size used

Sample
size used

p-value
for

Fréchet

Block
size used

Sample
size used

1 0.05758 16 159 0.05514 24 106

2 0.03505 64 41 0.02377 64 41

3 0.9019 24 23 0.8839 24 23

5 0.2079 40 44 0.1374 40 44

7 0.3868 16 41 0.3289 16 41

Table 4.15: Goodness of fit tests for Gumbel and Fréchet distributions for partial paging with 1KB
page size

is below the 30 “generally accepted” as the minimum for reliable results [76], so the results
included below need also to be treated with additional caution.

In general the results - including the positive GOFT results for Fréchet distributions -
suggest we need many more results for truly reliable predictions. In [113] the authors strongly
discourage the use of Fréchet to model pWCETs, stating: “The Fréchet distribution is most
appropriate when a maximum value does not exist, which places it outside of the core WCET
problem domain.” Further they state that a Fréchet distribution can be regarded as an upper
bound on a more appropriate Gumbel distribution and add that “If a Fréchet distribution
were to best fit a given sample of execution-time measurements, this should happen because
either the sample does not contain enough tail values or some of them do not really belong to
the tail of the distribution.”

In our case Fréchet generally delivers a poorer fit than Gumbel with a lower p–value for
a given block size but its general ability to fit at the same block size as Gumbel is probably
an indicator that more robust results here would require a greater number of samples than
we were able to collect in the available time. Below we concentrate on modelling Gumbel
distributions of pWCETs.

Table 4.16 shows GOFT data for traditional paging. Here benchmarks 4, 6 and 7 are excluded
for lack of sufficient data.

Although benchmark 5 under traditional paging appears to pass the goodness of fit test
here, we exclude it from further testing because, as Figure 4.46 shows, completion times are
bimodally distributed, with the completion times of the initial runs of the benchmark taking
all the extreme times. To calculate a pWCET in these circumstances it is necessary to collect
data from the first initial runs only, a method we apply when considering pWCETs for smaller
page sizes (Sections 5.2.2 and 5.3.2).
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Benchmark p-value for
Gumbel

Block
size used

Sample
size used

p-value
for

Fréchet

Block
size used

Sample
size used

0 0.386 16 36 0.2485 16 36

1 0.2787 16 70 0.05653 16 70

2 0.1843 16 73 0.348 24 48

3 0.9564 16 23 0.939 16 23

5 0.3552 16 72 0.2244 16 72

Table 4.16: Goodness of fit tests for Gumbel and Fréchet distributions for traditional paging with 1KB
page size

Benchmark 1 2 3 5 7

Observed maximum 1798061 1739293 5779890 2288311 5120014

Computed µ (location parameter) 1542286† 1517751‡ 5586817 2065689 4886545§

Standard error for computed µ 5932 NA 8389 5932 11863

Computed b (scale parameter) 72172 77520 72272 73151 67308

Standard error for computed b 4194 NA 8389 4194 8389

Computed percentage for observed maximum ⇡ 97.2% ⇡ 94.4% ⇡ 93.3% ⇡ 95.3% ⇡ 96.9%

Computed threshold for 10�1 maxima (i.e. 0.9 CDF) 1704700 1692199 5749456 2230306 5038013

ditto 10�3 2040796 2053201 6086018 2570962 5351459

ditto 10�6 2539379 2588729 6585292 3076307 5816439

ditto 10�9 3037926 3124219 7084529 3581617 6281387

ditto 10�12 3536474 3659709 7583768 4086927 6746335

ditto 10�15 4035076 4195259 8083061 4592294 7211335

Memo: observed worst traditional paging time 5697371 5463362 11269496 4561929 23926071
†The block maxima for a block size of 32 was used to calculate this distribution as the smaller block size would not generate error values. The
smaller size gave a µ of 1487978 and a b of 77104 which would place the observed maximum at ⇡ 98.2% but would also generate a higher 10�15

threshold time of 4152117.
‡Maximising goodness-of-fit and not maximum likelihood fitting used and no error values available.
§The block maxima for a block size of 32 was used to calculate this distribution as the smaller block size would not generate error values. The
smaller size give a µ of 4791571 and b of 95582, placing the observed maximum at ⇡ 96.8% and a 10�15threshold time of 8092898.

Table 4.17: Modelled Gumbel distributions of benchmark maxima completion times for 1KB partial
paging
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Benchmark 0 1 2 3

Computed µ 7100487 4243457 4052264 10366155

Computed b 496696 447542 356165 254569

Observed maximum 9012279 5697371 5463362 11269496

Threshold for observed maximum ⇡ 97.9% ⇡ 96.2% ⇡ 98.1% ⇡ 97.2%

Computed threshold for 10�15 maxima 24256156 19701333 16354052 19158860

Table 4.18: Calculated parameters for Gumbel distributions for timing extremes for traditional paging
with 1KB pages

Table 4.17 shows the outcome of the modelling process for the benchmarks with partial
paging. Here µ is the location parameter and is the mode of the distribution, while b is the
scale parameter, with the mean of the distribution being equal to µ + bg, where g is the Euler-
Mascheroni constant. Typically a safety-critical application will demand an hourly failure rate
of less than 10�9 which we would expect to be typically be around the 10�12 - 10�15 limit
reported in 4.17. As can be seen even the most of extreme of these measures appears to be
less than the observed worst traditional paging time in every case except benchmark 5 where
the observed maximum with traditional paging is similar to the 10�15calculated threshold
time for partial paging.

In Appendix F we chart the fit of the modelled Gumbel distribution to each benchmark.
Table 4.18 shows calculated parameters for Gumbel distributions for traditional paging20:

the significantly higher values of b, the scale parameter, compared to partial paging, show that
we should expect pWCETs to stretch to very high values indeed. For benchmark 1, for instance,
the calculated µ, i.e. modal values, for maxima are in a ratio of 1:2.75 between undelayed
partial paging and traditional paging, but the 10�15 threshold times are in a ratio of 1:4.88.

�.�.�.� Delayed and undelayed partial paging pWCETs
The discussion in 4.9.1 set out a basis - increased entropy - for why blocking in the system
should lead to the broader spread of completion times for the density plots of traditional
paging completion times in Figures E.1 - E.8.

Given that the injecting the 1 cycle delay into bitmap reading discussed in 4.7 reduces the
average blocking in the system from ⇡ 80 to ⇡ 59 blocks per cycle and so should significantly
reduce mean entropy in the memory connect, the question arises of whether this approach,
despite its significant addition to the average case execution time (ACET) will lead to a lower

20 Standard errors were not available as ’maximum goodness of fit estimation’ was used
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Figure 4.48: Bi-modal distribution of comple-
tion timings for benchmark 3
with delayed partial paging

Figure 4.49: Bi-modal distribution of comple-
tion timings for benchmark 5
with delayed partial paging

Benchmark p-value for
Gumbel

Block
size used

Sample
size used

p-value
for

Fréchet

Block
size used

Sample
size used

1 0.2583 32 43 0.1302 32 43

2 0.1568 48 30 0.1173 48 30

7 0.0966 16 28 0.07753 16 28

Table 4.19: Goodness of fit tests for Gumbel and Fréchet distributions for partial paging with bitmap
delay with 1KB page size

pWCET at low probability (and safety-critical) limits. Unfortunately we have a limited number
of results on which we can test this as the timing results lack stationarity for benchmark 0 and
we do not have a sufficient number of results benchmarks 4 and 6. Additionally we can also
see that benchmarks 3 and 5 are bimodal under delayed partial paging (Figures 4.48 and 4.49).

Table 4.19 shows the results of the GOFT for partial paging with additional delay while
Table 4.20 shows the calculated values for µ and b for partial paging with delay (cf. 4.17).

Figures 4.50 - 4.52 show plots of the probability density function (PDF) for benchmarks 1,
2 and 7 under both partial paging and partial paging with a bitmap reading delay. There is
no simple pattern here - in benchmark 2 the delayed approach converges with the non-delay
approach, in 1 and 7 it diverges. This shows that system-wide entropy caused by blocking
cannot be the only factor that determines b and hence the range (disorder) in completion
times.The plots for benchmarks 2 and 7 show that differences in typical (mean) performance
may be a poor guide to which approach will perform better at safety-critical margins.

In summary, on this (limited) evidence at least, while the delay does lower blocking and
so should lower entropy in the memory connect, there is no simple translation into lower
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Benchmark µ(1 cycle
delay)

µ standard
error

b (1 cycle
delay)

b standard
error

10�15

threshold for
delay

1 1743365 5932 91770 5932 4913062

2 1701717 5932 57718 5932 3695272

7 4671040 NA† 99004 NA 8090596
†Maximal goodness-of-fit estimation(MGE) only and no error values available.

Table 4.20: µ and b for 1-cycle delay partial paging for 1KB paging

Figure 4.50: Calculated PDFs for benchmark
1 with 1KB partial paging com-
pared

Figure 4.51: Calculated PDFs for benchmark
2 with 1KB partial paging com-
pared
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Figure 4.52: Calculated PDFs for benchmark
7 with 1KB partial paging com-
pared

pWCETs, even at very high thresholds. Many other factors beyond entropy in the memory
connect, of course, could be contributing to this picture. The marginal efficiency of the CLOCK
procedure may well be important here: as remarked above the introduction of a delay comes
close to halving the ’sweep’ time of the CLOCK procedure and higher predicted WCETs may
reflect an expected poor CLOCK performance under this constraint, for instance.

�.�� �������

The results presented in this chapter show that a partial paging system offers potential as a
means of supporting virtual memory on a many-core embedded system, delivering, at least in
some cases, better average and predicted WCET performance compared to traditional paging.
However, it should be noted that queues were long and blocked packet counts were high:
which, when we consider 3.2 and 4.9 points to a high degree of thrashing, a high level of
entropy (and thus uncertainty) and a low level of overall efficiency in the system. There is
considerable scope for improvement and we discuss potential ways to do this below.

In 4.2.5 we demonstrated that an enforced fairness in the memory interconnect was essential
for a many-core system to avoid excessive delays.

In 4.3 we describe the various benchmarks we selected to test the simulated partial paging
system we described in 4.2.2 and 4.2.6.
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In fact our results suggest that, in the general case, partial paging paging delivers better
results than a traditional paging system when considering the average case (4.4) and that this
advantage is even more pronounced when considering the worst case execution times (4.8).
Applying techniques from extreme value theory reenforces the evidence that partial paging
has potential to increase system efficiency.

One of the benchmarks (0) floods the system with memory requests - we describe this as
pathological behaviour - due to rapid variations in working set size around the critical value
of available pages in our partial-paging system. This slows its own performance and that
of all other processors - as we are able to show that the overall time taken to complete an
iteration of the benchmark is a linear function of the number of blocked memory requests
that a benchmark suffers.

We also show that even a simple load control mechanism can deliver better results when we
consider the benchmarks as a set, though, in 4.9.2.2, we note that a better average performance
does not necessarily translate into a better performance at the extreme tail (or vice versa).

In the following chapter we examine potential solutions to these problems and consider
whether we can find a more robust and better performing partial paging system.





5 O P T I M I S I N G A PA R T I A L PA G I N G S Y S T E M

Having demonstrated that a partial paging system can deliver better common-case timings
and better WCET results for most of our benchmarks, we now consider ways to optimise
performance and to ensure this approach delivers more efficient performance for all likely
cases.

We consider two broad types of optimisation: changing the page size (to use smaller pages),
and a simpler, in principle less uncertain, page replacement policy in the form of FIFO.

We use smaller pages both because our own observations (3.3) and earlier experimental
work we have previously quoted ([78]) show that smaller page sizes in memory-constrained
environments are likely to give better (faster) results in the general case. Here, though, we
also wish to consider whether small pages also contribute to better WCETs.

We look at FIFO because our earlier results show that a substantial share of the execution
time for each process (typically around 10% - see Table 4.7) is absorbed by what we describe as
’administrative’ tasks which includes managing the CLOCK process. We also note that CLOCK
involves a substantial degree of uncertainty (in that static analysis is practically impossible)
and so replacing it with a simpler, more deterministic, page replacement process might bring
other benefits.

In 5.1 we consider the difference in performance if we use smaller, 512 byte pages, which,
in general, generate a higher hard fault rate and more page table lookups but, by eliminating
fragmentation can generate better performance, with a lower blocking count. In 5.2 we
consider worst-case timing: smaller page sizes appear to significantly improve the efficiencies
of subsequent runs of each benchmark and a distinct bi-modal distribution of completion
times is seen (with the initial iterations notably slower) and in 5.2.2 we apply extreme value
theory statistical methods to an extended data set of the initial completion times of some
of the benchmarks. A comparison of these results to those for 1KB partial paging, where
available, shows that 512-byte partial paging retains its advantages even at extreme values.

In 5.3 we consider 256-byte pages and 128-byte pages. EVT-based analysis of the 256-byte
pages in 5.3.2 suggests that this smaller page size may have better performance at safety
critical thresholds, even where typical performance is worse: we reason this is because of
lower entropy in the memory connect. In 5.3.4 we show that, in most cases, the higher fault
rate for 128-byte pages leads to significantly lower performance.

141
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We consider FIFO as a simpler page replacement policy in 5.4. Although this often gives
better completion times on the first iteration, on subsequent runs performance can degrade
and in 5.4.1 we show that this appears to be a result of entropy being injected into the system
by memory delays - so that the uncertainty in FIFO timings becomes broadly similar to that
seen with CLOCK: potentially nullifying the advantage, for real-time programmers, of having
predictable patterns of page loading and replacement. EVT-based analysis of FIFO in 5.4.2
suggests that its performance is generally inferior to CLOCK at safety-critical thresholds.

In 5.5 we consider alternatives to the tree-based memory connect in the form of a crossbar
and interconnected buses. In both cases we see that performance is broadly similar to that
seen with Bluetree but that different arrangements of backoff timings and buffering can alter
system entropy and range of completion times.

Section 5.6 is a short summary of this chapter.

�.� ������� ����� : ��� ���� �����

Decreasing page size will increase the absolute number of page faults - at least on the first
run of any of the benchmarks - but will also reduce external fragmentation and allow for a
more efficient use of limited memory resources.

Reducing the page size to 512 bytes divides the 16KB of available per core local memory in
our simulation into 32 pages, of which 2 are notionally assigned to local kernel primitives
and systems software and 2 to the system stack, 2 for the local page tables but only 1 is
required for the bitmaps - so making an extra 512 bytes of local memory free for general use
in comparison to the 1KB system, with a total of 25 free pages. A traditional paging system
will have 26 free pages.

Table 5.1 (cf., Table4.2) shows how many pages each benchmark accesses when using 512
byte pages and indicates that benchmark 1 should, after faults on loading, be able to run
under partial paging without further faults on subsequent iterations. For a traditional paging
system this will be true of both benchmark 1 and benchmark 2.

The change in page sizes leaves the working set of the benchmarks in a similar pattern as
before. Figure 5.2 shows that, for benchmark 0, the rapid variation in size remains, but that all
those variations are below the 25 available page count (cf. Figure 4.7), while for benchmark 6,
Figure 5.3 shows that the working set size remains substantially greater than the number of
available pages (cf. Figure 4.13).

Figures 5.4 and 5.5 show the lifetime curves [47] for benchmark 0 running under a least
recently used (LRU) page replacement policy - of which CLOCK is a close analogue - when
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Figure 5.1: 512 byte pages referenced by each benchmark
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Figure 5.2: Working set size (for 100,000 instruction window) for benchmark 0 with 512 byte pages
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Figure 5.3: Working set size (for 100,000 instruction window) for benchmark 6 with 512 byte pages
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Figure 5.4: Lifetime curves (under LRU) for benchmark 0 with 512 byte pages
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Figure 5.5: Lifetime curves (under LRU) for benchmark 0 with 1KB byte pages

using 512 byte pages and 1KB pages respectively: the y-axis plots the mean number of
instructions (as measured in bytes) between hard faults, while the x-axis plots the maximum
working set size. For the 1KB page sizes (where the number of pages free for general use in
the partial paging system is 12), the number of instructions between faults remains very low
until the working set rises to 13 pages: it is this pattern that explains the exceptionally poor
performance of the partial paging system compared to the traditional paging system (where
13 pages are free). For the 512 byte page system the threshold is reached at 20 pages and so
performance for the partial paging system shows a dramatic improvement as the system now
has 25 free pages.

In fact we observe the average number of hard faults for benchmark 0 under partial paging
falls from 908.1 with 1KB pages to 33.4 with 512 byte pages.

Using 512 byte pages the number of blocked packets falls significantly, especially after the
initial run of each benchmark is completed (after which, for instance, benchmark 1 makes
no further global memory requests) - with a mean number of blocks at 45.2 over the first
2.14⇥ 108 cycles1. Figure 5.6 shows a highly smoothed chart of blocking in this system and it
is apparent that there is a regular underlying pattern of oscillation in a narrow band after an
initial period of higher average blocking.

Tables 5.1 and 5.2 give details for mean performance values for partial paging (assuming sub-
cycle bitmap reading) and Table 5.2 suggests that queuing in the memory tree is significantly

1 9,670,040,286 blocked packets over 213,901,387 cycles
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Figure 5.6: Blocking in 512 byte paged partial paging system (smoothed)

reduced (with the exception of benchmark 6) once the initial run of each benchmark is
completed.

Figure 5.7 (cf. Figure 4.20) points to a lower impact of each block even if the number of
faults is broadly similar to the 1KB example (as partial paging does not change the number
of 16 byte lines that need to be loaded). However we can also see that, in general, the range
of blocks per fault remains large - pointing to timing uncertainty. We also note that the first
iterations (generally a displaced group of points to the right) show higher fault counts: this
phenomenon was not so prominent for 1KB paging but is another indication that the mean
performance is no guide to the WCET.

Figure 5.8 shows the bi-modal nature of the distribution of completion times with partial
paging 512 byte pages for all benchmarks except benchmark 0 (here plotted against an ideal
Gaussian distribution of completion times).

The linear regression plots in Figure 5.9 again generally show a linear relationship between
completion times and blocking, indicating that it is the high levels of blocking on the initial
run that fundamentally produces the bi-modality. For benchmarks 2, 3 and 5 the slight
displacement of these initial points from the regression line is a signs that other factors may
also to be important.
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Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 2718724 1345670 1349593 4198788 10961440 1712878 107296451 3845509

Mean 2461912 1323643 1305885 4141580 10895508 1684291 105938397 3694988

Service cost 46184 30550 30406 233875 42222 73100 6152684 154572

Blocks 760747 771355 752933 2878150 965834 1112167 73405338 2398505

Count

Hard Faults 33.4 25.0 26.0 66.0 32.6 34.0 5172.4 126.0

Small Faults (and page table reads) 792.1 586.0 580.8 1995.5 786.2 852.0 85911.4 2089.1

Share

Service 1.9% 2.3% 2.3% 5.6% 0.4% 4.3% 5.8% 4.2%

Blocks 30.9% 58.3% 57.7% 69.5% 8.9% 66.0% 69.3% 64.9%

Admin 16.0% 10.9% 11.0% 9.0% 14.6% 9.9% 12.2% 11.0%

Efficiency of execution 51.3% 28.5% 29.0% 15.9% 76.1% 19.7% 12.7% 19.9%

Table 5.1: Performance (means) of benchmarks with partial paging and 512 byte pages: initial execution

Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 2871432 442278 1022103 3757085 10357560 1324015 107017746 3780823

Mean 2080572 441565 509549 3376961 10149337 1031102 105720853 3249095

Service cost 32279 0 3316 226620 19073 51514 6162103 158779

Blocks 448495 0 55153 2161594 326416 537015 73183478 1954439

Count

Hard Faults 17.9 0 3.1 45.3 10.2 11.7 5173.9 118.2

Small Faults (and page table reads) 439.8 0 58.1 1708.9 282.9 396.1 85918.3 2071.8

Share

Service 1.6% 0% 0.7% 6.7% 0.2% 5.0% 5.8% 4.9%

Blocks 21.6% 0% 10.8% 64.0% 3.2% 52.1% 69.2% 60.2%

Admin 16.2% 14.6% 14.3% 9.8% 14.9% 10.7% 12.2% 12.3%

Efficiency of execution 60.7% 85.4% 74.2% 19.5% 81.7% 32.2% 12.7% 22.7%

Table 5.2: Performance (means) of benchmarks with partial paging and 512 byte pages: continued
execution
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Figure 5.7: Blocks per fault and total faults compared for 512 byte partial paging

Table G.1 in Appendix G shows the calculated linear regression factors for all the bench-
marks.

One important factor here may simply be that the huge improvement in benchmark 0’s
performance (see Figure 5.10). In general the smaller page sizes increase the number of
hard faults and remote page table reads required. It should also be noted, however, that
in subsequent runs 512 byte paging typically generates a smaller number of faults for all
benchmarks because of the reduction in fragmentation (most obviously in benchmark 1 which
produces no further faults at all). Benchmark 7 also has a lower total fault count, almost
certainly because it writes fewer pages back when pages sizes are small: a further advantage
of reduced fragmentation.

As the number of 16 byte ’lines’ that need to be loaded in both cases is not changed by the
switch in page size, the increase in fault counts shown in the table generally reflect the higher
number of hard faults caused by small page sizes increasing the number of remote page table
reads.

The improved performance from smaller page sizes is thus an emergent characteristic of the
system: with the exception of benchmark 0 all the benchmarks make higher demands on the
system but all show improved performance because of the lower amount of blocking in the
system. After benchmarks 2 and 1 complete their first iterations (respectively the first and
second benchmarks to do so, they also show a large fall in fault rates, further improving the
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Figure 5.8: QQ Plots for 512 byte partial paging



150 ���������� � ������� ������ ������

Figure 5.9: Completion times and blocked packets for all eight benchmarks with 512 byte partial
paging
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Figure 5.10: Mean total faults and remote memory requests (small and hard and remote page reads)
for initial iteration with partial paging with different page sizes

environment for the other benchmarks. We can see a similar, if smaller, effect for 256 byte
pages (see Section 5.3).

�.�.� Traditional and delayed partial paging with 512-byte pages

Tables 5.3 and 5.4 show the performance of traditional paging with 512-byte pages: once
again partial paging generally turns in better average performance than a whole-page system,
though the traditional system can run benchmark 2, after the initial run, without the need
to load any further pages. Average blocking, at 51.60 (12,206,041,433 blocks over 236,573,866
cycles) remains higher than for partial paging, though the gap is substantially smaller (Figure
5.11).

Tables 5.5 and 5.6 show mean performance data for the system for 512-byte pages with an
additional cycle for bitmap checking. Once more benchmarks 3 and 6 show better performance
(as measured by observed maximum timings) compared to the undelayed partial paging
system.

Table 5.7 compares the extremes of performance for the different approaches: here (with
benchmark 2 requiring no page loads after the initial run), traditional paging delivers the
best mean performance and partial paging with a delay, the worst. But when considering
the minimum efficiencies - in other words the slowest performance - likely to be of essential
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Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 3109766 1748323 1780333 4798261 11687305 2262785 236307671 7848475

Mean 2970309 1743186 1773689 4695856 11596715 2243299 233994214 7242201

Service cost 62013 45000 46800 254488 64400 88400 14765738 384350

Blocks 1331239 1233974 1259921 3593065 1725603 1730835 197934946 5830618

Count

Hard Faults 31.5 25.0 26.0 66.1 32.0 34.0 5030.6 120.5

Remote Page Table Reads 132.3 100.0 104.0 423.8 136.0 168.0 26840.8 686.5

Share

Service 2.1% 2.6% 2.6% 5.4% 0.6% 3.9% 6.3% 5.35

Blocks 44.8% 70.8% 71.0% 76.5% 14.9% 77.2% 84.6% 80.5%

Admin 10.6% 5.0% 5.0% 4.0% 13.0% 4.1% 3.4% 4.0%

Efficiency of execution 42.5% 21.6% 21.3% 14.0% 71.5% 14.8% 5.7% 10.2%

Table 5.3: Performance (means) of benchmarks with traditional paging and 512 byte pages: initial
execution

Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 2812052 441948 443433 3922287 10533013 1407555 7835679

Mean 2127548 441210 442664 3541281 10132798 1076417 NA 6640068

Service cost 34969 0 0 220490 16066 46733 405857

Blocks 543354 0 0 2489060 354755 623116 5211118

Count

Hard Faults 13.3 0 0 43.1 7.3 10.2 112.8

Remote Page Table Reads 66.2 0 0 340.5 32.6 74.2 689.7

Share

Service 1.6% 0% 0% 6.2% 0.2% 4.3% 6.1%

Blocks 25.5% 0% 0% 70.3% 3.5% 57.9% 78.5%

Admin 13.5% 14.6% 14.5% 4.8% 14.5% 6.9% 4.3%

Efficiency of execution 59.3% 85.4% 85.5% 18.6% 81.9% 30.9% 11.1%

Table 5.4: Performance (means) of benchmarks with traditional paging and 512 byte pages: continued
execution
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Figure 5.11: Blocking in 512 byte paged traditional paging system (smoothed)

Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 3929618 1678454 1648156 4164409 20415399 1920967 86411477 3965871

Mean 3865328 1661561 1611810 4112368 20376230 1883279 85389130 3816706

Service cost 43950 30550 30200 234238 41550 73100 6005459 143978

Blocks 621048 666191 614128 2086484 671239 919640 37241795 1650193

Count

Hard Faults 31.7 25.0 26.0 66.0 32.0 34.0 5038.5 116.6

Small Faults (and page table reads) 749.7 586.0 578.0 1996.0 779.0 852.0 84134.9 1971.6

Share

Service 1.1% 1.8% 1.9% 5.7% 0.2% 3.9% 7.0% 3.8%

Blocks 16.1% 40.1% 38.1% 50.7% 3.3% 48.8% 43.6% 43.2%

Admin 50.1% 35.4% 36.6% 27.6% 55.8% 29.6% 33.6% 33.7%

Efficiency of execution 32.7% 22.7% 23.5% 16.0% 40.7% 17.6% 15.7% 19.3%

Table 5.5: Performance (means) of benchmarks with partial paging and 512 byte pages and 1 cycle
delay for bitmap reads: initial execution
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Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 3801318 881422 1221198 3561582 19882062 1416608 85507815 3640310

Mean 3398690 880655 932802 3040383 19728385 1141262 85389130 3101858

Service cost 27492 0 4053 222107 17184 47750 6010116 148293

Blocks 226493 0 35489 1066360 156159 266072 35984701 941083

Count

Hard Faults 14.2 0 3.5 44.0 9.5 11.0 5032.6 107.8

Small Faults (and page table reads) 376.3 0 72.3 1674.0 259.0 368.0 84034.5 1936.4

Share

Service 0.8% 0% 0.4% 7.3% 0.1% 4.2% 7.1% 4.8%

Blocks 6.7% 0% 3.8% 35.1% 0.8% 23.3% 42.8% 30.3%

Admin 55.4% 57.2% 55.2% 36.0% 57.1% 43.4% 34.1% 41.2%

Efficiency of execution 37.1% 42.8% 40.6% 21.7% 42.1% 29.1% 16.0% 23.7%

Table 5.6: Performance (means) of benchmarks with partial paging and 512 byte pages and 1 cycle
delay for bitmap reads: continued execution

Paging approach Max Efficiency Mean Efficiency Min Efficiency Max blocks per hard fault Mean blocks per hard fault Min blocks per hard fault

Traditional 0.855 0.709 0.057 87263 53732 25645

Partial (no delay) 0.854 0.660 0.125 69430 26893 1417

Partial (1 tick delay) 0.428 0.356 0.156 52274 16277 182

Table 5.7: Range of performance parameters for different paging approaches with 512 byte pages
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Figure 5.12: Blocks and performance compared
for 512 byte paging for benchmark 0

Figure 5.13: Blocks and performance compared
for 512 byte paging for benchmark 1

Figure 5.14: Blocks and performance compared
for 512 byte paging for benchmark 2

Figure 5.15: Blocks and performance compared
for 512 byte paging for benchmark 3

interest when designing a real-time system, the opposite is the case and least worst minimum
efficiency is seen with the delayed approach.

Blocking has fallen to an average of just 23.3 (4,314,191,126 blocks over 184,849,513 cycles).

�.� ����� ���� ��������� ����� ���� ���-���� �����

�.�.� Maximum observed completion times for 512-byte pages

Figures 5.12 - 5.19show the range of completion timings for the different benchmarks and the
bimodal distribution of completion times is clearly seen for each method.

Figure 5.20 plots the observed worst execution times for each benchmark for both 1KB and
512 byte paging and across the different approaches used.
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Figure 5.16: Blocks and performance compared
for 512 byte paging for benchmark 4

Figure 5.17: Blocks and performance compared
for 512 byte paging for benchmark 5

Figure 5.18: Blocks and performance compared
for 512 byte paging for benchmark 6

Figure 5.19: Blocks and performance compared
for 512 byte paging for benchmark 7
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Figure 5.20: Observed worst execution times compared for different page sizes and paging paradigms
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Figure 5.21: Distribution of completion times
for benchmark 0 with 512-byte
pages under partial paging

Figure 5.22: Distribution of completion times
for benchmark 1 initial iteration
with 512-byte pages under partial
paging

�.�.� EVT analysis of 512 byte page maxima

The quantile-quantile plots for completion times for the benchmarks under partial paging
(Figure 5.8) and the bimodal distribution of completion times they reveal show that to
undertake an EVT analysis we need to collect data from multiple initial runs of the system for
every benchmark except benchmark 0. Accordingly we ran the system 75 times and collected
data for benchmarks 1, 2, and 5 (each generating 1200 completion times). We also used the
data for benchmark 0 from the general test run.

Figures 5.21 - 5.24 show that completion times are (with the exception of benchmark 5)
skewed right suggesting a long tail of maxima.

Although our sample times do not have the i.d.d. property - they are inherently dependent
on whole system behaviour, including that of other benchmarks - we can assume stationarity
as we are only considering the initial runs of the system. The exception to this is benchmark 0,
where we are using a wider set of results. Here an ADF test does report stationarity (p < 0.01
where the alternative hypothesis is stationarity).

We again tested the collected values for fit against both the Gumbel and Fréchet distributions
(Table 5.8).

In fact, in the case of benchmark 1 we were forced to make a fit on a sample size of just
21 - below the “generally accepted” limit of 30 for reliable results [76] and so the results
shown here need to be treated with caution and regarded as for illustrative purposes only. For
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Figure 5.23: Distribution of completion times
for benchmark 2 initial iteration
with 512-byte pages under partial
paging

Figure 5.24: Distribution of completion times
for benchmark 5 initial iteration
with 512-byte pages under partial
paging

benchmark 2 the Fréchet fit is better than that for Gumbel and this also suggest more results
are needed (cf. Section 4.9.2).

Appendix H contains the plots for each of the fitted Gumbel distributions for 512 byte
partial paging.

The results suggest that small page sizes comfortably retain their advantage even at extreme
probabilities. Indeed, the computed values of b - the shape parameter that indicates the spread
of completion times - is smaller for 512 byte partial paging than for 1024 byte partial paging
in every case where a comparison exists.

Benchmark p-value
for

Gumbel

Block
size used

Sample
size used

p-value
for

Fréchet

Block
size used

Sample
size used

0 0.3155 32 51 0.2282 32 51

1 0.1705 56 21 0.169 56 21

2 0.2012 32 37 0.203 32 37

5 0.09187 16 75 0.08866 16 75

Table 5.8: Goodness of fit tests for Gumbel and Fréchet distributions for partial paging with 512-byte
page size
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512-byte partial paging 0 1 2 5

Observed maximum 2871432 1343799 1347581 1712485

Computed µ 2452575 1333297 1317823 1692572

Standard error for computed µ 5931 426 739 538

Computed b 99198 1858 4285 4418

Standard error for computed b 4194 314 544 391

Computed percentage for observed maximum ⇡98.5% ⇡ 99.6% ⇡ 99.9% ⇡ 98.9%

Computed threshold for 10�1 maxima (i.e. 0.9 CDF) 2675807 1337478 1327466 1702514

ditto 10�3 3137761 1346131 1347421 1723088

ditto 10�6 3823046 1358966 1377022 1753609

ditto 10�9 4508282 1371801 1406622 1784127

ditto 10�12 5193519 1384635 1436222 1814646

ditto 10�15 5878832 1397472 1465825 1845168

Observed maximum for traditional paging 3109766 1748323 1780333 2262785

Threshold equivalent for partial paging (% CDF) ⇡ 99.9% ⇡ 100% ⇡ 100% ‘ ⇡ 100%

Table 5.9: Estimated Gumbel distribution for benchmarks 0, 1, 2 and 5 with 512-byte partial paging
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Interestingly the figures also suggest that our CLOCK is still relatively poorly tuned to
benchmark 0 at this page size as we see a large b and a long tail.

In terms of our simple entropy model (cf., 4.9.1), at a mean blocking of 45.2 we calculate an
entropy of 387, 53% of that seen for 1KB partial paging.

�.� ������� ����� : ��� ���� ����� ��� ��� ���� �����

We have shown how reducing page size from 1024 bytes to 512 bytes appears to significantly
enhance performance across the range of benchmarks even though available memory is
generally still smaller than that required to accommodate programs’ working sets. This
appears to be an emergent characteristic of the system: although the number of hard faults
increases for all benchmarks except benchmark 0, that benchmark’s dramatic fall in fault rates
lowers system congestion enough to both lower completion times and - by lowering system
entropy - limits the predicted WCETs for the benchmarks yet further.

Smaller pages will not, however, continue indefinitely to increase the efficiency of the
system. Smaller pages may reduce fragmentation but they also increase the fault rate and
require larger page tables, taking away time and space which could otherwise be used for
program execution. We tested this effect by reducing page size to first 256 bytes and then to
128 bytes.

�.�.� 256 byte pages - mean performance with partial paging

For 256 byte pages we have 64 page frames available locally, and we need 4 page frames for
notional kernel routines and 4 page frames for a local stack (keeping each of these as 1KB in
total as with previous simulations). As the bitmap size is fixed (1024 bits are needed to map
16KB of local memory as 16-byte lines) and as a 256 byte page can accommodate 2048 bits,
this can fit inside 1 page, so releasing 256 bytes compared to 512-byte paging. But the local
page tables are made up of fixed sized entries (28 bytes long) and so we now require 7 page
frames to map our 64 pages - leaving us with 48

64 (75%) of local page frames for general use - a
smaller proportion than with 512 byte pages, where the fraction of usable space was 25

32 or
78.125%: effectively we have lost two 256-byte page frames2.

2 In a traditional approach we have 49 free page frames (76.5625% of all space) for 256-byte pages and 26 (81.25%)
for 512-byte pages, so the loss here is the equivalent of three 256-byte page frames, though we still have one more
page frame than we with partial paging.



162 ���������� � ������� ������ ������

0

69383

1

67995

2

66607

3

65220

4

63832

5

62444

6

61057

7

59669

8

58281

9

56894

10

55506

11

54118

12

52731

13

51343

14

49955

15

48568

16

47180

17

45792

18

44405

19

43017

20

41629

21

40242

22

38854

23

37466

24

36079

25

34691

26

33303

27

31916

28

30528

29

29140

30

27753

31

26365

32

24977

33

23590

34

22202

35

20814

36

19427

37

18039

38

16651

39

15264

40

13876

41

12488

42

11101

43

9713

44

8325

45

6938

46

5550

47

4162

48

2775

49

1387

50
0

D
en
ni
ng
's
g(
th
et
a)

Maximum working set size

Figure 5.25: LRU lifetime curve for benchmark 0 with 256 byte pages

Using smaller page sizes will significantly increase the fault rate for an individual benchmark
on its initial run: for benchmark 0 the mean hard fault count now rises to 50.0 and each extra
hard fault also generates 4 additional remote page table reads.

The smaller page size does lead to less blocking in the system - an average of 34.03 blocked
packets over 2.03⇥ 108 cycles3: with around 27% of all computing time being lost to blocked
packets in the memory tree (see Figure 5.26). And, as is shown below (Tables 5.10 and 5.11)
the smaller page size can deliver a better fit with limited memory resources (here benchmark
2 fits inside 42 256-byte pages and so generates no faults after the initial run). It is this fall in
the system-wide fault count (along with a small contribution from benchmark 7) that appears
to drive the overall lower blocking and better average (mean) performance.

The typical or average case is worse for 256-byte pages in four cases though the worst-case
observed times are better for 256-byte pages for all cases except benchmark 1 (see Figure 5.27).
This is consistent with the impact of entropy in the system: the lower amount of blocking in
the 256 byte paging system lessens the range of possible and observed timing outcomes. The
distribution of timings is again bimodal (see Figures 5.28 - 5.35) and so a closer examination
of the maxima with EVT methods is required.

3 6,922,322,157 blocked packets over 203,390,630 cycles.
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Figure 5.26: Blocked packets with 256-byte pages under partial paging (smoothed over 10,000,000
cycles)

Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 2514678 1357224 1316858 3840749 10929818 1528350 102077157 3202193

Mean 2501839 1348234 1309466 3806664 10896744 1520754 101277686 3026640

Service cost 43575 33950 33400 230900 43763 59300 7243922 122413

Blocks 730514 775433 735726 2524815 806768 952774 64982307 1775537

Count

Hard Faults 50.0 42.0 42.0 118.0 52.0 55.0 9628.3 126.8

Small Faults (and page table reads) 769.5 637.0 626.0 2267.3 821.3 907.0 104054.0 1712.1

Share

Service 1.7% 2.5% 2.6% 6.1% 0.4% 3.9% 7.2% 4.0%

Blocks 29.2% 57.5% 56.2% 66.3% 7.4% 62.7% 64.2% 58.7%

Admin 18.6% 12.0% 12.4% 10.3% 16.1% 11.6% 15.4% 13.0%

Efficiency of execution 50.5% 28.0% 28.9% 17.3% 76.1% 21.9% 13.3% 24.3%

Table 5.10: Performance (means) of benchmarks with partial paging and 256 byte pages: initial
execution
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Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 2049874 451757 454168 3136864 10096896 880703 101418175 2907958

Mean 1781897 449512 451767 2825495 9933229 687082 100751205 2349550

Service cost 11813 0 0 221260 7009 3.9% 7254988 120270

Blocks 130736 0 0 1612131 97209 232131 64450433 1117599

Count

Hard Faults 9.9 0 0 82.1 8.0 11.2 9624.6 108.2

Small Faults (and page table reads) 158.0 0 0 1832.6 130.7 229.9 104102.6 1564.0

Share

Service 0.7% 0% 0% 7.8% 0.1% 3.9% 7.2% 5.1%

Blocks 29.2% 0% 0% 57.1% 1.0% 33.8% 64.0% 47.6%

Admin 21.2% 16.2% 16.3% 11.8% 15.4% 13.9% 15.5% 16.0%

Efficiency of execution 70.8% 83.8% 83.7% 23.3% 83.5% 48.4% 13.3% 31.3%

Table 5.11: Performance (means) of benchmarks with partial paging and 256 byte pages: continued
execution

Figure 5.27: Timings and faults for 256 byte and 512 byte partial paging (first iterations only for mean)
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Figure 5.28: The range of completion times
for benchmark 0 with 512-byte
and 256-byte partial paging

Figure 5.29: The range of completion times
for benchmark 1 with 512-byte
and 256-byte partial paging

Figure 5.30: The range of completion times
for benchmark 2 with 512-byte
and 256-byte partial paging

Figure 5.31: The range of completion times
for benchmark 3 with 512-byte
and 256-byte partial paging
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Figure 5.32: The range of completion times
for benchmark 4 with 512-byte
and 256-byte partial paging

Figure 5.33: The range of completion times
for benchmark 5 with 512-byte
and 256-byte partial paging

Figure 5.34: The range of completion times
for benchmark 6 with 512-byte
and 256-byte partial paging

Figure 5.35: The range of completion times
for benchmark 7 with 512-byte
and 256-byte partial paging
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Benchmark p-value
for

Gumbel

Block
size used

Sample
size used

p-value
for

Fréchet

Block
size used

Sample
size used

0 0.08031 16 77 0.07879 16 77

1 0.2123 32 38 0.2104 32 38

2 0.9001 24 51 0.9054 24 51

5 0.1196 16 77 0.1179 16 77

Table 5.12: Goodness of fit tests for Gumbel and Fréchet distributions for partial paging with 256-byte
page size

Benchmark Computed µ SE for µ Computed b SE for b Memo: µ
for

512-byte
pages

Memo: b
for

512-byte
pages

10�9

timing
for 256-

bytes

10�12

timing
for 256-

bytes

10�15

timing
for 256-

bytes

Memo:
10�15

timing
for 512-

bytes

0 2516976 335 2783 237 2452575 99198 2574649 2593873 2613100 5878832

1 1357058 210 1223 149 1333297 1858 1382403 1390851 1399300 1397472

2 1314504 217 1461 138 1317823 4285 1344781 1354873 1364966 1465825

5 1526161 196 1629 142 1692572 4418 1559919 1571172 1582426 1845168

Table 5.13: Computed completion times, based on Gumbel distribution, for 256-byte pages

�.�.� EVT analysis with 256-byte pages

Similarly to above (cf. Section 5.2.2) we collected initial timings from 77 separate runs of the
256-byte paging system for benchmarks 0, 1, 2 and 5. Figures 5.36 - 5.39show the distribution
of completion times.

Table 5.13 shows the computed µ and b for the benchmarks. The values of b are significantly
smaller for 256-byte partial paging than for 512 byte partial paging (though the error margins
are large as a proportion of calculated value) and would seem reasonable to assert that, in this
case, the lower entropy in the system as a result of lower blocking makes the smaller page
size a good choice for real-time applications even where the typical (mean) performance is
slower.. Appendix I contains the plots for each of the fitted Gumbel distributions for 256 byte
partial paging.
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Figure 5.36: Distribution of completion times
for benchmark 0 initial iteration
with 256-byte pages under partial
paging

Figure 5.37: Distribution of completion times
for benchmark 1 initial iteration
with 256-byte pages under partial
paging

Figure 5.38: Distribution of completion times
for benchmark 2 initial iteration
with 256-byte pages under partial
paging

Figure 5.39: Distribution of completion times
for benchmark 5 initial iteration
with 512-byte pages under partial
paging
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Figure 5.40: Traditional and partial paging timings, in cycle times, compared for 256-byte pages (initial
iteration only for averages)

�.�.� 256-byte pages with traditional paging

Figure 5.40 (cf. Figure 5.27) shows that traditional paging under-performs partial paging for
256-byte pages4. The average amount of blocked packets, at 41.1 (8,027,129,005 blocked packets
over 195,222,155 cycles) is lower than for 512-byte partial paging and 256-byte traditional
paging outperforms 512-byte partial paging for benchmark 0, though has an observed worst
case execution time for benchmark 6 that is 82% slower than for partial paging. That gap is so
large we think it unlikely that, even at safety-critical thresholds, the smaller-paged traditional
system would out-perform the larger-paged partial paging system, though we have not tested
this assumption.

�.�.� 128-byte pages with partial paging

With 128-byte partial paging we have 128 local page frames but require 28 of these to
accommodate the page tables. Taking into account space we set aside for notional kernel
routines and a local stack, as well as for bitmaps, we are left with 83

128 of page frames for general

4 The comparison here is of the first iteration of each benchmark as timings are again bi-modally distributed.
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Figure 5.41: Blocked packets with 128-byte pages under partial paging (smoothed over 10,000,000
cycles)

use (64.8% of all local memory) with a partial paging model, while for a traditional approach
we would have 84

128 (65.6% of all local memory)- a substantial loss of capacity compared to
either 512 byte pages or 256 byte pages.

Blocking now rises compared to 256-byte partial paging: with an average of of 40.51 blocked
packets (8,341,797,822 blocked packets over 205,930,640 cycles) - see Figure 5.41.

Tables 5.14 and 5.15 also indicate the rising cost of maintaining a paging system with 128
pages: with the “admin” component taking a bigger share of a bigger total time cost: this
element includes the costs of walking the page tables when handling faults. Costs of servicing
memory requests and small fault counts (which include remote page table reads) also rise
- reflecting the additional costs of managing a system with such a large number of pages:
for instance for benchmark 0 the number of hard faults on initial execution has risen from
50.0 (see Table 5.10) with 256 byte pages to 101.1 with 128 byte pages (more or less reflecting
the halving of page size), these additional (mean) ⇡ 51.1 hard faults will generate at least
204 additional reads of the remote page tables - probably more because of additional page
write-backs - and indeed the number of small faults (which include table reads) recorded rises
on average by 217.

Figure 5.42 compares the observed worst execution times for partial paging with differently-
sized pages and in every case the performance is worse for 128-byte pages than for 256-byte
pages, and while benchmark 7 still has a lower observed worst execution time with this size
of page than with 512-byte pages, in other cases it is worse.
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Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 3068840 1550763 1497607 4567862 11612715 1897730 148349057 3633858

Mean 3023533 1541446 1488820 4529518 11572521 1875484 145932294 3537339

Service cost 59072 40750 40400 264869 52450 75100 9228416 135153

Blocks 981194 904479 849438 3098090 981710 1231761 98770449 2132330

Count

Hard Faults 101.1 76.0 77.0 222.1 96.0 102.0 16799.3 190.4

Small Faults (and page table reads) 986.5 739.0 731.0 2855.9 953.0 1096.0 136859.6 1925.2

Share

Service 2.0% 2.6% 2.7% 5.8% 0.5% 4.0% 6.3% 3.8%

Blocks 32.5% 58.7% 57.1% 68.4% 8.5% 65.7% 67.7% 60.3%

Admin 23.8% 14.2% 14.8% 11.2% 19.4% 12.6% 16.8% 15.1%

Efficiency of execution 41.7% 24.5% 25.4% 14.5% 71.7% 17.7% 9.2% 20.8%

Table 5.14: Performance (means) of benchmarks with partial paging and 128 byte pages: initial
execution

Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 2951335 494889 497402 4022633 10585418 1281317 3542333

Mean 2391844 483565 485401 3722582 10405716 1032079 NA 3537339

Service cost 36023 0 0 268992 15978 50114 135763

Blocks 447162 0 0 2336904 258092 492560 1495933

Count

Hard Faults 52.2 0 0 174.1 26.7 33.2 173.4

Small Faults (and page table reads) 527.6 0 0 2552.6 285.6 477.2 1814.2

Share

Service 1.5% 0% 0% 7.2% 0.2% 4.8% 4.7%

Blocks 18.7% 0% 0% 62.8% 2.5% 47.7% 51.6%

Admin 27.0% 22.1% 22.1% 12.3% 17.6% 15.2% 18.4%

Efficiency of execution 52.8% 77.9% 77.9% 17.7% 79.7% 32.2% 25.4%

Table 5.15: Performance (means) of benchmarks with partial paging and 128 byte pages: continued
execution
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Figure 5.42: Observed worst execution times for each benchmark for partial paging with differently-
sized pages

As our exploration of EVT-based timings has shown, lower blocking in the memory tree
means that at safety critical margins, 128-byte pages might still be a better option for some
benchmarks than both 512-byte pages and 1024-byte pages. We did not collect the data to
formally test this but note that the range of completion times for different page sizes5 (Figures
5.43 - 5.50) shows that the gap between the observed performance of 512-byte pages and
128-byte pages is generally (all cases except benchmark 7) larger than that between 512-byte
pages and 256-byte pages.

�.� ���� ���� �����������

The increasing proportional cost of maintaining a semi-ordered list of page frames under a
CLOCK policy, as we eliminate blocks on the memory tree or use smaller page sizes, leads

5 We have excluded 1024-byte pages from the plot of results of benchmark 0 because the large gap between those
results and all others. In all cases except benchmark 0 we only plot the density for the initial runs for page sizes
other than 1024 bytes because these contribute the observed worst case. For benchmark 0 we show all instances of
512-byte paging.
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Figure 5.43: Density plots of observed tim-
ings for different page sizes with
partial paging (benchmark 0)

Figure 5.44: Density plots of observed tim-
ings for different page sizes with
partial paging (benchmark 1)

Figure 5.45: Density plots of observed tim-
ings for different page sizes with
partial paging (benchmark 2)

Figure 5.46: Density plots of observed tim-
ings for different page sizes with
partial paging (benchmark 3)
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Figure 5.47: Density plots of observed tim-
ings for different page sizes with
partial paging (benchmark 4)

Figure 5.48: Density plots of observed tim-
ings for different page sizes with
partial paging (benchmark 5)

Figure 5.49: Density plots of observed tim-
ings for different page sizes with
partial paging (benchmark 6)

Figure 5.50: Density plots of observed tim-
ings for different page sizes with
partial paging (benchmark 7)
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Figure 5.51: FIFO (red) and LRU (blue) life-
time curves compared for bench-
mark 0 with 512 byte pages
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Figure 5.52: FIFO (red) and LRU (blue) life-
time curves compared for bench-
mark 5 with 512 byte pages

us to consider whether a simpler first-in, first-out (FIFO) replacement policy could be a
reasonable alternative.

We would expect policies based on ordering pages by access time, such as LRU (of which
CLOCK is an analogue) to outperform FIFO [44] but perhaps not by much for small buffers.
Static analysis (see Figures 5.51 and 5.52 for illustrative examples) shows that the life curves
(i.e. the mean amount of code executed between faults when a given mean number of pages
are cached locally as a working set) for the benchmarks under FIFO are generally lower but
often broadly similar to those seen under LRU - further suggesting that while we should
expect a higher fault rate with FIFO the difference may not be great. If the simpler page
replacement logic means less time is lost to administrative tasks then FIFO could match or
surpass CLOCK performance for at least some benchmarks. However, this we might expect
this only to apply to the very first run: as CLOCK would (or at least should) preserve in
memory those pages that are most likely to be needed (as so require faulting back in if
removed) on subsequent runs.

We simulated FIFO with 512-byte pages using partial paging. The mean level of blocking
was higher than with CLOCK at 67.26 blocked packets on each cycle (10,853,620,898 blocked
packets over 161,375,684 cycles). Figure 5.53 (cf. 5.6) shows the average level of blocking in the
system varies through a small range when we smooth the count over 10,000,000 cycles.

Tables 5.16 and 5.17 show the average performance of the FIFO system for each benchmark.
Benchmark 1 rises to 100% efficiency after the initial run: with no page replacements required
and no administrative costs of an unneeded CLOCK interrupt, the system simply runs through
the code. Benchmarks 3 and 7 show a small improvement on subsequent runs but all the other
benchmarks show a decline in mean performance - reflecting both the lack of the memory
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Figure 5.53: Blocking in a partial paging system with 512-byte pages and FIFO page replacement
policy - plot is smoothed over 10,000,000 cycles

tuning that CLOCK delivers and the impact of entropy in the system, which we discuss further
below (in 5.4.1).

Table ?? compares observed maximum execution times for partial paging with FIFO page
replacement to partial paging with CLOCK-based page replacement. The figures suggest FIFO
may be a good choice for benchmarks which do not put too much pressure on the memory
system - delivering a lower maximum for benchmarks 0, 1 and 4. (It should be noted that
with benchmark 1 no pages are ever replaced, so the page replacement code is never called
with FIFO). However, in more complex cases it under-performs CLOCK. It also should be
noted that, with FIFO, the benefit of CLOCK seen in subsequent iterations (that pages in high
demand are held in memory) will not apply unless the program can fit in memory (as with
benchmark 1) - and as Figure 5.54 illustrates, the worst cases with FIFO are typically found
after the first run of the benchmark. We examine this further in 5.4.1.

�.�.� The impact of entropy on completion timings under FIFO

As we noted above (5.2.2) with 512 byte pages under partial paging the worst completion
times are generally seen with the initial iteration and this pattern is also seen with 256-byte
and 128-byte paging systems.
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Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 2146245 1165088 1123676 4406631 9639727 1367198 156993072 4408034

Mean 2142056 1158976 1121688 4388787 9630301 1355769 156672843 4393091

Service cost 39900 30550 30200 221550 42850 51300 6965750 169550

Blocks 747691 676100 639283 3242145 1191934 863923 125088358 3236443

Count

Hard Faults 32.0 25.0 26.0 75.0 33.0 37.0 5986.0 135.0

Small Faults (and page table reads) 724.0 586.0 578.0 2036.0 782.0 849.0 97135.0 2214.0

Share

Service 1.9% 2.6% 2.7% 5.0% 0.4% 3.8% 4.4% 3.9%

Blocks 34.9% 58.3% 57.0% 73.9% 12.4% 63.7% 79.8% 73.7%

Admin 4.3% 6.5% 6.6% 6.1% 1.0% 8.0% 7.1% 5.7%

Efficiency of execution 58.9% 32.5% 33.7% 15.0% 86.1% 24.5% 8.6% 16.8%

Table 5.16: Performance (means) of benchmarks with partial paging and 512 byte pages using FIFO
replacement policy: initial execution

Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 2639271 376891 1418667 4896644 10213377 2558750 4785509

Mean 2482276 376891 1220420 4611916 10007962 2115834 NA 4410733

Service cost 55781 0 37700 257408 65197 101281 176754

Blocks 1069836 0 729001 3423385 1543679 1564971 3241789

Count

Hard Faults 29.1 0 26.0 68.5 30.1 34.3 132.0

Small Faults (and page table reads) 734.1 0 598.0 2062.0 801.4 910.6 2279.0

Share

Service 2.2% 0% 3.1% 5.6% 0.7% 4.8% 4.0%

Blocks 43.1% 0% 59.7% 74.2% 15.4% 74.0% 73.5%

Admin 3.8% 0% 6.2% 5.9% 1.0% 5.5% 5.8%

Efficiency of execution 50.9% 100% 31.0% 14.3% 82.9% 15.7% 16.7%

Table 5.17: Performance (means) of benchmarks with partial paging and 512 byte pages using FIFO
replacement policy: continued execution
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Figure 5.54: FIFO observed worst execution times compared to CLOCK for 512 byte pages

But as Figure 5.54 shows, with FIFO the worst execution times can occur after the first
iterations and Figure 5.55 demonstrates6 that timing uncertainty grows over time with FIFO
- it can be seen the timings are tightly packed for initial iterations but then become spread
out as the benchmarks interact by blocking each other’s memory requests and so inject
greater randomness into the timing: in other words it is a product of entropy in the memory
connection.

This instability in completion times is despite the regularity in the pattern of FIFO faults -
for instance, as Table 5.18 shows, benchmark 5, after the initial iteration, repeats a pattern of
hard and small faults with a period of seven iterations, but the range of timings grows, as
shown by s, the standard deviation of completion times. Though the figures also suggest that
the system approach some form of equilibrium.

If we consider the two major sources of entropy in the CLOCK-based partial paging systems
to be the CLOCK mechanism itself and the blocking and queuing in the connection to memory,
then the FIFO system allows us to consider which of these might be the dominant factor.
Figures 5.56 - 5.61 show the variation in completion times for several benchmarks using
partial-paging FIFO, traditional paging and partial paging with a CLOCK replacement policy -

6 In Figure 5.55 the boxes show the interquartile range (IQR) between the first and third quartile, with the black line
as the median, while the whiskers extend 1.5 IQR at either side. We have suppressed the display of outliers to
make what are already crowded charts a bit easier to read.



�.� ���� ���� ����������� 179

Figure 5.55: Range of performance timings with partial paging and FIFO page replacement
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Figure 5.56: Standard deviation (s) of completion times for benchmark 0, for partial-paged FIFO (left),
traditional CLOCK (centre) and partial-paged CLOCK (right)

Figure 5.57: Standard deviation (s) of completion times for benchmark 2, for partial-paged FIFO (left),
traditional CLOCK (centre) and partial-paged CLOCK (right)

along with a local regression line. The general pattern is that, for CLOCK-based partial paging,
uncertainty starts at a high level but is broadly stable, while for FIFO initial low variation
quickly disappears. The pattern varies for different benchmarks (for instance, for benchmark
0 it appears CLOCK is poorly tuned to match the rapid variation in the working set that we
know occurs) but overall there is little to suggest that avoiding the uncertainty that comes
from using a CLOCK policy delivers greater stability if the price of that is more blocking and
queuing in the system. We test this further in 5.4.2 when we consider EVT analysis of the
FIFO results.

Figure 5.62 shows the standard deviation of completion times for three of the benchmarks
when using CLOCK and 256-byte paging: these results show that instability in timing under
FIFO rises towards values which are similar to those seen with the partial-paging CLOCK
system.
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Iteration Hard Faults Small Faults µ Completion time s Completion Time

0 34 905 2246187 3337

1 34 904 2119739 9961

2 35 918 2067552 17146

3 34 905 2268026 7250

4 34 920 2058722 15778

5 35 916 2282312 5916

6 34 906 2007399 18714

7 34 905 2284146 10350

8 34 904 2041751 35884

9 35 918 2227193 34124

10 34 905 1875559 40829

11 34 920 2140236 18925

12 35 916 2003849 29758

13 34 906 2425214 45621

14 34 905 2088478 37584

15 34 904 2053084 37584

16 35 918 2143496 43957

...

30 35 918 1874172 28347

37 35 918 2235360 30256

44 35 918 2162238 25336

Table 5.18: Cycle in FIFO faults for benchmark 5
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Figure 5.58: Standard deviation (s) of completion times for benchmark 3, for partial-paged FIFO (left),
traditional CLOCK (centre) and partial-paged CLOCK (right)

Figure 5.59: Standard deviation (s) of completion times for benchmark 4, for partial-paged FIFO (left),
traditional CLOCK (centre) and partial-paged CLOCK (right)

Figure 5.60: Standard deviation (s) of completion times for benchmark 5, for partial-paged FIFO (left),
traditional CLOCK (centre) and partial-paged CLOCK (right)
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Figure 5.61: Standard deviation (s) of completion times for benchmark 7, for partial-paged FIFO (left),
traditional CLOCK (centre) and partial-paged CLOCK (right)

Figure 5.62: Standard deviation (s) of completion times for benchmarks with 256-byte pages and
CLOCK-based page replacement
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Benchmark ADF test p-value

0 <0.01

1 NA

2 <0.01

3 <0.01

4 0.0663

5 <0.01

6 NA

7 <0.01

Table 5.19: Augmented Dickey-Fuller test results for 512-byte FIFO partial paging (alternative hypo-
thesis is stationary values)

Benchmark p-value for
Gumbel

Block size
used

Sample
size used

p-value for
Fréchet

Block size
used

Sample
size used

0 0.6304 32 32 0.5845 32 30

2 0.07518 48 43 0.05375 48 43

3 0.98022 24 23 0.5856 24 23

5 0.7269 24 50 0.6956 24 50

7 0.3782 24 24 0.3391 24 24

Table 5.20: Goodness of fit tests for Gumbel and Fréchet distributions for partial paging with FIFO
512-byte page size

�.�.� EVT-based analysis of FIFO timings

We can apply the EVT methods discussed in Section 4.9.2 to the FIFO results. Again, caveats
apply - particularly that we do not have the i.d.d. property.

Here we compare, where possible, the pWCETs for the 512-byte page FIFO instances with
those for the CLOCK-based partial paging systems considered in Section 5.2.2.

The first question is to what extent we can consider the distributions of completion times as
stationary. Results in Table 5.19 show that results exhibit stationarity for all but benchmark 1
(which is fully bi-modal), 4 and benchmark 6 (where insufficient data is available).
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0 2 3 5 7

Observed maximum 2639271 1418667 4896644 2558750 4785509

Computed µ 2539555 1305316 4685243 2237134 4510743

Standard error for computed µ 5932 5932 8389 5932 8389

Computed b 35184 41029 75234 70913 110038

Standard error for computed b 4843 4194 8389 4194 8389

Memo: computed µ for partial paging 2452575 1317823 - 1692572 -

Memo: computed b for partial paging 99198 4285 - 4418 -

Computed percentage for observed maximum ⇡ 94.3% ⇡ 93.9% ⇡ 94.2% ⇡ 98.9% ⇡ 92.1%

Computed threshold for 10�1 maxima (i.e. 0.9 CDF) 2618732 1397646 4854547 2396714 4758369

ditto 10�3 2782580 1588714 5204903 2726948 5270804

ditto 10�6 3025640 1872153 5724639 3216833 6030974

ditto 10�9 3268682 2155571 6244337 3706683 6791090

ditto 10�12 3511726 2438990 6764037 4196534 7551208

ditto 10�15 3754795 2722440 7283793 4686439 8311409

Memo: 10�15threshold for CLOCK (pp) 5878832 1465825 - 1845168 -

Memo: Observed maximum for traditional paging 3109766 1780333 4798261 2262785 3845509

Computed threshold equivalent for FIFO (with pp) ⇡ 9.1⇥ 10�8 ⇡ 9.4⇥ 10�5 ⇡ 80%(CDF) ⇡ 50%(CDF) n 0.1%(CDF)

Table 5.21: Estimated Gumbel distributions for Benchmarks 0, 2, 3, 5 and 7 with 512-byte FIFO partial
paging compared

Table 5.21 shows the modelled Gumbel distributions of pWCETs for 512-byte partial-paging
FIFO for benchmarks 0, 2, 3, 5 and 7. For benchmarks 0, 2 and 5 we also show the available
comparisons for CLOCK-based partial paging with the same page size7.

The results suggest that FIFO appears to be a generally poor choice for a page replacement
algorithm, with performance comparable to traditional paging in some cases. With benchmark
0, where we have already noted that our CLOCK algorithm appears poorly tuned to handle
the large number of page replacements required, FIFO does well. In every other case, though,
it gives a poor performance which appears to reflect a failure to hold required pages in
memory (so increasing the fault rate and delays caused by blocking) - leading to a high value
of µ and that blocking then adding to entropy (and hence extending the timing range) - as
shown by a high b.

Figures J.1 - J.5 in Appendix J on page 243 plot the quality of the fit to the Gumbel
distribution and the Q-Q plots suggest we may be over-estimating the length of the tail: a
much larger collection of data is undoubtedly required to give more robust answers but the
general pattern seems clear.

7 For the “observed maximum” here we have used the maximum seen on the first iteration of the runs tabulated in
Tables 5.1 and 5.2 rather than the results of the tests for EVT.
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Figure 5.63: Block model of a simple crossbar/switch connection
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The advantage of the tree-like design, certainly for realtime uses, is that all routes from the
processors to the MMU are of equal length and CPU to CPU traffic cannot block memory
requests [65]. But, as discussed in Section 4.2.4, there are alternatives to the tree that preserve
predictability and maintain the general fairness characteristic we identify as important in 4.2.5.
We test both a crossbar-based and a multiple-bus-based approach in this section.

As with the tree-based approach these methods aim to preserve a constant distance between
the memory-requesting cores and external memory and operate a fair (and generally stochastic)
arbitration process for requests. Access time to external memory is governed by a probability
distribution that is independent of the location (or number) of the requesting processor and is
the same for all processors.

�.�.� A crossbar memory connect

A crossbar (switch) mechanism, allowing all processors to communicate directly a (one-
packet) buffer connected to the MMU maintains equidistance between cores and memory. In
this arrangement one packet can be buffered waiting for the MMU to become free (with a
maximum of four memory requests being serviced simultaneously by the MMU). Figure 5.63
presents a simple block model of this arrangement.

Here processors request access to the buffer. If the buffer is empty then the packet is
immediately accepted and the buffer marked as full. A packet has to wait at least one cycle
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Figure 5.64: Blocked packets with simulated crossbar connect for 512-byte partial paging

in the buffer but a packet can move from the buffer into the MMU and a new packet can
be accepted in the buffer in the same cycle. As before the MMU can process four packets
simultaneously and read requests are served in 50 cycles and write requests in 100 cycles
(each request is 16 bytes long). On being released by the MMU a packet is returned to the
requesting processor in 8 cycles. We did not model a return mechanism, though conceivably
this could be a delay-free tree.

If there is a packet buffered and waiting for service then a requesting processor makes
repeated requests after a backoff period which varies from 21 to 27 (i.e. from 2 to 128) cycles
(if this has failed after 27 cycles the backoff reverts to 21), with the backoff increasing by a
power of two each time.

This system (with 512-byte pages and using partial paging) has an average blocking count
of 41.1 (10,998,635,238 blocked packets over 267,598,998 cycles) compared to 45.2 for the
tree-based system. Figure 5.64 shows a smoothed plot of the number of blocked packets and
this looks much like Figure 5.6.

Tables 5.22 and 5.23 show the broad performance of the different benchmarks under this
scheme, again these are not hugely different from the tree-based results (as shown in Tables
5.1 and 5.2). It seems that those benchmarks which make heavy calls on memory (3 and 6) are
a little slower while the others are slightly faster. It is noticeable, though that the gap between
maximum and average times seems smaller and we consider an entropy model of the system
below.
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Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 2485800 1343184 1332485 4259658 10619277 1622117 125430329 3882840

Mean 2422466 1316339 1295115 4190638 10528907 1594327 124451968 3604490

Service cost 43328 30550 30444 233756 41816 73100 6155759 154378

Blocks 736239 768815 746804 2941809 604814 1034550 92752773 2331183

Count

Hard Faults 31.6 25.0 26.0 66.1 32.3 34.0 5188.3 126.1

Small Faults (and page table reads) 748.5 586.0 581.3 1995.7 782.1 852.0 85936.4 2080.4

Share

Service 1.8% 2.3% 2.4% 5.6% 0.4% 4.6% 4.9% 4.3%

Blocks 30.4% 58.4% 57.7% 70.2% 5.7% 64.9% 74.5% 64.7%

Admin 15.7% 10.6% 10.8% 8.5% 15.1% 9.7% 9.7% 10.6%

Efficiency of execution 52.1% 28.6% 29.2% 15.7% 78.8% 20.8% 10.8% 20.4%

Table 5.22: Performance (means) of benchmarks with partial paging and 512 byte pages with crossbar
connection to MMU: initial execution

Benchmark 0 1 2 3 4 5 6 7

Memo: minimum instruction time 1262292 376891 378280 658567 8295863 332299 13437582 736058

Ticks

Maximum 2344953 442278 621986 3933637 9945240 1039688 125746015 3643035

Mean 1716808 441564 459934 3665154 9855577 908597 124735079 3193231

Service cost 31653 0 3242 223419 19107 52399 6160144 159066

Blocks 91206 0 6305 2460394 35033 421786 93031267 1919892

Count

Hard Faults 17.6 0 3.1 44.5 10.2 11.9 5177.2 118.5

Small Faults (and page table reads) 429.9 0 56.6 1684.5 281.7 402.8 85881.4 2075.7

Share

Service 1.8% 0% 0.7% 6.1% 0.2% 5.8% 4.9% 5.0%

Blocks 5.3% 0% 1.4% 67.1% 0.4% 46.4% 74.6% 60.1%

Admin 19.3% 14.6% 15.7% 8.8% 15.3% 11.2% 9.7% 11.8%

Efficiency of execution 73.5% 85.4% 82.2% 18.0% 84.2% 36.6% 10.8% 23.1%

Table 5.23: Performance (means) of benchmarks with partial paging and 512 byte pages with crossbar
connection to MMU: continued execution
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Attempt Total Wait Expected wait
(partial)

Probability Entropy
contribution

Total entropy

1 0 0 1
37 0.14 0.14

2 2 0.05 36
37 ⇥

1
37 0.14 0.28

3 6 0.21 (1� ( 36
37 ⇥

1
37 ))⇥

1
37 0.14 0.41

... ... ... ... ...

9 256 16.86 0.0217 0.12 1.17

10 260 22.35 0.0211 0.12 1.29

... ... ... ... ...

100 3558 919.89 0.00179 0.016 5.95

Table 5.24: Simplified model of entropy for crossbar system

�.�.�.� An entropy model of the crossbar system
We can see that the system delivers similar average (mean) timings as the tree-based system
and to consider pWCETs we can model the entropy of the system. For benchmark 1, which
has no memory write-backs, the average blocking per packet is 1256 cycles (in comparison to
1262 cycles for 512-byte partial paging with CLOCK, and 1107 cycles with FIFO using partial
paging). The average blocking over the first 1,316,339 cycles is 73.2 blocked packets. If we
assume that (at this point) 90% of all packets are read-only requests then the average time to
serve a packet will be 55 cycles and to maintain a constant queue length a new packet has
to enter the system every 13.75 cycles on average. We will round this up and assume that it
means a packet sits in the buffer for 14 cycles before being serviced and so the time blocked
waiting to get to the buffer becomes 1232 cycles.

We can model the acceptance process as a Markov process (i.e. memory-less in that each
request has a fixed probability of succeeding) and by trial and error find a probably for packet
acceptance that gives an expected waiting time that matches the observed time. In this case a
probability of 1 in 37 gives a good fit, converging towards 1233.67 cycles which is close to our
observed value.

Some values for timing expectation and packet entropy generated using this approach are
shown in Table 5.24. Using these values the entropy converges towards 6.63 per packet. With
73.2 blocked processors this gives a total entropy of 485, substantially lower than the 668
our model would predict for a tree-based system. This is despite the backoff system being
unbounded in a way the tree-based system is not.
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Figure 5.65: Standard deviation (s) of completion times for benchmarks with 512-byte pages and
CLOCK-based page replacement using crossbar memory connect

Benchmark 0 1 2 3 4 5 6 7

Crossbar 2485800 1343184 1332485 4259658 10619277 1622117 125746015 3882840

Tree 2871432 1345670 1349593 4198788 10961440 1712878 107296451 3845509

Table 5.25: Maximum observed execution times (cycles) compared for 512 byte pages with crossbar
and memory tree with CLOCK and partial paging

The lower entropy in the system might still allow it to deliver better performance at extreme
and safety-critical limits despite under-performing compared to the tree-based system for
some benchmarks. We did not record data here in a way that would allow us to use EVT
analysis (the results are bimodal again), but Figure 5.65 does suggest that the variation in
completion times is indeed somewhat lower than with the tree-based design (cf. Figure 5.56
for benchmark 0, for instance). The gap between the performances for benchmark 6 for the
two systems remains large however.

We did not model the use of a crossbar/switch with traditional paging (below in 5.5.3,
though, we do consider traditional paging with a bus-based arrangement which generally
performs similarly to this crossbar model). However it seems reasonable to expect that using
a traditional paging approach will increase the amount of blocking in the system and thus
increase the length and range of waiting times, so increasing entropy in the system.

�.�.�.� Changing the back off range
The system is sensitive to the backoff ranges chosen. If we change the maximum backoff range
to 29 cycles then blocking rises: if the average number of attempts to gain access to the buffer
is substantially greater than the number of elements in the backoff cycle then this is almost
certainly going to happen, even if the additional waiting time creates opportunities for other
processors to grab control of the buffer.
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Benchmark 0 1 2 3 4 5 6 7

Max backoff of 29 cycles 2722913 1420524 1389744 4960962 10735543 1886881 134563137 4151912

Max backoff of 27 cycles 2485800 1343184 1332485 4259658 10619277 1622117 125746015 3882840

Table 5.26: Maximum observed execution times (cycles) compared for 512 byte pages wi7th crossbar
using different maximum back off times

Switching to this backoff regime increases mean blocking to 44.7 blocked packets (12,472,693,515
blocks over 278,989,309 cycles) , while Table 5.26 shows how this is manifested in the observed
worst execution times.

Considering the requests and waiting time, in this case benchmark 1 has an average blocking
count of 1366 blocked packets per fault and again we assume that 14 of these are spent waiting
in the buffer. By fitting the wait time to a Markov chain model we approximate the success
probability per request, with a modelled wait time of 1355 cycles, as ⇡ 10

157 - in other words
we should expect that a packet would require fewer requests to be accepted: so increasing the
backoff range cuts the projected mean number of requests needed to succeed by more than
half but slows down overall performance.

In our entropy model per-packet entropy falls to 5.37, while the mean blocking over the
1,381,891 cycles that benchmark 1 takes to complete (on average) in this regime rises to 77.3,
giving a projected total entropy of 415, lower than for the smaller-range backoff system.
However Figure 5.66 (cf. Figure 5.65) does not support this conjecture of lower entropy: in fact
suggesting that disorder in completion times increases somewhat.

We are forced to conclude the entropy model is flawed in that it relies on targeting a fixed
blocking count - it will be the case that typically the larger backoff system requires fewer
requests to succeed, but as we are considering the range of values when we look at entropy
we must consider the distribution of blocking (over time) and not just its mean value. The
marginal cost of additional requests in the larger-backoff system is likely to be higher, perhaps
substantially so, and so that system will display a larger range of completion times.

In a real world system a decision on what range of backoff timings to use may be dependent
on various factors: for instance a higher maximum backoff might lead to lower power
consumption if waiting processors consume less energy. But these results do suggest that
backoff tuning has performance and predictability implications.

�.�.� Multi-layered bus-based connectors

Large crossbars and switches are generally avoided because of their energy requirements and
electronic complexity, so we consider bus-based alternatives.
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Figure 5.66: Standard deviation (s) of completion times for benchmarks with 512-byte pages and
CLOCK-based page replacement using crossbar memory connect with maximum backoff
of 29cycles

As noted above (Section 2.3), buses are generally not an effective means of connecting large
numbers of processors: signals attenuate and can be slow to propagate and the method is
generally inefficient, though are generally relatively simple to implement. Here we tested a
simulation of a multi-layered bus arrangement rather than modelled a single bus connecting
all cores.

Each processor core was connected to a bus that was also connected to 15 other cores and
which could buffer a single packet. We reason that without some sort of buffering capacity no
such benchmark arrangement would be likely to be feasible for a large number of processors.
These eight buses were then connected to a single bus which is in effect at the bottom of a
chain of six further buses (or chained buffers), each of which can buffer a single packet (so the
total number of packets that can be buffered in this arrangement is 8 + 7 = 15 (in contrast in
the tree-based connect there are more buffers than processors).

Figure 5.67 shows the essentials of the arrangement being tested (though shows the minimal
buffering version of this experiment described below): a group of 16 processors is chained to
a single bus and then these 8 buses are themselves connected by a single bus.

Only one processor can master each of the buses at the bottom level and access is again
governed by a backoff algorithm: with each processor cycling through a delay of 20 - 27 cycles
if an initial attempt to master the bus fails. This bottom layer of buses then attempts to master
the next point in the chain, again applying a backoff, though the cycle here is between 20

and 23 cycles. Above this point packets can move forward every cycle should the chained
buffer in front become empty. The minimum journey time between the core and the MMU
thus remains 8 cycles, as with the tree.

We again assume an 8 cycle return time to the requesting processor when the request is
completed.
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BUS (second level)

TILES

BUSES (first level)

BUFFERS

MMU

Figure 5.67: Simplified representation of multi-layered bus connection

0 1 2 3 4 5 6 7

Same benchmark 2611484 1340816 1343941 4181388 10599044 1614364 123106007 4040913

Range of benchmarks 2809824 1335642 1295518 4250247 10845018 1724218 108333976 3916552

Table 5.27: Observed maximum execution times (cycles) compared for 512 byte pages with different
bus arrangements

We attached the processors to the bottom of the chain of buses in two different ways - either
with every processor running the same benchmark attached to the same bus or each bus
being attached to 2 rows of processors where each processor in a row was running a different
benchmark.

For the case where the benchmarks are not grouped together the average blocking was 45.0
(5,600,624,321 blocks over 124,440,980 cycles). When grouped the blocking is lower at 41.3
(5,194,104,541 blocks over 125,881,844 cycles). The maximum observed completion times for
both arrangements are shown in Table 5.27.

The results suggest that where benchmarks which make heavy demands of the memory
system (particularly benchmark 6) compete against only against the same code they are
slowed, while when all the benchmarks compete against one another, the highly demanding
benchmarks benefit at the cost of the others.

��������� ��� ��� ������ �� �������� ��������� ��� �������� We reconfigure
the system so to use just two bus layers and so only be capable of buffering 9 packets and so
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Figure 5.68: Indexed observed maximum execution times for different connection arrangements (tree
= 100.0)

also reducing the minimal bus traversal time to 2 cycles, (the return time was also reduced to
2 cycles). This does not result in a uniform change in benchmark performance. Table 5.28 (top
row) shows the observed maximum execution times (when buses are attached to processors
running a range of benchmarks). Blocking rises to 45.9 (5,177,101,890 blocks over 112,910,216
cycles) reflecting the loss of buffering capacity (and so forcing processors to spend longer in a
backoff cycle as they compete for mastery of the buses).

Once again (cf. Table 5.27) the performance results show a similar pattern to the tree (and
thus the crossbar) and this suggests that the bigger trade-off here is between how the different
benchmarks are grouped, rather than the choice between the various connection patterns
tested. When other benchmarks compete directly against the benchmarks with the highest
fault rates they tend to take longer and vice versa, but the differences are often not great for
everything except benchmark 6 (see Figure 5.68).

�.�.� Traditional paging with a bus connection

To complete the picture we consider the behaviour of a bus-based system using traditional
paging. In this case we use a bus system with minimal buffering (as described in 5.5.2 above).
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Figure 5.69: Blocks for 512 byte page sized traditional paging using interlinked buses (smoothed)

0 1 2 3 4 5 6 7

Partial paging 2665386 1326565 1327555 4221647 10846057 1722333 108569056 3829709

Traditional paging 3217417 1768072 1825805 4958499 11486664 2244862 236293254 7992146

Table 5.28: Observed maximum execution times (cycles) compared for 512 byte pages with different
bus arrangements

As Figure 5.68 suggests, across all the benchmarks this model most closely matches the
performance of the tree-based connect and so offers a good basis for comparison with our
wider set of results. The mean blocking is 52.0 (16,343,646,381 packets over 314,300,325 cycles)
- somewhat higher than the partial paging system with the same bus arrangement (Figure
5.69).

A higher blocking count indicates higher entropy and so we see a greater range of comple-
tion times (eg., Figures 5.70 - 5.72) as well as higher maximum observed completion times (cf.
Table 5.28). In fact the maximum observed timings for this system are very similar to those
seen for traditional paging when using the Bluetree-like connection (cf. Table 5.3).

�.�.� An entropy model for buses

Multiple factors will determine the level of entropy in the different bus-based systems. Multiple
buffers will work to increase entropy as each adds an element of uncertainty to the length
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Figure 5.70: Spread of completion times for benchmark 0 compared for traditional and partial paging
using buses.

Figure 5.71: Spread of completion times for benchmark 3 compared for traditional and partial paging
using buses.
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Figure 5.72: Spread of completion times for benchmark 7 compared for traditional and partial paging
using buses.

of time a packet will wait to be serviced. In contradistinction the additional blocking seen
with the minimally buffered system shows that packets are typically spending longer in the
backoff procedure and so exposed to a wider range of delays.

Figure 5.73 shows the spread (as standard deviation) of completion times for benchmarks 0,
3 and 5 for the grouped bus system, the ungrouped bus system and for the minimally-buffered
system. (cf. Figure 5.65 and Figure 5.66). These charts strongly suggest that the grouped system
delivers the lowest entropy.

With traditional paging the higher level of blocking increases entropy and, as illustrated in
Figures 5.70 - 5.72, increases the range of (as well as the mean for) completion times.

�.� �������

We find (Section 5.1) that 512-byte pages perform better than 1024-byte pages and similarly
256-byte pages generally perform better than 512-byte pages (Section 5.3). Despite increasing
the fault rate for most benchmarks the smaller page sizes can lower fragmentation for some
benchmarks and in a system where all processors share the connection to main memory, this
reduction in traffic lowers blocking and, by reducing system entropy, also improves worst case
execution times.
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Figure 5.73: Standard deviation (s) of completion times for benchmarks 0, 3 and 5 with 512-byte pages
and CLOCK-based page replacement using grouped buses with multiple buffers (top
row), ungrouped buses with multiple buffers (middle row), and ungrouped buses with
minimal buffering (bottom row)
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For 128-byte pages, though, the process goes into reverse, with a rising fault rate and the
loss of free memory space to larger page tables causing execution times to rise (Section 5.3.4).

We find that FIFO, as a simpler alternative to CLOCK-based page replacement, while often
given better typical-case performance (Section 5.4) is likely to be a poor choice for safety-
critical systems as its high level of sustained blocking extends timing limits at such critical
thresholds (Section 5.4.2). FIFO is also subject to growing entropy as execution proceeds
(Section 5.4.1).

Alternatives to the tree-based memory connect based on either a crossbar switch (Section
5.5.1) or a network of buses (Section 5.5.2) are shown to give similar timing results to the tree-
based system, though examining system entropy and uncertainty shows there are multiple
factors to be considered (Sections 5.5.1.1 and 5.5.4). Using a traditional paging approach with
the bus-based alternative connection generates very similar results to using traditional paging
with the tree-based memory connect: with higher blocking, lower performance and greater
uncertainty in completion times than partial paging (Section 5.5.3).

These results show that partial paging is likely to have a general applicability and is not
dependent on the connection medium used. By reducing traffic to the MMU partial paging
lowers blocking and queue lengths for memory service and in systems with a large number of
cores, restricted local memory and a memory connection bottleneck limiting such traffic may
be an effective or the most effective way of both improving mean and worst-case performance.
Picking an effective and well-tuned page replacement mechanism will also be essential to
deliver the benefits that partial paging could offer.





6 C O N C L U S I O N S A N D F U T U R E W O R K

In Section 1.4 we set ourselves the task of proving a research hypothesis:
Paged virtual memory can be implemented in an effective manner for a many-core real-time system

in a way that minimises the worst case execution times for real-time tasks: not through the traditional
means of a better page replacement algorithm, but through a more efficient and real-time-appropriate
’partial page’ loading algorithm. Furthermore, this partial paging approach is most effective with smaller
page sizes and, by limiting queuing for memory service, partial paging reduces entropy in the system
and thus increases certainty about timing.

In this thesis we have firstly described the observed behaviour of programs in execution,
running on many-core systems with limited local memory, that we believe indicates that
a better page loading algorithm desirable as programmers seek to handle larger and more
complex workloads. We have then set out what we believe to be such an approach in the
form of a workable partial paging virtual memory algorithm. We then report the results of
tests in software - no hardware implementation being available - of a simulated many-core
NoC system using this partial paging approach while running benchmarks designed to test
embedded real-time systems. We have compared partial paging’s performance to a traditional
whole-paging approach, suggested a simple load control mechanism and developed an
entropy model for the system and considered probabilistic worst case execution times.

Subsequently we have considered ways in which a partial paging system could be optimised,
examining smaller page sizes and using a simpler (FIFO-based) page replacement policy.

This thesis provides valuable signposts to those seeking to implement virtual memory in
many-core systems, particularly those using network-on-chip designs. We demonstrate that,
despite severe resource constraints, partial paging offers a mechanism to improve performance
and to provide predictable worst-case execution times at extreme or safety-critical limits.
Further we develop a model of system entropy that helps explain the factors that shape the
variability of WCETs and so improve understanding of the impact of the design choices that
hardware implementors will face.

201
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�.� �������������

In Chapter 4 we propose a better page loading algorithm via partial paging and demonstrate
results that show, if this could be implemented in hardware, it has the potential to allow a
paged virtual memory system to offer a significant improvement in both typical execution
timings and worst case execution timings compared to a traditional whole-page-loading
paging system. In this chapter we also discuss how a simple load control mechanism might be
implemented and develop a model of system entropy that offers an insight into uncertainty in
execution timings.

In Chapter 5 we show how smaller page sizes are likely to deliver both better average
performance and, by limiting system entropy, better worst case performance. We show, though,
that there are limits to how small pages can go before the page tables needed to manage them
become unwieldy. We present evidence that whilst a simple page replacement policy in the
form of FIFO may match or better the performance of an LRU-analogue such as CLOCK in
the typical case, at extreme, safety critical, limits it may show significantly poorer performance
compared to a well-tuned CLOCK system. We also show how FIFO is subject to increased
timing uncertainty over multiple executions. Finally we show that our results are likely to be
generally applicable to any system that seeks to buffer and arbitrate memory requests.

These contributions show it is possible, with appropriate hardware, to construct a system
that delivers effective and efficient use of a many-core NoC system with predictable timing
bounds, answering the need to provide embedded real-time computing services for larger
and more complex computing tasks, so proving the hypothesis.

�.� �����������

Our first major conclusion is that many-core NoCs can be developed as viable devices to
handle a large number of complex concurrent computing tasks. Typically partial paging is 50 -
100% faster than traditional paging for average execution times for demanding code, and our
results show that lowering blocking in the system does not just improve average execution
times but limits the range of execution times and so delivered better probabilistic worst case
execution times.

We would point out that these are conclusions about asynchronous concurrent tasks rather
than the parallelism defined in [80] as “harnessing multiple processors to work on a single task”
and requiring synchronisation across processors or cores. The results outlined in Appendix
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A suggest that in such systems the memory gap effect overwhelms the advantage of having
large numbers of cores.

Our work does show there are many parameters that can be tuned to deliver the best
performance. In software these include the page size, the page replacement policy to be used
(and subsequently any parameters for the chosen policy, such as the rate at which a CLOCK
policy marks pages for replacement and how many pages are marked).

Many of these choices look like options inside a zero-sum game. A further option - whether
to implement a simple load control mechanism - illustrates the point: slowing down the
system lowers the speed of most benchmarks but because it also reduces traffic rates in the
memory connect it speeds up the slowest (and most demanding) benchmark.

Designers and implementors of partial paging hardware and systems will need to consider
how best to tune their system for the task in hand.

�.� ������� ����

Ou work in this thesis suggests several areas for further research.

�������� ��� ������� ������ For partial paging to be viable it needs to be supported
in hardware. Our mechanism relies on CPUs trapping address references in parallel to TLB
lookups. It then requires a high-speed lookup of a bitmap. The second of these could be done
in software but only slowly. Projects such as RISC-V [11] make it feasible to consider building
such hardware as a research project without substantial commercial risk.

����� ����������: ��� ��� ���� ������� In 2.8 we mention the issue of “dark
silicon” and the likely need to actively manage power on a NoC device to avoid overheating,
but we have not reported on any experiments here. In fact we did consider one alternative to
dark silicon, so-called “dim silicon”. In [83] the authors suggest that ideally future generations
of chips could be operated at 0.5⇥ nominal voltage for the best results as “dim” silicon, whilst
in [153] the author suggests a ratio of 5:8 between power savings and frequency fall for such
near-threshold operations: pointing to a 4⇥saving on power and a 6.4⇥ drop in the frequency
of operation.

Here we looked to operate the overall system at (approximately) 50% of maximum design
power. In doing so we estimate that the on-chip networks and routers, including the tree-based
memory connect use 30% of total system power: basing this assumption on the data collated
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Figure 6.1: Completion times and blocks with dim silicon with 512-byte partial paging

in [141] which mentions interconnection networks consuming 10%, 17%, 28% and 36% of total
design power respectively.

Cores operating at near-threshold voltages use less power but suffer a substantial time
penalty (as the lower current demands a lower frequency) and it has been remarked that
“multicores show poor performance in a low-voltage, dim silicon configuration, and prefer
operating at a higher-voltage, dark silicon configuration.” [152] Here we have cores running
seven-times slower than nominal clock speed (with the network and routers using a fixed
budget 30% of maximum design power we need the rest of the system to reduce power from
70% of design power to around 20%). The network itself continues running at nominal clock
speed. We also assume that each bitmap lookup takes seven ticks.

Figure 6.1 shows that under this regime completion times are high and that blocking is
relatively low. For the first iteration of the benchmarks plotted here1 the coefficient of the
relationship between blocking and completion time has fallen to 0.002612, so the ability of
partial paging to speed up execution is very limited.

An experiment to judge the impact of dark silicon is not as straight forward. The most
obvious issue is how to deal with the 30 - 50% (or more) time processors are blocked: as they

1 Excluding benchmark 0 for which only one data point is available.
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are idle they can be relaxed and are unlikely to consume as much power/emit as much heat.
But how much power reduction can we assign to this (it will be noted we assumed no power
reduction for dark silicon)? That may be a vital performance question.

In fact a real consideration of the issues around dark silicon is likely to require real, partial-
paging-supporting hardware if it is to have any practical value even as a design guide: the
power management behaviour of real processors being so important in these circumstances.

����������� ���� ����������� ���������� Every fault, hard or small, costs of the
order of 1000 cycles due to blocking in the memory connect and faulting-in a 16 byte line that
then needs to be replaced will double that cost. Here we only tested a very simple CLOCK and
FIFO page replacement, but the high cost of a fault means there is scope for a computationally
more expensive replacement policy to be deployed if it reduces the fault rate. One possibility
is a version of the Linux 2Q policy [88] or a policy that seeks to avoid replacing pages that
need to be written back.

����� ���������� ��� ���� ������� We have not considered scheduling questions in
this thesis, focusing on questions of execution time instead. Scheduling is likely to be a rich
area for experimental exploration as each processor’s performance is dependent on that of all
others in the system thanks to the shared memory connect. But an area of interest is whether
a mixed (as suggested in 4.9.2.2) or adaptive approach to load control would improve overall
performance.

�.� ����� �������

In the past the standard advice to real-time systems developers has been to not use virtual
memory. In the future the question is much more likely to be which form of virtualisation is
most appropriate. GPUs and NoCs are similar in that they have a small pool of fast memory
available locally and are being tasked to run programs that need to use much more memory
than that pool provides. Placing more memory on chips has to be balanced against the loss of
space for compute components and does not escape from the dark silicon trap either: so an
efficient interaction with global memory storage is essential.

The traditional whole-page paradigm is, in many ways, a left over from the days when
all such storage was likely to be some form of spinning magnetic media. It is likely in such
circumstances to be more efficient to read off a large contiguous chunk of data in one go, even
if much of it isn’t needed, than to keep coming back for more. Solid state media eliminate that,
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though of course there are other advantages in managing data in large chunks. Partial paging
is an attempt to keep some of those advantages (such as a relatively simple mapping of global
to local addresses) while also avoiding the dead-weight costs of unnecessarily moving data
about a system that is already congested with such traffic.

We believe that we have demonstrated here that it is an avenue worth exploring, but its real
test will come when hardware to support the paradigm is built.



A S Y N C H R O N I S E D PA R A L L E L C O M P U TAT I O N
W I T H PA R T I A L PA G I N G

The benchmarks used in Chapters 4 and 5 are not synchronised parallel tasks and we wished
to test how such tasks performed.

Using the same techniques and much of the code applied in the 128 core simulations we
built a software simulation running a synchronised parallel task and compared performance
using 256 cores, 64 cores and 16 cores. The results show that a many-core system, even with
partial paging, may perform relatively poorly when conducting synchronised parallel tasks,
with the blocking and entropy in the system negating any advantage from being to compute
multiple tasks in parallel, especially with the per core slow-down likely to be seen with a
many-core system.

As with the other simulations each of these cores can access 16 KB of local memory, but
instead of processing an XML trace of a benchmark, we created a synthetic assembly language
for the processor cores based loosely on the Ridiculously Simple Computer’s instruction set
[85]. Using our own coding system allowed us to build our own applications and, additionally,
the ability to avoid handling large trace files made it practically possible to look at an even
larger - in terms of core numbers - system.

Our instruction set1 is limited to just 32 separate instructions many of which are pairs of
the form add_(RegA, RegB, RegC) which adds RegB to RegC and stores the result in RegA and
addi_(RegA, RegB, imm) which adds RegB to the immediate value imm and stores the result
in RegA.

Each instruction is assumed to take a minimum of one or two cycles to operate, to account
for the fetch, however each instruction fetch (particularly when operating in partial paging
mode) could cause a (hard or small) fault. Instructions which only reference registers, e.g., of
the form add_(RegA, RegB, RegC) are assumed to be 64 bits long, while instructions which
reference an immediate, e.g., of the form addi_(RegA, RegB, imm) are taken to be 128 bits
long. Each fetch of 64 bits takes at least one cycle (and more if a fault is raised). The two
exceptions are the two supported branch instructions br_ (unconditional branch) and beq_

(branch if two registers are equal). These are taken to be 64 bits in length despite any reference
to an immediate (as though all branching was local). The div_ and divi_ instructions, which
model register and register/immediate division take 20 cycles to complete - to model the

1 The code can be seen at https://github.com/mcmenaminadrian/euclid - accessed 9 May 2019.
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additional time taken by hardware division (a feature copied from the MicroBlaze). It will be
seen that timing here is on a somewhat different, if similar, basis to the other simulations.

As in other simulations here a tree is used to connect cores to the external memory, though
with 256 cores we have an extra level of depth compared to the examples above.

The system was tested with the Gaussian elimination of a system of 256 simultaneous
equations (these were software generated and all begin with integer coefficients) [3]. Each
number in the equation was stored in memory in a 136 byte block, with the first 8 bytes set
aside to store sign and any other metadata, then the next 64 bytes to store the numerator
and the final 64 bytes to store the denominator. The large spaces used are to simulate the
space need to implement high precision integer arithmetic, as all numbers are represented in
rational form and no floating point maths is used (cf. [94]) - though in fact we do not attempt
to use anything beyond 64 bit arithmetic in this implementation.

Our code does not attempt to solve the whole system, merely to reduce the system to row
echelon form. The principal computing task is to calculate the greatest common divisor (GCD)
using Euclid’s Algorithm [2].

When using partial paging 4 of the 16 available page frames were marked as unmovable
- one to simulate local ’kernel’ space, one to provide space for the page tables, one for the
bitmaps and one for the stack. Code (other than interrupt handlers, which were treated as
though they were pre-loaded in the kernel page frame) was treated as being loaded from
global memory, and code pages were marked as read-only (so could be discarded without
a write-back). Data pages were marked as read-write and could, under software control, be
written back or simply discarded (e.g., if a page was simply being read to understand global
status, the relevant parts were loaded and then discarded.) On a write-back only those parts
of a page that were marked valid in the bitmap needed to be written.

A simple CLOCK-like page replacement algorithm was used. Every 40,000 cycles a flag bit
in the page table for eight (moveable) pages was reset and the page removed from the TLB but
was still present in the page table. A subsequent access would see the page returned to the
TLB and the bit reset. If a page frame was required to accommodate a page currently not in
local memory and there were no free page frames, pages marked by the CLOCK were liable
to be replaced. If no such pages were available then a page would be chosen for replacement
through a simple sequence. We did not use the mesh interconnect to co-ordinate the cores,
using only shared global memory.

In one system 256 processors are deployed against the 256 rows, in the second 64 processors
are used (each processor tackling 4 rows) and in the third 16 processors (each processor
tackling 16 rows).

Gaussian elimination can be thought of as one of the classical problems of parallel comput-
ing, but it is important to note that our algorithm does contain serial and semi-serial elements.
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Figure A.1: Gaussian elimina-
tion: 256 core sys-
tem

Figure A.2: Gaussian elimina-
tion: 64 core sys-
tem

Figure A.3: Gaussian elimina-
tion: 16 core sys-
tem

Ignoring questions of initial synchronisation for now (which may involve processors waiting
in a queue until the system is ready), the first computing task is to normalise row 0 of the
augmented matrix formed by the system of equations we wish to solve. We do this by having
a single processor attack each coefficient of row 0 at a time, so requiring 256 computations
in serial order. This represents 100% serial code. (We could instead have multiple processors
tackle the row coefficients, though synchronisation and memory management issues may
have left this as less efficient but the question is moot.)

In the 256 core system the other 255 processors modify the coefficients on their assigned
line while the processor that tackled row 0 loops waiting for the other lines to be finished.
In the 64 (or 16) core system all 64 (or 16) cores run through the system in groups of 64 (16)
equations.

We can consider this to be semi-serial, but the fraction of code that is serial rises as
calculations for different lines will finish at different times if only because of factors inherent
in the Euclidean Algorithm itself2.

As later rows in the system are normalised then processors in the 256 core system allocated
to previous rows stand idle, meaning the system becomes progressively more serial-like in
nature.

Figures A.1 - A.3 show the performance of the different systems. Blocking is so low in the
16 core system it is difficult to follow progress but in the 256 and 64 core systems we can see a
plateau of high blocking where all (or nearly all) the cores are active (and blocked).

The evidence suggests that system performance is dominated by blocking in the memory
tree: each processor has to read in continuous ranges of memory as each line is processed.
Synchronisation is managed through shared memory with the processors using polling

2 These are outside our scope but are discussed in pp. 356 - 373 of [94]
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Iteration and system Normalise pivot line Total normalisation time Fully parallel time

1st pass: 256 core system 4932449 15819591 10887142

2nd pass: 256 core system 3745597 14906061 11160464

3rd pass: 256 core system 2876858 13888268 11011410

4th pass: 256 core system 2659862 13571418 10911556

1st pass: 64 core system 656811 11907815 11251004

2nd pass: 64 core system 652412 13216775 12564363

3rd pass: 64 core system 654657 11647881 10993224

4th pass: 64 core system 700807 11594288 10893481

1st pass: 16 core system 304904 11784360 11479456

2nd pass: 16 core system 333996 11968158 11634162

3rd pass: 16 core system 347868 12363788 12015920

4th pass: 16 core system 373966 12934073 12560107

Table A.1: Small (16 core), medium (64 core) and large (256 core) system performances at Gaussian
normalisation compared (in simulated cycles)

to check for signals, so adding to demand on the memory system. This (admittedly crude)
mechanism can generate high levels of memory traffic, even though a simple backoff procedure
is used to limit traffic.

Specifically considering the 256 core system - for the first 5 million cycles traffic is generated
largely by processors polling to see if the first row has been normalised: this is completed at
5,084,476 cycles and then the system becomes saturated with memory requests, the number
of blocks only falling slightly as a small group of processors finish processing after around
11.5 million cycles. Blocking then falls rapidly as the bulk of processors start to complete after
around 14.7 million cycles - but it is not until about 15.9 million cycles that the typical number
of blocked processors falls to 128 or fewer - so before that point most processors are blocked
most of the time.

Table A.1 suggests that the 64 core arrangement may be the most efficient of the three tested
if all cores ran at the same speed - at least after the initial runs and over the range chosen: the
256 core system loses a processor on each run, while the 64 core system will not have that as
an issue until 192 lines have been normalised. This, though ignores the factors outlined in
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Table 2.1: which suggest that a 64-core system could see each core run around 3 times faster
than a 256 core system and a 16 core system run cores at 3.7 times the speed of the 64 core
system. Assuming the whole system ran at the same clock speed this would indicate that the
smaller system ran at the fastest speed.

(The normalisation of the pivot line - a piece of code executed in serial - runs faster on the
simulations with fewer cores, almost certainly because fewer cores generate less polling traffic
in the memory connect. This traffic, combined with the larger memory connection trees in the
bigger system, increases average waiting time and - by increasing entropy - the maximum
waiting time also, so degrading performance. A better algorithm might reduce this traffic and
lead to better performance of the larger systems here, but that would not matter for the fully
parallel timings where most of the traffic is related to memory fetching.)





B L A C K E Y M L O U T P U T

Listing B.1 shows the initialisation code for benchmark 0 (in fact this code is common to all
the benchmarks). The first two lines load an address to jump to and then jump there. Lines
3 - 90 are initialisation code that references either immediate values or other registers, then,
at line 91 we have the first three external memory references with three SD (store double)
operands, which store data on the stack.

Listing B.2 shows the lackeyml that is generated by this code. After the DTD (lines 1 - 20)
and the namespace definition (line 21), there is a one-to-one correspondence between the
assembly code and the XML until we reach line 113 of the XML (which maps to line 91 of the
assembly): here the SD ra, 56(SP) maps to two lines of Lackeyml XML - an instruction at
address 0x80001934 and a store which writes to address 0x80024CF8.

In terms of our simulator the assembly that only references immediate and other registers
will require a minimum of one cycle to execute, while code that writes (store) or reads (load)
external memory will require a minimum of two cycles to execute. There are no modify type
instructions with RISC-V.

1 core 0: 0x0000000000001000 (0x7ffff297) auipc t0, 0x7ffff

2 core 0: 0x0000000000001004 (0x00028067) jr t0

3 core 0: 0x0000000080000000 (0x00000297) auipc t0, 0x0

4 core 0: 0x0000000080000004 (0x16428293) addi t0, t0, 356

5 core 0: 0x0000000080000008 (0x30529073) csrw mtvec, t0

6 core 0: 0x000000008000000c (0x00000093) li ra, 0

7 core 0: 0x0000000080000010 (0x00000113) li sp, 0

8 core 0: 0x0000000080000014 (0x00000193) li gp, 0

9 core 0: 0x0000000080000018 (0x00000213) li tp, 0

10 core 0: 0x000000008000001c (0x00000293) li t0, 0

11 core 0: 0x0000000080000020 (0x00000313) li t1, 0

12 core 0: 0x0000000080000024 (0x00000393) li t2, 0

13 core 0: 0x0000000080000028 (0x00000413) li s0, 0

14 core 0: 0x000000008000002c (0x00000493) li s1, 0

15 core 0: 0x0000000080000030 (0x00000513) li a0, 0

16 core 0: 0x0000000080000034 (0x00000593) li a1, 0

17 core 0: 0x0000000080000038 (0x00000613) li a2, 0

18 core 0: 0x000000008000003c (0x00000693) li a3, 0

19 core 0: 0x0000000080000040 (0x00000713) li a4, 0

20 core 0: 0x0000000080000044 (0x00000793) li a5, 0

213
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21 core 0: 0x0000000080000048 (0x00000813) li a6, 0

22 core 0: 0x000000008000004c (0x00000893) li a7, 0

23 core 0: 0x0000000080000050 (0x00000913) li s2, 0

24 core 0: 0x0000000080000054 (0x00000993) li s3, 0

25 core 0: 0x0000000080000058 (0x00000a13) li s4, 0

26 core 0: 0x000000008000005c (0x00000a93) li s5, 0

27 core 0: 0x0000000080000060 (0x00000b13) li s6, 0

28 core 0: 0x0000000080000064 (0x00000b93) li s7, 0

29 core 0: 0x0000000080000068 (0x00000c13) li s8, 0

30 core 0: 0x000000008000006c (0x00000c93) li s9, 0

31 core 0: 0x0000000080000070 (0x00000d13) li s10, 0

32 core 0: 0x0000000080000074 (0x00000d93) li s11, 0

33 core 0: 0x0000000080000078 (0x00000e13) li t3, 0

34 core 0: 0x000000008000007c (0x00000e93) li t4, 0

35 core 0: 0x0000000080000080 (0x00000f13) li t5, 0

36 core 0: 0x0000000080000084 (0x00000f93) li t6, 0

37 core 0: 0x0000000080000088 (0x0001e2b7) lui t0, 0x1e

38 core 0: 0x000000008000008c (0x3002a073) csrs mstatus, t0

39 core 0: 0x0000000080000090 (0xf10022f3) csrr t0, misa

40 core 0: 0x0000000080000094 (0x0002c663) bltz t0, pc + 12

41 core 0: 0x00000000800000a0 (0x0202f293) andi t0, t0, 32

42 core 0: 0x00000000800000a4 (0x08028463) beqz t0, pc + 136

43 core 0: 0x00000000800000a8 (0x00301073) csrw fcsr, zero

44 core 0: 0x00000000800000ac (0xf0000053) fmv.s.x ft0, zero

45 core 0: 0x00000000800000b0 (0xf00000d3) fmv.s.x ft1, zero

46 core 0: 0x00000000800000b4 (0xf0000153) fmv.s.x ft2, zero

47 core 0: 0x00000000800000b8 (0xf00001d3) fmv.s.x ft3, zero

48 core 0: 0x00000000800000bc (0xf0000253) fmv.s.x ft4, zero

49 core 0: 0x00000000800000c0 (0xf00002d3) fmv.s.x ft5, zero

50 core 0: 0x00000000800000c4 (0xf0000353) fmv.s.x ft6, zero

51 core 0: 0x00000000800000c8 (0xf00003d3) fmv.s.x ft7, zero

52 core 0: 0x00000000800000cc (0xf0000453) fmv.s.x fs0, zero

53 core 0: 0x00000000800000d0 (0xf00004d3) fmv.s.x fs1, zero

54 core 0: 0x00000000800000d4 (0xf0000553) fmv.s.x fa0, zero

55 core 0: 0x00000000800000d8 (0xf00005d3) fmv.s.x fa1, zero

56 core 0: 0x00000000800000dc (0xf0000653) fmv.s.x fa2, zero

57 core 0: 0x00000000800000e0 (0xf00006d3) fmv.s.x fa3, zero

58 core 0: 0x00000000800000e4 (0xf0000753) fmv.s.x fa4, zero

59 core 0: 0x00000000800000e8 (0xf00007d3) fmv.s.x fa5, zero

60 core 0: 0x00000000800000ec (0xf0000853) fmv.s.x fa6, zero

61 core 0: 0x00000000800000f0 (0xf00008d3) fmv.s.x fa7, zero

62 core 0: 0x00000000800000f4 (0xf0000953) fmv.s.x fs2, zero

63 core 0: 0x00000000800000f8 (0xf00009d3) fmv.s.x fs3, zero

64 core 0: 0x00000000800000fc (0xf0000a53) fmv.s.x fs4, zero

65 core 0: 0x0000000080000100 (0xf0000ad3) fmv.s.x fs5, zero
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66 core 0: 0x0000000080000104 (0xf0000b53) fmv.s.x fs6, zero

67 core 0: 0x0000000080000108 (0xf0000bd3) fmv.s.x fs7, zero

68 core 0: 0x000000008000010c (0xf0000c53) fmv.s.x fs8, zero

69 core 0: 0x0000000080000110 (0xf0000cd3) fmv.s.x fs9, zero

70 core 0: 0x0000000080000114 (0xf0000d53) fmv.s.x fs10, zero

71 core 0: 0x0000000080000118 (0xf0000dd3) fmv.s.x fs11, zero

72 core 0: 0x000000008000011c (0xf0000e53) fmv.s.x ft8, zero

73 core 0: 0x0000000080000120 (0xf0000ed3) fmv.s.x ft9, zero

74 core 0: 0x0000000080000124 (0xf0000f53) fmv.s.x ft10, zero

75 core 0: 0x0000000080000128 (0xf0000fd3) fmv.s.x ft11, zero

76 core 0: 0x000000008000012c (0x00005197) auipc gp, 0x5

77 core 0: 0x0000000080000130 (0xf4418193) addi gp, gp, -188

78 core 0: 0x0000000080000134 (0x00005217) auipc tp, 0x5

79 core 0: 0x0000000080000138 (0xc0b20213) addi tp, tp, -1013

80 core 0: 0x000000008000013c (0xfc027213) andi tp, tp, -64

81 core 0: 0x0000000080000140 (0xf1402573) csrr a0, mhartid

82 core 0: 0x0000000080000144 (0x00100593) li a1, 1

83 core 0: 0x0000000080000148 (0x00b57063) bgeu a0, a1, pc + 0

84 core 0: 0x000000008000014c (0x01151613) slli a2, a0, 17

85 core 0: 0x0000000080000150 (0x00c20233) add tp, tp, a2

86 core 0: 0x0000000080000154 (0x00150113) addi sp, a0, 1

87 core 0: 0x0000000080000158 (0x01111113) slli sp, sp, 17

88 core 0: 0x000000008000015c (0x00410133) add sp, sp, tp

89 core 0: 0x0000000080000160 (0x7d00106f) j pc + 0x17d0

90 core 0: 0x0000000080001930 (0xfc010113) addi sp, sp, -64

91 core 0: 0x0000000080001934 (0x02113c23) sd ra, 56(sp)

92 core 0: 0x0000000080001938 (0x02813823) sd s0, 48(sp)

93 core 0: 0x000000008000193c (0x02913423) sd s1, 40(sp)

94 core 0: 0x0000000080001940 (0x04010413) addi s0, sp, 64

Listing B.1: RISCV Assembly for initialisation of benchmark 0

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!DOCTYPE lackeyml [

3 <!ELEMENT lackeyml (application,(instruction|store|load|modify)*)>

4 <!ATTLIST lackeyml version CDATA #FIXED "0.1">

5 <!ATTLIST lackeyml xmlns CDATA #FIXED "http://cartesianproduct.wordpress.com">

6 <!ELEMENT application EMPTY>

7 <!ATTLIST application command CDATA #REQUIRED>

8 <!ELEMENT instruction EMPTY>

9 <!ATTLIST instruction address CDATA #REQUIRED>

10 <!ATTLIST instruction size CDATA #REQUIRED>

11 <!ELEMENT modify EMPTY>

12 <!ATTLIST modify address CDATA #REQUIRED>

13 <!ATTLIST modify size CDATA #REQUIRED>
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14 <!ELEMENT store EMPTY>

15 <!ATTLIST store address CDATA #REQUIRED>

16 <!ATTLIST store size CDATA #REQUIRED>

17 <!ELEMENT load EMPTY>

18 <!ATTLIST load address CDATA #REQUIRED>

19 <!ATTLIST load size CDATA #REQUIRED>

20 ]>

21 <lackeyml xmlns="http://cartesianproduct.wordpress.com">

22 <instruction address=’0x0000000000001000’ size=’4’ />

23 <instruction address=’0x0000000000001004’ size=’4’ />

24 <instruction address=’0x0000000080000000’ size=’4’ />

25 <instruction address=’0x0000000080000004’ size=’4’ />

26 <instruction address=’0x0000000080000008’ size=’4’ />

27 <instruction address=’0x000000008000000c’ size=’4’ />

28 <instruction address=’0x0000000080000010’ size=’4’ />

29 <instruction address=’0x0000000080000014’ size=’4’ />

30 <instruction address=’0x0000000080000018’ size=’4’ />

31 <instruction address=’0x000000008000001c’ size=’4’ />

32 <instruction address=’0x0000000080000020’ size=’4’ />

33 <instruction address=’0x0000000080000024’ size=’4’ />

34 <instruction address=’0x0000000080000028’ size=’4’ />

35 <instruction address=’0x000000008000002c’ size=’4’ />

36 <instruction address=’0x0000000080000030’ size=’4’ />

37 <instruction address=’0x0000000080000034’ size=’4’ />

38 <instruction address=’0x0000000080000038’ size=’4’ />

39 <instruction address=’0x000000008000003c’ size=’4’ />

40 <instruction address=’0x0000000080000040’ size=’4’ />

41 <instruction address=’0x0000000080000044’ size=’4’ />

42 <instruction address=’0x0000000080000048’ size=’4’ />

43 <instruction address=’0x000000008000004c’ size=’4’ />

44 <instruction address=’0x0000000080000050’ size=’4’ />

45 <instruction address=’0x0000000080000054’ size=’4’ />

46 <instruction address=’0x0000000080000058’ size=’4’ />

47 <instruction address=’0x000000008000005c’ size=’4’ />

48 <instruction address=’0x0000000080000060’ size=’4’ />

49 <instruction address=’0x0000000080000064’ size=’4’ />

50 <instruction address=’0x0000000080000068’ size=’4’ />

51 <instruction address=’0x000000008000006c’ size=’4’ />

52 <instruction address=’0x000000008000006c’ size=’4’ />

53 <instruction address=’0x0000000080000070’ size=’4’ />

54 <instruction address=’0x0000000080000074’ size=’4’ />

55 <instruction address=’0x0000000080000078’ size=’4’ />

56 <instruction address=’0x000000008000007c’ size=’4’ />

57 <instruction address=’0x0000000080000080’ size=’4’ />

58 <instruction address=’0x0000000080000084’ size=’4’ />
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59 <instruction address=’0x0000000080000088’ size=’4’ />

60 <instruction address=’0x000000008000008c’ size=’4’ />

61 <instruction address=’0x0000000080000090’ size=’4’ />

62 <instruction address=’0x0000000080000094’ size=’4’ />

63 <instruction address=’0x00000000800000a0’ size=’4’ />

64 <instruction address=’0x00000000800000a4’ size=’4’ />

65 <instruction address=’0x00000000800000a8’ size=’4’ />

66 <instruction address=’0x00000000800000ac’ size=’4’ />

67 <instruction address=’0x00000000800000b0’ size=’4’ />

68 <instruction address=’0x00000000800000b4’ size=’4’ />

69 <instruction address=’0x00000000800000b8’ size=’4’ />

70 <instruction address=’0x00000000800000bc’ size=’4’ />

71 <instruction address=’0x00000000800000c0’ size=’4’ />

72 <instruction address=’0x00000000800000c4’ size=’4’ />

73 <instruction address=’0x00000000800000c8’ size=’4’ />

74 <instruction address=’0x00000000800000cc’ size=’4’ />

75 <instruction address=’0x00000000800000d0’ size=’4’ />

76 <instruction address=’0x00000000800000d4’ size=’4’ />

77 <instruction address=’0x00000000800000d8’ size=’4’ />

78 <instruction address=’0x00000000800000dc’ size=’4’ />

79 <instruction address=’0x00000000800000e0’ size=’4’ />

80 <instruction address=’0x00000000800000e4’ size=’4’ />

81 <instruction address=’0x00000000800000e8’ size=’4’ />

82 <instruction address=’0x00000000800000ec’ size=’4’ />

83 <instruction address=’0x00000000800000f0’ size=’4’ />

84 <instruction address=’0x00000000800000f4’ size=’4’ />

85 <instruction address=’0x00000000800000f8’ size=’4’ />

86 <instruction address=’0x00000000800000fc’ size=’4’ />

87 <instruction address=’0x0000000080000100’ size=’4’ />

88 <instruction address=’0x0000000080000104’ size=’4’ />

89 <instruction address=’0x0000000080000108’ size=’4’ />

90 <instruction address=’0x000000008000010c’ size=’4’ />

91 <instruction address=’0x0000000080000110’ size=’4’ />

92 <instruction address=’0x0000000080000114’ size=’4’ />

93 <instruction address=’0x0000000080000118’ size=’4’ />

94 <instruction address=’0x000000008000011c’ size=’4’ />

95 <instruction address=’0x0000000080000120’ size=’4’ />

96 <instruction address=’0x0000000080000124’ size=’4’ />

97 <instruction address=’0x0000000080000128’ size=’4’ />

98 <instruction address=’0x000000008000012c’ size=’4’ />

99 <instruction address=’0x0000000080000130’ size=’4’ />

100 <instruction address=’0x0000000080000134’ size=’4’ />

101 <instruction address=’0x0000000080000138’ size=’4’ />

102 <instruction address=’0x000000008000013c’ size=’4’ />

103 <instruction address=’0x0000000080000140’ size=’4’ />
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104 <instruction address=’0x0000000080000144’ size=’4’ />

105 <instruction address=’0x0000000080000148’ size=’4’ />

106 <instruction address=’0x000000008000014c’ size=’4’ />

107 <instruction address=’0x0000000080000150’ size=’4’ />

108 <instruction address=’0x0000000080000154’ size=’4’ />

109 <instruction address=’0x0000000080000158’ size=’4’ />

110 <instruction address=’0x000000008000015c’ size=’4’ />

111 <instruction address=’0x0000000080000160’ size=’4’ />

112 <instruction address=’0x0000000080001930’ size=’4’ />

113 <instruction address=’0x0000000080001934’ size=’4’ />

114 <store address=’0x80024cf8’ size=’8’ />

115 <instruction address=’0x0000000080001938’ size=’4’ />

116 <store address=’0x80024cf0’ size=’8’ />

117 <instruction address=’0x000000008000193c’ size=’4’ />

118 <store address=’0x80024ce8’ size=’8’ />

119 <instruction address=’0x0000000080001940’ size=’4’ />

Listing B.2: Lackeyml listing for opening code of Benchmark 0



C L I N E A R M O D E L L I N G F O R T R A D I T I O N A L
� K B PA G I N G

Table C.1 shows the results of a linear model of benchmark performance with traditional
paging and it can be seen that all the benchmarks (with the exception of 6, for which no
results were available as no benchmarks completed in the test time) point to a very strong
linear relationship between blocking and completion times, though also indicate a slightly
smaller coefficient linking blocking to completion times compared to partial paging (cf. Table
4.4). In fact for traditional paging the proportion between the theoretical intercepts and the
minimal theoretical completion times are smaller and the blocking coefficients are also smaller
- suggesting that the traditional method might be more fundamentally efficient. However to
look at these measures alone is to ignore the very large decrease in efficiency caused by excess
blocking and also does not consider the way in which blocking adds to uncertainty in the
system by increasing entropy.
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D L I N E A R M O D E L L I N G F O R � K B PA R T I A L
PA G I N G W I T H D E L AY

Table D.1, built with R’s linear model (cf. 4.4), shows that the coefficient for blocking remains
in the range 1.0 ⇠ 1.2 for all benchmarks. The intercept, as expected, doubles in almost all
cases: as the intercept represents the time the model predicts the benchmark would take if
there was no blocking, the 100% increase in basic execution time caused by bitmap reading is
reflected here.

In balance this would suggest that where blocking is high, the reduction in overall system
blocking rates (by around one-quarter) should deliver an improved performance but elsewhere
performance would be expected to fall - and that seems to be the pattern, with benchmarks 0,
3, 6 and 7 improving performance and others seeing performance deteriorate.

Very approximately, if 25% of the time lost to blocking for the process without the bitmap
reading delay is greater than the theoretical minimal execution time then adding the delay is
likely to speed the benchmark up. Of course the opposite also applies and other benchmarks
are slowed down. However this does suggest that an adaptive approach might work: if a
process generates a high number of faults it could be subject to a form of load control and yet
speed overall system performance.
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E D I S T R I B U T I O N O F O B S E R V E D
C O M P L E T I O N T I M E S F O R I N D I V I D U A L
B E N C H M A R K S F O R � K B PA G I N G

Figure E.1: Completion times for benchmark 0 with 1KB pages for partial paging, traditional paging
and partial paging with 1 cycle cost of bitmap access
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Figure E.2: Completion times for benchmark 1 with 1KB pages for partial paging, traditional paging
and partial paging with 1 cycle cost of bitmap access

Figure E.3: Completion times for benchmark 2 with 1KB pages for partial paging, traditional paging
and partial paging with 1 cycle cost of bitmap access
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Figure E.4: Completion times for benchmark 3 with 1KB pages for partial paging, traditional paging
and partial paging with 1 cycle cost of bitmap access

Figure E.5: Completion times for benchmark 4 with 1KB pages for partial paging, traditional paging
and partial paging with 1 cycle cost of bitmap access
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Figure E.6: Completion times for benchmark 5 with 1KB pages for partial paging, traditional paging
and partial paging with 1 cycle cost of bitmap access

Figure E.7: Completion times for benchmark 6 with 1KB pages for partial paging and partial paging
with 1 cycle cost of bitmap access
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Figure E.8: Completion times for benchmark 7 with 1KB pages for partial paging, traditional paging
and partial paging with 1 cycle cost of bitmap access





F G U M B E L D I S T R I B U T I O N P LOT S F O R � K B
PA R T I A L PA G I N G ( C LO C K )

Figure F.1: Computed Gumbel distribution for benchmark 1 maxima with 1KB partial paging.
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Figure F.2: Computed Gumbel distribution for benchmark 2 maxima with 1KB partial paging.

Figure F.3: Computed Gumbel distribution for benchmark 3 maxima with 1KB partial paging
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Figure F.4: Computed Gumbel distribution for benchmark 5 maxima with 1KB partial paging.

Figure F.5: Computed Gumbel distribution for benchmark 7 maxima with 1KB partial paging.





G L I N E A R M O D E L L I N G F O R � � � B Y T E
PA R T I A L PA G I N G

NB: All significance scores were < 2⇥ 10�16 - the minimum value supported by R - and so
while all results were judged significant the significance values are not listed separately.
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H G U M B E L D I S T R I B U T I O N P LOT S F O R � � �
B Y T E PA R T I A L PA G I N G ( C LO C K )

Figure H.1: Fitted Gumbel distribution for extreme completion data for benchmark 0 with 512 byte
pages under partial paging
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Figure H.2: Fitted Gumbel distribution for extreme completion data for benchmark 1 with 512 byte
pages under partial paging

Figure H.3: Fitted Gumbel distribution for extreme completion data for benchmark 2 with 512 byte
pages under partial paging
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Figure H.4: Fitted Gumbel distribution for extreme completion data for benchmark 5 with 512 byte
pages under partial paging





I G U M B E L D I S T R I B U T I O N P LOT S F O R � � �
B Y T E PA R T I A L PA G I N G ( C LO C K )

Figure I.1: Gumbel distribution for benchmark 0 with 256-byte pages
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Figure I.2: Gumbel distribution for benchmark 1 with 256-byte pages

Figure I.3: Gumbel distribution for benchmark 2 with 256-byte pages
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Figure I.4: Gumbel distribution for benchmark 5 with 256-byte pages





J G U M B E L D I S T R I B U T I O N P LOT S F O R � � �
B Y T E PA R T I A L PA G I N G W I T H F I F O

Figure J.1: Fitted Gumbel distribution for FIFO with benchmark 0
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Figure J.2: Fitted Gumbel distribution for FIFO with benchmark 2

Figure J.3: Fitted Gumbel distribution for FIFO with benchmark 3
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Figure J.4: Fitted Gumbel distribution for FIFO with benchmark 5

Figure J.5: Fitted Gumbel distribution for FIFO with benchmark 7
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